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Exercise

1

Functions of a Complex Variable

s 1.2.2

ml(a) If|z—2+j|=2—7+3] so that

or

ztjy—2+i|=|z+jy—JF+3]

(-2 +{y+ 1) =(@+3°%+(y1)°
3:2—4:1:—|—4+y2—|—2y+1::1:2—|—6:1:+9—|—y2—2y+1

Cancelling the squared terms and tidying up

55
Y=35%7 ]

1(b) 242" +4j(z—2*) =6

Using z + z*

= 2x, z — 2" = 29y gives
2xr 4+ 4327y =6
1 3
= —Xr — —
YU

m 2 The straight lines are

| z=1—-d[=[2=-3+7|
|z 1+4[=[2-3-7]

which, in Cartesian form, are

ie.

(- 1+ -1 =@ 3%+ (yt+1)°
3:2—2:1:—|—1+y2—2y+1:3:2—6:r:—|—9—|—y2+2y+1
y=x—2
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2 Glyn James: Advanced Modern Engineering Mathematics, Third edition
and (2 — 1)+ (y+1)° = (-3 + (¥ — 1)°

le. m2—2x+1+y2+2y+1:m2—6m+9+y2—2y+1
y=—x+2

These two lines intersect at /2 (the products of their gradients is —1) and

y = 0, x = 2 at their intersection, ie. 2 = 24 70.

m3 w=j52+4—3j can be written

w=e"2y 44— 34 (since j = cosg +jsing = ej”/g)
which is broken down as follows
2z — gI™/2y — ej”/2z+4—3j =w
rotation translation
anticlockwise (0,0) — (4, —3)

by %7?
Let w = u+jv, 2 = x+ jy
so that  w+ jv = j(z + jy) +4 — 37
=jr—y+4-—3j5

e, u=—y+4 (1)
v=x—3 (2)

Taking 6 times equation (2} minus equation (1) gives
6v —u==6x+y—22

go that, if 6x +y — 22, we must have 6v —u — 0 so that u — 6v is the image of
the line

6r 4y = 22
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Glyn James: Advanced Modern Engineering Mathematics, Third edition 3

m 4  Splitting the mapping w = (1 — j)z into real and imaginary parts gives

u+jv=(1-j)x+jy)
=z+y+jy—z)
le. u=x4+vy
V=Y —x

so that w+v =2y

Therefore y > 1 corresponds to u+ v > 2.

PSS \\‘§

A

7,
o "o [ ’l///////
welisj) 2 ¢

Upv = 2

m 5 Since w=jz+]
r=v—1 y=—-u

so that = > 0 corresponds to v > 1.

m 6 Since w=jz+1
v=2x

u=—-y+1

sothat 1 >0=0v>0
and 0<y<2=-l<u<lor|ul|<l.
This is illustrated below
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4  Glyn James: Advanced Modern Engineering Mathematics, Third edition

S A v

:/ %

—

m 7 Given w = (j+ v3)z+ jV/3 — 1 we obtain, on equating real and imaginary

[

parts,

u:x\/g—y—l, v=x+y\/§+\/§
or vW3—u=4y+4 and v+uV3=4z

Ol rearranging.
Thus 7(a) y = 0 corresponds to vv/3 —u =4 or u =vV/3 — 4

7(b) 1z =0 corresponds to v +uv3 =0 or v = —u\/3

7(c) Since u+ 1 =1zv3 -y and v — v/3 = x 4+ yv/3 squaring and adding gives

(w+ 1)+ (v —V3)?2 =@V3—y)?+ (z+yV3)?
= 42% + 44°

Thus 224+ 9> =1= (u+ 12+ (v —3)2 =4

7(d) Since vv3 —u =4y + 4 and v+ uv/3 = 4z squaring and adding gives

4v? + 4u? = 16(y + 1) + 1622
or w40 =4+ +2y+1)

Thus 22 + 4% 4+ 2y = 1 corresponds to u? 4+ v? =8

@ Pearson Education Limited 2004



Glyn James: Advanced Modern Engineering Mathematics, Third edition 5

8(a) w=az+p
Inserting 2z =1+7j, w =7 and z = —1, w = 147 gives the following two equations
for o and 3

j=a(l4+j)+0 or 1+j=—-a+p

from which, by subtraction,

1
—1=24ja or Oé:g(—2+j)

1
so that ﬁ:1+j+a:g(3+6j) giving bw = (—2+ j)z+ 3+ 65

8(b) Writing w = u + jv, z = = + jy and equating real and imaginary parts
gives
bu=—-2xr—y+3

v =x—2y+6
Eliminating y yields

bv —10u =5x or v—-2u==x
Eliminating z yields
Su+10v = =dy+15 or u+2v=—-y+3
so that y > 0 corresponds to u + 2v < 3

S

'r?//

% .

.@ ll s ))e e34b] ////
wz(-29))& +3+b; .w
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6 Glyn James: Advanced Modern Engineering Mathematics, Third edition
8(c) From part (b),
T=v—2u
y=3—u—2
Squaring and adding gives
22 +y? = (v—2u)?+ (3—u—2)*
= 5(u® +v?) —6u—120+9
lz]<2= 22+ <4

so that 5(u? +v?) — 6u —12v+5 < 0
or (hu—3)? + (5v — 6)2 < 20

, 3.2 6.2 20 4 2 72
l1.e. <’U—g> —|—(’U—g> <2—5:g:(5\/5)
Vﬂ\_
)
[ @(\ “
S’(u"'-ev")

-bv-12v+S=0

8(d) The fixed point(s) are given by

Bz =(—2+47)z+ 3+ 6j

3464 34+67)(7+7
so that 2z = +j=(+‘])( +3)

7— 50
3
= —(14+ 39
oL +39)
Exercises 1.2.5
1 1
m 9 Writing w=—-, 2= —
2z w
N 1 u— Ju
x — =
JY u+ v u?+ o2
that Y
so tha =
Y u? 4 v?
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v
If y > ¢ then b 5 > C

v
arranging u? +v? + = < 0
c

If ¢ = 0,——5—— >c=v <0
u* +

v
If c<O, put c=—d and —
< pu u? + v?

12
ging, u” + (v — o) >

WM%///M

, Third edition

R\

%/ // // ///z %//
////////////////// / /

‘‘‘‘‘

@ Pearson Education Limited 2004



8 Glyn James: Advanced Modern Engineering Mathematics, Third edition

10 Putting = in ‘z—l— 3 + ‘ ’ ives ’ L + 3 + ‘ ! or
[ ] = —_ — —_ _ J— — J—
& T 1 8 w s 4

1
w
w | which, writing w = u + jv and expanding, gives

3 7
u+<1+ﬂwy_1|
3 /3 49,

<1—|—1u—v> +<Zv+u> —E(u +v7)

or, ol rearranging

u? + v* u+§v—§=0
1)° 2\* (7’
(u_5> " <v+§> - (5>
: 2 :
a circle centre (5, _§>’ radius 6

1 1
m11 Putting z2=—in|z—al|=agives |l —aw|=a|w| fromwhichuzZ—
a

(on writing w = u? + v?).

1 1
Hence | z — a |= a maps to Re{w} = %0 under w = —.
z

1
Moreover, the interior of | z — a |= a maps to right of the line Re{w} = % The

. 1 . 2 .
point z = §a mapping to w = p confirms this.

m 12  The general bilinear mapping is

az+b
cz+d

with 2 =0,w=7=b=jd

@ Pearson Education Limited 2004



Glyn James: Advanced Modern Engineering Mathematics, Third edition

with 2= —j,w=1=d—jc=5b— ja
and with 2= -1, w=0=a=195
Hence b=a, d = —7ja and ¢ = ja

and the mapping is
ozt
iz = 1)

Making z the subject of this formula, we obtain

jw + 1
2=
jw — 1

Writing 2 = x + jy, w = u + jv and equating real and imaginary parts

B w? + v —1 B —2u
S (v 12 y_u2+(v+1)2

xT

Lines x = constant = k, say, transform to

Eu? + (v + 1% =u? 402 1

1
Y= —

2 2
or u-+w —I_k—l —

This can be rewritten

iy 27+ k 1
k—1) (k-1 k-1 (k1)

which are circles (except k = 1 which is v = —1).

Lines y = constant =1, say, transform to

2
u2+(v+1)2+7u=0

1\” 1
or (u%—?) +(U_|_1)2:l_2

which are circles (except { = 0 which is w = 0).

@ Pearson Education Limited 2004
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10 Glyn James: Advanced Modern Engineering Mathematics, Third edition

The fixed points are given by

z+1
Z = - -

Jjz—J

or j22—(j+1)z—-1=0
D EVGHD)2 4
— %
_ G+ =6
25

(since /67 = £(14+ 5)V3 ).

W= 2+
J(Q—u)
L1
m 13 w= +J
z
13(a)
z=1=w=1+4+j
11
zzl—jéwziéizj

z2=0=w =00

@ Pearson Education Limited 2004



Glyn James: Advanced Modern Engineering Mathematics, Third edition 11

RS

| 2] | 2]

2
sothat|z:\1f|<1$|w>xf2

i.e. interior of the unit circle maps to the exterior of the circle centre the origin

radius +/2.

13(b)  [w]

1+
13 ——
© ==t
o (1+4)
¢m+3y*u2+v2(u—jv)sothat
UtV U
Y B B,

Therefore x = y corresponds to v = 0 (the real axis) and = + y = 1 corresponds
2
to T—IQ—LUQ =11ie (u—1)>+2%=1 a circle, centre (1.0) radius 1.

13(d) The fixed point of the mapping is given by z° = 1 + 4. Using the polar
form 14 j = +/2e™/% g0 z = +21/4¢73/8

14 The bilinear transformation

241
z—1

Writing 2 = x + jy, w = u + jv and equating real and imaginary parts gives

22+ y? —1 2y

Qe ty?’ " A raliy?

Hence all points on the circle 22 + 42 = 1 correspond to u = 0.
From the point (0,—1) to the point (0,1) on the circle z* + y® = 1 we use
the parameterisation = cosf,y = sind, «/2 < 6 < 3x/2. Using v =

2y 2y
_ te that v — *+y? = 1 so that
(It a)2+y? 1+altyltox croeraan? It BT o
in @ 2sin 10 cos 1o 1 3 1
p— — 2 27 _ tan -6 and between 0 — — and 0 — j,tan 50
1+ cosé 2 cos? %6’ 2 2 2 2

ranges from 1 to oo and from —oco to —1 hence | v |[> 1.

@ Pearson Education Limited 2004




12 Glyn James: Advanced Modern Engineering Mathematics, Third edition

» 15(a) With w=u+ jv,z =2+ jy

3 .
The transformation w = : implies z = wtJ from which we deduce that
3(u? +v?) = 3u+v u—3v—1
T w-12+2 VT w212
1 2?4+ y? —3r+y r—3y—3
(z—3)?+y* (x—3)*+y°

The line y = 0 corresponds to the line v — 3v — 1 =0 in the w plane. The line

x =1y corresponds to the curve

3(u+v*) —3u+v=u—3v—1
2 2
2 2 )
ie. <u—§> +<v+§> =5 1)

a circle centre (g, _§> radius l\/5 in the w plane.

The origin in the z plane (the intersection of the line y = 0 and x = y) corresponds
to the point w = —j% in the w plane. The point at infinity in the z plane (the
other “intersection”) corresponds to the point w =1 in the w plane.

The origin (in the w plane) lies outside the circle (1) and is also outside the wedge
shaped region in the z plane (z = —j3 is its image).

So the following figure can be drawn

33 wz 2]
z-3 \ = 3vel
’nﬁt
, J
3 '
Lo \
-1
43

2
The point w = 3 lies inside the shaded region in the w plane, and corresponds to

324
the point z = 2?’7] =
21

plane. (This is a useful check.)

—3(2+ j) = —6 — 3j inside the shaded region of the z

@ Pearson Education Limited 2004
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15(b)  The fact that w = 1 does not correspond to any finite value of z has

already been established.
2+

Consider the equation w =

z—3
Taking the modulus of both sides gives

‘z+]

lwi= z—3|

If |wl=1=|z4j|=]z—3]
or ¥+ (y+1)° = (x—3)°+y
44 1=a—62+9+1°
so that 2y = —6x+ 8
or y+3r=4

Hence the unit circle in the w plane, | w |= 1, corresponds to the line y+ 3x = 4.

16 Ifw=2"_7
)
w—1 .
so that |z|=]&
w—1

soif [z|=2, |[w+1|=2]w—-1]
or (u+1)% +v? =4(u—1)% + 4?
which simplifies to

16 5 4
9 a circle centre <§,O) radius 3

\ N

N

<

|
w| ot
N—
[

+

(4

[

I

@ Pearson Education Limited 2004
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17 If w= ejeog then,

taking modulus
Z—z

| w = |

2| since | /% |=1

If z is real (i.e. z is on the real axis) then

1/2 .
] %0 = Zo + JY0

|2 =20 =] 2= 25 |= [(# — 20)” +

Hence | w |= 1. Thus the real axis in the 2 plane corresponds to the unit circle
| w|=1 in the w plane. Making z the subject of the transformation gives
wzy — €99 2

w — 3

Hence the origin in the w plane maps to z = 2.
Thus the inside of the unit circle in the w plane corresponds to the upper half of

the 2z plane provided

Im{z} >0
Since w = 0 maps to 2 = 2g,20 =4 and 2 = oc maps to w = 3% = —1 gives
90 =M.
18 For the transformation
292
w = -
247
the fixed points are given by
252
Z = -
Z 479
22 4 jz =25z

or #{z—34)=0, z=00rj

Hence circular arcs or straight lines through 2 = 0,7 are transformed to circular
arcs or straight lines through w = 0,5 by the properties of bilinear transformation
(section 1.2.4, p.17).

The inverse transformation is .
Fw

T o w

@ Pearson Education Limited 2004
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1, 1 jw 1, 1
| 2 — = |< = becomes |— 77|<—
2 2 29 —w 2 2

which simplifies to | w — 1 |[< 1 (use w = u + jv and split into real and imaginary

parts).
Similarly, | = — ; < ; becomes | w — é > z
19 The general bilinear mapping is
_ ez + b
cz+d

if w = 0 corresponds to 2z = 2y then

(z — 29)e?%
cz+d

If, additionally, | w |= 1 is mapped to | 2 |= 1 then |Z _+Z;| = 1 and the inverse
cz

of zp is also mapped to the inverse of w = 0 ie. w = co.

Hence cz + d can be replaced by zj# — 1 giving the mapping

: Z— 2D
w = eifo —
252 —1

Exercises 1.2.7

2 2 2
LU= 3 —yh, v = 2xy

20 Under the mapping w = 2
It is not possible to achieve formulae of the type z = ¢(u,v), v = ¥ (u,v), however
we can use u = z° — y°, v = 2zy to determine images. Points (0 + 50), (2 + 50)
and (0 + 52) transform to {0+ j0),(4 + §0) and (—4 + 70) respectively.

The positive real axis ¥y = 0,z > 0 transforms to the (positive) real axis
v=0u=a>.

The positive imaginary axis = 0,y > 0 transforms to the (negative) real axis
v=0u=—y>.

The line joining the point 2 4+ 50 to the point 0+ 52 has equation x4+ y = 2.

By using the equations u = 22 — 42, v = 22y we obtain

u=4(1-y), v=2y2-y)

from which, eliminating y
Sv =16 — u*

@ Pearson Education Limited 2004




16 Glyn James: Advanced Modern Engineering Mathematics, Third edition

Hence we deduce the following picture

» 21 Under the transformation w = 2%, u = z? — y?, v = 2xy.

Hence the line y = = transforms to u =0,v > 0

and the line y = —z transforms to v = 0,v < 0.
2m
The line y = ma transforms to v = ———u.
I—m

Putting m = tan 6y, ﬁime = tan 26;.

Hence y = ztanfy transforms to v = utan 26.

Thus lines through the origin of slope 6y in the z plane transform to lines through
the origin of slope 26y in the w plane. Hence the angle between the lines through

the origin in the z plane is doubled by the transformation w = 22.

m 22 w=2z"

Writing z = re??, w = rme???

22(a) Circles | z |=r are transformed to circles | w |=r"

22(b)  Straight lines passing through the origin intersecting with angle 6, are
0=k, 0 =Fk+ 0y. These are transformed to w = r”e”ﬂ“,w = pneni(ktbo) o

lines ¢ = nk, ¢ = nk 4+ nfy as required.

1+ 22 1 *
= 23 If w= tz =2+ - =2+ 22
+ Y
oUuU=rT+———,0=9y — ———
224y Y 22+ 42

@ Pearson Education Limited 2004
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If | z|=r, then u:z:(l—l—rig),vy(l—:g)
ruy ry
AR R
r2u rly
Squaring and adding gives (TQ n 1) (TQ — 1) =72 (r#1) (f).

If r=1,0=0,|z|<1 (because z° = 1 — 4?) and u = 2z hence the image of the
unit circle | 2 |= 1, i.e. =2 <u < 2, v = 0, the portion of the real axis in the w

plane between —2 and +2.

1+r2 -1
5—» minor axis 5
r T

large, both of these quantities tend to 1. Hence the image curve I tends to a circle

u? 4 v? =2,

The curves ([) are ellipses, major axis if v is very

Exercises 1.3.3

24(a)

2e* = (4 )t

= e*(x + jy)(cosy + jsiny)
=e*(zcosy —ysiny) + je*(ycosy + xsiny)
so u=(xcosy—ysiny)e® , v=(ycosy+ xsiny)e”

We need to check the Cauchy—Riemann equations

du , v
pol (zcosy — ysiny + cosy)e
o _ (—xsiny — ycosy —siny)e®
ay a a
ov , ] -
B = (ycosy + xzsiny + siny)e
o i -
By = (—ysiny + cosy + xcosy)e
ou  ov o v

Hence — = —, an = ——
dr Oy Yy ox
Thus the Cauchy—Riemann equations are valid and

d = _ =
g(ze )=1(z+ 1)

@ Pearson Education Limited 2004




18 Glyn James: Advanced Modern Engineering Mathematics, Third edition

24(b) Following the same procedure as in (a), we deduce that sin4z is analytic

with derivative 4 cos4dz.

24(c) This time, 22* = z% + y* which is real.

] o 152y
Obviously, therefore, %(7 2x) + @(7 0).

Thus zz* is not analytic.

24(d) Similarly to part (a), cos2z is analytic with derivative —2sin 2z,

25 w=1x"+ ay® — 2zy + 7(bx® — y® + 22y) = u + jy

8u72 5 8u72 5
32:72: y:alyia’ly x

v av
— =2bx+2y, —

-
ox oy yoe

v du v ou
The Cauchy—Riemann equations are —

dx oy oy o
The second is satisfied, the first only holds if a = —1,6= 1.

26  With u=2z(1 —y) =2z — 2zy

o o

—=2-2 — =-2
Ox v Oy *
The Cauchy—Riemann equations demand
v 5 _ 9 v 5
I — - = T
oy v ox

Integrating and comparing these gives
v =22 —y? + 2y + C (take C = 0)

Form wu + v = 2z — 2zy + j{x? — 4* + 2y) = w(z).

@ Pearson Education Limited 2004
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Since z = x + jy, if we put ¥y = 0 we can find w(x) which will give the functional

form of w. Thus
w(zx) = 2z + jz°

Hence w(z) = 2z + j2°

] 27
dlx,y) = e"(xcosy — ysiny)
g .
poial (xcosy — ysiny + cosy)
o
dy
3%¢
oz2
9%¢

3—3;2 = e"(—zcosy + ysiny — 2cosy)

=e*(—xsiny — ycosy — siny)

= e"(zcosy — ysiny + 2cosy)

hence % + asz =0 and ¢ is harmonie.
Writing z = ¢(z,y) + j3(z,y), the Cauchy-Riemann equations demand

g;b = gi =e®(zsiny + ycosy + siny)
aib — 0% = e"(xcosy — ysiny + cosy)

oy Oz

Integrating g—;f with respect to x (using integration by parts for the first term)

gives ¥ = e®(xsiny + ycosy) + f(y). Examining ¢(z,y) demands that f(y) =0
because all terms will be multiplied by e®.

Hence w(z) = ¢(x,y) + jvo(z,y) = e*(x cosy — ysiny) + je*(zsiny + ycosy)

w(z + j0) = w(z) = xe®. Hence w(z) = ze”.

= 28 Here we have u(z,y) = sinz cosh y

U ou
so that =cosxrcoshy —— =sinxsinhy
ox oy
8%u 5%y
whence = —sinxcoshy and —— =sinxcoshy
dx? Ay

2 2 .\ .\
so that VZ2u = gx"; + 271; = 0 and « is harmonie.
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20 Glyn James: Advanced Modern Engineering Mathematics, Third edition

Using the Cauchy—Riemann equations gives v = cosxsinhy so that « + jv =
w(z) = sinx coshy + jcosxsinhy. Putting ¥y = 0 gives w{z + j0) =sinz so that

w(z) =sinz.

29 The orthogonal trajectories of a family of curves ¢(x,y) = a are ¥(z,y) = 3
where ¢ and v are conjugate functions: that is ¢(x,y) + j{z,y) = w(z) an
analytic funetion.

Proceeding as in the previous examples.

1 3
29(a) If g(z,y) = 2y — 2y’ then ¥(z,y) =  (a* +y') — Sz

1
29(b) If ¢(z,y) = e " cosy + zy then ¥{x,y) =e T siny + §(m2 —y?).

Hence the orthogonal trajectories are,

for

29(a) z?—62%y* + y* = 3, a constant
and for

29(b)  2e*siny+ 2% — y® = 3, a constant.

30(a) 22672

= (2% — o + 2j2y) (€ (cos 2y + jsin 2y))
= e (22 — y?) cos 2y — 2zysin2y) + je** ((z? — y?)sin 2y + 2xy cos 2y)

30(b) sin2z
= sin(2x + j2y)
= sin 2x cosh 2y + § cos 2x sinh 2y

Straightforward calculus reveals both functions obey the Cauchy—Riemann
equations and are thus analytic. Their derivatives are (a) (22° + 22)e?* and

(b) 2cos 2z respectively.

1y we can say that

m 31 Writing w =sin—
2z =sinw = sin{u + jv) = sinucoshv + 7 cosusinh v

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 21
so that, equating real and imaginary parts,

x = sinucosh v
and y = cosusinhv
Squaring and adding gives

2 2

24 yQ = sin® wcosh? v + cos®usinh® v

= sin® ucosh® v 4+ (1 — sin®u)(cosh® v — 1)

= sin2u+ cosh®v — 1

from which )

22 +y? 4+ 1 =sin®u+ _:E (I)
sin” u

Solving for sin® gives

1 1
sin®u = o (142 + %) = SV(1+ 22+ y7)? — da?

2
where the minus sign is taken since with v = 7/2 (ie. z = coshv,y = 0)
. . . . 2 2 .
inconsistencies result otherwise. From cosh” v = Siiz — we obhtain

1 1
cosh’ v = S (L+a” +97) + ST+ 2%+ ) —4a?

—L_ then using cosh?v =
U

(This is most easily found by solving equation (I) for =

2
siif? u )
Square rooting and inverting give w and v in terms of z and y. It can be shown
that the expression under the square root sign is positive, for 14 z? + y° — 2z =

(z—1)24y% > 0 forallreal = and y thus (1+z2+y%)% > 422, Hence w —sin ' »
1

is an analytic function with derivative ot

32
| sinz |* =| sinz coshy + 7 cos zsinhy |*

= sin® z cosh” v+ cos” x sinh” Y

2 2

— cosh?y — cos®x = sinh® y + sin’ =

The result follows immediately from the last two expressions.
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Exercises 1.3.5

w
33 Mappings are not conformal at the points where e 0
b

d
33(a) d—zj =2z =0 when # = 0. 2z = 0 is the only point where the mapping

fails to be conformal.

d
33(b) d—t = 622 — 422 + 72 = 0 when 2° = 7z + 12 = 0 ie. non-conformal
points are z =4, 2 = 3 (both real).

33(c) W _s_

1 3 1 1453
dz 23

1
= 0 when 2z° = 3 giving 5 A as non-conformal
points.

34 Proceeding as in Example 1.13, the mapping

has a fixed point at # = oo and is analytic everywhere except at z = 0, and

dw
conformal except where o 0
b4

1
le. 1+—==0,2==j
zZ

Since both of these occur on the imaginary axis, consideration of this axis is
adequate to completely analyse this mapping.
The image of 2 = 7 is w = 27, and the image of 2 = —7 is w = —27. Writing
z = j + je, £ real, we find that
1
J+7ge

=jll+e—(1+e7

=jll4et1l—ete+ ..

~ j[2+ &%

So, no matter whether £ > 0 or & < 0, the image point of 2 = j + j= is above

W = J€ —

w = 42 on the imaginary axis.
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v
y 1} v
w: 2-'1 .
— 2;: f}e? 23
iy, J J
Flie ‘
0 T3 [) " ] 7 A

"4

i.e. points Q and P in the 2z plane both map to R in the w plane in a similar
fashion to Example 1.13, the non-conformality of z = %7 is confirmed and as the
imaginary axis (in the 2z plane) is traversed from —jz to 0 the imaginary axis (in
the w plane) is traversed from —jz to —j2 and back to —joo (when z = —j, w
reaches —j2). Similarly, as the imaginary axis (in the z plane) is traversed from
+joo to 0, the imaginary axis (in the w plane) is traversed from +joo to +52
and back to +jo0 again.

Finally, points on the imaginary axis in the w plane such that w =aj,—2 < a < 2,
do not arise from any points on the imaginary axis in the z plane. This point is

obvious once one solves

aj =2 — —
z

to obtain

1 1
Z:§ajj:§\/4—a2

35 If w=e¢?
then u = e*cosy and v =e”siny

Hence the expressions u? + v? = e2* and v = utany can be derived.

35(a) 0 <2 < oo is mapped to the exterior of the unit circle u? + 0% =1

35(b) 0 <2 <1 ismapped to the annulus 1 < u? 4+ v? < ¢?
0 <y < 1 is mapped to the region between the radiating lines v = 0 and
v=utanl.

@ Pearson Education Limited 2004



24  Glyn James: Advanced Modern Engineering Mathematics, Third edition

v banl

=

Y

Ry

35(c) 4m < y < m is mapped to the region between u = O(v > 0) and

v =0(u<0)
21 wze
et ]
CoS | e

Thus if 0 < 2 < oo too then the image region in the w plane is in the shaded

quadrant, but outside the unit circle.

N

z- Io(m

W-P(d—M

m 36 If w=sinz then Ccll—f = COS 2.
Since cosz = 0 when z = (2n+ 1)7/2 these are the points where the mapping is

not conformal

w =sinz = u + jv = sinx coshy + j coszsinhy
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Hence v = sinx coshy, v = coszsinhy
thus lines z = k transform to (5 )2 — (= )2 =1 (hyperbolae)

sin k cosk

and lines y = [ transform to (ﬁy + (Si;’hi)Q =1 (ellipses)

@ Y W =Sinz

25

37 Ifz:C+%2 and( = Re’?
then z = Re?? + “—Rze_jg

so that = = (R+ %) cosf and y = (R— %) siné.

If R =a,z = 2acosf and y = 0 and the real line between +2a is traversed.

Length of line segment = 4a.
For a circle of radius b,
2 2

xr = (b—l— %) cosf, y = (b— %)sinO

Hence the image in the z plane is an ellipse of the form

b2 b2y?
@+t oy !
Exercises 1.4.2
38(a) 1 2
2\ .
;9 123(1—3) =3(1+;+(}) +.)
38(b) '1 | 2
T
=%+5—2—Zi3—2%+..
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38(c) Inorder that | 2 —1—7|< /2 we write

Lo ! =(l+z—-1+5)""
v 2-1-4+1 717 I

—1—(z—1—-PD+(z-1-9>—(—1—9>+...

valid inside | > — 1 — 4 |<| 1 — 4 |= /2.

39
1

P S B R R e S

where | 2 |< 1.

Using the fact that we can differentiate power series term by term and the radius

of convergence remains unaltered

2
_m:_22+423_625+...
S50
39(a)
1
Z
|z <1
: 1 . . o
perating ol ————= 11 4 S1INllar Iasiion gives
O t CERIE lar fash
4
42 3 5 7
——— = —4Z zZm = zZ Z ...
CEny I e
2
S50
39(b)
1

|z ]< 1
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Exercises 1.4.4

m 40 Taylor’s theorem is

(>~ a)?

o) Fa)+ ...

We thus compute f(z) and its first few derivatives then evaluate them at z = a.

40(a)
Hence

F(1) = %,f’(l) = —%, () = g = i 7L = —2
thus

1; :%i(z1)+é(z1)21—16(21)3+---

The radius of convergence is the distance between the nearest singularity of f(2)
to the point about which the expansion is made. The point 2z = —1 is the only

singularity and the distance between this and z = 1 is 2 (along the real axis).

40(b)
f(z) = e i ke %(i — %43‘,) using partial fractions
P-4t o) =g =
PO =t o) PO =g =0
PO =Gt o) M =g =0
P =T ) PO
PO =3 ) o
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Thus

1 R

- 24
1) 1 16 PN

‘ 1 ‘
z—25)% + @(Z -2t %(

The radius of convergence is 2 since z = 27 is 2 from the singularities at z = 0

and z = 47.

40(c) [l =%

gives f'(2) = — =, f'(z) = &, f"(z)= 2.
Putting z =1+ 7 gives

‘ J . 2 1+
fl+9) =510+ = G55~
, 6 3 . 24 ,
f (1+3):m:§:f (1+J):*m173(173)
Hence
1 1 3 1
R ) [CE e E - CES B S () CER T s

The radius of convergence is the distance between the origin (a double pole) and
1+ 7 ie /2.

. 1

we could use the binomial expansion
f(2) = (1+2z+2%) ! gathering terms to O(z%)

This is certainly more efficient than using the derivatives of f(z). However, the
best way is to use the fact that (2% — 1) = (2 — 1)(2%2 + 2 + 1). That is

1 _z—l_l—z

l+2+22 231 123
:(1—2)(1—23)_1
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=1—z4+2°. ..
to order 2°
valid in the region | 2 |< 1.
42  If f{z) = 24—1_1 the singularities are at the points where 2? = 1 ie.

z=1,—1,—4,4. The radii of convergence are the minimum distances of the points
z=10, 1+74, 2+ 32 from these singularities.

2z = 0 is equidistant {1) from each radius of convergence = 1.

z=1+ 7 is distance 1 from z = 1 and z = 7 radius of convergence = 1.

2 =2z + 72 is a distance | 2+ 72— 1| from 1 and a distance | 2+ 72— 7 | from j.
Both of these distances = [22 + (2 — 1)?]Y/2 = /5.

43 If f(2) =tanz then f/(2) =sec?(2) and f” = 2sec? 2tanz but subsequent

derivatives get cumbersome to compute (except by using a Computer Algebra

package). Since tan z = e , we can use the series for sin # and cos z as follows
Cos 2
23_|_ 25
tan z — 6 12240
-5+ 5
22 ! 22 4 N 1
=1 1 (2.~
Z( 6 +120)( 5 24))
22 o4 2, 2,42
—al1 = 14+ - 2
Z( 6 +120)( Ty outs oy >+
+1 3 1 1 1 i 5
=z+ —z —— — — — + — |z
3 120 12 24 4
L o, 2 5
tang =24+ —2" 4+ —2" +

Since z = 7/2 is the closest singularity, the radius of convergence is 5 -

Exercises1.4.6
: 1 :
44  The function e 12 has a simple pole at 2 = 0 and a double pole at
2(z —
z = 1. In order to find the Laurent expansions we simply find the following

binomial expansions
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1
(1-2)%2=2(1+2:43"+454..)

| =
ra

1
= 2424 324+422+ ... about 2 =20
z

valid for 0 <] 2 |< 1

and

(Z_;l)g[pr@z)+(1z)2+(1z)3+...}
(1_12)2—|—liz+1—|—(1z)+(lz)2—|—...

valid for 0 <| 1 — z |< 1

= 45 With f(2) = 2°sin (%) there is a singularity at # = 0 and another at 2 = oo.
Expanding sin (%) as a power series in % we find

1 1 1 1
2 2
: Sm(z) : (z 3128 Blzf )

_, 1
- 3lz o Bld
1 11 4
f— P S Z
Kl 3lz

since the principal part is infinite, there must be an essential singularity at 2 = 0.

Writing 2z = % in order to investigate 2z = oo we obtain

o . 1 1, 1 w® WP
Z sm(g):—smw:— W— — + — —

w2 w2 3! h!
1 w + w?
w31 B!
1 4 1
= 7 - — _
23! 255!
which implies a simple pole at 2 = co. (The expansion is the same as that
about 2z = 0, but re-interpreted.) At any other point 22 sini is regular and
has a Taylor series of the form f(z) = ap + a12 + asz? 4+ .... Specifically, about

z=a, zgsin(l) = agsiné +ayz+ ag2? + ... where a1 = f'(a), ag = f"(a), etc.

z
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= 46 With f(2) = =i

there are simple poles at 2 = 1 and 2 = 2.

46(a) Inside the unit circle | 2 |= 1, therefore there is a Taylor series

2(1—2)"12—2)t

=507 )
:gu+z+z2#ﬁ+.g(1+§+(@2+(98+~)
;+322+;(22+;22+i22+...)+;(zg+;zg—l—iz3+;zg—l—...)
;z+iﬁ+;9+%}ﬂ+~~zkl

46(b) In the annulus 1 <| 2z |< 2 we rearrange f(z) to obtain a Laurent series

as follows

(zﬁéz)222_211_(1_;>1_i(1_i>1

S OIS T S
B 2 4 » 2 22
B 1 1 ] z 22
B 23 22 2z 2 4
46(c) Tor | z |> 2 we rearrange as follows
z 2 1
(z—1){(z—2) 2z-2 =z-1
2 2,71 1 1, !
L
el ity ity
oz 2 22 8 » PR
ST AV A
oz 22 8 4
46(d) TFor | z—1|> 1 we write -1 = w and find a Taylor’s series in w.
1+w

Ifw:ﬁthenwz—wzlorz:T
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P (L
(z— 1)z —2) (1w>
—w(l+w(l4+w+w? +uw®+..)

:w+2w2—|—2w3+...
1 2 2

Ry e NG R (S

so that

46(e) Tor 0 <|z—2|< 1 we write w = 2 — 2 whence

z w2 2 ]
o= wwan ()Y

:(1+%)(1—w+w2—w3+...)

2
:——1—|—w—w2+w3—...
w

= (272)—1+(z—2)—(z—2) +(z—2)"...

Exercises 1.5.2

m 47 The point at infinity is ignored in this question. Most if not all can be found

immediately by inspection.

47 (a) COSQZ : double pole at 2z = 0, zeros whenever cosz = 0 le. 2z =
z
1(2n 4 1)w,n = integer.
1
47 (b : has a double pole at 2 = —j, a simple pole at z = 3
(b) R p j ple p J
and no zeros in the finite zplane.
47(c) 2427_1 . simple poles at 2* = 11e. 2 =1,—1,7,—j and azero at 2 = 0.

cosh z

this has simple peles at those points where

47(d) coshz: since cothz = ol
z = jnm and zero at those points where z = $5(2n + )7, n =

integer.
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sin z

simple poles at 2 = £jm and zeros at z = nm, n = integer.

47(f)  ¢*/{1=2) . this has an essential singularity at # = 1 and no zeros.

—1
47(g) ;ﬁ . this has simple poles at z = +7 and a zero at 2 = 1.
47(h) 2t : this has a triple pole at 2 = —2, a simple pole at 2 = 3
(z+2)%(2 = 3)
and a zero at z = —73.
. 1 : : 5 :
47 (i) this has simple poles at 2 —42+5=0,ie 2=5,-1

22(22 — 42 +5) :
and a double pole at z = 0.

1 —cosz
possible (finite) singularity

. In order to investigate this, we expand cosz. Only z =0 isa

2 TR

The RHS is a power series, thus the singularity at z = 0 is removable.

212

48(b) Z—S. Using the power series for e gives the expansion
ez2 B ) 5 24
AT
1 1 z
3 + -+ o +

z = 0 is thus a pole of order 3.

48(c) Lcosh (%) . Obviously the peoint z = 0 is a problem.

z

%(1 + 2212: + ﬁ + ) is the Laurent series which indicates that z — 0 is an

essential singularity.
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48(d) tan—!'(2%®+ 22+ 2). For this problem the easiest way to proceed is to find
the Maclaurin series from first principles. At » = 0,tan (2% + 22 + 2) = tan—!2
which is finite. This means that z = 0 is a regular point, hence it is not actually
necessary to find the Laurent series (in this case Maclaurin series) for the function.
In fact

2 6
tan (2% 4+ 22+ 2) = tan 12+ £2 %zg + .

49 If f(z) = gg% where p(z) and g¢(z) are polynomials, then the only
singularities of f(z) are the algebraic zeros of ¢(z). These zeros are either distinct
or multiple. The distinct zeros give rise to simple poles of f(2) whereas the multiple
zeros give rise to poles of higher order. f(2) can only have these kinds of singularity,
although it may have none if ¢ divides p so that f(z) is polynomial. f(z) therefore

cannot have an essential singularity.

Exercises 1.5.4

2241 2241

50(a) F—2-2) = CETICES) hence the singularities are simple poles at
z=2,z=—1.
Using the formula residue = lim [(z — 29) f(2)] the residues are § at 2 =2 and §
Z—z
at & = —1. ’
1 :
50(b) ———— has asimple pole at z =1 and a double pecle at z = 0.
22(1 — z)
1
The residue at 2z =1 is lim (——2) =—1
z—1 Z
! Laeea ) oy
= - 2+ z )= st -
22(1—2) 22 22 2

Hence the residue at z — 0 is 1.
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322 42 327 +2
50(c) (Z _ 1)(22 + 9) - (z — 1)(Z+j3)(2 _j?’)

Hence there are simple poles at 2 = 1, 33, —43

3+2 5 1
At z =1, residue = ,Jr = — = —
(1+43)(1—43) 10 2

—3x9+2 —25

5 )
G5 g6 (s 5 1Y

at z = 43, residue =

5]
at 2 = —j3, residue = —(3+ j) by symmetry.

35

12

so FoFtEml #odee-1l oDE4d)

2% 4 42 o2z 92) (2 —42)  2{z 1+ 52)(2 — 42)
which has simple poles at z = 0,42, —52.

. 1
At 2 = 0, residue = 2
— D2 +4) 3
at z = 52, residue = lim (= )&+ 4) = S(—1+29)

=52 (24 42) 8

3
at z = —42, residue = g(—1 — 27) similarly.

Py L R |
(z—1)°

The formula for calculating residues is convenient for this problem.

50(e) has a pole of order 5 at z = 1.

: 1dh g 4., .3
Residue :Eignl@(z +42" 427+ 1)

1
— ~(6.5.4.3 +4.4.3.2
5t + )

456
2219
24

1 2
50(f) (jt 1) has a double pole at z = 1.

d
Residue = lim d—(z +1)2 =4

z—1 dz
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1
50(g) = ;I)j(z gy has a simple pole at 2 = —3 and a double pole at z = 1.
Residue at 2= —31is — 3
d 1 1
Residue at z=11is E(%)t_l =3
3+4 3+ 4
50(h) R = R has simple poles at 2 = —2, —1 and 0.

2343224 22 z{z4 1){(z+2)

Residues are, respectively, T 1, 3 following the same procedure as part {c).

Cos 2

m 51(a) The pole of at z = 0 is simple, thus the residue is cos(0) = 1.

51(b) The poles of % are all simple, and the residue at 2 = ¢™/3 is
25+ 24+ 1
. i . — emi/3
lim (z—e”J/S)L —sine™/® lim ("
2 semd/2 2422 4] z—semd/a \ 2zt 22 L1

Using L’Hopital’s rule, the limit is

1
Aem™i + 2emi/3
1 1

1
= = = (8- av3)
Ae2(pegy) B 12

Giving the residue —5(3 4+ 7+v/3)sin (3(1 + 7v/3))

4

51(c) The pole of ;ﬁ at 2 = ™/ s simple and we proceed as in the last

part. The residue is

z — emi/4
2 lm (47)
z—yemi /4 Z +1
1 1 1 1/ 1 g
= 2 aua= 5 1,5\ 5 s
vz s

Hence the residue is \/Tg(l + 7).
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51(d) . has a simple pole at z ==«
Residue = 7 lim (Z_i w) = -7
z—m - 8INLE
! h double pol =3
51(e) G2 as a double pole at 2 = j
d 1
Residue = lim — {(z — §)* . .
2 dz (2=7) (2 —4)2(z + 3)2}

2

= lim {——

L i
A |
843 4
n 52(a) cozz has a triple pole at 2 = 0.

2
oS8 2 1 1 1 ) 1
= :;—§+ﬂz—~u r651due:—§
2
-2
52(b) : : has a double pole at 2 = —1.

G+ D22+ 4)

d (z+1)%(2% —22)

dz (24 1)2(22 + 4)

(22 — 2)(2% + 4) — 22(2% — 22) 14
(22 + 4)2 | -

at 2 = —1

Residue =

2=—1 7%

z

52(c) The function has a double pole wherever

sin? 2

sinz =01ie. at 2 =nw, n = an integer

In order to find the residue, we need to compute

. d (2 —nax)e
e e
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Now

dz

dz

d[eompe) LAl ot

sin” z sin” z sin” z

d /(z—nm)? L d {z—nm
dz\ sin’2 J = sinz dz\ sinz
_ 2(z —mm) sinz — (2 — nw)cosz

 ginz sin? »

and

z
As 7z = nm, — 1 and

81N 2z

sinz — (2 — nmw)cos z |, sz —cosz + (2 — nm) sin 2

sin? 2 2s8in zcos z

—0as z > nw

(using L'Hépital's rule)

Hence the RHS of equation (I) — €™ as 2 — nr.

Thus the residue is "7 .

Exercises 1.6.3

53  [(2? + 32)dz with 2 =z + jy, dz = dz + jdy
c

hence (2% + 32)dz = (z° — y* + j2zy + 3z + 53y)(dz + jdy)
= (mg — oyt 3x)dr — (2zy + 3y)dy
+ jl(x? — y? + 3x)dy + (2zy + 3y)dz]

53(a) The straight line joining 2 + 70 to O + 72 has equation z + y = 2 in
Cartesian coordinates. This has parametric equation x = £,y = 2 — ¢ from which

dr — dt, dy — —df and, using the above expression for (22 + 32)d=

(22 +32)d2 = (12 — (2 )2+ 30)dt + (2t(2 —t) +3(2 — ))dt
+7[—(2 — (2 = )2 4 3t)dt + (2(2 — ) + 3(2 — 1))dt]

and the range of integration is from ¢ = 2 to ¢ = 0.
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Hence

0
/ (2% 4 32)dz = / (8t — 2t + 2)dt
&) 2

0
+ j/ (—6t — 267 + 10)dt
2

. 2723 0 T 2723 0
= [4t 34 2t] +5[-3t7— ~t° 4 10]
3 2 3 2

2 .
d e S —
80 /C(Z +32’) 2 = 3 ]

53(b)  On the straight line from 2 + j0 to 2+ j2,2 = 2 and y goes from 0 to
2, so that dxr = 0.

Therefore
2
/ (22+Sz)dz/ —(4t + 3t)dt
€1 0
2
+j/ (4 — 1% 4+ 6)dt
0
7 o0° 1 417
=[5t i[10t — ~¢7
[T e 1]
52
p— 714 ._
+7 3
On the straight line from 24 52 to 0+ 32,y = 2 and x goes from 2 to 0, so that
dy = 0.
Therefore
0
/ (22 + 32)ds = / (82— 4+ 3t)dt
C'g 2
0
+jf (4t + 6)dt
2
= [gt — Attt ]2+3[2t +31],
2
=———7jl4
3 J
2 2 2 44 8
Thus [(22+432)de = [(22+32)de+ [(22+32)de = —— — §..
o) cy R 3 3
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53(c) For this part, we use z = 2¢/? on | 2 |= 2 and 6 varies between 0
and 7/2 on the quarter circle joining 2 + 50 to 0 + 52. Thus (22 + 32)dz =
(4e299 1+ 6e79)25e/df so that

w/2 ' '
/ (22 4+ 32)dz = / [85e¥7 + 125627 df
C 0

Hence the integrals are all the same.

m54(a) On|z|=1 z=¢"% 0<6<2n
g0 that %(524 — 2t 2)dz
271- . . .
= / (5e%9 — %8 1 2)5e79d0
0
2w
5 4 .

Since €271 = &0 = 1

54(b) Integrating around the square in the order 0+ jO, 1+ 50, 1+ 41, 0+ j1

gives the answers %,3 + %, 714—1, -3 - %. Adding these together gives 0.

54(c)  On the parabola y = z°, z = t,y = t* so that » = t + 5#° and

dz = (1 + 24t)dt.

On the parabola y? =z, z = t%,y =t so that 2z =% | 5t and dz = (2t } j)dt.

The computation of 39 (524 — 4 2)d= is extremely long winded but straightforward
C

and gives the answer 0.

m 55 In order to evaluate
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we surround the point 2z = 2y with a circle of radius £ on which 2 = 25 + €37,
0 <8 < 2m.
Using equation (1.45) the integral around C' is the same as the integral around the

circle on which 2 = 2y + 2e99d9. Thus

d 2r j9
/ _ 4 / Jee”
c(z—20)" Jo erend?

If n +* 1, then the integral integrates to

{‘ (1-n) e(ln)je} -
£ —_— =
/ (1 —mn)j 0

as in example 1.30.
Ifn=1,

2
/ . :/ jdf = 27
o (z— z)" 0
Q.ED

56(a) If 2 =4 is outside ', by Cauchy’s theorem,
d
ot
o z—A4
56(b) If » =4 is inside C', by problem 55

d
/ ©_onj
02*4

57 In order to use Cauchy’s integral theorem, we split into partial fractions

22 2/5 4/5
(22 —1)(2+2) 22-1 242

57(a) If C is the circle | z |=1

/ 2zdz _2/ dz +4/ dz
c(r—1(24+2) b5 Js20—1 b5 Joz+2
2 4
= Z.975 4+ =.0
5 g
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since 2z = % is inside | z |= 1 whereas 2z = -2 is outside. Hence

22dz 4
Je 22— 1)(z+2) 5

7j

57(b) If C is the circle | 2 |= 3, both singularities (poles) are inside C' whence

/ 2zdz 2 Zomit E o
c(2x—1)(2+2) 5 5
12
=T

m 58 This follows a similar pattern to problem 57.

Using partial fractions gives

Bz &1 45)
(z+D(z=2)(z+45)  =z+1 2 —2 2+ 44

58(a) Only the first two poles (z = —1, 2 = 2) are inside | z |= 3 hence

5adz 5 , 1 .
/O G+ 2)(z+49) 27”(51( L-4g)+ 30 23))

Am
942
17( + 27)

58(b)  All three poles are inside | z |= 5 hence

badz /5 ' ] |
/C (z+ 1){z — 2)(z + 47) = 277 (a(—l —47) + 5(1 — 24)

+ 127( 24 93))

= 59 Equation (1.48) gives the general form of Cauchy’s integral theorem

f(z 27r "
ot = S 1

where ' is a contour enclosing the point z = ;.
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59(a)

24 1 24
c(22+1) 8 Jo (2 +3)

=5 5 2| 1 (2 2) (2 = —% is inside | 2z |= 1)
T2
T 1 3mg
= gi6(-3)) = ==

59(b) First of all we need to separate the integrand using partial fractions

4z - %
(2 — Dz +2)2  2—

Hence

f dzdz _ s é 5 '4+O—O
-zt 22 Mg TET

using Cauchy’s integral theorem (the derivative of % is of course zero). All poles

of the integrand are inside the circle | z |= 3.

Exercises 1.6.6

60 zQLH has poles at z = +3j

1
60(a) Since is regular inside | z |= 5

#2241

d 1
jgjiinfOisthecircle|Z|—
ozt + 1 2

60(b) The residues of

Qi ; at 2 = 47 (both inside | z |= 2) are
z
O T

1
st (2440 (2—3) 2otiz4+d 2

and ) .
lim w = lim i - = —
ae—j (2 ) z—37) 2o—jz—7F 2
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Hence, using the residue theorem
j{ zdz - 1 4 1 -
Y =21y~ + = ) =27
21 T T 1

22 4 35z — 2
23 + 9z
simple poles). Only 2 = 0 is inside | z |= 1 but all three are inside | z |= 4. Hence

61 The singularities of are at 2° 492 =0, l.e. 2=0,34, —3j (all

we shall find all the residues.

2 .
32 2 2
At 2 =0, residue is lim (%) - _-
z—0 2249 g
At z = 37, the residue is

(2= 35)(2° 1 352 - 2)
lim - :
=35 z(z —37)(2 + 37)
(37)°+3j3j -2  -9-9-2 10

37(37 + 37) 18 9

At z = 37, the residue is

(2 +39)(2° + 352 - 2)

lim , _

z—-35  2(2 — 37}z + 37)
(8P @B)(=8) -2 —9+9-2 1
(33 -39) 189

61(a) For this part, since only the residue at » = 0 is inside C(] 2 |= 1)

22 4342 -2 2 4j
. de =27i(- 2y = - —Z
fgc a0, = i(g) 9

61(b) For this part, all residues need to be taken into account since all the poles
of f(z) are inside C(| z |=4)

2 .
2+ 372 -2 2 10 1 ]
. d — 2 — — _ — e 2
fi Tr0, @l gt g tg) =2
Note that in this case, all the zeros of the denominator were obviously poles.
In general, we would need to check they were not removable by factorising the

numerator.
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(2* +2)(2* 1+ 4)
(22 + 1)(2%2 4 6)

Residue at z = 3 is

62  f(z)= has poles at z = +4, 2 = +j6.

po DR DER ) (1)1 H4) 3
2= (2= §)(z + §)(22 4 6) 2j(—1+6) 10

Residue at 2= —7 is

ey GTDEEEDE Y (CLE)(-1+4)  3)
z=—j (24 7)(z = j)(2* 1 6) (=2j)(-1+6) 10

Residue at z = §4/6 is

i (2 —iVB(*+2)(2* +4) _ (—6+2)(—6+4) _ 8
208 (2 — JV6)(2 + 7v/6)(22 + 1) 2j/6(—6 + 1) 2j/6(—5)
= L6

2
Residue at z = —§+/6 is thus = —Ej\/g

62(a) The circle | z |= 2 contains the poles at 2 = +4 but not those at
37 37
2 = +44/6. The sum of the residues inside C = —1—30 % =0.

Hence the integral = 0.

62(b) The circle | z — j |= 1 contains only the residue at = = j.

Hence 2 5
opai(_ly 27
dZ—Qﬂ'j( 10) 3

j{ (2* +2)(>* +4)
o (22 +1)(22 +6)

62(c) The circle | 2 |= 4 contains all the poles. Since the sum of the residues is

zero, so is the integral.

1
m 63 The function m has double poles at 2 =0, 2 = +3.
Residue at 2 =0 is
d 1 B 4z _0
dz (14 22)2 z:O_ (14 22)3|__, N
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Residue at 2 =7 is

2(22 4 j) 3.

(22 4+ 523 4

e

z=3

3
Residue at 2= —7 is Zj

1
63(a) If C is the circle | z |= 5 only the residue at » = 0 is in C'. Thus

dz .
2142 2O =0

63(b)  All the singularities are inside | z |= 2, but since they sum to 0,

j{ dz 9
o 22(1 4 222

327 42
(z—1)(22 4+ 4)
They are all simple poles. Using the formula (1.37) the residues are :-
at z2=1:1

o1 .
at 2 =25 : 5(2—3)

64(a) The singularities of are at » — 1, +27.

o1 .
at 2= —2j5 : §(2+j)

(i) If C is | 2 — 2 |=2 only the residue at z = 1 is included, hence

32242
j{ i +2 dz = 277
o (z—1)(z"+4)

(ii) If C is | z |=4, all the residues are included, hence

j{ 327 42 P
oD as 2

Py

(z+ 1)%(z* + 1)
at z = —1, and simple poles at z = £25.

64(b) The singularities of are at 2 = —1,+25. A double pole
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Residues are:-

; ) 14

at 2 = — ——
25

at 2=27 : —1+3

at 2=-29 . —1—3

(i) If C is | 2z |= 3, all singularities are inside C'.

jl{ 2 — 2 dz = 275 —14—2 *—@ﬂ"
P Ty e T

(i) If C is |2+ 7 |=2 then 2 = —1 and 2 = —2j are inside C, but z = 2j is

not.

Hence

Hence
22— 2y 14 s
dy =277 —— —1—4 ) = ==(25 — 439
ot w6 1od) - e

1
(z+ 1)3(z— 1)(z — 2)
Simple poles at 2z = 1,2, triple poles at 2 = —1.

64(c) The function

Residues :-
z2=1 : —=
18
-9 :
) 271 1 19
=1 : —— —(=———
8 77 3= a16)

(i) The circle | 2 |= % contains none of the singularities therefore

f dz _0
c(H 1Pz 1)(-2)

(ii) The circle | 2+ 1 |= 1 contains the singularity 2 = —1 therefore
?{ dz _ 5 ( 19 ) B 197j
(13 1)z —2) V9187 T 108

(ili) The rectangle, vertices +4,3 + 4, contains the singularities at 2 = 1,2 = 2

therefore

dz _ 19%j
j’i (z+1P3(z-1(z-2) 108
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-1
64(d) The function = Z)(er 1y has a pole of order 4 at z = —1, and

simple poles at 2z = £2.

1
Resid t2=21s -
esidue at 2 is 3243
Residue at 2 = —2 is ~1
1 d® 21
Resid t 2z =—1is gi by —— (———
esidue at = Is given by o dz3(22—4)
This residue is calculated by using partial fractions
1 3
A S S
224 22 242
whence
1d3(z—1)_id3( 1 ) d3( 1 )
3d 22 47 24d2? y 27 8d2P 2
- 1 B 3
Az —2)4 Az +2)4
3 61
tti — —1 gives the residue ——— — = — ——
putting =z gives the residue T 31

(i) The circle | 2 |= § contains none of the singularities hence the integral

(= 1)
f{(z24)<z+1>4d“°
'

(ii) The circle | 2 + 3 |= 2 contains the singularities at » = —1 and z = —2 but

not that at 2z =2

y—1 3 61 A8TT]
dz =2mj(—> — =) = —
P 7 e R T

Hence

3 3
(iii) The triangle with vertices —3 +34,— 5~ 7,3+ 70 contains all the singularities,

hence

j{ e=1 (1 3 1 3
(22 )z LAY T TI\yst 1 a3t g

= —3nj
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o dx
65 G RS——
- (a) _‘!;O |
Since the integrand satisfies the condition on p.76 (section 1.6.5), we consider
dz . . .
——— where (' is a semicircle radius
o 224 z+1

I, centre the origin in the upper half z-plane

34

-R 4 R X
By the residue theorem
dz , . . o
————— = 271j {sum of residues of poles of integrand inside C'}
oz t+z+1
—1++1—-4
22+z+1:0:>z:—:—%:|:j%\/§

2

Only one of these simple poles lies inside C' (the one with positive imaginary part)

1
Residue there = lim (z — zq) = -1+ %j\/g

S S
z—z0 242417

That is, residue =

ZILHZIO ( 2z +

!
V3

1) using [’Hépital’s rule (for simplicity)

Thus
j{ dz - 1 27
_ = wmy - — = —
o2zl VSR
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£l

Now,

and, as R — oo, [ =0
r

R
On {,z=z = real
R

Thus, letting R — oo we find that

/Oo dx 2z
o xitxr 1l /3

65(b)  This integral is done in precisely the same way as that of part (a). This
time, the poles are at +7 but they are both double.

j{dz 27j « residue at § = 2mje — — ©
= = 27 residue at § = 27§ — = —
21z I T2

Thus
/oo dr W
e (@212

o dx
65(c) To evaluate of T DA

we use the same semicircular contour,

except that we note

e dx 1 dx
/0 (2 + 1)(z2 +4)2 2 /_OO (22 4+ 1)(22 4+ 4)?

1
plus the fact that CESNCEWIE has two poles inside € this time, the simple
pole at z = 7 and the double pole at z = 27. Residue at 2 =75 is 187’ residue at
¥
11
2 =27 is ———.
2887
Thus

/Oo dx B 12 ( 1 11 ) 5T
s @2t D@2t a)? 2°MNIS; T assi/ T 2ss
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2 39
65(d) In order to evaluate f _SO5Y e
5 b —4dcosé

we follow example 1.39 (p.77) and put 2z = e/ so that
l.os, 3 1 ~1
cos 36 = 5(2 + 27°) and cosf = §(z+z )
With dz = je7%d#. Hence we consider

j{ %(ZS o) dz
c x5 =2+ 271))

The function under the integral can be written

1 1+ 25 1+ 25

27524 — 225 223 7 24(z - 2)(1 - 22)2°

The poles inside | 2 |= 1 are a triple pole at 2 = 0 and a simple pole at z = 5

1 65
Using the formula for the residue at z — 5 gives “oai Using the Laurent
]
193
expansion about z = 0 yields the residue ———. The sum is ———— . Hence
167 487
2w 4]
36 1 1 193
R R
o b —4cos# 27 Jo (2 —2)(1 — 22)2 487
_ 19w
24
65(e)
2m
/ 4d6
5+ 4siné
0

This follows in the same way as part {d).

, , d 1
Putting 2 = €77 yields dz = je?9dg, i.e. df = —Z and siné = 2—(2 — 27
12 ¥
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/2” 4do j{ 4dz
o B+dsing Cjz(5+2ij(z—z—1))

Thus

Thus

/2“ 4do j{ Adz 4 8

— = : — = 2mj— — —

o b+t 4sing o (224 )=+ 27) 37 3
(C is the unit circle |z |=1)

65 (f)

/ = z2dx
oo (X2 122+ 22+ 2)
This follows along similar lines to parts (a) and (b). Consider the semicircular

contour, centre the origin radius R on the upper half plane, labelled

2
d

jé (22 + 1)@2 i 221 2) = 2mj{sum of residues inside C'}
Double pole at 2z = 7, simple poleat 2= -1+ 7

3 1
Residue at z = j is %(—4 + 43); residue at —1+ 7 is 5(3 — j4)

Sum = ——4 giving the integral as —«
203 g g £ 10

65(g)
27

/ dg
3 —2cosf 1+ sinf
0

Once again let 2 — €% and consider the integral around the unit circle

o 3 2cosf }sind OZQ(%—j)+3jz—j—%

The poles are at — - and — .. Only the first is inside | 2 |= 1.
1—27 1—29
1 1
The residue is 37 and so the value of the integral is 2773'? =T.
] ]
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o0

/ dz
xd 41

0

We have a choice here, let us choose a quarter circle contour as shown below.

65(h)

w 4

R

\
-
4 ) " . 1+
Only the root of 2* +1 = 0 in the positive quadrant, i.e. z = W, needs to be
taken into account. L
—1=J

1
Residue at this point is —| 14; = —==
P 472 ’z:% /2

}'{ dz__, (Z1=j) _ m__ gm

Hence

- == e — —
cl+z4 WG 2\/‘ 22

cz4+1 / / / 2\/_ 2\/_

on the imaginary axis, z = jy, and on the real axis z = x. Therefore

dz O jdy B dx dz
CZ4+1 Ry4+1 0 3€4—|—1 [\Z4+1

where we have used (jy)* = y*. Letting R — oo, the last integral — 0. Thus

/Ojdy +/C’O de w7
¥+ Jo 1 28 T2

Equating real (or indeed imaginary) parts gives
/ * dr 7
o T+l 22
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65(i)
/ dx
(22 4 4z + 5)2
1
The semicircular contour is used, the poles of are at

(22 + 42+ 5)?
1
z = -2+ 74, —2— 4 both double. Only the residue at z = —2 + §, which is 1
J

needs to be taken into account.

Hence
/OO dx o 1
@ raz s Uy T
65(j)
27
/ cos 6d
3+ 2cosf
0
. 2241
Again we use the unit circle on which # = 7. The integrand is —
27(2% + 322 + z)
3 1 3 1
with simple poles at z = 0, —3 + 5[, 5~ §xf5 Only the first two are inside
3
', residues are 1 and ———. Hence the integral has the value 7(1 — —).
7 g (=)
Exercises 1.8.3
1 1 — 7
66 Since w = —, u+ jv = , - Iy
z x gy xt oyl
1
Thus quin and if u — 5o 22+ 4% = 2az.

For the two wires shown in Figure 1.41 potentials are centred at Vi or —V;
and are tangent to the imaginary (y) axis. They are thus circles of the form

22 + y? = 2aVpx. The equipotential curves are shown
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(&

a
.
XYY

= 67(a)
+ 1
z=—1l=2w-0,z2==2w="—s=]
1=y
1 . 49 4 37 (T+HA+57) .
= —(244 47 = =7 =
i= I s w= T 1+ 49 J7
3 7
341 7
z:—§:>w:4+3—%:7
1— 3 1
4 1
1 -1
67(b) Ifw=z+ then z = —
1—2 w+1

u—1+jv  (u—14jv)(u+1— jv)

so that x +yj =

w+1+jv (u+1)2 4 v2

2 2
. u—1)+v +jlvu+v—uv+v
NN e ELES TR )

(u+1)2 4w
i u? +v? — 14 205
x =
v (u+1)2 + 22

Hence y = 0 corresponds to v = 0.

67(c) Ifzx’+y’=1=|z2|=1

—1 —1
Since z = v=- this means that ‘w—‘ =1
w+ 1 w+1

or (u—1)?+v%=(u+1)?+2? from which u =0
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2+l

In order to progress, note that the image of the semicircular conductor in the w
plane is the positive quadrant « > 0,v > 0. Instead of temperature T°C we
consider —— since this function has the value g on u =0 (where T = 100°C).
The mapping w = €* (example 1.14, p.37) provides a means of eliminating the
singularity at w = 0. The complex variable z is already defined, therefore write

w = € (complex variable (). The imaginary part of ¢ is identified with the

s
led) t ture — .
(scaled) temperature 500

7T ) _ 2y .
Thus 200 = tan~! (a) = tan~! (m) as required.
68(a) G(r,y) =2z — 2xy thus %—IZ = g—i =2-2y
OH oG
d —=——=2
and —— 9y x

Integrating gives H = 2% — 4% + 2y
Hence W = G + jH = 2z — j2?

68(b) If w=Inz then z =¢€"
Given H(z) = 2z + j2? = 2e¥ + je?»

equating real parts gives

G(z,y) = 2¢“ cosv — €*“ sin 2v as required

68(c) If w = f(z) then the real and imaginary parts of f(z) are harmonic
functions. Hence if ( = g(w), then the real and imaginary parts of ¢ are harmonic.

So ( = g(w) = g(f(z)) implies that harmonic functions (the real and imaginary
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parts of f(z)) transform to harmonic functions (the real and imaginary parts of

g{w)).

3
69 Ifw-— - i 3 then | w |= k transforms to
Zi

|z+3| ok
z—3

ie (z+3)°+ 9% =k (z —3)% + k%y?

20y o Gl K :
or x*+ vy +61 k2m+9: 0 as required.
If the centre of the circle is to be (—5,0), then
1+ k*
(W) :*loorkZQ

We thus (following section 1.8, p.80) require the potential V' to be a harmonic
function which has a constant value on a circle u? 4+ v®> = 4. Hence V has the
general form
V = Aln(u® + v°)

2 2 Vo

on u*+v- =4,V =V, whence A = —
v In4d

so that V = —— In{u? + v?)

4 2 2,2
3 3
Nowu2+v2:\w|2:|z+ | _ 34y

z—3 (x — 3)2 4 42

Thus

V= 22 lhnl(z + 3 + v ~ Inl(z — 3)° + 4]}

70  This problem follows a similar pattern to problem 67.

70(a) The points A,z =1,y=0; B,z =0,y =1; C,x =0,y = —1 under the

1—
mapping w = u transform to
1+ 2
(1
w—0ie (0,0, w—"9""9 e (10
1+
(14
and w = j(l—l_j) = —1ie (—1,0) respectively
-1

@ Pearson Education Limited 2004




58 Glyn James: Advanced Modern Engineering Mathematics, Third edition

_j(1—2)
70(b) w= T2

(1 — 1 —
Ifz:x:real(i.e.y:O)thenw:u €T

T is purely imaginary. Since T
x x
can take all real values, points on y = 0 correspond to points on v = 0, the

imaginary axis.

1 .
70(c) Ifw:j( 2) then z =22

1+ 2 Jtw
Sothat |z |=1=|j—w|=|j4+w]|orv=0

J(1—=2)
1+~

For the last part we note the following property of the mapping w =
(from (a), (b), and (c))

T
In a similar way to problem 67, identify the function fm which is (in the z plane),

7 on the —ve real axis, and 0 on the +ve real axis. The mapping w = e (¢ -

T

complex variable which has the values of T—OO as imaginary part).
Thus ) )

T — ¢ =) = - - 7

o = tan <u> tan™" ( % )

. _j(1l==2) L
(using w = i to find v and v). This gives the result.
z

71  This problem is similar to the last part of problem 69. The successive
mappings

z+ g4
z—]

w=1Inz

1 =
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In order for the circle centre 57 to be mapped to a circle centred at the origin in
the z plane we require
‘2 z 4 g4

|21 |°=| °= k? for some constant k

fe x2+4+y?+ S%szz 4+ 16 = 0 needs a centre at 57

1
S8(1+ k) =10(1 — k)*) or h = 5

In the w plane, | w |=| In2; |=| In(x? +4?) |= 2In3 on the boundary of the circle
on which 7" = 100.
Thus writing T = A | In(z? + y?) | gives T = 100 when

1 50
2 2 .
=_— if 100=A-2In3ordA=—
x1 Ty 9 1 n3or 3
Thus -
7= In(zi o+ i)
50 2 + (44 y)? .
= In as required
In3 22+ (4 — y)?
Note that T = 0 corresponds to #7 + 35 = 1 or y = 0 as is also required

(| 2474 *=|2— 44| is y = 0).

1
72 The mapping w = 2+ — was studied in Example 1.13 {(page 35). Writing, as
z

usual, w =u+ jv and z = x + jv leads to

Y

and v —y —
Y m2+y2

+
U=
z? 4 y?

Hence the unit circle 22 + 4> = 1 in the z plane corresponds to v = 0 (the real
axig) in the w plane.

Points ¢97/3 and e27/3 (P and @ of this problem) correspond to u = 2 cos 7 and
2 cos %ﬂ respectively. The arc P} thus corresponds to —1 < w < 1 in the w plane.

1
The further mapping ¢ = erl takes this portion of the real axis (—1 < u < 1)
w R

to —oo < Re{¢} < 0 . This negative real axis corresponds to 1" = 100. Hence in

T

a similar fashion to problem 70, we identify the variable {55 (which = 7 on this
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line) with the imaginary part of In¢ which is arg{. We cannot use tan—! here

because the argument of the logarithm function is gquadratic so

Tl co w+ 1Y) 2+ 1/24 1
o0 ST T T TING T
100

ie. T = T[arg(z2 + 24 1) —arg(2® — 2+ 1]

as required.

Review Exercises 1.9

1@) z=1+j w=(1+z+i= (147 +j=1+2—1+j=3j

1(b) 2=1-52, w=432+7+1=4{1-52)3+5+1=3j+6+j+1=4j+7

c) z=1 w=3(1-5z+3001+5)=1

1(d) 2=352, w=31—-7z+30+7) = 1—7i+301+5) =301+

2(a) y=2x by zt+y=1
For the mapping w = (14 j)z + j

U=z —y, v=x+y+1

soy=2zr=v+3u=1
and r+y=1=v=2
For the mapping w = 332 + 7 + 1

u=—-3y+1, v=3x+1

soy=2r=u+t+2v=3
and x +ty=1=v—u=3
For the mapping w:%(l—j)er%(lJrj)

1 =

1 1
§(x+y+1), Uzi(xfy‘l“l)

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition

soy=2r=3v—u=1
and z+y=1=u=1

61

3 w=az+4+3

when 2 =2 — 7, w=1, and when 2 =0,w =343

3(a) Solving the simultaneous equations gives o = —%(3 +44),8=3+7.

3(b) Since
1
w = —g(3+4j)z+3+j
1
2= (347 - w)3 - j4)

so x =13 —3u—4v

and Re{z} <0 corresponds to 3u + 4v > 13

3(c)

1
2l= 3 +-wls <1

=|lw—-3—-j|<1

3(d) Fixed point is given by

z:aerﬁorz:lﬁ Zi(7j)

_ 1 _ v _ w
4 w_zim_u2+vz’y_u2+fuz
4(a) :z::y—l—léugivg:uzivz+1oru2+v2+u—v:0

4b) y=3z=u=3v

4(c) Line joining A{1+ j) to B(z+ 73} or (1,1} to (2,3) is y = 2x — 1 which

transf t “ 2v 1 2 40?4 20 =10
ransiorms Lo = — or u v U — 2 =
u? + 2wl o
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4(d) y=4=4@?*+v*) =u

The following Argand diagram shows all these curves.

L=
= _ -1
24 %\_h 5= ’ v 2, v
=6 / / / . wiiv s -2v =0
3=% 7 i vy vu-v=0)
s rE
P
/
x — \ w

% / 4uv)zw

z+1 w+ 1
z—1 w—1
from which

w02 -1 —2v

= (u—1)2 + 02’ 4= (u—1)2 + 2

lines x =k, y =1 map to circles

2k k+1 2
u2+v2—k_1u+ki_1 =0a,ndu2—l—v2—2u—|—Tv+l=0
Fixed points are z = 24 in 22 —22—1=0,1e. 2z =1++v2,1— V2 are the fixed
points.
Y w= Bt
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172
n 6 w = c

Z

1— 22

2

Fixed points occur at 2 =

or 22—=1_2

2% =1/2
Hence »= +v2/2

2

1 z
Writing w = — — 2 = I — z {2* = complex conjugate).
z z
x —1y 1
Whence u = 22 —x,and v = T2 2 —y,and v = —y(T—2+ 1)
r2y —r2y

- = m’ -
r?—1 r2+1
Squaring and adding gives

the required ellipses.

T

Since u = T T T if z° 4+ y® = 1 then u = 0 (imaginary axis in the w plane).

7 w=2z

= (z+4y)° = 2° + 352y + 3572y + 5°%°
so u = x> — 3xy?

v = 3z%y — y° are the real and imaginary parts.

du o o Ou
o33yt T =6
v 5 5 O
- YLy

hence verifying the Cauchy—Riemann equations:

ou ov  Ou ov

br By By o
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8 w(x,y) = xsinzcoshy — ycoszsinhy

u
hence Fl sinx cosh y 4+ x cos x cosh v + sinz sinh y
x
u , , ,
and @ = xsinzsinhy — ycosxz coshy — cosx sinh y

By the Cauchy—Riemann equations,

or Oy oy  Ox

: . Ou
hence, integrating —— with respect to y

ox

v =sinxsinhy + x cosxsinhy + ysinz coshy — sinzsinhy + f1(y)

. ou .
Integrating — —— with respect to z gives

ay

v = (zcosx —sinz)sinhy + ysinx coshy + sinzsinhy + folx)

where f; and fo are arbitrary functions.
Comparing gives v = ysinx cosh y + z cosz sinh y (ignoring the additive constant).

Thus
w = u+ jv =xsinx coshy — ycosxsinhy

+ j(y sinz cosh y + x cosx sinh y)
Since this is f(z), we put y = 0 to find f(x) which will give the functional form

of f, namely

flz) = xsinx. Thus f(2) = zsin 2.

az+b

9 Writing w = j: y (the general bilinear mapping) since 2 = 0 = w = oo we
cz

must have d = 0, hence (relabelling the constants) w = or Tt ﬁ.

Writing this as wz = a2z + # and inserting the pairs of values z =3, w= —j; 2z =

%(1+j), w=1—7 gives
l=oj+ 8, 1=350+5ats

1
from which «« =0, 8 =1. Hence w= —.
z
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. z Y
9(a) Sinceu—=——— and v = —
( ) T2 + yQ 72 + yQ
the real axis (in the z plane) maps to the real axis (in the w plane).
If ¥ >0 then v = —ﬁ < 0 and vice versa.

Thus the lower half of the 2 plane maps to the upper half of the w plane.

9(b) The circle \z—%j \:% s 2?+y?—y =0
or v:—l(v:—#)
If \z—%jk%then 22+ y? —y<0orv<—1,ie. theinteriorof|z—%j =3

maps to Im(w) < —1 as required.

2
10 The mapping 2z =¢ + Z_C

maps R = constant (where ¢ = Ref® ) to curves

. a .
— Rel? —je
z e’ + 4 Re
which describe ellipses in the 2 plane as can be seen by writing

2 2

a a .
x = (R—I— E) costl, y = (R— E)smé’
whence 2 .

a* \2 + a® 92 =1
(R+ 45 (B— i)
when R = %a, y = 0 (real axis). This mapping is used together with bilinear
mappings tc map an aerofoil shape onto the unit circle. This is useful in

aeronautical engineering.

1
11— =(1+2)""
using the binomial expansion gives

1 3 6_ .0
1 ZS——I—z +2t =2t
Similarly
1 3 6 9
( 23)2—1—22 + 327 — 427 4

both valid in the disc | 2 [< 1.
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12(a)
1—2 2—1—= 2

= = — ]_
142 14+ =z 1+ 2
Using the binomial series again gives
Y Y
s .
since the nearest singularity of the function to 2z = 0 is at 2 = —1, the radius of

convergence is 1.

12(0) ()= 5

ey This time we need to expand about the point 2 = 1. We

use Taylor’s series

1 / 2 17 2 822
f(Z) = T—I—l, f(Z) (Zg_l_l)gn f ( ) = (22+1)2 + (22+1)3
P2 - 242 48%° 9 — 24 2882* 38427

RSV RN R VN R AN E RS 1

At z =1 these have values %; —%; %; 0;—3

giving the expansion

11 1 1
= — (z-D+ (-1 (z-D4...
R VS {CER Ve CE Vi

The singularities of are at # = +j which are a distance /2 from z = 1,

52

hence the radius of convergence is V2.

12(c)
z 1
1—|—z: _1+z:f(z)
1 2 6
" : "o : " .
7 (1+z)2 / (1+ z)? 77 = (1+z)
Th = LD i) (L) ()
s +--2 j 232 j 1 Iz — 7 8z 7
The radius of convergence is again /2.
13 The function ——=—— has singularities at z = 0,7,—7. The radius of

2(22+ 1)
convergence is the distance of the centre of the point of expansion from the nearest
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of these singularities. These are found straightforwardly either by inspection or by

using Pythagoras’ theorem

=1, 1; z2=—1; l,z=1+7; l,z:l—l—j%; %x[”'), 2=2473; 22,

1

14(a) The Laurent expansion is

1 2y—1
—(1
~(1+2)
1
= (1-22421-254 ..
z
1
= —x4 oS
z

valid for 0 <] z |< 1

14(b) Since f(z) is regular at z = 1, f(z) has a Taylor expansion :

1 o / (2_1)2 17
mff(l)—l—(zfl)f(l)ﬁ—Tf(1)+...
1o, . 1432

f(l):?f(z)**m,f(l)**l

ven 62 2(1 + 322)2

F(2) = 7(z+23)2 * (24 2%)°

sof”(l)%%—ngg
so that . . .
_ 2

valid for | > -1 |< 1

)

15(a) At 2 = 0, f(2) is regular. Thus the principal part is zero and
f(0)=sinl, f(z) =sinl+qz+ @z*+...|2|< 1

= 15 f(z):ezsin(liz

@ Pearson Education Limited 2004




68 Glyn James: Advanced Modern Engineering Mathematics, Third edition

15(b) At z =1, f(z) has an essential singularity.

15(c) At 2z = 00,e® has an essential singularity. Hence for parts (b) and (¢) the

principal part has infinitely many terms.

n 16(3.)
e”sinh 2 = %ez(ez +e %)= ;(622 +1)

— (14 ¥ (e)

1
= 5(1 + e?® cos 2y + jeF sin 2y)

1
Real part = 5(1 + e2® cos 2y)

1
Imaginary part = 5625” sin 2y

16(b)
cos 2z = cos{2x + j2y)

= cos 2x cosh 2y — 7sin 2z sinh 2y

16(c)

sin z r— 3y . )
= sinix -+
y iy (x + Jy)

(x — jy)(sinz coshy + j coszsinh y)
72 ‘|‘y2
zsinz coshy + ycoszsinhy + j(xz coszsinhy — ysinx coshy)
72 + 'Q’Q

16(d)

tanx 4 tan jy

tan z = tan(x + jy) = 1 —tanztan jy

tanz + jtanhy 1+ jtanzxtanhy

1 fjtan:z:tanhy’ 1+ jtanz tanhy
tanz(1 — tanh®y) + j tanh y(1 + tan? z)

from which tansz — 5 5
1+ tan“x tanh®y
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, dw 2 . _
m 17(a) Since P = 0, this mapping is conformal.
2 z
17(b)
dw 5
— =6 6 6(1 — 7
5, 6 624+ 6(1-7)

:0When22+z+1—j20
o (2 — )=+ +1)=0
soz=7—1—7

are the points where the mapping fails to be conformal.

17(c) 64z +
C w = Z -y
ZS

3
where 2% =
64

80 z = 0.465, —0.465, 50.465, —50.465

are the points where the mapping fails to be conformal.

w
m 18 w=cosz, o sinz = 0 when 2 = nm,n = an integer.
2
w+ jv = cos(z + jy) = cosxz coshy — jsinxsinhy

© = cosx coshy
v = — sinx sinh y
Lines x = & will thus transform to

u? v?

— — 1 - hvperpolae
cos?k sin?k YPeLp

Lines y = [ will thus transform to

u? Uk

_I_
cosh®l  sinh®1

=1 - ellipses
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T
z—p(cwz, v @i“)
W= (oS
3 '
l

sin z sinz 1 sin z
= 19(a) 5 = -—. Since
z z oz
role at z = 0.

— 1 is z — 0 this function has a simple

1 . .
19(b) @9 has double poles when 2 = 8, i.e. at 2, 2e2™/3, 2¢473/3
z [—

19(c)

z+1 z+1 - 1

-1 (22-1D(E2+1) (z-1D(2+1)
The singularity at z = —1 was removable, those at z = 1,+75 are simple poles.

1 : . :

19(d) sech z = p—— which has simple poles wherever coshz = 0 ie.

z=4jr(2n+1),n =0,+1,42,...

19(e) sinhz is entire (no singularities in the finite plane).

19(f) Essential singularity at z = 0.

19(g) 2% = 6zlnz

which has an essential singularity at z = 0.

2z

= 20(a double pole at z = —1 residue given by
2

(1+ 2)
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20(b) cos 2 simple pole at z = 7/2 residue is
Jim /2) cosz 1 e 9
z—1>1;rI:L/QZ m (2z—7r)7200857
20(c) omr _ sime hich has a double pole at > —
c 2z—w_cosz(22—7r)wm as a double pole at 2= o7
Writing w =2 — /2
tanz  cosw cosw 1—%w2—|-...
22— 2w 2wsinw  2w(w— Jwd+..)
= ! + ! +
2w 4T
Hence residue is 0.
20(d) ﬁ has a triple pole at z = —8
1 1 3
Writing w = 2+ 8 so 2 = w — & gives ﬁ :E(w_S):@_E

Hence the residue is 0.

21
(22 — 1)(2% 4+ 32+ 5)

Fz) = 224+ 1)

Zeros at 2z = +1 and at the roots of

2 4+324+5=0
3+ /920 3 1
_ = ‘\r‘]_]_

245z
2 273

Simple poles at # = 0 and where 2* = —1
e 2= (£14+7)/V2
The residue at z = 0 is given by
(22 = 1)(2° + 32+ 5)

lim = -5
z—0 24 +1
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The residue at z = 2y (where 2§ +1=10) is

lim
Z—zQ

(# —20)(2* = D(z* + 32 + 5)
224+ 1)
_ (- Do +320+5) (24_ zo)
2241
22—1 22+32 +5 1 1
_ (25 — 1) 20 0 )4—%:1(281)(23+320+5)

(using 23 = —1)

20 Z—rZ0

Putting 25 = %, —%, —%, 1—3” in turn gives the residues % + 24/2 — 1,
3

532443 324,34 2/2 4 j respectively.

2T 4+ 62% — 3024

= 22 f(Z) - (Z 7 73_)3

has a triple pole at 2 =1+ §

2

FEE
— 5 3 2
= 212° 4+ 6027 — 1802%| _,

— 21(—4 — 45) + 60(—=2 + 27) — 3607

Residue = 27 4 62° —302%) evaluated at 2 = 1+ 5

= —204 — 5324
= 23(a) The integrand ZQ—I—;Z—I—G has poles T z= 6 and 2z = —1. Only the
second is inside ', Residue — i\z:,l = —
z+6 5
Py
Integral = —%

(2% + 1)(2* +3)

23(b) The integrand (21 9)(22 1 4)

inside .

Residues are —

has four simple poles +£24,£35 all

3 3.8 &
%j, %j, gj and —gj the sum of which is 0.
The integral is thus 0.
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. 1
23(c) The integrand m has double poles at z = 0,1 and —1.
Residues are, at 2z =0,
dz (1 _ 22)2 z2=0 (1 _ 22)3 z=0
At so1 A1 22241 3
dz | 22(1+ 2)2 (z+22)3| _, 4
d 1 S9(1 — 22) 3
At 2=-1,— = = —
: dz L’Q(l — z)Q} (z—22)% | __, 4

(i) If C is | 2 |= % then only = = 0 is inside C, so integral = 0
(ii) If C' is | z |= 2 then all poles are inside C', so integral = 373 .

1
(22 = 35)(2 + 4)

Y
23(d) The integrand has simple poles at ?j and —3.

37 1
Residues at Ej and —7 are, respectively, —gj and gj.
(i) Both poles are inside | 2 |= 2, but since their sum is zero so is the integral
1

ii) Inside | 2 — 1 |= 1 the function : — is regular. By Cauchy’s
() usice 2 =1 @51 7)

theorem the integral = 0.

22

(224 1)(22+ 24 1)

23(e) The integrand

z=+j,—%+ 513
C is the circle | 2 — 7 |= % which contains the pole at 2 = 7 but not the other

has simple poles at

three poles.

Residue at 2 =7 is —% 7 hence the integral = .

z—1
2(z —2)%(z —3)
Residues at 2 = 0,2 are respectively % and —

23(f)

has simple poles at 2 = 0,3 and a double pole at 2 = 2.

N

(i) If C is | #|= 1 only the residue at 2 = 0 is considered : integral = %
(ii) If C is | 2 |= 3, residues at 0 at 2 are summed; integral = 7j(5 — 3) =
—4mj/3.
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24(a) To evaluate j? v
e (224 D2 (22 4+ 22+ 2)

we use the semicircular contour €' on the upper half plane (see problem 65). The

integral along the curved portion — 0 as the radius of the semicircle — co. The
residues in the upper half plane are at the (double) pole at 7 and the (simple) pole
at —14 7.

Residue of 2 at z =4 is d 2 evaluated
(22 + 1)2(22 + 22 4 2) AP (24 §)2(22 + 22+ 2)
95 — 12
at z = 7. This is (after some algebra) 3100 .
z
Residue at 2 = —1 4 9 is — evaluated at 2z = —1 4+ 4 which is
I T D1+ 4) 1
344 . . J
5r Sum of residues is ~100

/OO 2 dx / 22dz o —77  TIm
pr— f— ﬂ' - =
o (@212 (2% + 22 4 2) o (2 +1)2(224+ 22+ 2) T

< zidxy
24(b) To evaluate | ———— one can either use a quarter circle contour (as in
o zt4 16

o xldx s 2 dx
problem 65(h)) or note that, by symmetry, of 16T 57!;0 T and use the
same semicircular contour as above.

The disadvantage of doing this is that there are two peoles inside the semicircular
contour, but only one in the quarter circle. However, this is compensated by the
easier manipulation of the integral. We shall thus use the semicircle.

The peles inside ', both simple, are at
2 =+/2(=14 7) and 2 = v/2(1 + 7)

The way to avoid unnecessary arithmetic/algebra is to determine the residue at

2z = 25 Where zp is one of the above poles. This is given by

i {(z — 20)22]

z—rzg z4 L 16

Since z = 2 is a root of 2 + 16, we can use L'Hépital’s rule to obtain

1

322 — 222 B
N 420

Residue =
423

Z2=Zq
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Sum of residues is thus

1 1 L 7
A1+ ALt 42

Thus ) )
< xedx zodz —7j T T
/OO 21 1 16 /0z4+ TRl Yw, . V2

o p2dx T
N/
/0 24 1 16 5V2

Hence

24(c) To evaluate
27

/ sin” 06
b+ 4cost
0
. d in® ¢
we follow Problem 65(d) and put z = &% so that —Z — 9 and 27 _
iz 5+ 4dcost
22— 1
(223 4 522 4 22)4
Hence

/2” sin? 0dg 1 j{ P |
Sttt — dz
o btdcosd  4j Jo 2222+ 1) (2 + 2)

where C' is the unit circle. Residues at 2 = 0 and 2z = —7 (not that at 2 = —2)

1

2

are summed. 0 .
d,zc—2—1

@(222+5z+2)
1 22—24—1 13

2=—= 18 (—+———) =——
2 222+ 2) 1 6

Hence

5
Residue at 2 = 0 is levaluated at 2 = 0] is T Residue at

2=

/Q’T sin” 6df 1 /5 13 117
o b+4dcosfd 4y 4 6 24

24(d) The integral
2w

cos 20 46
Hh—4decost
0
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is evaluated similarly

T 0820 1 24l 1 /17T 5 197
7 — dz= —2mj( — — "} =
o b —4cos# 27 Jor 528 — 224 — 222 27 6 4 12

(In part (c) the negative sign arises from the choice of direction of the line integral.
sin® 6
b4 4cost

Since the integrand is always positive it can be ignored.)
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Laplace Transforms

Exercises 2.2.6
1 1 s

BN VRN S —
m 1(a) L{cosh2t} fﬁ{z(e +e%) = 2[3—2 + s+2] RRCRE Re(s) > 2
5 2
1(b) L{t°}=—, Re(s) >0
s
3 1 3541
1d)  Clte = ' Re(s)> 1
(s +1)%
m2(a) 5 (b) -3 (c) O (d) 3 (e) 2 (f) 0
@0 Mo ({@H2 @3
5 3 bs — 3
6 3 42 6
3 - _ _
3 2 s 35 — 2 4s
3(c) LC{3—2t+4dcos2t}= . 8—2+4.82+4 =2 + SR Re(s) > 0

3(d) L{cosh3t} = S_ 3 Re(s) >3

g2

2
3(e) L{sinh2t} = e Re(s) > 2
S JE—
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5! 3 8
—2
3(f) L{pe ' +3—2cos2t} = PR o z.m, Re(s) > 0
3(g) C{dte) — — 2 Re(s)> 2
(s+2)?
3(h) £{2e %sin2t} = = 1 Re(s) > —3
(s+3)2+4 s2+6s+13°
() Lit2e )= 2 Re(s)> -4
(s T AP’
30) 36 6 4 2
3 0.2 . _® P2, = ¢
L{6t> — 3t° + 4t — 2} a3 + R
- 2 5.3
: 36 — 63 +44s 25 | Re(s) > 0
L]
. 8 3 28+ 16
3(k) C{2cos3t+ 5sin3t} = 2.82 e + 5.82 0" 219 Re(s) >0
3(1)
L]
L 2t = ——
{cos 2t} 24
d 8 24
L{tcos2t} = —— =
{tcos2t} d8[32—|—4] (824 4)?
3(m)
d 3 bs
L{tsin3t} = —— =
teinath == loiel = o op
d 65 (52 +9)%6 — 65(s% + 9)%4s
Li{t2ginstt — — [ ] - _
{t"sin 3t} ds[(sg +9)2] [ (s2+9) ]
18s% — 54
= —=, R 0
(21 0) e(s) >
2 3s
2 —
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3(0)
L{t?e % — e tcos2t + 3} = 2 (s+1) T 3
(s+2)° (s+1)2+4 s
2 s+1 3
= -, R >0
(s 4 2)3 * s24+2s+5 + s’ ()
Exercises 2.2.10
4(a) 1{ ! } —1{ i } 1[ R
= 4(a - 1 S
(s+3)(s+7) s+71 1
s+5 2
4(b Falnl S S G — —t | 9,3t
(b) {(s+1)(s—3)} 5} e
4 1 4
= 5 5 4 1 4
4 47 p-1f8 _3 _ 09 A R P
©) Tl Ak b LA R
1 ¢25+6 1 .
4(d) £ {32+4} {2 39+29+3'32+22}:20082t+38m2t
4(e)
L 1
—1 1eY 16 16
{ 2+ 16 } £ { 82+16}
1 1 . 1
= —t— —sindt = —[4t — sin 4¢]
16 64 64
1 5+ 8 1 (3+2)+6 -2t .
4(f) L {32+4s+5} {(8+2)2+1}_e [cost + 6 sint]
4(g) 1
_ +1 irs s+
-1 § _p-1r8 2
{ +48—|—8)} {8+(8—|-2 +22}
bl Hee-se)
8s 8 (s+2)2422
1

=3 (1 — e 2 cos 2t + 3¢ %t sin 2t]
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4(h)

4s -1 1 2

D = F {3—1 oD i)

c—l{(s

—et et +2t6

ST } = L‘_l{%}e_t{cos%Jr?ysin%}

40) a5
43i) ; 1 1
51{(831)(;782—;(53 }:ﬁil{sfl a 332 * 323}
_ ;6t362t+1_2163t
) 5 7 2 2 1
e :L_l{s:rS 3512}

ﬁ_l
rae g
1
— —2e7 3 4 2cosV/2U — E sinv/2¢

4(1)
1 s=2
o1 8 -1
{(s 1)(s? +2s+2} { 2+23+2}
B 1 {s+1)— }
B(s+1)2+1
1, 1 » ,
=F¢ g€ (cost — 3sint)
1 s—1 gy (81 L
4(m) L {739+23+5}_£ {—(s+1)2+22} ¢(cos 2t — sin 2t)
4(n) 1 .
1 1 9 3
-1 8 _plro2 2
{(3—2)(3—3)(3—4)} {3—2 3—3+s—4}
_ %{321& 93t L 26—415
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4(o)
3s 3s
-1 _ -l
{(8—1)(82—4)} {(8—1)(8—2)(8+2)}
1 =l 3 3
=L —
{3—1 -2 s+2}
3 1
Lt Jr 2 56—215
4(p)
1
-1 ool 38
{S(SQ—I—I 32—|—9} { 82+1+82+9}
4§cost+%cos?>t
4(q)
1 2s% +4s+ 9 Y 9 7s+9 )
(s +2)(s2 +3s+3)7 s+2 (s+3)2+3/4
-1 9 T(s+ %) - \@\@/2
=L { . 342 2 }
s+2  (s+3)°+(V3/2)
3
— Qe 675{&[7 coS ?egt — +/3sin ?t]
4(r)
71{ 1 _ ol i w5t s

1
9 10
+)(2+23+10)} s+1 s+2 32+23+10}
1
9

{
O L 1. s+10
=~ s+1_s+2_%[(s+1)2+32]
g 0 ﬁ&+U+3(ﬁ
s+1 s4+2 90(s+1)2+32
1

e *(cos 3t + 3sin 3t)
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Exercises 2.3.5

u 5(8_)
1 28 +5
3)X(s)=2 =
(s +3)X(s) +3+2 5+ 2
28 +5 1 1
X = o)1) “s12 5.3
z(t) =L HX(s) =e *tfe B
5(b)
2 s*+6
(33—4)X(8)—1+82+4—82+4
X(s) = S0 % _mtia
(38 —4)(s2+4) 3s—4 82+4
35 4 3 2
z(t) = ﬁfl{X(s)} = 7—86§t — %(COS 2t + 3 sin 2t)
5(c)
(824r28+5)}((3):1
8
1 1 st2
X(8)78(32—|—23+5) T s b s24+25+5
i 1+ +32)
s B (s+1)2422
1 1
z(t) =L HX(s)) = 5(1 — e b cos 2t — §e_t sin 2t)
5(d)

4s 28} 4s+ 8

(s + 25+ DX (s) =2+

s2+4 8244
X(s) = 2s% + 45+ 8
(s+1)%(s% +4)
2 . : _i[msfsz]
(s+1) (s+1)2 25" s2+4
4 12 , 6, , 12 16
z(t) =L {X(s)}:%e +5te —%COSQt—I—%SIHQt
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5(e)
2 s+6
2
—3s+2)X(s) =1 =
(s s+2)X(s) +S+4 o
516 1 7 4
X(s) _ 15 % 3
(s) (s+4)(s—1){s—2) s+4 8—1+S—2
B(t) = £X(s)) - et Tory 4o
15 5
5(f)
(s> + 45+ 5)X(s) = (4s — 7) + 16 + 5
n s+ 2
482 + 17s + 21 3 (s+2)+1
X(s) = =
(s+2)(s>+4s+5) s+2 (s+2)2+1
z(t) =L HX(s) =3¢ % 4 e Heost+e Faint
5(g)
5(2)
Prs—2)X(s)=s+1+
(s°+s8—2)X(s) =5+ +(s+1)2+4

s34+ 382+ 75+ 15

X =
&) = GG - DEE s 1)
1 13 1., 5
_ T8 12, 4574
s+2 s—1 s§2428+5
B T IO PRSI )
s+2 s—1 4'(s+1)*422
1 13 1 3
x(t) = E_I{X(s)} = —ge_% + Eet + Ze_t cos 2t — Ze_t gin 2¢
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5(h)
) 3
(s %—2.5’—|—3)Y(s):1+8—2
Y(s) = s°+3 7;% - 35+ 3
s2(s2 + 28+ 3) s s2  $24 2843
2 1
i S N e e
s 87 3 (s )2+ (vV2)?
y(t) = LY (s)} = 2 +t+ ge*t(cos V2t + isinx/i*.ﬁ)
3 3 V2
5(i)
1 2 1
2
(s —|—48—|—4)X(s):§s—|—2—|-;3+—8+2
5 4 3
X(s):s +6s8* + 108" + 45+ 8
28%(s + 2)°
U U S S
:g78_2+8_3+8—|-2+(8—|-2)2+(8—|-2)3
w(t) = X =0 - Lep ey Loy By 1o
8 2 4 3 4
5()
1
(9s% + 125 + 5)X(s) = —
8
1 1 4
X&) = o
05 1 35+ 5) 5 (st D44

}
)2

1 s+ 3)+
5(s+3)2+(

V) ‘Ul\H
ol —|coles

1 2 1 1
z(t) = E_I{X(s)} =z e*St(cos §t + 2sin §t)

O =
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5 1 4 —8% — 682 — 165+ 32
(s —|—83+16)X(8):—§s+174—|—16~82+16: 27 16)
—s% — 682 — 165 + 32
2(s+4)%(s% + 16)
0 1 %s
T4 (s+4? 116

z(t) = L7HX(s)} = te 4 — ;cos 4t

X(s) =

85

5(1)
1
(95> + 125 + )Y (s) = 9(s + 1) + 12+ p—
95 + 30s 4 22
Yis) — 87+ 3Us +
(3s+2)%(s+ 1)
1, 0 18
s+1 3s+2 (3s+2)?
2
y(t) = L7HY (s)} = e7f 4 2te 3¢
5(m)
2 1
3 2
282 s+ 2)X(s) =8 -2+ + —
(s §°—s+2)X(s) =s —|—8+S2
3 92
X(s) §° — 28+ 25+ 1
82(s—1)(s—2)(s+ 1)
51 5 2
i, 2 _ 2 3
s 82 s—-1 s-2 s+1
2(t) — L7 X ()} — Z+ ;t ety %e% - ge_t
5(n)
3, .2 S
1) = 1 1+
(s +s"+s+1)=(s+ 1)+ +32+9
s+ 252+ 105+ 18 = 17s—25 1 s+9
X(S): = i — _—
(s24+9)(s+1)(s2+1) s+1 16 s24+1 80s2+9
9 7 25 1 3
z(t) = L7HX(s)) = %e_t T cost + Esint T cos 3t — %sin?)t
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= 6(a) , X
28X (s) — (28 + 9)Y(s) = —5 + P
(28 +4)X(8)+ (48 —37)Y(s) =1
Eliminating X (s)
(28 + 9)(2s + 4) — 2s(ds — 3T)]Y (s) = (; + '9_|_12)(28 +4)—2s = —3s

¥ (s) 38

1
1252485+ 36 4 (s—3)(s—1)

1 3 1
I

4 -3 s8—1

1.3 1 3 1

| _Are st Loy 2 st Lot
y(t) _L {Y(S)} - 4[26 26] € 86

dx
Eliminating i from the two equations

d
6d—€ g 98y — —e 2

1 d 1 21 7 27 3
z(t) = 1[—6_% + 28y — 6—C£] = Z[—e_% + T — 5 b 5 ™t Zet]
, 1,15 11 B 1
e z(t) = Z(Zegt — Zet — e ylt) = §(363t —eh)

6(b)
5
(s + DX(s)+ (25 = )V (s) = 5~
(25 +1)X(s) + (35 — DY (s) = i 1
Eliminating X (s)
(25 = 1)(2s + 1) — (3s — L)(s + L)Y (s) = %QH - i 1
- 10s + 5 B s+ 1
=062 6062
53 5 5 2 5
SLIPEe iy Rl il ey
E) = £7HY () = 5+ 5ot Bsint 2t e

= -3+ €2t+ 2¢t — Fsint
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Eliminating i—f from the original equations

dy

dt
z(t) = 10sint — et —3 4 €% + 2% — 5sint — 2% — 2¢t 4 Hcost

+:1:—y:1051nt—6t

:5sint—|—5cost—3—et—62t

6(c)
1 35+ 10
(.9—|—2)X(s)—|—(s+1)Y(s)_3—|-8+3— P
5 4s+ 13

5X(s)—|—(8+3)Y(«5’):4+3+2 T 512

Eliminating X (s)

158 + 50 —48% — 108+ 11
5 1) — 2 NY(s) = ———— — (48 + 13) =
Bls+1) = (s+2)(s +3)¥(s) = ——— — (4s + 13) p—
1 je] 7
4t 4 10s 11 5 38— 4

Y(S)i(s+3)(32+1)73+3 s 41

1 9
y(t) = £ HY(s)} = —ae’St + — cost — isint

From the second differential equation

3 27 21 3
ha = Be 2 + 56’315 Y cost + ?sint — 56’3‘5

C%int ot Teost
5 s1n 5 COSs

z(t) = 3sint — 2cost + e~

6(d)
@s—mX@y+%Y@):6+811:ff_f

SX(s) (25— 1)¥(s) — 3+ L _3st]
s 5
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Eliminating X (s)

352 (35— 2)(2s — D)|y(s) — 16570 (3= 2)Bs+ 1)

s—1 8
¥(s) = 9g2 — 35— 2 652 — 5g
T eBs— (s —2) (5—1)(3s— L)(s —2)
1 18 14
_[_= 5 [
_[ s+33—1+3—2]
1 9 14
_[ 2 10 5 ]
s—1 3s—1 §—2
1 9
_ 2 2
B s+3—1+33—1
t

yl(t) = E’l{Y(s)} =1+ %et + 26§

1 3 9 i 3 3t
m(t):§[3—€t—3—|—§€t—|——€3—§€t—§€3]
2
6(e)
3 Bs —s* + 55+ 2
1 s 52+

8 (3)+(3+) (8) +82+1+32+1 s+ 1

Eliminating Y(s)

[(3s — 2)(s + 1) — 28%] X (s) = ﬁ[(—sg + 55+ 2)(s+ 1) — (=87 + 5)g]
3%+ 75+ 2 3s+ 1
Xls) = (s 12)(s_1(s211) (s_1(s2t 1)
2 25 — 1
s—1 s$2+1

z(t) = L1 X (s)} = 2e! — 2cost +sint
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d
Eliminating d—if from the original equation

: dx
y(t) = —2sint — dcost — 2z + I

— —9sint —4cost — det + 4dcost — 2sint + 2et + 2sint + cost
ie. y(t) = —2e* — 2sint + cost, x(t) = 2’ — 2cost + sint

89

6(f)
1 s* 41
sX(s)+ (s+ 1)Y(s) = 1+S—2 =
1 s+1

(s+ DX (s)+48Y(s) =1+ = =
s
Eliminating Y (s)

s+ 1, (s+1)° 352-2s5+3

2)_ =

[4s% — (s + 1)%] X (s) = 4s( . . .

382 — 2513 -3 1 9
X(g) = 2 =S s L
s{s—1)(3s+ 1) s s—1 3s+1

2(t) — LU X(s)} — 3t 4 33

d
Eliminating d_?; from the original equation

1 dx
— _[at—1 3™
Yy 4[ +z+ dt]
1 i t
:Z[4t—1—3+ef+3e*s—3eﬁ+3e*s]
1 3 ¢ t
ile.ylt)y=t—1— §et+ 56*3, z(t) = -3+ et + 3¢ 3
6(g)
12 7 144 7s
(23+7)X(s)+33Y(s):8—2+;: 2
14 14 14 — 14s
s+ 4)X(s) (35— 6)V(s) = — — — — —_°
(s + )X ()~ (Bs OV (s) = o5 = 1
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Eliminating Y (s)

(28 4+ 7)(3s —6) + (Bs + 4)(3s)| X(s) = S%[(Bs —6)(144 7s) + 3s(14 — 14s)]

21(s? + 5 — 2)X(s) = 21(s + 2)(5 — 1)X(s) = %(—SQ 25— )

X(s) —s2 4+ 25— 4
8) =
$2(s+2)(s— 1)
—1 1 0o 2
= + + -+ =

s—1 s+2 ' g g2

z(t) = L HX(s)) = —et et Lo

d
Eliminating d—if from the original equations

dx
6y =28t -7 — 1lo — 77—
Y T

=28t~ 7T+ Tet + e — 14+ 11e" — 11e > — 22t

7 |
giving y(t) =t — 5 + 3 + Je7, 2(t) = —e' + 7 2.

6(h)

Eliminating Y(s)

(s +2)? —1]X(s) = 4s(s* +2) + 2s
(s 4+ 4s% 4+ 3)X (s) = 45° + 10s
4s* + 10s 3s s
X(s) = (s2+1)(s2+3) 241 + 82 +3

z(t) = L7 X(s)} = 3cost + cos /3t

From the first of the given equations

2

d
y(t) = 2z + Ef = 6eost+ 2cos/3t — 3cost — 3 cos /3t

i.e y(t) = 3cost — cos+/3t, 2(t) = 3cost — cos /3t
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6(i)

(5s? +6)X(s) + 125°Y = s[?ll5 +12] = 8;133
552X (s) + (1652 + 6)Y (s) — 3[15 4 16] = igs

Eliminating X (s)
2[83(532) — 99(52 + 6)]

208t 12657 — 36]Y (s) = Z[

[60s* — (58 + 6)(16s% + 6)]Y (s) =

—80s% — 594]

V(s) = 5(40s8% + 297)

%7 4(s2 1 6)(10s2 | 3)

e 2
s2+6  10s2 +3

y(t) = LYY (s)} = —i cos /6t + g cos \/%t

2
x
Eliminating el from the original equations

dzy

15 3 /3 3
3$:3y+3@: (I_Z)COS EH—(—E%-?))COSVE??

3 5 1
ie z(t) = cos“%t + 7 608 V6t, x(t) = 1 cos“%t — 4 cos V6t.

6(i)
(28> —s+9)X(s)— (s +5+3)YV(s)=2(s+1)—1=2s+1
(28> + s+ NX(s)— (s> —s+5)Y(s)=2(s+1)+1=2s5+3
Subtract
(25 +2)X(5) ~ (25~ 2V (s) = ~2 = X(s) +¥(s) = - ! 1
= x(t) +y(t) = ¢ (i)
Add

(45 + 16)X (s) — (28 + 8)Y(s) = 4(s + 1)

U0

= 2cos 2t + sin 2t (ii)

2X(s) —Y(s)=
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Then from (i) and (ii)

1 2 1 2 2 1
x(t) = get + 5 o8 2t + gsin%, yl(t) = get — g cos 2t — gsin%

Exercises 2.4.3

w7  1pF =10"%F so 50u = 5.10°F
Applying Kirchhoff’s second law to the left hand loop
diq  dis

1
giﬁgjfiﬂﬁ-+2(:ﬁ-—-:ﬁq — E.sin 100t

Taking Laplace transforms

9 104 100
Li(9)+ 2s[1(s) = Bo(s)] = B

50s .
(104 + SQ)I]_(S) — SQIQ(S) = Em (l)

Applying Kirchhoff’s law to the right hand loop

) dip  dig

which on taking Laplace transforms gives
sli(s) = (50 + s)1z(s) (ii)

Substituting in (i)

5082
82 4 104

Es?
2 4
(S + 200s + 10 )IQ(S) = m

(101 4 s)(50 + 8)[x(s) — s°Ih(s) = E

82

(82 + 10%)(s + 100)2]
s(50 + s)
(82 + 10%)(s + 100)2]

I(s) = E]

then from (ii) f;(s) = £
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Expanding in partial functions

1 1

1
I(s) — E[__200 2 200°%
() = B[ 5 + (s 11002 %1 o)
io(t) = L7 T _ gl b oemooe Ly cwooe L b0y
ia(t) = {Ix(s)} = E| 500° +2 € +2OOCOS ]

m 8 Applying Kirchhoff’s second law to the primary and secondary circuits
respectively gives

, diy dis ,
231+E+1E— 10sint
2+ Qdig n diq 0

A —_— i

2T %a T at

Taking Laplace transforms

10
(s +2)1(8) + sla(s) = ORI
shi{s)+ 2(s+ 1)l3(s) =0
Eliminating [;(s)
10
8 —2(s + 1)(s + 2) Io(s) — 32+S1
10s 10s
Ir(s) = —— 2 = T2
(824 1)(s2 4+ 7s+6) (24 1)(s+6)(s+ 1)
(oL, B L B
s+1 s+6 2+ 1
12 25 35
C o e B . 99
io(t) = L7 {Is(s)} = ¢ 37¢ 7 cost 27 sint

» 9 Applying Kirchhoff’s law to the left and right hand loops gives

d
(i1+i2)+£(i1+i2)+1/i1dt:E0 = 10

.o di .
®Q+d;1/®1dt0
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Applying Laplace transforms

(8 + 1)11(3) + (8 + 1)12(8) + ifl(s) = g

(s+ Dha(s) - %Il(s) 0 = Ii(s) — s(s+ DIa(s)

Substituting back in the first equation

s(s - 1)2Ia(s) + (s + Da(s) + (s + 1)la(s) = 130
(2 + 5+ 2)a(s) = - (313 ;
10
I2(s) = s{s+ 1)(s2+s+2)
Then from (i)
10 10
Il(s)_82+8+2:(8+%)2+£
20 1, /7

m 10 Applying Newton’s law to the motion of each mass

fl = 3($2 — ;1:1) — X = 351’32 — 42?1

fg = —92?2 — 3(2?2 — Zlfl) = —122?2 + 351’31

giving
Z:lfl + 451’31 — 32?2 = 0, ;1:1(0) = —1, ZEQ(O) =2
fg + 12$2 — 32?1 =1

Taking Laplace transforms
(52 + 4)X1(s5) — 3Xa(s) = —s
—3X1(s)+ (8* + 12)Xo(s) = 2s
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Eliminating X»(s)

(8% - 4)(s*® +12) — 9] X 1(s) = —s(s* + 12) + 65
(8% 4+ 13)(s> +3) X (s) = —s® —6s
X, (s) = —5? — Bs _ —%3 B 1%8
(s2+13)(s%+3) s243 s2+13

zi(t) = L H X ()} = —% cos /3t — 170 cos /13t

From the first differential equation

31?2 = 41?1 + i’fl

6 14 9 91
= “E cosx/gt — Ecosv 13¢ + T cosx/gtJr Ecosv 13¢

1
za(t) = E[21 cos /13t — cos v/3t]

1 1
Thus z4(t) = _E(S cos /3t + 7cos /13t), xa(t) = E[Ql cos /13t — cos /3]
Natural frequencies are /13 and /3.

m 11 The equation of motion is
Mi+bi+ Kz=Mg, z(0) =0, £(0) = \/2gh

The problem is then an investigative one where students are required to investigate

for different £~ values either analytically or by simulation.

m 12 By Newton's second law of motion

Moty = —Koxg — Bi{g — 1) + usg
Mgy = Bi(®o — 1) — Khz1 + g

Taking Laplace transforms and assuming quiescent initial state

(MQSQ + Bys+ KQ)XQ(S) — Blle(.S’) = UQ(S)
—BlsXQ(S) + (M182 + Bys + Kl)Xl(S) = Ul(.S’)
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Eliminating X;(s)

[(Miys® + Bys + K1 )(Mas® + Bys + Ka) — Bis®| Xa(s)
= (M182 + Bls + Kl)UQ(S) + Bl.SUl(S)

Le. Xo(s) = %Ul(s) | (Mrs” *ABls ) )
and mg(t) _ Eil{XQ(S)} _ ﬁl{%Ul(s) + (M132 +§1S + Kl)UQ(S)}

Likewise eliminating Xo(¢) from the original equation gives

Ul (S) + JQAISUQ(S)}

Mis+ Bis+ KQ)

ni) = £ (X () = e {PBeEE

Exercises 2.5.7
.13
F(t) = tH(t) — tH(t — 1)
—tH(#) — (t— DH(t — 1) — LH(t — 1)

Thus, using theorem 2.4

1 1 1 1
L{f@)} = 2 efg—e = S(l-e7)— -7

g2 8 8

Ft) = 3t2H(t) — (3t° — 2t + 3)H(t — 4) — (2t — 8)H(t — 6)
— 3tPH(t) — [3(t — 4)> 4 22(t —4) + 43| H(t — 4) — [2(t — 6) - 4|H(t — 6)

Thus

6
C{f(e)) = i e 17L(38% + 22t + 43] — e 57 L[2t 4 4

6 6 22 43, _,
e letatglt g
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14(b)
f@)=tHt)+2-20)Ht-1)—(2—-t)H(t —2)
=tH(t) -2t - 1H{t -1 —(t—-2)H(t —2)
Thus .
CUWY - 2t e el
= %[1 — 277 4 7?7
= 15(a) 1{ 4} L He 5 F(s)} where F(s) = P _12)4 and by the first

shift theorem f ( )=
Thus by the second shift theorem

LHP)} = e,

—bhs

Lo {(872)4} = f(t—5)H(t - 5)

_ é(t _ 532 B 1t — 5)

3 36723 B o
15(b) C 1{W} = LY e 2 F(s)} where
F _ 3 _ _% %
O =G ey sis st
ft) = £7HF ()} = Set = Do
- 3e2¢
so L 1{(S+3)(8+ 1)} = f(t —2)H(t — 2)
_ ;{e—@—?) =2 — 2)
15(c) £ Y 28+1 *5} L Me *F(s)} where
s+ 1 1 1 s+1
FO = aian s s
f(t)= L7 HEF(s)} =1+t —cost —sint
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B e SV (RRILIOR
=14+ {t—1)—cos(t — 1) —sin(t — 1)|H(t — 1)
= [t —cos(t — 1) —sin{t — 1)|H(t — 1)
15(d) 1{82 j_J;i 0 e™ )} = £L71{e7™ [(s)} where
Pl - STl (s+3)+ J505)
(52 +s5+1) (s + 1)2 4 (22
f(t) = e*%t{cos ?t—l— %sin \égt}
s+ 1

1{ PR 1 7?8} _ \%e_%(t—w)[\/ﬁcos ?(t—ﬂ') + sin ?(t —77)] H{t—x)

15(e) ﬁfl{me*‘im/g’} = L e 4m/5F(s)) where
F(s) = ﬁ — f(t) = LY F(s)} = cosbt
™ _ 8 —drs 4w 4w
£ 1{82+25 ! /5} f( 5)H(t7?)
= cos(5t — 4m)H (t — 4;)
= cosbt H(t — 4;)
15(f) 1{ } £ (e 25V F(s)} where
(R R B

$2(s2+1) s 241
ft)=L7YHEF(s)} =t —sint
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L7H(e™ —e™)F(s)} =f(t —D)H(t - 1) — f(t —2)H(t — 2)
=[(t—1)—sin(t —1)|H(t — 1)
— [(t —2) —sin(t — 2)|H(t — 2)
= 16 Z—f—l—x:f(t), E{f(t)}zs%(l—e_s—se_s)

Taking Laplace transforms with x(0) =0

(54 DX(s) = = — e (1;;8)
1
X =a63D ¢ @
1 1 1

Taking inverse transforms

z(t)=—-1+e ' +t—(t—1)H(Et—1)
—e P4 (t—1)[1 - H(t—1)
orz(t) =e '+ (t—1)fort <1
z(t)=etfort>1

Sketch of response is

x (k) A
I/e +
—3 ! %
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d*xr  dx )

with £{g(t)} — .912(1 L oemt o)

Taking Laplace transforms

1
(2 4+ s+ D)X (s)=s5+1+ 8—2(1—26*5+e*23)

s+ 1 + 1
(s2+s+1) s2(s2+s+1)
1 8

l s 2
S T N P s
+[8+82+82+8+1][ e te ™

X(s) = (1 —2e% e 2°)

11 (s+g)—50F) L,
= ot 1265 + e %]
\/g 2 8 82 (S+ %)2+ (@)2

2
z(t) = L7 HX(s)) = et (cos ?t + % sin ?t)

V3, 1 x/§)

1
+ t—1 + €7§t(COS 715 — ESIHTTS
1
—2H(t - 1) [t —24 e 20 N feos *f(t —1)

13
- ESlDT(ti 1)}}
+ H(t —2) {t -3+ e_%(t_g){cos ?(t —2)

13
= ﬁ51n2(t—2)}}

i.e.
1
z(t) = 2~ 2% cos gt +t-1
1
—2H(t — 1) {t —2+e 2 cos \f(t —1) — —sin £(t — 1)}}

+ H(t —2) [t -3+ e_%(t_g){cos ?(t— 2) — ﬁsin ?(t— 2)}}
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" 1e 7 T T
f(t) =sintH(t - 5) —cos(t— JH(t— =)

since cos (t — 5) =sint.

Taking Laplace transforms with x(0) = 1,£(0) = —1

(s +3s5+2)X(s) =s+2+ L{cos(t — E)H(t -2}

=s8+2+4+¢e" %Sﬁ{cost}

™

101

:s+2—|—6_§s.82+1
R e R cEa
1 2
- ler 1 Jrej%s[sjfl + SEQ i 110 3821131]
— s—ll— : + e%sﬁ{;et + ge% + E(cost + 3sint)}
s0.1(6) = LM} = e | = 5B 2B g Feos (1 )

©3sin(t g))]H(t m

1 E
—et 4 E[Sint —3cost 4+ 4eTe 2 — Be2 e H(t -

-
2

)

=19
ft)=3H(t) — (8 —20)H(t — 4)

—3H(L) 20t~ 4)H(t — 4)

LU} = § +2e Lt} = i 2o

8

Taking Laplace transforms with :E(O) =1, z(0)=0

3 2
2 _ —4s
(s +1)X(s)—s+g+8—26
e 3 2
b'e — —4s
(s) 82+1+s(32—|—1)+82(32+1)6
_os 33 L s
82+ 1 5 8241 2 2+14°
3 2 s ,
:5—82+1+2€ L{t —sint}
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Thus taking inverse transforms

x(t) =3 —2cost +2(t — 4 —sin(t — 4))H(t — 4)

= 20

ég + 690 + 106 = 8;

0;(t) = 3H(t) — 3H(t — a)
50 ﬁ{gz} = i — Z_)e‘“" — %(1 . efas)

Taking Laplace transforms in (1) with 6y = 8y = 0 at t =0

(5% 4 65+ 10)Py(s) = g(l — e %)
1
82+ 65+ 10)]
1 (s+3)+3]

3 —as
R ULl il Pt JE

= 1?;)(1 —e L[l - e 3 cost — e sin ¢]

Dp(s) = 3(1 — e*‘”)[s(

Thus taking inverse transforms

3
Go(t) [1—e 3 cost — 3e ¥ sint| H(¢)

~ 10

3
= E[l — e oog(t — a) — 3e 2N gin(t — a)|H(t — a)

IfT>athen HT)=1, HT —a) =1 giving

3
Go(T) = —E[S*ST cosT — e 3T cos(T — a)]

3
— E[3{3*3T sinT — 3¢ 3T —a) sin(1” — a)
3
— —Ee_ST{cos T +3sinT — e*[cos(T — a) + 3sin(T — a)]}

m 21
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SO
1 1
L{0:(1)} = — — = + e L1t
B:0)) = - = = + e L{t}
11 1, s—1 1 _
Sy TR et T Tt

Then taking Laplace transforms, using 6o(0) = o(0) = 0

s—1 1

(5% + 854 16)Do(s) = 2 + 8—26_8
s—1 1
Bo(s) = o= e[
o(s) s2(s + 4)2 te [32(8%—4)2}
JAB2 8 10 et 2 L, 2
Cs2ts 82 s+4 (s+4)2 32 s 0§72 s+4 0 (s+4)?

which on taking inverse transforms gives

1
0o(t) = L7H{Do(s)} = 3—2[3 — 2t — 3¢~ — 10te™ ]

+ %[—1 +2(t—1)+e Y Lot — 1)e YV H(E-1)

m 22

o i oy a.—4t —4t
=23 [3 —2t— 3e 10te™ ]
+ %[% — 342t —1)e VHE-1)
el #
e, 4 r 1
i 1
' !
! '
! ]
| §
i |
— b
(o)
t, t,

€(t) = €0H(t — tl) — €0H(t — t2)
L{e(t)} = (e ™)
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By Kirchhoff’s second law current in the circuit is given by

1
Ri+6/’idt:e

which on taking Laplace transforms

1 €0, _st —st
I(s)+ =1 St gste
RI(s) + . 1(s) = —( e ")
_ 600 —stq —sto
I(s) = RCs + 1(e )
60/R

= e
s+ % s+ Rlc
then
i(t) = L7{I(s)}
— % [e=(—t/BCH (t — ;) — e=(=1)/RC (1 _ t,)]
= 23
$® A
Sketch over one period as shown and
readily extended to 0 <t < 12.
6 T (
'
:
!
i
. .
0 2 4 9’:
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filt) =3tH(t) — (3t ~6)H({ —2) ~ 6H(t —4)

) —
H(t)—-3(t—2)H(t—2)—6H(t—4)
L{f1()) = Fi(s) = 332 _ 36—28 B §€_4S

82 s
Then by theorem 2.5

L)} = F(s) = ——=511(s)

1 —2s —ds
- m(g — 3e — bse )

m 24 Take
K
fl(t):Tt, 0<t<T

=0, t>T

K Ki K K
then f1(t) = —tH(t) - —H({t-T)= —tH{t)— —(t-T)H(t-T)-KH(t-T)

T T T T

K —&T K —STK K —&T K —sT
L‘{fl(t)}:Fl(s):@—e @—e ?:@(1—6 )—?e
Then by theorem 2.5
1 K K e°f

L{f(O)} = F(s) = mﬂ(s) Te? s 1_e T

Exercises 2.5.12
u 25(3.)
2°+1  _ 10s+11 P
(s +2)(s+3) (s +2)(s+3) s+2 s+3

287+ 1
1 _ -2t _ —3t
{ TRy b= 28(t) + 9e 19¢
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25(b)
32f1_1 5
s2 44 §2 4+ 4
L {32 } = (t)—551n2t
25(c)
s?+2 . 2543
s2492s+5 24+ 2545

2s+ 1)+ L(2
*1*[ E3+1§2+23(2)]

2
E_l{ 84+ 2

1
_ ot Lo
32+28+5}*5(t) € (20082t+ 28111215)

m 26(a) (s°+7s+12)X(s) == +e72
2 1
X —2s
&)= e s e
1 2 1 1 1
_ & 3 2 [ _ Je=2
s s+3 s+4 s+3 s+4

z(t) = £ HX(s)} =

26(b)
(8% + 65+ 13)X(s) = ¢ *™*

1
b'e _ —2rs
() (s +3)2+ 22°
1
= e’gmﬁ{ 56’3’5 sin 2?5}
1

so x(t) = L HX(s) = 56*3“*%) sin 2(t — 2m) . H(t — 2m)

1
= 566”6’“% sin 2t. H (t — 27)
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26(c)
(s 4+7s+12)X(s) = s+ 8+ e

S+8 [ 1 —3s
CER P il tewry ey i

X(s) =

B 5 4 1 1 _3s
N [s+3_ S+4}+[8+3_8+4}€

z(t) = L7HX(s)} = be 3 —de ™ 4 [e733) _ oA H (1 — 3)

] 27(&)

v

) 4

Generalised derivative is

f'(t) =g'(t) — 436(t — 4) — 45(t — 6)

where
6t, 0<t<4
Jgt)=< 2, 4<t<6
0, t>6
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27(b)
{1
ln
© [ 2 s ¢t
I, 0<t<l1
flt)y=gt) =< -1, 1<t<2
0, t>2
27(c)

s lb #15

f'(t) =g'(t) +50(t) — 66(t — 2) + 155(t — 4)

where
2, 0<t<?2

Jgt)y=¢ =3, 2<t<4
2t —1, t>4
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= 28
(5° + Ts 4+ 10)X(s) = 2+ (35 + 2)U(s)
1 hs+ 6
=2+(3 2 =
T8+ )S—I—Q s+ 2
bs+6

X(s) =

(s +2)%(s +5)

109

.29 f(t) = 3 8(t — nT)

Thus
Fs)=L{f)} =" £{a(t—nT)} = e
n=0 =0

This is an infinite GP with first term 1 and common ratio e 37

having sum (1 — e=*7)~1. Hence

1

Fls) = 7 =7

and therefore

Assuming zero initial conditions and taking Laplace transforms the response of the

harmonic oscillator is given by

(2 + w?)X(s) = Fls) = ———r
X = (e "))
n=0

=1 +e T f 2T o }E{l sinwt }
w

giving z(t) = LY X(s)} = %[sinwt + H{t - T).sinw(t —T)+ H(t - 27).
sinw(t — 27") + .. |
or z(t) = L ioj H(t — nT)sinw(t — nT).

W n=0
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29(a)

™

T = o x(t) = %;H(t—%)sin(wt—nﬂ)

= l {sinwt— sinwt.H(t— Z) —I—sinwt.H(t— z—ﬂ) —I—}
w w w

and a sketch of the response is as follows

§©
‘% ]/\ /\ /\
(] L7 ~t

2

gl

33 L% S
X @ w

1 o 2mn, .
T:E; x(t):E;H(t—7>81n(wt—27rn)

= L [sinwt—{— sinwt.H(t — 2_7r) + sinwt.H(t — 4_7T> + ...
w w w

and the sketch of the response is as follows
o (8) y
34,

:/U'

1
£ o
<€\"
sIv
£
el
ey
5I:
/
(y o

-2/“.

" %1

@ Pearson Education Limited 2004



Glyn James: Advanced Modern Engineering Mathematics, Third edition
m 30 The charge ¢ on the LC'R circuit is determined by

d*q dg 1
L— —_— o pu—
7z +Rdt + ok e(t)

where e(t) = E)(t),q(0) = ¢(0) =0.

Taking Laplace transforms

(Ls* + Rs + %)Q(s) =L{Et)} =F

 E/L B E/L
RARRRERIE PR e PR XN R

 E/L R |1 R
T Grpzr P TN e T e

E
Thus ¢(t) = L—ne“‘t sinnt

E
and current i(t) = ¢(t) = L—ne_“t (ncosnt — psinnt)

111

Exercises 2.5.14

= 31
R
== .
m
l y
w

M / 1
Load W(x) = 7[‘[(1‘) +Wé(x— 5) — R16(x), where Ry = 5(M—|— W)
so the force function is

/ M+W
W) = 5 H@) + W — 3) — (F0—)d()
having Laplace transform
M M
W(s) = T + Wets/2 _ w
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Since the beam is freely supported at both ends

y(0) = v2(0) = y(€) = ya(£) = 0

and the transformed equation (2.64) of the text becomes

LMW e MWL w0 ws(0)
(S)EI{M+34€ ( 2 )34 * 52 * st
Taking inverse transforms gives
1 [1 M, 1 £ 4 £ 1 3
y(x) = E‘I{_Alﬁm + 6W(:1:— 5) H(z — §) _E(M+ Wz
1 3
+ y1(0)z + 6‘93(0)3?
for x >%
11 M, 1 A 1 5
= —|—— -Wix — = M+ W 0 —y3(0
y() M4E*%(x; m(+>}+mn%wn
1 [1M , £ 1
yalz) = ol 2 7 —x —I—W( 2) — 2(M+W)I} + y3(0)z

yo(#) = 0 then gives y3(0) = 0 and y(£) = 0 gives

1 MES WES 1 3 3
st M ﬂﬂ*mw
I B R P .
o ylz) = b gMr:z':4 + 8W(x g)SH(:I\': — g) — 4(M + W)z® + (2M + 3W )%z
ASE | 7 2 2
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m 32

W lxy5)! 8}

Load W(zx) =w(H(x —x1) — H(x — x2)) — R16(x), R1 = w(xe — x1)
so the force function is

with corresponding boundary conditions

y(0) = y1(0) = 0, y2(f) = ys(£) =0
The transformed equation (2.64) of the text becomes

Y(3> w ie—ﬂfls 1 —z9s (1’2—1‘1) yg(O) yg(O)

T EI|s e T A e T
which on taking inverse transforms gives
y(x) = [ — ) Hx — 20) — o (a — a2) *H(z — 1)
EI24 24
1 3 x? z3
e — 0) 0)—
(@2 — 712 | +42(0) 5 +us(0)
For = > x9
w 1 .1 4 1 3 7’ T
y(@) = 57 [ﬂ(iﬁ —21)" = gy (@ —22)" = 2(@2 —21)x 1+ y2(0) 5 +y3(0)
1 1
o) = 2= [So(a — 01)? = S = 22)” = (22 — 21)a] 4+ 112(0) + ya (O)a

ua(@) = gz l(@ = 21) = (2 = 22) = (22— 21)] +33(0) = 93(0) =0
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The boundary condition ys () = 0 then gives
0= — [1(52 — 2z +27) — 1(52 — 2Uxg + x3) — w2l + 214] + y2(0)
EI'2 Vo2 2
w2 2

= y2(0) = E(UEQ — 77)

:ﬁ [($ — $1)4H($ — :L‘l) — (.ZC — x2)4H($ _ .’132) _ 4($2 - ZCl)ZCS

+ 6(x% — x%)xj}

y(x)

When z1 = 0,29 = £, max deflection at x =/

w wi?t
= et ety =
y S4BT\ 60} = 2BT
s 33
e (A - y

Load W(x) = Wé(x —b) — Ri6(x), R1 =W so the force function is
W(x) =Wé(x —b) — Wi(x)

having Laplace transform
W(s)=We™ -W

with corresponding boundary conditions

y(0) = 91(0) =0, y2(f) = y3(¢) =0
The transformed equation (2.64) of the text becomes

1 W o, W

Y(s) = EI [5_46 B 3_4] + s3 st

which on taking inverse transforms gives

2 CIZ‘3
R (R I () LA (G

y(@) = —57l5 6 6
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For x > b

IQ IS
y(x) = —% [%(m —b)® — é:ﬁg] + 92(0)? + ys(o)g
pa(a) = — [~ 8) — 2]+ 0a(0) + 1a(0)e

W

ya() = = [1 = 1] +3(0) = ys(0) =0

Using the boundary condition yo(¢) =0

0 %(h) +y2(0) = 1(0) = %
giving
e (SR
_ Zﬁf@w O<zsb
Wb?

- - <
6EI(3:1: b), b<ax</?

Exercises 2.6.5

m 34(a) Assuming all the initial conditions are zero taking Laplace transforms
gives

(5% + 25+ 5)X(s) = (3s + 2)U(s)

so that the system transfer function is given by
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34(b) The characteristic equation of the system is

$24+2s+5=0

and the system is of order 2.

34(c) The transfer function poles are the roots of the characteristic equation

24+ 2s+5=0

which are s = —1+£ 7. That is, the transfer function has single poles at s = -1+
and s =—-1—7.
The transfer function zeros are determined by equating the numerator polynomial

to zero; that is, a single zero at s = ——.

3
4& ..‘(S)
x 14
4 O N >
- -’/& o 1 .Re(v
x -4
S‘-?\qne . ?oit (%), zero (o)

m 35 Following the same procedure as for Exercise 34

35(a) The transfer function characterising the system is

2+ bs+6

G p—
(s) s34+ 582 +17s+ 13
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35(b) The characteristic equation of the system is

2+ 552 +17s+13=0

and the system is of order 3.

117

35(c) The transfer function poles are given by

s34+ 582 +17s+13=0
ie (s+1)(s* +45+13)=0

That is, the transfer function has simple poles at
s=—-1,s=-24+33, s=-2—733
The transfer function zeros are given by

$?+55+6=0
(s+3)(s+2)=0

ie. zerosat s =—3 and s = —2.
4L T.(s)
p l
]
g *’—62. -\ [} ] ? = e R:(s)
-t
-2
) - S—Plt\ncz Poies (%) , zevos (o)
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36(a) Polesat (s +2)(s2+4)=0;ie s= -2, s=12f, s = 4.
Since we have poles on the imaginary axis in the s-plane, system is marginally
stable.

36(b) Polesat (s+ 1){(s—1)}(s+4)=0;ie s=-1,8=1, s= 4.
Since we have the pole s = 1 in the right hand half of the s-plane, the system is

unstable.

36(c) Polesat (s+2)(s+4)=0;ie s=-2, s=—4.
Both the poles are in the left hand half of the plane so the system is stable.

1 3
36(d) Polesat (s°+s+1)(s+1)>=0;ie s=—1 (repeated), s= ~3 ij%.
Since all the poles are in the left hand half of the s-plane the system is stable.

1 +/39
36(e) Polesat (s+5)(s° —s5+10) =0;ie. 5= -5, s= 5 :th.
Since both the complex poles are in the right hand half of the s-plane the system

is unstable.

37(a) s°—4s5+13=0 = s5=2473.
Thus the poles are in the right hand half s-plane and the system is unstable.

37(b)
5s° + 1382 +31s+15=10
aa an al ap

Routh-Hurwitz (R-H) determinants are:

13 5

15 31 >0, Ag = 15A2 >0

A1:13>0, AQ‘

so the system is stable.
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37(c) s +s2tst1=0

R-H determinants are

=0, Ay =1Ay =0

A1:1>0,A2:‘1 1‘

11

Thus system is marginally stable. This is readily confirmed since the poles are at

s=—1,8s=%j

37(d) 24s* + 11s° + 2652 4 455+ 36 =10
R-H determinants are

11 24

A1:11>0,A2:‘45 9%

<o

so the system is unstable.

37(e) s+ 224254+ 1=0

R-H determinants are

2 3

A1:2>0,A2:‘1 9

‘ =1>0,A3=1A5 >0

1
and the system is stable. The poles are at s = —1, s = —3 + j? confirming the

result.

P d°x dx
38 m@—kc@—kKE—I—KT:E:O; m,K,r,c >0

R-H determinants are
Aj=c>0
cm . C
i K‘ =cK —mKr > 0 provided r < .
As = KrAs > 0 provided Ay >0

Ay =

c
Thus system stable provided r < —
m
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= 39
s+ 282+ (K + 2)s°+7Ts+ K =10

as az a ag

R-H determinants are

Ali‘ag‘:9>0

. as ay . 2 1 . - . §
As = 0 as ‘7 K+2‘—2K 3>Oprov1dedK>2
as a4 0 2 1 0
Ay = a1 ay a3| = |7 K+2 2| =10K —21 > 0 provided K > 2
0 an Adq 0 K 7

Ay = KAz > 0 provided Az >0

Thus the system is stable provided K > 2.1.

w40 24+ 15Ks?+ (2K —1)s+5K =0, K >0

R-H determinants are

A= 15K > 0
|15k 1 a2
Ay — ‘5}( (21 1y| — 30K 20K

Az =5KAy > 0 provided Az > 0

2
Thus system stable provided K(3K — 2) > 0 that is K > 3 since K > 0.

= 41(a) Impulse response h(t) is given by the solution of

d*h dh
— o + 15—~ 4 56h = 36(t
az ar (®)

with zero initial conditions. Taking Laplace transforms

(s° + 1bs + 56)H(s) = 3
3 3 3
His) = (s+ 7)(s+8) T s+T s+8

80 h(t) = ﬁ_l{H(S)} _ 36—7t . 36_8t

Since h(t) —+ 0 as t — oo the system is stable.
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41(b) Following {a) impulse response is given by

Since

(s + &8s+ 25)H(s) =1

1
so h(t) = LY H(s)} = §6_4t sin 3¢

h(t) — 0 as t — oo the system is stable.

41(c)

Since

Following {a) impulse response is given by

(s —2s — 8)H(s) = 4

4 2 1 2 1
His) = (3—4)(8+2):§s—4_§8+2

0 h(t) = £ H(s)} = (et — e %)

h(t) — co as t — oo system is unstable.

41(d) Following {a) impulse response is given by

Since

(s —ds +13)H(s) =1

1 1
H f— f—
P S R R

so h(t) = L7HH(s)} = ;’6% sin 3t

h(t) — o0 as t — oo system is unstable.

42

d 7 2
Impulse response h(t) = er_ 56*’5 —3e % 4 56*4’5

System transfer function G{s) = £{h(t)}; that is

Note

7 3 2
Hg) — _
) =357 "5 2 3051 4)
s+3

(s+ 1){s+2)(s+4)

The original unit step response can be reconstructed by evaluating

ety

8
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2 3s
43(a) f(t)=2-—3cost, F(s):ngQJrl
352 3
Fls)=2— —— =
8 (3) 82+1 ]__|_L2

Thus lim (2 —3cost) =2—-3=—1
t—0-+4

and lim sF'(s) =2 —

&—r 00

— |

= —1 so confirming the i.v. theorem.

43(b)

F) = (3t —1)* =9t -6t + 1, tE}&_ flit)y=1

18 6 1 18 6
— — — + —so lim sF(s) = lim [—Q—f—l—l]:l

8 8 8 00 s—o0 T8 S

1(s) =

thus econfirming the i.v. theorem.

43(c)

ft)y =t + 3sin2t , t1_1>%1+ =0

1 6 , L 1 6 B

Fs) = T 2™ SILHQOSF(S)—SILH;O[E—I— 8+§] =0
thus confirming the i.v. theorem.
44(a)

f(t) =1+3e tsin2t, Jim f(t) = 1
—+CO
1 6 , ) 6s

thus confirming the f.v. theorem. Note that sF'(s) has its poles in the left half of

the s-plane so the theorem is applicable.
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44(b)
f(t) =3¢ %, Jim f(2) =0
2 : . 28
Fs) = (st 20 and ;g%sF(s) = il_}n’é [m] =0

thus confirming the f.v. theorem. Again note that sF(s) has its poles in the left
half of the s-plane.

44(c)
ft)=38—2e73 { e cos 2t , tlim f(ty=3
—F 00
3 2 (s+1)
F(s)=-— 5
s s+3 (s+1)2+4
_ s 2s s(s+1) ,
limsP(s) = I [3 = 75+ (e ] 73

confirming the f.v. theorem. Again sF(s) has its poles in the left half of the

g-plane.

45  For the circuit of Example 2.28

~ 3.64 1.22 4.86

L) = ——+ 500 o4 149

Then by the f.v. theorem

1.22s  4.86s ]
s+59.1 54149

lim 45(t) = lim s/(s) = lim [3.64 +
s—0

t—oo s—0

= 3.64

which confirms the answer obtained in Example 2.28. Note that sl2(s) has all its

poles in the left half of the s-plane.

46  For the circuit of Example 2.29

2852

sly(s) = (38 + 10)(s + 1)(s% + 4)

and since it has poles at s = £72 not in the left hand half of the s-plane the

f.v. theorem is not applicable.
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m 47 Assuming quiescent initial state taking Laplace transforms gives

4 1
7s+5)Y(s)=— 2
(s +5)¥(s) =+ =
4 1 2
Y ==
(s) s(7s +5) i (s+3)(7Ts+5) i 7s+5
4 8 2s
Y ==
Y = s " Gty | Tss

By the f.v. theorem

4 8 23
li 1) = lim sF(s) = li
tggoy( ) P (s) +20 [73+ 5" (s +3)(7s+5) - 75+ 5]
4
5
By the i.v. theorem
lim y(t) =y(0+) = lim sF(s) = lim [ + 5 + 2 ]
t—0+ s—roo s—eo "7+ 5 (1_|_ %)(78+5) 7+ %
2
T
. 2
Thus jump at t =0=y(0+) — y(0—) = 1?.

Exercises 2.6.8

| 48(&)

£ g(t)

¢
/ T cos(3t — 37)dr
0

t

1 1
= [—grsin(?)t —37)+ 9 cos(3t — 37)] .

1
= —(1— 3t
9( cos 3t)

¢
g* f(t) :/0 (t — 7) cos37dT

T

t , 1 1
= [, sin37 — —sin37 — cos37| = 5(1 — cos 3t)

3 3 9 0
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48(b)
Frglt)= /0 (1 + e 27 gr

_ ! D20ty 1 —agn) i
= [§(T+ Je —1° ]0
IR T

ottty gt

t
g+ £(1) /0 (t— 7+ 1)e2dr

1 27 1 —27 ¢
:[—i(t—7+1)e +ie ]0
1 1 1
T
2 ta gt
48(c) Integration by parts gives
¢
/ 7'251n2t—T / t—T sin 27dT
0 0
D os2t 4 L2 —
= — cos
4 2

48(d) Integration by parts gives

t
/ e Tsin(t —7) / T gin rdr
0 0

1
zi(smt—costﬂre &
; gl —1 1 Lo s
= 49(a) Since £ {g}:lzf(t) and £ {(s+3)3}:§t

1

s~(s+13)3}/0 it —7)g(r)dr

|
= / l.-r%e 3dr
0o 2

iy

1 2 2 ¢
— - [7T2€73T - 77'6731— - 7673T:|
4 3 9 0
1
= a[z — 73912 4 6t + 2)]
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Directly
1 1 6 2
Y e S, ‘ - -
{s (s+3)3} { s+3) (s+ 3)2 (s+3)}
1
= —[2— e (9% + 6t + 2
54[ e (9t + 6t + 2)]
1
—1 _ 2t —1 _ -3
49(b) { 2} te® = f(t), £7H 8+3)2} —te™ = g(t)
-1 Q(t ) =374
{ (s—2)% (s+3) 2} / e T
t
= e_gt/ (tr — 75 "Tdr
0
1 1 2 ¢
= et [—g(tT — e 5T — %(t —27)e T + EB’E’T]O
¢ 2 ¢ 2
_ooar bt s L
= o T s s
1
= ¢ [e*/(5t — 2) + e % (5¢ + 2)]
Directly
1 —2 1 2 1
1325 + 25 + 125 + 25
(s —2)2(s+3)2 s5—-2 (s—2)2 (8 +3) (s + 3)?
—2 1
-1 _ 26 b2t A 8t L -3
{(3—2)2(s+3)2} 125 T Tty
1

= ﬁ[e%(&f —2) + e *(5t 4 2)]

=e ¥ =g(t)

49() L )=t = f)

—4t
{32 S+ 4} / dT
1 1 ¢
it — 4+ T 4T
[l e T e
1 j—y 1 1
S t
16° - 16
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Directly
1 1 1 1 1 1
1 _1 _ R S— —_
{ s+4} 16 s+4 16 8+4 82}
1, 1
L L N
16 6 4

127

1

F(s) — - and G(s) — o

2

Considering the integral equation

£
y(t) = / Ae NN
0

By (2.80) in the text

LY P(s)G(s)} = ff

:/)\e =N dx = y(t)
Q0

y(t) = L7HF(s)G(s)} = ﬁfl{m}
:ﬁ_l{_g i sil}
—(t—-1)+e’

= 51 Impulse response h(t) is given by the solution of

&h 7dh
gt 112 =3(1)

subject to zero initial conditions. Taking Laplace transforms

(s> +T7s+12)H(s) =1

1 1 1
(s +3)(s+4) T s+3 s+4
giving h(t) = LW H(s)} = e — 7

H(s) =
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Response to pulse input is

x(t) = A{/Ot[e?’(t") - 674(t77)}dT}H(l§)

4] /T [T _ =4 ar o — T

- 111 g 1y,
_A{[S 1 3¢ —I—Zle JH(@)

kot seen L ey T)}
3 1 3 1

1
= A ey e (1 4e 3T L e T (T

or directly

u(t) = A[H(t) — H{t — 1) so U(s) = L{ult)} = é[1 —e 5T
s
Thus taking Laplace transforms with initial quiescent state
(s +7s+ 12)X(s) = =[1 — e~ 7]
11 1 1 1 1
X(s)=A|l— - — = —- 1—e*T
& =Alg s 3t dd )
A
2(t) = L7 X (s)} = Sl de™ 4 3™ (1 4e730T) L 37T (g — 7))
m 52  Impulse response h(t) is the solution of
d*h dh ,
——+4— 4+ bh =4(t), h(0) = h(0) =0
Taking Laplace transforms
(8 +4s+5)H(s) =1
1 1

H — =
() $24+4s+5  (s+2)2+1

so h(t) = L7 H(s)} = e **sint.
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By the convolution integral response to unit step is
¢
Golt) = / e~ sin(t — 7). 1d7
0
t
= e%/ e*7sin(t — 7)dr
0
which using integration by parts gives

Oo(t) = ——[e*7[2sin(t — 7) + cos(t — T)]]Z

1 1
“E- ge_%(QSin?ﬁ + cost)

Check
Solving
d?0q dby -
E0 g0 sy =1, f(0) = p(0) =0
5 T4 Thb =1, 60(0) = 6o(0)
gives
(82 + 45 + 5)Bo(s) —
s
1 1 1 s+4
@ pu— = — — — —
o) = (s 5) s 5 (sio2id
1 1
so Bp(t) = L™ HDp(s)) = F g[cost + 2sint|e %,
Review Exercises 2.8
d%x dx ) ]
m 1(a) ) + 4E + bx = 8cost, x(0) = #(0) = 0 Taking Laplace transforms
(52 + 45 + 5)X () — —>°
2+ 1
8s
Y(s) —
S Ty
s+l s45
Cs24 1 824 4ds+ 5
s 1 (s+2)+3

21 S2r1 (s+2)2+1
giving z(t) = L7 X (s)} = cost +sint — e~ *[cost + 3sint]
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d%x dx )
1(b) 5@ —SE —2x =6, z(0) =x(0) =1

Taking Laplace transforms

2
(55% — 35— 2)X(s) = B(s + 1) —3(1) 4 & _ B T2 +6
8

5s” + 25+ 6
X(S): 3
5s(s+ ¢){s+ 1)
3 2 18
:_5+8*1+3+%
13 15 _2
giving z(t) = £ H{X(s)} = -3+ 7€t + 76_5’i
= 2(a)
1 S S S
(s+1)(s+2)(s2+25+2) s+1 2 s+2 2 524+25+2
B S S S N AR
iS—I—]_ 2 542 2(8—|—1)2+1
1 1 1
Thus £t PR S T o
v {(8+1)(8‘|’2)(32‘|—28—|—2)} ¢ 5 ¢ 5 ¢ (cost + sint)

2(b) From equation (2.26) in the text the equation is readily deduced.

Taking Laplace transforms

24 354 2)I(8) = 2434+V.——
(" +3s+2)I(s) =s+2+3+ (st 1)2+1

s+5 1
CE P VI Voo o pargyd

4 3 .
=TT 5.3 + V[extended as in (a)]

I(s) =
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Thus using the result of (a) above

ity =L YI(s)} =de ' 34 V][t ;e% - ;et(cost + sint)]

m 3 Taking Laplace transforms

(s — )X (s) +5sY (s) = —

28X (s) + (82 — )Y (5) — —°

L]
Eliminating Y'(s)
5% —14 11s% — 4
(s — 1)(s% — 4) + 2s(58)| X (s) = o T10="
11s% — 4
X =
()= 2t 1+ 1)(s2 1 4)
1 5 4

78_2+82+1 244
giving z(t) = LY X(s)} = ¢ + Bsint — 2sin 2t
From the first differential equation

dy 1 4’z
A _ -~
a5l ]
1
= 5[?5—t+E)sin?ﬁ—28111215—|—L")sin?ﬁ—851112?5}

= (2sint — 2sin 2t)
then y = —2cost + cos 2f + const.

and since y(0) = 0, const. = 1 giving

y(t) =1 — 2cost + cos2t
xz(t) = —t+ 5sint — 2sin 2t

m 4 Taking Laplace transforms

2 8
25+ 2)X(s) = 2w0 + ———
(8" +2s+2)X(s) = sz + 71 + o+ 5
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sxo + 11+ 2% 8

82+ 2542 (82 + 1)(s%2 4+ 28+ 2)
:mo(s+1)+(m1+mg) 1 s+2 1 s+ 4

X(s) =

(s+1)2+1 5 241 5 (s=1)2+1
giving
n(t) = L7{X(s)}
1
= e Hxgcost + (z) + xp)sint) + g(cost + 2sint)
— ;e_t(cost + 3sint)
ie.

1 1 3
z(t) = (cost+ 2sint) + e [(zo — ) cost+ (w1 + zo — =) sint]
T 1

steady state transient

1 2
Steady state solution is z4(t) = E cost + - sint = Acos(t — a)

1
having amplitude A = (1)2 + (2)2 -

5 5 ﬁ

and phase lag o — tan 12 = 63.4°.

5 Denoting the currents in the primary and secondary circuits by 44(¢) and ()

respectively Kirchoff’s second law gives

. diq dis
5iy 221 L 22 100
N T
201y + 332, 1
2T T

Taking Laplace transforms

(5+ 28)T1(s) + sTa(s) — %

sIi(s)+ (3s+ 20)12(s) =0

Eliminating 7(s)
[s2 = (3s + 20)(2s + 5)|12(s) = 100

16 100 B 20
2 T 52 1 BBs 4 100 82+ 11s+ 20
20 20 1 1

(+3P -5 VA4 ) s+ g+
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giving the current i5(¢) in the secondary loop as

. ) 20 - o
ia(t) = L7 HIh(s)} = E[g (114302 (11 \/ﬁ)t/z]

] 6(&)

L{cos(wt + ¢)} = L{cos ¢coswt — sin ¢sinwt}

8 .
= CO8Q—F——F — S8lN@—F——""7F
¢32+w2 ¢82+w2

— (scos¢ — wsin¢)/(s* + w?)

L{e “sin(wt + ¢)} = L{e “sinwtcos g +e “coswtsingl

w . s+w
(s +w)? 4 w? + Smé(s + w)? -+ w?
= [sin ¢ + w(cos ¢ + sin @)] /(5% + 2sw + 2w?)

= COos ¢

6(b) Taking Laplace transforms

(32+4s+8)X(3):(23—|—1)+8—|—ﬁ

 28% 4957+ 95+ 36
(82 F4)(s2 4 4s + 8)

1 s+4 1 39s+ 172
:%.82+4+%‘82+48+8
1 os44 1 39(s+2) +47(2)
T30 44 20 (s+2)°+(2)

1 1
giving z(t) = £ X (s)} = %(cos 2t + 2sin 2t) + %67%(39 cos 2t + 47 sin 2¢).

u 7(8_)
—1[ s—4 ]: —1[(3+2)*2(3)]
82+ 48+ 13 (s +2)2+3°
— e~ %[cos 3t — 2 sin 3t]
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7(b) Taking Laplace transforms

4 2s 4
2Y(s) = -3+ —
(s + 2)¥(s) +s+32+1+32+1

—3s% + 657 4

Y(s): §° +bs 4 s+

s(s+2)(s?+ 1)

2 5 2

= - — +

s s+2 5241

Syt) = LYY (s)) =2 — 5e % + 2sint

m 8 Taking Laplace transforms

5 28 82 2s+46
5IX AY(s) =1 - =

B 4] 35 _6—38
8241 8241 8241

5X(s)+ (s+3)Y(s)

Eliminating Y(s)

(s +3)(s>—2s+6) 3(6—3s)

5 3) — 15| X(s) = -
(s 5)(s + 3) ~ 15]X(s) o R
3 2
5 8° + 8"+ 9s
85)X -
(5% +89)X(8) = *— 3
s2+5+9 1 1

X(s) = (s+8)(s2+1) :3+8+32+1

sox(t) = L7 X(s)} = e % +sint

From the first differential equation

d
3y =bsint — 2cost — bz — d—f =3¢ 8

¢ _ 3cost

Thus z(t) = e~ | sint, y(t) = e~ — cost.
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m 9 Taking Laplace transforms

100
2 4
300 2% 10 =200 ———
(S + S+ X )Q(S) 32 + 104
2
100 200 =10 ——
2.104
Q(s) = 2 4
(s+ 100)(s + 200)(s? + 10%)
1 1 2 1 1 35100
© 100 s+ 100 500 s+200  BOO s2+ 104
giving ¢(t) = £7HQ(s)} = i6‘10% - ie_QOOt - i(3 cos 100t — sin 100%)
_ 100 500 500
i.e.
1 1
g(t) = ——[Be™ 100 _ 972008~ 3005100t — sin 100¢]
500 500
T T
transient steady state

3 1
Steady state current = ; sin 100t + 5 €08 100t = Asin(100t + o)
where a = tan~! 1 ~ 181",

Hence the current leads the applied emf by about 18%0.

= 10
d
4d—;§+6x+y:2sin2t (i)
d’x dy o "
e +x— i 3e (ii)

d
Given = = 2 and d—? = —2 when t = 0 so from (i) y = —4 when ¢t = 0.

Taking Laplace transforms

4 857436
s2+4 s244

3 28746547
s+2 s+ 2

(4s + 6)X(s) + Y(s) =8+

(s> + 1)X(s) —sY(s) =25 — 24+ 4+

Eliminating Y(s)

8s2+36 282 +6s5+7
48 + 6 2HDX(s) =
[s(4s + 6) + (5° + D)X (5) = =57 T
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852 436 252+ 65+ 7
X(.S’) - 3 1 + 1
s(s? 4+ 4)(s+ 1)(s+ g) B(s + 2)(s+ 1){(s+ g)
11 227 1 3 49
s+ 1 s—l—% 505 s 44 s+2 s+1 s—l—%
20 1 445
_ 20 i 5 n 1212 _ 1 [768*96]
s+1 s+2 s+1 505N 5244
giving
29 1 445 1 1
=L THX(s) = et g Cem g e B - T (T6cos2t — 48sin 2t
x(t) {X(s)} 50¢ +36 + 212° 505( cos sin 2t)

m 11(a) Taking Laplace transforms

2

2
(84 8s+ 16)P(s) = i

b(s) =

2
(s +4)%(s* + 4)

11 +1 1 1 253
25 544 10 (s+4)2 50 s2 44

1 1 1
so 8(t) = L7 Hd(s)} = %6_4‘5 + Edﬁe_“ — ——{(4dcos 2t — 3sin 2t)

100

1
(de=4 + 10te™* — 4 cos 2t + 3sin 2t)

11(b) Taking Laplace transforms

(s+2)[1(s) +612(s) = 1
I(s)+(8—3)2(s) =0

Eliminating I2(s)

(s+2){(s—3)—6][1(s) =5 —3

giving i1(t) = L7 (s)} = =(e* + 6e7)

=l —
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Then from the first differential equation

; ; diy 6 46 6 g
Oip = -2 — — = —— —
29 21 It 76 + 76

1
giving is(t) = = (e ™™ — 1), i1(t) = ?(€4t + 67,

=1l

137

m 12 The differential equation

d?i di .
LOR@—FLE%—R&_V

follows using Kirchhoff’s second law.

Substituting V = F and L = 2R?C gives

2. .
QRSC‘th; + QRQO% +Ri=F

1
which on substituting CR = o leads to
n

1 d%‘+ 1d@'_|_,_E
onZdez " ndt ' R
and it follows that )
d=i di 5. o F
WJrQn&JrQn 1= 2n 7
Taking Laplace transforms
2n°E 1
2 2
2 2n°)(s) = -
(8° + 2ns + 2n°)1(s) s

b 2n?
[s) = R [3(32 + 2ns 2n2)]
E [1 B 5+ 2n ]
 R's  (s+mn)?tn?
so that
. B _nt .
i(t) = EH — e "*(cosnt + nsinnt)]
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m 13 The equations are readily deduced by applying Kirchhoff’s second law to the
left and right hand circuits.

Note that from the given initial conditions we deduce that i(0) = 0.

Taking Laplace transforms then gives

(sL+2R)I1(s) — RI>(s) =
—RI(s)+ (sL+2R)[>(s) =0

E
s

Eliminating fo(s)

I
(sl + 2R)* — R*|I,(s) = —(sL+2R)
E
(sL+3R)(sL+ R)I1(s) = —(sL+ 2R)
8
E s+ 28
fi(s) =+ -
L[s(s+%)(s+%)]
:E[g % _ é ]
Rl
1 E R ARk
e 1 Ay By
giving 44 (t) = £~ {4 ( )}:gﬁ[él—?)e L' —e L]

2K
() =~ ——
alt) =5y
From the first differential equation
diq
Ris =2Ri, + L— — F
12 1+ at

Ignoring the exponential terms we have that for large ¢
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m 14 Taking Laplace transforms

(s* +2)X:1(s) — Xafs) = 52 2+ 4
“Xa(s) (87 1 2)Xals) = 0
Eliminating Xq(s)
Ks - 2) — I]XQ( ) 823_4
N B 2
2(s) = (2 + 4)(s2+ 1){(s2 +3)
2 1 1

+ 5 -
244 241 8243

1 1 1
so 2o(t) = L7H Xo(s)} = gsin2t+ gsint - ﬁsinx/gt

Then from the second differential equation

x1(t) = 220 + a2 = 281n2t—|— 2silmﬁ— 2 sin /3t — 4sin2t— 1sint—|—\/§sin\/§t
N 3 V3 3 3
(t) = 2'2t+1't+ L in /3t
or z1(t) = —gsin 5 Sin \—@sm
| ] 15(&)
(i)
-1 s+4 1
{32+23+10} {s+12+32}
— e *(cos 3t + sin 3t)
(i)

—3 2 1

_1 s .| 1 .
S U1 1) B s S 1 Y

= et 4 2t — g2t
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15(b) Taking Laplace transforms

(8°+ 25+ 1)Y(5) =4s + 2+ 84 L{3te )
(s+1)°Y(s) =4s+ 10 +

(54 1)
4s + 10 3
Y j—
& =G Gy
4 6 3

sl T e T

1
giving y(t) = £ HY(8)} =4e t 46t t + 5‘636”5

1
ie y(t) = §e_t(8 + 12t + %)

] 16(3.)

(s—T)2 422

e’ sin 2¢

B O o O

2 2.
16(b) % + QK% +n20 =2 g(0) = 6(0) = 0, i const.

Taking Laplace transforms

2 N
(s + 2Ks+n*)®(s) = %2

ni

N @ —
-~ Bs) Ks(s?+2Ks+n?)

For the case of critical damping n = K giving

Ki L L L
P(s) = —— = Ki[& B K
(s) s(s+ K)? ﬁ[ s 8 ]

+

K (s+K)?
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Thus
0t) = L7HD()} = [L — e — Kte ™
o 1
L/K p———— e s s o -
Kl 3
[ 17(a)

L{sintH(t —a)} = L{sin[(t — a) + a]H(t — )}

= L{[sin(t — «) cosa + cos(t — a) sina] H(t — ) }
_cosa+ ssina
B s2+1

—QSs

(ii)
s« s+1)—1
- _1{6_a8 ((s—l- 1))2 +4}

s24+25+5
1
=L {e* Lle " (cos 2t — 5 sin 2t)] }

= e = cos 2(t — a) — %sin 2(t — )|H(t — «)

17(b) Taking Laplace transforms

(s + 25+ 5)Y(s) = 2 :_ s [32€+ 1] by (i) above in part (a)
_1+e
sy
1+e™ 7 I s—2 1 s

Y = = | —-—_—— e —
&)= Er D 1555 TP T Y e

(1+e™)
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giving

y(t) = ﬁ_l{Y(s)} = 110[2 sint — cost e~ =™ [2sin(t — w) — cos(t — m)|H{t — 7)]

1
+ e Y cos 2t — 5 sin26) + e eos 2(¢ — 2)
1
“ 5 sin2(t — m)|H(t — 7))
1[—f( 2t 1'2t)+2't t
= e *(cos2t — —sin sint — cos
10 2

1
+ [e_(t_“)(cos 2t — 3 sin 2t) + cost — 2sint|H({t — Tl')]

= 18

By theorem 2.5

T
CLo(t)} — V(s) % /0 e—sto(t)dt

1 T/2 T
= ——= {f e stdt — / e“dt}
I —e=" Lo T/2

1 s 0 s T/2

1 1 —&T —sT/2 —sT/2
= g m(e — & — € + 1)
B 1 (1 o e—ST/Q)Q B 1 [1 o e—sT/Q
- 5(1 _ e—sT/Q)(l n e—sT/Q) T s 1} e—s7/2

Equation for current flowing is

1 t
2507 + 5(qo +/ i(7)dr) = v(t), go =0
0

Taking Laplace transforms

11— e°T/2
B g[lire*ST/Q

1 1
2501(s) + 10_4~g~f(8) = Vi{(s)
11— e ®T/2

~ 250 [1 1 e—5T/2
1 1 — 675T/2

T 250(s+40) 1+ e 172

(s+40)I(s)

or I(s)
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1 3
I(s) = m(l e Y e T2 ST pe T 2T
1 3
= S gy 2 2T — 2T 2T
: —1 1 T . :
Since £ {250( T 40)} = 2506 using the second shift theorem gives
8

e 40 _op (- g)ezlo(tT/Q) L OH(t — T)e400-T)

aH (1 D)o ST

If T = 10 %s then the first few terms give a good representation of the steady

1
state since the time constant 1 of the circuit is large compared to the period T.

m 19 The impulse response A(t) is the solution of

d*h  2dh
s b ==+ 2h=4(¢
iz a ®)

subject to the initial conditions A(0) = A(0) = 0. Taking Laplace transforms
(s +2s+8)H(s) = L{6(t)) = 1
His)—  —
(s) (s+1)2+1
ie h(t)=L ' H(s)} =e tsint.

Using the convolution integral the step response z,(t) is given by

2a(t) = /0 h(F)ult — 7)dr

with w(t) = 1H(¢); that is

¢
:z:s(t):/ le "sinTdr
0

=3 le"TcosT + e TsinT|}

ie. z.(t) = =[1 — e *(cost + sint)|.

bo| =
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BPx,  2dz,
+

e o + 2z, = 1 directly we have taking Laplace transforms

Solving

(82 4 25+ 2) X, (s) = —

= 20

1
Xs(s) =
() s(s? +2s+2)
111 [ s+2 ]
2 s 28s+ 1241
giving as before
1 1 ., :
xs(t) = 5~ 3¢ (cost + sint)
o Lo, Sw

dly
BIZ5 =12+ 12H(x - 4) - Ré(x — 4)

y(0) = y'(0) = 0, y(4) =0, y"(5) =y (5) = 0

With ¢”(0) = A, y"'(0) = B taking Laplace transforms

12 12
EI'Y(s)=EI(sA+B)+ — + —¢ % — Re "
S K

A B 121 121 ., R 1

Vig) = T T _ = .=
S -Ftatg s = Bl &4°
giving
A B 1 1
:ﬁfly :_2 =3 - 4 - —44H —4
y(@) = LYY ()} —Sa + oot et (o — ) H (e — 1)
R
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or

1 1 1 1 R
EIy(z) = —A1x® + =Bya* + —a'+ (o —)'H(z — 4) —

2 6 2t T3 GO HE -4

yd) =0 = 0= 84 + %314—128 34, 4 4B, — —48
y'(5)=0 = 0=A; +5B1 +6(25) +6 - R= Ay +5B; — R=—156
y"(5) =0 = 0=DB; +12(5)+12— R = By — R= —T2
which solve to give A1 =18, By = —25.5, R=46.5
Thus

1
5:[;4 — 42523 + 922, 0< x <4

y(x) =19 4 1
5:1:4 — 4.252% + 922 + 5(a: — 4 —775(x—4)3, 4< 2 <5h

Ry = —EIy"(0) = 25.5kN, M, = EIy"(0) = 18kN.m

Check  Ro+ R =T2kN, Total load =12 x 4+ 24 =72kN ,/

Moment about z =0 is

12x4x24+24x45—-4R=18= My +/

[ ] 21(a)

- e mw - -
- e > o .-

>t

(o] | 2

f@)=H({t—-1)—H({t—2)
—s —2s
and L{f(t)} = F(s) =

(& (&

S
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Taking Laplace transforms throughout the differential equation

(s 4 DX(s) = (e e )

8

X(s) = ! (e —e %)

giving z(t) = LY X(s) =1 —e EVH{E—1) - [1 —e D H({E —2)

E
21(b) I(s) = s[Ls + R/(1+ Cs)]

(i) By the initial value theorem

fmi(t) = lim sl(s) = lm o o pi s s

(ii) Since s/(s) has all its poles in the left half of the s-plane the conditions of

the final value theorem hold so

lim i(t) = lim s/(s) =

{—o0 s3—0

| =

= 22 We have that for a periodic function f(¢) of period T

1
LU0 = [T

Thus the Laplace transform of the half-rectified sine wave is

1 ki
E{’U(t)} = 16_271'5/0 S*ST sintdt

1 T
- Im{ 1 — 6—271'.5‘ /0 6(3 )tdt}

1 eli—s)t 7
:Im{l—e*%S j—s ]

0
1 (—e=™ — 1)(—j — 3) 1+ e7s
:Im{lfe—%'s[ (j*S)(*j*S) ]} = (176—2w5)(1+82)
1

ie. L{v(t)} = (1+82)(1—e—7=)
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Applying Kirchoff’s law to the circuit the current is determined by

di .
%—F’l—’(}(t)

which on taking Laplace transforms gives

1
(s+1)I(s) = =
1 1 s+ 1 1
I(s) = — e~ TS [S—i-l B 82_:-1].5

1
1[ 1 s+ 1
2ts+1  s2+41

[[T4+e™ +e ™ +.. ]

1 st1 :l(sint—costJre_t)H(t):f(t)

. .1
Since L 1{§[s+1_32+1}} 5

we have by the second shift theorem that

i(t)=fO) + ft—m)+ flt—2m) +...= > f(t—nm)

The graph may be plotted by computer and should take the form

£k +

L
T

1
(s+1)2
taking f(t) =t and ¢(t) = te™* in the convolution theorem

1
» 23(a) Since L{t} = R L{te '} =

LTHF(s)G(s)] = f * g(t)
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gives

Lfl[%. (3431)2] /0 flt —71)g(7)dr
/0 (t—T1)re 7

=[-(t—7)me T —(t—27)e T + 2677]3
1 1
s? (s+2)2

]:t—Q—I—Qe’t—I—te’t.

23(b) wy(t)=t+2 f; y(u) cos(t — u)du

Taking f(t) = y(t),g(t) = cost = F(s) = Y(s),G(s) = % giving on taking
8
transforms
Y(s)= 3+ 2V () 5
s) = — s
g2 s2+1
2
(41 29)Y(s)= > o
8
s*+1 2 1 2 2

OrY(S)ZSQ(s—l)QZE 2 s—1 (s—1)2

and y(t) = LY ()} = 24+t — 2e + 2tet,

Taking transforms

(s*Y (s) — sy(0) — o/ (0))(sY (s) — y(0)) = Y (s)
or (SQY(S) —y1)(sY(s)) =Y (s)

giving Y(s) = 0 or Y(s) =
which on inversion gives
Lo
y(t) = 0 or y(t) = §t + ty

In the second of these solutions the condition on (0} is arbitrary.
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= 24

-~ 3 —~

! S

—t —>

-—v-l ' - .
er
Equation for displacement is
dy

with (0) =0, y(3/) =0, v’ (0) =4'(3/) =0

with 3”(0) = A, y""(0) = B then taking Laplace transforms gives

EIs'Y (s) = EI(sA+ B) — We™*

4
- Elst

Y(s) —ts

-W A
giving y(x) = @(az — 0P H@ -0+ 2+

A B
e +8—3+8—4

B 3
2 6

—3W B
/ _ _ /2 2
For x > £,y (x) = Yol (x — )"+ Az + 5
so y'(3() =0 and y(3¢) =0 gives
2W ¢ s
0=— o0 +3A€—I-QBE
AW 9, 9
=~ SE] +§A€ +§B€
.. AW 20 W
glvmgA——gEI andB—Eﬁ
Thus deflection y(x) is
W , QWL , 10W .
yl) = —gpple = T H@ =0 = 5o + G pre
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With the added uniform load the differential equation governing the deflection is

EI;Z:Z = Wiz — ) —w[H(x) — H(x — 0)]

m 25(a) Taking Laplace transforms

8
) 1 11
X — LG8 6 _ 6 2 —as
(s) s(s? —3s+ 3) [s 32—38+3]
L 5 - VECY) L,
6"s 3

giving

|:1 _ 6—%(t—a)(cos \/2§(t — a) — \@sin ?(ﬁ — CL)):| H(t — (1)

| =

2(t) — L1 X(s)} -

25(b)

X(s) = G(s)L{sinwt} = G(s) 1wl

" (s +gw)(s — jw)

G(s)

Since the system is stable all the poles of G(s) have negative real part. Expanding

in partial fractions and inverting gives

Fjw)w

z(t) = 2Re[ e .ejwt] + terms from ((s) with negative exponentials

Thus as t — oo the added terms tend to zero and x(t) — z4(t) with

eI B (jw)

xs(t) = Re[ ;

]
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m 26(a) In the absence of feedback the system has poles at
s=—-3and s =1

and is therefore unstable.

G(s) 1 1
260) G =TT RGH) ~ G- DG K  #rast (K_3)

26(c) Poles Gi(s) given by s=—-1++v4—- K.
These may be plotted in the s-plane for different values of K. Plot should be as
in the figure

T.(s)
| €X
K=z-S K=0 K3
-—-—*4—," —
ey R )
K=S

26(d) Clearly from the plot in (c) all the poles are in the left half plane when
K > 3. Thus system stable for K > 3.

a9 aq ap
26

(e) 152 + 25 4+ (K—3)=0
Routh-Hurwitz determinants are

A1=2>0
Np= |9 92| _ 12 b ok 3y s 0K >3
2 0 ao 0 K—3

thus confirming the result in (d).

m 27(a) Closed loop transfer function is

G(s) 2

T 1+G(s) 2+as+b

G1 (8)
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1{ 2
82 4+ a32+ 5
ie. 13*1{ - = }: 2e”
(s+52+(-5)
giving a =4

Thus £~ } = h(t) = 2" *sint

Ttsin (5 — O‘Tz)t = 2e %tsint

27(b)  Closed loop transfer function is

10
G(S) _ s(s—1) _ 10
1 (EKE0 = 25 (10K — 1)s + 10

Poles of the system are given by
2+ (10K — 1)s 4+ 10=0

which are both in the negative half plane of the s-plane provided (10K — 1) > 0;
that is, K > % . Thus the critical value of K for stability of the closed loop system

: _ 1
1SK—E.

28(a) Overall closed loop transfer function is

K
G(S) _ s(s+1) _ K
Lt (L + Kis) s +s(l+ KK+ K

28(b) Assuming zero initial conditions step response x(t) is given by

K

Xls) = COLHWO} = o T KKy + K

Wi,

s[s? + 28w, s + w2

$ + 28wy,
§2 4 28w, s + w2
|: (s + &w,) + Ewy, ]

(s + wn)? + [w2(1 — £2)]

B {(3 + fwn) + gwn}

(8 + Ewn)? + w3

1
s
1
s
1
s

giving #(t) = L7 X(8)} = 1 — et cos wat + sinwgt], t = 0.

&
e
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= 28(c) The peak time ¢, is given by the solution of d—?lt_t =0
P
dx - gwd fz’wn .
- Swnt . t t
it e (£wﬂ m) Cos Wy (m + wd) sin wy

sinwgt

Thus £, given by the solution of

e‘gw”t?’L sinwgt, = 0
N F

Le. sinwgt, =0

Since the peak time corresponds to the first peak overshoot

t t T
Wal, =T Or ty, = —
Wy

The maximum overshoot M, occurs at the peak time ¢,. Thus

Ewin T

M, =z(t,) —1=¢ wi [cosm+ sin |

&

V1€
EwnT

— e_ wd — 67571-/ A% I_Ezﬂ-

We wish M, to be 0.2 and {, to be 1s, thus

e $7/V1=8% — (.2 giving £ = 0.456

and
m ..
tp, = — =1 giving wg = 3.14
Wy
Then it follows that w,, = \/% = 3.53 from which we deduce that
K=w =125
2weé — 1
and Ky = K 0.178.

153
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28(d) The rise time ¢, is given by the solution of

&
/1@

z(ty) =1=1—e *rbr[coswat, + sin wgt, |

Since e Swntr oL ()

coswyt, + L sinwgt, =0
V1 — &2
/1 — ¢2
giving tan wgt, = —Tg
1 — &2 —1.10
or t. = — tan ! (— £ ) T = (0.6hs.
Wy 6 Wq

The response x(t) in (b) may be written as

*fwnt _ 2
€ 1—£
z(t) = 1 — ————sin [wat + tan™! Y- >
1 &2 [va ¢ ]
efﬁwnt
gso the curves 1 £ ———— are the envelope curves of the transient response to a

Vi@

unit step input and have a time constant T =

The settling time t;, may
W,

be measured in terms of T'. Using the 2% criterion t, is approximately 4 times
the time constant and for the 5% criterion it is approximately 3 times the time

constant. Thus
4

2% criterion : t, = AT — = 2.48s
§wy,
N 3
5% criterion : ¢, =37 = = 1.86s
Swny,

Footnote This iz intended to be an extended exercise with students being
encouraged to carry out simulation studies in order to develop a better
understanding of how the transient response characteristics can be used in system

design.

29 As for Exercise 28 this is intended to be an extended problem supported by

simulation studies. The following is simply an outline of a possible solution.
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Figure 2.63(a) is simply a mass-spring damper system represented by the

differential equation

d? d
Mlgf + Bd_j: + Kyx = sinwt

Assuming that it is initially in a quiescent state taking Laplace transforms

1 w

:M182+BS—|—K1~82+’UJ2

X(s)

The steady state response will be due to the forcing term and determined by the
as+ 4
82 4+ w?
response will be of the form Asin{wt + §); that is, a sinusoid having the same

term in the partial fractions expansion of X (s). Thus, the steady state

frequency as the forcing term but with a phase shift § and amplitude scaling A.

In the situation of Figure 2.63(b) the equations of motion are

d? d
Mld—tf = Kz — Bd—? + Koy — ) + sinwt
d>y

Assuming an initial quiescent state taking Laplace transforms gives

[M1s* + Bs + (K| + K3)| X (s) — K3Y (s) = w/(s* + w?)
— Ko X (s)+ (s* My + K3)Y(s) =0

Eliminating Y(s) gives

w(s? My + Ka)

(s + w?)p(s)

where p(s) = (Mys® + Bs + K + K)(s®My + Ka).

Because of the term (s? + w?) in the denominator z(t) will contain terms in

X(s) =

sinwt and coswt. However, if (s2Ms + K») exactly cancels (52 + w?) this will
be avoided. Thus choose Ko = Mow?. This does make practical sense for if the
natural frequency of the secondary system is equal to the frequency of the applied
foree then it may resonate and therefore damp out the steady state vibration of
M.

It is also required to show that the polynomial p(s) does not give rise to any
undamped oscillations. That is, it is necessary to show that p(s) does not possess
purely imaginary roots of the form 76,6 real, and that it has no roots with

a positive real part. This can be checked using the Routh—Hurwitz criterion.
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To examine the motion of the secondary mass My solve for Y(s) giving

KQ’U)

Y& = o)

Clearly due to the term (s° 4+ w?) in the denominator the mass Ms possesses an
undamped oscillation. Thus, in some sense the secondary system has absorbed the

energy produced by the applied sinusoidal force sinwt.

30 Again this is intended to be an extended problem requiring wider exploration

by the students. The following is an outline of the solution.

30(a) Students should be encouraged to plot the Bode plots using the steps
used in example 2.62 of the text and using a software package. Sketches of the

magnitude and phase Bode plots are given in the fisures below.

30(b) With unity feedback the amplifier is unstable. Since the —180° crossover
gain is greater than 0dB (from the plot it is +92dB).

30(c) Due to the assumption that the amplifier is ideal it follows that for
1

marginal stability the value of — must be 92dB (that is, the plot is effectively

lowered by 92dB). Thus

1
20log— = 92
B
1 , 92 s
B = antilog (%) = 3~ 2.5 x10

30(d) From the amplitude plot the effective 0dB axis is now drawn through
the 100dB point. Comparing this to the line drawn through the 92dB point,

corresponding to marginal stability, it follows that

Gain margin = —8dB

and Phase margin = 24°.
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30(e)
K

(1+sm)(1 —s7m2)(1+ 873)
Given low frequency gain K = 120dB so

G(s) =

20log K =120 = K = 10°

1
T, = — where f; is the oscillating frequency in cycles per second of the pole.

Since fMHZ = 10 cycles per second

1 1
T = A = 106 since f; = IMHz
Ty = o1 since fo> = 10MHz
T F, 10.106 2
Ty = L since f3 = 26MHz
ST g 95.106 5
Thus .
10
G(S) = =1 =1 3
1+ )1+ ) (L + =70s)
250.10%4

(s+ 108)(s+ 107)(s + 5.107)

The closed loop transfer function Gy(s) is

G(s)

Y =T 5Ew)

30(f) The characteristic equation for the closed loop system is

(s 10%)(s+ 107)(s + 5.107) + 525.10%° =0

or
s +36(10%)s% 4 (285)10%s + 10'9(25 + 25310%) = 0
} } \
Aq A A

By Routh—Hurwitz criterion system stable provided A; > 0 and A; Ay > As. If
B =1 then A;A; < As and the system is unstable as determined in (b). For
marginal stability A; Ay = Az giving 8 = 1.40~° (compared with 3 = 2.5.10~°
using the Bode plot).
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3
The 7z Transform

Exercises 3.2.3

-1(a)
= (1/4)% 1 4z
F() =) % T 1/4z 4z 1 if [z ]>1/4
k=0
L(b)
= 3F 1 z
F(Z):Zz_kzl—?)/z:z—g if |2]>3
k=0
1(c)
= (—2)F 1 2
F(z)= = = if |z|>2
kz_o 2k 1—(=2)/2 2+
1(d)
= —(2)k 1 z
F(z)zz v _71—2/2’: Jo if |z|>2
k=0
1(e)
Zikt = if 1
=t el
from (3.6) whence
Z
Z{3k} = if 1
(=3 " 2l
2
= e 2kT (ewiT)k
whence
Z
U(Z):Zie—QwT
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Exercises 3.3.6

3
. 1 z 1 z
Z{sin kwT} = CYPmps s P—rt
_ zsinwd
22 —2zcoswT + 1
n 4 B}
1 Dz
zi{ )12
{<2) b=
S0

1
_Z{yk}::—g;x =

Proceeding directly

By =Y B =Y S — s = (221>
k=3 r=0
] 5(&)
- B = 1\ B2 1
X (E) e 1k
5(b)
{cosknm}t = {(—1)k}
Z{coskm} = ﬁ |2 [>1
6
= 1 k 22
(2) T 221
By (3.5)
2{h) =
R
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thus
az
Z{(ka®)) =
{( a )} (> ap
whence
k
RV A I ——
2 (22— 1)?
] 7(8_)
1
sinh ka = —(e*)* — 5(6_0‘)k
S0
1 z k4 zsinh
Z{sinhka} = — - =
{sinh ko) 2 (z e zeC") 2?2~ 2zcosha+1
7(b)
1
cosh ko = —(e®)* + §(e_o‘)k

then proceed as above.

u 8(8_)
= (6—4kT) _ (6—4T)k; Z {ug) = %4@
z—e
8(b)
Lo sk kT
W=y (e771 — g7
1 z z zsinl’
2 = — —_ ==
Lk 27 (zeJ‘T zeJ‘T> 22— 2zcosT+1
8(c)

wn — % (eijT LT QkT)

then proceed as above.

m 9 Initial value theorem: cobvicous from definition.
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= 9 Final value theorem

(1= HX () =y =

r=0
1 —Xp Ty — @Iy Tp — Tp_1
— 3o + s
z z z
As z— 1 and if "™ 2, exists, then
OO

lim(l — 2 1X(2) = lim =,

z—1 00

= 10 Multiplication property (3.19): Let Z{zp} = > ;7 2k = X(2) then

Z{a Ti) = Z a* mk X(z/a)

10  Multiplication property (3.20)

d d = kxy,
- — TRz 0k
Zdz dz — kZ—ozk Uk}

The general result follows by induetion.

Exercises 3.4.2

n 11(3.)
: from tables ug =1
z—1
11(b) B B
por (71); from tables u, = (—1)*
11(c) .
_c . _ k
a1 from tables u, = (1/2)
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11(d)
1 1
Rt S-1/3)"
3x+1 32+1/3 3
11(e)
: . from tables uy, = (7)*
=1
11(f)
z z
= (—3v/2)"
2+gv2 2= (—3V72)
11(g)

using first shift property.

11(h)
z+2 1 =z P 1; k=
2+ 1 zz+1 (-1 k>0
1; k=20
(1) k>0
12 11 11
Y = _ _ _
B =377 372
S50
V()= e (1 (2
C32-1 3242 3
12(b)
71 z z 1 k k
Yo -7 (5 ) < (@ - Y
12(c)
Y()*l z +1 z 1+1( 1/2)k
T3 17 6211/2° 3 6"
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12(d)
V() = s 2 2 - S
32-1/2 3z+1 3 3
=R (e
12(e)
1 z z
Y=y, (Z—J - Z—(—J‘)>
1 z z
Y (2—69”/2 z—e_ﬁ'ﬂ/g)
1 - - L
— 2 ((65’ 12k (e /Q)k) = sin kw /2
12(f)
YO LA ) = (B )
1 z z
Z(Z(ﬁ+g) _Z(\@J))
1 z z
- 27 (z eam/6 y 26_971'/6)
PR % (2%5””/6 — le_fk”/(ﬁ) = ok sin kw /6
12
(g) Y(z)7§ p l Z 7} z
2(2-1)2 42-1 42-3
<—>§k+i(13"’)
12(h
() v B z B 1 1
(2)/2= (- 1)2(22 — 2+ 1) - (z —1)2 2y
v B z 1 z z
(Z)i(z—l)giﬁj 271+\2/§3 72717§/§3
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B z 1 z z
(212 By \z—em/3 z—ean/3

— k— isinﬂmr/?) =k+ 2 cos(km /3 — 3m/2)

165

V3 V3
13(a)
G
X(z) — ST 2
@ => &=, 1=
k=0
whence xg =0, 21 =1, 20 =23=...= 25 =0, x7 =2 and z; =0, k> 7.

13(b) Proceed as in Example 13(a).

13(c) Observe that
32+ 2% +52° 13
s TPt st a

and proceed as in Example 13(a).

13(d)
1 1 z
Ve =2t st i
—{0,0, 1,1} + {(~1/3)"}
13(e)
3 1 1/2
Y(z)=1+"4 - -
(2) +z+22 24 1/2
1(0, k=0
> 11,3,1} — 5 { /2%, k> 1
1, k=0 1, k=0
B2 k=1 )52 k=1
T Y5/4, k=2 T Y5/4, k=2
“eypiezs L2t ke
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13(f)
1 2 1
Y — _
(2) z2—1 (2—1)2+z—2
L [0 k=0
12k —1)+2°1 k>1
[0, k=0
T3 -—2k+2L k>
13(g)
2 1
Y(Z):z—liz—Q

Exercises 3.5.3

14(a) If the signal going into the left D-block is wy and that going into the right
D-block is vy, we have

1
Yo+l = Vg, Vitl = Wi = Tk — V%

80
1
Yr+2 = Vg1 = T — §’Uk
1 1
=T — VU =T — =Ykl
9 2'&/ +
i.e.

1
Yeto + §yk+1 =T

14(b) Using the same notation

1 1
Yet+l = Vky Vptl = Wi = Tp — Vs — Uk

4 5
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Then
1 1
= _— — —_ —
Yht-2 k 4yk+1 5?Jk
or
+ ! + !
— — =
Yht-2 4yk+l 5% k
15(a)

22V (2) — 22yg — 2y — 2(2Y(2) —2yo) + Y{(2) = 0

with yo =0, y1 =1
Z

I

so yr =k, k>=0.

15(b) Transforming and substituting for yy and

22 — 15
V()2 = ——
(z—9)z+1)
S0
3 17
Viz)= > = L %
102—-9 10241
thus
3 17
— Zok - (1Y k=0
LT TR

15(c) Transforming and substituting for yo and

Z

Ll s R

1 z B z
Ay \z—2e97/2 5y 2emiT/2

thus
1
Y — 4_2k (ejkﬂ'/Q o e—gkﬂ'/Q) _ Qk_lsiﬂkﬂ'/z, k>0
7
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15(d) Transforming, substituting for yo and ¥, and rearranging

62— 11
Y —
()= i 10— 3)
S50
Z Z
Y(z) =2
() =2 5t
thus
yr = 2(—1/2)" +3% k>0
16(a)

6%pi2 T Ykp1 — Y =3, Yo =1 =70

Transforming with yy =y, = 0,

3z
622+ 2—1)Y(2) =
(627 + 2 — 1)Y(2) ~—1
50
V(2)/ °
2V Z =
(2= 1)(32 — 1)(22 + 1)
and . 9 )
Z Z z
Vizy— -~ _ = =
G P Tyl o
Inverting
1 9 2
= — —(1/3) 4+ Z(—1/2)%
Yk =5 10(/)+5( /2)

16(b) Transforming with 5 =0, y; =1,

(22—5z+6)Y(z):z+5zi1
whence
Y(Z):_zi1+7zi3_6zi2
S0
b=t S 6P

16(c) Transforming with yo =1y, =0,

z
z—1/2

(22 B2+ 6)Y(2) =
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50
4 z 2 =z 2 =z
Y(z)= — _ = <
) =45, i 3.2 573
whence A ) )
n = ——(1/2)F — Z(2)F + Z(3)"
n = 15 (1/2)" = (2" + £ (3)

169

16(d) Transforming with yo = 1, y; = 0,

(z2 ~- 324 3)Y(2) = 22 3y 4+

z—1
S0
z z
Y(2) = -
(2) z—1 22-32+3
oz 1 z B z
2 —1 /3 z_3+3/§j 2_3—5/53'
R { z B z }
S or 1 V3 Lz —/3elm/8 2 — \/3ein/8
S0

2 ednm /6 _ o—jnw /6
yn =1 - (V/3)F 2

=1 "—leinnm
. 1o 2(vB) /6

16(e) Transforming with yo =1, y; = 2

5 o z Z
(22° =32 —2)Y(2) = 22 —|—z—|—6(271)2—|—Z71
S0 .
z z+
Y =
(2) z—2+z{(z—1)2(22+1)(2—2)}
_12 z 2 z z 5 z
T 5 2—-2 Baz+1/2 -1 T(z-1)2
™ 12 2
Yn = 3(2)71 - g(—l/Q)n —1—-2n

16(f) Transforming with 4y = v = 0O,

(2% — )Y (2) :3(2,_1)2 e
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50 1 1
Z Z Z Z
Y(z) = - - — =
Bl = G 32 2s40
and . .
w=lon——(2)" — —(=2)"
b= 1on— 52 - S(-2)

m 17 Write the transformed equations in the form
z—3/2 1 c(z)\ [ 2Ch
—0.21  z—1/2) \e(2))  \2Fp

(Zg) T 2zl+ 0/96 (Zo_.211/2z _‘31,/2> (jgw

Solve for ¢(z) as

Then

z z
4800
,2’—1.2Jr 2 — 0.8

c(z) = 1200

and
C = 1200(1.2)% 4 4800(0.8)%

This shows the 20% growth in ' in the long term as required.
Then
Ek = 1-5Ok — Ok+1

= 1800(1.2)* 4+ 7200(0.8)* — 1200(1.2)% ™! — 4800(0.8)* !

Differentiate wrt k£ and set to zero giving
0.6log(1.2) + 5.6z log(0.8) = 0 where z = (0.8/1.2)"

Solving, x = 0.0875 and so

log0.0875

= ——— = 6.007
log(0.8/1.2)

The nearest integer is & — 6, corresponding to the seventh year in view of the

labelling, and Cg = 4841 approx.

m 18 Transforming and rearranging

z—4 4 1
(z—2)(z—-3) (z—-1(=z-2)(=-23)

Y(z)/z =
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S0
1 1
Yiz) = & z 2 1 2
2z—-1 =2-2 22-3
thus
1 1
_ S 19k _ gk
= 5T Ty
19
I, = Cr + P, + Gy,
=al, 1 +6(Cr — Cr1) + Gy,
=alp 1+ baly 1 — I 2) + Gy
SO

Inyo — a1+ b0) g1 + ably = Gro

Thus substituting
1
Ioyo — I+ §Ik =G

Using lower case for the z transform we obtain

(2~ 24 () = (2% +2)G + G——
whence
1 2
=G
iz)/ {222+% zl}
2 1
=G + —
- (z%f)(zl;)]
SO
z 2 z z
— a2 il
?,(Z) z—1 i 2_7 {Z %eﬁ'ﬂ/zl z — 1 6_977/4 }]
Thus

1+ (%)ksinkw/zl]
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m 20 Flementary rearrangement leads to
inyo —2cosha tpgy + 19, =0

with cosha = 1+ R;/2Rs. Transforming and solving for f(z)/z gives

2ig + (i1 — 2ig cosh o)
(2 —e®)(z — e @)

1(2)/z =

B 1 ige® + (4p — 2igcosha)  dge™* + (i — 2ip cosh @)
- 2sinha Z— > g —e

Thus

(ige® + (i1 — 2ig cosh a))e™™ — (ige™* + (4; — 2ip cosh ar))e™ "™
2sinh o

T =

1
= {#1 sinhna — ig sinh{(n — 1)a}

Exercises 3.6.5

m 21 Transforming in the quiescent state and writing as Y(2) = H(2)U(z) then

21(a) ,
H(z) = 22 — 3242
21(b)
z—1
H(z) = 22— 3242
21(c) .
() = 1/

23— 2242241

m 22 For the first system, transforming from a quiescent state, we have
(2% 4+ 052+ 0265)Y(2) = U(2)

The diagram for this is the standard one for a second order system and is shown
in Figure 3.1 and where Y (2) = P(z), that is y; = px.
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zP(z) ” sz)

A\

0.25

Figure 3.1: The block diagram for the basic system of Exercise 22.
Transforming the second system in the quiescent state we obtain
(22 4052+ 0.25)Y(2) = (1 — 0.6)U(2)

Clearly
(22 4+ 0.52+ 0.25)(1 — 0.62)P(2) = (1 — 0.62)U(2)

indicating that we should now set Y (z) = P(z) — 0.62P(z) and this is shown in

Figure 3.2.
. N C Y(2)
@ +
U(2) zP(2) P(z)
— 1/z2 - 1/z >
+ 5

0.25

Figure 3.2: The block diagram for the second system of Exercise 22
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23(a)
1
Yol2) = T 1)
S50
Yi(2) = 1 1 2
T 4 224172
1 1
ve = S (=10 = 5(1/2)"
23(b)
2z
B = s s
whence
Y(Z):3+x/§j z 33y z
RV EY RS €= TSR NE VR (RS
50 f f
34+ 35'\/—,1ﬂ kn/6 3 — 33 k_—1km/6
S S APV L P LA I SOV Jhm/
Yk 2\@3()6 Qﬁg()e
= 2(+/3)F ? sinkw/6 + ;cos km/6
= 2(+/3)*sin(k + 1)7/6
23(c)
z
Y —
G = DG 0
50
Yy(2) — 2z 4 -1
BHTRY 04 Brx02
then
i = 5 (04)% + Z(-0.2)*
23(d) . "
.
S T
S50
z z
Ys(2) = 4
5(2) z— 2 + z—4
and

v = (2% + (4FF
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-24(3.)
1
Vils) —
5(2) 22 3242
o 1
=2 z-—1
B 0, k=0
Ye = 251 -1, k>0
24(b)
1
Y5(2)1272
S0

(0, k=0
Yo =251 k>0

m 25 Examining the poles of the systems, we find

25(a) Poles at 2 = —1/3 and 2z = —2/3, both inside | # |= 1 so the system is
stable.

25(b) Poles at 2 = —1/3 and 2 = 2/3, both inside | # |= 1 so the system is
stable.

25(c) Poles at = = 1/2+1/2y, | 2 |= 1/4/2, so both inside | 2 |= 1 and the

system is stable.

25(d) Poles at » — —3/4 &+ +/17/4, one of which is outside | z |= 1 and so the

system is unstable.

25(e) Poles at z = —1/4 and 2z = 1 thus one pole is on | z |= 1 and the other is

inside and the system is marginally stable.
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26 To use the convolution result, calculate the impulse response as ys 5 —(1/ 2)k.

Then the step response is

Bl
ol

sl (2
1—2

Directly,

50

27 Substituting
Yn+1 — Yn + Kyn—l = K/Qn

or

Yn4+2 — Ynt1 + Kyﬂ = K/2ﬂ+l

Taking 2 transforms from the quiescent state, the characteristic equation is

22 2+ K =0
with roots . . . .
Z]_:§+§\/1*4Kand22:§*§\/1*4f{

For stability, both roots must be inside | 2z |= 1 so if K < 1/4 then

1 1
z1<1:»§+§x/1—4K<1:»K>0
and -
zg>—1:»§—§x/1—4K>—1:»k>—2
If K >1/4 then
1 1
|§—|—j§\/4K—1\2<1¢K<1

The system is then stable for 0 << K < 1.
When k = 2/9 we have

2
Yrt+2 — Yn41 + 5?}'% - 6
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Transforming with a quiescent initial state

2 1 z
(F 2 V() = 5= 1/2

S0 1 1
Y =2 | G120 = 1/3)( = 2/3)

SR
z—1/3 z—2/3 z—1/2

which inverts to
Y = 2(1/3)" +2(2/3)" — 4(1/2)"

177

. 28
222 42=(2- (1490 (-1+3))

establishing the pole locations. Then

1 z 1 z

RS vy o g Yy gy

So since (—1 4+ 7) = /2eF97/4 ete.,

yr = (v2)%sin 3km /4

Exercises 3.9.6

n 29
H(s) = !
8 824+ 35+2

. 2z = .
Replace s with Aot to give
~ AZ(z +1)?

H(z) = 12 (2 — ) 2 2

Az — 1)2 + 6A(22 — 1) + 2A2%(2 + 1)

B A%(z+1)°
(44 6A +2A2)22 4 (4A2 — 8)z + (4 — 6A + 2A2)
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This corresponds to the difference equation
(Aq® + Bg+ Chyx = A*(¢% + 2¢ + Duy,

where
A=416A 12A% B=4A® 8 (=4 6A I 2A>

Now put ¢ = 1+ Ad to get
(AAZ82 + (2A + BYAS + A+ B+ Chy

— A%(A%6% + 4AS + 4y,

With ¢ = 0.01 in the ¢ form the system poles are at 2z = 0.9048 and 2z = 0.8182,
inside | # |= 1. When ¢t = 0.01 these move to z = 0.9900 and z = 0.9802,
closer to the stability boundary. Using the § form with ¢ = 0.1, the poles are at
v = —1.8182 and v = —0.9522, inside the circle centre (—10,0) in the v-plane
with radius 10. When ¢ = 0.01 these move to v = —1.9802 and v = —0.9950,
within the circle centre (—100,0) with radius 100, and the closest pole to the
boundary has moved slightly further from it.

30 The transfer function is

1
His) —
(s) 85 + 252+ 25 +1
, , ) . 22-1 )
To discretise using the bi-linear form use s — — to give
Tz+1
- T3z +1)°

() —
(2) Az3 4+ B2+ Cz+ D

and thus the discrete-time form

(A® 4+ Bg® + Cq+ DYy, — T3(¢® + 3¢> + 3¢+ Dy,

where

A=T34AT? +8T+8, B =3T>+4T?—8T -3,
C=31"—472 -87+3, D=7T>—47T?4+87 -1
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20
2+ Ad

To obtain the § form use s — giving the d transfer function as

(2 4+ Ad)?
A8+ B8+ 05+ D

This corresponds to the discrete-time system
(A% + B&® + O3 + D)yp = (A% + 2A%5% 4 4A6 + 8)uy,

where

A=A%F4AA? } 8A + 8 B =6A%+ 16A + 18,

C=12A+16, D=2

31 Making the given substitution and writing the result in vector-matrix form

we obtain
0 1 0

x(t) = [_2 _3} x(t) + H u(t)

and
y(t) = [1,0]x(¢)

This is in the general form
x(t) = Ax(t) + bu(t)

y =clx(t) + dul(t)

The Euler discretisation scheme gives at once
x((F+1A) =x(FA)+ A[Ax(kA) + bu(k A)]

Using the notation of Exercise 29 write the simplified § form equation as

Now, as usual, consider the related system

12 + 8A 8
{62+Z 6+A}pkuk
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and introduce the state variables z1(k) = pg, x2(k) = dpr together with the

redundant variable z3(k) = §%p;. This leads to the representation

0 1

x(t) = | s wsa | x|t
A A
Y = K% - 8%;) ) (% B tiA)AQ)} x(k) + %Qu(k)

or

x(k+ 1) = x(k) + A[A(A)x(k) + bu(k)]
yr = ¢ (A)x(k) + d(A)uy,

Since A(0) = 4 it follows that using A(0), ¢(0) and d(0) generates the Euler
Scheme when x(k) = x(kA) ete.

m 32(a) In the z form substitution leads directly to

12(22% — 2)

HE) = isa)y2+ b —12: -4

When A = 0.1 this gives

B 12(22 — z)
125224 —11.22 — 0.1

(b) The ~ form is given by replacing z by 1 + A~. Substitution and

rearrangement gives

S 129(1 + Av)
HO) = Sxm 758) 1on 13 1 12

when A = 0.1 this gives

fi(y) = 129(1 + 0.17)
P52 S 112y + 12
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Review exercises 3.10

m 1l

Z{fED)Yy =Z{kT}=TZ{k} = Tm

z {ak sin kw} == ak(ey e kw)
25

1 whk —qwhk
fEZ{(aej )= (ae )"}
1 z z
- 5 (z—aeé'w B z—ae—é'w)
az sinw

22 — 2qz cosw + a?

m 3 Recall that

Tl —
{a } (Z _ a)Q
Differentiate twice wrt a then put a = 1 to get the pairs
[ E(k—1)+— 2
-1y (1)
then
2z z 2(z+ 1)
21 _
S U Sl ey Sl o P
=4
3z 2z
H(z) = +

so inverting, the impulse response is

13+ 2k}
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5
z
Y. z) =
srer (2) (z+ 1){z+2)(z—1)
B 71 z 4 1 z 4 1 =z
o 2x241 3z+2 6z2-1
Thus . . .
Ystep b — —5(—1)k + g(—Q)k + 6
n 6
1 1 1

which inverts to
Flt) = (1 - e "))
where ¢(t) is the Heaviside step function, and so

F(z) = Z{f(kT)} = —— - ——

z—1 z—e€

Then
e T (s)«— f((t - T))

which when sampled becomes f((k — 1)T) and

2 -y =3 TE VD L
k=0

That is .
e *TF(s) - —F(z2)
2

So the overall transfer function is

z—1 z z 71—€_T
= y—1 z2-—eT)] s_¢T

7
s+ 1 2 1
His) = (s+2;—(s+3) T s+3 s+2
yg(t) _ 26—3t _ e?t N {26—3kT _ €2kT}
S50
ﬂ(Z)ZQZ_i_ST - Z_Z—QT
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m 8(a) Simple poles at 2 = a and 2 = b. The residue at 2 = a is

Z‘ﬂ, a‘ﬂ,

;iﬁrkr(ll(z—a)zﬂle(z) :,}E(Z_a)(zfa)(sz) =—

T

The residue at 2z = b is similarly and the inverse transform is the sum

of these, that is

{o
= 8(b)

(i) There is a only double pole at # = 3 and the residue is

. d 5 2" _ n—1
lim G =3 g — 8T

(ii) There are now simple poles at z = 4. The individual residues are

L V3
2

[ SRR

thus given by

()
lim SR e A
2—+(1/22v/3/2;) V37

Adding these and simplifying in the usual way gives the inverse transform

{jg sinmr/S}

as

S0

z z z

B 3z
(z—1)(z+ 1)(z—2)

3 =z 1222

:§Z—1+§Z—|—17 z— 2

50

b —

3
YsTeP kK — 5 +
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= 10 5 .
Y(Z):(z+1)(zl)x(1z):z+l
uk = (=1)*
s 11 Y(Z)i 22 X(l_ﬂ+5+w>1
R e ) . )

yp =10k = {1,0,0, ...}

Z

(2 —a)(z = f)

The response of the system with H{z) = is clearly given by

Y(z) = 1/, which transforms to

yr =10 1} =10,1,0,0, ...}

w12 From H(s)= the impulse response is calculated as

(s + (s +2)

ys(t) = (272 — et >0

Sampling gives
{y(g(nT)} _ {26727111“ . enTt}

with z transform

Z{psnD)} =2 — 5~ —— 5 =D()

Setting Y (2) = TD(2)X(2) gives

Z z

Y(2)=T [22 g e —
Substituting for T’ and simplifying gives

V(o) = 12 {

2

z — 0.8452 ()
22 —0.97442 + 0.2231

50
(2% — 097442 + 0.2231)Y (2) = (0.52% — 0.42262)X (x)
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leading to the difference equation
Ynto — 0.9744y,, 1 + 0.2231y,, = 0.5x, 10 — 042262, 1
As usual (see Exercise 22), draw the block diagram for
Ppyo — 0.9744p,, 1 + 0.2231p,, = =,
then taking v, = 0.5pn42 — 0.4226p,,11

Yrps — 09744y, 1 + 0.2231y,, = 0.5pp4q — 0.4226p,, 9

—0.9774(0.5p, s — 0.4226p, 1) + 0.2231(0.5p, 10 — 0.4226p,, 1)

= 052,00 — 0.42262,,41

185

s 13

Yntl = Yn + QUx
Vpp1 = Up 1 buy,
= vy, + 0k (2 — Yn) — kovy)
= bky(x, — yn) + (1 — bko)v,
80

Yn4+2 = Yn+1 + a’{bkl(mﬂ - yn) + (1 - bk?)vﬂ}
(a) Substituting the values for k1 and ko we get
1
Unt+2 = Unt1 + E(:’Eﬂ - yn)

or

1 1

T — Yn —UYn = 7Ty
Ynt2 y+1+4’y 1

Transforming with relaxed initial conditions gives

Yiz) =
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(b) When X(z) =

A z 4 z o z
41 2—1 z—1/2 (2 —1/2)?
then

Y = % [4 —4(1/2)" — 2n(1/2)"]

m 14 Substitution leads directly to

— 2y _ — Yr_
Uk Ye—1 + Vi 2+3yk Yr—1

29 = 1
7z 7 + 2yy,

Take the 2 transform under the assumption of a relaxed system to get

ZS

(143724 27%)2% — (24 3T)2 + 1Y (2) = T

z—1

The characteristic equation is thus
(1+3T2+2T%)2% — (24 37)2+1=0

with roots (the poles)
1 1

Iy T T 1xoT

The general solution of the difference equation is a linear combination of these

together with a particular solution. That is

1 \" 1 \"
yka(l—l—T) +6(1+2T) 7

This can be checked by substitution which also shows that v = 1/2. The

condition »{0) = 0 gives yo = 0 and since ¥/'{t) — L]?RA’ y'{0) = 0

implies y,_; = 0. Using these we have

1
g
a+5+2
1
2

a1+ T)+B(1+2T)+ - =0
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with solution a = -1, f=1/2 so

B 1 ‘“+1 1 ‘“+1
“TT\I+T) T2\1+2r) T2

The differential equation is simply solved by inverting the Laplace transform

to give

‘ T=01
0.5 Ll 1 ] T 13 " ¥

0.45} | ]
0.4f -
0.35} i
0.3} -
0.25} i
0.2f i
0.15F -
0.1F -

0.05r &

0 1 2 3 4 5 6 7 8 9 10

Figure 3.3: Response of continuous and discrete systems in Exercise 14 over
10 seconds when T = 0.1
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T=0.05
0.5 T T I T T T T

0.45F E

0.4r :

0.35+ b

03

0251 b

021 .

0.15f 8

0.1

T
L

0.05F 4

Figure 3.4: Response of continuous and discrete systems in Exercise 14 over
10 seconds when T = 0.05

m 15 Substitution for s and simplifying gives

[(4+ 6T + 2T%)2% 4 (4T% — 8)z + (4 — 6T + 2T?)]Y (2)
=T?(z 4 1)*X(2)

The characteristic equation is

(44 6T + 2T%)2% 4+ (4T? — Q)2 + (4 — 6T + 2T%) = 0

with roots
8- 4T? 44T
© 2(4 4 6T + 2T72)
That is
1-T 4 2-T
= 1 = —
Ty ™Mt T oy
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The general solution of the difference equation is then

B 1—I’k+ﬂ 2T k+
k= O\1+T o+7) 7
This can be checked by substitution which also shows that v = 1/2. The

Yk — Yk—1
BBl () = 0

condition y(0) = 0 gives yo = 0 and since 3/'(t) — T )

implies yx—1 = 0. Using these we have

1
a+pf+-=0
2
1+T 24T 1
=0
7Tty
with solution
1-T - 9T
‘T T T
Thus .
1-T(1-T\" 2-T[2-T 1
Yk 2 \1+T 2 \2+T 2
T=0.05
0.5 T T L} T 1 1 T
0.45+
0.4 1
0.35+ b
0.3F 4
0_25 o -
0.2+
0.15+
0.1F
0.05F
0 -l 1. 1 1 1 -1 1 1 1

0 1 2 3 4 5 6 7 8 9 10

Figure 3.5: Response of continuous and discrete systems in Exercise 15 over
10 seconds when T = 0.1
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T=0.05
0.5 T T T T T T

0.45F E

041

0351

0.3r

0.25};

0.2r

0.151

0.1

Figure 3.6: Response of continuous and discrete systems in Exercise 14 over 10
seconds when T = 0.05

= 16
fO) =1, {f(kA)} = {k°A%}, k>0
Now
(K} = _Z% = —21)2 - ?iz_+1;§
So )
Z{k’ A%} = —Z((Ztll))?

To get D-transform, put z =1+ A~ to give

2
Faly) = 1+ M)A(f; S

Then the D-transform is

1+ Ay)(2+Ay)
— p“

Fa(y) = AFA(v)
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Fourier series

Exercises 4.2.9

] 1(8_)

7rdt+/ tdt}
0
2 3l

(=rt) - + (3)

:/_Oﬂ —m cos ntdl + /Ow t cos ntdt}
{[%sin nf]

s (eosnm— 1) - { ——3

/.

{

1
“(1-2 -
n( COS T )

/.

ao

2
2.
7r+2

1

™

}

0

0+[

—

n2

Al—= A~ A~ A=

n

1

-
1

T

™
WsinntdtJr/ tsinntdt}
0

T 0

E coSs nt]

t 1
—cosnt + — sin nt
) )

3
n

e

n odd

?

1

?

1 evel

Thus the Fourier expansion of f(t) is

T 3
f(t) :—EJr Z (—ﬁ) cosnt + Z Esmnt— Z —sinnt
n odd n odd n CVEIL
, T 2 w= cos{(2n — 1)t Zsin(2n — 1)t o= si
e fy=-"_% 3 -
e S =-7-2 or—12 2%; (2n — 1) gg;

t . 1
—sinnt + — cos nt]

2

|

0

m

]

0

|
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1(b)

1 /0 12 © x
= (t+mdt="|Z=4xt| =_
o 71'/_71_( +7T) 7r{2—|_ﬂ-]_7T 2

1 Y 1 sinnt  cosnt v

an—/ (t—l—w)cosntdt—{(t%—ﬁ) +— }

ol T n n .

7 even

1 0,
- — — f— 2
7m2(1 COS N ) _. nodd
™

cosnt  sinnt 0
+
— T

1 /9 _ 1
by, = 7JT/w(?ﬁ—l—T'T)smmtd?ﬁ 7r{—(t—l—w) —

Thus the Fourier expansion of f(t) is

o0

2 1
f(t):ng Z Wcosnt—zgsinnt
n odd n=1
Tl' cos 2n — 1 = sinnt
e 1 Z (2n — 1) nzl

1(c) From its graph we see that f(¢) is an odd function so it has Fourier

expansion

= i by, sin nt
n=1

3/ f(t)sinntzf (1—£)sinm‘dt
T Ja T Jo T

2 1 ¢ 1 T2
=—|——(1- )cosnt——gsmnt = —
n T mn 0 nimw

with

Thus the Fourier expansion of f(t) is

2 o sinnt
Yy ==
DD
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1(d) From its graph f(¢) is seen to be an even function so its Fourier

expansion is

(o)
ag
i)y = — ., cosnt
) 2+;;n

3
g
3

[cos(n + 1)t + cos(n — 1)t]dt

with /2
5 (7 5 (7 9 o 4
ag = / flt)dt = / 2costdt = —[2sint], S
T Jo T Jo 7 7
71' 9 w2
U = / f(t) cosntdt = / 2 cost cos ntdt
0 T Jo
J

sin{n + 1)t  sin{n — 1)15} w/2

(n+1) (n—1) 1,

| — T |

1 T 1 T
— i no infn — 1)~
CEEY sin{n + )2 + T sin(n )2}
n odd
— =4,8,12,...
(n2_1)3 n 2 ’ ’
4 1
n—2,6,10,. ..

Il
—_—— H | F [ F e F
|
S
=
o

7 (n2 1)

Thus the Fourier expansion of f(t) is

24 = 1)+ cos 2nt
*;+;ZI

n=1

193

1(e)
1 t 1 t]"™ 4
a()/ cos —dt = —|2sin < = -
T 2 T 2] _om
1 t T f" 1 1
Uy = 77/ cosicosntdt ) {cos(n—l— §)t+008(ﬂ— 5)?5] dt
2 et 1) n 2 in 1)
= — sin( )T+ ———sin(n — =)«
27 2n—|—1 2 (2n — 1) 2
4271 n=1305...
n=24,86,...
4n2—1
b, =0
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Thus the Fourier expansion of f(t) is

o0

4 1)"H cos nt

T

1(f) Since f(¢) is an even function it has Fourier expansion

ap i
= — tn COSNE

2 7 2 7
(1',0—/ tdt—/ tdt =7
T Jo T Jo

2 (7 201 1 7
Ap — — teosntdl = — | —sinnt + — cosnt
0 n

with

T T n? o
0 1 even
2 )
_ _ 4
7Tng(cosnifr 1) = { _, n odd
™

Thus the Fourier expansion of f(t) is

zwus

Z % cosnt
n odd

. T 4000052?1—1
Le. f(t):—_gz

n—l

1(g)
aoz1/W(2t—ﬁ)dt:1[t2—ﬁtr:0
T Jo v 0
1 1[ (20— 2 "
ay, = —/ (2t — w) cosntdt = — [(W) sinnt + —Qcosnt}
T Jo Y n n 0

1 /" 1] (2t — 2 §
b, = — / (2t — m)sinntdt = — {—(W) cosnt + — sin ﬂt}
7 Jo 7 n n2 o
1 0, n odd
= ——(cosnm+ 1) = 2
" —Z, n even
n
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Thus the Fourier expansion of f(t) is

» odd n even
, 4 S cos(2n — 1)t o= sin2nt
e fly=—-$"22
Le. f() WZ (2n — 1)2 Z n
1(h)
1P ¢ " ¢
ag = — (—t+e)dt+ | (t+ e")dt

w —T 0

(N P

W{[_§+e]—ﬁ+ [E—I_B]O}

1 2

= —[7?2 +(e" —e )] =x+ Zsinhmw
Y T
LT /° ¢ § ¢
ay, = — (—t+ e )cosntdt + [ (t+ €")cosntdt

7 ) . 0

l [£51nnt+icosnt]0 +7[netsinnt—|—etcosnt]o

s —x (n?241) -

L sinnt + tw+ ! [nefsinnt + ef cosnt]]

—~ sinn —cosn e ne’sinnt + ¢’ cosnt|

2 1a )+ 2cosnw [e“—e*”]

— cos N

7n? m(n?+1) 2

2 —1

2 | {eosm ST Sinh , cosmm = (—1)"

™ (n2+1)

{/ —t + ey sinntdt + / (t + e sin ntdt}
-~ 0

¢ 1 0 t 1 . T
{ [— cosnt — — sm nt] + [—— cosnt + — sin nt]

n n2 _r n n 0
L n? et cosnt n et sin’mﬁ]7T
w2+ 1 n n? o
2
_ W(n;:_l) cosnm(e™ —e ) = 71'(7@2?:—1) cosnwsinh ww, cosnm = (—1)"
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Thus the Fourier expansion of f(t) is

T 1 2 — ) (—1)”sinh7r
ft) = (§+—smh7r EZ_: { RON cosnt

’i’l
smh wsinnt

ﬁ]ll\D

3
Il
—

= 2 Since the periodic function f(t) is an even function its Fourier expansion is

ap >
= — tn COSNE

with

K

w=2 [ =2 -twip] =

™ ™
T

9 T 2 _tQ —1 2
Uy, = / (W—t)QCOS’ntdt: {Msinnt—(ﬁg)cosnt——gsinnt
™ Jo T L n n 0
4
T n2

Thus the Fourier expansion of f(t) is

2

T =1
f(t) = 3+4Z:1chosnt

Taking t = 7 gives

so that
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m 3 Since ¢(t) is an even function its Fourier expansion is

with

(e ]
=5 + z:l @, cosnit
n=

2/”%62

201t . 1
cos ntdt — — | —sinnt + — cosnt
T2 |\ n n2

0, N even
= (cosnm—1)=¢ 44

m

0

7r2n2 n odd

m2n2’

Thus the Fourier expansion of ¢(t) is

w=ay 53 T

197

ap

Cr,

L A 1 10
— Ssintdt = —[—bcost|f = —
T Jo ™ ™
5T 5ofT _
_/ sint cos ntdt = — / [sin(n + 1)t —sin(n — 1)t|dt
5[ cos(nt 1)t  cos(n—1)t]" il
e R R R VR A
5 COSTA  COSNT 1 1
el - | e ey
2 |'n+1  (n—1) ntl n-—1
5 0, n odd,n # 1
- (cosnm+1)=¢ 10
w(n? —1) 2= 1) 7 even

Note that in this case we need to evaluate a; separately as

a; =

1" 5 7
/ hsint costdl = / sin 2¢dt =0
T Jo 2w fy
h [T . , b [T
— [ sintsinntdt = —— [ [cos(n+ 1)t — cos(n — 1)t]dt
T Jo 27 0
5 [si 1)t sin(n—1)t]"
_ 5 [sin(n+ 1)t sin(n—1) nl
2| (n+1) (n—1) g
=0, n#1
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Evaluating b separately

5 [T b [T
by —/ sintsintdt/ (1 —cos2t)dt
T Jo 27 o
S lgna 0
Tt T 2R T
Thus the Fourier expansion of f(t) is
55 10 o= cos 2nt
=" 1 sint- Sy
1) 7r+28m Trnz_:l/-lng—l
=5
L[ " 2
ag = — wodt + f (t—m)*dt
m —T 0
1 2,70 1 3 & 4 2
= —{[x% —(t— _ =
02, - b= 5
L2 § 2
Up = — w°cosntdt+ [ (¢t — 7)° cosntdt
T — 0
L[ w2 ° t— )2 2t — 2 i
:—{[ﬂ-— sinnt] + [ﬂsinntJr(i;T)cosnt——gsinnt] }
ol ) — n n n 0
2
- n?
1 0 - T -
by, = — mesinntdt + [ (t — 7) sinntdt
w — 0
1(, =2 0 (t —m)2 (t—m) 2 .
= — [f—cosnt] + [ficosnt—l—Q sinnt + —cosnt]
oy 7 o n 72 n? 0
1 7
_— — - - —]_ T
w{[ n + n( ) ]}
T 2
SR DU I
e

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 199

Thus the Fourier expansion of f(¢) is

ft) = 27T2+Z {i cosnt + = l)nwsinnt} - éi non L

3 n i 2n—1

5(a) Taking t =0 gives

2 2 e o]
™ +T 2 2
R PF

n=1
5(b) Taking t = gives
2 o0
™+0 2, 2 "
9 = —77" 4+ nz::l E(—l)
and hence the required result
o0 n—l—l 1
Yl
n=1
[ ] 6(a)
f@® ‘r
2
-2 - ' (o) T 27 3n 47 7
—nl2
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6(b
®) f@® 4
w2 1
2 -7 0] T 27 3r 47 t
/2 -

The Fourier expansion of the even function (a) is given by

0
flt) = a_20 +nz:1ancosnt

with
2 /2 ™
=2 [P [ e
T lJo /2
2 127r/2 271‘
{57, + g0,
9 /2 ™
an=—{/ tcosntdt—l—/ (r—1t) cosntdt}
T LJo 7/2
92 1 /2 _ 1 T
=—{[£sinnt+—2005nt} +[7T tsinnt——Qcosnt} }
7| 'n n 0 n n /2
272 nr 1 .,
0, n odd
8
=9 ——5, n=2,6,10,
™
0, n=4,812,

Taking ¢t = 0 where f(t) =0 gives the required result.
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fo4
\/\/2
1.\/\/
—47 - 3'7r —2.7r —;r 0 1r 2 3;r 4;r ﬁ
1 T " 27
ag = — (2 — —)dt+ t/?Tdt
m 0 ™ T
1 t2 i t2 27
= —< |2t — — — =3
W{[ 27T:|0+[27T:|7r }
1[ /™ t ¢
ap, = — (2 — —) cosntdt + — cos ntdt
T /o T r T
1(.2 . t . 1 i t . 1 2
= — [— sinnt — — sinnt — —2008nt] + [— sinnt + —QCOSM}
T|l'n ™ ™ 0 ™ ™ 7
2
= 2n2 [1 (_1)n]
0, n even
= 4
W, n odd
b, = — {/ (2 — —) sinntdt —I—/ — sinntdt}
T | Jo e r T
1 T

2 t 1 t 1 .
= — [——cosnt—l——cosnt——Qsmnt] + [——COSTlf-i-—QSlnnt]
™ n ™ ™ 0 ™ ™

=0

Thus the Fourier expansion of f(t) is

3 400003211—1
FO=5+ 22 a1y

Replacing ¢t by t — %ﬂ' gives

1 3 cos(2n — 1)(t — m)
ft=gm =5+ 22 @n—1)
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Since

1
cos(2n — 1)(t — 57?) = cos(2n — 1)t cos(2n — 1)% + sin(2n — 1)tsin(2n — 1)%
= (—1)""sin(2n — 1)t

1 )" sin(2n — 1)t
t—gm) =5 =
1 2 71'22 (2n —1)2

The corresponding odd function is readily recognised from the graph of f(t).

Exercises 4.2.11

= 8 Since f(¢) is an odd function the Fourier expansion is

nt
t) = b, —
f(t) 3_1 sin —
with
£ 2 £
b2/t'mrtdt2 74 ﬂﬁt+(f) . nat
A sin 7 =7 mrcos 7 o sin o,
27
= ——— COSNT
naw

Thus the Fourier expansion of f(t) is

20 (-t ot
f(t) = = Z o sin—

n=1

m 9 Since f(¢t) is an odd function (readily seen from a sketch of its graph) its

Fourier expansion is

i
f(t) = Z by, sin
n=1
with .
2 K nwi
by =— [ —(£—t)sin —tdt
7 /0 7 ( )sin 7
2 Kf nwt 4 Kt nmt K{ | nwt ¢
= |——cos— + —cos = sin
£ nm 14 nw 1 (nm)? ],
o
onm
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Thus the Fourier expansion of f(t) is

f(t)zﬁzisinn—m

m 10

1 /° nwt 1115 . nwt >
G = — 3cos—dt = —-|—sgin—| =
5 fo 5 5|nm 5 g
1 f° t 1] 15 t
bn—/ 3Sinﬂdt:* ——COSE
5 fo 5 50 nm 5 g
3 6 n odd
= S =
nw 0, n even

Thus the Fourier expansion of f(t) is

36— 1 2n — 1
f(t)§+ﬁz(2n1)sin(n5 )mﬁ

n=1
w11
mfw wfw
ag = wa Asinwtdt = d {A coswt} — %
27 Jo T w o T
m/w wfw
I Aw sinwt cos nwtdt = Aw/ [sin(n + 1)wt — sin(n — 1)wt|dt
T Jo 27 Jo
B & 7cos(n + Twt  cos(n — 1wt m/w ]
2w (n+ Lw (n—1w [,
_ 1yn+l
_ Ayttt 2 7 A4 1 1]
27| n?—1 n?—1 m(n? —1)
0, n odd,n#1
— 24
*m, Tooeven

Evaluating a; separately

B Aw wfw

A wiw
sinwt coswitdt — — / sin 2witdt = 0
T Jo 27 Jy

ay
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A mfw A wfw
by, = t sinwt sin nwtdt = — [cos(n + 1wt — cos(n — 1)wt]dt
™ 0 27 0
Aw [sin(n + Dwt  sin(n — D)wt]™* 2
=—— — n
27 | (n+ lw (n—1w |,
=0, n#1
A wfw A w/w A
by = o sin® wtdt = wf (1 — cos2wt)dt = —
w 0 27 0 2

Thus the Fourier expansion of f(t) is

A cos 2nwt
f(t) = {1+—smwt2z 4??,2—1]

m 12 Since f(¢) is an even function its Fourier expansion is

ag = nmt
= Oy, COS ——

with
5 7 o1 .17 2
ag = —/ t2dt = — | =t3| = =77
T3], 3
/ .2 2 [ T2 mnﬁJr 272 nmt 273 nrwt T
= — cos Y sin COs — sin
CT|nm T  (nw)? T  (nm)? T |,

4T2

Thus the Fourier series expansion of f(¢) is

T2 AT &S (1) nmwt
f(t):?+ 3 2 3 cos T
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T T
ang Etdt%{ltg} —F
0

2nnt
aﬂ:—/ —1{ cos 1’md

= 13

B tr . 2ant +( T .° 2ant T
- T2 27, st T 2, o
oF [T 2rnt

b, = — tsin dt
2 f
2F tr 2mnt ( T )2 . 2mnt F
= |- COS sin =
T2 2mn T 2mn T |, ™

Thus the Fourier expansion of e(t) is

Exercises 4.3.3

m 14 Half range Fourier sine series expansion is given by

= f: by, sin nt
n=1

with -
b, = / 1sinntdl {—cosnt}
T Jo T n o
2
=—[(-1)" -1
= j-nn -]
0, n even
= 4
—, n odd
n

Thus the half range Fourier sine series expansion of f(t) is

Plotting the graphs should cause no problems.
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m 15 Half range Fourier cosine series expansion is given by
flt)y= aOJria cos nmt
2 n=1 ’

with
o fl
ap = —/ (2t 1)dt =0
1 Jo
1
apn, = 2/ (2t — 1) cos nmtdt
0

(2t —1) | 2 .
= 2| —=sinnhwt + ——5 COS nmt
nmw (nm) 0

0, N even
_ 8
— n odd
Thus the half range Fourier cosine series expansion of f(¢) is

8 — 1
n=1

Again plotting the graph should cause no problems.

| 16(&)

1 1
1 4
1 tHdt =2t — =] ==
( ) [ 3 ]0 3

(1',0:2

an =2 [ (1—t*) cos2nmtdt

/01
i

1
—t? 2t 2
=2 ( ) sin2nat — ——— cos2nwt + ——= sin 2nwt
2nw (2nm)? (2nm)3 o

1
(n7)

2
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= / 1—152 sin 2nmtdt

1

2t
{ cos 2nmt — ———— sin 2nwt — COS 2n7rt}

2
(2nm)? (2nm)? 0

1

Thus the full-range Fourier series expansion for f(t) is

1T 1 1 =1
_W_Z_:_Q osant{—;ZgSinQnﬁt

n=1

ft) = fi(t

OJI[\D

207

16(b) Half range sine series expansion is

(e ]
= E b, sinmwi
n=1

with

(1=

1
b, = 2/ (1 — %) sinnwtdt
0
t i t 2 t
cosnit — ——sinnAt — ———— cosSnw
nw (nm)? (nm) 0

:2{— S I

(nm)? nw o (nm)?
2
—, n even
_ mrl A
S dd
[’mr + (nrr)g]’ "e

I — 1 . 2 — 1 N 4
7 (2n—1)  7w2(2n—1)3

=

sin(2n — 1)7wt

16(c) Half range cosine series expansion is

fa(t) = %, Z Ay, COSTTE

2
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with
1 4
ap = 2 (1—1t2)dt:g

/01
f

an =2 [ (1 —1t%) cosnmtdt
9 1
(1—1¢t%) . 2t 2 .
=2 sinnnt — —— cosnnt + —— sinnnt
nm (nm)? (nm)3 0
G 0
~ (nm)?

Thus half range cosine series expansion is

(_1 nt+1

2 4
fa(t) = 3 + E;Tcosmrt

Graphs of the functions fi(t), fo(t), fa(t) for —4 <t < 4 are as follows

5i®
4 3 2 -1 o] 1 2 3 4t
) 1
2 N

RNERNAY
N NG

t

~f3(t) A
WW
-4 -3 2 -1 o0 1 2 3 4 ¢

m 17 Fourier cosine series expansion is

(o]
0]
fi(t) = 5 + zzlancosnt
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with
2 " 1
ag = —/ (mt — t)dt = —=°
T Jo 3
2 (" 2
an = — | (mt —t°)cosntdt
T Jo
2 [(nt —t2) | (7 — 2t) 2 T
= — smntirizcosntJr—Ssmnt
T T n T 0
2
— 1
— S+ (1))
0, n odd
= 4
el n even

Thus the Fourier cosine series expansion is

with
2 (7 oy .
b, = — [ (mt —t*)sinntdt
T Jo
2 (=t —t?) (m—2t) 2 i
= —|————"cosnt + 7251117@157—3005%?5
T n n n 0
= —=1-(-1)"
Sl (-1
Q, n even
pu— 8
—5, n odd
Th

Thus the Fourier sine series expansion is

JLE o S SRS
*%ﬂzl (2 — 1yp 2R -
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Graphs of the functions fi(t) and fo(t) for —27 <t < 27 are:

f10) 4
NN
2 -7 0] 7l’ 27 —t>
f04

= 18

f(:v):%aa:, O<:c<§
f) = 2—5(5—55) , §<:c<€
Fourier sine series expansion is
- nwx
flz) = ;bnmnT

with

2a 2[ [*?  nmax ¢ . nmwx
by, = 77 {/0 x sin Tda:—l-/e/Q(é—:c) sin de]

da {_E_xcosnﬂa:+ 2N mr:cr/Q
02 nm / (nm)? AP

22 | (nm)? 2 nm)? 2
0, n even
8a
— (nﬂ_)gv n = 175797
8a
- (TL7T)2 ) n = 37 77
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Thus the required Fourier sine series expansion is

az 1)+t ‘i (2n — )7z
w2 — n—l £

= 19

14
Z, <z < Z
14 14 3¢
) =98 - -3, - <x;<
flzx) 5 & : T<
x—4 —<x<{
4
Fourier sine series expansion is
= nwE
—= b’ﬂ _—
flx) nz_:l sin —

with
2 /4 nmTL 3/ g nmTL ¢ NTL
bﬂ:—{/ :Esin—d:z:+/ - —x sin—dm+/ z — f)sin —dx
1o £ £/4 (2 ) £ 3f/4( ) £
_ 2 [ Lx nTE L ”o nﬂm]gﬂ
7 nr BTy (nm)2 ST 0
n _i(f B :1:) cos nEL Iz sin nwE 3e/4
nw 2 £ (nm)? £ 0/4

£ nwE 2 nmx t
+ |——(x —{)cos + sin
3¢/4

nw £ (nm)? £
. nw . 3nmw
= |sin— —sln ——
4 4
&7 nw . Nw
= cos—sm—
(”mr)2 4
( 0, n odd
0, n—4,812,...
88
— ¢ n = 2,10,18,...
(nm)2’
8¢ =6, 14,22
L (nﬂ-)Q’ Tt — H H oo
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Thus the required Fourier sine series expansion is

2 — 1+t ¥
=3 Z o 1) 5 5in 2(2n — 1)7

m 20 Fourier sine series expansion is

= i by, sin nt
n=1

with

2 71.'/2
b, = / sintsinntdt
T Jo
1 71.'/2
— —/ ‘cos(n + 1)t — cos(n — 1)t|dt
T Jo
st + 1= s 1>t]m 41
= —— sin(n — sin(n — , Tt
T [(n+1) (n—1) 0
1 1 , T 1 . T

Using the trigonometric expansions for sin(A + B) and sin(A — B) gives

2n n
br= — s T £
w(n? —1) % n7
0, n odd
2n _sq
B T n=26,...
2n 4,8,10
e, n=4,810,...
m(n? —1)

In the case n = 1

2 w/2 1 m/2 1
by = —/ sin’ tdt — —/ (1 — cos2t)dt = =
0 T Jo 2

T
Thus, the required Fourier sine series expansion is

naq Psin2nt

f():—smt+ Z 1

The corresponding plot presents no problem.
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m 21  Since f(z) is an even function the Fourier series expansion is

with
2 [HA
ag = —/ —(x — £)dx, since |z |=x forx >0
L Jy ¥
24 1 ¢
= 5—2[§$2 — £$:|O = —A
¢
A
ap = %/0 Z(x — /) Cosnlgdx
24 /4 ( 0si nﬂx_l_ 2 cos [ ¢
= —|—(x —¥)sin
@ e T T a2 T,
0 n even
2A ’
= cosnm —1) = 4A
(nyr)z( m—1) {_ ) n odd
Thus the Fourier series expansion is
(2n — )rx

ft) =—

N

AOO
__22 2n—1 /

The graph represented by the series for —3/ < x < 3/ is as follows

fx)4
0 2 30 %
m 22 Fourier sine series expansion is
s nwx
T(x) = b,, sin ——
() nzl 7
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with
nwY
K — —d
/ x( x)sin I T

x(L — x) NI L? . N
— T [— — cos — + ()2 (L — 2x)sin ——
203 nrz] "
= cos
(nm)? L ],
0 n even
4K L2 ’
= (1 —cosnm) = 8K L? ad
(n) (nm)3’ noo

Thus the Fourier sine series expansion is

o0

SKL? 1 o (2n— 1wz
Tz) = w3 Z (2n — 1)8 111( L !

= 23

0

1 1
1
1dt+/ oS Trtdt] =[], + {— sinmﬁ} =1
0 " 0

i

2
<
|

IS

1

1
cosnwtdt + / cost cos natdt
0

]
3
Il
™
A =t

0 1
1
+ Qf cos(n + 1)t + cos(n — 1)wtdt
0

|
1
-

smmrt}

-1
1

sin{n — 1)7rt} , n#1

0

sin(n + 1)t -+

1

L
(n— 1)m

(n+ 1)w

L N

1 1t
a = _/ CO8 —tdt f (1 + cos 27rt)dt = —
2 2 /o
0

1
b, = / sin natdt + / cos il sinnwdl
1 0

0 1
= {—1 oS mrt} + 1/ sin{n + 1)ywt + sin(n — 1)wtdt
nw 12U
1
1 i} 1 1 1
— %[(—1) — 1]+ 5r {(’”Jfl) cos(n + 1)t — 1) cos(n — 1)mt )
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T B [(n?i”)} [1+ cos

nmw 27 | (n? — 1
2
-, n odd
nmw
2n
m, ooevern

Thus the Fourier series expansion is

11 2~ 1 Age n
O ) DY LLC LD Db s b

Exercises 4.4.4

m 24 Since f(¢) is an odd function its Fourier expansion is of the form

with

= |:_ﬂ g Et _I_ TQ gin ﬂt
nw T n2m? T,
T? 2T N

= T{m COSTLTF:| —E(—l)

n=1
Integrating term by term gives
t2 277 o 1
5 =" % z:l F(—l)ﬂJrl cos %t + const.
Taking mean value over a period
1 T 2 p Ry G B R 1 7
— —dt = — —tdt + — t.)dt
2T _T 2 71'2 nQ /—T cos T + 2T _T (Cons )

n=1
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so that 5

1 =0+ t
6 = const.

giving (const.) = T?/6

Thus )
n+ T

g(t):tgz—— QZ os " t

2 42 _g 2 oo (_1)ﬂ+1
25 7t =h(t)= 3T +4> ., 5 —cosnt
7

Since A(t) is continuous within and at the end points of the interval —m <t <

we may apply theorem 4.4 to obtain the Fourier series of
flt)=t, —mw<t<m f{t+2m)=f()

Differentiating gives
o ﬂ+1

=2t =—4 Z sinnt

So that the Fourier series of f(1) is

ﬂ—l—l

=2 i sinnt

n=1

which confirms the series of Exercise 24 when T — 7.

26(b)  Derived series is

Ti

4
n—l—l . n
—(— t— 2(—1 l
E_ - sinn E (—1)" cosn

n=1

This is not a Fourier expansion of g(t) since f(t) is discontinuous at the end points
of —m <t <.

26(c) Using the results of {a)

Ay = Z[f(n_) — (-m)] = 1w =
A = (1) Ag 4 nby, = (—1)72 — "';2(1)” (1) (1) =0
B, = -na, = %(1)”+1
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Thus the Fourier expansion g(t) is

A i =0
g(t) = 70 + ;An cosnt + ;aninnt
(_1 n+41

= 1—|—4Z%sinnt
n=1

Using Euler’s formulae

1
m

(2t + 1)dt —

3

(2t + 1) cosnt dt

\h

Al A= A=
|
5

ot + 1 2 7
- ) sinnt + —5 CO8 nt} =0
n n .

| —
—

(2t + 1)sinnt dt

oy
3
Il

I

B 3]

2t 4+ 1 2 T
( T ) cosnl + — sin nt}
) ) .

1

‘ =

= —[-@2r+ (1" + (=27 + 1)(-1)"]

bR S

—_— =

thus confirming the values obtained using (a).

217

m 27(a
( ) pl(t) =——1 pg(t) =1
dp =2 dy =2
AV =0 pMe) =0
4" —0 s —o

t1 =0, to = 7 and since w = 1 using (4.39) gives

2 2
1 Z 1 Z
- [_ s—1 dostnnts = n =1 dgl) - ’nts]

= i[—281110 + 2sinn7r] =0
T
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2 2
1 1
b= {21 dycosnts ) i Sin”’*]
. 9 Q, n even
= — — = — i i m 4
- [20050 QCOSW] mr[l ( 1) ] —, nodd

ao — H/_i(-gdwfoﬂ ldt] 0

Thus, Fourier series is

confirming (4.21).

27(b)
pl(t) :t, dl =27
P —1, Y =0
t1 :0, to =, W= 1

Thus from (4.39)

Qy, = i[—cﬂl sinntl] = i[27?5111 O] =0

nmw nmw
br, = i[dl cosnty] = L[—27r cos 0] = 2
nw nm 7

1 2w
(1',0:—/ tat =2w
T Jo

Thus Fourier series is

— 1
f(t):W—QE —sinnt
7
n=1

confirming the result obtained in Example 4.1.

27(c
« pi(t) =t pa(t) =4 pa(t) =m — 3t
dy =0 do =0 dy =
Py =1 pPwy =0 ") =1
&M =1 dy) =—1 ds =2

tlz%, tQZﬂ', t3:2ﬂ',w:1
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Thus from (4.39)

3 3
1 Z 1 Z

LT
=——= dgl)cosng+d§1)cosn7r+d§1)cos27rn] since ds =0,s=1,2,3
nem
1 nt 1 3
= ———|—1cos— — —cosnm + — cos2nmw
n’m | 2 2 2
Il nr 1 3
= |—cos— — (=14 =
e |78y 5l +2}

3 3
1 1
b, = — Lgl ds cosnts — - ;1 dgl) sin nts}

1 .onr 1 . 3 .
= ———|—-1sin— — —sinnnm + —sin2nnw
n2m 2 2 2
n2r 2

1 /2 T 27 1 5

which agree with the Fourier coefficients of Example 4.3.

m 28(a) Graph of f(t) for —7m < t < 7 as follows and is readily extended to
—4m <t <drm

R

Y
P P
?l ‘Pb

!
o
S
A
Y
o

R
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28(b)

pi(t) =0 po(t) =m+2t  ps(t) =w—2t  py(t) =0

d1 =0 do =0 dsg =0 dy =0

=0 pME) =2 ps() =2 pM (1) =0

a2 s — 1 i —2 d =0

PP =0 pP() =0 p§7(t) =0 PP () =0

d? —o d? =0 4P =0 dP =0
tlz—g, ty = 0, tgzg, fy=mw=1

Thus from (4.39)

1
w= =Y ds be — — Ed(l) ts —E d ¥ sint,
Q. W{ sinn cosnt. + sin

n s=1
U locos ™~ 4cos0 4 2cos T
= ———|2¢cos — — 4 cos Ccos ——
niw 2 2
4 N }
= ——= cos— — 1
n-m 2
1 [ 1 o
bn:m[;dscosmsa;dé”smm zdw t]
1 .
== [ 251n—4sm0—|—251n} =0
n2mw

2 2 |
—m/2 0 w2 T
U Odt—l—/ (m + 2t)dt+/ (W—Qt)dt—l—/ Odt}
7 —7/2 0 w/2

| A A=

Thus Fourier series is

nm-

Z % cosn— — 1) cos nt

n=1
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m 29(a)
p1(t) =1 po(t) =17
dy =0 dy =—m?2
AV =0 PN =2
it =0 ) =—om
AP =0 pP) =2
d? =2 d? ——2
e =0 pPe) =0
a0 d& =0

t1:0, tgzﬂ',wzl

Thus from (4.39)

2 2
1 1
Ay = — | — E d.sinnt, — — E d' cos nt,
nﬂ-|: s=1 n s=1 ’

2
1
+ 2 Z dgg) sin nts}
s=1

1 5 . 2
= — |w s8I nT + — COSnT
T 1

n? n?

2

= p(—l)ﬂ

1 { 5 o
b, = — |—m*cosnm+ — sinnw

2 2 }
— —(sinnT + —s8in0

nmw T

2 2
— —QCOSOJr —5 COSTT
7 7

From which the Fourier series may be readily written down.
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29(b)

Thus from (4.39)

U

br,

ap

pi(t) =2 pa(t) =t° pa(t) =—2
di =—(2+ %) de =—(2+ %) ds =4
pi(t) =0 P (t) =3¢2 P (t) =0
d) =% dyt) =22 i =0
p2(t) =0 P (t) =6t PP (1) =0
d(12) =37 d(QQ) = 37 dég) -0
pi? () =0 s =6 Pty =0
d(13) —6 d(QS) — g dgg) _0
(1) =0 (1) =0 P (1) =0
di* =0 & =0 44 —o
T
t1:_§, t2:§, ta =m, w=
= i {_(2"' ﬁ)sinﬁ + (24 W—S)Sinﬂ —dginnm — %cosﬂ
nw 8 2 8 2 An 2
+377r2005ﬂ‘|‘315mﬂ %Sinﬂ+£cosﬂ—£cosﬂ}
4n 2 n? 2 n? 2 n? 2 n? 2
=0 (which is readily confirmed since odd function)
= i{_ (2+ W—S)COSE —(2+ ﬂj)COSE + dcosnm + %Sjnﬂ
nmw 8 2 8 2 4n 2
+ 377TQSiIlE + S—WCOSE—I— Bjcosﬂ — Esjnﬂ —Ecosﬂ]
4n 2 n? 2 n? 2 n? 2 n? 2
4 nw 3n . am 7w nw
= —(cosnm —cos — )+ 2( —sin— — —cos ——
nm 2 (4n2 2 82
+i cosE — GSinm)
n? 2 apt 2
. f(t)dt =0 since f(t) is even function

Thus Fourier series may be written down.
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29(c)
pl(t) =t pg(t) =1-t

dy =—1 dy =2

e =1 A =-1
A =2 dit =2

=0 70 =0
2 2
&7 =0 d =0

tl—ltg 2w:7r

Thus from (4.39)

1
.= E ds ts — E :d(l) t
a |: sin nw o cosnm :|

s=1

1
= — {lsinnﬂ — 2sin2nwm — —(—2cosnw + 2cos 2n7r)]
nw

9 0, n even
T nig? (0" =1=9 2 n odd
nem

0, n even
- [1(1)]:{2 n odd

The Fourier series is

cos(2n — )t 2 o= sin(2n — 1)t
B TFQZ (2n — 1)2 +EZ (2n — 1)

223
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29(d) 1 1
p1(t) =§+t pa(t) 25—?5
dy =0 do =0
P () =1 P () =—1
di =_2 ds =2
pP(t) —0 pi(t) 0
d® —o P =0

2 2
1 1
- |_ E ; - E (1)
Ay, = - [ d, sin 2wni, v dy "/ cos 2n7rts}

s=1 s=
1 1
= — 72—[72 cos 04 2 cosn]
nw nw
1 0, n even
= - s(cosnm —1) = 2 n odd
(nm) (nm)2’

2 2
1 1
br = Lz_l docos2nmts = o D i sin st =

aon{f_Ol(;th)dtir/o (;_t)dt] :;

2

b=

Thus Fourier expansion is

2 — 1
+ F Z m cOSs 2(2n — ].)’.TTt

n=1

| —

ft) =

Exercises 4.5.2

= 30 Fourler expansion to the voltage e(t) is

e(t) = a_20 + Z ay,, cos nwt + Z by, sinnwt, w = 1007
n=1

— n=1
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where

1
100
a0:100/ dt =10
0

L 1

100 100 sin 1007t 100
10 cos 100mmtdt = 100[ 0] T =0

100nm 0

2
3
Il
—
o
[
S~

1

1
100 . cos 100nwt, 100
b, = 100 10sin 100nrtdt = 100[—10————]
0 100nT "0
0 n even
10 4
= (1 - (—1"*={¢ 20
nﬂ'[l ( 1) ] { —y N odd
nmw

Thus Fourier expansion is
20 w— 1 _

=5+ Z Uy (), where w,(t) sin(2n — 1)1007t
n=1

- 7(2n — 1)
By Kirchhoff’s second law charge on the capacitor is given by

d2q dq
0.02° 7 1 30021 1 2500009 = e(t
g2 + 7 + g=e(t)

— 1
~ 0.02s%+300s4-250000

System transfer function is G(s)

1

iving | G(jw) | =

giving | G(je) | /(250000 — 0.02w2)2 4 (300w)2
n 300w

Gliw) = —t
argG(je) 950000 — 0.02w?

From (4.42) the steady state response to the nth harmonic w,(t) is

20

4ssn (t) - m

So steady state current response s, () to nth harmonic is

225

| G(3(2n — 1)1007) | sin[(2n — 1)1007t + argG(5(2n — 1)1007)]

issn (t) = 2000 | G(4(2n — 1)1007) | cos|[(2n — 1)1007t + argG{j(2n — 1)1007)]
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Note that the d.c. term in e(t) gives no contribution to current steady state

response, which becomes

iss == f: ?’ssn(t)

n=1

Evaluating the first few terms gives

iss =~ 0.008 cos(100mt — 1.96) 4 0.005 cos(300xt — 0.33)

m 31 Since the applied force represents an odd function its Fourier expansion is

flt) = Z b, sin nt
n=1

where .

4 f! 1
by, — = / 100 sin nwtdt = 200 {—— cos mﬂﬁ}
2 Jo nw

0
0 7 even
200 ’
— 27T —(—1)) = ¢ 400
n (1 ( 1) ) {, TLOdd_
n

Thus Fourier expansion is

16 = 420 Z_:l (2n1_ pysin(n 1)t = Z:lun(t)

400 sin(2n — 1)t
where u, (1) = r no D)

From Newton's law, the displacement z(t) of the mass is given by

10@ 10 5dij + 1000 = £(¢)
dt? Tt N

1
The transfer function is G(s) = 1052 = 0.55 - 1000
38 .bs

that G(je) 1 1000 — 10w?  0.5w
50 a W) = = _
J 10w + 0.54w + 1000 D D
ving | Gjw) |- — 1
1VIn W= =
svie / VD /(1000 — 10w?)2 + 0.25w2
0.5w

G(jw) = —tan ' [
argG(jw) o (00— 1002
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Thus from (4.42) the steady state response to the nth harmonic u,(t) is

400

Tssn = =1 | G(§(2n — 1)) | sin|(2n — L)t + argG(7(2n — 1)7))

and steady state response to f(t) is 255(¢) = 307 | Zasn(t)

Evaluating the first few terms gives

Zes(t) ~ 0. 14 sin(wt — 0.1) + 0.379sin(37t — 2.415)
+0.017sin(5mt — 2.83)

m 32 Since the applied force represents an odd function its Fourier expansion is

f(t) = Z b, sinnwt, w = 27

n=1

where

o=

b, = —/ 1004 sin 2nwtdl
0

1
2
sin 2nwt

2nm (2nm)?

t
= 400 [— cos 2nwt +
0

100 100
— ———cosnm = —(—1)"*1
nw nw

Thus Fourier expansion is

100 o= (—1) =
£) — ) in2nmt =Y up
f(t) w2 w sin 2nm n:1u
100(—1)"

where u,,(t) = ———— sin 2nwt
N

n1

From Newton’s law the displacement x(t) of the mass is given by

2

20 L 000™ L s0w — 1(1)
@z e T

1
92082+ 0.028 + 80

Transfer function is G(s)
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giving

1 0.02
| C(jw) |= L argG(jw) = —tan * |
/(80 — 20w2)2 + (0.02w)? 80 — 20w?2

Then from (4.42) the steady state response to the nth harmonic u,(t) is

Tssnlt) = % | G(j2n7) | sin2nwt + argG (jnm))

and the steady state response to f(t) is

0
mss(t) == Z mssn(t)
n=1
Evaluating the first few terms gives

Zas(t) =~ 0.044sin(2mt — 3.13) — 0.0052 sin(4dnt — 3.14)

33 Taking A = 100 and w = 50« in Exercise 11 gives the Fourier expansion of

the applied voltage e(t) as

100 200 e 100m 7t
(t) — — +50smbomt — == 3 CCZ’RQ _nlﬂ

= ug + Uy — Zuﬂ(t)
n=1

By Kirchhoft’s second law the charge ¢{¢) on the capacitor is given by

d*q dg | &

1

System transfer function is G(s) = 0457 + 100s 7 107 giving
1 100w
Gjw) |= , argGjw) = —tan ! [————
G V(105 — 0.4w2)2 + (100w)?] g6 (ge) [105 — 0.4w2]

From (4.42) the steady state response to u, = 50sin b0nt is

gsss(t) = 50 | G(350m) | sin(50wt 4+ argG(j50m))
— 0.005 sin(507t — 0.17)
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200 100nmt
and the steady state response to u, = cos is
T in? — 1
@ =22 L a100nm) | cos|100nmt + argC(j100nm)]
ssnll) = nw) | cos nwt -+ ar nw
¢ T 4n? — 1 J g

Since the d.c. term wug does not contribute to the steady state current this is given

by

iss = 0.785 cos(B0mt—0.17)=

or

o0

2 % 101n

1?1 | G(7100nm) | sin[100nmt+argG(§100nm)|

n=1

igs = 0.785 cos(b0mt — 0.17) — 0.1sin(1007t — 0.48)

Exercises 4.6.5

= 34

with

When n =0, cg = 5 [*_t%dt = 5

Since T' = 27 complex form of the Fourier series is

Cn

flt) = f: el

n=—0co

1 7 . 1 /7 .
— He 7™ dt = — eIt gt
= [ 1o 5| e
2 T
i _L —jnt _ ie—jﬂﬁ — Le—mt n A0
27 | g (jn)? (jm)® e
L[ 4= 2 27
I e jnm —jnmw
2 {( n T n26 n3 )

Since e 7" = ™" = cosnm
Cp = —cosnm = —(—1)", n#0

T
27

Thus complex form of the Fourier series is

) - 2 4 i 2 (1)reint
3 Lepl
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Using (4.56)

272
G,():QCO:?
4 4
Gr, = (=" ant g —(=1)

giving b, = 0 and a, = 5(-1)"

thus confirming the series obtained in Example 4.5.

m 35 Since T' = 4 the complex form of the Fourier series is

- ]
LTt
E Cpn€ 2

with ) )
1 1 jnm
=~ | f(t) —/1eztﬁ
4./ 2 4 Jo
2
1 2 "}’."Lﬂ'
- {,e } , m#0
4 JOT 0

o (VI

2nm

1 /2 1
Co—/ 1dt:—
1 J, 2

Thus the complex form of the Fourier series is

1 = inm,
- . —1le 2
2+ Z 2n7r ]6
o
Using (4.56)
260—1
J
b, = "[(-1)"—1
b = (-1) — 1]
+ b= 1= (=1)"]
nw
) 0, n even
. _ 11y — 2
giving a, =0, b, = —[1 - (=1)"] —, nodd
nw

thus agreeing with series obtained in Example 4.9.
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1 [ 9 . 7 .
Cp — / me It 4+ / te_fmdt]
2r | f_, 0

_ 1 [7i€—jnt]0 Jr[i.ie—jmi .1 e_jnt]ﬂ-:|

] 36(3.)

27?_ in . an (3”)2 0
1 [gm 1

= — ——(1 n" 0
o |~ (1 - >)},n¢

1 B 0 T
o= — / Wdt+f tdt} = —
27 LJ—r 0

Thus complex form of Fourier series is

R S e RNl

n=0

36(b)
Cp = %/OT f(t)e It = ;/OT/Q sinwte™™tdt, T = 25
_ ¢ T/ juwt  —jwby —inwt
=37 (7" — ¢ Je dt
a [ e—iln=Duwt  —jintlwt 172
T { jn— 1k Gt 1)w}
o [einwtgiwt  pgnwty—jwi]T/2
h E{ n—1 n+1 L
_a {[e_jmej“ B e_j”“e_j“] 7[ 1 ]}
by n—1 n+1 n—1 n+1
Since /™ = e VT = —1, ¢ I"T = (—1)"

1 Ty e U |

a
e — —-1)" 41
QW(ng_l)[ + (=" n
a
Cqpp = T smwt coswt F j sinwt)dt
. . T/2
2wt
= ;{ — cos 2wt F ;(t - sn;ww )L = Fja/2
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Thus complex form of Fourier series is

()

a = a .
A o s 1\ ] pfnwt
5 sin wt nE Sr(n? 1 1+ (—1)"]e

36(c)

1 v . m .
Cp, = — {/ eIt gt +/ le_J”tdt]
2| J_, 0

e e

an -7 an 0

1 , .
= —— {2269””%—63”“1}
29nm
J
=1 - (-1)" 0
L a2

1 Q0 T
= — 2dt 1dt| =3/2
o= ge| [ 2 [ 10 =

Thus complex form of Fourier series is

f}jlnefm

l\DIOJ

1 0 . 7 .
Cp, — — {/ —ginte It + / sin tev””tdt}
2m | . 0

1 /0 e /ﬂ e }
= — eIt — e I eI + edt — e I eI
o[ ) X )

0 T
— L / [767;{(7171)15 + 8*j(”+1)t] dt + / [efj(ﬂfl)t _ efj(n—l-l)t] dt
474 . 0
1 {[ p—dln—1)t p—d(nt1yt 0 p—d{n—1)t o—d (nt1)t W}
A7j —jln—1)  —jn+1)y __ —jln—1)  —j(n+1)",
S R G N G A G S G
47| n?2 -1 n—-1 n-+1 n—1 mn+1
1
e G i +1
g Ul
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233

By direct calculation cy; = 0. Thus complex form of Fourier series is

(1)

o0

R e
o0 9 it
- ﬂ_z_:oo (1 — 4n?) :

By noting that | sint | is periodic with period 7 we could have obtained the series

from
= 3 e
with
1 T : —i2nt
Cp — — sinte 7" d¢
T o
_ LT ienene iy,
215 Jo
1 [e i2ntgt  o—g2nt,—jt]7
%[ on—1  2n+1 |,
B 2
m(4n? — 1)
- 2 & 1 [2nt
GlVlIlg f(t) = — Z m@j
s 37
1 ki3
ool [Cae
0
1 [" 1.1 T
Ap, — / cosntdt — —[— sinnt] =0
T Jo w7 0
1 [ 1.1 T
b, = —/ sinntdt = —[——cos nt]
T Jo Tt n 0
Q, n even
(1 = — 2
wn(l COS 17T ) =, n odd

@ Pearson Education Limited 2004




234  Glyn James: Advanced Modern Engineering Mathematics, Third edition

Thus, by Parseval’s theorem
1 {7 1 1
— [ 1Pdt="al+ ) ¥
27?/0 $% 52,0
I 1 1 4
or 2= 1 2 e

. & 1 1
giving nZ::1 on 17 7

m 38(a) Fourier expansion is

f(t) = % + ﬂz_:lan cos nwt + Z by, sin nwt

=1

2
with w = % = 1007 and

1

o T 50
o = / F()dt = 100/ 500mtdt = 10w
T Jo 0
1

2 (7 50
Ay, = T/ f(t) cos 100nmtdt = 100/ 5007t cos 100nmtdt
0

0
1
)

CO8 1007;:7?15} =0
0

1
= 100.500x [ 7 tsin 100n7t +

Onm (100n7)?

1

50
b, — 100/ 5007t sin 100nmtdt
0

1
50

t
= 100.500x [— 7 cos 100n7i + sin 1007;:7?15}

00nm (100nm)

10 10
=——cos2nT = ——
n n

2
0

Thus Fourier series expansion is

— 1
f(t) =57 — 10 E — sin 100nwt
7
n=1
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= 38(b) From (4.66) RMS value given by

1
2 Lt 2 50 2
frms = = | [F()]7dt =50 (5007t)*dt
T /s :
= 12079 ~ 328.987
frus = 18.14

o0

o1t 1, 1
Using T/ f(6)*dt = Eag + 5 E (az, + b3)
0

estimates using
1 1
i) First four terms : —af + —(b% 4 b3 + b3) ~ 314.79
7% TR T T 0
Thus fRMS ~ 17.74
1
(ii) First eight terms : Zag +
Thus fRMS ~ 17.95

1
5(5% + b3 + b3 + b + b + bE + b2) ~ 322.32

= 38(c) True RMS value given by

1

5 1 fF 5 B 5
frrve = —/ [f())°dt = 50/ (500mt)"dt
T /o 0
= 1207r2 ~ 328 987
frus = 18.14

Actual - Esti t
% FError = cua SUmate % 100
Actual

giving the estimated percentage error in estimates (i) and (ii) as 2.20% and

1.05% respectively.

] 39(3.)
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Pirst five non-zero terms are :

30 30
—15 — 1+ =201
o C1 j"ﬂ'( +5') 71'( j)
30 30 . 10 . 10 .
ca=—=——j e=—(1-7)=—(-1-7)
jm T g T
=0 — ()= 209
Cq = Cy _jﬂ' Vi - 1

39(b) Power associated with the five non-zero terms are

Po="" —15W
15
P 1{2| 2] 2(1350)2 24.30W
= c = . = .
T 1 15
1 2
Py= 2 2= Z(9.55)2 = 12.16W
p= (2] e 7] = (0.55)
1 2
Py=_—[2 2= 2 (4.50)2 = 2.70W
2= (2] e [P = - (450)
P,=0

1 2
Ps= 2| Y] = E(2.70)2 = 0.9TW
Total power delivered by the first five terms is

P=F+P+ P+ P+ P,=5513W

39(c) Total power delivered by 15€2 resistor is

5/4
p- 1 1/ 602d~¢]:i 607 ° = 60W
0

5
4

[

:B[E 15

39(d) % of total power delivered by the first five non-zero terms is

55.13

100 = 91.9
60 7
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Exercises 4.7.4

= 40

Based on one term

Based on two terms

(MSE)y = % {27: — Tr(f)2 — w(gi)ﬂ =0.10

Based on three terms

(MSE)s — % [27? - W(%)Q - W(%)Q - W(%)Q} — 0.0675
m 41(a) From given formula
Polt) =1
Pi(t) = %i(# — 1) =t
Pa(t) = éj;(tg — 1) = %(3::2 —1)

or from given recurrence relationship
2P, (t) = 3tP(t) — Po(t) = 3t° — 1
Also from the relationship
?)Pg(t) = 5tP2(t) — 2P1(t) = 5(315 — 1) — 2t

1
giving Ps(t) = §(5153 — 3t)

41(b)
1 1 ! 5 5 d
P, (O)P.(t)dt = ——— DT — 10" Dt — 1)dt, D= —

[ Patwpuar = o [ ome et - -
- 1
o omibnplpl 0T
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Integrating by parts m times

1
_ (—1)m/ DO — 1y D (e — 1)t
If m +# n suppose m > n then m + n > 2n which implies that
DR — 1) =0

so that 7, , =0

If m = n then

1
[ S (—1)’”/ (£2 = 1) D2 (e — )7t
1

— (2n)l(—1)" /_1 (t* — 1)"dt

1
— 2(2n)! /01(1 —tH"dt

Making the substitution ¢ = sin@ then gives

T w/2 _— ' 2 9
I = 2{2n)! TR = 2(2n)] e —
non (2n) /0 COS (2n) 1 3
22n+1
— E
2n 1)

and the result follows.

41(0) f(t) = C()Po(t) + 1 Py (t) + CQPQ(t) + ...
Multiplying by Py(t)

1 1
/ FOP ()t = co / P2(t)dt = 260
—1 —1
giving

1 1
/ (1)1dt+/ (1)1dt = 0 = 2¢g so that ¢g = 0
—1 0
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Multiplying by P (t)

L/f@ﬂ@ﬁq/rﬁ@ﬁgm

_1 _

giving
/ (—1)tdt + / (1)tdt = 1 = ¢y so that ¢y = —
1 0 3 2
Likewise
1 1 5
/ f) P (t)dt = cQ/ Pi(t)dt = =C2
1 —1
giving

1 ¢ 1 /0 2
5/ (—1)(3t% — 1)dt + §f (1)(3t> — 1)dt = 0 = 502 50 that ¢ =0
| 1

and
1 1 2
‘/f®%®ﬁ@/_%®ﬁ7%
1 —1
giving
1 f° 14! 2, 7
_/ (—1)(5t3 — 3t)dt + _/ (1)(5t> — 3t)dt = —= = Zcg so that cg — ——
2/ 4 2 Jo 7 8
42 Taking

flz) = coPo(x) + c1 Pr{x) + coPolz) + s Pax) + ...

and adopting same approach as in 41(¢) gives

1 1
fl flx)Po(z)dx = ¢ fl Pé(z)dr = 2¢

giving

L 1 1
/ xde = — = 2cg so that ¢g = —
0 2 4

1 1
/ F(2)Pi(2)de = e, / P(ayin = 2

_1 _
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giving
1
1 2 1
/ 2dr = - = —c¢1 8o that ¢ = =
; 3 3 2
1 1 9
/ flx) Po(z)dx = 02/ Pi(zx)dx = =C2
—1 —1
giving
1t 12 5
/ z(3z% — 1)dx = = = Zco s0 that cg = —
2/, 8 5 16
1 1 9
/ flz)Ps(x)dx = Cg/ Pi(z)dx = 73
—1 —1
giving
1t 5 2
— [ x(5x” — 3z)dzr = 0= —¢3 g0 that c3 =0
2 /o 7
43(a)

Lo(t)y = (tPe ) =1
Lity=e(-te P tety=1—-1¢

Using the recurrence relation

Lo(t) = (3 —)L1(t) — Lo(t) =2 — 4t + 2

L3(t) = (5 — t) La(t) — 4L1 (1)
= (5 —t)(t* -4t 4+ 2) — 4(1 = ¢t)
—6 — 18t + 9t — t°

43(b)  This involves evaluating the integral [ e ‘L, (t)L,(t)dt for the 10

combinations of m and n.

43(c) If f(t) = > ¢, L.(t) to determine ¢, multiply throughout by e=L,,(t)
=0
and integrate over (0, co)

/OOO e L () f(t)dt — /Ooo S e Lo (O Lot
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Using the orthogonality property then gives

/OOO e 'L, (t)f(t)dt = ¢, /OOO e 'L, (t)L,(t)dt

— cp(nl)?

giving ¢, = 5 / e 'L, (t)f(t)dt, n = 0,1,2,...
(n!)? Jo

m 44(a) By direct use of formula

Ho(t) = (—1)%F 2e7t/2 = 1

2 d 2
Hi(t) = (—1)e" 2 —e /2 =y
1(t) = (=De” 7 e

Using recurrence relation

Hﬂ(t) = tanl(t) - (n - 1)Hﬂ*2(t)

Ho(t) =tt—11=1t>—1
Ha(t) =t(t* — 1) —2(t) =7 — 3t
Hyt) = t(t® —=3t) —=3(t>—1) = t* —6t2 + 3

44(b)  This involves evaluating the integral [~ e /2H, (t)H,,(t)dt for the 10

combinations of n and m.

44(c) It f(t) = > ¢, H,(t) to determine ¢, multiply throughout by eI (1)
r=0
and integrate over (—oo, c0) giving

/ ) et /2L () F(E)dt = / ) S e 2L () HL ()t
oo T =0

= ¢, f et 2 H (O H, (4)dt

= cpy/ (2m)n!
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so that
TER R Hn()dt

v ]

m 45(a) Directly from the formula

To(t) =cos0 =1
Ty (t) = cos(cos™ ) =t

then from the recurrence relationship

To(t) =2t(t) —1=2t> — 1

Ta(t) =26(2% — 1) —t =48> — 3t

Ty(t) =2t(4t> —3t) — (2 — 1) =&t* — 8 + 1

To(t) = 26(8t1 — 82 + 1) — (483 — 3t) = 16t° — 206> + 5t

T (0) T (1 .
45(b)  Evaluate the integral fjl %dt for the 10 combinations of n
and m.
45(c) It flty = Z e Tw(t) to obtain ¢, multiply throughout by

(t)/+/(1 —t?) and 1ntegrate over (—1,1) giving

PO [ e T (T (1)
/_1\/(1—;52)&%_/ Z 1—t2dt
dt T,=0,1,2,3,...

/\/ﬁ

[ com, n=>0
T\ Cny, nFEO

Hence the required results.
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] 46(3)
w, (L) o
'
i !
'
!
4 + > &
o e % 3 T
wi e £
%
y ]
]
(] '2' -‘;‘ ‘2. .'1 —r t
5 :
"/\"'r ! :
Wy (&) A
)
— —
4.r * t I
H H H
' J !
ke ! ] o 6
-4 T, r— >
G Yy * T
] .
-4 . | K
wiley A
./.ﬁ' T ————  —
! i ! | !
' i ! : ‘
] 1 \ M 1 :c
R
1 » + ]
( i i ] )
-/ﬁ' | S—— | O —

To show they are orthonormal on (0,7) evaluate the integral fOT W, ()W, (t)dt
for the ten combinations of n and m. For example

T T 1
/0 Wo(t)Wo(t)dt = /0 ?at =1

and it is readily seen that this extends to fOT W2(t)dt =1

n

T T/4 1 T/2 (_1) 3T /4 1 T (_1)
Wi(t)W- tdt:/ —dt+/ —dt+/ —dt+/ —dt =0
/0 W= 7 r/a T ro T Jar T
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46(b) f(t) = coWo(t) + c1Wi(t) + c2Wa(t) + ... where f(t) is the square wave
of Exercise 40. In this case T = 2x. Multiplying throughout by the appropriate

Walsh function and integrating over (0,27} gives

27 27
1
Wo(t) F(t)dt = ¢ W2 (t)dt = cg, Wo(t) = —
; () f(t) ; o (®) (t) Ton
giving
1 27 1 T 27
— Lf(t)dt = ——— dt — dt| =0
o= s~ [ a— [ ar
%W d QWWQ d % Ve O<t<nm
; 1(t)f(t)t—010 pt)ydt = e, Wi(t) = _ﬁ= .
giving
1 T 27
¢ = —— dt—l—/ —1)(—1)dt| =27
ol [ enena] -
om L, o0«<t<Iir<t<2n
Wat)f(8)dt = o, Wolt) = ¢ V27 57
0 _ﬁ, §<t<§ﬂ'
giving
1 w/2 ™ 3771- 27
0p = ——— 11dt+/ 1—1dt+/ -1 —ldt—l—/ —1)()ydt| =0
o= = e [ wnaes [ 7 e [ D

2 2

Mean square error based on three terms is
— t)|“dt — = — dt — (/2 =0
sl Uora= Sl = o [ - a7

This is zero in this case simply because the series based on three terms is exact as

Wy(t) exactly ‘matches’ the given square wave f(¢).
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Review Exercises 4.9

=1
17 11" =2
ao—/ tgdt{—t?’} —
T Jo T3 g 3
1, 1182 t 2 T
ap = — t“cosntdt = — | —sinnt + —Qcosntf—ssmnt
T Jo Tn T n 0
2
:—Qcosmr:Q
T 1] ¢ 2 2 T
b, = “sinnidt = — ——cosnt + — sinnt + — cosnt
0 T T T n 0

Thus, Fourier series expansion is

2 XD XD
T 2 T 4
)= — —(-1)" t - in(2n — 1)t
J(t) 6+;n2( )" cosn +;[2n1 w@n 1) sin{2n — 1)
—Zisin%@t
2n
n=1
Taking t = © when the series converges to #2/2 gives
2 2 (e ] (e ]
T T 2 2
—_—=— —{(=-D"(-1)" = —
=1 72
l.e ;m?
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2

ag =

1
h‘
S~
P
Wil o
o~
Q
vy
+
Wl =
ST
<3
S
—~
3
|
o~
g
Q
Iy
|

/3 ™
1 17 1 2
2 4|2 —t)? ==
3 |, 3| 2 PN

T

1 —N—
S~

2

w

2 1
—t cos ntdt + — 3 / (m —t)cos ntdt}

S
3
Il

A0 A0 A0 30 /W

/3
2t (-t . 1 8
= sinnt + —2 cosnt + = sinnt — —5 COS nt
3n 0 3 n n x/3
1
= {ﬁ cos n?w 2 52+ cos mr]}

Thus the Fourier expansion of the even function is

flt) = g % z:: 3 {cos n37r - %(2 + (— 1)"’)} cosnt

At t = %w the series converges to %n.

m 3 Sketches of odd function fi(¢) and even function fo(t), having period T and
equal to f(t),a <t < %T, are plotted for —T <t < T below:

Af®

/\ /4 1
-T - : o m \\\\\;////?
—m/4

A5
1r/4I 2

~Y

-y

T -2 o  m T
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3(a) Half range Fourier sine series is

= 2nmt

flt)y= nz_:lbn sin T

with /4 /2
4 T 2nmt T 1 2nwt
b”:TUo tsin = dt+/w/4 (37~ t)sin =7 dt]
4 Tt 2nwt 4 T2 . 2nmt t/4
=_—< |- oS sin
T 2nm T (2nm)? T |,
o T/2
Ll T (ET B t) o8 2nmt T sin 2nmt
2nm 2 T (2nm)2 T 74
0, n even
8T nw 22T2, n=159,...
= nn)? sin —- = n2ﬁT
s, m=3,7,11,..
némw

Thus Fourier sine series expansion is

2 s (-t 2(2n— Limt

f(t)_w?n_l (2n — 1)2 T

3(b) From the sketch of fi(¢) the series converges to —T/4 at t = —1T.

3(c) Taking t = iT then sin %mﬁ = (=1)**+! giving

1 27 1

SN 2
2 — 1)

4 T2 = (2n — 1)

so that the sum of the series Zl m is %.
=

=4
g(—z)e+ fl-x)] = cg(—z) + g(~x) f(~x)

= —cg(x) — cg(z)f(z) from the given information
= —g(@)lc+ f(z)]
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Thus the product is an odd function.
Since y = 6 is an odd function and y = 62 is an even function it follows from the

above that F(#) is an odd function. Thus it has a Fourier series of the form
F(9) = Z by, sin né
n=1

with

3w

™1
/ —0(r* — 0%) sinnddb
o 12

s

1 0 1
= a{ﬂ [_ﬁ cosné + ﬁsinne]o
6° 362 66 6 "
— [—— cosnf + —sinnf — — cosnf + —Sinne}
n n2 n3 nt 0
1 o 1
_ _ n+1
~on {?‘m”ﬂ =3y

Thus the Fourier expansion is

n=1 n
=5
A®
’n’-.
-2 -7 (¢ kg 27 ;t
-+
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Clearly f(t) is an odd function so it hag a Fourier expansion of the form
flt)y= Z b, sinnt
n=1

with

9 w/2 ™
b, = — {/ —tsinntdt + / (t — m)sin ntdt}
T LJo /2

2 ([t I e (t—m) 1"
= —cosnt — —sinnt + —7cosnt—|——251nnt

T 2

n n 0 n n /2
2 2 . onw
= — | ——s8in —
7| n2 2

Thus Fourier expansion is

OEESY (2(;1);)2 sin(2n — 1)t

n=1

o
X

Since f(z) is an even function, over the interval —1 < x < 1, it may be represented

within this range by the Fourier cosine expansion

ag

(ORE

(e ]
+ E Ay, COSNTE
n=1
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with

2 1 1 ]1°
ag = — —dr =2|—x| =1
1 Jg 2e Ze |,

2 fc 1[1 , }
dy, — — COSﬂTT%d%Z— — SN NTX

2e Jg €| nw o
[
= —sinnwe
nmwe
Thus Fourier expansion is
(e ]

1 sinnme
5 E COSNTT

valid in the interval —1 <<z <1

m 7 Half range Fourier sine expansion is

= i by, sin nt
n=1

with
2 [T t.2
bn/ (17—) sin ntdt

T Jo s
20 1 t.2 2 , i

= — ——(1——) cosnt——(l——)smntJr cos nt
Tl n T nim 2 0
2 4

= -H"* -1
n7r+n37r3[( ) ]

Thus Fourier expansion is

f: n—i{ - nfﬁg[l () sinnt}

=1

s 8 Half range Fourier sine expansion is

(e o)
= E by, sin nxdx
n=1
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with

w/2 ™
{f xsinnzdx + / (m — x)sin mﬁd;r:]
0 w2

2

-

2 T o, m/2 (m—x) 1, T
= — ——cosn:z:+—251nn:z: + |- COSNET — —5 SINNT

T T 7 o T T /2

Thus half range Fourier sine expansion is

4 n+1
— E sm(2n — 1)z
T 2n —

Half range Fourier cosine expansion is

0
aQ
= ? + E (A, COS NI
n=1

with

)
[ew]
\

w2 ™ .
[/ md:z:+/ (W—I)dm:| = —
0 w/2 2

w2 ™
[/ x cos nxdr + / (m — x)cos n:z:d:z:]
0 w2

)
3
Il

w/2 71'
1 T — T 1
sinnx + — cosnx + sinnxr — — cCosnT
n? n n?
0 w/2

I
Al Al Al A
——
1
|8

n odd
- { %[(—1)”/2 —1], n even

wn

Thus Fourier cosine expansion is

77_20082 2n—1
N (2n —1)2
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Sketches of the functions represented by the two Fourier series are:

Afx)
nf2
+ i .
—27|' - O T i 27|_ }
—n/2
K Sine series
Afx)
~2x - ' Y l m ‘ 2 ;
Cosine series
A fx)

®rY

1 (" 1 2
= —/ e“dr = —[e" — 7 "] = —sinhr

T J)_ 7 T

IR n? 1[1 , . 1, "
— e’ cosnxdr = -— | —e”sinnr + — e cosnx
n2+1 rw 2 .

™ n n

—T

(D" r oy 20"

_ sinh
m(n? + 1) rmEr1)
1 71' . n2 T e ) T
; _We sin nxdx = m —ECOSTlﬂj‘l‘ ESll’lTLﬂf -
-1\
I Gl
m(n? +1)
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Thus Fourier expansion is

1 2 & g 2 = (—1)"
f(I)SIHhW+7TZ_:1 Smhwcosm:—W;ﬁggjlsinhWCOSﬂw
? sinhr| 2 Si r in )
= —gsinhr| - (cosnx —nsinz
72 2 —

m 10(a) Half range Fourier sine expansion is

XD
= Z b, sinnt
n=1

with
2 ki
b, = —/ (m — t)sinntdt
0

-
2 (w—1) 1 T
= —|= cosnt——281nnt = —
T n n g N
Thus Fourier sine expansion is
flt)y= i 2 sinnt
N n=1 n

10(b) Half range Fourier cosine expansion is

ap >
= — tn COSNE

with

aoz/ (m—t)ydt ==
0

i

Ay, —
T 2

n n 0

) 0, n even

= {1 = 4

= 2l T = g odd
T

§ 2[(m—t 1 T
(m —t) cosntdt = — {(W ) sinnt — — cosnt

SRR
h
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Thus Fourier cosine expansion is

14T 1
ft) = §7T—|- ;;Wms(?n— )t

Graphs of the functions represented by the two series are:

(a) A f@
™
-2 -7 O ™ 2;!' ;t
-7
(b) p 1)
)
—2:7r — o x 2:1r ;t

m 11 Since f(t) is an even function it has a Fourier series expansion

(o]
flt) = a_20 +;ancosnt
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where
aO/ flyde — * / —tdt+/ tdt| — =
TSz 3 -7 0
1 0 iy
Uy — — {/ —tcosntdt + / t cos ntdt]
™ —7 0
1 t . cosnt,? t . 1 “
= — [——smnt— 5 ] + [—51nnt+—gcosnt]
T 0 T —n n 7 0
2 1= 0, n even
—W(cosmr— )= ~ A oodd

Thus the Fourier expansion of f() is

4 & 1
n=1

x
Since I + x = f(t) is linear, response is sum individual responses.
-
Steady state response corresponds to the Particular Integral. For f3(t) = 5 steady

, 7
state response is xp(t) = 5

When f{t) = coswt then steady state response is of the form =z = Acoswt +

Bsinwt. Substituting back and comparing coefficients of sinwt and coswt gives

Taking w = (2n — 1) then required steady state response is

1 cos(2n — 1)t + (2n — 1) sin(2n — 1)t
xzﬁ”EZ(znl)Z{ 11 (2n 1)

m 12 Since f(¢) is an even function Fourier series expansion is

f(t) = % + ﬂz_:lan cosnt
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where

1 27 1 T 27 o —
aoﬁfo f(t)dt;{/o idt+/ Lﬁt)dt}

1 r 1 T 1 27
= | [=#? ot — —t2 =1
=L z]w]
1 T 2w
n = —5 / t cos ntdt + / (27 — t) cos ntdt}
w 0 ™
= ||—sinnt + — cosn ——“sinnt — — cosn
w2 | tn n? 0 n n? =
4
2 - dd
= (cosnm — 1) = 2,20 M °
wn? 0,n T n even
Thus Fourier series expansion is
cos(2n + 1)t
1) =35 w2 Z (2n + 1)2

It can be shown by direct substitution that this satisfies the given differential

equation. Alternatively we solve the differential equation

d? I
Efg +wiy = 5~ Z Qp, COSW,LT, w not integer
n=0

Solving the unforced system gives the complementary function as
= Acoswt + Bsinwt

The particular integral is the sum of the PI’s for the individual terms in f{t).

In the case of the % on the RHS response is

ygzﬁ

For the term o, cosw,t the PI is of the form

Yo, = C coswyl + Dsinw,t
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2
Substituting in —g + w?y = a,cosw,t and comparing coefficients gives

C = o, /{w? —w2), D=0 so that

ke

Qp
Yo, — 3

2
W —ws

COS Wyl

Thus, the solution of the differential equation is

. 1 a,
y = Acoswt + Bsinwt + o Zi

From the given initial condition y = dy/dt = 0 at t = 0 so that

1 - a
B=0and A=—— —
o 2w2+ﬂz_:0w2w,%

giving on taking o, = —4/[x%(2n + 1)?], w, = (2n + 1)

4 i cos(2n + 1)t — coswt

1
- (1-— N — —
Y=ol meosel) =25 ) G et et 1

=0

m 13(a) Since f(¢) is an even function Fourier expansion is

flt)y= % + ;an cosnt

where
ag=— [ fO)dt=— —tdt+ [ tdt| — =
T™J_x ™ —7 0
1 0 iy
Qp — — {/ —tcosntdt + / t cos ntdt]
™ —7 0
1 t . cosnt,® t . cosnt, ™
—— [——smnt— ] + [—smmH— ]
T n n? < _g n n? o
) Q, n even
= — _— pu— 4
ng(cosmr 1) ~ 2 odd
T
Thus Fourier expansion f(t) is
4 & 1
f(t) = r_Z cos(2n — 1)t
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Since b, = 0 Parseval’s theorem gives

I 2 Lo 1 o
— t]*dt = - -
o | OP = Gad 53 e
w2t w116 1
b T z‘ﬁnz_lm
= 1 7l
0T, rearranging, E e an
— (2n — 1) 96

13(b) Differentiating formally term by term we obtain the Fourier expansion of

the square wave at
4 — 1
)= — —— sin(2n — 1)t

Check.  Since g(t) is an odd function it has Fourier expansion

(e o)
= Z b,, sinnt
n=1

where

by, — [/ — sinntdt —I—/ sin ntdt]
0

T

1 1 1 T
=_||= osnt + [——COS”t]
v n n 0
4
= [1 —cosnw] =< pat odd
nw 0, n even

confirming the Fourier expansion as

4 = 1
t) = — ———sin(2n — 13t

m 14 Complex form of the Fourier series is
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where
1 f7 t
Cp — — sin —e 7™t
2 f
L 1, :
= L [e27" —e 27" e at
47y J_ .
P L LA L P
Amy J =
) [ L LA e } .
CAmilgn - 3) —ilnt 9],
Using the results /™™ = cosnm + jsinnm = (—1)" = e "7
%jw m 1ok ul . ,j% .
29" —cos —+jsin — =7, € = —
‘ 5 J 5 3 J
gives
1 J J J J }
tn= + + + —1)"
[ R e R e R e | (8
B g1 dn
o an? —1

Thus, the complex form of the Fourier series is

1 G B L
0= 3 e

=—0D

= 15(a) Following the same procedure as in Exercise 11 gives

20
ayg = —

-

0, n odd, n#1l
[ ——, N even
w(n2 —1)
a1 — 0
b, =0, n#1
by =5
so that the Fourier representation is

10 20 = COS 2rewpt 2w

U(t):?+5SlnLUOt*? m, Wy = T
=1
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15(b)

1 T2
Total power = T / 100. sin® wotdt
0

50 T/2
= — (1 — cos 2wqt)dt = 25
T Jo
Thus total average power delivered to 10€) resistor is
25
P,, = — =25W
10

: - : . . —20
Coefficient second harmonic in series expansion v(t) is as = —

When applied to 10€2 resistor power associated with this harmonic is

1.20.21 20

>(30) 10~ o2

Thus % of the total power carried by the second harmonic is

100 20 800
: = ~ 9.01
P,, 972 972
m 16(a) A sketch of g(t) is
490
—.! : ' : : [} M
A R
i i ; : | ;
A J o b . :
~fx 'ix: “2r! -K': ° < ;’K {3& ox >t
Lo A R
i‘-—"'—-: '__; 'pl :.———l. i—

16(b) Over the period —7 <t < 7w ¢(t) is defined by

gty =-1, —w7<t<0
gt)=1, 0<t<m

Since ¢(t) is an odd function it has a Fourier series expansion of the form
o0
g(t) = Z b, sinnt
n=1
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2 ™
with &, = —/ 1.sinntdi
T Jo
2 1 w ) 0, n even
= | — — = — — —_ L pr— 4
Tl'[ ncosnt]o mr[l (—1)7] g odd

Thus the Fourier expansion of g(¢) is

giving the Fourier expansion of f{t) =1+ g{t) as

4 = osin(2n — 1)t
t)y=1+4+ — _—
1®) * T ﬂz_:l (2n — 1)
m 17 Complex form of Fourier expansion is
f(t) — Z Cﬂejﬂt

1 2w ] 1 2 '
where ¢, = — f(t)e—ﬁntdt = / te— 3t gt
0

21 Jy 27
2w

b {—,te—j”t 4 LQ e—jm}
2| jn n o

Using the results e 72" = cos2nm — jsin2nm =1, ° = 1 or have

1 2 1 '
2r 't gn in  on
1 27
When n =0, cp= [, tdt=m
2T
Hence complex Fourier series is
= j nt
t) = ~e’
O =mt 3 e
=0
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m 18(a) Since v(t) is an odd function its Fourier expansion is of the form

2nwt
v(t) = Zbﬂ sin%

= ——— €08 = —|1 —cosnm
2nw T 0 TLTF[
, i even
e b,=< 4
—, n odd
nw

18(b) Response 4,(t) of the circuit is given by

i, ()
dt

+ i, (t) = v.(t) = sinwt

Taking Laplace transforms with i,,(0) = 1 gives

w
(s+ 1)(s2% + w?)
o 1 w s 1 2
T w4l (s+1) 7w2—|—1~82—|—w2+w2+1‘32—|—w2

I,(s)=

which on taking inverse transforms gives the response as

w ¢ w .
— ———— ¢coswt + sin wit

:w2+1€ w? +1 w? +1

(1)
Since the first term decays to zero the steady state response is

= — (sihwl —wcoswt
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As the system is linear steady state response i5(t) to the square wave v(t) is
[e:u]
W®) = 3 )
n=1

where i, (t) is the steady state response to wv,, (t) with

wn =22n — )w/T

Thus
, 4 1 1 _
is(t) = Enﬂ on =1 [w% m 1](smwﬂt — Wy, COSWyt)
| ] 19(&)
I 1 G —58 "
cos”™ 8§ = [5(63 + )]
1 nj n n—2)7 —nj
= 2—n[e 30 4 <1>6( 204 +e 5'9]
1 0 —njb n —2)48 —(n—2)56
:7[(6719 1N )+ . (6(“ )7 Le (n—2)j )+:|
271
Hence

5o —

1 2 2 2
cos? § = 2@[20082&9+ ( f)2008(2m2)9+ ot ( &1>200529+ ( ﬁ)]

Putting cosf = ¢

125 = 1 [Tou(t) + (21%) Tono(t) + ...+ (&2”’ )TQ(t) + %(%)To(t)]

g2rl ;[T2ﬁ+1(t) + (2& - 1)T2,.;1(t) +ot (Q'H 1>T1(t)]

Note that Ty(t) may be omitted.
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19(b) cosné + cos(n — 2)8 = 2cos(n — 1)@ cos @ Hence putting § = cos™1 ¢

T(t) + Tro(t) = 2615 1 (1)

19(c)
To(t) = cos(0.cos™ 1) = cos0 = 1
Ty (t) = cos(1.cos™ 1 t) = cos(cos 1 t) = ¢
To(t) = 2¢T1(t) — To(t) = 2 —1
Ts(t) = 2t(2t° — 1) —t = 47 — 3t
19(d)

1
55t LT L6t — 8 = ?(i’%(t) + 5T5(t) 4+ 10T4(¢))

_ %(ﬂ(t) +AT(t) +3) + %(Ts(t) + 314 (¢))

+6T1(t)—
1 5% 33

= —Tx(t Tyt —T5{t
T s(t) — 84()+168()
5% 95 79

— =T5(¢ — Tty — —TH(t
5 2(t) + 3 1(t) 3 o(t)

19(e) The required cubic polynomial is obtained by omitting the first two terms.
It is therefore

33 5 95 79
4t — 3t 20 — 1)+ —t—
16( )- 2( I+ 8 8
33 B2 9115 59
oy 6 8
Since | T.(¢) |< 1 over (—1,1) the error can nowhere exceed = + 2 = 1L in
absolute value. An error of this magnitude occurs at t = —1, since T,(—1) =

cosnm = (—1)".
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= 20

xWU)= smut
r S

N e ) e R R e el o

t
'
i
1
!
J
|
1
'

—M -

If the input is z(t) = X, sinwt then the input and output y(t) waveforms to the
nonlinear element are shown in the figure. Clearly the output waveform is an odd
function of period m/w and over the interval 0 < t < 7/w

0, 0<t<ty
y(t)=q M, t1<t<Z -t
0, g—t1<t<§

The amplitude of the fundamental harmonic is

9 T [w
by = —— t) sinwtdt
] L
9 T [w—11
_ v M sin wtdt
T Jy
2M
= — ——[cos(m — wty) — coswtq]
T
aM
= —— coswty
T
2
Since sinwt; = 2% we obtain coswt; =4/1 — (2§Q)
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Thus the required describing funetion is

4M{1_( A )2]%

N(X;) =
Limit cyele will it N(X;) > L
imit cycle will occur i i) =
Y KG(jw)
N(X;) will have a maximum value when —(f)‘z = 0 that is, when X; = A/ﬂ

Maximum value is N{X;)max = %. Since this is real we are only interested in

real values of 1/(KG(jw)).

In this case

1 1
— = —qw(Tyj DIV LY 1
KGw) Kjw( 1jw + 1){Thjw + 1)
1 . .
= E{*TlTQJWS — (T + To)w? + juw)

and for this to be real
—N T +w =0 giving w?=1/(T1T>)

At this frequency

I+ Tz)wg (N + 1)
K KT

magnitude ———— = —(

KG(jw)
and the required result follows, namely that limit cvcles will not occur if

AMK 115

A
- T T+ T3
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The Fourier Transform

Exercises 5.2.4

s 1 0 ) o )
Fjw) = / ette It dt 4 / e eIt dt
—oo Q0
 2a
a4 w?
2

0 T
Fljw) = / Ae™IE dt + / —AeI%t dt
0

-T

T
/ 27Asinwt dt
0

274
= j—(l—cosz)
w
454 5T
= —sin” —
w

— jwAT? ginc? (%)

0 T
P(jw) = /T (‘?+A>e—jwt dt+/0 (—%JFA)(M dt
T 7 At
2/ (——+A> cos wit dt
0 T

T
— AT sinc?® (%)

Exercise 2 is 17" x derivative of Exercise 3, so result 2 follows as (jw x T}
x result 3.

Sketch is readily drawn.
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n 4
2
F{jw) = / 2Ke ' dt — 8K sinc(2w)
-2
1 .
G(jw) = / Ke 79 dt = 2K sinc(w)
~1
H{jw) = F(jw) — G(jw) = 2K {4 sinc(2w) — sinc{w}))
=5
Fljw) = / eIt dt + / eIt dt +/ —eTI¥t e
—2 —1 1
1 . . . .
[2(efw — vy 2w —25w
jw[ (e e ) — (e 2 ]
= 4sinc(w) — 2sinc(2w)
= 6
F(j ): 1 /a (ejat e jat) —juwt dt
27 J_=©
fla) = i/g el eivt qf = —/ ella=wlt gt
27 J_«
_ sinw?
ila—w)
- ju T
F(J'w) - f(a’) + f(_a’) 2 _ g2 SN W=
n 7

F(jw):/ e sinwgt.e I dt
0

flwo) — f(—wo)
/ Satilwo—w)t) gy

(a—s (e — ) ) :;j((a+jw1)_m)
"

) + wj

where  f(wo) =

w\HmH

S EGwy =

(a
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FC(ZL‘) = i/o (ejt -+ e_jt)(ejwt + e—ja:t) dt

define gz, b) = / g lotelt gy
0
1 .

_ jlbtz)a 4

b+ z) 5 |

1
Fo(@) = Zlo(z 1) +g(z, —1) + g(~2, 1) + g(~2, —1)]

1 [sin(1 + z)a N sin(1 — x)a
1+ = 1 —=

2

=9 Consider F(z) = [, 1.e3% d¢

= ?j(cosa:z: + jsinax — 1)

sin ax

F.z)=ReF(x) =

x

Fu(z) = Im F(z) = 1—cosax

xT

= 10 Consider F'(z) — f;° e *ted®t qt

a+tjzx
a4 a2
F.z) =ReF(x) =

a
a? + x?
T

Exercises 5.3.6

m 11l Obvious

n 12 ()Y (jw) + 3w (jw) + Y (jw) = U(jw)
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=13
i\ s sinc =
2
{
T ° 7% "t
e A
1 iw3 /2 w3 /2 w
- —iw tw : -
ée +e ) sinc 5
-~z -1 o ‘ = 1 = ;(sin(2w) — sin(w))
= 4sinc(2w) — 2 sinc(w)
s 14
T
2 ,
F(jw) = / . cos(wot)e™ ! dt
-2
L sl —w)g + o sn(w W)y w A
= sin(wp — w)— sin(wp + w)— w w
wo — W 0 2 wytw 0 2 0
T {sin(wo —w)T  sin(wo +w)%}
2| (wo—w)% (wo +w)%

Evaluating at w = +wg =

F(jw) =

N[ N

: T . T
sinc(wg — w)a + sinc(wo + w)§

= 15

T
F(jw) = / coswot.e I« dt
0

T
where  f(wo) = / el (wo—wlt gt
0
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1

~ lwo —w) et ] W 7 wo
: l l Flwo—w)T
Fljw) = 5 m(e -1
1 .
—flwo+w)T 1
o) ¢ )
' FwoT /2 T
= e*j‘wT/Q |:ZO — Sil’l(wo — w)E
e*jWoT/Q ] T

Checking at w = Lwy gives

T . T : T
Fjw) = 56*3“@/2 [eJWOT/Q sine(wy — w)E + e T 2 gine(wy + w)g}

= 16

1
Fjw) = / sin 2t.e 7t dt
~1
1 1
_ 6—j(w—2)t _ e—j(w—l—Q)t At
27 /1
fla) = / e~Iw=alt g4 — 2ginc(w — a)
—1

Fljw) = if(a) — if(—a), a=2

= j[sinc(w + 2) — sine(w — 2)]

Exercises 5.4.3

m 17

1

I H(8)282+38+2

(t) = (et —e 2)E)
1 1
1+ jw 2+ jw

H(jw) = / (et —e e W gt =
0

= ; as required
T oL agg, o roddred
s+ 2 _ VE] V3
]:[ H(S) == m h(t) = & 1/2t (COS Tt -I_ N@SIH 2t>£(t)
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Consider G(wo) :/ e~ (1/2tjw—jwolt 44
0

1
5 +J(w—wo)
1 1 V3 V3
H(jw) = 5Glwo) + 5G(~wo) + 2—j(G(W0) = G(~wo))wo = -
. 2+ 45w 6
H —_—
So HUjw) = s =307 T 1 fjw — it
24w
1l —w? 4 jw
= 18
yP0
A
P(jw) = 2ATsinc wT
—
-T o T 4+
So F(jw) = (e77%7 4+ ¢“T) P(jw)
= 4AT coswr sincwT
"2 2
19 G(s) = () G(jw) = i
- () (s")2 + V25" + 1 () 1 —w? +v2jw
_ 1
L —1+22
Thus | G(jw) |- 0 as w — 0
and | G(jw) | = 1 as w — o
High-pass filter.
m 20 g(t)=e M — Gjw) = _ 2
a? + w?

f(jt) = %G(jt) — ﬂg(—w) = 7'('6_“|"-’|
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.. 1.
m 21 F{f(t)coswpt} = §F(j(w —wo)) + §F(3(w +wy))

F(jw) = 2T sincwT
o F{Pp(t) coswopt }
= T[sinc(w — wo)T + sine(w + wo)T]

Exercises 5.5.3

o | 73w — wo)ed“Fdw + o /OO T {w + wo)ed“tdw
1 . .
_ _{ pJwot —jFuwot
HCARTR
= cos wpl
= 23

FleT“ot = 2m8(w T wo)
1
oo Fisinwpt} = ?{27r5(w —wp) — 2w {w + wo)
J

= jm|d{w + wp) — d{w — wp)]

1 i .

Py F[8(w + wo) — §{w — wo) | dw
_ Jq —Jwqnt +qwot] __ L3
—5[ Jwobt _ e TIw0t — gin wyt

24 Glw)— | g(te Pt dt; Glt) — Joo glw)e 7 dw

So /_ T HOG G dt

SRC ( / zgwe—f%) at
- [ ao ([ s a)as

_ / " ) F () — / T PG dt

— O — O
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m 25  Write result 24 as
|t - [ Fro
o [ @) F O d = / T F0)C ) de

g(t) = Glw)
Now G(jt) — 2mg(—w) } symmetry
G(—jt) — 2mg(w)

Thus /OO flw)2mg(w)dw / Fjw)G(—jw)dw

or /OO F()g(t) dt — % T F(e) G —jw)dw

= 26 J{H(t)sinwet}

1 RS 1
=5 7oo7r3[5(w—u+wo)—5(w—u—w0)] {Trd(u)Jrju} du
g 1 1 1
fﬁ[ 6(w+wo)—w6(w—wo)]+2Lj+w0—wwo}
Tl'j wo
— 7[(S(L()ero) — §(w —wo)] R iy
m 27
_A/d/Q et dt—Ad . nwpd o /T
an = T 7d/26 =T sinc 5 wp = 2T

Ad & d
f(t) = E Z sinc n%e?m’ot,

N=—00

o0

2w Ad d
Fpo) = ﬁT Z sine m;O 0w — nwp)

Ti=—00

Exercises 5.6.6

- 28
T-1, N-=4 Aw:27r/(4><1):g
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3
Gy = Zgne—j xpxOxmw/2 2
n=0

3
Gl _ Zgneij xnx1xw/2 0
n=0
3
Gy = Zgne—j Xmx2xwi2 _ 9
n=0

3
GS _ Zgneij Xmx8xw/2 0
n=0

G ={2,0,2,0}

= 29
N =4, W" = 67;,17171'/2

o] _[o]

1 0 1 0
;o [O 1 0 1—‘ [
In = “ 0 -1 OJ Ll {OJ
01 0 -1 0 0
Goo 1 1 0 0712 2
o G| |1 =1 0 0 o |2
o G()l o 1 0 1 —1 0 o 0
Gll 0 0 1 74 0 0
Bit reversal gives
2
0
G = 2
0

m 30 Computer experiment.

m 31 Follows by direct substitution.
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Review exercises 5.9

m 1l
1 ) 2 ) _Sil’lI70082$
Fs(m):/o tsmmtdtJr/I sinzt dt = 2 .
=2
F(t) = —%H(—t— 2) + (H(t+2) — H(t—2)) %ﬁ + gH(t _9)
FLHE} ~ = = o)
FLH(E - 2)} — e Liw 4 Wd(w)}
T T
F{H(—t—2)} = ¢* Lw + 7r6(—w)} — ¢ {Jw + 71'5((.()):|
T T [t T
F{fiH)r = F{—iH(—t —2)} + 1 /_2 te It dt 4 F{iH(t — 2)}
- _—msiHCQw
= 3

F{HA+T/2)-H({t-T/2)} = Tsinc%
F{eoswot} = m[0(w + wo) + 6w — wo)]

Using convolution

F{ft)y = % /OO Tsinci;(w —u) (0(u+wo) + 5(u —wo))du

— 0

o | =3

: T T
sine(w — wO)E + sinc{w + WO)E

F{coswot H(L)} = % [T {w — wo) + mo{w + wo)] * {W&(w) + Ji}]

= % /_O:o {m(w —u —wp) + 7o{w — u + wy)} {de(u) + Jrlu] du
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8w — wo) + 8w + wp)] + g1

bo| 3

F{f(t) coswet coswt}
Pl + jue) + Fliw — i)
2

_/“wﬁw+%»+qu—%mX

— o0

T [0{w — we) + 0w + we )]

(0w —u —we) + 0w — u+ w)| du
= JF(9) + | [P+ 2e0) + F(io - 200

Or write as

f(t);(l + cos 2w,t)

ete.

H(it+1)—H(t— 1)+ 2gincw

By symmetry

2ginct > 2n(H{—w+ 1) — H(—w—1)) =2a(H(w + 1) — H(w — 1))

= 7(a) Simple poles at s = a and s = b. Residuec at s = a is e**/(a — b), at s = b

it is e /(b — a), thus

ﬂﬂ:alb@“—&ﬂﬂﬁ)

m 7(b) Double pole at s = 2, residue is

i d o €7 o
hmd—((s—Q) (8_2)2)—t€

s—2 (8

So f(t) = te* H(t)
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= 7(c) Simple pole at s = 1, residue e~*, double pole at s = 0, residue

_ ( et )z(tl)H(t)

siﬂ)a; s+ 1

Thus f(t) = (¢t — 1+ e H(t)

n 8(8_)

Thus -
—sinwpt = / h{t — 7) coswordr = f(t), say

If w(7T) = coswolT + 7/4)

y(t) = /00 h(t —7)coswo(T + m/4) dr

— o0

_ /Oo h(t — (7 —m/4)) coswor dT = f(t + 7/4)

— o0

= —sinw(t + 7/4)

» 8(b) Since sinwgt = coswp(t — 7/2wq)

y(t) = /OO h(t — 7)sinwot d7

— 0

= /00 h(t — 1) coswo(T — m/2uwp) dT

— o0

— /00 it — (7 + 7/2wp)) coswoT dT

— o0

= f(t — 7 /2wy) = —sin(wot — 7/2) = coswpt

] S(C)

390t — cogwot + jsinwgt
This is transformed from abhove to

— sinwgt + j coswot = j ¥0F
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m 8(d) Proceed as above using

eIt = coswpt — jsinwet

=9
Flsgn(t)) = F(f(t)) = Fljw) = ji’ obvious
Symmetry,
F(jt) = % o 2/mf(—w) = 2msgn(—w)
That is
1
it + —msgniw)
or X
- (mﬁ) < Jsgn(w)
" 1 N Gl (O N B Gl ()
T T
ot) (D) _?/oot'r dr — E/_mrt ar — Fis(t)
80

o)== [ I = Fato)

So from Exercise 9

Fri(jw) = jsen(w) x F(jw)

S0
|[Fri(joo)| = lsgn(w)] [F(jw)] = [F(jw)]
and
arg(Fi (o)) = arg(F(jw)) + 7/2, w > 0
Similarly

arg( Iy (jw)) = arg(F(jw)) — 7/2, w < 0

m 11 First part, elementary algebra.

1o t
Filz) = w/_oo E+adyt—a)
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1 1 i a’ t xt
- n . dt
mxi+a? [ |t2+a? t—x 2+ a?
o«

Cx24a?

12(a)

N f(t) dt:FHi(I)

oo b — I

,H{f(ath)}:%/_OO fgaj—;) dt

1/00 Ldt:FHi(aﬁ—x)

sy - [

o t—(atx)

= 12(b)

= flat)

e b — T

H{flat)} =

1f00 ) dt = Fuilaz), a > 0

a

) o t—ax

| 12(0)
Hipany - [T g

o0

R O R IO
- _/ t+amdt_ Fyi(—az), a >0

- 12(d) o
{d—’“}i/ oof

_1
- t—:z:

Provided lim f{¢)/t =0 then

[t|—co
dfl 1 [ f(e) Ld [~ ft)
/H{E}_%/_m (t —x)? dt_wd:r: e t—w dt
d
ZEFHI(I)
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x [ f() e L[t
;/wmd”;/oof@d‘*ﬁ/wt—xdt

= H{tf(t)}

12(e)

13 From Exercise 10

FHi(t) - _7':15 * f(t)

So from Exercise 9,
F{Fui(t)} = jsgn (w) x F(yw)

50

Fljw) = —jsgn (w) x F{Fui(t)}

Thus
1

J{t) = /_Oo mFHi(T)dT = _W/—oo @ 7T)FH1(ZE)dSE

14
falt) = f(t) = JFui(t)

Fifalt)t = Fljw) —jsgn (W) F(jw) = F(jw) + sgn (w)F(jv)

2P (w), w >0
10, w <0

15 X
F{H()} = " + mo(w) = F(jw)

Symmetry
Flst) — Jlt b r(t) 5 omH (—w) — 271 — H(w)
— o[ FS(t) — H(w)]
H(w) ert n %5(15)
Thus _ )
FHH@) = 5=+ 300)
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Then

When f(t) = coswot, wy > 0, then

Fjw) = m[d(w — wo) + d(w + wo)]

80
FLA()} = 2md(w — wo)
whence
) = £(t) — jFu(t) = 6“0 = coswot + j sinwpt
and so

FHi(t) - — sinwot

When ¢(t) = sinwpt, wy > 0
Gjw) = jm[d(w + wp) — d{w — wo)]

and thus
§(t) = —jeot = —j(coswot + jsinwpt)

50

H{sinwpt} = coswgt

16 If A(t) = 0,t < 0, then when ¢t < 0

he(t) = §h(—t), and ho(t) = —?h(—t)

When ¢ > 0 then

That is

ho(t) = sgn (t)he(t) Vi
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Thus
A(t) = Re(t) + sgn (£)he(t)
When A(t) =sint H(t)

1
5 sint, t >0
he (t)

1
——sint, t <0
28111

and since

- 1
sgn (t) he(t) = 5 sint vt

the result is comfirmed.
Then taking the FT of the result,

H(jw) = He(jw) + F {sgn (t)he(t) }

When oo
— . —at —jwt — “
H(Jw)—/ooe e’ dt_a2+w2 a? + w?
then
Q o3
Y _
{ a2+ w? } a? 4 w?
or
a o X
a2 + 2 a? +
Finally
at T 1 /OO a a?
7 V= g + — o g0 Y=
a? + 12 e a® + 2
So
t B a
a? + t2 a? + x?
| ] 17(3.)
oo 2
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= 17(b)
‘ . L
Fyis) = / (cos2mst + sin 2wst) dt = — sin 2wst
-7 s
- 18 N N
= / flt)cos2mst &t O(s) = / f(t)sin2mst dt
E(s) — 50(s / F(tye 327 dt = F(js)
From 17{a)
1+ s
ja T
() 2+ 272g2
whence .
78
E = — O = -
(s) 24 272527 (s) 2+ 272g2
80 L
— J7rs
F oA

agreeing with the direct calculation

o . 1 —jns
F(ig) = —2t —j2wsi dt =
(1s) /0 © o 2+ 272g2

=19
H{f(t-T)} = / f(t —T)cas2mst dt

= / f(7) [cos 2msT(cos 2msT + sin 2wsT )+

sin 2ws7(cos 2wsT — sin 27s8T)| dt

= cos 2n 8T Fyy(s) + sin 2asT F(—s)

m 20 The Hartley transform follows at once since

Fin(s) = R{F(s)} — SIF(s)} = L0(s) + —
From time shifting
Fy(s) = sinms {%5(—3) - Slﬁ} + cosTs Bd(s) + ;‘J
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1 4 COosSTs — sinms

2 T8

= 21 -
H{3{(t)} = / §(t)cas2mst dt = 1

From Exercise 18 it follows that the inversion integral for the Hartley transform is

flt) = /00 Fry(s) cas 2mstds

— 0

and so the symmetry property is simply

f(t) © Fr(s) = Fy(t) < f(s)
Thus

H{1} = d(s)
At once

H{d(t — tg)}/ 5(t — to) cag2mst dt = cas2msty

By symmetry
H{cas 2mspt} = d(8 — s0)

=22
1 1
iFH(S — 80) + iFH(S + 80)

- % /O:O F(t){cos2m(s — so)t + sin2w(s — so)t
+cos2m(s + $p)t + sin27(s + sp)t}+ dt
= /00 F(t) cos 2mspt [cos 2mst + sin 27st] dt
= H{f(t)cos2mspt}
From Exercise 21, setting f(t) = 1
H{cos 2mspt} = ;((5(3 — sp) + 0(s + sg))
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also

H{sin 2mwspt} = H{cas2msgt} — H{cos 2mspt}

— 3(s — s0) — %(5(3 o)+ 8(s + 50)) — ;(5(3 — s9) — 8(s + 50))
23 ;
/ (1+ 75 tdr =tan 1t + g
Thus .
ﬂf{tanlt}:"f{/ (1+7H°1L d’r}"f{g}
_ y:{/_o; (1+72) " H(t — T)d’."} -7{3}

:F{l—itQ *H(t)} {3}

_ j—*{ﬁltg} X {jiw + Wc?(w)} - g x 2md(w)

But from Exercise 1 )
*Iﬁl} _
F{e 1 4 w?

1
]
.77{1+t2} e

and so by symmetry

whence .

F{tan 1t} = me ¥l % {JE + 7?5(@!)} — g % 2 (w)
and so ]

Ly, e
F{tan~'t} = i

24 . .

5 [1 4 coswot] + 5 278 (w) + mo(w — wp) + T {w + wp)]
and

H({t+7T/2) — H(t —T/2) «+» 2T sincw

80

Flx(t)} = /_00 27 sinc {w — u)
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1
X |:7T5(’LL) + 5 (6(w —wp) +d(u+ wg))] du

1 1
=T {sincw + §sinc (w—wo)+ isinc (w+ wo)}

m 25

S0

H(v) = jif(r) cas
H(O) = T1/(0) + (1) + £(2) + £(3)
H() = L10) + £() -~ 72) - £(3)
H(O) = Z1f(0) — (1) + £(2) — £(3)
H(O) = Z1f(0) — £(1) — £(2) + £(3)

1 1 1 1

SHIE

1 -1 -1 1

By elementary calculation T? = 1/4T and if T~! exists, T~! = 4T. Since

T_

IT =1, it does. Then
11 1 17 rH(©) £(0)
B 11 =1 —1| |H() J(1)
T 'H - 1 -1 1 1| |H2| {f@)]
1 -1 -1 1] LH(3) £(3)
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Matrix Analysis

Exercises 6.3.3

m 1(a) Yes, as the three vectors are linearly independent and span three-

dimensional space.

1(b) No, since they are linearly dependent

3 1 1
21 20| =12
5 1 3

1{c) No, do not span three-dimensional space. Note they are also linearly

dependent.

m 2 Transformation matrix is

11
RN e O B CCH CR
= - | 1!  — :7770
V2019 o vz |lo o 1| |8 Y83

Rotates the (ej,es) plane through 7 /4 radians about the es axis.

= 3 By checking axioms (a)-(h} on p. 427 it is readily shown that all cubics
ax® + bx? + ex + d form a vector space. Note that the space is four dimensional.

3(a) All cubics can be written in the form
ax® + bx? 4+ cx 4 d

and {1, =, z2, ;1:3} are a linearly independent set spanning four-dimensional space.

Thus it is an appropriate basis.
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3(b) No, does not span the required four-dimensional space. Thus a general

cubic cannot be written as a linear combination of
(1 o x)a (1 + x)a (1 o xS)’ (1 + :’ES)

as no term in z° is present.

3(c) Yes as linearly independent set spanning the four-dimensional space
a(l —z)+b(1+z)+ c(x® — %) + d(z® + %)

=(a+b)+ (b—a)z+(c+a)x’+ (d— )z’

= a+ Bz + yx® + 52°

3(d) Yes as a linear independent set spanning the four-dimensional space
alx —22) + bz +2%) + ol — 2%+ d(1 + %)

=(a+b)+(b—a)z+ (c+d)x’>+ (d—c)z®

= a+ Bz + yx® + 52°

3(e) No not linearly independent set as

(423 + 1) = (32% + 42%) — (32%  22) + (1 + 2x)

w4 x+22% 22 —32°% x4 2® form a linearly independent set and form a basis
for all polynomials of the form o + Bz® + vxz°. Thus S is the space of all odd

quadratic polynomials. It has dimension 3.
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Exercises 6.4.3

= 5(a) Characteristic polynomial is A% — p; A% — poA — p3 with
pp — trace A — 12

-9 2 1
B; = A 121 = 4 -7 —1
2 3 -8
—-17 —-b =7
A,=AB;=|-18 -30 7
2 -5 33
1
Py = 3 trace Ao = —40
23 -5 -7
B =A,+40I= | —18 10 7
2 =bh 7
3% 0 0
A;—AB;—= | 0 35 0
0 0 35

1
p3 = 3 trace Asg =35
Thus characteristic polynomial is
A% 1207 1 400 - 35

Note that By = Ay — 351 = 0 confirming check.

5(b) Characteristic polynomial is A* — p;A* — poA? — paA — py with
pp — trace A — 4

B1:A—4I:[

-3 4 0 =3
-1 -2 =2 1

2 0 -2 -5
-3 -3 -1 3

1
A=A B, = épgzatraceAgz—Q
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—1 4 0 -3
—1 0o -2 1
Bo=dot2l=1\H» 5 o s
-3 -3 -1 b
-5 2 0 -2
1 0o -2 —4 1
A=A B, = | _7 _3 A épgj:gtraceAg:—E)
0 4 -2 =7
0 0 0 -2
1 b -2 —4
Ba=fatdl=) | 5 2 4
0 4 -2 =2
[2 0 0 0 “
0 -2 0 0 1
A=A By = 0 0 _9 0 = pg = Ztrace Ay =-2
0 0 0 -2
Thus characteristic polynomial is A* — 4% + 222 £ 5X 4 2
Note that By = Ay + 2I = 0 as required by check.
6(a) Higenvalues given by |1I)‘ 1i)\| = X222 =2xA—-2)=0
so eigenvectors are Ay = 2, Ay = 0
Eigenvectors given by corresponding solutions of
(1= Aesn +ep =0
ei1 T (1 — Agegg = 0
Taking i = 1,2 gives the eigenvectors as
ey =117, e5 =1 —17 (1)

6(b) Eigenvalues given by |'3* %, | = A2 =30 4=+ DA —-4)=0
g0 eigenvectors are A — 4, Ay = —1

Eigenvectors given by corresponding sclutions of

(I —Xs)esn +2e5 =0
e+ (2— As)esn =0
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Taking ¢+ = 1,2 gives the eigenvectors as

er =237, ea=01 —1]7

6(c) Eigenvalues given by

1-A 0 —4
0 5-XA 4 [=X2402+L0-81=A0-9DAN-3)(A+3)=0
—4 4 3-A

So the eigenvalues are Ay =9, A9 =3, A3 = —3.
The eigenvectors are given by the corresponding solutions of
(1 —Xg)eqn + Oezo — 4ess =0
Ogz1 + (5 — Aj)eso + degz = 0
—deg e + (3 — Agdeg =10
Taking i = 1, A; = 9 solution is

€11 €12 €13 T
- At e =[-122
3 TR 51 e = | ]

Taking i = 2, A; = 3 solution is

€21 €22 €23 T
—_— == = = =22 —1
=T T S 32 es = | }

Taking i = 3, A\; = —3 solution is

€31 €32 €33 T
=22 Ses—[2 —12
32 6 32 e | |
6(d) Eigenvalues given by
1—X 1 2
0 2—A 2 =0

-1 1 3—-A

Adding column 1 to column 2 gives

1—XA 2-—AX 2 1—Xx 1 2
0 2-X 2 | =@2-XN]| 0 1 2
—1 0 3—A —1 0 3—A
1—A 0 0
Ri—Ra2—XN | 0 1 2 | =@2-N1-NE-)
o —1 0 3—2A

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 293
so the eigenvalues are Ay = 3, Ao = 2, A3 = 1.
Eigenvectors are the corresponding solutions of (A — A\;I)e; =0
When A= X; =3 we have
-2 1 2 €11
0 -1 2 €12 =1
—1 1 0 €13
leading to the sclution
i f12 e 3
—2 > -1 !
so the eigenvector corresponding to Ay = 3 is e; = 51[2 2 1]T,61 constant.
When A = Xs = 2 we have
-1 1 2 €21
0 0 2 €929 =0
-1 1 1 €93
leading to the solution
e _em_em_ g
2 > o
so the eigenvector corresponding to As = 2 is es = B[1 1 0]7, 32 constant.
When A= X3 = 1 we have
0 1 2 €31
0 1 2 €30 =1
-1 1 2 €33
leading to the sclution
€31 _ F32 _ 83 _ 3
0 2 1 .
so the eigenvector corresponding to Az = 1 is ez = 33[0 — 2 1]%, 33 constant.
6(e) Eigenvalues given by
b—A 0 6
0 1l1—-2X 6 =A% 1AAE - 230 686 = (A — 1) (A =T)A+T7) =0
6 6 —2—A
so eigenvalues are A\; =14, Ao =T, A3 = -7
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Eigenvectors are given by the eorresponding solutions of

(5 — As)esr + Oega + 6egz = 0
Oes1 + (11 — Aj)ege + Begg = 0
Be;p 4 6e0 + (—2— A)egg =0

When ¢ = 1, A1 = 14 solution is

€11 —€12 €13 T
fu_ _ B g e — 1263
2= 36 18 L Te=(263

When ¢ = 2, A; = 7 solution is

€21  —€n €3 e o olT
73" s s P2 e l6 732

When ¢ = 3, Aa = —7 solution is

€3] —ean €33 T
50 36—z B Tes=l ]

6(f) Eigenvalues given by

1-x -1 0 —1-XA 0  —1-2A
1 2-=X 1 | Ri+R, 1 2-Xx 1
—2 1 —1-A —2 1 —1-2A
1 0 0
SN[ 20 0 | =0, ke (1A X)(1—A) =

—2 1 1—A

so eigenvalues are A = 2, A5 = 1, Ag = —1

Eigenvectors are given by the eorresponding solutions of

(1 —As)esn — e + Dega = 0
€1+ (2—Aj)eia+e3 =0
—2e;1 + €2 — (1 4+ Ag)esz = 0

Taking i = 1, 2,3 gives the eigenvectors as

er=[-111T,ea=[10 —1|T,es=1[12 -7
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6(g) Eigenvalues given by

4—x 1 1 E—A 5—XA B5—X

25X 4 | Ri+(RetRy)| 2 5-X 4

~1 -1 =X — -1 -1 A
1 0 0

=GN |2 3-A 2 | =GB-NB-XN(1-X\=0
-1 0 1-A

so eigenvalues are Ay =5, =3, A3 =1

Eigenvectors are given by the corresponding solutions of

(4—A;)es1 +eo+en=0
2e510 + (5 — Aj)ege + dega = 0

—€q1 — €2 — Ajgqz = 0
Taking i = 1, 2,3 and solving gives the eigenvectors as

e1=23 —1]T,ea=[1 —10%,es=[0 —11]F

295

6(h) Eigenvalues given by

1—X —4 -2 1—X 2-2X 0
0 3—X 1 Ri4+2R, 0 3— A 1
1 2 4 — X o 1 2 4— A
1 0 0
—1-Nfo 32 1 | =0 -NB-NE-A =0

g0 eigenvalues are Ay — 4, = 3, A3 = 1
Eigenvectors are given by the eorresponding solutions of
(1 — )\,,;)6,,;1 — 467;2 — 26,,;3 =0
2e4 + (3 — M)ege + ez =0
el 1+ 2e;2 + (4 — Ag)esn =0
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Taking ¢+ = 1, 2,3 and solving gives the eigenvectors as

e;=102 -1 1T, eg=1[2 ~ 10T, ea=[4 —1 — 27

Exercises 6.4.5

m 7(a) Eigenvalues given by

IT—A 14X 0

2\ 2 1
1 3-X 1 |Ri—Ry| 0 3-2A 1
1 2 2-Al 1 2 2 — A
1 0 0
—(1=XN |1 4=x 1 | =(1=XNX=6x+5=(1-MA-1X-5)=0
13 2-2A

g0 eigenvalues are A = 5, Ay — A3y = 1
The eigenvectors are the corresponding sclutions of

(2 — XA;)es + 2e0 + 653 =0
ei1 + (3 —Aj)ee+e;3 =10
eil + 2ei2 + (2 Ajess =0

When ¢ = 1, A1 = 5 and solution is

€11 _ —€12 €13 B = oer=[1117

4 —4 4

When As = A3 = 1 solution is given by the single equation
€01 + 2eg0 + €03 = 0

Following the procedure of Example 6.5 we can obtain two linearly independent
solutions. A possible pair are

er =012, e3=[10 —1]T
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7(b) EHigenvalues given by

A 2 -2
—1 1-Xx 2 | =243 4= - +rDA-2)2 =0
-1 -1 2-X

so elgenvalues are Ay = Ao = 2, 3 = —1
The eigenvectors are the corresponding sclutions of
—Ases1 — 2e50 — 2e;3 =0
—e; + (1 — Aj)ein+2e;3 =0
—gi1 — e+ (2= A)ez =0

When i = 3, As = —1 corresponding solution is

€31 —€32 €33 T
= = — = = =813
3 — 3 B3 ey = | ]

When Ay = A2 = 2 solution is given by

*2621 — 2622 — 2623 =0 (1)
—€91 — €22 + 2e03 = 0 (2)
—eo1 —egp =10 (3)

From (1) and (2) ess = 0 and it follows from (3) that es; = —ego. We deduce that
there is only one linearly independent eigenvector corresponding to the repeated

eigenvalues A = 2. A possible eigenvector is

er=[1 —107

7(c) FKigenvalues given by

4-X 6 6 1—X —3+32 0

1 3-X 2 | R-3Rs| 1 3—A p

-1 =5 —2-x| ~1 —5  —2-A
1 -3 0 10 0

SN 1T 3-x 2 |=(1-A |1 6-x 2
~1 -5 -2 1 -8 —2-2A

=(1-A+A+4)=(1-NA—-2)7=0
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so eigenvalues are A = Ay = 2, A3 = 1.
The eigenvectors are the corresponding solutions of

(4 — As)eq + 6egp + 6es3 = 0
es1 + (3 — Ag)eso + 2853 = 0
—e41 — D — (24 Ai)ess =0
When ¢ =3, Aa = 1 corresponding sclution is

€31 —€32 €33 — B = es—[41 —3

4 1 -3
When Ay = Ay = 2 golution is given by
2ep1 + Gegp + Gegg = 0

€01 + €20 + 2e93 = 0

—€921 — 5622 — 4623 =0

so that
€21 €22 €23

6 ) —4

leading to only one linearly eigenvector corresponding to the eigenvector A = 2. A

possible eigenvector is
er—[31 — 27

7(d) Eigenvalues given by

7oA -2 4 1-A 242X 0
3 A -2 | R-2R | 3 —A -2
6 -2 -3-A 6 2 3

1 -2 0 10 0

—(1-XN (3 =x =2 | =(1-XN13 6=-x -2

6 —2 —3-—X 6 10 —3—2X

={1-XMA=-2)(A—-1)=0
so eigenvalues are A =2, Ay = A3 = 1.
The eigenvectors are the corresponding solutions of
(T~ Xjeg — 2e40 —degs =0
3e;1 — Ao — 2€53 = 0

68@1 — 267;2 — (3 + /\?;)87;3 =0
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When ¢ = 1, A = 2 and solution is

€11 —€12 €13 T
3 g B er=[212

When Ay = A3 = 1 the solution is given by the single equation
3eg) — €9 — 2e93 =0

Following the procedures of Example 6.5 we can obtain two linearly independent

are solutions. A possible pair are

eo =102 — 17 Jes=[203]T

= 8
-4 -7 -5
(A-1)= 2 3 3
1 2 1

Performing a series of row and column operators this may be reduced to the form
0 0 0
0 0 1| indicating that (A —T) is of rank 2. Thus the nullity ¢ =3 -2 =1
1 0 0

confirming that there is only one linearly independent eigenvector associated with

the eigenvalue A = 1. The eigenvector is given by the solution of

*4611 — 7612 — 5613 =1
2eq1 +3e12 + 3e13 =0
e11 + 2e2 +e13 =0

giving
€11 —€12 €13 T
== 1 1 51 er = [ ]
=9
1 1 —1
(A-I)=| -1 -1 1
-1 -1 1

@ Pearson Education Limited 2004




300 Glyn James: Advanced Modern Engineering Mathematics, Third edition

Performing a series of row and column operators this may be reduced to the form
1 0 0
0 0 0| indicating that (A —1I) is of rank 1. Then the nullity of g =3—1 =2

0 0 0
confirming that there are two linearly independent eigenvectors associated with the

eigenvalue A = 1. The eigenvectors are given by the single equation
e11 +e2 — ez =0
and two possible linearly independent eigenvectors are

e;=[101]7 andey =[011]F

Exercises 6.4.8

m 10 These are standard results.

m 11(a) (i) Trace A =445+ 0=9 = sum eigenvalues,

(ii) detA =15 =5 x 3 x 1 = product eigenvalues;

4 -1 -1
1
(iii) A~! = IR —4 1 —14| . Eigenvalues given by
3 3 13
4 — 15X —1 —1 4 — 15X —1 0
—4 1— 156\ —14 Ca—Co —4 1—16A =15+ 15X
3 3 18 — 16\ - 3 3 15 — 16\
4 — 15X —1 0
S (15150 | 4 1 15A 1| = (15— 15A)(15A — 5)(15A — 3) = O
3 3 1

confirming eigenvalues as 1, %, %
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4 2 —1
(iv) AT = |1 5 —1| having eigenvalues given by
1 4 0
4—A 2 —1
1 5 A 1] =(A-5A-3)A 1) =0
1 4 —A
i.e. eigenvalue as for A.
3 2 2
11(b) (i} 2A = 4 10 8 | having eigenvalues given by
-2 =2 0
8— A 2 2 6— A 2 2
4 W0-XA 8| Ch=Cy |—6+X 10—-A 8
—2 —2 —A - 0 —2 —A
1 2 2 1 2 2
—B-N 1 10-x s =®-AN]0o 121 10
0 —2 —A 0 —2 —A

— (6 —A)(A—10)(A —2) =0

Thus eigenvalues are 2 times those of A; namely 6, 10 and 2.

6 1 1
(i) A+2I= 2 7 4| having eigenvalues given by
-1 -1 2
6— A 1 1
2 T—XA 4 | =241 T+ 105=—-A=-T)A=5)(A—=3)=0
—1 -1 2—-A

confirming the eigenvalues as 5+ 2,3+ 2,1+ 2.
Likewise for A — 21
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17 5 5
(ili) A% = 14 23 22| having eigenvalues given by
—6 —6 —b
17— A 8 8 25— 25— X 25— A
14 23—X 22—X| Ri+(Ry)+Rs) | 14 23-2X 29
—6 —6  —5—A - —6 —6  —5—A
1 0 0
—(25-A) |14 9-X 8 | =(25-N)(O0—-A)(1—-)) =0

—6 0 1—A

i.e. eigenvalues A? are 25, 9, 1 which are those of A squared.

m 12 Eigenvalues of A given by

3-Xx -3 -3 —3-x -3 -3
3 1-A 1 | RetRs| -3 1-x -1
-3 -1 1-A| 0 24X 2-)
—3-A -3 -3 —3-X -3 -6
=(A=2) | =3  1-X —1| CH+C(A=2) | =3 (1-X) =\
0 1 -1 0 1 0

— (A 2)(A 1 6)(A-3)=0

so eigenvalues are A\; = —6,3 = 3, Aa = 2

Eigenvectors are given by corresponding solutions of

(—3 — )\i)eﬂ — 387;2 — 36@3 =0
—3es + (1 — Ai)esn —e3 =0
—3e;1 — e+ (L —Aj)es =0

Taking i = 1, 2,3 gives the eigenvectors as
e1=12117, ea=[-1117, ea=1[01-17

It is readily shown that

e?eg = e?eg = egeg =0

so that the eigenvectors are mutually orthogonal.
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= 13  Let the eigenvector be e = [a b ¢|7 then since the three vectors are mutually
orthogonal
a+b—2c=0
a+b—c=0
giving ¢ = 0 and @ = —b so an eigenvector correspondingto A=2ise=[1 —1 O}T.

Exercises 6.5.3

m 14 Taking (%) =[1 1 1]7 iterations may then be tabulated as follows:

Tteration & 0 1 2 3 4
1 9 874 869 868
x (k) 1 1 1 1 1
1 5 494 493 492
9 7.6 7.484  7.461  7.457
A x(®) 10 87 861 8592  8.580
F 4.3 4.242 4231 4.228
A 10 87 &61  &592  8.589

Thus estimate of dominant eigenvalue is X =~ 8.59 and corresponding eigenvector

X ~ [7.46 8.59 4.23]Tor x ~ [0.62 0.71 0.35]7 in normalised form.

m 15(a) Taking x(®) = [1 1 1|7 iterations may then be tabulated as follows:
Tteration & 0 1 2 3 4 5] 6
1 75 667 0.636 0.625 0.620 0.619

x () 1 1 1 1 1 1 1

1 1 1 1 1 1 1
3 2.5 2.334 2,272 2.250 2,240
A x(%) 4 375  3.667 3.636 3625  3.620
4 3.75 3.667  3.636  3.625 3.620
A 4 3.75 3.667  3.636  3.625 3.620

Thus

corresponding eigenvectors [0.62 1 1]7 .

correct to two decimal places dominant eigenvalue is 3.62 having
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15(b) Taking x{° = [1 1 1]7 iterations may be tabulated as follows:
Tteration k& 0 1 2 3 4 5
1 0.364 0277 0257 0.252  0.251
x (%) 1 0545 0506 0501 0.493  0.499
1 1 1 1 1 1
4 2092  1.831 1.771 1.756
A x(k) 6  3.818 3566 3561  3.49
11 7.546  7.12 7.03  6.994
A~ 11 7.546  7.12 7.03  6.994

Thus correet to two decimal places dominant eigenvalue is 7 having corresponding

eigenvector [0.25 0.5 1]7.

15(c) Taking x(® =[1 11 1]7 iterations may then be tabulated as follows:
[teration & 0 1 2 3 4 5 6
1 1 1 1 1 1 1
x(k) 1 0 -05 -06 -0615 -0.618 -0.618
1 1 0.5 -0.6 -0.615 -0.618  -0.618
1 1 1 1 1 1 1
1 2 2.5 2.6 2,615 2,618
A x(®) 0 -1 -15 -1.6 -1.615 -1.618
o -1 -15 -16 -1.615 -1.618
1 2 2.5 2.6 2.615 2.618
Ao 1 2 2.5 2.6 2,615 2,618
Thus correct to two decimal places dominant eigenvalue is 2.62 having

corresponding eigenvector [1 — 0.62 — 0.62

17,

= 16 The eigenvalue A; corresponding to the dominant eigenvector e; = [1 1 2]%

is such that A e = Aje1 s0

s0 A\ = 6.

— = W

— =
N =
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Then

Aj=A 6] where & —[iii]T
' o SNV
S0
3 1 1 1 1 2 2 0 -1
A= |1 3 1| — |1 1 2| = 0 2 —1
1 1 5 2 2 4 -1 -1 1
Applying the power method with x(® = (11 1]T
1
vl — A %0 = 1| =%
_71_
[ 3] 1
v —AxU | 3| =3 | 1
| —3 ] —1
Clearly A2 =3 and & *i[ll —1*
¥ A2 2 73 .
Repeating the process
2 0 -1 1 1 -1 1 -1 0
As=A; —édl = | 0 2 —1| - 1 1 —1| = |-1 1 0
-1 -1 1 -1 -1 1 0 0 0

Taking x(® = [1 — 1 0] the power method applied to A, gives

2 1
0 0

1
and clearly A3 = 2 with é3 = —[1 — 1 0|7,
Y As 3 \/5[ ]

m 17 The three Gerschgorin circles are

A 5|=2 [A]=2, [A+5 =2

@ Pearson Education Limited 2004




306 Glyn James: Advanced Modern Engineering Mathematics, Third edition

which are three non-intersecting circles. Since the given matrix A is symmetric its

three eigenvalues are real and it follows from Theorem 6.2 that

3N <T, —2<A<2, =T A3 <7

(that is, an eigenvalue lies within each of the three circles).

18 The characteristic equation of the matrix A is

W0-x -1 0
-1 2-X 2 =0
0 2 3—-A

fe. (10-X[2-MB-X—-4-B-A) =0
or fA) =X —15\* 4+ 51N —17=0

Taking A¢ = 10 as the starting value the Newton—-Raphson iterative process

produces the following table:

. F(Aa)
¢ A J(A SN -

) N o)
0 10 7 -51.00 0.13725
1 10.13725  -0.28490  -55.1740 -0.00516

R

10.13209  -0.00041  -55.0149  -0.000007

Thus to three decimal places the largest eigenvalue is A — 10.132
Using Properties 6.1 and 6.2 of section 6.4.6 we have

3 3

Z)\i: trace A = 15 and H)\i =|A =17

i=1 i=1
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Thus
Ao+ A3 =15 —10.132 = 4.868
AoAs = 1.67785
S0 A2(4.868 — Ay) = 1.67785
A — 4.868Xy + 167785 = 0
Ao = 2.434 + 2.0607
ie. Ay =4491 and A3 =0.373
m 19(a) If ej,eo,...,e, are the corresponding eigenvectors to Ay, Aa,..., A, then

(KI— A)e; = (K — M\;)e; so that A and (KT — A) have the same eigenvectors
and eigenvalues differ by K.

Taking x() = > ape; then
i=1

xP) = (KT - A)x'P=1 — (KT—- Ak = = "0, (K = A e,
r=1

Now K — XM, > K —X,_1>...> K — ) and

xP) = 0, (K — M)Pen + Y 0n(K — A )Pe,

r=1

1

K —X.{F
= (K — \)F|age, + E (_J:T[K_ X ] e,
r=1 n

—+ (K — A\ )Paye, = Ke, as p— o0

Also
$§P+1) 4} (K o )\n)p+1 X Epy
le(p) (K - )\ﬂ)p Qg Cp

Hence we can find A,

19(b) Since A is a symmetric matrix its eigenvalues are real. By Gerschgorin’s

theorem the eigenvalues lie in the union of the intervals

[ A=2]<1, [A=-2|<2, [A=-2]|<1
e, |[A—=2]€20r0< A <4,
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Taking K =4 in (a)

2 1 0
KI-A=4I-A=1|1 2 1
0o 1 2
Taking x(0 = 11 1]T iterations using the power method are tabulated as follows:
Iteration & 0 1 2 3 4 5
1 0.75 0.714  0.708 0.707  0.707
x(%) 1 1 1 1 1 1
1 0.75 0.714  0.708 0.707  0.707
3 2.5 2,428 2,416 2.414
A x®) 4 35 3428 3416 3.414
3 2.5 2,428 2,416 2.414
Ao 4 3.5 3.428  3.416 3414

Thus Aa =4 — 3.41 = 0.59 correct to two decimal places.

Exercises 6.6.3

m 20 Eigenvalues given by

—1—A 6 —12
A= 0 —13 - A 30 =0
0 —9 20 — A

Now A — (=1 — A) ”f(;/\ 2038)\‘ —(—1-A)(A2—7A £ 10)

={-1-AX=5)}A—2)s0o A=0gives A\ =5, Ao =2, 3= -1

Corresponding eigenvectors are given by the solutions of

When A= Ay = 5 we have
—6 6 —12 €11
0 =18 30 ela| =0
0 -9 156 €13
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leading to the solution
€11 —€12 €13

36 180 108

= B

so the eigenvector corresponding to Ay =5 is e; = 51[1 — 5 — S]T
When A = X = 2 we have

-3 6 —12 €91
0 =15 30 €| =0
0 -9 18 €93
leading to the sclution
en_ —em _em g
0 —90 45 7

so the eigenvector corresponding to A = 2 is es = 5[0 2 17
When A = A3 = —1 we have

0 §) —12 €31
0 —12 30 €az | =0
0 -9 21 €33
leading to the sclution
en_ —em _em g
s o o 7
so the eigenvector corresponding to Az = —1 is e3 = B3[1 0 0]

A modal matrix M and spectral matrix A are

1 0 1 5 0 0
M= |- 2 0 A= |0 2 0
-3 1 0 0o 0 -1
0 1 -2
M~'= |0 3 -5 and matrix multiplication eonfirms M'AM=A
1 —1 2

m 21 From Example 6.8 the eigenvalues and corresponding normalised eigenvectors

of A are
A =6, =3, =1

N 1 T T 1 T
1= —[120%,86,=1001%,85=_[-2107,
1 \/g[ } 2 { ] 3 \/g[ }

1 0 —2

N 1
M=— 1|2 0 1
VB o V0
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) . 1 2 0 2 2 01 0 =2
MTAMZEOO\/B 2 5 0|2 0 1
-2 1 0 0 0 3|10 /5 0
6 12 0 1 0 -2
= 0O 0 352 0 1
-2 1 0 0 5 0
] (30 0 O 6 0 0
=z [0 15 0f = |03 0] =A
0 0 5 0 0 1
m 22 The eigenvalues of A are given by
5—X 10 8
10 2—X =2 | = (A —182\*=81A+1458) = —(A—9)(A+9)(A—18) = 0
8 —2 11— A
so eigenvalues are Ay = 18, A0 =9, A3 = —9

The eigenvectors are given by the corresponding solutions of

(5 — Ai)esn + 10e;0 + 8ez3 = 0
].0&;1 + (2 — )\i)eig — 267;3 =0
86@1 — 267;2 + (]_]_ — /\i)e?;g =0

Taking i = 1, 2,3 and solving gives the eigenvectors as
e1=[2127, ea=[12 —2|T,e5=[-2217
Corresponding normalised eigenvectors are

1 1 1
61 =212, é5=-[12 — 2|7, &5 =-[-221]7
€1 3[ }aeQ 3{ }:eS 3[ }

o2 2 A | 2 1 2
M:§ 1 2 2], MT:§ 1 2 =2
2 -2 1 —2 2 1
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) L2 12 510 8][2 1 -2
MTAM:§ 1 2 —2(|10 2 —2]|1 2 2
-2 2 1 g — 1] 12 -2 1
L [36 18 362 1 -2]
=3 9 18 —18 1 2 2
|18 —18 -9 2 -2 1]
(4 2 4] 2 1 =2
=11 2 =2 1 2 2
2 -2 -1 2 =2 1
(18 0 0
00 -9
= 23
11 -2
A= | -1 2 1
0o 1 -1
Eigenvalues given by
1—A 1 -2
0= | -1 2-A 1 =222 A2y (A -2(AF 1) =0
0 1 —1-A
so eigenvalues are Ay = 2, A2 = 1, A3 = —1.

The eigenvectors are given by the corresponding solutions of

(1—As)esn + €2 — 2e;3 =0
—e31 + (2= A)esz + €3 =0
Oes + €0 —(1+ As)ess =0

Taking ¢+ — 1, 2,3 and solving gives the eigenvectors as

e; =131, ea=0321",es=[101]"

1 3 1 2 0 0

M=1(3 2 0|, A=|0 1 0

111 00 —1
2 2 2
Mtl=-2|-3 0 -3
61 1 2 7
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Matrix multiplication then confirms

MITAM=A and A=MAM!

m 24 FEigenvalues given by

3—X =2 4
—2  —2-X 6 |= 24630 -162=-(A+9A-6)(A-3)=0
4 6 —1-2X

so the eigenvalues are Ay = —9,A = 6,A3 = 3. The eigenvectors are the

corresponding solutions of

(3 — Ai)eil — 2¢e40 + 44de;3 =0
—2e41 — (24 A)eg + e = 0
deg + 6ego — (14 Ag)es =0

Taking i = 1, 2,3 and solving gives the eigenvectors as
e; =12 2T, eg=[212T,ea = [-221]F

Since eley — el es — el ey — 0 the eigenvectors are orthogonal

1 1 2 =2
L:[élégég]:§ 2 1 2
-2 2 1
A 2 -2 3 -2 4 1 2 -2
LAL-= 9 2 1 2 -2 -2 6 2 1 2
| —2 2 1 4 6 —1 -2 2 1
1 —9 —18 18 1 2 =2
=3 12 6 12 2 1 2
| —6 6 3 -2 2 1
L [-81 0 0 -9 0 0
=3 0 54 0] = 0 6 0| =A
0 0o 27 0o 0 3
m 25 Since the matrix A is symmetric the eigenvectors
e = [1 2 O]T, ey — [*2 1 O}T, €3 = [631 €392 €33 T
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are orthogonal. Hence
T _ o T _ _
eje3 — ea1 + 2eax = O and ey e3 = —2e3; + e300 =0

Thus es; = e3o = 0 and ess arbitrary so a possible eigenvector is e3 = [0 0 1}T.

6 0 0
UsingA:MAMT where A= |0 1 0| gives
0 0 3
1 2 1 2
A= | = 1 0 1 0 ~2 1 9
5 5 5 5
W 1] lo oo 3 W
2 2 0
=12 5 0
0 0 3
-4 -7 =5 0 0 0
=26 A -I-= 2 3 3 ~ [0 =1 0 is of rank 2
1 2 1 1 0 0

Nullity (A —1I) = 3 —2 = 1 so there is only one linearly independent vector
corresponding to the eigenvalue 1. The corresponding eigenvector eq is given by
the solution of (A —I)e; =0 or

*4611 — 7612 — 5613 =1
2eq1 +3e12 + 3e13 =0
€11 +2e12 + 212 =0

that is, e; = [-3 1 1]7. To obtain the generalised eigenvector e} we solve

(A —Tje] =e; or

-4 -7 -5 €] -3
2 3 3 812 - 1
I 2 1 €13 1
giving e} = [~11 0]7. To obtain the second generalised eigenvector el* we solve

(A —T)e]* =e] or

4 —7 5] e —1
2 3 3| |ex| = | 1
12 1] |es 0
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giving ef* =[2 — 10},

-3 -1 2
M=le;e] e = I 1 -1
1 0 0
o 0 —1 0 0 1
detM=—-landM'=— | -1 -2 —1| = |1 2 1
-1 -1 =2 1 1 2

Matrix multiplication then confirms

1 1 0
M TAM= |0 1 1
00 1

27 Eigenvalues are given by
A - |=0

that is, A% —4A% — 1202 + 32X + 64 = (A + 2)%2(A — 4)%2 = 0 s0 the eigenvalues are
-2, -2, 4 and 4 as required.

Corresponding to the repeated eigenvalue Ay, Ay = —2
[ 3 0 0 3“ [1 0 0 0“
0 3 -3 0 0o 1 0 0 .
(A +21) = L_Oﬁ 3 3 0.5J {0 0 o o Sofrank?2
-3 0 0 3 0O 0 0 0

Thus nullity (A+2I) is 42 = 2 so there are two linearly independent eigenvectors
corresponding to A = —2.

Corresponding to the repeated eigenvalues A3, Ay — 4

3 0 0 -3 1000
0 -3 -3 0 01 0 0f.

(A=4D =1 o5 3 3 o5| ~ |0 0 o p| Sofrnk3
3 0 0 -3 00 0 1

Thus nullity (A — 4I) is 4 — 3 = 1 so there is only one linearly independent
eigenvector corresponding to A = 4.
When A = A\; = Ay = —2 the eigenvalues are given by the solution of {A+2I)e = 0

giving e; =[0110/7,ep =[1 00 1]7 as two linearly independent solutions.
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When A = A3 = Ay = 8 the eigenvectors are given by the sclution of
(A —4T)e =0

giving the unique solution ez = [0 1 —1 0]7. The generalised eigenvector e} is

obtained by solving
(A —4T)e} = e

giving ef = (6 — 1 0 —6]/7. The Jordan canonical form is

J =
0 0 4 1
0 0 | 0 4
Exercises 6.6.5
1 —1 2
m 28(a) The matrix of the quadratic formis A= | -1 2 —1| and its leading
2 —1 7
principal minors are
1 =1
1, ‘1 2‘ — 1,detA —2

Thus by Sylvester’s condition (a) the quadratic form is positive definite.

1 —1 2
28(b) Matrix A= | —1 2 —1| and its leading principal minors are
2 -1 5]
11
1,‘1 2‘ — 1,detA =0

Thus by Sylvester’s condition (c¢) the quadratic form is positive semidefinite.
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1 —1 2
28(c) Matrix A = | —1 2 —1| and its leading principal minors are
2 —1 4
1 —1
1,‘1 2‘ — 1, det A — —1.

Thus none of Sylvester’s conditions are satisfied and the quadratic form is indefinite.

a
—b
principal minors are a and ac — b°. By Sylvester's condition (a) in the text the

quadratic form is positive definite if and only if

= 29(a) The matrix of the quadratic form is A = { _Cb} and its leading

a>0and ac— 5% >0

ie. a>0and ac > b’

2 -1 0
29(b) The matrix of the quadratic formis A = | —1 a b | having principal
0 & 3

minors 2,2¢ — 1 and det A = 6a — 2b% — 3. Thus by Sylvester’s condition (a) in

the text the quadratic form is positive definite if and only if

2¢ —1>0and 6a — 26> 3 >0

or 2a > 1 and 2b° < 6a — 3

m 30 The eigenvalues of the matrix A are given by

2-X 1 —1 3-A 3-X 0
0= 1 2-Xx 1 |Ry#Rs| 1 2-x 1
1 1 2-A] — 1 1 2 A
1 1 0

—3-N]1 2-x 1
~1 1 22
1 0 0
=B3-N |1 1-Xx 1 | =(B-XMA"=3)%
—-1 2 2=
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so the eigenvalues are 3,3, 0 indicating that the matrix is positive semidefinite.

The prinecipal minors of A are

2 1

z,h 2‘:&ddA:0

confirming, by Sylvester’s condition (a), that the matrix is positive semidefinite.

K 1 1
31 The matrix of the quadratic form is A = 1 K —1| having principal
1 -1 1
minors
K, | K =K*—1land detA =K —-—K -3

Thus by Sylvester’s condition (a) the quadratic form is positive definite if and only
if
K 1=K DK +1)>0and K> K - 3=(K 2)(K+1)>0

ie. K >»2o0r K <—1.
If K =2 then det A =0 and the quadratic form is positive semidefinite.

32 Principal minors of the matrix are

—a?+3a—1,det A = o+ 3a% — 60— 8

3+%‘3+a w

1

Thus by Sylvester’s condition (a) the quadratic form is positive definite if and only
if
3+a>0,a2+3a—1>0 and a® + 3a®> —6a — 8 > 0

or (a+ 1)(e+4)a—2) >0
3+a>0 = a>-3
a*+3a—-1>0 = a<—33ora>03
(e+Da+4)a—2)>0 = a>20r —4<a<—1

Thus minimum value of a for which the quadratic form is positive definite is @ = 2.

1 2 -2
33 A= 2 A =3
-2 =3 A
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Principal minors are

1 2

1”2)\

’ —A—4, det A =X -8\ +15=0

Thus by Sylvester’s condition (a) the quadratic form is positive definite if and only
if
A—4>0 = A>4
and (A—5)(A=3)>0 = A<3orA>5

Thus it is positive definite if and only if A > 5.

Exercises 6.7.1

m 34 The characteristic equation of A is

5—A 6
2 3—A

‘ =X 82 +3=0

» [5 6][s 6]  [27 48
NOWA_L 3} {2 3} _{16 21|

2 ~[37 48]  [40 48 3 0] [oo
A 8AH}’I_[M 21 16 24| " {0 3] T [0 o

so that A satisfies its own characteristic equation.

m 35 The characteristic equation of A is

’1—)\ 2

N2 oy 1
| 1_)\’)\ 2A—1=0
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By Cayley—Hamilton theorem

A2 —2A -1=0

2 4 1 0 3 4
2
35(a) follows that A =2A 4+ 1= {2 2] + {0 1} = [2 3}

T 1 2] [7 10
35(b) A2A+A{46+ P N

14 20 3 4 17 24
4 _ 3 2 _
35(c) AT-247+4 {10 14} i {2 3} - {12 14}

= 36(a) The characteristic equation of A is

2 A 1
1 2—A

e, M —4X+3=0

o

Thus by the Cayley—Hamilton theorem

A? —4A +31=0

1
I-= g[4A — A7

1
so that A1 = Z[4T — A]
3

Al o 1 alf-s 3]

36(b) The characteristic equation of A is

1—A 1 2
3 1—A 1 =0
2 3 1—A

e, AN —3X—7A—-11=0
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1 1 2 1 1 2 8 8 5
A= |3 1 1 31 1| = |8 7 8
2 3 1 2 3 1 13 & 8§
Using (6.44)
1
Al = ﬁ(A2 —3A - TI)
2 5 1
= -1 -3 5
7 1 -2
2 3 1 2 3 1 14 11 11
=37 A2-—|3 1 2 3 1 2| = |11 14 11
1 2 3 1 2 3 11 11 14

The characteristic equation of A is
AT =6 —30+18=0
so by the Cayley—Hamilton theorem

A% =BA% 1 3A 181

giving

A1 =6(6A% + 3A — 18T) + 3A% — 18A = 39A°% — 1081

A® =39(6A% 4 3A — 18T) + 108A = 234A% + 9A — 7021

A® =234(6A% + 3A — 18T) + 9A% — T02A = 1413A% — 42121
A7 — 1413(6A% + 3A — 18T) 4 4212A — S4T8A% + 27TA — 254341

Thus

A7 3A% L AT 1 3A% 2A% 131 =4294A% L 36A — 129571

47231 47342 47270
= 47342 47195 47306
AT270 47306 47267
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= 38(a) FEigenvalues A are A =1 (repeated). Thus

eAt — apl + a1 A with

€ = ap+ o ot o1 ot
et o }éalte,ag(l t)e

At — (1 )T+ tePA = e 0
so e = € cA= |

38(b) EHigenvalues A are A= 1 and A =2. Thus

eAt = agl + a1 A with
t

e = ap + o ot 2 2t it
o2t :&0+2a1}:>&0—26 e”, ap =¢ €
At ¢ ot o ¢ et 0
so et = (2" — e+ (e —e A= | o ;o
et —et e
T T
m 39 [Eigenvalues of A are )\1:7r,)\2:§,)\3: 5"
Thus

sin A = agA + oA + agAQ with

sinm =0=qay + 17 + OﬁQﬂ'Q
2

i 1 i 7T+ T
sin—=1=ag+ a;=+ as—
2 T TRy
T
0055:0:0514—7?&2
. . 4 4
Solving gives ap =0, o1 = —, g = ——5 SO that
T T
0 0 0
4 4
sinA=—A—- —A*=1{0 1 0
o7 00 1

40(a)

dA L2+ 1) 4(2n-3) ] _ {21& 2 ]
dt d(B5t) 4?1 +3) -1 2t-1
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40(b)
10
/QAdt [ff(tQJrl)dt Sl -3t } N
! L -ndt At 3)at] |7 2
w41
(241 t— 1] [£#2+1 t—-1
2 _
A 5 0 } [ 5 0
[t 2t st—4 2 -tP4t—1
N R T | 5t —5
d, o [4¢? p 4t 45 3t 2t 1
a B = 1ot 5
dA 4 At 262 11
AT 200 0
d, s dA
Exercises 6.8.3
m 42(a) Taking z1 =y
dy
1 o E
d>y
e e
d*y
x'g = dt?’ = u(t) *4$1 — 52?2 — 451’33

Thus state space form is

iy 0o 1 0 71 0
X = Tn = 0 0 1 To + 0 ’U,(t)
I'g —4 —-h -4 T3 1

y=x1 = [100] [ zo mg}T
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42(b)
r =¥
. dy
To = X1 = E
. dy
==
. diy
TATE T s
. dt
= E}j = —4dxo — 223 + Hult)

Thus state space form is

g 0o 1 0o 0 T 0
e o oo 1 0 | 0
= al T o o o0 1| |z o™
Ty 0 —4 -2 0 T4 5
y=21=[1000] [z 2o 23 z4]7
m 43(a) Taking A to be the companion matrix
0 1 0
A= 0 0 1
-7 -5 —6
then b=[001]T
c=[5317T

Then from equation (6.49) in the text the state space form of the dynamic model
is
X=A x+bu

y=c' X

43(b) Taking A to be the companion matrix

0 1

A= |0 0 1

0 -3 —
then b=1[001]7
c=[231]7T
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And state space model is

*x=Ax-+by y=clx

m 44 Applying Kirchhoff’s second law to the individual loops gives

) . ds . 1., .
e= Ri(i1 +i2) + v + leitl y Vg = E(@l +i2)
) . dio .
e= Ri(i1 +i2) + v+ Lgidt + Roio

so that
d’él Rl . Rl . Ve + €
dt J PR PR P
di R R R
dig Ry (Rt 2)@.2 Ve | ©

at . Lyt I, I, Lo
dv, ) .
a 5(“ +12)

Taking xq = iy, 22 = 2,23 = v, u = e(t) gives the state equation as

Fy i 1 1
Il L1 ( Ll ) Ll 2:1 fl
; — | Ry _(EstHe) 1 1
m.Q 1L2 le Ly T2 + Ly ’U,(t)
3 1 T3 0
(& C 0

The output y = voltage drop across flo = Raois = FHoxo so that
Y = [0 RQ 0] [2:1 i) $3]T
Equations (1) and (2) are then in the required form

x=Ax+bu, y=clx

m 45 The equations of motion, using Newton’s second law, may be written down

for the body mass and axle/wheel mass from which a state space model can be

deduced. Alternatively a block diagram for the system, which is more informative

for modelling purposes, may be drawn up as follows
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spring

- Axle

o
M, s>

where s denotes the Laplace ‘s’ and upper case variables X,Y.Y; denote the
corresponding Laplace transforms of the corresponding lower case time domain
variables x(t), y(t),y1(t); y1(t) is the vertical displacement of the axle/wheel mass.
Using basic block diagram rules this block diagram may be reduced to the

input /output transfer function model

Ki(K + Bs)
X, (Mys% + K1)(Ms? + Bs + K) + Ms2(K + Bs) Y,

or the time domain differential equation model

d*y d>y d*y
M\M—=+ B(M;;+ M)— + (K1M + KM, + KM)—=
M7+ (M + )dt3+< 1M+ 1+ )dt2
d d
+ KiBY 4 K\ Ky = K1 Koz + K, B
dt dt
A possible state space model is
[ 21 T —B(M;+ M) 1 0 07 a1 r0 7
59 T SO N I P 0
= + x(t)
23 _]\/ﬁﬁ 0O 0 1 z3 !{/[{11]\3/!
[ 2y i T 0 0 0 Lz | S |

y=1[1000]z(t), z=[z1 22 23 24]".

Clearly alternative forms may be written down, such as, for example, the
companion form of equation (6.52) in the text. Disadvantage is that its output

y is not one of the state variables (see Exercise 43).
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m 46 Applying Kirchhoff’s second law to the first loop gives

€1 —I-Rg(?:—?:l) + Rii=u
le. (Rl + Rg)% — Rsiy+21 =u

Applying it to the outer loop gives
o + (Rg + Ro)iy + Ryt = u
Taking & = Ry R3 + (Ry + R3)(R4 + R») then gives

ot = (RZ + RS + R4)u - (RQ + R4)$1 - Rg:EQ
and «i; = Rsu+ Rz — (R1 + R3)$2

Thus
ot —i1) = (Ra+ Ro)u — (R1 4+ Ro + Ra)z1 + Rixo

1
Voltage drop across Cp : &1 = — (4 — 1)

=
1
= a—Cl[_(Rl + Ry + Ra)x1 + Ryxo + (R + Ro)ul(1)
. L,
Voltage drop across Cy @ &9 = — 14
Cy
1
= T@[lel — (R1 + R3)x2 + Raul (2)

R Ri+R R
ylzilzlm—%mg—k(ju (3)

Rs R R R

L R
yo = Ro(i —iq1) = —?S(R1 + Ro+ Ry)xq +

Equations (1) - (4) give the required state space model.
Substituting the given values for Ry, Ro, Ra, B4, C1 and Cs gives the state matrix

A as
-9 1

35.10-F 35,10 ¢ 102 [—
A _ 107 9 1
1 _4 35 I —4

35.10-% 35.10 ¢
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03
Let 3 = 3 then eigenvalues are solutions of
=95 — A B 42 2
3 48— ) = A"+ 138A+353° =0
giving
—13 4+ /29
A= —"""""3~ _926x10°or — 1.1 x 10°

2

m 47 We are required to express the transfer funection in the state space form

Xx—=A x+ bu
y=clx
0 1 0
where A is the companion matrix A = 0 0 1| and y=[100x. To
-6 —11 -6

determine b we divide the denominator into the numerator as follows

Fs L —20s 24+ 12082
g3+ 682+ 11846 52 4+ 541
552 4+ 305 + 55 |
—29s — 54 |
—29s — 174 |
120 |

neglect these terms

giving b =[5 — 29 — 120]7". Thus state space form is

i 0o 1 0 5
()= |aa| = |0 0 1| x(®)+ |-29| u@®)
g —6 —11 —6 120

y=1[100]x(t)

It is readily checked that this is a true representation of the given transfer function.
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Exercises 6.9.4

w48 &(t) = e where A — “ ﬂ

Eigenvalues of A are A\=1,A=1 so
eA — o (DI + o (HA
where ap, o satisfy
eM:ongro:l)\, A=1
tet = a

giving aq = tet, ag — et —tet
Thus

48(b)

elzeg™ tie

et2 0 etz 0
- [(tz —ty)etr | tyet e“] - [tge“ etﬁ} = &(t2)

tg 7t1 O tj_ O
&(to — t)P(t1) = [(tg _8,'516)6152 et tl] { © ty ot }

- 1 £ b0
48(0) $ 1:5 |:—i€t t:| - |:_i6t t:| :é(_t)

dy . de

w49 Take x; =y, xo =% = —, Ty = g2 = —x1 — 2¥9 s0 in vector-matrix

form the differential equation is

% {_01 _12} x, y— [10JA
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0

Taking A = {_1

_é} its eigenvalues are A = —1,A = —1

At = apl + oy A where oy, v satisfy

eAt:a0+a1A, A=—1

tert = o

giving ap = et +tef, o = te—t. Thus
AL et tet te—t
a —te? g7t —tet
Thus solution of differential equation is

x(t) = eMx(0), x(0) = [1 1]*
_ [e—t + zte—t}

et ote—t

giving y(t) = z1(t) = e ¢ + 2te?
The differential equation may be solved directly using the techniques of Chapter 10
of the companion text Modern Ingineering Mathematics or using Laplace

transforms. Both approaches confirm the solution

y=(1+2t)e

50 Taking A = ﬁ ﬂ then from Exercise 44
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0
—6
Thus e = oI + a1 A where o, ap satisfy

m 51 Taking A = { _15] its eigenvalues are A = —3, Ap = —2.

e 3t = oy — 3, et = ap — 20

g = 3672t o 26782 = e*Qt o e*?)t

50

At 36—215 - 26—3t 6—215 - e—St
66—3t - t€_2t 36—315 - 26—215

Thus the first term in {6.73) becomes

26—% - e—St
s e

and the second term is
t 2 —2(t—7) _ p.—3(t—7)
Be 6e
A(t—7) _
/0 e bu(r)dr /0 2 |:18€_3(t_7) B 126_2@_7)} dr

|:3€2(t‘r) _ 2873(?&7'& :| t

=2 6873(?&77) _ 6872(?&7'&

0

5 |1 BeT% 4 2e
Be—2t _ Gt

Thus required solution is
X(t) B 267% o ef?yt + 2 _ 6673t + 4673t
C [ 3e ¥ — e % 4 126 2 — 12 8

2 —dem % 4 3=
- Re™ 2t _ g3t

fle.x1 =2 — e~ 4 Se_St, To = Re2t _ g

m 52 In state space form

% — {_g _H x + m w(t), u(t) — e, 2(0) = [0 1|7

Taking A = {g 3} its eigenvalues are Ay = —2, Ay = —1 s0
e — ol + oy A where (i, vq satisfy
e —ap—20y, et —ap—a; = op =2t —e7H o=t
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o

Thus

and eAx(0) = {

0

€

—t

_ef

2¢

26—15 - 6—215
et 4 22

—¢ 2

[ — e
76—15 + 26—215

|

_eft + 2672?&

t
/ A(t_T)bu(T)dT

|

46—(t—7) o 26—2(15—1')
i4e_(t_7) + 46_2(t_7)

t
/|
¢ de=t — 2= 2HeT
0 — et f 4= eT

.

—Aret 4+ 4o 2teT

—Ate t 4 et

We therefore have the solution

that is

] = dte”t 4 e e_t, o

x(t)

¢
6Atx(0)—|—/ AT b (r)dr
0

Ate—t L g3t _
—Atet 4+ 3¢t —

{ dre t — e %teT

o 487%

eft
2872?&

|

Atet — 2t L 272 }

] e TdT

—4tet + R Py

331

m 53 Taking A — {3

oAt

.

2

ag + Hay, e

1

—t

Thus transition matrix is

aogl + a1 A where o, o satisfy

= g — X1 = Qg —

5

1 bt —t
—e —e ", o =
6¢ 1% 1

1, —t 2 5t 2 _ 2
{§€ +gem e 3¢

1 5t 1 _—t 1 _5¢ 2 _—¢

§€ — §€ §€ + §€
265t o eft

65t + eft
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¢ ¢
Alt-T)pg d :/ A(t—7) {0 1} [4} d
e u(T)dr e T
/0 () o 1 1 3
¢
_ t—7 3
—/0 A {7] dr
20 5(—7) _ 11 —(i—7)
_ 3 ¢ 3¢ d
/0 |:1§J65(t—7)+1316—(t—7):| T
4 5(t—7) _ 11 —(t—7) ¢
_ 3¢ 3
|: 2 5(t ‘r)_l_ 11 7(7& T):|

5 11 —t + §65t
- 3

{ 3 ety 30
Thus solution is

¢
x(t) = e*x(0) +/ AT Bu(t)dr
0

_ 5 ge—t+ 1806515
3*§€_t+g 5t

Exercises 6.9.6

. 54 [sI—A}{S_B _4],det[31—A}(s—5)(s+1)

-2 s5-1
Thus
1 B 2/3 1/3
A e [ - [SI/E}S‘ pt
s—5  s+f1
2 _b¢ 1 _—+¢ 2 5t 2 —t
€7+ g€ et — ze
I I A 3 3 3 3 — &
[s ] [éeﬁée—t é€5t+§€—t:| 1
8

[SIA}—lBU(s)—(S_@l(Sm { ;1 5i3] [? ﬂ E}
1

s+1
3 11/3 2
s s+l +

3

~ s(s—5H)(s+1) {7315

) B 5o Ilemt g dcot
L7H[sT—A]7'B U(s)} = { 7£€ft+ 5 | = @
3 3¢
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Thus solution is

X(t) = @1}((0) + Py = |:

which confirms the answer obtained in Exercise 53.

333

s+4

- 55 A_{l_ﬁysI—A F:; 3]

|sI-A|=A=(s—-1)(s+4)+6=(s+2)(s+1)

[sI—A]7! =

giving £ 1[sT— A]!

so L7 [sT — A]71x(0)

[sT— A 'bU(s) =

so L U[sI — Al 'bU(s)} =

Thus

giving

1 [s+4 3] [1] 1
Al 2 s—1||1] 513
1

i s+4 =3
A 2 s —1
3 2 3 3
s+1 - 512 _s+l+s+2:|
N ST S
L s+1 s+2 s+1 s+2

et —2e 2 _3et L 3%
et _ 272 _9pt 4 372

Gﬁ?ﬁﬁ}{%g—sﬁ
(s+2)(s+3) 542 7 =13
.
o2 _ 63:&}

R s
s

0 =2 1
o A= [0 ] ne [!

e )= ]

The solution =(t) is given by equation (6.75) in the text.

@I—Ay:{fl

2
s+3

giving (sI — A)~! =

1 [s+3 —2
(s+ 1)(s+2) 1 8
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so that
! -2 SR }
I — A -1 - - % Eh
(s ) %o (s+ 1)(s+2) {8} tiz_sil
1
) 1 s+3 2| |1 -1] | =
— 1 N
(SI=A) B UG = 57 ) { Loos ] [1 ! } {1]
[ {(s+5) ]
S(5+2) 32(s+1)(5+2)
n 1
Tory T T
Thus
5 5 1 (s+5)
Xi(s) =L -
(s) = L{x1(t)} = s+2 s+1  s(s+2) s2s+ 1)(s+2)

9/ 6  15/4 5/2
s+ 2 s+1 8 g2

9 15 b
giving x1(t) = 16_% —6e~t + = 3!

.57 A- {_g _H b= m w(t) = e~tH(1), xo = [1 0]

with X (s) and the solution z(t) given by equations (6.74) and (6.75) in the text

N s _]. . 1 ]. S+3 ]_
(sI-A) = [2 S+3] giving (sI — A) = GTOGTD {_2 5}
so that
B 1 s L3 2 1 }
sI— Ay lxg= — _ | s T sy
( )" %o (s+ 1)(s+2) [—2} {542-1+s42-2
and
2 4 2
(I-A)'BU(s) = — {2(«“3)} 1 _ {?+—(Stﬁ)z_?}
R TPRey B A e Sl S R

Thus X(s) = [ (s+1)2 + (s+2) }
(s+1) (S—|—2) (s—|—1)2
dtet 4 g2
Qe—t 22t _ Apet

giving z(t) =
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Exercises 6.9.9

3 3
58 FEigenvalues of matrix A = { 12 _45} are given by
2

A-M[=XNX+D+3=00+3)A+1)=0
that is )\1 = *1, )\2: —3

having corresponding eigenvectors e; = [3 2%, ex = [1 — 2]%.

Denoting the reciprocal basis vectors by
r; = [ru TlQ]T, ro = [ro1 ?“QQ}T

and using the relationships r]e; = d;;(i,7 = 1,2) we have

3r11 +2rio =1 o [l l]T
11 — 27’12 =0 1= 13 8
37“21 + 27“22 =10 ro [l §}T
ro1 — 2rog = 1 = la s
Thus
1 1 1 3

so the spectral form of solution is

x(t) = e"fe; — e Pty

The trajectory is readily drawn showing that it approaches the origin along the

eigenvector ey since e "t — 0 faster than e *. See Figure 6.11 in the text.

59 Taking A = {_5 —?)} eigenvalues are Ay = —6, Ay = —1 having

corresponding eigenvectors e; = [1 — 2|, ex = [2 1]7.

Denoting the reciprocal basis vectors by

ry = [Tll TlQ}T; rs = [T21 TQQ}T

@ Pearson Education Limited 2004




336 Glyn James: Advanced Modern Engineering Mathematics, Third edition

and using the relationships r]e; = d;;(i,5 = 1,2) we have

11— 2ri;2 =1 1 2 11y _ T
27’11+7’120} T 512 5 = n=gll -2
T21*2T2220 _ 2 _ 1 _ 1 T
2?21+T22:1} = ==y = n=gR

Thus

then response is

2
x(t) = ngx(O)ehtefi
i=1
4 a1 T 2] 1 [ 4e 4 14t
T 5" {—2} T5e 1] 5 | sett et
Again, following Figure 6.11 in the text, the trajectory is readily drawn and showing
that it approaches the origin along the eigenvector ey since e~ — 0 faster than

et

60 Taking A = {g :ﬂ eigenvalues are Ay = =2+ 52, Ao = —2 — 42 having
corresponding eigenvectors e; = [2 1 — 3|1, ec =1[2 1+ 4]1.

Let r1 = r] + jr] be reciprocal base vector to e; then

rie; =1 =[r' + jr]] €] + je{]* where ey = €] + je]

T

ries = 0=[r] + jr]]% [e]| — je/]? since es = conjugate e;

Thus

()T eq = (DT el + 31607l + () Tef] = 1
and

(r)Tel = (r)Tel] +3[(rD) el — (r)Tel] =0
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giving

, 1 o
ry=ri+gry =215 %)
Since ro is the complex conjugate of ry
1 . AT
ro = —[1+7 —2j]
4
so the solution is given by

x(t) = rl x(0)eMfe; + rlx(0)eM e,

1 1
and since rix(0) = 5(1 +7), x(0) = 5(1 —7)

z(t) = e—%{

bo | —

arper | 2] s amae |2 )

= Q—Qt{(cos 2t — sin 2t) {?} — (cos 2t 4 sin 2t) _01} }

= egt{(cos 2t — sin 2t)e] — (cos 2t + sin 215)9/1/} where e; = e] + je!

337

To plot the trajectory first plot e}, e] in the plane and then using these as a frame

of reference plot the trajectory. A sketch is as follows
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x4
4 £

/ ) e
>

-/

Q
~
B

-3 -1

v e

m 61 Following section 6.9.8 if the equations are representative of
Xx=Ax+bu, y=clx

then making the substitution x = M €, where M is the modal matrix of A,
reduces the system to the canonical form

E=A &+ M b, y=(c"M)¢

where A is the spectral matrix of A.

Eigenvalues of A are given by

1—A 1 -2
-1 2-X 1 =N 22 42=0 -1 +2)A+1) =0
0 1 —1-A
so the eigenvalues are \;y = 2, Ao = 1, A3 = —1. The corresponding eigenvectors

are readily determined as

er=[1317 e=[321", es=[101]"

1 3 1 2 0 0
Thus M= |3 2 0 and A= [0 1 0
1 11 0 0 -1
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1 1 2 -2 =2
M 1= adj M =—- | =3 0 3 | so required canonical form is
det M 6
1 2 -7
& 2 0 0 £ 1
5:2 = |0 1 0 & + 0 | u
&3 0 0 -1 &3 —%
y=[1 —4 —2] [§ & &]F
m 62 Let r = [?‘11 12 T‘lg]T,I‘Q = [?‘21 729 T‘QS]T,I‘S = [?‘31 32 TSS}T be the

reciprocal base vectors to e = [1 1 0], ea =[01 17, ea =[1 2 3]7.

rie; =ry1+rpp=1

1

r{egzrn—l-?“lgzo = r1:§[11 —1]T
rles = vy + 2r2 +3ri3 =0

rie; = rop +rop =0 1

I‘geg =roo tros =1 = r9 = 5[*3 3 HT
ries = 7o) + 2rop + 373 = 0

rie; =r3; +7r32 =0 1

rgegz?”32+7°33:0 = r3:§[1 fll]T

ries = r3; + 2rgp + 3ray = 1

Then using the fact that x(0) = [1 1 1]7

, o =rix(0) =1

b=

ag = rix(0) = —

m 63 The eigenvectors of A are given by

‘5—)\ 4

: 2_)\‘ —(A=6)(A—1) =0

so the eigenvalues are Ay = 6, A = 1. The corresponding eigenvectors are readily
determined as e; = [4 1]7,e0 = [1 — 1]%.

Taking M to be the modal matrix M = H _1

into x = Ax(t) reduces it to the canonical form

} then substituting x = M§

§- A¢
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6 0
0 1

2]

which may be individually solved to give

where A — [ } . Thus the decoupled canonical form is

[g ﬂ Eﬂ or é = 66 and & = &

£ = e and & = ﬁet

e oo 4[4 ][] [
50 £1(0) =1=a and &(0) = -3 =3

giving the solution of the uncoupled system as

€6t
- [4]

The solution for x(t) as

4 1 £t 48t — 3¢t
x=MEg = {1 —1} [—Bet] - {e6t+3et}

64 Taking A = [g ‘ﬂ its eigenvalues are Ay = 5, = —1 having
corresponding eigenvectors e; = [2 1]7, es =[1 — 1]7.
Let M = {? ” be the modal matrix of A, then x = M £ reduces the

equation to

; 5 0 1 [0 1
e - [ O feem )} ue
Since M~ = detll\/I adj M = % “ ;} we have

to= 5 O erg |4 3w

With u(t) = [4 3] the decoupled equations are

. 10
61:561+§
. 11
52:*52*?
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which can be solved independently to give

2 11
- _ .-t 1
§1 = e 3,52 Be 3
a1 R 1 1y 1
We have that £(0) = M X(O)—g L ol |2l = o1
2 5
l=0o—= = a= -
3 3
11 8
1 — - = — _
b 3 b 3
giving
%e&i_%
e [551]
3 -
2 1 S5t 2 5 Set g 105
_ _ 3 _ 3
wi s e [ ] [F5R] - [T

which confirms Exercises 49 and h0.

65 Taking A as the companion matrix following the procedure of Example 6.33
we have

0 1 0
A= 0 0 1|,b=[001% c=[1237
-6 —11 -6

Eigenvalue of A given by
A 1 0
0 =\ 1 = (A L6A2H 1A +6) = - A+ DA+ 2)(A+3) =0
-6 —11 —6-—2X

so the eigenvalues are A\; = —3, s = —2, A3 = —1. The eigenvectors are given by

the corresponding solutions of

—Aigil + €2 + 03 = 0
Oes1 — A€ + €3 =0

—687;1 — 116@2 — (6 + )\?;)eig =0
Taking i = 1, 2,3 and solving gives the eigenvectors as
e;=[1 =397, ea=[1 —247T, ea=[1 —11]7
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1 1 1
Taking M to be the modal matrix M = | —3 —2 —1| then the transformation
9 4 1

X =M £ will reduce the system to the canonical form

E=AE+M bu, y=c'M ¢

1 2 3 1 1 1
M*Li 6 -8 -2 ,M*lb:5 2|, cIM = [22 9 2
6 5 1 1
Thus canonical form is
3 -3 0 0] [&4 1
EQ = 0 *2 O 62 ‘|‘ *1 U
&3 0 0 -1 &3 5

y=1[2292] & & &)

Since the eigenvalues of A are negative the system is stable. Since vector M~'b
has no zero elements the system is controllable and since ¢Z M has no zero elements

the system is also observable.

b=[001%, Ab=1[01 —67, A’b =116 257

0 0 1 0 0 1
b Ab A°bl= [0 1 6| ~ |0 1 0] whichis of full rank 3
1 —6 25 1 00

so the system is controllable.

c=1[123"7 AT c=[-18 —32 — 18], (AT)%c = [96 158 63|T

1 —18 96 1 0 0
c ATc (AT)Y%c]= |2 —32 158| ~ [0 1 0| which is of full rank 3
3 —16 63 00 1

so the system is observable.
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o 1 0
=66 A= |0 0 1|,b=[001% c=[F317
0 -5 —6

Eigenvalues of A given by
—A 1 0
0= 0 —X 1 = - AA+5)A+1)=0
0 —h —6-—2X

so eigenvalues are A; = —5, Ay = —1, 3 = 0. The corresponding eigenvectors are

determined as

e1=[1 5257, eo=[1 —11], ea=[100]7

1 1 1
Take M to be the modal matrix M = | =5 —1 0| then the transformation
25 1 0

x = M§ will reduce the system to the canonical form

E=AE+M 'bu,y=c'ME¢

. [0 1 1 . 1
M ! = 5 0 -25 —5|, M b= % 51, cTM =[15 3 5]
20 24 4 4

Thus canonical form is

& -5 0 0] [& =
£ = 0 -1 0| |&| + |—3]|u
&s 0 0 0] [& L

y=1[1535] [& & &7

Since A has zero eigenvalues the system is marginally stable, since M~ !b has no
zero elements the system is controllable and since ¢? M has no zero elements the
system is observable. Again as in Exercise 61 these results can be confirmed by

using the Kalman matrices.
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Exercises 6.10.3

] 67(3.)

1/2 1/2 1/4 1/4
(ZI o A)—l 1 |:Z 1:| z12 + z—{—? z§2 - z—|/—2
7 1 1/2 1/2
(Z 2)(2 + 2) 1z z—2 241»2 z2—2 + z4/»2
1 1/2 + 1 1/2 1 2z 1 =z
Ak VA 1{2’(2’1 A)*l} Z*l |: 2z-2 2 z42 41z—2 4 242 :|
-2 z¥2 2 z— + z42

67(b)
z+1 -3
A-A= {—3 z—l—l}
_ 1 >+ 1 3
I- A =
AAT - ey s )
1/2 1/2 —1/2 1/2
z4/»4 + z£2 z%/»/ﬁl + z//Q
1/2 1/2 1/2 1/2
E+5 5+5
A 1 1 [ it it s
A =7 {Z(ZI*A—) }:Z |:_lz+z _I_lz_z 1 i++ 1 Zz_ :|
2 z4+4 2 z2-2 22—2 2z2-2
1 L1 -1 (11
S{en [ ] e )
67(c)
o lz+1 0 =1
A-A= { 0 z—l—l]
I Ay -t {Z“ ! } _ {L (zfl)z]
(24 1)2 ] z+1 0 Zil
e S U el B F
z+1
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m 68 Taking 1 = z and zo = ¥y we can express equations in the form

—7 4

x(k+1) = {8 X

} x(k) with x(0) = [1 2]
The sclution is given by
x(k+ 1) = AFx(0), A = {_7 4]

where A* — oI+ oy A. That is, the solution is

. Qo — 7051 4051 1 . o + [04]
X(k)_ *80&1 050<|>O£1:| |:2:| o |:20£060£1:|

The eigenvalues of A are given by
A BA+25 =080 A=3+j4

or, in polar form, A; = 5e%, Ay = 5e 9% where § = cos 1(—3).

Thus ap and «; are given by
FReIR0 — oy + a1565’8, 5ke 98 — ay + ayhe Y

which are readily solved to give

(5)%sin(k — 1)6 1, .sinkf
= — = — 5 _
o sin & » 5( ) sin ¢

sinf | b

k
Then ap+ o = (5) F sin k8 — sin(k — 1)9}
5
= (5)%[sin k& + cos k6
(5)*
sin

— (5)]2 cos(k6)]

5 1 3 4
= 1(5)}“ [— sin k6 + £ sin k6 + g cos ké’}

6
200 — By = {Q(Sin k6 cos @ — cos k@sinf) — z sin ké’}
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Thus solution is

z(k) = (5)*[sin k6 + cos k6]
y(k) = (5)*[2 cos(k0)]
We have
0 1 z —1
=09 A= {0.16 1} A-A= {0.16 z+1]
z+1 1
_ z-+0.2) z4-0.8 z-+0.2(z40.8
(I-A)' = [( —()),(16 ! )z( )]
(z+0.2)(24+0.8)  (z+0.2)(240.8)
4 1 1 1 5.1 _ 5 1
[ 32302 3 2108 3 2402 3 z—|—0.8:|

—0.8 0.8 1 _1 4 1

3 z+0.2 T3 z+0.8 3 2+0.2 T3 z+0.8
402 — L(—0.8 2(—0.2)F — E(—0.&)%

AF =7 I{Z(ZI*A)_ } { 038( ) 30( ) 31( ) k 34( ) k:|
22 (—0.2)F + &3 (—0.8)F  —3(—0.2)F + £(—0.8)
—L1(—0.2)% + 2(-0.8)*
AkxozAkl_lT:[ S( 3
(©) | | 92 (-02)k — 22(-0.8)%
U(z) = Z{u(k)} = 2/(z — 1)
_ 1 z+1 1 1 z
1 _
(GI=A)"bUGE) = oG 0s) {—0.16 z} {1} v 1

B Z z+ 2
(24 02)(2+08)(2—1) |[#—0.16

Z M (I - Ay TbU ()

Thus solution is

\ ot

z z
+02+ 9z 08+182 1]

z 5 =z 7 =z
92108 + 18 z—1

2)F 4 2(-0.8) +18}
g0+ &

[

T

ot B3l lO
— I
| +
=) O
(2]

[
—
|
j-
RV}
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70 Let zy(k) = y(k), z2(k) = x1(k+ 1) = y(k+ 1) then the difference equation

may be written

x(k+1) = [z;(k+1):| _ {O 1} |:$1(k5;:|’ x(0) = [0 1]F

(k+ 1) 1 1 xolk
1 5 145
Taking A = [? ﬂ its eigenvalues are A = +2\/_, Ao = ;ﬁ

AF = oI+ oA where ag and oy satisfy

1\/5)’“ +(1f\/5

(Y g (o () —ant (e
civing

= ) ()]

o= LI (I () ()

Solution to the difference equation is

0=, 0] = ot 1] = L]

k k
mmMmJJUZﬁJ—GQﬁJ}
k k41
[Note that y(k + 1) = ag + @y = \/15 {(1+2\/5) - (1 _2\/5) ] using above
values.|
B k 14++/5yk+1
As k— oo,(l \/5) — 0 and y(k + 1)/y(k) — % = %(\/g—l- 1)

Exercises 6.12.3

71  Choose xq(t) = y(t), z2(t) = (1) = % then

x(t)

I
| —
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Taking w(t) = K121(t) + Koxa(t) + eyt (t)

I PRy SO R )

The eigenvalues of the matrix are given by

0—A 1 _ 0
Ki+3 Ko+3—X
or A2 — (Ko + $)A— (K1 +4)=0
If the poles are to be at A = —4 then we require the characteristic equation to be

A2 8A+16=0

By comparison we have —Ko — % = 8 and —K; — % = 18 giving K; = —%,
33 17
Ko = _% 50 u(t) = [_? - ?] + Uext

)i |3 _t]xo ]| o - 0o

4

Setting u = K7x + ueyt, K= [K; Ks]T gives the system matrix

0 1
A—
el

whose eigenvalues are given by A% — (K — g))\ — (K| — %) = 0. Comparing with

the desired characteristic equation
(A+5)2 =X+ 10A+25=0

gives Ky = —%, Ky = —%. Thus

m 73 With uy = [Ky K3|x(t) the system matrix A becomes

K 14+ Ky

A= 6+ K, 1+ K
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having characteristic equation
Mo AMI4+ K+ Ky) —6(1 — Ky) =0

which on comparing with

A+ 10A+25=0
35 31 35 31
o Ky = 5 % that uq(t) = [_F = E]X(t)

. . 0 1 T a1
Using us(t) the matrix A becomes [6—|—K1 1+ K2:| where K* = [-31 — 11]

gives K4 = —

m 74 See p. 524 in the text.

m 75 Dor the matrix of Exercise 74 the Kalman matrix is
2 -2 1 0
M = {1 —1} {0 0}
which is of rank 1. Thus the system is uncontrollable.

For the matrix of Exercise 67 the Kalman matrix is

e[

2
which is of full rank 2. Thus the system is controllable.

.76
M=(b Ab)= [i _OJ,M—lz [i _OJ,VTz 4 —1]

cacion [y 2 s [4 e ]

Taking z(t) = Tx or x = T~ '2(t) then equation reduces to

T 1a(t) = [385 _3] T_lz(t)+{ﬂu

orZ(t):I[SSE) :S] le(t)+Tmu
R R P T PR A HE
_ {g _11} 2(t) + 2] "
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Clearly both system matrices have the same eigenvalues A = —2, A = 1. This will

always be so since we have carried out a singularity transformation.

Review Exercises 6.13

1(a) Eigenvalues given by

1A 6 12
0 —13-X 30 | =(1+A[(—13-A)20—X)+270] =0
0 9 20 A

ie. (1+AMA—-5)(A—2)=0
so elgenvalues are Ay = 5,0 =2, A3 = —1

Eigenvectors are given by corresponding solutions of

—1-X 6 12 €i1
0 —13—X 30 ein| =0
0 -9 20 — /\z €;3

When ¢ = 1, A\; = 5 and solution given by

€11 —€12 €13

198~ 00 b4
so e = [1153]7
When ¢ = 2, A; = 2 and solution given by
e e em
216  —b4 27 O °
50 ey = [8 217
When ¢ = 3, A\; = —1 and solution given by
€31  —e€32 €33
10 T P
s0 ez = [1 007
1(b) Eigenvalues given by
2— A 0 1
4—x -1 -1 4—A
14— -1 —‘ ) —)\‘+‘—1 ) ‘:0

-1 2 0—A
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e 0= (2 A)[(4— A=A+ 2] +[-2+ (4 —A)
— 2NN AL =2- A -3 -1)=0
so eigenvalues are
M =3 =2M=1

Eigenvectors are given by the eorresponding solutions of

(2 — Xegr + Oego + €3 =0
—eq1 + {4 — Aeig — €3 =0

—€1 1+ 2653 — Ajegs = 0

Taking ¢+ = 1, 2,3 gives the eigenvectors as

e; =121, e =[210T,ea=[10 — 1]

1{c) Eigenvalues given by

1-x 1 0 B NS
~1 2-X —1 | R+ (R+Ry) |-1 2-x —1|=0
0 11— A - 0 1 1-2A
1 -1 1 1 0 0
e A|—-1 2-x  —1 | =X|-13-Xx 0 | =AB3-X1-X=0
0 -1 1-2A 0 -1 1-2A

so elgenvalues are Ay =3, = 1,3 =0

Eigenvalues are given by the corresponding solutions of

(1 — )\7;)67;1 — €59 — 06,,;3 = 0
—ei1 (2 AJesg — €3 =0
Oez1 — €30+ (1 — Ag)ezz =0

Taking i = 1, 2,3 gives the eigenvectors as

er=[1-21"e=010 —1T,es=[1117T
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= 2 Principal stress values (eigenvalues) given by

3.\ 2 1 6\ 6-X 6\
2 3-X 1 |Ri+(Re+Rs)| 2 3-x 1
1 1 4-2A — 1 1 4 A
11 1
=6-A) |2 3-=2 1 | =0

10 0
e (B-A 2 1-x2 1| =6-20D01-0B-X)N=0
10 3-2A

go the principal stress values are Ay = 6, As = 3,3 = 1.
Corresponding principal stress direction eq,es and es are given by the solutions

of
(3 —Aj)eir + 262+ e =0

2,1+ (3—Aj)ejo+eps =0
e;1 + e+ (4— Negg =0

Taking ¢+ = 1, 2,3 gives the principal stress direction as
e; = [111)H eg=[11 —2/%, ea=[1 —107

It is readily shown that efes = efes = eles = 0 so that the principal stress

directions are mutually orthogonal.

= 3 Since [1 01]7 is an eigenvector of A

|
O = RO
S W =
oo O

Il

e

g0 2 =X, —-1+b=0,c=A
giving b = 1 and ¢ = 2.

Taking these values A has eigenvalues given by

2-X -1 0
1 3-x 1 | =(2-X)

‘SA 1
0 1 2

1 QA‘@A)

—2-NA-DA—4) =0
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i.e. eigenvalues are Ay =4, A5 =2, A3 =1

Corresponding eigenvalues are given by the sclutions of

(2 —X)eq — e+ 0e;z =0
—e;1 + (3 — AJeip +e3 =10
Oesp +ego+ (2 — Ages =0

Taking i = 1, 2,3 gives the eigenvectors as

e1=[1 -2 1T, ea=[101T,es=[11 —1]7

m 4 The three Gerschgorin circles are

A—dal=| 1]+ 0]=1
A= 1]+ -1]=2
A —4]=1

Thus |[A—4|<land [A—4|<2s0 [A—4[<20r2<X<6.

Taking x‘* = [—1 1 —1]% iterations using the power method may be tabulated
as follows
Iteration k 0 1 2 3 4 5 6
-1 -0.833 -0.766 -0.734  -0.720 -0.713  -0.710
x(#) 1 1 1 1 1 1 1

-1 -0.833 0 -0.76H -0.734  -0.720 -0.713  -0.710
-5 -4.332 -4.060 -3.936 -3.38 -3.852

A x(k) 6 5.666 5.530 5.468 5.44 5.426
LR -4.332  -4.060 -3.936 3.88 -3.852
X o 6 5.666 5.530 5.468 5.44 5.426

Thus correct to one decimal place the dominant eigenvalue is A = 5.4
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m 5(a) Taking ) =[11 1|7 iterations may be tabulated as follows

Iteration k& 0 1 2 3 4 5 6 7
1 0.800 0.745 0.728 0.722 0.720 0.719 0.719
x5 1 0.900 0.862 0.847  0.841 0.838 0.837  0.837
1 1 1 1 1 1 1 1
4 3.500 3.352 3303  3.285 3.278  3.275
A xR 4.5 4.050  3.900 3.846  3.825 3.815 3.812
5 4,700 4607 4575 4.563 45568  4.556
Ao 5 4,700 4607 4575 4563 4558  4.556

Thus estimate of dominant eigenvalues is A ~ 4.56 with assoclated eigenvector
x = [0.72 0.84 1]

B(b) S0 A\ —trace A = 75 =456+ L19+ Az = A3 = 1.75

3
5(c) (i) detA =T\ =950s0 A ! exists and has eigenvalues
=1

k2

1 1 1
1.197 1.75° 4.56

so power method will generate the eigenvalue 1.19 corresponding to A.

(ii) A — 3I has eigenvalues

1.19 -3, 1.75 — 3, 4.56 — 3
ie.—1.91, —1.25, 1.56

so applying the power method on A — 31 generates the eigenvalues corresponding
to 1.75 of A

= 6 =al, §=pxeM, 5= vAeM so the differential equations become

O‘I)\@At :4Q€At+6€)\t+’ye>\t
Bre = 2aeM L 53eM 4 Avyett

’}/)\BAt _ _ae)\t o ,6€>\t
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Provided e* # 0 (i.e. non-trivial solution) we have the eigenvalue problem

4 1 1 o o
2 5 4 gl =Ax |3
-1 -1 0 v v
Eigenvalues given by
4—A 1 1 4 — A 0 1 4—A 0 1
2 h—A 4|C-Cq| 2 I—A 4 |=(A-1)] 2 -1 4
—1 -1 0 o -1 A—-1 —=A —1 1 —=A

= —(A = DA -5)(A-3)

so its eigenvalues are b, 3 and 1.

When A = 1 the corresponding eigenvector is given by

3e1n +e12 +e1a =0
2e11 +4ejo +4e13 = 0

—€11 — €12 — €13 =0

€11 —€12 €13

havi lution — = = =
aving solution 0 5 5 5

Thus corresponding eigenvector is [0 — 1 1]7

m 7 Eigenvalues are given by

8—A —8 —2
AN =] 4 3-x —2|-=0
3 —4 1—A
Row 1 - (Row 2 4+ Row 3) gives
I—A —=14X —=1+2X 1 -1 -1
A= | 4 3-x 2 | =(1-XN]4 3-x -2
3 —4 1—A 3 —4 1—A
1 0 0

=(1-X) |4 1=-Xx 2 =(1=X)[(1=X)(4—=2)+2]

3 —1 4 — A
— (1N -2)(A-3)

Thus eigenvalues are A\; = 3, A0 = 2, A3 = 1.
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Corresponding eigenvectors are given by

(8 — )\)6,,;1 — 867;2 — 26,,;3 =0

467;1 — (3 + )\)67;2 — 26,,;3 =0

36;1 — 467;2 + (]_ — /\)67;3 =0
When ¢ = 1, A; = Ay = 3 and solution given by

€11 —€12 €13

R
so a corresponding eigenvector is e; = [2 1 1]7.
When ¢ = 2, A; = Ay = 2 and solution given by
€21 €22 €23
32 o 7
so a corresponding eigenvector is es = [3 2 1]7.
When ¢ = 3, A; = A3 = 1 and solution given by
€31  —€32 €33
ST a4’
so a corresponding eigenvector is es = [4 3 2]7.
Corresponding modal and spectral matrices are
2 3 4 3 0 0
M= |1 2 3| andA= |0 2 0
1 1 2 1 0 1
1 -2 1
M~ = 1 0 —2| and matrix multiplication confirms M1TAM=A
-1 1 1
m 8 CFHigenvectors of A are given by
1—A 0 —4
0 b—A 4 | =0

—4 4 3-A
ie AT —9A7 A+ 81 =(A-NA-3)(A+3)=0

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition

so the eigenvalues are Ay = 9, Ao = 3 and A3 = —3.

The eigenvectors are given by the corresponding solutions of
(1 — )\i)eil + 067;2 — 467;3 =0
Ogz1 + (5 — Aj)eso + degz = 0
—des +4den + (3 — Ag)es =0

Taking i = 1, 2,3 the normalised eigenvectors are given by

357

R R e
The normalised modal matrix
1 1 2 2
Mzg -2 2 -1
-2 -1 2
80
1 1 -2 -2 1 0 4 1 2 2
MTAM:§ 2 2 1 0 5 4 —2 2 1
2 -1 2 —4 4 3 -2 -1 2
9 0 0
= [0 3 0 =A
0 0 -3
—6 0 0 0
. 6 —4 0 0
=9 N-= 0 4 o 0 N, N = [Ny Na N3 Ny
0 0 2 0

Since the matrix A is a triangular matrix its eigenvalues are the diagonal elements.

Thus, the eigenvalues are
Ar=—6, o= —4, A3 = =2, 2,=0

The eigenvectors are the corresponding solutions of

(—6 — Ag)eqr + Oego + Oegz + Oegq = 0
Bej1 + (—4 — Ajjein + Oegz + Oegy = 0
Ogq + degn + (=2 — Ag)esz + Degq = 0

Oes1 + Oezo + 2€53 — Azegq = 0
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Taking ¢+ = 1,2,3,4 and solving gives the eigenvectors as

e1=[1-33 —17, ea=[01 —21]7
ea=[001 —17, es=[000 17

Thus spectral form of solution to the equation is

N = ae e + Be ey + 'ye_%eg + dey

Using the given initial conditions at £ = 0 we have

s, 1 0 0 0
0 _3 1 0 0
ol =2 3| TA | o T 1| T |0
0 1 1 1 1

so U =q, 0=—-3a+53, 0=3a—-28+y, 0=—a+3—7+4
which may be solved for «, 3,y and d to give

Hence

a=C0, 3=3C, v=3C, =0

Ny= —ae ¥ L g™ e 2 1§
— —Ce 430 30 %L

10(a)

(i)  Characteristic equation of A is A2 —3X+ 2= 0 so by the Cayley—Hamilton

theorem

2 o |40
A° =3A 21{3 1]

A® =3(3A —2I) - 2A =7A 61 = {‘3 ﬂ

A? =7(3A —2I) - 6A = 15A — 141 = “g ﬂ

31 1

64 0O
63 1

128 0
127 1

A® = 15(3A —2I]) — 14A — 31A — 301 = {32 0}
A® =31(3A — 2I) — 30A =63A — 621 = {
AT = 63(3A —2I) — 62A — 127A — 1261 = {
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Thus A7 — 3A% + A4 1 3A° — 2A2 4 31 = {:gg g}

(ii)  Figenvalues of A are A\; = 2, Ay = 1. Thus

A* — oI + a1 A where ag and o satisfy
2F — ag + 201,1 = g + o

a;p =28 1, ap =2 9F

Thus AF = ag + 20 0 ] = [ 2 0}

o 7] g + o 281 1

10(b) Eigenvalues of A are A\; = —2,Ay = 0. Thus

At — apl + oy A where g and o satisfy

e’%:ozo—Qal, l=ay =a=1,a1 =

1 -9t
Thus eAt:{ao a1 } = {1 2(1 7;5 )]

(1—e %)

o] =

1 2 3
m 11 Thematrix A= |0 1 4| hasthesingleeigenvalue A = 1 (multiplicity 3)
0 0 1

0
(A-T)= |0
0

[an RN eI )
O o= W

0 1 0
~ |0 0 1] isofrank 2 so has nullity 3-2=1 indicating
0 0 0
T

that there is only one eigenvector corresponding to A = 1.

This is readily determined as

ey =[100]F

The corresponding Jordan canonical form comprises a single block so

J:

O O =

1 0
11
0 1
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Taking T = A — I the triad of vectors (including generalised eigenvectors) has

0 0 s
the form {T?w, T w,w} with T?w =e;. Since T>= |0 0 0| we may take
0 0 0

w=1002%]7. Then T w = | 0]7. Thus the triad of vectors is

21
8 8

er=[1007, ef =[2 107, e =00 4"

The corresponding modal matrix is

1 2 0
M= |0 1 0
1
0 0 %
. . i
) 6 g4 U
M =16 | O % 0 | and by matrix multiplication
[0 0 5]
(L -2 0] [1 2 3] 1L § 0
M'AM=16 |0 £ 0| [0 1 4] [0 L 0
1
0 0 3| [0 01 00 |
1 1 0
— |0 1 1| =17
0 0 1

m 12  Substituting x = X coswit, y = Y coswt, 2 = Z coswt gives

—w?X = 2X+Y
WY =X 2Y - Z
WPZ =Y 2%

or taking A = w?

(A-2)X+Y =0
X+A-2)Y+Z=0
Y+ (A—2)Z=0

For non-trivial solution

A—2 1 0
1 A—2 1 =0
0 1 A—2
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ie. A=2)[(A =22 -1 -(A=2)=0
(A=2) (AN —4r+2)=0

soA=20rA=2++2
When A=2,Y=0and X =—-Zso X:Y:Z=1:0:-1

When A\=24++v2, X=Z and Y =—v2X 50 X:Y:Z=1:—-/2:1
When A\=2—+v2, X=Z and Y =v2X 50 X:Y:Z=1:/2:1

13 In each section A denoctes the matrix of the quadratic form.

2 1 0 5 1
13(a) A= |1 1 —1| has principal minors of 2, ’ ’ =1 and
-1 1
0 -1 2
det A =0
so by Sylvester’s condition (¢) the quadratic form is positive semidefinite.
3 -2 -2 2
13(b) A= |-2 7 0 | has principal minors of 3, ‘ ‘ = 17 and
-2 7
-2 0 2
det A =6
so by Sylvester’s condition (a) the quadratic form is positive definite.
16 16 16 6 16
13(c) A = |16 36 8 | has principal minors of 18, = 320 and
6 8 17 1636

det A = —704

so none of Sylvester’s conditions are satisfied and the quadratic form is indefinite.

—21 15 —6

13(d) A= 15 —11 4| has principal minors of -21, 2 6
15 —11
—6 4 =2
and det A =0
so by Sylvester’s condition (d) the quadratic form is negative semidefinite.
-1 1 1 IR
13(e) A = 1 -3 1| has principal minors of -1, ‘ = 2 and
1 1 -5 b3

det A = —4 so by Sylvester’s condition (b} the quadratic form is negative definite.
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T 1 _1 1 1
2 2 2

mld Ae — 4 -1 0 21 = |2
3 3 1

“3 3 2 3 3

Hence ey = [1 2 3|7 is an eigenvector with A; = 1 the corresponding eigenvalue.

Eigenvalues are given by

A U | _1
2 2 2
0= 4 ~1-XA 0 | =233 -3
_3 3 Loy
2 2 2
= (A =D(N+2x+3)
=—-A-1{A-3)A+1)
so the other two eigenvalues are Ay = 3, A3 = —1.

Corresponding eigenvectors are the solutions of

7 1 1
(_§ — Ai)es — 5€i2 —5€i3 =10

desn — (L4 Aj)epm + Oen =0
—3es + Sein+ (5 — Neis =0
Taking i = 2,3 gives the eigenvectors as
eo=[1107, ea=[0 —11]7
The differential equations can be written in the vector-matrix form
Xx=-Ax,x=|zyz?

so, in special form, the general solution is

x = ac’le; + Be*les | vencen
1 1 0
=aet |2 £33 | 1] +4et | -1
3 0 1

With «(0) =2, y(0) =4, 2(0) = 6 we have
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SO

ie. v =2e, y=4e', z=6¢e.

| 15(&)

J =

+ yib)
+
J =
15(b)
_ 1 s+5H 6
Aty _ _ 1_
e = A = ey |
3 2 6 6
— s+2 s+3 s+2 s—I—S}
1 1 -2 1
s+3 s+2 s+2 s+3

Taking inverse transforms gives

6At B 36—2t _ 26—3t 66—2t _ 66—3:‘5
6—3t _ 6—2t 36—3t _ 26—2:‘5

15(c) Taking Laplace transforms
[sT — A]X(s) = x(0) + bU(s) ; Y(s) = cIX(s)
With x(0) =0 and U(s) =1 the transform Xs(s) of the impulse response is

Xs(s) =[sI—A]7'b, Ys(s) =cl[sI— A]"'b
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Inverting then gives the impulse response as

—2%  po—3f
(O = 111] 5o | — a3 0

With x(0) -~ [10]7 and X(s) - ©

Yis)— [11] | [sT— A {

m 16 Eigenvalues are given by

1-x 1 —2
0= | -1 2-2X 1 = (1= =2A=3)+({1-N
0 1 —1-2X

= {1 —A)A—2)(A+ 1)

so eigenvalues are Ay = 2,y = 1, A3 = —1

Corresponding eigenvectors are the solutions of

(1 — Xes + e — 2e;53 =0
—e31 + (2= A)esz + €3 =0
Oez1 + €30 — (1 + Ag)ezz =0

Taking ¢ — 1, 2,3 the eigenvectors are

e1=[1317, eo=[321]7, es=1[101)7
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The modal matrix M and spectral matrix A are

1 3 1 2 0 0
M= |3 2 0|,A= |0 1 0
11 1 0 0 —1
2 3 —1 1 1 =27 [1 3 1
MA= |6 2 0|,AM=|[-1 2 1| |3 2 0
2 1 -1 0 1 —11| (1 1 1
2 3 —1
2 1 —1

Substituting x =M y in x(k+ 1) = A x(k) gives

My(k+1)=A M y(k)
ory(k+ 1) =MTAMy* = A y(k)
so y(1) = A y(0), y(2) = A y(1) = A%y(0)
= y(k) = A*y(0)

Thus ) o
1 3 1 2k 0 0 o
x(k)= |3 2 0 0 1 0 3| say
11 1 [0 0 (=F| [+
(13 1] [ a2*
= (3 2 0 3
(11 1] [v(-1)F
[ a2k + 38 4+ y(—1)"
= 3a2F + 243
| a2k + B4 (- 1D)F
When £=10
1 a4 38+ v
0| = | 3a128
0 at Bty
1 1 1
which gives a=—z, 8= 375
so that YO SLINEE R YO P
3 21 6
x(k) = —(2)k 11
3@ 3+ D

365

@ Pearson Education Limited 2004




366 Glyn James: Advanced Modern Engineering Mathematics, Third edition

17 x=Ax+bu,y=c'x
Let A;,e;,0=1,2,...,n, be the eigenvalues and corresponding eigenvectors of A.
Let M = [ej,e2,...,e,] then since A;’s are distinct the e;’s are linearly

independent and M~ ! exists. Substituting x = M £ gives
ME=AM £ +bu
Premultiplying by M~ gives
E=M'AME+ M ‘bu=A € +bu

where A =M ' AM = (\d;;),4,7=1,2,...,n, and by = M 'b

Also y =clx = y=c"ME =cl¢, ¢ =c"M. Thus we have the desired
canonical form.

If the wvector b; contains a zero element then the corresponding mode is
uncontrollable and consequently (A; by ¢) is uncontrollable. If the matrix ¢?
has a zero element then the system is unobservable.

The eigenvalues of A are Ay = 2,Ay = 1,A3 = —1 having corresponding
eigenvectors e; = [1 3 1]7, ea =[32 1]7 and e3 = [1 0 1]*.

The modal matrix

1 3 1 1 2 -2 -2
M=lejeses]= |3 2 0O withM*1:—6 -3 0 3
1 1 1 1 2 7
so canonical form is
: 1
§1 2 0 0 &1 3
L = |0 1 0 2| + 0 | u
: 4
& 00 —1] |& 4

y=[1 —4 —2][& & &)T

We observe that the system is uncontrollable but observable. Sinece the system

matrix A has positive eigenvalues the system is unstable. Using Kelman matrices

0 1 1 2 0
i) A%’= |-3 4 3|, Ab= |2|, A’b= |4
-1 1 2 2 0
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-1 2 0 10 0
Thus [b Ab A2b] = 1 2 4| ~ |0 1 0| and is of rank 2
-1 2 0 0 0 0
so the system is uncontrellable.
-2 -3 -3 0 0 1
(ii) [c AT c (A7)%c] = 1 0 2| ~ |1 0 0] andisoffull rank 3
0 5 1 0 1 0

so the system is observable.

—1 s —1
- 18 ﬁ{eAt} _ [SI— A}fl _ |:S + 2 1:| _ |:(S—|—12)2+1 (S+1_|2;+1
-2 s 3
(s+1)2+1  (s+1)241

At
Thus e = 2¢ tsint e (cost +sint)

and eA*x(0) = 0 since x(0) = 0
1

With U(s) = £{u(t)} = -~ we have
8

e (cost —sint) —e tsint }

r 5 —1 1
sI— A" 'bU(s) = | 72 s@ﬁ] H L { T3t }
S e —
L 5242542 g4 4252 0 & (5% 4+2542)

r 1
G }

- 1 842
L s s4+1)4+1

s £-V(sT - Ay TbU(s) = | ¢ st ]

1 — e t(cost + sint)

Thus z(t) = eMx(0) + £ H{(sI — A) " 'bU(s)}
_ e tsint
~ |1 —e cost +sint)

For the transfer function we have
Y(s) = ¢ X{(s) and when x{0) = 0
Y(s)=cl[sI —A]7'bU(s) = HU(s)
where H=c[sI — A]™'b

e 2
For this system we have H(s) = [1 1] [S t2e+l } = #
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When w(t) = d(t),U({s) =1 and so the impulse response ys(t) is given by

s+ 2 s+1 1
A} = X5l = e T T e 1 T TR

= ys(t) = e "(cost + sint)

=19
x1(k + 1) =ulk) — 3z1(k) — dxs(k)

ZEQ(k} + 1) = *23’31(]1}) - leg(k)
y(k) = z1(k) + z2(k)

or in vector-matrix form

st n= [ 5 ] s [ v =1 s
D(m)c[zI—A}lbm[l .y {“21 zfg] m
_ z4+ 3
2244z — 5

. 1 -3
(i) detM, = -2+ 0 so M, is of rank 2

(iif) Mc—lzé{(ﬁ ﬂ _ [(1)

[
o= 2| o
| I

11 I 1
v 1_ 2 2| =
(v) detT #0and T 2 { | 0} { 5 0

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 369
Substituting z(k) = T x(k) in (1) gives

T 'z(k+1) = AT ! z(k)+bulk)
orz(k+1)=TAT !z(k)+ T bu(k)
S EE NS P A T
fe. m(k+1)— {g _14} z(k)+m w(k)

Thus C and b, are of the required form with o« = —5, 3 = 4 which are coeflicients

in the characteristic polynomial of D(z).

= 20(a) FEigenvalues of the matrix given by

h—A 2 -1 3—A 2 -1
0=1 3 6-A -9 |C1=Cy |=3+A 6-A =9
1 1 1—A o 0 1 1—A

1 2 —1

~(3-XN [0 8-x —10
0 1 1-2A

= (B3-N\ =9 +18) = (3— A (A —3)(A—6)

so the eigenvalues are Ay = 6, 0 = Aa = 3

2 2 -1 0 0 1
When A=3,A-3I—- |3 3 -9 ~ |1 0 0 isofrank?2
11 -2 0 0 0

so there is only 3-2=1 corresponding eigenvectors.
The eigenvector corresponding to Ay = 6 is readily determined as eq = [3 2 1]7.

Likewise the single eigenvector corresponding to Ay = 6 is determined as
ex=[1 —107
The generalised eigenvector e determined by

(A —2T)es = e
or 3es; + 255 — €55 = 1

* * *
€91 T €39 — 2693 =10
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giving e} = | % % %]T
For convenience we can take the two eigenvectors corresponding to A =3 as
er=[3 =307, es=[111]F
6 0 0
The corresponding Jordan canonical form being J= [0 3 1
0 0 3
20(b) The generalised modal matrix is then
3 =3 1
M= |2 -3 1
1 0 1
(5 2 —11 [3 =3 1 18 9 6
AM= |3 6 -9 2 -3 1| = [12 =9 0
11 1] [1 0 1 6 0 3
3 3 1] [6 0 0 13 9 6
MJI= |2 -3 1 0 3 1| = 1|12 -9 0
1 0 1] [0 0 3 6 0 3
sc AM=—"MJ]
-3 -3 6 et 00
20(c) M! —1 2 —1],elt= |0 &5 ¥
3 3 15 0 0 e
80
1 3 3 1 0 0 -3 -3 6 0
xt)=—= |2 -3 1 0 eSt tet -1 2 -1 1
1 0 1 0 et 3 3 —15 0
9 —9(1+t)e
= —I- (3 + 9t)e
363t
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The controllability question can be answered by either reducing to canonical

form as in section 6.7.8 of the text or by using the Kalman matrix criterion given

in Exercise 61 of the text. Adopting the Kalman matrix approach

1 2 0
A= o —1 0 and
-3 -3 -2
K 2
b= |[1|,Ab= |-1|, A*b=
0 -3
so the controllability Kalman matrix is
0 2
b Ab A’b]= |1 1
0 -3

Since det C #£ 0, rank C = 3 so the system is controllable.

The eigenvalues of A are given by

1—A 2 0

R R RN
-3 -3 —2—-A
=(1-X1-XM2+N) =0
gso that the eigenvalues are A\ = —2, A, = —1,23 = 1. The system is therefore
unstable with As = 1 corresponding to the unstable mode. The corresponding

eigenvectors of A are given by

and are readily determined as
e, = [00 1%
er=[1 —10]7
es=[10 — 17

To determine the control law to relocate As = 1 at -5 we need to determine the

eigenvector vy of AT corresponding to A3 = 1. This is readily obtained as

vy =[1107T
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Thus the required control law is

u(t) = Kvix(t) = K[1 107x(t)

— A —b)—1 6
WhereK:pgT?’: (-5) =—=-6
vy b 0 1
110] |1
0

So u(t) = —6(xzq(t) + z=2(1))

22  Substituting x = e*u, where u is a constant vector, in x = A x gives
Mu=Auor (A—NTu=0 (1)
so that there is a non-trivial solution provided
|A— NI |=0 (2)

If )\f,)\%,...,)\i are the solutions of (2) and uj,ug,...,u, the corresponding

solutions of (1) define
M =[u; uy ... u,] and 8 = diag (A] A5 ... A%)

Applying the transformation x =M q, q=[gq1 ¢ ... g.] gives

Mg=AMq
giving § =M ! A M q provided uy, us,...,u, are linearly independent
sothat =S q since M ' A M=S8

This represents n differential equations of the form

G =MNg ,i=12,...,n

When )\2 < 0 this has the solution of the form
gd; — O?, sin(wit -+ Oi?;)

where €; and a; are arbitrary constants and A\; = juy
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The given differential equations may be written in the vector-matrix form

. fl . *3 2 X1
< a7 3]
which is of the above form
X=Ax
0=| A~ XT| gives (A2)2 +5(A%) +4 =001 A2 = 1,23 = 4.
Solving the corresponding equation
(A—XT)u;, =0

we have that u; = [1 1]7 and uz = [2 — 1]7. Thus we take

1 2 -1 0
M = {1 1} and S = [ g 4}

The normal modes of the system are given by
HE N
G2 0 —4] |
q1{t) = Cysin(t + ay) = vy sint + 5y cost
qo(t) = Cosin(2t + ag) = yosin2t + F5 cos 2t

_ _ 5
Since x = M q we have that q{0) = M~1x(0) = — [ 1 12} [é] - [ 31]

B 3
also ¢(0) = M—1%(0) so that ¢;(0) = 2 and ¢(0) =0

Using these initial conditions we can determine vy, 31, v2 and 3» to give

giving

I Wl =

5
g1(t) = 3 cost + 2sint
1
go(t) = — - cos 2t
3
The general displacements xq(t) and xo(t) are then given by x = M q so
5 i 2
1 = g1+ 290 — 3 cost + 2sint — 3 cos 2t

5 1
To = g — gy — gcostJrQSint— 5005215
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Vector Calculus

Exercises 7.1.2

m 1(a) f(;r:,y):c:>:zf2+y2:1+e‘3

Contours are a family of concentric circles, centre (0,0) and radins > 1.

1(b) flz,y)=c=1y=tanc(l+x)
Contours are a family of straight lines whose vy intercept equals their slope and
pass through (-1,0).

m 2(a) Flow lines given by % =y and ¥ =62 —4z.
Thus,
% B 6x% — 4x
dr y
/y dy:/(6m24x) dr + ¢
1
§y2 =223 — 222 4 ¢
y? =4z (z — 1) + 2¢
2(b) Flow lines given by % =y and d—'f;' = %3:3 —x.
Thus,

dx y

/ydy:/(émsx) dr + ¢

]‘2_]‘4 ]‘2
T g vt

1
y? = Exg(mg —12) + 2¢
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m 3(a) Level surfaces are given by f(r)=c= 2=c+ zy.

3(b) Level surfaces are given by f(r) =c= 2 =c—e *¥.

m 4(a) Field lines given by %:;Ey, v — 2 11, d2 = o,

dt dt
d
d—izziz:Aet
d
(%:1+y2:>y:tan(t+a)
d
d_f =axy = Inx = C — In(cos(t + «))
B B
 cos(t + a)

Since 1+tan®f =sec?f = 14+ 4% = (%)2, a hyperbola, so curve is on a hyperbolic

cylinder.

4(b) TField lines are given by % = yz, % =2z, &=y

Hence,
dy @ 2 2

dz
%:Eézgzmg—l—k
de =z

The curve is the intersection of these hyperbolie cylinders.

] 5(&)
of of of
e Y2 2% ay—szrl 5, = LY 1
2 2 2
7r At A it
Ox> Oy? z2
% f ., 8% f . oaf
dxdy dyor dxoz Y
O*f 0% f ., 8% f -
Dz0x Y oydz D20y
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5(b)
3f — 3 af ! (9f o 3 9
a$—2myz B_y_mz aZ—Smyz
022 =" o " 52z = 0w
82f 3 an ! an 3
dxroy v Dyo xz Swhs  OTY?
82f 2 agf 2 9 82f 9 o
dz0x ry= Dydz Tz 920y xoz
5(c)
ofF L 2 (Zvy_ v of s [(1\_ 32
oz 14 (EP\2 ) @ty By 1+ (E)2\z) 224y
o*f 2zy> O*f  —2ayz
ozx? (a2 +y?)? By (2% + y2)
of —1{¥
Fh tan (5)
2f
92
o*f = 2 a@+y) -2 (P -2t
oxdy x4yt (22y?)2 0 (@24 (22 yR)?
°f = 2% wle—a(4y?) (P -2t
yox  x?+y? (224 ynr (224 y?)? (22 4 2)2
rf 1 A T f  —y
grox 1+ (22 \a? ) a?ty? Dz a®+ y?
(92f B 1 1 B T an B Z
oyoz  1+(2)\z) x4y’ D20y 22+ 3P
N R IE Rl B I e

df 3 2
T 27 — 1)(3t°) + 2(2t)(2) + (—1) (

(t—

-1
1)2

)

— 2ttt =3t + )t — D7+ 11/t - 1)?
= {2¢(3t% — 6¢° + 3¢* — 3¢9 4+ 1087 — 11t +4) + 1}/(t — 1)?

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 377

6(b) % = yz, % = x2, % = zy, % = e ‘(cost —sint), di’ = —e ‘(cost +
sint), =1

d
d{ —te fcost.e T (cost —sint) — te Psint.e *(cost + sint) + e Fsintcost.(1)
—te “t(cos®t —sin®t — 2sintcost) ~e sintcost

1
= te**(cos 2t — sin 2t) + 56_% sin 2¢

2, _2v1/2
=7 rP=zf 4yt + 27 tand — ¥, tang — & ¥

zZ

or y*siné’sinqﬁ op 1 1 x cos ¢
oy T oy L+ (#)2x 224+ y2  rsin®
o9 0 (tan—1 W - yz _ sin¢cosd
dy Oy 2 T (@2t + 2@ )2 ;
g_ s @87f+ cos¢p Of sindcos8If
oy —Snvsine s, rsind d¢ r Er
ar oz o
@frfcosﬁ, Efo
@ B 1 7(x2+y2)1/2 B 7($2+y2)1/2 B —siné
br 142 22 B T
af —cos@af—smgaf
8y or r o 00
Ou  df Hr Sr Eu = d
=8 G- Wa o E T
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Similarly (by symmetry), ‘g% =

u FPu Pu 2Ax? + 42+ 24 d 22 4 2+ 22 g2
L O 0w w2ty ydf Y f

dx? = oy? 022 r.r? dr r? dr2
_2df A2 f
ordr dr?
Hence the result.
9 Viz,y,2)= %exp {75”22;3’2
oV 1 224+ 2 [—2]
— = — X — -
bz 2P 4z | 22 |
V1 22 4y [ x]? 1 2 4y
= —exXp< — — | — s exp< —
8z oF 4z | 22 | 9,2 P 4z
oV 1 224+ 42 [—y]
oy oz P 4z | 22 |
vV 2 4y _—y_g 1 2 4y
= —exXp< — 7| - S exps —
oy P 4z | 22 | 2,2 P 4z

ad 1 by ] 2 byt [22 + P
= ——aXpyq — + —exXp< —
z 4z 42

_ o2V N o'V v
ax2 = Ay Az

m 10 V =sin3z cosdycoshbz

92V .

——= = —9gin3x cosdy cosh bz
O?

oV

——— = —168in3x cos 4y cosh bz
A2

a*V

——— = 2b8in 3x cos 4y cosh bx
022

oV N oV N PV 5
ax?  Ay? o 822
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Exercises 7.1.4

379

mll zty=u y=uv
gi gzzl, %:vigizlv
ggi:z;:‘lufu Y =u—uv — (—uv) =u
w12 zt+yter=u yv+2=uv, 2 =uvw

o oy o o o
Ou  Ou  Ou O Bu Hu
0z oy ox
= E = vw, P v(l —w), P
Ox oy or Oy Or
P MR P P M
0z oy ox
ov - ov i, ov
8m+8y+8270 8y+827
ow | Hw  Hw O Hw  Ow
N dz dy dx
gw " Buw Y w
l—v v—vw
= g(m,y,z) =| —u  u—uw
(’M,’U,’UJ) 0 — 0
l—v v vw
1—w
= v ow oww|=wl
0 0 wuv
) l—v w 2
=wv|t_ | =

%
ou

== vw

vw
uw
Uy
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m 13 xz=e¥cosv, y=e"sinv

dx @ ay w
— =e"cosv, — =e“ginv
ou ou
am W s 8y “
— = —e“slnv, - =-e"cosv
3’0’ ? arv
dx u U o
= ) = ° uCO-SU eu SR = egu(COSQ'v + sin® ) = e
Au,v) —e“sinv  e“cosw
2, .2 2 1 2 2
Tty =e :>u=§ln(;1: + y*)
y = tanv = v = tan ! (E)
€ T
B _ £ Ou . Yy ov . Y ov B T
dr  x2+y? gy 2 ty? o 22y oy a2yl
a(u,’t}) _ wziyz *wfiyz z* + yQ . 1 o L
3(3:5 ?J) $2$y2 wzin (1‘2 + y2)2 IQ _I_ ,yQ eQu
Hence the result.
=14
(coszcosy — Asinzsiny)

O, v) _ | (—sinzcosy — Acoszsiny)
| (—coszsiny — Asinzcosy) (—sinzsiny+ Acoszcosy)
(

= — (sinz cosy + Acoszsiny)(—sinxsiny + Acosz cosy)

+ (cosxzsiny + Asinz cosy)(cosz cosy — Asinzsiny)

2

= — [~sin"zsinycosy + Asinz cos:r:cosz — Asinz cos:z:singy

2 2

+ A% cos xsinycosy] + [cos® xsinycosy — Asinx cos x sin? Y

2

+ Asinz cos:r:cosgy — X%sin x sin y cos y|

=sinycosy — A2 siny cosy

Iu, v)

—0=MN=1=X=-1 or 1
3z, y)
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=15
2Kz (32 + 6y)

3
=| 8y 2 (2z+6x)
Az, y, 2) 22 1 (2y+ 3x)
Kz —32 0 (32— 9x)
=24y —22 0 (22— 4y)
z 1 {2y + 3x)
Kz -3z 32—-9x
= -2 dy— 2 25— dy =4(z - 2y)(— Kz + 9x)
Au, v, w)
Nz, y,2)

u:9m2+4y2+22

Au, v, w)

=0=K=9

v? =927 + 4y% + 2 + 122y + 625 + dyz
2w = 120y + 6x2 + 4dyz

u = v? — 2w

m 16
B auax+ du Oy
T Bz ou | Oy du

ov J ov
— 8_25% + a—za—z (differentiating v = h(x,y) with respect to u)

1 (differentiating u = g(=x, y) with respect to u)

0

Oy
dx 0o 9 v
or s oyl Yy
:>c9u LA Ay

‘1 Hu

O Oy
dv  Bu
O Oy
oy o
Ju  Ox

Similarly, differentiating w = g(z,y) and v = A(x, y) with respect to v obtains the

other two expressions.

s 17
u=-e"cosy, v=¢ “sginy
o - v Cx
G = C 8y =u, 5o =—e Tsiny =—v
du . ov o
a—y:—e siny, By —e Ycosy
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ox e Feosy

O cos?y —sin’y
ox e* siny

v costy —sin?y
oy e *siny

B cos?y —sin?y
oy e cos y

v cosZy —sin’y

Since 2uv = 2siny cosy = sin 2y, it is possible to express these results in terms of

u and v. .
siny = 5(1+ V1 — 4u?v?)

1
Cosy = 5(1 — V1 —4u2v?)

1
e® = ﬁ(l + V1 —4uv?)

Exercises 7.1.6
] 18(3.)

o
a—y(yQJrQ;Eer 1) =2y+ 2z

o 2
%(meﬁ—:r: ) =2y + 2x

therefore an exact differential.
Let 50 =y + 20y + 1, then f(z,y) = 2y + 2%y + 2 + ¢(y)

af 5 de
and — =2x x —
By ¥+ + i
But, g—; — 22y + 2 from question. Hence, g—; = 0, so ¢ is independent of = and

y= flzy) =2y + v’z + ot

= 18(b)
5
8—(2:1:3;2 + 3y cos3x) = dxy + 3 cos3x
Y

d
8—(2:}:21/ + sin3z) = 4xy + 3cos 3z
x

therefore an exact differential.
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Let g—i = 2zy? + 3y cos 3z, then f(z,y) = z°y? + ysin3z + c(y)

a d
and —f = 2m2y + ysin3x + ce
dy dy

Hence, g—; = 0 and ¢ is a constant with respect to both x and ¥

= f(z,y) = 2%y> + ysin3z + ¢

18(c)
3(63@ —y°) =6z —2y
Ay
o
R

Not equal, so not an exact differential.

(2ze¥ — 2%) = 2e¥ — 2

18(d)
d 3 d . 3 2 g 2
— —3y)=—-3 — —3y)=23 —(12y= —3x)=0
By (27— 3y) 5,2 —3y) =32 5, (12y” — 32)
0 2 _ g 2y g2 g 2y
%(121/ —3z) = -3 %(33:2 ) =3z B (3x2°) =0
Hence exact. Let g—x = 2 — 3y, then f(z,y,2) = 2°z — 3zy + c(y,2) and

%i = 3z + g—;. This implies that g—; = 12y% and c(y, 2) = 4y + k(2).

afi 5 807 5 dk
azf?)zx—kgf?)zm%— o

This implies that % =0 and so f(x,y,2) = 2°z — 3oy + 4°* + K.

=19 5
a—(ycos:c+ Acosy) = cosx — Asiny
Y
a—(msiner sinz + y) =siny + cosx
x

Equalif A= —1.
Let g—w = ycosx — cosy, then flz,y) = ysinx — zcosy + c(y) and g_; =
sinz + zsiny + ¢/(y) so that ¢(y) =y and c(y) = 39° + k.

@ Pearson Education Limited 2004




384 Glyn James: Advanced Modern Engineering Mathematics, Third edition
Hence, f(z,y)=ysinz — zcosy + %yg + k.
1 1
f(O,l):Oi>0:0+0—|-§+ki>k:—§

and f(z,y) =ysinz — xcosy + %(y2 —1).

m 20

4 2 2
a—y(wm + 6zy + 6y°) = 62 + 12y

< 2 2
8—(9:19 + dxy + 15y°) = 18z + 4y
T

Hence not exact.

6%[(2:12 + 3™ (1022 + 6y + 6%%)] = 3m(2zx + 3y)™ (1022 + 62y + 6y°)
+ (22 + 3y)™ (62 + 12y)
om(2x + 3y)™ 1 (92 4 dzy + 1547)

+ (2z + 3y)™ (18 + 4y)

a
E (22 + 3y)™ (92 + dzy + 159%)]

Hence, exact if

3m(102° 462y -+6y°)+(22+3y) (62-+12y) = 2m(9x>+dzy+15y%)+(22+3y) (182 +4%)

Comparing coefficients of 22 gives m = 2. Let

a
a—f — (22 4 3y)*(102% + 6zy + 6y°) = 40z + 1442y 4 1862%y% + 1262y° + 5dy?
X

= f(z,y) = 82° + 362y + 622°y% + 6327y + 5dzy? + c(y)

2,
a_f = 3621 + 12425y + 992%y° + 2162° + ¢/ (y)
Yy

= d(y) = 9y2 % 15?,.'2 = c(y) = 27y5 + k

Hence, f(z,y) = 82° + 36aty + 622%y% + 632%y° + 5ay? + 27" + k.

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 385

Exercises 7.2.2

m 21 grad f = (2zy2?, 2°2°, 22°%y2).
At (1,2,3), grad 7 = (36,9, 12) = 3(12,3,4).

. . . . o o 4 (_273:_6) — l _ _
m 21(a) Unit vector in direction of (2,3, —6) is 1o 156) =(—2,3,-6).

Directional derivative of f in direction of (—2,3,-6) at (1,2,3) is

3(12,3,4) - (-2,3,-6)/7= —117/7

21(b) Maximum rate of change is |grad f| = 3+/(144 + 9 + 16) = 39 and is in
the direction of grad f, i.e. (12,3,4)/13.

m 22(a) V(z?+y? —2) = 22,2y, 1)

22(b)

22(c)
v e—m—y+z 7e—m—y+z 1 32:26—22—'9—)—z 7e—x—y—|—z
Rl B U S 2 (28 b y2)32 By 2

1 2ye ® %12 g o ¥tz )

2 (z3 +y2)3/2 a3 2
R A ( 3,2 3 5

3 2 3 2
($3+y3)3/2 51‘ y X Y Y X +y)

22(d)

V(zyzsinm(z +y + 2)) =(yzsinm(x +y + 2) + 7zyzcosm(z + y + 2),
zzsinm(z +y+ 2) + wryz cosw(z + v + 2),
zysinw(z + y+ 2) + mryzcosw(z + y + 2))
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m 23 grad (2% + 9% —2) = (22,2y,—1).
At (1,1,2), grad f = (2,2, -1).
Unit vector in the direction of (4,4, —2) is 1(2,2,—1).
Directional derivative is (2,2, 1)+ £(2,2, 1) = (4 + 4+ 1) = 3.

= 24 V(xy® —3zz +5) = (y® — 32, 2zy, —3x).
At (1,-2,3), grad f = (-5, —4, -3).
Unit vector in the direction of grad f is (—5, —4, —3)/4/50.
Unit normal to surface zy? — 3zz +5 =0 at (1, -2,3) is (5,4,3)//50.

m 25(a) v = /22ty 22

T Y z

V= (\/m2+y2+22’\/$2+y2—|—z2’\/:z:2—|—y2+z2)

- (mayrz)

I N

25(b)
o 1\ —T —Y —
r) T \@2 R )3 (@ 2 4 22 (% g 22
r
e
= 26 5
8—i:2$y—|—z2¢¢($:yaz):932’£I+5?33’2‘|‘f(y=2)
a¢ 4 2 o2, Of _
[)Tyix tr=at b r=x +8—y¢f(y,z)fzy+g(z)
8¢ B dg
—— =y t2xz=y+2xz=2xz+ty+t —
B dz

Hence, g—i = 0= g(2) = ¢, a constant.

Hence, ¢(z,y,2) = 2%y + 32° + 2y + c.
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27 ¢(z,y,2) = 2%y — 3ayz + 2°

grad ¢ = (2zy — 3yz, 2 — 3z2, —3zy + 322)

At (3,1,2), grad ¢ = (0,-9,3).

Unit vector in direction of (3,—2,6) = (3, —2,6)/1/49.

Directional derivative at (3,1,2) in direction of (3, —2,6) is

(0,-9,3) - (3,—-2,6)/7 = 36/7

387

28 V(z?+y?+22-9) = (22,2y,22).
At (2,-1,2), grad (z? +4° + 2% — 9) = (4,-2,4).
Unit normal to surface at (2,—1,2) is (2,—1,2)/3.
Viz? +y? — 2 —3) = (2z,2y, - 1).
At (2,-1,2), grad (z® +4° — 2 —3) = (4,2, —1).
Unit normal to surface at (2,—1,2) is (4, -2, —1)//21.
Let angle between normals be §, then

(2,—-1,2) (4,-2,-1)

cosf = .

3 V21

= cosf = i, hence 6 = 54.41°

3v21

29(a) V(z?+2y% +32% —6) = (27, 4y,62).
At (1,1,1), grad f = (2,4,6), so tangent plane at (1,1,1) is

(1,2,3) - {x—1l,y—1,2—1)=01e. 2+ 2y +32=6

and normal line is

29(b) V(222 4y 2?2+ 3) = (42,2y, 22)
At (1,2,3), grad f = (4,4, —6), so the tangent plane at (1,2,3) is

(2,2,-3)-(x—1L,y—2,2—-3)=01ie 2x+2y—32= -3

and the normal line is
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29(c) V(z?+y?—2—1)=(22,2y,—1)
At (1,2,4), grad f = (2,4, —1), so that the tangent plane is

(2,4, 1) (x— 1,y —2,2—4)=01e 2x+ 4y — 2 =6

and the normal line is

m 30 The change Ar in the vector r can be resolved into the three directions u,,

up, uy. Thus,

Ar = Aru, + rAfuy + rsinfAduy

Hence,
f(r+ Ar) — f(r)
0 |Ar|
~of 1af 1 af

or o+ ;%ug i Tsinﬁaiqbugé

djf=1li
rad /= i

Exercises 7.3.2

= 31(a) div (3z%y, 2,2°) = 6zy + 0+ 0 = 6zy

31(b) divBz+uy22+2,2—2y)=34+0+1=4

= 32 div F = 2y% — 2y2® + 2yz — 3222,
At (—1,2,3), div F = —61.
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= 33
Via -r)=V{az + a2y + azz)
— (alaa’Q: 033) =Aa

0 0 0
(a-Vr = ((M@, QQa—y,axS%) (z,v,2)

= ((11,012,013) =a

{a(V~r):a(1+1+1):3a}

s 34 , . .
{1 =z 1y 1 =
v ()R (R
, d x 1 1 z.(2z)
since — — _ -
e\ VP2t 2] R hyE o 2@t 2P
3 2 2 2 9
HGDCGV.V:——%:—
r r r
N -l C122)
’ (z2 + 2 + 22)3/2’ (22 + y2 + 22)3/2’ (22 + y2 + 22)3/2
2 2r
- _ﬁ(mayaz) - _?"_3
= 35

div F = dzy® + 929° + dxy® = (4 + 9+ Nay®
divF=0= A= -13

m 36 In spherical polar coordinates, an element of volume has side Ar in the u,
direction, rA# in the uy direction and r sin@A¢ in the uy direction.

The total flow out of the elementary volume is

;(V . 117«?“2 sin 9A9A¢)A?‘ -+ %(V - Ugrsin QA(,bAT)AQ + %(V . uquAQAT)Agb
T

+ terms of order |Ar|?
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Dividing by the volume of the element, r?sinAGAPAr, and proceeding to the

limit, we obtain

1 4 , 1 8
—(rsinfvg) + Tsin98_¢(v¢)

1 8
div v = — —(r2
vy r2 8T(T vr) rsin @ 00

m 37

div (?‘LS) — div [(f_g’%’?“ig)]

r r5 P pd 8 b
_ 2 3($2+y§+22) 0
T T
Exercises 7.3.4
= 38
i j k
curl v = (% (% % = (y,6zz — 1,0)
R —yz x4+ 2z
= 39
i J k
curl v = 5,% 5,% % =(z—z,y—y,z—2)=0
Yz xz TY
s 40
i i K
curl v — | 5 & £ | =00,0=0
24+ yz 2y+zx 224 xy
of of of of
gmdf(a@@ T ge T
o .
%_ m{»yzif(x,y,Z)—x +$yz+g(yaz)
o o o
8?;:2y+zmand8—ch:mz+8§:>g(y,2)=y2+h(z)
af of dh 2
@—inrmyandg—myir@#h(z)—z + ¢

Hence, f(z,y,2) =2+ y°+2°+ayz+C.
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=41
i J k
2] 8 8
Vx(fv)=| & By 5. | = (2,527 —2y,2)
2x® — 2y O 2t 4 a2y
i i k
FVxv) =6 -y L & &
z 0 —x
= (% = 9)(0,2,0) = (0,22° — 2y,0)
(V) xv=(32% —1,0) x v
i J k
— 13z -1 0 (x,327, 2)
z 0 —=
= 42
i i k
VxF= 2 % 2 = (¢ 3,3a2% — 62%,2bx — 4x)

Ay + az® bx? + 32 6x2®+ ey
VxF=0=¢c=3,a=2,b=2

(09 B¢ B9
ograd ¢ = (8%’8’1;’82)
g¢ = day + 22° = @z, y, 2) = 22y + 2225 + f(y, 2)
x
d¢ Ocp 5, Of of
c9y — 222 + 32 and 8y72 —I—@éﬁf&z
Hence, f(y,2)=3yz+ g(2).
o ol dg dg
@762:2 —I—Byanda—f(i:z:z +3y+d_i>£70

Hence, ¢(x,y,2) = 222y + 222> + 3y2 + C.
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m 43
i J k
1 o 2] 8
w:§curlu:§ o5 By Oz
—-y T Ty
= (zz,—y2,2)
At (1,3,2), w = (2, -6,2) = (1, -3,1)
= |Jw|=+v11
= 44
divv=a+d
i J k
curl v = 8% % % ={0,0,c—b)
ax+by cx+dy O
divv=0 = a=-d

curlv =0 = ¢c¢=25%
v = (az + by)i+ (bx — ay)j
= grad ¢

8¢
%—amirby and a—y—bm—ay

1
= ¢(z,y) = 5%‘2 by + fly)

8¢_ ’ / _ __1 2
Ky—bx+f(y) = fly)=-ay = fly)= 5 Y + K

1 1
Hence, ¢(z,y) = 5&:}:2 + by — §ay2 + K.

m 45 In spherical polar coordinates, an element of volume has side Ar in the u,
direction, rA# in the uy direction and r sin@A¢ in the uy direction.
Setting v-u, = v,, v-ug = vy and v-uy = vy, we see that the circulation around

the wu, direction is

(%(v¢r sin@AQ)AL — %(’UTAH)A@ + terms of order A#? etc.

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 393

The area around which this circulation takes place is r?sin 6A#A¢, so proceeding

to the limit we have

(vgrsind) — (%(’UQT)} /(r%siné)

(v.) — %(7‘ siné’%)} /(r?sin6)

(curl v) - u, = {

Similarly (curl v)  up = {

Yo gle g

and  (curl v) - u, = { (fvg)éz(vri}/r

Hence the result.

Exercises 7.3.6

m 46
rad g = 99 9 Oy
g 9= 3:1:’373;’82
~ {dgor dgor dgor
C \dr 9z dr 8y’ dr 52
_dgyz oy 2 - 2 _ .2 ,2 .2
= 4 (T,T,T) since r* =x° +y° + 2
_1ldg
rdr
div (uxr)gl =(uxr) grad g+ gV - (uxr) (7.19d)
Viuxr)y=r-(Vxu) —u-(V xr) (7.19f)
Vxr=0 = V.{uxr)=r-curlu
. . 1dg
But (u x r) is perpendicular to grad g = g 80

(uxr)-grad g=10

Hence, div ({u x r)g) =r - curl u.

=47 Plz,y,z) =27y, F(z,y,2) = (%, 25’2, —y2?)
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47(a) V3¢ = 2y%2% 4+ 22%2° 4+ 627y
47(b)
grad div F = grad (2zy + 2zyz — 2y2)
= (2y + 2yz, 2z + 2x2 — 22,22y — 2y)
47(c)
i J k
curl F = 6% g% %
22y wytr oyt
=1i(—2% —2y°) +3(0) + k(y®z — 2?)
i j K
curl (curl F) = (% 5.% %
—22 —xy® 0 yPz—a?
=1i(2y2) +j(2z — 22) + k(2zy)
= 48

grad [(r -r)(a - r)] = [grad (r - v)](a - r) + (r r)grad (a r)
=2r(a-r)+ (r-rja

div {grad [(r-r)(a-r)]} = 2div [r(a-1)] + div [(r - r)a]
=2{[divr[{(a-r)+r- grad (a 1)}
+ [grad (r-r)] a+ (r-r)diva
=2{3(a-r)+r-al+2r-a+0
= 10(r - a)

(7.195)

(7.194)
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= 49

v = ;ESyi + xgygj + mgyzk
V3v = 6xyi + 2(z® + y?)j + 22k
grad div v = grad (3z%y + 22°%y + 2%y) = grad (62%y) = 12zyi + 627

i J k
curl v = 8% g—y % = z%2i — 2wy2j + (2zy® — M)k
2y 2y xlyz
i i k
curl(curl v) = | & g—y 2
z2r  —2xyr 2ay® — 2

— (day + 2zy)i+ (2 — 2% + 329§ + (—2u2)k

grad div v — curl curl v = 6zyi + 2(z? + y*)j + 2y2k  as required.

395

= 50
i j k
uxv=|0 =zy zz|=azy’zi+zyzj— 2’k
zy 0 yz
div (u x v) = y%2 + 222 = (z® + y9)2
i 3 k
curl u = 5,% {% % =0i—zj+yk
0 xy xz

v curl u =y

i J k
curl v = a% a% % =z2i4+0j —zk
zy 0 yz
u-curl v=—z°2

= v.curlu—u-curl v=(z% 4 9%z
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i K
curl (u x v) = | & 5.% 2| = —32%yi+ 30y%j + 0k
2,2

wyly  xiyz  —xly
udiv v = (zyj + z2k)(y + y) = 229%j + 2zy2k

vdiv u = (zyi + y2k)(z + ) = 22°yi + 2zy2k

o o
(v -Viu= (:r:y— + yz—) (zyj + z2k) = xy°j + 2xyzk

ox 0z
a a . 2 .
(u-V)v= mya—y + T2 (xyi+ yzk) = z°yi + 2zyzk

= [udiv v—vdivu+ (v -Viu-— (u V)v = —3z%yi+ 3a3°%j + Uk]

51(a)
1 r
d{-})=——
st (?‘) 3
1 1 1
div (grad (—)) = —div Ls =—gdivr—r-grad (3)
r r r r
3 —3r 3 3
IR - :77°_3+r5 =0
51(b)

curl (k x grad (%)) = curl (l:; r) = curl ((yi_:ﬁj) (frlz‘"))

o e L 1 o
= [curl (yi— zj)] 3 + grad (T_S) x (yl — xj)

3r

J
1 . .
& 5 5 < (i)

< ¥ -
o Yo &

—Z
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1 5 |13 Kk

=(0i+0—2k) 35— |z y =z
T T

y —x 0

%k 3 o
=37 7,—5(—3321 —yzj+ (27 + y7)k)

1 k- _
grad (k~grad (—)) = grad (——;) = grad (—;)
r r r

1 1
= —zgrad (7’_3> — (grad Z)T_S

curl (k » grad (l>) + grad (k~grad (l)) = —% + %(—:ﬂzi— Y2
r r r r

+ (2 + v )k)
3
+ T—E’(mzl + yzj + 2°k)
=0

-52(3.)
A.r A
grad ( 3 ) = grad [(7‘3> -r}
= fg x curl r+ r x curl (i) +(r V) (Ag) + (ﬁ~v)r (7.19¢)
=0+rx [grad (g) ><A:| +A(r-V) (13) +é
r r r
3 3r? A
=rx (—E ><A>—|—A(—L5)+
r r r
Now, ax (bxc)=(a-c)b—(a-b)c

o e (A ) E)a e
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52(b)

curl (A;;r> —(r-V) (f—s) —r(V~f3> - (%v>r+i(v.r)

(Axr)xr=(A.r)r—(r-r)A

(A-r)r = (A xr)xr+ Ar?

A 3 3Ar7 A
curl( Xr)[(AXr)Xr]+ oA

?“3 T5 T5 TS
A 3
:2r_3+ (A xr)xr
] 53(3.)
i j k
curl r = % g—y % =0
A TR
53(b)
5} d 7 C
(a- V)r = (m% azgs + asa> (=i + yj + 2k)
= aji+ agj+ ask = a
53(c)

Vx[a-r)b—(b-rja =V x[(axb)xr]
=(axb)(V-r)—[(axb) V]
=3(axb)—axb
=2axb
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53(d)
V-[la-r)b—{(b-rja = V-|[(axb)xr|
(axb)-(Vxr)
=(axb) - (0)=0
= 54
Vf= %ur + %%u@ + @giuqb (Exercise 30)

1o 5 Of 1 9 (sinfaf 1 2 1 af
V~(Vf)—r—25 (T &)+Tsin9@( r %)+Tsin9&b(rsin9&b)

(using Exercise 36)

1 8 ( ,0f N 1 an+ 1 a9 /. 6)af
= — | siné =
r2 or or r2sin? 6 092 rZsind 56 a6

= 55
1 oz
divH = - (div (curl —)) =0 (7.22)
o ot
div E = div {curl curl Z) = 0 (7.22)
curl H = la—E hecomes
o ot
curl H = —curl curl 3—Z
c ot
137E 1 o

o EE(cmﬁl curl Z) = %curl curl %—f

curl E = curl curl curl Z

2 _ Zeurl =2
c Ot Ccur ot2
1 oH 1 9°Z
curl E = T = curl curl curl Z = —gcurl 5z
1 5°Z
= curl curl Z = T
1 8%°Z
. 2
= grad (div Z) — V°Z = T
5 1 5°Z ,
Hence V<t = T when divZ =20
c
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Exercises 7.4.2
- 56

/Byds/f(%/i)\/mdm

A

24

= /:4 2vz + 1dw = E(m+ 1)3/2}

3

(125 — 8] = 156

[FLRRIE

B
= 57 85’/ 2y dx + (22— y*) dy| =1
A

m2+y2:1 = xdr=—ydy

= 58
r = (£3,t%1)

dr = (3t%,2¢,1) d¢t

1
V.dr = / [(2yz + 322)(3t%) + (y? + 422)2t + (227 + 6zy)1] dt
o} 0

1
— / (687 + 9t + 267 + 8¢5 + 2t* + 67 ¢
0

1
11 2 16
/(22t5+9t8+2t2)dt—+1—|———
0 3 3 3
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=590 A=(2y+}3,xzz,yz x).

59(a) / A.dr where r=(2t2,£,#*) and dr = (4¢,1,3t%) d¢

/ A.dr —/ (2t + 3)4t + (26%)1 4+ (¢ — 2t%)3¢7%] dt

8 6 1 3
/(12t+8t2—6t4+2t5+3t6)dt[6+__+_|_
0

3 b 3 7
_ s
35
59(b) /Adr/Adr+/Adr+/A dr
where P = (0,0,0), Q = (0,0,1), R=(0,1,1), 8 = (2,1,1)
(using straight lines)
On PQ A=3i (x = 0) r=:zk
On QR A =2y +3)i+vyk (x=0,z=1)r=9yj+k

OnRS A=5itzj+(l-x2k (y=l2=1)r=xit+tjtk

1 1 2
A~dr:/ 3i~kdz+/ [(2y+3)i+yk]~jdy+/ 51+ xj + (1 —x)k|-idx
c 0 0 0

=10

since i-k =0 ete.

59(c) /A dr/ A . dr

where C is a straight line, P = (0,0,0) and S =(2,1,1).
Parametrically, straight line is r = (2,1, 1)¢, so

1
/A~dr/ (264 8)i+ 2% + (2 — 20k] - (21 + j + k) dt
C 0

1
/ [t + 6 + 2% + 2 — 2t] dt/ (2t + 6 + 3t%) dt
0 0

—14+6+1] =38
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m 60 [ is conservative if there exists a ¢ such that

F = (y?cosz + 2% 2ysinz — 4,3z2% + 2) = (%’%ﬁ’%)

Such a ¢ is readily determined giving
_ 2 o 3_ 1,2
F = —grad (43; —y sinz —x2° — 5z )
Hence work done in moving an object is

(71'/2,—1,2)
/ F.dr=— {4y —yPsine — z2® — —22}
c 2 (0:17_1)

m 61(a) Curveisr = (t, itg, g’tg) , 80 that dr = (1, i gtg) d¢ and

2
2 344 1,2 3.3

2
3 1 27
/ F. dr/ R R L BTl Y [
o 0 8 8 64

2
3 1 9
{ + 48 32 i 128 ],

=8+4--+- =186

| =
[Nl

m 61(b) Curveis r = (2t,t,3t), 0 <t <1, so that
dr = (2,1,3) dt and F = (122, 12t% —¢,3t).

1
/F~ d?"/ (2487 +126% — ¢+ 9¢t) dt
c 0

1
/ (367 + &t) dt = 12+ 4 = 16
0
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m 61(c) No. If F is conservative, there is a function U(z,y,2) such that
F=-—grad U

Test for existence of I/: F-. dr has to be an exact differential

d

(30 £ 520z )

Hence not exact and F is not conservative.

m 62 F=(32°—y, 2yz? —z,2y°2)

9] a
(322 —y) = 1= —(2y2% -1
3y( x* —y) EC
9] a
— (322 — ) = 0= —(%°
MG ) B (2 72)
9] 9]
8_y(2y22) = dyz = 5(21/22 —x)
Hence conservative and F = —grad U where U = —2° + oy — y222.

div F = 62 + 22° + 2y° £ 0, hence not solenoidal.

3 2 _271(1,2,3)
/OFdr [:c —my+yz](0’0,0):1—2+36:35

m 63 F = (262, %14, r = (¢2,26,¢), dr = (2¢,2,3t%) dt
i j k
Fodr=|2t2 —3 | dt

a2 32

= [(—3t% —2tHi - (—4°)j + (487 + 2tHk] dt

1
/ Fx dr = / [(—3t° — 2t)i — 4¢°) + (46 + 2tM)k] dt
c 0
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= 64

9, 2.7
1w 3 Ts
i ik
AxB=|3z+y -~z yv—z2|=0By—-32—2)it{y—22—3x)j+(-3y—Tzxk
2 -3 1

r = (2cosé,2sinb,0)

dr = (—2sin#,2cos8,0) d8

On circle, z = 0 and

A« B ={(6sind — 2cosf)i+ (2sinf — 6cosb)j — (6sinf + 14 cos )k

i j K
(A% B)xdr = |6sinf — 2cosf 2sind — 6cosf# —6sinf — ldcosf| db
—2siné 2cosf 0
27
/(A x B) x dr = {(68inf + 14 cos®)2cos i+ (6sind + 14 cos )2 8in bj
o 0

+ [(68in8 — 2cos8)(2cos8) + (28in6 — 6 cos§)(2sin )|} A8

27 2 1 1 2
/ sinfcosd df = / —sin26 df = {— COs 29] =10
0 0 2 4

0
2 2
/ sin® @ d§ — / cos’0df = w
0 0

/(AxB)xdr:QSwi—l—lej—l—Ok
c
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Exercises 7.4.4

] 65(3.)

3 p2 39 1 2
/ / zy(x +y) dy dz = / —2%y? 4 —ay®|  dw
0 J1 o L2 3 !

- /03 B:ﬁ(zl- 1)+ %m(S — 1)} dz

3
1
2 6 0
_27+21_24
2 2

405

= 65(b)

3 5
IQdI/ y dy
1

3 5
1
2127 14

@7@%@5@

3 5
/ / 2y dy dz =
2 J1

S

Lo =

W =

-.\‘l

6

] 65(C)

= 66
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= 67

1 11—z
. 68(b)/0 da:/o (z+y)dy
11—z

1
:/ {xy%—lyﬂ dx Yy
0 27 1o
! 1
:/ {x(l—x)%——(l—x)Q dx
0 2
22 2 1 !
S 1—2)3
“roE e,
111
12 3 6] 3 o 1 ¢
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V 4
= 68(c)/ d;z:/ U
m ~Part drcle
Vv1—z? . = Xyt
= sin”™ " —X—r dx 7
1_ 22 LN Part circle
o L v Ve )( XE-x-y2=0
1 ) .y jx—a? A
— s 1 — sin 5| dx ‘)
0 —x ; (.
1 - i .
. P 0 172 1 X
= sin~'1—sin~! dx
0 Tz

1 1
+ = / Ve dx
2 fo (1+x)
m s 1 1 1 1
-5 gin 7 + [ﬁ — tan \/5]0 ,using substitution x — tan*#

= 69

(1.2)

//smlﬁ(:z:—l—y)dmdy
/ d:r:/ sin 7?:1:—|—y dy—l—/ d:z:/ sin — 7r:z:+y)dy
/2

3—

1
= — COS — 7r:z:+y} dm+/ { — COS — 7r:z:+y} dx
/0 |: T 2 ( )x/Q 1 T 2 ( )x/Q

Ira 3 2 2f2 3 2 37
= —cos—mxr — —cosaxr| dx+ —COSZ’Il'm——COS? da
0 1

T 4 T T T
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8 3 2 r {8 ,
= |—=sin—-7mx — —sinw7xr| + |—=sin—7wx

| 372 4 w2 0 32

8 . 3r 8 . 3r

:—sm—ﬂ—l——sm———Qsmz

37‘('28 4 32 2 37

L

3
4

|

2

1

70(a)/1 dx/lﬂd
0 x \/1"‘:1/4 Y

y4dx
Yy
y

1 Y T
T =
0 0 1+

1 1.2
/0

217y
1

Vityt],
— id —|:lg‘/1_{_ 4:|
o 14yt TR ’

1
= Z(\/ﬁ— 1)

Jl'x

- m - e e -

/2 Yy
. 70(b)/ dy/ cos2yV/'1 — k2sin’ z dz
0 0

/2 /2
=/ d:c/ cos 2V 1 — k2 sin® z dy
0 x

/2 1 /2
= / {— sin2yV'1 — k2 sin
0 2 -
/2
:/ —sinzcoszV1 — k2sin’z do
0

:/ —V 1+ k%t dt
0 2

(Let t = —sin’z, then L7

dt = —2sinz cosx dx)

= {i(l + th)?’/Q} -

3k?
1
= a2l

0
1— k)32 1)

E R

J)

-

P - = e e

N
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1 1
71 / dy/ _ d=
0 Vi VYL +a?)

1 z?
:/0 dx/o \/1:4[—7%@ Ty

| 2

:/12736(135
o V1+x2 —
=214 22} =2(vV2-1)

m 72

1 Var—z? I~
/ dx/ —dy AN
0 0 Va2 +y?
put el ehe

/ x,"-t +Jl=°

EORONNN |

o

Equation of circle in polar coordinates is r = cos €

/1 dx /v r—x2 T dy B /71‘/2 cos 6 TCOS& . dr de
0 0 Va2 +y? 0 0 V72 cos? 6+ r2sin? @

w/2 pcosf
= / / (cos@)r dr d6
0 0
/2

1 cos 6
cos b [5?“2} de

0
/2
/ cosf db
0

|
S~

71'/2 1
§C0839d9:

Wl N

N |

I
wl = c\
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1 l—x
x—l—y
-73/ de‘/
0 0 Va2 +y?

Change to polar coordinates

x+y

1 lx
d:c/ dy =
/0 0 V4 y?

\
{ q"t' GV"V‘d(
/ P x"-&-gz:. {
o! i T3

rdr do

/2 /1 rcos@ + rsind
r

/2 1
= / (cosf + sin6) dG/ rdr
0 0

AL
= [sinf — cos 0]77/2 { 7“2}
0

2
=1
r+y
over first quadrant of circle
x? "U = a
ol Qa i

Use polar coordinates

|t

r+y
24+ y? +a?

/2
4 dy—/ / rcose—l-rsmérdr 40

a 7’2
/0 (cosf + sin ) dO/O P dr
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m 75 Using polar coordinates, parabola becomes

r’sin®@ =4 — 4r cosd

P2 :4—4Tcost9+r2 cos’ @

= (2 —rcosh)?

= (2 —rcost), positive root because r =2 at § = 7
2

14 cosd

2 - 2 ﬂ-/Q 1+c039
// % dz dy = / / 00529 ~ gin? 8)r dr df
ety 0 0

1
20 —sin®0)——— db
/0 (cos sin )(1 p—Ip

71'/2 240

/ 2(2cos 6 — 1) 40
0 (14 cosf)?

= (6r — 20)/3 = —0.3835

(use the substitution ¢ = tan16).

m 76 Circles are r — acos@, r— bsinf and intersect at ¢ = tan ! -

—1

2 tan™ " & bsin @ 1
// ﬂ’ dxdy:/ / s rdrdf
0 sin® @ cos? ¢

T acosf 1
+ — 7 dr déd
/tan ‘e / sin® @ cos2 @

b2sinz 6 w2 1 2 2g
sin d9+/ 1 a”cos a0
t

1
5o 3
2sin” 6 cos? @ an—t & 2sin 8 cos? 8

tan™" £ 1 w/2 1
= / “b%gec?d do + / 5(120086029 d4
0

2 tan—1! &
1 tan™" & w/2
= {—bg tant‘?} + [ a” cot H]
2 0 tan—! &
_ 1 ab+ —ab=ab
— G', = a
2
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Exercises 7.4.6

n 77}[ [siny dx + (z — cosy) dy]
c

7.1 11
= /0 {sin ST + (x — cos §7TZL‘>§7T:| dz

0 1
+ / {Sin —ﬂ} dz
1 2

TN

0 >
—I—/ [— cosy] dy
/2 1
N D S S BPI
= |- cosgmE — oz —sin oy )
0
1 .10
+ {xsmaw}l%—[—smy]wﬁ
12l
T 4
— 14247
B T 4
f[siny dz + (x — cosy) dy] = //[l—cosy] dz dy
c
/ da:/ (1 —cosy) dy
s 1
—/0 (§—§x—1+sm§m:> dx
T T 2 2
R S S s
=78 ]{[(ny—y) dz + (z 4 y*) dy] XA 2,2
://(1—x2+1)dajdy
/ dx/ (2 —z%) A £
-/ i,
= [ 2z—2%) de= {xQ——aj‘l} .
0 4 0 7 }:,
—4-4=0 ° (2,0)
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=79 f(xydx%—:cdy)
c

1
:/ (2% + 22%) dx
0

o

ﬁ(xydx+xdy)://(l—x)dxdy
A
R
1

:/0 (1 - 2) (V7 — 1) da
1

= [ Va—2*? -2+ 2% dx

= 80

C

j{ (e — 3y?) dz + (e¥ + 42?) dy] = A//(Sa: + 6y) dx dy

27 2
= / d9/ (87 cos @ + 6rsin@)r dr d6
0 0

2m 2

/ (8cosf + 6sinf) dH/ rdr
0 0

0(2) =0

M| —

u=x+y z=(u+v)/2 and N,y) ‘
y = (u—1v)/2 3(uv)

N N[
N[ =

N[ =
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V%
N
la 24
T \ T
(a,a)
-2a 4
710 7
y=x = u—v=u+v = v=0

y=2a—zx = u—v=4a—u—v = u = 2a

r=0 = U= —v

0,00 = (0,0), (a,a) = (2a,0), (0,2a) = (2a,—2a)

2a 0 v
I = d T ——
/0 u/_u4a2+u2
= l]———d
4/0 12 a2

1 2a
= - [u— 2a tan™! QE} _ 4 (1 — E)

12 w?
== —L 4
2‘ v 4/0 402 +u2

4 alo 2 4
1 2—y
n 82 / dy/ x—l;y Y g
0 Y T
u=x+y I (u,v) 1 —% 1
= — -
v=ylx } O(z,y) 13 2Ty
J A vy
(D) (2,1)
Q) § S,
/o (2,9 e 0 (3,0) -
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Y=2x = v=1
y = = v =20
y=2—-x = u=2
1 2—y 2 1
/ dy/ I-I-dex+y d:zi—/ du/ e’ dv
0 ¥ T 0 0
—e’ -1

Exercises 7.4.8
o2\ o2\
= 83 Surface area = I+ {— 1] +(— ) derdy
ox Y
A

where A is the domain 22 +y* <2, 2 =0.

o %)
2:2—$2—y2 = —Z:—QI, —z:—Qy
ox

Surface area = // 14 dx? + 4y2 dxe dy
A

Set x =rcosf, y =rsind, then

2w V2
Surface area = / d@/ 1+ 4r2 r dr
0 0

1 23/2\/§
=27 |—(1+ 4
laore]

- {1—12(27— 1)]
— 527/12 = 137/3

= 84(a) Direction cosines of normal to § are (3, 3,2), so that
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where A is the area between y =6—2x and y = 2—2x lying between y =0 and
y=3.

Thus/f(m T y?)ds = /dy/ S@® 4 ) da

1 +r—x? 2 2
84(b) //z ds :/ d;r:/ 24/ 14 (gz) + (gz) dy
— Szt X
4 0 VT Y

3z

— = and 22+ 42 +22=1
ox

¥
ty |

oo f o f T

2/ vVr—x?dr
0

4

(Use the substitution z = % + %sint. Alternatively recognise area of circle of

radius 3 .)
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= 85(a) v = (ay, 2%z + 2)
dS =n d$ = (2,3,3) ds
3°3° 3

_ S//V dS:S//(gmyngJr;(erz)) ds

3 3=z
/ d:r:/ [y — 22% 4+ (z + 6 — 22 — 2)] dy
0 0

3 1 3=
= / —:Cyg — 2:122y —xy + 6y — yQ dx
o L2 0

- /03 {3(3 —x)? —22%(3 —z) — 2(3 — ) + 6(3 —m)} dx
— 27/4

85(b) Use cylindrical polar coordinates, then dS = (icos¢ + jsing) d¢ dz on
cylinder and v = (3y, 222, 2%) = (3sin ¢, 2 cos? ¢, 2%)

!/vds

27 1
/ dgb/ (3sin ¢ cos ¢ + 2 cos® $sin @) dz
0 0

27
3 2
= {isin%b—gcosgqﬁ]o =0

- 86 5//22 dSA//ZQ\/lJr(j)QJr(g)Qdmdy

where 22+ y2+ 22 =1 and A is the interior of the circle z2+y%2 =1, 2=20

//szS://\/l—:ﬁQ—demdy
S A
2w 1
:/ dé’/ V1—r2rdr
0 0

1
=27 {;(1 — TQ)S/Q} - Q—W

o 3
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= 87(a) f/ldS://1\/1+4m2+4y2dzzﬁdy
S A

where A is the interior of the circle 22 +y? =2

2 £/ 2

// dS:f dé’f 1+ 4r2 v dr
0 0

5

V2
1 27
=21 | —(14+ 4,232 =271
|54 } T
= 137/3 Surface Area

87(b)

2w 2
//(m2+y2)d5’:/ dé’f r2y/ 1+ 4r2 r dr
0 0

S
V2

2m |1 2572 1 3/2
T [5(1—|—4r ) fg(l—l—élr)

0

_ % {;(243 - %(27 _ 1)] — 1497 /30

2nd moment of surface area about z-axis.

87(c)
//zdsfo% d@/oﬂ(zﬁ)\/mrdr

Zr V2 2w V2
2/ dé’/ V14 42 dr/ dQ/ 2/ 1+ 4r2 dr
0 0 0 0

26w 1497 111w 37w

3 30 30 10

= 88 Direction cosines of normal to § are (£,1,3) so that

S// dS:A// T
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where A is the interior of z° + y? =64 lying in the first quadrant.

8

// dS:/ d@/ rdrzix[rg} — Ur
/ . 2 2 "2 l2" ],

- 89 S// ds!/\/1+(§)2+(%)2dmdy

where A is the annulus between x> +y?> =4 and z° +y? =12

2w V12 1
//dS/ d@/ o/ 1+ —r2rdr
J 0 2 4

4 AL R
—or |2 (14 2p2 = ST 43/2 _ 93/2)
3 1 ; 3

167
- 4

= 90 Using cylindrical polar coordinates, dS = (dicos¢ + 4jsing) d¢ dz
and V =2zi+ 2cos¢j— 12 sin? ozk

Thus V. dS =(4zcos¢ + 8singcos @) d¢ dz

w/2 5
and //V dS:/ dgb/ (4zcos ¢ + 8sin¢cosg) dz
0 0
5

w/2
— / (50 cos ¢+ 40sin ¢ cos @) do
0

— [50sin ¢ + 40sin? ¢/ % = 90

w91 F=yit(x—2x2)j—xyk
i

j K
curl F = | 2 g—y 2 = (z,y, —22)

Yy -2z —xy
On sphere, x =asinfcos¢, y=asindsing, 2= acosé
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and dS = a?(sinf cos ¢, sinfsin ¢, cos @) siné df de

curl F- dS = a®(sin® # cos® ¢ + sin®fsin® ¢ — 2cos® §) siné df do
= a®(sin® 6 — 2cos® 8) sinf df dé

2w T
// curl o dS = / de¢ / a®[sin® 6 — 2 cos® @ sin @] df
J 0 0
2w Ty 1
:/ a” dgb/ {sin@—sinSBQcosgé’sinH} de
0 o L4 4

x| 3 1 2 T
— [aggb]g [—4cost9—|— ECOS3Q+ 500539]0 =0

Exercises 7.4.10

= 92(a
(a) 1 2 3 1 2 3
/ d:r:/ dy/ mgyzdz/:ﬁgdm/ydy/zdz
0 0 1 0 0 1
11 .1 8
— ——(4)=(3" - 1) =
35050 )= 3
92(b
®) 2 3 p4 2 3 4
///:zfyz2 dz dy d:r::/ d:zf/ dy :zfyzQ dz
o J1 J2 0 1 2
2 3 4
= x dx y dy 2% dz
0 1 2
Lo 1o L 3
= —(4)-(3"-1)-(4" -2
S5 (3 1) (47 - 2)
_ us
3
=9

3
1 z x+z 1 z
/ dz/ d:z:/ (:z:+y+z)dy/ dz/ {22(x 4+ 2) + 222} dx
—1 0 x—z —1 0
1

/ 327 dz =0
-1
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= 94

///sm +y+2)dx dy dz

-y
/ d;r:/ dy/ sin(z + y + 2z) dz
0 0 0

/ / [~ cos{z +y+ 2)|5 *Y dy
/ d:z:/ [1 4 cos(z + y)] dy

/ y -+ sin{z + y)|g7" dx

[
]

<
<

aw]
aw]

o

/ (m— x4+ sinw — sinz) dz

o

K

| |, -2
Trm——+cos;t = —_7q° —2
0 2

= 95

1 l—= l—z—y
f//myzdmdydz:f d;r:/ dy/ xyz dz
J 0 0 0

! {11 2,2 1 3 14 d
I R (R s
b1
/ —z(l—2)* dz
) 24
1t
= [ (x—42% +62° — dx* + 2°) dx
24 /,
1
720
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= 96
V:///d‘[/:///dzzﬁdydz
v v
1 VT 2—x—y
/ d:z:/ dy/ dz
0 x2 0
1 Ve
/ d:r:/ 2-—z—y)dy
0 x2
L 1 1
:/ {2\/55123/2222562+;E3+m4} dz
0 2 2
42 12 1 1)1
13 5 4 3 4 10| 30
= 97

w2 w/2 1
///($2+y2—|—22)$ dx dy dz/ dgb/ dé’/ r2r sind cos ¢ sin 6 dr
J 0 0 0
w/2 w/2 1
:/ cos ¢ dgb/ sin’ @ dt‘?/ r° dr
0 0 0

T

=

1 1
=1x —x —x =
2 2 6 24

= 98 ///2:21/222(3:+y+z) de dy dz
v

= ///msygzg dx dy dz+/// m2y223 dr dy dz+/// mQySZQ dx dy dz

Vv Vv v
1 l—= l—x—y 1 1—y l—z—y
:/msdm/ ygdy/ zgdz+/y3dy/ zgdz/ 2% dx
a 0 a 0 a a
1 1—=z l—z—=
—I—/ zgdz/ :I:Qd:z':/ ygdy
Q 0 0

1 1—z 1—z—y
= 3/ z® d:z:/ y? dy/ 2% dz from symmetry
0 0 0
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1 1—x 1
3/ $3d$/ P l—z—y)* dy
0 0 3

1 1—=
:/ z® d:zf/ {21 —2)® = 3(1 — 2)%y + 3(1 — 2)y* — %]} dy
0 0

1
/0 2 {1(13;)62(1@%%(1@)6%(1@6 dz

423

= 99

3
1
— [ 21 -2 dz
60 fo
1 1
— [ 251 - 2)® dx
60 Jq
1 1
— [ 2501 -3z 432 —2*) dx
60 fo
1 /1 3 3 1
N ,_,+,_7
60\N7T 8 9 10
1
50400
U=x+y+=z T =u—uv
uY =Y+ 2 Y = uv — uvw
UVW = Z 2 = uvw
3(2:’%2) 1—2 v —vw vw 1—v v vw
m: —u U — uw uw | = —u ki ww
* 0 — Uy U 0 0 v
1 v vw
-0 u uwl|=uv
0 0 wuv

1= /J/exp((m+y+z)3) dz dy dz

1 1= l—x—y
/ d;z:/ dy/ exp(—(z 4y + 2)%) dz
0 0 0

r+y+z=1 = w=1

r=0 = uy+z} = v=1
wuY =Y + =
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U=x+ 2z

y=0 = UV =z = w=1
UPW = £
U=2x+y

z=0 = uy =y = w =70
uvw = 0

1 1 1
[ = / du dv —u ugv dv
0 0 0
1 1 1
:/ uge_” due v dv dw
0 0 0

] o]

= 100

—
—
—
w2
P
o
=3
s
o2
o
I
I
o\.‘
>
o
=3
h
=
.
o
ftneg
h
v
&
&
fineg
P
s
2

—_

I
N‘Ho\.‘ho\.‘o\.‘o\.‘
—
——
N
|
=
N
[ )
——
(%)
|
=3
S
[ )
|
Wb
P
iy
|
=3
S
(W)
%)
|
=
N
+
P
N
|
=3
S
s
_
=y
=3

—_

[ ol o= o~

PRI D
; -
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Volume of prism = / / / dx dy d«
v
1 1—x 2—x—y
/ d:z:/ dy/ dz
0 0 0

1

1—=x
= d:z:/ (2—2—1y) dy
0

0

:/01 {(2;)(1@ %(193)2} dz

= 101
2 w2 1
///z dx dy dz/ dgb/ d@/ 3 cosfsing dr
0 x/4 0
v
2 w/2 1 1
:/ dgb/ —sin26’/ S dr
0 x4 2 0
w/2
= [27] [—1 coSs 29} {1} S
4 x/a L4 8
= 102

w/2 w/2 a
///m dx dy dz—/ dqb/ dQ/ rsin? 6.r cos ¢ dr
0 0 0
1%
w/2 w/2 a
:/ Cos ¢ dqb/ sin® 4 dé’/ r dr
0 0 0

— ] [ﬂ Ba‘l} — 7t /16
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Exercises 7.4.13

= 103 //F ds F = (4zz, —y°, y2)

S has six faces and the integral can be evaluated as the sum of six integrals.

//FdS //FdS+//FdS+//FdS

on z=0 onxz=1 on y—
//F dS+//F dS—I—//F ds
on y— on z=— on z—

/] 0. ¥ u2)- (1dy d2)
/01
<
o[
[
+f01

=0+

—_

4z, —y%yz) - (i dy d2)

—_

42,0,0) - (—j dz d=z)

o

c\c\ﬁhc\

drz,—1,yz) - (j dz dz)

—_

(
(
(
(

0,—¢*,0) - (—k dz dy)

<
—

(dz, —yg,y) (k dz dy)

1,1
4zdydz+0—|—// d:z:dz+0+//yd:z:dy
o Jo

[ew]
iy
i

DO |

=2-1+

s 104 //F~dS///dideV
s v
:///(z+z+2z) de dy dz
1%
2 w/2 2
/ dgb/ dé’f 47 cos f.r% sin 6 dr
0 0 0

L 12
= [27] [ cos QQ}W/Q [ r4} = 167
4 1o
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=105 On 2=0, dS=-kdzdy, F={4z,-2¢%0), F. dS=0
On z=3, dS=kdzxdy, F=(42,-29%9), F. dS=9dx dy
On z?+y2=4, dS=(icos¢ +jsing)2 de dz, F = (8cos¢, —8sing,2?)
and F. dS = 16(cos® ¢ —sin® ¢) de d=

27 3

//F-dS: f/gdmdy+/ dqb/ 16(cos® ¢ — sin® ¢) dz
0 0

s (2=3)

2w
= 367 + 48/ cos? P — sin® ¢ do
0

= &4w

///dideV///(4—4y—l—22) dz dy dz
v v
2 2 3
:/ dqb/ dr/ (4 —4rsin¢ + 2z)r dz
0 0 0

27 2
= / d¢/ (21 — 12rgin ¢)r dr
0 0

27
= / (42 — 32sin ¢) d¢p = 84w
0

m 106 div (F x grad ¢) = grad ¢ - curl F — F . curl (grad ¢) and curl (grad ¢) =
0 for all ¢.
Hence [f[grad ¢-curl F dV = [[(F x grad ¢) - dS
v s

s 107
//FdS //F dS+//FdS+//FdS+//FdS
on x— Ony— OnZ_ on z—
+/ / F. dS
011222—)—’92:4

Onz=0, F=(3%0,0), dS=—idydz

On y=0, F={(0,0,0)

On 2=0, F=(xy+y%2%,0), dS= kdxdy

On 2=1, F=(zy+y%2%,0), dS=kdz dy
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On z2 4+ y?> =4, F = (4(sin¢cos ¢ + sin® ¢),8cos? ¢psing,0), dS = 2(cos ¢i +
sin ¢j) d¢ dz

w/2 1

//F dS:/ dqb/ §sin ¢ cos® ¢ + 8sin? ¢ cos ¢ + 16(cos> ¢ sin ¢) dz
0 0

5

8 .. 8 4 1 /2
= —gcos ¢+§sin ¢+2¢f§sin4¢0

16

3
/J/dideV:/fo(ermz)d:z:dydz

/2 2 1
:/ dqb/ dr/ (rsing + r?cos® ¢)r dz
0 0 0

w/2 2
:/ dqb/ (r?sin ¢ + r3 cos® ¢) dr
0 0

w/2 S
:/ (—sin¢+40052¢) do
0 3

3
= 108
i j k
curl F = 8% 8% %

36xz +6ycoszr 3+6sine+ zsiny 1822 — cosy
= i(siny — siny) 4 j(36z — 36x) + k(6 cosz — 6 cosx)
=10

Hence there is a function ¢(x,y,2), such that F = grad ¢

= 109

jlgA~ dr//cur1A~ ds
c
s

i J k
a a a
-y oz 0

j{A. dr://2k~ ds
© S
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Let S be the ellipse 2—2+i’—§:1, z =10
Then, dS =k . dz dy, and

j{Ab er// dx dy = 2mwab

5
= 110
i Jj k
. . 8 . .
curl F=| 4 By 5, | = 1(—2yz + 2y2) +j(0) + k(1)
20—y —yz? —yz
=k

27 w/2
//cur1F~ ds = 16/ dqb/ k - (sin 6 cos ¢i + sin @ sin ¢j + cosfk)siné dé
0 0

27 w/2 1 w2
= 16/ dqb/ sind cos§ d8 = 16(27| {2 sin” 9]
0 0

= 167

0

j{F~dr
c

On circle 22 + 42 =16, 2 =0, x=4cos¢, y=4sing, r = 4(cos ¢,sin¢,0)

F = {(8cos¢ — 4sing,0,0), dr=4(—sing,cos¢,0) d¢

2w
j{F~ dr:/ (—32cos ¢sin @ + 16sin® ¢ + 0) do
c 0

= 16w

s 111
curl (af(r)) = —a x grad f(r)

//(ax grad f(r))-n dS = /Caf(r). dr

s

= //(grad f(r)><n)~ad5':/caf(r)~ dr

s
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= a~//(n><gradf(r)) dSa~/Cf(r) dr

= //nxgradf(r)dS/Of(r)dr

fr)=3zy> = grad f(r) = (3y°,6xy,0)

n x grad f(r) =k x grad f(r) = (—6zy, 3y>,0)

1 2 1
/ d;r:/ (—6zy,3y",0) dy 2/ (—12%,8,0) dx
0 Q0 0

= (—6,8,0)
1 2 0 0

ff(r) dr:/ O.idx+/ 3% dy+/ 1221 derf 0. dy
C 0 0 1 2

= (—6,8,0)

m 112 //cur1F~ deF~ dr
o (&
i j k

curl F = % 8% % ={2,2,-1)

2y+z2 rx—z2 y—=x
//cur1F~ dS://(2,2,1)~(sin@cosqb,sint‘?singb,cosH)sinf? de¢p dé
S 5

w/2 w2
/ d¢/ (2sinf cos ¢ + 2sinfsin ¢ — cosf)sind db
0 0

w/2
/0 (Wsiné—%) dgb?%

Here, ' has three portions:
On 2=0, r={(cos¢,sing,0) = dr = (—sin ¢, cos ¢,0) d¢
and F = (2sin ¢, cos ¢, sin ¢ — cos @)

w/2
/F~ dr:/ (—2sin® ¢ + cos® @) dgp = —
0

e~ =

On y =0, r=(sind,0,cos8) = dr = (cos 8,0, —sind) d@
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and F = (cosd,sinf — cosd, —sinf)

w2 T
/F. dr/ (cos® @ + sin” @) 9 =
0
On x=0, r=(0,sinf,cos8) = dr = (0, cos @, —sin ) df
and F = (2sin8 + cosf, — cos8,sin 6)

0
/F~dr/ (—005219—511126’)(:1(9:E
w/2 2

Review Exercises 7.7

s 1

(9’1117 n—1 n gl o
)+ f(ﬂ(m

o)

L
M

ou 5% e ou
Tu o (2)
ox oy ox

%+ 3u+ 282u+2m 9 u L 2321@7% m@ ou
br  Yay T e T Yemay TV Bz "\Tar TYay
= 2% +2 32u + 232?"" _ ( o 1)

* a2 my@m@y y ay2 bk ¢
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u(z,y) =+ y* o+ 162%y°
Pl z(4z® + 32xy%)

Y = y(4y3 + 32m2y2)

r— + ya—y — 4(z* + 16277 4 %)

5%y 5%y 5%
2 2 — .2 2 2 2 2 2
x ?Jery 28y + vy " = z°(12x° + 32y°) + 2zy(64zy) + y(12y~ + 32x~)

= 12(x* + 3t + 162%y%)

m 2
ﬁ_@f of 32f_32f+232f +82f
Axr  Bu | v ox?  Hul oudv v

o2 f 9% f o f O%f o f
dxdy “ous + bauav + (%QEH_ Foou"

& A 2 2 2 2
f _ f+g,af af2+28f ab+ g
8y Bu ov oy Ou? Oudv ov?

o f

o f > f o f 2f 0
=(9 ~9a + 20%) 5 + (9~ 96+ 26%) =5

9 —9 + 2
B2 f

Ox? OxT oY oy
9
+2 (9 §(a+b)+ 2ab> B

9—9a+2a% =0
= 9 —9h+2b% =0 =  aitb =  a=3, 5

9—3(a+b)+2ab#0
(92
S0 s PG

Le. f(x,y) = F{z+3y)+ Gz + 3y/2)

f(x,0) = F{x)+ G(z) =sinx

of e 3 i _
ay(m,O)—SF(m)Jr§G'(m)—?>cos:zf

=  Fx)+ %G(m) =sinz + k
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= %G(I) =—k and F(z)=sinz + 2k

= f(x,y) = sin(z + 3y)

=3

i j k
2] a a
Vx(P,QR)=|2z 3y oz
af of of
Oz Oy Oz

[ Of Of NS o f o f

=1 — +1 -—— )tk —
oydz  Oz0y oxdz  Ozdx dxdy  Oyox

=0

~ V< (VAH=0

m 4(a) xy = c, hyperbolas
grad f = (y,z) = (%,I) on hyperbola
c dy ¢

T dx x2

=0 1i.e. orthogonal

4(b) A — circles, centres on z-axis, through (0,0}

I2‘|‘y2

y? — —2y
grad f = (@2 + y2)2 (a2 | y2)2

-5(3.)
gradw r=wx (Vxr)+rx(Vxw)+(w Vir+(r - Viw

—wx04+w+0+0

=
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= 5(b)
curlw xr=—(w-Vir+w(V-r)(4r- Viw —r(V -w)
= —w+3w+0+0

= 2w

= 6(a) See problem 3 above.

6(b)
div v = div {grad [z f(r)] + af(r)k}
= div {kf(r) + z grad f(r)} + ak - V£(r)
—k-Vf(r) +k-grad f(r) + 2V*f(r) + ok - Vf(r)

a
= (2+o:)3—£

Viv =V(V -v) =V x (V xv)

— (21 )V (gi) =V (Vx (V(zf) + afk))

VxV(zfy=0
V x (afk) = oV < k
V < (V x afk) = ak- V)Vf — ok(V2f)

5 af

= Viv =2V (g)
az

n 7 F= (2" —y° +2)i— (2zy + y)j

i i k
VxF=| & oy ox| = (0,0, —2y+2y) =0
:Eg—y2+:r: —2zy—vy 0

T N B B S S

3 2 2
x Tt —y
= f(mayaz):§*y2$+

+c
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(2,1) (2,1)
/ F. dr/ grad f- dr[ﬂg:ég%
(1,2) (1,2)

dr—idz+jdy=(i—j) dz

ason y=3—z, dy=—dzx

435

2 2
/(m2y2+m+2my+y)dzzﬁ:/(m2(S;E)2+;E+2(3m)+3m)dzzﬁ
1 1

22

W:/F-dr
c

r = (1—cosf)i+sindj
dr = (sinfi + cos 8j) A6

& g g
/F~ dr:/ 4sin” = cos — d@
o 0 2 2

8 ™
= —sinSg =
7,

8(a) F = 2sinidi

Ll co

8(b) F =2sin%n = 2sin £(sinbi | cosbj)

iy

/F~dr:/ QSingdf?:él{cosq =4
c 0 2 2],

r—(i+j+kit 0<t<l1

! 11
= W:/(t2t+1)dt:—+1:6
0

3 2

2
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= 10
F:I% dr x B
C
o .o 0
r:smt91+cosé{]+sm§k
| 6
dr = 00891—81n93+§cos§k de
B =sinfi —cosdj+ k
2w
1 g 1 6
F:I% il —cos—cosd —sinf ) +j| —cos—siné — cosd
0 2 2 2 2
.2 2 4 .
+ k(sin“ & — cos 9)} dﬂ:gfj
w11
Circulation :% v dr
c
/1 —yd:z:Jr/l x dy +/1 y dz +/1 z dy
I R TR A AR T
ony=1 onx=—1 ony=—1 onx =1
1 1 1 1
1 d d d
/ dﬂ/ 7@_/1“+/7y
IR vyt 14 J o 1 y?
=0
=12

1, = // plx? + 3% dA, where density p = kxy
A

= / d:zf/ (22 + oy Vkexy dy
0 z?/c

= / l;%:z:(:z:2 + yQ)Q} dx
0 _4 z2/e

<[ 1 AN\ 1
:/0 —ka (xQJr?) +ka(m2+c2)2

1 N 2% 227 3 9 4
Zk/() —(;—I—C—Q—QIC —:z:c) dx

dx
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= 13 Equation of cone is z? + % = Z—i(z — h)*®

_ / dx/
Q/C dx/o : {thZ\/:W}d

hy
2a

vad—x2
T2+ y } dx

a h 2
=2 [hy + i sinh~' ¥ —
xr 0

JaZ = 52
[gv — 2 +—smh 1 I] dx

w14 Volumeis 8f [ [ dV
Ty z>0

22 4+ y? =a® is a cylinder with z-axis as axis of symmetry, radius a.

22+ y? = a? is a cylinder with z-axis as axis of symmetry, radius a.

2 2

az—y a?—y
= / dy/ d:z:/ dz

s / 2y Y Y ay

0

@ 1 .1%  164°
8/ (a® — %) dyS{agy—yS} - =
0 37 1, 3

= 15 Elastic energy of AV is ¢?AV/(2EI) where ¢ = qop/r and p is distance from

centre, r is radius of cylinder.

o %"
Total energy —/ dgb/ / QEOI
2

sp% dp
_oqr | K
W/O 2B 12

7rq87‘2$
A1ET
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m16 Onz=0 dS=—-idydz and v-dS=-32%ydyd:=0
Ony=0, v-dS=0 On 2z=0,v-dS=0
Onz=1, v-dS=0 On m+y:1,dS:%(i+j)dS

— ﬁv.dsfol dm/ol{%mg(l—m)—l—\;533(1—3:)2}\/5012

_ / (22% + 2)(1 — 2) do

0

W

m 17 ﬁvds

5
On S, dS = (isinfcos¢ + jsinfsing + kecosf)a®sing dg de

and v = i2asin® 6 cos ¢sin ¢ — ja? sin® sin® ¢ + k(asind cos ¢ + asinfsin ¢)

™ 27
ﬁv - dS = / dg {2(13 sin? @ cos® psing — a* sin? g sin® ¢
0 0
8

+ a®sin® 8 cos 6 cos o+ a” cos B sin® fsin ot do

18 deI‘
(o4

C' is the circle 2 + y? = 16, =z = 0 so that on the circle
F = (ZEQ +y —4, 3xy, 0) , r=4{cosf,sind,0)

and dr = (—4sin#,4cosd,0) do

2
j{ F.dr = / [—16 (4 cos 8 4 gin@ — 1) siné 4+ 192 cosfsin’ 9] de
o 6=0

27
= / —16sin®6 46 (from symmetries)
0

= — 167
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i Jj k
curl F = 2 {% 2 = (0, =2z, 3y — 1)
224y —4 3xy 2wz + 22
On hemisphere

r = 4(sind cos ¢, sinfsin ¢, cosd)

dS = 16 (sin 6 cos ¢, sinfsin ¢, cos#)sind d¢ do

//curlF. 48 =
s

w2 27
/ d@/ 16(—8sin” 6 cos 6 sin ¢ + 12sin” 6 cosf cos ¢ — cos O sin8)de
0 0

w/2
= / —16 cosfsin@ 2w df = — 167
0

//Sa.dS///Vdiva dv_/ﬁla.ds

where V is hemisphere z° + 4% + 2° = o2 (different a from the vector a), Sy is
the circle 2 +3y°> =62, 2 =0. diva—=0 and dS = -k dz dy on S;

/[Sla’dsfﬁ(fﬁyj) - (—k dz dy) =0
/fsa-dszo

2—x
/ ryz dz dy dx
0

Hence

20

—_

iy
\
8

/f/vmyde

—_

S o

iy
\
8

vy (2 — ) dy dz

I
e

B =

1
Ik (1-%)°2-2)° do
|
= 1 (:zf5 — 6zt + 1327 — 1227 4 4:12) dx
B N 13 13
24 10 ' 18 27 240
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Numerical Solution of Ordinary
Differential Equations

Exercises 8.3.4

d
m 1 Euler's method for the solution of the differential equation d_;:; = f(t,x) is

d
Applying this to the equation d—f = —lzt with (0) = 1 and a step size of h = 0.1
yields

xg=z(0)=1
Xy =0+ hf(to,xo) = zo + h(—Ltxoty)
=1-01x1x1x0=1.0000
Xo=X1 +hft,X1) =X, +h(—1X 1)
= 1.0000 — 0.1 x £ x 1.0000 < 0.1 = 0.9950
Xy = Xo+ hf(te, Xo) = Xo+ h(—1Xots)
= 0.9950 — 0.1 x £ x 0.9950 x 0.2 x 0.93505

Hence Euler's method with step size h = 0.1 gives the estimate X (0.3} = 0.98505.

d
m 2 Fuler's method for the solution of the differential equation d_:tl; = f(t,z) is
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Applying this to the equation ng = —ixt with (1) = 0.1 and a step size of
h = 0.025 yields
xo = x(1) = 0.1
X1 =m0+ hf(to, x0) = xo + h (—Lzoto)
= 0.1 -0.025 x L x 0.1 x1=0.00875
Xo=X1+hf(t1,X1) = X1+ h(—1X1t1)
= 0.09875 — 0.025 x 1 x 0.09875 x 1.025 = 0.09748
Xy = Xo+ hf(te, Xo) = Xo + h(—1Xoto)
= 0.09748 — 0.025 x % » 0.09748 » 1.060 = 0.09621
Xy =Xz +hf(ts, Xa) = Xa + h(—1Xata)
= 0.09621 — 0.025 x & x 0.09621 x 1.075 = 0.09491

Hence Euler's method with step size h = 0.1 gives the estimate X (1.1) = 0.09491.

d
m 3 FEuler's method for the solution of the differential equation d_:: = f(t,z) is

d
Applying this to the equation d::; = 2(‘6?—1) with (0.5) = 1 and a step of A = 0.1
yields
xg=x(05)=1
iy 1
X = hf(t = h———m=1+01——— =1.0333
1 = 20+ hf(to,z0) = 20 + 2o+ 1) + 505 1)
X, 1.0333
Xo=X hfit;, X1)=X h——  =1.03334+ 01— = 1.0656
2 1+ Af{t, X1) 1+ 2 1) + 2(0.6 4 1)

(Note that ¢, =tg+nh=05+0.1n.) X3, X4 and X5 may be computed in similar
fashion. It is usually easier to set out numerical solutions in a systematic tabular

form such as the following:

n tr Xy S, Xn) Xo+ hf(ln, Xy)
0 0.5 1.0000 0.3333 1.0333
1 0.6 1.0333 0.3229 1.0656

@ Pearson Education Limited 2004




442  Glyn James: Advanced Modern Engineering Mathematics, Third edition

2 0.7 1.0656 0.3134 1.0969
3 0.8 1.0969 0.3047 1.1274
4 0.9 1.1274 0.2967 1.1571
5 1.0 1.1571

Hence Euler’s method with step size h = 0.1 gives the estimate X (1) = 1.1571.

d
4  Euler’s method for the solution of the differential equation d—? = f(t,z) is

d 4—t
Applying this to the equation d—f ~ila with £(0) = 1 and a step size of A = 0.05
yields

o = x(0.0) =1

41—t 40
X, — Rt - h — 14+ 0.05—— — 1.2000
1 =xzo + hf(to, z0) = 20 + b |z + 5
41 4 —0.05
Xo= X1+ hft;1. X)= X1 +h — 120004+ 0.05— 7 — 13580
2 1 RSt X) Lt -+ X, s T T 000

(Note that ¢, = tp + nh = 0.0 + 0.05n.) X3, X4,..., X1p may be computed in
similar fashion.
It is usually easier to set out numerical solutions in a systematic tabular form such

as the following:

b X, Fll X)Xt hf (b, Xo)
0.00 1.0000 4,0000 1.2000
0.0h 1.2000 3.1600 1.3580
0.10 1.3580 2.6749 1.4917
0.15 1.4917 2.3451 1.6090
0.20 1.6090 2.1006 1.7140
0.2h 1.7140 1.9093 1.8095
0.30 1.8095 1.7540 1.8972
0.35 1.8972 1.6242 1.9784
0.40 1.9784 1.5136 2.0541
0.4h 2.0541 1.4177 2.1250
Q.50 2.1250

Hence Euler's method with step size h = 0.05 gives the estimate X(0.5) = 2.1250.

5 Figure 8.1 shows a suitable pseudocode program for computing the estimates
X.(2) and X,(2). Figure 8.2 shows a Pascal implementation of the pseudocode

program.
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procedure deriv (t,x — f)
fe—x"t/(t*t 4 2)
endprocedure

t_start + 1
X start + 2
t_end + 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t_start,x start)
t +— t_start
X +— x start
repeat
deriv (t,x — f)
t<t+h
X+ x+ h*f
write (printer, t,x)
until t >=1t_end

Figure 8.1: Pseudocode algorithm for Exercise b

Using this program the results X,(2) = 2.811489 and X,(2) = 2.819944 were
obtained. Using the method described in Section 8.3.6, the error in X,(2) will
be approximately equal to X,(2) — X,(2) = —0.008455 and so the best estimate
of X(2) is 2.819944 + 0.008455 = 2.828399. The desired error bound is 0.1% of
this value, 0.0028 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(2) varies like A so, to achieve an error of 0.0028, a step
size of no more than (0.0028/0.008455) x 0.05 = 0.0166 is required. We will choose
a sensible step size which is less than this, say £ = 0.0125. This vields an estimate
X(2) = 2.826304.

The exact solution of the differential equation may be obtained by separation:

dx it dx t dit o
Eit2+2¢/?/mélnlen(t +2)+C = x=LDVt? 42

242

2(1)=2=2=4v3D =z =2 5

Hence z(2) = 2+4/2 = 2.828427 and the true errors in X,(2), X,(2) and the final
estimate of X(2) are 0.016938, 0.008483 and 0.002123 respectively. The estimate,
X(2), derived using the step size A = 0.0125 is comfortably within the 0.1% error

requirement.
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var t_start, x_start, t.end, h,x,t,f:real;

procedure deriv (t,x:real;var f:real);
begin

f = x"t/(t*t + 2)
end;

begin
t.start = 1;
X start = 2;
t.end = 2;
write ('Enter step size ==> ');
readln (h);
writeln (tstart :5:2,xstart: 10:6);
t := t_start;
X = Xx_start;
repeat
deriv(t,x,f);
t :=t + h;
X := x + h*f;
writeln (t:5:2, x:10:8);
until t >=1t end;
end.

Figure 8.2: Pascal program for Exercise b

6 The programs shown in Figures 8.1 and 8.2 may readily be modified to solve
this problem. Estimates X,(2) = 1.573065 and X,(2) = 1.558541 should be
obtained. Using the method described in section 8.3.6, the error in X,(2) will
be approximately equal to Xp(2) — X,(2) = —0.014524 and so the best estimate
of X(2) is 1.558541 — 0.014524 = 1.544017. The desired error bound is 0.2% of
this value, 0.0031 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(2) varies like & so, to achieve an error of 0.0031, a step
size of no more than (0.0031/0.014524) x 0.05 = 0.0107 is required. We will choose
a sensible step size which is less than this, say A = 0.01. This yields an estimate
X (2) = 1.547462.

The exact solution of the differential equation may be obtained by separation:

d
(;:#fxdx—/ii =Int+ C=x=+2(Int + C)

z(l)=1=1=20=2()=+v2Int+ 1
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Hence x(2) = +/2In2 4+ 1 = 1.544764 and the true errors in X,(2}, X,(2) and the
final estimate of X(2) are -0.028301, -0.013777 and -0.002698 respectively. The
estimate, X(2), derived using the step size h = 0.01 is comfortably within the 0.2%

error requirement.

7 The programs shown in Figures 8.1 and 8.2 may readily be modified to solve
this problem. Estimates X,(1.5) = 2.241257 and X,(1.5) = 2.206232 should be
obtained. Using the method described in section 8.3.6, the error in X(1.5) will be
approximately equal to X,(1.5) — X,(1.5) = —0.035025 and so the best estimate
of X(1.5) is 2.206232 — 0.035025 = 2.171207. The desired error bound is 0.25% of
this value, 0.0064 approximately. Since Euler’s method is a first-order method, the
error in the estimate of X(1.5) varies like h so, to achieve an error of 0.0054, a step
size of no more than (0.0054/0.035025) x 0.025 = 0.0039 is required. If we choose
h = 0.04, this yields an estimate X(1.5) = 2.183610.

The exact solution of the differential equation may be obtained by separation:

Y
¢t Inz

x(

é/lnxdm/dt:ﬁa:ln:ﬁ—mt—l—O

)=12=12Inl12-12=14+C=
C=—-1981214 = zlnzx —z =t — 1.981214

Hence, by any non-linear equation solving method (e.g. Newton— Raphson) we
may obtain z{1.5) = 2.179817 and the true errors in X,(1.5), X;(1.5) and the
final estimate of X{(1.5) are 0.061440, 0.026415 and 0.003793 respectively. The
estimate, X(1.5), derived using the step size A = 0.04 is comfortably within the

0.26% error requirement.
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Exercises 8.3.9

8 The starting process, using the second-order predictor—corrector method, is

Xy = xo + hf(to, 20)
X1 =z + th (f(to,mo) + f(tl,Xl))

and the second-order Adams—Bashforth method is

Xn—l—l - Xn + %h (3f(tn:Xﬂ) - f(tn—laXn—l))

d
8(a) Applying this method to the problem d_:: = z?sint — z,z(0) = 0.2 with
h = 0.1 we have

X1 =20+ hf(to,z0) = 0.2+ 0.1 x (0.2%sin 0 — 0.2) = 0.1800
Xy =0+ th (f(toaifo) + f(tlaXl))
= 0.2+ 10.1 % {0.2%sin0 — 0.2 + 0.18%sin 0.1 — 0.18) = 0.1812

Xo=X1+ th(3f(t1, X1) — f(to,z0))
— 01812+ 0.1 % (3(0.1812%sin 0.1 — 0.1812) — (0.2%sin 0 — 0.2)) = 0.1645

Xa, X, and Xy are obtained as X5. The computation is most efficiently set out

as a table.

1 2% X’n f(tﬂa Xﬂ) %h(?’f(tnnXﬂ) - f(tﬂfla anl)) Xﬂ—l—l
0 0.0 0.2000 —0.2000 (use predictor—corrector) 0.1812
1 0.1 0.1812 —0.1779 —0.016685 0.1645
2 0.2 0.1645 —0.1591 —0.014970 0.1495
3 0.3 0.1495 —0.1429 —0.013480 0.1360
4 0.4 0.1360 —0.1288 —0.012175 0.1238
5 0.5 0.1238

Hence X ({0.5) = 0.1238.
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d
8(b) Applying this method to the problem a% = 2% 2(0.5) = 0.5 with h =

0.1, we have

X1 =20 + hf(to,z0) = 0.5 + 0.1 x 0.5%e"570% = 05321
X1 =m0+ 1h (f(to,il?o) + f(tl,XO)
= 0.5+ 10.1 x (0.5%e%770% 4 0.5321%e? 00532y — 0 5355
Xo= X1+ th(3f{t1, X1) — f{to, %0))
= 0.5355 + £0.1 x (3 x 0.5355%07 05955 _  52e2520-8) — 05788

X3, Xy, X5, Xg and X7 are obtained as X5. The computation is most efficiently

set out as a table.

n 2% Xﬂ f(tﬂ: Xn) %h(?)f(tn:Xﬂ) - f(tﬂ—l: Xn—l)) Xﬂ+l
0 05 05000 0.3210 (use predictor corrector) 0.5355
1 0.6 0.5355 0.3955 0.043275 0.5788
2 0.7 0.5788 0.5024 0.055585 0.6344
3 0.8 0.6344 0.6685 0.075155 0.7095
4 0.9 0.7095 0.9534 0.109585 0.8191
5! 1.0 0.8191 1.5221 0.180645 0.9998
6 1.1 0.999% 3.0021 0.374210 1.3740
7 1.2 1.3740

Hence X (1.2) = 1.3740.

=9 The starting process, using the second-order predictor—corrector method, is

Xy = zo + hf(to, zo)

X1 =0+ th (f(to,xo) + f(tl,f{l))
Xo= X1 + hf(t1, X1)

Xy =X, | ih (f(tl,Xl) + f(tg,f(g))

and the third-order Adams—Bashforth method is

Xﬂ+l == Xn + %h(Q?’f(tﬂaXn) - 16f(t’ﬂ—].7Xﬂ—1) + 5f(t’ﬂ—27Xﬂ—2))
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d
Applying this method to the problem d—f =+x? +2t,2(0) = 1 with A = 0.1, we

have
X1 =20+ hf{to,z0) = 1.0+ 0.1 x /12 + 2 x 0 = 1.100
Xy =x0+ th (f("fo,ito) + f(tlaXl))
— 1.0} L0.1 » (\/12 12004+ V112 12 x 0.1) = 1.1094
Ko = X1+ hf(t1, X)) = 1.1094 + 0.1 x +/1.10942 + 2 x 0.1 = 1.2290
Xo=X1+ th (f(tl,Xl) + f(tz,ffz))
— 1.1094 + 10.1 x (\/1.10942 + 2% 0.1+ +/1.22002 4 2 « 0.2) — 1.2383
Xa = Xo + £k (23F(te, X2) — 16(t1, X1) + 5f(to, 20))
— 1.2383 + 10.1 x (23\/1.23832 +2%0.2—164/1.10942 + 2 x 0.1

1 B/1.02 42 x o) — 1.3870

X4 and X5 are obtained as X3. The computation is most efficiently set out as a
table.
no oty X, fltn, Xn)  R(23f(tn, Xn) — 16f(tn_1, Xn_1) X1

+ 5f(tn_2, Xn_2))/12

0 0.0 1.0000 1.0000 (use predictor-corrector) 1.1094
0 0.1 1.1094 1.1961 (use predictor-corrector) 1.2383
2 0.2 1.2383 1.3905 0.1487 1.3870
3 03 1.3870 1.5886 0.1689 1.5559
4 04  1.5559 1.7947 0.1901 1.7460
5 0.5  1.7460

Hence X (0.5) = 1.7460.
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= 10 The second-order predictor—corrector method is

Xﬂ—l—l - X’."L + hf(tnaXn)
Xﬂ—l—l - X’J’L + %h(f(tnaXn) + f(tn+1aXn+l))
d
10(a) Applying this method to the problem d_:: = (2t 4+ x)sin 2t, 2(0) = 0.5 with
h = 0.05, we have

X1 =20+ hf{to, zo) = 0.5+ 0.05 x (2 x 0+ 0.5)sin0 = 0.5

X1 =z + Lh(f(to, z0) + f(t1, X1))
— 0.5+ 2005 % ((2 % 0+ 0.5) sin 0 + (2 % 0.05 + 0.5) sin(2 x 0.05)) = 0.5015

X to Xqp are obtained as Xy. The computation is most efficiently set out as a
table.

-~

n in X‘n f(t‘ﬂ,DXﬂ) Xn—l—l f(tn+1>Xn+1) Xﬂ—l—l
0 0.00 0.5000 0.0000 0.5000 0.0599 0.50156
1 0.05 0.50156 0.0150 0.5045b 0.1400 0.5065
2 0.10 0.5065 0.0497 0.513b 0.2404 0.5160
3 0.15 0.5160 0.1034 0.5281 0.3614 0.5311
4 0.20 0.5311 0.1752 0.5492 0.5030 0.5527
5! 0.25 0.5527 0.2637 0.5780 0.6651 0.5820
6 0.30 0.5820 0.3670 0.6153 0.8474 0.6194
7 0.35 0.6194 0.4832 0.6623 1.0490 0.6673
8 0.40 0.6673 0.609% 0.7199 1.26&89 0.7254
9 0.45 0.7254 0.7442 0.7890 1.5054 0.7948
10 0.60 0.7948

Hence X({0.5) = 0.7948.

d 1
10(b) Applying this method to the problem d%ﬁj = Sm(;rfl),m((]) = —2 with

h = 0.1, we have

R 1 -2
X = hilt = 2401l x —— — —1.8812
Xi=zg+ ih (f(toaxo) + f(tlaXl))
2+ 10.1 12 L 18812 1.8911
= — 10,1 % | — — = —1.
: sin(0+ 1) sin(0.1+ 1)

Xy to Xqo are obtained as X;. the computation is most efficiently set out as a
table.
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-~

n tn Xn f(tnaXn) X'rﬂ»l f(tﬂ+l:Xﬂ+l) Xn+l
0 0.0 —2.0000 —1.3072 —1.8812 0.9887 —1.8911
1 0.1 —1.8911 —1.2343 —1.7912 0.8488 —1.7987
2 0.2 —1.7987 —1.1802 —1.7130 0.7400 —1.7189
3 0.3 —1.7189 —1.1416 —1.6443 0.6538 —1.6489
4 0.4 —1.6489 —1.1162 —1.5830 0.6845 —1.5867
5 0.5 —1.5867 —1.1028 —1.5279 0.6281 —1.5309
6 0.6 —1.5309 —1.1005 —1.4778 0.4818 —1.4803
7 0.7 —1.4803 —1.1092 —1.4318 0.4434 —1.4339
8 0.8 —1.4339 —1.1295 —1.3893 0.4114 —1.3910
9 0.9 —1.3910 —1.1624 1.3497 0.3846 1.3511
10 1.0 —1.3511
Hence X(1.0) = —1.3511.
m 11 Taylor’s theorem states that
df h? d2f a3 f htdf
t+h)=f(t h—(t — 1t ——(1 ——(t K
Fe+h)=fO)+h )+ 5 s+ o s O+ 70+
d d
Applying this to d—?(t — h) and d—f(t — 2h) yields

dx dx d*x R dPx

Ry = (1) b () = (1) + O(R®

dx dx d*x 4% Px

—(t—2h) = —(t) —2h—— () + — (&) + O(h®

g )= () Tz () + o= () + O(h)

Multiplying the first equation by 2 and subtracting the second yields

dx dx dx dPx

2= (t—h) — = (t—2h) = —(t) — R2—(t) + O(h®
dPx dx dx dx

e B2 () = —2 (6 — h) + —(t — 2h) + —(t) + O(h®

Multiplying the first equation by 4 and subtracting the second yields

dx dx dx d%x 3
. d%x dx dx dx 3
Now Taylor’s theorem yields
dx h2 d*x  h® dx
t+h) =zt +h— )+ —— + — —(t) + O(h*
w(t+h)=2t) +h () + Gr—=m + gp o)+ O
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2 3

d d’x
Hence, substituting for A dtf( ) and h° T 3( ) yields

2t + B) = w(t) + hi’f( bt Z (4%(:: Sy B oy s %y O(h3)>

dt dt
+ g (25— + G-+ Lo+ o)) + o)

x(t) + ﬁ (23?;( ) — 166;9;(15 —h) + 5(’;?(15 — 2h)> + O(h?)

m 12 Taylor's theorem states that

- o REEf . WA hidif
Jt+h)=fii )+hdt( )+§W(t)+ g@(ﬂ* EW@)JF

dx dx
Applying this to d—(t + k) and E(t — h) vields

d:z: d:z: d%a h? dx
t+ h O+ h— () + — — () + O(R®
dx dx d%a h? dx

ot =h) = () =B () + 5 e () + O

Summing the two equations vields

dx dx dx dx

R —(t—h) = 2—(t) + AP

dt(Jr )ert( ) d‘.ﬁ()Jr dts
A B dx dx dx

E(t —h) — 2E(t) + O(h?)

(t) + O(h%)

Subtracting the second from the first yields

dx dx d*x 3
dt(tJrh) dt(t—h)thdtQ()JrO(h)

d*x dx

le. 2h—(1) = o

7 —(t+h) -

it~ 1)+ OF)

Now Taylor’s theorem gives

dx h? d3%x hs dx

z(t + h) = x(t) + ha(t) o gﬁ(t) + O(h"Y
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Hence, substituting for hdgm( t) and hg—dgx (t), we have
SPTE =
dx h [dx dx
L4 h)= h—(t) + - t+h)+—(t—h)+ O
ol =)+ HG 0+ (G G m o)

n 2 (G m= e —n =250+ 00) + o)

h dx dx dx

e Y +8—(t)— Z=(t —h O(h?
oft)+ 1y (50 1 sTE0 - S m)) + otk
dx +8dm dx
dtoor | Cdb,  dbe

h
ie. Tpyy =2, + o (5 ) + O(hY)

m 13 Taylor’s theorem states that

df R2 a2 f RS B f Rt dtf

RO RO R A OB Ty

t K
2 dt? 31 at? () +

fit+h)=ft)+h
. . dx .
Applying this to z(t — A) and E(t — h) yields

dx: h2 d2x R Bz
F—h)=x(t)—h )+ — — () — — — () + O(h*
2t —h) = 2(t) = b (8) = S (8) = o () + O(RY)
dx dx d?z h? d3x
TR = ) - h— )+ () + O(RP
dt( ) dt() dtg()+2ldt3()+()

Multiplying the first equation by 2, the second equation by & and adding yields

dx dx B2 dPx

dt
he AP dx
e, V8T Cop(t— Ry~ B

() = O(h")

" (6~ 1) — 2(r) + T

() + O(t)

Multiplying the first equation by 3, the second equation by & and adding yields

St — h)+hf£ (t-h):gm()—zh‘f;()ﬂg%(«cwowﬁ)
R d%x dx dx 4
ie. ?W(t) =3xz(t—h) + ha(t —h) — 3x(t) + QhE(t) + O(h%)
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Now Taylor’s theorem gives

dx h2 d?x  R® dPx

t+h) =z(t)+h— )+ ——5 + ————=(t) + O(h*
e+ h)=a(t)+ dt()+2!dt2+3!dt3()+ (R°)
2 3

Hence, substituting for hQ(iT;E(t) and hg%(t), we have

dx

x(t+ h)=x(t) + hdt

(t) + (Sm(t —h)+ hi—j(zﬁ — k) — 3xz(t) + Qh(;—j(t) + O(h4)>
+ (%(t —h)+ h%(ﬁ — k) —2z(t) + hi—f(t) + O(h4)> + Oo(h")

dx dx
— Aa(t) 4 Ba(t — h) - 4h (1) 4 2h (1 h) 4 O(AY)

d d
ie. xpy1 = —dx, + 52,1+ 2k (2% + g il 1) + O(h4)

This gives rise to the approximate scheme X,, 11 = —4X,,+5X,, 1 +2h(2F, + F, 1)
which may equally be written as X,, 11 = 5[X,, 1 +2hF,]—4[X,+ %h(SFn —F. )],
in other words this scheme gives an approximation for X, 11 which is b times the
central difference approximation minus 4 times the second-order Adams-Bashforth
approximation. Because of the inclusion of the central difference approximation

this scheme will be unstable whenever the central difference scheme is.

= 14 The predietor—corrector scheme specified is

Xn—)—l = Xn + %h(an - Fn—l) = X’."L + %h(?’f(tnaXn) - f(tn—laXn—l))

X'rH»l — Xn + %h’(5Fﬂ+l + 8Fﬂ - anl) - Xn + l%h(5f(tﬂ+l:Xﬂ+l)
+ 8f(tn= Xn) - f(tnflaanl))

This is obviously not self-starting and requires that one initial step is taken using a,

d
self-starting method. For the problem d_:: =22 4 tg,m(O.S) = 0.1 with a step size
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of h = 0.05, using the fourth-order Runge—kutta method for the initial step we

obtain
c1 = hf(to,zo) = h{zg + t3) = 0.05 x (0.1% + 0.3%) = 0.0050
co = hf{to+ th,xo + teg) = 0.05 x ((0.1+ £0.0050) + (0.3 + £0.05)7)

— 0.0058
ca = hf{to+ th,xg + teg) = 0.05 x ((0.1 4 £0.0058) + (0.3 + 0.05))
— 0.0058
cq = hf(to + h,mo + c3) = 0.05 x ((0.1 + 0.0058)% + (0.3 4 0.05)%)
= 0.0067

Xl = Xy + %(Cl + 262 + 263 + (34) =0.1 + %(00050 + 2 % 0.0058
+ 2 x 0.0058 4+ 0.0067) = 0.1058

Now we can say

Xy = X1+ $h (3f(t1, X1) — f(to, %0))
= 0.1058 + 10.05 x (3(0.1058% + 0.35%) — (0.1% + 0.3%)) = 0.1133

Xo= X1+ &b (5f(152,f(2) + 8f(t1, X1) — f(to,mo))
= 0.1058 + £0.05 x (5(0.1133% + 0.4%) + 8(0.1058° + 0.35%) — (0.1% + 0.3%))
—0.1134

Computing X3 and X4 in a similar manner and setting the computation out in

tabular fashion we obtain:

~ ~

no iy X, Fltn, Xn) X1 Fltnrt, Xong1) X1
0 030 0.1000 0.1000 (done by Runge-Kutta method)  0.1058
1 035  0.1058 0.1337 0.1133 0.1728 0.1134
2 040 0.1134 0.1729 0.1230 0.2176 0.1231
3 045  0.1231 0.2177 0.1351 0.2633 0.1352
4 0.50 0.1352

Hence X(0.5) = 0.1352.
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= 15 The fourth-order Runge-Kutta method for the sclution of the differential
] dx . . .
equation o f(t,x) using a stepsize of A is given by
c] = h’f(tﬂaX’ﬂ)
Co = hf(tﬂ + %h,Xn + %Cl)
3 = h’f(tﬂ + %haXn + %02)
Cq4 = h’f(tﬂ + h:Xﬂ + CS)
Xop1 = Xp+ e+ 2cp + 2ca + cy)

d
15(a) To solve the equation d_::: =z +t+xt,z(0) =1, using a stepsize of

h — 0.15 we write

c1 =hf{tp,zo) =015 x (1 4+ 0+ 1 x 0) = 0.1500

co =hf{ty+ th,zo + L1c1)
— 0.15 x ((1 4 $0.1500) 4+ (0 + £0.15) + (1 + 0.1500) x (0 + 10.15))
= 0.1846

ca = hf(to+ 1h,zo + 1c2)
— 0.15 x ((1 4 20.1846) + (0 + £0.15) + (1 + 30.1846) x (0 + 10.15))
= 0.1874

ca = hf{to+ h,zo + e3) = 0.15 x ((1 + 0.1874) + (0 + 0.15) + (1 + 0.1874)
% (0+0.15)) = 0.2273

X1 =ax0+ 2(c1 + 2¢0 4+ 2¢5+ ¢4) = 1+ 2(0.1500 + 2 x 0.1846

+ 2 % 0.1874 4+ 0.2273) = 1.1869

Xo, X3, Xy and X:; may be computed in a similar manner. Setting the

computation out in tabular fashion we obtain:
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(2 X c1 o c3 C4 X1
0.00 1.0000 0.1500 0.1546 0.1874 0.2273 1.1869
0.16 1.1869 0.2272 0.2727 0.2769 0.3304 1.4630
0.30 1.4630 0.3303 0.3921 0.3984 0.4724 1.8603
0.45 1.8603 0.4721 0.5583 0.5681 0.6728 2.4266
0.60 2.4266 0.6724 0.7954 0.8109 0.9623 3.2345
0.75 3.2345

Hence X (0.75) = 3.2345.

[ B SO N R

dx 1

15(b) To solve the equation i ?,m(l) =2, using a stepsize of
x
h = 0.1 we write
c] = hf(to,mo) =0.1x = (0.0333

241

1
co =hf{tg+ th,xg+ 1) = 0.1 % = 0.0326
2 =hfllot shyzo t 3e1) (2+10.0333) + (1 + Lo.1)
1
ca = hf(to+ th,xp+ tco) = 0.1 x = 0.0326
3 =hilto + 3h, @0 + te2) (2+ 10.0326) + (1+ 20.1)
1
= hf(tg+ A, =0.1x = 0.0319
ce = hilloth 2o+ cs) (2 + 0.0326) + (1 + 0.1)
Xy —=z0+ %(Cl 4+ 2¢5 + 205 + 04) =2+ %(0.0333 + 2 % 0.0326
+ 2 % 0.0326 + 0.0319) = 2.0326
X, X35,..., X9 may be computed in a similar manner. Setting the computation
out in tabular fashion we obtain:
2% Xn 1 o ca c4 Xnt1

1.0 2.0000 0.0333 0.0326 0.0326 0.0319 2.0326
1.1 2.0326 0.0319 0.0313 0.0313 0.0306 2.0639
1.2 2.0639 0.0306 0.0300 0.0300 0.0295 2.0939
1.3 2.0939 0.0295 0.0289 0.0289 0.0284 2.1228
1.4 2.1228 0.0284 0.0279 0.0279 0.0274 2.1507
1.5 2.1507 0.0274 0.0269 0.0269 0.0265 21777
1.6 2.1777 0.0265 0.0260 0.0260 0.0256 2.2037
1.7 2.2037 0.0256 0.0262 0.0252 0.0248 2.2289
1.8 2.22389 0.0248 0.0244 0.0244 0.0241 2.2534
1.9 2.2534 0.0241 0.0237 0.0237 0.0234 2.2771
2.0 2.2771

Hence X (2) = 2.2771.

OO0 -1 U W = O S

—
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= 16 In this exercise the differential equation problem d_f =22 + t%,m(O) =—1,

is solved using a variety of methods.

= 16(a) Figure 8.3 shows a pseudocode algorithm for solving the equation
using the second-order Adams—Bashforth method with a second-order predictor—

corrector starting step and Figure 8.4 shows a Pascal program derived from it.

procedure deriv (t,x — f)
f+— x*x+sqrt (t)*t

endprocedure

t_start < 0
X start + —1
t_end + 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t_start , x start)
deriv (t_start,x start — f)
x_hat < x start + h*f
deriv(t start + h,x hat —+ f_hat)
t <+ tstart+h
X + x start + h*(f + f_hat)/2
write (printer, t,x)
f n_minus one «+ f
repeat
deriv (t,x — f)
t+—t+h
X 4+ x + h*(3*f — f n_minus_one)/2
f n_minus one «+ f
write (printer, t,x)
until t >=t_end

Figure 8.3: Pseudocode algorithm for Exercise 16(a)
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var x_start, x hat, x,t_start, t_end; t:real;
h,f,f hat, f nminus_one:real;

procedure deriv (t,x:real;var f:real);

begin
f = xxx+sqrio(t)*t
end;
begin
t_start := 0;
x_start := -1;
t_end := 2;
write('Enter step size ==>');
readln(h);

writeln(t start:10:3, x start:10:86);
deriv(t start, x start, f);
x_hat := x_start + h=*f;
deriv(t start + h, x hat, f_hat);
t :=t_start + h;
X :=x start + h *(f+f hat)/2;
writeln(t:10:3, x:10:8);
f nminus_one := f;
repeat
deriv(t,x,f);
t :=t + h;
X := x + h*(3*f-f n minus_one)/2;
f n minus_one := f;
writeln(t:10:3, x:10:8);
until t >=1t_end;
end.

Figure 8.4: Pascal program for Exercise 16(a)

Using this program with A = 0.2 gives X (2) = 2.242408 and, with A = 0.1, X(2) =
2.613104. The method of Richardson extrapolation given in section 8.3.6 gives the
estimated error in the second of these as (2.613104 — 2.242408)/3 = 0.123565.
For 3 decimal place accuracy in the final estimate we need error << 0.0005, in
other words the error must be reduced by a factor of 0.123565/0.0005 = 247.13.
Since Adams—Bashforth is a second-order method the required step length will
be O.l/m = (0.0064. Rounding this down to a suitable size suggests a step
size of A = 0.005 will give a solution accurate to 3 decimal places. In faet the
program of Figure 8.4 yields, with A = 0.005, X(2) = 2.897195. With A = 0.0025
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it gives X(2) = 2.898175. Richardson extrapolation predicts the error in the
h = 0.0025 solution as 0.000327 and therefore that in the A = 0.005 as 0.001308,

The required acecuracy was therefore not achieved using A = 0.005 but was achieved
with A = 0.0025.

16(b) Figure 8.5 shows a pseudocode algorithm for solving the equation using the
second-order predictor—corrector method and Figure 8.6 shows a Pascal program

derived from it.

procedure deriv (t,x — f)
f+ x*x+sqrt (t)*t
endprocedure

t_start «+ 0
xstart + —1
t_end + 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t start , x_start)
t < t_start
X +— xX_start
repeat
deriv (t,x — f)
x_hat « x4 h*f
derive (t+ h,x_hat — f hat)
t<—t+h
X + x+ h*(f + f_hat)/2
write (printer, t,x)
until t >=t_end

Figure 8.5: Pseudcode algoritm for Exercise 8.16(b)

Using this program with A = 0.2 gives X (2) = 2.788158 and, with A = 0.1, X(2) =
2.863456. The method of Richardson extrapolation given in section 8.3.6 gives the
estimated error in the second of these as (2.863456 — 2.788158)/3 = 0.025099. For
3 decimal place accuracy in the final estimate we need error << 0.0005, in other
words the error must be reduced by a factor of 0.025099/0.0005 = 50.20. Since the
second-order predictor—corrector method is being used, the required step size will
be O.l/m = 0.014. Rounding this down to a suitable size suggests a step size
of A = 0.0125 will give a solution accurate to 3 decimal places. In fact the program
of Figure 8.6 yields, with A = 0.0125, X (2) = 2.897876. With A = 0.00625 it gives
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X (2) = 2.898349. Richardson extrapolation predicts the error in the A = 0.00625
solution as 0.000158 and therefore that in the A = 0.0125 as 0.000632. The required

accuracy was therefore not quite achieved using A = 0.0125 but was achieved with
h = 0.00625.

var x start,x hat,x,t_start,t_end, t:real;
h,f,f_hat:real;

procedure deriv(t,x:real;var f:real);
begin
f = xxx+sqri(t)*t
end;

begin
t_start := 0;
x_start := -1;
t end := 2
write(‘Enter step size ==> ’);
readlnch);
writeln(t_start:10:3,x start:10:6);

t := t_start;

X = x start,
repeat
deriv(t,x,f);

x_hat := x + h*f;
deriv(t + h,x hat,f hat);
t :=t + h;
X := x + h*(f + £ hat)/2;
writeln (t:10:3,x:10:8);
until t >= t_end;
end.

Figure 8.6: Pascal program for Exercise 16(b)

16(c) Figure 8.7 shows a pseudocode algorithm for solving the equation using
the fourth-order Runge—Kutta method and Figure 8.8 shows a Pascal program
derived from it. Using this program with A = 0.4 gives X(2) = 2.884046 and,
with A = 0.2, X(2) = 2.897402. The method of Richardson extrapolation given
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in section 8.3.6 gives the estimated error in the second of these as (2.897402 —
2.884046)/15 = 0.000890. For b decimal place accuracy in the final estimate we
need error < 0.000006, in other words the error must be reduced by a factor
of 0.000890/0.000005 = 178. Since Runge-Kutta is a fourth-order method the
required step size will be 0.2/(178)1/4 = 0.0547. Rounding this down to a suitable
size suggests a step size of A — 0.05 will give a solution accurate to 5 decimal places.
In fact the program of Figure 8.8 yields, with h = 0.05, X(2) = 2.89850975. With
h = 0.025 it gives X(2) = 2.89850824. Richardson extrapolation predicts the error

procedure deriv (t,x — )
f— x*x 4 sqrt(t)*t
endprocedure

t_start < 0O
X start + —1
t_end + 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer,t start,x start)
t +— t_start
X 4+— X _start
repeat
deriv(t,x, — f)
cl < h*f
deriv{t + h/2,x + ¢1/2 — f)
c2 < h*f
deriv{t + h/2,x + ¢2/2 — f)
¢3 < h*f
deriv(t + h,x + ¢3 — f)
¢4 < h*f
t+—t+h
X4+ x4 (cl+2%2+ 2*c3+c4)/6
write(printer,t,x)
until t >= t_end

Figure 8.7: Pseudocode algorithm for Exercise 16(c)
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{Program for exercise 8.16¢}
var x_start,x,t start,t_end,t:real;
h,f,cl,c2,c3,cd :real;

procedure deriv (t,x:real;var f:real);
begin
f = x¥x+sqri(t)*t
end;

begin
t_start :
X start :
tend := 2;
write(‘Enter step size ==> 7);
readln(h);
writeln(t start:10:3,x start:10:6);
t := t_start;
X := X_start;
repeat
deriv(t,x,f);
cl := hx*f;
deriv(t + h/2,x + c1/2, £);
c2 := hx*f;
deriv(t + h/2,x + c2/2, £);
c3 := hx*f;
deriv(t + h,x + c3, £);
cd := hx*f;
t =t + h;
X :=x + (cl + 2%c2 + 2%c3 + c4)/6;
writeln(t:10:3,x:10:6);
until t >= t_end;
end.

0;
_1’

Figure 8.8: Pascal program for Exercise 16(c)

in the A = 0.025 solution as 0.000000101 and therefore that in the A = 0.05 as
0.00000161. The required accuracy was therefore achieved using A = 0.05.

w17 The pseudocode algorithm shown in Figure 8.7 and the Pascal program in
Figure 8.8 may easily be modified to solve this problem. With a step size of A = 0.5
the estimate X(3) = 1.466489 is obtained whilst, with a step size of h = 0.25, the
estimate is X (3) = 1.466476. Richardson extrapolation suggests that the step size
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of h = 0.25 gives an error of 0.00000087 which is comfortably within the 0.000005

which 5 decimal place accuracy requires. Hence X(3) = 1.46648 to 5 decimal
€

d

places. In fact, of course, the analytic solution of the problem is

so x(3) = 1.466474

—————— an
el~t+e—1

Exercises 8.4.3

18 In each part of this question the technique is to introduce new variables to
represent each derivative of the dependent variable up to one less than the order

of the equation. This can be done by inspection.

18(a)
C;”; _, 2(0) = 1
d
d—: = dat — 6(z° — t)v, v(0) =2
18(b)
Z_f _u, z(1) =2
d
d% — Az 1Y), (1) = 0.5
18(c)
Z_f _u, 2(0) = 0
d
—U:—sinv—élm, v(0) =0
dt
18(d)
Z—Zf = v, z(0)=1
d
d_: — w, v(0) =2
dw _ et + 2%t — 6etv — tw, w(0) =10
dt
18(e)
d
d—:: = v, z(l) =1
% _w, (1) =0
C?;:sinttwmg, w(l)= -2
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18(f)
ZZE = v, z(2) =10
d
d: = w, v(2) =10
W+ 1222)2, w(2) — 2
dt
18(g)
C;—:; =, z(0) =0
dv
E = w, ’U(O) =1
Ci;f _— w(0) = 4
d
d—?zlnt—mg—mw, w(0)= -3
18(h)
dx
o z(0) =a
% — v(0) = 0
d
dL; —u, w(0) = b
ﬁbtg—l—4t—5—|—\/ﬂ—v—(v—l)tu, u(0) =0

=19 Firstly, we recast the equation as a pair of coupled first-order equations in
the form

d

d—i: = f1(t,x,v), z(0) = =g

dv

i falt,z,v), v(0) = wg
This yields

d

d—f = v, z(0) =0

dv . 5 B

Efsmt—:z:—:z:v, v(0) =1
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Now, applying Euler’'s method to the two equations we have

X1 =z + h1f(to, zo, vo)
Le. X1 =0+0.1x1=0.10000
Xo=X1+hf1(ty, X1,V1)

Vi = wvo + hfa(to, 2o, v0)
Vi =1.00000 =1+ 0.1 % (sin0 — 0 — 0% x 1)
Vo=Vi+ hfalty, X1, V1)

i.e. Xo = 0.10000 4 0.1 x 1.00000 Vo =1+ 0.1 x {sin 0.10000

= 0.20000

X3 = Xo+ hfi(ts, Xo,V2)

i.e. Xo = 0.20000 + 0.1 x 0.99898

= 0.29990

— 0.10000 — 0.10000% x 1.00000)
= 0.99898

20 The second-order Adams—Bashforth method applied to a pair of coupled

equations is

Xn+l = Xﬂ + %h (Sfl(tﬂ:Xnayn) - fl(tn—laXn—hYn—l))
Yn+l = Yﬂ + %h (?’fQ(tﬂ: Xﬂayn) - fQ(t’ﬂ—].: Xn—layn—l))

Firstly, we recast the differential equation as a pair of coupled first-order equations.

d:z:_
dt

v,

dt

U .
— =sint—x —z"v,

2 v(0) =1

Now, since the Adams—Bashforth method is a two-step process we need to start the

computation with another method. We use the second-order predictor—corrector.

This has the form

-~

-~

Xn+1 - Xn + hfl(tnaXnayn)Yﬂ+l - Yn + hf?(tnaXnayn)

1 N -
Xos1 = X+ 3h (fl(w, Kt Vo) + fi(tns X, Yﬂ))

1 N N
Yost = Yot 5h (fz(tn+1, Kot Vigt) + faltn, X, Yﬂ))

Hence we have

X; = 0401 x1=0.10000; = 14+0.1 x (0—0—0%x 1)1 = 1.00000
X1 =04 0.05 x (14 1) = 0.10000V; = 1+ 0.05 x (—=0.01017 + 0) = 0.99949
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Now, continuing using the Adams—Bashforth method we have

Xo=X1+ th(3fi(t1, X1, Y1) — filto,zo, v0))
Vo =Vi+ th(3f2(t1, X1, V1) — folto,zo,v0))

le. Xo = 0.10000 + 0.05 x (3 x 0.99949 — 1) = 0.19992
Vo = 0.99949 + 0.05 x (3 x —0.01016 — 0) = 0.99797
Xz = Xo+ 1h(3f1(ta, Xo, Vo) — f1(t1, X1, V1))
i.e. X3 = 0.19992 + 0.05 x (3 x 0.99797 — 0.99949) = 0.29964

= 21 Firstly we formulate the problem as a set of 3 coupled first-order differential

equations
dz _ (0.5) = 1
i z(0.5) =
d
d%‘ _ w(0.5) = 1
d
d—? — 2% —v(z —t) — u, v(0.5) =2

We can then solve these by the predictor—corrector method. Notice that we need to

compute the predicted values for all three variables before computing the corrected

values for any of them.

X1 = 20 + hfi(to, 2o, up,vo) = —1 4 0.05(1) = —0.95000
Uy = uo + hfa(to, 2o, uo, vo) = 1+ 0.05(2) = 1.10000

Vi =g + hfs(to, 2o, uo, o) = 2 + 0.05((—1)% — 2(—1 — 0.5) — 1) = 2.15000

X1 =x9+ Lh (fl (h;ffl, ﬁlaf/l) + fl(t07m0:u0yv0))
= —1+ 0.025 x (1.10000 + 1.00000) = —0.94750

U =up+ th (fz (tl,ffh [}1,171) + fQ(to,Io,uoa?fo))
=1+ 0.025 x (2.15000 -+ 2.00000) = 1.10375

Vi=w+ Lth (fs (tlaXla Uy, f/l) + fS(tO:moau()aUO))
=21 0.025 x (2.91750 -+ 3.00000) = 2.14794

Continuing the process we obtain
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Xo = —0.94750 + 0.05 x 1.10375 = —0.89231
Us = 1.10375 + 0.05 x 2.14794 = 1.21115
Vo = 2.14794 4 0.05 x 2.89603 = 2.29274

Xo = —0.94750 + 0.025 x (1.21115 + 1.10375) = —0.88963
Us = 1.10375 + 0.025 x (2.29274 - 2.14794) = 1.21477
Vo = 2.14794 + 0.025 x (2.75083 4 2.89603) = 2.28911

)A(S = —0.88963 + 0.05 < 1.21477 = —0.82889

Us = 1.21477 + 0.05 % 2.28911 = 1.32923

Vs = 2.28911 4 0.05 x 2.72570 = 2.42539

X3 = —0.88963 + 0.025 x (1.32923 + 1.21477) = —0.82603

= 22 The first step in solving this problem is to convert the problem to a pair of

coupled first-order differential equations

dx

prakl z(0) =0
d
d—::sint—mgv—m, v(0) =1

A pseudocode algorithm to compute the value of X(1.6) is shown in Figure 8.9.
Using a program derived from this algorithm with a step size A = 0.4 gives
X(1.6) = 1.220254 and, with a step size h = 0.2, gives X(1.6) = 1.220055. The
method of Richardson extrapolation, given in section 8.3.6, is equally applicable
to problems such as this one involving coupled equations. Since the Runge-
Kutta method has a local error of O(h)® the global error will be O(h*). The
method therefore gives the estimated error in the second value of X{(1.6) as
(1.220254 — 1.220065)/15 = 0.000013. For 6 decimal place accuracy in the final
estimate we need error << 0.0000005, in other words the error must be reduced
by a factor of 0.000013/0.0000005 = 26. Since Runge-Kutta is a fourth-order
method the required step length will be 0.2/4\/% = (0.088. Rounding this down
to a suitable size suggests a step size of A = 0.08 will give a solution accurate to
6 decimal places. In fact the program yields, with A = 0.08, X (1.6) = 1.2200394.
With A = 0.04 it gives X{1.6) = 1.2200390. Richardson extrapolation predicts
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the error in the A = 0.04 solution as 0.00000003 and therefore that in the h = 0.08
as 0.0000005. The required accuracy was therefore just achieved using h = 0.08.

{program solves a pair of ordinary differential equations by the 4th
order Runge-Kutta Method}
procedure fl1{t,x,v — fl1)
flwv
endprocedure

procedure f2(t,x,v — 2)
f2 « sin(t) — x*x*v — x
endprocedure

{procedure computes values of x and v at the next time step}
procedure rk4(t,x,v,h — xn, vn)
cll « h*f1{t,x,v)
c21 + h*f2(t,x,v)
cl12 + h*f1(t + h/2,x 4+ ¢l11/2,v + ¢21/2)
€22 + h*f2(t + h/2,x + ¢l11/2,v + ¢21/2)
cl13 + h*f1(t + h/2,x + ¢12/2, v + ¢22/2)
23 « h*f2(t + h/2,x + c12/2,v + ¢22/2)
cl4 « h*f1(t + h,x + cl13,v + ¢23)
c24 « h*f2(t + h,x + ¢13, v + ¢23)
xn ¢ X+ (ell 4 2*(cl2 + ¢13) + c14)/6
vi 4 v (€21 F 2% (c22 + ¢23) + ¢24)/6
endprocedure

t_start «+ 0
t_end «+ 1.6
x0+ 0
vO+— 1
write (vdu, "Enter step size")
read (keyboard, h)
write (printer,t_start,x0)
t + t_start
X 4+ x0
v+ v0
repeat
rk4(t,x,v,h — xn, vn)
X < Xn
V4 vn
t«—t+h
write(printer,t,x)
until t >=1t end

Figure 8.9: Pseudocode algorithm for Exercise 22
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= 23 The first step in solving this problem is to convert the problem to a set of

coupled first-order differential equations

dx

T z(0.5) = —1
d

d—: — w, w(0.5) = 1
d

d—?“; — 2% — v — (z — w, w(0.5) = 2

A pseudocode algorithm to compute the value of X(2.2) is shown in Figure 8.11.
The procedures used in the algorithm are defined in Figure 8.10.

{procedures for pseudocode algorithm in figure 8.11}
procedure f1(t,x,v,w — fl)

flwv
endprocedure

procedure f2(t,x,v,w — {2)
2+ w
endprocedure

procedure f3(t,x,v,w — {3)
3 x"x — v'v— (x — t)'w
endprocedure

{procedure computes values of x, v and w at the next time step using
the 4th order Runge-kutta procedure}
procedure rk4(t,x,v,w,h — xn,vn, wn)
cll « h*f1({t,x, v, w)
c21 + h*f2(t,x, v, w)
e31 + h*f3(t,x, v, w)
cl12 « h*f1{t + h/2,x + cl11/2,v + c21/2,w + ¢31/2)
¢22 «— h*f2(t + h/2,x 4+ cl1/2, v+ c21/2,w + ¢31/2)
e32 + h*f3(t + h/2,x + c11/2,v 4+ ¢21/2, w + ¢31/2)
cl13 « h*f1(t + h/2,x + c12/2,v + ¢22/2,w + ¢32/2)
23 « h*f2(t + h/2,x + c12/2,v + ¢22/2,w + ¢32/2)
¢33 +— h*3(t + h/2,x 4+ ¢12/2,v + ¢22/2,w + ¢32/2)
cl4 « h*f1(t + h,x + c¢13,v + ¢23, w + ¢33)
c24 + h*f2(t + h,x + ¢13, v + ¢23,w + ¢33)
¢34 « h*f3(t + h,x + ¢13, v + ¢23,w + ¢33)

(Continued)
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xn 4+ x4 (ell + 2*(cl2 + ¢13) + ¢14)/6
vi 4 v (€21 F 2%(c22 + ¢23) + ¢24)/6
wn + w4 (31 + 2*(¢32 4 ¢33) + ¢34)/6

endprocedure

{procedure computes values of x, v and w at the next time step using
the 3rd order predictor-corrector procedure}

procedure pe3(t, xo, vo,wo,x, v, w,h — xn, vn,wn)

xp ¢ x -+ h*(3*f1{t,x, v,w) — f1(t — h, %0, vo,wo})/2

vp < v+ h*(3*f2(t,x, v, w) — f2(t — h,x0,vo,wo))/2

wp +— w + h*(3*3(t,x, v,w) — £3(t — h, x0, vo,w0))/2

xn ¢ X ++ h*(5*f1{t + h,xp, vp, wp) + &*f1(t,x, v, w)
-f1(t-h,xo0,vo,wo0)) /12

vi 4+ v+ h*(5*f2(t + h,xp, vp, wp) + 8*f2(t, x, v, w)
-f2(t-h,x0,vo,wo0)) /12

wn < w -+ h*(5*f3(t + h,xp, vp, wp) + 8*3(t,x, v, w)

-£3(t-h,x0,vo,wo0)) /12

endprocedure

Figure 8.10: Pseudocode procedures for algorithm for Exercise 23

Using a program derived from this algorithm with a step size A = 0.1 gives
X (2.2) = 2923350 and, with a step size h = 0.05, gives X(2.2) = 2.925418. The
method of Richardson extrapolation given in section 8.3.6, is equally applicable
to problems such as this one involving coupled equations. Since the third-order
predictor—corrector method used has a local error of O(h*) the global error will
be O(h?*). The method therefore gives the estimated error in the second value of
X(2.2) as 2.923350-2.925418)/7 = —0.000295. For 6 decimal place accuracy in the
final estimate we need error << 0.0000005, in other words the error must be reduced
by a factor of 0.000295/0.0000005 = 590. Since we are using a third-order method
the required step length will be 0.05/3\/% = 0.00596. Rounding this down to
a suitable size suggests a step size of h = 0.005 will give a sclution accurate to 6
decimal places. In fact the program yields, with A = 0.005, X (2.2) = 2.92575057.
With A = 0.0025 it gives X(2.2) = 2.92575089. Richardson extrapolation predicts
the error in the A = 0.0025 solution as 0.000000046 and therefore that in the
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h = 0.005 as 0.00000037. The required accuracy was therefore comfortably
achieved using A = 0.005.

{program solves three ordinary differential equations by the
3rd order predictor-corrector method}
t_start + 0.b
tend +— 2.2
x start + —1
v_start + 1
w gtart «+ 2
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t_start, x_start)
t «+— t_start
X0 + X start
Vo +— v_start
wo +— w_start
rk4{t,xo, vo,wo,h — x, v, w)
t+—t+h
write (printer,t,x)
repeat
pe3(t, xo, vo, wo,x, v, w,h — xn,vn, wn)
X0 +— X
VO 4V
WO +— W
X +— Xn
V4 vn
W+ Wn
t+—t+h
write (printer,t,x)
until t >=t_end

Figure 8.11: Pseudocode algorithm for Exercise 23

Review exercises 8.7

d
=1 Fuler’s method for the solution of the differential equation d—;:; = f{t,z) is
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d
Applying this to the equation d_f = /2 with z(0) = 1 and a step size of A = 0.1
yields

xg =x(0) =1

Xy = 29 + hf(to, x0) = mo + ha/mg = 1 + 0.1 x /1 = 1.1000

Xy = X1+ Rhf(t, X1) = X1+ hy/X; — 1.1000 + 0.1v/1.1000 — 1.2049

X5 = X+ hf(ts, Xa) = Xo + ha/Xo = 1.2049 + 0.14/1.2049 = 1.3146

Xy=Xs+hfts, X3) = Xa + hy/X3 = 1.3146 + 0.11/1.3146 = 1.4203

X = Xg+hf(ty, X4) = X4+ b/ Xy = 1.4203 + 0.11/1.4203 = 1.5489
Hence Euler’s method with step size A = 0.1 gives the estimate X(0.5) = 1.5489.

d
.2 Euler’s method for the solution of the differential equation d—f = f{t,x) is

d
Applying this to the equation d—f = —e% with z(1) = 1 and a step size of h = 0.05

yields

xg=x(1)=1

Xy = x0 + hf(to,20) = 3o + h(—e*°%) = 1 — 0.05exp(1 = 1) = 0.86409

Xo= X1+ hf(t1, X1) = X1 + h(—e*11)
= 0.86409 — 0.05exp(0.86409 x 1.05) = 0.74021

X3 = Xo+ hf{ts, Xo) = Xo + h(—e™2P
= 0.74021 — 0.05exp(0.74021 x 1.10

Xg= X3+ hf(ta, X3) = X3+ h(—e™3
= 0.62733 — 0.05exp(0.62733 x 1.15) = 0.52447

Hence Euler’s method with step size h = 0.05 gives the estimate X (1.1) = 0.52447.

)=
)
) = 0.62733
)

m 3 This question could be solved by hand computation or using a computer
program based on a simple modification of the pseudocode algorithm given in
Figure 8.1. With a step size of A = 0.1 it is found that X(0.4) = 1.125584
and, with a step size of h = 0.05, X{0.4) = 1.142763. Using the Richardson
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extrapolation method, because Euler's method is a first-order method and the
global error is therefore of O(h), the error in the estimate of X{0.4) is approximately
1.142763 — 1.126684 = 0.017179. To obtain X(0.4) accurate to 2 decimal places
we need error < 0.005. To achieve this we would need to reduced step size by a
factor of 0.017179/0.005 = 3.44. This suggests a step size of 0.05/3.44 = 0.0145.
Rounding this down to a sensible figure suggests trying a step size of 0.0125 or 0.01.

4 This question could be solved by hand computation or using a computer
program based on a simple modification of the pseudocode algorithm given in Fig-
ure 8.1. With a step size of A = 0.05 it is found that X(0.25) = 2.003749 and,
with a step size of A = 0.025, X(0.25) = 2.004452. Using the Richardson extrap-
clation method, because Euler’s method is a first-order method and the global
error is therefore of O(h), the error in the estimate of X(0.25) is approximately
2.004452—2.003749 = 0.000703. To obtain X(0.25) accurate to 3 decimal places we
need error < 0.0005. To achieve this we would need to reduce step size by a factor
of 0.0007/0.0005 = 1.4. This suggests a step size of 0.025/1.4 = 0.0179. Rounding
this down to a sensible figure suggests trving a step size of 0.0166667 or 0.0125.

5 This question could be solved by hand computation or using a computer
program based on a simple modification of the pseudocode algorithm given in
Figure 8.5. By either method it is found that Xq(1.2) = 2.374037, X5(1.2) =
2374148 and X3(1.2) = 2.374176. The local error of the second-order predictor-

corrector is O(h®) so the global error is O(h?). Hence it is expected

‘X*33|0Ch2 ie xz~ XL ah?
2
h 3
.'.|X1—X2|%‘:z:—ah2— z—al| — ‘:—ahQ
2 4
2 2
aﬂd‘XQ*X3|%‘$—O; — —lx—al = ‘:7&]12
2 4 16

X1 — Xy _ Gob?

] 4
‘XQ*Xg‘ %ahg

Hence

@ Pearson Education Limited 2004




474 Glyn James: Advanced Modern Engineering Mathematics, Third edition

I fact find that X1 — Xo _ 12374037 — 2.374148| _ | — 0.000111] 3974
B A A T — X[ T [2.374148 — 2.374176| ~ | — 0.000028] ~ 07T
6 This question is best sclved using a computer program based on a simple

modification of the pseudocode given Figure 8.7. Let X; denote the solution using
a step size of A = 0.2, X9 that using A — 0.1 and Xs that using A = 0.05.
By either method it is found that X;(2) = 5.19436687, X5(2) = 5.19432575 and
X3(2) = 5.19432313. The local error of the fourth-order Runge — Kutta method is
O(h®) so the global error is O(h*). Hence, by Richardson extrapolation, we may

expect
A 4
2(2) = Xo(2) + ab® = Xa(2) + 0 (2)
bt 2 16(x(2) — X3(2)
soz(2) = Xo(2) + 16(2(2) — X5(2))
Honce 2(2) — 16X5(2) — Xa(2) 16 x 5.19432313 — 519432575 oo o0

15 15
and the most accurate estimate of z(2) is 5.19432296.

7 The boundary conditions for this problem are p{rg) = po and p(r;) = 0.

Hence we have

d d 2 2a
p+r—p:2a—p = _p_l__p:_
dr dr r r
This is a linear differential equation so we first find the integrating factor.
f %d?“ — 2Inr so the integrating factor is 2" = 2
d
T2£ + 2rp = 2ar
dr

ie. T“Qp —ar®+ C

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 475

Now p(ro) =py = rgpg = arg +C = (C= rg(pg —a)

2
-
p(ri) =0 = O0=arf+C=ari+ri(pp—a) = a= rgop(;*%
2 2 2 2 2
robo raPo LNy rolbo L]
0 = 9 AL S (L S |
ence pir) = 3 (o= 2 ) B = 2 (1)
121 22 1 16 7
andp(1.5):22712 @—1 — (e —-1)=1
d 2(3 1
The problem to solve numerically is b_ —w, p(1) = 1. This may easily

r

be solved using a modification of the pseudocode algorithm of Figure 8.7 or
of the program of Figure 8.8. We find that, using a step size of h = 0.05,
p(1.5) = 0.25925946 .

8 The first step is to recast the problem as a set of three coupled (linked)

first-order ordinary differential equations

d

d_i‘ :fU’ ZE(l) 20.2
d

d_: = w, v(1) =1
d

a% = sin(t) + zt — 4v° — w?, w(l) =0

Figure 8.12 shows a pseudocode algorithm for the solution of these three equations
by Euler’'s Method.

{program solves three ordinary differential equations by the Euler
method}
procedure f1(t,x,v,w — fl)
flwv
endprocedure

procedure f2(t,x,v,w — 2)
2+ w
endprocedure

procedure f3(t,x,v,w — {3)
3 « sin(t) + x*t — 4*v*'v — w'w
endprocedure

(Continued)
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{procedure computes values of x, v and w at the next time step using
the Euler procedure}
procedure euler(t,x,v,w,h — xn, vn, wn)
xn + x + h*f1{t,x, v,w)
vn 4+ v+ h*f2(t,x, v, w)
wn < w + h*f3{t,x, v,w)
endprocedure

t_start «+ 1.0
t_end « 2.0
x_start « 0.2
v_start + 1
w_start < 0
write (vdu, "Enter step size")
read (keyboard, h)
write (printer, t start, x start)
t + t_start
X +— x_start
v + v_start
W +— w_start
repeat
euler(t,x,v,w,h — xn,vn, wn)
X 4 XN
V4 vn
W 4 wWn
t<t+h
write(printer, t,x)
until t >=1t end

Figure 8.12: Pseudocode algorithm for Review exercise 8

Using a program derived from this algorithm with a step size A = 0.025 gives
X(2) = 0.847035 and, with a step size h = 0.0125, gives X (2) = 0.844067. The
method of Richardson extrapolation, given in section 8.3.6, is equally applicable to
problems such as this one involving coupled equations. Since Euler’s method has a
local error of O(h?) the global error will be O(h). The method therefore gives the
estimated error in the second value of X(2) as (0.847035—0.844067)/1 = 0.002968.
This is less than 5 in the third decimal place so we have two significant ficures of

accuracy. The best estimate we can make is that z(2) = 0.84 to 2dp.
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m 9 The first step is to recast the problem as a set of two coupled (linked) first-order

ordinary differential equations

d

d—? _ 2(0) = 0.02
dv o

E:(l—:ﬁ)v—/ﬂ):ﬁ, v(0) =0

Figure 8.13 shows a pseudocode algorithm for the solution of these equations by
the second-order predictor—corrector method. Using a program derived from this
algorithm with a stepsize h = 0.02 gives X(4) = 0.147123 and, with a step size
h = 0.01, gives X(4) = 0.146075. The method of Richardson extrapolation,
given in section 8.3.6, is applicable to problems such as this one involving coupled
equations. Sinece the second-order predictor—corrector method has a local error of
O(h*) the global error will be O(h?). The method therefore gives the estimated
error in the second value of X(4) as (0.147123 — 146075)/3 = 0.001048. For 4
decimal place accuracy in the final estimate we need error < 0.00005, in other
words the error must be reduced by a factor of 0.001048/0.00005 = 20.96 Since
this predictor—corrector is a second-order method the required step length will be
0.01/4/20.96 = 0.0022. Rounding this down to a suitable size suggests a step
size of h = 0.002 will give a solution accurate to 4 decimal places. In fact the
program yields, with A = 0.002, X(4) = 0.145813. With A = 0.001 it gives
X (4) = 0.145807. Richardson extrapolation predicts the error in the A = 0.001
solution as 0.000002 and therefore that in the A = 0.002 as 0.000008. The required
accuracy was therefore comfortably achieved using A = 0.002. We can be confident
that z(4) = 0.1458 to 4dp.

{program solves two ordinary differential equations by the second
order predictor-corrector method}

procedure fl1{t,x,v — fl)
fl +—v
endprocedure

proceduref2(t,x, v — {2)
2 (1 —x*x)*v — 40"x
endprocedure
(Continued)
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{procedure computes values of x, v and w at the next time step using
the second order predictor-corrector procedure}
procedure pec2(t,x,v,h — xn, vn)
Xp X + h*f1{t,x,v)
vp + v+ h*f2(t,x,v)
xn ¢ X -+ h*{(f1{t + h,xp, vp) + f1{t,x, v))/2
vn < v+ h*(f2(t + h,xp, vp) + f2(t,x,v))/2
endprocedure

t_start <« 0.0
t_end « 4.0
x_start « 0.02
v_start « 0O
write (vdu, "Enter step size")
read (keyboard, h)
write printer, t_start, x_start
t < t_start
X +— xX_start
v < v_start
repeat
pe2(t,x, v, h — xn, vn)
X < Xn
vV < vn
t—t+h
write(printer,t,x)
untilt >=t_end

Figure 8.13: Pseudcode algorithm for Review exercise 9

10 The first step is to recast the problem as a set of three coupled (linked)

first-order ordinary differential equations.

d
d
d;z’ —w, v(1) =1
dw

o — sin(t) + xt — 40 — /|w), w(l) =2

A minor modification of the pseudocode algorithm shown in Figure 8.9 provides
an algorithm for the solution of this preblem. Using a program derived from
this algorithm with a step size A = 0.1 gives X(2.5) = —0.651076 and,
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with a step size h = 0.05, gives X(2.5) = —0.653798. We use the method
of Richardson extrapolation, given in section 8.3.6. Since the Runge-Kutta
method has a local error of O(h®) the global error will be O(h*). The method
therefore gives the estimated error in the second value of X{(2.5) as (0.651076 —
0.653798)/15 = —0.000181. For 4 decimal place accuracy in the final estimate we
need error < 0.00005, in other words the error must be reduced by a factor of
0.000181/0.00005 = 3.63. Since the Runge-Kutta is a fourth-order method the
required step length will be 0.05%/3.63 = 0.036. Rounding this down to a suitable
size suggests a stepsize of A = 0.0256 will given a solution accurate to 4 decimal
places. In fact the program yields, with A = 0.025, X(2.5) = —0.653232. With
h = 0.0125 it gives X(2.5) = —0.653217. Richardson extrapolation predicts the
error in the h = 0.0125 solution ag 0.0000009 and therefore that in the A = 0.025
as 0.000015. The required accuracy is therefore easily achieved using i = 0.025.
We can be confident that z(2.5) = —0.6532 to 4dp.
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Partial Differential Equations

Exercises 9.2.6

m 1 Differentiating

5%y 5 9%u
~ — = —d®cosatsinbx and-. . = —b° cos at sin bx
ot? Ax?

and hence a2 = ¢2b?

m 2 Since the function is a function of a single variable only, on differentiating

a2 o2
—Btg — a?f"” and 7z Z — " and hence a® = ¢°.
T

m 3 Verified by differentiation.

m 4 Differentiating

1 1
Jo = ——cos(r —ct) — —sin(r — ct
3 cos(r — ct) Tsm(r ct)
Zpy = 5 cos(r — ) + g sin(r — ct) — — cos(r —ct)
= — cos(r — ¢ — sin(r — ct) — —cos(r — ¢
3 72 r
2
g = —— cos(r — ct)
r

and it can be checked that the equation is satisfied.

m 5 Putting the given expression into the equation gives

Feoty = oty tiop v = Ly
K K
and the solution clearly depends on the sign of a.

a=0=V"=0 andhence V= A+ Bx
a>0=V"=a?V and hence V = Asinhax + B cosh az

where a° =

K
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a<0=V"= 0>V and hence V = A cos bx + Bsinbx

e
where b° = — —
I

4581

m 6 Substituting the expression into the LHS of the equation

v _
or
and in the RHS

2 21%
nr" 1 (3cos® 6 — 1) and B (?“2> =n(n+ r*(3cos’d 1)

ov. . o (. oV o 3 2 4
i 6 cos @ sin g and % (51n6’%> = —r"6(—sin” 0 + 2 cos” O sin )

Putting these expressions into the equation

n(n + 1)r"(3cos® § — 1) — r™6(—sin® 6 + 2cos> ) = 0
or n{n + 1)r*(3cos®d — 1) — r™6(—1 +3cos?6) = 0

and hence n(n + 1) — 6 = 0 with roots —3 and 2.

m 7 Now 5
507U 2 9 kit
ct—— = —com e cos iz cosnt
dx?
Au —kt —kt .
a = ke cosmx cosnt — ne CcoSs 1 sin ni
and
0%u 2kt kt . 2kt
) = k*e cosnx cosnt + 2kne cosmrsinnt —n’e Cos mx cos nt
Thus
8u du_ o o —kt —kt :
F + 213&: [k —n"+2k(—Fk)]e "“cos mz cosnt + [2kn + 2k(—n)le” “‘cosmx sin nt

and comparing with the LHS gives k2 + n? = ¢*m?

m 8 Differentiating
V, =322+ ayQ and V, = 2axy
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and evaluating

oV oV
z— +y— = 32° + axy® + 20xy® = 3(2® + azy?) = 3V

gives the required result.
Now Vio +V,y =62+ 202 = rhs = 0if ¢ = =3
Putting r? = z2 4 y>, first note that

or 2" _ 93 and 202" — 2
"o = 2 an ra—y— Yy

50

x
w=rV = u, =r°V, + 3r°2V = 3V, + 3raV
r
and differentiating again

2
Upy = T Vi + ?)TQEV + 3rxV, + 3rV + Sm—V
r r

Similarly for u,, and adding the two expressions and using the two previous results

3 (= + %)
Ugw + Uyy = 77 (Vau + Vi) + 67 (2V, + yV,) + 6rV + STV
the quoted answer is proved.
9 Differentiating ¢, = @me_kt/g and
w2 R e k? ktj2
¢ = Dye - 5@6 Gt = | Dy — kDy + IQ) e

and substituting gives
1 1 k? k?
0= oo — 5 (du + hde) = e ™2 [ Phpy — By + kD — — & — kdy + —
c c 4 2

Neglecting terms in k2, the RHS is just the wave equation for &.
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m 10(a) With r = g = 0 the equations become

— 1, = cuy
= *lww = CUgt = C(*th)t = *Cth
— Vyp = th

and hence satisfy the wave equation.

10(b) When L =0

= Uy = T{gv + cvp) = rgu + Tov

and the result is a heat conduction equation with an additional forcing term rgv.
Putting W = ves*® it may be noted that

g
W, — va0e9% and W, — ('Ut 1 9y estle
C

and hence comparing in the previous equation

Waw = (re)Wy

and satisfies the usual heat conduction equation. The exponential damps the

solution to zero over a long time.

10{c) First eliminate !

gy =1l 4 Ll = r{—gv — cv) + L{—gv — cv )y

Ve = Levg + (re+ Lg)vg + rgo

Put in the expression for a

T
Vg = Vg + 200 + 7g'U

Le Le
and substitute v — we=4¢
iwme_"”t = {(wy — 20w + agw)e_at + 2a{w; — aw)e”* + 79 weat
Le Lc
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1
Ewmx = W + (—&2 + %) w

But

2 2 2 2
5 ?“g) rg 1/ rg g 1/r rg g
— — == =+2"—+5|=—|—=—-2——+=5)=0
( a+Lc Le 4(L2+ Lc+cg> 4\ L2 Lc+02
from the condition rc = gf and hence the variable w satisfies the wave equation.

Such a transmission line is called a balanced line and transmits the signal exactly

in shape, though damped by the exponential.

11 Putting the expression into the equation

—a®fsin(ay + ) = (f” — 2af)sin(ay + b)

so fmust satisfy

' =2af +a’f =0

which is a second-order constant coeflicient equation with equal roots a. Thus

f=(A+ Bz)e*® and agrees with the given result.

12 Use MAPLE to solve, as follows:
with (PDEtools):
Qlz:=x*diff (ulx,y),x)+y " diff (u(x,y),y)4*x2%y"2;
sol:=pdsolve(Q12,u(x,y));
# this instruction gives the solution

sol:= u(x,y) = x2 y2+_Fi1(y/x)

eval (sol,{x=1-t,y=t,u(x,y)=t"2});
simplify (eval(%,t=1/(1+z)));
solve (%, _F1(1/z));

# gives the solution (1 +22)/(1+ 2)4
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, d [ ou ou
m 13 Write as e a—y+u)0:¥a—y+uf(y)

where f is an arbitrary function. Using an integrating factor e¥, this partial

differential equation can now be written as

o Yy — ¥
ay et = €¢I y)

which can be integrated to give

u=e Y[H{z)+ Gy

where H(z) and G(y) are arbitrary functions.

m 14 As in Exercise 12 this problem is probably best solved using MAPLE.

with (PDEtools):
Ql4:=x"2*diff (u(x,y),x)+y2*diff (ulx,y),y)-(x+y) "ulx,y);
sol:=pdsolve(Q14,u(x,y));

#gives sol:= u(x,y)=_F1[(x-y)/xylxy
eval(sol, {x=s,y=1,u(x,y)=8"21});

simplify(eval(%,s=1/(1-2)));
solve (%, _F1(z));

#gives - —————

-1+Z
u:=simplify(eval) (x"y*%,z=(x-y)/(x*sy)));

#gives the final result Ui=———————-

Exercises 9.3.4

= 15 From the separated solutions (9.21) choose

u = sin(Azx) cos(Act)
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Clearly both initial conditions (a) and {b) are satisfied for A = 1.
The d’Alembert solution is obtained from (9.15) as

= ;[Sin(a‘: + ct) + sin(z — ct)]

which gives the same result when the sines are expanded.

16 First note that sinz(1 } cosz) =sinz + % sin2z

The two initial conditions imply that the solution is of the form

w= Asinzsinect + B sin 2xsin 2ct

and matching the conditions gives A = 1/¢ and B = 1/4c¢.

17 The MAPLE implementation is as follows:

fi=(x-c*t)/(1+(x-c*t)2)+{x+c™ L)/ (1-(x+c™ t)"2) ;

simplify (f); # gives the simplification - nearly
simplify(diff(f,x,x)-diff(f,t,t)/c"2); # gives zero as required

18 Let ' denote differentiation with respect to (et —r) and ‘dot’ with respect to
(ct + r) then the terms of the spherically symmetric wave equation are
1 1., .
e = f (et =)+ glet + )]

and

= =gt = 1)+ glet+ )]+ [f(et = 1) + et = 1)
2

= 5 1fet =)+ glet )] = L[/ (et— 1)+ glet + 1)

1
o lf et —r)+ et + )]
Collecting terms together

1 2 1
Eutt = Upp — ;ur :7’73 [TQ(fH + Q') o 2(f + g) o 2T(f/ — Q')

(g +2Af + )+ 2 = 9] =0
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so the equation is satisfied for any functions fand ¢. The two terms represent an
outward spherical wave emanating from the origin and an inward wave converging

into the origin. Note the singular behaviour at r = 0.

19 The equation (9.24) is split by the trigonometric formula into two parts

27r2u,7r s 1 . 3w 1 . 3w
:smT(m—ct)JrsmT(erct)—§smT(;E—ct)—§smT(m+ct)...

= [sin%(zzﬁ —ct) — ;sin??r(m —ct)+ 21551115;?@ —ct)+ ...

. T 1 . 3w 1 . bw
+[smT(zrrJrct)—§smT(m+ct)+%smT(erct)Jr...]

The two terms depend on {x —ct) and (x -} ct) respectively and represent travelling

waves in the +x and —x directions.

20 The d’Alembert solution is obtained from (9.15) as

x+ct
1

T 2e

r—ct

1t xexp(—z?)dx

which on integration gives the quoted result.

21 Again the d’Alembert solution is obtained from (9.15) as

w=[F(x—ct)+ Flz+ ct)]/2

where F'is the function given in the exercise.

22 Try a solution of the form w = f(z + ky), so the equation gives
346k R =0=34+6k+k>=0
which has solutions & = —3 + +/6 and hence the characteristics are

z+ (=3 + v/6)y = const
z+ (=3 —/6)y = const
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m 23 Substituting

6 —Nf' = XNf'=0=X1=2,-3

and hence a sclution of the form

w= f(x+2t)+ glz — 3t)

The initial conditions give

2 — 1= f(x)+ g(z) and 2z = 2f'(z) — 3¢'(z)

Integrating and solving for f and ¢ produces the solution

"= %[4(55 L2t 4 (3 — 38)2 — 5]

m 24 Differentiating

A !
— = _9 coswt + g coswt
or r2 r

and

9%y {29 2¢
T

g//
W = ';PS — —|— 7) cos wi

Putting these expressions into the equation gives

) 54 "9 / 2
(g__g_l_g__l__ {_g+g]>c05wt:—gcoswt
r

£

3 r2 r r r2 2y

and cancelling produces the equation for ¢ as

This simple harmonic equation has sine and cosine solutions which are written in

the form

g:AcosE(b—r)JrBsinE(b—r)
¢ ¢
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The second boundary condition is now satisfied by putting A = 0 and the first
condition gives

u(a,t) = Bcoswt = — sin Li(b —a)coswt
@ ¢

and hence B is known and the required sclution is

afcoswt sin (b —r)

t f—
ulr;t) T sin (b — a)

m 25 This question is similar to Example 9.10 but initially the velocity is given and
the displacement is zero.

On the initial line ¢ = 0 the solution

u=flz+t)+glz —1)

satisfies condition (a) only if f = —g and therefore the condition (b) gives

ue(z,0) = 2f"(x) = exp(—|z|)

Integrate to obtain f

1—%6_“’ for z > 0
where it has been arranged that the function goes to zero at infinity and matches
at z = 0.

The numerical solution can now be computed from the values on the initial line

f:{%e“’ for x <0

given by f. The values at subsequent times ¢ = 0.5, 1.0, 1.5, 2.0, ... can be computed

eagily from

u(z,0.5) = f(x +0.5) — f(z — 0.5)
w(z, 1) = flz+1) - flz - 1)

u(z,1.5) = flx +1.5) — f(z — 1.5)

ete.
to give the quoted solution. On a spreadsheet, putting f(z) into column B
corresponding to values of x = —3,—-2.5,...,2.5,3, then a typical entry, which

can be copied onto the other entries in the column,
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in column D D7 reads +B& — B6
in column E E7 reads +B9 — B5
in column F F7 reads +B10 — B4
ete.
It is instructive to derive the exact sclution and then compare with the numerical

solution.

e®sinh ¢t for x < —¢
w(z,t) =< 1—eteosh oz for —t <z <t
¢ *sinh ¢t fora >t

26 From the possible separated solutions the conditions (a) and (b) imply that

n = cos Act sin Ax

is the only one that satisfies these conditions. The condition (¢} gives sin Am =

0= A = N which is an integer. Thus a superposition of these sclutions gives

u(x,t) = Z an cos Netsin Nz
N=1
and the condition (d) gives the standard Fourier problem of evaluating the

coefficients in

(e o)
7r—x° = E ansin Nx
N=1

The coeflicients are obtained from the usual integral and the result follows by two

integrations by parts
4

= W(l — cos N)

an

27 Taking the Laplace transform with respect to ¢, in equation (9.28) both w(z,0)
and u:(x,0) are zero from conditions (a) and (b) so the equation is
2 dQU 2 : : szlc —szle
¢“——= = 8“U with sclution U = Ae + Be

dx?
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From condition (d) the constant A = 0 since the solution must be bounded for all
x > 0. The condition (c) is transformed to

aw!

V8= o

and hence the solution for U takes the form

aw
o242

—szxlc

Uz, s) e

and the exponential just shifts the solution as

) = asin o (1= D) A o (¢ 7))

It is easily checked that all the conditions are satisfied by the function. For = > ¢t

the wave has not reached this value of x so «w = 0 beyond this point.

Exercises 9.3.6

m 28 The problem is best solved by using MATLAB.
Explicit

n=5;L=0.25;x=[0:1/(n-1) :1] ;z=zeros(1,5);
zz=.25* [0 .25 b .25 0]
zzz=[0,2%zz([2:n-1]1)-z([2:n-1])+L* (zz([1:n-2])
-2%zz([2:n-1]1)+zz([2:n])),0]
% gives O 0.1250 0.2188 0.1250 O

Z=ZZ;ZZ=ZZZ,
zzz=[0,2%zz([2:n-1]1)-z([2:n-1])+L* (zz([1:n-2])

-2*zz([2:n-11)+zz([3:n])),0]
%gives 0 0.1797 0.26568 0.1797 O
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Implicit

n=5;L=0.25;
a=[-L 2" (1+L)-L] ;A=eye(n);for i=2:n-1,A(i,i-1:i+1)=a;end
b=[L/2 1-L L/2];C=eye(n);for i=2:n-1,C(i,i-1:i+1)=b;end
u=[0 0 0 0 0]?;v=C*u+.25" [0 .25 .5 .25 0]7;
B=inv(A);
w=4*B*v-u;w’
% gives 0 0.1224 0.2245 0.1224 O
u=v;v=w;w=4*"B* v—u;W’

% gives 0 0.1741 0.2815 0.1741 ©

m 29 Again MATLAB is a convenient method for the explicit calculation.

n=6;L=0.01;delt=0.02;
format long
z=eye(1,6);zz=[ein(0.01%pi),0 0 0 0 0]
% gives 0.0314107 0 O 0 O O
zzz=[gin(0.02%pi),2"zz([2:n-1])-z([2:n-11)
+L* (zz([1:n-2])-2"zz([2:n-1]1)+zz([3:n])),0]
% gives 0.082790 0.000314 0 0 0O O
Z=Z7;ZZ=ZZZ;
zzz=[sin(0.03"pi),2" zz([2:n-1])-z([2:n-1])
+L* (zz([1:n-2])-2"zz([2:n-1])+zz([3:n])),0]
% gives 0.094108 0.001249 0.000003 O 0O O

m 30 Care must be taken to include the ‘+2’ term but the MATLAB
implementation is quite straightforward.
Explicit
n=6;1=0.25;delt=0.2;x=[0:0.2:1] ;z=x." {1-x)
zz=[0,(1-L)*z([2:n-1]1)+L* (z([1:n-2])
+z([3:n]))/2,0]+[0,delt™2* ones (1,4),0]
% gives 0 0.1900 0.2700 0.2700 0.1800 0
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zzz=[0,2%zz([2:n-1])-z([2:n-1])+L" (zz([1:n-2])-2"zz([2:n-1])
+zz([3:n])),0] +[0,2%"delt™2* ones(1,4),0]

% gives 0 0.2725 0.3600 0.3600 0.2725 0

Z2=77;7Z=77Z;

2Z27=[0,2%"Z2Z([2:n-1]1)-z([2:n-1]1)+L" (zz([1:n-2])-2"zz([2:n-1])
+zz([3:n])),0]1+[0,2%delt™2* ones(1,4),0]

% gives O 0.3888 0.5081 0.5081 0.3883 O

Implicit

n=6;L=0.25;delt=0.2;x=[0:0.2:1];

a=[-L2* (1+L)-L] ;A=eye(n);for i=2:n-1,A(i,i-1:i+1)=a;end
b=[L/2 1-L L/2];C=eye(n);for i=2:n-1,C(i,i-1:i+1)=b;end
u=(x.*(1-x))?;v=C*u+[0;delt™2% ones{4,1) ;0]

% gives 0 0.1900 0.2700 0.2700 0.1900 O
B=inv(4);

w=B* (4" v+[0;2*delt™2 " ones(4,1);0])-u

fgives 0 0.2319 0.3191 0.3191 0.2319 O
u=v;v=w;w=B* (4*v+[0;2%delt™ " ones(4,1);0])-u
hgives 0 0.2785 0.3849 0.3849 0.2785 0

m 31 The problem is now more difficult since there is an infinite region. The
simplest way to cope with this difficulty for small times is to impose boundaries
some distance form the region of interest. Hopefully the effect of any sensible
boundary condition would only affect the solution marginally. For longer times an
alternative strategy must be sought. In the current problem the region » = —1
to 2 is chosen with the sclution quoted in the region =z = 0 to 1.

Explicit

n=16;L=0.25;delt=0.2;

x=[-1:0.2:2] ;z=x.* (1-x);

zz=[-2,(1-)*z([2:n-1]1)+L* (z([1:n-2])
+z([3:n]))/2,-2]+delt™* ones(1,16)

% gives 0.0300 0.1900 0.2700 0.2700 0.1900 0.0300
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zzz=[-2,2%zz([2:n-1]1)-z([2:n-1])+L" (zz([1:n-2])-2"zz([2:n-1])
+zz([3:n])),-2]1+2"delt™2" ones(1,16)
% gives 0.1200 0.2800 0.3600 0.3600 0.2800 0.1200 -0.1200

Z=ZZ;ZZ=ZZZ;
zzz=[-2,2%zz([2:n-1]1)-z([2:n-1])+L" (zz([1:n-2])-2"zz([2:n-1])

+zz([3:n])),-2]1+2"delt™2" ones(1,16)
% gives 0.2700 0.4300 0.5100 0.5100 0.4300 0.2700

Implicit
n=16;L=0.25;delt=0.2;
x=[-1:0.2:2];

a=[-L 2" (1+L)-L] ;A=eye(n);for i=2:n-1,A(i,i-1:i+1)=a;end
b=[L/2 1-L L/2];C=eye(n);for i=2:n-1,C(i,i-1:i+1)=b;end

u=(x."(1-x))’ ;v=C*ut+delt™2* ones(16,1)

% gives 0.0300 0.1900 0.2700 0.2700 0.1800 0.0300
B=inv(A);

w=B* (4*v+2*delt 2" ones(16,1))-u

% gives 0.0800 0.2400 0.3200 0.3200 0.2400 0.0800
=v;v=w;w=B* (4*v+2*delt™2* ones(16,1))-u

% gives 0.1465 0.3089 0.3900 0.3900 0.3099 0.14985

Exercises 9.4.3

= 32 From the set of separated solutions in equation (9.36) the only ones that
satisfy condition (a) are u = e~ cos Az and the second condition (b} implies
cosA=0= = (n + %) m where n is an integer.

The third condition (¢) can be rewritten as

u:g CoS 32 +COSE for 0 <ax <1 whent =10
2 2 2
Thus the complete solution is

u = %[exp(—ﬁmgt/él) cos(mwz/2) + exp(—9rm°t/4) cos(3wz/2)|
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m 33 If v = ru then differentiating produces

Vp = U+ TU,

Vpp = 2Up + TUpp

and hence ., + 27" = L

“Upp
+ Yrr

Putting these expressions into the spherically symmetric heat conduction equation
gives

1 1
Uy = U
T Rr

Cancelling out the rit is seen that vsatisfies the standard heat conduction equation.
If v remains bounded it may be noted that ©w — 0 as r — co.

m 34 Substituting into the partial differential equation gives the ODE

nF" + (24 F —aF =0

and putting F = exp(#n) gives the equation

dnpt+ 2+ )k —a =20
which is clearly satisfied by & = —1

5 and a = —% and produces the classic similarity
solution.

m 35 Differentiating

ou _ —G8f(x) cos(x — Bt) and o _ f'(x)sin(z — Bt} + f(x) cos(z — Bt)
ot ox
and
5

Gt f(z)sin(x — Bt) + 2 (x) cos(z — Bt) — f(x)sin(z — 5t)

Putting these expressions into the heat conduction equation and equating the sine
and the cosine terms gives

—Bf=2fand f* — f=0

@ Pearson Education Limited 2004




496 Glyn James: Advanced Modern Engineering Mathematics, Third edition
Both equations can be satisfied only if 5 =2 and f = Ae™"; the solution is then
u= Ae *sin(x — 2t)

Physically the slab of material is given an initial temperature of Ae *sinz, the
temperature is zero at infinity and at the end = = 0 the temperature is periodic
taking the form u(0,t) = —Asin 2¢.

36 The suggested substitution gives, on differentiation,
6 — 6y = ue ™

O = (up — hu)e ™
—ht
gwa: = UgzC

Putting the expressions into the given equation and cancelling the exponential gives
Up — AU — Klgr — AU = Ut — Fllgs

and produces the standard equation for w. The term h(6 — ) is a heat loss term
proportional to the excess temperature over an ambient temperature &y; this is

the usual Newton cooling through a surface.

37 FLirstly it is clear that the final steady solution is I/ = 0. The general separated

solution in equation (9.33) is
u=-e “(Asin Az + Beos\z) where A\ =a/s

Condition (a) can only be satisfied at = = 0 if 4 = 0. Condition (b) then implies
that
1
cos Al = 0 so that Al = (nJr 2) T

and hence the solution takes the form

w(, ) = 3 anep [_ﬁ; (n+%>272_2t] o Kw%) $]

=0
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The initial condition given in {c) leads to the Fourier problem of evaluating the

coeflicients in the expression

1 - 1
Ug (2:§> ﬂZ_;Jamcos {(nir 5) 7?}

These can be evaluated by standard integration or using the standard series

= (-1 1\ 7z ™
;2n+1008 n+§ T :Zfor—l<:r:<l

and
(o)

1 1\ 7z 72 x
ZWCOS n+§ T :g(lfj) f0r0<£<271'
n=0

Thus the coeflicients can be calculated as a combination of the last two expressions

8 2 (—1)"
dpn = UQ, 2 o
m22n+1)2 7w2n+1

as

38 At any time ¢ the sine term ensures that the sum is zero at = 0 and L so
only the first term survives at the end points and therefore v = vp at z = 0 and
v = 0 at ¥ = L. From the basic solutions obtained in the text, or by inspection, it
is clear that the heat equation is also satisfied. The additional condition at ¢ = 0

leads to the Fourier series problem

0 =g (1 — —) -+ icnsm (nﬁx)

n=1

with the coefficients evaluated from

L
€T nmTL L
O’U()/ (1——)5111( )d:r:+
0 L L 2

An integration by parts gives ¢, = —Qn%f as required.

39 At the ends of the bar the conditions are
(a) u=0at z=0"frt>0,(b)u=0atxz=1Ffrt>0and the initial
condition is (¢) w = 10 for 0 < 2z <! at ¢ = 0. From the set of separated solutions
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in equation {9.33) the only ones that satisfy condition (a) are u = e=**sin Az. The

condition (b) then gives sin Al = 0 = A = % where n is an integer. The solution

is therefore of the form
( KT Tl'Qt) . /NTE
Z Gy EXP sin (T)

The third condition (¢) reduces the problem to a Fourier series, namely

10 = Z a0, sin (n—?m)
n=1

Integrating in the usual way over the interval

{

/10 sin (@) dxr = Eaﬂ
{ 2

0

gives a, = 22(1 — cosnw) and the required result.

40 Taking Laplace transforms of the equation with respect to ¢ leads to
n T b
sqb—gb(;r:,O) :a'qb + g
so using condition (b) the required equation is
87 . E
¢ = a¢ as

This equation has the obvious particular integral ¢ — b/s? and it is convenient

to write the complementary function in terms of sinh and cosh functions. The

— —|— Asinh <\/E:1:> 4+ Bcosh <\/;$>
a a

The boundary conditions in (a) transform to ¢(£h,s) = 0 and hence

0= % + Asinh (\/gh) + B cosh <\/§h>
s a a

0= % — Asinh (\/gh) + B cosh <\/§h>
s a a
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Clearly A =0 and B is easily calculated to give

b cosh (/)
=2 [1 B cosh(\/gh)]

To transform back to the real plane needs either some tricky integrations or the

use of advanced tables of Laplace transform pairs. Tables give the solution

é 1 16h% < (—1)"

¢ Lo o
b Qa(h ¥ am?® = (2n—1)°

(2n — 1)*x2at (2n — 1)z
e R T

exp {—

Exercises 9.4.5

m 41 TIn the explicit formulation equation (9.42) the MATLAB implementation can

be written using the ‘colon’ notation to great effect.

n=6;L=0.5;x=0:0.2:1,u=x."2
v=[0,L" (u{[1:n-2])+u([3:n]))+(1-2*L) *u([2:n-1]),1]

% gives 0 0.0800 0.2000 0.4000 0.6800 1.0000
u=v;v=[0,L* (u{[1l:n-2])+u{[3:n]))+(1-2*L)*u([2:n-1]),1]

% gives 0O 0.1000 0.2400 0.4400 0.7000 1.0000

Repeating the last line gives successive time steps.

m 42 Again a MATLAB formulation solves the problem very quickly; lamda (L in
the program) is chosen to be 0.4 and time step 0.05.

Explicit
n=6;L=0.4;u=[0 0 0 0 0 1];
v=[0,L" (u([1l:n-2])+u([3:n]))+{1-2*L)*u([2:n-1]),exp(-0.05)]
% gives O 0 0 0 0.4000 0.9512
for p=2:20,u=v;v=[0,L" (u([l:n-2])+u([3:n]))+(1-2"L)

*u([2:n-1]) ,exp(-p*0.05)];end
v

% gives the values at t=1
as 0 0.1084 0.2104 0.293% 0.3497 0.3679
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Repeating the last two lines produces the solution at successive times.
Implicit
There are some slight differences in the solution depending on how the right hand
boundary is treated. FEquation (9.43) is constructed in MATLAB again using the
‘colon’ notation

L=0.4:M=2" (1+L) ;N=2"* (1-L);

n=6;u=zeros(n,1);uln)=1;

p=[-L M -L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=p;end

g=[L N L];B=eye(n);for i=2:n-1,B(i,i-1:i+1)=qg;end

DD=inv{(A)*B;

v=DD*u;v(n)=exp(-0.05); % for first step

for p=2:20,u=v;v=DD"u;v(n)=exp(-p*0.05);end

% gives for t=1 0 0.1082 0.20986 0.2955 0.3551 0.3679

Repeat the last line of code for further time steps.

m 43 The equations are easily produced in MATLAB. Because of the derivative
boundary condition the region is extended to # = —0.2 and u(—0.2,1) is obtained

from

w(0.2,) — u(—0.2,¢) = 0.4

L=0.5;M=2* (1+L) ;N=2* {(1-L) ;n=7;

p=[-L M -L];A=eye(n);for i=2:n-1,A(i,i-1:i+1)=p;end
A(1,3)=1;A(1,1)=-1 % gives LHS matrix

g=[L N L];B=eye(n);for i=2:n-1,B(i,i-1:i+1)=qg;end
B(1,1)=0 % gives RHS matrix

rhs=[0.4 0 0 0 0 0 0]°;

% gives vector from derivative condition at x=0
AA=inv(A);

x=0:0.2:1,u=[-0.24,x.* (1-x)]’ ¥ starting data
v=AA" (B*u+rhs)

% produces next time step

-0.2800 -0.0400 0.1200 0.2002 0.2012 0.1269 0
u=v;v=AA" (B*u+rhs)
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% produces next time step
-0.3197 -0.0799 0.0803 0.1613 0.1657 0.1034 0

Repeating the last line produces further time steps.

Exercises 9.5.2

m 44  From (9.43) the only separated solution to satisfy w — 0 as y — oo is

u = (Asin ux + Beosux)(Ce¥ + De M) with C =0

Thus

u = (asin px + beos pxje  H¥

To satisfy the boundary conditions

u=0atz=0=456=0
u=0atz=1=sinpg=0= p=nm where n is an integer
The condition at y = 0 can be satisfied by a sum of terms over n.
On y=0u= ioj ap Sin X = 1—16(1051n7rm — 5sin 3wz + sin bwx)

n=1
and the a, can be obtained by inspection to give the required solution.

m 45 The four boundary conditions are satisfied by inspection and the Laplace

equation is satisfied by straightforward differentiation.

m 46 It can easily be checked that the function z°y satisfies the given Poisson

equation. The boundary conditions on u(x,y) become

u(xz,0) =0for 0 <z <1
u(x, 1) =sinwx for 0 <z < 1
w(0,y) =0for 0 <y < 1
w(l,y) =0for 0 <y <1
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The only solution in (9.46d) that satisfies these conditions is

_ sinh 7y
u = sinwx

sinh
and hence the final result

sinh 7
¢ = 2’y + sinwx Y

sinh

m 47 Differentiating

w, = Bnr™ !sinng
Upr = Bu(n — 1)r™ ? sinné

Uee = —Bn2r™ sinnd
and substitution gives

LHS = Bsinnér" [n(n — 1)+ n — n*] = 0 = RHS
and hence the Laplace equation in plane polars is satisfied. To be periodic in &

the constant n must be an integer. A solution of the equation is a sum of the
expressions given so that

ulr,8) = Z B, r" sinnd
n=1

Putting the condition con the rim, r = a, gives the Fourier problem to calculate
B, as By = 3/4a and Ba = —1/4a® and otherwise zero. Thus

3 1 3
u(r,8) = 1 (2) sinf — i (g) sin 36

m 48 Let D =2+ y?> + 22 + 1 then the derivatives can be computed as
2y(2z + 2) dy  Ay(2z +2)°
Uy — D2 andum:ﬁ—T
—2 292 4 8y  4dy*4
uyffﬁ— %fanduw y_l__y_ vy

T p2 T D2 B
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Adding the two second derivatives gives

Vi = Dlg [16y(x® + y* + 22 + 1) — 16y(z + 1)* — 164°]

The RHS can easily be checked to be zero and hence the Laplace equation is
satisfied. A similar process shows that o also satisfies the Laplace equation.
The u and v come from the complex variable expression

jl@—1+gy)  jlz—-1+gy)(z+1-3jy)

u -+ jv = : = 3 -
g x4+ 1+ 7y (z+1+3y)(z+1-jy)

Multiplying out

=2y +j(z° +y* - 1)
2+ y+ 241

gives the expressions quoted in the question.

A check can be made by using MAPLE.

U+ v =

W=2%y /(X 2+y 242% x+1) ;

simplify(diff (u,x,x)+diff (u,y,y));

# gives zZero as required -v fellows similarly
h:=I* (x+I*y-1)/(x+I*y+1);
simplify(evalc(h));

# gives the u and v of the question

For fixed w and v the two expressions can be rearranged as

2 2
) 5 1 5 1
= —  and 1 -] = —
(“v—J R TR TR *(“u) w2

Land 1, centres (=%,0) and (—1, 5!) respectively.

Note that all the circles pass through the point (—1,0).

which are circles with radii

49 This is an important example that illustrates that sensible solutions can only
be obtained if correct boundary conditions are set. Firstly it is a matter of simple
differentiation to wverify that the given function satisfies the Laplace equation.
Again since the sinh function is zero at = 0 the first condition is satisfied.

Differentiating with respect to z
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A 1 , u 1.
— = —coshnxsinnysoat x =0, — = —sinny
IS8 n T N

The solution therefore satisfies all the conditions of the problem. It is known that
the solution is unique.

For any given n, however large, sinh nx can be made as large as required and even
when divided by n? it is still large; for instance n = 10,z = 5 and y = 7 /200
gives u = 4.1 x 1018,

The ‘neighbouring’ problem has a boundary condition u, = 0 and scolution u
identically zero. For the values chosen for illustration, the maximum change at
the boundary is 0.1 yet the solution changes by 10'®. Such behaviour is very
unstable; these boundary conditions give a unique solution yet small changes in the
boundary produce huge changes in the solution. Figure 9.54 should be consulted

for a summary of the ‘correctness’ of boundary conditions.

50 It is useful in solution by separation to try to modify the problem so that the
function is zero on two opposite boundaries. Put uw = x + f(z,y) then f satisfies

the Laplace equation and the four boundary conditions become
fOy)=0  fllLy)y=0 for0<y<l
flz,0) = -z flz,])=1—xfor0<z <1

The solution given in equation (9.46d) is the appropriate one and the cosine can

be omitted since it cannot satisfy the first of the four conditions. Thus

f =sin JU“m(au cos hupy + sin h#@)

The second condition now gives sinp = 0 = = N7 where N is an integer. The

solution therefore takes the form

f= Z sin Nmx(an cosh Ny + by sinh Nwy)
N=1

and the coefficients are derived as Fourier series from the other two sides of the

boundary as
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(e o)
—x = E apy sin Nzx
N=1

[ew)
l—z= Z sin Nmx(an cosh Nm + by sinh N7)
N=1
Straightforward integration gives

2cos N 2
ay = % and (aN cosh N& + by SiﬂhNﬂ') = m

The final solution is obtained by substituting back
2 — 1 . sinh Nwy
u=x+ - Nz_:l ~ sin Nwx |:COSNT(' cosh Nmy + (1 — cos Nw coshNﬂ)m

which can be tidied up to the given solution.

51 The boundary conditions on the four sides are

u(0,y) =0  ula,y)=0 for O<y<a
and w(x,0) =0 w(z,a)=uy for O<zx<a
Clearly the only relevant separated solutions involve sin Az sinh Ay since these are
the ones that satisfy the conditions on = 0 and y = 0. The condition u{a,y) =0
implies that sin Aa = 0 = Aa = mx where m is an integer. Thus the solution takes

the form

Y = E b,y sin (mwm) sinh (mﬁy)
a a
m=1

and the final condition gives the Fourier problem of calculating the coefficients

from

g = Z by, sin (m;r:r:) sinh (mm)
m=1

The usual integration gives
@

inh b
asinh(mm)br = /uo sin (?’TL’,’TI) dr = uo—a (1 — cosmm)
2 a mw

0
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The only coeflicients that survive are the odd ones and putting m = 2n+1 produces

the result quoted.

52  The configuration is illustrated in the figure

X
A Aulax=0
a
=41 =10
’,
Yy
U=-T
aulax=0
- |

From the available separated solutions the appropriate ones are u = e~ ¥ sin Az
and to satisfy u, =0 at x = +a requires Aa = (n + %) . Thus the solution takes

the form

a

so that at y = 0 the coefficients are required from the Fourier problem

—Tfor —a<x<0

M] +T for0 <z < a
a

(e o)
E b, sin
=0

AT
The integration gives b,

— m as required.
n v

53 The separated sclutions are put into the equation to give

r2 1 6
S RN _R/ - 7 AQ
R( + r ) e

where the separation constant has been chosen to be positive to ensure that periodic

solution in @ are possible. The equation

© | A?© = 0 has solution © = Asin A\ I B cos M\
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and is periodic only if A = N which is an integer. Since T'= 0 on # = 0 and
¢ = w the constant B is given by B = 0.

The R equation is 7*R” +rR — N?R — 0 and trying solutions of the form R — r”?
shows that p = N or —N. The solution must be finite at the origin so the negative

powers are omitted and the original equation has a solution

T — Z b7 sin N6
N=1

The condition on the boundary is

Ty = Z bya sin N@
N=1

and the coeflicients are obtained by Fourier analysis. The integrations are given by

EbNaN = /TosinNQdQ = &(1— cos N7)
2 N
0

and the result follows putting ¥V = 2n+1 and starting the summation from n = 0.

54  The suggested separated form produces the equations

1d [ ,dR\ 1 d [ _dy\
R (7‘ dr) =y singdd (smé’@) = k(k+1)

where the RHS conforms with the given expression. The equation for y is obtained

by making the substitution = = cos@. Now

dy dydt 1 dy
dr ~ dfdr  sinfdd

so putting this inte the 6 equation gives

d {5 dy B d o, dY B
Ir (sm Qdm)—l-k(k—l—l)y()or ix ((1 T )Cix)+k(k+1)y0

To scolve these equations firstly put £ = r™ then substitution leads to

nin+ 1) =k{k+ 1) with solution n=kor —k—1
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Secondly the only solutions for y that remain finite at * = +1 and —1 are the
solutions given in the question (see an advanced book on Legendre polynomials).
Thus the solution that involves £ =1,2,3 is

!

I
V:A+§+cost9 A/T+E +1(300829—1) A”TQJrB—
r 72 2 3

The given boundary conditions involve only even functions of @ so A" = B’ = 0.

The first of the two conditions gives

B 1 B
0=A+ —+ 5(3 cos® @ — 1) (A”ag—> for all ¢

a3
Hence B = —aA and B” = —a®A” and the solution can be rewritten
a A// a5
V=A (1 — ;) + 7(300529— 1) (T2 — r?’)

The final condition implies
5 a A 5 5 a5
asin Q:A(lf 5)4—7(2735111 )b v
so that identifying the two parts gives

A”:_Qia and A— 2c0

3(6% - 55) 3(1-3)

and the solution follows.

Exercises 9.5.4

» 55  For rectangular regions MATLAB has an easy setup procedure

G=numgrid ('8 ,5) % gives the node numbering as
G=00000

014720
0256820
036920
00000
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rhs(1)=0.25;rhs(4)=0.5;rhe(7)=0.75+0.9375;rhs(8)=0.75;
rhs(9)=0.4375;

rhs % sets up the right hand side as the transpose of
rhs= 0.2500 0 0 0.5000 0 0 1.6875 0.7500 0.4375

A=delsq(G); % MATLAB sets up the matrix stored in sparse form
full(A) % gives the full matrix

4 -1 o -1 0 o 0o ¢ Q0
-1 4 -1 0 -1 ¢ o 0o 0
o -1 4 0 0 -1 ¢ 0 0
-1 0 -1 G -1 G 0
0 -1 -1 4 -1 -1 0
o 0 -1 0 -1 ¢ -1
o 0o 0 -1 © -1 0
o 0o 0 0 -1 ¢ -1 4 -1
o o 0 0 0 -1 ¢ -1 4

A\rhs Y, gives the required solution
0.2026 0.1462 0.0776 0.4141 0.3047 ©.1641 0.6490 0.4944 (0.2740

m 56 For the small grid

The equations are y
Ay =14+ 1+ 04 us

dug =14 uy + 0+ uy u=1
which can be solved as i 2 3

u(3) = u(1)

u1:% anduQ:%

u=0 X
For the larger grid the MATLAB implementation needs more care since the
derivative boundary condition modifies the matrix set up by the package.
G=numgrid(’s’,5);
A=delsq(G); % A is modified in the next four lines
B=zeros(9,3);B(7,1)=-1;B(8,2)=-1;B(¢,3)=-1;C=[A B];
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D=zeros(2,8);D(1,10)=4;D(2,11)=4;D(3,12)=4;
D(1,7)=-2;D(1,11)=-1;
D(2,8)=-2;D(2,10)=-1;D(2,12)=-1;D(3,9)=-2;D(3,11)=-1;
E=[C;D];
full(E) % prints out the modified A
rhe=zeros(12,1);rhs(1)=2;rhs(2)=1;
rhe(3)=1;rhs(4)=1;rh=e(7)=1;rhs(10)=1;
E\rhs ¥ gives the solution
0.9008 0.7684 0.5348 0.8348 0.6379 0.3709 0.8007 0.5774 0.3110
0.7904

m 57 The mesh for this problem is shown in the figure

17
“““““ mTTTTTT .
{ l\\
i i N
{ 1 ™
14 5 s w = 0 on the boundary
~~~~~
| | : .
: | B
B 12 '3 A
wwwww e ey
:
i
{
i

fi-

X

Using the notation of the problem, at a typical node 0 with neighbours 1, 2, 3 and
4 the adaptation of equation (9.49) gives

wy + wo + w3 + wy — dwp
B2

which is easily rearranged into the given form. Applying this formula to the

+20=0

problem in hand produces the five equations

dur = wo + wy + 20

dwy = wy + w3 + ws + 20
darg = wq + 20

dwy = wy + wy + 20

dwry = way + wo + 20
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which can be solved by a spreadsheet or MATLAB to give

0 0 0

0 10.337 10.674 0

0 10.674 12.360 8.090 0

0 0 0 0 0 0

m 58 The problem has more complicated boundary data so requires a little more

effort to set up. The top boundary condition is derived from

¢y — ¢ _

7 —o

For case (a) when A = 1/2 the problem only has two unknowns.

yl
Ay 6p)
mmmmmm e B
: i
I i
! 1
I2 i 1
N T S
! 1
I i
! 1
I i
2757 *I“l“““““j“““l““““
! 1
I i
! 1
I i
3 ! ] 1 -
3 25 2 X

The equations are

275+ 25+ 1+ ¢ —4¢p = 0.125
24 ¢+ 1+ (¢1 — o) — 4o = 0.125

which are easily solved to give the quoted answer.
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(b) For the larger mesh the MATLAB version is as follows; note the powerful

matrix building technigues:

G=numgrid ('S’ ,5);A=delsq(G);

b=eye(3);c=zeros(3);d=[4.5-1 0;-1 4.5-1; 0-1 4.5];
A=[[A;c c-2"b] [c;c;-b;d]];full(A) % A is printed out
rhe=[2.75+2.9375;2.5;3.25;2.75;0;1,;2.4375;0;1;2;0;1];

z=[1/64;1/32;3/64] ;z=[z;z;z;z2] ;

rhs=rhs-=z

A\rhs
1.6016
1.9680
2.2666
2.5175

% rhs is printed out

% gives the final answer

1.2868
1.5818
1.8465
2.1314

1.0585
1.2572
1.4375
1.6930

m 59 In this problem there are essentially five unknowns because of the symmetry

as

seen in the figure
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The five equations are set up in matrix form as

—4 2 0 2 07 0
1 —4 1 0 0] e —2
0 1 4 0 0| |¢s| =1|-17
1 0 0 —4 1] oy 2
0 0 0 1 —41 Los 2

These equations can be solved on any suitable package to give
1.5909
2.0909
4.7727
1.0909
0.7727

Exercises 9.6.1

The exercises can only be solved sensibly on a computer package, in the present
case MATLAB. Some M-files are required by all the problems.

coeff.m
function [a0,al,a2]=coeff(a,b,c)
A=[a 1];B=[b 11;C=[c 1];1x=[1 0 0];1y=[0 1 0];
den=0.5/det ([A;B;C1);
LO=[det ([1x;B;C]) det([1y;B;Cl)];
Li=[det([1x;C;A]l) det([1y;C;Al)];
L2=[det ([1x;A;B]) det([1y;A;B]1)];
a0=L0*L0’ *den;al=L1*L0’ *den;a2=L2*L0’ *den;
stiff.m
function a=stiff (mm,k,11)
4mm=no of neighbours,k=current peoint,

1l1=row of k’s neighbours
global CO

a=zeros{1l,mm+1) ;
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for

end

p=1:mm-1
[1,m,n]=coeff(CO(k,:),CO0{11(p),:),CO0(11{p+1),:));
a(D=a(l)+1;a(p+l)=a(p+l)+m;a(p+2)=a(p+2)+n;

[1,m,n]l=coeff{CO(k,:),CO0(11(mm;,:),COC11(1),:));

a(D=a(l)+l;a(mm+1)=a(mm+1)+m;a(2)=a(2)+n;

calcArhs.m % the following code needs to be copied to the main

program

for
r=1

k=1:nin

ink(k, :);m=nnz(r);

z=stiff{m,k,r);

Ak

end

S =A(k,k)+z(1);
for i=1:m
if r{(i)<=nin
ACk,r(i))=A(k,r(i))+z(i+1);
else
rhs (k)=rhs(k)-z(i+1) *bdry(r(i)-nin);
end

end

m 60 Each of the FE problems has its own input, for this problem

60(a)

inform60.m

% the node labelling is shown in the Figure
nin=2;nbdry=8;%number of internal and boundary nodes
global CO

r3=sqrt (3);

C0=[2,r3;4,r3;0,r3;1,0;3,0;5,0;6,
r3:;5,2%r3;3,2*r3;:1,2*r3];

%coords of points internal first then bdry

link=[3 4 5 2 9 10;1 5 6 7 8 9];

%links from interior points to neighbours,in CO order
bdry=[0 0 0 0 1 0 0 0];%boundary values,in CO order

A=zeros(nin) ;rhs=zeros(nin,1);
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10 9 8

251

1571

051

The calculation then proceeds using inform.60 and the code from calcArhs.m

global CO

inform60

for k=1:nin

r=1ink(k,:);m=nnz(r);

z=stiff (m,k,r);

Alk,k)=A(k,k)+z(1);

for i=1:m

if r{(i)<=nin
ACk,r(i))=A(k,r{i))+z(i+1);

elge

rhs (k)=rhs(k)-z(i+1) *bdry(r(i)-nin);

end
end

end
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A,rhs ¥, gives A=3.4641 -0.57774 rhs= O
0.5774  3.4841 0.5774
A \rhs ¥, gives the final result 0.0286
0.1714

60(b) The larger mesh is treated similarly. The mesh information is in
inform60b.m, where an obvious node numbering has been used — print out CO
and 1link for details.

informé0b.m

nin=5;nbdry=12;%number of internal and boundary nodes
global CO
r3=sqrt(3);
a0=[3,r3;1.5,2%r3/3;4.5,2"r3/3;4.5,4*r3/3;1.5,4"r3/3];
al=zeros(5,1);a2=[0;1;2;3;4]*1.5;a3=ones(5,1)*r3*2;
C0=[a0;a2,al;6,r3;flipud(a2),al3;0,r3];
%coords of points internal first then bdry
link=[2 834 145; 6 7815 17; 89 10 11 4 1;

1311 12 13 14; 17 2 1 14 15 16];
%links from interior points to neighbours, in CO order
bdry=[0 0 0 01 110 0 0 0 0];%boundary values, in

CO order

A=zeros(nin) ;rhs=zeros(nin,1);

The calculation is the same as part (a)

global CO

inform60

for k=1:nin
r=1link(k,:);m=nnz(r);
z=stiff (m,k,r);

Ak, kK)=A(k,k)+z(1);
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for i=1:m
if r(i)<=nin
Ak, r(i))=Ak,r(i))+z(i+1);

else
rhs (k)=rhs(k)-z(i+1) *bdry(r(i)-nin);

end
end
end
A,rhs Yprints out A and rhs
A\rhs %gives the required answer
0.1024 0.0208 0.2920 0.2920 0.0208

m 61 Because the problem now involves a Poisson equation some modifications are
required. The M-file coeff.m is modified to

coeffr.m
function [a0,al,a2,a3]=coeffr(a,b,c)
A=[a 1];B=[b 1];C[c 1];1x=[1 O O];1y=[0 1 0O];
den=0.5/det([A;B;C]);
LO=[det ([1x;B;C]) det([1ly;B;C)];
Li=[det ([1x;C;A]) det([1ly;C;A)];
L2=[det ([1x;4;B]) det([ly;A;B)];
a0=L0*L0’ *den;al=L1*L0' *den;a2=L2* L0’ *den;
a3=-20/(12*den) ;

and stiff.m to

stiffr.m

function a=stiffr(mm,k,11)

fmm=no of neighbours,k=current point,ll=row

of k’s neighbours

global CO

a=zeros (1, mm+2);

for p=1:mm-1
[1,m,n,q]l=coeffr(CO(k,:),CO0(11(p),:),
CO(11l(p+1),:));
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a(l)=a()+1;a(p+l)=a(p+1)+m;a(p+2)=a(p+2)+n;
a(mm+2)=a(mm+2)+q;

end
[1,m,n,q]l=coeffr(CO(k,:),C0(11(mm),:),C0(11(1),:));
a{l)=a(1)+1;a(mm+1)=a(mm+1)+m;a(2)+n;

a(mm+2)=a(mm+2)+qg;

The mesh information for the problem is contained in

informé1l
nin=5;nbdry=12;%number of internal and
boundary nodes
global CO
Co=[1 2;1 1;2 2;2 1;3 1;0 0;1 0;2 0;3 0;
4 0;4 1;3 2;2 3;1 3;0 3;0 2;0 1];
%coords of points internal first then bdry
link=[2 4 3 14 15 16;1 16 17 7 4 3;1 4 5 12 13 14;
12895 3;49 10 11 12 3];
%links from interior points to neighbours, in CO order
bdry=[0 0 0 0 0 0 0 0 0 0 0 0] ;%boundary values,
in CO order

A=zeros(nin) ;rhs=zeros(nin,1);

The calculation now proceeds as

informé1l

for k=1:nin

r=link(k,: ) ;m=nnz(r);

z=stiffr(m,k,r);

Ak, k)=A(k,k)+z(1);

for i=1:m

if r(i)<=nin
ACk,r(i))=A(k,r(i))+z(i+l);
else
rhs (k)=rhg (k)-z(i+l) *bdry(r(i)-nin);
end

end
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rhs (k)
and

A,rhs
A\rhs

=rhs(k)-z(m+2);

% prints out A and rhs

% gives the final result

10,3371 10.6742 10.6742 12.3596 8.0899

m 62  Although the problem has a great deal of symmetry, all the 9 internal nodes

and 16 boundary nodes are used in this implementation. An interesting exercise is

to modify the program using the full symmetry. The mesh data is

inform62

nin=9;nbdry=16;%number of internal and boundary nodes
global CO

r=1/3;8=2/3;

C0=[0 0;0 -r;r 0; O r;-r 0; O -8;8 0;0 s8;-8 0;

-r -r;-r -1;0 -1;r -1;r -r;1 -r;1 0; 1 r;r r;r 1;
O1l;-r1; rr;-1 r;-1 0;-1 -r];

%coords of points internal first then bdry

link=[2 14 3 18 4 22 5 10; 1 10 6 14 0 0 0 O;
114718000 0;1188 2200 0 0;

122¢ 10000 0;210 11 12 13 14 0 O;

314 15 16 17 18 0 0;4 18 19 20 21 22 0 0O;

522 23 24 25 10 0 0];

%links from interior points to neighbours, in CO order
bdry=[1 1011998110119 99];

#boundary values, in CO order

A=zeros(nin) ;rhs=zeros(nin,1);

The equation is Laplace so no modifications are required to the other M-files.

global CO

informb3

for k=1:nin
r=1ink(k,:) ;m=nnz{r);
z=stiff (m,k,r);
Alk,kK)=A(k,k)+z(1);
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for i=1:m
if r{(i)<=nin
Alk,r(i))=A(k,r(i))+z(i+1);

else
rhs (k)=rhs(k)-z(i+1)*bdry(r(i)-nin);
end

end
end
A,rhs ¥, prints out A and rhs
MA\rhs ¥, gives the final answer for the intermnal
nodes - note all the symmetries
1.6818 1.1152 2.2485 1.1162 2.2485 0.7788 5.3121 0.7788 5.3121

Exercises 9.7.3
= 63(a) Now ‘AC — B?' = 0 in this case so the equation is parabolic. Putting

r=x—1vy and s = x 4+ y the derivatives are

Upe = Upp + 2“1"5 + Ugs
Uy = Up T Usg
and  Uyy = Upp — 2Ups + Ugs
Uy = —Up £ Usg
Upy = —Upp + Ugs

Substituting into the given equation gives the parabolic equation ug, = 0.

63(b) Now ‘AC — B?' = 4 in this case so the equation is elliptic. From the

theory in section 9.7.1 put r = —3x 4+ y and s = = + v, the derivatives are

Upe = 9“’7"1" - 6“7"3 + Uss
Up — — Uy + Usg
and  Uyy = Upp + 2Ups + Ugs
Uy = Uyp T Us
Ugy = —3Upp — 2Ups + Ugs

Substituting into the given equation gives the elliptic equation

Uprr + U —gu +3u +1u—0
r 88 87" 88 g -
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63(c) Now ‘AC — B = —%—SXQ < 0 in this case so the equation is hyperbolic.
From the theory in section 9.7.1 put r = 9z +y and s = x4 y; the derivatives are

Upe — SUppr + 18U + s

Uy = DU + Ug
and  Uyy = Upp + 2Ups + Ugs

Uy = Up + U
y s
Ugy = Npp + 10Ups + Ugs

Substituting inte the given equation gives the hyperbolic equation

4%, = Ugs

64  The characteristic directions from Exercise 63 are r + 7s — 16x + 8y and
r — 78 = 2x — 6y. This suggests that the solution is of the form

u = f(2x+y)+ glz —3y)

where f and ¢ are arbitrary functions. Substituting, the given equation

LHS = 3(4f" +§) — 5(2f" — 35) — 2(f” + 9§) = 0 = RHS

is satisfied, as expected.

65  The chain rule gives

fw - fuuw + fvua: and fy :fuuy + fvuy
- fu + fv - fu - fv

and the second derivatives are

fwa: - fuu + 2fu’u + fw: fyy - fuu - 2f1.w + f’w
fwy - fuu - f’w

Substituting into the equation (9.64) reduces to f,, = 0.

Integrating with respect to v

fo = F'(u) where F' is an arbitrary function of w.

Integrating again with respect to v

f=vF(u)+ Gu) where G is another arbitrary function of w.
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Hence

f=@—-y)Nz+y)+Gx+y)

66 Now ‘AC — B?' =y and there are three cases (a) y < 0 where the equation
is hyperbolic (b) y¥ = 0 where the equation is parabolic and {¢) ¥ > 0 where the
equation is elliptic.

From equation (9.63) the characteristics are obtained from the solution of the

equation
dy _ vy
dx y
The equation only makes sense in the hyperbolic region where y < 0. Put 2 = —y

and the differential equation becomes

A _ V=
dx z =z

which is easily integrated to

as the characteristics.

67 Differentiating

j— (3A$2 — z—JE) y(1 —y?) and f, = (A$S + g) (1—3y?)

oo =0 (A Y1) and g, = (4504 ) o)

The given equation can be checked by substitution.
Now ‘AC — B*' = z%(1 — y°) so

elliptic if |y| < 1
parabolic if x =0 or y = =1
hyperbolic if |y| > 1
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= 68 Calculating ‘AC — B?" = —4p®+44? it can be deduced that the equations are
(a) p> q or p < —q then the equations are hyperbolic
(b) p = ¢ then the equations are parabolic
(¢) —g < p < g then the equations are elliptic
i(fl a2yt — gt 2222 —yt) = 2292 > 0
hence leads to the elliptic region when it is expected that the equation will look

Using the substitution —p®+¢% = —

like the Laplace equation.

Upz = Up T Vg + 332('”1919 + 2upg + Vgq)
Uy = XVp + Ty 5
and vy, = —vp + vy + Y (Vpp — 2Upg + vyq)
Uy = —YUp T YUy

Vay = ZY(—Vpp + Vgq)

It may be noted that

U + Vyy = 204 + (332 + yQ)fUpp + 2(:1':2 — yg)qu + (:1:2 + yg)qu

from which the required transformation to the Laplace follows immediately.

= 69 In this case ‘AC — B?’ = —(;I:y)2 so the equation is hyperbolic away from

the axes. The characteristics are computed from equation (9.63) as

dy
RCA
dx x2 x

and the solution is obtained by integration as

Iny=tlh s+ K=y=arandyzr =25

so one set of characteristics are straight lines through the origin and the other are
rectangular hyperbolas. The domain of dependence and the range of influence can

now bhe sketched.

Review exercises 9.10

m 1 The boundary and initial conditions on y(z,t) are

y=20 at x=0 anda
String initially at rest = g—i" =0 at t=20
%w for0<z <5
Initial displacement y = flz) = { E((f:;) forb<z<a at £t =0
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Out of the possible separated solutions (9.21) that satisfy the wave equation, the
only one that satisfies the conditions at * = 0 and y = 0 is ¥ = sin Ax cos Act.
The condition at * = a gives Aa = nm where n is an integer. Thus the solution is

a sum of such terms

XD
nTL nwel
= A, sin (—) COS
y=2 Awsin (7, .

and the final condition produces the Fourier series

flz) = iﬁlﬂ sin (%)

The coefficients are evaluated from the integral

b a

1aAﬂ /gsin (@) d$+/£(a—m) sin(nﬁm)d:ﬁ
2 b a a—b a

0 b

which after some careful integration by parts gives the required coefficient

4 2e0° sin nwh
" n2n2b(a — b) a

It is interesting to look at the solution for various values of b since the solution gives

strengths of the harmonics for different musical instruments. It is these values that
give the characteristic sound of the instrument. For example a violin has b = a/7;

it is seen that A4+ — 0 and sevenths do not cccur for this instrument.

2 Taking the Laplace transform of the equation and the boundary conditions

gives

QBN _ 824;5 o SmQ
and HO,5) =0, &(l,s) =

The most convenient form for the complementary function is

¢ = Acoshs(x — 1)+ Bsinhs{z — 1)

The particular integral is a quadratic in x which when substituted into the equation

gives
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: . z? 2
particular integral = — + =
5 s

The complete solution is therefore

2
7 2
¢ = Acoshs(z — 1)+ Bsinhs(z — 1) + —ms + 5

Putting the two conditions on ¢ into the solution

2
#'(0,8) = O = O = Acosh(—sl) + Bsinh(—sl) + —

g3

22 21

¢'(1, ) :>ZZSB+Z$B:O

The Laplace transform of the solution is

s

N 2 coshs(z — 1)
= e e T
8 8 s cosh sl

The solution in real space can be obtained from advanced tables of transform pairs.

3 Take the separated solutions that are quoted and first note that the conditions
y(0) = y(l) = 0 are satisfied. Secondly substitute into equation (9.72)

1 (T;; i 1qu) -1, (2TY
c T {

This equation can then be solved in the standard way by looking for solutions of

the form T, — e* which produces the quadratic equation

5 1 cnmy 2
a” + —a+ (—) =0
T [

The equation has roots

1 1 1\° cnTY 2 1 ona l 2
a—=—| ——= — —4(—) =———+tj—/1-
2 T T l 2T { 2renT

and hence the soluticn is

t
Tn(t) = exp <_§) (ay, coswpt + by, sinwyt)
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and general solution
= nmwT
=S s (77)
iy ﬂz_:l (t)sin i
Jy

The condition E(zzﬁ,O) = 0 implies, on differentiation and putting ¢ =0,

0:*771 bﬂ’.‘”u
27'a  Ont

From the other condition it is seen that the only term to survive is when n = 3.

Thus
. { 3mx 0 1 . {3mx
dsin| — | = a,exp | —— coswal + sinwg0 | sin [ ——
{ 27 27ws {

and hence the solution satisfying all the conditions is

(z,1) = dex _r coswst + L sinwat |} sin R
i = P 27 ¥ 2Tws 8 {

and wa given in the question.

m 4 This problem is the extension of the wave equation to beams. Simply
substituting the given form into the beam equation gives the equation (9.73) for V'
and the end conditions follow immediately. Again simply substituting sin, sinh, cos
and cosh into the equation shows they are solutions of (9.73). A linear combination
of the funetions is also a solution and since it contains four arbitrary constants, it
is the general solution.

To satisfy the end conditions

V(0)=0=A}B=0
V(0)=0=C | D=0
V(i)=0 = Acoshal+ Beosal+ Csinhal+ Dsinal =0
VI()=0 = Asinhal— Bsinal+4 Ccoshal + Dcosal =0
Thus

Afcosh al — cos al) = D(sinh al — sin o)
A(sinh ol + sin al) = D(— cos ol + cosh al)
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Dividing these two equations, and using the trigonometric and hyperbolic identities,

produces the equation

cosalcoshal =1

from which the natural frequencies of vibration of the beam can be calculated.

5 The separated solutions in equation (9.36) that satisfy the condition at z = 0

are § = ¢~ cos Ax. To satisfy the condition at = = [ requires that

1
Al = (n + 2) T where n is an integer

Thus the solution takes the form

=5 e [ [ (1,07

n=0

and the initial condition now produces the usual Fourier series problem with

!
1 (@2n+ Urx
0

Integration by parts is required to obtain the coefficient for the given function

flx)=6p(l — x) as

86!
w2(2n + 1)2

and the temperature can be cobtained from the series solution.

A2ﬂ+l ==

6 Evaluating the partial derivatives

00 Ly B L0 1,
dx Nt Ot 2 t3/ 2 t
Putting the derivatives back into the equation
5 f// — lif! = f// 1 Zf/
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the problem has been reduced to an ordinary differential equation.

the equation

df’ 1 :
J{’ = *ﬂzdz which integrates to In f' = 7%@ c

or f' = A exp (—ﬁ) which on further integration gives

7 2
f:A/eXp(Z—)dv+B
K
0

Put u= \UF then the equation reduces to

2R
G
f=ua f e “?du + b where a and b are new arbitrary constants.
0

The solution is as required

faerf(ﬁ)—l—b

For the particular problem

at t =0 ¢(z,0) =0 forall x > 0
at z =0 $(0,t) = ¢ for t > 0

Rearranging

In the expression containing the error function these conditions give respectively

0= aerf(co)+ b and ¢g = a erf(0) + &

Since erf(0)= 0 and erf{oc) = 1 the solution can be constructed as

T(x.t) = Th + do [1 et (2jEﬂ

7 The problem is standard except for the treatment of the derivative boundary
conditions. Note the way that they are handled in the MATLAB implementation.
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Explicit
u=[1 1111 1];

u=0.1* [u([2:6]1),u(5)-0.4*u(6)]1+0.8*u([1:6])

+.1% [u(2)-0.4%u(1),u([1:51)]

% gives 0.9600 1.0000 1.0000 1.0000 1.0000 0.9600
u=0.1%[u([2:6]),u(5)-0.4"u(6)]

+0.8*u([1:6]1)+.1* [u(2)-0.4*u(1),ul[1:51)]

% gives 0.9296 0.9960 1.0000 1.0000 0.9960 0.9296
u=0.1*[u([2:6]),u(b)-0.4*u(6)]+

0.8"u([1:6]1)+. 1" [u(2)-0.4"u(1) ,u([1:5])]

% gives 0.9057 0.9898 0.9996 0.9996 0.9898 0.9057

Repeating the last line of code produces subsequent time steps.

Implicit

A=[-2.420000;1 21000;01-2100;001-21 0;
0001-21;00002 -2.4]

u=[1;1;1;1;1;1];

B=2%eye(6)-0.1%A

C=2"eye(B8)+0.1" A

E=inv(B)*C

u=E*u

% gives 0.9641 0.9984 0.9999 0.9989 0.9984 0.9641
u=E*u

% gives 0.9354 0.9941 0.9996 0.9996 0.9941 0.9354
u=E*u

% gives 0.9120 0.9881 0.9988 0.9988 0.9881 0.9120

Repeating the last line of code produces subsequent time steps.

= 8 From the possible solutions in equation (9.46) one that can be chosen to satisfy

the conditions on *x =0 and y = a is

u = sin px sinh p(a — y)
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Onx=a, u=0= sinue = 0 = pa = nm where n is an integer. The final

condition on 4 = 0 can be satisfied by taking a sum of such solutions

[e:u]
. /TN
xla —x) = Z b, sin (T) sinh n
n=1
The problem is the usual evaluation of the Fourier coefficients

a
nnx

%bn sinh nw = /(a — x)sin (T) dx
0

and after two integrations by parts gives

3
gbn =2 (i) (1 — cosnm)
2 nmw

All the even terms go to zero and putting n = 2r + 1 the expression quoted is

recovered.

m 9 This exercise is a harder one since the regular mesh points do not lie on the

boundary.
y‘l [ ! ! !
! i ! i
| ! ! !
i i i i
i ! ! !
i i i i
[ ! ! !
uuuuuu O S
[ ! ! !
i i i i
i ! ! !
i ! ,V2 =X
[ 1 e !
~~~~~~ o o o e e S e e
] ! i !
i ! i
i ! ! !
ik 1 i 1
[ ! ! !
St datads Bl ot ———— o ——— -
a 14 5 16 |
| | | |
I | ! |
| | | |
I | ! |
7 5 3 X

At a point such as node 4 the lengths of the mesh are not uniform so the second

derivative needs to be approximated as
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f//_|: fS_fO N fO_fl ] 2
N Ax Ax/ Az + Az’

for a typical configuration

l AX' 1 AX |
1 0 3

The curve does not pass through the mesh points and the lengths are calculated
as ¢ = 025,06 =+05—-0b and ¢ =+ 1.5 — 1. Working through the equations one

at a time using this formula where appropriate
14+ us + 2uy —4dup =0
uy + us + 2us —Aus =0
u + 1+ 2ug —4usy =0

2 U — U4 1—?,L4 2 1—?..54 U1 — U4 2
= 0.5(0.5
0.5—|—a( 05 | a )+0.5+b( Y ) (05)

(7] +UQ + 1 +u6 — 4’&5 = 0.0625

Uy + s + (¥ g + 1— 4“6 = 0.09375

1+1-2 2 1— —
+ Uy ( u7+u6 U?) 15

0.52 c+ 0.5 c 0.5

The equations can be transformed to matrix form as

T —4 1 0 2 0 0 0 T
1 -4 1 0 2 0 0
0 1 -4 0 0 2 0
a= |56569 0 0 —35.3137 5.3333 0 0
0 1 0 1 —4 1 0
0 0 1 0 1 —4 1
L 0 0 0 0 0 55192  —25.7980
b’ = [-1 0 —1 —24.198 09375 —0.9063 —18.7788]

and the solution of Ax —b can be obtained from any package, for example

MATLARB, as

XT:[O.985O 0.9648 0.9602 0.9876 0.9570 0.9380 0.9286 ]
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m 10 Clearly at z = 0 the velocity u = U coswt so the given solution has the

correct velocity on the wall. It also satisfies the equation of motion since putting

the derivatives

wy = —Uwe™ *sin(wt — az)

w, = —ale % cos(wt — az) — alle **sin(wt — az)
u,, = o lUe % cos(wt — az) — 20°Ue ** sin{wt — az)
—ofUe™ % cos(wt — az2)

into the equation gives —Uw = —2a2U which agrees precisely with the definition

of a.

m 11 Differentiating

2 2 1 2
Uy = ktiLexp (— ) 465 () (= .
! P ( 4t> PO ) e )P g

a5 —th—1 5 g { —2r 2
E(r Un) = 5 <3r +r T exp i

and putting into the spherically symmetric heat equation

k-1 \ 2 2 _ e };+T2 2
2 2 )P\ T ) T at )P\ g

gives the relation k£ = —3/2.

m 12 The equation is the same as Example 9.7 and can be dealt with in the same

way. However, the MAPLE solution is very straightforward.

with (PDEtools):

rev 12:=diff (z(x,y),x) + diff(z(x,y),v);
sol:=pdesolve (revl2,z(x,y));

# gives the solution sol:=z(x,y)=_Fl(y-x)
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The boundary conditions x = s,y = —s, 2 = 2s for s > 0 give the solution
Hx,y) =z —yforz >y

and not defined otherwise.

13 The separated solutions in equation (9.46) that tend to zero for large y must
be of the form
¢ = (Asin pz + B cos ux)e™ M

The condition ¢(0,y) = 0 = B = 0 and ¢(m,y) = 0 = sinpm = 0, thus the

required solution is

(o]
b= E cne "Ysinnx
n=1

Yet again the final condition requires the evaluation of the coeflicients by Fourier

analysis. Integration by parts gives

r 2
gcn = /3:(7? — x)sinnzdr = ﬁ(l — CosS )
0

When n is even the coefficient is zero and the odd values give the result in the

exercise,

14 First observe that the function vy = a? — 22 satisfies Vv = —2 and secondly
that a separated solution of the Laplace equation derived in equation (9.46) is
cosh py cos pxr and the overall solution is a combination of terms of these types.
The conditions that y =0onx =+a = cospa=0= pa = (n + %) m where n is

an integer. Thus an appropriate sclution is

X(I,y) — a2 + ;A2ﬂ+l cosh [(n + 5) Tl'%:| CO8 [(n -+ 5) Trz]

The function is even so only the condition at 4 = b needs to be considered since

the other boundary is satisfied by symmetry. Therefore

= 1\ b 1\ =z
0=a”—2"+) A h - -
a x —I—HZ0 41 CO8 {(n+2)ﬁa} COS|:<N+2)7TCL:|
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and the coefficients are derived by Fourier analysis. From tables of Fourier series

it may be noted that

— (" = T
273005[(2n+1)—]:—2(a —z)for —a<z <a
—(2n+1) 2a 32

and thus the coefficient can be identified as
32a? (—1)ntt

3 2n+1)wbh
T (2n + 1)® cosh [%]

Aopy1 =

15 The possible separated solutions of the wave equation are given in equation
(9.21) and to satisfy conditions (a) and (b) the solution sin Az cos Act must be
chosen. The condition at x — 1 implies that sinXx = 0 = A = n7m where n is an

integer. Thus the solution takes the form

[e:u]
ulx,t) = E ay, Sin nwx cos nwt

n=1
and condition (¢) is substituted to give the Fourier series
l—x= Zaﬂ sinnmx
n=1

The coefficients are obtalned from

1
1
Sn = /(1 — z)sinnrxdr
0

which can be integrated by parts to give a, — n—gw and agrees with the quoted

answer.

16 Complete drainage at top and bottom implies « = 0 at z = 0 and =z = A.
Since there are no sources the pressure tends to zero as time becomes infinite.

—ca’t

Thus the sclution that is relvant to this problem is u — e sin ez, It is readily

checked that this function is a solution of the consolidation equation. The only
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boundary condition not satisfied is at 2 = A; to do this choose ah = mm where m

is an integer. Therefore

oo 2.2y
u(z,t) = Z ap sin (m}:rz) exp (— cmh;r )
m=1

and the initial uniform pressure leads to the Fourier series problem of evaluating

A= i Qyy, 8IN (m;rz)

m=1

the coefficients in

50

h T

k
;Lam = /Asin (mrrz) dz = ﬂ(l — COSTN)
0

For m even the coeflicient is zero and putting m = 2n 4+ 1 provides the solution

quoted in the exercise.

17 Substituting ¢ = X (x)7T'(¢) into the equation

X' 1T+KT

= —A2
X R

where the separation constant has been chosen to be negative to ensure periodic

solutions for X. The variable X satisfies
X7 4 A2X = 0 with solution X = Pcos Az + ) sin Ax
From condition (a) the sine term must be zero so ¢ = 0. For the T" equation
T+ KT+ ANT =0
so trying a solution of the form T = exp(at) gives the quadratic
a® + Ka + (c\)? = 0 with solution a = ; [—K + K2~ 4((:)\)2]

The constant A can be identified as p, so the condition that (cp)? > iK 2 gives an

overall solution of the type
Kt )
¢ = cos px exXp (—2) (M sinbt + N cos bt)
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where b? = (cp)? — 1K2.
Condition (a) requires that N = A

Condition (b) requires the derivative

D K Kt :
S g CospEexp (—7) (M sinbt + N cos bt)
+ b cos px exp (I;t) (M cosbt — N sin bt)

At x=t=0 . .

and since N = A then M = 0. The required solution is therefore
Kt 1
d(x,t) = Acosprexp (7> cos bt where b® = (cp)? — EKQ
Results can be checked easily in MAPLE.

f:=cos(p™"x) exp(-k"t/2) " cos(b™t);
simplify(diff(f,x,x)-(diff(f,t,t)+k*diff(f,t))/c™2);

gives
—4p?e? + k2 4+ 482
4c2

cos(p) exp (—;kt) cos(bt)

m 18 Putting the expressions for v. and vy into the continuity equation, it is

satisfied for any stream function

g ol %) oAl

since the cross partial derivatives are equal for all differentiable functions. For the

given stream function

2
Up = lUcosé’(r— “ ) Ucosé’(l— a_)
r r 72

vg = —/s8in @ (1 + %)

[

[
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On the circle r = a the radial velocity v, = 0 and there is no flow into the circle.
As v gets very large v, — Ucos8 and vg — —Usin8

The velocities parallel and perpendicular to the axes are

V =v,cos0 —vpsind i
— U

and

W =wv,s8inf + vg cosf

— 0

and hence the flow far downstream is a
steady flow in the z direction with
velocity U, Overall the flow represents
inviscid, irrotational flow past a circular

obstacle in uniform flow.

19, 20, and 21 are intended to be open exercises extending the work of the chapter
to more investigative work. Consequently no advice is offered for these problems.
For Exercises 19 and 20 the text quotes sources for the work and for Exercise 21

many books on heat transfer will have a version of this problem.
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Optimization

Exercises 10.2.4

m 1 The required region is shaded on the graph and the lines of constant cost are all
parallel to the lines labelled f = 9 and f = 12. The point where fis a maximum

in the region is at the point & = 1 and y = 1 giving a maximum cost of f = 9.

&O‘_
y
20
f=12
0.5 1.0 1.5 X
m 2 A graphical or a tabular solution is possible bul the MAPLE sclution is given
here.
with(simplex):
con2:={ 2% x-y<=6 ,x+2*y<=8,3* x+2* y<=18,y<=3 } ;
obj2:=x+y;

maximize (obj2,con2 ,NONNEGATIVE) ;
# gives the solution {y=2, x=4}

m 3 Let ¥ be number of tvpe 1 and % the number of tvpe 2. The profit from these

numbers is
=24z + 12y
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Ao
Bx+2y = 200" -

T2

4x + by =400

min at (5,75)

bX + 3y =250
r 5x+2y =175
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and the constraints are, in the appropriate units,

chipboard dx + by < 400
veneer bha + 2y = 200
labour bx + 3y = 250

and the obvious constraints = = 0 and ¥ = 0. The first figure shows the feasible
region bounded by the axes and the lines 5x -+ 2y — 200 and bx -+ 3y — 250, These
lines intersect at & = 20,y = 50 and give the optimum profit of £1080.

Reducing the available amount of cak veneer to 175 m the diagram changes as in
the second figure. It can be seen that the same two constraints are active. They

give the solution = == 5, y = 75 and a reduced optimum profit of £1020,

4 Let n and s be the number of kg of nails and screws respectively., The protit
made is therefore > = 2n + 3s

The constraints are
labour 3n+6s = 24

material 2n+s = 10

The Figure shows the feasible region. The peint of intersection of the two
constraints gives the maximum profit of 14p making 4 kg of nails and 2 kg of

SCrews.

screws(Kg)

5 |
\""-.,_prof it=14

\s

r"1

3n +6s =24

2 4 6 nails(Kg)
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=5 Let ("1 and ("2 be the number of cvlinders C'YL1 and CYL2 produced. The

profit is and the constraints given bv the availability of the materials are

M1 C'1+ 502 = 45
Mo 142302+ 21
Mg 2014+ 02 =24
It is clear from the figure that the optimum is : =54 with ("1 =9 and (2 = 6.

The constraints M2 and M3 are active so all these materials are used up. The

constraint M1 has some slack, it may be checked that 6 units remain unused.

2C1+C2=24

C1+5C2=45

6 | . A
L C1+2C2=21
4
oL E . “ profit = 54
] ] ] ] | ] ] ] bt
2 4 6 8 10 12 C1

m 6 Let ¢y be the number of Yorks and w the number of Wetherbyvs, then the profit
made is

L]

L
o

y + 30w

The constraints are

cloth 3y + 4w = 400
labour 3y + 2w = 300

and the problem is a straightforward LLP problem that can be solved graphically.
It can be seen from the figure that the optimum is at ¥ — 66.67 and w = 50
with a profit of £3166.67. Note that the solution must be integral to make sense,
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two-thirds of a jacket is not much good to anvone, However, the solution is an
approximate one and, to proceed correctly, it is necessary to undertake the problem
as an integer Programming problem. This is much harder and can be found in any
advanced bock on Mathematical Programming.

If the amount of cloth is increased then the line 3y 4+ 4w = ' is moved from its
present ! = 400 parallel and upwards. The intersection point moves upwards and
the profit is increased. This sitnation continues until the solution is ¥ = 0 and
w = 150 and all the labour is used on the Wetherbvs. The amount of cloth required
would be 600 m and the profit in this case is £4500. This is the maximum possible

profit even if unlimited cloth is available because of the labour constraint,

xh 3x1 + x2 = 25

m 7 The initial tableau is

T To T Tq Scln
Z —k —20 0 0 0
€Xg 1 2 1 0 20
X4 3 1 0 1 25
Eliminating the x; column first
T o T3 Ty Scln
2z 10—-E 0 10 0 200
To 0.5 1 0.5 0 10
Xy 2.5 0 —0.5 1 15

1€ Pearson Education Limited 2004



Glvn James: Advanced Modern Engineering Mathematics, Third edition 543

If & < 10 then the tableau is optimal and the scluticn is ;1 = 0,25 = 10 and
the value of 2 is 200, If however k > 10 then the method continues with the x;

column cleared.

€1 Fn Fg dg Soln
2 0 0 (60 — E)/5 2k —10)/5 140 + 6k
g 0 1 0.6 0.2 7
¥ 1 0 —0.2 0.4 6

If 10 < k < 60 then the solution is optimal and the solution is 2y = 6,25 =7 and
z takes the value 14046k, If however k > 60 then the sclution is not optimal and

a further tableau needs to be formed using the xs column.

Tl XFo ey Xq Soln
Z 0 —(60 — k)/5 0 (Thk — 120)/15 25k/3
xg 0 5/3 ] 1/3 3543
T 1 1/3 0 7/15 25/3

For k > 60 the 2 row is positive and therefore optimal with xy = 25/3, 25 = 0 and
z = 25k/3.

3x1 +x2=25

optimum for k=5

R

The situation for this problem is illustrated in the figure. The feasible region

is shown together with three different cost funetions corresponding to the three
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different cases. Note that for small & the optimum is at the corner A; as the cost
steepens the corner B is optimum; and finally as the cost steepens further with the

highest values of & the point C is the optimum.

m 8 This problem has four variables so it has to be solved using the simplex
algorithm. There are no difficulties with this problem and the tableaux are

presented, to two decimal places, without comment.

T o T dg @, Tg Ty Soln
3 -2 —1 —4 —1 0 0 0 0
T 2 0 1 0 1 0 0 3
Ta 1 0 3 1 0 1 0 4
T 0 4 1 1 0 0 1 3
X To T Tq Ty T T Soln
i —0.67 —1 0 0.33 0 1.33 0 5.33
T 1.67 0 0 —0.33 1 -0.33 0 1.67
g 0.33 0 | 0.33 0 0.33 0 1.33
€Ty —0,33 4 0 0.67 0 -0.33 1 1.67
€q To sy Xy X, Tg X7 Soln
3 -0.75 0 0 0.5 0 1.25 0.25 5.75
TE 1.67 0 0 —0.33 1 —0.33 0 1.67
B 0.33 0 1 0.33 0 0.33 0 1.33
o —0.0s 1 0 0.17 0 —0.08 0.25 0.42
i) X9 £g X £, xIg Xy Soln
Z 0 0 0 0.35 0.45 1.1 0.25 6.5
T 1 0 0 —0.2 0.6 -0.2 0 1
Ty 0 0 1 0.4 —0.2 0.4 0 1
To 0 1 0 0.15 0.05 —0.1 0.25 0.5

The solution is read off as #1 = 1,35 = 0.5,23 = 1 and x4 = 0; the maximum is
at 2 =65,
The MAPLE instructions
con8:= {2 x1+x3<=3,x1+3" x3+x4<=4 ,4* x2+x3+x4<=3} ;
obj8:=2"x1+x2+4 ™ x3+x4;
maximize (obj8, con8 ,NONNEGATIVE) ;

also produce the solution |x4=0, x1=1, x3=1, x2=1/2}.
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= 9 If 51,562,083 are the respective number( - 1000) of books printed then the profit
will be

> = 90061 + 80052 + 30063

and the constraints are

sales restriction bl + 82 < 15

paper 3b1 + 2624 b3 = 60

The first tableau is easily set up and the other tableaux follow by the usual rules,

b1 b2 b3 b4 b5 Soln
2 —900 —&00 —300 0 0 0
bl 1 1 0 1 0 15
b5 3 2 1 0 1 60
b1 b2 b3 bl b5 Soln
2 0 100 —300 900 0 13,500
b1 | 1 0 1 0 15
b3 0 = | -3 1 15
b1 b 63 b4 t5 Soln
: 0 —200 0 0 300 18,000
b1 1 1 0 1 0 15
b3 0 ~] 1 3 1 15
b1 b2 b3 b4 b5 Soln
z 200 0 0 200 300 21,000
b2 1 1 0 1 0 15
b3 1 0 1 — 1 30

Thus the optimal profit is made if none of book 1, 15,000 of book 2 and 30,000 of
book 3 are printed giving a profit of £21,000.

m 10 Let L, M, S be the respective number of long, medium and short range aircraft

purchased. The profit is
> =04L 4+ 0.3M +0.158
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and the constraints are
money available \L+2M 4+ 8 < 60
pilots L+ M4 5 <35
maintenance 2L 15M + 5 < 30

The initial tableau is

L A S P @ K Soln
z —0.4 —0.3 —0.15 0 0 0 0
P 4 2 | 1 0 0 60
@Q 1 1 1 0 1 0 25
i 2 1.5 1 0 0 1 30

The first column is chosen, since it has the most negative entry, and when the
ratios are calculated the F and R rows produce the same value of 15. From the

two the P row is chosen arbitrarily.

L M i P Q R Soln
z 0 0.1 —0.05 0.1 0 0 6
L | 0.5 0.25 0.25 0 0 15
@ 0 0.5 0.75 —0.25 1 0 10
R 0 0.5 0.5 —0.5 0 1 0

In this tableau the A, R element is the pivot and performing the elimination gives

L M s P Q R Soln
2 0 0 0.05 0 0 0.2 6
L 1 0 -0.25 0.75 0 -1 15
Q 0 0 0.25 0.25 1 -1 10
M 0 1 1 —1 0 2 0

Note that the final column has not changed between the last two tableaux because
of the zero in the very last entry. The optimal solution is to purchase 15 long range
aircraft and no medium or short range aircraft: the estimated profit is £6 m.

In the problem it would seem that some operational constraints have been omitted.
In many optimisation problems it takes several steps to achieve a sensible cost and

sensible set of constraints.
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11

The first tableau is set up from the data. Choosing the pivot in the usual

way ¥ and xy are interchanged and the elimination follows the basic rules, Again

the pivot is found and x3 and xg are interchanged; the elimination produces a top

row that is all positive so the solution is optimal, The solution is read from the

tableau as a1 = 1.5, 29 — 0, 23 — 2.5, ¥4 — 0 and f =14,

€T XFo €Fg Xg €T, TG Ty Seln Ratio
7 —6 —1 -2 —4 0 0 0 0
X, 2 1 0 1 1 0 0 3 1.5
e 1 0 1 1 0 1 0 4 4
€Ty 1 1 3 2 0 0 1 10 10
€1 o X3 Xq @, TG Ty Soln Ratio
Z 0 2 —2 —1 & 0 0 9
T 1 0.5 0 0.5 0.5 0 0 1.5
X 0 —0.5 1 0.5 0.5 1 0 2.5 2.5
€Ty 0 0.5 3 1.5 —0.5 0 1 8.5 2,83
Ty To Ty Ty T Ta T Soln  Ratio
# 0 1 0 0 gl 2 0 14
X 1 0.5 0 0.5 0.5 0 0 1.5
Xy 0 —0.5 | 0.5 0.5 1 0 2.5
Ty 0 2 0 0 1 3 ] 1

The MAPLE implementation just gives the ‘answer’. Some of the detail can be
extracted from MAPLE and the various tableau can be identified.

conli:={ 2" x1+x24+x4<=3,x1+x3+x4<=4 , x1+x2+3* x3+2* x4<=101} ;
objll:=6* x1+x2+2* x3+4* x4 ;
maximize(objll,conll ,NONNEGATIVE);
# gives the same solution {x4=0, x2=0, x1=3/2, x3=5/2}
# for the detail
z:=setup(conli);
z:={_SLi1=3-2 xi1-x2-x4, SL2=4-x1-x3-x4,
_SL3=10-x1-x2-3 x3-2 x4}
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piv:=pivoteqn(z,x1);
piv:=[_SL1=3-2 x1-x2-x4]
z:=pivot(z,xl,piv);
z:={x1=3/2-1/2_8SL1-1/2 x2-1/2 x4,
_SL2=5/2+1/2_8SL1+1/2 x2-1/2 x4-x3,
_SL3=17/2+1/2 _SL1-1/2 x2-3/2 x4-3 x3}

objll:=eval(objll,z);

objll:= 9-3_S5SL1 - 2x2 + x4 + 2 x3
# compare with second tableau
piv:= pivotegn(z,x3);

piv:=[_SL2=b5/2 + 1/2_SL1 + 1/2x2 - 1/2x4-x3]
z:=pivot(z,x3,piv);

z:= {_SL3=-_SL1 + 1 + 3_SL2 - 2 x2,

xl =3/2 - 1/2.SL1 - 1/2 x2 - 1/2 x4,
x3=1/2_SL1 + 5/2 -_SL2 + 1/2 x2
- 1/2 x4}

objll:=eval(objll,z);

obj11:=-2_8L2 + 14 - 2_8SL1-x2

# compare with the final tableau

Note that the entry in position (z,x4) is zero so we expect may solutions — this
is easily identified from the tableau but not from the MAPLE results. Continuing
with MAPLE code

piv:=pivotegn(z,x4);

piv:=[x1=3/2 - 1/2_8SL1 - 1/2 x2 - 1/2 x4]
z:=pivot(z,x4,piv);

z:={_SL3 = -_SL1 + 1 + 3_SL2 - 2 x2,
x4 = -2 x1+3 -_SL1 - x2,
x3 =_SL1 + 1 -_SL2 + x2 + x1}

objll:=eval(objll,z);

objll:=-2_SL2+14-2_SL1-x2
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The new solutions is ¥y = x5 = 0,23 = 1,24 =3 and f = 14, giving, as expected,

the same function value.

m 12 The problem can be easily plotted and it is clear that = = 1,y = 4 gives the

solution.

o))

-
N W A o
L1 11 I L1 11 I L1 11 I | I | I L1l 11 I L1 1 1

—h

@]

The MAPLE check is as follows;

with (simplex):
conl2:={y>=1,y<=4,x+y<=5};
objl2:=x+2%y;

maximize(objl2,conl2 ,NONNEGATIVE);
# gives {y=4,x=1}

The graph can be plotted using the instructions

with(plots):

F:=inequal(coni2,x=0..6,y=0..6):

G:=plot ([(-x+7)/2, (-x+9) /2, (-x+11) /2] ,x=0. .6,
thickness=3,labels=[‘x’,‘y’],color=yellow):
display(F,G);
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Exercises 10.2.6

m 13 The problem has ‘greater than’ constraints so the two-phase method is
required. Note that a surplus variable x4 and an artificial variable &7 need to
be introduced, At the end of phase 1 the artificial variable 7 will be eliminated
from the tableau. The cost function in phase 1 is —x7, but recall that this cost
has to be modified to ensure that the tableau is in standard form.

Phase 1

R T T3 Xy &5 Tg T Soln
z | =2 -1 0 1 0 0 0 —12
€3 4 1 1 0 0 0 0 32
X 2 1 0 -1 0 0 1 12
xTE 2 -1 0 0 1 0 0 4
g —2 1 0 0 0 1 0 8
T X i) Xy T Tg €Ty Soln
£ 0 —2 0 1 0 0 —8
2 |0 3 1 0 ! 0 0 24
X 0 2 0 —1 —1 0 1 8
1 1 —0.5 0 0 5 0 0 2
xg | O 0 0 0 1 1 0 12
x] Xo &g T4 &y g & Soln
o 0 0 0 0 0 0 1 0
) 0 0 1 1.5 -0.5 0 1.5 12
X 0 1 0 —0.5 —0.5 0 0.5 4
1 1 0 0 0.25 0.25 0 0.25 4
Zg 0 0 0 0 1 1 0 12

The artificial cost has been driven to zero sc¢ the artificial variable x+ can be
eiiminated and the original cost function reinstated.
Phase 2

Note that the new cost is negative because the problem is a minimisation problem.

2 o XFg Xq XTr, Tg Soln

Z 0 0 0 3 -2 0 —44
g 0 0 1 L.5 —0.5 0 12
T 0 1 0 —0.5 —0.5 0 4
€ 1 0 0 —0.25 0.25 0 4
Tg 0 0 0 0 1 1 1
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1 Lo T3 T4 T T Soln
2 0 0 0 3 0 2 —20
T3 0 0 1 1.5 0 0.5 18
To 0 1 0 —0.b 0 0.5 10
1 1 0 0 —0.25 0 —0.25 1
rE 0 0 0 0 1 1 12

The solution is read off as x; = 1,25 = 10 with a minimal cost of 20.

X2

30 L

—2X1=-%2 =8
20

2¥1-x2 = 4
10

m 14 Let S be the number of shoes produced and B the number of boots, then the

problem is to maximise the profit

z=8B+55
production 2B 1+ 5 < 250
sales B4+ 5 <200
customer B >25

@ Pearson Education Limited 2004




552  Glyn James: Advanced Modern Engineering Mathematics, Third edition

The tableaux are constructed in the usual way.
Phase 1

Soln
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Phase 2
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Thus the manufacturer should make 50 pairs of boots and 150 pairs of shoes and

the maximum profit is £1150,
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A graphical solution is possible since the problem has only two variables. It is of

interest to follow the progress of the simplex sclution on the graph.
A boots

150 - )
- profit = 1150

\N

..
.

-
2B +'S.= 250

.,

~.
100 /
b B+S =200

50

., | »_
20 150 180 shoes

m 15 There are techniques for adding a constraint to an existing sclution and thence
determining the solution. However, here the whole problem will be recomputed.
From Exercise 9 the initial tableau can be constructed but the additional constraint

is a ‘greater than’ constraint so the procedure for entering phase 1 must be followed.

O A

L

3 b4 S W b7 Soln
2 1 1 1 0 0 1 0 — 50
b4 1 1 0 1 0 0 0 15
b5 3 2 1 0 1 0 0 60
b7 ] 1 1 0 0 1 1 50

Note that the last row gives the new constraint and that the z row involves the

artificial variable b7, which has been eliminated to bring the tableau to standard
form.
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Phase 1
b1 b2 b3 b4 b5 T b7 Soln
2 0 0 -1 10 1 0 35
b1 1 1 0 1 0 0 0 15
b5 0 =1 1 = 1 0 0 15
b7 0 0 1 -1 0 -1 1 35
bl 2 b3 b4 5 s b7 Soln
2 0 — 0 = 1 1 0 —20
bl 1 1 0 1 0 0 0 15
b3 0 -1 1 -3 1 0 0 15
b7 0 1 0 2 1 —1 1 20
bl b2 b3 b4 b5 b6 b7 Soln
2 0 0 0 0 0 0 1 0
b1 1 0.5 0 0 0.5 0.5 -0.5 5
b3 0 0.5 1 0 ~0.5 -1.5 1.5 45
b4 0 0.5 0 1 —0.5 0.5 0.5 10
Phase 2
b1 R 3 b4 b5 b6 Soln
2 0 200 0 0 300 0 18,000
b1 1 0.5 0 0.5 0.5 5
b3 0 0.5 1 0 —0.5 ~1.5 45
bd 0 0.5 0 1 0.5 0.5 10
bl b2 b3 b4 5 T Soln
2 400 0 0 0 500 200 20,000
b1 2 1 0 0 1 1 10
b3 ~-1 0 1 0 4, - 40
b4 1 0 0 1 =] — |l 5

The solution is optimal with the production schedule as none of book 1, 10,000

of book 2 and 40,000 of book 3. The profit is down to £20,000 because of the
additional constraint.
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m 16 The MAPLE sclution is presented.

with (simplex):
conl6:={x>=1,x+2*%y<=3,y+3*z<=4};
objl6:=x+y+z;

maximize (objl16,conl6 ,NONNEGATIVE) ;

¥ gives the solution {y=0,z=4/3,x=3}

(W}
[ |
by}

Note that there is no detail of the two-phase method and just the ‘answer’ is given.

It is not easy to rewrite phase 1 into MAPLE so that the detail can be extracted.

m 17 This is a standard two-phase problem with surplus variables xx,x¢ and

artificial variables 7, xs. With the cost constructed from the artificial variables

x7, ¥s, and the tableau reduced to standard form, the sequence of tableaux is

presented,
Phase 1
x X9 &g Xig Ir, g Xr xs Soln
Z 1 -1 0 1 1 1 0 0 -2
Ty 1 0 -1 -1 -1 0 1 0 0
g 0 1 1 0 0 ~1 0 1 2

There is an arbitrarv choice of the columns since two columns have the value —1;

the second one is chosen.

i) o T 14 T T T Ts Soln
P -1 0 1 1 0 0 1 0
7 1 0 —1 -1 —1 0 1 0 0
T 0 1 1 0 0 —1 0 1 2
T Xo a£s g Ir Xg g T Soln
2z | 0 0 0 0 0 0 1 j 0
T 1 0 -1 -1 -1 0 1 0 0
€Ty 0 1 1 0 —1 0 1 2

The soluticn is optimal so phase 1 ends and the tableau is reconstituted for phase 2.
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Phase 2
T T ) €y T xg Soln
2 0 -1 7 2 7 —14
T 1 0 -1 —1 -1 0 0
X 0 1 1 0 0 —1 2
T = g g 4 s, xg Soln
g 0 1 0 2 6 —12
i 1 1 0 —1 -1 -1 2
Tg 0 1 1 0 0 -1 2

The solution is now optimal with x; = 2,20 = 0,23 = 2,24 = 0 and the cost

function is 12.

m 18 Let the company buy a.b.c litres of the products A.B.C, then the cost of the

materials will be

Cost 1.8a¢+ 0.9b 4+ 1.5¢

For a total of 100 litres a+ b+ ¢ =100

Glvcol 0.6ba+ 0.2564 0.8¢ = 50
Additive 0.1la+0.036 = 5

There are two ‘greater than’ constraints and an equality constraint. Recall that an
equality constraint is dealt with via an artificial variable. Thus phase 1 is entered
with two surplus variables and three artificial variables; the cost row is manipulated

until the tableau has the standard form.

Phase 1
a b c P q T 13 t Soln
P —1.75 —1.28 —1.8 1 1 0 0 0 —155
r 1 1 1 0 0 1 0 0 100
3 0.65 0.25 0.8 =l 0 0 1 0 50
t | 0.1 0.03 0 0 —1 0 0 1 5
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a b c P q r s t Soln
7{0.29 —072° 0 BEEEN 1 0 23 0 —425
r 0,19 0.69 0 1.25 0 1 —1.25 0 375
é 0.81 0.31 1 -1.25 0 0 1.25 0 62.5
t 0.1 0.03 0 0 —1 0 0 1 5

a b C P q 7 s t Soln
2 —0.1 —0.03 0 0 1 1 1 0 —5
P 0.15 0.55 0 1 0 0.8 -1 0 30
¢ 1 1 1 0 0 1 0 0 100
t 0.1 0.03 0 0 -1 0 0 1 5

a b c p q r 8 t Soln

P 0 0 0 0 0 1 1 1 0
P 0 051 0 1 1.5 0.8 -1 -1.5 2325
c 0 0.7 1 0 10 1 0 -10 50
a 1 0.3 0 0 —10 0 0 10 50

The artificial cost has been driven to zerc so phase 1 is complete and the three
artificial columns are deleted and the actual cost introduced. Recall that this is
a minimisation problem so the phase 2 tableau can now be extracted from the

tablean above,

Phase 2
| @ - & P 4 sl
z 0 —0.69 0 0 3 — 165
P 0 0.51 0 1 1.5 225
¢ 0 0.7 1 0 10 50
a 1 0.3 0 0 —10 50
a b c P q Soln
2z 0 0 0 1.37 5.05 —134.26
b 0 1 0 1.98 2.97 44.55
c 0 0 1 —1.39 7.02 18.81
a 1 0 0 —0.59 —10.89 36.63
The tableau is optimal so the solution can be read off as ¢ = 36.63%,

b — 44.55%, ¢ = 18.81% and a minimum cost of £134.26,

L€ Pearson Education Limited 2004



558  Glyn James: Advanced Modern Engineering Mathematics, Third edition

m 19 Let sq,89.83 be the number of houses of the three stvles the builder decides
to construct. His profit ( - £100) is

1051 + 1585 + 2bssy

and the constraints are

plots 81+ 289 | 285 = 40
facing stone 81+ 285 | Hbsg = b
weather boarding 381 | 285 | 83 = 72
local authority -81+ 8 B

The solution requires the two-phase method. The tableaux are listed, to two

decimal places, without comment,

Phase 1
81 85 83 84 8k 86 87 8g Scln
Z 1 —1 0 0 0 0 1 0 —5
84 1 2 2 1 0 U 0 0 40
s, 1 2 5 0 1 0 0 0 58
8¢ 3 2 1 0 0 1 0 0 72
Sy —1 1 0 0 0 0 —1 1 5
81 8o 83 84 SK 8¢ 87 S5 Soln
Z 0 0 0 0 0 0 0 1 0
84 3 0 2 | 0 0 3 2 30
s, 3 0 5 0 1 0 3 -2 48
Sg 5% 0 1 0 0 1 3 2 62
S5 -1 1 0 0 0 0 -1 1 5
Phase 2
81 85 83 S4 sr, 86 87 Soln
p: 25 0 —25 0 0 0 -15 75
84 3 0 2 1 0 0 2 30
sk, 3 0 5 0 1 0 2 48
S 5 0 1 0 0 1 2 62
80 —1 1 0 0 0 0 —1 5
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81 85 Sa S4 Sk, 86 87 Soln
Z 0 0 -8.33 8.33 0 0 1.67 325
81 1 0 0.67 0.33 0 0 0.67 10
sk 0 0 3 -1 1 0 0 15
8¢ 0 0 —2.33 —1.67 0 1 —1.33 12
89 0 1 0.67 0.33 0 0 —0.33 15
81 85 83 84 Sk 8g 87 Soln
Z 0 0 0 5.56 2,78 0 1.67 375
81 1 0 0 0.56 —0.22 0 0.67 6
Sg 0 0 1 —0.33 0.33 0 0 6
Sg 0 0 0 —2.44 0.78 1 -1.33 26
89 0 1 0 0.56 —-0.72 0 —0.33 11

The tableau is optimal, so the solution should build 6,11,6 houses of stvles 1,2.3
respectively and make a profit of £37,500.

20 Let xy20, 23 be the amounts (- 1000 m?) of carpet of tvpe ('1,(*2,('3 produced,
then the maximum of
2xy + 31y
is required subject to the constraints
M1 1+ xo+ 23 = 5H

M2 X1+ S 4

policy1 r =1

policy?2 X1 — o4 kg =2
Phase 1
X Ty Xy Wi xx, g €Ty Ty g Soln
g 2 1 —1 0 0 1 1 0 0 -3
Xy 1 1 1 1 0 0 0 0 0 5
Xy, 1 1 0 0 1 0 0 0 0 4
e 1 0 0 0 0 -1 0 1 0 1
Zg 1 —1 1 0 0 0 -1 0 1 2
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Hence the optimum is 2500m?2 of 1, 1500m? of (*2 and 1000 m? of ('3 giving a

profit of £9500.
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Exercises 10.3.3

m 21 Introducing a Lagrange multiplier the minimum is obtained from

2e+y+A=0
z+2y+A=0
oty =1

with solution z =y = 1/2. To prove that it is a minimum, put

_1 1 _
r=g5teandy=5—¢

and substitute into fto give

and hence a minimum.

22 The answer to this exercise is obvious geometrically since it is just the length

of the minor axis which is @ in this case. It is required to find the minimum of

22y
D2:x2+y2 subject to — + =5 =1
a? = b?

The Lagrange equations are

2Ax 2
0:2$+? and0:2y+b72y
Since A cannot equal —a® and —b? at the same time then either 2 =0 or y = 0.

If @ < b the it is clear that y =0 and z = + a gives the minimum

23 The area of the rectangle is
A =Adzy

and since the point must lie _

on the ellipse
2 2

x
o
a b2

=1
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and hence a Lagrange multiplier problem is produced. The two equations are

2y

2 Az
0:4y+?and0:4$+b—2

It is soon checked that the required solution is = = +/2a, y = /2b, A = Sab.

24  The necessary conditions for an optimum are

of 2

8x+)\8m707y z 4+ A (1)
of

aer)\a—y 0= 2xyz + 2A (2)
af 89 o o

together with the given constraint

T+2y+32=6 (4)

Dividing equation (2} by two and then subtracting the first two equations gives

yx{z —y)=0

Thus there are three cases

4 = 0 Note that all the equations except the constraint are satisfied since A = 0.

Thus a possible solution is (6 — 3«,0, a) for any .

2 = 0 Again this implies that A = 0 so from equation (3)z = 0 and hence from

(4)y = 3. The case when y = 0 in equation (3) has been covered in the first case.

1.3 _ .2

x =y Equations (2) and (3) give 32° = x°2 so there are two cases

either x = 0 and hence y = 0 and z = 2

or x = 3z and hence from (4) 2 =1/2 and x = 3/2,y = 3/2

Equations (1) and (2) have been used to eliminate A so a similar exercise must be
undertaken with (2) and (3) to check whether any new solutions arise. They give

the equation
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ryly —32) =0

and again three cases must be studied.

x = 0 In this case A = 0 so it reduces to one of the above.

y=20 Again it reduces to the first case above.

y = 32 From equations (1) and (2) it can be seen that the same cases arise and
correspond to the solutions already obtained.

Note that in the solutions quoted, (6,0,0) is included in the solution (6 — 3a, 0, a)
with a = 0.

25 Using A and @ as the Lagrange multipliers the equations that give the

optimum are as quoted
0=2x+ A+ (22 — 2y)u

0=2y+ X+ (2 2x)u
0=2z— X+ (y+2x)u

together with the two given constraints.

Adding the last two equations

2y+2)+ (y+ 2)u=0= eithery = —z or p= —2
Adding the first and last equations

2+ 2)+ 224+ 22— yu=0

so A has been eliminated.

y+2=0 In the first constraint * = —y + 2z = 2z. Thus (2¢, —t,¢) gives, in
the second constraint, 7t2 = 1 so ¢ = j:l/\ﬁ and two of the quoted solutions are
obtained.

p=—2 From above 2(z + 2) + (22 + 2z — y)(—2) = 0  so this expression

and the second constraint give a pair of equations

0=-—xz+y—=z2
O=z+ty—2

and hence x — 0 and y — 2. Putting these values into the second constraint gives

y = +1 and possible optimum points at (0, 1, 1) and (0,—1,—1).
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26 From the figure the volume is

V — abe

and the surface area is

A =2ab| 2ac} be

The problem is a Lagrange multiplier

problem and the three equations are
0 = be+ A(2b + 2¢)
0=ac+ A(2a+ ¢)
0=ab+ X(2a -} b)

The last two equations give
alc —b) + AMc—b) =0=citherc=bor A= —a
¢ = b Putting back into the first equation gives

b% + 4b\ = 0 so either b= 0 or A = b/4
The case b = 0 can be dismissed as geometrically uninteresting, In the third
equation this value of A gives 0 = ab — %b(ﬁa + b) = b = 2a since again the case
b = 0 is uninteresting,

Calculating e gives the possible maximum as

fA
c=b=72awith a = Fandl}'zélas

A = —a Putting this value back into the third of the Lagrange equations gives

¢ = 0 so gives zero volume and is geometricallv uninteresting again.

27  This is a very tough problem but more typical of realistic problems in
engineering rather than the illustrative exercises in most of the book,
The exercise will be solved using MAPLE. Note the efficient way it performs the

algebra and integrations For the simplest approximation
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z:=A"cos(P1"x/2)"2% cos(Pi*y/2)"2;
I1:int(int(z"2,x=-1..1),y=-1..1);
# gives 2
I1:=9/16 A
f:=diff (z,x,x)+diff(z,y,y);
I2:=int(int (f"2,x=-1..1) ,y=-1..1);

# gives 2 4
I2:=1/2 A Pi

freq:=I12/11;

# gives 4

freq:=8/9 Pi = 86.58 as required.

The first approximation could be done by hand but the next approximation needs
a package like MAPLE.,

zz:=cos(Pi"x/2)"2%cos(Pi*y/2) 2
*(A+B" cos(Pi*x/2) "cos(Pi*y/2));
I3:=evalf (int(int(zz"2,x=-1..1),y=-1..1));
# gives
2 2
I3:=.56624099999 A + .9222479291 A B + .390624999¢ B
ff:=diff(zz,x,x)+diff(zz,y,y);
I4:=evalf (int(int(ff"2,x=-1..1),y=-1..1));

# gives
2 2
I14:=58.21715209 B + 48.70454564 A + 92.64268668 A B
dLbydA:=diff (I4+1lam* I3,A);
dLbydB:=diff (I4+lam* I3,B);
fsolve({dLbydA,dLbydB,I3=1}, {A,B,lam});

# gives the solution
{lam=-81.38454660, A=-1.829151961, B=.6086242001}

The frequency is given by —lam which should be compared with the first

approximation.
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28 The problem asks for a minimum, which is equivalent to the maximum of
—QE% — ;r:% — 23179

The Kuhn—Tucker conditions for this problem are

—dxy — 2z —pu =10
—2x; — 2z + pu =20
r —xo — <0
w(ry —x0 —a) =0
p= 0

There are two cases
@ =10 The first two equations give z; = xo = 0 and these can only give the
optimum if the inequality is satisfied, namely « > 0.
x1 — 2 =« Adding the first two equations gives the solution in terms of the

simultanecus linear equations

3r1 4+ 215 =0

1 — T = &
which clearly have the solution x; = 2a/5 and zs = —3a/5. Calculation from the
first or second equation gives p = —2a/5 which is only optimal if o << 0.

Exercises 10.4.2

29(a) The MATLAB version of this problem (note it deals with the maximum)

is as follows:

a=0.1;h=0.2;nmax=10;n=0;

zold=g29(a) ;a=a+h;z=q29%(a);c=[z]
while{(z(2)>z0ld{2) )k {n<nmax)
n=n+1;zoldold=z0ld;zold=z;a=a+h;z=q29(a);;h=2"h;c=[c,z];

end

% gives x 0.3000 0.7000 1.5000 3.1000
f -11.4111 -2.7408 -1.9444 -3.2041
f’ 73.0741 4.8309 -0.4074 -0.9329

where the function g29 is in the M-file
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function a=q29(x)

a=[x;-x-1/x"2;-1+2/x"3];

The maximum is in the region 0.7 to 3.1 if only the function values are known but

in the region 0.7 to 1.5 if the derivative is used.

29(b) Using the bracket and the mid point to start the maximisation

p=[g29(0.7),929(1.9),929(3.1)1; u=p(1,:),v=p(2,:)
% gives u= 0.7000 1.8000 3.1000

v=-2.7408 -2.1770 -3.2041
[u,v]=qapp(u,v)
% gives u= 0.7000 1.7253 1.9000

v=-2.7408 -2.0612 -2.1770
[u,v]=qapp(u,v)
% gives u= 0.7000 1.5127 1.7253

v=-2.7408 -1.9497 -2.0612

where the M-file gapp.m contains the quadratic algorithm

function [x,f]=qapp(a,b) %note written for max problem
% a=[al,a2,a3] is the input vector of three points from
bracketing
% b=[f(al),f{a2),f(a3)] is the vector of function values
x=a;f=b;p=polyfit(a,b,2);
xstar=-0.5"p(2) /p(1) ;z=q28 (xstar) ;fstar=z(2) ;% for other
problems change g29
if fstar>b(2)
if xstar<a(2), =x(3)=a(2);£(3)=b(2);
else x(1)=a(2);£f(1)=b(2); end
x(2)=xstar;f{2)=fstar;
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else

if xstar<a(2), x(l)=xstar;f(1)=fstar;
else x(3)=xstar;f(3)=fstar; end
end
% x contains the three points of the new bracket and f

the function values

29(c) For comparison the same bracket is used

p=929(0.7);9=929(3.1);p’ ,q’

% gives x=0.7000 f=-2.7408 f'=4.8309

% and x=3.1000 f=-3.2041 £'=-0.9329
[p,ql=cufit(p,q);p’.q’

% gives x=0.7000 {=-2.7408 £’=4.8309

% and x=1.51290 f=-1.9498 f’'=-0.4224
[p,ql=cufit(p,q);p’.q’

% gives x=1.1684 f=-1.9009 f£'=0.2538

% and x=1.5129 f=-1.9498 f'=-0.4224

where the cubic algorithm is contained in the M-file cufit.m

function [an,bn]l=cufit{a,b)

% a=[x1 £(x1) fdash(x1)] and b=[x2 f(x2) fdash(x2)] are
the input vectors

f=[a(2);b(2);a(3);b(3)];

A=Ta(1)"3 a(1)"2 a(l) 1;b(1)"3 b(1)"2 b(1) 1;

3*a(1)"2 2%a(1) 1 0;3*b(1)"°2 2*b(1) 1 0];
p=\fA;xstar=(-p(2)-sqrt(p(2)"2-3"p(1) *p(3)))/(3*p(1));

c=q29 (xstar) ;
% for other problems change the function g29
if ¢(3)>0 an=c;bn=b; else bn=c;an=a;end

% an and bn contain the new bracket values
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m 30 If the derivatives are not used then the bracket is 0 < x < 3, whilst using
the derivatives gives the much narrower range of 0 < z < 1 but at the expense of
twice the number of function evaluations.

30(a) The calculation is identical to Exercise 29 with q29 replaced by q30 in gapp

p=1[q30(0) ,930(1),930(3)1; u=p(1,:),v=p(2,:)
% gives u=0 1 3

0 0.4207 0.0141
[u,v]=qapp(u,v)

0 1.0000 1.5113

0 0.4207 0.3040
[u,v]=qapp(u,v)

% gives u= 0 0.9898 1.0000

0 0.4222 0.4207

v

% gives u

v

v
where the function g30 is in the M-file

function a=g30(x)
a=[x;sin(x)/(1+x"2) ;cos(x)/(1+x"2)-2"x™ sin(x) /(1+x"2)" 2] ;

30(b) Again as in Exercise 29 with 29 replaced by 930 in cufit

p=q30(0);9=9q30(1);p’,q’

% gives x=0 £=0 f'=1

% and x=1.0000 £=0.4207 f'=-0.1506
[p,ql=cufit{p,q);p ,q’

% gives x=0 =0 f'=1

% and x=0.8667 £=0.4352 f'=-0.0612
[p,ql=cufit(p,q);p’,q’

% gives x=0 =0 f'=1

% and x=0.8242 £=0.4371 f'=-0.0247

m 31 The problem is a standard exercise to illustrate the use of the two basic

algorithms for a single variable search.
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31(a) An adaptation of Exercise 29 with the appropriate function used gives

p=[q31(1),931(5/3),431(3)]1;u=p(L,:),v=p(2,:)

% gives  u=1.0000

1.6667

3.0000

v=0.2326 0.2B53 0.1419

[u,v]=qapp(u,v)

% gives  u=1.000
v=0.2325

[u,v]=qapp(u,v)

% gives  u=1.0000
v=0.2325

1.6200
0.2571

1.4784
0.2602

1.6667
0.2b553

1.8200
0.2b71

where q31 is the M-file

function a=qg31(x)
a=[x;x* (exp(-x)-exp(-2"x)); (exp(-x) —exp(-2"x))
-x* (exp(-x)-2%exp(-2"x))1;

31(b) Use the same bracket and adapt the algorithm in Exercise 29.

p=q31(1);9=931(3);p’,q’

Y gives x=1.0000 £=0.2325 f/'= 0.1353
%, and x=3.0000 £=0.1419 f'= -0.0872
[p,ql=cufit(p,q);p",q’

Y gives x=1.0000 £=0.2325 f'= 0.1353
% and x=1.5077 £=0.2599 £'= -0.0136
[p,ql=cufit(p,q);p’,q’

Y gives x=1.0000 £=0.2325 f'= 0.1353
%, and x=1.4462 £=0.2603 £'= -0.0001

The next iteration gives the three-figure accuracy required in (c).
x = 1.4456 f = 0.2603 £ = 0.0000

= 32
each function evaluation. With a package such as MATLARB this is less of a problem

The difficulty in this problem is that the eigenvalues must be computed at

since the instruction eig(A) will give them almost instantly.
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The M-file g32 performs this computation. Note the -max(eig(4)) since gapp

looks for a maximum

function a=q32(x)
A=[x -1 0;-1 0 -1;0 -1 x~2];
a=[x;-max(eig(A))];

The calculations are performed as in Exercise 29

p=[932(-1),932(0),q32(1)];u=p(L,:) ,v=p(2,:)

% gives u=-1 0 1
v=-1.7321 -1.4142 -2.0000

[u,v]=qapp(u,v)

% gives u=-1.0000 -0.1483 0
v=-1.7321 -1.3854 -1.4142

[u,v]=qapp(u,v)

% gives u=-1.0000 -0.2356 -0.1483
v=-1.7321 -1.3769 -1.3854

= 33 To establish the formula is a matter of simple substitution into (10.10).

To find when f'(x) = 0, from the Newton method, requires the iteration of the

formula

@
f!’."(m)

rnew —

If the function is known at = — A, z,x + h with values fi, fo, f3 respectively, then

the derivatives can be replaced by their approximations

s N

—2
f’(;r:)w o ~ fl f2+f3

hQ

and [ (x)

and the formula follows immediately.
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Exercises 10.4.4

34 The gradient is given by

so at the first step

o[l =[]

The first search is for 'glin f(1 =, 1—p)] and a simple calculation gives u = 2.

The second iteration can be started as

=[] r= ome= ]

Note that the two gradients are perpendicular. The search ﬁlin [f(—1—p,—1+4 u)
is easily performed (exactly in this problem} to give ¢ = 0.4 and the problem is

ready for the next iteration.

[ 38 1= e[

35 For this function the gradient is

o [63: + 2y + 3}
2x+ 6y +2
and it easily checked that = —7/16,y = —3/16 gives zero gradient and hence
the minimum at f = —0.84375.
The steepest descent method is easily written in MATLAB. It needs two M-files,
one ££35 and the second to set up the function for the line search ff1am35

function [£,G]=f£f35(z)

f=3"z(1)+2"z(2)+2* (z(1)+z(2) )" 2+(z(1)-z(2))"2;
G(1)=3+6%z(1)+2%z(2);

G(2)=2"z(1)+6* z(2)+2;

function flam=fflam35(x)

global a G
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c=a-x*G’;

flam=3"c(1)+2* c(2)+2* (c(1)+c(2))"2+(c(1)-c(2))"2;

The calculation then proceeds as

global a G
a=[0;0];[f,G]=ff35(a)
% gives =0 G= 3 2

lamda=fmin(‘fflam35’,-3,3)

% gives  lamda=0.1275

a=a-lamda*G’

% gives a= -0.3824 -0.2549
[f,G]=ff35(a)

% gives f=-0.8284 G= 0.1961 -0.2%41
lamda=fmin(‘fflam35’,-3,3)

% gives  lamda=0.2407

a=a-lamda*G’

% gives a=-0.4296 -0.1841
[f,G]=ff35(a)

% gives f=-0.8435 G= 0.0b45 0.0363

573

Because the function is a quadratic the Newton method, which is based on the

assumption that the function is approximated by a quadratic, must converge in

one iteration.

m 36 The MATLAB implementation is similar to Exercise 35. The M-files used are

and

function [f,G]=ff36(z)
f=(z(1)-z(2)+z(3) )2+ (2% z(1)+z(3)-2) "2+ (z(3)2-1)"2;
G(1)=2%(z(1)-z(2)+z(3))+4* (2% z(1)+z(3)-2);
G(2)=-2"(z(1)-z(2)+z(3));
G(3)=2"(z(1)-z(2)+z(3))+2" (2" z(1)+z(3)-2)+4" z(3)"3-4% z(3) ;

function flam=fflam36(x)
global a G
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z=a-x*G’;

flam=(z(1)-z(2)+z(3) )2+ (2" z(1)+z(3)-2)"2+(z(3)"2-1) "2;

The problem is written as a minimisation to fit the built-in MATLAB functions.

global a G

a=[2;2;2]; [£,G]=f£36(a) ;C=[f;al;

for n=1:5

lamda=fmin (' fflam36’,-3,3);

a=a-lamda™ G’ ;

[f,G]=ff36(a);C=[C, [f;all;

end

% gives

-f= 26.0000 1.5023 0.4523 0.0764 0.0248 0.0165
x= 2.0000 1.1523 0.5022 0.6214 0.4948 0.5185
y= 2.0000 2.1695 1.8214 1.7539 1.6654 1.6394
z= 2.0000 0.4741 0.7943 0.9630 1.0170 1.0301

m 37 The function, gradient and Hessian matrix are computed in the M-file
Newton37

function [a,agrad,ajac]l=newton37(z)
t1=z(1)-z(2)+z(3);t2=2"z(1)+z(3)-2;
a=t1"2+t22+(z(3)"2-1)"2;

agrad(1)=2"t1+4"*t2;

agrad(2)=-2"t1;

agrad(3)=2"t1+2" t2+4%=z(3)"3-4%z(3);
ajac(1,1)=10;ajac(1,2)=-2;ajac(1,3)=6;
ajac(2,1)=-2;ajac(2,2)=2;ajac(2,3)=-2;
ajac(3,1)=6;ajac(3,2)=-2;ajac(3,3)=12"z(3)2;

and the Newton iteration proceeds as
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a=[2;2;2];E=[0;0;0;0];
for i=1:5
[£,G,J]=newton37(a) ;E=[E, [f;al];

a=a-J\G’;

end

% gives
f 29.0000 1.2448 0.1056 0.0026 0.0000
X 2.0000 0.2727 0.4245 0.4873 0.4995
y  2.0000 1.7273 1.5755 1.5127 1.5005
z 2.0000 1.4545 1.1510 1.0253 1.0009

= 38 The figure illustrates the cost of the road from (0,0) to (1,a) to (6,11-2b) is

C =21+ a2+ [(b—1)2+ (11— 26— a)?]/*

and any of the minimisation methods give a — 0.2294, b — 4.5083 and €' = 5.9743,

(b,11-2b)

y=11-2x

(0.0} X
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Exercises 10.4.6

10x — 2y — 8

39(a) The gradient can be calculated as G = [ 0wty

] and the initial

choice of H is the unit matrix.
lteration 1

The computation commences

- v m- s

2—8A
2
in this direction may be obtained as A — 0.1. The new values are

a0 = |:122:| fg = 0.8 G-Q = |:106:|

and the values of hy and yy are calculated as

and the minimisation takes place in the direction a = } . The minimum

—0.8 —38
hlagal{ 0 :|andy1GQG1|:16:|

Finally the H is updated as

(1 0 1 [-8 1 [-0.8

H, = - —8 1.6] + — —0.80

S 1} 66.56{1.6}[ ]+6.4{ 0 }[ )
1

B [1 0 | 09615 —0.1923 n 0.1 0
01 —0.1923  0.0385 0

~ [0.1385 0.1923
~10.1923  0.9615

Tteration 2

The iteration starts with the variables computed from iteration 1

1.2 0 0.1385 0.1923
az - { 2 } Jo=08 Gz = [1.6} Hy = {0.1923 0.9615}

The method follows the same pattern as iteration 1 so the computations are not

written down in the same detail.

1 0 0.1250 0.1250
as = [1] Js=0Gs = {0] Hs = {0.1250 0.6250]
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The minimum has been achieved; this is expected since the function is quadratic
and it is known that the method converges in n steps for an n-dimensional

quadratic, provided the minimisations are performed exactly.

39(b) The problem has three variables and is not quadratic. The one-
dimensional minimisations need a numerical procedure so it is better to use a
package such as MATLAB. Two M-files are required

function [f,G]=ffn39b(z)
t1=z(1)-z(2)+z(3);t2=2%z(1)+z(3)-2;
f=t1™2+t22+z(3)"4;

G(1)=2*t1+4*t2;

G(2)=-2%t1;

G(3)=2*t1+2" t2+4% z(3)"3;

and
function f=fn3%b(x)
global a D
c=a-x*D;
f=(c{1)-c(2)+c(3))2+ (2" c(1)+c(3)-2)"2+c(3)™4;

The main DFP segment produces the results

a=[0;0;0] ;H=eye(3); [f,G]=ffn3%b(a)

% gives =4 G=-8 0 -4

for n=1:1 % replace second 1 by number of required
iterations

D=H*G’;lamda=fmin('fn39b’,0,2);

aold=a;Gold=G;

a=aold-lamda*D;h=a-aold;

[f,G]=ffn39b(a);y=G'-Gold’;

H=H-H*y*y " H/(y*H'y)+h"h'/ (0" y);

end

a,ge=G' ,H,f

% gives a=0.5853 gg=-0.3916
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0 -1.7558
0.2026 0.7823
H=0.3681 0.1593 -0.4047 £=1.0662
0.1593 0.9632 0.1002
-0.4047 0.1002 0.7418
for n=1:1
D=H*G’;lamda=fmin(‘fn39b’,0,2);
aold=a; Gold=G;
a=aold-lamda*D;h=a-aold;
[f,G]=ffn39b(a);y=G'-Gold’;
H=H-H*y*y"*H/(y'*H*y)+h*h'/(h"*y);
end
a,ge=G' ,H,f
% gives a= 1.0190 gg= 0.0047
0.9813 -0.0012

-0.0372 0.0027
H= 0.3060 0.0192 -0.3576 £=3.0224¢-006

0.0192 0.6467  0.206b
-0.3576 0.2065 0.7061

40  Evaluating H;,1y; it is readily shown that equation (10.18) is satisfied.
The update is one that is quite effective but suffers from the problem that the
denominator can become zero when line searches are not exact. A great deal of

remedial action must be taken to ensure that the problem is overcome.

40(a) The function is quadratic so the solution is obtained in two steps. The
program in Exercise 39, suitably adapted, was used to compute the solution.

Tteration 1

Iteration 2

0.4848 0.9697 0.9948  —0.0619
- {—0.0606} f=02UG= {—0.2424} H= {—0.0619 0.2577 }
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Tteration 5

40(b)  The exercise is similar to Exercise 39(b) but with the different function
and updating method.

function [f,G]=ffn40b(z)
t1=z(1);t2=2(1)-z(2)+1;
f=t1"2+t2"2+2(2)2*z(3)"2;
G(1)=2%£1+2% £2;
G(2)=-2%t2+2*z(2) *z(3)™2;
G(3)=2%z(3)*z(2)"2;

and

function f=fn40b(x)
global a D
c=a-x"D;

f=c(1)2+(c(1)-c(2)+1)2+c(2) 2% c(3)2;

The main calculation follows.

global a D
a=[0.5;0.5;0.5] ;H=eye(3); [f,G]=ffn40b(a)

% gives f=1.31256 G=3.0000 -1.7500 0.2500
for n=1:1

D=H*G’; lamda=fmin(‘fn40b’,0,2);

aold=a;Gold=G;

a=aold-lamda*D;h=a-aold;
[f,G]=ffn40b(a);y=G'-Gold’;
H=H+(h-H*y)* (h-H*y) '/ ((h-H*y) " *y);

end

a,gg=G’ ,H,f
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% gives a= -0.0732 0.8344 0.4522
gg= 0.03858 0.1664 0.6296
H= 0.4425 0.3869 0.0998
0.3669 0.7585 -0.0657
0.0998 -0.06857 0.9821
f= 0.1563

for n=1:3 ¥ for 3 further iterations

D=H*G’;lamda=fmin(’'fn40b’,0,2);

aold=a; Gold=G;

a=aold-lamda*D;h=a-aold;

[f,G]=ffn40b(a);y=G'-Gold’;

H=H+(h-H*y)* (h-H*y) '/ ((h-H*y) ' *y);

end

a,gg=G’ ,H,f

% gives a= -0.0593 0.9234 -0.0640
gg= -0.0839 -0.0270 0.1082

H= 0.5603 0.5933 0.0260
0.5933 1.0391 0.0371
0.0260 0.0371 0.6302

f= 0.0073

= 41 Tt is easy to check that equation (10.18) is satisfied but note that the notation

has changed and y,h have been replaced by u,v respectively.

Hu=Hu VpTu — Hunu

:Hu+V—Hu:VsincepTu:un:1

To match with the Davidon formula (10.19) first choose 3 = o' = 0 and hence

pTu —aviu=1and un = HuTHu =1

Substituting gives

Huu'H VVv7?

H —H-
u’"Hu viua

as required.
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The formula in Exercise 40 is obtained by putting 3 = 3 = —a = —a’. Thus

p=q = oV — Hu) and hence pTu = a(v — HU)TU =1

Substituting gives the formula

(v — Hu)(v — Hu)”

H - H
+ (v—Hu)"u

This whole class of solutions was devised by Huang. Many general results can be

proved for this class and all the commonly used formulae are included in it.

= 42 (a)

The Fletcher-Reeves method is easily written as a MATLAB segment

global a b p

=1;b=1;g=[3"a;b] ;p=-g;

lam=fmin('ffr’,0,2)

% gives lam = 0.3571

a=at+lam” p(1l) ,b=b+lam*p(2) ,gold=g;g=[3"a;b]
% gives a= -0.0714 b= 0.6429 g= —-0.2143 0.6429
p=-g+p" (g’ "g)/(gold’ " gold)

% gives  p= 0.0765  -0.6888
lam=fmin('ffr’,0,2)

% gives lam = 0.9333

a=at+lam” p(1l) ,b=b+lam*p(2) ,gold=g;g=[3"a;b]
% gives a=-4.0246e-016 b=-1.1102e-016

which is the minimum point. The M-file used is

function v=ffr(x)
global a b p
v=3"(a+x " p (1)) 2+ (b+x*p(2))"2;

= 42(b)

The three-variable problem is handled in a similar manner.

global a b cp
a=0.5;b=0.5;c=0.5;
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f=(a-b+1)2+a2* b2+ (c-1)"2;

g=[2" (a-b+1)+4*a*b"2;-2% (a-b+1)+27a"2"b;2"* (c-1)1;
p=-g;W=[f;a;b;cl;

for i=1:5

gold =g;lam=fmin(‘ffr2’,-2,2);

a=at+lam™ p(1) ;b=b+lam® p(2) ;c=c+lam™p(3);
f=(a-b+1)2+a2*b2+(c-1)"2;W=[W[f;a;b;cl];

g=[2" (a-b+1)+4*a*b"2;-2% (a-b+1)+2%a2"b; 2" (¢c-1)];
p=—g+p* (g’ *g)/(gold* gold);

end
W

% gives the sequence of iterations
f 1.3125 0.0764 0.0072 0.0007 0©.0004 0.0000
a 0.5000 -0.0950 0©.0057 -0.0261 -0.0079 -0.0032
b 0.5000 0.9165 0.9276 0.9633 0.9742 0.9978
¢ 0.5000 0.7380 0.9674 1.0009 1.0044 1.0014

Review Exercises 10.7

m 1 The successive tableaux are as follows:

Tq 1_2 e TA ?5 m
z — —& 0 0 0 0
X3 1 1 1 0 0 350
) | 2 1 0 1 0 600
x| 1 3 0 0 1 900
] Xy b b ) Z, Soln
: 0 — 0 6 0 3600
3 0 0.5 1 —0.5 0 50
1 1 0.5 0 0.5 0 300
X, 0 25 0 —0.5 1 600
X Xy X3 Xy xr, Soln
z 0 0 4 0 3800
X 0 1 2 -1 0 100
T 1 0 — 1 0 250
XK 0 0 -5 2 1 350

Hence the solution is read from the table as x; = 250,%s = 100 and I = 3800.
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m 2 Let x,%5,23 be the numbers of sailboard constructed of tvpes 1,2,3. The

profit is
1021 + 15x9 4+ 2bxg

and the constraints are

521 + 10xs 4+ 2bxs = 200
3wy 4+ 2o 4wy = T2
1021 + 20x5 + 3025 = 400
The svstem only has ‘less than’ inequalities so the initial and subsequent tableaux

can be written down immediately.

T To s Ty T T Soln
5 —10 —15 —25 0 0 0 0
Ty 5 10 25 1 0 0 200
X, 3 2 1 0 1 0 72
Tg 10 20 30 0 0 i 400
Ty To T 4 T Ta Soln
2 -5 -5 0 1 0 0 290
Xy 0.2 0.4 | 0.04 0 0 11.6
X, 3.8 1.6 0 -0.04 1 0 60.4
g 4 8 0 —1.2 0 1 52
¥ T T T4 x5, Tg Soln
3 0 5 0 —0.5 0 1.25 355
X 0 0 1 0.1 0 —0.05 9
Xy 0 -4 0 0.8 1 —0.7 24
X 1 2 0 -0.3 0 0.256 18
T 2o B 24 x ED Soln
V7 0 25 0 0 0.62 0.81 370
Ty 0 0.5 1 0 -0.12 0.04 6
Ty 0 —b 0 1 1.25 —0.88 30
T 1 0.5 0 0 0.37 —0.01 22

The solution is x1 = 22,25 = 0,23 = 6 and maximum profit is £ 370,
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m 3 Let xq,xs,xa be the number of standard, super and deluxe cars respectively,

then the profit function is
10021 + 300xo + 40023

and the constraints are

101 + 205 + 30x5 = 1600
1024 + 1bxs + 20x5 = 1500
Ts + xq = b0
¥1 2o +xg =70

The problem includes a ‘greater than’ inequalitv so the two-phase approach is
needed. An artificial variable is introduced and the artificial cost is introduced in

phase 1. The z row of the tableau is manipulated to bring it to standard form.

T ¥ i) €g €ig xXr Xg ¥ g rs Soln
z —1 —1 —1 0 0 0 1 0 —70
2y 10 20 30 1 0 0 0 0 1600
& 10 15 20 0 1 0 0 0 1500
e 0 1 1 0 0 1 0 0 50
g 1 1 1 0 0 0 -1 1 70
T 'y} ! ) Xy €T, Tg Xy xs Soln
z 0 0 0 0 0 0 0 1 0
il 0 10 20 1 0 0 10 —10 900
T, 0 5 10 0 1 0 10 —10 800
g 0 | 1 0 0 1 0 0 60
1 1 1 1 0 0 0 —1 1 70

A feasible solution has been obtained so the method moves to phase 2. The 2 row

is first re-calculated

€1 o X Xq €T, Tg Ty Soln

Z 0 —200 —300 0 0 0 —100 7000
| 0 10 20 1 0 0 10 900
T 0 5 10 0 | 0 10 &00
Tg 0 1 1 0 0 1 0 50
T 1 1 1 0 0 0 —1 70
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Ty To T Ta T Ta T Soln
# 0 —50 0 15 0 0 50 20500
Ty 0 0.5 1 0.05 0 0 0.5 45
xr, 0 0 0 —0.5 | 0 5 350
Zg 0 0.5 0 —0.05 0 1 —0.5 5
] 1 0.5 0 —0.05 0 0 —1.5 25
X Xog X Xig £ Xg g Soln
Z 0 0 0 10 0 100 0 21,000
T 0 0 1 0.1 0 -1 | 40
xE 0 0 0 —0.5 1 0 5 350
To 0 1 0 -0.01 0 2 1 10
T 1 0 0 0 0 1 1 20

The sclution is read off the table as x; = 20,25 = 10,23 = 40 and the maximum
profit is £21,000.
Note that the (:,x7) entry is zero so a non-unique solution is expected. Inter-
changing the x3 and x; entries and completing one further tableau gives the
alternative solution xy = 60, 22 = 50, x5 = 0 and profit is still £21,000.
The MAPLE solution

with(simplex):

cor3d:=1 10* x+20* y+30* z<=1600,10* x+15* y+20* z<=1500,

y+z<=b0,x+y+z>=70] ;

obr3:=100" x+300* y+400™ z;

maximize (obr3, cor3,NONNEGATIVE) ;

# gives the solution {x=20, z=40,y=10}

MAPLE provides the same solution but does not identifv the alternative solution.

4 Let the student buv x; kg of bread and xs kg of cheese, then the cost to be
minimised is

60z, + 18025
and the two constraints are

1000z, + 2000x5 - 3000
2521 + 100x5 = 100
There are two surplus and two artificial variables in the tableau and the artificial

cost function which has been processed to standard form.,

'€ Pearson Education Limited 2004



586 Glyn James: Advanced Modern Engineering Mathematics, Third edition

Phase 1
Ty To Ts T4 T, Tg Scln
2 —1025 —2100 1 1 0 0 —3100
Xk 1000 2000 —1 0 1 0 3000
g 25 100 0 -1 0 1 100
X o € Xy xK, g Soln
. 500 0 | 20 0 21 ~ 1000
X, 500 0 -1 20 1 -20 1000
T 0.25 1 0 -0.01 0 0.01 1
X Xy Xg Xy X, g Soln
# 0 0 0 0 1 1 0
1 1 0 —0.002 0.04 0.002 -0.04 2
Xy 0 1 0.0002 -0.02 —0.0002 0.02 0.5
Phase 1 is completed so the tableau is reconstituted as
T To T Ty Soln
3 0 0 0.03 1.2 210
1 1 0 —0.002 -0.04 2
Xy 0 1 0.0002 0.02 0.5

It may be noted that the 2 row entries are positive so the tableau is optimal and

there is no need to enter phase 2. Thus the minimum cost of the diet is 210p and

is made up of 2 kg of bread and 0.5 kg of cheese.

5

The square of the distance from the origin to the point (x,¥) is

f=a? 42

so the problem is to optimise this function subject to the condition that it lies on

the curve

50

0

0

g = 2

of
ot
“

(e
= Pearson

—ay+yt—1=0

g B
dr
879

Ay

2+ A(2x — )
= 2y + M—=+ 2y)
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Subtracting these two equations gives
0=2(x—y)+ABx—-3y) = x=y or A= ——
Adding the two equations gives
O=2z+y)+Az+y) = x=-y or A=-2

The first possibility, = v, gives the points, (1,1) and (—1,—1) with f = 2 in

each case and the second possibility, x = —y, gives
1 -1 -1 1 2
— — = with = —
(x@ V3 ) ( 3 \@> =3
In this problem the cases A = 3 and A = —2 reproduce the identical solutions.

Although it is not proved, the first solution is the maximum and the second the

minimum.

6 The volume of the solid is

where the sides of the two cubes are x and y. The surface area has essentially the

area of two faces of the smaller cube removed so
S =7=6x>+ 4y?

The Lagrange multiplier equations are

32 L 122X =0
3y + 8yA =0

The solutions when = = y = 0 can be dismissed since the volume is zero. There

are three other cases

3

Case 1 x =10, y:;S = 7 Vo= 7
3 4 4

7 7\*

Case 2 =0 = —4\ = L, V=1{=
wervon ey (G ()

~8 256
Case 3  z=—4\, y= ?A, = 7 =96)\% + ?)\2
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and hence A —

+3 35
so the sides have lengths —— and —— and volume -
(44/10) s \/ \/ (10)F

The cases when either x = 0 or ¥ = 0 imply that the problem has collapsed to a

single cube so these solutions are omitted as geometrically uninteresting.

7  The problem is to maximise the distance

subject to

224 y? + 2 =8

The Lagrange equations are

20— 1)+2 =0=2=1-A
2y 4+ 2y =0=y=00r A= —1

There are two cases
y=0
] )\7—12 717 _0 76
gives = 80 :1:—5,3;—,2—5
A=—1

1 7
i f— 2 - — d f— :‘: —_
gives x , 2 5 and ¥y \/;

The first of these possibilities gives the maximum distance.

8 The Lagrange equations for this problem are

142\ =0
2+ 2:y =0
34+2\2=0

and putting back into the constraint gives 2\ = £1. The local extrema are therefore
t (1,2,3) and (—1, —2,—3) with corresponding £ =14 and F' = —14.
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To obtain the global extremum all the points on each of the boundaries must be
examined. However in this case the geometry is sufficiently simple to establish the
result. The region is the inside of the sphere of radius +/14 in the region where all
the variables are positive. The cost function comprises a series of parallel planes,
so the global maximum in the region is the local maximum at (1,2,3) and the

global minimum in the region is when all the variables are zero, namely (0,0,0) and
F=0.

9 (i) We are given that 2s = a + b+ ¢, so maximising A? with respect to b and

c, together with this constraint, gives

a(A?)
ab

Clearly & = ¢ and the triangle is isosceles.

B A?)
de

=s(s—a){s—c)+A=0, =s(s—a)s—b)+A=0

(ii) Now g is not fixed so to the above equations we add

O A?)
da

and we see that we must have a = b = ¢ and the triangle is equilateral.

=s(s—b)(s—c)+A=0

10  We need to consider the problem of maximising

5 ) ] an 2 T 2
V' = wr“h subject to the constraint (—) + (E) =b
r

Using the Lagrange multiplier approach we have the two equations

oV 2a°
E:2ﬂ'?ﬂh*—r3 A:
oV 5 2w
i S

together with the constraint itself. Eliminating A and selving gives

32 3a?
hP="—and+®=""
b 2b
Note that it has not been proved that these values give the maximum but this can

be inferred from physical or geometric reasoning.
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m 11 First notice that as & — oo then F — 0 and a careful Taylor expansion

shows that lim F = 0. Take any &£ > 1, then F takes a positive value so we know

k—1

there must be a £ — 1 maximum for £ > 1. We start the bracket procedure with

E = 1.1 and initial increment of 0.1.

k

1.1 1.2

1.4

1.8 2.6 4.2

/A

0.00721 0.01258

0.01962

0.

02566  0.02602  0.01995

The maximum has been bracketed by 1.8 < k£ < 4.2 and the quadratic algorithm

is given in Exercise 29(b}; the function q29 needs to be changed to qril.

The MATLAB computation follows:

function a=grii(x)

a=[x; (log(x)-2" (x-1)/(x+1))/(x-1)"2];

p=[lari1(1.8), qrii(2.6), qrii(4.
2.6000 4.
0.0260 0.

% gives u=1.

v = 0.

[u,v]=qapp(u,v)

% gives u =1

v = 0.

[u,v]=qapp(u,v)

% gives u =1

v = 0.

[u,v]=qapp(u,v)

% gives u =1
v = 0.
[u,v]=qapp(u,v)
u=1
v = 0.

8000
0266

.8000

0256

.8000

0256

.8000

0266

.8000

0256

2.3584
0.0266

2.2573
0.0267

2.2203
0.0287

2.2024 2.

0.0267 0

Clearly we are near the solution and a value of

practical use in the bearing.

2)1; u=p(1,:),v=p(2,:)
2000
0200

2.6000
0.02860

2.3594
0.0266

2.2573
0.0267

2203
L0267

k = 2.2 would be adequate for
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m 12 The function is now sufficiently complicated that hand computations become
extremely tedious. At least one set of calculations should be done by hand
but a computer implementation should then be encouraged. For a bracket the

calculations give

R 2 2.5 3.5 5.5 9.5
Cost, 83089 14899 1124 704 1418

and hence 3.5 < R < 9.5. Successive computations using the quadratic algorithm

described in Exercise 29(b) produce the output

p=[revi2(3.5),revi2(5.5) ,rev12(9.5)];u=p{1,:),v=p(2,:)
% gives u = 3.5000 5.5000 9.5000

v = -1123.5 -704.4 -1417.5
[u,v]=qapp(u,v)

u = 3.5000 b.BOOO 6.1210

v = -1123.5 -704.4 -801.9
[u,v]=qapp(u,v)

u = 3.5000 5b.2493 5.5000

v = -1123.5 -666.3 -704.4
[u,v]=qapp(u,v)

u = 3.5000 5.0068 5.2403

v = -1123.5 -631.6 -666.3
[u,v]=qapp(u,v)

u = 3.5000 4.8615 5.0068

v = -1123.5 -612.8 -631.6

where the function is in the M-file

function a=revi2(r)

a=[r;-2% (1000/r+pi*r2)* (1+(1-1000/(4*pi*r"3))"2)1;

m 13 The problem is now bevond hand computation, except for the first step. The
bracket given is not useful sinee whatever internal point is chosen, the minimum is

always estimated at the mid point. It shows that these techniques are not foolproof
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and a lot of checks must be inserted into any program. The following cutput was
produced from MATLAB.

p=[frev13(0.3147), frev13(0.5), frevi13(1)]; u=p(l,:),
v=p(2,:)

Y=[v(2);u’'l;

[u,v]=qapp(u,v);Y=[Y[v(2);u’]];

% repeated application of the last line of code gives

f2 -0.7729 -0.7584 -0.7524 -0.7508 -0.7503 -0.7501 -0.7500
x1 0.3147 0.5000 0.5829 0.80b1 0.6243 0.63584 0.6427
x2 0.5000 0.5629 0.6051 0.6243 0.6364 0.6427 0.6464
x3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

where qapp is the code in Exercise 29(b) and the function is given in the M-file

function z=frevl13(x)
t=(-x+sqrt (x2+4* (1-x"2)))/2;
z=[x;-(1-t+t™2)]1;

= 14 Note that z = acosd + VL2 — a2sin®6 and by differentiating the formula

for the velocity follows.

For the minimum, the bracketing

a=0;h=0.2;nmax=10;n=0;
zold=gril4(a);a=a+h;z=qrl4(a);c=[z];
while((z(2)>z01d(2))&(n<nmax))
n=n+1;zoldold=zold;zold=z;a=a+h;z=qrl4(a) ;h=2"h;c=[c,z];
end

yields
a 0.2000 0.4000 0.8000 1.6000 3.2000
V 0.2637 0.5100 0.8889 0.9893 -0.0389

so the bracket is 0.8 to 3.2.
The quadratic algorithm follows the code of Fxercise 29(b)
p=[qr14(0.8),qr14(1.6),qr14(3.2)];u=p(1,:);v=p(2,:);
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ce=[v(2);u’l;
[u,vl=qgapp(u,v);cc=[cc[v(2);u’]1];

% repeated application of the last line gives

V2 0.9893 1.0452 1.0545 1.0546 1.0546 1.0546
al 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
a2 1.6000 1.3959 1.2035 1.2815 1.2777 1.2773
a3 3.2000 1.6000 1.3959 1.2035 1.2815 1.2777

where the function gri4 is in the M-file

function a=qri4(x)

a=[x;sin(x)* (1+cos(x)/sqrt(9-sin(x)™2))1];

A similar caleulation for the maximum gives a=5.006.

1.05646
0.8000
1.2772
1.2773

m 15 The time taken is ¢t = % so the total cost is

C 5
— =2 4 0.0407 + 0.0020
D ”

The bracket procedure gives

v

5 10 20 40 80

C/D

1.06981 0.59113 0.37459 0.30559 0.34213

The quadratic approximation method follows:

vl v2 v3
v 20 A0 80 53.72005
C/D 0.37459 0.305659 0.34213 0.30881
v 20 40) 53.72005 4h. 78808
C/D 0.37459 0.3055R9 0.30881 0.30483
v A0 A5, 788b8 53.72005 44,3291
C/D 0.30559 0.30483 0.30881 0.30466
v 40) 44,3291 45, 78858 44.06968
C/D 0.3055R9 0.30466 0.30483 0.30466

The optimum speed is about 44 mph.
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16 The gradient and Hessian matrices are calculated as

20+ 2(x —y) + $(z +y+ 1)°
G =
=2z —y)+ 3z +y+1)7°
and

4+ 3x+y+ 1P 24 2(z+y+1)?
J =
24 3zt yt 1) 2+ 3=yt 1)?
(a) Steepest descent
At a = [O} then f = 0.0625 and G = {

0
the direction

0.25
0.25

o], [o2s]  [-0.25
2= g 095 | —0.25A

Note the minus sign since a minimum is required. Putting these values into

} so the first search takes place in

the function and minimising gives A = 0.4582 and hence the new point at
x = —0.1145,y = —0.1145 and f = 0.0352.

Further steps follow in a similar manner.

(b) Newton method
The use of a package like MATLAB is essential to make progress. The function,

gradient and Jacobian are computed in the M-file

function [£,G,J]=fnrevié(z)
f=z(1)2+(z(1)-z(2))" 2+{(z(1)+=z(2)+1)"4/16;

G(L)=2" (z(1)-z(2))+2" z(1)+(=z(1)+z(2)+1)"3/4;
G(2)=-2" (z(1)-z(2))+(z(1)+z(2)+1)73/4;

J(1, =4+ (z(1)+z(2)+1)"2" 3/4;
J(1,2)=-2+(z(1)+z(2)+1) 2" 3/4;
1(2,1)=1(1,2); J(2,2)=2+(z(1)+z(2)+1)2*3/4;

and the calculation follows
a=[0;0];[£,G,]J]=fnrevi6(a)
% gives f = 0.0625 G = 0.2600 0.2500

J = 4.7500 -1.2500
-1.2800 2.7500
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a=a-J\G’
% gives  a=-0.0870 -0.1304

[f,G,J]=fnrevi6(a)
% gives f = 0.032¢ G = 0.032¢ 0.0329

J = 4.4594 -1.54086
-1.5408 2.4594
a=a-J\G’
% gives a=-0.1023 -0.1534 and G very small

(¢) DFP

Two M-files for the function make the computations straightforward

function [f,G]l=frevli&(z)
f=z(1)2+(z(1)-z(2)) 2+ (z(1)+z(2)+1)"4/16;
G(1)=2"(z(1)-z(2))+2" z(1)+(z(1)+z(2)+1)"3/4;
G(2)=-2% (z(1)-z(2))+(z(1)+z(2)+1)"3/4;

and

function f=fcrevlé (x)

global a D

c=a-x"D;

f=(c(1)-c(2))2+c(1)2 + (c(1)+c(2)+1)4/186;

The DEFP algorithm then iterates to the minimum

global a D

a=[0;0] ;H=eye(2); [f,G]=frevi6 (a)

% gives f =0.0626 G = 0.2500 0.2500
for n=1:1
D=H*G’;lamda=fmin(’'fcrevils’ ,0,2);
aold=a;Gold=G;

a=aold-lamda*D;h=a-aold;
[f,G]=frevi6(a);y=G'-Gold’;
H=H-H*y*y*H/(y"*H*y)+h*h'/ (W™ y);
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end

a,gg=G',H,f

-0.1145 -0.1145 f = 0.0352
-0.1145 0.1145

0.3504 -0.0874

-0.0974 1.1078

% gives a

gg
H

Repeating the lines of code a further two iterations gives

-0.1027 -0.1540 £ = 0.0323 gg = 0 O
0.2056  0.1940
0.1940 0.5404

jub]
Il

m 17 The problem is not so straightforward since the variables X and Y are
constrained and the search is not over the whole plane. It is reasonably simple
to evaluate the function on a spreadsheet for X increasing from — 0.25 by steps of
0.05 and 0.25 and Y increasing from 0 by steps of 0.1 to 2. It may be observed
that

Maximum value of 1.05bat X =10, ¥ =0.45 in the interior of the region
Minimum value of 0.528 at X = +0.2h, ¥ =2 on the boundary of the region
A more accurate value of 1.0557 at X = 0,Y = 0.4736 for the maximum can be

found by any of the methods in the text. Typically one of the extreme points, in

this case the minimum, is on the boundary.

m 18 The sketch of the progress over the first steps of Partan is shown in Figure
10.1.
The calculations of the first few steps are straightforward and give

Steepest descent

1 1 3
0 — 1 9 1 4 1
X1={0},f1=1;X2=[2],f2=§;X3= ? :fSZZ;Xél: ﬁi :f4—§
0 - -
2 2
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Partan
0 l 1 l 1 1
X1:|:O:|’fl:l;XZ:[g],fQZQ;ZQZ % 5f:4;X8:|:1:|af3:O
2

Note that Partan obtains the minimum after one complete cycle. This method
was an improvement on steepest descent but has been superseded by DFP and

conjugate gradient methods which have been found to be superior in performance.

Figure 10.1: Illustration of the first steps of Partan in Exercise 18

19 The problem is to minimise the approximating quadratic

fla+h)=fla)+hTG + %hTJh

subject to h’h = L?. A Lagrange multiplier is required, so extending the argument

in section 10.4.3 gives the modified gradient as

0=G+Jh+Ah=G+ (J+ADh

and hence

h=—(J+A)7'G

The implementation suggested can be computed straightforwardly for this exercise.

The derivatives are obtained and hence
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50

[l AR e o

Since there is no improvement the next step is to take

IS HEN

{42 Y[

and the methoed is ready to proceed to the next iteration.

50

m 20  Firstly use Taylor’s theorem; it may be checked that, to first order,

fla +h)="f(a)+ Jh

Secondly the gradient of F'is given by

[ OF T [ ofi  Of2 Ofm ]
Dy dry  Bry  Bxy
aF afi O fn
0= | dxs | =2 Bz Bzo | £—23TF
aF afi O fn
| e B

Thus

0=J"(f+Jh) = h= (I3 'J7¢

where all terms are evaluated at x = a, and the required result follows.

The algorithm is similar to the Newton algorithm except that the updating is done

according to the revised formula.
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= 20(a) Here

T —y 1 1
f— 4 J=
{§@+y+n4 an {%@+y+n %@+y+n}

so the sequence of calculations is

[0 [0 1 -1
X‘_o} F=10.0625 f__a%] J‘_&505]

[ —0.25 [0 (1 —1
x= _—{125] F=0.0039 f = j10625} T= | 0.25 (125}

[ —0.375 [0 [ 1 -1
x= _0375} F=0.00024 f___OIH56} T = 0.125 0125}

20(b) The functions in this exercise are more complicated, although the method

is identical.

1 —1 —1
fJ oy 1 . JJ i BT w
{1+2m+y Lﬂ+2m+w2 ﬂ+ﬂw+yﬁJ
The computations follow in MATLAR
x=[1;1];

a=1/(x(D+x(2)); b=2*x(1)+x(2)+1;f=[a;x(1) /b]
% gives  f= 0.5000 0.2500

J=[-a"2,-a"2; (1+x(2))/b"2,-x(1)/b"2]
% gives J= -0.2500 -0.2500

0.1250 -0.0625
x=x-inv(J*I)* I £ ,F=f"*f
% gives x= 0.3333 3.6667 F= 0.3125

Repeating these three lines of code gives successive iterations. From the

calculations the iterations gives x(1) approaches zero and x{2) approaches infinity!

m 21 Fitting data to any curve, except for a straight line, is quite a tricky job.
Optimisation gives a method of finding a least squares fit of given data to a known
curve. The problem needs the method of Exercise 20 so the vector of functions and

the matrix of derivatives are required.
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1—5 ) 0
1 1 1
U e N R B R R ROk
1 1 2
Ca+2b (a+20)2  (a+ 2b)2
b L 1 3
L a+ 3b - L (a+3b)% (a4 3b)2 ]
0 10
1 —0.4 11
XZM F=129 f£= | I=1] ,
0.8 13

[ 0.0654 “ [0.8734 0 “
1.07 —0.1463 0.5569 0.5569
- [0.27} F=0.239 1= f0.3211J T= LO.3858 0.7716J

~0.3319 0.2829 0.8488
-0.0194 1.0391 0

0.9810 0.0023 0.3572  0.3572
:{0.6922]1?:0'0316 F=1 01228 T= 101787 03575
—0.1271 0.1070  0.3209

The computations continue until the values of ¢ and b do not change significantly.

m 22 It is agsumed, without loss of generality, that A is a symmetric matrix.

Putting the search direction in the quadratic gives, using the symmetry of A,

f+c+bla+ Abfd+ %(aTAa + 22al Ad + \2dTAd)

and differentiating

of
0=>r = bTd +a” Ad + AdTAd
Collecting up the terms
N —(b+ Aa)Td
min — dTA_d

gives the required result.
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23 To use the results of Exercise 22 it is necessary to write the function in the

form

v ] e[ 310

and the gradient is evaluated as

and

The second iteration follows

- []-nee [2] - 1)

and

The third iteration commences within the data

0.5 -1
o [05] rooman [ ]

Because the function is a quadratic the Newton method must converge in a single

iteration.
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m 24 It is necessary to check that the solution given in appropriate.

14+6) -
Yy = eb andy”:( ;; )6‘5

. 14+ 6\% o 14 b
14+ bles —b| — i eb - L e
( b b

and all the terms in the right hand side cancel to zero, so the differential equation

1+bY &
yyn_y/Q_l_yf( b? )e‘E

is satisfied. Also the point « = 0,4 = 1 satisfies the equation. To evaluate the

derivative at x =0

Thus given « the value b can be computed and

y(1) = (14 b)ed — b

so that

fla) =[(1+b)et —b—3]

Using the bracket 1.4 < a < 1.6 the values are calculated to be

o b f

1.4 2.5 0.0776
1.5 2 0.0029
1.6 1.6667 0.0369

and the quadratic algorithm gives a* = 1.518,b = 1.9278 and f = 8.9 x 107°; the
final iterated value is @ = 1.523, 6= 1.9133.

m 25 and 26  Exercises 25 and 26 are extended problems that are open ended, so

no adviee is given on the solution of these two questions.

@ Pearson Education Limited 2004




11
Applied Probability and Statistics

Exercises 11.3.7

w1 Let X = lifetime, so X ~ N{u,2500)

1(a) X =780, n =30

Using 295 = 1.96 from the normal table, the 95% confidence interval for p is

780 + 1.96 % 50/v/30 = (762, 798)

1(b) We require n large enough so that

1.96 x b0
———— <10

Te S

1.96 % 502

hence n > ( 70 ) = 06,04 ie. n =97,

= 2 [rom the data,

X =76.06,Sx = 31.85,n = 36

Using 2p.025 = 1.96 we have the confidence interval

X +1.968x/+/n = (65.7,86.5)

m 3 From the data

X — 8725, Sxpn_1 — 1064, n — 12

Using t.g25,11 = 2.201 from the {¢-distribution table, the 95% confidence interval
for the mean is
8.725 + 2.201 x 1.064/+/12 = (8.05,9.40)
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4 Given sample average X — 73.2, standard deviation 5.4 and size 30, and using

t.025,20 = 2.045, the 95% confidence interval for the mean is
73.2 4+ 2.045 x 5.4/+/30 = (71.2,75.2)

The value (75) in the hypothesis lies within the interval and the hypothesis is

accepted.

5 Given sample average X — 3.42, standard deviation 0.68 and size 16, and

using t.gos,15 = 2.947, the 99% confidence interval for the mean is

3.42 4 2.947 x 0.68/+/16 = (2.92,3.92)

6 Given sample average X = 26.4, standard deviation 4.28 and size 32, and
using tgo5,31 = to2s5,20 = 2.045 (alternatively the normal distribution figure of
1.96 could be used with a slight loss of accuracy), the 95% confidence interval for

the mean is

26.4 + 2.045 x 4.28//32 = (24.9,27.9)

7  Given sample average X = 56, standard deviation 3 and size 10, and using

t.025,0 = 2.262, the 95% confidence interval for the mean is
56 + 2.262 x 3/+/10 = (53.9,58.1)

The value (58% ) in the hypothesis lies within the interval and the hypothesis is
accepted at the 5% level.

8  (Given respective sample averages X4 — 36300 and Xp = 39100, standard
deviations Sy, 1 = 5000 and Sg,_1 = 6100, and sizes ng = ng = 12, the

pooled estimate of standard deviation is

S _\/11><(50009+61002)

= 5577
22
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Using 005,20 = 2.074 the 95% confidence interval for ug — pg4 is

/2
39100 — 36300 + 2.074 x 5577 x 3= (—1900, 7500)

Because zero lies within this interval, the hypothesis that pup > p4 is rejected.

9 From the data, respective sample averages X4 — 7281 and Xp — 6885,
standard deviations S4 ,_1 = 419.1 and Sp 1 = 402.6, and sizes ng = np = 8,

the pooled estimate of standard deviation is

2 2
g _ 7 % (419.12% 4 402.6%) 4109
P 14

Using 05,14 = 1.761 and ?.g2514 = 2.145, confidence intervals for p4 — up are

2
90% : 7281 — 6885 + 1.761 x 410.9 x \/; = (34, 758)
2
95% : 7281 — 6885 + 2.145 x 410.9 % \/; = (—45,837)

The hypothesis that 4 = ug is rejected at the 10% level but accepted at the 5%

level.

10 The sample proportion p = % = 0.0704 and n = b40.

Using z 95 = 1.645 and z 95 = 1.96, confidence intervals for the true proportion

p are

0.0704 » (1 — 0.0704)
K40

0.0704 » (1 — 0.0704)
540

90% : 0.0704 + 1.645 x \/ = (0.052,0.089)

95% : 0.0704 £+ 1.96 x \/ = (0.049, 0.092)

The hypothesis that p < 0.05 is rejected at the 10% level but accepted at the 5%
level. Alternatively, the test statistic

B 0.0704 — 0.05 B
1/0.05 x (1 — 0.05)/540
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leads to rejection at both 5% and 10% levels. The test statistic is more accurate

(the confidence interval is approximate).

11 Using 245 = 1.645, the 90% confidence interval for proportion is

p(l —p)
T

ST
P[p—ﬁ < 1.6451/u} — 0.9
T

so with probability 0.9 the maximum error is 1.645./p(1 — p)/n. Although p is

unknown before the experiment, a figure in the region of 0.25 is expected, hence

1.645UM < 0.05
T

Lo 025075
— (0.05/1.645)2

P+ 1.645

Thus

we require

from which

203

If in fact n = 200, the sample proportion is p — % = 0.275, and the 90%

confidence interval for p is

0.275 » 0.725

0.275 £ 1.645\/
200

= (0.223,0.327)

12 Using sample proportions p; — 0.31 and ps — % = 0.493, and z g5 — 1.645

and 2z gos — 1.96, confidence intervals for ps — p; are

151(1—151)+152(1—152) 12

00% : f —p1 + 1.645| .

— (0.08,0.28)
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1/2
= (0.06, 0.30)

(1—p1) n p2(l — p2)

100 150
The hypothesis that p; < po — 0.08 is therefore accepted at the 10% level but
rejected at the 5% level.

90% : P — 1 + 1.96| 22

m 13 Using sample proportions p; = % = 0.1667 and po = ﬁ = 0.1, and

%005 = 1.96, the 95% confidence interval for py — po is

1/2

s
(1—pu) — (0.003,0.130)

b1 — po + 1.96| 21

n P2(1 — po)
180 320

The hypothesis that p; > po is therefore accepted at the 5% level. Alternatively,
the test statistic

7 P1— P2
[6(1 - 5) (185 + 330)]
30482

(where p = 0. = 0.124) again leads to the hypothesis that p; > po is accepted.

172 =217 > zoo5

-
<

Exercises 11.4.7

m 14
X
Y 1 2 3 total
1 0 0.17 0.08 0.25
2 0.20 0.11 0 0.31
3 0.14 0.25 0.05 0.44
total 0.34 0.h3 0.13 1

14(a) Marginal distributions of X and Y (summing rows and columns) are

P(X =1)=034, P(X =2) =053, P(X =3) =0.13
0.25, P(Y =2) = 031, P(Y =3) = 0.44
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14(b)
P(X=2NY =3) 025
P(X =2) 053

PY=3|X=2)= = 0.472

14(c) The mean and variance of X are given by

E(X)=1x034+2x053+3x0.13=1.79
E(X*)=1x034+4x0534+9 x0.13 = 3.63
so 0% = 3.63 — 1.79% = 0.426

Similarly the mean and variance of Y are given by

E(Y)=1x025+2x0.31+3x044 =219
BEY?) =1x025+4x031+9x044 =545
so 0% = 5.45 — 2.19% = 0.654

The expected value of the product XY is given by

EXY)=1x0+4+2x017+3x0084+2x02+4x0.114+9x0
+3x0.14 46 x0.25 +9 x0.05=3.79

Hence the correlation coefficient is

3.79 - 1.79 x 2.19

s 15

PXY = 0426 % 0.654 0246
1/2
E(X) = xdxr =
—1/2
1/2
E(X?) = / x3dx =
—1/2
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1

w16 Fromcr<y<cx+1weinfer = <2 < ¥ 50
v (y) Z/fX,Y(if:'y)dl"
y/c Y ,
o lda'::E fo<y<ec
- o 1de =1 ife<y<1

1 1 :
f(yil)/cldle—z(y—l) ifl1<y<1l+e

m 17(a)
1 = =
8 1 1
— 1/ me*w/2[7267y/2}<1>odm
&
1
— 161/2/ Ie*w/QdI
4 1
]_ ]_ [sle}
= f—e_l/g[;r:e_m/ﬂ‘fo + _6—1/2/ e—/2 g
2 9 .
1 1
= 3ot g e
= i = 0.bh2
2e
17(b)
| 1 o0
fY(y) = _/ ZEG_(m_l_y)/ngj = _6_9/2/ xe—m/de
8 0 8 0
_3»'/2 o0 1
= € [7m67w/2|80 +/ efw/de] _ 7€,y/2
4 0 2
Hence

! 1
PY >2) = / 56—9/2@ — e V2P = - = 0368
2
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18 From the data, if X denotes height and Y denotes weight, X = 174.26,
Sx = 7184, Y = 75.7, Sy = 11.703, XY = 13270 so the sample correlation

coefficient is
B 13270 — 174.26 % 75.7

_ — 0.034
4 7184 ~ 11.703

19 From the data,
X =14.23, Sx =2457, Y = 16.68, Sy = 3.4, XY = 24347

go the sample correlation coefficient is

| 243.47 — 14.23 x 16.68

= 0.732
2.457 x 3.4
20 Given a sample correlation coefficient r = 0.7 with n = 30, and using
2025 = 1.96,
2 x 1.96
¢ = exp (Xi) =2.126
V27
and the 95% confidence interval for correlation is
1 —ec(l— 1 — (1 —
troelor) 14r = r/eN g s s
l+r+e(l—r) 1+r4+(1—r)/c

21 From Exercise 18, r = 0.934 with n = §&. Using 2 05 = 1.96,

2 < 1.96
c=exp ( = Hh.772
V5 )

and the 95% confidence interval for correlation is

(1+rc(1?") I+r—{1-7)/c

L+r+e(l-r)’ 1—|—7°—|—(1—7‘)/c) ~ (0.67,0.99)
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m 22 From the data, if X and Y denote mathematics and computer studies marks

respectively,
X —56.80, Sx = 8.880, ¥ = 54.40, Sy = 12.05, XY — 31374

so the sample correlation coefficient is

31374 — 56.8 x 54.4
N 8.88 % 12.05

= 0.444

Using z g5 = 1.645,

2 x 1.645
¢ — cXpP W = 2221

and the 90% confidence interval is

(1—|—7’—c(1—7‘) l+r—(1—-r)/c

L+r+te(l—r)’ 1—|—7°—|—(1—7‘)/c) = (0.08,0.70)

Similarly using zgor = 1.96,

2 % 1.96
¢ =exp (T/ﬁ) = 2.h&8

and the 95% confidence interval is (0.00,0.74). This suggests that the correlation
coefficient is significant at the 10% level but is marginal at the 5% level. The test

statistic

ﬁl 1+ 0.444

A— n
2 1 — 0.444

= 1.968

leads to a similar conclusion. The ranks of the data are as follows:

Math. 3.5 20 2 16.5 13 16,5 13 7 19 3.5
10.5 5 18 10.5 7 7 15 13 9 1
Comp. 14 165 8 20 4 15 11.5 4 185 6.5

6.5 165 9 18.5 10 115 2 13 4 1
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The rank correlation is r, = 0.401, and the test statistic
A =r./n—1=1748

This is significant at the 10% level. (The approximate formula for rank correlation

gives a value 0.405, from which Z = 1.767 with the same result.)

/01/: Ix vz, y)dyde = /01 /: (1 — y)dydx

1
~ [ ely- e
0

] 23(3.)

1
1 1
— ¢l e — 2?4+ Za?
2 2 6 0
c
6

Since the joint density must integrate to unity we must have ¢ = 6.

23(b)

/2 /4o

3/4 1
:/ C(l—y)ydy+f L —y)dy

1/2 3/4
N {yQ y3}3/4 3 [ yQ}l
=c|l— - = + —cly — —

2 3y, 4 2 a4
IS I T T ]
32 192 & 24 2 2 4 32
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23(c)

1 Y2 1 1 "
/c(ly)dyzG{yQ} :6(2x+?>for0<m<1

y
/ el —y)de =6(1—ylyfor0 <y <1
0

Jx(x)

fy(y)

m 24 Individual density functions for X and Y are

Fxla) = {2 for 20.8 < x < 30.3
0 otherwise

_ (2 for 30.1 <y < 30.6
frly) = {O otherwise

By independence, the joint density function is therefore

Fxv(zy) = {4 for 29..8 <z <303 and 30.1 <y <306
0 otherwise

The required probability is therefore

30.3 pmin{30.6,240.6}
PO<Y —-X <06) = / / Adydz
20.8 Jmax{30.1,xz}
30.0 x+0.6
= ddydx
29.8 30.1

30.1 306 30,3 £30.6
+f 4dyd;z:+/ / ddydzx
30,0 J30.1 301 Ja

30.0 30.1
=4 {/ (x —29.5)dx + / 0.5dx
20.8 30.0

+ /3 30.3(30.6 ~ m)dm}

0.1
5 30.0 2 30.3

x
=4 [E — 29.52]  FO5x 0.1+ [30.62 — ?]

29, 30.1

= 0.84
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Alternatively, the shaded area 3o-( | > - n -

must be excluded from the

square. The two parts of dos

shaded area together form

a square of side 0.2, so Y 3¢ -

st alof 0,

o X Uo—02 XU 308 p L
0.5 x 0.5 =084

30'1 I~ 3
2014 . - %

298 299 30:0 Joi 3 Yo%

Exercises 11.5.5

m 25 From the data,
X =16.370, 5, = 6.789,Y = 36.110, S, = 14.576, XY = 689.343

Hence
689.343 — 16.37 x 36.11

6.7892
4=236.11—213x 16.37 = 1.22

=213

[
Il

m 26 From the data,
X =6.5, Sx =3.452, Y =101.5, Sy = 50.74, XY = 834.25

Hence the regression coefficients are

834.25 — 6.5 x 101.5
3.4522
101.5 — 14.64 x 6.5 = 6.315

= 14.64

Y
|

a

When load (X) is 15kg, a deflection of 226 mm is predicted.
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m 27 From the results in Example 11.17 we find a = —2.294 and b= 0.811, and
when 15V is measured a tension of 9.88 kN is predicted.
Using t.025,12 = 2.179 and

Sp— /52 — 5252 — /16.25 — 0.8112 x 34.51 — 0.360

(remember that X and Y are essentially reversed compared with Example 11.17),

the 95% confidence interval for tension when 15V are measured is

1+ (15— 12.07)?/24.51

= (9.62,10.14
12 ( H )

9.88 + 2,179 < 0.36 x \/

m 28(a) From the data,
X =34.17, §x =11.70, Y = 453.8, Sy =59.34, XY = 15944

and the regression coeflicients are

15944 — 34.17 x 453.8
11.72
a =453.8 — 3.221 » 34.17 — 343.7

o
I

= 3.221 (using unrounded figures)

For advertising x = 6 (£ 6000), sales of £ 537,000 are predicted.

28(b)  Sg = /59.347 —3.2212 < 11.72 = 45.8 and using f2510 = 2.228 the

95% confidence interval for regression slope is

. Sg
b= 1 025,10

= (0.46,5.98)

The hypothesis that b = 0 is rejected at the 5% level.

28(c) The 95% confidence interval for mean sales when = = 60 is

1+ (80 —34.17)2/136.8
10

h3T 4+ 2,228 x 45.8 x \/ = (459,615)
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29 From the data,
X =115, 8y =2.291, ¥ =13.25, Sy =299, XY = 158.38

so the regression coeflicients are

158.38 — 11.5 x 13.25
2.2917
13.25 — 1.143 x 11.5 = 0.107

b —1.143

a

and Y = 16.1 is predicted when = = 14. Also using

Sp=1/5% — 0282 = 1.442

and ¢ g5 = 1.943, the 90% confidence interval for mean number of defectives per

hour when z = 14 is

1+ (14 —11.5)%/5.25
6

16.1 £ 1.943 = 1.442 x \/ = (14.4,17.8)

30 Given a model (with no constant) of form

Y, =bX; + E;
and minimising
Q=D _IYi—bXi’
i=1
we have
de) " -
— =2 XY, —bX;| =0
i =23 XX
hence .
E _ Zq;:l X?,Y;,
> X7
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= 31 [f X denotes voltage and Y = X/R denotes current then from the data,
3 XY, = 5397, ¥, X2 =650

so that (using the result of the previous exercise)

o

= 8.30

The estimated resistance is K — % = 12002,

m 32 Taking logs we have
mP+AInV,=1InC
This is of the form Y, = a + bX; with
Y=InFE, a=InC, b=—-X X;=InV,
From the data,
X — 4272, §x = 02564, ¥V = 3.423, XY = 14.452

so that
bh— —2664 and & — 14.80

Hence
C=c =269 %10 and A= b= 266

When V = 80cm?, a pressure P = 22.9kg/cm3 is predicted.

m 33 Taking logs we have

InY,=Ina+bln X;
or Y/ =d + bX]

From the data,

X' —6.183, Sxr = 1.516, ¥/ = 2377, X'V’ = 12.266
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50
b= —1.059, @ =&927 and & = 7533

For a lot size X = 300, a unit cost of 17.9 is predicted.

Exercises 11.6.3

34 Under the hypothesis, P(4) = 1, P(B) = 2, P(C) =

2 1
7 7 7

observed probability expected x? contribution
A 63 4/7 h7.14 0.601
B 22 2/7 28.57 1.511
C 15 1/7 14.29 0.035
Total 2.147

No parameters were estimated (¢ = 0) so we compare x? = 2.147 with X8.05,2 =
5.991. The hypothesis is accepted.

35 The total number of books is 640, so a uniform number would be 128 per

day. Hence
Obs. (fi): 153 108 120 114 145
Exp. (eg): 128 128 128 128 128
x? contribution: 4.9 3.1 0.5 1.5 2.3

The total chi-square value is
x° =123

and this is greater than X?05,4 = 9.49 (significant at 5%, but not significant at
1%).

36 The observed mean number of flaws per sample is (12 + 6 x 2)/50 or 0.48.
Setting A = 0.48, the Poisson probabilities are given by )\'I“e”‘/k! and hence

expected values as follows:

number
of laws  Obs. (fx) probability  exp. (ex) x® contribution
0 32 0.619 30.9 0.036
1 12 0.297 14.9 0.547
= 2 6 0.084 4.2 0.761
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The total chi-square value is

X2 = 1.35

which is very small, so the Poisson hypothesis is accepted.

37 The observed average number of a-particles per time interval (taking class

> 10 as 11 for this calculation) is
(203 4+ 2 %383+ ...+ 11 x6)/(B7+ 203+ ... +6) =3.87

Using this value for A in the Poisson probabilities and proceeding as in the previous

exercise a total chi-square value
Y2 =12.97

is obtained. One parameter has been estimated and used for predicting the exp-
ected values, so the comparison is with X,205,10 = 18.3, and the Poisson hypothesis

is accepted.

38 Using the measured average and standard deviation, probabilities can be

obtained from the normal table as follows:

X—-10 6510

P(X <6.5)=P( s <3 ) =®(—1.75) = 1 — (1.75) = 0.0401
P(X <7.5)=1—®(1.25) = 0.1056
P(X < 85)=1—®(0.75) = 0.2266
P(X <9.5) =1—®(0.25) = 0.4013
P(X < 10.5) = $(0.25) = 0.5987
P(X < 11.5) = ®(0.75) = 0.7734
P(X < 12.5) = ®(1.25) = 0.8944
P(X < 135) = @(1 75) — 0.9599
P(X < 13.5) = 0.0
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The class probabilities can now be inferred by
P65 < X <75)=PX <75)—P(X <6.5)=0.0655

and so on, hence the following table:

Class Probability Expected Sample 1 Sample 2

< 6.5 0.0401 4.01 4 3
6.5-7.5 0.0655 6.55 6 6
7.5-8.5 0.1210 12,10 16 16
8.5-9.5 0.1747 17.47 16 13

9.5-10.5 0.1974 19.74 17 26
10.5-11.5 0.1747 17.47 20 7
11.5-12.5 0.1210 12,10 12 19
12.5-13.5 0.0655 6.55 6 5

> 13.5 0.0401 4.01 3 5

For sample 1, x¥? = 2.48 which is not significant.
For sample 2, ¥? = 15.51 which exceeds X.2025,6 = 14.45 (significant at 2.5% level)
but does not exceed X.201,6 = 16.81 (not significant at 1% level). The second

subscript is m —t — 1 with m = 9 (classes) and ¢ = 2 (parameters estimated).

m 39 The contingency table is as follows:

Perfect Intermediate Unacceptable Total
A 89 (89.04) 23 (21.44) 12 (13.52) 124
B 62 (58.88) 12 (14.18) 8 (8.94) 82
C 119 (122.07) 30 (29.39) 21 (18.54) 170
Total 270 65 41 376

The expected values are shown in brackets,

270 x 124

= §9.04
376
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and so on. Hence

(89 — 89.04)2 (21 — 18.54)2
X2 e —— —I— [N —I— e
89.04 18.54
= 1.30
This is less than X,205 (3-1)(3—1) — 9.49, so there is no significant difference in

quality.

m 40 The contingency table (with the expected values in brackets) is as follows:

o.k. defective total
442 (441.6) 8 (8.38) 450
536 (539.8) 14 (10.25) b50
b44 (539.8) 6 (10.25) b50
397 (392.5) 3 (7.45) 400
593 (588.8) 7 (11.18) 600
442 (441.6) 8 (8.38) 450
434 (441.6) 16 (8.38) 450
195 (196.3) 5 (3.73) 200
438 (441.6) 12 (8.38) 450
594 (588.8) 6 (11.18) 600
bab (588.8) 15 (11.18) 600
b4l (539.8) 9 (10.25) b50
5741 109 5850
o (442 —441.6)° (9 — 10.25)2 _ 5
Hence, x* = TALE s T 20.56 which exceeds x7p 11 =

19.68 but is less than X,2025,11 = 21.92. The variation is significant at the 5%
level. For a 2 x ¢ table of this form, effectively a comparison of ¢ proportions, it

is quicker (and equivalent) to compute

c

=3 (f; —np)°

= nip(1 —p)

where f; is the number of defectives in column j (total n;)and = > f;/ > n,
j=1 " j=1
is the overall sample proportion of defectives.
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m 41 The contigency table (with expected values in brackets and adjusted residuals

underneath) is as follows:

Spending Jacket Shirt Trousers Shoes Total
level

Low 21(36) 94(92) 57(47) 113(110) 285
—3.0 0.4 1.8 0.4

Medium 66(66) 157(169) 94(87) 209(204) 526
0.0 —1.5 1.0 0.7

High h&(43) 120(110) 41(57) 125(133) 344

2.9 1.3 —2.8 —1.1
Total 145 371 192 447 1156

Chi-square = 20.7, d.f. = {4 —1)(3 — 1) = 6, so compare with X(2).005,6 = 185
significant at 0.5% level. High-spending customers are tending to buy more of the
jacket and less of the trousers. For low-spending customers it is the other way

round.

m 42 If p is the proportion requiring adjustments, the number of such sets in
a sample of size n is binomial with parameters n,p. With n = 4, to test the

hypothesis that p = 0.1 we have

0.9* = 0.6561
4 3
= {4 0.9°0.1 = 0.2916
4 2
=1y 0.9%0.1% = 0.0486
4 3
=5 0.9 x 0.1° = 0.0036
Hence the following table:
k fr Dh er = 200p; x° contribution
0 110 0.6561 131.22 3.43
1 73 0.2916 h8.32 3.70
2 16 0.0486 9.72 4.06
3 1 0.0036 0.72 0.11
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The total chi-square value is x* = 11.30 which is significant at 5% (x%5 3 = 7.82)
but not quite significant at 1% (X.201,3 = 11.35).
Using proportions, the total number of sets requiring adjustments is 73+ 2 x 16 +

3 x1=108, so

108
p=—— =0.135
800

Using 2 gos = 1.96 and zggs = 2.576, confidence intervals for the proportion p of

sets requiring adjustments are

-~

p(1—p)
800

17
9% : P+ 2.5761/W — (0.104, 0.166)

This indicates that p > 0.1, significant (just) at the 1% level.

95%: p+1.96 = (0.111,0.159)

Exercises 11.7.4

m 43 We must have

1/ fx(z)de = c/ ve~ P dx
0 0

g0 ¢ = 4. The m.g.f. is then

MX(t):/ eme(:zf)dm:élf zet=2% gy
0 0

_ 4 [me(t72)w]oo o 4 - S(tig)wdﬂf

t—2 ©t—2/,

4
= g provided t < 2

(t—2)

@ Pearson Education Limited 2004




624 Glyn James: Advanced Modern Engineering Mathematics, Third edition

Hence g
EX)=M(0)= ———= =1
* (t =2
24 3
E(X?) = M%(0) = ==
X (t—2)4|,_, 2
1
Var(X) = B(X?) — [B(X)]* = 3
44 If X4,...,X,, are independent Poisson random variables with parameters

AMaeeydpandif Y =X + ...+ X, then

My (t)=Mx, (t)... Mx, (t)
— exp[A (e — 1)]...exp[A. (e — 1)]
—exp[(A1 4+ ...+ A)(ef = 1)]

Hence Y is another Poisson random variable with parameter A = X\ + ...+ A,.

45 Numbers of breakdowns in one hour are separately binomial with parameters
ny = 30,p; = 0.01 and ny = 40, p; = 0.005 respectively, and hence approximately
Poisson with parameters A; = 0.3 and Xy = 0.2 respectively. The total number of
breakdowns per hour is therefore also approximately Poisson with A = A1 + Ay =

0.5, and
2

A
P (three or more) =~ 1—e 1+ X+ g) = 0.014

46  Let the proportion defective be p. By the Poisson approximation,

Aee—2

Pk defective in 100) ~ X

where A = 100p. The requirement is

PE<1l)=e M1+A)>09

0.531 __
100

0.0053. Therefore at least 99.47% of servomechanisms must be satisfactory.

from which A < 0.531 (solving this as a nonlinear equation) and hence p <
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m 47 With

1
fz(z) = eTE 2 oo < 2 < o0

V2T

the m.g.f. is

Mz(t) _ x/%/ etzefzz/de

1 - 7l(z272tz+t2) /2
A 2T /oo
= ¢f'/2 /OO : eié(zft)zdz

The integrand is the p.d.f. of a normal random variable with mean ¢ and standard

deviation one, hence
My(t) = ' /2

Exercises 11.9.7

= 48 Hrom the table (Figure 11.29), with n = 50,p = 0.1 so that np =5, we read
off the Shewhart warning limit as 9.5 and the action limit as 13.5. For the given
data, the warning limit is exceeded at samples 3, 9 and 11, and the action limit is

exceeded at sample 12. The upper control limit is given by

UCL =np+3+/np(l —p)=114

and this is first exceeded at sample 9.

m 49 From Figure 11.29 with n = 100, p = 0.02 so that np = 2, we have Shewhart
warning and action limits 5.5 and 7.5 respectively. The warning limit is exceeded
three times (samples 20, 22 and 25) before the action limit is exceeded at sample

28. The upper contrel limit is given by

UCL =np+3y/np(l —p) =62

and this is first exceeded at sample 25.
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50 Using ¢ =3 and n = 10, the Shewhart warning and action limits are

ew = 1.960/y/n = 1.86
cq = 3.090/y/n = 2.93

(above and below the mean). Relative to the mean, the warning limit is exceeded

at samples 3 and 9, and the action limit at sample 12.

51 Using ¢ =3 and n = 10, the Shewhart warning and action limits above the

design mean p = 12 are
4+ 1960/ /n = 13.86

o+ 3.090//n — 14.93

The warning limit is exceeded several times (at samples 6, 12, 15, 17 and 18) before

the action limit is crossed at sample 19.

52(a) Using ¢ =3 and n = 10, the cusum parameters are

r— 7 0474 (relative to the mean)

2/

ag
h=5h—=4.74
Jn

The chart is built up in the following table:

value ‘—0.2 1.3 21 03 -0.8 17 13 06 25 14 16 3.0
cusum ‘ 0 0.83 245 228 1.00 2.23 3.06 3.18 5.21 6.13 7.26 9.78

The decision interval (h) is exceeded at sample 9.

52(b) Using r = 0.3 and o,n as above, the GMA action limits are

"% 4193

+3.09
2—r.n
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(relative to the mean). The chart is built up in the following table:

value ‘ -0.2 13 21 03 -08 1.7 13 06 25 14 16 3.0
GMA ‘—0.06 0.35 0.87 070 0.25 069 0.87 0.79 1.30 1.33 1.41 1.89

The action limit is exceeded at sample 9.

53 For the cusum chart we have p=12,0 =3 and n = 10, so

a
ot -2 1247
W
h=5-2_ — 474
BV

For the GMA chart with » = 0.3 we have action limits at

ro o
— = 10.77 and 13.23
2—7r./n o

The control charts are built up in the following table:

1t 3.00

X 128 11,2 134 121 136 139 123 129 138 13.1
cusum | 0.33 0 093 0556 168 310 293 335 468 5.3l
GMA 12,24 11.93 12,37 1229 1268 13.05 12,82 12.85 13.13 13.12
Xn 129 140 13,7 134 142 13.1 140 140 151 14.3
cusum | 5.73 7.26 848 941 1113 11.76 13.28 14.81 17.44 19.26
GMA [13.06 13.34 13.45 1343 13.66 1349 13.65 13.75 14.16 14.20

The cusum chart indicates action at sample 10, the GMA chart at sample 12.

54 Using n = 50,p = 0.1 so that np = 5, the cusum parameters from Figure
11.31 are r = 7,h = 8.5 (nearest values).

—_
(e

14
19

[
Lo
LS| Sy
O | W
[ SR
NeRiie]

-3
—
o

The chart indicates action at sample 10.
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55 Using n = 100, p = 0.02 so that np = 2, the cusum parameters from Figure

11.31 are r = 3,h = 5.5 (nearest values).

count 335 3 65 0 3 1 3 5 4 2 4 3 5 4
cusuimn ‘ co2 2 4 1 1 0 0 2 3 2 3 3 5 6
count 345 6 H 6 4 4 7T 5 4 8 5 6 6 7
cusum ‘ 6 7 9 12 14 17 18 19 23 25 26 31 33 36 39 43

The chart indicates action at sample 16.

56 For the Shewhart chart we have n = 12,0 = 1, and hence warning and action

limits given by
cw = 1.960/y/n = 0.57

cq = 3.090/y/n = 0.89

For the cusum chart we have

r= 235 = 0.144 (relative to the mean)
o
h=5— =1.443
N
For the GMA chart with v = 0.2, the action limit is
3.00, /—— 7 — 0.207
' 2 — Tﬁ 7
f(m 0.1 03 -0.2 04 0.1 0 02 -01 02 04 05
cusum 0 .156 0 .266 .211 .067 .123 0 .056 .311 .667
(%MA 020 076 .021 .097 .097 078 102 .062 .089 .152 .22]
X 01 04 06 03 04 03 06 05 04 02 03
cusum 623 878 1.334 1.490 1.745 1.901 2.357 2.712 2.968 3.024 3.179
(%MA 197 238 310 308 326 .321 377 402 401 361 .349
X 05 07 03 0.1 06 05 06 07 04 0.5
cusum | 3.535 4.091 4.246 4.202 4.658 5.013 5.469 6.025 6.280 6.636
GMA 379 443 415 352 401 421 457 505 484 488

For the Shewhart chart there are several warnings but no action indicated. For the

cusum and GMA charts, action is indicated at samples 15 and 14 respectively.
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m 57 The GMA S,, is defined recursively by

So = pux
Sy =7Xp + (1 —7)8,,_1 form > 1

Substituting for S,,_1, then 5,,_» and so on gives

Sy =rXp +{1—r)rX, 1+ (1 —r)S,_ o]
— [ X+ (1 =) X ] + (1= 7)?[r X o + (1 = 7)S s

and eventually

—_

T—

Sy =T Z (1 -7V X+ (1 —7)"ux
i=0

2

But E(X,._;) = px and Var(X,,_;) = X for all i,1m.
n

Using the result

m—1 . [ gm
ZI = for |z |< 1
. 1 —=x
=0
we have
m—1
E(Sp) =rpx > (L=r) +(1—r)"ux
i=0
1—(1—7r)™
=rux (T ) +(1=7r)"px
= Ux
g m—l1 2.2 2m
o ; oxrtl—(1—r)
Var(S,,) = XTQZ[(l—T)Q] = ); s
i=0
al T
e R
r o2
— ( ) =X as m — oo
2—r" n

m 58 Let X, = count of defectives for sample m, n = sample size, p = probability

of defective. Define

So =mnp
S =1 X + {1 —7)Sp_1 form =1
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Substituting for S,, 1,9, 2 and so on (as in the previous exercise) leads to

—_

e—

S =1 (1 —7) X,y + (1 —7r)"np
0

i=

From the mean and variance of the binomial distribution,

E(X,_y)=np

hence
m—1
E(S,.)=rnp Z (1—r)+(1—r)"np
=0
—pl— (L= )™+ (1= )™ = np

-
Jnp(1— p) as m — oo
—r

The upper control limit for n =50, p=0.05, r = 0.2 is

UCL =np+ 3\/( Jnp(l —p) = 4.04

2—r

Xon 3 5 2 2 1 6 4 4 2 6
S 26 3.08 286 269 235 308 327 341 313 3.70
X 7 4 5 5 3 6 5 9 7 3
Sm 4.36 429 443 455 524 539 531 6.05 6.24 659

The chart indicates action after 11 samples.

59 For the Shewhart chart we have n = 10, u =6, ¢ = 0.2 and hence warning

and action limits given by

cew = pu+ 1.960/+/n = 5.88 and 6.12
cq = w+3.090/y/n =580 and 6.20
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For the cusum chart we have

B

+ = 6.032

_3
]
B

2
a
57
NG

For the GMA chart with v = 0.2, the action limits are

T a
w+3.09 —— = 5.935 and 6.065
Ve—rm

Xnm 6.04 6.12 599 6.02 604 6.11 597 606 6.06 6.06
cusum 0.01 0.10 006 004 005 0.13 0.07 010 0.12 0.14
GMA 6.01 6.03 6.02 602 603 6.04 603 6.03 6.04 6.04

=
Il

= 0.316

X 6.17 6.03 6.13 6.05 6.17 597 6.07 6.14 6.03 599
cusum 028 028 038 040 054 047 051 062 062 0.58
GMA 6.07 6.06 6.07 6.07 6.09 6.07 6.07 6.08 6.07 6.05

Xnm 6.10 6.01 59 6.12 6.02 6.20 6.11 598 6.02 6.12
cusum 0.6 062 055 064 063 00 088 082 081 090
GMA 6.06 6.06 6.03 605 605 608 6.08 6.06 606 6.07

The Shewhart chart indicates action after 26 samples, the cusum chart after 13

samples and the GMA chart after 11 samples.

Exercises 11.10.6

60 If gales occur at rate % = 1.25 per month, and occur independently, then

the number of gales in any one month has a Poisson distribution, so

P ( more than two in one month) =1 P(0) — P(1) — P(2)

\2T2
1—e>‘T(1+)\T+ )

2!
= 0.132

(with A=1.25, T =1).
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= 61 [f A = 30 calls per hour {on average) arrive at the switchboard, and do so

independently, then the number of calls has a Poisson distribution. Hence

P (no calls in 7 =3 min) = e /50 = (.223

P {more than five calls in 7" =5 min)

5
:16)\T/60(1+£+_._+ @)

m 62 The steady-state distribution for the number (N) in the system is
P(n in system) =p, = (1 —p)p™, n >0
Now

d - nioo n—1 d -1 —2
d—pgp =Y np =gl =00

=0

Hence the mean number in the system is

Ns=> n(l—p)p™=p(l—p) > np™?
(
1

3

= <

—p) _p

—p)2 1-p

~—

If there are n > 0 customers in the queue then there are n 4+ 1 in the system, so

P(n>0in queue) = (1 p)p™!, n>1

(we do not need the probability for n = 0). Mean number in queue is

No={(1-p)> np" =p*(1—p) > np™!
n=1 =0

- pPf=p) PP

C (1=p® 1-p
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m 63 For a single-channel queue with A = 3 arrivals per hour and i = 4 patients

treated per hour,

A
63(a) P(0in system) =1 — E .

2
63(b) Ng= 1()‘/’;’;# - %

63(c)
P(>3 in queue) = P(>4 in system)
=1-P(0) - P(1) - P(2) - P(3) - P(4)
A A A A
=1-(1- ;)(1+;+(ﬁ) + (E) + (E) )
= 0.237
63(d) Wg= % = % hour.

A
63(e) P (wait more than one hour) = —e (#=% = 0.276
©

m 64 Mean number of aircraft on ground is

so total mean cost per hour (waiting time plus servicing) is

A
E [total cost per hour] = o X + colt
,LL J—

@ Pearson Education Limited 2004




634 Glyn James: Advanced Modern Engineering Mathematics, Third edition

Minimising this with respect to p:
d E [total cost per hour] s+ =20
_ - — 2 pu—
i (=)

from which

S0 =AM+ /ey A/eo

65 DBreakdown rate is A = 3 per hour, and machine idle time is costed at £ 60
per hour per machine. For option A, service rate is i = 4 per hour at £ 20 per

hour, so mean hourly cost is

60X
60N5+20:7)\+202200

For option B, service rate is u =5 at £ 40 per hour, so mean hourly cost is

60A
60Ng + 40 = —— 4 40 = 130
pw— A

Option B is preferred.

66 Ship arrival rateis A = % per hour, and service rate per berth is p = 1—12, S0

p = A/u=4. Mean waiting time in the queue is

RN 57" o
Vo = X[(C 1)!(0,0)2} { (ol e Dl p)

1 =

where c is the number of berths. For ¢ = 5 berths we find Wq = 6.65 hours,

which exceeds the required minimum, so ¢ = 6 berths are needed (Wo = 1.71).

67  Arrival rate is A = 2 per minute, and basic service rate per cashier is u = g

per minute. If this service rate is doubled (by providing a packer) then mean

queneing time is
p 4/5

- — 1.6 mi
- A B/2_2 i

Wqo =
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Alternatively, if an additional cash desk is provided then (using Wg as in the

previous exercise, and p = 8/5)

1 e 2 -1
W, = = 1 = 0.076 mi
¢ A{@p)QH +p+2p} mm

Clearly a second cash desk is preferable.

Exercises 11.11.3

s 68 We have

P(agent) = P(agent|option 1)P(option 1) + P(agent|option 2)P(option 2)
+ P(agent|option 3} P(option 3)
= 0.28 % 0.45 + 041 x 0.32 + 0.16 % 0.23
= 0.294

s 69 Total probability of explosion is

P(E) = P(E | (a))P((a)) + P(E | (0))P((b))
+PE | ()P((0) + P(E | (d)P((d)
= 0.25 % 0.2 1 0.2 % 0.4 | 0.4 x 0.25 | 0.75 x 0.15
= 0.3425

Hence by Bayes’ Theorem,

P((a) | E) = P(E | (a))P((a))/P(E) = 0.146
P((b)| E) = 0.234
P((c)| E) = 0.202
P((d) | E) = 0.328

and sabotage is therefore the most likely cause of the explosion.
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m 70 If two bullets hit the target then they could be fired by each possible pair of

marksmen, so

P (two hits) = P(ANBNC)+ P(ANBNC)Yy+ P(ANBNC)
(where A denotes “bullet from A hits target”, etc)
=06 x05>x06+06x05x04+04x05x04
= 0.38

Hence
P(C' M two hits)

P (two hits)
P(ANBNCY+ P(ANBNC)
P ( two hits)
0.6 0.5 >x04+ 04 x0.5x04
0.38

P(C'| two hits) =

= 0.526

Thus it is more probable than not that C hit the target.

= 71  Prior probabilities are P(4) = 3, P(B) = 2. Also P(Smith | A) = 0.1 and
P(Smith | B) = 0.05. Hence

P (Smith | A)P(A)

P (Smith | A)P(A) + P (Smith | B)P(B)
0.1x %

0.1 % &4 0.05 x 2

P(A | Smith) —

B | =

m 72 Let D denote “has disease” and + denote “positive diagnosis”, so that
P(D)=0.08, P(+ | D) =0.95 and P(+ | D) =10.02

72(a) P(+)=P(+ | DYP(D)+ P+ | D)P(D)
= 0.95 % 0.08 + 0.02 % 0.92 = 0.0944
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P(+|D)P(D)  095x0.08

72(b) PO | )= = g = 08

= 73 Let G denote “good stock”, B = & denote “bad stock”,
g denote “stockbroker says good”,

b denote “stockbroker says bad”,
so that P(G) =05, Plg| G)=0.6, P(b| B)=0.8.

73(a)
Plg | G)P(G)

(9| GYP(G) + Plg| B)P(B)

B 0.6 x 0.5

06 x054+02x05

PlGlg) =5

3
4

73(b) Let E denote “k out of n stockbrokers say good”. Since the stockbrokers

are independent, by the binomial distribution

Pe16) = ()P P16 |6

T

P B - (}) P B P B

Hence

P(E| G)P(G)
(E | G)P(G)+ P(E | B)P(B)
_ (IP(g | G)F[P(b| G)" *P(@)
(MP(g | QN*P | G)—+P(G)+ (})[P(g | B)|*[P(b| B)|"—*P(B)
0.6% % 047" % 0.5
0.6% x 0,47~k 5 0.5 4 0.2F % 0.87F » 0.5

= {1+ (%)kz’”—’“}l

PG| B) =+
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74 Given that the probability of correct reception of a letter is 0.6, and the error
probabilities are 0.2 for the two alternatives, we have

P(ABCA received | AAAA transmitted) = 0.6 x 0.2 x 0.2 x 0.6 = 0.0144
P(ABCA received | BBBB transmitted) = 0.2 x 0.6 x 0.2 x 0.2 = 0.0048
P({ABCA received | CCCC transmitted) = 0.2 x 0.2 x 0.6 x 0.2 = 0.0048

Also P{AAAA transmitted) = 0.3 ete. Hence
P(ABCA received) = 0.0144 x 0.3 + 0.0048 x (0.4 + 0.3)

= 0.00768
and
0.0144 % 0.3
P(AAAA transmitted | ABC A received) = SRS 5625
0.00768

P(BBBB transmitted | ABC A received) = 0.25
P(CCCC transmitted | ABC A received) = 0.1875

75 Average number of accidents per day = % = %

First hypothesis (H}) is for a Poisson distribution, so set A = % and probabilities

Ae— >

il

p; = P(i accidents in one day) =

Hence pg = 0.8187, p; = 0.1637, po = 0.0164. Second hypothesis (Hs2) is for a

binomial distribution with n = 3, so set

1 1
np =z (hence p = E) and probabilities

3 . .
g; = P(i accidents in one day) = (,)pz(l —p)3?
i

Hence q; = 0.8130, ¢4 = 0.1742, ¢o = 0.0124. If £ denotes the evidence then the

odds are updated by

LU E) P(E|H1)+1 P(Hh)
YPL | E) T "P(E | Hy) " P(Hs)
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where
P(E | H1) = p3'pi°ps
P(E| Hy) =01 ¢
1
P(H)/P(Hs) = 3 (initial odds)
Hence
P(H, | E)

1
In —sa o a2y In = 0.247

P(Hs | E) o ¢ 42

and the updated odds are therefore 1.28 to 1 in favour of the Poisson distribution.

76  If the probabilities of the evidence (&) under H; and Hy are

7!l n n
P(E| Hy) = m?ll Y I

o
P(E | Hy) = mg{” NN

then the log-likelihood ratio becomes

P(E | Hy) Py Pk ”k] - Ps
1 nl By BR _ I
HP(E\HQ) N (Q1) (Q'k) Zn .

77 Under hypothesis H; we have
p1 =092, po =0.05, ps =0.02, py = 0.01
and under Hs
gr=1-0.056 — g3 — q4, g2 = 0.05, g3, g4 unknown

(where g3 = pg and g4 = Pap ). The likelihood of the evidence £ under H, is

nl I
P(E | Hy) = (0.95 — g3 — g4)"*0.05™2 g3 ¢

nl....n4f
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where ny = 912, ny = 45, ny = 27, ny = 16. Thus

In P(E | Hy) =ny In(0.95 — g3 — q4) + n3 In g3 + 74 In ¢4 + constant

dln P(E | Ha) - ny +%: 13(0.95 — g3 — q4) — n1g3
dqs 0.95 g3 —q4 a3 (0.95 — g3 — q4)q3
=0if (ny + najgs + nags = 0.95n3
d1n P(E | Hy) o ny ng 14(0.95 — g3 — q4) — 11y
044 09— - @ (095 —g3—g1)q

= 0if ngqz + (m + n4)q4 = 0.95n4
From the simultaneocus equations

9395 |+ 27q4 = 25.65
16qs | 9284 = 15.2

we find g3 = 0.0269, ¢4 = 0.0159 and therefore ¢ = 0.9072,

It follows that (using the result of the previous exercise)

P(E | Hy)
ln PE | Hy) ;nzln—

=012 1 092 + 451 0'05+271 0.02 + 161
Y 0072 "5.05 " 0.0269 55159

= —2.645
If initial odds are P{H1)/P(H2) =5 then updated odds are

P(H| | E)

—2.645
— L —¢ » h = 0.35h
P(H, | E)

i.e. 2.8 to 1 against H;.

s 78 Under hypothesis H{ we have separate estimates as follows:

A4 — mean number of defects for A — %

4.0

7.2

3
Ap — mean number of defects for B — =
Under hypothesis Hy we have a single estimate as follows:
60
A = overall mean number of defects = Tl = h.455
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The evidence E can be expressed as follows:

E = {A:2 with 3 defects, 2 with 4 defects, 2 with 5 defects;
B : 1 with 5 defects, 1 with 6 defects, 2 with 8 defects, 1 with 9 defects}

The log-likelihood ratio is

P(E | Hy) )\SAG_)‘A AL e_>‘A A5 e 2a
In—— L 9] 21 21
PE H) - e oM T e
Ape e Ne s ALede 2\ As
+In = +1n=B = +21n N +1n oA
A A
—(6+8+ 10)111TA+(5+6—|—16—|—9)1HTB
FRF24 A=A+ (1L+ 1+ 24 D)X= Ap)
= 2551

and the updated odds (with no initial preference) are

P(H, | E) (2551
P(H: | E)

or 12.8 to 1 in favour of Hy.

Review Exercises 11.12

m 1 For the standard corks, sample proportion oxidised is p1 6 = 0.1, whereas
for the plastic bungs, sample proportion oxidised is fo = % = 0.0833. Overall
propoertion oxidised is p = = = 0.0938. Test statistic

s = P17 P2 —0.271

VPO =B+ ()

The hypothesis is accepted.

m 2 The model is
d = doge ™

or equivalently
Ind=1Indy — M
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which is of the form
Y —a+bX

From the data,
X =5.746, Sx =3.036, ¥ = —0.2811, Sy =0.721, XY = —3.775

50

Irom these we infer

Also the error variance is (using unrounded results)
S% = 5% — B258% = 0.01418

and the 95% confidence interval for X is

Sk

Sx+/8

A+t oo = (0.202, 0.266)

m 3 If position PP and load X are related by
P=a+bX

then by linear regression on the data we find

But extension Y and load X are related by

por L
X EA
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where I, = 101.4 and A = 1.62 x 10~°. The estimate of Young’s modulus is

therefore I
FE= " =1.003x10°
bA

Also from the linear regression the error standard deviation is Sg = 0.00624, so

the 95% confidence interval for b is

. s
b+ t,ogg,ﬁsxf/g = (0.0597, 0.0651)

We infer the 95% confidence interval for £ = L/bA as

(96.1 x 10°,104.9 x 105)

m 4 [rom the data, the mean time between arrivals is estimated as 9.422 hours,
and this is 1/X for the exponential distribution. If we form a histogram of the
data, the expected probability of a class (a,b) under the exponential distribution

with parameter A is
Pla< X <b)=Fx(b)— Fxla)=1—e? (1 —e M) =¢ M ¢

Using clags intervals of five hours we obtain the table as follows:

Class (k) Observations (fx) Probability Expected (ex)

0-5 48 0.4118 43.24
5-10 22 0.2422 25.43
10-15 13 0.1425 14.96
15-20 12 0.0838 8.80
20-25 3 0.0493 5.18
25-30 3 0.0290 3.04
>30 4 0.0414 4.35

The value of y? = 3.35 is less than X,205,5 = 11.07 (seven classes with one parameter

estimated) so the fit to the exponential distribution is good.

» 5 The maximum value is X, = 72 and the total is >, X; = 989.3, so

X
_ Amax g 7ag
Y= wx,
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and [1/y| = 13. Hence

P(Y < 0.0728) =

13

k=0
0.9599

Sk (125> (1 0.0728k)'%1

The probability of there occurring such a large value is therefore around 4%, so

the value 72 can be regarded as an outlier at the 5% significance level.

With the outlier included we have X = 9.422, Sx = 10.77 so the 95% confidence

interval for mean inter-arrival time is

_ S
X +196—2 —

v/ 105

(7.36,11.48)

With the outlier excluded we have X = 8.820, Sx = 8.90 so the confidence interval

is (7.11, 10.53).

m 6 The contingency table (with expected values in brackets and adjusted residuals

underneath) is as follows:

Grade French German Spanish Total
Very satisfied 16 (15) 6 (7) 22 (22) 44
0.5 —0.5 —0.1
Fairly satisfied 63 (50) 13 (24) 76 (TT) 152
2.8 —3.2 —0.2
Neutral 40 (42) 27 (20) 60 (64) 127
—0.5 1.9 —1.0
Fairly dissatisfied 10 (18) 13 (9) 32 (28) 55
—-25 1.6 1.2
Very dissatisfied 3(7) 5 (3) 12 (10) 20
—1.8 0.8
Total 132 64 202 398

Chi-square = 20.0, d.f. = (5 — 1}{(3 — 1) = &, so compare with X(%D%,S = 17.54:
significant at 2.5% level. The French course is scoring highest, followed by Spanish

followed by German.

@ Pearson Education Limited 2004




Glyn James: Advanced Modern Engineering Mathematics, Third edition 645
m 7 Let D denote *has disease” and O denote “operation performed”, then

P(survive | DN O) =
P(survive | DNO) =

P(survive | DNO) =

[ BTSN Y b | =
o"‘

and we can assume that P(survive | D M O) = 1. If the operation is performed

then using the hint we have

P(survive | Q) = P(survive | D N O)P(D) + P(survive | DN O)P(D)

1 4 4 3

_— — —1— _ - = —
2p+5( P) = 17

(where p = P(D)). If the operation is not performed,

P(survive | O) = P(survive | D 1 O)P(D)+ P(survive | D1 O)P(D)

2—10p+(1p)1%p
These probabilities are equal when
4 3 19
57100 A
from which p = %. The surgeon will operate if the assessment of P(D) exceeds

this value.

m 8 With 200 machines each becoming misaligned every 200 hours on average, the
rate at which machines become misaligned is Ay = % = one per hour on average.
The total cost per hour for each option is the sum of three components: the fixed
cost per hour, the cost of correcting the cutput, and the cost of lost production.
For option A, the fixed cost is £1 per hour per machine, hence £200 per hour.
The average run length ARLg for a misaligned machine is 20 hours, and this
amount of output must be corrected, so the cost per hour of correcting the cutput
is Ag x ARLp x 10 = £200. Lost production occurs while a machine is in the queue

and being serviced, and this occurs whether the machine is actually misaligned or
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not (false alarm). Actual misalignments occur at the rate Ay and are detected by

the control chart. False alarms oceur at the rate

200
Ay = ARL, = 0.2 per hour
where ARIL; = 1000 is the mean time between false alarms for a well-adjusted

machine. These two kinds of action are independent so the total rate of actions is
A=Ay + Ay = 1.2. Also the service rate g = 2 per hour so p = A/p = 0.6. With

Oy = %, the mean number of machines out of production is

()\0'3)2 + PQ

Ne=rt 50,

= 1.163

and the cost per hour of lost production is 200Ng = £ 232.5. The total cost for
option A is therefore £ 200 + £ 200 + £ 2325 = £ 632.5 per hour.

For option B, the fixed cost is £ 1.50 per hour per machine, hence £ 300 per hour.
With ARLy = 4, the cost per hour of correcting the output is Ay x ARLy x 10 = £
40. With ARL; = 750, false alarms occur at the rate A; = 200/750 = 0.267 per
hour, so machines are taken out of production at the total rate A = Ag+ X = 1.267,
hence p = A/u = 0.633. The mean number of machines out of production is
therefore Ng = 1.317 at a cost per hour 200Ng =.£ 263.4. The total cost for
option B is therefore £ 300 + £ 40 + £ 263.4 = £ 603.4 per hour. This is less
than for option A.

9 For the source, P{in = 0) = @ and P(in = 1) = 1 — «. For the channel,
Plout=0|in=1) = Plout =1 in = 0) = p.

9(a)

Plout =0)=Plout =0| in =0)P(in =0)+ Plout =0] in =1)P(in = 1)
= (I =platp(l-a)=pa+pa
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(where p=1—p, a=1— «). Hence

Plout =0| in =0)P(in =0 D
P(in =0 out =0) = (ou | in ) Plin ):_pa_
Plout =0} po -+ pa
Plin =1 out =0)= 2% _
pa+ pa
P(in:O|out:1)=L,,
pa+ pa
P(in:1|out:1):&_
pa+ pa

9(b) P(in =0] out =0) > P(in =1] out =0) if
pa > pa
from which
pa > p(l —a)

hence

(P+pla—a>p
Similarly, P(in = 1] out =1) > P{in =0| out =1) if
Pa > por
from which
p(1 — ) > po

hence

(p+pla=a<p

The source symbol is assumed to be the same as the received symbol if p < o < p.

m 10  For the binary symmetric channel, X = {0,1} with P(X = 0) = a, and
Y ={0,1} with P(Y =0)=pa+pa, PY =1)=pa+t+palp=1-—p, a=1—«,
using the results of the previous exercise). Also

PX=0NY=0)=PY=0]|X =0)P(X =0)=pa
PX=0NnY=1)=PY=1|X=0)P(X =0)=pa
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PX=1NY=0)=P(Y=0|X =1P(X =1)=pa
PX=1NY=1)=P(Y=1|X=1P(X =1)=pa

The mutual information between X and Y is as follows:

1 1 P(:r:,y)
IX3Y) =3, > Plaw)logs g by

=0 y=0
por
— palogy ————— + parlogy —————
PO ot p) P % alpa + pa)
i .

_ o __
logg ———— logg ————
TR Glpa=pa) 7 7% alpa + pa)

= pla+ a)logy p+ pla+ a)logy p
— (pa + p&) log(pa + pa) — (pa + pa)log(pa + pa)
= H(p) — H(pa + pa)

where H(t) = tlogst + (1 — t)logs(1 — t) is called the “entropy function”. In

particular, when o = % we have

so that

I{X;Y)y=1+H(p)=1+plogyp+ (1 —p)logy(1—p)
When p— L, I(X;¥) = 1+ Llogy L + Llog, 1 — 0.
When p —+ 0, plogep —+ 0 and plog, p — 0 so that

I(X;Y)— 1

and similarly when p — 1. Full information is transmitted through the channel
when either every bit is correct (p = 0) or every bit is inverted (p = 1). No

information is transmitted when the bits are uniformly randomised (p = %)
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