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Preface

This book presents the culmination of our collaborative research, going back over 15
years (Rogers & Little, 1994), and for one of us, even longer (Rogers, 1967, 1973).
It addresses a difficult, yet necessary, area of demographic research: what to do in
data situations characterized by irregular, inadequate, or missing data. A common
solution within the demographic community has been what is generally referred to
as “indirect estimation”. In our work the focus has been on the indirect estimation
of migration, and our use of the term “indirect” follows the description given in the
1983 United Nations manual, which defined it as “techniques suited for analysis of
incomplete or defective demographic data” (United Nations, 1983, p. 1).

We wrote this book with a goal to make it accessible to a reader familiar with
introductory statistical modeling, at the level of regression and categorical data anal-
ysis using log – linear models. It is primarily intended to serve as a reference work
for demographers, sociologists, geographers, economists, and regional planners.
Space and time limitations have led us to omit topics that some may feel should have
been included. In defense, we would argue that our major focus has been on the two
principal models of structures in the indirect estimation of migration: model sched-
ules of age patterns and log-linear models of spatial patterns. And our application
of this focus has been on three principal aspects of indirect estimation: smoothing,
imposing (repairing), and inferring data. Those who are somewhat familiar with
the generally accepted methods used in the indirect estimation of fertility and mor-
tality should be able to identify possible extensions of such methods to the case
of migration, adopting the fundamental directions outlined by us in Chapters 4, 5,
and 6.

Several of the results described in this book first appeared as journal articles
or chapters in books. We are indebted to the various editors and publishers for
permission to draw on important figures, tables, and paragraphs in those earlier pub-
lications. Parts of Chapter 2 first appeared in a 1981 Research Report (Rogers &
Castro, 1981) authored by Andrei Rogers and Luis Castro, and its subsequent
incorporation as Chapter 5 in the 1986 book on “Migration and Settlement: A
Comparative Study” edited by Andrei Rogers and Frans Willekens (Rogers &
Willekens, 1986). Both were published by the International Institute for Applied
Systems Analysis in Laxenburg, Austria. An early version of parts of Chapter 3 first
appeared as “Describing Migration Spatial Structure”, written by us in collaboration
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with Frans Willekens (Rogers, Willekens, Little, & Raymer, 2002). Section 5.2.2
includes some of the results first published in Rogers, Willekens, and Raymer
(2003), and Section 6.2.2 summarizes some of the results in Little and Rogers
(2007), and Section 6.3.2 draws on results reported in Raymer and Rogers (2007).
The rest of Chapters 5 and 6, as well as Chapters 1, 4, and 7, were written especially
for this book.

We are grateful to the large number of people who have supported and
assisted us in our efforts. Professor Frans Willekens, Director of the Netherlands
Interdisciplinary Demographic Institute, introduced us to, and collaborated with us
on, the application of log-linear models to describe patterns of interregional migrant
flows. Luis Castro was invaluable in the early years of work on model migration
schedules. Richard Jessor and Jane Menken, respectively, past and current direc-
tors of the Institute of Behavioral Science at the University of Colorado in Boulder,
supported us as we pursued this somewhat esoteric topic. Several staff members
at the Institute were indispensable in assisting us with the production of the final
manuscript: Nancy Thorwardson, Rajshree Shrestha, Julie Na, Lindy Shultz, and
Melissa McNabb. A number of graduate students carried out much of the com-
puter processing of our data sets, notably, Lisa Jordan, Bryan Jones, Junwei Liu,
and Wanran Ma. And, finally, Andrei Rogers, extends sincere thanks to the National
Science Foundation for two supporting grants and to the National Institute of Child
Health and Human Development for another grant—all three supporting work on
the indirect estimation of migration. In the closing two years of our work, a pilot
grant from Colorado University Population Center and general support from its
Director, Richard Rogers, greatly facilitated the final drive toward the completion
of the manuscript.

Boulder, CO Andrei Rogers
Boulder, CO Jani Little
Southampton James Raymer
December 2009



The Indirect Estimation of Migration Website

A special website – www.colorado.edu/ibs/pop/indirect_estimation_of_migration –
has been set up to accompany this book. It is freely accessible and is designed as
a resource for students and other users. It contains example programs for estimat-
ing the model schedule parameters, the log-linear model with offsets, and the ACS
sampling errors. This website will continue to evolve documenting developments
and updates that are relevant to the data and the methods used in the book.
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Chapter 1
Introduction

1.1 Introduction

In countries with well-developed data reporting systems, demographic estimation
is based on data collected by censuses and vital registration systems. In coun-
tries with inadequate or inaccurate data reporting systems, demographic estimation
must rely on methods that are more “indirect.” Such estimation techniques usually
adopt model schedules—parameterized functions describing collections of age-
specific rates that are based on patterns observed in populations other than the
one being studied—selecting one of them on the basis of some incomplete data on
the observed population. The justification for such an approach is that age profiles
of observed schedules of rates vary within predetermined limits for most human
populations. Rates for one age group are highly correlated with those of other age
groups, and expressions of such interrelationships form the basis of model schedule
construction.

Although indirect estimation techniques have been applied fruitfully in studies of
mortality and fertility, they have not been developed as systematically and formally
for the analysis of migration. For example, a United Nations manual on the subject
is very explicit in its non-coverage of migration:

A further limitation of the Manual is that it deals mainly with the estimation of fertility
and mortality in developing countries. There are other demographic processes affecting the
populations of these countries (migration for example) which are not treated here (United
Nations, 1983, p. 1).

Unlike fertility and mortality, which involve single populations, migration links
two populations: the population of the origin region and that of the destination
region. This greatly complicates its estimation by indirect methods. What this means
in practical terms is that a focus on age patterns (as in the case in fertility and mor-
tality) is not enough—one also must focus on spatial patterns. And this is where the
geographer’s particular contribution to migration analysis becomes evident (Isard,
1960; Wilson, 1970; Willekens, 1983a). The imposition of observed regularities in
both the age and spatial patterns of interregional migration to “repair” unreliable
data on territorial mobility holds great promise as a means for developing detailed

1A. Rogers et al., The Indirect Estimation of Migration, The Springer Series
on Demographic Methods and Population Analysis 26, DOI 10.1007/978-90-481-8915-1_1,
C© Springer Science+Business Media B.V. 2010



2 1 Introduction

age- and destination-specific migration flow data from inadequate, partial, and even
non-existent information on this most fundamental process underlying population
redistribution.

The principal aim of this book is the description of a formal model-based
approach for smoothing, repairing, and inferring directional age-specific migra-
tion flows. The approach is one that begins with inadequate or incomplete data
on migration, and then estimates “improved” migration data by smoothing, repair-
ing, or borrowing information from other geographical areas, time periods, and data
sources. With the elimination of the “long form” questionnaire from U.S. decen-
nial censuses and its replacement by a significantly smaller continuous monthly
sampling survey, the American Community Survey (ACS), students of territorial
mobility often will find it necessary to deal with inadequate or possibly inaccurate
“small sample” data on migration by adopting such indirect methods of estima-
tion. Even more serious “small sample” data problems are being encountered by
historical demographers trying to analyze redistribution processes reflected in the
sample files of the historical censuses available from the Historical Census Project at
the University of Minnesota (www.ipums.umn.edu)—censuses that have the added
problem introduced by the total absence of any question on migration (other than
the so-called “lifetime migration”).

This book includes a focus on formal methods for indirectly inferring migration
flows in the absence of migration data—for example, from counts of birthplace-
specific population stocks. The latter have in the past been used to infer patterns
of mortality and, indeed, of net migration. But no one has developed a workable
method for using such population stock data to estimate indirectly directional (i.e.,
origin-destination-specific) migration flows. That is one of the goals of the models
described in this book.

The approaches adopted in the following chapters will be useful to at least
three user communities: (1) population researchers faced with the loss of the
detailed migration data formerly contained in the “long form” questionnaire of past
U.S. decennial censuses and its replacement by a significantly smaller continuous
monthly sampling survey called the American Community Survey (ACS), (2) histor-
ical demographers and geographers seeking to identify changing mobility patterns
hidden in the increasingly available historical population censuses that lack a migra-
tion question, and (3) migration analysts studying mobility patterns in data poor
less-developed countries.

1.2 Models

The estimation of migration from aggregate and incomplete data generally has been
carried out with a focus on net migration, which is approximated by the population
change that cannot be attributed to births and deaths. Given data on population sizes
at two points in time, and estimates of birth and death rates for the interval defined
by these two points, net migration may be approximated by the difference between
the observed population at the second point in time and the hypothetical projected
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population that would have resulted if only natural increase were added to the initial
population. Such methods are reviewed in, for example, United Nations (1967) and
Bogue, Hinze, and White (1982).

Methods for inferring gross (directional) migration streams have a more limited
history (Rogers, 1968, 1975). In the early years, methods of indirect estimation
were geared to particular missing data problems. Consequently, the methods had
an ad-hoc character (as do many methods of indirect estimation in demography).
More recently, however, the indirect estimation of migration has relied on the use
of models and on the theory of statistical inference to approximate the parameters
from available data. Some models describe age patterns of migration, while others
describe spatial patterns of migration (Rogers, 1999).

1.2.1 Modeling Age Patterns of Migration

Recognizing that most human populations experience rates of age-specific fer-
tility and mortality that exhibit remarkably persistent regularities, demographers
have found it possible to summarize and codify such regularities by means of
mathematical expressions called model schedules.

Over the past 30 years, several studies of regularities in age patterns of migra-
tion (e.g., Rogers & Castro, 1981, 1986; Rogers & Watkins, 1987; Rogers & Little,
1994; Rogers & Raymer, 1999; Raymer & Rogers, 2008) have demonstrated that
a mathematical expression called the multiexponential function provides a remark-
ably good fit to a wide variety of empirical interregional migration schedules. That
goodness-of-fit has led a number of demographers to adopt it in various studies
of migration all over the world. The multiexponential model migration schedule
(which has become known as the Rogers-Castro model migration schedule) has
been fitted successfully, for example, to migration flows between local authorities in
England (Bates & Bracken, 1982, 1987), Canada’s metropolitan and nonmetropoli-
tan areas (Liaw & Nagnur, 1985), and the regions of Japan, Korea, and Thailand
(Kawabe, 1990), and South Africa’s and Poland’s national patterns (Hofmeyr, 1988;
Potrykowska, 1986, 1988). Statistics Canada, for example, has adopted this model
migration schedule to produce its provincial population projections (George, 1994).
Other examples include analyses of interregional migration in Indonesia (Muhidin,
2002) and international migration in Europe (Raymer, 2007).

1.2.2 Modeling Spatial Patterns of Migration

Spatial interaction (e.g., migration) patterns have been modeled by gravity mod-
els, entropy models and, more recently, by log-linear models. The relation between
the gravity model, entropy maximization and log-linear models is discussed by
Willekens (1980, 1982a, 1982b, 1983), Bennett and Haining (1985), and Aufhauser
and Fischer (1985), among others. The relation between the entropy method and
log-linear modeling was shown by Good (1963). The relation between the iterative
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proportional fitting (IPF) method and log-linear models was utilized in estimating
migration flows from incomplete data by Drewe and Willekens (1980) and Nair
(1985), among others. Finally, Willekens and Baydar (1986), Stillwell (1986), Yano
(1991), and O’Brien (1992) all adopt the perspective of generalized linear models
(GLMs), a perspective that includes the log-linear model.

Log-linear models are statistical devices that are useful for describing and
decomposing patterns underlying matrices of spatial flows. They are not replace-
ments for theoretical explanatory models that purport to account for observed
patterns of behavior. But as instruments for identifying observed regularities in such
patterns and then introducing them in settings wherein some data are incomplete,
they offer great promise. In particular, they allow for the combination of data from
different sources, e.g., censuses, surveys, and administrative records. The models
used to do this belong to the family of generalized linear models (GLMs), which
include the log-linear model, the logit model, the Poisson regression model, and the
logistic regression model. The parameters indicate the contribution of the partial
data to the predicted migration flow. The parameters are estimated from the data by
maximizing the likelihood that the model reproduces the observations.

1.2.3 A Model-Based Approach to Migration Estimation

Modern methods of multiregional population projection (Rogers, 1975, 1985, 1995)
require a migration data set that is quite detailed. Such detailed data are not available
in some instances and have to be “created” using indirect estimation methods. This
was the situation faced by the U.S. Census Bureau, and was the principal motivation
for their efforts to create an adequate “synthetic” migration data set on the basis of
inadequate data on migration:

. . . combines annual geographic information on recent migration from tax return data, infor-
mation on the relationship between 1-year and 5-year migration rates from CPS, and data
on interaction between geographical and demographic dimensions contained in the 5-year
interstate migration data from the 1980 census (Wetrogan & Long, 1990, p. 36).

In combining the demographic and geographic detail of the decennial census
counts, with the timeliness and frequency of the Current Population Survey (CPS)
and matched Internal Revenue Service (IRS) tax returns, the Census Bureau fol-
lowed the outlines of the “3-Face-Problem” first outlined by Willekens, Por, and
Raquillet (1981) and Rees and Willekens (1986). Conceptually, this formulation
may be viewed as a cube in which the three axes represent demographic detail, geo-
graphic detail, and temporal detail, respectively. Such a formulation leads naturally
to the notion of a model-based approach to the indirect estimation of migration—
one which is aptly captured by Constance Citro, a study director for the Committee
on National Statistics of the National Academy of Science, who writes:

I define “model-based estimation” loosely, as the use of statistical methods to produce “indi-
rect estimates” for an area by combining data from several areas, time periods, or data
sources to “borrow strength” and improve precision. (Citro, 1998, p. 40)
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This is the model-based approach to indirect estimation of migration that we
adopt in this book. Its philosophy echoes the approaches already being used by the
Census Bureau and can be formalized by a model-based methodology that focuses
on the statistical analysis of data with missing values. In the approach we use meth-
ods and techniques for describing migration and its age and spatial patterns that
could improve the quality of estimates of migration flows. This objective is sought
by adopting (1) model schedules of migration that describe observed regularities
in age structures and (2) log-linear (generalized linear) spatial interaction models
that describe regularities in spatial structures in ways that could aid the indirect
estimation of directional migration flows in settings with irregular, inadequate, or
unavailable data. Both sets of models may be used to apply regularities reflected in
other data sets to “discipline” the data being studied.

The above two categories of models may be used in at least three different
ways, depending on the quality of the available data. If the migration data are
generally reliable, but somewhat irregular, then smoothing the data may be a suf-
ficient solution. If, on the other hand, the migration data are clearly non-conforming
and unreliable, then they need to be repaired—a process that imposes regularities
found in other, more reliable, data sets on the inadequate data under study. Finally,
if migration data are totally missing or unavailable, then methods for indirectly
inferring their values need to be used.

We use the term “smoothing” to represent the process of limiting the effect of
randomness on the age, spatial or temporal patterns of migration caused by natural
variation or variation due to insufficient sample size. This may involve (1) fitting
splines to observed data across age or over time, (2) fitting a curve to an age profile
of migration, or (3) removing higher-order interaction effects in a log-linear model
for a contingency table of migration flows. We use the term “imposing” to represent
the process of borrowing age or spatial patterns of migration from other regions
(e.g., when an average age profile of out-migration from a Census Region in the
U.S., such as the West, is used to represent the age profile of out-migration from a
small state in that region, such as Wyoming) or drawing on an auxiliary migration
data source of somewhat comparable measurement of migration. The second option
often involves a situation where only marginal information is available for a matrix
of flows, and more detailed data are borrowed from a recent census or survey. We
use the term “inferring” to represent the process of borrowing age and / or spatial
patterns from an auxiliary data set, one that nevertheless can be used to serve as
a proxy for the particular migration pattern that we are estimating (e.g., when tax
return data are used to infer migration).

1.3 Data

Observations on migration can be of very different types, and they are often incom-
plete, i.e., some required information is missing. In the presence of incomplete data,
we propose a strategy that first identifies the data types of migration.
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1.3.1 Observed Data: Data Types

Migration involves a relatively permanent change of residence address, one involv-
ing the crossing of an administrative boundary. The definition and the measurement
of migration involve both a time dimension and a space dimension. Moreover, it
is useful to distinguish event data, i.e., data on the event of migration, and status
data, i.e., data on the place of residence at two (or more) points in time. Event data
typically describe the number of events (migrations) that occur during a given time
interval. Status data typically relate to the numbers of persons, in a given location,
who lived in a different location at some prior date (migrants), or to those who are
expected to live in a different location at a future date. They are often expressed as
proportions rather than counts. The distinction between event data and status data
yields two broad data types that require different modeling strategies of migration.
Since in this book only transition data are analyzed (except for the Swedish data in
Chapter 2), we call such data on transitions, migration.

Another distinction is between micro-data and grouped data. Micro-data are data
on individuals (or households). They are typically associated with surveys. Grouped
data are aggregations of individual data. Within the above broad categorizations
we shall generally restrict our attention to status data on migrants and to grouped
(transition) data.

Given the above data types, various degrees of incompleteness may be consid-
ered. For example, the number of migrants over an observation interval may be
recorded, but some information may be missing. Or, information on some attributes
(covariates) of migrants may be missing for all persons (e.g., age). Missing attributes
are important when they explain individual differences in the risk of experiencing
migration. Information on particular variables may be observed for some persons
and not observed for others. Attributes may be partially missing, e.g., as a result of
non-response. Areal units for which data are required may not be the units for which
data are available. Also boundaries may have changed, calling for areal interpolation
or extrapolation.

The responses to missing data may use auxiliary data and/or information on com-
parable populations (e.g., expressed in the form of model schedules). The selection
of auxiliary data and of standard schedules are important topics in expositions of
how the missing information may be estimated from available data. Generally, one
develops a probability model for the complete data and estimates parameters of
the model from incomplete data and the auxiliary data. The assumption is that the
different observations are manifestations of the same underlying mechanism.

1.3.2 Using Auxiliary Data

The basic strategy in estimating detailed migration levels and patterns is to use as
much information as possible on the actual migration patterns to be inferred. Often
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the information comes in the form of aggregations of the detailed migration pat-
terns to be determined. Aggregation may be over space, age, or time. For instance,
detailed interstate migration data may be lacking, whereas data on interregional
migration may be available. The age composition of migrants may be available
for the state of origin only, but not by state of origin and state of destination.
To disaggregate the data to the desired level of detail, theoretical distributions or
empirical distributions may be applied, or a combination of both. The distributions
impose a structure onto the migration patterns which are absent in the primary set.
Model schedules are such theoretical distributions. A historical migration table at
the desired level may serve as an empirical distribution. The migration patterns of
infants or children below the age of 5 may also serve as an empirical distribution.
Theoretical and empirical distributions may be combined, e.g., the migration pat-
terns of those under-five may be combined with model migration schedules and
primary data in order to determine migration flows by age.

In most applications, the imposed structure captures empirical regularities and
therefore represents useful knowledge in the estimation of missing data. If it is plau-
sible to assume that the missing data have a structure that does not deviate from what
is generally observed, then a theoretical or a borrowed empirical structure may be
applied to improve the estimates. Technically, the theoretical and empirical distri-
butions may be integrated in the model as offsets (Rogers et al., 2003). In statistical
models, offsets are used to fix parameters or regressions coefficients to given values,
while other parameters or coefficients are estimated from the data. Parameters are
often fixed because they have known values, or because the available data do not
permit their estimation. The latter case applies when data are incomplete and the
parameters are “borrowed” from the auxiliary data. Needless to say, the quality of
the estimates is dependent on the plausibility of the auxiliary information. Our meth-
ods draw on auxiliary information for the estimation of migration from incomplete
data.

Three categories of auxiliary data may be considered. The first consists of his-
torical data. Historical data usually come from a previous census. The higher-level
spatial and/or age structures (e.g., the higher-order interaction effects exhibited in
contingency tables) indicated by the historical data may still be valid even when
they are outdated. Higher-level structural changes usually lag behind changes in
levels and structural changes at lower levels. The second category consists of con-
temporary migration data from the same or a comparable population. For instance,
surveys and the census provide information on migration that may be combined
effectively using a modeling approach. Detailed data on migration among a subpop-
ulation (e.g., those under five years of age) may provide the structure that can be
applied to other subpopulations (e.g., people aged 20–24 years). The third category
consists of judgmental data (e.g., expert opinions) about migration. Different cate-
gories of auxiliary data may be combined to generate the preliminary estimates of
migration that encompass a higher-order structure of migration patterns, one which
may be imposed onto incomplete primary data in order to obtain more plausible and
reliable migration estimates.
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1.3.3 The Case of No Migration Data

For data settings of no available data on migration, the indirect estimation of migra-
tion may be carried out using census data on birthplace-specific population stocks
for one or more points in time, particularly for infants. In such a data setting we will
first need to obtain an “initial estimate” of the migration regime—an estimate that
may be further refined by imposing regularities described by our model migration
schedules and our log-linear models.

Embedded in censuses or survey enumerations that generate distributions of per-
sons cross-classified by age and place of current residence is “hidden” information
about the migration patterns that helped to shape such distributions. We have devel-
oped several different promising perspectives that we believe yield adequate crude
estimates of age- and origin-destination-specific migration flows from such data on
spatially distributed survivors of region-specific birth cohorts. For example, it is
possible to use a model to link observed propensities of infant migration, inferred
from birthplace-specific population stocks, to the associated propensities of all other
age groups (Rogers & Jordan, 2004). Such a procedure is tested in Chapter 6. It is
also possible to turn to a procedure that decomposes residually estimated net migra-
tion flows into the underlying gross in- and out-migration flows (Rogers & Liu,
2005), or to adopt a procedure that borrows observed past regularities in the relative
intensities of secondary (return and onward) versus primary migration streams to
indirectly estimate migration flows (Rogers & Raymer, 2005). Both of these proce-
dures need further refinement, and hence are not described in this book. Finally, one
can combine inadequate survey data on migration with data on income tax returns
made available by the Internal Revenue Service (Engels & Healy, 1981). The sur-
vey data may yield adequate data on the age structures of total out- and in-migration
counts but offer unreliable descriptions of spatial patterns of place-to-place flows.
The IRS data may provide more accurate spatial structures of the migration flows.
We explore such a situation in Chapter 6.

1.4 Outline of Book

The remaining six chapters of this book fall into three categories: models, appli-
cations, and a conclusion. Chapters 2 and 3 describe models that can be fitted to
describe and summarize the structures of age patterns and of spatial patterns, respec-
tively. Chapters 4, 5, and 6, respectively, focus on methods that apply these models
to smooth irregular data, to impose structures on inadequate data, and to infer pat-
terns of missing data. Finally, Chapter 7 offers concluding remarks and points to
directions for further study.



Chapter 2
Describing Age Structures of Migration

2.1 Introduction

Empirical schedules of age-specific rates exhibit remarkably persistent regularities
in age pattern. Mortality schedules, for example, normally show a moderately high
death rate immediately after birth, after which the rates drop to a minimum between
ages 10 and 15, then increase slowly until about age 50, and thereafter rise at an
increasing pace until the last years of life. Fertility rates generally start to take on
nonzero values at about age 15 and attain a maximum somewhere between ages
20 and 30; the curve is unimodal and declines to zero once again at some age
close to 50. Similar unimodal profiles may be found in schedules of first mar-
riage, divorce, and remarriage (Rogers, 1986). The most prominent regularity in
age-specific schedules of migration is the high concentration of migration among
young adults; rates of migration also are high among children, starting with a peak
during the first year of life, dropping to a low point during the teenage years, turning
sharply upward to a peak near ages 20–22, and then declining regularly thereafter,
except for a possible slight hump at the onset of the principal ages of retirement,
and/or an upward slope at the oldest ages.

We begin this chapter with an examination of regularities in age profile exhibited
by empirical schedules of migration rates and go on to adopt the notion of model
migration schedules to express these regularities in mathematical form. We then use
model schedules to examine patterns of variation present in a large data bank of such
schedules. Drawing on this comparative analysis of observed model schedules, we
develop typologies and several “families” of schedules, and discuss the sensitivity of
the model migration schedule to changes in one or more underlying parameters. We
conclude by identifying a number of practical uses of model migration schedules.

2.2 Age Patterns of Migration

The simplest and most common measure of migration is the crude migration
rate, defined as the ratio of the number of migrants, leaving a particular popula-
tion located in space and time, to the average number of persons (more exactly,

9A. Rogers et al., The Indirect Estimation of Migration, The Springer Series
on Demographic Methods and Population Analysis 26, DOI 10.1007/978-90-481-8915-1_2,
C© Springer Science+Business Media B.V. 2010
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the number of person-years) exposed to the risk of becoming migrants. Data on
non-surviving migrants are often unavailable, therefore the numerator in this ratio
generally excludes them.

Because migration is highly age selective, with a large fraction of migrants being
young, our understanding of migration patterns and dynamics is aided by computing
migration rates for each single year of age. Summing these rates over all ages of
life gives the gross migraproduction rate (GMR), the migration analog of fertility’s
gross reproduction rate. This rate reflects the level at which migration occurs out of
a given region, and may be directional (i.e., from region i to region j).

2.2.1 Migration Rates and Migration Schedules

Age-specific migration schedules of multiregional populations exhibit remarkably
persistent regularities. For example, when comparing the age-specific annual rates
of residential migration among whites and blacks in the United States during
1966–1971, one finds a common profile (Fig. 2.1). Migration rates among infants
and young children mirrored the relatively high rates of their parents, young adults
in their late twenties. The mobility of adolescents was lower but exceeded that of
young teens, with the latter showing a local low point around age 15. Thereafter
migration rates increased, attaining a high peak at about age 22, and then declin-
ing monotonically with age to the ages of retirement. The migration levels of both
whites and blacks were roughly similar, with whites showing a GMR of about
14 migrations and blacks one of approximately 15 migrations, over a lifetime
undisturbed by mortality.

Although it has frequently been asserted that migration is strongly sex selec-
tive, with males being more mobile than females, recent research has indicated that
sex selectivity is much less pronounced than age selectivity and is less uniform
across time and space. Nevertheless, because most models and studies of population
dynamics distinguish between the sexes, many migration measures do also.
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Fig. 2.1 Observed annual migration rates by race and single years of age: U.S., 1966–1971.
(Source: Rogers & Castro, 1981)
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Fig. 2.2 Observed annual intercommunal migration rates by sex and single years of age: Sweden
(average of annual rates, 1968–1973).
(Source: Rogers and Castro, 1981)

Figure 2.2 illustrates the age profiles of male and female migration schedules
in Sweden. The migration levels are similar and the levels for males and females
are roughly the same. The age profiles, however, show a distinct and consistent
difference. The high peak of the female schedule precedes that of the male schedule
by an amount that appears to approximate the difference between the average ages
at marriage of the two sexes.

Under normal statistical conditions, point-to-point movements are aggregated
into streams between one civil division and another; consequently, the level of inter-
regional migration depends on the size of the areal unit selected. Thus if the areal
unit chosen is a minor civil division such as a county or commune, a greater propor-
tion of residential location will be included as migration than if the areal unit chosen
is a major civil division such as a state or province.

Figure 2.3 presents the age profiles of U.S. female migration schedules as
measured across different sizes of areal units: (1) all migrations from one residence
to another, (2) changes of residence within county boundaries, (3) migration
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Fig. 2.3 Observed average annual migration rates of females by levels of area aggregation and
single years of age: U.S., 1966–1971.
(Source: Rogers & Castro, 1981)
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between counties, and (4) migration between states. The respective four GMRs
are 14.3, 9.3, 5.0, and 2.5. The four age profiles appear to be remarkably similar,
indicating that the regularity in age pattern persists across areal delineations of
different size.

Finally, migration occurs over time as well as across space; therefore, studies of
its patterns must trace its occurrence with respect to a time interval, as well as over
a system of geographical areas. In general, the longer the time interval, the larger
the number of return movers and nonsurviving migrants and, hence, the more the
count of migrants will understate the number of interarea movers (and, of course,
also of moves). Philip Rees, for example, after examining the ratios of 1- to 5-year
migrants between the Standard Regions of Great Britain, found that

. . .the number of migrants recorded over five years in an interregional flow varies from four
times to two times the number of migrants recorded over one year. (Rees, 1977, p. 247)

This is the so-called 1-year/5-year problem that we shall encounter when we
study the migration patterns revealed by the American Community Survey, which
asks a 1-year interval migration question, unlike the past five U.S. censuses which
asked a 5-year interval question (1960–2000).

2.2.2 The Model Migration Schedule

The multiexponential (Rogers-Castro) model migration schedules described in this
chapter are reduced forms of the 13-parameter expression that is comprised of five
components:

1. A single negative exponential curve of the pre-labor force ages, with its descent
parameter α1;

2. A left-skewed unimodal curve of the labor force ages positioned around μ2 on
the age axis and exhibiting parameters of ascent λ2 and descent α2;

3. An almost bell-shaped curve of the post-labor force ages positioned around μ3
on the age axis and exhibiting parameters of ascent λ3 and descent α3;

4. A single positive exponential curve of the post-retirement ages, with its ascent
parameter λ4;

5. A constant term, c.

The decomposition described above leads to the definition of the migration rates
as the following simple sum of five components (Rogers and Castro, 1981, 1986;
Rogers and Watkins, 1987; Rogers, 1988):

M (x) = a1 exp (−α1x)

+ a2 exp {−α2 (x − μ2) − exp [−λ2 (x − μ2)]}
+ a3 exp {−α3 (x − μ3) − exp [−λ3 (x − μ3)]}
+ a4 exp (λ4x)

+ c

(2.1)



2.2 Age Patterns of Migration 13

The full model schedule in Eq. (2.1) has 13 parameters. The profile of the full
model schedule is defined by 8 of the 13 parameters: α1, α2, μ2, λ2, α3, μ3,
λ3 and λ4; its level is determined by the remaining 5 parameters: a1, a2, a3, a4
and c. A change in the value of the area under a particular model schedule alters
proportionally the values of the latter but does not affect the former.

In a comparative analysis of more than 500 migration schedules, Rogers and
Castro (1981, 1986) identified a wide variety of age profiles, the most common
of which was the 7-parameter reduced form of the model schedule, which con-
sists of the first two components and the constant term. A significant number of
schedules exhibited a pattern of migration in the post-labor force ages that followed
the 11-parameter model migration schedule, in which the third “retirement” peak
component was also present. In other schedules, instead of a retirement peak, the
age profile took on the form of an “upward slope,” where the fourth component
replaced the third. In such instances, a 9-parameter basic model migration schedule
was adopted. Finally, in a study of elderly migration, Rogers and Watkins (1987)
found a number of instances when both a retirement peak and a post-retirement
upward slope were exhibited, necessitating the full model schedule description with
13 parameters. In this chapter (and book), however, we only consider reduced forms
of Eq. (2.1): the 7-, 9-, and 11-parameter versions.

The labor force and the post-labor force retirement components in Eq. (2.1) adopt
the “double exponential” curve used by Coale and McNeil (1972) for their stud-
ies of nuptiality and fertility. The method chosen for fitting the model schedule to
the data is a functional-minimization procedure known as the modified Levenberg-
Marquardt algorithm (see Brown & Dennis, 1972, Levenberg, 1944, Marquardt,
1963). Minimum chi-square estimators were used in order to give more weight to
age groups with smaller rates of migration. Table 2.1 sets out the estimated values
for the basic and derived measures of the model migration schedule for Stockholm
males illustrated in Fig. 2.4.

Model migration schedules of the form specified in Eq. (2.1) may be classified
into families according to the ranges of values taken on by their principal parame-
ters. For example, we may order schedules according to their migration levels, as
defined by the values of the level parameters in Eq. (2.1), or by their associated
GMRs. Alternatively, we may distinguish schedules with a retirement peak from
those without one, or we may refer to schedules with relatively low or high val-
ues for the rate of ascent of the labor force curve λ2, or the mean age. In many
applications, it is also meaningful to characterize migration schedules in terms of
several of the fundamental derived measures illustrated in Fig. 2.4, such as the low
point x1, the high peak xh, and the retirement peak xr. Associated with the first
pair of points is the labor force shift X, which is defined to be the difference in
years between the ages of the high peak and the low point, i.e., X = xh − x1. The
increase in the migration rate of individuals aged xh over those aged x1 is called the
jump B.

The close correspondence between the migration rates of children and those of
their parents suggests another important shift in observed migration schedules. If,
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Table 2.1 Parameters and variables defining observed model migration schedules: Out-migration
of males and females from the Stockholm region, 1974: Observed data by single years of age

Stockholm

Parameters and variables Male Female

GMR 1.45 1.43

a1 0.042 0.041

α1 0.097 0.091

a2 0.059 0.067

μ2 20.80 19.32

α2 0.077 0.094

λ2 0.374 0.369

a3 0.000 0.000

μ3 76.55 85.01

α3 0.776 0.369

λ3 0.145 0.072

c 0.003 0.003

n̄ 31.02 29.54

%(0–14) 25.61 25.95

%(15–64) 64.49 65.10

%(65+) 9.90 8.94

δ1c 13.56 13.06

δ12 0.716 0.604

δ32 0.003 0.003

β12 1.26 0.977

σ 2 4.86 3.94

σ 3 0.187 0.196

xl 16.39 14.81

xh 24.68 22.70

xr 64.80 61.47

X 8.29 7.89

A 27.87 25.49

B 0.029 0.030

Source: Rogers and Castro (1981)

for each point x on the post-high-peak part of the migration curve, we obtain by
interpolation the age (where it exists), x − Ax say, with the identical rate of migration
on the pre-low-point part of the migration curve, then the average of the values of
Ax, calculated incrementally for the number of years between zero and the low point
x1, will be defined as the observed parental shift A.

An observed (or a graduated) age-specific migration schedule may be described
in a number of useful ways. For example, references may be made to the heights at
particular ages, to locations of important peaks or troughs, to slopes along the sched-
ule’s age profile, to ratios between particular heights and locations. The various
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Fig. 2.4 The model migration schedule fitted to the observed out-migration rates of males leaving
the Stockholm region, 1974.
(Source: Rogers & Castro, 1981)

descriptive measures characterizing an age-specific model migration schedule may
be conveniently grouped into the following categories and subcategories:

1. Basic measures (in the 13 fundamental parameters and their ratios)

Heights: a1, a2, a3, a4 and c
Locations: μ2, μ3
Slopes: α1, α2, λ2, α3, λ3, λ4
Ratios: δ1c = a1/c, δ12 = a1/a2, δ32 = a3/a2, β12 = α1/α2, σ2 = λ2/α2,

σ3 = λ3/α3

2. Derived measures (properties of the model schedule)

Areas: GMR, %(0-14), %(15-64), %(65+)
Locations: n̄, x1, xh, xr
Distances: X, A, B

2.3 Comparative Analysis

We’ve seen that observed age-specific rates of migration exhibit a fundamental
age profile, which can be expressed in mathematical form as a model migration
schedule defined by a total of seven to eleven parameters (we do not focus on
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the 13-parameter version in this book). Below, we examine and summarize the
ranges of values typically assumed by each of these parameters and their associ-
ated derived variables calculated as part of a multinational Comparative Migration
and Settlement Study (CMSS), carried out in the late 1970s and early 1980s at the
International Institute for Applied Systems Analysis (IIASA) in Austria: (Rogers,
1978b; Rogers & Willekens, 1986; Willekens & Rogers, 1978).

IIASA’s study of migration and settlement began with two basic components: a
set of computer programs for multiregional demographic analysis and a network of
collaborating investigators from nations of the Institute’s then 17 member organi-
zations. The principal goal was a case study of each country to be carried out by a
scholar from that country. Each study used a common methodology and followed
a common outline of substantive topics. Much of the data analysis was carried out
at IIASA using a standard package of computer programs and most of the scholars
involved had to be trained in the methodology by those at IIASA familiar with the
mathematical theory.

The Migration and Settlement Study was concluded in 1982, seven years after
its initiation. An important product of the study was the set of 17 country reports
authored by 27 scholars. Each report presented a national overview of recent
regional patterns of fertility, mortality, and internal migration, illustrated the appli-
cation of multiregional demographic techniques and the insights into population
redistribution that they revealed. An important by-product of the comparative study
was the collection of interregional migration data that it acquired. That data set was
analyzed in Rogers and Castro (1981, 1986), and some of that analysis is reported
below.

2.3.1 An Example: The Swedish Case Study

The age-specific migration rates that were used to demonstrate the fits of the
model migration schedule in the last section (Fig. 2.4) were single-year rates for
a single-year time interval. Such data are scarce at the regional level and, in the
IIASA comparative study, were available only for the eight-region disaggregation
of Sweden (Andersson & Holmberg, 1980). But a comparison of the various param-
eter estimates for female schedules with those obtained when the same data were
first aggregated to 5-year age groups and then disaggregated to single years of age
by a cubic-spline interpolation indicated that such an interpolation procedure gives
generally satisfactory results (see Table 2 in Rogers & Castro, 1981, pp. 14–15).

A number of useful measures describing the fitted model migration schedules
for the out-migration rates from Stockholm to the Rest of Sweden are presented in
Table 2.1. Some reflect levels of migrations, others pure age profile indicators. The
former vary with levels of the GMR, the latter do not (hence the designation “pure”).
Four parameters refer only to migration levels: a1, a2, a3 and c.

The remaining model schedule parameters refer to the migration age profile: α1,
μ2, α2, λ2, μ3, α3 and λ3. Their values remain constant for all levels of the GMR.
Taken together, they define the “pure” age profile of migration from one region to
another. Schedules without a retirement peak yield only the four profile parameters:
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α1, μ2, α2 and λ2, and schedules with a post-retirement slope add a single additional
profile parameter λ4.

Consider, for example, the ages of the low and high points in the pre-labor and
young adult labor parts of the schedules. Males leaving Stockholm exhibit a low
point of 16.39 years and a high point of 24.68 years. Females, on the other hand,
show a low point that is younger (14.81 years) and a high point that also is younger
(22.70 years). Retirement peaks center on age 64.80 for males and 61.47 for females,
probably a reflection of the difference in the average ages at marriage. The average
parental shift for males is 27.87 years and for females it is 25.49 years.

The contrasts identified above are rather typical for other fitted model sched-
ules describing annual interregional migration age profiles in Sweden in 1974. The
eight regions were defined in the Andersson and Holmberg (1980) report of IIASA’s
Migration and Settlement Study.

Rates of migration from each of eight regions to the rest of Sweden, if disag-
gregated by region of destination, gives 82 = 64 directional schedules that need to
be examined for each sex, which complicates comparisons with other nations. To
resolve this difficulty, Rogers and Castro (1981, 1986) associated a “typical” sched-
ule with each collection of national rates by calculating the mean of each parameter
and derived variable.

To avoid the influence of unrepresentative “outlier” observations in the compu-
tations of averages defining a typical national schedule, it was decided to delete
approximately 10% of the “extreme” schedules. Specifically, the parameters and
derived variables were ordered from low value to high value; the lowest 5% and
the highest 5% were defined to be extreme values. Schedules with the largest num-
ber of low and high extreme values were discarded, in sequence, until only about
90% of the original number of schedules remained. This reduced set then served
as the population of schedules for the calculation of various summary statistics.
Table 2.2 illustrates the average pure profile parameter values obtained with the
Swedish data. (Since the median, mode, standard deviation-to-mean ratio, and lower
and upper bounds were also of interest, they were included as part of the more
detailed computer outputs reproduced in Appendix B of Rogers and Castro (1981).

Table 2.2 presents information about patterns of migration by age. The param-
eters, given in columns, define a range of fitted model migration schedules. In
general, their particular pure profile parameter estimates and derived variable val-
ues are similar to those associated with the out-migration schedules for Stockholm
(Table 2.1). The low point averages range from 14.44 to 16.49 years and the cor-
responding high point values from 21.72 to 24.46 years. Once again the high point
values for females are lower than for males, as are the values of the parental shift.

2.3.2 Families of Schedules: Toward a Typology

One can imagine describing a model migration schedule along its vertical and
horizontal dimension. For example, the heights of the labor force and pre-labor
force components are reflected in the parameters a2 and a1, respectively, therefore
the ratio a2/a1 indicates the degree of the “labor dominance,” and its reciprocal,
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Table 2.2 Mean values of pure profile parameters and derived variables defining the reduced set
of observed model migration schedules: Sweden, 8 regions, 1974 observed data by single years of
agea

Males Females

Parameters
Without retirement
peak (48 schedules)

With retirement
peak (9 schedules)

Without retirement
peak (54 schedules)

With retirement
peak (3 schedules)

α1 0.124 0.085 0.108 0.093
μ2 20.502 21.249 19.094 18.868
α2 0.104 0.093 0.127 0.106
λ2 0.448 0.416 0.537 0.424
μ3 76.711 74.781
α3 0.847 0.938
λ3 0.158 0.170
xl 15.621 16.494 15.260 14.444
xh 23.571 24.462 21.720 21.904
xr 65.630 64.604
X 7.950 7.968 6.461 7.460
A 30.270 28.668 27.222 26.119
B 0.030 0.024 0.036 0.026

aRegion 1 (Stockholm) is a single-commune region; hence there exists no intraregional schedule
for it, leaving 82 −1 = 63 schedules, of which 6 were deleted
Source: Rogers and Castro (1981)

δ12 = a1/a2, the index of “child dependency.” The lower the value of δ12, the lower
the degree of child dependency exhibited by a migration schedule and, correspond-
ingly, the greater its labor dominance. This suggests a dichotomous classification of
migration schedules into child dependent and labor dominant categories.

Labor dominance reflects the relative migration levels of those in the working
ages relative to those of children. Labor asymmetry, on the other hand, refers to the
shape of the left-skewed unimodal curve describing the age profile of labor force
migration. Imagine that a perpendicular line, connecting the high peak with the
base of the bell-shaped curve (i.e., the jump B), divides the base into two segments
g and h. Clearly, the ratio h/g is an indicator of the degree of asymmetry of the curve.
A more convenient index, using only two parameters of the model schedule is the
ratio σ2 = λ2/α2, the index of labor asymmetry. Its movement is highly correlated
with that of h/g, because of the approximate relation

σ2 = λ2/α2 ∝ B/g

B/h
= h/g (2.2)

where ∝ denotes proportionality. Thus σ 2 may be used to classify migration sched-
ules according to their degree of labor asymmetry. Again, an analogous argument
applies to the post-labor force curve, and σ3 = λ3/α3 may be defined as the index
of retirement asymmetry.

When “adding on” a pre-labor force curve of a given level to the labor force
component, it is also important to indicate something of its shape. For example,
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if the migration rates of children mirror those of their parents, then α1 should be
approximately equal to α2 and β12 = α1/α2, the index of parental-shift regularity,
should be close to unity.

Large differences in the GMRs of fitted model migration schedules, however,
give rise to slopes and vertical relationships that are not comparable when exam-
ined visually. Recourse then must be made to a standardization of the areas under
the migration curves, for example, a general rescaling to a GMR of unity. Recall
that this difficulty does not arise when comparing values of the principal slope and
location parameters and their ratios, because such indices when used to characterize
the schedules are not affected by changes in levels. Only heights, areas, and vertical
distance measures, such as the jump, are level-dependent measures.

The analysis of the collection of age-specific directional migration schedules
described in Rogers and Castro (1981, 1986) suggests that a useful typology of
such schedules can be developed by simply cross-classifying high and low levels of
mobility with early and late peaking (timing) of mobility, the “how much” and the
“when” of migration. Associated with these four types for out-migration are four
important points on the prototypical age pattern of migration: the infant migration
level, the age at which migration hits a low point during the teenage years and begins
its ascent, the age at which the associated high point (called the labor force peak)
occurs and, finally, the age profile of migration of the older post-labor force ages,
the presence or absence of either a retirement peak or of a gradual rise at the oldest
ages or both (Rogers and Castro, 1981; Rogers and Watkins, 1987).

The height of the infant migration peak has been shown to be associated with the
level of fertility in the population (Castro & Rogers, 1983). The low point during
the teenage years and the start of the ascent to the labor force peak is related to the
population’s average age of leaving home. The location and relative height of the
labor force peak is associated with the pace at which teens and young adults leave
home to enter the labor market, go to college, enroll in the military, and get married.
And finally, the presence of a retirement peak typically only occurs in more devel-
oped countries in migration flows directed from cold to warm climates (e.g., from
New York to Florida). Another variable of interest is the parental-shift denoted by A
in Fig. 2.4, which Rogers and Castro (1981) define as the average number of years
separating the migration rates of children from those of their parents with whom
they must migrate, a value that normally is close to the average age of childbearing.

The comparative analysis of national and interregional migration patterns carried
out in Rogers and Castro (1981) identified several distinct families of age profiles.
Within each family of schedules, a number of key parameters and variables were put
forward to further classify different categories of migration profiles. For example,
the following aspects of shape and location along the age axis were found to be
important:

(1) Peaking: early versus late peaking (μ2)
(2) Dominance: child dependency (δ12) versus labor dominance (δ21 = 1/δ21)
(3) Asymmetry: labor symmetry versus labor asymmetry (σ 2)
(4) Regularity: the degree to which the migration rates of children mirror those of

their parents (β12).
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Three sets of model migration schedules have been studied in this chapter: the
11-parameter schedule with a retirement peak, the alternative 9-parameter schedule
with a retirement slope, and the simple 7-parameter schedule with neither a peak
nor a slope. Thus we have at least three broad families of schedules. Not examined
here is the full 13-parameter schedule; but all four families are illustrated in Fig. 2.5
below.

Additional dimensions for classifying schedules into families are suggested by
the above comparative analysis of national migration age profiles and the basic
measures and derived variables defined in Section 2.2. These dimensions reflect
different locations on the horizontal and vertical axes of the schedule, as well as
different ratios of slopes and heights.

We may imagine a 3 × 4 cross-classification of migration schedules that defines
a dozen “average families” with measures that take on the average values found
in the more than 500 migration schedules examined in Rogers and Castro (1981,
1986). Introducing, in addition, a low and high value for each of the four basic
measures gives rise to additional families for each of the three classes of sched-
ules. Thus we may conceive of a collection of families, divided into schedules
with a retirement peak, schedules with a retirement slope, and schedules with both
(or neither).

R
at

e

Age

b) Elderly Retirement Peak

0.00
0 10 20 30 40 50 60 70 80

0.01

0.02

0.04

0.03

R
at

e

Age

c) Elderly Post-retirement Upslope

0.00
0 10 20 30 40 50 60 70 80

0.01

0.02

0.04

0.03

R
at

e

Age

d) Elderly Retirement Peak and
    Post-retirement Upslope

0.00
0 10 20 30 40 50 60 70 80

0.01

0.02

0.04

0.03

R
at

e

Age

a) Standard

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Fig. 2.5 The four main families of Rogers-Castro model migration schedules: standard, elderly
retirement peak, elderly post-retirement upslope, and elderly retirement peak and post-retirement
upslope.
(Source: Raymer & Rogers, 2008)
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2.4 Related Topics

2.4.1 Sensitivity Analysis

The preceding section has focused on a comparison of the fundamental parameters
defining the model migration age profiles of a number of nations. The comparison
yielded ranges of values within which each parameter may be expected to fall and
suggested a classification of schedules into families. We now turn to an analytic
examination of how changes in several of the more important parameters become
manifested in the age profile of the model schedule. For analytical convenience we
begin by focusing on the properties of the double exponential curve that describes
the labor force component:

f2 (x) = a2 exp {−α2 (x − μ2) − exp [−λ2 (x − μ2)]} (2.3)

We begin by observing that if α2 is set equal to λ2 in the above expression then
the labor force component assumes the shape of a well-known extreme value dis-
tribution used in the study of flood flows (Gumbel 1941; Kimball 1956). In such a
case xh = μ2 and the function f2 (x) achieves its maximum yh at that point. To ana-
lyze the more general case where α2 �= λ2, we may derive analytical expressions
for both of these variables by differentiating Eq. (2.3) with respect to x, setting the
result equal to zero, and then solving to find

xh = μ2 − (1/λ2) ln (α2/λ2) (2.4)

an expression that does not involve a2, and

yh = a2 (α2/λ2)
α2/λ2 exp (−α2/λ2) (2.5)

an expression that does not involve μ2. Note that if λ2 > α2, which is almost always
the case, then xh > μ2. And observe that if α2 = λ2, then the above two equations
simplify to xh = μ2 and yh = a2/e.

Since μ2 affects xh only as a displacement, we may focus on the variation of xh as
a function of α2 and λ2. A plot of xh against α2, for a fixed λ2, shows that increases
in α2 lead to decreases in xh. Analogously, increases in λ2, for a fixed α2, produce
increases in xh but at a rate that decreases rapidly as the latter variable approaches
its asymptote.

The behavior of yh is independent of μ2 and varies proportionately with a2.
Hence its variation also depends fundamentally only on the two variables α2 and λ2.
A plot of yh against α2, for a fixed λ2, gives rise to a U-shaped curve that reaches its
minimum at α2 = λ2. Increasing λ2 widens the shape of the U.

The introduction of the pre-labor force component into the profile generally
moves xh to a slightly younger age and raises yh by about a1 exp (−α1xh), usually a
negligible quantity. The addition of the constant term c, of course, affects only
yh, raising it by the amount of the constant. Thus the migration rate at age xh may
be expressed as



22 2 Describing Age Structures of Migration

M (xh) ≈ a1 exp (−α1xh) + yh + c (2.6)

A variable that interrelates the pre-labor force and labor force components is
the parental shift A. To simplify our analysis of its dependence on the fundamen-
tal parameters, it is convenient to assume that α1 and α2 are approximately equal.
In such instances, for ages immediately following the high peak xh, the labor force
component of the model migration schedule is closely approximated by the func-
tion a2 exp [−α2 (x − μ2)]. Recalling that the pre-labor force curve is given by
a1 exp (−α2x1) + yh + c when α1 = α2, we may equate the two functions to solve
for the difference in ages that we have called the parental shift:

A = x2 − x1 = μ2 + (1/α2) ln (1/δ12) (2.7)

This equation shows that the parental shift will increase with increasing values of
μ2 and will decrease with increasing values of α2 and δ12. A comparison of the val-
ues of this analytically defined “theoretical” parental shift with the corresponding
observed parental shifts obtained for males and females in eight Swedish regions
produced similar numerical values; the analytical definition has the advantage of
being simpler to calculate and analyze, but it is very sensitive and depends on “good”
estimates of the model schedule parameters (see Table 14 in Rogers & Castro,
1981, p. 33).

2.4.2 The 1-Year/5-Year Problem

In this section, we examine the migration flows that are represented by the con-
ditional survivorship proportions of persons migrating from origin i to destination
j for 1-year migration time intervals (i.e., current place of residence by place of
residence one year ago) and 5-year migration time intervals (i.e., current place of
residence by place of residence five years ago). Recall that conditional survivor-
ship proportions represent the surviving proportions of persons who migrated from
origin i to destination j. For each origin region, they define the proportion staying
and the proportion migrating. Such proportions are said to be conditional because
only those who survived to the time of the census could report their migration
status.

A number of analysts have looked into the problem of reconciling 1- and 5-year
migration data, (Rees, 1977; Kitsul & Philipov, 1982). Rogerson (1990) argues not
only that the level of mobility but also the geographic pattern of migration flows
is influenced by the choice of interval width. He notes that the return and onward
migrations that occur within the 5-year period, along with the heterogeneity in the
flows are responsible for creating the differences.

Rogers, Raymer, and Newbold (2003) review and re-examine differences in level
and spatial patterns finding 5- to 1-year ratios of levels that vary between 3 and
3.5 and spatial allocations of those levels that exhibit a surprising degree of relative



2.4 Related Topics 23

stability. Here we introduce a consideration of changing age patterns. Specifically,
how to the age profiles of migration identified by 1-year and 5-year time intervals
differ?

Figure 2.6 sets out the model schedule age profiles of two sets of U.S. migration
data. The differences between the 1-year ACS data and the 5-year Census data are
evident.

A motivation for our examination of the problem comes partly from the changes
currently occurring with regard to migration data collected in the U.S. In the future,
data on internal migration collected by the U.S. Census Bureau will only come from
the American Community Survey (ACS), which is a continuing monthly survey that
will replace the historical census long-form by the year 2010. The data from the
ACS have the advantages of lower cost and more up-to-date information, but this
replacement of the long-form questionnaire has lead to new perspectives on the
measurement and analysis of internal migration flows, and on the development of
intercensal population estimates.

The new migration data reflects place of residence one year ago, though not at
one fixed point in time, but rather the result of continuous sampling throughout the
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course of each year. In contrast, in the past five censuses, the migration data has
reflected place of residence exactly five years ago. This change creates problems for
those users of the ACS data who need information on migration to calibrate cohort-
survival population projection models with age and time intervals of 5-years. It also
directs increased attention at the underlying differences between counts of migrants
versus counts of migrations.

Migration flow data collected over time intervals of differing lengths differ in
their measures of migrations and migrants. By missing some return and onward
migrations, the longer intervals undercount the actual number of moves, and thereby
tend to emphasize the movement levels and spatial patterns of those who move
less frequently. Moreover, every migration flow can be disaggregated into its pri-
mary, return, and onward components. Typically, each of these three subgroups
exhibits different propensities to migrate, different spatial patterns, and different
age profiles. Since the relative representation of each of these three subgroups in the
observed total flow is influenced by the width of the time interval selected (and the
spatial scale of the regionalization), clearly the associated migration levels, spatial
structures, and age patterns will differ.

2.4.3 The Age Composition of Migrants

The age profile of a population is often used as evidence of the historical fertility
and mortality patterns that gave rise to it. For example, Fig. 2.7, Panel (a), shows
the contrast in the age composition of the populations of Mexico in 1970 and of
Sweden in 1974 (Castro & Rogers, 1983). The Mexican population distribution sug-
gests high rates of natural increase and mortality, increasing fairly rapidly with age.
The Swedish data, on the other hand, illustrate a population distribution that is more
typical of low rates of natural increase and morality rates that don’t increase appre-
ciably until after age 60. For the same time period, Panel (b) of Fig. 2.7 reveals the
age composition of internal migrants for Mexico and Sweden, and it is clear that the
two population structures affect the migration age profiles. In Mexico the youngest
age groups are a very large portion of the population, which is consistent with the
high fertility rate, and it follows logically that the youngest age groups comprise a
substantial portion of the migrating population. Sweden, on the other hand, exhibits
a more uniform population distribution (Panel (a) of Fig. 2.7), and its age profile
of migrants (Panel (b)) reflects the relative propensities to migrate that are more
common among developed societies.

The data for Mexico and Sweden offer a visual illustration of a relationship
between a population and its distribution of out-migrants, but that relationship may
be set out analytically. Age-specific out-migration rates are often denoted by M(x),
which is defined as M(x) = O(x)/K(x), where O(x) is the total number of out-
migrants age x, and K(x) is the total population at the same age. Rogers (1978b)
showed that the age profile of M(x) is related to the distribution of out-migrants and
the distribution of the population from which they were a part. This can be demon-
strated using the definition of M(x). If we denote the proportion of out-migrants
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aged x as N(x), and the proportion of the total population aged x as C(x), then the
definition of M(x) can be expressed as a function of N(x) and C(x):

M(x) = O(x)

K(x)
= O∗N(x)

K∗C(x)
, (2.8)

where O is the total number of out-migrants and K is the total population num-
ber (Castro & Rogers, 1983). Then Eq. (2.10) can be rearranged so that the age
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composition of out-migrants N(x) is expressed as a function of two distributions:

N(x) = C(x)

(
M(x)

O/K

)
(2.9)

and if

P(x) = M(x)

O/K

then

N(x) = C(x)∗P(x). (2.10)

2.5 Summary and Discussion

This chapter began with the observation that empirical regularities characterize
observed migration schedules in ways that are no less important than the corre-
sponding well-established regularities in observed fertility or mortality schedules.
The data analyzed confirmed that, although migration levels vary substantially from
place to place, the shape of an age-specific schedule of migration propensities seems
to be quite similar across a wide range of regions. Young adults in their early twen-
ties generally exhibit the highest regional outmigration rates and young teenagers
show the lowest. Because children migrate with their parents, infant migration rates
are higher than those of adolescents. And retirement migration may give rise to a
bell-shaped protrusion in the migration age profile around the ages of retirement.

Section 2.2 was devoted to defining mathematically regularities in observed
migration schedules in order to exploit the notational, computational, and analytical
advantages that such a formulation provides. Section 2.3 reported on the results of
an examination of the migration schedules for a large number of countries. Section
2.4 focused on three related topics: the ways in which model migration schedules
are shaped by the parameters of the model schedules, the problems of reconciling
1-year time interval data with 5-year interval data, and the representation of the
age composition profiles of migrants. Later chapters will show how regularities in
migration age profiles lead naturally to the development of model migration sched-
ules that might be suitable for studies of populations with irregular, inadequate, or
missing data.

Of what use, then, is the model migration schedule defined in this chapter? What
are some of its concrete practical applications? The model migration schedule may
be used to graduate observed data, thereby smoothing out irregularities and ascrib-
ing to the data summary measures that can be used for comparative analysis. It may
be used to interpolate to single years of age, observed migration schedules that are
reported for wider age intervals. Assessments of the reliability of empirical migra-
tion data and indication of appropriate strategies for their correction are aided by the
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availability of standard families of migration schedules that can be imposed on unre-
liable data. And such schedules also may be used to help resolve problems caused
by missing data.

Finally, the application (i.e., fitting) of the model migration schedules to observed
data requires the estimation of each schedule’s parameters. These parameters have
been estimated using standard non-linear estimation procedures. The Appendix to
this chapter identifies such procedures and the computer software that was used to
implement them.

2.6 Appendix: Estimation of Model Schedule Parameters

This chapter has focused on fitting observed data on age-specific migration propen-
sities using the Rogers-Castro multiexponential model migration schedules. All of
the estimates were obtained using one of three non-linear curve-fitting computer
programs: MODEL, MODELMATLAB, and TableCurve 2D. The first was written
in FORTRAN by research colleagues of Andrei Rogers: Luis Castro and Friedrich
Planck at the International Institute of Applied Systems Analysis during the late
1970s and early 1980s, with revisions introduced by Jani Little at the University of
Colorado, Boulder in the late 1990s. A brief description of MODEL may be found
in Rogers and Little (1994). The second was written in MATLAB by Avleen Bijral
and Jani Little, at the University of Colorado, Boulder in 2005–2006 and is used in
Chapters 4, 5, and 6, when processing large numbers of required fittings. The third
program used was a commercially offered general curve-fitting program purchased
from Jandel Scientific, TableCurve 2D. (For an application, see Rogers & Raymer,
1999).

TableCurve 2D (version 5.0) is an automated curve fitting and equation discov-
ery program that has been designed for a variety of scientific uses. In this program,
the Rogers-Castro model migration schedule can be specified using a User Defined
Function that allows up to 10 parameters to be estimated. This program also has
visualization features that permit the user to see how the model is affected by
changes in individual parameter values. Rogers and Raymer (1999) compared the
results and procedures of this software with those of MODEL and found that both
programs produced the same results, but that TableCurve 2D had several advantages,
particularly the procedural aspects of the modeling process, which are more user-
friendly. For example, imagine that a problem arises in the specified initial estimates,
which is quite common when dealing with so many parameters. In TableCurve 2D,
it is possible to partition the data and then to derive initial estimates for different sec-
tions of the curve. Levin and Mitra (1994) demonstrated this with the TableCurve 2D
program using mortality data. Note, most standard statistical software (e.g., SPSS
or Stata) have non-linear regression routines. These also can be used to estimate
the 7-parameter schedule, however one needs reasonable initial estimates. Fitting
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the 9-, 11-, or 13-parameter schedules is much more complicated. Here, a graphi-
cal interface like the one in TableCurve 2D is very useful for obtaining the initial
estimates.

Common to all three computer programs is the classical problem of non-linear
parameter estimation in unconstrained optimization. All start with a set of initial
guesses of the desired parameter values and then seek to improve the goodness-of-fit
by identifying “better” values, until specific convergence criteria are met. This iter-
ative sequence ends after a finite number of iterations, and the last set of estimates
is accepted as giving the best fit of the multiexponential function to the observed
data.

Except for the data in the Swedish case study, described in Section 2.3.1 and
the American Community Survey (ACS) data described in later chapters, all age-
specific migration rates or propensities in this book begin with the migration of
5-year age groups. We have found that more accurate parameter estimates are
obtained if these latter data are first graduated to produce 1-year age group data
using a cubic-spline interpolation procedure (McNeil, Trussell, & Turner, 1977).

Finally, the principal difficulty in non-linear parameter estimation is that of con-
vergence. The algorithm begins by assuming a set of initial parameter values and
ultimately ends with a set of “optimum” values. But the optimum may be merely a
local optimum, and not the global optimum optimorum. A better guess of the initial
parameter values may produce an improved goodness-of-fit and produce a different
set of final values.

How to choose a “good” set of initial values? An effective procedure is to carry
out a linear estimation method first, which does not rely on an iterative algorithm.
That method was first described in Castro and Rogers (1981), applied and analyzed
by Watkins (1984), and ultimately published as one of the several alternatives set
out in Rogers et al. (2005).



Chapter 3
Describing Spatial Structures of Migration

3.1 Introduction

The notion of age structure is a central concept in demography, but the structure of
migration, which is inherently spatial, is not commonly presented. The former has
been used to develop functional representations of the age patterns of a population
or that of a stream of migrants, and it is the basis for the construction of model
migration schedules, mathematical expressions such as those that describe the age
patterns of migration propensities in Chapter 2. The latter, on the other hand, has
no such widely accepted mathematical representation. Yet it clearly exists, as the
spatial pattern of the principal U.S. elderly retirement flows depicted in Fig. 3.1
illustrates. We offer such a definition, one that draws on Rogers et al. (2002) and the
log-linear specification of the geographer’s spatial interaction model.

As a demographic process, migration stands apart from fertility and mortality
because of the explicitly spatial nature of migration. Unlike fertility and mortality
processes, which affect the population of only one region, aggregate migration flows
interact within a multiregional system in which departures from each region affect
the populations of several other regions, subtracting people from each region of
origin and adding people differentially to each region of destination. Therefore, rep-
resentation of this complex process and associated data structure must come from a
model that incorporates the influences of population sizes at the origins and desti-
nations, and one that also includes some sort of “separation” or “interaction” factor
between each pair of origins and destinations.

We define migration spatial structure to be a particular description of a matrix
of interregional migration flows, one that provides an analyst with the means to:
(1) reconstruct that matrix of flows from a set of parameters, (2) identify the
implied relative “push” at each origin and “pull” of each destination, and (3)
express the origin-destination-specific levels of spatial interaction implied by that
matrix of flows. Spatial interaction is here taken to reflect the degree of devi-
ation exhibited by the flow matrix when compared to the corresponding matrix
generated under assumption of no spatial interaction, i.e., a situation in which
origin-destination-specific migration flows, rates, or probabilities are independent
of origin and destination; the larger the deviation the stronger the degree of spatial
interaction.

29A. Rogers et al., The Indirect Estimation of Migration, The Springer Series
on Demographic Methods and Population Analysis 26, DOI 10.1007/978-90-481-8915-1_3,
C© Springer Science+Business Media B.V. 2010
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Salient Flows: U.S.
Threshold GMR(60) = .0234

Fig. 3.1 The principal elderly retirement migration flows in the U.S., 1975–1980, excluding
Alaska, Hawaii, and Washington, DC. (Source: Rogers et al., 1990, p. 270)

The linkage between age structure and the analysis of fertility, mortality, and
migration processes is central to demographic study. Standardized mathematical
representations of age patterns have allowed demographers accurately to define
age-specific patterns with continuous functions described with relatively few param-
eters. The corresponding mathematical representation of spatial patterns calls for a
somewhat more complex statistical structure. A powerful, yet conceptually simple,
instrument for the study of aggregate migration spatial structure is offered by the
family of generalized linear models, particularly the log-linear model. It provides a
mathematical representation of migration flow structure that is more readily inter-
pretable than is the flow matrix itself. Just as model schedules are used to make
comparisons across time and place, the log-linear specification can be employed
as a statistical model that is especially valuable for comparing interregional migra-
tion structures across time. The parameters of the log-linear model can be used
to not only gauge the relative “push” and “pull” of specific regions but also the
level of interaction (or association) between pairs of regions. Because the parame-
ters of the model are interpretable and can be used to characterize migration spatial
structure, the log-linear model has the potential for standardizing and enhancing
demographic analysis. As we show in this book, the log-linear model, like model
migration schedules, can be used to smooth, impose or infer migration flows.

The main contribution of the log-linear approach is that the parameters of that
model capture different features of the spatial structure of migration, with one set of
parameters representing the effect of the sizes of origin populations, another set rep-
resenting the corresponding effects of the sizes of destination populations, and still
another set representing the strengths of the linkages between these two populations.
This parameterization facilitates comparisons of spatial structures. The method can
be applied to a multiregional system comprised of many regions and to theoretical
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as well as observed spatial structures. It also decomposes the spatial structure into
contributing structural factors. For example, the number of migrants from a region,
i say, to another region, j say, depends on the size and composition of the population
of region i and on the size and composition of the population of region j.

Population sizes and compositions alone, however, are not sufficient to character-
ize the flows of migrants. The spatial interaction between the populations of regions
i and j is also important and, indeed, a history of migration from i to j may be a
more important determinant of current migration structure than the particular char-
acteristics of the two regions. In Section 3.3, a method is presented that is able to
capture the effect on contemporary migration of historical migration patterns, facil-
itating the quantitative assessment of historical changes among observed structures
and their influences on contemporary spatial structures. That method is the method
of offsets (Knudsen, 1992). A particularly interesting observation is that this method
belongs to the family of log-linear models.

We begin below with a brief overview of previous efforts to describe the spatial
structure of migration. We then focus on the merits of the general spatial interaction
model and emphasize the functional equivalence between this model and the log-
linear model. We also offer an exposition of the log-linear model, showing how it
can be used to represent the components of migration spatial structure, illustrating
its use with particular numerical examples, and then considering its extensions and
wider implications. Finally, we end the chapter with a summary and discussion.

3.2 Representing Spatial Structures of Migration:
The Log-Linear Model

3.2.1 Overview

The literature on migration is curiously ambiguous on the subject of what is migra-
tion spatial structure and how it should be measured. An early effort to describe
the structure of migration was that of Shryock (1964, p. 267) who put forward a
preference index that focused on the ratio of actual to expected number of migrants
in a stream, the latter defined as being proportionate to both the population at ori-
gin and the population at destination. Clayton (1977, p. 109), on the other hand,
defined migration spatial structure as the way in which origins and destinations are
linked in terms of their exchanges of migrants. He then implemented this definition
by identifying those regions (states in his application) that acted as major origins
and destinations in the interstate migration system. He used nodal and principal
component analyses to identify such places and delineated a number of migration
fields.

Plane (1984) and Manson and Groop (1996), among many others, relied on the
widely used notion of migration efficiency, a measure of redistributional effective-
ness, and applied it to interstate migration matrices to identify changes in migration
system structure. And in a co-authored article with Mulligan, Plane adopted the
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well-known Gini index of concentration to identify the spatial focus exhibited by
a set of origin-destination-specific migration flows, measuring the strength of the
concentration by the departure from equality in the distribution of migration streams
that is exhibited by an observed origin-destination-specific matrix of flows (Plane
& Mulligan, 1997). Rogers and Sweeney (1998) and Rogers and Raymer (1998)
instead focused on the coefficient of variation as the relevant index.

Finally, Mueser (1989) fitted a generalized spatial interaction model to data on
migration flows between U.S. states over three decades. Mueser’s work is impor-
tant because he demonstrates the ability of the spatial interaction model to clearly
represent the structural components of migration. Due to his reliance on the spatial
interaction model, he was able to decompose migration structure into the “sending”
effects of each region, the region’s ability to “draw” migrants, and the inter-regional
interaction or separation effects. His findings on migration flow stability conflict
with the conclusions of Plane (1984) and Manson and Groop (1996), however, prob-
ably because of the differences in methodological approaches. Instead of instability,
he finds that there is great stability in the separation effects, i.e., the relative attach-
ments between regions over time. There are changes, he concludes, in the relative
volumes of migration streams, but these are due to the relative desirability or draw
of different locations rather than to the spatial interactions between them.

3.2.2 The Spatial Interaction Model and the Log-Linear Model

The spatial interaction model, once so popular in human geography (Haynes &
Fotheringham, 1984), has proven to be the most useful method for representing
the spatial structure of migration (Willekens, 1983a; Mueser, 1989). Its generality
incorporates most models used to examine migration streams including the gravity
model, entropy maximization, information minimization, biproportional adjust-
ment, the systemic model of movement, random utility models based on choice
theory, and the log-linear model. A formal equivalence exists between the log-linear
model and the gravity model and entropy maximization model (e.g., see Willekens,
1980; 1982a; 1982b; 1983a; Bennett & Haining, 1985; Aufhauser & Fischer, 1985).

The log-linear model is a powerful instrument for the study of complex data
structures. Its use to express traditional models of spatial interaction enhances the
opportunities for structural analysis. Questions that the data are expected to help
answer may be expressed in terms of the parameters of the model. Furthermore, the
model clarifies and simplifies the estimation of spatial interaction flows. And when
particular interaction effects cannot be derived from available data, they often may
be calculated using other comparable data sets (e.g., historical data on interaction).
Since Snickars and Weibull (1977) found that migration tables of the past provide
much better estimates of current accessibility than any distance measure, historical
data are often used in spatial interaction analysis to capture spatial patterns of acces-
sibility. A drawback of using historical information is that this assumes that spatial
interactions remain stable, i.e., that migration regimes are fixed. However, research
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on matrix transformation methods and log-rate models for representing past age and
spatial patterns of structural change has provided us with a logical way to relax the
strict assumption of an unchanging regime (Rogers & Taylor, 1996; Lin, 1999b).

3.2.3 Numerical Examples of the Log-Linear Decomposition

To illustrate the advantages of analyzing migration in terms of multiplicative com-
ponents, consider the U.S. migration flows between the four Census Bureau-defined
regions during the 1985–1990 and 1995–2000 time periods set out in Table 3.1. All
persons who died, were born, or left or entered the country during the period have
been excluded. Also, persons who remained in region i (i.e. non-migrants denoted
nii) are excluded from the table. During the 1985–1990 period, 10.5 million persons
over the age of 5 years were classified as interregional migrants. The Northeast and
Midwest regions sent about half of all migrants but only received one third. The
largest origin-destination-specific flow was from the Midwest to the South. How
can we describe and compare the migration spatial structures exhibited by these
flow matrices, using a spatial interaction model?

The elements (nij) in each of the two migration flow tables in Table 3.1 can be
expressed as follows:

nij = (T)(Oi)(Dj)(ODij) (3.1)

where nij is an observed flow of migration from region i to region j. This general
type of model is called a multiplicative component model. Such a specification of
the model is consistent with that of the log-linear model, that is, taking the natural
logarithm of nij results in the corresponding additive model:

ln (nij) = λ + λO
i + λD

j + λOD
ij (3.2)

Table 3.1 U.S. interregional migration flows (in thousands), 1985–1990 and 1995–2000

Destination

Period Origin Northeast Midwest South West Total

(a) 1985–1990 Northeast 330 1,604 469 2,403
Midwest 344 1,672 947 2,963
South 760 1,180 1,122 3,062
West 340 658 1,053 2,051
Total 1,444 2,168 4,329 2,538 10,479

(b) 1995–2000 Northeast 336 1,625 495 2,456
Midwest 302 1,632 874 2,808
South 775 1,157 1,097 3,028
West 357 730 1,281 2,367
Total 1,434 2,223 4,537 2,465 10,659
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where the λ values are simply the natural logarithms of the variables appearing in
Eq. (3.1).

In Eq. (3.1), T is the overall effect representing the total number of migrants
(i.e., n++). This value is “adjusted” (i.e., scaled) by the row and column marginal
proportions, Oi and Dj, respectively, leaving the “doubly-constrained” interaction
term ODij as the influence of what Mueser (1989) calls the spatial separation
component. More specifically, Oi is the proportion of all migrants leaving from
region i (i.e., ni+/n++), Dj is the proportion of all migrants moving to region j
(i.e., n+j/n++) and the interaction component ODij is defined as nij/[(T)(Oi)(Dj)]
or the ratio of the observed number of migrants to the expected number (for the
case of no interaction). All effects taken together represent the spatial structure of
migration.

The multiplicative components corresponding to the migration flows discussed
above are set out in Table 3.2. Note that the overall component (T) is set out in
the total sum (i.e., n++) location of the table, the origin components (Oi) are set
out in the row-sum locations (i.e., ni+), the destination components (Dj) are set
out in the column-sum locations (i.e., n+j), and the origin-destination interaction
components (ODij) are set out in the cells inside the marginal totals (i.e., nij). For
example, consider the 1985–1990 Northeast to South flow of 1,604,000 persons
disaggregated into the four multiplicative components:

n13 = (T)(O1)(D3)(OD13)

= n++
(

n1+
n++

)(
n+3

n++

)⎡⎣ n13

(n++)
(

n1+
n++

) (
n+3
n++

)
⎤
⎦

= (10,479)

(
2,403

10,479

)(
4,329

10,479

)(
1,604

993

)

= (10,479)(0.2293)(0.4131)(1.6157)

= 1,604

where the subscripts 1 and 3 denote the Northeast and South regions, respectively.
The interpretations of these components are relatively simple. The overall compo-
nent is the reported total number of U.S.-born interregional migrants aged 5 years
and over; 10.5 million persons were counted as interregional migrants between
1985 and 1990. The origin component represents the shares of all migrants from
each region: 23% of all migrants originated in the Northeast region. The destination
component represents the shares of all migrants to each region: 41% of all migrants
moved to the South region. And, finally the interaction component represents the
ratio of observed migrants to expected migrants: there were roughly 16 observed
migrants for every 10 expected ones. The expected flow is based on the marginal
total information, i.e., (T)(O1)(D3).
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Table 3.2 Saturated log-linear model parameters of U.S. interregional migration flows
(in thousands), 1985–1990 and 1995–2000

Destination

Period Origin Northeast Midwest South West Total

1985–1990 Northeast 0.0000 0.6635 1.6157 0.8063 0.2293
Midwest 0.8423 0.0000 1.3662 1.3193 0.2828
South 1.8018 1.8624 0.0000 1.5127 0.2922
West 1.2023 1.5514 1.2427 0.0000 0.1957
Total 0.1378 0.2069 0.4131 0.2422 10,479

1995–2000 Northeast 0.0000 0.6560 1.5542 0.8711 0.2304
Midwest 0.7996 0.0000 1.3654 1.3457 0.2634
South 1.9019 1.8320 0.0000 1.5658 0.2841
West 1.1216 1.4779 1.2707 0.0000 0.2221
Total 0.1345 0.2085 0.4257 0.2313 10,659

A comparison of these multiplicative components over time for the Northeast to
South flow informs us that the overall number of migrants increased by 180,000
(i.e., 10,659,000−10,479,000). The proportions of migrants from the Northeast and
to the South both increased, while the interaction term decreased from 1.6 to 1.5.
The result was an increase in the number of migrants between these two regions by
21,000 persons.

3.2.4 The “Independence” Model

The saturated log-linear model defined in Eq. (3.2) has reduced forms, also called
unsaturated models. The most common of these is the model with no interaction
effects. For example, the unsaturated model that only includes the main effects of
origin and destination is specified as

ln
(
n̂ij
) = λ + λO

i + λD
j . (3.3)

The interregional flows in such a model depend only on origin (row) and desti-
nation (column) effects. The model in Eq. (3.3) is often designated (O, D). A model
that adds the interaction between origin and destination to Eq. (3.3) would be
denoted as (OD). Such notations are used because these models are hierarchical,
that is, for two-way interaction terms, the main effect parameters must be included,
and for three-way interaction terms (e.g., when age is included) all the main effects
and two-way interactions must be included.

What is important to understand about migration flow tables in general, and is
illustrated by the independence model, is the importance of the diagonals in the
flow matrix (representing the stayers and return migrants). To remove non-migrant
elements from the analysis, structural zeros can be inserted using an indicator func-
tion (Agresti, 2002; Willekens, 1983a). When structural zeros are included in the
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Table 3.3 Predicted interregional migration flows (in thousands) under quasi-independence,
1985–1990 and 1995–2000

Destination

Origin Northeast Midwest South West Total

(a) 1985–1990
Northeast 0 527 1,314 562 2,403
Midwest 436 0 1,770 757 2,963
South 701 1,142 0 1,219 3,062
West 307 499 1,245 0 2,051
Total 1,444 2,168 4,329 2,538 10,479

(b) 1995–2000
Northeast 0 527 1,368 561 2,456
Midwest 401 0 1,708 700 2,809
South 690 1,133 0 1,206 3,029
West 343 563 1,462 0 2,368
Total 1,434 2,223 4,538 2,467 10,662

model, Eq. (3.3) is called a quasi-independence model. This model predicts migra-
tion flows under the condition that origin and destination are independent, and that
intra-regional migrations are omitted from the data. When the diagonal elements
are replaced in the model by structural zeros, the resulting predicted values under
the assumption of independence are much improved. This is illustrated in Table 3.3,
which yields R2 values of 0.86 and 0.88 for the 1985–1990 and 1995–2000 data
sets, respectively.

3.3 Biproportional Adjustment and the Method of Offsets

The utility of the multiplicative model extends beyond the convenient decomposi-
tion of the observed flow matrix into interpretable parameters that help to describe
the spatial structure of migration. The log-linear statistical model also is a power-
ful instrument for the study of complex data structures. Here, we demonstrate how
the log-linear model can be used to predict the migration flows in one period on
the basis of flows observed in a previous period. The use of historical data to cap-
ture spatial accessibility or spatial interaction hinges on the assumption that spatial
interaction effects are stable over time, a hypothesis that has been supported by
Willekens (1983a), Nair (1985), Mueser (1989), and Snickars and Weibull (1977),
who found that past tables of migrant flows provide much better estimates of current
accessibility than any distance measure.

In a number of different applied areas, analysts have used an iterative algo-
rithm to adjust a historical matrix to sum to new row and column marginal totals.
Known as the biproportional adjustment method (Bacharach, 1970) or iterative pro-
portional fitting technique, this method effectively imposes the structure found in
the historical matrix on the subsequent migration time period.



3.3 Biproportional Adjustment and the Method of Offsets 37

Consider, for example, the “historical” flow matrix:

A =
[

1 2
2 1

]
.

Suppose that the row and column totals are doubled, then clearly

B =
[

2 4
4 2

]

is a flow matrix with the same interaction effects. What if, instead, only the row
totals are doubled and the column totals shift to 4 and 8? How do we impose, as
much as possible, the spatial structure of A onto the set of marginals? The iterative
biproportional adjustment method yields the matrix

C =
[

1.123 4.877
2.877 3.123

]
.

Notice that the two matrices

D =
[

3 3
1 5

]
E =

[
2 4
2 4

]

also satisfy the marginal constraints, but the spatial structure they exhibit is not
biproportional to A’s spatial structure.

One may say that the interaction effect measures the preference that a migrant
from region i has for region j, if one controls for the differences in the sizes
of regional numbers of out-migrants and in-migrants. Migration spatial structure,
therefore, has much to do with “destination preference.” However, if the destinations
that migrants select are independent of the region of origin, i.e., if the probability of
selecting a particular destination is the same for all migrants, irrespective of origin,
then spatial interaction would be absent, and the flow of migrants from i to j would
simply be the product of total out-migrants from i times the probability of selecting
destination j (which then is the same for all origins of i). The model, in which the dis-
tribution of migrants over destinations is the same irrespective of origin, is known
as the migrant pool model. The migrant pool model implies the independence of
origins and destinations.

The contrast between our definition, with its “full” specification of the spatial
interaction model (9 parameters for a 2 by 2 flow matrix) and various other defi-
nitions is that only with such a detailed specification can one reconstruct the exact
flow matrix from the knowledge of its parameters. No other definition proposed
thus far does that. The analogy to fully specified model schedules in demography
comes to mind. For example, the Heligman-Pollard model mortality schedule, with
its eight parameters, can be used to reconstruct quite accurately a whole sched-
ule of age-specific probabilities of dying (Heligman & Pollard, 1980). And the
13-parameter Rogers-Castro model migration schedule can approximate an entire
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schedule of age-specific probabilities of migrating. Similarly, the nine parameter
saturated log-linear model of the above matrix A can reconstruct, in this case
exactly, the elements of that matrix. Note, most statistical packages use cornered-
effect coding, e.g., last category reference coding, for parameter estimation (refer
to Raymer, 2007, pp. 989–990). A saturated model using this type of coding
scheme would only have as many parameters as there are cells in the table (i.e., 4
parameters). We use the more complicated coding for parameter interpretation and
description purposes only. In the actual fitting of the models, we apply the coding
scheme adopted by the statistical package being used (e.g., SPSS uses last reference
coding).

It turns out that the migrations predicted by the unsaturated log-linear model
may also be obtained by the biproportional method. It suffices to replace the inter-
action term ODij by a matrix of ones (ODij = 1). The biproportional method
is also equivalent to the method of offsets. An offset, a matrix with auxiliary
information, can be used to incorporate such information (as well as structural
zeros) to improve the estimation procedure. Auxiliary information can be, for
example, a historical table of migration flows. The log-linear-with-offset model is
specified as:

ln
(
n̂ij
) = λ + λO

i + λD
j + ln

(
n∗

ij

)
(3.4)

where n∗
ijx denotes the auxiliary information (refer to Rogers, Willekens et al., 2003,

pp. 60–61; Willekens, 1982a, 1983b). In this case the flows contained in the offset
would be forced to fit the marginal totals represented by the overall level and main
effects of origin and destination.

To illustrate the workings of the method of offsets, consider the log-linear-with-
offset model fit of the observed 1995–2000 migration flow matrix in Table 3.1.
Suppose we wish to keep the numerical values of the row and column marginal
totals, but, at the same time, wish to replace the migration interaction effects
observed during that period by the interaction effects observed during the earlier
1985–1990 period, using the method of offsets. What would be the corresponding
set of log-linear parameters? Table 3.4 sets out the predicted flow matrix obtained
by the method of offsets in Panel (a), and Panel (b) presents the associated multi-
plicative components. Note that the T, Oi and Dj values of the “predicted” matrix are
identical to those found for the observed 1995–2000 flow matrix, but that the other
terms (i.e., ODij) are different, reflecting the changed conditions of the 1995–2000
period.

Finally, Table 3.5 presents the ratios of the two sets of flows: (1) the ratios of
the observed 1995–2000 flows structure to that of the observed 1985–1990 flows
and (2) the ratios of the predicted 1995–2000 flows (using the 1985–1990 flows as
an offset) to the observed 1995–2000 flows. The ratios conveniently indicate the
direction of change over the decade: a ratio greater than unity indicates an increased
value for the parameter, one less than unity points to a decrease.
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Table 3.4 Predicted U.S. 1995–2000 interregional migration flows (in thousands) with observed
1985–1990 as the offset in a log-linear model

Destination

Origin Northeast Midwest South West Total

(a) Predicted flows
Northeast 0 323 1,667 466 2,456
Midwest 312 0 1,619 877 2,808
South 744 1,163 0 1,123 3,030
West 378 737 1,252 0 2,367
Total 1,434 2,223 4,538 2,466 10,661

(b) Multiplicative components
Northeast 0.0000 0.6307 1.5946 0.8203 0.2304
Midwest 0.8260 0.0000 1.3545 1.3502 0.2634
South 1.8255 1.8408 0.0000 1.6023 0.2842
West 1.1873 1.4932 1.2426 0.0000 0.2220
Total 0.1345 0.2085 0.4257 0.2313 10,661

Table 3.5 U.S. interregional migration: Ratios of observed 1995–2000 flows to observed
1985–1990 flows and predicted 1995–2000 flows

Destination

Origin Northeast Midwest South West Total

(a) Observed 1995–2000/Observed 1985–1990
Northeast 1.0199 1.0133 1.0545 1.0222
Midwest 0.8781 0.9757 0.9227 0.9474
South 1.0190 0.9803 0.9772 0.9888
West 1.0513 1.1083 1.2163 1.1543
Total 0.9930 1.0252 1.0481 0.9712 1.0172

(b) Predicted 1995–2000∗/Observed 1995–2000
Northeast 0.960 1.026 0.942 1.000
Midwest 1.033 0.992 1.004 1.000
South 0.960 1.005 1.024 1.001
West 1.058 1.010 0.978 1.000
Total 1.000 1.000 1.000 1.000 1.000

∗Predicted 1995–2000 represents the 1995–2000 main effects model with 1985–1990 as
offset

3.4 Introducing Additional Structures

3.4.1 Overview

The multiplicative component and log-linear models described in the previous
section can be readily extended to include other categorical variables, such as
age, sex, ethnicity, health status, economic activity and so on. In this section, we
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illustrate an extension that includes age-specific migrant patterns between regions.
The multiplicative component model for this table is specified as:

nijx = (T)(Oi)(Dj)(Ax)(ODij)(OAix)(DAjx)(ODAijx) (3.5)

where Ax is the proportion of all migrants in age group x. This model is more
complicated because there are now three two-way interaction components and a
single three-way interaction component between the origin, destination, and age
variables. However, the interpretations of the parameters remain relatively simple
and follow the same format as presented for the two-way table. That is, the inter-
action components represent ratios of observed flows or marginal totals to expected
ones. For example, the destination-age interaction (DAjx) component is calculated as
n+jx/[(T)(Dj)(Ax)] and represents the ratio of observed to expected for in-migrants
of age x to region j.

Unsaturated log-linear models of the (saturated) multiplicative model set out
in Eq. (3.5) are useful for understanding the importance of age and its interac-
tion with origin and destination. For example, the main effects log-linear model is
specified as

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x (3.6)

This model assumes independence between each of the categories of origin, des-
tination, and age and is designated (O, D, A). A model that includes the interaction
between origin and destination plus all of the main effects is designated as (OD, A)
with its corresponding model specification being:

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x + λOD
ij . (3.7)

Auxiliary information also can be incorporated. For example, the model

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x + ln
(

n∗
ijx

)
(3.8)

forces the values in the offset to fit the marginal totals represented by the overall
level and main effects of age, origin, and destination. The two-way and three-
way association structures, i.e., λOD

ij , λOA
ix , λDA

jx and λODA
ijx , contained in the offset,

however, remain the same.

3.4.2 Descriptive Analysis

We continue our analysis of migration between the four regions in the United States
during the 1995–2000 using the multiplicative components model set out above.
Such an analysis follows a hierarchical format, starting with the overall level com-
ponent and ending with the three two-way interaction components. The three-way
interactions between origin, destination, and age are not analyzed for two reasons.
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The first is that most of the structure found in the migration patterns is captured
by the overall, main, and two-way interaction effects. The second reason is that,
although patterns are often found in the three-way interactions, it is tedious to incor-
porate them into the modeling process, and their interpretation is more difficult.
Therefore, we shall just focus on the simpler and more powerful aspects of the
model represented by the other seven terms found in Eq. (3.5).

The extension to include age is straightforward. The age groups used in this chap-
ter start with 5–9 years and end with 85+ years and are measured at the time of
the census. There are seventeen age groups in total. As illustrated in Fig. 3.2, the
age main effect components for the 1985–1990 and 1995–2000 periods describe
the age composition of all migrants in the two multiregional systems. The origin-
age interaction components can be used to identify important differences between
age-specific out-migration from each region and the overall age profile of migra-
tion found in the corresponding expected flows (i.e., (T)(Oi)(Ax)). The same is true
for the destination-age interaction components, but with a focus on the differences
between age-specific numbers of in-migrants to each region and their corresponding
expected flows (i.e., (T)(Dj)(Ax)).

The origin-age and destination-age interaction components are useful for
identifying the relative differences found in age patterns of in-migration and
out-migration, respectively. For example, in examining the origin-age components
set out in Fig. 3.3, we find higher propensities of young adult and elderly migration
from the Northeast and Midwest regions. The opposite was true for those from the
South and West regions. The patterns over time show that, for example, the relative
numbers of elderly migration from the Northeast were lower in 1995–2000 than
they were in 1985–1990. The destination-age interaction components displayed in
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Fig. 3.4 generally exhibit the opposite patterns of those found in the origin-age com-
ponents. The main exceptions are the migrations of the elderly from and to the West,
both of which show lower than expected patterns.

3.4.3 Unsaturated Log-Linear Model Analysis

In this section, we compare different unsaturated log-linear models to analyze
underlying structures in the 1995–2000 U.S. migration data. All models include
structural zeros to remove non-migrants from the predictions and the estimations.
The results are set out in Table 3.6, and the models are compared using the likelihood
ratio statistic, G2,

G2 = 2
∑

nijx ln(nijx/n̂ijx), (3.9)

where n̂ijx denotes the predicted age-specific migration flows, and values of G2

closest to zero are associated with “good” fits (see, e.g., Agresti, 2002).
The most obvious finding is that the origin-destination interaction term is very

important for accurately predicting the age-specific migration flows. Most of the
flows do not contain a large retirement peak or major deviations from the overall
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Fig. 3.4 The destination-age interaction components (DAjx): U.S. interregional migration, 1985–
1990 and 1995–2000

Table 3.6 Unsaturated
log-linear model fits:
Age-specific interregional
migration flows in the U.S.,
1995–2000

Model
Likelihood ratio
statistic, G2

Residual degrees
of freedom, df G2/df

(ODA) 0 204 0
(O, D, A) 573,446 181 3,168
(OD, A) 281,056 176 1,597
(OA, D) 433,718 133 3,261
(DA, O) 414,899 133 3,120
(OD, OA) 141,328 128 1,104
(OD, DA) 122,509 128 957
(OA, DA) 321,318 85 3,780
(OD, OA,

DA)
43,875 80 548

Note: Residual degrees of freedom = number of non-redundant
parameters in saturated model (ODA) minus the number of
parameters in an unsaturated model

age profile of migration. However, the fits are slightly improved when the origin-
age or destination-age interactions (with the latter doing a better job) are included.
Of course, to capture different age profiles found in some of the flows, such as
those with retirement peaks, origin-age or destination-age interactions have to be
included. Figure 3.5 provides an example of the (O, D, A), (OD, A) and (OD, OA,
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DA) fits in relation to the observed values for the Northeast to Midwest and South
flows during the 1995–1990 periods.

3.5 Summary and Discussion

What do we mean when we refer to the spatial structure of migration? This expres-
sion has been used rather loosely in the literature and needs to be defined more
rigorously if it is to be of much use as a tool for comparative analysis of flows or for
developing indirect methods of estimating migration streams in the absence of flow
data. One way to define migration spatial structure is to draw on the demographer’s
way of defining age structure, i.e., as the proportional distribution of the numbers of
persons enumerated at each age or in each age group. Thus if one were to double the
total population, but leave the proportional distribution unchanged, one would con-
clude that the population increased, but that its age structure remained unchanged.
Adapting this definition for the migration structure of a region’s destination-specific
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out-migration streams, one could define that structure to mean the proportional dis-
tribution of the total outflow across the set of alternative destinations. In that case, if
a doubling of the region’s out-migration level were distributed in the same propor-
tional manner over age groups and destinations, then one would conclude that the
migration spatial structure had remained the same as before. This definition, how-
ever, only makes sense in a linear model of the phenomenon. If one instead adopts
a non-linear “gravity model” type of formulation—say a spatial interaction model
representation of origin-destination-specific migration flows—then clearly one also
needs to consider the change of the destination population and also the separation
effect between each origin-destination pair of locations. Thus the impact on spatial
structure of a doubling of the migration outflow needs to be considered in tandem
with the change in the destination population size or size of migration inflow. For
example, the impact of a tripling would be different than that of a doubling. What
this implies then is that a full specification of the spatial interaction model needs to
be used in the definition of migration spatial structure. If this is true, then how do
we interpret the use of a historical matrix to predict current migration? We interpret
it as the migration spatial structure we wish to impose on a current set of marginal
totals.

The various indicators of migration spatial patterns that have been popular in the
literature describe only particular attributes of a particular migration spatial struc-
ture: for example, its efficiency in redistributing the multiregional population, or its
spatial focus, or, indeed, its implicit destination preferences. None of these could
be used to impose a unique historical migration spatial structure onto a current sit-
uation. They allow only a partial assessment of comparative structures, and they,
therefore, are of limited use as tools of indirect estimation. However, as partial indi-
cators of different attributes of spatial patterns, they can and have played a useful
role in comparative studies of such patterns. The relevant literature is rich with
examples of the useful findings generated by indices of migration efficiency and
of spatial focus, for example. However, we believe the log-linear model introduces
the influence of the separation (or interaction) effects more fully, and it also seems
to bring in the relative population size effects more directly.



Chapter 4
Smoothing Age and Spatial Patterns

4.1 Introduction

A comparison of an observed pattern of age-specific rates or probabilities with the
corresponding model schedule fitted pattern identifies idiosyncrasies in the observed
data and points to possible data errors or to irregularities created by an insufficiently
large sample. Actuaries calculating life insurance policies or annuities, for example,
would want to smooth irregular patterns to ensure that age-specific probabilities of
dying, do not show, say, that an average 45-year old female had a higher risk of
dying within the next year than did an average 46-year old female. Confronting
such an irregularity, an actuary is likely to smooth out the suspicious behavior with
a model mortality schedule, for example, the eight-parameter Heligman-Pollard
(1980) model mortality schedule.

An analogous problem is illustrated in Fig. 2.4 in Chapter 2 by the observed
out-migration schedule in 1974 for Stockholm males moving to the rest of Sweden.
In this particular illustration (x + A)-year old males exhibit a higher out-migration
rate than do men a year younger. This pattern is suspicious because in most “normal”
migration schedules one finds a monotonic decrease in rates for males in their late
twenties and early thirties. Thus demographers may wish to smooth out such suspi-
cious behavior with a model migration schedule, such as the overlaid Rogers-Castro
schedule that also appears in Fig. 2.4.

What do we mean by smoothing? In this book we follow the definition published
in the United Nations (1983) manual on indirect estimation:

The term “to smooth” is used in this Manual in its most general sense to mean elimina-
tion or minimization of irregularities often present in reported data. (United Nations, 1983,
p. 147 fn.)

Although migration patterns normally are thought to change in smooth and grad-
ual increments across the life span, observed data-based patterns are often jagged
and irregular. This can be attributed to the random variation that inevitably accom-
panies survey data and from the aggregation of data into convenient intervals for
reporting purposes. Three smoothing techniques are presented in this chapter, each
of which is designed to reduce the effects of randomness and aggregation. These

47A. Rogers et al., The Indirect Estimation of Migration, The Springer Series
on Demographic Methods and Population Analysis 26, DOI 10.1007/978-90-481-8915-1_4,
C© Springer Science+Business Media B.V. 2010
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smoothing procedures are: (1) using splines to interpolate migration data that are
based on 5-year age groupings into single-year migration age profiles (McNeil et al.,
1977), (2) fitting model migration schedules to the splined age profiles (Rogers
and Castro, 1986), and (3) using log-linear models to simplify irregular migration
patterns observed in a contingency flow table (Raymer & Rogers, 2007).

We begin in Section 4.2 to apply smoothing methods to the full sample age-
specific state-level migration data, which are reported by the U.S. Census Bureau in
5-year age aggregations. These data provide migrant age profiles that are crude step
functions (histograms), needing to have the jagged steps transformed into smooth
and continuous profiles, often by the application of splines. For even more refined
smoothing, the splined profiles then may be fitted with model migration schedules.
Because the initial data used in this section are based on large sample estimates of
migration patterns, the refinements introduced by the smoothing procedures result
in qualitatively improved migration profiles that are thought to be more true to the
unobserved patterns in the population.

Section 4.3 provides a demonstration of how smoothing techniques can improve
the accuracy as well as the regularity of migration age profiles. This demonstration is
also based on data drawn from the Census 2000 full sample data, which was made
available for analyses of individual observations in the Census 2000 Public-Use
Microdata Sample (PUMS) 1% data files. After smoothing procedures are applied
to age-specific migration estimates, based on this substantially reduced sample, they
produce age profiles that conform more closely to the profiles derived from the full
sample data.

The results of Section 4.3 suggest that the smoothing methods do produce
improvements in the reliability of the migration age profiles that are derived from the
less reliable Census 2000 PUMS 1% sample data. In Section 4.4 we use the smooth-
ing methods developed in the previous sections and apply them to data derived from
the 2005, 2006, and 2007 American Community Survey (ACS) PUMS samples
for U.S. states. These data are substantively different from the migration data of
prior decennial censuses. In addition, the ACS provides yearly estimates of annual
migration age patterns, which are shown to be even less reliable than the 5-year
migration age patterns estimated from the Census 2000 PUMS 1% sample data.
Nevertheless, applying the smoothing methods to the ACS-based estimates demon-
strates that improvements are thereby gained in the regularity and the reliability of
migration age profiles.

Section 4.5 introduces a log-linear specification of the smoothing problem, and
Section 4.6 offers a summary and a concluding discussion.

4.2 Smoothing Irregular Migration Data: Census 2000
Full Sample

The Census 2000 Long-Form Survey was a 16.67% national probability sample.
It was the primary source of U.S. migration data until the full implementation of
the ACS in 2005. Due to its large sample properties, the Census 2000 full sample
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estimates of state-level migration are very accurate, and yet they still show irreg-
ularities caused by randomness and the aggregation methods used to prepare the
published tables. Smoothing operations reduce these irregularities at the same time
that they transform the step functions, which reflect the migration patterns reported
in broad age intervals, into smooth and continuous age profiles. After smoothing the
full sample data, we define the resulting migration age profiles as standards, which
are compared to the reduced sample estimates obtained from the PUMS 1% sample.
The results of these comparisons serve as the basis for assessing the accuracy of the
small sample estimates, as well as for assessing the improvements in accuracy that
result from the smoothing procedures.

The full sample age-specific out-migration data used in this chapter were aggre-
gated from the Census 2000 Long-Form Survey for the fifty states and the District
of Columbia. They were distributed on the Census 2000 Migration DVD released
by the U.S. Census Bureau, reporting counts of persons who left their state of resi-
dence between 1995 and 2000 and lived to be counted as residents of another state
by the 2000 census. Based on a person’s age in 2000, these counts were tabulated
into 5-year age categories, beginning at age 5 and ending at age 85 or older, i.e.,
ages 5–9, 10–14, 15–19,. . ..80–84, 85+. Using these data, we backcasted persons
to where they lived five years earlier in order to associate out-migrants with their
respective state of origin and age category in 1995. For example, those persons aged
5–9 in 2000 became aged 0–4 in 1995, and those aged 20–24 in 2000 became aged
15–19 in 1995. After the backcasting, the 1995 age categories range from ages 0–4
to ages 80+, in contrast to the age categories of migrants reported in 2000, which
range from ages 5–9 to ages 85+.

The procedure for counting the numbers of persons at risk for migrating from
each state and for each age grouping is similar to the procedure used for counting
the numbers of out-migrants. The persons counted by the U.S. Census Bureau as
living in the U.S. in 2000 were assigned to their 1995 state of residence and to their
5-year age category in 1995. The migration propensity is the number of persons in a
particular age category who migrated out of state between 1995 and 2000 divided by
the total number of persons in the age category who were living in the state in 1995.
Because this proportion is conditioned on a person’s survival to the year 2000, it is
sometimes called a conditional survivorship and denoted Si(x, x + 4) or Si(x), where
i represents the state of residence in 1995 and (x, x+4) denotes a specific 5-year age
category. Panel (a) of Fig. 4.1 shows the profile of migration propensities that result
for the state of Indiana.

To arrive at smooth age migration profiles, the initial migration proportions for
the 5-year age categories are assigned values close to the middle age within the
5-year interval, i.e., ages 2, 7, 12, 15, . . .72, 77. From this set of points a contin-
uous age profile of state out-migration propensities is generated with cubic spline
interpolation, which constructs third-order polynomials that pass through the set of
pre-defined control points. Cubic spline interpolation provides a smooth profile for
all integer values of ages between 0 and 79, using 2, 7, 12, . . .,77 as the nodes for the
spline algorithm as implemented by Advanced Systems and Design, which is as an
add-on function for Microsoft Excel. The splined results for Indiana are displayed
in Panel (b) of Fig. 4.1.
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Fig. 4.1 Census 2000 full sample migration propensities: A demonstration of smoothing proce-
dures for Indiana
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The cubic-splined data set is then fitted by the appropriate Rogers-Castro model
migration schedule using a nonlinear regression program developed in MATLAB,
producing thereby a final set of 1-year age propensities and a smooth curve that
adheres to the known regularities of migration age profiles and, at the same
time, preserves the observed levels of migration. Panel (c) of Fig. 4.1 illustrates
the contrast of the model migration curve to the splined profile in Panel (b).
The model schedule fit removes the irregularities present in the cubic spline
interpolation.

Figure 4.2 shows the new profiles that resulted from the splining process and
from the model schedules that were fitted to the splined data for three demonstration
states. The splined profiles are smooth; however, there are some irregularities that
are smoothed further by the model schedule fits. The closeness of the fits between
the model schedules and the cubic splines is measured by the Mean Absolute
Percent Error (MAPE) statistic:

MAPE = 100∗ 1

n

n∑
i=1

[ |Fi − Oi|
Oi

]
(4.1)

where the absolute value of the difference between the fitted model schedule value
(Fi) and the corresponding splined value (Oi) is divided by the splined value (Oi),
for each age i. These quotients are averaged over all ages n and multiplied by 100
to arrive at the mean absolute percentage error.

The MAPE scores vary across all fifty states and the District of Columbia, rang-
ing from 2.28 in California to a 10.26 in Utah. The average MAPE is 5.56. The
slight differences between the two profiles, even for the least populated states, is
evidence of the accuracy of the initial full sample data, and it supports our strategy
of accepting these model schedules as the best representation of the “true” migration
age structures for all 50 states and the District of Columbia.

Further justification for using the model schedules, derived from the full sample
data, to represent the true migration schedules was gained by calculating the aver-
aged 5-year propensities (from the model schedules) and by comparing them to the
corresponding actual full sample data as released by the U.S. Census Bureau. The
outputs of this exercise are illustrated in Fig. 4.3, which displays the results for the
same three demonstration states described in Fig. 4.2. The “Observed” refers to the
propensities derived from the tabulated data reported by the U.S. Census Bureau,
and the “Model Schedule (5-Year Average)” refers to the propensities obtained
from the model schedule values, summed and averaged over each of the 5-year age
groupings. For the three selected states, the MAPEs are 2.62 for California, 3.22 for
Indiana, and 7.17 for Wyoming, which are quite small, even for the least populated
state of Wyoming.
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Fig. 4.3 Migration age patterns of state out-migrants derived from Census 2000 full sample data:
Observed propensities and model schedules (averaged over 5-year age intervals)
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4.3 Smoothing Irregular and Inadequate Migration Data:
Census 2000 PUMS 1% Sample

The Census 2000 full sample data provide estimates of migration age patterns,
which in general are somewhat irregular. However, the underlying robustness of
the full sample estimates allow them to be transformed into smooth and reliable
migration age structures that are deemed to be accurate representations of state
out-migrating populations. But demographers rarely have the luxury of working
with such large sample surveys. It has become more typical to have access to PUMS
data such as the Census 2000 PUMS 1% sample data, and the annual ACS PUMS
samples, which also total approximately 1% of the U.S. population.

The Census 2000 PUMS 1% sample is a substantially reduced sample drawn
from the Census 2000 full sample, and the contrast between the two samples offers
a unique opportunity to gauge the effectiveness of the smoothing techniques applied
to survey data that are roughly comparable in sample size to the ACS PUMS sam-
ples. By contrasting the Census 2000 PUMS 1% sample data with the migration
schedules that resulted from smoothing the full sample data, we demonstrate the
initial problems with the 1% sample estimates, and, in addition, demonstrate the
improvements that are gained by applying the smoothing techniques to the smaller
sample estimates. The strategy of comparing the migration age patterns based on
the data from a smaller sample with those based on the full sample survey allows us
to make judgments about the likely improvements that can be gained by applying
these same smoothing techniques to survey data such as the ACS PUMS.

The Census 2000 PUMS 1% sample data were obtained from the IPUMS USA
website http://usa.ipums.org/usa/. The first step of processing selects out the persons
who moved from one state to another between 1995 and 2000. These are the persons
who have a state of residence in 2000 that is different from their state of residence
in 1995. The PUMS 1% sample data file includes a variable which specifies each
person’s age on April 1, 2000. Because the migration question asked where the
person was living five years ago, the age of a migrant in 2000 is necessarily at
least five, since anyone younger was not alive in 1995. The second processing step
assigns the age in 1995 to be 5 years younger than the age in 2000. So the age
distribution of persons in 1995 goes from 0, 1, 2, . . ., 90 and higher. The individual
observations in the data are weighted to inflate the sample to reflect the estimated
size of the population in each respective age category within each state of residence
in 1995.

The initial age propensities were calculated using the numbers of out-migrants in
each single-year age category, divided by the total state population in each single-
year age category in 1995. These profiles are very irregular due to the instability
of the small sample estimates for single-year age groupings. Panel (a) of Fig. 4.4
demonstrates the sporadic nature of the observed out-migration profile for New
Hampshire, one of the least populated states in the nation. The migration propen-
sities obtained from the small sample data, when compared to the model schedule
derived from the full sample data, yielded a MAPE equal to 31.53.



4.3 Smoothing Irregular and Inadequate Migration Data: Census 2000 PUMS 1% Sample 55

0.00

0.10

0.20

0.30

0.40

P
ro

pe
ns

ity

0 10 20 30 40 50 60 70 80

Age

c) 1% Sample Model Schedule (MAPE = 3.10)

1% Sample Model Schedule
Full Sample Model Schedule

0.00

0.10

0.20

0.30

0.40

P
ro

pe
ns

ity

b) 1% Sample Cubic Spline Interpolation (MAPE = 13.48)

Age
0 10 20 30 40 50 60 70 80

1% Sample Spline
Full Sample Model Schedule

0.00

0.10

0.20

0.30

0.40

P
ro

pe
ns

ity

Age

a) 1% Sample Observed Propensities (MAPE = 31.53)

0 10 20 30 40 50 60 70 80

1% Sample Observed
Full Sample Model Schedule
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to the model schedule fits of the Census 2000 full sample: A demonstration of the smoothing
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Since the Census 2000 full sample data are reported by the U.S. Census Bureau
in 5-year age aggregations, the Census 2000 PUMS 1% sample state out-migrants
also were aggregated from the numbers of migrants in each single-year age cate-
gory into 5-year age categories, making them more comparable to the full sample
data and reducing the instability of the single-year estimates. After aggregating the
single-year of age out-migration numbers, the smoothing procedures for the small
sample data were identical to those used on the full sample data. In other words, the
numbers in each 5-year age category were distributed evenly across the single-year
ages, and a cubic spline interpolation yielded a smooth profile for all integer values
of ages between 0 and 79, using 2, 7, 12, . . .,77 as the nodes for the spline algo-
rithm. Panel (b) in Fig. 4.4 demonstrates the resulting splined profile for the State of
New Hampshire, and it clearly shows that the splining procedure yielded improved
regularity as well as improved accuracy. The MAPE was reduced from 31.53,
associated with the observed propensities, to 13.48 for the splined profile.

To complete the smoothing operations on the Census 2000 PUMS 1% sam-
ple data, and to make them more comparable to those used on the full sample,
the splined profile was fitted with the 7-parameter Rogers-Castro model migration
schedule. The result of this step is shown in Panel (c) of Fig. 4.4, and the MAPE
was reduced further from 13.48 for the splined profile to 3.10 for the smaller sample
model schedule as compared to the full sample model schedule.

In summary, our smoothing of the age propensities of migration produced by a
small sample survey is a three-step process. This is demonstrated in Fig. 4.4, where
each panel shows the profile that resulted from one step of the smoothing process.
Ultimately, the degree of correspondence between the model schedule of the small
sample data and the model schedule of the full sample data is visually striking.
At each step, the estimates of the migration propensities, were improved by the
smoothing procedure.

Table 4.1 shows the incremental improvements in reliability for each of the fifty
states and the District of Columbia. The column means are reported at the bottom of
Table 4.1 and they show that, on average, for all states and the District of Columbia,
the error was reduced from the average MAPE = 21.11 associated with the first
step of the smoothing process to the average MAPE = 5.61 associated with the final
step. It is clear from an inspection of Table 4.1, that the errors are most dramatic
for the single-age migration profiles, and these errors can be reduced substantially
through aggregation into 5-year age categories followed by the cubic spline inter-
polation procedure. Nebraska and Wyoming are two additional examples of less
populated states that initially showed substantial errors, with MAPEs = 24.8 and
35.42, respectively, which then were reduced to 14.57 and 8.00, respectively, by the
splining process. Fitting model schedules to the splined profiles offered additional
improvements in accuracy for most of the states. For example, the Nebraska and
Wyoming model schedules reduced the error from 14.57 to 8.00 and 11.79 to 2.73,
respectively.

In general, the smoothing procedures seem to improve the reliability of state
migration schedules derived from survey data, regardless of the state population
sizes. However, the amount of improvement is clearly related to sample size.
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Table 4.1 The MAPEs associated with the observed, the splined, and the model schedules derived
from the Census 2000 PUMS 1% sample data

Observed Splined Model schedule

1995 State of origin MAPE MAPE MAPE

Alabama 20.61 8.59 2.94
Alaska 36.84 18.06 10.40
Arizona 13.35 5.59 1.83
Arkansas 20.81 7.90 4.39
California 6.65 3.91 2.54
Colorado 16.19 8.19 4.73
Connecticut 21.28 11.59 7.69
Delaware 33.12 11.99 6.20
District of Columbia 30.88 19.49 13.51
Florida 9.53 6.52 1.93
Georgia 14.49 6.26 3.44
Hawaii 27.76 14.63 9.32
Idaho 27.94 14.15 4.57
Illinois 11.30 5.72 4.27
Indiana 16.11 6.40 4.66
Iowa 22.21 12.74 3.71
Kansas 18.87 13.63 6.02
Kentucky 22.46 14.11 6.16
Louisiana 17.93 11.82 3.78
Maine 34.53 17.58 5.30
Maryland 15.67 10.29 4.34
Massachusetts 16.96 8.15 7.05
Michigan 14.09 7.59 6.16
Minnesota 20.41 9.81 8.29
Mississippi 26.36 13.60 7.67
Missouri 16.65 8.78 2.77
Montana 32.92 17.17 9.03
Nebraska 24.86 14.57 11.79
Nevada 19.04 9.36 4.57
New Hampshire 31.53 13.48 3.10
New Jersey 9.78 3.86 2.60
New Mexico 22.99 7.07 2.52
New York 7.52 4.14 1.61
North Carolina 14.17 6.92 1.48
North Dakota 35.53 18.66 10.18
Ohio 14.75 10.74 7.18
Oklahoma 19.37 8.88 6.03
Oregon 16.18 6.59 3.33
Pennsylvania 13.69 8.90 2.24
Rhode Island 36.61 15.81 4.66
South Carolina 18.70 8.03 5.71
South Dakota 32.14 15.43 12.55
Tennessee 16.15 4.85 2.81
Texas 9.75 6.34 3.00
Utah 25.36 11.62 7.93
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Table 4.1 (continued)

Observed Splined Model schedule

1995 State of origin MAPE MAPE MAPE

Vermont 40.63 18.73 13.33
Virginia 14.74 8.44 4.12
Washington 14.30 7.21 5.31
West Virginia 22.60 14.37 10.63
Wisconsin 21.91 12.61 0.94
Wyoming 35.42 8.00 2.73

Table 4.2 The average MAPEs associated with the observed, splined, and model schedules derived
from the Census 2000 PUMS 1% sample data by categories of state population size (decreasing)

Observed average Splined average Model schedule average

State population
(in millions) N MAPE MAPE MAPE

16 or more 3 7.98 4.80 2.38
15.99−11.00 3 12.32 7.97 3.90
10.99−6.00 5 13.90 6.55 4.15
5.99−5.00 6 16.80 8.36 3.47
4.99−4.00 5 17.41 8.85 4.19
3.99−3.00 6 19.03 9.56 5.61
2.99−2.00 5 22.72 11.90 5.94
1.99−1.00 9 27.54 13.45 6.27
0.99−0 8 34.68 15.94 9.74

Table 4.2 contrasts the accuracy of the migration profiles derived from the Census
2000 PUMS 1% sample data as compared to the full sample model schedules with
respect to the number of sampling units in the survey, or more precisely, the size
of the state population. Here we use the state’s population in 1995 as backcasted
from the Census 2000 PUMS 1% sample data. The average MAPEs are reported
in Table 4.2 by categories of population size (in decreasing order). For the 26
states with populations of over four million, the average MAPE is 14.37 when the
observed profiles, derived from the Census 2000 PUMS 1% sample data, are com-
pared with the full sample model schedules. For the 25 states (including the District
of Columbia) with populations under four million, the comparable average MAPE is
26.90. The disparity in reliability between the more and the less populated states is
diminished with the application of model schedules. For the more populated states
(more than 4 million) the average MAPE was reduced from 14.37 (for the observed
profiles) to 3.71 (for the model schedules). For the less populated states (less than
4 million) the average MAPE was reduced from 26.90 (for the observed profiles) to
7.06 (for the model schedules).
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Fig. 4.5 A comparison of the observed profiles and the model schedules derived from the Census
2000 PUMS 1% sample with the model schedule fits of the Census 2000 full sample, with respect
to state population size

The relationship between population size and an increase in reliability resulting
from smoothing procedures is illustrated in Fig. 4.5, which shows that the smooth-
ing procedures yield accurate profiles of the age propensities for state out-migration,
especially in the most populated states. The smoothing procedures consistently
improved the accuracy of the small sample based profiles, but the average MAPEs
were still larger for the less populated states than for the more populated states.
These results suggest that, on average, errors are larger when associated with smaller
sample sizes, even after the smoothing procedures. However, the percentage of
reduction in error, due to smoothing, was about the same for the states with pop-
ulations less than 4 million as compared to the states with populations more than
4 million (74%). In other words, the model schedules that result from the smooth-
ing procedures may not be as reliable for the less populated areas as for the more
populated areas, on average, but the proportionate reduction in error will likely be
roughly constant for sample sizes similar to the Census 2000 PUMS 1% sample.

4.4 Smoothing Data of Low Reliability: ACS PUMS Data

Our initial illustration of smoothing with a Rogers-Castro model migration sched-
ule in Fig. 2.4 dealt with data, not from a survey, but from the Swedish national
population registration system, which produces age-specific migration rates that
more precisely represent the migration age patterns of the population. So far in this
chapter, we have dealt with age-specific migration propensities estimated from the
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Census 2000 Long-Form Survey, here called the full sample data, and with propensi-
ties estimated from a substantially reduced subset of the responses to the Long-Form
Survey, the Census 2000 PUMS 1% sample data. At this point, we diverge from
the Census 2000 derived estimates and investigate how the same smoothing tech-
niques can be applied to migration age patterns that are calculated with ACS PUMS
sample data.

In Section 4.4.1, we discuss how the ACS is a radical departure from the model
of the decadal Long-Form Survey, which ended with Census 2000, and we demon-
strate how the migration age profiles that result from the ACS are not comparable,
substantively, to those from the Census 2000 and from prior decennial censuses.
Section 4.4.2 addresses the issue of sampling error in the ACS PUMS samples, and
results of simulation experiments are reported showing that the reliability of the
estimates of migration propensities is lower in the ACS PUMS sample data than in
the Census 2000 PUMS 1% sample data, although the sample sizes are roughly of
comparable size. We apply the smoothing techniques to the yearly ACS estimates
in Section 4.4.3 using state migration data, and we argue that the smoothing meth-
ods are an essential step in reducing irregularities and randomness, regardless of the
extent of sampling error in the estimates.

4.4.1 A Comparison of ACS PUMS and Census 2000
Migration Data

In Census 2000 and prior decennial censuses (since 1940), basic migration data were
compiled by the U.S. Census Bureau from the Long-Form Surveys, administered as
part of the census, and distributed to the public in tables and special cross-tabulated
counts. In addition, samples of the data records from individual and household ques-
tionnaires were extracted from the Long-Form Survey, and, after special processing
to reduce disclosure risks, these data were released to the public as PUMS files.
These data files have always been valuable to migration researchers because they
contain records at the level of the person and the household, offering maximum
analytical flexibility in that migrations can be associated with the characteristics of
the persons migrating as well as the characteristics of their households.

Beginning in 2005, the ACS replaced the Long-Form Survey as the primary
source of migration data, and the PUMS files that are extracted from the complete
annual ACS data have become increasingly important to researchers of U.S. domes-
tic migration data. In contrast to the Long-Form Survey, the ACS is administered in
yearly cycles, instead of the 10-year cycles, and each ACS represents roughly 2.5%
of the U.S. population, instead of 17% of the population. The complete ACS annual
data are still aggregated and distributed to the public in tables and cross-tabulations
as was done with the Long-Form Survey data. (The 1-year tabulated ACS products
found on the web in the American FactFinder are based on all of the ACS data col-
lected for that year.) However, because of the shortness of the year cycle and because
of the low reliability of estimates based on the ACS sample sizes, there are fewer
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tables published that report annual migration data and the extent to which they are
disaggregated by person and household characteristics is significantly diminished.

These changes in U.S. Census Bureau policies, since the implementation of the
full ACS, mean that it is not possible to obtain estimates, derived from the complete
annual ACS data, which are analogous to those that became available in the special
tabulations of the full sample data after the decadal censuses. Here we are referring,
specifically, to estimates of age-specific migration flows, marginal flows as well as
directional flows, say from one state to another or from one county to another. This
policy is justified by U.S. Census Bureau because of the unreliable estimates that
inevitably result when the annual ACS data are disaggregated to that level of detail.
As an alternative, the U.S. Census Bureau argues that pooling the data from the
annual ACS surveys over three and five year periods will improve the reliability of
these estimates, and it has begun to release tables of multiyear estimates for these
situations (U.S. Census Bureau, 2008).

Some migration researchers counter that the improvements to reliability gained
from pooling ACS data over a relatively long period will confound the possibly
changing annual patterns (Franklin and Plane, 2006), and for those researchers, who
are interested in investigating annual migration patterns in any detail, the annual
ACS PUMS sample files are the only source of public data. Ironically, these data
suffer even more from reliability problems than the complete ACS data because the
PUMS data are extracted to represent 1% of the population instead of 2.5% of the
population represented by the complete annual ACS data.

Other aspects of U.S. migration research changed with the full implementation
of the ACS in 2005 (U.S. Census Bureau, 2008). For example, the Census 2000
Long-Form Survey migration question asked where the household was living five
years ago using a single reference day (April 1, 2000). The question precisely refers
to where the person was living on April 1, 1995; therefore, a state out-migrant is
someone who was living in a different state in 1995 and lived to be counted by the
census takers in 2000. The Census 2000 Long-Form Survey does not detect inter-
state moves between 1995 and 2000. Only the move between the state of residence
on April 1, 1995 and the state of residence on April 1, 2000 is captured in the data.

On the other hand, in the recent years of the ACS, households were asked
where they were living one year ago. In the ACS, a state out-migrant, in 2005, for
example, is someone who resided in another state in 2004 and lived to be counted
by the ACS in 2005. However, because ACS surveys are administered throughout
the year, the reference day is imprecise, the household could have moved out of
state any time between January, 2004 and December, 2004. The residence rules for
the ACS are also quite different than they were for the Census 2000 Long-Form
Survey. The Long-Form Survey used the “usual” residence rule which assigns
residency based on where the person lives most of the time. The ACS is much
more flexible, and assigns residency according to where the person last lived for
two months. (See A Compass for Understanding and Using American Community
Survey Data: What General Data Users Need to Know (U.S. Census Bureau, 2008)
for an overview of ACS data.)
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As for comparing the migration age patterns that are derived from ACS data to
those derived from the Census 2000 Long-Form Survey, some have suggested that
the complete ACS yearly data need to be pooled over five years to obtain estimates
of similar quality to past census data (Mather, Rivers, & Jacobsen, 2005; Griffin &
Waite, 2006). Consider the comparison of age profiles based on interstate rates of
migration (in 5-year age groupings) from California to Alaska, Hawaii, Oregon
and Washington presented in Fig. 4.6. The Census 2000 migration rates are derived
from the Long-Form Survey, i.e., the full sample data, and the ACS data are pooled
over the three years: 2005, 2006, 2007. Even when pooled over three years and
when the migration propensities are estimated in 5-year age groupings (shown to
be more reliable than 1-year age ones in Fig. 4.7) the estimates derived from the
pooled ACS PUMS sample files still exhibit more irregularities in comparison with
the corresponding Census 2000 data. Moreover, the shapes of the ACS derived
patterns are substantially more ragged and more in need of smoothing than the
Census 2000 derived propensities.

The age patterns of migration out of California appear to have changed over
time, especially from California to Alaska as exhibited in Panel (a). How does
one disaggregate the differences in shapes that are due to problems of reliability
in the ACS PUMS sample data, to migration patterns changing between the periods
(1995–2000) and (2004–2007), to differences in the questions asked by the two sur-
veys, to differences in the time intervals (5 years versus 1 year) or to differences
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Fig. 4.7 A comparison of the sampling errors of the estimates of age-specific migration propen-
sities derived from the Census 2000 PUMS 1% sample and the ACS 2005–2007 PUMS samples

in the residency rules applied? We conclude that the differences between the two
migration data sources are vast, and any conclusions about changes in migration
trends based on these comparisons are problematic.

4.4.2 The Reliability of ACS PUMS Estimates

A major difference in the use of ACS data as compared to data from prior decadal
censuses is that estimates based on the ACS are expected to be accompanied by
some measure of sampling error, whereas, often it has been assumed that estimates
derived from census data reflect the population characteristics. Sampling error is the
uncertainty associated with an estimate that is based on data gathered from a sample
of the population rather than from the full population. One unexpected change in
research practices, as a consequence of the changes in direction taken by the U.S.
Census Bureau, is that estimates of sampling error are now requested even for the
earlier Long-Form Survey as well as the PUMS sample data.

Measures of sampling error give an idea of how precise estimates are, and how
appropriate they are for meaningful interpretation. In addition, they are used to tell
whether differences over time and space are statistically significant or lie within the
bounds of random variation. Measures of sampling error are routinely reported with
tables of ACS estimates reported by the U.S. Census Bureau, but for the PUMS
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files there are no published standard errors. For some estimates derived from the
ACS PUMS sample data there is a generalized formula that can be used to calculate
standard errors (the fundamental measure of sampling error).

For our purposes, we are interested in the reliabilities of the age-specific con-
ditional survivorships, defined in Section 4.2, which are the basic estimates that
undergird a migration age profile. Recall they are denoted either Si(x) for a 1-year
age migration rate from state i, or Si(x, x+4) for a 5-year age rate, for ages x to
x+4. We chose the 1-year age category of 24 and the 5-year age category 20–24 and
calculated Si(24) and Si(20, 24) for four states, California, Georgia, Minnesota, and
Wyoming, representing population sizes decreasing from California (the most pop-
ulated state) to Wyoming (the least populated state), for the 2005, 2006 and ACS
2007 PUMS samples as well as the Census 2000 PUMS 1% sample.

We used the U.S. Census Bureau’s replicate weights method for calculating the
standard errors for the ACS PUMS samples (U.S. Census Bureau, 2008, p. 6).
If the original weighted sample estimate is denoted Si(24), then the replicate
weights method calls for the calculation to be repeated 80 times from the same
sample of 24-year olds, each time weighting each person by one of their pro-
vided replicate weights, rw1, rw2, rw3, . . . .,rw80, producing 80 new estimates
Si1(24), Si2(24), Si3(24), . . . , Si80(24),. The standard error of the estimate of Si(24)
is expressed in Eq. (4.2) as:

SE(Si(24)) =
√√√√ 4

80

80∑
r=1

(Sir − Si(24))2 (4.2)

For the Census 2000 PUMS 1% sample the standard errors were estimated by
a bootstrap method that drew 80 samples out of 100 weighted observations with
replacement.

The coefficient of variation (CV) is used to reflect the relative amount of sampling
error associated with a sample estimate. The CV is calculated as 100 times the ratio

of the standard error (SE) for an estimate to the estimate itself, or 100∗
(

SE(Si(24))
Si(24)

)
,

and here it is referred to as the percent of sampling error.
The results of the SE and the CV calculations for the PUMS samples of the

four surveys are reported in Table 4.3, and they are visually displayed in Fig. 4.7.
Dramatic improvements in the reliabilities of migration rates are realized after
broadening the age groupings from 1-year age categories to 5-year age groups. The
1-year age estimates have more than twice the percentage of sampling error of the
5-year age estimates. This result is consistent over all four samples and for all four
states. A similar result was demonstrated for the Census 2000 PUMS 1% sample
data in Section 4.3, and reported in Table 4.1, when the errors in the migration age
profiles that resulted from the cublic splined profiles (based on 5-year age propensi-
ties) were compared to the errors of the observed migration profiles (based on 1-year
age propensities).
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Table 4.3 A comparison of the sampling errors of the Census 2000 PUMS 1% and the ACS
2005–2007 PUMS estimates of migration propensities, Si(24) and Si(20,24)

Census 2000 PUMS 1% Sample California Georgia Minnesota Wyoming

Si(24) 0.11 0.15 0.12 0.32
SE 0.00 0.01 0.01 0.06
CV 4.42 5.80 10.19 18.16
unweighted N 4,880 1,898 636 63

Si(20,24) 0.11 0.16 0.13 0.37
SE 0.00 0.00 0.01 0.03
CV 2.03 2.39 4.67 7.00
unweighted N 22,187 8,399 2,633 334

ACS 2005 PUMS Sample
Si(24) 0.04 0.05 0.07 0.09
SE 0.00 0.01 0.01 0.04
CV 7.97 10.79 16.68 43.14
unweighted N 4,073 1,720 539 54

Si(20,24) 0.04 0.05 0.06 0.14
SE 0.00 0.00 0.01 0.02
CV 3.49 4.44 9.42 15.17
unweighted N 19,823 8,556 2,562 291

ACS 2006 PUMS Sample
Si(24) 0.04 0.06 0.05 0.13
SE 0.00 0.00 0.01 0.04
CV 7.73 8.87 20.58 27.63
unweighted N 4,212 1,720 526 62

Si(20,24) 0.04 0.05 0.05 0.13
SE 0.00 0.00 0.00 0.02
CV 3.50 4.91 8.19 13.63
unweighted N 21,135 9,415 2,584 320

ACS 2007 PUMS Sample
Si(24) 0.03 0.06 0.06 0.15
SE 0.00 0.01 0.01 0.04
CV 8.40 9.17 17.33 27.17
unweighted N 4,448 2,020 530 74

Si(20,24) 0.03 0.06 0.07 0.15
SE 0.00 0.00 0.01 0.02
CV 3.45 4.16 7.98 14.07
unweighted N 21,511 9,785 2,554 324

Another result that is consistent for all four samples, and reported in Fig. 4.7, is
that the percentage of sampling error increases as the population size decreases. The
four states selected are decreasing in population size from left to right in Fig. 4.7.
In 2005, California was the most populated state (population 35,340,566), Georgia
was the eleventh most populated (population 8,811,648), Minnesota ranked 24 in
population (4,969,152), and Wyoming was the least populated state (494,170).

The final result displayed in Fig. 4.7, and perhaps the most significant, is that
the sampling errors of the estimates from ACS PUMS sample data are larger than
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the sampling errors from the Census 2000 PUMS 1% sample data. This is true for
the 1-year and 5-year age propensities and for all ACS yearly samples. However,
the percentage of sampling error was largest in the ACS 2005 PUMS sample data,
which was the first year of the full implementation of the ACS. It appears that after
2005, the sampling error leveled off because, as displayed in Fig. 4.7, the sampling
error results are very similar for 2006 and 2007 for all of the estimates examined.
It is also important to note that, on average, the percentage differences in sampling
errors between the Census 2000 PUMS 1% sample and the ACS PUMS samples,
for the estimates of the 5-year age propensities, increased linearly as the sample
size decreased. For California, the average percentage increase in error between the
Census 2000 PUMS 1% sample and the ACS PUMS samples was 72%, for Georgia
(89%), for Minnesota (83%) and for Wyoming (104%).

The U.S. Census Bureau offered guidelines for interpreting coefficients of
variation associated with ACS PUMS sample estimates (Robinson, 2009). These
guidelines suggest that estimates with coefficients of variation that are less than 15%
can be considered reliable, and unreliable if the coefficient of variation is greater
than 30%. Only one of the coefficients of variation reported in Table 4.3, for the
aged 20–24 migration propensity estimates, is greater than 15%, and that is the one
for Wyoming in 2005.

4.4.3 Results for the State Data

Given the substantive differences between the Census 2000 Long-Form Survey and
the ACS in design and in the migration questions asked, as well as the apparent
decrease in reliability associated with the ACS PUMS sample data, it is reasonable
to question the effectiveness of our proposed smoothing procedures when applied to
these data. In this section of the chapter, we demonstrate the smoothing techniques,
focusing on the ACS 2005 PUMS data, which has the least reliable estimates of
migration age propensities when compared to the other years of ACS PUMS data
collected since then (see Fig. 4.7 and Table 4.3).

In Figs. 4.5 and 4.7 that the more populated states have larger PUMS sample
sizes, and, consequently, their estimates are more reliable. Therefore, we begin with
the ACS 2005 PUMS estimates of migration age propensities for California, the
most populated state in 2005 (population = 35,340,566). Figure 4.8 visually dis-
plays the sequence of the smoothing steps, beginning with the somewhat jagged
profile of migration propensities for 1-year age groups in Panel (a). Panel (b) shows
the histogram of migration age propensities of the 5-year age groupings, which
roughly outlines a typical migration profile with only one irregularity. Just to the
right of the career migration peak, the estimated propensities for the age groups
25–29 and 30–34 do not gradually lower, but instead level off. This is even more
apparent in Panel (c) where the results of the cubic splined interpolation are dis-
played. Fortunately, the model migration schedule that was fitted to the splined
profile, displayed in Panel (d), eliminated the irregularity and produced a profile
that conforms to a shape that is a more acceptable representation of a population
migration schedule.
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Fig. 4.8 A demonstration of the smoothing procedures for the California migration age propensi-
ties derived from the ACS 2005 PUMS sample

In contrast to the California example demonstrated in Fig. 4.8, the smoothing
procedures for Wyoming are illustrated in the panels of Fig. 4.9. Wyoming was the
least populated state in 2005 (population = 494,170). The estimated 1-year migra-
tion age propensities for Wyoming are reported in Panel (a). They oscillate wildly
and there are discontinuities where there are data missing for certain 1-year age
categories. The migration propensities for the 5-year age groupings, presented in
Panel (b), produce a profile that is not recognizable as a migration age pattern. The
same is true of the cubic splined profile exhibited in Panel (c), particularly because
of the lack of an infant migration peak in the 0–4 age category. Closer examina-
tion of the propensities of the 1-year age categories in Panel (a) shows there is a
spike in the estimated migration propensity for the age 0 category, but the combined
5-year propensity for ages 0–4 is atypically lower than the propensity for the 5–9
age grouping. In addition, substantial oscillation remains in the age groupings older
than that of the labor peak (ages 20–24). The final result of the smoothing proce-
dures, displayed in Panel (d) is a simple, but regular, model schedule that imposes
the “best fitting” standard shape on the irregular data.

These two demonstrations clearly show the problems of the irregularities in the
migration propensities derived from the ACS PUMS data, for the least populated
state (Wyoming) as well as the most populated state (California), and they show
the effectiveness of the smoothing procedures. Because there is no “gold standard”
to represent the “true” migration age schedules for the years of the ACS surveys,
like those derived from the Long-Form Survey in Census 2000, it is difficult to
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Fig. 4.9 A demonstration of the smoothing procedures for the Wyoming migration age propensi-
ties derived from the ACS 2005 PUMS sample

gauge the improvements to the reliability of the estimated migration schedules
gained by the smoothing procedures. For the experiments done with Census 2000
PUMS 1% sample data we were able to compare the different stages of the smooth-
ing process with the model schedules derived from the Census 2000 full sample
data, and these comparisons were summarized with the MAPE statistics reported
throughout Section 4.3. Those MAPE (Mean Absolute Percent Error) statistics can
be interpreted as measures of reliability (with larger MAPE values indicating lower
reliability) because they capture the degree of disparity between the profiles derived
from the sample estimates and the “true” population profiles.

For the experiments with ACS PUMS sample data we use the Mean Absolute
Percent Difference (MAPD) index, which is calculated like the MAPE, and here is
used to assess the difference between the splined profiles (based on the cubic spline
interpolation of the 5-year propensities) and the Rogers-Castro model migration
schedules that result from the final step of the smoothing procedures. The MAPD
cannot be interpreted as a measure of reliability, or average percent error, because
it is used simply to gauge the irregularities of the splined profile with respect to the
smoothed model schedule. It is important to note that both of the schedules involved
in the MAPD calculation (i.e., the spline and the model schedule) are derived from
the ACS PUMS sample data and neither represents a “true” population migration
schedule.

For example, the MAPD that resulted from the California application of the
smoothing procedures, displayed in Fig. 4.8, is 4.06 (summarizing the contrast
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between the splined profile in Panel (c) and the model schedule in Panel (d)). In
other words, on average, over all ages, the splined profile exhibits a 4.06% depar-
ture from the regularity of the model schedule. The comparable MAPD resulting
from the Wyoming experiment, reported in Fig. 4.9, is 31.62, which suggests that,
on average, over all the ages, there is a 31.62% difference between splined profile
and the model schedule.

The MAPDs measuring the contrast between the splined profiles and the model
schedules derived from the ACS 2005–2007 PUMS data are reported for all states
in Table 4.4. They can be used to assess the quality of the estimates of the migration
propensities for the 5-year age groupings. For example, a smaller MAPD value indi-
cates that the splined profile, interpolated from the 5-year age propensities, is quite
similar to the smooth model schedule. Conversely, a larger MAPD value suggests
that the splined profile is very irregular and departs severely from the smoothed and
regular fitted model schedule.

State MAPD values are negatively associated with state population size (and
sample size). All three statistics are reported in Table 4.4 for the 50 states (and
the District of Columbia), for all three years of the ACS. The average MAPDs are
reported in Fig. 4.10 for states within population size categories, representing the
results of the smoothing procedures on the Census 2000 PUMS 1% data, in Panel
(a), and on the ACS 2005 PUMS data, in Panel (b). In both samples, the average
MAPDs increase as state population size decreases. Clearly, the average MAPDs are
larger for the ACS 2005 PUMS sample data than for the Census 2000 PUMS 1%
sample data, and this disparity is most dramatic for the very least populated states,
for example, those with less than 1 million people.

It seems plausible that the MAPD, which gauges irregularity in the sample esti-
mates manifested in the splined profiles, is related to the MAPE, which measures
error (unreliability) in the smoothed migration schedule as compared to the true
migration schedule. However, the MAPE is not attainable from the ACS smoothing
experiments, and it is available from the Census 2000 PUMS 1% sample experi-
ments. These average MAPEs are reported in the right most column of Table 4.2,
and they are displayed again in Panel (a) of Fig. 4.10. The results reported in Panel
(a) reveal that the model schedules resulting from the smoothing procedures are
closer to the “true” model schedules than the splined profiles are to the smoothed
model schedules. In addition, the reliability of the smoothed model schedules shows
the same familiar negative association with population size.

To gain some understanding of the reliabilities of the smoothed model sched-
ules that resulted from the experiments with the ACS 2005 PUMS sample data, we
borrowed the fraction of the MAPE to the MAPD from the Census 2000 PUMS
1% sample experiments on each state, and we multiplied them by the MAPD that
resulted from the ACS 2005 PUMS data experiments. The averages of these values
are reported in Table 4.5 and labeled “Average Estimated MAPE.” This finding is
based on the assumption that there is a consistent relationship between the regular-
ity in the sample based splined profiles and the reliability of the model schedules
that result from the smoothing procedures. By invoking this assumption, we gain an
assessment of the reliability of the model schedules resulting from the smoothing
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a) Results from the Census 2000 PUMS 1% Sample
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b) Results from the ACS 2005 PUMS Sample
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Fig. 4.10 A comparison of the regularity (MAPD) and the reliability (MAPE) results from the
smoothing procedures performed on the Census 2000 PUMS 1% sample and the ACS 2005 PUMS
sample by state population size

procedures performed on the ACS 2005 PUMS data. In addition, if we apply the
guideline that sampling errors less than 15% suggest reliable ACS PUMS sample
estimates, which was offered by the U.S. Census Bureau (Robinson, 2009), we can
conclude that the smoothing procedures provide reliable model migration schedules
for all states, except the very least populated states with less than 1 million persons,
which have an average estimated MAPE value of 21.46.

4.5 Log-Linear Smoothing of Spatial and Age Patterns
in Migration Flow Tables

In this section, we show how the unsaturated log-linear model, introduced in
Chapter 3, can be used to smooth the spatial and age structures in migration flow
tables. The model migration schedule approach described in the previous sections
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Table 4.5 A comparison of the regularity (MAPD) and the reliability (MAPE) results from the
smoothing procedures performed on the Census 2000 PUMS 1% sample and the ACS 2005 PUMS
sample by categories of state population size (decreasing)

Census 2000 PUMS 1% Sample ACS 2005 PUMS Sample

State population
size categories
(in millions) N

Average
MAPD

Average
MAPE N

Average
MAPD

Average
Estimated
MAPE

16+ 3 3.65 2.38 3 6.98 4.51
11–15.99 3 6.51 3.90 2 9.68 5.79
6–10.99 5 4.85 4.15 8 11.55 9.22
5–5.99 6 7.74 3.47 5 10.16 5.81
4–4.99 5 6.57 4.19 6 9.99 6.29
3–3.99 6 7.19 5.61 3 13.73 9.00
2–2.99 5 9.82 5.94 6 15.23 11.89
1–1.99 9 10.43 6.27 8 18.35 12.76
0–0.99 8 12.41 9.74 8 29.30 21.46

can be considered as a “bottom-up” approach that smoothes the age profile of each
flow in a migration flow table. The log-linear model, on the other hand, can be
viewed as a “top-down” approach in which higher-order marginal totals of, for
example, an origin-by-destination-by-age table of migration flows are assumed to be
more reliable (and regular) than lower-order marginal totals or cell values. Here, the
data may be smoothed by removing, for example, the two-way and three-way inter-
action terms from the saturated model. In this section, we first focus on log-linear
models for smoothing spatial patterns of migration (Section 4.5.1), followed by
log-linear models for smoothing age patterns of origin-destination-specific flows
(Section 4.5.2). In Section 4.5.3, we show how model migration schedules may be
combined with log-linear models to form hybrid models that may lead to further
improvements in terms of both fit and parsimony.

4.5.1 Spatial Patterns of Migration between the Nine
U.S. Divisions

We explore the use of log-linear methods for smoothing the spatial patterns of
migration by focusing on two applications. The first represents a situation where
several periods of migration data are available, and the aim is to smooth trends in
the observed patterns over time. The second represents a situation where only a sin-
gle period of migration data is available. Here, the aim is to remove some of the
irregularities caused by small sample size or to remove some of the effects of spe-
cific period abnormalities in the data. We use U.S.-born migration between the nine
divisions in the U.S. for an illustration. These data were obtained from the 1980,
1990 and 2000 censuses and are set out in Table 4.6.
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A saturated log-linear model for analyzing migration flow tables over time, such
as those set out in Table 4.6, is specified as:

ln
(
n̂ijt
) = λ + λO

i + λD
j + λT

t + λOD
ij + λOT

it + λDT
jt + λODT

ijt , i �= j (4.3)

where O, D and T denote origin, destination and time, respectively. For smoothing
these data over time, we consider two unsaturated log-linear models as candidates.
The first model includes all the main effects and a two-way interaction term between
origin and destination, i.e.,

ln
(
n̂ijt
) = λ + λO

i + λD
j + λT

t + λOD
ij , i �= j. (4.4)

This model adjusts the average (or pooled) origin-destination-specific patterns of
migration up or down according to the total level of migration observed for a partic-
ular period. The second model includes all two-way interactions and is specified as,

ln
(
n̂ijt
) = λ + λO

i + λD
j + λT

t + λOD
ij + λOT

it + λDT
jt , i �= j. (4.5)

This model is more complicated in that it allows the proportional distributions
of the origin and destination marginal terms to vary over time. The only term not
included is the three-way interaction between origin, destination, and time. The
likelihood ratio statistic for the first model, Eq. (4.4), was 903.2, with 142 resid-
ual degrees of freedom, whereas for the second model, Eq. (4.5), it was 55.1 with
110 residual degrees of freedom. The second model clearly performed better and, in
fact, nearly matched the observed data perfectly, implying that it only very slightly
smoothed the spatial patterns over time. Thus, in our analysis below, we focus only
on the simpler model.

To illustrate the smoothing of spatial patterns resulting from the relatively simple
model specified in Eq. (4.4), consider the flows from the New England and Pacific
Divisions set out in Fig. 4.11. Here, we find that the smoothed versions of the migra-
tion flows from the New England and Pacific Divisions do not contain any of the
irregular patterns exhibited, for example, in the New England to South Atlantic or
Pacific to West South Central flows. The model essentially removes the “bumpiness”
in the data resulting in patterns that follow smooth trends over time with not much
change in the levels. Notice, however, that the smoothed data all exhibit increases
in the origin-destination movements over time. This is a consequence of the model
specified in Eq. (4.4), which adjusts a single (pooled) set of origin-destination flows
according to the overall level of migration observed in each period. For these data,
the overall levels increased from 14.2 million during the 1975–1980 period to 14.3
million in the 1985–1990 period to 14.7 million in the 1995–2000 period. A more
realistic model would include the additional two-way interactions between origin
and time and destination and time, such as those specified in Eq. (4.5).

What about the data situation where only a single period of migration flows are
available? How might one smooth these data if there are believed to be some irreg-
ularities or abnormalities in the observed patterns? In this case, the migration data
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Fig. 4.11 Smoothed and observed flows of migration (in thousands) from New England and
Pacific to the other divisions in the U.S.: 1975–1980, 1985–1990, and 1995–2000

can be smoothed by relating the observed flows to some theoretical (or expected)
set of flows, e.g., the simplest being a set of flows produced under the assumption
of “quasi-independence.” We illustrate this for the 1995–2000 migration data set
out in Panel (c) Table 4.6. First, the expected flows are predicted under the assump-
tion of quasi-independence between origin and destination, i.e., using the following
unsaturated log-linear model with structural zeros:

ln
(
n̂ij
) = λ + λO

i + λD
j , i �= j. (4.6)

Second, the average of these predicted flows and the observed set of flows are
used to obtain the smoothed set of flows. The results from this exercise are set out
for flows from the New England and Pacific Divisions in Fig. 4.12. Here, we see
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Fig. 4.12 Observed, smoothed, and expected flows of migration (in thousands) from New England
and Pacific to the other divisions in the U.S., 1995–2000

that the smoothed set of flows are reduced when the observed patterns are higher
than the expected patterns (e.g., New England to South Atlantic) and are increased
when the observed patterns are lower (e.g., Pacific to South Atlantic).

The assumption of quasi-independence results in large predicted flows between
areas that send or receive large numbers of migrants and, likewise, small pre-
dicted flows between areas that send or receive small numbers of migrants. This
assumption is very simplistic and ignores other important migration factors, such as
distance, contiguity or the relative incomes in each area. An improved smoothing
model could bring in these factors (and others) to derive an expected table of
migration flows from which the observed data could then be smoothed.

4.5.2 Age Patterns of 1995–2000 Migration from Colorado
to Other U.S. States and Divisions

The above log-linear models for smoothing origin-by-destination tables may be
extended to include age and other categorical variables of interest. In this chapter,
we have shown that irregularities may be caused by period-specific variation or by
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sample size problems, such as those exhibited in the interstate migration data from
the ACS PUMS samples. In this section, we focus on smoothing the irregularities
caused by small sample size. To illustrate, we smooth the age-specific migration
flows from Colorado to twelve states in the West region and seven divisions outside
the West region during the 1995–2000 period. These data were obtained from the
Census 2000 PUMS 5% sample data. Since we also have the full sample of Census
2000 migration data, we can test whether smoothing the age patterns of migra-
tion actually improves the accuracy of the data. To tie into earlier sections in this
chapter, we can also compare the accuracy of the log-linear approach with the
7-parameter model schedule approach (there were no retirement peaks or upward
slopes exhibited in these flows).

In order to compare the log-linear and model schedule approaches for smoothing
age patterns of migration, we assume that the aggregate origin-destination-specific
flows, nij+, are reliable. This assumption allows us to fit model schedules to the
age compositions of migration (i.e., Nij(x) = nijx/nij+) that can then be rescaled to
match the aggregate origin-destination totals. In the log-linear model, we include
the two-way interaction term between origin and destination. Thus, we can compare
the fits resulting from both the log-linear model and the model schedules.

The unsaturated log-linear model used to smooth the age-specific migration data
is specified as:

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x + λOD
ij + λOA

ix + λDA
jx , i �= j. (4.7)

This model includes all two-way interactions and thus relies on the marginal
age structures (OA and DA) to obtained smoothed estimates of the age-specific
migration flows. As for the model migration schedule approach, the smoothed
counts of age-specific migration, n̂ijx, were obtained by multiplying Nij(x) by nij+,
where Nij(x) and n̂ijx denote the estimated (smoothed) age-specific compositions
and counts, respectively. This allowed us to maintain the aggregate levels of origin-
destination-specific migration that were considered to be reliable and consistent with
the log-linear model specified in Eq. (4.7).

The goodness-of-fits (R2) comparing the full sample Census 2000 data with
the unsaturated log-linear model estimates, the model migration schedules and the
actual PUMS 5% sample data are set out in Table 4.7. Here, we find that, on average,
the unsaturated log-linear model, Eq. (4.7), produced the best results, both in terms
of individual fits and in terms of variance. However, there were many instances
where the Rogers-Castro model migration schedules performed better, and even
a few instances where the unaltered PUMS 5% sample data represented the best
correspondence to the full sample data.

For a better understanding of how the PUMS 5% sample data, model schedule
fits, and unsaturated log-linear model fits differ, a selection of flows representing
age-specific migration from Colorado to Arizona, Wyoming, and Hawaii are set
out in Fig. 4.13, with each flow representing a different situation of best fit. The
PUMS 5% sample data best represented the Colorado to Arizona flow because it
both corresponded to the full sample pattern and captured the unusual dip after the
labor force peak. The model schedule simply fitted a line through the dip. And the
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Table 4.7 Goodness-of-fit statistics (R2) comparing the age compositions of Colorado
out-migrants from the full sample Census 2000 data with the unsaturated log-linear model
estimates, the Rogers-Castro model migration schedules, and the PUMS 5% sample data

Log-linear Model PUMS 5%
Destination model schedule sample

Alaska 0.98 0.89 0.94
Arizona 0.94 0.88 0.97
California 1.00 0.98 0.99
Hawaii 0.94 0.88 0.86
Idaho 0.96 0.96 0.86
Montana 0.95 0.81 0.77
Nevada 0.91 0.97 0.94
New Mexico 0.94 0.94 0.94
Oregon 0.98 0.97 0.97
Utah 0.98 0.95 0.98
Washington 0.98 0.98 0.99
Wyoming 0.92 0.95 0.83
New England 0.98 0.99 0.98
Middle Atlantic 0.98 0.99 0.99
East North Central 1.00 0.98 0.98
West North Central 0.98 0.99 0.98
South Atlantic 0.97 1.00 0.99
East South Central 0.97 0.98 0.98
West South Central 0.99 0.98 0.99

Mean 0.96 0.95 0.94
Min 0.91 0.81 0.77
Max 1.00 1.00 0.99
SD 0.03 0.05 0.07

Note: Best fits are set in boldface

log-linear model produced a sharper labor force peak, which came from the marginal
age structures of out-migration from Colorado and in-migration to Arizona. For the
Colorado to Wyoming flow, the PUMS 5% sample data exhibited irregular patterns
compared to the full sample data. Here, the model migration schedule was able
to produce a curve closer to the full sample flow by fitting a curved line through
the irregular patterns. This was, however, not the case for the Colorado to Hawaii
flow, where the model schedule fit was unable to represent the sharp labor force
peak because it was not captured in the PUMS 5% sample data. In this case, the
log-linear model, again relying on marginal age structures with a sharp labor force
peak, performed better.

4.5.3 Age Patterns of ACS 2004 Migration between States
in the U.S. West Region

The previous section demonstrated the power of the unsaturated log-linear model
to smooth age patterns in migration flow tables. This model assumes that the
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a) Arizona

c) Hawaii

b) Wyoming

PUMS 5% Sample Model Migration Schedule Log-linear Model
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Fig. 4.13 Census 2000 observed (full sample) versus predicted age-specific migration flows from
Colorado to Arizona, Wyoming, and Hawaii using the PUMS 5% sample, the Rogers-Castro model
migration schedule fits to the PUMS 5% sample, and the unsaturated log-linear model fits to the
PUMS 5% sample

marginal age structures in these tables are reliable. But what if they are not? And
what if the data are so poor that model schedules cannot be used to smooth the
origin-destination-specific flows either? This section shows how the marginal age
structures in a migration flow table can be smoothed and used in an offset to obtain a
complete set of smoothed migration flows between all regions of interest. For illus-
tration, we use age-specific migration between states in the U.S. Pacific Division
(i.e., Alaska, California, Hawaii, Oregon and Washington), obtained from the ACS
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2004 PUMS sample, representing a very poor data situation and, to be fair to the
ACS, one that would not likely be used for analyses of interstate migration in
the U.S.

A hybrid smoothing approach is needed for the ACS 2004 data because, unlike
the PUMS 5% sample data, the marginal structures also contain irregularities, albeit
at lower levels than those found in the origin-destination-specific patterns. For a
highly irregular situation such as this, we can use the log-linear with offset approach
to incorporate smoothed marginal structures, obtained with model migration sched-
ules. This approach provides a compromise between the more intensive model
schedule approach and the unsaturated log-linear approach.

Our theoretical model for smoothing the migration data is the unsaturated model
specified in Eq. (4.7). For the ACS 2004 PUMS data, however, the λOA

ix and λDA
jx

association terms of the reported data also contain irregularities that would carry
forward in the predicted flows. Furthermore, a model without these terms would be
considered too simplistic to accurately capture the age-specific migration patterns.
Thus, we propose the following log-linear with offset model to smooth the ACS
2004 PUMS data:

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x + λOD
ij + ln

(
n∗

ijx

)
, i �= j, (4.8)

where the offset, n∗
ijx, contains smoothed versions of the association terms, λOA

ix and

λDA
jx . The smoothed versions of λOA

ix and λDA
jx were created by fitting Rogers-Castro

model migration schedules to the aggregate in-migration and out-migration age
compositions, i.e., Ni+(x) and N+j(x), which were then divided by Ax(or N++(x))
to obtain smoothed versions of OAix and DAjx multiplicative components (see
Chapter 3 for a discussion of the links between multiplicative components and log-
linear association terms). The offset, n∗

ijx, was then constructed by multiplying the
smoothed estimates of OAix and DAjx by all the other multiplicative components,
i.e., T, Oi, Dj, Ax and ODij, as reported by the ACS 2004.

Some selected results from the hybrid log-linear approach described above
are illustrated in Fig. 4.14, along with corresponding model migration schedule
and unsaturated log-linear model fits. The Hawaii to Alaska flow represents a
situation where only seven data points are available. The Hawaii to California
and California to Oregon flows are cases where the patterns are highly irregular.
And, the Washington to Oregon flow contains an age profile that is fairly regular
with the exception of a small peak at the 50–54 age group. The log-linear with
offset model appears to produce the most reasonable results. Clearly the unsatu-
rated model is inappropriate because the irregularities in the marginal structures
are carried forward. Model migration schedules have the advantage of making
the most use out of the reported data but they involve a large amount of work
and can fail when the data are highly irregular, such as these are. For the ACS
2004 PUMS sample data, we were able to fit model schedules to only 12 of
the 20 flows in the table. Eight flows were deemed very difficult or impossible
to fit model schedules to. These included the Alaska-Hawaii, Alaska-Oregon,
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a) Hawaii to Alaska

c) California to Oregon

b) Hawaii to California

d) Washington to Oregon

Model Schedules Unsaturated Log-linear Log-linear with Offset

Observed Predicted

Fig. 4.14 Selected ACS 2004 observed versus predicted age-specific migration flows using
Rogers-Castro model migration schedules, the unsaturated log-linear model, and the log-linear
with offset model

Alaska-Northeast, Hawaii-Oregon, Oregon-Hawaii, Washington-Hawaii, Northeast-
Oregon and Midwest-Oregon flows. Finally, we have examined the corresponding
ACS 2005–2007 PUMS sample data and found the data to be of similar poor
quality.
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4.5.4 Summary

In this section, we have presented several log-linear methods for smoothing a variety
of migration data. The focus has been on spatial and age patterns of migration. Of
course, these models could be extended to include more factors or to make better
use of data available over time, particularly with regard to obtaining more reliable
ACS migration data. For example, Eq. (4.7) could be expanded to include time as a
main effect:

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x + λT
t + λOD

ij + λOA
ix + λDA

jx , (4.9)

or as interaction terms with origin and destination:

ln
(
n̂ijx
) = λ + λO

i + λD
j + λA

x + λT
t + λOD

ij + λOA
ix + λOT

it + λDA
jx + λDT

jt . (4.10)

Both of these models take advantage of the more reliable structures in the data. The
less reliable structures not included in these models would be pooled over time,
and should exhibit more regularity in their patterns and in the resulting migration
estimates.

4.6 Summary and Discussion

This chapter outlines three basic smoothing techniques that apply three core models:
cubic splines, model schedules, and log-linear representations of the data. It begins
with a focus on the most straightforward application: the smoothing with cubic
splines and then model schedules of the observed relatively large sample (16.67%)
migration data reported by the Census 2000 survey. The resulting smoothed data
then are taken to be the “gold-standard” against which to compare the corresponding
results obtained by applying the very same procedures to the much smaller PUMS
1% sample drawn from the parent population of a 16.67% sample. As expected, the
comparison points to the loss of reliability occasioned by the reduction in sample
size. But the smoothing of the data from the smaller sample acts to bring the two sets
of results surprisingly close to one another, at least for the more populated states.

Turning next to the ACS PUMS sample data, which annually accounts for
roughly the same sample size as the PUMS 1% data, we note that some 3 mil-
lion households received the ACS 2005 questionnaire, giving rise to annual data
for about 750 counties with more than 80% of the U.S. population represented
(Mather et al., 2005). The ACS PUMS samples are a valuable source of annual
socioeconomic data for states and counties. However, analysts studying age- and
origin-destination-specific migration flows will be confronted by issues revolving
around the relatively small sample sizes associated with high levels of disaggrega-
tion and temporal measurement (i.e., the change from a 5-year to a 1-year migration
time interval and “averaging” over time). For example, migration between counties
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with populations less than 65,000 people will be represented by 3- or 5-year aver-
ages. Thus, the elimination of the U.S. Census Bureau’s long-form questionnaire has
made research on migration more complex, and researchers need to exercise cau-
tion when using the ACS PUMS samples to analyze migration patterns, particularly
those disaggregated by origin, destination, age, sex, or other characteristics.

So what should migration researchers interested in age-specific patterns do in
such a situation? They could either pool the samples over several years or some-
how correct for the irregularities in the patterns before using them. Pooling data
over time has been suggested by the producers of ACS, but that will produce differ-
ent sets of patterns that may not be as useful to the analyst, and it does not allow
the detection of age- and origin-destination-specific changes over time. For ACS
PUMS sample data, the best one can do is to identify changes in the more aggregate
or stable structures, which our models rely on. Simply pooling the data not only con-
tinues the irregular patterns in the annual data (as they are carried forward) but also
washes out any differences over time. Smoothing, on the other hand, may provide a
way to compare changes in age-specific patterns over time, particularly if the inter-
state migration totals are accurate. The result would be a time series of age-specific
migration flow data, which would be very valuable for population projections and
analysis.

Smoothing observed data by applying cubic splines and model schedules illus-
trates an approach that focuses independently on improving each single age profile
of migration one at a time. The smoothing process applied to one directional flow
does not influence that of another. The third smoothing process described in this
chapter differs from the first two in that it adopts an alternative perspective that
considers the entire table of interregional migration flows and adopts a smooth-
ing process in which adjustments of a single flow influences that of others. Instead
of model schedules we turn to unsaturated log-linear models in which certain
interdependencies are ignored. Here the observed data are smoothed by simplified
log-linear descriptions in which particular interaction terms, for example three-way
interaction terms are removed.

In the event none of the above procedures is effective in improving the data, we
must then turn to “repairs” rather than smoothings of the observed data, a topic we
take up in the next chapter.



Chapter 5
Imposing Age and Spatial Patterns

5.1 Introduction

In the preceding chapter, we demonstrated methods that are designed to smooth the
irregular age patterns of migration which survey data inevitably provide. After fit-
ting model migration schedules, the resulting profiles were more regular and more
likely to conform to the expected patterns of age-specific migration. A compari-
son of the Census 2000 full sample estimates and the PUMS 1% sample estimates
showed that the accuracy of the smaller sample estimates also was improved by the
smoothing procedures. Figure 4.5 revealed that, on average, smoothing improves
the accuracy of migration age profiles. However, the degree of improvement gained
by the smoothing procedures is related to the population size of the area being con-
sidered. In general, as population size decreases, the average percent error in the
migration flows produced from the PUMS 1% sample data increases.

We conclude from our experiments in Chapter 4, which compare the Census
2000 full sample and PUMS 1% sample results, that smoothing techniques should
improve the accuracy of the estimates of migration age structure from the Census
2000 PUMS 1% sample and from the ACS data as well. Furthermore, for both the
Census 2000 PUMS 1% sample and the ACS PUMS samples, the reliability of
the smoothed model schedules diminishes as the population size of the area, i.e.,
the sample size, decreases. Unlike the Census 2000, there is no way to assess the
improvements in reliability due to the smoothing results for the ACS. The methods
presented below illustrate ongoing research to develop procedures that can be used
to impose more reliable and credible structures on the survey estimates of migration
age structure, from surveys such as the ACS.

The methods proposed in this chapter are particularly useful when sample sizes
are insufficient to provide reliable age-specific migration flows. These procedures
rely both on the survey data in question and on known regularities in migration
schedules that have been observed within geographic regions, within families that
exhibit similar migration age patterns, and within the same area over time. We build
upon the smoothing methods developed in Chapter 4, and go one step further by
proposing procedures that are designed especially to alleviate the diminished relia-
bility in the national survey estimates of migration age structure that are associated
with the less populated geographic areas. In these situations the survey estimates of
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migration structure are deemed to be unreliable and still lacking accuracy, even after
smoothing techniques have been applied.

As in Chapter 4, the methods are developed and tested by using these data.
The results of the methods applied to the Census 2000 PUMS 1% sample data
are, once again, systematically compared to the results obtained from the Census
2000 full sample data. This provides a way to gauge the errors and the improve-
ments gained after applying the procedures to the PUMS 1% data. All of the
methods presented are based on the principal notion that there are relatively few
migration age structures, and that most geographic areas have a migration sched-
ule that conforms to one of these. The strategies are intended to be most useful
when applied to less populated areas where they can improve the accuracy and
the regularity of the survey-based migration age profiles. The first method is the
regional membership method, and it is based on the principle that migration age
patterns are likely to be similar for areas that are in close geographic proximity.
In Section 5.2, we demonstrate the method by considering states that are mem-
bers of the same U.S. Census Division. A divisional “average” age pattern is
derived by consolidating the data for all states in that division. This pattern is then
imposed on states within the division that exhibit any major inadequacies in their age
patterns.

The second method is the family membership method, which is described in
Section 5.3. This approach follows Raymer and Rogers (2008) who demonstrated
with interstate migration in the U.S. West region that only four age profiles of migra-
tion were required to accurately capture the age patterns of migration within the
entire system. Migration families offer a parsimonious way of summarizing age
structures of migration. In the context of U.S. migration, the survey data, relevant to
a particular state, are used to categorize that state as belonging to a migration fam-
ily, and then the data for all states in a family are combined to define that family’s
migration age profile. Ultimately, the family membership method provides a migra-
tion age structure that can be imposed on each state within the family, and that offers
a more reliable alternative to the simple survey-based estimates of a state’s migra-
tion age structure. Section 5.3.1 describes the steps for determining the migration
families from the model migration schedules of the 26 more populated states, which
were derived from the PUMS 1% sample data and are considered to be represented
accurately by the smoothed data. The model schedules are classified into four fam-
ilies that we believe are able to adequately represent the principal variations in the
individual state model schedules.

In Section 5.3.2, each of the 25 less populated states (and the District of
Columbia) is assigned to a family based on the parameters of its fitted model sched-
ule. Then the assigned migration family profile is imposed on each state in the
family. The success of the family membership method is reported, and it is compared
to the regional membership method. The reliability of each method is measured
by the degree of alignment between the model migration schedule imposed by the
method, and derived from the PUMS 1% sample data, with the corresponding model
migration schedule derived from the Census 2000 full sample data.
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The regional membership method and the family membership method are
expected to improve the ACS estimates of migration schedules for the less popu-
lated states. Both of these methods are applied to the ACS 2007 PUMS data, and
the results are demonstrated in Section 5.4. Because the ACS is administered yearly,
there is an additional method available for the ACS that is not possible with the
decennial censuses. This method consolidates the past years of survey data into a
temporal “average,” and the resulting model migration schedule is used to impose
the average migration age structure for the most recent year. This is called the tem-
poral aggregation method, and it is developed in Section 5.4.1, where the ACS
2005–2007 PUMS sample data are used to impose the 2007 migration age profile
for each of the states.

In Section 5.4.2, the regional membership and the family membership methods
are applied to the ACS 2007 data for the more populated states, and the model
schedules resulting from the temporal aggregation method are compared with the
ACS 2007 derived model schedules. The methods also are contrasted with each
other and the relative degrees of success are discussed.

In Section 5.4.3 the methods are applied to the less populated states using the
ACS 2007 PUMS sample data, and strategies are presented for assessing the useful-
ness of one method over another. Section 5.5 is devoted to log-linear methods for
imposing spatial migration patterns, and Section 5.6 concludes the chapter with a
summary and discussion.

5.2 The Regional Membership Method for Imposing
Migration Age Structures

The regional membership method is based on the principle that populations residing
in areas that are in close geographic proximity will exhibit similar migration age
profiles. If a region is defined so that the subareas contained within it have similar
age patterns of migration, then it seems efficient to generate a regional “average”
migration age structure that makes use of all survey observations in the region as
a whole, and then impose that structure on each of the subareas. Moreover, if a
particular subarea has a small population with inadequate migration data, then it
seems clear that pooling all of the survey observations in the surrounding region
will generate a more reliable estimate than the survey estimate. This is the logic of
the regional membership method.

Imposing a migration schedule in this method is a four-step process. First, the
region is defined by a collection of subareas that are in close geographic proximity
and thought to have similar age patterns of migration. Second, regional “average”
model schedules are generated, based on all survey observations in that region.
Third, this schedule is scaled up or down to produce schedules that reflect the total
aggregate migration propensity (or level) of each subarea in the region. Finally, the
adjusted “average” model schedules are imposed on each of the subareas in the
region.
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We begin our demonstration of the regional membership method with a baseline
application of the method which defines a single national region, i.e., one that
includes all fifty states and the District of Columbia. We then generate a national
model migration schedule, which uses all observations in the Census 2000 PUMS
1% sample data to estimate the national “average” migration age profile based on
all interstate migrations between 1995 and 2000. Although we assume, with this
demonstration, that all state migration age patterns are similar, we do not assume
that all state populations exhibit the same propensities for out-migration. Therefore,
before one national migration model schedule can be imposed on a particular state’s
migration age pattern it must be adjusted by that state’s migration propensity. This
is accomplished by rescaling the national model migration schedule by the state’s
aggregate level of out-migration as measured by that state’s gross migraproduction
rate (GMR) as observed in the state’s PUMS 1% sample data, thus ensuring that
the method for imposing migration structure does not change the total level of
out-migration observed in the survey data. (See Section 2.2 for a description of
GMR.)

Figure 5.1 demonstrates the national model migration schedule after it has been
adjusted by the migration levels observed for California, Connecticut, Florida and
Wyoming. Each of the four state schedules has the same migration age profile as the
national profile, but the levels vary. Wyoming, the least populated and most rural of
the four states, shows the highest propensity for out-migration. Connecticut has the
next highest, followed by Florida and then California.

Figure 5.2 displays the accuracy of the imposed national model migration sched-
ules for the four selected states, and the larger states, California and Florida, have
imposed patterns that are quite similar to the “gold standard” model migration
schedules. However, for the less populated states, Connecticut and Wyoming, the
imposed schedules are visibly less similar to the schedules derived from the full
sample data. The success of this baseline application of the regional membership
method is measured by the MAPE statistic, which captures the differences between
the imposed national migration model schedules and the corresponding migration
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Fig. 5.1 The national model migration schedule after adjustments for each state’s GMR
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Fig. 5.2 The imposed national model schedule as compared to the model schedules derived from
the full sample data

model schedules derived from the full sample data. (See Chapter 4 Section 4.2 for a
definition of MAPE.)

The MAPEs for all states are reported in Table 5.1. The MAPEs that resulted
from imposing the national model schedule on California and Florida are 5.52%
and 5.83%, respectively, and the MAPEs for Connecticut and Wyoming are 17.05%
and 14.54%, respectively, thereby supporting the visual similarities and differences
displayed in Fig. 5.2.

The national model migration schedule provides a simplistic example of the
regional membership method, but it serves as a baseline for comparison with a more
realistic application of the method. For example, consider regions that are defined
as the nine U.S. Census divisions. For this illustration, the state out-migration data
obtained from the PUMS 1% sample data were consolidated to the division level
then splined and fitted by model schedules as described in Chapter 4, resulting
in division “average” model migration schedules. Before imposing these division
schedules on the states within the divisions, they were rescaled so that each state’s
imposed model migration schedule had the same GMR that was observed in the
PUMS 1% sample. Figure 5.3 displays, for four of the nine divisions, the “aver-
age” migration schedules, after adjusting for each member state’s GMR. The New
England model schedule exhibits a pronounced labor peak, a retirement peak, and
relatively low levels of infant migration. The Pacific model schedule is similar to
the New England model schedule, except that it has higher infant migration levels.
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Table 5.1 A comparison of the MAPEs generated from two applications of the regional member-
ship method

U.S. Census
Division State

Imposed national
model schedule
MAPE

Imposed division
model schedule
MAPE

Northeast Connecticut 17.05 5.77
Maine 20.52 15.03
Massachusetts 18.20 7.54
New Hampshire 16.65 11.17
Rhode Island 16.40 12.96
Vermont 22.31 14.44
Avg MAPE 17.76 10.49

N Atlantic New Jersey 13.55 7.34
New York 10.44 5.91
Pennsylvania 12.67 11.42
Avg MAPE 12.22 8.23

Central Illinois 5.85 5.74
Indiana 7.58 4.63
Michigan 14.48 8.36
Ohio 9.27 8.72
Wisconsin 15.00 12.92
Avg MAPE 10.44 8.07

Midwest Iowa 15.85 10.07
Kansas 17.37 7.38
Minnesota 12.83 12.65
Missouri 9.27 5.59
Nebraska 19.68 7.38
North Dakota 36.20 21.47
South Dakota 22.74 10.38
Avg MAPE 19.13 10.70

M Atlantic Delaware 9.44 8.62
DC 18.76 11.85
Florida 5.83 8.40
Georgia 9.66 2.51
Maryland 8.49 6.07
North Carolina 18.66 10.06
South Carolina 15.23 6.90
Virginia 17.42 8.04
West Virginia 12.69 7.57
Avg MAPE 12.91 7.78

South Alabama 15.21 4.37
Kentucky 10.21 5.02
Mississippi 13.53 4.81
Tennessee 13.97 3.14
Avg MAPE 13.23 4.34

S Central Arkansas 6.66 9.95
Louisiana 19.24 10.69
Oklahoma 17.82 10.45
Texas 10.44 2.57
Avg MAPE 13.54 8.41
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Table 5.1 (continued)

U.S. Census
Division State

Imposed national
model schedule
MAPE

Imposed division
model schedule
MAPE

Mountain Arizona 8.39 7.06
Colorado 5.41 1.47
Idaho 12.60 12.46
Montana 19.63 21.10
Nevada 12.70 13.85
New Mexico 5.17 4.78
Utah 12.97 11.81
Wyoming 14.54 14.84
Avg MAPE 11.43 10.92

Pacific Alaska 8.52 7.98
California 5.52 3.70
Hawaii 42.68 45.56
Oregon 8.32 9.92
Washington 6.91 8.94
Avg MAPE 14.39 15.22

Note: States in boldface are the 25 less populated
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Fig. 5.3 The imposed division model schedules for the states with the highest and lowest
migration propensities within four U.S. Census Divisions
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The Mountain and South Atlantic schedules both have a pronounced labor peak,
relatively high infant migration, and no retirement peak.

Within each division there is variation in the propensity for migration, and the
extent of variation is exhibited in Fig. 5.3. The imposed model schedules are dis-
played for the states with the highest and the lowest migration levels within the four
selected divisions. In all four divisions, the less populated states had higher observed
GMRs than the more populated states, and this is confirmed by their higher levels
of migration as displayed in Fig. 5.3. Within the Pacific Division there is more vari-
ation than in all of the other divisions, and the imposed profile for Alaska has the
highest total migration level and California has the lowest. The Mountain Division
and the New England Division each exhibit significant variations in migration lev-
els. Wyoming, the least populated state, has the highest migration level, as compared
to Arizona which has the lowest migration level in the Mountain Division, and to
Vermont which has the highest migration level in the New England Division, as
compared with Massachusetts, which has the lowest. The imposed schedules for
the states in the South Atlantic Division have relatively little variation in migration
levels. Delaware has the highest level of migration, and it is just slightly higher
than schedule imposed on Florida which has the lowest migration propensity. (The
District of Columbia is not considered here because it is not a state, and it has a level
of migration that is distinctly different than all states.)

In Fig. 5.4 the imposed division model migration schedules are visually con-
trasted with the schedules derived from the full sample data for the selected
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Fig. 5.4 The imposed division model schedules as compared to the model schedules derived from
the full sample data
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states. For California (Pacific), for Florida (South Atlantic), and for Connecticut
(New England), the method works very well. For these three states the imposed
division model schedules coincide almost perfectly with the model schedule derived
from the full sample data. For Wyoming (Mountain), the imposed model schedule
exhibits a lower peak and a higher propensity for migration in the retirement years
than the state’s model schedule derived from the full sample data.

The differences and the similarities that are visually apparent in Fig. 5.4 are
summarized with MAPE statistics in Table 5.1. In addition, the accuracy of the
“national” versus the “division” application of the regional membership method
is contrasted in Table 5.1. For example, for California, the difference between the
model schedule imposed by the division and the full sample data is reflected by
the MAPE = 3.70, which is only a slight improvement over imposing the national
schedule on the state of California (MAPE = 5.52). For Connecticut, the division
model schedule (MAPE = 5.77) is much more accurate than the national model
schedule (MAPE = 17.05). For Florida, on the other hand, the national model
schedule was slightly more accurate (MAPE = 8.40) than the division model sched-
ule (MAPE = 5.83). Both applications of the regional membership method were
accurate to a similar degree for Wyoming (national MAPE = 14.54, divisional
MAPE = 14.84). In general, the strategy of imposing the national model schedule
works well for the most populated states such as California (MAPE = 5.52), New
York (MAPE = 10.44), Illinois (MAPE = 5.85), and Florida (MAPE = 5.83), while
the strategy of imposing the division model schedule works well when the states
within the division are relatively homogeneous, as in the case of the Middle Atlantic
(mean MAPE = 8.23), the East North Central (mean MAPE = 8.07), and the East
South Central (mean MAPE = 4.34).

5.3 The Family Membership Method for Imposing Migration
Age Structures

Little and Rogers (2007) showed that the model schedules representing the age
compositions of out-migrants for three levels of U.S. geography (states and
consolidated metropolitan areas, metropolitan statistical areas, and counties) could
be reduced to just a few families of schedules for each level of geography (see
also Raymer & Rogers, 2008). In this section, we assign geographic units into
migration families that tend to exhibit similar age profiles of migration. Based on
the model schedules that were fitted to the PUMS 1% sample data (as discussed in
Section 4.3), the primary family defining characteristic is the presence or absence
of a retirement peak. At the same time, we expect that members of the same family
will have varying levels of migration. Therefore, areas should be assigned to a
family according to their profile parameters and not their level parameters. (Section
2.2.2 sets out the analytic form of the Rogers-Castro model migration schedule and
a description of each component of the model.)
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Within the families that have or do not have a retirement peak, child dominant and
labor dominant families are distinguished by a comparison of the relative migration
propensities for infant migration and for the labor force peak ages. The ratio of the
labor force peak value (evaluated as a2 + exp (− 20α1) + c) to the infant migration
peak value (evaluated as a1+c) indicates whether the flow is either a labor dominant
or a child dominant flow. Higher ratios are indicators of a labor dominant migration
family, and lower ratios are associated with a child dominant migration family.

As a result of this classification scheme, there are four possible migration fami-
lies: (1) retirement peak, labor dominant; (2) retirement peak, child dominant; (3) no
retirement peak, labor dominant; and (4) no retirement peak, child dominant. Once
the areas are assigned to one of these four migration families, certain components of
the family’s flow schedule are imposed on each of the family members. For exam-
ple, the labor force profile parameters (α1, α2, μ2, λ2), averaged over the family
members, are assigned to the imposing family model schedule. In addition, if there
is a retirement peak, the family average of each of the retirement peak parameters
(a3, α3, μ3, λ3) is assigned to the imposing model schedule. The level parameters
(a1, a2, and c) are not assigned by the family. Instead, they are drawn from the
member’s PUMS 1% sample data or from its corresponding model schedule.

5.3.1 Defining Families of Out-Migration Flows

In Section 4.3, we found that the smoothed age profiles of migration that resulted
from applying model schedules to the splined PUMS 1% sample data provided a
good representation of the observed values for the 26 states with populations over
four million persons. In this subsection, we use the parameters from these model
schedule fits to identify model schedule families. This was carried out in the fol-
lowing way. First, the model schedules exhibiting a retirement peak were separated
from those not exhibiting them. Second, all flows were classified as being labor- or
child-dominant based on the ratios of labor force peak values to the initial infant
migration peak values. The groups were made based on natural breaks found in the
distribution of ratios.

Among the 26 most populated states, there were eight with retirement peaks.
Of those, two were classified in the child dominant family (California and
Illinois) and six in the labor dominant family (Indiana, Massachusetts, Michigan,
Minnesota, New Jersey, and New York). Of the remaining 18 states without a
retirement peak, 11 were classified in the child dominant family (Arizona, Florida,
Georgia, Louisiana, Maryland, North Carolina, Ohio, South Carolina, Tennessee,
Washington, and Wisconsin) and seven in the labor dominant family (Alabama,
Colorado, Kentucky, Mississippi, Pennsylvania, Texas, and Virginia).

Once the family classifications were assigned, the steps for generating the impos-
ing model schedule to represent each family were as follows. Over all members in
a family, we averaged each of the labor force “pure” profile parameters (α1, α2,
μ2, λ2) , and, if there was a retirement peak, we took the average of each of the
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retirement peak parameters (a3, α3, μ3, λ3). These averaged parameters were then
assigned to the imposing family model schedules. Because we expected members of
the same family would have varying levels of migration, the level parameters (a1, a2,
and c) were not assigned by the family. Instead, a1 and a2 were preserved from the
state’s model schedule, and the c parameter was calculated as the average propensity
to migrate over age 60 as indicated by the splined age profiles derived from PUMS
1% sample data (discussed in Section 4.3). As in the regional membership method,
the final step in the family membership method was to rescale the schedule imposed
by the method, in a way that preserves the GMR that was observed in the PUMS 1%
sample.

Figure 5.5 shows the imposed migration schedules that resulted from the fam-
ily membership method for two states selected from each of the four families. It
demonstrates the similarities in migration age profiles within a family, and, at the
same time, it reveals that the height of the infant migration peak, the labor peak and
the retirement peak can be quite different within a particular family. The close cor-
respondence between the schedules estimated from the full sample data and those
imposed by the family membership method is visually demonstrated for California,
Massachusetts, Florida, and Pennsylvania in Fig. 5.6.

The MAPE statistics are reported in Table 5.2 for the 26 large states grouped
into four families. The average MAPE of 7.80 suggests that the family membership
method is an effective option for indirectly estimating the migration age profiles for
the most populated states. Only three states (Minnesota, Wisconsin, and Texas) had
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Fig. 5.5 The imposed family model schedules for selected more populated states
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Fig. 5.6 The imposed family model schedules as compared to the model schedules derived from
the full sample data for selected more populated states

migration schedules that did not conform well to their migration family, and their
MAPE scores were 15.09, 16.39, and 16.41, respectively. The average of the MAPE
scores for the family membership method (7.80) is comparable to the average for the
regional membership method (6.91). For 11 of the 26 states, the family membership
method actually performed better than the regional membership method, and for 15
states the regional membership method was superior.

5.3.2 The Family Membership Method Applied to the Less
Populated States

Although the smoothed profiles from the PUMS 1% sample data provide good rep-
resentations of the true profiles for the states with populations over 4 million, they
generally are not as good for states with less than 4 million people. For these states,
and for other areas where survey data may be insufficient, we may apply the family
membership method, which uses characteristics of the more realistic schedules bor-
rowed from the most populated areas, and yet preserves some of the unique character
of the model schedules estimated from the 1% PUMS sample data for the less pop-
ulated areas. It is reasonable to conjecture that those states with fewer than 4 million
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Table 5.2 A comparison of the family membership method and the regional membership method
(imposing the division model schedule) for the more populated states

State classification
Family membership
method MAPE

Regional Membership
Method MAPE

Retirement peak:
Child dominant California 7.97 3.70

Illinois 4.19 5.74
Labor dominant Indiana 9.61 4.63

Massachusetts 9.10 7.54
Michigan 7.20 8.36
Minnesota 15.09 12.65
New Jersey 8.07 7.34
New York 5.25 5.91

No retirement peak:
Child dominant Arizona 4.86 7.06

Florida 1.71 8.40
Georgia 9.00 2.51
Louisiana 7.60 10.69
Maryland 7.25 6.07
North Carolina 2.03 10.06
Ohio 5.68 8.72
South Carolina 6.06 6.90
Tennessee 8.16 3.14
Washington 5.18 8.94
Wisconsin 16.39 12.92

Labor dominant Alabama 9.55 4.37
Colorado 4.20 1.47
Kentucky 6.46 5.02
Missouri 6.36 5.59
Pennsylvania 6.61 11.42
Texas 16.41 2.57
Virginia 12.68 8.04

Overall Average MAPE 7.60 6.87

persons should have out-migration flows that are similar in age profile to those states
with more than 4 million persons. Thus, we assign the small states to the appropriate
family using their model schedule parameters. If these indicate there is a retirement
peak, then they are assigned to the retirement peak family. As before, the ratio of
the labor force peak value (as reflected by a2 +exp (−20α1)+c) to the initial infant
migration peak value (as reflected by a1 + c) indicates whether the flow is either a
labor dominant or a child dominant flow (Rogers & Castro, 1986).

To calculate the imposed schedules we take the averages of the labor force profile
parameters and all retirement peak parameters from the large states (by family), and
then impose these parameters onto the flows from the small states (by family). For
each small state flow, we use the state’s observed level parameters (a1, a2) and
the c parameter, which is calculated as the average propensity to migrate over age
60 that is indicated by the state’s splined data. Finally, we impose the observed



100 5 Imposing Age and Spatial Patterns

gross-migraproduction rate (GMR) by rescaling the fitted data, thus ensuring that no
changes arise in each state’s level of out-migration.

Only Connecticut was found to have a retirement peak, and it was placed in the
labor dominant family with a retirement peak. Most of the less populated states
(16 of them) were classified as members of the child dominant family, and 8 were
categorized as being in the labor dominant family. None of the less populated states
fell into the “retirement peak, child dominant” family. Figure 5.7 demonstrates the
similarities in the shapes of the imposed schedules within each family, and, at the
same time, it shows that there are variations in the levels of the imposed schedules
for representative states within each family. Figure 5.8 visually demonstrates the
closeness between the imposed model schedules and the corresponding full sample
schedules for selected states within each family.

Table 5.3 displays the classification into families for the 25 least populated
states and the MAPE statistics associated with the results of the family mem-
bership method and the regional membership method for comparison. When the
imposed schedules from the family membership method are compared to those of
the smoothed schedules derived from the full sample data, on average the MAPE is
11.48 for the least populated states. Only the District of Columbia, in the child dom-
inant family, had a MAPE above 15.00. In contrast, one half of the states in the labor
dominant family had MAPEs above 15.00, which suggests that the labor dominant
migration family is not as homogeneous as is the child dominant migration. When
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Fig. 5.8 The imposed family model schedules as compared to the model schedules derived from
the full sample data for selected less populated states

the MAPEs from the family membership method and from the regional membership
method are compared it seems that, on average, the two methods perform equally
well. The average MAPE resulting from the regional membership method is 12.46
compared to 11.48 for the family membership method. Among the less populated
states, 13 of 25 had a smaller MAPE for the family membership method than for the
regional membership method. In addition, 12 of the 25 states had 10% or less error
from the family membership method, and 13 of the 25 states had 10% or less error
from the regional membership method. However, if the best method is chosen to
impose the migration age structure for the less populated states, the average MAPE
improves from 11.48 to 8.61, which suggests there are advantages in having two
methods to choose from.

In general, each method worked well under certain conditions. The regional
membership method worked well, especially when the U.S. Census divisions were
used to define the regions, and when the states within a division were homogeneous
in their migration age structures. For example, Mississippi is a less populated state
in East South Central, where all four states have similar migration schedules. Here,
the model schedule imposed by the regional membership method was very simi-
lar to its model schedule derived from its full sample data (MAPE = 4.81). New
Mexico is another example of a less populated state where the regional membership
method was successful (MAPE = 4.78). The states within the Mountain Division are
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Table 5.3 A comparison of the family membership method and the regional membership method
(imposing the division model schedule) for the less populated states

State classification
Family membership
method MAPE

Regional membership
method MAPE

Retirement peak:
Labor dominant Connecticut 14.97 5.77
No Retirement peak:
Child dominant Alaska 14.13 7.98

Arkansas 4.47 9.95
District of Columbia 16.99 11.85
Hawaii 14.48 45.56
Idaho 8.3 12.46
Iowa 10.15 10.07
Kansas 5.67 7.38
Nevada 3.21 13.85
New Hampshire 14.99 11.17
New Mexico 3.58 4.78
Oklahoma 5.59 10.45
Oregon 6.94 9.92
South Dakota 14.1 10.38
Utah 8.56 11.81
West Virginia 9.77 7.57
Wyoming 6.25 14.84

Labor dominant Delaware 11.02 8.62
Maine 16.92 15.03
Mississippi 23.23 4.81
Montana 8.75 21.10
Nebraska 21.79 7.38
North Dakota 13.4 21.47
Rhode Island 11.03 12.96
Vermont 18.79 14.44

Overall Average MAPE 11.18 12.38

not homogeneous, but New Mexico happened to have a migration age structure that
aligned closely with the division’s average age structure, which is shaped in large
part by two states that are neighbors to New Mexico and are the most populated
states in the division (Arizona and Colorado).

The family membership method worked notably well for three states within the
heterogeneous Mountain Division. In the child dominant migration family (with
no retirement peak), the imposed model schedule corresponded well with the full
sample derived model schedule for Idaho (MAPE = 8.30), Nevada (MAPE = 3.21),
and Wyoming (MAPE = 6.25). In contrast, the MAPEs associated with the regional
membership method were 12.46 for Idaho, 13.85 for Nevada, and 14.84 for
Wyoming. Similarly, in the labor dominant migration family (with no retirement
peak), the family membership method performed well for Montana (MAPE = 8.75)
in comparison to the regional membership method (MAPE = 21.10).
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5.4 Imposing Migration Age Structures with ACS Data

In Sections 5.2 and 5.3, the regional membership and the family membership
method for imposing migration age structures were developed using the Census
2000 PUMS 1% sample data, and the accuracy and the reliability of the imposed
model schedules were compared to those derived from the Census 2000 full sam-
ple data. As expected, the imposed model schedules corresponded well with the
full sample derived model schedules in the most populated states, and the average
MAPE, over the 26 largest states, was 6.91 for the regional membership method
and 7.80 for the family membership method. Our analysis focused primarily on the
least populated states, where the PUMS 1% sample data results are less reliable,
and where there is clearly more need for methods that can impose more reliable
migration age structures.

In this section, we demonstrate that the proposed methods can be applied to the
ACS PUMS sample data to improve the estimates of migration age structures. The
ACS offers a special challenge, over and above the decennial Census 2000, in that
it has no full sample data source that can be used to verify the reliabilities of the
methods for imposing migration age structures. To get around this shortcoming,
we use the model schedules derived from the ACS PUMS sample data for the
more populated states as the “gold standard” and assume that these estimates are
quite accurate and can be viewed as the “true” migration age structures for those
states.

At the same time, the ACS has the advantage of being administered annually.
Since 2007 is the third year of full implementation of the ACS, there are three years
of ACS data (2005, 2006, and 2007) that can be combined to produce a set of sur-
vey observations that is three times larger than the number of observations in the
ACS 2007 survey alone. Using all three years of data (2005–2007) to derive a model
schedule that can be imposed on the 2007 migration age structures provides an addi-
tional method which can be applied uniquely to the annual ACS PUMS sample data,
and it is called the temporal aggregation method.

5.4.1 The Temporal Aggregation Method for Imposing
Migration Age Structures

At the inception of the ACS, the U.S. Census Bureau recognized there would be
problems with sampling error, especially for the smaller (less populated) areas, and
they have argued that the 3-year and 5-year aggregated estimates should be used
instead of the single-year estimates for these areas. In addition, the Census Bureau
will publish these estimates every year for the most common tables. The temporal
aggregation method is equivalent to these 3-year ACS estimates, but it is tailored
specifically for application to migration age structures. The temporal aggregation
method, can be implemented by any user of the ACS PUMS sample data by simply
combining all of the observations available in each of the three ACS PUMS files. In
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this case, we are estimating state to state migration between 2006 and 2007, but we
are using the ACS 2007 as well as the ACS 2005 and 2006 PUMS sample data, and
we simply assume that the 2006 and the ACS 2005 data provide “proxy” estimates
of migration between 2006 and 2007.

The temporal aggregation method is based on the assumption that migration age
structures are relatively stable over a 3-year period, and it assumes that the com-
bination of the observations for the three most recent annual surveys will yield
reasonably accurate estimates of the most recent annual migration age structures.
To test these assumptions we selected four of the largest states (California, New
York, Florida, and Texas) and derived the model schedules from the annual ACS
PUMS sample data. Since these are the largest states, their ACS derived annual
model schedules will have minimal sampling error, and, for our purposes here, we
assume they accurately reflect the annual migration structures of the population.

Figure 5.9 shows that the variation in model schedules for 2005, 2006, and 2007
is quite substantial for the most populated states. For each of the four states in
Fig. 5.9, the migration propensities change over time, and the most consistent differ-
ence between the 2007 model schedules and the 2005 and 2006 model schedules is
at the age of the lowest propensity for child migration. This is around age 10 for all
four states in 2007, around age 12 for 2006, and around age 15 for 2005. Figure 5.10
displays the model schedules that are imposed by temporally aggregating the ACS
data, and these are contrasted with the ACS 2007 derived model schedules, showing
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Fig. 5.10 The imposed temporally aggregated (2005–2007) model migration schedules compared
to the ACS 2007 derived model migration schedules for selected more populated states

clearly that there are differences between the imposed 3-year “average” schedules
and the 2007 annual schedule. The differences are primarily in the migration lev-
els, but, overall, the profiles of the imposed schedules are quite similar to the 2007
annual schedules.

Figures 5.11 and 5.12 reflect a similar dynamic for the less populated states
selected (Connecticut, West Virginia, Wyoming, and Nebraska). Again the migra-
tion levels change over time, and there are differences between the 2007 schedules
and the 2005 and 2006 schedules in the age at the lowest propensity for child
migration, occurring around age 10 for the 2007 schedules and later for the other
years, especially in the 2005 model schedules. For Connecticut, West Virginia, and
Nebraska, labor migration peaks occur at an earlier age in 2007 than in previous
years. Nevertheless, when the ACS data for 2005, 2006, 2007 are combined,
the resulting model schedules, imposed by the temporal aggregation method, are
aligned very closely with the ACS 2007 model schedules, as is visually apparent in
Fig. 5.12.

The comparability between the temporally aggregated schedules and the annual
ACS 2007 derived schedules is summarized in Table 5.4. The MAPE statistics in the
first column can be interpreted as an assessment of the discrepancies due to the tem-
poral aggregation method, since it is assumed that the more populated states have
ACS 2007 derived model schedules that accurately reflect their migrating popula-
tions. Overall, the more populated states have an average MAPE of 10.90. Louisiana
is a clear outlier, however, due to the unusual migration patterns associated with
Hurricane Katrina. If Louisiana is omitted, the adjusted average MAPE is 8.73.
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Fig. 5.11 Model migration schedules derived from the ACS 2005, 2006, and 2007 PUMS sample
data for selected less populated states
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Table 5.4 Goodness-of-fit statistics (MAPE) contrasting the model schedules imposed by the
temporal aggregation method and the model schedules derived from the ACS 2007

More populated states MAPE Less populated states MAPE

Alabama 7.38 Alaska 8.64
Arizona 6.42 Arkansas 9.10
California 14.33 Connecticut 15.36
Colorado 5.77 Delaware 16.36
Florida 3.91 District of Columbia 7.72
Georgia 3.77 Hawaii 9.65
Illinois 6.54 Idaho 25.71
Indiana 10.01 Iowa 24.67
Kentucky 6.08 Kansas 8.36
Louisiana 71.09 Maine 17.57
Maryland 10.21 Mississippi 18.05
Massachusetts 9.51 Montana 12.15
Michigan 12.08 Nebraska 6.05
Minnesota 4.69 Nevada 6.69
Missouri 4.04 New Hampshire 9.68
New Jersey 11.67 New Mexico 7.77
New York 12.90 North Dakota 18.17
North Carolina 7.89 Oklahoma 17.51
Ohio 10.64 Oregon 11.88
Pennsylvania 3.38 Rhode Island 13.86
South Carolina 16.96 South Dakota 15.58
Tennessee 6.86 Utah 8.14
Texas 7.29 Vermont 11.43
Virginia 5.07 West Virginia 7.73
Washington 13.19 Wyoming 7.15
Wisconsin 11.78
Average MAPE 8.49∗ Average MAPE 12.60

∗Note: Louisiana was omitted from this calculation

Of the states with results presented visually in Fig. 5.10, California has the
largest MAPE (14.33). This relatively high MAPE is due to the consistent lift of
the imposed schedule above the 2007 schedule. New York has the next highest
MAPE (12.90), and it is slightly lower than the MAPE for California because the two
New York schedules come closer together in the older ages. Texas and Florida show
MAPEs (7.29 and 3.91, respectively) that are consistent with their visual displays in
Fig. 5.10.

The MAPE results for the less populated states are reported in the right column
of Table 5.4. They are not directly comparable to the MAPEs for the more popu-
lated states, because the model schedules derived from the annual ACS data, for the
less populated states, are the result of more sampling error than those of the more
populated states, and it would be a mistake to assume these schedules represent
the “true” migration age structure of the population for that year. Nevertheless, the
results reported for the less populated states, in Table 5.4, are valuable because they
quantify the degree of alignment between the imposed schedules and the ACS 2007
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schedules. On average, the MAPE is 12.76, which suggests that the discrepancies
between the annual model schedules and those imposed by the temporal aggrega-
tion method are larger for the less populated states than for the more populated states
(average MAPE = 8.73).

Where there is close correspondence between the imposed schedule and the 2007
annual model schedule, and the MAPE is small, say less than 10%, this result sug-
gests there was stability in that state’s migration age structure for the years 2005
to 2007, and it gives validity to the imposed schedule as a reliable estimate of the
migration age structure for that state. On the other hand, when the MAPE is large, as
in the case of Idaho (MAPE = 25.71), it may reflect there is variation in the migra-
tion age structure over the three year period, and the temporal aggregation method is
inappropriate, or it may reflect that sampling error has distorted the model schedule
derived from the ACS 2007 data.

5.4.2 The Imposing Methods Applied to the More Populated States

We now apply the regional membership and the family membership methods, in
addition to the temporal aggregation method, to the ACS 2007 data, targeting the 26
more populated states. The result is three sets of model schedules that are contrasted
with the model schedules estimated directly from the ACS 2007 data. In this section
we quantify the success of each of the methods because, for the more populated
states, we assume that the ACS 2007 derived model schedules are measured without
error, and that they provide the “true” migration age structures of the populations of
the more populated states. Therefore, the “best” method for imposing the migration
age structure is the one with the closest correspondence to the ACS 2007 model
schedule.

The regional membership method was applied to the ACS 2007 data as described
in Section 5.2, using U.S. Census Divisions as the regions, and the family mem-
bership method was applied as described in Section 5.3. However, the family
classifications based on the ACS 2007 data are different than they were for the
Census 2000 1% PUMS data. With the ACS 2007 data, only three families were
identified, in contrast to the four families identified in the Census 2000 1% PUMS
data. The state classifications in migration families are reported in Table 5.5. Some
states were identified as having a retirement peak, but further distinction into labor
or child dominant families was not possible. Of these 6 states, the regional member-
ship method performed better than the other two methods with an average MAPE of
8.30. However, two states (Illinois and New Jersey) had slightly better results from
the temporal aggregation method, and no states had better results from the family
membership method.

For the two families without a retirement peak, i.e., the child dominant and
the labor dominant families, the temporal aggregation method proved to be supe-
rior to the other methods, having the smallest MAPEs on average (6.94 and 8.59,
respectively). Over all of these states, on average, the temporal aggregation method
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Table 5.5 A comparison of the three imposing methods applied to the more populated states:
goodness-of-fit statistics (MAPE) contrasting the method’s model schedule with the model
schedule derived from the ACS 2007

State classification

Family
membership
method MAPE

Regional
membership
method MAPE

Temporal
aggregation
method MAPE

Retirement peak:
California 11.08 5.73 14.33
Illinois 11.17 8.88 6.54
Massachusetts 22.86 8.50 9.51
New Jersey 12.94 11.89 11.67
New York 11.76 8.04 12.90
Ohio 7.73 6.75 10.64
Average MAPE 12.92 8.30 10.93

No retirement peak:
Child Dominant Arizona 7.77 4.48 6.42

Georgia 13.70 6.15 3.77
Maryland 5.38 12.40 10.21
Minnesota 14.05 13.62 4.69
Missouri 13.45 5.66 4.04
North Carolina 10.30 18.71 7.89
Tennessee 7.26 4.18 6.86
Texas 14.81 2.83 7.29
Virginia 5.31 7.86 5.07
Washington 13.25 15.70 13.19
Average MAPE 10.53 9.16 6.94

Labor dominant Alabama 10.40 7.13 7.38
Colorado 16.38 10.47 5.77
Florida 18.94 12.72 3.91
Indiana 8.61 8.64 10.01
Kentucky 19.70 9.60 6.08
Louisiana 7.29 8.51 71.09
Michigan 15.43 7.91 12.08
Pennsylvania 14.61 11.20 3.38
South Carolina 8.87 15.57 16.96
Wisconsin 17.83 15.28 11.78
Average MAPE 13.81 10.70 8.59∗

Overall average MAPE 12.36 9.51 8.49∗

∗Note: Louisiana was omitted from this calculation

had the smallest MAPE (8.49) as compared with the regional membership method
(MAPE = 9.51) and with the family membership method (MAPE = 12.36). From
the results reported in Table 5.5 for more populated states, the temporal aggrega-
tion method appears to offer the most promise as a method for imposing migration
age structure. However, it is clear that each of the methods worked “best” for some
states. For 13 of the 26 states, the temporal aggregation method was best. For 9 of
the 26 states, the regional membership method gave the best results, and for 4 of the
26 states the family membership method was the winner.
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5.4.3 The Imposing Methods Applied to the Less Populated States

We now apply the methods for imposing migration age structure to the ACS 2007
data, targeting the 25 less populated states. Here there is no clear way to choose the
best method from the three competing methods. For the less populated states, the
ACS 2007 derived model schedules are less reliable than for the more populated
states, and, therefore, they cannot be viewed as reflecting the accurate migration
age structure of the state. We have developed strategies for deciding which of the
imposed schedules is “best” under these circumstances, and these strategies are
based on reasoning that when there is correspondence between two schedules it pro-
vides evidence of the validity for the method(s) involved. What follows are examples
of the logic that underlies these strategies.

Despite a lack of reliability in the ACS 2007 derived model schedules, for the less
populated states, they nevertheless can be used to validate one method over another.
The three methods were applied to the 25 less populated states, and the three sets of
model schedules were contrasted with the model schedules estimated from the ACS
2007 data. Of these states, there were only two migration families identified (child
and labor dominant with no retirement peak) and the resulting MAPE statistics are
reported in Table 5.6. When the MAPE is small (less than 10%) it indicates a close
correspondence between the imposed model schedule and the ACS 2007 derived
model schedule, and this correspondence gives some validity to the imposed model
schedule.

For example, there is a close correspondence between the temporally aggregated
imposed model schedule and the ACS 2007 derived model schedule for Nebraska
(MAPE = 6.05) as compared to the family membership method (MAPE = 13.58)
and the regional membership method (MAPE = 15.53). The similarities between
the two model schedules are presented in Fig. 5.13, and they suggest there was sta-
bility in the migration age structure for Nebraska over the 3-year period from 2005
to 2007. Furthermore, the model schedule imposed by the temporal aggregation
method, which is based on the observations for three years of the ACS, inevitably
provides a more reliable estimate of the migration age structure than does the ACS
2007 alone.

For Arkansas, there is close alignment between the model schedule imposed
by the regional membership method and the ACS 2007 derived model schedule
(MAPE = 8.73) as compared to the family membership method (MAPE = 15.16)
and the temporal aggregation method (MAPE = 9.10). This is illustrated in Fig. 5.14.
It suggests that the migration age structures for Arkansas and the other states in the
West South Central Division are very homogeneous. Due to this implied regional
homogeneity, we believe that the imposed model schedule, derived from all of the
ACS 2007 observations for the Division, provides a more reliable estimate of the
migration age structure for Arkansas than the model schedule derived from the ACS
2007 respondents for Arkansas alone.

The state of Iowa is an example of a less populated state with a migration age
structure that could be successfully imposed by the family membership method.
Iowa was classified as a member of the child dominant (no retirement peak)
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Table 5.6 A comparison of the three imposing methods applied to the less populated states:
goodness-of-fit statistics (MAPE) contrasting the method’s model schedule with the model
schedule derived from the ACS 2007

State classifications

Family
membership
method MAPE

Regional
membership
method MAPE

Temporal
aggregation
method MAPE

No retirement peak:
Child dominant Alaska 14.44 14.96 8.64

Arkansas 15.16 8.73 9.10
Connecticut 21.24 15.55 15.36
District of Columbia 20.06 14.73 7.72
Idaho 22.41 34.89 25.71
Iowa 5.14 11.32 24.67
Kansas 9.89 11.25 8.36
Nevada 4.62 12.75 6.69
New Hampshire 8.00 18.49 9.68
New Mexico 15.93 11.76 7.77
Oregon 10.59 13.01 11.88
South Dakota 27.08 22.65 15.58
Utah 12.08 13.75 8.14
Vermont 18.51 17.69 11.43
West Virginia 10.76 15.63 7.73
Wyoming 13.09 13.24 7.15
Average MAPE 14.31 15.65 11.60

Labor dominant Delaware 16.69 22.74 16.36
Hawaii 13.97 43.77 9.65
Maine 25.97 30.74 17.57
Mississippi 11.00 10.87 18.05
Montana 22.21 28.56 12.15
Nebraska 13.58 15.53 6.05
North Dakota 14.68 17.99 18.17
Oklahoma 16.50 17.10 17.51
Rhode Island 17.00 18.76 13.86
Average MAPE 16.84 22.90 14.38

Overall average MAPE 15.22 18.26 12.60

migration family, and, as reported in Table 5.6, the model schedule imposed by
the child dominant family was very similar to the ACS 2007 derived model sched-
ule for Iowa (MAPE = 5.14), as compared to the regional membership method
(MAPE = 11.32) and the temporal aggregation method (MAPE = 24.67). This result
suggests that Iowa is a conforming member of the child dominant migration (no
retirement peak) family, and this lends credence to the argument that the migration
age structure imposed by family membership method provides a reliable alternative
to the ACS 2007 derived model schedule for Iowa.

What strategy does one use if there is no close correspondence between an
imposed model schedule and the ACS 2007 derived model schedule? How can
an imposed method be applied? In some of these cases, there is a correspondence
between two of the imposed model schedules, and neither is closely aligned with
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Fig. 5.13 The imposed model schedule for Nebraska demonstrating the correspondence between
the temporal aggregation method and the ACS 2007 model schedule
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Fig. 5.14 The imposed model schedule for Arkansas demonstrating the correspondence between
the regional membership method and the ACS 2007 model schedule
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Fig. 5.15 The imposed model schedule for Iowa demonstrating the correspondence between the
family membership method and the ACS 2007 model schedule
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b) The Two Imposed Model Schedules that
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Fig. 5.16 The imposed model schedules for Connecticut lack correspondence with the ACS 2007
model schedule, but two of the imposed model schedules correspond with each other

the ACS 2007 derived model schedule. Connecticut is an example of such a situa-
tion. In Fig. 5.16, the top Panel (a) shows there is no close correspondence between
any of the three methods and the ACS 2007 model schedule. This is confirmed by
the results in Table 5.6 reporting the MAPEs for the family membership method
(21.24), for the regional membership method (15.55), and for the temporal aggre-
gation method (15.36). In this example, two of the imposing methods have close
correspondence, and this is visually apparent in Panel (b) of Fig. 5.16, which shows
that the model schedules imposed by regional membership method and the tempo-
ral aggregation methods are quite similar. In this case, we advocate using either of
these two imposed model schedules as a more reliable alternative to the ACS 2007
derived model schedule. Because of the close alignment between the schedules gen-
erated from the regional membership method and the temporal aggregation method,
and because of their departure from the ACS 2007 model schedule, we assume that
either of these methods offers a more reliable approach for estimating the migration
structure than does the direct method based on the ACS 2007 data.
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Fig. 5.17 The imposed model schedules for Idaho demonstrating inconclusive results
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The results of the experiments, which applied the methods for imposing migra-
tion age structures onto the ACS data, were not always conclusive. Idaho, for
example, exhibited a migration age structure based on the ACS 2007 data that
was dissimilar to other states in its Division, reflected in the regional member-
ship method MAPE = 34.89, and the imposed model schedules from the fam-
ily membership method (MAPE = 22.41) and the temporal aggregation method
(MAPE = 25.71), all of which were equally lacking in correspondence with the ACS
2007 derived model schedule. In this situation there is no clear strategy for impos-
ing the most reliable migration age structure, but the temporal aggregation method
seems to be the most consistent and reliable method in general, and, in this case, it
provides a model schedule that appears visually, in Fig. 5.17, to be the “average” of
all the other model schedules.

5.5 Imposing Spatial Migration Patterns

The imposition of age patterns of migration to “discipline” inadequate data holds
great promise for developing improved estimates of in-migration, out-migration,
and destination-specific migration flows. In this section, we present a method that
adopts a relational perspective, where the age and spatial patterns of migration are
related not to a migration family or a standard, but to historical patterns of migra-
tion. The historical patterns, and the assumptions regarding trends, are used as a
basis for improving observed migration flow data. However, such preliminary “pre-
dictions” also could involve a standard. Indeed, the construction of migration flows
may involve a combination of information from several data sources (Willekens,
1994). The main feature of this method is that we use a log-linear model to cap-
ture the contributions of the various data sources. That model provides a convenient
way to predict migration from inadequate data, and its parameters define the relative
contributions of each of the data sets. The example presented in this section comes
from Rogers, Willekens et al. (2003).

5.5.1 Data

We begin by analyzing interregional migration data from two sources: the 1980 and
1990 U.S. Censuses and the 1985 Current Population Survey (CPS). The decennial
censuses provide migration data for the periods 1975–1980 and 1985–1990; the CPS
provides data for 1980–1985. The data represent numbers of persons by region of
residence at time of census or survey and region of residence five years prior to that
census or survey. The regions in the analysis are the Northeast, Midwest, South, and
West regions, as defined by the U.S. Census Bureau. The 1975–1980 and 1985–1990
migration data are based on a much larger sample size (one of about 1.5 million to
2.0 million persons, i.e., 5% of the U.S. decennial census enumerations) compared
to the 1980–1985 migration data (with a sample size of about 50,000 households).
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Hence, the accuracy of the latter, understandably, is viewed with some question.
Since the adoption of a log-linear model as a vehicle for the indirect estimation of
migration relies on an unambiguous interpretation of the model’s parameters, the
link between the data and the parameters is given particular attention.

5.5.2 Modeling Origin-Destination Migration Flows with
Prior Information

The observed migration flow tables and corresponding multiplicative components
for the 1975–1980, 1980–1985, and 1985–1990 periods are set out in Table 5.7. The
multiplicative components set out in Panel (b) of this table can help us to understand,
for example, why the Northeast to South flow in 1980–1985 is so much lower than in
the 1975–1980 and 1985–1990 periods. In this case, the reason can be explained by
the much lower origin-destination interaction value (i.e., 0.0870 in 1980–1985 ver-
sus 0.1144 in 1975–1980 and 0.1120 in 1985–1990). The multiplicative components
for the overall level and origin and destination main effects appear reasonable and in
line with the census data. In this section, we try to improve the CPS data by imposing
the origin-destination association structures found in the census data. When impos-
ing spatial (or age) patterns of migration data, there are two questions researchers
should ask before doing so: (1) Can the two (or more) data sets be combined? (2)
If so, what structures should be imposed from the auxiliary data?

To illustrate the method of imposing data in a log-linear modeling framework, we
predict the 1980–1985 CPS migration flow matrix based on the marginal totals of
that data and the spatial structure of the 1975–1980 migration flow matrix implied
by the model specified in Eq. (3.4). The resulting predicted migration flow table and
ratios of predicted-to-observed migration flow tables for the 1980–1985 period are
set out in Table 5.8. Here, we see that the Northeast to South flow increased from 1.4
million to 1.6 million, which is closer to the 1.8 million observed during both census
periods. It appears that by imposing historical census data, we have improved the
accuracy of the CPS data.

Next, consider the imposition of age patterns. Here, only a dozen 5-year age
groups are distinguished in our analysis, ranging from the 0–4 years to 55–59 years.
The published CPS data on interregional migration do not provide age detail beyond
age 60 (in 1980). Moreover, the published CPS data are for 5-year age groups up to
age 34 and for 10-year age groups for ages 35 and higher. To overcome this obstacle,
the 10-year age data were disaggregated into 5-year data by assuming a uniform
distribution of migrants in the 10-year age interval. The observed age patterns of
migration from the Northeast, for example, are set out in Fig. 5.18. Here, we see
that the CPS data are incomplete and that they do not always correspond with the
patterns found in the censuses.

Given the age-specific patterns observed in the CPS, we assume that none of the
age patterns are reliable, and, instead, we borrow these structures, along with the
origin-destination associations, from the two censuses. This allows us to basically
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Table 5.7. U.S. interregional migration flows (in thousands): 1975–1980, 1980–1985, and
1985–1990 and their corresponding multiplicative components

(a) Flows

1975–1980 Northeast 43,123 462 1,800 753 46,138
Midwest 350 51,136 1,845 1,269 54,600
South 695 1,082 67,095 1,141 70,013
West 287 677 1,120 37,902 39,986

Total 44,455 53,357 71,860 41,065 210,737
1980–1985 Northeast 44,845 379 1,387 473 47,084

Midwest 326 52,311 1,954 1,144 55,735
South 651 855 68,742 1,024 71,272
West 237 669 1,085 40,028 42,019

Total 46,059 54,214 73,168 42,669 216,110
1985–1990 Northeast 44,379 357 1,822 541 47,099

Midwest 378 52,301 1,766 1,025 55,470
South 849 1,242 72,887 1,263 76,241
West 389 705 1,178 43,733 46,005

Total 45,995 54,605 77,653 46,562 224,815

(b) Multiplicative components

1975–1980 Northeast 4.4307 0.0395 0.1144 0.0838 0.2189
Midwest 0.0304 3.6990 0.0991 0.1193 0.2591
South 0.0471 0.0610 2.8104 0.0836 0.3322
West 0.0340 0.0669 0.0821 4.8643 0.1897

Total 0.2110 0.2532 0.3410 0.1949 210,737
1980–1985 Northeast 4.4689 0.0321 0.0870 0.0509 0.2179

Midwest 0.0274 3.7414 0.1036 0.1040 0.2579
South 0.0429 0.0478 2.8488 0.0728 0.3298
West 0.0265 0.0635 0.0763 4.8248 0.1944

Total 0.2131 0.2509 0.3386 0.1974 216,110
1985–1990 Northeast 4.6055 0.0312 0.1120 0.0555 0.2095

Midwest 0.0333 3.8819 0.0922 0.0892 0.2467
South 0.0544 0.0671 2.7678 0.0800 0.3391
West 0.0413 0.0631 0.0741 4.5898 0.2046

Total 0.2046 0.2429 0.3454 0.2071 224,815

interpolate between the 1980 and 1990 Censuses but with the constraint that the
regional origin and destination populations match the CPS. The log-linear-with-
offset model for this exercise is specified as:

ln
(
n̂ijx
) = λ + λO

i + λD
j + ln

(
n∗

ijx

)
, (5.1)

where the offset, n∗
ijx, represents the interpolated age-specific census flows for the

1980–1985 period. This interpolated data set is forced to fit the origin and desti-
nation marginal totals of the 1985 CPS data. The age main effect and interaction
structures are borrowed from the interpolated census migration data. The predicted
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Table 5.8 The predicted migration flows (in thousands) based on the log-linear model with the
1975–1980 migration flow table as the offset and the ratios of predicted to observed migration
flows for the 1980–1985 period

Region of destination

Region of
Origin Northeast Midwest South West Total

(a) Predicted flows
Northeast 44,445 393 1,614 632 47,084
Midwest 431 52,055 1,977 1,272 55,735
South 814 1,047 68,324 1,087 71,272
West 369 719 1,253 39,678 42,019
Total 46,059 54,214 73,168 42,669 216,110

(b) Ratios of predicted to observed
Northeast 0.9911 1.0369 1.1637 1.3362 1.0000
Midwest 1.3221 0.9951 1.0118 1.1119 1.0001
South 1.2504 1.2246 0.9939 1.0615 1.0000
West 1.5570 1.0747 1.1548 0.9913 1.0000
Total 1.0000 1.0001 1.0000 1.0000 1.0000
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Fig. 5.18 Observed age-specific migrations from the Northeast: 1975–1980 (1980 Census),
1980–1985 (Current Population Survey), and 1985–1990 (1990 Census)
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Fig. 5.19 Age-specific migrations from the Northeast: Observed 1975–1980, predicted
1980–1985 (using interpolated 1975–1980 and 1985–1990 flows as the offset in a log-linear
model), and observed 1985–1990

flows are set out in Fig. 5.19 for migration from the Northeast. It is evident that, in
this case, the predicted patterns correspond closely with the 1980 and 1990 Census
migration patterns, whereas the observed CPS data do not.

5.6 Summary and Discussion

This chapter has focused on methods for “repairing” inadequate migration data,
particularly data obtained from smaller sample sizes that are insufficient to yield
reliable age-specific migration flows. Our methods are similar to the three most
popular procedures used to deal with inadequate mortality data. First, we can bor-
row more reliable schedules from larger areal units that include the geographic area
under consideration (e.g., counties within states, or states within divisions). Second,
we instead can borrow one of a set of “standard” schedules that represent different
“families” of schedules (e.g., families with or without a retirement peak). Third, we
can simply aggregate the available data for the geographic area under analysis over
several years. We have called these three methods the regional membership method,
the family membership method, and the temporal aggregation method.

As in Chapter 4, our methods are first tested, where possible, using Census 2000
PUMS 1% sample data, with results that are compared to those obtained from the
Census 2000 full sample data. And we have applied our methods for repairing data
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to the data collected by ACS. Our conclusion is that each of the three methods tends
to work best in different situations.

The indirect estimation of the levels and age patterns of fertility and mortality
has a long history in demography. A dominant strategy there has been to combine
empirical regularities with other information to fill-in the missing data. Functional
representations (Heligman & Pollard, 1980) and relational representations (Brass,
1974) of age patterns have occupied a central position in such efforts at indirect
estimation (Preston, Heuveline, & Guillot, 2001). The indirect estimation of migra-
tion is of a more recent date, in part because the problem is more complicated. For
example, the age patterns of migrants depend on the direction of migration. To be
acceptable, therefore, a method must somehow integrate the age pattern with the
spatial pattern. Section 5.5 proposes such a method, and there we outline a very
general log-linear model for imposing structure on inadequate observed migration
flow data.

Our general approach has been one that uses a model to impose migration struc-
ture from partial data contributed by different data sources. The various explanatory
variables that are commonly used in such models are replaced by different data
sources. When the problem is to predict the number of migrants by origin, destina-
tion, and age, the appropriate model is the log-linear model. The log-linear model
becomes a vehicle to determine if the distribution of counts among the cells of a
table can be accounted for by an underlying structure. If the data are incomplete,
the underlying structure is determined by data availability, with the parameters of
the log-linear model identifying the contributions of the various partial data sets to
the predicted migration flows.



Chapter 6
Inferring Age and Spatial Patterns

6.1 Introduction

In this chapter, we focus on methods for estimating migration flows in the absence of
migration data. To obtain the patterns of interest, we use auxiliary information. Our
examples illustrate both current and historical applications of indirect estimation.
In Section 6.2, a model for estimating the age composition of out-migration in the
United States from aggregate totals of out-migration and population age composi-
tions is presented. This work draws from a recent paper by Little and Rogers (2007).
The possibility of using 0–4 year old birthplace-specific population stocks to esti-
mate interregional migration flows is demonstrated in Section 6.3, following work
set out in Rogers and Jordan (2004) and Raymer and Rogers (2007). We then apply
the methodology to estimate the historical (and completely missing) migration flows
for the 1905–1910 and 1915–1920 periods. Finally, in Section 6.4, we focus on the
potential for merging migration data obtained from multiple sources. Here, the aim
is to follow Frans Willekens’s recommendation that “in order to compile coherent
and internally consistent information on migration, data from several sources ought
to be combined” (Willekens, 1994, p. 31). Smith, Raymer, and Giulietti (2010), for
example, follow this advice by combining census, registration, and survey migra-
tion data in England and Wales. For our illustration, in Section 6.4 we combine
migration data obtained from the Internal Revenue Service (IRS) and the American
Community Survey (ACS) PUMS samples. Both sources provide annual informa-
tion on migration, but with different levels of measurement and attributes. We use
the IRS data to improve the spatial patterns of the ACS PUMS data. The result is a
synthetic database that exhibits more stable migration patterns over time.

6.2 Age Compositions of Out-Migrants

In this section, we argue that the age distribution of a population provides valuable
information about the age composition of its out-migrants, and we propose a method
for estimating the age profile of out-migrants when there may be insufficient data.
At the outset, it should be noted that we leave the task of estimating the number

121A. Rogers et al., The Indirect Estimation of Migration, The Springer Series
on Demographic Methods and Population Analysis 26, DOI 10.1007/978-90-481-8915-1_6,
C© Springer Science+Business Media B.V. 2010
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of out-migrants to others, and for the purposes of this section we assume accurate
information about total out-migration flows is available. Also, although we recog-
nize that past in-migration flows influence a population’s current age structure as
well as the age structure of its in-migration streams, we do not, at this time, attempt
to introduce the possible impacts of such flows. Indeed our objective is a modest
one, namely, to offer a method that uses the characteristics of the age distribution of
a population to predict the most likely age profile of its out-migrating population.

In pursuit of this goal, we have three preliminary objectives. The first of these
is to develop the thesis that the age distribution of a population will inevitably
influence the age profile of the out-migrating population. The second objective
addresses questions about the regularities of the age profiles of out-migration. Here,
we demonstrate that profiles of the age composition of migrants often can be sim-
plified without loss of information by adopting the Rogers-Castro model migration
schedule. We show that the 7-parameter model migration schedule (see Chapter 2,
Section 2.2.2) adequately represents out-migration profiles for different geographic
scales, including states, consolidated metropolitan areas (CMSAs), metropolitan
areas (MSAs), and non-metropolitan counties, and that the variation in age profiles
across geographic units can be captured by a simple typology of model sched-
ules. The final step is to show how the characteristics of the age distribution of a
population can be used to predict the most likely type of model schedule for the
out-migrating population.

6.2.1 Data

The age compositions of migrants were obtained for four different U.S. geographic
areas, all generally large-scale, but decreasing in population size: 51 states (includ-
ing the District of Columbia), 18 CMSAs, 258 MSAs, and 3,101 non-metropolitan
counties. The age-specific out-migration data for these geographic areas come from
the Census 2000 Migration DVD provided by the US Census Bureau. It gives counts
of persons who left their area of residence between 1995 and 2000 and lived to be
counted as residing in another area by the 2000 Census. Based on a person’s age in
2000, these counts are disaggregated into 5-year age categories, beginning at age 5
and ending at age 85 or older. The age composition of the out-migrating population
(i.e., Ni(x), where i denotes the place of origin and x denotes the age at the beginning
of the age interval) is determined by the number of migrants in each age category
divided by the total number of migrants.

There are 17 age categories for each out-migration schedule, representing pro-
files that are not smooth and, indeed, are fairly coarse. So the 17 age groups were
converted from 5-year age intervals to single-year age intervals by dividing by five
and assigning this value to the middle single year age group. For example, for the
5-year age interval 15–19 years, the value would be assigned to the 17 year-old
age group. Cubic spline interpolations were then used to arrive at smooth profiles
for all integer values of x, using the middle single-year age groups as the nodes
for the spline algorithm, carried out by the Advanced Systems and Design add-on
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function in Microsoft Excel. The entire process transformed the observed 5-year age
compositions of migrants into the corresponding single-year age compositions.

The population data came from the U.S. Census Bureau’s intercensal population
estimates for 1995. These are provided for all states and counties with popula-
tion breakdowns for age categories, 0, 1–4, 5–9,. . .85+. The first two age groups
were combined into a 5-year category 0–4 to give a total of seventeen 5-year age
categories, 0–4, 5–9, 10–15, . . .80–84, 85+. The county populations were then
aggregated to form the MSA and CMSA counts according to the U.S. Office of
Management and Budget (OMB) definitions of 1999. Non-metropolitan counties
are those counties that are not part of an MSA or a CMSA. Note, counties with
fewer than 100 persons in any one of the 5-year age categories were excluded. This
was based on an arbitrary decision, which deemed that if there were fewer than 100
people at risk for migration the out-migration profiles would be too unstable for
consideration. This strategy left 1,944 non-metropolitan counties in the study, and a
total of 2,271 out-migration schedules across the four geographies.

6.2.2 Relationship Between Population Age Structures
and Migration Age Structures

Previous work has applied the Rogers-Castro model migration schedule to national
and regional migration profiles, and to total flows and well as directional flows. Here
we extend this work by testing, in a rigorous way, if the seven-parameter model is
generally effective for representing the age composition of migrants, and at what
geographic scales. Note, the 9-, 11- and 13-parameter extensions to the 7-parameter
model schedule are more common for migration rate schedules and for schedules
that represent directional flows. For the age compositions of total (non-directional)
out-migration, the post-labor force population generally is not a large enough pro-
portion of the population to warrant the additional complexity of the 9-, 11- or
13-parameter model schedules.

The fitting to the 2,271 single-year age compositions (across four geographies)
was carried out with a customized SPSS program that estimated the seven parame-
ters of the Rogers-Castro model schedule. After fitting the model schedule to the
age composition profiles that derived from the cubic spline interpolation of the
observed data, the R2 was used to evaluate if the splined profiles conformed to the
model schedule. Values of R2 equal to 0.94 or greater were considered good fits.
All of the states and CMSAs, and 254 of the 258 of the MSAs, met this baseline
goodness-of-fit criterion.

Of the initial 1,944 non-metropolitan counties that had more than 100 people
in each of the 5-year age categories, only 987, or 51%, were satisfactorily fitted
by the Rogers-Castro model. This was a clear indication that the initial filter that
excluded low population counties was not sufficiently large enough, and that there
remained irregular migration age profiles from counties with few people at risk
for migration. Little and Rogers (2007) found that as population size increases so
does the percentage of counties with out-migration schedules that conform to the
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Rogers-Castro model. Of the counties with fewer than 30,000 people, only 38.5%
(517 of 1,342) had out-migration profiles that were adequately fitted by the model
schedule, but among the counties with more than 30,000 people, 78.2% (471 of
602) had out-migration profiles that conformed to the model schedule. For that rea-
son it was decided that a minimum population size of 30,000 might be a reasonable
expectation for this application of the model migration schedule.

A goodness-of-fit summary for the MAPE statistics as well as the R2 values is
reported in Table 6.1. In this particular application, which fits model schedules to
age-specific proportions of the total out-migrating population, the MAPE statistic
can overstate the error between the observed and the fitted schedules. For exam-
ple, Fig. 6.1 displays the MSA (Bryan-College Station, Texas) and the county
(Montgomery County, Virginia) with MAPE values that were the largest found
among those with conforming schedules. The large MAPE values of 31.16 for
Bryan-College Station and 31.31 for Montgomery County, Virginia are not con-
sistent with the degree of correspondence that is indicated by the R2 statistics and

Table 6.1 Distributions of the R2 and MAPE statistics for the areas with model migration
schedules that conformed to the model migration schedule, by geographic scale

States CMSAs MSAs Counties
N = 51 N = 18 N = 254 N = 471

R2

Mean 0.99 0.99 0.98 0.97
Min 0.98 0.97 0.94 0.94
Max 1.00 1.00 1.00 1.00
SD 0.01 0.01 0.01 0.01

MAPE
Mean 6.79 8.64 11.91 15.57
Min 2.74 4.86 2.25 6.09
Max 14.30 16.08 31.16 31.31
SD 2.74 3.05 5.73 5.08
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Fig. 6.1 Examples of out-migration schedules that conform to the model schedule but have large
MAPE values
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from what is visually apparent in Panels (a) and (b) of Fig. 6.1. In both cases, the
out-migrating populations are dominated by the college-aged populations, and, in
contrast, the proportions of out-migrants in the oldest ages are close to zero. When
a denominator is near zero it causes numerical instability, and even a small differ-
ence between the observed and the fitted values will result in a large contribution
to the MAPE. For this reason, the R2 statistic was chosen as a better indicator of
conformity to the model schedule than the MAPE.

Figure 6.2 reveals more about what it means for age composition profiles to con-
form to the model schedule. Sarasota-Bradenton, Florida, is the MSA that had the
age composition of the out-migrants that barely satisfied the cut-off criteria for con-
formity, and Franklin, Illinois, is the conforming county that came the closest to
being classified as nonconforming. If an MSA or a county had observed and fitted
age profiles that were more disparate than those displayed in Fig. 6.2, it was treated
as nonconforming.

From the proportion of units within each geographic set that were classified
as conforming to the Rogers-Castro model schedule, and from the goodness-of-
fit statistics presented in Table 6.1, it is clear that the larger-scale geographic units
tend to have observed out-migration schedules that conform more closely to the
estimated model schedule. On average, those states have the highest degree of fit
measured by their high mean R2 values and MAPE statistics and the correspond-
ing low standard deviations. The conforming counties have the lowest R2 values
and MAPE statistics, on average, and the largest deviations, suggesting that, in gen-
eral, smoother and simpler observed age profiles are more likely to be found in
geographic units with larger populations.

The four MSAs with observed profiles that did not produce satisfactory fits by
the model schedule were Punta Gorda, Florida (R2 = 0.65), Fort Pierce-Port St.
Lucie, Florida (R2 = 0.90), Odessa-Midland, Texas (R2 <= 0.92), and Victoria,
Texas (R2 = 0.93). These MSAs have distinctly unusual population compositions
that are dominated by retirement communities or military bases, which gives further
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Fig. 6.2 The MSA and county out-migration schedules that meet the minimum standard for
conforming to the model schedule
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Fig. 6.3 MSA Punta Gorda, Florida: A demonstration of an atypical population age composi-
tion associated with a non-conforming out-migration schedule. (Source: Little & Rogers, 2007,
Figs. 6.4 and 6.5)

credence to the thesis that the out-migration profile is determined, in part, by the
age composition of the population of origin. The Punta Gorda, Florida, MSA was
chosen to demonstrate a nonconforming out-migration schedule as displayed in
Panel (a) of Fig. 6.3. That model migration schedule clearly does not capture the
heavy representation of older aged migrants among the total population of out-
migrants. Panel (b) shows that the population composition of the non-conforming
Punta Gorda, Florida, MSA is disproportionately older when compared to the aver-
age of the population compositions of the 254 conforming MSAs. These findings
also suggest that the Rogers-Castro model migration schedule may be appropri-
ate only when a population distribution shows decreasing proportions in the older
ages, or, at least, when it conforms to what might be called a typical population age
composition.

In summary, the model migration schedule seems to be a very effective tool
for representing out-migration schedules when population sizes are large (i.e.,
above 30,000) and when the age distribution of a population is not particu-
larly unusual, such as those that represent a military base or a large retirement
community.

6.2.3 Typologies of Model Migration Schedules

To reduce the complexity of the variation among model migration schedules, we
took the parameters associated with 794 model schedules (now 51 states plus 18
CMSAs, 254 MSAs, and 471 non-metropolitan counties with populations greater
than 30,000) and clustered them according to their parameter values, using the
k-means method in the QUICK CLUSTER procedure in SPSS (2004). Initially,
two clusters are formed and their centers are defined by the sets of parameters
that are farthest apart (in Euclidean distance), and the rest of the areas are assigned
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to the cluster that is nearer. The new cluster centers are calculated as the mean
parameter values of all areas assigned to that cluster. All cases are assigned to the
new cluster centers again and the process is repeated. The Bayesian Information
Criterion (Raftery, 1995) was used to determine the optimal number of clusters for
each of the geographies.

The 51 states and 18 CMSAs were combined, because of their similarity in popu-
lation size and because of the small number of CMSAs, and the set of 69 schedules
was reduced to two types of schedules—the “Standard” model schedule and the
“Delayed Career” model schedule. These are presented in Panel (a) of Fig. 6.4.
The Standard schedule represents the migrant age composition for the majority of
the states and CMSAs (N = 59). The remaining schedules (N = 10) fell into the
Delayed Career cluster, with a career migration peak that is flatter and peaking a
few years later than in the Standard model schedule. The parameter values associ-
ated with the two model types are reported in Table 6.2, and the standard deviations
quantify the variation of each parameter within each cluster. The standard deviations
are generally small and suggest that the individual schedules that fall within a cluster
are similar to the schedules defined by the cluster centroids. The R2 values repre-
senting the goodness-of-fit between the model schedule that defines a cluster and
the model schedules for the states and CMSAs within that cluster were calculated,
and the Standard cluster which contains most states and CMSAs had an average
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R2 = 0.96, which indicates a very tight cluster. The Delayed Career cluster is less
tight with an average R2 = 0.91, which is consistent with the larger standard devia-
tions associated with the parameter values of the Delayed Career cluster reported in
Table 6.2.

The same clustering technique produced a three cluster typology for the MSAs.
Once again there was a Standard cluster that included most MSAs (N = 193).
The smaller clusters were the “Early Career Dominant” (N = 41) and the “Adult
Dominant” (N = 20) clusters. The three cluster profiles are presented in Panel
(b) of Fig. 6.4, and the parameter values and the variations in parameters within
each cluster are reported in Table 6.2. Most of the visible differences between
clusters occur around the career migration years. The peak proportion of out-
migrants is youngest, around age 18, for the Standard cluster, as compared to
age 20 for the Early Career Dominant cluster and age 28 for the Adult Dominant
cluster. The pre-labor slope is steepest for the Early Career Dominant cluster and
almost as steep for the Standard cluster, whereas the pre-labor slope is clearly
flatter for the Adult Dominant cluster. The Early Career Dominant cluster con-
sists of age profiles with high proportions of young adults, who migrate without
children, and supporting evidence comes from its relatively low infant migration
peak. The Adult Dominant cluster has the flattest and lowest profile during the
career migration years, as well as the highest infant migration peak. Together
these imply that relatively more adults are migrating at older ages and with
children.

In the Standard cluster λ2 = 0.36, and its standard deviation, SD = 0.15, is
the largest relative to the size of the parameter, suggesting that there is variation in
the individual schedules in the slope ascending to the labor peak. The Early Career
Dominant cluster has the most variation in the a2 and α2 parameters, suggesting
that there is some variation in the peakedness of the schedules and in the rates of
decrease in the older adult ages. The Adult Dominant cluster has the most variation
in the pre-labor slope (α1) parameter and in the constant level parameter (c). When
the model schedules for each of the MSAs within the cluster were compared with the
model schedule that defines the cluster, the Standard cluster had the least variation
with an average R2 = 0.95 and the smallest standard deviation (SD = 0.04). The
Adult Dominant cluster was also fairly tight (average R2 = 0.94 and SD = 0.05).
The Early Career Dominant cluster had the most variation (average R2 = 0.66 and
SD = 0.10).

The out-migration typology for the non-metropolitan counties (displayed in
Panel (c) of Fig. 6.4) can be described in a way that is very similar to the typol-
ogy developed for the MSAs. The same profiles appear: Standard (N = 364), Adult
Dominant (N = 23), and Early Career Dominant (N = 84). The counties, like
the MSAs, and the state and CMSAs combined, have a Standard cluster with the
best average goodness-of-fit (average R2 = 0.93) with the lowest standard devi-
ation (SD = 0.03), and like the MSAs, the Early Career Dominant cluster has
the most variation within (average R2 = 0.83) and the largest standard deviation
(SD = 0.11).
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6.2.4 Prediction of Migration Family Membership
from Population Data

Figure 6.4 reveals that the most visible differences in the families of model sched-
ules occur during the career migration years, especially with regard to the migration
of the young and middle-aged adults. Little and Rogers (2007) constructed popula-
tion measures to account for the variations in the career migration patterns revealed
by the clusters in Fig. 6.4. These were generally simple measures of the propor-
tion of the population in the years 20–24, 25–29, and 30–34, when adult migration
has the highest propensity. In addition, they developed other population measures
designed to affect the labor force slope and migration levels in the early and adult
years as well as in infancy and at the oldest ages.

Using these population variables, Little and Rogers (2007) estimated canonical
discriminant functions that weighted the population measures to optimally discrim-
inate between the model schedule clusters. Separate models were estimated for the
states and the CMSAs combined, the MSAs, and the non-metropolitan counties.
For all three levels of geography, the discriminant function analyses were quite suc-
cessful in predicting the correct migration cluster from the hypothesized population
variables. They report that 94.2% of the states and CMSAs, 88.2% of the MSAs,
and 88.3% of the counties were successfully classified into one of the three clusters,
Standard, Adult Dominant, and Early Career.

A discriminant function analysis was carried out for each of the three levels of
geography. For the MSAs and the counties, two discriminant functions were needed
to predict membership in the three clusters. Overall, the discriminant analysis
method was found to be accurate, but quite complicated. The complete explanation
of the results can be found in Little and Rogers (2007). Here, we present a simpler
alternative that uses population data to predict membership in the Standard cluster.
Figure 6.3 clearly shows that the Standard migration schedule is the most common
classification, and the profile of the Standard schedule is similar across all three lev-
els of geography. In view of that, we have designed more practical tools that use
data on a population’s age structure to help make decisions about the appropriate-
ness of predicting a Standard versus a Non-standard migration schedule. In addition,
these methods are designed to be applied uniformly to states, CMSAs, MSAs, and
counties.

The first method does not use any information about the age composition of
the population and simply assigns the Standard migration schedule to every area.
It will be referred to as the “baseline method.” Since the Standard schedule is the
most common, all 794 of the areas could be classified as Standard, and 59 states
and CMSAs, 193 MSAs, and 364 counties, for a total of 616, or 77.48% of all 794
areas, would be categorized correctly in the Standard cluster. That leaves 179 of
794 (22.58%) misclassified. If all states and CMSAs were classified as Standard,
this would place all 69 in the Standard cluster, and 59 of the 69 (85.51%) would be
correctly classified, and only 10 of the 69 (14.49%) would be incorrectly classified.
Similarly, all MSAs and counties could be classified as having a Standard profile,
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and this would be successful 75.98 % of the time for the MSAs (193 of 254) and
77.28 % of the time for the counties (364 of 471).

The simplicity of the baseline method is attractive, and assigning the Standard
migration schedule to every area is a reasonable approach, especially for the states
and CMSAs where the baseline method yields success 85.51% of the time. (The
effectiveness of the baseline method is summarized in Table 6.3.) However, we offer
an alternative that makes use of population data and improves the predictions with-
out adding much complexity. This method is based on the logistic regression model,
which was estimated first with all states, CMSAs, MSAs, and counties included,
and all of the population variables developed by Little and Rogers (2007) were used
as predictors of the binary outcome Y, where Y = 0 if the area is a member of the
Non-standard cluster, and Y = 1 if the area is a member of the Standard cluster. Only
three population variables were statistically significant, X1 = the proportion of the
population aged 20–24, X2 = the proportion aged 25–29, and X3 = the proportion
aged 30–34. The estimated coefficients are β0 = 5.00, β1 = −78.85, β2 = 123.18,
β3 = −80.44. If the logistic regression model is transformed into its probability
form as specified in Eq. (6.1), the “logistic regression method” applies Eq. (6.1) by
substituting the proportions of the population aged 20–24, 25–29, and 30–34 for X1,
X2, and X3 and the given estimates for β0, β1, β2, and β3:

P(Y = 1) = 1

(1 + exp −(β0 + β1X1 + β2X2 + β3X3))
(6.1)

A calculation of Eq. (6.1) yields the probability that the Standard migration
schedule is the appropriate type for a specific geographic area. If the probability
is greater than or equal to 0.50, the area is then predicted to have a Standard migra-
tion schedule. When this method was applied to all of the areas, 86.92% (690 of the
794 areas) were classified successfully into Standard and Non-standard clusters.

Separation into the three levels of geography generated three different sets of
estimated coefficients. For the 69 states and CMSAs, the logistic regression model

Table 6.3 A comparison of the methods for predicting membership in the Standard and Non-
standard out-migration clusters

Baseline method
Logistic regression
method

Percent correct Percent correct
Percent
improvement

All geographies (N = 794) 77.48 86.92 9.43
States and CMSAs (N = 69) 85.51 92.75 7.25
MSAs (N = 254) 75.98 86.61 10.63
Counties (N = 471) 77.28 87.47 10.19
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coefficient estimates are β0 = 31.06, β1 = −301.01, β2 = 155.44, β3 = −240.35,
and application of the logistic regression method was successful in classifying
92.75% (64 of 69) of the states and CMSAs into the correct Standard and Non-
standard clusters. This contrasts with 85.51% (59 of 69) successful classifications
from the baseline method, which demonstrates that the added population data
improved the predictions by 7.25%.

The logistic regression coefficient estimates for the MSAs are β0 = 7.82,
β1 = −91.73, β2 = 144.31, β3 = −121.64, and, when the logistic regres-
sion method was applied to the 254 MSAs 86.61% (220 of 254) were correctly
classified—a 10.63% improvement over the baseline method. The logistic regres-
sion coefficients for the county model are β0 = 2.66, β1 = −76.96, β2 = 136.31,
β3 = −62.45, and the county results of the logistic regression method were very
similar to the MSA results. Indeed, 87.47% (412 of 471) were classified success-
fully, and this was an improvement of 10.19% over the baseline method. The success
of the logistic regression method is summarized and contrasted with the baseline
method in Table 6.3.

In conclusion, the discriminant function analyses and the methods outlined in
Little and Rogers (2007) offer the most complete and accurate procedures for mak-
ing use of population data to predict the form of the model schedule that best
represents the migrating population. However, we demonstrate that the age composi-
tion of out-migrants can be inferred effectively from applying the logistic regression
method, which requires only the proportions of the population at risk for migrat-
ing aged 20–24, 25–29, and 30–34 along with the logistic regression coefficients
provided here.

6.2.5 Summary

Our investigation of the age composition of migrants, and how it is related to the age
composition of the population that they left, has led to some fruitful prospects for
a method of indirectly estimating the age composition of out-migrants. The use of
the Rogers-Castro model schedule is central to our method, and, from the findings
set out in Section 6.2.2, it seems that most geographic units have out-migration age
profiles that are very well represented by that model schedule. The probabilities of
identifying out-migration age profiles that conform to it are greatest for the largest
geographic units (states and CMSAs). They are still high for MSAs, but the prob-
abilities decrease for non-metropolitan counties, especially those with populations
below 30,000. In geographic units where there is a relatively large population and
an observed age profile of out-migration that does not conform to the model sched-
ule, the lack of conformability often can be anticipated by a simple inspection of the
age composition of the population. For example, if the population distribution has a
dramatic bimodal shape in the years of career migration (Little & Rogers, 2007), or,
if the proportions of the population in the older age categories increase with age, the
probabilities of out-migration age profiles conforming to the Rogers-Castro model
migration schedule are diminished.
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For those geographic areas with out-migration age profiles that are well repre-
sented by the Rogers-Castro model schedule, the finding that most of the variation
across the age profiles can be captured with a parsimonious set of profiles is very sig-
nificant. Knowing that most out-migration age profiles exhibit the Standard shape,
which can be summarized by the 7-parameter model schedule, suggests that the age
compositions can be estimated indirectly for most of the geographic areas examined
here. The proposed estimation procedure comes in two parts. As a first step, reject
any geographic area that has an abnormal population age composition as described
above, and reject any area that has a population size less than 30,000 people. As
a second step, measure the important population composition variables and follow
the procedures set out by Little and Rogers (2007) for the most accurate method
of assigning a geographic area to the correct cluster, or, alternatively, use the sim-
plified logistic regression method for classifying areas as having a Standard or a
Non-standard migration schedule. Once the most likely cluster membership is estab-
lished, evaluate the model schedule for each age, using the parameter values that are
the centroids of that cluster, as set out in Table 6.2.

In conclusion, this section sets out four important findings. First, an examina-
tion of over 2,000 age compositions of migrant outflows reveals that a significant
majority of them conform to the shape of the reduced 7-parameter form of the
Rogers-Castro model migration schedule. Second, geographic scale apparently does
matter: large regions with more than 30,000 people (e.g., states, CMSAs, and
MSAs) conformed most frequently, whereas smaller area units, such as counties
with fewer than 30,000 people, conformed the least number of times. Third, a
typology of conforming model schedules is identified that describes the age com-
positions of a large number of the conforming schedules, at all levels of geography.
Finally, it is demonstrated that one can predict with considerable success, the “fam-
ily” membership of a non-observed age composition of migrants by examining the
age composition of the origin population, thereby providing evidence that the two
age compositions are linked. The age composition of a population can indeed tell us
something about the age composition of its out-migrants.

6.3 Inferring Historical Spatial Patterns Using Infant
Migration Estimates

Historical censuses in the United States prior to 1940 did not collect 5-year migra-
tion data. Age-specific data by place of residence by place of birth, however, were
collected for some of the earlier censuses at the beginning of the 20th century. In
this section, we show how these types of data can be used to infer 5-year migra-
tion data, following the work by Rogers and Jordan (2004) and Raymer and Rogers
(2007), who demonstrated with data obtained from the 1990 and 2000 censuses in
the United States and Mexico that reported 0–4 year old birthplace-specific popula-
tion stocks can be used to estimate 5-year migration patterns of all age groups. After
describing some of this work, we then demonstrate how this method can be used
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to infer historical patterns of internal migration. In particular, our application uses
data on U.S.-borns obtained from the 1900, 1910, and 1920 censuses to estimate
the 1905–1910 and 1915–1920 migration flows between the Northeast, Midwest,
South, and West regions of the U.S.

6.3.1 Estimates Based on Infant Migration Data:
The Regression Method

The first set of model mortality schedules published by the United Nations sum-
marized the age-specific death rates of 158 life tables of national populations by
using

. . .regression equations which linked the probability of death in each five-year age interval
with the corresponding probability in the previous age interval. . .. Thus model schedules
could be calculated by assigning alternative probabilities of infant death from very high
to very low, and associating with each . . . the schedule of death probabilities in suc-
cessive groups calculated from the corresponding regressions. (Coale & Trussell, 1996,
p. 475)

The set of life tables so developed would be appropriate for describing the mor-
tality schedule of a particular population as long as the age patterns of death
rates were similar in different populations at roughly the same level of mor-
tality, and so long as the 158 life tables were based on reasonably accurate
data.

We have carried out exploratory efforts to adopt a similar perspective for estimat-
ing migration probabilities from data on “infant migration,” which are obtained from
age-specific population data cross-tabulated by current place of residence and place
of birth. Children who are, say, 0–4 years old at the time of the census and living in
region j, having been born in region i, must have migrated during the immediately
preceding 5-year interval. Given their young age, and the fact that they were on
average born two and a half years ago, it is unlikely that they experienced more than
one migration. These data provide our initial estimate of age and spatial interaction
and of migration level. Regression equations, model migration schedules, and log-
linear models may be used to expand these population distributions into age-specific
migration patterns.

To illustrate the regression method, consider the data presented in Fig. 6.5, which
shows a plot of the aggregate conditional survivorship proportion, Sij(+), against
the corresponding first age-group-specific component of that aggregate proportion,
Sij(-5). The former represents the fraction of persons of all ages who resided in
region i at the start of the time interval and in region j at the end of it. The latter is
the first member of the set of age-group-specific proportions Sij(x), that in a suitably
weighted linear combination comprise the former; it represents the fraction of all
births born in region i during the past, say 5 years, who survived to the census date
to enter the 0–4 years age group resident in region j at that date. Consequently, it
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can be calculated by back-casting to region i all i-born 0–4 year olds enumerated at
the time of the census, no matter where they lived, and then deriving the fraction of
that number who ended up in region j at the time of the census count. (The Sij(-5)
measure is defined on pp. 98–99 of Rogers, 1995).

Examining the scatter plot in Fig. 6.5, we notice that a straight line offers a
good approximation of the relationship between the infant migration level (Sij(-5))
between regions i and j and the corresponding level across all ages (R2 = 0.84).
Separate regression equations need to be specified in order to estimate migration
schedules with a retirement peak. And observed regularities in patterns of age-
specific migration probabilities suggest that information on the probabilities of
infant migration also can be linked to the corresponding probabilities in each of the
subsequent age groups by means of a regression equation (Rogers & Jordan, 2004).
We, therefore, can consider a linear regression that links each age-specific Sij(x) with
Sij(-5):

Sij(x) = β0 + β1Sij(-5) + εij, (6.2)

where the βs are the parameters of the regression model and εijis the error term.
Using this simple linear regression equation, estimated migration propensities for
each of the subsequent 5-year age cohorts can be determined.

The ability of this model to predict migration in subsequent time periods depends
largely on the consistency of the Sij(x) to Sij(-5) relationship over time. This rela-
tionship may be tested by plotting observed regression parameters. Figure 6.6 shows
slope coefficient values resulting from Eq. (6.2) applied to the five census periods
between 1960 and 2000. The slope coefficients vary similarly across all periods; the
intercept values vary only slightly (not shown), between -0.0015 and 0.0020, and
may be roughly approximated by a point lying within that range or zero.
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6.3.2 Estimates Based on Infant Migration Data:
The Log-Linear Method

The loglinear-with-offset model can be thought of as a relational model (Rogers,
Willekens et al., 2003). In this situation, the offset is the collection of 0–4 year old
birthplace-specific population stocks. A log-linear-with-offset model can be spec-
ified which uses the 0–4 year old birthplace-specific population stocks to predict
the aggregate patterns (assuming the marginal totals are known) of those aged 0–4
years at the time of the census, and effectively serves as a “proxy” for the interaction
patterns of the current migration flows.

The log-linear-with-offset model can be used to include age-specific patterns. In
this case, the offset contains structural zeros in the diagonal and the “migration”
patterns of those aged 0–4 years at the time of the census in the off-diagonals. The
overall age profile and aggregate proportions migrating from and to each region are
assumed to be known. If instead one has to work with population totals, then one
needs to estimate or borrow the aggregate age-specific proportions of migrants and
non-migrants.

By way of illustration, consider the 0–4 year old “migration” patterns for U.S.-
born persons set out in Table 6.4. The spatial structure of these “infant” migrants
resembles that of the period migrants. The predicted aggregate flows from New
England and South Atlantic are presented in Fig. 6.7. These predicted flows come
from the log-linear model with two alternative offsets being used: (1) migrants
only (where migrants represent the marginal totals) and (2) migrants and non-
migrants (where population stocks represent the marginal totals). Although both
models appear to predict the observed data well, the migrants-only model (not sur-
prisingly) did considerably better. The likelihood ratio statistics for the two models
were 132,799 and −1,632,755, respectively. The corresponding R2 values were 0.99
and 0.96, respectively.
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& Rogers, 2007, Fig. 6.8)

Age-specific predictions using log-linear models also did well, capturing the lev-
els and most of the age profiles. Examples of such predictions are set out in Fig. 6.8.
Our illustration applied a single age profile to estimate all age-specific patterns. The
age profile is the same for both the migrants-only and the migrants and non-migrants
models. This meant that the shapes of some flows, such as the retirement migration
peak found in the Middle Atlantic to South Atlantic flow, were not entirely captured.
For the flows set out in Fig. 6.8, the R2 values were 0.88, 0.94, 0.97, and 0.95 for
the New England-Middle Atlantic, Middle Atlantic-South Atlantic, South Atlantic-
Middle Atlantic, and Pacific-South Atlantic flows. The corresponding likelihood
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ratio statistics were lower for the migrants-only model, except for the Pacific-South
Atlantic flow. Overall, the migrants-only model performed better.

6.3.3 Application to Historical Data

The above analysis focuses on data where the answers are known, which was nec-
essary to test the model and to develop the modeling framework. In this section, we
extend the analysis to an unknown situation. The aim is to estimate the 1905–1910
and 1915–1920 migration flows between the Northeast, Midwest, South and West
regions based on birthplace-specific population stock information (of U.S.-borns)
obtained from the 1900, 1910 and 1920 censuses.

The methodology we propose to estimate the 1905–1910 and 1915–1920 migra-
tion flows and conditional survivorship proportions is a simple one. We begin by
interpolating linearly between the counts reported in the 1900, 1910, and 1920
censuses to obtain crude estimates of the 1905 and 1915 regional population
totals. For example, our initial estimate of the 1905 population of the Northeast
is (16,222,000 + 19,022,000)/2 = 17,622,000. For the Midwest it is 23,334,000,
for the South it is 26,586,000, and for the West it is 4,308,000. Together, the four
regional totals give us an estimated national population in 1905 of 71,851,000,
with 25% in the Northeast, 32% in the Midwest, 37% in the South, and 6% in the
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West. The next step is to use these relative shares to rescale the 1910 population
of 78,279,000 to derive the number of survivors living in each of the four regions
in 1905, resulting in 19,022,000 for the Northeast, 25,422,000 for the Midwest,
28,964,000 for the South, and 4,694,000 for the West.

Having obtained the column and row regional totals in this crude manner, we now
have the marginal totals set out for 1905–1910 in Panel (a) of Table 6.5. The next
step is to fill-in the missing elements of that matrix by imposing the spatial struc-
ture of the population aged 0–4 in 1910 that is presented in Panel (b) of Table 6.5.
For example, 23,000 0-4-year olds residing in the Midwest in 1910 were reported
to have been born in the Northeast. Hence, they are the surviving infant migrants
during the 1905–1910 interval. To impose their spatial structure, we simply need to
rescale their individual values to add up to the appropriate row and column totals
described in Table 6.5 Panel (a). For New England that means raising the row total
of 2,619,000 to 19,199,000, and so on for the other three regional totals. This first
step, however, gives rise to column totals that do not match the ones set out in Panel
(a) of Table 6.5. Consequently, the next step is to rescale the elements of each col-
umn to match the desired totals. But now the row elements no longer add up to the
desired row totals. We therefore repeat our row and column rescalings until both
the regional row totals and column totals match those presented in Table 6.5 Panel
(a). This iterative process, known as biproportional adjustment (or iterative propor-
tional fitting) was described in Chapter 3, Section 3.3. It took 703 iterations for
the 1905–1910 estimated migration table to converge to predefined marginal row
and column totals (note, the large number of iterations was necessary because the
population totals were in the millions). In Table 6.5 Panel (c) exhibits the result-
ing “predicted” migration flows, and Panel (d) shows the associated conditional
survivorship proportions.

Table 6.5 also presents parallel calculations for the 1915–1920 period.
Examining these results, we find a number of interesting patterns. First, the highest
out-migration flow in 1905–1910 was from the Midwest to the West, whereas the
highest out-migration flow in 1915–1920 was the reverse flow from the West to the
Midwest. All outflows from the Northeast were lower in 1915–1920 than were those
a decade earlier. The reverse was the case for outflows from the West.

The crude estimation procedure described in this section is built on a number
of assumptions that are easily challenged. First, the linear interpolation assumption
that initiated the process could be replaced by a nonlinear one. Second, the foreign-
born population and the impacts of international migration have been excluded. Our
model is unable to estimate the internal migration patterns of groups born outside
the country. And third, the spatial structure of 0-4-year old migrants is only an
approximation of the corresponding structure of all age groups considered as an
aggregate.

But a start has been made and, in the absence of migration data, one will always
be faced with the uncertainties commonly associated with indirect estimation in
general. Nevertheless, indirect estimation methods, such as the simple one pro-
posed here, may help researchers to better understand the mechanisms of population
change in the context of very limited information on migration.
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6.4 Inferring Current Spatial Patterns Using Combined
Data Sets

As was illustrated in earlier chapters, the ACS PUMS sample data are not very
effective at capturing detailed migration patterns, particularly for regions with small
population totals. Thus far in this book, we have focused on improving the age pat-
terns of migration data provided to the public by the ACS PUMS samples. This
section focuses on the possibility of improving the spatial patterns of the ACS
migration data by combining it with migration data provided by the IRS. The result
is an enhanced data base that can be used for analysis or population planning.

An example of such an approach is described in a recent paper by Raymer et al.
(2007), in which health registration data and census data are combined to predict
detailed elderly migration flows in England and Wales over time. The health regis-
tration data provided the origin, destination, age and sex structures of the predicted
migration flow tables. The census data provided the detailed structures, for exam-
ple, migration by health status . A log-linear model predicts the flows and the census
data represents the auxiliary information to be combined with the (incomplete) reg-
istration data. For our study here, the IRS migration data are used as an offset (or
auxiliary information) in the following log-linear model, weighted to the marginal
totals of the ACS migration data:

ln n̂ij = λ + λO
i + λD

j + ln (n∗
ij) (6.3)

where n∗
ij denotes the IRS migration data. Total migrations between the thirteen

states in the U.S. West Region during the 2004–2005 and 2005–2006 periods are
used to illustrate the methodology. For comparison, the Census 2000 data are also
examined.

6.4.1 Description of Migration Flows Collected from Different
Data Sources

In seeking another data set to combine with the ACS, we looked for one that also
asked a 1-year ago migration question and that could be constructed on an annual
basis for the same years as the ACS data. The matching of U.S. Federal income
tax returns by the IRS allows for the determination of both the origin and destina-
tion of migrants (up to the county level). It is thought that over 95% of the U.S.
population is covered by this data series (Gross, 2005). The IRS makes these data
available to the U.S. Census Bureau, after stripping away taxpayer names and Social
Security numbers from the 1040 Individual Master File dataset. The Census Bureau
geocodes these data, assigning a set of codes to each location-specific tax return,
and uses these data to update its demographic database in between the decadal
censuses.

Analysis of the IRS data reveals that the spatial patterns of interstate migra-
tion generally remain surprisingly stable over time, despite changing economic
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conditions (see, for example, Engels and Healy, 1981). This stability of the IRS data
suggests its use to “repair” the irregularities in the ACS PUMS sample migration
data.

In order to combine migration data from different sources in a study, one may
have to first account for differences in measurement (Bell et al., 2002; Long &
Boertlein, 1990; Morrison, Bryan, & Swanson, 2004; Rogers, Raymer et al., 2003;
Rogerson, 1990; United Nations, 1992). For example, migration events, which can
occur multiple times within a one year time period, are captured by population reg-
istration systems while changes in residential status (or transitions) from one point
in time to another are captured by censuses (and surveys). These two data collec-
tion systems capture two different types of migration data, i.e., “migrations” and
“migrants” (Rees and Willekens, 1986), but this does not necessarily prevent com-
bining the data. For example, in comparing health registration and census data for
England and Wales, Boden, Stillwell, and Rees (1992) found high levels of cor-
relation between the in-migration, out-migration and net migration totals. More
recently, Raymer et al. (2007), in analyzing elderly internal migration (also England
and Wales), noted that the main differences between the 2000–2001 health reg-
istration flows and the 2001 Census flows were in the levels of migration. The
spatial patterns, on the other hand, were very similar after controlling for the levels.
Knowing that the census and population health registers have similar underlying
structures allowed Boden et al. (1992) to combine these two sources to study the
evolution of detailed migration patterns over time.

For the U.S., Engels and Healy (1981, p. 1354) found that annual IRS migration
data, pooled from 1970–1973, were in “strong agreement” with the 5-year migra-
tion data obtained from the 1970 Census. We did not compare annual and 5-year
migration as Engels and Healy did, but we borrowed their technique of using the
Index of Dissimilarity (D) to examine the stability of annual IRS migration data for
the years 2000, 2005 and 2006. In this context, this index measures changes in the
distributions of migrant destinations (or origins) over two annual time periods, and
for a specific state j it is defined as

Dj = 100

(
1

2

k∑
i=1

|xij − yij|
)

(6.4)

where xij is the proportion of in-migrants (out-migrants) coming to (leaving from)
state j from (to) state i during one year n, and yij is the proportion of in-migrants (out-
migrants) coming to (leaving from) state j from (to) state i during another year m,
and k is the number of destination (origin) states. The D values set out in Table 6.6
measure the “agreement” between the in- and out-migration patterns of the 2000,
2005, and 2006 IRS data. The closer D is to 100%, the more dissimilar the dis-
tributions are from perfect equality. The D values in Table 6.6 never exceed 11%
and most values are significantly lower. Clearly, the spatial distributions of annual
migration patterns were highly consistent during the 2000–2006 period.

Table 6.7 presents the Coefficient of Variation (CV) values for the same three
years of IRS migration data: 2000, 2005, and 2006. Rogers and Raymer (1998)



144 6 Inferring Age and Spatial Patterns

Ta
bl

e
6.

6
In

de
xe

s
of

di
ss

im
ila

ri
ty

(D
)

fo
r

IR
S

m
ig

ra
tio

n
da

ta
co

m
pa

ri
ng

20
00

,2
00

5
an

d
20

06
in

-m
ig

ra
tio

n
an

d
ou

t-
m

ig
ra

tio
n

In
-m

ig
ra

tio
n

O
ut

-m
ig

ra
tio

n
In

-m
ig

ra
tio

n
O

ut
-m

ig
ra

tio
n

St
at

e
20

00
–2

00
5

20
05

–2
00

6
20

00
–2

00
5

20
05

–2
00

6
St

at
e

20
00

–2
00

5
20

05
–2

00
6

20
00

–2
00

5
20

05
–2

00
6

A
la

ba
m

a
4.

3
7.

1
3.

9
3.

5
M

is
so

ur
i

4.
3

3.
3

4.
3

2.
7

A
la

sk
a

5.
3

4.
7

6.
4

3.
8

M
on

ta
na

6.
7

4.
4

5.
1

3.
6

A
ri

zo
na

10
.4

2.
6

5.
7

3.
7

N
eb

ra
sk

a
5.

0
4.

9
4.

5
3.

3
A

rk
an

sa
s

5.
6

7.
0

3.
9

4.
1

N
ev

ad
a

5.
7

3.
0

7.
4

3.
3

C
al

if
or

ni
a

3.
5

1.
9

7.
4

4.
1

N
ew

H
am

ps
hi

re
5.

9
4.

6
9.

1
5.

2
C

ol
or

ad
o

4.
4

3.
4

4.
2

2.
5

N
ew

Je
rs

ey
3.

2
2.

7
8.

6
4.

4
C

on
ne

ct
ic

ut
8.

0
2.

2
8.

7
4.

0
N

ew
M

ex
ic

o
7.

3
4.

1
3.

7
2.

7
D

el
aw

ar
e

4.
7

4.
2

4.
9

3.
1

N
ew

Y
or

k
2.

1
2.

0
7.

7
3.

4
W

as
h

D
.C

.
4.

4
3.

0
2.

6
2.

9
N

or
th

C
ar

ol
in

a
6.

6
3.

7
3.

4
2.

8
Fl

or
id

a
7.

1
2.

3
3.

1
4.

5
N

or
th

D
ak

ot
a

5.
4

4.
3

5.
6

5.
0

G
eo

rg
ia

5.
0

7.
5

3.
3

2.
4

O
hi

o
4.

0
2.

5
5.

3
2.

9
H

aw
ai

i
5.

6
6.

0
5.

7
6.

8
O

kl
ah

om
a

3.
8

4.
2

3.
2

2.
5

Id
ah

o
10

.8
4.

8
4.

9
3.

4
O

re
go

n
8.

8
2.

4
5.

0
2.

8
Il

lin
oi

s
3.

4
3.

3
4.

9
2.

6
Pe

nn
sy

lv
an

ia
7.

9
2.

0
5.

4
3.

0
In

di
an

a
5.

4
3.

3
4.

6
3.

1
R

ho
de

Is
la

nd
5.

8
4.

9
9.

7
5.

1
Io

w
a

4.
3

3.
0

5.
1

3.
2

So
ut

h
C

ar
ol

in
a

4.
7

3.
9

3.
2

2.
4

K
an

sa
s

4.
1

3.
5

4.
7

3.
2

So
ut

h
D

ak
ot

a
5.

2
3.

6
6.

6
3.

8
K

en
tu

ck
y

4.
2

3.
6

3.
5

3.
6

Te
nn

es
se

e
5.

2
6.

1
3.

7
2.

5
L

ou
is

ia
nn

a
4.

5
4.

7
3.

9
18

.7
Te

xa
s

5.
3

13
.4

3.
7

2.
3

M
ai

ne
4.

7
4.

0
6.

7
4.

4
U

ta
h

6.
2

3.
1

5.
7

3.
2

M
ar

yl
an

d
4.

0
2.

5
6.

9
3.

8
V

er
m

on
t

4.
4

4.
9

8.
4

3.
8

M
as

sa
ch

us
et

ts
3.

9
2.

5
9.

1
3.

5
V

ir
gi

ni
a

3.
4

2.
7

4.
6

3.
5

M
ic

hi
ga

n
4.

0
3.

2
5.

0
3.

0
W

as
hi

ng
to

n
5.

1
4.

3
4.

8
3.

0
M

in
ne

so
ta

4.
4

3.
4

5.
4

2.
6

W
es

tV
ir

gi
ni

a
7.

8
4.

4
7.

2
2.

8
M

is
si

ss
ip

pi
5.

1
12

.4
4.

2
6.

0
W

is
co

ns
in

4.
4

3.
0

5.
2

2.
6

W
yo

m
in

g
5.

4
4.

2
6.

1
3.

5



6.4 Inferring Current Spatial Patterns Using Combined Data Sets 145

Ta
bl

e
6.

7
C

oe
ffi

ci
en

to
f

va
ri

at
io

n
(C

V
)

m
ea

su
re

s
of

IR
S

m
ig

ra
tio

n
da

ta
:D

is
tr

ib
ut

io
ns

of
in

-m
ig

ra
tio

n
an

d
ou

t-
m

ig
ra

tio
n

to
an

d
fr

om
ea

ch
st

at
e,

20
00

,2
00

5
an

d
20

06

In
-m

ig
ra

tio
n

O
ut

-m
ig

ra
tio

n
In

-m
ig

ra
tio

n
O

ut
-m

ig
ra

tio
n

St
at

e
20

00
20

05
20

06
20

00
20

05
20

06
St

at
e

20
00

20
05

20
06

20
00

20
05

20
06

A
la

ba
m

a
1.

62
1.

65
1.

64
1.

71
1.

77
1.

73
M

is
so

ur
i

1.
42

1.
43

1.
38

1.
37

1.
38

1.
39

A
la

sk
a

1.
15

1.
09

1.
06

1.
17

1.
13

1.
15

M
on

ta
na

1.
29

1.
34

1.
33

1.
28

1.
23

1.
23

A
ri

zo
na

1.
57

2.
15

2.
19

1.
51

1.
36

1.
34

N
eb

ra
sk

a
1.

40
1.

40
1.

36
1.

34
1.

31
1.

34
A

rk
an

sa
s

1.
62

1.
57

1.
56

1.
66

1.
66

1.
70

N
ev

ad
a

2.
68

2.
93

2.
82

2.
12

1.
88

1.
84

C
al

if
or

ni
a

1.
00

0.
99

0.
97

1.
13

1.
30

1.
36

N
ew

H
am

p.
2.

82
3.

16
2.

94
2.

10
1.

94
1.

96
C

ol
or

ad
o

1.
23

1.
26

1.
29

1.
13

1.
08

1.
11

N
ew

Je
rs

ey
2.

83
2.

99
2.

92
1.

93
2.

08
1.

97
C

on
ne

ct
ic

ut
1.

93
2.

26
2.

22
1.

60
1.

71
1.

65
N

ew
M

ex
ic

o
2.

02
1.

90
1.

90
2.

02
2.

01
2.

02
D

el
aw

ar
e

2.
35

2.
40

2.
40

2.
10

2.
10

2.
05

N
ew

Y
or

k
1.

51
1.

50
1.

50
1.

76
1.

97
1.

86
W

as
h.

D
.C

.
2.

94
2.

78
2.

72
3.

71
3.

73
3.

64
N

.C
ar

ol
in

a
1.

31
1.

32
1.

35
1.

36
1.

41
1.

39
Fl

or
id

a
1.

15
1.

31
1.

26
1.

12
1.

10
1.

18
N

.D
ak

ot
a

2.
02

2.
17

2.
19

2.
22

2.
24

2.
18

G
eo

rg
ia

1.
39

1.
39

1.
48

1.
48

1.
53

1.
52

O
hi

o
1.

12
1.

13
1.

13
1.

22
1.

28
1.

25
H

aw
ai

i
1.

77
1.

90
1.

70
1.

71
1.

62
1.

53
O

kl
ah

om
a

1.
92

1.
87

1.
81

1.
94

1.
91

1.
97

Id
ah

o
1.

87
2.

09
2.

21
1.

76
1.

75
1.

77
O

re
go

n
2.

34
2.

64
2.

64
2.

32
2.

30
2.

26
Il

lin
oi

s
1.

12
1.

14
1.

13
1.

17
1.

24
1.

23
Pe

nn
sy

lv
an

ia
1.

57
1.

83
1.

84
1.

39
1.

48
1.

44
In

di
an

a
1.

59
1.

75
1.

73
1.

42
1.

44
1.

44
R

ho
de

Is
la

nd
2.

24
2.

53
2.

44
2.

11
2.

16
2.

11
Io

w
a

1.
45

1.
49

1.
44

1.
33

1.
33

1.
33

S.
C

ar
ol

in
a

1.
63

1.
60

1.
58

1.
85

1.
83

1.
83

K
an

sa
s

1.
73

1.
82

1.
75

1.
75

1.
78

1.
81

S.
D

ak
ot

a
1.

42
1.

43
1.

38
1.

38
1.

29
1.

30
K

en
tu

ck
y

1.
53

1.
50

1.
53

1.
57

1.
59

1.
55

Te
nn

es
se

e
1.

19
1.

18
1.

24
1.

28
1.

31
1.

28
L

ou
is

ia
na

1.
85

1.
78

1.
92

2.
09

2.
05

3.
07

Te
xa

s
1.

05
1.

18
1.

64
0.

98
0.

99
0.

97
M

ai
ne

1.
57

1.
71

1.
65

1.
48

1.
53

1.
48

U
ta

h
1.

67
1.

84
1.

89
1.

47
1.

42
1.

39
M

ar
yl

an
d

1.
57

1.
64

1.
63

1.
58

1.
61

1.
57

V
er

m
on

t
1.

63
1.

70
1.

69
1.

61
1.

60
1.

56
M

as
sa

ch
us

et
ts

1.
38

1.
44

1.
41

1.
54

1.
65

1.
56

V
ir

gi
ni

a
1.

22
1.

20
1.

19
1.

27
1.

34
1.

34
M

ic
hi

ga
n

1.
23

1.
24

1.
22

1.
23

1.
29

1.
27

W
as

hi
ng

to
n

1.
74

1.
91

1.
78

1.
61

1.
51

1.
50

M
in

ne
so

ta
1.

29
1.

36
1.

34
1.

33
1.

35
1.

32
W

.V
ir

gi
ni

a
1.

82
1.

95
1.

98
1.

84
1.

78
1.

77
M

is
si

ss
ip

pi
1.

73
1.

69
2.

11
1.

58
1.

63
1.

55
W

is
co

ns
in

1.
82

1.
93

1.
86

1.
53

1.
47

1.
48

W
yo

m
in

g
1.

34
1.

31
1.

27
1.

38
1.

37
1.

38



146 6 Inferring Age and Spatial Patterns

showed that this index can be used to measure the degree of geographical con-
centration of the migration streams leaving (arriving in) a particular origin, in
this case, states. When the CV is associated with the spatial structure of a state’s
in-migration (out-migration) stream, it is simply the standard deviation to mean ratio
of the numbers of in-migrants (out-migrants) from (to) the other states. Comparing
the geographical concentration of each state’s in-migration and out-migration spa-
tial patterns in each of the three years, we once again find considerable stability
over time. For example, California’s in-migration patterns exhibit the lowest CV val-
ues in each of the three data sets, and Texas’s out-migration patterns do the same.
The District of Columbia’s out-migration pattern shows the highest CV values in
all three data sets, and Oregon and North Dakota appear in the top three or four
group all three times depending on whether we include Louisiana in 2006, in light
of the Katrina disaster. For in-migration, the top group consists of the District of
Columbia, New Jersey, Nevada, and New Hampshire in each of the three data sets;
with the latter exhibiting the highest value in both IRS data sets. So, clearly, the
spatial structures of the interstate migration streams in the United States tend to
exhibit considerable stability over time, and migration data collected from differ-
ent sources, in this case the decennial census and the IRS, tend to reflect this. We,
therefore, explore this stability in further detail below.

The structure of the remaining section below is as follows. First, the ACS PUMS
and the IRS interstate migration data for the 2005 and 2006 periods are described
and compared. Second, after finding similar proportional structures in the migration
tables, the IRS data are used as an offset in a log-linear model to infer (or improve)
the spatial patterns of the ACS 2005 and 2006 PUMS data. As with the case of the
earlier application in Section 6.3, age structures are ignored, and would need to be
introduced with model migration proportion schedules, such as those discussed in
Section 2.4.3.

6.4.2 Comparison of Migration Flows Collected from Different
Data Sources

The proportions of migration flows from and to the thirteen states in the U.S. West
region are set out in Fig. 6.9 for data obtained from Census 2000, the ACS 2005 and
2006 PUMS, and the 2005 and 2006 IRS. The basic conclusion from this compar-
ison is that, although the three data sources measure migration differently, they all
offer very similar descriptions of the in-migration and out-migration proportions to
each state. This suggests that we can combine the ACS PUMS and IRS data together
using the model presented in Eq. (6.3).

In Fig. 6.10, we continue the comparison but only show the proportions of
migration to each destination from California (i.e., a large-sized population state),
Washington (i.e., a medium-sized population state) and Wyoming (i.e., a small-sized
population state). Here we see that the ACS PUMS sample migration data vary
considerably more than the Census and IRS data. The patterns for Wyoming are
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a) Proportions of Migration from Each State
P

ro
po

rt
io

n

0.00

0.10

0.20

0.30

0.40

Alas
ka

Ariz
on

a

Cali
for

nia

Colo
ra

do

Haw
aii

Id
ah

o

M
on

ta
na

Nev
ad

a

New
 M

ex
ico

Ore
go

n
Uta

h

W
as

hin
gt

on

W
yo

m
ing

Census 2000
ACS 2005
IRS 2005
ACS 2006
IRS 2006

Census 2000
ACS 2005
IRS 2005
ACS 2006
IRS 2006

b) Proportions of Migration to Each State
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Fig. 6.9 A comparison of Census, ACS PUMS, and IRS migration flow data: Proportions of
migration from and to each state in the U.S. West Region

particularly variable from 2005 to 2006. For example, the proportions of migration
from Wyoming to Colorado are much higher in the ACS than they are in the Census
or IRS data. Relative to the Census and IRS data, the proportion of migration from
Wyoming to Idaho is much higher in the ACS 2005 but much lower in the ACS
2006. The ACS proportions to Utah in 2005 and Washington in 2005 and 2006
appear to be too low. Finally, the ACS PUMS data did not capture any migration at
all between Wyoming and Hawaii in 2006 and between Wyoming and New Mexico
in 2005, whereas the Census and IRS data did. Our conclusion from this analysis is
that the IRS data appear to capture the spatial patterns of migration better than the
ACS PUMS sample data, justifying its inclusion as an offset in the model presented
in Eq. (6.3).
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a) From California
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Fig. 6.10 A comparison of Census, ACS PUMS and IRS migration flow data: Proportions of
migration from California, Washington, and Wyoming to other states in the U.S. West Region
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6.4.3 Prediction of ACS 2005 and 2006 Spatial Patterns
Using IRS Data

The results of applying the model in Eq. (6.3) to predict migration flows between
states in the U.S. West region for the years 2005 and 2006 are set out in Fig. 6.11
for flows from California, Washington and Wyoming. The combination of IRS data
with ACS PUMS data produced flows that were smoother and more realistic than
those described by the original ACS data (e.g., see the Washington to Alaska or
Wyoming to Nevada flows), particularly for the small state of Wyoming. Also, there
are no longer any “missing” or zero flows, for example, in the Wyoming to Hawaii
or Wyoming to New Mexico flows. In some cases, the predicted flows resulted
in different patterns over time than those reported from the ACS PUMS data. For
example, the ACS data exhibited decreases over time in the Wyoming to Idaho and
Wyoming to Montana flows, whereas the predicted patterns resulted in increases
over time.

For a more detailed comparison of the ACS PUMS data and predicted migration
flows, consider the ratios of predicted to observed flows set out in Table 6.8. These
values allow us to compare how much the predicted migration flows differed from
the reported ACS values. Notice that the marginal totals of the reported ACS values
and of the predicted values match perfectly. There are many cases where the ACS
data and predicted flows are fairly similar, such as the flows to California. However,
there are also some notable differences in the origin-destination patterns, such as the
2005 predicted flow from Montana to Alaska, which was predicted to be nearly five
times greater than the corresponding ACS value. The largest predicted increases are
the 2005 flow from Alaska to Utah (10.07 times) and the 2006 flow from Nevada to
Alaska (16.37 times). As far as predicted reductions, the biggest differences were
found in the 2005 Idaho to Hawaii flow (0.21 of the ACS flow) and the 2006 Alaska
to Hawaii flow (0.32 of the ACS flow).

6.5 Summary and Discussion

This chapter has focused on the indirect estimation problem posed by a total absence
of any observed migration data. Three different approaches to the problem have been
explored. The first seeks to predict the age composition of total migration outflows
leaving a region from information about the age composition of the population of
that region. The second and third go further and strive, in addition, to include the
regions of destination of each estimated outflow.

Rogers (1978a) and Castro and Rogers (1983) first showed that the age distribu-
tions of migration rates are related to the age distributions of the origin populations.
In Little and Rogers (2007) and in Section 6.2.2 of this chapter, we take this finding
a step further and demonstrate that by linking this association with a typology of
model migration schedules that collectively describe the age composition of a large
number of conforming schedules, allows one, in most instances, to infer the “family”
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Fig. 6.11 Observed and predicted ACS 2005 and 2006 PUMS flows from California, Washington,
and Wyoming to other states in the U.S. West Region
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memberships of unobserved age compositions of migrants, and, if given an esti-
mated total number of out-migrants leaving a region, predict the likely age-specific
number of out-migrants from that region.

The second approach to resolving the missing data estimation problem is
addressed by using observed place-of-birth data, in addition to the observed place-
of-residence data. The spatial migration pattern of infants, or of young children
under five, underlying such data provides us with an initial estimate of age, spa-
tial interaction, and migration level. This initial estimate can then be modified
and expanded by using a combination of regression equations, model migration
schedules, and log-linear models.

Finally, the third approach to the missing data problem follows the “combined
data” strategy recommended by Willekens (1994), in which data from several
sources are merged, integrated, and forced with log-linear models to be internally
consistent. In Section 6.4 of this chapter, we illustrate our approach using the partic-
ular combination of ACS data on population stocks with IRS data on the migration
of income tax filers.

All three methods show promise and merit further study. First, the age compo-
sition of origin populations and their out-migrants clearly are linked and therefore
suggest an estimation strategy that seeks to capitalize on this association. Second,
age profile regularities in counts and propensities of out-migration suggest that,
inasmuch as children migrate as part of families, an estimation strategy that links
the two should be a promising start. Third, combining data from different sources,
with at least one of them reporting a change of usual residence, suggest yet another
estimation strategy that works well.

But, most likely, additional information would improve the indirect estimation
results. For example, introducing covariates, i.e., variables that change in parallel
with changes in migration patterns, should be a profitable strategy. More research
on this aspect of the indirect estimation of migration is therefore warranted.

Finally, if combining data from several different sources is a promising avenue
for developing indirect estimation methods, then it is likely that combining several
different estimation strategies should also be an equally promising overall strategy.
For example, an appropriate “marriage” of the three approaches described in this
chapter surely would produce better results than those produced by any one of the
three used alone.



Chapter 7
Conclusion

Mortality, fertility, and migration rates combine to shape the temporal evolution of
multiregional populations, and demographers study how the levels, age profiles, and
spatial patterns of these contributors to population change vary over time and space.
What they have discovered is that all three generally exhibit persistent regularities
in their age and spatial structures, when changing levels are controlled for. Drawing
on such regularities, it is often possible to improve the quality of the available data
by smoothing irregular data, imposing the structures of borrowed and related data
on inadequate data, or by inferring missing data.

The United Nations has been at the forefront of assembling and testing alternative
methods for improving demographic data. Its now somewhat outdated manuals on
this subject quickly became classic reports on the state of the art (United Nations,
1967, 1983). But they totally ignored the problem of estimating migration from
incomplete data. More recently, a chapter on indirect estimation methods in an
important text on formal demography (Preston, Heuveline, & Guillot, 2001) also
totally ignores the case of migration. Demographic texts that do include topics
on migration estimation tend to focus on residual methods (eg., Rowland, 2003;
Siegel & Swanson, 2004). The indirect estimation of fertility and mortality has a
long history in demography. A common strategy there has been to combine empir-
ical regularities with other information to fill in the missing data. The indirect
estimation of migration flows has a briefer history, in part because the estimation
task is more complicated. The age pattern of migrants depends on the directions of
migration. To be effective, therefore, a method must somehow integrate the age
pattern with the corresponding spatial pattern. Nonetheless, efforts to indirectly
estimate migration streams continues (Hill, 1985; Nair, 1985; Schmertmann, 1992;
Warren & Kraly, 1985; Warren & Peck, 1980; Willekens, 1999; Zaba, 1987), notably
those attempting to infer international or undocumented flows. This book adds to
that literature by providing a manual for estimating age and origin-destination-
specific migration flows of migrants in situations where the available migration data
are suspect or missing. Although our focus has been on internal migrants, recent
research has shown the methods also to be applicable to international migration
(Raymer & Willekens, 2008).

155A. Rogers et al., The Indirect Estimation of Migration, The Springer Series
on Demographic Methods and Population Analysis 26, DOI 10.1007/978-90-481-8915-1_7,
C© Springer Science+Business Media B.V. 2010
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Migration flow patterns exhibit strong age and spatial regularities. In a discussion
of new “laws” of migration, Tobler (1995, pp. 335–337) argued that one of the most
studied regularities is the age profile of migrants. He then focused on spatial patters
of migrants and presented evidence of the correlation between six U.S. state-to-
state tables for the contiguous United States. A deeper analytical examination of
this issue appears in this book’s formal definitions of the age and spatial structures
of migration, and how they can be represented by model migration schedules and
multiplicative log-linear modeling frameworks (Rogers & Castro, 1986; Rogers,
Willekens & Raymer, 2001, 2002; Rogers et al., 2002).

Our approach to improve the quality and reliability of observed data that are
irregular has been to first smooth it. When the data are still inadequate and exhibit
obviously unrealistic rates, and smoothing these does not resolve the problem,
then our approach imposes data structures borrowed from elsewhere to repair the
suspect data. Finally, when no migration data are available, we infer the rates using
data on birthplace-specific counts of population stocks or adopt changes of address
data, collected by other government agencies for other purposes (e.g., tax return
data).

Underlying our efforts to smooth irregular data, to impose borrowed data onto
inadequate data, or to infer structures exhibited in flows when observed data are
missing all rely basically on two kinds of models: models of age patterns (model
migration schedules) and models of spatial patterns (log-linear models). The for-
mer are described in Chapter 2; the latter are reviewed in Chapter 3. These models
are used in Chapters 4, 5, and 6 to deal, respectively, with smoothing, imposing,
and inferring strategies. In this concluding chapter, we touch on a few issues and
approaches not covered in the book and deserving further research.

Several directions of further study are evident. First of all, how stable are the
observed age and spatial patterns over time? Our preliminary examination of tem-
poral stability suggests that many flows continue to exhibit a surprising degree of
constancy in age profiles and spatial patterns. Rogers and Raymer (1999) found
evidence of temporal stability in the interregional migration patterns of the foreign-
born in the United States reported by the 1960, 1970, 1980 and 1990 censuses. More
recently, Raymer, Bonaguidi, and Valentini (2006) showed strong regularities in the
age patterns of Italian interregional migration from 1970 to 2001, with a gradual
“ageing” of the labor force peak. But more definitive findings are needed.

Second, our focus has been directed at internal migration age patterns. What
about international migration patterns? Rogers and Raymer (1999), for example,
found that US immigration age profiles conformed to the Rogers-Castro model
schedule during the 1955–1990 time period. Similar evidence for population move-
ments in the European Union is presented in Chapter 10 of Raymer and Willekens
(2008). But, once again, more definitive findings are needed.

Third, what about migration age and spatial patterns in the less developed
countries? Evidence gathered to date show that model migration schedules and
log-linear models also describe migration patterns in the less developed world.
Muhidin (2002: 272–276) and Rogers, Jones, Partida, and Muhidin (2007) present
supporting evidence for Indonesia, and the latter do the same for Mexico. It is
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likely, therefore, that patterns of migration in less developed countries also exhibit
regularities, particularly of spatial patterns. But further studies are warranted.

Fourth, additional status categories besides age and sex can be introduced into the
log-linear formulation, for example, ethnicity and employment. Smith et al. (2010)
offer an illustration.

Fifth, we have examined migration data that reported 5-year (census) and 1-year
(ACS) time interval flows. The so-called “1 year/5 year” problem was not studied,
yet a method for transforming one into the other, however crude, would be useful.
An effort to do this appears in Rogers, Raymer, et al. (2003), but it has not been
carried far enough to merit inclusion in this book.

Sixth, censuses or surveys that produce distributions of persons cross-classified
by age, birthplace, and place of current residence for two consecutive points in
time offer information that can be used to infer the migration patterns that helped
to shape such distributions. We have explored two of these in a pair of articles
(Rogers & Raymer, 2005; Rogers & Liu, 2005, respectively). The first approach
adopts observed past regularities in the relative intensities of secondary (return and
onward) versus primary migration streams to indirectly estimate migrant flows.
Originally proposed and tested by Ledent (personal communication, 2003) this
approach was less than moderately successful and so was not included in this book.

The second approach, originally proposed by Castro (1985), decomposes esti-
mated net migrant flows into the underlying gross in- and out- migrant streams to
indirectly estimate migration flows. Here too, the approach encountered problems
that led us to omit it from this book. Perhaps what is needed is a mixing of these
approaches.

Finally, as we noted earlier, the indirect estimation of migration flows in
the absence of observed migration data is similar to a paleontologist’s effort to
reconstruct an entire dinosaur from a newly discovered hip bone. In both cases,
assessments of accuracy are generally problematic. In its 1983 manual on indirect
estimation, the United Nations recognizes this problem:

Perhaps the most serious limitation of Manual X is that it does not provide sufficient guid-
ance for the assessment of results, an aspect of analysis that is also somewhat perfunctorily
considered in the literature (United Nations,1983, p. 1).

Assessments of alternative indirect estimates may be carried out in much the
same way as are assessments of alternative population forecasts. In both endeav-
ors the results cannot be compared to the corresponding “true” numbers, except in
tests carried out with past observed data. One therefore has to assess the quality
of the procedures used to produce the desired numbers and to examine the “rea-
sonableness” of the results. The assessment suggests further improvements and the
procedures may be reapplied until a satisfactory solution is found. Research on this
topic is warranted.

In the last paragraph of the final chapter of his textbook on multiregional
demography, Rogers (1995) concludes:

Multiregional demography is a relatively young branch of formal demography, and its
potential contributions are becoming more widely recognized. Further progress in the field
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will depend to a large extent on the availability of the necessary detailed data for carrying
out the analyses and projections that would promote its further development and acceptance.
(Rogers, 1995, p. 208).

This book was written with the goal of expanding the possibilities of increasing the
availability of adequate migration data in mind. Much more remains to be done, but
it is hoped that a useful start has been made.
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