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Preface

The first S.E.R.C. (Science and Engineering Research Council of the Department of
Science and Technology, Government of India, New Delhi) School on Special Func-
tions was sponsored by DST (Department of Science and Technology), New Delhi,
and conducted by CMS (Centre for Mathematical Sciences) for six weeks in 1995.
The second S.E.R.C. School on Special Functions and Functions of Matrix Argu-
ment was sponsored by DST, Delhi, and conducted by CMS for five weeks during
the period 29th May to 30th June 2000. In the second School, the main lectures were
given by Dr. H.L. Manocha of Delhi, India, Dr. S. Bhargava of Mysore, India, Dr.
K. Srinivasa Rao and Dr. R. Jagannathan of Chennai, India and Dr. A.M.Mathai of
Montreal, Canada. Supplementary lectures were given and problem sessions were
supervised by Dr. K.S.S. Nambooripad and Dr. S.R. Chettiyar of CMS, Dr. R.N.
Pillai (retired), Dr. T.S.K. Moothathu and Dr. Yageen Thomas of the University of
Kerala and Dr. E. Krishnan of the University College Trivandrum. Lecture Notes
were brought out as Publication No.31 of CMS soon after the School was com-
pleted. The first two Schools were conducted in Trivandrum (Thiruvananthapuram)
area. Dr. A.M. Mathai was the Director and Dr. K.S.S. Nambooripad was the Co-
Director of these two Schools.

The third S.E.R.C. School on Special Functions and Functions of Matrix Argu-
ment: Recent Developments and Recent Applications in Statistics and Astrophysics,
sponsored by DST, Delhi, was conducted for five weeks from 14th March to 15th
April 2005 by CMS at its Pala Campus, Kerala, India. This time DST, wanted the
lecture notes to be collected from the main lecturers in advance, compiled and dis-
tributed prior to the start of the School. The main lectures for the 3rd School were
given by Dr. Hans J. Haubold of the Office of Outer Space Affairs of the United
Nations, Dr. Serge B. Provost, Professor of Actuarial Sciences and Statistics of the
University of Western Ontario, Canada, Dr. R.K. Saxena of Jodhpur, India, Dr. S.
Bhargava of Mysore, India and Dr. A.M. Mathai of Montreal, Canada. Supplemen-
tary lectures were given by Dr. A. Sukumaran Nair (Chairman, CMS), Dr. K.K.
Jose (Director-in-Charge, CMS Pala Campus), Dr. R.N. Pillai, Dr. Yageen Thomas,
Dr. V. Seetha Lekshmi, Dr. Alice Thomas, Dr. E. Sandhya, Dr. S. Satheesh and
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Dr. K. Jayakumar. Problem sessions were supervised by Dr. Sebastian George and
other lecturers. Extra training in the use of statistical packages, LATEX and Math-
ematica/Maple were given by Joy Jacob, Seemon Thomas and K.M. Kurian of the
Department of Statistics of St. Thomas College, Pala. A special lecture sequence on
Matlab was conducted by Alexander Haubold of Columbia University, U.S.A.

The 4th S.E.R.C. School on Special Functions and Functions of Matrix Argu-
ment: Recent Advances and Applications to Stochastic Processes, Statistics and As-
trophysics, sponsored by DST, Delhi, was conducted by CMS for five weeks from
6th March to 7th April 2006 at its Pala Campus. The main lectures were scheduled
to be given by Dr. Hans Joachim Haubold of the Office of Outer Space Affairs of the
United Nations, Dr. P.N. Rathie of the University of Brasilia, Brazil, Dr. S. Bhargava
of Mysore, India, Dr. R.K. Saxena of Jodhpur, India, Dr. K.K. Jose of Pala, India and
Dr. A.M. Mathai of Montreal, Canada. Supplementary lectures were given by Dr. A.
Sukumaran Nair (Chairman, CMS), Dr. K.S.S. Nambooripad (Director-in-Charge,
CMS Trivandrum Campus), Dr. R. Y Denis of Gorakhpur, India, Dr. N. Unnikrish-
nan Nair (former Vice-Chancellor of Cochin University of Science and Technology,
Kerala, India), Dr. Yageen Thomas and Dr. K. Jayakumar. One week was devoted
to Stochastic Processes and recent advances in this area in the 4th School. Problem
sessions were supervised by Dr. Joy Jacob, Dr. Sebastian George and other lecturers.

The 5th S.E.R.C. School in this sequence, titled “Special Functions and Functions
of Matrix Argument: Recent Advances and Applications in Stochastic Processes,
Statistics, Wavelet Analysis and Astrophysics” was conducted by CMS at its Pala
Campus from 23rd April to 25th May 2007. The lecture notes for the 5th School
were assembled by November 2006 and were printed and distributed as Publica-
tion No.34 in the Publications Series of CMS. The main lectures were scheduled to
be given by Dr. Hans J. Haubold (Office of Outer Space Affairs of the United Na-
tions, Austria), Dr. H.M. Srivastava (University of Victoria, Canada), Dr. R.Y. Denis
(Gorakhpur University, India), Dr.R.K. Saxena (Jodhpur University, India), Dr. S.
Bhargava (Mysore University, India), Dr. D.V. Pai (IIT Bombay, India), Dr. Yageen
Thomas (University of Kerala, India), Dr. K.K. Jose (Mahatma Gandhi University,
India), Dr. J.J. Xu (China/Canada), Dr. K. Jayakumar (Calicut University, India)
and Dr. A.M. Mathai (Canada/India). But Dr. H.M. Srivastava, Dr. S. Bhargava and
Dr. Xu could not reach the venue on time due to unexpected emergencies. Supple-
mentary lectures were given by Dr. A. Sukumaran Nair (Chairman,CMS), Dr. R.N.
Pillai (former Head, Department of Statistics, University of Kerala, India), Dr. N.
Mukunda (IISc, Bangalore, India) and the problem sessions were supervised by Dr.
Sebastian George, Dr. Joy Jacob, Dr. Seemon Thomas and the lecturers. For the
2005, 2006 and 2007 Schools, Dr. A.M. Mathai was the Director and Dr. K.K. Jose
was the Co-Director of the Schools.

The participants for the S.E.R.C. Schools are selected on all-India basis. All the
expenses of the selected candidates, total number of seats is 30, including travel,
accommodation, food, lecture materials, local travels etc are met by the DST, Delhi,
Government of India. Foreign participation is allowed under the conditions that the



Preface vii

participants must come with their own return air tickets and must attend all the lec-
tures, and problem sessions and take all the examinations and tests from the begin-
ning till the end. All their local expenses are met and lecture materials are provided
by the Schools. There is no fee for attending the Schools. The Schools are mainly
research orientation courses aimed at young faculty members in colleges and uni-
versities across India, below 35 years of age, and fresh graduates with M.Sc, M.Phil,
Ph.D degrees below 30 years of age, in Mathematics/Statistics/Theoretical Physics.
In most of the Indian universities rigid compartmentalization is the order and as a
result a M.Sc graduate in mathematics may not have even taken a very basic course
in probability and statistics. Even though basic differential and integral calculus and
matrix theory are required subjects for statistics and physics students, these stu-
dents may have forgotten these subjects because they teach the compartmentalized
topics in their own areas and do not usually do research even in their narrow ar-
eas of their own fields. For maintaining their jobs and getting regular increments in
their salaries and all other monetary and other benefits, research work and further
reading and learning process are not required of them. As a result, the quality of
teaching and the information passed on to the students go down from year to year.
In order to remedy this situation a little bit, S.E.R.C. Schools in various areas were
started by DST, Delhi. Dr. A.M. Mathai was asked to run S.E.R.C. Schools in math-
ematics. For taking up a challenging research problem in any applied area a good
background in basic mathematics, probability and statistics is required. In order to
give the basic ideas in probability and statistics and to bring a number of topics in
the area of Special Functions and Functions of Matrix Argument and their appli-
cations to the current research level, these S.E.R.C. Schools on Special Functions
were established. The current sequence of five Schools really achieved the aim and
almost all the participants in the first four Schools have become research oriented
towards a career in research and teaching, and the participants of the 5th School are
also expected to follow the same footsteps of their predecessors.

Chapter 1 introduces elementary classical special functions. Gamma, beta, psi,
zeta functions, hypergeometric functions and the associated special functions, gen-
eralizations to Meijer’s G and Fox’s H-functions are also examined here. Discussion
is confined to basic properties and some applications. Introduction to statistical dis-
tribution theory is given here. Some recent extensions of Dirichlet integrals and
Dirichlet densities are also given. A glimpse into multivariable special functions
such as Appell’s functions and Lauricella functions is also given. Special functions
as solutions of differential equations are also examined here.

Chapter 2 is devoted to fractional calculus. Fractional integrals and fractional
derivatives of various kinds are discussed here. Then their applications to reaction-
diffusion problems in physics, input-output analysis and Mittag-Leffler stochas-
tic processes are examined here. Chapter 3 deals with q-hypergeometric or basic
hypergeometric functions and Chapter 4 goes into basic hypergeometric functions
and Ramanujan’s work on elliptic and theta functions. Chapter 5 examines the topic
of Special Functions and Lie Groups.
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Chapters 6 to 9 are devoted to applications of Special Functions to various ar-
eas. Applications to stochastic processes, geometric infinite divisibility of random
variables, Mittag-Leffler processes, α-Laplace processes, density estimation, order
statistics and various astrophysics problems, are dealt with in these chapters.

Chapter 10 is devoted to Wavelet Analysis. An introduction to wavelet analysis is
given here. Chapter 11 deals with the Jacobians of matrix transformations. Various
types of matrix transformations and the associated Jacobians are given here. Chapter
12 is devoted to the discussion of functions of matrix argument. Only the real case
is considered here. Functions of matrix argument and the pathway models, recently
introduced by Mathai (2005), are also discussed here, along with their applications
to various areas.

In all the S.E.R.C. Schools conducted under the Directorship of Dr. A. M. Mathai
a serious effort is made so that the participants absorb the materials covered in the
Schools. The classes started at 8.30 am and went until 6.00 pm. The first lecture
of 08.30 to 10.30 was followed by a problem session from 10.30 to 13.00 hrs on
the materials covered in the first lecture. The second lecture of the day was from
14.00 to 16.00 hrs followed by problem session from 16.00 to 18.00 hrs. At the
end of every week a written examination was conducted, followed by a personal
interview of each participant by the lecturer of that week in the form of an oral
examination. Cumulative grades of such weekly examinations appeared in the final
certificates distributed to them. The main aim was to inculcate in them a habit of
long and sustained hard work, which would help them in their careers whatever
they may be. During the first week the participants, especially the teachers from
colleges and universities, found it difficult to adjust to the routine of long hours of
hard work but starting from the second week, in all the Schools, the participants
started enjoying, especially the problem sessions, because for the first time, they
started understanding and appreciating the meanings and significance of theorems
that they learnt or memorized when they were students.

The lecture notes are written up in a style for self-study. Each topic is developed
from first principles with lots of worked examples and exercises. Hence the material
in this book can be used for self-study and will help anyone to understand the basic
ideas in the area of Special Functions and Functions of Matrix Argument and they
will be able to make use of these results in their own problems in applied areas, espe-
cially in Statistics, Physics and Engineering problems. Applications in various areas
are illustrated in this book. Insights into recent developments in the applications of
fractional calculus, in the developments in various other topics are also given in the
book so that the readers who are interested in any of the topics discussed in the book
can directly go into a research problem in the topics.

Severalpeoplehavecontributedenormouslyfor thesuccessof theS.E.R.C.Schools
and in making the publications of four Lecture Notes and this final publication of
summarized lecture notes possible. Dr. B.D. Acharya, Advisor to Government of
India and Dr. Ashok K. Singh of the Mathematical Sciences Division of DST, New
Delhi, are the driving force behind the re-energized mathematical activities in India
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now. They were kind enough to pursue the matter and get the funds released for
running the Schools as well as for the preparation of various publications, including
this one. Since the basic materials for this publication are supplied by various
lecturers in the form of their lecture notes, there will be some overlaps. Very obvious
inconsistencies are removed but some overlapping materials are left there to make the
discussions self-contained. Dr. R.K. Saxena, Dr. S. Bhargava, Dr. H.J. Haubold, Dr.
P.N. Rathie, Dr. K.K. Jose, Dr. K. Jayakumar, Dr. H.L. Manocha, Dr. R. Jagannathan,
Dr. K. Srinivasa Rao, Dr. K.S.S. Nambooripad, Dr. Serge B. Provost, Dr. Yageen
Thomas, Dr. D.V. Pai, and Dr. A.M. Mathai are thanked for making their notes
available in advance for the S.E.R.C. Schools. Most of the material was typeset
at CMS office by Miss K.H. Soby, Dr. Joy Jacob, Seemon Thomas, Dr. Sebastian
George, Dr. K.K. Jose and Dr. A.M. Mathai. Part of the material was typeset by
Barbara Haubold of the United Nations, Vienna Office, fully free of charge as a
voluntary service to the Schools. Notes and programs for a series of lectures on
Matlab were supplied to CMS by Alexander Haubold of Columbia University, USA.
Those notes are not included in this book to keep the materials within the focus of
the book. Dr. Sebastian George, Dr. Joy Jacob, Dr. Seemon Thomas, K.M. Kurian,
Jaisymol Thomas and Ashly P. Jose, who spent a lot of time in running problem
sessions, in running separate sessions on the use of statistical packages and Maple
program, use of LATEX etc and for checking the typed materials, are thanked. CMS
would like to thank each and every one who helped to make S.E.R.C. Schools on
Special Functions a grand success and who helped to make this publication possible.

The authors would like to express their sincere thanks to the Department of
Science and Technology, Government of India, New Delhi, India, for the financial
assistance under the project No. SR/S4/MS:287/05 titled “Building up a Core Group
of Researchers/Faculty and Facilities at CMS, Trivandrum and Pala Campuses”,
which enabled the collaboration on this book project possible. We express our sin-
cere gratitude to the Management and especially to Dr. Mathew John K. (Principal),
St. Thomas College Pala, Kerala, India, for providing all facilities in the College
during the preparation of this book.

Pala, Kerala, India A.M. Mathai
1st February, 2007 H.J. Haubold
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Chapter 1
Basic Ideas of Special Functions and Statistical
Distributions

[This chapter is based on the lectures of Professor A.M. Mathai of McGill University, Canada
(Director of the SERC Schools).]

1.0 Introduction

Some preliminaries of special functions and statistical distributions are given here.
Details are available from the following sources, which are accessible to the partic-
ipants of the SERC Schools:

1. Notes of the 2nd SERC School. (Publication No 31 of the Centre for Mathemat-
ical Sciences (CMS)), 2000.

2. Notes of the 3rd SERC School. (Publication No 32 of CMS), 2005.
3. Notes of the 4th SERC School. (Publications No 33,33A of CMS), 2006.
4. Mathai, A.M. (1993). “A Handbook of Generalized Special Functions for Sta-

tistical and Physical Sciences”, Oxford University Press, Oxford, U.K.
5. Mathai, A.M. and Saxena, R.K. (1978). “The H-Function with Applications in

Statistics and Other Disciplines”, Wiley Halsted, New York.
6. Mathai, A.M. and Saxena (1973). “Generalized Hypergeometric Functions

with Applications in Statistics and Physical Sciences”, Lecture Notes No 348,
Springer-Verlag, Heidelberg, Germany.

Notation 1.0.1. Pochhammer symbol
(b)r = b(b+1) · · ·(b+ r−1), (b)0 = 1, b 
= 0. (1.0.1)

For example,(
−1

4

)

2
=
(
−1

4

)(
−1

4
+1
)

= − 3
16

; (−2)3 = (−2)(−1)(0) = 0;
(

1
3

)

4
=
(

1
3

)(
1
3

+1
)(

1
3

+2
)(

1
3

+3
)

=
280
81

;(7)0 = 1;(0)5 = not defined.
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The following general property holds for m,n non-negative integers

(a)m+n = (a)m(a+m)n = (a)n(a+n)m. (1.0.2)

Notation 1.0.2. Factorial n or n factorial

n! = (1)(2) · · ·(n), 0! = 1 (convention ). (1.0.3)

For example,
1
3

! = not defined;(−5)! = not defined;1! = 1;0! = 1 (convention);

3! = (1)(2)(3) = 6; 4! = (1)(2)(3)(4) = 24.

Notation 1.0.3. Number of combinations of n taken r at a time(
n
r

)
= number of subsets of r distinct objects from a set of n distinct objects

=
n(n−1) · · ·(n− (r−1))

r!
=

n(n−1) · · ·(n− r +1)
r!

=
n!

r!(n−r)!
, 0 ≤ r ≤ n.

(1.0.4)

For example,
(

4
1

)
=

4
1!

= 4;
(

4
0

)
=

4!
0!(4−0)!

=
4!

1 (4!)
= 1;

(
4
4

)
=

(4)(3)(2)(1)
4!

= 1;
(

n
1

)
=

n
1!

=
(

n
n−1

)
=

n(n−1) · · ·(n− (n−1))
(n−1)!

= n;
(

n
r

)
=
(

n
n− r

)
,

r = 0,1, · · · ,n;
(

n
0

)
=
(

n
n

)
= 1;
(

n
r

)
=
(

n−1
r

)
+
(

n−1
r−1

)
;

(
1/4
1

)
= not defined as a combination;

(
−3
2

)
= not defined as a combination;

(
0
2

)
= not defined as a combination;

(
n
r

)
=

n(n−1) · · ·(n− r +1)
r!

=
(−1)r(−n)(−n+1) · · ·(−n+ r−1)

r!

=
(−1)r(−n)r

r!
. (1.0.5)

If
(n

r

)
is interpreted not as the number of combinations but as in equation (1.0.5)

then one can give interpretations when n is not a positive integer. For example

(
−1/3

2

)
=

(−1)2
(

1
3

)

2
2!

=
(−1)2

2!

(
1
3

)(
1
3

+1
)

=
1
2!

4
9

=
2
9

;

(
1/2

2

)
=

(−1)2
(
−1

2

)

2
2!

=
(−1)2

2!

(
−1

2

)(
−1

2
+1
)

=
1
2!

(−1)
4

= −1
8
.
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1.1 Gamma Function

Notation 1.1.1. Γ(z) = gamma z

A gamma function Γ(z) can be defined in many ways. Γ(z) exists for all values of
z, negative, positive and complex values of z, except at z = 0,−1,−2, · · · . Also Γ(z)
has an integral representation for ℜ(z) > 0 where ℜ(·) means the real part of (·).
Thus we may note for example that Γ(5) exists; Γ(− 1

3 ) exists; Γ( 2
5 ) exists; Γ(0)

does not exist; Γ(−3) does not exist; Γ(− 7
2 ) exists. Some of the definitions of Γ(z)

are the following:

Definition 1.1.1.

Γ(z) = lim
n→∞

n! nz

z(z+1) · · ·(z+n)
, z 
= 0,−1,−2, · · · (1.1.1)

Definition 1.1.2.

Γ(z) = z−1
∞

∏
n=1

(
1+

1
n

)z(
1+

z
n

)−1

. (1.1.2)

Definition 1.1.3.

1
Γ(z)

= z lim
n→∞

{

n−z
n

∏
k=1

(
1+

z
k

)}

. (1.1.3)

Definition 1.1.4.
1
Γ(z)

= zeγz
∞

∏
n=1

[(
1+

z
n

)
e−

z
n

]
(1.1.4)

where γ is the Euler’s constant, defined as follows:

Notation 1.1.2. Euler’s constant γ

γ = lim
n→∞

{
1+

1
2

+
1
3

+ · · ·+ 1
n
− lnn

}
≈ 0.577215664901532860606512. (1.1.5)

Definition 1.1.5.

Γ(z) = pz
∫ ∞

0
tz−1e−ptdt,ℜ(p) > 0,ℜ(z) > 0. (1.1.6)
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Definition 1.1.6.

1
Γ(z)

=
1

2πi

∫ c+i∞

c−i∞
t−zetdt, c > 0,ℜ(z) > 0, i =

√
−1 (1.1.7)

where π is the mathematical constant,

π ≈ 3.141592653589793238462643. (1.1.8)

1.1.1 Some basic properties of gamma functions

From all the definitions of Γ(z) it is not difficult to show that

Γ(z) = (z−1)Γ(z−1) (1.1.9)

whenever the gammas are defined. It is obvious from the integral representation in
(1.1.6). Take p = 1 and integrate by parts by using the formula

∫
udv = uv−

∫
vdu

and by taking dv = e−t and u = tz−1. If the integral representation is used then we
need the conditionsℜ(z)> 0,ℜ(z−1)> 0 which meansℜ(z)> 1. This restriction is
not needed for the Definitions 1.1.1 - 1.1.4. [Verification and derivation of the result
in (1.1.9) by using the Definitions 1.1.1 - 1.1.4 are left to the reader]. Continuing the
process in (1.1.9) we have the following:

Γ(z) = (z−1)(z−2) · · ·(z− r)Γ(z− r) (1.1.10)

whenever the gammas exist. As a consequence of (1.1.10) we may note that for
n = 1,2, · · ·

Γ(n) = (n−1)(n−2) · · ·1Γ(1) = (n−1)(n−2) · · ·1 = (n−1)! (1.1.11)

since Γ(1) = 1. Thus, Γ(z) can be looked upon as a generalization of (z−1)!. Thus
for example,

Γ(5) = 4! = 24;Γ(−2) = not defined; Γ
(

5
2

)
=
(

3
2

)(
1
2

)
Γ
(

1
2

)
=

3
4
Γ
(

1
2

)
;

Γ
(

1
2

)
=
(
−1

2

)(
−3

2

)(
−5

2

)(
−7

2

)
Γ
(
−7

2

)
=

105
16
Γ
(
−7

2

)

⇒ Γ
(
−7

2

)
=

16
105

Γ
(

1
2

)
.
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Thus whenever Γ(z) is defined we can write it in the form

Γ(z) = (a few factors) Γ(α), 0 < α ≤ 1. (1.1.12)

But Γ(α) for 0 < α ≤ 1 is extensively tabulated. Hence for computational purposes
we may use the formula in (1.1.10) and the extensive tables for Γ(α) for 0 < α ≤ 1
.

Example 1.1.1. Evaluate Γ
( 51

2

)
Γ
(
− 27

2

)
.

Solution 1.1.1: By using (1.1.10) we have the following:

Γ
(

1
2

)
=
(
−1

2

)(
−3

2

)
· · ·
(
−27

2

)
Γ
(
−27

2

)

=
(−1)14(1)(3) · · ·(27)

214 Γ
(
−27

2

)
⇒

Γ
(
−27

2

)
=

214

(1)(3) · · ·(27)
Γ
(

1
2

)

Γ
(

51
2

)
=
(

49
2

)(
47
2

)
· · ·
(

1
2

)
Γ
(

1
2

)
.

Hence

Γ
(

51
2

)
Γ
(
−27

2

)
=

(49)(47) · · ·(27)(25) · · ·(1) Γ
( 1

2

)

225
214

(1)(3) · · ·(27)
Γ
(

1
2

)

=
(49)(47) · · ·(29)

211

[
Γ
(

1
2

)]2

.

Direct computation of this quantity will overflow in the computer. Hence take log-
arithms, simplify and then take antilogarithm to obtain the exact result. It can be
shown that Γ

( 1
2

)
=

√
π where π is the mathematical constant and hence one may

use (1.1.8) while computing Γ
( 1

2

)
.

Example 1.1.2. Show that Γ
( 1

2

)
=
√
π .

Solution 1.1.2: A simple proof can be given with the help of the integral repre-
sentation for gamma functions.

[
Γ
(

1
2

)]2

= Γ
(

1
2

)
Γ
(

1
2

)
=
[∫ ∞

0
x

1
2−1e−xdx

][∫ ∞

0
y

1
2−1e−ydy

]

=
∫ ∞

0

∫ ∞

0
x−

1
2 y−

1
2 e−(x+y)dx∧dy.
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Put x=r cos2 θ , y=r sin2 θ , 0≤ r<∞, 0≤θ ≤ π
2 . Then the Jacobian is 2r sinθ cosθ .

Then,
[
Γ
(

1
2

)]2

=
∫ ∞

r=0

∫ π
2

θ=0
(r cos2 θ)−

1
2 (r sin2 θ)−

1
2 2r cosθ sinθe−rdr∧dθ

=
(

2
∫ π

2

0
dθ
)(∫ ∞

0
e−rdr

)
= π ⇒ Γ

(
1
2

)
=
√
π (1.1.13)

where dr∧dθ denotes the wedge product or skew symmetric product of the differ-
entials dr and dθ .

Also one can give a representation of the Pochhammer symbol in terms of gamma
functions .

(a)n =
Γ(a+n)
Γ(a)

(1.1.14)

whenever the gammas exist.

1.1.2 Wedge product and Jacobians of transformations

Notation 1.1.3. ∧ = wedge product, dx ∧ dy = wedge product of dx and dy.

Definition 1.1.7.

dx∧dy = −dy∧dx ⇒ dx∧dx = −dx∧dx = 0.

Thus, a wedge product is a skew symmetric product. As a consequence of Def-
inition 1.1.7 we can evaluate the Jacobians when transforming a set of variables to
another set of variables. As an example, let us consider two scalar functions of two
real scalar variables x1 and x2. Let

y1 = f1(x1,x2) and y2 = f2(x1,x2).

Then

dy1 =
∂ f1

∂x1
dx1 +

∂ f1

∂x2
dx2 and dy2 =

∂ f2

∂x1
dx1 +

∂ f2

∂x2
dx2

where ∂
∂x denotes the partial derivative operator. Then

dy1 ∧dy2 =
[
∂ f1

∂x1
dx1 +

∂ f1

∂x2
dx2

]
∧
[
∂ f2

∂x1
dx1 +

∂ f2

∂x2
dx2

]

=
∂ f1

∂x1

∂ f2

∂x1
dx1 ∧dx1 +

∂ f1

∂x1

∂ f2

∂x2
dx1 ∧dx2
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+
∂ f1

∂x2

∂ f2

∂x1
dx2 ∧dx1 +

∂ f1

∂x2

∂ f2

∂x2
dx2 ∧dx2

= 0+
∂ f1

∂x1

∂ f2

∂x2
dx1 ∧dx2 +

∂ f1

∂x2

∂ f2

∂x1
dx2 ∧dx1 +0

since dx1 ∧dx1 = 0 and dx2 ∧dx2 = 0

=
[
∂ f1

∂x1

∂ f2

∂x2
− ∂ f1

∂x2

∂ f2

∂x1

]
dx1 ∧dx2 = Jdx1 ∧dx2

since dx2 ∧dx1 = −dx1 ∧dx2

where J is the Jacobian given by the expression

J =
∂ f1

∂x1

∂ f2

∂x2
− ∂ f1

∂x2

∂ f2

∂x1
=

∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

∣
∣
∣
∣
∣
∣
∣
. (1.1.15)

Observe that a 2×2 determinant is evaluated as
∣
∣
∣
∣
a b
c d

∣
∣
∣
∣= (a)(d)− (c)(b),

where |[.]| denotes the determinant of the matrix [.].

Example 1.1.3. Evaluate the Jacobian in the transformation y1 = x1 + x2 and
y2 = x1.

Solution 1.1.3: The Jacobian J is given by

J =

∣
∣
∣
∣
∣
∣
∣

∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

∣
∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
1 1
1 0

∣
∣
∣
∣= (1)(0)− (1)(1) = −1

where

∂ f1

∂x1
=

∂
∂x1

(x1 + x2) = 1,
∂
∂x2

(x1 + x2) = 1,
∂
∂x1

(x1) = 1,
∂
∂x2

(x1) = 0.

Example 1.1.4. Evaluate the Jacobian in the transformation x = r cos2 θ , y =
r sin2 θ .
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Solution 1.1.4: The partial derivatives with respect to r and θ are the following:

∂x
∂ r

= cos2 θ ,
∂x
∂θ

= −2r cosθ sinθ ,
∂y
∂ r

= sin2 θ ,
∂y
∂θ

= 2r sinθ cosθ .

J =

∣
∣
∣
∣
∣
∣

∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
cos2 θ −2r cosθ sinθ
sin2 θ 2r cosθ sinθ

∣
∣
∣
∣

= cos2 θ [2r cosθ sinθ ]+ sin2 θ [2r cosθ sinθ ]

= 2r cosθ sinθ [cos2 θ + sin2 θ ] = 2r cosθ sinθ .

This means,
dx∧dy = Jdr∧dθ = 2r cosθ sinθ dr∧dθ . (1.1.16)

Note that the various steps in the solution of Example 1.1.2 are done with the help
of (1.1.16).

1.1.3 Multiplication formula for gamma functions

Γ(mz) = (2π)
1−m

2 mmz− 1
2Γ(z)Γ

(
z+

1
m

)
· · ·Γ
(

z+
m−1

m

)
, m = 1,2, · · · (1.1.17)

For m = 2 we obtain the duplication formula for gamma functions, namely,

Γ(2z) = (2π)
1−2

2 22z− 1
2Γ(z)Γ

(
z+

1
2

)
= π−

1
2 22z−1Γ(z)Γ

(
z+

1
2

)
. (1.1.18)

We may simplify gamma products with the help of (1.1.17). For example,

1=Γ(1)=Γ
[

2
(

1
2

)]
=π−

1
2 21−1Γ

(
1
2

)
Γ
(

1
2
+

1
2

)
=π−

1
2Γ
(

1
2

)
⇒Γ
(

1
2

)
=
√
π.

1 = Γ(1) = Γ
[

3
(

1
3

)]
= (2π)

1−3
2 31− 1

2Γ
(

1
3

)
Γ
(

2
3

)
Γ(1) ⇒ Γ

(
1
3

)
Γ
(

2
3

)
=

2π√
3
.

By using the product formulae for trigonometric functions we can establish the fol-
lowing results:

Γ(z)Γ(1− z) = π cosecπz (1.1.19)

Γ(z)Γ(−z) = −π
z

cosecπz (1.1.20)

Γ
(

1
2

+ z
)
Γ
(

1
2
− z
)

= π secπz. (1.1.21)
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1.1.4 Asymptotic formula for a gamma function

For |z| → ∞ and α a bounded quantity, it can be shown that

lnΓ(z+α) =
1
2

ln(2π)+
(

z+α− 1
2

)
lnz− z

+
∞

∑
k=1

(−1)k+1Bk+1(α)
k(k +1)zk , |arg (z+α)| ≤ π− ε, ε > 0 (1.1.22)

where Bk+1(α) is a Bernoulli polynomial. A brief description is given here and for
more details see Mathai (1993).

1.1.5 Bernoulli polynomials

Notation 1.1.4.

B(a)
k (x) = generalized Bernoulli polynomial of order k

B(1)
k (x) = Bk(x) = Bernoulli polynomial of order k

Bk(0) = Bk = Bernoulli number of order k

Definition 1.1.8.

tαext

(et −1)α
=

∞

∑
k=0

tk

k!
B(α)

k (x), |t| < 2π; (1.1.23)

text

et −1
=

∞

∑
k=0

tk

k!
Bk(x), |t| < 2π; (1.1.24)

t
et −1

=
∞

∑
k=0

Bk, |t| < 2π. (1.1.25)

1.1.6 Some basic properties of generalized Bernoulli polynomials

B(0)
k (x) = xk; (1.1.26)

B(α)
0 (x) = 1; (1.1.27)

B(α)
k (x) =

dk

dtk

{
ext
[

tα

et −1)α

]}
at t = 0. (1.1.28)

For computational purposes we need the first few Bernoulli polynomials. These will
be listed here.
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1.1.7 The first three generalized Bernoulli polynomials

B(α)
0 (x) = 1;B(α)

1 (x) = x− α
2

;B(α)
2 (x) = x2 −αx+

α(3α−1)
12

. (1.1.29)

From here one has the Bernoulli polynomials and Bernoulli numbers:

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 − x+

1
6

(1.1.30)

B0 = 1, B1 = −1
2
, B2 =

1
6
. (1.1.31)

The first part of (1.1.22) is known as Stirling’s approximation for a gamma function,
namely,

Γ(z+α) ≈ (2π)
1
2 zz+α− 1

2 e−z (1.1.32)

for |z| → ∞ and α a bounded quantity.
For example, taking z = 90 and α = 0.5 we have

Γ(90.5) ≈
√

2π(90)90 e−90.

For α and β bounded and |z| → ∞ we have

Γ(z+α)
Γ(z+α+β )

≈ (2π)
1
2 zz+α− 1

2 e−z

(2π)
1
2 zz+α+β e−z

= z−β . (1.1.33)

Example 1.1.5. Evaluate the following integrals:

(1)
∫ ∞

0
x4 e−x8

dx; (2)
∫ ∞

−∞
e−2|x|dx; (3)

∫ ∞

0
x3 e−2x

1
2 dx.

Solutions 1.1.5:
(1): Put u = x8 ⇒ x = u

1
8 ⇒ dx = 1

8 u
1
8−1du, x4 = u

1
2 .

∫ ∞

0
x4e−x8

dx =
1
8

∫ ∞

0
u

1
2 + 1

8−1 e−udu =
1
8
Γ
(

5
8

)
.

(2): Since the integrand is an even function, f (x) = f (−x), we have
∫ ∞

−∞
e−2|x|dx = 2

∫ ∞

0
e−2xdx =

∫ ∞

0
e−ydy,(2x = y) = 1.

(3): Put y = 2x
1
2 ⇒ x = y2

4 ⇒ dx = 2y
4 dy = y

2 dy.
∫ ∞

0
x3e−2x

1
2 dx =

1
2(43)

∫ ∞

0
y7e−ydy =

1
2(43)

Γ(8) =
7!

2(43)

=
315
8

.
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Exercises 1.1.

1.1.1. Evaluate the following whenever they exist:

(a)
(
− 2

3

)

4
; (b) (−2)3; (c) (1)n; (d) (0)3 .

1.1.2. Evaluate the following, interpreting as the number of combinations, when-
ever they exist:

(a)
(1/3

2

)
; (b)

(−1
2

)
; (c)

(3
5

)
; (d)

(5
2

)
; (e)

(90
4

)
.

1.1.3. Evaluate the following in terms of Γ(α),0 < α ≤ 1.

(a) Γ(− 7
2 ); (b) Γ(− 5

4 ); (c) Γ( 5
2 ); (d) Γ(7) .

1.1.4. Evaluate the following:

(a) Γ( 1
4 )Γ( 3

4 ); (b) Γ( 1
6 )Γ( 5

6 ) .

1.1.5. Prove that Definitions 1.1.3 and 1.1.4 are one and the same.

1.1.6. Prove that zΓ(z) = Γ(z+1) by using Definitions 1.1.1 and 1.1.2.

1.1.7. Evaluate the following integrals:

(a)
∫ ∞

0 x
1
2 e−3x5

dx; (b)
∫ ∞

0 xα−1e−axδ dx (state the conditions).

1.1.8. Evaluate the following integrals:

(a)
∫ ∞
−∞ e−3|x|dx; (b)

∫ ∞
−∞ |x|α−1e−a|x|δ dx (state the conditions).

1.1.9. Show that for ℜ(α) > 0, ℜ(β ) > 0,

Γ(α)Γ(β ) = Γ(α+β )
∫ 1

0
xα−1(1− x)β−1dx = Γ(α+β )

∫ 1

0
xβ−1(1− x)α−1dx.

1.1.10. Show that for ℜ(α) > 0, ℜ(β ) > 0,

Γ(α)Γ(β )=Γ(α+β )
∫ ∞

0
xα−1(1+x)−(α+β )dx =Γ(α+β )

∫ ∞

0
xβ−1(1+x)−(α+β )dx.
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1.2 The Psi and Zeta Functions

The logarithmic derivative of a gamma function is the psi function and successive
derivatives give generalized zeta functions.

Notation 1.2.1. ψ(z): psi z

Definition 1.2.1.

ψ(z) =
d
dz

lnΓ(z) =
1
Γ(z)

d
dz
Γ(z) (1.2.1)

lnΓ(z) =
∫ z

1
ψ(x)dx.

By taking logarithm and then differentiating one can obtain many properties for psi
functions from the corresponding properties of gamma functions. For example, from
(1.1.10.) we have

ψ(z) =
1

z−1
+

1
z−2

+ · · ·+ 1
z− r

+ψ(z− r). (1.2.2)

The following are some further properties:

ψ(z) = −γ− 1
z

+ z
∞

∑
k=1

1
k(z+ k)

(1.2.3)

ψ(z) = −γ+(z−1)
∞

∑
k=0

1
(k +1)(z+ k)

(1.2.4)

ψ(1) = −γ (1.2.5)

ψ
(

1
2

)
= −γ−2ln2 (1.2.6)

ψ(z)−ψ(1− z) = −π cotπz (1.2.7)

ψ
(

1
2

+ z
)
−ψ
(

1
2
− z
)

= π tanπz (1.2.8)

where γ is the Euler’s constant.

1.2.1 Generalized zeta function

Notation 1.2.2.

ζ (ρ,a) : generalized zeta function
ζ (ρ) : Riemann zeta function
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Definition 1.2.2.

ζ (ρ,a) =
∞

∑
k=0

1
(k +a)ρ

, ℜ(ρ) > 1, a 
= 0,−1,−2, · · · (1.2.9)

ζ (ρ) =
∞

∑
k=1

1
kρ

, ℜ(ρ) > 1 . (1.2.10)

For ρ ≤ 1 the series is divergent. Successive derivatives of (1.2.4) yield the following
results:

d2

dz2 lnΓ(z) =
d
dz
ψ(z) =

∞

∑
k=0

1
(z+ k)2 = ζ (2,z) (1.2.11)

dr

dzr lnΓ(z) =
dr−1

dzr−1ψ(z) =

⎧
⎨

⎩

ψ(z), for r = 1

(−1)r(r−1)!ζ (r,z), for r ≥ 2

= (−1)r(r−1)!
∞

∑
k=0

1
(z+ k)r . (1.2.12)

Explicit evaluations can be done in a few cases.

ζ (2) = ζ (2,1) =
∞

∑
k=1

1
k2 =

π2

6
(1.2.13)

ζ (4) = ζ (4,1) =
∞

∑
k=1

1
k4 =

π4

90
(1.2.14)

ζ (2n) = ζ (2n,1) =
∞

∑
k=1

1
k2r =

(−1)r+1(2π)2r

2(2r)!
B2r (1.2.15)

where B2r is a Bernoulli number. For these and other results see Mathai (1993).

Exercises 1.2.

1.2.1. Prove formula (1.2.4) by using (1.1.10).

1.2.2. Prove formula (1.2.3).

1.2.3. Prove formula (1.2.6) by using the duplication formula for gamma func-
tions.

1.2.4. Show that
ψ(1+n) = 1+

1
2

+ · · ·+ 1
n
− γ .
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1.2.5. Evaluate ψ(− 3
2 ).

1.2.6. Evaluate ψ(5).

1.2.7. If lnΓ(z+1) = a0 +a1z+ · · ·+anzn + · · · evaluate an, n = 0,1,2, · · ·

1.2.8. Show that ζ (k, 1
2 ) = (2k −1)ζ (k).

1.2.9. Show that ζ
(
k,− 3

2

)
= (−1)k

(
2k
)
[

1+ 1
3k

]
+ζ
(
k, 1

2

)
.

1.2.10. Show that

ζ
(

k,z− 2r +1
2

)
=

1
(

z− 1
2

)k + · · ·+ 1
(

z− 2r+1
2

)k

+ζ
(

k,z+
1
2

)
,r = 0,1, · · · , k = 2,3, · · ·

1.3 Integral Transforms

Basic integral transforms are the Mellin transform, the Laplace transform and the
Fourier transform. Once the transforms are given, the unique functions which are
recovered from these transforms are known as the inverse transforms such as in-
verse Mellin transform, inverse Laplace transform and inverse Fourier transform
respectively. Depending upon the kernel function in the integral transform we have
many other transforms such as the Bessel transform, Whittaker transform, Hankel
transform, Stieltjes transform, Laguerre transform, hypergeometric transform, K-
transform, Y-transform, G-transform, H-transform etc.

1.3.1 Mellin transform

Notation 1.3.1. Mf (s) : Mellin transform of f (x) with parameter s

Definition 1.3.1. The Mellin transform of a real scalar function f (x) with parame-
ter s is defined as

Mf (s) =
∫ ∞

0
xs−1 f (x)dx (1.3.1)

whenever Mf (s) exists.
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It is a function of the arbitrary parameter s. Existence conditions for the Mellin
and inverse Mellin transforms are available from books on complex analysis. Some
detailed conditions are given in Mathai (1993). Since the participants of the School
are a mixed group it is unwise to go into the theory of integral transforms and the
details of existence conditions. We will introduce the basic transforms and illustrate
how to use these transforms to solve practical problems.

Example 1.3.1. Evaluate the Mellin transform of the function f (x) = e−x for
x > 0.

Solution 1.3.1:

Mf (s) =
∫ ∞

0
xs−1e−xdx = Γ(s) for ℜ(s) > 0 (1.3.2)

from the integral representation of the gamma function in (1.1.6).

Thus given Mf (s) = Γ(s) what is that function which gives rise to this Mf (s).
We know that one such function, if there exists many functions, is e−x. Under the
conditions of uniqueness for the existence of the inverse, the inverse function is
uniquely determined as e−x. The formula for the inverse Mellin transform is the
following:

f (x) =
1

2πi

∫

L
Mf (s)x−sds, i =

√
−1 (1.3.3)

and L is a suitable contour, usually L = {c− i∞,c + i∞} for some real c. Let us
evaluate the inverse transform for Mf (s) in Example 1.3.1.

Example 1.3.2. Given Mf (s) = Γ(s) evaluate f (x).

Solution 1.3.2: From equation (1.3.3), f (x) is given by the formula

f (x) =
1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds. (1.3.4)

This is a contour integral or an integral in the complex domain. The poles of the
integrand Γ(s)x−s are coming from the poles of Γ(s), which are at the points s =
0,−1,−2, · · · . (see Definition 1.1.1). By the residue theorem in complex analysis,
f (x) in (1.3.3) is available as the sum of the residues of the integrand at the poles
s = 0,−1,−2, · · · . The residue at s = −ν , denoted by ℜν is given by

ℜν = lim
s→−ν

(s+ν)[Γ(s)x−s].

Since direct substitution will give an indeterminate quantity we may seek help from
the property of gamma function in (1.1.10). That is,

(s+ν)Γ(s) = (s+ν)
(s+ν−1) · · ·sΓ(s)

(s+ν−1) · · ·s =
Γ(s+ν+1)

(s+ν−1) · · ·s .
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Now, direct substitution is possible and hence

ℜν = lim
s→−ν

Γ(s+ν+1)x−s

(s+ν−1) · · ·s =
Γ(1)xν

(−1)(−2) · · ·(−ν)
=

(−1)ν

ν!
xν .

Hence the sum of the residues is given by

∞

∑
ν=0

ℜ(ν) =
∞

∑
ν=0

(−1)ν

ν!
xν = e−x

which is the inverse function recovered from Mf (s) = Γ(s). We may also observe
from (1.3.4) that the poles are at s = 0,−1,−2, · · · and hence if a straight line con-
tour c− i∞ to c + i∞ is taken with any c > 0 then all the poles of the integrand in
(1.3.4) lie to the left of the contour. Then an infinite semi-circle can enclose all these
poles and the residue theorem applies immediately.

Definition 1.3.2. Residue at z = a. If the scalar function φ(z) in the complex
domain has a pole of order m at z = a then the residue at z = a, denoted by Ra,m is
given by the following:

Ra,m = lim
z→a

{
1

(m−1)!

[
dm−1

dzm−1 (z−a)mφ(z)
]}

(1.3.5)

= lim
z→a

[(z−a)φ(z)] for m = 1 or for a simple pole at z = a.

For example,

φ1(z) =
z5

(z−1)(z−3)

has simple poles or poles of order 1 at z = 1 and at z = 3, whereas

φ2(z) =
e−z

(z−2)3(z+1)

has a simple pole at z = −1 and a pole of order 3 at z = 2. The residue of φ1(z) at
z = 1 is then

R1 = lim
z→1

(z−1)z5

(z−1)(z−3)
= lim

z→1

z5

z−3
=

15

1−3
= −1

2

and the residue of φ1(z) at z = 3 is given by,

R3 = lim
z→3

(z−3)z5

(z−1)(z−3)
= lim

z→3

z5

z−1
=

35

3−1
=

35

2
.



1.3 Integral Transforms 17

The residue at z = 2 in φ2(z) is given by the following:

R2,3 = lim
z→2

{
1
2!

[
d2

dz2 (z−2)3 e−z

(z−2)3(z+1)

]}

= lim
z→2

{
1
2

[
d2

dz2
e−z

z+1

]}

= lim
z→2

{
1
2

[
e−z
(

1
z+1

+
2

(z+1)2 +
2

(z+1)3

)]}

=
1
2

e−2
(

1
3

+
2
9

+
2
27

)
.

1.3.2 Laplace transform

Notation 1.3.2. L f (t) : Laplace transform of f with parameter t.

Definition 1.3.3. The Laplace transform of a real scalar function f (x) of the real
variable x, with parameter t, is defined as

L f (t) =
∫ ∞

0
e−tx f (x)dx (1.3.6)

whenever L f (t) exists. The inverse Laplace transform is given by

f (x) =
1

2πi

∫

L
L f (t)etxdt, i =

√
−1 (1.3.7)

where L is a suitable contour. Thus (1.3.6) and (1.3.7) are known as the Laplace
inverse Laplace pair.

Example 1.3.3. Evaluate the Laplace transform of the following

f (x) =
xα−1

Γ(α)
e−x, x > 0,ℜ(α) > 0 and f (x) = 0 elsewhere.

Solution 1.3.3:

L f (t) =
∫ ∞

0
e−tx xα−1e−x

Γ(α)
dx =

∫ ∞

0

xα−1e−(1+t)x

Γ(α)
dx

= (1+ t)−α for 1+ t > 0.

The Laplace transform in (1.3.6) need not exist always. But if t is replaced by it
i =

√
−1, then

e−itx = cos tx− isin tx and |e−itx| = |cos tx− isin tx| = 1.



18 1 Basic Ideas of Special Functions and Statistical Distributions

Hence ∣
∣
∫ ∞

−∞
e−itx f (x)dx

∣
∣≤
∫ ∞

−∞
| f (x)|dx.

Therefore, if f (x) is an absolutely integrable function in the sense
∫ ∞
−∞ | f (x)|dx <∞

then
∫ ∞
−∞ e−itx f (x)dx always exists. This is known as the Fourier transform of f (x),

denoted by Ff (t). That is,

Ff (t) =
∫ ∞

−∞
e−itx f (x)dx, i =

√
−1. (1.3.8)

More aspects of the basic transforms will be discussed after introducing statistical
densities.

Exercises 1.3.

1.3.1. Convolution property for Mellin transform. Let

g(u) =
∫ ∞

0

1
v

f1(v) f2

(u
v

)
dv. (1.3.9)

Then show that the Mellin transform of g(u) with parameter s, denoted by h(s),
is the product of the Mellin transforms of f1(x) and f2(y) respectively. That is,
h(s) = h1(s)h2(s), h1(s) =

∫ ∞
0 xs−1 f1(x)dx, h2(s) =

∫ ∞
0 ys−1 f2(y) dy.

1.3.2. Show that

∫ 1

0
xα−1(1−x)β−1dx =

∫ 1

0
yβ−1(1−y)α−1dy =

Γ(α)Γ(β )
Γ(α+β )

, ℜ(α) > 0,ℜ(β ) > 0.

1.3.3. Show that

∫ ∞

0
xα−1(1+ x)−(α+β )dx =

∫ ∞

0
yβ−1(1+ y)−(α+β )dy

=
Γ(α)Γ(β )
Γ(α+β )

, ℜ(α) > 0,ℜ(β ) > 0.

1.3.4. By using Exercise 1.3.2., or otherwise, evaluate the Mellin transform of
the function

f (x) =
Γ(α+β )
Γ(α)Γ(β )

xα−1(1− x)β−1, 0 ≤ x ≤ 1,

ℜ(α) > 0,ℜ(β ) > 0 and f (x) = 0 elsewhere.
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1.3.5. By using Exercise 1.3.3., or otherwise, evaluate the Mellin transform of
the function

f (x) =
Γ(α+β )
Γ(α)Γ(β )

xα−1(1+ x)−(α+β ),

x > 0,ℜ(α) > 0,ℜ(β ) > 0 and f (x) = 0 elsewhere.

1.3.6. Evaluate the Laplace transform of the function in Exercise 1.3.4. if it exists.

1.3.7. Evaluate the Laplace transform of the function in Exercise 1.3.5. if it exists.

1.3.8. Convolution property of Laplace transforms. Let

g(u) =
∫ u

0
f1(u− x) f2(x)dx. (1.3.10)

Then the Laplace transform of g(u) is the product of the Laplace transforms of f1(x)
and f2(x) respectively, whenever the Laplace transforms exist.

1.3.9. Let f (x) be a real scalar function of the real and positive variable x.
Consider the transformation y =− lnx. Then show that the Mellin transform of f (x)
with parameter s is the same as the Laplace transform of the corresponding function
of y with parameter s−1 when the transforms exist.

1.3.10. Evaluate the inverse Laplace transform of

L f (t) =
1

(1+2t)(1+3t)
.

1.4 Some Statistical Preliminaries

A random experiment is an experiment where the outcomes are not deterministic.
If the purpose of an experiment is to see whether a gold coin will sink in water
then the outcome is predetermined. The coin will sink in water. It is not a random
experiment. Consider an experiment of throwing a coin. Call one side of the coin
“head” and the other side “tail”. If the aim is to see whether head or tail will turn
up when the coin is thrown once then the outcome is not predetermined. There is a
chance that the head may turn up. There is also a chance that the tail may be the one
turning up. This is a random experiment. If we assume that the coin will not stand on
its edge and that it will fall head (H) or tail (T) for sure then there are two possible
outcomes in this random experiment. The outcome set, called “sample space”, is
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then {H,T}. If a die ( a cube with the six faces marked 1,2,3,4,5,6 ) is rolled once
then either 1 may turn up or 2 may turn up, · · · , or 6 may turn up. The sample space
here is the set {1,2,3,4,5,6}.

An event is a subset of the sample space. In the case of the die the event of
rolling a number between 3 and 5 (inclusive) is the set {3,4,5}. The event of rolling
an even number is the set {2,4,6}. In the case of throwing a coin once the event
of getting a head A = {H} and the event of getting a tail B = {T}. The “chance”
of the occurrence of the event A is called the probability of A, denoted by Pr(A)
or simply P(A). Let us assign a number between 0 and 1 to measure P(A). In the
experiment of throwing a coin once the event of getting two heads is impossible
or it is a null set, denoted by O. The event of getting either a head or tail when
the coin is thrown once is sure to happen. It is a sure event, denoted by S. Let us
assign the number zero to the impossible event O and the number one to the sure
event S. Then any event C ⊂ S (subset of S) has the probability 0 ≤ P(C) ≤ 1. In
the random experiment of throwing a coin once the events A = {H} and B = {T}
are mutually exclusive because when A occurs B cannot occur or their intersection
is null or A∩B = O. In this experiment the union of these two events is the sure
event itself, that is A∪B = S. In the experiment of rolling a die once consider the
following events: A1 = {1},A2 = {3,5},A3 = {4},A4 = {2,6}. Then Ai∩A j = O for
all i 
= j and A1∪A2∪A3∪A4∪= S. These events are then called mutually exclusive
(intersections are null sets) and totally exhaustive (union is the sure event). The
probability of an event will be defined by using the following postulates. For any
sample space S of a random experiment let A be an event, A ⊂ S, with probability of
A denoted by P(A). Then P(A) is assumed to satisfy the following postulates:

(i) 0 ≤ P(A) ≤ 1
(ii) P(S) = 1 (1.4.1)
(iii) P(A1 ∪A2 ∪·· ·) = P(A1)+P(A2)+ · · · whenever A1,A2, · · ·

are mutually exclusive.

The above postulates will not help to evaluate the probability of an event in a
given situation. What is the probability that it will rain at 12 noon tomorrow over
this lecture hall? There are two possibilities: A = event that it will rain, B = event
that it will not rain. These are mutually exclusive and totally exhaustive and hence

1 = P(S) = P(A∪B) = P(A)+P(B)

from postulates (ii) and (iii) and we know that 0≤P(A)≤ 1. Since there are only two
possibilities A and B we cannot conclude that P(A) = 1

2 . These two events obviously
do not have equal probabilities. A meteorologist will be able to give a good estimate
for P(A).

In the case of throwing a coin once what is the probability of getting a head? If
the events are A = {H} and B = {T} then as before we can come to the equation

1 = P(A)+P(B) with 0 ≤ P(A) ≤ 1.
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We cannot say that P(A) = 1
2 claiming that there are only two possibilities. In the

case of rain we have seen that probabilities cannot be assigned by simply looking
at the number of possibilities. If there is no way of preferring one event to another
or if there is symmetry in the outcomes of the random experiment then one way is
to assign equal probabilities. If there is symmetry with respect to all characteristics
of the coin then we say that the coin is balanced. In this case we will assign equal
probabilities P(A) = 1

2 and P(B) = 1
2 .

Example 1.4.1. If a “balanced” coin is tossed twice the possibilities are {HH},
{HT}, {T H}, {T T} where the first letter denotes the outcome in the first trial.
Since we assumed symmetry in the outcomes we assign equal probabilities to the
events P(A1) = 1

4 , P(A2) = 1
4 , P(A3) = 1

4 , P(A4) = 1
4 where A1 = {H,H}, A2 =

{H,T}, A3 = {T,H}, A4 = {T,T}. Let x denote the number of heads in the indi-
vidual outcomes. Then x can take the values 2,1,0. Thus x is a variable. Further, we
can assign probabilities to the values x takes. Probability that x = 2 is the probability
of the event A1. But x = 1 means either A2 or A3 has occurred with probabilities 1

4
each. Hence we have the following probability function for x , denoted by f (x)

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
4 , for x = 2

2
4 , for x = 1

1
4 , for x = 0

0, elsewhere.

This is an example of a discrete random variable, discrete in the sense of taking
individually distinct values, such as 2,1,0, with nonzero probabilities. Observe also
that we can define a function of the following type F(y) = probability that x is less
than or equal to y, or written as

F(y) = Pr{x ≤ y},cumulative probabilities up to y

for all real values of y. In our example above, F(y)= 0 for all y such that −∞< y < 0.
But at y = 0 there is a probability 1

4 and there is no probability for the interval
0 < y < 1. But at y = 1 there is another probability of 1

2 and no probability over the
interval 1 < y < 2 and then 1

4 at y = 2. Thus F(y) is a step function of the following
form:

F(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, −∞< y < 0
1
4 , 0 ≤ y < 1
3
4 , 1 ≤ y < 2
1, 2 ≤ y < ∞.

0 1 2 y

F(y)

1
4

 1
2

1
4

Fig. 1.4.1 A distribution function
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P C Q

o
x l

Fig. 1.4.2 Random cut

Example 1.4.2. Random cut. A child played with scissors and cut a string of
length l into two pieces. Let one end of the uncut string be denoted by P, the other
end by Q and the point of cut by C. Let the distance PC be denoted by x. Note that x
is a variable and we can also make probability statements on x. A convenient way to
assign probabilities to x is to assign “relative lengths” as probabilities. What is the
probability that the cut C is between 8.2 and 9.4, when l = 10.

Then
Pr{8.2 ≤ x ≤ 9.4} =

9.4−8.2
10

=
1.2
10

= 0.12

is the probability that x falls between 8.2 and 9.4 or that C falls between 8.2 and 9.4.
What is the probability that the cut is between 11 and 11.5. This, of course is zero
because it is an impossible event. What is the probability that C is on an interval of
length ∆x over the closed interval [0,10]? The answer is obviously ∆x

10 . Then we may
associate a function f (x) with this random variable x that

f (x) =

{
1

10 , 0 ≤ x ≤ 10
0, elsewhere.

This x is defined on a continuum of points with nonzero probabilities and hence it
is called a continuous random variable as opposed to a discrete random variable. In
this case what is the probability that x = 2.3 ? The length is zero here and hence

Pr{x = 2.3} =
2.3−2.3

10
= 0.

In this example also one can look at the cumulative probability function.
Let

F(y) = Pr{x ≤ y}

=

⎧
⎪⎨

⎪⎩

0, −∞< y < 0
∫ y

0
1

10 dx = y
10 , 0 ≤ y ≤ 10

1, y ≥ 10.

100

1
10
y

Fig. 1.4.3 A distribution function

Definition 1.4.1. A random variable. A real variable x for which a probability
statement of the type Pr{x ≤ y} makes sense for all real y,−∞< y < ∞, is called a
real random variable.
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If x takes individually distinct values with nonzero probabilities (as in Example
1.4.1) then x is called a discrete random variable whereas if x takes a continuum of
points with nonzero probabilities (as in Example 1.4.2) then x is called a continuous
random variable.

Definition 1.4.2. The distribution function or cumulative probability function.
For any random variable x, F(y) = Pr{x ≤ y} is called the distribution function
associated with x.

If x is discrete then F(y) will be a step function as in Figure 1.4.1. In general,
whether x is discrete or continuous or mixed, F(y) satisfies the following conditions:

(i) F(−∞) = 0
(ii) F(∞) = 1
(iii) F(a) ≤ F(b) for a < b. (1.4.2)

If F(x) corresponds to a continuous random variable and if F(x) is differentiable
then

f (x) =
d
dx

F(x) (1.4.3)

is the density function for the continuous random variable x. If F(x) is a step func-
tion then the probability function f (x) of the discrete random variable x is available
by taking successive differences. A density or probability function satisfies the fol-
lowing conditions:

(i) f (x) ≥ 0 for all x (1.4.4)

(ii)
∫ ∞

−∞
f (x)dx = 1 if x is continuous, and

∞

∑
−∞

f (x) = 1 (1.4.5)

if x is discrete, where Σ denotes a sum.

Example 1.4.3. Check whether the following are density functions correspond-
ing to a continuous real random variable x.

(a) f (x) = λe−λx,x > 0,λ > 0 and f (x) = 0 elsewhere.

(b) f (x) =
xα−1e−

x
β

βαΓ(α)
, x > 0,α > 0,β > 0 and f (x) = 0 elsewhere.

(c) f (x) =
1

b−a
, a ≤ x ≤ b,a < b and f (x) = 0 elsewhere.

Solution 1.4.1:

(a) Is f (x) ≥ 0 for all x ? Obviously it is true. Is the total integral 1?
∫ ∞

−∞
f (x)dx = 0+

∫ ∞

0
λe−λxdx =

∫ ∞

0
e−ydy, (y = λx)

= 1.
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2 5.7

Fig. 1.4.4 Probability of an event

Hence it is a density function. This density is known as the exponential density.
What is the probability that x takes values between 2 and 5.7 in this case?

Pr{2 ≤ x ≤ 5.7} =
∫ 5.7

2
λe−λxdx

= area under the curve between the ordinates at x = 2 and x = 5.7.

In the continuous case, in general when a single real random variable is in-
volved, the probabilities are the areas under the curve and the total area = total
probability = 1.

(b) It is obvious that f (x) ≥ 0 for all x. Is the total integral 1?

∫ ∞

−∞
f (x)dx = 0+

∫ ∞

0

xα−1e−
x
β

βαΓ(α)
dx =

∫ ∞

0

yα−1e−y

Γ(α)
dy,
(

y =
x
β

)

=
Γ(α)
Γ(α)

= 1.

It is a density. This is called a gamma density or a two parameter gamma density.
It is a density whatever be the values of α > 0 and β > 0. Such unknowns in a
density function, or in a probability function, are called parameters. Here there
are two parameters and in the example (a) above there was one parameter λ .

(c) The first condition is obvious and hence we check the second condition.

∫ ∞

−∞
f (x)dx = 0+

∫ b

a

1
b−a

dx =
[

x
b−a

]b

a
=

b−a
b−a

= 1.

This is called a uniform density in the sense that the probability is uniformly
distributed over the closed interval [a,b] in the sense that the probabilities, which
are areas under the curve, over intervals of equal lengths are equal wherever be
the intervals taken from [a,b].
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a b

Fig. 1.4.5 Uniform density

Example 1.4.4. Check whether the following are probability functions corre-
sponding to some discrete random variable x.

(a) f (x) =
(

n
x

)
px(1− p)n−x,x = 0,1,2, · · · ,n, 0 < p < 1 and f (x) = 0 elsewhere.

(b) f (x) =
λ x

x!
e−λ ,x = 0,1,2, · · · , λ > 0 and f (x) = 0 elsewhere.

Solution 1.4.2:

(a) The first condition is obvious. Hence we check the second condition.

∞

∑
−∞

f (x) = 0+
n

∑
x=0

(
n
x

)
px(1− p)n−x = [p+(1− p)]n = 1n = 1.

Hence it is a probability function. It is called the binomial probability function
and x here is called a binomial random variable because the probability function
f (x) is the general term in the binomial expansion [a + b]n where a = p,b =
1− p.

(b) The first condition is obvious. Consider

∞

∑
−∞

f (x) = 0+
∞

∑
x=0

λ x

x!
e−λ = e−λ

∞

∑
x=0

λ x

x!
= e−λ eλ = 1.

This is known as the Poisson probability function, named after its inventor
S. Poisson, a French mathematician. Note that we have only probability masses
at individual points x = 0,x = 1, · · · . For example,

Pr{x = 0} =
λ 0

0!
e−λ = e−λ , Pr{x = 1} =

λ 1

1!
e−λ = λe−λ ,

and so on.

Example 1.4.5. Poisson arrivals. Consider an event taking place over time t, such
as the arrival of telephone calls to a switchboard, arrival of customers at a check-
out counter, arrival of cars for repair in a repair garage, occurrence of earth quakes
at a particular locality, and so on. Let the arrivals be governed by the following
conditions: (i) The probability of an arrival in time interval t to t +∆t is proportional
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to its length, say λ∆t. (ii) The probability of more than one arrival in this interval
of length ∆t is negligibly small, we take it as zero for all practical purposes. (iii)
Arrival or non-arrival in [t, t +∆t] has nothing to do with what happened before.
Under these conditions, what is the probability of getting exactly x arrivals in time t.
Let us denote this probability of x arrivals in time t by f (x, t). Then f (x, t +∆t) is the
probability of x arrivals in time t +∆t or in the interval [0, t +∆t]. This can happen
in two ways: exactly x arrivals in [0, t] and no arrivals in [t, t +∆t] or exactly x− 1
arrivals in [0, t] and one arrival in [t, t +∆t]. These are mutually exclusive events
also. Hence,

f (x, t +∆t) = f (x, t)[1−λ∆t]+ f (x−1, t)λ∆t. (1.4.6)

That is,

f (x, t +∆t)− f (x, t)
∆t

= λ [ f (x−1, t)− f (x, t)].

Taking the limit as ∆t → 0 we have the difference-differential equation

∂
∂ t

f (x, t) = −λ [ f (x, t)− f (x−1, t)]. (1.4.7)

This can be solved successively by noting that at x = 0, f (x− 1, t) = 0 since the
number of arrivals has to be zero or more. Thus,

∂
∂ t

f (0, t) = −λ f (0, t) ⇒ f (0, t) = e−λ t .

Solving successively (the reader may also verify ) we have,

f (x, t) =
(λ t)x

x!
e−λ t ,λ > 0, t > 0,x = 0,1,2, · · · . (1.4.8)

and zero elsewhere, or we have a Poisson probability law with parameter λ t.

Exercises 1.4.

1.4.1. Bernoulli probability law. Show that f (x) = px(1− p)1−x,x = 0,1,0 < p < 1
and f (x) = 0 elsewhere is a probability function.

1.4.2. Discrete hypergeometric law. Show that

f (x) =
(

a
x

)(
b

n− x

)
/

(
a+b

n

)
,x = 0,1, · · · ,n or a;

b,a positive integers, is a probability function.
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1.4.3. Bose-Einstein density. Show that

f (x) =
1

c[−1+ exp(α+βx)]
,0 < x < ∞,β > 0

is a density where c is the normalizing constant (in the sense that c will make the
total integral unity). Evaluate c also.

1.4.4. Cauchy density. Show that

f (x) =
c

∆2 +(x−µ)2 ,−∞< x < ∞,∆> 0

is a density where c is the normalizing constant. Evaluate c also.

1.4.5. Fermi-Dirac density. Show that

f (x) =
1

c[1+ exp(α+βx)]
,0 < x < ∞,α 
= 0,β > 0,

is a density where c is the normalizing constant. Evaluate c also.

1.4.6. Generalized gamma (gamma, chisquare, exponential, Weibull, Rayleigh etc
special cases). Show that

f (x) = cxα−1e−axδ , α > 0,a > 0,δ > 0, 0 < x < ∞.

is a density function where c is the normalizing constant. Evaluate c also.

1.4.7. Helley’s density. Show that

f (x) =
(mg

KT

)
e−(mg x)/(KT ), x > 0,m > 0,g > 0,T > 0

is a density function.

1.4.8. Helmert density. Show that

f (x) =
n

(n−1)
2 ( x

σ )n−2 e−( nx2

2σ2 )

σ2
(n−3)

2 Γ( n−1
2 )

, 0 < x < ∞,σ > 0,

n a positive integer, is a density function.

1.4.9. Normal or Gaussian density. Show that

f (x) = c e−
1
2 ( x−µ

σ )2
,−∞< x < ∞,−∞< µ < ∞, σ > 0

is a density. Evaluate the normalizing constant c.

1.4.10. Maxwell-Boltzmann density. Show that

f (x) =
4√
π
β

3
2 x2e−βx2

, 0 < x < ∞,β > 0

is a density.
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1.5 Some Properties of Random Variables

A few essential properties of random variables will be given here so that the rele-
vance of special functions can be appreciated.

Notation 1.5.1. E[ψ(x)] : Expected value of ψ(x)

Definition 1.5.1.

E[ψ(x)] =
∫ ∞

−∞
ψ(x) f (x)dx (1.5.1)

when x is continuous with density function f (x)

=
∞

∑
−∞
ψ(x) f (x) (1.5.2)

when x is discrete with probability function f (x).

Example 1.5.1. Evaluate the expected value of xr when x has an exponential
density

f (x) = λe−λx, x > 0,λ > 0 and f (x) = 0 elsewhere.

Solution 1.5.1:

E(xr) = 0+
∫ ∞

0
xrλe−λxdx = λ−r

∫ ∞

0
yr+1−1e−ydy,y = λx

= λ−rΓ(r +1) = r!λ−r

by evaluating with the help of a gamma function. For example, the expected values
of x in this case is

E(x) =
1
λ

.

Example 1.5.2. Evaluate the expected value of a Poisson random variable x with
parameter λ .

Solution 1.5.2:

E(x) = 0+
∞

∑
x=0

x
λ x

x!
e−λ = e−λ

∞

∑
x=1

x
λ x

x!

= λe−λ
∞

∑
x=1

λ x−1

(x−1)!
= λe−λ eλ = λ .

The expected value of the Poisson random variable is the parameter itself.
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Definition 1.5.2. µ ′
r = E(xr) is called the rth moment of x and E(x−E(x))r = µr

is called the rth central moment of x.

µ ′
1 = E(x)

is also called the mean value of x or the centre of gravity in x. When x is discrete,
taking values x1, · · · ,xk with the corresponding probabilities p1, · · · , pk, pi ≥ 0, i =
1, · · · ,k, p1 + · · ·+ pk = 1 then

E(x) =
k

∑
i=1

pixi = ∑k
i=1 pixi

∑k
i=1 pi

. (1.5.3)

This can be considered to be a phys-
ical system with weights p1, · · · , pk at
x1, · · · ,xk then E(x) is the center of grav-
ity of the system.

p1 p2 pk

x1 x2 xk

Fig. 1.5.1 Centre of gravity

µ2 = E[x−E(x)]2 = E[x2 − xE(x)+ [E(x)]2]

= E(x2)− [E(x)]2 = Var(x) (1.5.4)

is called the variance of x and the positive square root σ =
√

Var(x) is called the
standard deviation of x. Observe that σ can measure the spread or dispersion in
x from the point E(x). In a physical system µ2 can also represent the moment of
inertia of the system. Observe that from the definition of expected value it follows
that

E[aψ(x)+b] = aE[ψ(x)]+b, (1.5.5)

where a and b are constants.

E[etx] = M(t); M(−t) = L f (t), (1.5.6)

is called the moment generating function of x. Observe that when t is replaced by
−t and when the variable is continuous with density function f (x) for a positive
random variable x then M(−t) is the Laplace transform of f (x). When t is replaced
by it, i =

√
−1 we obtain the characteristic function of x and when it is replaced by

−it we obtain the Fourier transform of the density of x.

Example 1.5.3. Evaluate the variance of the random variable x having the density
function

f (x) =

⎧
⎪⎨

⎪⎩

x, 0 ≤ x ≤ 1
2− x, 1 ≤ x ≤ 2
0, elsewhere.
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Solution 1.5.3:

E(x) = 0+
∫ 1

0
x(x)dx+

∫ 2

1
x(2− x)dx

=
[

x3

3

]1

0
+
[

2x2

2
− x3

3

]2

1
= 1.

E(x2) = 0+
∫ 1

0
x2(x)dx+

∫ 2

1
x2(2− x)dx =

7
6
.

Var(x) = E(x2)− [E(x)]2 =
7
6
−12 =

1
6
.

Example 1.5.4. Evaluate the moment generating function for the Gaussian or
normal density

f (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2
,−∞< x < ∞, −∞< µ < ∞,σ > 0.

Solution 1.5.4:

M(t) = E(etx) = etµE[et(x−µ)] since etµ is a constant

= etµ
∫ ∞

−∞
et(x−µ) 1

σ
√

2π
e−

1
2 ( x−µ

σ )2
dx.

Put y = x−µ
σ ⇒ dx = σdy. Then for z = (y− tσ)/

√
2

M(t) = etµ
∫ ∞

−∞

etσy− 1
2 y2

√
2π

dy = etµ+ t2σ2
2

∫ ∞

−∞

e−z2

√
π

dz,

= etµ+ t2σ2
2 .

The last part is evaluated with the help of a gamma function.
∫ ∞

−∞

e−z2

√
π

dz = 2
∫ ∞

0

e−z2

√
π

dz due to evenness

=
∫ ∞

0

w
1
2−1e−w
√
π

dw,w = z2

=
Γ( 1

2 )√
π

=
√
π√
π

= 1.

1.5.1 Multivariate analogues

A function f (x1, · · · ,xk) of k real variables (x1, · · · ,xk) is a probability function or a
density function if it satisfies the following conditions:
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(i) f (x1, · · · ,xk) ≥ 0 for all x1, · · · ,xk

(ii)
∫ ∞
−∞ · · ·

∫ ∞
−∞ f (x1, · · · ,xk)dx1 ∧·· ·∧dxk = 1 if x1, · · · ,xk are continuous and

∞

∑
−∞

· · ·
∞

∑
−∞

f (x1, · · · ,xk) = 1 if x1, · · · ,xk are discrete. (1.5.7)

For mixed cases when some variables are discrete and others continuous sum up the
discrete ones and integrate the continuous ones.

One popular multivariate (many variables case) discrete situation is the multino-
mial probability law given by the probability function

f (x1, · · · ,xk) =
n!

x1! · · ·xk!
px1

1 · · · pxk
k , pi > 0, i = 1, · · · ,k,

p1 + · · ·+ pk = 1, xi = 0,1, · · · ,n, i = 1, · · ·k, x1 + · · ·+ xk = n.

This is a k− 1 variate probability function. Since x1 + · · ·+ xk = n there are only
k−1 free variables.

For any multivariate probability density function we can define expected values,
product moments, joint moment generating function, joint characteristic function
etc.

M(t1, · · · , tk) = E[et1x1+···+tkxk ]

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
et1x1+···+tkxk f (x1, · · · ,xk)dx1 ∧·· ·∧dxk (1.5.8)

if x1, · · · ,xk continuous with density f (x1, · · · ,xk)

=
∞

∑
−∞

· · ·
∞

∑
−∞

et1x1+···+tkxk f (x1, · · · ,xk) (1.5.9)

if x1, · · · ,xk are discrete, is the joint moment generating function of x1, · · · ,xk. If
ti is replaced by −ti for i = 1, · · · ,k then we obtain the Laplace transform of the
density f (x1, · · · ,xk) for xi > 0, i = 1, · · · ,k. If t j is replaced by −it j, i =

√
−1 for

j = 1, · · · ,k we have the Fourier transform of f (x1, · · · ,xk) for x j continuous for
j = 1, · · · ,k.

1.5.2 Marginal and conditional densities

If f (x1, · · · ,xk) is the joint density of the random variables x1, · · · ,xk then if we inte-
grate out a few of the variables we obtain the joint marginal density of the remaining
variables. For example
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f1(x1) =
∫ ∞

−∞

∫ ∞

−∞
f (x1,x2,x3)dx2 ∧dx3 (1.5.10)

is the marginal density of x1 when f (x1,x2,x3) is the joint density of x1,x2 and x3.
If x1, · · · ,xk have the joint density f (x1, · · · ,xk) and if x1, · · · ,xr and xr+1, · · · ,xk

have the joint marginal densities g1(x1, · · · ,xr) and g2(xr+1, · · · ,xk) respectively
then the conditional density of x1, · · · ,xr given xr+1 = ar+1, · · · ,xk = ak, where
ar+1 · · · ,ak are given numbers, is given by h(x1, · · · ,xr|xr+1 = ar+1 · · · ,xk = ak)

=
f (x1, · · · ,xk)

g2(xr+1, · · · ,xk)
at xr+1 = ar+1, · · · ,xk = ak (1.5.11)

provided g2(ak+1, · · · ,ak) 
= 0.

Example 1.5.5. Evaluate the marginal densities of x1 and x2 and the conditional
density of x1 given x2 = 1

3 from the function

f (x1,x2) = x1 + x2,0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 and f (x1,x2) = 0 elsewhere,

provided it is a joint density function. Check whether it is a joint density.

Solution 1.5.5: Let the marginal densities be denoted by f1(x1) and f2(x2) re-
spectively.

f1(x1) =
∫

x2

f (x1,x2)dx2 =
∫ 1

0
(x1 + x2)dx2 = x1 +

1
2

f2(x2) =
∫

x1

f (x1,x2)dx1 =
∫ 1

0
(x1 + x2)dx1 = x2 +

1
2

f (x1,x2) ≥ 0 for all x1 and x2. Further,
∫ ∞

−∞

∫ ∞

−∞
f (x1,x2)dx1 ∧dx2 = 0+

∫ 1

0

∫ 1

0
(x1 + x2)dx1 ∧dx2 =

∫ 1

0

(
x1 +

1
2

)
dx1 = 1.

Hence f (x1,x2) is a joint density and the marginal densities are as given above. The
conditional density of x1 given x2 = 1

3 is given by

h
(

x1|x2 =
1
3

)
=

f (x1,x2)
f2(x2)

at x2 =
1
3

=
x1 + x2

x2 + 1
2

∣
∣ 1

3
=

x1 + 1
3

1
3 + 1

2

=
6
5

(
x1 +

1
3

)
,0 ≤ x1 ≤ 1

and h(x1|x2 = 1
3 ) = 0 elsewhere.

Observe that the notation for x1|x2 ( x1 given x2 ) is a vertical bar after the first
set of variables, and not a division symbol.
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Exercises 1.5.

1.5.1. Evaluate the conditional density of y given x and (1) the conditional ex-
pectation of y given x, denoted by E(y|x), (2) the conditional variance of y given x,
denoted by Var(y|x) if the following is a joint density function of x and y. Verify that
it is a joint density.

f (x,y) =
1

x2σ
√

2π
e−

1
2 ( y−2−3x

σ )2
,−∞< y < ∞, 1 ≤ x < ∞,σ > 0

and f (x,y) = 0 elsewhere.

1.5.2. If the joint density is the product of the marginal densities then the random
variables are said to be independent or independently distributed. Show that in (i)
below the variables are independently distributed whereas in (ii) the variables are
not independent.

(i) f (x1,x2,x3) = 6e−x1−2x2−3x3 ,0 ≤ x1 < ∞,0 ≤ x2 < ∞,0 ≤ x3 < ∞, and
f (x1,x2,x3) = 0 elsewhere.

(ii) f (x,y) = x+ y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and zero elsewhere.

1.5.3. Evaluate the conditional density of x1 given x2 and x3, denoted by g1
(x1|x2,x3) in (i) of Exercise 1.5.2 and the conditional density of x given y, de-
noted by g2(x|y) in (ii) of Exercise 1.5.2. Evaluate the conditional expectations
E(x1|x2 = 5,x3 = 10),E(x|y = 2

3 ) and show that E(x1|x2,x3) = E(x1) and E(x|y) 
=
E(x). [When the variables are independently distributed the conditional expectation
is the same as the marginal expectation or it is free of the conditions imposed on the
conditioned variables].

1.5.4. Let x j have the gamma density

f j(x j) =
x
α j−1
j

βα j
j Γ(α j)

, e
− x j
β j x j ≥ 0, α j > 0, β j = β > 0

and f j(x j) = 0 elsewhere, for j = 1,2. Assume that x1 and x2 are independently dis-
tributed [the joint density is the product of marginal densities when independent].
Consider u = x1 +x2,v = x1

x1+x2
and w = x1

x2
. Show that (i) u and v are independently

distributed [ Hint: Consider the transformation x1 = r cos2 θ ,x2 = r sin2 θ ], (ii) u is
gamma distributed (u has a gamma density ), and (iii) evaluate the densities of v
and w.
1.5.5. Evaluate the joint moment generating function in Exercise 1.5.2 (i) and
show that it is a product of the marginal (individual ) moment generating functions
due to independence of the variables.
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1.5.6. Evaluate the joint moment generating function in Exercise 1.5.2 (ii) and
show that it is not the product of the marginal (individual ) moment generating func-
tions.
1.5.7. The covariance between two random variables x and y, denoted by
Cov(x,y), is defined for non-degenerate random variables (Var(x) 
= 0,Var(y) 
= 0 ).
It is a measure of joint variation in (x,y) and it is defined as

Cov(x,y) = E[x−E(x)][y−E(y)]

and the linear correlation in (x,y) is defined as ρ = Cov(x,y)√
Var(x)Var(y)

= ρ(x,y). Show

that whatever be the non-degenerate random variables x and y,−1 ≤ ρ ≤ 1 and
ρ = ±1 if and only if y = a+bx,b 
= 0,a,b constants.

1.5.8. Show that

(i) Cov(x,y) = E(xy)−E(x)E(y)
(ii) ρ(x,y) = ρ(ax+b,cy+d), a > 0,c > 0,a,b,c,d constants.

1.5.9. Evaluate Cov(x,y) and ρ(x,y) in the joint density in Exercise 1.5.2 (ii)
1.5.10. Show that the following is a joint density of x and y:

f (x,y) = 2,0 ≤ x ≤ y ≤ 1 and zero elsewhere.

For this joint density evaluate Cov(x,y) and ρ(x,y).

1.6 Beta and Related Functions

Notation 1.6.1. B(α,β ) : Beta function

Definition 1.6.1.

B(α,β ) =
Γ(α)Γ(β )
Γ(α+β )

,ℜ(α) > 0,ℜ(β ) > 0. (1.6.1)

One can give several types of integral representations for the beta function.

B(α,β ) =
∫ 1

0
xα−1(1− x)β−1dx, 0 ≤ x ≤ 1, ℜ(α) > 0,ℜ(β ) > 0, (1.6.2)

=
∫ 1

0
yβ−1(1− y)α−1dy.

These are known as type-1 integral representations of a beta function. We can also
show that
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B(α,β ) =
∫ ∞

0
xα−1(1+ x)−(α+β )dx

=
∫ ∞

0
yβ−1(1+ y)−(α+β )dy, ℜ(α) > 0,ℜ(β ) > 0. (1.6.3)

These are known as type-2 integral representations of a beta function. The deriva-
tions of these integral representations can be done starting from the definition of a
gamma function. Consider the integral representation

Γ(α)Γ(β ) =
∫ ∞

0
xα−1e−xdx

∫ ∞

0
yβ−1e−ydy =

∫ ∞

0

∫ ∞

0
xα−1yβ−1e−(x+y)dx∧dy

for ℜ(α) > 0,ℜ(β ) > 0. Make the transformation

x = r cos2 θ ,y = r sin2 θ ⇒ dx∧dy = 2r sinθ cosθ dr∧dθ .

Then

Γ(α)Γ(β ) =
∫ ∞

r=0

∫ π/2

θ=0
rα+β−1e−r(cos2 θ)α−1(sin2 θ)β−12sinθ cosθ dr∧dθ

=
∫ ∞

r=0
rα+β−1e−rdr

∫ π/2

θ=0
(cos2 θ)α−1(sin2 θ)β−12sinθ cosθ dθ .

= Γ(α+β )
∫ 1

0
uα−1(1−u)β−1du, [u=cos2 θ ⇒ du=−2cosθ sinθdθ ].

Hence
∫ 1

0
uα−1(1−u)β−1du =

Γ(α)Γ(β )
Γ(α+β )

, ℜ(α) > 0,ℜ(β ) > 0. (1.6.4)

=
∫ 1

0
vβ−1(1− v)α−1dv, [v = 1−u].

Put

w =
u

1−u
⇒ 1

(1+w)2 dw = du, u =
w

1+w
.

Then
∫ 1

0
uα−1(1−u)β−1du =

∫ ∞

0
wα−1(1+w)−(α+β )dw, ℜ(α) > 0,ℜ(β ) > 0

=
∫ ∞

0
tβ−1(1+ t)−(α+β )dt, [t =

1
w

]. (1.6.5)

With the help of type-1 and type-2 beta functions we can define the corresponding
beta densities.

Definition 1.6.2. Type-1 beta density

f1(x) =
1

B(α,β )
xα−1(1− x)β−1, 0 ≤ x ≤ 1, ℜ(α) > 0,ℜ(β ) > 0 (1.6.6)

and f1(x) = 0 elsewhere.
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Definition 1.6.3. Type-2 beta density

f2(x) =
1

B(α,β )
xα−1(1+ x)−(α+β ), ℜ(α) > 0,ℜ(β ) > 0,x > 0 (1.6.7)

and f2(x) = 0 elsewhere.

Note that both f1(x) and f2(x) satisfy non-negativity with the total integral being
unity.

Example 1.6.1. Evaluate the h-th moment of x if x has

(i) a gamma distribution with density

f1(x) =
xα−1e−x

Γ(α)
,x ≥ 0,ℜ(α) > 0,ℜ(β ) > 0, and f1(x) = 0 elsewhere;

(ii) a type-1 beta distribution with density

f2(x)=
Γ(α+β )
Γ(α)Γ(β )

xα−1(1−x)β−1, 0≤x≤1,ℜ(α)>0, and f2(x)=0elsewhere;

(iii) a type-2 beta density

f3(x) =
Γ(α+β )
Γ(α)Γ(β )

xα−1(1+ x)−(α+β ), 0 ≤ x < ∞,ℜ(α) > 0,ℜ(β ) > 0

and f3(x) = 0 elsewhere.

Solution 1.6.1:
(i)

E(xh) =
∫ ∞

0
xh xα−1e−x

Γ(α)
dx =

1
Γ(α)

∫ ∞

0
xα+h−1e−xdx

=
Γ(α+h)
Γ(α)

forℜ(α+h) > 0. (1.6.8)

Thus the h-th moment exists for negative values of h also provided α+h > 0
if α and h are real. In statistical problems usually the parameters are all real.
For h = s−1 one has the Mellin transform of f1(x).

(ii)

E(xh) =
∫ 1

0
xh Γ(α+β )
Γ(α)Γ(β )

xα−1(1− x)β−1dx

=
Γ(α+β )
Γ(α)Γ(β )

∫ 1

0
xα+h−1(1− x)β−1dx

=
Γ(α+β )
Γ(α)Γ(β )

Γ(α+h)Γ(β )
Γ(α+β +h)

forℜ(α+h) > 0

=
Γ(α+h)
Γ(α)

Γ(α+β )
Γ(α+β +h)

. (1.6.9)
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For h = s−1 one has the Mellin transform of f2(x). Thus, as an inverse Mellin
transform, f2(x), is available from (1.6.9). That is,

f2(x) =
1

2πi

∫ c+i∞

c−i∞

Γ(α+ s−1)
Γ(α)

Γ(α+β )
Γ(α+β + s−1)

x−sds, (1.6.10)

i =
√
−1. Evaluating this contour integral as the sum of the residues at the

poles of Γ(α+ s−1) one obtains f2(x) as given in the example.
(iii)

E(xh) =
∫ ∞

0
xh Γ(α+β )
Γ(α)Γ(β )

xα−1(1+ x)−(α+β )dx

=
Γ(α+β )
Γ(α)Γ(β )

∫ ∞

0
xα+h−1(1+ x)−[(α+h)+(β−h)]dx

=
Γ(α+β )
Γ(α)Γ(β )

Γ(α+h)Γ(β −h)
Γ(α+β )

for ℜ(α+h) > 0,ℜ(β −h) > 0

=
Γ(α+h)
Γ(α)

Γ(β −h)
Γ(β )

for −ℜ(α) <ℜ(h) <ℜ(β ). (1.6.11)

Thus, only a few moments satisfying the condition −α < h < β can exist when
α and β are real.

1.6.1 Dirichlet integrals and Dirichlet densities

A multivariate integral, which is a generalization of a beta integral, is the Dirichlet
integral. We looked at type-1 and type-2 beta integrals. Here we consider type-1 and
type-2 Dirichlet integrals and their generalizations. Analogously we will also define
the corresponding statistical densities.

Notation 1.6.2. Dirichlet function: D(α1, · · · ,αk;αk+1) (real scalar case)

Definition 1.6.4.

D(α1, · · · ,αk;αk+1) =
Γ(α1)Γ(α2) · · ·Γ(αk+1)
Γ(α1 + · · ·+αk+1)

forℜ(α j) > 0, j = 1, · · · ,k +1.

(1.6.12)

Note that for k = 1 we have the beta function in the real scalar case. Consider the
following integral:

D1 =
∫

Ω
· · ·
∫

xα1−1
1 · · ·xαk−1

k (1− x1 −·· ·− xk)αk+1−1dx1 ∧·· ·∧dxk (1.6.13)
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where Ω = {(x1, · · · ,xk)|0 ≤ xi ≤ 1, i = 1, · · · ,k,0 ≤ x1 + · · ·+ xk ≤ 1}. Since 1−
x1 −·· ·− xk ≥ 0 we have 0 ≤ x1 ≤ 1− x2 −·· ·− xk. Integration over x1 yields the
following:
∫ 1−x2−···−xk

x1=0
xα1−1

1 (1− x1 − x2 −·· ·− xk)αk+1−1dx1 = (1− x2 −·· ·− xk)αk+1−1

×
∫ 1−x2−···−xk

x1=0
xα1−1

1

[
1− x1

1− x2 −·· ·− xk

]αk+1−1

dx1.

Put, for fixed x2, · · · ,xk,

y1 =
x1

1− x2 −·· ·− xk
⇒ dx1 = (1− x2 −·· ·− xk)dy1.

Then the integral over x1 yields,

(1− x2 −·· ·− xk)α1+αk+1−1
∫ 1

0
yα1−1

1 (1− y1)αk+1−1dy1

= (1− x2 −·· ·− xk)α1+αk+1−1Γ(α1)Γ(αk+1)
Γ(α1 +αk+1)

forℜ(α1) > 0, ℜ(αk+1) > 0. Integral over x2 yields,

Γ(α1)Γ(αk+1)
Γ(α1 +αk+1)

Γ(α2)Γ(α1 +αk+1)
Γ(α1 +α2 +αk+1)

=
Γ(α1)Γ(α2)Γ(αk+1)
Γ(α1 +α2 +αk+1)

.

Proceeding like this, we have the final result:

D1 = D(α1, · · · ,αk;αk+1) =
Γ(α1)Γ(α2) · · ·Γ(αk+1)
Γ(α1 + · · ·+αk+1)

, ℜ(α j) > 0, j = 1, · · · ,k +1.

(1.6.14)
Here, (1.6.13) is the type-1 Dirichlet integral. Hence by normalizing the integrand
in (1.6.13) we have the type-1 Dirichlet density.

Definition 1.6.5. Type-1 Dirichlet density f1(x1, · · · ,xk).

f1(x1, · · · ,xk) =
1

D(α1, · · · ,αk;αk+1)
xα1−1

1 · · ·xαk−1
k (1− x1 −·· ·− xk)αk+1−1,

0 ≤ x j ≤ 1, j = 1, · · · ,k, 0 ≤ x1 + · · ·+ xk ≤ 1, ℜ(α j) > 0, (1.6.15)
j = 1, · · · ,k +1, and f1(x1, · · · ,xk) = 0 elsewhere.

Consider the type-2 Dirichlet integral

D2 =
∫ ∞

0
· · ·
∫ ∞

0
xα1−1

1 · · ·xαk−1
k (1+ x1 + · · ·+ xk)−(α1+···+αk+1)dx1 ∧·· ·∧dxk.

(1.6.16)
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This can be integrated by writing

(1+ x1 + · · ·+ xk) = (1+ x2 + · · ·+ xk)
[

1+
x1

1+ x2 + · · ·+ xk

]

and then integrating out with the help of type-2 beta integrals. The final result will
agree with the Dirichlet function

D2 = D(α1, · · ·αk;αk+1). (1.6.17)

Thus, we can define a type-2 Dirichlet density.

Definition 1.6.6. Type-2 Dirichlet density.

f2(x1, · · · ,xk)=
1

D(α1, · · · ,αk;αk+1)
xα1−1

1 · · ·xαk−1
k (1+ x1 + · · ·+ xk)−(α1+···+αk+1),

0 ≤ x j < ∞, j = 1, · · · ,k, ℜ(α j) > 0, j = 1, · · · ,k +1, (1.6.18)

and f2(x1, · · · ,xk) = 0 elsewhere.

It is easy to observe that if (x1, · · · ,xk) has a k-variate type-1 Dirichlet density
then any subset of r of the variables have a r-variate type-1 Dirichlet density for
r = 1, · · · ,k. Similarly if (x1, · · · ,xk) have a type-2 Dirichlet density then any subset
of them will have a type-2 Dirichlet density.

Example 1.6.2. Evaluate the marginal densities from the following bivariate den-
sity:

f (x1,x2) =
Γ(α1 +α2 +α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−1
1 xα2−1

2 (1− x1 − x2)α3−1,0 ≤ x j ≤ 1, j = 1,2,3,

0 ≤ x1 + x2 + x3 ≤ 1, ℜ(α j) > 0, j = 1,2,3, and f (x1,x2) = 0 elsewhere.

Solution 1.6.2: Let the marginal densities be denoted by f1(x1) and f2(x2) re-
spectively.

f1(x1) =
∫

x2

f (x1,x2)dx2 =
Γ(α1 +α2 +α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−1
1

×
∫ 1−x1

x2=0
xα2−1

2 (1− x1 − x2)α3−1dx2

=
Γ(α1 +α2 +α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−1
1 (1− x1)α3−1

∫ 1−x1

x2=0
xα2−1

2

[
1− x2

1− x1

]α3−1

dx2.

Put, for fixed x1,

y2 =
x2

1− x1
⇒ dx2 = (1− x1)dy2.
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f1(x1) =
Γ(α1 +α2 +α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−1
1 (1− x1)α2+α3−1

∫ 1

0
yα2−1

2 (1− y2)α3−1dy2.

Evaluating the y2-integral with the help of a type-1 beta integral we obtain Γ(α2)Γ(α3)
Γ(α2+α3) .

Hence,

f1(x1) =
Γ(α1 +α2 +α3)
Γ(α1)Γ(α2 +α3)

xα1−1
1 (1− x1)α2+α3−1,0 ≤ x1 ≤ 1,

and zero elsewhere. From symmetry,

f2(x2) =
Γ(α1 +α2 +α3)
Γ(α2)Γ(α1 +α3)

xα2−1
2 (1− x2)α1+α3−1 0 ≤ x2 ≤ 1,

and zero elsewhere. Thus, the marginal densities of x1 and x2 are type-1 beta
densities.

Example 1.6.3. Evaluate the normalizing constant c if the following is a density
function:

f (x1,x2) = cxα1−1
1 (1− x1)β1xα2−1

2 (1− x1 − x2)α3−1,0 ≤ x j ≤ 1, (1.6.19)

0 ≤ x1 + x2 ≤ 1, j = 1,2, ℜ(α j) > 0, j = 1,2,3 and f (x1,x2) = 0 elsewhere.

Solution 1.6.3: Let us integrate out x2 first.

∫ 1−x1

x2=0
xα2−1

2 (1− x1 − x2)α3−1dx2

= (1− x1)α2+α3−1
∫ 1

0
yα2−1

2 (1− y2)α3−1dy2,y2 =
x2

1− x1

= (1− x1)α2+α3−1Γ(α2)Γ(α3)
Γ(α2 +α3)

, ℜ(α2) > 0, ℜ(α3) > 0.

Now, integrating out x1 we have,

∫ 1

0
xα1−1

1 (1− x1)β1+α2+α3−1dx1 =
Γ(α1)Γ(β1 +α2 +α3)
Γ(α1 +α2 +α3 +β1)

ℜ(α1) > 0, ℜ(β1 +α2 +α3) > 0. Hence

c=
Γ(α2 +α3)Γ(α1 +α2 +α3 +β1)
Γ(α1)Γ(α2)Γ(α3)Γ(α2 +α3 +β1)

, ℜ(α j) > 0, j = 1,2,3,ℜ(α2 +α3 +β1)>0.

A generalization to k variable case is one of the generalizations of type-1 Dirichlet
density and the corresponding type-1 Dirichlet function.



1.6 Beta and Related Functions 41

Example 1.6.4. Evaluate the normalizing constant if the following is a density
function:

f (x1,x2,x3) = cxα1−1
1 (x1 + x2)β2 xα2−1

2 (x1 + x2 + x3)β3 xα3−1
3 (1− x1 − x2 − x3)α4−1,

0 ≤ x1 + · · ·+ x j ≤ 1, j = 1,2,3,4, ℜ(α j) > 0, j = 1,2,3,4,
(1.6.20)

ℜ(α1 + · · ·+α j +β2 + · · ·+β j) > 0, j = 1,2,3,4

and f (x1,x2,x3) = 0 elsewhere.

Solution 1.6.4: Let u1 = x1, u2 = x1 + x2, u3 = x1 + x2 + x3 and let the joint
density of u1,u2,u3 be denoted by g(u1,u2,u3). Then

g(u1,u2,u3) = c uα1−1
1 uβ2

2 (u2 −u1)α2−1uβ3
3 (u3 −u2)α3−1(1−u3)α4−1,

0 ≤ u1 ≤ u2 ≤ u3 ≤ 1.

Note that 0 ≤ u1 ≤ u2. Integration over u1 yields the following:

∫ u2

u1=0
uα1−1

1 (u2 −u1)α2−1du1 = uα2−1
2

∫ u2

u1=0
uα1−1

1

(
1− u1

u2

)α2−1

du1

= uα1+α2−1
2

∫ 1

0
yα1−1

1 (1− y1)α2−1dy1, y1 =
u1

u2

= uα1+α2−1
2

Γ(α1)Γ(α2)
Γ(α1 +α2)

, ℜ(α1) > 0,ℜ(α2) > 0.

Integration over u2 yields the following:
∫ u3

u2=0
uα1+α2+β2−1

2 (u3 −u2)α3−1du2 = uα1+α2+α3+β2−1
3

Γ(α3)Γ(α1 +α2 +β2)
Γ(α1 +α2 +α3 +β2)

forℜ(α3) > 0,ℜ(α1 +α2 +β2) > 0.

Finally, integral over u3 yields the following:

∫ 1

u3=0
uα1+α2+α3+β2+β3−1

3 (1−u3)α4−1du3 =
Γ(α4)Γ(α1 +α2 +α3 +β2 +β3)
Γ(α1 + · · ·+α4 +β2 +β3)

,

ℜ(α4) > 0,ℜ(α1 +α2 +α3 +β2 +β3) > 0.

Hence

c−1 = Γ(α1)Γ(α2)Γ(α3)Γ(α4)
Γ(α1 +α2 +β2)

Γ(α1 +α2 +α3 +β2)

× Γ(α1 +α2 +α3 +β2 +β3)
Γ(α1 +α2 +α3 +α4 +β2 +β3)

forℜ(α j) > 0, j = 1,2,3,4, ℜ(α1 + · · ·+α j +β2 + · · ·+β j) > 0, j = 2,3.
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Note that one can generalize the function in (1.6.20) to a k- variables situation. This
will produce another generalization of the type-1 Dirichlet function as well as the
type-1 Dirichlet density. Corresponding situations in the type-2 case will provide
generalizations of the type-2 Dirichlet integral and density.

Exercises 1.6.

1.6.1. Let f (x1,x2,x3) = cxα1−1
1 (1 + x1)−(α1+β1)xα2−1

2 (1 + x1 + x2)−(α2+β2)xα3−1
3

(1+x1 +x2 +x3)−(α3+β3), 0 ≤ x j <∞, j = 1,2,3 and f (x1,x2,x3) = 0 elsewhere. If
f (x1,x2,x3) is a density function then evaluate c and write down the conditions on
the parameters.

1.6.2. Generalize the density in Exercises 1.6.1 to k-variables case, evaluate the
corresponding c and write down the conditions.

1.6.3. Write down the k-variables situation in Example 1.6.3 and evaluate the
normalizing constant, and give the conditions on the parameters.

1.6.4. Write down the general density corresponding to Example 1.6.4 and evaluate
the normalizing constant, and give the conditions on the parameters.

1.6.5. By using the gamma structure in the normalizing constant in Exercise 1.6.4
show that the joint density in Exercise 1.6.4 can also be obtained as the joint density
of k mutually independently distributed real scalar type-1 beta random variables,
and identify the parameters in these independent type-1 beta random variables.

1.7 Hypergeometric Series

A general hypergeometric series with p upper or numerator parameters and q lower
or denominator parameters is denoted and defined as follows:

Notation 1.7.1.

pFq (a1, · · · ,ap;b1, · · · ,bq;z) = pFq((ap);(bq);z) = pFq(z)

Definition 1.7.1.

pFq(z) =
∞

∑
r=0

(a1)r · · ·(ap)r

(b1)r · · ·(bq)r

zr

r!
(1.7.1)

where (a j)r and (b j)r are the Pochhammer symbols of (1.0.1). The series in (1.7.1)
is defined when none of the b j ’s, j = 1, · · · ,q, is a negative integer or zero. If a
b j is a negative integer or zero then (b j)r will be zero for some r. A b j can be zero
provided there is a numerator parameter ak such that (ak)r becomes zero first before
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(b j)r becomes zero. If any numerator parameter a j is a negative integer or zero then
(1.7.1) terminates and becomes a polynomial in z. From the ratio test it is evident
that the series in (1.7.1) is convergent for all z if q ≥ p, it is convergent for |z| < 1
if p = q + 1 and divergent if p > q + 1. When p = q + 1 and |z| = 1 the series can
converge in some cases. Let

β =
p

∑
j=1

a j −
q

∑
j=1

b j.

It can be shown that when p = q+1 the series is absolutely convergent for |z|= 1 if
ℜ(β ) < 0, conditionally convergent for z = −1 if 0 ≤ ℜ(β ) < 1 and divergent for
|z| = 1 if 1 ≤ℜ(β ).

Some special cases of a pFq are the following: When there are no upper or lower
parameters we have,

0F0(; ;±z) =
∞

∑
r=0

(±z)r

r!
= e±z. (1.7.2)

Thus 0F0(.) is an exponential series.

1F0(α; ;z) =
∞

∑
r=0

(α)r
zr

r!
= (1− z)−α for |z| < 1. (1.7.3)

This is the binomial series. 1F1(.) is known as confluent hypergeometric series or
Kummers’s hypergeometric series and 2F1(.) is known as Gauss’ hypergeometric
series .

Example 1.7.1. Incomplete gamma function. Evaluate the incomplete gamma
function

γ(α,b) =
∫ b

0
xα−1e−xdx, b < ∞

and write it in terms of a Kummer’s hypergeometric function.

Solution 1.7.1: Since b is finite we may expand the exponential part and inte-
grate term by term.

γ(α,b) =
∫ b

0
xα−1

{
∞

∑
r=0

(−1)r

r!
xr

}

dx =
∞

∑
r=0

(−1)r

r!

∫ b

0
xα+r−1dx

=
∞

∑
r=0

(−1)r

r!
bα+r

α+ r
=

bα

α

∞

∑
r=0

(−1)r

r!
(α)r

(α+1)r
br

=
bα

α 1F1(α;α+1;−b). (1.7.4)

Hence the upper part

Γ(α,b) =
∫ ∞

b
xα−1e−xdx = Γ(α)− γ(α,b). (1.7.5)
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Example 1.7.2. Incomplete beta function. Evaluate the incomplete beta function

b(α,β ; t) =
∫ t

0
xα−1(1− x)β−1dx, t < 1

and write it in terms of a Gauss’ hypergeometric function.

Solution 1.7.2: Note that since 0 < x < 1,

(1− x)β−1 = (1− x)−(1−β ) =
∞

∑
r=0

(1−β )r

r!
xr.

Hence,

b(α,β ; t) =
∞

∑
r=0

(1−β )r

r!

∫ t

0
xα+r−1dx =

∞

∑
r=0

(1−β )r

r!
tα+r

α+ r

=
tα

α

∞

∑
r=0

(1−β )r(α)r

(α+1)r

tr

r!
=

tα

α 2F1(1−β ,α;α+1; t). (1.7.6)

Hence the upper part,

B(α,β ; t) =
∫ 1

t
xα−1(1− x)β−1dx =

Γ(α)Γ(β )
Γ(α+β )

−b(α,β ; t). (1.7.7)

Example 1.7.3. Obtain an integral representation for a 2F1.

Solution 1.7.3: Consider the integral,
∫ 1

0
xa−1(1− x)c−a−1(1− zx)−bdx, for |z| < 1

=
∞

∑
r=0

zr

r!
(b)r

∫ 1

0
xa+r−1(1− x)c−a−1dx,(expanding (1− zx)−b

by binomial expansion)

=
∞

∑
r=0

zr

r!
(b)r

Γ(a+ r)Γ(c−a)
Γ(c+ r)

(by using a type-1 beta integral)

=
Γ(a)Γ(c−a)

Γ(c)

∞

∑
r=0

zr

r!
(b)r(a)r

(c)r
(by writing Γ(a+ r) = (a)rΓ(a))

=
Γ(a)Γ(c−a)

Γ(c) 2F1(a,b;c;z).

That is,

2F1(a,b;c;z) =
Γ(c)

Γ(a)Γ(c−a)

∫ 1

0
xa−1(1− x)c−a−1(1− zx)−bdx (1.7.8)

forℜ(a) > 0, ℜ(c−a) > 0 |z| < 1.
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This is the famous integral representation for 2F1. From the integral representation
note that when z = 1 one can evaluate the integral with the help of a type-1 beta
integral. That is,

2F1 (a,b;c;1) =
Γ(c)

Γ(a)Γ(c−a)

∫ 1

0
xa−1(1− x)c−a−b−1dx

=
Γ(c)

Γ(a)Γ(c−a)
Γ(a)Γ(c−a−b)

Γ(c−b)
.

=
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(1.7.9)

when the arguments of all the gammas are positive. This is the famous summation
formula for a 2F1 series.

1.7.1 Evaluation of some contour integrals

Since the technique of Mellin and inverse Mellin transforms is frequently used for
solving some problems in applied areas we will look into the evaluation of some
contour integrals with the help of residue theorem. We will not go into the theory of
analytic functions and residue calculus. We will need to know only how to apply the
residue theorem for evaluating some integrals where the integrands contain gamma
functions. In order to illustrate the technique let us redo a known result.

Example 1.7.4. Evaluate the contour integral, which is also an inverse Mellin
transform,

f (x) =
1

2πi

∫ c+i∞

c−i∞

Γ(a1 − s) · · ·Γ(ap − s)
Γ(b1 − s) · · ·Γ(bq − s)

Γ(s)(−z)−sds (1.7.10)

as the sum of the residues at the pole of Γ(s).

Solution 1.7.4: The poles are at s = −ν ,ν = 0,1, · · · . The residue at s = −ν is
given by the following:

ℜν = lim
s→−ν

{
(s+ν)Γ(s)

Γ(a1 − s) · · ·Γ(ap − s)
Γ(b1 − s) · · ·Γ(bq − s)

(−z)−s
}

.

By using the process in Example 1.3.2 we have,

ℜν =
(−1)ν

ν!
Γ(a1 +ν) · · ·Γ(ap +ν)
Γ(b1 +ν) · · ·Γ(bq +ν)

(−z)ν

=

{
∏p

j=1Γ(a j)

∏q
j=1Γ(b j)

}
(a1)ν · · ·(ap)ν
(b1)ν · · ·(bq)ν

zν

ν!
.
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Hence the sum of the residues is given by,

∞

∑
ν=0

ℜν = K
∞

∑
v=0

(a1)ν · · ·(ap)ν
(b1)ν · · ·(bq)ν

zν

ν!
= K pFq(a1, · · · ,ap;b1, · · · ,bq;z)

where K is the constant

K =
∏p

j=1Γ(a j)

∏q
j=1Γ(b j)

.

Thus 1
K times the right side in (1.7.10) is the Mellin-Barnes representation for a gen-

eral hypergeometric function. If poles of higher orders are involved then one may
use the general formula. If φ(z) has a pole of order m at z = a then the residue at
z = a, denoted by ℜa,m, is given by the following formula:

ℜa,m = lim
z→a

{
1

(m−1)!
[

dm−1

dzm−1 (z−a)mφ(z)]
}

. (1.7.11)

Some illustrations of this formula will be given when we solve some problems in
astrophysics later on.

1.7.2 Residues when several gammas are involved

Let

φ(z) = Γ(b1 + z) · · ·Γ(bm + z)x−z

= h(z)x−z with
h(z) = Γ(b1 + z) · · ·Γ(bm + z).

Depending upon the values of b1, · · · ,bm one can expect poles of orders 1,2, ...,m if
the b j’s differ by integers. Let z = a be a pole of order k for φ(z). Then the residue
of φ(z) at z = a is given by the following:

Ra,k = lim
z→a

{
1

(k−1)!
∂ k−1

∂ zk−1 [(z−a)kφ(z)]
}

= lim
z→a

{
1

(k−1)!
∂ k−1

∂ zk−1 [(z−a)kh(z)x−z]
}

.

Note that a convenient operator can be used to take x−z outside. Consider the oper-
ator [

∂
∂ z

+(− lnz)
]k−1

=
k−1

∑
r=0

(
k−1

r

)
(− lnx)k−1−r ∂ r

∂ zr . (1.7.12)
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Then

∂ k−1

∂ zk−1 [(z−a)kh(z)x−z]

= x−z
[
∂
∂ z

+(− lnx)
]k−1

[(z−a)kh(z)]

= x−z
k−1

∑
r=0

(
k−1

r

)
(− lnx)k−1−r ∂ r

∂ zr [(z−a)kh(z)].

Let

B(z) = (z−a)kh(z) and A(z) =
∂
∂ z

lnB(z).

Then

∂ r

∂ zr B(z) =
∂ r−1

∂ zr−1

[
∂
∂ z

B(z)
]

=
∂ r−1

∂ zr−1 [B(z)A(z)]

=
r−1

∑
r1=0

(
r−1

r1

)
A(r−1−r1)(z)B(r1)(z) (1.7.13)

where, for example,

A(m)(z) =
∂m

∂ zm A(z).

The above recurrence relation can be used when computing the residues. Thus

Ra,k =
x−a

(k−1)!

k−1

∑
r=0

(
k−1

r

)
(− lnx)k−1−r{

r−1

∑
r1=0

(
r−1

r1

)
A(r−1−r1)

0

×
r1−1

∑
r2=0

(
r1 −1

r2

)
A(r1−1−r2)

0 · · ·
}

B0 (1.7.14)

where
B0 = lim

z→a
B(z) and A(m)

0 = lim
z→a

A(m)(z). (1.7.15)

For convenience of computations the first few terms of the differential operator
{
∂
∂ z

+(− lnx)
}ν

B(z) = Hν(z)B(z) (1.7.16)

will be listed here explicitly, where

A(0) = A, Ar = [A(z)]r, A(m)
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is the m-th derivative of A(z),A(z) = d
dz lnB(z).

H0 =1
H1 =(− lnx)+A

H2 =(− lnx)2 +2(− lnx)A+A(1) +A2

H3 =(− lnx)3 +3(− lnx)2A+3(− lnx)(A(1) +A2)

+(A(2) +3A(1)A+A3). (1.7.17)

Exercises 1.7.

1.7.1. For a Gauss’ hypergeometric function 2F1 derive the following relation-
ships:

2F1(a,b;c;z) = (1− z)−b
2F1(c−a,b;c;− z

1− z
),z 
= 1

= (1− z)−a
2F1(a,c−b;c;− z

1− z
),z 
= 1

= (1− z)c−a−b
2F1(c−a,c−b;c;z).

1.7.2. Let x1 and x2 be independently distributed real scalar gamma random vari-
ables with the parameters (α1,1) and (α2,1) respectively. Let u = x1x2. Evaluate
the density of u by using Mellin transformation technique when α1 and α2 do not
differ by integers or zero.

1.7.3. Let x1 and x2 be independently distributed real type-1 beta random variables
with the parameters (α1,β1) and (α2,β2) respectively. Let u = x1x2. Evaluate the
density of u by using Mellin transform technique if α1 and α2 do not differ by
integers or zero.

1.7.4. Repeat the problem in Exercise 1.7.3 if x1 and x2 are type-2 beta distributed,
where α1 −α2 
= ±λ ,λ = 0,1, · · ·β1 −β2 
= ±ν ,ν = 0,1,2, · · · .

1.7.5. Let f (x) = 1
2πi
∫ c+i∞

c−i∞ Γ(α−s)Γ(s)x−sds. Evaluate f (x) as the sum of residues
at the poles of Γ(s). Then evaluate it again at the poles of Γ(α− s). Then compare
the two results. In the first case we get the function for |x| < 1 and in the second
case for |x| > 1.

1.7.6. Evaluate the integral

f (x) =
1

2πi

∫ c+i∞

c−i∞
φ(s)x−sds
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where

φ(s) =
Γ
( 3

2 + s−1
)

Γ
( 3

2

)
Γ
( 7

2

)

Γ
( 7

2 + s−1
)
Γ(2+ s−1)

Γ(2)
Γ(4)

Γ(4+ s−1)

for ℜ
( 1

2 + s
)

> 0.

1.7.7. Evaluate the integral

f (x) =
1

2πi

∫ c+i∞

c−i∞

Γ
( 1

3 + s
)
Γ
( 5

6 + s
)

Γ
( 7

3 + s
)
Γ
( 17

6 + s
)x−sds

for c > − 1
3 , i =

√
−1,0 < x < 1.

1.7.8. Evaluate

f (x) =
1

3
√
π

1
2πi

∫ c+i∞

c−i∞
Γ(3+ s)Γ

(
1
2

+ s
)

x−sds,

for x > 0,c > − 1
2 .

1.7.9. Evaluate

f (x) =
1

144
1

2πi

∫ c+i∞

c−i∞
Γ(3+ s)Γ(4+ s)x−sds,x > 0,c > −3.

1.7.10. Prove that

1
2πi

∫ c+i∞

c−i∞

Γ(α+ s−1)Γ(α+ s− 1
2 )

Γ(α+β + s−1)Γ(α+β + s− 1
2 )

x−sds

=
22β−1

Γ(2β )
xα−1(1− x

1
2 )2β−1,

0 < x < 1,ℜ(α) > 0,ℜ(β ) > 0,c > −ℜ(α−1).

1.8 Meijer’s G-function

A generalization of the hypergeometric function in the real scalar case is Meijer’s
G-function. It is defined in terms of a Mellin-Barnes integral.

Notation 1.8.1.

Gm,n
p,q

[
z
∣
∣a1,...,ap
b1,...,bq

]
= Gm,n

p,q

[
z
∣
∣(ap)
(bq)

]
= Gm,n

p,q (z) = G(z).
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Definition 1.8.1. G-function.

Gm,n
p,q [z
∣
∣a1,...,ap
b1,...,bq

] =
1

2πi

∫

L

{
∏m

j=1Γ(b j + s)
}{
∏n

j=1Γ(1−a j − s)
}

z−sds
{
∏q

j=m+1Γ(1−b j − s)
}{
∏p

j=n+1Γ(a j + s)
} (1.8.1)

where L is a contour separating the poles of Γ(b j + s), j = 1, · · · ,m from those of
Γ(1− a j − s), j = 1, · · · ,n. Three types of contours are described and the condi-
tions of existence for the G-function are discussed in Mathai (1993). The simplified
conditions are the following: G(z) exists for the following situations:

(i) q ≥ 1,q > p, for all z,z 
= 0
(ii) q ≥ 1,q = p, for |z| < 1

(iii) p ≥ 1, p > q, for all z,z 
= 0 (1.8.2)
(iv) p ≥ 1, p = q, for |z| > 1.

Example 1.8.1. Evaluate

f (x) = G1,0
1,1

[
x
∣
∣α+β+1
α

]
.

Solution 1.8.1: As per our notation, m = 1,n = 0, p = 1,q = 1.

G1,0
1,1

[
x
∣
∣α+β+1
α

]
=

1
2πi

∫

L

Γ(α+ s)
Γ(α+β +1+ s)

x−sds.

As per situation (ii) above we should obtain a convergent function for |x| < 1 if we
evaluate the integral as the sum of the residues at the poles of Γ(α + s). The poles
are at s = −α−ν ,ν = 0,1, · · · and the sum of the residues

∞

∑
ν=0

ℜν =
∞

∑
ν=0

(−1)ν

ν!
xν+α

Γ(β +1−ν)
;Γ(β +1−ν) =

(−1)νΓ(β +1)
(−β )ν

.

G1,0
1,1[x
∣
∣α+β+1
α ] =

xα

Γ(β +1)

∞

∑
ν=0

(−β )νxν

ν!
=

xα

Γ(β +1)
(1− x)β , |x| < 1 (1.8.3)

for ℜ(β +1) > 0.

Example 1.8.2. Let u = x1x2 · · ·xp where x1, · · · ,xp are independently distributed
real random variables with (1) : x j gamma distributed with parameters (α j,1), j =
1, · · · , p; (2) : x j type-1 beta distributed with parameters (α j,β j), j = 1, · · · , p;(3) :
x j is type-2 beta distributed with parameters (α j,β j), j = 1, · · · , p. Evaluate the den-
sity of u in (1),(2) and (3).

Solution 1.8.2: Taking the (s−1)th moment of u or the Mellin transform of the
density of u we have the following:
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E(us−1) = E(x1 · · ·xp)s−1 = E(xs−1
1 · · ·xs−1

p ) = E(xs−1
1 ) · · ·E(xs−1

p )

due to independence

=
p

∏
j=1

E(xs−1
j ) =

p

∏
j=1

Γ(α j + s−1)
Γ(α j)

,ℜ(α j + s−1) > 0, j = 1, · · · , p

for case (1)

=
p

∏
j=1

Γ(α j + s−1)
Γ(α j)

Γ(α j +β j)
Γ(α j +β j + s−1)

,ℜ(α j + s−1) > 0, j = 1, · · · , p

for case (2)

=
p

∏
j=1

Γ(α j + s−1)
Γ(α j)

Γ(β j − s+1)
Γ(β j)

,ℜ(α j + s−1) > 0,ℜ(β j − s+1) > 0,

j = 1, · · · , p for case (3).
Let the densities be denoted by g1(u),g2(u) and g3(u) respectively. They are
available from the respective inverse Mellin transforms which can be written as
G-functions as follows:

g1(u) =
1

2πi

∫ c+i∞

c−i∞

{
p

∏
j=1

Γ(α j −1+ s)
Γ(α j)

}

u−sds

=
1

{
∏p

j=1Γ(α j)
}Gp,0

0,p[u
∣
∣
α j−1, j=1,··· ,p], for u > 0,ℜ(α j) > 0, j = 1, · · · , p

(1.8.4)

and zero elsewhere.

g2(u) =
1

2πi

∫ c+i∞

c−i∞

{
p

∏
j=1

Γ(α j + s−1)
Γ(α j)

Γ(α j +β j)
Γ(α j +β j + s−1)

}

u−sds

=

{
p

∏
j=1

Γ(α j +β j)
Γ(α j)

}

Gp,0
p,p[u
∣
∣α j+β j−1, j=1,··· ,p
α j−1, j=1,··· ,p ],0 < u < 1, (1.8.5)

ℜ(α j) > 0,ℜ(β j) > 0, j = 1, · · · , p and zero elsewhere .

g3(u) =
1

2πi

∫ c+i∞

c−i∞

{
p

∏
j=1

Γ(α j + s−1)
Γ(α j)

Γ(β j − s+1)
Γ(β j)

}

u−sds (1.8.6)

=
1

{
∏p

j=1Γ(α j)Γ(β j)
}Gp,p

p,p[u
∣
∣−β j , j=1,··· ,p
α j−1, j=1,··· ,p],u > 0,

ℜ(α j) > 0,ℜ(β j) > 0, j = 1, · · · , p and zero elsewhere.
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Example 1.8.3. Evaluate the following integral, a particular case of which is the
reaction rate integral in astrophysics.

I(α,a,b,ρ) =
∫ ∞

0
xα−1e−ax−bx−ρdx,a > 0,b > 0,ρ > 0. (1.8.7)

Solution 1.8.3: Since the integrand can be taken as a product of positive inte-
grable functions we can apply statistical distribution theory to evaluate this integral
or such similar integrals. The procedure to be discussed here is suitable for a wide
variety of problems. Let x1 and x2 be two real scalar random variables with density
functions f1(x1) and f2(x2). Let u = x1x2 and let x1 and x2 be independently distrib-
uted. Then the joint density of x1 and x2, denoted by f (x1,x2), is the product of the
marginal densities due to statistical independence of x1 and x2. That is,

f (x1,x2) = f1(x1) f2(x2).

Consider the transformation u = x1x2 and ν = x1 ⇒ dx1 ∧ dx2 = 1
ν du∧ dν . Hence

the joint density of u and ν , denoted by g(u,ν), is available as,

g(u,ν) =
1
ν

f1(ν) f2

( u
ν

)
. (1.8.8)

Then the density of u denoted by g1(u), is available by integrating out ν from
g(u,ν). That is,

g1(u) =
∫

ν

1
ν

f1(ν) f2

( u
ν

)
dν . (1.8.9)

Here (1.8.8) and (1.8.9) are general results and the method described here is called
the method of transformation of variables for obtaining the density of u = x1x2.
Now, consider (1.8.7). Let

f1(x1) = c1xα1 e−ax1 and f2(x2) = c2e−zxρ2 ,0 ≤ x1 < ∞,0 ≤ x2 < ∞ (1.8.10)

a > 0,z > 0, where c1 and c2 are the normalizing constants. These normalizing con-
stants can be evaluated by using the property.

1 =
∫ ∞

0
f1(x1)dx1 and 1 =

∫ ∞

0
f2(x2)dx2.

Since we do not need the explicit forms of c1 and c2 we will not evaluate them here.
With the f1 and f2 in (1.8.10) let us evaluate (1.8.9). We have

g1(u) = c1c2

∫ ∞

ν=0

1
ν
ναe−aνe−z( u

ν )ρdν = c1c2

∫ ∞

ν=0
να−1e−aνe−(zuρ )ν−ρdν .

(1.8.11)
Note that with b = zuρ , (1.8.11) is (1.8.7) multiplied by c1 and c2. Thus, we have
identified the integral to be evaluated as a constant multiple of the density of u. This
density of u is unique. Let us evaluate the density through Mellin and inverse Mellin
transform technique.
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E(us−1) = E(xs−1
1 )E(xs−1

2 )

due to statistical independence of x1 and x2. But

E(xs−1
1 ) = c1

∫ ∞

0
xα+s−1

1 e−ax1dx1 = c1a−(α+s)Γ(α+ s),ℜ(α+ s) > 0 (1.8.12)

and

E(xs−1
2 ) = c2

∫ ∞

0
xs−1

2 e−zxρ2 dx2 =
c2

ρzs/ρ

∫ ∞

0
y

s
ρ−1e−ydy =

c2

ρzs/ρ Γ
(

s
ρ

)
,ℜ(s) > 0.

(1.8.13)
Hence

E(us−1) = c1c2
a−α

ρ

(
az

1
ρ
)−s

Γ(α+ s)Γ
(

s
ρ

)
. (1.8.14)

Therefore, the density of u, denoted by g1(u), is available from the inverse Mellin
transform.

g1(u) = c1c2
a−α

ρ
1

2πi

∫ c+i∞

c−i∞
Γ(α+ s)Γ

(
s
ρ

)(
az

1
ρ u
)−s

ds. (1.8.15)

Now, compare (1.8.15) with (1.8.11) to obtain the following:
∫ ∞

0
να−1e−aνe−(zuρ )ν−ρdν =

a−α

ρ
1

2πi

∫ c+i∞

c−i∞
Γ(α+ s)Γ

(
s
ρ

)(
az

1
ρ u
)−s

ds.

(1.8.16)
On the right side in (1.8.15) the coefficient of s in Γ( s

ρ ) is 1
ρ 
= 1. Hence (1.8.15)

is not a G-function but it can be written as an H-function, which will be considered
next. In reaction rate theory in physics, ρ = 1

2 and then

Γ
(

s
ρ

)
= Γ(2s) = π−

1
2 22s−1Γ(s)Γ

(
s+

1
2

)

by using the duplication formula for gamma functions. Then the right side of
(1.8.16) reduces to

1

2ρaαπ 1
2

1
2πi

∫ c+i∞

c−i∞
Γ(α+ s)Γ(s)Γ

(
s+

1
2

)(
auz1/ρ

4

)−ρ
ds

=
1

2ρaαπ 1
2

G3,0
0,3

[
auz1/ρ

4

∣
∣
α,0, 1

2

]
,u > 0.

But

b = zuρ ⇒ auz1/ρ

4
=

ab1/ρ

4
.

Hence, for ρ = 1
2 ,

∫ ∞

0
να−1e−aν−bν−ρdν =

1

2ρaαπ 1
2

G3,0
0,3

[
ab1/ρ

4

∣
∣
α,0, 1

2

]
for ρ =

1
2

=
1

aαπ 1
2

G3,0
0,3

[
ab2

4

∣
∣
α,0, 1

2

]
,u > 0. (1.8.17)
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Exercises 1.8.

Write down the Mellin-Barnes representations in Exercises 1.8.1 - 1.8.5 where the
series forms are given. Here is an illustration.

1F0(α; ;x) =
∞

∑
r=0

(α)r
xr

r!
=

1
Γ(α)

∞

∑
r=0
Γ(α+ r)

xr

r!

=
1

Γ(α)
1

2πi

∫ c+i∞

c−i∞
Γ(α− s)Γ(s)(−x−s)ds.

The last expression is the Mellin-Barnes representation for the series form 1F0(α; ;x).

1.8.1. 0F0(; ;−z) = e−z = ∑∞r=0
(−z)r

r! (Exponential series)

1.8.2. 2F1(a,b;c;z) = ∑∞r=0
(a)r(b)r

(c)r
zr

r! (Gauss’ hypergeometric series)

1.8.3. 1F1(a;b;z) = ∑∞r=0
(a)r
(b)r

zr

r! (Confluent hypergeometric series)

1.8.4. ∑∞r=0
(−1)r

r!
(z/2)ν+2r

Γ(ν+r+1) ( Bessel function Jν(z))

1.8.5. ∑∞r=0
(z/2)ν+2r

r!Γ(ν+r+1) ( Bessel function Iν(z)).

Write the series form from the Mellin-Barnes representation in Exercise 1.8.6 and
list the conditions for convergence and existence also.

1.8.6. Γ(1+2ν)
Γ( 1

2 +ν−µ)
e−z/2zν+ 1

2 1
2πi
∫ c+i∞

c−i∞
Γ(s)Γ( 1

2 +ν−µ−s)
Γ(1+2ν−s) (−z)−sds (Whittaker function

Mµ,ν(z))

Represent the following in Exercises 1.8.7 to 1.8.10 as G-functions and write down
the conditions.

1.8.7. zβ (1+azα)−1

1.8.8. zβ (1+azα)−γ

1.8.9. (a) sinz; (b) cosz; (c) sinhz; (d) coshz

1.8.10. (a) ln(1± z); (b) ln
( 1+z

1−z

)
.

1.9 The H-function

This function is a generalization of the G-function. This was available in the litera-
ture as a Mellin-Barnes integral but Charles Fox made a detailed study of it in 1960’s
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and hence the function is called Fox’s H-function. The Mellin-Barnes representation
is the following:

Notation 1.9.1. H-function

Hm,n
p,q

[
z
∣
∣(a1,α1),··· ,(ap,αp)
(b1,β1),··· ,(bq,βq)

]
= Hm,n

p,q

[
z
∣
∣[(ap,αp)]
[(bq,βq)]

]
= Hm,n

p,q (z) = H(z).

Definition 1.9.1.

Hm,n
p,q

[
z
∣
∣(a1,α1),··· ,(ap,αp)
(b1,β1),··· ,(bq,βq)

]
=

1
2πi

∫

L
φ(s)z−sds,

φ(s) =

{
∏m

j=1Γ(b j +β js)
}{
∏n

j=1Γ(1−a j −α js)
}

{
∏q

j=m+1Γ(1−b j −β js)
}{
∏p

j=n+1Γ(a j +α js)
} ,

(1.9.1)

where α1, · · · ,αp,β1, · · · ,βq are real positive numbers (integers, rationals or irra-
tionals), a j’s and b j’s are, in general, complex quantities, i =

√
−1 and the contour

L separates the poles of Γ(b j +β js), j = 1, · · · ,m from those of Γ(1−a j −α js), j =
1, · · · ,n. Three paths L, similar to the ones for a G-function, can be given for the
H-function also. Details of the existence conditions, various properties and applica-
tions may be seen from Mathai and Saxena (1978) and Mathai (1993). A simplified
set of existence conditions is the following: Let

µ =
q

∑
j=1
β j −

p

∑
j=1
α j and β =

{
q

∏
j=1
αα j

j

}{
q

∏
j=1
β−β j

j

}

. (1.9.2)

The H-function exists for the following cases:

(i) q ≥ 1,µ > 0, for all z,z 
= 0

(ii) q ≥ 1,µ = 0, for |z| < β−1

(iii) p ≥ 1,µ < 0, for all z,z 
= 0

(iv) p ≥ 1,µ = 0, for |z|,z > β−1. (1.9.3)

Two special cases, which follow from the definition itself, may be noted. When
α1 = 1 = · · ·= αp = β1 = 1 = · · ·= βq then the H-function reduces to a G-function.
When all the α j’s and β j’s are rational numbers, that is ratios of two positive integers
since by definition the α j’s and β j’s are positive real numbers, we may make a trans-
formation s

u = s1 where u is the common denominator for all the α j, j = 1, · · · , p
and β j, j = 1, · · · ,q. Under this transformation each coefficient of s1 in each gamma
in (1.9.1) becomes a positive integer. Then we may expand all the gammas by using
the multiplication formula for gamma functions. Then the coefficients of s1 in every
gamma becomes ±1 and then the H-function becomes a G-function. An illustration
of this aspect was seen in Example 1.8.3.
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Example 1.9.1. Evaluate the following reaction rate integral in physics and write
it as an H-function.

I(α,a,b,ρ) =
∫ ∞

0
xα−1e−ax−bx−ρdx.

Solution 1.9.1: From (1.8.16) in Example 1.8.3 we have
∫ ∞

0
xα−1e−ax−bx−ρdx =

a−α

ρ
1

2πi

∫ c+i∞

c−i∞
Γ(α+ s)Γ

(
s
ρ

)(
ab1/ρ

)−s
ds. (1.9.4)

Writing the right side with the help of (1.9.1) we have the following:
∫ ∞

0
xα−1e−ax−bx−ρdx =

1
ρaα

H2,0
0,2

[
ab

1
ρ
∣
∣
(α,1),

(
0, 1
ρ

)
]
. (1.9.5)

Example 1.9.2. Let x1, · · · ,xk be independently distributed real scalar gamma
random variables with the parameters (α j,1), j = 1, · · · ,k. Let γ1, · · · ,γk be real con-
stants.
Let

u = xγ11 xγ2
2 · · ·xγkk .

Evaluate the density of u.

Solution 1.9.2: Let us take the (s−1)th moment of u or the Mellin transform
of the density of u.

E(us−1) = E
[
xγ11 · · ·xγkk

]s−1 = E
(

xγ1(s−1)
1

)
· · ·E
[
xγk(s−1)

k

]

due to independence. But for a real gamma random variable, with parameters
(α j,1), the [γ j(s−1)]th moment is the following:

E
[
x
γ j(s−1)
j

]
=
Γ(α j + γ j(s−1))

Γ(α j)
=
Γ(α j − γ j + γ js)

Γ(α j)
forℜ(α j + γ j(s−1)) > 0.

(1.9.6)
Then

E(us−1) =
k

∏
j=1

Γ(α j − γ j + γ js)
Γ(α j)

.

The density of u, denoted by g(u), is available from the inverse Mellin transform.
That is,

g(u) =
1

{
∏k

j=1Γ(α j)
}

1
2πi

∫ c+i∞

c−i∞

{
k

∏
j=1
Γ(α j − γ j + γ js)

}

u−sds

=

⎧
⎨

⎩

1{
∏k

j=1Γ(α j)
}Hk,0

0,k

[
u
∣
∣
(α j−γ j ,γ j), j=1,··· ,k

]
,u > 0,

0, elsewhere.
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This is the density function for the product of arbitrary powers of independently
distributed real scalar gamma random variables.

By using similar procedures one can obtain the densities of products of arbitrary
powers of real scalar type-1 beta and type-2 beta random variables or arbitrary pow-
ers of products and ratios of real scalar gamma, type-1, type-2 beta or other such
positive variables and write in terms of H-functions. Some details may be seen from
Mathai (1993) and Mathai and Saxena (1978). The existence conditions may be seen
from the existence condtions of the corresponding (s−1)th moments, as seen from
(1.9.6).

Exercises 1.9.

1.9.1. Prove that

Hm,n
p,q

[
z
∣
∣(a1,α1),··· ,(ap,αp)
(b1,β1),··· ,(bq,βq)

]
= Hn,m

q,p

[
1
z

∣
∣(1−b1,β1),··· ,(1−bq,βq)
(1−a1,α1),··· ,(1−ap,αp)

]
.

1.9.2. Prove that

zσHm,n
p,q

[
z
∣
∣(a1,α1),··· ,(ap,αp)
(b1,β1),··· ,(bq,βq)

]
= Hm,n

p,q

[
z
∣
∣(a1+σα1,α1),··· ,(ap+σαp,αp)
(b1+σβ1,β1),··· ,(bq+σβq,βq)

]
.

1.9.3. Evaluate the Mellin-Barnes integral

Eα(z) =
1

2πi

∫ c+i∞

c−i∞

Γ(s)Γ(1− s)
Γ(1−αs)

(−z)−sds (1.9.7)

and show that Eα(z) is the Mittag-Leffler series

Eα(z) =
∞

∑
r=0

zr

Γ(αr +1)
. (1.9.8)

1.9.4. Evaluate the Laplace transform of Eα(zα) of Exercise 1.9.3, in (1.9.8), with
parameter p.
1.9.5. A generalization of Mittag-Leffler function is Eα,β (z) = ∑∞r=0

zr

Γ(αr+β ) .

Evaluate the Laplace transform of tβ−1Eα,β (zα).
1.9.6. If α = m,m = 1,2, · · · in (1.9.8) show that

Em(z) = (2π)
m−1

2 m− 1
2 0Fm−1

(
;

1
m

,
2
m

, · · · , m−1
m

;
z

mm

)
1

Γ( 1
m )Γ( 2

m ) · · ·Γ(m−1
m )

.

1.9.7. Write Eα(z) as an H-function.
1.9.8. If α = m,m = 1,2, · · · write down Eα(z) as a G-function.
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1.9.9. Let x1 and x2 be independently distributed real gamma random variables
with the parameters (α,1),(α+ 1

2 ,1) respectively. Let u = x1x2. Evaluate the den-
sity of u and show that the density of u, denoted by g(u), is given by the following:

g(u) =
22α−1

Γ(2α)
uα−1e−2u

1
2 ,u ≥ 0 and zero elsewhere.

1.9.10. Let x1,x2,x3 be independently distributed real gamma random variables
with the parameters (α,1),(α+ 1

3 ,1),(α+ 2
3 ,1) respectively. Let u = x1x2x3. Evalu-

ate the density of u and show that it can be written as an H-function of the following
type, where g(u) denotes the density of u.

g(u) =
27

Γ(3α)
H1,0

0,1 [27u
∣
∣
(3α−3,3)],u ≥ 0 and zero elsewhere.

1.10 Lauricella Functions and Appell’s Functions

Another set of multivariable functions in frequent use in applied areas is the set of
Lauricalla functions, and special cases of those are the Appell’s functions. Lauri-
cella functions fA, fB, fC, and fD are the following:

Definition 1.10.1. Lauricella function fA

fA(a,b1, · · · ,bn;c1, · · · ,cn;x1, · · · ,xn)

=
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b1)m1 · · ·(bn)mn

(c1)m1 · · ·(cn)mn

xm1
1 · · ·xmn

n

m1! · · ·mn!
(1.10.1)

for |x1|+ · · ·+ |xn| < 1.

Definition 1.10.2. Lauricella function fB

fB(a1, · · · ,an,b1, · · · ,bn;c;x1, · · · ,xn)

=
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a1)m1 · · ·(an)mn(b1)m1 · · ·(bn)mn

(c)m1+···+mn

xm1
1 · · ·xmn

n

m1! · · ·mn!
(1.10.2)

for |x1| < 1, |x2| < 1, · · · , |xn| < 1.

Definition 1.10.3. Lauricella function fC

fC(a,b;c1, · · · ,cn;x1, · · · ,xn) =
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b)m1+···+mn

(c1)m1 · · ·(cn)mn

xm1
1 · · ·xmn

n

m1! · · ·mn!

(1.10.3)

for |√x1|+ · · ·+ |√xn| < 1.
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Definition 1.10.4. Lauricella function fD

fD(a,b1, · · · ,bn;c;x1, · · · ,xn)

=
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b1)m1 · · · · · ·(bn)mn

(c)m1+···+mn

xm1
1 · · ·xmn

n

m1! · · ·mn!
(1.10.4)

for |x1| < 1, |x2| < 1, · · · , |xn| < 1.

When n = 2 we have Appell’s functions F1,F2,F3,F4. Also when n = 1 all these
functions reduce to a Gauss’ hypergeometric function 2F1. We will list some of the
basic properties of Lauricella functions.

1.10.1 Some properties of fA

∫ 1

0
· · ·
∫ 1

0
ub1−1

1 · · ·ubn−1
n (1−u1)c1−b1−1 · · ·(1−un)cn−bn−1

× (1−u1x1 −·· ·−unxn)−a du1 ∧·· ·∧dun

=

{
n

∏
j=1

Γ(b j)Γ(c j −b j)
Γ(c j)

}

fA(a,b1, · · · ,bn;c1, · · · ,cn;x1, · · · ,xn),

(1.10.5)

for ℜ(b j) > 0, ℜ (c j −b j) > 0, j = 1, · · · ,n.

The result can be easily established by expanding the factor (1−u1x1−·· ·−unxn)−a

by using a multinomial expansion and then integrating out u j, j = 1, · · · ,n with the
help of type-1 beta integrals.

∫ ∞

0
e−t ta−1

1F1(b1;c1;x1t)1F1(b2;c2;x2t) · · ·1F1(bn;cn;xnt)dt (1.10.6)

= Γ(a) fA(a,b1, · · · ,bn;c1, · · · ,cn;x1, · · · ,xn), forℜ(a) > 0.

This can be established by taking the series forms for 1F1’s and then integrating
out t.

1
(2πi)n

∫
· · ·
∫ Γ(a+ t1 + · · ·+ tn)Γ(b1 + t1) · · ·Γ(bn + tn)

Γ(c1 + t1) · · ·Γ(cn + tn)
×Γ(−t1) · · ·Γ(−tn)(−x1)t1 · · ·(−xn)tn dt1 ∧·· ·∧dtn (1.10.7)

= Γ(a)
Γ(b1) · · ·Γ(bn)
Γ(c1) · · ·Γ(cn)

fA(a,b1, · · · ,bn;c1, · · · ,cn;x1, · · · ,xn), i =
√
−1.

This can be established by evaluating the integrand as the sum of the residues at the
poles of Γ(−t1), · · · ,Γ(−tn), one by one.
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1.10.2 Some properties of fB

∫
· · ·
∫

ta1−1
1 · · · tan−1

n (1− t1 −·· ·− tn)c−a1−···−an−1 (1.10.8)

× (1− t1x1)−b1 · · ·(1− tnxn)−bn dt1 ∧·· ·∧dtn

=
Γ(a1) · · ·Γ(an)Γ(c−a1−·· ·−an)

Γ(c)
fB(a1, · · · ,an,b1, · · · ,bn;c;x1, · · · ,xn),

for ℜ(a j) > 0, j = 1, · · · ,n,ℜ(c−a1 −·· ·−an) > 0, t j > 0, j = 1, · · · ,n, and
1− t1 −·· ·− tn > 0.

This result can be established by opening up (1− t jx j)−b j , j = 1, · · · ,n by using
binomial expansions and then integrating out t1, · · · , tn with the help of a type-1
Dirichlet integral of Section 1.6.

∫ ∞

0
· · ·
∫ ∞

0
sa1−1

1 · · ·san−1
n tb1−1

1 · · · tbn−1
n e−s1−···−sn−t1−···−tn (1.10.9)

× 0F1 (;c;s1t1x1 + · · ·+ sntnxn) ds1 ∧·· ·∧dsn ∧dt1 ∧·· ·∧dtn

=

{
n

∏
j=1
Γ(a j)Γ(b j)

}

fB(a1 · · · ,an,b1, · · · ,bn;c;x1, · · · ,xn),

for ℜ(a j) > 0, ℜ(b j) > 0, j = 1, · · · ,n.

First, open up the 0F1 as a power series in (s1t1x1 + · · ·+ sntnxn)k. Since k is a posi-
tive integer open up by using a multinomial expansion. Then integrate out s1, · · · ,sk
and t1, · · · , tk by using gamma functions, to see the result.

1
(2πi)n

∫
· · ·
∫ Γ(a1 + t1) · · ·Γ(an + tn)Γ(b1 + t1) · · ·Γ(bn + tn)

Γ(c+ t1 + · · ·+ tn)
(1.10.10)

×Γ(−t1) · · ·Γ(−tn)(−x1)t1 · · ·(−xn)tn dt1 ∧·· ·∧dtn, i =
√
−1

=

{
n

∏
j=1

Γ(a j)Γ(b j)
Γ(c)

}

fB(a1, · · · ,an,b1, · · · ,bn;c;x1, · · · ,xn).

Assume that a j −b j 
= ±ν ,ν = 0,1, · · · . Then evaluate the integrand as the sum of
the residues at the poles of Γ(−t1), · · · ,Γ(−tn) , one by one, to obtain the result.

1.10.3 Some properties of fC
∫ ∞

0
· · ·
∫ ∞

0
sa−1tb−1e−s−t

0F1 (;c1;x1st) · · · 0F1 (;cn;xnst)ds∧dt (1.10.11)

= Γ(a)Γ(b) fC(a,b;c1, · · · ,cn;x1, · · · ,xn), for ℜ(a) > 0,ℜ(b) > 0.

Open up the 0F1’s, then integrate out t and s with the help of gamma integrals to see
the result.
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1
(2πi)n

∫
· · ·
∫ Γ(a+ t1 + · · ·+ tn)Γ(b+ t1 + · · ·+ tn)

Γ(c1 + t1) · · ·Γ(cn + tn)
× Γ(−t1) · · ·Γ(−tn)(−x1)t1 · · ·(−xn)tndt1 ∧·· ·∧dtn

=
Γ(a)Γ(b)

Γ(c1) · · ·Γ(cn)
fC(a,b;c1, · · · ,cn;x1, · · · ,xn), i =

√
−1.

(1.10.12)

Evaluate the integrand as the sum of the residues at the poles of Γ(−t1), · · · ,Γ(−tn),
one by one, to obtain the result.

1.10.4 Some properties of fD

∫
· · ·
∫

ub1−1
1 · · ·ubn−1

n (1−u1 −·· ·−un)c−b1−···−bn−1 (1.10.13)

× (1−u1x1 −·· ·−unxn)−adu1 ∧·· ·∧dun

=
Γ(b1) · · ·Γ(bn)Γ(c−b1 −·· ·−bn)

Γ(c)
fD(a,b1, · · · ,bn;c;x1, · · · ,xn), for

0 < u j < 1, j = 1, · · · ,n, 0 < u1 + · · ·+un < 1, 0 < x1u1 + · · ·+ xnun < 1,

ℜ(b j) > 0, j = 1, · · · ,n, ℜ(c−b1 −·· ·−bn) > 0.

Open up (1−u1x1 −·· ·−unxn)−a by using a multinomial expansion and then inte-
grate out u1, · · · ,un by using a type-1 Dirichlet integral of Subsection 1.6.1
∫ 1

0
ua−1(1−u)c−a−1(1−ux1)−b1 · · ·(1−uxn)−bndu (1.10.14)

=
Γ(a)Γ(c−a)

Γ(c)
fD(a,b1, · · · ,bn;c;x1, · · · ,xn) forℜ(a) > 0, ℜ(c−a) > 0.

Expand (1− ux j)−b j , j = 1, · · · ,n by using binomial expansions and then integrate
out u by using a type-1 beta integral to see the result.

∫ ∞

0
· · ·
∫ ∞

0
tb1−1
1 · · ·tbn−1

n e−t1−···−tn
1F1(a;c;x1t1 + · · ·+ xntn)dt1 ∧·· ·∧dtn

(1.10.15)

= Γ(b1) · · ·Γ(bn) fD(a,b1, · · · ,bn;c;x1, · · · ,xn), forℜ(b j) > 0, j = 1, · · · ,n.

Expand 1F1 as a series, then open up the general term with the help of a multinomial
expansion for positive integral exponent, then integrate out t1, · · · , tn to see the result.

1
(2πi)n

∫
· · ·
∫ Γ(a+ t1 + · · ·+ tn)Γ(b1 + t1) · · ·Γ(bn + tn)

Γ(c+ t1 + · · ·+ tn)
(1.10.16)

×Γ(−t1) · · ·Γ(−tn)(−x1)t1 · · ·(−xn)tndt1,∧·· ·∧dtn

=
Γ(a)Γ(b1) · · ·Γ(bn)

Γ(c)
fD(a,b1, · · · ,bn;c;x1, · · · ,xn), i =

√
−1.
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Follow through the same method of evaluation of the contour integrals as in fA, fB
and fC to see the result.

fD(a,b1, · · · ,bn;c;x, · · · ,x) = 2F1(a,b1 + · · ·+bn;c;x). (1.10.17)

Use the integral representation in (1.10.14) and put x1 = · · ·= xn = x to see the result.

fD(a,b1, · · · ,bn;c;1,1 · · · ,1) =
Γ(c)Γ(c−a−b1 −·· ·−bn)
Γ(c−a)Γ(c−b1 −·· ·−bn)

. (1.10.18)

Evaluate (1.10.17) at x = 1 to see the result.
There are other functions in the category of multivariable hypergeometric func-

tions known as Humbert’s functions, Kampé de Fériet functions and so on. These
will not be discussed here. For a brief description of these, along with some of
their properties, see for example Mathai (1993, 1997) and Srivastava and Karlsson
(1985).

Example 1.10.1. Show that

fA(a,b1, · · · ,bn;c1, · · · ,cn;x1, · · · ,xn) (1.10.19)

=
∞

∑
m1=0

· · ·
∞

∑
mn−1=0

(a)m1+···+mn−1(b)m1 · · ·(bn)mn

(a)m1 · · ·(cn)mn

×
xm1

1 · · ·xmn−1
n−1

m1! · · ·mn−1! 2F1(a+m1 + · · ·+mn−1,bn;cn;xn), |x1|+ · · ·+ |xn| < 1.

Solution 1.10.1: This can be seen by summing up with respect to mn by ob-
serving that (a)m1+···+mn = (a+m1 + · · ·+mn−1)mn . Then the sum is the following:

∞

∑
mn=0

(a+m1 + · · ·+mn−1)mn(bn)mn

(cn)mn

xmn

mn!
= 2F1(a+m1 + · · ·+mn−1,bn;cn;xn).

Example 1.10.2. Show that

Γ(a) fC

(
a
2
,

a+1
2

;c1, · · · ,cn;x1, · · · ,xn

)
(1.10.20)

=
∫ ∞

0
ta−1e−t

0F1

(
;c1;

t2x1

4

)
· · ·0F1

(
;cn;

t2xn

4

)
dt.

Solution 1.10.2: Expand the 0F1’s. Then the right side becomes,

∞

∑
m1=0

· · ·
∞

∑
mn=0

∫ ∞
0 ta+2m1+···+2mn−1

(c1)m1 · · ·(cn)mn

e−t xm1
1

4m1
· · · xmn

n

4mn

1
m1! · · ·mn!

dt.

Integral over t yields
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∫ ∞

0
ta+2m1+···+2mn−1e−tdt = Γ(a+2m1 + · · ·+2mn).

Expanding Γ(a+2m1 + · · ·+2mn) = Γ[2( a
2 +m1 + · · ·+mn)] by using the duplica-

tion formula, we have,

Γ
[

2
(

a
2

+m1 + · · ·+mn

)]
= π−

1
2 2a+2m1+···+2mn−1Γ

(
a
2

+m1 + · · ·+mn

)

×Γ
(

a+1
2

+m1 + · · ·+mn

)

= π−
1
2 2a−1Γ

(
a
2

)
Γ
(

a+1
2

)

×
(

a
2

)

m1+···+mn

(
a+1

2

)

m1+···+mn

(4)m1+···+mn

= Γ(a)
(

a
2

)

m1+···+mn

(
a+1

2

)

m1+···+mn

(4)m1+···+mn

(duplication formula is again applied on Γ(a) = Γ[2( a
2 )] ). Now, substituting and

interpreting as a fC the result follows.

Example 1.10.3. Show that fB(a1, · · · ,an,b1, · · · ,bn;c;x1, · · · ,xn)

=
Γ(c)

Γ(d1) · · ·Γ(dn)Γ(c−d1 −·· ·−dn)

∫
· · ·
∫

ud1−1
1 · · ·udn−1

n (1.10.21)

× (1−u1 −·· ·−un)c−d1−···−dn−1

× 2F1(a1,b1;d1;u1x1) · · ·2 F1(an,bn;dn;unxn)du1 ∧·· ·∧dun

for ℜ(d j) > 0, j = 1, · · · ,n, ℜ(c−d1 −·· ·−dn) > 0, |x j| < 1, j = 1, · · · ,n.

Solution 1.10.3: Expand the product of 2F1’s first.

2F1(a1,b1;d1;u1x1) · · ·2 F1(an,bn;dn;unxn) (1.10.22)

=
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a1)m1 · · ·(an)mn(b1)m1 · · ·(bn)mn

(d1)m1 · · ·(dn)mn

(u1x1)m1 · · ·(unxn)mn

m1! · · ·mn!
.

Now, evaluate the integral over u1, · · · ,un by using a type-1 Dirichlet integral.
∫

· · ·
∫

ud1+m1−1
1 · · ·udn+mn−1

n (1−u1 −·· ·−un)c−d1−···−dn−1du1 ∧·· ·∧dun

=
Γ(d1 +m1) · · ·Γ(dn +mn)Γ(c−d1 −·· ·−dn)

Γ(c+m1 + · · ·+mn)

=
Γ(c−d1 −·· ·−dn)Γ(d1) · · ·Γ(dn)

Γ(c)
(d1)m1 · · ·(dn)mn

(c)m1+···+mn

(1.10.23)

for ℜ(d j) > 0, j = 1, · · · ,n,ℜ(c− d1 − ·· · − dn) > 0. Now, substituting (1.10.23)
and (1.10.22) on the right side of (1.10.21) the result follows.
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Exercises 1.10.

1.10.1. Establish the result in (1.10.5)
1.10.2. Establish the result in (1.10.6)
1.10.3. Establish the result in (1.10.7)
1.10.4. Establish the result in (1.10.8)
1.10.5. Establish the result in (1.10.9)
1.10.6. Establish the result in (1.10.10)
1.10.7. Establish the result in (1.10.11)
1.10.8. Establish the result in (1.10.12)
1.10.9. Establish the result in (1.10.13)
1.10.10. Establish the result in (1.10.14)

1.11 Special Functions as Solutions of Differential Equations
and Applications

[This section is based on the lectures of Professor P. N. Rathie of the Department of Statistics,
University of Brası́lia, Brazil.]

1.11.0 Introduction

Certain special functions occur often in fields like physics and engineering. We
study these functions (exponential to Mejer’s G-functions) as solutions of differ-
ential equations because the behavior of a physical system is generally represented
by a differential equation. A powerful method for solving differential equations is
to assume a power series solution.

1.11.1 Sine, cosine and exponential functions

The sine, cosine and the exponential functions are the most elementary special func-
tions. The following example illustrates how sine and cosine functions are obtained
as solutions of a differential equation in a mathematical physics problem.

Example 1.11.1. Motion of an elastically bound particle in one dimension. The
position x of a particle of mass m that moves under the influence of a force

F = −mw2x (1.11.1)
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is given at time t by

x = bsin(wt +φ) (1.11.2)

where b and φ are constants. By Newton’s second law of motion,

F = m
d2x
dt2 . (1.11.3)

If the particle obeys Hooke’s law, then (1.11.1) is valid with w as a constant. Thus
(1.11.3) and (1.11.1) yield

d2x
dt2 +w2x = 0. (1.11.4)

Assuming the power series solution

x(t) =
∞

∑
n=0

ants+n (1.11.5)

where the an are constant coefficients to be determined, we obtain

s(s−1)a0 = 0 (1.11.6)
(s+1)sa1 = 0 (1.11.7)

(s+n+2)(s+n+1)an+2 +w2an = 0. (1.11.8)

Solution 1.11.1: (1.11.6) and (1.11.7) are satisfied for s = 0. With this choice
(1.11.8) gives

an =
(−1)n/2wn

n!
a0, for n even (1.11.9)

an =
(−1)(n−1)/2wn−1

n!
a1 for n odd. (1.11.10)

Thus, the general solution of (1.11.4) is given by

x(t) = a0

∞

∑
n=0

n=even

(−1)n/2wntn

n!
+a1

∞

∑
n=1

n=odd

(−1)(n−1)/2wn−1tn

n!
(1.11.11)

= a0

∞

∑
k=0

(−1)k(wt)2k

(2k)!
+

a1

w

∞

∑
k=0

(−1)k(wt)2k+1

(2k +1)!

= a0 cos(wt)+
a1

w
sin(wt).

Thus the general solution of the second-order differential equation (1.11.4) is the
sum of two linearly independent solutions. The constants a0 and a1 are determined
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from the initial conditions. For example, for t = 0, x(0) = x0 and dx
dt = v = v0 then

a0 = x0 and a1 = v0. Thus

x(t) = x0 cos(wt)+
v0

w
sin(wt) (1.11.12)

= bsin(wt +φ)

with b =
√

x2
0 +(v0/w)2 and φ = tan−1(x0w/v0).

Exercises 1.11.
1.11.1. Find the solution of the differential equation

dy(x)
dx

− y(x) = 0.

1.11.2. Obtain the solution of Eq. (1.11.4) for the following cases

(1) s = 1,
(2) s = −1.

1.11.2 Linear second order differential equations

Any linear, second-order, homogeneous differential equation can be written in the
form

d2

dz2 u(z)+P(z)
d
dz

u(z)+Q(z)u(z) = 0. (1.11.13)

Assuming u(z) and d
dz u(z) at z = z0 and successive differentiations, we can get the

Taylor series for u(z) as

u(z) =
∞

∑
n=0

dn

dzn u(z0)

n!
(z− z0)n. (1.11.14)

If the series in (1.11.14) has a nonzero radius of convergence, then the solution ex-
ists. If u(z) and d

dz u(z) can be assigned arbitrary values at z = z0, then we say that
the point z0 is an ordinary point of the differential equation (1.11.13), otherwise it
is a singular point. Consider the differential equation,

z2 d2

dz2 u(z)+az
d
dz

u(z)+bu(z) = 0

where a and b are constants. For z = 0 we see that if u(0) has any value other than
zero, either d

dz u(0) or d2

dz2 u(0) must be infinity and the Taylor series for u(z) cannot
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be obtained around z = 0. If P(z) or Q(z) has a singularity (not a branch point) at
z = z0 so that d2

dz2 u(z0) cannot be obtained to construct the Taylor series of u(z), then
the differential equation has a regular singularity if and only if both (z− z0)P(z)
and (z− z0)2Q(z) are analytic at z0. Otherwise, the singularity is irregular.

1.11.3 Hypergeometric function

The Gauss hypergeometric differential equation is given by

z(1− z)
d2u
dz2 +[c− (a+b+1)z]

du
dz

−abu = 0 (1.11.15)

or

[δ (δ + c−1)− z(δ +a)(δ +b)]u = 0, where δ = z
d
dz

. (1.11.16)

Assuming the solution

u(z) =
∞

∑
n=0

anzn+s (1.11.17)

we get from (1.11.15), the following relations,

s(s+ c−1)a0 = 0 (1.11.18)

and

an+1 =
(n+ s)(n+ s+a+b)+ab

(n+ s+1)(n+ s+ c)
an. (1.11.19)

The trivial solution u(z) = 0 is obtained if we assume a0 = 0. For the nontrivial
solution we assume a0 
= 0. Equation (1.11.18) yields s = 0 or s = 1− c. For s = 0,
the solution of (1.11.15) is given by

u(z) = a0

∞

∑
n=0

(a)n(b)n

n!(c)n
zn = a0 2F1(a,b;c;z), |z| < 1 (1.11.20)

where (a)n stands for the Pochhammer symbol.

Example 1.11.2. From (1.11.20), it is easy to see that

2F1(1,b;b;z) =
∞

∑
n=0

zn, |z| < 1 (geometric series)

and
2F1(−s,b;b;z) = (1− z)s, |z| < 1 (binomial expansion).
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The general solution (for c 
= an integer) consists of two linearly independent solu-
tions,

u(z) = c1u1(z)+ c2u2(z) (1.11.21)

where u1(z) is given by (1.11.20) and u2(z) corresponding to s =−c+1 is given by

u2(z) = z1−c
2F1(1+a− c,1+b− c;2− c;z). (1.11.22)

The arbitrary constants c1 and c2 are to be determined by the boundary condi-
tions.

We may observe the following:

(1)The Gauss hypergeometric equation (1.11.15) has three singularities at 0, 1
and ∞.

(2)If c is an integer, u2(z) is not a new solution. For example, c = 1, u1(z) = u2(z). If
neither a nor b is zero or a negative integer, two linearly independent solutions are

2F1(a,b;1;z) (1.11.23)

and (logarithmic solution)

2F1(a,b;1;z) = ln(z)+
∞

∑
n=1

(a)n(b)nzn

(n!)2

[
n

∑
i=1

1
a+ i−1

+
n

∑
i=1

1
b+ i−1

−
n

∑
i=1

2
i

]

.

(1.11.24)

Example 1.11.3. Simple pendulum

A simple pendulum consists of a point mass m attached to one end of a massless
cord of length l, and the other end fixed at a point such that the system can swing
freely under gravity. Let T1 be the tension in the cord when it is inclined at an angle
θ with the vertical. Then by Newton’s second law, we have

T1 −mgcosθ =
mv2

l
(1.11.25)

−mgsinθ = m
d2

dt2 (lθ). (1.11.26)

The equation (1.11.25), takes the following form

d2θ
dt2 +

g
l

sinθ = 0. (1.11.27)
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Multiplying (1.11.26) by
dθ
dt

gives us

d
dt

[
1
2

(
dθ
dt

)2

− g
l

cosθ

]

= 0.

which implies that
1
2

(
dθ
dt

)2

− g
l

cosθ

is a constant. Let θ = θ0 when
dθ
dt

= 0 (pendulum at rest). This gives the value of

constant as
g
l

cosθ0 so that

dθ
dt

=

√
2g
l

(cosθ − cosθ0).

Integration gives the period of oscillation as

T = 2π

√
l
g 2F1

(
1
2
,

1
2

;1;sin2
(
θ0

2

))
. (1.11.28)

Thus, we see that the period of oscillation of a simple pendulum depends on the
amplitude of the oscillation. Note that if the amplitude θ0 is small, then the period
is given by

T = 2π

√
l
g

Exercises 1.11.
1.11.3. Write down the general solution of the differential equation

z(1− z)
d2

dz2 u(z)+
(

5
4
−2z
)

d
dz

u(z)+
3
4

u(z) = 0.

1.11.4. Find the general solution of the differential equation

x
d2

dx2 y(x)+µ
d
dx

y(x)+λy(x) = 0

where λ and µ are constants. Discuss the conditions to be imposed on λ and µ .

1.11.5. Solve the differential equation

x
d2

dx2 f (x)+2
d
dx

f (x)+ x f (x) = 0
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by series method. Is it possible to write the solution in terms of elementary special
functions?

1.11.6. Find the general solution of the differential equation

z(1− z)
d2

dz2 u(z)+µ(1− z)
d
dz

u(z)+µu(z) = 0,

where µ is not an integer. Is one of the solutions a polynomial?

1.11.7. Show that
y(z) = z−αe− f (z)

2F1(a,b;c;h(z))

satisfies the second order differential equation:

h(h−1)
(h′)2 y′′ +

{
h(h−1)

(h′)3

(
2αh′

z
+2 f ′h′ −h′′

)
+

(a+b+1)h− c
h′

}
y′

+
{(

α
z

+ f ′
)(

(a+b+1)h− c
h′

)
+

h(h−1)
(h′)3

[
α(α−1)h′

z2 +
2α f ′h′

z

+ f ′′h′ +( f ′)2h′ − αh′′

z
− f ′h′′

]
+ab
}

y = 0.

1.11.4 Confluent hypergeometric function

The confluent hypergeometric differential equation is

x
d2

dx2 u(x)+(c− x)
d
dx

u(x)−au(x) = 0 (1.11.29)

or

[δ (δ + c−1)− z(δ +a)]u(x) = 0, δ = z
d
dz

. (1.11.30)

This can be obtained from Gauss hypergeometric equation (1.11.15) by taking
x = bz and then making b → ∞. This equation has singularities at x = 0 and x = ∞.
A merged (confluence) of the singularities of equation (1.11.15) at z = 1 and z = ∞
has occurred. The singularity at x = 0 is regular and at x = ∞, irregular. To get the
general solution of (1.11.29), substitute

u(x) =
∞

∑
k=0

akxk+s (1.11.31)

so that

s(s−1+ c)a0 = 0. (1.11.32)
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Thus the nontrivial general solution to (1.11.29) is given by

u(x) = A1F1(a;c;x)+Bx1−c
1F1(1+a− c;2− c;x). (1.11.33)

Exercises 1.11.

1.11.8. Show that
y = z−αe− f (z)

1F1(a;c;h(z))

satisfies the second order differential equation

hy′′ +
{

2αh
z

+2 f ′h− hh′′

h′
−hh′ + ch′

}
y′ +
{

h′
(
α
z

+ f ′
)

(c−h)

+h
[
α(α−1)

z2 +
2α f ′

z
+ f ′′ +( f ′)2 − h′′

h′

(
α
z

+ f ′
)]

−a(h′)2
}

y = 0.

1.11.5 Hermite polynomials

The differential equation

d2

dy2 f (y)−2y
d
dy

f (y)+2n f (y) = 0 (1.11.34)

is known as Hermite’s equation. For z = y2, (1.11.34) takes the following from

z
d2

dz2 f (z)+
(

1
2
− z
)

d
dz

f (z)+
n
2

f (z) = 0. (1.11.35)

This is of the form of confluent hypergeometric equation (1.11.29) yielding the two
solutions for (1.11.34) as

f (y) =
(−1)−n/2n!
( n

2

)
! 1F1

(
−n

2
;

1
2

;y2
)

for n even (1.11.36)

≡ Hn(y)

and

f (y) =
(−1)(1−n)/22n!y
( n−1

2

)
!

1F1

(
−n−1

2
;

3
2

;y2
)

for n odd (1.11.37)

≡ Hn(y)
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Exercises 1.11.
1.11.9. For what values of s the substitution u(z) = zs f (z) in

z2 d2

dz2 u(z)− z2 d
dz

u(z)+
3

16
u(z) = 0

will result in confluent hypergeometric equation. Write the general solution for u(z).
1.11.10. For what value of a the substitution u(z) = eaz f (z) in

z
d2

dz2 u(z)+(1−5z)
d
dz

u(z)+6zu(z) = 0

will result in confluent hypergeometric equation. Find the solution.
1.11.11. Find the solution of the type u(x) = v(x)w(x) for the differential equation

d2

dx2 u(x)− d
dx

u(x)− 1
4x2 [a(a−2)+2ax]u(x) = 0.

Choose v(x) so that w(x) satisfies the confluent hypergeometric equation. Find the
general solution u(x). Show that a particular solution reduces to xa/2ex.

1.11.6 Bessel functions

The differential equation

x2 d2u
dx2 + x

du
dx

+(x2 −ν2)u = 0 (1.11.38)

(ν need not to be an integer) is called Bessel equation. There are two singularities
at x = 0 (regular) and x = ∞ (irregular). The general solution of (1.11.38), when ν
is not an integer, is given by

u(x) = e−ix
[

Aνxν 1F1

(
ν+

1
2

;2ν+1;2ix
)

+Bνx−ν 1F1

(
−ν+

1
2

;−2ν+1;2ix
)]

(1.11.39)

where Aν and Bν are arbitrary constants. Using the relation

Jν(x) =
e−ix(x/2)ν

Γ(ν+1) 1F1

(
ν+

1
2

;2ν+1;2ix
)

, (1.11.40)

where Jν(x) is Bessel function of the first kind, the solution of (1.11.38) may be
written as

u(x) = aνJν(x)+bνJ−ν(x) (1.11.41)
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where aν = 2νΓ(ν + 1)Aν , bν = 2−νΓ(−ν + 1)Bν . It may be noted that Jν(x) is
regular at x = 0, whereas J−ν(x) is irregular at x = 0. The function

Nν(x) =
Jν(x)cos(νπ)− J−ν(x)

sin(νπ)
, (1.11.42)

which is known as Bessel function of the second kind ( or Newman’s function), is
also a solution of (1.11.38) and is linearly independent of Jν(x). The function Nν(x)
is irregular at x = 0. Thus the general solution of (1.11.38) may also be written as

u(x) = aJν(x)+bNν(x) (1.11.43)

where a and b are arbitrary constants. Two functions frequently encountered in phys-
ical applications are

H(1)
ν (x) = Jν(x)+ iNν(x) (1.11.44)

and

H(2)
ν (x) = Jν(x)− iNν(x) (1.11.45)

which are known as Bessel functions of the third kind (or Hankel functions). If ν is
zero or a positive integer, then the two independent solutions of (1.11.38) are Jν(x)
and a logarithmic solution which has a complicated expression.

Exercises 1.11.

1.11.12. Let u(x) =
∞

∑
k=0

ckxk+s be the solution of the Bessel equation

x2 d2u
dx2 + x

du
dx

+(x2 −ν2)u = 0.

Show that for k > 1 the coefficient ck satisfies the equation
{
(k + s)2 −ν2}ck + ck−2 = 0.

For ν2 
= 1
4 , verify that, if c0 
= 0, then c1 = 0 and vice versa. Obtain the solutions

of the Bessel equation.
1.11.13. With the change of dependent variable w(x) = ebx f (x) show that the dif-
ferential equation

x
d2

dx2 w(x)+2λ
d
dx

w(x)+ xw(x) = 0

can be transformed into the confluent hypergeometric equation. Write down the
general solution expressed in terms of Bessel functions.
1.11.14. Transform the differential equation

d2

dx2 u(x)+λxsu(x) = 0

(λ = constant, s = a real positive number) into Bessel equation by using u(x) =
xp f (x) and z = bxq. Find the values of b, p and q. Write down the differential equa-
tion for f as a function of z. Find the general solution to the original equation.
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1.11.7 Laguerre polynomial

The Laguerre polynomial

L(α)
n (x) =

n

∑
i=0

(1+α)n(−x)i

i!(n− i)!(1+α)i
(1.11.46)

is a solution of the differential equation

x
d2y
dx2 +(1+α− x)

d
dx

y+ny = 0. (1.11.47)

Laguerre polynomial (1.11.46) is connected to confluent hypergeometric function
by the relation

L(α)
n (x) =

(1+α)n

n! 1F1(−n;1+α;x). (1.11.48)

1.11.8 Legendre polynomial

The Legendre’s equation is

(1− x2)
d2 f
dx2 −2x

d f
dx

+m(m+1) f = 0, m = 0,1, . . . (1.11.49)

which has its solution as

Pm(x) = 2F1

(
−m,m+1;1;

1
2
(1− x)

)
(1.11.50)

which is a polynomial of order m.

Exercises 1.11.

1.11.15. Show that the Legendre equation

(1− x2)
d2 f
dx2 −2x

d f
dx

+n(n+1) f = 0

has a solution

f (x) =
[n/2]

∑
k=0

(−1)k(2n−2k)!xn−2k

2nk!(n−2k)!(n− k)!

where n is either even or odd.
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1.11.16. Show that the differential equation

(1− x2)
d2y
dx2 − x

dy
dx

+n2y = 0

has three regular singularities.

1.11.17. Obtain the general solution to the differential equation

(1− x2)
d2y
dx2 −3x

dy
dx

+n(n+2)y = 0

in terms of hypergeometric functions. Show that one of the solutions is a polynomial
if n is an integer (n 
= −1).

1.11.9 Generalized hypergeometric function

The homogeneous linear differential equation
[

δ
q

∏
j=1

(δ +b j −1)− z
p

∏
i=1

(δ +ai)

]

u(z) = 0 (1.11.51)

where δ = z d
dz ,

(a)is of order max(p,q+1),

(b)has singularities at z = 0 (regular) and z = ∞ (irregular) for p < q+1,

(c)has regular singularities at z = 0, 1 and ∞ when p = q+1.

The q+1 linearly independent solutions of (1.11.51) for p ≤ q+1 near z = 0 when
no two b j’s differ by an integer or zero, and no b j is a negative integer or zero, are
given by

uh(z) = Ahz1−bh pFq(1+a1 −bh, . . . ,1+ap −bh;1+b0 −bh, . . . ,1+bq −bh;z)
(1.11.52)

for h = 0,1, . . . ,q, b0 = 1, with the term 1 + b j − b j, j = 0,1, . . . ,q omitted where
Ah, h = 0,1, . . . ,q are arbitrary constants. Thus
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0=A0 pFq(a1, . . . ,ap;b1, . . . ,bq;z)
u1=A1 z1−b1 pFq(1+a1−b1, . . . ,1+ap−b1;2−b1,1+b2−b1, . . . ,1+bq−b1;z)
u2=A2 z1−b2 pFq(1+a1−b2,. . .,1+ap−b2;1+b1−b2,2−b2,

1+b3−b2,. . .,1+bq−b2;z)
etc

(1.11.53)
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Solution 1.11.2: Substitution of

u(z) =
∞

∑
n=0

cnzn+s (1.11.54)

in (1.11.51) yields

∞

∑
n=0

cn

{

(s+n)
q

∏
j=1

(s+n+b j −1)zn −
p

∏
i=1

(s+n+ai)zn+1

}

= 0. (1.11.55)

Equating the coefficient of c0 to zero gives the indicial equation roots as sh = 1−bh,
h = 0,1, . . . ,q. For the root sh, we find from (1.11.55) that

cn =
∏p

i=1(sh +αi)c0

(sh +1)n∏n
j=1(sh +b j)n

. (1.11.56)

Thus (1.11.56) and (1.11.54) yield (1.11.53). If p ≥ q + 1 and no two of the ai’s
differ by an integer or zero, then there are p linearly independent solutions of the
equation (1.11.51) near z = ∞:

vh(t) = Bhz−ah q+1Fp−1(1+ah −b1, . . . ,1+ah −bq;

1+ah −a1, . . . ,1+ah −ap;(−1)q+1−p/z),

h = 1,2, . . . , p, where Bh, h = 1, . . . , p, are arbitrary constants.

1.11.10 G-function

The G-function

y(z) = Gm,n
p,q

[

z

∣
∣
∣
∣
∣
a1, . . . ,ap
b1, . . . ,bq

]

(1.11.57)

satisfies the homogeneous linear differential equation
[

(−1)m+n−pz
p

∏
i=1

(δ −ai +1)−
q

∏
j=1

(δ −b j)

]

y(z) = 0 (1.11.58)

where δ = z d
dz . This equation

(a)is of order max(p,q),
(b)has singularities at z = 0 (regular), z = ∞ (irregular) when p < q,
(c)has regular singularities at z = 0, ∞ and (−1)m+n−p if p = q.
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In view of

Gm,n
p,q

[

z

∣
∣
∣
∣
∣
a1, . . . ,ap
b1, . . . ,bq

]

= Gn,m
q,p

[
1
z

∣
∣
∣
∣
∣

1−b1, . . . ,1−bq
1−a1, . . . ,1−ap

]

, −argz = arg
(

1
z

)

(1.11.59)

it is enough to consider p < q. The q functions

yh(z) = Aheiπ(m+n−p+1)bhG1,p
p,q

[

ze−iπ(m+n−p+1)

∣
∣
∣
∣
∣

a1, . . . ,ap
bh,b1, . . . ,bh−1,bh+1, . . . ,bq

]

,

(1.11.60)

h = 1,2, . . . ,q for Ah arbitrary constant, form linearly independent solutions for
(1.11.58) around z = 0 provided that no two of b j, j = 1, . . . ,m, differ by an in-
teger or zero. Equation (1.11.60) may be written as

yh(z) =
∏p

i=1Γ(1+bh −ai)
∏q

j=1Γ(1+bh −b j)
Ahzbh (1.11.61)

× pFq−1(1+bh−a1, . . . ,1+bh−ap;1+bh−b1, . . . ,1+bh−bq;(−1)m+n−pz),

where p ≤ q−1 or p = q and |z| < 1 and 1+bh −bh term is omitted. When two or
more b j’s differ by an integer or zero, the corresponding independent solution may
involve log, psi and/or zeta functions. The solution of (1.11.58) in the neighborhood
of z = ∞ (irregular singularity) are rather lengthy to obtain.

Exercises 1.11.

1.11.18. Show that u(z) = pFq(a1, . . . ,ap;b1, . . . ,bq;z) satisfies equation (1.11.51).
1.11.19. Show that (1.11.57) satisfies (1.11.58).
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Chapter 2
Mittag-Leffler Functions and Fractional
Calculus

[This chapter is based on the lectures of Professor R.K. Saxena of Jai Narain Vyas University,
Jodhpur, Rajasthan, India.]

2.0 Introduction

This section deals with Mittag-Leffler function and its generalizations. Its
importance is realized during the last one and a half decades due to its direct
involvement in the problems of physics, biology, engineering and applied sciences.
Mittag-Leffler function naturally occurs as the solution of fractional order dif-
ferential equations and fractional order integral equations. Various properties of
Mittag-Leffler functions are described in this section. Among the various results
presented by various researchers, the important ones deal with Laplace transform
and asymptotic expansions of these functions, which are directly applicable in the
solution of differential equations and in the study of the behavior of the solution for
small and large values of the argument. Hille and Tamarkin in 1920 have presented
a solution of Abel-Volterra type integral equation

φ(x)− λ
Γ(α)

∫ x

0

φ(t)
(x− t)1−α dt = f (x), 0 < x < 1

in terms of Mittag-Leffler function. Dzherbashyan (1966) has shown that both the
functions defined by (2.1.1) and (2.1.2) are entire functions of order p = 1

α and type
σ = 1. A detailed account of the basic properties of these functions is given in the
third volume of Batemann Manuscript Project written by Erdélyi et al (1955) under
the heading “Miscellaneous Functions”.

2.1 Mittag-Leffler Function

Notation 2.1.1. Eα(x) : Mittag-Leffler function

Notation 2.1.2. Eα,β (x) : Generalized Mittag-Leffler function

79
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Note 2.1.1: According to Erdélyi, et al (1955) both Eα (x) and Eα,β (x) are
called Mittag-Leffler functions.

Definition 2.1.1.

Eα(z) =
∞

∑
k=0

zk

Γ(αk +1)
, α ∈C,ℜ(α) > 0. (2.1.1)

Definition 2.1.2.

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk +β )
, α,β ∈C,ℜ(α) > 0,ℜ(β ) > 0. (2.1.2)

The function Eα(z) was defined and studied by Mittag-Leffler in the year 1903. It is
a direct generalization of the exponential series. For α = 1 we have the exponential
series. The function defined by (2.1.2) gives a generalization of (2.1.1). This gener-
alization was studied by Wiman in 1905, Agarwal in 1953, Humbert and Agarwal
in 1953, and others.

Example 2.1.1. Prove that E1,2(z) = ez−1
z .

Solution 2.1.1: We have

E1,2(z) =
∞

∑
k=0

zk

Γ(k +2)
=

∞

∑
k=0

zk

(k +1)!
=

1
z

∞

∑
k=0

zk+1

(k +1)!
=

1
z
(ez −1).

Definition 2.1.3. Hyperbolic function of order n.

hr(z,n) =
∞

∑
k=0

znk+r−1

(nk + r−1)!
= zr−1En,r(zn), r = 1,2, .... (2.1.3)

Definition 2.1.4. Trigonometric functions of order n.

Kr(z,n) =
∞

∑
k=0

(−1)kzkn+r−1

(kn+ r−1)!
= zr−1En,r(−zn). (2.1.4)

E 1
2 ,1(z) =

∞

∑
k=0

zk

Γ
( k

2 +1
) = ez2

erfc(−z), (2.1.5)

where erfc is complementary to the error function erf.

Definition 2.1.5. Error function.

erfc(z) =
2

π 1
2

∫ ∞

z
e−u2

du = 1− erf(z), z ∈C. (2.1.6)
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To derive (2.1.5), we see that Dzherbashyan (1966, P.297, Eq.7.1.) reads as

w(z) = e−z2
erfc(−iz) (2.1.7)

whereas Dzherbashyan (1966, P.297, Eq.7.1.8) is

w(z) =
∞

∑
n=0

(iz)n

Γ
( n

2 +1
) . (2.1.8)

From (2.1.7) and (2.1.8) we easily obtain (2.1.5). In passing, we note that w(z) is
also an error function (Dzherbashyan (1966)).

Definition 2.1.6. Mellin-Ross function.

Et(ν ,a) = tν
∞

∑
k=0

(at)k

Γ(ν+ k +1)
= tνE1,ν+1(at). (2.1.9)

Definition 2.1.7. Robotov’s function.

Rα(β , t) = tα
∞

∑
k=0

β ktk(α+1)

Γ((1+α)(k +1))
= tαEα+1,α+1(β tα+1). (2.1.10)

Example 2.1.2. Prove that E1,3(z) = ez−z−1
z2 .

Solution 2.1.2: We have

E1,3(z) =
∞

∑
k=0

zk

Γ(k +3)
=

1
z2

∞

∑
k=0

zk+2

(k +2)!

=
1
z2 (ez − z−1).

Example 2.1.3. Prove that

E1,r(z) =
1

zr−1

{

ez −
r−2

∑
k=0

zk

k!

}

, r = 1,2, . . . .

The proof is similar to that in Example 2.1.2.

Revision Exercises 2.1.
2.1.1. Prove that

H1,1
1,2

[
x
∣
∣(a,A)
(a,A),(0,1)

]
= A−1

∞

∑
k=0

(−1)kx(k+a)/A

Γ(1+(k +a)A)
,
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and write the right side in terms of a generalized Mittag-Leffler function.

2.1.2. Prove that

d
dx

H1,1
1,2

[
x
∣
∣(a,A)
(a,A),(0,1)

]
= H1,1

1,2

[
x
∣
∣(a−A,A)
(a−A,A),(0,1)

]
.

2.1.3. Prove that

H1,1
2,1

[
1
x

∣
∣(1−a,A),(1,1)
(1−a,A)

]
= A−1

∞

∑
k=0

(−1)k( 1
x )

k+1−a
A

Γ(1− (k +1−a)/A)
.

2.2 Basic Properties of Mittag-Leffler Function

As a consequence of the definitions (2.1.1) and (2.1.2) the following results hold:

Theorem 2.2.1. There hold the following relations:

(i) Eα,β (z) = zEα,α+β (z)+
1

Γ(β )
(2.2.1)

(ii) Eα,β (z) = βEα,β+1(z)+αz
d
dz

Eα,β+1(z) (2.2.2)

(iii)
(

d
dz

)m [
zβ−1Eα,β (z

α)
]

= zβ−m−1Eα,β−m(zα), (2.2.3)

ℜ(β −m) > 0, m = 0,1, . . . . (2.2.4)

Solutions 2.2.1: (i) We have

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk +β )
=

∞

∑
k=−1

zk+1

Γ(α+β +αk)

= zEα,α+β (z)+
1

Γ(β )
, ℜ(β ) > 0.

(ii) We have

R.H.S. = βEα,β+1(z)+αz
d
dz

∞

∑
k=0

zk

Γ(αk +β +1)

=
∞

∑
k=0

(αk +β )zk

Γ(αk +β +1)
=

∞

∑
k=0

zk

Γ(αk +β )

= Eα,β (z) = L.H.S.
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(iii)

L.H.S. =
(

d
dz

)m ∞

∑
k=0

zαk+β−1

Γ(αk +β )

=
∞

∑
k=0

zαk+β−m−1

Γ(αk +β −m)
, ℜ(β −m) > 0,

since
∞

∑
k=0

(
d
dz

)m

(zαk+β−1) =
∞

∑
k=0

Γ(αk +β )
Γ(αk +β −m)

zαk+β−m−1

= zβ−m−1Eα,β−m(zα), m = 0,1,2, ...

= R.H.S.

Following special cases of (2.2.3) are worth mentioning. If we set α = m
n , m,n =

1,2, ... then
(

d
dz

)m [
zβ−1E m

n ,β (z
m
n )
]

= zβ−m−1E m
n ,β−m(z

m
n )

= zβ−m−1
∞

∑
k=0

z
mk
n

Γ
(mk

n +β −m
) .

for ℜ(β −m) > 0, (replacing k by k +n)

= zβ−m−1
∞

∑
k=−n

z
m(k+n)

n

Γ
(
β + mk

n

)

= zβ−1E m
n ,β (z

m
n )+ zβ−1

n

∑
k=1

z−
mk
n

Γ
(
β − mk

n

) , m,n = 1,2,3.

(2.2.5)
(

d
dz

)m [
zβ−1Em,β (z

m)
]

= zβ−1Em,β (z
m)+

z−m

Γ(β −m)
, ℜ(β −m) > 0. (2.2.6)

Putting z = t
n
m in (2.2.3) it yields

(
m
n

t1− n
m

d
dt

)m

[t(β−1) n
m E m

n ,β (t)] = t(β−1) n
m E m

n ,β (t)

+ t(β−1) n
m

n

∑
k=1

t−k

Γ(β − mk
n )

, ℜ(β −m) > 0, m,n = 1,2, .... (2.2.7)

When m = 1, (2.2.7) reduces to

t1−n

n
d
dt

[
t(β−1)nE 1

n ,β (t)
]

= t(β−1)nE 1
n ,β (t)+ t(β−1)n

n

∑
k=1

t−k

Γ
(
β − k

n

) ,
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for ℜ(β ) > 1, which can be written as

1
n

d
dt

[
t(β−1)nE 1

n ,β (t)
]

= tβn−1E 1
n ,β (t)+ tβn−1

n

∑
k=1

t−k

Γ
(
β − k

n

) , ℜ(β ) > 1. (2.2.8)

2.2.1 Mittag-Leffler functions of rational order

Now we consider the Mittag-Leffler functions of rational order α = p
q with p,q =

1,2, .... relatively prime. The following relations readily follow from the definitions
(2.1.1) and (2.1.2).

(i)
(

d
dz

)p

Ep(zp) = Ep(zp) (2.2.9)

(ii)
(

d
dz

)p

E p
q
(z

p
q ) = E p

q
(z

p
q )+

q−1

∑
k=1

zk p
q −p

Γ(k p
q +1− p)

, (2.2.10)

q = 1,2,3, .... We now derive the relation

(iii) E 1
q
(z

1
q ) = ez

[

1+
q−1

∑
k=1

γ(1− k
q ,z)

Γ(1− k
q )

]

, (2.2.11)

where q = 2,3, ... and γ(α,z) is the incomplete gamma function, defined by

γ(α,z) =
∫ z

0
e−uuα−1du

To prove (2.2.11), set p = 1 in (2.2.10) and multiply both sides by e−z and use the
definition of γ(α,z). Thus we have

d
dz

[
e−zE 1

q
(z

1
q )
]

= e−z
q−1

∑
k=1

z−
k
q

Γ
(

1− k
q

) . (2.2.12)

Integrating (2.2.12) with respect to z, we obtain (2.2.11).

2.2.2 Euler transform of Mittag-Leffler function

By virtue of beta function formula it is not difficult to show that
∫ 1

0
zρ−1(1− z)σ−1Eα,β (xzγ)dz = Γ(σ)2ψ2

[
x
∣
∣(ρ,γ),(1,1)
(β ,α),(σ+ρ,γ)

]
(2.2.13)
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where ℜ(α) > 0,ℜ(β ) > 0,ℜ(σ) > 0,γ > 0. Here 2ψ2 is the generalized Wright
function and α,β ,ρ,σ ∈C.

Special cases of (2.2.13):

(i) When ρ = β ,γ = α , (2.2.13) yields
∫ 1

0
zβ−1(1− z)σ−1Eα,β (xzα)dz = Γ(σ)Eα,σ+β (x), (2.2.14)

where α > 0;β ,σ ∈C,ℜ(β ) > 0,ℜ(σ) > 0 and,

(ii) ∫ 1

0
zσ−1(1− z)β−1Eα,β [x(1− z)α ]dz = Γ(σ)Eα,β+σ (x), (2.2.15)

where α > 0;β ,σ ∈C,ℜ(β ) > 0,ℜ(σ) > 0.

(iii) When α = β = 1 we have
∫ 1

0
zρ−1(1− z)σ−1 exp(xzγ)dz = Γ(σ)2ψ2

[
x
∣
∣(ρ,γ),(1,1)
(1,1),(σ+ρ,γ)

]

= Γ(σ)1ψ1

[
x
∣
∣(ρ,γ)
(σ+ρ,γ)

]
, (2.2.16)

where γ > 0,ρ,σ ∈C,ℜ(ρ) > 0,ℜ(σ) > 0.

2.2.3 Laplace transform of Mittag-Leffler function

Notation 2.2.1. F(s) = L{ f (t);s} = (L f )(s) : Laplace transform of f (t) with
parameter s.

Notation 2.2.2. L−1{F(s); t} : Inverse Laplace transform

Definition 2.2.1. The Laplace transform of a function f (t), denoted by F(s), is
defined by the equation

F(s) = (L f )(s) = L{ f (t);s} =
∫ ∞

0
e−st f (t)dt, (2.2.17)

where ℜ(s) > 0, which may be symbolically written as

F(s) = L{ f (t);s} or f (t) = L−1{F(s); t},

provided that the function f (t) is continuous for t ≥ 0, it being tacitly assumed that
the integral in (2.2.17) exists.
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Example 2.2.1. Prove that

L−1{s−ρ} =
tρ−1

Γ(ρ)
, ℜ(s) > 0, ℜ(ρ) > 0. (2.2.18)

It follows from the Laplace integral
∫ ∞

0
e−sttρ−1dt =

Γ(s)
sρ

, ℜ(s) > 0, ℜ(ρ) > 0. (2.2.19)

Example 2.2.2. Find the inverse Laplace transform of F(s)
a+sα ; a,α > 0; where

ℜ(s) > 0,F(s) = L{ f (t);s}.

Solution 2.2.1: Let

G(s) =
1

a+ sα
=

∞

∑
r=0

(−a)rs−α−αr, | a
sα

| < 1.

Therefore,

L−1{G(s)} = g(t) = L−1

{
∞

∑
r=0

(−a)rs−α−αr

}

= tα−1Eα,α(−atα). (2.2.20)

Application of convolution theorem of Laplace transform yields the result

L−1
{

F(s)
a+ sα

; t
}

=
∫ x

0
(x− t)α−1Eα,α(−a(x− t)α) f (t)dt (2.2.21)

where ℜ(α) > 0.

By the application of Laplace integral, it follows that

∫ ∞

0
zρ−1e−azEα,β (xzγ)dz =

1
aρ 2ψ1

[ x
aγ
∣
∣(1,1),(ρ,γ)
(β ,α)

]
, (2.2.22)

where ρ,a,α,β ∈ C,ℜ(α) > 0,ℜ(β ) > 0,ℜ(γ) > 0,ℜ(a) > 0,ℜ(ρ) > 0 and
| z

aγ | < 1. Special cases of (2.2.22) are worth mentioning.

(i) For ρ = β ,γ = α,ℜ(α) > 0, (2.2.22) gives

∫ ∞

0
e−azzβ−1Eα,β (xzα)dz =

aα−β

aα − x
, (2.2.23)

where a,α,β ∈C,ℜ(α) > 0,ℜ(β ) > 0, | x
aα | < 1.
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When a = 1, (2.2.23) yields a known result.
∫ ∞

0
e−zzβ−1Eα,β (xzα)dz =

1
1− x

, |x| < 1, (2.2.24)

where ℜ(α) > 0,ℜ(β ) > 0. If we further take β = 1, (2.2.24) reduces to
∫ ∞

0
e−zEα(xzα)dz =

1
1− x

, |x| < 1.

(ii) When β = 1, (2.2.23) gives

∫ ∞

0
e−azEα(xzα)dz =

aα−1

aα − x
, (2.2.25)

where ℜ(a) > 0,ℜ(α) > 0, | x
aα | < 1.

2.2.4 Application of Lalace transform

From (2.2.23) we find that

L{xβ−1Eα,β (axα)} =
sα−β

sα −a
(2.2.26)

where ℜ(α) > 0,ℜ(β ) > 0. We also have

L{xγ−1Eα,γ(−axα)} =
sα−γ

sα +a
. (2.2.27)

Now [
sα−β

sα −a

][
sα−γ

sα +a

]
=

s2α−(β+γ)

s2α −a2 for ℜ(s2) >ℜ(a). (2.2.28)

By virtue of the convolution theorem of the Laplace transform, it readily follows
that
∫ t

0
uβ−1Eα,β (auα)(t −u)γ−1Eα,γ(−a(t −u)α)du = tβ+γ−1E2α,β+γ(a

2t2α),

(2.2.29)

where ℜ(β ) > 0,ℜ(γ) > 0. Further, if we use the identity

1
s2 =

sα−β

sα −1

[
sβ−2 − sβ−α−2

]
(2.2.30)

and the relation
L{tρ−1;s} = Γ(ρ)s−ρ , (2.2.31)
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where ℜ(ρ) > 0,ℜ(s) > 0, we obtain

∫ t

0
uβ−1Eα,β (u

α)

[
(t −u)1−β

Γ(2−β )
− (t −u)α−β+1

Γ(α−β +2)

]

du = t, (2.2.32)

where 0 < β < 2,ℜ(α) > 0. Next we note that the following result (2.2.34) can be
derived by the application of inverse Laplace transform to the identity

[
s2α−β

s2α −1

]

[s−α ] = − s2α−β

s2α −1
+

sα−β

sα −1
, ℜ(sα) > 1. (2.2.33)

We have

1
Γ(α)

∫ x

0
(x− t)α−1E2α,β (t

2α)tβ−1dt = −xβ−1E2α,β (x
2α)+ xβ−1Eα,β (x

α),

(2.2.34)

where ℜ(α) > 0,ℜ(β ) > 0. If we set β = 1 in (2.2.34), it reduces to

1
Γ(α)

∫ x

0
(x− t)α−1E2α(t2α)dt = Eα(xα)−E2α(x2α) (2.2.35)

where ℜ(α) > 0.

2.2.5 Mittag-Leffler functions and the H-function

Both the Mittag-Leffler functions Eα(z) and Eα,β (z) belong to H-function family.
We derive their relations with the H-function.

Lemma 2.2.1: Let α ∈ R+ = (0,∞). Then Eα(z) is represented by the Mellin-
Barnes integral

Eα(z) =
1

2πi

∫

L

Γ(s)Γ(1− s)(−z)−s

Γ(1−αs)
ds, |argz| < π, (2.2.36)

where the contour of integration L, beginning at c− i∞ and ending at c+ i∞,0<c<1,
separates all poles s =−k,k = 0,1,2, ... to the left and all poles s = 1+n,n = 0,1, ...
to the right.

Proof. We now evaluate the integral (2.2.36) as the sum of the residues at the
points s = 0,−1,−2, . . . . We find that
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1
2πi

∫

L

Γ(s)Γ(1− s)(−z)−s

Γ(1−αs)
ds =

∞

∑
k=0

lim
s→−k

[
(s+ k)Γ(s)Γ(1− s)(−z)−s

Γ(1−αs)

]
(2.2.37)

=
∞

∑
k=0

(−1)kΓ(1+ k)
k!Γ(1+αk)

(−z)k

= Eα(z),

which yields (2.2.36) in accordance with the definition (2.1.1). It readily follows
from the definition of the H-function and (2.2.36) that Eα(z) can be represented in
the form

Eα(z) = H1,1
1,2

[
−z
∣
∣(0,1)
(0,1),(0,α)

]
, (2.2.38)

where H1,1
1,2 is the H-function, which is studied in Chapter 1.

Lemma 2.2.2: Let α ∈ R+ = (0,∞),β ∈C, then

Eα,β (z) =
1

2πi

∫

L

Γ(s)Γ(1− s)(−z)−s

Γ(β −αs)
ds. (2.2.39)

The proof of (2.2.39) is similar to that of (2.2.36). Hence the proof is omitted. From
(2.2.39) and the definition of the H-function we obtain the relation

Eα,β (z) = H1,1
1,2

[
−z
∣
∣(0,1)
(0,1),(1−β ,α)

]
. (2.2.40)

In particular, Eα(z) can be expressed in terms of generalized Wright function in the
form

Eα(z) = 1ψ1

[
z
∣
∣(1,1)
(1,α)

]
. (2.2.41)

Similarly, we have
Eα,β (z) = 1ψ1

[
z
∣
∣(1,1)
(β ,α)

]
. (2.2.42)

Next, if we calculate the residues at the poles of the gamma function Γ(1− s) at the
points s = 1+n,n = 0,1,2, ... it gives

1
2πi

∫

L

Γ(s)Γ(1− s)
Γ(1−αs)

(−z)−sds =
∞

∑
n=0

lim
s→1+n

(s−1−n)Γ(s)Γ(1− s)(−z)−s

Γ(1−αs)

=
∞

∑
n=0

(−1)nΓ(1+n)(−z)−n−1

n!Γ(1−α(1+n))

= −
∞

∑
n=1

z−n

Γ(1−αn)
, (2.2.43)

for α 
= 1,2, · · · . Similarly for α 
= 1,2, · · · ,Eα,β (z), gives

1
2πi

∫

L

Γ(s)Γ(1− s)
Γ(β −αs)

(−z)−sds = −
∞

∑
n=1

z−n

Γ(β −αn)
. (2.2.44)
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Exercises 2.2.
2.2.1. Let

U1(t) = tβ−1E m
n ,β (t

m
n )

U2(t) = tβ−1Em,β (t
m)

U3(t) = t(β−1) n
m E m

n ,β (t)

U4(t) = t(β−1)nE 1
n ,β (t).

Then show that these functions respectively satisfy the following differential equa-
tions of Mittag-Leffler functions when m,n are relatively prime.

(i)
dm

dtm U1(t)−U1(t) = tβ−1
n

∑
k=1

t−
m
n k

Γ(β − mk
n )

ℜ(β ) > m,(m,n = 1,2,3, ...);

(ii)
dm

dtm U2(t)−U2(t) =
t−m+β−1

Γ(β −m)
, ℜ(β ) > m,m = 1,2, . . . .;

(iii)
(

m
n

t1− n
m

d
dt

)m

U3(t)−U3(t) = t(β−1) n
m

n

∑
k=1

t−k

Γ(β − mk
n )

m,n = 1,2,3, ...,ℜ(β ) > m;

(iv)
1
n

[
d
dt

U4(t)
]
− tn−1U4(t) = tnβ−1

n

∑
k=1

t−k

Γ(β − k
n )

n = 1,2,3, ...,ℜ(β ) > 1.

2.2.2. Prove that

λ
Γ(α)

∫ x

0

Eα(λ tα)
(x− t)1−α dt = Eα(λxα)−1,ℜ(α) > 0.

2.2.3. Prove that

d
dx

[xγ−1Eα,β (axα)] = xγ−2Eα,β−1(axα)+(γ−β )xγ−2Eα,β (axα),β 
= γ.

2.2.4. Prove that

1
Γ(ν)

∫ z

0
tβ−1(z− t)ν−1Eα,β (λ tα)dt = zβ+ν−1Eα,β+ν(λ zα),

ℜ(β ) > 0,ℜ(ν) > 0,ℜ(α) > 0.

2.2.5. Prove that

1
Γ(α)

∫ z

0
(z− t)α−1cosh(

√
λ t)dt = zαE2,α+1(λ z2),ℜ(α) > 0.
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2.2.6. Prove that

1
Γ(α)

∫ z

0
eλ t(z− t)α−1dt = zαE1,α+1(λ z),ℜ(α) > 0.

2.2.7. Prove that

1
Γ(α)

∫ z

0
(z− t)α−1 sinh(

√
λ t)√
λ

dt = zα+1E2,α+2(λ z2),ℜ(α) > 0.

2.2.8. Prove that

∫ ∞

0
e−sxxβ−1Eα,β (x

α)dx =
sα−β

sα −1
,ℜ(s) > 1.

2.2.9. Prove that

∫ ∞

0
e−stEα(tα)dt =

1
s− s1−α ,ℜ(s) > 1.

2.2.10. Prove that
∫ x

0
uγ−1Eα,γ(yuα)(x−u)β−1Eα,β [z(x−u)α ]du

=
yEα,β+γ(yxα)− zEα,β+γ(zxα)

y− z
xβ+γ−1,

where y,z ∈C; y 
= z,γ > 0,β > 0.

2.3 Generalized Mittag-Leffler Function

Notation 2.3.1. Eδβ ,γ(z): Generalized Mittag-Leffler function

Definition 2.3.1.

Eδβ ,γ(z) =
∞

∑
n=0

(δ )nzn

Γ(βn+ γ)n!
, (2.3.1)

where β ,γ,δ ∈ C with ℜ(β ) > 0. For δ = 1, it reduces to Mittag-Leffler function
(2.1.2). This function was introduced by T.R. Prabhakar in 1971. It is an entire
function of order ρ = [ℜ(β )]−1.
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2.3.1 Special cases of Eδδδβββ ,γγγ (z)

(i) Eβ (z) = E1
β ,1(z) (2.3.2)

(ii) Eβ ,γ(z) = E1
β ,γ(z) (2.3.3)

(iii) φ(γ,δ ;z) = 1F1(γ;δ ;z) = Γ(δ )Eγ1,δ (z), (2.3.4)

where φ(γ,δ ;z) is Kummer’s confluent hypergeometric function.

2.3.2 Mellin-Barnes integral representation

Lemma 2.3.1: Let β ∈ R+ = (0,∞);γ,δ ∈ C,γ 
= 0,ℜ(δ ) > 0. Then Eδβ ,γ(z) is
represented by the Mellin-Barnes integral

Eδβ ,γ(z) =
1

Γ(δ )
1

2πi

∫

L

Γ(s)Γ(δ − s)
Γ(γ−β s)

(−z)−sds, (2.3.5)

where |arg(z)| < π; the contour of integration beginning at c− i∞ and ending at
c+ i∞,0 < c <ℜ(δ ), separates all the poles at s = −k,k = 0,1, ... to the left and all
the poles at s = n+δ ,n = 0,1, ... to the right.

Proof. We will evaluate the integral on the R.H.S. of (2.3.5) as the sum of the
residues at the poles s = 0,−1,−2, ... . We have

1
2πi

∫

L

Γ(s)Γ(δ − s)
Γ(γ−β s)

(−z)−sds =
∞

∑
k=0

lim
s→−k

[
(s+ k)Γ(s)Γ(δ − s)(−z)−s

Γ(γ−β s)

]

=
∞

∑
k=0

(−1)k

k!
Γ(δ + k)
Γ(γ+βk)

(−z)k

= Γ(δ )
∞

∑
k=0

(δ )k

Γ(βk + γ)
zk

k!
= Γ(δ )Eδβ ,γ(z)

which proves (2.3.5).

2.3.3 Relations with the H-function and Wright function

It follows from (2.3.5) that Eδβ ,γ(z) can be represented in the form

Eδβ ,γ(z) =
1

Γ(δ )
H1,1

1,2

[
−z
∣
∣(1−δ ,1)
(0,1),(1−γ ,β )

]
(2.3.6)
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where H1,1
1,2 (z) is the H-function, the theory of which can be found in Chapter 1. This

function can also be represented by

Eδβ ,γ(z) =
1

Γ(δ ) 1ψ1

[
z
∣
∣(δ ,1)
(γ ,β )

]
(2.3.7)

where 1ψ1 is the Wright hypergeometric function pψq(z).

2.3.4 Cases of reducibility

In this subsection we present some interesting cases of reducibility of the function
Eδβ ,γ(z). The results are given in the form of five theorems. The results are useful in
the investigation of the solutions of certain fractional order differential and integral
equations.The proofs of the following theorems can be developed on similar lines
to that of equation (2.2.1).

Theorem 2.3.1. If β ,γ,δ ∈C with ℜ(β ) > 0,ℜ(γ) > 0,ℜ(γ−β ) > 0, then there
holds the relation

zEδβ ,γ(z) = Eδβ ,γ−β (z)−Eδ−1
β ,γ−β (z). (2.3.8)

Corollary 2.3.1: If β ,γ ∈C,ℜ(γ) >ℜ(β ) > 0, then we have

zE1
β ,γ(z) = Eβ ,γ−β (z)−

1
Γ(γ−β )

. (2.3.9)

Theorem 2.3.2. If β ,γ,δ ∈C,ℜ(β ) > 0,ℜ(γ) > 1, then there holds the formula

βE2
β ,γ(z) = Eβ ,γ−1(z)+(1+β − γ)Eβ ,γ(z). (2.3.10)

Theorem 2.3.3. If ℜ(β ) > 0,ℜ(γ) > 2+ℜ(β ), then there holds the formula

zE3
β ,γ(z) =

1
2β 2 [Eβ ,γ−β−2(z)− (2γ−3β −3)Eβ ,γ−β−1(z)

+(2β 2 + γ2 −3βγ+3β −2γ+1)Eβ ,γ−β (z)]. (2.3.11)

Theorem 2.3.4. If ℜ(β ) > 0,ℜ(γ) > 2, then there holds the formula

E3
β ,γ(z) =

1
2β 2 [Eβ ,γ−2(z)+(3+3β −2γ)Eβ ,γ−1(z)

+(2β 2 + γ2 +3β −3βγ−2γ+1)Eβ ,γ(z)]. (2.3.12)
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2.3.5 Differentiation of generalized Mittag-Leffler function

Theorem 2.3.5. Let β ,γ,δ ,ρ,w ∈C. Then for any n = 1,2, ... there holds the for-
mula, for ℜ(γ) > n,

(
d
dz

)n

[zγ−1Eδβ ,γ(wzβ )] = zγ−n−1Eδβ ,γ−n(wzβ ). (2.3.13)

In particular, for ℜ(γ) > n,
(

d
dz

)n

[zγ−1Eβ ,γ(wzβ )] = zγ−n−1Eβ ,γ−n(wzβ ) (2.3.14)

and for ℜ(γ) > n,
(

d
dz

)n

[zγ−1φ(δ ;γ;wz)] =
Γ(γ)

Γ(γ−n)
zγ−n−1φ(δ ;γ−n;wz). (2.3.15)

Proof. Using (2.3.1) and taking term by term differentiation under the summation
sign, which is possible in accordance with uniform convergence of the series in
(2.3.1) in any compact set of C, we obtain

(
d
dz

)n

[zγ−1Eδβ ,γ(wzβ )] =
∞

∑
k=0

(δ )k

Γ(βk + γ)

(
d
dz

)n
[

wkzβx+γ−1

k!

]

= zγ−n−1Eδβ ,γ−n(wzβ ), ℜ(γ) > n,

which establishes (2.3.13). Note that (2.3.14) follows from (2.3.13) when δ = 1 due
to (2.3.3), and (2.3.15) follows from (2.3.13) when β = 1 on account of (2.3.4).

2.3.6 Integral property of generalized Mittag-Leffler function

Corollary 2.3.2: Let β ,γ,δ ,w ∈C,ℜ(γ) > 0,ℜ(β ) > 0,ℜ(δ ) > 0. Then
∫ z

0
tγ−1Eδβ ,γ(wtβ )dt = zγEδβ ,γ+1(wzβ ) (2.3.16)

and (2.3.16) follows from (2.3.13). In particular,
∫ z

0
tγ−1Eβ ,γ(wtβ )dt = zγEβ ,γ+1(wzβ ) (2.3.17)

and ∫ z

0
tδ−1φ(γ,δ ;wt)dt =

1
δ

zδ φ(γ,δ +1;wz) (2.3.18)

Remark 2.3.1: The relations (2.3.15) and (2.3.18) are well known.



2.3 Generalized Mittag-Leffler Function 95

2.3.7 Integral transform of Eδβββ ,γγγ (z)

By appealing to the Mellin inversion formula, (2.3.5) yields the Mellin transform of
the generalized Mittag-Leffler function.

∫ ∞

0
ts−1Eδβ ,γ(−wt)dt =

Γ(s)Γ(δ − s)w−s

Γ(δ )Γ(γ− sβ )
. (2.3.19)

If we make use of the integral

∫ ∞

0
tν−1e−

t
2 Wλ ,µ(t)dt =

Γ
( 1

2 +µ+ν
)
Γ
( 1

2 −µ+ν
)

Γ(1−λ +ν)
(2.3.20)

where ℜ(ν ± µ) > − 1
2 , we obtain the Whittaker transform of the Mittag-Leffler

function
∫ ∞

0
tρ−1e−

1
2 ptWλ ,µ(pt)Eδβ ,γ(wtα)dt =

p−ρ

Γ(δ ) 3ψ2

[
w
pα
∣
∣(δ ,1),( 1

2±µ+ρ,α)
(γ ,β ),(1−λ+ρ,α)

]
(2.3.21)

where 3ψ2 is the generalized Wright function, and ℜ(ρ) > |ℜ(µ)| − 1
2 ,ℜ(p) >

0, | w
pα | < 1. When λ = 0 and µ = 1

2 , then by virtue of the identity

W± 1
2 ,0(t) = exp

(
− t

2

)
, (2.3.22)

the Laplace transform of the generalized Mittag-Leffler function is obtained.

∫ ∞

0
tρ−1e−ptEδβ ,γ(wtα)dt =

p−ρ

Γ(δ ) 2ψ1

[
w
pα
∣
∣(δ ,1),(ρ,α)
(γ ,β )

]
(2.3.23)

whereℜ(β ) > 0,ℜ(γ) > 0,ℜ(ρ) > 0,ℜ(p) > 0, p > |w|
1

ℜ(α) . In particular, for ρ = γ
and α = β we obtain a result given by Prabhakar (1971, Eq.2.5).

∫ ∞

0
tγ−1e−ptEδβ ,γ(wtβ )dt = p−γ(1−wp−β )−δ (2.3.24)

where ℜ(β ) > 0,ℜ(γ) > 0,ℜ(p) > 0 and p > |w|
1

ℜ(β ) .

The Euler transform of the generalized Mittag-Leffler function follows from the beta
function.

∫ 1

0
ta−1(1− t)b−1Eδβ ,γ(xtα)dt =

Γ(b)
Γ(δ ) 2ψ2

[
x
∣
∣(δ ,1),(a,α)
(γ ,β ),(a+b,α)

]
, (2.3.25)

where ℜ(a) > 0,ℜ(b) > 0,ℜ(δ ) > 0,ℜ(β ) > 0,ℜ(γ) > 0,ℜ(α) > 0.
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Theorem 2.3.6. We have

∫ ∞

0
e−pttαk+β−1E(k)

α,β (atα)dt =
k!pα−β

(pα −a)k+1 , (2.3.26)

where ℜ(p) > |a|
1

ℜ(α) ,ℜ(α) > 0,ℜ(β ) > 0, and E(k)
α,β (y) = dk

dyk Eα,β (y).

Proof: We will use the following result:
∫ ∞

0
e−t tβ−1Eα,β (zt

α)dt =
1

1− z
, |z| < 1. (2.3.27)

The given integral

=
dk

dak

∫ ∞

0
e−pttβ−1Eα,β (±atα)dt

=
dk

dak
pα−β

(pα −a)
=

k!pα−β

(pα −a)k+1 ,ℜ(β ) > 0.

Corollary 2.3.3:
∫ ∞

0
e−ptt

k−1
2 E(k)

1
2 , 1

2
(a
√

t)dt =
k!

(
√

p−a)k+1 (2.3.28)

where ℜ(p) > a2.

Exercises 2.3.

2.3.1. Prove that

1
Γ(α)

∫ 1

0
uγ−1(1−u)α−1Eδβ ,γ(zuβ )du = Eδβ ,γ+α(z),ℜ(α) > 0,ℜ(β ) > 0,ℜ(γ) > 0.

2.3.2. Prove that

1
Γ(α)

∫ x

t
(x−u)α−1(u− t)γ−1Eδβ ,γ [λ (u− t)β ]du = (x− t)γ+α−1Eδβ ,γ+α [λ (x− t)β ]

where ℜ(α) > 0,ℜ(γ) > 0,ℜ(β ) > 0.
2.3.3. Prove that for n = 1,2, ...

Eδn,γ(z) =
1
Γ(γ) 1Fn(δ ;∆(n;γ);n−nz),

where ∆(n;γ) represents the sequence of n parameters γ
n , γ+1

n , ..., γ+n−1
n .

2.3.4. Show that for ℜ(β ) > 0,ℜ(γ) > 0,
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(

d
dz

)m

Eδβ ,γ(z) = (δ )mEδ+m
β ,γ+mβ (z).

2.3.5. Prove that for ℜ(β ) > 0,ℜ(γ) > 0,
(

z
d
dz

+δ
)

Eδβ ,γ(z) = δEδ+1
β ,γ (z).

2.3.6. Prove that for ℜ(γ) > 1,

(γ−βδ −1)Eδβ ,γ(z) = Eδβ ,γ−1(z)−βδEδ+1
β ,γ (z).

2.3.7. Prove that
∫ x

0
tν−1(x− t)µ−1Eγρ,µ [w(x− t)ρ ]Eσρ ,ν(wtρ)dt = xµ+ν−1Eγ+σρ,µ+ν(wxρ),

where ρ,µ ,γ,ν ,σ ,w ∈C;ℜ(ρ),ℜ(µ),ℜ(ν) > 0.
2.3.8. Find

L−1
[

s−λ
(

1− z
sρ

)−α]

and give the conditions of validity.
2.3.9. Prove that

L−1
[

s−λ
(

1− z1

s

)−α1
(

1− z2

s

)−α2
]

=
tλ−1

Γ(λ )
Φ2(α1,α2;λ ;z1t,z2t),

where ℜ(λ ) > 0,ℜ(s) > max[0,ℜ(z1),ℜ(z2)] and Φ2 is the confluent hypergeo-
metric function of two variables defined by

Φ2(b,b′;c;u,z) =
∞

∑
k, j=0

(b)k(b′) jukz j

(c)k+ jk! j!
. (2.3.29)

2.3.10. From the above result deduce the formula

L−1
[
s−λ (1− z

s
)−α
]

=
tλ−1

Γ(λ )
φ(α,λ ;zt), (2.3.30)

where ℜ(λ ) > 0,ℜ(s) > max[0, |z|].

2.4 Fractional Integrals

This section deals with the definition and properties of various operators of frac-
tional integration and fractional differentiation of arbitrary order. Among the various
operators studied are the Riemann-Liouville fractional integral operators, Riemann-
Liouville fractional differential operators, Weyl operators, Kober operators etc. Be-
sides the basic properties of these operators, their behaviors under Laplace, Fourier
and Mellin transforms are also presented. Application of Riemann-Liouville op-
erators in the solution of fractional order differential and fractional order integral
equations is demonstrated.
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2.4.1 Riemann-Liouville fractional integrals of arbitrary order

Notation 2.4.1. aIn
x ,aD−n

x ,n ∈ N∪0: Fractional integral of integer order n

Definition 2.4.1.

aIn
x f (x) = aD−n

x f (x) =
1
Γ(n)

∫ x

a
(x− t)n−1 f (t)dt (2.4.1)

where n ∈ N∪0.

We begin our study of fractional calculus by introducing a fractional integral of
integer order n in the form of Cauchy formula.

aD−n
x f (x) =

1
Γ(n)

∫ x

a
(x− t)n−1 f (t)dt. (2.4.2)

It will be shown that the above integral can be expressed in terms of n-fold integral,
that is,

aD−n
x f (x) =

∫ x

0
dx1

∫ x1

a
dx2

∫ x2

a
dx3...

∫ xn−1

a
f (t)dt. (2.4.3)

Proof. When n = 2, by using the well-known Dirichlet formula, namely

∫ b

a
dx
∫ x

a
f (x,y)dy =

∫ b

a
dy
∫ b

y
f (x,y)dx (2.4.4)

(2.4.3) becomes

∫ x

a
dx1

∫ x1

a
f (t)dt =

∫ x

a
dt f (t)

∫ x

t
dx1

=
∫ x

a
(x− t) f (t)dt. (2.4.5)

This shows that the two-fold integral can be reduced to a single integral with the
help of Dirichlet formula. For n = 3, the integral in (2.4.3) gives

aD−3
x f (x) =

∫ x

a
dx1

∫ x1

a
dx2

∫ x2

a
f (t)dt

=
∫ x

a
dx1

[∫ x1

a
dx2

∫ x2

a
f (t)dt

]
. (2.4.6)

By using the result in (2.4.5) the integrals within big brackets simplify to yield

aD−3
x f (x) =

∫ x

a
dx1

[∫ x1

a
(x1 − t) f (t)dt

]
. (2.4.7)

If we use (2.4.4), then the above expression reduces to
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aD−3
x f (x) =

∫ x

a
dt f (t)

∫ t

x
(x1 − t)dx1 =

∫ x

a

(x− t)2

2!
f (t)dt. (2.4.8)

Continuing this process, we finally obtain

aD−n
x f (x) =

1
(n−1)!

∫ x

a
(x− t)n−1 f (t)dt. (2.4.9)

It is evident that the integral in (2.4.9) is meaningful for any number n provided its
real part is greater than zero.

2.4.2 Riemann-Liouville fractional integrals of order α

Notation 2.4.2. xIαb , xD−α
b , Iαb−: Riemann-Liouville right-sided fractional

integral of order α .

Definition 2.4.2. Let f (x) ∈ L(a,b),α ∈C,ℜ(α) > 0, then

aIαx f (x) = aD−α
x f (x) = Iαa+ f (x) =

1
Γ(α)

∫ x

a

f (t)
(x− t)1−α dt,x > a (2.4.10)

is called Riemann-Liouville left-sided fractional integral of order α .

Definition 2.4.3. Let f (x) ∈ L(a,b),α ∈C,ℜ(α) > 0, then

xIαb f (x) = xD−α
b f (x) = Iαb− f (x) =

1
Γ(α)

∫ b

x

f (t)
(t − x)1−α dt,x < b (2.4.11)

is called Riemann-Liouville right-sided fractional integral of order α .

Example 2.4.1. If f (x) = (x−a)β−1, then find the value of aIαx f (x).

Solution 2.4.1: We have

aIαx f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1(t −a)β−1dt.

If we substitute t = a+ y(x−a) in the above integral, it reduces to

Γ(β )
Γ(α+β )

(x−a)α+β−1

where ℜ(β ) > 0. Thus

aIαx f (x) =
Γ(β )

Γ(α+β )
(x−a)α+β−1. (2.4.12)
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Example 2.4.2. It can be similarly shown that

xIαb g(x) =
Γ(β )

Γ(α+β )
(b− x)α+β−1,x < b (2.4.13)

where ℜ(β ) > 0 and g(x) = (b− x)β−1.

Note 2.4.1: It may be noted that (2.4.12) and (2.4.13) give the Riemann-
Liouville integrals of the power functions f (x) = (x − a)β−1 and g(x) = (b −
x)β−1,ℜ(β ) > 0.

2.4.3 Basic properties of fractional integrals

Property: Fractional integrals obey the following properties:

aIαx aIβx φ = aIα+β
x φ = aIβx aIαx φ ,

xIαb xIβb φ = xIα+β
b φ = xIβb xIαb φ . (2.4.14)

Proof: By virtue of the definition( 2.4.10), it follows that

aIαx aIβx φ =
1

Γ(α)

∫ x

a

dt
(x− t)1−α

1
Γ(β )

∫ t

a

φ(u)du
(t −u)1−β

=
1

Γ(α)Γ(β )

∫ x

a
duφ(u)

∫ x

u

dt
(x− t)1−α(t −u)1−β . (2.4.15)

If we use the substitution y = t−u
x−u , the value of the second integral is

1
Γ(α)Γ(β )(x−u)1−α−β

∫ 1

0
yβ−1(1− y)α−1dy =

(x−u)α+β−1

Γ(α+β )
,

which, when substituted in (2.4.15) yields the first part of (2.4.14). The second part
can be similarly established. In particular,

aIn+α
x f = aIn

x aIαx f ,n ∈ N,ℜ(α) > 0 (2.4.16)

which shows that the n-fold differentiation

dn

dxn aIn+α
x f (x) = aIαx f (x),n ∈ N,ℜ(α) > 0 (2.4.17)

for all x. When α = 0, we obtain

aI0
x f (x) = f (x); aI−n

x f (x) =
dn

dxn f (x) = f (n)(x). (2.4.18)

Note 2.4.2: The property given in (2.4.14) is called semigroup property of frac-
tional integration.
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Notation 2.4.3. L(a,b): space of Lebesgue measurable real or complex val-
ued functions.

Definition 2.4.4. L(a,b), consists of Lebesgue measurable real or complex
valued functions f (x) on [a,b]:

L(a,b) = { f : || f ||1 ∼
∫ b

a
| f (t)|dt < ∞}. (2.4.19)

Note 2.4.3: The operators aIαx and xIαb are defined on the space L(a,b).

Property: The following results hold:

∫ b

a
f (x)(aIαx g)dx =

∫ b

a
g(x)(xIαb f )dx. (2.4.20)

(2.4.20) can be established by interchanging the order of integration in the integral
on the left-hand side of (2.4.20) and then using the Dirichlet formula (2.4.4).

The above property is called the property of “integration by parts” for fractional
integrals.

2.4.4 A useful integral

We now evaluate the following integral given by Saxena and Nishimoto [Journal of
Fractional Calculus, Vol. 6, 1994, 65-75].
∫ b

a
(t −a)α−1(b− t)β−1(ct +d)γdt = (ac+d)γ(b−a)α+β−1

×B(α,β )2F1

[
α,−γ;α+β ;

(a−b)c
(ac+d)

]
,

(2.4.21)

where ℜ(α) > 0,ℜ(β ) > 0, |arg (d+bc)
(d+ac) | < π,a,c and d are constants.

Solution Let

I =
∫ b

a
(t −a)α−1(b− t)β−1(ct +d)γdt

= (ac+d)γ
∞

∑
k=0

(−1)k(−γ)kck

(ac+d)k

∫ b

a
(t −a)α+k−1(b− t)β−1dt

= (ac+d)γ(b−a)α+β−1B(α,β )2F1

(
−γ,α;α+β ;

(a−b)c
(ac+d)

)
.
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In evaluating the inner integral the modified form of the beta function, namely

∫ b

a
(t −a)α−1(b− t)β−1dt = (b−a)α+β−1B(α,β ), (2.4.22)

where ℜ(α) > 0,ℜ(β ) > 0, is used.

Example 2.4.3. As a consequence of (2.4.21) it follows that

aIαx [(x−a)β−1(cx+d)γ ] = (ac+d)γ(x−a)α+β−1 Γ(β )
Γ(α+β )

× 2F1

(
β ,−γ;α+β ;

(a− x)c
(ac+d)

)
, (2.4.23)

where ℜ(α) > 0,ℜ(β ) > 0, |arg (a−x)c
(ac+d) | < π,a,c and d being constants. In a similar

manner we obtain the following result:

Example 2.4.4. We also have

xIαb [(b− x)β−1(cx+d)γ = (cx+d)γ ](b− x)α+β−1 γ(β )
Γ(α+β )

× 2F1

(
α,−γ;α+β ;

(x−b)c
(cx+d)

)
, (2.4.24)

where ℜ(α) > 0,ℜ(β ) > 0, |arg (x−b)c
(cx+d) | < π .

Example 2.4.5. On the other hand if we set γ = −α−β in (2.4.21) it is found
that

aD−α
x [(x−a)β−1(cx+d)−α−β ] =

Γ(β )
Γ(α+β )

(ac+d)−α(x−a)α+β−1(d + cx)−β ,

(2.4.25)

where ℜ(α) > 0,ℜ(β ) > 0.

Example 2.4.6. Similarly, we have

xIαb [(b− x)β−1(cx+d)−α−β ] =
Γ(β )

Γ(α+β )
(cx+d)−β (bc+d)−α(b− x)α+β−1

(2.4.26)

where ℜ(α) > 0,ℜ(β ) > 0.
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2.4.5 The Weyl integral

Notation 2.4.4. xWα
∞ , xIα∞ : Weyl integral of order α .

Definition 2.4.5. The Weyl fractional integral of f (x) of order α , denoted by
xWα

∞ , is defined by

xWα
∞ f (x) =

1
Γ(α)

∫ ∞

x
(t − x)α−1 f (t)dt, −∞< x < ∞ (2.4.27)

where α ∈C,ℜ(α) > 0. (2.4.27) is also denoted by xIα∞ f (x).

Example 2.4.7. Prove that

xWα
∞ e−λx =

e−λx

λα
where ℜ(α) > 0. (2.4.28)

Solution: We have

xWα
∞ e−λx =

1
Γ(α)

∫ ∞

x
(t − x)α−1e−λ tdt, λ > 0

=
e−λx

Γ(α)λα
∫ ∞

0
uα−1e−udu

=
e−λx

λα
, ℜ(α) > 0.

Notation 2.4.5. xDα∞, Dα− Weyl fractional derivative.

Definition 2.4.6. The Weyl fractional derivative of order α , denoted by xDα∞,
is defined by

xDα∞ f (x) = D∞− f (x) = (−1)m
(

d
dx

)m (
xW m−α

∞ f (x)
)

= (−1)m
(

d
dx

)m 1
Γ(m−α)

∫ ∞

x

f (t)
(t − x)1+α−m dt, −∞< x < ∞ (2.4.29)

where m−1 ≤ α < m, α ∈C,m = 0,1,2, . . . .

Example 2.4.8. Find xDα∞e−λx, λ > 0.

Solution: We have

xDα∞e−λx = (−1)m
(

d
dx

)m

xW m−α
∞ e−λx

= (−1)m
(

d
dx

)m

λ−(m−α)e−λx (2.4.30)

= λαe−λx.
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2.4.6 Basic properties of Weyl integral

Property: The following relation holds:
∫ ∞

0
φ(x)(0Iαx ψ(x))dx =

∫ ∞

0
(xWα

∞ φ(x))ψ(x)dx. (2.4.31)

(2.4.31) is called the formula for fractional integration by parts. It is also called
Parseval equality. (2.4.31) can be established by interchanging the order of integra-
tion.

Property: Weyl fractional integral obeys the semigroup property. That is,
(

xWα
∞ xW β

∞ f
)

=
(

xWα+β
∞ f

)
=
(

xW β
∞ xWα

∞ f
)

. (2.4.32)

Proof: We have

xWα
∞ xWβ

∞ f (x) =
1

Γ(α)

∫ ∞

x
dt(t − x)α−1

× 1
Γ(β )

∫ ∞

x
(u− t)β−1 f (u)du.

By using the modified form of the Dirichlet formula (2.4.4), namely
∫ a

x
dt(t − x)α−1

∫ a

t
(u− t)β−1 f (u)du = B(α,β )

∫ a

t
(u− t)α+β−1 f (u)du, (2.4.33)

and letting a → ∞, (2.4.33) yields the desired result:
(

xWα
∞ xW β

∞ f
)

=
(

xWα+β
∞ f

)
. (2.4.34)

Notation 2.4.6. −∞Wα
x , Iα+ : Weyl integral with lower limit −∞.

Definition 2.4.7. Another companion to the operator (2.4.27) is the following:

−∞Wα
x f (x) = Iα+ f (x) =

1
Γ(α)

∫ x

−∞
(x− t)α−1 f (t)dt, −∞< x < ∞ (2.4.35)

where ℜ(α) > 0.

Note 2.4.4: The operator defined by (2.4.35) is useful in fractional diffusion
problems in astrophysics and related areas.

Example 2.4.9. Prove that

−∞Wα
x eax =

eax

aα
. (2.4.36)
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Solution: We have the result by setting x− t = u.

Note 2.4.5: An alternative form of (2.4.35) in terms of convolution is given by

−∞Wα
x f (x) =

1
Γ(α)

∫ ∞

−∞
tα−1
+ f (x− t)dt (2.4.37)

where

tα−1
+ =

{
tα−1, t > 0
0, t < 0

Example 2.4.10. Prove that

xW ν
∞ (cosax) = a−ν cos

(
ax+

1
2
πν
)

(2.4.38)

where a > 0,0 <ℜ(ν) < 1.

Solution: The result follows from the known integral
∫ ∞

u
(x−u)ν−1 cosax dx =

Γ(ν)
aν

cos
(

au+
νπ
2

)
. (2.4.39)

Example 2.4.11. Prove that

xW ν
∞ (sinax) = a−ν sin

(
ax+

1
2
πν
)

. (2.4.40)

Hint: Use the integral
∫ ∞

u
(x−u)ν−1 sinax dx =

Γ(ν)
aν

sin
(

au+
1
2
πν
)

(2.4.41)

where a > 0,0 <ℜ(ν) < 1.

Exercises 2.4.
2.4.1. Prove that

(
aIαx (x−a)β−1

)
=

Γ(β )
Γ(α+β )

(x−a)α+β−1, ℜ(β ) > 0.

2.4.2. Prove that

(
aIαx (x± c)γ−1)=

(a± c)γ−1

Γ(α+1)
(x−a)α2F1

(
1,1− γ;α+1;

a− x
a± c

)

where ℜ(β ) > 0,γ ∈C,a 
= c,
∣
∣ a−x

a±c

∣
∣< 1.
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2.4.3. Prove that

(
aIαx [(x−a)β−1(b− x)γ−1]

)
=

Γ(β )
Γ(α+β )

(x−a)α+β−1

(b−a)1−γ

× 2F1

(
β ,1− γ;α+β ;

x−a
b−a

)

where ℜ(β ) > 0,γ ∈C, a < x < b.
2.4.4. Prove that

(

aIαx

[
(x−a)β−1

(b− x)α+β

])

=
Γ(β )

Γ(α+β )
(x−a)α+β−1

(b−a)α(b− x)β

where ℜ(β ) > 0, a < x < b.
2.4.5. Prove that

(
aIαx
[
(x−a)β−1(x± c)γ−1

])
=

Γ(β )
Γ(α+β )

(x−a)α+β−1

(a± c)1−γ

× 2F1

(
β ,1− γ;α+β ;

(a− x)
a± c

)
,

where ℜ(β ) > 0, γ ∈C,a 
= c, | a−x
a±c | < 1.

2.4.6. Prove that for ℜ(β ) > 0,

(

aIαx

[
(x−a)β−1

(x± c)α+β

])

=
Γ(β )

Γ(α+β )
(x−a)α+β−1

(a± c)α(x± c)β
,
∣
∣a− x
a± c

∣
∣< 1.

2.4.7. Prove that
(

aIαx [eλx]
)

= eλa(x−a)αE1,α+1(λx−λa).

2.4.8. Prove that
(

aIαx [eλx(x−a)β−1]
)

=
Γ(β )

Γ(α+β )
eλa(x−a)α+β−1

1F1(β ;α+β ;λx−λa),

where ℜ(β ) > 0,ℜ(α) > 0.
2.4.9. Prove that

(
aIαx
[
(x−a)

ν
2 Jν(λ

√
x−a)

])
=
(

2
λ

)α
(x−a)

α+ν
2 Jα+ν(λ

√
x−a),

where ℜ(ν) > −1.



2.4 Fractional Integrals 107

2.4.10. Prove that
(

aIνx
[
(x−a)β−1

2F1(µ ,ν ;β ;λ (x−a))
])

=
Γ(β )

Γ(ν+β )
(x−a)ν+β−1

2F1(µ ,ν ;ν+β ;λx−λa),

where ℜ(β ) > 0.

2.4.7 Laplace transform of the fractional integral

We have

0Iνx f (x) =
1

Γ(ν)

∫ x

0
(x− t)ν−1 f (t)dt, (2.4.42)

where ℜ(ν) > 0. Application of convolution theorem of the Laplace transform
gives

L{0Iνx f (x)};s = L
{

tν−1

Γ(ν)

}
L{ f (t);s}

= s−νF(s), (2.4.43)

where ℜ(s) > 0, ℜ(ν) > 0.

2.4.8 Laplace transform of the fractional derivative

If n ∈ N, then by the theory of the Laplace transform, we know that

L
{

dn

dxn f ;s
}

= snF(s)−
n−1

∑
k=0

sn−k−1 f (k)(0+) (2.4.44)

= snF(s)−
n−1

∑
k=0

sk f (n−k−1)(0+), (n−1 ≤ α < n) (2.4.45)

where ℜ(s) > 0 and F(s) is the Laplace transform of f (t). By virtue of the defi-
nition of the derivative, we find that

L{0Dαx f ;s} = L
{

dn

dxn 0In−α
x f ;s

}

= snL
{

0In−α
x f ;s

}
−

n−1

∑
k=0

sk dn−k−1

dxn−k−1 0In−α
x f (0+)
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= sαF(s)−
n−1

∑
k=0

skDα−k−1 f (0+),
(

D =
d
dx

)
(2.4.46)

= sαF(s)−
n

∑
k=1

sk−1Dα−k f (0+) (2.4.47)

where ℜ(s) > 0.

2.4.9 Laplace transform of Caputo derivative

Notation 2.4.7. C
0

aDαx

Definition 2.4.8. The Caputo derivative of a casual function f (t) ( that is f (t) = 0
for t < 0 ) with α > 0 was defined by Caputo (1969) in the form

C
0

aDαx f (x) = aIn−α
x

dn

dxn f (x) = aD−(n−α)
t f (n)(t) (2.4.48)

=
1

Γ(n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt,(n−1 < α < n) (2.4.49)

where n ∈ N.
From (2.4.43) and (2.4.49), it follows that

L{C
0

0Dαt f (t);s} = s−(n−α)L{ f (n)(t)}. (2.4.50)

On using (2.4.44), we see that

L{C
0

0Dαt f (t);s} = s−(n−α)

[

snF(s)−
n−1

∑
k=0

sn−k−1 f (k)(0+)

]

= sαF(s)−
n−1

∑
k=0

sα−k−1 f (k)(0+), (n−1 < α ≤ n), (2.4.51)

where ℜ(s) > 0 and ℜ(α) > 0.

Note 2.4.6: From (2.4.48), it can be seen that

C
0

0Dαt A = 0, where A is a constant,

whereas the Riemann-Liouville derivative

0Dαt A =
At−α

Γ(1−α)
, (α 
= 1,2, · · ·), (2.4.52)

which is a surprising result.
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Exercises 2.4.

2.4.11. Prove that
(0Iνx f (x)) = L−1s−νL{ f (x);s}, (2.4.53)

where ℜ(ν) > 0.

2.4.12. Prove that the solution of Abel integral equation of the second kind

φ(x)− λ
Γ(α)

∫ x

0

φ(t)dt
(x− t)1−α = f (x), 0 < x < 1

α > 0, is given by

φ(x) =
d
dx

∫ x

0
Eα [λ (x− t)α ] f (t) dt, (2.4.54)

where Eα(x) is the Mittag-Leffler function defined by equation (2.1.1).

2.4.13. Show that

λ
Γ(α)

∫ x

0

Eα(λ tα)
(x− t)1−α dt = Eα(λxα)−1, α > 0. (2.4.55)

2.5 Mellin Transform of the Fractional Integrals
and the Fractional Derivatives

2.5.1 Mellin transform

Notation 2.5.1. m{ f (x); s}, f ∗(s): The Mellin transform

Notation 2.5.2. m−1{ f ∗(s); x}: Inverse Mellin transform

Definition 2.5.1. The Mellin transform of a function f (x), denoted by f ∗(s), is
defined by

f ∗(s) = m{ f (x); s} =
∫ ∞

0
xs−1 f (x)dx, x > 0. (2.5.1)

The inverse Mellin transform is given by the contour integral

f (x) = m−1{ f ∗(s); x} =
1

2πi

∫ γ+i∞

γ−i∞
f ∗(s)x−sds, i =

√
−1 (2.5.2)

where γ is real.
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2.5.2 Mellin transform of the fractional integral

Theorem 2.5.1. The following result holds true.

m(0Iαx f )(s) =
Γ(1−α− s)
Γ(1−α)

f ∗(s+α), (2.5.3)

where ℜ(α) > 0 and ℜ(α+ s) < 1.

Proof 2.5.1: We have

m(0Iαx f )(s) =
∫ ∞

0
zs−1 1

Γ(α)

∫ z

0
(z− t)α−1 f (t) dtdz

=
1

Γ(α)

∫ ∞

0
f (t) dt

∫ ∞

t
zs−1(z− t)α−1 dz. (2.5.4)

On setting z = t
u , the z-integral becomes

tα+s−1
∫ 1

0
u−α−s(1−u)α−1du = tα+s−1B(α,1−α− s), (2.5.5)

where ℜ(α) > 0, ℜ(α + s) < 1. Putting the above value of z-integral, the result
follows.

Similarly we can establish

Theorem 2.5.2. The following result holds true.

m(xIα∞ f )(s) =
Γ(s)

Γ(s+α)
m {tα f (t); s}

=
Γ(s)

Γ(s+α)
f ∗(s+α), (2.5.6)

where ℜ(α) > 0, ℜ(s) > 0.

Note 2.5.1: If we set f (x) = x−αφ(x), then using the property of the Mellin trans-
form

xαφ(x) ↔ φ ∗(s+α), (2.5.7)

the results (2.5.3) and (2.5.6) become

(0Iαx x−α f (x))(s) =
Γ(1−α− s)
Γ(1− s)

f ∗(s), (2.5.8)

where ℜ(α) > 0, ℜ(α+ s) < 1 and

(xIα∞ x−α f (x))(s) =
Γ(s)

Γ(s+α)
f ∗(s), (2.5.9)

where ℜ(α) > 0, and ℜ(s) > 0, respectively.
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2.5.3 Mellin transform of the fractional derivative

Theorem 2.5.3. If n ∈ N and limt→∞ ts−1 f (ν)(t) = 0, ν = 0,1, · · · ,n, then

m{ f (n)(t); (s)} = (−1)n Γ(s)
Γ(s−n)

m{ f (t); s−n}, (2.5.10)

where ℜ(s) > 0,ℜ(s−n) > 0.

Proof 2.5.2: Integrate by parts and using the definition of the Mellin transform,
the result follows.

Example 2.5.1. Find the Mellin transform of the fractional derivative.

Solution 2.5.1: We have

0Dαx f = 0Dn
x 0Dα−n

x f = 0Dn
x 0In−α

x f .

Therefore,

m(0Dαx f )(s) =
(−1)n Γ(s)
Γ(s−n)

m
{

0In−α
x f

}
(s−n),(n−1 ≤ℜ(α) < n) (2.5.11)

=
(−1)n Γ(s)Γ(1− (s−α))
Γ(s−n)Γ(1− s+n)

m{ f (t);s−α} , (2.5.12)

where ℜ(s) > 0,ℜ(s) < 1+ℜ(α).

Remark 2.5.1: An alternative form of (2.5.12) is given in Exercise 2.5.2.

Exercises 2.5.
2.5.1. Prove Theorem 2.5.2.

2.5.2. Prove that the Mellin transform of fractional derivative is given by

m(0Dαx f )(s) =
(−1)n Γ(s)sin[π(s−n)]
Γ(s−α)sin[π(s−α)]

m{ f (t);s−α} , (2.5.13)

where ℜ(s) > 0,ℜ(α− s) > −1.

2.5.3. Find the Mellin transform of (1+ xa)−b;a,b > 0.

2.6 Kober Operators

Kober operators are the generalization of Riemann-Liouville and Weyl operators.
These operators have been used by many authors in deriving the solution of sin-
gle, dual and triple integral equations possessing special functions of mathematical
physics, as their kernels.
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Notation 2.6.1. Kober operator of the first kind

I[ f (x)], I[α,η : f (x)], I(α,η) f (x),Eα,η
0,x f , I

n,α
x f .

Notation 2.6.2. Kober operator of the second kind

R[ f (x)], R[α,ζ : f (x)], R(α,ζ ) f (x),Kα,ζ
x,∞ f ,Kζ ,α

x f .

Definition 2.6.1.

I[ f (x)] = I[α,η : f (x)] = I(α,η) f (x) = Eα,η
0,x f

= I
η ,α
x f =

x−η−α

Γ(α)

∫ x

0
(x− t)α−1tη f (t)dt, (2.6.1)

where ℜ(α) > 0.

Definition 2.6.2.

R[ f (x)] = R[α,ζ : f (x)] = R(α,ζ ) f (x) = Kα,ζ
x,∞ f

= Kζ ,α
x f =

xζ

Γ(α)

∫ ∞

x
(t − x)α−1t−ζ−α f (t)dt, (2.6.2)

where ℜ(α) > 0.

(2.6.1) and (2.6.2) hold true under the following conditions:

f ∈ Lp(0,∞),ℜ(α) > 0,ℜ(η) > −1
q
,ℜ(ζ ) > − 1

p
,
1
p

+
1
q

= 1, p ≥ 1.

When η = 0, (2.6.1) reduces to Riemann-Liouville operator. That is,

I0,α
x f = x−α 0Iαx f . (2.6.3)

For ζ = 0, (2.6.2) yields the Weyl operator of t−α f (t). That is,

K0,α
x f = xWα

∞ t−α f (t). (2.6.4)

Theorem 2.6.1. [Kober (1940)].

If ℜ(α) > 0,ℜ(η − s) > −1, f ∈ Lp(o,∞),1 ≤ p ≤ 2 ( or f ∈ Mp(o,∞), a
subspace of Lp(o,∞) and p > 2 ), ℜ(η) > − 1

q , 1
p + 1

q = 1, then there holds the
formula

m{I(α,η) f}(s) =
Γ(1+η− s)

Γ(α+η+1− s)
m{ f (x);s}. (2.6.5)
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Proof 2.6.1: It is similar to the proof of Theorem 2.6.1.

In a similar manner, we can establish

Theorem 2.6.2. [Kober (1940)].

If ℜ(α) > 0,ℜ(s+ζ ) > 0, f ∈ Lp(o,∞),1 ≤ p ≤ 2 ( or f ∈ Mp(o,∞), a sub-
space of Lp(o,∞) and p > 2 )

ℜ(ζ ) > − 1
p
,

1
p

+
1
q

= 1,

then,

m{ℜ(α,ζ ) f}(s) =
Γ(ζ + s)

Γ(α+ζ + s)
m{ f (x);s}. (2.6.6)

Semigroup property of the Kober operators has been given in the form of

Theorem 2.6.3. If f ∈ Lp(o,∞),g ∈ Lq(o,∞), 1
p + 1

q = 1,ℜ(η) > − 1
q ,ℜ(ζ ) >

− 1
p ,1 ≤ p ≤ 2, ( or f ∈ Mp(o,∞), a subspace of Lp(o,∞) and p > 2 ), then

∫ ∞

0
g(x)(I(α,η : f ))(x)dx =

∫ ∞

0
f (x)(R(α,η : g))(x)dx. (2.6.7)

Proof 2.6.2: Interchange the order of integration.

Remark 2.6.1: Operators defined by (2.6.1.) and (2.6.2) are also called Erdélyi-
Kober operators.

Exercises 2.6.

2.6.1. Prove Theorem 2.6.1.

2.6.2. For the modified Erdélyi-Kober operators, defined by the following equations
for m > 0:

I(α,η : m) f (x) = I( f (x) : α,η ,m)

=
m
Γ(α)

x−η−mα+m−1
∫ x

o
tη(xm − tm)α−1 f (t)dt, (2.6.8)

and

R(α,ζ : m) f (x) = R( f (x) : α,ζ ,m)

=
mxζ

Γ(α)

∫ ∞

x
t−ζ−mα+m−1(tm − xm)α−1 f (t)dt, (2.6.9)
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where f ∈ Lp(0,∞),ℜ(α) > 0,ℜ(η) >− 1
q ,ℜ(ζ ) >− 1

p , 1
p + 1

q = 1, find the Mellin
transforms of (i) I(α,η : m) f (x) and (ii) R(α,ζ : m) f (x) , giving the condi-
tions of validity.

2.6.3. For the operators defined by (2.6.8) and (2.6.9.), show that
∫ ∞

0
R( f (x) : α,η ,m)g(x)dx =

∫ ∞

0
f (x)I(g(x) : α,η ,m)dx, (2.6.10)

where the parameters α,η ,m are the same in both the operators I and R. Give
conditions of validity of (2.6.10).

2.6.4. For the Erdélyi-Kober operator, defined by

Iη ,α f (x) =
2x−2α−2η

Γ(α)

∫ x

0
(x2 − t2)α−1t2η+1 f (t)dt, (2.6.11)

where ℜ(α) > 0, establish the following results (Sneddon (1975)):

(i) Iη ,αx2β f (x) = x2β Iη+β ,α f (x) (2.6.12)
(ii) Iη ,α Iη+α,β = Iη ,α+β = Iη+α,β ,Iη ,α (2.6.13)

(iii) I−1
η ,α = Iη+α,−α . (2.6.14)

Remark 2.6.2: The results of Exercise 2.6.4 also hold for the operator, defined by

Kη ,α f (x) =
2x2η

Γ(α)

∫ ∞

x
(t2 − x2)α−1t−2α−2η+1 f (t)dt, (2.6.15)

where ℜ(α) > 0.

Remark 2.6.3: Operators more general than the operators defined by (2.6.11) and
(2.6.15) are recently defined by Galué et al [Integral Transform & Spec. Funct. Vol.
9 (2000), No. 3, pp. 185-196] in the form

aIη ,α
x f (x) =

x−η−α

Γ(α)

∫ x

a
(x− t)α−1tη f (t)dt, (2.6.16)

where ℜ(α) > 0.

2.7 Generalized Kober Operators

Notation 2.7.1. I[α,β ,γ : m,µ ,η ,a : f (x)],I[ f (x)]

Notation 2.7.2. I[α,β ,γ : m,µ ,δ ,a : f (x)],I[ f (x)]
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Notation 2.7.3. R[ f (x)],R
[
α,β ,γ ;
σ ,ρ,a; : f (x)

]

Notation 2.7.4. K[ f (x)],K
[
α,β ,γ ;
δ ,ρ,a; : f (x)

]

Notation 2.7.5. Iα,β ,η ;
0,x f (x) (Saigo, 1978)

Notation 2.7.6. Jα,β ,η ;
x,α f (x) (Saigo, 1978)

Definition 2.7.1.

I[ f (x)] = I[α,β ,γ : m,µ ,η ,a : f (x)]

=
µx−η−1

Γ(1−α)

∫ x

0
2F1

(
α,β +m,γ;

atµ

xµ

)
tη f (t)dt, (2.7.1)

where 2F1(·) is the Gauss hypergeometric function.

Definition 2.7.2.

I[ f (x)] = I[α,β ,γ : m,µ ,δ ,a : f (x)]

=
µxδ

Γ(1−α)

∫ ∞

x
2F1

(
α,β +m;γ;

axµ

tµ

)
t−δ−1 f (t)dt. (2.7.2)

Operators defined by (2.7.1) and (2.7.2) exist under the following conditions:

(i) 1 ≤ p, q < ∞, p−1 +q−1 = 1, |arg(1−a)| < π
(ii) ℜ(1−α) > m,ℜ(η) > − 1

q ,ℜ(δ ) > − 1
p ,ℜ(γ −α − β −m) > −1,m ∈ N0;

γ 
= 0,−1,−2, · · ·
(iii) f ∈ Lp(0,∞)

Equations (2.7.1) and (2.7.2) are introduced by Kalla and Saxena (1969).

For γ = β , (2.7.1) and (2.7.2) reduce to generalized Kober operators, given by
Saxena (1967).

Definition 2.7.3.

R[ f (x)] = R

[
α,β ,γ ;
σ ,ρ,a; f (x)

]

=
x−σ−ρ

Γ(ρ)

∫ x

0
tσ (x− t)ρ−1

2F1

[
α,β ;γ;a

(
1− t

x

)]
f (t)dt. (2.7.3)

Definition 2.7.4.

K[ f (x)] = K

[
α,β ,γ ;
δ ,ρ,a; f (x)

]

=
xδ

Γ(ρ)

∫ ∞

x
t−δ−ρ(t − x)ρ−1

2F1

[
α,β ;γ;a

(
1− x

t

)]
f (t)dt. (2.7.4)



116 2 Mittag-Leffler Functions and Fractional Calculus

The conditions of validity of the operators (2.7.3) and (2.7.4) are given below:

(i) p ≥ 1, q < ∞, p−1 +q−1 = 1, |arg(1−a)| < π .
(ii) ℜ(σ) > − 1

q ,ℜ(δ ) > − 1
p ,ℜ(ρ) > 0.

(iii) γ 
= 0,−1,−2, · · · ;ℜ(γ−α−β ) > 0.
(iv) f ∈ Lp(0,∞).

The operators defined by (2.7.3) and (2.7.4) are given by Saxena and Kumbhat
(1973). When a is replaced by a

α and α tends to infinity, the operators defined by
(2.7.3) and (2.7.4) reduce to the following operators associated with confluent hy-
pergeometric functions.

Definition 2.7.5.

R

[
β ,γ;
σ ,ρ,a; f (x)

]
= lim
α→∞

R

[
α,β ,γ ;
σ ,ρ, a

α ; f (x)
]

=
x−σ−ρ

Γ(ρ)

∫ x

0
Φ
[
β ,γ;a

(
1− t

x

)]
tσ (x− t)ρ−1 f (t)dt. (2.7.5)

Definition 2.7.6.

K

[
β ,γ ;
σ ,ρ,a; f (x)

]
= lim
α→∞

K

[
α,β ,γ ;
δ ,ρ, a

α ; f (x)
]

=
xδ

Γ(ρ)

∫ ∞

x
Φ
[
β ,γ;a

(
1− x

t

)]
t−δ−ρ(t − x)ρ−1 f (t)dt, (2.7.6)

where ℜ(ρ) > 0,ℜ(δ ) > 0.

Remark 2.7.1: Many interesting and useful properties of the operators defined by
(2.7.3) and (2.7.4) are investigated by Saxena and Kumbhat (1975), which deal with
relations of these operators with well-known integral transforms, such as Laplace,
Mellin and Hankel transforms. Equation (2.7.3) was first considered by Love (1967).

Remark 2.7.2: In the special case, when α is replaced by α + β ,γ by α,σ by
zero, ρ by α and β by −η , then (2.7.3) reduces to the operator (2.7.7) considered
by Saigo (1978). Similarly, (2.7.4) reduces to another operator (2.7.9) introduced by
Saigo (1978).

Definition 2.7.7. Let α,β ,η ∈C, and let x∈R+ the fractional integral (ℜ(α) > 0)
and the fractional derivative (ℜ(α) < 0) of the first kind of a function f (x) on R+
are defined by Saigo (1978) in the form

Iα,β ,η
0,x f (x) =

x−α−β

Γ(α)

∫ x

0
(x− t)α−1

× 2F1

(
α+β ,−η ;α;1− t

x

)
f (t)dt, ℜ(α) > 0 (2.7.7)

=
dn

dxn Iα+n,β−n,η−n
0,x f (x), 0 <ℜ(α)+n ≤ 1, (n ∈ N0). (2.7.8)



2.7 Generalized Kober Operators 117

Definition 2.7.8. The fractional integral (ℜ(α) > 0) and fractional derivative
(ℜ(α) < 0) of the second kind of a function f (x) on R+ are given by Saigo (1978)
in the form

Jα,β ,η
x,∞ f (x) =

1
Γ(α)

∫ ∞

x
(t − x)α−1t−α−β

× 2F1

(
α+β ,−η ;α;1− x

t

)
f (t)dt, ℜ(α) > 0 (2.7.9)

= (−1)n dn

dxn Jα+n,β−n,η
x,∞ f (x), 0 <ℜ(α)+n ≤ 1, (n ∈ N0). (2.7.10)

Example 2.7.1. Find the value of

Iα,β ,η
0,x

{
xσ−1

2F1(a,b;c;−a′x)
}

.

Solution 2.7.1: We have

K = Iα,β ,η
0,x

{
xσ−1

2F1(a,b;c;−a′x)
}

=
∞

∑
r=0

(a)r(b)r(−1)r(a′)r

(c)rr!
Iα,β ,η
0,x xr+σ−1.

Applying the result of Exercise 2.7.1, we obtain

K = xσ−β−1
∞

∑
r=0

(−1)r (a)r(b)r Γ(σ + r)Γ(σ −β +η+ r)(a′)r

(c)rr! Γ(σ −β + r)Γ(α+η+σ + r)
xr

= xσ−β−1 Γ(σ)Γ(σ +η−β )
Γ(σ −β )Γ(σ +α+η)

× 4F3(a,b,σ ,σ +η−β ;c,σ −β ,σ +α+η ;−a′x),

where ℜ(α) > 0,ℜ(σ) > 0,ℜ(σ +η−β ) > 0,c 
= 0,−1,−2, · · · ; |a′x| < 1.

Example 2.7.2. Find the value of

Jα,β ,η
x,∞

(
xλ 2F1

(
a,b;c;

a′

x

))
.

Solution 2.7.2: Following a similar procedure and using the result of Exercise
2.7.3, it gives

Jα,β ,η
x,∞

(
xλ 2F1

(
a,b;c;

a′

x

))
=

Γ(β −λ )Γ(η−λ )
Γ(−λ )Γ(α+β +η−λ )

xλ−β

× 4F3

(
a,b,β −λ ,η−λ ;c,−λ ,α+β +η−λ ;

a′

x

)
,

where ℜ(α) > 0,ℜ(β −λ ) > 0,ℜ(η−λ ) > 0,x > 0,c 
= 0,−1,−2, · · · ; |x| > |a′|.
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Remark 2.7.3: Special cases of the operators Iα,β ,η
0,x and Jα,β ,η

x,∞ are the operators
of Riemann -Liouville:

Iα,−α,η
0,x f (x) = 0D−α

x f (x) =
1

Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, (ℜ(α) > 0) (2.7.11)

the Weyl:

Jα,−α,η
x,∞ f (x) = xWα

∞ f (x) =
1

Γ(α)

∫ ∞

x
(t − x)α−1 f (t)dt, (ℜ(α) > 0) (2.7.12)

and the Erdélyi-Kober operators:

Iα,0,η
0,x f (x) = Eα,η

0,x f (x) =
x−α−η

Γ(α)

∫ x

0
(x− t)α−1tη f (t)dt, (ℜ(α) > 0) (2.7.13)

and

Jα,0,η
x,∞ f (x) = Kα,η

x,∞ f (x) =
xη

Γ(α)

∫ ∞

x
(t − x)α−1t−α−η f (t)dt, (ℜ(α) > 0)

(2.7.14)

Example 2.7.3. Prove the following theorem.

If ℜ(α) > 0 and ℜ(s) < 1+min[0,ℜ(η−β )], then the following formula holds
for f (x) ∈ Lp(0,∞) with 1 ≤ p ≤ 2 or f (x) ∈ Mp(0,∞) with p > 2:

m
{

xβ Iα,β ,η
0,x f

}
=

Γ(1− s)Γ(η−β +1− s)
Γ(1− s−β )Γ(α+η+1− s)

m{ f (x)}. (2.7.15)

Solution 2.7.3: Use the integral
∫ ∞

x
u−σ−γ(u− x)γ−1

2F1 (α,β ;γ;1− x
u
)du =

Γ(γ)Γ(σ)Γ(γ+σ −α−β )
Γ(γ+σ −α)Γ(γ+σ −β )

,

(2.7.16)
where ℜ(γ) > 0, ℜ(σ) > 0, ℜ(γ+σ −α−β ) > 0.

Exercises 2.7.

2.7.1. Prove that

Iα,β ,η
0,x xλ =

Γ(1+λ )Γ(1+λ +η−β )
Γ(1+λ −β )Γ(1+λ +α+η)

xλ−β , (2.7.17)

and give the conditions of validity.
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2.7.2. Find the Mellin transform of xβ Jα,β ,η
x,∞ f (x), giving conditions of its validity.

2.7.3. Prove that

Jα,β ,η
x,∞ xλ =

Γ(β −λ )Γ(η−λ )
Γ(−λ )Γ(α+β +η−λ )

xλ−β (2.7.18)

and give the conditions of validity.

2.7.4. Prove that

Iα,β ,η
0,x (xke−λx) =

Γ(k +1)Γ(η+ k−β +1)
Γ(k−β +1)Γ(α+η+ k +1)

xk−β

× 2F2(k +1,η+ k−β +1; k−β +1,α+η+ k +1;−λx),
(2.7.19)

and give the conditions of validity.

2.7.5. Prove that

Jα,β ,η
x,∞ e−sx = sηxη−β

Γ(β −η)
Γ(α+β )

Φ(1−α−β ,1+η−β ;−sx)

+ sβ
Γ(η−β )
Γ(α+η)

Φ(1−α−η ,1+β −η ;−sx), (2.7.20)

and give the conditions of its validity. Deduce the results for L[ xWα
∞ f ](s) and

L[ Kα,η
x,∞ f ](s).

2.7.6. Prove that [Saxena and Nishimoto (2002)]

Iα,β ,η
0,x [xσ−1(a+bx)c] = ac Γ(σ)Γ(σ +η−β )

Γ(σ −β )Γ(σ +α+η)
xσ−β−1

× 3F2

(
σ ,σ +η−β ,−c; σ −β ,σ +α+η ;−bx

a

)
,

(2.7.21)

where ℜ(σ) > max[0,ℜ(β −η)], | bx
a | < 1.

2.7.7. Evaluate
Iα,β ,η
0,x

{
xσ−1Hm,n

p,q

[
axλ |(ap,Ap)

(bq,Bq)

]}
, λ > 0, (2.7.22)

and give the conditions of its validity.

2.7.8. Evaluate

Jα,β ,η
x,∞

{
xσ−1Hm,n

p,q

[
ax−λ |(ap,Ap)

(bq,Bq)

]}
, λ > 0, (2.7.23)

and give the conditions of its validity.
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2.7.9. Establish the following property of Saigo operators called “Integration by
parts”. ∫ ∞

0
f (x)
(

Iα,β ,η
0,x g

)
(x)dx =

∫ ∞

0
g(x)
(

Jα,β ,η
x,∞ f

)
(x)dx.

2.7.10. From Exercise 2.7.6, deduce the formula for

Iα,−α,η
0,x (a+bx)c, (2.7.24)

given by B. Ross (1993).

2.7.11. Prove that

0Iαx xk =
Γ(k +1)

Γ(α+ k +1)
xk+α , (2.7.25)

where ℜ(α) > 0, ℜ(k) > −1,

2.7.12. Prove that

Wα
x,∞xk =

Γ(−α− k)
Γ(−k)

xk+α , (2.7.26)

where ℜ(α) > 0, ℜ(k) < −ℜ(α).

2.7.13. Show that

Jα,β ,η
x,∞ (xλ e−px) = xλ−βG3,0

2,3

[
px|−λ ,α+β+η−λ

0,β−λ ,η−λ

]
, (2.7.27)

where G3,0
2,3(·) is the Meijer’s G-function, ℜ(px) > 0, ℜ(α) > 0.

Hint: Use the integral

e−px =
1

2πi

∫

L
Γ(−s)(px)sds. (2.7.28)

2.7.14. Evaluate

Iα,β ,η
0,x xσ−1Hm,n

p,q

[
ax−λ |(ap,Ap)

(bq,Bq)

]
, λ > 0, (2.7.29)

giving the conditions of its validity.

2.7.15. Evaluate

Jα,β ,η
x,∞ xσ−1Hm,n

p,q

[
axλ |(ap,Ap)

(bq,Bq)

]
, λ > 0 (2.7.30)

and give the conditions of validity of the result.

2.7.16. With the help of the following chain rules for Saigo operators ( Saigo, 1985)
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Iα,β ,η
0,x Iγ ,δ ,α+η

0,x f = Iα+γ,β+δ ,η
0,x f , (2.7.31)

and

Jα,β ,η
x,∞ Jγ ,δ ,α+η

x,∞ f = Jα+γ,β+δ ,η
x,∞ f , (2.7.32)

derive the inverses

(Iα,β ,η
0,x )−1 = I−α,−β ,α+η

0,x . (2.7.33)

and

(Jα,β ,η
x,∞ )−1 = J−α,−β ,α+η

x,∞ . (2.7.34)

2.8 Compositions of Riemann-Liouville Fractional Calculus
Operators and Generalized Mittag-Leffler Functions

In this section, composition relations between Riemann-Liouville fractional calcu-
lus operators and generalized Mittag-Leffler functions are derived. These relations
may be useful in the solution of fractional differintegral equations. For details, one
can refer to the work of Saxena and Saigo (2005). For ready reference some of the
definitions are repeated here.

2.8.1 Composition Relations Between R-L Operators and Eβββ ,γγγδδδ (z)

Notation 2.8.1. Eα(x) : Mittag-Leffler function.

Notation 2.8.2. Eα,β (x) : Generalized Mittag-Leffler function.

Notation 2.8.3. Iα0+ f : Riemann-Liouville left-sided integral.

Notation 2.8.4. Iα− f : Riemann-Liouville right-sided integral.

Notation 2.8.5. Dα0+ f : Riemann-Liouville left-sided derivative.

Notation 2.8.6. Dα− f : Riemann-Liouville right-sided derivative.

Notation 2.8.7. Eδβ ,γ(z) : Generalized Mittag-Leffler function (Prabhakar, 1971).
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Definition 2.8.1.

Eα(z) =
∞

∑
k=0

zk

Γ(αk +1)
, (α ∈C,ℜ(α) > 0). (2.8.1)

Definition 2.8.2.

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk +β )
, (α,β ∈C,ℜ(α) > 0,ℜ(β ) > 0). (2.8.2)

Definition 2.8.3.

(Iα0+ f )(x) =
1

Γ(α)

∫ x

0

f (t)
(x− t)1−α dt, ℜ(α) > 0. (2.8.3)

Definition 2.8.4.

(Iα− f )(x) =
1

Γ(α)

∫ ∞

x

f (t)
(t − x)1−α dt, ℜ(α) > 0. (2.8.4)

Definition 2.8.5.

(Dα0+ f )(x) =
(

d
dx

)[α]+1(
I1−{α}
0+

)
(x); ℜ(α) > 0 (2.8.5)

=
1

Γ(1−{α})

(
d
dx

)[α]+1 ∫ x

0

f (t)
(x− t){α}

dt, ℜ(α) > 0. (2.8.6)

Definition 2.8.6.

(Dα− f )(x) =
(

d
dx

)[α]+1

(I1−{α}
− f )(x), ℜ(α) > 0 (2.8.7)

=
1

Γ(1−{α})

(
− d

dx

)[α]+1 ∫ ∞

x

f (t)
(t − x){α}

dt, ℜ(α) > 0. (2.8.8)

Remark 2.8.1: Here [α] means the maximal integer not exceeding α and {α}
is the fractional part of α . Note that Γ(1−{α}) = Γ(m−α), [α] + 1 = m,{α} =
1+α−m.

Definition 2.8.7.

Eδβ ,γ(z) =
∞

∑
k=0

(δ )kzk

Γ(βk + γ)k!
, (β ,γ,δ ∈C;ℜ(γ) > 0,ℜ(β ) > 0). (2.8.9)

For δ = 1, (2.8.9) reduces to (2.8.2).
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Theorem 2.8.1. Let α > 0, β > 0, γ > 0 and α ∈ R. Let Iα0+ be the left-sided
operator of Riemann-Liouville fractional integral (2.8.3). Then there holds the for-
mula

(Iα0+[tγ−1Eδβ ,γ(atβ )])(x) = xα+γ−1Eδβ ,α+γ(axβ ). (2.8.10)

Proof 2.8.1: By virtue of (2.8.3) and (2.8.9), we have

K ≡ (Iα0+[tγ−1Eδβ ,γ(atβ )])(x) =
1

Γ(α)

∫ x

0
(x− t)α−1

∞

∑
n=0

(δ )nantnβ+γ−1

Γ(βn+ γ)n!
dt.

Interchanging the order of integration and summation and evaluating the inner inte-
gral by means of beta-function formula, it gives

K ≡ xα+γ−1
∞

∑
n=0

(δ )n(axβ )n

Γ(α+βn+ γ)(n)!
= xα+γ−1Eδβ ,α+γ(axβ ).

This completes the proof of Theorem 2.8.1.

Corollary 2.8.1: For α > 0,β > 0,γ > 0 and α ∈ R, there holds the formula

(Iα0+[tγ−1Eβ ,γ(atβ )])(x) = xα+γ−1Eβ ,α+γ(axβ ). (2.8.11)

Remark 2.8.2: For β = α , (2.8.11) reduces to

(Iα0+[tγ−1Eα,γ(atα)])(x) =
xγ−1

a

[
Eα,γ(axα)− 1

Γ(γ)

]
,(a 
= 0) (2.8.12)

by virtue of the identity

Eα,γ(x) =
1
Γ(γ)

+ xEα,α+γ(x),(a 
= 0). (2.8.13)

Theorem 2.8.2. Let α > 0,β > 0,γ > 0 and α ∈R, (a 
= 0) and let Iα0+ be the left-
sided operator of Riemann-Liouville fractional integral (2.8.3). Then there holds the
formula

(Iα0+[tγ−1Eδβ ,γ(atβ )])(x) =
1
a

xα+γ−β−1[Eδβ ,α+γ−β (axβ )−Eδ−1
β ,α+γ−β (axβ )].

(2.8.14)

Proof. Use Theorem 2.8.1.

The following two theorems can be established in the same way.
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Theorem 2.8.3. Let α > 0,β > 0,γ > 0 and α ∈ R and let Iα− be the right-sided
operator of Riemann-Liouville fractional integral (2.8.4). Then we arrive at the fol-
lowing result:

(Iα−[t−α−γEδβ ,γ(at−β )])(x) = x−γ [Eδβ ,α+γ(ax−β )] (2.8.15)

Corollary 2.8.2: For α > 0,β > 0,γ > 0 and α ∈ R, there holds the formulas:

(Iα−[t−α−γEβ ,γ(at−β )])(x) = x−γ [Eβ ,α+γ(ax−β )] (2.8.16)

and

(Iα−t−α−1Eβ (at−β ))(x) = x−1[Eβ ,α+1(ax−β )]. (2.8.17)

Theorem 2.8.4. Let α > 0,β > 0,γ > 0,α ∈ R, (a 
= 0),α+ γ > β and let Iα− be
the right-sided operator of Riemann-Liouville fractional integral (2.8.4). Then there
holds the formula

(Iα−[t−α−γEδβ ,γ(at−β )])(x) =
1
a

xβ−γ [Eδβ ,α+γ−β (ax−β )−Eδ−1
β ,α+γ−β (ax−β )].

(2.8.18)

Corollary 2.8.3: For α > 0,β > 0,γ > 0 with α+γ > β and for α ∈R, (a 
= 0),
there holds the formula

(Iα−[t−α−γEβ ,γ(at−β )])(x) =
1
a

xβ−γ
[

Eβ ,α+γ−β (ax−β )− 1
Γ(α+ γ−β )

]
.

(2.8.19)

Remark 2.8.3: (Kilbas and Saigo, (1998) )

(Iα−[t−α−γEα,γ(at−α)])(x) =
xα−γ

a

[
Eα,γ(ax−α)− 1

Γ(γ)

]
, (a 
= 0) (2.8.20)

(Iα−[t−α−1Eα(at−α)])(x) =
xα−1

a

[
Eα(ax−α)−1

]
, (a 
= 0). (2.8.21)

Theorem 2.8.5. Let α > 0,β > 0,γ > 0,γ > α,α ∈ R and let Dα0+ be the left-
sided operator of Riemann -Liouville fractional derivative (2.8.6). Then there holds
the formula.

(Dα0+[tγ−1Eδβ ,γ(atβ )])(x) = xγ−α−1Eδβ ,γ−α(axβ ). (2.8.22)

Proof 2.8.2: By virtue of (2.8.9) and (2.8.6), we have
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K ≡ (Dα0+[tγ−1Eδβ ,γ(atβ )])(x) =
(

d
dx

)[α]+1(
I1−{α}
0+

[
tγ−1Eδβ ,γ(atβ )

])
(x)

=
∞

∑
n=0

an(δ )n

Γ(γ+nβ )Γ(1−{a})n!

(
d
dx

)[α]+1 ∫ x

0
tnβ+γ−1(x− t)−{α}dt

=
∞

∑
n=0

an(δ )n

Γ(γ+nβ +1−{α})n!

(
d
dx

)[α]+1

xnβ+γ−{α}

=
∞

∑
n=0

an(δ )nxγ+nβ−α−1

Γ(nβ + γ−α)n!
= xγ−α−1Eδβ ,γ−α(axβ ),

which proves the theorem.

By using a similar procedure, we arrive at the following theorem.

Theorem 2.8.6. Let α > 0,γ > β > 0,α ∈ R, (a 
= 0), γ > α + β and let Dα0+
be the left-sided operator of Riemann-Liouville fractional derivative (2.8.6). Then
there holds the formula

(
Dα0+[tγ−1Eδβ ,γ(atβ )]

)
(x) =

1
a

xγ−α−β−1
[
Eδβ ,γ−α−β (axβ )−Eδ−1

β ,γ−α−β (axβ )
]
.

(2.8.23)

Corollary 2.8.4: Let α > 0,γ > β > 0,α ∈ R, (a 
= 0), γ > α + β , then there
holds the formula.

(
Dα0+[tγ−1Eβ ,γ(atβ )]

)
(x) =

1
a

xγ−α−β−1
[

Eβ ,γ−α−β (axβ )− 1
Γ(γ−α−β )

]
.

(2.8.24)

Theorem 2.8.7. Let α > 0,γ > 0,γ−α > 0 with γ−α+{α} > 1,α ∈ R, and let
Dα− be the right-sided operator of Riemann-Liouville fractional derivative (2.8.8).
Then there holds the formula.

(
Dα−[tα−γEδβ ,γ(at−β )]

)
(x) = x−γEδβ ,γ−α(ax−β ). (2.8.25)

Theorem 2.8.8. Let α > 0,β > 0 with γ −{α} > 1, α ∈ R, γ > α +β , (a 
= 0)
and let Dα− be the right-sided operator of Riemann-Liouville fractional derivative
(2.8.8). Then there holds the formula

(
Dα−[tα−γEδβ ,γ(at−β )]

)
(x) =

xβ−γ

a

[
Eδβ ,γ−α−β (ax−β )−Eδ−1

β ,γ−α−β (ax−β )
]
.

(2.8.26)
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Exercises 2.8.

2.8.1. Show that

axβEδβ ,γ(axβ ) = Eδβ ,γ−β (axβ )−Eδ−1
β ,γ−β (axβ ),(a 
= 0) (2.8.27)

2.8.2. Show that

(
Iα0+[tγ−1Eα,γ(atα)]

)
(x) =

xγ−1

a

[
Eα,γ(axα)− 1

Γ(γ)

]
, (a 
= 0). (2.8.28)

2.8.3. Prove Theorem 2.8.3.

2.8.4. Prove Theorem 2.8.4.

2.8.5. Prove Theorem 2.8.6.

2.8.6. Prove Theorem 2.8.7.

2.8.7. Prove Theorem 2.8.8.

2.8.8. Prove that
(

Iα0+tωHm,n
p,q

[
tσ |(ap,Ap)

(bq,Bq)

])
(x) = xω+αHm,n+1

p+1,q+1

[
xσ |(−ω,σ),(ap,Ap)

(bq,Bq),(−ω−α,σ)

]
, (2.8.29)

giving conditions of validity.

2.8.9. Evaluate (
Iα−tωHm,n

p,q

[
tσ |(ap,Ap)

(bq,Bq)

])
(x), (2.8.30)

and give the conditions of validity.

2.9 Fractional Differential Equations

Differential equations contain integer order derivatives, whereas fractional differen-
tial equations involve fractional derivatives, like dα

dxα , which are defined for α > 0.
Here α is not necessarily an integer and can be rational, irrational or even complex-
valued. Today, fractional calculus models find applications in physical, biological,
engineering, biomedical and earth sciences. Most of the problems discussed involve
relaxation and diffusion models in the so called complex or disordered systems.
Thus, it gives rise to the generalization of initial value problems involving or-
dinary differential equations to generalized fractional-order differential equations
and Cauchy problems involving partial differential equations to fractional reaction,
fractional diffusion and fractional reaction-diffusion equations. Fractional calculus
plays a dominant role in the solution of all these physical problems.
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2.9.1 Fractional relaxation

In order to formulate a relaxation process, we require a physical law, say the relax-
ation equation

d
dt

f (t)+
1
c

f (t) = 0, t > 0,c > 0, (2.9.1)

to be solved for the initial value f (t = 0) = f0. The unique solution of (2.9.1) is
given by

f (t) = f0 e−
t
c , t ≥ 0,c > 0. (2.9.2)

Now the problem is as to how we can generalize the initial-value problem (2.9.1)
into a fractional value problem with physical motivation. If we incorporate the initial
value f0 into the integrated relaxation equation (2.9.1), we find that

f (t)− f0 = −1
c 0D−1

t f (t), (2.9.3)

where 0D−1
t is the standard Riemann integral of f (t). On replacing 1

c 0D−1
t f (t) by

1
cα 0D−α

t f (t), it yields the fractional integral equation

f (t)− f0 = −
(

1
cα

)

0D−α
t f (t),α > 0 (2.9.4)

with initial value
f0 = f (t = 0).

Applying the Riemann-Liouville differential operator 0Dαt from the left and making
use of the formula (2.4.16), we arrive at

0Dαt [ f (x)− f0] = −c−α f (t), α > 0,c > 0, (2.9.5)

with initial condition f0 = f (t = 0).

Theorem 2.9.1. The solution of the fractional differential equation (2.9.4) is given
by

f (t) = f0H1,1
1,2

[( t
c

)α ∣
∣(0,1)
(0,1),(0,α)

]
, (2.9.6)

where α > 0,c > 0.

Proof 2.9.1: If we apply the Laplace transform to equation (2.9.4), it gives

F(s)− f0s−1 = − 1
cα

s−αF(s), (2.9.7)

where we have used the result (2.4.7) and F(s) is the Laplace transform of f (t).
Solving for F(s), we have
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F(s) = L{ f (t)} = f0

[
s−1

1+(cs)−α

]
. (2.9.8)

Taking inverse Laplace transform, (2.9.8) gives

f (t) = L−1{F(s)} = f0L−1
[

s−1

1+(cs)−α

]

= f0L−1

[
∞

∑
k=0

(−1)kc−αks−αk−1

]

= f0

∞

∑
k=0

(−1)k( t
c )
αk

Γ(αk +1)

= f0Eα

[
−
( t

c

)α]
, (2.9.9)

where Eα(·) is the Mittag-Leffler function. (2.9.9) can be written in terms of the
H-function as

f (t) = f0H1,1
1,2

[( t
c

)α ∣
∣(0,1)
(0,1),(0,α)

]
, (2.9.10)

where c > 0,α > 0. This completes the proof of the Theorem 2.9.1.

Alternative form of the solution. By virtue of the identity

Hm,n
p,q

[
xµ
∣
∣(ap,Ap)
(bq,Bq)

]
=

1
µ

Hm,n
p,q

[
x
∣
∣(ap,

Ap
µ )

(bq,
Bq
µ )

]
, (µ > 0) (2.9.11)

the solution (2.9.10) can be written as

f (t) =
f0

α
H1,1

1,2

[
t
c

∣
∣(0, 1

α )
(0, 1

α ),(0,1)

]
, (2.9.12)

where α > 0,c > 0.

Remark 2.9.1: In the limit as α → 1, one recovers the result (2.9.2)

f (t) = f0 exp
(
− t

c

)
= f0E1

( t
c

)
. (2.9.13)

Remark 2.9.2: In terms of Wright’s function, the solution (2.9.10) can be ex-
pressed in the form

f (t) = f0 1ψ1

[
(1,1)
(1,α)

∣
∣;(

t
c
)α
]
, (2.9.14)

where α > 0,c > 0.
In a similar manner, we can establish Theorems 2.9.2 and 2.9.3 given below.
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Theorem 2.9.2. The solution of the fractional integral equation

N(t)−N0tµ−1 = −cν 0D−ν
t N(t), (2.9.15)

is given by
N(t) = N0Γ(µ)tµ−1Eν ,µ(−cν tµ), (2.9.16)

where Eν ,µ(·) is the generalized Mittag-Leffler function (2.1.2), ν > 0,µ > 0.

Remark 2.9.3: When µ = 1, we obtain the result given by Haubold and Mathai
(2000).

Theorem 2.9.3. If c > 0,ν > 0,µ > 0, then for the solution of the integral equation

N(t)−N0 tµ−1Eγν ,µ [−(ct)ν ] = −cν 0D−ν
t N(t), (2.9.17)

there holds the formula

N(t) = N0 tµ−1Eγ+1
ν ,µ [−(ct)ν ]. (2.9.18)

Hint: Use the formula

L−1
{

s−β (1−as−α)−γ
}

= tβ−1Eγα,β (atα), (2.9.19)

where ℜ(α) > 0,ℜ(β ) > 0,ℜ(s) > |a|
1

ℜ(α) ,ℜ(s) > 0.

Corollary 2.9.1: If c > 0,µ > 0,ν > 0, then for the solution of

N(t)−N0tµ−1Eν ,µ [−cν tν ] = −cν 0D−ν
t N(t), (2.9.20)

there holds the relation

N(t) =
N0

ν
tµ−1 [Eν ,µ−1(−cν tν)+(1+ν−µ)Eν ,µ(−cν tν)

]
. (2.9.21)

Theorem 2.9.4. The Cauchy problem for the integro-differential equation

0Dµx f (x)+λ 0D−ν
x f (x) = h(x), (λ ,µ ,ν ∈ C) (2.9.22)

with the initial condition

Dµ−k−1
x f (0) = ak,k = 0,1, · · · , [µ ], (2.9.23)

where ℜ(ν) > 0,ℜ(µ) > 0 and h(x) is any integrable function on the finite interval
[0,b] has the unique solution, given by

f (x) =
∫ x

0
(x− t)µ−1Eµ+ν ,µ [−λ (x− t)µ+ν ]h(t)dt

+
n−1

∑
k=0

akxµ−k−1Eµ+ν ,µ−k(−λxµ+ν) (2.9.24)
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Proof 2.9.2: Exercise.

Theorem 2.9.5. The solution of the equation

0D
1
2
t f (t)+b f (t) = 0;

[

0D
− 1

2
t f (t)

]

t=0
= C, (2.9.25)

where C is a constant is given by

f (t) = C t−
1
2 E 1

2 , 1
2

(
−bt

1
2

)
, (2.9.26)

where E 1
2 , 1

2
(·) is the Mittag-Leffler function.

Proof 2.9.3: Exercise see (2.4.47).

Remark 2.9.4: Theorem 2.9.5 gives the generalized form of the equation solved
by Oldham and Spanier (1974).

Exercises 2.9.

2.9.1. Prove that if c > 0,ν > 0,µ > 0, then the solution of

N(t)−N0tµ−1E2
ν ,µ(c

ν tν) = −cν 0D−ν
t N(t), (2.9.27)

is given by

N(t) = N0tµ−1E3
ν ,µ(−cν tν) =

N0tµ−1

2ν2

[
Eν ,µ−2(−cν tν)

+{3(ν+1)−2µ}Eν ,µ−1(−cν tν)

+
{

2ν2 +µ2 +3ν−2µ−3νµ+1
}

Eν ,µ(−cν tν)
]
, (2.9.28)

where ℜ(ν) > 0, ℜ(µ) > 2.

2.9.2. Prove that if ν > 0,c > 0,d > 0,µ > 0,c 
= d, then for the solution of the
equation

N(t)−N0tµ−1Eν ,µ(−dν tν) = −cν 0D−ν
t N(t), (2.9.29)

there holds the formula.

N(t) = N0
tµ−ν−1

cν −dν
[
Eν ,µ−ν(−dν tν)−Eν ,µ−ν(−cν tν)

]
. (2.9.30)

2.9.3. Prove that if c > 0,ν > 0,µ > 0, then for the solution of the equation
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N(t)−N0tµ−1Eν ,µ(−cν tν) = −cν 0D−ν
t N(t), (2.9.31)

the following result holds:

N(t) =
N0

ν
tµ−1 [Eν ,µ−1(−cν tν)+(1+ν−µ)Eν ,µ(−cν tν)

]
. (2.9.32)

2.9.4. Solve the equation

0DQ
t f (t)+ 0Dq

t f (t) = g(t),

where q−Q is not an integer or a half integer and the initial condition is
[

0Dq−1
t f (t)+ 0DQ−1

t f (t)
]

t=0
= C (2.9.33)

where C is a constant.
2.9.5. Solve the equation

0Dαt x(t)−λx(t) = h(t), (t > 0), (2.9.34)

subject to the initial conditions
[

0Dα−k
t h(t)

]

t=0
= bk, (k = 1, · · · ,n) (2.9.35)

where n−1 < α < n.

2.9.6. Prove Theorem 2.9.4.

2.9.7. Prove Theorem 2.9.5.

2.9.2 Fractional diffusion

Theorem 2.9.6. The solution of the following initial value problem for the frac-
tional diffusion equation in one dimension

0Dαt U(x, t) = λ 2 ∂ 2U(x, t)
∂x2 , (t > 0,−∞< x < ∞) (2.9.36)

with initial conditions :

lim
x→±∞

U(x, t) = 0;
[

0Dα−1
t U(x, t)

]
t=0 = φ(x) (2.9.37)

is given by
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U(x, t) =
∫ ∞

−∞
G(x−ζ , t)φ(ζ )dζ , (2.9.38)

where

G(x, t) =
1
π

∫ ∞

0
tα−1Eα,α(−k2λ 2tα)coskx dk. (2.9.39)

Solution 2.9.1: Let 0 < α < 1. Using the boundary conditions (2.9.37), the
Fourier transform of (2.9.36) with respect to variable x gives

0Dαx Ū(k, t)+λ 2k2Ū(k, t) = 0 (2.9.40)
[

0Dα−1
t Ū(k, t)

]
t=0 = φ̄(k), (2.9.41)

where k is a Fourier transform parameter and ‘ − ’ indicates Fourier transform.
Applying the Laplace transform to (2.9.40) and using (2.9.41), it gives

�
U(k,s) =

φ̄(k)
sα + k2λ 2 , (2.9.42)

where ‘ ∼ ’ indicates Laplace transform. The inverse Laplace transform of (2.9.42)
yields

Ū(k, t) = tα−1φ̄(k)Eα,α(−λ 2k2t2), (2.9.43)

and then the solution is obtained by taking inverse Fourier transform. By taking
inverse Fourier transform of (2.9.43) and using the formula

1
2π

∫ ∞

−∞
e−ikx f (k)dk =

1
π

∫ ∞

0
f (k)cos(kx)dk (2.9.44)

we have

U(x, t) =
∫ ∞

−∞
G(x−ζ , t)φ(ζ )dζ , (2.9.45)

where

G(x, t) =
1
π

∫ ∞

0
tα−1Eα,α(−k2λ 2tα)cos(kx)dk (2.9.46)

with ℜ(α) > 0,k > 0.

Exercises 2.9.

2.9.8. Evaluate the integral in (2.9.46).

2.9.9. Find the solution of the Fick’s diffusion equation

∂
∂ t

P(x, t) = λ
∂ 2

∂x2 P(x, t),

with the initial condition P(x, t = 0) = δ (x), where δ (x) is the Dirac delta function.
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Chapter 3
An Introduction to q-Series

[This chapter is based on the lectures of Dr. R. Jagannathan of the Institute of Mathematical
Sciences, Chennai, India, at the 2nd SERC School]

3.0 Introduction

The development of quantum groups and their applications in mathematics and
physics, starting from 1980’s, has lead to renewed interest in the subject of q-series
with a history starting in the 19th century. Here we shall start learning how to deal
with the q-series.

3.1 Hypergeometric Series

Hypergeometric series is a systematic generalization of the geometric series 1+ z+
z2 + · · · . The shifted factorial, or the Pochhammer symbol, is defined by

(α)n =

{
1, n = 0, α 
= 0

α(α+1)(α+2) . . .(α+n−1), n = 1,2, . . . .
(3.1.1)

Gauss’ hypergeometric series is given by

2F1(α,β ;γ;z) = 1+
αβ

(1)(γ)
z+

α(α+1)β (β +1)
(1)(2)γ(γ+1)

z2 + · · ·

=
∞

∑
n=0

(α)n(β )n

(γ)n

zn

n!
, (3.1.2)

where it is assumed that γ 
= 0,−1,−2, ... so that no zero factors appear in the
denominator terms of the series. This series (3.1.2) converges absolutely for |z|< 1,
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and for |z|= 1 whenℜ(γ−α−β ) > 0. The geometric series is a special case when
α = 1,γ = β :

2F1(1,β ;β ;z) = 1+ z+ z2 + · · · (3.1.3)

From this it is clear that we can write

2F1(1,β ;β ;z) =
1

1− z
, for |z| < 1. (3.1.4)

The generalized hypergeometric series with r numerator parameters and s denomi-
nator parameters is defined by

rFs(α1,α2, . . . ,αr;β1,β2, . . . ,βs;z) =
∞

∑
n=0

(α1)n(α2)n . . .(αr)n

(β1)n(β2)n . . .(βs)n

zn

n!
. (3.1.5)

This series converges absolutely for all z if r ≤ s, and for |z| < 1 if r = s + 1. It
converges absolutely for |z|= 1 if r = s+1 andℜ [(β1 +β2 + · · ·+βs)− (α1 +α2+
· · ·+αr)] > 0. If r > s+1 and z 
= 0 or r = s+1 and |z|> 1, then it diverges, unless
it terminates. The simplest case of an rFs series is

0F0( ; ;z) = ez (3.1.6)

where a space indicates the absence of numerator/denominator parameters.

Exercises 3.1.

3.1.1. Show that an rFs series terminates if one of its numerator parameters is a
negative integer, or zero (trivial case).

3.1.2. Verify that

1F0(−α; ;−z) = (1+ z)α .

3.1.3. Show that

lim
α→∞ 1F0

(
α; ;

z
α

)
= ez.

3.1.4. Verify that

2F1(1,1;2;−z) =
1
z

ln(1+ z).

3.1.5. Verify that

0F1

(
;

3
2

;− z2

4

)
=

1
z

sinz.
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3.1.6. Verify that

0F1

(
;

1
2

;− z2

4

)
= cosz.

3.1.7. Verify that

2F1

(
1
2
,

1
2

;
3
2

;z2
)

=
1
z

sin−1 z.

3.1.8. Verify that

2F1

(
1
2
,1;

3
2

;−z2
)

=
1
z

tan−1 z.

3.1.9. Show that for n = 0,1,2, ...

Hn(z) = (2z)n
2F0

(
−n

2
,
(1−n)

2
; ;−z−2

)

represents the Hermite polynomial given by

Hn(z) =
[n/2]

∑
k=0

(−1)kn!
k!(n−2k)!

(2z)n−2k

where [n/2] is the integer part of n/2.

3.1.10. Show that for n = 0,1,2, ...

Ln(z) = 1F1(−n;1;z)

represents the Laguerre polynomial given by

Ln(z) =
n

∑
k=0

(
n
k

)
(−z)k

k!
,

where
(n

k

)
is the binomial coefficient n(n−1) . . .(n− k +1)/k!.

3.1.11. Show that for n = 0,1,2, ...

Pn(z) =
(2n)!

2n(n!)2 zn
2F1

(
−n

2
,
(1−n)

2
;

1
2
−n;z−2

)

represents the Legendre polynomial given by

Pn(z) =
1
2n

[n/2]

∑
k=0

(−1)k(2n−2k)!
k!(n− k)!(n−2k)!

zn−2k.
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3.1.12. Verify for n = 0,1,2,3,4 that

Tn(z) = 2F1

(
−n,n;

1
2

;
(1− z)

2

)

represents the Chebyshev polynomial of the first kind given by

Tn(z) = cos(ncos−1 z) =
n
2

[n/2]

∑
k=0

(−1)k(n− k−1)!
k!(n−2k)!

(2z)n−2k,n ≥ 1.

3.1.13. Verify for n = 0,1,2,3,4 that

Un(z) = (n+1)2F1

(
−n,n+2;

3
2

;
(1− z)

2

)

represents the Chebyshev polynomial of the second kind given by

Un(z) =
sin(ncos−1 z)√

1− z2
=

[(n−1)/2]

∑
k=0

(−1)k(n− k−1)!
k!(n−2k−1)!

(2z)n−2k−1,n ≥ 1.

3.1.14. Verify for n = 0,1,2,3,4 that

Cm
n (z) =

(2m)n

n! 2F1

(
−n,n+2m;m+

1
2

;
(1− z)

2

)

represents the Gegenbauer, or the ultraspherical, polynomial given by

Cm
n (z) =

1
(m−1)!

[n/2]

∑
k=0

(−1)k(m+n− k−1)!
k!(n−2k)!

(2z)n−2k

where m is a positive integer.

3.1.15. Show that for any power series∑∞n=0 unzn with u0 = 1 and un+1
un

as a rational
function of n can be written as a hypergeometric series.

3.2 Basic Hypergeometric Series (q-Series)

A process of q- generalization of the hypergeometric series started in the 19th cen-
tury itself. Thus, the subject of q-hypergeometric series, or q-series, has a rich his-
tory. For a modern introduction to the subject one should refer to the book of Gasper
and Rahman (1990) which would serve as an excellent textbook for any study of ba-
sic hypergeometric series. Let
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Notation 3.2.1.

[α]q =
1−qα

1−q
. (3.2.1)

It is easy to see that

lim
q→1

[α]q = α. (3.2.2)

Definition 3.2.1. The q-shifted factorial. It is defined as

(a;q)n =

⎧
⎪⎪⎨

⎪⎪⎩

1, n = 0
(1−a)(1−aq)(1−aq2) . . .

(
1−aqn−1

)
,

n = 1,2,3, . . . .

Then note that

(qα ;q)n

(1−q)n = [α]q[α+1]q[α+2]q . . . [α+n−1]q,

n = 1,2,3, . . . , (3.2.3)

and

lim
q→1

(qα ;q)n

(1−q)n = (α)n, n = 1,2,3, . . . (3.2.4)

Unless otherwise stated, throughout we shall have n,m,k, to take nonnegative inte-
ger values. Equation (3.2.4) suggests an obvious q-generalization of the hypergeo-
metric series by the replacements

(α)n →
(qα ;q)n

(1−q)n , n! = (1)n →
(q;q)n

(1−q)n . (3.2.5)

This process of q-generalization has finally led to a standard definition of q-
hypergeometric series as follows:

Notation 3.2.2. rφs(a1,a2, . . . ,ar;b1,b2, . . . ,bs;q,z): The q-hypergeometric
function.

Definition 3.2.2.

rφs(a1,a2, . . . ,ar;b1,b2, . . . ,bs;q,z) =
∞

∑
n=0

(a1;q)n(a2;q)n . . .(ar;q)n

(q;q)n(b1;q)n(b2;q)n . . .(bs;q)n

×
[
(−1)n q(n

2)
]1+s−r

zn, (3.2.6)
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where q 
= 0 when r > s + 1. This series (3.2.6) is called also the basic hypergeo-
metric series (in view of the base q) or simply the q-series. If 0 < |q| < 1, the rφs
series converges absolutely for all z if r ≤ s, and for |z| < 1 if r = s+1. This series
also converges absolutely if |q|> 1 and |z|< |b1b2 . . .bs|/|a1a2 . . .ar|. It diverges for
z 
= 0 if 0 < |q| < 1 and r > s + 1, and if |q| > 1 and |z| > |b1b2 . . .bs|/|a1a2 . . .ar|,
unless it terminates. It is customary to use the notation rφs (as in the case of rFs) also
for the sum of the series inside the circle of convergence and for its analytic contin-
uation (called the basic hypergeometric function) outside the circle of convergence.
Since for m = 0,1,2, . . .

(
q−m;q

)
n = 0, n = m+1,m+2, . . . , (3.2.7)

in (3.2.7) it is assumed that none of the denominator parameters is of the form
q−m with m = 0,1,2, . . .. Equation (3.2.7) also shows that an rφs series terminates
if one of its numerator parameters is of the form q−m with m = 0,1,2, . . .. Unless
stated otherwise, when dealing with non-terminating basic hypergeometric series it
is usually assumed that |q| < 1 and that the parameters and variables are such that
the series converges absolutely. Further, with the definitions:

Notation 3.2.3.

(a;q)∞ =
∞

∏
k=0

(
1−aqk

)
, (3.2.8)

we can write

(a;q)n =
(a;q)∞

(aqn;q)∞
. (3.2.9)

Since products of q-shifted factorials occur so often, to simplify the writing, the
following more compact notations are used frequently:

(a1,a2, . . . ,am;q)n = (a1;q)n(a2;q)n . . .(am;q)n, (3.2.10)
(a1,a2, . . . ,am;q)∞ = (a1;q)∞(a2;q)∞ . . .(am;q)∞. (3.2.11)

Exercises 3.2.

3.2.1. Show that any power series ∑∞n=0υnzn with υ0 = 1 and υn+1
υn

as a rational
function of qn can be written as a basic hypergeometric series.

3.2.2. Show that

lim
ar→∞

rφs(a1,a2, . . . ,ar;b1,b2, . . . ,bs;q,z/ar)

= r−1φs(a1,a2, . . . ,ar−1;b1,b2, . . . ,bs;q,z).
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3.2.3. Show that

(a;q)n =
(
a−1;q−1)

n (−a)n q(n
2).

3.2.4. Show that

(
a−1q1−n;q

)
n = (a;q)n(−a−1)n q−(n

2).

3.2.5. Show that

(a;q)n−k =
(a;q)n

(a−1q1−n;q)k

(
−qa−1)k q(k

2)−nk.

3.2.6. Show that
(a;q)n+k = (a;q)n(aqn;q)k.

3.2.7. Show that

(aqn;q)k =
(a;q)k(aqk;q)n

(a;q)n
.

3.2.8. Show that
(

aqk;q
)

n−k
=

(a;q)n

(a;q)k
.

3.2.9. Show that
(

aq2k;q
)

n−k
=

(a;q)n (aqn;q)k
(a;q)2k

.

3.2.10. Show that

(
q−n;q

)
k =

(q;q)n

(q;q)n−k
(−1)kq(k

2)−nk.

3.2.11. Show that

(
aq−n;q

)
k =

(a;q)k
(
qa−1;q

)
n

(a−1q1−k;q)n
q−nk.

3.2.12. Show that
(a;q)2n = (a;q2)n (aq;q2)n.

3.2.13. Show that (
a2;q2)

n = (a;q)n (−a;q)n.

3.2.14. Show that
(
aq−n;q

)
n =
(
a−1q;q

)
n

(
−aq−1)n q−(n

2).

3.2.15. Show that
(

aq−k−n;q
)

n
=

(a−1q;q)n+k

(a−1q;q)k

(
−aq−1)n q−nk−(n

2).
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3.2.16. Show that
(q
√

a,−q
√

a;q)n
(
√

a,−√
a;q)n

=
1−aq2n

1−a
.

3.2.17. Show that

(a;q)∞ =
(√

a,−
√

a,
√

aq,−√
aq;q
)
∞ .

3.2.1 The q-binomial theorem

The binomial expansion, for |z| < 1,

(1− z)−α = 1+
α
1!

z+
α(α+1)

2!
z2 +

α(α+1)(α+2)
3!

z3 + · · ·

=
∞

∑
n=0

(α)n

n!
zn = 1F0(α; ;z), (3.2.12)

is one of the most important summation formulas for hypergeometric series. This
formula has the following q-analogue known as the q-binomial theorem:

Definition 3.2.3. q-binomial series:

1φ0(a; ;q,z) =
∞

∑
n=0

(a;q)n

(q;q)n
zn =

(az;q)∞
(z;q)∞

, |z| < 1, |q| < 1. (3.2.13)

To derive the q-binomial theorem let us first prove the binomial theorem (3.2.12)
and then carry out the analogous steps for the q case. Let

fα(z) =
∞

∑
n=0

(α)n

n!
zn, |z| < 1. (3.2.14)

Since this series is uniformly convergent in |z| < ε where 0 < ε < 1, we may differ-
entiate it term-wise to get

f ′α(z) =
∞

∑
n=1

n(α)n

n!
zn−1 =

∞

∑
n=0

(α)n+1

n!
zn

= α
∞

∑
n=0

(α+1)n

n!
zn = α fα+1(z). (3.2.15)
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Also

fα(z)− fα+1(z) =
∞

∑
n=1

(α)n − (α+1)n

n!
zn

=
∞

∑
n=1

(α+1)n−1[α− (α+n)]
n!

zn

= −
∞

∑
n=1

(α+1)n−1

(n−1)!
zn

= −
∞

∑
n=0

(α+1)n

n!
zn+1 = −z fα+1(z). (3.2.16)

Thus we have from (3.2.15) and (3.2.16)

f ′α(z) = α fα+1(z), fα+1(z) =
fα(z)

(1− z)
. (3.2.17)

Now, eliminating fα+1(z) from (3.2.17) we get a first order differential equation for
fα(z)

f ′α(z) =
α

1− z
fα(z). (3.2.18)

The initial condition for fα(z) is

fα(0) = 1, (3.2.19)

as seen from (3.2.14). Solving (3.2.18), subject to (3.2.19), one has

fα(z) = (1− z)−α , |z| < 1, (3.2.20)

proving the binomial theorem

1F0(α; ;z) =
∞

∑
n=0

(α)n

n!
zn = (1− z)−α . (3.2.21)

To derive the q-binomial theorem let us carry out analogous steps. Let

ha(z) =
∞

∑
n=0

(a;q)n

(q;q)n
zn, |z| < 1, |q| < 1. (3.2.22)

Now, observe that for any function g(z)

lim
q→1

g(z)−g(qz)
(1−q)z

=
d
dz

g(z), (3.2.23)
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if g(z) is differentiable at z. This suggests that to get the q-analogue of (3.2.15) we
should compute the difference ha(z)−ha(qz). This leads to

ha(z)−ha(qz) =
∞

∑
n=1

(a;q)n

(q;q)n
(zn −qnzn)

=
∞

∑
n=1

(a;q)n

(q;q)n−1
zn

=
∞

∑
n=0

(a;q)n+1

(q;q)n
zn+1

=
∞

∑
n=0

(1−a)(aq;q)n

(q;q)n
zn+1

= (1−a)z haq(z). (3.2.24)

Next, to get an analogue of (3.2.16) let us compute the difference ha(z)− haq(z).
This leads to

ha(z)−haq(z) =
∞

∑
n=1

(a;q)n − (aq;q)n

(q;q)n
zn

=
∞

∑
n=1

(aq;q)n−1[(1−a)− (1−aqn)]
(q;q)n

zn

= −a
∞

∑
n=1

(aq;q)n−1(1−qn)
(q;q)n

zn

= −a
∞

∑
n=1

(aq;q)n−1

(q;q)n−1
zn

= −a
∞

∑
n=0

(aq;q)n

(q;q)n
zn+1 = −az haq(z). (3.2.25)

From (3.2.24) and (3.2.25) we have

ha(z)− (1−a)z haq(z) = ha(qz), haq(z) =
ha(z)

(1−az)
. (3.2.26)

Now, eliminating haq(z) from (3.2.26) we get

ha(z) =
1−az
1− z

ha(qz). (3.2.27)

Iterating this relation (n−1) times
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ha(z) =
(1−az)(1−azq)
(1− z)(1− zq)

ha(zq2)

=
(1−az)(1−azq)(1−azq2)

(1− z)(1− zq)(1− zq2)
ha(zq3)

. . .

=
(1−az)(1−azq)(1−azq2) . . .(1−azqn−1)

(1− z)(1− zq)(1− zq2) . . .(1− zqn−1)
ha(zqn)

=
(az;q)n

(z;q)n
ha(zqn). (3.2.28)

Taking the limit n → ∞ we can write

ha(z) = lim
n→∞

{
(az;q)n

(z;q)n
ha(zqn)

}
=

(az;q)∞
(z;q)∞

ha(0) =
(az;q)∞
(z;q)∞

, (3.2.29)

since as n → ∞, ha(zqn) → ha(0) for |q| < 1, and ha(0) = 1 as seen from (3.2.22).
Thus, we have the q-binomial theorem

1φ0(a; ;q,z) =
∞

∑
n=0

(a;q)n

(q;q)n
zn =

(az;q)∞
(z;q)∞

, (3.2.30)

|z| < 1, |q| < 1.

Equation (3.2.30) is one of the most important summation formulas for basic hyper-
geometric series. The observations

0F0( ; ;z) = ez, lim
α→∞ 1F0

(
α ; ;

z
α

)
= ez (3.2.31)

suggest q-generalization of the exponential function using 0φ0 or 1φ0. It should be
noted that for a given function there can be several q-analogues if the only condition
to be met is that the q-analogue tends to the original function in the limit q → 1.
So, the choice of a q-analogue for a given function depends on the particular appli-
cation. For the exponential function there are two standard q-analogues defined in
the literature. These are the following:

Notation 3.2.4. eq(z),Eq(z): q-exponential functions.

Definition 3.2.4.

eq(z) = 1φ0(0; ;q,z) =
∞

∑
n=0

zn

(q;q)n
=

1
(z;q)∞

, |z| < 1. (3.2.32)
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Eq(z) =
∞

∑
n=0

qn(n−1)/2

(q;q)n
zn

= 0φ0( ; ;q,−z) = lim
a→∞ 1φ0

(
a; ;q,− z

a

)

= lim
a→∞

(a(−z/a);q)∞
(−z/a;q)∞

= (−z;q)∞. (3.2.33)

Note that the last steps in (3.2.32) and (3.2.33) follow from the q-binomial theorem.

Exercises 3.2.

3.2.18. Show that

lim
q→1

(qαz : q)∞
(z;q)∞

= lim
q→1

1φ0(qα ; ;q,z)

→ 1F0(α; ;z) = (1− z)−α .

3.2.19. Show that

1φ0(a; ;q,z)1φ0(b; ;q,az) = 1φ0(ab; ;q,z)

which is a q analogue of the relation

(1− z)−α(1− z)−β = (1− z)−(α+β ).

3.2.20. Show that

eq(z)Eq(−z) = 1

which is the q-analogue of the relation eze−z = 1.

3.2.21. Show that
lim
q→1

eq((1−q)z) = ez.

3.2.22. Show that
lim
q→1

Eq((1−q)z) = ez.

3.2.2 The q-binomial coefficients

The binomial theorem
1F0(α; ;z) = (1− z)−α (3.2.34)

becomes, when α = −n, a negative integer,
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(1− z)n = 1F0(−n; ;z)

=
∞

∑
k=0

(−n)k

k!
zk =

n

∑
k=0

(−n)k

k!
zk

=
n

∑
k=0

(−1)kn(n−1)(n−2) . . .(n− k +1)
k!

zk

=
n

∑
k=0

(
n
k

)
(−z)k. (3.2.35)

In the q-binomial theorem

1φ0(a; ;q,z) =
(az;q)∞
(z;q)∞

(3.2.36)

let a = q−n and replace z by zqn where n is a non-negative integer. The result is

1φ0(q−n; ;q,zqn) =
(z;q)∞

(zqn;q)∞
= (z;q)n. (3.2.37)

Thus

(z;q)n = 1φ0(q−n; ;q,zqn)

=
∞

∑
k=0

(q−n;q)k

(q;q)k
(zqn)k

=
n

∑
k=0

(q−n;q)k

(q;q)k
qnkzk. (3.2.38)

From Exercise 3.2.10 we know that

(q−n;q)k =
(q;q)n(−1)kq(k

2)−nk

(q;q)n−k
. (3.2.39)

Substituting this relation in (3.2.38) we have

(z;q)n =
n

∑
k=0

(q;q)n

(q;q)k(q;q)n−k
q(k

2) (−z)k. (3.2.40)

Now, note that

lim
q→1

(z;q)n = (1− z)n. (3.2.41)

Thus, we realize that (3.2.40) is the q-analogue of the binomial expansion

(1− z)n =
n

∑
k=0

(
n
k

)
(−z)k. (3.2.42)

Comparing (4.2.42) with (4.2.40) the q-binomial coefficient is defined as follows:
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Notation 3.2.5. q-binomial coefficient
[

n
k

]

q
=

(q;q)n

(q;q)k(q;q)n−k
. (3.2.43)

Definition 3.2.5. The q-binomial expansion (3.2.40) is written as

(z;q)n =
n

∑
k=0

[
n
k

]

q
q(k

2) (−z)k. (3.2.44)

Exercises 3.2.

3.2.23. Show that

lim
q→1

[
n
k

]

q
=
(

n
k

)
.

3.2.24. Show that [
n

n− k

]

q
=
[

n
k

]

q
.

3.2.25. Show that
[

n+ k
k

]

q
=

(qn+1;q)k

(q;q)k
.

3.2.26. Show that
[

n+1
k

]

q
=
[

n
k

]

q
qk +
[

n
k−1

]

q
=
[

n
k

]

q
+
[

n
k−1

]

q
qn+1−k.

3.2.27. Show that if X and Y are such that XY = qY X then

(X +Y )n =
n

∑
k=0

[
n
k

]

q
Y kXn−k =

n

∑
k=0

[
n
k

]

q−1
XkY n−k.

where
[

n
k

]

q−1
is obtained from

[
n
k

]

q
by replacing q by q−1.
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3.2.28. Show that if X and Y are such that XY = qY X where q = e2πi/n then

(X +Y )n = Xn +Y n.

3.3 q-Calculus

We have seen that for any function g(z)

lim
q→1

g(z)−g(qz)
(1−q)z

=
d
dz

g(z)

if g(z) is differentiable at z.

Notation 3.3.1. Dq = q-derivative.

Definition 3.3.1. For a fixed q a q-derivative operator Dq is defined by

Dq g(z) =
g(z)−g(qz)

(1−q)z
. (3.3.1)

Note that

Dq zn =
zn − (qz)n

(1−q)z
=

1−qn

1−q
zn−1 =

[
n
]

q zn−1, (3.3.2)

analogous to the relation

d
dz

zn = nzn−1. (3.3.3)

The differential equations of special functions get q-deformed into q-differential
equations, involving the q-derivative Dq, satisfied by the corresponding q-special
functions. For example, 2φ1(a,b;c;q,z) satisfies (for |z|< 1 and in the formal power
series sense) the following second order q-differential equation:

z(c−abqz)D2
qφ +

[
1− c
1−q

+
(1−a)(1−b)− (1−abq)

1−q
z
]

Dqφ

− (1−a)(1−b)
(1−q)2 φ = 0. (3.3.4)

By replacing a,b,c respectively, by qα ,qβ ,qγ and then letting q → 1 it is seen that
(3.3.4) tends to the second order differential equation satisfied by 2F1(α,β ;γ;z),
namely,

z(1− z)
d2F
dz2 +[γ− (α+β +1)z]

dF
dz

−αβF = 0 (3.3.5)

where |z|< 1. Once we have a q-differentiation the question of a q-integration arises
naturally.



150 3 An Introduction to q-Series

Definition 3.3.2. The q-integral is defined by

∫ b

a
f (z)dqz =

∫ b

0
f (z)dqz−

∫ a

0
f (z)dqz, (3.3.6)

where

∫ a

0
f (z)dqz = a(1−q)

∞

∑
n=0

f (aqn)qn. (3.3.7)

The q-integral (3.3.7) can be viewed as an infinite Riemann sum with non-
equidistant mesh widths. In the limit q→ 1 the right side of (3.3.7) tends to the usual
integral

∫ a
0 f (z)dz. As an example consider, with q and α real and |q| < 1, α > −1,

∫ 1

0
zαdqz = (1−q)

∞

∑
n=0

(qn)α qn.

= (1−q)
∞

∑
n=0

qn(α+1) =
1−q

1−qα+1 . (3.3.8)

In the limit q → 1 we have 1−q
1−qα+1 → 1

α+1 , as should be since

∫ 1

0
zαdz =

1
α+1

. (3.3.9)

Standard operations of classical analysis like differentiation and integration do
not fit well with q-series and these are to be replaced by q-differentiation and
q-integration. Already we saw that 2φ1(a,b;c;q,z) satisfies a second order of
q-differential equation analogous to the second order differential equation satisfied
by 2F1(α,β ;γ;z). Similarly, integral representation of hypergeometric functions
get q-deformed into q-integral representations for q-hypergeometric functions. For
example, the integral representation

2F1(α,β ;γ;z) =
Γ(γ)

Γ(β )Γ(γ−β )

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−αdt, (3.3.10)

with |arg(1− z)| < π and ℜ(γ) >ℜ(β ) > 0, has the q-analogue

2φ1(qα ,qβ ;qγ ;q,z) =
Γ̄q(γ)

Γ̄q(β )Γ̄q(γ−β )

∫ 1

0
tβ−1 (tzqα , tq;q)∞(

tz, tqγ−β ;q
)
∞

dqt, (3.3.11)

where Γ̄q(z) is the q-gamma function to be defined below. The q-integral notation is
often quite useful in simplifying and manipulating various formulas involving sums
of series.
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Exercises 3.3.

3.3.1. Show that

Dq eq((1−q)αz) = α eq((1−q)αz).

3.3.2. Show that

DqEq((1−q)αz) = α Eq((1−q)αqz).

3.3.3. Show that for any positive integer n

Dn
q2φ1(a,b;c;q,z) =

(a,b;q)n

(c;q)n(1−q)n 2φ1 (aqn,bqn;cqn;q,z) .

3.4 The q-Gamma and q-Beta Functions

Notation 3.4.1. Γ̄q(x): The q-gamma function.

Definition 3.4.1. The q-gamma function is defined by

Γ̄q(x) =
(q;q)∞
(qx;q)∞

(1−q)1−x, 0 < q < 1. (3.4.1)

When x = n+1 with n a non-negative integer this definition reduces to

Γ̄q(n+1) = [1]q[2]q[3]q . . . [n]q = [n]q! (3.4.2)

which clearly tends to n! as q → 1. Hence

lim
q→1

Γ̄q(n+1) = Γ(n+1) = n!. (3.4.3)

One can also show that

Γ̄q(x+1) = [x]q Γ̄q(x), Γ̄q(1) = 1, (3.4.4)

analoguous to the relation

Γ(x+1) = xΓ(x), Γ(1) = 1. (3.4.5)

Analogous to the case of Γ(x), Γ̄q(x) has poles at x = 0,−1,−2, . . . . Since the beta
function is defined by

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

(3.4.6)

it is natural to define the q-beta function by the following:
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Notation 3.4.2. B̄q(x,y): q-beta function.

Definition 3.4.2.

B̄q(x,y) =
Γ̄q(x)Γ̄q(y)
Γ̄q(x+ y)

(3.4.7)

which tends to B(x,y) as q → 1. One can show that

B̄q(x,y) = (1−q)
∞

∑
n=0

(qn+1;q)∞
(qn+y;q)∞

qnx, ℜ(x) > 0, ℜ(y) > 0. (3.4.8)

3.5 Transformation and Summation Formulas for q-Series

Heine (1847) showed that

2φ1(a,b;c;q,z) =
(b,az;q)
(c,z;q)∞

2φ1(c/b,z;az;q,b) (3.5.1)

where |z| < 1 and |b| < 1. This is an example of a transformation formula. To prove
this, first observe from the q-binomial theorem that

(cqn;q)∞
(bqn;q)∞

=
∞

∑
m=0

(c/b;q)m

(q;q)m
(bqn)m. (3.5.2)

Hence, for |z| < 1 and |b| < 1,

2φ1(a,b;c;q,z) =
(b;q)∞
(c;q)∞

∞

∑
n=0

(a,q)n(cqn;q)∞
(q;q)n(bqn;q)∞

zn

=
(b;q)∞
(c;q)∞

∞

∑
n=0

(a;q)n

(q;q)n
zn

∞

∑
m=0

(c/b;q)m

(q;q)m
(zqm)n

=
(b;q)∞
(c;q)∞

∞

∑
m=0

(c/b;q)m

(q;q)m
bm

∞

∑
n=0

(a;q)n

(q;q)n
(zqm)n

=
(b;q)∞
(c;q)∞

∞

∑
m=0

(c/b;q)m

(q;q)m
bm (azqm;q)∞

(zqm;q)∞

=
(b,az;q)∞
(c,z;q)∞

2φ1(c/b,z;az;q,b), (3.5.3)

which proves (3.5.1). Heine also showed that Euler’s transformation formula

2F1(α,β ;γ;z) = (1− z)γ−α−β 2F1(γ−α,γ−β ;γ;z) (3.5.4)
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has a q-analogue of the form

2φ1(a,b;c;q,z) =
(abz/c;q)∞

(z;q)∞
2φ1(c/a,c/b;c;q,abz/c). (3.5.5)

A short way to prove this formula is just to iterate (3.5.1) by interchanging the two
numerator parameters as follows:

2φ1(a,b;c;q,z) =
(b,az;q)∞
(c,z;q)∞

2φ1(c/b,z;az;q,b)

=
(c/b,bz;q)∞

(c,z;q)∞
2φ1(abz/c,b;bz;q,c/b)

=
(abz/c;q)∞

(z;q)∞
2φ1(c/a,c/b;c;q,abz/c). (3.5.6)

Take a = qα , b = qβ ,c = qγ and let q → 1 to see that (3.5.5) becomes Euler trans-
formation formula. If we set in (3.5.1), z = c

ab , assume that |b| < 1, |
∣
∣ c

ab

∣
∣ < 1, and

observe that the series on the right side of

2φ1

(
a,b;c;q,

c
ab

)
=

(b,c/b;q)∞
(c,c/ab;q)∞

1φ0

( c
ab

; ;q,
)

, (3.5.7)

can be summed by the q-binomial theorem, we get

2φ1

(
a,b;c;q,

c
ab

)
=

( c
a , c

b ;q
)
∞(

c, c
ab ;q
)
∞

. (3.5.8)

This is the q-analogue of the Gauss summation formula

2F1(α,β ;γ;1) =
Γ(γ)Γ(γ−α−β )
Γ(γ−α)Γ(γ−β , ℜ(γ−α−β ) > 0. (3.5.9)

For the terminating case when a = q−n, (3.5.8) reduces to

2φ1

(
q−n,b;c;q,

cqn

b

)
=

(c/b;q)n

(c;q)n
, n = 0,1,2, . . . , (3.5.10)

which is a q-analogue of the Chu-Vandermonde formula

2F1(−n,β ;γ;1) =
(γ−β )n

(γ)n
, n = 0,1,2, . . . . (3.5.11)



154 3 An Introduction to q-Series

Exercises 3.5.
3.5.1. Set c = bzq

1
2 in (3.5.8) and then let b → 0 and a → ∞ to obtain

∞

∑
n=0

(−1)nqn2/2

(q;q)n
zn = (zq

1
2 ;q)∞.

3.5.2. Set c = bzq
1
2 in (3.5.8) and then let a → 0 and a → ∞ to obtain

∞

∑
n=0

qn2

(q,zq;q)n
zn =

1
(zq;q)∞

.

3.5.3. Let ∆θ denote the q-difference operator defined for a fixed q by

∆θ g(z) = θ g(qz)−g(z)

and let ∆= ∆1. Then show that

ϑn(z) =
(a1,a2, . . . ,ar;q)n

(q,b1,b2, . . . ,bs;q)n

[
(−1)nq(n

2)
]1+s−r

zn

satisfies the relation
(
∆∆b1/q∆b2/q . . .∆bs/q

)
ϑn(z) = z(∆a1∆a2 . . .∆ar)ϑn−1

(
zq1+s−r) ,n = 1,2, . . . .

Hence show that rφs(a1,a2, . . . ,ar;b1,b2, . . . ,bs;q,z) satisfies (in the sense of formal
power series) the q-defference equation

(∆∆b1/q∆b2/q . . .∆bs/q) rφs(z) = z(∆a1∆a2 . . .∆ar) rφs(zq1+s−r).

3.5.4. Let |x| < 1 and define

sinq(x) =
1
2i

[eq(ix)− eq(−ix)]

cosq(x) =
1
2

[eq(ix)+ eq(−ix)]

Sinq(x) =
1
2i

[Eq(ix)−Eq(−ix)]

Cosq(x) =
1
2

[Eq(ix)+Eq(−ix)] .

3.5.5. Show that
sinq(x)Sinq(x)+ cosq(x)Cosq(x) = 1
sinq(x)Cosq(x)−Sinq(x)cosq(x) = 0.

3.6 Jacobi’s Triple Product and Rogers-Ramanujan Identities

Using the results of Exercises 3.5.1 and 3.5.2 it can be shown that

(zq
1
2 ,q

1
2 /z,q;q)∞ =

∞

∑
n=−∞

(−1)nq
n2
2 zn (3.6.1)
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which is well known as the Jacobi triple product identity. This is a limiting case of
Ramanujan’s 1ψ1 summation formula

1ψ1(a;b;q,z) =
(q,b/a,az,q/az;q)∞
(b,q/a,z,b/az;q)∞

, |b/a| < |z| < 1,

which extends the q-binomial theorem to bilateral q-hypergeometric series defined
by

rψs(z) =
∞

∑
n=0

(a1,a2, . . . ,ar;q)n

(b1,b2, . . . ,bs;q)n

× (−1)(s−r)n q(s−r)(n
2) zn

+
∞

∑
n=1

(q/b1,q/b2, ...,q/bs;q)n

(q/a1,q/a2, ...,q/ar;q)n

×
(

(b1b2 . . .bs)
(a1a2 . . .arz)

)n

, (3.6.2)

with suitable assumptions on the parameters and z to ensure convergence.
The theory of q-series is full of transformation formulas (or identities) of which

we have seen so far a few elementary examples. Any introduction to q-series will
not be complete without mentioning the famous Rogers-Ramanujan identities: for
|q| < 1,

∞

∑
n=0

qn2

(q;q)n
=

(q2,q3,q5;q5)∞
(q;q)∞

, (3.6.3)

∞

∑
n=0

qn(n+1)

(q;q)n
=

(q,q4,q5;q5)∞
(q;q)∞

. (3.6.4)

An rφs series is also denoted by the notation

rφs(a1,a2, . . . ,ar,b1,b2, . . . ,bs,q,z) = rφs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
;q,z

]

which is more compact when the number of parameters is large. Using this notation
a transformation formula due to Watson looks like

8φ7

⎡

⎣
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

;q,
a2q2+n

bcde

⎤

⎦

=
(aq,aq/de;q)n

(aq/d,aq/e;q)n
4φ3

[
q−n, d, e, aq/bc

aq/b, aq/c, deq−n/a
;q,q

]

(3.6.5)

with certain conditions on the parameters. Such a transformation formula can be
used to give a simple proof of the Rogers-Ramanujan identities (3.6.4)-(3.6.5).
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So far we have seen the richness of the theory of q-series. The recent interest
in the subject with a history starting in 19th century is due to the fact that q-series
has popped up in such diverse areas as statistical mechanics, quantum groups, tran-
scendental number theory, etc. The famous example in statistical mechanics is Bax-
ter’s beautiful solution of the hard hexagon model wherein the Rogers-Ramanujan
identities first arose in physics. Now we have several examples for the applica-
tions of q-series outside pure mathematics. Lie algebras and their representations
are well known to provide a unifying framework for special functions. It is found
that quantum groups play a similar role for q-special functions. For example the
representation theory of the quantum group Uq(sl(2)) involves 2φ1 functions and
some q-Jacobi polynomials. So it is to be expected that whenever quantum groups
are relevant to the description of physical models the q-series will arise.

TEST

on Basic Hypergeometric Series

Time: 1 hour

3.1. Show that

i (a;q)n−k =
(a;q)n

(a−1 q1−n;q)k
(−qa−1)kq(k

2)−nk

ii (a;q)∞ = (
√

a,−
√

a,
√

aq,−√
aq;q)∞

3.2. Show that

i lim
q→1

eq((1−q)z) = ez.

ii lim
q→1

Eq((1−q)z) = ez.

iii eq(z)Eq(−z) = 1.

3.3. Show that
[

n+1
k

]

q
=
[

n
k

]

q
qk +
[

n
k−1

]

q
=
[

n
k

]

q
+
[

n
k−1

]

q
qn+1−k.

3.4. Using q-binomial theorem show that

1φ0
(
q−n; ;q,z

)
=
(
zq−n;q

)
n , n = 0,1,2, . . . .

3.5. Find
(i) DqEq((1−q)αz), (ii) Dq(z;q)n

where Dq is the q-differential operator. What are the relations in these two cases in
the limit q → 1?
(R. Jagannathan)
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Chapter 4
Ramanujan’s Theories of Theta and Elliptic
Functions

[This chapter is based on the lectures of Dr. S. Bhargava of the Department of Post-graduate
Studies and Research in Mathematics of the University of Mysore, India]

4.0 Introduction

Ramanujan develops the classical theories of theta and elliptic functions in his own
unique way. Moreover, he has his own theories of theta and elliptic functions beyond
the classical theories. Ramanujan’s approach to establishing his theorems, even the
deep theorems, is elementary.

The purpose of the present lectures is to acquaint the audience with some selected
parts (mile stones) in Ramanujan’s development to enable them for further reading
and research.

4.1 Ramanujan’s Theory of Classical Theta Functions

4.1.1 Series definition and additive results

Definition 4.1.1. Theta function: Ramanujan defines the theta function (alge-
braically) by

f (a,b) =
∞

∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (4.1.1)

Remark 4.1.1: This is indeed Ramanujan’s version of Jacobi’s theta function

θ3(q,z) = f (qeiz,qe−iz), |q| < 1

(which is trigonometric in nature).

159
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It turns out that the (algebraic) definition by (4.1.1) of the theta function renders
the statements as well as proofs of most of the theorems elegant. The following
special cases, with |q| < 1, are frequently employed:

φ(q) = f (q,q) =
∞

∑
n=−∞

qn2

ψ(q) =
1
2

f (1,q) =
∞

∑
n=0

qn(n+1)/2

and

f (−q) = f (−q,−q2) =
∞

∑
n=−∞

(−1)nqn(3n−1)/2. (4.1.2)

The quantities n2,n(n+1)/2 and n(3n−1)/2 being square, triangular, and pentag-
onal numbers, we observe that these numbers can be regarded as generated by the
theta functions φ(q), ψ(q) and f (−q).
Exercise 4.1.1: Discuss the convergence of the series in (4.1.1) and (4.1.2).
Exercise 4.1.2: Justify the terminologies triangular numbers and pentagonal num-
bers for n(n+1)/2 and n(3n−1)/2 respectively.

Exercise 4.1.3: Prove the following properties of f (a,b):

f (−1,a) = 0

f (1,a) = 2 f (a,a3)
f (a,b) = f (b,a). (4.1.3)

Exercise 4.1.4: Obtain the series expansions for

f (qeiz,qe−iz) = θ3(q,z)

and for

f (q,q) = φ(q),
1
2

f (1,q) = ψ(q)

and

f (−q,−q2) = f (−q) of (4.1.2).

The following theorem is Ramanujan’s (algebraic) version of the quasiperiodicity
theorem of the classical theory.

Theorem 4.1.1. For |ab| < 1,

f (a,b) = an(n+1)/2 bn(n−1)/2 f (a(ab)n, b(ab)−n). (4.1.4)
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Proof 4.1.1: We leave the proof as an exercise which is no more difficult than the
proof given of the following theorem.

The following theorem is one of Ramanujan’s tools for proving many of his so-
called modular equations. It provides a formula for decomposing the theta function
f (a,b), (ab = modulus) into theta functions of different moduli. Note again the al-
gebraic nature of the formula. The proof consists of simple algebraic manipulations.

Theorem 4.1.2. Let |ab| < 1 and Un = an(n+1)/2bn(n−1)/2 and Vn = U−n, where n
is an integer. Then

f (U1,V1) =
n−1

∑
r=0

Ur f
(

Un+r

Ur
,
Vn−r

Ur

)
. (4.1.5)

Proof 4.1.2: On slight calculations, we can write the right side of (4.1.5) as

n−1

∑
r=0

∞

∑
m=−∞

U1−m2

r Um(m+1)/2
n+r V m(m−1)/2

n−r

or, which is the same as,

∞

∑
m=−∞

n−1

∑
r=0

aσ(r,m,n)bσ
′(r,m,n) =

∞

∑
−∞

ak(k+1)/2 bk(k−1)/2

= f (U1,V1),

where

σ(r,m,n) = (mn+ r)(mn+ r +1)/2

and

σ ′(r,m,n) = (nm+ r)(nm+ r−1)/2.

Thus the theorem is proved.

Exercise 4.1.5: Complete the details of the proof of (4.1.5).

Exercise 4.1.6: Prove (4.1.4).

Many additive properties of f (a,b) can be proved quite simply and elegantly from
the definitions in (4.1.1) and (4.1.2).

Theorem 4.1.3. If |q| < 1, then

φ(q)+φ(−q) = 2 φ(q4)

and

φ(q)−φ(−q) = 4q ψ(q8). (4.1.6)



162 4 Ramanujan’s Theories of Theta and Elliptic Functions

Proof 4.1.3: Exercise.

Exercise 4.1.7: Prove the addition results in (4.1.6) as well as the following ad-
dition results.

f (a,b)+ f (−a,−b) = 2 f (a3b,ab3)

f (a,b)− f (−a,−b) = 2a f
(

b
a
,

a
b

a4b4
)

.

Exercise 4.1.8: The following results for products and sums of products of theta
functions also follow directly from the definition. If ab = cd and |ab| < 1, then

f (a,b) f (c,d)+ f (−a,−b) f (−c,−d) = 2 f (ac,bd) f (ad,bc)

f (a,b) f (−c,−d)− f (−a,−b) f (−c,−d) = 2a f
(

b
c
,ac2d

)
f
(

b
d

,acd2
)

f (a,b) f (c,d) =
∞

∑
−∞

∞

∑
−∞

p
(m2+n2)

2 − (m+n)
2 amcn

f (a,b) f (−a,−b) = f (−a2,−b2)φ(−ab)

f 2(a,b)+ f 2(−a,−b) = 2 f (a2,b2)φ(ab)

f 2(a,b)− f 2(−a,−b) = 4a f
(

b
a
,a3b
)
ψ(a2b2).

Exercise 4.1.9: If |q| < 1, prove (special cases of Exercise 4.1.8)

φ 2(q)+φ 2(−q) = 2 φ 2(q2)

φ 2(q)−φ 2(−q) = 8q ψ2(q4)

φ 4(q)−φ 4(−q) = 16q φ 2(q2)ψ2(q4) = 16q ψ4(q2).

Remark 4.1.2: The last formula of Exercise 4.1.9 is the Ramanujan’s version of
Jacobi’s quartic identity:

θ 4
3 (q) = θ 4

2 (q)+θ 4
4 (q)

where

θ3(q) = φ(q), θ2(q) = φ(−q)
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and

θ4(q) = 2q
1
4 ψ(q2).

This identity of Jacobi plays a crucial role in proving the so called inversion theo-
rems in the classical theory of elliptic functions.

The following theorem is an important tool for Ramanujan in proving his
modular equations. Its variant is known as Schröter’s formula. Generalizations of
Schröter’s formula have also been found.

Theorem 4.1.4. If p = ab
cd , |ab| < 1, |cd| < 1, then

S =
1
2
{ f (a,b) f (c,d)+ f (−a,−b) f (−c,−d)}

=
∞

∑
n=−∞

(ad)n(n+1)/2(bc)n(n−1)/2 f (ac/pn,bd/pn)

D =
1
2
{ f (a,b) f (c,d)− f (−a,−b) f (−c,−d)}

=
∞

∑
n=−∞

a2n+1(ad)n(n−1)/2(bc)n(n+1)/2 f
(

c
apn ,

apn

c
abcd
)

.

Proof 4.1.4: The proof is elementary, and is left as an exercise to the readers as it
is quite mechanical.

Remark 4.1.3: Note that S and D above are in terms of infinite series of theta
functions.

Exercise 4.1.10: Complete the proof of the above theorem which is no different
from that of the special cases (p = 1) given in Exercise 4.1.8.

4.2 Ramanujan’s 1ψ1 Summation Formula and Multiplicative
Results for Theta Functions

The following 1ψ1-sum formula of Ramanujan (termed remarkable by G.H. Hardy)
contains as special cases the so called Jacobi’s Triple Product Identity and
Euler-Cauchy’s q-binomial Theorem which are very important in the classical de-
velopment of theories of theta and elliptic functions and number theory. Besides,
the 1ψ1-sum is still another very important tool for Ramanujan throughout the
development of his theories: For |q| < 1, and |βq| < |z| < |αq|−1, we have
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1+
∞

∑
n=1

(α−1;q2)n(−αqz)n

(βq2;q2)n
+

∞

∑
n=1

(β−1;q2)n(−βq/z)n

(αq2;q2)n

=
(−qz;q2)∞(−q/z;q2)∞(q2;q2)∞(αβq2;q2)∞

(−αqz;q2)∞(−βq/z;q2)∞(αq2;q2)∞(βq2;q2)∞
. (4.2.1)

Here, the notations used are the following:

(a)0 = (a;q)0 = 1;

(a)n = (a;q)n = (1−a)(1−aq)...(1−aqn−1)

for n (integer) ≥ 1 and

(a)∞ = (a;q)∞ = lim
n→∞

(a;q)n.

Before we sketch a proof of this, we will demonstrate many multiplicative results
for f (a,b), φ(q), ψ(q) and f (−q) as consequences of (4.2.1). With α = 0 = β and
qz = a, q/z = b, we have

f (a,b) = (−a;ab)∞(−b;ab)∞(ab;ab)∞

φ(q) =
(−q;−q)∞
(q;−q)∞

ψ(q) =
(q2;q2)∞
(q;q2)∞

f (−q) = (q;q)∞. (4.2.2)

The first of (4.2.2) is the famous Jacobi’s triple product identity.

Exercise 4.2.1: Recast, on defining (a)λ = (a)∞
(aqλ )∞

for any real λ , the left side of
(4.2.1) as

∞

∑
n=−∞

(α−1;q2)n(−αqz)n

(βq2;q2)n
or

∞

∑
n=−∞

(β−1;q2)n(−βq/z)n

(αq2;q2)n
.

Exercise 4.2.2: Prove the trivial identity (due to Euler)

(q;q2)∞ = (−q;q)−1
∞ .

Exercise 4.2.3: Prove that

(a)∞ =
n−1

∏
k=0

(aqk;qn)∞
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and

(a)∞ =
(a;

√
q)∞

(a
√

q;q)∞
, |q| < 1.

Exercise 4.2.4: Complete the derivations of (4.2.2).

Exercise 4.2.5: If |q| < 1, prove that

φ(q)ψ(q2) = ψ2(q)

and thus complete the proof of the third identity of Exercise 4.2.4 (Jacobi’s quartic
identity):

φ 4(q)−φ 4(−q) = 16q ψ4(q2). (4.2.3)

Exercise 4.2.6: Recast (4.2.1) into the form

∞

∑
n=−∞

(a)nzn

(b)n
=

(az)∞(q/(az))∞(q)∞(b/a)
(z)∞(b/(az))∞(b)∞(q/a)∞

.

Exercise 4.2.7: If |q| < 1, prove the following multiplicative results:

f (q)
f (−q)

=
ψ(q)
ψ(−q)

=
χ(q)
χ(−q)

=

√
φ(q)
φ(−q)

(i)

f 3(−q) = φ 2(−q)ψ(q) =
∞

∑
n=0

(−1)n(2n+1)qn(n+1)/2 (ii)

χ(q) =
f (q)

f (−q2)
=
[
φ(q)
ψ(−q)

] 1
3

=
φ(q)
f (q)

=
f (−q2)
ψ(−q)

(iii)

f 3(−q2) = φ(−q)ψ2(q), χ(q)χ(−q) = χ(−q2),

φ 2(−q2) = φ(q)φ(−q), ψ(q)ψ(−q) = ψ(q2)φ(−q2). (iv)

Putting β = 1 in (4.2.1) we get, after some trivial transformations, the famous Euler-
Cauchy q-binomial theorem:

∞

∑
n=0

(a)n

(q)n
tn =

(at)∞
(t)∞

. (4.2.4)

Exercise 4.2.8: Justify the terminology q-binomial theorem for (4.2.4).

Exercise 4.2.9: Show that

(q)∞(1−q)−x

(qx+1)∞
→ Γ(x+1) as q → 1.
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We repeat here for convenience the result of Exercise 4.1.8. For p = ab
cd ,

1
2
[ f (a,b) f (c,d)± f (−a,−b) f (−c,d)]

=

{
∑∞−∞(ad)n(n+1)/2(bc)n(n−1)/2 f (acpn,bd/pn)

a ∑∞−∞(ad)n(n−1)/2(bc)n(n+1)/2 f
(

c
apn , apn

c abcd
)

.

In the following section we sketch a proof of (4.2.1) as well as another very useful
quintuple product identity. For |q| < 1 and z 
= 0, we have

(qz;q2)∞(q/z;q2)∞(q2;q2)∞(z2;q4)∞(q4/z2;q4)∞

=
∞

∑
n=−∞

q3n2+n

[(
z
q

)3n

−
(

q
z

)3n+1
]

. (4.2.5)

Proofs of 1ψ1-sum and the quintuple product identity: [Proof of 1ψ1-sum by
K. Venkatachaliengar]: Put

g(z) =
(−qz;q2)∞(−q/z;q2)∞

(−αqz;q2)∞(−βq/z;q2)∞
.

We immediately have the functional relation

(1+αqz)g(z) = (β +qz)g(q2z).

The problem is one of finding constants cn such that

g(z) =
∞

∑
−∞

cnzn in |βq| < |z| < |αq|−1.

Assuming tentatively |αβ | < 1 and employing this in the functional relation we get
recurrence relations for cn and c−n, n = 1,2, ... which, on iteration give

cn =
(α−1;q2)n(−αq)nc0

(βq2;q2)n
, n = 1,2, ...

and

c−n =
(β−1;q2)n(−βq)nc0

(αq2;q2)n
, n = 1,2, ...

We have thus proved so far:

g(z) =
(−qz;q2)∞(−q/z;q2)∞

(−αqz;q2)∞(−βq/z;q2)∞

= c0

[

1+
∞

∑
n=1

(α−1;q2)n(−αqz)n

(βq2;q2)n
+

∞

∑
n=1

(β−1;q2)n(−βq/z)n

(αq2;q2)n

]

.
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Comparing this with (4.2.1) it remains only to prove

c0 =
(αq2;q2)∞(βq2;q2)∞
(q2;q2)∞(αβq2;q2)∞

.

Now, on the one hand, from our definition above of g(z) by means of infinite prod-
ucts we have

(1+αqz) g(z) =
(−qz;q2)∞(−q/z;q2)∞

(−αq3z;q2)∞(−βq/z;q2)∞
.

Thus

lim
z→−(αq)−1

(1+αqz) g(z) =
(α−1;q2)∞(αq2;q2)∞
(q2;q2)∞(αβq2;q2)∞

.

On the otherhand, we have from the infinite series expansion for g(z),

lim
z→−(αq)−1

{(1+αqz) g(z)} = lim
z→−(αq)−1

{

(1+αqz)
∞

∑
n=0

cnzn

}

+ lim
z→−(αq)−1

{

(1+αqz)
∞

∑
n=1

c−nz−n

}

= lim
z→−(αq)−1

{

(1+αqz)
∞

∑
0

cnzn

}

(since the second series is analytic at z = −(αq)−1)

= lim
n→∞

{
cn

(
− 1
αq

)n}

(by using Abel’s theorem)

=
(α−1;q2)∞
(βq2;q2)∞

c0

on using the expression for cn, n > 0 obtained above. Equating the two limits we
just obtained of (1 +αqz) g(z) as z → −(αq)−1, we have the required expression
for c0. The condition |αβ | < 1 can now be removed by analytic continuation.

Exercise 4.2.10: Show in detail:

(1+αqz) g(z) = (β +qz) g(q2z).

Exercise 4.2.11: Show in detail

cn =
(α−1;q2)n(−αq)nc0

(βq2;q2)n
, n = 1,2, ...
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and

c−n =
(β−1;q2)n(−βq)nc0

(αq2;q2)n
, n = 1,2, ...

Exercise 4.2.12: Explain the need of the tentative assumption |αβ | < 1 for the
proof.

Exercise 4.2.13: Putting α = β = −1 and z = 1 in (4.2.1) show that:

1+
∞

∑
1

r2(n)qn = 1+4
∞

∑
m=0

∞

∑
k=1

(−1)mqk(2m+1)

where r2(n) denotes the number of representations of n as a sum of two squares.
Note that

φ 2(q) = 1+
∞

∑
n=1

r2(n)qn =
∞

∑
−∞

∞

∑
−∞

qm2+n2
.

Exercise 4.2.14: If di(n) stands for the number of positive divisors of n that are
congruent to i(mod 4) then deduce from Exercise 4.2.13 the Jacobi’s two square
theorem,

r2(n) = 4[d1(n)−d3(n)].

(Separate m = 2n and m = 2n+1 terms and then compare coefficients of qn).

Exercise 4.2.15: By putting α = β = −1 in the 1ψ1-sum (4.2.1) and manipulat-
ing the series show that:

(−qz;q2)∞(−q/z;q2)∞(q2;q2)2
∞

(qz;q2)∞(q/z;q2)∞(−q2;q2)2
∞

=
1+qz
1−qz

−2
∞

∑
1

q3nzn

1+q2n +2
∞

∑
1

qnz−n

1+q2n .

Exercise 4.2.16: Dividing the result of Exercise 4.2.15 by

1+qz
1−qz

and then letting z to −q−1, obtain

φ 4(q) = 1+8
∞

∑
1

qn

(1+(−q)n)2 .

Exercise 4.2.17: Show that the result of Exercise 4.2.16 is equivalent to Jacobi’s
four square theorem: r4(n) = 8∑d where r4(n) stands for the number of represen-
tations of the positive integer n as sum of 4 squares and the summation is taken over
all positive divisors d of n such that 4 is not divided by d.
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Exercise 4.2.18: (A generalization of Jacobi’s theorem for power series of (q)3
∞

as a limiting case of 1ψ1-sum). If |q|, |α|, |β | are each < 1, show that

(q)3
∞(αβ )∞

(α)2
∞(β )2

∞
=

∞

∑
0

{
(k +1)(q/α)k αk

(β )k+1
+

k(q/β )k β k

(α)k+1

}
.

Proof of the quintuple product identity (4.2.5): Left side of (4.2.5) is nothing
but f (−qz,−q/z) f (−z2,−q4/z2) but for an additional factor (q4;q4)∞. Now,

f (−qz,−q/z) f (−z2,−q4/z2)

=
∞

∑
−∞

(−1)kqk2
zk

∞

∑
−∞

(−1) jq2 j( j−1)z2 j

=
∞

∑
−∞

∞

∑
−∞

(−1)k+ jqk2+2 j( j−1)zk+2 j.

On the other hand, denoting by g(z) the left side of (4.2.5), or, which is the same as,
putting

(q4;q4)∞ g(z) = f (−qz,−q/z) f (−z2,−q4/z2)

we have

g(z) = −z2 g
(

1
z

)
and g(z) = qz3 g(q2z).

These imply, on seeking

g(z) =
∞

∑
−∞

cnzn

c2 = −c0, c1 = 0, cn = q2n−5cn−3

and hence

c3n = q3n2−2nc0, c3n+1 = 0, c3n+2 = −q3n2+2nc0.

We thus have

g(z) = c0

[
∞

∑
−∞

q3n2−2nz3n −
∞

∑
−∞

q3n2+2nz3n+2

]

.

Equating this with the series already obtained in the beginning of the proof and
comparing the constant terms we get

c0(q4;q4)∞ =
∞

∑
j=−∞

(−1) j(q4)3 j( j−1)/2.

The series on the right side being equal to (q4;q4)∞, we have c0 = 1. This completes
the proof of (4.2.5).
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4.3 Modular Equations

We need the following Lambert series developments for later use.

φ(q)φ(q3) = 1+2
∞

∑
m=0

[
q3m+1

1− (−1)mq3m+1 − q3m+2

1+(−1)mq3m+2

]
(4.3.1)

and

q ψ(q2)ψ(q6) =
∞

∑
n=1

[
q2n−1 −q5(2n−1)

1−q6(2n−1)

]

. (4.3.2)

These are obtainable from the 1ψ1-sum. Indeed putting α = β = −1, q =
√

ab,
z =
√

a/b and α = ab = q, β = (ab)−1, z = −a−2 in (4.2.1) we respectively get

f (a,b)
f (−a,−b)

φ 2(−ab) = 1+2
∞

∑
m=0

(−1)m

×
[

am+1bm

1−am+1bm +
ambm+1

1−ambm+1

]
(4.3.3)

and

a
f (−b/a,−a3b)

f (−a2,−b2)
ψ2(ab) =

∞

∑
n=1

a2n−1 −b2n−1

1− (ab)2n−1 . (4.3.4)

Putting a = q, b = −q2 in the former identity and a = q, b = q5 in the latter we get
the desired identities. From the above we have

∞

∑
−∞

∞

∑
−∞

qm2+mn+n2
= φ(q) φ(q3)+4q ψ(q2)ψ(q6)

= 1+6
∞

∑
n=0

[
q3n+1

1−q3n+1 − q3n+2

1−q3n+2

]
(4.3.5)

in which the first equality is yet to be established. But this is easily done. For,

∞

∑
−∞

∞

∑
−∞

qm2+mn+n2
=

[

∑ ∑
m: even

+∑ ∑
m: odd

]

qm2+mn+n2

=∑
∞

∑
−∞

q4k2+2kn+n2
+∑

∞

∑
−∞

q4k2+2kn+n2+4k+n+1

=

(
∞

∑
l=−∞

ql2

)(
∞

∑
k=−∞

q3k2

)

+q
∞

∑
l=−∞

(q2)l(l+1)/2
∞

∑
k=−∞

(q6)k(k+1)/2, l = k +n

= φ(q) φ(q3)+q ψ(q2) ψ(q6)

as required.
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Exercise 4.3.1: Fill in all the details in the above derivations.

Exercise 4.3.2: Prove the following modular equation of degree 3.

φ(q) φ(q3)−φ(−q) φ(−q3) = 4q ψ(q2) ψ(q6). (4.3.6)

Dividing both sides of the quintuple product identity by 1− (q/z) and then letting z
to q and then changing q to q

1
2 we get

∞

∑
−∞

(6n+1)q(3n2+n)/2 = φ 2(−q) f (−q). (4.3.7)

This is indeed equivalent to the Lambert series development

φ 3(q)
φ(q3)

= 1+6
∞

∑
0

[
(−1)nq3n+1

1+(−q)3n+1 +
(−1)nq3n+2

1+(−q)3n+2

]
. (4.3.8)

We need only to realize that

∞

∑
−∞

(6n+1)q(3n2+n)/2 =
d
dz

(
∞

∑
−∞

q(3n2+n)/2z6n+1

)

at z = 1

=
d
dz

{
z f (q2z6,q/z6)

}
at z = 1

= f (q2,q)
d
dz

ln
{

z f (q2z6,q/z6)
}

at z = 1

= f (q,q2)

[

1+6
∞

∑
0

[
(−1)nq3n+1

1+(−q)3n+1 +
(−1)nq3n+2

1+(−q)3n+2

]]

.

We also need the fact that

φ 2(−q) f (−q) =
φ 3(q)
φ(q3)

f (q,q2),

on employing the triple product identity.

Exercise 4.3.3: Fill in the missing details in the derivation of the Lambert series
above for φ 3(q)/φ(q3). Dividing both sides of the quintuple product identity (4.2.5)
by (1− z2) and then letting z → 1 we get similarly,

ψ3(q)
ψ(q3)

= 1+3
∞

∑
0

q6n+1

1−q6n+1 −3
∞

∑
0

q6n+5

1−q6n+5 . (4.3.9)

Exercise 4.3.4: Prove the following modular identities of degree 3.

2
ψ3(q)
ψ(q3)

=
φ(q)
φ(q3)

+
φ 3(−q2)
φ(−q6)

(4.3.10)

and

φ 3(q)
φ(q3)

= 3 φ(q) φ(q3)−2
φ 3(−q2)
φ(−q6)

. (4.3.11)
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4.4 Inversion Formulas and Evaluations

Definition 4.4.1. Gauss’ hypergeometric function: If 0 ≤ x < 1, define

2F1

(
1
2
,

1
2

;1;x
)

=
∞

∑
0

( 1
2

)2
n xn

(n!)2

where
(a)0 = 1, (a)n = a(a+1)...(a+n−1), a 
= 0 n = 1,2,3, ...

Theorem 4.4.1. Hypergeometric transformation: The function 2F1 has the
property

(1+ x) 2F1

(
1
2
,

1
2

;1;x2
)

= 2F1

(
1
2
,

1
2

;1;
4x

(1+ x)2

)
(4.4.1)

or, which is the same as,

(1+ x) 2F1

(
1
2
,

1
2

;1;x2
)

= 2F1

(
1
2
,

1
2

;1;1− (1− x)2

(1+ x)2

)
. (4.4.2)

Proof 4.4.1: For a proof, one can show that each side of (4.4.1) and (4.4.2) sat-
isfies the same second order differential equation and the same set of initial condi-
tions. Details are left as an exercise.

Exercise 4.4.1: Complete the proofs of (4.4.1) and (4.4.2).

Exercise 4.4.2: Prove

2F1

(
1
2
,

1
2

;1;
φ 4(−q)
φ 4(q)

)

=
φ 2(q)

2 φ 2(q2) 2F1

(
1
2
,

1
2

;1;
φ 4(−q2)
φ 4(q2)

)
. (4.4.3)

Exercise 4.4.3: Prove the transformation

2F1

(
1
2
,

1
2

;1;1− φ
4(−q)
φ 4(q)

)

=
φ 2(q)
φ 2(q2) 2F1

(
1
2
,

1
2

;1;1− φ
4(−q2)
φ 4(q2)

)
. (4.4.4)
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Theorem 4.4.2. Evaluation of 2F1(·) and of F(·) defined below by (4.4.5), inver-
sion of mappings: Let

t =
φ 2(−q)
φ 2(q)

and x = 1− φ
4(−q)
φ 4(q)

.

If

F(·) = exp

{

−π 2F1
( 1

2 , 1
2 ;1;1− .

)

2F1
( 1

2 , 1
2 ;1; .

)

}

, (4.4.5)

then

F
(

1− φ
4(−q)
φ 4(q)

)
= q. (4.4.6)

Further,

2F1

(
1
2
,

1
2

;1;1− φ
4(−q)
φ 4(q)

)
= φ 2(q). (4.4.7)

Proof 4.4.2: From (4.4.3) and (4.4.4) we get

F
[

1− φ
4(−q)
φ 4(q)

]
=
{

F
[

1− φ
4(−qn)
φ 4(qn)

]} 1
n

(4.4.8)

for n = 2m, m = 1,2, ... Further, it is not hard to show that

F(x) ∼ x
10

as x → 0+ .

Using this and the Jacobi’s quartic identity (of Exercise 4.1.9) in (4.4.8) and then
letting n → ∞ we get (4.4.6). Further, iterating (4.4.4) and letting m → ∞ we get
(4.4.7).

Exercise 4.4.4: Fill in the details in the proof of (4.4.6) and (4.4.7).

Theorem 4.4.3. (Evaluation of φ 2(·), inversion of q = F(x)): We have

x = 1− φ
4(−F(x))
φ 4(F(x))

(4.4.9)

and

φ 2(F(x)) = 2F1

(
1
2
,

1
2

;1;x
)

. (4.4.10)
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Proof 4.4.3: Given 0 ≤ x < 1, define q by q = F(x) where F(x) is as in (4.4.5).
From this and (4.4.6) we have

2F1

(
1
2 , 1

2 ;1; φ
4(−q)
φ4(q)

)

2F1

(
1
2 , 1

2 ;1;1− φ4(−q)
φ4(q)

) = 2F1
( 1

2 , 1
2 ;1;1− x

)

2F1
( 1

2 , 1
2 ;1;x

) . (4.4.11)

Suppose now that

2F1

(
1
2
,

1
2

;1;1− φ
4(−q)
φ 4(q)

)
≤ 2F1

(
1
2
,

1
2

;1;1− x
)

. (4.4.12)

Then this and (4.4.11) imply that

2F1

(
1
2
,

1
2

;1;
φ 4(−q)
φ 4(q)

)
≤ 2F1

(
1
2
,

1
2

;1;1− x
)

.

This in turn, by monotonicity of 2F1
( 1

2 , 1
2 ;1;x

)
implies that

φ 4(−q)
φ 4(q)

≤ 1− x or x ≤ 1− φ
4(−q)
φ 4(q)

which implies that

2F1

(
1
2
,

1
2

;1;x
)
≤ 2F1

(
1
2
,

1
2

;1;1− φ
4(−q)
φ 4(q)

)
. (4.4.13)

Now, (4.4.12) and (4.4.13) imply equality of both and hence

x = 1− φ
4(−q)
φ 4(q)

. (4.4.14)

This proves (4.4.9) since we started with q = F(x). Using (4.4.14) in (4.4.7) we have
(4.4.10).

Remark 4.4.1: Given q , we have just evaluated φ(q) as φ(q) =
√

z where

z = 2F1

(
1
2
,

1
2

;1;x
)

with

x = 1− φ
4(−q)
φ 4(q)

.

Also, given x we have evaluated φ(q) as φ(q) =
√

z with q = F(x), where

z = 2F1

(
1
2
,

1
2
, ;1;x

)
.

Similarly, one could evaluate φ(·) and ψ(·) and f (·) at other arguments such
as ±q,±q2, ... in terms of x and z. Ramanujan gives scores of such evaluations
employing additive and multiplicative theorems, hypergeometric transforms for
2F1
( 1

2 , 1
2 ;1;x

)
and the 1ψ1-sum and possibly by other means.
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4.5 Modular Identities (Classical Theory)

Definition 4.5.1. A modular identity (equation) of degree n is an explicit (alge-
braic) relation between the moduli

√
α and

√
β and the multiplier m implied by a

given relation

m = 2F1
( 1

2 , 1
2 ;1;α

)

2F1
( 1

2 , 1
2 ;1;β

)

= n 2F1
( 1

2 , 1
2 ;1;1−α

)

2F1
( 1

2 , 1
2 ;1;1−β

) . (4.5.1)

Or, equivalently, by virtue of the results of the previous section, a modular equation
of degree n is an identity involving theta functions at arguments q and qn. β in
(4.5.1) is said to be of degree n (over α).

Ramanujan employed the basic multiplicative and additive results of the theta
functions f (a,b), φ(q), ψ(q), f (−q), the triple product identity and more gener-
ally his 1ψ1-sum, the quintuple product identity, Schröter’s type formulas, Lambert
series representations and other properties and techniques to generate identities re-
lating to φ(t), ψ(t) and f (t) at t = q, qn. Then he used his evaluations of these
functions at various arguments as algebraic functions of q, α(= x) and

z = 2F1

(
1
2
,

1
2

;1;x
)

.

For example we give the following theorem:

Theorem 4.5.1. The following modular equations of degree 3 hold: If β is of de-
gree 3 over α , that is if

m = 2F1
( 1

2 , 1
2 ;1;α

)

2F1
( 1

2 , 1
2 ;1;β

) = 3 2F1
( 1

2 , 1
2 ;1;1−α

)

2F1
( 1

2 , 1
2 ;1;1−β

) , (4.5.2)

then

(i) (αβ )
1
4 +[(1−α)(1−β )]

1
4 = 1

(ii) (α3/β )
1
8 − [(1−α)3/(1−β )]

1
8 = 1

= [(1−β )3/(1−α)]
1
8 − [β 3/α]

1
8 (4.5.3)

(iii) m = 1+2(β 3/α)
1
8 , (3/m) = 1+2[(1−α)3/(1−β )]

1
8 (4.5.4)

and

(iv) m2
[
(α3/β )

1
8 −α

]
=
[
(α3/β )

1
8 −β

]
. (4.5.5)
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Proof 4.5.1: We have

φ 2(q) = 2F1

(
1
2
,

1
2

;1;α
)

with

q = exp

(

−π 2F1
( 1

2 , 1
2 ;1;1−α

)

2F1
( 1

2 , 1
2 ;1;α

)

)

.

So,

q3 = exp

(

−3π 2F1
( 1

2 , 1
2 ;1;1−α

)

2F1
( 1

2 , 1
2 ;1;α

)

)

= exp

(

−π 2F1
( 1

2 , 1
2 ;1;1−β

)

2F1
( 1

2 , 1
2 ;1;β

)

)

and hence

φ 2(q3) = 2F1

(
1
2
,

1
2

;1;β
)

.

Using standard evaluations namely

φ(q) =
[

2F1

(
1
2
,

1
2

;1;α
)] 1

2
=
√

z1, say,

φ(q3) =
[

2F1

(
1
2
,

1
2

;1;β
)] 1

2
=
√

z3, say

φ(−q) = (1−α)
1
4
√

z1, φ(−q3) = (1−β )
1
4
√

z3

ψ(q2) =
1
2
√

z1(α/q)
1
4 , ψ(q6) =

1
2
√

z3(β/q3)
1
4 (4.5.6)

in the identity

4q ψ(q2) ψ(q6) = φ(q) φ(q3)−φ(−q) φ(−q3)

obtained in an earlier section we have
√

z1z3(αβ )
1
4 =

√
z1z3 −

√
z1z3(1−α)

1
4 (1−β )

1
4

which is nothing but (4.5.2). Similarly the identities

2
ψ3(q)
ψ(q3)

=
φ(q)
φ(q3)

+
φ 3(−q2)
φ(−q6)
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and

φ 3(q)
φ(q3)

= 3 φ(q) φ(q3)−2
φ 3(−q2)
φ(−q6)

respectively give the first of (4.5.3) and the first of (4.5.4). The other parts of (4.5.3)
and (4.5.4) follow similarly. Now, (4.5.3) and (4.5.4) give

α =
(m−1)(3+m)3

16m3 and β =
(m−1)3(3+m)

16m
. (4.5.7)

Employing (4.5.7) we get (4.5.5).

Exercise 4.5.1: Work out the details in the proof of the last theorem.

4.6 Ramanujan’s Theory of Cubic Theta Functions

4.6.1 The cubic theta functions

Definition 4.6.1. We define the cubic theta functions by

a(q) =
∞

∑
−∞

∞

∑
−∞

qm2+mn+n2
(4.6.1)

b(q) =
∞

∑
−∞

∞

∑
−∞

wm−nqm2+mn+n2
, w = e2πi/3 (4.6.2)

and

c(q) =
∞

∑
−∞

∞

∑
−∞

q(m+ 1
3 )

2
+(m+ 1

3 )(n+ 1
3 )+(n+ 1

3 )
2
, |q| < 1. (4.6.3)

The following lemma tells that a(q) can be expressed in terms of the classical
theta functions and that b(q) and c(q) are expressible in terms of a(q) itself.

Lemma 4.6.1: We have, with |q| < 1,

a(q) = φ(q) φ(q3)+4q ψ(q2) ψ(q6) (4.6.4)

b(q) =
1
2
[3 a(q3)−a(q)] (4.6.5)

and

c(q) =
1
2
{a(q

1
3 )−a(q)}. (4.6.6)
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Proof 4.6.1: Identity (4.6.4), which is the same as

∞

∑
−∞

∞

∑
−∞

qm2+mn+n2
= φ(q) φ(q3)+4q ψ(q2) ψ(q6)

has already been proved in Section 4.3. The remaining identities follow by similar
series manipulations. We may regard (4.6.7) below as the cubic analogue of the
Jacobi’s quartic identity of Section 4.1.

Theorem 4.6.1. (Cubic modular identity of J.M. Borwein and P.B. Borwein): We
have

a3(q) = b3(q)+ c3(q). (4.6.7)

Proof 4.6.2: The facts of the above lemma that a(q) is expressible in terms of
the ordinary theta functions φ(·) and ψ(·) and that b(q) and c(q) are expressible in
terms of a(·) along with the evaluations in Section 4.5 and parametrizations (4.6.7),
we have

a(q) =
√

z1z3

(
1+(αβ )

1
4

)

=
√

z1z3

(
1+

(m−1)(3+m)
4m

)

=
√

z1z3

(
m2 +6m−3

4m

)
,

and similarly

b(q) =
1
2
√

z1z3

(
(3−m)(9−m2)

1
3

2m
2
3

)

and

c(q) =
1
2
√

z1z3

(
3(m2 −1)

1
3 (m+1)

2m

)

.

These immediately yield (4.6.7).

Exercise 4.6.1: Work out the details of proof of the lemma above.

Exercise 4.6.2: Work out the details of proof of the theorem above.

Remark 4.6.1: Borwein’s proof employs theory of modular forms on the group
generated by the transformations t → 1

t and t → t + i
√

3. They later gave a direct
proof, different from the proof given above.
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Theorem 4.6.2. (Ramanujan: Cubic hypergeometric transformation): The hyper-
geometric function

2F1

(
1
3
,

2
3

;1;x
)

=
∞

∑
0

( 1
3

)
n

( 2
3

)
n xn

(n!)2

satisfies the relation

2F1

(
1
3
,

2
3

;1;1−
(

1− x
1+2x

)3
)

= (1+2x) 2F1

(
1
3
,

2
3

;1;x3
)

. (4.6.8)

Proof 4.6.3: Each side of (4.6.8) satisfies the differential equation

x(1− x)(1+ x+ x2)(1+2x)2y′′

− (1+2x)[(4x3 −1)(x+1)+3x]y′ −2(1− x)2y = 0.

This differential equation has a regular singular point at x = 0 and the roots of the
associated indicial equation consists of a double zero at x = 0. Thus to verify that
(4.6.8) holds, we must show that the values at x = 0 of the functions and their deriv-
atives on each side are equal. But this is easily seen to be true.

Exercise 4.6.3: Work out the details of the proof of the above theorem.

4.6.2 Inversion formulas and evaluations (cubic theory)

The following theorem gives the cubic analogue of the inversion theorems in the
classical case.

Theorem 4.6.3. Given 0 < q < 1, define

x = 1− b3(q)
a3(q)

=
c3(q)
a3(q)

. (4.6.9)

Then we have the inversion

q = exp

{

− 2π√
3

2F1
( 1

3 , 2
3 ;1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

)

}

. (4.6.10)

Similarly, given 0 < x < 1, define

q = exp

{

− 2π√
3

2F1
( 1

3 , 2
3 ;1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

)

}

. (4.6.11)
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Then

x = 1− b3(q)
a3(q)

=
c3(q)
a3(q)

. (4.6.12)

In both cases we have the evaluation

a(q) = 2F1

(
1
3
,

2
3

;1;x
)

,(= z = z(x)), (4.6.13)

where, given x we have q as in (4.6.11) and given q we have x as in (4.6.9).

Proof 4.6.4: Putting

x =
a(q)−b(q)

a(q)+2 b(q)

in (4.6.8) and using the lemma of Section 4.6 we have (with a free use of the cubic
modular identity a3 = b3 + c3 (4.6.7) throughout).

2F1

(
1
3
,

2
3

;1;
c3(q)
a3(q)

)

=
a(q)
a(q3) 2F1

(
1
3
,

2
3

;1;
c3(q3)
a3(q3)

)
.

Iterating this we have

2F1

(
1
3
,

2
3

;1;
c3(q)
a3(q)

)

=
a(q)
a(qn) 2F1

(
1
3
,

2
3

;1;
c3(qn)
a3(qn)

)
(4.6.14)

n = 3m, m = 1,2, .... Letting m → ∞ in this we get

a(q) = 2F1

(
1
3
,

2
3

;1;
b3(q)
c3(q)

)
,

incidently proving (4.6.13) with x as in (4.6.9), given q. Similarly, putting x = b(q)
a(q)

in (4.6.8) and using the lemma of Section 4.6 we get

2F1

(
1
3
,

2
3

;1;
b3(q)
a3(q)

)

=
a(q)

n a(qn) 2F1

(
1
3
,

1
3

;1;
b3(qn)
a3(qn)

)
(4.6.15)

with n = 3m, m = 1,2, .... Dividing (4.6.15) by (4.6.14) we have
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F
(

1− b3(q)
a3(q)

)
=
[

F
(

c3(qn)
a3(qn)

)] 1
n

, (4.6.16)

where F(x) is defined by

F(x) = exp

{

− 2π√
3

2F1
( 1

3 , 2
3 ,1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

)

}

. (4.6.17)

Letting n → ∞ in (4.6.16) and using the fact that F(x) ∼ x
27 as x → 0+, we get

F
(

c3(q)
a3(q)

)
= F
(

1− b3(q)
c3(q)

)
= q (4.6.18)

proving (4.6.10). For the other part of the theorem, given x put q = F(x) where F(x)
is as in (4.6.17). From this and (4.6.18) we have

2F1

(
1
3 , 2

3 ;1; b3(q)
a3(q)

)

2F1

(
1
3 , 2

3 ;1;1− b3(q)
a3(q)

) = 2F1
( 1

3 , 2
3 ;1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

) . (4.6.19)

Suppose now,

2F1

(
1
3
,

2
3

;1;1− b3(q)
a3(q)

)
≤ 2F1

(
1
3
,

1
3

;1;x
)

. (4.6.20)

This in (4.6.19) gives

2F1

(
1
3
,

2
3

;1;
b3(q)
a3(q)

)
≤ 2F1

(
1
3
,

2
3

;1;1− x
)

(4.6.21)

which implies, by monotonicity of 2F1, that

b3(q)
a3(q)

≤ 1− x or x ≤ 1− b3(q)
a3(q)

.

This in turn gives

2F1

(
1
3
,

1
3

;1;x
)
≤ 2F1

(
1
3
,

2
3

;1;1− b3(q)
a3(q)

)
. (4.6.22)

From (4.6.20) and (4.6.21) we have equality in each of (4.6.20) and (4.6.21) and
hence (4.6.4) holds. Now (4.6.13) follows from (4.6.12) on applying the first part of
the theorem.

We may regard (4.6.13) as evaluations of a(·) and z(·) as follows:

a(F(x)) = z(x) given x

and

z
(

1− b3(q)
a3(q)

)
= a(q), given q. (4.6.23)
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4.6.3 Triplication and trimediation formulas

The following theorem tells us how a given relation among x,q and z gets trans-
lated if we replace q by q3 or q

1
3 . The theorem will be useful in obtaining further

evaluations.

Theorem 4.6.4. Let q, x and z be related as in Theorem 4.6.3. Suppose we are
given a relation among x,q and z:

g(x,q,z) = 0. (4.6.24)

Then the following relations also hold:

g

⎡

⎣

{
1− (1− x)

1
3

1+2(1− x)
1
3

}3

,q3,
1
3

{
1+2(1− x)

1
3

}
z

⎤

⎦= 0 (4.6.25)

and

g

⎡

⎣1−
{

1− x
1
3

1+2x
1
3

}3

,q
1
3 ,
(

1+2x
1
3

)
z

⎤

⎦= 0. (4.6.26)

Proof 4.6.5: Putting

x′ = 1−
(

1− x
1
3

1+2x
1
3

)3

, (4.6.27)

we have

x
1
3 =

1− (1− x′)
1
3

1+2(1− x′)
1
3
. (4.6.28)

From the cubic hypergeometric transformation theorem of Section 4.6 we have, on
substituting the above and simplifying,

z′ = z(x′) = (1+2x
1
3 )z(x) = (1+2x

1
3 )z (4.6.29)

and

q′ = q(x′) = q
1
3 (x) = q

1
3 . (4.6.30)

Now, suppose (4.6.24) holds. Then, on using (4.6.28), (4.6.29) and (4.6.30) in
(4.6.24) we get (4.6.25) with x′,q′ and z′ in place of x,q and z. We merely drop
primes to get (4.6.29). Similarly, starting with (4.6.24) with x′,q′ and z′ in place of
x,q and z we get (4.6.26) on using (4.6.27), (4.6.29) and (4.6.30).
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Corollary 4.6.1: With x,q and z as in the Theorem 4.6.3 we have

b(q) = (1− x)
1
3 z, c(q) = x

1
3 z (4.6.31)

(in addition to a(q) = z of the Theorem 4.6.3).

Proof 4.6.6: By Lemma 4.6.1 and the Theorem 4.6.3 and Theorem 4.6.4 we have

b(q) =
1
2

{
3

1
3
(1+2(1− x)

1
3 )z− z

}
= (1− x)

1
3 z

and similarly

c(q) =
1
2

{
(1+2x

1
3 )z− z

}
= x

1
3 z.

Exercise 4.6.4: Complete the details of proofs of the theorem and the corollary.

4.6.4 Further evaluations

Theorem 4.6.5. For any 0 ≤ q < 1, we have

q f 24(−q) =
1
27

b9(q) c3(q). (4.6.32)

Proof 4.6.7: We will start with a known evaluation in classical theory namely,

q f 24(−q) =
1
16

z12
1 α(1−α)4 (4.6.33)

where

z1 = 2F1

(
1
2
,

1
2

;1;α
)

with

α = 1− φ
4(−q)
φ 4(q)

.

We also know that

a(q) =
√

z1z3
(m2 +6m−3)

4m
,

b(q) =
√

z1z3
(3−m)(9−m2)

1
3

4m
2
3

,
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and

c(q) =
√

z1z3
3(m+1)(m2 −1)

1
3

4m

with

z3 = 2F1

(
1
2
,

1
2

;1;β
)

,

β being the modulus of order 3 over α in the classical theory, and with m = z1/z3.
Further, we know that

α =
(m−1)(3+m)3

16m3 , β =
(m−1)3(3+m)

16m
.

With these, we get,

b(q) = z1m
1
2α

1
8 (1−α)

1
2 /
[
2

1
3 β

1
24 (1−β )

1
6

]

and

c(q) = 3z1β
1
8 (1−β )

1
2 /
[
2

1
3 m

3
2α

1
24 (1−α)

1
6

]

whence the right side of (4.6.33) becomes 1
16 z12

1 α(1−α)4 which is the right side of
(4.6.33) also. Hence the proof of (4.6.33) is complete.

Corollary 4.6.2: Given 0 ≤ q < 1, we have

q
1
24 f (−q) =

√
z3−

1
8 x

1
24 (1− x)

1
8 (4.6.34)

where x is as in the corollary of Section 4.6.3

Proof 4.6.8: From Theorem 4.6.5 we have

q
1
24 f (−q) = 3−

1
8 b

3
8 (q) c

1
8 (q).

On using the corollary of Section 4.6.3 this becomes

q
1
24 f (−q) = 3−

1
8 (1− x)

1
8 z

3
8 x

1
24 z

1
8

which reduces to the required result (4.6.34).

Corollary 4.6.3:
q

1
8 f (−q3) =

√
z3−

3
8 x

1
8 (1− x)

1
24 (4.6.35)

where x,q and z are as in the corollary of Section 4.6.3.

Proof 4.6.9: Changing q to q3 in Corollary 4.6.2 and using the triplication for-
mula we have the required result.
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4.6.5 Evaluations of Ramanujan-eisenstein series (L, M, N
or P, Q, R)

Definition 4.6.2. Following series are of importance in number theory and theory
of elliptic functions.

P(q) = L(q) = 1−24
∞

∑
1

nqn

1−qn

Q(q) = M(q) = 1+240
∞

∑
1

n3qn

1−qn

R(q) = N(q) = 1−504
∞

∑
1

n5qn

1−qn .

Theorem 4.6.6. If q, x and z are related by

q = exp

(

− 2π√
3

2F1
( 1

3 , 2
3 ;1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

)

)

or, equivalently

x = 1− b3(q)
a3(q)

=
c3(q)
a3(q)

and

z = 2F1

(
1
3
,

2
3

;1;x
)

,

then

L(q) = (1−4x)z2 +12x(1− x)z
dz
dx

M(q) = z4(1+8x)

N(q) = z6(1−20x−8x2)

M(q3) = z4
(

1− 8
9

x
)

N(q3) = z6
(

1− 4
3

x+
8
27

x2
)

.

Proof 4.6.10: Since f (−q) =∏∞n=1(1−qn) we have

L(q) = q
d

dq
ln
(
q f 24(−q)

)
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= q
d
dx

ln
(

1
27

z12x(1− x)3
)

dx
dq

(on using a result proved earlier). This, along with a known result from the theory
of hypergeometric series, namely,

2F1

(
1
3
,

2
3

;1;x2
)

d
dx

[
2π√

3
2F1
( 1

3 , 2
3 ;1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

)

]

= − 1
x(1− x)

gives the required result for L. (First obtain from the hypergeometric result dq
dx =

− 1
x(1−x)z2 .). The hypergeometric differential equation for

z = 2F1

(
1
3
,

2
3

;1;x
)

namely

2
9

z =
d
dx

{
x(1− x)

dz
dx

}
,

the Ramanujan’s differential equation

q
dL
dq

=
1
12

{L2 −M}

and the results just obtained, give the required evaluation for M(q). If we use the
Ramanujan differential equation

q
dM
dq

=
1

12
{LM−N}

and proceed similarly we get the result for N(q). The evaluations for M(q3) and
N(q3) are now obtained on applying the triplication formulas.

Exercise 4.6.5: Fill in the details in the proof above.

4.6.6 The cubic analogue of the Jacobian elliptic functions

The familiar Jacobian elliptic function φ = φ(θ) can be defined by means of the
integral

θ =
∫ φ

0

2F1
( 1

2 , 1
2 ; 1

2 ;xsin2 t
)

2F1
( 1

2 , 1
2 ; 1

2 ;x
) dt
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0 ≤ φ ≤ π
2 , 0 ≤ x < 1, or equivalently

θ =
1

2F1
( 1

2 , 1
2 ;1;x

)
∫ φ

0

dt
√

1− xsin2 t
.

In analogy with this we have the cubic analogue of the Jacobian elliptic function
given by Ramanujan by means of the following theorem:

Theorem 4.6.7. (Ramanujan): If 0 ≤ φ ≤ π
2 , 0 < x ≤ 1 and

θ =
∫ φ

0

2F1
( 1

3 , 1
3 ; 1

2 ;xsin2 t
)

2F1
( 1

3 , 1
3 ;1;x

) dt

or, which is the same as

θ =
1

2F1
( 1

3 , 2
3 ;1;x

)
∫ φ

0

cos
(

sin−1(
√

xsin t)
3

)

√
1− xsin2 t

dt

then

φ = θ +3
∞

∑
n=1

qn sin2nθ
n(1+qn +q2n)

,

0 ≤ θ ≤ π
2 , where

q = exp

[

− 2π√
3

2F1
( 1

3 , 2
3 ;1;1− x

)

2F1
( 1

3 , 2
3 ;1;x

)

]

.

Proof 4.6.11: Refer to the paper: B.C. Berndt, S. Bhargava, F.G. Garvan,
Ramanujan’s Theories of Elliptic Functions to Alternative Bases, Transactions of
the American Mathematical Society, 347 (1995), 4163–4244.

TEST
on Ramanujan’s work

(Time : 1 hour)

4.1. If f (a,b) = ∑∞−∞ ak(k+1)/2bk(k−1)/2, |ab| < 1, then show:

(i) f (1,a) = 2
∞

∑
0

ak(k+1)/2, |a| < 1,

(ii) f (1,a) = 2 f (a,a3), |a| < 1.
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4.2. If φ(q) = ∑∞−∞ qn2
and ψ(q) = ∑∞0 qk(k+1)/2 with |q| < 1, then show that

φ 2(q)−φ 2(−q) = 8q ψ(q8) φ(q4).

4.3. Given that f (a,b) = (−a,ab)∞(−b,ab)∞(ab,ab)∞, show that

φ(−q) = (q;q)∞/(−q;q)∞, |q| < 1

and

ψ(q) = (q2;q2)∞/(q;q2)∞.

Hint: Prove and use

(q;q2)∞ = (−q;q)−1
∞

where

φ(q) = f (q,q) and ψ(q) =
1
2

f (1,q).

4.4. Given that

∞

∑
−∞

(a)nzn

(b)n
=

(az)∞
( q

az

)
∞ (q)∞

( b
a

)
∞

(z)∞
( b

az

)
∞ (b)∞

( q
a

)
∞

,

show that

(i)
∞

∑
0

(a)nzn

(q)n
=

(az)∞
(z)∞

, |q| < 1

(ii) lim
q→1

∞

∑
0

(qα)nzn

(q)n
= (1− z)−α , |q| < 1.

(S. Bhargava)

4.7 The One-variable Cubic Theta Functions

For the sake of completeness some definitions and some basic properties will be
repeated here.
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4.7.1 Cubic theta functions and some properties

Definition 4.7.1. One variable cubic theta functions.
We define for |q| < 1,

a(q) =
∞

∑
m,n=−∞

qm2+mn+n2
,

b(q) =
∞

∑
m,n=−∞

ωm−nqm2+mn+n2
, (ω = e

2πi
3 ),

c(q) =
∞

∑
m,n=−∞

q(m+ 1
3 )2+(m+ 1

3 )(n+ 1
3 )+(n+ 1

3 )2
.

Remark 4.7.1: We note the analogy between the above functions and the one
variable classical theta functions (in Ramanujan’s and Jacobi’s notations, respec-
tively).

φ(q) = Θ3(q) =
∞

∑
n=−∞

qn2
,

φ(−q) = Θ4(q) =
∞

∑
n=−∞

(−1)nqn2
,

2q
1
4ψ(q2) = Θ2(q) =

∞

∑
n=−∞

q(n+ 1
2 )2

.

Exercises 4.7.
4.7.1. Discuss the convergence of the series in Definition 4.7.1 and Remark 4.7.1.
4.7.2. Prove

(i) a(q) = φ(q)φ(q3)+4qψ(q2)ψ(q6)

(ii) a(q4) =
1
2
[φ(q)φ(q3)+φ(−q)φ(−q3)]

(iii) b(q) =
3
2

a(q3)− 1
2

a(q)

(iv) c(q) =
1
2

a(q
1
3 )− 1

2
a(q)

(v) c(q3) =
1
3
[a(q)−b(q)]

(vi) b(q) = a(q3)− c(q3).
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4.7.2 Product representations for b(q) and c(q)

Theorem 4.7.1. We have

(i) b(q) =
f 3(−q)
f (−q3)

=
(q;q)3

∞
(q3;q3)∞

(ii) c(q) = 3q
1
3

f 3(−q3)
f (−q)

= 3q
1
3
(q3;q3)3

∞
(q;q)∞

,

where, following Ramanujan,

f (−q) =
∞

∏
n=1

(1−qn) = (q;q)∞.

Proof: (Borwein, et al (1994)):
The Euler-Cauchy q-binomial theorem says that, for |q| < 1,

(a;q)∞
(b;q)∞

=
∞

∑
n=0

(a/b)n

(q)n
bn

where, as usual,

(a)∞ = (a;q)∞ =
∞

∏
n=0

(1−aqn),

(a)n = (a;q)n =
n

∏
k=1

(1−aqk−1).

Letting b to 0 in the q-binomial theorem we have (Euler)

(a;q)∞ =
∞

∑
n=0

(−1)nanqn(n−1)/2

(q)n
.

This gives, since

(a3;q3)∞ = (a;q)∞(aω;q)∞(aω2;q)∞,

∞

∑
n=0

a3nq3n(n−1)/2

(q3;q3)∞
=

∞

∑
n1,n2,n3=0

ωn1+2n2an0+n1+n3

×q[n0(n0−1)+n1(n1−1)+n2(n2−1)]/2

(q)n0(q)n1(q)n2

.

Equating the coefficients of like powers of a, we have,

1
(q3;q3)∞

= ∑
n0+n1+n2=3n

ωn1−n2
q[n0(n0−1)+n1(n1−1)+n2(n2−1)]/2

(q)n0(q)n1(q)n2

.
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Or, changing ni to mi +n, i = 0,1,2,

1
(q3;q3)∞

= ∑
m0+m1+m2=0

ωm1−m2
q

1
2 (m2

0+m2
1+m2

2)

(q)m0+n(q)m1+n(q)m2+n
.

Letting n to ∞, this gives
∞

∑
m1,m2=−∞

ωm1−m2qm2
1+m1m2+m2

2 =
(q)3

∞
(q3;q3)∞

.

This indeed is the first of the required results.
We leave the proof of part (ii) as an exercise.

Exercise 4.7.3: Prove the q-binomial theorem.

Exercise 4.7.4: Complete the proof to the second part of Theorem 4.7.1. (see
Exercise 4.7.3 for a proof.)

4.7.3 The cubic analogue of Jacobi’s quartic modular equations

The following theorem gives two versions of the cubic counterpart of the Jacobi’s
modular equation

φ 4(q) = φ 4(−q)+16qψ4(q2).

The first version is Entry (iv) of Chapter 20 in Ramanujan’s Second Notebook, and
the second is due to Borwein, et al (1994).

Theorem 4.7.2.

3+
f 3(−q

1
3 )

q
1
3 f 3(−q3)

=
(

27+
f 12(−q)

q f 12(−q3)

) 1
3

,

or, what is the same,
a3(q) = b3(q)+ c3(q).

Proof of first version (Berndt (1985).)
We need the following results concerning the classical theta function and its re-

strictions as found in Chapter 16 of Ramanujan’s Second Notebook, see Ramanujan
(1957) and Adiga, et al (1985).

f (a,b) =
∞

∑
−∞

an(n+1)/2bn(n−1)/2

= (−a;ab)∞(−b;ab)∞(ab;ab)∞, |ab| < 1,

φ(q) = f (q,q) = (−q;−q)∞(−q;q2)2
∞ =

(−q;−q)∞
(q;−q)∞

,

χ(q) = (−q;q2)∞ =
[
φ(q)
ψ(−q)

] 1
3

=
φ(q)
f (q)

,

ψ(q) = f (q,q3) = f (q3,q6)+qψ(q9).
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These follow by elementary series and product manipulations (Adiga, et al (1985)).
Now, setting

v = q
1
3 χ(−q)/χ3(−q3),

We have

v−1 =
(−q;q)∞φ(−q3)

q
1
3ψ(q3)

=
(−q3;q3)∞ f (q,q2)φ(−q3)

q
1
3ψ(q3)(q3;q3)∞

=
f (q,q2)

q
1
3ψ(q3)

=
ψ(q

1
3 )

q
1
3ψ(q3)

−1.

Thus,

1+ v−1 =
ψ(q

1
3 )

q
1
3ψ(q3)

.

Similarly,

1−2v =
φ(−q

1
3 )

φ(−q3)
.

From the last two identities, we have

f 3(−q
1
3 )

q
1
3 f 3(−q3)

=
φ 2(−q

1
3 )ψ(q

1
3 )

q
1
3 φ 2(−q3)ψ(q3)

= (1−2v)2
(

1+
1
v

)
= 4v2 +

1
v
−3.

Changing q
1
3 to ωq

1
3 and q

1
3 to ω2q

1
3 in this equation and multiplying it with the

resulting two equations we have, on some manipulations,

f 12(−q)
q f 12(−q3)

=
(

4v2 +
1
v

)3

−27

=

(
f 3(−q

1
3 )

q
1
3 f 3(−q3)

+3

)3

−27,

which is the desired identity.

Proof of the second version (Borwein, et al (1994).)

Firstly, we have, under the transformations q → ωq,

(i) a(q3) =
∞

∑
m,n=−∞

q3(m2+mn+n2) → a(q3)
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and similarly,

(ii) b(q3) → b(q3) and (iii) c(q3) → ωc(q3).

Similarly, we have a(q3), b(q3) and c(q3) going respectively to a(q3), b(q3) and
ω2c(q3) under q → ω2q. Thus, for these and result (v) of Exercise 4.7.2, we have

b(ωq) = a(q3)−ωc(q3),
b(ω2q) = a(q3)−ω2c(q3)

and, therefore,

b(q)b(ωq)b(ω2q) = (a(q3)− c(q3))(a(q3)−ωc(q3))
× (a(q3)−ω2c(q3))
= a3(q3)− c3(q3).

However, on using Part (i) of Theorem 4.7.1, the left side of the last equality equals
b3(q3) on some manipulations. This completes the proof of the desired identity.

Remark 4.7.2: For still another proof of the theorem within Ramanujan’s reper-
toire, one may see Berndt, et al (1995).

Remark 4.7.3: (Chan (1995)). That the two versions of the theorem are equiva-
lent follows on employing Theorem 4.7.1 and result (v) of Exercise 4.7.2.

Exercise 4.7.5: Prove the various identities quoted in the proof to Theorem 4.7.2.

Exercise 4.7.6: Complete the manipulations indicated throughout the proof of
Theorem 4.7.2.

Exercise 4.7.7: Work out the details under Remark 4.7.3.

4.8 The Two-variable Cubic Theta Functions

4.8.1 Series definitions and some properties

Definition 4.8.1. Two-variable cubic theta functions.
For |q| < 1,z 
= 0, we define

a(q,z) =
∞

∑
m,n=−∞

qm2+mn+n2
zm−n

b(q,z) =
∞

∑
m,n=−∞

ωm−nqm2+mn+n2
zn, (ω = e2πi/3),
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c(q,z) =
∞

∑
m,n=−∞

q(m+ 1
3 )2+(m+ 1

3 )(n+ 1
3 )+(n+ 1

3 )2
zm−n

a′(q,z) =
∞

∑
m,n=−∞

qm2+mn+n2
zn.

Remark 4.8.1: We note that the one-variable functions of Section 4.7 are restric-
tions of the above functions at z = 1. In fact

a(q) = a(q,1) = a′(q,1);
b(q) = b(q,1); c(q) = c(q,1).

Remark 4.8.2: We note the analogy between the above functions and the two-
variable classical theta functions (in Ramanujan’s and Jacobi’s notations, respec-
tively);

f (qz,qz−1) = Θ3(q,z) =
∞

∑
n=−∞

qn2
zn,

f (−qz,−qz−1) = Θ4(q,z) =
∞

∑
n=−∞

(−1)nqn2
zn,

q
1
4 f (q2z,z−1) = Θ2(q,z) =

∞

∑
n=−∞

q(n+ 1
2 )2

zn,

where, as before, following Ramanujan,

f (a,b) =
∞

∑
−∞

an(n+1)/2bn(n−1)/2.

Exercises 4.8.
4.8.1 Discuss the convergence of the series in Definition 4.8.1.

4.8.2. Prove,

(i) a′(q,z) = z2q3a′(q,zq3),

(ii) a(q,z) = z2qa(q,zq),

(iii) b(q,z) = z2q3b(q,zq),

(iv) (q,z) = z2qc(q,zq),

(v) a′(q,z) = a(q3,z)+2qc(q3,z),

(vi) b(q,z) = a(q3,z)−qc(q3,z),

(vii) a′(q,z) = b(q,z)+3qc(q3,z).
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4.8.2 Product representations for b(q,z) and c(q,z)

Theorem 4.8.1. We have,

(i) b(q,z) = (q)∞(q3;q3)∞
(zq)∞(z−1q)∞

(zq3;q3)∞(z−1q3;q3)∞

(ii) c(q,z) = q
1
3 (1+ z+ z−1)(q)∞(q3;q3)∞

× (z3q3;q3)∞(z−1q3;q3)∞
(zq)∞(z−1q)∞

.

Here, (a)∞ = (a;q)∞, for brevity.

Proof (Part (i): Hirschhorn, et al.) We have, by definition of b(q,z),

b(q,z) =
∞

∑
n:even,−∞

ωm−nqm2+mn+n2
zn +

∞

∑
n:odd,−∞

ωm−nqm2+mn+n2
zn.

Setting n = 2k in the first sum and n = 2k + 1 in the second, we get, after slight
manipulations,

b(q,z) =
∞

∑
m=−∞

ωmqm2
∞

∑
k=−∞

q3k2
z2k

+ω−1qz
∞

∑
m=−∞

ωmqm2+m
∞

∑
k=−∞

q3k2+3kz2k.

Applying Jacobi’s triple product identity (the product form of f (a,b) met with in
the proof of Theorem 4.7.2) to each of the sums we have, after some recombining
of the various products involved,

b(q,z) =
(−q3;q6)∞(q2;q2)∞(q6;q6)∞

(−q;q2)∞
(−z2q3;q6)∞

×(−z−2q3;q6)∞

−q(z+ z−1)
(−q6;q6)∞(q2;q2)∞(q6;q6)∞

(−q2;q2)∞
×(−z2q6;q6)∞(−z−2q6;q6)∞.

On the other hand, one can prove that the right side, say G(z), of the required identity
for b(q,z) is precisely the right side of the above identity. One has to first observe
that G(q3z) = z−2q−3G(z) and then use it to show that we can have

G(z) = C0

∞

∑
n=−∞

q3n2
z2n +C1z

∞

∑
n=−∞

q3n2+3nz2n, or,

G(z) = C0(−z2q3;q6)∞(−z2q3;q6)∞(q6;q6)∞
+C1(z+ z−1)(−z2q6;q6)∞(−z−2q6;q6)∞(q6;q6)∞.
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It is now enough to evaluate C0 and C1. For this, one can put successively z = i
and z = iq−

3
2 in the last equation. Now, for Part (ii) of the theorem, we have, by

definition of c(q,z),

c(q,z) = q
1
3

∞

∑
m,n=−∞

qm2+mn+n2+m+nzm−n

= q
1
3

∞

∑
n,k=−∞

q(n+2k)2+(n+2k)n+n2+2n+2kz2k

+q
1
3 z

∞

∑
n,k=−∞

q(n+2k+1)2+(n+2k+1)n+n2+2n+2k+1z2k+1

(on separating even and odd powers of z),

= q
1
3

∞

∑
n,k=−∞

q3(n+k)2+2(n+k)+k2
z2k

+q
1
3 z

∞

∑
n,k=−∞

q3(n+k)2+5(n+k)+2+k2+kz2k

= q
1
3

∞

∑
t,k=−∞

q3t2+2tqkz2k +q
1
3 z

×
∞

∑
t ′,k=−∞

q(3t ′−1)(t ′+1)qk2
(z2q)k

(setting n+ k = t and n+ k +1 = t ′),

= q
1
3

∞

∑
t=−∞

q3t2+2t
∞

∑
k=−∞

qk2
z2k +q

1
3 z

×
∞

∑
t=−∞

q3t2−t
∞

∑
k=−∞

qk2
(z2q)k

= q
1
3 f (q5,q) f (qz2,qz−2)+q

1
3 z f (q2,q4) f (q2z2,z−2).

Comparing this with the required identity for c(q,z), it is now enough to prove

G(z) = (1+ z+ z−1)
(z3q3;q3)∞(z−3q3;q3)∞

(zq;q)∞(z−1q;q)∞

=
f (q5,q) f (qz2,qz−2)

(q;q)∞(q3;q3)∞
+ z

f (q4,q2) f (q2z2,z−2)
(q;q)∞(q3;q3)∞

. (4.8.1)

Now, we can write

G(z) =
1
z

(z3;q3)∞
(z;q)∞

(z−3q3;q3)∞
(z−1q;q)∞

.

We have,

G(qz) =
1
qz

(z3q3;q3)∞
(zq;q)∞

(z−3;q3)∞
(z−1;q)∞

=
1

qz2 G(z)
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so that
z2qG(qz) = G(z).

This gives, on seeking

G(z) =
∞

∑
n=−∞

Cnzn,

∞

∑
n=−∞

qn+1Cnzn+2 =
∞

∑
n=−∞

Cnzn,

and hence
Cn = qn−1Cn−2, n = 0,±1,±2, ...

This gives, on iteration,

C2n = qn2
C0, C2n+1 = qn(n+1)C1, n = 0,±1,±2, ...

Thus, the power series sought for G(z) becomes

G(z) = C0

∞

∑
n=−∞

qn2
z2n +C1z

∞

∑
n=−∞

qn2
(z2q)n, or,

G(z) = C0 f (qz2,qz−2)+C1z f (q2z2,z−2). (4.8.2)

Comparing this with (4.8.1), it is enough to prove,

C0 =
f (q5,q)

(q;q)∞(q3;q3)∞
, and

C1 =
f (q4,q2)

(q;q)∞(q3;q3)∞
.

Putting z = i in (4.8.2) and using the definition of G(z) in (4.8.1), we have

G(i) =
(−iq3;q3)∞(iq3;q3)∞

(iq;q)∞(−iq;q)∞

= C0 f (−q,q).
or

C0 =
(−q6;q6)∞

(−q2;q2)∞(q;q2)∞(q2;q2)∞

=
(q2;q4)∞(−q6;q6)∞

(q;q)∞(q;q2)∞

=
(−q;q2)∞(−q6;q6)∞

(q;q)∞

=
(−q;q6)∞(−q3;q6)∞(−q5;q6)∞

(q;q)∞
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=
(−q;q6)∞(−q5;q6)∞(−q3;q3)∞(−q6;q6)∞

(q;q)∞

=
(−q;q6)∞(−q5;q6)∞(q6;q6)∞

(q;q)∞(q3;q3)∞
=

f (q,q5)
(q;q)∞(q3;q3)∞

as required, as regards C0. Now, for C1, putting z = iq−
1
2 in (4.8.2) and using the

defintion of G(z) in (4.8.1), we have.

G(iq−
1
2 ) = −iq

1
2
(−iq−

3
2 ;q3)∞(iq

9
2 ;q3)∞

(iq−
1
2 ;q)∞(−iq

3
2 ;q)∞

= C1iq−
1
2 f (−q,−q).

or,

C1 =
−q(−iq−

3
2 ;q3)∞(iq

9
2 ;q3)∞

(iq−
1
2 ;q)∞(−iq

3
2 ;q)∞(q;q2)2

∞(q2;q2)∞

=
−q(1+ iq

1
2 )(1+ iq−

3
2 )(−iq

3
2 ;q3)∞(iq

3
2 ;q3)∞

(1− iq−
1
2 )(1− iq

3
2 )(iq

1
2 ;q)∞(−iq

1
2 ;q)∞(q;q)∞(q;q2)∞

=
(−q3;q6)∞

(−q;q2)∞(q;q2)∞(q;q)∞
=

(−q3;q6)∞
(q2;q4)∞(q;q)∞

=
(−q3;q6)∞(−q2;q2)∞

(q;q)∞

=
(−q3;q6)∞(−q6;q6)∞(−q4;q6)∞(−q2;q6)∞

(q;q)∞

=
(−q3;q3)∞(−q4;q6)∞(−q2;q4)∞

(q;q)∞

=
(q6;q6)∞(−q4;q2)∞(−q2;q4)∞

(q;q)∞(q3;q3)∞
=

f (q2,q4)
(q;q)∞(q3;q3)∞

,

as required. This completes the proof of Part (ii) of the theorem and hence that of
the theorem.

Exercise 4.8.3: Deduce from Theorem 4.8.1, product representations for b(q) and
c(q).

Exercise 4.8.4: If

G(a) = f (azq
1
2 ,a−1z−1q

1
2 ) f
(

az−1q
1
2 ,a−1zq

1
2

)
f
(

aq
1
2 ,a−1q

1
2

)
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then show successively that

(i) G(aq) = a3q−
3
2 f (a),

(ii) G(a) = C0 f
(

a3q
3
2 ,a−3q

3
2

)
+C1

[
f
(

a3q
5
2 ,a−3q

1
2

)
+a−1 f

(
a3q

1
2 ,a−3q

5
2

)]
.

[Hint: Seek G(a) = ∑∞n=−∞Cnan and apply Part (i) for a recurrence relation for Cn].

(iii) 3C0 =
z−1(q)3

∞
(q3;q3)3

∞

×
[

f (−z−3q3,−z3)
f (−z−1q,−z)

{

1+6
∞

∑
n=1

(
q3n−2

1−q3n−2 − q3n−1

1−q3n−1

)}

− f 2(−z−1q,−z)
]
.

[Hint: Change a to a2q
1
2 in (ii), multiply the resulting equation by a3, apply operator

Θa = a d
da after rewriting the equation suitably and let a tend to i in the resulting

equation.]

(iv) C1 = z−1q
1
2 (q)2

∞
f (−z3,−z−3q3)
f (−z,−z−1q)

.

[Hint: Change a to a2q
1
2 in Part (ii), multiply by a3 and then let a to e

πi
6 .]

(v) a(q,z) equals constant term in the expansion of G(a) as power series in a.
Hence show that

a(q,z) =
1
3
(1+ z+ z−1)

×
{

1+6
∞

∑
n=1

(
q3n−2

1−q3n−2 − q3n−1

1−q3n−1

)}

× (q)2
∞

(q3;q3)2
∞

(z3q3;q3)∞(z−3q3;q3)∞
(zq;q)∞(z−1q;q)∞

+
1
3
(2− z− z−1)

(q)5
∞

(q3;q3)3
∞

(zq;q)2
∞(z−1q;q)2

∞.

[Hint: a(q,z) = ∑∞m+n+p=0,m,n,p=−∞ q(m2+n2+p2)/2zm−n.]

(vi) c(q,z) = q
1
3 constant term in the expansion of aG(aq

1
2 ) as power series

in a. Hence prove the product representation for c(q,z) given in Theorem 4.8.1.

Exercise 4.8.5: Letting z = 1 in Part (v) of Exercise 4.8.4, obtain the “Lambert
series” for a(q):

a(q) = 1+6
∞

∑
n=1

(
q3n−2

1−q3n−2 − q3n−1

1−q3n−1

)
.
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4.8.3 A two-variable cubic counterpart of Jacobi’s quartic modular
equation

Theorem 4.8.2. We have

a3(q,z) = b2(q)b(q,z3)+qc3(q,z).

Proof: By Part (vi) of Exercise (4.8.2),

b(q,z)b(qω,z)b(qω2,z) = a3(q3,z)−q3c3(q3,z).

But, by Part (i) of Theorem 4.8.1, we have the left side of this to be, on slight
manipulation, equal to b2(q3)b(q3,z3). This proves the theorem with q3 instead
of q.

Exercise 4.8.6: Show that b(q,z)c(q,z)
b(q3,z3)c(q3,z) is independent of z.

4.9 The Three-variable Cubic Theta Functions

4.9.1 Unification of one and two-variable cubic theta functions

Definition 4.9.1. Bhargava (1995).
If |q| < 1,τ,z 
= 0, we define

a(q,τ,z) =
∞

∑
m,n=−∞

qm2+mn+n2
τm+nzm−n

b(q,τ,z) =
∞

∑
m,n=−∞

ωm−nqm2+mn+n2
τmzn

c(q,τ,z) =
∞

∑
m,n=−∞

q(m+ 1
3 )2+(m+ 1

3 )(n+ 1
3 )+(n+ 1

3 )2
τn+mzn−m

a′(q,τ,z) =
∞

∑
m,n=−∞

qm2+mn+n2
τmzn.

Exercises 4.9.

4.9.1. Show that

a(q,1,z) = a(q,z), a′(q,1,z) = a′(q,z)
b(q,1,z) = b(q,z), c(q,1,z) = c(q,z).
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4.9.2. Show that

a(a) = a(q,1,1),= a′(q,1,1); b(q) = b(q,1,1)
c(q) = c(q,1,1).

Theorem 4.9.1. (Bhargava (1995)).
The four two-variable theta functions are equivalent. In fact,

a
′
(q,τ,z) = a(q,

√
τz,
√

z/τ),
b(q,τ,z) = a(q,

√
τz,ω2

√
z/τ),

c(q,τ,z) = q1/3a(q,τq,z).

Proof: Exercise

Theorem 4.9.2. (Bhargava (1995).)
For any integers λ and µ , we have

a(q,τ,z) = q3λ 2+3λµ+µ2
τ2λ+µ zµ a(q,τq3(2λ+µ)/2,zqµ/2)

Proof: Exercise.

Theorem 4.9.3. (Bhargava (1995).)

a(q,τ,z) = a(q3,
√
τ3/z3,

√
τz3)+qτz−1a(q3,q3

√
τ3/z3,

√
τz3).

Proof: Exercise.

Exercise 4.9.3: Complete the proof of Theorem 4.9.1. For example,

a(q,
√
τz,ω2

√
z/τ) =

∞

∑
m,n=−∞

qm2+mn+n2
(τz)

m+n
2

×ω2(m−n)(z/τ)
m−n

2

=
∞

∑
m,n=−∞

ωn−mqm2+mn+n2
τnzm

= b(q,τ,z).

Exercise 4.9.4: Complete the proof of Theorem 4.9.2.
[For a start, expand the right side to get, after some manipulation,

∞

∑
m,n=−∞

q3(m+λ )2+3(m+λ )(n+µ)+(n+µ)2
τ2(m+λ )+(n+µ)zn+µ .

Then change m+λ to m and n+µ to n. ]
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Exercise 4.9.5: Complete the proof of Theorem 4.9.3.
[ In fact, we can write

a(q,τ,z) = S0 +S1 +S−1

where
Sr =∑qi2+i j+ j2τ i+ jz j−i

with i− j = r(mod 3). Now put i = j +3m+ r and manipulate.]

Exercise 4.9.6: Obtain the following identities as special cases of Theorem 4.9.2:

a
′
(q,z) = z2q3a

′
(q,zq3),

a(q,z) = z2qa(q,zq),
b(q,z) = z2q3b(q,zq3),
c(q,z) = z2qc(q,zq).

Exercise 4.9.7: Obtain the counterparts of Theorem 4.9.2 for a
′
(q,τ,z), b(q,τ,z)

and c(q,τ,z).
Exercise 4.9.8: Obtain the following identities as special cases of Theorem 4.9.3.

a
′
(q,z) = a(q3,z)+2qc(q3,z),

b(q,z) = a(q3,z)−qc(q3,z).

4.9.2 Generalization of Hirschhorn-Garvan-Borwein identity

Theorem 4.9.4. (Bhargava (1995).)

a(q,τ,z) =
q

1
2 f (−qτ2,−q2τ−2)C

′
1(τ,z)

6∏∞n=1(1−q3nτ2)(1−q3nτ−2)(1−q3n)S0(τ)

×
[

1+6
∞

∑
n=1

(
q3n−2τ2

1−q3n−2τ2 − q3n−1τ−2

1−q3n−1τ−2

)]

+
q−

1
2 τ2 f (−qτ−2,−q2τ2)C

′
1(τ−1,z)

6∏∞n=1(1−q3nτ2)(1−q3nτ−2)(1−q3n)S0(τ)

×
[

1+6
∞

∑
n=1

(
q3n−2τ−2

1−q3n−2τ−2 − q3n−1τ2

1−q3n−1τ2

)]

+
1
3

[
τ+ τ−1 − z− z−1

S0(τ)

] ∞

∏
n=1

(1−qn)5

(1−q3n)

×
∞

∏
n=1

(1−qnτz)(1−qnτ−1z)(1−qnτz−1)
(1−q3nτ2)

× (1−qnτ−1z−1)
(1−q3nτ−2)

,
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where,

C
′
1(τ,z) =

[ωD(τ,z)+D(τ−1,z)]τ
2
3 q

1
2

ω+1

with

D(τ,z) =
(−ω−1τ

1
3 +ωτ−

1
3 )

(−ω−1 +ω)
(z+ z−1 − τ 1

3ω2 − τ− 1
3ω)

×
∞

∏
n=1

(1−q3n)3

(1−qn)

∞

∏
n=1

(1−qnωτ
2
3 )(1−qnω2τ−

2
3 )

(1+qn +q2n)

×
∞

∏
n=1

(1−qnωτ−
1
3 z)

(1+qn +q2n)2

×(1−qnω2τ
1
3 z)(1−qnωτ−

1
3 z−1)(1−qnω2τ

1
3 z−1)

and

τ−1S0(τ) =
τ+ τ−1

2
− (τ− τ−1)

∞

∑
n=1

(
q3nτ2

1−q3nτ2 − q3nτ−2

1−q3nτ−2

)
.

Proof: Proof is similar to that of Part (v) of Exercise 4.8.2 but more elaborate due
to the presence of extra variable τ . We therefore only sketch the proof by indicating
the steps involved.
Step (1). Show that

g(aq,τ,z) = a−3τ−2q−
3
2 g(a,τ,z),

where

g(a,τ,z) = f (aτzq
1
2 ,a−1τ−1z−1q

1
2 ) f (aτz−1q

1
2 ,a−1τ−1zq

1
2 )

× f (aq
1
2 ,a−1q

1
2 )

Step (2). Show that

g(a,τ,z) = C0(τ,z)
∞

∑
n=−∞

a3nτ2nq3n2/2

+C1(τ,z)
∞

∑
n=−∞

a3nτ2nq(3n2+2n)/2

+C1(τ−1,z)a−1
∞

∑
n=−∞

a3nτ2nq(3n2−2n)/2.

Step (3). Put each summation in Step (2) in product form.
Step (4). Now, it is easy to see,

a(q,τ,z) = ∑
m+n+p=0

q(m2+n2+p2)/2τm+nzm−n
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equals the coefficient of a0 in
(

∞

∑
m=−∞

amτmzmq
m2
2

)(
∞

∑
n=−∞

anτnz−nq
n2
2

)(
∞

∑
p=−∞

apq
p2
2

)

equals the coefficient of a0 in g(q,τ,z) which is equal to C0(τ,z). Now, Similarly,

a(q,τq,z) = Coefficient of a0 in ag(aq
1
2 ,τ,z)

= q−
1
2 C1(τ−1,z).

Step (5). We have thus proved (after replacing a by a2τ
2
3 q

1
2 and then multiplying by

a3τ2),

a3τ2 f (a2τ
5
3 zq,a−2τ−

5
3 z−1) f (a2τ

5
3 z−1q,a−2τ−

5
3 z) f (a2τ

2
3 q,a−2τ−

2
3 )

= a(q,τ,z)a3τ2 f (a6τ4q3,a−6τ−4)

+a(q,qτ,z)τ
4
3 a f (a6τ4q2,a−6τ−4q)

+a(q,qτ−1,z)τ−
4
3 a−1 f (a6τ4q,a−6τ−4q2).

Step (6). Set a1 = −iωτ−
2
3 and a2 = iω2τ−

2
3 .

Substitute a = a j, j = 1,2 in the identity of Step (5) to obtain two linear simul-
taneous equations in a(q,τq,z) and a(q,τq−1,z). Eliminating a(q,τq−1,z), we get
a(q,τq,z) = C′

1(τ,z) where C′
1(τ,z) is as in the statement of the theorem.

Step (7). Now set a = a0 = iτ−
1
3 . We have from the identity in Step (5),

a3
0τ

2 f (−τz−1q,− τ−1z) f (−τzq,−τ−1z−1) lim
a→a0

f (a2τ
2
3 q,a−2τ−

2
3 )

a−a0

= 3a2
0τ2a(q,τ,z) f (−τ−2,τ−2q3)

×
[

1+
1
3

a0
d

da0
log f (a−6τ−4,a6τ4q3)

]

+a(q,τq,z)τ4/3 f (−τ2q2,−τ−2q)

×
[

1+a0
d

da0
log f (a6τ4q2,a−6τ−4q)

]

−a(q,τ−1q,z)a−2
0 τ−4/3 f (−τ−2q2,−τ2q)

×
[

1−a0
d

da0
log f (a6τ4q,a−6τ−4q2)

]
.

This yields the expression for a(q,τ,z) stated in the theorem.

Exercise 4.9.9: Letting τ→1 in Theorem 4.9.4, deduce Hirschhorn-Garvan-Borwein
representations for a(q,τ) and c(q,z).

Exercise 4.9.10: Complete the proof of each step in Theorem 4.9.4 following the
directions therein.
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4.9.3 Laurent’s expansions for two-parameter cubic theta
functions

Theorem 4.9.5. (Bhargava and Fathima (2004).)

(i) a(q,τ,z) = f (q3τ2,q3τ−2) f (qz2,qz−2)

+ qτz f (q6τ2,τ−2) f (q2z2,z−2),

(ii) b(q,τ,z) = f (qτω,qτ−1ω2) f (q3τ−1z2,q3τz−2)

+ ω2qz f (q3τω,τ−1ω2) f (q6τ−1z2,τz−2),

(iii) c(q,τ,z) = q
1
3 f (q5τ2,qτ−2) f (qz2,qz−2)

+ q
7
3 τz f (q8τ2,q−2τ−2) f (q2z2,z−2)

(iv) a′(q,τ,z) = f (qτ,qτ−1) f (q3τ−1z2,q3τz−2)

+ qz f (q2τ,τ−1) f (q6τ−1z2,τz−2).

Proof: We have,

(i) a(q,τ,z) =
∞

∑
m,n=−∞

qn2+nm+m2
τn+mzn−m

equals the sum of terms with even powers z2k+ sum of terms with odd powers z2k+1,
which is

=
∞

∑
m,k=∞

q3(m+k)2+k2
τ2(m+k)z2k +qτz

∞

∑
m,k=−∞

q3(m+k)2+3(m+k)+k2+k

=
∞

∑
n=−∞

q3n2
τ2n

∞

∑
k=−∞

qk2
z2k +qτz

∞

∑
n=−∞

q3n2+3nτ2n
∞

∑
k=−∞

qk2+kz2k

= f (q3τ2,q3τ−2) f (qz2,qz−2)+qτz f (q6τ2,τ−2) f (q2z2,z−2).

(ii) b(q,τ,z) =
∞

∑
m,n=−∞

ωm−nqm2+mn+n2
τmzn

equals the part with even powers of z+ part with odd powers of z, which is
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=
∞

∑
k,m=−∞

ωk+mτ3k2+(k+m)2
τk+m(z2τ−1)

k

+qzω2
∞

∑
k,m=−∞

ωm+kq3k2+3k+(m+k)2
(qτ)m+k(z2τ−1)

k

=
∞

∑
n,k=−∞

ωnq3k2+n2
τn(z2τ−1)

k

+qzω2
∞

∑
n,k=−∞

qn2
(τωq)nq3k2

(q3z2τ−1)
k

= f (qωτ,qω2τ−1) f (q3τ−1z2,q3τz−2)

+qzω2 f (q2τω,τ−1ω2) f (q6z2τ−1,z−2τ), as desired.

(iii) We have c(q,τ,z) = q
1
3 a(q,qτ,z). Using this in Part (i) we have the required

result.

(iv) We have,

a
′
(q,τ,z) = b(q,τω2,zω).

Using this in Part (ii), we have the required result.

Exercise 4.9.11: Putting τ = 1 in Theorem 4.9.5, obtain the corresponding results
[Cooper (2003)) for a(q,z),b(q,z),c(q,z) and a

′
(q,z).

Exercise 4.9.12: Combining Part (i) of Theorem 4.9.5 with Theorem 4.9.1, get
alternative representation for a

′
(q,τ,z),b(q,τ,z) and c(q,τ,z).

Exercise 4.9.13: (Bhargava (1995).) Show that

a(q,τ,z) = f (qτz−1,qτ−1z) f (q3τz3,q3τ−1z−3)
+qτz f (q2τz−1,τ−1z) f (q6τz3,τ−1z−3).

[
Hint : Write a(q,τ,z) = S0 +S1, j = 2m+ r, where

Sr =∑qi2+ 1
4 j2+ 3

4 j2(τ/z)i+ 1
2 j(τz3)

j
2
]
.

Exercise 4.9.14: Write the counterparts of Exercise 4.9.13 for b(q,τ,z),c(q,τ,z)
and a

′
(q,τ,z).
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Theorem 4.9.6. (Bhargava and Fathima (2003).)

a(e−2πt ,eiφ ,eiθ ) =
1

t
√

3
exp
[
−
(
φ 2 +3θ 2

6πt

)]
a(e−

2π
3t ,e

θ
t ,e

φ
3t ).

Proof: If, as before,

f (a,b) =
∞

∑
n=−∞

an(n+1)/2bn(n−1)/2.

We need the following transform [Entry 20, Chapter 16, Adiga et al (1985),
Ramanujan (1957)],

√
α f (e−α

2+nα ,e−α
2−nα) = en2/4

√
β f (e−β

2+inβ ,e−β
2−inβ )

provided αβ = π and ℜ(α2) > 0. In particular, we need

f (e−πt+iθ ,e−πt−iθ ) =
1√
t

exp
(
− θ 2

4πt

)
f (e−

π+θ
t ,e−

π−θ
t ),

and

f (e−πt+iθ ,e−iθ ) =

√
2
t

exp
(
πt
8
− iθ

2
− θ 2

2πt

)
f
(
−e−

2π+2θ
t ,−e−

2π−2θ
t

)
.

We also need the addition results [Entries 30(ii) and 30(iii), Chapter 16, Adiga et al
(1985)]

f (a,b)+ f (−a,−b) = 2 f (a3b,ab3)

and

f (a,b)− f (−a,−b) = 2a f
(

b
a
,

a
b

a4b4
)

.

We have from Exercise 4.9.13 and repeated use of the above transforms for f (a,b),

a(e−2πt ,eiφ ,eiθ ) = f (e−2πt+i(φ−θ),e−2πt−i(φ−θ))

× f (e−6πt+i(φ+3θ),e−6πt−i(φ+3θ))

+e−2πt+i(φ+θ) f (e−4πt+i(φ−θ),e−i(φ−θ))

× f (e−12πt+i(φ+3θ),e−i(φ+3θ))

=
1

2
√

3t
exp
[
−
(
φ 2 +3θ 2

6πt

)]
(αβ +α

′
β

′
)

where

α = f
(

e−
π+φ−θ

2t ,e−
π−φ+θ

2t

)
,

β = f
(

e−
π+φ+3θ

6t ,e−
π−φ−3θ

6t

)
,
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α
′
= f (−e−

π+φ−θ
2t ,−e−

π−φ+θ
2t ),

β
′
= f (−e−

π+φ+3θ
6t ,−e

π−φ−3θ
6t ).

This becomes, on using the addition theorems for f(a,b) quoted above and the trivial
identity

2(αβ +α
′
β

′
) = (α+α

′
)(β +β

′
)+(α−α ′

)(β −β ′
),

a(e−2πt ,eiφ ,eiθ ) =
1

t
√

3
exp
[
−
(
φ 2 +3θ 2

6πt

)]

×
[

f
(

e−
2π−θ+φ

t ,e−
2π+θ−φ

t

)
f
(

e−
2π+3θ+φ

3t ,e−
2π−3θ−φ

3t

)

+ e−
2π+2θ

3t f
(

e
φ−θ

t ,e−
4π−θ+φ

t

)
f
(

e
φ+3θ

3t ,e−
4π+φ+3θ

3t

)]

=
1

t
√

3
exp
[
−
(
φ 2 +3θ 2

6πt

)]

× [ f (q3τz3,q3τ−1z−3) f (qτz−1,qτ−1z)

+qτz f (q6τz3,τ−1z−3) f (q2τz−1,τ−1z) ]

with q = e−
2π
3t ,τ = e−

θ+φ
2t ,z = e

3θ−φ
6t . This reduces to the required identity on using

Exercise 4.9.13 once again, the trivial identity a(q,τ,z) = a(q,τ−1,z−1) and the
easily verified identity

a(q,x3y,xy−1) = a(q,y2,x2).

Exercise 4.9.15: Work out all the details in the proof of Theorem 4.9.6.

Exercise 4.9.16: Prove the mixed transformations

(i) a(e−2πt ,eiφ ,eiθ ) =
1

t
√

3
exp
[
−
[
φ 2 +3θ 2

6πt

]]

×a′
(

e−
2π
3t ,e

2φ
3t ,e

3θ+φ
3t

)
,

(ii) a′(e−2πt ,eiφ ,eiθ ) =
1

t
√

3
exp
[
−
(
φ 2 −φθ +3θ 2

6πt

)]

×a
(

e−
2π
3t ,e

φ
2t ,e

2θ−φ
6t

)
,

(iii) b(e−2πt ,eiφ ,eiθ ) =
1

t
√

3
exp
[
−
(
φ 2 −φθ +θ 2

6πt

)
+
φ
3t

]

×c
(

e−
2π
3t ,e

φ
2t ,e

2θ−φ
6t

)
,
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(iv) exp(−2iφ
3

)c(e−2πt ,eiφ ,eiθ ) =
1

t
√

3
exp
[
−
(φ 2 +3θ 2

6πt

)
]

×b
(

e−
2π
3t ,e

2φ
3t ,e

3θ+φ
3t

)
.

[Hint: Use Theorem 4.9.1 on Theorem 4.9.6].

Exercise 4.9.17: Obtain Cooper (2003) modular transformations by putting φ = 0
in Theorem 4.9.6 and Exercise 4.9.16.
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Chapter 5
Lie Group and Special Functions

[This chapter is based on the lectures of Dr. H.L. Manocha of Indian Institute of Technology
(IIT), Delhi, India, on Lie Group and Dr. K. S. S. Nambooripad and Dr. E. Krishnan on general
group theory.]

5.1 General Introduction to Group Theory

Definition 5.1.1. Let S be a nonempty set. By a law of composition of S, we mean
a rule for combining pairs a,b of elements of S to get another element say P of S.
That is, law of composition is a map from

S×S → S

(a,b) → p. (5.1.1)

Example 5.1.1.
1. Addition is a law of composition on Z

+.
2. Matrix multiplication is a law of composition on the set S of n×n matrices.

Definition 5.1.2. A group is a nonempty set G together with a law of composition
satisfying the following axioms:

i. (ab)c = a(bc), for all a,b,c ∈ G (associativity)
ii. There exists an element e ∈ G such that ae = a = ea, for all a ∈ G (existence of

identity)
iii. For each a ∈ G there exists an element b ∈ G such that ab = e = ba (existence

of inverse).

Definition 5.1.3. An Abelian group is a group whose law of composition is com-
mutative.

211



212 5 Lie Group and Special Functions

Example 5.1.2.
1. Z, the set of integers is an Abelian group with respect to addition.
2. Let X be any nonempty set and let G(X) denote the set of all one-one maps

from X onto X . G(X) is a group with respect to composition of functions.

Definition 5.1.4. A permutation on n-symbols is a one-one mapping of the set
In = 1,2, . . . ,n onto itself.

Definition 5.1.5. The group of permutations of the set 1,2, . . . ,n of integers from
1 to n is called the symmetric group and is denoted by Sn.

Sn contains n! elements. The symmetric group S3 contains six elements and it is
the smallest non-Abelian group.

S3 = {ρ0,ρ1,ρ2,µ1,µ2,µ3}

where

ρ0 =
(

1 2 3
1 2 3

)
, ρ1 =

(
1 2 3
2 3 1

)
, ρ2 =

(
1 2 3
3 1 2

)
,

µ1 =
(

1 2 3
1 3 2

)
,µ2 =

(
1 2 3
3 2 1

)
, µ3 =

(
1 2 3
2 1 3

)
.

Definition 5.1.6. A non-empty subset H of a group G is said to be a subgroup of
G if it has the following properties:

i. Closure : If a ∈ H, and b ∈ H, then ab ∈ H
ii. Identity : e ∈ H
iii. Inverse: If a ∈ H then a−1 ∈ H.

Example 5.1.3.

1. The set T of 2× 2 nonsingular matrices over R is a subgroup of the general
linear group GL2(R).

2. S3 = {ρ0,ρ1,ρ2,µ1,µ2,µ3}. Then H = {ρ0,ρ1,ρ2} is a subgroup of S3.

Definition 5.1.7. Let G be a group and a ∈ G. Then the subgroup H = {an|n ∈ Z}
is called the cyclic subgroup of G generated by a. A group G is called a cyclic group
if for some a ∈ G,G = {an|n ∈ Z}. This a is called the generator of G and the group
G =< a > is cyclic.

Example 5.1.4.

1. (Z,+) is a cyclic group, 1 and −1 are generators.
2. G = {1,−1, i,−i} is a cyclic group.
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5.1.1 Isomorphisms

Let G and G′ be two groups. The groups are said to be isomorphic if all properties
of the group structure of G hold for G′ as well, and conversely.

Definition 5.1.8. Let G and G′ be groups. A homomorphism f : G → G′ is any
map satisfying the rule

f (ab) = f (a) f (b)

for all a,b ∈ G. In addition to this, if f is bijective then f is an isomorphism from G
onto G′ and the two groups are said to be isomorphic.

Example 5.1.5.

1. R under addition is isomorphic to R+ under multiplication f : R → R+ defined
by f (x) = ex.

2. The infinite cyclic group C = {. . . ,a−2,a−1,1,a,a2, . . .} is isomorphic to the
group of integers f : C → Z defined by f (an) = n is an isomorphism.

Definition 5.1.9. Let G and G′ be groups and f : G → G′ be a homomorphism.
The kernel of f denoted by Ker f is defined as

Ker f = {a : a ∈ G and f (a) = e′}.

Let GL(n,F) = {A : A = (ai j), 1 ≤ i, j ≤ n, ai j ∈ F and |A| 
= 0} and R∗ = {r ∈
R : r 
= 0}.

Example 5.1.6. The determinant function det : GL(n,R) → R∗ is a homomor-
phism.

Ker det = {A : A = (ai j), ai j ∈ R,1 ≤ i, j ≤ n and detA = 1}
= SL(n,R).

SL(n,R) is called the special linear group.

Note 5.1.1: Ker f is a subgroup of G.

Note 5.1.2: SL(n,R) is a subgroup of GL(n,R).

5.1.2 Symmetry groups

Definition 5.1.10. A map m : P → P from the plane P to itself is called a rigid
motion or an isometry if it is distance preserving. That is for any p,q ∈ P, d(p,q) =
d(m(p),m(q)).
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Every isometry is a one-one onto mapping of a plane onto itself. The set of all
isometries M form a group under composition of functions. Symmetry is some type
of transformation in which the original figure gets reflected through itself. A group
of symmetries of a plane figure is possible only if an isometry is possible.

5.1.3 Isometries of the Euclidean plane

Let us identify the plane with the space R2 of column vectors, by choosing a co-
ordinate system.

(a) Translation: A translation of the plane is a transformation that moves each
point a fixed distance in a fixed direction. The translation ta by a vector a moves a
point x to x+a. That is,

ta(x) =
(

x1 +a
x2 +a

)
.

Clearly, tatb = ta+b.

(b) Rotation: A rotation ρ(P,θ) is a transformation that rotates the plane about the
point P counterclockwise through the angle θ , 0 ≤ θ ≤ 2π.

Rotating the plane by an angle θ about the origin is denoted by ρθ

ρθ (x) =
[

cosθ −sinθ
sinθ cosθ

] [
x1
x2

]
.

In R3, the matrix representing a rotation through the angle θ about the vector ei is

A =

⎡

⎣
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎤

⎦ .

A is an orthonormal matrix.

Note 5.1.3: The orthogonal n× n matrices O(n) form a subgroup of GL(n,R).
The orthogonal matrices having determinant +1 form a subgroup called the special
orthogonal group and is denoted by SO(n).

SO(n) = {A ∈ GL(n,R)| AtA = I, detA = 1}.

(c) Reflection: A reflection in the plane is a function µ that carries each point of
a fixed line l into itself and every point not on the line into the mirror image point
straight across l and the same distance from l. Reflection r about the x1-axis:

r(x) =
[

1 0
0 −1

] [
x1
x2

]
=
[

x1
−x2

]
.

(d) Glide reflection: Glide reflection is obtained by reflecting about a line l and
then translating by a nonzero vector a parallel to l.
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Note 5.1.4: Translation and rotation are orientation-preserving motions while re-
flection and glide reflection are orientation-reversing motions.

Note 5.1.5: A translation does not leave any point fixed. A rotation fixes exactly
one point, that is, centre of rotation. Reflection fixes the point on the line of reflec-
tion. A glide has no fixed point.

Theorem 5.1.1. Any rigid motion of the plane is a consequence of translation, a
rotation, a reflection and glide reflection.

The group S3 given in Definition 5.1.5 has a geometric interpretation. Consider an
equilateral triangle with vertices 1, 2, 3 and consider the following transformations
of the triangle to itself.

(a) The three rotations about the centre through 0◦, 120◦ and 240◦ (counter-
clockwise). These correspond to the permutations

ρ◦ =
(

1 2 3
1 2 3

)
, ρ1 =

(
1 2 3
2 3 1

)
, ρ2 =

(
1 2 3
3 1 2

)
.

(b) The three reflections along the three bisectors. These correspond to the
permutations

µ1 =
(

1 2 3
1 3 2

)
, µ2 =

(
1 2 3
3 2 1

)
, µ3 =

(
1 2 3
2 1 3

)
.

Note 5.1.6: S3 is also called the group D3 of symmetries of an equilateral triangle.

Note 5.1.7: The n-th dihedral group Dn is the group of symmetries of the regular
n-gon. Dn contains 2n elements.

5.1.4 Finite groups of motion

Theorem 5.1.2. (A fixed point theorem) Let G be a finite subgroup of the group
of motions M. There is a point p in the plane which is left fixed by every element of
G. That is, there is a point p such that g(p) = p for all g ∈ G.

Let s be any point in the plane and let S = {s′ : s′ = g(s) for some g ∈ G}. S is
called the orbit of s. Let

S = {s′1, s′2, . . . ,s
′
n}

then
p =

1
n
(s′1 + s′2 + · · ·+ s′n)

is the fixed point.
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Theorem 5.1.3. Let G be a finite subgroup of the group O of rigid motions which
fix the origin. Then G is the cyclic group of order n generated by the rotation ρθ
where θ = 2π

n , or G is the dihedral group Dn of order 2n generated by the rotation
ρθ where θ = 2π

n and a reflection r′ about a line through the origin.

Note 5.1.8: Let ρθ (θ = 2π
n ) = x and r′ = y. Then

Dn = {x, y : xn = y2 = 1 and yx = x−1y}
= {xiy j |0 ≤ i < n, 0 ≤ j < 2}.

5.1.5 Discrete groups of motions

In this section we will discuss the symmetry groups of unbounded figures such
as wall paper patterns. Such patterns do not admit arbitrarily small translations or
rotations.

Definition 5.1.11. A subgroup G of the group of motions M is called discrete if
it does not contain arbitrarily small translations or rotations. That is, a subgroup
G ⊆ M is discrete if there is some real number ε > 0 such that for any translation
ta ∈ G, |a| ≥ ε and for any ρθ ∈ G (θ 
= 0), |θ | ≥ ε .

Definition 5.1.12. Let G be a discrete group. The translation group of G denoted
by LG is defined as

LG = {a ∈ R2 | ta ∈ G}.

Note 5.1.9: LG is a subgroup of G.

Note 5.1.10: LG contains no vector of length < ε , except for the null vector.

Proposition 5.1.1 Every discrete subgroup L of R2 has one of these forms

(a) L = {0}
(b) L is generated as an additive group by one non-null vector a.

L = {ma |m ∈ Z}.

(c) L is generated by two linearly independent vectors a, b

L = {ma+nb |m, n ∈ Z}.

Discrete groups of type (c) are called plane lattices and the generating set (a,b) is
called a lattice basis.

Note 5.1.11: If LG is a lattice then G is called a two dimensional crystallographic
group or a lattice group. These groups are the groups of symmetries of wall paper
patterns and of two-dimensional crystals.
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5.2 Lie Group and Special Functions

Definition 5.2.1. Let F be a field. A vector space V over F is a nonempty set V
satisfying the following conditions:

(i) (V, +) is an Abelian group
(ii) α ∈ F, v ∈V ⇒ αv ∈V
(iii) (α+β )v = αv+βv
(iv) α(v+w) = αv+αw
(v) α(βv) = (αβ )v
(vi) 1v = v,

where v,w ∈V and α,β ,1 ∈ F .

Proposition 5.2.1 Let V be a vector space (v.s) over F . Then

(i) 0v = O
(ii) αO = O
(iii) (−1)v = −v

where α,0 ∈ F and v,O ∈V .

Example 5.2.1. Let F be a field and

F(n) = {(x1,x2, . . . ,xn) : xi ∈ F} .

F(n) is a vector space over F of dimension n having a basis

B = {(1,0, . . . ,0), . . . ,(0,0, . . . ,1)} .

Note 5.2.1:

dim(R,R) = 1;
dim(C,C) = 1;
dim(C,R) = 2.

Example 5.2.2. The set of all polynomials in x having their coefficients in F .
That is,

F [x] = {a0 +a1 x+ · · ·+an xn : a1,a2, . . . ,an ∈ F, and n ∈ N}

is an infinite dimensional vector space over F having a basis B = {1,x,x2, . . .}.

Example 5.2.3. The set of all polynomials in x of degree less than n having co-
efficients in F ,

Vn = {a0 +a1 x+ · · ·+amxm, 0 ≤ m ≤ n−1, a0, . . . ,am ∈ F}

is an n-dimensional vector space over F.
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5.2.1 Subspace of a vector space

Definition 5.2.2. Let V be a vector space over F . A nonempty subset W of V is
said to be a subspace of V if α,β ∈ F and v,w ∈W ⇒ αv+βw ∈W .

Example 5.2.4.

1. Vn is a subspace of F [x].
2. F is a subspace of F [x].
3. Subspaces of R2

(a) {O}
(b) Any line passing through the origin, that is,

L = {(x,mx) : x ∈ R}

is a subspace of R2.
4. Subspaces of R3

(a) {O}
(b) Any line passing through the origin.
(c) Any plane passing through the origin.

Definition 5.2.3. Let U and V be vector spaces over F . A homomorphism T of U
into V is a mapping T : U →V such that

T (αu+βv) = αT (u)+βT (v), for all α,β ∈ F and u,v ∈V.

If T is bijective then T is called an isomorphism of U onto V .

Example 5.2.5. Vn and F(n) are isomorphic. Define T : Vn → F(n) by

T (α1 x+ · · ·+αn−1xn−1) = (α1,α2, . . . ,αn−1).

Then T is an isomorphism of Vn onto Fn.

Note 5.2.2: Two finite dimensional vector spaces over the same field F having
the same dimension are always isomorphic.

Theorem 5.2.1. Let U and V be vector spaces over the same field F and let T :
U →V be an isomorphism of U onto V . Then T maps a basis of U onto a basis of V .

Note 5.2.3: The set of all homomorphisms of U into V written as HomF(U,V ) is
a vector space of dimension mn.

Definition 5.2.4. Let F be a field. An associative algebra A over F is a vector space
over F such that

(a) A is an associative ring
(b) α(uv) = (αu)v = u(αv), α ∈ F and u,v ∈ A.
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Example 5.2.6.

(1) F [x] is an associative algebra over F .
(2) Fn, the set of all n× n matrices having their entries in F is an n2 dimensional

associative algebra over F .
(3) HomF(V,V ) is an n2 dimensional associative algebra over F .

5.3 Lie Algebra

Definition 5.3.1. Let F be a field. A Lie algebra G over F is a vector space over F
equipped with an operation

[ , ] : G×G → G

having the following properties:

(a) [x,y] = −[y,x]
(b) [αx+βy,z] = α[x,z]+β [y,z]
(c) [[x,y],z]+ [[y,z],x]+ [[z,x],y] = O

where x,y,z ∈ G and α,β ∈ F .

Note 5.3.1: Property a) is referred to as antisymmetry, properties a) and b) to-
gether are called bilinear property and c) is termed as Jacobi identity.

Note 5.3.2: [ , ] is called a commutator or a bracket or a Lie product.

Example 5.3.1.

(1) R3 is a Lie algebra over R. For, R3 is a 3-dimensional vector space over R, let
x = (x1,x2,x3) and y = (y1,y2,y3) ∈ R3. Define [ , ] : R3 ×R3 → R3 by

[x,y] = x× y

= (x2y3 − x3y2,x3y1 − x1y3,x1y2 − x2y1).

Clearly [ , ] satisfies all the properties a),b) and c). Therefore R3 is a Lie algebra.
(2) AF(V ) = HomF(V,V ) is a Lie algebra over F .

HomF(V,V ) is a vector space, for, let T1,T2 ∈ AF(V ). Define [ , ] :

AF(V )×AF(V ) → AF(V )

by
[T1,T2] = T1T2 −T2T1.

Then, (AF(V ), [, ]) is a Lie algebra.
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(3) Fn = {(ai j) : ai j ∈ F and 1 ≤ i, j ≤ n} is a Lie algebra.
Fn is an n-dimensional vector space over F . For X ,Y ∈ Fn define [X , Y ] = XY −
Y X . (Fn, [, ]) is a Lie algebra. This Lie algebra is usually denoted by gl(n,F) and
is called general Lie algebra.

(4) Special Lie algebra (sl(n,F)).
sl(n,F) = {A = (ai j) : 1 ≤ i, j ≤ n and trace of A = 0} is an n2−1 dimensional
Lie algebra.

For n = 2, sl(2,F) is a 3-dimensional Lie algebra having a basis

B = {J 0,J +,J−}

where

J 0 =
[ 1

2 0
0 − 1

2

]
, J + =

[
0 −1
0 0

]
, J− =

[
0 0
−1 0

]
.

Also

[J 0,J +] = J 0J + −J +J 0

=
[ 1

2 0
0 − 1

2

][
0 −1
0 0

]
−
[

0 −1
0 0

][ 1
2 0
0 − 1

2

]

=
[

0 − 1
2

0 0

]
−
[

0 1
2

0 0

]

=
[

0 −1
0 0

]

= J +.

Similarly, [J +,J−] = 2J 0 and [J 0,J−] = −J−.

Proposition 5.3.1 Let B = {J1,J2, . . .} be a basis of a vector space G. Then G
is a Lie algebra if each commutator [Ji,Jj] is a linear combination of the vectors in
the basis B.

Q.1 Prove that e(2) =

⎧
⎨

⎩

⎡

⎣
0 −x1 0
x1 0 0
x2 x3 0

⎤

⎦ : x1,x2,x3 ∈ C

⎫
⎬

⎭
is a 3-dimensional com-

plex Lie algebra.

Clearly, e(2) is a vector space. Consider the elements

M =

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ , P1 =

⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦ , P2 =

⎡

⎣
0 0 0
0 0 0
0 1 0

⎤

⎦ .

M, P1, P2 are linearly independent of e(2). Let

A =

⎡

⎣
0 −x1 0
x1 0 0
x2 x3 0

⎤

⎦ ∈ e(2) .
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Clearly, A = x1 M + x2 P1 + x3 P2 where x1, x2, x3 ∈ C . Therefore {M, P1, P2} is a
basis of e(2).

[M,P1] = M P1 −P1 M = P2.

[M,P2] = M P2 −P2 M = −P1.

[P1,P2] = P1 P2 −P2 P1 = O.

Hence O ∈V,O is a linear combination of the basis elements. By Proposition 5.3.1,
it follows that e(2) is a Lie algebra.

Q.2 Prove that the differential operators

J◦ = −u+ z
d
dz

J+ = −2uz+ z2 d
dz

and

J− = − d
dz

generate a 3-dimensional Lie algebra.

J◦, J+, J− are linearly independent. For, α J◦ +β J+ + γJ− = 0

⇒ α
(
−u+ z

d
dz

)
+β
(
−2uz+ z2 d

dz

)
+ γ
(
− d

dz

)

⇒ −uα−2uβ z+(αz+β z2 − γ) d
dz

= 0

⇒ α = β = γ = 0
⇒ J◦, J+, J− are linearly independent.

Therefore B = {J◦, J+, J−} is a basis of a 3-dimensional vector space spanned by B.

[J◦,J−] f (z) = (J◦ J+ − J+ J◦) f (z)

=
(
−u+ z

d
dz

)(
−2uz f + z2 d f

dz

)
−
(
−2uz+ z2 d

dz

)
×
(
−u f + z

d f
dz

)

= 2u2z f −uz2 d f
dz

−2uz
d(z f )

dz
+ z3 d2 f

dz2 +2z2 d f
dz

−2u2z f

+2uz2 d f
dz

+ z2u
d f
dz

− z3 d2 f
dz2 − z2 d f

dz

= −2uz
(

z
d f
dz

+ f
)

+2uz2 d f
dz

+2z2 d f
dz

− z2 d f
dz

= −2uz2 d f
dz

−2uz f +2uz2 d f
dz

+ z2 d f
dz

= −2uz f + z2 d f
dz

=
(
−2uz+ z2 d

dz

)
f .
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Therefore

[J◦,J+] f (z) = J+ f (z) ∀ f (z)

⇒ [J◦,J+] = J+.

Similarly, [J◦,J−] = −J− and [J+,J−] = 2J◦. By Proposition 5.3.1, {J0,J+,J−} gen-
erate a Lie algebra.

Q.3 Prove that the operators
{
∂
∂x ,

∂
∂y ,y

∂
∂x − x ∂∂y

}
generate a Lie algebra.

Let

P1 =
∂
∂x

, P2 =
∂
∂y

, M = y
∂
∂x

− x
∂
∂y

.

P1,P2,M are linearly independent elements. Therefore B = {P1,P2,M} is a basis of
a 3-dimensional vector space spanned by B.

[P1,P2] f (x,y) = (P1P2 −P2P1) f (x,y)

=
(
∂
∂x

∂
∂y

− ∂
∂y

∂
∂x

)
f (x,y)

=
∂
∂x

(
∂ f
∂y

)
− ∂
∂y

(
∂ f
∂x

)

=
∂ 2 f
∂x∂y

− ∂ 2 f
∂y∂x

= O.

⇒ [P1, P2] f (x, y) = O f (x, y)
⇒ [P1 P2] = O.

Similarly

[M, P1] = P2 and [M, P2] = −P1.

By Proposition 5.3.1, the given operators generate a 3-dimensional Lie algebra.

5.4 Representations of Lie Algebra

Definition 5.4.1. Let G and G′ be two Lie algebras over F . A homomorphism T
of G into G′ is a mapping T : G → G′ satisfying the following conditions:

(i) T (αx+βy) = αT (x)+βT (y)
(ii) T [x, y] = [T (x), T (y)], x,y ∈ G and α,β ∈ F .

If T is one-one then the homomorphism is called isomorphism. If T is an isomor-
phism of G onto G′ then we say G and G′ are isomorphic.
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Theorem 5.4.1. Let T be a vector space isomorphism of a Lie algebra G onto a
Lie algebra G′, both over a field F. Let { j1, j2, . . .} be a basis of G and T ( ji) = Ji.
Then G′ as Lie algebra is an isomorphic image of G if T [ ji, j j] = [T ( ji), T ( j j)].

Q.4 Show that the Lie algebra sl(2,C) and the Lie algebra generated by
{J◦, J+, J−} are isomorphic.

We know that sl(2,C) is a Lie algebra having basis { j◦, j+, j−}. Let G be the
Lie algebra spanned by {J◦, J+, J−}. dim sl(2,C) = dim G. Therefore, as vector
spaces, they are isomorphic.

Let T : sl(2,C) → G be the isomorphism. Therefore,

T ( j◦) = J◦, T ( j+) = J+, T ( j−) = J−.

Also we have

[J◦, J+] = J+, [J◦, J−] = −J− and [J+, J−] = 2J◦.

Now,

T [ j◦, j+] = T [ j+] = J+ = [J◦, J+] =
[
T ( j◦), T ( j+)

]

T [ j◦, j−] = T [− j−] = −T [ j−] = −J− = [J◦, J−] =
[
T ( j◦), T ( j−)

]
.

Similarly,

T [ j+, j−] = [T j+, T j−].

Therefore, by Theorem 5.4.1,

sl(2,C) ∼= G.

Q.5 Prove that the Lie algebra e(2) is isomorphic to the matrix Lie algebra gener-
ated by {M, P1, P2} where P1 = ∂

∂x ,P2 = ∂
∂y ,M = y ∂∂x − x ∂∂y .

Solution: e(2) is the Lie algebra generated by {M, P1, P2} where

M =

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ , P1 =

⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦ , P2 =

⎡

⎣
0 0 0
0 0 0
0 1 0

⎤

⎦ .

Also,
[M, P1] = P2, [M, P2] = −P1 and [P1, P2] = O.

Let G be the Lie algebra generated by {M, P1, P2}. e(2) and G are finite dimensional
vector spaces of the same dimension. Therefore they are isomorphic. Let T : e(2)→
G be the isomorphism.

T (M) = M, T (P1) = P1, T (P2) = P2

T [M, P1] = T (P2) = P2 = [M, P1] = [T (M), T (P1)].
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Similarly,

T [M, P2] = [T (M), T (P2)] and T [P1, P2] = [T (P1), T (P2)].

By Theorem 5.4.1,
e(2) ∼= G.

Definition 5.4.2. Let V be a vector space over F and G be a matrix Lie algebra
over F . A representation of G on V is a homomorphism ρ of G into L(V ). That is,

ρ : G →L(V )

such that

(i) ρ(αx+βy) = αρ(x)+βρ(y)
(ii) ρ[x, y] = [ρ(x), ρ(y)]

where α, β ∈ F and x, y ∈ G.

Theorem 5.4.2. Let V be a vector space over F and let J1, J2, . . . be operators
in L(V ) spanning a Lie algebra G′. If G′ is an isomorphic image of a matrix Lie
algebra G then the isomorphism ρ : G → G′ provides a representation of G on the
representation space V .

Q.6 Obtain a representation of sl(2,C) on V2u+1 where V2u+1 is the complex vector
space having a basis B =

{
1, z, . . . ,z2u

}
, u ∈ N.

sl(2,C) is a Lie algebra having a basis { j◦, j+, j−}. Consider the operators
J◦, J+, J− defined by

J◦ = −u+ z
d
dz

, J+ = −2uz+ z2 d
dz

and J− = − d
dz

.

We shall show that these operators are linear transformations from V2u+1 to V2u+1.
B =
{

1,z, . . . ,z2u
}

is a basis of V2u+1.

J◦(zk) =
(
−u+ z

d
dz

)
(zk)

= −uzk + zkzk−1

= −uzk + kzk

= (−u+ k)zk ∈V2u+1.

J+(zk) =
(
−2uz+ z2 d

dz

)
(zk)

= −2uzk+1 + z2 kzk−1

= (−2u+ k)zk+1 ∈V2u+1.
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Also,

J−(zk) =
−d(zk)

dz
= −kzk−1 ∈V2u+1.

Therefore, J◦, J+, J− are linear transformations from V2u+1 →V2u+1. Hence, J◦, J+,
J− ∈ L(V2u+1) . Therefore {J◦, J+, J−} spans a Lie algebra which is a subalgebra
of L(V2u+1). Define

ρ : sl(2,C) →L(V2u+1)

by

ρ( j◦) = J◦, ρ( j+) = J+, ρ( j−) = J−

ρ[ j◦, j+] = ρ( j+) = J+ = [J◦, J+] = [ρ( j◦), ρ( j+)].

Similarly,

ρ[ j◦, j−] = [ρ j◦, ρ j−] and ρ[ j+, j−] = [ρ( j+), ρ( j−)].

Hence, ρ is a representation of sl(2, C) onto V2u+1.

Exercises 5.4.
5.4.1. Let V be an infinite dimensional vector space having a basis {1,z,z2, . . . ,
zn, . . .}, and U ∈ C such that 2u is not a non-negative integer. Prove that the op-
erators

J◦ = −u+ z
d
dz

, J+ = −2uz+ z2 d
dz

and J− = − d
dz

span an infinite dimensional representation of sl(2,C) on V .

5.4.2. Prove that the set of all matrices
⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0 x2 x4 x3
0 x3 x1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ; x1, x2, x3, x4 ∈ C

⎫
⎪⎪⎬

⎪⎪⎭

is a 4-dimensional Lie algebra having a basis

g+ =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , g− =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

g◦ =

⎡

⎢
⎢
⎣

0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , ξ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ,
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satisfying

[g◦, g+] = g+, [g◦, g−] = −g−, [g+, g−] = −ξ ,

[ξ , g◦] = [ξ , g+] = [ξ , g−] = O.

5.4.3. Prove that the set of all matrices
⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0 0 0 x3
0 −x3 0 x2
0 0 x3 x1
0 0 0 0

⎤

⎥
⎥
⎦ ; x1, x2, x3,∈ C

⎫
⎪⎪⎬

⎪⎪⎭

is a 3-dimensional Lie algebra having a basis

g+ =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , g− =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

g◦ =

⎡

⎢
⎢
⎣

0 0 0 1
0 −1 0 0
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦

satisfying
[g◦, g+] = g+, [g◦, g−] = −g−, [g+, g−] = O.

5.4.4. Let

j◦ = t
∂
∂ t

+
1
2
(α+1), J+ = t

[
x
∂
∂x

+ t
∂
∂ t

+(1+α− x)
]
,

J− = t−1
(

x
∂
∂x

− t
∂
∂ t

)
.

Prove that {J◦, J+, J−} generate a 3-dimensional Lie algebra which is isomorphic
image of sl(2,C).

5.5 Special Functions

5.5.1 Gauss hypergeometric function

Consider a power series in z

c◦ + c1 z + c2 z2 + · · ·+ cn zn + · · · (5.5.1)
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where ci ∈C. For the convergence of the power series, we evaluate limn→∞|cn|
1
n =

1
R

.

We say that (5.5.1) is absolutely convergent if |z| < R and R is called the radius of
convergence. Let

c0 = 1 and
cn+1

cn
=

(α+ x)(β + x)
(1+ x)(γ+ x)

, n = 0,1,2, . . .

where α,β ∈ C and γ ∈ C−{0,−1,−2, . . .}. With this the power series (5.5.1)
becomes

1+
αβ
γ

z +
α(α+1)β (β +1)

γ(γ+1)
z2

2!
+
α(α+1)(α+2)β (β +1)(β +2)

γ(γ+1)(γ+2)
z3

3!
+ · · ·

= 1 +
(α)1(β )1

(γ)1

z
1!

+
(α)2(β )2

(γ)2

z2

2!
+

(α)3(β )3

(γ)3

z3

3!
+ · · · (5.5.2)

= 1+
∞

∑
n=1

(α)n(β )n

(γ)n

zn

n!

=
∞

∑
n=0

(α)n(β )n

(γ)n

zn

n!

where

(α)n =

{
α(α+1) · · ·(α+(n−1)) , n = 1,2, . . . ,α 
= 0
1, n = 0.

Series (5.5.2) is called Gauss hypergeometric series and is denoted by 2F1(α,β ;γ;z).
To find the radius of convergence let us write,

un =
(α)n(β )n

(γ)n n!
.

un+1

un
=

(α)n+1(β )n+1

(γ)n+1(n+1)!
(γ)n n!

(α)n(β )n

=
(α+n)(β +n)
(γ+n)(n+1)

.

limn→∞

∣
∣
∣
∣
un+1

un

∣
∣
∣
∣= limn→∞

∣
∣
∣
∣
(α+n)(β +n)
(γ+n)(n+1)

∣
∣
∣
∣

= limn→∞

∣
∣
∣
∣
∣
(1+ α

n )(1+ β
n )

(1+ γ
n )(1+ 1

n )

∣
∣
∣
∣
∣

= 1.

Therefore
1
R

= 1, R = 1.
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5.5.2 Differential equation satisfied by 2F1

Let θ = z d
dz and w = 2F1(α,β ;γ;z). Then θzn = z d(zn)

dz = nzn.
Consider,

θ(θ + γ−1)w = θ(θ + γ−1)
∞

∑
n=0

(α)n(β )n

(γ)n

zn

n!

= θ

[
∞

∑
n=0

(α)n(β )n

(γ)n

(γ+n−1)zn

n!

]

=
∞

∑
n=1

(α)n(β )n

(γ)n−1

zn

(n−1)!

=
∞

∑
k=0

(α)k+1(β )k+1

(γ)k

zk+1

k!
, n = k +1.

Therefore,

θ(θ + γ−1)w =
∞

∑
n=0

(α)n+1(β )n+1

(γ)n

zn+1

n!
. (5.5.3)

z(θ +α)(θ +β )w = z(θ +α)
∞

∑
n=0

(α)n(β )n

(γ)n n!
(n+β )zn

= z
∞

∑
n=0

(α)n(β )n

(γ)n n!
(α+n)(β +n)zn

=
∞

∑
n=0

(α)n+1(β )n+1

(γ)n

zn+1

n!
. (5.5.4)

(5.5.3) and (5.5.4) give,

θ(θ + γ−1)w− z(θ +α)(θ +β )w = 0
⇒ [θ(θ + γ−1)− z(θ +α)(θ +β )]w = 0

⇒
[

z
(

z
d
dz

+α
)(

z
d
dz

+β
)
− z

d
dz

(
z

d
dz

+ γ−1
)]

w = 0

⇒ z
(

z
d
dz

+α
)(

z
dw
dz

+βw
)
− z

d
dz

(
z

dw
dz

+ γw−w
)

= 0

⇒ z
[

z
dw
dz

+ z2 d2w
dz2 +β z

dw
dz

+αz
dw
dz

+α β w
]

−
[

z
dw
dz

+ z2 d2w
dz2 + γ z

dw
dz

− z
dw
dz

]
= 0

⇒ z2 dw
dz

+ z3 d2w
dz2 +β z2 dw

dz
+αz2 dw

dz
+αβwz

−z
dw
dz

− z2 d2w
dz2 − γzdw

dz
+ z

dw
dz

= 0
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⇒ z2(α+β +1)
dw
dz

+(z3 − z2)
d2w
dz2 − γzdw

dz
+αβwz = 0

⇒
[
z2(α+β +1)− zγ

] dw
dz

+ z2(z−1)
d2w
dz2 +αβwz = 0

⇒ z(1− z)
d2w
dz2 +[γ− (α+β +1)z]

dw
dz

−αβw = 0,

is the differential equation satisfied by w = 2F1.

Q.7 Prove that

d
dz

[2F1(α, β ; γ; z)] =
α β
γ 2F1(α+1, β +1; γ+1; z).

Solution:

d
dz

[2F1(α, β ; γ; z)] =
d
dz

∞

∑
n=0

(α)n (β )n

(γ)n

zn

n!

=
∞

∑
n=0

(α)n (β )n

(γ)n

nzn−1

n!

=
∞

∑
n=1

(α)n (β )n

(γ)n

zn−1

(n−1)!

=
∞

∑
n=0

(α)n+1 (β )n+1

(γ)n+1

zn

n!

=
α β
γ

∞

∑
n=0

(α+1)n (β +1)n

(γ+1)n

zn

n!

=
α β
γ 2F1(α+1, β +1; γ+1; z).

Q.8 Find the hypergeometric series corresponding to sinz and cosz.

Solution:

sinz = z− z3

3!
+

z5

5!
+ · · · =

∞

∑
n=0

(−1)n z2n+1

(2n+1)!

=
∞

∑
n=0

(−1)n z2n+1

123 · · · 2n(2n+1)
= z

∞

∑
n=0

(−z2)n

2n n!35 · · ·(2n+1)

= z
∞

∑
n=0

(−z2)n

2n n!2n
{( 3

2

) ( 5
2

)
· · ·
( 2n+1

2

)} = z
∞

∑
n=0

(−z2)n

4n n!
( 3

2

)
n

= z
∞

∑
n=0

(
(−z2)

4

)n

( 3
2

)
n n!

.
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Therefore,

sinz = z0F1

(
;

3
2

; − z2

4

)
.

cosz = 1− z2

2!
+

z4

4!
− z6

6!
+ · · ·

=
∞

∑
n=0

(−1)n z2n

(2n)!
=

∞

∑
n=0

(−1)n z2n

(1)(2)(3) · · ·(2n−1)2n

=
∞

∑
n=0

(−z2)n

(1)(3)(5) · · ·(2n−1)2n n!

=
∞

∑
n=0

(−z2)n

2n
{ 1

2
3
2

5
2 · · ·
(
n− 1

2

)}
n!

=
∞

∑
n=0

1
( 1

2

)
n

(
−z2

4

)n

n!
.

Therefore,

cosz = 0F1

(
;

1
2

; − z2

4

)
.

Q.9 Express ln(1+ z) in terms of 2F1.

ln(1+ z) = z− z2

2
+

z3

3
−·· · =

∞

∑
n=0

(−1)n zn+1

n+1

= z
∞

∑
n=0

n!(−z)n

n!(n+1)
= z

∞

∑
n=0

(1)n (−z)n

n!(n+1)

= z
∞

∑
n=0

(1)n (1)n

(1)n (n+1)
(−z)n

n!
= z2F1(1, 1; 2; −z).

5.5.3 Integral representation of pFq

(
α1,α2, ...,αp
β1,β2, ...,βq

; z
)

pFq(α1, α2, . . . ,αp; β1, β2, . . . ,βq; z)

=
Γ(β1)

Γ(α1)Γ(β1 −α1)

∫ 1

0
tα1−1(1− t)β1−α1−1

× p−1Fq−1 [α2, α3, . . . ,αp; β2, β3, . . . ,βq; zt]dt,

provided that integral exists.
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Proof:

pFq

(
α1,α2, ...,αp
β1,β2, ...,βq

; z
)

=
∞

∑
n=0

(α1)n (α2)n · · ·(αp)n

(β1)n (β2)n · · ·(βq)n

zn

n!
. (5.5.5)

Consider

(α1)n

(β1)n
=
Γ(α1 +n)
Γ(α1)

Γ(β1)
Γ(β1 +n)

=
Γ(β1)
Γ(α1)

Γ(α1 +n)Γ(β1 −α1)
Γ(β1 −α1)Γ(β1 +n)

=
Γ(β1)

Γ(α1)Γ(β1 −α1)
B(α1 +n, β1 −α1)

=
Γ(β1)

Γ(α1)Γ(β1 −α1)

∫ 1

0
tα1+n−1(1− t)β1−α1−1dt.

Substituting in (5.5.5)

pFq

(
α1,α2, ...,αp
β1,β2, ...,βq

; z
)

=
∞

∑
n=0

Γ(β1)
Γ(α1)Γ(β1 −α1)

(α2)n · · ·(αp)n

(β2)n · · ·(βq)n

×
∫ 1

0
tα1+n−1(1− t)β1−α1−1dt

zn

n!

=
Γ(β1)

Γ(α1)Γ(β1 −α1)

∫ 1

0
tα1−1(1− t)β1−α1−1

×
(

∞

∑
n=0

(α2)n · · ·(αp)n

(β2)n · · ·(βq)n

(tz)n

n!

)

dt

=
Γ(β1)

Γ(α1)Γ(β1 −α1)

∫ 1

0
tα1−1(1− t)β1−α1−1

× p−1Fq−1(α2, . . . ,αp; β2, . . . ,βq; tz)dt

5.6 Laguerre Polynomial L(α)
n (x)

Definition 5.6.1. Laguerre polynomial L(α)
n (x) is defined as

L(α)
n (x) =

(1+α)n

n! 1F1(−n; 1+α; x) n ∈ N

Note 5.6.1: L(α)
n (x) is a polynomial of degree n.

The Laguerre function L(α)
δ (x) is obtained by replacing −n by δ . That is,

L(α)
δ (x) =

Γ(1+α−δ )
Γ(1+α)Γ(1−δ ) 1F1(δ ; 1+α; z).
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5.6.1 Laguerre polynomial and Lie algebra

Consider the operator J◦,J+,J− defined by

J◦ = t
∂
∂ t

+
1
2
(α+1)

J+ = t
[

x
∂
∂x

+ t
∂
∂ t

+(1+α− x)
]

J− = t−1
[

x
∂
∂x

− t
∂
∂ t

]
.

J◦
[
tnL(α)

n (x)
]

= antn L(α)
n (x),

J+
[
tnL(α)

n (x)
]

= bn tn+1 L(α)
n+1(x),

J−
[
tnL(α)

n (x)
]

= cn tn−1L(α)
n−1(x),

where an, bn, cn are constants. It is easy to check that

[J◦,J+] = J+, [J◦,J−] = −J−, [J+,J−] = 2J◦.

Let V be a vector space having a basis
{

tnL(α)
n (x), n = 0,1,2, . . .

}
. V is an infinite

dimensional vector space. Operators J◦,J+,J− ∈ L(V ) span a Lie algebra, say G′

which is an isomorphic image of sl(2,C). Hence, these operators provide a repre-
sentation of sl(2,C) on the representation space V .

Exercises 5.6.
5.6.1. Evaluate ∫ 1

−1
(1+ x)p−1 (1− x)q−1dx.

5.6.2. Show that for 0 ≤ k ≤ n,

(α)n−k =
(−1)k(α)n

(1−α−n)k
.

5.6.3. Prove that

dn

dxn

[
xα−1+n

2F1(α, β ; γ; x)
]
= (α)n xα−1

2F1(α+n, β ; γ; x).

5.6.4. Obtain the results:

(i) ln(1+ x) = x 2F1(1, 1; 2; −x),
(ii) sin−1 x = x 2F1

( 1
2 , 1

2 ; 3
2 ; x2
)
,

(iii) tan−1 x = x 2F1
( 1

2 , 1; 3
2 ; −x2

)
.
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5.6.5. The complete elliptic integral of the first kind is

K =
∫ π

2

0

dt
√

1− k2 sin2 t
.

Show that

K =
1
2
π 2F1

(
1
2
,

1
2

; 1; k2
)

.

5.6.6. Prove that w = pFq is a solution of the differential equation
[

θ
q

∏
j=1

(θ +β j −1)− z
p

∏
j=1

(θ +α j)

]

w = 0.

5.6.7. If p ≤ q+1,ℜ(β1) >ℜ(α1) > 0 and none of β1, β2 . . . ,βq is zero or a nega-
tive integer, and if |z| < 1, prove that

pFq(α1, α2, . . . ,αp; β1, β2, . . . ,βq; z)

=
Γ(β1)

Γ(α1)Γ(β1 −α1)

∫ 1

0
tα1−1(1− t)β1−α1−1

× p−1Fq−1 [α2, α3, . . . ,αp; β2, β3, . . . ,βq; zt]dt.

If p ≤ q, the condition |z| < 1 may be omitted (See section 5.5.3).

5.6.8. Prove that

2F1(γ−α, γ−β ; γ; z) = (1− z)α+β−γ
2F1(α, β ; γ; z).

5.6.9. Let

L(α)
n (x) =

(1+α)n

n! 1F1[−n
1+α ;x].

Using

d
dx

L(α)
n (x) =

1
x

[
nL(α)

n (x)− (α+n)L(α)
n−1(x)

]
,

and

d
dx

L(α)
n (x) =

1
x

[
(x−α−n−1)L(α)

n (x)+(n+1)L(α)
n+1(x)

]
,

prove that

J◦
[
tnL(α)

n (x)
]

= antn L(α)
n (x),

J+
[
tnL(α)

n (x)
]

= bn tn+1 L(α)
n+1(x),

J−
[
tnL(α)

n (x)
]

= cn tn−1L(α)
n−1(x),

where an, bn, cn are expressions in n independent of x and y, and {J◦, J+, J−} are
operators defined in Exercise 5.1.4.
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5.6.10. Let V be a vector space having a basis
{

L(α)
n (x) : n = 1,2,3, . . .

}
. Prove

that the operators {J◦, J+, J−} of Exercise 5.1.4 provide a representation of sl(2,C)
on V .

5.7 Helmholtz Equation

Definition 5.7.1. The Helmholtz equation in two variables x and y is

(∂xx +∂yy +w2)Ψ= 0, w > 0. (5.7.1)

Let F be the complex vector space of all functions analytic in real x and y.

Note 5.7.1: A function f (x) where x is real, is said to be analytic in x if it is
expressible as a power series (or polynomial) in x.

Example 5.7.1.
1. sinx is analytic in x if x is real.

For,

sinx = x− x3

3!
+

x5

5!
−·· · (power series).

But,

sin(
√

x) =
√

x− x
3
2

3!
+

x
5
2

5!
+ · · ·

is not analytic because it is not a power series.
2.

cosx = 1− x2

2!
+

x4

4!
+ · · ·

and

cos
√

x = 1− x
2!

+
x2

2!
+

x4

4!
−·· ·

are both analytic functions.

Let F◦ be the solution space of (5.7.1) containing solutions analytic in x and y.
F◦ is obviously a subspace of F . Writing

Q = ∂xx +∂yy +w2,

we conclude that Q : F → F is a linear transformation having F◦ as its kernel.
[ker Q = {T ∈ F : Q(T ) = O} = F◦].

Definition 5.7.2. A first order linear differential operator

L = X(x,y)∂x +Y (x,y)∂y +Z(x,y),

where X , Y, Z ∈ F is called a symmetry operator of (5.7.1) if the commutator of L
and Q, that is [L,Q] = R(x,y)Q for some R ∈ F .
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Theorem 5.7.1. Ψ ∈ F◦ ⇒ LΨ ∈ F◦.

Proof:

[L,Q] = RQ

⇒ LQ−QL = RQ

⇒ QL = LQ−RQ

⇒ Q(LΨ) = (QL)Ψ
= (LQ−RQ)Ψ
= L(QΨ)−R(QΨ)
= L(O)−R(O), since Ψ is a solution of Q

= O.

So LΨ ∈ F◦.

Theorem 5.7.2. The set of all symmetry operators of (5.7.1) is a Lie algebra, that
is, if L1 and L2 are symmetric operators then

(i) αL1 +βL2

is a symmetry operator
(ii) [L1,L2]

is a symmetry operator.

Proof: Let G be the set of all symmetry operators of (5.7.1) and let L1, L2 ∈ G.
[L1, Q] = R1Q and [L2, Q] = R2Q for some R1, R2 ∈ F. Consider,

[αL1,+βL2,Q] = α[L1,Q]+β [L2,Q]

= α(R1Q)+β (R2Q)

= (αR1 +βR2)Q

= R3Q

where

R3 = αR1 +βR2 ∈ F.

⇒ αL1 +βL2 ∈ G.

Hence (i). We can write,
L1 = X1∂x +Y1∂y +Z1

and

L2 = X2∂x +Y2∂y +Z2.
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It is easy to check that

[L1L2 −L2L1, Q] = [(L1 +Z2)R2 − (L2 +Z1)R1]Q.

Therefore
L1L2 −L2L1 ∈ G ⇒ [L1, L2] ∈ G.

Hence (ii) and hence the theorem.
Since L is a symmetry operator, we have

LQ−QL = RQ (5.7.2)
L = X∂x +Y∂y +Z

and

Q =∂xx +∂yy +w2.

(5.7.2) gives,

[X∂x +Y∂y +Z][∂xx +∂yy +w2] f − [∂xx +∂yy +w2][X∂x +Y∂y +Z] f

= R(∂xx +∂yy +w2) f . (5.7.3)

Left-side of (5.7.3) gives
[
X∂xxx f +X∂xyy f +Xw2∂x f +Y∂yxx f +Y∂yyy f +w2Y∂y f +Z∂xx f +Z∂yy f +Zw2 f

]

− [Xxx∂x f +2Xx∂xx +X∂xxx f +Yxx∂y f +2Yx∂xy +Y∂xxy f +Zxx f +2Zx∂xx f

+Z∂xx f +Xyy∂x f +2Xy∂xy f +X∂yyx f +Yyy∂y f +2Yy∂yy f +Y∂yyy f

+Zyy f +2Zy∂y f +Z∂yy f +w2X∂x f +w2Y∂y f +w2Z
]

f

= [−2Xx∂xx −2(Xy +Yx)∂xy −2Yy∂yy − (Xxx +Xyy +2Zx)∂x − (Yxx +Yyy +2Zy)∂y

−(Zxx +Zyy)] f

From (5.7.3),

2Xx∂xx +2(Xy +Yx)∂xy +2Yy∂yy +(Xxx +Xyy +2Zx)∂x

+(Yxx +Yyy +2Zy)∂y +(Zxx +Zyy) = −R(∂xx +∂yy +w2).

⇒ (a) 2Xx = −R = 2Yy

Xy +Yx = 0 ⇒ Xy = −Yx, (5.7.4)
(b) Xxx +Xyy +2Zx = 0, Yxx +Yyy +2Zy = 0, (5.7.5)

(c) Zxx +Zyy = −Rw2. (5.7.6)

From (a)

Xxx +Xyy = 0.

Yxx +Yyy = 0. (5.7.7)
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Putting (5.7.7) in (5.7.5) we have

Zx = 0 and Zy = 0.

Hence
Z = δ (constant); (c) ⇒ R = 0. (5.7.8)

Therefore (5.7.4) gives

Xx = 0 = Yy

⇒ X = f (y) and Y = g(x)
⇒ Xy = f ′(y) and Yx = g′(x).

Hence

Xy = −Yx

⇒ f ′(y) = −g′(x).

Therefore
X = α+ γ y and Y = β − γ x; α,β ,γ ∈ C.

Now,

L = X∂x +Y∂y +Z

= α∂x+β∂y+Z + γ(y∂x− x∂y),

which is a linear combination of independent vectors ∂x, ∂y, y∂x− x∂y, 1.

Hence
B = {∂x, ∂y, y∂x− x∂y, 1}

is a basis of the Lie algebra G.
This Lie algebra having a basis {P1,P2,M,E} where P1 = ∂x, P2 = ∂y, M =

y∂x− x∂y, E = 1 is called the symmetry algebra of the given Helmholtz equation.
The elements are called symmetry operators.

Let G be a matrix Lie algebra having a basis {P1,P2,M,ξ} where,

P1 =

⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦ , P2 =

⎡

⎣
0 0 0
0 0 0
0 1 0

⎤

⎦ , M =

⎡

⎣
0 −1 1
1 0 0
0 0 0

⎤

⎦ , ξ =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

having commutation relation

[P1,M] = P2, [P2,M] = −P1, [P1,P2] = O

and
[ξ ,P1] = [ξ ,P2] = [ξ ,M] = O.

Hence the symmetry algebra of Helmholtz equation (5.7.4) provides a represen-
tation of matrix Lie algebra on the representation space F0.
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5.7.1 Helmholtz equation in three variables

QΨ= (∂x1x1 +∂x2x2 +∂x3x3 +w2)Ψ(x1,x2,x3) = 0. (5.7.9)

Definition 5.7.3. A linear differential operator

L = X∂x1 +Y∂x2 +U∂x3 +Z, X ,Y,U,Z ∈ F

is called a symmetry operator if

[L,Q] = RQ for some R ∈ F.

Proceeding as in the case of two variables, we arrive at

L = α1∂x1 +α2∂x2 +α3∂x3 +α4(x3∂x2 − x2∂x3)
+α5(x1∂x3 − x3∂x1)+α6(x2∂x1 − x2∂x1).

Take

P1 = ∂x1, P2 = ∂x2, P3 = ∂x3,

J1 = x3∂x2 − x2∂x3, J2 = x1∂x3 − x3∂x1, J3 = x2∂x1 − x1∂x2.

P1, P2, P3, J1, J2, J3 are linearly independent and so they generate a six dimensional
vector space.

[Pl ,Pm] = O

[Jl ,Jm] =
3

∑
n=1

el mnPn

[Jl ,Pm] =
3

∑
n=1

el mnPn

where

e123 = e231 = e312 = 1
e213 = e321 = e132 = −1

while all other e’s are zero.

[J1,J2] = e121J1 + e122J2 + e123J3

= O+O+1J3 = J3

[J1,P2] = e121P1 + e122P2 + e123P3

= O+O+1P3 = P3

and so on. These six operators generate a 15 dimensional Lie algebra.
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Consider the matrix Lie algebra e(3) having a basis

P1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥
⎥
⎦ , P2 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

P3 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ , J1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 −1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦

J2 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , J3 =

⎡

⎢
⎢
⎣

0 −1 0 0
1 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥
⎥
⎦ .

{P1,P2,P3,J1,J2,J3} is a basis of e(3), and both Lie algebra G and matrix Lie
algebra e(3) are isomorphic.

Note 5.7.2: Gauss’ hypergeometric function will give rise to a symmetric algebra
which is isomorphic to sl(4,C).

Note 5.7.3:
w(z) = 2F1(α, β ; γ; z)

is a solution of [z(θ +α)(θ +β )−θ(θ + γ−1)]w = 0

⇒ z
[(

z
d
dz

+α
)(

z
d
dz

+β
)
− d

dz

(
z

d
dz

+ γ−1
)]

w(z) = 0

⇔ w(s,u, t,z) = sα uβ tγ−1
2F1(α, β ; γ;z)

is a solution of
[{

s
(

z
∂
∂ z

+ s
∂
∂ s

)}{
u
(

z
∂
∂ z

+u
∂
∂u

)}

−
(

sut
∂
∂ z

){
t−1
(

z
∂
∂ z

+ t
∂
∂ t

)}]
w(s,u, t,z) = 0 (5.7.10)

(The significance of writing this is to get a wave equation). For example, consider
(

z
d
dz

+α
)

f (z) = 0 ⇔
(

z
∂
∂ z

+ s
∂
∂ s

)
sα f (z) = 0

⇔ sα z
∂ f (z)
∂ z

+αsα f (z) = 0 ⇔ z
d f (z)

dz
+α f (z) = 0

⇔
[

z
d
dz

+α
]

f (z) = 0.
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Let

Lα = s
(

z
∂
∂ z

+ s
∂
∂ s

)
, Lβ = u

(
z
∂
∂ z

+u
∂
∂u

)

Lγ = t−1
(

z
∂
∂ z

+ t
∂
∂ t

)
, Lα β γ = sut

∂
∂ z

.

Equation (5.7.10) becomes
(

LαLβ −Lα β γLγ
)

w(s,u, t,z) = 0.

Four variable wave equation is
(

∂ 2

∂v1∂v2
− ∂ 2

∂v3∂v4

)
Ψ= 0.

The operators Lα , Lβ , Lα β γ , Lγ generate a 4-dimensional Abelian Lie algebra. For,
[
Lα ,Lβ

]
= O ⇒ LαLβ −LβLα = O

⇒ LαLβ = LβLα (commute, therefore Abelian).

Since Lα , Lβ , Lα β γ , Lγ generate an Abelian Lie algebra, we introduce another co-
ordinate system (v1,v2,v3,v4) such that

Lα =
∂
∂v1

, Lβ =
∂
∂v2

, Lα β γ =
∂
∂v4

and Lγ =
∂
∂v3

.

The relationship between (s, t,u,z) and (v1,v2,v3,v4) is

s = s(v1,v2,v3,v4), u = u(v1,v2,v3,v4)
t = t(v1,v2,v3,v4), z = z(v1,v2,v3,v4).

Using chain rule,

sz
∂
∂ z

+ s2 ∂
∂ s

=
∂
∂v1

=
∂
∂ s

∂ s
∂v1

+
∂
∂u

∂u
∂v1

+
∂
∂ t
∂ t
∂v1

+
∂
∂ z

∂ z
∂v1

.

∂ s
∂v1

= s,
∂u
∂v1

= O,
∂ t
∂v1

= O,
∂ z
∂v1

= sz

∂ s
∂v1

= s2 ⇒ s = − 1
v1

∂ z
∂v1

= sz ⇒ ∂ z
∂v1

= − z
v1

uz
∂
∂ z

+u2 ∂
∂u

=
∂
∂v2

=
∂
∂ s

∂ s
∂v2

+
∂
∂u

∂u
∂v2

+
∂
∂ t
∂ t
∂v2

+
∂
∂ z

∂ z
∂v2

⇒ u = − 1
v2

and
∂ z
∂v2

= − z
v2

.

t−1z
∂
∂ z

+
∂
∂ t

=
∂
∂v3

=
∂
∂ s

∂ s
∂v3

+
∂
∂u

∂u
∂v3

+
∂
∂ t
∂ t
∂v3

+
∂
∂ z

∂ z
∂v3

.
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Therefore

∂ s
∂v3

=O =
∂u
∂v3

,
∂ t
∂v3

= 1,
∂ z
∂v3

=
z
t

=
z
v3

.

That is t = v3. But

∂
∂ z

=
∂
∂v4

=
∂
∂ s

∂ s
∂v4

+
∂
∂u

∂u
∂v4

+
∂
∂ t
∂ t
∂v4

+
∂
∂ z

∂ z
∂v4

⇒ ∂ s
∂v4

=
∂u
∂v4

=
∂ t
∂v4

= O and
∂ z
∂v4

= sut.

Therefore

z = sut v4 =
[
− 1

v1

]
×
[
− 1

v2

]
× v3 v4.

That is
z =

v3v4

v1 v2
.

w(v1, v2, v3, v4) = (v1)−α(v2)−β (v3)γ−1
2F1(α, β ; γ;

v3v4

v1v2
)

is a solution of a 4-variable wave equation

(∂v1v2 −∂v3v4)w(v1, v2, v3, v4) = 0.

Let V be a vector space having a basis

B = {sα+n uβ+n tγ+p−1
2F1 [α+n, β +n; γ+ p; z] , m, n, p ∈ I}.

The symmetry algebra G provides an infinite dimensional representation of sl(4,C)
on the representation space V .

5.8 Lie Group

Definition 5.8.1. A Lie group is a nonempty set G having the following properties:
(i) G is a group, say, with respect to multiplication,
(ii) G is an analytic manifold,
(iii) Group multiplication ◦ : G×G → G and group inversion λ : G → G are ana-

lytic with respect to the manifold structure.

Example 5.8.1.

E(2) =

⎧
⎨

⎩

⎡

⎣
cosθ −sinθ 0
sinθ cosθ 0

a b 1

⎤

⎦ : a, b ∈ R, 0 ≤ θ < 2π

⎫
⎬

⎭
.

Clearly E(2) is a group with respect to multiplication. Also, E(2) = {(a,b,θ) :
a,b ∈ R and 0 ≤ θ < 2π}. Since the parameters a, b, θ are independent, E(2) is a
3-dimensional manifold. E(2) satisfies (iii). Therefore E(2) is a Lie group.
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Theorem 5.8.1. Let G(t1, t2, . . . , tm) be an m-dimensional Lie group such that the
parameters t1, t2, . . . , tm are independent. Then the Lie algebra corresponding to the
Lie group G has a basis

{
∂A(t1, t2, . . . , tm)

∂ tk
|t1=t2= ··· =tm=0 : A ∈ G, k = 1,2, . . .m

}
.

Example 5.8.2. Basis of the Lie algebra of E(2). Consider

E(2) =

⎧
⎨

⎩

⎡

⎣
cosθ −sinθ 0
sinθ cosθ 0

a b 1

⎤

⎦ : a, b ∈ R, 0 ≤ θ < 2π

⎫
⎬

⎭

= {A(a,b,θ) : a,b ∈ R and 0 ≤ θ < 2π}.

∂A
∂a

|θ=a=b=0 =

⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦= P1,

∂A
∂b

|θ=a=b=0 =

⎡

⎣
0 0 0
0 0 0
0 1 0

⎤

⎦= P2,

∂A
∂θ

|θ=a=b=0 =

⎡

⎣
−sinθ −cosθ 0
cosθ −sinθ 0

0 0 0

⎤

⎦ |θ=0

=

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦= M.

Therefore, by Theorem 5.8.1,{P1, P2, M} is a basis.

5.8.1 Basis of the Lie algebra of the Lie group SL(2)

SL(2) =
{[

a+1 b
c d +1

]
: (a+1)(d +1)−bc = 1

}

=
{[

a+1 b
c 1+bc

a+1

]
: a 
= −1

}

= {A(a,b,c) : |A| = 1}
∂A
∂a

|a=b=c=0 =
[

1 0
0 −1

]

∂A
∂b

|a=b=c=0 =
[

0 1
0 0

]

∂A
∂c

|a=b=c=0 =
[

0 0
1 0

]
.
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Therefore {[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

is a basis.

Note 5.8.1: Trace of basis elements =0.

Note 5.8.2: For special functions Miller takes the basis as
[ 1

2 0
0 − 1

2

]
,

[
0 −1
0 0

]
and
[

0 0
−1 0

]
.

Example 5.8.3. General linear Lie group GL(2,F)

GL(2,F) =
{[

a+1 b
c d +1

]
: (a+1)(d +1)−bc 
= 0

}

= {A(a,b,c,d) : |A| 
= 0}.

Then

∂A
∂a

|a=b=c=d=0 =
[

1 0
0 0

]
,
∂A
∂b

|a=b=c=d=0 =
[

0 1
0 0

]

∂A
∂c

|a=b=c=d=0 =
[

0 0
1 0

]
,
∂A
∂a

|a=b=c=d=0 =
[

0 0
0 1

]
.

Therefore by Theorem 5.8.1,
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

is a basis.

Exercises 5.8.
5.8.1. Prove that the solution space F◦ of the Helmholtz equation

(∆2 +w2)Ψ(x,y) = 0

has basis {
exp{i[kx+(w2 − k2)

1
2 y]} : k ∈ R

}
.

5.8.2. Prove that the operators {P1, P2, M} given by Proposition 5.3.1, Question 1
provide a representation of the Lie algebra e(2) on the solution space of F◦ of the
Helmholtz equation.

5.8.3. Prove that the symmetry algebra of the three-dimensional Helmholtz equation

(∆3 +w3)Ψ(x1,x2,x3) = 0, ∆3 = ∂x1x1 +∂x2x2 +∂x3x3
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is a six-dimensional Lie algebra having a basis

P1 = ∂x1 , P2 = ∂x2 , P3 = ∂x3 , J1 = x3∂x2 − x2∂x3

J2 = x1∂x3 − x3∂x1 , J3 = x2∂x1 − x1∂x2

satisfying the commutation relations

[Jl ,Jm] =∑
n

el mnJn, [Jl ,Pm] =∑
n

el mnJn, [Pl ,Pm] = O, e,m,n = 1,2,3

where el mn is the tensor such that

e123 = e231 = e312 = 1, e132 = e321 = e213 = −1

and all other components zero.

5.8.4. Prove that the symmetry algebra of Exercise 5.7.1 is an isomorphic image of
the Lie algebra e(3) having a basis

P′
1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥
⎥
⎦ , P′

2 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ , P′

3 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦

J ′
1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , J ′

2 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , J ′

3 =

⎡

⎢
⎢
⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

satisfying commutation relations as in Exercise 5.7.1.

5.8.5. Prove that the set of numbers of the form a+b
√

2, where a and b are rational
numbers, is a field.

5.8.6. Let V be a vector space of dimension n over F . Prove that V contains a sub-
space of dimension r, 0 ≤ r ≤ n.

5.8.7. Prove that the set {a+ ib : a,b ∈ F3} forms a field of 9 elements.

TEST
on Lie Theory and Special Functions

Time: 1 1
2 hours

5.1. Prove by mathematical induction that

dn

dxn 3F2

[
α1,α2,α3
β1,β2

; x
]

=
(α1)n(α2)n(α3)n

(β1)n(β2)n
3F2

[
α1+n,α2+n,α3+n
β1+n,β2+n ; x

]
, n ∈ N. (8)
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5.2. Prove that for ℜ(γ−α−β ) > 0,

2F1[α,β ;γ;1] =
Γ(γ)Γ(γ−α−β )
Γ(γ−α)Γ(γ−β )

.

What is the result when α = −n, where n is a +ve integer? (8)

5.3. Using the operators

J◦ = −vz+ z
d
dz

, J+ = z(−2v+ z
d
dz

), J− = − d
dz

,

show that there exists a vector space V so that

1. the representation of sl(2,C) on V is finite dimensional.
2. the representation of sl(2,C) on V is infinite dimensional. (12)

5.4. Prove that the symmetry algebra of the Helmholtz equation

(∂xx +∂yy +w2)Ψ(x,y) = 0

is an isomorphic image of some matrix Lie algebra. (14)

5.5. Find the Lie algebra corresponding to the Lie Group E. (8)

(H. L. Manocha)



Chapter 6
Applications to Stochastic Process
and Time Series

[This chapter is based on the lectures of Dr. K.K. Jose, Department of Statistics, St. Thomas
College, Pala, Mahatma Gandhi University, Kerala, India.]

6.0 Introduction

In this chapter we discuss some elementary theory of Stochastic Processes and Time
Series Modeling. Stochastic processes are introduced in Section 6.1. Some modern
concepts in distribution theory which are of frequent use in this chapter are discussed
in Section 6.2. Section 6.3 deals with stationary time series models. In Section 6.4,
we consider a structural relationship and some new autoregressive models. Section
6.5 deals with tailed processes. In section 6.6, semi-Weibull time series models with
minification structure are discussed.

6.1 Stochastic Processes

The theory of stochastic processes is generally regarded as the dynamic part of prob-
ability theory, in which one studies a collection of random variables indexed by a
parameter. One is observing a stochastic process whenever one examines a system
developing in time in a manner controlled by probabilistic laws. In other words,
a stochastic process can be regarded as an empirical abstraction of a phenomenon
developing in nature according to some probabilistic rules.

If a scientist is to take account of the probabilistic nature of the phenomenon with
which he is dealing, he should undoubtedly make use of the theory of stochastic
processes. The scientist making measurements in his laboratory, the meteorologist
attempting to forecast weather, the control systems engineer designing a servomech-
anism, the electrical engineer designing a communication system, the hardware en-
gineer developing a computer network, the economist studying price fluctuations

247
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t

X(t,w)

Fig. 6.1 A stochastic process

and business cycles, the seismologist studying earthquake vibrations, the neurosur-
geon studying brainwave records, the cardiologist studying the electro cardiogram
etc are encountering problems to which the theory of stochastic processes can be
applied. Financial modeling and insurance mathematics are emerging areas where
the theory of stochastic processes is widely used.

Examples of stochastic processes are provided by the generation sizes of popula-
tions such as a bacterial colony, life length of items under different renewals, service
times in a queuing system, waiting times in front of a service counter, displacement
of a particle executing Brownian motion, number of events during a particular time
interval, number of deaths in a hospital on different days, voltage in an electrical
system during different time instants, maximum temperature in a particular place
on different days, deviation of an artificial satellite from its stipulated path at each
instant of time after its launch, the quantity purchased of a particular inventory on
different days etc. Suppose that a scientist is observing the trajectory of a satellite
after its launch. At random time intervals, the scientist is observing whether it is
deviating from the designed path or not and also the magnitude of the deviation.

Let x(t,w) denote the altitude of the satellite from sea-level at time t where w is
the outcome associated with the random experiment. Here the random experiment
is noting the weather conditions with regard to temperature, pressure, wind velocity,
humidity etc. These outcomes may vary continuously. Hence {x(t,w); t ∈ T ;w ∈Ω}
gives rise to a stochastic process.

Thus a stochastic process is a family of random variables indexed by a parameter
t taking values from a set T called the index set or parameter space. It may be de-
noted by {x(t,w); t ∈ T,w ∈Ω}. A more precise definition may be given as follows.

Definition 6.1.1. A stochastic process is a family of indexed random variables
{x(t,w); t ∈ T ;w ∈ Ω} defined on a probability space (Ω,β ,P) where T is an arbi-
trary set.
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t

X(t,w)

w3

w4

w2

w1

Fig. 6.2 Different stochastic processes

There are many ways of visualizing a stochastic process.

(i) For each choice of t ∈ T,x(t,w) is a random variable.
(ii) For each choice of ω ∈Ω,x(t,w) is a function of t.
(iii) For each choice of w and t,x(t,w) is a number.
(iv) In general it is an ensemble (family) of functions x(t,w) where t and w can

take different possible values.

Hereafter we shall use the notation x(t) to represent a stochastic process, omitting
w, as in the case of random variables. It is convention to use xn and x(t) according
as the indexing parameter is discrete or continuous.

The values assumed by the r.v. (random variable) x(t) are called states and the set
of all possible values of x(t), is called the state space of the process and is denoted
by S. The state space can be discrete or continuous. When S is discrete, by a proper
labeling, we can take the state-space as the set of natural numbers namely N =
{1,2, · · ·}. It may be finite or infinite.

The main elements distinguishing stochastic processes are the nature of the state
space S and parameter space T , and the dependence relations among the random
variables x(t). Accordingly there are four types of processes.

Type 1: Discrete parameter discrete processes:
In this case both S and T are discrete. Examples are provided by the number of
customers reported in a bank counter on the nth day, the nth generation size of a
population, the number of births in a hospital on the nth day etc. There may be mul-
tidimensional processes also. For example consider the process (xn,yn) where xn
and yn are the number of births and deaths in a municipality on the nth day.

Type 2: Continuous parameter discrete processes:
In this case T is continuous and S is discrete. Examples constitute the number of
persons in a queue at time t, the number of telephone calls during (0, t), the number
of vehicles passing through a specific junction during (0, t) etc.
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Type 3: Discrete parameter continuous processes:
In this case T is discrete and S is continuous. Examples are provided by the renewal
time for the nth renewal, life length of the nth renewed bulb, service time for the nth

customer, waiting time on the nth day to get transportation, the maximum tempera-
ture in a city on the nth day etc.

Type 4: Continuous parameter continuous processes:
In this case both T and S are continuous. Examples are constituted by the voltage in
an electrical system at time t, the blood pressure of a patient at time t, the ECG level
of a patient at time t, the displacement of a particle undergoing Brownian motion at
time t, the speed of a vehicle at time t, the altitude of a satellite at time t, etc.

For more details see Karlin and Taylor (2002), Papoulis (2000), Medhi (2004,
2006). Feller (1966) gives a good account of infinite divisible distributions. Ross
(2002) gives a good description of stochastic processes and their applications.
Medhi (2004) gives a good introduction to the theory and application of stochas-
tic processes.

Consider a computer system with jobs arriving at random points in time, queuing
for service, and departing from the system after service completion. Let Nk be the
number of jobs in the system at the time of departure of the kth customer (after ser-
vice completion). The stochastic process {Nk;k = 1,2, · · ·} is a discrete-parameter,
discrete-state process. A realization of this process is shown in Figure 6.3

Next let x(t) be the number of jobs in the system at time t. Then {x(t); t ∈ T} is
a continuous parameter discrete-state process. A realization is given in Figure 6.4.
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Fig. 6.3 Discrete parameter discrete state process
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Fig. 6.4 Continuous parameter discrete state process
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Fig. 6.5 Discrete parameter continuous state process

Let wk be the time that the kth customer has to wait in the system before receiv-
ing service. Then {wk;k ∈ T} is a discrete-parameter, continuous-state process, see
Figure 6.5

Finally, let y(t) be the cumulative service requirement of all jobs in the sys-
tem at time t. Then {y(t)} is a continuous parameter continuous-state process, see
Figure 6.6.
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Fig. 6.6 Continuous parameter continuous state process

6.1.1 Classical types of stochastic processes

We now describe some of the classical types of stochastic processes characterized
by different dependence relationships among x(t).

6.1.2 Processes with stationary independent increments

Consider a stochastic process {x(t); t ∈ T} where T = [0,∞). Then the process
{x(t)} is called a process with independent increments if the random variables
xt1 − xt0 ,xt2 − xt1 , · · · ,xtn − xtn−1 are independent for all choices of t0, t1, · · · , tn such
that t0 < t1 < · · · < tn.

If the distribution of the increments x(ti +h)−x(ti) depends only on h, the length
of the interval, and not on the particular time ti, then the process is said to have sta-
tionary increments. Hence for a process with stationary increments, the distributions
of the increments x(t0 + h)− x(t0),x(t1 + h)− x(t1),x(t2 + h)− x(t2), · · · etc are the
same and depend only on h, irrespective of the time points t0, t1, · · ·

If a process {x(t)} has both independent and stationary increments, then it is
called a process with stationary independent increments.

Result: If a process {xt ; t ∈ T} has stationary independent increments and has
finite mean value, then E(xt) = m0 +m1t where m0 = E(x0) and m1 = E(x1)−m0,E
denoting the expected value.
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6.1.3 Stationary processes

A stochastic process {xt} is said to be stationary in the strict sense (SSS) if the
joint distribution function of the families of the random variables [xt1+h, · · ·xtn+h]
and [xt1 ,xt2 , · · · ,xtn ] are the same for all h > 0 and arbitrary selections t1, t2, · · · , tn
from T . This condition asserts that the process is in probabilistic equilibrium and
that the particular times at which one examines the process are of no relevance. In
particular the distribution of xt is the same for each t.

Thus stationarity of a process implies that the probabilistic structure of the
process is invariant under translation of the time axis. Many processes encountered
in practice exhibit such a characteristic. So, stationary processes are appropriate
models for describing many phenomena that occur in communication theory, as-
tronomy, biology, economics etc.

However strict sense stationarity is seldom observed in practice. Moreover, many
important questions relating to a stochastic process can be adequately answered in
terms of the first two moments of the process. Therefore we relax the condition of
strict sense stationarity to describe weak sense stationarity (WSS), also known as
wide sense stationarity.

A Stochastic process {xt} is said to be wide sense stationary if its first two mo-
ments (mean function and variance function) are finite and independent of t and the
covariance function Cov(xt ,xt+s) is a function only of s, the time difference, for all
t. Such processes are also known as covariance stationary or second order stationary
processes. A process, which is not stationary, in any sense, is said to be evolutionary.

6.1.4 Gaussian processes and stationarity

If a process {xt} is such that the joint distribution of (xt1 ,xt2 ,xtn) for all t1, t2, · · · , tn is
multivariate normal, then {xt} is called a Gaussian (normal) process. For a Gaussian
process weak sense stationarity and strict sense stationarity are identical. This fol-
lows from the fact that a multivariate normal distribution is completely determined
by its mean vector and variance-covariance matrix. Here we need only mean, vari-
ance and covariance functions. In other words, if a Gaussian process {xt} is covari-
ance stationary, then it is strictly stationary and vice versa.

Example 6.1.1. Let {xn;n ≥ 1} be uncorrelated random variables with mean
value 0 and variance 1. Then

Cov(xn,xm) =

{
0 if n 
= m
1 if n = m.

Hence Cov(xn,xm) is a function of n−m and so the process is covariance stationary.
If xn are identically distributed also, then the process is strictly stationary.
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Example 6.1.2. Consider the Poisson process {x(t)} where

P[x(t) = n] =
(λ t)n

n!
e−λ t ;n = 0,1, · · · .

Clearly,

E[x(t)] = λ t

Var[x(t)] = λ t which depends on t

Therefore the process is not stationary. It is evolutionary.

Example 6.1.3. Consider the process {x(t)} where x(t) = A1 +A2t where A1,A2
are independent r.v.’s with E(Ai) = ai,Var(Ai) = σ2

i , i = 1,2. Obviously

E[x(t)] = a1 +a2t

Var[x(t)] = σ2
1 +σ2

2 t2

Cov[x(s),x(t)] = σ2
1 + stσ2

2 .

These are functions of t and hence the process is evolutionary.

Example 6.1.4. Consider the process {x(t)} where x(t) = Acoswt + Bsinwt,
where A and B are uncorrelated r.v.’s with mean value 0 and variance 1, and w is
a positive constant.

In this case E[x(t)] = 0 and Var[x(t)] = 1, Cov[x(t),x(t+h)] = cos(hw), where E
denotes the expected value. Hence the above process is covariance stationary. This
process is called a sinusoidal process.

Example 6.1.5. Consider the process {x(t)} such that

P[x(t) = n] =

⎧
⎪⎪⎨

⎪⎪⎩

(at)n−1

(1+at)n+1 ;n = 1,2, · · ·

(at)
(1+at) ;n = 0.

Obviously

E[x(t)] =
∞

∑
n=0

nP[x(t) = n]

=
1

(1+at)2

∞

∑
n=1

n
(at)n−1

(1+at)n−1 = 1

E[x2(t)] =
∞

∑
n=1

n2 (at)n−1

(1+at)n−1

=
at

(1+at)3

{
∞

∑
n=2

n(n−1)
(at)n−2

(1+at)n−2

}

+
∞

∑
n=1

n
(at)n−1

(1+at)n+1

= 2at +1,
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which is a function of t. Hence the process is not stationary. It is an evolutionary
process.

Example 6.1.6. Consider the Bernoulli process: Consider a sequence of indepen-
dent Bernoulli trials with outcomes as success and failure. Let

xn =

{
1, if the outcome is a success
0, otherwise.

Then the process {xn;n ≥ 1} has states 0 and 1 and the process is called a Bernoulli
process. Let us define {yn} by yn = 0 for n = 0 and yn = x1 + · · ·+ xn,n ≥ 1. Then
the process {yn;n ≥ 0} has the set of non-negative integers as the state space. This
yn is binomially distributed with

P[yn = k] =
(

n
k

)
pk(1− p)n−k;k = 0,1,2, · · ·n; 0 < p < 1

where p is the probability of success in a trial.

Example 6.1.7. (The random telegraph signal process ): Let {N(t), t ≥ 0} de-
note a Poisson process, and let x0 be independent of this process, and be such
that P(x0 = 1) = P(x0 = −1) = 1

2 . Define x(t) = x0(−1)N(t). Then {x(t); t ≥ 0}
is called a random telegraph signal process. In this case P[N(t) = k] = e−λ t (λ t)k

k! for
k = 0,1,2, · · · . Clearly

E[x(t)] = E[x0(−1)N(t)]

= E[x0]E[(−1)N(t)] = 0

Cov[x(t),x(t + s)] = E[x(t)x(t + s)]

= E[x2
0(−1)N(t)+N(t+s)]

= E[x2
0]E[(−1)2N(t)+N(t+s)−N(t)]

= 1E[(−1)2N(t)(−1)N(t+s)−N(t)]

= E[(−1)2N(t)]E[(−1)N(t+s)]

= 1E[(−1)N(s)]

=
∞

∑
k=0

(−1)k e−λ s(λ s)k

k!

= e−2λ s;s ≥ 0.
Also

Var[x(t)] = 1 < ∞.

Hence the above process is covariance stationary.
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For an application of the above random telegraph signal, consider a particle mov-
ing at a constant unit velocity along a straight line and suppose that collisions in-
volving this particle occur at Poisson rate λ . Also suppose that each time when
the particle suffers from a collision it reverses direction. If x0 represents the initial
velocity of the particle, then its velocity at time t is given by x(t) = x0(−1)N(t). If we
take D(t) =

∫ t
0 x(s)ds, then D(t) represents the displacement of the particle during

(0, t). It can be shown that {D(t); t ≥ 0} is also a weakly stationary process.

Example 6.1.8. Consider an Autoregressive Process {xn} where x0 = z0 and xn =
ρxn−1 +zn;n≥ 1, |ρ|< 1 where z0,z1,z2, · · · are uncorrelated random variables with
E(zn) = 0;n ≥ 0 and

Var(zn) =

{
σ2; n ≥ 1
σ2

1−ρ2 ; n = 0.

Then

xn = ρxn−1 + zn

= ρ(ρxn−2 + zn−1)+ zn

= ρ2xn−2 +ρzn−1 + zn

=
n

∑
i=0
ρn−izi.

Therefore

E(xn) = 0

Cov[xn,xn+m] = Cov

[
n

∑
i=0
ρn−izi,

n+m

∑
i=0
ρn+m−izi

]

=
n

∑
i=0
ρn−iρn+m−iCov(zi,zi)

= σ2ρ2n+m

[
1

1−ρ2 +
n

∑
i=1
ρ−2i

]

=
σ2ρm

1−ρ2 , n → ∞.

Therefore this process is also covariance stationary.
Now we consider a special type of Gaussian Process, which is stationary in both

senses and has a wide range of applications.



6.1 Stochastic Processes 257

6.1.5 Brownian processes

We consider a symmetric random walk in which, in each time unit, there is a chance
for one unit step forward or backward. Now suppose that we speed up this process
by taking smaller and smaller steps in smaller and smaller time intervals. In the limit
we obtain the Brownian motion process. It is also known as the Wiener process, af-
ter Wiener who developed this concept in a series of papers from 1918 onwards.
Actually it originated in Physics, as the notion associated with the random move-
ments of a small particle immersed in a liquid or gas. This was first discovered by
the British botanist Robert Brown. The process can be more precisely developed as
follows: Suppose that, in the random walk, in each time interval of duration ∆t we
take a step of size ∆x either to the left or to the right with equal probabilities. If we
let x(t) denote the position at time t, then

x(t) = ∆x [x1 + · · ·+ x[ t
∆t ]

]

where

xi =

{
+1 if the ith step is to the right
−1 if it is to the left

and [ t
∆t ] is the integer part of t

∆t . We assume that xi’s are independent with P(xi =
1) = P(xi = −1) = 1

2 . Since E(xi) = 0,Var(xi) = 1 we have E[x(t)] = 0,Var[x(t)] =
(∆x)2[ t

∆t ]
Now we consider the case when ∆x→ 0 and ∆t → 0 in such a way that E[x(t)] = 0

and Var[x(t)] → σ2t. The resulting process {x(t)} is such that x(t) is normally dis-
tributed with mean 0 and variance σ2t, and has independent, stationary increments.
This leads us to the formal definition of a Brownian motion process.

Definition 6.1.2. A stochastic process {x(t); t ≥ 0} is said to be a Brownian motion
process if (i) x(0) = 0 (ii) {x(t)} has stationary independent increments (iii)
for every t > 0,x(t) is normally distributed with mean value 0 and variance σ2t.

When σ = 1, the process is called a standard Brownian motion. Any Brownian
motion x(t) can be converted to a standard Brownian motion by taking B(t) = x(t)

σ . If
{B(t)} is a standard Brownian motion and x(t) = σB(t)+µt, then x(t) is normally
distributed with mean value µt and variance tσ2. Then {x(t); t ≥ 0} is called a
Brownian motion with drift coefficient µ . If {x(t); t ≥ 0} is a Brownian motion
process with drift coefficient µ and variance parameter σ2t, then {y(t); t ≥ 0} where
y(t) = exp[x(t)] is a called a geometric Brownian motion process. It is useful in
modeling of stock prices over time when the percentage changes are independent
and identically distributed.

If {x(t); t ≥ 0} is a Brownian motion process then each of x(tl),x(t2), · · · can
be expressed as a linear combination of the independent normal random variables
x(t1),x(t2)−x(t1),x(t3)−x(t2), · · ·x(tn)−x(tn−1). Hence it follows that a Brownian
motion is a Gaussian process.
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Since a multivariate normal distribution is completely determined by the mar-
ginal mean values and covariance values, it follows that a standard Brownian motion
could also be defined as a Gaussian process having E[x(t)] = 0 and for s ≥ t,

Cov[x(s),x(t)] = Cov[x(s),x(s)+ x(t)− x(s)]
= Cov[x(s),x(s)]+Cov[x(s),x(t)− x(s)]
= Var[x(s)]

= sσ2.

Let {x(t); t ≥ 0} be a standard Brownian motion process and consider the process
values between 0 and 1 conditional on x(1) = 0. Consider the conditional stochastic
process, {x(t);0 ≤ t ≤ 1|x(1) = 0}. Since this conditional distribution is also mul-
tivariate normal it follows that this conditional process is a Gaussian process. This
conditional process is known as the Brownian bridge.

Brownian motion theory is a major topic in fluid dynamics and has applications
in aeronautical engineering in the designing of aeroplanes, submarines, satellites,
space crafts etc. It also finds applications in financial modeling.

6.1.6 Markov chains

An elementary form of dependence between values of xn in successive transitions,
was introduced by the celebrated Russian probabilist A.A. Markov, and is known as
Markov dependence. Markov dependence is a form of dependence which states that
xn+1 depends only on xn when it is known and is independent of xn−1,xn−2, · · · ,x0.
This implies that the future of the process depends only on the present, irrespective
of the past. This property is known as Markov property. In probabilistic terms, the
Markov property can be stated as

P[xn+1, = in+1|x0 = i0,x1 = i1, · · · ,xn−1 = in−1,xn = in]
= P[xn+1 = in+1|xn = in]

for all states i0, i1, · · · , in+1 and for all n. This is called Markov dependence of the
first order.

A stochastic process {xn} with discrete state space and discrete parameter space
is called a Markov chain if for all states i, j, i0, i1, · · · , in−1 we have

P[xn+1 = j|x0 = i0,x1 = i1, · · · ,xn−1 = in−1,xn = i]
= P{xn+1 = j|xn = i] for all n.

The probability that the system is in state j at the end of (n + 1) transitions given
that the system was in state i at the end of n transitions is denoted by p(1)

i j and is
called a one-step transition probability. In general this probability depends on i, j
and n. If these probabilities are independent of n, we say that the Markov chain
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is homogeneous and has stationary transition probabilities. Here we consider only
such chains. Thus

p(1)
i j = P[xn+1 = j|xn = i].

In a similar manner we can consider m-step transition probabilities denoted by p(m)
i j

where
p(m)

i j = P[xn+m = j|xn = i].

If the state space of a Markov chain consists of only a finite number of states, it is
called a finite Markov chain. Otherwise we call it an infinite Markov chain.

The square matirx P consisting of the elements p(1)
i j for all possible states i and j

is called one-step transition probability matrix of the chain. Therefore

P = [p(1)
i j ].

Similarly the square matrix P(m) consisting of the elements p(m)
i j for all possible

values of the states i and j is called the m-step transition matrix of the chain. Hence

P(m) = [p(m)
i j ].

Obviously we have P(1) = P and

p(m)
i j ≥ 0 and ∑

j
p(m)

i j = 1.

Now we consider p(0)
j = P[x0 = j]. It may be noted that p(0)

j describes the proba-

bility distribution of x0. The vector p(0) = (p(0)
0 , p(0)

1 , · · · p(0)
j · · ·) is called the initial

probability vector. Similarly p(n)
j = P[xn = j] gives the probability distribution of

xn. The vector p(n) = (p(n)
0 , p(n)

1 , · · · p(n)
j · · ·) is called the n-step absolute probability

vector.

Theorem 6.1.1. A Markov chain is completely defined by its one-step transition
probability matrix and the initial probability vector.

Proof 6.1.1: Consider

P[x0 = i|x1 = j,x2 = k, · · · ,xn−1 = r,xn = s]
= P[x0 = i] P[x1 = j|x0 = i] P[x2 = k|x0 = i,x1 = j]

· · ·P{xn = s|x0 = i, · · · ,xn−1 = r}
= P(x0 = i)P(x1 = j|x0 = i) P(x2 = k|x1 = j) · · ·P(xn = s|xn−1 = r)

= p(0)
i p(1)

i j · · · p(1)
rs .

This shows that any finite dimensional joint distribution for the chain can be ob-
tained in terms of the initial probabilities and one-step transition probabilities, and
this establishes the theorem.
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Theorem 6.1.2. (Chapman-Kolmogorov Equations): The transition probabilities
of Markov chains satisfy the equation

p(m+n)
i j =∑

k
p(m)

ik p(n)
k j where p(0)

i j =

{
1, i = j
0, i 
= j

or equivalently,

P(n) = Pn and P(m+n) = P(m)P(n)

(i) Computation of absolute probabilities

Consider

p(n)
j = P[xn = j]

P(xn = j) =∑
i

P(xn = j,x0 = i)

=∑
i

P(x0 = i)P(xn = j|x0 = i).

Therefore
p(n)

j =∑
i

p(0)
i p(n)

i j

(ii) Inverse transition probabilities

The n-step inverse transition probabilities denoted by q(n)
i j is defined as

q(n)
i j = P(xm = j|xn+m = i)

for m ≥ 0,n ≥ 0. They describe the past behaviour of the process when the
present is given. But transition probabilities describe the future behaviour of
the process when the present is given.
Now

P(xm = j|xn+m = i)P(xn+m = i)
= P(xn+m = i|xn = j)P(xn = j).

Therefore

P(xm = j|xn+m = i) =
P(xn+m = i|xm = j)P(xm = j)

P(xn+m = i)
.

Hence

q(n)
j =

p(n)
i j p(m)

j

P(n+m)
i

, m ≥ 0

whenever the denominator is nonzero.



6.1 Stochastic Processes 261

(iii) Taboo probabilities

In this case the movement of the system to some specified states is prohibited.
For example consider

P(x2 = j,x1 
= k|x0 = i) = P

(the system reaches state j at the end of 2 transitions without visiting state k
given that the system started from state i). This is usually denoted by kP(2)

i j .
Using the Chapman-Kolmogorov equations, we have

k p(2)
i j = ∑

m
=k
p(1)

im p(1)
m j

It may be noted that kP(2)
i j is different from P[x2 = j|x0 = i,x1 
= k] which is

equal to P[x2 = j|x1 
= k]. Similarly P[x2 = j,x1 
= k,m|x0 = i] may be denoted
by m,kP(2)

i j . Obviously,

m,kP(2)
i j = ∑

v 
=k,m
p(1)

iv p(1)
v j

Problems relating to taboo probabilities can be solved as shown above.

Exercises 6.1.

6.1.1. Give two examples each of the four types of stochastic processes.

6.1.2. Define a stochastic process with stationary independent increments.

6.1.3. For a process with stationary independent increments show that E(xt) = m0 +
m1t where m0 = E(x0) and m1 = E(x1)−m0.

6.1.4. What is a Poisson process ? Show that it is evolutionary.

6.1.5. Give an example of a strictly stationary process.

6.1.6. Give an example of a covariance stationary process.

6.1.7. Let {xn} be uncorrelated r.v.’s with E(xn) = 0, Var(xn) = 1. Show that {xn}
is strictly stationary.

6.1.8. Consider a Poisson process {x(t)} where p[x(t) = n] = e−λ t (λ t)n

n! ; n = 0,1, · · · .
Find E(x(t)) and Var(x(t)). Is the process stationary ?

6.1.9. Consider a Poisson process {x(t)} as above. Let x0 be independent of x(t)
such that p(x0 = 1) = p(x0 = −1) = 1

2 . Define N(t) = x0(−1)N(t). Find E(N(t))
and Cov(N(t),N(t + s)).
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6.1.10. Define a Brownian process and show that it is an approximation of the ran-
dom walk process.

6.1.11. Obtain an expression for the covariance function of a Brownian motion
process.

6.1.12. What is geometric Brownian motion process? Discuss its uses ?

6.1.13. Consider the numbers 1,2,3,4,5. We select one number out of these at ran-
dom and note it as x1. Then select a number at random from 1,2 · · ·x1 and denote
it as x2. The process is continued. Write down the one step and two step transition
matrices of the chain {xn}.

6.1.14. 4 white and 4 red balls are randomly distributed in two urns so that each urn
contains 4 balls. At each step one ball is selected at random from each urn and the
two balls are interchanged. Let xn denote the number of white balls in the first urn at
the end of the nth interchange. Then write down the one-step transition matrix and
the initial distribution. Also find

(i) P[x3 = 4|x1 = 4]; (ii) P[x2 = 3];

(iii) P[x1 = 4, x2 = 3, x3 = 2, x4 = 1]; (iv) P[x1 = 3|x3 = 4].

6.1.15. If xn denotes the maximum face value observed in n tosses of a balanced die
with faces marked 1,2,3,4,5,6 write down the state space and parameter space of
the process {xn}. Also obtain the transition matrix.

6.2 Modern Concepts in Distribution Theory

6.2.1 Introduction

In this section we discuss some modern concepts in distribution theory which will
be of frequent use in this chapter.

Definition 6.2.1. Infinite divisibility.
A random variable x is said to be infinitely divisible if for every n ∈ N, there

exists independently and identically distributed random variables y1n,y2n, . . . ,ynn

such that x d= y1n +y2n + · · ·+ynn, where d= denotes equality in distributions. In terms
of distribution functions, a distribution function F is said to be infinitely divisible
if for every positive integer n, there exists a distribution function Fn such that F =
Fn �Fn � · · ·�Fn︸ ︷︷ ︸

n times

, where � denotes convolution. This is equivalent to the existence of

a characteristic function ϕn(t) for every n ∈ N such that ϕ(t) = [ϕn(t)]n where ϕ(t)
is the characteristic function of x.
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Infinitely divisible distributions occur in various contexts in the modeling of
many real phenomena. For instance when modeling the amount of rain x that falls
in a period of length T , one can divide x into more general independent parts from
the same family. That is,

x d= xt1 + xt2−t1 + · · ·+ xT−tn−1 .

Similarly, the amount of money x paid by an insurance company during a year is
expressible as the sum of the corresponding amounts x1,x2, . . . ,x52 in each week.
That is,

x d= x1 + x2 + · · ·+ x52.

A large number of distributions such as normal, exponential, Weibull, gamma,
Cauchy, Laplace, logistic, lognormal, Pareto, geometric, Poisson, etc., are infinitely
divisible. Various properties and applications of infinitely divisible distributions can
be found in Laha and Rohatgi (1979) and Steutel (1979).

6.2.2 Geometric infinite divisibility

The concept of geometric infinite divisibility (g.i.d.) was introduced by Klebanov
et al. (1985). A random variable y is said to be g.i.d. if for every p ∈ (0,1), there
exists a sequence of independently and identically distributed random variables
x(p)

1 ,x(p)
2 , . . . such that

y d=
N(p)

∑
j=1

x(p)
j (6.2.1)

and
P{N(p) = k} = p(1− p)k−1, k = 1,2, · · ·

where y,N(p) and x(p)
j , j = 1,2, . . . are independent. The relation (6.2.1) is equiva-

lent to

ϕ(t) =
∞

∑
j=1

[g(t)] j p(1− p) j−1

=
pg(t)

1− (1− p)g(t)

where ϕ(t) and g(t) are the characteristic functions of y and x(p)
j respectively.

The class of g.i.d. distributions is a proper subclass of infinitely divisible dis-
tributions. The g.i.d. distributions play the same role in ‘geometric summation’ as
infinitely divisible distributions play in the usual summation of independent random
variables. Klebanov et al. (1985) established that a distribution function F with char-
acteristic function ϕ(t) is g.i.d. if and only if exp

{
1− 1

ϕ(t)

}
is infinitely divisible.

Exponential and Laplace distributions are obvious examples of g.i.d. distributions.
Pillai (1990b), Mohan et al. (1993) discuss properties of g.i.d. distributions. It may
be noted that normal distribution is not geometrically infinitely divisible.
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6.2.3 Bernstein functions

A C∞–function f from (0,∞) to R is said to be completely monotone if (−1)n dn f
dxn ≥ 0

for all integers n ≥ 0. A C∞–function f from (0,∞) to R is said to be a Bernstein
function, if f (x) ≥ 0, x > 0 and (−1)n dn f

dxn ≤ 0 for all integers n ≥ 1. Then f is also
referred to as a function with complete monotone derivative (c.m.d). A completely
monotone function is positive, decreasing and convex while a Bernstein function is
positive, increasing and concave (see Berg and Forst (1975)).

Fujita (1993) established that a cumulative distribution function G with G(0) = 0
is geometrically infinitely divisible, if and only if G can be expressed as

G(x) =
∞

∑
n=1

(−1)n+1W n∗([0,x]), x > 0

where W n∗(dx) is the n-fold convolution measure of a unique positive measure
W (dx) such that

1
f (x)

=
∫ ∞

0
e−sxW (ds), x > 0

where f (x) is a Bernstein function, satisfying the conditions

lim
x↓0

f (x) = 0 and lim
x→∞

f (x) = ∞.

A distribution is said to have complete monotone derivative if its distribution
function F(x) is Bernstein. Pillai and Sandhya (1990) proved that the class of dis-
tributions having complete monotone derivative is a proper subclass of g.i.d. dis-
tributions. This implies that all distributions with complete monotone densities are
geometrically infinitely divisible. It is easier to verify the complete monotone crite-
rion and using this approach we can establish the geometric infinite divisibility of
many distributions such as Pareto, gamma and Weibull.

The class of non-degenerate generalized gamma convolutions with densities of
the form given by

f1(x) = c xβ−1
M

∏
j=1

(1+ c jx)−r j , x > 0

is geometrically infinitely divisible for 0 < β ≤ 1. Similarly distributions having
densities of the form

f2(x) = cxβ−1 exp(−bxα); 0 < α ≤ 1

is g.i.d. for 0 < β ≤ 1. Also the Bondesson family of distributions with densities of
the form

f3(x) = cxβ−1
M

∏
j=1

[

1+
Nj

∑
k=1

c jkxα jk

]−r j

is g.i.d. for 0 ≤ β ≤ 1, α jk ≤ 1 provided all parameters are strictly positive (see
Bondesson(1992)).
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6.2.4 Self-decomposability

Let {xn; n ≥ 1} be a sequence of independent random variables, and let {bn} be a
sequence of positive real numbers such that

lim
n→∞

max
1≤k≤n

P{|xk| ≥ bnε} = 0 for every ε > 0 .

Let sn =∑n
k=1 xk for n ≥ 1. Then the class of distributions which are the weak limits

of the distributions of the sums b−1
n sn −an; n ≥ 1 where an and bn > 0 are suitably

chosen constants, is said to constitute class L. Such distributions are called self-
decomposable.

A distribution F with characteristic function ϕ(t) is called self-decomposable, if
and only if, for every α ∈ (0,1), there exists a characteristic function ϕα(t) such
that ϕ(t) = ϕ(αt)ϕα(t), for t ∈ R.

Clearly, apart from x ≡ 0, no lattice random variable can be self–decomposable.
All non-degenerate self–decomposable distributions are absolutely continuous.

A discrete analogue of self–decomposability was introduced by Steutel and
Van Harn (1979). A distribution on N0 ≡ {0,1,2, . . .} with probability generating
function (p.g.f.) P(z) is called discrete self-decomposable if and only if P(z) =
P(1−α+αz)Pα(z); |z| ≤ 1, α ∈ (0,1) where Pα(z) is a p.g.f.

If we define G(z) = P(1 − z), then G(z) is called the alternate probability
generating function (a.p.g.f.). Then it follows that a distribution is discrete self–
decomposable if and only if G(z) = G(αz)Gα(z); |z| ≤ 1, α ∈ (0,1) where Gα(z) is
some a.p.g.f.

6.2.5 Stable distributions

A distribution function F with characteristic function ϕ(t) is stable if for every pair
of positive real numbers b1 and b2, there exist finite constants a and b > 0 such that
ϕ(b1t)ϕ(b2t) = ϕ(bt)eiat where i =

√
−1.

Clearly, stable distributions are in class L with the additional condition that the
random variables xn; n ≥ 1 in Subsection 6.2.4 are identically distributed also. F is
stable if and only if its characteristic function can be expressed as

lnϕ(t) = iαt − c|t|β [1+ iγω(t,β )sgn t]

where α,β ,γ are constants with c ≥ 0, 0 < β ≤ 2, |γ| ≤ 1 and

ω(t,β ) =

{
tan πβ2 ; β 
= 1
2
π ln |t|; β = 1.

The value c = 0 corresponds to the degenerate distribution, and β = 2 to the normal
distribution. The case γ = 0, β = 1 corresponds to the Cauchy law (see Laha and
Rohatgi (1979)).
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6.2.6 Geometrically strictly stable distributions

A random variable y is said to be geometrically strictly stable (g.s.s.) if for any
p ∈ (0,1) there exists a constant c = c(p) > 0 and a sequence of independent and
identically distributed random variables y1,y2, . . . such that

y d= c(p)
N(p)

∑
j=1

y j

where P{N(p) = k} = p(1− p)k−1, k = 1,2, . . . and y,N(p) and y j, j = 1,2, . . . are
independent.

If ϕ(t) is the characteristic function of y, then it implies that

ϕ(t) =
pϕ(ct)

1− (1− p)ϕ(ct)
, p ∈ (0,1).

Among the geometrically strictly stable distributions, the Laplace distribution and
exponential distribution possess all moments. A geometrically strictly stable random
variable is clearly geometrically infinitely divisible.

A non–degenerate random variable y is geometrically strictly stable if and only
if its characteristic function is of the form

ϕ(t) =
1

[
1+λ |t|α exp

(
−iπ2 θα sgn t

)]

where 0 < α ≤ 2, λ > 0, |θ | ≤ min[1, 2
α − 1]. When α = 2, it corresponds to the

Laplace distribution. Thus it is apparent that when ordinary summation of random
variables is replaced by geometric summation, the Laplace distribution plays the
role of the normal distribution, and exponential distribution replaces the degenerate
distribution (see Klebanov et al. (1985)).

6.2.7 Mittag-Leffler distribution

The Mittag-Leffler distribution was introduced by Pillai (1990a) and has cumulative
distribution function given by

Fα(x) =
∞

∑
k=1

(−1)k−1xkα

Γ(1+ kα)
, 0 < α ≤ 1, x > 0.

Its Laplace transform is given by φ(t) = 1
1+tα , 0 < α ≤ 1, t ≥ 0, and the distribution

may be denoted by ML(α). Here α is called the exponent. It can be regarded as a
generalization of the exponential distribution in the sense that α = 1 corresponds to
the exponential distribution. The Mittag-Leffler distribution is geometrically infi-
nitely divisible and belongs to class L. It is normally attracted to the stable law with
exponent α .
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If u is exponential with unit mean and y is positive stable with exponent α , then
x = u1/αy is distributed as Mittag-Leffler (α) when u and y are independent. If u
is Mittag-Leffler (α) and v is exponential and u and v are independent, then w = u

v
is distributed as Pareto type III with survival function F̄w(x) = P(w > x) = 1

1+xα ;
0 < α ≤ 1.

For the Mittag-Leffler distribution, E(xδ ) exists for 0 ≤ δ < α and is given by

E(xδ ) =
Γ
(

1− δ
α

)
Γ
(

1+ δ
α

)

Γ(1−δ )
.

A two parameter Mittag-Leffler distribution can also be defined with the cor-
responding Laplace transform φ(t) = λα

λα+tα , 0 < α ≤ 1. It may be denoted by
ML(α,λ ).

Jayakumar and Pillai (1993) considered a more general class called semi–Mittag-
Leffler distribution which included the Mittag-Leffler distribution as a special case.
A random variable x with positive support is said to have a semi–Mittag-Leffler
distribution if its Laplace transform is given by

φ(t) =
1

1+η(t)

where η(t) satisfies the functional equation η(t) = aη(bt) where 0 < b < 1 and α is
the unique solution of abα = 1. It may be denoted by SML(α). Then it follows that
η(bt) = bαh(t) where h(t) is a periodic function in t with period − lnb

2πα . When h(t)
is a constant, the distribution reduces to the Mittag-Leffler distribution. The semi–
Mittag-Leffler distribution is also geometrically infinitely divisible and belongs to
class L.

6.2.8 α–Laplace distribution

The α–Laplace distribution has characteristic function given by ϕ(t) = 1
1+|t|α ; 0 <

α ≤ 2, −∞< t < ∞. This is also called Linnik’s distribution. Pillai (1985) refers to
it as the α–Laplace distribution since α = 2 corresponds to the Laplace distribution.
It is unimodal, geometrically strictly stable and belongs to class L. It is normally
attracted to the symmetric stable law with exponent α . Also

E(|x|δ ) =
2δ Γ

(
1+ δ

α

)
Γ
(

1− δ
α

)
Γ
(

(1+δ )
2

)

√
π Γ
(

1− δ
2

)

where 0 < δ < α; 0 < α ≤ 2.
If u and v are independent random variables where u is exponential with unit

mean and v is symmetric stable with exponent α , then x = u1/αv is distributed as



268 6 Applications to Stochastic Process and Time Series

α–Laplace. Using this result, Devroye (1990) develops an algorithm for generating
random variables having α–Laplace distribution.

Pillai (1985) introduced a larger class of distributions called semi–α–Laplace
distribution, with characteristic function given by

ϕ(t) =
1

1+η(t)

where η(t) satisfies the functional equation η(t) = aη(bt) for 0 < b < 1 and a is
the unique solution of abα = 1, 0 < α ≤ 2. Here b is called the order and α is called
the exponent of the distribution. If b1 and b2 are the orders of the distribution such
that ln b1

ln b2
is irrational, then η(t) = c|t|α , where c is some constant. Pillai (1985)

established that, for a semi–α–Laplace distribution with exponent α , E|x|δ exists
for 0 ≤ δ < α . It can be shown that

ϕ(t) =
1

1+ |t|α [1−Acos(k ln |t|)]

where k = 2π
ln b , 0 < b < 1 is the characteristic function of a semi–α–Laplace distri-

bution for suitable choices of A and α < 1.
The semi–α–Laplace distribution is also geometrically infinitely divisible and

belongs to class L. It is useful in modeling household income data. Mohan et
al.(1993) refer to it as a geometrically right semi–stable law.

6.2.9 Semi–Pareto distribution

The semi–Pareto distribution was introduced by Pillai (1991). A random variable x
with positive support has semi–Pareto distribution SP(α, p) if its survival function is
given by F̄x(x0) = P(x > x0) = 1

1+ψ(x0) where ψ(x0) satisfies the functional equation

pψ(x0) = ψ(p1/αx0); 0 < p < 1, α > 0.
The above definition is analogous to that of the semi–stable law defined by Levy

(see Pillai (1971)). It can be shown that ψ(x) = xαh(x) where h(x) is periodic in
lnx with period −2πα

ln p . For example if h(x) = exp[β cos(α lnx)], then it satisfies the
above functional equation with p = exp(−2π) and ψ(x) is monotone increasing
with 0 < β < 1. The semi–Pareto distribution can be viewed as a more general
class which includes the Pareto type III distribution when ψ(x) = cxα , where c is a
constant.

Exercises 6.2.

6.2.1. Examine whether the following distributions are infinitely divisible.

(i) normal (ii) exponential (iii) Laplace (iv) Cauchy
(v) binomial (vi) Poisson (vii) geometric (viii) negative binomial
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6.2.2. Show that exponential distribution is geometric infinite divisible and self-
decomposable.

6.2.3. Examine whether Cauchy distribution is self-decomposable.

6.2.4. Show that (i) Mittag-Leffler distribution is g.i.d and belongs to class L.
(ii) α-Laplace distribution is g.i.d and self-decomposable.

6.2.5. Give a distribution which is infinitely divisible but not g.i.d.

6.2.6. Show that AR(1) structure xn = axn−1 +εn,a ∈ (0,1) is stationary Markovian
if and only if {xn} is self-decomposable.

6.2.7. Show that geometric and negative binomial distributions are discrete self-
decomposable.

6.2.8. Consider the symmetric stable distribution with characteristic function ϕ(t) =
e−|t|α . Is it self-decomposable?

6.3 Stationary Time Series Models

6.3.1 Introduction

A time series is a realization of a stochastic process. In other words, a time series,
{xt}, is a family of real–valued random variables indexed by t ∈Z, where Z denotes
the set of integers. More specifically, it is referred to as a discrete parameter time
series. The time series {xt} is said to be stationary if, for any t1, t2, . . ., tn ∈ Z, any
k ∈ Z, and n = 1,2, . . . ,

Fxt1 ,xt2 ,...,xtn (x1,x2, . . . ,xn) = Fxt1+k,xt2+k,...,xtn+k(x1,x2, . . . ,xn)

where F denotes the joint distribution function of the set of random variables which
appear as suffices. This is called stationarity in the strict sense. Less stringently,
we say a process {xn} is weakly stationary if the mean and variance of xt remain
constant over time and the covariance between any two values xt and xs depends
only on the time difference and not on their individual time points. {xt} is called
a Gaussian process if, for all tn;n ≥ 1 the set of random variables {xt1 ,xt2 , . . . ,xtn}
has a multivariate normal distribution. Since a multivariate normal distribution is
completely specified by its mean vector and covariance matrix, it follows that for
a Gaussian process weak stationarity implies complete stationarity. But for non–
Gaussian processes, this may not hold.
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6.3.2 Autoregressive models

The era of linear time series models began with autoregressive models first intro-
duced by Yule in 1927. The standard form of an autoregressive model of order p,
denoted by AR(p), is given by

xt =
p

∑
j=1

a jxt− j + εt ; t = 0,±1,±2, . . .

where {εt} are independent and identically distributed random variables called in-
novations and a j, p are fixed parameters, with ap 
= 0.

Another kind of model of great practical importance in the representation of ob-
served time series is the moving average model. The standard form of a moving

average model of order q, denoted by MA(q), is given by xt =
q
∑
j=1

b jεt− j + εt , t ∈ Z

where b j,q are fixed parameters, with bq 
= 0. In order to achieve greater flexibility
in the fitting of actually observed time series, it is more advantageous to include
both autoregressive and moving average terms in the model. Such models, called
autoregressive–moving average models, denoted by ARMA (p,q), have the form

xt =
p

∑
j=1

a jxt− j +
q

∑
k=1

bkεt−k + εt , t ∈ Z

where {a j}p
j=1 and {bk}q

k=1 are real constants called parameters of the model. It can
be seen that an AR(p) model is the same as an ARMA(p,o) model and a MA(q)
model is the same as an ARMA(o,q) model.

With the introduction of various non–Gaussian and non–linear models, the stan-
dard form of autoregression was widened in several respects. A more general defin-
ition of autoregression of order p is given in terms of the linear conditional expec-
tation requirement that

E(xt |xt−1,xt−2, . . .) =
p

∑
j=1

a jxt− j.

This definition could apply to models which are not of the linear form (see Lawrance
(1991)).

6.3.3 A general solution

We consider a first order autoregressive model with innovation given by the struc-
tural relationship

xn = εn +

{
0 with probability p
xn−1 with probability 1− p

(6.3.1)
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where p ∈ (0,1) and {εn} is a sequence of independent and identically distributed
(i.i.d.) random variables selected in such a way that {xn} is stationary Markovian
with a given marginal distribution function F .

Let φx(t) = E[e−tx] be the Laplace–Stieltjes transform of x. Then (6.3.1) gives

φxn(t) = φεn(t)[p+(1− p)φxn−1(t)].

If we assume stationarity, this simplifies to

φε(t) =
φx(t)

p+(1− p)φx(t)
(6.3.2)

or equivalently

φx(t) =
pφε(t)

1− (1− p)φε(t)
. (6.3.3)

When {xn} is marginally distributed as exponential, it is easy to see that (6.3.1)
gives the TEAR(1) model. We note that φε(t) in (6.3.2) does not represent a Laplace
transform always. In order that the process given by (6.3.1) is properly defined, there
should exist an innovation distribution such that φε(t) is a Laplace transform for all
p ∈ (0,1). For establishing the main results we need the following lemmas.

Lemma 6.3.1: (Pillai (1990b)): Let F be a distribution with positive support and
φ(t) be its Laplace transform. Then F is geometrically infinitely divisible if and
only if

φ(t) =
1

1+ψ(t)

where ψ(t) is Bernstein with ψ(0) = 0.

Now we consider the following definition from Pillai (1990b).

Definition 6.3.1. For any non–vanishing Laplace transform φ(t), the function

ψ(t) =
1
φ(t)

−1

is called the third characteristic.

Lemma 6.3.2: Let ψ(t) be the third characteristic of φ(t). Then pψ(t) is a third
characteristic for all p ∈ (0,1) if and only if ψ(t) has complete monotone derivative
and ψ(0) = 0.

Thus we have the following theorem.

Theorem 6.3.1. φε(t) in (6.3.2) represents a Laplace transform for all p ∈ (0,1)
if and only if φx(t) is the Laplace transform of a geometrically infinitely divisible
distribution.
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This leads to the following theorem which brings out the role of geometrically
infinitely divisible distributions in defining the new first order autoregressive model
given by (6.3.1).

Theorem 6.3.2. The innovation sequence {εn} defining the first order autoregres-
sive model given by

xn = εn +

{
0 with probability p
xn−1 with probability 1− p

where p ∈ (0,1), exists if and only if the stationary marginal distribution of xn is
geometrically infinitely divisible. Then the innovation distribution is also geometri-
cally infinitely divisible.

Proof 6.3.1: Suppose that an innovation sequence {εn}, such that the model
(6.3.1) is properly defined, exists. This implies that φε(t) in (6.3.3) is a Laplace
transform for all p ∈ (0,1). Then from (6.3.3)

φx(t) = pφε(t)[1− (1− p)φε(t)]−1

=
∞

∑
n=1

p(1− p)n−1[φε(t)]n

showing that the stationary marginal distribution of xn is geometrically infinitely
divisible. Conversely, if xn has a stationary marginal distribution which is geomet-
rically infinitely divisible, then φx(t) = 1

1+ψ(t) where ψ(t) has complete monotone

derivative and ψ(0) = 0. Then from (6.3.2) we get φε(t) = 1
1+pψ(t) , which estab-

lishes the existence of an innovation distribution, which is geometrically infinitely
divisible.

6.3.4 Extension to a k-th order autoregressive model

In this section we consider an extension of the model given by (6.3.1) to the k-th
order. The structure of this model is given by

xn = εn +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 with probability p0

xn−1 with probability p1
...
xn−k with probability pk

(6.3.4)

where pi ∈ (0,1) for i = 0,1, . . . ,k and p0 + p1 + · · ·+ pk = 1. Taking Laplace trans-
forms on both sides of (6.3.4) we get
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φxn(t) = φεn(t)

[

p0 +
k

∑
i=1

piφxn−i(t)

]

.

Assuming stationarity, it simplifies to

φx(t) = φε(t)

[

p0 +
k

∑
i=1

piφx(t)

]

= φε(t)[p0 +(1− p0)φx(t)].

This yields

φε(t) =
φx(t)

p0 +(1− p0)φx(t)
(6.3.5)

which is analogous to the expression (6.3.2).
It may be noted that k = 1 corresponds to the first order model with p = p0.

From (6.3.5) it follows that the results obtained in Section 6.1.2 hold good for the
k-th order model given by (6.3.4). This establishes the importance of geometrically
infinitely divisible distributions in autoregressive modeling.

6.3.5 Mittag-Leffler autoregressive structure

The Mittag-Leffler distribution was introduced by Pillai (1990a) and has Laplace
transform φ(t) = 1

1+tα , 0 < α ≤ 1. When α = 1, this corresponds to the exponen-
tial distribution with unit mean. Jayakumar and Pillai (1993) considered the semi–
Mittag-Leffler distribution with exponent α . Its Laplace transform is of the form

1
1+η(t) where η(t) satisfies the functional equation

η(t) = aη(bt), 0 < b < 1 (6.3.6)

and a is the unique solution of abα = 1 where 0 < α ≤ 1. Then by Lemma 6.3.1 of
Jayakumar and Pillai (1993), the solution of the functional equation (6.3.6) is η(t) =
tαh(t) where h(t) is periodic in ln t with period − 2πα

lnb . When h(t) = 1, η(t) = tα

and hence the Mittag-Leffler distribution is a special case of the semi-Mittag-Leffler
distribution. It is obvious that the semi–Mittag-Leffler distribution is geometrically
infinitely divisible.

Now we bring out the importance of the semi-Mittag-Leffler distribution in the
context of the new autoregressive structure given by (6.3.1). The following theorem
establishes this.

Theorem 6.3.3. For a positive valued first order autoregressive process {xn} sat-
isfying (6.3.1) the stationary marginal distribution of xn and εn are identical except
for a scale change if and only if xn’s are marginally distributed as semi-Mittag-
Leffler.
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Proof 6.3.2: Suppose that the stationary marginal distributions of xn and εn are
identical. This implies φε(t) = φx(ct) where c is a constant. Then from (6.3.2) we get

φx(ct) =
φx(t)

p+(1− p)φx(t)
. (6.3.7)

Writing φx(t) =
1

1+η(t)
in (6.3.7) we get

1
1+η(ct)

=
1

1+ pη(t)

so that

η(ct) = pη(t).

By choosing c = p1/α , it follows that xn is distributed as semi–Mittag-Leffler with
exponent α .

Conversely, we assume that the stationary marginal distribution of xn is semi-
Mittag-Leffler. Then from (6.3.2)

φε(t) =
1

1+ pη(t)
=

1
1+η(p1/α t)

.

This establishes that εn
d= p1/αMn where {Mn} are independently and identically

distributed as semi–Mittag-Leffler. It can be easily seen that the above result is true
in the case of the k-th order autoregressive model given by (6.3.4) also.

Exercises 6.3.

6.3.1. Define an AR(1) process and obtain the stationary solution for the distribution
of {εn} when {xn} are exponentially distributed.

6.3.2. Show that an AR(1) model can be expressed as MA(∞) model.

6.3.3. Establish a new AR(1) model with exponential innovations.

6.3.4. Examine whether two-parameter gamma distribution is g.i.d., giving condi-
tions if any.

6.3.5. Show that the exponential distribution is a special case of Mittag-Leffler dis-
tribution.

6.3.6. Obtain the stationary distribution of {εn} in the AR(1) structure xn = axn−1 +
εn;a ∈ (0,1) when {xn} follows exponential distribution. Generalize it to the case
of Mittag-Leffler random variables.

6.3.7. Obtain the structure of the innovation distribution if {xn} follows α-Laplace
distribution where xn = axn−1 + εn. Deduce the case when α = 2.

6.3.8. Show that if {xn} follows Cauchy distribution then {εn} also follows a
Cauchy distribution in the AR(1) equation xn = axn−1 + εn.
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6.4 A Structural Relationship and New Processes

In this section we obtain the specific structural relationship between the stationary
marginal distributions of xn and εn in the new autoregressive model. Fujita (1993)
generalized the results on Mittag-Leffler distributions and obtained a new character-
ization of geometrically infinitely divisible distributions with positive support using
Bernstein functions. It was established that a distribution function G with G(0) = 0
is geometrically infinitely divisible if and only if G can be expressed in the form.

G(x) =
∞

∑
n=1

(−1)n+1λ nW n∗([0,x]); x > 0, λ > 0 (6.4.1)

where W n∗(dx) is the n-fold convolution measure of a unique positive measure
W (dx) on [0,∞) such that

1
f (x)

=
∫ ∞

0
e−sxW (ds); x > 0 (6.4.2)

for some Bernstein function f such that limx↓o(x) = 0 and limx→∞ f (x) = ∞. Then

the Laplace transform of G(x), with parameter t, is
λ

λ + f (t)
. Using this result we

get the following theorem.

Theorem 6.4.1. The k-th order autoregressive equation given by (6.3.4) defines a
stationary process with a given marginal distribution function Fx(x) for xn if and
only if Fx(x) can be expressed in the form

Fx(x) =
∞

∑
n=1

(−1)n+1λ nW n∗([0,x]); x > 0, λ > 0. (6.4.3)

Then the innovations {εn} have a distribution function Fε(x) given by

Fε(x) =
∞

∑
n=1

(−1)n+1(λ/p0)nW n∗([0,x]); x > 0, λ > 0, (6.4.4)

where p0 ∈ (0,1) and W n∗ is as in (6.4.1).

Proof 6.4.1: We have from Theorem 6.3.1 that Fx(x) is geometrically infinitely
divisible. Then (6.4.3) follows directly from Fujita (1993). Now by substituting

φx(t) =
λ

λ + f (t)
in (6.3.2) we get

φε(t) =
λ

λ + p0 f (t)
=

(λ/p0)
(λ/p0)+ f (t)

which leads to (6.4.4). This completes the proof.
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The above theorem can be used to construct various autoregressive models un-
der different stationary marginal distributions for xn. For example, the TEAR(1)
model of Lawrance and Lewis (1981) can be obtained by taking f (t) = t. Then
W n∗([0,x]) = xn

n! so that Fx(x) = 1−e−λx and Fε(x) = 1−e−(λ/p)x. If we take λ = 1
and f (t) = tα ; 0 < α ≤ 1 we can obtain an easily tractable first order autoregressive
Mittag-Leffler process denoted by TMLAR(1). In this case W n∗([0,x]) = xnα

Γ(1+nα) .
In a similar manner by taking λ = 1 and f (t) satisfying the functional equation
f (t)= a f (bt) where a = b−α ; 0 < b < 1, 0 <α ≤ 1, we can obtain an easily tractable
first order autoregressive semi–Mittag-Leffler process denoted by TSMLAR(1).

6.4.1 The TMLAR(1) process

An easily tractable form of a first order autoregressive Mittag-Leffler process, called
TMLAR(1), is constituted by {xn} having a structure of the form

xn = p1/αMn +

{
0 with probability p
xn−1 with probability 1-p

(6.4.5)

where p ∈ (0,1); 0 < α ≤ 1 and {Mn} are independently and identically distributed

as Mittag-Leffler with exponent α and x0
d= M1. The model (6.4.5) can be rewritten

in the form
xn = p1/αMn + Inxn−1 (6.4.6)

where {In} is a Bernoulli sequence such that P(In = 0) = p and P(In = 1) = 1− p.
If in the structural form (6.4.5), we assume that {Mn} are distributed as

semi–Mittag-Leffler with exponent α , then {xn} constitute a tractable semi–Mittag-
Leffler autoregressive process of order 1, called TSMLAR(1). Both models are
Markovian and stationary. It can be seen that the TMLAR(1) process is a spe-
cial case of the TSMLAR(1) process since the Mittag-Leffler distribution is a
special case of the semi–Mittag-Leffler distribution.

Now we shall consider the TSMLAR(1) process and establish that it is strictly
stationary and Markovian, provided x0 is distributed as semi–Mittag-Leffler. In or-
der to prove this we use the method of induction. Suppose that xn−1 is distributed
as semi–Mittag-Leffler (α). Then by taking Laplace transforms on both sides of
(6.4.5), we get

φxn(t) = φMn(p1/α t)[p+(1− p)φxn−1(t)]

=
1

1+η(p1/α t)

[
p+(1− p)

1
1+η(t)

]

=
[

1
1+ pη(t)

][
1+ pη(t)
1+η(t)

]

=
1

1+η(t)
.
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Hence xn is distributed as semi–Mittag-Leffler with exponent α . If x0 is arbitrary,
then also it is easy to establish that {xn} is asymptotically stationary. Thus we have
the following theorem.

Theorem 6.4.2. The first order autoregressive equation

xn = p1/αMn + Inxn−1, n = 1,2, . . . , p ∈ (0,1)

where {In} are independent Bernoulli random variables such that P(In = 0) = p =
1 − P(In = 1) defines a positive valued strictly stationary first order autoregres-
sive process if and only if {Mn} are independently and identically distributed as

semi–Mittag-Leffler with exponent α and x0
d= M1.

Remark 6.4.1: If we consider characteristic functions instead of Laplace trans-
forms, the results can be applied to real valued autoregressive processes. Then the
role of semi–Mittag-Leffler distributions is played by semi–α–Laplace distributions
introduced by Pillai (1985).

6.4.2 The NEAR(1) model

In this section we consider a generalized form of the first order autoregressive equa-
tion. The new structure is given by

xn = εn +

{
0 with probability p
axn−1 with probability 1− p

(6.4.7)

where 0 ≤ p ≤ 1; 0 ≤ a ≤ 1 and {εn} is a sequence of independent and identically
distributed random variables such that {xn} have a given stationary marginal dis-
tribution. Let φx(t) = E[e−tx] be the Laplace–Stieltjes transform of x. Then (6.4.7)
gives

φxn(t) = φεn(t)[p+(1− p)φxn−1(at)].

Assuming stationarity, it simplifies to

φε(t) =
φx(t)

p+(1− p)φx(at)
. (6.4.8)

When p = 0 and 0 < a < 1, the model (6.4.7) is the standard first order autore-
gressive model. Then the model is properly defined if and only if the stationary
marginal distribution of xn is self–decomposable. When a = 1, 0 < p < 1 the model
is the same as the model (6.4.1), which is properly defined if and only if the station-
ary marginal distribution of xn is geometrically infinitely divisible. When a = 0 or
p = 1, xn and εn are identically distributed.
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Now we consider the case when a ∈ (0,1] and p ∈ (0,1], but not simultaneously
equal to 1. Lawrance and Lewis (1981) developed a NEAR(1) model with exponen-

tial (λ ) marginal distribution for xn. Then φx(t) =
λ
λ + t

and substitution in (6.4.8)

gives

φε(t) =
[
λ +at
λ + t

][
λ

λ + pat

]
(6.4.9)

which can be rewritten as

φε(t) =
(

1−a
1− pa

)(
λ
λ + t

)
+
[
(1− p)a
1− pa

][
λ

λ + pat

]
.

Hence εn can be regarded as a convex exponential mixture of the form

εn =

{
En with probability 1−a

1−pa

paEn with probability (1−p)a
1−pa

(6.4.10)

where {En}, n = 1,2, . . . are independent and identically distributed as exponential
(λ ) random variables. Another representation for εn can be obtained from (6.4.9)
by writing

φε(t) =
[

a+(1−a)
λ
λ + t

][
λ

λ + pat

]
. (6.4.11)

Then writing w.p. for ‘with probability’ εn can be regarded as the sum of two inde-
pendent random variables un and vn where

un =

{
0 w. p. a
en w. p. 1−a and

(6.4.12)

vn = paen

where {en}, n = 1,2, . . . are exponential (λ ). It may be noted that when p = 0, the
model is identical with the EAR(1) process, of Gaver and Lewis (1980). Thus the
new representation of εn seems to be more appropriate, when NEAR(1) process is
regarded as a generalization of the EAR(1) process.

6.4.3 New Mittag-Leffler autoregressive models

Now we construct a new first order autoregressive process with Mittag-Leffler mar-
ginal distribution, called the NMLAR(1) model. The structure of the model is as in

(6.4.7) and the innovations can be derived by substituting φx(t) =
1

1+ tα
; 0 < α ≤ 1

in (6.4.8). This gives

φε(t) =
[

1+aα tα

1+ tα

][
1

1+aα ptα

]
.
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Hence the innovations εn can be given in the form

εn =

{
Mn w.p. 1−aα

1−paα

paαMn w.p. (1−p)aα
1−paα

(6.4.13)

where {Mn} are Mittag-Leffler (α) random variables.
An alternate representation of εn is εn = un +vn where un and vn are independent

random variables such that

un =

{
0 w.p. aα

Mn w.p. 1−aα and
(6.4.14)

vn = ap1/αMn

where {Mn}, n = 1,2, . . . are independent Mittag-Leffler (α) random variables.
It can be shown that the process is strictly stationary and Markovian. This gives

us the following theorem.

Theorem 6.4.3. The first order autoregressive equation given by (6.4.7) defines
a strictly stationary AR(1) process with a Mittag-Leffler (α) marginal distribution
for xn if and only if the innovations are of the form εn = un +vn where un and vn are
as in (6.4.14) with x0 distributed as Mittag-Leffler (α).

Proof 6.4.2: We prove this by induction. We assume that xn−1 is Mittag-Leffler
(α). Then by taking Laplace transforms, we get

φxn(t) = [φMn(ap1/α t)][aα +(1−aα)φMn(t)]

× [p+(1− p)φxn−1(at)]

=
[

1
1+aα ptα

][
aα +(1−aα)

1
1+ tα

]

×
[

p+(1− p)
1

1+aα tα

]

=
[

1
1+aα ptα

][
1+aα tα

1+ tα

][
1+ paα tα

1+aα tα

]

=
1

1+ tα
.

This shows that xn is distributed as Mittag-Leffler (α), and this establishes the suf-
ficiency part. The necessary part is obvious from the derivation of the innovation
sequence. This completes the proof.

The joint distribution of (xn,xn−1) is of interest in describing the process and
matching it with data. Therefore, we shall obtain the joint distribution with the use
of Laplace-Stieltjes transforms. The bivariate Laplace transform is given by
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φxn,xn−1(s, t) = E{exp(−sxn − txn−1)}

= φε(s){pφx(t)+(1− p)φx(as+ t)}

=
[

1+aαsα

1+ sα

][
1

1+ paαsα

]{
p

1+ tα
+

1− p
1+(as+ t)α

}
.

It is possible to obtain the joint distribution by inverting this expression.

6.4.4 The NSMLAR(1) process

Now we extend the NMLAR(1) process to a wider class to construct a new semi–
Mittag-Leffler first order autoregressive process. The process has the structure

xn = εn +

{
0 w.p. p
axn−1 w.p. 1− p

where {εn} are independently and identically distributed as the sum of two indepen-
dent random variables un and vn where

un =

{
0 w.p. aα

Mn w.p. 1−aα and
(6.4.15)

vn = ap1/αMn

where {Mn}, n = 1,2, . . . are independently and identically distributed as semi–
Mittag-Leffler (α). This process is also clearly strictly stationary and Markovian
provided x0 is semi–Mittag-Leffler (α). This follows by induction. In terms of
Laplace transforms we have

φxn(t) = [p+(1− p)φxn−1(at)][aα +(1−aα)φMn(t)]

× [φMn(ap1/α t)]

=
[

p+
(1− p)

1+η(at)

][
aα +

(1−aα)
1+η(t)

]

× 1
1+η(ap1/α t)

=
[

p+(1− p)
1

1+aαη(t)

][
1+aαη(t)

1+η(t)

]

× 1
1+aα pη(t)

=
1

1+η(t)
.

Thus we have established the following theorem.
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Theorem 6.4.4. The first order autoregressive equation

xn = aInxn−1 + εn, n = 1,2, . . .

where {In} are independent Bernoulli sequences such that P(In = 0) = p and
P(In = 1) = 1− p; p ∈ (0,1), a ∈ (0,1) is a strictly stationary AR(1) process with
semi–Mittag-Leffler (α) marginal distribution if and only if {εn} are independently
and identically distributed as the sum of two independent random variables un and
vn as in (6.4.15) and x0 is distributed as semi–Mittag-Leffler (α).

When η(t) = tα , the NSMLAR(1) model becomes the NMLAR(1) model.

Remark 6.4.2: If we consider characteristic functions instead of Laplace trans-
forms, the results can be applied to real valued autoregressive processes. Then the
role of semi-Mittag-Leffler distributions is played by semi-α-Laplace distribu-
tions introduced by Pillai (1985). As special cases we get Laplace and α-Laplace
processes.

Exercises 6.4.

6.4.1. If f (t) = t, find W n∗([0,x]).

6.4.2. If f (t) = tα , find Fε(x).

6.4.3. State any three distributions belonging to the semi-Mittag-Leffler family.

6.4.4. Show that the stationary solution of equation (6.4.7) is a family consisting of
g.i.d. and class L distributions.

6.4.5. Obtain the innovation structure of the NEAR(1) model.

6.4.6. Obtain the innovation structure of the NMLAR(1) model.

6.5 Tailed Processes

In an attempt to develop autoregressive models for time series with exact zeros
Littlejohn (1993) formulated an autoregressive process with exponential tailed mar-
ginal distribution, after the new exponential autoregressive process (NEAR(1)) of
Lawrance and Lewis (1981). However, the primary aim of Littlejohn was to extend
the time reversibility theorem of Chernick et al.(1988) and hence the model was not
studied in detail. Hence we intend to make a detailed study of this process. Here
the tail of a non–negative random variable refers to the positive part of the sample
space, excluding only the point zero.
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Definition 6.5.1. A random variable E is said to have the exponential tailed distri-
bution denoted by ET (λ ,θ) if P(E = 0) = θ and P(E > x) = (1− θ)e−λx, x > 0
where λ > 0 and 0 ≤ θ < 1. Then the Laplace-Stieltjes transform of E is given by

φE(t) = θ +(1−θ)
λ
λ + t

=
λ +θ t
λ + t

.

6.5.1 The exponential tailed autoregressive process [ETAR(1)]

It is evident that the exponential tailed distribution is not self–decomposable and
so it cannot be marginal to the autoregressive structure of Gaver and Lewis (1980).
But an autoregressive process satisfying the NEAR(1) structure given by (6.4.7) can
be constructed as follows: We have from (6.4.8), by substituting φx(t) = λ+θ t

λ+t , the
Laplace transform of the innovation εn in the stationary case as

φε(t) =
[
λ +θ t
λ + t

][
λ +at

λ +a[p+(1− p)θ ]t

]

=
[
λ +at
λ + t

][
λ +θ t
λ +bt

]

where b = a[p+(1− p)θ ].

φε(t) =
[

a+(1−a)
λ
λ + t

][
θ
b

+
(

1− θ
b

)
(λ/b)

(λ/b)+ t

]

so that the innovations {εn} can be represented as the sum of two independent ex-
ponential tailed random variables un and vn where

un
d= ET (λ ,a) and vn

d= ET
(
λ ′,θ ′

)
(6.5.1)

where λ ′ = λ/b and θ ′ = θ/b, provided θ ≤ b. Since p ≤ 1, we require that θ ≤ a.
Thus the ETAR(1) process can be defined as a sequence {xn} satisfying (6.4.7)
where {εn} is a sequence of independent and identically distributed random vari-
ables such that εn = un + vn where un and vn are as in (6.5.1).

It can be easily shown that the process is strictly stationary and Markovian pro-
vided x0 is distributed as ET (λ ,θ). This follows by mathematical induction since

φxn(t) = φεn(t)[p+(1− p)φxn−1(at)]

=
[
λ +at
λ + t

][
λ +θ t
λ +bt

][
p+(1− p)

(
λ +θat
λ +at

)]

=
[
λ +at
λ + t

][
λ +θ t
λ +bt

][
λ +bt
λ +at

]

=
λ +θ t
λ + t

.
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When θ = 0, the ET (λ ,θ) distribution reduces to the exponential (λ ) distribution
and the ETAR(1) model then becomes the NEAR(1) model.

6.5.2 The Mittag-Leffler tailed autoregressive process [MLTAR(1)]

The Mittag-Leffler tailed distribution has Laplace transform given by

φx(t) = θ +
(1−θ)
1+ tα

=
1+θ tα

1+ tα
, 0 < α ≤ 1

and the distribution shall be denoted by MLT (α,θ). Similarly for a two-parameter
Mittag-Leffler random variable ML(α,λ ) the Laplace transform of the tailed
Mittag-Leffler distribution is given by φx(t) = θ + (1− θ) λα

λα+tα = λα+θ tα
λα+tα . This

shall be denoted by MLT(α,λ ,θ). The MLTAR(1) process has the general structure
given by the equation (6.4.7). The innovation structure can be derived as follows.

φε(t) =
[

1+θ tα

1+ tα

][
1+aα tα

1+aα [p+(1− p)θ ]tα

]

=
[

1+aα tα

1+ tα

][
1+θ tα

1+ ctα

]

where c = aα [p+(1− p)θ ]. Therefore

φε(t) =
[

aα +(1−aα)
1

1+ tα

] [ 1
c + θ

c tα
1
c + tα

]

.

Hence the innovation {εn} can be viewed as the sum of two independently distrib-
uted random variables un and vn where

un
d= MLT (α,aα)

and
υn

d= MLT
(
α,λ ′,θ ′

)

where λ ′ = 1/c1/α and θ ′ = θ/c provided θ ≤ c. This holds when θ ≤ aα .
The model can be extended to the class of semi–Mittag-Leffler distributions.

Here we consider a semi–Mittag-Leffler distribution with Laplace transform

φx(t) =
λα

λα +η(t)

where η(t) satisfies the functional equation

η(mt) = mαη(t); 0 < m < 1; 0 < α ≤ 1.
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This is denoted by SML(α,λ ). Then the semi–Mittag-Leffler tailed distribution
denoted by SMLT(α,λ ,θ) has Laplace transform

φx(t) =
λα +θη(t)
λα +η(t)

.

The first order semi-Mittag-Leffler tailed autoregressive (SMLTAR(1)) process has
innovations whose Laplace transform is given by

φε(t) =
[
λα +θη(t)
λα +η(t)

][
λα +aαη(t)
λα + cη(t)

]

where c = aα [p+(1− p)θ ]. Therefore

φε(t) =
[
λα +aαη(t)
λα +η(t)

][
λα +θη(t)
λα + cη(t)

]

=
[

aα +(1−aα)
λα

λα +η(t)

][
θ
c

+
(

1− θ
c

)
λα/c

λα/c+η(t)

]
.

Therefore, the innovations {εn} can be represented as the sum of two independent
semi–Mittag-Leffler tailed random variables un and vn where

un
d= SMLT (α,λ ,aα) and vn

d= SMLT
(
α,λ ′,θ ′

)
(6.5.2)

where λ ′ = λ/c1/α ,θ ′ = θ/c. Then we have the following theorem which gives the
stationary solution of the SMLTAR(1) model.

Theorem 6.5.1. For 0 < p < 1, 0 < a < 1 the stationary Markov process {xn}
defined by (6.4.7) has a semi–Mittag-Leffler tailed SMLT(α,λ ,θ) marginal distri-
bution if and only if the innovation sequence {εn} are independent and identically
distributed as the sum of two independent semi–Mittag-Leffler tailed random vari-
ables as in (6.5.2), provided x0

d= SMLT (α,λ ,θ).

The stationarity of the process can be easily established, as given below.

φxn(t) = φεn(t)[p+(1− p)φxn−1(at)]

=
[
λα +aαη(t)
λα +η(t)

][
λα +θη(t)
λα + cη(t)

]

×
[

p+(1− p)
λα +θη(at)
λα +η(at)

]

=
[
λα +aαη(t)
λα +η(t)

][
λα +θη(t)
λα + cη(t)

][
λα + cη(t)
λα +η(at)

]

=
λα +θη(t)
λα +η(t)

since η(at) = aαη(t).
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Hence xn is distributed as SMLT(α,λ ,θ). The necessity part follows easily from
the derivation of the structure of the innovation sequence. Now we consider the
following theorem.

Theorem 6.5.2. In a positive valued stationary Markov process {xn} satisfying
the first order autoregressive equation xn = axn−1 + εn, 0 < a < 1 the innovations
{εn} are independently and identically distributed as a tailed distribution of the
same type as that of {xn} if and only if {xn} are distributed as semi–Mittag-Leffler .

Proof 6.5.1: We have, assuming stationarity,

φx(t) = φx(at)φε(t).

Suppose
φε(t) = θ +(1−θ)φx(t) where 0 ≤ θ < 1.

Then
φx(t) = φx(at)[θ +(1−θ)φx(t)].

Writing

φx(t) =
1

1+η(t)
, we get

1
1+η(t)

=
1

1+η(at)

[
θ +(1−θ)

1
1+η(t)

]

=
[

1
1+η(at)

][
1+θη(t)
1+η(t)

]
.

This implies that η(at) = θη(t). By taking θ = aα it follows that the distribution
of xn is semi–Mittag-Leffler . Conversely, if {xn} are semi–Mittag-Leffler, we get

φε(t) =
φx(t)
φx(at)

=
1+η(at)
1+η(t)

=
1+aαη(t)

1+η(t)

= aα +(1−aα)
1

1+η(t)
.

Hence {εn} is distributed as SMLT(α,aα).
The SMLTAR(1) process can be regarded as generalizations of the EAR(1),

NEAR(1), MLAR(1), NMLAR(1), TEAR(1), ETAR(1) and MLTAR(1) processes.
These processes are useful to model non-negative time series data which exhibit ze-
ros, as in the case of stream flow data of rivers that are dry during part of the year.
They are useful for modeling life times of devices which have some probability for
damage immediately after putting it to use. In a similar manner, the models can be
extended to the semi-α-Laplace case and its special cases. Also geometric Mittag-
Leffler and geometric alpha-Laplace distributions and time series models can be
developed.
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Exercises 6.5.

6.5.1. Derive the Laplace transform of the exponential tailed distribution.

6.5.2. Derive the innovation structure of the Mittag-Leffler tailed autoregressive
process.

6.5.3. Examine whether the Mittag-Leffler tailed distribution is self-decomposable.

6.5.4. Give a real life example where the exponential tailed distribution can be used
for modeling.

6.5.5. Show that Laplace distribution belongs to the semi-α-Laplace family.

6.5.6. Define a geometric exponential distribution similar to the geometric stable
distribution.

6.5.7. Try to develop a generalized Laplacian model, with characteristic function

ϕx(t) =
(

1
1−β 2t2

)α
.

6.5.8. Develop the concept in geometric infinite divisibility by replacing addition by
minimum in the case of g.i.d.

6.5.9. Develop an autoregressive minification structure by replacing addition by
minimum in the standard AR(1) equation.

6.6 Marshall-Olkin Weibull Time Series Models

6.6.1 Introduction

The need for developing time series models having non-Gaussian marginal dis-
tributions has been long felt from the fact that many naturally occurring time se-
ries are non-Gaussian with Markovian structure. In recent years Tavares (1980),
Yeh et al. (1988), Arnold and Robertson (1989), Pillai (1991), Alice and Jose (2004,
2005) and others have developed various autoregressive models with minification
structure. The Weibull distribution, including exponential distribution plays a cen-
tral role in the modeling of survival or lifetime data and time series data of non-
negative random variables such as hydrological data and wind velocity magnitudes.
Lewis and McKenzie (1991), Brown et al (1984) note that although studies have
shown that Weibull marginal distributions have been found adequate for wind ve-
locity magnitudes, unfortunately ‘no time series models have been rigorously de-
veloped for random variables possessing a Weibull distribution’. Wind power data
are even more likely to need very long tailed marginal distributions. Again in reli-
ability studies, sequences of times between failures are correlated and models with
non-constant marginal hazard rate are needed to model them adequately.
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6.6.2 Marshall-Olkin semi-Weibull distribution

We say that a random variable x with positive support has a semi-Weibull distribu-
tion and write x d= SW (β ,ρ) if its survival function is given by

F̄x(xo) = P(x > xo) = exp(−Ψ(xo)) (6.6.1)

where Ψ(x) satisfies the functional equation,

ρΨ(x) =Ψ(ρ
1
β x),β > 0,0 < ρ < 1. (6.6.2)

Equation (6.6.2) will give on iteration

ρnΨ(x) =Ψ(ρ
n
β x).

On solving (6.6.2) we obtain Ψ(x) = xβh(x), where h(x) is periodic in ln x with
period

(
−2πβ
ln ρ

)
. For details see Jose (1994, 2005) .

We consider a new family of distributions introduced by Marshall and Olkin
(1997). Considering a survival function F̄ , we get the one-parameter family of sur-
vival functions

Ḡ(x;α) =
αF̄(x)

[1− (1−α)F̄(x)]
;−∞< x < ∞,0 < α < ∞. (6.6.3)

It can be easily seen that when α = 1, Ḡ = F̄ . Whenever F has a density, the family
of survival functions given by Ḡ(x;α) in (6.6.3) has easily computed densities. In
particular, if F has a density f and hazard rate rF , then G has the density g given by

g(x;α) =
α f (x)

{1− (1−α)F̄(x)}2 (6.6.4)

and hazard rate

r(x;α) =
rF(x)

(1− (1−α)F̄(x)
,−∞< x < ∞. (6.6.5)

Substituting (6.6.1) in (6.6.3) we get a new family of distributions, which we shall
refer to as the survival function of Marshall-Olkin semi-Weibull [MOSW (α,β ,ρ)]
family, whose survival function is given by

Ḡ(x;α) =
α

eΨ(x) − (1−α)
,x > 0,α > 0.

The probability density function corresponding to G is given by

g(x;α) =
αeΨ(x)Ψ′(x)

[eΨ(x) − (1−α)]2
,x > 0,α > 0.
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The hazard rate is given by

r(x;α) =
Ψ′(x)

1− (1−α)e−Ψ(x) ,x > 0,α > 0.

Now we establish the following properties:

Theorem 6.6.1. Let N be an integer valued random variable independent of the
xn’s such that P[N ≥ 2] = 1 where {xn} is a sequence of independent and identi-

cally distributed MOSW random variables. Then y =
(N
α
) 1
β min (x1,x2, ...,xN);N >

α,N > 1 is distributed as semi-Weibull.

Proof 6.6.1: We have

F̄y(x) = P[y > x]

=
∞

∑
n=2

P[N = n]P[y > x|N = n]

=
∞

∑
n=2

P[N = n]
[

F̄x

(( n
α

)−1/β
x
)]n

=
∞

∑
n=2

P[N = n]

[
1

1+( 1
α )Ψ(( n

α )−1/β x)

]n

= e−Ψ(x).

Hence Y is distributed as semi-Weibull.

Theorem 6.6.2. If {x1,x2, · · · ,xn} are independently and identically distributed

as MOSP (α,β , p), then zn = ( n
α )

1
β min(x1,x2, · · · ,xn),α,β > 0,n > 1,n > α , is

asymptotically distributed as semi-Weibull.

Proof 6.6.2: If x is distributed as Marshall-Olkin semi-Pareto, MOSP (α,β , p),
then

F̄(x;α,β , p) =
1

1+ 1
α ψ(x)

where
ψ(x) = ψ(p

1
β x).

Hence

F̄zn(x) = P
[( n
α

) 1
β min(x1,x2, · · · ,xn) > x

]

=
[

F̄x

(( n
α

)− 1
β x
)]n

=

[
1

1+ ψ(x)
n

]n

→ e−ψ(x)

as n tends to infinity.
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Similar results can be obtained in the case of Marshall-Olkin Pareto and Weibull
distributions as a special cases.

Theorem 6.6.3. Let {xi, i ≥ 1} be a sequence of independent and identically dis-
tributed random variables with common survival function F̄(x) and N be a geomet-
ric random variable with parameter p and P(N = n) = pqn−1,n = 1,2, ..., 0 < p < 1,
q = 1− p, which is independent of {xi} for all i ≥ 1. Let uN = min1≤i≤N xi. Then
{uN} is distributed as MOSW if and only if {xi} is distributed as semi-Weibull.

Proof 6.6.3:

H̄(x) = P(uN > x)

=
∞

∑
n=1

[F̄(x)]n pqn−1

=
pF̄(x)

1− (1− p)F̄(x)
.

Suppose
F̄(x) = exp(−Ψ(x)).

Then
H̄(x) =

1

1+
(

1
p

)
(eΨ(x) −1)

,

which is the survival function of MOSW. This proves the sufficiency part of the
theorem. Conversely, suppose

H̄(x) =
1

1+
(

1
p

)
(eΨ(x) −1)

.

Then we get
F̄(x) = exp(−Ψ(x)),

which is the survival function of semi-Weibull.

6.6.3 An AR (1) model with MOSW marginal distribution

In this section we consider a first order autoregressive model.

Theorem 6.6.4. Consider an AR (1) structure given by

xn =

{
εn w.p. p
min(xn−1,εn) w.p. (1− p)

. (6.6.6)

where {εn} is a sequence of independently and identically distributed random vari-
ables independent of xn, then {xn} is a stationary Markovian AR(1) process with
MOSW marginals if and only if {εn} is distributed as semi-Weibull distribution.
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Proof 6.6.4: From (6.6.6) it follows that

F̄xn(x) = pF̄εn(x)+(1− p)F̄xn−1(x)F̄εn(x). (6.6.7)

Under stationary equilibrium,

F̄x(x) =
pF̄ε(x)

[1− (1− p)F̄ε(x)]
.

If we take F̄ε(x) = e−Ψ(x), then it easily follows that

F̄x(x) =
p

eΨ(x) − (1− p)
,

which is the survival function of MOSW. Conversely, if we take,

F̄xn(x) =
p

eΨ(x) − (1− p)
,

it is easy to show that Fεn(x) is distributed as semi-Weibull and the process is station-

ary. In order to establish stationarity we proceed as follows: Assume xn−1
d= MOSW

and εn
d= semi-Weibull. Then

F̄xn(x) =
pe−Ψ(x)

1− (1− p)e−Ψ(x) .

This establishes that {xn} is distributed as MOSW . Even if x0 is arbitrary, it is easy
to establish that {xn} is stationary and is asymptotically marginally distributed as
MOSW .

The following theorem is regarding a kth order autoregressive model.

Theorem 6.6.5. Consider an autoregressive model of order k as follows:

xn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∈n w.p. p0
min(xn−1,∈n) w.p. p1
min(xn−2,∈n) w.p. p2
...
min(xn−k,∈n) w.p. pk

(6.6.8)

where 0 < pi < 1,(p1 + p2 + · · ·+ pk) = 1− p0. Then {xn} has stationary marginal
distribution as MOSW if and only if {εn} is distributed as semi-Weibull.

The proof follows from the following facts.

F̄xn(x) = p0 F̄∈n(x)+ p1 F̄xn−1(x) F̄∈n(x)+ · · ·+ pk F̄xn−k(x)F̄∈n(x).
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Under stationary equilibrium,

F̄x(x) = p0 F̄∈(x)+ p1 F̄x(x) F̄∈(x)+ · · ·+ pk F̄x(x) F̄∈(x).

This reduces to

F̄x(x) =
p0 F̄∈(x)

[1− (1− p0) F̄∈(x)]
.

It can be seen that the semi-Weibull distribution is a more general class of distri-
butions which includes Weibull distribution in the sense that for h(x) = 1, we have
Ψ(x) = xβ .

6.6.4 Marshall-Olkin generalized Weibull distribution

Consider the two-parameter Weibull distribution with survival function

F̄(x) = exp(−(λx)β ),x > 0,λ > 0,β > 0.

Then substituting in (6.3.2) we get a new family of distributions, which we shall
refer to as the Marshall-Olkin Generalized Weibull (MOGW) family, whose survival
function is given by

Ḡ(x;α,λ ,β ) =
α exp[−(λx)β ]

1− (1−α)exp[−(λx)β ]
,x > 0,λ ,β ,α > 0.

The probability density function corresponding to G is given by

g(x;α,λ ,β ) =
αβλβ xβ−1 exp(λx)β

exp[(λx)β − (1−α)]2
,x > 0, p,β ,α > 0.

The hazard rate is given by

r(x; p,α,β ) =
λββ (x)β−1 exp(λx)β

{exp(λx)β − (1−α)}
,x > 0,λ ,β ,α > 0.

We also explore the nature of the hazard rate r(x). It is increasing if α ≥ 1, β ≥ 1
and decreasing if α < 1, β < 1. If β > 1, then r(x) is initially increasing and even-
tually increasing, but there may be an interval where it is decreasing. Similarly if
β < 1, then r(x) is initially decreasing and eventually decreasing but there is an in-
terval where it is increasing. When α = 1, it coincides with the Weibull distribution.
This points out the wide applicability of the MOGW distribution for modeling var-
ious types of reliability data. Theorem 6.6.4 and Theorem 6.6.5 can be extended in
this case also.
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6.6.5 An AR (1) model with MOGW marginal distribution

Theorem 6.6.6. Consider the AR (1) structure given by

xn =
{
εn w.p. p
min(xn−1,εn) w.p. (1− p) (6.6.9)

where {∈n} is a sequence of independently and identically distributed random vari-
ables, independent of xn, then {xn} is a stationary Markovian AR (1) process with
MOGW (p,λ ,β ) marginals if and only if {∈n} is distributed as Weibull distribution
with parameters λ and β .

Proof 6.6.5: Proceeding as in the case of Theorem 6.6.4 if we take

F̄∈(x) = exp(−λx)β ,

then it easily follows that

F̄x(x) =
pexp(−λx)β

[1− (1− p)exp(−λx)β ]

=
p

[exp(λx)β − (1− p)]

which is the survival function of MOGW (p,λ ,β ). Conversely, if we take,

F̄xn(x) =
p

[exp(λx)β − (1− p)]
,

it is easy to show that F̄∈n(x) is distributed as Weibull with parameters λ ,β and
the process is stationary. In order to establish stationarity we proceed as follows:
Assume xn−1

d= MOGW (p,λ ,β ) and {∈n} d=Weibull (λ ,β ). Then

F̄xn(x) =
p[exp(−λx)β ]

{1− (1− p)exp(−λx)β}
.

This establishes that {xn} is distributed as MOGW (p,λ ,β ). Even if x0 is arbitrary,
it is easy to establish that {xn} is stationary and is asymptotically marginally dis-
tributed as MOGW (p,λ ,β ) .

Theorem 6.6.7. Consider an autoregressive model xn of order k with structure
(6.6.8). Then {xn} has stationary marginal distribution as MOGW if and only if
{εn} is distributed as Weibull.

Proof is similar to that of Theorem 6.6.6
Table 1 shows P(xn < xn−1), which are obtained through a Monte Carlo simula-

tion procedure. Sequences of 100, 300, 500, 700, 900 observations from MOGWAR
(1) process are generated repeatedly for ten times and for each sequence the prob-
ability is estimated. A table of such probabilities is provided with the average from
ten trials along with an estimate of standard error in brackets. (see Table 1).
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Table 6.1 P(xn < xn−1) for the MOGWAR(1) process where λ = 1,β = 5.

Sample size
p/n 200 400 600 800 1000
0.1 0.7705171 0.7523951 0.7573636 0.745249 0.7589128

(0.002001358) (0.003661458) (0.2899318) (0.002795277) (0.002238917)
0.2 0.6740114 0.6597776 0.6564568 0.6621319 0.6654536

(0.005064845) (0.003381987) (0.003264189) (0.002337129) (0.001765257)
0.3 0.6253248 0.5887756 0.5930888 0.5941391 0.5913183

(0.0551385) (0.002164813) (0.0259571) (0.002407355) (0.003051416)
0.4 0.5027496 0.4992585 0.5230972 0.5237219 0.5153204

(0.005699338) (0.004394413) (0.003465077) (0.001724348) (0.003295175)
0.5 0.4097892 0.4390949 0.4486389 0.4265652 0.4378709

(0.003480096) (0.004124351) (0.003437423) (0.003071082) (0.001833982)
0.6 0.3228981 0.3585286 0.3523585 0.3440362 0.357975

(0.005857569) (0.005020905) (0.003365158) (0.002421289) (0.003009052)
0.7 0.2695292 0.2676458 0.2646377 0.2773244 0.2731059

(0.005099691) (0.003165013) (0.003349412) (0.003459127) (0.003940234)
0.8 0.1873956 0.207557 0.1761628 0.1863542 0.2003661

(0.005808668) (0.006569641) (0.002695993) (0.0033855295) (0.003308759)
0.9 0.1175264 0.1194025 0.1119517 0.1012818 0.1130184

(0.007946155) (0.006232362) (0.005194928) (0.002785095) (0.003507806)

6.6.6 Case study

In this section, we illustrate the application of the MOGWAR(1) process in model-
ing a hydrology data as a case study. The data consists of total daily weighted dis-
charge (in mm3) of Neyyar river in Kerala, India, at the location Amaravilla (near
Amaravilla bridge) during 1993. Neyyar is one of the west flowing rivers in Kerala,
located in the Southern most part of Kerala. It originates from Agasthyamala at an
elevation of about 1,860 m. above mean sea level. From there it flows down rapidly
along steep slopes in its higher reaches and then winds its way through flat country
in the lower reaches. In the initial stages the course is in a southwestern direction
but at Ottasekharamangalam the river turns and flows west. It again takes a south-
western course from Valappallikanam upto its fall. The Neyyar is 56 Km. long and
has a total drainage area of 497 sq. Km. It is a main source of irrigation in southern
Kerala and the Neyyar Dam is a main source of hydroelectric power in that region.

The arithmetic mean of the given data is 0.81. The estimates are obtained as
p = 0.5 and β = 0.7. The calculated value of χ2 is 0.626, which is significantly
less than the tabled value. Hence MOGW distribution is found to be a good fit
in this situation. It is found that the simulated MOGWAR (1) process has close
resemblance to the actual data.

Exercises 6.6.

6.6.1. Define a minification process of order 1.

6.6.2. Obtain the class of distributions for which a stationary minification process is
defined.
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6.6.3. Develop a minification process with Pareto marginals.

6.6.4. Develop a semi-Weibull minification process.

6.6.5. Obtain the relationship between semi-Weibull and semi-Pareto distributions.

6.6.6. Obtain the innovation structure of a general Marshall-Olkin minification
process.

6.6.7. Develop a bivariate Pareto minification process.

6.6.8. Develop a bivariate exponential minification process of order α .

6.6.9. Derive the hazard rate function of a Marshall-Olkin exponential distribution.

6.6.10. Derive the stationary solution of a kth order minification process.
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Chapter 7
Applications to Density Estimation

[This chapter is based on the lectures of Professor Serge B. Provost of the Department of
Statistical and Actuarial Sciences, The University of Western Ontario, Canada.]

7.0 Density Estimation and Orthogonal Polynomials

It is often the case that the exact moments of a continuous distribution can be ex-
plicitly determined, while its exact density function either does not lend itself to
numerical evaluation or proves to be mathematically intractable. The density ap-
proximants proposed in this article are entirely specified by the first few moments of
a given distribution. First, it is shown that the density functions of random variables
confined to closed intervals can be approximated in terms of linear combinations of
Legendre polynomials. In an application, the density function of a mixture of two
beta random variables is approximated. It is also explained that the density func-
tions of many statistics whose support is the positive half-line can be approximated
by means of sums involving Laguerre polynomials; this approach is applied to a
mixture of three gamma random variables. It is then shown that density approxi-
mants that are based on orthogonal polynomials such as Legendre, Laguerre, Jacobi
and Hermite polynomials can be equivalently obtained by solving a linear system
involving the moments of a so-called base density function.

7.1 Introduction

This lecture is concerned with the problem of approximating a density function
from the theoretical moments (or cumulants) of the corresponding distribution. Ap-
proximants of this type can be obtained for instance by making use of Pearson or
Johnson curves [Solomon and Stephens (1978); Elderton and Johnson (1969)], or
saddlepoint approximations [Reid (1988)]. These methodologies can provide ade-
quate approximations in a variety of applications involving unimodal distributions.

297
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However, they may prove difficult to implement and their applicability can be sub-
ject to restrictive conditions. The approximants proposed here are expressed in terms
of relatively simple formulae and apply to a very wide array of distributions; more-
over, their accuracy can be improved by making use of additional moments. Interest-
ingly, another technique called the inverse Mellin transform, which is based on the
complex moments of certain distributions, provides representations of their exact
density functions in terms of generalized hypergeometric functions; for theoretical
considerations as well as various applications, the reader is referred to [Mathai and
Saxena (1978)] and [Provost and Rudiuk (1995)].

First, it should be noted that the hth moment of a statistic, u(x1, . . . ,xn), whose
exact density is unknown, can be determined exactly or numerically by integrating
the product u(x1, . . . ,xn)

h g(x1, . . . ,xn) over the range of integration of the xi
′s where

g(x1, . . . ,xn) denotes the joint density of the xi
′s, n = 1,2, . . .. Alternatively, the mo-

ments of a random variable x can be obtained from the derivatives of its moment-
generating function or by making use of a relationship between the moments and the
cumulants when the latter are known, see [Mathai (1993), Smith (1995)]. Moments
can also be derived recursively as for instance is the case in connection with certain
queuing models. Once the moments of a statistic are available, one can often ap-
proximate its density function in terms of sums involving orthogonal polynomials.
The approximant obtained for nonnegative random variables depends on two para-
meters that are determined so as to produce the best initial gamma approximation
on the basis of the first two moments of the distribution. Furthermore, it was de-
termined that for commonly encountered unimodal distributions, twelve moments
usually suffice to produce reasonably accurate approximations.

The approximant proposed for distributions defined on semi-infinite intervals ap-
plies to a wide class of statistics which includes those whose asymptotic distribution
is chi-square, such as −2lnλ where λ denotes a likelihood ratio statistic, as well as
those that are distributed as quadratic forms in normal variables, such as the sample
serial covariance. It should be noted that an indefinite quadratic form can be ex-
pressed as the difference of two independent nonnegative definite quadratic forms
whose cumulants, incidentally, are well-known. As for distributions having compact
supports, one has for example the Durbin-Watson statistic, the sample correlation
coefficient, as well as many other useful statistics that can be expressed as the ratio
of two quadratic forms, as discussed for instance in [Provost and Cheong (2000)].

In Section 7.4, we propose a unified approach for approximating density func-
tions, which turns out to be mathematically equivalent to making use of orthogonal
polynomials. This semiparametric methodology is also based on the moments of
a distribution and only requires solving a linear system involving the moments of a
so-called base density function.

Several illustrative examples are presented. For comparison purposes, each of
them involves a distribution whose exact density function can be determined. First,
the distribution of a mixture of two beta distributions is considered. The approxi-
mation technique presented in Section 7.3 is applied to a mixture of three gamma
random variables. A mixture of three Gaussian random variables is considered in
Section 7.4.
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For results on the convergence of approximating sums that are expressed in
terms of orthogonal polynomials, the reader is referred to Sansone (1959), Alexits
(1961), Devroye and Györfi (1985) and Jones and Ranga (1998). Since the proposed
methodology allows for the use of a large number of theoretical moments and the
functions being approximated are nonnegative, the approximants can be regarded
as nearly exact bona fide density functions, and quantiles can thereupon easily be
estimated with great accuracy. As well, the polynomial representations of the ap-
proximants make them easy to report and amenable to complex calculations.

Up to now, orthogonal polynomials have been scarcely discussed in the statis-
tical literature in connection with the approximation of distributions. This state of
affairs might be due to difficulties encountered in deriving moments of high orders
or in obtaining accurate results from high degree polynomials. In any case, given the
powerful computational resources that are widely available these days, such com-
plications can hardly any longer be viewed as impediments. It should be pointed
out that the simple semiparametric technique proposed in Section 7.4 eliminates
some of the complications associated with the use of orthogonal polynomials while
yielding identical density approximants.

7.2 Approximants Based on Legendre Polynomials

A polynomial density approximation formula is obtained in this section for distri-
butions having compact supports. This approximant is derived from an analytical
result stated in Alexits (1961), which is couched below in statistical nomenclature.
It should be pointed out that no a priori restrictions on the shape of the distribution
need to be made in this case.

The density function of a random variable x that is defined on the interval [−1,1]
can be expressed as follows:

fx[x] =
∞

∑
k=0
λk Pk[x] (7.2.1)

where Pk[x] is a Legendre polynomial of degree k, that is,

Pk[x] =
1

2k k!
∂ k

∂xk

(
−1+ x2)k =

Floor[k/2]

∑
i=0

(−1)i x−2 i+k (−2 i+2k)!
2k i! (−2 i+ k)! (−i+ k)!

, (7.2.2)

Floor[k/2] denoting the largest integer less than or equal to k/2, and

λk =
1+2k

2

Floor[k/2]

∑
i=0

(−1)i (−2 i+2k)!µx(−2 i+ k)
2k i! (−2 i+ k)! (−i+ k)!

=
1+2k

2
P∗

k(ω) (7.2.3)
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with P∗
k(x) = Pk(x) wherein xk−2i is replaced by the (k−2i)th moment of x:

µx[−2 i+ k] = E (x−2 i+k) =
∫ 1

−1
xk−2i f (x)dx, (7.2.4)

see also Devroye (1989). Legendre polynomials can also be derived by means of a
recurrence relationship, available for example in Sansone (1959), p. 178. Given the
first n moments of x,µ [1], . . . ,µ [n], and setting µ [0] = 1, the following truncated
sum denoted by fxn(x) can be used as a polynomial approximation to fx(x):

fxn [x] =
n

∑
k=0
λkPk(x). (7.2.5)

As explained in Burden and Faires (1993), Chapter 8, this polynomial turns out to be
the least-squares approximating polynomial that minimizes

∫ 1
−1( fx(x)− fxn(x))

2dx,
the integrated squared error. As stated in Rao (1965), p. 106, the moments of any
continuous random variable whose support is a closed interval, uniquely determine
its distribution, and as shown by Alexits (1961), p. 304, the rate of convergence of
the supremum of the absolute error, | fx(x)− fxn(x)|, depends on fx(x) and n, the
degree of fxn(x), via a continuity modulus. Therefore, more accurate approximants
can always be obtained by making use of higher degree polynomials.

We now turn our attention to the more general case of a continuous random
variable y defined on the closed interval [a,b], whose kth moment is denoted by

µy[k] = E(yk) =
∫ b

a
yk fy(y)dy, k = 0,1, . . . , (7.2.6)

where fy(y) denotes the density function of y. As pointed out in Section 7.1, there
exist several alternative methods for evaluating the moments of a distribution when
the exact density is unknown. On mapping y onto x by means of the linear transfor-
mation

x =
2y− (a+b)

b−a
, (7.2.7)

one has the desired range for x, that is, the interval [−1,1]. The jth moment of
x, expressed as the expected value of the binomial expansion of ((2y− (a + b))/
(b−a)) j is then given by

µx[ j] =
1

(b−a) j

j

∑
k=0

( j
k

)
2kµy[k](−1) j−k (a+b) j−k (7.2.8)

and (7.2.5) can then be used to provide an approximant to the density function of x.
On transforming x back to y with the affine change of variables specified in (7.2.7)
and noting that dx/dy = 2/(b− a), one obtains the following polynomial approxi-
mation for the density function of y:

fyn [y] = [2/(b−a)]
n

∑
k=0
λkPk

(
2y− (a+b)

b−a

)
. (7.2.9)
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Example 7.2.1. Approximate density of a mixture of beta random variables

Consider a mixture of two equally weighted beta distributions with parameters
(3,2) and (2,30), respectively. A fifteenth-degree polynomial approximation was ob-
tained from (7.2.9). The exact density function of this mixture and its approximant,
both plotted in Figure 7.1, are manifestly in close agreement. Obviously, approaches
that are based on a few moments would fail to provide satisfactory approximations
in this case.

As will be mentioned in Section 7.4, beta-shaped density functions defined on
closed intervals can be approximated in terms of Jacobi polynomials. However, it
should be pointed out that approximants expressed in terms of Legendre polynomi-
als can accommodate a much wider class of distributions defined on closed intervals.

7.3 Approximants Based on Laguerre Polynomials

As mentioned in Section 7.1, the density functions of numerous statistics distrib-
uted on the positive half-line can be approximated from their exact moments by
means of sums involving Laguerre polynomials. It should be pointed out that such
an approximant should only be used when the underlying distribution possesses the
tail behaviour of a gamma random variable; thankfully, this is often the case for
statistics whose support is semi-infinite. Note that for other types of distributions
whose support is the positive half-line, such as the lognormal, the moments may not
uniquely determine the distribution; see for instance Rao (1965), p. 106 for condi-
tions ensuring that they do.

Consider a random variable y defined on the interval (a, ∞), whose jth moment
is denoted by µy[ j], j = 0,1,2, . . . , and let
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c =
−µy[1]2 +µy[2]
−a+µy[1]

(7.3.1)

v =
µy[1]−a

c
−1 (7.3.2)

and
x =

y−a
c

. (7.3.3)

As will be explained later, when the parameters c and v are so chosen, the leading
term of the resulting approximating sum will in fact be a gamma density function
whose first and second moments agree with those of y. Note that although a can be
any finite real number, it is often equal to zero. Denoting the jth moment of x by

µx[ j] = E[((y−µ)/c) j], (7.3.4)

the density function of the random variable x defined on the interval (0, ∞) can be
expressed as

fx[x] = xve−x
∞

∑
j=0
δ jL j(v,x) (7.3.5)

where

L j[v,x] =
j

∑
k=0

(−1)kΓ(1+ j + v)x j−k

Γ(1+ j− k + v)( j− k)!k!
(7.3.6)

is a Laguerre polynomial of order j with parameter v and

δ j =
j

∑
k=0

(−1)k j!µx[ j− k]
Γ(1+ j− k + v)( j− k)!k!

(7.3.7)

which also can be represented by j!/Γ(v+ j+1) times L j[v,x] wherein xk is replaced
with µx[k], see for example Szegö (1959) and Devroye (1989). Then, on truncating
the series given in (7.3.5) and making the change of variables y = cx+a, one obtains
the following density approximant for y:

fyn [y ] =
(y−a)ve−(y−a)/c

cv+1

n

∑
j=0
δ jL j(v,(y−a)/c).

Remark 7.3.1. On observing that fy0(y) is a shifted gamma density function
with parameters α ≡ v + 1 = (µ [1] − a)2/(µ [2] − µ [1]2) and β ≡ c = (µ [2] −
µ [1]2)/(µ [1]−a), one can express fyn(x) as the product of an initial shifted gamma
density approximation whose first two central moments, αβ + a = µ [[1]] and
αβ 2 = µ [[2]]−µ [[1]]2, match those of y, times a polynomial adjustment; that is,

fyn(y) =
e

a−y
β (−a+ y)−1+α

βα Γ[α]

n

∑
j=0

a j L jΓ(α)(α−1,(y−a)/c). (7.3.8)
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The following example is relevant as nonnegative definite quadratic forms in normal
variables which happen to be ubiquitous in Statistics can be expressed as mixtures of
chi-square random variables, see for instance Mathai and Provost (1992), Chapters
2 and 7.

Example 7.3.1. Approximate density of a mixture of gamma random vari-
ables

Let the random variable y be a mixture of three equally weighted shifted gamma
random variables with parameters (α1 = 8,β1 = 1),(α2 = 16,β2 = 1) and (α3 =
64,β3 = 1/2), all defined on the interval (5,∞). The hth moment of this distribution
is determined by evaluating the hth derivative of its moment-generating function,
Mx(t), with respect to t at t = 0.

Figure 7.2 shows the exact density function of the mixture as well as the ini-
tial gamma density approximation given by fy0 [y]. Clearly, traditional approximants
such as those mentioned in Section 7.1, could not capture adequately all the distinc-
tive features of this particular distribution.

The exact density function, fy[y] and its polynomial approximant, fy60 [y], are
plotted in Figure 7.3. (Once such an approximant is obtained, one could for instance
approximate it with a spline composed of third-degree polynomial arcs, in order to
reduce the degree of precision required in further calculations.)

This example illustrates that the proposed methodology can also accomo-
date multimodal distributions and that calculations involving high order Laguerre
polynomials will readily produce remarkably accurate approximations when per-
formed in an advanced computing environment such as that provided by Mathematica.
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Fig. 7.2 Exact density and initial gamma approximant
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7.4 A Unified Methodology

The remark made in the previous section suggests the following general semipara-
metric approach to density approximation, which consists of approximating the den-
sity function of a distribution whose first n moments are known by means of a base
density function whose parameters are determined by matching moments, times a
polynomial of degree n whose coefficients are also obtained by matching moments.

Result 7.4.1 Let fy[y] be the density function of a continuous random variable y
defined on the interval (a,b), E(y j)≡ µy[ j],x = (y−u)/s where u and s are constants,
a0 = (a−u)/s,b0 = (b−u)/s, fx[x] = |s| fy[u+sx],E(x j) = E[((y−u)/s) j]≡ µx[ j],
and the base density function, ψx[x], be an initial density approximant for x defined
on the interval (a0, b0), whose jth moment, mx[ j], exists for j = 1, . . . ,2n. Assuming
that the tail behavior of ψx[x] is similar to that of fx[x], fx[x] can be approximated by

fxn [x] = ψx[x]
n

∑
i=0
ξixi (7.4.1)

with (ξ0, . . . ,ξn)′ = M−1(µ [0], . . . ,µx[n])′ where M is an (n + 1)× (n + 1) matrix
whose (h + 1)th row is (mx[h], . . . ,mx[h + n])′,h = 0,1, . . . ,n, and whenever ξx[x]
depends on r parameters, these are determined by matching mx[ j] to µx[ j] for j =
1, . . . ,r. The corresponding density for y is then

f ∗yn [y] = fxn [(y−u)/s]/s. (7.4.2)

The coefficients ξi, can easily be determined by equating the first n moments
obtained from fxn [x] to those of x :

∫ b0

a0

xhψx[x]
n

∑
i=0
ξixidx =

∫ b0

a0

xh f [x]dx, h = 0,1, . . . ,n, (7.4.3)
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which is equivalent to

(mx[h], . . . ,mx[h+n]).(ξ0, . . . ,ξn) = µx[h], h = 0,1, . . . ,n; (7.4.4)

this linear system can be represented in matrix form as

M (ξ0, . . . ,ξn)′ = (µx[0], . . . ,µx[n])′

where M is as defined in Result 7.4.1.

7.5 Approximants Expressed in Terms of Orthogonal
Polynomials

By making use of the same notation, we now show that the unified approach de-
scribed above provides approximants that are mathematically equivalent to those
obtained from orthogonal polynomials whose weights are proportional to a certain
base density function.

Let {Ti[x] =∑i
k=0 δikxk, i = 0,1, . . . ,n} be a set of orthogonal polynomials on the

interval (a0,b0) such that
∫ b0

a0

w[x]Ti[x]Th[x]dx = θh when i = h, h = 0,1, . . . ,n, and zero otherwise, (7.5.1)

where w[x] is a weight function, and let cT be a normalizing constant such that
cT w[x]≡ψx[x] integrates to one over the interval (a0,b0). On noting that the orthog-
onal polynomials Ti are linearly independent [Burden and Faires (1993), Corollary
8.8], one can write (7.4.1) as

fxn [x] = cT w[x]
n

∑
i=0
ηiTi p[x] (7.5.2)

where the η ′
i s are obtained from equating

∫ b0
a0

Th[x] fxn [x]dx to
∫ b0

a0
Th[x] f [x]dx for

h = 0,1, . . . ,n, which yields the following linear system:

cT

∫ b0

a0

Th[x]w[x]
n

∑
i=0
ηiTi[x]dx =

∫ b0

a0

Th[x] f [x]dx, h = 0,1, . . . ,n, (7.5.3)

which is equivalent to

n

∑
i=0
ηicT

∫ b0

a0

w[x]Ti[x]Th[x]dx =
h

∑
k=0
δhkµx[k], h = 0,1, . . . ,n, (7.5.4)

where δhk is the coefficient of xk in Th. Thus, by virtue of the orthogonality property
given in (7.5.1), one has

ηh =
1

cTθh

h

∑
k=0
δhkµx[k], h = 0,1, . . . ,n, (7.5.5)
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and

fxn [x] = ψ[x]
n

∑
i=0

(
1

cTθi

i

∑
k=0
δikµx[k]

)

Ti[x]. (7.5.6)

Now, letting y = u+ sx, a = u+ sa0, b = u+ sb0, and denoting the density functions
of y and yn corresponding to those of x and xn by fy[y] and fyn [y], respectively, fy[y]
whose support is the interval (a,b) can be approximated by

fyn [y] = w[(y−u)/s]
n

∑
i=0

(
1

sθi

i

∑
k=0
δikµx[k]

)

Ti[(y−u)/s]. (7.5.7)

It is apparent that several complications associated with the use of orthogonal poly-
nomials can be avoided by resorting to the direct approach described in Result
7.4.1. Density approximants expressed in terms of Laguerre, Legendre, Jacobi and
Hermite polynomials are discussed below.

7.5.1 Approximants expressed in terms of Laguerre polynomials

Consider the approximants based on Laguerre polynomials discussed in Section 7.3.
In that case, y = cx+a, so that u = a,s = c,a0 = 0,b0 =∞,w[x] = xve−x,Ti[x] is the
Laguerre Li[v,x] orthogonal polynomial and θh = Γ[v + h + 1]/h!. It is easily seen
that the density expressions given in (7.5.7) and (7.3.8) coincide.

In this case, the base density function, ψx[x] is that of a gamma random variable
with parameters v + 1 and 1. Note that after the transformation, our base density
is a shifted gamma distribution with parameters v + 1 and c, whose support is the
interval (a,∞).

Alternatively, one can obtain an identical density approximant by making use of
Result 7.4.1 where in ψx[x] is a Gamma(λ + 1,1) density function whose jth mo-
ment, mx[ j], which is needed to determine the ξ ′s, is given by Γ[v+1+ j]/Γ[v+1],
j = 0,1, . . . ,2n.

7.5.2 Approximants expressed in terms of Legendre polynomials

First, we note that whenever the finite interval (a,b) is mapped onto the interval
(a0,b0), the requisite affine transformation is

x =
y−u

s
(7.5.8)

with u = (ab0 − a0b)/(b0 − a0) and s = (b− a)/(b0 − a0). Consider the approxi-
mants based on Legendre polynomials discussed in Section 7.2, which are defined
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on the interval (−1,1). In that case, u = (a+b)
2 , s = (b− a)/2, w[x] = 1, Ti[x] is the

Legendre orthogonal polynomial Pi[x] and θh = 2
(2h+1) . It is easily seen that fyn [y]

given in (7.5.7) yields fyn [y] of (7.2.9).

7.5.3 Approximants expressed in terms of Jacobi polynomials

In order to approximate densities for which a beta type density is suitable as a
base density, we shall make use of the following alternative form of the Jacobi
polynomials

Gn[α,β ,x] = n!
Γ[n+α]
Γ[2n+α]

JacobiP[n,α−β ,β −1,2x−1] (7.5.9)

defined on the interval (0, 1), where JacobiP[n,a1,b1,z] denotes a standard Jacobi
polynomial of order n in z with parameters a1 and b1. In this case, the weight func-
tion is xα(1− x)β and the base density is that of a Beta(α+1,β +1) random vari-
able, that is,

ψx[x] =
1

B[α+1,β +1]
xα(1− x)β , 0 < x < 1, (7.5.10)

whose jth moment is given by

mx[ j] =
Γ[α+β +2]Γ[α+1+ j]
Γ[α+1]Γ[α+ j +β +2]

. (7.5.11)

The parameters α and β can be determined as follows:

α = µx[1](µx[1]−µx[2])/(µx[2]−µx[1]2)−1,

β = (1−µx[1])(α+1)/(µx[1]−1), (7.5.12)

see Johnson and Kotz (1970). Moreover, in this case,

θ−1
k =

(2k +a+b+1)Γ[2k +a+b+1]2

k!Γ[k +a+1]Γ[k +a+b+1]Γ[k +b+1]
. (7.5.13)

7.5.4 Approximants expressed in terms of Hermite polynomials

Densities of random variables for which a normal density can provide a reasonable
initial approximation can be expressed in terms of the modified Hermite polynomi-
als given by

H∗
k [x] = (−1)k2−k/2HermiteH[k,x

√
2] (7.5.14)
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where HermiteH[k,z] denotes a standard Hermite polynomial of order k in z. H∗
k [x]

is also defined on the interval (−∞,∞), and its associated weight function is w[x] =
e−x2/2. Clearly, x = (y−u)/s with u = µy[1] and s =

√
µy[2]−µy[1]2. In this case,

the base density is that of a standard normal random variable, that is,

ψx[x] =
1√
2π

e−x2/2, −∞< x < ∞, (7.5.15)

whose jth moment is given by

mx[ j] =
2

1
2 (−1+ j)(1+(−1) j)Γ[ 1+ j

2 ]√
2π

, j = 0,1, . . . , (7.5.16)

and
θk =

√
2π k!. (7.5.17)

Example 7.5.1. Consider an equally weighted mixture of a N(µ ,σ2) = N(3,4)
and a N(1,1) distributions. The exact and approximate densities are shown in
Figure 7.4.
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Chapter 8
Applications to Order Statistics

[This chapter is based on the lectures of Dr. Yageen Thomas, Kerala University, Kariavattom,
Kerala, India, at the SERC Schools.]

8.0 Introduction

Order statistics deal with the properties and applications of ordered random vari-
ables and their functions. In the study of many natural problems related to flood,
longevity, breaking strength, atmospheric temperature, atmospheric pressure, wind
etc., the future possibilities in the recurrence of extreme situations are of much
importance and accordingly the problem of interest in these cases reduces to
that of the extreme observations. Let z1,z2, . . . ,zn be n random variables. Define
z1:n = min(z1,z2, . . . ,zn), z2:n = second smallest of (z1,z2, . . . ,zn), . . . ,zi :n = i-th
smallest of (z1,z2, . . . ,zn), . . . ,zn :n = n−th smallest (the largest) of (z1,z2, . . . ,zn) =
max(z1,z2, . . . ,zn). Then we have z1:n ≤ z2:n ≤ ·· · ≤ zn :n and these ordered ran-
dom variables z1:n,z2:n, . . . ,zn :n are known as the order statistics of the given set of
random variables. In particular zi :n is called the i-th order statistic. In most of the
applications of order statistics in statistical inference problems, our interest is with
the order statistics of a random sample of size n drawn from a parent population.
We may write z1:n,z2:n, . . . ,zn :n to denote the order statistics of a random sample of
size n drawn from an arbitrary distribution. When one considers problems similar
to contamination of a random sample by outliers, order statistics of independent but
not identically distributed random variables are to be considered.

8.1 Distribution Function

Let x1:n,x2:n, . . . ,xn :n be the order statistics of n independently and identically dis-
tributed (i.i.d) random variables. Then for any real number x, the distribution func-
tion of xr :n is denoted by Fr :n(x) and is given by

311
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Fr :n(x) = P(xr :n ≤ x)

= P{r or more of the n, x j’s are ≤ x}

=
n

∑
i=r

P{ i of the n, x j’s are ≤ x}

=
n

∑
i=r

(
n
i

)
[F(x)]i [1−F(x)]n−i, x ∈ R. (8.1.1)

From the well-known relation between binomial sums and incomplete beta func-
tions we may also write (8.1.1) as

Fr :n(x) =
∫ F(x)

0

Γ(n+1)
Γ(r)Γ(n− r +1)

tr−1 (1− t)(n−r+1)−1 dt

= IF(x)(r, n− r +1), −∞< x < ∞. (8.1.2)

Example 8.1.1. Let x1:n,x2:n, . . . ,xn :n be the order statistics of a random sample
of size n drawn from the uniform distribution over [0,1]. Obtain Fr :n(x).

Solution 8.1.1: A random variable x is said to have a uniform distribution over
[0,1] if its probability density function f (x) is given by

f (x) =

{
1, 0 ≤ x ≤ 1
0, elsewhere.

The distribution function F(x) of the uniform distribution is then given by

F(x) =

⎧
⎪⎨

⎪⎩

0, x < 0
x, 0 ≤ x ≤ 1
1, x ≥ 1.

Then by using (8.1.1), the distribution function Fr :n(x) of xr :n is given by

Fr :n(x) =
n

∑
i=r

(
n
i

)
xi (1− x)n−i. (8.1.3)

As a consequence of (8.1.2), we can write the following alternate expression for
Fr :n(x) :

Fr :n(x) =
∫ x

0

Γ(n+1)
Γ(r)Γ(n+1)

ur−1 (1−u)(n−r+1)−1 du. (8.1.4)

Note 8.1.1: It may be noted that if x1,x2, . . . ,xn are the observations of a random
sample of size n drawn from a population then the order statistics x1:n,x2:n, . . . ,xn :n
can be considered as the order statistics of i.i.d. random variables.
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8.1.1 Density of the r-th order statistic

Suppose x1:n,x2:n, . . . ,xn :n are the order statistics of n i.i.d. random variables which
are distributed identically with distribution function F(x) and is absolutely continu-
ous and having the density function f (x), then the pdf (probability density function)
fr :n(x) of xr :n can be obtained from (8.1.1) by differentiation. However fr :n(x) also
can be obtained in the following manner: The event xr :n ∈ (x, x+∆x] is the same as
xi ≤ x for r−1 of the xi’s, x < xi ≤ x+∆x for exactly one of the xi’s and xi > x+∆x
for the remaining n−r of the xi’s. As ∆x → 0 the probability that an observation lies
in the above mutually exclusive classes is F(x), f (x)dx and 1−F(x) respectively.
Then as ∆x → 0, by the multinomial probability law we have

fr :n(x) = lim
∆x→0

P(x < xr :n ≤ x+∆x)
∆x

=
n!

(r−1)!(n− r)!
[F(x)]r−1 [1−F(x)]n−r f (x), (8.1.5)

r = 1,2, . . . ,n; −∞< x < ∞.

Example 8.1.2. Let xr :n be the r-th order statistic of a random sample of size n
drawn from the uniform distribution over [0,1]. Obtain the pdf of xr :n

Solution 8.1.2: Clearly

fr :n(x) =
n!

(r−1)!(n− r)!
xr−1(1− x)n−r, 0 ≤ x ≤ 1.

Example 8.1.3. Let x1:n,x2:n, . . . ,xn :n be the order statistics of a random sample
of size n from the exponential distribution with the following pdf,

f (x) =

{
e−x, x > 0
0, elsewhere.

Obtain the pdf of xr:n.

Solution 8.1.3: Clearly,

F(x) = 1− e−x.

Therefore

fr :n =
n!

(r−1)! (n− r)!
(1− e−x)r−1 e−(n−r+1)x, x ≥ 0.

In particular,

f1:n(x) = ne−nx, x > 0.
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8.1.2 Joint distribution function of two order statistics

If x and y are two random variables and (u,v) ∈ R2 then F(u,v) = P(x ≤ u,y ≤ v) is
called the joint distribution function of x and y. It may be noted that if F1(u) = P(x≤
u) and F2(v) = P(y ≤ v) then F1(u) and F2(v) are called the marginal distribution
functions of x and y respectively. Further,

F1(u) = limv→∞F(u, v) and F2(v) = limu→∞F(u, v).

If xr :n and xs :n are the r-th and s-th order statistics for 1 ≤ r < s ≤ n of a random
sample of size n arising from a population with distribution function F(x) and if
Fr,s :n(x,y) is the joint distribution function of xr :n and xs :n then it is clear that

Fr,s :n(x, y) = limx→∞Fr,s :n(x, y) for every x > y.

That is,
Fr,s :n(x, y) = Fs :n(y) for all x ≥ y. (8.1.6)

However for x < y we have,

Fr,s :n(x, y) = P(xr :n ≤ x, xs :n ≤ y)
= P{at least r of the x j’s are at most x and at least s

of the x j’s are at most y}

=
n

∑
j=s

j

∑
i=r

n!
i! ( j− i)! (n− j)!

× [F(x)]i [F(y)−F(x)] j−i [1−F(y)]n− j.

(8.1.7)

(8.1.6) and (8.1.7) define the distribution function Fr,s :n(x,y).

8.1.3 Joint density of two order statistics

Suppose xr :n and xs :n for 1 ≤ r < s ≤ n be the r-th and s-th order statistics of a ran-
dom sample of size n arising from an arbitrary continuous distribution with distribu-
tion function F(x) and pdf f (x). Then for x ≤ y , the event (xr :n ∈ (x, x+∆x], xs :n ∈
(y, y +∆y]) is the same as xi ≤ x for (r−1) of the xi’s , x < xi ≤ x +∆x for exactly
one of the xi’s, x +∆x < xi ≤ y for exactly s− r−1 of the xi ’s, y < xi ≤ y+∆y for
exactly one of the xi’s and xi > y+∆y for exactly n− s of the xi’s. Then by using the
multinomial probability law we have

fr,s :n(x, y) = lim∆x→0,∆y→0
P(x < xr :n ≤ x+∆x, y < xs :n ≤ y+∆y)

∆x∆y

=
n!

(r−1)! (s− r−1)! (n− s)!
[F(x)]r−1 [F(y)−F(x)]s−r−1

× [1−F(y)]n−s f (x) f (y), −∞< x < y < ∞.

(8.1.8)
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In particular, if we put r = 1 and s = n in (8.1.8) then we obtain the joint pdf of the
most extreme order statistics and is given by

f1,n :n(x, y) = n(n−1) [F(y)−F(x)]n−2 f (x) f (y), −∞< x < y < ∞.

Example 8.1.4. Let xr :n, xs :n, 1 ≤ r < s ≤ n be the r-th and s-th order statistics
of a random sample of size n arising from the uniform distribution over [0,1]. Then
the joint pdf of xr :n and xs :n is given by

fr,s :n(x, y) =
n!

(r−1)! (s− r−1)! (n− s)!

× xr−1(y− x)s−r−1(1− y)n−s, 0 ≤ x < y ≤ 1.

8.1.4 Moments of order statistics

Let x1:n, x2:n, . . . ,xn :n be the order statistics of a random sample of size n drawn
from a population with distribution function F(x) and pdf f (x). Then the k-th mo-
ment of the r-th order statistic is denoted by µ(k)

r :n, and is given by

µ(k)
r :n =

∫ ∞

−∞
x fr :n(x)dx

=
n!

(r−1)! (n− r)!

×
∫ ∞

−∞
x [F(x)]r−1[1−F(x)]n−r f (x)dx, k = 1,2, . . .

(8.1.9)

The variance of xr :n is then given by

Var(xr :n) = E(x2
r :n)− [E(xr :n)]

2

= µ2
r :n − [µr :n]

2.

The product moment of xr :n and xs :n for 1 ≤ r < s ≤ n is given by

µr,s :n = E(xr :n xs :n)

=
∫ ∫

−∞<x<y<∞
xy fr,s :n(x, y)dx∧dy

= C(r, s : n)
∫ ∞

−∞

∫ y

−∞
xy [F(x)]r−1 [F(y)−F(x)]s−r−1

× [1−F(y)]n−s f (x) f (y)dx∧dy

where
C(r, s : n) =

n!
(r−1)!(s− r−1)!(n− s)!

.

Then the covariance between xr :n and xs :n is given by

Cov(xr :n, xs :n) = µr,s :n −µr :n µs :n.
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Example 8.1.5. Let x1:n, x2:n, . . . ,xn :n be the order statistics of a random sample
of size n drawn from the uniform distribution over [0,1]. Then obtain µ(k)

r :n, Var(xr :n),
Cov(xr :n, xs :n) where 1 ≤ r < s ≤ n.

Solution 8.1.4:

µ(k)
r :n =

n!
(r−1)!(n− r)!

∫ 1

0
xk xr−1(1− x)n−rdx

=
n!

(r−1)!(n− r)!
Γ(k + r)Γ(n− r +1)

Γ(n+ k +1)

=
n!(k + r−1)!

(r−1)!(n+ k)!
.

When we put k = 1 and k = 2 in the above expression we get

µr :n =
r

n+1

µ(2)
r :n =

(r +1)r
(n+1)(n+2)

.

Therefore

Var(xr :n) = µ(2)
r :n − [µr :n]

2

=
r (r +1)

(n+1)(n+2)
− r2

(n+1)2

=
r (n− r +1)

(n+1)2 (n+2)
.

µr,s :n =
n!

(r−1)!(s− r−1)!(n− s)!

×
∫ 1

0

∫ y

0
xyxr−1 (y− x)s−r−1(1− y)n−sdx∧dy

=
n!

(r−1)!(s− r−1)!(n− s)!

×
∫ 1

0
(1− y)n−s ys+1dy

∫ 1

0
tr(1− t)s−r−1dt,

on putting x = yt.

=
n!

(r−1)!(s− r−1)!(n− s)!
Γ(n− s+1)Γ(s+2)

Γ(n+3)

× Γ(r +1)Γ(s− r)
Γ(s+1)

=
r (s+1)

(n+1)(n+2)
.
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Hence,

Cov(xr :n,xs :n) = µr,s :n −µr :n µs :n

=
r (s+1)

(n+1)(n+2)
− r s

(n+1)2

=
r (n− s+1)

(n+1)2(n+2)
.

8.1.5 Recurrence relations for moments

The following is a basic recurrence relation which is very helpful in the evaluation
of the moments of order statistics.

Theorem 8.1.1. For an arbitrary distribution

rµ(k)
r+1:n +(n− r)µ(k)

r :n = n µ(k)
r :n−1 (8.1.10)

for n ≥ 2, 1 ≤ r ≤ n−1 and k = 1,2, . . .

Proof 8.1.1: Suppose the parent distribution admits the moment of order k. We
have

µ(k)
r :n−1 =

(n−1)!
(r−1)!(n− r−1)!

∫ ∞

−∞
xk[F(x)]r−1 [1−F(x)]n−r−1 f (x)dx

=
(n−1)!

(r−1)!(n− r−1)!

×
∫ ∞

−∞
xk[F(x)+(1−F(x))] [F(x)]r−1 [1−F(x)]n−r−1 f (x)dx

=
(n−1)!

(r−1)!(n− r−1)!

{∫ ∞

−∞
xk[F(x)]r [1−F(x)]n−r−1 f (x)dx

+
∫ ∞

−∞
xk[F(x)]r−1 [1−F(x)]n−r f (x)dx

}

=
r
n

∫ ∞

−∞
xk fr+1:n(x)dx+

n− r
n

∫ ∞

−∞
xk fr :n(x)dx.

That is,

µ(k)
r :n−1 =

r
n
µ(k)

r+1:n +
(n− r)

n
µ(k)

r :n.

From the above equation we get the required result.

Note 8.1.2: In several applications of order statistics, the moments of order sta-
tistics are to be evaluated. The recurrence relation (8.1.10) is very helpful in the
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evaluation of these moments, when explicit expressions for the moments of or-
der statistics fail to exist. It is to be noted that by using (8.1.10) one can evaluate
µ(k)

r :n,r = 1,2, . . . ,n provided one integral among all integrals for the above moments
is evaluated directly and moments of order statistics of lower sample sizes are also
known.

8.1.6 Recurrence relations on the product moments

The following theorem provides a basic recurrence relation which has been estab-
lished by Govindarajulu and is very helpful in the evaluation of the product moments
of order statistics.

Theorem 8.1.2. For an arbitrary distribution with finite mean value,

(r−1)µr,s :n +(s− r)µr−1,s :n +(n− s+1)µr−1,s−1:n

= n µr−1,s−1:n−1 (8.1.11)

for n ≥ 3 and 2 ≤ r < s ≤ n.

Proof 8.1.2:

µr−1,s−1:n−1 =
(n−1)!

(r−2)!(s− r−1)!(n− s)!

×
∫ ∞

−∞

∫ y

−∞
xy[F(x)]r−2[F(x)−F(y)]s−r−1[1−F(y)]n−s

× f (x) f (y)dx∧dy.

Introducing 1 = F(x) + (F(y)−F(x)) + (1−F(y)) within the above integral and
expanding it into three integrals we obtain the following:

µr−1,s−1:n =
(n−1)!

(r−2)!(s− r−1)!(n− s)!

×
{∫ ∞

−∞

∫ y

−∞
xy[F(x)]r−1[F(x)−F(y)]s−r−1[1−F(y)]n−s

× f (x) f (y)dx∧dy

+
∫ ∞

−∞

∫ y

−∞
xy[F(x)]r−2[F(x)−F(y)]s−r[1−F(y)]n−s

× f (x) f (y)dx∧dy

+
∫ ∞

−∞

∫ y

−∞
xy[F(x)]r−2[F(x)−F(y)]s−r[1−F(y)]n−s+1

× f (x) f (y)dx∧dy
}

.
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That is,

µr−1,s−1:n =
r−1

n
µr,s :n +

s− r
n
µr−1,s :n +

n− s+1
n

µr−1,s−1:n.

Now the required result (8.1.11) is obtained from the above relation.

Note 8.1.3: The above recurrence relation helps us to compute all product mo-
ments µr,s :n, 1 ≤ r < s ≤ n if we know n − 1 suitably chosen moments (for ex-
ample, the knowledge of the n − 1 immediate upper diagonal product moments
µr,r+1:n, 1 ≤ r ≤ n−1 is enough for this purpose) provided the product moments of
order statistics of lower sample size are also known.

The above recurrence relation can be further modified and for such results see,
Arnold, Balakrishnan and Nagaraja (1998).

8.1.7 Order statistics from symmetric distributions

Suppose a random variable x has the distribution which is continuous and symmetric
about 0. Then if F(x) is the distribution function and f (x) the pdf of x, then f (x) =
f (−x) and F(−x) = 1−F(x). Further in this case x and −x are identically distrib-
uted and if x1:n,x2:n, . . . ,xn :n are the order statistics of a random sample of size n
from this distribution then (x1:n,x2:n, . . . ,xn−1:n,xn :n) is distributed identically as
(−xn :n,−xn−1:n, . . . ,−x2:n,−x1:n) as we have (x1:n ≤ x2:n ≤ . . . ≤ xn−1:n ≤ xn :n)
iff (−xn :n ≤−xn−1:n ≤ . . . ≤−x2:n ≤−x1:n). In particular, we have

xr :n
d= xn−r+1:n

(that is, xr :n distributed identically as −xn−r+1:n ) and

(xr :n,xs :n)
d= (−xn−s+1:n,−xn−r+1:n).

As a result of the above properties we have

µ(k)
r :n = (−1)k µ(k)

n−r+1:n, 1 ≤ r ≤ n;

µr,s :n = µn−s+1,n−r+1:n, 1 ≤ r < s ≤ n.

8.2 Discrete Order Statistics

If the distribution of a random variable is discrete then the order statistics of a ran-
dom sample of size n arising from such a distribution are known as the discrete order
statistics of a random sample. In general, if x1,x2, . . . ,xn are discrete random vari-
ables then the ordered random variables x1:n,x2:n, . . . , xn :n are known as discrete
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order statistics. If the distribution function of the parent distribution is F(x) and xr :n
is the r-th order statistic of a sample of size n arising from F(x) then the distribution
function Fr :n(x) of xr :n is

Fr :n(x) =
n

∑
i=r

(
n
i

)
[F(x)]i [1−F(x)]n−i, r = 1,2, . . . ,n and x ∈ R.

Example 8.2.1. If the parent random variable is discrete uniform with sup-
port S = {1,2, . . . ,N} with probability mass function given by f (x) = 1/N,x =
1,2, . . . ,N then

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < 1
x
N , x ∈ S
[x]
N , x ∈ R,and x /∈ S, 1 < x < N
1, x > N

where [x] denotes the greatest integer contained in x. Then for x ∈ S, we have

Fr :n(x) =
n

∑
i=r

(
n
r

)( x
N

)i (
1− x

N

)n−i
.

Similarly for other possible values of x also we can obtain Fr :n(x).

8.2.1 Probability function of discrete order statistics

First method: Let Fr :n(x) be the distribution function of xr :n, the r-th order sta-
tistic of a random sample of size n drawn from a discrete distribution. Then the
probability mass function fr :n(x) of xr :n is given by

P(xr :n = x) = fr :n(x) = Fr :n(x)−Fr :n(x−). (8.2.1)

Also from the relation between binomial sums and incomplete beta function (8.2.1)
can be also written as

fr:n(x) =
Γ(n+1)

Γ(r)Γ(n− r +1)

∫ F(x)

F(x−)
tr−1(1− t)n−rdt. (8.2.2)

Second method: For each observation x, we can associate a multinomial trial
with outcomes {x < u},{x = u} and {x > u} with corresponding probabilities
F(u−), f (u) and 1−F(x) respectively. Now, the event {xr:n = x} can be related
in r(n − r + 1) distinct and mutually exclusive ways as (r − 1 − i) observations
are less than x,(n − r − j) observations exceed x and the rest equal to x, where
i = 0,1, . . . ,r−1 and j = 0,1, . . . ,n− r. Thus we have

fr :n =
r−1

∑
i=0

n−r

∑
j=0

n![F(x−)]r−1−i[1−F(x)]n−r− j[ f (x)]i+ j+1

(r−1− i)!(n− r− j)!(i+ j +1)!
.
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8.2.2 Joint probability function of two order statistics

The joint distribution function of xr :n and xs :n, denoted by Fr,s :n(x,y) for x ≤ y, is
given in (8.1.7). Then the probability mass function fr,s :n(x,y) for x ≤ y is given by

fr,s :n(x,y) = Fr,s :n(x,y)−Fr,s :n(x−1,y)−Fr,s :n(x,y−1)+Fr,s :n(x−1,y−1).

8.2.3 Bernoulli order statistics

Let x1:n,x2:n, . . . ,xn :n be the order statistics of a random sample of size n arising
from the Bernoulli population with probability mass function (pmf)

P(x = i) =

⎧
⎪⎨

⎪⎩

π, if i = 1
1−π, if i = 0
0, otherwise,0 < π < 1.

Then,

P(xr :n = 1) = P(at least n− r +1 of the x j’s are taking the value 1)

=
n

∑
i=n−r+1

(
n
i

)
π i(1−π)n−i

= π∗r (say).

Then P(xr :n = 0) = 1−π∗r . Hence it follows that the r-th order statistic xr:n from a
Bernoulli distribution is also a Bernoulli random variable with probability of success
π∗r and hence we have

E(xr :n) = π∗r
Var(xr :n) = π∗r (1−π∗r ).

The joint probability mass function fr,s :n(x,y) for 1 ≤ r < s ≤ n is described below.

P(xr :n = 0, xs :n = 0) = P(xs :n = 0) = 1−π∗s
P(xr :n = 0, xs :n = 1) = P(at least n− s+1 and at most n− r

of the x j’s take the value 1)

=
n−r

∑
i=n−s+1

(
n
i

)
π i(1−π)n−i

= π∗s −π∗r .

P(xr :n = 1,xs :n = 1) = P(xr :n = 1) = π∗r .
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Trivially we have P(xr :n = 1,xs :n = 0) = 0. Then from the above relations we have

µr,s :n = π∗r

and

Cov(xr :n,xs :n) = π∗r −π∗r π∗s
= π∗r (1−π∗s ).

Note 8.2.1: From the above results we may take xr :n as an unbiased estimator

of the parametric function π∗r = ∑n
i=n−r+1

(
n
i

)
π i (1−π)n−i with variance equal to

π∗r (1−π∗r ).

8.3 Independent Random Variables

Let x1, x2, . . . ,xn be n random variables with distribution functions F1, F2, . . . ,Fn re-
spectively. Let the distribution functions be continuous with Fi having pdf fi, i =
1,2, . . . ,n. Let x1:n,x2:n, . . . ,xn :n be the order statistics of the given random vari-
ables. Now we will obtain the pdf of xr :n and the joint pdf of xr :n and xs :n. In the
subsequent sections we will show that these densities are expressed as functions of
matrix arguments. Now we define the following:

Definition 8.3.1. Permanent of a square matrix Let A be a square matrix then we
write |A|+ to denote the permanent of the square matrix which is defined by an
expansion just like that of the determinant of A with all terms positive. For example

∣
∣
∣
∣
∣
∣

1 2 1
0 3 1
1 2 3

∣
∣
∣
∣
∣
∣

+

= 1
∣
∣
∣
∣
3 1
2 3

∣
∣
∣
∣

+

+2
∣
∣
∣
∣
0 1
1 3

∣
∣
∣
∣

+

+1
∣
∣
∣
∣
0 3
1 2

∣
∣
∣
∣

+

= 11+2+3 = 16.

8.3.1 Distribution of a single order statistic

Consider the case in which x1:3,x2:3x3:3 are the order statistics of the random vari-
ables x1,x2,x3 which are independently distributed with xi having the distribution
function Fi and density fi, i = 1,2,3. Now consider the event x1:3 ∈ (x,x + ∆x].
Then

P(x1:3) = P(x1 ∈ (x,x+∆x];x2,X3 ∈ (x+∆x,∞))
+P(x2 ∈ (x,x+∆x];x1,x3 ∈ (x+∆x,∞))
+P(x3 ∈ (x,x+∆x];x1,x2 ∈ (x+∆x,∞)).
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That is,

f1:3(x) = lim∆x→0
P(x1:3 ∈ (x,x+∆x))

∆x
= f1(x)(1−F2(x))(1−F3(x))

+ f2(x)(1−F1(x))(1−F3(x))
+ f3(x)(1−F1(x))(1−F2(x)), −∞< x < ∞. (8.3.1)

Then we can easily show that the expression given in (8.3.1) is also given by

f1:3(x) =
1
2!

∣
∣
∣
∣
∣
∣

f1(x) 1−F1(x) 1−F1(x)
f2(x) 1−F2(x) 1−F2(x)
f3(x) 1−F3(x) 1−F3(x)

∣
∣
∣
∣
∣
∣

+

, −∞< x < ∞.

Similarly one can further prove that

f2:3(x) =
1
1!

∣
∣
∣
∣
∣
∣

F1(x) f1(x) 1−F1(x)
F2(x) f2(x) 1−F2(x)
F3(x) f3(x) 1−F3(x)

∣
∣
∣
∣
∣
∣

+

, −∞< x < ∞;

f3:3(x) =
1
2!

∣
∣
∣
∣
∣
∣

F1(x) F1(x) f1(x)
F2(x) F2(x) f2(x)
F3(x) F3(x) f3(x)

∣
∣
∣
∣
∣
∣

+

, −∞< x < ∞.

This method of obtaining the pdf f1:3, can be generalized in this manner and thus
one has the following pdf fr :n(x) of xr :n:

fr :n(x) =
1

(r−1)!(n− r)!

×

∣
∣
∣
∣
∣
∣
∣
∣
∣

F1(x) · · · F1(x) f1(x) 1−F1(x) · · · 1−F1(x)
F2(x) · · · F2(x) f2(x) 1−F2(x) · · · 1−F2(x)

...
. . .

...
...

...
. . .

...
Fn(x) · · · Fn(x) fn(x) 1−Fn(x) · · · 1−Fn(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+

(8.3.2)

where 1 ≤ r ≤ n and −∞< x < ∞.

Example 8.3.1. Let xi have an exponential distribution with pdf

fi(x) =

{
ai e−ai x, x > 0, ai > 0
0, elsewhere,

where i = 1,2,3 and x1,x2,x3 are independently distributed. Then obtain the pdf of
x1:3 and hence obtain E(x1:3) and Var(x1:3).
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Solution 8.3.1: Clearly Fi(x) = 1− e−ai x, i = 1,2,3

f1:3(x) =
1
2!

∣
∣
∣
∣
∣
∣
∣

a1 e−a1 x e−a1 x e−a1 x

a2 e−a2 x e−a2 x e−a2 x

a3 e−a3 x e−a3 x e−a3 x

∣
∣
∣
∣
∣
∣
∣

+

, x > 0

= (a1 +a2 +a3)e−(a1+a2+a3)x, x > 0. (8.3.3)

That is, x1:3 is exponentially distributed with parameter a1 + a2 + a3 and hence
E(x1:3) and Var(x1:3) are easily available.

8.3.2 Joint distribution of two order statistics

Let xi have distribution function Fi(x) and density fi(x), i = 1,2,3 and be indepen-
dent. Then consider the event {x1:3 ∈ (x,x+∆x],x2:3 ∈ (y,y+∆y]}, for x < y. Let
M(x) = P{x1:3 ∈ (x,x+∆x], x2:3 ∈ (y,y+∆y]}. Then

M(x) = P{x1 ∈ (x,x+∆x]; x2 ∈ (y,y+∆y]; x3 ∈ (y+∆y,∞)}
+P{x1 ∈ (x,x+∆x]; x3 ∈ (y,y+∆y]; x2 ∈ (y+∆y,∞)}
+P{x2 ∈ (x,x+∆x]; x1 ∈ (y,y+∆y]; x3 ∈ (y+∆y,∞)}
+P{x2 ∈ (x,x+∆x]; x3 ∈ (y,y+∆y]; x1 ∈ (y+∆y,∞)}
+P{x3 ∈ (x,x+∆x]; x1 ∈ (y,y+∆y]; x2 ∈ (y+∆y,∞)}
+P{x3 ∈ (x,x+∆x]; x2 ∈ (y,y+∆y]; x1 ∈ (y+∆y,∞)} .

Therefore

f1,2:3(x,y) = lim∆x→0
∆y→0

P{x1:3 ∈ (x, x+∆x], x2:3 ∈ (y, y+∆y)}
∆x∆y

= f1(x){ f2(y)(1−F3(y))+ f3(y)(1−F2(y))}
+ f2(x){ f1(y)(1−F3(y))+ f3(y)(1−F1(y))}
+ f3(x){ f1(y)(1−F2(y))+ f2(y)(1−F1(y))} , −∞< x < y < ∞.

(8.3.4)

One can easily verify that (8.3.4) is also equal to

f1,2:3(x) =
1
1!

∣
∣
∣
∣
∣
∣
∣

f1(x) f1(y) 1−F1(y)
f2(x) f2(y) 1−F2(y)
f3(x) f3(y) 1−F3(y)

∣
∣
∣
∣
∣
∣
∣

+

, −∞< x < y < ∞.

Similarly we can show that

f1,3:3(x) =
1
1!

∣
∣
∣
∣
∣
∣
∣

f1(x) F1(y)−F1(x) f1(y)
f2(x) F2(y)−F2(x) f2(y)
f3(x) F3(y)−F3(x) f3(y)

∣
∣
∣
∣
∣
∣
∣

+

, −∞< x < y < ∞
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and

f2,3:3(x) =
1
1!

∣
∣
∣
∣
∣
∣
∣

F1(x) f1(x) f1(y)
F2(x) f2(x) f2(y)
F3(x) f3(x) f3(y)

∣
∣
∣
∣
∣
∣
∣

+

, −∞< x < y < ∞.

In general we can have a straight forward generalization of the above approach to
obtain an expression for fr,s :n(x,y).

TEST

on Order Statistics

Time: 1 hour

Three fifth of the paper carries full marks. All questions carry equal marks.

8.1. Define order statistics. If x1:2 and x2:2 are the order statistics of a random
sample of size two drawn from a continuous distribution with probability density
function f (x), obtain the pdf of x1:2 and x2:2.

8.2. Obtain the expression for the distribution function (df) Fr :n(x) of the r-th
order statistic xr :n of a random sample of size n arising from a distribution with df
F(x). Give the connection between Fr :n and the incomplete beta function.

8.3. Let x1:n, x2:n, . . . ,xn :n be the order statistics of a random sample of size n
arising from the uniform distribution over (0,1). Obtain the pdf of xr :n and xs :n and
the expressions for E(xk

r :n) and Var(xr :n).

8.4. Let µ(k)
r :n be the k-th moment of the order statistic xr :n of a random sample

arising from a distribution with pdf f (x). Then show that

n µ(k)
r−1:n−1 = (r−1)µ(k)

r :n +(n− r +1)µ(k)
r−1:n, n ≥ 2, r ≥ 2.

Describe the importance of this relation.

8.5. Let xi be an observation from fi(x), i = 1,2,3 where

f1(x) = ae−ax, x > 0, f2(x) = be−bx, x > 0, f3(x) = ce−cx,x > 0

where a > 0, b > 0, c > 0 Derive the pdf x1:3 and obtain its mean and variance.

(Yageen Thomas)
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8.4 On Concomitants of Order Statistics

8.4.1 Application of concomitants of order statistics

Since there is no direct extension of order concept to multivariate random variables,
the extension of procedure based on order statistics to such situations is inapplicable.
But however from a random sample arising from a bivariate distribution, ordering
of the values recorded on the first variable x generates a set of random variables
associated with the corresponding y variate. These random variables obtained due to
the ordering of the x’s are known as the concomitants of order statistics. Let (x,y) be
a random vector with joint cumulative distribution function (cd f ),F(x,y) and joint
probability density function (pd f ), f (x,y). Let (xi,yi), i = 1,2, ...,n be a random
sample drawn from the distribution of (x,y). Let xi:n be the ith order statistic of the
x observation, then the y variate associated with the xi:n is called the concomitant
of the ith order statistic and is denoted by y[i:n]. It may be noted that Bhattacharya
(1974) has independently developed the above concept of concomitants of order
statistics and he called them as induced order statistics.

Applications of concomitants of order statistics arises in several problems of
study. The most important use of concomitants of order statistics arises in selec-
tion procedures when k(< n) individuals are chosen on the basis of their x-values.
Then the corresponding y-values represent the performance on an associated char-
acteristic. For example, if the top k out of n bulls, as judged by their genetic make
up, are selected for breeding, then y[n−k+1:n], · · · ,y[n:n] might represent the average
milk yield of their female offspring. As another example, x might be the score on
a screening test and y the score on a latter test. In this example only the top k per-
formers in the screening test are selected for further training and their scores on a
second test generates the concomitants of order statistics. These concomitants of
order statistics help one to reduce the complexity of identifying the best performers
among a group of individuals.

Suppose the parent bivariate distribution is defined with cd f F(x,y) and pd f
f (x,y), then the pd f of the rth concomitant y[r:n] for 1 ≤ r ≤ n is given by (see,
David and Nagaraja, 2003, p.144 ),

g[r:n](y) =
∫

x
f (y|x) fr:n(x)dx, (8.4.1)

where fr:n(x) is the pd f of the rth order statistic xr:n of the x variate and f (y|x) is the
conditional pd f of y at a given x. The joint pd f of y[r:n] and y[s:n] for 1 ≤ r < s ≤ n
is given by (see, David and Nagaraja, 2003, p.144),

g[r,s:n](y1,y2) =
∫ ∞

−∞

∫ x2

−∞
f (y1|x1) f (y2|x2) fr,s:n(x1,x2)dx1dx2, (8.4.2)

where fr,s:n(x1,x2) is the joint pd f of xr:n and xs:n. From Yang (1977) we get the
expressions for, E(y[r:n]), Var(y[r:n]), for 1 ≤ r ≤ n and Cov(y[r:n],y[s:n]) for 1 ≤ r <
s ≤ n and are given below.
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E(y[r:n]) = E[E(y|xr:n)], (8.4.3)

Var(y[r:n]) = Var[E(y|xr:n)]+E[Var(y|xr:n)] (8.4.4)

and

Cov(y[r:n],y[s:n]) = Cov[E(y|xr:n),E(y|xs:n)]. (8.4.5)

There is extensive literature available on the application of concomitants of order
statistics such as in biological selection problem (see, Yeo and David,1984), ocean
engineering (see, Castillo,1988), development of structural designs (see, Coles and
Tawn,1994) and so on. Concomitants of order statistics have been used by sev-
eral authors in estimating the parameters of bivariate distributions. Harrell and Sen
(1979) and Gill et al. (1990) have used concomitants of order statistics to estimate
the parameters of a bivariate normal distribution. Spruill and Gastwirth (1982) have
considered another interesting use of concomitants in estimating the correlation co-
efficient between two random variables x and y. Barnett et al. (1976) have considered
different estimators for the correlation coefficient of a bivariate normal distribution
based on concomitants of order statistics. The distribution theory of concomitants
in the bivariate Weibull distribution of Marshall and Olkin is discussed in Begum
and Khan (2000a). Begum and Khan (2000b) have also developed the distribution
theory of concomitants of order statistics from Gumbel’s bivariate logistic distribu-
tion. In Section 5, we consider an application of concomitants of order statistics in
estimating a parameter of Morgenstern type bivariate uniform distribution.

Let (x1,y1),(x2,y2), · · · be a sequence of independent and identically distributed
random variables with cd f F(x,y),(x,y) ∈ R×R. Let Fx(x) and Fy(y) be the mar-
ginal cd f s of x and y respectively. Let {Rn,n ≥ 1} be the sequence of upper record
values (see, Arnold et al., 1998, p.8) in the sequence of x’s as defined by,

Rn = xtn , n = 1,2, · · ·
where t1 = 1 and tn = min{ j : x j > xtn−1} for n ≥ 2. Then the y-variate associated
with the x-value, which qualified as the nth record will be called the concomitant of
the nth record and will be denoted by R[n]. Suppose in an experiment, individuals
are measured based on an inexpensive test and only those individuals whose mea-
surement breaks the previous records are retained for the measurement based on an
expensive test; then the resulting data involves concomitants of record values. For a
detailed discussion on the distribution theory of concomitants of record values see,
Arnold et al. (1998) and Ahsanullah and Nevzorov (2000).

The pd f of nth (n ≥ 1) record value is given by,

gRn(x) =
1

(n−1)!
[−log(1−Fx(x))]n−1 fx(x) (8.4.6)

and the joint pd f of mth and nth record values for m < n is given by,

gRm,Rn(x1,x2) =
[−log(1−Fx(x1))]m−1

(m−1)!
[−log(1−Fx(x2))+ log(1−Fx(x1))]n−m−1

(n−m−1)!

× fx(x1) fx(x2)
1−Fx(x1)

. (8.4.7)



328 8 Applications to Order Statistics

Thus the pd f of the concomitant of nth record value is given by

fR[n] (y) =
∫ ∞

−∞
f (y|x)gRn(x)dx,

where gRn(x) is as defined in (8.4.6) and f (y|x) is the conditional pd f of y at a given
value of x of the parent bivariate distribution.

The joint pd f of concomitants of mth and nth record values is given by (see,
Ahsanullah and Nevzorov, 2000),

gR[m],R[n] (y1,y2) =
∫ ∞

−∞

∫ x2

−∞
f (y1|x1) f (y2|x2)gRm,Rn(x1,x2)dx1dx2,

where gRm,Rn(x1,x2) is defined by (8.4.7). Some properties of concomitants of record
values were discussed in Houchens (1984), Ahsanullah and Nevzorov (2000) and
Arnold et al. (1998). However, not much work is seen done in the distribution theory
and applications of concomitants of records in statistical inference problems. In
Subsection 8.4.2, we provide an application of concomitants of record values in
estimating some parameters of Morgenstern type bivariate logistic distribution.

8.4.2 Application in estimation

Scaria and Nair (1999) have discussed the distribution theory of concomitants of
order statistics arising from Morgenstern family of distributions (MFD) with cd f
defined by (see, Kotz et al., 2000, P.52),

F(x,y) = Fx(x)Fy(y){1+α(1−Fx(x))(1−Fy(y))}, −1 ≤ α ≤ 1. (8.4.8)

An important member of the MFD is Morgenstern type bivariate uniform distribu-
tion with pd f given by,

F(x,y) =
xy
θ1θ2

{
1+α

(
1− x

θ1

)(
1− y

θ2

)}
, (8.4.9)

0 < x < θ1, 0 < y < θ2; −1 ≤ α ≤ 1.

Now we derive the Best Linear Unbiased Estimator (BLUE) of the parameter θ2
involved in (8.4.9) using concomitants of order statistics (see, Chacko and Thomas,
2004).

Let y[r:n], r = 1,2, · · · ,n be the concomitants of order statistics of a random sam-
ple of size n drawn from (8.4.9). Then the pd f of y[r:n] and the joint pd f of y[r:n]
and y[s:n] are obtained as,

g[r:n](y) =
1
θ2

[
1+α

n−2r +1
n+1

(
1− 2y

θ2

)]
, 1 ≤ r ≤ n. (8.4.10)
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and

g[r,s:n](y1,y2) =
1
θ 2

2

[
1+α

n−2r +1
n+1

(
1− 2y1

θ2

)

+α
n−2s+1

n+1

(
1− 2y2

θ2

)
+α2

(
n−2s+1

n+1
− 2r(n−2s)

(n+1)(n+2)

)

(8.4.11)

×
(

1− 2y1

θ2

)(
1− 2y2

θ2

)]
, 1 ≤ r < s ≤ n.

From (8.4.10) and (8.4.11) we get the means, variances and covariances of concomi-
tants of order statistics as follows:

E[y[r:n]] = θ2

[
1
2
−α n−2r +1

6(n+1)

]

= θ2ξr:n, (8.4.12)

where

ξr:n =
1
2
−α n−2r +1

6(n+1)
.

Var[y[r:n]] = θ 2
2

[
1

12
− α

2(n−2r +1)2

36(n+1)2

]

= θ 2
2 ρr,r:n, (8.4.13)

where

ρr,r:n =
1
12

− α
2(n−2r +1)2

36(n+1)2

and

Cov[y[r:n],y[s:n]] = θ 2
2
α2

36

[
(n−2s+1)

(n+1)
− 2r(n−2s)

(n+2)(n+1)

]

[
− (n−2r +1)(n−2s+1)

(n+1)2

]

= θ 2
2 ρr,s:n, (8.4.14)

where

ρr,s:n =
α2

36

[
(n−2s+1)

(n+1)
− 2r(n−2s)

(n+2)(n+1)
− (n−2r +1)(n−2s+1)

(n+1)2

]
.
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Let y[n] = [y[1:n], · · · ,y[n:n]]′ be the vector of concomitants. Then from (8.4.12) we
can write

E(y[n]) = θ2ξ ,

where

ξ = [ξ[1:n], · · · ,ξ[n:n]]
′.

Then from (8.4.13) and (8.4.14), the variance-covariance matrix of y[n] is given by

D(y[n]) = Gθ 2
2 ,

where

G = ((ρr,s:n)).

If α is known then (y[n],θ2ξ ,θ 2
2 G) is a generalized Gauss-Markov setup and

hence the BLUE ( θ̂2 of θ2) is given by,

θ̂2 = (ξ ′G−1ξ )−1ξ ′G−1y[n]

and the variance of θ̂2 is given by,

Var(θ̂2) = (ξ ′G−1ξ )−1θ 2
2 .

It is clear that θ̂2 is a linear function of the concomitants y[r:n] r = 1,2, · · · ,n. Hence
we can write θ̂2 = ∑n

r=1 ary[r:n], where ar, r = 1,2, · · · ,n are constants. It is to be
noted that the possible values of α are in the interval [−1,1]. If the estimate θ̂2 of θ2
for a given α = α0 ∈ [−1,1] is evaluated, then one need not consider the estimate
for θ2 for α = −α0 as the coefficients of the estimate in this case can be obtained
from the coefficients of θ̂2 for α = α0. This property can be easily observed from
the following theorem:

Theorem 8.4.1. Let y[r:n], r = 1,2, · · · ,n be the concomitants of order statis-
tics of a random sample (xi,yi), i = 1,2, · · · ,n arising from (8.4.9) for a given
α = α0 ∈ [−1,1]. Let the BLUE θ̂2(α0) of θ2 for given α0 based on the concomi-
tants Y[r:n],r = 1,2, · · · ,n be written as θ̂2(α0) = ∑n

r=1 arY[r:n]. Then the BLUE of
θ̂2(−α0) of θ2 when α = −α0 is given by

θ̂2(−α0) =
n

∑
r=1

an−r+1y[r:n] with Var[θ̂2(−α0)] = Var[θ̂2(α0)].

Proof 8.4.1: From(8.4.13)and(8.4.14)for1≤ r ≤ nwehaveρr,r:n=ρn−r+1,n−r+1:n
and for 1 ≤ r < s ≤ n, we have ρr,s:n = ρn−s+1,n−r+1:n. Moreover G is symmetric.
Therefore we can write for any α ∈ [−1,1], G = JGJ, where J is an an n×n matrix
given by,
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J =

⎡

⎢
⎢
⎣

0 · · · 0 1
0 · · · 1 0
· · · · · ·
1 · · · 0 0

⎤

⎥
⎥
⎦

Again from (8.4.12) we have for any α0 ∈ [−1,1],

ξr:n(α0) =
1
2
−α0

n−2r +1
6(n+1)

= ξn−r+1:n(−α0).

Thus

ξ (−α0) = Jξ (−α0).

Therefore, if α = α0 is changed to α = −α0 then the estimate θ̂2(−α0) is given by,

θ̂2(−α0) = (ξ ′(−α0)G−1ξ (−α0))−1ξ ′(−α0)G−1Y[n]

= (ξ ′(α0)JG−1Jξ (α0))−1ξ ′(α0)JG−1Y[n](−α0).

Since JJ = I and JGJ = G, we get,

θ̂2(−α0) = (ξ ′(α0)G−1ξ (α0))−1ξ ′(α0)G−1JY[n]

=
n

∑
r=1

arY[n−r+1:n].

That is the coefficient of y[r:n] in θ̂2 for α = α0 is the same as the coefficient of
y[n−r+1:n] in θ̂2 for α = −α0. Similarly we get

Var[θ̂2(−α0)] = Var[θ̂2(α0)].

Thus the theorem is proved.

We have evaluated the coefficients ar of y[r:n],1 ≤ r ≤ n in θ̂2 and Var(θ̂2) for
n = 2(1)10 and α = 0.25(0.25)0.75 and are given in Table 8.4.1. In order to obtain
the efficiency of our estimate θ̂2, we introduce a simple unbiased estimate of θ2 as,

θ̃2 = y[1:n] + y[n:n],

with variance given by,

Var(θ̃2) = θ 2
2

[
1
6

+
α2

18
+
(

2n
(n+1)(n+2)

− n−1
n+1

)]
.

We have obtained the ratio Var(θ̂2)
Var(θ̃2)

as a measure of the efficiency e1 = e(θ̂2|θ̃2)

of our estimator θ̂2 relative to the unbiased estimator θ̃2 for n = 2(1)10 and
α = 0.25(0.25)0.75. It can be seen that the efficiency of our estimator θ̂2 of θ2 is rel-
atively very high when compared with θ̃2. An advantage of the above method of ob-
taining the BLUE of θ2 is that with the expressions for E[y[r:n]] and Cov[y[r:n],y[s:n]]
one can also obtain without any difficulty the BLUE of θ2 even if a censored sample
alone is available.
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8.4.3 Concomitants of record values and estimation problems

In this section we (see, Chacko and Thomas, 2005) consider the concomitants of
record values arising from Morgenstern family of distributions with cd f given in
(8.4.1). We further derive the joint pd f of concomitants of mth and nth (m < n)
record values arising from MFD. Based on these expressions we also derive the
explicit expression for the product moments of concomitants of record values.

An important member of the MFD is the Morgenstern Type bivariate logistic
distribution (MT BLD) and its cd f is given by,

FX ,Y (x,y) =
[

1+ exp
{
−x−θ1

σ1

}]−1 [
1+ exp

{
−y−θ2

σ2

}]−1

×
[

1+α

{

1−
[

1+ exp
{
−x−θ1

σ1

}]−1
}

×
{

1−
[

1+ exp
{
−y−θ2

σ2

}]−1
}]

, (8.4.15)

(x,y) ∈ R2; (θ1,θ2) ∈ R2; σ1 > 0, σ2 > 0, −1 < α < 1.

Suppose in certain complicated experiments significance is attributed to the values
of the secondary measurement made by an accurate expensive test on individuals
having record values with respect to the measurement made preliminarily on them
by an inexpensive test. Now we derive (see, Chacko and Thomas 2005) the BLUE’s
of θ2 and σ2 involved in the MT BLD defined by (8.4.15) when α is known and also
obtain the BLUE of θ2 when σ2 and α are known based on concomitants of first n
record values.

The joint cd f of the standard MT BLD is obtained by making the transformation
u = x−θ1

σ1
and v = y−θ2

σ2
in (8.4.15) and is given by,

FU,V (u,v) = [1+ exp(−u)]−1 [1+ exp(−ν)]−1

×
{

1+α
exp(−u− v)

[1+ exp(−u)][1+ exp(−v)]

}
. (8.4.16)

Let (ui,vi), i = 1,2, · · · be a sequence of independent observations drawn from
(8.4.16). Let R∗

[n] be the concomitant of the nth record valueR∗
[n] arising from (8.4.16).

Then the pd f f ∗[n](v) of R∗
[n] and the joint pd f f ∗[m,n](v1,v2) of R∗

[m] and R∗
[n] for m < n

are given below,

f ∗[n](v) = [1+ exp(−v)]−2 exp(−v)
{

1+α(1−21−n)
[

1− exp(−v)
1+ exp(−v)

]}
, (8.4.17)
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and for m < n,

f ∗[m,n](v1,v2) = [1+ exp(−v1)]
−2 [1+ exp(−v2)]

−2 exp(−v1 − v2)

×
[

1+α {2I1(m,n)−1}
(

1− exp(−v1)
1+ exp(−v1)

)

+α {2I2(m,n)−1}
(

1− exp(−v2)
1+ exp(−v2)

)

+α2 {4I3(m,n)−2I1(m,n)−2I2(m,n)+1}

×
(

1− exp(−v1)
1+ exp(−v1)

)(
1− exp(−v2)
1+ exp(−v2)

)]
,

where,

I1(m,n) =
1

(m−1)!(n−m−1)!

n−m−1

∑
r=0

(−1)n−m−r−1
(

n−m−1
r

)

×
[

(n−1)!
n− r−1

− (n− r−2)!r!+(n− r−2)!
n−r−2

∑
s=0

1
s!

(r + s)!
2r+s+1

]

,

(8.4.18)

I2(m,n) =
(n−1)!

(m−1)!(n−m−1)!

(
1− 1

2n

)

×
n−m−1

∑
r=0

(−1)n−m−r−1
(

n−m−1
r

)
1

n− r−1
(8.4.19)

and

I3(m,n) =
1

(m−1)!(n−m−1)!

n−m−1

∑
r=0

(−1)n−m−r−1
(

n−m−1
r

)[
(n−1)!
n− r−1

(
1− 1

2n

)

− (n− r−2)

(

r!
(

1− 1
2r+1

)
−

n−r−2

∑
s=0

(r + s)!
s!

(
1

2r+s+1 − 1
3r+s+1

))]
.

(8.4.20)

Thus the means, variances and covariances of concomitants of first n record val-
ues (for n ≥ 1 ) arising from (8.4.16) are given by,

E[R∗
[n]] = α(1−21−n) = µn (say), (8.4.21)

Var[R∗
[n]] =

π2

3
−α2(1−21−n)2 = νn,n (say) (8.4.22)

and for m < n,

Cov[R∗
[m],R

∗
[n]] = α2[{4I3(m,n)−2I1(m,n)−2I2(m,n)+1}− (1−21−m)(1−21−n)]

= Vm,n (say) , (8.4.23)
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Let (xi,yi) i = 1,2, · · · be a sequence of independent observations drawn from
a population with cd f defined by (8.4.15). If we write u = x−θ1

σ1
and v = y−θ2

σ2
then

we have xi = θ1 +σ1ui and yi = θ2 +σ2vi for i = 1,2, · · · . Then by using (8.4.21),
(8.4.22) and (8.4.23) we have for n ≥ 1,

E[R[n]] = θ2 +σ2µn, (8.4.24)

Var[R[n]] = σ2
2 νn,n (8.4.25)

and for m < n,

Cov[R[m], R[n]] = σ2
2 νm,n. (8.4.26)

Clearly from (8.4.20), (8.4.21) and (8.4.22) it follows that µn,νn,n and νm,n are
known constants provided α is known. Suppose R[n] = (R[1],R[2], · · · ,R[n]) denote
the vector of concomitants of first n record values. Then from (8.4.24) to (8.4.26),
we can write

E[R[n]] = θ21+σ2µ , (8.4.27)

where 1 is a column vector of n ones and µ = (µ1, · · · ,µn)′. Then the variance-
covariance matrix of R[n] is given by,

D[R[n]] = Hσ2
2 , (8.4.28)

where H = ((νi, j)). If α involved in µ and H are known, then (8.4.27) and (8.4.28)
together define a generalized Gauss-Markov setup and then (proceeding as in David
and Nagaraja 2003, p. 185) the BLUE’s of θ2 and σ2 are given by

θ̂2 =
µ ′H−1(µ1′ −1µ ′)H−1

∆
R[n] (8.4.29)

and

σ̂2 =
1′H−1(1µ ′ −µ1′)H−1

∆
R[n], (8.4.30)

where

∆= (µ ′H−1µ)(1′H−11)− (µ ′H−11)2.

The variances of the above estimators are given by

Var(θ̂2) =
(
µ ′H−1µ
∆

)
σ2

2 , (8.4.31)

and

Var(σ̂2) =
(

1′H−11
∆

)
σ2

2 . (8.4.32)
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Clearly θ̂2 and σ̂2 can be written as θ̂2 = ∑n
i=1 biR[i] and σ̂2 = ∑n

i=1 ciR[i] where bi
and ci, i = 1,2, · · · ,n are constants.

We have evaluated, the coefficients bi and ci of R[i], 1 ≤ i ≤ n in θ̂2 and
σ̂2; Var(θ̂2) and Var(σ̂2) for n = 2(1)10 and α = 0.25(0.25)0.75 and are given
in Table 8.4.2 and Table 8.4.3 respectively. In order to compare the efficiencies of
our estimators θ̂2 and σ̂2 we introduce two simple unbiased estimators of θ2 and σ2
based on the concomitants of the first and nth records as given below,

θ̃2 = R[1]

and

σ̃2 =
R[n] −R[1]

α(1−21−n)
.

Clearly from (8.4.23) it follows that θ̃2 is unbiased for θ2 and σ̃2 is unbiased for σ2.
By using (8.4.24), (8.4.25) and (8.4.26), we get the variances of θ̃2 and σ̃2 as,

Var[θ̃2] =
π2

3
σ2

2

and

Var[σ̃2] =
1

α2(1−21−n)2

[
(

2π2

3
)−α2(1−21−n)2

−2α2{4I3(1,n)−2I1(1,n)−2I2(1,n)+1}
]
.

We have obtained the variance of θ̃2, the relative efficiency Var(θ̃2)
Var ˆ(θ2)

of θ̂2 relative to

θ̃2 for n = 2(1)10;α = 0.25(0.25)0.75 and are provided in Table 8.4.2. Again we
have obtained the variance of σ̃2, the relative efficiency Var(σ̃2)

Var(σ̂2) of σ̂2 relative to σ̃2

for n = 2(1)10; α = 0.25(0.25)0.75 are provided in Table 8.4.3.

Remark 8.4.1: We can see that the BLUE θ̂2 of θ2 does not depend much on the
association parameter α but the BLUE σ̂2 of σ2 depends very much on α and our
assumption is that α is known. Therefore in the situation where α is unknown we
introduce a rough estimator for α as follows, in order to make our estimators θ̂2 and
σ̂2 useful for the α unknown situation.

For MT BLD the correlation coefficient between the two variates is given by
ρ = 3

π2α . If r is the simple correlation coefficient between Ri and R[i], i = 1,2,3, · · ·
then a rough moment type estimator for α is obtained by equating r with the popu-
lation correlation coefficient ρ and is obtained as,
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α̂ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1, if r ≤− 3
π2

1, if r ≥ 3
π2

r π
2

3 , otherwise.

Remark 8.4.2: From the tables we can see that the efficiency of the BLUE of θ2,
the location parameter ranges from 1 to 1.25 and the efficiency of the BLUE of σ2
the scale parameter ranges from 1 to 1.75. It is clear that the efficiency of the BLUE
of σ2 is better than the efficiency of the BLUE of θ2. However, one should keep
in mind that competitors are naive estimators because those are the only available
estimators to obtain the relative efficiency of our estimators in this situation.
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Chapter 9
Applications to Astrophysics Problems

[This chapter is based on the lectures of Professor Dr. Hans Haubold of the Office of Outer
Space Affairs, United Nations, Vienna, Austria.]

9.0 Introduction

Understanding Nature Through Reaction and Diffusion
2005: Albert Einstein 1879-1955: International Year of Physics (IYP), annus
mirabilis of Einstein 1905. Two papers on statistical mechanics (Avogadro num-
ber and size of molecules, fluctuations), two papers on special relativity (velocity of
light, E = mc2), one paper on quantum mechanics (photoelectric effect). All of Ein-
stein’s papers start with a reference to experiments and subsequently develop theory
that may explain the experiments and allow predictions.

2006: Ludwig Boltzmann 1844-1906: Discovers microphysical basis (statistical me-
chanics, entropy) of macrophysical theory (thermodynamics, entropy) and explains
second law of thermodynamics with laws of statistical mechanics.

2007: International Heliophysical Year (IHY): Can science of IHY contribute to
fundamental physics? Prigogine’s quest for probabilistic foundation of classical and
quantum mechanics? Haken’s synergetics based on slaving principle: In general just
a few collective modes become unstable and serve as “ordering parameters” which
describe the macroscopic pattern. At the same time the macroscopic variables, i.e.,
the ordering parameters, govern the behavior of the microscopic parts by the “slav-
ing principle”. In this way, the occurrence of order parameters and their ability to
enslave allows the system to find its own structure.

341
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9.1 Entropy: Boltzmann, Planck, and Einstein on W

9.1.1 Entropic functional

– Clausius entropy (second law of thermodynamics)

dS
dt

≥ 0. (9.1.1)

– Boltzmann entropy (Boltzmann’s principle)

S = k lnW. (9.1.2)

– Boltzmann-Gibbs statistical mechanics and Maxwell-Boltzmann distribution
function for gases.

– Planck’s law, Boltzmann’s entropy, and the black-body radiation law
– Prigogine’s strict formulation of second law of thermodynamics.

dS = dextS +dintS; dextS =≥
< 0; dintS ≥ 0.

– Tsallis entropy

Sq = k
W 1−q −1

1−q
. (9.1.3)

Nonextensive statistical mechanics and Tsallis distribution function.

9.1.2 Entropy and probability

– Boltzmann’s first definition (ok for Einstein)

Si,τi,
τi

τ
, τ → ∞. (9.1.4)

– Boltzmann’s second definition (criticized by Einstein)

w =
N!
Πini!

fine grained. (9.1.5)

– Boltzmann’s complexions (gas, W?)

W = N!ΠA
ωNA

A
NA!

coarse grained. (9.1.6)

– Planck’s complexions (radiation, W?)

W =Πs
(Ns +Ps −1)!
Ns!(Ps −1)!

. (9.1.7)

– Einstein’s definition of statistical probability

W a

W b =
(

V
V0

)n

. (9.1.8)
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Note 9.1.1: In systems far from thermal equilibrium, Shannon information plays
the same role as entropy in systems in thermal equilibrium or close to it, namely as
the cause of processes. However, the question remains whether the maximization
of information (or entropy) is indeed the fundamental law which drives systems in
a unique way. The question is whether evolution and development are governed by
extremal principles, especially extremal principles connected with a single function,
such as entropy or information (Haken).

9.1.3 Boltzmann-Gibbs

What can be added to thermodynamics by knowing something of the structure of
matter? This question lead to the development of kinetic theory and statistical me-
chanics. In statistical mechanics, properties of matter are deduced by applying statis-
tics to large numbers of molecules. In information theory, the information-carrying
capacity of communications systems is deduced by applying statistics to large num-
bers of messages. Fundamental equation of information theory(S) = equation for
entropy in statistical mechanics(S). Individual molecule → very large collection of
macroscopically identical systems = ensemble. Total internal energy of ensemble
(first law of thermodynamics):

E =∑
q

nqEq = constant. (9.1.9)

Total of n members in the ensemble

n =∑
q

nq = constant. (9.1.10)

Number of different ways an ensemble of n members can be arranged for q states:

ω =
n!

Πqnq!
. (9.1.11)

Total entropy of the ensemble is some function of ω ,

S = k lnω (9.1.12)

lnω = lnn!−∑
q

lnnq!. (9.1.13)

Stirling’s formula: From the asymptotic formula for gamma functions (see Chapter 1)

x! = Γ(x+1) ≈
√

2πxx+ 1
2 e−x. (9.1.14)

Hence
lnx! ≈ 1

2
ln(2π)+

1
2

lnx+ x lnx− x.
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If we omit 1
2 ln(2π)+ 1

2 lnx then for very large x we have

lnx! ≈ x lnx− x. (9.1.15)

For very large x we will take it as equal to the right side. Then

lnω = n lnn−n−∑
q

(nq lnnq)+∑
q

nq (9.1.16)

when all nq’s are large.

lnω = n lnn−∑
q

(nq lnnq) = n

[

lnn− 1
n∑q

(nq lnnq)

]

(9.1.17)

since ∑q nq/n = 1,

lnω = n

[

∑
q

(nq

n
lnn
)
−∑

q

(nq

n
lnnq

)
]

(9.1.18)

= −n∑
q

[nq

n
(lnnq − lnn)

]
= −n∑

q

(nq

n
ln

nq

n

)
. (9.1.19)

Estimation of the probability of quantum state q:

Pq =
nq

n
; lnω = −n∑

q
(Pq lnPq) (9.1.20)

S = −kn∑
q

(Pq lnPq). (9.1.21)

Two constraints → maximum → Lagrange method:

∑
q

(nqEq) = n∑
q

(nq

n
Eq

)
= n∑

q
(PqEq) = U. (9.1.22)

Let us maximize S subject to the conditions ∑q Pq = 1 and ∑q PqEq = U where U is
fixed. Let λ1 and λ2 be Langrangian multipliers. Let

f (P1,P2, · · ·) = −nk∑
q

(Pq lnPq)+λ1

(

∑
q

PqEq −U

)

+λ2

(

∑
q

Pq −1

)

.

Then for each i, ∂ f
∂Pi

= 0, i = 1,2, · · · . That is,

∂ f
∂Pi

= 0 ⇒−nk[lnPi +1]+λ1Ei +λ2 = 0 ⇒

lnPi = A−βEi ⇒ Pi = eAe−βPi (9.1.23)
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where A and β are some constants. We can determine A by using the fact that

∑
q

Pq = eA∑
q

e−βEq = 1 (9.1.24)

eA =
1

∑q e−βEq
. (9.1.25)

Distribution of probabilities for the possible quantum states of ensemble =
Maxwell-Boltzmann distribution:

Pq =
e−βEq

∑q e−βEq
=

e−βEq

Z
. (9.1.26)

Definition 9.1.1. Partition function

Z =∑
q

e−βEq .

Note 9.1.2: Stirling’s approximation, coming from an asymptotic expansion of
a gamma function is the following: For |z| → ∞ and α bounded

Γ(z+α) ≈
√

2πzz+α− 1
2 e−z. (9.1.27)

Stirling’s formula given in equation (9.1.14) holds for very large x and the remaining
steps hold when each of n1,n2, · · · is very large.

9.2 Gravitationally Stabilized Fusion Reactor: The Sun

The Sun is a spherically symmetric gas sphere in hydrostatic equilibrium. Rotation
and magnetic fields can be neglected. The innermost region of the Sun (solar core)
is a gravitationally stabilized fusion reactor. Energy is being produced by thermonu-
clear reactions generating photons (surface source) and neutrinos (volume source).
The evolution of the Sun proceeds through the change of chemical abundances
(kinetic equations).

9.2.1 Internal solar structure

Solar structure is determined by conditions of mass conservation, momentum con-
servation, energy conservation, and the mode of energy transport. One can derive
succinctly the equations of solar structure and develop a model in hydrostatic equi-
librium as a model of the Sun in order to illustrate important physical requirements.
Then by arguing physically that the density gradient can be matched to a simple
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function, one can derive a complete analytic representation of the solar interior in
terms of a one-parameter family of models. Two different conditions can be used
to select the appropriate value of the parameter specifying the best model within
the family: (i) the solar luminosity is equated to the thermonuclear power generated
near the center and/or (ii) the solar luminosity is equated to the radiative diffusion
of energy from a central region. The central conditions of the Sun are well calcu-
lated by these analytic formulas. The model yields a good description of the solar
center to be found by methods of differential and integral calculus, rendering it an
excellent laboratory for applied calculus and special functions.

In the following we are concerned with the hydrostatic equilibrium of the purely
gaseous spherical central region of the Sun generating energy by nuclear reactions
at a certain rate. For this gaseous sphere we assume that the matter density varies
non-linearly from the center outward, depending on two parameters δ and γ ,

ρ(x) = ρc fD(x), (9.2.1)

fD(x) = [1− xδ ]γ , (9.2.2)

where x denotes the dimensionless distance variable, x = r/R�,0 ≤ x ≤ 1, R� is the
solar radius, δ > 0,γ > 0, and γ is kept a positive integer in the following consider-
ations. The choice of the density distribution in (9.2.1) and (9.2.2) reveals immedi-
ately that ρ(x = 0) = ρc is the central density of the configuration and ρ(x = 1) = 0
is a boundary condition for hydrostatic equilibrium of the gaseous configuration.
For the range 0 ≤ x ≤ 0.3 the density distribution in (9.2.1) and (9.2.2) can be fit nu-
merically to computed data for solar models by choosing δ = 1.28 and γ = 10. The
choice of restricting x to x ≤ 0.3 is justified by looking at a Standard Solar Model
which shows that x ≤ 0.3 comprises what is considered to be the gravitationally sta-
bilized solar fusion reactor. More precisely, 95% of the solar luminosity is produced
within the region x < 0.2 (M < 0.3M�). The half-peak value for the matter density
occurs at x = 0.1 and the half-peak value for the temperature occurs at x = 0.25. The
region x ≤ 0.3 is also the place where the solar neutrino fluxes are generated. As we
are concerned with a spherically symmetrical distribution of matter, the mass M(x)
within the radius x having the density distribution given in (9.2.1) and (9.2.2) is the
following:

dM(x)
dx

= R3
�4πx2ρ(x) (9.2.3)

which means

M(x) = R3
�4πρc

∫ x

0
t2
[
1− tδ

]γ
dt. (9.2.4)

Put u = tδ and for positive integer γ expand the binomial part to obtain

M(x) = R3
�

4πρc

δ

γ

∑
m=0

(−γ)m

m!

∫ xδ

0
u

3
δ −1+mdu.



9.2 Gravitationally Stabilized Fusion Reactor: The Sun 347

Writing 1
( 3
δ +m)

= 1
(3/δ )

( 3
δ )m

( 3
δ +1)m

we have

M(x) =
4
3
πR3

�ρcx3
2F1

(
−γ, 3

δ
;

3
δ

+1;xδ
)

= M�ρcx3
2F1

(
−γ, 3

δ
;

3
δ

+1;xδ
)

= M� fM(x), (9.2.5)

where fM(x) will be given below, M� denotes the solar mass and 2F1(.) is Gauss’
hypergeometric function, M� = 4

3πR3
�. Equations (9.2.5) is satisfying the boundary

condition M(x = 0) = 0 and determines the central value ρc of the matter density
through the boundary condition M(x = 1) = M�, where ρc depends then only on δ
and γ of the chosen density distribution in (9.2.1) and (9.2.2). Then

ρc =
1

2F1(−γ, 3
δ ; 3
δ +1;1)

=
Γ( 3

δ +1+ γ)Γ(1)

Γ( 3
δ +1)Γ(γ+1)

(9.2.6)

by evaluating the 2F1 at x = 1, see Chapter 1,

ρc =
( 3
δ +1)( 3

δ +2)...( 3
δ + γ)

γ!
. (9.2.7)

Therefore

fM(x) =

[
1
γ!

γ

∏
i=1

(
3
δ

+ i
)]

x3
2F1

(
−γ, 3

δ
;

3
δ

+1;xδ
)

. (9.2.8)

For computing pressure and temperature use the following equations and then fol-
low through the above procedure to obtain the results given below.

dP(r)
dr

= −G
M(r)ρ(r)

r2 (9.2.9)

P(r) = P(0)−
∫ r

0

G M(t)ρ(t)
t2 dt (9.2.10)

and

T (r) =
µ

kNA

P(r)
ρ(r)

(9.2.11)

at an arbitrary distance r from the center. Converting to x = r
R�

we have the expres-
sions for P(x) and T (x) under the ρ(x) in (9.2.2).

For hydrostatic equilibrium of the gaseous configuration the internal pressure
needs to balance the gravitational attraction. The pressure distribution follows
by integration of the respective differential equation for hydrostatic equilibrium,
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making use of the density distribution in (9.2.1) and the mass distribution in (9.2.5),
that is

P(x) =
9

4π
G

M2
�

R4
�

fP(x), (9.2.12)

where

fP(x) =

[
1
γ!

γ

∏
i=1

(
3
δ

+ i
)]2

1
δ 2

γ

∑
m=0

(−γ)m

m!( 3
δ +m)( 2

δ +m)

×
[

γ!
( 2
δ +m+1)γ

− xδm+2
2F1

(
−γ, 2

δ
+m;

2
δ

+m+1;xδ
)]

, (9.2.13)

where G is Newton’s constant and 2F1(.) denotes again Gauss’ hypergeometric
function.

The Pochhammer symbol ( 2
δ + m + 1)γ = Γ( 2

δ + m + 1 + γ)/Γ( 2
δ + m + 1),

γ = 1,2 often appears in series expansions for hypergeometric functions. Equations
(9.2.12) and (9.2.13) give the value of the pressure Pc at the centre of the gaseous
configuration and satisfy the condition P(x = 1) = 0.

It should be noted that P(x) in (9.2.12) denotes the total pressure of the gaseous
configuration, that is the sum of the gas kinetic pressure and the radiation pressure
(according to Stefan-Boltzmann’s law). However, the radiation pressure, although
the ratio of radiation pressure to gas pressure increases towards the center of the Sun,
remains negligibly small in comparison to the gas kinetic pressure. Thus, (9.2.12)
can be considered to represent the run of the gas pressure through the configuration
under consideration. Further, the matter density is so low that at the temperatures
involved the material follows the equation of state of the perfect gas. Therefore, the
temperature distribution throughout the gaseous configuration is given by

T (x) =
µ

k NA

P(x)
ρ(x)

(9.2.14)

= 3
µ

kNA
G

M�
R�

fT (x), (9.2.15)

where

fT (x) =

[
1
γ!

γ

∏
i=1

(
3
δ

+ i
)]

1
δ 2

1
[1− xδ ]γ

γ

∑
m=0

(−γ)m

m!( 3
δ +m)( 2

δ +m)

×
[

γ!
( 2
δ +m+1)γ

− xδm+2
2F1

(
−γ, 2

δ
+m;

2
δ

+m+1;xδ
)]

, (9.2.16)

where k is the Boltzmann constant, NA Avogadro’s number, µ the mean molecular
weight, and 2F1(.) Gauss’ hypergeometric function. Equations (9.2.15) and (9.2.16)
reveal the central temperature T (x = 0) = Tc and satisfy the boundary condition
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T (x = 1) = 0. Since the gas in the central region of the Sun can be treated as com-
pletely ionized, the mean molecular weight µ is given by µ = (2X + 3

4Y + 1
2 Z)−1,

where X ,Y,Z are relative abundances by mass of hydrogen, helium, and heavy ele-
ments, respectively, and X +Y +Z = 1.

9.2.2 Solar fusion plasma

The solar fusion plasma is a weakly non-ideal gas, characterized by the plasma
parameter

Γ=
(Ze)2

akT
=

mean Coulomb potential energy
mean kinetic (thermal) energy

; (9.2.17)

a = n−1/3

is order of average interparticle distance; n is average density.

Γ<< 1 ideal plasma
Γ< 1 weakly non-ideal plasma
Γ> 1 high density / low temperature plasma.

9.2.3 Estimation of central temperature in the Sun

The basic condition for thermonuclear reactions between charged particles is that
their thermal energy must be large enough to penetrate the Coulomb repulsion be-
tween them. Nuclear reactions are collision phenomena characterized by cross sec-
tions. The cross section σ of a reaction is defined as the probability that the reaction
will occur if the incident flux consists of one particle and the target contains only one
nucleus per unit area. The microscopic nature of the particles requires the quantum
mechanical treatment of the collision problem. The number of reactions is directly
proportional to the number density of the incident flux and the number density of the
target. In the case of the nuclear fusion plasma within the Sun, thermal equilibrium
is commonly assumed for the ensemble of nuclei. The distribution of the relative
velocities among the nuclei is assumed to be Maxwell-Boltzmannian.

The thermonuclear raction rate is given by

r12 = n1n2 < σv >12, (9.2.18)

where n1 and n2 denote the number densities of particles of type 1 and 2, respec-
tively, and < σv >12 is the reaction probability in the unit volume per unit time.
This definition of the reaction rate reveals immediately that the quantity

τ12 = [n2 < σv >12]−1, (9.2.19)
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has the dimension of time and can be considered to be the lifetime of particle 2
against reaction with particle 1. A suitable representation of the nuclear cross section
contains two factors: A geometrical factor to which quantum mechanical interaction
between two particles is always proportional, λ 2 ∼ (µv2)−1 (where λ is the reduced
de Broglie wave length, and µ is the reduced mass) and the probability for two
particles of charge Z1e and Z2e to penetrate their electrostatic repulsion:

σ(v) =
2S
µv2 exp

{
−2π

Z1Z2e2

h̄v

}
. (9.2.20)

The constant S is called astrophysical cross section factor and absorbs the intrinsical
nuclear parts of the probability for the occurrence of a nuclear reaction. Then, the
reaction probability is defined as the product of the cross section σ and the relative
velocity v, averaged over the Maxwell-Boltzmann distribution of relative velocities
of the reacting particles,

f (v)dv =
( µ

2kT

)3/2
exp
{
− µv2

2kT

}
4πv2dv. (9.2.21)

To investigate the competition between the exponential factors contained in the
Maxwell-Boltzmann distribution function and the Gamov penetration factor the fol-
lowing order of magnitude estimation is pursued. For the number density of the
particle gas we use the mean density of the Sun with mass M� and radius R� nor-
malized to the mass of the proton, mp,

n2 =
M�
R3
�

1
mp

. (9.2.22)

The velocity of the nuclei is assumed to be the root-mean-square velocity of the
Maxwell-Boltzmann distribution,

v12 =
(

4kT
mp

)1/2

. (9.2.23)

The nuclear energy generated in the Sun, which is lost by radiation, can be estimated
in writing

Enuc ≈ X∆mM�c2, (9.2.24)

where X is the fraction of mass the Sun can use for nuclear energy generation,
∆mM�c2 is the fraction of mass of the Sun really converted into radiation energy.
Thus, the nuclear lifetime of the Sun is of the order

τ−1 ≈ L�
Enuc

≈ L�
X∆mM�c2 . (9.2.25)

For the lifetime of particle 2 one has

1
τ12

≈ L�
Enuc

≈ n2σ12v12. (9.2.26)
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Thus,

L�
X∆mM�c2 ≈ M�

R3
�mp

2S

m1/2
p (kT )1/2

exp
{
−2πe2

h̄

( mp

4kT

)1/2
}

, (9.2.27)

and isolating the exponential term in this expression by setting it equal to unity and
then taking the logarithm, one gets

2παel

(
mpc2

4kT

)1/2

≈ ln

{
2M2

�X∆mSc2

L�R3
�m3/2

p (kT )1/2

}

. (9.2.28)

The numerical value of the logarithmic term on the right-hand-side in this equa-
tion is relatively insensitive to the values inserted for the various quantities in
the brackets. Using solar values for the quantities, M� ≈ 2 × 1033g,L� ≈ 4 ×
1033ergs−1,R� ≈ 7× 1010cm,Tc� ≈ 107K,X = 0.1,∆m = 0.007,Spp = 4× 10−22

keV barn, one obtains for the logarithmic term a numerical value of about 10. Then
one obtains

kT =
(

(2παel)2

22102

)
mpc2 ≈ 5keV. (9.2.29)

This is the central temperature of the stationarily thermonuclear burning Sun. Actual
central temperatures are about a factor 5 smaller or larger than this value due to
the fact that the majority of nuclear reactions occur in the high-energy tail of the
Maxwell-Boltzmann distribution function. The Sun has to adjust this temperature
through the competition between the distribution function of relative energies of the
particles and the penetration factor of the reacting particles.

Emden (polytropic gas spheres), Chandrasekhar (hydrostatic equilibrium), Bethe
(nuclear energy generation), Fowler (thermonuclear reaction rates), Davis (solar
neutrino detection).

9.3 Crucial Astrophysical Experiments: Data Analysis

9.3.1 The experiments

Davis: Detection of solar neutrinos (radiochemical: Homestake with 108 measure-
ments 1970-1995, SAGE with 57 measurements 1990-2006, Gallex/GNO with 84
measurements 1996-2001; real time: SuperKamiokande with 184/358 measure-
ments 1996-2001, SNO). The Sun is a gas sphere in hydrostatic equilibrium, slowly
rotating, exhibiting magnetic fields, and oscillating. The solar neutrino problem,
constituting the discrepancy between theoretically predicted and detected number
of solar neutrinos, was (partially) solved by taking into account the Mikheyev-
Smirnov-Wolfenstein effect (neutrino oscillations). Remaining question is whether
the solar neutrino flux is varying over time, and if so, what is the physical mecha-
nism that makes the flux varying?
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Dicke: Sunspot cycle variations in the ∼11 year half-cycle period all the way from
7.3 year to 17.1 yr. Random walk in the phase of the cycle? Superposition of differ-
ent periodic cycles? Driver of the cycle (convective zone, tachocline, core)? Is there
a chronometer hidden deep in the Sun?

Burlaga: The solar wind (Voyager) is a driven nonlinear nonequilibrium system con-
sisting of a supersonic speed expanding fully ionized plasma that carries magnetic
fields. The Sun injects matter, energy, momentum, magnetic fields. At distant he-
liosphere (approximately 90 Astronomical Units) the solar wind relaxes to a quasi-
stationary, metastable state. The speed of the wind and the strength of the magnetic
field show fluctuations over time and a fractal and multifractal scaling structure.
How to describe possible deviations from thermodynamic equilibrium?

9.3.2 Analysis of the time series

Curve fitting: Attempts can be made to approximate (periodic) variations of mea-
sured physical quantities to different analytic functions. Three functions are pre-
ferred for this purpose: (i) gamma distribution depending on a power of the
argument, (ii) lognormal function, and (iii) exponential distribution depending on
a n-grade polynomial. Respective fitting parameters of these three functions can be
calculated. Does such a function correspond to the solution of a reaction-diffusion
equation governing the processes of reaction and diffusion (energy and mass trans-
fer) of disturbances traveling from a source into an environment?

Fourier and wavelet analysis (time variation): Time series analysis is a rich field
of mathematical and statistical analysis in which physical understanding of a time
varying system can be gained through the analysis of time series measurements.
Traditional methods of time series analysis are Fourier, wavelet, and autocorrelation
analysis.

Fokker-Planck equation (deterministic and stochastic processes): Many natural phe-
nomena are characterized by a degree of stochasticity. A long standing problem is
the development of methods to model such phenomena. That is, given a set of data
taken for a phenomenon, to develop an equation that can reproduce the data with
an accuracy comparable to the measured data. If such a method is available, it can
be utilized to reconstruct the original process with similar statistical properties; to
understand the nature and properties of the stochastic process; and to predict the fu-
ture behavior of the phenomenon, if it is time dependent, or its behavior over length
scales, if it is length scale dependent. A preferred technique for this analysis, based
on the Fokker-Planck equation (Langevin equation) is able to distinguish between
deterministic and stochastic elements of a phenomenon by determining drift and
diffusion coefficients.
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We begin by describing the steps that lead to the development of a stochastic
equation, based on the (stochastic) data set, which is then utilized to reconstruct the
original data, as well as an equation that describes the phenomenon.

As the first step we check whether the data follow a Markov chain and, if so,
estimate the Markov time (length) scale tM . As is well-known, a given process with
a degree of randomness or stochasticity may have a finite or an infinite Markov time
(length) scale. The Markov time (length) scale is the minimum time interval over
which the data can be considered as a Markov process. To determine the Markov
scale tM , we note that a complete characterization of the statistical properties of sto-
chastic fluctuations of a quantity x in terms of a parameter t requires the evaluation
of the joint probability distribution function (PDF) Pn(x1, t1; · · · ;xn, tn) for an arbi-
trary n, the number of the data points. If the phenomenon is a Markov process, an
important simplification can be made, as the n-point joint PDF, Pn, is generated by
the product of the conditional probabilities p(xi+1, ti+1|xi, ti), for i = 1, · · · ,n− 1.
A necessary condition for a stochastic phenomenon to be a Markov process is that
the Chapman-Kolmogorov (CK) equation,

p(x2, t2|x1, t1) =
∫

p(x2, t2|x3, t3) p(x3, t3|x1, t1)dx3 , (9.3.1)

should hold for any value of t3 in the interval t2 < t3 < t1. One should check the
validity of the CK equation for different x1 by comparing the directly-evaluated
conditional probability functions p(x2, t2|x1, t1) with the ones calculated according
to right side of equation (9.3.1). The simplest way to determine tM for stationary or
homogeneous data is the numerical calculation of the quantity, S = |p(x2, t2|x1, t1)−∫

p(x2, t2|x3, t3) p(x3, t3|x1, t1)dx3|, for given x1 and x2, in terms of, for example,
t3 − t1 and considering the possible errors in estimating S. Then, tM = t3 − t1 for that
value of t3 − t1 for which S vanishes or is nearly zero (achieves a minimum).

Deriving an effective stochastic equation that describes the fluctuations of the
quantity x(t) constitutes the second step. The CK equation yields an evolution equa-
tion for the change of the distribution function P(x, t) across the scales t. The CK
equation, when formulated in differential form, yields a master equation which takes
the form of a Fokker-Planck equation:

d
dt

P(x, t) =
[
− ∂
∂x

D(1)(x, t)+
∂ 2

∂x2 D(2)(x, t)
]

P(x, t) . (9.3.2)

The drift and diffusion coefficients, D(1)(x, t) and D(2)(x, t), are estimated directly
from the data and the moments M(k) of the conditional probability distributions:

D(k)(x, t) =
1
k!

lim
∆t→0

M(k),

M(k) =
1
∆ t

∫
(x′ − x)k p(x′, t +∆ t|x, t)dx′. (9.3.3)
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We note that this Fokker-Planck equation is equivalent to the following Langevin
equation:

d
dt

x(t) = D(1)(x)+
√

D(2)(x) f (t) , (9.3.4)

where f (t) is a random force with zero mean value and Gaussian statistics, δ -
correlated in t, i.e., 〈 f (t) f (t ′)〉 = 2δ (t − t ′). Note that such a reconstruction of a
stochastic process does not imply that the data do not contain any correlation, or
that the above formulation ignores the correlations.

Regeneration of the stochastic process constitutes the third step. Eq. (9.3.4) en-
ables us to regenerate a stochastic quantity which is similar to the original one in
the statistical sense. The stochastic process is regenerated by iterating (9.3.4) which
yields a series of data without memory. To compare the regenerated data with the
original ones, we must take the spatial (or temporal) interval in the numerical dis-
cretization of (9.3.4) to be unity (or renormalize it to unity). However, the Markov
length or time is typically greater than unity. Therefore, we should correlate the data
over the Markov length or time scale. There are a number of methods to correlate
the generated data in this interval. Here, we propose a new technique which we refer
to as the kernel method, according to which one considers a kernel function K(u)
that satisfies the condition that,

∫ ∞

−∞
K(u)du = 1 , (9.3.5)

such that the data are determined by

x(t) =
1
nh

n

∑
i=1

x(ti)K
(

t − ti
h

)
, (9.3.6)

where h is the window width. For example, one of the most useful kernels is the
standard normal density function, K(u) = (2π)−1/2 exp(− 1

2 u2). In essence, the ker-
nel method represents the data as a sum of ‘bumps’ placed at the observation points,
with its function determining the shape of the bumps, and its window width h fixing
their width. It is evident that, over the scale h, the kernel method correlates the data
to each other.

Note 9.3.1: If a system exhibits a power law distribution, it can be described by a
nonlinear Fokker-Planck equation. The establishment of states with power law dis-
tributions is regarded as a collective phenomenon. The power law distribution arises
from the interactions between the subsystems of a many-body system. Alternatively,
one can describe power law distribution by means of linear Fokker-Planck equations
with state-dependent diffusion coefficients. In the context of linear Fokker-Planck
equations, power law distributions describe a single system that is subjected to a
multiplicative noise source or to some kind of temperature fluctuations. Currently,
data analysis techniques are being developed that can be used to extract the model
equations of systems described by Markov diffusion processes from experimental
data.
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9.4 Fundamental Equations for Nonequilibrium Processes

9.4.1 Chapman-Kolmogorov equation

In probability theory and in the theory of stochastic processes, the Chapman-
Kolmogorov equation is an identity relating the joint probability distributions of
different sets of coordinates on a stochastic process. Suppose that { fi} is an indexed
collection of random variables, that is, a stochastic process. Let

pi1,...,in( f1, . . . , fn) (9.4.1)

be the joint probability density function of the random variables f1 to fn. Then the
Chapman-Kolmogorov equation is

pi1,...,in−1( f1, . . . , fn−1) =
∫ ∞

−∞
pi,1,...,in( f1, . . . , fn)d fn (9.4.2)

i.e. a straightforward marginalization over the nuisance variable. When the stochas-
tic process under consideration is Markovian, the Chapman-Kolmogorov equation
is equivalent to an identity on transition densities. In the Markov chain setting, one
assumes that i1 < .. . < in. Then, because of the Markov property,

pi1,...,in( f1, . . . , fn) = pi1( f1)pi2;i1( f2| f1) . . . pin;in−1( fn| fn−1), (9.4.3)

where the conditional probability pi; j( fi| f j) is the transition probability between the
times i > j. So, the Chapman-Kolmogorov equation takes the form

pi3;i1( f3 | f1) =
∫ ∞

−∞
pi3;i2( f3 | f2)pi2;i1( f2 | f1)d f2 . (9.4.4)

When the probability distribution on the state space of a Markov chain is discrete,
the Chapman-Kolmogorov equation can be expressed in terms of (possibly infinite-
dimensional) matrix multiplications, thus

T (t + s) = T (t)T (s) (9.4.5)

where T (t) is the transition matrix, i.e., if Xt is the state of the process at time t, then
for any two points i and j in the state space, one has

Ti j(t) = p(Xt = j|X0 = i), (9.4.6)

that is, the probability that Xt is in state j given that X0 was in state i.

9.4.2 Master equation

In physics, a master equation is a phenomenological first-order differential equation
describing the time evolution of the probability of a system to occupy each one of a
discrete set of states:
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dpk

dt
=∑

m
Tkm pm, (9.4.7)

where pk is the probability for the system to be in the state k, while the matrix
(Tkm) is filled with a grid of transition rate constants Tkm’s. In probability theory,
this identifies the evolution as a continuous time Markov process with the integrated
master equation obeying a Chapman-Kolmogorov equation. Note that

∑
i

Tik = 0 (9.4.8)

(i.e. probability is conserved) so the equation may also be written as follows:

dpk

dt
=∑

i
(Tki pi −Tik pk). (9.4.9)

If the matrix (Tik) is symmetric, i.e. all the microscopic transition dynamics are state
reversible so that

Tki = Tik (9.4.10)

then this gives

dpk

dt
=∑

i
Tki(pi − pk). (9.4.11)

Many physical problems in classical and quantum mechanics can be reduced to
the form of a master equation. One generalization of the master equation is the
Fokker-Planck equation which describes the time evolution of a continuous proba-
bility distribution.

9.4.3 Fokker-Planck equation

The Fokker-Planck equation was used for the statistical description of Brownian
motion of a particle in a fluid. Brownian motion follows the Langevin equation
which can be solved for many different stochastic forcings with results being av-
eraged (Monte Carlo method). However, instead of this computationally intensive
approach, one can use the Fokker-Planck equation and consider W (v, t), that is the
probability density function of the particle having a velocity in the interval (v,v+dv)
when it starts its motion with v0 at the time t0. The general form of the Fokker-Planck
equation for N variables is

∂W
∂ t

=

[

−
N

∑
i=1

∂
∂xi

D1
i (x1, . . . ,xN)+

N

∑
i=1

N

∑
j=1

∂ 2

∂xi∂x j
D2

i j(x1, . . . ,xN)

]

W (9.4.12)

where D1 is the drift vector and D2 the diffusion tensor, the latter of which results
from the presence of the stochastic force.



9.4 Fundamental Equations for Nonequilibrium Processes 357

Note 9.4.1: There are linear and nonlinear Fokker-Planck equations and there
are generalizations of their standard representations: generalizations concerning the
drift and diffusion coefficients, the transition probability densities related to the so-
lutions of Fokker-Planck equations, and the Fokker-Planck operator as contained
in the Fokker-Planck equation. Further to the Fokker-Planck equation, there are
other types of evolution equations for probability distributions and density mea-
sures: Liouville equations, linear and nonlinear master equations, Boltzmann equa-
tions, fractional linear and nonlinear Fokker-Planck equations. Methods developed
for Fokker-Planck equations determined by free energy measures can also be ap-
plied to nonlinear reaction-diffusion equations.

9.4.4 Langevin equation

In statistical physics, a Langevin equation is a stochastic differential equation de-
scribing Brownian motion in a potential. The first Langevin equation to be studied
were those in which the potential is constant, so that the acceleration a of a Brownian
particle of mass m is expressed as the sum of a viscous force which is proportional
to the particle’s velocity v (Stokes’ law) and a noise term representing the effect of
a continuous series of the collisions with the atoms of the underlying fluid:

ma = m
dv
dt

= −βv+η(t). (9.4.13)

Often interesting results can be obtained, without solving the Langevin equation,
from the fluctuation dissipation theorem. The main method of solution, if a solution
is required, is by use of the Fokker-Planck equation, which provides a deterministic
equation satisfied by the time dependent probability density. Alternatively, numer-
ical solutions can be obtained by Monte Carlo simulation. Other techniques, such
as path integration have also been used, drawing on the analogy between statistical
physics and quantum mechanics (for example the Fokker-Planck equation can be
transformed into a the Schroedinger equation by rescaling a few variables).

9.4.5 Reaction-diffusion equation

A specific form of the master equation is the reaction-diffusion equation. The sim-
plest reaction-diffusion models are of the form

∂φ
∂ t

= ξ
∂ 2φ
∂x2 +F(φ) (9.4.14)

where ξ is the diffusion constant and F is a nonlinear function representing the reac-
tion kinetics. Examples of particular interest include the Fisher-Kolmogorov equa-
tion for which F = γφ(1− φ 2) and the real Ginzburg-Landau equation for which
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F = γφ(1−φ). The nontrivial dynamics of these systems arises from the competi-
tion between the reaction kinetics and diffusion.

Open macroscopic systems with reaction (transformation) and diffusion (trans-
port): Evolution of a reaction-diffusion system involves three types of processes:
(i) internal reaction (transformation), (ii) internal diffusion (transport), and (iii) in-
teraction with the external environment. Of special interest are asymptotic states of
reaction-diffusion systems that are reached after some time and wherein the sys-
tem will remain unless internal or external disturbances bring the system out of this
state. At one extreme, asymptotically the system may become a closed system with
no interaction with the environment, relaxing to a state of internal thermodynamic
equilibrium. Another extreme, when all internal transformations cease, the system
reaches a state of transport equilibrium with the external environment. Both these
asymptotic states are stationary. Starting from either of them and gradually switch-
ing on external transport or internal transformation, one obtains two basic branches
(diffusion and reaction) of stationary asymptotic states. It may be the case that these
two branches meet midway in such a manner that the stationary state remains unique
and stable in the whole range of parameters. However, it may also occur that some-
where away from the two equilibrium limits both thermodynamic branches undergo
some kind of bifurcation leading to their destabilization and to the emergence of a
variety of other asymptotic states, not all of them being stationary, symmetric, or
even ordered. Such phenomena are known as kinetic instabilities. The primary char-
acteristic of a kinetic system is the kind of instabilities that may exhibit. Attempts
to develop a unified theory of instabilities in nonequilibrium systems are contained
in the works of Nicolis and Prigogine and Haken.

One of the best understood theoretical mechanism for pattern formation is the
Turing instability of a homogeneous steady state in a two-species reaction-diffusion
system. On its own, diffusion tends to smooth out irregularities; however, the dif-
ferential diffusion of two distinct species coupled by nonlinear reaction terms may
result in certain wavelengths becoming unstable so that pattern are produced.

The general form of a two-species reaction-diffusion model is

∂n1(x, t)
∂ t

= λ f1(n1,n2)+∇2n1(x, t) (9.4.15)

∂n2(x, t)
∂ t

= λ f2(n1,n2)+d∇2n2(x, t).

In these equations, n1(x, t) and n2(x, t) are the number densities for the two species.
The functions f1 and f2 are generally nonlinear functions describing the reaction
kinetics. The constant d is the ratio of the diffusion coefficients of species 2 to
species 1, and λ > 0 is a scaling variable which can be interpreted as the charac-
teristic size of the spatial domain or as the relative strengths of the reaction terms.
The standard reaction-diffusion model is a diffusion-limited process in which the
time for reactions to occur within a given reaction zone is considered to be much less
than the time for reactants to diffuse between reaction zones. The reaction-diffusion
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model is also a mean-field model in which it is assumed that the reactions do not
themselves introduce correlations between the diffusing species but are dependent
only on local average concentrations. Thus microscopic fluctuations in n(x, t) at the
atomic level are ignored. If the concentration of species is spatially homogeneous,
then the reaction-diffusion model reduces to the classical macroscopic rate equa-
tions from the law of mass action (ben Avraham, Havlin). The canonical model for
Turing instability induced pattern formation is a reaction-diffusion equation with
activator-inhibitor reaction kinetics: the above two equations with ∂ f2/∂n1 > 0 and
∂ f1/∂n2 < 0. In this case species 1 is an activator for production of species 2 and
species 2 is an inhibitor for production of species 1. A linear stability analysis about
the homogeneous steady-state solution, n∗1,n

∗
2, reveals that necessary conditions for

Turing instability induced pattern formation are (Murray)

a11 +a22 < 0
a11a22 −a12a21 > 0

d >

(
1

a11
[(a11a22 −a12a21)1/2 +(−a12a21)1/2]

)2

(9.4.16)

where ai j = ∂ fi/∂n j is evaluated at the homogeneous steady-state solution. If the
above conditions are met, then it can be shown that there is a range of wave numbers
q defined by (Murray)

1
2d

[(da11 +a22)− ((da11 +a22)2 −4d(a11a22 −a12a21))1/2] ≤ q2

≤ 1
2d

[(da11 +a12)+((da11 +a22)2 −4d(a11a22 −a12a21))1/2] (9.4.17)

which will become excited and thus produce patterns. A necessary requirement for
pattern formation, consistent with the above equations, is that the inhibitor diffuse
faster than the activator (d > 1) in all activator-inhibitor systems.

Note 9.4.2: Recently, physical systems have been reported in which the diffusion
rates of species cannot be characterized by a single parameter of the diffusion con-
stant. Instead, the (anomalous) diffusion is characterized by a scaling parameter α as
well as a diffusion constant D and the mean-square displacement of diffusing species
< r2(t) > scales as a nonlinear power law in time < r2(t) >∼ tα . The case 0 <α < 1
is called subdiffusion and, accordingly, the case α > 1 is called superdiffusion. The
problem of anomalous subdiffusion with reactions in terms of continuous-time ran-
dom walks (CTRWs) with sources and sinks leads to a fractional activator-inhibitor
model with a fractional order temporal derivative operating on the spatial Laplacian.
The problem of anomalous superdiffusion with reactions has also been considered
and in this case a fractional reaction-diffusion model has been proposed with the
spatial Laplacian replaced by a spatial fractional differential operator.
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9.5 Fractional Calculus

Mathematics of dynamical systems: There are three distinct paradigms for scientific
understanding of dynamical systems. (i) In the Newtonian approach the system is
modeled by a differential equation and subsequently solutions of the equations are
obtained. (ii) In the approach through the geometric theory of differential equations
(= qualitative theory) the system is also modeled by a differential equation but only
qualitative information about the system is provided (Poincaré, Smale). (iii) Algo-
rithmic modeling uses the computer, uses maps (discrete-time dynamical system)
rather than differential equations (continuous-time dynamical system) that means
to use algorithms instead of conventional formulas. This approach is a data driven
modeling process.

Integer-order derivatives and their inverse operations (integer-order integrations)
provide the language for formulating and analyzing many laws of physics. Inte-
ger calculus allows for geometrical interpretations of derivatives and integrals. The
calculus of fractional derivatives and integrals does not have clear geometrical and
physical interpretations. However the fractional calculus is almost as old as inte-
ger calculus. As early as 1695, Leibniz, in a reply to de l’Hospital, wrote “Thus it
follows that d1/2x will be equal to x

√
dx : x, . . . from which one day useful conse-

quences will be drawn”.
A first way to formally introduce fractional derivatives proceeds from the re-

peated differentiation of an integral power. (Formal definitions and a detailed dis-
cussion may be found in Chapter 2. Some definitions will be given here for the sake
of completeness of the present discussion).

dn

dxn xm =
m!

(m−n)!
xm−n. (9.5.1)

For an arbitrary power µ , repeated differentiation gives

dn

dxn xµ =
Γ(µ+1)

Γ(µ−n+1)
xµ−n. (9.5.2)

with gamma functions replacing the factorials. The gamma functions allow for a
generalization to differentiation of an arbitrary order α .

dα

dxα
xµ =

Γ(µ+1)
Γ(µ−α+1)

xµ−α . (9.5.3)

The extension defined by the latter equation corresponds to the Riemann-Liouville
derivative. It is sufficient for handling functions that can be expanded in Taylor se-
ries. A second way to introduce fractional derivatives uses the fact that the nth deriv-
ative is an operation inverse to an n-fold repeated integration. Basic is the integral
identity

∫ x

a

∫ y1

a
. . .
∫ yn−1

a
dyn . . .dy1 f (yn) =

1
(n−1)!

∫ x

a
dy f (y)(x− y)n−1. (9.5.4)
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A generalization of the expression allows one to define a fractional integral of arbi-
trary order α via

aD−α
x f (x) =

1
Γ(α)

∫ x

a
dy f (y)(x− y)α−1 (x ≥ a). (9.5.5)

A fractional derivative of an arbitrary order is defined through fractional integration
and successive ordinary differentiation. The following is a causal convolution-type
integral.

f (t) =
∫ t

0
dτh(τ)g(t − τ) (9.5.6)

( transforms the input signal h(t) into the output signal f (t) via the memory function
(the impulse response) g(t). If g(t) is the step function

g(t) =
{

1 for t ≥ 0
0 for t < 0 (9.5.7)

then the latter expression is a first-order integral. And if g(t) = δ (t) is the Dirac
delta-function, then the transformation represented by the former integral repro-
duces the input signal (this is the zeroth-order integral). It may be assumed that the
fractional integration of order ν ,(0 < ν < 1),

f (t) =
1

Γ(ν)

∫ t

0
dτh(τ)(t − τ)ν−1 (9.5.8)

interpolates the memory function such that it lies between the delta-function (total
absence of memory) and the step function (complete memory).

Stanislavsky developed a specific interpretation of fractional calculus: It was
shown that there is a relation between stable probability distributions and the frac-
tional integral. The time degree of freedom becomes stochastic. It is the sum of ran-
dom time intervals and each of them is a random variable with a stable probability
distribution. There exists a mathematically justified passage to the limit from dis-
crete time steps (intervals) to a continuous limit. Corresponding processes have ran-
domized operation time. The kinetic equations describing such processes are written
in terms of time derivatives (or time integrals) of fractional order. The exponent of
the fractional integral (derivative) is directly related to the parameter of the corre-
sponding stable probability distribution. The occurrence of the fractional derivative
(or integral) with respect to time in kinetic equations shows that these equations
describe subordinate stochastic processes. Their directional process is directly re-
lated to a stochastic process with a stable probability distribution. This introduces
a stochastic time arrow into the equations. In contrast to the traditional determinate
time arrow with a “timer” counting equal time intervals, the stochastic “timer” has
an irregular time step. This time step is a random variable with a stable probabil-
ity distribution. This character of the probability distribution gives rise to long-term
memory effects in the subordinate process, and the relaxation (reaction) in such
a system has a power-law character. Although the above mentioned transforma-
tion of stochastic processes does not violate the laws of classical thermodynamics,
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it requires some modification of their macroscopic description. This manifests itself
in the appearance of a generalized (fractional) operator with respect to time in the
kinetic description of such anomalous systems. The order of this operator permits
finding the parameter α corresponding to the stable distribution.

9.6 Nonextensive Statistical Mechanics

In 1865 Clausius introduced the concept of entropy in the context of classical ther-
modynamics without any reference to the microscopic world. Boltzmann discov-
ered the fundamental description of the behavior of classical macroscopic bodies
in equilibrium in terms of the properties of classical microscopic particles out of
which they consist. He used both dynamical and statistical methods. Planck ap-
plied Boltzmann’s method to radiation and discovered quantum mechanics. Einstein
argued with Boltzmann and Planck that the statistical description of a physical
system should be based on the dynamics (Newton’s equation of motion) of the sys-
tem. Boltzmann, in his research papers in 1868 and 1872, generalized the Maxwell-
Boltzmann equilibrium velocity distribution for point particles in free space to the
case of a number of material points that move under the influence of forces for
which a potential function exists. It seems that he did not realize that he intro-
duced probabilistic concepts in his “mechanical” considerations. Only in 1877 he
proposed the relation between the second law of thermodynamics and probability
theory with respect to the laws of thermal equilibrium and established the link be-
tween the thermodynamic entropy S and the probability W for the dynamical states
of a physical system at a given total energy in phase space. According to Einstein,
Boltzmann’s statistical approach (without any reference to dynamics) only applies
strictly to equilibrium. Later, Gibbs generalized Boltzmann’s principle in µ-space
(S = k lnW + constant) to Γ-space (S =−k

∫
f (Γ) ln f (Γ)dΓ) but the two approaches

are equivalently valid only for equilibrium. Their generalization to nonequilibrium
states remains an open problem.

The first classical non-Boltzmann-Gibbs statistics of physical systems was dis-
covered by Tsallis. One of the properties within Clausius concept of entropy is the
extensivity of the entropy, i.e., its proportionality to the number N of elements of
the system. The Boltzmann-Gibbs entropy

SBG = k
w

∑
i=1

pi ln pi (9.6.1)

(discrete version where w is the total number of microscopic states, with probabili-
ties {pi}). If the N elements (or subsystems) are probabilistically independent, then
the joint probability is a product of the probabilities of individual events:

pi1,i2,...,iN = pi1 pi2 . . . piN . (9.6.2)
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It can be verified that
SBG(N) ∝ NSBG(1). (9.6.3)

If the correlations within the system are close to this ideal situation (e.g., local in-
teractions), extensivity is still verified, in the sense that

SBG(N) ∝ N, N → ∞. (9.6.4)

However there are more complex situations for which SBG is not extensive. For
an important class of systems (e.g., asymptotically scale-invariant), a connection
between S and W is known:

Sq = k
1−∑W

j=1 pq
i

q−1
(q ∈ R;S1 = SBG). (9.6.5)

This entropy was proposed by Tsallis as a possible basis for a generalization of
Boltzmann-Gibbs statistics that is currently referred to as nonextensive statistical
mechanics. In such a theory the energy is typically nonextensive whether or not the
entropy is. The property

Sq(A+B)
k

=
Sq(A)

k
+

Sq(B)
k

+(1−q)
Sq(A)

k
Sq(B)

k
(9.6.6)

which led to the term “nonextensive entropy”, is valid only if the subsystems A and
B are probabilistically independent. In some applications of q-statistics to physical
problems, the entropic indices q can be computed from first principles when the
precise dynamics is known. In other applications, when neither the microscopic
nor the mesoscopic dynamics is accessible, only a phenomenological approach is
possible, and q is determined by fitting.

9.7 Standard and Fractional Reaction

9.7.1 Boltzmann-Gibbs statistical mechanics

9.7.1.1 Differential equation

Which is the simplest ordinary differential equation? It is

dy
dx

= 0, (9.7.1)

whose solution (with y(0) = 1) is y = 1. What could be considered as the second in
simplicity? It is

dy
dx

= 1, (9.7.2)
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whose solution is y = 1+ x. And the next one? It is

dy
dx

= y, (9.7.3)

whose solution is y = ex. Its inverse is x = lny, which coincides with the celebrated
Boltzmann formula

SBG = k lnW, (9.7.4)

where k is Boltzmann constant, and W is the measure of the space where the sys-
tem is allowed to “live”, taking into account total energy and similar constraints.
If we have an isolated N-body Hamiltonian system (microcanonical ensemble in
Gibbs notation), W is the dimensionless Euclidean measure (i.e., (hyper)volume)
of the fixed-energy Riemann (hyper)surface in phase space (Gibbs’ Γ-space) if the
system microscopically follows classical dynamics, and it is the dimension of the
associated Hilbert space if the system microscopically follows quantum dynamics.
In what follows we indistinctively refer to classical or quantum systems. We shall
nevertheless use, for simplicity, the wording “phase space” although we shall write
down formulas where W is a natural number. If we introduce a natural scaling for x
(i.e., if x carries physical dimensions) we must consider, instead of Eq. (9.7.3),

dy
dx

= ay, (9.7.5)

in such a way that ax is a dimensionless variable. The solution is now

y = eax. (9.7.6)

This differential equation and its solution appear to admit at least three physical
interpretations that are crucial in Boltzmann-Gibbs statistical mechanics. The first
one is (x,y,a) → (t,ξ ,λ ), hence

ξ = eλ t , (9.7.7)

where t is time,

ξ ≡ lim
∆x(0)→0

∆x(t)
∆x(0)

is the sensitivity to initial conditions, and λ is the (maximal) Lyapunov exponent
associated with a typical phase-space variable x (the dynamically most unstable one,
in fact). This sensitivity to initial conditions (with λ > 0) is of course the cause of the
mixing in phase space which will guarantee ergodicity, the well known dynamical
justification for the entropy in Eq. (9.7.4).

The second physical interpretation is given by (x,y,a) → (t,Ω,−1/τ), hence

Ω= e−t/τ , (9.7.8)

whereΩ≡ O(t)−O(∞)
O(0)−O(∞) , and τ is the characteristic time associated with the relaxation

of a typical macroscopic observable O towards its value at the possible stationary
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state (thermal equilibrium for BG statistical mechanics). This relaxation occurs pre-
cisely because of the sensitivity to initial conditions, which guarantees strong chaos
(essentially Boltzmann’s 1872 molecular chaos hypothesis). It was Krylov the first
to realize, over half a century ago, this deep connection. Indeed, τ typically scales
like 1/λ .

The third physical interpretation is given by (x,y,a) → (Ei,Zpi,−β ), hence

pi =
e−βEi

Z
,

(

Z ≡
W

∑
j=1

e−βE j

)

, (9.7.9)

where Ei is the eigenvalue of the i-th quantum state of the Hamiltonian (with its
associated boundary conditions), pi is the probability of occurrence of the i-th state
when the system is at its macroscopic stationary state in equilibrium with a ther-
mostat whose temperature is t ≡ 1/(kβ ) (canonical ensemble in Gibbs notation). It
is a remarkable fact that the exponential functional form of the distribution which
optimizes the Boltzmann-Gibbs generic entropy

SBG = −k
W

∑
i=1

pi ln pi, (9.7.10)

with the constraints

W

∑
i=1

pi = 1, (9.7.11)

and

W

∑
i=1

piEi = U (U ≡ internal energy), (9.7.12)

precisely is the inverse functional form of the same entropy under the hypothesis of
equal probabilities, i.e., pi = 1

W for all i, hence the logarithmic Eq. (9.7.10). To the
best of our knowledge, there is (yet) no clear generic mathematical linking for this
fact, but it is nevertheless true. It might seem at first glance a quite bizarre thing to do
that of connecting the standard Boltzmann-Gibbs exponential weight to the solution
of a (linear) differential equation, in contrast with the familiar procedure consisting
in extremizing an entropic functional (Eq. (9.7.10)) under appropriate constraints
(Eqs. (9.7.11) and (9.7.12)). It might be helpful to remind to those readers who
so think that it is precisely through a differential equation that Planck heuristically
found the celebrated black-body radiation law in his October 1900 paper, considered
by many as the beginning of the path that led to quantum mechanics.

In concluding the present remarks by saying that, when we stress that Eqs.
(9.7.1), (9.7.2) and (9.7.3) naturally co-emerge within Boltzmann-Gibbs statisti-
cal mechanics, we only refer to the generic (or more typical) situations, not to all
the situations. It is known, for example, that relaxation occurs through a power-
law function of time at any typical second-order phase transition, whereas the
Boltzmann-Gibbs weight remains exponential.
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9.7.1.2 Mean value

The Boltzmann-Gibbs entropy in Eq. (9.7.10) can be rewritten as the following
mean value:

SBG = k
〈

ln
1
pi

〉
, (9.7.13)

where 〈· · · 〉 ≡
W

∑
i=1

pi(· · ·). The quantity ln(1/pi) is some times called surprise or

unexpectedness. We notice that the averaged quantity has the same functional form
as that corresponding to the equal probability case Eq. (9.7.10), where 1/pi plays
the role of W .

9.7.1.3 Composition law for independent systems

Let us consider systems A and B as probabilistically independent, i.e., such that
pA+B

i j = pA
i pB

j for all (i, j)). We can immediately prove that entropy (9.7.10) satisfies
the following property

SBG(A+B) = SBG(A)+SBG(B) , (9.7.14)

referred from now on as extensivity. This property is sometimes referred to as addi-
tivity, reserving the word extensivity for the infinitely many body systems; we will
for simplicity not make such a distinction here.

The linear property (9.7.14) of course encompasses the fact that, since WA+B =
WAWB, whenever we have equal probabilities, the logarithmic form (9.7.10) is ab-
solutely fitted. For example, if we have N independent coins (or dices), it is W = 2N

(or 6N), hence SBG = Nk ln2 (or SBG = Nk ln6). If we have, as another example, a
d = 3 regular lattice with ferromagnetic Heisenberg interactions between first neigh-
bors at very high temperature, it is W ∼AρN (with A > 0, ρ > 1, and N →∞), hence
SBG ∼ Nk lnρ . In all these cases, we have SBG ∝N, which precisely fits the Clausius
concept of thermodynamic entropy. It can be explored when the ubiquitous behavior
W (N) ∼ ρN (with N � 1) is drastically violated, e.g., when W ∝ Nγ , with γ > 0,
which also appears to be ubiquitous in both natural and artificial systems.

9.7.2 Generalized Boltzmann-Gibbs statistical mechanics

There are several other properties than those discussed above, which also specifi-
cally characterize Boltzmann-Gibbs statistical mechanics, but we shall restrict the
present analysis to only those, i.e., differential equations, mean value, entropy com-
position law. As we already mentioned, there is of course no logical-deductive
manner to generalize a physical theory. Or, there is no generic or unique way of gen-
eralizing a logically consistent set of axioms into another one which also is logically
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consistent and which, by construction, recovers the original one as a particular case.
It is therefore only metaphorically that we shall use, in what follows, the mathemat-
ical structure of Boltzmann-Gibbs statistical mechanics in order to generalize it.

9.7.2.1 Differential equations

Eqs. (9.7.1), (9.7.2) and (9.7.3) can be unified in a single differential equation
through

dy
dx

= a+by. (9.7.15)

This can also be achieved with only one parameter through

dy
dx

= yq (q ∈R) (9.7.16)

Eqs. (9.7.1), (9.7.2) and (9.7.3) are respectively recovered for q →−∞, q = 0 and
q = 1. The solution of Eq. (9.7.16) (with y(0) = 1) is given by

y = [1+(1−q)x]1/(1−q) ≡ ex
q (ex

1 = ex). (9.7.17)

The inverse function of the q-exponential is the q-logarithm, defined as follows

y =
x1−q −1

1−q
≡ lnq x (ln1 x = lnx). (9.7.18)

The Boltzmann principle, Eq. (9.6.1), can be generalized, for equal probabilities, as
follows

Sq(pi = 1/W, ∀i) = k lnq W = k
W 1−q −1

1−q
. (9.7.19)

As for the Boltzmann-Gibbs case, if x carries a physical dimension, we must con-
sider, instead of Eq. (9.7.16),

dy
dx

= aqyq (a1 = a), (9.7.20)

hence
y = eaqx

q . (9.7.21)

As for the Boltzmann-Gibbs case, we expect this solution to admit at least three
different physical interpretations.

The first one corresponds to the sensitivity to initial conditions

ξ = eλqt
q , (9.7.22)

where λq generalizes the Lyapunov exponent or coefficient. This was conjectured in
1997, and, for unimodal maps, proved recently.
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The second interpretation corresponds to relaxation, i.e.,

Ω= e−t/τq
q . (9.7.23)

There is (yet) no proof of this property, but there are several verifications (for in-
stance, for a quantum chaotic system).

The third interpretation corresponds to the energy distribution at the stationary
state, i.e.,

pi =
e−βqEi

q

Zq
,

(

Zq ≡
W

∑
j=1

e
−βqE j
q

)

. (9.7.24)

This is precisely the form that comes out from the optimization of the generic en-
tropy Sq under appropriate constraints. This form has been observed in a large vari-
ety of situations.

Before closing this subsection, let us stress that there is no reason for the val-
ues of q appearing in Eqs. (9.7.17), (9.7.18) and (9.7.19) be the same. Indeed, if
we respectively denote them by qsen (sen stands for sensitivity), qrel (rel stands for
relaxation) and qstat (stat stands for stationary state), we typically (but not neces-
sarily) have that qsen ≤ 1, qrel ≥ 1 and qstat ≥ 1. The possible connections between
all these entropic indices are not (yet) known in general. However, for the edge of
chaos of the z-logistic maps we do know some important properties. If we consider
the multifractal f (α) function, the fractal or Hausdorff dimension d f corresponds
to the maximal height of f (α); also, we may denote by αmin and αmax the values of
α at which f (α) vanishes (with αmin < αmax). It has been proved that

1
1−qsen

=
1
αmim

− 1
αmax

. (9.7.25)

Moreover, there is some numerical evidence suggesting

1
qrel −1

∝ (1−d f ) . (9.7.26)

Unfortunately, we know not much about qstat , but it would not be surprising if it was
closely related to qrel . They could even coincide, in fact.

9.7.2.2 Mean value

Since we have seen in the previous subsection that the logarithmic function naturally
generalizes into the q-logarithmic one, let us define

Sq = k
〈

lnq
1
pi

〉
, (9.7.27)
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where we may call lnq(1/pi) the q-surprise or q-unexpectedness. Then, it is straight-
forward to obtain

Sq = k

1−
W

∑
i=1

pq
i

q−1
(S1 = SBG), (9.7.28)

which is the entropy on which we shall base the present generalization of Boltzmann-
Gibbs statistical mechanics.

9.7.2.3 Entropy composition law for independent systems

If we consider now the same two probabilistically independent systems A and B that
we assumed before, we straightforwardly obtain

Sq(A+B)
k

=
Sq(A)

k
+

Sq(A)
k

+(1−q)
Sq(A)

k
Sq(B)

k
. (9.7.29)

We re-obtain Eq. (9.7.10) in the limit (1−q)/k → 0. Since Sq is always nonnegative,
we see that, if q < 1 (q > 1), we have that Sq(A+B) > Sq(A)+Sq(B) (Sq(A+B) <
Sq(A) + Sq(B)), which shall be referred as the superextensive (subextensive) case.
It is from this property that the expression nonextensive statistical mechanics was
coined (Tsallis).

9.7.3 Fractional reaction

In terms of Pochhammer’s symbol

(α)n =

{
1,n = 0,α 
= 0
α(α+1) . . .(α+n−1),n ∈ N,

(9.7.30)

we can express the binomial series as

(1− x)−α =
∞

∑
r=0

(α)rxr

r!
, |x| < 1. (9.7.31)

The Mittag-Leffler function is defined by

Eα(x) =
∞

∑
n=0

zn

Γ(αn+1)
. (9.7.32)

This function was defined and studied by Mittag-Leffler. We note that this function
is a direct generalization of an exponential series, since

E1(z) = exp(z). (9.7.33)
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It also includes the error functions and other related functions, for we have

E1/2(±z1/2) = ez[1+ erf(±z1/2)] = ezerfc(∓z1/2), (9.7.34)

where
erf(z) =

2
π1/2

∫ z

0
e−u2

du,erfc(z) = 1− erf(z),z ∈C. (9.7.35)

The equation

Eα,β (z) =
∞

∑
n=0

zn

Γ(αn+β )
(9.7.36)

gives a generalization of the Mittag-Leffler function. When β = 1, Eq. (9.7.36) re-
duces to Eq. (9.7.32). Both the functions defined by Eqs. (9.7.32) and (9.7.36) are
entire functions of order 1/α and type 1. The Laplace transform of Eα,β (z) follows
from the integral

∫ ∞

0
e−pttβ−1Eα,β (λatα)dt = p−β (1−ap−α)−1, (9.7.37)

where ℜ(p) > |a|1/α ,ℜ(β ) > 0, which can be established by means of the Laplace
integral ∫ ∞

0
e−pttρ−1dt = Γ(ρ)/pρ , (9.7.38)

where ℜ(p) > 0,ℜ(ρ) > 0. The Riemann-Liouville operator of fractional integra-
tion is defined as

aD−ν
t f (t) =

1
Γ(ν)

∫ t

a
f (u)(t −u)ν−1du,ν > 0, (9.7.39)

with aD0
t f (t) = f (t). By integrating the standard kinetic equation

d
dt

Ni(t) = −ciNi(t),(ci > 0), (9.7.40)

it is derived that
Ni(t)−N0 = −ci 0D−1

t Ni(t), (9.7.41)

where 0D−1
t is the standard Riemann integral operator. Here we recall that the num-

ber density of species i,Ni = Ni(t), is a function of time and Ni(t = 0) = N0 is the
number density of species i at time t = 0. By dropping the index i in Eq. (9.7.41),
the solution of its generalized form

N(t)−N0 = −cν 0D−ν
t N(t), (9.7.42)

is obtained as

N(t) = N0

∞

∑
k=0

(−1)k(ct)νk

Γ(νk +1)
. (9.7.43)

By virtue of Eq. (9.7.36) we can rewrite Eq. (9.7.43) in terms of the Mittag-Leffler
function in a compact form as

N(t) = N0Eν(−cν tν),ν > 0. (9.7.44)
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Later we will investigate the solutions of three generalized forms of Eq. (9.7.40).
The results are obtained in a compact form in terms of the generalized Mittag-Leffler
function.

9.7.4 Thermonuclear reaction coefficient

Understanding the methods of evaluation of thermonuclear reaction rates is one of
the most important goals of research in the field of stellar and cosmological nu-
cleosynthesis. Practically all applications of fusion plasmas are controlled in some
way or another by the theory of thermonuclear reaction rates under specific cir-
cumstances. After several decades of effort, a systematic and complete theory of
thermonuclear reaction rates has been constructed. One of the basic ideas in this
regard is that the motor of irreversibility and dissipation is the existence of reactions
between individual nuclei. The latter produce a randomization of the energy and
velocity distributions of particles. The effect of the reactions is balanced by the flow
of the particles in a macroscopically inhomogeneous medium. As a result of this
balance, the system reaches a quasi-stationary state close to equilibrium, in which
steady fluxes of matter, energy, and momentum are present. The main ideas in the
following are coming from statistical distribution theory and the theory of gener-
alized special functions, mainly in the categories of Meijer’s G-function and Fox’s
H-function of scalar, vector, and matrix arguments (Mathai, 1993; Aslam Chaudhry
and Zubair, 2002). A fusion of mathematical and statistical techniques enabled us to
evaluate thermonuclear reaction rate integrals in explicit closed forms. Some of the
techniques which are used will be summarized here. In order to explain the ideas
we will start with the evaluation of an integral over a real scalar variable first. Let

I(z; p,n,m) = p
∫ ∞

0
e−ptt−nρe−zt−n/m

dt (9.7.45)

for ℜ(p) > 0,ℜ(z) > 0, n, m positive integers, where ℜ(.) denotes the real part of
(.). A particular case of this integral for nρ = −ν , p = 1,n = 1,m = 2,

I(z;1,1,2) =
∫ ∞

0
e−t tνe−zt−1/2

dt (9.7.46)

is a thermonuclear function associated with equilibrium distributions in reaction rate
theory under Maxwell-Boltzmannian approach. As can be seen from (9.7.45) that
the usual mathematical techniques fail to obtain a closed-form representation of the
basic integral in (9.7.45).

9.7.4.1 Statistical techniques

Certain special functions are related to particular probability laws governing prod-
ucts of independent exponential variables. Such laws can be related to the underly-
ing physical processes. The integrand in (9.7.45) is a product of integrable positive
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functions and hence the integrand can be made into a product of statistical densities
by normalizing them. Consider two statistically independent real scalar random vari-
ables x and y with the density functions f1(x)≥ 0, f2(y)≥ 0 for 0 < x <∞,0 < y <∞
and f1(x) = 0, f2(y) = 0 elsewhere. Let u = xy, the product of these random vari-
ables. Then from the transformation of the variables, u = xy,v = x, the density g(u)
of u is given by

g(u) =
∫ ∞

0

1
v

f1(v) f2(u/v)dv. (9.7.47)

The integral in (9.7.47) can be made equivalent to the integral in (9.7.45) by suitably
selecting f1 and f2. Let

v = pt,u = pzm/n, f1(t) = t1−nρe−t , and f2(t) = e−tn/m
, (9.7.48)

excluding the normalizing constants. Then
∫ ∞

0

1
v

f1(v) f2(u/v)dv =
∫ ∞

0

1
t

e−pt(pt)1−nρe−zt−n/m
dt. (9.7.49)

Hence

pnρ
∫ ∞

0

1
t

e−pt(pt)1−nρe−ztn/m
dt = p

∫ ∞

0
e−ptt−nρe−zt−n/m

dt (9.7.50)

which is exactly the integral to be evaluated in (9.7.45). We have identified the
integral as the exact density of the product of two real scalar random variables,
u = xy. Since this density is unique the idea is to evaluate this density through some
other means. Notice that u is a product of positive variables and hence the method of
moments can be exploited profitably. Consider the (s− 1)th moment of u, denoted
by expected value of us−1. That is, denoting the expectation operation by E,

E(us−1) = E(xs−1)E(ys−1) (9.7.51)

due to statistical independence of x and y. Let

g1(s) = E(xs−1) and g2(s) = E(ys−1). (9.7.52)

Then g1(s) and g2(s) are the Mellin transforms of f1 and f2 respectively. Then from
the inverse Mellin transform the unique density of u is available as

g(u) =
1

2πi

∫

L
u−sg1(s)g2(s)ds, i =

√
−1. (9.7.53)

where L is a suitable contour. But, excluding the normalizing constants,

g1(s) =
∫ ∞

0
ts−1 f1(t)dt

=
∫ ∞

0
t1−nρ+s−1e−tdt

= Γ(1−nρ+ s) for ℜ(1−nρ+ s) > 0, . (9.7.54)
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and

g2(s) =
∫ ∞

0
ts−1 f2(t)dt

=
∫ ∞

0
ts−1e−tn/m

dt

=
m
n
Γ(ms/n) for ℜ(s) > 0. (9.7.55)

Then

1
2πi

∫

L
u−sg1(s)g2(s)ds =

1
2πi

∫

L
(m/n)Γ(ms/n)Γ(1−nρ+ s)(pzm/n)−sds.

(9.7.56)
Therefore

p
∫ ∞

0
e−ptt−nρe−zt−n/m

dt

= pnρ
∫ ∞

0

1
t

e−pt(pt)1−nρe−zt−n/m
dt

= pnρ(m/n)
1

2πi

∫

L
Γ(ms/n)Γ(1−nρ+ s)(pzm/n)−sds

= mpnρ 1
2πi

∫

L1

Γ(ms)Γ(1−nρ+ns)(zm pn)−sds (9.7.57)

by replacing s/n by s. Our aim now is to evaluate the contour integral on the right
side of (9.7.57) explicitly into computable forms. The contour integral in (9.7.57)
can be written as an H-function which can then be reduced to a G-function since m
and n are positive integers. G and H-functions are defined in Chapter 1 and hence
they will not be discussed here.

Now, comparing (9.7.53) and (9.7.57) our starting integral is evaluated as follows

I(z; p,n,m) = mpnρ 1
2πi

∫

L1

Γ(ms)Γ(1−nρ+ns)(zm pn)−sds

= mpnρH2,0
0,2 [(zm pn)|(0,m),(1−nρ,n)]. (9.7.58)

The H-function in (9.7.58) can be reduced to a G-function which can again be
reduced to computable series forms. For this purpose we expand the gammas in
the integrand in (9.7.58) by using the multiplication formula for gamma functions,
namely,

Γ(mz) = (2π)
(1−m)

2 mmz− 1
2Γ(z)Γ

(
z+

1
m

)
. . .Γ
(

z+
m−1

m

)
(9.7.59)

m = 1,2, . . . (9.7.60)
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Expanding Γ(ms)Γ(1−nρ+ns) by using (9.7.59) we have

mpnρΓ(ms)Γ(1−nρ+ns) = (2π)
1
2 (2−m−n)pnρm

1
2 n−nρ+ 1

2 (mmnn)s

×Γ(s)Γ
(

s+
1
m

)
. . .Γ
(

s+
m−1

m

)

×Γ
(

s+
1−nρ

n

)
. . .Γ
(

s+
n−nρ

n

)
.

Substituting these back and writing as a G-function we have

I(z; p,n,m) = pnρ(2π)
1
2 (2−m−n)m

1
2 n−nρ+ 1

2

×Gm+n,0
0,m+n

[
zm pn

mmnn

∣
∣
∣
∣
0, 1

m ,..., m−1
m , 1−nρ

n ,..., n−nρ
n

]

. (9.7.61)

9.7.4.2 Non-resonant thermonuclear reaction rate

The Maxwell-Boltzmannian form of the collision probability integral for non-
resonant thermonuclear reactions is

I1 = I(z;1,1,2) =
∫ ∞

0
yνe−ye−zy−1/2

dy

= π−
1
2 G3,0

0,3

[
z2

4

∣
∣
∣
∣
0, 1

2 ,1+ν

]

. (9.7.62)

In stellar fusion plasmas the energies of the moving nuclei are assumed to be de-
scribed by a Maxwell-Boltzmann distribution, E exp(−E/kt), where T is the local
temperature, E is the energy and k the Boltzmann constant. Folding the cross section
of a nuclear reaction, σ(E), with this energy (or velocity) distribution leads to the
nuclear reaction rate per pair of nuclei:

< σv >= (8/πµ)1/2(kT )−3/2
∫ ∞

0
σ(E)exp(−E/kT )dE,

where v is the relative velocity of the pair of nuclei, E is the center-of-mass energy,
and µ = m1m2/(m1 + m2) is the reduced mass of the entrance channel of the re-
action. In order to cover the different evolution phases of the stars, i.e. from main
sequence stars to supernovae, one must know the reaction rates over a wide range of
temperatures, which in turn requires the availability of σ(E) data over a wide range
of energies. I is the challenge to the experimentalist to make precise σ(E) mea-
surements over a wide range of energies. For the class of charged-particle-induced
reactions, there is a repulsive Coulomb barrier in the entrance channel of height
Ec = Z1Z2e2/r, where Z1 and Z2 are the integral nuclear charges of the interacting
particles, e is the unit of electric charge, and r is the nuclear interaction radius. Due
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to the tunneling effect through the Coulomb barrier, σ(E) drops nearly exponen-
tially with decreasing energy:

σ(E) = S(E)E−1 exp(−2πη),

where η = Z1Z2e2/hv is the Sommerfeld parameter, h is the Planck constant. The
function S(E) contains all the strictly nuclear effects, and is referred to as the astro-
physical S(E) factor. If the above equation for σ(E) is inserted in the above equation
for the nuclear reaction rate < σv >, one obtains

< σv >= (8/πµ)1/2(kT )−3/2
∫ ∞

0
S(E)exp(−E/kT −b/E1/2)dE,

with b = 2(2µ)1/2π2e2Z1Z2/h. Since for nonresonant reactions S(E) varies slowly
with energy, the steep energy dependence of the integrand in the equation for
< σv > is governed by the exponential term, which is characterized by the peak
near an energy E0 that is usually much larger than kT , the mean thermal energy of
the fusion plasma. The peak is referred to as the Gamow peak. For a constant S(E)
value over the energy region of the peak, one finds E0 = (bkT/2)2/3. This is the ef-
fective mean energy for a given reaction at a given temperature. If one approximates
the peak by a Gaussian function, one finds an effective width δ = 4(E0kT )1/2/31/2.
In the following, this approximation is not made and the respective integrals are
analytically represented, beginning with

< σv > =
(

8
πµ

) 1
2 2

∑
ν=0

1

(kT )−µ+ 1
2

S(µ)(0)
µ!

×
∫ ∞

0
e−yyνe−zy−1/2

dy

where S(µ) denotes the µ-th derivative. The G-function in (9.7.62) can be expressed
as a computable power series as well as in closed-forms by using residue calculus.
Writing the G-function in (9.7.62) as a Mellin-Barnes integral we have

G3,0
0,3

[
z2

4

∣
∣
∣
∣
0, 1

2 ,1+ν

]

=
1

2πi

∫
Γ(s)Γ(s+1/2)Γ(1+ν+ s)(z2/4)−sds. (9.7.63)

Case (1): ν 
= ±λ
2 ,λ = 0,1,2, . . . In this case the poles of the integrand are simple

and the poles are at the points

s = 0,−1,−2, . . . ;s = −1
2
,−1

2
−1, . . . ;s = −1−ν ,−2−ν , . . .

The sum of the residues at s = 0,−1, . . . is given by

∞

∑
r=0

(−1)r

r! Γ
(

1
2
− r
)
Γ(1+ν− r)

(
z2

4

)r

= Γ
(

1
2

)
Γ(1+ν)0F2

(
;

1
2
,−ν ;− z2

4

)
(9.7.64)
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where, in general, pFq denotes a general hypergeometric function. The sum of the
residues at s = − 1

2 ,− 1
2 −1, . . . is

∞

∑
r=0

(−1)r

r! Γ
(
−1

2
− r
)
Γ
(

1
2

+ν− r
)(

z2

4

) 1
2 +r

= Γ
(
−1

2

)
Γ
(

1
2

+ν
)(

z2

4

) 1
2

0F2

(
;

3
2
,

1
2
−ν ;− z2

4

)
. (9.7.65)

The sum of the residues at s = −1−ν ,−1−ν−1, . . . is

∞

∑
r=0

(−1)r

r! Γ
(
−1

2
−ν− r

)
Γ(−1−ν− r)

(
z2

4

)1+ν+r

= Γ(−1−ν)Γ
(
−1

2
−ν
)(

z2

4

)1+ν

0F2

(
;ν+2,ν+

3
2

;− z2

4

)

(9.7.66)

Then from (9.7.64) to (9.7.66) we have

I(z;1,1,2) =
∫ ∞

0
yνe−ye−zy1/2

dy

= π−
1
2 G3,0

0,3

[
z2

4
|0, 1

2 ,1+ν

]

= Γ(1+ν)0F2

(
;

1
2
,−ν ;− z2

4

)

−2Γ
(

1
2

+ν
)(

z2

4

) 1
2

0F2

(
;

3
2

;
1
2
−ν ;− z2

4

)

+
Γ(−1−ν)Γ

(
− 1

2 −ν
)

Γ
( 1

2

)
(

z2

4

)1+ν

×0 F2

(
;ν+2,ν+

3
2

;− z2

4

)
(9.7.67)

for ν 
= ±λ
2 ,λ = 0,1,2, . . .. When ν is a positive integer the poles at s = −1− ν ,

−1−ν−1, . . . are of order 2 each. Hence the corresponding sum of residues can be
written in terms of psi functions. Similarly when ν is a negative integer, positive or
negative half integer the corresponding sums will contain psi functions.

9.7.4.3 Modified non-resonant thermonuclear reaction rate: depletion

With deviations from the Maxwell-Boltzmann velocity distribution of nuclei in the
fusion plasma, a modification which results in the depletion of the tail is introduced.
In this case the collision probability integral will be of the following form:
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I2 =
∫ ∞

0
yνe−y−yδ e−zy−1/2

dy. (9.7.68)

We consider a general integral of this type. Let

I(z;δ ,a,b,m,n) =
∫ ∞

0
tρe−at−btδ−zt−n/m

dt. (9.7.69)

Expanding e−btδ and then with the help of (9.7.67)) one can represent (9.7.69) in
terms of a G-function as follows:

I(z;δ ,a,b,m,n) =
∞

∑
k=0

(−b)k

k!
a−(ρ+kδ+1)(2π)

1
2 (2−m−n)m

1
2 n

1
2 +ρ+kδ

×Gm+n,0
0,m+n

[
zman

mmnn

∣
∣
∣
∣
0, 1

m ,..., m−1
m , 1+ρ+kδ

n ,..., n+ρ+kδ
n

]

(9.7.70)

for ℜ(z) > 0,ℜ(a) > 0,ℜ(b) > 0,m,n = 1,2, . . . . the case in (9.7.68) is for a =
1,b = 1,n = 1,m = 2. With ν = ρ + kδ the G-function in (9.7.68) corresponds to
that in (9.7.70). When δ is irrational and ρ is rational, the poles of the integrand
will be simple and the G-function is available in terms of hypergeometric functions.
Other situations will involve psi functions. From the asymptotic behavior of the
G-function, see for example Mathai (1993), one can write the integral in (9.7.68),
for large values of z as follows:

I2 ≈ π
1
2 (β/3)

2ν+1
2 e−β−(β/3)δ ,β = 3(z/2)2/3. (9.7.71)

9.7.4.4 Modified non-resonant thermonuclear reaction rate: cut-off

Another modification can be made by a cut-off of the high-energy tail of the
Maxwell-Boltzmann distribution. In this case the collision probability integral to
be evaluated is of the form

I3 =
∫ d

0
t−ρe−at−zt−1/2

dt,d < ∞. (9.7.72)

We will consider a general integral of the form

I(z;d,a,ρ,n,m) =
∫ d

0
y−nρe−ay−zy−n/m

dy,d < ∞. (9.7.73)

In order to evaluate (9.7.73) explicitly we will use statistical techniques as discussed
earlier. Let x and y be two statistically independent real random variables having the
densities c1 f1(x),0 < x < d and c2 f2(y),0 < y < ∞ with f1(x) and f2(y) equal to
zero elsewhere, where c1 and c2 are normalizing constants. Then taking

f1(x) = x−nρ+1e−ax and f2(y) = e−yn/m
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and proceeding as before one has the following result:

I(z;d,a,ρ,n,m) =
∫ d

0
t−nρe−at−zt−n/m

dt

= m
1
2 n−1(2π)(1−m)/2d−nρ+1

∞

∑
r=0

(−ad)r

r!

×Gm+n,0
n,m+n

[
zm

dnmm |−ρ+ r+2+ j−1
n , j=1,...,n

−ρ+ r+1+ j−1
n , j=1,...,n; j−1

m , j=1,...,m

]
(9.7.74)

for ℜ(z) > 0,> 0,ℜ(a) > 0. Then

I3 =
∫ d

0
t−ρe−at−zt−/2

dt

= d−ρ+1π−
1
2

∞

∑
r=0

(−ad)r

r!

×G3,0
1,3

[
z2

4d
|−ρ+r+2
−ρ+r+1,0, 1

2

]
. (9.7.75)

For large values of z the G-function behaves like π 1
2 x−

1
2 e−2x

1
2 ,x = z2

4d , see for ex-
ample Mathai (1993). Then for large values of z,

I3 ≈ d−ρ+1
(

z2

4d

)− 1
2

e−ad−2(z2/4d)
1
2 . (9.7.76)

Explicit series forms can be obtained for various values of the parameters with the
help of residue calculus. For example, for ℜ(z) > 0,d > 0,ℜ(a) > 0,−ρ+ r +1 
=
µ ,µ = 0,1, . . .

I3 =
∫ d

0
t−ρe−at−zt−1/2

dt

= π−
1
2 d−ρ+1

∞

∑
r=0

(−ad)r

r!

×
{

∞

∑
ν=0,ν 
=ρ

(−1)νΓ
( 1

2 −ν
)

ν!(−ρ+ r +1−ν)

(
z2

4d

)ν

+
∞

∑
ν=0

(−1)νΓ(− 1
2 −ν)

ν!
(
−ρ+ r−ν+ 1

2

)
(

z2

4d

)ν+ 1
2

+
(

z2

4d

)µ [
− ln(

z2

4d
)+A

]
B

}

, (9.7.77)

where

A = ψ(µ+1)+ψ
(
−µ+

1
2

)
,ψ(z) =

d
dz

lnΓ(z),

B =
(−1)µ

µ!
Γ
(
−µ+

1
2

)
.
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9.7.4.5 Computations

For computational purposes we will consider the four basic integrals associated with
the cases: non-resonant reactions, non-resonant “cut-off” reactions, non-resonant
screened reactions, and non-resonant “depleted” reactions. Let

J1(z,ν) =
∫ ∞

0
yνe−y−zy−1/2

dy

J2(z,d,ν) =
∫ d

0
yνe−y−zy−1/2

dy

J3(z, t,ν) =
∫ ∞

0
yνe−y−z(y+t)−

1
2 dy

J4(z,δ ,b,ν) =
∫ ∞

0
yνe−y−byδ−zy−1/2

dy. (9.7.78)

The exact expressions for J1 and J2 are given in (9.7.67), (9.7.75) respectively. The
symbolic evaluation of all these integrals cannot yet be achieved with Mathematica.
Those integrals that involve no singularities are done by taking limits of the indef-
inite integrals. The definite versions of the integrals are done using the Marichev-
Adamchik Mellin transform methods. The integration results are initially expressed
in terms of Meijer’s G-function, which are subsequently converted into hypergeo-
metric functions using Slater’s theorem. The notation for Meijer’s G-function, be-
longing to the implemented special functions of Mathematica, is

MeijerG
[{
{a1, ...,an} ,

{
an+1, ...,ap

}}
,
{
{b1, ...,bm} ,

{
bm+1, ...,bq

}}
,z
]
.

(9.7.79)

Analytic expressions for the following Meijer’s G-functions are available on
Wolfram Research’s Mathematical Functions web page:

G{m,n, p,q} = G{3,0,0,3} = http://functions.wolfram.com/07.34.03.0948.01,
(9.7.80)

and

G{m,n, p,q} = G{3,0,1,3} = http://functions.wolfram.com/07.34.03.0955.01.
(9.7.81)

Approximations for large values of z can be worked out with the help of the
asymptotic behavior of G-functions, see for example Mathai (1993). These are the
following for z very large:

J1 ≈ 2
(π

3

) 1
2
(

z2

4

) 2ν+1)
6

e−3(z2/4)
1
3

J2 ≈ dν+1
(

z2

4d

)− 1
2

e−d−2(z2/4d)
1
2
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J3 ≈ 2
(π

3

) 1
2
(

z2

4

) 1
6

⎡

⎣
(

z2

4

) 1
3

− t

⎤

⎦

ν

et−3(z2/4)
1
3

J4 ≈ 2
(π

3

) 1
2
(

z2

4

) 2ν+1
6

e−3(z2/4)
1
3 −b(z2/4)δ/3

. (9.7.82)

9.7.4.6 A generalization.

A mathematically interesting integral corresponding to (9.7.45) can be evaluated.
Consider the integral

I =
∫ ∞

0
e−pttρ−1e−zt−γdt. (9.7.83)

Then take f1(x)= c1xρe−px,x > 0, f2(y)= c2e−yγ ,γ > 0,y > 0 and f1(x)= 0, f2(y)=
0 elsewhere, where c1 and c2 are normalizing constants. Then u = xy = z1/γ and from
(9.7.47) one has the integral in (9.7.83) evaluated as the following:

I = (γ pρ)−1H2,0
0,2 [pz1/γ |(p,1),(0,1/γ)],0 < z < ∞,

where H(.) is the H-function defined in Chapter 1. When γ is rational the H-function
can be rewritten in terms of a Meijer’s G-function and then (9.7.83) can be evaluated
in terms of the result given in (9.7.59). For specified values of γ and ρ one can obtain
computable representations for the H-function.

9.8 Standard and Fractional Diffusion

9.8.1 Fick’s first law of diffusion

– diffusion is known to be the equilibration of concentrations
– particle current has to flow against the concentration gradient
– in analogy with Ohm’s law for the electric current and with Fourier’s law for heat

flow,

Fick assumed that the current j is proportional to the concentration gradient

j(r, t) = −D
∂c(r, t)
∂ r

(9.8.1)

D: diffusion coefficient; c: concentration if particles are neither created nor de-
stroyed, then, according to the continuity equation

∂c(r, t)
∂ t

= −∂ j(r, t)
∂ r

. (9.8.2)
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Combining Fick’s first law with the continuity equation gives Fick’s second law =
diffusion equation

∂c(r, t)
∂ t

= D
∂ 2c(r, t)
∂ r2 , [D] =

L2

T
. (9.8.3)

9.8.2 Einstein’s approach to diffusion

– Fick’s phenomenology missed the probabilistic point of view central to statistical
mechanics

– in statistical mechanics particles move independently under the influence of ther-
mal agitation

– the concentration of particles c(r, t) at some point r is proportional to the proba-
bility P(r, t) of finding a particle at r

– according to Einstein, the diffusion equation holds when probabilities are substi-
tuted for concentrations

– if a particle is initially placed at the origin of coordinates in d-dimensional space,
then its evolution according to the diffusion equation is given by

P(r, t) =
1

(4πDt)d/2 exp
{
− r2

4Dt

}
(9.8.4)

the mean squared displacement of the particle is thus

< r2(t) >=
∫

r2P(r, t)d3r = 2dDt. (9.8.5)

< r2(t) >∝ t

9.8.3 Fractional diffusion

In the following we derive the solution of the fractional diffusion equation using Eq.
(9.8.3). The result is obtained in the form of the following: Consider the fractional
diffusion equation

0Dνt N(x, t)− t−ν

Γ(1−ν)
δ (x) = −cν

∂ 2

∂x2 N(x, t), (9.8.6)

with the initial condition

0Dν−k
t N(x, t)|t=0 = 0, (k = 1, . . . ,n), (9.8.7)

where n = [ℜ(ν)]+ 1,cν is a diffusion constant and δ (x) is Dirac’s delta function.
Then for the solution of (9.8.6) there exists the formula
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N(x, t) =
1

(4πcν tν)1/2 H2,0
1,2

[
|x|2

4cν tν
|(1−

ν
2 ,ν)

(0,1),(1/2,1)

]
(9.8.8)

In order to derive the solution, we introduce the Laplace-Fourier transform in the
form

N∗(k,s) =
∫ ∞

0

∫ ∞

−∞
e−st+iksN(x, t)dx∧dt. (9.8.9)

Applying the Fourier transform with respect to the space variable x and Laplace
transform with respect to the time variable t and using Eq. (9.8.6), we find that

sνN∗(k,s)− sν−1 = −cνk2N∗(k,s). (9.8.10)

Solving for N∗(k,s) gives

N∗(k,s) =
sν−1

sν + cνk2 . (9.8.11)

To invert Eq. (9.8.11), it is convenient to first invert the Laplace transform and then
the Fourier transform . Inverting the Laplace transform , we obtain

Ñ(k, t) = Eν(−cνk2tν), (9.8.12)

which can be expressed in terms of the H-function by using the definition of the
generalized Mittag-Leffler functions in terms of a H-function as

Ñ(k, t) = H1,1
1,2

[
cνk2tν |(0,1)

(0,1),(0,ν)

]
. (9.8.13)

Using the integral

1
2π

∫ ∞

−∞
e−ikx f (k)dk =

1
π

∫ ∞

0
f (k)cos(kx)dk, (9.8.14)

and the cosine transform of the H-function to invert the Fourier transform, we see
that

N(x, t) =
1
k

∫ ∞

0
cos(kx)H1,1

1,2

[
cνk2tν |(0,1)

(0,1),(0,ν)

]
dk (9.8.15)

=
1
|x|H

2,1
3,3

[
|x|2
cν tν
∣
∣(1,1),(1,ν),(1,1)
(1,2),(1,1),(1,1)

]
.

Applying a result of Mathai and Saxena (1978, p.4, eq. 1.2.1) the above expression
becomes

N(x, t) =
1
|x|H

2,0
2,2

[
|x|2
cν tν
∣
∣(1,ν),(1,1)
(1,2),(1,1)

]
. (9.8.16)

If we employ the formula (Mathai and Saxena, 1978,p. 4, eq. 1.2.4):

xσHm,n
p,q

[
x
∣
∣
∣
(ap,Ap)
(bq,Bq)

]
= Hm,n

p,q

[
x
∣
∣
∣
(ap+σAp,Ap)
(bq+σBq,Bq)

]
. (9.8.17)
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Eq. (9.8.16) reduces to

N(x, t) =
1

(cν tν)1/2 H2,0
2,2

[
|x|2
cν tν
∣
∣(1−

ν
2 ,ν),(1/2,1)

(0,2),(1/2,1)

]
. (9.8.18)

In view of the identity in Mathai and Saxena (1978, eq. 1.2.1), it yields

N(x, t) =
1

(cν tν)1/2 H1,0
1,1

[
|x|2
cν tν

∣
∣
∣
(1− ν

2 ,ν)
(0,2)

]
. (9.8.19)

Using the definition of the H-function, it is seen that

N(x, t) =
1

2πω(cν tν)1/2

∫

Ω

Γ(−2ξ )
Γ[1− ν

2 +νξ ]

[
|x|2
cν tν

]−ξ
dξ . (9.8.20)

Applying the well-known duplication formula for the gamma function and
interpreting the result thus obtained in terms of the H-function, we obtain the
solution as

N(x, t) =
1√

4πcν tν
H2,0

1,2

[
|x|2

4cν tν

∣
∣
∣
(1− ν

2 ,ν)
(0,1),(1/2,1)

]
. (9.8.21)

Finally the application of the result (Mathai and Saxena (1978, p.10, eq. 1.6.3) gives
the asymptotic estimate

N(x, t) ∼ O

{
[
|x| ν

2−ν
]
[

exp

{

− (2−ν)(|x|2νν) 1
2−ν

(4cν tν)
1

2−ν

}]}

, (0 < ν < 2). (9.8.22)

9.8.4 Spatio-temporal pattern formation

Fractional reaction-diffusion equations provide models of diffusing and reacting
species when the diffusion is anomalous sub-diffusion. These equations can be de-
rived in the asymptotic long time limit from a mesoscopic description in terms of
continuous time random walks (CTRW) with sources and sinks when the waiting
time probability density corresponds to a heavy tailed distribution. The fractional
reaction-diffusion system has fractional order temporal derivatives operating on the
spatial Laplacian and reaction terms determined by the law of mass action. Turing
instability induced pattern formation have been investigated in this model and in re-
lated models with fractional order temporal derivatives operating on both the spatial
Laplacian and the reaction terms. Linear Turing instability analysis provides a reli-
able indicator of both the onset and the nature of the patterns that form. Anomalous
diffusion with reactions can produce complex spatio-temporal patterns that do not
occur in standard reaction-diffusion models.
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Chapter 10
An Introduction to Wavelet Analysis

[This chapter is based on the lectures of Professor D.V. Pai, Department of Mathematics, Indian
Institute of Technology Bombay, Powai, Mumbai - 400 076, India.]

10.0 Introduction

During the last 20 years or so, the subject of “Wavelet analysis” has attracted
a lot of attention from both mathematicians and engineers alike. Vaguely speaking
the term “Wavelet” means a little wave, and it includes functions that are reasonably
localized in the time domain as well as in the frequency domain. The idea seems to
evolve from the limitation imposed by the uncertainty principle of Physics which
puts a limit on simultaneous localization in both the time and the frequency domains.

From a historical perspective, although the idea of wavelet seems to originate
with the work by Gabor and by Neumann in the late 1940s, this term seems to
have been coined for the first time in the more recent seminal paper of Grossman
and Morlet (1984). Nonethless, the techniques based on the use of translations and
dilations are much older. This can be at least traced back to Calderón (1964) in his
study of singular integral operators. Starting with the pioneering works reported in
the early monographs contributed by Meyer (1992), Mallat (1989), Chui (1992),
Daubechies (1992) and others, an ever increasing number of books, monographs
and proceedings of international conferences which have appeared more recently in
this field only point to its growing importance.

The main aim of these lectures is to attempt to present a quick introduction of
this field to a beginner. We will mainly emphasize here the construction of ortho-
normal (o.n.) wavelets using the so-called two-scale relation . This will lead us to a
natural classification of wavelets as well as to the classical multiresolution analysis.
In particular, we will also attempt to highlight the spline wavelets of Chui and Wang
(1993).

389
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10.1 Fourier Analysis to Wavelet Analysis

Let L2(0,2π) = the space of all (equivalence classes) of 2π-periodic, Lebesgue
measurable functions f : R → IC such that

∫ 2π
0 | f (t)|2dt < ∞. L2(0,2π) is a Hilbert

space furnished with the inner product

( f ,g) =
1

2π

∫ 2π

0
f (t)g(t)dt, f ,g ∈ L2(0,2π)

and the corresponding norm

‖ f‖2 =
{

1
2π

∫ 2π

0
| f (t)|2dt

}1/2

.

Any f in L2(0,2π) has a Fourier series representation

f (t) =
∞

∑
k=−∞

ckeikt , (10.1.1)

where the constants ck, called the Fourier coefficients of f , are defined by

ck = ( f ,wk) =
1

2π

∫ 2π

0
f (t)ēiktdt, wk(t) = eikt . (10.1.2)

This is a consequence of the important fact that {wk(t) : k ∈ ZZ} is an orthonormal
basis of L2(0,2π). Also recall that the Fourier series representation satisfies the so-
called Parseval identity:

‖ f‖2
2 =

∞

∑
k=−∞

|ck|2, f ∈ L2(0,2π).

Let us emphasize two interesting features in the Fourier series representation
(10.1.1). Firstly, note that f is decomposed into an infinite sum of mutually orthog-
onal components ckwk. The second interesting feature to be noted of (10.1.1) is that
the o.n. basis {wk : k ∈ ZZ} is generated by “dilates” of a single function

w(t) := w1(t) = eit ;

that is, wk(t) = w(kt), k ∈ ZZ, is , in fact, an integral dilate of w(t). Let us reempha-
size the following remarkable fact:

Every 2π-periodic square-integrable function is generated by a superposition of
integral dilates of the single basic function w(t) = eit .

The basic function w(t) = cos t + isin t is a sinusoidal wave. For any integer k
with |k| large, the wave wk(t) = w(kt) has high frequency, and for k in ZZ with |k|
small, the wave wk has low frequency. Thus every function in L2(0,2π) is composed
of waves with various frequencies.

Let L2(R) := the space of all (equivalence classes) of complex measurable func-
tions, defined on R for which
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∫

R

| f (t)|2dt < ∞.

Note that the space L2(R) is a Hilbert space with the inner product

〈 f , g〉 =
∫

R

f (t)g(t)dt f ,g ∈ L2(R)

and the norm

‖ f‖2 =
{∫

R

| f (t)|2dt
}1/2

f ∈ L2(R).

Wavelet analysis also begins with a quest for a single function ψ in L2(R) to
generate L2(R). Since any such function must decay to zero at ±∞, we must give
up, as being too restrictive, the idea of using only linear combinations of dilates of ψ
to recover L2(R). Instead, it is natural to consider both the dilates and the translates.
The most convenient family of functions for this purpose is thus given by

ψ j,k(t) = 2 j/2ψ(2 jt − k), j,k ∈ ZZ. (10.1.3)

This involves a binary dilation (dilation by 2 j) and a dyadic translation (of k/2 j).

Lemma 10.1.1: Let φ ,ψ be in L2(R). Then, for i, j,k, � in ZZ, we have:

(i) 〈ψ j,k, φ j,�〉 = 〈ψi,k, φi,�〉;
(ii) ‖ψ j,k‖2 = ‖ψ‖2.

Proof 10.1.1:
(i) We have

〈ψ j,k, φ j,�〉 =
∫

R

2 j/2ψ(2 jt − k)2 j/2φ(2 jt − �)dt.

Put t = 2i− jx to get

R.H.S. =
∫

R

2i/2ψ(2ix− k)2i/2φ(2ix− �)dx

= 〈ψi,k, φi,�〉.

Note that

‖ψ j,k‖2
2 = 2 j

∫

R

|ψ(2 jt − k)|2dt

=
∫

R

|ψ(x)|2dx = ‖ψ‖2
2. (We put x = 2 jt − k.)

Remark 10.1.1: For i, j ∈ ZZ, we have:
the set {ψi,k : k ∈ ZZ} is orthonormal
⇔ the set {ψ j,k : k ∈ ZZ} is orthonormal.
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Definition 10.1.1. A function ψ ∈ L2(R) is called an orthonormal wavelet (or an
o.n. wavelet) if the family {ψ j,k}, as defined in (10.1.3), is an orthonormal basis of
L2(R); that is,

〈ψ j,k, ψi,�〉 = δ j,iδk,�, j,k, i, � ∈ ZZ (10.1.4)

and every f in L2(R) has a representation

f (t) =
∞

∑
j,k=−∞

c j,kψ j,k(t), (10.1.5)

where the convergence of the series in (10.1.5) is in L2(R):

lim
M1 ,N1,M2 ,N2→∞

∥
∥
∥
∥
∥

f −
N1

∑
j=−M1

N2

∑
k=−M2

c j,kψ j,k

∥
∥
∥
∥
∥

2

= 0.

The series representation (10.1.5) of f is called a wavelet series and the coefficients
c j,k given by

c j,k = 〈 f , ψ j,k〉 (10.1.6)

are called the wavelet coefficients.

Example 10.1.1. Let us recall the definition of the Haar function ψH(t) given
below:

ψH(t) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ t < 1
2

−1, if 1
2 ≤ t < 1

0, otherwise.

At this stage, the reader is urged as an exercise to verify that the family {ψH
j,k :

j,k ∈ ZZ} is orthonormal in the space L2(R). We will come back again to this exam-
ple in the next section. It will be shown there that ψH is, in fact, an o.n. wavelet.

Next, let us recall that the Fourier transform of a function f in L1(R) is the
function f̂ defined by

f̂ (w) :=
∫

R

f (t)eiwtdt, w ∈ R.

Definition 10.1.2. If a function ψ ∈ L2(R) satisfies the admissibility condition:

Cψ :=
∫

R

|ψ̂(w)|2
|w| dw < ∞

then ψ is called a “basic wavelet”.

The definition is due to Grossman and Morlet (1984). It is related to the invert-
ibility of the continuous wavelet transform as given by the next definition.
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Definition 10.1.3. Relative to every basic wavelet ψ , consider the family of
wavelets defined by

ψa,b(t) := |a|−1/2ψ
(

t −b
a

)
,a,b ∈ R, a 
= 0. (10.1.7)

The continuous wavelet transform (CWT) corresponding to ψ is defined by

(Wψ f )(a,b) = |a|−1/2
∫

R

f (t)ψ
(

t −b
a

)
dt, f ∈ L2(R) (10.1.8)

= 〈 f , ψa,b〉.

Let us note that the wavelet coefficients in (10.1.7) and (10.1.8) become

c j,k = (Wψ f )
(

1
2 j ,

k
2 j

)
. (10.1.9)

Thus wavelet series and the continuous wavelet transform are intimately related.

Let us also state the following inversion theorem for the continuous wavelet trans-
form. The proof uses the Fourier transform of ψa,b, the Parseval identity and the fact
that the Gaussian functions

gα(t) :=
1

2
√
πα

e−
t2
4α , α > 0

is an approximate identity in L1(R). Thus, for f ∈ L1(R), limα→0( f ·gα)(t) = f (t)
at every point t where f is continuous. The details of the proof are left to the reader
as an exercise.

Theorem 10.1.1. Let ψ in L2(R) be a basic wavelet which defines a continuous
wavelet transform Wψ . Then for any f in L2(R) and t ∈ R at which f is continuous,

f (t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψ f )(a,b)ψa,b(t)

dadb
a2 , (10.1.10)

where ψa,b is defined by (10.1.7).

10.2 Construction of Orthonormal Wavelets

One of the first examples of an o.n. wavelet is due to Haar (1910). Let us recall
(Example 10.1.1) that it is called the Haar function defined by

ψH(t) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ t < 1
2

−1, if 1
2 ≤ t < 1

0, otherwise.
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Most of the recent theories on wavelets are no doubt inspired by this example. How-
ever, as it turns out, its discontinuous nature is a serious drawback in many applica-
tions. Thus, in these lectures, one of our quests is to explore more examples. Let us
begin with a real function φ in L2(R). As a first step let us assume that

(So) : the family {φo,k(t) = φ(t − k) : k ∈ ZZ} is orthonormal.

Then it follows from Lemma 10.1.1, that the family {φ j,k(t) : k ∈ ZZ} is orthonormal,
for each j ∈ ZZ. Let us define

Vj = span{φ j,k : k ∈ ZZ}, ( j ∈ ZZ),

the closure being taken in the topology of L2(R). It results from the next lemma that

Vj =

{

∑
k∈ZZ

ckφ j,k : c = {ck} ∈ �2(ZZ)

}

. (10.2.1)

Lemma 10.2.1: Let {uk : k ∈ ZZ} be an orthonormal bi-infinite sequence in a
Hilbert space X . Then

span{uk : k ∈ ZZ} =

{
∞

∑
k=−∞

ckuk : c = {ck} ∈ �2(ZZ)

}

.

Proof 10.2.1: Let V denote the L.H.S. set and U be the R.H.S. set. Note that for a
sequence {ck} ∈ �2(ZZ), the series ∑k ckuk converges, because its partial sums form
a Cauchy sequence in X :

∥
∥
∥
∥
∥

M

∑
k=−M

ckuk −
N

∑
k=−N

ckuk

∥
∥
∥
∥
∥

2

=
M

∑
k=N+1

|ck|2 +
−(N+1)

∑
k=−M

|ck|2 → 0 as M,N → ∞.

Clearly, U ⊂ V . Also, U is a closed subspace being isometrically isomorphic to
�2(ZZ). Since uk ∈U , we have span{uk}⊂U ⇒span{uk} ⊂U = U . Hence V ⊂U

Let us assume, in addition, that φ ∈ V1. Then for a suitable c ∈ �2(ZZ), we will
have

(S1) φ(t) = ∑k∈ZZ ckφ(2t − k).

This is called a two-scale relation or a dilation equation.

Lemma 10.2.2: Let φ in L2(R) satisfy (S0) and (S1). Then for all i, j in ZZ,

∑
k

[
c j−2kci−2k +(−1)i+ jc1− j+2kc1−i+2k

]
= 2δ j,i. (10.2.2)

Here the coefficients c j’s are as defined in (S1).
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Proof 10.2.2:

Case 1: i+ j is odd.

Then L.H.S. of (10.2.2) becomes

∑
k

c j−2kci−2k −∑
k

c1− j+2kc1−i+2k.

Put k = −r in the first sum and k = r + i+ j−1
2 in the second sum to obtain

∑
r

c j+2rci+2r −∑
r

ci+2rc j+2r = 0.

Case 2: i+ j is even.

Then L.H.S. of (10.2.2) becomes ∑kc j−2kci−2k +∑kc1− j+2kc1−i+2k. Put k = −r
in the first sum and k = r + i+ j

2 in the second sum to obtain

∑
r

c j+2rci+2r +∑
r

ci+2r+1c j+2r+1 =∑
k

c j+kci+k =∑
�

c�c�+i− j.

(We put j + k = �.)

Since the set {φ1,k : k ∈ ZZ} is orthonormal,

∑
�

c�c�+i− j = 〈∑
�

c�φ1,�,∑
�

c�+i− jφ1�〉.

Using (S1), we have

∑
�

c�φ1�(t) =∑
�

c�21/2φ(2t − �) = 21/2φ(t).

Likewise,

∑
�

c�+i− jφ1�(t) =∑
�

c�+i− j21/2φ(2t − �)(put �+ i− j = m)

=∑
m

cm21/2φ(2t + i− j−m)

= 21/2∑
m

cmφ(2(t − j− i
2

)−m)

= 21/2φ(t − j− i
2

) = 21/2φ0, j−i
2

.

Thus,

∑
�

c�c�+i− j = 〈21/2φ0,0, 21/2φ0, j−i
2
〉

= 2δ j,i, using (S0).
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Lemma 10.2.3: Let φ in L2(R) satisfy (S0) and (S1). Let ψ in L2(R) be def-
ined by

(W ) ψ(t) =
∞

∑
k=−∞

(−1)klc1−kφ(2t − k).

Then for k ∈ ZZ,

φ1,k = 2−1/2∑
m

[
ck−2mφ0,m +(−1)kc1−k+2mψ0,m

]
. (10.2.3)

Here the coefficients c j’s are as defined in the two-scale relation (S1).

Proof 10.2.3: By (S1), φ(t) = ∑i ciφ(2t − i)

⇒ φ(t −m) = ∑i ciφ(2(t −m)− i) = ∑i 2−1/2ci21/2φ(2t −2m− i)

⇒ φ0,m =∑
i

2−1/2ciφ1,2m+i.

Likewise,
ψ0,m =∑

i
(−1)i2−1/2c1−iφ1,2m+i.

The (R.H.S.) of (10.2.3) can now be written as

2−1/2∑
m

[

Ck−2m∑
i

2−1/2ciφ1,2m+i +(−1)kc1−k+2m∑
i

2−1/2(−1)ic1−iφ1,2m+i

]

.

Changing the index i to r by the equation r = 2m+ i, one obtains:

2−1∑
r
∑
m

[
ck−2mcr−2m +(−1)k+rc1−k+2mc1−r+2m

]
φ1,r = 2−1∑

r
2δk,rφ1,r.

The last expression equals φ1,k.

Lemma 10.2.4: Let U and V be closed subspaces of a Hilbert space X such that
U ⊥V . Then U +V is closed.

Proof 10.2.4: Let wn = un + vn,un ∈U,vn ∈V , be such that wn → w. Since

‖wn −wm‖2 = ‖un −um‖2 +‖vn − vm‖2

and {wn} is Cauchy, both the sequences {un},{un} are Cauchy. If u = limun,v =
limvn, then

w = u+ v ∈U +V.

Theorem 10.2.1. Let φ in L2(R) satisfy properties (S0) and (S1). Let ψ in L2(R)
be defined by (W ). Then the family {ψ j,k : j,k ∈ ZZ} is orthonormal. Moreover,
V1 = V0

⊕⊥W0, where
W0 = span{ψ0,k : k ∈ ZZ}
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Let us recall the property (W ):

ψ(t) =
∞

∑
k=−∞

(−1)kc1−kφ(2t − k).

Proof 10.2.5: Assertion 1: For all n,m in ZZ, φ0,n ⊥ ψ0,m. Indeed,

〈φ0,n, ψ0,m〉 =
∫

R

φ(t −n)ψ(t −m)dt

=
∫

R

[

∑
k

ckφ(2t −2n− k)∑
�

(−1)�c1−�φ(2t −2m− �)

]

dt

=∑
k
∑
�

(= −1)�ckc1−�

∫

R

φ(x−2n− k)φ(x−2m− �)
1
2

dx

(Put 2t = x)

=
1
2∑k ∑�

(−1)�ckc1−�δ2n+k,2m+�

=
1
2∑k

(−1)kckcp−k

(2n+ k = 2m+ � ⇒ � = 2n−2m+ k. Put p = 2m−2n+1.)

=
1
4

[

∑
k

(−1)kckcp−k +∑
i
(−1)icicp−i

]

(Put p− i = q.)

=
1
4

[

∑
k

(−1)kckcp−k +∑
q

(−1)p−qcqcp−q

]

=
1
4

[

∑
k

(−1)kckcp−k −∑
q

(−1)qcqcp−q

]

= 0.

We have just established that V0 ⊥W0.

Assertion 2: {ψ0,n : n ∈ ZZ} is orthonormal. We have

φ0,n(t) = φ(t −n) =∑
k

ckφ(2t −2n− k) = 2−1/2∑
k

ckφ1,k+2n,

ψ0,n(t) = ψ(t −n) =∑
�

(−1)�c1−�φ(2t −2n− �) = 2−1/2∑
�

(−1)�c1−�φ1,�+2n.

Hence

〈φ0,n, φ0,m〉 = 2−1〈∑
k

ckφ1,k+2n,∑
�

c�φ1,�+2m〉

= 2−1∑
k
∑
�

ckc�δk+2n,�+2m = 2−1∑
k

ckck+2n−2m.
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A similar calculation gives

〈ψ0,n, ψ0,m〉 = 2−1∑
k

(−1)k(−1)k+2n−2mc1−kc1−2n+2m−k

= 2−1∑
i

CiCi+2m−2n = δm,n.

Assertion 3:

V1 = V0

⊥⊕
W0.

From (S1) and (W ) we have φ ∈V1,ψ ∈V1. The same is true for their integer shifts.
Hence V0 +W0 ⊂V1. By Lemma 10.2.4, V0 +W0 is closed. Also, by Lemma 10.2.3,
φ1,k ∈V0 +W0. This implies V1 = span{φ1,k}⊂V0 +W0. Since V0 ⊥W0, we conclude
that V0

⊕⊥W0 = V1. To complete the proof, let Wj = span{ψ j,k : k ∈ ZZ}. On similar
lines as before, one obtains

Vj = Vj−1

⊥⊕
Wj−1, j ∈ ZZ.

Assertion 4: 〈ψ j,k, ψi,�〉 = δ j,iδk,�.
For j = i, this follows from Lemma 10.1.1. Assume j 
= i. Let j < i. Then ψ j,k ∈

Wj ⊂Vj+1 ⊂Vi and ψi,� ∈Wi. Hence ψ j,k ⊥ ψi,�.

Remark 10.2.1: Assume φ ∈ L2(R) satisfies properties (S0) and (S1). Then for
� ∈ ZZ,

φ0,�(t) = φ(t − �) =∑
k

ckφ(2t −2�− k)

= 2−1/2∑
k

ck21/2φ(2t −2�− k) = 2−1/2∑
k

ckφ1,2�+k.

φ j−1,k(t) = 2
j−1
2 φ(2 j−1t − k)

= 2
j−1
2 ∑

�

c�φ(2 jt −2k− �)

= 2−1/2∑
�

c�φ j,2k+�.

Thus
φ j−1,k(t) = 2−1/2∑

r
cr−2kφ j,r. (10.2.4)

On the same lines, one sees that

ψ j−1,k = 2−1/2∑
r

(−1)rc2k+1−rφ j,r. (10.2.5)

Theorem 10.2.2. Let φ in L2(R) satisfy properties (S0) and (S1). Let ψ in L2(R)
be defined by
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(W ) ψ(t) =
∞

∑
k=−∞

(−1)kc1−kφ(2t − k)

(with coefficients c j’s as in (S1)).
In addition, assume that

⋂

j∈ZZ

Vj = {0} and
⋃

j∈ZZ

Vj = L2(R).

Then {ψ j,k : j,k ∈ ZZ} is an o.n. wavelet for L2(R).

Proof 10.2.6: In view of the previous theorem, we need only prove that the or-
thonormal set {ψ j,k : j,k ∈ ZZ} is complete. To this end, we need only show that

f ∈ L2(R), f ⊥ ψ j,k, j,k ∈ ZZ ⇒ f = 0.

Assuming these hypotheses, we have f ⊥Wj, for every j ∈ ZZ. For each j ∈ ZZ, let
Pj : L2(R) → Vj denote the orthogonal projector onto Vj, and let v j := Pj f . Thus
v j ∈Vj and f − v j ⊥Vj. Since

Vj = Vj−1

⊥⊕
Wj−1,

we have
f − v j ⊥Vj−1and f − v j ⊥Wj−1 ⇒ v j ∈W⊥

j−1.

Since f ⊥Wj−1, we have v j ∈Vj−1. Also,

v j ∈Vj−1 and f − v j ⊥Vj−1 ⇒ v j = v j−1.

Thus {v j} is a constant sequence. But the density of
⋃

Vj and the nested property
Vj ⊂ Vj+1, for all j ∈ ZZ of Vj’s entail v j → f . Hence v j = f for all j ∈ ZZ, from
which one concludes that f ∈⋂ j Vj. Thus f = 0.

Example 10.2.1. Perhaps, one simplest pair of functions illustrating the previous
theorem is

ψ = ψH (the Haar wavelet), φ = χ[0,1).

It is easy to verify that φ obeys the simple two-scale relation

φ(t) = φ(2t)+φ(2t −1).

Thus here, c0 = c1 = 1 and ck = 0 for every k ∈ ZZ \{0,1}, and ψ is given by

ψ(t) = φ(2t)−φ(2t −1),

which is none other than the Haar wavelet.
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It remains to check in the above example, the two properties

⋂

j

Vj = {0} and
⋃

Vj = L2(R).

Here

φ0,k =
{

1, k ≤ t < k +1
0, otherwise.

Thus
V0 :=

{
f ∈ L2(R) : f constant on [k,k +1),∀k ∈ ZZ

}

and

Vj :=
{

f ∈ L2(R) : f constant on [
k
2 j ,

k +1
2 j ),∀k ∈ ZZ

}
.

Clearly,

f ∈V0 ⇒ f constant on [k,k +1),∀k ∈ ZZ

⇒ f constant on [
k
2
,

k +1
2

),∀k ∈ ZZ

⇒ f ∈V1.

Thus V0 ⊂V1. Likewise, Vj ⊂Vj+1,∀ j ∈ ZZ. Clearly, the space S of step functions
is dense in

⋃
j Vj. It is well known that S is also dense in L2(R). Hence

⋃
Vj = L2(R).

Moreover,

f ∈
⋂

j

Vj ⇒ f = constant on [0,
1
2 j ),∀ j ∈ ZZ.

Letting j →−∞, we get f = constant on [0,∞). Since f ∈ L2(R), this constant must
be zero. It follows by a similar argument that f is identically 0 on (−∞,0}. Thus,

⋂

j

Vj = {0}.

Remark 10.2.2: We note that here it is easy to check directly that φ satisfies
(S0): the set {φ0,k : k ∈ ZZ} is orthonormal.

10.3 Classification of Wavelets and Multiresolution Analysis

Let us recall that if X is a separable Hilbert space, then a (Schauder) basis {xn} of
X is said to be a Riesz basis of X if it is equivalent to an orthonormal basis {un} of
X , in the sense that, there exists a bounded invertible operator T : X → X such that
T (xn) = un,∀n ∈ N. From this definition, it is easy to prove the next proposition.
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Proposition 10.3.1 Let X be a separable Hilbert space. Then the following state-
ments are equivalent.

(a) {xn} is a Riesz basis for X .
(b) span{xn} = X and for every N ∈ N and arbitrary constants c1,c2, . . . ,cN , there

are constants A,B with 0 < A ≤ B < ∞ such that

A
N

∑
i=1

|ci|2 ≤
∥
∥
∥
∥
∥

N

∑
i=1

cixi

∥
∥
∥
∥
∥

2

≤ B
N

∑
i=1

|ci|2 .

Remark 10.3.1: Let {xn} be a Riesz basis in X . Then the series ∑∞i=1 cixi is con-
vergent in X if and only if c = {ci} ∈ �2. As a result, each x ∈ X has a unique
representation

x =
∞

∑
i=1

cixi, c = {ci} ∈ �2.

The preceding discussion enables one to define a Riesz basis of X as follows.

Definition 10.3.1. A sequence {xn} in a Hilbert space X is said to constitute a
Riesz basis of X if span{xn}n∈N = X and there exists constants A,B with 0 < A ≤
B < ∞ such that

A
∞

∑
i=1

∣
∣c j
∣
∣2 ≤
∥
∥
∥
∥
∥

∞

∑
j=1

c jx j

∥
∥
∥
∥
∥

2

≤ B
∞

∑
j=1

∣
∣c j
∣
∣2

for every sequence c = {c j} ∈ �2.

We are now ready for the following definition.

Definition 10.3.2. A function ψ in L2(R) is called an R-function if {ψ j,k : j,k ∈
ZZ} as defined in (10.1.3) is a Riesz basis of L2(R) in the sense that

span{ψ j,k : j,k ∈ ZZ} = L2(R),

and

A‖{c j,k}‖2
�2(ZZ) ≤ ‖ ∑

j,k∈ZZ
c j,kψ j,k‖2 ≤ B‖{c j,k}‖2

�2(ZZ)

holds for all doubly bi-infinite sequences {c j,k} ∈ �2(ZZ) and for suitable constants
A,B such that 0 < A ≤ B < ∞.

Next suppose that ψ is an R-function. By Hahn-Banach theorem, one can show
that there exists a unique Riesz basis {ψ j,k} of L2(R) which is dual to the Riesz
basis {ψ j,k} :

〈ψ j,k, ψ l,m〉 = δ j,lδk,m, j,k, l,m ∈ ZZ. (10.3.1)
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Consequently, every function f in L2(R) admits the following(unique) series repre-
sentation:

f (t) =
∞

∑
j,k=−∞

〈 f , ψ j,k〉ψ j,k. (10.3.2)

Note that, although the coefficients in this expansion are the values of CWT of f
relative to ψ , the series (10.3.2) is, in general, not a wavelet series. In order that this
be a wavelet series, there must exist some function ψ̃ in L2(R) such that

ψ j,k = ψ̃ j,k, j,k ∈ ZZ,

where ψ̃ j,k is as defined in (10.1.3) from the function ψ̃ .
Clearly, if {ψ j,k} is an o.n. basis of L2(R), then (10.3.1) holds with ψ j,k = ψ j,k,

or ψ̃ = ψ . In general, however, such a ψ̃ does not exit.
If ψ is chosen such that ψ̃ exists, then the pair (ψ, ψ̃) gives rise to the following

convenient (dual) representation:

f (t) =
∞

∑
j,k=−∞

〈 f , ψ j,k〉ψ̃ j,k

=
∞

∑
j,k=−∞

〈 f , ψ̃ j,k〉ψ j,k

for any element f of L2(R).

Definition 10.3.3. A function ψ in L2(R) is called an R-wavelet (or simply a
wavelet) if it is an R-function and there exists a function ψ̃ in L2(R), such that
{ψ j,k} and {ψ̃ j,k}, as defined in (10.1.3), are dual bases of L2(R). If ψ is an
R-wavelet, then ψ̃ is called a dual wavelet corresponding to ψ.

Remark 10.3.2: A dual wavelet ψ̃ is unique and is itself an R-wavelet. Moreover,
ψ is the dual wavelet of ψ̃ .

Remark 10.3.3: Every wavelet ψ , orthonormal or not, generates a “wavelet se-
ries” expansion of any f in L2(R):

f (t) =
∞

∑
j,k=−∞

c j,kψ j,k(t), (10.3.3)

where each c j,k is the CWT of f relative to the dual ψ̃ of ψ evaluated at (a,b) =
( 1

2 j ,
k
2 j ).

We are now ready to look at an important decomposition of the space L2(R). Let
ψ be any wavelet and consider the Riesz basis {ψ j,k} that it generates. For each
j ∈ ZZ, let

Wj = span{ψ j,k : k ∈ ZZ}.
(10.3.3) suggests that L2(R) can be decomposed as a direct sum of the spaces Wj’s:



10.3 Classification of Wavelets and Multiresolution Analysis 403

L2(R) =
⊕

j∈ZZ

Wj (10.3.4)

in the sense that every f in L2(R) has a unique decomposition

f (t) = . . .+g−1 +g0 +g1 + . . .

where g j ∈Wj,∀ j ∈ ZZ.
Moreover, if ψ is an o.n. wavelet, then in the above decomposition, the direct

sum is, in fact, an orthogonal direct sum:

L2(R) =
⊥⊕

j∈ZZ

Wj := . . .
⊥⊕

W−1

⊥⊕
W0

⊥⊕
W1 . . . . (10.3.5)

Note that here, for ∀ j, l ∈ ZZ, j 
= l,

Wj ∩Wl = {0}, Wj ⊥Wl .

Definition 10.3.4. A wavelet ψ in L2(R) is called a semi-orthogonal wavelet (or
s.o. wavelet) if the Riesz basis {ψ j,k} that it generates satisfies

〈ψ j,k, ψl,m〉 = 0, j 
= l j,k, l,m ∈ ZZ (10.3.6)

Clearly, a semi-orthogonal wavelet also gives rise to an orthogonal decomposi-
tion (10.3.5) of L2(R).

We now come to the important concept of multiresolution analysis first intro-
duced by Meyer(1986) and Mallat(1989). We saw that any wavelet ψ (semiorthog-
onal or not) generates a direct sum decomposition (10.3.4) of L2(R).

For each j ∈ ZZ, let us consider the closed subspaces

Vj = . . .
⊕

Wj−2
⊕

Wj−1

of L2(R). These subspaces satisfy the following properties:

(MR1) . . . ⊂V−1 ⊂V0 ⊂V1 ⊂ . . . ;
(MR2) ∪ j∈ZZVj = L2(R), the closure being taken in the topology of L2(R);
(MR3) ∩ j∈ZZVj = {0};
(MR4) Vj+1 = Vj

⊕
Wj, j ∈ ZZ; and

(MR5) f (t) ∈Vj ⇔ f (2t) ∈Vj+1, j ∈ ZZ.

If the initial subspace V0 is generated by a single function φ in L2(R) in the sense
that

V0 = span{φ0,k : k ∈ ZZ}, (10.3.7)

then using (MR5) all the subspaces Vj are also generated by the same φ :

Vj = span{φ j,k : k ∈ ZZ},where φ j,k(t) = 2
j
2 φ(2 jt − k). (10.3.8)
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Definition 10.3.5. A function φ in L2(R) is said to generate a multiresolution
analysis (MRA) if it generates a ladder of closed subspaces Vj that satisfy (MR1),
(MR2), (MR3) and (MR5) in the sense of (10.3.8), and such that the following
property holds.

(MR0) {φ0,k : k ∈ ZZ} forms a Riesz basis of V0.
This means, there must exist constants A,B, with 0 < A ≤ B < ∞ such that

A‖{ck}‖2
�2(ZZ) ≤

∥
∥
∥
∥
∥∑k∈ZZ

ckφ0,k

∥
∥
∥
∥
∥

2

2

≤ B‖{ck}‖2
�2(ZZ) (10.3.9)

for all bi-infinite sequences c = {ck} ∈ �2(ZZ).
In this case, φ is called a scaling function.
Using the Poisson’s lemma (cf., e.g., [2], Lemma 2,24) and the Parseval’s identity

for Fourier transforms one shows that for any φ in L2(R), the following hold:

(A) The set {φ(x− k) : k ∈ ZZ} is orthonormal.
⇔
The Fourier transform φ̂ of φ satisfies the identity

∞

∑
−∞

|φ̂(ω+2πk)|2 = 1, (10.3.10)

for almost all ω ∈ R.

(B) The family of functions {φ(x−k) : k ∈ ZZ} satisfies the Riesz condition (10.3.9)
with Riesz bounds A and B.
⇔
The Fourier transform φ̂ of φ satisfies

A ≤
∞

∑
−∞

|φ̂(ω+2πk)|2 ≤ B,a.e. (10.3.11)

Remark 10.3.4: The condition (MR5) implies

f (t) ∈V0 ⇔ f (2 jt) ∈Vj.

Remark 10.3.5: The spaces Vj possess the following shift invariance property:

f (t) ∈Vj ⇔ f (t +
k
2 j ) ∈Vj,∀k ∈ ZZ.

The above remark follows from:

φ j,�(t +
k
2 j ) = 2

j
2 φ(2 j

(
t +

k
2 j

)
− �)

= 2
j
2 φ(2 jt − (�− k)).

Next, we give a few examples of MRA of L2(R).
For j,k ∈ ZZ, let us denote by I j,k the interval [ k

2 j ,
k+1
2 j ).
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Example 10.3.1. For each j ∈ ZZ, let Vj denote the space of piecewise constants:

Vj = { f ∈ L2(R) : f |I j,k ≡ constant, ∀k ∈ ZZ}.

Here V0 is the closed linear span of the integer shifts of the characteristic func-
tion χ[0,1], which is the scaling function φ . Here, it is easily verified that the set
{φ0,k : k ∈ ZZ} is orthonormal, and we have already checked that {Vj : j ∈ ZZ} is a
multiresolution. In this case, the wavelet is the Haar wavelet, which is, in fact, an
o.n. wavelet.

Example 10.3.2. For each j ∈ ZZ, let Vj be the L2(R)-closure of the set S j:

S j = { f ∈ L2(R)∩C(R) : f |I j,k is linear,∀k ∈ ZZ}.

It is easy to check all the conditions of MRA except (MR0) similar to the previ-
ous example. Checking of (MR0) involves computation of Riesz bounds, which in
this case, are A = 1

3 ,B = 1. Here the scaling function φ can be taken to be the hat
function:

φ(t) =

⎧
⎨

⎩

t, if 0 ≤ t ≤ 1
2− t, if 1 ≤ t ≤ 2

0, otherwise.

Note that here

φo,k(t) = φ(t − k) =

⎧
⎨

⎩

t − k, k ≤ t ≤ k +1
k +2− t, k +1 ≤ t ≤ k +2

0, otherwise.

It is easy to see that the set {φ0,k : k ∈ ZZ} is not orthonormal. Here using the two-
scale relation and a variant of Theorem 10.2.2, we can show that the corresponding
wavelet ψ is given by

ψ(t) = φ(2t)− 1
2
φ(2t −1)− 1

2
φ(2t +1)

whose support is [− 1
2 , 3

2 ].

10.4 Spline Wavelets

For each positive integer m, we denote by Sm(2− jZZ) =: S j
m the space of cardinal

splines of order m and with the knot sequence 2− jZZ, for a fixed j ∈ ZZ :

Sm(2− jZZ) = { f ∈ Cm−2(R) : f |I j,k ∈ Pm,∀k ∈ ZZ}

(Here Pm denotes the class of polynomials of order m , i.e. of degree ≤ m−1.) For
each m ∈ IN, the mth order cardinal B-spline Nm is defined by

Nm = χ[0,1) ∗ . . .∗χ[0,1) ( m times convoluted).
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Put differently, Nm is defined recursively by:

Nm(t) =
∫ ∞

−∞
Nm−1(t − s)N1(s)ds

=
∫ 1

0
Nm−1(t − s)ds,with N1 := χ[0,1).

The scaling functions in the two examples in the previous section are respectively
the first order and the second order cardinal B-spline. It is well known that any
f ∈ S j

m can be written as
f (t) =∑

k
ckNm(t − k). (10.4.1)

Taking Nm as the scaling function, let us define

V m
0 = spanS0

m = Sm(ZZ) (10.4.2)

Hence, a function f is in V m
0 if and only if it has a B-spline series representation

(10.4.1) with the coefficient sequence c = {ck} ∈ �2(ZZ). The other spaces V m
j are

defined by
f (t) ∈V m

j ⇔ f (2t) ∈V m
j+1, j ∈ ZZ.

In other words,
V m

j = spanS j
m.

Clearly the subspaces {V m
j : j ∈ ZZ} satisfy (MR1). The verification of (MR2) is

immediate: The class of polynomials P is dense in L2(R) and P ⊂ V m
j ,∀ j ∈ ZZ.

This implies
⋃

j∈ZZ

V m
j = L2(R).

The verification of (MR3) is exactly as in Example 10.3.1 The verification of (MR0)
is carried out as in Example 10.3.2 with φ replaced by Nm. Here the smallest value
of B is 1, and the largest value of A can be expressed in terms of the roots of the
Euler-Frobenius polynomial

E2m−1(z) = (2m−1)!zm−1
m−1

∑
k=−m+1

N2m(m+ k)zk (10.4.3)

From the nested sequence of spline spaces V m
j , we have the orthogonal comple-

mentary subspaces W m
j , given by

W m
j+1 = V m

j

⊕
W m

j , j ∈ ZZ.

Just as the B-spline Nm is the minimally supported generator of {V m
j }, we are in-

terested in finding the minimally supported ψm ∈ W0 that generates the mutually
orthogonal subspaces Wj. Such compactly supported functions ψm are called the
B-wavelets of order m. It turns out that

support Nm = [0,m]; support ψm = [0,2m−1],∀m ∈ IN
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We mention without working out further details that

ψm(t) =
3m−2

∑
k=0

qkNm(2t − k), (10.4.4)

with

qk = q(m)
k =

(−1)k

2m−1

m

∑
l=0

(
m
l

)
N2m(k− l +1). (10.4.5)

For the relevant details, we refer the reader to Chui (1992, Chapter 6).

10.5 A Variant of Construction of Orthonormal Wavelets

Let us go back once again to Theorems 10.2.1 and 10.2.2. Suppose φ in L2(R) is
such that φ does not satisfy (S0), i.e., {φ0,k : k ∈ ZZ} is not orthonormal.

In this case, it seems natural to define Φ by requiring its Fourier transform to be
using (10.3.10) and the Plencherel’s thorem,

Φ̂(ω) =
φ̂(ω)

{∑k |φ̂(ω+2πk)|2}1/2
, ω ∈ R. (10.5.1)

Theorem 10.5.1. Let φ in L2(R) be such that it satisfies

(MR0): {φ0,k : k ∈ ZZ} is a Riesz basis of V0.

Define Φ ∈ L2(R) by (10.5.1). Then {Φ0,k : k ∈ ZZ} is an orthonormal basis for the
space V0.

Theorem 10.5.2. Let φ in L2(R) be such that {φ0,k : k ∈ ZZ} is a Riesz basis for V0
and suppose φ ∈V1. Then Φ as defined in (10.5.1) satisfies a two-scale relation

Φ(t) =
∞

∑
k=−∞

akΦ(2t − k), (a = {ak} ∈ �2(ZZ)).

LetΨ be defined by
Ψ(t) =∑

k
(−1)ka1−kΦ(2t − k). (10.5.2)

Then the set {Ψj,k : j,k ∈ ZZ} is orthonormal.
Furthermore, if Vj’s satisfy (MR2) and (MR3), thenΨ is an orthonormal wavelet.

The proofs of the above theorems follow from Theorems 10.2.1 and 10.2.2 by
applying (10.3.10) and (10.3.11). The details are left to the reader as exercises.
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Exercises 10.5

10.5.1. Let ψH be the Haar wavelet. Show that for integers n < m,
∫ m

n
ψH(t)dt = 0.

10.5.2. Let f ,g ∈ L2(R), and suppose that fo j ⊥ g0i,∀i, j ∈ ZZ. Show that fn j ⊥
gni,∀n, i, j ∈ ZZ.

10.5.3. Let ψ ∈ L2(R),n ∈ ZZ, i ∈ ZZ. Define φ = ψni. Show that

span{φkj : k, j ∈ ZZ} = span{ψkj : k, j ∈ ZZ}.

10.5.4. Let {un} be an orthonormal sequence in a Hilbert space. Let α,β be in �2

such that α ⊥ β . Define

w =∑
k
αkuk, v =∑

k
βkuk.

Show that w ⊥ v. Is the converse true?

10.5.5. Verify directly the orthonormality of the family of functions {ψH
j,k; j,

k ∈ ZZ}.

10.5.6. Give a proof of Theorem 10.5.1.

10.5.7. Give a proof of Theorem 10.5.2.
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Chapter 11
Jacobians of Matrix Transformations

[This Chapter is based on the lectures of Professor A.M. Mathai of McGill University, Canada
(Director of the SERC Schools).]

11.0 Introduction

Real scalar functions of matrix argument, when the matrices are real, will be dealt
with. It is difficult to develop a theory of functions of matrix argument for general
matrices. Let X = (xi j), i = 1 · · · ,m and j = 1, · · · ,n be an m× n matrix where the
xi j’s are real elements. It is assumed that the readers have the basic knowledge of
matrices and determinants. The following standard notations will be used here. A
prime denotes the transpose, X ′ = transpose of X , |(.)| denotes the determinant of
the square matrix, m×m matrix (·). The same notation will be used for the absolute
value also. tr(X) denotes the trace of a square matrix X , tr(X) = sum of the eigen-
values of X = sum of the leading diagonal elements in X . A real symmetric positive
definite X (definiteness is defined only for symmetric matrices when real) will be
denoted by X = X ′ > 0. Then 0 < X = X ′ < I ⇒ X = X ′ > 0 and I −X > 0. Fur-
ther, dX will denote the wedge product or skew symmetric product of the differen-
tials dxi j’s.

That is, when X = (xi j), an m×n matrix

dX = dx11 ∧·· ·∧dx1n ∧dx21 ∧·· ·dx2n ∧·· ·∧dxmn. (11.0.1)

If X = X ′, that is symmetric, and p× p, then

dX = dx11 ∧dx21 ∧dx22 ∧dx31 ∧·· ·∧dxpp (11.0.2)

a wedge product of 1+2+ · · ·+ p = p(p+1)/2 differentials.
A wedge product or skew symmetric product is defined in Chapter 1.

409
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11.1 Jacobians of Linear Matrix Transformations

Some standard Jacobians, that we will need later, will be illustrated here. For more
on Jacobians see Mathai (1997). First we consider a very basic linear transformation
involving a vector of real variables going to a vector of real variables.

Theorem 11.1.1. Let X and Y be p × 1 vectors of real scalar variables, func-
tionally independent (no element in X is a function of the other elements in X
and similarly no element in Y is a function of the other elements in Y ), and let
Y = AX , |A| 
= 0, where A = (ai j) is a nonsingular p× p matrix of constants (A is
free of the elements in X and Y ; each element in Y is a linear function of the elements
in X, and vice versa). Then

Y = AX , |A| 
= 0 ⇒ dY = |A|dX . (11.1.1)

Proof 11.1.1:

Y =

⎡

⎢
⎣

y1
...

yp

⎤

⎥
⎦= AX =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1p
a21 a22 · · · a2p

...
... · · ·

...
ap1 ap2 · · · app

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xp

⎤

⎥
⎥
⎥
⎦
⇒

yi = ai1x1 + . . .+aipxp, i = 1, . . . , p.

∂yi

∂x j
= ai j ⇒

(
∂yi

∂x j

)
= (ai j) = A ⇒ J = |A|.

Hence,
dY = |A|dX .

That is, Y and X , p×1, A is p× p, |A| 
= 0,A is a constant matrix, then

Y = AX , |A| 
= 0 ⇒ dY = |A|dX .

Example 11.1.1. Consider the transformation Y = AX where Y ′ = (y1,y2,y3) and
X ′ = (x1,x2,x3) and let the transformation be

y1 = x1 + x2 + x3

y2 = 3x2 + x3

y3 = 5x3.

Then write dY in terms of dX .

Solution 11.1.1: From the above equations, by taking the differentials we have

dy1 = dx1 +dx2 +dx3

dy2 = 3dx2 +dx3

dy3 = 5dx3.
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Then taking the product of the differentials we have

dy1 ∧dy2 ∧dy3 = [dx1 +dx2 +dx3]∧ [3dx2 +dx3]∧ [5dx3].

Taking the product directly and then using the fact that dx2 ∧ dx2 = 0 and
dx3 ∧dx3 = 0 we have

dY = dy1 ∧dy2 ∧dy3

= 15dx1 ∧dx2 ∧dx3 = 15dX

= |A|dX

where

A =

⎡

⎣
1 1 1
0 3 1
0 0 5

⎤

⎦ .

This verifies Theorem 11.1.1 also. This theorem is the standard result that is seen
in elementary textbooks. Now we will investigate more elaborate linear transforma-
tions.

Theorem 11.1.2. Let X and Y be m×n matrices of functionally independent real
variables and let A,m×m be a nonsingular constant matrix. Then

Y = AX ⇒ dY = |A|ndX . (11.1.2)

Proof 11.1.2: Let Y = AX = (AX (1),AX (2), . . . ,AX (n)) where X (1), . . . ,X (n) are
the columns of X . Then the Jacobian matrix for X going to Y is of the form

⎡

⎢
⎢
⎢
⎣

A O . . . O
O A . . . O
...

... . . .
...

O O . . . A

⎤

⎥
⎥
⎥
⎦
⇒

∣
∣
∣
∣
∣
∣
∣

A O . . . O
...

... . . .
...

O O . . . A

∣
∣
∣
∣
∣
∣
∣
= |A|n = J (11.1.3)

where O denotes a null matrix and J is the Jacobian for the transformation of X
going to Y or dY = |A|ndX .

In the above linear transformation the matrix X was pre-multiplied by a nonsin-
gular constant matrix A. Now let us consider the transformation of the form Y = XB
where X is post-multiplied by a nonsingular constant matrix B.

Theorem 11.1.3. Let X be a m× n matrix of functionally independent real vari-
ables and let B be an n×n nonsingular matrix of constants. Then

Y = XB, |B| 
= 0 ⇒ dY = |B|mdX , (11.1.4)
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Proof 11.1.3:

Y = XB =

⎡

⎢
⎣

X (1)B
...

X (m)B

⎤

⎥
⎦

where X (1), . . . ,X (m) are the rows of X . The Jacobian matrix is of the form,
⎡

⎢
⎣

B 0 · · · 0
...

... · · ·
...

0 0 · · · B

⎤

⎥
⎦⇒

∣
∣
∣
∣
∣

B 0 · · · 0
...

... · · · B

∣
∣
∣
∣
∣
= |B|m ⇒ dY = |B|mdX .

Then combining the above two theorems we have the Jacobian for the most gen-
eral linear transformation.

Theorem 11.1.4. Let X and Y be m×n matrices of functionally independent real
variables. Let A be m×m and B be n×n nonsingular matrices of constants. Then

Y = AXB, |A| 
= 0, |B| 
= 0 ,Y,m×n,X ,m×n,⇒ dY = |A|n|B|mdX . (11.1.5)

Proof 11.1.4: For proving this result first consider the transformation Z = AX and
then the transformation Y = ZB, and make use of Theorems 11.1.2 and 11.1.3.

In Theorems 11.1.2 to 11.1.4 the matrix X was rectangular. Now we will examine
a situation where the matrix X is square and symmetric. If X is p× p and symmetric
then there are only 1+2+ · · ·+ p = p(p+1)/2 functionally independent elements
in X because, here xi j = x ji for all i and j. Let Y = Y ′ = AXA′,X = X ′, |A| 
= 0. Then
we can obtain the following result:

Theorem 11.1.5. Let X = X ′ be a p × p real symmetric matrix of p(p + 1)/2
functionally independent real elements and let A be a p× p nonsingular constant
matrix. Then

Y = AXA′,X = X ′, |A| 
= 0,⇒ dY = |A|p+1dX . (11.1.6)

Proof 11.1.5: This result can be proved by using the fact that a nonsingular matrix
such as A can be written as a product of elementary matrices in the form

A = E1E2 · · ·Ek

where E1, · · · ,Ek are elementary matrices. Then

Y = AXA′ ⇒ E1E2 · · ·EkXE ′
k · · ·E ′

1.

where E ′
j is the transpose of E j. Let Yk = EkXE ′

k,Yk−1 = Ek−1YkE ′
k−1, and so on, and

finally Y = Y1 = E1Y2E ′
1. Evaluate the Jacobians in these transformations to obtain

the result, observing the following facts. If, for example, the elementary matrix Ek
is formed by multiplying the i-th row of an identity matrix by the nonzero scalar
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c then taking the wedge product of differentials we have dYk = cp+1dX . Similarly,
for example, if the elementary matrix Ek−1 is formed by adding the i-th row of
an identity matrix to its j-th row then the determinant remains the same as 1 and
hence dYk−1 = dYk. Since these are the only two types of basic elementary matrices,
systematic evaluation of successive Jacobians gives the final result as |A|p+1.

Note 11.1.1: From the above theorems the following properties are evident: If
X is a p× q matrix of functionally independent real variables and if c is a scalar
quantity and B is a p×q constant matrix then

Y = c X ⇒ dY = cpqdX (11.1.7)

Y = c X +B ⇒ dY = cpqdX . (11.1.8)

Note 11.1.2: If X is a p× p symmetric matrix of functionally independent real
variables, a is a scalar quantity and B is a p× p symmetric constant matrix then

Y = a X +B,X = X ′, B = B′ ⇒ dY = ap(p+1)/2dX . (11.1.9)

Note 11.1.3: For any p × p lower triangular (or upper triangular) matrix of
p(p+1)/2 functionally independent real variables, Y = X +X ′ is a symmetric ma-
trix, where X ′ denoting the transpose of X = (xi j), then observing that the diagonal
elements in Y = (yi j) are multiplied by 2, that is, yii = 2xii, i = 1, . . . , p, we have

Y = X +X ′ ⇒ dY = 2pdX . (11.1.10)

Example 11.1.2. Let X be a p×q matrix of pq functionally independent random
variables having a matrix-variate Gaussian distribution with the density given by

f (X) = c exp{−tr[A(Z −M)B(X −M)′]}

where, A is a p× p positive definite constant matrix, B is a q× q positive definite
constant matrix, M is p×q constant matrix, tr(·) denotes the trace of the matrix (·)
and c is the normalizing constant, then evaluate c.

Solution 11.1.2: Since A and B are positive definite matrices we can write
A = A1A′

1 and B = B1B′
1 where A1 and B1 are nonsingular matrices, that is, |A1| 
=

0, |B1| 
= 0. Also we know that for any two matrices P and Q, tr(PQ) = tr(QP) as
long as PQ and QP are defined, PQ need not be equal to QP. Then

tr[A(X −M)B(X −M)′] = tr[A1A′
1(X −M)B1B′

1(X −M)′]
= tr[A′

1(X −M)B1B′
1(X −m)′A1]

= tr(YY ′)

where
Y = A′

1(X −M)B1,
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But from Theorem 11.1.4

dY = |A′
1|q|B1|pd(X −M) = |A1|q|B1|pd(X −M)

since |A1|′ = |A1|
= |A|q/2|B|p/2dX

since |A|= |A1|2, |B|= |B1|2,d(X −M) = d(X), M being a constant matrix. If f (X)
is a density then the total integral is unity, that is,

1 =
∫

X
f (X)dX

= c
∫

X
exp{−tr[A(X −M)B(X −M)′]}dX

= c
∫

Y
exp{−tr[YY ′]}

where, for example,
∫

X denotes the integral over all elements in X . Note that for any
real matrix P, trace of PP′ is the sum of squares of all the elements in P. Hence

∫

Y
exp{−tr[YY ′]} =

∫

Y
exp{−∑

i, j
y2

i j}dY

=∏
i, j

∫ ∞

−∞
e−y2

i j dyi j.

But ∫ ∞

−∞
e−u2

du =
√
π

and therefore

1 = c |A|q/2|B|p/2√π pq ⇒
c = (|A|q/2|B|p/2π pq/2)−1.

Note 11.1.4: What happens in the transformation Y = X + X ′ where both X and
Y are p× p matrices of functionally independent real elements. When X = X ′, then
Y = 2X and this case is already covered before. If X 
= X ′ then Y has become sym-
metric with p(p+1)/2 variables whereas in X there are p2 variables and hence this
is not a one-to-one transformation.

Example 11.1.3. Consider the transformation

y11 = x11 + x21, y12 = x11 + x21 +2x12 +2x22,

y13 = x11 + x21 +2x13 + x23, y21 = x11 +3x21,

y22 = x11 +3x21 +2x12 +6x22, y23 = x11 +3x21 +2x13 +6x23.

Write this transformation in the form Y = AXB and then evaluate the Jacobian in
this transformation.
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Solution 11.1.3: Writing the transformation in the form Y = AXB we have

Y =
[

y11 y12 y13
y21 y22 y23

]
, X =

[
x11 x12 x13
x21 x22 x23

]
,

A =
[

1 1
1 3

]
, B =

⎡

⎣
1 1 1
0 2 0
0 0 2

⎤

⎦ .

Hence the Jacobian is

J = |A|3|B|2 = (23)(42) = 128.

This can also be verified by taking the differentials in the starting explicit forms and
then taking the wedge products. This verification is left to the reader.

Exercises 11.1.
11.1.1. If X and A are p× p lower triangular matrices where A = (ai j) is a con-
stant matrix with a j j > 0, j = 1, . . . , p,X = (xi j) and xi j’s, i ≥ j are functionally
independent real variables then show that

Y = XA ⇒ dY =

{
p

∏
j=1

ap− j+1
j j

}

dX ,

Y = AX ⇒ dY =

{
p

∏
j=1

a j
j j

}

dX ,

and
Y = aX ⇒ dY = ap(p+1)/2dX (11.1.11)

where a is a scalar quantity.

11.1.2. Let X and B be upper triangular p× p matrices where B = (bi j) is a constant
matrix with b j j > 0, j = 1, . . . , p, X = (xi j) where the xi j’s, i ≤ j be functionally
independent real variables and b be a scalar quantity, then show that

Y = XB ⇒ dY =

{
p

∏
j=1

b j
j j

}

dX ,

Y = BX ⇒ dY =

{
p

∏
j=1

bp+1− j
j j

}

dX ,

and
Y = bX ⇒ dY = bp(p+1)/2dX . (11.1.12)
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11.1.3. Let X ,A,B be p× p lower triangular matrices where A = (ai j) and B = (bi j)
be constant matrices with a j j > 0,b j j > 0, j = 1, . . . , p and X = (xi j) with xi j’s,
i ≥ j be functionally independent real variables. Then show that

Y = AXB ⇒ dY =

{
p

∏
j=1

a j
j jb

p+1− j
j j

}

dX ,

and

Z = A′X ′B′ ⇒ dZ =

{
p

∏
j=1

b j
j ja

p+1− j
j j

}

dX . (11.1.13)

11.1.4. Let X =−X ′ be a p× p skew symmetric matrix of functionally independent
p(p−1)/2 real variables and let A, |A| 
= 0, be a p× p constant matrix. Then prove
that

Y = AXA′,X ′ = −X , |A| 
= 0 ⇒ dY = |A|p−1dX . (11.1.14)

11.1.5. Let X be a lower triangular p× p matrix of functionally independent real
variables and A = (ai j) be a lower triangular matrix of constants with a j j > 0, j =
1, . . . , p. Then show that

Y = XA+A′X ′ ⇒ dY = 2p

{
p

∏
j=1

ap+1− j
j j

}

dX , (11.1.15)

and

Y = AX +X ′A′ ⇒ dY = 2p

{
p

∏
j=1

a j
j j

}

dX . (11.1.16)

11.1.6. Let X and A be as defined in Exercise 11.1.5. Then show that

Y = A′X +X ′A → dY = 2p

{
p

∏
j=1

a j
j j

}

dX , (11.1.17)

and

Y = AX ′ +XA′ → dY = 2p

{
p

∏
j=1

ap+1− j
j j

}

dX . (11.1.18)

11.1.7. Consider the transformation Y = AX where

Y =
[

y11 y12
0 y22

]
, X =

[
x11 x12
0 x22

]
, A =

[
2 1
0 3

]
.

Writing AX explicitly and then taking the differentials and wedge products show
that dY = 12dX and verify that J =∏p

j=1 ap+1− j
j j = (22)(31) = 12.

11.1.8. Let Y and X be as in Exercise 11.1.7 and consider the transformation Y = XB
where, B = A in Exercise 11.1.7. Then writing XB explicitly, taking differentials
and then the wedge products show that dY = 18dX and verify the result that J =
∏p

j=1 b j
j j = (21)(32) = 18.
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11.1.9. Let Y,X ,A be as in Exercise 11.1.7. Consider the transformation Y = AX +
X ′A′. Evaluate the Jacobian from first principles of taking differentials and wedge
products and then verify the result that the Jacobian is 2p = 22 = 4 times the Jacobian
in Exercise 11.1.7.

11.1.10. Let Y,X ,B be as in Exercise 11.1.8. Consider the transformation Y = XB+
B′X ′. Evaluate the Jacobian from first principles and then verify that the Jacobian is
2p = 22 = 4 times the Jacobian in Exercise 11.1.8.

11.2 Jacobians in Some Nonlinear Transformations

Some basic nonlinear transformations will be considered in this section and some
more results will be given in the exercises at the end of this section. The most pop-
ular nonlinear transformation is when a positive definite (naturally real symmetric
also) matrix is decomposed into a triangular matrix and its transpose. This will be
discussed first.

Example 11.2.1. Let X be p× p, symmetric positive definite and let T = (ti j) be a
lower triangular matrix. Consider the transformation Z = T T ′. Obtain the conditions
for this transformation to be one-to-one and then evaluate the Jacobian.

Solution 11.2.1:

X = (xi j) =

⎡

⎢
⎣

x11 x12 . . . x1p
...

... . . .
...

xp1 xp2 . . . xpp

⎤

⎥
⎦

with xi j = x ji for all i and j, X = X ′ > 0. When X is positive definite, that is, X > 0
then x j j > 0, j = 1, . . . , p also.

T T ′ =

⎡

⎢
⎢
⎢
⎣

t11 0 . . . 0
t21 t22 . . . 0
...

... . . .
...

tp1 tp2 . . . tpp

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

t11 t21 . . . tp1
0 t22 . . . tp2
...

... . . .
...

0 0 · · · tpp

⎤

⎥
⎥
⎥
⎦

= X ⇒

x11 = t2
11 ⇒ t11 = ±√

x11. This can be made unique if we impose the condition
t11 > 0. Note that x12 = t11t21 and this means that t21 is unique if t11 > 0. Continuing
like this, we see that for the transformation to be unique it is sufficient that t j j > 0,
j = 1, . . . , p. Now, observe that,

x11 = t2
11,x22 = t2

21 + t2
22, . . . ,xpp = t2

p1 + . . .+ t2
pp

and x12 = t11t21, . . . ,x1p = t11tp1, and so on.

∂x11

∂ t11
= 2t11,

∂x11

∂ t21
= 0, . . . ,

∂x11

∂ tp1
= 0,
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∂x12

∂ t21
= t11, . . . ,

∂x1p

∂ tp1
= t11,

∂x22

∂ t22
= 2t22,

∂x22

∂ t31
= 0, · · · , ∂x22

∂ tp1
= 0,

and so on. Taking the xi j’s in the order x11,x12, · · · ,x1p,x22, · · · ,x2p, · · · ,xpp and the
ti j’s in the order t11, t21, t22, · · · , tpp we have the Jacobian matrix a triangular matrix
with the diagonal elements as follows: t11 is repeated p times, t22 is repeated p−1
times and so on, and finally tpp appearing once. The number 2 is appearing a total
of p times. Hence the determinant is the product of the diagonal elements, giving,

2pt p
11t p−1

22 · · · tpp.

Therefore, for X = X ′ > 0,T = (ti j), ti j = 0, i < j, t j j > 0, j = 1, · · · p we have

Theorem 11.2.1. Let X = X ′ > 0 be a p× p real symmetric positive definite ma-
trix and let X = T T ′ where T is lower triangular with positive diagonal elements,
t j j > 0, j = 1, . . . , p. Then

X = T T ′ ⇒ dX = 2p

{
p

∏
j=1

t p+1− j
j j

}

dT. (11.2.1)

Example 11.2.2. If X is p× p real symmetric positive definite then evaluate the
following integral, we will call it matrix-variate real gamma , denoted by Γp(α):

Γp(α) =
∫

X
|X |α−

p+1
2 e−tr(X)dX (11.2.2)

and show that

Γp(α) = π
p(p−1)

4 Γ(α)Γ
(
α− 1

2

)
· · ·Γ
(
α− p−1

2

)
(11.2.3)

for ℜ(α) > p−1
2 .

Solution 11.2.2: Make the transformation X = T T ′ where T is lower triangular
with positive diagonal elements. Then

|T T ′| =
p

∏
j=1

t2
j j, dX = 2p

{
p

∏
j=1

t p+1− j
j j

}

dT

and
tr(X) = t2

11 +(t2
21 + t2

22)+ . . .+(t2
p1 + . . .+ t2

pp).

Then substituting these, the integral over X reduces to the following:

∫

X
|X |α−

p+1
2 e−tr(X)dX =

∫

T

{
p

∏
j=1

∫ ∞

0
2t
α− j

2
j j e−t2

j j dt j j

}

∏
i> j

∫ ∞

−∞
e−t2

i j dti j.
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Observe that

2
∫ ∞

0
t
α− j

2
j j e−t2

j j dt j j = Γ
(
α− j−1

2

)
, ℜ(α) >

j−1
2

∫ ∞

−∞
e−t2

i j dti j =
√
π

and there are p(p−1)/2 factors in ∏i> j and hence

Γp(α) = π
p(p−1)

4 Γ(α)Γ
(
α− 1

2

)
· · ·Γ
(
α− p−1

2

)

and the condition ℜ(α − j−1
2 ), j = 1, · · · , p ⇒ ℜ(α) > p−1

2 . This establishes the
result.

Notation 11.2.1.

Γp(α) : Real matrix-variate gamma

Definition 11.2.1. Real matrix-variate gamma Γp(α): It is defined by equations
(11.2.2) and (11.2.3) where (11.2.2) gives the integral representation and (11.2.3)
gives the explicit form.

Remark 11.2.1: If we try to evaluate the integral
∫

X |X |α− p+1
2 e−tr(X)dX from first

principles, as a multiple integral, notice that even for p = 3 the integral is practi-
cally impossible to evaluate. For p = 2 one can evaluate after going through several
stages.

The transformation in (11.2.1) is a nonlinear transformation whereas in (11.1.4)
it is a general linear transformation involving mn functionally independent real xi j’s.
When X is a square and nonsingular matrix its regular inverse X−1 exists and the
transformation Y = X−1 is a one-to-one nonlinear transformation. What will be the
Jacobian in this case?

Theorem 11.2.2. For Y = X−1 where X is a p× p nonsingular matrix we have

Y = X−1, |X | 
= 0 ⇒ dY = |X |−2p for a general X

= |X |−(p+1) for X = X ′. (11.2.4)

Proof 11.2.1: This can be proved by observing the following: When X is nonsin-
gular, XX−1 = I where I denotes the identity matrix. Taking differentials on both
sides we have

(dX)X−1 +X(dX−1) = O ⇒
(dX−1) = −X−1(dX)X−1 (11.2.5)



420 11 Jacobians of Matrix Transformations

where (dX) means the matrix of differentials. Now we can apply Theorem 11.1.4
treating X−1 as a constant matrix because it is free of the differentials since we are
taking only the wedge product of differentials on the left side.

Note 11.2.1: If the square matrix X is nonsingular and skew symmetric then pro-
ceeding as above it follows that

Y = X−1, |X | 
= 0, X ′ = −X ⇒ dY = |X |−(p−1)dX . (11.2.6)

Note 11.2.2: If X is nonsingular and lower or upper triangular then, proceeding
as before we have

Y = X−1 ⇒ dY = |X |−(p+1) (11.2.7)

where |X | 
= 0, X is lower or upper triangular.

Theorem 11.2.3. Let X = (xi j) be p× p symmetric positive definite matrix of func-
tionally independent real variables with x j j = 1, j = 1, . . . , p. Let T = (ti j) be a
lower triangular matrix of functionally independent real variables with t j j > 0, j =
1, . . . , p. Then

X = T T ′, with
i

∑
j=1

t2
i j = 1, i = 1, . . . , p ⇒

dX =

{
p

∏
j=2

t p− j
j j

}

dT, (11.2.8)

and

X = T ′T, with
p

∑
i= j

t2
i j = 1, j = 1, . . . , p ⇒

dX =

{
p−1

∏
j=1

t j−1
j j

}

dT. (11.2.9)

Proof 11.2.2: Since X is symmetric with x j j = 1, j = 1, . . . , p there are only
p(p−1)/2 variables in X . When X = T T ′ take the xi j’s in the order x21, . . . ,xp1,
x32, . . . , xp2, . . . ,xpp−1 and the ti j’s also in the same order and form the matrix of
partial derivatives. We obtain a triangular format and the product of the diagonal
elements gives the required Jacobian.

Example 11.2.3. Let R = (ri j) be a p× p real symmetric positive definite matrix
such that r j j = 1, j = 1, . . . , p, − 1 < ri j = r ji < 1, i 
= j. (This is known as the
correlation matrix in statistical theory). Then show that

f (R) =
[Γ(α)]p

Γp(α)
|R|α−

p+1
2

is a density function for ℜ(α) > p−1
2 .
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Solution 11.2.3: Since R is positive definite f (R) ≥ 0 for all R. Let us check
the total integral. Let T be a lower triangular matrix as defined in the above theorem
and let R = T T ′. Then

∫

R
|R|α−

p+1
2 dR =

∫

T

{
p

∏
j=2

(t2
j j)
α− j+1

2

}

dT.

Observe that
t2

j j = 1− t2
j1 − . . .− t2

j j−1

where −1 < ti j < 1, i > j. Then let

B =
∫

R
|R|α− P+1

2 dR =∏
i> j
∆ j

where
∆ j =

∫

w j

(1− t2
j1 − . . .− t2

j j−1)
α− j+1

2 dt j1 · · ·dt j j−1

where w j = (t jk), −1 < t jk < 1, k = 1, . . . , j−1,∑ j−1
k=1 t2

jk < 1.
Evaluating the integral with the help of Dirichlet integral of Chapter 1 and then

taking the product we have the final result showing that f (R) is a density.

Exercises 11.2.
11.2.1. Let X = X ′ > 0 be p× p. Let T = (ti j) be an upper triangular matrix with
positive diagonal elements. Then show that

X = T T ′ ⇒ dX = 2p

{
p

∏
j=1

t j
j j

}

dT. (11.2.10)

11.2.2. Let x1, · · · ,xp be real scalar variables. Let y1 = x1 + · · ·+ xp, y2 = x1x2 +
x1x3 + · · ·xp−1xp (sum of products taken two at a time), · · · ,yk = x1 · · ·xk. Then for
x j > 0, j = 1, · · · ,k show that

dy1 ∧·· ·∧dyk =

{
p−1

∏
i=1

p

∏
j=i+1

|xi − x j|
}

dx1 ∧·· ·∧dxp. (11.2.11)

11.2.3. Let x1, · · · ,xp be real scalar variables. Let

x1 = r sinθ1

x j = r cosθ1 cosθ2 · · ·cosθ j−1 sinθ j, j = 2,3, · · · , p−1
xp = r cosθ1 cosθ2 · · ·cosθp−1

for r > 0,−π
2 < θ j ≤ π

2 , j = 1, · · · , p−2,−π < θp−1 ≤ π . Then show that

dx1 ∧·· ·∧dxp = rp−1

{
p−1

∏
j=1

|cosθ j|p− j−1

}

dr∧dθ1 ∧·· ·∧dθp−1. (11.2.12)



422 11 Jacobians of Matrix Transformations

11.2.4. Let X = T
|T | where X and T are p× p lower triangular or upper triangular

matrices of functionally independent real variables with positive diagonal elements.
Then show that

dX = (p−1)|T |−p(p+1)/2dT. (11.2.13)

11.2.5. For real symmetric positive definite matrices X and Y show that

lim
t→∞

∣
∣
∣
∣I +

XY
t

∣
∣
∣
∣

−t

= e−tr(XY ) = lim
t→∞

∣
∣
∣
∣I −

XY
t

∣
∣
∣
∣

t

. (11.2.14)

11.2.6. Let X = (xi j),W = (wi j) be lower triangular p × p matrices of distinct
real variables with x j j > 0,w j j > 0, j = 1, · · · , p, ∑ j

k=1 w2
jk = 1, j = 1, · · · , p. Let

D = diag(λ1, · · · ,λp),λ j > 0, j = 1, · · · , p, real and distinct where diag(λ1, · · · ,λp)
denotes a diagonal matrix with diagonal elements λ1, · · · ,λp. Show that

X = DW ⇒ dX =

{
p

∏
j=1
λ j−1

j w−1
j j

}

dD∧dW. (11.2.15)

11.2.7. Let X ,A,B be p× p nonsingular matrices where A and B are constant matri-
ces and X is a matrix of functionally independent real variables. Then, ignoring the
sign, show that

Y = AX−1B ⇒ dY = |AB|p|X |−2pdX for a general X , (11.2.16)

= |AX−1|p+1dX for X = X ′, B = A′, (11.2.17)

= |AX−1|p−1 for X ′ = −X ,B = A′. (11.2.18)

11.2.8. Let X and A be p× p matrices where A is a nonsingular constant matrix and
X is a matrix of functionally independent real variables such that A + X is nonsin-
gular. Then, ignoring the sign, show that

Y = (A+X)−1(A−X) or (A−X)(A+X)−1 ⇒

dY = 2p2 |A|p|A+X |−2pdX for a general X , (11.2.19)

= 2
p(p+1)

2 |I +X |−(p+1)dX for A = I, X = X ′. (11.2.20)

11.2.9. Let X and A be real p× p lower triangular matrices where A is a constant
matrix and X is a matrix of functionally independent real variables such that A and
A+X are nonsingular. Then, ignoring the sign, show that

Y = (A+X)−1(A−X) ⇒

dY = 2
p(p+1)

2 |A+X |−(p+1)
+

{
p

∏
j=1

|a j j|p+1− j

}

dX , (11.2.21)
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and

Y = (A−X)(A+X)−1 ⇒

dY = 2
p(p+1)

2 |A+X |−(p+1)
+

{
p

∏
j=1

|a j j| j

}

dX (11.2.22)

where | · |+ denotes that the absolute value is taken.

11.2.10. State and prove the corresponding results in Exercise 11.2.9 for upper tri-
angular matrices.

11.3 Transformations Involving Orthonormal Matrices

Here we will consider a few matrix transformations involving orthonormal and
semiorthonormal matrices. Some basic results that we need later on are discussed
here. For more on these types and various other types of transformations see Mathai
(1997). Since the proofs in many of the results are too involved and beyond the
scope of this School we will not go into the details of the proofs.

Theorem 11.3.1. Let X be a p× n,n ≥ p, matrix of rank p and of functionally
independent real variables, and let X = TU ′

1 where T is p× p lower triangular with
distinct nonzero diagonal elements and U ′

1 a unique n× p semiorthonormal matrix,
U ′

1U1 = Ip, all are of functionally independent real variables. Then

X = TU ′
1 ⇒ dX =

{
p

∏
j=1

|t j j|n− j

}

dT ∧U ′
1(dU1) (11.3.1)

where
∫

∧U ′
1(dU1) =

2pπ
pn
2

Γp
( n

2

) . (11.3.2)

(see equation (11.2.3) for Γp(·) ).

Proof 11.3.1: For proving the main part of the theorem take the differentials on
both sides of X = TU ′

1 and then take the wedge product of the differentials system-
atically. Since it involves many steps the proof of the main part is not given here.
The second part can be proved without much difficulty. Consider X the p×n,n ≥ p
real matrix. Observe that

tr(XX ′) =∑
i j

x2
i j,

that is, the sum of squares of all elements in X = (xi j) and there are np terms in
∑i j x2

i j. Now consider the integral
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∫

X
e−tr(X)dX =∏

i j

∫ ∞

−∞
e−x2

i j dxi j

= πnp/2

since each integral over xi j gives
√
π . Now let us evaluate the same integral by using

Theorem 11.3.1. Consider the same transformation as in Theorem 11.3.1, X = TU ′
1.

Then

πnp/2 =
∫

X
e−tr(X)dX

=
∫

T

{
p

∏
j=1

|t j j|n− j

}

e−(∑i≥ j t2
i j)dT

∫
∧U ′

1(dU1).

But for 0 < t j j < ∞,−∞ < ti j < ∞, i > j and U1 unrestricted semiorthonormal, we
have

∫

T

{
p

∏
j=1

|t j j|n− j

}

e−(∑i≥ j t2
i j)dT = 2−pΓp

(n
2

)
(11.3.3)

observing that for j = 1, . . . , p the p integrals
∫ ∞

0
|t j j|n− je−t2

j j dt j j = 2−1Γ
(

n
2
− j−1

2

)
, n > j−1, (11.3.4)

and each of the p(p−1)/2 integrals
∫ ∞

−∞
e−t2

i j dti j =
√
π, i > j. (11.3.5)

Now, substituting these the result in (11.3.2) is established.

Remark 11.3.1: For the transformation X = TU ′
1 to be unique, either one can

take T with the diagonal elements t j j > 0, j = 1, . . . , p and U1 unrestricted semi-
orthonormal matrix or −∞< t j j < ∞ and U1 a unique semiorthonormal matrix.

From the outline of the proof of Theorem 11.3.1 we have the following result:

∫

Vp,n

∧U ′
1(dU1) =

2pπ pn/2

Γp( n
2 )

(11.3.6)

where Vp,n is the Stiefel manifold, or the set of semiorthonormal matrices of the type
U1, n× p, such that U ′

1U1 = Ip where Ip is an identity matrix of order p. For n = p
the Stiefel manifold becomes the full orthogonal group, denoted by Op. Then we
have for, n = p,

∫

Op

∧U ′
1(dU1) =

2pπ p2

Γp( n
2 )

. (11.3.7)

Following through the same steps as in Theorem 11.3.1 we can have the following
theorem involving an upper triangular matrix T1.
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Theorem 11.3.2. Let X1 be an n× p, n ≥ p, matrix of rank p and of functionally
independent real variables and let X1 = U1T1 where T1 is a real p× p upper trian-
gular matrix with distinct nonzero diagonal elements and U1 is a unique real n× p
semiorthonormal matrix, that is, U ′

1U1 = Ip. Then, ignoring the sign,

X1 = U1T1 ⇒ dX1 =

{
p

∏
j=1

|t j j|n− j

}

dT1 ∧U ′
1(dU1) (11.3.8)

As a corollary to Theorem 11.3.1 or independently we can prove the following
result:

Corollary 11.3.1: Let X1,T,U1 be as defined in Theorem 11.3.1 with the diagonal
elements of T positive, that is, t j j > 0, j = 1, . . . , p and U1 an arbitrary semiortho-
normal matrix, and let A = XX ′, which implies, A = T T ′ also. Then

A = XX ′ ⇒ (11.3.9)

dA = 2p

{
p

∏
j=1

t p+1− j
j j

}

dT (11.3.10)

⇒

dT = 2−p

{
p

∏
j=1

t−p−1− j
j j

}

dA. (11.3.11)

In practical applications we would like to have dX in terms of dA or vice versa
after integrating out ∧U ′

1(dU1) over the Stiefel manifold Vp,n. Hence we have the
following corollary.

Corollary 11.3.2: Let X1,T,U1 be as defined in Theorem 11.3.1 with t j j > 0, j =
1, . . . , p and let S = XX ′ = T T ′. Then, after integrating out ∧U ′

1(dU1) we have

X = TU ′
1 and S = XX ′ = T T ′ ⇒ (11.3.12)

dX =

{
p

∏
j=1

(t2
j j)

n
2−

j
2

}

dT ∧U ′
1(dU1) (11.3.13)

∫

Vp,n

∧U ′
1(dU1) =

2pπnp/2

Γp( n
2 )

(11.3.14)

dS = 2p

{
p

∏
j=1

(t2
j j)

p+1
2 − j

2

}

dT (11.3.15)

|S| =
p

∏
j=1

t2
j j (11.3.16)

and, finally,
dX = |S| n

2−
p+1

2 dS. (11.3.17)
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Example 11.3.1. Let X be a p×n,n ≥ p random matrix having an np-variate real
Gaussian density

f (X) =
e−

1
2 tr(V−1XX ′)

(2π)
np
2 |V | n

2
, V = V ′ > 0.

Evaluate the density of S = XX ′.

Solution 11.3.1: Consider the transformation as in Theorem 11.3.1, X = TU ′
1

where T is a p× p lower triangular matrix with positive diagonal elements and U1
is a arbitrary n× p semiorthonormal matrix, U ′

1U1 = Ip. Then

dX =

{
p

∏
j=1

tn− j
j j

}

dT ∧U1(dU1).

Integrating out ∧U1(dU1) we have the marginal density of T , denoted by g(T ).
That is,

g(T )dT =
2pe−

1
2 tr(V−1T T ′)

2np/2|V | n
2

{
p

∏
j=1

tn− j
j j

}

dT.

Now substituting from Corollary 11.3.2, S and dS in terms of T and dT we have the
density of S, denoted by, h(S), given by

h(S) = C1|S|
n
2−

p+1
2 e−

1
2V−1S, S = S′ > 0.

Since the total integral,
∫

S h(S)dS = 1, we have

C1 = [2np/2Γp

(n
2

)
|V |n/2]−1.

Exercises 11.3.
11.3.1. Let X = (xi j), W = (wi j) be p × p lower triangular matrices of distinct
real variables such that x j j > 0, w j j > 0 and ∑ j

k=1 w2
jk = 1, j = 1, . . . , p. Let

D = diag(λ1, . . . ,λp), λ j > 0, j = 1, . . . , p be real positive and distinct. Let D
1
2 =

diag(λ
1
2

1 , . . . ,λ
1
2

p ). Then show that

X = DW ⇒ dX =

{
p

∏
j=1
λ j−1

j w−1
j j

}

dD∧dW. (11.3.18)

11.3.2. Let X ,D,W be as defined in Exercise 11.3.1 then show that

X = D
1
2 W ⇒ dX =

{

2−p
p

∏
j=1

(λ
1
2
j ) j−2w−1

j j

}

dD∧dW. (11.3.19)
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11.3.3. Let X ,D,W be as defined in Exercise 11.3.1 then show that

X = D
1
2 WW ′D

1
2 ⇒ dX =

{
p

∏
j=1
λ

p−1
2

j wp− j
j j

}

dD∧dW, (11.3.20)

and

X = W ′DW ⇒ dX =

{
p

∏
j=1

(λ jw j j) j−1

}

dD∧dW. (11.3.21)

11.3.4. Let X ,D,W be as defined in Exercise 11.3.1 then show that

X = WD ⇒ dX =

{
p

∏
j=1
λ p− j

j w−1
j j

}

dD∧dW, (11.3.22)

X = WD
1
2 ⇒ dX =

{

2−p
p

∏
j=1

(λ
1
2
j )p− j−1w−1

j j

}

dD∧dW, (11.3.23)

X = WDW ′ ⇒ dX =

{
p

∏
j=1

(λ jw j j)p− j

}

dD∧dW, (11.3.24)

and

X = D
1
2 W ′WD

1
2 ⇒ dX =

{
p

∏
j=1
λ

p−1
2

j w j−1
j j

}

dD∧dW. (11.3.25)

11.3.5. Let X ,T,U be p × p matrices of functionally independent real variables
where all the principal minors of X are nonzero, T is lower triangular and U is
lower triangular with unit diagonal elements. Then, ignoring the sign, show that

X = TU ′ ⇒ dX =

{
p

∏
j=1

|t j j|p− j

}

dT ∧dU, (11.3.26)

and

X = T ′U ⇒ dX =

{
p

∏
j=1

|t j j| j−1

}

dT ∧dU. (11.3.27)

11.3.6. Let X be a p× p symmetric matrix of functionally independent real vari-
ables and with distinct and nonzero eigenvalues λ1 > λ2 > .. . > λp and let D =
diag(λ1, . . . ,λp), λ j 
= 0, j = 1, . . . , p. Let U be a unique p× p orthonormal matrix
U ′U = I = UU ′ such that X = UDU ′. Then, ignoring the sign, show that

dX =

{
p−1

∏
i=1

p

∏
j=i+1

|λi −λ j|
}

dD ∧U ′(dU). (11.3.28)

11.3.7. For a 3×3 matrix X such that X = X ′ > 0 and I −X > 0 show that
∫

X
dX =

π2

90
.
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11.3.8. For a p × p matrix X of p2 functionally independent real variables with
positive eigenvalues, show that

∫

Y
|Y ′Y |α−

p+1
2 e−tr(Y ′Y )dY = 2−pΓp(α− 1

2 )π
p2
2

Γp(
p
2 )

.

11.3.9. Let X be a p× p matrix of p2 functionally independent real variables. Let
D = diag(µ1, . . . ,µp),µ1 > µ2 > .. . > µp, µ j real for j = 1, . . . , p. Let U and V be
orthonormal matrices such that

X = UDV ′ ⇒

dX =

{

∏
i< j

|µ2
i −µ2

j |
}

dD∧dG∧dH (11.3.29)

where (dG) = U ′(dU) and (dH) = (dV ′)V , and the µ j’s are known as the singular
values of X .

11.3.10. Let λ1 > .. . > λp > 0 be real variables and D = diag(λ1, . . . ,λp). Show
that

∫

D
e−tr(D2)

{

∏
i< j

|λ 2
i −λ 2

j |
}

dD =
[Γp(

p
2 )]2

2pπ
p2
2

.

References

Mathai, A.M. (1978). Some results on functions of matrix argument, Math. Nachr. 84 , 171-177.
Mathai, A.M. (1993). A Handbook of Generalized Special Functions for Statistical and Physical

Sciences, Oxford University Press, Oxford.
Mathai, A.M. (1997). Jacobians of Matrix Transformations and Functions of Matrix Argument,

World Scientific Publishing, New York.
Mathai, A.M. (2004). Modules 1,2,3, Centre for Mathematical Sciences, India.
Mathai, A.M., Provost, S.B. and Hayakawa, T. (1995). Bilinear Forms and Zonal Polynomials,

Springer-Verlag Lecture Notes in Statistics, 102, New York.



Chapter 12
Special Functions of Matrix Argument

[This Chapter is based on the lectures of Professor A.M. Mathai of McGill University, Canada
(Director of the SERC Schools).]

12.0 Introduction

Real scalar functions of matrix argument, when the matrices are real, will be dealt
with in this chapter. It is difficult to develop a theory of functions of matrix argument
for general matrices. The notations that we have used in Chapter 11 will be used in
the present chapter also. A discussion of scalar functions of matrix argument when
the elements of the matrices are in the complex domain may be seen from Mathai
(1997).

12.1 Real Matrix-Variate Scalar Functions

When dealing with matrices it is often difficult to define uniquely fractional powers
such as square roots even when the matrices are real square or even symmetric. For
example

A1 =
[

1 0
0 1

]
,A2 =

[
−1 0
0 1

]
,A3 =

[
1 0
0 −1

]
,A4 =

[
−1 0
0 −1

]

all give A2
1 = A2

2 = A2
3 = A2

4 = I2 where I2 is a 2× 2 identity matrix. Thus, even
for I2, which is a nice, square, symmetric, positive definite matrix there are many
matrices which qualify to be square roots of I2. But if we confine to the class of
positive definite matrices, when real, then for the square root of I2 there is only one
candidate, namely, A1 = I2 itself. Hence the development of the theory of scalar
functions of matrix argument is confined to positive definite matrices, when real,
and hermitian positive definite matrices when in the complex domain.

429
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12.1.1 Real matrix-variate gamma

In the real scalar case the integral representation for a gamma function is the fol-
lowing:

Γ(α) =
∫ ∞

0
xα−1e−xdx, ℜ(α) > 0. (12.1.1)

Let X be a p× p real symmetric positive definite matrix and consider the integral

Γp(α) =
∫

X=X ′
>0

|X |α−
p+1

2 e−tr(X)dX (12.1.2)

where, when p = 1 the equation (12.1.2) reduces to (12.1.1). We have already eval-
uated this integral in Chapter 11 as an exercise to the basic nonlinear matrix trans-
formation X = T T ′ where T is a lower triangular matrix with positive diagonal
elements. Hence the derivation will not be repeated here. We will call Γp(α) the
real matrix-variate gamma. Observe that for p = 1, Γp(α) reduces to Γ(α).

12.1.2 Real matrix-variate gamma density

With the help of (12.1.2) we can create the real matrix-variate gamma density as
follows, where X is a p× p real symmetric positive definite matrix:

f (X) =

⎧
⎨

⎩

1×1α−
p+1

2
Γp(α) e−tr(X),X = X

′
> 0, ℜ(α) > p−1

2

0, elsewhere .
(12.1.3)

If another parameter matrix is to be introduced then we obtain a gamma density with
parameters (α,B),B = B

′
> 0, as follows:

f1(X) =

⎧
⎨

⎩

|B|α
Γp(α) |X |α− p+1

2 e−tr(BX),X = X ′ > 0,B = B′ > 0,ℜ(α) > p−1
2

0,elsewhere.
(12.1.4)

Remark 12.1.1: In f1(X) if B is replaced by 1
2V−1,V = V ′ > 0 and α is replaced

by n
2 ,n = p, p+1, ... then we have the most important density in multivariate statis-

tical analysis known as the nonsingular Wishart density.

As in the scalar case, two matrix random variables X and Y are said to be inde-
pendently distributed if the joint density of X and Y is the product of their marginal
densities. We will examine the densities of some functions of independently distrib-
uted matrix random variables. To this end we will introduce a few more functions.
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Definition 12.1.1. A real matrix-variate beta function, denoted by Bp(α,β ), is
defined as

Bp(α,β ) =
Γp(α)Γp(β )
Γp(α+β )

, ℜ(α) >
p−1

2
,ℜ(β ) >

p−1
2

. (12.1.5)

The quantity in (12.1.5), analogous to the scalar case (p = 1), is the real matrix-
variate beta function. Let us try to obtain an integral representation for the real
matrix-variate beta function of (12.1.5). Consider

Γp(α)Γp(β ) =
[∫

X=X ′
>0

|X |α−
p+1

2 e−tr(X)dX
]

×
[∫

Y=Y ′
>0

|Y |β−
p+1

2 e−tr(Y )dY
]

where both X and Y are p× p matrices.

=
∫ ∫

|X |α−
p+1

2 |Y |β−
p+1

2 e−tr(X+Y )dX ∧dY.

Put U = X +Y for a fixed X . Then

Y = U −X ⇒ |Y | = |U −X | = |U ||I −U− 1
2 XU− 1

2 |

where, for convenience, U
1
2 is the symmetric positive definite square root of U .

Observe that when two matrices A and B are nonsingular where AB and BA are
defined, even if they do not commute,

|I −AB| = |I −BA|

and if A = A
′
> 0 and B = B

′
> 0 then

|I −AB| = |I −A
1
2 BA

1
2 | = |I −B

1
2 AB

1
2 |.

Now,

Γp(α)Γp(β ) =
∫

U

∫

X
|U |β−

p+1
2 |X |α−

p+1
2 |I −U− 1

2 XU− 1
2 |β−

p+1
2 e−tr(U)dU ∧dX .

Let Z = U− 1
2 XU− 1

2 for fixed U . Then dX = |U | p+1
2 dZ by using Theorem 11.1.5.

Now,

Γp(α)Γp(β ) =
∫

Z
|Z|α−

p+1
2 |I −Z|β−

p+1
2 dZ

∫

U=U ′
>0

|U |α+β− p+1
2 e−tr(U)dU.

Evaluation of the U-integral by using (12.1.2) yields Γp(α+β ). Then we have

Bp(α,β ) =
Γp(α)Γp(β )
Γp(α+β )

=
∫

Z
|Z|α−

p+1
2 |I −Z|β−

p+1
2 dZ.
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Since the integral has to remain non-negative we have Z = Z
′
> 0, I−Z > 0. There-

fore, one representation of a real matrix-variate beta function is the following, which
is also called the type-1 beta integral.

Bp(α,β ) =
∫

0<Z=Z′
<I

|Z|α−
p+1

2 |I −Z|β−
p+1

2 dZ,ℜ(α) >
p−1

2
, ℜ(β ) >

p−1
2

.

(12.1.6)

By making the transformation V = I −Z note that α and β can be interchanged in
the integral which also shows that Bp(α,β )= Bp(β ,α) in the integral representation
also.

Let us make the following transformation in (12.1.6).

W = (I −Z)−
1
2 Z(I −Z)−

1
2 ⇒W = (Z−1 − I)

−1 ⇒W−1 = Z−1 − I

⇒ |W |−(p+1)dW = |Z|−(p+1)dZ ⇒ dZ = |I +W |−(p+1)dW.

Under this transformation the integral in (12.1.6) becomes the following: Observe
that

|Z| = |W ||I +W |−1, |I −Z| = |I +W |−1.

Bp(α,β ) =
∫

W=W ′>0
|W |α−

p+1
2 |I +W |−(α+β )dW, (12.1.7)

for ℜ(α) > p−1
2 , ℜ(β ) > p−1

2 .
The representation in (12.1.7) is known as the type-2 integral for a real matrix-
variate beta function. With the transformation V = W−1 the parameters α and β
in (12.1.7) will be interchanged. With the help of the type-1 and type-2 integral
representations one can define the type-1 and type-2 beta densities in the real matrix-
variate case.

Definition 12.1.2. Real matrix-variate type-1 beta density for the p× p real
symmetric positive definite matrix X such that X = X ′ > 0, I −X > 0.

f2(X)=

{
1

Bp(α,β ) |X |α− p+1
2 |I −X |β− p+1

2 =0 < X =X
′
< I, ℜ(α) > p−1

2 , ℜ(β )> p−1
2 ,

0, elsewhere.
(12.1.8)

Definition 12.1.3. Real matrix-variate type-2 beta density for the p× p real
symmetric positive definite matrix X .

f3(X) =

⎧
⎪⎨

⎪⎩

Γp(α+β )
Γp(α)Γp(β ) |X |α− p+1

2 |I +X |−(α+β ),X = X
′
> 0,

ℜ(α) > p−1
2 , ℜ(β ) > p−1

2
0, elsewhere.

(12.1.9)

Example 12.1.1. Let X1,X2 be p× p matrix random variables, independently
distributed as (12.1.3) with parameters α1 and α2 respectively. Let U = X1 +X2,V =

(X1 +X2)
− 1

2 X1 (X1 +X2)
− 1

2 ,W = X
− 1

2
2 X1X

− 1
2

2 . Evaluate the densities of U,V and W.
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Solutions 12.1.1: The joint density of X1 and X2, denoted by f (X1,X2), is avail-
able as the product of the marginal densities due to independence. That is,

f (X1,X2) =
|X1|α1− p+1

2 |X2|α2− p+1
2 e−tr(X1+X2)

Γp(α1)Γp(α2)
, X1 = X ′

1 > 0, X2 = X ′
2 > 0,

ℜ(α1) >
p−1

2
, ℜ(α2) >

p−1
2

. (12.1.10)

U = X1 +X2 ⇒ |X2| = |U −X1| = |U ||I −U− 1
2 X1U− 1

2 |.
Then the joint density of (U,U1) = (X1 +X2,X1), the Jacobian is unity, is available
as

f1(U,U1) =
1

Γp(α1)Γp(α2)
|U1|α1− p+1

2 |U |α2− p+1
2 |I −U− 1

2 U1U− 1
2 |α2− p+1

2 e−tr(U).

Put U2 = U− 1
2 U1U− 1

2 ⇒ dU1 = |U | p+1
2 dU2 for fixed U . Then the joint density of U

and U2 = V is available as the following:

f2(U,V ) =
1

Γp(α1)Γp(α2)
|U |α1+α2− p+1

2 e−tr(U)|V |α1− p+1
2 |I −V |α2− p+1

2 .

Since f2(U,V ) is a product of two functions of U and V, U = U ′ > 0,V = V ′ > 0,
I−V > 0 we see that U and V are independently distributed. The densities of U and
V , denoted by g1(U), g2(V ) are the following:

g1(U) = c1|U |α1+α2− p+1
2 e−tr(U),U = U ′ > 0

and
g2(V ) = c2|V |α1− p+1

2 |I −V |α2− p+1
2 , V = V ′ > 0, I −V > 0,

where c1 and c2 are the normalizing constants. But from the gamma density and
type-1 beta density note that

c1 =
1

Γp(α1 +α2)
, c2 =

Γp(α1 +α2)
Γp(α1)Γp(α2)

, ℜ(α1) > 0, ℜ(α2) > 0.

Hence U is gamma distributed with the parameter (α1 +α2) and V is type-1 beta
distributed with the parameters α1 and α2 and further that U and V are indepen-

dently distributed. For obtaining the density of W = X
− 1

2
2 X1X

− 1
2

2 start with (12.1.10).

Change (X1,X2) to (X1,W ) for fixed X2. Then dX1 = |X2|
p+1

2 dW . The joint density
of X2 and W , denoted by fw,x2(W,X2), is the following, observing that

tr(X1 +X2) = tr[X
1
2

2 (I +X
− 1

2
2 X1X

− 1
2

2 )X
1
2

2 ]

= tr[X
1
2

2 (I +W )X
1
2

2 ] = tr[(I +W )X2]

= tr[(I +W )
1
2 X2(I +W )

1
2 ]
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by using the fact that tr(AB) = tr(BA) for any two matrices where AB and BA are
defined.

fw,x2(W,X2) =
1

Γp(α1)Γp(α2)
|W |α1− p+1

2 |X2|α1+α2− p+1
2 e−tr[(I+W )

1
2 X2(I+W )

1
2 ].

Hence the marginal density of W , denoted by gw(W ), is available by integrating out
X2 from fw,x2(W,X2). That is,

gw(W )=
1

Γp(α1)Γp(α2)
|W |α1− p+1

2

∫

X2=X ′
2>0

|X2|α1+α2− p+1
2 e−tr[(I+W )

1
2 X2(I+W )

1
2 ]dX2.

Put X3 = (I +W )
1
2 X2(I +W )

1
2 for fixed W , then dX3 = |I +W | p+1

2 dX2.
Then the integral becomes

∫

X2=X ′
2>0

|X2|α1+α2− p+1
2 e−tr[(I+W )

1
2 X2(I+W )

1
2 ]dX2

= Γp(α1 +α2)|I +W |−(α1+α2).

Hence,

gw(W ) =

⎧
⎪⎨

⎪⎩

Γp(α1+α2)
Γp(α1)Γp(α2) |W |α1− p+1

2 |I +W |−(α1+α2),W = W
′
> 0,

ℜ(α1) > p−1
2 , ℜ(α2) > p−1

2
0,elsewhere,

which is a type-2 beta density with the parameters α1 and α2. Thus, W is real matrix-
variate type-2 beta distributed.

Exercises 12.1.
12.1.1. For a real p× p matrix X such that X = X ′ > 0,0 < X < I show that

∫

X
dX =

[Γp(
p+1

2 )]2

Γp(p+1)
.

12.1.2 Let X be a 2×2 real symmetric positive definite matrix with eigenvalues in
(0,1). Then show that

∫

0<X<I
|X |αdX =

π
(α+1)(α+2)(2α+3)

.

12.1.3 For a 2×2 real positive definite matrix X show that
∫

X
|I +X |−3dX =

π
6

.

12.1.4 For a 4×4 real positive definite matrix X such that 0 < X < I, show that
∫

X
dX =

2π4

7!5
.

12.1.5 If the p× p real positive definite matrix random variable X is distributed as
a real matrix-variate type-1 beta (having a type-1 beta density), evaluate the density
of Y = A

1
2 XA

1
2 where the constant matrix A = A′ > 0.
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12.2 The Laplace Transform in the Matrix Case

If f (x1, · · · ,xk) is a scalar function of the real scalar variables x1, · · · ,xk then the
Laplace transform of f , with the parameters t1, · · · , tk, is given by

L f (t1, · · · , tk) =
∫ ∞

0
· · ·
∫ ∞

0
e−t1x1−···−tkxk f (x1, · · · ,xk)dx1 ∧·· ·∧dxk. (12.2.1)

If f (X) is a real scalar function of the p× p real symmetric positive definite matrix X
then the Laplace transform of f (X) should be consistent with (12.2.1). When X = X ′

there are only p(p + 1)/2 distinct elements, either xi j
′s, i ≤ j or xi j

′s, i ≥ j. Hence
what is needed is a linear function of all these variables. That is, in the exponent
we should have the linear function t11x11 +(t21x21 + t22x22)+ · · ·+(tp1xp1 + · · ·+
tppxpp). Even if we take a symmetric matrix T = (ti j) = T

′
then the trace of T X ,

tr(T X) = t11x11 + · · ·+ tppxpp +2
p

∑
i< j=1

ti jxi j.

Hence if we take a symmetric matrix of parameters ti j’s such that

T ∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

t11
1
2 t12 · · · 1

2 t1p
1
2 t21 t22 · · · 1

2 t2p

...
1
2 tp1

1
2 tp2 · · · tpp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, T ∗ = (t∗i j) ⇒ t∗j j = t j j, t∗i j =
1
2

ti j, i 
= j

then

tr(T ∗X) = t11x11 + · · ·+ tppxpp +
p

∑
i=1

p

∑
j=1,i> j

ti jxi j.

Hence the Laplace transform in the matrix case, for real symmetric positive definite
matrix X , is defined with the parameter matrix T ∗.

Definition 12.2.1. Laplace transform in the matrix case.

L f (T ∗) =
∫

X=X ′>0
e−tr(T ∗X) f (X)dX , (12.2.2)

whenever the integral is convergent.

Example 12.2.1. Evaluate the Laplace transform for the two-parameter gamma
density in (12.1.4).

Solution 12.2.1: Here,

f (X) =
|B|α
Γp(α)

|X |α−
p+1

2 e−tr(BX),X = X ′ > 0,B = B′ > 0, ℜ(α) >
p−1

2
. (12.2.3)
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Hence the Laplace transform of f is the following:

L f (T ∗) =
|B|α
Γp(α)

∫

X=X ′>0
|X |α−

p+1
2 e−tr(T ∗X)e−tr(BX)dX .

Note that since T ∗,B and X are p× p,

tr(T ∗X)+ tr(BX) = tr[(B+T ∗)X ].

Thus for the integral to converge the exponent has to remain positive definite. Then
the condition B + T ∗ > 0 is sufficient. Let (B+T ∗)

1
2 be the symmetric positive

definite square root of B+T ∗. Then

tr[(B+T ∗)X ] = tr[(B+T ∗)
1
2 X(B+T ∗)

1
2 ],

(B+T ∗)
1
2 X(B+T ∗)

1
2 = Y ⇒ dX = |B+T ∗|−

p+1
2 dY

and

|X |α−
p+1

2 dX = |B+T ∗|−α |Y |α−
p+1

2 dY.

Hence,

L f (T ∗) =
|B|α
Γp(α)

∫

Y=Y ′>0
|B+T ∗|−α |Y |α−

p+1
2 e−tr(Y )dY

= |B|α |B+T ∗|−α = |I +B−1T ∗|−α . (12.2.4)

Thus for known B and arbitrary T ∗, (12.1.3) will uniquely determine (12.1.2)
through the uniqueness of the inverse Laplace transform. The conditions for the
uniqueness will not be discussed here. For some results in this direction see Mathai
(1993, 1997) and the references therein.

12.2.1 A convolution property for Laplace transforms

Let f1(X) and f2(X) be two real scalar functions of the real symmetric positive
definite matrix X and let g1(T ∗) and g2(T ∗) be their Laplace transforms. Let

f3(X) =
∫

0<S=S′<X
f1(X −S) f2(S)dS. (12.2.5)

Then g1g2 is the Laplace transform of f3(X).
This result can be established from the definition itself.

L f3(T
∗) =

∫

X=X ′
>0

e−tr(T ∗X) f3(X)dX

=
∫

x>0

∫

S<X
e−tr(T ∗X) f1(X −S) f2(S)dS∧dX .
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Note that {S < X ,X > 0} is also equivalent to {X > S,S > 0}. Hence we may inter-
change the integrals. Then

L f3(T
∗) =

∫

S>0
f2(S)

[∫

X>S
e−tr(T ∗X) f1(X −S)dX

]
∧dS.

Put X −S = Y ⇒ X = Y +S and then

L f3(T
∗) =

∫

S>0
e−tr(T ∗S) f2(S)

[∫

Y>0
e−tr(T ∗Y ) f1(Y )dY

]
∧dS

= g2(T ∗)g1(T ∗).

Example 12.2.2. Using the convolution property for the Laplace transform and
an integral representation for the real matrix-variate beta function show that

Bp(α,β ) = Γp(α)Γp(β )/Γp(α+β ).

Solution 12.2.2: Let us start with the integral representation

Bp(α,β ) =
∫

0<X<I
|X |α−

p+1
2 |I −X |β−

p+1
2 dX ,

ℜ(α) >
p−1

2
,ℜ(β ) >

p−1
2

.

Consider the integral
∫

0<U<X
|U |α−

p+1
2 |X −U |β−

p+1
2 dU = |X |β−

p+1
2

∫

0<U<X
|U |α−

p+1
2

×|I −X− 1
2 UX− 1

2 |β−
p+1

2 dU

= |X |α+β− p+1
2

∫

0<Y<I
|Y |α−

p+1
2 |I−Y |β−

p+1
2 dY,

Y = X− 1
2 UX− 1

2 .

Then

Bp(α,β )|X |α+β− p+1
2 =

∫

0<U<X
|U |α−

p+1
2 |X −U |β−

p+1
2 dU. (12.2.6)

Take the Laplace transform on both sides to obtain the following:
On the left side,

Bp(α,β )
∫

X>0
|X |α+β− p+1

2 e−tr(T ∗X)dX = Bp(α,β )|T ∗|−(α+β )Γp(α+β ).

On the right side we get,
∫

X>0
e−tr(T ∗X)

[∫

0<U<X
|U |α−

p+1
2 |X −U |β−

p+1
2 dU

]
dX

= Γp(α)Γp(β )|T ∗|−(α+β ) (by the convolution property in (12.2.5).)
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Hence

Bp(α,β ) = Γp(α)Γp(β )/Γp(α+β ).

Example 12.2.3. Let h(T ∗) be the Laplace transform of f (X), that is, h(T ∗) =
L f (T ∗). Then show that the Laplace transform of |X |− p+1

2 Γp(
p+1

2 ) f (X) is equiva-

lent to
∫

U>T ∗
h(U)dU.

Solution: From (12.2.3) observe that for symmetric positive definite constant matrix
B the following is an identity.

|B|−α =
1

Γp(α)

∫

X>0
|X |α−

p+1
2 e−tr(BX)dX ,ℜ(α) >

p−1
2

. (12.2.7)

Then we can replace |X |− p+1
2 Γp(

p+1
2 ) by an equivalent integral.

|X |−
p+1

2 Γp

(
p+1

2

)
≡
∫

Y>0
|Y |

p+1
2 − p+1

2 e−tr(XY )dY =
∫

Y>0
e−tr(XY )dY.

Then the Laplace transform of |X |− p+1
2 Γp

(
p+1

2

)
f (X) is given by,

∫

X>0
e−tr(T ∗X) f (X)[

∫

Y>0
e−tr(Y X)dY ]∧dX

=
∫

X>0

∫

Y>0
e−tr[(T ∗+Y )X ] f (X)dY ∧dX . (Put T ∗ +Y = U ⇒U > T ∗)

=
∫

Y>0
h(T ∗ +Y )dY =

∫

U>T ∗
h(U)dU.

Example 12.2.4. For X > B,B = B′ > 0 and ν >−1 show that the Laplace trans-
form of |X −B|ν is |T |−(ν+ p+1

2 )e−tr(T ∗B)Γp(ν+ p+1
2 ).

Solution 12.2.3: Laplace transform of |X −B|ν with parameter matrix T ∗ is
given by,

∫

X>B
|X −B|νe−tr(T ∗X)dX = e−tr(BT ∗)

∫

Y>0
|Y |νe−tr(T ∗Y )dY,Y = X −B

= e−tr(BT ∗) Γp

(
ν+

p+1
2

)
|T ∗|−(ν+ p+1

2 )

(by writing ν = ν+ p+1
2 − p+1

2 ) for ν+ p+1
2 > p−1

2 ⇒ ν > −1.
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Exercises 12.2.
12.2.1. By using the process in Example 12.2.3, or otherwise, show that the Laplace
transform of [Γp(

p+1
2 )|X |− p+1

2 ]n f (X) can be written as
∫

W1>T ∗

∫

W2>W1

...
∫

Wn>Wn−1

h(Wn)dW1 ∧·· ·∧dWn

where h(T ∗) is the Laplace transform of f (X).

12.2.2. Show that the Laplace transform of |X |n is |T ∗|−n− p+1
2 Γp(n+ p+1

2 ) for n >
−1.

12.2.3. If the p× p real matrix random variable X has a type-1 beta density with
parameters (α1,α2) then show that

(i) U = (I −X)−
1
2 X(I −X)−

1
2 ∼ type-2 beta (α1,α2)

(ii) V = X−1 − I ∼ type-2 beta (α2,α1)

where “ ∼ ” indicates “distributed as”, and the parameters are given in the brackets.

12.2.4. If the p× p real symmetric positive definite matrix random variable X has
a type-2 beta density with parameters α1 and α2 then show that

(i) U = X−1 ∼ type-2 beta (α2,α1)

(ii) V = (I +X)−1 ∼ type-1 beta (α2,α1)

(iii) W = (I +X)−
1
2 X(I +X)−

1
2 ∼ type-1 beta (α1,α2).

12.2.5. If the Laplace transform of f (X) is g(T ∗) = LT ∗( f (X)), where X is real
symmetric positive definite and p× p then show that

∆ng(T ∗) = LT ∗(|X |n f (X)), ∆= (−1)p
∣
∣
∣
∣
∂
∂T ∗

∣
∣
∣
∣

where | ∂
∂T ∗ | means that first the partial derivatives with respect to ti j’s for all i and j

are taken, then written in the matrix form and then the determinant is taken, where
T ∗ = (t∗i j).

12.3 Hypergeometric Functions with Matrix Argument

There are essentially three approaches available in the literature for defining a hy-
pergeometric function of matrix argument. One approach due to Bochner (1952)
and Herz (1955) is through Laplace and inverse Laplace transforms. Under this ap-
proach, a hypergeometric function is defined as the function satisfying a pair of in-
tegral equations, and explicit forms are available for 0F0 and 1F0. Another approach
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is available from James (1961) and Constantine (1963) through a series form in-
volving zonal polynomials. Theoretically, explicit forms are available for general
parameters or for a general pFq but due to the difficulty in computing higher order
zonal polynomials, computations are feasible only for small values of p and q. For a
detailed discussion of zonal polynomials see Mathai, Provost and Hayakawa (1995).
The third approach is due to Mathai (1978, 1993) with the help of a generalized ma-
trix transform or M-transform. Through this definition a hypergeometric function is
defined as a class of functions satisfying a certain integral equation. This definition
is the one most suited for studying various properties of hypergeometric functions.
The series form is least suited for this purpose. All these definitions are introduced
for symmetric functions in the sense that

f (X) = f (X
′
) = f (QQ

′
X) = f (Q

′
XQ) = f (D), D = diag(λ1, ...,λp).

If X is p× p and real symmetric then there exists an orthonormal matrix Q, that is,
QQ

′
= I,Q

′
Q = I such that Q

′
XQ = diag(λ1, ...,λp) where λ1, ...,λp are the eigen-

values of X . Thus, f (X), a scalar function of the p(p + 1)/2 functionally indepen-
dent elements in X , is essentially a function of the p variables λ1, ...,λp when the
function f (X) is symmetric in the above sense.

12.3.1 Hypergeometric function through Laplace transform

Let rFs(a1, ...,ar;b1, ...,bs;Z) be the hypergeometric function of the matrix argu-
ment Z to be defined, Z = Z

′
. Consider the following pair of Laplace and inverse

Laplace transforms.

r+1Fs(a1, ...,ar,c;b1, ...,bs;−∧−1)|∧ |−c

=
1

Γp(c)

∫

U=U ′
>0

e−tr(∧U)
rFs(a1, ...,ar;b1, ...,bs;−U)|U |c−

p+1
2 dU (12.3.1)

and

rFs+1(a1, ...,ar;b1, ...,br,c;−∧)|∧ |c−
p+1

2

=
Γp(c)

(2πi)p(p+1)/2

∫

ℜ(Z)=X>X0

etr(∧Z)
rFs(a1, ...,ar;b1, ...,bs;−Z−1)|Z|−cdZ

(12.3.2)

where Z = X + iY, i =
√
−1, X = X

′
> 0, and X and Y belong to the class of sym-

metric matrices with the non-diagonal elements weighted by 1
2 . The function rFs

satisfying (12.3.1) and (12.3.2) can be shown to be unique under certain conditions
and that function is defined as the hypergeometric function of matrix argument ∧,
according to this definition.

Then by taking 0F0(; ;−∧) = e−tr(∧) and by using the convolution property of the
Laplace transform and equations (12.3.1) and (12.3.2) one can systematically build
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up. The Bessel function 0F1 for matrix argument is defined by Herz (1955). Thus
we can go from 0F0 to 1F0 to 0F1 to 1F1 to 2F1 and so on to a general pFq.

Example 12.3.1. Obtain an explicit form for 1F0 from the above definition by
using 0F0 (; ;−U) = e−tr(U).

Solution 12.3.1: From (12.3.1)

1
Γp(c)

∫

U=U ′
>0

|U |c−
p+1

2 e−tr(∧U)
0F0(; ;−U)dU

=
1

Γp(c)

∫

U>0
|U |c−

p+1
2 e−tr[(I+∧)U ]dU = |I +∧|−c,

since

0F0(; ;−U) = e−tr(U).

But

|I +∧|−c = |∧ |−c|I +∧−1|−c.

Then from (12.3.1)

1F0(c; ;−∧−1) = |I +∧−1|−c

which is an explicit representation.

12.3.2 Hypergeometric function through zonal polynomials

Zonal polynomials are certain symmetric functions in the eigenvalues of the p× p
matrix Z. They are denoted by CK(Z) where K represents the partition of the positive
integer k, K = (k1, ...,kp) with k1 + · · ·+ kp = k. When Z is 1× 1 then CK(z) = zk.
Thus, CK(Z) can be looked upon as a generalization of zk in the scalar case. For
details see Mathai, Provost and Hayakawa (1995). In terms of CK(Z) we have the
representation for a

0F0(; ;Z) = etr(Z) =
∞

∑
k=0

(tr(Z))k

k!
=

∞

∑
k=0
∑
K

CK(Z)
k!

. (12.3.3)

The binomial expansion will be the following:

1F0(α; ;Z) =
∞

∑
k=0
∑
K

(α)KCK(Z)
k!

= |I −Z|−α , (12.3.4)
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for 0 < Z < I, where,

(α)K =
p

∏
j=1

(
α− j−1

2

)

k j

,K = (k1, ...,kp),k1 + · · ·+ kp = k. (12.3.5)

In terms of zonal polynomials a hypergeometric series is defined as follows:

pFq(a1, ...,ap;b1, ...,bq;Z) =
∞

∑
k=0
∑
K

(a1)K · · ·(ap)K

(b1)K · · ·(bq)K

CK(Z)
k!

. (12.3.6)

For (12.3.6) to be defined, none of the denominator factors is equal to zero, q ≥ p,
or q = p + 1 and 0 < Z < I. For other details see Constantine (1963). In order to
study properties of a hypergeometric function with the help of (12.3.6) one needs
the Laplace and inverse Laplace transforms of zonal polynomials. These are the
following:

∫

X=X ′>0
|X |α−

p+1
2 e−tr(XZ)CK(XT )dX = |Z|−αCK(T Z−1)Γp(α,K) (12.3.7)

where

Γp(α,K) = π p(p−1)/4
p

∏
j=1
Γ
[
α+ k j −

j−1
2

]
= Γp(α)(α)K . (12.3.8)

1
(2πi)p(p+1)/2

∫

ℜ(Z)=X>X0

etr(SZ)|Z|−αCK(Z)dZ

=
1

Γp(α,K)
|S|α−

p+1
2 CK(S), i =

√
−1 (12.3.9)

for Z = X + iY, X = X ′ > 0, X and Y are symmetric and the nondiagonal elements
are weighted by 1

2 . If the non-diagonal elements are not weighted then the left side
in (12.3.9) is to be multiplied by 2p(p−1)/2. Further,

∫

0<X<I
|X |α−

p+1
2 |I −X |β−

p+1
2 CK(T X)dX =

Γp(α,K)Γp(β )
Γp(α+β ,K)

CK(T )

ℜ(α) >
p−1

2
, ℜ(β ) >

p−1
2

. (12.3.10)

Example 12.3.2. By using zonal polynomials establish the following results:

2F1(a,b;c;X) =
Γp(c)

Γp(a)Γp(c−a)

×
∫

0<∧<I
|∧ |a−

p+1
2 |I −∧|c−a− p+1

2 |I −∧X |−bd∧(12.3.11)

for ℜ(a) > p−1
2 , ℜ(c−a) > p−1

2 .
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Solution 12.3.2: Expanding |I−∧X |−b in terms of zonal polynomials and then
integrating term by term the right side reduces to the following:

|I −∧X |−b =
∞

∑
k=0
∑
K

(b)K
CK(∧X)

k!
for 0 < ∧X < I

and
∫

0<∧<I
|∧ |a−

p+1
2 |I −∧|c−a− p+1

2 CK(∧X)d∧ =
Γp(a,K)Γp(c−a)

Γp(c,K)
CK(X)

by using (12.3.10). But

Γp(a,K)Γp(c−a)
Γp(c,K)

=
Γp(a)Γp(c−a)

Γp(c)
(a)K

(c)K
.

Substituting these back, the right side becomes

∞

∑
k=0
∑
K

(a)K(b)K

(c)K

CK(X)
k!

= 2F1(a,b;c;X).

This establishes the result.

Example 12.3.3. Establish the result

2F1(a,b;c; I) =
Γp(c)Γp(c−a−b)
Γp(c−a)Γp(c−b)

(12.3.12)

for ℜ(c−a−b) > p−1
2 , ℜ(c−a) > p−1

2 , ℜ(c−b) > p−1
2 .

Solution 12.3.3: In (12.3.11) put X = I, combine the last factor on the right
with the previous factor and integrate out with the help of a matrix-variate type-1
beta integral.

Uniqueness of the pFq through zonal polynomials, as given in (12.3.6), is estab-
lished by appealing to the uniqueness of the function defined through the Laplace
and inverse Laplace transform pair in (12.3.1) and (12.3.2), and by showing that
(12.3.6) satisfies (12.3.1) and (12.3.2).

The next definition, introduced by Mathai in a series of papers is through a special
case of Weyl’s fractional integral.

12.3.3 Hypergeometric functions through M-transforms

Consider the class of p× p real symmetric definite matrices and the null matrix O.
Any member of this class will be either positive definite or negative definite or null.
Let α be a complex parameter such thatℜ(α) > p−1

2 . Let f (S) be a scalar symmetric
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function in the sense f (AB) = f (BA) for all A and B when AB and BA are defined.
Then the M-transform of f (S), denoted by Mα( f ), is defined as

Mα( f ) =
∫

U=U ′
>0

|U |α−
p+1

2 f (U)dU. (12.3.13)

Some examples of symmetric functions are e±tr(S), |I ± S|β for nonsingular p× p
matrices A and B such that,

e±tr(AB) = e±tr(BA); |I ±AB|β = |I ±BA|β .

Is it possible to recover f (U), a function of p(p+1)/2 elements in U = (ui j) or
a function of p eigenvalues of U , that is a function of p variables, from Mα(t) which
is a function of one parameter α? In a normal course the answer is in the negative.
But due to the properties that are seen, it is clear that there exists a set of sufficient
conditions by which Mα( f ) will uniquely determine f (U). It is easy to note that
the class of functions defined through (12.3.13) satisfy the pair of integral equations
(12.3.1) and (12.3.2) defining the unique hypergeometric function.

A hypergeometric function through M-transform is defined as a class of functions
rF∗

s satisfying the following equation:
∫

X=X ′
>0

|X |α−
p+1

2 rFs
∗(a1, ...,ap;b1, ...,bq;−X)dX

=
{∏s

j=1Γp(b j)}
{∏r

j=1Γp(a j)}
{∏r

j=1Γp(a j −ρ)}
{∏s

j=1Γp(b j −ρ)}Γp(ρ) (12.3.14)

where ρ is an arbitrary parameter such that the gammas exist.

Example 12.3.4. Re-establish the result

LT (|X −B|ν) = Γp

(
ν+

p+1
2

)
|T |−(ν+ p+1

2 )e−tr(T B) (12.3.15)

by using M-transforms.

Solution 12.3.4: We will show that the M-transforms on both sides of (12.3.15)
are one and the same. Taking the M-transform of the left-side, with respect to the
parameter ρ , we have,

∫

T>0
|T |ρ−

p+1
2 {LT (|X−B|ν)}dT=

∫

T>0
|T |ρ−

p+1
2

[∫

X>B
|X−B|νe−tr(T X)dX

]
dT

=
∫

T>0
|T |ρ−

p+1
2 e−tr(T B)

[∫

Y>0
|Y |νe−tr(TY )dY

]
dT.

Noting that ν = ν + p+1
2 − p+1

2 the Y -integral gives |T |−ν− p+1
2 Γp(ν + p+1

2 ). Then
the T -integral gives
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Mρ(left-side) = Γp

(
ν+

p+1
2

)
Γp

(
ρ−ν− p+1

2

)
|B|−ρ+ν+ p+1

2 .

M-transform of the right side gives,

Mρ(right-side) =
∫

T>0
|T |ρ−

p+1
2

{
Γp

(
ν+

p+1
2

)
|T |−(ν+ p+1

2 )e−tr(T B)
}

dT

= Γp

(
ν+

p+1
2

)
Γp

(
ρ−ν− p+1

2

)
|B|−ρ+ν+ p+1

2 .

The two sides have the same M-transform.
Starting with 0F0(; ;X) = etr(X), we can build up a general pFq by using the

M-transform and the convolution form for M-transforms, which will be stated next.

12.3.4 A convolution theorem for M-transforms

Let f1(U) and f2(U) be two symmetric scalar functions of the p× p real symmetric
positive definite matrix U , with M-transforms Mρ( f1) = g1(ρ) and Mρ( f2) = g2(ρ)
respectively. Let

f3(S) =
∫

U>0
|U |β f1(U

1
2 SU

1
2 ) f2(U)dU (12.3.16)

then the M-transform of f3 is given by,

Mρ( f3) = g1(ρ)g2

(
β −ρ+

p+1
2

)
. (12.3.17)

The result can be easily established from the definition itself by interchanging
the integrals.

Example 12.3.5. Show that

1F1(a;c;−∧) =
Γp(c)

Γp(a)Γp(c−a)

∫

0<U<I
|U |a−

p+1
2 |I −U |c−a− p+1

2 e−tr(∧U)dU.

(12.3.18)

Solution 12.3.5: We will establish this by showing that both sides have the same
M-transforms. From the definition in (12.3.14) the M-transform of the left side with
respect to the parameter ρ is given by the following:

Mρ(left-side) =
∫

∧=∧′
>0

|∧ |ρ−
p+1

2 1F1(a;c;−∧)d∧

=
[
Γp(a−ρ)
Γp(c−ρ)

Γp(ρ)
]
Γp(c)
Γp(a)

.
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Mρ(right-side) =
∫

∧>0
|∧ |ρ−

p+1
2

{
Γp(c)

Γp(a)Γp(c−a)

×
∫

0<U<I
|U |a−

p+1
2 |I −U |c−a− p+1

2 e−tr(∧U)dU
}

d∧ .

Take,

f1(U) = e−tr(U) and f2(U) = |U |a−
p+1

2 |I −U |c−a− p+1
2 .

Then

Mρ( f1) = g1(ρ) =
∫

U>0
|U |ρ−

p+1
2 e−tr(U)dU = Γp(ρ),ℜ(ρ) >

p−1
2

.

Mρ( f2) = g2(ρ) =
∫

U>0
|U |ρ−

p+1
2 |U |a−

p+1
2 |I −U |c−a− p+1

2 dU

=
Γp(a+ρ− p+1

2 )Γp(c−a)

Γp(c+ρ− p+1
2 )

,ℜ(c−a) >
p−1

2
,

ℜ(a+ρ) > p,ℜ(c+ρ) > p.

Taking f3 in (12.3.16) as the second integral on the right above we have

Mρ(right-side) =
{
Γp(c)
Γp(a)

}
Γp(ρ)

Γp(a−ρ)
Γp(c−ρ)

= Mρ(left-side).

Hence the result.
Almost all properties, analogous to the ones in the scalar case for hypergeometric

functions, can be established by using the M-transform technique very easily. These
can then be shown to be unique, if necessary, through the uniqueness of Laplace
and inverse Laplace transform pair. Theories for functions of several matrix argu-
ments, Dirichlet integrals, Dirichlet densities, their extensions, Appell’s functions,
Lauricella functions, and the like, are available. Then all these real cases are also ex-
tended to complex cases as well. For details see Mathai (1997). Problems involving
scalar functions of matrix argument, real and complex cases, are still being worked
out and applied in many areas such as statistical distribution theory, econometrics,
quantum mechanics and engineering areas. Since the aim in this brief note is only
to introduce the subject matter, more details will not be given here.

Exercises 12.3.
12.3.1. Show that for ∧ = ∧′

> 0 and p× p,

1F1(a;c;−∧) = e−tr(∧)
1F1(c−a;c;∧).

12.3.2. For p× p real symmetric positive definite matrices ∧ and ∨ show that

1F1(a;c;−∧) =
Γp(c)

Γp(a)Γp(c−a)
|∧ |−(c− p+1

2 )
∫

0<∨<∧
e−tr(∨)

×|∨ |a−
p+1

2 |∧−∨ |c−a− p+1
2 dV.
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12.3.3. Show that for ε a scalar and A a p× p matrix with p finite

lim
ε→0

|I + εA|− 1
ε = lim

ε→∞
|I +

A
ε
|−ε = e−tr(A).

12.3.4. Show that

lim
a→∞ 1F1(a;c;−Z

a
) = lim

ε→0
1F1

(
1
ε

;c;−εZ
)

= 0F1(;c;−Z).

12.3.5. Show that

1F1(a;c;−∧) =
Γp(c)

(2πi)
p(p+1)

2

∫

ℜ(Z)=X>X0

etr(Z)|Z|−c|I +∧Z−1|−adZ.

12.3.6. Show that

2F1(a,b;c;X) = |I −X |−β 2F1(c−a,b;c;−X(I −X)−1).

12.3.7. For ℜ(s) > p−1
2 ,ℜ(b− s) > p−1

2 ,ℜ(c−a− s) > p−1
2 , show that

∫

0<X<I
|X |s−

p+1
2 |I −X |b−s− p+1

2 2F1(a,b;c;X)dX

=
Γp(c)Γp(s)Γp(b− s)Γp(c−a− s)

Γp(b)Γp(c−a)Γp(c− s)
.

12.3.8. Defining the Bessel function Ar(S) with p × p real symmetric positive
definite matrix argument S, as

Ar(S) =
1

Γp(r + p+1
2 )

0F1(;r +
p+1

2
;−S), (12.3.19)

show that
∫

S>0
|S|δ−

p+1
2 Ar(S)e−tr(∧S)dS =

Γp(δ )

Γp(r + p+1
2 )

|∧ |−δ 1F1

(
δ ;r +

p+1
2

;−∧−1
)

.

12.3.9. If

M(α,β ;A) =
∫

X=X ′
>0

|X |α−
p+1

2 |I +X |β−
p+1

2 e−tr(AX)dX ,

ℜ(α) >
p−1

2
,A = A

′
> 0

then show that
∫

X>0
|X +A|νe−tr(T X)dX = |A|ν+ p+1

2 M
(

p+1
2

,ν+
p+1

2
;A

1
2 TA

1
2

)
.
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12.3.10. If Whittaker function W is defined as
∫

Z>0
|Z|µ−

p+1
2 |I +Z|ν−

p+1
2 e−tr(AZ)dZ

= |A|−
µ+ν

2 Γp(µ)e
1
2 tr(A)W1

2 (ν−µ), 1
2 (ν+µ− (p+1)

2 )
(A)

then show that
∫

X>U
|X +B|2α−

p+1
2 |X −U |2q− p+1

2 e−tr(MX)dX

= |U +B|α+q− p+1
2 |M|−(α+q)e

1
2 tr[(B−U)M]Γp(2q)

×W
(α−q),(α+q− (p+1)

4 )
(S),S = (U +B)

1
2 M(U +B)

1
2 .

12.4 A Pathway Model

As an application of a real scalar function of matrix argument, we will introduce a
general real matrix-variate probability model, which covers almost all real matrix-
variate densities used in multivariate statistical analysis. Through the density in-
troduced here, a pathway is created to go from one functional form to another, to
go from matrix-variate type-1 beta to matrix-variate type-2 beta to matrix-variate
gamma to matrix-variate Gaussian densities.

12.4.1 The pathway density

Let X = (xi j), i = 1, ..., p, j = 1, ...,r,r ≥ p be of rank p and of real scalar variables
xi j’s for all i and j, and having the density f (X), where

f (X) = c|A 1
2 XBX ′A

1
2 |α |I −a(1−q)A

1
2 XBX ′A

1
2 |

β
1−q (12.4.1)

for A = A′ > 0 and p× p,B = B′ > 0 and r× r with I − a(1− q)A
1
2 XBX ′A

1
2 > 0,

A and B are free of the elements in X , a,β ,q are scalar constants with a > 0,β > 0,
and c is the normalizing constant. A

1
2 and B

1
2 denote the real positive definite square

roots of A and B respectively.
For evaluating the normalizing constant c one can go through the following pro-

cedure: Let
Y = A

1
2 XB

1
2 ⇒ dY = A

r
2 |B|

p
2 dX

by using Theorem 11.1.5. Let

U = YY ′ ⇒ dY =
π

rp
2

Γp
( r

2

) |U | r
2−

p+1
2 dU
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by using Theorem 11.2, where ΓP(·) is the real matrix-variate gamma function. Let,
for q < 1,

V = a(1−q)U ⇒ dV = [a(1−q)]
p(p+1)

2 dU

from the same Theorem 11.1.5. If f (X) is a density then the total integral is 1 and
therefore,

1 =
∫

X
f (X)dX =

c

|A| r
2 |B| p

2

∫

Y
|YY ′|α |I −a(1−q)YY ′|

β
1−q dY (12.4.2)

=
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2

∫

U
|U |α+ r

2−
p+1

2 |I −a(1−q)U |
β

1−q dU. (12.4.3)

Note 12.4.1: Note that from (12.4.2) and (12.4.3) we can also infer the densities
of Y and U respectively.

At this stage we need to consider three cases.

Case (1): q,< 1. Then a(1−q) > 0. Make the transformation V = a(1−q)U , then

c−1 =
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2 [a(1−q)]p(α+ r

2 )

∫

V
|V |α+ r

2−
p+1

2 |I −V |
β

1−q dV. (12.4.4)

The integral in (12.4.4) can be evaluated by using a real matrix-variate type-1 beta
integral. Then we have

c−1 =
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2 [a(1−q)]p(α+ r

2 )

Γp
(
α+ r

2

)
Γp

(
β

1−q + p+1
2

)

Γp

(
α+ r

2 + β
1−q + p+1

2

) (12.4.5)

for α+ r
2 > p−1

2 .

Note 12.4.2: In statistical problems usually the parameters are real and hence we
will assume the parameters to be real here as well as in the discussions to follow. If
α is in the complex domain then the condition will reduce to ℜ(α)+ r

2 > p−1
2 .

Case (ii): q > 1.

In this case 1−q = −(q−1) where q−1 > 0. Then in (12.4.3) one factor in the
integrand becomes

|I −a(1−q)U |
β

1−q = |I +a(q−1)U |−
β

q−1 (12.4.6)

and then making the substitution V = a(q−1)U and then evaluating the integral by
using a type-2 beta integral we have

c−1 =
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2 [a(q−1)]p(α+ r

2 )

∫

V
|V |α+ r

2−
p+1

2 |I +V |−
β

q−1 dV.
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Evaluate the integral by using a real matrix-variate type-2 beta integral. We have the
following:

c−1 =
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2 [a(q−1)]p(α+ r

2 )

Γp
(
α+ r

2

)
Γp

(
β

q−1 −α− r
2

)

Γp

(
β

q−1

) (12.4.7)

for α+ r
2 > p−1

2 , β
q−1 −α− r

2 > p−1
2 .

Case (iii): q = 1.
When q approaches 1 from the left or from the right it can be shown that the

determinant containing q in (12.4.3) and (12.4.6) approaches an exponential form,
which will be stated as a lemma:

Lemma 12.4.1:

lim
q→1

|I −a(1−q)U |
β

1−q = e−aβ tr(U). (12.4.8)

This lemma can be proved easily by observing that for any real symmetric ma-
trix U there exists an orthonormal matrix Q such that QQ′ = I = Q′Q, Q′UQ =
diag(λ1, ...,λp) where λ j’s are the eigenvalues of U . Then

|I −a(1−q)U | = |I −a(1−q)QQ′UQQ′|

= |I −a(1−q)Q′UQ|

= |I −a(1−q)diag(λ1, ...,λp)|

=
p

∏
j=1

(1−a(1−q)λ j).

But
lim
q→1

(1−a(1−q)λ j)
β

1−q = e−aβλ j .

Then
lim
q→1

|I −a(1−q)U |
β

1−q = e−aβ tr(U).

Hence in case (iii), for q → 1, we have

c−1 =
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2

∫

U
|U |α+ r

2−
p+1

2 e−aβ tr(U)dU

=
π

rp
2

Γp
( r

2

)
|A| r

2 |B| p
2

Γp
(
α+ r

2

)

(aβ )p(α+ r
2 ) , α+

r
2

>
p−1

2
(12.4.9)

by evaluating the integral with the help of a real matrix-variate gamma integral.
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12.4.2 A general density

For X ,A,B,a,β ,q as defined in (12.4.1) the density f (X) there has three different
forms for three different situations of q. That is,

f (X) = c1|A
1
2 XBX ′A

1
2 |α |I −a(1−q)A

1
2 XBX ′A

1
2 |

β
1−q , for q < 1 (12.4.10)

= c2|A
1
2 XBX ′A

1
2 |α |I +a(q−1)A

1
2 XBX ′A

1
2 |−

β
q−1 , for q > 1 (12.4.11)

= c3|A
1
2 XBX ′A

1
2 |α exp

{
−aβ tr[A

1
2 XBX ′A

1
2 ]
}

, for q = 1 (12.4.12)

where c1 = c for q < 1,c2 = c for q > 1 and c3 = c for q = 1, given in (12.4.5),
(12.4.6) and (12.4.9) respectively.

Note 12.4.3: Observe that f (X) maintains a generalized real matrix-variate type-1
beta form for −∞< q < 1, f (X) maintains a generalized real matrix-variate type-2
beta form for 1 < q < ∞ and f (X) keeps a generalized real matrix-variate gamma
form when q → 1.

Note 12.4.4: If a location parameter matrix is to be introduced then in f (X), re-
place X by X −M where M is a p×r constant matrix. All properties and derivations
remain the same except that now X is located at M instead of at the origin O.

Remark 12.4.1: The parameter q in the density f (X) can be taken as a pathway
parameter. It defines a pathway from a generalized type-1 beta form to a type-2 beta
form to a gamma form. Thus a wide variety of probability models are available from
f (X). If the experimenter needs a model with a thicker tail or thinner tail or the right
and left tails cut off, all such models are available from f (X) for various values of
q. For α = 0 one has the matrix-variate Gaussian form coming from f (X).

12.4.3 Arbitrary moments

Arbitrary moments of the determinant |A 1
2 XBX ′A

1
2 | is available from the normaliz-

ing constant itself for various values of q. That is, denoting the expected values by E,

E|A 1
2 XBX ′A

1
2 |h =

1
[a(1−q)]ph

Γp
(
α+h+ r

2

)

Γp
(
α+ r

2

)
Γp

(
α+ r

2 + β
1−q + p+1

2

)

Γp

(
α+h+ r

2 + β
1−q + p+1

2

)

(12.4.13)

for q < 1, α+h+
r
2

>
p−1

2

=
1

[a(q−1)]ph

Γp
(
α+h+ r

2

)

Γp
(
α+ r

2

)
Γp

(
β

q−1 −α−h− r
2

)

Γp

(
β

q−1 −α− r
2

) (12.4.14)
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for q > 1,
β

q−1
−α−h− r

2
>

p−1
2

, α+h+
r
2

>
p−1

2

=
1

(aβ )ph

Γp
(
α+h+ r

2

)

Γp
(
α+ r

2

) for q = 1,α+h+
r
2

>
p−1

2
. (12.4.15)

12.4.4 Quadratic forms

The current theory in statistical literature is based on a Gaussian or normal popula-
tion and quadratic and bilinear forms in a simple random sample coming from such
a normal population, or a quadratic form and bilinear forms in normal variables, in-
dependently distributed or jointly normally distributed. But from the structure of the
density f (X) in (12.4.1) it is evident that we can extend the theory to a much wider
class. For p = 1,r > p the constant matrix A is a scalar quantity. For convenience
let us take it as 1. Then we have

A
1
2 XBX ′A

1
2 = (x1, ...,xr)B

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xr

⎤

⎥
⎥
⎥
⎦

= u(say). (12.4.16)

Here u is a real positive definite quadratic form in the first row of X , and this row
is denoted by (x1, ..,xr). Now observe that the density of u is available as a special
case in f (X), from (12.4.10) for q < 1, from (12.4.11) for q > 1 and from (12.4.12)
for q = 1. [Write down the exact density in the three cases as an exercise].

12.4.5 Generalized quadratic form

For a general p, U = A
1
2 XBX ′A

1
2 is the generalized quadratic form in X where X

has the density f (X) in (12.4.1). The density of U is available from (12.4.3) in the
following form, denoting it by f1(U). Then

f1(U) = c∗|U |α+ r
2−

p+1
2 |I −a(1−q)U |

β
1−q (12.4.17)

where

c∗ =
[a(1−q)]p(α+ r

2 )Γp

(
α+ r

2 + β
1−q + p+1

2

)

Γp
(
α+ r

2

)
Γp

(
β

1−q + p+1
2

) (12.4.18)

for q < 1,α+ r
2 > p−1

2 ,
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=
[a(q−1)]p(α+ r

2 )Γp

(
β

q−1

)

Γp
(
α+ r

2

)
Γp

(
β

q−1 −α− r
2

) , (12.4.19)

for q > 1,α+ r
2 > p−1

2 , β
q−1 −α− r

2 > p−1
2 ,

=
(aβ )p(α+ r

2 )

Γp
(
α+ r

2

) , (12.4.20)

for q = 1,α+ r
2 > p−1

2 .

(12.4.21)

12.4.6 Applications to random volumes

Another connection to geometrical probability problems is established in Mathai
(2005). This is coming from the fact that the rows of the p× r,r ≥ p matrix of rank
p can be considered to be p linearly independent points in a r-dimensional Euclidean
space. Then the determinant of XX ′ represents the square of the volume content of
the p-parallelotope generated by the convex hull of the p linearly independent points
represented by X . If the points are random points in some sense, see for example
a discussion of random points and random geometrical configurations from Mathai
(1999), then we are dealing with a random volume in |XX ′| 1

2 . The distribution of this
random volume is of interest in geometrical probability problems when the points
have specified distributions. For problems of this type see Mathai (1999). Then the
distributions of such random volumes will be based on the distribution of X where
X has the very general density given in (12.4.1). Thus the existing theory in this
area is extended to a very general class of basic distributions covered by the f (X)
of (12.4.1).

Exercises 12.4.

12.4.1. By using Stirling’s approximation for gamma functions, namely,

Γ(z+a) ≈
√

2π zz+a− 1
2 e−z (12.4.22)

for |z|→∞ and a a bounded quantity, show that the moment expressions in (12.4.13)
and (12.4.14) reduce to the moment expression in (12.4.15).

12.4.2. By opening up Γp(·) in terms of gamma functions and by examining the
structure of the gamma products in (12.4.13) show that for q < 1 we can write

E[|a(1−q)A
1
2 XBX ′A

1
2 |h] =

p

∏
j=1

E(xh
j) (12.4.23)
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where x j is a real scalar type-1 beta with the parameters
(
α+

r
2
− j−1

2
,
β

1−q
+

p+1
2

)
, j = 1, ..., p.

12.4.3. By going through the procedure in Exercise 12.4.2 show that, for q > 1,

E[|a(q−1)A
1
2 XBX ′A

1
2 |h] =

p

∏
j=1

E(yh
j) (12.4.24)

where y j is a real scalar type-2 beta random variable.

12.4.4. Let q < 1,a(1−q) = 1,Y = XBX ′,Z = A
1
2 XBX ′A

1
2 where X has the density

f (X) of (12.4.1). Then show that Y has the non-standard real matrix-variate type-1
beta density and Z has standard type-1 beta density.

12.4.5. Let q < 1,a(1−q) = 1,α+ r
2 = p+1

2 ,β = 0,Z = A
1
2 XBX ′A

1
2 where X has

the density f (X) of (12.4.1). Then show that Z has a standard uniform density.

12.4.6. Let q < 1,α = 0,a(1−q) = 1, β
1−q = 1

2 (m− p− r−1). Then show that the
f (X) of (12.4.1) reduces to the inverted T density of Dickey.

12.4.7. Let q > 1,a(q− 1) = 1,Y = XBX ′,Z = A
1
2 XBX ′A

1
2 . Then when X has

the density in (12.4.1) show that Y has the non-standard matrix-variate type-2 beta
density and Z has the standard type-2 beta density.

12.4.8. Let q = 1,a = 1,β = 1,α+ r
2 = n

2 ,Y = XBX ′,A = 1
2V−1. Then show that

Y has a Wishart density when X has the density in (12.4.1).

12.4.9. Let q = 1,a = 1,β = 1,α = 0 in f (X) of (12.4.1). Then show that f (X)
reduces to the real matrix-variate Gaussian density.

12.4.10. Let q > 1,a(q− 1) = 1,α + r
2 = p+1

2 , β
q−1 = 1,Y = A

1
2 XBX ′A

1
2 . Then if

X has the density in (12.4.1) show that Y has a standard real matrix-variate Cauchy
density.
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