

SOFTWARE ENGINEERING
TECHNIQUES APPLIED TO
AGRICULTURAL SYSTEMS

An Object-Oriented and UML Approach

Applied Optimization

VOLUME 100

Series Editors:

Panos M. Pardalos
University of Florida, U.S. A,

Donald W. Heam
University of Florida, U.S.A.

SOFTWARE ENGINEERING
TECHNIQUES APPLIED TO
AGRICULTURAL SYSTEMS

An Object-Oriented and UML Approach

By

PETRAQ J. PAPAJORGJI
University of Florida, Gainesville, Florida

PANOS M. PARDALOS
University of Florida, Gainesville, Florida

Spri inger

Library of Congress Cataloging-in-Publication Data

Papajorgji, Petraq J.
Software engineering techniques applied to agricultural systems : an object-oriented and

UML approach / by Petraq J. Papajorgji, Panos M. Pardalos.
p. cm. — (Applied optimization ; v. 100)

Includes bibliographical references and index.
ISBN 0-387-28170-3 (alk. paper) - ISBN 0-387-28171-1 (e-book)

1. Agriculture—Data processing. 2. Software engineering. 3. Object-oriented
programming (Computer science) 4. UML (Computer science) I. Pardalos, P.M. (Panos M.),
1 9 5 4 - II. Title. III. Series.

S494.5.D3P27 2006
6 3 0 ' . 2 ' 0 8 5 - d c 2 2

2005051562

AMS Subject Classifications: 68N99, 68U35

lSBN-10: 0-387-28170-3 lSBN-13: 978-0387-28170-4
e-lSBN-10: 0-387-28171-1 e-ISBN-13: 978-0387-28171-1

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science-HBusiness Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11534631

springeronline.com

To our children:

Dea Petraq Papajorgji

and

Miltiades Panos Pardalos

Contents

Preface xi

Acknowledgments 1

PART 1: CONCEPTS AND NOTATIONS 3

Chapter 1 PROGRAMMING PARADIGMS 5
1. HISTORY OF INCREASING THE LEVEL OF ABSTRACTION 5
2. OBJECT-ORIENTED VERSUS OTHER PROGRAMMING PARADIGMS 9

Chapter 2 BASIC PRINCIPLES OF THE OBJECT-ORIENTED
PARADIGM 13
1. ABSTRACTION 13

2. ENCAPSULATION 17

3. MODULARITY 18

Chapter 3 OBJECT-ORIENTED CONCEPTS AND THEIR UML
NOTATION 21

21
22
23
24
25
26
31

1.
2.
3.
4.
5.
6.
7.

OBJECT

CLASSES

ATTRIBUTES

OPERATIONS

POLYMORPHISM

INTERFACES

COMPONENTS

viii SOFTWARE ENGINEERING TECHNIQUES

8. PACKAGES 33

9. SYSTEMS AND SUBSYSTEMS 33

10. NOTES 37

11. STEREOTYPES 37

Chapter 4 RELATIONSHIPS 41
1. ASSOCIATIONS 41

2. AGGREGATION 46

3. COMPOSITION 47

4. DEPENDENCY 48

5. GENERALIZATION 49

6. ABSTRACT CLASSES 55

7. ABSTRACT CLASSES VERSUS INTERFACES 58

8. REALIZATION 58

Chapter 5 USE CASES AND ACTORS 61
1. ACTORS 62

2. USE CASES 63

2.1 Extend relationship 65
2.2 Include relationship 66

Chapter 6 UML DIAGRAMS 69
1. THE USE CASE DIAGRAM 69

2. USE CASES VERSUS FUNCTIONAL DECOMPOSITION 72

3. INTERACTION DIAGRAMS 74

3.1 Need for interaction 74
3.2 Sequence diagrams 75
3.3 Collaboration diagrams 78
3.4 Sequence versus collaboration diagrams 79

4. ACTIVITY DIAGRAMS 80

5. STATECHART DIAGRAMS 83

Chapter 7 DESIGN PATTERNS 87
1. A SHORT HISTORY OF DESIGN PATTERNS 87
2. FUNDAMENTAL DESIGN PATTERNS 88

2.1 The delegation pattern 88
3. CREATIONAL PATTERNS 91

3.1 The factory method pattern 91
3.2 The abstract factory pattern 93
3.3 The singleton pattern 95

4. STRUCTURAL PATTERNS 97

4.1 The adaptor pattern 97
4.2 The proxy pattern 101

CONTENTS ix

4.3 The iterator pattern 103
4.4 The fa9ade pattern 105

5. BEHAVIORAL PATTERNS 108
5.1 The state pattern 108
5.2 The strategy pattern 109

PART 2: APPLICATIONS 113

Chapter 8 THE KRAALINGEN APPROACH TO CROP SIMULATIONl 15
1. SYSTEM REQUIREMENTS 117

2. THE USE CASE MODEL 117

2.1 The use case description 119
2.2 Basic flow 119
2.3 Alternate flow 120
2.4 Preconditions 120
2.5 Postconditions 120

3. THE USE CASE REALIZATION 121

3.1 Sequence diagram for the use case 122
3.2 Collaboration diagram for the use case 124

4. CONCEPTUAL MODELS 126
4.1 Conceptual model for the Kraalingen approach 127

5. DISCOVER POTENTIAL CLASSES 129

5.1 Boundary classes 130
5.2 Control classes 131
5.3 Entity classes 133

6. CLASS DIAGRAM FOR THE KRAALINGEN APPROACH 134

7. CRITIQUE OF THE KRAALINGEN CLASS DIAGRAM 140

7.1 Communication boundary-control 141
7.2 Communication control-entity 143
7.3 Communication entity-entity 146

8. FINAL CLASS DIAGRAM FOR THE KRAALINGEN APPROACH 149

9. THE BENEFITS OF USING INTERFACES 150

10. IMPLEMENTATION OF THE KRAALINGEN MODEL IN JAVA 151

10.1 Interface IPlant 151
10.2 Interface ISoil 154
10.3 Interface IWeather 155
10.4 Interface ISimulationController 168

11. PACKAGING THE APPLICATION 172

Chapter 9 THE PLUG AND PLAY ARCHITECTURE 175
1. DEFINITION 175

2. IMPLEMENTATION 176

3. REFLECTION 177

X SOFTWARE ENGINEERING TECHNIQUES

4. THE PLUG AND PLAY SIMULATORCONTROLLER 179

5. TESTES[G UNIT FOR A CLASS/COMPONENT 183

Chapter 10 SOIL WATER-BALANCE AND IRRIGATION-SCHEDULING
MODELS: A CASE STUDY 187
1. INTRODUCTION 187

2. CONCEPTUAL MODELS : EXAMPLES 18 8

3. TEMPLATE FOR DEVELOPING NEW MODELS 192

4. ANALYSIS OF A WATER-BALANCE MODEL 194

5. ANALYSIS OF AN iRRiGATiON-scHEDULESfc MODEL (ISM) 196
6. THE BENEFITS OF A GENERAL TEMPLATE 200

Chapter 11 DISTRIBUTED MODELS 205
1. INTRODUCTION 205

2. CORBA 206
2.1 The Interface Definition Language (IDL) 207
2.2 The Object Request Broker (ORB) 208
2.3 Adaptors 211
2.4 A CORBA Soil Server 212
2.5 A simple CORBA client 216

3. THE REMOTE METHOD INVOCATION (RMI) 218

3.1 An RMI Soil Server 221
3.2 A Simple RMI client 224

4. DISTRIBUTED CROP SIMULATION MODEL 225

GLOSSARY 233

REFERENCES 239

INDEX 245

Preface

This book is an effort to bring the appHcation of new technologies into the
domain of agriculture. Historically, agriculture has been relatively behind the
industrial sector in using and adapting to new technologies. One of the
reasons for the technological gap between industrial and agricultural sectors
could be the modest amounts of investments made in the field of agriculture
compared to the impressive numbers and efforts the industrial sector invests
in new technologies. Another reason could be the relatively slow process of
updating the student's curriculum with new technologies in university
departments that prepare our future specialists in the field of agriculture.

With this book, we would like to narrow the technological gap existing
between agriculture and the industrial sector in the field of software
engineering. We have tried to apply modem software engineering techniques
in modeling agricultural systems. Our approach is based on using the object-
oriented paradigm and the Unified Modeling Language (UML) to analyze,
design, and implement agricultural systems.

Object-oriented has been the mainstream approach in the software industry
for the last decade, but its acceptance by the community of agricultural
modelers has been rather modest. There are a great number of researchers
who still feel comfortable using traditional programming techniques in
developing new models for agricultural systems. Although the use of the
object-oriented paradigm will certainly not make the simulation models
predict any better, it will surely increase the productivity, flexibility, reuse,
and quality of the software produced.

The success of the object-oriented approach is mostly due to the ability of
this paradigm to create adequate abstractions. Abstraction is an effective way

xii SOFTWARE ENGINEERING TECHNIQUES

to manage complexity as it allows for focusing on important, essential, or
distinguishing aspects of a problem under study. Object-oriented is the best
approach to mimic real world phenomena. Entities or concepts in a problem
domain are conceived as objects provided with data and behavior to play a
well-defined role. Objects can represent any thing in the real world, such as a
person, a car, or a physiological process occurring in a plant. The use of
objects enormously facilitates the process of conceptual modeling, which can
be defined as the process of organizing our knowledge of an application
domain into orderings of abstractions to obtain a better understanding of the
problem under study. Conceptual modeling makes heavy use of abstraction,
and the object-oriented approach, unlike other programming paradigms,
provides direct support for the principle of abstraction.

Currently, UML is an industry standard for visualizing, specifying,
constructing, and documenting all the steps of the software development.
UML allows for presenting different views of the system under study using
several diagrams focusing on the static and the dynamic aspects of the system.
UML can be used in combination with a traditional programming
environment, but its power and elegance fits naturally with the object-oriented
approach.

One of the most beneficial advantages of UML is its ability to design a
Platform Independent Model (PIM) that is a representation of the model using
a high level of abstraction. Details of the model can be expressed clearly and
precisely in UML as it does not use any particular formalism. The intellectual
capital invested in the model is insulated from changes in the implementation
technologies.

A Platform Specific Model (PSM) is developed by mapping a PIM to a
particular computer platform and a specific programming environment. A
mapping process allows the transformation of the abstract PIM into a
particular PSM. This two-layer concept, a PIM and the corresponding PSM,
keeps the business logic apart from the implementation technologies.
Experience shows that the business logic has a much longer life than the
implementation technologies. Changes and evolution of the implementation
technologies should not have any impact on the business model.

The book is divided into two parts. Part one presents the basic concepts of
the object-oriented approach, their UML notations, and an introduction to the
UML modeling artifacts. Several diagrams are used to present the static and
dynamic aspects of the system. There are an ample number of examples taken
from the agriculture domain to explain the object-oriented concepts and the
UML modeling artifacts. In this part of the book, a short introduction to
design patterns explains the need for using proven solutions to agricultural
problems.

Part two deals with applying the object-oriented concepts and UML
modeling artifacts for solving practical and real problems. Detailed analyses

PREFACE xiii

are provided to show how to depict objects in a real problem domain and how
to use advanced software engineering techniques to construct better software.
Examples are illustrated using the Java programming language.

The book aims to present modeling issues a designer has to deal with
during the process of developing software applications in agriculture.
Although the Java programming language is used to illustrate code
implementation, this book is not intended to teach how to program in Java.
For this topic, we would recommend the reader to look for more speciahzed
books. There is a chapter in this book that introduces the reader to some of the
design patterns that we have used in agricultural applications. In no way do
we pretend to have covered entirely the subject of how to use design patterns
in software development. For an advanced and full presentation of the design
patterns, we strongly suggest the reader to consider the well-known book
Design Patterns Elements of Reusable Object-Oriented Software [GHJ95].

Our approach is based on the Rational Unified Process (RUP)
methodology, although it does not rigorously follow this methodology. Our
focus is on presenting modeling issues during the analysis and design of
agricultural systems. For a more detailed and advanced approach to RUP, the
reader needs to consult more specialized books.

What makes our book of unique value? Well, we have assembled in a
comprehensive way a wide range of advanced software engineering
techniques that will allow the reader to understand and apply these techniques
in developing software applications in agriculture and related sciences.
Agricultural systems tend to be more abstract than business systems.
Everyone has a good understanding of how to use an ATM (Automated Teller
Machine). The use of an ATM is a classic example, used in many
publications, to explain what an object is and how to build a UML diagram.
The process of photosynthesis or the interaction of a plant with the
surrounding environment, just to name a few typical agricultural examples, is
less known to a large number of readers. Modeling a plant as an object
provided with data and behavior may not be as straightforward as modeling
an ATM. Therefore, the book aims to provide examples and solutions to
modeling agricultural systems using the object-oriented paradigm and the
Unified Modeling Language.

The book is intended to be of use to anyone who is involved in software
development projects in agriculture: managers, team leaders, developers, and
modelers of agricultural systems. Developing a successful software project in
agriculture requires a multidisciplinary team: specialists from different fields
with different scientific backgrounds. It is crucial to the success of the project
that specialists involved in the project have a common language that
everybody understands. We find that UML is an excellent tool for analyzing,
designing, and documenting software projects. Models can be developed
visually and using plain English (and any other language for that matter) and

xiv SOFTWARE ENGINEERING TECHNIQUES

can be understood by programmers and non-programmers alike. Thus,
collaboration between these groups is substantially improved by increasing
the number of specialists directly involved in the process of software design
and implementation.

The book was written having always in mind the important number of
specialists that still develop agricultural models using traditional approaches.
There are ample step-by-step examples in this book that show how to depict
concepts from a problem domain and represent them using objects and UML
diagrams. We hope this book will be useful to these researchers and help them
make a soft switch to the object-oriented paradigm. We hope readers will find
this book of interest.

Gainesville, Florida, May 2005

PETRAQ PAPAJORGJI AND PANOS PARDALOS

Acknowledgments

A book is never the result of the author's work only, and this book does
not make exception form this general rule. Several are they who deserve
credit for their objective and unselfish help that made this book better. We
would like to express our gratitude to all of them for their criticism and
suggestions that contributed to improve the quality of our work.

Special thanks go to Dr. Tamara Shatar, a young and talented scientist who
joined our team at IFAS, University of Florida, just after finishing her PhD
from University of Sidney, Australia. Dr. Shatar was instrumental in
developing the first UML diagrams representing various water-balance and
irrigation-scheduling models.

We are very grateful to Alaine Margarete Guimaraes for her meticulous
review of the manuscript. Alaine's help was crucial to finding most of the
subtle discrepancies of the book.

Some instructive and insightful comments were made by Dr. Shrikant
Jagtap, whose immense publishing experience has been very helpful not only
for publishing this book but also for other work in the past. We thank Ray
Buclin, Professor at the University of Florida, for the time he spent to read the
book and make useful suggestions. The last but not certainly the least. Dr.
Hugh Bigsby and Dr. Ram Ranjan deserve our gratitude for reading, one by
one, all pages of the book and providing important insights that improved our
work.

PART 1: CONCEPTS AND NOTATIONS

In the first part of the book, basic principles and concepts of the object-
oriented paradigm as well as the corresponding UML notation are presented.
There are a large number of examples that describe the basic object-oriented
concepts and their UML notation. Chapters 1 to 7 belong to the first part of
the book. The material presented in these chapters builds the basis for
approaching the applications presented in the second part of the book.

Chapter 1

PROGRAMMING PARADIGMS

1. HISTORY OF INCREASING THE LEVEL OF
ABSTRACTION

When developing software one deals with levels of abstraction, ranging
from the real world where the problem represents the highest level of
abstraction, to machine language that represents the solution in the lowest
level of abstraction. Between the highest and lowest levels of abstraction, one
should develop software in as many levels of abstraction as the problem
demands.

The history of software development is the history of increasing the level
of abstraction at each step. In the early days of computing, programmers used
to represent programs using the lowest level of abstraction, by sending binary
instructions corresponding to native CPU instructions to the computer to be
executed. The main challenge programmers faced in those early days was the
efficient use of the very limited amount of memory space available.

Later, an important software innovation took place: Assembly language
was developed under the pressure of an increasing number of new and larger
applications in the real world. Assembly language is based on abstractions
designed to allow programmers to replace the Os and 1 s of native computer
instructions by mnemonics. An assembler was used to translate the
mnemonics into Os and Is corresponding to the native processor instructions,
allowing the programmer to concentrate more on the problem than in
programming error-prone details. Mnemonics were a higher level of
abstraction. Writing code was less time-consuming and programs were less

6 SOFTWARE ENGINEERING TECHNIQUES

prone to error. The increased level of abstraction was followed by an increase
in the level of productivity, software quality, and longevity.

The next big jump in using abstraction in code writing was the advent of
the third-generation languages (3GLs). In these languages, a number of
machine instructions needed to execute a certain operation like PRINT, for
example, were grouped into macro instructions with a name. The code would
be written using these macro instructions and a translator would translate
macros into a sequence of Os and Is that now are called machine code. The
high-level constructs used to write code allowed programmers to not be
limited by the hardware capabilities. If a new hardware was used with a
different set of instructions, then new translators were created to take into
consideration new changes and generate code targeted to the new hardware.
The ability to adjust code to different machines was referred to as portability.

The new set of tools programmers could use increased the number of
domains and applications for which computer solutions were possible. So
code was developed for each new and different problem. System vendors
began to use 3GLs instead of assembly languages, even to define operating
systems services. While 3GLs raised the level of abstraction of the
programming environment, operating systems raised the level of abstraction
of the computing platform.

Structured programming gave a boost to the use of control abstractions
such as looping or if-then statements that were incorporated into high level
programming languages. The control structures allowed programmers to
abstract out certain conditions that would affect the flow of execution. In the
structured programming paradigm, software was developed by first making an
inventory of the tasks needed to be achieved. Then, each task was
decomposed into smaller tasks until the level of the programming language
statement was reached. During all the phases of analysis and design in
structural programming, the focus was on how to refine step-by-step tasks that
needed to be accomplished.

Later, abstract data types were introduced into the programming languages
that would allow programmers to deal with data in an abstract way, without
taking into consideration the specific form in which data were represented.
Abstract data types hide the specific implementation of the structure of the
data as their implementation was considered a low level detail. Programmers
did not have to deal with this low level of detail; instead, they manipulated the
abstract data types in an abstract way.

The demand for developing more complex systems, and in shorter time,
made necessary a new, revolutionary way of looking at the software
development: The object-oriented paradigm. According to this new paradigm,
the basic building block is an object. The object-oriented approach tries to

PROGRAMMING PARADIGMS 7

manage complexity by abstracting out knowledge from the problem domain
and encapsulating it into objects. Designing software means depicting objects
from the problem domain and providing them with specific responsibilities.
Objects dialog with each other in order to make use of each other's
capabilities. Functionahty is achieved through dialog among objects.

In the object oriented paradigm, the analysis and design processes start
with a more abstract focus. The main focus is to identify which operations
need to be accomplished and who would accomplish these operations. The
corresponding responsibilities are to be distributed to objects. Objects are to
be provided with the necessary data and behavior in order to play the
particular role they are assigned to. Each object knows its responsibilities and
it is an active player. Rarely are objects created to stand by themselves outside
any collaboration with other objects.

One of the most important recent achievements that represented a great
breakthrough in software development is what we refer to as design patterns.
Design patterns are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context [GHJ95].
As a collaboration, a pattern provides a set of abstractions whose structure and
behavior work together to carry out some useful functions [BRJ99]. They
present recurring solutions to software design problems that occur in real
world application development. Design patterns abstract the collaboration
between objects in a particular context and could be used and reused again
and again. The use of design patterns in software engineering moved the level
of abstraction higher, closer to the problem level and away from the machine
language level.

For many years, software development companies have developed
applications in a number of languages and operating systems. Isolated islands
of applications developed in different programming environments and
operating systems make it difficult to achieve a high level of integration that
is demanded by the age of the Internet. In order to be competitive, companies
are now forced to look for ways of building communication bridges between
these isolated islands.

Object Management Group (OMG) was created in 1989 to develop, adopt,
and promote standards for the development and deployment of applications in
distributed heterogeneous environments [Vin97], [VD98]. OMG's response to
this challenging problem was CORBA (Common Object Request Broker
Architecture). CORBA enables natural interoperability regardless of platform,
operating system, programming language, and even of network hardware and
software. With CORBA, systems developed in different implementation
languages and operating systems do not have to be rewritten in order to
communicate. By raising the level of abstraction above the implementation

8 SOFTWARE ENGINEERING TECHNIQUES

languages and operating systems, CORBA made a tangible contribution to the
longevity of the software.

Another important event that significantly influenced the software
engineering world was the use of visual modeling tools. Modeling is a well-
known engineering discipline as it helps one to understand reality. Models of
complex systems are built because it is difficult to understand such a system
in its entirety. Models are needed to express the structure and the behavior of
complex systems. Using models makes it possible to visualize and control
system's architecture.

In the early 90s, there were several modeling languages used by the
software engineering community. The most well-known methodologies were
Booch, Jacobson's (Object-Oriented Software Engineering) and Rumbaugh's
(Object Modeling Technique). Other important methods were Fusion
[CAB94], Shllaer-Mellor [ShM88], and Coad-Yourdon [CY91]. All these
methods had strengths and weaknesses. An important event occurred in the
mid-90s when Booch, Jacobson, and Rumbaugh began adopting ideas from
each other that led to the creation of the Unified Modeling Language or as it is
known best, the UML. UML is a standard language for visualizing,
specifying, constructing, and documenting object-oriented systems [BRJ99].

UML uses a set of graphical symbols to abstract things and their
relationships in a problem domain. Several types of diagrams are created to
show different aspects of the problem. Models created using UML are
semantically richer than the ones expressed in any current object-oriented
language and they can express syntax independently of any programming
language. When a UML model is translated into a particular progranmiing
language, there is loss of information. A UML model is easy to read and
interpret as it is expressed in plain English. Therefore, formal models raise the
programming abstraction level above the 3GLs in a profound way.

In 2002, OMG introduced a new and very promising approach to software
development referred to as the Model Driven Architecture approach, known
as the MDA. MDA is about using modeling languages as programming
languages [Fra03].

Most commonly, software models are considered to be design tools while
code written in programming languages are considered to be development
artifacts. In most of the software development teams, the role of the designer
is quite separated from the role of the developer. A direct consequence of this
separation is the fact that design models often are informal, and are used by
developers only as guidelines for software development. This separation of
roles is the common source of discrepancies that exist between design models
and code.

PROGRAMMING PARADIGMS 9

MDA aims to narrow the gap existing between the designer and the
developer by providing for producing models that can be compiled and
executed in the same environment. Therefore, models will not be only a
design artifact, but an integral part of the software production process. The
MDA approach to software development is based on building platform
independent models (PIM) that later can be mapped into platform specific
models (PSM) that take into consideration specific implementation issues,
such as platforms, middleware, etc. Specific models are then used by code
generators to automatically create the implementation code.

The MDA approach has already been applied to a variety of computing
technologies such as Sun's J2EE and EJB, Microsoft's .NET, XML, OMG's
CORBA, and an increasing number of software companies are adopting this
approach. Although it is quite early to evaluate the impact MDA is having in
the software industry, the future looks promising. By narrowing the gap
between designers and developers, MDA considerably raised the level of
abstraction in software development.

2. OBJECT-ORIENTED VERSUS OTHER
PROGRAMMING PARADIGMS

The most common ways to approach modeling of a software problem are
the following: From an algorithmic perspective and from an object-oriented
perspective.

The first approach is represented by structured programming, known
nowadays as traditional programming. Structured programming is
characterized by the use of the top-down approach in design and software
construction. According to this paradigm every system is characterized, at the
most abstract level, by its main function [Mey88]. Later, through an iterative
process, the top function is decomposed into simpler tasks until the level of
abstraction provided by a programming language is reached. Each of the
steps of the iteration can be considered as a transformation process of the
input task into a more suitable one required by the next iteration step. The
main building block is the function or procedures. The expected behavior of a
system is represented by a set of functions or procedures.

Data flow diagrams are used to represent a functional decomposition. A
data flow diagram can be considered as a graph, with nodes representing the
data transformations that occur at each step of the iteration. Structural
programming is data-centric; functional components are closely related and
dependent to the selected data structure. Therefore, changes to the data
representation or the structure of the algorithm used may have unpredictable

10 SOFTWARE ENGINEERING TECHNIQUES

results. The entire data model needs to be considered when designing
functionalities for the system. Changes to the data structure or to procedures,
usually affect the entire system.

As data are the center of the traditional programming approach, the
analysis and design phases of software construction deal with what is referred
to as the data model. A data model is conceived as a flat structure, viewed
from above. Data are distributed into tables and relationships between data are
represented by relationships between tables. Relationships are implicit, using
the foreign keys. Two tables are related among them if both have at the least a
field in common, that contains the same type of data. Therefore, relationships
in a data model are bidirectional.

The reasons why the structured programming approach is not a well-suited
approach for software development has been widely discussed in the software
engineering literature [Mey88], [B0086], to name a few. Although the list of
disadvantages of using the structured programming paradigm is rather long,
we would like to point out one particular handicap of this approach that has
important consequences in modeling agricultural systems: Its lack of support
for concurrency. There are many agricultural systems that coexist and
interchange information between them. Intercropping, one of most relevant
examples that use concurrency, is the process when two or more crops share
the same natural resources (i.e., water, soil, and weather). In order to simulate
the growth of one of the crops, other participating crops must be considered at
the same time, as they compete for the same resources.

It is difficult to develop a software system that allows for concurrency
using traditional programming languages such as FORTRAN. Complex and
difficult-to-use data structures need to be created to allow for developing an
intercropping system. The number of crops simultaneously used by the system
has to be known in advance to be adequately represented in the data
structures. Furthermore, transforming an existing system that does not allow
intercropping into a system that allows for it would certainly require the
reexamination of the entire existing system.

The software industry has embraced, for more than a decade, a more
revolutionary approach to software development, the object-oriented
paradigm. [MeySS] defines the object-oriented software construction as:
Object-oriented construction is the software development method which bases
the architecture of any software system on modules deduced from the types of
objects it manipulates (rather than the function or functions that the system is
intended to ensure). The modularity in the object-oriented approach is the
class.

The focus of this new programming paradigm is the class that directly
represents concepts (abstract or concrete) of a particular domain to which the

PROGRAMMING PARADIGMS 11

software applies. Objects created from classes are the best way to mimic real-
life problems; an object can represent an abstract concept, such as a
photosynthesis process or a real concept such as plant, soil, or weather.
Objects are provided with data and behavior and interact with each other.
Functionality is achieved through dialog amongst objects. The dialog between
objects is represented by relationships. Two objects are related if they need to
access data and behavior from the other object. Relationships between objects
are represented by object diagrams in an object model The activity of
describing relationships between objects in a problem domain is referred to as
object modeling.

The power of the object-oriented approach as modeling tool is the subject
of the following chapters of this book.

Chapter 2

BASIC PRINCIPLES OF THE OBJECT-
ORIENTED PARADIGM

1. ABSTRACTION

One of the most appreciated advantages of object-oriented versus other
modem programming paradigms is the direct support for each of the most
important and used principles of abstraction. The Dictionary of the Object
Technology defines abstraction as: "Any model that includes the most
important, essential, or distinguishing aspects of something while suppressing
or ignoring less important, immaterial, or diversionary details. The result of
removing distinctions so as to emphasize commonalities." Abstraction is an
effective way to manage complexity, as it allows for concentrating on relevant
characteristics of a problem. Abstraction is a very relative notion; it is domain
and perspective dependent. The same characteristics can be relevant in a
particular context and irrelevant in another one.

The abstraction principles used in the object-oriented approach are:
Classification/instantiation, aggregation/decomposition, generalization/
specialization and grouping/individualization. By providing support for the
abstraction principles, the object-oriented paradigm makes it possible to use
conceptual modeling as an efficient tool during the phases of analysis and
design. Conceptual modeling can be defined as the process of organizing our
knowledge of an application domain into hierarchical rankings or orderings of
abstraction, in order to better understand the problem in study [Tai96].

Classification is considered to be the most important abstraction principle.
It consists of depicting from the problem domain things that have similarities

14 SOFTWARE ENGINEERING TECHNIQUES

and grouping them into categories or classes. Things that fall into a
class/category have in common properties that do not change over time.
Instantiation is the reverse operation of classification. It consists of creating
individual instances that will fulfill the descriptions of their categories or
classes. The majority of object-oriented languages provide capabihties for
creating instances of classes/categories.

Figure 2-1 shows an example of classification and instantiation. Concept
Tractor represents a set of properties that are typical for a tractor, regardless
of their brand, horsepower, etc. Therefore, concept Tractor represents a
classification. Bob's Tractor is a particular tractor that has some particular
properties, the most important being that it is Bob's property. Therefore,
concept Bob's Tractor represents an instantiation.

Classification and Instantiation

Tractor

/ \

John's Tractor Bob's Tractor

Figure 2-1, Examples of classification and instantiation.

The second abstraction principle is aggregation. Aggregation refers to the
principle that considers things in terms of part-whole hierarchies. Concepts in
a problem domain can be treated as aggregates (i.e., composed of other
concepts/parts). A part itself can be considered as composed of other parts of
smaller granularity. Decomposition is the reverse operation of aggregation', it
consists of identifying parts of an aggregation. Object-oriented languages
provide support for aggregation/decomposition by allowing objects to have
attributes that are objects themselves. Thus, complex structures can be

BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 15

obtained by using the principle of aggregation. Note that some authors use the
term composition instead of aggregation,

Figure 2-2 shows an example of aggregation and decomposition. Concept
Tractor can be considered as an aggregation/composition of other concepts
such as Chassis, Body, and Engine. Concept Body can be considered as one of
the parts composing a more complex concept such as Tractor.

Aggregation and Decomposition

Tractor

^ 1 \
Chasis Body Engine

/ \

Wheels Doors Hood

Figure 2-2. Example of aggregation and decomposition.

The third abstraction principle is generalization. Generalization refers to
the principle that considers construction of concepts by generalizing
similarities existing in other concepts in the problem domain. Based on one or
more given classes, generalization provides the description of more general
classes that capture the common similarities of given classes. Specialization is
the reverse operation of generalization. A concept A is a specialization of
another concept B if A is similar to B and A provides some additional
properties not defined in B.

16 SOFTWARE ENGINEERING TECHNIQUES

Object-oriented languages provide support for generalization/
specialization as they allow for creating subclasses of exiting classes and/or
creating more general classes (superclasses) of existing classes. Creating a
subclass of an existing class corresponds to specialization and creating a
superclass of an existing class corresponds to generalization. It is important to
note that concept A is a generalization of concept B if and only if B is a
specialization of concept A [Ped89]. Figure 2-3 shows an example of
generalization and specialization,

Generalization and Specialization

Vehicle

/ \

Truck Tractor

/ \
6 Cylinder 8 Cylinder

Figure 2-3. Example of generalization and specialization.

Concept Truck is a specialization of concept Vehicle, This is because
Truck has all the properties of concept Vehicle and some additional ones that
make it a special Vehicle, In reverse, concept Vehicle is a generalization of
concept Truck, as all trucks are vehicles.

The fourth abstraction and perhaps the least obvious, is grouping [Tai96].
In conceptual modeling, often a group of concepts needs to be considered as a
whole, not because they have similarities but because it is important that they
be together for different reasons. Object-oriented languages provide a
mechanism for grouping concepts together such as sets, bags, lists, and

BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 17

dictionaries. Individualization is the reverse operation of grouping. It consists
of identifying an individual concept selected among other concepts in a group.
Individualization is not as well established as a form of abstraction [Tai96].
Figure 2-4 shows an example of grouping and individualization.

Grouping and Individualization

Tractors

/ \
Red Tractors G^cn Tractors

My Tractor Tom's Tractor

Figure 2-4, Example of grouping and individualization.

All tractors used in a farm can be grouped in one category regardless of
their brand, color, horsepower, and year of production, and be represented by
one concept such as Tractors, In case we need to use one of them with a
certain horsepower, then we need to browse the set of tractors and find that
particular individual that satisfies our needs. In this case, we have
individualized one element of the set based on some particular criterion.
When we say Tom's Tractor, we have used the ownership as criterion for
individualizing one of the tractors, the one that belongs to Tom.

2. ENCAPSULATION

The Dictionary of the Object Technology defines encapsulation as: "The
physical location of features (properties, behaviors) into a single black box
abstraction that hides their implementation behind a public interface."

18 SOFTWARE ENGINEERING TECHNIQUES

Often, encapsulation is referred to as "information hiding." An object
"hides" the implementation of its behavior behind its interface or its "public
face." Other objects can use its behavior without having detailed knowledge
of its implementation. Objects know only the kind of operations they can
request other objects to perform. This allows software designers to abstract
from irrelevant details and concentrate on what objects will perform.

An important advantage of encapsulation is the elimination of direct
dependencies on a particular implementation of an object's behavior. The
object is known from its interface and clients can use the object's behavior by
only having knowledge of its interface. The particular implementation of an
object's interface is not important. Therefore, the implementation of the
object's behavior can change any time without affecting the object's use.
Encapsulation helps manage complexity by identifying a coherent part of this
complexity and assigning it to individual objects.

The fact that an object hides the implementation of its behavior by
exposing only its "public face" could be beneficial to other objects that need
its behavior. The "interested" objects could consider more than one option
while looking for a specific functionality that satisfies their needs. They need
only to "examine" the interfaces of candidate objects. Objects with similar
behavior could serve as substitutes to each other.

3. MODULARITY

The Dictionary of the Object Technology defines modularity as: "The
logical and physical decomposition of things (e.g., responsibilities and
software) into small, simple groupings (e.g., requirements and classes,
respectively), which increase the achievements of software-engineering
goals."

Modularity is another way of managing complexity by dividing large and
complex systems into smaller and manageable pieces. A software designing
method is modular if it allows designers produce software systems by using
independent elements connected by a coherent, simple structure. [Mey88]
defines a software construction method to be modular if it satisfies the five
criteria:

Modular Decomposabiiity; a software construction method satisfies
Modular Decomposabiiity if it helps in the task of decomposing a software
problem into a small number of less complex sub-problems, connected by a
simple structure, and independent enough to allow further work to proceed
separately on each of them.

BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 19

Modular Composability; a software construction method satisfies
Modular Composability if it favors the production of software elements which
may then be freely combined with each other to produce new systems,
possible in an environment quite different from the one in which they were
initially developed.

Modular Understandability; a software construction method satisfies
Modular Understandability if it helps produce software in which each module
can be understood without having to examine other interrelated modules.

Modular Continuity; a software construction method satisfies Modular
Continuity if a small change in the requirements of will impact just one or a
small number of modules.

Modular Protection; a software construction method satisfies Modular
Protection if the effect of an exception occurring at runtime will impact only
the corresponding module or a few neighboring modules.

The concept of Modularity and the principles for developing modular
software in the object-oriented approach are encapsulated in the concept of
class. Classes are the building blocks in the object-oriented paradigm.

Chapter 3

OBJECT-ORIENTED CONCEPTS AND THEIR
UML NOTATION

1. OBJECT

Booch [BRJ99] defines an object as "a concrete manifestation of an
abstraction; an entity with a well-defined boundary and identity that
encapsulates state and behavior; an instance of a class."

In other words, an object is a concept, abstraction, or thing with well-
defined boundaries and meaning in the context of a certain application. For
example, in the domain of crop simulation models. Plant can be an object as it
is an abstraction of different plants that represents most of their main
characteristics. In the same manner, Soil can be an object as it is an
abstraction that represents what is common to many types of soil.

An object represents an entity that can be physical or conceptual. Object
Plant represents a physical entity; we can see a plant with its root system,
leaves, and stems. In the same way, object Soil represents a physical entity as
we can see soil surface and its composing layers if we are looking at a soil
slope.

Often in crop simulation models an abstract entity is used, named
SoilPlantAtmosphere to represent features and data that pertain to soil, plant,
and atmosphere all together. The object SoilPlantAtmosphere represents an
entity that is conceptual; it is artificially created to represent data and behavior
that are needed in the simulation process that cannot be assigned to only one
of the above-mentioned entities.

22 SOFTWARE ENGINEERING TECHNIQUES

The problem domain is crucial while selecting entities to be future objects.
Objects named with the same name may have a very different meaning in the
context of different domains. For example, object Tomato in the crop
simulation domain may represent a different concept from the object Tomato
created in the supermarket domain. In the first case, object Tomato is an
abstraction for studying the effects of soil and weather in the crop growth
while in the second case, object Tomato is an abstraction used to study the
situation of the market for a certain period of time.

Objects encapsulate state and behavior. The state of an object is one of the
many possible conditions in which the object may exist. Object Plant can be
in different conditions during a simulation. Initially, Plant exists in the form
of the seed, later on in the stage of vegetation, flowering, and finally, in the
stage of maturity.

The state of an object is provided by a set of properties or attributes, with
their values. As objects represent dynamic entities, their state may change
over time (i.e., the values of attributes may change over time). Thus, the
attribute growthStage of object Plant will have the value "in vegetation" in
the early days of the simulation and the value "in maturity" in the late days of
the simulation.

The behavior of the object is defined by its role in the dialog with other
objects. In other words, the behavior of an object represents how the object
acts and reacts to the requests of other objects. Object's behavior is
represented by a set of messages that the object can respond to. Object
Weather should be able to provide solar radiation data to other objects
requesting it; therefore, it responds to the message getSolarRadiation.
Providing weather data such as minimum and maximum temperature, wind
speed, rainfall, is part of the behavior of object Weather.

Every object has a unique identity. Identity makes objects distinguishable,
even in cases where they have the same attributes. The identity of the object
does not depend on the values of its attributes. For example, the identity of the
object Plant does not change, although some of its attributes, such as
growthStage, may change over time. Each time an object is created, a unique
identity is provided to it that will identify the object for the rest of its life.

2. CLASSES

Booch [BRJ99] defines a class as description of a set of objects that share
the same attributes, operations, relationships, and semantics. Classes are the
most important building block of any object-oriented system. In a specific
domain, there are many objects that can share commonalities. It is important

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTA TION 23

to abstract features that are common to objects. Then, these common features
will be used to construct a class. Abstraction is used to depict commonalities
between objects and construct classes. A class is not an individual object, but
rather a pattern to create objects with same properties and behavior. Objects
created by a class are instances of this class.

Some authors refer to a class as an "object factory," a factory that knows
how to produce objects. Other metaphors are "rubber stamps" or "blueprints."

A class has a unique name and all classes defined in a domain have
different names.

Figure 3-1. Examples of objects.

In Figure 3-1 there are three objects: A pear, a strawberry, and grapes.
These objects have different colors, shapes, and taste but they have in
common the fact that they are fruits. They all can be represented by class
Fruits and each of them is an instance of the class Fruits. The class Fruits
should be designed to represent common characteristics of each of the
instances.

3. ATTRIBUTES

An attribute is a named property of a class that describes a range of values
that instances of the property may hold [BRJ99]. Attributes hold information
about the class and they define the state of the object created by the class.
Each attribute can hold values independently of one another. A class may
have any number of attributes or no attribute at all.

An attribute has a name, and it is advisable to name attributes with
meaningful names that represent this particular abstraction expressed in the
attribute. An attribute has a type that defines the kind of values that can be
stored in it. An attribute is an abstraction of the kind of the data an object of
the class may have as value.

Class Fruits has an attribute ndimQd fruitName used to hold the name of the
fruit. All instances of this class will have this attribute, but the value of the
attribute may be different. If an instance of the class Fruit is created and the
ditthhutQ fruitName is set to "Apple," then it shows that the instance created is
an apple.

24 SOFTWARE ENGINEERING TECHNIQUES

4. OPERATIONS

An operation is the implementation of a service that can be requested from
any object of the class to affect behavior [BRJ99]. The set of all operations of
a class define its behavior. The behavior of the class is defined during the
analysis and design phases, and depends on the role that the class has in the
domain.

A class may have any number of operations but the number of operations
should reflect the behavior of the class. An operation has a name that usually
is a verb or a verb phrase that represents some particular behavior of its class.

An operation has its signature that is the name and the type of all
parameters used by the operation. In cases when the operation returns a result,
the type of the returned value should be specified. Figure 3-2 shows the UML
symbol for class Soil.

Soil
«^soilName .: String
^soilDepth : double

^getWaterStressQ : double
^SoilO

Figure 3-2. Example of a class.

In UML, a class is represented by a rectangular icon divided into three
compartments as shown in Figure 3-2. The top-most compartment contains
the name of the class. The name of the class starts with a capital letter. The
middle compartment contains the list of attributes of the class. The name of an
attribute starts with a lowercase letter. Attributes have a type; attribute
soilName is of the type String. This compartment is considered the "data"
compartment, as the attributes hold data. The bottom compartment lists the
operations or the methods of the class. A method represents a specific
behavior the class provides. In the case of class Soil, the method
getWaterStressQ calculates the water stress for this particular type of soil. If
the method returns a result, the type of the result is defined. In some cases,
operations require parameters. In this case, the type of the parameter should
be defined. In the case of class Soil, the method getWaterStressQ returns a
result of the type double and does not require any parameters. Figure 3-3
shows the implementation in Java of the class Soil defined in Figure 3-2.

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTA TION 25

I package Soil;
2
3 public class Soil {
4
5 private String soilName;
6 private double soilDepth;
7 public SoilO {}
8 public double getWaterStress(){
9 double waterStress = 0.0;
10 //here goes the body of the method, to be implemented
II return waterStress;
12 }
13 }

Figure 3-3. Java definition of class Soil.

Line 1 in Figure 3-3 shows the package or the subdirectory where the Java
code is stored. The concept of package will be introduced later in this book.
Line 3 shows that a new class, referred to as Soil, is defined. Lines 5 and 6
show the definition of attributes for class Soil. Attribute soilName is of type
String; the values this attribute can hold should be of type String. Attribute
soilDepth is of type double, the values this attribute holds should be of type
double. Line 7 describes the default constructor for class Soil. A constructor is
the mechanism in Java that creates instances of a class. Lines 8 through 12 are
the definition of the operation getWaterStress. Line 8 shows that the result of
the operation is of type double. Line 9 defines a local attribute named
waterStress of type double. This attribute will hold the calculated value of
water stress parameter. Line 10 is a comment in Java that shows that the logic
for water stress calculation needs to be provided by the user. Line 11 returns
the value of the calculated parameter to the object that asked for it.

The number of attributes and operations that a class is provided with
directly affects the behavior of the class. Designing the attributes and the
operations of a class is not an easy task. It has to do with the role and the
responsibilities the class will have in the domain in study. It is through the
attributes and the operations that the responsibilities of a class are carried out.

5. POLYMORPHISM

Polymorphism is one of the most important features offered by the object-
oriented paradigm. Polymorphism comes from the Greek term "polymorphos"
meaning "having many forms." In object-oriented programming, it refers to

26 SOFTWARE ENGINEERING TECHNIQUES

the ability of the language to process object differently depending on their
class (Webopedia at http://www.webopedia.com).

Szyperski [Szy99] defines polymorphism as "the ability of something to
appear in multiple forms, depending on the context; the ability of different
things to appear the same in a certain context." Essentiality the concept of
polymorphism has to do with substitutability between objects; in certain
contexts, one object could be substituted with another.

In order to better understand the concept of polymorphism, another related
concept should be introduced: The concept of interface.

6. INTERFACES

Let us introduce the concept of the interface using an example. Suppose
that a class needs to be designed with the task of providing weather data for a
crop simulation scenario. Weather data can be provided in different ways.
Some authors [LKN02] have designed their classes to obtain weather data
from a network of real-time weather stations. Others [HWHOl] obtain
weather data from text files saved locally in the system. It is desirable to
design a system flexible enough to provide weather data from several sources.
The fact that weather data could be provided in different ways does not affect
the logic used to handle these data for calculating photosynthesis processes or
water movement in soil. The scientific equations used to calculate
photosynthesis will deliver the same results regardless of the source used to
obtain the data: Be they read from text files, from a database management
system, or obtained directly from an on-line weather station.

Most of the existing systems are designed to use one single source of data.
The IBSNAT group has selected to develop a special format of text files to
store the weather data [HWHOl]. This way of forcing the system to a very
specific way of obtaining weather data, limits other valuable sources of
weather data to be used such as the ones provided by the on-line weather
stations or other important sources.

As previously mentioned, the scientific calculations are not affected by the
way weather data are obtained. Therefore, it will be beneficial to express the
weather data used in a general way, independently of the particular data
source. The object Weather should be designed in such a way that it would
provide the data regardless of the specific source used. This object should
only logically show the kind of data needed and ignore any particular way of
obtaining the weather data. An object that plays this role is called an interface.

[BRJ99] defines an interface as "a collection of operations that are used to
specify a service of a class or a component." [Szy99] defines an interface as

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTA TION 27

"a contract between a client of the interface and a provider of an
implementation of the interface." Figure 3-4 shows the UML symbols for an
interface.

o
VVeatherlnterface

^getSo!arRadiation(): Double
"^getAverageTemperatureO: Double

^getRainfalK): Double
^getTemperaturefvlinO : Double
*^getTemperaturemax(): Double

"^getPARO ; Double
^getPotentialETO; Double

O
VVeatherlnterface

"^getSolarRadiationO ; Double
^getAverageTemperatureO : Double
^getRainfallt): Double
•^getTemperatureMinQ • Double
^getTemperaturemaxQ' Double
^^getPARf): Double
^getPotentialETQ : Double

Figure 3-4. UML symbols for an interface.

As shown in Figure 3-4, each of the symbols can be used as they represent
the same thing, the graphic symbol of an interface. Figure 3-5 shows an
example of interface defined in Java.

1 package Weather;
2 public interface Weatherlnterface {
3 public double getSolarRadiationQ;
4 public double getAverageTemperatureQ;
5 public double getRainfallQ;
6 public double getTemperatureMinQ;
7 public double getTemperatureMaxQ;
8 public double getParQ;
9 public double getPotentialETQ;
10 }

Figure 3-5. Examples of interface definition in Java.

An interface only defines the kind of services an object should provide for
use by other objects. It represents the set of messages that can be sent to an
object created by a class that implements this interface. The implementing
object will respond to any of the messages defined in the interface. The
interface defines only the operations' signature composed of the operation
name and the parameters required for its execution that must be conveyed in a
message. There is no body in the methods or operations defined in the

28 SOFTWARE ENGINEERING TECHNIQUES

interface. The body for each of the methods will be provided by the class that
implements this interface. Figure 3-6 shows an example of a class
implementing an interface.

o
Weatherlnterface

^getSolarRaciiationf): Double
"^getAverageTemperaturet); Double
'̂ getRainfallO : Double
•^getTemperatureMinO: Double
^getTemperaturemaxO • Double
•^getPARO ; Double
"^getPotentialETQ : Double

W-

Weather

*^getSolarRadiationij Double
^getAverageTemperatureO: Double
^getRainfalll): Double
^getTemperatureMinfl: Double
^getTemperaturemaxO ; Double
"̂ getPARO ; Double
'^getPotentialETt) Double

Figure 3-6. Class implementing an interface.

As shown in Figure 3-6, class Weather implements interface
Weatherlnterface. This contractual agreement, establishes obligations in both
sides: The interface defines what classes should at the least implement as
functionality when binding the interface, and the classes realize that the
interface definition is what they are expected to implement at the least.
Therefore, the behavior of class Weather would include at the least the
behavior defined by the interface that the class is implementing. Class
Weather may have other methods that are not related to Weatherlnterface. An
interface can be implemented by many classes; each of them would provide a
particular implementation of the behavior defined by the interface. At the
same time, a class may implement many interfaces, in which case the
behavior of the class will include all the behaviors defined by the interfaces
that the class implements. Figure 3-7 shows the example of class Weather
implementing interface Weatherlnterface.

1 package Weather;
2 public class Weather implements Weatherlnterface {
3 private double solarRadiation;
4 private double rainFall;
5 private double potentialET;
6 private double temperaturcMax;
7 private double temperaturcMin;
8 private double par;
9 public double getSolarRadiationQ {return solarRadiation;}

Figure 2-7. Class Weather implementing Weatherlnterface (Part 1 of 2).

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTA TION 29

10 public double getRainFallQ {return rainFall;}
11 public double getTemperatureMaxQ {return temperatureMax;}
12 public double getTemperatureMinO {return temperatureMin;}
13 public double getAverageTemperatureQ {
14 return (getTemperatureMin()+getTemperatureMax())/2;
15 }
16 public double parO{return par;}
17 public double getPotentialETQ {return potentialET;}
18 public WeatherO {}
19 }

Figure 3-7. Class Weather implementing Weatherlnterface (Part 2 of 2).

As shown in Figure 3-7, the definition of class Weather includes all the
operations defined in the interface Weatherlnterface, The interface defines
only the signature for the operation, not the body, whereas the class definition
includes the signature's operation and the code for implementing it. As an
example, line 13 in Figure 3-7 is the same as line 4 in Figure 3-5, as they both
define operation's signature. In Figure 3-7, line 14 provides the code
implementation for the operation.

A better approach for the problem defined at the beginning of this section
is to design an interface that would define the functionalities that classes
implementing the interface should provide, with each of the classes providing
a particular solution to the problem of obtaining the weather data. Figure 3-8
shows two classes implementing the same Weatherlnterface,

30 SOFTWARE ENGINEERING TECHNIQUES

o Weatherlnterface

%ttSolarRacliationO: OouW©
^getAverageTemperatureO: Doubl©
%etRa(nfall(): Double
%etTemperatufeMin(); Double
%etTemperaturemaxO: Double
%etPAR(); Double
^gstPotentialETO: Double

implements

^

impt^fOents

VVeatherData FromStati on

'^ciatSolarRadiationQ; Double
^^getAverageTemperatureO : Double
^^getRainfalK): Double
'^getTei^iperatureMinO; Double
'^getTemperatureMa.xO: Double
^getPARi} . Double
^getPotentialETO , Double

WeatherData FromFi !e

'^getSolarRaciiationO • Double
*^getAverag8TemperatuiB(): Double
^getRainfallO Double
"^getTemperatureMinO • Double
^getTemperatureMaxO : Double
•^getPARO: Double
''^getPotentialETi}: Double

Figure 3-8. Example of two different classes implementing the same interface.

As shown in Figure 3-8, classes WeatherDataFromStation and
WeatherDataFromFile implement the same interface Weatherlnterface, Both
classes have agreed to provide behavior for the functionality defined in the
interface. Class WeatherDataFromStation will provide the behavior necessary
to obtain weather data from an online station. As such, this class is
responsible for providing the logic for solving issues such as connecting to the
station, making transactions, and downloading the data. Class
WeatherDataFromFile will provide the behavior for reading the weather data
from a text file. These two classes provide different behavior to implement the
same functionality that is obtaining weather data. Different behaviors provide
the same results, but in different ways. The same functionality is provided in
many forms, and this is the meaning of polymorphism.

Interfaces are an elegant way of defining polymorphism without involving
any implementation. Two classes provide polymorphic behavior if they
implement the same set of interfaces. Interfaces formaHze polymorphism.

The basic concept behind polymorphism is substitutabihty. Classes
implementing the same interface can be a substitute to each other; any one of
them can be used instead of the other. Therefore, interfaces are the heart of
the "plug and play" architecture. Classes, components, or subsystems can
substitute for each other provided that they implement the same set of
interfaces. Interfaces are a key concept while developing component-based

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTA TION 31

environmental and agricultural software [PBB04]. Software designs that do
not use interfaces are rigid, and difficult to maintain and reuse. Interfaces
allow objects to communicate with each other without demanding detailed
knowledge of object's internal logic and implementation.

7. COMPONENTS

There are several definitions of the component-based approach. [BRJ99]
define a component as a "physical and replaceable part of a system that
conforms to and provides the realization of a set of interfaces." This definition
is broad and considers the component to be an organizational concept
representing a set of functionalities that can be reused as a unit. According to
this definition documents, executables, files, libraries and tables could be
considered as components. The emphasis in this definition is on reuse.

Microsoft Corp. has a slightly different definition. In "Component
Definition Model," [BBC99] define a component as a "software package
which offers services through interfaces." The emphasis in this definition is
on service provider. The service provider approach considers a component to
be a piece of software that provides a set of services to its users. Services are
grouped into coherent, contractual units referred to as interfaces [Bro99].
Users can utilize services offered by knowing the component's interface
specification, or contract.

Both the reuse and service provider perspectives of a component introduce
the important distinction between its public interface (what the component
does) and its implementation in a particular programming environment (how
the component does it). This distinction addresses the issue of how the
component should be designed in order to be an independent and replaceable
piece of software with minimal impact on the users.

In other words, components are reusable pieces of software code that serve
as building blocks within an application framework. [BW98] conclude that
although components fit better with the object-oriented technology, they are
often used in non object-oriented programming environments representing a
chunk of functionalities that a system should provide. Most such
environments provide an ad hoc way of defining an interface, limiting its
scope and use. The object-oriented paradigm provides formal languages for
defining an interface and its contract, broadening its scope and reutilization
opportunities.

In traditional programming, most of the times the focus is developing a
single stand-alone system, where all variables and procedures are located in a
single container, referred to as the main program. In contrast, the component-

32 SOFTWARE ENGINEERING TECHNIQUES

based approach has as its focus the building of a set of reusable components
from which a family of apphcations can be assembled [Bro99]. The
component-based paradigm addresses a number of important questions related
to the optimal size of a component, the kind of documentation that needs to be
provided so others can use components, and how the assembly of existing
components needs to be performed.

Every component has a name that distinguishes it from other components.
The name is a textual string. The UML symbol for a component is shown in
Figure 3-9.

Plant SoiLDLL

Figure 3-9. The UML symbol for a component.

There are three types of software components [BRJ99].
Deployment Components
Deployment components include components that can form an executable

system, such as dynamic libraries (DLLs) and executables (EXEs). Included
in this category are other object models such as COMH-, CORJBA and
Enterprise Java Beans or object models such as dynamic Web pages and
database tables.

Work Product Components
Work product components are created from source code files or data files.

They do not directly participate in an executable system but are the work
product of development that is used to create an executable system.

Execution Components
These components are created as a consequence of an executing system,

such as COM+ object, which is instantiated from a DLL.
There is a great similarity between the concepts of component and class.

The most important one is that both components and classes may implement a
set of interfaces. They both can be used as modeling artifacts, i.e., participate
in relationships, have dependencies, etc. [BRJ99].

The fundamental difference between components and classes is that a
component usually offers its services only through interfaces, whereas a class
may or may not implement any interfaces. A component is designed to be
part of a system; it is a physical entity that offers its services through

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTATION 33

interfaces. A component may be reused across many systems. The process of
creating components as modeling entities uses the principle of encapsulation.

8. PACKAGES

[BRJ99] defines a package as a "general purpose mechanism for
organizing elements into groups." Packages are used as containers to include
modeling elements that are logically related and can be manipulated as a
group. Modeling elements that can be included in a package may be classes,
interfaces, components, different kinds of diagrams, and even other packages.
A package does not represent any abstraction of the elements it owns. The
ownership relation in a package is strong; if the package is destroyed, its
contained elements are destroyed as well. A package has a name to identify it
from other packages. The UML symbol for a package is shown in Figure
3-10.

Weather

Figure 3-10. The UML symbol for a package.

Package Weather will contain all model elements related to weather. They
can be classes, interfaces, components, and different diagrams. As packages
are only used for storing purposes, they do not have any representation in the
implementation, except for maybe as directories. During the process of
creating packages, the principle of modularity is used.

9. SYSTEMS AND SUBSYSTEMS

Let us suppose that all the activities in a farm need to be automated. A
software system will be developed to cover the activities such as accounting,
sales, inventory, and so on.

All relevant farm activities will be presented in a system. [BRJ99] defines
a system as "a set of elements organized to accomplish a purpose and

34 SOFTWARE ENGINEERING TECHNIQUES

described by a set of models, possible from different viewpoints." A system
possibly may be decomposed into a set of subsystems and should represent
only the most relevant elements of the domain under study.

The UML symbol for a system is shown in Figure 3-11.

«system»
Farm

Figure 3-11. The UML symbol for a system.

[BRJ99] defines a subsystem as "a grouping of elements of which some
constitute a specification of the behavior offered by other contained
elements." A subsystem may contain classes, interfaces, components and
other subsystems. A subsystem is a combination of a package and a class. As
packages, subsystems have semantics that allow them to contain other model
elements. Like classes, subsystems realize or implement a set of interfaces
that give them behavior. The behavior of a subsystem is provided by classes
and other subsystems included in the subsystem. The UML symbol for a
subsystem is a combination of symbols of package and interface as shown in
Figure 3-12.

O
Accountinglnterface

«subsystem»
Accounting

Figure 3-12. Example of UML symbol of a subsystem.

In Figure 3-12, the Accounting subsystem represents an implementation of
operations defined in the interface Accountinglnterface. Accounting, as part
of activities in a farm, is quite independent. It collaborates intensively with
other subsystems as it keeps track of all the expenses that occur in the farm.
Accounting subsystem receives data from other subsystems and provides
different financial reports.

When representing a particular problem domain as a system, decisions
have to be made on how the system will be divided into subsystems and what

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTATION 35

classes will be included in each of the subsystems. Issues, such as the kind of
behavior each subsystem should encapsulate and its size, are to be discussed
and solved. Subsystems should be nearly independent with a well-defmed
purpose. They will be interacting with each other to provide the
functionalities required by the system. Each subsystem encapsulates specific
behavior and the behavior of the entire system will be provided by the set of
created subsystems. Different levels of abstractions can produce different
kinds of subsystems. A subsystem at one level of abstraction can be a system
in another level of abstraction. In other words, a subsystem is only a
composing part of a bigger and complex system. Encapsulation and
modularity are the two principles of object-orientation that need to be
considered during the phase of system analysis.

A subsystem should not expose any of its composing parts. No class in a
subsystem should be visible outside the subsystem. No element outside the
subsystem should have direct dependency on elements inside the subsystem.
A subsystem should depend only on the interfaces of other model elements
and other model elements will depend only on the set of interfaces of a
subsystem. This way, a subsystem can be replaced by another one provided
they implement the same set of interfaces.

As previously mentioned, the behavior of a subsystem is defined by the set
of interfaces the subsystem implements. Subsystem's behavior will be
provided only by classes or modeling elements that are included into the
subsystem. There should not be any reference to any class outside the
subsystem.

Figure 3-13 shows an example of decomposition of a farm system into
subsystems. Accounting subsystem will include all the classes needed to carry
out accounting responsibilities. The responsibilities of the subsystem are
defined in the interface lAccounting. The subsystem Production includes all
the classes representing operations occurring in a farm. The responsibilities of
this subsystem are defined in the interface IProduction. The same way, the
subsystem Research&Development will include all the classes defined to
represent entities related to the research and development process. The
responsibilities of this subsystem are defined in the interface
IResearch&Development.

36 SOFTWARE ENGINEERING TECHNIQUES

O
lAccounting

«subsystem»
Accounting O

IResearch&D
evelopment

«subsystem»
ResearchStDevelopment

a-
IProduction

«subsystem»
Production

Figure 3-13. Decomposition of a system into subsystems.

There are some similarities between the concept of subsystem and the one
of component. They both encapsulate a partial behavior of a bigger system
and are designed to dialog with others to provide the functionality required by
the system. Their behavior is defined by a set of interfaces for which they
provide a polymorphic implementation. They both provide substitutable
behavior; both can be replaced by other component/subsystems provided they
realize the same set of interfaces. They are constructed using the same object-
oriented principles: Encapsulation and modularity.

The difference between a component and a subsystem is the time they are
used in the software construction process. A subsystem is a design concept; it
is an abstraction used in the design process to present part of a complex
system. A component is a physical entity; it is an implementation tool that
represents part of a bigger real system. Components are implementation
realizations of subsystems. As an example, during the phases of analysis and
design of a farm management system, all the functionalities related to
accounting will be grouped in the subsystem Accounting. The collaboration
with other subsystems will be defined as a set of interfaces for the subsystem.
Then, functionalities of the subsystem will be translated into code and
therefore the Accounting component is obtained ready to be deployed.

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTATION

10. NOTES

37

A note is a symbol for rendering comments or constraints attached to an
element or a group of elements [BRJ99]. Notes are used to clarify the context
in which something happens. The UML symbol for a note is shown in Figure
3-14.

text clarifying the
context In which
something happens.

Figure 3-14. UML symbol for a note.

Figure 3-15 shows an example of a note attached to a Weather class
explaining the context in which the weather data are obtained. The note and
the class are linked using an anchor note.

Weather

The weather data are ^
obtained from a
net̂ #ork of weather
stations

Figure 3-15. Note attached to a class using an anchor note.

11. STEREOTYPES

A stereotype is rendered as a name enclosed by guillemots and placed
above the name of another element [BRJ99]. Figure 3-16 shows an example
of a stereotype.

38 SOFTWARE ENGINEERING TECHNIQUES

«subsystem»
Accounting

Figure 3-16. Example of stereotype.

The stereotype in Figure 3-16 is the word «subsys tem» that gives to the
package Accounting a special meaning or classification. Without the
stereotype, the package Accounting is a general package. The stereotype
allows the designer to create a new modeling element. Therefore, as shown in
Figure 3-16, the stereotype converts a general package into a subsystem, thus
creating a new building block.

Stereotypes can be used to group operations of a class into different
categories, helping users to understand the context in which an operation is
used. Figure 3-17 shows that operations of class Plant are grouped in two
categories: Initialization and query. Thus, operations setBaseTemperature,
setFractionToCanopy, and setPlantDensity belong to the category
initialization. Operations isMature and isPostPlanting belong to the category
query. In the case that some changes have to be done to the initialization
process, it is easy to locate the corresponding operations. Figure 3-17 shows
that class Plant belongs to the group of entity classes, used to represent
concepts of the problem domain. (We will see more about entity classes in
Part two of the book.)

«entitv»
Plant

'^«initiali2ation» setBaseTemperatureQ
^«initialization» setFractionToCanopyf)
'^<<initiali2ation>> setPlantDensityO
'^«queiy» isMatiireQ
'^«quen/>> isPostPlantingf)

Figure i-/7.Using stereotypes to classify operations.

OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTATION 39

Stereotypes can be implemented in Java as comments. Figure 3-18 shows
an example of using comments to translate the UML stereotypes in Java code.
Figure 3-18 shows only part of the Java implementation of class Plant, the
part related to the stereotype definition.

I public class Plant {
2
3 private double baseTemperature;
4 private double fractionCanopy;
5
6 //initilaization methods
7 public void setBaseTemperature(double baseTemperature) {
8 this.baseTemperature = baseTemperature;
9 }
10 public void setFractionCanopy(double fractionCanopy) {
II this.fractionCanopy = fractionCanopy;
12 }
13
14 //query methods
15 public boolean isMatureQ {
16 return getPhenologicalPhase().eqals("maturity");
17 }
18 public boolean isPostPlantingO {
19 return weather.getDayOfYear()> getPlantingDateQ;
20 }
21 }

Figure 3-18. Java comments represent UML stereotypes.

Line 6 is a comment in Java that shows the stereotype defined in Figure 3-
17. Lines 7 through 12 define Java methods that belong to the category
initializations. Lines 15 through 20 define methods belonging to the category
query. In Figure 3-17, each operation definition includes its stereotype,
whereas Figure 3-18 defines a stereotype for the entire group of methods that
belong to this stereotype. In Java, methods that belong to a stereotype follow
the stereotype definition.

Chapter 4

RELATIONSHIPS

As previously mentioned in this book, the main feature that distinguishes
object-oriented from other programming paradigms is the fact that
functionahty is carried out by dialog between objects. Objects are provided
with behavior that defines the role of each object. Communication between
objects is realized through messages they send to each other. In UML, the
ways in which things can connect to each other, either logically or physically,
are modeled as relationships [BRJ99].

There are three types of relationships in UML: Associations,
generalizations, and dependencies. Relationships are graphically represented
with lines; each type of line represents a particular type of relationship.

1. ASSOCIATIONS

An association is a structural relationship that specifies that objects of one
thing are connected to objects of another [BRJ99]. An association shows that
these two classes are connected to each other and navigation from one object
to the other should be possible. This navigation is made possible through
associations. Figure 4-1 shows an example of association between two
classes, Plant and Soil.

42 SOFTWARE ENGINEERING TECHNIQUES

Plant growsln Soil

Figure 4-1. Example of association between classes Plant and Soil.

An association has a name to describe the meaning of the relationship.
Names should be meaningful to present unambiguously the kind of
relationship between objects. The association growsln represents the fact that
a plant grows in soil. The association defines quite well the role of each of the
classes participating in the relationship; plant processes use soil data and soil
processes use plant data. Associations enable data transfer and resource
sharing among objects. In this case the association is bidirectional; data in
class Soil can be accessed from class Plant and data in class Plant can be
accessed from class SoiL

Accessibility between classes related with an association, in most of the
programming languages, is translated with a reference of the type of the other
class involved in the association. For example, access to class Soil from class
Plant is possible by defining in class Plant an attribute of type Soil, which
will reference the corresponding Soil object. In the same way, class Soil will
have an attribute of type Plant pointing to the corresponding Plant object. In
cases when both classes in a relationship point to each other, the association is
bidirectional.

Although associations may have a name, some designers do not use the
names, especially when the relationship between objects becomes obvious. It
is recommended that all the information be provided that helps a potential
user understand the presented problem.

Classes participating in an association play different roles; therefore, it is a
good designing practice to explicitly define the role for each of them. Figure
4-2 shows an example of an association between classes Plant and Soil with
roles defined for both classes.

Plant +thePlant growsln +theSoil Soil

Figure 4-2. Example of an association with roles defined for both classes.

RELATIONSHIPS 43

In some cases, such as in the one presented in Figure 4-2 above, it may be
redundant to provide both the name of the association and the respective roles
of each class. Only the name of the association may be enough to describe the
nature of the relationship. The only additional information one may obtain
from the names of the roles in Figure 4-2 is that the role names will be used as
attribute names in respective classes. Thus, in class Plant, an attribute named
theSoil will be declared to reference an object of type Soil (Figure 4-3). The
same for the class Soil, an attribute of type Plant will be declared to reference
a Plant object (Figure 4-4).

1 package Plant;
2 public class Plant {
3 Soil theSoil;
4 public PlantO {}
5 }

Figure 4-3. Attribute soil allows access to object Soil.

1 package Soil;
2 public class Soil {
3 Plant thePlant;
4 public SoilO {}
5 }

Figure 4-4. Attribute thePlant allows access to object Plant.

In some scenarios, only one class should have access to the data from the
other class of the association. In this case, the association is unidirectional.
Figure 4-5 shows an example of a unidirectional association.

Plant usesWeatherData

+dataRequestor +dataProvider
Weather

Figure 4-5. Example of unidirectional association between Plant and Weather.

In the example shown in Figure 4-5, only class Plant can access data and
behavior defined in class Weather, The role of class Weather is to provide
data for class Plant. An attribute of type Weather and named dataProvider
will be defined in class Plant to allow access to data and behavior in class
Weather.

44 SOFTWARE ENGINEERING TECHNIQUES

The same class can play the same role or a different one in associations
with other classes. Figure 4-6 shows an example where class Plant plays
different roles in different associations with different classes.

^ ^ ^ ^ ^ +theSoil 1

-HthePlant

Plant

+dataRequestor

usesWeaiherData

^
+dataProvider

Soil

1 Weather

Figure 4-6. Example of class Plant playing different roles in different associations.

In Figure 4-6, class Plant plays the role of plant data provider in
association with class Soil and the role of data requestor in association with
class Weather. In Figure 4-7, class Weather plays the same role, the one of
data provider in both associations with classes Soil and Weather.

usesWeatherData

+dataRequestor

Soil

+dataProv/ider
V_

Weather

A
+dataProvider usesWeatherData

Plant

+dataRequestor

Figure 4-7. Class Weather plays the same role in two different associations.

RELATIONSHIPS 45

While modeling an association, it is important to show how many objects
on both sides of the association can be linked together. This process is called
association's multiphcity. Figure 4-8 shows an example of multiplicity of an
association.

Person works for

1..* 1

Farm

Figure 4-8. Example of multiplicity of an association.

In Figure 4-8, the association says that one or more persons work for one
farm (i.e., one instance of class Farm can be linked to one or more instances
of class Per^o«).

An association can be reflexive, meaning that the start and the end of the
line representing the association point to the same class. A reflexive
association means that an object can be linked to other objects of the same
class. Figure 4-9 shows an example of a reflexive association with
multiplicity zero or one.

succeeds

1
I /

SoilLayer

7
/

.1

Figure 4-9. Example of a reflexive association with multiplicity zero or one.

In a soil profile, soil layers are in sequence: The first layer is on top, and
other layers stay under the top layer, one under the other. The last layer of the
profile is located at the bottom. The fact that soil layers are one under the
other can be modeled using a reflexive association. In Figure 4-9, the
association succeeds shows that an object of class SoilLayer can succeed zero

46 SOFTWARE ENGINEERING TECHNIQUES

or one other object of the same class. The top layer succeeds zero layer and all
other layers under the top one succeed exactly one layer. A multiplicity of
zero shows that the association is optional.

2. AGGREGATION

Aggregation is a specific kind of association that shows a relationship
between two classes that play a different role. One of the classes is considered
the whole and the other one is considered the part. An aggregation expresses a
whole-part relationship. Figure 4-10 shows the UML representation of an
aggregation.

Soi Profile
composedOf

K> >
SoilLayer

Figure 4-10. The UML representation of an aggregation.

The association presented in Figure 4-10 shows the relationship between a
soil profile and its soil layers. The association is a one-to-many; meaning that
a soil profile is composed of one or more soil layers. The class SoilProfile
represents the whole and class SoilLayer represents the part. The open
diamond distinguishes the whole class. It is important to note that in an
aggregation, the whole does not own the part. Therefore, when the class
representing the whole is destroyed, this does not affect the class representing
the part. Furthermore, an object representing the part may be used in other
aggregations. An aggregation is an association that represents a whole-part
relationship in a conceptual way.

As aggregation expresses the whole-part relationship in a very loose
manner, many modelers do not see it as useful modeling concept. A
relationship expressed by an aggregation can be modeled using a simple
association. In this case, the name of the association could express the idea of
whole-part relationship. Choosing between an aggregation and a simple
association for conceptually expressing the whole-part relationship is a
question of taste or modeling habits.

RELATIONSHIPS 47

A one-to-many association can implemented in Java as an array. Line 4 in
Figure 4-11 shows that the attribute soilLayer is an array that will contain
objects of type SoilLayer.

1 package Soil;
2
3 public class SoilProfile {
4 public SoilLayer soilLayer[];
5 public SoilProfileO {}
6 }

Figure 4-11. Java implementation of a one-to-many association.

There is a large class of water-balance and irrigation-scheduling models
that requires modeling the relationship between the soil profile and its soil
layers [PSH04]. Some models do not partition soil into layers; they simply
consider soil profile as a single layer that extends to the bottom of the root
zone [GSROO]. In these cases, the model will always have one layer.

Other water-balance and irrigation-scheduling models consider a soil
profile as composed of many soil layers [Rit98]. Therefore, in these models,
one soil profile will be associated to many soil layers. The association in
Figure 4-10 takes into consideration both cases.

3. COMPOSITION

A composition is a stronger form of aggregation, with strong ownership
and coincident lifetime as part of the whole [BRJ99]. In a composition
association, the whole is responsible for the creation and destruction of its
parts. Once a part is created, it belongs to the whole and when the whole is
destroyed, the part is destroyed too. In a composition, a part may belong to
only one whole at a time.

As an example, let us consider constructing a UML diagram that
represents a plant and its relationships with its root, stem, and leaves systems.
The relationship between plant and its systems can be presented as a
composition. Plant will play the role of the whole and its systems will be its
parts. Plant owns its root, stem, and leaves systems. A stem system can only
belong to one plant at a time. In most cases if the plant dies, so do its root,
stem, and leaves systems. The UML presentation of a composition is shown
in Figure 4-12.

48 SOFTWARE ENGINEERING TECHNIQUES

f 1
Plant ^

1

i ^

1

>
1

LeavesSystem

StemSystem 1

— "^
1

Roots ystem

Figure 4-12. Plant is considered as a composition of its root, stem, and leaf systems.

4. DEPENDENCY

A dependency relationship states that a change in specification of one
thing may affect another thing that uses it, but not necessarily the reverse
[BRJ99]. Figure 4-13 shows an example of dependency between packages
Client and Supplier, Client depends on Supplier. If the amount of goods that a
Supplier is supposed to provide changes, this change may affect the Client as
the Client would have to adjust its behavior to accommodate the change.

Figure 4-13. Dependency relationship between packages.

A dependency relationship can exist between classes, packages, and
components. The following Figure 4-14 shows an example of dependency
relationship between components Client and Supplier,

RELATIONSHIPS 49

Client J—I Supplier
• > :

Figure 4-14. Dependency relationship between components.

In some cases, one modeling element can be dependent on more than one
other modeling element. Figure 4-15 shows that the amount of water in soil
depends on two factors: The weather and the irrigation applied.

--y^

Weather

Soil

•y\ Irrigation

Figure 4-15. One class depends on two other classes.

A dependency relationship denotes a relationship where the client does not
have semantic knowledge of the supplier.

5. GENERALIZATION

A generalization is a relationship between a general thing (called the
superclass or parent) and a more specific kind of that thing (called subclass or
child) [BRJ99]. Generalization is the relationship that represents the
mechanism of inheritance in object-oriented languages.

Inheritance is often considered as one of the most fundamental features of
the object-oriented paradigm. It is certainly the feature that distinguishes
object-oriented from the traditional programming. Inheritance was introduced
to the world of programming in the late 60s as the main feature of the
programming language SIMULA [DMN68]. SIMULA'S inheritance

50 SOFTWARE ENGINEERING TECHNIQUES

mechanism was originally known as concatenation and the term inheritance
was introduced a few years later. Currently, there are a few used synonyms
for inheritance, such as subclassing, derivation, or subtyping.

The central idea of inheritance is straightforward. Inheritance allows new
object definitions to be based upon exiting ones. A formal definition of
inheritance is given by [BC90]:

R = P + dR

P are the properties inherited from an existing class and dR are the new
properties defined in the new class R. dR represents the incrementally added
properties in class R that make class R different from class P. The symbol +
is some operator that combines the exiting properties with the newly added
ones. Inheritance is a facility for differential, incremental program
development [Tai96]. Class P is referred to as superclass, parent, or ancestor
and class R is referred to as subclass, child, or descendant. A subclass inherits
attributes and methods from the superclass, and therefore inherits data and
behavior from the superclass. As such, a subclass can substitute the superclass
anywhere the superclass appears, but not vice versa.

If an operation defined in the subclass has the same name and parameters
or signature as the one defined in the superclass, then the operation of the
subclass overrides the operation of the superclass. This phenomenon is known
as polymorphism.

A subclass can even cancel an operation defined in the superclass. This
can be achieved by simply redefining the same operation and not providing
any logic for it. Generally a subclass may introduce new properties in addition
to the ones defined in the superclass that extend, modify, or defeat them
[Tai96]. The UML notation for the generahzation is shown in Figure 4-16.

Figure 4-16, UML notation for the relationship of generalization.

RELATIONSHIPS 51

In Figure 4-16, perennial plants are a special case of plants and annual
plants are a special case of plants, but perennials are different from annual
plants. A perennial is a kind of plant, a specific kind of plant. A plant
considered randomly may not necessarily be a perennial. The generalization
relationship expresses a certain hierarchy of objects; moving up in the
hierarchy objects become more general and moving down in the hierarchy
objects become more special. Any object at a lower level can replace an
object residing higher in the hierarchy.

Inheritance is the mechanism by which more-specific elements incorporate
the structure and behavior of more-general elements [BRJ99]. Both terms,
generalization and inheritance, are generally interchangeable but there is a
clear distinguishing between them. Generalization is the name of the
relationship, whereas inheritance is the mechanism that the generalization
relationship represents.

In Figure 4-17, a hierarchy of different classes related by inheritance is
shown [AR97]. The definition of class ShootOrgan includes a number of
attributes that will be inherited by Stem, MainStem, and BranchStem. For
example, age is an attribute defined at the ShootOrgan class and classes Stem,
MainStem, and BranchStem will have an attribute with the same name
although it is not shown in their attribute compartment. A subclass shows only
the attributes defined at subclass level. Therefore, objects created by
MainStem class will have attributes defined by ShootOrgan, Stem, and
MainStem classes. The list of attributes of class BranchStem will contain
on_stem_number, location_onStem, length, and number_leaves_on_stem
defined in the abovementioned classes.

The author, [AR97], has chosen not to provide any behavior for classes
ShootOrgan and Stem, Therefore, objects created by class MainStem will not
inherit any behavior from the superclasses ShootOrgan and Stem.

52 SOFTWARE ENGINEERING TECHNIQUES

ShootOrgan
%'on_stem_number
%^!ocation_on_stem
^dr>'_weight
^proportion,, present
^M_content
%»initiation_day
^abscission„day
%age
^development_ stage
•^growing
%C_demand
%N_demand
^C_supply/demand
^Nsupply/demand

Stem
tenglh
number leaves on stem

MalnStem
^number of branches

"^potentiaLgrowthO
"^actuaLgrov^lhO
%bsciss{on()

BranchStem

"^potentiaLgro'MhO
%ctuat _grov\lh(}
"^abscissionQ

Figure 4-17. Example of a hierarchy of classes related by inheritance.

Generalization is transitive; class Stem inherits from class ShootOrgan and
class MainStem inherits from Stem. Therefore, class MainStem inherits from
class ShootOrgan.

Another example of inheritance is taken from Lemmon [LCh97]. Classes
shown in Figure 4-18 are all organs, as they inherit directly or indirectly from
class Organ. Class Leaf directly inherits data and behavior from class Organ.
Classes SympodialLeaf, PreFruitingLeaf, and FruitingNodeLeaf inherit data
and behavior from class Lea/and at the same time, they inherit from class
Organ. A PreFruitingLeaf object is a specialized kind of Leaf and a
specialized kind of Organ.

RELATIONSHIPS 53

SympodialLeaf PreFruitingLeaf

Figure 4-18. Hierarchy of classes in a cotton simulation model.

As previously mentioned, subclasses inherit from superclasses data and
behavior. Figure 4-19 shows an example of what is inherited through a
generalization relationship.

AutomotiveMachine
%[icenseNumber
^weight

%egister(}

+owner Farmer

Truck
^model
%*ear

Tractor
*t>power

1 0..1

Plow

Figure 4-19. A subclass inherits from the superclass attributes, operations, and relationships.

54 SOFTWARE ENGINEERING TECHNIQUES

An AutomotiveMachine has two attributes: licenseNumber and weight and
an operation named registerQ, Class AutomotiveMachine is related with class
Farmer through an association where the role of the farmer is owner,

Class Truck has its own attributes that are model and year and two
inherited attributes from AutomotiveMachine that are licenseNumber and
weight. Truck does not have any operations on its own but it does inherit from
AutomotiveMachine operation registerQ. Class Tractor has the attribute
power and two inherited ones, licenseNumber and weight.

Because of the generalization relationship, Truck and Tractor are related
to a Farmer. Tractor is related to a Plow as well. Through the inheritance
mechanism, a subclass inherits from the superclass attributes, operations, and
relationships.

When a class inherits from only one class, then the inheritance is referred
to as single inheritance. Single inheritance is the most common mechanism of
inheritance used. When a class inherits from more than one class, then the
inheritance is referred to as multiple inheritance. Multiple inheritance offers
more possibilities for incremental modification than the single inheritance, but
its use is not easy. Almost unanimously, researchers agree that the use of
multiple inheritance should be done with care as its use introduces technical
and conceptual problems. Some authors state that despite the problems the use
of multiple inheritance raises, any modem object-oriented language should
provide support for it [Taiv96]. Other researchers do not agree; they state that
multiple inheritance is dangerous and should not be used. A strong support
up for the argument against the use of multiple inheritance can be found in the
lack of its implementation in two of the modem object-oriented languages;
Java and C# provide a single inheritance mechanism while C++ provides
support for multiple inheritance. Multiple inheritance is good, but there is no
good way to do it [Coo87].

All examples presented in this section are examples of single inheritance.
Figure 4-20 shows an example of multiple inheritance. As shown in this
figure, class Segment inherits data and behavior from both classes Article and
Organ [DPOl].

RELATIONSHIPS 55

Figure 4-20. Class Segment inherits from both classes Article and Organ.

6. ABSTRACT CLASSES

During the discussion of the mechanism of inheritance, it was mentioned
that general classes stand at the top of the hierarchy. As we go up in the class
hierarchy, classes become more and more general. In this context, some of the
classes standing at the top of the hierarchy can play a specific role which is
the role of defining some behavior that would be common to all other classes
lower in the hierarchy. Such a class does not fully represent any object; it only
represents a template for creating other objects that will have in common the
behavior defined in this class. As such, these classes are abstract; there are no
direct instances created from them. Abstract classes represent incomplete
abstractions that can be useful for specifying contracts upon which concrete
implementations will be based. These abstractions have a communicative role
that allows designers to agree on interface specifications before starting
concrete implementations. An abstract class is written with the expectation
that its subclasses will add to its structure and behavior [BRJ99]. Part of
designing an abstract class is specifying how this behavior will be used or
refined by other classes lower in the hierarchy.

One of the classical examples of inheritance is taken from the domain of
animals. At the top of the hierarchy a class named Mammals would be
defined. According to The Pocket Oxford Dictionary, a mammal is "a warm­
blooded vertebrate of the class secreting milk to feed its young." The fact of
feeding the young with milk is the most common thing that all animals have.
It makes sense to create a class named Mammals that will capture this
common behavior of all animals. However, there are no direct instances of the
class Mammals, as mammal is a general concept representing a group of

56 SOFTWARE ENGINEERING TECHNIQUES

animals with common characteristics. Therefore, Mammals is an abstract class
that has no instances and provides the most common data and behavior all
animals have. Dog is a concrete animal that shares the characteristics
described in Mammals, A Dog is a mammal and to represent a dog, a concrete
class needs to be created inheriting from the abstract class Mammals. All
other animal classes would inherit from the Mammals class. Each class
representing a particular animal will extend the data and behavior defined at
the abstract class level.

The UML presentation of an abstract class is the same as the one used for
other classes, but the name of the class is in italicized font. Figure 4-21 shows
an example of an abstract class.

Figure 4-21, Example of an abstract class. The name of the class is written in italics.

As previously mentioned, abstract classes do not have any instances. The
attributes and the operations defined in an abstract class are inherited by all
classes that are a specialization of the abstract class, meaning all classes that
subclass the abstract class. Figure 4-17 shows an example of abstract classes
created in a hierarchy of classes to address issues of developing a generic
object-oriented plant simulator [AR97]. In this example, class Organ is an
abstract class and its definition contains only attributes, no operations. In the
same way, class Stem inherits from Organ but does not define any behavior
either. Classes MainStem and BranchStem define additional attributes and the
same behavior, such ?iS potential_growth(), actual_growth(), and abscissionQ.

Let us look more carefully at this example of hierarchy as there are some
important points to be made. When designing a class hierarchy, attention
should be paid to the fact that every class of the hierarchy should have a well-
defined purpose and role that will make the class have a specific place in the
problem domain. Class's behavior is used in the dialog with other classes to
achieve functionality. Classes should not be created just for being a place­
holder of some values; they should play a specific and well-defined role in the
domain in study. A class is a behavioral template for its instances [Zdo99].

RELATIONSHIPS 57

A class without behavior generally causes difficulty of use and
justification of need for such a class. Furthermore, inheriting from a class
without behavior makes the problem even more complicated. As class Stem
subclasses Organ, then Stem is a kind of Organ, Or class Organ does not have
any defined behavior so stating that Stem is a kind of Organ does not provide
additional information about class Stem. What is an Organ? What is the role
of class Organ? How does class Organ dialog with other classes? Assigning a
meaningful name to a class is not enough. A class should be the product of
abstraction used to depict potential players in the domain under study.
Selecting a meaningful name is important, as it enables other people to
understand more easily the purpose and the role of the class, but a name is not
sufficient. The name of the class by itself does not provide any behavior; it is
only a label that distinguishes a class among others in the problem domain.
Each class should provide some specific functionality that is not already
defined in other classes.

What kind of behavior can class Organ provide? Class Organ should be
provided with the most common behavior organs of a plant have. Organs
grow or die, they actively interact with the surrounding environment. The role
that organs play in collaborating with other organs or parts of the environment
should be defined in class Organ in an abstract way. This behavior can be
detailed or redefined by other classes inheriting from class Organ.

Furthermore, Figure 4-17 shows that both classes, MainStem and
BranchStem, at the end of the hierarchy provide the same behavior (i.e., the
abihty to calculate potential and actual growth and abscission). Both classes
inherit from class Stem, and Stem does not provide any behavior; it only adds
two more attributes (length and number_leaves_on_stem) to the list of
attributes defined at Organ class. Again, class MainStem inheriting from Stem
is a kind of Stem. Stem does not provide any behavior nor does it inherit from
Organ. Saying that a MainStem is a kind of Stem does not provide any
information about what MainStem is or how it does behave.

In Figure 4-17, it is shown that MainStem and BranchStem are provided
with behavior (operations actual_growth and potential_growth) that allows
them to grow. A Stem is subject to potential and actual growth too; therefore,
this behavior should be moved up to Stem level and each of the subclasses
{MainStem and BranchStem) can provide polymorphic behavior for potential
and actual growth, and abscission.

Abstract classes have a twofold role. The first role is a conceptual one;
abstract classes can serve as modeling tools or specifications with the aim of
identifying abstractions of the problem domain that will later be refined by
concrete classes lower in the hierarchy. The second role is more of a
utilitarian nature; abstract classes can serve as templates for improving

58 SOFTWARE ENGINEERING TECHNIQUES

reusability. The behavior defined at abstract classes will be implemented by
concrete classes that subclass it [Tai96].

Abstract classes are a useful design technique that promotes code reuse.
Depicting abstract classes in a problem domain is an iterative process that
uses abstraction to find common functionalities in concrete classes and move
it to a higher level in the hierarchy. The advantage of using abstract classes is
that behavior common to many classes can be defined in only one place to be
reused, modified, or improved later.

7. ABSTRACT CLASSES VERSUS INTERFACES

The concepts of abstract classes and interfaces are somewhat similar and
one might be confused in deciding whether to use an interface or an abstract
class. An abstract class defines a default behavior for some or all the
operations that will be inherited by all the subclasses. The reuse of the
behavior defined in an abstract class is realized through inheritance.

An interface does not define any default behavior at all. Interfaces only
define specifications that will be implemented by classes realizing the
interface. An interface may be implemented by many classes, and a class can
implement many interfaces.

8. REALIZATION

A realization is a semantic relationship between classifiers in which one
classifier specifies a contract that another classifier guarantees to carry out
[BRJ99]. The most common use of the realization is between interfaces and
the classifiers that agree to implement the interfaces. Figure 4-22 shows
examples of realizations.

Interface

Class

o-
Interface

Figure 4-22. Examples of realizations.

Subsystem

As shown in Figure 4-22, a realization is an agreement between a class and
an interface. The interface defines the functionalities that the class should

RELATIONSHIPS 59

provide the implementation. The reaUzation is presented by the Hne that
connects the interface and the class. In the same way, a realization connects
an interface that defines functionalities and the subsystem that would provide
the implementation. Figure 4-23 shows another type of notation for
realization.

o
Interface K

Class o
Interface [<]•

Subsystem

Figure 4-23. Another notation for realization.

Chapter 5

USE CASES AND ACTORS

Usually software systems are developed to be used by humans or other
hardware devices. There is a close interaction between users (humans or
machines) and the system. Users send a message to the system that provokes
the system to execute some operations in order to return some valuable
response. Therefore, determining what a software system should provide to
users means understanding what the users want from the system. The process
of capturing requirements for a system developed using object-oriented
approach is referred to as developing the use case model.

The use case approach was introduced by the well-known work of
[JCJ94], often referred to in the object-oriented community as the father of the
Object-Oriented Software Engineering (OOSE). Very soon, use cases were
embraced by the totality of the methodologist worldwide.

Use cases are a simple and yet powerful way to express the functional
requirements of a system. Use cases describe how users can use the system
and what the system can do for users. Therefore, use cases are an important
tool to build a consensus between the system's stakeholders and the system's
developers. If stakeholders cannot agree on what the system should provide,
chances that the project can be successful are very slim. Use cases have
improved the communication between stakeholders and the development team
and have made the process of gathering system requirements easier and more
formal. Use cases provide a visual representation of the conceptual model of
the system. More details about use case modeling can be found in [JCJ94],
[BS03], and [BRJ99].

The use case model contains actors that represent the future users of the
system and use cases that represent what the users can do with the system.

62 SOFTWARE ENGINEERING TECHNIQUES

1. ACTORS

An actor represents a coherent set of roles that users of use cases play
when interacting with these use cases [BRJ99]. Actors represent the role of
the future users of the system. Actors model the user's perspective of the
system. Actors are located outside the system; therefore, in order to depict
actors, it is important to define the boundaries between actors and the system.

The UML symbol for an actor is shown in Figure 5-1. An actor has a name
that distinguishes actors among them. It is a good modeling practice to name
actors by the role they play, not by their names. The name of a person may
change but this will not affect the role this person plays in the system.

Farmer

Figure 5-1. The UML symbol for an Actor.

There are three primary types of actors: Users of the system, other systems
interacting with our system, and time [BB02].

The first type of actor is a person or a user who will use the system. These
are the most common type of actors. As an example, in a crop simulation
scenario, a farmer will ask the system to run a simulation and therefore, the
farmer is an actor.

The second type of actor is another system interacting with our system.
For example, the crop simulation system obtains the weather data directly
from a weather station on-line. In this case, the weather station is outside our
system and it is not our intention to modify its behavior; therefore, the
weather station is an actor.

The third type of actor is time. Time becomes an actor when after a certain
period of time, a series of events to be handled by the system is triggered. As
an example, an advisory system can be designed to function based on weather
conditions. When weather conditions (temperature and humidity) favor
development of certain diseases or fungus, the system will provide advice for
starting spraying with appropriate pesticides.

USE CASES AND ACTORS 63

The difference between actor and user of the system is rather subtle; a user
is someone that uses the system, whereas an actor is a role that a user can
play. A user can play several roles and therefore a user can be modeled as
different actors.

Actors can be linked to each other using the generalization relationship.
Figure 5-2 shows an example of generalization between actors. A
Commercial Customer is a special case of a Customer, i.e.. Commercial
Customer inherits from Customer. Although actors are outside of the system
and not the subject of our study, it is useful to know how they are structured
and related, as it helps to understand how they communicate with the system.

Customer

Commercial
Customer

Figure 5-2. Actors related using a generalization relationship.

2. USE CASES

Originally, Jacobson [JBR98] defined a use case as "a behaviorally related
sequence of transactions in a dialog with the system." A more recent
definition of the use case is given by [BRJ99] as "a description of a set of
actions, including variants that a system performs to yield an observable result
of a value to an actor." The basic idea behind a use case is to represent a
sequence of interactions between the system and its users located outside the
system. In other words, a use case shows how an actor uses a system to
achieve a certain goal and what the system should do for the actor to achieve
that goal. It describes how the actor and the system collaborate to deliver a
result of value to the actors [BS03].

64 SOFTWARE ENGINEERING TECHNIQUES

Use cases are widely accepted to be the best practice for capturing system
requirements [Kru98]. Functional requirements capture the intended behavior
of the system. The use case model expresses the functionalities the system is
supposed to provide to its users. Use cases only specify how the system
should behave; they do not specify how the behavior should be implemented.
Therefore, use cases are considered to be an excellent way of communicating
with customers and users of the system.

The UML symbol for a use case is shown in Figure 5-3. The use case
Simulate only shows that users should be able to send the message simulate to
the system and the system will execute all the necessary operations. For the
moment, how the simulation will be achieved is not important. The same way,
the use case Get Weather Data only shows that users may ask the system to
carry out this functionality; how the data will be obtained is not relevant at
this point. The data may be obtained from reading a data file or a database, or
obtained directly from an on-line weather station.

Simulate Get Weather Data

Figure 5-3. Example of use cases.

Use cases have names that distinguish them from each other. Usually, use
case names are of form <Verb><Noun>, such as Get Weather Data, Simulate,
that shows that users are making a request to the system and the system
should provide back some results.

An actor and a use case are related through an association as shown in
Figure 5-4. The actor {Farmer) initiates the use case by sending a message to
the use case. Use cases are always started by actors. The communication
shown in Figure 5-4 is unidirectional, as it goes from the actor to the use case.
The sense of the communication is clear; it goes from the actor to the use
case.

USE CASES AND ACTORS 65

Pgpĵ ^gj. Get Weather Data

Figure 5-4. Farmer asks the system for weather data.

In Figure 5-5, the association linking the actor and the use case is
bidirectional; it is not clear whether the actor initiates the use case or the use
case communicates with the actor. It is important to clearly describe the type
of communication between actors and use cases, as it helps to better
understand how the system works.

pg^^^g^ Get Weather Data

Figure 5-5. Example of a bidirectional use case.

2.1 Extend relationship

An extend relationship between use cases means that the base use case
implicitly incorporates the behavior of another use case at a location specified
indirectly by the extend use case [BRJ99]. The base use case must be defined
to completely stand by itself. Its description should be independent of the use
case that extends it. The extend use case will be executed only when some
particular circumstances will be satisfied in the base use case. Extended use
cases can be successfully used to add additional functionalities to base use
cases without questioning their integrity.

Let us consider as an example the process of approving extension
documents (http://crs.ifas.ufi.edu) at the Institute of Food and Agricultural
Sciences (IFAS), at the University of Florida. Each document needs to be
peer-reviewed by at the least two reviewers, before it goes for approval to the
department chair. According to this practice, most of the time the reviewers
selected to review the document are sufficient. The department chair can add

66 SOFTWARE ENGINEERING TECHNIQUES

additional reviewers in the case that the document deals with issues that none
of the reviewers is a specialist in the field. Figure 5-6 shows the use case
model for the department chair approval process.

In this figure, the use case Add Reviewer extends the base use case
Approve Document. According to the problem description, the department
chair can add an additional reviewer to a document when he judges that a
more specialized reviewer should review the document. This means that
normally, the department chair considers that reviewers assigned to the
document are sufficient. Thus, the description of the base use case Approve
Document is independent of the use case Add Reviewer. The base use case can
be executed without involving the extend use case. The functionality provided
by the extend use case Add Reviewer is needed only under certain conditions,
when the department chair finds it necessary.

"YC---'<"<fextend>>
Add Re/iewer

Department Chair
Approve Document

Figure 5-6. Use case Add Reviewer extends base use case Approve Document.

2.2 Include relationship

An include relationship between use cases means that the base use case
explicitly incorporates the behavior of another use case at a location specified
in the base [BRJ99]. An include relationship represents a set of operations that
are repeated in several use cases and are grouped in one place for ease of use
and maintenance. An included use case never stands by itself; it is always
instantiated as part of a larger use case.

Let us consider again IFAS's extension documents approval system. One
of the requirements was to develop an event-based system. Every time an
event occurs, the next person in the approval process should be automatically
notified. When an author submits a document for approval, the department
chair gets immediate notification. When the department chair approves a
document, the program leader gets immediate notification.

In Figure 5-7, the base use case Approve Document includes the use case
Notify. The Notify use case represents a group of operations needed to send a
notification message to anyone interested to know that some event has
happened. Therefore, this set of operations is repeated in several places. It is

USE CASES AND ACTORS 67

convenient to group this functionality in one place, and any other use case that
needs it can use it by simply including it in its definition.

S ^ ^y^ ^ « inc luc le»

A < I> -CD
Department Chair Approve Document

Figure 5-7. Base use case Approve Document includes use case Notify.

Note that both relationships extend and include use a dependency
relationships. In the case of the extend use case, AddReviewer depends on
Approve Document, as it is at the discretion of the department chair whether
to add an additional reviewer or not. In the case of include use case. Approve
Document depends on Notify to go to the next level of approval. A stereotype
(i.e., extend or include) is used to show the type of the use case.

Chapter 6

UML DIAGRAMS

UML provides five kinds of diagrams for modeling the dynamic aspects of
systems. These diagrams are: Use case diagrams, sequence diagrams,
collaboration diagrams, activity diagrams, and statechart diagrams. Use case
diagrams are central to model the behavior of a system.

1. THE USE CASE DIAGRAM

The set of all use cases in a problem domain is referred to as the use case
model and the diagram representing it is referred to as the use case diagram,
A use case model shows the set of functionalities a system should provide. By
examining a use case model, we can say whether all the user requirements are
satisfied or not. A use case model is important, as it presents a general view of
the system without being overwhelmed by implementation details.

Let us consider IFAS's extension document approval system and build the
use case model. The following is a brief description of the functionalities the
system should provide.

The system should allow users (authors, editors, reviewers, department
chairs, and program leaders) to submit, edit, review, approve, and check the
status of a document any time. First, the authors should submit the document
and then the editor edits it. At the least, two reviewers, assigned to the
document, will be notified for reviewing the document. After the reviewer's
approval, the department chair is notified to approve the document. If the
department chair judges that another and more specialized reviewer should
review the document, then a new reviewer can be added. The newly added
reviewer will be notified by mail that a document is waiting for approval.

70 SOFTWARE ENGINEERING TECHNIQUES

After the additional reviewer approves the document, the department chair is
notified by mail that the document is waiting for departmental approval.
When the department chair approves the document, the program leader is
notified by mail. When the program leader approves the document, then the
document is saved in the database and indexed. It becomes public and
available for search purposes. The use of the system should be password
protected.

The use case model should express all the functionalities required by the
system. By examining the use case model one should be able to judge whether
all users requirements are correctly captured and whether all user's roles are
included in the system. Figure 6-1 shows a simplified use case model for a
tracking system for extension documents fhttp://ers.ifas.ufl.edu).

UML DIAGRAMS 71

..«include»

Index Document
O)

Approve Document

Program Leader

Reviewer
Department Head

Notity
Approve Document

''<<extend»

CD
Add Reviewer

Figure 6-1. The use case model for a document tracking system.

Let's closely examine each of the use cases presented in the use case
model and evaluate whether all the users requirements are correctly captured.

The use of the system is password protected; therefore, all users need a
password to log into the system. The authentication process not only validates
the user, but also its role. When a user logs into the system with a specific
role, the user has access to the functionalities that the role is entitled to have.
The operations required to verify whether a user is a legitimate one are
presented by the use case Login. There is an association between each of the
actors and the use case Login; this means that every user of the system goes

72 SOFTWARE ENGINEERING TECHNIQUES

through the authentication process. The same way, all actors have an
association with use case Check Document Status, meaning that all actors can
check the status of a document, each of them from a specific point of view.

There is an association between actor Author and use case Submit
Document. This means that the author can submit a document for review. It is
important to notice that only Author has access to the use case Submit
Document, meaning that only authors can submit documents for review.

The functionahties a certain actor is entitled to are shown by all
associations that origin this actor. Thus, the department chair can login to the
system, browse documents, check the status of a document, add additional
reviewers to a document, and approve a document. The same way, a program
leader can login, approve a document, browse documents, and check the
status of a document. The operations needed to index a document in the
database are presented as a separate use case that is included in the base use
case Approve Document. Although this functionality is used only once, it is
designed to be a separate use case, as it may be reused in other occasions.

Figure 6-1 shows that Reviewer is associated to Login and Check
Document Status use cases only. This means that Reviewer'^ role is not
designed properly; if the system is implemented as presented in the use case
model, Reviewer'^ role is incomplete.

The presented use case model provides all the functionalities required by
the users. In the case that some functionality or actor is not considered, it can
easily be added to the model. Use case models are central to modeling the
behavior of a system, subsystem, or a class [BRJ99].

2. USE CASES VERSUS FUNCTIONAL
DECOMPOSITION

Often, use cases are confounded with a detailed list of functions the
system should provide. When this happens, use cases are defined as if they
represented menu items of a system. Figure 6-2 shows an example of
designing use cases as menu items. At the heart of the diagram, shown in
Figure 6-2, is an actor that initiates three use cases; Modify File, Add File, and
Delete File.

UML DIAGRAMS 73

Add Fill

Modify File Mger Delete File

Figure 6-2. Example of bad selection of use cases.

Figure 6-2 shows things that the systems should do, but they are all related
to only one thing the user wants the system to do: Administer a file system.
According to the definition of the use cases, they describe what the system
should do that will benefit at the least one of the actors. The use case Delete
File may never be invoked if a file has not been added to the system. The
same reasoning can be done for the use case Modify File. Events like
modifying and deleting a file are useful to a user only when a file is already
added to the system. Therefore, all three functions can be gathered in a sole
use case named Administer Files as shown in Figure 6-3. Gathering several
functions into a unique use case is a better presentation of what the system
should do for the users and it focuses on the value the user will obtain from
the system. Dividing the behavior of the system into small functionalities does
not help to understand the conceptual model of the system.

j j Administer Files

Figure 6-3. A use case represents a set of functions.

74 SOFTWARE ENGINEERING TECHNIQUES

3. INTERACTION DIAGRAMS

UML uses different types of diagrams for expressing the dynamic aspects
of systems; the use case model diagram is only one of them. Another type of
diagram used by UML is Interaction Diagrams. An interaction diagram
shows an interaction, consisting of a set of objects and their relationships,
including the messages that may be dispatched among them [BRJ99]. They
are used to capture the dynamic behavior of a system. Interaction diagrams
include sequence diagrams and collaboration diagrams.

3.1 Need for interaction

The use case diagrams describe the system, the surrounding environment,
and the relationships between them. Actors are located outside the system and
they start a request. The system receives the request and executes all
operations needed to provide the actor with a response. As previously
mentioned, the use case model presents the entire set functionalities the
system should provide to its users.

The most important concepts of the problem domain are represented as
classes. Classes are provided with data and behavior so they can play a well-
defined role. Classes are factories for producing objects. The system is
composed of objects that interact with each other to achieve functionality.
Objects dialog between themselves through messages.

A message is the specification of a communication among objects that
conveys information with the expectation that activity will ensue [BRJ99].
Messages are the mechanism that allows objects to interact with each other.
Objects make their behavior available to others through messages. A message
is a call through which an object asks another object to do something. The
object receiving the message will execute it and may give the result back to
the object sending the message.

Figure 6-4 shows an example of two objects exchanging messages
between each other. Plant sends to Soil the message getWaterStressQ. Water
stress data stored in Soil are needed to calculate processes occurring in Plant.
An operation named getWaterStressQ is defined in Soil, therefore. Soil will
execute the operation and provide the result to the sender Plant. In the same
way, processes occurring in Soil need leaf area index data that are located in
Plant. Therefore, Soil sends a message to Plant asking for leaf area index
data. Plant receives the message, executes the operation named
getLeafArealndex, and provides the result to the sender Soil. The operation
getLeafArealndex is part of Plant behavior and operation getWaterStress is
part of behavior of Soil. The return result of the operation getWaterStressQ is

UML DIAGRAMS 75

of type double, as shown by the signature of the operation in Figure 6-4. The
type of the return result is needed in the calculations occurring in Plant. In the
same way, the type of the return result getLeafArealndex is a double. The
sender should be aware of the type of the return result, as it might be used for
further calculations occurring in the sender object.

getWaterStress

Plant

"^getLeat^realndexQ: double

Soil

"^getVVaterStressQ : double

gettesfAmB index

Figure 6-4. Interactions between Plant and Soil.

3.2 Sequence diagrams

A sequence diagram is an interaction diagram that emphasizes the time
ordering of messages [BRJ99]. A sequence diagrams represents objects
participating in the interaction in a timely manner. The time when messages
are sent to objects is important and altering this order may produce
unexpected results.

Figure 6-5 shows an example of a sequence diagram. Farmer plays the role
of an actor as the farmer sends a request to the system to obtain some weather
data.

76 SOFTWARE ENGINEERING TECHNIQUES

farmer: Farmer GUI: GUI

1: s electWeatherStation

2: selectTimelnteival

3: getWeatherData

weatherManaaer:
WeatherManaqer

4: getWeatherData(weatherStation,timelnter\'al)

5: returned Data

6: displayData

Figure 6-5. Example of a sequence diagram.

Farmer communicates with object GUI (Graphical User Interface). The
sequence of messages sent between the objects described in Figure 6-5 is as
follows.

First, the farmer needs to select a weather station from the list displayed by
the GUI object. Second, the farmer needs to select a time interval for the
weather data. Third, the farmer needs to press the button GetWeatherData.
Object GUI sends the message getWeatherData(weatherStation
Jimelnterval) to object Weather Manager. Note that this message has two
parameters selected by the farmer: The weather station and the time interval
for the data. WeatherManager will execute the message and return the data to
object GUI that sends himself the message displayData. The farmer can then
read the displayed data.

In this particular example, the order of the first two messages the farmer
sends to GUI can be reverted; the farmer may select the time interval first and
then select a weather station. It is understandable that message 4,
getWeatherData(weatherStation, timelnterval), cannot be executed before
message 3, getWeatherData.

In a sequence diagram, objects are shown as vertical lines as shown in
Figure 6-6. The vertical line is referred to as object's lifeline. The lifeline
shows when an object is created and how long its life would be. Lifelines are
used to model class behavior. Figure 6-6 shows that Farmer is the name of the
class and farmer is an object of class Farmer.

UML DIAGRAMS 11

farmer: Farmer

Figure 6-6. Specifications on sequence diagrams.

Objects communicate among them by sending messages. Figure 6-7 shows
an example of objects sending messages to each other. A message is shown
by an arrow. A message has a sender, which in the case of Figure 6-7 is object
farmer, and a receiver, which is object GUI. When object farmer sends a
message to object GUI, it means that farmer needs to use some of the
behavior defined in object GUI,

When an object receives a message, it need some time to execute the
message and send the results to the sender. The time during which an object is
performing an operation is referred to as XhQ focus of control [BRJ99]. In
Figure 6-7, object Gi7/receives a message and it has the focus of control.

farmer: Farmer GUI: GUI

1: selectWeatherStation

farmer sends a ^
message to GUI

Figure 6-7. Object farmer sends a message to object GUI.

78 SOFTWARE ENGINEERING TECHNIQUES

In some cases, an object can send a message to itself; these messages are
referred to as reflexive messages. The sender and the receiver of the message,
in this case, is the same object. Figure 6-8 shows an example of a reflexive
message; object GUI sends to itself the message display Results.

GUI: GUI

1: displayResults

Figure 6-8. Example of a reflexive message.

3.3 Collaboration diagrams

[BRJ99] defines a collaboration diagram as "an interaction diagram that
emphasizes the structural organization of the objects that send and receive
messages; a diagram that shows interaction organized around instances and
their links to each other." An example of a collaboration diagram is shown in
Figure 6-9.

UML DIAGRAMS 79

6: displayData
>

1: selectWeatherSt ati on
2: selectTimelnten^l
3: getWeatherData

^4: getWeatherData(weatherStation,timelntefval)

5: returnedData

v/eatherManager:
Weatherfvlanager

Figure 6-9. Example of a collaboration diagram.

In a collaboration diagram, all the messages that start at an object and the
ones that end at an object are shown. As shown in Figure 6-9, messages
selectWeatherStation, selectTimelnterval, and getWeatherData start from
ohJQCt farmer. Message displayResults starts and ends at object GUI,

Messages that end at an object show that the behavior of this object should
be designed to provide answers for the received messages. Therefore,
collaboration diagrams help design class behavior. From the collaboration
diagram presented in Figure 6-9, class GUI should, at the least, provide
behavior for selecting a weather station, selecting a time interval, and to get
the weather data from the source used.

3.4 Sequence versus collaboration diagrams

Sequential and collaboration diagrams are semantically equivalent. They
express the same thing: The interaction between objects. It is easy to convert
one diagram to the other, as they present the same information. Some UML
software, such as Rational Rose, provide automatic conversion from one
diagram to the other.

Although both diagrams present the same information, they do not
visualize the same information. Sequence diagrams are used when modeling a
flow of control over time and when it is important to represent the messages

80 SOFTWARE ENGINEERING TECHNIQUES

passed between objects, as they unfold over time. Therefore, sequence
diagrams are very useful to describe use case scenarios.

Collaboration diagrams are used when modeling a flow of control by
organization and when it is important to emphasize in the structure of the
relationships between objects and in the totality of messages an object may
receive. Therefore, collaboration diagrams are used to build class and object
behavior.

4. ACTIVITY DIAGRAMS

An activity usually represents a set of actions where execution may cause
a change in the state of the system or return a result. An action is a step within
the activity. An activity diagram is much like a flowchart that shows the flow
of control from activity to activity [BRJ99]. Activity diagrams are one of the
UML diagrams that are used to model dynamic aspects of systems. Usually
they are used to model sequential execution of steps that starts with an initial
state and ends with an end state. Activity diagrams can be used to model
concurrent execution of steps in a workflow.

An example of an activity diagram is shown in Figure 6-10. An activity is
an ongoing nonatomic execution within a state machine [BRJ99]. An activity
diagram always starts with a start state (or initial state) represented by a filled
bullet. Arrows show the transition from one activity to the next one. As an
example, in Figure 6-10, when the execution of activity initialize weather is
terminated, then the execution of the next activity named initialize soil takes
place.

UML DIAGRAMS

[plant not matured]

T
81

initial state t \

Z' initialize \
\ ^ ¥aather J

JL
initialize soil

V
/^ initialize plant \

y [end of weather data]

< >
[valid weather data]

<

y
calculate soil rate

)

V o
[post planting date],

[before planting date]

(

c

Y
calculate plant rate

Z integrate soil rate

)

>

[before planting date]

[post planting date]J/

(^ integrate plant ^

<-

final state L\
[plant matured]

(• > •

Figure 6-10. Example of an activity diagram.

82 SOFTWARE ENGINEERING TECHNIQUES

Some activities will be executed only if some condition is satisfied. In
UML, the graphical representation of a condition is referred to as decision. As
an example, the activity calculate plant rate will be executed only if the
decision post planting date is satisfied. The decision post planting date is
satisfied if the current date is later than the planting date (i.e., the plant is of a
certain age). An activity diagram always ends with an ending state (or final
state).

Activity diagrams can be used to show concurrent activities, (i.e., activities
that occur at the same time). As an example, let us consider the scenario of
simulating two plants (plantA and plantB) that are competing for the same
resources (water, soil nutrients, solar radiation, etc.) shown in Figure 6-11.
Activities initialize weather and initialize soil are executed sequentially. As
the simulation of both plants will occur concurrently, then a horizontal
synchronization bar (or concurrent fork) is used to express concurrency.
Activities that represent the initialization and the simulation for plantA and
plantB will be executed within different flows of control that occur at the
same time. A concurrent fork has one incoming transition and two or more
outgoing transitions. After the concurrent activities are terminated, the flow of
control joins the sequential execution at the concurrent join point. A
concurrent join may have two or more incoming transitions and one outgoing
transition.

UML DIAGRAMS 83

Figure 6-11. Example of concurrent processing of activities.

5. STATECHART DIAGRAMS

Statechart diagrams are one of the five kinds of diagrams UML uses to
model dynamic aspects of systems. They are used to model different states of
an object during its lifetime; from the time it is created until it is destroyed. A
statechart diagram shows the flow of control from one state to another. Figure
6-12 shows an example of a statechart diagram.

84 SOFTWARE ENGINEERING TECHNIQUES

integrate

start state

V
Vegetative

calculate Rate

[number of leaves > maximum number of leaves calculateRate

Reproductive

integrate

Mature
^ [cumulative thermal time > reproductive thermal time ^

T end state ^^

Figure 6-12. States of object plant during the simulation.

A statechart diagram starts with an initial state represented by a filled
bullet and it ends with an end state as shown in Figure 6-12. The statechart
diagram represents the different phenological phases (or states) of object
Plant during the simulation process, described in detail by [PBJ99].

The plant's phenological phase is important as it determines the
calculation of plant parameters such as deltaLeafNumber calculated by
Equation 1.

UML DIAGRAMS 85

deltaLeafNumber •

temperatureStress x maxRateOfLeafAppearence

when phenologicalPhase = "vegetative"

and

0

when phenologicalPhase = "reproductive"

Equation 1

The diagram shows that at beginning of the simulation (provided that the
current simulation date is greater than planting date), the plant is in the
phenological phase of vegetation. During that phase, it will receive messages
calculateRate and integrate and will remain in the same phase (or state) as
long as the event number of leaves > maximum number of leaves does not
occur. A state is a condition or situation in the life of an object during which it
satisfies some condition, performs some activity, or waits for some event
[BRJ99].

When the event number of leaves > maximum number of leaves occurs,
then object Plant will change phenological phase to reproductive. It is
important to note that message integrate affects parameters such as number of
leaves that is used to trigger the event that will send the object plant to the
phenological phase of reproductive. An event can trigger a state transition. A
transition is a relationship between two states indicating that an object in the
first state will perform certain actions and enter the second state when a
specified event occurs and specified conditions are satisfied [BRJ99].

During the phenological phase of reproductive, the object plant will
receive messages calculateRate and integrate, and will remain in this phase as
long as the event cumulative thermal time > reproductive thermal time does
not occur. When this event occurs, plant will move to the phase of maturity
and this signals the end of the simulation.

Chapter 7

DESIGN PATTERNS

1. A SHORT HISTORY OF DESIGN PATTERNS

Well before software engineers started using patterns, an architect named
Christopher Alexander wrote two books that describe the use of patterns in
building architecture and urban planning. The first book is titled A Pattern
Language: Towns, Buildings, Construction [Alex77], published in 1977. The
second one is titled The Timeless Way of Building [Alex79], published in
1979. These two books not only changed the way structures were built, but
they had a significant impact in another not closely related field, the field of
software engineering.

According to Alexander, a pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a million
of times over, without ever doing it the same way twice [Alex77]. Although
Alexander refers to buildings and towns, his conclusion can be successfully
applied in the process of object-oriented design. Very often programmers
have to solve the same problem that occurs in different applications regardless
of the problem domain. Saving data in a database, for example, requires the
same logic regardless of the amount and the nature of the data used. In the
case of object-oriented databases, in order to read an object from the database,
the following operations need to be accomplished:

A database session needs to be created in order to access any data in the
database.

• Within the session, a transaction should be opened

88 SOFTWARE ENGINEERING TECHNIQUES

• Within the transaction, object is read from the database
• If the transaction fails, a rollback to initial values occurs
• If the transaction succeeds, a commit occurs
• Transaction is closed
• Session is closed

These operations are repeated again and again every time an object is read
or stored in the database. Therefore, they can be considered as a pattern that
can be used by any programmer that needs to communicate with a database.
The above list of operations is tested and proved to be correct. A novice
programmer does not have to reinvent everything by himself; he can apply the
read pattern and obtain the right results.

The first work on design patterns was undertaken by Cunnigham and Beck
[CK87]. They presented five patterns for user interface design. In mid 90s, a
group of four software engineers [GHJ95] wrote the book titled Design
Patterns that had a significant impact in the way software design was carried
out. The book presents well-thought solutions for a large class of problems.
The same way an architect uses prefabricated blocks for building complex
constructions, a programmer will use patterns to develop complex software.
The concept of design patterns allows novice programmers to use elegant
solutions provided by experts. Using patterns makes the process of designing
complex systems easier.

Design patterns are divided in three categories: Creational, structural and
behavioral patterns [GHJ95]. Some other authors such as Grand [Gra98] have
created an additional group referred to as fundamental patterns where they
include patterns that are used by other patterns. This book follows Grand's
classification and starts the presentation of design patterns with fundamental
patterns.

Creational patterns deal with the process of creating objects. They
describe optimal ways of creating new objects. Structural patterns describe
how to compose classes or objects. Behavioral patterns describe how to
distribute behavior among classes and how classes interact with each other.

2. FUNDAMENTAL DESIGN PATTERNS

2,1 The delegation pattern

The purpose of the delegation pattern is to extend and reuse the
functionality of a class by writing an additional class with added functionality
that uses instances of the first class to provide the original behavior [Gra98].

DESIGN PATTERNS 89

Often, the reuse of the behavior of a class is realized through the
mechanism of inheritance; a subclass inherits from its superclass data and
behavior. Inheritance allows classes to be defined based on existing ones.
When a new class of objects is defined, only the properties that will differ
from the properties of the existing class need to be defined. Other properties
defined in the existing class will be included in the new class definition.
Therefore, inheritance is considered a mechanism for incremental
programming. Code can be reused simply by inheriting it. Inheritance is a
static relationship. When a class subclasses another one, their relationship is
static and does not change over time.

Inheritance should be used only in the cases when the created subclass is a
kind of the superclass, meaning that the subclass and the superclass are
conceptually the same. The subclass should not radically alter the behavior of
the superclass.

In cases when the existing behavior of a class needs to be extended and the
result class is not conceptually similar to the superclass, inheritance should
not be used. Another form of reuse, referred to as delegation, is the
appropriate way to extend the behavior of a class as shown in Figure 7-1.

CtassDelegator
uses

-^
ClassDelegate

Figure 7-1. Example of delegation.

Figure 7-1 shows that class ClassDelegator is associated with class
ClassDelegate through a unidirectional association. Therefore,
ClassDelegator has access to data and behavior of ClassDelegate; an attribute
of type ClassDelegate is defined in the ClassDelegator that points to
ClassDelegate. Thus, the behavior of ClassDelegator can be extended by
using the behavior of ClassDelegate.

Let us consider a concrete example of using the pattern of delegation.
Figure 7-2 shows the relationships between classes in simple Plant
component.

90 SOFTWARE ENGINEERING TECHNIQUES

o
Plantlnterface

"^getLeafArealndexO: double

z LeafSystem

Plant
^leafSystem
%rootSystem
%>stemSystem

"^getLeafArealndexfj: double

^getLeafarealndexQ: double

Root System

Stem System

Figure 7-2. Example of delegation.

As explained in section Components, the functionalities provided by the
component Plant are defined by interface Plantlnterface, To make things
simple, we will consider that Plantlnterface defines only one method,
getLeafArealndexQ. As shown in Figure 7-2, Plant component is composed
of a few classes, such as LeafSystem, RootSystem, and StemSystem. These
classes are provided with data and behavior to play the role of leaf, stem, and
root systems of the plant. Although these classes have a well-defined role,
none of them communicates directly with other classes or components of the
system. In the case that some other class/component of the system would
require to use behavior defined in class LeafSystem, the communication will
occur through class Plant, Plant has access to data and behavior of classes
LeafSystem, RootSystem, and StemSystem, through attributes leafSystem,
rootSystem, and StemSystem that hold references to objects of the
corresponding classes.

When another class or component needs to use the value of leaf area index
parameter that is stored in an object of class LeafSystem, it needs to send the
message getLeafArealndexQ to an object of type Plant, This object knows
how to respond to this message as it implements Plantlnterface, Or the
calculations for the leaf area index parameter are defined in LeafSystem, not in
Plant, Plant will delegate the call to LeafSystem using the attribute
leafSystem. After the calculations are terminated, Plant will return the results
to the requestor object.

DESIGN PATTERNS 91

Figure 7-3 shows the implementation in Java of the delegation pattern.
Lines 3, 4, and 5 define attributes of Plant that point to objects of type
Lea/System, RootSystem and StemSystem. Lines 7 through 9 define method
getLeafArealndexQ, Class Plant provides an implementation for this method
as it implements Plantlnterface. As shown in line 8, Plant delegates the
method call to LeafSystem, meaning that method getLeafArealndexQ defined
in Plant will return the result of the execution of the same method defined in
class LeafSystem,

1 public class Plant implements Plantlnterface {
2
3 LeafSystem leafSystem = new LeafSystemQ;
4 RootSystem rootSystem = new RootSystemQ;
5 StemSystem stemSystem = new StemSystemQ;
6
7 public double getLeafArealndexQ {
8 return leafSystem.getLeafArealndexQ;
9 }
10

Figure 7-3. Implementation in Java of the delegation pattern.

Using the same principle of delegation, class Plant will be able to respond
to messages that are defined in classes RootSystem and StemSystem, Class
Plant is the main distributing hub for component Plant, as it controls access to
other classes. If RootSystem and StemSystem classes had a direct link with
classes outside Plant component, that would have compromised the principle
of encapsulation that needs to be observed during the component design
process.

3. CREATIONAL PATTERNS

3.1 The factory method pattern

The object-oriented approach is about creating objects with a specific
behavior to interact with other objects. It is a good modeling practice to make
the process of creating objects localized, so if changes have to be made to the
way objects are created, these changes will occur in only one place in the
code. The factory method pattern is about organizing the object creation
process in such a way that new type of objects can be added to the system

92 SOFTWARE ENGINEERING TECHNIQUES

without reconsidering what is already in place. This is reached by forcing the
process of object creation to occur through a common factory, rather then
allowing it to be dispersed all over the application. If a new type of object
needs to be added to the system, then appropriate changes need to be made to
the factory that creates objects.

Let us consider a crop simulation scenario in which many instances of
plants will be created such as maize, rice, and wheat. All of these types of
plants have some attributes in common such as variety, planting date, etc. The
common data and behavior can be defined in an abstract class referred to as
Plant and subclasses of Plant will define additional data and behavior to
describe a particular type of plant. The crop simulation system should be able
to simulate many types of crops; therefore, objects of different plants will be
created. As mentioned before, one solution can be that the process of object
creation can be dispersed throughout the code and objects are created when
and where they are needed. This solution has a big disadvantage. When
changes are needed to be made to the process of object creation, we will need
to find all the places where objects are created and do the necessary changes.

The factory method pattern provides a better way of creating objects and
works as shown in Figure 7-4.

Plant
%''/ariety : String
^plantingDate : Date

Simulator

cfBsm

creaieRant

reqmsi

W
PlantFactory

^createPlantiString plant)

Figure 7-4. The factory method pattern.

As shown in this figure, the Simulator sends a create request to
PlantFactory class to create an object of a particular type of plant.
PlantFactory is provided with a method referred to as createPlant(String
plant) used to create the required object. This method has a parameter of type
String Yi^iVCiQA plant that indicates the type of the object to be created. Thus, if
an object of type Maize needs to be created, then the Simulator sends the
message createPlant (maize) to PlantFactory. The following code shows the

DESIGN PATTERNS 93

implementation in Java of the class PlantFactory. The kinds of objects that
need to be created need to be known in advance and the corresponding code is
included in the factory. Figure 7-5 shows that the following factory creates
objects of type Maize, Wheat, and Rice. If new kinds of objects need to be
created, then the factory needs to be updated but the update will occur in one
and well-defined place.

I package FactoryMethodPattem;
2
3 public class PlantFactory {
4 public PlantFactoryO {}
5
6 public Plant createPlant (String plantName) {
7
8 Plant newPlant = null;
9 if (plantName.equals("maize")) newPlant = new Maize();
10 else
II if (plantName.equals("wheat")) newPlant==new Wheat();
12 else
13 if (plantName.equals("rice")) newPlant = new Rice();
14
15 return newPlant;
16 }
17 }

Figure 7-5. Implementation of class PlantFactory in Java.

As shown in Figure 7-5, line 1 shows the package (subdirectory) where the
class PlantFactory is stored. Line 3 shows the class definition. Line 4 shows
the default constructor of class PlantFactory. Lines 6 through 16 show that
the definition of the method createPlant(Strmg plantName) considers three
cases of creation of new objects: Maize, rice and wheat. The newly created
object depends on the value of the pwc3.mQtQv plantName. Line 15 returns the
newly created object. If additional types of plants need to be created, then
there is only one place to make the corresponding changes; the method
createPlant of class PlantFactory.

3.2 The abstract factory pattern

The intent of this pattern is to provide an interface for creating families of
related or dependent objects without specifying their concrete classes
[GHJ95].

94 SOFTWARE ENGINEERING TECHNIQUES

To better understand how this pattern works, let us consider the following
example. Suppose that the heart of a crop simulation system is an object
provided with supervising behavior that controls the objects that need to be
created during the simulation process. We will refer to this object as
Simulator. Suppose that any plant, be it perennial or annual, is represented by
its LeafSystem and RootSystem; a plant is conceived as a composition of these
composing parts. It will be highly desirable to develop a simulation system
that is built in a very generic way and capable to simulate different types of
plants: Perennials or annuals. Such a system will be independent of the
specific plant that is simulating. Therefore, Simulator will be asked to create
instances (and their composing parts) of perennial or annual plants. How can
we develop a generic simulation system that handles any type of plants? The
abstract factory pattern can be used to solve this type of issues. The class
diagram for the abstract factory pattern is shown in Figure 7-6.

AbstractPlantFactory is an abstract class that provides the most common
behavior needed for simulating perennial and annual plants. The behavior
needed to simulate a specific plant will be provided by a specific "factory,"
that is, subclass oi^ AbstractPlantFactory, PerennialFactory is used to create
composing parts of a perennial plant and AnnualFactory is used to create the
composing parts of an annual plant. AbstractPlantFactory is provided with a
method referred to as getFactory that will deliver the required factory. Once
Simulator knows the kind of plant it needs to simulate, it will use the
getFactory method to obtain the right factory.

DESIGN PATTERNS 95

AbstractPlantFactory

%etFa-ctory{)
% reateLeafSystemO
%re3teRootSystem{)

\<r
Simulator

AnnualFactory

•^cieateLeaf System')
•^createRootSystemf)

PefamiiPactoty

%reat eieaf Systerr»(|
%re8teRootSystem()

RootSysttm

cmates AnnualRootSystem
X

PerenniatRootSyst&m

LeaSystem

QWatBB AnnyalLeafSystem

CmBtQS

PerenniaJLeafSystem

Figure 7-6. Class diagram of the abstract factory pattern.

Note that both factories are provided with behavior capable of creating
instances of LeafSystem and RootSystem for both types of plants. The use of
the abstract factory pattern makes it easy to add new types of factories for
creating new types of objects by only adding a few lines of code in a well-
defined place. It is important to note that the user of the abstract factory,
Simulator in this case, it completely independent of the factory system that
creates objects.

3.3 The singleton pattern

The purpose of the singleton pattern is to ensure that only one instance of a
specific class can be created [GHJ95]. In the case where an instance is created
from a class defined using the singleton pattern, all other objects of the system
that need to dialog with it will refer to the same instance.

Often there are cases that only one instance of a class need to be created.
This is common in cases when a class needs to control and coordinate the
behavior of other classes. As an example, when designing a crop simulation

96 SOFTWARE ENGINEERING TECHNIQUES

model, it is important to make sure that only one instance of the Simulator
class is created. This is because of the particular role the Simulator class plays
in the simulation process. The Simulator is responsible for creating objects
that are involved in the simulation process and controls the time and the
messages that objects send to each other. In the case where the user can
accidentally create more than one instance of the Simulator, unexpected
results could be obtained. To better understand the kind of problems that may
occur when more than one instance of the Simulator is created, let us consider
a simple example. Let us suppose that a simulator object is created initially
and this object creates all other needed objects and estabhshes the
relationships between them. The objects needed in the simulation process are
of type Soil, Plant, and Weather. Suppose that at some point, another
simulator object is created. The second simulator will have to create other
objects of type Soil, Plant and Weather, As a result of having several objects
of type Soil, it is not clear which object Soil is used at a time. Soil objects may
be in different states and therefore, holding different values for the same
attribute. Therefore, it is important to make sure that only one instance of
object simulator is created. Figure 7-7 shows an example of singleton pattern.

Simulator
^instance : Simulator

^getlnstanceO: Simulator

Figure 7-7. Example of implementation of the singleton pattern.

The key to designing a singleton is to not allow users to create more than
one instance of the class. Therefore, the attribute instance that references the
unique instance of the class Simulator is defined as private, meaning that this
attribute cannot be accessed from outside the class Simulator. A method,
referred to as getlnstanceQ, returns the value of the unique instance. Figure 7-
8 shows the Java implementation of the singleton pattern.

1 package SingletonPattem;
2
3 final class Simulator {
4 private static Simulator instance = null;

Figure 7-8. Java implementation of the singleton pattern (Part 1 of 2).

DESIGN PATTERNS 97

5
6 private SimulatorQ {};
7 public static Simulator getlnstanceQ {
8 if (instance = null) return new SimulatorQ;
9 else return instance;
10 }
11 }

Figure 7-8. Java implementation of the singleton pattern (Part 2 of 2).

Line 1 shows the subdirectory where the class is stored. Line 3 defines
class Simulator as final. By making the class Simulator final, it prevents
cloneability to be added to this class by the mechanism of inheritance. The
Java environment allows object creation through cloning. As Simulator is a
subclass of the superclass Object, the clone method defined in Object
normally is inherited and becomes part of the behavior of Simulator, Or
making class Simulator final prohibits the inheritance mechanism from
occurring. Thus, objects of class Simulator cannot be cloned. This is another
step to make sure that class Simulator will not be able to create more than one
instance of it. Line 4 assigns attribute instance to null. Line 6 defines a private
constructor to prevent the compiler from inserting a default constructor. Lines
7 through 10 define the method getlnstanceQ that delivers the only instance of
the class Simulator. In the case where no instance of Simulator is yet created,
then line 8 will create it. In the case where the unique instance is already
created, line 9 simply returns this instance. This way of creating an instance of
an object only when it is needed is referred to as lazy initialization.

4. STRUCTURAL PATTERNS

4.1 The adaptor pattern

The purpose of the adaptor pattern is to convert the interface of a class into
another interface clients expect [GHJ95]. The adaptor makes it possible for
two classes to work together when they cannot communicate with each other
because they implement different interfaces.

To better understand the need for the adaptor pattern, let us take a closer
look at two different water-balance models described by [PSh04]. The
models are Ritchie's water-balance model [Rit98] and the ISM (Irrigation
Scheduling Model) developed by [GSROO].

98 SOFTWARE ENGINEERING TECHNIQUES

Ritchie's model uses the United States Soil Conservation Service (SCS)
method to determine runoff and in turn, calculate the amount of water that
enters the soil surface. This method in Ritchie's model is referred to as
calculatelnfiltration. The ISM model describes the amount of water entering
the soil as effective rainfall and uses the SCS method to determine this
amount. In the ISM model, the same method is referred to as
calculateEffectiveRainfallSCS, Both models refer to the same process using
different names.

Let us suppose that each of these models is developed as a component that
can be plugged into some decision support system used for crop yield
simulation. Ritchie's component will provide the amount of water that enters
the soil surface by responding to the message calculatelnfiltration, whereas
the ISM component will provide the same result by responding to the message
calculateEffectiveRainfallSCS, Let us suppose that initially the decision
support system uses Ritchie's component. The object that needs to know the
amount of water entering the soil sends the appropriate message to Ritchie's
component. In the case that there is a need to replace Ritchie's component
with the ISM component, there is a problem as Ritchie's and ISM components
implement different interfaces. An object that can communicate with
Ritchie's component by sending the message calculatelnfiltration cannot
communicate with the ISM component as the latter does not recognize this
message. The sender of the message calculatelnfiltration ignores the fact that
the ISM component does not understand this message and that the understood
message is calculateEffectiveRainfallSCS. Although the developers have used
good design techniques to develop these two models as components, the
reusability of components is impacted by the different naming conventions
used by different authors.

This problem can be solved using the adaptor pattern as shown in
Figure 7-9.

DESIGN PATTERNS 99

DecisionSuport
System

uses

l : *

> i i
' p *

1

InterfaceRitchie

"^calculatelnfiltratioft)

zr

InterfacelSM

^c alcu iat eEffect keRainfel! SCS(}

i ^

1

uses

1

Adaptor

"^calculatelnfiltratioit)

Figure 7-9. Class diagram for the adaptor pattern.

The decision support system uses Ritchie's model. This is shown in Figure
7-9 by the association uses between the DecisionSupportSystem class and the
InterfaceRitchie interface. InterfaceRitchie defines a method referred to as
calculatelnfiltration. The Adaptor class implements InterfaceRitchie',
therefore, it should provide an implementation for the method
calculatelnfiltration. Class Adaptor has an association with InterfacelSM,
which allows Adaptor to access data and behavior from InterfacelSM, The
body of the method calculatelnfiltration defined in the Adaptor class does not
do calculations, but it simply delegates execution to the method
calculateEffectiveRainfallSCS defined in InterfacelSM.

As the DecisionSupportSystem class knows how to call the method
calculatelnfiltration from InterfaceRitchie, it therefore knows how to call the
same method from class Adaptor because Adaptor implements
InterfaceRitchie. Therefore, the DecisionSupportSystem class can call a
method defined in InterfacelSM even when it cannot communicate directly
with this interface. The Adaptor class makes possible the communication
between two classes when there is no association between them, as shown in
Figure 7-10.

100 SOFTWARE ENGINEERING TECHNIQUES

DecisionSuportSystem

InterfaceRitchie

^calculatelnfiitratton(f

5 ~

Interface! SM

<-
Adaftlor

% 'calcuiateEffectiveRainfall SCS(| ^slculatelnfiltrationO

Figure 7-10. An adaptor allows communication between classes that do not implement the
same interface.

Figures 7-11, 7-12, and 7-13 are examples of a simple implementation in
Java of classes that are involved in the adaptor pattern presented in Figure 7-
9. Figure 7-11 shows a simplified definition of InterfaceISM thed defines the
public interface for all the classes implementing this interface. This interface
defines a method referred to as calculateEffectiveRainfallSCS that will
calculate the amount of water that enters the soil surface. Interfaces only
define the name of the methods and their signature; they do not provide the
logic of the implementation.

1 package AdaptorPattem;
2 public interface InterfaceISM {
3 public double calculateEffectiveRainfallSCS();

}

Figure 7-11. Definition of InterfaceISM.

Figure 7-12 shows a simplified definition of the interface InterfaceRitchie
that defines the public interface of all the classes implementing this interface.
This interface also, defines a method referred to as calculatelnfiltration that
calculates the amount of water entering the soil surface according to Ritchie's
model. Figure 7-13 shows the definition of class Adaptor. Line 3 shows that
class Adaptor implements InterfaceRitchie', therefore, Adaptor should provide
an implementation of the method calculatelnfiltration defined by the
interface. Line 5 shows thsd Adaptor has an attribute of type InterfaceISM thdit
allows class Adaptor to access data and behavior from any class implementing
InterfaceISM. Lines 7 to 10 show the definition of method
calculatelnfiltration. The result of this method is of type double. Line 9

DESIGN PATTERNS 101

shows that the execution is delegated to object ism that points to an object of
type InterfacelSM. The result of the method calculatelnfiltration is obtained
by executing the method calculateEffectiveRainfallSCS defined in
InterfacelSM. In this way, object DecisionSupportSystem can send the
message calculatelnfiltration to object InterfacelSM without knowing about
the latter.

1 package AdaptorPattem;
2 public interface InterfaceRitchie {
3 public double calculatelnfiltrationQ;
4 }

Figure 7-12. Definition of InterfaceRitchie.

1 package AdaptorPattem;
2 public class Adaptor implements InterfaceRitchie {
3 private InterfacelSM ism;
4 public double calculatelnfiltrationQ {
5 return ism.calculateEffectiveRainfallSCSQ;
6 }
7 }

Figure 7-13, Definition of class Adaptor.

4.2 The proxy pattern

The intent for this pattern is to add a level of indirection with a surrogate
object that provides the same services as the real object. The surrogate object
is responsible for controlling access to the real object [Lar02].

This pattern is almost never used by itself; usually it is used by other
patterns. The proxy pattern plays an important role in middleware software
such as Java's RMI and CORBA. These technologies are presented later in
this book.

A proxy object is designed to receive calls for another real object, the
object that provides the required service. Therefore, the proxy and the real
object should provide the same services. The proxy object does not provide
any implementation for the behavior defined in the real object; it only
delegates the call to this one. Thus, the proxy object makes the location of the
real object irrelevant to its clients. A proxy object is located near the client
that needs the services. Clients that use the behavior of the real object are not
aware of the location of this object; the proxy makes it look as clients are

102 SOFTWARE ENGINEERING TECHNIQUES

communicating with the real object. Figure 7-14 shows class diagrams for the
proxy object.

o
Commonlnteiface

^cloSmthingO

Common Abstract
class

^doSmthingCI

impleifients implelnents

RealQbject

^doSmthingO

ProxyOfciect

^doSmthingO

RealObject

^doSmthingO

ProxyObject

%oSmthing()

Figure 7-14. Class diagram for the proxy object.

As shown in this figure, the real object and the proxy object may
implement the same interface or they may have a common superclass. In the
case they implement the same interface, the real object and the proxy object
provide a polymorphic implementation of the behavior defined in the
interface. While the real object provides an implementation for the behavior
defined in the interface, the proxy's behavior is to delegate the call to the real
object.

How do the proxy and the real object communicate with each other?
Figure 7-15 shows the communication between the proxy and the real object.

doSmthmgQ

Client

rBtum msuiis

ProxyObject

^cloSmthingO

doSmlhmgQ

return remits

Figure 7-15. Communication between the proxy and the real object.

A cHent that needs to use the services provided by the real object sends a
message to the proxy. As the proxy object implements the same interface as
the real object, it recognizes the method call and it delegates it to the real
object. The real object executes the call and returns the results to the proxy
object that communicates them to the client. The client is unaware of the fact

DESIGN PATTERNS 103

that the service requested is provided through the proxy. More details about
the implementation of the proxy object will be provided later in this book in
Chapter 11.

4.3 The iterator pattern

The purpose of the iterator pattern is to separate the logic of an algorithm
manipulating the data from the particular structure of the container containing
the data [GHJ95].

As an example, let us consider the problem of obtaining weather data for a
simulation model. As previously mentioned, different authors have solved this
problem using different mechanisms; some authors read the weather data
from a text file saved locally in the system [HWHOl]. Others have developed
complex systems to obtain weather data from networks of real-time weather
stations [LKN02].

Algorithms used in both cases have things in common and things that are
different. The things in common are that in both cases an iteration is used to
sequentially analyze each of the daily (or other time unit used) data. Things
that are different are the particular data structures or data containers used in
each of the cases. In the case that data are saved in a text file, the data
container is a file containing lines of data, each line containing weather data
for a day or other time unit used in the simulation. At each step of the
iteration, a line containing the daily data will be read and the corresponding
values will be assigned to variables designed to hold them. In the case that
weather data are obtained from a weather station, the data container can be a
table that is returned from the execution of an SQL statement. Each row of the
table represents daily data. Looping through the container, an object holding
the daily weather data will be returned and each of the daily weather
parameters can be obtained by sending the appropriate message to this object.
As an example, to get the rainfall for the day, the message getRainfall should
be sent to the object holding the daily data.

It is desirable to design the Weather object in a general way that multiple
sources could be used and independently of the particular container used to
hold the data. This problem can be solved using the Iterator pattern. Figure 7-
16 shows a class diagram for classes involved in the Iterator pattern.

The class diagram shown in this figure is taken from a crop simulation
scenario. Object Simulator needs daily weather data for the simulation
process. The Simulator has access to Weatherlnterface that defines the
operations needed to obtain the weather data. Weatherlnterface implements
interface Iterator provided by the Java programming environment that makes
available the logic for iterating over a data container. Therefore,

104 SOFTWARE ENGINEERING TECHNIQUES

Weatherlnterface defines iterator behavior as well. Class Weather implements
the Weatherlnterface', therefore, it will provide the behavior necessary for
obtaining the data from a particular data container. Class Weather has access
to WeatherDataContainer from where it will extract the data.
WeatherDataContainer is a collection of Daily WeatherData that is an object
with attributes such as rainfall, minTemperature, maxTemperature,
solarRadiation, etc. The Simulator has access to an object of type
Daily WeatherData and can obtain the values of rainfall, temperature and solar
radiation by sending to this object messages such as getRainFall,
getSolarRadiation, etc.

It is important to note that the Simulator that requests the data is
completely independent of the class Weather that provides them. As
Simulator has access to the interface Weatherlnterface, not to the concrete
class Weather, it can use any Weather object that provides a polymorphic
implementation of this interface. Hence, this architecture has two advantages:
First decouples Simulator from the concrete class Weather and second, it
makes the algorithm that uses the weather data independent from the
particular data container. Therefore, different sources of weather data can be
used in the simulation process.

.. «lnt»fface» •
Ittrator

Removed , •

A"'

Weatherint efface

X 4

Weather

.»̂,„ , ,..,.

1 1

Simulator

(1

USfS

gBtWmthm€}ata 1

w *
1 Daily WeatherData 1

1
Weat herDataC out stner

Figure 7-16, Classes involved in the iterator pattern.

Figure 7-17 shows another way of imposing class Weather to provide
Iterator type of behavior. Class Weather implements two interfaces and will
provide the behavior defined in both interfaces.

DESIGN PATTERNS 105

«int#rface»
Iterator
|fr©m utilj

%asNextO
%extO

Weatherint efface

T

gefWeaiiierOafe
Simulator

i Daily¥/eatherP8ta

Weather
getWeafietDsta

7fr^

.JL
Weat herOat aC cnt ain er

Figure 7-17. Another class diagram for Iterator.

A detailed implementation of this pattern in Java is provided in section
Implementation of the Kraalingen model in Java of Chapter 8.

4.4 The facade pattern

The purpose of the fa9ade pattern is to provide an interface to a set of
interfaces in a subsystem [GHJ95]. Using this pattern makes the objects
included in the subsystem easier to use.

To explain the context in which the fa9ade pattern can be used, let us refer
again to an application that is based in a crop simulation model. The
application will have a graphical user interface (GUI) that will allow users to
enter the required initial data. The heart of the application is the crop
simulation model that will run the simulation using the entries provided by the
user. Most of the crop simulation models use a core of objects or components
such as Weather, Soil, Plant, and SoilPlantAtmosphere. The simulation results
may be used for purposes such as to display different graphics or maps or to
create reports or other operations that are needed to satisfy user's
requirements. The communication between the user interface and the crop
simulation model is bidirectional; users will enter initial data and the
simulation model will return the results of the simulation to the user's
interface.

When environmental-based applications are developed, the most common
approach is to strongly link the code needed for the user interface with the
code representing the environmental model. This approach may allow for fast
software development, as any object can be accessed by any other object
anywhere, but it is not an optimal one, as it creates long-term problems related

106 SOFTWARE ENGINEERING TECHNIQUES

to code maintenance and reuse. Although the user interface and the
environmental model exchange data between them and are part of the same
application, they represent two separate parts of the system and therefore
should be designed to function independently. Having strongly coupled the
user interface with objects/components such as Soil, Weather, and Plant
makes the system hard to maintain and difficult to reuse. In such a highly
coupled system, no part of it can be reused or easily modified.

This kind of problem can be solved using the fa9ade pattern. The essence
of this pattern is to provide a unique point of communication between an
object and the surrounding environment. Figure 7-18 shows the class diagram
for the fa9ade pattern in general.

As shown in this figure, communication between client objects and a
group of other objects is filtered by the FacadeClass. Therefore, FacadeClass
should be provided with the right behavior in order to represent the rest of the
objects in communication with the surrounding environment.

Clientl Client2

/

\ /

/

Figure 7-18. Class diagram for the facade pattern.

DESIGN PATTERNS 107

Figure 7-19 shows the class diagram for the crop simulation example. It is
important to note that the associations between Simulator and the GUI classes
are bidirectional. Simulator controls all the communication between the GUI
classes and crop simulation objects.

Although the FacadeClass controls the communication between clients
and a group of classes implementing some abstraction, it is not necessary that
the FacadeClass be a rigorous barrier between them. In some cases it is
advised to let clients have access to particular objects behind the fagade. In
these cases, the FacadeClass should be provided with the behavior that makes
its objects accessible to clients. Figure 7-19 shows that Simulator is provided
with operations that can make available to GUI objects any of the Plant,
Weather, Soil, or PlantSoilAtmosphere objects.

GUIClassI GUICIass2 GUICIassn

/

\ /

/

Simulator

^getSoilO
^getPlanti)
*^getWeathei\)
^getSoilPlantAtmospheret}

/

Soil
A

Plant

V

Weather Soil PlantAtmosph ere

Figure 7-19. Communication with GUI classes goes through the Simulator.

108 SOFTWARE ENGINEERING TECHNIQUES

5. BEHAVIORAL PATTERNS

5,1 The state pattern

The purpose of the state pattern is to allow an object to alter its behavior
when its internal state changes [GHJ95]. Using this pattern makes it easier to
model some complicated scenarios often present in biological simulation
models.

Let us consider the example of the lifecycle of an insect. At the beginning,
an insect exists in the form of eggs. Later on, as the incubation period ends,
eggs are transformed into larvae and finally a larva is transformed into an
adult insect. During its different development stages, an insect has different
characteristics or properties. An egg has a different behavior from a larva and
a larva behaves differently from an adult insect. How can an entity be
modeled as an object when it has different characteristics and behavior during
different phases of its life? The state pattern can be used to solve this type of
problems. Figure 7-20 presents a class diagram for the state pattern.

Insect
%sp8cie: String
%currentStage: DevelopmtntStage

%etDe¥elopmentStage()

uses

P

Development Stag 8

^nextStageO

Figure 7-20, The UML diagram for the state pattern.

According to Figure 7-20, class Insect has an association with another
class named DevelopmentStage, Class DevelopmentStage is subclassed by
three other classes Egg, Larvae, and Adultlnsect, representing the three
different development stages of an insect. The role of class DevelopmentStage
is to define an interface common to all subclasses and can be modeled as an
abstract class. Class Insect defines the common characteristics of the insect
regardless of its current development stage such as name of the specie, etc.
Because of the relationship with DevelopmentStage, class Insect has an
attribute of type DevelopmentStage referred to as currentStage that allows

DESIGN PATTERNS 109

access to data and behavior of each of the subclasses. Therefore, class Insect
can delegate all received messages to the particular subclass that defines the
current development stage. It is important to note that attribute currentStage
can hold only one value at a time, representing the fact that an insect can be at
one development stage at the time. If we need to know the current
development stage of the insect, then the message getDevelopmentStage
should be sent to object Insect and the result is the name of the class
referenced by attribute currentStage. Each of the subclasses will define data
and behavior necessary to describe the particular development stage of the
insect.

Class DevelopmentStage has a method referred to as nextStage. The
purpose of this method is to determine the insect's next stage. As class
DevelopmentStage is an abstract class, the method nextStage will have no
implementation. This method is inherited by all the subclasses {Egg, Larvae,
and Adultlnsect) and each of the subclasses will provide a specific
implementation of this method. As an example, the method nextStage applied
to an object of class Egg will return an instance of type Larvae,

When the message nextStage is send to an object, for example, to object
Larvae, besides dehvering an object representing the next development stage,
the object should destroy itself Thus, the creation of an object representing
the next development stage is accompanied with the destruction of the
previous stage; a new object of type Adultlnsect is created and the current
object of type Larvae is destroyed. Every time that a change happens, the
name of the newly created object is stored in the attribute currentStage of
class Insect.

5.2 The strategy pattern

The intent for this pattern is to define a family of algorithms, encapsulate
each one, and make them interchangeable [GHJ95]. Therefore algorithms can
vary independently from the clients that use them.

In order to better understand the context in which the strategy pattern
operates, let us consider the example of obtaining weather data for a crop
simulation system. We have previously mentioned that these data can be
obtained using different sources such as using a text file where the data are
saved, reading them from a database system, or using an on-line system of
weather stations. A well-thought-out system should provide behavior for
using several sources of weather data or, in other words, several strategies
should be available to users. In a system developed in a traditional
programming language such as FORTRAN, the ability to choose between
several options would require the use of complex if-then-else statements.

no SOFTWARE ENGINEERING TECHNIQUES

Furthermore, the use of an if-then-else statement will allow for using only
known scenarios. In the case where a new way of obtaining weather data is
made available, changes to the code are required. Therefore, traditional
programming languages offer rather limited and rigid solutions to this
problem.

The object-oriented paradigm solves this problem by offering a flexible
and better solution. The behavior for using different sources of weather data
will be implemented as different classes; each class should provide weather
data from a particular source. Then, the question is, how do we choose the
right class between several potential ones? The strategy pattern can be used to
solve this type of problems. Figure 7-21 shows classes that are involved in the
strategy pattern.

The WeatherDataManager class provides the behavior for managing the
weather data (i.e., provides the capability of using different sources of
weather data.) The WeatherDataProvider is an interface that represents the
common behavior all classes that provide a particular implementation of this
interface should implement. Each class is designed to provide data from a
particular source. The WeatherDataManager has a unidirectional association
with WeatherDataProvider. The multiplicity of this association allows one
manager to use one or zero weather data provider. Classes
WeatherDataFromFile, WeatherDataFromStation and WeatherDataFrom
Database provide behavior for extracting data from a particular source of
data. These classes implement the same interface, the WeatherDataProvider
interface; therefore, any one of them can be used to provide the weather data
requested by the weather data manager.

WeatherDataManager

—>|
0..1

WeathefOataFrom
File

O
WeatherDataProvider

%etTemperatufeMinimum(}
%etTemperatureMaximum(|
%etRatnfall{)
%etSolarRa£li3tion()

"̂ F " ^

WeatherDataFrom
Station

WeatherDataFrom
Database

Figure 7-21. Class diagram for the strategy pattern.

DESIGN PA TTERNS 111

Notice that the weather data manager does not have any knowledge of the
classes that can provide what the manager wants. The weather data providers
are totally independent of the user of the data. This allows for modifying the
algorithm that obtains the data without requiring any changes in the user of
the data. Furthermore, additional ways of obtaining weather data can be added
to the system without forcing the data user to modify its behavior. The user
can change the strategy for obtaining weather data without requiring changes
to the code. We will see an implementation of this pattern in the second part
of the book, in section Java implementation of the Kraalingen model.

PART 2: APPLICATIONS

In the first part of the book, we introduced the basic concepts of the object-
oriented paradigm and their notations in UML. In the second part of the book,
we will see how the knowledge accumulated so far will be used to model a
particular problem and develop the corresponding software. We will go
through the phases of analysis and design of a simple crop simulation model.
The selected model is chosen to be simple on purpose; we would like to avoid
getting lost in the details of the crop modeling. Instead, our focus is on the
approach used to carry out the analysis and the design using the object-
oriented paradigm and construct visual models using UML. The relative
simplicity of the selected model does not question the integrity of the used
methodology or the nature of the problems encountered and the provided
solutions.

Chapter 8 deals with the process of analysis, design, and development of a
crop simulation model referred to as the Kraalingen approach [Kra95]. First, a
short description of the problem will be provided. Some of the equations used
in this model will be presented to demonstrate the links that are needed
between model elements such as Plant, Soil, and Weather, Then, the use case
shows what the system can offer to users, without showing how these
functionalities will be provided. After the use case model is developed, the
use case realization is presented for each use case. The use case realization
presents several type of diagrams developed to show the dynamic aspects of
the system. The diagrams are the sequence and collaboration diagrams,
known as interaction diagrams. They help developers to better understand the
role and the behavior of each of the potential classes needed to develop the
system.

A conceptual model for the Kraalingen approach is presented to show
concepts and abstractions from the problem domain and their relationships.
The conceptual model shows only one type of class, the classes that represent
concepts of the problem. Other classes than the ones that represent concepts
are needed; the behavior of these classes is needed to present the graphical
user interface (GUI) and the dialog between the user and the system. Finally,
the implementation in Java for interfaces and classes used in the system is
provided.

Chapter 8

THE KRAALINGEN APPROACH TO CROP
SIMULATION

The crop simulation model considered in this study is the one developed
by Kraalingen [Kra95]. This approach uses the rate-state concept of
simulation modeling [PL82], Calculations and statements are divided into
four categories: Initialization, rate calculations, integration calculations, and
the output of results. These calculations are executed sequentially. The
simulation starts at the beginning of a time step with a certain value for its
state variables; therefore, the initialization step must be performed first. Rate
and integration calculations are repeated a certain number of time steps until a
termination condition is satisfied. For crop growth, a complete simulation run
simulates growth from emergence to harvest. Final calculations and
statements are made at the end of a simulation run (e.g., by writing final crop
yields to an output file). A detailed description of the model and the FSE
(Fortran Simulation Environment) can be found in [BTKOO].

Kraalingen has used a modular approach when each module should:
• Read its own parameters;
• Initialize its own variables;
• Accept variables passed to it from other modules and the environment;
• Pass variables that are computed within the module;
• Own its set of state variables;
• Compute rates of change for its state variables;
• Integrate its state variables;
• Write its own variables as output.

In this model, the effect of temperature on daily plant growth is calculated
by the equation:

116 SOFTWARE ENGINEERING TECHNIQUES

PT = l-0.0025((0.25''Tmm+0.75''Tmax)-26''''2 Equation 1

where:
PT = temperature based limiting factor,
Tmin = minimum daily temperature,
Tmax = maximum daily temperature.

The plant cycle is divided in two phases: Vegetative and reproductive. The
vegetative phase goes on until the plant reaches a genetically determined
maximum leaf number [PBJ99]. In the vegetative phase, the delta leaf area
index is calculated by equation:

dLAI = SWF A C'^PT'^PD'' EMP\ "'dN'^ia /(I + a)) Equation 2

where:
dLAI = delta leaf area index,
SWF AC = soil water factor,
PT = temperature-based limiting factor,
PD = plant density,
dN = leaf number increase,

EMPl = empirical coefficient for LAI computation, maximum leaf area
expansion per leaf,

and a is calculated by the equation:

a = ^ * ""{EMPl * (A^ - nb)) Equation 3

where:
EMP2, nb = coefficients in the expolinear equation,
N == plant development stage.
In the vegetative phase, the assimilates are partitioned between canopy and

roots whereas in the reproductive phase, all growth occurs in the grain.
During the reproductive phase, the difference between daily mean
temperature and a base temperature is used to calculate the rate of plant
development. Total rate of development towards maturity is accumulated in
each step of the simulation [PBJ99].

Our goal is not to make a detailed description of the Kraalingen approach.
We are presenting only some of the equations that explain the relationships
between simulation elements, plant, soil, and weather. [PBJ99] provide a
detailed description of the equations used in this crop simulation model.

THE KRAALINGENAPPROACH TO CROP SIMULATION 117

1. SYSTEM REQUIREMENTS

In this section, we will define the requirements of the system. Usually, this
part of the project is undertaken in close collaboration with future users of the
system. The users should express all their concerns about the future system:
The functionalities the system should provide, the way the input data are
entered into the system, and the way the final results are presented.

In order to make things simpler, we will consider that the user will need to
enter some initial data needed to define the context in which the simulation is
running. The initial data are mostly soil and plant data. The initial plant
related data are used to populate an instance of class Plant, usually the plant
initial data are related to the planting date. By entering the planting date as an
input parameter, users can study the impact of this parameter on the crop
yield. Initial soil-related data are used to populate an instance of class Soil,
usually the initial soil data are soil depth and wilting point percentage. By
providing initial soil data, users can study the impact of these soil parameters
on the crop growth. After entering the initial data, the user may start the
simulation process.

After performing a simulation, the system will return the results to the
user. For reasons of simplicity, we will assume that the results of the
simulation can be displayed in the same window as the input data. Therefore,
the user will have to use only one window for entering initial data and for
displaying the results.

2. THE USE CASE MODEL

As mentioned in Chapter 5, where we talked about use cases, the use case
model represents what the system can do for the users, without explaining
how the system will do it. The users of our future system require that the
system provide capabilities to enter initial data and perform a simulation. As a
first approach we will consider as the use case model the one presented by
Figure 8-1. As shown in this figure, users can use the system to enter initial
data and to start a simulation.

118 SOFTWARE ENGINEERING TECHNIQUES

Enter Initial Data

Start Simulation

Figure 8-1. The use case model for the Kraalingen approach.

Let us take a closer look at the use case model in Figure 8.1. The use case
Enter Initial Data represents the set of operations that the user should perform
to create initial conditions for the simulation process. The process of entering
the initial data is not an independent process that can stand on its own; it is
closely related to the process of starting a simulation. The user will not obtain
interesting results by performing a simulation with default values, without
entering the required initial data. Presenting the set of operations needed to
enter the initial data as a separate use case does not match well with the
definition of the use case. The use case definition states that the set of
operations represented by the use case should have a well-defined purpose
and a useful result. Therefore, as the process of entering initial data is closely
related to the process of performing a simulation. We will present both
activities as one unique use case, as shown in Figure 8-2.

- >

User
Start Simulation

Figure 8-2. Both activities as one unique use case.

THE KRAALINGENAPPROACH TO CROP SIMULATION 119

2.1 The use case description

After presenting the use case model, it is important to provide a
description of what the use case is supposed to do. A use case description
helps people involved in the process of the software development to
understand the functionalities encapsulated in the use case and to facilitate the
discussion about the vaHdity of the use case.

Let us consider the Start Simulation use case and provide a potential
description for it. One possible brief description of this use case can be the
following:
This use case describes how a user can perform a crop simulation process,
The data entered by the user define the initial conditions for plant and soil
After the calculations are terminated, the results are displayed in the window,

The brief description is important and if the use case is simple enough, all
it can be provided with is the brief description. When the use case is complex,
additional information is required. A more detailed description of the use case
can be given in the form of an outline. The outline shows the simple steps of
the use case using short sentences and presented in a timely manner. The
focus at this point is on the clarification of the basic flow of the events. The
basic flow (or the main flow) does represent a description of the normal and
expected path of the execution of the use case. Some authors refer to the basic
flow of events as the happy scenario, where everything goes well and nothing
goes wrong.

Later, the focus will shift into presenting the most significant alternatives
and exceptions, thus shedding more light on the complexity of the use case.
An alternative flow of events represents a possible execution route from the
starting point to the end of the use case that is different from the basic flow.
An alternative flow represents one of the scenarios where something is not
executed as predicted. Thus, most of the alternative flows represent the errors
that may occur during the execution of the use case. The basic flow represents
the successful route from the beginning to the end of the use case. The
alternative flows show all the detours (unsuccessful executions) that may
occur during the execution of the use case.

An outline for the use case Start Simulation can be the one presented in the
next section.

2.2 Basic flow

1. The use case starts when the user clicks on the Start
Simulation button.

2. Initialize plant, soil, and weather.

120 SOFTWARE ENGINEERING TECHNIQUES

3. Loop through the weather data:
a. Calculate rate for soil and plant.
b. Integrate soil and plant.

4. End of the weather loop.
5. The use case ends.

2.3 Alternate flow

1. The weather file is not found (in the case that the weather data are
provided using a text file stored locally).

2. The communication with the weather station is not possible (in the case
that the weather data are provided using an on-line weather station).
In both cases, the system should stop the execution and display an

appropriate error message.

2.4 Preconditions

If we take a closer look at the main flow of events for the use case Start
Simulation, we realize that the sequence of events may not be meaningful,
unless we are at the right starting point of the use case. In the case that the
weather data are provided as a text file, the right starting point for the
simulation is when the weather file exists and is stored in the right directory.
If there is no weather data file, then the simulation cannot be performed. In
this case, we can say that the precondition for the use case Start Simulation is
the following:

A valid weather data file is stored in the right directory of the system.
A precondition is a statement that presents conditions under which the use

case can be executed. In the case above, the precondition states that no use
case can be executed if there is no weather data file or the file is not placed in
the right directory.

2.5 Postconditions

The postcondition is a statement that describes the state of the system
when the use case is terminated. The postcondition should be true for all the
alternative flows, regardless of which one was executed and it should be false
for the basic flow. The idea behind the postcondition is that if anything goes
wrong during the execution of the use case, the system should be left in a
condition described in the definition of the postcondition. Defining an
adequate postcondition is very important as it defines the state the system
should be in when the use case terminates.

THE KRAALINGENAPPROACH TO CROP SIMULATION 121

As an example, in the case when weather data are provided by an on-line
weather station one possible postcondition can be defined as follows:

The connection between the user's computer and the server where the
weather data are located should be terminated.
The above formulation of the postcondition looks like a very trivial thing,

but it is important to know the state of the system when the connection with
the weather server fails. Let us suppose that the postcondition for our use case
were defined as follows:

The system should continue dialing the weather server until connection is
established.
According to this definition of the postcondition, the system will continue

dialing the server until the connection is restored. In this case, the system will
be busy for as long as the connection is not established. A system designed to
persist connecting to the server no matter how long it takes may not be a good
system, as the system cannot be used as long as it tries to connect to the
remote server.

3. THE USE CASE REALIZATION

In Chapter 5 when we talked about use cases, we pointed out clearly that
the use cases only show what the system can provide to its users without
explaining how. Therefore, the use case model helps one to understand what
the users can ask the system to do, without showing how the system will do it.

Now, it is the time to consider how the system will provide its services to
the users. This is achieved by developing for each use case its realization. The
realization describes how the behavior of a use case will be provided by
collaboration of different elements of the system. The realization of a use case
can be presented using UML interaction diagrams or textually using
structured English.

It is important to note that the separation of use cases from the use case
realization decouples the process of gathering requirements (expressed in a
synthetic way in the use case model) from the design of the model (explicitly
expressed in the use case realization). This separation allows developers to
focus on one well-defined problem at a time and avoid dealing with design
issues during the phase of analysis and vice versa. Figure 8-3 shows the UML
notation of the use case realization. The dotted eclipse represents the use case
realization and the dotted arrow represents the realization association. For
each use case of the model, a use case realization should be developed.

122 SOFTWARE ENGINEERING TECHNIQUES

Start Simulatian Start Simulation Realization

Realization
realtionship

Figure 8-3. The use case realization for Start Simulation use case.

3.1 Sequence diagram for the use case

Figure 8-4 shows the sequence diagram for the Start Simulation use case.
As shown in this figure, the sequence diagram presents all the elements of the
system that participate in the simulation. Messages are numbered to show the
order in which they are sent. The process starts with the user sending the
message simulate to Simulator. Messages number 2 through 14 show what the
Simulator should do in order to fulfill the received request. Simulator is
responsible for the creation of all needed objects and for sending to each of
them the right message at the right time.

THE KRAALINGEN APPROACH TO CROP SIMULATION 123

User

1 1: simulate

Simulator

^
1 ^1

Loop over C\ 1.
weather data

•̂̂ l

15: getSimulat ion Results
y\

Plant

"I I Ulttdlb
^ r

5: initialize

^\

8: calculateRate

11: cald

13':>i/itegrate

Soil

3: create

1 6: initialize J

1 9: getwaterStress

lateRate

J 14: integrate

Weather

^

1 4: create
^1

1 7: initialize ^ |

10: getWeatherData

\ 12: getVv'eatherData

^

Figure 8-4. Sequence diagram for the Start Simulation use case.

Messages 2, 3, and 4 show that Simulator needs to create instances/?/a/7/,
soil, and weather of the corresponding classes Plant, Soil, and Weather.
Messages 5, 6, and 7 initiahze each of the instances created in the previous
steps. During the initiaHzation process, each of the instances will be populated
with initial values, part of which is provided by the user. As an example, the
value for the planting date for object plant is provided by the user before
starting the simulation process. Similarly, initial values for soil depth and
wilting point in percent, needed for populating an object soil, are provided by
the user.

Messages 8 to 14 are part of the iteration over the weather data. These
messages will be repeated a certain number of times until the condition plant
is mature is satisfied. At the beginning of each iteration. Simulator sends to
object plant the message calculateRate. In order to calculate the rate object,
plant needs soil and weather data. Therefore, object plant sends the message
getWaterStress to object soil and the message getWeatherData to object
weather.

The next step in the simulation process is the integration of the values
obtained during the rate calculation. Thus, the simulator sends the message

124 SOFTWARE ENGINEERING TECHNIQUES

integrate to both plant and soil objects. Message number 15,
getSimulationResults, returns to the user the results of the simulation process.

The sequence diagram for the use case Start Simulation shows all the
messages sent in a timely manner to different objects to perform a simulation
process. This detailed diagram presents the interaction between objects to
achieve the required functionality.

3.2 Collaboration diagram for the use case

Collaboration diagrams provide another level of detail of the use case
realization. We now know that sequence and collaboration diagrams are
semantically the same, as they represent the interaction between the same
elements, but the focus of the interaction is different. In the sequence diagram,
the focus is on the order in time that messages are sent whereas in a
collaboration diagram, the focus is on the object. Figure 8-5 shows the
collaboration diagram for the Start Simulation use case.

User

2: create
5: initialize /

8: calculateRate /
13: integrate X

/ /
1: simulate

15: getSimulationResults /

> Simulator

3: create \ \
6: initialize \

11: calculateRate \
14: integrate \

Plant

\v 1Q. getWeatherData

4: create \
7' initialiyp

. . "̂ ^

\

Weather

f /

Soil

/ / 12: getWeattierData

Figure 8-5. Collaboration diagram for the use case Start Simulation.

As shown in Figure 8-5, object soil receives messages 3, 6, 11, and 14
from object simulator, message 9 from ohiQct plant and sends message 12 to
object weather. Therefore, object soil should be provided with the appropriate

THE KRAALINGENAPPROACH TO CROP SIMULATION 125

behavior in order to respond to the received messages. Similarly, ohJQct plant
receives messages 2, 5, 8, and 13 from object simulator and sends message 9
to object soil and message 10 to object weather. Therefore, object plant
should be provided with the appropriate behavior to respond to messages it
receives.

As shown in Figure 8-5, a collaboration diagram helps one to understand
the kind of behavior objects should provided to be able to successfully dialog
with each other to achieve the required functionality. Figure 8-6 shows the
behavior defined for class Soil, defined by analyzing the collaboration
diagram. According to the collaboration diagram, class Soil should respond to
messages calculateRate, integrate, initialize, and create. For the moment, we
do not have enough information to define the attributes of the class Soil, as we
are focused on defining its behavior. Once we know the kind of behavior class
Soil should provide, then the appropriate attributes will be added to its class
definition.

According to the collaboration diagram, Simulator receives messages 1
and 15 from the user; therefore, its class definition should include methods
named simulate and getSimulationResults. In the same way, we will define the
behavior of class Plant as shown in Figure 8-7 and of class Weather shown in
Figure 8-8.

Soil

"^calcLilateRateQ
" întegrateO
•^initializeQ
%reateO
%etWaterStress()

Figure 8-6. The definition of behavior for class Soil.

126 SOFTWARE ENGINEERING TECHNIQUES

Plant

•^caiculateRateQ
• întegrateO
^initialize!;)
^createQ

Figure 8-7. The definition of behavior for class Plant.

Weather

^getWeatherDataO
^initialize 0
"^ciBateQ

Figure 8-8. The definition of behavior for class Weather.

4. CONCEPTUAL MODELS

Interaction (sequence and collaboration) diagrams help us to understand
how modeling elements dialog with each other to achieve functionality. It is a
good modeling practice to start the design process by developing a conceptual
diagram that represents our knowledge of the application domain expressed
through concepts, abstractions, and their relationships. Conceptual diagrams
are the result of an activity that is referred to as conceptual modeling.
Conceptual modeling can be defined as the process of organizing our
knowledge of an application domain into hierarchical rankings or orderings of
abstractions, in order to obtain a better understanding of the phenomena of
concern [Tai96]. Conceptual modeling makes heavy use of abstraction and the
object-oriented approach, and unlike other programming paradigms, provides
direct support for the principle of abstraction. Any entity or concept in a
problem domain is conceived as an object provided with a certain state and
behavior to play a well-defined role.

THE KRAALINGENAPPROACH TO CROP SIMULATION 127

Conceptual diagrams have the advantage of presenting the concepts and
their relationships in an abstract way, independent of any computing platform
or programming language that may be used for their implementation. During
this phase, the focus is on depicting the concepts of the system and providing
them with the right data and behavior. Experience shows that implementation
technologies change constantly. Therefore, it is highly desirable that the
model we are about to develop be expressed in an abstract and logical manner
resilient to changes.

UML allows for designing a Platform Independent Model (PIM) that
presents many advantages. First, PIM allows for representing models using a
high level of abstraction. Details of the models can be expressed clearly and
precisely in UML as it does not use any particular formalism. UML is
semantically very rich, richer than any programming language. The
conversion of a UML diagram into code in a particular programming
language comes with loss of information. Therefore, the intellectual capital
invested in building models will be insulated from changes in the
implementation technologies.

After a PIM is developed, then the issue of selecting a particular
implementation environment can be addressed. Next, a Platform Specific
Model (PSM) will be developed by mapping a PIM to a particular computer
platform and a specific programming environment. The transformation of a
PIM to a PSM is realized using a mapping process. This two-layer concept, a
PIM and a corresponding PSM, separates the scientific model from the
implementation technologies. Usually, the science behind the model has a
much longer life than the implementation technologies. Changes and
evolution of the implementation technologies should not affect the logic of the
scientific model. Conceptual diagrams are an important tool for software
design. They help to structure the system and a well-structured system is easy
to develop, maintain, and reuse. Therefore, it is important to start with a
conceptual diagram that presents the core elements and the interactions
between them. It is a good modeling practice to name participating elements
and their relationships with meaningful names. Meaningful names for
concepts and their relationships make the model easier to understand; users
can use the conceptual model as a discussion platform where business issues
are addressed.

4.1 Conceptual model for the Kraalingen approach

In order to develop a conceptual diagram for the Kraalingen approach, let
us take a closer look at the equations of this model. Equations 1, 2, and 3 (see
Chapter 8, The Kraalingen Approach) represent the relationships between

128 SOFTWARE ENGINEERING TECHNIQUES

objects plant, soil, and weather. Equation 2 shows that soil water factor data
are needed to calculate changes (delta) in the leaf area index of the plant. The
same equation shows that the temperature-based limiting factor, calculated by
Equation 1, is needed to calculate delta changes in the leaf area index.
Equation 2 shows that temperature affects daily plant growth and that the
amount of water in soil impacts plant growth as well. Other equations show
that plant data are needed for calculations of processes occurring in soil and
soil data are needed for calculations occurring in plant. As an example, soil
data are needed to calculate daily net photosynthesis processes occurring in
the plant. Plant data are needed for calculating potential evapotranspiration,
potential soil evaporation, potential plant transpiration, and rate calculation.
These are processes that occur in the soil.

Based on the equations expressing relationships between soil, plant, and
weather, a diagram for the Kraalingen conceptual model can be presented as
shown in Figure 8-9.

Plant
growsin

Soil

Figure 8-9. Conceptual diagram for the Kraalingen approach.

As shown in Figure 8-9, there is an association referred to as growsin that
links Plant and Soil that reads that plant grows in the soil. This association is
bidirectional, meaning that an object of type Soil can access data and behavior
in an object of type Plant and vice versa; an object of type Plant can reach
data and behavior in an object of type Soil.

Weather data are used for calculating soil processes such as potential
evapotranspiration, runoff and infiltration. Therefore, the association

THE KRAALINGENAPPROACH TO CROP SIMULATION 129

usesWeatherData links Soil and Weather with navigation direction from Soil
to Weather, Thus, an object of type Soil is able to reach data and behavior
from an object of type Weather, Equation 1 states that weather data are
needed to calculate the growth rate reduction factor in plant. Therefore, an
association between Plant and Weather is needed with navigation direction
from Plant to Weather, This association is referred to as usesWeatherData
and allows an object of type Plant to access data and behavior from an object
of type Weather, The conceptual diagram shows that while objects of type
Plant and Soil should have knowledge of each other, object Weather does not
have access to any of the objects of type Plant and Soil. This is because of the
particular role the weather data play in the simulation; they are used by other
objects to calculate processes occurring in these objects. There are no
processes occurring in object Weather, therefore, object Weather does not
need to access data and behavior from objects Soil and/or Plant,

5. DISCOVER POTENTIAL CLASSES

The conceptual model shows the interaction between classes that represent
concepts from the problem domain; Weather, Plant, and Soil are classes that
represent concepts in a crop simulation domain. Although discovering all
needed concepts is not an easy task, this is only part of what needs to be
achieved. The conceptual model does not show any aspect of the user's
interaction with the system. This behavior, how users will interact with the
system, will be provided by some other classes that do not represent any of
the concepts of the problem domain and therefore, they are not part of the
conceptual model.

The conceptual model shows that class Plant needs to access data and
behavior from classes Weather and Soil, to calculate processes that occur in
class Plant, Associations between classes are "communication channels,"
which allow objects created from these classes, to send/receive messages to
one another. Although all the required structures are in place to make the
dialog between objects possible, the dialog does not happen by itself There is
a need for some controller/supervisor that would coordinate the dialog
between objects.

Experience shows that expectations for a system change over time. The
more users become familiar with the system, the better they understand the
system and their expectations grow; other requirements may be added to the
system and the logic that controls the dialog between classes may change. In
order to design a flexible system that is resilient to changes, three different
aspects of a system need to be taken into consideration. These aspects are:

130 SOFTWARE ENGINEERING TECHNIQUES

The communication between users and the system, the control of the logic of
the system, and the concepts of the problem domain. Therefore, three
different categories of classes, one for each aspect, need to be discovered. The
categories are: Boundary, control, and entity classes. Let us take a closer look
at each of these categories of classes and present their role in our future
system.

Note that the differences between classes that belong to different
categories are simply conceptual. Grouping classes into categories helps us to
reduce complexity by dividing the problem into smaller and independent
parts. During the implementation phase of the system in a particular
programming environment, the conceptual differences between classes
disappear; they are just classes provided with the right behavior to play well-
defined roles in the system.

5.1 Boundary classes

Boundary classes are used to model the interaction between users and the
system. As users of the system are modeled as actors, the boundary classes
represent the interaction between the actors and the system. Figure 8-10
shows the UML symbols for a boundary class; each of them can be used
interchangeably.

KD
SimulationForm

SimulationForm

Figure 8-JO. UML symbols for a boundary class.

As boundary classes control the interaction between users and the system,
actors can communicate only with boundary classes. Boundary classes serve
as a shield to separate the internal part of the system from the external events
that may affect the system and vice versa. Usually, boundary classes are used
to model graphic user interfaces.

There is at the least one boundary class per each actor/use case pair. Figure
8-11 presents an example of using a boundary class, referred to as
SimulationForm, to control the dialog between the actor, referred to as user
and the use case Start Simulation. The behavior of the class SimulationForm
should provide all the operations needed to start a simulation, such as entering

THE KRAALINGENAPPROACH TO CROP SIMULATION 131

initial data for soil and plant, selecting a weather station name from a pull
down list, etc. Additional behavior such as the one used for validating the
input data, can be part of class definition. As the input data are entered using
the boundary class, their validation should be part of class's behavior too.

User

- >

Start Simulation

The boundary' class t^
SimulationForm controls the
dialog between the user and
the system for use case
Start Simulation

SimulationForm

{from Logical VieA-J

Figure 8-11. One boundary class controls the dialog between an actor and a use case.

It is not necessary at this point of the analysis to go into deep details over
how the user interface will be designed and how many items will it contain.
These details will be provided later, during the implementation phase. For the
moment it is important only to define in a general manner the behavior of the
boundary class. As boundary classes are used to model user interfaces, they
are platform dependent. As an example, if the implementation environment
changes from Windows to UNIX, then the boundary classes will change too.
Usually, the lifecycle of a boundary class follows the lifecycle of the
corresponding use case. When the use case terminates, there is no more need
for the object created from the boundary class.

5.2 Control classes

Control classes are used to model the behavior that is required for the
realization of one or more use cases. Thus, a control class should provide the
behavior that expresses the realization logic of a use case; therefore, they are

132 SOFTWARE ENGINEERING TECHNIQUES

use case specific. If the logic of a use case changes, then the behavior of the
corresponding control classes should be adjusted accordingly. Figure 8-12
shows the UML symbols for a control class; each of them can be used
interchangeably.

o
Simulator

Simulator

Figure 8-12. UML symbols for a control class.

Objects created from control classes (i.e., control objects) are used to
control or coordinate the behavior of other objects. Control objects supervise
the flow of events in a use case realization. The lifecycle of a control object is
linked to the lifecycle of the corresponding use case. A control object is
created when the use case is performed and usually it dies when the use case
is terminated. A control object may be used for the realization of one or more
use cases. In the case that a use case is complex, many control objects created
from different control classes can collaborate to control the use case. The
number of control objects that are needed to control a use case is not easily
determined. Many factors, such as the designer's experience and the
flexibility of the system under construction, can impact the number of control
classes that need to be created.

As control classes are closely related to the realization of a use case, they
belong to the internal part of the system. Therefore, control classes do not
interact with actors; an actor should not communicate directly with a control
class. Unlike boundary classes, control classes are platform independent; the
same control class can play its role in different computing platforms.

In section 4.1, Conceptual model for Kraalingen approach, it is
mentioned that classes Plant, Soil, and Weather will provide the necessary
data needed in the simulation process. Objects created from these classes will
send messages to one another to obtain data located in one object that are
required in another object. A controller object is needed to coordinate the
interaction amongst objects. Figure 8-13 shows an example of a control class
used to control the flow of events in the Start Simulation use case.

THE KRAALINGENAPPROACH TO CROP SIMULATION 133

User

^

Start Simulation

The control class ^
SimulationController
controls the flow of event for
the use case Start
Simulation

SimulationController

Figure 8-13. SimulationController controls the flow of events for the use case.

5,3 Entity classes

Entity classes are used to model concepts of the system. They are
independent of the actors and are usually used to hold and update information
about the phenomena under study. Entity objects that are created from entity
classes are often persistent objects that need to be stored in a database. Entity
classes can be used in many use cases and their behavior can be complex or
simple, based on the nature of the problem under study. They can represent
real-life objects such as a person, an event, a crop, etc. Figure 8-14 shows
UML symbols for entity classes; each of them can be used interchangeably.

Q
Plant

\ . O
Plant

Figure 8-14. Icon representations for an entity class

Because entity classes are an internal part of the system, actors cannot
communicate with them directly. For similar reasons, boundary classes should
not communicate directly with them unless the context of the corresponding

134 SOFTWARE ENGINEERING TECHNIQUES

use case is simple. Entity classes are provided with behavior that is used to
solve the problem. Their main responsibility is to store and manage
information in the system.

In the Kraalingen approach, as shown in the conceptual model, classes that
hold the data and the behavior needed in the simulation process are Soil,
Plant, and Weather, Figure 8-15 shows the entity classes for the Start
Simulation use case.

Soil

Plant Weather

Figure 8-15. Entity classes for the Start Simulation use case.

6. CLASS DIAGRAM FOR THE KRAALINGEN
APPROACH

In the previous sections we discussed issues about how to identify the
future classes and their particular role in the system. Now is the time to
analyze the relationships between classes in order for the system to provide
the required functionality. As we have previously mentioned, the main
characteristic of the object-oriented approach is to model concepts of the
problem domain using objects and provide objects with data and behavior so
that they can play a well-defined role. Objects send messages to one another
to carry out functionality. In order for the objects to send messages to each
other, they need to have relationships among them. The purpose of the class
diagram is to show how objects, created from classes of the system, are
interrelated.

In the section on boundary classes, it was mentioned that the class referred
to as SimulationForm will play the role of a boundary class that is used to

THE KRAALINGENAPPROACH TO CROP SIMULATION 135

model the interaction between users and the system. The main role of this
class is to transfer to the system the initial data required for the simulation.
Usually, boundary classes are represented as graphical user interfaces. In the
case of boundary class SimulationForm, the corresponding graphical user
interface is shown in Figure 8-16. As shown in this figure, the user interface is
divided in two main areas: The area of data input and the area where the
results of the simulation are presented. The user will provide the data referred
to as the initial conditions for the simulation and the system will provide to
the user the results of the simulation. Therefore, objects of class
SimulationForm should be provided with the appropriate attributes to hold the
initial data and the results of the simulation.

Figure 8-16 shows that SimulationForm is provided with three buttons:
Simulate, Cancel and Clear, The first button allows users to start a simulation
process provided that the user has already entered the required initial data.
The two other buttons help the user during the data entry process; the user
may cancel the session at any time or change all the entry values and replace
them with other data.

There is a tendency to create a use case for each of the menu items of the
graphical user interface. In our case we would have three use cases: Start
Simulation, Cancel Simulation, and Clear Simulation, one use case for each of
the functionalities that take place when the corresponding button is used. This
modeling practice is not a good one, as it confounds the use cases with menu
items. Use cases do not represent and should not represent menu items. By
definition, a use case represents the interaction of the user with the system,
focusing on what the system can do for the user. In our case, as the only thing
that the user can do with the system is to start a simulation, it is appropriate to
have only one use case referred to as the Start Simulation, The buttons Cancel
and Clear do not provide users with any additional functionality related to the
simulation process; the functions they provide are standard functions of any
user interface.

136 SOFTWARE ENGINEERING TECHNIQUES

^^^^^^^^^^^^^H

MtM Qondltrnm

Plariting Oty ofYear P"'''''''''''"^^

Sol! Dapth, cm p ^ ^ ^ ^

Wilting ppint, Ferc^Dt 1

BImulale j

^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂H

Clear [

SImuMInn HmuM

Fruit Dry Weight I " " ' ' ^

CanapyWiigm ^

Qmm\ 1 1

Figure 8-16. Implementation of the boundary class SimulationForm.

In the section on control classes, it is mentioned that a class, referred to as
SimulationControiler, will play the role of a control class used to control the
behavior of the use case StartSimulation. Therefore, the SimulationController
control class will serve as a coordinator between the boundary class and the
system. SimulationController will receive the input data from the boundary
class and use them accordingly in the simulation process.

The lifecycle of a control object is determined by the boundary class that
is related to it. Usually, the boundary object creates an instance of the control
class at the beginning of the execution of the use case and the control object
"dies" when the use case is terminated.

How does a boundary object pass the input data to a control object? There
are several ways to achieve this task. The best solution is to store the input
parameters in a file of type Properties that will be used by method
simulate(properties) of class SimulationController as shown in Figure 8-17.

THE KRAALINGEN APPRO A CH TO CROP SIMULA TION 13 7

^—'—-V

/ \ / \

SimulationForm

«comm unj cat e »

uses
^
^

o
SimulationControlier

*^S i m u 1 at i 0 n C 0 nt ro 1 i e cQ
*^getlnstance()
"^simulateO
"^simulateiproperties)

Figure 8-17. A boundary object communicating with a control object.

As shown in this figure, class SimulationForm has an association with
class SimulationControlier referred to as uses of stereotype communicate. The
diagram says that a SimulationForm uses a SimulationControlier to perform a
simulation. The association uses is unidirectional, meaning that class
SimulationForm can access data and behavior from class
SimulationControlier but not vice versa.

SimulationControlier is provided with a constructor which is the Java
mechanism for creating new instances of a class. As the SimulationControlier
is modeled following the Singleton pattern, the method getlnstance returns the
unique instance of this class. The definition of class SimulationControlier
includes two methods referred to as simulate but with different signatures; one
does not use any parameters and the other uses a parameter named properties.

When method simulateQ is used, the controller object does not receive any
input from the boundary object. In this case, the entity objects used in the
simulation should provide all the initial data needed for the simulation
process; they will have default values for paiWinQtQrs plantingDate, soilDepth,
and wiltingPointPercent. This case is limiting, as it will perform simulations
with fixed soil and plant data. The users cannot create scenarios to study the
impact of different parameters on crop growth.

When method simulate(properties) is used, the boundary object can pass
parameters to the control object to be used for populating different entity
objects. Parameters are stored in a property file referred to as properties.
Performing a simulation using initial data is the most common case in the
simulation models, as it allows for studying the impact of one or more
parameters on crop yield.

Other techniques can be used to pass parameters from a boundary class to
the control class. One of them could be to provide the control class with
simulate(list of parameters) methods that use a different number of
parameters. For example, if the parameters passed to the control class are
plantingDate and soilDepth, the control class should have the

138 SOFTWARE ENGINEERING TECHNIQUES

simulate(plantingDate, soilDepth) method defined in its class definition. In
the case where the parameters passed to the control class are plantingDate,
soilDepth, and wiltingPointPercent then the control class should have the
simulate(plantingDate, soilDepth, wiltingPointPercent) method defined in its
class definition. According to this solution, each time a parameter is added or
its type is changed, the corresponding simulate method with the appropriate
signature (parameters with corresponding types and in the right order) should
be added to the class definition of the control class. Any changes in the class
definition of the control class implies that the boundary class should be
modified accordingly, as the boundary class will pass the simulation
parameters to the control class. This solution strongly couples the boundary
class to the control class, and as result, the system becomes inflexible.
Changes occurring in one class have ramifications in other classes.

Using a container where all the parameters passing to the control class will
be stored is a better solution. Such a container in the Java programming
environment can be a Properties file. Using property files is a simple way in
Java to implement a general communication between boundary and control
classes. The control class needs only to know that a property file is used to
store parameters; the number of parameters passes and their type is irrelevant.
This type of communication increases the independence between boundary
and control classes. Similarly, an XML file can be used to store the
parameters that are passed to the control class.

The control class plays a key role in the simulation process, as it
coordinates the messages objects send to each other. Therefore, it is a good
programming practice to use the Singleton pattern when designing this class.
As explained in Chapter 7, Design Patterns, the Singleton pattern allows for
creating only one instance of the class. Method getlnstance will provide the
unique instance of the control class.

In the section on entity classes, it is mentioned that entity classes are used
to model concepts of the problem domain. A good start for depicting entity
classes is the conceptual diagram for the Kraalingen approach previously
developed. According to this diagram, the elements needed for the simulation
model are classes Soil, Plant, and Weather, The control class
SimulationController needs to have access to these objects in order to manage
the flow of messages they need to send to each other. Figure 8-18 shows the
relationship between controller and entity classes for the Kraalingen
approach.

THE KRAALINGENAPPROACH TO CROP SIMULATION 139

Figure 8-18. Relationship between control and entity classes.

According to Figure 8-18, the relationship between the control and entity
classes is modeled as a composition; the controller is conceived as a container
that includes entity classes and shields them from the outside view. Thus, the
controller manages the lifecycle of the entity objects. Because our problem
has only one use case, entity objects are created at the beginning of the use
case execution and they "die" when the use case is terminated.

The associations between the control and the entity classes are one-to-one
associations. This means that the control class will only create one instance of
each of the entity classes. Another important detail presented in Figure 8-18 is
the fact that the associations between control and entity classes are
unidirectional (i.e., the control object can access data and behavior from entity
objects, but the entity objects do not have access to the control object).

Figure 8-19 shows the class diagram for the KraaUngen simulation
approach. The diagram says that the SimulationForm communicates the input
data to the SimulationController. The SimulationController uses the input
data to populate instances of entity classes such as Plant, Soil, and Weather.
Plant grows in Soil and both Plant and Soil use weather data to calculate their
respective processes. When the simulation is terminated, the
SimulationController will return to the SimulationForm the result of the
simulation to be displayed to the user.

140 SOFTWARE ENGINEERING TECHNIQUES

«communicate» -|

SimulationForm SimulationController

• l

Figure 8-19. Class diagram for the Kraalingen simulation approach.

As shown in Figure 8-19, the SimulationForm communicates only with the
SimulationController as previously mentioned in the Discover potential
classes section. Thus, the control class incarnates the Fagade pattern,
presented in Chapter 7, Design Patterns. Entity objects are protected from
the outsiders of the system. Having all the communication with boundary
object pass through the control object makes the system independent of the
outside environment. Changes that may occur in the behavior of entity objects
will not affect the communication with boundary objects.

7. CRITIQUE OF THE KRAALINGEN CLASS
DIAGRAM

In the previous section, we presented a class diagram for the Kraalingen
approach that shows the interaction of boundary, control, and entity objects to
provide the required functionality. In this section, we will analyze the class
diagram in detail to justify each of the steps.

THE KRAALINGENAPPROACH TO CROP SIMULATION 141

7.1 Communication boundary-control

An important issue that needs particular attention is the communication
between boundary and control objects. As previously mentioned, the
boundary class is platform dependent and the control class is platform
independent. The communication between these two objects should be
modeled in such a way that the resulting system is flexible. Changes of
requirements, which usually cause changes of boundary class's behavior,
should have minimal impact on the system.

The way in which the communication between boundary and control
objects is established in the Kraalingen class diagram does not allow for a
flexible development. The boundary class has direct connection with the
control class; an instance of the control class needs to be created in the
boundary object so that the message simulate can be sent to this object. In the
case that we would like to use another simulation system that provides similar
functionalities, the system will not work. The reason is that the boundary
object points directly to the SimulationControUer object and will not
recognize any other object playing the same role unless the new controller
object is referred to as SimulationControUer, Imposing the name of the
control class is a considerable limitation. Coupling these two classes directly
makes the system less flexible to changes and difficult to reuse.

The solution to this problem is defining one or a set of interfaces that the
control class should implement; the behavior of the control class should be
expressed using a well-defined set of interfaces. In our simple example, one
interface is amply sufficient to describe the services that the control class
offers. Figure 8-20 shows an interface defining the services of the control
class SimulationControUer. As shown in this figure, the boundary class has an
association with the interface ISimulationController. Therefore, the boundary
object can reach data and behavior from any object created from a class that
implements the ISimulationController interface. Thus, using an interface
instead of a class opens the communication channels between the boundary
object and any control object that implements the required interface.

142 SOFTWARE ENGINEERING TECHNIQUES

«communicate»

uses
• ^

SimuiationForm

o
ISimutationController

•^iPlant plant
%lSoil soil
%IV'/eather weather

'^simulateO
"^simulatefProperty properties)

A
Class
SimulationController
implements inteiface
ISimulationControlier

| \

SimulationController

Figure 8-20. An interface defining the services of the control class SimulationController.

The most important advantage of using an interface is that the boundary
object does not need to know about the real control object that will receive the
simulation parameters. If the simulation system is designed to function as an
independent component, any such component can be plugged into a bigger
system; the boundary object would communicate with all plugged-in
components provided that they implement the required interface. Figure 8-21
shows an example of a boundary class associated with several control classes.
Each of the control classes will provide a polymorphic implementation of the
behavior defined by the interface ISimulationControlier,

THE KRAALINGENAPPROACH TO CROP SIMULATION 143

ISimulationControiler

^ iP lant plant
^ ISo i l soil
%lVV8ather weather

•^sinuitateO
"^simulateCPrcperty properties)

/
«co

K

nmunicate>>

3

o ̂ -"'-'C

V-...-'
• » ^

SimulationControllerl

*^SImu(attonControl!er1()
^getlnstanceO : SimulationContrcllerl
*^simu!ate()
%imul at ei|}ro parties)

-̂ ..̂
'̂ -.

.-'•"

Tv/o different classes ^
implementing the same
interface

Sif7ui!ationContfoller2

^SimulationControl!ef2()
'^getlnstanceQ: SirnulaticnController2
^simulatef)
%imulat8(properties}

0

0:

SimulationForm

Figure 8-21. One boundary class associated with many control classes.

7.2 Communication control-entity

Another point of communication that needs to be studied carefully is the
communication between the control and entity objects. In the class diagram
for the Kraalingen approach, the relationships between control and entity
classes are modeled as a composition. The control class,
SimulationControiler, plays the role of the whole; entity classes, such as
Plant, Soil and Weather, play the role of parts. The whole has access to data
and behavior of the parts but not vice versa. Objects of the
SimulationController class have access to entity objects because of the
attributes plant, soil, and weather that hold a reference to the corresponding
entity objects, as shown in Figure 8-22. This figure presents the Java code for
class definition of SimulationController modeled as a Singleton and defined
in the UML diagram shown in Figure 8-18.

Lines 6, 7, and 8 define attributes of types Plant, Soil, and Weather to hold
references to the corresponding objects. As we see, the control object is
directly connected to the entity objects.

144 SOFTWARE ENGINEERING TECHNIQUES

I final class SimulationController {
2
3 private static SimulationController uniquelnstance = null;
4
5 private Plant plant;
6 private Soil soil;
7 private Weather weather;
8 private SimulationControllerQ {}
9 public SimulationController getlnstanceQ {
10 if (uniquelnstance == null)
II uniquelnstance = new SimulationControllerQ;
12 return uniquelnstance;
13 }
14 }

Figure 8-22. Java class definition for SimulationController.

The fact that the control object is directly connected to entity objects
makes the architecture of the system rigid. When two or more objects are
directly linked to each other, none of them can be used separately; the use of
one of the objects would require the presence of the others. This architecture
is not flexible as it makes it difficult for either the control or entity objects to
be reused separately.

The solution to this problem is to avoid linking classes directly; instead, an
interface to the class can be used as shown in Figure 8-23. Interface IPlant
defines the behavior class Plant should implement. This behavior includes
operations such as initialize, calculateRate, and integrate. Interface ISoil
defines the behavior class Soil should implement.

THE KRAALINGEN APPROACH TO CROP SIMULATION 145

o Plant

^initiaiiz&O
^initializefProperties prop I
%aIcul8teRatei:)
^integrateO
^etLeafArealndexO
%etMiturityDa><}
^isPostPfantin^l
"^isMatureO
^setWeatheff)

%etTota:!Pl8ntDryWeight{)

X

Plant
Q

%so i l : ISoil
^weather: iWeather

^initializeO
^inilializefProperties props)
^calculateRatef)
^integrateO
%6tLeafAr8a!ncfex(]
%etMaturityDiyO
^isPostPlantingO
"^isMatureO
^setWeathert)
^setSoilfJ
%etTota!P!antDryWeightO

O
ISimulationControfler

^IPIant plant
^ ISot l soil
!%'IVVe3ther weather

%imulateO
"^sirtiulateCProperty properties)

O
ISoil

^'nitializsO
"^initiafeeCProperties props)
t a b u l a t e R^ef)
^integrate!)
V t S W F a c O
"^setPlantO
%etWe3theft)

T

Soil
Q

^ p l a n t ; iPlant
%v¥eather; IWeather

'^initializeO
^initializet'Properties props)
%alculateRat^)
^jfttegrateO
^atSWFaoO
%etPlant()
^setVt/eatheitl

O
IWeather

*^initializ©()
*^initiaJize(Pfoperties props)
*^getSo!arRadiation(|
^getAverageTempDuringDayO
^getAverageTemperaturef)
^get Averacf stem perat u reForPTf)
"^getRainfalo
"^getTernperatureMinO
%etTemperatureMai<)

TT

¥i/eather
Q

^initializeO
^initializeCProperties props)
%etSolarRa<liation()
%etAverafeTempDuringDay(|
%8tAverageTemperature()
%etAverageTemperatureForPT{i
%etRainfaJI()
%etTempefatureMinO
%etTemperatureMaK()

Figure 8-23. The control object communicates with entity objects through interfaces.

Connecting the control class to the interfaces instead of the entity classes
opens possibilities to use any other entity class or component that offers
similar behavior, provided that they implement the same interface as shown in
Figure 8-24.

146 SOFTWARE ENGINEERING TECHNIQUES

o
ISimuiationCDntroller

%IPIant plant
•^ ÎSoil soil
^IWeather weather

•̂ simulateO
•^simulatefProperty properties)

OtherPlant
Plant

OtherSoil Soil OtheWeather Weather

Figure 8-24. Interfaces allow for plugging in other class/components.

7.3 Communication entity-entity

Entity classes represent concepts from the problem domain. They interact
with each other to provide the required functionality. Often, objects created
from entity classes reside in the same memory space or machine. Therefore,
the associations representing the collaborations between concepts are from
one entity class directly to another. In this architecture, entity classes are
closely coupled to each other. This solution works well in cases that
monoUthic systems need to be developed; all objects will reside in the same
area space and there is no need to substitute the behavior of an object with
some other one. Changes to the system can be done only by developers that
are familiar with system's architecture. Therefore, these systems are usually
not flexible and provide little reuse of functionalities incorporated in the
system. There are cases where this architecture is acceptable and provides
good results.

THE KRAALINGENAPPROACH TO CROP SIMULATION \A1

There are other cases that although entity objects belong to the same
domain, linking them directly to each other may create problems related to the
reuse and extendibility of the future system. It would be desirable to have
flexible systems that allow for replacing one class or component with some
other ones that provide similar functionalities. As an example, some other
institutions or individuals may have developed a soil or a plant
class/component that we would like to use in our system. In this way
knowledge can be transferred easier, collaboration among scientific
institutions and/or individuals will be better, and the time for developing a
new system will be shorter.

In the case of the Kraalingen approach, the conceptual model shows that
entity classes are in association with each other. The collaboration between
classes in the conceptual model reflects the fact that plant grows in soil and
processes occurring in plant and soil are impacted by the weather conditions.
Class Plant has an association with class Soil\ both classes are tightly coupled
to each other. The Plant class definition has an attribute of type Soil that is a
reference to an object created from class Soil. The situation is similar in the
Soil class definition; an attribute of type Plant, defined in class Soil, is a
reference to an object of type Plant, Objects Plant and Soil are tightly linked
together; none of the objects can be reused separately. The same can be said
for the case of each of Plant or Soil classes in relation with class Weather,
Objects created from classes Plant, Soil, and Weather form a monolithic
system, none of its composing objects can be used separately. Figure 8-25
shows the direct links between the above mentioned classes.

Plant
^so i l : IS oil
^weather: IWeather

gmwsin Soil
%plant : IPIant
^weather: IWeather

Figure 8-25. A monolithic system where entity classes are directly linked to each other.

148 SOFTWARE ENGINEERING TECHNIQUES

In order to make the system flexible and extendable, hardwired
associations between classes should be avoided and interfaces be used instead.
As we have previously mentioned, the use of an interface is similar to
providing a plug that can be used by any class that implements the same
interface. The modified class diagram for the Kraalingen approach is shown
in Figure 8-26.

As shown in Figure 8-26, the hardwired associations among classes have
been replaced with associations between a class and an interface. Therefore,
the attribute soil in the Plant class definition is of type ISoil, which is the type
of the interface that defines the behavior needed from class Soil, Therefore,
any class that provides similar behavior to class Soil can be used in the
system, provided that it implements the interface ISoil. Classes implementing
the same interface can be used as a substitute to each other. By replacing the
association Plant-Soil with the association Plant-ISoil, we have created the
possibility to use any other Soil class that may have a different
implementation of the required behavior but it can be used in the system
because it implements the interface ISoil. The same reasoning could be
applied to the associations Soil-Plant, Plant-Weather, and Soil-Weather,

mePfmiData

iPlant Weather

Plant
li^soil : ISoil
l%>weather: IWeather

usesWestiierData \ usesWeatherData

>o-
iVVeather

usesSoilDaia

Soil
^p ian t : IPlant
%»\veather: IWeather

-K)
ISoil

Figure 8-26. Classes have associations with an interface.

THE KRAALINGENAPPROACH TO CROP SIMULATION 149

8. FINAL CLASS DIAGRAM FOR THE
KRAALINGEN APPROACH

Figure 8-27 shows the final class diagram for the Kraalingen approach.
For readability reasons, attributes and operations are not presented in the class
diagram. Interfaces are used where change or substitutability is expected. For
example, the communication point between SimulationForm and
SimulationController is represented by the interface ISimulationController,
Therefore, any simulation class/component that implements
ISimulationController can be used. In the same way, the communication point
between SimulationController and entity classes is represented by three
interfaces; IPlant, ISoil for communicating with Plant and Soil, and IWeather
for communicating with Weather,

ISimulationController

Figure 8-27. Final class diagram for the Kraalingen simulation approach.

150 SOFTWARE ENGINEERING TECHNIQUES

9. THE BENEFITS OF USING INTERFACES

As we have seen in the case of the KraaHngen simulation approach,
interfaces are a powerful modeling artifact to design flexible software that can
be reused and extended, and is resilient to changes. Interfaces replace the
hardwired associations between classes with flexible associations between a
class and an interface, opening the way for use to many other potential classes
or components that provide similar behavior and implement the same
interface. Interfaces make the communication between two classes flexible.
When two classes are linked through an association, the link is rigid, as it is a
one-to-one link. None of the classes can be used separately. Using interfaces
instead of classes transforms the one-to-one link into to a one-to-many link.
Therefore, many other classes or components can be used in the system,
allowing for substitutability among classes/components that implement the
same interface.

Some questions may be asked right away. When should we use interfaces?
Should we use interfaces any time that two classes are associated? The issue
of when and how to use interfaces is related to the designer's experience and
the future needs for extending the system to incorporate new behavior. An
interface can be considered as an electrical plug in a house. When the
blueprints for the electrical wires are drawn, the designer has in consideration
the places where potential appliances can be used. After the electrical
installations are finished, one can only add new appliances in the places where
there is a plug to be used. Interfaces are conceptually the same. We will use
an interface at a point in the system that we see future development, change,
or potential for substitutability. We would strongly recommend [CMK99]; the
book Java Design Building Better Apps & Applets is excellent source of
information and ideas about using interfaces as a modeling tool.

Is there any drawback of using interfaces? The answer is, not really.
Interfaces make the system more flexible at the price of slightly increasing the
complexity of the system. A diagram that uses interfaces may be more
difficult to be understood as it contains points of connection to many potential
classes instead of one single class. There is a widely accepted agreement that
the increase in complexity of a class diagram as a result of using interfaces is
rightly justified by the benefits offered by interfaces in the design process.

THE KRAALINGENAPPROACH TO CROP SIMULATION 151

10. IMPLEMENTATION OF THE KRAALINGEN
MODEL IN JAVA

In this section, we will discuss issues related to the implementation of the
Kraalingen model in the Java programming environment. The class diagram
already created in Section 8, Final class diagram for the Kraalingen
approach, serves as a starting point for the implementation process. In this
diagram, an interface is defined for each of the classes Weather, Plant, and
Soil that formalizes the behavior these classes should provide. The interfaces
are referred to as IPlant, ISoil, and IWeather, Let us take a look at each of the
interfaces and examine how they define the behavior of classes implementing
the interface.

10.1 Interface IPlant

Interface IPlant defines the behavior that needs to be implemented by all
classes, providing plant-related behavior that can be used in the simulation. In
order to be able to use different classes that provide plant-related behavior,
these classes should implement the following interface. Different classes will
provide a polymorphic implementation of the same interface. Figure 8-28
shows the Java code for the interface IPlant,

1 import java.util.Properties;
2 public interface IPlant {
3
4 //used by the simulator controller
5 public void initialize(Properties props);
6 public void initializeQ;
7 public void calculateRateQ;
8 public void integratcQ;
9 public double getLeafAreaIndex();
10 public int getMaturityDayO;
11 public boolean isPostPlantingQ;
12 public boolean isMaturcQ;
13 public void setMaturityDayO;
14
15 //used to set relationships with other classes
16 public void setWeather(IWeather weather);
17 public void setSoil(ISoil soil);

Figure 8-28. Java implementation for interface IPlant (Part 1 of 2).

152 SOFTWARE ENGINEERING TECHNIQUES

18 //used to provide simulaton results to users
19 public double getFruitDryWeightQ;
20 public double getRootDryWeightQ;
21 public double getTotalPlantDryWeightQ;
22 }

Figure 8-28. Java implementation for interface IPlant (Part 2 of 2).

Lines 4, 15, and 19 are comments or stereotypes, defined in Section 11 of
Chapter 3 in the first part of the book. They define a specific categorization
for the methods that follow the comment or stereotype. Thus, the method
integrateQ, as defined in line 8, belongs to the category referred to as used by
the simulator controller. Methods defined in lines 20, 21, and 22 belong to the
category used to provide simulation results to users. Methods defined in the
interface IPlant are classified in three categories. Classifying methods of an
interface in different categories helps one to understand the role of the
interface and its behavior. Therefore, we can say that interface IPlant is
designed to provide three kinds of behaviors: Behavior needed in the
simulation process, behavior needed to establish relationships with other
classes of the diagram, and behavior to provide simulation results to other
objects in the system.

How do we define the behavior of an interface? The behavior of an
interface is defined by considering the role classes implementing the interface
should play in the system. Interfaces should define one specific role and be
defined in its entirety. Two different interfaces should not share common
behavior. Designing an interface is a delicate process and needs to be carried
out carefully. Interfaces that provide many different behaviors should be
avoided. The behavior of such interface should be distributed to other
interfaces.

In the case of the class Plant, its interface should define all the functions
that module Plant must provide as defined by [Kra95]. As previously
mentioned in this chapter, module Plant should be able to perform processes
referred to as initialization, rate calculation, and integration. Therefore, the
interface IPlant includes methods initializeQ, calculateRateQ, and integrateQ,
as defined in lines 5 through 8. Note that this interface defines two methods
that hold the same name, initialize, but with different signatures. The reason
for having the same method definition with different signatures is to allow
more flexibility in the initialization process of class Plant. The method
initializeQ, with no parameters, can be used in cases when users do not
provide any initial plant data. In this case, the default data will be used and the

THE KRAALINGENAPPROACH TO CROP SIMULATION 153

initializeQ method will be activated. The method initialize(Properties props)
will be used when users want to study the effect of different parameters on
plant growth. As an example, the planting date is a parameter that impacts
plant growth. This parameter and can be stored in the property file props and
be used as an entry parameter for the simulation process. In the case that other
plant parameters need to be used to study their impact on plant growth, they
need to be added to the property file. The following is an example of a
property file.

plantingDate=121
soilD€pth=14 5
w i l t ingPo in tP€rcent=0.05

Method getLeafArealndexQ , defined in line 9, provides information about
the leaf area index needed to calculate processes that occur in soil. Methods
defined in lines 10 through 13 provide information about the status of the
plant; the use of method isMatureQ defined in line 12, will allow other objects
to know whether plant has reached the status of maturity. When the plant
reaches the status of maturity, the attribute that holds the value of the maturity
day needs to be updated. The update process is carried out by the method
referred to as setMaturityDayQ. Method isPostPlantingQ checks whether the
current day in the simulation process is after the planting date. Methods
belonging to stereotype used to set relationships with other classes allow an
object of type Plant to have access to objects of type Soil and Weather.
Methods belonging to stereotype used to display simulation results represent
the behavior that allows an object of type Plant to provide results of the
simulation to other objects that may request for these data. The object that is
most interested to know the results of the simulation is the boundary object
referred to as SimulationForm object. This object performs the task of
communicating with the controller object in order to provide initial values
used in the initialization process of plant, soil, and weather and the task of
receiving the results of the simulation to display them to the user. In the case
that additional plant results are needed, then the necessary methods will be
added to the interface definition. As shown in Figure 8-28, interface IPlant
defines methods that provide dry weight data for the fruit, the root, and the
total plant. Any class Plant that will be considered for use in our system
should implement interface IPlant. Figure 8-29 shows the UML diagram
representing the association between class Plant and its interface IPlant.

154 SOFTWARE ENGINEERING TECHNIQUES

IPIant

*^initia!ize()
"^initiali28(Properties props)
*^calculateRat8(J
* întegn3te()
"^getLeafAreatndexO
•^getfvlaturityDayO
*^isPostPlanting()
*^isMature()
^etVVeatheif)
^etSoitO
*^getTot alPlant Diy We lght(|
%ietRootD(yVVeight(}
"^getFruitDry'Weightci

O

[<] • ' • "fff>pleffiefrts- •

Plant
^ s o i i , ISoil
^weather: IWeather

"^inittalizeO
^initiaii26(Prop-erties props)
%a!culateRateO
"^integrate!')
"^getLeafArealndexO
"^getMaturityDayO
^isPostPlanting/)
'^isMatureO
^setWeatheK)
^setSoilO
'^getTotalPlantDfyVVeightO
^getRootDryWeightO
^getPruttDryWeightf)

Figure 8-29. Class Plant implements the behavior defined in interface IPIant.

10.2 Interface ISoil

The behavior of interface ISoil is defined based on the role classes that
implement this interface play in the system. In the case of the class Soil, its
interface should define all the functions that module Soil must provide as
defined by [Kra95]. As mentioned in the beginning of this chapter, module
Soil should be able to read its own initial data, and perform the processes
referred to as initialization, rate calculation, and integration. Objects created
from class Soil should be able to communicate with objects created from class
Plant, to obtain from them the plant data required for calculating processes
occurring in soil and to establish relationships with other objects in the
system. The relationships between objects are already defined in the class
diagram presented in Section 7. Figure 8-30 shows the Java code for interface
ISoil.

As shown in Figure 8-30, there are two stereotypes defined for interface
ISoih One referred to as used by the simulator controller and the other
referred to as used to set relationships with other classes. The methods
belonging to the first stereotype are used in the simulation process and the
methods belonging to the second stereotype allow an object of type Soil to set
relationships with objects of type Plant and Weather.

THE KRAALINGENAPPROACH TO CROP SIMULATION 155

1
2
3
4
5
6
7
8
9
10
11

import java.util.Properties;

public interface Soillnterface {
public double getSWFacQ;
public void initialize();
public void initialize(Properties props);
public void calculateRateQ;
public void integrateQ;
public void setWeather(WeatherInterface weather);
public void setPlant(PlantInterface plant);

}
Figure 8-30. Java code for interface IS oil.

Note that lines 5 and 6 define the same method named initializeQ with
different signatures. The method initializeQ, with no parameters, can be used
in cases when users do not provide any initial soil data. In this case, the
default soil data will be used and the initializeQ method will be activated.
The method initialize(Properties props) will be used when users want to study
the impact on plant growth of different soil parameters such as soil depth and
wilting point percentage. These parameters will be stored in the property file
and are an entry for the simulation process. In the case that other soil
parameters need to be considered for the study, their values will be added to
the property file. Figure 8-31 shows class Soil implementing the ISoil
interface. Therefore, class Soil agrees to provide an implementation for all the
methods defined in the interface ISoil,

ISoi!

*^initialize()
'^initializeCProperties props)
"^calculateRateO
'^integrateO
^getSVVFacO
"^setPlantO
'^setWeatheiiT^

O

< 3 mip}«ffi«-rt:s---- •

Soil

%p lan t : tPlant
%weather: IWeather

^initislizeO
^initilaizeProperties props)
%alculateRate(|
^intefrateO
%etSWF3cO
*^setPlant(}
^setWeatheiC)

Q

Figure 8-31. Class Soil implements ISoil interface.

10.3 Interface IWeather

The behavior of interface IWeather is defined based on the role classes
that implement this interface play in the system. The Weather class should

156 SOFTWARE ENGINEERING TECHNIQUES

provide weather data to all other objects in the system that need them.
Different sources of weather data can be used; one source could be a text file
saved locally in the system and another source could be a network of weather
stations that can be accessed on-line. The behavior IWeather interface should
define is shown in Figure 8-32.

IWeather has a few particularities that make this interface different from
other already defined interfaces. All the defined methods are used in the
simulation process. There are no methods used to set relationships with other
objects as objects of type Weather, according to the conceptual diagram, do
not have access to other objects of the system. They only provide weather
data to all other objects that will request these data.

1 import java.util.Iterator;
2 import java.util.Properties;
3
4 public interface IWeather extends Iterator {
5 public double getSolarRadiationQ;
6 public double getAverageTempDuringDayQ;
7 public double getAverageTemperaturcQ;
8 public double getAverageTemperatureForPTQ;
9 public double getRainFallQ;
10 public double getTemperaturcMinQ;
11 public double getTemperaturcMaxQ;
12 public double getPARQ;
13 public int getDayOfYearQ;
14 public void initialize(Properties props);
15}

Figure 8-32. Definition of interface IWeather in Java.

IWeather inherits behavior from another interface, the Iterator interface.
Iterator is a pattern and the reasons of using this pattern are introduced in
Chapter 7, Design Patterns in Part One of the book. Because IWeather
inherits from Iterator, the behavior defined in Iterator will be part of the
definition of IWeather as well. Figure 8-32 shows only the methods defined in
interface IWeather, methods inherited from Iterator are not shown. Any class
Weather that will be considered for use in the system should implement
IWeather and Iterator interfaces, as shown in Figure 8-33.

THE KRAALINGEN APPROACH TO CROP SIMULATION 157

Iterator
iffcm util)

o

%asNext(); boolean
%ext(): Object
"̂ removeO ivoid

w-

iVVeather

^initializer)
^initializeCProperties props}
^getSotarRadiationO
•̂ getAv enage Temp Du ri n gDay()
"̂ getAv erageTemperat ure ()
"̂ g etAv e ra g e Te mp e rat ii IB F o fP T^
'̂ getRainfallO
^getTe mpe r at u re M in()
%etTemperatuneM a>(}
^getPARO
^ge©ayOfYean;)

O

" ^

Q
Weather

Figure 8-33. Class Weather implements the behavior defined in IWeather and Iterator.

The Iterator interface defines the behavior needed to loop over a container
of data in order to analyze each of them. The method hasNextQ is used to
assure that the iteration over the data continues as long as there are valid data
in the container. The method nextQ gives access to the next data. In the case
that there are no available data, nextQ will change the status of hasNextQ to
false and the iteration will stop. The removeQ method removes an element
from the container. This method is not used in our example.

Note that different classes implementing interface IWeather will provide
different implementations for each of the methods defined in interface
Iterator, The particular implementation each class will provide will be based
on the kind of the container used to hold the data. In the case that the weather
data are saved locally in a text file, the data container is a file containing lines
and each line contains weather data for a day or other time unit used in the
simulation. In the case that weather data are obtained from an on-line weather
station, the container is a table and each row of the table contains the weather
data for a day or other time unit used in the simulation.

In the next sections, we will show two Weather classes providing different
implementations of the same set of Iterator and IWeather interfaces. The

158 SOFTWARE ENGINEERING TECHNIQUES

classes are WeatherDataFromFile and WeatherD at aFromStation, as
described in Section 6 of Chapter 3, Interfaces, in the first part of the book.

10.3.1 Class WeatherDataFromFile

This class implements the behavior defined in IWeather interface in the
case that the weather data are read from a local file in the system. Section 4.3
of Chapter 7, The Iterator Pattern, presents classes that are involved in this
pattern and their collaborations. A class referred to as Daily Weather Data is
designed to hold daily weather data such as solar radiation, minimum and
maximum temperature, and rainfall. Note that the simulation unit is the day;
an instance of class DailyWeatherData contains weather data for a particular
day of the year. Figure 8-34 shows the implementation of this class in Java.

I public class DailyWeatherData {
2
3 private double solarRadiation;
4 private double maxTemperature;
5 private double minTemperature;
6 private double rainFall;
7
8 public DailyWeatherData(String minTemperature,String

maxTemperature, String rainFall,String solarRadiation) {
9 this.solarRadiation=Double.parseDouble(solarRadiation);
10 this.maxTemperature==Double.parseDouble(maxTemperature);
II this.minTemperature=Double.parseDouble(minTemperature);
12 this.rainFall=Double.parseDouble(rainFall);
13 }
14
15 public double getSoIarRadiation() {
16 return solarRadiation;
17 }

Figure 8-34. The implementation of class DailyWeatherData in Java (Part 1 of 2).

Lines 3 through 6 define the attributes of the class. Note that these
attributes are defined as private; they cannot be accessed outside the class
definition by using the attribute name. Lines 8 through 13 define the class
constructor, the Java mechanism for creating instances of a class. Lines 15
through 26 define methods to access values attributes hold. Lines 27 through

THE KRAALINGENAPPROACH TO CROP SIMULATION 159

39 define additional methods for providing other types of daily weather data
obtained by manipulating the core daily data.

18 public double getTemperatureMaxQ {
19 return maxTemperature;
20 }
21 public double getTemperatureMinQ {
22 return minTemperature;
23 }
24 public double getRainFallO {
25 return rainFall;
26 }
27 public double getPARO {
28 return 0.50*getSolarRadiation();
29 }
30 public double getAverageTempDuringDayQ {
31 return 0.6*getTemperatureMax()-f0.4*getTemperatureMin();
32 }
33 public double getAverageTemperatureForPTQ {
34 return

0.25* getTemperatureMin()+0.75* getTemp eratureMaxQ;
35 }
36 public double getAverageTemperatureQ {
37 return

0.5* getTemperatureMin()+0.5 * getTemperatureMaxQ;
38 }
39 }

Figure 8-34. The implementation of class Daily WeatherData in Java (Part 2 of 2).

As shown in Figure 8-34, once an instance of the class DailyWeatherData
is created, individual data can be obtained using its accessor methods. As an
example, the method getTemperatureMinQ sent to this object will return the
value of the minimum temperature. Note that the definition of this class does
not depend on the container used for holding the weather data.

Figure 8-35 shows the implementation in Java for class
WeatherDataFromFile, The role of this class in the simulation process is to
provide weather data stored locally in a text file. Lines 1 and 2 show the
libraries that need to be imported for the class definition. These are the input-
output and utility libraries. The utility library contains the Properties utility,
used in line 12. Line 3 defines the class WeatherDataFromFile, stating that
this class implements the interface IWeather, Because IWeather inherits from

160 SOFTWARE ENGINEERING TECHNIQUES

interface Iterator, class WeatherDataFromFile needs to implement behavior
defined in both interfaces; in addition to the behavior defined in IWeather
interface, this class should also implement the behavior defined in the Iterator
interface. Iterator is an interface defined in the java.util.Iterator library that is
provided by the Java development environment. The same Java environment
providesyava. io. * library.

1 import java.io.*;
2 import java.util.*;
3 public class WeatherDataFromFile implements IWeather {
4
5 private int dayOfYear;
6 private BufferedReader br=null;
7 private DailyWeatherData currentDay^null;
8 public WeatherDataFromFileO {}
9
10 public void initialize(Properties props) {
11 try{
12 String filcName = props.getProperty("weatherFile");
13 FileReader fileReader = new FileReader(fileName);
14 br = new BufferedReader(fileReader);
15 setDayOfYearCO);
16 }
17 catch (FileNotFoundException e)
18 {
19 System, out.printing Weather file not found; the system will shut

down");
20 System, exit(l); // Implementation of the precondition
21 }
22 catch (lOException e){System.out.println("IO Exception");}
23 }
24 public boolean hasNextQ {
25 try {
26 return br.readyQ;
27 }
28 catch (lOException e){return false;}
29 }
30 public Object nextQ {

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 1 of 4).

THE KRAALINGENAPPROACH TO CROP SIMULATION 161

Lines 5 through 7 define the attributes of class WeatherDataFromFile,
Note that line 7 defines an attribute of type Daily Weather Data', its
implementation details were presented in Figure 8-34. Line 8 defines the class
constructor; in this case, it is a default constructor.

Lines 10 through 23 define the body of the method initiaUze(Properties
props). The scope of this method is to prepare the environment for obtaining
the weather data. An instance of the class FileReader is created using the
current value of the attribute filename read from the property file. The
property file is made available to object Weather by the simulator controller.
In the case that the weather file is not found, the system halts the execution
and displays an error message, as shown in lines 19 and 20. These lines (19
and 20) show the implementation of the precondition for the use case as
mentioned in Section 2.4, Preconditions, in this chapter. Then, an instance of
class BufferReader is created using the file reader already obtained and the
day of the year is set to zero. The input-output library imported in line 1
provides the functionality required to read data from a text file. Lines 24
through 29 show the implementation of method hasNextQ defined in the
interface Iterator. This method will return the result true when data are
available and false otherwise. Lines 30 through 44 define the method nextQ
that provides the next set of available weather data. Line 32 reads a line from
the data container. Line 33 divides the entire line into tokens. Tokens are
created by considering the values separated by comma.

31 try{
32 String line = (String)br.readLine();
33 StringTokenizer tokens = new StringTokenizer(line,",");
34 if(line.length()>0) {
35 String [] dailyData = new String [tokens.countTokensQ];
36 dailyData[0] = tokens.nextTokenQ;
37 dailyData[l] = tokens.nextTokenQ;
38 dailyData[2] = tokens.nextTokenQ;
39 dailyData[3] = tokens.nextTokenQ;
40 dailyData[4] = tokens.nextTokenQ;
41 currentDay=new Daily WeatherData(dailyData[1],

dailyData[2], dailyData[3], dailyData[4]);
42 }
43 }
44 catch (lOException e){System.out.println("Error reading data");}

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 2 of 4).

162 SOFTWARE ENGINEERING TECHNIQUES

Line 34 makes sure that the string read in line 32 contains real data. Line
35 creates an array with size the number of tokens created in line 33. Lines 36
through 40 assign to an element of an array a token that represents a value
(rainfall, for example) from the daily data set. Line 41 creates an instance of
the class Daily WeatherData with the tokens obtained previously. The values
of tokens will be assigned to the attributes of class Daily WeatherData. Line
44 shows an exception that may occur while reading the data from the text
file. It is a good programming practice to provide users with the right
information when an exception occurs during the execution of the program.
The user is informed about the cause of the exception and then, can decide
what decision to make next.

45 setDay OfYear(getDayOfYear()+1);
46 return currentDay;
47 }
48 public void removcQ {}
49 public void setDayOfYear(int dayOfYear) {
50 this.dayOfYear=dayOfYear;
51 }
52 public int getDayOfYearQ {
53 return dayOfYear;
54 }
55 public Daily WeatherData getDailyDataQ {
56 return currentDay;
57 }
58 public double getSolarRadiationQ {
59 return currentDay.getSolarRadiationQ;
60 }

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 3 of 4).

Line 45 increases by one the number of days since the beginning of the
simulation. Line 46 returns an instance of the class Daily WeatherData
populated with current weather data read from the file. The order of the
weather data in the file is the following: Solar radiation, temperature max,
temperature min, and rainfall.

Line 48 is the definition of the method removeQ; this method does not
have any body, as it is not used. We are obliged to provide an empty
implementation for this method as it is part of the interface Iterator. Class
WeatherDataFromFile implements interface Iterator and therefore, an
implementation for each of the methods of the interface is needed to be part of

THE KRAALINGENAPPROACH TO CROP SIMULATION 163

the class definition. An empty implementation for a method means that the
method does not provide any functionahty. Lines 49 through 51 define the
method that can change the value of attribute dayOfYear, This method uses
the parameter dayOfYear to substitute the existing value of the attribute. Lines
52 through 54 define a method that returns the value of the attribute
dayOfYear. Lines 55 through 57 define the method getDailyDataQ that
returns an instance of class DailyData already populated with weather data for
a specific day.

61 public double getTemperatureMaxQ {
62 return currentDay.getTemperatureMaxQ;
63 }
64 public double getTemperatureMinQ {
65 return currentDay.getTemperatureMin();
66 }
67 public double getRainFallQ {
68 return currentDay.getRainFallQ;
69 }
70 public double getPARQ {
71 return currentDay.getPAR();
72 }
73 public double getAverageTempDuringDayQ {
74 return currentDay.getAverageTempDuringDayQ;
75 }
76 public double getAveragcTemperatureForPTQ {
77 return currentDay.getAveragcTemperatureForPTQ;
78 }
79 public double getAveragcTemperaturcQ {
80 return currentDay.getAveragcTemperaturcQ;
81 }
82 }

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 4 of 4).

Lines 58 through 82 define methods that allow other objects to access
specific weather data stored in the current instance of Daily WeatherData.
Note that these methods use the Delegation pattern, defined in the first part
of the book in Section 2.1 of Chapter 7. As class WeatherDatafromFile
implements interface IWeather, it should provide an implementation of all of
the methods defined in the interface. Data such as rainfall or solar radiation
are stored in an instance of class Daily WeatherData. WeatherDataFromFile
does not have access to these individual data, but it has access to the instance

164 SOFTWARE ENGINEERING TECHNIQUES

of DailyWeatherData that holds them and therefore it delegates the method
call to this instance. The format of the file holding the weather data is shown
in Figure 8-36. The first column shows that it is the first day of the year 1987.
The next columns hold the data for temperature minimum, temperature
maximum, solar radiation, and rainfall. In our implementation of the
Kraalingen approach we have used a slightly different approach to obtain the
day of the year. Instead of extracting it from the DayOJYear value, we have
defined a new attribute named dayOfYear that initially is set to zero and is
increased by one at each step of the simulation.

DayOfYear Tmin xmax Radiation Rain fa l l

87001,
87002,
87003,
87004,
87005,
87006,
87007,
87008,
87009,
87010,

5.1,
10.8,
12.1,
3.6,
12.8,
12.4,
11.1,
12,
6.1,
3.5,

20,
13.3
14.4
18.3
17.2
21.1
21.7
21.7
20,
23. 3

4.4,
1.1,

, 1.1,
6.1,
5.6,
5,
7.2,
8.3,
8.3,
11.1,

23.9
0
0
14.7
0.8
0
0
0
0
3.8

Figure 8-36. The format of the weather data file.

10.3.2 Class WeatherDataFromStation

This class implements the behavior defined in IWeather interface in the
case that the weather data are obtained from an on-line weather station. In this
case, additional information needs to be provided such as the name or the
identification number of the weather station and the starting and the ending
date for the time interval of the simulation. These input data are combined in
an SQL statement to extract the corresponding records from the database.
Figure 8-37 shows the Java implementation of class
WeatherDataFromStation.

THE KRAALINGENAPPROACH TO CROP SIMULATION 165

1 importjava.net.*;
2 import java.util.*;
3 import java.io.*;
4
5 public class WeatherDataFromStation implements IWeather {
6 private int dayOfYear;
7 private DailyWeatherData currentDay;
8 private BufferedReader buffReader = null;
9 private String startingDate, endingDate, stationNumber;
10 private URL url^null;
11
12 public WeatherDataFromStationO {}
13
14 public void initialize(Properties props) {
15 try {
16 StartingDate = props.getProperty ("startingDate");
17 endingDate = props.getProperty("endingDate");
18 StationNumber = props.getProperty ("stationNumber");
19 url=new URL("http://fawn.ifas.ufl.edu/scripts/fawndataserver.asp?

sql==select%20AirTempMin,AirTemMax,Rainfall,TotalRad
%20from%20dailysummary%20

20 where%20id="+stationNumber+"%20and%20datetime>='"
21 +startingDate+'"%20and%20datetime<'"
22 +endingDate+'"");
23 }
24 catch (MalformedURLException me) {
25
26 System.out.println("Cannot connect to the weather station");
27 System.exit(l);
28 }

Figure 8-37. Definition of class WeatherDataFromStation in Java (Part 1 of 5).

Lines 1 through 3 import the libraries needed for implementing the
behavior of the class. Notice that in addition to the libraries needed in the
definition of the class WeatherDataFromFile, there is another one referred to
di^ java.net. * that provides behavior to communicate with the Internet. Line 5
defines the class WeatherDataFromStation that implements behavior defined
in interface IWeather, Lines 6 through 10 define the attributes of the class.
Line 12 defines the constructor of the class. Line 14 defines the method
initialize(Properties props). The property file props holds the parameters
needed to identify the weather station. The parameters are the weather station

166 SOFTWARE ENGINEERING TECHNIQUES

number, the starting and ending date for the time interval used in the
simulation. Lines 16 through 18 read the above mentioned parameters from
the property file. Lines 19 through 23 create an instance of type URL using a
parameter that provides information about the address of the server and the
SQLl statement to be executed by the server providing the data. Lines 26 and
27 show that in the case the system cannot connect to the weather station, an
error message is displayed and the execution halts.

Lines 29 through 35 read the first line of data from the server and set to 0
the attribute dayOJYear, The address of the server is: http://fawn.ifas.ufl.edu
/scripts/fawndataserver.asp and the SQL statement is:

SELECT AirTempMin,AirTempMax,Rainfall,TotalRad,ET FROM
dailysummary WHERE id=stationNumber

AND datetime>= startingDate AND datetime<endingDate .
Note that some additional characters are needed to fill the empty spaces in

the SQL statement in Java language. The rest of the code is shown as follows.

29 try {
30 buffReader = new BufferedReader(new

InputStreamReader(url.openStream()));
31 String firstLine = (String)buffReader.readLine(); //eliminates the titles
32}
33 catch (lOException e){e.printStackTrace();}
34 setDayOfYear(O);
35}
3 6 public boolean hasNextQ {
37 try {
38 return buffReader.readyQ;
39 }
40 catch (lOException e) {
41 return false;
42 }
43 }
44 public Object next() {
45 try {
46 String line = (String)buffReader.readLine();
47 StringTokenizer tokens = new StringTokenizer(line,",");
48 if(line.length()>0) {
49 String [] dailyData = new String [tokens.countTokensQ];
50 dailyData[0] = tokens. nextTokenQ;
51 dailyData[l] = tokens.nextTokenQ;

Figure 8-37. Definition of class WeatherDataFromStation in Java (Part 2 of 5)

THE KRAALINGENAPPROACH TO CROP SIMULATION 167

52 dailyData[2] = tokens.nextTokenQ;
53 daily Data[3] = tokens.nextTokenQ;
54 currentDay=new DailyWeatherData(dailyData[0],

dailyData[l],dailyData[2],dailyData[3]);
55 }
56 }
57 catch (lOException e){}
5 8 setDay OfYear(getDayOfYear()+1);
59 return currentDay;
60 }

Figure 8-37, Definition of class WeatherDataFromStation in Java (Part 3 of 5)

Note that the Java code for classes WeatherDataFromFile and
WeatherDataFromStation are similar. The difference is the part of the code
that identifies the source of the data. In the case of class
WeatherDataFromFile, special code is needed to read the data from the file
whereas in the case of class WeatherDataFromStation, special code is needed
to establish connection with the weather station. In both cases, method
initialize(Properties props) is used to connect with the data source.

61 public void setDayOfYear(int dayOfYear) {
62 this.dayOfYear=dayOfYear;
63 }
64 public int getDayOfYearQ {
65 return dayOfYear;
66 }
67 public double getAverageTemperatureQ {
68 return currentDay.getAverageTemperature();
69 }
70 public void removcQ {}
71 public double getSolarRadiationQ {
72 return currentDay.getSolarRadiationQ;
73 }
74 public double getAverageTempDuringDayQ {
75 return currentDay.getAverageTemperatureQ;
76 }
77 public double getAverageTemperatureForPTQ {
78 return currentDay.getAverageTemperatureForPTQ;
79 }

Figure 8-3 7. Definition of class WeatherDataFromStation in Java (Part 4 of 5)

168 SOFTWARE ENGINEERING TECHNIQUES

80 public double getRainFall() {
81 return currentDay.getRainFall();
82 }
83 public double getTemperatureMinQ {
84 return currentDay.getTemperatureMin();
85 }
86 public double getTemperatureMaxQ {
87 return currentDay.getTemperatureMaxQ;
88 }
89 public double getPARQ {
90 return currentDay.getPARQ;
91 }
92 public double getPotentialETQ {
93 return currentDay,getPotentialETQ;
94 }
95 }
96

Figure 8-37. Definition of class WeatherDataFromStation in Java (Part 5 of 5).

The rest of the class definition in Figure 8-37 is similar to the class
definition of WeatherDataFromFile, Here again we have used the Delegation
pattern to delegate a method call from class WeatherDataFromStation to
class DailyWeatherData, As an example, lines 92 through 94 define the
method getPotentialETQ] the method call is delegated to object currentDay of
type DailyWeatherData,

10.4 Interface ISimulationController

The behavior of the interface ISimulationController is defined based on
the role class SimulationController must play in the system. This is a control
class as defined in Section 5.2, Control Classes, in this chapter. In this
section, we mentioned that the role of control classes is to coordinate the
interaction of different objects used in a use case realization. Therefore,
objects created from the SimulationController class should have access to
other objects used in the use case Start Simulation, to send them the right
message at the right time. Objects used in this use case are of type Plant, Soil,
and Weather, (i.e., objects created from classes Plant, Soil and Weather).

Furthermore, as class SimulationController controls the dialog with the
user interface (or the boundary class), we will model it to follow the Facade
Pattern as defined in Section 4.4 of Chapter 7. According to this pattern, an

THE KRAALINGENAPPROACH TO CROP SIMULATION 169

object of type SimulationController will be the unique point of
communication between the user interface or the boundary object and all
other objects involved in the Start Simulation use case. The interface
ISimulator should define the operations needed to communicate with the user
interface or the boundary object. Figure 8-38 shows the Java implementation
of the interface ISimulator,

1 import java.util.Properties;
2
3 public interface ISimulationControUer {
4 public void simulate(Properties props);
5 public Properties getSimulationResultsQ;
6

Figure 8-38. Definition of interface ISimulationControUer in Java.

As shown in Figure 8-38, the interface ISimulationControUer defines the
behavior that needs to be implemented by all classes that are candidates to
play the role of the controller in the simulation process. Line 4 defines the
method simulate(Properties props) that passes to a SimulationController
object a parameter of type Properties that holds the initial values to be used
for instantiating objects of classes Plant, Soil, and Weather. Line 5 defines the
method getSimulationResultsQ that will be used by the boundary object to
obtain the result of the simulation. Therefore, SimulationController will store
the results of the simulation in an object of type Properties.

It is important to note that the provided solution establishes a
communication bridge only between the boundary and controller objects. The
boundary object does not have access to entity objects such as plant, soil, or
weather. The boundary object can communicate to all controller objects,
provided they implement the required interface as defined in Figure 8-38.
Figure 8-39 shows the implementation of class SimulationController in Java.

In this figure, line 1 shows that class Properties is imported from the Java
library system. Line 3 defines class SimulationController using the Singleton
pattern and implementing the interface ISimulationControUer. Line 4 defines
an attribute of type SimulationController referred to as uniquelnstance, as this
attribute will hold the unique instance of the class. Lines 6, 7, and 8 define
attributes of types IPlant, ISoU, and IWeather that respectively reference
oh]QQis> plant, soil, and weather. Line 9 defines an attribute of type Properties
that is used to hold the results of the simulation. Lines 11 through 24 define a
constructor for the class. As the class is modeled using the Singleton pattern,
the constructor is private, meaning that no other object in the system can call

170 SOFTWARE ENGINEERING TECHNIQUES

this method. Therefore, only one instance of the class can be created. Lines
12, 13, and 14 create instances for objects plant, soil, and weather. The
corresponding classes Plant, Soil and WeatherDataFromFile, implement the
required interfaces: IPlant, ISoil, and IWeather,

I import java.util.Properties;
2
3 finalpublic class SimulationController implements

ISimulationController {
4 private static SimulationController uniquelnstance=null;
5
6 private IPlant plant;
7 private ISoil soil;
8 private IWeather weather;
9 private Properties props;
10
II private SimulationControllerQ {
12 plant = new PlantQ;
13 soil = new SoilQ;
14 weather = new WeatherDataFromFileQ;
15
16 //Establish relation Soil-Plant
17 plant. setSoil(soil);
18 soil.setPlant(plant);
19
20 //Establish relation Plant-Weather
21 plant. setWeather(weather);
22 //Establish relation Soil-Weather
23 soil, set Weather(weather);
24 }
25
26 public static SimulationController getlnstanccQ {
27 if (uniquelnstance === null)
28 uniquelnstance == new SimulationControllerQ;
29
30 return uniquelnstance;
31 }
32
33 public void simulate(Properties props) {
34 // Initializations

Figure 8-39. Implementation of class SimulationController in Java (part 1 of 3).

THE KRAALINGEN APPROACH TO CROP SIMULATION 171

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

weather.initialize(props);
soil.initialize(props);
plant.initialize(props);

while (weather.hasNextQ) {
weather.nextQ;

soil.calculateRateO;
if (plant. isPostPlantingO)

plant.calculateRateQ;

soil.integrateO;
if (plant.isPostPlantingO)

plant.integrateO;

Figure 8-39. Implementation of class SimulationController in Java (part 2 of 3).

Lines 16 through 24 estabhsh the relationships between created objects as
required by the conceptual diagram presented in section 4.1 Conceptual
Model for the Kraalingen Approach. Lines 26 through 31 define method
getlnstanceQ that returns the unique instance of the class. This method
implements the lazy initialization principle, which requires instantiating an
object only when it is needed. Lines 33 through 56 show the implementation
code for method simulate(Properties props). Lines 34 through 37 initialize the
three entity objects involved in the simulation process. Note that some of the
initial values for populating each of the entity objects are stored in Xho props
file. Each of the objects will read the appropriate data from the props file.
Lines 39 through 55 show the iteration over the weather data. At each step of
the simulation (i.e., every day), the processes of rate calculation and
integration take place. Lines 50 through 54 implement the repetition
condition; if plant has not yet reached the status of maturity, then the
simulation will continue. The simulation will terminate if the plant reaches the
status of maturity and the final results will be stored in XhQ props file.

172 SOFTWARE ENGINEERING TECHNIQUES

50 if(plant.isMature()) {
51 plant.setMaturityDayO;
52 saveFinalResultsQ;
53 return;
54 }
55 }
56 }
57 public Properties getPropertyFileQ {
58 return props;
59 }
60
61 private void saveFinalResults() {
62
63 props = new PropertiesQ;
64 props.putC'totalPlantDryWeight",

new Double(plant.getTotalPlantDryWeight()));
65 props.put("rootDry Weight",

newDouble(plant.getRootDryWeight()));
66 props.putC'fruitDryWeight",

new Double(plant.getFruitDryWeight()));
67 props.put("maturityDay",new Integer (plant.getMaturityDayQ));
68 }
69 }

Figure 8-39. Implementation of class SimulationController in Java (Part 3 of 3).

Lines 57 through 59 define the method getPropertyFileQ that returns the
property file where the results of the simulation are saved. Lines 61 through
69 show the implementation of the method saveFinalResultsQ. Plant data
such as total plant dry weight, root dry weight, fruit dry weight, and the day of
the year the maturity status is reached are saved in the props file. Therefore,
these final plant results can be used by the boundary object to display them to
the user.

11. PACKAGING THE APPLICATION

Before starting to write code, it is important to create a flexible and logical
structure for storing files. Files could be organized in packages: A package for
component. The entire application is stored in the package referred to as
Kraalingen, as shown in Figure 8-40. Within this package, five other
packages are defined named Interfaces, Plant, Simulator, Soil, and Weather.

THE KRAALINGENAPPROACH TO CROP SIMULATION 173

Each of the packages contains a file of type JAR that is the compressed code
for the class/component. Thus, the package Interfaces contains the file
Interfaces.jar, the package Plant contains the file Plant.jar, and so on.

0 t 3 fCraatingen
iQ Interfaces
Q Ptant
£3 Simulator
Casoii
Gl Weather

Figure 8-40, Package structure for the Kraalingen Application.

Documents pertaining to the entire system can be stored in the main
directory referred to as Kraalingen. Thus, the UML diagrams such as class,
sequence, and collaboration diagrams can be stored in package Kraalingen.

Chapter 9

THE PLUG AND PLAY ARCHITECTURE

1. DEFINITION

Software engineers are facing increasing pressure from clients to provide
architectural solutions that can be built with today's requirements and be
flexible enough to meet future needs. It is common practice in the domain of
software development to see customers constantly modifying and expanding
the requirements of the future system. Faced with the reality of everchanging
requirements, it is desirable to use an architecture that allows for easy
modifications of existing functionalities and easy adoption of new ones.

An architecture that is designed to minimize the impact of future changes
is the "plug and play" architecture. According to the definition provided by
Webopedia nittp://webopedia.com), the plug and play architecture refers to
the ability of a computer system to automatically configure expansion boards
and other devices. Originally, the plug and play architecture was used by the
hardware industry. The idea of installing a new device that will configure
itself to work in harmony with other parts of an existing system is very
promising. The "plug and play" architecture eliminated the need to adjust
switches, jumpers, and other configuration elements in a hardware system. It
brought general relief to the frustration caused by the large number of the
problems encountered during the process of installing a new piece of
hardware. The success of the plug and play approach in the hardware industry
created a fertile environment in the software engineering environments to
build software systems applying the same techniques.

176 SOFTWARE ENGINEERING TECHNIQUES

The key to building software systems that provide this high level of
flexibility is to use a component-based design. Components are units that can
be developed independently and even from third parties. They can be
organized to dialog with each other and to provide the functionalities required
by a software system. Components provide their services through a well-
defined set of interfaces. It is important to note that defining a well-thought-
out set of interfaces is crucial to a component's use and reuse. If interfaces are
not fully encapsulating, it will be difficult to tune or enhance
implementations, as poor encapsulation will hinder reuse [Lak96]. When the
component-based development reached its level of maturity, the plug and play
technology was at programmers reach. Plug-ins have been used widely since
the introduction of Netscape's Navigator Web browser and one of the most
successful examples of plug-in architecture was Apple's QuickTime [Szy99].

2. IMPLEMENTATION

The implementation of the plug and play architecture is closely related to
the use design patterns, specifically to creational and behavioral patterns. A
plug and play architecture for the Kraalingen approach should allow the
flexibility to replace the basic class/components (i.e.. Soil, Plant, and
Weather) with other components that provide similar behavior and implement
the same set of interfaces as the exiting class/components [Pap05]. In Section
7.2, Communication control-entity, in Chapter 8, we mentioned that the
control object communicates with entity objects through interfaces. Therefore,
any class implementing the interface could be used in the system. It is
desirable to have a mechanism that allows for substituting a class/component
with another similar one that does not require changes of code. Ideally, such a
mechanism would make the choice of the class/component to be used at run
time. The problem of selecting among many potential class/components is
solved by the Strategy pattern, presented in Section 5.2 of Chapter 7. The
strategy pattern used for implementing the plug and play architecture is shown
in Figure 9-1.

THE PLUG AND PLA Y ARCHITECTURE 177

SimuiationContfoller

^ ^ e a t h e r : fWeatherOataPrcvider

mm

1 0..1

. -V

0
IWestherDataProvidef

A
^getlemperatureMinimumO
^getTsmperatifreMaximumO
^getRainfallf)
%elSolarRadiation()

4 -̂
i m p ^ ' e n t s imple/rients

Weathe (Oat aFromFile

%etTemperatureMinimum()
^getTemperatureMaximumO
%e{R3mfaltO
%6tSalarRadiationO

VVeat heiOat aFromSt ati on

^etTemperatureMlnimumO
•^getTemperaturefvlaxiiTiumO
"^getRainfallO
^gelSolarRactiationQ

impleraents

WealherOataFromDatabase

^getTemperatureMinimuO
^etTemperaturefvlaximumO
^etRainfallC)
%etSoIafRadiation()

Figure 9-1. Strategy pattern used for implementing a plug and play architecture.

Selecting for use a class at run time requires a mechanism for dynamically
creating instances of used classes. The AbstractFactory pattern will be used
for this purpose. The Java implementation of the patterns used is closely
related to the concept of Reflection, discussed in the next section.

3. REFLECTION

Complex and dynamic systems allow for the fact that the environment in
which they run may change constantly. In an object-oriented environment,
classes are loaded dynamically, binding is done dynamically, and object
instances are created dynamically when they are needed. Therefore, there is a
need to collect information about the object that is dynamically created.
Reflection provides the answer to the above problem. Both Java and .NET
technologies provide ample support for reflection. The .NET framework uses
reflection to inspect the content of assemblies [Pro02] and Java uses it to
collect internal information about classes or components (http://javasoft.com).
As Java is the implementation language for our application, only details for
Java's Reflection API are provided.

In Java, the Reflection API has a two fold purpose. First, it provides a
mechanism to fetch data about a class/component and second, a means for
extracting objects composing the class/component. Using reflection, it is
possible to obtain internal information about the class/component such as its
superclass, the interfaces the class implements, the methods, their signatures,
and the returning object. The behavior for fetching data about a class is
provided in a class referred to as Class. Class is the universal type for the

178 SOFTWARE ENGINEERING TECHNIQUES

meta information that describes objects within the Java system. Class loaders
in the Java system return objects of type Class,

Figure 9-2 shows the Java implementation of the combination of patterns
Strategy and AbstractFactory using the behavior of class Class as defined in
Java's Reflection API. In this figure, line 3 defines the method
newInstance(className) that creates an object of type className. Lines 5
through 10 load the class className using the current class loader, and lines
11 through 24 create an instance of class className. The name of the
class/component to be used in the system can be provided by a configuration
file as shown in Figure 9-3. In this case, the simulation system will use classes
Plant, Soil, and WeatherDataFromFile, Thus, the decision about the type of
objects to be created can be made during execution by a component-
controller, not in the source code. In order to plugin another class, for
example, WeatherDataFromDatabase, only the content of the configuration
file needs to be updated with the appropriate class name. Thus, no changes to
the code are required. The component-controller, in our case
SimulationController, instantiates the right components at run time. Using
the plug and play architecture, the user has the choice to activate different
classes that provide similar behavior but implement the same interface.

I public class ObjectFactory {
2
3 public static Object newInstance(String className) {
4 Class els = null;
5 try{
6 els = Class.forName(className);// create the class
7 }
8 catch (ClassNotFoundException cnfe) {
9 System.out.println("can't find class named: " +className);
10 }
II Object newObject = null;
12 if (els != null) {
13 try {
14 newObject = cls.newlnstance(); // Create the instance
15 }
16 catch (InstantiationException ie) {
17 System.out.println("can't instantiate class named: " +className);
18 }
19 catch (lUegalAccessException iae) {
20 System.out.println("can't access class named: " + className);

Figure 9-2. The implementation in Java of Strategy and AbstractFactory patterns (Part 1 of 2).

THE PLUG AND PLA Y ARCHITECTURE 179

21 }
22 }
23 return newObject;
24 }
25 }

Figure 9-2. The implementation in Java of Strategy and AbstractFactory patterns (Part 2 of 2).

p lan t ^P lan t
s o i 1 = s o i l
we at he r =4*le at he r Dat aF r o nriF i 1 e

Figure 9-3. Example of configuration file.

4. THE PLUG AND PLAY
SIMULATORCONTROLLER

As the process of instantiating the class/components involved in the
simulation process changed (i.e., the selection of class/components to be used
will be done at run time), the controller class, defined in section 10.4 of
Chapter 8, must be modified accordingly. Figure 9-4 shows the Java
implementation of the modified SimulationControUer class.

1 import java.util.Properties;
2 import java.util.ResourceBundle;
3
4 final public class SimulationControUer {
5
6 private static SimulationControUer uniquelnstance=null;
7 private IPlant plant;
8 private ISoil soil;
9 private IWeatherDataProvider weather;
10 private Properties props;

Figure 9-4. Java implementation of the plug and play SimulatorController (Part 1 of 4).

180 SOFTWARE ENGINEERING TECHNIQUES

11 private SimulationController() {
12 ResourceBundle classBundle =

ResourceBundle.getBundle("ClassNames");
13 weather = (IWeather)ObjectFactory.newInstance (

classBundle.getStringC'weather"));

14 plant = (IPlant)ObjectFactory.newInstance(
classBundle.getStringC'plant"));

15 soil = (ISoil)ObjectFactory.newInstance(
classBundle.getStringC'soil"));

16 //Establish relation Soil-Plant
17 plant.setSoil(soil);
18 soil.setPlant(plant);
19 //Estalish relation Plant-Weather
20 plant.setWeather(weather);
21 //Establish relation Soil-Weather
22 soil. setWeather(weather);
23 }
24
25 public static SimulationController getlnstanceQ {
26 if (uniquelnstance == null)
27 uniquelnstance = new SimulationControllerQ;

Figure 9-4, Java implementation of the plug and play SimulatorController (Part 2 of 4).

Line 2 imports a library that makes available the functionalities of class
ResourceBoundle. The functionalities provided by this class are used to create
classes from names read from the configuration file, as shown in lines 13
through 16. Lines 7 through 9 show that SimulationController has access to
interfaces IPlant, ISoil, and IWeatherDataProvider. Line 13 defines a
resource bundle, a Java artifact for implementing a configuration file that will
hold the names of the classes that SimulationController needs to create.
Figure 9-2, in the previous section, shows an implementation example of the
configuration file. This file can be edited using any text editor. In this case,
the SimulationController needs to create classes Plant, Soil, and
WeatherDataFromFile. Line 13 obtains access to the configuration file
referred to as ClassNames. Lines 14 through 16 create objects of type
Weather, Plant, and Soil. As the process of creating objects using reflection is
not a very straightforward one, let us take a closer look at this process. First,
the name of the class is obtained as a string by sending to classBundle the

THE PLUG AND PLAY ARCHITECTURE 181

message getStringC'className"), Thus, classBundle.getString
("weather") will return the name of class Weather, Second, (IWeather)
ObjectFactory,newInstance(classBundle,getString(''weather")) will create an
object of type IWeather. Note that ObjectFactory returns an object that is
casted to become an instance of type IWeather. The same process is used to
obtain objects of types Plant and Soil. Lines 17 through 74 are the same as in
the previous versions of SimulationController class.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

return uniquelnstance;
}

public Properties getPropertyQ {
return props;

}
public IWeather getWeather() {

return weather;
}
public ISoil getSoilO {

return soil;
}
public IPlant getPlant() {

return plant;
}

public void simulate(Properties props) {
// Initializations
weather.initialize(props);
soil.initiaHze(props);
plant.initialize(props);

while (weather.hasNextQ) {
weather.nextQ;
soil.calculateRateO;
if (plant.isPostPlantingO)

plant. calculateRateO;
soil.integratcQ;
if (plant.isPostPlantingO)

plant.integrateQ;
if (plant.isMatureO) {

// Stop simulation

Figure 9-4. Java implementation of the plug and play SimulatorController (Part 3 of 4).

182 SOFTWARE ENGINEERING TECHNIQUES

59 plant.setMaturityDayO;
60 saveFinalResultsQ;
61 return;
62 }
63 }
64 }
65 private void saveFinalResultsQ {
66 props = new PropertiesQ;
67 props.putC'totalPlantDryWeight",
68 new Double(plant.getTotalPlantDryWeight()));
69 props.put("rootDryWeight",

new Double(plant.getRootDryWeight()));
70 props.putC'fruitDiyWeight",

newDouble(plant.getFruitDryWeight()));
71

props.put("maturityDay",String.valueOf(plant.getMaturityDay()))

72 }
73 }

Figure 9-4. Java implementation of the plug and play SimulatorController (Part 4 of 4).

Plugging a new class/component into an existing system can be
implemented in different ways. One can be organizing the class/component as
an executable file that inserts the class/component into the right directory and
makes the necessary changes to the configuration file. The next time the
system runs, it will activate the newly added class/component. The
configuration file can be implemented in several ways. We have selected to
use Java's resource bundle, as it is simple and sufficient to demonstrate an
example of the plug and play architecture. Other possible implementation for
the configuration file is to use an XML file, holding the names of the classes
to be created. XML parsers will be needed to extract the information from the
XML file and, in combination with the Builder pattern [GHJ95], create the
required classes.

The advantage of this solution is that it allows development of frameworks
for creating complex objects. Information about the interfaces that define the
behavior to be implemented by other potential classes can be found in the
corresponding UML models. UML allows for creating well-organized and
easily-understandable documentation, which can be published on the Web and

THE PLUG AND PLA YARCHITECTURE 183

is available to developers from different groups and locations to coordinate
their efforts [PSH04].

5. TESTING UNIT FOR A CLASS/COMPONENT

Testing has always been an important part of the software development. It
is the last step of the software development and the step that decides whether
the developed system will move to production. The entire system needs to be
tested to make sure that it delivers the right results. The use of good modeling
practices help to develop good quality software but it may not always avoid
mistakes; they are inevitable and part of the process of developing software,

One of the challenges of designing independent components is making
sure that they deliver the expected results. Independent components manifest
their behavior when involved in a dialog with other components. The more
complex the behavior of a component is, the more difficult it is to test.
Testing, when done manually, is time consuming. There are several automatic
testing methodologies that are successfully used in the software industry. One
popular testing software application is JUnit (http://www.iunit.org). In this
book we will not describe in detail any of the existing testing methodologies.
We recommend the readers to look for specialized books in testing
methodologies. We will describe some simple testing "patterns" that can be
used for testing classes or components.

One way of testing a class or a component in Java is to consider that class
as a stand-alone one by adding a static main method and some logic for
testing functionalities the class provides. Figure 9-5 shows an example of a
main method and code for testing the behavior of class
WeatherDataFromFile. In this case, we will make sure that the class
WeatherDataFromFile we have developed provides the right daily weather
data needed in the simulation process. The implementation in Java for this
class is shown in Figure 8-35 in Section 10.3.1 of Chapter 8.

83 static void main(String args[]) {
84 Properties props = new PropertiesQ;
85 props.put("weatherFile","weatiier.txt");
86 WeatherDataFromFile weather = new WeatherDataFromFileQ;
87 System.out.println(" Daily Weather Data ");
88 weather.initialize(props);
89 while (weather.hasNextQ) {

Figure 9-5. A testing unit for class WeatherDataFromFile (Part 1 of 2).

184 SOFTWARE ENGINEERING TECHNIQUES

90 weather.next();
91 System.out.println("DayOfYear="+weather.getDayOfYear()

+" Tmin=="+currentDay.getTemperatureMin()
+" Tmax="+currentDay.getTemperatureMax()

+" Radiation="+currentDay.getSolarRadiation()
+" Rainfall="+currentDay.getRainFall());

92 }
93 }

Figure 9-5. A testing unit for class WeatherDataFromFile (Part 2 of 2).

Line 83 shows the definition of the method as static and that does not
return any results. Lines 84 and 85 create an instance of Properties class
needed to store the name of the weather data file. Line 86 shows that an
instance of the class WeatherDataFromFile, referred to as weather, is created.
Line 87 prints the string "Daily Weather Data". Line 88 initializes the object
weather using the parameter "weather.txt," which is the file name holding the
weather data to be used in the simulation process. By definition, class
WeatherDataFromFile implements interface Iterator. Therefore, it provides
the means to iterate over the weather data. Line 89 tests whether the end of
the file is reached. Line 90 obtains an object of type DailyWeatherData that is
referenced by attribute currentDay, From the object currentDay, daily data
can be obtained by sending messages such as getTemperatureMinQ,
getTemperatureMaxQ, etc. Line 91 prints daily weather data for the current
day.

Figure 9-6 shows a partial view of the weather data read from the file
weather.txt. Notice that these results are the same as the ones shown in Figure
8-36. Therefore, class WeatherDataFromFile provides the expected results.

THE PLUG AND PLA YARCHITECTURE 185

• Daily Weather Data-

DayOIYear=1 Tmin=5.1 Tmax=20.0 Radiation=4.4 Rainfall=23.9
DavOfYear=2 Tmin=10.8 Tmax=13.3 Radiation=1.1 Rainfall=0.0
DavOIYear=3 Tmin=12.1 TmaH=14.4 Radiation=1.1 RainfalhO.O
DayOfYear=4 Tmin=3.6 Tmax=18.3 Radiation=6.1 Rainfall=14.7
DayOfYear=5 Tmin=12.8 Tmax=17.2 Radiation=5.6 Rainfall=0.8
DayO(Year=6 Tmin=12.4 Tmax=21.1 Radiation=5.0 Rainfall=0.0
DayOfYear=7 Tmin=11.1 Tmax=21.7 Radiation=7.2 Rainfall=0.0
DavOIYear=8 Tmin=12.0 Tmax=21.7 Radiation=8.3 RainfalhO.O
DayOfYear=9 Tmin=6.1 Tmax=20.0 Radiation=8.3 Rainfall=0.0
DavOfYear=10 Tmin=3.5 Tmax=23.3 Radiation=l1.1 Rainfall=3.8
DayOfYear=11 Tmin=13.5 Tmax=19.4 Radiation=2.8 Rainfal!=0.0

Figure 9-6, Daily weather data obtained from the testing unit.

In a similar manner, we will create a testing unit for the class
SimulationController. The class definition for SimulationControiler, as
defined in Figure 8-39, will be provided with a static method referred to as
main as shown in Figure 9-7.

Lines 72 through 75 define the parameters needed for the simulation
process and assign them initial values. Usually, these values will be provided
by users of the system. Line 76 obtains the unique instance of the
SimulationController and line 77 sends simulator the message simulate with
the appropriate parameters. The results of the simulation are stored in a
Properties file by the simulator.

70 static void main(String args[]) {
71 Properties props = new PropertiesQ;
72 props.put("weatherFile","weather.txt");
73 props.put("plantingDate","121");
74 props.put("soilDepth","145");
75 props.put("wiltingPointPercent","0.06");
76 SimulationController

simulator = SimulationController.getlnstanceQ;
77 simulator, simulate(props);
78 System.out.println(" Simulation Results ");
79 Properties pr = simulator.getPropertyQ;
80 Double rdweight = (Double)pr.get("rootDryWeight");
81 Double ptdweight - (Double)pr.getC'totalPlantDryWeight");
82 Double fdweight = (Double)pr.get("fruitDryWeight");

Figure 9-7. Test unit for class SimulationController (Part 1 of 2).

186 SOFTWARE ENGINEERING TECHNIQUES

83 String matDay = pr.getProperty("maturityDay");
84 System.out.println("Root Dry Weight="+ rdweight.toStringQ
85 +" Maturity day="+ matDay
86 +" Total Plant Dry Weight="+ptdweight.toString()
87 +" Fruit Dry Weight="+fdweight.toString());

}

Figure 9-7. Test unit for class SimulationController (Part 2 of 2).

Lines 80 through 83 read the results from the Properties file and lines 84
through 88 print the results. The obtained results can be evaluated by a
specialist to make sure they are accurate, or they can be compared to results
obtained with other versions of the software if they exist.

The ability to test independently class/components allows for a faster
software development as the focus is on one class/component with a well-
defined behavior. By integrating testing unit into the build process, it makes it
easier to discover implementation errors and design flaws. A class that has
successfully passed the individual test can be easily integrated into more
complex testing scenarios where several classes/components are involved.
Thus, using an iterative process that consists of testing individual classes and
later the interaction of several classes, makes it easier to test complex
software. We have used this approach all along the software development
process and have obtained good results.

Chapter 10

SOIL WATER-BALANCE AND IRRIGATION-
SCHEDULING MODELS: A CASE STUDY

1. INTRODUCTION

In this chapter we will discuss issues related to the development of a
general UML model that covers a large class of similar models, the class of
water-balance and irrigation-scheduling models [PSH04]. Many irrigation-
scheduling and water-balance models have been developed and published in
the past. These models have been used for both research purposes and as
management tools. Models used for research purposes generally represent the
system and underlying processes in greater detail than do management
models. [AW85] distinguished between (i) mechanistic and functional, and
(ii) rate and capacity models. Mechanistic models are based on fundamental
processes, whereas functional models simplify the representation of
processes. Rate models are driven by time and define rates of change within a
system; capacity models are driven by input amounts and define amounts of
change. However, even within these broad categories, models differ in their
assumptions and representation of water-balance processes. [MLB98] make a
detailed analysis of the assumptions and the representations of the water-
balance models. Water-balance models have been used as stand-alone
applications and as components of larger agricultural-system models. For
example, a water-balance model developed by Ritchie has been integrated
into numerous simulation models, including the cotton simulation model
OZCOT [Hea94], CERES-Wheat [R085], and is used by the Decision-
Support System for Agrotechnology Transfer (DSSAT) [Rit98] which

188 SOFTWARE ENGINEERING TECHNIQUES

includes crop simulation models for a number of agronomic crops. Irrigation-
scheduling models are generally standalone applications that have been
designed as management decision-support tools.

Similar models may differ in their input data requirements and their use.
[OEKOl] used THESEUS developed by [WegOO], a modeling system
containing a number of sub-models, for water-balance and crop simulation,
representing the soil, plant, and atmosphere, which can be combined to create
simulation models. The system contains a number of water-balance models;
users can select one that meets their complexity and data requirements. They
summarized and distinguished between models according to their output, the
equations used in the model and the input data requirements.

Although water-balance and irrigation-scheduling models may have been
developed for different purposes and vary widely in their input requirements
and representation of processes, they do share a number of commonalities.
For example, they all typically require some soil and weather data. There is
also often overlap in the processes represented, although they may be
calculated by different methods. For example, most models include water
removal by evapotranspiration. This may be calculated by the model: A
historical value or an input requirement. The process of water movement is
simulated by these types of models either as amounts moving into the soil
profile and stored within it, or by rates of change in soil water content. In
order to identify common elements and relationships, a number of water-
balance and irrigation-scheduling models were compared.

In the case of soil water-balance and irrigation-scheduling models, the
common system elements are the soil, plant, and weather. The behavior of
these elements is model-specific and is defined by the processes accounted for
by the model.

2. CONCEPTUAL MODELS: EXAMPLES

As previously mentioned, the most common elements used in water-
balance and irrigation-scheduling models are plant, soil, and weather. A first
draft of the conceptual diagram is presented in Figure 10-1.

WA TER-BALANCE & IRRIGA TION SCHEDULING MODELS 189

Plant gt'owsln Soil

usesWbatherData uses VV&atherData

Figure 10-1. Conceptual model for water-balance and irrigation-scheduling models.

As shown in Figure 10-1, Plant and Soil are linked with a bidirectional
association referred to as growsin. This association shows that a plant grows
in soil and takes from soil all the nutrients that are needed for plant
development; the plant consumes nutrients that are located in soil. Processes
occurring in Plant need Soil data and vice versa; processes occurring in Soil
need Plant data. Both, Plant and Soil, are connected via a unidirectional
association to Weather, referred to as usesWeatherData that expresses the fact
that plant and soil are affected by the weather conditions.

The conceptual model presented above does not take into consideration the
fact that additional water is provided by the means of irrigation when there is
a drought for a considerable amount of time. Therefore, another element
needs to be added to the conceptual diagram: The irrigation management
element. Figure 10-2 shows the modified conceptual diagram.

190 SOFTWARE ENGINEERING TECHNIQUES

Figure 10-2. Conceptual model with irrigation management considerations.

Figure 10-2 shows that irrigation management practices will be applied to
soil and plant in order to improve production yield. The association manages
that links Soil and IrrigationManagement is bidirectional, meaning that
processes occurring in soil need irrigation management data and calculations
occurring in the management need soil data. It is important to note that it is
not always easy to define the nature of the associations among the elements of
the model. As we are yet in the phase of developing a conceptual model, not
all the exact relationships between elements can be defined at this point. The
more we advance in the model construction, the more we will know about the
collaboration between elements of the model and the more precise the model
becomes. As an example, some association that we have considered as
unidirectional may become bidirectional as we learn that data from the class
located in one side of the association are needed to calculate processes in the
class in the other side of the association. The process of developing a
complete, detailed, and exact model is an iterative one.

The calculation of some processes requires data from several elements of
the conceptual model and cannot be assigned to a particular element. Such
processes are the calculation of evapotranspiration rates; they usually need
data from soil, plant, and the weather elements. Therefore, an additional
element needs to be added to the conceptual model to carry out these
calculations. This element, referred to as SoilPlantAtmosphere, will be
assigned the task of performing these calculations and is added to the
conceptual diagram as shown in Figure 10-3.

WATER-BALANCE & IRRIGATION SCHEDULING MODELS 191

Weather ^
^

t^ a^

uses'

usesWeaiherDaia

&^^eatherD8ta

^''"^-^ Plant

WeatherData

\ gm 'sIn

usesPlantData^—-

usesSoM)aita

SoilPlantAtmosphere

manages IrrigationManagement

Figure 10-3. Conceptual model that considers soil-plant-atmosphere processes.

As shown in Figure 10-3, a new element, the SoilPlantAtmosphere, is
added to the conceptual diagram to account for evapotranspiration rate
calculations. In order to perform these calculations, SoilPlantAtmosphere
needs to have access to other elements containing these data. Thus, the
unidirectional association usesWeatherData between SoilPlantAtmosphere
and Weather allows access to weather data. The association usesPlantData
allows for accessing plant data and the association usesSoilData allows access
to soil data.

The conceptual diagram presented in Figure 10-3 seems to cover all the
elements and their relationships needed to calculate processes that occur in
soil, plant, and atmosphere that are required to calculate the amount of water
needed for irrigation. The relationships between elements are independent of
the type of equations used in the model and of the programming language
used for the implementation of the model. A general structure, representing all
the elements involved in a water-balance or irrigation-scheduling model and
their relationships is developed to serve as a general template for developing
new models.

192 SOFTWARE ENGINEERING TECHNIQUES

3. TEMPLATE FOR DEVELOPING NEW MODELS

The plant, weather, and soil plant atmosphere elements of the conceptual
model are presented by the classes Plant, Weather, and SoilPlantAtmosphere,
as shown in Figure 10-4. Soil is represented by three classes; SoilProfile,
SoilLayer, and Cell. The SoilProfile class represents the profile as a whole.
Some models consider soil as a composition of layers with different
properties. Some other models consider the entire soil profile as one layer.
The SoilLayer class is created to store layer-specific data and behavior. The
Cell class represents the surface. It represents a uniform area for which a
simulation is run. The Groundwater class is created to store data and behavior
for the groundwater layer, sometimes considered by water-balance and
irrigation-scheduling models. The IrrigationManagement class plays an
important role in irrigation-scheduling models. It stores information related to
irrigation management practices and calculates outputs such as recommended
irrigation rates.

A unidirectional association, referred at as usesWeatherData, links classes
SoilPlantAtmosphere and Weather, The navigation direction is from
SoilPlantAtmosphere towards Weather. This means that objects of class
SoilPlantAtmosphere have access to data and behavior to objects of class
Weather. Weather data are required to calculate processes occurring in
SoilPlantAtmosphere, such as calculations of actual evapotranspiration rates.
Objects of class Weather do not have access to objects of class
SoilPlantAtmosphere, as there are no calculations occurring in this class. The
multiplicity of the association usesWeatherData is one-to-one, meaning that
one object of type SoilPlantAtmosphere has access to one object of type
Weather (one source of weather data) at the time of the simulation.

The association usesWeatherData that links classes Cell and Weather has
the same properties as the one linking classes SoilPlantAtmosphere and
Weather, it is bidirectional and a one-to-one association.

WATER-BALANCE & IRRIGATION SCHEDULING MODELS 193

u

Weather
^ d a t a

%rocessO

1 ^

1

Cell

%data

"^processO

1

mati

1

j fes

IrrigationManagem

%data

•^processO

c^

1

ent

us&s

hmAPmfib

1

r

t'feaftefOafa

1 SoilProfile

1%data

1 ^process 0

i M

Have

fQ.A
Groundwater

^data

^process!)

1

SoilPlantAtmosphere

%data

process fj

gmwsin

1

1 1

1.*

Plant

^ d a t a

^pfoc&ss()

SoilLayer

t^data

1 "^processO

Figure 10-4. Template for developing new water-balance or irrigation-scheduling models.

The association between classes SoilPlantAtmosphere and Plant is
unidirectional, with the navigation direction from SoilPlantAtmosphere
towards Plant, An object of type SoilPlantAtmosphere can access data and
behavior from an object of type Plant. The vice versa is not true; an object of
type Plant cannot access data and behavior from an object of type
SoilPlantAtmosphere, Processes occurring in class SoilPlantAtmosphere need
plant data for their calculations. The multiplicity of the association is one-to-
one; one object of type SoilPlantAtmosphere can access one object of type
Plant,

The association between classes SoilPlantAtmosphere and Cell is
bidirectional, as processes occurring in each of the classes need data from the
other class. The multiplicity of the association is one-to-many; one object of
type SoilPlantAtmosphere can access one or more objects of type Cell,

In the template shown, Cell is the central unit of the system. It has a soil
profile associated with it, which, in turn, is composed of one or more layers.
A soil profile may also contain groundwater. Plant grows in a Cell and the
two classes are able to exchange data. Any soil data required is accessed

194 SOFTWARE ENGINEERING TECHNIQUES

through the Cell. Class Cell does have access to data from
SoilPlantAtmosphere, which it is able to pass to SoilProfile and SoilLayer, in
order that, for example, water removal from the soil by evapotranspiration
(ET) can be modeled.

After defining the elements involved in irrigation scheduling and water-
balance models, attributes and behavior are defined for each element
represented in the diagram. Attributes represent the input data required by the
model and behavior defines the processes that are calculated. Figure 10-4
shows elements, represented by classes, provided with data and behavior.
Based on the general template, class diagrams were developed for two
models: A water-balance model and an irrigation scheduling model that will
be presented in the following sections.

4. ANALYSIS OF A WATER BALANCE MODEL

In order to develop specific class diagrams for individual models, each
participating class in the template is populated with attributes and methods
representing the model-specific input requirements and processes. This
structure clearly shows the model data input requirements and the processes
represented and can be used to organize code. Figure 10-5 represents a class
diagrams for a water-balance model developed by Ritchie [Rit98]. Ritchie's
model requires certain weather data, such as rainfall, solar radiation, and
minimum and maximum temperature; therefore, class Weather has been
provided with the attributes to store those corresponding values. Class
Weather is provided with a method named calculatePriestleyTaylorET, which
is used to calculate reference ET. Depending on the method used, calculation
of actual evapotranspiration may involve weather, soil, and plant data.
Therefore, class SoilPlantAtmosphere has links to Weather, Soil, and Plant
classes. Reference ET is calculated solely from weather data; this provides a
basis for the estimate of evapotranspiration. This reference ET, is normally
then modified to determine the actual evapotranspiration. Actual ET is
determined by the crop characteristics and by the soil moisture content.
Different crops have different water requirements, which vary temporally, and
the actual amount of water that can be physically removed from the soil is
limited by the amount of water actually stored in the soil. Methods of
calculating actual ET from reference ET may use crop information, soil data,
or both. Therefore, it is necessary for class SoilPlantAtmosphere to have
relationships with classes Cell, Weather, and Plant to access to all these data.
Unlike estimates of actual ET, reference ET calculations, such as the method
calculatePriestleyTaylorET in Figure 10-5, were assigned to class Weather.

WATER-BALANCE & IRRIGATION SCHEDULING MODELS 195

Reference ET is determined solely from weather data and represents potential
evapotranspiration rates based on weather conditions, rather than any
processes occurring in the plant or soil or interactions between the two.
Online weather systems, like the Florida Automated Weather Network
(FAWN) [BJ98] or MetBroker [LKN02], sometimes provide already-
calculated reference ET values. If these systems are used, reference ET could
be imported from the data provider system.

Weather

^rainfal l
^solarRadiation
^mtnimumTemperature
^maximumTempefature

^^Weatheit)
"^calculatePriestteyTaylorETQ

usmWesthe^rData

SoilPlantAtmosphere

"^SoilPiantAtmosphereO
^cafculateSoilEvaporationf)
^caiculateTranspirationO

exchangskik

u'sesWeatherDaia

Cell

%»funoffCui\'eNumberSCS
%>soilSuffaceAlbedo
%limitFirstStageSoilE^/aporation

usBsPlanf: In^rmaiiOi

N1/0 -

Rant

%el lO
%8!culateRunoff(}
%alculateinfiltration()
%alculateAlbedo{)

1.-y

m&tpges

1

IrrigstionManagernent

%>irrigation

^leafAreainclex

^RantD
% ate ulat eR oot Wat eHJpt akef]

1

hasAPfoftle

1
Soil Profile

^dpainageCoefficient

^SoiProfiieO
^calculateAvail ableWateit)

SoilLayer

^saturat ion
^fteldCapacity
^permanentwiltingPoint

^rootVVeightingFactor
^initialMoistureContent

^SoilLayerO
^calcLilateDrainageO
^calcLilateMoistureContentO
'^caiculateEvaporationQ
%alculate!nftltration()
^calcLilateSoilMoistureHoldingcapacityO
^calculateUpvyardWaterFlovvfl
^calcutateAvailableV%'ateiO

Figure 10-5. Class diagram for Ritchie's model.

196 SOFTWARE ENGINEERING TECHNIQUES

The class SoilPlantAtmosphere is provided with behavior to determine the
water loss through evaporation and transpiration. Ritchie's model separates
these processes, considering evaporation and transpiration separately.
Therefore, class SoilPlantAtmosphere is provided with two methods:
calculateSoilEvaporation and calculateTranspiration. Soil evaporation and
transpiration are calculated using soil moisture data and leaf area index is
required in the calculation of transpiration.

Ritchie's model considers the soil profile as consisting of a number of
layers and allows the representation of numerous layers in the simulation.
Thus, the multiplicity of the association composedOf between classes
SoilProfile and SoilLayer is one-to-one-or-many. This model requires a great
number of layer data and it calculates many layer-related processes because
the water movement into and out of layers is considered and modeling of
water use is detailed, being partitioned between layers. Processes and
attributes pertaining to the profile as a whole are assigned to class SoilProfile.
Ritchie's model uses a whole-profile drainage coefficient stored in the
attribute drainageCoefficient.

Class Cell is provided with data and behavior to calculate the amount of
water that enters the soil surface. Ritchie's model uses The United States Soil
Conservation Service (SCS) to determine run off and, in turn, calculate the
infiltration amount. Therefore, class Cell is provided with attributes
runoffCurveNumberSCS, soilSurfaceA Ibedo, and Urn itFirtsStageSo il
Evaporation and methods calculateRunoff, calculatelnfiltration, and
calculateAlbedo. Ritchie's model uses the depth of the groundwater layer;
therefore, class Groundwater is created and provided with the attribute depth
to store the corresponding value.

5. ANALYSIS OF AN IRRIGATION-SCHEDULING
MODEL (ISM)

Figure 10-6 contains a diagram that represents the Irrigation Scheduling
Model (ISM) developed by [GSROO]. As in the Ritchie model, the only
methods assigned to class Weather are for calculation of reference ET.
However, ISM provides several methods for its calculation, such as the
Penman-Monteith, Blaney Criddle, or Priestley-Taylor methods. The model
also allows for user input of already-calculated reference ET. The ISM
Weather class has been provided with a larger number of attributes, compared
to that of the Ritchie model. These extra attributes are needed to store the data
values required by each of the methods of calculating reference ET. Not all
the input data need to be supplied to the model - only those required by the

WATER-BALANCE & IRRIGATION SCHEDULING MODELS 197

selected calculation method. Class Plant in ISM has a richer set of attributes
than Ritchie's model. This illustrates a difference between the two models.
Whereas Ritchie's model requires the input of leaf area index (either from the
user or from a linked model), ISM includes processes that simulate aspects of
crop growth. As a result, much more information about the plant is required
by ISM. Choice of a model may be, in part, determined by data availability.
For example, use of ISM may be preferable if the leaf area index required by
Ritchie's model cannot be readily obtained. In this case, corresponding data
inputs required by ISM may have to be obtained to allow the model to make
predictions about the condition of the crop.

198 SOFTWARE ENGINEERING TECHNIQUES

Weather
* m axi mu mTe m p e ratu re
*minimumTemper3ture
* m axi m u m Re 1 ative H Li m i d it/
*mmimumRelativeHumidity
*vYind Speed
*r3tioD3yNightWinclSpe6d
*sot3rR3d!3tion
*sunshineHoLirs
* p an Evaporation
*r3infall
*referenceET
*st3tionNam5

^alcLilatePenman'MonteithETO
\3lculateFA024Penm3nET()
\3lcuiateKimberly-PenmanET0
\alcu)ateF.A024RadiationETO
^:alculatePriestieyT3ylorET()

SoilPlantAtmospnere

\3lcLflateActualETi /; float
^ y ^

^ y ^

\ijp9ffi sthi-i:-sis

€Xd l :«0§€ t

IS t

N .

uiesPlsntl nfo>sc;3tic^

\^^ ̂
4

iforms.lion

A

Plant
*crop
*plantingDate
^period
*d aysToiaxR ootingOeptli
* m inim umRoottniDepth
* m aximum Ro oin gOepth
^maximum Yield
''̂ m aiimumSeasonalET
*©TYiel^oefficient
*d evelop mentStage Length!
^cfopCoeficient

^calctlateRootingDepttt) j
\3lculateCropYie!d()

us€sW«SitterDsts

IrrigationManaQement
Irrigationlnterva!
'IrrigationDepth

f^managementAJiovvableDepletion

*calcuiateirrigationRequirement;)

Ceil
''runoffCurv'sNumbe rSCS

*caICLilateEffectiveR3infallSCS()
*c.alcul ateEffectiveRainfaiiPeriDe ntageO

SoilProfile

*ca} cul ateD ee pPercotstionO
*c3l cul ateM oi sture Defl cltC)

GroLintfiVater

'permanent^'iltingPoInt

Soil Layer

*c3lculateW3terStressFactor{|
^calculateMoistureDeplettonC)

Figure 10-6. Class diagram for the ISM model.

Class SoilPlantAtmosphere is provided with data and behavior for
determining water losses through evaporation and transpiration. The ISM
model predicts evapotranspiration by combining the effects of both
mechanisms to determine overall water loss from the plant-soil system. ISM
converts reference ET values, provided by class Weather, into actual
evapotranspiration based on soil moisture availability, provided by class
SoilLayer, and the crop coefficient, provided by class Plant. The need for data
from Weather, Plant, and SoilLayer justifies the associations class
SoilPlantAtmosphere has with Weather, Plant, and Cell. Although there is no

WATER-BALANCE & IRRIGATION SCHEDULING MODELS 199

direct association between SoilPlantAtmosphere and SoilLayer, the
communication between these two classes takes place via Cell.

Classes Cell, SoilProfile, SoilLayer, and Groundwater are modeled to
function together as a component and could be considered as a Soil
component. The main class in this component is class Cell, which plays the
role of the gatekeeper. One may suggest that a direct link from class
SoilPlantAtmosphere to class SoilLayer, bypassing class Cell, would shorten
the communication between these two classes. The problem with this solution
is that by shortening the path, we will increase the interdependency between
classes of the system. In the case that some other Soil component providing
the same behavior can be found, it will be difficult to use it, as our system will
not allow the substitution of one group of classes with another one. Having
class Cell controlling the dialog of the soil related classes with the rest of the
system makes it easy to define an interface that provides the services the
component can offer. An interface allows substitutability between different
components implementing the same interface.

Layer-specific data and behavior are assigned to class SoilLayer. Unlike
the Ritchie's model, ISM does not partition the soil into layers; it simply
considers the soil profile as a single layer that extends to the bottom of the
root zone. The association composedOf between classes SoilProfile and
SoilLayer is one-to-one-or-many; therefore, the single layer approach of the
ISM model is taken into consideration. Class SoilLayer is provided with a
smaller number of attributes than the same class in the Ritchie's model,
because the single layer approach requires fewer parameters for calculation of
the water movement. Processes and attributes that apply to the soil profile as a
whole are assigned to class SoilProfile. ISM model calculates deep
percolation out of the root zone; thus, class SoilProfile is provided with a
method referred to as calculateDeepPercolation.

Class Cell is provided with data and behavior for calculating the amount of
water that enters the soil surface. The ISM model describes this as effective
rainfall and uses the SCS method to determine this amount. The method
calculateEffectiveRainfallSCS implements the SCS method for this
calculation. Alternatively, a fixed percent of actual rainfall can be specified.
ISM includes a number of irrigation-scheduling functions in class
IrrigationManagement. The user can input either a desired irrigation interval
or an allowable depletion value and the model calculates an irrigation
requirement to guide the management. The ISM model does not take into
consideration the groundwater; therefore, the Groundwater class does not
provide any data or behavior.

200 SOFTWARE ENGINEERING TECHNIQUES

6. THE BENEFITS OF A GENERAL TEMPLATE

Templates can facilitate the development of software construction. The
general template shown in Figure 10-4 represents a template for building a
new water-balance or irrigation-scheduling model. It represents the common
classes used for these types of models and their relationships. Each of the
classes of the template can be populated with attributes and methods needed
by the particular approach used for model development, as shown in Figures
10-5 and 10-6.

In addition to the documentation provided by the class diagram, UML
tools usually include methods for creating complementary documentation.
The software used allowed users to create extra documentation for each
component of the class diagram: The relationships, classes, class attributes, or
class methods. This extra documentation allows the developer to explain the
meaning and the role of each of these in the system. Attributes can be defined
and equations used in the calculation of processes can be presented, for
example, in pseudo-code. That is, equations can be presented in a format
similar to that used in papers, books, etc. It need not be written in a specific
programming language. An example of documentation for a method is shown
in Figure 10-7.

The general template could easily be extended to accommodate other
agricultural and environmental models. For example, models of crop nutrient
uptake rely on the same basic system elements as soil water-balance models.
They could be represented with little or no modification of the template,
perhaps requiring a class to represent additional management practices such
as fertilizer management. Ultimately, the template could be extended to
include numerous classes representing all aspects of such systems.

From these templates, UMLs forward-engineering capabilities can be used
to generate skeleton programming code, which can form the basis of the final
code implementation. Usually, UML tools provide a means of translating
diagrams into several implementation languages such as Java, Visual Basic,
C++, etc. Rational Rose (http.'//rationalcom) provides capabilities for code
generation in a variety of languages such Java, Visual C++, Visual Basic,
ADA83, ADA95, CORBA, and XML_DTD. This capability greatly
simplifies the final software development process. Figure 10-8 shows an
example of automatic code generation in Java for class Cell. Figure 10-9
shows an example of automatic code generation in Visual Basic for class
SoilLayer, and Figure 10-10 shows an example of code generation for class
SoilPlantAtmosphere. In Figure 10-10, the code generation includes the
relationships class SoilPlantAtmosphere has with classes Plant and Weather.

WATER-BALANCE & IRRIGATION SCHEDULING MODELS 201

i- E l SoilLayer

: ^ saturation

^ fieldCapacit^i

^ permanentwiltingPoint

; ^ depth

• - ̂ rootWeightingFactor

; ^ initialMoistureContent

^ SoiLayer

^ calculateDrainage

• ^ calculateMoistureContent

• ^ catculateEvaporation

• ^ calculatelnfiltration

^ calculates oilMoistureHoldinc

^ calculateUpwardV/aterFlow

"^ calculateAvailableWater

<>* theSoilPfofile {SoilProfile)

it; E l SoilPlantAtmosphere

>: SI SotlPfoHie

'+! I I Weather

* " ^ Associations

; O f Component View -

l3} Deployment View

(^ Model Pfoperties v

This method calculates the current soil
volumetric moisture content. The current
value is dependent on the previous value
(the moisture content on the previous day). It
is used by method
calculates oilM oistureH oldingCapacityO.

It is calculated prior to and then again
following drainage of water out of the layer.

If prior to drainage then

caiculateM oistureContent(currentD ay) =
calculateM oistureContentjcurrentD ay) •
calculateDrainagef]

SoilLayer

^saturation
^fieidCapacit>'

"^^peirn anentwiltingPoirrt

^ depth
%root Weighting Factor
^ ini ti al Mo ist ure Co ntent

^Soil Layer 0

'^calculateDrainageQ

^^calculateMoistureContenti;)

^calculateEvaporationQ

"^catculatelnfiltratioit)

^calculateSoilMoistureHoldingcapacityd

^calc ulat eUpwardWat 8ff I ow()

^calcuiateAvBilableV\/atet()

Figure 10-7. Example of documentation provided for a method.

Class diagrams created with UML and Rational Rose (other software
provide publishing capabiUties as well) can be used to create well-organized
and easily understandable documentation, which can be published on the
Web. Publishing the diagrams on the Web allows developers from different
groups, in different locations, to easily coordinate their efforts. Additionally,
because UML diagrams use plain English and can be understood by
programmers and non-programmers alike, they can facilitate collaboration
between these groups. Model-specific documentation for existing and future
models can be created using the methodology presented and can aid in model
evaluation. The template developed can be used to represent various models
regardless of the approach used in the model, using a common set of visual
elements. Both single and multi-layer approaches to modeling changes in soil

202 SOFTWARE ENGINEERING TECHNIQUES

water content could be described using the same UML diagram and the
template has the potential to be expanded to represent other soil-crop system
models, such as nutrition models. In addition to documenting the underlying
science of the models represented, the template outlines the structure of the
code organization and can be used to build new models. Generating skeleton
code from class diagrams, using UML tools, can greatly simplify code
implementation. Models could be implemented in different programming
languages, allowing programmers to choose the best environment according
to their specific architectural needs or to update models in newer
programming languages. The template could be used to facihtate model
maintenance and modification, allowing the programmer to easily locate
where changes must be made. Subsequent reuse of code could also be
simpHfied. The following figures show examples of code generation in Visual
Basic and Java using the same class diagram.

1 public class Cell {
2 private int runoffCurveNumberSCS;
3 private double soilSurfaceAlbedo;
4 private double limitFirstStageSoilEvaporation;
5 private SoilProfile theSoilprofile;
6 public Weather the Weather;
7 public Plant thePlant;
8 public SoilPlantAtmosphere theSoilPlantAtmosphere;
9 public CellQ {}
10 public void calculateRunoffQ {}
11 public void calculatelnfiltrationQ {}
12 public void calculateAlbedo() {}
13 }

Figure 10-8. Example of code generation in Java.

WA TER-BALANCE & IRRIGATION SCHEDULING MODELS 203

^^^^^•H
I S £*̂ e ^dit ^ew Efoject Format ^eby^ Eun C^ry Diagram loofs ^dd^lns H^dow Ijelp

(General) "̂"~"" ..-.^....--.---------------^^^ j-calculateAvitllabteWater

O p t i o n Expla-clt

* # tHcde 11 d-4 0 BEJ.eBOO:. DB
Private saturation A5 Variant:
'##Kcdcaid^~-l09KABjnO127
Private fieldCapacity As Variant

* * fHcdeX Id"-40^l<:ABBK0iFD

P r i v a t e permanentVUl t ingPoin t As V a r i a n t
' 4tMcdeUd-409KAS1MO' ^C
Private depth As Variant
•t^McdelId"-409KA8D901AS

Private rootWeightingFactor As Variant
' # W.c (1<-11 i±^ 4 0 9 K/vB E 6 0 0 2 A
P r i v a t e i n i t i i a H o i ^ t u r e C o n t e n t hs V a r i a n t
' #^HcdelId--?09EH873005€
P u b l i c Mev;Property As S o i l P r o f i l e

'#fHcdelId-409KA9et'1O39l
P u b l i c Sub c a i c u l a t e D r a l n a g a C)
End Sub
• ttHcdellct-<^b9KA9«00: OB
P u b l i c Sub c a l c u l a t e H o i ^ t u r e C o n t e n t 0
End Sub
»##Hodel ld--'l09lr:A99E015B
P u b l i c Sub c a l c u l a t e E v a p o r a t i o r . C>
End Sub
« Ill<k;de3 Id^409lr:A9AA009n
Public Sub calculatelnfiltraticnO
Znd Sub
'^fMcdeild™V09KA9B5O0^5
Public Sub calculateSDilHoistureHoidingCapaclty()
End Sub
» i #Mcde 11 d^ ̂10 9K A 9C 9 015 3
Public Sub calculateUpvmrdWaterriov?!)
Zvi?^ Sub
' % IHcde t rd~HC 9KA9K'r0 * 2K ^ ^'"""'
P u b l i c Sub c a l c u l a t e A v a i l a b l e ^ ' J a t e r C)
End S'^Sb

Figure 10-9. Example of code generation in Visual Basic for class SoilLayer.

In Visual Basic, operations are defined as subroutines starting with the
keyv^ords Public Sub and ending v îth End Sub. Betv^een these w^ords, the
user will enter the logic for the operation.

204 SOFTWARE ENGINEERING TECHNIQUES

IS ept Idt îew Ê 'Ojtct Fas'̂ iat ^ebu^ â *̂ Ql̂ ^̂ V ^W^ I^ob d̂d«ms l̂ lndow Help

! _ _ _ _ _ _ '-'-'^'''''^'-^-^''----^^ pDeSaraSmiir

Optiion EKplicit
Option Compare Binary

't#McdelId-4O!}l!:AS02037S
Public Weather ka Weather

»#^ModelId-'i09KA82'^03Se-
Public Plant As Plant

» 4̂ #Hcde 11 d-4 0 9EB0 7 4 0139

Public Sub calculateSoiXEvaporationn

End Sufo

' # # He de 11 d--10 9 E B 0 B 0 U 3 '19

Public Sub calcuiateXranspiratxon0
End Sub

Figure 10-10. Example of code generation in Visual Basic for class SoilPlantAtmosphere.

Chapter 11

DISTRIBUTED MODELS

1. INTRODUCTION

Usually, the environmental models, regardless of the chosen
implementation environment, are designed to run on a single computer. This
means that all objects (in case of object-oriented languages) or variables (in
case of traditional programming languages) reside in the same machine and
share the same address space. This way of developing software is called local
computing [WWW94]. In recent years, the number of applications that use
parts or elements residing on different computers has increased considerably.
This way of developing software is referred to as distributed computing
[WWW94]. There are several advantages to distributed computing. One is
simplifying maintenance. A component shared by different distributed
applications can reside in one location, thus giving ownership and control to
the institution that creates and maintains the component. It is not necessary to
distribute copies of this component that would be difficult to track and update.
Another advantage is economic. Because of the high cost of hiring
experienced programmers, more and more companies prefer outsourcing the
software development rather than developing it at home. The need for "off-
the-shelves" solutions is obHging companies to give serious considerations to
the interoperability between existing and newly developed software [Bro99].
In distributed computing, little information is known about the object
receiving the message. There is no information about the operating system or
the hardware architecture in which the receiving object is running, nor the
implementation language used. It is only known that the receiving object

206 SOFTWARE ENGINEERING TECHNIQUES

implements a certain interface and the message is part of the definition of this
interface. There are several technologies that can be used to develop
distributed applications. The dominant technologies are: The Object
Management Architecture (OMA) of Object Management Group (OMG)
(http://www.omg.org), Microsoft's distributed computing architecture
(http://microsoft.cQm/), and Sun's Java-based distributed component
technology (http://java.sun.com/). The following is a brief description of these
approaches for developing distributed component-based applications.

2. CORBA

OMG was created in 1989 to develop, adopt, and promote standards for
the development and deployment of applications in distributed heterogeneous
environments [Vin97], [VD98]. OMG is a large consortium with more than
800 companies trying to reach a consensus on an appropriate component
model and services for developing component-based distributed applications
(http://www.omg.org). OMG is the world's largest computer consortium and
is a nonprofit organization that started initially with eight members: 3Com,
American Airlines, Canon, Data General, Hewlett-Packard, Philips
Telecommunications N.V., Sun Microsystems, and Unisys [VD98]. OMG
does not develop any technology per se, nor does it advertise any product of
its members. OMG's goal is to promote the object-oriented approach to
software engineering and create a general architectural framework for
developing component-based distributed applications based on the interface
specifications for objects of the application. OMG works to provide standards
for building component-based applications and encourages its members to
follow these standards.

The component-based approach is the heart of OMG's Object
Management Architecture (OMA). OMA defines the specifications for the
underlying distributed architecture and the way components dialog with each
other in a distributed environment. OMA is the general framework that
embraces all technologies adopted by OMG [VD98].

The Common Object Request Broker Architecture (CORBA) is one the
most important middleware project undertaken by the software industry. It is
OMG's response to the challenging problem of building communication
bridges between isolated islands developed in different programming
languages and computing platforms. CORBA enables natural interoperability,
regardless of platform, operating system, programming language, and even of
network hardware and software. CORBA defines a mandatory TCP/IP-based
protocol for interoperability over the Internet and most intranets. CORBA

DISTRIBUTED MODELS 207

clients can run on a large variety of computers, from hand-held wireless
palmtops or pagers to desktop machines or mainframes. CORBA servers can
also run on all these machine types. The specification standardizes complex
resource management and fault tolerance for large, reliable server-side
applications. There are also specialized versions of CORBA for real-time and
small embedded servers. There is strong support for CORBA on the
application side by the OMG, a collection of standardized objects performing
functions, including the key enterprise-required services for transaction
handling and security. CORBA goes beyond this to define standard objects
and frameworks in business domains, such as finance, insurance,
manufacturing, the health sector, and more. CORBA is supported by UML
that is OMG's standard for Object-Oriented Analysis and Design.

CORBA is composed of three parts: A set of interfaces that can be
invoked by users, the object request broker (ORB), and a set of object
adaptors [Szy99].

2.1 The Interface Definition Language (IDL)

Interfaces need to be described in a common language [VD98]. This
common language is referred to as Interface Definition Language (IDL) and is
used to describe the interface of an object. IDL is an object-oriented
declarative language for specifying server interfaces. It is not a programming
language; it cannot be used to write code. As we know, interfaces define the
operations that an implementation object should provide. As an example,
Figure 11-1 shows the module definition for a hypothetical environmental
model. Line 1 defines the module Environmental Model, Modules provide a
name scope for identifiers in an IDL specification. This scope prevents name
clashes for identifiers defined in other modules. As for example, within the
module EnvironmentalModel, only one interface, referred to as IWeather can,
be declared. Line 3 defines interface IWeather within the scope of module
EnvironmentalModel. Lines 4 through 12 define methods for interface
IWeather. Line 14 defines interface ISoil within the scope of module
EnvironmentalModel, and line 15 defines the only method of interface ISoil.
The interface definition of object IWeather shows that the object should
provide weather data, such as solar radiation, average temperature, minimum
temperature, maximum temperature, rainfall, etc. Any class that implements
this interface would specify how these weather data would be obtained.

208 SOFTWARE ENGINEERING TECHNIQUES

I module EnvironmentalModel {
2
3 interface IWeather {
4 public double getSolarRadiationQ;
5 public double getAverageTempDuringDayQ;
6 public double getAverageTemperature();
7 public double getAverageTempForETQ;
8 public double getRainfallQ;
9 public double getTemperatureMinQ;
10 public double gettemperatureMaxQ;
II public double getPotentialETQ;
12 };
13
14 interface ISoil {
15 public double getWaterStressQ;
16 };
17 };

Figure 11-1. Example of an IDL interface definition for components Weather and Soil.

Java maps IDL modules to a package with the same name and every
package corresponds to a directory in the file system. The IDL compiler
creates a directory for each module and all generated files are saved in this
directory.

As CORBA has to work with different programming languages, there are
mapping methods that map types and structures from the common language,
IDL, to a number of programming languages. For example: The boolean type
in Java is mapped to boolean type of IDL, the byte type in Java is mapped to
octet type of IDL, etc [Vin97]. Currently, there are mappings to IDL for Java,
C, C++, COBOL, Smalltalk, ADA, etc. rhttp://www.Qmg.org).

2.2 The Object Request Broker (ORB)

The Object Request Broker (ORB) is the heart of the system. The ORB
acts as a central Object Bus over which each CORBA object interacts
transparently with other CORBA objects located either locally or in other
remote servers. The ORB is responsible for finding a CORBA object's
implementation, preparing it to receive requests, communicating requests to
it, and carrying the answer back to the client. The ORB establishes a
communication bridge between the client and the server, as shown in Figure
11-2. The underlying ORB implementation is not relevant to distributed

DISTRIBUTED MODELS 209

system developers. Once the communication bridge is established, the client
can access data and behavior from the object residing in the server as it were a
local object.

Furthermore, the client's interface is completely independent from the
implementation residing in the server. All that the client needs to know is the
set of interfaces the object residing in the server offers. The interfaces to the
ORB and to objects built using the ORB are well defined, providing a uniform
framework across the entire distributed environment and making applications
built using an ORB very portable across diverse platforms.

Object Request Broker

\i
l i ^

Skeleton Code

Figure 11-2. Object request Broker links clients and server applications.

An ORB deUvers requests from client applications to server applications.
This process occurs in three steps [Ros98], as shown in Figures 11-3, 11-4,
and 11-5.

210 SOFTWARE ENGINEERING TECHNIQUES

Client

- - r '**-̂ N

Server

.'̂ \
CO 'Ci - jc - j -v i : "

(Network

Orb (ocates Server

Figure US. The client has a reference to the object server.

Figure 11-3 shows that ORB manages the communication between the
client and the server; ORB locates the server in the network. The client has
access to a reference (or proxy) of the real object that resides in the server.

Client
"—V" V-

Network

Server

~~7K

Method invochtion

ORB

-r^--TA
.V

Method in /oca! ion

Marshalling parameters

ORB

Unmarshalling parameters

Figure 11-4. Client refers to the proxy object.

Once the communication is established between the client and the server,
the client sends messages to the proxy as it were the real object, as shown in
Figure 11-4. The message may include parameters needed for the execution of
the method. ORB marshals these parameters, meaning it converts these
parameters into a format that can be transmitted across the network to the
remote object. The receiving server unmarshals the message and executes the
method.

ORB is also in charge to bring to the client the results of the method's
execution, as shown in Figure 11-5. To do so, ORB marshals the results and
ships them to the client that unmarshals them into an understandable format
for the client. Note that the process of marshalling/unmarshalling the message

DISTRIBUTED MODELS 211

and the parameters is transparent to the user. The entire process is silently
managed by the object request broker (ORB).

Client

return vlltfe

ORB

Unmarshalls return value

c - - s /

. (Network

VI
^

1

- " • - - - " • ' - ' - ' ——-
Server

fetu n value

ORB

marshalis return value

. J

Figure 11-5. ORB sends back to client the answer from server.

2.3 Adaptors

The CORBA standard describes a number of object adapters; with the task
of interfacing an object's implementation with its ORB. The OMG provides
three sample object adapters: The Basic Object Adapter (BOA), which is the
most used one, the Library Object Adapter, and the Object-Oriented Database
Adapter. The last two adaptors are mainly used for accessing objects in
persistent storage.

The BOA provides CORBA objects with a set of methods for accessing
functions defined in ORB. These functions range from user authentication to
object activation to object persistence. The BOA is the CORBA object's
interface to the ORB. BOA plays a slightly different role in the server
application compared to the role it plays in the cHent application. In the server
implementation, BOA informs the ORB when objects are ready to receive
incoming requests. In the client application, BOA is the component of ORB
that makes sure that the reference or the proxy reaches the real object located
in the server. The next two sections will provide examples of the use of
adaptors in server and client applications. According to the CORBA
specification, the BOA should be available in every ORB implementation,
and this seems to be the case with most CORBA products available in the
market.

In the next sections we will present a simple example of implementation of
a CORBA soil server and a soil chent.

212 SOFTWARE ENGINEERING TECHNIQUES

2.4 A CORBA Soil Server

Let us consider the Soil component developed in Chapter 8, The
Kraalingen Approach, and implement a simplified version of it as a server
using CORBA. This means that the soil class/component will provide its
services to any other class/component or system residing in the same address
space or in other servers located anywhere in the network. Therefore, the
behavior of this class/component will be slightly different; besides the
behavior needed in the simulation process, the component will be provided
with additional behavior to function as a CORBA server. For simplicity
reasons, we will provide soil component only with the behavior needed to
provide information about its soil depth and wilting point values.

One of the first tasks the server should accomplish is to obtain references
to ORB and BOA. After which, ORB and BOA objects will be created and
the server makes them available for use to any other object outside the
system. Then, the server executes a dispatch loop to wait for other objects
invoking its services. Clients must connect to the object residing in the server
to use its services.

Although CORBA interfaces are defined in a very general manner,
different vendors, while respecting the general definition of interfaces, have
implemented their behavior slightly differently. Therefore, the
implementation of a CORBA service may be different in different products.
The most well-known commercial vendors of CORBA technology are
BORLAND'S Visibroker (http://www.borland.com/visibroker/) and lONA's
ORBIX (http://iona.com).

The Integrated Development Environment (IDE) used to implement the
examples is Borland's JBuilder (http://borland.com) which uses Visibroker
technology for CORBA. The use of the Visibroker technology implies some
particularities that make this implementation slightly different from the cases
where other CORBA technologies (such as lONA's ORBIX, http://iona.com)
are used. Figure 11-6 shows the class diagram for the SoilCORBA server.

DISTRIBUTED MODELS 213

o
Object

IfTcmCORBAi

5
o

SoitCORBAinterface

"^getSoiiDepthO
^getWi!tingPoint()
•^inttializeO

I

Soil Interface

*^getSoiiDepth()
^^getWiitingPointO
^initializeO

O
Skeleton \<t-

_SoilCORBAInterfacelmplBase

<t

^

Soil

*

SoilCORBA

O

Figure 11-6. Class diagram for SoilCORBAServer.

To implement the SoilCORBA server, first its interface
SoilCORBAInterface should be defined using CORBA's Interface Definition
Language (IDL), as shown in Figure 11-7. The interface will define the
functionalities that this server will provide remotely to any client. The
interface SoilCORBAInterface is similar to Soillnterface, as shown in Figure
11-6. The only difference is that SoilCORBAInterface provides capabilities
for sending/receiving messages through the Internet. Therefore,
SoilCORBAInterface inherits the required behavior from CORBA's main
Object that is part of CORBA's arsenal for moving objects across the Internet,
as shown in both Figures 11-6 and 11-7. Every interface inherits from
CORBA.Object.

1 public interface SoilCORBAInterface extends
org.omg.CORBA.Object {

2 public double getSoilDepthQ;
3 public double getWiltingPointQ ;
4 public void initializcQ;
5 }

Figure 11-7. Interface definition for class SoilCORBA.

214 SOFTWARE ENGINEERING TECHNIQUES

When the interface is compiled, the IDL compiler automatically generates
a few classes that are needed for moving objects across the Internet, as shown
in Figure 11-8. The generated classes are divided in three groups: stubs,
skeletons, and helper files. The stub files are needed to create a proxy in the
cUent side that can be used as a local object in the client application.

!- {Bl SoilCORBA.jpf
% SoilCORBA.html
c^L SoilCORBA.java

SoilCORBAlnterfaoe.java
i ^ SoilCORBAInterfaceHelper.java
^ SoilCORBAInterfaceHolder.java
'^ S oilCO R BAl nterfaceO peraHons. Java
f^, _Soi!CORBAInterfacelmplBase.java
^ ^sLSollCORBAInterface.java
iSii t̂ie^SoJICORBAInterface.java

Figure 11-8. Files created by CORBA's IDL compiler.

The skeleton files reside in the server and are used to help the
implementation of the behavior defined in the interface. One of these classes
is _SoilCORBAInterfaceImplBase, which will enable our SoilCORBA class to
provide server-like capabilities. This class inherits part of its behavior from a
standard class referred to as Skeleton, which implements our interface
SoilCORBAInterface, as shown in Figure 11-6. Figure 11-9 shows the
implementation of class SoilCORBA in Java.

1 public class SoilCORBA extends _SoilCORBAInterfaceImplBase {
2 Soillnterface soil = new SoilQ;
3 public double getSoilDepthQ {
4 return soil.getSoilDepthQ;
5 }
6 public double getWiltingPointQ {
7 return soil.getWiltingPoint();
8 }
9 public void initializeQ {
10 soil.initializeQ;
11 }
12 static void main(String args[]){

Figure 11-9. Java implementation of class SoilCORBA (Part 1 of 2).

DISTRIBUTED MODELS 215

13 try {
14 System.out.printlnC'Starting SoilCORBA Server");
15 org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB.init(args,null);
16 org.omg.CORBA.BOA boa -

((com.visigenic.vbroker.orb.ORB)orb).BOA_init();
17 SoilCORBA soilServer - new SoilCORBA();
18 boa. obj_is_ready (soilServer);
19 System.out.println("Registering server");
20 com.visigenic.vbroker.URLNaming.Resolver resolver =
21 com.visigenic.vbroker.URLNaming.ResolverHelper.narrow(
22 orb.resolve_initial_references("URLNamingResolver"));
23 String ior= "http://128.227.103.134:1015/SoilServer.ior";
24 resolver.force_register_url(ior, soilServer);
25 soilServer.initializeQ;
26 boa.impl_is_ready();
27 }
28 catch (Exception e) {
29 System.out.println("CORBA server is not running, check the

server");
30 }
31 }
32 }

Figure 11-9. Java implementation of class SoilCORBA (Part 2 of 2).

Classes SoilCorba and Soil provide similar behavior as their interfaces
they implement are similar. Soillnterface and SoilCORBAInterface define
similar but yet not identical, behavior. What makes the behaviors defined by
these interfaces different is the environment in which the corresponding
classes are implemented. Soillnterface is defined to be implemented by
classes that reside in a local computing environment. SoilCORBAInterface is
defined to be implemented by classes residing in a distributed computing
environment. Classes that implement Soillnterface need only to provide the
behavior defined in the interface. Classes implementing SoilCORBAInterface,
besides the behavior defined by interface, need to provide server-like
capabilities, as they make available their services from a remote server where
they reside.

Line 1 in Figure 11-9 defines the class SoilCORBA as inheriting from
class _SoilCORBAInterfaceImplBase, generated by the IDL compiler. Line 2
creates an instance of class Soil to whom class SoilCORBA will delegate the

216 SOFTWARE ENGINEERING TECHNIQUES

receiving method calls for execution. Lines 3 through 11 show the
implementation of methods defined in SoilCORBAInterface. Note that each of
the methods delegates the receiving call for execution to object soil.
Therefore, class SoilCORBA reuses the behavior defined in class Soil, Lines
12 through 30 define the stadc method main. This method initializes the
environment of the class and must create an instance of the class itself Line
15 obtains a reference to the ORB and line 16 obtains a reference to a BOA
object. Line 17 creates an instance of the class SoilCORBA that plays a two­
fold role in this application: First, it will provide the behavior needed in the
simulation process and second, the behavior of a server. Line 18 notifies the
BOA about the existence of object soilServer created in line 17; object
soilServer is passed as a parameter to the BOA. Line 26 notifies that the BOA
is ready to receive requests.

Distributed objects are identified by object references that are known as
lOR (Interoperable Object Reference). Lines 20 through 24 associate the URL
with object's OIR. Once a URL has been bound to an object, client
applications can obtain a reference to the object by specifying the URL as a
string. The URL Naming Service is the mechanism that lets a server object
associate its lOR with a URL in the form of a string in a file. The lOR is
composed of server's IP number, a communication port number, and the name
assigned to the file. Client programs can then locate the object using the URL
pointing to the file on the Web server. Lines 20 through 22 obtain the
Resolver that will be used to register objects. Line 23 creates a string of the
association URL-IOR. Object servers register objects by binding to the
Resolver and then using tho force_reglster_url method to associate a
URL with an object's lOR. Line 25 populates object soil with its initial data.
Line 26 shows that the server enters a dispatch loop and waits for incoming
invocations.

2.5 A simple CORBA client

In order to access the services offered by the server SoilCORBA, a
CORBA client needs to be developed. In Java, CORBA clients can be
implemented as applets or as applications. Although both methods provide
similar results, they are implemented in different ways. We will implement
our CORBA cHent as an apphcation. Figure 11-10 shows the Java
implementation of a simple CORBA client. The task of this client is to
connect to the SoilCORBA server and use one of its services. The service used
provides the current value of soil depth parameter.

DISTRIBUTED MODELS 217

1 import java.util.Properties;
2 public class CORBAClient {
3 public CORBAClientp {}
4 public static void main(String[] args) {
5 //create an instance of the client
6 CORBAClient corbaClient - new CORBAClientQ;
7 Properties soilProp = new PropertiesQ;
8 soilProp.putC'org.omg.CORBA.ORBClass",

"com.visigenic.vbroker.orb.ORB");
9 org.omg.CORBA.ORB orb - org.omg.CORBA.ORB.init((String

[])null,soilProp);
10 //connect to SoilCORBA server
11 SoilCORBAInterface soil=
12 SoilCORB AInterfaceHelper.bind(orb,
13 "http://128.227.103.134:1015/SoilServer.ior");
14 //print value of soil depth
15 System.out.println("Soil depth value is: "+soil.getSoilDepth());
16 }
17 }

Figure 11-10, The implementation of a simple CORBA client in Java.

Line 1 makes available the behavior of class Properties that is needed in
lines 7 and 8. Line 2 defines the class CORBAClient, and line 3 defines a
default constructor for the class. Lines 4 through 16 define the method main
that initializes the class environment and creates an instance of the class itself
in line 6. An object of type Properties is created in line 7 to hold the
information that Visigenic CORBA technology is used in this case. Line 9
initializes the ORB. Lines 11, 12, and 13 bind the ORB to the lOR of the
object located in the server. Therefore, a proxy of the server object is created
(see Section 4.2, The Proxy pattern, in Chapter 7) in the client application
and the communication bridge between server and client is established. The
proxy object is object soil. Note that the server's IP (Internet Protocol)
number and the number of the port used are the same as the ones defined in
the server application. If the client and server applications use different IP
and/or port numbers, then the communication bridge cannot be established
and therefore the client and the server will not be able to communicate with
one another. Proxy soil will make available to the client application the
behavior of the server object. Line 15 uses the proxy to obtain the value of
soil depth, which is provided as a service by the server object.

218 SOFTWARE ENGINEERING TECHNIQUES

3. THE REMOTE METHOD INVOCATION (RMI)

While the RMI technology is similar to CORBA, it operates only in the
Java programming environment. RMI enables the programmer to develop
distributed applications based on methods of Java objects that can be invoked
from other Java virtual machines, which can be located on different
computers and maybe different operating systems (http://java.sun.com/
products/rmi/). RMI provides a simple and direct model for developing
distributed applications using Java objects. An RMI client can make calls to
an RMI server object and use its behavior as if it were local to it. The RMI
technology is a sophisticated mechanism that allows Java objects to
communicate amongst them. The mechanism and the communication protocol
are well-defined and standardized. A Java object can communicate with
another Java object without knowing before hand the protocol used.

During the remote communication between two Java objects, the one that
makes the remote call is referred to as the client object and the one that
responds to the remote call is referred to as the server object. Note that the
relationship client-server is valid only for this particular call. An object that
plays the role of the client in one call may be playing the role of the server in
another call.

RMI uses several layers to achieve the communication between remote
objects. These layers are:

1. Ghent's stubs and server's skeletons; these objects are used to hide
the remoteness and make transparent the communication between
objects over a network connection.

2. The remote reference layer that handles the packaging of the method
call and its parameters and returns the results of method's execution
over the network connection.

3. The transport layer that is the actual network connection linking
systems together.

To better understand the collaboration between client and server objects
using RMI, we will consider a simple example of collaboration between a
server object referred as SoilRMIServer, which provides its services remotely
and a client object referred to as SoilClient that invokes a method call on the
remote server. The services offered by object SoilRMIServer are the same
ones that object CORBASoilServer, presented in the previous section,
provides. Implementing the same example in two different technologies
allows us to better understand the similarities and differences between these
technologies.

DISTRIBUTED MODELS 219

The stubs and skeletons are automatically generated by the RMI compiler
when compiling the server class. Figure 11-11 shows the stub and skeleton
classes that are generated for class SoilRMI.

B lo l SoilRMI.jpr

"^ SoilRMLSkdjava
^ SoilRMLStub.java

i^^ SoilRMIInterface.java

Figure 11-11. Stubs and skeletons created by Java compiler for class SoilRMI.

Stub classes reside with the client and skeletons reside with the server.
Stubs and skeletons are involved when a client invokes a remote method on
the remote server. The stub object serves as a proxy (see Section 4.2, The
Proxy pattern, in Chapter 7) for the server and resides with the client. The
client's call goes to the stub object that has encapsulated all the names of the
methods provided by the server object, as shown in Figure 11-12. Lines 3
through 6 show the names of methods implemented by the server object.

1 public final class SoilRMIServerStub extends
java.rmi.server.RemoteStub implements SoilRMIInterface,
java.rmi.Remote {

2 private static final java.rmi.server.Operation[] operations = {
3 new java.rmi.server.Operation("double getSoilDepthQ"),
4 new java.rmi.server.Operation("double getWiltingPointQ"),
5 new java.rmi.server.Operation("void initializeQ")
6 };

Figure 11-12. Partial Java code for class SoilRMI_Stub.

After receiving the remote call, the stub creates a block of information
containing an identifier of the remote object to be used, a description of the
method to be called and the marshalled parameters of the remote method. This
block of information is sent to the server object using the network connection.
On the server side, this information is received by the skeleton which is a
server-side object that contains a method that dispatches calls to the actual
server object implementation. Skeletons communicate with clients using the
JRMP (Java Remote Method Protocol) protocol.

220 SOFTWARE ENGINEERING TECHNIQUES

When the skeleton object receives the block of infomiation sent by the
stub object, it unmarshals the parameters of the remote call. Then, using the
object identifier sent by the stub object, it identifies the remote object
responsible for executing the remote call and invokes the method. The result
of the remote call is packaged in a block of information and it is sent back to
the stub object. Although the communication between client and server
objects is complex, it is transparent to the programmer. As previously
mentioned, remote objects are used as they were local objects; even the syntax
of a remote call is the same as for a local call. Figure 11-13 shows the
sequence diagram for the collaboration between the client and the server
objects.

: SoilClient ; SoilRMI Stub

getSoilDepth()

value of soil depth
soil depth

: Soil RMI Skel

send marshalled
parameters using JRMP

send marshalled return
using JRMP

Soil RMI

getSoilDepth()

return value of
" soiT v/aterfictor '

Figure 11-13. Collaboration between client and server objects using RMI.

As shown in Figure 11-13, object SoilClient invokes the message
getSoilDepthQ on the remote server object SoilRMI. First, the message is sent
to the stub object created by the RMI compiler. The stub object creates a
block of information and sends it to server object using the JRMP protocol.
This block of information is received by the skeleton object that unmarshals it
and invokes the method call on the server object. The return of the method
call, the value of soil depth, is packaged again in a block of information and is
sent back to the stub object by the skeleton object. The stub object unmarshals
the return value and sends it to the client object. In the next two sections, we
will show a simple example of implementation of a SoilRMI server and a
SoilClient.

DISTRIBUTED MODELS 221

3.1 An RMI Soil Server

Let us consider the Soil component presented in the previous section, and
implement it as a server using the RMI technology. The Soil component will
provide its services to any other component or system residing in the same
address space or in other servers located anywhere in the network. Therefore,
the behavior of component Soil will be slightly different; besides the behavior
needed in the simulation process, the Soil component will be provided with
additional behavior to function as an RMI server.

First, an interface needs to be created that will define the functionalities
provided by the object server. The interface is referred to as SoilRMIInterface
and its definition in Java is shown in Figure 11-14. The behavior defined in
the interface is the same as the one defined in Section 2.4, A CORBA Soil
Server, with the only difference that RMI requires that methods defined in the
interface should throw an exception, the RemoteException one.

1 import java.rmi.RemoteException;
2 import java.rmi.Remote;
3 interface SoilRMIInterface extends Remote {
4 public double getSoilDepthQ throws RemoteException;
5 public double getWiltingPointQ throws RemoteException;
6 public void initializcQ throws RemoteException;
7 }

Figure 11-14. Definition of interface SoilRMIInterface in Java.

As the functionalities defined in the interface will be provided as services
that can be invoked remotely, SoilRMIInterface should inherit from Remote
interface, which is part of Java's arsenal for sending/receiving messages over
a network. As SoilRMI object will provide its services from a remote server, it
should be able to instantiate itself with server-like capabilities. Therefore,
SoilRMI object should inherit the server-like behavior from a predefined Java
server class named UnicastRemoteObject, The class diagram shown in Figure
11-15 presents links between objects and interfaces for remote
communication.

222 SOFTWARE ENGINEERING TECHNIQUES

0
SoilRMHnterface

^getSoilDepthQ : double
^initJalizeO: void
"^getVViltingPointO: double

r
L cH

O
Remote
{from rmi)

^

SoilRMI
-N

UnicastRemoteObject

w
Soil -DH

O
Soil Interface

"̂ getSoilDepthO - double
^getWiltingPointf); double
"^initializeO: void

Figure 11-15. Class diagram for the implementation of SoilRMI server.

Class SoilRMI implements interface SoilRMIInterface; therefore, it will
provide an implementation for the methods defined in interface. The behavior
of class SoilRMI is very similar to the behavior of Soil class, as they play the
same role in the simulation process. Therefore, the behavior of class Soil can
be reused by having class Soil be part of SoilRMI class definition. SoilRMI
would be able to provide the functionality required for the simulation by
delegating simulation-related messages to the class Soil. The behavior
required in the simulation process is defined in interface Soillnterface. Thus,
class Soil implements interface Soillnterface, The Java implementation for
class SoilRMI is shown in Figure 11-16.

1
2
3
4
5

import java.rmi. server.*;
import java.rmi.Naming;
importjava.net.*;
import j ava.rmi.registry. *;
public class SoilRMIServer extends UnicastRemoteObject

implements SoilRMIInterface {

Figure 11-16. Implementation in Java of class SoilRMI (Part 1 of 2).

DISTRIBUTED MODELS 223

6 public Soillnterface soil = new SoilQ;
7 public double getSoilDepthQ {

8 return soil.getSoilDepthQ;
9 }
10 public double getWiltingPointQ {
11 return soil.getWiltingPoint();
12 }
13 public void initialize() {
14 soil.initializeO;
15 }
16 public SoilRMIServerQ throws Exception {}
17 static void main(String [] args) {
18 SoilRMIServer soilServer = null;
19 try {
20 System.out.println("Starting SoilRMI Server");
21 int port-1012;
22 String name = new String(7/128.227.103.134:"+port+"/Soir');
23 soilServer = new SoilRMIServerQ;
24 LocateRegistry.createRegistry(port);
25 Naming.rebind(name,soilServer);
26 System.out.println("Soil RMI server is running in "+name);
27 }
28 catch(Exception e){System.out.println("Error in starting soil

server");}
29 }
30 }

Figure 11-16. Implementation in Java of class SoilRMI (Part 2 of 2).

Lines 1 through 4 show the Java standard libraries that are needed to
support the functionalities defined in class SoilRMI. Line 5 defines class
SoilRMI as a subclass of UnicastRemoteObject and implementing interface
SoilRMIInterface. Line 6 defines an attribute of type Soil and assigns to it a
reference to an object of the same type. This is the implementation in Java of
the whole-part relationship between SoilRMI and Soil as defined in Figure 11-
15. Lines 7 through 15 are the implementation of the methods defined in
interface SoilRMIInterface. Note that each of the methods delegates the call to
the object of type Soil defined in line 6.

Line 16 defines the constructor for class SoilRMI. Lines 17 through 30
define the method main that initializes the environment of class SoilRMI. Line

224 SOFTWARE ENGINEERING TECHNIQUES

18 defines an instance of the class itself to be used later in line 23. Lines 19
through 29 define a try-catch block. In the case that an exception occurs
while executing lines 19 through 27 in the try block, the control goes to the
catch block and the system prints an error message. Within the try block, line
21 defines the communication port and assigns to it a value. Line 22 defines a
stringified reference for the server object, including the communication port.
Line 23 creates an instance of the class itself Line 24 creates a registry for the
communication port and line 25 binds the stringified reference for the server
object to its name created in line 23. Lines 28 and 29 define the catch block
that contains the actions that need to be executed in the case that an exception
occurs within the try block.

3.2 A Simple RMI client

In order to access the services offered by the server SoilRMI, an RMI
cHent needs to be developed. Figure 11-17 shows the implementation in Java
of an RMI client.

1 import java.rmi.Naming;
2 import java.rmi.RemoteException;
3 public class RMIClient {
4 void main(String args[]) {
5 //contact remote soil
6 int port = 1012;
7 String url = "rmi://128.227.103.134";
8 url+=":"+port+7Soir;
9 String registry = new String(url);
10 try {
11 SoilRMIInterface soil = new SoilRMIServerQ;
12 soil = (SoilRMIInterface)Naming.lookup(registry);
13 double soilDepth = soil.getSoilDepthQ;
14 System.out.println("RMI Soil Server is available and

running");
15 }
16 catch(Exception ex) {
17 System.out.println("RMI Soil Server is not available!");
18 }
19 }
20 }

Figure 11-17. Implementation of an RMI client.

DISTRIBUTED MODELS 225

Lines 1 and 2 show the Java standard the libraries needed to support the
functionalities defined in the class RMIClient defined in line 4. Lines 7
through 10 collect information about the server: Its port number and IP
(Internet Protocol) address, its stringified reference, and registry. In the case
that the IP address and/or the port number are not the ones used by the server,
the communication with the server will not be established. Lines 12 through
17 establish contact with the server object to obtain from it the value of soil
depth. In the case that the communication with the server is not established,
an error message is displayed. Note that the syntax for a remote method is the
same as for a local method.

4. DISTRIBUTED CROP SIMULATION MODEL

In Section 4.1, Conceptual model for the Kraalingen approach, of
Chapter 8, we presented all the classes involved in the simulation such as 5*0//,
Weather, and Plant, linked by corresponding associations. In the case where a
local computing architecture is selected, all the objects will reside in the same
address space in the same machine. If a distributed computing architecture is
selected, objects may reside in different address spaces and even in different
platforms. The fact that objects are located in different machines and
platforms does not affect their already conceived behavior. Distributed objects
will communicate through a middleware component that in our example is
Java's RMI. The middleware provides a common set of management services
made available to all classes that have agreed to use this infrastructure,
regardless of their location [Bro99]. The process of developing a distributed
component-based system can be considered as a three-phase process. In the
first phase, a stand-alone application using a local computing architecture is
developed. During this step, interfaces and the behavior of the
objects/components are designed and carefully tested. Focus is on providing
objects with the right behavior and the right interfaces. The entire simulation-
based application is tested in order to make sure that the system delivers
correct results. In the second phase, an implementation middleware is selected
to implement the distributed application. Issues such as how objects will
interact remotely and how they would be instantiated are addressed. The third
phase deals with issues of developing and implementing objects that would
interact remotely, using the selected middleware.

The three-phase layered approach was used to develop the distributed crop
simulation model. Issues concerning an object-oriented approach to crop
simulation modeling were addressed in developing a stand-alone model
programmed in Java [PBJOl]. During this phase, the main focus was on

226 SOFTWARE ENGINEERING TECHNIQUES

providing flexible objects with the required behavior so they can be reused in
the future. Results taken from the object-oriented approach were compared to
the ones provided by the existing FORTRAN code presented by [PBJ99].
After successfully finishing the first phase, the next step was selecting the
middleware environment needed for developing the distributed application.
As the programming language used in the first phase was Java, the following
options were available: Using OMG's CORBA or Java's Remote Method
Invocation technologies. Any of these technologies could be used as they are
conceptually very similar. We chose Java's RMI, as the rest of the application
was developed using the Java programming language.

Figure 11-18 shows the interaction among the elements involved in the
simulation in a very general manner, without considering any programming
language or other implementation details. Defined interfaces describe the
messages objects should respond to in order to perform the simulation. Each
of the interfaces represents some functionality that is provided by a
class/component. To illustrate issues that need to be addressed during the
component development of our system, we will focus only on the Plant
component, as the development of others is carried out in the same manner.

DISTRIBUTED MODELS 227

! O
Soillnterface

i "^getSWFacO
^ înitializeO
"^calculateRateQ
"^integrated
^setPlaitO
%etVVeathen)

gmwsfii

UBB^ymM^BrDBtB /

O
Plantlnterface

•^getLeafAfealndexi:)
•^initializeO
•^calculateRatsO
^integrateO
^getMaturityDayO
%MatuiBO'
^isPostPlantingO
*^getTotal PlantD ry Wei gilt 0
^getRootDryVVeightO
'̂ getFfuitDryVVeightO
%etrvlaturityDayO
^setSoilO
%etVVeatheit}

uses Weathepuata

O
VVeatherlnterface

^getSolarRadiationQ
%etAverageTempDuringDayt)
"^getAverageTemperatureO
^qetAverageTemperatufeForPTt}
^cjetRainfallO
^g etTe m pe rat u re M i n ()
%etT6mp8raturefvla><}
^getPARO
'^initializeO

Figure 11-18. Conceptual diagram for the Kraalingen crop simulation model.

As the selected architecture is distributed, the core objects {Soil, Plant, and
Weather) will communicate with each other remotely. Remote
communication requires a middleware component that will send messages
from one object to another. Figure 11-19 shows the links between objects and
interfaces of component PlantRMI n^Qdcd for the remote communication.

228 SOFTWARE ENGINEERING TECHNIQUES

UnicastRemoteObject
K3- PlantRMI -> Plant

i
o

PlantRMIInterface

^getLeafArealndexO; double
"^getMaturityDayO : int
^getTotalPlantDryVVeightO: double
"^getRootDryWeightO: double
^getFruitDn/VVeightO : double
^integrateO .: void
^^caiculateRateO : void
^initializeO : void
^isMatureO: boolean
^isPostPlantingO : boolean
*^setMaturityDayO : void
•^setSoil(soil : SoilRMIInterface): void
"^setWeatheKweather: VVeatherRMIInterface}; void

~K

PlantRMI Stub

Figure 11-19. Links between objects and interfaces for remote communication,

The interface PlantRMIInterface is similar to the Plantlnterface defined in
the conceptual diagram, with the only difference being that it provides
capabilities for sending/receiving messages through the Internet. Therefore,
PlantRMIInterface should inherit the predefined Remote interface that is part
of Java's arsenal for moving objects in a network. The PlantRMI object is
functionally similar to the Plant object defined in the standalone developed
model, as it will play the same role in the simulation process. In addition,
PlantRMI object should be provided with capabilities of a remote object to be
able to remotely connmunicate with other objects. The behavior of the Plant
object was defined by Plantlnterface and the behavior of the object PlantRMI
is defined by PlantRMIInterface. PlantRMI will be able to provide the
functionality required for the simulation by delegating simulation-related

DISTRIBUTED MODELS 229

messages to object Plant. Plant is part of object PlantRMI [GHJ95], [Gra98];
the association linking objects PlantRMI and Plant is a composition. Because
PlantRMIInterface inherits from Remote interface, the PlantRMI object will
provide the capabilities for sending/receiving messages over a network. In
addition, as the PlantRMI object will provide its services from a remote
server, it should be able to instantiate itself with server-like capabilities.
Therefore, the PlantRMI object should inherit the server-like behavior from a
predefined Java server class named UnicastRemoteObject. Figure 11-20
shows the entire class diagram for the application.

Q
Plant • ^

O
Plantlnterface

PlantRMI

SL
O

PlantRMIInterface

SimulationController
O

%imulate(}

UnicastRemoteObject
—P>T {ffom server)

o - | ^ Remote
{ftom rmi)

TT

O
SoilRMIInterfacs K-

X

SoilRMI

O
Soillnterface

A

Soil

O
WeatherRMIInterface Kl-

i
O

Remote
{from rnni)

WeatherRMI Weather

-cH
O

Weatherlnterface

y.
UnicastRemoteObject

Figure 11-20. Class diagram for Kraalingen distributed system.

As shown in Figure 11-21, the center of the class diagram is the
SimulationController class. This is a controller type of class that will

230 SOFTWARE ENGINEERING TECHNIQUES

coordinate the communication between entity classes, by sending them the
right message at the right time. In addition, SimulationController will
supervise the communication with the boundary class. In Figure 11-20, the
communication with boundary class is not shown. SimulationController has
access to interfaces PlantRMIInterface, SoilRMIInterface, and
WeatherRMIInterface. The association between the control class and
interfaces is modeled as a composition; SimulationController being the
"whole" and the interfaces being the "parts." Therefore, SimulationController
is responsible for creating instances of classes implementing these interfaces
and controlling the flow of messages objects sent to one another. By having
access to interfaces, the SimulationController is able to use any other class
that provides similar behavior, provided that the class implements the required
interface. Note that classes PlantRMI, SoilRMI, and WeatherRMI have similar
relationships with other classes of the diagram because they will provide their
services in the same way, as a server.

EPILOGUE

Although we have included in this book many chapters dealing with
several interesting subjects, we are conscious that there are others that are left
out. Topics such as modeling Web-based or XML-based applications are not
treated in this book. Future publications need to address these important
topics.

At the time this book was published a new modeling paradigm just
surfaced in the software engineering world: The Model Driven Architecture
(MDA) approach. Few MDA-based tools were available, such Optimal-J of
Compuware (http://www.compuware.com/), OlivaNova of Sosyinc (http://
sosyinc.com/), Project Technology, Inc. (http://www.projtech.com), Kennedy-
Carter, Ltd (http://www.kc.com/), Kabira Technologies, Inc. (http://www.
kabira.com/), and others.

This new technology looks very promising and it is a UML-based
technology. MDA uses UML almost as a programming language. We hope
that our book paves the way to the next challenge: The use of the MDA
approach to model agricultural systems.

GLOSSARY

abstract class A class that cannot be instantiated and can be used
only as a superclass of other classes.

abstraction The essential characteristics of an entity that make it
different from other entities.

activity diagram

actor

aggregation

architecture

A diagram that shows the flow from activity to
activity; activity diagrams address the dynamic view
of a system. A special case of a state diagram in
which all or most of the states are activity states and
in which all or most of the transitions are triggered by
completion of activities in the source states [BRJ99].

A coherent set of roles that users of use cases play
when interacting with the use cases [BRJ99].

A specific type of association used to represent the
whole-part relationships.

The set of significant decisions about the organization
of a software system, the selection of the structural
elements and their interfaces by which the system is
composed, together with their behavior as specified in
the collaboration among those elements, the
composition of these structural and behavioral
elements into progressively larger subsystems, and

234 SOFTWARE ENGINEERING TECHNIQUES

the architectural style that guides this organization-
these elements and their interfaces, their
collaborations, and their compositions. Software
architecture is not only concerned with structure and
behavior, but also with usage, functionality,
performance, resilience, reuse, comprehensibility,
economic and technology constraints and trade-offs,
and aesthetic concerns [BRJ99].

association A structural relationship that describes a set of links,
in which a link is a connection among objects; the
semantic relationship between two or more classifiers
that involves the connection among their instances
[BRJ99].

attribute A named property of a classifier that describes a
range of values that instances of the property may
hold [BRJ99].

behavior The observable effects of an event, including its
results [BRJ99].

binary association An association between two classes [BRJ99].

cardinality

class

The number of elements in a set.

A description of a set of objects that share the same
attributes, operations, relationships, and semantics
[BRJ99].

class diagram A diagram that represents a number of classes,
interfaces, and their relationships.

classifier A mechanism that describes structural and behavioral
features. Classifiers include classes, interfaces,
datatypes, signals, components, nodes, use cases, and
subsystems [BRJ99].

GLOSSARY 235

collaboration diagram

component

A diagram that represents the collaboration between
classes; shows how classes are interrelated and the
messages objects created from these classes send and
receive.

A physical and replaceable part of a system that
conforms to and provides the realization of a set of
interfaces [BRJ99].

component diagram A diagram that shows the organization of and
dependencies among a set of components; component
diagrams address the static implementation view of a
system [BRJ99].

composition

concrete class

constraint

container

delegation

diagram

domain

A form of aggregation with strong ownership and
coincident Hfetime of the parts by the whole; parts
with nonfixed multiplicity may be created after the
composite itself, but once created, they live and die
with it; such parts can also be explicitly removed
before the death of the composite [BRJ99].

A class that can create instances.

A restriction on one or more values of (part of) an
object oriented model or system [WK99].

An object created to contain other objects and that
provides facilities to access or iterate over them.

The ability of an object to defer the execution of a call
to another object.

The graphical presentation of a set of elements, most
often rendered as a connected graph of vertices
(things) and arcs (relationships) [BRJ99].

An area of knowledge or activity characterized by a
set of concepts and terminology understood by
practitioners in the area [BRJ99].

236

element

focus of control

inheritance

instance
interaction diagram

interface

link

method

model

SOFTWARE ENGINEERING TECHNIQUES

An atomic constituent of a model [BRJ99].

A symbol on a sequence diagram that shows the
period of time during which an object is performing
an action directly or through a subordinate operation
[BRJ99].

The mechanism by which more-specific elements
incorporate the structure and behavior of more-
general elements [BRJ99].

A concrete manifestation of an abstraction [BRJ99].
A diagram that shows an interaction, consisting of a
set of objects and their relationships, including the
messages that may be dispatched among them;
interaction diagrams address the dynamic view of a
system; a generic term that applies to several types of
diagrams that emphasize object interaction, including
collaboration diagrams, sequence diagrams, and
activity diagrams [BRJ99].

a set of operations that are used to define the behavior
of a class or component.

A semantic connection among objects; an instance of
an association [BRJ99].

The implementation of an operation [BRJ99].

A simplification of reality, created in order to better
understand the system being created; a semantically
closed abstraction of a system [BRJ99].

multiple inheritance A semantic variation of generalization in which a
child may have more than one parent [BRJ99].

multiplicity

object

A specification of the range of allowable cardinalities
that a set may assume [BRJ99].

A synonym for an instance.

GLOSSARY Til

object constraint language (OCL)
A formal language used to express constraints over
elements of a model.

object diagram

object lifeline

package

pattern

postcondition

precondition

property

realization

relationship

sequence diagram

single inheritance

A diagram that shows a set of objects and their
relationships at a point in time; object diagrams
address the static design view or static process view
ofasystem[BRJ99].

A line in a sequence diagram that represents the
existence of an object over a period of time [BRJ99].

A general-purpose mechanism for organizing
elements into groups [BRJ99].

A pattern names, abstracts, and identifies the key
aspects of a common design structure that make it
useful for creating a reusable object-oriented design
[GHJ95].

A constraint that must be true at the completion of an
operation [BRJ99].

A constraint that must be true when an operation is
invoked [BRJ99].

A named value denoting a characteristic of an
element [BRJ99].

A semantic relationship between classifiers, in which
one classifier specifies a contract that another
classifier guarantees to carry out [BRJ99].

A semantic connection among elements [BRJ99].

An interaction diagram that emphasizes the time
ordering of messages [BRJ99].

A semantic variation of generalization in which a
child may have only one parent [BRJ99].

238

state

statechart diagram

state machine

UML

use case

use case diagram

use case model

SOFTWARE ENGINEERING TECHNIQUES

A condition or situation during the life of an object
during which it satisfies some condition, performs
some activity, or waits for some event [BRJ99].

A diagram that shows a state machine; statechart
diagrams address the dynamic view of a system
[BRJ99].

A behavior that specifies the sequences of states an
object goes through its lifetime in response to events,
together with its responses to those events [BRJ99].

The Unified Modeling Language, a language for
visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive
system [BRJ99].

A description of a set of actions, including variants,
that a system performs that yields an observable result
of value to an actor [BRJ99].

A diagram that shows a set of use cases and actors
and their relationships; use case diagrams address the
static use case view of a system [BRJ99].

The set of all use cases for a problem represented in
one diagram.

REFERENCES

[AR97] Acock, B., Reddy, V.R.: Designing an object-oriented structure for crop models.
Ecological Modelling 94, 33-44 (1997)

[Alex77] Alexander, C. A.: Pattern Language: Towns, Buildings, Constructions, Oxford
University Press, New York (1977)

[Alex79] Alexander, C: The Timeless Way of Building. Oxford University Press, Oxford, UK
(1979)

[AW85] Addiscott, T.M.: Wagenet, R.J. Concepts of solute leaching in soils: a review of
modeling approaches. Journal of Soil Science 36, 411-424 (1985)

[BJ98] Beck, H., Jackson, J.: Florida automated weather network. In: Proceedings of the
Seventh International Conference on Computers in Agriculture, Orlando, Florida, ASAE, St.
Joseph, MI, pp. 595-601 (1998)

[BC87] Beck, K. and Cunningham W.: "Window per Task" http://c2.comcgi/wiki?
WindowPerTask(1987)

[BBC99] Bernstein, P.A, Bergstraesser, T., Carlson, J., Pal S., Sanders, P., Shutt, D.:
Microsoft repository version 2 and the open information model. Information Systems 24(2) 71-
98(1999)

[BB02] Boggs, W., Boggs, M.: UML with Rational Rose 2002 SYBEX (2002)

[B0086] Booch, G.: Object-Oriented development. IEEE Transactions on Software
Engineering 12 (2), p.211-221 (1986)

[Boo91] Booch, G.: Object Oriented design with Applications. Benjamin/Cummings (1991)

240 SOFTWARE ENGINEERING TECHNIQUES

[BRJ99] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA (1999)

[BKTOO] Bouman, B.A.M., Kropff, MJ., Tuong, T.P., Wopereis, M.C.S,, von Berge, H.H.M.,
van Laar H.H.: ORYZA2000: modeling lowland rice, International Rice Research Institute
(IRRI) Metro Manila, Philippines (2000)

[BC90] Bracha, G., Cook, W.: Mixin-based inheritance. In OOPSLA/ECOOP'90 Conference
Proceedings (Ottawa, Canada, Oct. 21-25). ACM SIGPLAN Not. 25, 10 (Oct.) 303-311 (1990)

[BS03] Bittner, K., Spencer, I.: Use Case Modeling. Addison-Wesley (2003)

[Bro99] Brown A.: Constructing Superior Software. Macmillan Technical Publishing, USA
(1999)

[BW98] Brown, A., Wallnau, K.C.: The Current State of CBSE. Sterling Software. Software
Engineering Institute. September/ October. IEEE Software. 15, No. 5, 37-46 (1998)

[Bar03] Business Component-Based Software Engineering, Editor: Barbier F, Kluwer
Academic Publishers, 2003

[CMK99] Coad, P., Mayfield, M., Kern, J.: Java Design, Building Better Apps & Applets.
Yourdon Press Computing Series. Prentice-Hall, (1999)

[CY91] Coad, P. and Yourdon, E.: Object-Oriented Analysis. Prentice Hall, Englewood
Cliffs (1991)

[CAB94] Coleman, D., Arnold, P., Bodoff, S., Dollin, C, Gilchrist, H., Hayes, F. Jeremaes, P.:
Object-Oriented Development - The Fusion Method, Prentice-Hall Englewood Cliffs, N.J.
(1994)

[COO] Conallen J.: Building Web Applications With UML. Addison Wesley (2000)

[Coo87] Cook, S.: OOPSLA Panel p 2: Varieties of inheritance. In OOPSLA'87 Addendum
to the Proceedings, pp. 35-40. ACM Press October (1987)

[CV90] Chopart, J.L., Vauclin, M. Water balance estimation model: field test and sensitivity
analysis. Soil Science Society of America Journal 54, 1377-1384 (1990)

[CJH94] Clemente, R.S., De Jong, R., Hayhoe, H.N., Reynolds, W.D., Hares, M.: Testing and
comparison of three unsaturated soil water flow models. Agricultural Water Management 25,
135-152(1994)

[CK87] Cunningham, W., Beck, K.: Using Pattern Languages for Object-oriented Programs.
OOPSLA Conference (1987)

REFERENCES 241

[DMN68] Dahl, 0-J., Myhrhaug, B., Nygaard, K.: SIMULA 68 common base language. Tech.
Rep., Norwegian Computing Center, Oslo, May (1968)

[DPOl] Drouet, J.-L., Pages, L.: Object-oriented modeling of the relationships between
growth and assimilates partitioning from the organ to the whole plant. Second International
Symposium Modelling Cropping Systems, Firenze, Italy, July 16-18, pp. 19-20 (2001)

[Eag78] Eagleson, P.S.: Climate, soil and vegetation. A simplified model of soil moisture
movement in the liquid phase. Water Resources Research 14, 722-730 (1978)

[Fra03] Frankel, S. D.: Model Driven Architecture. Applying MDA to Enterprise Computing.
Wiley Publishing, Inc. OMG Press (2003)

[GHJ95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1995)

[GSROO] George, B.A., Shende, S.A., Raghuwanshi, N.S.: Development and testing of an
irrigation scheduling model. Agricultural Water Management 46, 121-136 (2000)

[Gra98] Grand, M.: Patterns in Java. Vol 1. Wiley Computer Publishing. John Wiley & Sons,
Inc(1998)

[Hea94] Heam, A.B.: OZCOT, a simulation model for cotton crop management. Agricultural
Systems 44, 257-299(1994)

[HSLOl] Huang, M., Shao, M., Li, Y.: Comparison of a modified statistical-dynamic water
balance model with the numerical model WAVES and field measurements. Agricultural Water
Management 48, 21-35 (2001)

[HWHOl] Hunt, L.A., White, J.W., Hoogenboom, G.:Agronomic data: advances in
documentation and protocols for exchange and use. Agricultural Systems 70 477^92, 2001

[JBR98] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading, MA (1998)

[JCJ94] Jacobson, I., Christerson, M., Jonsson G. O.: Object-oriented Software Engineering.
A Use Case Driven Approach. Addison-Wesley (1994)

[Kra95] D.W.G. van Kraalingen.: The FSE system for crop simulation, version 2.1.
Quantitative Approaches in Systems Analysis Report no. 1. AB/DLO, PE, Wageningen (1995)

[Kru98] Krutchen, Ph.: The Rational Unified Process, An Introduction. Addison-Wesley
(1998)

[Lak96] Lakos, J.: Large Scale C++ Software Design. Addison Wesley (1996)

[Lar02] Larman, K.: Applying UML and patterns: an introduction to object-oriented analysis
and design and the Unified Process. Prentice Hall, Inc. (2002)

242 SOFTWARE ENGINEERING TECHNIQUES

[LKN02] Laurenson, M., Kiura, T., Ninomiya, S.: Providing agricultural models with mediated
access to heterogeneous weather databases. Applied Engineering in Agriculture 17, 617-625
(2002)

[LEMOl] Leib, B.G., Elliott, T.V., Matthews, G.: WISE: a web-linked and producer oriented
program for irrigation scheduling. Computers and Electronics in Agriculture 33, 1-6 (2001)

[LCh97] Lemmon, H., Chuk, N.: Object-oriented design of a cotton crop model. Ecol. Model.
94,45_51 (1997)

[MLB98] Maraux, F., Lafolie, F., Bruckler, L.: Comparison between mechanistic and
functional models for estimating soil water balance: deterministic and stochastic approaches.
Agricultural Water Management.38, 1-20 (1998)

[MB02] Mellor J. S., Balcer J. M.: Executable UML, A Foundation for Model-Driven
Architecture, Addison Wesley (2002)

[Mey88] Meyer, B.: Object-Oriented software construction. Prentice Hall (1988)

[OEKOl] Olejnik, J., Eulenstein, F., Kedziora, A., Werner, A.: Evaluation of a water balance
model using data for bare soil and crop surfaces in Middle Europe. Agricultural and Forest
Meteorology 106, 105-116 (2001)

[Pap05] Papajorgji, P.: A plug and play approach for developing environmental models.

Environmental Modelling & Software, Vol 20/10 pp. 1353-1357 (2005)

[PBJOl] Papajorgji, P., Braga, R., Jones, J.W., Porter, C, Beck, H.W.: Object-Oriented design
of crop models with interchangeable modules: concepts and issues. 2^^ International
Symposium, Modelling Cropping Systems, Florence, Italy (2001)

[PSH04] Papajorgji, P., Shatar, T.: Using the Unified Modelling Language to develop soil
water-balance and irrigation-scheduling models. Environmental Modelling & Software 19
(2004)451-459(2004)

[PBB04] Papajorgji, P., Beck, W.B., Braga, J.L.: An Architecture for developing service-
oriented and component-based environmental models. Ecological Modelling, Vol 179/1, pp.
61-76(2004)

[PR02] Pardalos, P.M. and Resende, M. (Eds), Handbook of Applied Optimization, Oxford
University Press (2002)

[PSZ95] Pardalos, P.M., Siskos Y., and Zopounidis C. (Eds), Advances in Multicriteria
Analysis, Kluwer Academic Publishers, (1995)

[Ped89] Pedersen, H. C: Extending Ordinary Inheritance Schemes to Include Generalization.
ACM SIGPLAN Not. 24, 10 (Oct.), pp. 407-417 (1989)

REFERENCES 243

[PL82] Penning de Vries, FWT., van Laar, H.H. editors. Simulation of plant growth and
crop production. Simulation Monographs. Wageningen , Netherlands (1982)

[PBJ99] Porter, C.H., Braga, R., Jones, J.W.: Research Report No 99-0701, Agricultural and
Biological Engineering Department, University of Florida, Gainesville, Florida, USA (1999)

[Pro02] Prosise, J.: Programming Microsoft .NET. Microsoft Press (2002)

[Ros98] Rosenberger, Jeremy L.: Teach Yourself CORBA in 14 Days (SAMS) (1998)

[Rit98] Ritchie, J.T.: Soil water balance and plant water stress. In: Tsuji, G.Y., Hoogenboom,
G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production. Kluwer
Academic Publishers, Dordrecht (1998)

[R085] Ritchie, J.T., Otter, S.: Description and performance of CERESwheat: a user-oriented
wheat yield model. In: Muchow, R.C., Bellamy, J.A. (Eds.), Climate Risk in Crop Production:
Models and Management for the Semiarid Tropics and Subtropics. CAB International,
Wallingford,OXON(1985)

[ShM88] Shlaer, S. and Mellor, S. J.: Object-Oriented Systems Analysis - Modeling the World
in Data, Prentice-Hall, Englewood Cliffs, N.J. (1988)

[Szy99] Szyperski, C: Component Software. Beyond Object-Oriented Programming.
Addison-Wesley. ACM Press. New York (1999)

[SDN03] Scharli, N., Ducasse, S., Nierstrasz, O., and Black, A.: Traits: Composable Units of
Behavior. In OOPSLA/ECOOP' 2003 Conference Proceedings (2003)

[Tai96] Taivalsaari, A.: On the notion of inheritance. ACM Computing Surveys, vol 28, No.
3(1996)

[VD98] Vogel, A., Duddy, K.: JAVA Programming with CORBA. Wiley Computer
Publishing (1998)

[Vin97] Vinovski S.: CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments. IEEE Communications Magazine, Vol. 35, No. 2 (1997)

[Vog03] Vogels, W.: Web Services are not Distributed Objects: Common Misconceptions
about Service Oriented Architectures. http://weblogs.cs.comell.edu/AllThingsDistributed/
archives/000120.html (2003)

[WegOO] Wegehenkel, M.: Test of a modelling system for simulating water balances and plant
growth using various different complex approaches. Ecological Modelling 129, pp. 39-64
(2000)

[WWW94] Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on Distributed
Computing. Sun Microsystems Laboratories, Mountain View, CA 94043 (1994)

244 SOFTWARE ENGINEERING TECHNIQUES

[WK99] Warmer, J., Kleppe, A.: The Object Constraint Language, Precise Modeling with
UML. Addison Wesley (1999)

[Zdo99] Zdonik, S.: Why properties are objects or some refinements of "is-a". Proceedings of
1986 fall joint computer conference on Fall joint computer conference. Publisher: IEEE
Computer Society Press Los Alamitos, CA (1999)

INDEX

abstract classes 55, 57, 58
abstract factory pattern 93, 94, 95
abstraction xi, 5, 6, 7, 8, 9, 13, 14, 15,

16,17,21,22,23,33,35,36,57,58,
107, 126, 127

activity diagram 80, 81
actor 62, 63, 64, 65, 72, 74, 75, 130,

131,132
adaptor pattern 97, 98, 99, 100
aggregation 13, 14, 15,46,47
association 41, 42, 43, 44, 45, 46, 47,

54,64,65,71,72,89,99, 108, 110,
121, 128, 137, 139, 141, 147, 148, 150,
153, 191, 192, 193, 194, 195, 198,201,
218,231,232

attributes 23, 196, 202
Boundary classes 130
class....10, 14, 16, 19,21,22,23,24,25,

26, 27, 28, 29, 30, 32, 34, 35, 37, 38,
39, 42, 43, 44, 45, 46, 47, 49, 50, 51,
52, 54, 55, 56, 57, 58, 72, 74,76, 79,
80, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 109, 110, 117, 125, 126,
129, 130, 131, 132, 133, 134, 136, 137,
138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161,

162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 176, 177, 178, 179,
180, 182, 183, 184, 185, 186, 189, 192,
194, 195, 196, 198, 200, 201, 202, 204,
205, 206, 209, 214, 215, 216, 217, 219,
221, 223, 224, 225, 226, 227, 228, 231

class diagram 95,99, 102, 106, 110,
134, 140, 197,200,215,224,231

classification 13
collaboration diagram.... 78, 79, 124, 125
component9,26, 30, 31, 32,34, 36, 48,

49,89, 90, 91, 98,105,106, 142, 145,
146, 147, 149, 150, 172, 176, 177, 178,
179,182, 183, 186,189, 201, 202, 207,
208, 210, 213, 214, 223, 227, 228, 229

composition 15,47,48,94, 139, 143,
194,231,232

conceptual diagram... 126, 127, 129, 138,
156, 171, 190, 191, 192, 193,230

conceptual model 127, 191, 192, 193,
227

conceptual modeling xii, 13, 126
control classes 131
decomposition 14, 36
delegation pattern 88, 91
dependency 35, 48, 49, 67
design patterns 7, 87, 88,

138,140,156,176

246 SOFTWARE ENGINEERING TECHNIQUES

diagram 23, 28, 29, 30, 44, 50, 52, 54,
55, 56, 57, 61, 63, 64, 66, 69, 72, 74,
75, 78, 79, 80, 81, 91, 95, 99, 102, 104,
106, 108, 109, 110, 122, 123, 124, 126,
134, 135, 140, 147, 154, 155, 157, 158,
162, 164, 177, 178, 196, 197, 198, 199,
200,201,203,215,222,224,231

encapsulation.. 17, 18, 33, 35, 36, 91, 176
entity...21, 32, 36, 38, 108, 126, 130, 133,

134, 137, 138, 139, 140, 143, 144, 145,
146, 147, 149, 169, 171, 176,231

entity classes 133, 134, 146
fa9ade pattern 105, 106
factory method pattern 91, 92
generalization.. 13, 15, 16,49,50,51,53,

54,63
generalization 15,49, 52,244
inheritance 49, 50, 51, 89
instantiation 14
Interaction diagrams 74
interface 17, 18, 26, 27, 28, 29, 30, 31,

34, 35, 55, 58, 88, 90, 93, 97, 99, 100,
101, 102, 103, 104, 105, 108, 110, 131,
135, 141, 142, 144, 145,146, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 161, 162, 163, 164, 165, 168,
169, 172,176, 178, 184, 201, 208, 209,
210, 211, 213, 215, 216, 217, 223, 224,
225, 230, 232

iterator pattern 103, 104
MDA 8,9
modeling artifacts xii, 32
modular 18, 19
modularity 18, 19
multiplicity 44,45, 110, 194, 195, 198
note 16,37,46,85,95, 104, 107, 109,

121, 169, 176, 192
object....6, 8,9, 10, 11, 13, 14, 18, 19,21,

22,23,24,25,26,27,31,32,35,36,
41,42,43,45,46,49,50,51,52,54,
55,56,61,74,75,76,77,78,79,80,
83, 84, 85, 87, 88, 90, 91, 92, 93, 94,
96,97,98, 101, 102, 103, 104, 105,
106, 108, 109, 110, 123, 124, 126, 128,
129, 131, 132, 134, 136, 137, 139, 140,
141, 142, 143, 144, 145, 146, 147, 153,
154, 159, 161, 168, 169, 171, 172, 176,
177, 178, 181, 184, 194, 195, 207, 208,

209, 210, 211, 212, 213, 214, 216, 218,
219, 220, 221, 222, 223, 225, 226, 227,
229, 230

object-oriented xi, xii, xiii, xiv, 3, 6,
9,10, 13, 14,16,19,25,31,49,54,
87,91, 113,209,228,239,241,
242,243

OMG 7, 8, 9, 208, 213, 228
operation 6, 14, 15, 17, 24, 25, 27, 29,

38, 39, 50, 54, 74, 77, 88, 205
package 25, 27, 28, 31, 33, 34, 38, 43,

47,93,96, 100, 101, 172, 173,210
pattern xiii, 88, 95, 96, 97, 99, 100,

101, 103, 104, 105, 137, 138, 140, 143,
150, 156, 157, 158, 160, 161, 162, 163,
168, 169, 184,209,242,243

Platform Independent Modelxii, 9,127
Platform Specific Model xii,9, 127
polymorphism 26, 30, 50
postconditions 120
preconditions 120, 161
proxy pattern 101
realization 31, 58, 59, 121, 122, 124,

131,132,168
relationship 10,11,41, 42, 43, 46, 47,

48,49,50,51,53,54,58,63,65,66,
85,89, 108, 138, 139,220,225

sequence diagram ..75, 76, 122,123, 124,
222

signature 24, 27, 29, 50, 75, 100, 138
simulation..21, 22, 26, 53, 62, 64, 82, 84,

85, 92, 94, 95, 98, 103, 104, 105, 107,
108, 109, 115, 116, 117, 118, 119, 120,
122, 123, 124, 129, 130, 132, 134, 135,
136, 137, 138, 139, 140, 141, 142, 149,
150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 162, 164, 166, 169, 171, 172,
178, 179, 182, 183, 184, 185, 189, 190,
194, 198, 214, 218, 223, 224, 227, 228,
229, 230

singleton pattern 95, 96, 97
specialization 13, 15, 16,56
state pattern 108
statechart diagrams 83
stereotype 37, 38, 39, 67, 137, 152,

153,154
strategy pattern 109, 110, 176
structured programming 6, 9

Index 247

subclass16, 49, 50, 51, 53, 54, 56, 58, 182, 183, 189, 190, 195, 197, 200, 201,
89, 94, 97, 109, 225 202, 203, 207, 208, 210, 214, 223, 226,

subsystem .34, 35, 36, 38, 59, 72, 105 227, 228, 231
system.. 26, 31, 32, 33, 34, 35, 36, 47, 61, UML 8, 24, 27, 32, 33, 34, 37, 39, 41,

62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 46, 47, 50, 56, 62, 64, 69, 74, 79, 80,
74, 75, 80, 90, 91, 92, 94, 95, 98, 99, 81, 83, 108, 121, 127, 130, 132, 133,
103, 106, 109, 111, 117, 120, 121, 122, 143, 153, 173, 182, 189,202,203,209
127, 129, 130, 132, 133, 134, 135, 136, use case 61,63,64,65,66,67,69,70,
138, 140, 141, 142, 144, 146, 147, 148, 71, 72, 73, 74, 79, 117, 118, 119, 120,
150, 152, 153, 154, 155, 156, 158, 160, 121, 122, 123, 124, 130, 131, 132, 133,
161, 166, 168, 169, 173, 175, 176, 178, 134, 135, 136, 139, 161, 168, 169,244

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext(2).pdf
	fulltext(3).pdf
	fulltext(4).pdf
	fulltext(5).pdf
	fulltext(6).pdf
	fulltext(7).pdf
	fulltext(8).pdf
	fulltext(9).pdf
	fulltext(10).pdf
	fulltext(11).pdf
	fulltext(12).pdf
	back-matter.pdf

