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Preface 

This book is an effort to bring the appHcation of new technologies into the 
domain of agriculture. Historically, agriculture has been relatively behind the 
industrial sector in using and adapting to new technologies. One of the 
reasons for the technological gap between industrial and agricultural sectors 
could be the modest amounts of investments made in the field of agriculture 
compared to the impressive numbers and efforts the industrial sector invests 
in new technologies. Another reason could be the relatively slow process of 
updating the student's curriculum with new technologies in university 
departments that prepare our future specialists in the field of agriculture. 

With this book, we would like to narrow the technological gap existing 
between agriculture and the industrial sector in the field of software 
engineering. We have tried to apply modem software engineering techniques 
in modeling agricultural systems. Our approach is based on using the object-
oriented paradigm and the Unified Modeling Language (UML) to analyze, 
design, and implement agricultural systems. 

Object-oriented has been the mainstream approach in the software industry 
for the last decade, but its acceptance by the community of agricultural 
modelers has been rather modest. There are a great number of researchers 
who still feel comfortable using traditional programming techniques in 
developing new models for agricultural systems. Although the use of the 
object-oriented paradigm will certainly not make the simulation models 
predict any better, it will surely increase the productivity, flexibility, reuse, 
and quality of the software produced. 

The success of the object-oriented approach is mostly due to the ability of 
this paradigm to create adequate abstractions. Abstraction is an effective way 
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to manage complexity as it allows for focusing on important, essential, or 
distinguishing aspects of a problem under study. Object-oriented is the best 
approach to mimic real world phenomena. Entities or concepts in a problem 
domain are conceived as objects provided with data and behavior to play a 
well-defined role. Objects can represent any thing in the real world, such as a 
person, a car, or a physiological process occurring in a plant. The use of 
objects enormously facilitates the process of conceptual modeling, which can 
be defined as the process of organizing our knowledge of an application 
domain into orderings of abstractions to obtain a better understanding of the 
problem under study. Conceptual modeling makes heavy use of abstraction, 
and the object-oriented approach, unlike other programming paradigms, 
provides direct support for the principle of abstraction. 

Currently, UML is an industry standard for visualizing, specifying, 
constructing, and documenting all the steps of the software development. 
UML allows for presenting different views of the system under study using 
several diagrams focusing on the static and the dynamic aspects of the system. 
UML can be used in combination with a traditional programming 
environment, but its power and elegance fits naturally with the object-oriented 
approach. 

One of the most beneficial advantages of UML is its ability to design a 
Platform Independent Model (PIM) that is a representation of the model using 
a high level of abstraction. Details of the model can be expressed clearly and 
precisely in UML as it does not use any particular formalism. The intellectual 
capital invested in the model is insulated from changes in the implementation 
technologies. 

A Platform Specific Model (PSM) is developed by mapping a PIM to a 
particular computer platform and a specific programming environment. A 
mapping process allows the transformation of the abstract PIM into a 
particular PSM. This two-layer concept, a PIM and the corresponding PSM, 
keeps the business logic apart from the implementation technologies. 
Experience shows that the business logic has a much longer life than the 
implementation technologies. Changes and evolution of the implementation 
technologies should not have any impact on the business model. 

The book is divided into two parts. Part one presents the basic concepts of 
the object-oriented approach, their UML notations, and an introduction to the 
UML modeling artifacts. Several diagrams are used to present the static and 
dynamic aspects of the system. There are an ample number of examples taken 
from the agriculture domain to explain the object-oriented concepts and the 
UML modeling artifacts. In this part of the book, a short introduction to 
design patterns explains the need for using proven solutions to agricultural 
problems. 

Part two deals with applying the object-oriented concepts and UML 
modeling artifacts for solving practical and real problems. Detailed analyses 
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are provided to show how to depict objects in a real problem domain and how 
to use advanced software engineering techniques to construct better software. 
Examples are illustrated using the Java programming language. 

The book aims to present modeling issues a designer has to deal with 
during the process of developing software applications in agriculture. 
Although the Java programming language is used to illustrate code 
implementation, this book is not intended to teach how to program in Java. 
For this topic, we would recommend the reader to look for more speciahzed 
books. There is a chapter in this book that introduces the reader to some of the 
design patterns that we have used in agricultural applications. In no way do 
we pretend to have covered entirely the subject of how to use design patterns 
in software development. For an advanced and full presentation of the design 
patterns, we strongly suggest the reader to consider the well-known book 
Design Patterns Elements of Reusable Object-Oriented Software [GHJ95]. 

Our approach is based on the Rational Unified Process (RUP) 
methodology, although it does not rigorously follow this methodology. Our 
focus is on presenting modeling issues during the analysis and design of 
agricultural systems. For a more detailed and advanced approach to RUP, the 
reader needs to consult more specialized books. 

What makes our book of unique value? Well, we have assembled in a 
comprehensive way a wide range of advanced software engineering 
techniques that will allow the reader to understand and apply these techniques 
in developing software applications in agriculture and related sciences. 
Agricultural systems tend to be more abstract than business systems. 
Everyone has a good understanding of how to use an ATM (Automated Teller 
Machine). The use of an ATM is a classic example, used in many 
publications, to explain what an object is and how to build a UML diagram. 
The process of photosynthesis or the interaction of a plant with the 
surrounding environment, just to name a few typical agricultural examples, is 
less known to a large number of readers. Modeling a plant as an object 
provided with data and behavior may not be as straightforward as modeling 
an ATM. Therefore, the book aims to provide examples and solutions to 
modeling agricultural systems using the object-oriented paradigm and the 
Unified Modeling Language. 

The book is intended to be of use to anyone who is involved in software 
development projects in agriculture: managers, team leaders, developers, and 
modelers of agricultural systems. Developing a successful software project in 
agriculture requires a multidisciplinary team: specialists from different fields 
with different scientific backgrounds. It is crucial to the success of the project 
that specialists involved in the project have a common language that 
everybody understands. We find that UML is an excellent tool for analyzing, 
designing, and documenting software projects. Models can be developed 
visually and using plain English (and any other language for that matter) and 
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can be understood by programmers and non-programmers alike. Thus, 
collaboration between these groups is substantially improved by increasing 
the number of specialists directly involved in the process of software design 
and implementation. 

The book was written having always in mind the important number of 
specialists that still develop agricultural models using traditional approaches. 
There are ample step-by-step examples in this book that show how to depict 
concepts from a problem domain and represent them using objects and UML 
diagrams. We hope this book will be useful to these researchers and help them 
make a soft switch to the object-oriented paradigm. We hope readers will find 
this book of interest. 

Gainesville, Florida, May 2005 

PETRAQ PAPAJORGJI AND PANOS PARDALOS 
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PART 1: CONCEPTS AND NOTATIONS 

In the first part of the book, basic principles and concepts of the object-
oriented paradigm as well as the corresponding UML notation are presented. 
There are a large number of examples that describe the basic object-oriented 
concepts and their UML notation. Chapters 1 to 7 belong to the first part of 
the book. The material presented in these chapters builds the basis for 
approaching the applications presented in the second part of the book. 



Chapter 1 

PROGRAMMING PARADIGMS 

1. HISTORY OF INCREASING THE LEVEL OF 
ABSTRACTION 

When developing software one deals with levels of abstraction, ranging 
from the real world where the problem represents the highest level of 
abstraction, to machine language that represents the solution in the lowest 
level of abstraction. Between the highest and lowest levels of abstraction, one 
should develop software in as many levels of abstraction as the problem 
demands. 

The history of software development is the history of increasing the level 
of abstraction at each step. In the early days of computing, programmers used 
to represent programs using the lowest level of abstraction, by sending binary 
instructions corresponding to native CPU instructions to the computer to be 
executed. The main challenge programmers faced in those early days was the 
efficient use of the very limited amount of memory space available. 

Later, an important software innovation took place: Assembly language 
was developed under the pressure of an increasing number of new and larger 
applications in the real world. Assembly language is based on abstractions 
designed to allow programmers to replace the Os and 1 s of native computer 
instructions by mnemonics. An assembler was used to translate the 
mnemonics into Os and Is corresponding to the native processor instructions, 
allowing the programmer to concentrate more on the problem than in 
programming error-prone details. Mnemonics were a higher level of 
abstraction. Writing code was less time-consuming and programs were less 
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prone to error. The increased level of abstraction was followed by an increase 
in the level of productivity, software quality, and longevity. 

The next big jump in using abstraction in code writing was the advent of 
the third-generation languages (3GLs). In these languages, a number of 
machine instructions needed to execute a certain operation like PRINT, for 
example, were grouped into macro instructions with a name. The code would 
be written using these macro instructions and a translator would translate 
macros into a sequence of Os and Is that now are called machine code. The 
high-level constructs used to write code allowed programmers to not be 
limited by the hardware capabilities. If a new hardware was used with a 
different set of instructions, then new translators were created to take into 
consideration new changes and generate code targeted to the new hardware. 
The ability to adjust code to different machines was referred to as portability. 

The new set of tools programmers could use increased the number of 
domains and applications for which computer solutions were possible. So 
code was developed for each new and different problem. System vendors 
began to use 3GLs instead of assembly languages, even to define operating 
systems services. While 3GLs raised the level of abstraction of the 
programming environment, operating systems raised the level of abstraction 
of the computing platform. 

Structured programming gave a boost to the use of control abstractions 
such as looping or if-then statements that were incorporated into high level 
programming languages. The control structures allowed programmers to 
abstract out certain conditions that would affect the flow of execution. In the 
structured programming paradigm, software was developed by first making an 
inventory of the tasks needed to be achieved. Then, each task was 
decomposed into smaller tasks until the level of the programming language 
statement was reached. During all the phases of analysis and design in 
structural programming, the focus was on how to refine step-by-step tasks that 
needed to be accomplished. 

Later, abstract data types were introduced into the programming languages 
that would allow programmers to deal with data in an abstract way, without 
taking into consideration the specific form in which data were represented. 
Abstract data types hide the specific implementation of the structure of the 
data as their implementation was considered a low level detail. Programmers 
did not have to deal with this low level of detail; instead, they manipulated the 
abstract data types in an abstract way. 

The demand for developing more complex systems, and in shorter time, 
made necessary a new, revolutionary way of looking at the software 
development: The object-oriented paradigm. According to this new paradigm, 
the basic building block is an object. The object-oriented approach tries to 
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manage complexity by abstracting out knowledge from the problem domain 
and encapsulating it into objects. Designing software means depicting objects 
from the problem domain and providing them with specific responsibilities. 
Objects dialog with each other in order to make use of each other's 
capabilities. Functionahty is achieved through dialog among objects. 

In the object oriented paradigm, the analysis and design processes start 
with a more abstract focus. The main focus is to identify which operations 
need to be accomplished and who would accomplish these operations. The 
corresponding responsibilities are to be distributed to objects. Objects are to 
be provided with the necessary data and behavior in order to play the 
particular role they are assigned to. Each object knows its responsibilities and 
it is an active player. Rarely are objects created to stand by themselves outside 
any collaboration with other objects. 

One of the most important recent achievements that represented a great 
breakthrough in software development is what we refer to as design patterns. 
Design patterns are descriptions of communicating objects and classes that are 
customized to solve a general design problem in a particular context [GHJ95]. 
As a collaboration, a pattern provides a set of abstractions whose structure and 
behavior work together to carry out some useful functions [BRJ99]. They 
present recurring solutions to software design problems that occur in real 
world application development. Design patterns abstract the collaboration 
between objects in a particular context and could be used and reused again 
and again. The use of design patterns in software engineering moved the level 
of abstraction higher, closer to the problem level and away from the machine 
language level. 

For many years, software development companies have developed 
applications in a number of languages and operating systems. Isolated islands 
of applications developed in different programming environments and 
operating systems make it difficult to achieve a high level of integration that 
is demanded by the age of the Internet. In order to be competitive, companies 
are now forced to look for ways of building communication bridges between 
these isolated islands. 

Object Management Group (OMG) was created in 1989 to develop, adopt, 
and promote standards for the development and deployment of applications in 
distributed heterogeneous environments [Vin97], [VD98]. OMG's response to 
this challenging problem was CORBA (Common Object Request Broker 
Architecture). CORBA enables natural interoperability regardless of platform, 
operating system, programming language, and even of network hardware and 
software. With CORBA, systems developed in different implementation 
languages and operating systems do not have to be rewritten in order to 
communicate. By raising the level of abstraction above the implementation 
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languages and operating systems, CORBA made a tangible contribution to the 
longevity of the software. 

Another important event that significantly influenced the software 
engineering world was the use of visual modeling tools. Modeling is a well-
known engineering discipline as it helps one to understand reality. Models of 
complex systems are built because it is difficult to understand such a system 
in its entirety. Models are needed to express the structure and the behavior of 
complex systems. Using models makes it possible to visualize and control 
system's architecture. 

In the early 90s, there were several modeling languages used by the 
software engineering community. The most well-known methodologies were 
Booch, Jacobson's (Object-Oriented Software Engineering) and Rumbaugh's 
(Object Modeling Technique). Other important methods were Fusion 
[CAB94], Shllaer-Mellor [ShM88], and Coad-Yourdon [CY91]. All these 
methods had strengths and weaknesses. An important event occurred in the 
mid-90s when Booch, Jacobson, and Rumbaugh began adopting ideas from 
each other that led to the creation of the Unified Modeling Language or as it is 
known best, the UML. UML is a standard language for visualizing, 
specifying, constructing, and documenting object-oriented systems [BRJ99]. 

UML uses a set of graphical symbols to abstract things and their 
relationships in a problem domain. Several types of diagrams are created to 
show different aspects of the problem. Models created using UML are 
semantically richer than the ones expressed in any current object-oriented 
language and they can express syntax independently of any programming 
language. When a UML model is translated into a particular progranmiing 
language, there is loss of information. A UML model is easy to read and 
interpret as it is expressed in plain English. Therefore, formal models raise the 
programming abstraction level above the 3GLs in a profound way. 

In 2002, OMG introduced a new and very promising approach to software 
development referred to as the Model Driven Architecture approach, known 
as the MDA. MDA is about using modeling languages as programming 
languages [Fra03]. 

Most commonly, software models are considered to be design tools while 
code written in programming languages are considered to be development 
artifacts. In most of the software development teams, the role of the designer 
is quite separated from the role of the developer. A direct consequence of this 
separation is the fact that design models often are informal, and are used by 
developers only as guidelines for software development. This separation of 
roles is the common source of discrepancies that exist between design models 
and code. 
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MDA aims to narrow the gap existing between the designer and the 
developer by providing for producing models that can be compiled and 
executed in the same environment. Therefore, models will not be only a 
design artifact, but an integral part of the software production process. The 
MDA approach to software development is based on building platform 
independent models (PIM) that later can be mapped into platform specific 
models (PSM) that take into consideration specific implementation issues, 
such as platforms, middleware, etc. Specific models are then used by code 
generators to automatically create the implementation code. 

The MDA approach has already been applied to a variety of computing 
technologies such as Sun's J2EE and EJB, Microsoft's .NET, XML, OMG's 
CORBA, and an increasing number of software companies are adopting this 
approach. Although it is quite early to evaluate the impact MDA is having in 
the software industry, the future looks promising. By narrowing the gap 
between designers and developers, MDA considerably raised the level of 
abstraction in software development. 

2. OBJECT-ORIENTED VERSUS OTHER 
PROGRAMMING PARADIGMS 

The most common ways to approach modeling of a software problem are 
the following: From an algorithmic perspective and from an object-oriented 
perspective. 

The first approach is represented by structured programming, known 
nowadays as traditional programming. Structured programming is 
characterized by the use of the top-down approach in design and software 
construction. According to this paradigm every system is characterized, at the 
most abstract level, by its main function [Mey88]. Later, through an iterative 
process, the top function is decomposed into simpler tasks until the level of 
abstraction provided by a programming language is reached. Each of the 
steps of the iteration can be considered as a transformation process of the 
input task into a more suitable one required by the next iteration step. The 
main building block is the function or procedures. The expected behavior of a 
system is represented by a set of functions or procedures. 

Data flow diagrams are used to represent a functional decomposition. A 
data flow diagram can be considered as a graph, with nodes representing the 
data transformations that occur at each step of the iteration. Structural 
programming is data-centric; functional components are closely related and 
dependent to the selected data structure. Therefore, changes to the data 
representation or the structure of the algorithm used may have unpredictable 
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results. The entire data model needs to be considered when designing 
functionalities for the system. Changes to the data structure or to procedures, 
usually affect the entire system. 

As data are the center of the traditional programming approach, the 
analysis and design phases of software construction deal with what is referred 
to as the data model. A data model is conceived as a flat structure, viewed 
from above. Data are distributed into tables and relationships between data are 
represented by relationships between tables. Relationships are implicit, using 
the foreign keys. Two tables are related among them if both have at the least a 
field in common, that contains the same type of data. Therefore, relationships 
in a data model are bidirectional. 

The reasons why the structured programming approach is not a well-suited 
approach for software development has been widely discussed in the software 
engineering literature [Mey88], [B0086], to name a few. Although the list of 
disadvantages of using the structured programming paradigm is rather long, 
we would like to point out one particular handicap of this approach that has 
important consequences in modeling agricultural systems: Its lack of support 
for concurrency. There are many agricultural systems that coexist and 
interchange information between them. Intercropping, one of most relevant 
examples that use concurrency, is the process when two or more crops share 
the same natural resources (i.e., water, soil, and weather). In order to simulate 
the growth of one of the crops, other participating crops must be considered at 
the same time, as they compete for the same resources. 

It is difficult to develop a software system that allows for concurrency 
using traditional programming languages such as FORTRAN. Complex and 
difficult-to-use data structures need to be created to allow for developing an 
intercropping system. The number of crops simultaneously used by the system 
has to be known in advance to be adequately represented in the data 
structures. Furthermore, transforming an existing system that does not allow 
intercropping into a system that allows for it would certainly require the 
reexamination of the entire existing system. 

The software industry has embraced, for more than a decade, a more 
revolutionary approach to software development, the object-oriented 
paradigm. [MeySS] defines the object-oriented software construction as: 
Object-oriented construction is the software development method which bases 
the architecture of any software system on modules deduced from the types of 
objects it manipulates (rather than the function or functions that the system is 
intended to ensure). The modularity in the object-oriented approach is the 
class. 

The focus of this new programming paradigm is the class that directly 
represents concepts (abstract or concrete) of a particular domain to which the 
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software applies. Objects created from classes are the best way to mimic real-
life problems; an object can represent an abstract concept, such as a 
photosynthesis process or a real concept such as plant, soil, or weather. 
Objects are provided with data and behavior and interact with each other. 
Functionality is achieved through dialog amongst objects. The dialog between 
objects is represented by relationships. Two objects are related if they need to 
access data and behavior from the other object. Relationships between objects 
are represented by object diagrams in an object model The activity of 
describing relationships between objects in a problem domain is referred to as 
object modeling. 

The power of the object-oriented approach as modeling tool is the subject 
of the following chapters of this book. 



Chapter 2 

BASIC PRINCIPLES OF THE OBJECT-
ORIENTED PARADIGM 

1. ABSTRACTION 

One of the most appreciated advantages of object-oriented versus other 
modem programming paradigms is the direct support for each of the most 
important and used principles of abstraction. The Dictionary of the Object 
Technology defines abstraction as: "Any model that includes the most 
important, essential, or distinguishing aspects of something while suppressing 
or ignoring less important, immaterial, or diversionary details. The result of 
removing distinctions so as to emphasize commonalities." Abstraction is an 
effective way to manage complexity, as it allows for concentrating on relevant 
characteristics of a problem. Abstraction is a very relative notion; it is domain 
and perspective dependent. The same characteristics can be relevant in a 
particular context and irrelevant in another one. 

The abstraction principles used in the object-oriented approach are: 
Classification/instantiation, aggregation/decomposition, generalization/ 
specialization and grouping/individualization. By providing support for the 
abstraction principles, the object-oriented paradigm makes it possible to use 
conceptual modeling as an efficient tool during the phases of analysis and 
design. Conceptual modeling can be defined as the process of organizing our 
knowledge of an application domain into hierarchical rankings or orderings of 
abstraction, in order to better understand the problem in study [Tai96]. 

Classification is considered to be the most important abstraction principle. 
It consists of depicting from the problem domain things that have similarities 
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and grouping them into categories or classes. Things that fall into a 
class/category have in common properties that do not change over time. 
Instantiation is the reverse operation of classification. It consists of creating 
individual instances that will fulfill the descriptions of their categories or 
classes. The majority of object-oriented languages provide capabihties for 
creating instances of classes/categories. 

Figure 2-1 shows an example of classification and instantiation. Concept 
Tractor represents a set of properties that are typical for a tractor, regardless 
of their brand, horsepower, etc. Therefore, concept Tractor represents a 
classification. Bob's Tractor is a particular tractor that has some particular 
properties, the most important being that it is Bob's property. Therefore, 
concept Bob's Tractor represents an instantiation. 

Classification and Instantiation 

Tractor 

/ \ 

John's Tractor Bob's Tractor 

Figure 2-1, Examples of classification and instantiation. 

The second abstraction principle is aggregation. Aggregation refers to the 
principle that considers things in terms of part-whole hierarchies. Concepts in 
a problem domain can be treated as aggregates (i.e., composed of other 
concepts/parts). A part itself can be considered as composed of other parts of 
smaller granularity. Decomposition is the reverse operation of aggregation', it 
consists of identifying parts of an aggregation. Object-oriented languages 
provide support for aggregation/decomposition by allowing objects to have 
attributes that are objects themselves. Thus, complex structures can be 
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obtained by using the principle of aggregation. Note that some authors use the 
term composition instead of aggregation, 

Figure 2-2 shows an example of aggregation and decomposition. Concept 
Tractor can be considered as an aggregation/composition of other concepts 
such as Chassis, Body, and Engine. Concept Body can be considered as one of 
the parts composing a more complex concept such as Tractor. 

Aggregation and Decomposition 

Tractor 

^ 1 \ 
Chasis Body Engine 

/ \ 

Wheels Doors Hood 

Figure 2-2. Example of aggregation and decomposition. 

The third abstraction principle is generalization. Generalization refers to 
the principle that considers construction of concepts by generalizing 
similarities existing in other concepts in the problem domain. Based on one or 
more given classes, generalization provides the description of more general 
classes that capture the common similarities of given classes. Specialization is 
the reverse operation of generalization. A concept A is a specialization of 
another concept B if A is similar to B and A provides some additional 
properties not defined in B. 
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Object-oriented languages provide support for generalization/ 
specialization as they allow for creating subclasses of exiting classes and/or 
creating more general classes (superclasses) of existing classes. Creating a 
subclass of an existing class corresponds to specialization and creating a 
superclass of an existing class corresponds to generalization. It is important to 
note that concept A is a generalization of concept B if and only if B is a 
specialization of concept A [Ped89]. Figure 2-3 shows an example of 
generalization and specialization, 

Generalization and Specialization 

Vehicle 

/ \ 

Truck Tractor 

/ \ 
6 Cylinder 8 Cylinder 

Figure 2-3. Example of generalization and specialization. 

Concept Truck is a specialization of concept Vehicle, This is because 
Truck has all the properties of concept Vehicle and some additional ones that 
make it a special Vehicle, In reverse, concept Vehicle is a generalization of 
concept Truck, as all trucks are vehicles. 

The fourth abstraction and perhaps the least obvious, is grouping [Tai96]. 
In conceptual modeling, often a group of concepts needs to be considered as a 
whole, not because they have similarities but because it is important that they 
be together for different reasons. Object-oriented languages provide a 
mechanism for grouping concepts together such as sets, bags, lists, and 
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dictionaries. Individualization is the reverse operation of grouping. It consists 
of identifying an individual concept selected among other concepts in a group. 
Individualization is not as well established as a form of abstraction [Tai96]. 
Figure 2-4 shows an example of grouping and individualization. 

Grouping and Individualization 

Tractors 

/ \ 
Red Tractors G^cn Tractors 

My Tractor Tom's Tractor 

Figure 2-4, Example of grouping and individualization. 

All tractors used in a farm can be grouped in one category regardless of 
their brand, color, horsepower, and year of production, and be represented by 
one concept such as Tractors, In case we need to use one of them with a 
certain horsepower, then we need to browse the set of tractors and find that 
particular individual that satisfies our needs. In this case, we have 
individualized one element of the set based on some particular criterion. 
When we say Tom's Tractor, we have used the ownership as criterion for 
individualizing one of the tractors, the one that belongs to Tom. 

2. ENCAPSULATION 

The Dictionary of the Object Technology defines encapsulation as: "The 
physical location of features (properties, behaviors) into a single black box 
abstraction that hides their implementation behind a public interface." 
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Often, encapsulation is referred to as "information hiding." An object 
"hides" the implementation of its behavior behind its interface or its "public 
face." Other objects can use its behavior without having detailed knowledge 
of its implementation. Objects know only the kind of operations they can 
request other objects to perform. This allows software designers to abstract 
from irrelevant details and concentrate on what objects will perform. 

An important advantage of encapsulation is the elimination of direct 
dependencies on a particular implementation of an object's behavior. The 
object is known from its interface and clients can use the object's behavior by 
only having knowledge of its interface. The particular implementation of an 
object's interface is not important. Therefore, the implementation of the 
object's behavior can change any time without affecting the object's use. 
Encapsulation helps manage complexity by identifying a coherent part of this 
complexity and assigning it to individual objects. 

The fact that an object hides the implementation of its behavior by 
exposing only its "public face" could be beneficial to other objects that need 
its behavior. The "interested" objects could consider more than one option 
while looking for a specific functionality that satisfies their needs. They need 
only to "examine" the interfaces of candidate objects. Objects with similar 
behavior could serve as substitutes to each other. 

3. MODULARITY 

The Dictionary of the Object Technology defines modularity as: "The 
logical and physical decomposition of things (e.g., responsibilities and 
software) into small, simple groupings (e.g., requirements and classes, 
respectively), which increase the achievements of software-engineering 
goals." 

Modularity is another way of managing complexity by dividing large and 
complex systems into smaller and manageable pieces. A software designing 
method is modular if it allows designers produce software systems by using 
independent elements connected by a coherent, simple structure. [Mey88] 
defines a software construction method to be modular if it satisfies the five 
criteria: 

Modular Decomposabiiity; a software construction method satisfies 
Modular Decomposabiiity if it helps in the task of decomposing a software 
problem into a small number of less complex sub-problems, connected by a 
simple structure, and independent enough to allow further work to proceed 
separately on each of them. 
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Modular Composability; a software construction method satisfies 
Modular Composability if it favors the production of software elements which 
may then be freely combined with each other to produce new systems, 
possible in an environment quite different from the one in which they were 
initially developed. 

Modular Understandability; a software construction method satisfies 
Modular Understandability if it helps produce software in which each module 
can be understood without having to examine other interrelated modules. 

Modular Continuity; a software construction method satisfies Modular 
Continuity if a small change in the requirements of will impact just one or a 
small number of modules. 

Modular Protection; a software construction method satisfies Modular 
Protection if the effect of an exception occurring at runtime will impact only 
the corresponding module or a few neighboring modules. 

The concept of Modularity and the principles for developing modular 
software in the object-oriented approach are encapsulated in the concept of 
class. Classes are the building blocks in the object-oriented paradigm. 



Chapter 3 

OBJECT-ORIENTED CONCEPTS AND THEIR 
UML NOTATION 

1. OBJECT 

Booch [BRJ99] defines an object as "a concrete manifestation of an 
abstraction; an entity with a well-defined boundary and identity that 
encapsulates state and behavior; an instance of a class." 

In other words, an object is a concept, abstraction, or thing with well-
defined boundaries and meaning in the context of a certain application. For 
example, in the domain of crop simulation models. Plant can be an object as it 
is an abstraction of different plants that represents most of their main 
characteristics. In the same manner, Soil can be an object as it is an 
abstraction that represents what is common to many types of soil. 

An object represents an entity that can be physical or conceptual. Object 
Plant represents a physical entity; we can see a plant with its root system, 
leaves, and stems. In the same way, object Soil represents a physical entity as 
we can see soil surface and its composing layers if we are looking at a soil 
slope. 

Often in crop simulation models an abstract entity is used, named 
SoilPlantAtmosphere to represent features and data that pertain to soil, plant, 
and atmosphere all together. The object SoilPlantAtmosphere represents an 
entity that is conceptual; it is artificially created to represent data and behavior 
that are needed in the simulation process that cannot be assigned to only one 
of the above-mentioned entities. 
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The problem domain is crucial while selecting entities to be future objects. 
Objects named with the same name may have a very different meaning in the 
context of different domains. For example, object Tomato in the crop 
simulation domain may represent a different concept from the object Tomato 
created in the supermarket domain. In the first case, object Tomato is an 
abstraction for studying the effects of soil and weather in the crop growth 
while in the second case, object Tomato is an abstraction used to study the 
situation of the market for a certain period of time. 

Objects encapsulate state and behavior. The state of an object is one of the 
many possible conditions in which the object may exist. Object Plant can be 
in different conditions during a simulation. Initially, Plant exists in the form 
of the seed, later on in the stage of vegetation, flowering, and finally, in the 
stage of maturity. 

The state of an object is provided by a set of properties or attributes, with 
their values. As objects represent dynamic entities, their state may change 
over time (i.e., the values of attributes may change over time). Thus, the 
attribute growthStage of object Plant will have the value "in vegetation" in 
the early days of the simulation and the value "in maturity" in the late days of 
the simulation. 

The behavior of the object is defined by its role in the dialog with other 
objects. In other words, the behavior of an object represents how the object 
acts and reacts to the requests of other objects. Object's behavior is 
represented by a set of messages that the object can respond to. Object 
Weather should be able to provide solar radiation data to other objects 
requesting it; therefore, it responds to the message getSolarRadiation. 
Providing weather data such as minimum and maximum temperature, wind 
speed, rainfall, is part of the behavior of object Weather. 

Every object has a unique identity. Identity makes objects distinguishable, 
even in cases where they have the same attributes. The identity of the object 
does not depend on the values of its attributes. For example, the identity of the 
object Plant does not change, although some of its attributes, such as 
growthStage, may change over time. Each time an object is created, a unique 
identity is provided to it that will identify the object for the rest of its life. 

2. CLASSES 

Booch [BRJ99] defines a class as description of a set of objects that share 
the same attributes, operations, relationships, and semantics. Classes are the 
most important building block of any object-oriented system. In a specific 
domain, there are many objects that can share commonalities. It is important 



OBJECT-ORIENTED CONCEPTS AND THEIR UML NOTA TION 23 

to abstract features that are common to objects. Then, these common features 
will be used to construct a class. Abstraction is used to depict commonalities 
between objects and construct classes. A class is not an individual object, but 
rather a pattern to create objects with same properties and behavior. Objects 
created by a class are instances of this class. 

Some authors refer to a class as an "object factory," a factory that knows 
how to produce objects. Other metaphors are "rubber stamps" or "blueprints." 

A class has a unique name and all classes defined in a domain have 
different names. 

Figure 3-1. Examples of objects. 

In Figure 3-1 there are three objects: A pear, a strawberry, and grapes. 
These objects have different colors, shapes, and taste but they have in 
common the fact that they are fruits. They all can be represented by class 
Fruits and each of them is an instance of the class Fruits. The class Fruits 
should be designed to represent common characteristics of each of the 
instances. 

3. ATTRIBUTES 

An attribute is a named property of a class that describes a range of values 
that instances of the property may hold [BRJ99]. Attributes hold information 
about the class and they define the state of the object created by the class. 
Each attribute can hold values independently of one another. A class may 
have any number of attributes or no attribute at all. 

An attribute has a name, and it is advisable to name attributes with 
meaningful names that represent this particular abstraction expressed in the 
attribute. An attribute has a type that defines the kind of values that can be 
stored in it. An attribute is an abstraction of the kind of the data an object of 
the class may have as value. 

Class Fruits has an attribute ndimQd fruitName used to hold the name of the 
fruit. All instances of this class will have this attribute, but the value of the 
attribute may be different. If an instance of the class Fruit is created and the 
ditthhutQ fruitName is set to "Apple," then it shows that the instance created is 
an apple. 
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4. OPERATIONS 

An operation is the implementation of a service that can be requested from 
any object of the class to affect behavior [BRJ99]. The set of all operations of 
a class define its behavior. The behavior of the class is defined during the 
analysis and design phases, and depends on the role that the class has in the 
domain. 

A class may have any number of operations but the number of operations 
should reflect the behavior of the class. An operation has a name that usually 
is a verb or a verb phrase that represents some particular behavior of its class. 

An operation has its signature that is the name and the type of all 
parameters used by the operation. In cases when the operation returns a result, 
the type of the returned value should be specified. Figure 3-2 shows the UML 
symbol for class Soil. 

Soil 
«^soilName .: String 
^soilDepth : double 

^getWaterStressQ : double 
^SoilO 

Figure 3-2. Example of a class. 

In UML, a class is represented by a rectangular icon divided into three 
compartments as shown in Figure 3-2. The top-most compartment contains 
the name of the class. The name of the class starts with a capital letter. The 
middle compartment contains the list of attributes of the class. The name of an 
attribute starts with a lowercase letter. Attributes have a type; attribute 
soilName is of the type String. This compartment is considered the "data" 
compartment, as the attributes hold data. The bottom compartment lists the 
operations or the methods of the class. A method represents a specific 
behavior the class provides. In the case of class Soil, the method 
getWaterStressQ calculates the water stress for this particular type of soil. If 
the method returns a result, the type of the result is defined. In some cases, 
operations require parameters. In this case, the type of the parameter should 
be defined. In the case of class Soil, the method getWaterStressQ returns a 
result of the type double and does not require any parameters. Figure 3-3 
shows the implementation in Java of the class Soil defined in Figure 3-2. 
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I package Soil; 
2 
3 public class Soil { 
4 
5 private String soilName; 
6 private double soilDepth; 
7 public SoilO {} 
8 public double getWaterStress(){ 
9 double waterStress = 0.0; 
10 //here goes the body of the method, to be implemented 
II return waterStress; 
12 } 
13 } 

Figure 3-3. Java definition of class Soil. 

Line 1 in Figure 3-3 shows the package or the subdirectory where the Java 
code is stored. The concept of package will be introduced later in this book. 
Line 3 shows that a new class, referred to as Soil, is defined. Lines 5 and 6 
show the definition of attributes for class Soil. Attribute soilName is of type 
String; the values this attribute can hold should be of type String. Attribute 
soilDepth is of type double, the values this attribute holds should be of type 
double. Line 7 describes the default constructor for class Soil. A constructor is 
the mechanism in Java that creates instances of a class. Lines 8 through 12 are 
the definition of the operation getWaterStress. Line 8 shows that the result of 
the operation is of type double. Line 9 defines a local attribute named 
waterStress of type double. This attribute will hold the calculated value of 
water stress parameter. Line 10 is a comment in Java that shows that the logic 
for water stress calculation needs to be provided by the user. Line 11 returns 
the value of the calculated parameter to the object that asked for it. 

The number of attributes and operations that a class is provided with 
directly affects the behavior of the class. Designing the attributes and the 
operations of a class is not an easy task. It has to do with the role and the 
responsibilities the class will have in the domain in study. It is through the 
attributes and the operations that the responsibilities of a class are carried out. 

5. POLYMORPHISM 

Polymorphism is one of the most important features offered by the object-
oriented paradigm. Polymorphism comes from the Greek term "polymorphos" 
meaning "having many forms." In object-oriented programming, it refers to 
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the ability of the language to process object differently depending on their 
class (Webopedia at http://www.webopedia.com). 

Szyperski [Szy99] defines polymorphism as "the ability of something to 
appear in multiple forms, depending on the context; the ability of different 
things to appear the same in a certain context." Essentiality the concept of 
polymorphism has to do with substitutability between objects; in certain 
contexts, one object could be substituted with another. 

In order to better understand the concept of polymorphism, another related 
concept should be introduced: The concept of interface. 

6. INTERFACES 

Let us introduce the concept of the interface using an example. Suppose 
that a class needs to be designed with the task of providing weather data for a 
crop simulation scenario. Weather data can be provided in different ways. 
Some authors [LKN02] have designed their classes to obtain weather data 
from a network of real-time weather stations. Others [HWHOl] obtain 
weather data from text files saved locally in the system. It is desirable to 
design a system flexible enough to provide weather data from several sources. 
The fact that weather data could be provided in different ways does not affect 
the logic used to handle these data for calculating photosynthesis processes or 
water movement in soil. The scientific equations used to calculate 
photosynthesis will deliver the same results regardless of the source used to 
obtain the data: Be they read from text files, from a database management 
system, or obtained directly from an on-line weather station. 

Most of the existing systems are designed to use one single source of data. 
The IBSNAT group has selected to develop a special format of text files to 
store the weather data [HWHOl]. This way of forcing the system to a very 
specific way of obtaining weather data, limits other valuable sources of 
weather data to be used such as the ones provided by the on-line weather 
stations or other important sources. 

As previously mentioned, the scientific calculations are not affected by the 
way weather data are obtained. Therefore, it will be beneficial to express the 
weather data used in a general way, independently of the particular data 
source. The object Weather should be designed in such a way that it would 
provide the data regardless of the specific source used. This object should 
only logically show the kind of data needed and ignore any particular way of 
obtaining the weather data. An object that plays this role is called an interface. 

[BRJ99] defines an interface as "a collection of operations that are used to 
specify a service of a class or a component." [Szy99] defines an interface as 
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"a contract between a client of the interface and a provider of an 
implementation of the interface." Figure 3-4 shows the UML symbols for an 
interface. 

o 
VVeatherlnterface 

^getSo!arRadiation(): Double 
"^getAverageTemperatureO: Double 

^getRainfalK): Double 
^getTemperaturefvlinO : Double 
*^getTemperaturemax(): Double 

"^getPARO ; Double 
^getPotentialETO; Double 

O 
VVeatherlnterface 

"^getSolarRadiationO ; Double 
^getAverageTemperatureO : Double 
^getRainfallt): Double 
•^getTemperatureMinQ • Double 
^getTemperaturemaxQ' Double 
^^getPARf): Double 
^getPotentialETQ : Double 

Figure 3-4. UML symbols for an interface. 

As shown in Figure 3-4, each of the symbols can be used as they represent 
the same thing, the graphic symbol of an interface. Figure 3-5 shows an 
example of interface defined in Java. 

1 package Weather; 
2 public interface Weatherlnterface { 
3 public double getSolarRadiationQ; 
4 public double getAverageTemperatureQ; 
5 public double getRainfallQ; 
6 public double getTemperatureMinQ; 
7 public double getTemperatureMaxQ; 
8 public double getParQ; 
9 public double getPotentialETQ; 
10 } 

Figure 3-5. Examples of interface definition in Java. 

An interface only defines the kind of services an object should provide for 
use by other objects. It represents the set of messages that can be sent to an 
object created by a class that implements this interface. The implementing 
object will respond to any of the messages defined in the interface. The 
interface defines only the operations' signature composed of the operation 
name and the parameters required for its execution that must be conveyed in a 
message. There is no body in the methods or operations defined in the 
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interface. The body for each of the methods will be provided by the class that 
implements this interface. Figure 3-6 shows an example of a class 
implementing an interface. 

o 
Weatherlnterface 

^getSolarRaciiationf): Double 
"^getAverageTemperaturet); Double 
'̂ getRainfallO : Double 
•^getTemperatureMinO: Double 
^getTemperaturemaxO • Double 
•^getPARO ; Double 
"^getPotentialETQ : Double 

W-

Weather 

*^getSolarRadiationij Double 
^getAverageTemperatureO: Double 
^getRainfalll): Double 
^getTemperatureMinfl: Double 
^getTemperaturemaxO ; Double 
"̂ getPARO ; Double 
'^getPotentialETt) Double 

Figure 3-6. Class implementing an interface. 

As shown in Figure 3-6, class Weather implements interface 
Weatherlnterface. This contractual agreement, establishes obligations in both 
sides: The interface defines what classes should at the least implement as 
functionality when binding the interface, and the classes realize that the 
interface definition is what they are expected to implement at the least. 
Therefore, the behavior of class Weather would include at the least the 
behavior defined by the interface that the class is implementing. Class 
Weather may have other methods that are not related to Weatherlnterface. An 
interface can be implemented by many classes; each of them would provide a 
particular implementation of the behavior defined by the interface. At the 
same time, a class may implement many interfaces, in which case the 
behavior of the class will include all the behaviors defined by the interfaces 
that the class implements. Figure 3-7 shows the example of class Weather 
implementing interface Weatherlnterface. 

1 package Weather; 
2 public class Weather implements Weatherlnterface { 
3 private double solarRadiation; 
4 private double rainFall; 
5 private double potentialET; 
6 private double temperaturcMax; 
7 private double temperaturcMin; 
8 private double par; 
9 public double getSolarRadiationQ {return solarRadiation;} 

Figure 2-7. Class Weather implementing Weatherlnterface (Part 1 of 2). 
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10 public double getRainFallQ {return rainFall;} 
11 public double getTemperatureMaxQ {return temperatureMax;} 
12 public double getTemperatureMinO {return temperatureMin;} 
13 public double getAverageTemperatureQ { 
14 return (getTemperatureMin()+getTemperatureMax())/2; 
15 } 
16 public double parO{return par;} 
17 public double getPotentialETQ {return potentialET;} 
18 public WeatherO {} 
19 } 

Figure 3-7. Class Weather implementing Weatherlnterface (Part 2 of 2). 

As shown in Figure 3-7, the definition of class Weather includes all the 
operations defined in the interface Weatherlnterface, The interface defines 
only the signature for the operation, not the body, whereas the class definition 
includes the signature's operation and the code for implementing it. As an 
example, line 13 in Figure 3-7 is the same as line 4 in Figure 3-5, as they both 
define operation's signature. In Figure 3-7, line 14 provides the code 
implementation for the operation. 

A better approach for the problem defined at the beginning of this section 
is to design an interface that would define the functionalities that classes 
implementing the interface should provide, with each of the classes providing 
a particular solution to the problem of obtaining the weather data. Figure 3-8 
shows two classes implementing the same Weatherlnterface, 
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o Weatherlnterface 

%ttSolarRacliationO: OouW© 
^getAverageTemperatureO: Doubl© 
%etRa(nfall(): Double 
%etTemperatufeMin(); Double 
%etTemperaturemaxO: Double 
%etPAR(); Double 
^gstPotentialETO: Double 

implements 

^ 

impt^fOents 

VVeatherData FromStati on 

'^ciatSolarRadiationQ; Double 
^^getAverageTemperatureO : Double 
^^getRainfalK): Double 
'^getTei^iperatureMinO; Double 
'^getTemperatureMa.xO: Double 
^getPARi} . Double 
^getPotentialETO , Double 

WeatherData FromFi !e 

'^getSolarRaciiationO • Double 
*^getAverag8TemperatuiB(): Double 
^getRainfallO Double 
"^getTemperatureMinO • Double 
^getTemperatureMaxO : Double 
•^getPARO: Double 
''^getPotentialETi}: Double 

Figure 3-8. Example of two different classes implementing the same interface. 

As shown in Figure 3-8, classes WeatherDataFromStation and 
WeatherDataFromFile implement the same interface Weatherlnterface, Both 
classes have agreed to provide behavior for the functionality defined in the 
interface. Class WeatherDataFromStation will provide the behavior necessary 
to obtain weather data from an online station. As such, this class is 
responsible for providing the logic for solving issues such as connecting to the 
station, making transactions, and downloading the data. Class 
WeatherDataFromFile will provide the behavior for reading the weather data 
from a text file. These two classes provide different behavior to implement the 
same functionality that is obtaining weather data. Different behaviors provide 
the same results, but in different ways. The same functionality is provided in 
many forms, and this is the meaning of polymorphism. 

Interfaces are an elegant way of defining polymorphism without involving 
any implementation. Two classes provide polymorphic behavior if they 
implement the same set of interfaces. Interfaces formaHze polymorphism. 

The basic concept behind polymorphism is substitutabihty. Classes 
implementing the same interface can be a substitute to each other; any one of 
them can be used instead of the other. Therefore, interfaces are the heart of 
the "plug and play" architecture. Classes, components, or subsystems can 
substitute for each other provided that they implement the same set of 
interfaces. Interfaces are a key concept while developing component-based 
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environmental and agricultural software [PBB04]. Software designs that do 
not use interfaces are rigid, and difficult to maintain and reuse. Interfaces 
allow objects to communicate with each other without demanding detailed 
knowledge of object's internal logic and implementation. 

7. COMPONENTS 

There are several definitions of the component-based approach. [BRJ99] 
define a component as a "physical and replaceable part of a system that 
conforms to and provides the realization of a set of interfaces." This definition 
is broad and considers the component to be an organizational concept 
representing a set of functionalities that can be reused as a unit. According to 
this definition documents, executables, files, libraries and tables could be 
considered as components. The emphasis in this definition is on reuse. 

Microsoft Corp. has a slightly different definition. In "Component 
Definition Model," [BBC99] define a component as a "software package 
which offers services through interfaces." The emphasis in this definition is 
on service provider. The service provider approach considers a component to 
be a piece of software that provides a set of services to its users. Services are 
grouped into coherent, contractual units referred to as interfaces [Bro99]. 
Users can utilize services offered by knowing the component's interface 
specification, or contract. 

Both the reuse and service provider perspectives of a component introduce 
the important distinction between its public interface (what the component 
does) and its implementation in a particular programming environment (how 
the component does it). This distinction addresses the issue of how the 
component should be designed in order to be an independent and replaceable 
piece of software with minimal impact on the users. 

In other words, components are reusable pieces of software code that serve 
as building blocks within an application framework. [BW98] conclude that 
although components fit better with the object-oriented technology, they are 
often used in non object-oriented programming environments representing a 
chunk of functionalities that a system should provide. Most such 
environments provide an ad hoc way of defining an interface, limiting its 
scope and use. The object-oriented paradigm provides formal languages for 
defining an interface and its contract, broadening its scope and reutilization 
opportunities. 

In traditional programming, most of the times the focus is developing a 
single stand-alone system, where all variables and procedures are located in a 
single container, referred to as the main program. In contrast, the component-
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based approach has as its focus the building of a set of reusable components 
from which a family of apphcations can be assembled [Bro99]. The 
component-based paradigm addresses a number of important questions related 
to the optimal size of a component, the kind of documentation that needs to be 
provided so others can use components, and how the assembly of existing 
components needs to be performed. 

Every component has a name that distinguishes it from other components. 
The name is a textual string. The UML symbol for a component is shown in 
Figure 3-9. 

Plant SoiLDLL 

Figure 3-9. The UML symbol for a component. 

There are three types of software components [BRJ99]. 
Deployment Components 
Deployment components include components that can form an executable 

system, such as dynamic libraries (DLLs) and executables (EXEs). Included 
in this category are other object models such as COMH-, CORJBA and 
Enterprise Java Beans or object models such as dynamic Web pages and 
database tables. 

Work Product Components 
Work product components are created from source code files or data files. 

They do not directly participate in an executable system but are the work 
product of development that is used to create an executable system. 

Execution Components 
These components are created as a consequence of an executing system, 

such as COM+ object, which is instantiated from a DLL. 
There is a great similarity between the concepts of component and class. 

The most important one is that both components and classes may implement a 
set of interfaces. They both can be used as modeling artifacts, i.e., participate 
in relationships, have dependencies, etc. [BRJ99]. 

The fundamental difference between components and classes is that a 
component usually offers its services only through interfaces, whereas a class 
may or may not implement any interfaces. A component is designed to be 
part of a system; it is a physical entity that offers its services through 
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interfaces. A component may be reused across many systems. The process of 
creating components as modeling entities uses the principle of encapsulation. 

8. PACKAGES 

[BRJ99] defines a package as a "general purpose mechanism for 
organizing elements into groups." Packages are used as containers to include 
modeling elements that are logically related and can be manipulated as a 
group. Modeling elements that can be included in a package may be classes, 
interfaces, components, different kinds of diagrams, and even other packages. 
A package does not represent any abstraction of the elements it owns. The 
ownership relation in a package is strong; if the package is destroyed, its 
contained elements are destroyed as well. A package has a name to identify it 
from other packages. The UML symbol for a package is shown in Figure 
3-10. 

Weather 

Figure 3-10. The UML symbol for a package. 

Package Weather will contain all model elements related to weather. They 
can be classes, interfaces, components, and different diagrams. As packages 
are only used for storing purposes, they do not have any representation in the 
implementation, except for maybe as directories. During the process of 
creating packages, the principle of modularity is used. 

9. SYSTEMS AND SUBSYSTEMS 

Let us suppose that all the activities in a farm need to be automated. A 
software system will be developed to cover the activities such as accounting, 
sales, inventory, and so on. 

All relevant farm activities will be presented in a system. [BRJ99] defines 
a system as "a set of elements organized to accomplish a purpose and 
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described by a set of models, possible from different viewpoints." A system 
possibly may be decomposed into a set of subsystems and should represent 
only the most relevant elements of the domain under study. 

The UML symbol for a system is shown in Figure 3-11. 

«system» 
Farm 

Figure 3-11. The UML symbol for a system. 

[BRJ99] defines a subsystem as "a grouping of elements of which some 
constitute a specification of the behavior offered by other contained 
elements." A subsystem may contain classes, interfaces, components and 
other subsystems. A subsystem is a combination of a package and a class. As 
packages, subsystems have semantics that allow them to contain other model 
elements. Like classes, subsystems realize or implement a set of interfaces 
that give them behavior. The behavior of a subsystem is provided by classes 
and other subsystems included in the subsystem. The UML symbol for a 
subsystem is a combination of symbols of package and interface as shown in 
Figure 3-12. 

O 
Accountinglnterface 

«subsystem» 
Accounting 

Figure 3-12. Example of UML symbol of a subsystem. 

In Figure 3-12, the Accounting subsystem represents an implementation of 
operations defined in the interface Accountinglnterface. Accounting, as part 
of activities in a farm, is quite independent. It collaborates intensively with 
other subsystems as it keeps track of all the expenses that occur in the farm. 
Accounting subsystem receives data from other subsystems and provides 
different financial reports. 

When representing a particular problem domain as a system, decisions 
have to be made on how the system will be divided into subsystems and what 
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classes will be included in each of the subsystems. Issues, such as the kind of 
behavior each subsystem should encapsulate and its size, are to be discussed 
and solved. Subsystems should be nearly independent with a well-defmed 
purpose. They will be interacting with each other to provide the 
functionalities required by the system. Each subsystem encapsulates specific 
behavior and the behavior of the entire system will be provided by the set of 
created subsystems. Different levels of abstractions can produce different 
kinds of subsystems. A subsystem at one level of abstraction can be a system 
in another level of abstraction. In other words, a subsystem is only a 
composing part of a bigger and complex system. Encapsulation and 
modularity are the two principles of object-orientation that need to be 
considered during the phase of system analysis. 

A subsystem should not expose any of its composing parts. No class in a 
subsystem should be visible outside the subsystem. No element outside the 
subsystem should have direct dependency on elements inside the subsystem. 
A subsystem should depend only on the interfaces of other model elements 
and other model elements will depend only on the set of interfaces of a 
subsystem. This way, a subsystem can be replaced by another one provided 
they implement the same set of interfaces. 

As previously mentioned, the behavior of a subsystem is defined by the set 
of interfaces the subsystem implements. Subsystem's behavior will be 
provided only by classes or modeling elements that are included into the 
subsystem. There should not be any reference to any class outside the 
subsystem. 

Figure 3-13 shows an example of decomposition of a farm system into 
subsystems. Accounting subsystem will include all the classes needed to carry 
out accounting responsibilities. The responsibilities of the subsystem are 
defined in the interface lAccounting. The subsystem Production includes all 
the classes representing operations occurring in a farm. The responsibilities of 
this subsystem are defined in the interface IProduction. The same way, the 
subsystem Research&Development will include all the classes defined to 
represent entities related to the research and development process. The 
responsibilities of this subsystem are defined in the interface 
IResearch&Development. 
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O 
lAccounting 

«subsystem» 
Accounting O 

IResearch&D 
evelopment 

«subsystem» 
ResearchStDevelopment 

a-
IProduction 

«subsystem» 
Production 

Figure 3-13. Decomposition of a system into subsystems. 

There are some similarities between the concept of subsystem and the one 
of component. They both encapsulate a partial behavior of a bigger system 
and are designed to dialog with others to provide the functionality required by 
the system. Their behavior is defined by a set of interfaces for which they 
provide a polymorphic implementation. They both provide substitutable 
behavior; both can be replaced by other component/subsystems provided they 
realize the same set of interfaces. They are constructed using the same object-
oriented principles: Encapsulation and modularity. 

The difference between a component and a subsystem is the time they are 
used in the software construction process. A subsystem is a design concept; it 
is an abstraction used in the design process to present part of a complex 
system. A component is a physical entity; it is an implementation tool that 
represents part of a bigger real system. Components are implementation 
realizations of subsystems. As an example, during the phases of analysis and 
design of a farm management system, all the functionalities related to 
accounting will be grouped in the subsystem Accounting. The collaboration 
with other subsystems will be defined as a set of interfaces for the subsystem. 
Then, functionalities of the subsystem will be translated into code and 
therefore the Accounting component is obtained ready to be deployed. 
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A note is a symbol for rendering comments or constraints attached to an 
element or a group of elements [BRJ99]. Notes are used to clarify the context 
in which something happens. The UML symbol for a note is shown in Figure 
3-14. 

text clarifying the 
context In which 
something happens. 

Figure 3-14. UML symbol for a note. 

Figure 3-15 shows an example of a note attached to a Weather class 
explaining the context in which the weather data are obtained. The note and 
the class are linked using an anchor note. 

Weather 

The weather data are ^ 
obtained from a 
net̂ #ork of weather 
stations 

Figure 3-15. Note attached to a class using an anchor note. 

11. STEREOTYPES 

A stereotype is rendered as a name enclosed by guillemots and placed 
above the name of another element [BRJ99]. Figure 3-16 shows an example 
of a stereotype. 
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«subsystem» 
Accounting 

Figure 3-16. Example of stereotype. 

The stereotype in Figure 3-16 is the word «subsys tem» that gives to the 
package Accounting a special meaning or classification. Without the 
stereotype, the package Accounting is a general package. The stereotype 
allows the designer to create a new modeling element. Therefore, as shown in 
Figure 3-16, the stereotype converts a general package into a subsystem, thus 
creating a new building block. 

Stereotypes can be used to group operations of a class into different 
categories, helping users to understand the context in which an operation is 
used. Figure 3-17 shows that operations of class Plant are grouped in two 
categories: Initialization and query. Thus, operations setBaseTemperature, 
setFractionToCanopy, and setPlantDensity belong to the category 
initialization. Operations isMature and isPostPlanting belong to the category 
query. In the case that some changes have to be done to the initialization 
process, it is easy to locate the corresponding operations. Figure 3-17 shows 
that class Plant belongs to the group of entity classes, used to represent 
concepts of the problem domain. (We will see more about entity classes in 
Part two of the book.) 

«entitv» 
Plant 

'^«initiali2ation» setBaseTemperatureQ 
^«initialization» setFractionToCanopyf) 
'^<<initiali2ation>> setPlantDensityO 
'^«queiy» isMatiireQ 
'^«quen/>> isPostPlantingf) 

Figure i-/7.Using stereotypes to classify operations. 
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Stereotypes can be implemented in Java as comments. Figure 3-18 shows 
an example of using comments to translate the UML stereotypes in Java code. 
Figure 3-18 shows only part of the Java implementation of class Plant, the 
part related to the stereotype definition. 

I public class Plant { 
2 
3 private double baseTemperature; 
4 private double fractionCanopy; 
5 
6 //initilaization methods 
7 public void setBaseTemperature(double baseTemperature) { 
8 this.baseTemperature = baseTemperature; 
9 } 
10 public void setFractionCanopy(double fractionCanopy) { 
II this.fractionCanopy = fractionCanopy; 
12 } 
13 
14 //query methods 
15 public boolean isMatureQ { 
16 return getPhenologicalPhase().eqals("maturity"); 
17 } 
18 public boolean isPostPlantingO { 
19 return weather.getDayOfYear()> getPlantingDateQ; 
20 } 
21 } 

Figure 3-18. Java comments represent UML stereotypes. 

Line 6 is a comment in Java that shows the stereotype defined in Figure 3-
17. Lines 7 through 12 define Java methods that belong to the category 
initializations. Lines 15 through 20 define methods belonging to the category 
query. In Figure 3-17, each operation definition includes its stereotype, 
whereas Figure 3-18 defines a stereotype for the entire group of methods that 
belong to this stereotype. In Java, methods that belong to a stereotype follow 
the stereotype definition. 



Chapter 4 

RELATIONSHIPS 

As previously mentioned in this book, the main feature that distinguishes 
object-oriented from other programming paradigms is the fact that 
functionahty is carried out by dialog between objects. Objects are provided 
with behavior that defines the role of each object. Communication between 
objects is realized through messages they send to each other. In UML, the 
ways in which things can connect to each other, either logically or physically, 
are modeled as relationships [BRJ99]. 

There are three types of relationships in UML: Associations, 
generalizations, and dependencies. Relationships are graphically represented 
with lines; each type of line represents a particular type of relationship. 

1. ASSOCIATIONS 

An association is a structural relationship that specifies that objects of one 
thing are connected to objects of another [BRJ99]. An association shows that 
these two classes are connected to each other and navigation from one object 
to the other should be possible. This navigation is made possible through 
associations. Figure 4-1 shows an example of association between two 
classes, Plant and Soil. 
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Plant growsln Soil 

Figure 4-1. Example of association between classes Plant and Soil. 

An association has a name to describe the meaning of the relationship. 
Names should be meaningful to present unambiguously the kind of 
relationship between objects. The association growsln represents the fact that 
a plant grows in soil. The association defines quite well the role of each of the 
classes participating in the relationship; plant processes use soil data and soil 
processes use plant data. Associations enable data transfer and resource 
sharing among objects. In this case the association is bidirectional; data in 
class Soil can be accessed from class Plant and data in class Plant can be 
accessed from class SoiL 

Accessibility between classes related with an association, in most of the 
programming languages, is translated with a reference of the type of the other 
class involved in the association. For example, access to class Soil from class 
Plant is possible by defining in class Plant an attribute of type Soil, which 
will reference the corresponding Soil object. In the same way, class Soil will 
have an attribute of type Plant pointing to the corresponding Plant object. In 
cases when both classes in a relationship point to each other, the association is 
bidirectional. 

Although associations may have a name, some designers do not use the 
names, especially when the relationship between objects becomes obvious. It 
is recommended that all the information be provided that helps a potential 
user understand the presented problem. 

Classes participating in an association play different roles; therefore, it is a 
good designing practice to explicitly define the role for each of them. Figure 
4-2 shows an example of an association between classes Plant and Soil with 
roles defined for both classes. 

Plant +thePlant growsln +theSoil Soil 

Figure 4-2. Example of an association with roles defined for both classes. 
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In some cases, such as in the one presented in Figure 4-2 above, it may be 
redundant to provide both the name of the association and the respective roles 
of each class. Only the name of the association may be enough to describe the 
nature of the relationship. The only additional information one may obtain 
from the names of the roles in Figure 4-2 is that the role names will be used as 
attribute names in respective classes. Thus, in class Plant, an attribute named 
theSoil will be declared to reference an object of type Soil (Figure 4-3). The 
same for the class Soil, an attribute of type Plant will be declared to reference 
a Plant object (Figure 4-4). 

1 package Plant; 
2 public class Plant { 
3 Soil theSoil; 
4 public PlantO {} 
5 } 

Figure 4-3. Attribute soil allows access to object Soil. 

1 package Soil; 
2 public class Soil { 
3 Plant thePlant; 
4 public SoilO {} 
5 } 

Figure 4-4. Attribute thePlant allows access to object Plant. 

In some scenarios, only one class should have access to the data from the 
other class of the association. In this case, the association is unidirectional. 
Figure 4-5 shows an example of a unidirectional association. 

Plant usesWeatherData 

+dataRequestor +dataProvider 
Weather 

Figure 4-5. Example of unidirectional association between Plant and Weather. 

In the example shown in Figure 4-5, only class Plant can access data and 
behavior defined in class Weather, The role of class Weather is to provide 
data for class Plant. An attribute of type Weather and named dataProvider 
will be defined in class Plant to allow access to data and behavior in class 
Weather. 
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The same class can play the same role or a different one in associations 
with other classes. Figure 4-6 shows an example where class Plant plays 
different roles in different associations with different classes. 

^ ^ ^ ^ ^ +theSoil 1 

-HthePlant 

Plant 

+dataRequestor 

usesWeaiherData 

^ 
+dataProvider 

Soil 

1 Weather 

Figure 4-6. Example of class Plant playing different roles in different associations. 

In Figure 4-6, class Plant plays the role of plant data provider in 
association with class Soil and the role of data requestor in association with 
class Weather. In Figure 4-7, class Weather plays the same role, the one of 
data provider in both associations with classes Soil and Weather. 

usesWeatherData 

+dataRequestor 

Soil 

+dataProv/ider 
V_ 

Weather 

A 
+dataProvider usesWeatherData 

Plant 

+dataRequestor 

Figure 4-7. Class Weather plays the same role in two different associations. 
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While modeling an association, it is important to show how many objects 
on both sides of the association can be linked together. This process is called 
association's multiphcity. Figure 4-8 shows an example of multiplicity of an 
association. 

Person works for 

1..* 1 

Farm 

Figure 4-8. Example of multiplicity of an association. 

In Figure 4-8, the association says that one or more persons work for one 
farm (i.e., one instance of class Farm can be linked to one or more instances 
of class Per^o«). 

An association can be reflexive, meaning that the start and the end of the 
line representing the association point to the same class. A reflexive 
association means that an object can be linked to other objects of the same 
class. Figure 4-9 shows an example of a reflexive association with 
multiplicity zero or one. 

succeeds 

1 
I / 

SoilLayer 

7 
/ 

.1 

Figure 4-9. Example of a reflexive association with multiplicity zero or one. 

In a soil profile, soil layers are in sequence: The first layer is on top, and 
other layers stay under the top layer, one under the other. The last layer of the 
profile is located at the bottom. The fact that soil layers are one under the 
other can be modeled using a reflexive association. In Figure 4-9, the 
association succeeds shows that an object of class SoilLayer can succeed zero 
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or one other object of the same class. The top layer succeeds zero layer and all 
other layers under the top one succeed exactly one layer. A multiplicity of 
zero shows that the association is optional. 

2. AGGREGATION 

Aggregation is a specific kind of association that shows a relationship 
between two classes that play a different role. One of the classes is considered 
the whole and the other one is considered the part. An aggregation expresses a 
whole-part relationship. Figure 4-10 shows the UML representation of an 
aggregation. 

Soi Profile 
composedOf 

K> > 
SoilLayer 

Figure 4-10. The UML representation of an aggregation. 

The association presented in Figure 4-10 shows the relationship between a 
soil profile and its soil layers. The association is a one-to-many; meaning that 
a soil profile is composed of one or more soil layers. The class SoilProfile 
represents the whole and class SoilLayer represents the part. The open 
diamond distinguishes the whole class. It is important to note that in an 
aggregation, the whole does not own the part. Therefore, when the class 
representing the whole is destroyed, this does not affect the class representing 
the part. Furthermore, an object representing the part may be used in other 
aggregations. An aggregation is an association that represents a whole-part 
relationship in a conceptual way. 

As aggregation expresses the whole-part relationship in a very loose 
manner, many modelers do not see it as useful modeling concept. A 
relationship expressed by an aggregation can be modeled using a simple 
association. In this case, the name of the association could express the idea of 
whole-part relationship. Choosing between an aggregation and a simple 
association for conceptually expressing the whole-part relationship is a 
question of taste or modeling habits. 
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A one-to-many association can implemented in Java as an array. Line 4 in 
Figure 4-11 shows that the attribute soilLayer is an array that will contain 
objects of type SoilLayer. 

1 package Soil; 
2 
3 public class SoilProfile { 
4 public SoilLayer soilLayer[]; 
5 public SoilProfileO {} 
6 } 

Figure 4-11. Java implementation of a one-to-many association. 

There is a large class of water-balance and irrigation-scheduling models 
that requires modeling the relationship between the soil profile and its soil 
layers [PSH04]. Some models do not partition soil into layers; they simply 
consider soil profile as a single layer that extends to the bottom of the root 
zone [GSROO]. In these cases, the model will always have one layer. 

Other water-balance and irrigation-scheduling models consider a soil 
profile as composed of many soil layers [Rit98]. Therefore, in these models, 
one soil profile will be associated to many soil layers. The association in 
Figure 4-10 takes into consideration both cases. 

3. COMPOSITION 

A composition is a stronger form of aggregation, with strong ownership 
and coincident lifetime as part of the whole [BRJ99]. In a composition 
association, the whole is responsible for the creation and destruction of its 
parts. Once a part is created, it belongs to the whole and when the whole is 
destroyed, the part is destroyed too. In a composition, a part may belong to 
only one whole at a time. 

As an example, let us consider constructing a UML diagram that 
represents a plant and its relationships with its root, stem, and leaves systems. 
The relationship between plant and its systems can be presented as a 
composition. Plant will play the role of the whole and its systems will be its 
parts. Plant owns its root, stem, and leaves systems. A stem system can only 
belong to one plant at a time. In most cases if the plant dies, so do its root, 
stem, and leaves systems. The UML presentation of a composition is shown 
in Figure 4-12. 
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f 1 
Plant ^ 

1 

i ^ 

1 

> 
1 

LeavesSystem 

StemSystem 1 

— "^ 
1 

Roots ystem 

Figure 4-12. Plant is considered as a composition of its root, stem, and leaf systems. 

4. DEPENDENCY 

A dependency relationship states that a change in specification of one 
thing may affect another thing that uses it, but not necessarily the reverse 
[BRJ99]. Figure 4-13 shows an example of dependency between packages 
Client and Supplier, Client depends on Supplier. If the amount of goods that a 
Supplier is supposed to provide changes, this change may affect the Client as 
the Client would have to adjust its behavior to accommodate the change. 

Figure 4-13. Dependency relationship between packages. 

A dependency relationship can exist between classes, packages, and 
components. The following Figure 4-14 shows an example of dependency 
relationship between components Client and Supplier, 
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Client J—I Supplier 
• > : 

Figure 4-14. Dependency relationship between components. 

In some cases, one modeling element can be dependent on more than one 
other modeling element. Figure 4-15 shows that the amount of water in soil 
depends on two factors: The weather and the irrigation applied. 

--y^ 

Weather 

Soil 

•y\ Irrigation 

Figure 4-15. One class depends on two other classes. 

A dependency relationship denotes a relationship where the client does not 
have semantic knowledge of the supplier. 

5. GENERALIZATION 

A generalization is a relationship between a general thing (called the 
superclass or parent) and a more specific kind of that thing (called subclass or 
child) [BRJ99]. Generalization is the relationship that represents the 
mechanism of inheritance in object-oriented languages. 

Inheritance is often considered as one of the most fundamental features of 
the object-oriented paradigm. It is certainly the feature that distinguishes 
object-oriented from the traditional programming. Inheritance was introduced 
to the world of programming in the late 60s as the main feature of the 
programming language SIMULA [DMN68]. SIMULA'S inheritance 
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mechanism was originally known as concatenation and the term inheritance 
was introduced a few years later. Currently, there are a few used synonyms 
for inheritance, such as subclassing, derivation, or subtyping. 

The central idea of inheritance is straightforward. Inheritance allows new 
object definitions to be based upon exiting ones. A formal definition of 
inheritance is given by [BC90]: 

R = P + dR 

P are the properties inherited from an existing class and dR are the new 
properties defined in the new class R. dR represents the incrementally added 
properties in class R that make class R different from class P. The symbol + 
is some operator that combines the exiting properties with the newly added 
ones. Inheritance is a facility for differential, incremental program 
development [Tai96]. Class P is referred to as superclass, parent, or ancestor 
and class R is referred to as subclass, child, or descendant. A subclass inherits 
attributes and methods from the superclass, and therefore inherits data and 
behavior from the superclass. As such, a subclass can substitute the superclass 
anywhere the superclass appears, but not vice versa. 

If an operation defined in the subclass has the same name and parameters 
or signature as the one defined in the superclass, then the operation of the 
subclass overrides the operation of the superclass. This phenomenon is known 
as polymorphism. 

A subclass can even cancel an operation defined in the superclass. This 
can be achieved by simply redefining the same operation and not providing 
any logic for it. Generally a subclass may introduce new properties in addition 
to the ones defined in the superclass that extend, modify, or defeat them 
[Tai96]. The UML notation for the generahzation is shown in Figure 4-16. 

Figure 4-16, UML notation for the relationship of generalization. 
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In Figure 4-16, perennial plants are a special case of plants and annual 
plants are a special case of plants, but perennials are different from annual 
plants. A perennial is a kind of plant, a specific kind of plant. A plant 
considered randomly may not necessarily be a perennial. The generalization 
relationship expresses a certain hierarchy of objects; moving up in the 
hierarchy objects become more general and moving down in the hierarchy 
objects become more special. Any object at a lower level can replace an 
object residing higher in the hierarchy. 

Inheritance is the mechanism by which more-specific elements incorporate 
the structure and behavior of more-general elements [BRJ99]. Both terms, 
generalization and inheritance, are generally interchangeable but there is a 
clear distinguishing between them. Generalization is the name of the 
relationship, whereas inheritance is the mechanism that the generalization 
relationship represents. 

In Figure 4-17, a hierarchy of different classes related by inheritance is 
shown [AR97]. The definition of class ShootOrgan includes a number of 
attributes that will be inherited by Stem, MainStem, and BranchStem. For 
example, age is an attribute defined at the ShootOrgan class and classes Stem, 
MainStem, and BranchStem will have an attribute with the same name 
although it is not shown in their attribute compartment. A subclass shows only 
the attributes defined at subclass level. Therefore, objects created by 
MainStem class will have attributes defined by ShootOrgan, Stem, and 
MainStem classes. The list of attributes of class BranchStem will contain 
on_stem_number, location_onStem, length, and number_leaves_on_stem 
defined in the abovementioned classes. 

The author, [AR97], has chosen not to provide any behavior for classes 
ShootOrgan and Stem, Therefore, objects created by class MainStem will not 
inherit any behavior from the superclasses ShootOrgan and Stem. 
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ShootOrgan 
%'on_stem_number 
%^!ocation_on_stem 
^dr>'_weight 
^proportion,, present 
^M_content 
%»initiation_day 
^abscission„day 
%age 
^development_ stage 
•^growing 
%C_demand 
%N_demand 
^C_supply/demand 
^Nsupply/demand 

Stem 
tenglh 
number leaves on stem 

MalnStem 
^number of branches 

"^potentiaLgrowthO 
"^actuaLgrov^lhO 
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%ctuat _grov\lh(} 
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Figure 4-17. Example of a hierarchy of classes related by inheritance. 

Generalization is transitive; class Stem inherits from class ShootOrgan and 
class MainStem inherits from Stem. Therefore, class MainStem inherits from 
class ShootOrgan. 

Another example of inheritance is taken from Lemmon [LCh97]. Classes 
shown in Figure 4-18 are all organs, as they inherit directly or indirectly from 
class Organ. Class Leaf directly inherits data and behavior from class Organ. 
Classes SympodialLeaf, PreFruitingLeaf, and FruitingNodeLeaf inherit data 
and behavior from class Lea/and at the same time, they inherit from class 
Organ. A PreFruitingLeaf object is a specialized kind of Leaf and a 
specialized kind of Organ. 
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SympodialLeaf PreFruitingLeaf 

Figure 4-18. Hierarchy of classes in a cotton simulation model. 

As previously mentioned, subclasses inherit from superclasses data and 
behavior. Figure 4-19 shows an example of what is inherited through a 
generalization relationship. 

AutomotiveMachine 
%[icenseNumber 
^weight 

%egister(} 

+owner Farmer 

Truck 
^model 
%*ear 

Tractor 
*t>power 

1 0..1 

Plow 

Figure 4-19. A subclass inherits from the superclass attributes, operations, and relationships. 
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An AutomotiveMachine has two attributes: licenseNumber and weight and 
an operation named registerQ, Class AutomotiveMachine is related with class 
Farmer through an association where the role of the farmer is owner, 

Class Truck has its own attributes that are model and year and two 
inherited attributes from AutomotiveMachine that are licenseNumber and 
weight. Truck does not have any operations on its own but it does inherit from 
AutomotiveMachine operation registerQ. Class Tractor has the attribute 
power and two inherited ones, licenseNumber and weight. 

Because of the generalization relationship, Truck and Tractor are related 
to a Farmer. Tractor is related to a Plow as well. Through the inheritance 
mechanism, a subclass inherits from the superclass attributes, operations, and 
relationships. 

When a class inherits from only one class, then the inheritance is referred 
to as single inheritance. Single inheritance is the most common mechanism of 
inheritance used. When a class inherits from more than one class, then the 
inheritance is referred to as multiple inheritance. Multiple inheritance offers 
more possibilities for incremental modification than the single inheritance, but 
its use is not easy. Almost unanimously, researchers agree that the use of 
multiple inheritance should be done with care as its use introduces technical 
and conceptual problems. Some authors state that despite the problems the use 
of multiple inheritance raises, any modem object-oriented language should 
provide support for it [Taiv96]. Other researchers do not agree; they state that 
multiple inheritance is dangerous and should not be used. A strong support 
up for the argument against the use of multiple inheritance can be found in the 
lack of its implementation in two of the modem object-oriented languages; 
Java and C# provide a single inheritance mechanism while C++ provides 
support for multiple inheritance. Multiple inheritance is good, but there is no 
good way to do it [Coo87]. 

All examples presented in this section are examples of single inheritance. 
Figure 4-20 shows an example of multiple inheritance. As shown in this 
figure, class Segment inherits data and behavior from both classes Article and 
Organ [DPOl]. 
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Figure 4-20. Class Segment inherits from both classes Article and Organ. 

6. ABSTRACT CLASSES 

During the discussion of the mechanism of inheritance, it was mentioned 
that general classes stand at the top of the hierarchy. As we go up in the class 
hierarchy, classes become more and more general. In this context, some of the 
classes standing at the top of the hierarchy can play a specific role which is 
the role of defining some behavior that would be common to all other classes 
lower in the hierarchy. Such a class does not fully represent any object; it only 
represents a template for creating other objects that will have in common the 
behavior defined in this class. As such, these classes are abstract; there are no 
direct instances created from them. Abstract classes represent incomplete 
abstractions that can be useful for specifying contracts upon which concrete 
implementations will be based. These abstractions have a communicative role 
that allows designers to agree on interface specifications before starting 
concrete implementations. An abstract class is written with the expectation 
that its subclasses will add to its structure and behavior [BRJ99]. Part of 
designing an abstract class is specifying how this behavior will be used or 
refined by other classes lower in the hierarchy. 

One of the classical examples of inheritance is taken from the domain of 
animals. At the top of the hierarchy a class named Mammals would be 
defined. According to The Pocket Oxford Dictionary, a mammal is "a warm­
blooded vertebrate of the class secreting milk to feed its young." The fact of 
feeding the young with milk is the most common thing that all animals have. 
It makes sense to create a class named Mammals that will capture this 
common behavior of all animals. However, there are no direct instances of the 
class Mammals, as mammal is a general concept representing a group of 
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animals with common characteristics. Therefore, Mammals is an abstract class 
that has no instances and provides the most common data and behavior all 
animals have. Dog is a concrete animal that shares the characteristics 
described in Mammals, A Dog is a mammal and to represent a dog, a concrete 
class needs to be created inheriting from the abstract class Mammals. All 
other animal classes would inherit from the Mammals class. Each class 
representing a particular animal will extend the data and behavior defined at 
the abstract class level. 

The UML presentation of an abstract class is the same as the one used for 
other classes, but the name of the class is in italicized font. Figure 4-21 shows 
an example of an abstract class. 

Figure 4-21, Example of an abstract class. The name of the class is written in italics. 

As previously mentioned, abstract classes do not have any instances. The 
attributes and the operations defined in an abstract class are inherited by all 
classes that are a specialization of the abstract class, meaning all classes that 
subclass the abstract class. Figure 4-17 shows an example of abstract classes 
created in a hierarchy of classes to address issues of developing a generic 
object-oriented plant simulator [AR97]. In this example, class Organ is an 
abstract class and its definition contains only attributes, no operations. In the 
same way, class Stem inherits from Organ but does not define any behavior 
either. Classes MainStem and BranchStem define additional attributes and the 
same behavior, such ?iS potential_growth(), actual_growth(), and abscissionQ. 

Let us look more carefully at this example of hierarchy as there are some 
important points to be made. When designing a class hierarchy, attention 
should be paid to the fact that every class of the hierarchy should have a well-
defined purpose and role that will make the class have a specific place in the 
problem domain. Class's behavior is used in the dialog with other classes to 
achieve functionality. Classes should not be created just for being a place­
holder of some values; they should play a specific and well-defined role in the 
domain in study. A class is a behavioral template for its instances [Zdo99]. 
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A class without behavior generally causes difficulty of use and 
justification of need for such a class. Furthermore, inheriting from a class 
without behavior makes the problem even more complicated. As class Stem 
subclasses Organ, then Stem is a kind of Organ, Or class Organ does not have 
any defined behavior so stating that Stem is a kind of Organ does not provide 
additional information about class Stem. What is an Organ? What is the role 
of class Organ? How does class Organ dialog with other classes? Assigning a 
meaningful name to a class is not enough. A class should be the product of 
abstraction used to depict potential players in the domain under study. 
Selecting a meaningful name is important, as it enables other people to 
understand more easily the purpose and the role of the class, but a name is not 
sufficient. The name of the class by itself does not provide any behavior; it is 
only a label that distinguishes a class among others in the problem domain. 
Each class should provide some specific functionality that is not already 
defined in other classes. 

What kind of behavior can class Organ provide? Class Organ should be 
provided with the most common behavior organs of a plant have. Organs 
grow or die, they actively interact with the surrounding environment. The role 
that organs play in collaborating with other organs or parts of the environment 
should be defined in class Organ in an abstract way. This behavior can be 
detailed or redefined by other classes inheriting from class Organ. 

Furthermore, Figure 4-17 shows that both classes, MainStem and 
BranchStem, at the end of the hierarchy provide the same behavior (i.e., the 
abihty to calculate potential and actual growth and abscission). Both classes 
inherit from class Stem, and Stem does not provide any behavior; it only adds 
two more attributes (length and number_leaves_on_stem) to the list of 
attributes defined at Organ class. Again, class MainStem inheriting from Stem 
is a kind of Stem. Stem does not provide any behavior nor does it inherit from 
Organ. Saying that a MainStem is a kind of Stem does not provide any 
information about what MainStem is or how it does behave. 

In Figure 4-17, it is shown that MainStem and BranchStem are provided 
with behavior (operations actual_growth and potential_growth) that allows 
them to grow. A Stem is subject to potential and actual growth too; therefore, 
this behavior should be moved up to Stem level and each of the subclasses 
{MainStem and BranchStem) can provide polymorphic behavior for potential 
and actual growth, and abscission. 

Abstract classes have a twofold role. The first role is a conceptual one; 
abstract classes can serve as modeling tools or specifications with the aim of 
identifying abstractions of the problem domain that will later be refined by 
concrete classes lower in the hierarchy. The second role is more of a 
utilitarian nature; abstract classes can serve as templates for improving 
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reusability. The behavior defined at abstract classes will be implemented by 
concrete classes that subclass it [Tai96]. 

Abstract classes are a useful design technique that promotes code reuse. 
Depicting abstract classes in a problem domain is an iterative process that 
uses abstraction to find common functionalities in concrete classes and move 
it to a higher level in the hierarchy. The advantage of using abstract classes is 
that behavior common to many classes can be defined in only one place to be 
reused, modified, or improved later. 

7. ABSTRACT CLASSES VERSUS INTERFACES 

The concepts of abstract classes and interfaces are somewhat similar and 
one might be confused in deciding whether to use an interface or an abstract 
class. An abstract class defines a default behavior for some or all the 
operations that will be inherited by all the subclasses. The reuse of the 
behavior defined in an abstract class is realized through inheritance. 

An interface does not define any default behavior at all. Interfaces only 
define specifications that will be implemented by classes realizing the 
interface. An interface may be implemented by many classes, and a class can 
implement many interfaces. 

8. REALIZATION 

A realization is a semantic relationship between classifiers in which one 
classifier specifies a contract that another classifier guarantees to carry out 
[BRJ99]. The most common use of the realization is between interfaces and 
the classifiers that agree to implement the interfaces. Figure 4-22 shows 
examples of realizations. 

Interface 

Class 

o-
Interface 

Figure 4-22. Examples of realizations. 

Subsystem 

As shown in Figure 4-22, a realization is an agreement between a class and 
an interface. The interface defines the functionalities that the class should 
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provide the implementation. The reaUzation is presented by the Hne that 
connects the interface and the class. In the same way, a realization connects 
an interface that defines functionalities and the subsystem that would provide 
the implementation. Figure 4-23 shows another type of notation for 
realization. 

o 
Interface K 

Class o 
Interface [<]• 

Subsystem 

Figure 4-23. Another notation for realization. 



Chapter 5 

USE CASES AND ACTORS 

Usually software systems are developed to be used by humans or other 
hardware devices. There is a close interaction between users (humans or 
machines) and the system. Users send a message to the system that provokes 
the system to execute some operations in order to return some valuable 
response. Therefore, determining what a software system should provide to 
users means understanding what the users want from the system. The process 
of capturing requirements for a system developed using object-oriented 
approach is referred to as developing the use case model. 

The use case approach was introduced by the well-known work of 
[JCJ94], often referred to in the object-oriented community as the father of the 
Object-Oriented Software Engineering (OOSE). Very soon, use cases were 
embraced by the totality of the methodologist worldwide. 

Use cases are a simple and yet powerful way to express the functional 
requirements of a system. Use cases describe how users can use the system 
and what the system can do for users. Therefore, use cases are an important 
tool to build a consensus between the system's stakeholders and the system's 
developers. If stakeholders cannot agree on what the system should provide, 
chances that the project can be successful are very slim. Use cases have 
improved the communication between stakeholders and the development team 
and have made the process of gathering system requirements easier and more 
formal. Use cases provide a visual representation of the conceptual model of 
the system. More details about use case modeling can be found in [JCJ94], 
[BS03], and [BRJ99]. 

The use case model contains actors that represent the future users of the 
system and use cases that represent what the users can do with the system. 
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1. ACTORS 

An actor represents a coherent set of roles that users of use cases play 
when interacting with these use cases [BRJ99]. Actors represent the role of 
the future users of the system. Actors model the user's perspective of the 
system. Actors are located outside the system; therefore, in order to depict 
actors, it is important to define the boundaries between actors and the system. 

The UML symbol for an actor is shown in Figure 5-1. An actor has a name 
that distinguishes actors among them. It is a good modeling practice to name 
actors by the role they play, not by their names. The name of a person may 
change but this will not affect the role this person plays in the system. 

Farmer 

Figure 5-1. The UML symbol for an Actor. 

There are three primary types of actors: Users of the system, other systems 
interacting with our system, and time [BB02]. 

The first type of actor is a person or a user who will use the system. These 
are the most common type of actors. As an example, in a crop simulation 
scenario, a farmer will ask the system to run a simulation and therefore, the 
farmer is an actor. 

The second type of actor is another system interacting with our system. 
For example, the crop simulation system obtains the weather data directly 
from a weather station on-line. In this case, the weather station is outside our 
system and it is not our intention to modify its behavior; therefore, the 
weather station is an actor. 

The third type of actor is time. Time becomes an actor when after a certain 
period of time, a series of events to be handled by the system is triggered. As 
an example, an advisory system can be designed to function based on weather 
conditions. When weather conditions (temperature and humidity) favor 
development of certain diseases or fungus, the system will provide advice for 
starting spraying with appropriate pesticides. 
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The difference between actor and user of the system is rather subtle; a user 
is someone that uses the system, whereas an actor is a role that a user can 
play. A user can play several roles and therefore a user can be modeled as 
different actors. 

Actors can be linked to each other using the generalization relationship. 
Figure 5-2 shows an example of generalization between actors. A 
Commercial Customer is a special case of a Customer, i.e.. Commercial 
Customer inherits from Customer. Although actors are outside of the system 
and not the subject of our study, it is useful to know how they are structured 
and related, as it helps to understand how they communicate with the system. 

Customer 

Commercial 
Customer 

Figure 5-2. Actors related using a generalization relationship. 

2. USE CASES 

Originally, Jacobson [JBR98] defined a use case as "a behaviorally related 
sequence of transactions in a dialog with the system." A more recent 
definition of the use case is given by [BRJ99] as "a description of a set of 
actions, including variants that a system performs to yield an observable result 
of a value to an actor." The basic idea behind a use case is to represent a 
sequence of interactions between the system and its users located outside the 
system. In other words, a use case shows how an actor uses a system to 
achieve a certain goal and what the system should do for the actor to achieve 
that goal. It describes how the actor and the system collaborate to deliver a 
result of value to the actors [BS03]. 
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Use cases are widely accepted to be the best practice for capturing system 
requirements [Kru98]. Functional requirements capture the intended behavior 
of the system. The use case model expresses the functionalities the system is 
supposed to provide to its users. Use cases only specify how the system 
should behave; they do not specify how the behavior should be implemented. 
Therefore, use cases are considered to be an excellent way of communicating 
with customers and users of the system. 

The UML symbol for a use case is shown in Figure 5-3. The use case 
Simulate only shows that users should be able to send the message simulate to 
the system and the system will execute all the necessary operations. For the 
moment, how the simulation will be achieved is not important. The same way, 
the use case Get Weather Data only shows that users may ask the system to 
carry out this functionality; how the data will be obtained is not relevant at 
this point. The data may be obtained from reading a data file or a database, or 
obtained directly from an on-line weather station. 

Simulate Get Weather Data 

Figure 5-3. Example of use cases. 

Use cases have names that distinguish them from each other. Usually, use 
case names are of form <Verb><Noun>, such as Get Weather Data, Simulate, 
that shows that users are making a request to the system and the system 
should provide back some results. 

An actor and a use case are related through an association as shown in 
Figure 5-4. The actor {Farmer) initiates the use case by sending a message to 
the use case. Use cases are always started by actors. The communication 
shown in Figure 5-4 is unidirectional, as it goes from the actor to the use case. 
The sense of the communication is clear; it goes from the actor to the use 
case. 
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Pgpĵ ^gj. Get Weather Data 

Figure 5-4. Farmer asks the system for weather data. 

In Figure 5-5, the association linking the actor and the use case is 
bidirectional; it is not clear whether the actor initiates the use case or the use 
case communicates with the actor. It is important to clearly describe the type 
of communication between actors and use cases, as it helps to better 
understand how the system works. 

pg^^^g^ Get Weather Data 

Figure 5-5. Example of a bidirectional use case. 

2.1 Extend relationship 

An extend relationship between use cases means that the base use case 
implicitly incorporates the behavior of another use case at a location specified 
indirectly by the extend use case [BRJ99]. The base use case must be defined 
to completely stand by itself. Its description should be independent of the use 
case that extends it. The extend use case will be executed only when some 
particular circumstances will be satisfied in the base use case. Extended use 
cases can be successfully used to add additional functionalities to base use 
cases without questioning their integrity. 

Let us consider as an example the process of approving extension 
documents (http://crs.ifas.ufi.edu) at the Institute of Food and Agricultural 
Sciences (IFAS), at the University of Florida. Each document needs to be 
peer-reviewed by at the least two reviewers, before it goes for approval to the 
department chair. According to this practice, most of the time the reviewers 
selected to review the document are sufficient. The department chair can add 
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additional reviewers in the case that the document deals with issues that none 
of the reviewers is a specialist in the field. Figure 5-6 shows the use case 
model for the department chair approval process. 

In this figure, the use case Add Reviewer extends the base use case 
Approve Document. According to the problem description, the department 
chair can add an additional reviewer to a document when he judges that a 
more specialized reviewer should review the document. This means that 
normally, the department chair considers that reviewers assigned to the 
document are sufficient. Thus, the description of the base use case Approve 
Document is independent of the use case Add Reviewer. The base use case can 
be executed without involving the extend use case. The functionality provided 
by the extend use case Add Reviewer is needed only under certain conditions, 
when the department chair finds it necessary. 

"YC---'<"<fextend>> 
Add Re/iewer 

Department Chair 
Approve Document 

Figure 5-6. Use case Add Reviewer extends base use case Approve Document. 

2.2 Include relationship 

An include relationship between use cases means that the base use case 
explicitly incorporates the behavior of another use case at a location specified 
in the base [BRJ99]. An include relationship represents a set of operations that 
are repeated in several use cases and are grouped in one place for ease of use 
and maintenance. An included use case never stands by itself; it is always 
instantiated as part of a larger use case. 

Let us consider again IFAS's extension documents approval system. One 
of the requirements was to develop an event-based system. Every time an 
event occurs, the next person in the approval process should be automatically 
notified. When an author submits a document for approval, the department 
chair gets immediate notification. When the department chair approves a 
document, the program leader gets immediate notification. 

In Figure 5-7, the base use case Approve Document includes the use case 
Notify. The Notify use case represents a group of operations needed to send a 
notification message to anyone interested to know that some event has 
happened. Therefore, this set of operations is repeated in several places. It is 
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convenient to group this functionality in one place, and any other use case that 
needs it can use it by simply including it in its definition. 

S ^ ^y^ ^ « inc luc le» 

A < I> -CD 
Department Chair Approve Document 

Figure 5-7. Base use case Approve Document includes use case Notify. 

Note that both relationships extend and include use a dependency 
relationships. In the case of the extend use case, AddReviewer depends on 
Approve Document, as it is at the discretion of the department chair whether 
to add an additional reviewer or not. In the case of include use case. Approve 
Document depends on Notify to go to the next level of approval. A stereotype 
(i.e., extend or include) is used to show the type of the use case. 



Chapter 6 

UML DIAGRAMS 

UML provides five kinds of diagrams for modeling the dynamic aspects of 
systems. These diagrams are: Use case diagrams, sequence diagrams, 
collaboration diagrams, activity diagrams, and statechart diagrams. Use case 
diagrams are central to model the behavior of a system. 

1. THE USE CASE DIAGRAM 

The set of all use cases in a problem domain is referred to as the use case 
model and the diagram representing it is referred to as the use case diagram, 
A use case model shows the set of functionalities a system should provide. By 
examining a use case model, we can say whether all the user requirements are 
satisfied or not. A use case model is important, as it presents a general view of 
the system without being overwhelmed by implementation details. 

Let us consider IFAS's extension document approval system and build the 
use case model. The following is a brief description of the functionalities the 
system should provide. 

The system should allow users (authors, editors, reviewers, department 
chairs, and program leaders) to submit, edit, review, approve, and check the 
status of a document any time. First, the authors should submit the document 
and then the editor edits it. At the least, two reviewers, assigned to the 
document, will be notified for reviewing the document. After the reviewer's 
approval, the department chair is notified to approve the document. If the 
department chair judges that another and more specialized reviewer should 
review the document, then a new reviewer can be added. The newly added 
reviewer will be notified by mail that a document is waiting for approval. 
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After the additional reviewer approves the document, the department chair is 
notified by mail that the document is waiting for departmental approval. 
When the department chair approves the document, the program leader is 
notified by mail. When the program leader approves the document, then the 
document is saved in the database and indexed. It becomes public and 
available for search purposes. The use of the system should be password 
protected. 

The use case model should express all the functionalities required by the 
system. By examining the use case model one should be able to judge whether 
all users requirements are correctly captured and whether all user's roles are 
included in the system. Figure 6-1 shows a simplified use case model for a 
tracking system for extension documents fhttp://ers.ifas.ufl.edu). 
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..«include» 

Index Document 
O) 

Approve Document 

Program Leader 

Reviewer 
Department Head 

Notity 
Approve Document 

''<<extend» 

CD 
Add Reviewer 

Figure 6-1. The use case model for a document tracking system. 

Let's closely examine each of the use cases presented in the use case 
model and evaluate whether all the users requirements are correctly captured. 

The use of the system is password protected; therefore, all users need a 
password to log into the system. The authentication process not only validates 
the user, but also its role. When a user logs into the system with a specific 
role, the user has access to the functionalities that the role is entitled to have. 
The operations required to verify whether a user is a legitimate one are 
presented by the use case Login. There is an association between each of the 
actors and the use case Login; this means that every user of the system goes 
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through the authentication process. The same way, all actors have an 
association with use case Check Document Status, meaning that all actors can 
check the status of a document, each of them from a specific point of view. 

There is an association between actor Author and use case Submit 
Document. This means that the author can submit a document for review. It is 
important to notice that only Author has access to the use case Submit 
Document, meaning that only authors can submit documents for review. 

The functionahties a certain actor is entitled to are shown by all 
associations that origin this actor. Thus, the department chair can login to the 
system, browse documents, check the status of a document, add additional 
reviewers to a document, and approve a document. The same way, a program 
leader can login, approve a document, browse documents, and check the 
status of a document. The operations needed to index a document in the 
database are presented as a separate use case that is included in the base use 
case Approve Document. Although this functionality is used only once, it is 
designed to be a separate use case, as it may be reused in other occasions. 

Figure 6-1 shows that Reviewer is associated to Login and Check 
Document Status use cases only. This means that Reviewer'^ role is not 
designed properly; if the system is implemented as presented in the use case 
model, Reviewer'^ role is incomplete. 

The presented use case model provides all the functionalities required by 
the users. In the case that some functionality or actor is not considered, it can 
easily be added to the model. Use case models are central to modeling the 
behavior of a system, subsystem, or a class [BRJ99]. 

2. USE CASES VERSUS FUNCTIONAL 
DECOMPOSITION 

Often, use cases are confounded with a detailed list of functions the 
system should provide. When this happens, use cases are defined as if they 
represented menu items of a system. Figure 6-2 shows an example of 
designing use cases as menu items. At the heart of the diagram, shown in 
Figure 6-2, is an actor that initiates three use cases; Modify File, Add File, and 
Delete File. 
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Add Fill 

Modify File Mger Delete File 

Figure 6-2. Example of bad selection of use cases. 

Figure 6-2 shows things that the systems should do, but they are all related 
to only one thing the user wants the system to do: Administer a file system. 
According to the definition of the use cases, they describe what the system 
should do that will benefit at the least one of the actors. The use case Delete 
File may never be invoked if a file has not been added to the system. The 
same reasoning can be done for the use case Modify File. Events like 
modifying and deleting a file are useful to a user only when a file is already 
added to the system. Therefore, all three functions can be gathered in a sole 
use case named Administer Files as shown in Figure 6-3. Gathering several 
functions into a unique use case is a better presentation of what the system 
should do for the users and it focuses on the value the user will obtain from 
the system. Dividing the behavior of the system into small functionalities does 
not help to understand the conceptual model of the system. 

j j Administer Files 

Figure 6-3. A use case represents a set of functions. 
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3. INTERACTION DIAGRAMS 

UML uses different types of diagrams for expressing the dynamic aspects 
of systems; the use case model diagram is only one of them. Another type of 
diagram used by UML is Interaction Diagrams. An interaction diagram 
shows an interaction, consisting of a set of objects and their relationships, 
including the messages that may be dispatched among them [BRJ99]. They 
are used to capture the dynamic behavior of a system. Interaction diagrams 
include sequence diagrams and collaboration diagrams. 

3.1 Need for interaction 

The use case diagrams describe the system, the surrounding environment, 
and the relationships between them. Actors are located outside the system and 
they start a request. The system receives the request and executes all 
operations needed to provide the actor with a response. As previously 
mentioned, the use case model presents the entire set functionalities the 
system should provide to its users. 

The most important concepts of the problem domain are represented as 
classes. Classes are provided with data and behavior so they can play a well-
defined role. Classes are factories for producing objects. The system is 
composed of objects that interact with each other to achieve functionality. 
Objects dialog between themselves through messages. 

A message is the specification of a communication among objects that 
conveys information with the expectation that activity will ensue [BRJ99]. 
Messages are the mechanism that allows objects to interact with each other. 
Objects make their behavior available to others through messages. A message 
is a call through which an object asks another object to do something. The 
object receiving the message will execute it and may give the result back to 
the object sending the message. 

Figure 6-4 shows an example of two objects exchanging messages 
between each other. Plant sends to Soil the message getWaterStressQ. Water 
stress data stored in Soil are needed to calculate processes occurring in Plant. 
An operation named getWaterStressQ is defined in Soil, therefore. Soil will 
execute the operation and provide the result to the sender Plant. In the same 
way, processes occurring in Soil need leaf area index data that are located in 
Plant. Therefore, Soil sends a message to Plant asking for leaf area index 
data. Plant receives the message, executes the operation named 
getLeafArealndex, and provides the result to the sender Soil. The operation 
getLeafArealndex is part of Plant behavior and operation getWaterStress is 
part of behavior of Soil. The return result of the operation getWaterStressQ is 
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of type double, as shown by the signature of the operation in Figure 6-4. The 
type of the return result is needed in the calculations occurring in Plant. In the 
same way, the type of the return result getLeafArealndex is a double. The 
sender should be aware of the type of the return result, as it might be used for 
further calculations occurring in the sender object. 

getWaterStress 

Plant 

"^getLeat^realndexQ: double 

Soil 

"^getVVaterStressQ : double 

gettesfAmB index 

Figure 6-4. Interactions between Plant and Soil. 

3.2 Sequence diagrams 

A sequence diagram is an interaction diagram that emphasizes the time 
ordering of messages [BRJ99]. A sequence diagrams represents objects 
participating in the interaction in a timely manner. The time when messages 
are sent to objects is important and altering this order may produce 
unexpected results. 

Figure 6-5 shows an example of a sequence diagram. Farmer plays the role 
of an actor as the farmer sends a request to the system to obtain some weather 
data. 
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farmer: Farmer GUI: GUI 

1: s electWeatherStation 

2: selectTimelnteival 

3: getWeatherData 

weatherManaaer: 
WeatherManaqer 

4: getWeatherData(weatherStation,timelnter\'al) 

5: returned Data 

6: displayData 

Figure 6-5. Example of a sequence diagram. 

Farmer communicates with object GUI (Graphical User Interface). The 
sequence of messages sent between the objects described in Figure 6-5 is as 
follows. 

First, the farmer needs to select a weather station from the list displayed by 
the GUI object. Second, the farmer needs to select a time interval for the 
weather data. Third, the farmer needs to press the button GetWeatherData. 
Object GUI sends the message getWeatherData(weatherStation 
Jimelnterval) to object Weather Manager. Note that this message has two 
parameters selected by the farmer: The weather station and the time interval 
for the data. WeatherManager will execute the message and return the data to 
object GUI that sends himself the message displayData. The farmer can then 
read the displayed data. 

In this particular example, the order of the first two messages the farmer 
sends to GUI can be reverted; the farmer may select the time interval first and 
then select a weather station. It is understandable that message 4, 
getWeatherData(weatherStation, timelnterval), cannot be executed before 
message 3, getWeatherData. 

In a sequence diagram, objects are shown as vertical lines as shown in 
Figure 6-6. The vertical line is referred to as object's lifeline. The lifeline 
shows when an object is created and how long its life would be. Lifelines are 
used to model class behavior. Figure 6-6 shows that Farmer is the name of the 
class and farmer is an object of class Farmer. 
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farmer: Farmer 

Figure 6-6. Specifications on sequence diagrams. 

Objects communicate among them by sending messages. Figure 6-7 shows 
an example of objects sending messages to each other. A message is shown 
by an arrow. A message has a sender, which in the case of Figure 6-7 is object 
farmer, and a receiver, which is object GUI. When object farmer sends a 
message to object GUI, it means that farmer needs to use some of the 
behavior defined in object GUI, 

When an object receives a message, it need some time to execute the 
message and send the results to the sender. The time during which an object is 
performing an operation is referred to as XhQ focus of control [BRJ99]. In 
Figure 6-7, object Gi7/receives a message and it has the focus of control. 

farmer: Farmer GUI: GUI 

1: selectWeatherStation 

farmer sends a ^ 
message to GUI 

Figure 6-7. Object farmer sends a message to object GUI. 
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In some cases, an object can send a message to itself; these messages are 
referred to as reflexive messages. The sender and the receiver of the message, 
in this case, is the same object. Figure 6-8 shows an example of a reflexive 
message; object GUI sends to itself the message display Results. 

GUI: GUI 

1: displayResults 

Figure 6-8. Example of a reflexive message. 

3.3 Collaboration diagrams 

[BRJ99] defines a collaboration diagram as "an interaction diagram that 
emphasizes the structural organization of the objects that send and receive 
messages; a diagram that shows interaction organized around instances and 
their links to each other." An example of a collaboration diagram is shown in 
Figure 6-9. 
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6: displayData 
> 

1: selectWeatherSt ati on 
2: selectTimelnten^l 
3: getWeatherData 

^4: getWeatherData(weatherStation,timelntefval) 

5: returnedData 

v/eatherManager: 
Weatherfvlanager 

Figure 6-9. Example of a collaboration diagram. 

In a collaboration diagram, all the messages that start at an object and the 
ones that end at an object are shown. As shown in Figure 6-9, messages 
selectWeatherStation, selectTimelnterval, and getWeatherData start from 
ohJQCt farmer. Message displayResults starts and ends at object GUI, 

Messages that end at an object show that the behavior of this object should 
be designed to provide answers for the received messages. Therefore, 
collaboration diagrams help design class behavior. From the collaboration 
diagram presented in Figure 6-9, class GUI should, at the least, provide 
behavior for selecting a weather station, selecting a time interval, and to get 
the weather data from the source used. 

3.4 Sequence versus collaboration diagrams 

Sequential and collaboration diagrams are semantically equivalent. They 
express the same thing: The interaction between objects. It is easy to convert 
one diagram to the other, as they present the same information. Some UML 
software, such as Rational Rose, provide automatic conversion from one 
diagram to the other. 

Although both diagrams present the same information, they do not 
visualize the same information. Sequence diagrams are used when modeling a 
flow of control over time and when it is important to represent the messages 
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passed between objects, as they unfold over time. Therefore, sequence 
diagrams are very useful to describe use case scenarios. 

Collaboration diagrams are used when modeling a flow of control by 
organization and when it is important to emphasize in the structure of the 
relationships between objects and in the totality of messages an object may 
receive. Therefore, collaboration diagrams are used to build class and object 
behavior. 

4. ACTIVITY DIAGRAMS 

An activity usually represents a set of actions where execution may cause 
a change in the state of the system or return a result. An action is a step within 
the activity. An activity diagram is much like a flowchart that shows the flow 
of control from activity to activity [BRJ99]. Activity diagrams are one of the 
UML diagrams that are used to model dynamic aspects of systems. Usually 
they are used to model sequential execution of steps that starts with an initial 
state and ends with an end state. Activity diagrams can be used to model 
concurrent execution of steps in a workflow. 

An example of an activity diagram is shown in Figure 6-10. An activity is 
an ongoing nonatomic execution within a state machine [BRJ99]. An activity 
diagram always starts with a start state (or initial state) represented by a filled 
bullet. Arrows show the transition from one activity to the next one. As an 
example, in Figure 6-10, when the execution of activity initialize weather is 
terminated, then the execution of the next activity named initialize soil takes 
place. 
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Figure 6-10. Example of an activity diagram. 
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Some activities will be executed only if some condition is satisfied. In 
UML, the graphical representation of a condition is referred to as decision. As 
an example, the activity calculate plant rate will be executed only if the 
decision post planting date is satisfied. The decision post planting date is 
satisfied if the current date is later than the planting date (i.e., the plant is of a 
certain age). An activity diagram always ends with an ending state (or final 
state). 

Activity diagrams can be used to show concurrent activities, (i.e., activities 
that occur at the same time). As an example, let us consider the scenario of 
simulating two plants (plantA and plantB) that are competing for the same 
resources (water, soil nutrients, solar radiation, etc.) shown in Figure 6-11. 
Activities initialize weather and initialize soil are executed sequentially. As 
the simulation of both plants will occur concurrently, then a horizontal 
synchronization bar (or concurrent fork) is used to express concurrency. 
Activities that represent the initialization and the simulation for plantA and 
plantB will be executed within different flows of control that occur at the 
same time. A concurrent fork has one incoming transition and two or more 
outgoing transitions. After the concurrent activities are terminated, the flow of 
control joins the sequential execution at the concurrent join point. A 
concurrent join may have two or more incoming transitions and one outgoing 
transition. 
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Figure 6-11. Example of concurrent processing of activities. 

5. STATECHART DIAGRAMS 

Statechart diagrams are one of the five kinds of diagrams UML uses to 
model dynamic aspects of systems. They are used to model different states of 
an object during its lifetime; from the time it is created until it is destroyed. A 
statechart diagram shows the flow of control from one state to another. Figure 
6-12 shows an example of a statechart diagram. 
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integrate 

start state 

V 
Vegetative 

calculate Rate 

[ number of leaves > maximum number of leaves calculateRate 

Reproductive 

integrate 

Mature 
^ [ cumulative thermal time > reproductive thermal time ^ 

T end state ^^ 

Figure 6-12. States of object plant during the simulation. 

A statechart diagram starts with an initial state represented by a filled 
bullet and it ends with an end state as shown in Figure 6-12. The statechart 
diagram represents the different phenological phases (or states) of object 
Plant during the simulation process, described in detail by [PBJ99]. 

The plant's phenological phase is important as it determines the 
calculation of plant parameters such as deltaLeafNumber calculated by 
Equation 1. 
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deltaLeafNumber • 

temperatureStress x maxRateOfLeafAppearence 

when phenologicalPhase = "vegetative" 

and 

0 

when phenologicalPhase = "reproductive" 

Equation 1 

The diagram shows that at beginning of the simulation (provided that the 
current simulation date is greater than planting date), the plant is in the 
phenological phase of vegetation. During that phase, it will receive messages 
calculateRate and integrate and will remain in the same phase (or state) as 
long as the event number of leaves > maximum number of leaves does not 
occur. A state is a condition or situation in the life of an object during which it 
satisfies some condition, performs some activity, or waits for some event 
[BRJ99]. 

When the event number of leaves > maximum number of leaves occurs, 
then object Plant will change phenological phase to reproductive. It is 
important to note that message integrate affects parameters such as number of 
leaves that is used to trigger the event that will send the object plant to the 
phenological phase of reproductive. An event can trigger a state transition. A 
transition is a relationship between two states indicating that an object in the 
first state will perform certain actions and enter the second state when a 
specified event occurs and specified conditions are satisfied [BRJ99]. 

During the phenological phase of reproductive, the object plant will 
receive messages calculateRate and integrate, and will remain in this phase as 
long as the event cumulative thermal time > reproductive thermal time does 
not occur. When this event occurs, plant will move to the phase of maturity 
and this signals the end of the simulation. 



Chapter 7 

DESIGN PATTERNS 

1. A SHORT HISTORY OF DESIGN PATTERNS 

Well before software engineers started using patterns, an architect named 
Christopher Alexander wrote two books that describe the use of patterns in 
building architecture and urban planning. The first book is titled A Pattern 
Language: Towns, Buildings, Construction [Alex77], published in 1977. The 
second one is titled The Timeless Way of Building [Alex79], published in 
1979. These two books not only changed the way structures were built, but 
they had a significant impact in another not closely related field, the field of 
software engineering. 

According to Alexander, a pattern describes a problem which occurs over 
and over again in our environment, and then describes the core of the 
solution to that problem, in such a way that you can use this solution a million 
of times over, without ever doing it the same way twice [Alex77]. Although 
Alexander refers to buildings and towns, his conclusion can be successfully 
applied in the process of object-oriented design. Very often programmers 
have to solve the same problem that occurs in different applications regardless 
of the problem domain. Saving data in a database, for example, requires the 
same logic regardless of the amount and the nature of the data used. In the 
case of object-oriented databases, in order to read an object from the database, 
the following operations need to be accomplished: 

A database session needs to be created in order to access any data in the 
database. 

• Within the session, a transaction should be opened 
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• Within the transaction, object is read from the database 
• If the transaction fails, a rollback to initial values occurs 
• If the transaction succeeds, a commit occurs 
• Transaction is closed 
• Session is closed 

These operations are repeated again and again every time an object is read 
or stored in the database. Therefore, they can be considered as a pattern that 
can be used by any programmer that needs to communicate with a database. 
The above list of operations is tested and proved to be correct. A novice 
programmer does not have to reinvent everything by himself; he can apply the 
read pattern and obtain the right results. 

The first work on design patterns was undertaken by Cunnigham and Beck 
[CK87]. They presented five patterns for user interface design. In mid 90s, a 
group of four software engineers [GHJ95] wrote the book titled Design 
Patterns that had a significant impact in the way software design was carried 
out. The book presents well-thought solutions for a large class of problems. 
The same way an architect uses prefabricated blocks for building complex 
constructions, a programmer will use patterns to develop complex software. 
The concept of design patterns allows novice programmers to use elegant 
solutions provided by experts. Using patterns makes the process of designing 
complex systems easier. 

Design patterns are divided in three categories: Creational, structural and 
behavioral patterns [GHJ95]. Some other authors such as Grand [Gra98] have 
created an additional group referred to as fundamental patterns where they 
include patterns that are used by other patterns. This book follows Grand's 
classification and starts the presentation of design patterns with fundamental 
patterns. 

Creational patterns deal with the process of creating objects. They 
describe optimal ways of creating new objects. Structural patterns describe 
how to compose classes or objects. Behavioral patterns describe how to 
distribute behavior among classes and how classes interact with each other. 

2. FUNDAMENTAL DESIGN PATTERNS 

2,1 The delegation pattern 

The purpose of the delegation pattern is to extend and reuse the 
functionality of a class by writing an additional class with added functionality 
that uses instances of the first class to provide the original behavior [Gra98]. 
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Often, the reuse of the behavior of a class is realized through the 
mechanism of inheritance; a subclass inherits from its superclass data and 
behavior. Inheritance allows classes to be defined based on existing ones. 
When a new class of objects is defined, only the properties that will differ 
from the properties of the existing class need to be defined. Other properties 
defined in the existing class will be included in the new class definition. 
Therefore, inheritance is considered a mechanism for incremental 
programming. Code can be reused simply by inheriting it. Inheritance is a 
static relationship. When a class subclasses another one, their relationship is 
static and does not change over time. 

Inheritance should be used only in the cases when the created subclass is a 
kind of the superclass, meaning that the subclass and the superclass are 
conceptually the same. The subclass should not radically alter the behavior of 
the superclass. 

In cases when the existing behavior of a class needs to be extended and the 
result class is not conceptually similar to the superclass, inheritance should 
not be used. Another form of reuse, referred to as delegation, is the 
appropriate way to extend the behavior of a class as shown in Figure 7-1. 

CtassDelegator 
uses 

-^ 
ClassDelegate 

Figure 7-1. Example of delegation. 

Figure 7-1 shows that class ClassDelegator is associated with class 
ClassDelegate through a unidirectional association. Therefore, 
ClassDelegator has access to data and behavior of ClassDelegate; an attribute 
of type ClassDelegate is defined in the ClassDelegator that points to 
ClassDelegate. Thus, the behavior of ClassDelegator can be extended by 
using the behavior of ClassDelegate. 

Let us consider a concrete example of using the pattern of delegation. 
Figure 7-2 shows the relationships between classes in simple Plant 
component. 
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o 
Plantlnterface 

"^getLeafArealndexO: double 

z LeafSystem 

Plant 
^leafSystem 
%rootSystem 
%>stemSystem 

"^getLeafArealndexfj: double 

^getLeafarealndexQ: double 

Root System 

Stem System 

Figure 7-2. Example of delegation. 

As explained in section Components, the functionalities provided by the 
component Plant are defined by interface Plantlnterface, To make things 
simple, we will consider that Plantlnterface defines only one method, 
getLeafArealndexQ. As shown in Figure 7-2, Plant component is composed 
of a few classes, such as LeafSystem, RootSystem, and StemSystem. These 
classes are provided with data and behavior to play the role of leaf, stem, and 
root systems of the plant. Although these classes have a well-defined role, 
none of them communicates directly with other classes or components of the 
system. In the case that some other class/component of the system would 
require to use behavior defined in class LeafSystem, the communication will 
occur through class Plant, Plant has access to data and behavior of classes 
LeafSystem, RootSystem, and StemSystem, through attributes leafSystem, 
rootSystem, and StemSystem that hold references to objects of the 
corresponding classes. 

When another class or component needs to use the value of leaf area index 
parameter that is stored in an object of class LeafSystem, it needs to send the 
message getLeafArealndexQ to an object of type Plant, This object knows 
how to respond to this message as it implements Plantlnterface, Or the 
calculations for the leaf area index parameter are defined in LeafSystem, not in 
Plant, Plant will delegate the call to LeafSystem using the attribute 
leafSystem. After the calculations are terminated, Plant will return the results 
to the requestor object. 
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Figure 7-3 shows the implementation in Java of the delegation pattern. 
Lines 3, 4, and 5 define attributes of Plant that point to objects of type 
Lea/System, RootSystem and StemSystem. Lines 7 through 9 define method 
getLeafArealndexQ, Class Plant provides an implementation for this method 
as it implements Plantlnterface. As shown in line 8, Plant delegates the 
method call to LeafSystem, meaning that method getLeafArealndexQ defined 
in Plant will return the result of the execution of the same method defined in 
class LeafSystem, 

1 public class Plant implements Plantlnterface { 
2 
3 LeafSystem leafSystem = new LeafSystemQ; 
4 RootSystem rootSystem = new RootSystemQ; 
5 StemSystem stemSystem = new StemSystemQ; 
6 
7 public double getLeafArealndexQ { 
8 return leafSystem.getLeafArealndexQ; 
9 } 
10 

Figure 7-3. Implementation in Java of the delegation pattern. 

Using the same principle of delegation, class Plant will be able to respond 
to messages that are defined in classes RootSystem and StemSystem, Class 
Plant is the main distributing hub for component Plant, as it controls access to 
other classes. If RootSystem and StemSystem classes had a direct link with 
classes outside Plant component, that would have compromised the principle 
of encapsulation that needs to be observed during the component design 
process. 

3. CREATIONAL PATTERNS 

3.1 The factory method pattern 

The object-oriented approach is about creating objects with a specific 
behavior to interact with other objects. It is a good modeling practice to make 
the process of creating objects localized, so if changes have to be made to the 
way objects are created, these changes will occur in only one place in the 
code. The factory method pattern is about organizing the object creation 
process in such a way that new type of objects can be added to the system 
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without reconsidering what is already in place. This is reached by forcing the 
process of object creation to occur through a common factory, rather then 
allowing it to be dispersed all over the application. If a new type of object 
needs to be added to the system, then appropriate changes need to be made to 
the factory that creates objects. 

Let us consider a crop simulation scenario in which many instances of 
plants will be created such as maize, rice, and wheat. All of these types of 
plants have some attributes in common such as variety, planting date, etc. The 
common data and behavior can be defined in an abstract class referred to as 
Plant and subclasses of Plant will define additional data and behavior to 
describe a particular type of plant. The crop simulation system should be able 
to simulate many types of crops; therefore, objects of different plants will be 
created. As mentioned before, one solution can be that the process of object 
creation can be dispersed throughout the code and objects are created when 
and where they are needed. This solution has a big disadvantage. When 
changes are needed to be made to the process of object creation, we will need 
to find all the places where objects are created and do the necessary changes. 

The factory method pattern provides a better way of creating objects and 
works as shown in Figure 7-4. 

Plant 
%''/ariety : String 
^plantingDate : Date 

Simulator 

cfBsm 

creaieRant 

reqmsi 

W 
PlantFactory 

^createPlantiString plant) 

Figure 7-4. The factory method pattern. 

As shown in this figure, the Simulator sends a create request to 
PlantFactory class to create an object of a particular type of plant. 
PlantFactory is provided with a method referred to as createPlant(String 
plant) used to create the required object. This method has a parameter of type 
String Yi^iVCiQA plant that indicates the type of the object to be created. Thus, if 
an object of type Maize needs to be created, then the Simulator sends the 
message createPlant (maize) to PlantFactory. The following code shows the 
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implementation in Java of the class PlantFactory. The kinds of objects that 
need to be created need to be known in advance and the corresponding code is 
included in the factory. Figure 7-5 shows that the following factory creates 
objects of type Maize, Wheat, and Rice. If new kinds of objects need to be 
created, then the factory needs to be updated but the update will occur in one 
and well-defined place. 

I package FactoryMethodPattem; 
2 
3 public class PlantFactory { 
4 public PlantFactoryO {} 
5 
6 public Plant createPlant (String plantName) { 
7 
8 Plant newPlant = null; 
9 if (plantName.equals("maize")) newPlant = new Maize(); 
10 else 
II if (plantName.equals("wheat")) newPlant==new Wheat(); 
12 else 
13 if (plantName.equals("rice")) newPlant = new Rice(); 
14 
15 return newPlant; 
16 } 
17 } 

Figure 7-5. Implementation of class PlantFactory in Java. 

As shown in Figure 7-5, line 1 shows the package (subdirectory) where the 
class PlantFactory is stored. Line 3 shows the class definition. Line 4 shows 
the default constructor of class PlantFactory. Lines 6 through 16 show that 
the definition of the method createPlant(Strmg plantName) considers three 
cases of creation of new objects: Maize, rice and wheat. The newly created 
object depends on the value of the pwc3.mQtQv plantName. Line 15 returns the 
newly created object. If additional types of plants need to be created, then 
there is only one place to make the corresponding changes; the method 
createPlant of class PlantFactory. 

3.2 The abstract factory pattern 

The intent of this pattern is to provide an interface for creating families of 
related or dependent objects without specifying their concrete classes 
[GHJ95]. 
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To better understand how this pattern works, let us consider the following 
example. Suppose that the heart of a crop simulation system is an object 
provided with supervising behavior that controls the objects that need to be 
created during the simulation process. We will refer to this object as 
Simulator. Suppose that any plant, be it perennial or annual, is represented by 
its LeafSystem and RootSystem; a plant is conceived as a composition of these 
composing parts. It will be highly desirable to develop a simulation system 
that is built in a very generic way and capable to simulate different types of 
plants: Perennials or annuals. Such a system will be independent of the 
specific plant that is simulating. Therefore, Simulator will be asked to create 
instances (and their composing parts) of perennial or annual plants. How can 
we develop a generic simulation system that handles any type of plants? The 
abstract factory pattern can be used to solve this type of issues. The class 
diagram for the abstract factory pattern is shown in Figure 7-6. 

AbstractPlantFactory is an abstract class that provides the most common 
behavior needed for simulating perennial and annual plants. The behavior 
needed to simulate a specific plant will be provided by a specific "factory," 
that is, subclass oi^ AbstractPlantFactory, PerennialFactory is used to create 
composing parts of a perennial plant and AnnualFactory is used to create the 
composing parts of an annual plant. AbstractPlantFactory is provided with a 
method referred to as getFactory that will deliver the required factory. Once 
Simulator knows the kind of plant it needs to simulate, it will use the 
getFactory method to obtain the right factory. 
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Figure 7-6. Class diagram of the abstract factory pattern. 

Note that both factories are provided with behavior capable of creating 
instances of LeafSystem and RootSystem for both types of plants. The use of 
the abstract factory pattern makes it easy to add new types of factories for 
creating new types of objects by only adding a few lines of code in a well-
defined place. It is important to note that the user of the abstract factory, 
Simulator in this case, it completely independent of the factory system that 
creates objects. 

3.3 The singleton pattern 

The purpose of the singleton pattern is to ensure that only one instance of a 
specific class can be created [GHJ95]. In the case where an instance is created 
from a class defined using the singleton pattern, all other objects of the system 
that need to dialog with it will refer to the same instance. 

Often there are cases that only one instance of a class need to be created. 
This is common in cases when a class needs to control and coordinate the 
behavior of other classes. As an example, when designing a crop simulation 
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model, it is important to make sure that only one instance of the Simulator 
class is created. This is because of the particular role the Simulator class plays 
in the simulation process. The Simulator is responsible for creating objects 
that are involved in the simulation process and controls the time and the 
messages that objects send to each other. In the case where the user can 
accidentally create more than one instance of the Simulator, unexpected 
results could be obtained. To better understand the kind of problems that may 
occur when more than one instance of the Simulator is created, let us consider 
a simple example. Let us suppose that a simulator object is created initially 
and this object creates all other needed objects and estabhshes the 
relationships between them. The objects needed in the simulation process are 
of type Soil, Plant, and Weather. Suppose that at some point, another 
simulator object is created. The second simulator will have to create other 
objects of type Soil, Plant and Weather, As a result of having several objects 
of type Soil, it is not clear which object Soil is used at a time. Soil objects may 
be in different states and therefore, holding different values for the same 
attribute. Therefore, it is important to make sure that only one instance of 
object simulator is created. Figure 7-7 shows an example of singleton pattern. 

Simulator 
^instance : Simulator 

^getlnstanceO: Simulator 

Figure 7-7. Example of implementation of the singleton pattern. 

The key to designing a singleton is to not allow users to create more than 
one instance of the class. Therefore, the attribute instance that references the 
unique instance of the class Simulator is defined as private, meaning that this 
attribute cannot be accessed from outside the class Simulator. A method, 
referred to as getlnstanceQ, returns the value of the unique instance. Figure 7-
8 shows the Java implementation of the singleton pattern. 

1 package SingletonPattem; 
2 
3 final class Simulator { 
4 private static Simulator instance = null; 

Figure 7-8. Java implementation of the singleton pattern (Part 1 of 2). 
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5 
6 private SimulatorQ {}; 
7 public static Simulator getlnstanceQ { 
8 if (instance = null) return new SimulatorQ; 
9 else return instance; 
10 } 
11 } 

Figure 7-8. Java implementation of the singleton pattern (Part 2 of 2). 

Line 1 shows the subdirectory where the class is stored. Line 3 defines 
class Simulator as final. By making the class Simulator final, it prevents 
cloneability to be added to this class by the mechanism of inheritance. The 
Java environment allows object creation through cloning. As Simulator is a 
subclass of the superclass Object, the clone method defined in Object 
normally is inherited and becomes part of the behavior of Simulator, Or 
making class Simulator final prohibits the inheritance mechanism from 
occurring. Thus, objects of class Simulator cannot be cloned. This is another 
step to make sure that class Simulator will not be able to create more than one 
instance of it. Line 4 assigns attribute instance to null. Line 6 defines a private 
constructor to prevent the compiler from inserting a default constructor. Lines 
7 through 10 define the method getlnstanceQ that delivers the only instance of 
the class Simulator. In the case where no instance of Simulator is yet created, 
then line 8 will create it. In the case where the unique instance is already 
created, line 9 simply returns this instance. This way of creating an instance of 
an object only when it is needed is referred to as lazy initialization. 

4. STRUCTURAL PATTERNS 

4.1 The adaptor pattern 

The purpose of the adaptor pattern is to convert the interface of a class into 
another interface clients expect [GHJ95]. The adaptor makes it possible for 
two classes to work together when they cannot communicate with each other 
because they implement different interfaces. 

To better understand the need for the adaptor pattern, let us take a closer 
look at two different water-balance models described by [PSh04]. The 
models are Ritchie's water-balance model [Rit98] and the ISM (Irrigation 
Scheduling Model) developed by [GSROO]. 
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Ritchie's model uses the United States Soil Conservation Service (SCS) 
method to determine runoff and in turn, calculate the amount of water that 
enters the soil surface. This method in Ritchie's model is referred to as 
calculatelnfiltration. The ISM model describes the amount of water entering 
the soil as effective rainfall and uses the SCS method to determine this 
amount. In the ISM model, the same method is referred to as 
calculateEffectiveRainfallSCS, Both models refer to the same process using 
different names. 

Let us suppose that each of these models is developed as a component that 
can be plugged into some decision support system used for crop yield 
simulation. Ritchie's component will provide the amount of water that enters 
the soil surface by responding to the message calculatelnfiltration, whereas 
the ISM component will provide the same result by responding to the message 
calculateEffectiveRainfallSCS, Let us suppose that initially the decision 
support system uses Ritchie's component. The object that needs to know the 
amount of water entering the soil sends the appropriate message to Ritchie's 
component. In the case that there is a need to replace Ritchie's component 
with the ISM component, there is a problem as Ritchie's and ISM components 
implement different interfaces. An object that can communicate with 
Ritchie's component by sending the message calculatelnfiltration cannot 
communicate with the ISM component as the latter does not recognize this 
message. The sender of the message calculatelnfiltration ignores the fact that 
the ISM component does not understand this message and that the understood 
message is calculateEffectiveRainfallSCS. Although the developers have used 
good design techniques to develop these two models as components, the 
reusability of components is impacted by the different naming conventions 
used by different authors. 

This problem can be solved using the adaptor pattern as shown in 
Figure 7-9. 
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Figure 7-9. Class diagram for the adaptor pattern. 

The decision support system uses Ritchie's model. This is shown in Figure 
7-9 by the association uses between the DecisionSupportSystem class and the 
InterfaceRitchie interface. InterfaceRitchie defines a method referred to as 
calculatelnfiltration. The Adaptor class implements InterfaceRitchie', 
therefore, it should provide an implementation for the method 
calculatelnfiltration. Class Adaptor has an association with InterfacelSM, 
which allows Adaptor to access data and behavior from InterfacelSM, The 
body of the method calculatelnfiltration defined in the Adaptor class does not 
do calculations, but it simply delegates execution to the method 
calculateEffectiveRainfallSCS defined in InterfacelSM. 

As the DecisionSupportSystem class knows how to call the method 
calculatelnfiltration from InterfaceRitchie, it therefore knows how to call the 
same method from class Adaptor because Adaptor implements 
InterfaceRitchie. Therefore, the DecisionSupportSystem class can call a 
method defined in InterfacelSM even when it cannot communicate directly 
with this interface. The Adaptor class makes possible the communication 
between two classes when there is no association between them, as shown in 
Figure 7-10. 
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Figure 7-10. An adaptor allows communication between classes that do not implement the 
same interface. 

Figures 7-11, 7-12, and 7-13 are examples of a simple implementation in 
Java of classes that are involved in the adaptor pattern presented in Figure 7-
9. Figure 7-11 shows a simplified definition of InterfaceISM thed defines the 
public interface for all the classes implementing this interface. This interface 
defines a method referred to as calculateEffectiveRainfallSCS that will 
calculate the amount of water that enters the soil surface. Interfaces only 
define the name of the methods and their signature; they do not provide the 
logic of the implementation. 

1 package AdaptorPattem; 
2 public interface InterfaceISM { 
3 public double calculateEffectiveRainfallSCS(); 

} 

Figure 7-11. Definition of InterfaceISM. 

Figure 7-12 shows a simplified definition of the interface InterfaceRitchie 
that defines the public interface of all the classes implementing this interface. 
This interface also, defines a method referred to as calculatelnfiltration that 
calculates the amount of water entering the soil surface according to Ritchie's 
model. Figure 7-13 shows the definition of class Adaptor. Line 3 shows that 
class Adaptor implements InterfaceRitchie', therefore, Adaptor should provide 
an implementation of the method calculatelnfiltration defined by the 
interface. Line 5 shows thsd Adaptor has an attribute of type InterfaceISM thdit 
allows class Adaptor to access data and behavior from any class implementing 
InterfaceISM. Lines 7 to 10 show the definition of method 
calculatelnfiltration. The result of this method is of type double. Line 9 
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shows that the execution is delegated to object ism that points to an object of 
type InterfacelSM. The result of the method calculatelnfiltration is obtained 
by executing the method calculateEffectiveRainfallSCS defined in 
InterfacelSM. In this way, object DecisionSupportSystem can send the 
message calculatelnfiltration to object InterfacelSM without knowing about 
the latter. 

1 package AdaptorPattem; 
2 public interface InterfaceRitchie { 
3 public double calculatelnfiltrationQ; 
4 } 

Figure 7-12. Definition of InterfaceRitchie. 

1 package AdaptorPattem; 
2 public class Adaptor implements InterfaceRitchie { 
3 private InterfacelSM ism; 
4 public double calculatelnfiltrationQ { 
5 return ism.calculateEffectiveRainfallSCSQ; 
6 } 
7 } 

Figure 7-13, Definition of class Adaptor. 

4.2 The proxy pattern 

The intent for this pattern is to add a level of indirection with a surrogate 
object that provides the same services as the real object. The surrogate object 
is responsible for controlling access to the real object [Lar02]. 

This pattern is almost never used by itself; usually it is used by other 
patterns. The proxy pattern plays an important role in middleware software 
such as Java's RMI and CORBA. These technologies are presented later in 
this book. 

A proxy object is designed to receive calls for another real object, the 
object that provides the required service. Therefore, the proxy and the real 
object should provide the same services. The proxy object does not provide 
any implementation for the behavior defined in the real object; it only 
delegates the call to this one. Thus, the proxy object makes the location of the 
real object irrelevant to its clients. A proxy object is located near the client 
that needs the services. Clients that use the behavior of the real object are not 
aware of the location of this object; the proxy makes it look as clients are 
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communicating with the real object. Figure 7-14 shows class diagrams for the 
proxy object. 
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Figure 7-14. Class diagram for the proxy object. 

As shown in this figure, the real object and the proxy object may 
implement the same interface or they may have a common superclass. In the 
case they implement the same interface, the real object and the proxy object 
provide a polymorphic implementation of the behavior defined in the 
interface. While the real object provides an implementation for the behavior 
defined in the interface, the proxy's behavior is to delegate the call to the real 
object. 

How do the proxy and the real object communicate with each other? 
Figure 7-15 shows the communication between the proxy and the real object. 

doSmthmgQ 
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Figure 7-15. Communication between the proxy and the real object. 

A cHent that needs to use the services provided by the real object sends a 
message to the proxy. As the proxy object implements the same interface as 
the real object, it recognizes the method call and it delegates it to the real 
object. The real object executes the call and returns the results to the proxy 
object that communicates them to the client. The client is unaware of the fact 
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that the service requested is provided through the proxy. More details about 
the implementation of the proxy object will be provided later in this book in 
Chapter 11. 

4.3 The iterator pattern 

The purpose of the iterator pattern is to separate the logic of an algorithm 
manipulating the data from the particular structure of the container containing 
the data [GHJ95]. 

As an example, let us consider the problem of obtaining weather data for a 
simulation model. As previously mentioned, different authors have solved this 
problem using different mechanisms; some authors read the weather data 
from a text file saved locally in the system [HWHOl]. Others have developed 
complex systems to obtain weather data from networks of real-time weather 
stations [LKN02]. 

Algorithms used in both cases have things in common and things that are 
different. The things in common are that in both cases an iteration is used to 
sequentially analyze each of the daily (or other time unit used) data. Things 
that are different are the particular data structures or data containers used in 
each of the cases. In the case that data are saved in a text file, the data 
container is a file containing lines of data, each line containing weather data 
for a day or other time unit used in the simulation. At each step of the 
iteration, a line containing the daily data will be read and the corresponding 
values will be assigned to variables designed to hold them. In the case that 
weather data are obtained from a weather station, the data container can be a 
table that is returned from the execution of an SQL statement. Each row of the 
table represents daily data. Looping through the container, an object holding 
the daily weather data will be returned and each of the daily weather 
parameters can be obtained by sending the appropriate message to this object. 
As an example, to get the rainfall for the day, the message getRainfall should 
be sent to the object holding the daily data. 

It is desirable to design the Weather object in a general way that multiple 
sources could be used and independently of the particular container used to 
hold the data. This problem can be solved using the Iterator pattern. Figure 7-
16 shows a class diagram for classes involved in the Iterator pattern. 

The class diagram shown in this figure is taken from a crop simulation 
scenario. Object Simulator needs daily weather data for the simulation 
process. The Simulator has access to Weatherlnterface that defines the 
operations needed to obtain the weather data. Weatherlnterface implements 
interface Iterator provided by the Java programming environment that makes 
available the logic for iterating over a data container. Therefore, 
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Weatherlnterface defines iterator behavior as well. Class Weather implements 
the Weatherlnterface', therefore, it will provide the behavior necessary for 
obtaining the data from a particular data container. Class Weather has access 
to WeatherDataContainer from where it will extract the data. 
WeatherDataContainer is a collection of Daily WeatherData that is an object 
with attributes such as rainfall, minTemperature, maxTemperature, 
solarRadiation, etc. The Simulator has access to an object of type 
Daily WeatherData and can obtain the values of rainfall, temperature and solar 
radiation by sending to this object messages such as getRainFall, 
getSolarRadiation, etc. 

It is important to note that the Simulator that requests the data is 
completely independent of the class Weather that provides them. As 
Simulator has access to the interface Weatherlnterface, not to the concrete 
class Weather, it can use any Weather object that provides a polymorphic 
implementation of this interface. Hence, this architecture has two advantages: 
First decouples Simulator from the concrete class Weather and second, it 
makes the algorithm that uses the weather data independent from the 
particular data container. Therefore, different sources of weather data can be 
used in the simulation process. 
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Figure 7-16, Classes involved in the iterator pattern. 

Figure 7-17 shows another way of imposing class Weather to provide 
Iterator type of behavior. Class Weather implements two interfaces and will 
provide the behavior defined in both interfaces. 
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Figure 7-17. Another class diagram for Iterator. 

A detailed implementation of this pattern in Java is provided in section 
Implementation of the Kraalingen model in Java of Chapter 8. 

4.4 The facade pattern 

The purpose of the fa9ade pattern is to provide an interface to a set of 
interfaces in a subsystem [GHJ95]. Using this pattern makes the objects 
included in the subsystem easier to use. 

To explain the context in which the fa9ade pattern can be used, let us refer 
again to an application that is based in a crop simulation model. The 
application will have a graphical user interface (GUI) that will allow users to 
enter the required initial data. The heart of the application is the crop 
simulation model that will run the simulation using the entries provided by the 
user. Most of the crop simulation models use a core of objects or components 
such as Weather, Soil, Plant, and SoilPlantAtmosphere. The simulation results 
may be used for purposes such as to display different graphics or maps or to 
create reports or other operations that are needed to satisfy user's 
requirements. The communication between the user interface and the crop 
simulation model is bidirectional; users will enter initial data and the 
simulation model will return the results of the simulation to the user's 
interface. 

When environmental-based applications are developed, the most common 
approach is to strongly link the code needed for the user interface with the 
code representing the environmental model. This approach may allow for fast 
software development, as any object can be accessed by any other object 
anywhere, but it is not an optimal one, as it creates long-term problems related 
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to code maintenance and reuse. Although the user interface and the 
environmental model exchange data between them and are part of the same 
application, they represent two separate parts of the system and therefore 
should be designed to function independently. Having strongly coupled the 
user interface with objects/components such as Soil, Weather, and Plant 
makes the system hard to maintain and difficult to reuse. In such a highly 
coupled system, no part of it can be reused or easily modified. 

This kind of problem can be solved using the fa9ade pattern. The essence 
of this pattern is to provide a unique point of communication between an 
object and the surrounding environment. Figure 7-18 shows the class diagram 
for the fa9ade pattern in general. 

As shown in this figure, communication between client objects and a 
group of other objects is filtered by the FacadeClass. Therefore, FacadeClass 
should be provided with the right behavior in order to represent the rest of the 
objects in communication with the surrounding environment. 

Clientl Client2 
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Figure 7-18. Class diagram for the facade pattern. 
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Figure 7-19 shows the class diagram for the crop simulation example. It is 
important to note that the associations between Simulator and the GUI classes 
are bidirectional. Simulator controls all the communication between the GUI 
classes and crop simulation objects. 

Although the FacadeClass controls the communication between clients 
and a group of classes implementing some abstraction, it is not necessary that 
the FacadeClass be a rigorous barrier between them. In some cases it is 
advised to let clients have access to particular objects behind the fagade. In 
these cases, the FacadeClass should be provided with the behavior that makes 
its objects accessible to clients. Figure 7-19 shows that Simulator is provided 
with operations that can make available to GUI objects any of the Plant, 
Weather, Soil, or PlantSoilAtmosphere objects. 
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Figure 7-19. Communication with GUI classes goes through the Simulator. 
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5. BEHAVIORAL PATTERNS 

5,1 The state pattern 

The purpose of the state pattern is to allow an object to alter its behavior 
when its internal state changes [GHJ95]. Using this pattern makes it easier to 
model some complicated scenarios often present in biological simulation 
models. 

Let us consider the example of the lifecycle of an insect. At the beginning, 
an insect exists in the form of eggs. Later on, as the incubation period ends, 
eggs are transformed into larvae and finally a larva is transformed into an 
adult insect. During its different development stages, an insect has different 
characteristics or properties. An egg has a different behavior from a larva and 
a larva behaves differently from an adult insect. How can an entity be 
modeled as an object when it has different characteristics and behavior during 
different phases of its life? The state pattern can be used to solve this type of 
problems. Figure 7-20 presents a class diagram for the state pattern. 
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Figure 7-20, The UML diagram for the state pattern. 

According to Figure 7-20, class Insect has an association with another 
class named DevelopmentStage, Class DevelopmentStage is subclassed by 
three other classes Egg, Larvae, and Adultlnsect, representing the three 
different development stages of an insect. The role of class DevelopmentStage 
is to define an interface common to all subclasses and can be modeled as an 
abstract class. Class Insect defines the common characteristics of the insect 
regardless of its current development stage such as name of the specie, etc. 
Because of the relationship with DevelopmentStage, class Insect has an 
attribute of type DevelopmentStage referred to as currentStage that allows 
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access to data and behavior of each of the subclasses. Therefore, class Insect 
can delegate all received messages to the particular subclass that defines the 
current development stage. It is important to note that attribute currentStage 
can hold only one value at a time, representing the fact that an insect can be at 
one development stage at the time. If we need to know the current 
development stage of the insect, then the message getDevelopmentStage 
should be sent to object Insect and the result is the name of the class 
referenced by attribute currentStage. Each of the subclasses will define data 
and behavior necessary to describe the particular development stage of the 
insect. 

Class DevelopmentStage has a method referred to as nextStage. The 
purpose of this method is to determine the insect's next stage. As class 
DevelopmentStage is an abstract class, the method nextStage will have no 
implementation. This method is inherited by all the subclasses {Egg, Larvae, 
and Adultlnsect) and each of the subclasses will provide a specific 
implementation of this method. As an example, the method nextStage applied 
to an object of class Egg will return an instance of type Larvae, 

When the message nextStage is send to an object, for example, to object 
Larvae, besides dehvering an object representing the next development stage, 
the object should destroy itself Thus, the creation of an object representing 
the next development stage is accompanied with the destruction of the 
previous stage; a new object of type Adultlnsect is created and the current 
object of type Larvae is destroyed. Every time that a change happens, the 
name of the newly created object is stored in the attribute currentStage of 
class Insect. 

5.2 The strategy pattern 

The intent for this pattern is to define a family of algorithms, encapsulate 
each one, and make them interchangeable [GHJ95]. Therefore algorithms can 
vary independently from the clients that use them. 

In order to better understand the context in which the strategy pattern 
operates, let us consider the example of obtaining weather data for a crop 
simulation system. We have previously mentioned that these data can be 
obtained using different sources such as using a text file where the data are 
saved, reading them from a database system, or using an on-line system of 
weather stations. A well-thought-out system should provide behavior for 
using several sources of weather data or, in other words, several strategies 
should be available to users. In a system developed in a traditional 
programming language such as FORTRAN, the ability to choose between 
several options would require the use of complex if-then-else statements. 
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Furthermore, the use of an if-then-else statement will allow for using only 
known scenarios. In the case where a new way of obtaining weather data is 
made available, changes to the code are required. Therefore, traditional 
programming languages offer rather limited and rigid solutions to this 
problem. 

The object-oriented paradigm solves this problem by offering a flexible 
and better solution. The behavior for using different sources of weather data 
will be implemented as different classes; each class should provide weather 
data from a particular source. Then, the question is, how do we choose the 
right class between several potential ones? The strategy pattern can be used to 
solve this type of problems. Figure 7-21 shows classes that are involved in the 
strategy pattern. 

The WeatherDataManager class provides the behavior for managing the 
weather data (i.e., provides the capability of using different sources of 
weather data.) The WeatherDataProvider is an interface that represents the 
common behavior all classes that provide a particular implementation of this 
interface should implement. Each class is designed to provide data from a 
particular source. The WeatherDataManager has a unidirectional association 
with WeatherDataProvider. The multiplicity of this association allows one 
manager to use one or zero weather data provider. Classes 
WeatherDataFromFile, WeatherDataFromStation and WeatherDataFrom 
Database provide behavior for extracting data from a particular source of 
data. These classes implement the same interface, the WeatherDataProvider 
interface; therefore, any one of them can be used to provide the weather data 
requested by the weather data manager. 
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Figure 7-21. Class diagram for the strategy pattern. 
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Notice that the weather data manager does not have any knowledge of the 
classes that can provide what the manager wants. The weather data providers 
are totally independent of the user of the data. This allows for modifying the 
algorithm that obtains the data without requiring any changes in the user of 
the data. Furthermore, additional ways of obtaining weather data can be added 
to the system without forcing the data user to modify its behavior. The user 
can change the strategy for obtaining weather data without requiring changes 
to the code. We will see an implementation of this pattern in the second part 
of the book, in section Java implementation of the Kraalingen model. 



PART 2: APPLICATIONS 

In the first part of the book, we introduced the basic concepts of the object-
oriented paradigm and their notations in UML. In the second part of the book, 
we will see how the knowledge accumulated so far will be used to model a 
particular problem and develop the corresponding software. We will go 
through the phases of analysis and design of a simple crop simulation model. 
The selected model is chosen to be simple on purpose; we would like to avoid 
getting lost in the details of the crop modeling. Instead, our focus is on the 
approach used to carry out the analysis and the design using the object-
oriented paradigm and construct visual models using UML. The relative 
simplicity of the selected model does not question the integrity of the used 
methodology or the nature of the problems encountered and the provided 
solutions. 

Chapter 8 deals with the process of analysis, design, and development of a 
crop simulation model referred to as the Kraalingen approach [Kra95]. First, a 
short description of the problem will be provided. Some of the equations used 
in this model will be presented to demonstrate the links that are needed 
between model elements such as Plant, Soil, and Weather, Then, the use case 
shows what the system can offer to users, without showing how these 
functionalities will be provided. After the use case model is developed, the 
use case realization is presented for each use case. The use case realization 
presents several type of diagrams developed to show the dynamic aspects of 
the system. The diagrams are the sequence and collaboration diagrams, 
known as interaction diagrams. They help developers to better understand the 
role and the behavior of each of the potential classes needed to develop the 
system. 

A conceptual model for the Kraalingen approach is presented to show 
concepts and abstractions from the problem domain and their relationships. 
The conceptual model shows only one type of class, the classes that represent 
concepts of the problem. Other classes than the ones that represent concepts 
are needed; the behavior of these classes is needed to present the graphical 
user interface (GUI) and the dialog between the user and the system. Finally, 
the implementation in Java for interfaces and classes used in the system is 
provided. 



Chapter 8 

THE KRAALINGEN APPROACH TO CROP 
SIMULATION 

The crop simulation model considered in this study is the one developed 
by Kraalingen [Kra95]. This approach uses the rate-state concept of 
simulation modeling [PL82], Calculations and statements are divided into 
four categories: Initialization, rate calculations, integration calculations, and 
the output of results. These calculations are executed sequentially. The 
simulation starts at the beginning of a time step with a certain value for its 
state variables; therefore, the initialization step must be performed first. Rate 
and integration calculations are repeated a certain number of time steps until a 
termination condition is satisfied. For crop growth, a complete simulation run 
simulates growth from emergence to harvest. Final calculations and 
statements are made at the end of a simulation run (e.g., by writing final crop 
yields to an output file). A detailed description of the model and the FSE 
(Fortran Simulation Environment) can be found in [BTKOO]. 

Kraalingen has used a modular approach when each module should: 
• Read its own parameters; 
• Initialize its own variables; 
• Accept variables passed to it from other modules and the environment; 
• Pass variables that are computed within the module; 
• Own its set of state variables; 
• Compute rates of change for its state variables; 
• Integrate its state variables; 
• Write its own variables as output. 

In this model, the effect of temperature on daily plant growth is calculated 
by the equation: 
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PT = l-0.0025((0.25''Tmm+0.75''Tmax)-26''''2 Equation 1 

where: 
PT = temperature based limiting factor, 
Tmin = minimum daily temperature, 
Tmax = maximum daily temperature. 

The plant cycle is divided in two phases: Vegetative and reproductive. The 
vegetative phase goes on until the plant reaches a genetically determined 
maximum leaf number [PBJ99]. In the vegetative phase, the delta leaf area 
index is calculated by equation: 

dLAI = SWF A C'^PT'^PD'' EMP\ "'dN'^ia /(I + a)) Equation 2 

where: 
dLAI = delta leaf area index, 
SWF AC = soil water factor, 
PT = temperature-based limiting factor, 
PD = plant density, 
dN = leaf number increase, 

EMPl = empirical coefficient for LAI computation, maximum leaf area 
expansion per leaf, 

and a is calculated by the equation: 

a = ^ * ""{EMPl * (A^ - nb)) Equation 3 

where: 
EMP2, nb = coefficients in the expolinear equation, 
N == plant development stage. 
In the vegetative phase, the assimilates are partitioned between canopy and 

roots whereas in the reproductive phase, all growth occurs in the grain. 
During the reproductive phase, the difference between daily mean 
temperature and a base temperature is used to calculate the rate of plant 
development. Total rate of development towards maturity is accumulated in 
each step of the simulation [PBJ99]. 

Our goal is not to make a detailed description of the Kraalingen approach. 
We are presenting only some of the equations that explain the relationships 
between simulation elements, plant, soil, and weather. [PBJ99] provide a 
detailed description of the equations used in this crop simulation model. 
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1. SYSTEM REQUIREMENTS 

In this section, we will define the requirements of the system. Usually, this 
part of the project is undertaken in close collaboration with future users of the 
system. The users should express all their concerns about the future system: 
The functionalities the system should provide, the way the input data are 
entered into the system, and the way the final results are presented. 

In order to make things simpler, we will consider that the user will need to 
enter some initial data needed to define the context in which the simulation is 
running. The initial data are mostly soil and plant data. The initial plant 
related data are used to populate an instance of class Plant, usually the plant 
initial data are related to the planting date. By entering the planting date as an 
input parameter, users can study the impact of this parameter on the crop 
yield. Initial soil-related data are used to populate an instance of class Soil, 
usually the initial soil data are soil depth and wilting point percentage. By 
providing initial soil data, users can study the impact of these soil parameters 
on the crop growth. After entering the initial data, the user may start the 
simulation process. 

After performing a simulation, the system will return the results to the 
user. For reasons of simplicity, we will assume that the results of the 
simulation can be displayed in the same window as the input data. Therefore, 
the user will have to use only one window for entering initial data and for 
displaying the results. 

2. THE USE CASE MODEL 

As mentioned in Chapter 5, where we talked about use cases, the use case 
model represents what the system can do for the users, without explaining 
how the system will do it. The users of our future system require that the 
system provide capabilities to enter initial data and perform a simulation. As a 
first approach we will consider as the use case model the one presented by 
Figure 8-1. As shown in this figure, users can use the system to enter initial 
data and to start a simulation. 
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Enter Initial Data 

Start Simulation 

Figure 8-1. The use case model for the Kraalingen approach. 

Let us take a closer look at the use case model in Figure 8.1. The use case 
Enter Initial Data represents the set of operations that the user should perform 
to create initial conditions for the simulation process. The process of entering 
the initial data is not an independent process that can stand on its own; it is 
closely related to the process of starting a simulation. The user will not obtain 
interesting results by performing a simulation with default values, without 
entering the required initial data. Presenting the set of operations needed to 
enter the initial data as a separate use case does not match well with the 
definition of the use case. The use case definition states that the set of 
operations represented by the use case should have a well-defined purpose 
and a useful result. Therefore, as the process of entering initial data is closely 
related to the process of performing a simulation. We will present both 
activities as one unique use case, as shown in Figure 8-2. 

- > 

User 
Start Simulation 

Figure 8-2. Both activities as one unique use case. 
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2.1 The use case description 

After presenting the use case model, it is important to provide a 
description of what the use case is supposed to do. A use case description 
helps people involved in the process of the software development to 
understand the functionalities encapsulated in the use case and to facilitate the 
discussion about the vaHdity of the use case. 

Let us consider the Start Simulation use case and provide a potential 
description for it. One possible brief description of this use case can be the 
following: 
This use case describes how a user can perform a crop simulation process, 
The data entered by the user define the initial conditions for plant and soil 
After the calculations are terminated, the results are displayed in the window, 

The brief description is important and if the use case is simple enough, all 
it can be provided with is the brief description. When the use case is complex, 
additional information is required. A more detailed description of the use case 
can be given in the form of an outline. The outline shows the simple steps of 
the use case using short sentences and presented in a timely manner. The 
focus at this point is on the clarification of the basic flow of the events. The 
basic flow (or the main flow) does represent a description of the normal and 
expected path of the execution of the use case. Some authors refer to the basic 
flow of events as the happy scenario, where everything goes well and nothing 
goes wrong. 

Later, the focus will shift into presenting the most significant alternatives 
and exceptions, thus shedding more light on the complexity of the use case. 
An alternative flow of events represents a possible execution route from the 
starting point to the end of the use case that is different from the basic flow. 
An alternative flow represents one of the scenarios where something is not 
executed as predicted. Thus, most of the alternative flows represent the errors 
that may occur during the execution of the use case. The basic flow represents 
the successful route from the beginning to the end of the use case. The 
alternative flows show all the detours (unsuccessful executions) that may 
occur during the execution of the use case. 

An outline for the use case Start Simulation can be the one presented in the 
next section. 

2.2 Basic flow 

1. The use case starts when the user clicks on the Start 
Simulation button. 

2. Initialize plant, soil, and weather. 
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3. Loop through the weather data: 
a. Calculate rate for soil and plant. 
b. Integrate soil and plant. 

4. End of the weather loop. 
5. The use case ends. 

2.3 Alternate flow 

1. The weather file is not found (in the case that the weather data are 
provided using a text file stored locally). 

2. The communication with the weather station is not possible (in the case 
that the weather data are provided using an on-line weather station). 
In both cases, the system should stop the execution and display an 

appropriate error message. 

2.4 Preconditions 

If we take a closer look at the main flow of events for the use case Start 
Simulation, we realize that the sequence of events may not be meaningful, 
unless we are at the right starting point of the use case. In the case that the 
weather data are provided as a text file, the right starting point for the 
simulation is when the weather file exists and is stored in the right directory. 
If there is no weather data file, then the simulation cannot be performed. In 
this case, we can say that the precondition for the use case Start Simulation is 
the following: 

A valid weather data file is stored in the right directory of the system. 
A precondition is a statement that presents conditions under which the use 

case can be executed. In the case above, the precondition states that no use 
case can be executed if there is no weather data file or the file is not placed in 
the right directory. 

2.5 Postconditions 

The postcondition is a statement that describes the state of the system 
when the use case is terminated. The postcondition should be true for all the 
alternative flows, regardless of which one was executed and it should be false 
for the basic flow. The idea behind the postcondition is that if anything goes 
wrong during the execution of the use case, the system should be left in a 
condition described in the definition of the postcondition. Defining an 
adequate postcondition is very important as it defines the state the system 
should be in when the use case terminates. 
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As an example, in the case when weather data are provided by an on-line 
weather station one possible postcondition can be defined as follows: 

The connection between the user's computer and the server where the 
weather data are located should be terminated. 
The above formulation of the postcondition looks like a very trivial thing, 

but it is important to know the state of the system when the connection with 
the weather server fails. Let us suppose that the postcondition for our use case 
were defined as follows: 

The system should continue dialing the weather server until connection is 
established. 
According to this definition of the postcondition, the system will continue 

dialing the server until the connection is restored. In this case, the system will 
be busy for as long as the connection is not established. A system designed to 
persist connecting to the server no matter how long it takes may not be a good 
system, as the system cannot be used as long as it tries to connect to the 
remote server. 

3. THE USE CASE REALIZATION 

In Chapter 5 when we talked about use cases, we pointed out clearly that 
the use cases only show what the system can provide to its users without 
explaining how. Therefore, the use case model helps one to understand what 
the users can ask the system to do, without showing how the system will do it. 

Now, it is the time to consider how the system will provide its services to 
the users. This is achieved by developing for each use case its realization. The 
realization describes how the behavior of a use case will be provided by 
collaboration of different elements of the system. The realization of a use case 
can be presented using UML interaction diagrams or textually using 
structured English. 

It is important to note that the separation of use cases from the use case 
realization decouples the process of gathering requirements (expressed in a 
synthetic way in the use case model) from the design of the model (explicitly 
expressed in the use case realization). This separation allows developers to 
focus on one well-defined problem at a time and avoid dealing with design 
issues during the phase of analysis and vice versa. Figure 8-3 shows the UML 
notation of the use case realization. The dotted eclipse represents the use case 
realization and the dotted arrow represents the realization association. For 
each use case of the model, a use case realization should be developed. 



122 SOFTWARE ENGINEERING TECHNIQUES 

Start Simulatian Start Simulation Realization 

Realization 
realtionship 

Figure 8-3. The use case realization for Start Simulation use case. 

3.1 Sequence diagram for the use case 

Figure 8-4 shows the sequence diagram for the Start Simulation use case. 
As shown in this figure, the sequence diagram presents all the elements of the 
system that participate in the simulation. Messages are numbered to show the 
order in which they are sent. The process starts with the user sending the 
message simulate to Simulator. Messages number 2 through 14 show what the 
Simulator should do in order to fulfill the received request. Simulator is 
responsible for the creation of all needed objects and for sending to each of 
them the right message at the right time. 
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User 

1 1: simulate 

Simulator 
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Weather 
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^ 

Figure 8-4. Sequence diagram for the Start Simulation use case. 

Messages 2, 3, and 4 show that Simulator needs to create instances/?/a/7/, 
soil, and weather of the corresponding classes Plant, Soil, and Weather. 
Messages 5, 6, and 7 initiahze each of the instances created in the previous 
steps. During the initiaHzation process, each of the instances will be populated 
with initial values, part of which is provided by the user. As an example, the 
value for the planting date for object plant is provided by the user before 
starting the simulation process. Similarly, initial values for soil depth and 
wilting point in percent, needed for populating an object soil, are provided by 
the user. 

Messages 8 to 14 are part of the iteration over the weather data. These 
messages will be repeated a certain number of times until the condition plant 
is mature is satisfied. At the beginning of each iteration. Simulator sends to 
object plant the message calculateRate. In order to calculate the rate object, 
plant needs soil and weather data. Therefore, object plant sends the message 
getWaterStress to object soil and the message getWeatherData to object 
weather. 

The next step in the simulation process is the integration of the values 
obtained during the rate calculation. Thus, the simulator sends the message 
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integrate to both plant and soil objects. Message number 15, 
getSimulationResults, returns to the user the results of the simulation process. 

The sequence diagram for the use case Start Simulation shows all the 
messages sent in a timely manner to different objects to perform a simulation 
process. This detailed diagram presents the interaction between objects to 
achieve the required functionality. 

3.2 Collaboration diagram for the use case 

Collaboration diagrams provide another level of detail of the use case 
realization. We now know that sequence and collaboration diagrams are 
semantically the same, as they represent the interaction between the same 
elements, but the focus of the interaction is different. In the sequence diagram, 
the focus is on the order in time that messages are sent whereas in a 
collaboration diagram, the focus is on the object. Figure 8-5 shows the 
collaboration diagram for the Start Simulation use case. 

User 

2: create 
5: initialize / 

8: calculateRate / 
13: integrate X 

/ / 
1: simulate 

15: getSimulationResults / 

> Simulator 

3: create \ \ 
6: initialize \ 

11: calculateRate \ 
14: integrate \ 

Plant 

\v 1Q. getWeatherData 

4: create \ 
7' initialiyp 

. . "̂  ^ 

\ 

Weather 

f / 

Soil 

/ / 12: getWeattierData 

Figure 8-5. Collaboration diagram for the use case Start Simulation. 

As shown in Figure 8-5, object soil receives messages 3, 6, 11, and 14 
from object simulator, message 9 from ohiQct plant and sends message 12 to 
object weather. Therefore, object soil should be provided with the appropriate 
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behavior in order to respond to the received messages. Similarly, ohJQct plant 
receives messages 2, 5, 8, and 13 from object simulator and sends message 9 
to object soil and message 10 to object weather. Therefore, object plant 
should be provided with the appropriate behavior to respond to messages it 
receives. 

As shown in Figure 8-5, a collaboration diagram helps one to understand 
the kind of behavior objects should provided to be able to successfully dialog 
with each other to achieve the required functionality. Figure 8-6 shows the 
behavior defined for class Soil, defined by analyzing the collaboration 
diagram. According to the collaboration diagram, class Soil should respond to 
messages calculateRate, integrate, initialize, and create. For the moment, we 
do not have enough information to define the attributes of the class Soil, as we 
are focused on defining its behavior. Once we know the kind of behavior class 
Soil should provide, then the appropriate attributes will be added to its class 
definition. 

According to the collaboration diagram, Simulator receives messages 1 
and 15 from the user; therefore, its class definition should include methods 
named simulate and getSimulationResults. In the same way, we will define the 
behavior of class Plant as shown in Figure 8-7 and of class Weather shown in 
Figure 8-8. 

Soil 

"^calcLilateRateQ 
" întegrateO 
•^initializeQ 
%reateO 
%etWaterStress() 

Figure 8-6. The definition of behavior for class Soil. 
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Plant 

•^caiculateRateQ 
• întegrateO 
^initialize!;) 
^createQ 

Figure 8-7. The definition of behavior for class Plant. 

Weather 

^getWeatherDataO 
^initialize 0 
"^ciBateQ 

Figure 8-8. The definition of behavior for class Weather. 

4. CONCEPTUAL MODELS 

Interaction (sequence and collaboration) diagrams help us to understand 
how modeling elements dialog with each other to achieve functionality. It is a 
good modeling practice to start the design process by developing a conceptual 
diagram that represents our knowledge of the application domain expressed 
through concepts, abstractions, and their relationships. Conceptual diagrams 
are the result of an activity that is referred to as conceptual modeling. 
Conceptual modeling can be defined as the process of organizing our 
knowledge of an application domain into hierarchical rankings or orderings of 
abstractions, in order to obtain a better understanding of the phenomena of 
concern [Tai96]. Conceptual modeling makes heavy use of abstraction and the 
object-oriented approach, and unlike other programming paradigms, provides 
direct support for the principle of abstraction. Any entity or concept in a 
problem domain is conceived as an object provided with a certain state and 
behavior to play a well-defined role. 
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Conceptual diagrams have the advantage of presenting the concepts and 
their relationships in an abstract way, independent of any computing platform 
or programming language that may be used for their implementation. During 
this phase, the focus is on depicting the concepts of the system and providing 
them with the right data and behavior. Experience shows that implementation 
technologies change constantly. Therefore, it is highly desirable that the 
model we are about to develop be expressed in an abstract and logical manner 
resilient to changes. 

UML allows for designing a Platform Independent Model (PIM) that 
presents many advantages. First, PIM allows for representing models using a 
high level of abstraction. Details of the models can be expressed clearly and 
precisely in UML as it does not use any particular formalism. UML is 
semantically very rich, richer than any programming language. The 
conversion of a UML diagram into code in a particular programming 
language comes with loss of information. Therefore, the intellectual capital 
invested in building models will be insulated from changes in the 
implementation technologies. 

After a PIM is developed, then the issue of selecting a particular 
implementation environment can be addressed. Next, a Platform Specific 
Model (PSM) will be developed by mapping a PIM to a particular computer 
platform and a specific programming environment. The transformation of a 
PIM to a PSM is realized using a mapping process. This two-layer concept, a 
PIM and a corresponding PSM, separates the scientific model from the 
implementation technologies. Usually, the science behind the model has a 
much longer life than the implementation technologies. Changes and 
evolution of the implementation technologies should not affect the logic of the 
scientific model. Conceptual diagrams are an important tool for software 
design. They help to structure the system and a well-structured system is easy 
to develop, maintain, and reuse. Therefore, it is important to start with a 
conceptual diagram that presents the core elements and the interactions 
between them. It is a good modeling practice to name participating elements 
and their relationships with meaningful names. Meaningful names for 
concepts and their relationships make the model easier to understand; users 
can use the conceptual model as a discussion platform where business issues 
are addressed. 

4.1 Conceptual model for the Kraalingen approach 

In order to develop a conceptual diagram for the Kraalingen approach, let 
us take a closer look at the equations of this model. Equations 1, 2, and 3 (see 
Chapter 8, The Kraalingen Approach) represent the relationships between 
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objects plant, soil, and weather. Equation 2 shows that soil water factor data 
are needed to calculate changes (delta) in the leaf area index of the plant. The 
same equation shows that the temperature-based limiting factor, calculated by 
Equation 1, is needed to calculate delta changes in the leaf area index. 
Equation 2 shows that temperature affects daily plant growth and that the 
amount of water in soil impacts plant growth as well. Other equations show 
that plant data are needed for calculations of processes occurring in soil and 
soil data are needed for calculations occurring in plant. As an example, soil 
data are needed to calculate daily net photosynthesis processes occurring in 
the plant. Plant data are needed for calculating potential evapotranspiration, 
potential soil evaporation, potential plant transpiration, and rate calculation. 
These are processes that occur in the soil. 

Based on the equations expressing relationships between soil, plant, and 
weather, a diagram for the Kraalingen conceptual model can be presented as 
shown in Figure 8-9. 

Plant 
growsin 

Soil 

Figure 8-9. Conceptual diagram for the Kraalingen approach. 

As shown in Figure 8-9, there is an association referred to as growsin that 
links Plant and Soil that reads that plant grows in the soil. This association is 
bidirectional, meaning that an object of type Soil can access data and behavior 
in an object of type Plant and vice versa; an object of type Plant can reach 
data and behavior in an object of type Soil. 

Weather data are used for calculating soil processes such as potential 
evapotranspiration, runoff and infiltration. Therefore, the association 
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usesWeatherData links Soil and Weather with navigation direction from Soil 
to Weather, Thus, an object of type Soil is able to reach data and behavior 
from an object of type Weather, Equation 1 states that weather data are 
needed to calculate the growth rate reduction factor in plant. Therefore, an 
association between Plant and Weather is needed with navigation direction 
from Plant to Weather, This association is referred to as usesWeatherData 
and allows an object of type Plant to access data and behavior from an object 
of type Weather, The conceptual diagram shows that while objects of type 
Plant and Soil should have knowledge of each other, object Weather does not 
have access to any of the objects of type Plant and Soil. This is because of the 
particular role the weather data play in the simulation; they are used by other 
objects to calculate processes occurring in these objects. There are no 
processes occurring in object Weather, therefore, object Weather does not 
need to access data and behavior from objects Soil and/or Plant, 

5. DISCOVER POTENTIAL CLASSES 

The conceptual model shows the interaction between classes that represent 
concepts from the problem domain; Weather, Plant, and Soil are classes that 
represent concepts in a crop simulation domain. Although discovering all 
needed concepts is not an easy task, this is only part of what needs to be 
achieved. The conceptual model does not show any aspect of the user's 
interaction with the system. This behavior, how users will interact with the 
system, will be provided by some other classes that do not represent any of 
the concepts of the problem domain and therefore, they are not part of the 
conceptual model. 

The conceptual model shows that class Plant needs to access data and 
behavior from classes Weather and Soil, to calculate processes that occur in 
class Plant, Associations between classes are "communication channels," 
which allow objects created from these classes, to send/receive messages to 
one another. Although all the required structures are in place to make the 
dialog between objects possible, the dialog does not happen by itself There is 
a need for some controller/supervisor that would coordinate the dialog 
between objects. 

Experience shows that expectations for a system change over time. The 
more users become familiar with the system, the better they understand the 
system and their expectations grow; other requirements may be added to the 
system and the logic that controls the dialog between classes may change. In 
order to design a flexible system that is resilient to changes, three different 
aspects of a system need to be taken into consideration. These aspects are: 
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The communication between users and the system, the control of the logic of 
the system, and the concepts of the problem domain. Therefore, three 
different categories of classes, one for each aspect, need to be discovered. The 
categories are: Boundary, control, and entity classes. Let us take a closer look 
at each of these categories of classes and present their role in our future 
system. 

Note that the differences between classes that belong to different 
categories are simply conceptual. Grouping classes into categories helps us to 
reduce complexity by dividing the problem into smaller and independent 
parts. During the implementation phase of the system in a particular 
programming environment, the conceptual differences between classes 
disappear; they are just classes provided with the right behavior to play well-
defined roles in the system. 

5.1 Boundary classes 

Boundary classes are used to model the interaction between users and the 
system. As users of the system are modeled as actors, the boundary classes 
represent the interaction between the actors and the system. Figure 8-10 
shows the UML symbols for a boundary class; each of them can be used 
interchangeably. 

KD 
SimulationForm 

SimulationForm 

Figure 8-JO. UML symbols for a boundary class. 

As boundary classes control the interaction between users and the system, 
actors can communicate only with boundary classes. Boundary classes serve 
as a shield to separate the internal part of the system from the external events 
that may affect the system and vice versa. Usually, boundary classes are used 
to model graphic user interfaces. 

There is at the least one boundary class per each actor/use case pair. Figure 
8-11 presents an example of using a boundary class, referred to as 
SimulationForm, to control the dialog between the actor, referred to as user 
and the use case Start Simulation. The behavior of the class SimulationForm 
should provide all the operations needed to start a simulation, such as entering 
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initial data for soil and plant, selecting a weather station name from a pull 
down list, etc. Additional behavior such as the one used for validating the 
input data, can be part of class definition. As the input data are entered using 
the boundary class, their validation should be part of class's behavior too. 

User 

- > 

Start Simulation 

The boundary' class t^ 
SimulationForm controls the 
dialog between the user and 
the system for use case 
Start Simulation 

SimulationForm 

{from Logical VieA-J 

Figure 8-11. One boundary class controls the dialog between an actor and a use case. 

It is not necessary at this point of the analysis to go into deep details over 
how the user interface will be designed and how many items will it contain. 
These details will be provided later, during the implementation phase. For the 
moment it is important only to define in a general manner the behavior of the 
boundary class. As boundary classes are used to model user interfaces, they 
are platform dependent. As an example, if the implementation environment 
changes from Windows to UNIX, then the boundary classes will change too. 
Usually, the lifecycle of a boundary class follows the lifecycle of the 
corresponding use case. When the use case terminates, there is no more need 
for the object created from the boundary class. 

5.2 Control classes 

Control classes are used to model the behavior that is required for the 
realization of one or more use cases. Thus, a control class should provide the 
behavior that expresses the realization logic of a use case; therefore, they are 
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use case specific. If the logic of a use case changes, then the behavior of the 
corresponding control classes should be adjusted accordingly. Figure 8-12 
shows the UML symbols for a control class; each of them can be used 
interchangeably. 

o 
Simulator 

Simulator 

Figure 8-12. UML symbols for a control class. 

Objects created from control classes (i.e., control objects) are used to 
control or coordinate the behavior of other objects. Control objects supervise 
the flow of events in a use case realization. The lifecycle of a control object is 
linked to the lifecycle of the corresponding use case. A control object is 
created when the use case is performed and usually it dies when the use case 
is terminated. A control object may be used for the realization of one or more 
use cases. In the case that a use case is complex, many control objects created 
from different control classes can collaborate to control the use case. The 
number of control objects that are needed to control a use case is not easily 
determined. Many factors, such as the designer's experience and the 
flexibility of the system under construction, can impact the number of control 
classes that need to be created. 

As control classes are closely related to the realization of a use case, they 
belong to the internal part of the system. Therefore, control classes do not 
interact with actors; an actor should not communicate directly with a control 
class. Unlike boundary classes, control classes are platform independent; the 
same control class can play its role in different computing platforms. 

In section 4.1, Conceptual model for Kraalingen approach, it is 
mentioned that classes Plant, Soil, and Weather will provide the necessary 
data needed in the simulation process. Objects created from these classes will 
send messages to one another to obtain data located in one object that are 
required in another object. A controller object is needed to coordinate the 
interaction amongst objects. Figure 8-13 shows an example of a control class 
used to control the flow of events in the Start Simulation use case. 
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User 

^ 

Start Simulation 

The control class ^ 
SimulationController 
controls the flow of event for 
the use case Start 
Simulation 

SimulationController 

Figure 8-13. SimulationController controls the flow of events for the use case. 

5,3 Entity classes 

Entity classes are used to model concepts of the system. They are 
independent of the actors and are usually used to hold and update information 
about the phenomena under study. Entity objects that are created from entity 
classes are often persistent objects that need to be stored in a database. Entity 
classes can be used in many use cases and their behavior can be complex or 
simple, based on the nature of the problem under study. They can represent 
real-life objects such as a person, an event, a crop, etc. Figure 8-14 shows 
UML symbols for entity classes; each of them can be used interchangeably. 

Q 
Plant 

\ . O 
Plant 

Figure 8-14. Icon representations for an entity class 

Because entity classes are an internal part of the system, actors cannot 
communicate with them directly. For similar reasons, boundary classes should 
not communicate directly with them unless the context of the corresponding 
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use case is simple. Entity classes are provided with behavior that is used to 
solve the problem. Their main responsibility is to store and manage 
information in the system. 

In the Kraalingen approach, as shown in the conceptual model, classes that 
hold the data and the behavior needed in the simulation process are Soil, 
Plant, and Weather, Figure 8-15 shows the entity classes for the Start 
Simulation use case. 

Soil 

Plant Weather 

Figure 8-15. Entity classes for the Start Simulation use case. 

6. CLASS DIAGRAM FOR THE KRAALINGEN 
APPROACH 

In the previous sections we discussed issues about how to identify the 
future classes and their particular role in the system. Now is the time to 
analyze the relationships between classes in order for the system to provide 
the required functionality. As we have previously mentioned, the main 
characteristic of the object-oriented approach is to model concepts of the 
problem domain using objects and provide objects with data and behavior so 
that they can play a well-defined role. Objects send messages to one another 
to carry out functionality. In order for the objects to send messages to each 
other, they need to have relationships among them. The purpose of the class 
diagram is to show how objects, created from classes of the system, are 
interrelated. 

In the section on boundary classes, it was mentioned that the class referred 
to as SimulationForm will play the role of a boundary class that is used to 
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model the interaction between users and the system. The main role of this 
class is to transfer to the system the initial data required for the simulation. 
Usually, boundary classes are represented as graphical user interfaces. In the 
case of boundary class SimulationForm, the corresponding graphical user 
interface is shown in Figure 8-16. As shown in this figure, the user interface is 
divided in two main areas: The area of data input and the area where the 
results of the simulation are presented. The user will provide the data referred 
to as the initial conditions for the simulation and the system will provide to 
the user the results of the simulation. Therefore, objects of class 
SimulationForm should be provided with the appropriate attributes to hold the 
initial data and the results of the simulation. 

Figure 8-16 shows that SimulationForm is provided with three buttons: 
Simulate, Cancel and Clear, The first button allows users to start a simulation 
process provided that the user has already entered the required initial data. 
The two other buttons help the user during the data entry process; the user 
may cancel the session at any time or change all the entry values and replace 
them with other data. 

There is a tendency to create a use case for each of the menu items of the 
graphical user interface. In our case we would have three use cases: Start 
Simulation, Cancel Simulation, and Clear Simulation, one use case for each of 
the functionalities that take place when the corresponding button is used. This 
modeling practice is not a good one, as it confounds the use cases with menu 
items. Use cases do not represent and should not represent menu items. By 
definition, a use case represents the interaction of the user with the system, 
focusing on what the system can do for the user. In our case, as the only thing 
that the user can do with the system is to start a simulation, it is appropriate to 
have only one use case referred to as the Start Simulation, The buttons Cancel 
and Clear do not provide users with any additional functionality related to the 
simulation process; the functions they provide are standard functions of any 
user interface. 
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Figure 8-16. Implementation of the boundary class SimulationForm. 

In the section on control classes, it is mentioned that a class, referred to as 
SimulationControiler, will play the role of a control class used to control the 
behavior of the use case StartSimulation. Therefore, the SimulationController 
control class will serve as a coordinator between the boundary class and the 
system. SimulationController will receive the input data from the boundary 
class and use them accordingly in the simulation process. 

The lifecycle of a control object is determined by the boundary class that 
is related to it. Usually, the boundary object creates an instance of the control 
class at the beginning of the execution of the use case and the control object 
"dies" when the use case is terminated. 

How does a boundary object pass the input data to a control object? There 
are several ways to achieve this task. The best solution is to store the input 
parameters in a file of type Properties that will be used by method 
simulate(properties) of class SimulationController as shown in Figure 8-17. 
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Figure 8-17. A boundary object communicating with a control object. 

As shown in this figure, class SimulationForm has an association with 
class SimulationControlier referred to as uses of stereotype communicate. The 
diagram says that a SimulationForm uses a SimulationControlier to perform a 
simulation. The association uses is unidirectional, meaning that class 
SimulationForm can access data and behavior from class 
SimulationControlier but not vice versa. 

SimulationControlier is provided with a constructor which is the Java 
mechanism for creating new instances of a class. As the SimulationControlier 
is modeled following the Singleton pattern, the method getlnstance returns the 
unique instance of this class. The definition of class SimulationControlier 
includes two methods referred to as simulate but with different signatures; one 
does not use any parameters and the other uses a parameter named properties. 

When method simulateQ is used, the controller object does not receive any 
input from the boundary object. In this case, the entity objects used in the 
simulation should provide all the initial data needed for the simulation 
process; they will have default values for paiWinQtQrs plantingDate, soilDepth, 
and wiltingPointPercent. This case is limiting, as it will perform simulations 
with fixed soil and plant data. The users cannot create scenarios to study the 
impact of different parameters on crop growth. 

When method simulate(properties) is used, the boundary object can pass 
parameters to the control object to be used for populating different entity 
objects. Parameters are stored in a property file referred to as properties. 
Performing a simulation using initial data is the most common case in the 
simulation models, as it allows for studying the impact of one or more 
parameters on crop yield. 

Other techniques can be used to pass parameters from a boundary class to 
the control class. One of them could be to provide the control class with 
simulate(list of parameters) methods that use a different number of 
parameters. For example, if the parameters passed to the control class are 
plantingDate and soilDepth, the control class should have the 
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simulate(plantingDate, soilDepth) method defined in its class definition. In 
the case where the parameters passed to the control class are plantingDate, 
soilDepth, and wiltingPointPercent then the control class should have the 
simulate(plantingDate, soilDepth, wiltingPointPercent) method defined in its 
class definition. According to this solution, each time a parameter is added or 
its type is changed, the corresponding simulate method with the appropriate 
signature (parameters with corresponding types and in the right order) should 
be added to the class definition of the control class. Any changes in the class 
definition of the control class implies that the boundary class should be 
modified accordingly, as the boundary class will pass the simulation 
parameters to the control class. This solution strongly couples the boundary 
class to the control class, and as result, the system becomes inflexible. 
Changes occurring in one class have ramifications in other classes. 

Using a container where all the parameters passing to the control class will 
be stored is a better solution. Such a container in the Java programming 
environment can be a Properties file. Using property files is a simple way in 
Java to implement a general communication between boundary and control 
classes. The control class needs only to know that a property file is used to 
store parameters; the number of parameters passes and their type is irrelevant. 
This type of communication increases the independence between boundary 
and control classes. Similarly, an XML file can be used to store the 
parameters that are passed to the control class. 

The control class plays a key role in the simulation process, as it 
coordinates the messages objects send to each other. Therefore, it is a good 
programming practice to use the Singleton pattern when designing this class. 
As explained in Chapter 7, Design Patterns, the Singleton pattern allows for 
creating only one instance of the class. Method getlnstance will provide the 
unique instance of the control class. 

In the section on entity classes, it is mentioned that entity classes are used 
to model concepts of the problem domain. A good start for depicting entity 
classes is the conceptual diagram for the Kraalingen approach previously 
developed. According to this diagram, the elements needed for the simulation 
model are classes Soil, Plant, and Weather, The control class 
SimulationController needs to have access to these objects in order to manage 
the flow of messages they need to send to each other. Figure 8-18 shows the 
relationship between controller and entity classes for the Kraalingen 
approach. 



THE KRAALINGENAPPROACH TO CROP SIMULATION 139 

Figure 8-18. Relationship between control and entity classes. 

According to Figure 8-18, the relationship between the control and entity 
classes is modeled as a composition; the controller is conceived as a container 
that includes entity classes and shields them from the outside view. Thus, the 
controller manages the lifecycle of the entity objects. Because our problem 
has only one use case, entity objects are created at the beginning of the use 
case execution and they "die" when the use case is terminated. 

The associations between the control and the entity classes are one-to-one 
associations. This means that the control class will only create one instance of 
each of the entity classes. Another important detail presented in Figure 8-18 is 
the fact that the associations between control and entity classes are 
unidirectional (i.e., the control object can access data and behavior from entity 
objects, but the entity objects do not have access to the control object). 

Figure 8-19 shows the class diagram for the KraaUngen simulation 
approach. The diagram says that the SimulationForm communicates the input 
data to the SimulationController. The SimulationController uses the input 
data to populate instances of entity classes such as Plant, Soil, and Weather. 
Plant grows in Soil and both Plant and Soil use weather data to calculate their 
respective processes. When the simulation is terminated, the 
SimulationController will return to the SimulationForm the result of the 
simulation to be displayed to the user. 
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Figure 8-19. Class diagram for the Kraalingen simulation approach. 

As shown in Figure 8-19, the SimulationForm communicates only with the 
SimulationController as previously mentioned in the Discover potential 
classes section. Thus, the control class incarnates the Fagade pattern, 
presented in Chapter 7, Design Patterns. Entity objects are protected from 
the outsiders of the system. Having all the communication with boundary 
object pass through the control object makes the system independent of the 
outside environment. Changes that may occur in the behavior of entity objects 
will not affect the communication with boundary objects. 

7. CRITIQUE OF THE KRAALINGEN CLASS 
DIAGRAM 

In the previous section, we presented a class diagram for the Kraalingen 
approach that shows the interaction of boundary, control, and entity objects to 
provide the required functionality. In this section, we will analyze the class 
diagram in detail to justify each of the steps. 
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7.1 Communication boundary-control 

An important issue that needs particular attention is the communication 
between boundary and control objects. As previously mentioned, the 
boundary class is platform dependent and the control class is platform 
independent. The communication between these two objects should be 
modeled in such a way that the resulting system is flexible. Changes of 
requirements, which usually cause changes of boundary class's behavior, 
should have minimal impact on the system. 

The way in which the communication between boundary and control 
objects is established in the Kraalingen class diagram does not allow for a 
flexible development. The boundary class has direct connection with the 
control class; an instance of the control class needs to be created in the 
boundary object so that the message simulate can be sent to this object. In the 
case that we would like to use another simulation system that provides similar 
functionalities, the system will not work. The reason is that the boundary 
object points directly to the SimulationControUer object and will not 
recognize any other object playing the same role unless the new controller 
object is referred to as SimulationControUer, Imposing the name of the 
control class is a considerable limitation. Coupling these two classes directly 
makes the system less flexible to changes and difficult to reuse. 

The solution to this problem is defining one or a set of interfaces that the 
control class should implement; the behavior of the control class should be 
expressed using a well-defined set of interfaces. In our simple example, one 
interface is amply sufficient to describe the services that the control class 
offers. Figure 8-20 shows an interface defining the services of the control 
class SimulationControUer. As shown in this figure, the boundary class has an 
association with the interface ISimulationController. Therefore, the boundary 
object can reach data and behavior from any object created from a class that 
implements the ISimulationController interface. Thus, using an interface 
instead of a class opens the communication channels between the boundary 
object and any control object that implements the required interface. 
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Figure 8-20. An interface defining the services of the control class SimulationController. 

The most important advantage of using an interface is that the boundary 
object does not need to know about the real control object that will receive the 
simulation parameters. If the simulation system is designed to function as an 
independent component, any such component can be plugged into a bigger 
system; the boundary object would communicate with all plugged-in 
components provided that they implement the required interface. Figure 8-21 
shows an example of a boundary class associated with several control classes. 
Each of the control classes will provide a polymorphic implementation of the 
behavior defined by the interface ISimulationControlier, 
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Figure 8-21. One boundary class associated with many control classes. 

7.2 Communication control-entity 

Another point of communication that needs to be studied carefully is the 
communication between the control and entity objects. In the class diagram 
for the Kraalingen approach, the relationships between control and entity 
classes are modeled as a composition. The control class, 
SimulationControiler, plays the role of the whole; entity classes, such as 
Plant, Soil and Weather, play the role of parts. The whole has access to data 
and behavior of the parts but not vice versa. Objects of the 
SimulationController class have access to entity objects because of the 
attributes plant, soil, and weather that hold a reference to the corresponding 
entity objects, as shown in Figure 8-22. This figure presents the Java code for 
class definition of SimulationController modeled as a Singleton and defined 
in the UML diagram shown in Figure 8-18. 

Lines 6, 7, and 8 define attributes of types Plant, Soil, and Weather to hold 
references to the corresponding objects. As we see, the control object is 
directly connected to the entity objects. 
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I final class SimulationController { 
2 
3 private static SimulationController uniquelnstance = null; 
4 
5 private Plant plant; 
6 private Soil soil; 
7 private Weather weather; 
8 private SimulationControllerQ {} 
9 public SimulationController getlnstanceQ { 
10 if (uniquelnstance == null) 
II uniquelnstance = new SimulationControllerQ; 
12 return uniquelnstance; 
13 } 
14 } 

Figure 8-22. Java class definition for SimulationController. 

The fact that the control object is directly connected to entity objects 
makes the architecture of the system rigid. When two or more objects are 
directly linked to each other, none of them can be used separately; the use of 
one of the objects would require the presence of the others. This architecture 
is not flexible as it makes it difficult for either the control or entity objects to 
be reused separately. 

The solution to this problem is to avoid linking classes directly; instead, an 
interface to the class can be used as shown in Figure 8-23. Interface IPlant 
defines the behavior class Plant should implement. This behavior includes 
operations such as initialize, calculateRate, and integrate. Interface ISoil 
defines the behavior class Soil should implement. 
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Figure 8-23. The control object communicates with entity objects through interfaces. 

Connecting the control class to the interfaces instead of the entity classes 
opens possibilities to use any other entity class or component that offers 
similar behavior, provided that they implement the same interface as shown in 
Figure 8-24. 
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Figure 8-24. Interfaces allow for plugging in other class/components. 

7.3 Communication entity-entity 

Entity classes represent concepts from the problem domain. They interact 
with each other to provide the required functionality. Often, objects created 
from entity classes reside in the same memory space or machine. Therefore, 
the associations representing the collaborations between concepts are from 
one entity class directly to another. In this architecture, entity classes are 
closely coupled to each other. This solution works well in cases that 
monoUthic systems need to be developed; all objects will reside in the same 
area space and there is no need to substitute the behavior of an object with 
some other one. Changes to the system can be done only by developers that 
are familiar with system's architecture. Therefore, these systems are usually 
not flexible and provide little reuse of functionalities incorporated in the 
system. There are cases where this architecture is acceptable and provides 
good results. 
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There are other cases that although entity objects belong to the same 
domain, linking them directly to each other may create problems related to the 
reuse and extendibility of the future system. It would be desirable to have 
flexible systems that allow for replacing one class or component with some 
other ones that provide similar functionalities. As an example, some other 
institutions or individuals may have developed a soil or a plant 
class/component that we would like to use in our system. In this way 
knowledge can be transferred easier, collaboration among scientific 
institutions and/or individuals will be better, and the time for developing a 
new system will be shorter. 

In the case of the Kraalingen approach, the conceptual model shows that 
entity classes are in association with each other. The collaboration between 
classes in the conceptual model reflects the fact that plant grows in soil and 
processes occurring in plant and soil are impacted by the weather conditions. 
Class Plant has an association with class Soil\ both classes are tightly coupled 
to each other. The Plant class definition has an attribute of type Soil that is a 
reference to an object created from class Soil. The situation is similar in the 
Soil class definition; an attribute of type Plant, defined in class Soil, is a 
reference to an object of type Plant, Objects Plant and Soil are tightly linked 
together; none of the objects can be reused separately. The same can be said 
for the case of each of Plant or Soil classes in relation with class Weather, 
Objects created from classes Plant, Soil, and Weather form a monolithic 
system, none of its composing objects can be used separately. Figure 8-25 
shows the direct links between the above mentioned classes. 

Plant 
^so i l : IS oil 
^weather: IWeather 

gmwsin Soil 
%plant : IPIant 
^weather: IWeather 

Figure 8-25. A monolithic system where entity classes are directly linked to each other. 
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In order to make the system flexible and extendable, hardwired 
associations between classes should be avoided and interfaces be used instead. 
As we have previously mentioned, the use of an interface is similar to 
providing a plug that can be used by any class that implements the same 
interface. The modified class diagram for the Kraalingen approach is shown 
in Figure 8-26. 

As shown in Figure 8-26, the hardwired associations among classes have 
been replaced with associations between a class and an interface. Therefore, 
the attribute soil in the Plant class definition is of type ISoil, which is the type 
of the interface that defines the behavior needed from class Soil, Therefore, 
any class that provides similar behavior to class Soil can be used in the 
system, provided that it implements the interface ISoil. Classes implementing 
the same interface can be used as a substitute to each other. By replacing the 
association Plant-Soil with the association Plant-ISoil, we have created the 
possibility to use any other Soil class that may have a different 
implementation of the required behavior but it can be used in the system 
because it implements the interface ISoil. The same reasoning could be 
applied to the associations Soil-Plant, Plant-Weather, and Soil-Weather, 
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Figure 8-26. Classes have associations with an interface. 
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8. FINAL CLASS DIAGRAM FOR THE 
KRAALINGEN APPROACH 

Figure 8-27 shows the final class diagram for the Kraalingen approach. 
For readability reasons, attributes and operations are not presented in the class 
diagram. Interfaces are used where change or substitutability is expected. For 
example, the communication point between SimulationForm and 
SimulationController is represented by the interface ISimulationController, 
Therefore, any simulation class/component that implements 
ISimulationController can be used. In the same way, the communication point 
between SimulationController and entity classes is represented by three 
interfaces; IPlant, ISoil for communicating with Plant and Soil, and IWeather 
for communicating with Weather, 

ISimulationController 

Figure 8-27. Final class diagram for the Kraalingen simulation approach. 
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9. THE BENEFITS OF USING INTERFACES 

As we have seen in the case of the KraaHngen simulation approach, 
interfaces are a powerful modeling artifact to design flexible software that can 
be reused and extended, and is resilient to changes. Interfaces replace the 
hardwired associations between classes with flexible associations between a 
class and an interface, opening the way for use to many other potential classes 
or components that provide similar behavior and implement the same 
interface. Interfaces make the communication between two classes flexible. 
When two classes are linked through an association, the link is rigid, as it is a 
one-to-one link. None of the classes can be used separately. Using interfaces 
instead of classes transforms the one-to-one link into to a one-to-many link. 
Therefore, many other classes or components can be used in the system, 
allowing for substitutability among classes/components that implement the 
same interface. 

Some questions may be asked right away. When should we use interfaces? 
Should we use interfaces any time that two classes are associated? The issue 
of when and how to use interfaces is related to the designer's experience and 
the future needs for extending the system to incorporate new behavior. An 
interface can be considered as an electrical plug in a house. When the 
blueprints for the electrical wires are drawn, the designer has in consideration 
the places where potential appliances can be used. After the electrical 
installations are finished, one can only add new appliances in the places where 
there is a plug to be used. Interfaces are conceptually the same. We will use 
an interface at a point in the system that we see future development, change, 
or potential for substitutability. We would strongly recommend [CMK99]; the 
book Java Design Building Better Apps & Applets is excellent source of 
information and ideas about using interfaces as a modeling tool. 

Is there any drawback of using interfaces? The answer is, not really. 
Interfaces make the system more flexible at the price of slightly increasing the 
complexity of the system. A diagram that uses interfaces may be more 
difficult to be understood as it contains points of connection to many potential 
classes instead of one single class. There is a widely accepted agreement that 
the increase in complexity of a class diagram as a result of using interfaces is 
rightly justified by the benefits offered by interfaces in the design process. 
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10. IMPLEMENTATION OF THE KRAALINGEN 
MODEL IN JAVA 

In this section, we will discuss issues related to the implementation of the 
Kraalingen model in the Java programming environment. The class diagram 
already created in Section 8, Final class diagram for the Kraalingen 
approach, serves as a starting point for the implementation process. In this 
diagram, an interface is defined for each of the classes Weather, Plant, and 
Soil that formalizes the behavior these classes should provide. The interfaces 
are referred to as IPlant, ISoil, and IWeather, Let us take a look at each of the 
interfaces and examine how they define the behavior of classes implementing 
the interface. 

10.1 Interface IPlant 

Interface IPlant defines the behavior that needs to be implemented by all 
classes, providing plant-related behavior that can be used in the simulation. In 
order to be able to use different classes that provide plant-related behavior, 
these classes should implement the following interface. Different classes will 
provide a polymorphic implementation of the same interface. Figure 8-28 
shows the Java code for the interface IPlant, 

1 import java.util.Properties; 
2 public interface IPlant { 
3 
4 //used by the simulator controller 
5 public void initialize(Properties props); 
6 public void initializeQ; 
7 public void calculateRateQ; 
8 public void integratcQ; 
9 public double getLeafAreaIndex(); 
10 public int getMaturityDayO; 
11 public boolean isPostPlantingQ; 
12 public boolean isMaturcQ; 
13 public void setMaturityDayO; 
14 
15 //used to set relationships with other classes 
16 public void setWeather(IWeather weather); 
17 public void setSoil(ISoil soil); 

Figure 8-28. Java implementation for interface IPlant (Part 1 of 2). 



152 SOFTWARE ENGINEERING TECHNIQUES 

18 //used to provide simulaton results to users 
19 public double getFruitDryWeightQ; 
20 public double getRootDryWeightQ; 
21 public double getTotalPlantDryWeightQ; 
22 } 

Figure 8-28. Java implementation for interface IPlant (Part 2 of 2). 

Lines 4, 15, and 19 are comments or stereotypes, defined in Section 11 of 
Chapter 3 in the first part of the book. They define a specific categorization 
for the methods that follow the comment or stereotype. Thus, the method 
integrateQ, as defined in line 8, belongs to the category referred to as used by 
the simulator controller. Methods defined in lines 20, 21, and 22 belong to the 
category used to provide simulation results to users. Methods defined in the 
interface IPlant are classified in three categories. Classifying methods of an 
interface in different categories helps one to understand the role of the 
interface and its behavior. Therefore, we can say that interface IPlant is 
designed to provide three kinds of behaviors: Behavior needed in the 
simulation process, behavior needed to establish relationships with other 
classes of the diagram, and behavior to provide simulation results to other 
objects in the system. 

How do we define the behavior of an interface? The behavior of an 
interface is defined by considering the role classes implementing the interface 
should play in the system. Interfaces should define one specific role and be 
defined in its entirety. Two different interfaces should not share common 
behavior. Designing an interface is a delicate process and needs to be carried 
out carefully. Interfaces that provide many different behaviors should be 
avoided. The behavior of such interface should be distributed to other 
interfaces. 

In the case of the class Plant, its interface should define all the functions 
that module Plant must provide as defined by [Kra95]. As previously 
mentioned in this chapter, module Plant should be able to perform processes 
referred to as initialization, rate calculation, and integration. Therefore, the 
interface IPlant includes methods initializeQ, calculateRateQ, and integrateQ, 
as defined in lines 5 through 8. Note that this interface defines two methods 
that hold the same name, initialize, but with different signatures. The reason 
for having the same method definition with different signatures is to allow 
more flexibility in the initialization process of class Plant. The method 
initializeQ, with no parameters, can be used in cases when users do not 
provide any initial plant data. In this case, the default data will be used and the 
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initializeQ method will be activated. The method initialize(Properties props) 
will be used when users want to study the effect of different parameters on 
plant growth. As an example, the planting date is a parameter that impacts 
plant growth. This parameter and can be stored in the property file props and 
be used as an entry parameter for the simulation process. In the case that other 
plant parameters need to be used to study their impact on plant growth, they 
need to be added to the property file. The following is an example of a 
property file. 

plantingDate=121 
soilD€pth=14 5 
w i l t ingPo in tP€rcent=0.05 

Method getLeafArealndexQ , defined in line 9, provides information about 
the leaf area index needed to calculate processes that occur in soil. Methods 
defined in lines 10 through 13 provide information about the status of the 
plant; the use of method isMatureQ defined in line 12, will allow other objects 
to know whether plant has reached the status of maturity. When the plant 
reaches the status of maturity, the attribute that holds the value of the maturity 
day needs to be updated. The update process is carried out by the method 
referred to as setMaturityDayQ. Method isPostPlantingQ checks whether the 
current day in the simulation process is after the planting date. Methods 
belonging to stereotype used to set relationships with other classes allow an 
object of type Plant to have access to objects of type Soil and Weather. 
Methods belonging to stereotype used to display simulation results represent 
the behavior that allows an object of type Plant to provide results of the 
simulation to other objects that may request for these data. The object that is 
most interested to know the results of the simulation is the boundary object 
referred to as SimulationForm object. This object performs the task of 
communicating with the controller object in order to provide initial values 
used in the initialization process of plant, soil, and weather and the task of 
receiving the results of the simulation to display them to the user. In the case 
that additional plant results are needed, then the necessary methods will be 
added to the interface definition. As shown in Figure 8-28, interface IPlant 
defines methods that provide dry weight data for the fruit, the root, and the 
total plant. Any class Plant that will be considered for use in our system 
should implement interface IPlant. Figure 8-29 shows the UML diagram 
representing the association between class Plant and its interface IPlant. 
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Figure 8-29. Class Plant implements the behavior defined in interface IPIant. 

10.2 Interface ISoil 

The behavior of interface ISoil is defined based on the role classes that 
implement this interface play in the system. In the case of the class Soil, its 
interface should define all the functions that module Soil must provide as 
defined by [Kra95]. As mentioned in the beginning of this chapter, module 
Soil should be able to read its own initial data, and perform the processes 
referred to as initialization, rate calculation, and integration. Objects created 
from class Soil should be able to communicate with objects created from class 
Plant, to obtain from them the plant data required for calculating processes 
occurring in soil and to establish relationships with other objects in the 
system. The relationships between objects are already defined in the class 
diagram presented in Section 7. Figure 8-30 shows the Java code for interface 
ISoil. 

As shown in Figure 8-30, there are two stereotypes defined for interface 
ISoih One referred to as used by the simulator controller and the other 
referred to as used to set relationships with other classes. The methods 
belonging to the first stereotype are used in the simulation process and the 
methods belonging to the second stereotype allow an object of type Soil to set 
relationships with objects of type Plant and Weather. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

import java.util.Properties; 

public interface Soillnterface { 
public double getSWFacQ; 
public void initialize(); 
public void initialize(Properties props); 
public void calculateRateQ; 
public void integrateQ; 
public void setWeather(WeatherInterface weather); 
public void setPlant(PlantInterface plant); 

} 
Figure 8-30. Java code for interface IS oil. 

Note that lines 5 and 6 define the same method named initializeQ with 
different signatures. The method initializeQ, with no parameters, can be used 
in cases when users do not provide any initial soil data. In this case, the 
default soil data will be used and the initializeQ method will be activated. 
The method initialize(Properties props) will be used when users want to study 
the impact on plant growth of different soil parameters such as soil depth and 
wilting point percentage. These parameters will be stored in the property file 
and are an entry for the simulation process. In the case that other soil 
parameters need to be considered for the study, their values will be added to 
the property file. Figure 8-31 shows class Soil implementing the ISoil 
interface. Therefore, class Soil agrees to provide an implementation for all the 
methods defined in the interface ISoil, 

ISoi! 

*^initialize() 
'^initializeCProperties props) 
"^calculateRateO 
'^integrateO 
^getSVVFacO 
"^setPlantO 
'^setWeatheiiT^ 

O 

< 3 mip}«ffi«-rt:s---- • 

Soil 

%p lan t : tPlant 
%weather: IWeather 

^initislizeO 
^initilaizeProperties props) 
%alculateRate(| 
^intefrateO 
%etSWF3cO 
*^setPlant(} 
^setWeatheiC) 

Q 

Figure 8-31. Class Soil implements ISoil interface. 

10.3 Interface IWeather 

The behavior of interface IWeather is defined based on the role classes 
that implement this interface play in the system. The Weather class should 
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provide weather data to all other objects in the system that need them. 
Different sources of weather data can be used; one source could be a text file 
saved locally in the system and another source could be a network of weather 
stations that can be accessed on-line. The behavior IWeather interface should 
define is shown in Figure 8-32. 

IWeather has a few particularities that make this interface different from 
other already defined interfaces. All the defined methods are used in the 
simulation process. There are no methods used to set relationships with other 
objects as objects of type Weather, according to the conceptual diagram, do 
not have access to other objects of the system. They only provide weather 
data to all other objects that will request these data. 

1 import java.util.Iterator; 
2 import java.util.Properties; 
3 
4 public interface IWeather extends Iterator { 
5 public double getSolarRadiationQ; 
6 public double getAverageTempDuringDayQ; 
7 public double getAverageTemperaturcQ; 
8 public double getAverageTemperatureForPTQ; 
9 public double getRainFallQ; 
10 public double getTemperaturcMinQ; 
11 public double getTemperaturcMaxQ; 
12 public double getPARQ; 
13 public int getDayOfYearQ; 
14 public void initialize(Properties props); 
15} 

Figure 8-32. Definition of interface IWeather in Java. 

IWeather inherits behavior from another interface, the Iterator interface. 
Iterator is a pattern and the reasons of using this pattern are introduced in 
Chapter 7, Design Patterns in Part One of the book. Because IWeather 
inherits from Iterator, the behavior defined in Iterator will be part of the 
definition of IWeather as well. Figure 8-32 shows only the methods defined in 
interface IWeather, methods inherited from Iterator are not shown. Any class 
Weather that will be considered for use in the system should implement 
IWeather and Iterator interfaces, as shown in Figure 8-33. 
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Figure 8-33. Class Weather implements the behavior defined in IWeather and Iterator. 

The Iterator interface defines the behavior needed to loop over a container 
of data in order to analyze each of them. The method hasNextQ is used to 
assure that the iteration over the data continues as long as there are valid data 
in the container. The method nextQ gives access to the next data. In the case 
that there are no available data, nextQ will change the status of hasNextQ to 
false and the iteration will stop. The removeQ method removes an element 
from the container. This method is not used in our example. 

Note that different classes implementing interface IWeather will provide 
different implementations for each of the methods defined in interface 
Iterator, The particular implementation each class will provide will be based 
on the kind of the container used to hold the data. In the case that the weather 
data are saved locally in a text file, the data container is a file containing lines 
and each line contains weather data for a day or other time unit used in the 
simulation. In the case that weather data are obtained from an on-line weather 
station, the container is a table and each row of the table contains the weather 
data for a day or other time unit used in the simulation. 

In the next sections, we will show two Weather classes providing different 
implementations of the same set of Iterator and IWeather interfaces. The 
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classes are WeatherDataFromFile and WeatherD at aFromStation, as 
described in Section 6 of Chapter 3, Interfaces, in the first part of the book. 

10.3.1 Class WeatherDataFromFile 

This class implements the behavior defined in IWeather interface in the 
case that the weather data are read from a local file in the system. Section 4.3 
of Chapter 7, The Iterator Pattern, presents classes that are involved in this 
pattern and their collaborations. A class referred to as Daily Weather Data is 
designed to hold daily weather data such as solar radiation, minimum and 
maximum temperature, and rainfall. Note that the simulation unit is the day; 
an instance of class DailyWeatherData contains weather data for a particular 
day of the year. Figure 8-34 shows the implementation of this class in Java. 

I public class DailyWeatherData { 
2 
3 private double solarRadiation; 
4 private double maxTemperature; 
5 private double minTemperature; 
6 private double rainFall; 
7 
8 public DailyWeatherData(String minTemperature,String 

maxTemperature, String rainFall,String solarRadiation) { 
9 this.solarRadiation=Double.parseDouble(solarRadiation); 
10 this.maxTemperature==Double.parseDouble(maxTemperature); 
II this.minTemperature=Double.parseDouble(minTemperature); 
12 this.rainFall=Double.parseDouble(rainFall); 
13 } 
14 
15 public double getSoIarRadiation() { 
16 return solarRadiation; 
17 } 

Figure 8-34. The implementation of class DailyWeatherData in Java (Part 1 of 2). 

Lines 3 through 6 define the attributes of the class. Note that these 
attributes are defined as private; they cannot be accessed outside the class 
definition by using the attribute name. Lines 8 through 13 define the class 
constructor, the Java mechanism for creating instances of a class. Lines 15 
through 26 define methods to access values attributes hold. Lines 27 through 
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39 define additional methods for providing other types of daily weather data 
obtained by manipulating the core daily data. 

18 public double getTemperatureMaxQ { 
19 return maxTemperature; 
20 } 
21 public double getTemperatureMinQ { 
22 return minTemperature; 
23 } 
24 public double getRainFallO { 
25 return rainFall; 
26 } 
27 public double getPARO { 
28 return 0.50*getSolarRadiation(); 
29 } 
30 public double getAverageTempDuringDayQ { 
31 return 0.6*getTemperatureMax()-f0.4*getTemperatureMin(); 
32 } 
33 public double getAverageTemperatureForPTQ { 
34 return 

0.25* getTemperatureMin()+0.75* getTemp eratureMaxQ; 
35 } 
36 public double getAverageTemperatureQ { 
37 return 

0.5* getTemperatureMin()+0.5 * getTemperatureMaxQ; 
38 } 
39 } 

Figure 8-34. The implementation of class Daily WeatherData in Java (Part 2 of 2). 

As shown in Figure 8-34, once an instance of the class DailyWeatherData 
is created, individual data can be obtained using its accessor methods. As an 
example, the method getTemperatureMinQ sent to this object will return the 
value of the minimum temperature. Note that the definition of this class does 
not depend on the container used for holding the weather data. 

Figure 8-35 shows the implementation in Java for class 
WeatherDataFromFile, The role of this class in the simulation process is to 
provide weather data stored locally in a text file. Lines 1 and 2 show the 
libraries that need to be imported for the class definition. These are the input-
output and utility libraries. The utility library contains the Properties utility, 
used in line 12. Line 3 defines the class WeatherDataFromFile, stating that 
this class implements the interface IWeather, Because IWeather inherits from 
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interface Iterator, class WeatherDataFromFile needs to implement behavior 
defined in both interfaces; in addition to the behavior defined in IWeather 
interface, this class should also implement the behavior defined in the Iterator 
interface. Iterator is an interface defined in the java.util.Iterator library that is 
provided by the Java development environment. The same Java environment 
providesyava. io. * library. 

1 import java.io.*; 
2 import java.util.*; 
3 public class WeatherDataFromFile implements IWeather { 
4 
5 private int dayOfYear; 
6 private BufferedReader br=null; 
7 private DailyWeatherData currentDay^null; 
8 public WeatherDataFromFileO {} 
9 
10 public void initialize(Properties props) { 
11 try{ 
12 String filcName = props.getProperty("weatherFile"); 
13 FileReader fileReader = new FileReader(fileName); 
14 br = new BufferedReader(fileReader); 
15 setDayOfYearCO); 
16 } 
17 catch (FileNotFoundException e) 
18 { 
19 System, out.printing Weather file not found; the system will shut 

down"); 
20 System, exit(l); // Implementation of the precondition 
21 } 
22 catch (lOException e){System.out.println("IO Exception");} 
23 } 
24 public boolean hasNextQ { 
25 try { 
26 return br.readyQ; 
27 } 
28 catch (lOException e){return false;} 
29 } 
30 public Object nextQ { 

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 1 of 4). 
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Lines 5 through 7 define the attributes of class WeatherDataFromFile, 
Note that line 7 defines an attribute of type Daily Weather Data', its 
implementation details were presented in Figure 8-34. Line 8 defines the class 
constructor; in this case, it is a default constructor. 

Lines 10 through 23 define the body of the method initiaUze(Properties 
props). The scope of this method is to prepare the environment for obtaining 
the weather data. An instance of the class FileReader is created using the 
current value of the attribute filename read from the property file. The 
property file is made available to object Weather by the simulator controller. 
In the case that the weather file is not found, the system halts the execution 
and displays an error message, as shown in lines 19 and 20. These lines (19 
and 20) show the implementation of the precondition for the use case as 
mentioned in Section 2.4, Preconditions, in this chapter. Then, an instance of 
class BufferReader is created using the file reader already obtained and the 
day of the year is set to zero. The input-output library imported in line 1 
provides the functionality required to read data from a text file. Lines 24 
through 29 show the implementation of method hasNextQ defined in the 
interface Iterator. This method will return the result true when data are 
available and false otherwise. Lines 30 through 44 define the method nextQ 
that provides the next set of available weather data. Line 32 reads a line from 
the data container. Line 33 divides the entire line into tokens. Tokens are 
created by considering the values separated by comma. 

31 try{ 
32 String line = (String)br.readLine(); 
33 StringTokenizer tokens = new StringTokenizer(line,","); 
34 if(line.length()>0) { 
35 String [] dailyData = new String [tokens.countTokensQ]; 
36 dailyData[0] = tokens.nextTokenQ; 
37 dailyData[l] = tokens.nextTokenQ; 
38 dailyData[2] = tokens.nextTokenQ; 
39 dailyData[3] = tokens.nextTokenQ; 
40 dailyData[4] = tokens.nextTokenQ; 
41 currentDay=new Daily WeatherData(dailyData[ 1 ], 

dailyData[2], dailyData[3], dailyData[4]); 
42 } 
43 } 
44 catch (lOException e){System.out.println("Error reading data");} 

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 2 of 4). 
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Line 34 makes sure that the string read in line 32 contains real data. Line 
35 creates an array with size the number of tokens created in line 33. Lines 36 
through 40 assign to an element of an array a token that represents a value 
(rainfall, for example) from the daily data set. Line 41 creates an instance of 
the class Daily WeatherData with the tokens obtained previously. The values 
of tokens will be assigned to the attributes of class Daily WeatherData. Line 
44 shows an exception that may occur while reading the data from the text 
file. It is a good programming practice to provide users with the right 
information when an exception occurs during the execution of the program. 
The user is informed about the cause of the exception and then, can decide 
what decision to make next. 

45 setDay OfYear(getDayOfYear()+1); 
46 return currentDay; 
47 } 
48 public void removcQ {} 
49 public void setDayOfYear(int dayOfYear) { 
50 this.dayOfYear=dayOfYear; 
51 } 
52 public int getDayOfYearQ { 
53 return dayOfYear; 
54 } 
55 public Daily WeatherData getDailyDataQ { 
56 return currentDay; 
57 } 
58 public double getSolarRadiationQ { 
59 return currentDay.getSolarRadiationQ; 
60 } 

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 3 of 4). 

Line 45 increases by one the number of days since the beginning of the 
simulation. Line 46 returns an instance of the class Daily WeatherData 
populated with current weather data read from the file. The order of the 
weather data in the file is the following: Solar radiation, temperature max, 
temperature min, and rainfall. 

Line 48 is the definition of the method removeQ; this method does not 
have any body, as it is not used. We are obliged to provide an empty 
implementation for this method as it is part of the interface Iterator. Class 
WeatherDataFromFile implements interface Iterator and therefore, an 
implementation for each of the methods of the interface is needed to be part of 
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the class definition. An empty implementation for a method means that the 
method does not provide any functionahty. Lines 49 through 51 define the 
method that can change the value of attribute dayOfYear, This method uses 
the parameter dayOfYear to substitute the existing value of the attribute. Lines 
52 through 54 define a method that returns the value of the attribute 
dayOfYear. Lines 55 through 57 define the method getDailyDataQ that 
returns an instance of class DailyData already populated with weather data for 
a specific day. 

61 public double getTemperatureMaxQ { 
62 return currentDay.getTemperatureMaxQ; 
63 } 
64 public double getTemperatureMinQ { 
65 return currentDay.getTemperatureMin(); 
66 } 
67 public double getRainFallQ { 
68 return currentDay.getRainFallQ; 
69 } 
70 public double getPARQ { 
71 return currentDay.getPAR(); 
72 } 
73 public double getAverageTempDuringDayQ { 
74 return currentDay.getAverageTempDuringDayQ; 
75 } 
76 public double getAveragcTemperatureForPTQ { 
77 return currentDay.getAveragcTemperatureForPTQ; 
78 } 
79 public double getAveragcTemperaturcQ { 
80 return currentDay.getAveragcTemperaturcQ; 
81 } 
82 } 

Figure 8-35. Definition of class WeatherDataFromFile in Java (Part 4 of 4). 

Lines 58 through 82 define methods that allow other objects to access 
specific weather data stored in the current instance of Daily WeatherData. 
Note that these methods use the Delegation pattern, defined in the first part 
of the book in Section 2.1 of Chapter 7. As class WeatherDatafromFile 
implements interface IWeather, it should provide an implementation of all of 
the methods defined in the interface. Data such as rainfall or solar radiation 
are stored in an instance of class Daily WeatherData. WeatherDataFromFile 
does not have access to these individual data, but it has access to the instance 
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of DailyWeatherData that holds them and therefore it delegates the method 
call to this instance. The format of the file holding the weather data is shown 
in Figure 8-36. The first column shows that it is the first day of the year 1987. 
The next columns hold the data for temperature minimum, temperature 
maximum, solar radiation, and rainfall. In our implementation of the 
Kraalingen approach we have used a slightly different approach to obtain the 
day of the year. Instead of extracting it from the DayOJYear value, we have 
defined a new attribute named dayOfYear that initially is set to zero and is 
increased by one at each step of the simulation. 

DayOfYear Tmin xmax Radiation Rain fa l l 

87001, 
87002, 
87003, 
87004, 
87005, 
87006, 
87007, 
87008, 
87009, 
87010, 

5.1, 
10.8, 
12.1, 
3.6, 
12.8, 
12.4, 
11.1, 
12, 
6.1, 
3.5, 

20, 
13.3 
14.4 
18.3 
17.2 
21.1 
21.7 
21.7 
20, 
23. 3 

4.4, 
1.1, 

, 1.1, 
6.1, 
5.6, 
5, 
7.2, 
8.3, 
8.3, 
11.1, 

23.9 
0 
0 
14.7 
0.8 
0 
0 
0 
0 
3.8 

Figure 8-36. The format of the weather data file. 

10.3.2 Class WeatherDataFromStation 

This class implements the behavior defined in IWeather interface in the 
case that the weather data are obtained from an on-line weather station. In this 
case, additional information needs to be provided such as the name or the 
identification number of the weather station and the starting and the ending 
date for the time interval of the simulation. These input data are combined in 
an SQL statement to extract the corresponding records from the database. 
Figure 8-37 shows the Java implementation of class 
WeatherDataFromStation. 
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1 importjava.net.*; 
2 import java.util.*; 
3 import java.io.*; 
4 
5 public class WeatherDataFromStation implements IWeather { 
6 private int dayOfYear; 
7 private DailyWeatherData currentDay; 
8 private BufferedReader buffReader = null; 
9 private String startingDate, endingDate, stationNumber; 
10 private URL url^null; 
11 
12 public WeatherDataFromStationO {} 
13 
14 public void initialize(Properties props) { 
15 try { 
16 StartingDate = props.getProperty ("startingDate"); 
17 endingDate = props.getProperty("endingDate"); 
18 StationNumber = props.getProperty ("stationNumber"); 
19 url=new URL("http://fawn.ifas.ufl.edu/scripts/fawndataserver.asp? 

sql==select%20AirTempMin,AirTemMax,Rainfall,TotalRad 
%20from%20dailysummary%20 

20 where%20id="+stationNumber+"%20and%20datetime>='" 
21 +startingDate+'"%20and%20datetime<'" 
22 +endingDate+'""); 
23 } 
24 catch (MalformedURLException me) { 
25 
26 System.out.println("Cannot connect to the weather station"); 
27 System.exit(l); 
28 } 

Figure 8-37. Definition of class WeatherDataFromStation in Java (Part 1 of 5). 

Lines 1 through 3 import the libraries needed for implementing the 
behavior of the class. Notice that in addition to the libraries needed in the 
definition of the class WeatherDataFromFile, there is another one referred to 
di^ java.net. * that provides behavior to communicate with the Internet. Line 5 
defines the class WeatherDataFromStation that implements behavior defined 
in interface IWeather, Lines 6 through 10 define the attributes of the class. 
Line 12 defines the constructor of the class. Line 14 defines the method 
initialize(Properties props). The property file props holds the parameters 
needed to identify the weather station. The parameters are the weather station 
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number, the starting and ending date for the time interval used in the 
simulation. Lines 16 through 18 read the above mentioned parameters from 
the property file. Lines 19 through 23 create an instance of type URL using a 
parameter that provides information about the address of the server and the 
SQLl statement to be executed by the server providing the data. Lines 26 and 
27 show that in the case the system cannot connect to the weather station, an 
error message is displayed and the execution halts. 

Lines 29 through 35 read the first line of data from the server and set to 0 
the attribute dayOJYear, The address of the server is: http://fawn.ifas.ufl.edu 
/scripts/fawndataserver.asp and the SQL statement is: 

SELECT AirTempMin,AirTempMax,Rainfall,TotalRad,ET FROM 
dailysummary WHERE id=stationNumber 

AND datetime>= startingDate AND datetime<endingDate . 
Note that some additional characters are needed to fill the empty spaces in 

the SQL statement in Java language. The rest of the code is shown as follows. 

29 try { 
30 buffReader = new BufferedReader(new 

InputStreamReader(url.openStream())); 
31 String firstLine = (String)buffReader.readLine(); //eliminates the titles 
32} 
33 catch (lOException e){e.printStackTrace();} 
34 setDayOfYear(O); 
35} 
3 6 public boolean hasNextQ { 
37 try { 
38 return buffReader.readyQ; 
39 } 
40 catch (lOException e) { 
41 return false; 
42 } 
43 } 
44 public Object next() { 
45 try { 
46 String line = (String)buffReader.readLine(); 
47 StringTokenizer tokens = new StringTokenizer(line,","); 
48 if(line.length()>0) { 
49 String [] dailyData = new String [tokens.countTokensQ]; 
50 dailyData[0] = tokens. nextTokenQ; 
51 dailyData[l] = tokens.nextTokenQ; 

Figure 8-37. Definition of class WeatherDataFromStation in Java (Part 2 of 5) 
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52 dailyData[2] = tokens.nextTokenQ; 
53 daily Data[3] = tokens.nextTokenQ; 
54 currentDay=new DailyWeatherData( dailyData[0], 

dailyData[l],dailyData[2],dailyData[3]); 
55 } 
56 } 
57 catch (lOException e){} 
5 8 setDay OfYear(getDayOfYear()+1); 
59 return currentDay; 
60 } 

Figure 8-37, Definition of class WeatherDataFromStation in Java (Part 3 of 5) 

Note that the Java code for classes WeatherDataFromFile and 
WeatherDataFromStation are similar. The difference is the part of the code 
that identifies the source of the data. In the case of class 
WeatherDataFromFile, special code is needed to read the data from the file 
whereas in the case of class WeatherDataFromStation, special code is needed 
to establish connection with the weather station. In both cases, method 
initialize(Properties props) is used to connect with the data source. 

61 public void setDayOfYear(int dayOfYear) { 
62 this.dayOfYear=dayOfYear; 
63 } 
64 public int getDayOfYearQ { 
65 return dayOfYear; 
66 } 
67 public double getAverageTemperatureQ { 
68 return currentDay.getAverageTemperature(); 
69 } 
70 public void removcQ {} 
71 public double getSolarRadiationQ { 
72 return currentDay.getSolarRadiationQ; 
73 } 
74 public double getAverageTempDuringDayQ { 
75 return currentDay.getAverageTemperatureQ; 
76 } 
77 public double getAverageTemperatureForPTQ { 
78 return currentDay.getAverageTemperatureForPTQ; 
79 } 

Figure 8-3 7. Definition of class WeatherDataFromStation in Java (Part 4 of 5) 
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80 public double getRainFall() { 
81 return currentDay.getRainFall(); 
82 } 
83 public double getTemperatureMinQ { 
84 return currentDay.getTemperatureMin(); 
85 } 
86 public double getTemperatureMaxQ { 
87 return currentDay.getTemperatureMaxQ; 
88 } 
89 public double getPARQ { 
90 return currentDay.getPARQ; 
91 } 
92 public double getPotentialETQ { 
93 return currentDay,getPotentialETQ; 
94 } 
95 } 
96 

Figure 8-37. Definition of class WeatherDataFromStation in Java (Part 5 of 5). 

The rest of the class definition in Figure 8-37 is similar to the class 
definition of WeatherDataFromFile, Here again we have used the Delegation 
pattern to delegate a method call from class WeatherDataFromStation to 
class DailyWeatherData, As an example, lines 92 through 94 define the 
method getPotentialETQ] the method call is delegated to object currentDay of 
type DailyWeatherData, 

10.4 Interface ISimulationController 

The behavior of the interface ISimulationController is defined based on 
the role class SimulationController must play in the system. This is a control 
class as defined in Section 5.2, Control Classes, in this chapter. In this 
section, we mentioned that the role of control classes is to coordinate the 
interaction of different objects used in a use case realization. Therefore, 
objects created from the SimulationController class should have access to 
other objects used in the use case Start Simulation, to send them the right 
message at the right time. Objects used in this use case are of type Plant, Soil, 
and Weather, (i.e., objects created from classes Plant, Soil and Weather). 

Furthermore, as class SimulationController controls the dialog with the 
user interface (or the boundary class), we will model it to follow the Facade 
Pattern as defined in Section 4.4 of Chapter 7. According to this pattern, an 
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object of type SimulationController will be the unique point of 
communication between the user interface or the boundary object and all 
other objects involved in the Start Simulation use case. The interface 
ISimulator should define the operations needed to communicate with the user 
interface or the boundary object. Figure 8-38 shows the Java implementation 
of the interface ISimulator, 

1 import java.util.Properties; 
2 
3 public interface ISimulationControUer { 
4 public void simulate(Properties props); 
5 public Properties getSimulationResultsQ; 
6 

Figure 8-38. Definition of interface ISimulationControUer in Java. 

As shown in Figure 8-38, the interface ISimulationControUer defines the 
behavior that needs to be implemented by all classes that are candidates to 
play the role of the controller in the simulation process. Line 4 defines the 
method simulate(Properties props) that passes to a SimulationController 
object a parameter of type Properties that holds the initial values to be used 
for instantiating objects of classes Plant, Soil, and Weather. Line 5 defines the 
method getSimulationResultsQ that will be used by the boundary object to 
obtain the result of the simulation. Therefore, SimulationController will store 
the results of the simulation in an object of type Properties. 

It is important to note that the provided solution establishes a 
communication bridge only between the boundary and controller objects. The 
boundary object does not have access to entity objects such as plant, soil, or 
weather. The boundary object can communicate to all controller objects, 
provided they implement the required interface as defined in Figure 8-38. 
Figure 8-39 shows the implementation of class SimulationController in Java. 

In this figure, line 1 shows that class Properties is imported from the Java 
library system. Line 3 defines class SimulationController using the Singleton 
pattern and implementing the interface ISimulationControUer. Line 4 defines 
an attribute of type SimulationController referred to as uniquelnstance, as this 
attribute will hold the unique instance of the class. Lines 6, 7, and 8 define 
attributes of types IPlant, ISoU, and IWeather that respectively reference 
oh]QQis> plant, soil, and weather. Line 9 defines an attribute of type Properties 
that is used to hold the results of the simulation. Lines 11 through 24 define a 
constructor for the class. As the class is modeled using the Singleton pattern, 
the constructor is private, meaning that no other object in the system can call 
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this method. Therefore, only one instance of the class can be created. Lines 
12, 13, and 14 create instances for objects plant, soil, and weather. The 
corresponding classes Plant, Soil and WeatherDataFromFile, implement the 
required interfaces: IPlant, ISoil, and IWeather, 

I import java.util.Properties; 
2 
3 finalpublic class SimulationController implements 

ISimulationController { 
4 private static SimulationController uniquelnstance=null; 
5 
6 private IPlant plant; 
7 private ISoil soil; 
8 private IWeather weather; 
9 private Properties props; 
10 
II private SimulationControllerQ { 
12 plant = new PlantQ; 
13 soil = new SoilQ; 
14 weather = new WeatherDataFromFileQ; 
15 
16 //Establish relation Soil-Plant 
17 plant. setSoil(soil); 
18 soil.setPlant(plant); 
19 
20 //Establish relation Plant-Weather 
21 plant. setWeather(weather); 
22 //Establish relation Soil-Weather 
23 soil, set Weather(weather); 
24 } 
25 
26 public static SimulationController getlnstanccQ { 
27 if (uniquelnstance === null) 
28 uniquelnstance == new SimulationControllerQ; 
29 
30 return uniquelnstance; 
31 } 
32 
33 public void simulate(Properties props) { 
34 // Initializations 

Figure 8-39. Implementation of class SimulationController in Java (part 1 of 3). 
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35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

weather.initialize(props); 
soil.initialize(props); 
plant.initialize(props); 

while (weather.hasNextQ) { 
weather.nextQ; 

soil.calculateRateO; 
if (plant. isPostPlantingO) 

plant.calculateRateQ; 

soil.integrateO; 
if (plant.isPostPlantingO) 

plant.integrateO; 

Figure 8-39. Implementation of class SimulationController in Java (part 2 of 3). 

Lines 16 through 24 estabhsh the relationships between created objects as 
required by the conceptual diagram presented in section 4.1 Conceptual 
Model for the Kraalingen Approach. Lines 26 through 31 define method 
getlnstanceQ that returns the unique instance of the class. This method 
implements the lazy initialization principle, which requires instantiating an 
object only when it is needed. Lines 33 through 56 show the implementation 
code for method simulate(Properties props). Lines 34 through 37 initialize the 
three entity objects involved in the simulation process. Note that some of the 
initial values for populating each of the entity objects are stored in Xho props 
file. Each of the objects will read the appropriate data from the props file. 
Lines 39 through 55 show the iteration over the weather data. At each step of 
the simulation (i.e., every day), the processes of rate calculation and 
integration take place. Lines 50 through 54 implement the repetition 
condition; if plant has not yet reached the status of maturity, then the 
simulation will continue. The simulation will terminate if the plant reaches the 
status of maturity and the final results will be stored in XhQ props file. 
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50 if(plant.isMature()) { 
51 plant.setMaturityDayO; 
52 saveFinalResultsQ; 
53 return; 
54 } 
55 } 
56 } 
57 public Properties getPropertyFileQ { 
58 return props; 
59 } 
60 
61 private void saveFinalResults() { 
62 
63 props = new PropertiesQ; 
64 props.putC'totalPlantDryWeight", 

new Double( plant.getTotalPlantDryWeight())); 
65 props.put("rootDry Weight", 

newDouble(plant.getRootDryWeight())); 
66 props.putC'fruitDryWeight", 

new Double(plant.getFruitDryWeight())); 
67 props.put("maturityDay",new Integer (plant.getMaturityDayQ)); 
68 } 
69 } 

Figure 8-39. Implementation of class SimulationController in Java (Part 3 of 3). 

Lines 57 through 59 define the method getPropertyFileQ that returns the 
property file where the results of the simulation are saved. Lines 61 through 
69 show the implementation of the method saveFinalResultsQ. Plant data 
such as total plant dry weight, root dry weight, fruit dry weight, and the day of 
the year the maturity status is reached are saved in the props file. Therefore, 
these final plant results can be used by the boundary object to display them to 
the user. 

11. PACKAGING THE APPLICATION 

Before starting to write code, it is important to create a flexible and logical 
structure for storing files. Files could be organized in packages: A package for 
component. The entire application is stored in the package referred to as 
Kraalingen, as shown in Figure 8-40. Within this package, five other 
packages are defined named Interfaces, Plant, Simulator, Soil, and Weather. 
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Each of the packages contains a file of type JAR that is the compressed code 
for the class/component. Thus, the package Interfaces contains the file 
Interfaces.jar, the package Plant contains the file Plant.jar, and so on. 

0 t 3 fCraatingen 
iQ Interfaces 
Q Ptant 
£3 Simulator 
Casoii 
Gl Weather 

Figure 8-40, Package structure for the Kraalingen Application. 

Documents pertaining to the entire system can be stored in the main 
directory referred to as Kraalingen. Thus, the UML diagrams such as class, 
sequence, and collaboration diagrams can be stored in package Kraalingen. 



Chapter 9 

THE PLUG AND PLAY ARCHITECTURE 

1. DEFINITION 

Software engineers are facing increasing pressure from clients to provide 
architectural solutions that can be built with today's requirements and be 
flexible enough to meet future needs. It is common practice in the domain of 
software development to see customers constantly modifying and expanding 
the requirements of the future system. Faced with the reality of everchanging 
requirements, it is desirable to use an architecture that allows for easy 
modifications of existing functionalities and easy adoption of new ones. 

An architecture that is designed to minimize the impact of future changes 
is the "plug and play" architecture. According to the definition provided by 
Webopedia nittp://webopedia.com), the plug and play architecture refers to 
the ability of a computer system to automatically configure expansion boards 
and other devices. Originally, the plug and play architecture was used by the 
hardware industry. The idea of installing a new device that will configure 
itself to work in harmony with other parts of an existing system is very 
promising. The "plug and play" architecture eliminated the need to adjust 
switches, jumpers, and other configuration elements in a hardware system. It 
brought general relief to the frustration caused by the large number of the 
problems encountered during the process of installing a new piece of 
hardware. The success of the plug and play approach in the hardware industry 
created a fertile environment in the software engineering environments to 
build software systems applying the same techniques. 
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The key to building software systems that provide this high level of 
flexibility is to use a component-based design. Components are units that can 
be developed independently and even from third parties. They can be 
organized to dialog with each other and to provide the functionalities required 
by a software system. Components provide their services through a well-
defined set of interfaces. It is important to note that defining a well-thought-
out set of interfaces is crucial to a component's use and reuse. If interfaces are 
not fully encapsulating, it will be difficult to tune or enhance 
implementations, as poor encapsulation will hinder reuse [Lak96]. When the 
component-based development reached its level of maturity, the plug and play 
technology was at programmers reach. Plug-ins have been used widely since 
the introduction of Netscape's Navigator Web browser and one of the most 
successful examples of plug-in architecture was Apple's QuickTime [Szy99]. 

2. IMPLEMENTATION 

The implementation of the plug and play architecture is closely related to 
the use design patterns, specifically to creational and behavioral patterns. A 
plug and play architecture for the Kraalingen approach should allow the 
flexibility to replace the basic class/components (i.e.. Soil, Plant, and 
Weather) with other components that provide similar behavior and implement 
the same set of interfaces as the exiting class/components [Pap05]. In Section 
7.2, Communication control-entity, in Chapter 8, we mentioned that the 
control object communicates with entity objects through interfaces. Therefore, 
any class implementing the interface could be used in the system. It is 
desirable to have a mechanism that allows for substituting a class/component 
with another similar one that does not require changes of code. Ideally, such a 
mechanism would make the choice of the class/component to be used at run 
time. The problem of selecting among many potential class/components is 
solved by the Strategy pattern, presented in Section 5.2 of Chapter 7. The 
strategy pattern used for implementing the plug and play architecture is shown 
in Figure 9-1. 
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Figure 9-1. Strategy pattern used for implementing a plug and play architecture. 

Selecting for use a class at run time requires a mechanism for dynamically 
creating instances of used classes. The AbstractFactory pattern will be used 
for this purpose. The Java implementation of the patterns used is closely 
related to the concept of Reflection, discussed in the next section. 

3. REFLECTION 

Complex and dynamic systems allow for the fact that the environment in 
which they run may change constantly. In an object-oriented environment, 
classes are loaded dynamically, binding is done dynamically, and object 
instances are created dynamically when they are needed. Therefore, there is a 
need to collect information about the object that is dynamically created. 
Reflection provides the answer to the above problem. Both Java and .NET 
technologies provide ample support for reflection. The .NET framework uses 
reflection to inspect the content of assemblies [Pro02] and Java uses it to 
collect internal information about classes or components (http://javasoft.com). 
As Java is the implementation language for our application, only details for 
Java's Reflection API are provided. 

In Java, the Reflection API has a two fold purpose. First, it provides a 
mechanism to fetch data about a class/component and second, a means for 
extracting objects composing the class/component. Using reflection, it is 
possible to obtain internal information about the class/component such as its 
superclass, the interfaces the class implements, the methods, their signatures, 
and the returning object. The behavior for fetching data about a class is 
provided in a class referred to as Class. Class is the universal type for the 
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meta information that describes objects within the Java system. Class loaders 
in the Java system return objects of type Class, 

Figure 9-2 shows the Java implementation of the combination of patterns 
Strategy and AbstractFactory using the behavior of class Class as defined in 
Java's Reflection API. In this figure, line 3 defines the method 
newInstance(className) that creates an object of type className. Lines 5 
through 10 load the class className using the current class loader, and lines 
11 through 24 create an instance of class className. The name of the 
class/component to be used in the system can be provided by a configuration 
file as shown in Figure 9-3. In this case, the simulation system will use classes 
Plant, Soil, and WeatherDataFromFile, Thus, the decision about the type of 
objects to be created can be made during execution by a component-
controller, not in the source code. In order to plugin another class, for 
example, WeatherDataFromDatabase, only the content of the configuration 
file needs to be updated with the appropriate class name. Thus, no changes to 
the code are required. The component-controller, in our case 
SimulationController, instantiates the right components at run time. Using 
the plug and play architecture, the user has the choice to activate different 
classes that provide similar behavior but implement the same interface. 

I public class ObjectFactory { 
2 
3 public static Object newInstance(String className) { 
4 Class els = null; 
5 try{ 
6 els = Class.forName(className);// create the class 
7 } 
8 catch (ClassNotFoundException cnfe) { 
9 System.out.println("can't find class named: " +className); 
10 } 
II Object newObject = null; 
12 if (els != null) { 
13 try { 
14 newObject = cls.newlnstance(); // Create the instance 
15 } 
16 catch (InstantiationException ie) { 
17 System.out.println("can't instantiate class named: " +className); 
18 } 
19 catch (lUegalAccessException iae) { 
20 System.out.println("can't access class named: " + className); 

Figure 9-2. The implementation in Java of Strategy and AbstractFactory patterns (Part 1 of 2). 
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21 } 
22 } 
23 return newObject; 
24 } 
25 } 

Figure 9-2. The implementation in Java of Strategy and AbstractFactory patterns (Part 2 of 2). 

p lan t ^P lan t 
s o i 1 = s o i l 
we at he r =4*le at he r Dat aF r o nriF i 1 e 

Figure 9-3. Example of configuration file. 

4. THE PLUG AND PLAY 
SIMULATORCONTROLLER 

As the process of instantiating the class/components involved in the 
simulation process changed (i.e., the selection of class/components to be used 
will be done at run time), the controller class, defined in section 10.4 of 
Chapter 8, must be modified accordingly. Figure 9-4 shows the Java 
implementation of the modified SimulationControUer class. 

1 import java.util.Properties; 
2 import java.util.ResourceBundle; 
3 
4 final public class SimulationControUer { 
5 
6 private static SimulationControUer uniquelnstance=null; 
7 private IPlant plant; 
8 private ISoil soil; 
9 private IWeatherDataProvider weather; 
10 private Properties props; 

Figure 9-4. Java implementation of the plug and play SimulatorController (Part 1 of 4). 
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11 private SimulationController() { 
12 ResourceBundle classBundle = 

ResourceBundle.getBundle("ClassNames"); 
13 weather = (IWeather)ObjectFactory.newInstance ( 

classBundle.getStringC'weather")); 

14 plant = (IPlant)ObjectFactory.newInstance( 
classBundle.getStringC'plant")); 

15 soil = (ISoil)ObjectFactory.newInstance( 
classBundle.getStringC'soil")); 

16 //Establish relation Soil-Plant 
17 plant.setSoil(soil); 
18 soil.setPlant(plant); 
19 //Estalish relation Plant-Weather 
20 plant.setWeather( weather); 
21 //Establish relation Soil-Weather 
22 soil. setWeather(weather); 
23 } 
24 
25 public static SimulationController getlnstanceQ { 
26 if (uniquelnstance == null) 
27 uniquelnstance = new SimulationControllerQ; 

Figure 9-4, Java implementation of the plug and play SimulatorController (Part 2 of 4). 

Line 2 imports a library that makes available the functionalities of class 
ResourceBoundle. The functionalities provided by this class are used to create 
classes from names read from the configuration file, as shown in lines 13 
through 16. Lines 7 through 9 show that SimulationController has access to 
interfaces IPlant, ISoil, and IWeatherDataProvider. Line 13 defines a 
resource bundle, a Java artifact for implementing a configuration file that will 
hold the names of the classes that SimulationController needs to create. 
Figure 9-2, in the previous section, shows an implementation example of the 
configuration file. This file can be edited using any text editor. In this case, 
the SimulationController needs to create classes Plant, Soil, and 
WeatherDataFromFile. Line 13 obtains access to the configuration file 
referred to as ClassNames. Lines 14 through 16 create objects of type 
Weather, Plant, and Soil. As the process of creating objects using reflection is 
not a very straightforward one, let us take a closer look at this process. First, 
the name of the class is obtained as a string by sending to classBundle the 
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message getStringC'className"), Thus, classBundle.getString 
("weather") will return the name of class Weather, Second, (IWeather) 
ObjectFactory,newInstance(classBundle,getString( ''weather")) will create an 
object of type IWeather. Note that ObjectFactory returns an object that is 
casted to become an instance of type IWeather. The same process is used to 
obtain objects of types Plant and Soil. Lines 17 through 74 are the same as in 
the previous versions of SimulationController class. 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

return uniquelnstance; 
} 

public Properties getPropertyQ { 
return props; 

} 
public IWeather getWeather() { 

return weather; 
} 
public ISoil getSoilO { 

return soil; 
} 
public IPlant getPlant() { 

return plant; 
} 

public void simulate(Properties props) { 
// Initializations 
weather.initialize(props); 
soil.initiaHze(props); 
plant.initialize(props); 

while (weather.hasNextQ) { 
weather.nextQ; 
soil.calculateRateO; 
if (plant.isPostPlantingO) 

plant. calculateRateO; 
soil.integratcQ; 
if (plant.isPostPlantingO) 

plant.integrateQ; 
if (plant.isMatureO) { 

// Stop simulation 

Figure 9-4. Java implementation of the plug and play SimulatorController (Part 3 of 4). 
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59 plant.setMaturityDayO; 
60 saveFinalResultsQ; 
61 return; 
62 } 
63 } 
64 } 
65 private void saveFinalResultsQ { 
66 props = new PropertiesQ; 
67 props.putC'totalPlantDryWeight", 
68 new Double(plant.getTotalPlantDryWeight())); 
69 props.put("rootDryWeight", 

new Double(plant.getRootDryWeight())); 
70 props.putC'fruitDiyWeight", 

newDouble(plant.getFruitDryWeight())); 
71 

props.put("maturityDay",String.valueOf(plant.getMaturityDay())) 

72 } 
73 } 

Figure 9-4. Java implementation of the plug and play SimulatorController (Part 4 of 4). 

Plugging a new class/component into an existing system can be 
implemented in different ways. One can be organizing the class/component as 
an executable file that inserts the class/component into the right directory and 
makes the necessary changes to the configuration file. The next time the 
system runs, it will activate the newly added class/component. The 
configuration file can be implemented in several ways. We have selected to 
use Java's resource bundle, as it is simple and sufficient to demonstrate an 
example of the plug and play architecture. Other possible implementation for 
the configuration file is to use an XML file, holding the names of the classes 
to be created. XML parsers will be needed to extract the information from the 
XML file and, in combination with the Builder pattern [GHJ95], create the 
required classes. 

The advantage of this solution is that it allows development of frameworks 
for creating complex objects. Information about the interfaces that define the 
behavior to be implemented by other potential classes can be found in the 
corresponding UML models. UML allows for creating well-organized and 
easily-understandable documentation, which can be published on the Web and 
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is available to developers from different groups and locations to coordinate 
their efforts [PSH04]. 

5. TESTING UNIT FOR A CLASS/COMPONENT 

Testing has always been an important part of the software development. It 
is the last step of the software development and the step that decides whether 
the developed system will move to production. The entire system needs to be 
tested to make sure that it delivers the right results. The use of good modeling 
practices help to develop good quality software but it may not always avoid 
mistakes; they are inevitable and part of the process of developing software, 

One of the challenges of designing independent components is making 
sure that they deliver the expected results. Independent components manifest 
their behavior when involved in a dialog with other components. The more 
complex the behavior of a component is, the more difficult it is to test. 
Testing, when done manually, is time consuming. There are several automatic 
testing methodologies that are successfully used in the software industry. One 
popular testing software application is JUnit (http://www.iunit.org). In this 
book we will not describe in detail any of the existing testing methodologies. 
We recommend the readers to look for specialized books in testing 
methodologies. We will describe some simple testing "patterns" that can be 
used for testing classes or components. 

One way of testing a class or a component in Java is to consider that class 
as a stand-alone one by adding a static main method and some logic for 
testing functionalities the class provides. Figure 9-5 shows an example of a 
main method and code for testing the behavior of class 
WeatherDataFromFile. In this case, we will make sure that the class 
WeatherDataFromFile we have developed provides the right daily weather 
data needed in the simulation process. The implementation in Java for this 
class is shown in Figure 8-35 in Section 10.3.1 of Chapter 8. 

83 static void main(String args[]) { 
84 Properties props = new PropertiesQ; 
85 props.put("weatherFile","weatiier.txt"); 
86 WeatherDataFromFile weather = new WeatherDataFromFileQ; 
87 System.out.println(" Daily Weather Data "); 
88 weather.initialize(props); 
89 while (weather.hasNextQ) { 

Figure 9-5. A testing unit for class WeatherDataFromFile (Part 1 of 2). 
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90 weather.next(); 
91 System.out.println("DayOfYear="+weather.getDayOfYear() 

+" Tmin=="+currentDay.getTemperatureMin() 
+" Tmax="+currentDay.getTemperatureMax() 

+" Radiation="+currentDay.getSolarRadiation() 
+" Rainfall="+currentDay.getRainFall()); 

92 } 
93 } 

Figure 9-5. A testing unit for class WeatherDataFromFile (Part 2 of 2). 

Line 83 shows the definition of the method as static and that does not 
return any results. Lines 84 and 85 create an instance of Properties class 
needed to store the name of the weather data file. Line 86 shows that an 
instance of the class WeatherDataFromFile, referred to as weather, is created. 
Line 87 prints the string "Daily Weather Data". Line 88 initializes the object 
weather using the parameter "weather.txt," which is the file name holding the 
weather data to be used in the simulation process. By definition, class 
WeatherDataFromFile implements interface Iterator. Therefore, it provides 
the means to iterate over the weather data. Line 89 tests whether the end of 
the file is reached. Line 90 obtains an object of type DailyWeatherData that is 
referenced by attribute currentDay, From the object currentDay, daily data 
can be obtained by sending messages such as getTemperatureMinQ, 
getTemperatureMaxQ, etc. Line 91 prints daily weather data for the current 
day. 

Figure 9-6 shows a partial view of the weather data read from the file 
weather.txt. Notice that these results are the same as the ones shown in Figure 
8-36. Therefore, class WeatherDataFromFile provides the expected results. 
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• Daily Weather Data-

DayOIYear=1 Tmin=5.1 Tmax=20.0 Radiation=4.4 Rainfall=23.9 
DavOfYear=2 Tmin=10.8 Tmax=13.3 Radiation=1.1 Rainfall=0.0 
DavOIYear=3 Tmin=12.1 TmaH=14.4 Radiation=1.1 RainfalhO.O 
DayOfYear=4 Tmin=3.6 Tmax=18.3 Radiation=6.1 Rainfall=14.7 
DayOfYear=5 Tmin=12.8 Tmax=17.2 Radiation=5.6 Rainfall=0.8 
DayO(Year=6 Tmin=12.4 Tmax=21.1 Radiation=5.0 Rainfall=0.0 
DayOfYear=7 Tmin=11.1 Tmax=21.7 Radiation=7.2 Rainfall=0.0 
DavOIYear=8 Tmin=12.0 Tmax=21.7 Radiation=8.3 RainfalhO.O 
DayOfYear=9 Tmin=6.1 Tmax=20.0 Radiation=8.3 Rainfall=0.0 
DavOfYear=10 Tmin=3.5 Tmax=23.3 Radiation=l1.1 Rainfall=3.8 
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Figure 9-6, Daily weather data obtained from the testing unit. 

In a similar manner, we will create a testing unit for the class 
SimulationController. The class definition for SimulationControiler, as 
defined in Figure 8-39, will be provided with a static method referred to as 
main as shown in Figure 9-7. 

Lines 72 through 75 define the parameters needed for the simulation 
process and assign them initial values. Usually, these values will be provided 
by users of the system. Line 76 obtains the unique instance of the 
SimulationController and line 77 sends simulator the message simulate with 
the appropriate parameters. The results of the simulation are stored in a 
Properties file by the simulator. 

70 static void main(String args[]) { 
71 Properties props = new PropertiesQ; 
72 props.put("weatherFile","weather.txt"); 
73 props.put("plantingDate","121"); 
74 props.put("soilDepth","145"); 
75 props.put("wiltingPointPercent","0.06"); 
76 SimulationController 

simulator = SimulationController.getlnstanceQ; 
77 simulator, simulate(props); 
78 System.out.println(" Simulation Results "); 
79 Properties pr = simulator.getPropertyQ; 
80 Double rdweight = (Double)pr.get("rootDryWeight"); 
81 Double ptdweight - (Double)pr.getC'totalPlantDryWeight"); 
82 Double fdweight = (Double)pr.get("fruitDryWeight"); 

Figure 9-7. Test unit for class SimulationController (Part 1 of 2). 
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83 String matDay = pr.getProperty("maturityDay"); 
84 System.out.println("Root Dry Weight="+ rdweight.toStringQ 
85 +" Maturity day="+ matDay 
86 +" Total Plant Dry Weight="+ptdweight.toString() 
87 +" Fruit Dry Weight="+fdweight.toString()); 

} 

Figure 9-7. Test unit for class SimulationController (Part 2 of 2). 

Lines 80 through 83 read the results from the Properties file and lines 84 
through 88 print the results. The obtained results can be evaluated by a 
specialist to make sure they are accurate, or they can be compared to results 
obtained with other versions of the software if they exist. 

The ability to test independently class/components allows for a faster 
software development as the focus is on one class/component with a well-
defined behavior. By integrating testing unit into the build process, it makes it 
easier to discover implementation errors and design flaws. A class that has 
successfully passed the individual test can be easily integrated into more 
complex testing scenarios where several classes/components are involved. 
Thus, using an iterative process that consists of testing individual classes and 
later the interaction of several classes, makes it easier to test complex 
software. We have used this approach all along the software development 
process and have obtained good results. 



Chapter 10 

SOIL WATER-BALANCE AND IRRIGATION-
SCHEDULING MODELS: A CASE STUDY 

1. INTRODUCTION 

In this chapter we will discuss issues related to the development of a 
general UML model that covers a large class of similar models, the class of 
water-balance and irrigation-scheduling models [PSH04]. Many irrigation-
scheduling and water-balance models have been developed and published in 
the past. These models have been used for both research purposes and as 
management tools. Models used for research purposes generally represent the 
system and underlying processes in greater detail than do management 
models. [AW85] distinguished between (i) mechanistic and functional, and 
(ii) rate and capacity models. Mechanistic models are based on fundamental 
processes, whereas functional models simplify the representation of 
processes. Rate models are driven by time and define rates of change within a 
system; capacity models are driven by input amounts and define amounts of 
change. However, even within these broad categories, models differ in their 
assumptions and representation of water-balance processes. [MLB98] make a 
detailed analysis of the assumptions and the representations of the water-
balance models. Water-balance models have been used as stand-alone 
applications and as components of larger agricultural-system models. For 
example, a water-balance model developed by Ritchie has been integrated 
into numerous simulation models, including the cotton simulation model 
OZCOT [Hea94], CERES-Wheat [R085], and is used by the Decision-
Support System for Agrotechnology Transfer (DSSAT) [Rit98] which 
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includes crop simulation models for a number of agronomic crops. Irrigation-
scheduling models are generally standalone applications that have been 
designed as management decision-support tools. 

Similar models may differ in their input data requirements and their use. 
[OEKOl] used THESEUS developed by [WegOO], a modeling system 
containing a number of sub-models, for water-balance and crop simulation, 
representing the soil, plant, and atmosphere, which can be combined to create 
simulation models. The system contains a number of water-balance models; 
users can select one that meets their complexity and data requirements. They 
summarized and distinguished between models according to their output, the 
equations used in the model and the input data requirements. 

Although water-balance and irrigation-scheduling models may have been 
developed for different purposes and vary widely in their input requirements 
and representation of processes, they do share a number of commonalities. 
For example, they all typically require some soil and weather data. There is 
also often overlap in the processes represented, although they may be 
calculated by different methods. For example, most models include water 
removal by evapotranspiration. This may be calculated by the model: A 
historical value or an input requirement. The process of water movement is 
simulated by these types of models either as amounts moving into the soil 
profile and stored within it, or by rates of change in soil water content. In 
order to identify common elements and relationships, a number of water-
balance and irrigation-scheduling models were compared. 

In the case of soil water-balance and irrigation-scheduling models, the 
common system elements are the soil, plant, and weather. The behavior of 
these elements is model-specific and is defined by the processes accounted for 
by the model. 

2. CONCEPTUAL MODELS: EXAMPLES 

As previously mentioned, the most common elements used in water-
balance and irrigation-scheduling models are plant, soil, and weather. A first 
draft of the conceptual diagram is presented in Figure 10-1. 
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Plant gt'owsln Soil 

usesWbatherData uses VV&atherData 

Figure 10-1. Conceptual model for water-balance and irrigation-scheduling models. 

As shown in Figure 10-1, Plant and Soil are linked with a bidirectional 
association referred to as growsin. This association shows that a plant grows 
in soil and takes from soil all the nutrients that are needed for plant 
development; the plant consumes nutrients that are located in soil. Processes 
occurring in Plant need Soil data and vice versa; processes occurring in Soil 
need Plant data. Both, Plant and Soil, are connected via a unidirectional 
association to Weather, referred to as usesWeatherData that expresses the fact 
that plant and soil are affected by the weather conditions. 

The conceptual model presented above does not take into consideration the 
fact that additional water is provided by the means of irrigation when there is 
a drought for a considerable amount of time. Therefore, another element 
needs to be added to the conceptual diagram: The irrigation management 
element. Figure 10-2 shows the modified conceptual diagram. 
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Figure 10-2. Conceptual model with irrigation management considerations. 

Figure 10-2 shows that irrigation management practices will be applied to 
soil and plant in order to improve production yield. The association manages 
that links Soil and IrrigationManagement is bidirectional, meaning that 
processes occurring in soil need irrigation management data and calculations 
occurring in the management need soil data. It is important to note that it is 
not always easy to define the nature of the associations among the elements of 
the model. As we are yet in the phase of developing a conceptual model, not 
all the exact relationships between elements can be defined at this point. The 
more we advance in the model construction, the more we will know about the 
collaboration between elements of the model and the more precise the model 
becomes. As an example, some association that we have considered as 
unidirectional may become bidirectional as we learn that data from the class 
located in one side of the association are needed to calculate processes in the 
class in the other side of the association. The process of developing a 
complete, detailed, and exact model is an iterative one. 

The calculation of some processes requires data from several elements of 
the conceptual model and cannot be assigned to a particular element. Such 
processes are the calculation of evapotranspiration rates; they usually need 
data from soil, plant, and the weather elements. Therefore, an additional 
element needs to be added to the conceptual model to carry out these 
calculations. This element, referred to as SoilPlantAtmosphere, will be 
assigned the task of performing these calculations and is added to the 
conceptual diagram as shown in Figure 10-3. 
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Figure 10-3. Conceptual model that considers soil-plant-atmosphere processes. 

As shown in Figure 10-3, a new element, the SoilPlantAtmosphere, is 
added to the conceptual diagram to account for evapotranspiration rate 
calculations. In order to perform these calculations, SoilPlantAtmosphere 
needs to have access to other elements containing these data. Thus, the 
unidirectional association usesWeatherData between SoilPlantAtmosphere 
and Weather allows access to weather data. The association usesPlantData 
allows for accessing plant data and the association usesSoilData allows access 
to soil data. 

The conceptual diagram presented in Figure 10-3 seems to cover all the 
elements and their relationships needed to calculate processes that occur in 
soil, plant, and atmosphere that are required to calculate the amount of water 
needed for irrigation. The relationships between elements are independent of 
the type of equations used in the model and of the programming language 
used for the implementation of the model. A general structure, representing all 
the elements involved in a water-balance or irrigation-scheduling model and 
their relationships is developed to serve as a general template for developing 
new models. 
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3. TEMPLATE FOR DEVELOPING NEW MODELS 

The plant, weather, and soil plant atmosphere elements of the conceptual 
model are presented by the classes Plant, Weather, and SoilPlantAtmosphere, 
as shown in Figure 10-4. Soil is represented by three classes; SoilProfile, 
SoilLayer, and Cell. The SoilProfile class represents the profile as a whole. 
Some models consider soil as a composition of layers with different 
properties. Some other models consider the entire soil profile as one layer. 
The SoilLayer class is created to store layer-specific data and behavior. The 
Cell class represents the surface. It represents a uniform area for which a 
simulation is run. The Groundwater class is created to store data and behavior 
for the groundwater layer, sometimes considered by water-balance and 
irrigation-scheduling models. The IrrigationManagement class plays an 
important role in irrigation-scheduling models. It stores information related to 
irrigation management practices and calculates outputs such as recommended 
irrigation rates. 

A unidirectional association, referred at as usesWeatherData, links classes 
SoilPlantAtmosphere and Weather, The navigation direction is from 
SoilPlantAtmosphere towards Weather. This means that objects of class 
SoilPlantAtmosphere have access to data and behavior to objects of class 
Weather. Weather data are required to calculate processes occurring in 
SoilPlantAtmosphere, such as calculations of actual evapotranspiration rates. 
Objects of class Weather do not have access to objects of class 
SoilPlantAtmosphere, as there are no calculations occurring in this class. The 
multiplicity of the association usesWeatherData is one-to-one, meaning that 
one object of type SoilPlantAtmosphere has access to one object of type 
Weather (one source of weather data) at the time of the simulation. 

The association usesWeatherData that links classes Cell and Weather has 
the same properties as the one linking classes SoilPlantAtmosphere and 
Weather, it is bidirectional and a one-to-one association. 
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Figure 10-4. Template for developing new water-balance or irrigation-scheduling models. 

The association between classes SoilPlantAtmosphere and Plant is 
unidirectional, with the navigation direction from SoilPlantAtmosphere 
towards Plant, An object of type SoilPlantAtmosphere can access data and 
behavior from an object of type Plant. The vice versa is not true; an object of 
type Plant cannot access data and behavior from an object of type 
SoilPlantAtmosphere, Processes occurring in class SoilPlantAtmosphere need 
plant data for their calculations. The multiplicity of the association is one-to-
one; one object of type SoilPlantAtmosphere can access one object of type 
Plant, 

The association between classes SoilPlantAtmosphere and Cell is 
bidirectional, as processes occurring in each of the classes need data from the 
other class. The multiplicity of the association is one-to-many; one object of 
type SoilPlantAtmosphere can access one or more objects of type Cell, 

In the template shown, Cell is the central unit of the system. It has a soil 
profile associated with it, which, in turn, is composed of one or more layers. 
A soil profile may also contain groundwater. Plant grows in a Cell and the 
two classes are able to exchange data. Any soil data required is accessed 



194 SOFTWARE ENGINEERING TECHNIQUES 

through the Cell. Class Cell does have access to data from 
SoilPlantAtmosphere, which it is able to pass to SoilProfile and SoilLayer, in 
order that, for example, water removal from the soil by evapotranspiration 
(ET) can be modeled. 

After defining the elements involved in irrigation scheduling and water-
balance models, attributes and behavior are defined for each element 
represented in the diagram. Attributes represent the input data required by the 
model and behavior defines the processes that are calculated. Figure 10-4 
shows elements, represented by classes, provided with data and behavior. 
Based on the general template, class diagrams were developed for two 
models: A water-balance model and an irrigation scheduling model that will 
be presented in the following sections. 

4. ANALYSIS OF A WATER BALANCE MODEL 

In order to develop specific class diagrams for individual models, each 
participating class in the template is populated with attributes and methods 
representing the model-specific input requirements and processes. This 
structure clearly shows the model data input requirements and the processes 
represented and can be used to organize code. Figure 10-5 represents a class 
diagrams for a water-balance model developed by Ritchie [Rit98]. Ritchie's 
model requires certain weather data, such as rainfall, solar radiation, and 
minimum and maximum temperature; therefore, class Weather has been 
provided with the attributes to store those corresponding values. Class 
Weather is provided with a method named calculatePriestleyTaylorET, which 
is used to calculate reference ET. Depending on the method used, calculation 
of actual evapotranspiration may involve weather, soil, and plant data. 
Therefore, class SoilPlantAtmosphere has links to Weather, Soil, and Plant 
classes. Reference ET is calculated solely from weather data; this provides a 
basis for the estimate of evapotranspiration. This reference ET, is normally 
then modified to determine the actual evapotranspiration. Actual ET is 
determined by the crop characteristics and by the soil moisture content. 
Different crops have different water requirements, which vary temporally, and 
the actual amount of water that can be physically removed from the soil is 
limited by the amount of water actually stored in the soil. Methods of 
calculating actual ET from reference ET may use crop information, soil data, 
or both. Therefore, it is necessary for class SoilPlantAtmosphere to have 
relationships with classes Cell, Weather, and Plant to access to all these data. 
Unlike estimates of actual ET, reference ET calculations, such as the method 
calculatePriestleyTaylorET in Figure 10-5, were assigned to class Weather. 
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Reference ET is determined solely from weather data and represents potential 
evapotranspiration rates based on weather conditions, rather than any 
processes occurring in the plant or soil or interactions between the two. 
Online weather systems, like the Florida Automated Weather Network 
(FAWN) [BJ98] or MetBroker [LKN02], sometimes provide already-
calculated reference ET values. If these systems are used, reference ET could 
be imported from the data provider system. 
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Figure 10-5. Class diagram for Ritchie's model. 
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The class SoilPlantAtmosphere is provided with behavior to determine the 
water loss through evaporation and transpiration. Ritchie's model separates 
these processes, considering evaporation and transpiration separately. 
Therefore, class SoilPlantAtmosphere is provided with two methods: 
calculateSoilEvaporation and calculateTranspiration. Soil evaporation and 
transpiration are calculated using soil moisture data and leaf area index is 
required in the calculation of transpiration. 

Ritchie's model considers the soil profile as consisting of a number of 
layers and allows the representation of numerous layers in the simulation. 
Thus, the multiplicity of the association composedOf between classes 
SoilProfile and SoilLayer is one-to-one-or-many. This model requires a great 
number of layer data and it calculates many layer-related processes because 
the water movement into and out of layers is considered and modeling of 
water use is detailed, being partitioned between layers. Processes and 
attributes pertaining to the profile as a whole are assigned to class SoilProfile. 
Ritchie's model uses a whole-profile drainage coefficient stored in the 
attribute drainageCoefficient. 

Class Cell is provided with data and behavior to calculate the amount of 
water that enters the soil surface. Ritchie's model uses The United States Soil 
Conservation Service (SCS) to determine run off and, in turn, calculate the 
infiltration amount. Therefore, class Cell is provided with attributes 
runoffCurveNumberSCS, soilSurfaceA Ibedo, and Urn itFirtsStageSo il 
Evaporation and methods calculateRunoff, calculatelnfiltration, and 
calculateAlbedo. Ritchie's model uses the depth of the groundwater layer; 
therefore, class Groundwater is created and provided with the attribute depth 
to store the corresponding value. 

5. ANALYSIS OF AN IRRIGATION-SCHEDULING 
MODEL (ISM) 

Figure 10-6 contains a diagram that represents the Irrigation Scheduling 
Model (ISM) developed by [GSROO]. As in the Ritchie model, the only 
methods assigned to class Weather are for calculation of reference ET. 
However, ISM provides several methods for its calculation, such as the 
Penman-Monteith, Blaney Criddle, or Priestley-Taylor methods. The model 
also allows for user input of already-calculated reference ET. The ISM 
Weather class has been provided with a larger number of attributes, compared 
to that of the Ritchie model. These extra attributes are needed to store the data 
values required by each of the methods of calculating reference ET. Not all 
the input data need to be supplied to the model - only those required by the 



WATER-BALANCE & IRRIGATION SCHEDULING MODELS 197 

selected calculation method. Class Plant in ISM has a richer set of attributes 
than Ritchie's model. This illustrates a difference between the two models. 
Whereas Ritchie's model requires the input of leaf area index (either from the 
user or from a linked model), ISM includes processes that simulate aspects of 
crop growth. As a result, much more information about the plant is required 
by ISM. Choice of a model may be, in part, determined by data availability. 
For example, use of ISM may be preferable if the leaf area index required by 
Ritchie's model cannot be readily obtained. In this case, corresponding data 
inputs required by ISM may have to be obtained to allow the model to make 
predictions about the condition of the crop. 



198 SOFTWARE ENGINEERING TECHNIQUES 

Weather 
* m axi mu mTe m p e ratu re 
*minimumTemper3ture 
* m axi m u m Re 1 ative H Li m i d it/ 
*mmimumRelativeHumidity 
*vYind Speed 
*r3tioD3yNightWinclSpe6d 
*sot3rR3d!3tion 
*sunshineHoLirs 
* p an Evaporation 
*r3infall 
*referenceET 
*st3tionNam5 

^alcLilatePenman'MonteithETO 
\3lculateFA024Penm3nET() 
\3lcuiateKimberly-PenmanET0 
\alcu)ateF.A024RadiationETO 
^:alculatePriestieyT3ylorET() 

SoilPlantAtmospnere 

\3lcLflateActualETi /; float 
^ y ^ 

^ y ^ 

\ijp9ffi sthi-i:-sis 

€Xd l :«0§€ t 

IS t 

N . 

uiesPlsntl nfo>sc;3tic^ 

\^^ ̂
4 

iforms.lion 

A 

Plant 
*crop 
*plantingDate 
^period 
*d aysToiaxR ootingOeptli 
* m inim umRoottniDepth 
* m aximum Ro oin gOepth 
^maximum Yield 
''̂ m aiimumSeasonalET 
*©TYiel^oefficient 
*d evelop mentStage Length! 
^cfopCoeficient 

^calctlateRootingDepttt) j 
\3lculateCropYie!d() 

us€sW«SitterDsts 

IrrigationManaQement 
Irrigationlnterva! 
'IrrigationDepth 

f^managementAJiovvableDepletion 

*calcuiateirrigationRequirement;) 

Ceil 
''runoffCurv'sNumbe rSCS 

*caICLilateEffectiveR3infallSCS() 
*c.alcul ateEffectiveRainfaiiPeriDe ntageO 

SoilProfile 

*ca} cul ateD ee pPercotstionO 
*c3l cul ateM oi sture Defl cltC) 

GroLintfiVater 

'permanent^'iltingPoInt 

Soil Layer 

*c3lculateW3terStressFactor{| 
^calculateMoistureDeplettonC) 

Figure 10-6. Class diagram for the ISM model. 

Class SoilPlantAtmosphere is provided with data and behavior for 
determining water losses through evaporation and transpiration. The ISM 
model predicts evapotranspiration by combining the effects of both 
mechanisms to determine overall water loss from the plant-soil system. ISM 
converts reference ET values, provided by class Weather, into actual 
evapotranspiration based on soil moisture availability, provided by class 
SoilLayer, and the crop coefficient, provided by class Plant. The need for data 
from Weather, Plant, and SoilLayer justifies the associations class 
SoilPlantAtmosphere has with Weather, Plant, and Cell. Although there is no 
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direct association between SoilPlantAtmosphere and SoilLayer, the 
communication between these two classes takes place via Cell. 

Classes Cell, SoilProfile, SoilLayer, and Groundwater are modeled to 
function together as a component and could be considered as a Soil 
component. The main class in this component is class Cell, which plays the 
role of the gatekeeper. One may suggest that a direct link from class 
SoilPlantAtmosphere to class SoilLayer, bypassing class Cell, would shorten 
the communication between these two classes. The problem with this solution 
is that by shortening the path, we will increase the interdependency between 
classes of the system. In the case that some other Soil component providing 
the same behavior can be found, it will be difficult to use it, as our system will 
not allow the substitution of one group of classes with another one. Having 
class Cell controlling the dialog of the soil related classes with the rest of the 
system makes it easy to define an interface that provides the services the 
component can offer. An interface allows substitutability between different 
components implementing the same interface. 

Layer-specific data and behavior are assigned to class SoilLayer. Unlike 
the Ritchie's model, ISM does not partition the soil into layers; it simply 
considers the soil profile as a single layer that extends to the bottom of the 
root zone. The association composedOf between classes SoilProfile and 
SoilLayer is one-to-one-or-many; therefore, the single layer approach of the 
ISM model is taken into consideration. Class SoilLayer is provided with a 
smaller number of attributes than the same class in the Ritchie's model, 
because the single layer approach requires fewer parameters for calculation of 
the water movement. Processes and attributes that apply to the soil profile as a 
whole are assigned to class SoilProfile. ISM model calculates deep 
percolation out of the root zone; thus, class SoilProfile is provided with a 
method referred to as calculateDeepPercolation. 

Class Cell is provided with data and behavior for calculating the amount of 
water that enters the soil surface. The ISM model describes this as effective 
rainfall and uses the SCS method to determine this amount. The method 
calculateEffectiveRainfallSCS implements the SCS method for this 
calculation. Alternatively, a fixed percent of actual rainfall can be specified. 
ISM includes a number of irrigation-scheduling functions in class 
IrrigationManagement. The user can input either a desired irrigation interval 
or an allowable depletion value and the model calculates an irrigation 
requirement to guide the management. The ISM model does not take into 
consideration the groundwater; therefore, the Groundwater class does not 
provide any data or behavior. 
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6. THE BENEFITS OF A GENERAL TEMPLATE 

Templates can facilitate the development of software construction. The 
general template shown in Figure 10-4 represents a template for building a 
new water-balance or irrigation-scheduling model. It represents the common 
classes used for these types of models and their relationships. Each of the 
classes of the template can be populated with attributes and methods needed 
by the particular approach used for model development, as shown in Figures 
10-5 and 10-6. 

In addition to the documentation provided by the class diagram, UML 
tools usually include methods for creating complementary documentation. 
The software used allowed users to create extra documentation for each 
component of the class diagram: The relationships, classes, class attributes, or 
class methods. This extra documentation allows the developer to explain the 
meaning and the role of each of these in the system. Attributes can be defined 
and equations used in the calculation of processes can be presented, for 
example, in pseudo-code. That is, equations can be presented in a format 
similar to that used in papers, books, etc. It need not be written in a specific 
programming language. An example of documentation for a method is shown 
in Figure 10-7. 

The general template could easily be extended to accommodate other 
agricultural and environmental models. For example, models of crop nutrient 
uptake rely on the same basic system elements as soil water-balance models. 
They could be represented with little or no modification of the template, 
perhaps requiring a class to represent additional management practices such 
as fertilizer management. Ultimately, the template could be extended to 
include numerous classes representing all aspects of such systems. 

From these templates, UMLs forward-engineering capabilities can be used 
to generate skeleton programming code, which can form the basis of the final 
code implementation. Usually, UML tools provide a means of translating 
diagrams into several implementation languages such as Java, Visual Basic, 
C++, etc. Rational Rose (http.'//rationalcom) provides capabilities for code 
generation in a variety of languages such Java, Visual C++, Visual Basic, 
ADA83, ADA95, CORBA, and XML_DTD. This capability greatly 
simplifies the final software development process. Figure 10-8 shows an 
example of automatic code generation in Java for class Cell. Figure 10-9 
shows an example of automatic code generation in Visual Basic for class 
SoilLayer, and Figure 10-10 shows an example of code generation for class 
SoilPlantAtmosphere. In Figure 10-10, the code generation includes the 
relationships class SoilPlantAtmosphere has with classes Plant and Weather. 
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Figure 10-7. Example of documentation provided for a method. 

Class diagrams created with UML and Rational Rose (other software 
provide publishing capabiUties as well) can be used to create well-organized 
and easily understandable documentation, which can be published on the 
Web. Publishing the diagrams on the Web allows developers from different 
groups, in different locations, to easily coordinate their efforts. Additionally, 
because UML diagrams use plain English and can be understood by 
programmers and non-programmers alike, they can facilitate collaboration 
between these groups. Model-specific documentation for existing and future 
models can be created using the methodology presented and can aid in model 
evaluation. The template developed can be used to represent various models 
regardless of the approach used in the model, using a common set of visual 
elements. Both single and multi-layer approaches to modeling changes in soil 
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water content could be described using the same UML diagram and the 
template has the potential to be expanded to represent other soil-crop system 
models, such as nutrition models. In addition to documenting the underlying 
science of the models represented, the template outlines the structure of the 
code organization and can be used to build new models. Generating skeleton 
code from class diagrams, using UML tools, can greatly simplify code 
implementation. Models could be implemented in different programming 
languages, allowing programmers to choose the best environment according 
to their specific architectural needs or to update models in newer 
programming languages. The template could be used to facihtate model 
maintenance and modification, allowing the programmer to easily locate 
where changes must be made. Subsequent reuse of code could also be 
simpHfied. The following figures show examples of code generation in Visual 
Basic and Java using the same class diagram. 

1 public class Cell { 
2 private int runoffCurveNumberSCS; 
3 private double soilSurfaceAlbedo; 
4 private double limitFirstStageSoilEvaporation; 
5 private SoilProfile theSoilprofile; 
6 public Weather the Weather; 
7 public Plant thePlant; 
8 public SoilPlantAtmosphere theSoilPlantAtmosphere; 
9 public CellQ {} 
10 public void calculateRunoffQ {} 
11 public void calculatelnfiltrationQ {} 
12 public void calculateAlbedo() {} 
13 } 

Figure 10-8. Example of code generation in Java. 
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Figure 10-9. Example of code generation in Visual Basic for class SoilLayer. 

In Visual Basic, operations are defined as subroutines starting with the 
keyv^ords Public Sub and ending v îth End Sub. Betv^een these w^ords, the 
user will enter the logic for the operation. 
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Figure 10-10. Example of code generation in Visual Basic for class SoilPlantAtmosphere. 



Chapter 11 

DISTRIBUTED MODELS 

1. INTRODUCTION 

Usually, the environmental models, regardless of the chosen 
implementation environment, are designed to run on a single computer. This 
means that all objects (in case of object-oriented languages) or variables (in 
case of traditional programming languages) reside in the same machine and 
share the same address space. This way of developing software is called local 
computing [WWW94]. In recent years, the number of applications that use 
parts or elements residing on different computers has increased considerably. 
This way of developing software is referred to as distributed computing 
[WWW94]. There are several advantages to distributed computing. One is 
simplifying maintenance. A component shared by different distributed 
applications can reside in one location, thus giving ownership and control to 
the institution that creates and maintains the component. It is not necessary to 
distribute copies of this component that would be difficult to track and update. 
Another advantage is economic. Because of the high cost of hiring 
experienced programmers, more and more companies prefer outsourcing the 
software development rather than developing it at home. The need for "off-
the-shelves" solutions is obHging companies to give serious considerations to 
the interoperability between existing and newly developed software [Bro99]. 
In distributed computing, little information is known about the object 
receiving the message. There is no information about the operating system or 
the hardware architecture in which the receiving object is running, nor the 
implementation language used. It is only known that the receiving object 



206 SOFTWARE ENGINEERING TECHNIQUES 

implements a certain interface and the message is part of the definition of this 
interface. There are several technologies that can be used to develop 
distributed applications. The dominant technologies are: The Object 
Management Architecture (OMA) of Object Management Group (OMG) 
(http://www.omg.org), Microsoft's distributed computing architecture 
(http://microsoft.cQm/), and Sun's Java-based distributed component 
technology (http://java.sun.com/). The following is a brief description of these 
approaches for developing distributed component-based applications. 

2. CORBA 

OMG was created in 1989 to develop, adopt, and promote standards for 
the development and deployment of applications in distributed heterogeneous 
environments [Vin97], [VD98]. OMG is a large consortium with more than 
800 companies trying to reach a consensus on an appropriate component 
model and services for developing component-based distributed applications 
(http://www.omg.org). OMG is the world's largest computer consortium and 
is a nonprofit organization that started initially with eight members: 3Com, 
American Airlines, Canon, Data General, Hewlett-Packard, Philips 
Telecommunications N.V., Sun Microsystems, and Unisys [VD98]. OMG 
does not develop any technology per se, nor does it advertise any product of 
its members. OMG's goal is to promote the object-oriented approach to 
software engineering and create a general architectural framework for 
developing component-based distributed applications based on the interface 
specifications for objects of the application. OMG works to provide standards 
for building component-based applications and encourages its members to 
follow these standards. 

The component-based approach is the heart of OMG's Object 
Management Architecture (OMA). OMA defines the specifications for the 
underlying distributed architecture and the way components dialog with each 
other in a distributed environment. OMA is the general framework that 
embraces all technologies adopted by OMG [VD98]. 

The Common Object Request Broker Architecture (CORBA) is one the 
most important middleware project undertaken by the software industry. It is 
OMG's response to the challenging problem of building communication 
bridges between isolated islands developed in different programming 
languages and computing platforms. CORBA enables natural interoperability, 
regardless of platform, operating system, programming language, and even of 
network hardware and software. CORBA defines a mandatory TCP/IP-based 
protocol for interoperability over the Internet and most intranets. CORBA 
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clients can run on a large variety of computers, from hand-held wireless 
palmtops or pagers to desktop machines or mainframes. CORBA servers can 
also run on all these machine types. The specification standardizes complex 
resource management and fault tolerance for large, reliable server-side 
applications. There are also specialized versions of CORBA for real-time and 
small embedded servers. There is strong support for CORBA on the 
application side by the OMG, a collection of standardized objects performing 
functions, including the key enterprise-required services for transaction 
handling and security. CORBA goes beyond this to define standard objects 
and frameworks in business domains, such as finance, insurance, 
manufacturing, the health sector, and more. CORBA is supported by UML 
that is OMG's standard for Object-Oriented Analysis and Design. 

CORBA is composed of three parts: A set of interfaces that can be 
invoked by users, the object request broker (ORB), and a set of object 
adaptors [Szy99]. 

2.1 The Interface Definition Language (IDL) 

Interfaces need to be described in a common language [VD98]. This 
common language is referred to as Interface Definition Language (IDL) and is 
used to describe the interface of an object. IDL is an object-oriented 
declarative language for specifying server interfaces. It is not a programming 
language; it cannot be used to write code. As we know, interfaces define the 
operations that an implementation object should provide. As an example, 
Figure 11-1 shows the module definition for a hypothetical environmental 
model. Line 1 defines the module Environmental Model, Modules provide a 
name scope for identifiers in an IDL specification. This scope prevents name 
clashes for identifiers defined in other modules. As for example, within the 
module EnvironmentalModel, only one interface, referred to as IWeather can, 
be declared. Line 3 defines interface IWeather within the scope of module 
EnvironmentalModel. Lines 4 through 12 define methods for interface 
IWeather. Line 14 defines interface ISoil within the scope of module 
EnvironmentalModel, and line 15 defines the only method of interface ISoil. 
The interface definition of object IWeather shows that the object should 
provide weather data, such as solar radiation, average temperature, minimum 
temperature, maximum temperature, rainfall, etc. Any class that implements 
this interface would specify how these weather data would be obtained. 
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I module EnvironmentalModel { 
2 
3 interface IWeather { 
4 public double getSolarRadiationQ; 
5 public double getAverageTempDuringDayQ; 
6 public double getAverageTemperature(); 
7 public double getAverageTempForETQ; 
8 public double getRainfallQ; 
9 public double getTemperatureMinQ; 
10 public double gettemperatureMaxQ; 
II public double getPotentialETQ; 
12 }; 
13 
14 interface ISoil { 
15 public double getWaterStressQ; 
16 }; 
17 }; 

Figure 11-1. Example of an IDL interface definition for components Weather and Soil. 

Java maps IDL modules to a package with the same name and every 
package corresponds to a directory in the file system. The IDL compiler 
creates a directory for each module and all generated files are saved in this 
directory. 

As CORBA has to work with different programming languages, there are 
mapping methods that map types and structures from the common language, 
IDL, to a number of programming languages. For example: The boolean type 
in Java is mapped to boolean type of IDL, the byte type in Java is mapped to 
octet type of IDL, etc [Vin97]. Currently, there are mappings to IDL for Java, 
C, C++, COBOL, Smalltalk, ADA, etc. rhttp://www.Qmg.org). 

2.2 The Object Request Broker (ORB) 

The Object Request Broker (ORB) is the heart of the system. The ORB 
acts as a central Object Bus over which each CORBA object interacts 
transparently with other CORBA objects located either locally or in other 
remote servers. The ORB is responsible for finding a CORBA object's 
implementation, preparing it to receive requests, communicating requests to 
it, and carrying the answer back to the client. The ORB establishes a 
communication bridge between the client and the server, as shown in Figure 
11-2. The underlying ORB implementation is not relevant to distributed 
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system developers. Once the communication bridge is established, the client 
can access data and behavior from the object residing in the server as it were a 
local object. 

Furthermore, the client's interface is completely independent from the 
implementation residing in the server. All that the client needs to know is the 
set of interfaces the object residing in the server offers. The interfaces to the 
ORB and to objects built using the ORB are well defined, providing a uniform 
framework across the entire distributed environment and making applications 
built using an ORB very portable across diverse platforms. 

Object Request Broker 

\i 
l i ^ 

Skeleton Code 

Figure 11-2. Object request Broker links clients and server applications. 

An ORB deUvers requests from client applications to server applications. 
This process occurs in three steps [Ros98], as shown in Figures 11-3, 11-4, 
and 11-5. 
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Figure 11-3 shows that ORB manages the communication between the 
client and the server; ORB locates the server in the network. The client has 
access to a reference (or proxy) of the real object that resides in the server. 
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Figure 11-4. Client refers to the proxy object. 

Once the communication is established between the client and the server, 
the client sends messages to the proxy as it were the real object, as shown in 
Figure 11-4. The message may include parameters needed for the execution of 
the method. ORB marshals these parameters, meaning it converts these 
parameters into a format that can be transmitted across the network to the 
remote object. The receiving server unmarshals the message and executes the 
method. 

ORB is also in charge to bring to the client the results of the method's 
execution, as shown in Figure 11-5. To do so, ORB marshals the results and 
ships them to the client that unmarshals them into an understandable format 
for the client. Note that the process of marshalling/unmarshalling the message 
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and the parameters is transparent to the user. The entire process is silently 
managed by the object request broker (ORB). 
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Figure 11-5. ORB sends back to client the answer from server. 

2.3 Adaptors 

The CORBA standard describes a number of object adapters; with the task 
of interfacing an object's implementation with its ORB. The OMG provides 
three sample object adapters: The Basic Object Adapter (BOA), which is the 
most used one, the Library Object Adapter, and the Object-Oriented Database 
Adapter. The last two adaptors are mainly used for accessing objects in 
persistent storage. 

The BOA provides CORBA objects with a set of methods for accessing 
functions defined in ORB. These functions range from user authentication to 
object activation to object persistence. The BOA is the CORBA object's 
interface to the ORB. BOA plays a slightly different role in the server 
application compared to the role it plays in the cHent application. In the server 
implementation, BOA informs the ORB when objects are ready to receive 
incoming requests. In the client application, BOA is the component of ORB 
that makes sure that the reference or the proxy reaches the real object located 
in the server. The next two sections will provide examples of the use of 
adaptors in server and client applications. According to the CORBA 
specification, the BOA should be available in every ORB implementation, 
and this seems to be the case with most CORBA products available in the 
market. 

In the next sections we will present a simple example of implementation of 
a CORBA soil server and a soil chent. 
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2.4 A CORBA Soil Server 

Let us consider the Soil component developed in Chapter 8, The 
Kraalingen Approach, and implement a simplified version of it as a server 
using CORBA. This means that the soil class/component will provide its 
services to any other class/component or system residing in the same address 
space or in other servers located anywhere in the network. Therefore, the 
behavior of this class/component will be slightly different; besides the 
behavior needed in the simulation process, the component will be provided 
with additional behavior to function as a CORBA server. For simplicity 
reasons, we will provide soil component only with the behavior needed to 
provide information about its soil depth and wilting point values. 

One of the first tasks the server should accomplish is to obtain references 
to ORB and BOA. After which, ORB and BOA objects will be created and 
the server makes them available for use to any other object outside the 
system. Then, the server executes a dispatch loop to wait for other objects 
invoking its services. Clients must connect to the object residing in the server 
to use its services. 

Although CORBA interfaces are defined in a very general manner, 
different vendors, while respecting the general definition of interfaces, have 
implemented their behavior slightly differently. Therefore, the 
implementation of a CORBA service may be different in different products. 
The most well-known commercial vendors of CORBA technology are 
BORLAND'S Visibroker (http://www.borland.com/visibroker/) and lONA's 
ORBIX (http://iona.com). 

The Integrated Development Environment (IDE) used to implement the 
examples is Borland's JBuilder (http://borland.com) which uses Visibroker 
technology for CORBA. The use of the Visibroker technology implies some 
particularities that make this implementation slightly different from the cases 
where other CORBA technologies (such as lONA's ORBIX, http://iona.com) 
are used. Figure 11-6 shows the class diagram for the SoilCORBA server. 
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Figure 11-6. Class diagram for SoilCORBAServer. 

To implement the SoilCORBA server, first its interface 
SoilCORBAInterface should be defined using CORBA's Interface Definition 
Language (IDL), as shown in Figure 11-7. The interface will define the 
functionalities that this server will provide remotely to any client. The 
interface SoilCORBAInterface is similar to Soillnterface, as shown in Figure 
11-6. The only difference is that SoilCORBAInterface provides capabilities 
for sending/receiving messages through the Internet. Therefore, 
SoilCORBAInterface inherits the required behavior from CORBA's main 
Object that is part of CORBA's arsenal for moving objects across the Internet, 
as shown in both Figures 11-6 and 11-7. Every interface inherits from 
CORBA.Object. 

1 public interface SoilCORBAInterface extends 
org.omg.CORBA.Object { 

2 public double getSoilDepthQ; 
3 public double getWiltingPointQ ; 
4 public void initializcQ; 
5 } 

Figure 11-7. Interface definition for class SoilCORBA. 
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When the interface is compiled, the IDL compiler automatically generates 
a few classes that are needed for moving objects across the Internet, as shown 
in Figure 11-8. The generated classes are divided in three groups: stubs, 
skeletons, and helper files. The stub files are needed to create a proxy in the 
cUent side that can be used as a local object in the client application. 

!- {Bl SoilCORBA.jpf 
% SoilCORBA.html 
c^L SoilCORBA.java 

SoilCORBAlnterfaoe.java 
i ^ SoilCORBAInterfaceHelper.java 
^ SoilCORBAInterfaceHolder.java 
'^ S oilCO R BAl nterfaceO peraHons. Java 
f^, _Soi!CORBAInterfacelmplBase.java 
^ ^sLSollCORBAInterface.java 
iSii t̂ie^SoJICORBAInterface.java 

Figure 11-8. Files created by CORBA's IDL compiler. 

The skeleton files reside in the server and are used to help the 
implementation of the behavior defined in the interface. One of these classes 
is _SoilCORBAInterfaceImplBase, which will enable our SoilCORBA class to 
provide server-like capabilities. This class inherits part of its behavior from a 
standard class referred to as Skeleton, which implements our interface 
SoilCORBAInterface, as shown in Figure 11-6. Figure 11-9 shows the 
implementation of class SoilCORBA in Java. 

1 public class SoilCORBA extends _SoilCORBAInterfaceImplBase { 
2 Soillnterface soil = new SoilQ; 
3 public double getSoilDepthQ { 
4 return soil.getSoilDepthQ; 
5 } 
6 public double getWiltingPointQ { 
7 return soil.getWiltingPoint(); 
8 } 
9 public void initializeQ { 
10 soil.initializeQ; 
11 } 
12 static void main(String args[]){ 

Figure 11-9. Java implementation of class SoilCORBA (Part 1 of 2). 
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13 try { 
14 System.out.printlnC'Starting SoilCORBA Server"); 
15 org.omg.CORBA.ORB orb = 

org.omg.CORBA.ORB.init(args,null); 
16 org.omg.CORBA.BOA boa -

((com.visigenic.vbroker.orb.ORB)orb).BOA_init(); 
17 SoilCORBA soilServer - new SoilCORBA(); 
18 boa. obj_is_ready (soilServer); 
19 System.out.println("Registering server"); 
20 com.visigenic.vbroker.URLNaming.Resolver resolver = 
21 com.visigenic.vbroker.URLNaming.ResolverHelper.narrow( 
22 orb.resolve_initial_references("URLNamingResolver")); 
23 String ior= "http://128.227.103.134:1015/SoilServer.ior"; 
24 resolver.force_register_url(ior, soilServer); 
25 soilServer.initializeQ; 
26 boa.impl_is_ready(); 
27 } 
28 catch (Exception e) { 
29 System.out.println("CORBA server is not running, check the 

server"); 
30 } 
31 } 
32 } 

Figure 11-9. Java implementation of class SoilCORBA (Part 2 of 2). 

Classes SoilCorba and Soil provide similar behavior as their interfaces 
they implement are similar. Soillnterface and SoilCORBAInterface define 
similar but yet not identical, behavior. What makes the behaviors defined by 
these interfaces different is the environment in which the corresponding 
classes are implemented. Soillnterface is defined to be implemented by 
classes that reside in a local computing environment. SoilCORBAInterface is 
defined to be implemented by classes residing in a distributed computing 
environment. Classes that implement Soillnterface need only to provide the 
behavior defined in the interface. Classes implementing SoilCORBAInterface, 
besides the behavior defined by interface, need to provide server-like 
capabilities, as they make available their services from a remote server where 
they reside. 

Line 1 in Figure 11-9 defines the class SoilCORBA as inheriting from 
class _SoilCORBAInterfaceImplBase, generated by the IDL compiler. Line 2 
creates an instance of class Soil to whom class SoilCORBA will delegate the 
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receiving method calls for execution. Lines 3 through 11 show the 
implementation of methods defined in SoilCORBAInterface. Note that each of 
the methods delegates the receiving call for execution to object soil. 
Therefore, class SoilCORBA reuses the behavior defined in class Soil, Lines 
12 through 30 define the stadc method main. This method initializes the 
environment of the class and must create an instance of the class itself Line 
15 obtains a reference to the ORB and line 16 obtains a reference to a BOA 
object. Line 17 creates an instance of the class SoilCORBA that plays a two­
fold role in this application: First, it will provide the behavior needed in the 
simulation process and second, the behavior of a server. Line 18 notifies the 
BOA about the existence of object soilServer created in line 17; object 
soilServer is passed as a parameter to the BOA. Line 26 notifies that the BOA 
is ready to receive requests. 

Distributed objects are identified by object references that are known as 
lOR (Interoperable Object Reference). Lines 20 through 24 associate the URL 
with object's OIR. Once a URL has been bound to an object, client 
applications can obtain a reference to the object by specifying the URL as a 
string. The URL Naming Service is the mechanism that lets a server object 
associate its lOR with a URL in the form of a string in a file. The lOR is 
composed of server's IP number, a communication port number, and the name 
assigned to the file. Client programs can then locate the object using the URL 
pointing to the file on the Web server. Lines 20 through 22 obtain the 
Resolver that will be used to register objects. Line 23 creates a string of the 
association URL-IOR. Object servers register objects by binding to the 
Resolver and then using tho force_reglster_url method to associate a 
URL with an object's lOR. Line 25 populates object soil with its initial data. 
Line 26 shows that the server enters a dispatch loop and waits for incoming 
invocations. 

2.5 A simple CORBA client 

In order to access the services offered by the server SoilCORBA, a 
CORBA client needs to be developed. In Java, CORBA clients can be 
implemented as applets or as applications. Although both methods provide 
similar results, they are implemented in different ways. We will implement 
our CORBA cHent as an apphcation. Figure 11-10 shows the Java 
implementation of a simple CORBA client. The task of this client is to 
connect to the SoilCORBA server and use one of its services. The service used 
provides the current value of soil depth parameter. 
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1 import java.util.Properties; 
2 public class CORBAClient { 
3 public CORBAClientp {} 
4 public static void main(String[] args) { 
5 //create an instance of the client 
6 CORBAClient corbaClient - new CORBAClientQ; 
7 Properties soilProp = new PropertiesQ; 
8 soilProp.putC'org.omg.CORBA.ORBClass", 

"com.visigenic.vbroker.orb.ORB"); 
9 org.omg.CORBA.ORB orb - org.omg.CORBA.ORB.init((String 

[])null,soilProp); 
10 //connect to SoilCORBA server 
11 SoilCORBAInterface soil= 
12 SoilCORB AInterfaceHelper.bind(orb, 
13 "http://128.227.103.134:1015/SoilServer.ior"); 
14 //print value of soil depth 
15 System.out.println("Soil depth value is: "+soil.getSoilDepth()); 
16 } 
17 } 

Figure 11-10, The implementation of a simple CORBA client in Java. 

Line 1 makes available the behavior of class Properties that is needed in 
lines 7 and 8. Line 2 defines the class CORBAClient, and line 3 defines a 
default constructor for the class. Lines 4 through 16 define the method main 
that initializes the class environment and creates an instance of the class itself 
in line 6. An object of type Properties is created in line 7 to hold the 
information that Visigenic CORBA technology is used in this case. Line 9 
initializes the ORB. Lines 11, 12, and 13 bind the ORB to the lOR of the 
object located in the server. Therefore, a proxy of the server object is created 
(see Section 4.2, The Proxy pattern, in Chapter 7) in the client application 
and the communication bridge between server and client is established. The 
proxy object is object soil. Note that the server's IP (Internet Protocol) 
number and the number of the port used are the same as the ones defined in 
the server application. If the client and server applications use different IP 
and/or port numbers, then the communication bridge cannot be established 
and therefore the client and the server will not be able to communicate with 
one another. Proxy soil will make available to the client application the 
behavior of the server object. Line 15 uses the proxy to obtain the value of 
soil depth, which is provided as a service by the server object. 
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3. THE REMOTE METHOD INVOCATION (RMI) 

While the RMI technology is similar to CORBA, it operates only in the 
Java programming environment. RMI enables the programmer to develop 
distributed applications based on methods of Java objects that can be invoked 
from other Java virtual machines, which can be located on different 
computers and maybe different operating systems (http://java.sun.com/ 
products/rmi/). RMI provides a simple and direct model for developing 
distributed applications using Java objects. An RMI client can make calls to 
an RMI server object and use its behavior as if it were local to it. The RMI 
technology is a sophisticated mechanism that allows Java objects to 
communicate amongst them. The mechanism and the communication protocol 
are well-defined and standardized. A Java object can communicate with 
another Java object without knowing before hand the protocol used. 

During the remote communication between two Java objects, the one that 
makes the remote call is referred to as the client object and the one that 
responds to the remote call is referred to as the server object. Note that the 
relationship client-server is valid only for this particular call. An object that 
plays the role of the client in one call may be playing the role of the server in 
another call. 

RMI uses several layers to achieve the communication between remote 
objects. These layers are: 

1. Ghent's stubs and server's skeletons; these objects are used to hide 
the remoteness and make transparent the communication between 
objects over a network connection. 

2. The remote reference layer that handles the packaging of the method 
call and its parameters and returns the results of method's execution 
over the network connection. 

3. The transport layer that is the actual network connection linking 
systems together. 

To better understand the collaboration between client and server objects 
using RMI, we will consider a simple example of collaboration between a 
server object referred as SoilRMIServer, which provides its services remotely 
and a client object referred to as SoilClient that invokes a method call on the 
remote server. The services offered by object SoilRMIServer are the same 
ones that object CORBASoilServer, presented in the previous section, 
provides. Implementing the same example in two different technologies 
allows us to better understand the similarities and differences between these 
technologies. 
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The stubs and skeletons are automatically generated by the RMI compiler 
when compiling the server class. Figure 11-11 shows the stub and skeleton 
classes that are generated for class SoilRMI. 

B lo l SoilRMI.jpr 

"^ SoilRMLSkdjava 
^ SoilRMLStub.java 

i^^ SoilRMIInterface.java 

Figure 11-11. Stubs and skeletons created by Java compiler for class SoilRMI. 

Stub classes reside with the client and skeletons reside with the server. 
Stubs and skeletons are involved when a client invokes a remote method on 
the remote server. The stub object serves as a proxy (see Section 4.2, The 
Proxy pattern, in Chapter 7) for the server and resides with the client. The 
client's call goes to the stub object that has encapsulated all the names of the 
methods provided by the server object, as shown in Figure 11-12. Lines 3 
through 6 show the names of methods implemented by the server object. 

1 public final class SoilRMIServerStub extends 
java.rmi.server.RemoteStub implements SoilRMIInterface, 
java.rmi.Remote { 

2 private static final java.rmi.server.Operation[] operations = { 
3 new java.rmi.server.Operation("double getSoilDepthQ"), 
4 new java.rmi.server.Operation("double getWiltingPointQ"), 
5 new java.rmi.server.Operation("void initializeQ") 
6 }; 

Figure 11-12. Partial Java code for class SoilRMI_Stub. 

After receiving the remote call, the stub creates a block of information 
containing an identifier of the remote object to be used, a description of the 
method to be called and the marshalled parameters of the remote method. This 
block of information is sent to the server object using the network connection. 
On the server side, this information is received by the skeleton which is a 
server-side object that contains a method that dispatches calls to the actual 
server object implementation. Skeletons communicate with clients using the 
JRMP (Java Remote Method Protocol) protocol. 
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When the skeleton object receives the block of infomiation sent by the 
stub object, it unmarshals the parameters of the remote call. Then, using the 
object identifier sent by the stub object, it identifies the remote object 
responsible for executing the remote call and invokes the method. The result 
of the remote call is packaged in a block of information and it is sent back to 
the stub object. Although the communication between client and server 
objects is complex, it is transparent to the programmer. As previously 
mentioned, remote objects are used as they were local objects; even the syntax 
of a remote call is the same as for a local call. Figure 11-13 shows the 
sequence diagram for the collaboration between the client and the server 
objects. 

: SoilClient ; SoilRMI Stub 

getSoilDepth() 

value of soil depth 
soil depth 

: Soil RMI Skel 

send marshalled 
parameters using JRMP 

send marshalled return 
using JRMP 

Soil RMI 

getSoilDepth() 

return value of 
" soiT v/aterfictor ' 

Figure 11-13. Collaboration between client and server objects using RMI. 

As shown in Figure 11-13, object SoilClient invokes the message 
getSoilDepthQ on the remote server object SoilRMI. First, the message is sent 
to the stub object created by the RMI compiler. The stub object creates a 
block of information and sends it to server object using the JRMP protocol. 
This block of information is received by the skeleton object that unmarshals it 
and invokes the method call on the server object. The return of the method 
call, the value of soil depth, is packaged again in a block of information and is 
sent back to the stub object by the skeleton object. The stub object unmarshals 
the return value and sends it to the client object. In the next two sections, we 
will show a simple example of implementation of a SoilRMI server and a 
SoilClient. 
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3.1 An RMI Soil Server 

Let us consider the Soil component presented in the previous section, and 
implement it as a server using the RMI technology. The Soil component will 
provide its services to any other component or system residing in the same 
address space or in other servers located anywhere in the network. Therefore, 
the behavior of component Soil will be slightly different; besides the behavior 
needed in the simulation process, the Soil component will be provided with 
additional behavior to function as an RMI server. 

First, an interface needs to be created that will define the functionalities 
provided by the object server. The interface is referred to as SoilRMIInterface 
and its definition in Java is shown in Figure 11-14. The behavior defined in 
the interface is the same as the one defined in Section 2.4, A CORBA Soil 
Server, with the only difference that RMI requires that methods defined in the 
interface should throw an exception, the RemoteException one. 

1 import java.rmi.RemoteException; 
2 import java.rmi.Remote; 
3 interface SoilRMIInterface extends Remote { 
4 public double getSoilDepthQ throws RemoteException; 
5 public double getWiltingPointQ throws RemoteException; 
6 public void initializcQ throws RemoteException; 
7 } 

Figure 11-14. Definition of interface SoilRMIInterface in Java. 

As the functionalities defined in the interface will be provided as services 
that can be invoked remotely, SoilRMIInterface should inherit from Remote 
interface, which is part of Java's arsenal for sending/receiving messages over 
a network. As SoilRMI object will provide its services from a remote server, it 
should be able to instantiate itself with server-like capabilities. Therefore, 
SoilRMI object should inherit the server-like behavior from a predefined Java 
server class named UnicastRemoteObject, The class diagram shown in Figure 
11-15 presents links between objects and interfaces for remote 
communication. 
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0 
SoilRMHnterface 

^getSoilDepthQ : double 
^initJalizeO: void 
"^getVViltingPointO: double 
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w 
Soil -DH 

O 
Soil Interface 

"̂ getSoilDepthO - double 
^getWiltingPointf); double 
"^initializeO: void 

Figure 11-15. Class diagram for the implementation of SoilRMI server. 

Class SoilRMI implements interface SoilRMIInterface; therefore, it will 
provide an implementation for the methods defined in interface. The behavior 
of class SoilRMI is very similar to the behavior of Soil class, as they play the 
same role in the simulation process. Therefore, the behavior of class Soil can 
be reused by having class Soil be part of SoilRMI class definition. SoilRMI 
would be able to provide the functionality required for the simulation by 
delegating simulation-related messages to the class Soil. The behavior 
required in the simulation process is defined in interface Soillnterface. Thus, 
class Soil implements interface Soillnterface, The Java implementation for 
class SoilRMI is shown in Figure 11-16. 

1 
2 
3 
4 
5 

import java.rmi. server.*; 
import java.rmi.Naming; 
importjava.net.*; 
import j ava.rmi.registry. *; 
public class SoilRMIServer extends UnicastRemoteObject 

implements SoilRMIInterface { 

Figure 11-16. Implementation in Java of class SoilRMI (Part 1 of 2). 
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6 public Soillnterface soil = new SoilQ; 
7 public double getSoilDepthQ { 

8 return soil.getSoilDepthQ; 
9 } 
10 public double getWiltingPointQ { 
11 return soil.getWiltingPoint(); 
12 } 
13 public void initialize() { 
14 soil.initializeO; 
15 } 
16 public SoilRMIServerQ throws Exception {} 
17 static void main(String [] args) { 
18 SoilRMIServer soilServer = null; 
19 try { 
20 System.out.println("Starting SoilRMI Server"); 
21 int port-1012; 
22 String name = new String(7/128.227.103.134:"+port+"/Soir'); 
23 soilServer = new SoilRMIServerQ; 
24 LocateRegistry.createRegistry(port); 
25 Naming.rebind(name,soilServer); 
26 System.out.println("Soil RMI server is running in "+name); 
27 } 
28 catch(Exception e){System.out.println("Error in starting soil 

server");} 
29 } 
30 } 

Figure 11-16. Implementation in Java of class SoilRMI (Part 2 of 2). 

Lines 1 through 4 show the Java standard libraries that are needed to 
support the functionalities defined in class SoilRMI. Line 5 defines class 
SoilRMI as a subclass of UnicastRemoteObject and implementing interface 
SoilRMIInterface. Line 6 defines an attribute of type Soil and assigns to it a 
reference to an object of the same type. This is the implementation in Java of 
the whole-part relationship between SoilRMI and Soil as defined in Figure 11-
15. Lines 7 through 15 are the implementation of the methods defined in 
interface SoilRMIInterface. Note that each of the methods delegates the call to 
the object of type Soil defined in line 6. 

Line 16 defines the constructor for class SoilRMI. Lines 17 through 30 
define the method main that initializes the environment of class SoilRMI. Line 
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18 defines an instance of the class itself to be used later in line 23. Lines 19 
through 29 define a try-catch block. In the case that an exception occurs 
while executing lines 19 through 27 in the try block, the control goes to the 
catch block and the system prints an error message. Within the try block, line 
21 defines the communication port and assigns to it a value. Line 22 defines a 
stringified reference for the server object, including the communication port. 
Line 23 creates an instance of the class itself Line 24 creates a registry for the 
communication port and line 25 binds the stringified reference for the server 
object to its name created in line 23. Lines 28 and 29 define the catch block 
that contains the actions that need to be executed in the case that an exception 
occurs within the try block. 

3.2 A Simple RMI client 

In order to access the services offered by the server SoilRMI, an RMI 
cHent needs to be developed. Figure 11-17 shows the implementation in Java 
of an RMI client. 

1 import java.rmi.Naming; 
2 import java.rmi.RemoteException; 
3 public class RMIClient { 
4 void main(String args[]) { 
5 //contact remote soil 
6 int port = 1012; 
7 String url = "rmi://128.227.103.134"; 
8 url+=":"+port+7Soir; 
9 String registry = new String(url); 
10 try { 
11 SoilRMIInterface soil = new SoilRMIServerQ; 
12 soil = (SoilRMIInterface)Naming.lookup(registry); 
13 double soilDepth = soil.getSoilDepthQ; 
14 System.out.println("RMI Soil Server is available and 

running"); 
15 } 
16 catch(Exception ex) { 
17 System.out.println("RMI Soil Server is not available!"); 
18 } 
19 } 
20 } 

Figure 11-17. Implementation of an RMI client. 
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Lines 1 and 2 show the Java standard the libraries needed to support the 
functionalities defined in the class RMIClient defined in line 4. Lines 7 
through 10 collect information about the server: Its port number and IP 
(Internet Protocol) address, its stringified reference, and registry. In the case 
that the IP address and/or the port number are not the ones used by the server, 
the communication with the server will not be established. Lines 12 through 
17 establish contact with the server object to obtain from it the value of soil 
depth. In the case that the communication with the server is not established, 
an error message is displayed. Note that the syntax for a remote method is the 
same as for a local method. 

4. DISTRIBUTED CROP SIMULATION MODEL 

In Section 4.1, Conceptual model for the Kraalingen approach, of 
Chapter 8, we presented all the classes involved in the simulation such as 5*0//, 
Weather, and Plant, linked by corresponding associations. In the case where a 
local computing architecture is selected, all the objects will reside in the same 
address space in the same machine. If a distributed computing architecture is 
selected, objects may reside in different address spaces and even in different 
platforms. The fact that objects are located in different machines and 
platforms does not affect their already conceived behavior. Distributed objects 
will communicate through a middleware component that in our example is 
Java's RMI. The middleware provides a common set of management services 
made available to all classes that have agreed to use this infrastructure, 
regardless of their location [Bro99]. The process of developing a distributed 
component-based system can be considered as a three-phase process. In the 
first phase, a stand-alone application using a local computing architecture is 
developed. During this step, interfaces and the behavior of the 
objects/components are designed and carefully tested. Focus is on providing 
objects with the right behavior and the right interfaces. The entire simulation-
based application is tested in order to make sure that the system delivers 
correct results. In the second phase, an implementation middleware is selected 
to implement the distributed application. Issues such as how objects will 
interact remotely and how they would be instantiated are addressed. The third 
phase deals with issues of developing and implementing objects that would 
interact remotely, using the selected middleware. 

The three-phase layered approach was used to develop the distributed crop 
simulation model. Issues concerning an object-oriented approach to crop 
simulation modeling were addressed in developing a stand-alone model 
programmed in Java [PBJOl]. During this phase, the main focus was on 
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providing flexible objects with the required behavior so they can be reused in 
the future. Results taken from the object-oriented approach were compared to 
the ones provided by the existing FORTRAN code presented by [PBJ99]. 
After successfully finishing the first phase, the next step was selecting the 
middleware environment needed for developing the distributed application. 
As the programming language used in the first phase was Java, the following 
options were available: Using OMG's CORBA or Java's Remote Method 
Invocation technologies. Any of these technologies could be used as they are 
conceptually very similar. We chose Java's RMI, as the rest of the application 
was developed using the Java programming language. 

Figure 11-18 shows the interaction among the elements involved in the 
simulation in a very general manner, without considering any programming 
language or other implementation details. Defined interfaces describe the 
messages objects should respond to in order to perform the simulation. Each 
of the interfaces represents some functionality that is provided by a 
class/component. To illustrate issues that need to be addressed during the 
component development of our system, we will focus only on the Plant 
component, as the development of others is carried out in the same manner. 
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Figure 11-18. Conceptual diagram for the Kraalingen crop simulation model. 

As the selected architecture is distributed, the core objects {Soil, Plant, and 
Weather) will communicate with each other remotely. Remote 
communication requires a middleware component that will send messages 
from one object to another. Figure 11-19 shows the links between objects and 
interfaces of component PlantRMI n^Qdcd for the remote communication. 
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Figure 11-19. Links between objects and interfaces for remote communication, 

The interface PlantRMIInterface is similar to the Plantlnterface defined in 
the conceptual diagram, with the only difference being that it provides 
capabilities for sending/receiving messages through the Internet. Therefore, 
PlantRMIInterface should inherit the predefined Remote interface that is part 
of Java's arsenal for moving objects in a network. The PlantRMI object is 
functionally similar to the Plant object defined in the standalone developed 
model, as it will play the same role in the simulation process. In addition, 
PlantRMI object should be provided with capabilities of a remote object to be 
able to remotely connmunicate with other objects. The behavior of the Plant 
object was defined by Plantlnterface and the behavior of the object PlantRMI 
is defined by PlantRMIInterface. PlantRMI will be able to provide the 
functionality required for the simulation by delegating simulation-related 
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messages to object Plant. Plant is part of object PlantRMI [GHJ95], [Gra98]; 
the association linking objects PlantRMI and Plant is a composition. Because 
PlantRMIInterface inherits from Remote interface, the PlantRMI object will 
provide the capabilities for sending/receiving messages over a network. In 
addition, as the PlantRMI object will provide its services from a remote 
server, it should be able to instantiate itself with server-like capabilities. 
Therefore, the PlantRMI object should inherit the server-like behavior from a 
predefined Java server class named UnicastRemoteObject. Figure 11-20 
shows the entire class diagram for the application. 
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Figure 11-20. Class diagram for Kraalingen distributed system. 

As shown in Figure 11-21, the center of the class diagram is the 
SimulationController class. This is a controller type of class that will 
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coordinate the communication between entity classes, by sending them the 
right message at the right time. In addition, SimulationController will 
supervise the communication with the boundary class. In Figure 11-20, the 
communication with boundary class is not shown. SimulationController has 
access to interfaces PlantRMIInterface, SoilRMIInterface, and 
WeatherRMIInterface. The association between the control class and 
interfaces is modeled as a composition; SimulationController being the 
"whole" and the interfaces being the "parts." Therefore, SimulationController 
is responsible for creating instances of classes implementing these interfaces 
and controlling the flow of messages objects sent to one another. By having 
access to interfaces, the SimulationController is able to use any other class 
that provides similar behavior, provided that the class implements the required 
interface. Note that classes PlantRMI, SoilRMI, and WeatherRMI have similar 
relationships with other classes of the diagram because they will provide their 
services in the same way, as a server. 



EPILOGUE 

Although we have included in this book many chapters dealing with 
several interesting subjects, we are conscious that there are others that are left 
out. Topics such as modeling Web-based or XML-based applications are not 
treated in this book. Future publications need to address these important 
topics. 

At the time this book was published a new modeling paradigm just 
surfaced in the software engineering world: The Model Driven Architecture 
(MDA) approach. Few MDA-based tools were available, such Optimal-J of 
Compuware (http://www.compuware.com/), OlivaNova of Sosyinc (http:// 
sosyinc.com/), Project Technology, Inc. (http://www.projtech.com), Kennedy-
Carter, Ltd (http://www.kc.com/), Kabira Technologies, Inc. (http://www. 
kabira.com/), and others. 

This new technology looks very promising and it is a UML-based 
technology. MDA uses UML almost as a programming language. We hope 
that our book paves the way to the next challenge: The use of the MDA 
approach to model agricultural systems. 



GLOSSARY 

abstract class A class that cannot be instantiated and can be used 
only as a superclass of other classes. 

abstraction The essential characteristics of an entity that make it 
different from other entities. 

activity diagram 

actor 

aggregation 

architecture 

A diagram that shows the flow from activity to 
activity; activity diagrams address the dynamic view 
of a system. A special case of a state diagram in 
which all or most of the states are activity states and 
in which all or most of the transitions are triggered by 
completion of activities in the source states [BRJ99]. 

A coherent set of roles that users of use cases play 
when interacting with the use cases [BRJ99]. 

A specific type of association used to represent the 
whole-part relationships. 

The set of significant decisions about the organization 
of a software system, the selection of the structural 
elements and their interfaces by which the system is 
composed, together with their behavior as specified in 
the collaboration among those elements, the 
composition of these structural and behavioral 
elements into progressively larger subsystems, and 
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the architectural style that guides this organization-
these elements and their interfaces, their 
collaborations, and their compositions. Software 
architecture is not only concerned with structure and 
behavior, but also with usage, functionality, 
performance, resilience, reuse, comprehensibility, 
economic and technology constraints and trade-offs, 
and aesthetic concerns [BRJ99]. 

association A structural relationship that describes a set of links, 
in which a link is a connection among objects; the 
semantic relationship between two or more classifiers 
that involves the connection among their instances 
[BRJ99]. 

attribute A named property of a classifier that describes a 
range of values that instances of the property may 
hold [BRJ99]. 

behavior The observable effects of an event, including its 
results [BRJ99]. 

binary association An association between two classes [BRJ99]. 

cardinality 

class 

The number of elements in a set. 

A description of a set of objects that share the same 
attributes, operations, relationships, and semantics 
[BRJ99]. 

class diagram A diagram that represents a number of classes, 
interfaces, and their relationships. 

classifier A mechanism that describes structural and behavioral 
features. Classifiers include classes, interfaces, 
datatypes, signals, components, nodes, use cases, and 
subsystems [BRJ99]. 
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collaboration diagram 

component 

A diagram that represents the collaboration between 
classes; shows how classes are interrelated and the 
messages objects created from these classes send and 
receive. 

A physical and replaceable part of a system that 
conforms to and provides the realization of a set of 
interfaces [BRJ99]. 

component diagram A diagram that shows the organization of and 
dependencies among a set of components; component 
diagrams address the static implementation view of a 
system [BRJ99]. 

composition 

concrete class 

constraint 

container 

delegation 

diagram 

domain 

A form of aggregation with strong ownership and 
coincident Hfetime of the parts by the whole; parts 
with nonfixed multiplicity may be created after the 
composite itself, but once created, they live and die 
with it; such parts can also be explicitly removed 
before the death of the composite [BRJ99]. 

A class that can create instances. 

A restriction on one or more values of (part of) an 
object oriented model or system [WK99]. 

An object created to contain other objects and that 
provides facilities to access or iterate over them. 

The ability of an object to defer the execution of a call 
to another object. 

The graphical presentation of a set of elements, most 
often rendered as a connected graph of vertices 
(things) and arcs (relationships) [BRJ99]. 

An area of knowledge or activity characterized by a 
set of concepts and terminology understood by 
practitioners in the area [BRJ99]. 
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element 

focus of control 

inheritance 

instance 
interaction diagram 

interface 

link 

method 

model 
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An atomic constituent of a model [BRJ99]. 

A symbol on a sequence diagram that shows the 
period of time during which an object is performing 
an action directly or through a subordinate operation 
[BRJ99]. 

The mechanism by which more-specific elements 
incorporate the structure and behavior of more-
general elements [BRJ99]. 

A concrete manifestation of an abstraction [BRJ99]. 
A diagram that shows an interaction, consisting of a 
set of objects and their relationships, including the 
messages that may be dispatched among them; 
interaction diagrams address the dynamic view of a 
system; a generic term that applies to several types of 
diagrams that emphasize object interaction, including 
collaboration diagrams, sequence diagrams, and 
activity diagrams [BRJ99]. 

a set of operations that are used to define the behavior 
of a class or component. 

A semantic connection among objects; an instance of 
an association [BRJ99]. 

The implementation of an operation [BRJ99]. 

A simplification of reality, created in order to better 
understand the system being created; a semantically 
closed abstraction of a system [BRJ99]. 

multiple inheritance A semantic variation of generalization in which a 
child may have more than one parent [BRJ99]. 

multiplicity 

object 

A specification of the range of allowable cardinalities 
that a set may assume [BRJ99]. 

A synonym for an instance. 



GLOSSARY Til 

object constraint language (OCL) 
A formal language used to express constraints over 
elements of a model. 

object diagram 

object lifeline 

package 

pattern 

postcondition 

precondition 

property 

realization 

relationship 

sequence diagram 

single inheritance 

A diagram that shows a set of objects and their 
relationships at a point in time; object diagrams 
address the static design view or static process view 
ofasystem[BRJ99]. 

A line in a sequence diagram that represents the 
existence of an object over a period of time [BRJ99]. 

A general-purpose mechanism for organizing 
elements into groups [BRJ99]. 

A pattern names, abstracts, and identifies the key 
aspects of a common design structure that make it 
useful for creating a reusable object-oriented design 
[GHJ95]. 

A constraint that must be true at the completion of an 
operation [BRJ99]. 

A constraint that must be true when an operation is 
invoked [BRJ99]. 

A named value denoting a characteristic of an 
element [BRJ99]. 

A semantic relationship between classifiers, in which 
one classifier specifies a contract that another 
classifier guarantees to carry out [BRJ99]. 

A semantic connection among elements [BRJ99]. 

An interaction diagram that emphasizes the time 
ordering of messages [BRJ99]. 

A semantic variation of generalization in which a 
child may have only one parent [BRJ99]. 
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state 

statechart diagram 

state machine 

UML 

use case 

use case diagram 

use case model 
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A condition or situation during the life of an object 
during which it satisfies some condition, performs 
some activity, or waits for some event [BRJ99]. 

A diagram that shows a state machine; statechart 
diagrams address the dynamic view of a system 
[BRJ99]. 

A behavior that specifies the sequences of states an 
object goes through its lifetime in response to events, 
together with its responses to those events [BRJ99]. 

The Unified Modeling Language, a language for 
visualizing, specifying, constructing, and 
documenting the artifacts of a software-intensive 
system [BRJ99]. 

A description of a set of actions, including variants, 
that a system performs that yields an observable result 
of value to an actor [BRJ99]. 

A diagram that shows a set of use cases and actors 
and their relationships; use case diagrams address the 
static use case view of a system [BRJ99]. 

The set of all use cases for a problem represented in 
one diagram. 
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