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Preface

Time-delay occurs in many dynamical systems such as biological systems,
chemical systems, metallurgical processing systems, nuclear reactor, long
transmission lines in pneumatic, hydraulic systems and electrical networks.
Especially, in recent years, time-delay which exists in networked control sys-
tems has brought more complex problem into a new research area. Frequently,
it is a source of the generation of oscillation, instability and poor performance.
Considerable effort has been applied to different aspects of linear time-delay
systems during recent years. Because the introduction of the delay factor
renders the system analysis more complicated, in addition to the difficulties
caused by the perturbation or uncertainties, in the control of time-delay sys-
tems, the problems of robust stability and robust stabilization are of great
importance.

This book presents some basic theories of stability and stabilization of
systems with time-delay, which are related to the main results in this book.
More attention will be paid on synthesis of systems with time-delay. That is,
sliding mode control of systems with time-delay; networked control systems
with time-delay; networked data fusion with random delay.

This book contains three parts:
Part I: basic theory of systems with time-delay. There are three chapters

in this part. In Chapter 1, recent developments on stability analysis of sys-
tems with time-delay are presented. Traditional methods are introduced for
stability analysis of delayed continuous systems. In Chapter 2, new stabil-
ity conditions for continuous-time systems with interval time-varying delay
are given. In Chapter 3, new stability and stabilization conditions for dis-
crete systems with time-delay are derived. Part II: sliding mode control of
systems with time-delay are investigated. Both delay-independent and delay-
dependent conditions for existence of sliding mode surface and controller are
given in Chapter 4 and Chapter 5. In Chapter 6, robust adaptive control for
uncertain systems with time-delay is presented. In Chapter 7, sliding mode
control for systems with input delay are presented. In Chapter 8, sliding mode
control for systems with state delay and input delay is given. In Chapter 9,



VIII Preface

based on the delta operator approach, the reaching law proposed is able to
reduce the chattering, and possesses the desired characteristics of robustness
and good performance. The proposed method can unify some previous re-
lated results of the continuous and discrete sliding mode control for systems
into the delta operator systems framework. In Chapter 10, active disturbance
rejection controller which consists of the tracking differentiator, the extended
state observer and the nonlinear proportional derivative (PD) controller, is
proposed to deal with both robust stability and performance specifications for
a multivariable process with time delay in the input. Since parts of the idea
of ADRC originate from sliding mode control, Chapter 10 is also included in
Part II.

Part III: networked control systems with time-delay are studied. Much
research work has been done in networked control systems, most work has
ignored a very important feature of networked control systems. This feature
is that the communication networks can transmit a packet of data at the
same time, which is not done in traditional control systems. The method in
this part makes full use of this network feature and proposes a new networked
control scheme–networked predictive control, which can overcome the effects
caused by network delay. Furthermore, three different ways to choose control
input are discussed and the performances have been compared and analyzed
in Chapter 11. The performance analysis of systems with random delay in
feedback channel, forward channels and both feedback and forward channels
are presented in Chapter 12, Chapter 13 and Chapter 14, respectively. In
Chapter 15, a practical architecture and some algorithms for the networked
data fusion system with packets losses and variable delays are presented.
The data fusion system proposed in this chapter is based on the well-known
Federated Filter. The algorithm in this chapter is optimal, and the system
considered in this chapter is equi-interval sampled and there is completely no
prior information about when packet delays occur. And also, the advantages
of the proposed algorithm are analyzed.

We would like to acknowledge the collaborations with Professor Guo-Ping
Liu on some of the research works reported in the monograph and Dr. Jinhui
Zhang for his help in checking and correcting some errors in this monograph.

Haidian District, Beijing, China, Yuanqing Xia
Haidian District, Beijing, China, Mengyin Fu
Trefforest, Glamorgan, UK, Peng Shi
December 2008
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Chapter 1

Recent Results on Analysis of Systems
with Time-Delay

1.1 Introduction

It is well known that time delays as a source of the generation of oscillation
and a source of instability are frequently encountered in various engineering
systems such as long transmission lines in pneumatic systems, nuclear reac-
tors, rolling mills, hydraulic systems and manufacturing processes. Therefore,
the problem of stability analysis and control of time-delay systems has at-
tracted much attention, and considerable effort has been applied to different
aspects of linear time-delay systems during recent years [153], [128], [141],
[64], [112], [140], [206], [66], [65], [204], [87], [39], [214], [199], [125], [157],
[155], [156], [158], [159], [193], [192]. It has been proven that the linear time
delay system ẋ(t) = −bx(t− τ), b > 0, τ > 0 is stable if τ < π

2b , and the sys-
tem is unstable if τ is too large. Existing criteria for asymptotic stability of
time-delay systems can be classified into two types, that is, delay-independent
stability and delay-dependent stability; the former does not include any in-
formation on the size of delay while the latter employs such information. It
is known that delay-dependent stability conditions are generally less conser-
vative than delay-independent ones especially when the size of the delay is
small.

In the literature, many kinds of approaches have been proposed to obtain
delay-dependent stability conditions based on linear matrix inequality (LMI)
approach. LMI approach is the most popular and has played an important
role, which can be efficiently solved via standard numerical software. The
main objective of this chapter is to review the recent development on the LMI
techniques in deriving both delay-independent and delay-dependent stability
results for systems with constant and time-varying delays. Our attention will
be paid on issues concerned with the conservatism of the results. First, some
basic results on delay-independent will be recalled. Then, we will pay more
attention on discussing delay-dependent results, and four approaches will
be introduced, they are: Model Transformation approach, Bounding Tech-
niques, Descriptor System approach and Free-Weighting Matrix approach.

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 3–16.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 1 Recent Results on Analysis of Systems with Time-Delay

Then, the more recent results on delay-dependent stability conditions will
be introduced. It will be seen that, on one hand, the free-weighting matrix
approach is effective in reducing conservatism in existing delay dependent
results. On the other hand, since many matrix variables will be introduced,
the stability criteria obtained are very complicated. Thus, based on Jensen’s
inequality, some new delay-dependent stability conditions are provided re-
cently. The advantages associated to the new approach are that it involves
fewer matrix variables and has less conservatism.

The chapter is organized as follows. Section 1.2 presents the problem
formulation and some preliminaries. Recent developments in LMI tech-
niques for deriving delay-independent stability conditions are given in Section
1.3. Four approaches have been introduced for developing delay-dependent
stability conditions in Section 1.4. Some conclusion remarks are given in
Section 1.5.

1.2 Problem Formulation

Consider the following two kinds of time-delay systems:

(S1) : ẋ(t) = Ax(t) + Adx(t− d) (1.1)
x(t) = φ(t), ∀t ∈ [−d, 0] (1.2)

and

(S2) : ẋ(t) = Ax(t) + Adx(t− d(t)) (1.3)
x(t) = φ(t), ∀t ∈ [−dM , 0] (1.4)

where x(t) ∈ Rn is the state; φ(t) is the continuous initial condition. In system
(S1), the scalar d > 0 denotes the constant delay, while for the time-varying
delay d(t) in system (S2), generally, there are three assumptions given as
follows:

Assumption 1.2.1 d(t) is a continuous function satisfying 0 ≤ d(t) ≤ dM ,
where dM is a constant positive scalar representing the upper bound of d(t).

Assumption 1.2.2 d(t) is a differentiable function satisfying 0 ≤ d(t) ≤ dM

and ḋ(t) ≤ ρ < 1, where dM is given in Assumption 1.2.1, and ρ is the upper
bound of ḋ(t).

Assumption 1.2.3 d(t) is a differentiable function satisfying 0 ≤ dm ≤
d(t) ≤ dM and ḋ(t) ≤ ρ, where dm and dM are given positive scalars repre-
senting the lower and upper bounds of interval time-varying delay d(t), and
ρ is given in Assumption 1.2.2.
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Remark 1.1. The difference between Assumption 1.2.2 and Assumption 1.2.3
is that the constraint ρ < 1 is not required in Assumption 1.2.3.

1.3 Delay-Independent Conditions

For the time-delay system (S1), the initial stability condition is provided
in [177].

Theorem 1.2. The time-delay system (S1) is asymptotically stable if there
exist matrices P > 0 and Q > 0 such that

[
ATP + PA + Q PAd

AT
d P −Q

]

< 0. (1.5)

In Theorem 1.2, the following Lyapunov-Krasovskii functional is used:

V (t) = xT (t)Px(t) +
∫ t

t−d

xT (s)Qx(s)ds.

For the time-delay system (S2), the counterpart of Theorem 1.2 is given
in the following theorem under Assumption 1.2.2.

Theorem 1.3. Under Assumption 1.2.2, the time-delay system (S2) is
asymptotically stable if there exist matrices P > 0 and Q > 0 such that

[
ATP + PA+ Q PAd

AT
d P −(1 − ρ)Q

]

< 0. (1.6)

In Theorem 1.3, the following Lyapunov-Krasovskii functional is used:

V (t) = xT (t)Px(t) +
∫ t

t−d(t)

xT (s)Qx(s)ds.

1.4 Delay-Dependent Conditions

It is well known that delay-independent stability conditions are simpler to
apply, while delay-dependent stability conditions are less conservative espe-
cially in the case when the time delay is small. Therefore, recent years have
witnessed a resurgence of research interests in developing delay-dependent
stability conditions of time-delay systems.
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1.4.1 Basic Approaches

Approach I: Model Transformation Approach
By using the Newton-Leibniz formula, we have x(t−d) = x(t)−∫ t

t−d
ẋ(s)ds,

thus, system (S1) can be rewritten as following two forms

ẋ(t) = (A + Ad)x(t) −Ad

∫ t

t−d

[Ax(s) + Adx(s− d)]ds (1.7)

ẋ(t) = (A + Ad)x(t) −Ad

∫ t

t−d

ẋ(s)ds. (1.8)

Accordingly, for system (S2), we have

ẋ(t) = (A + Ad)x(t) −Ad

∫ t

t−d(t)

[Ax(s) + Adx(s− d(s))]ds (1.9)

ẋ(t) = (A + Ad)x(t) −Ad

∫ t

t−d(t)

ẋ(s)ds. (1.10)

It should be pointed out that (1.7)-(1.10) are transformed from the time-
delay system in (1.1) or (1.3) by using the Newton-Leibniz formula, re-
spectively. Based on the transformed systems (1.7)-(1.10), a lot of delay-
dependent stability results have been obtained, see [18, 19, 113, 123] for
example, and the references cited therein. However, the drawback associated
to this approach is that all of transformed systems are not equivalent to (1.1)
or (1.3).

Approach II: Bounding techniques
It is well known that some weighted cross products may arise in the analysis

of the delay-dependent stability problem, thus, getting better bounds of them
will play a key role in reducing conservatism. Note that in [18, 19, 113], the
following inequality was used,

−2aT b ≤ aTXa + bTX−1b

where a ∈ Rn, b ∈ Rn and X > 0.
To reduce the conservativeness, Park presents the following lemma.

Lemma 1.4. (Park’s Inequality) Assume that a(s) ∈ Rn, and b(s) ∈ Rn are
given for s ∈ Ω. Then, for any X > 0 and any matrix M , the following
inequality holds

−2
∫

Ω

a(s)T b(s)ds ≤
∫

Ω

[
a(s)
b(s)

]T [
X XM

MTX (2, 2)

] [
a(s)
b(s)

]

ds

where (2, 2) = (MTX + I)X−1(MTX + I)T .
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Then, by using this inequality, an improved delay-dependent stability con-
dition was reported in [145], which is stated in the following theorem.

Theorem 1.5. [145] The time-delay system (S1) is asymptotically stable for
any delay d, 0 < d ≤ dM if there exist matrices P > 0, Q > 0, V > 0, and
W such that

⎡

⎢
⎢
⎣

Ψ −WTAd ATAT
d V dM (WT + P )

∗ −Q AT
d A

T
d V 0

∗ ∗ −V 0
∗ ∗ ∗ −V

⎤

⎥
⎥
⎦ < 0

where Ψ = (A + Ad)TP + P (A+ Ad) + WTAd + AT
d W + Q.

It should be noted that Park’s inequality was further improved in [138] by
using the following Moon’s inequality.

Lemma 1.6. (Moon’s Inequality) Assume that a(s) ∈ Rn, b(s) ∈ Rm and
N(s) ∈ Rn×m are given for s ∈ Ω. Then, for any X > 0, Z > 0 and any
matrix Y , the following inequality holds

−2
∫

Ω a(s)TN(s)b(s)ds ≤ ∫Ω
[
a(s)
b(s)

]T [
X Y −N(s)

Y T −N(s)T Z

] [
a(s)
b(s)

]

ds

[
X Y
Y T Z

]

≥ 0.

Theorem 1.7. [138] The time-delay system (S1) is asymptotically stable for
any delay d, 0 < d ≤ dM if there exist matrices P > 0, Q > 0, X , Y and Z
such that

⎡

⎣
(1, 1) PAd − Y dMATZ
∗ −Q dMAT

d Z
∗ ∗ dMZ

⎤

⎦ < 0

[
X Y
∗ Z

]

≥ 0

where (1, 1) = PA + ATP + dMX + Y + Y T + Q.

Based on Moon’s inequality, a great amount of delay-dependent conditions
for various system with time delay were derived out, see [50, 209, 115, 144]
for example, and the references therein.

By applying Moon’s inequality, in [216], the following integral inequality
was given for system with time-varying delay.

Lemma 1.8. Let x(t) ∈ Rn be a vector-valued function with first-order
continuous-derivative entries. Then, the following integral inequality holds
for any matrices M1, M2 ∈ Rn×n and X > 0,
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−
∫ t

t−d(t)

ẋT (s)Xẋ(s)ds ≤ ξT (t)
[

MT
1 + M1 −MT

1 + M2

−M1 + MT
2 −MT

2 −M2

]

ξ(t)

+d(t)ξT (t)
[
MT

1

MT
2

]

X−1
[
M1 M2

]
ξ(t)

where ξ(t) =
[

x(t)
x(t − d(t))

]

.

Besides of Park’s inequality and Moon’s inequality, another one named
Jensen’s inequality, which is stated as follows.

Lemma 1.9. (Jensen’s Inequality) [67] For any constant matrix M > 0,
scalars b > a, vector function w : [a, b] → Rm such that the integrations in
the following are well defined, then

(b − a)
∫ b

a

w(s)TMw(s)ds ≥
[∫ b

a

w(s)ds

]T

M

[∫ b

a

w(s)ds

]

.

Lemma 1.10. [74] For any constant matrix W ∈ Rn×n, W = WT > 0,
scalar γ > 0, then

−γ
∫ t

t−γ

ẋT (s)Wẋ(s)ds ≤
[

x(t)
x(t− γ)

]T [−W W
W −W

] [
x(t)

x(t− γ)

]

.

Theorem 1.11. [62] The time-delay system (S1) is asymptotically stable for
any delay d, 0 < d ≤ dM if there exist matrices P > 0, Q > 0 and Z > 0
such that

⎡

⎣
PA + ATP + Q− Z PAd + Z dMATZ

∗ −Q− Z dMAT
d Z

∗ ∗ −Z

⎤

⎦ < 0.

Theorem 1.12. [62] The time-delay system (S2) is asymptotically stable for
any delay d(t) satisfying Assumption 1.2.1 if there exist matrices P > 0 and
Z > 0 such that

⎡

⎣
PA+ ATP − Z PAd + Z dMATZ

∗ −Z dMAT
d Z

∗ ∗ −Z

⎤

⎦ < 0.

The Jensen’s inequality has been used to deal with different kinds of time-
delay systems in order to obtain delay-dependent results, see [67, 183, 74] for
example, and the reference therein.

Approach III: Descriptor system approach
It is well known the transformed model is not equivalent to the original

time-delay system, and may lead to conservatism. In order to reduce such
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potential conservatism, a method based on descriptor systems has been intro-
duced in [43] to perform the stability analysis and controller design for system
with time-varying delays. This method uses a descriptor system model to de-
rive delay-dependent stability conditions, which is equivalent to the original
time-delay system.

To introduce the descriptor system approach, we rewrite system (S2) in
the following form:

ẋ(t) = y(t)

0 = −y(t) + (A + Ad)x(t) −Ad

∫ t

t−d(t)

y(s)ds

which can be rewritten as

E ˙̄x(t) = Āx̄(t) + Ād

∫ t

t−d(t)

y(s)ds

where x̄(t) =
[
x(t)
y(t)

]

, E =
[
I 0
0 0

]

, Ā =
[

0 I
A+ Ad −I

]

and Ād =
[

0
Ad

]

.

The Lyapunov-Krasovskii functional associated to this approach can be
chosen as

V (t) = x̄T (t)EPx̄(t) +
∫ t

t−d(t)

xT (s)Qx(s)ds +
∫ 0

−dM

∫ t

t+θ

yT (s)Ry(s)dsdθ

where P =
[
P1 0
P2 P3

]

.

Then, the following theorem can be obtained.

Theorem 1.13. [45] Under Assumption 1.2.2, the time delay system (S2) is
asymptotically stable if there exist matrices P1 > 0, P2, P3, R1 > 0, S1, Y11,
Y12, Z11, Z12 and Z13, such that

⎡

⎣ Ω + dMZ1 PT

[
0
Ad

]

− Y T
1

[
0 AT

d

]
P − Y1 −(1 − ρ)S1

⎤

⎦ < 0

and
[
R1 Y1

Y T
1 Z1

]

≥ 0

where

Ω = PT

[
0 I
A −I

]

+
[

0 I
A −I

]T

P
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+
[
S1 0
0 dMR1

]

+
[
Y1

0

]

+
[
Y1

0

]T

Y1 =
[
Y11 Y12

]
, Z1 =

[
Z11 Z12

ZT
12 Z13

]

.

Corollary 1.14. [45] Under Assumption 1.2.1, the time delay system (S2) is
asymptotically stable if there exist matrices P1 > 0, P2, P3, R1 > 0, S1, Z11,
Z12 and Z13, such that

Ψ1 + dMZ1 < 0

and
[
R1 [0 AT

d ]PT

∗ Z1

]

≥ 0

where

Ψ1 = PT

[
0 I
A −I

]

+
[

0 I
A −I

]T

P +
[

0 0
0 dMR1

]

, Z1 =
[
Z11 Z12

ZT
12 Z13

]

.

By the descriptor system approach together with the following functional

V (t) = x(t)TPx(t) +
∫ dM

0

(dM − σ)ẋT (t− σ)X33ẋ(t− σ)dσ
∫ t

0

∫ σ

σ−d(t)

eTXedsdσ +
∫ t

t−d(t)

xT (s)Qx(s)ds

where e =

⎡

⎣
x(β)

x(σ − d)
ẋ(s)

⎤

⎦ and X =

⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎦, Jing, et al., present the

following delay-dependent stability condition:

Theorem 1.15. [95] Under Assumption 1.2.3 with dm = 0, the time delay
system (S2) is asymptotically stable if there exist matrices P > 0, P1, P2,
and Xij , i ≤ j, i, j = 1, 2, 3 such that

⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎦ > 0

⎡

⎣
(1, 1) P − PT

1 + ATP2 (1, 3)
∗ dMX33 − P2 − PT

2 PT
2 Ad

∗ ∗ (3, 3)

⎤

⎦ < 0

where (1, 1) = ATP1 + PT
1 A + dMX11 + X13 + XT

13 + Q, (1, 3) = PT
1 A1 +

dMX12 −X13 + XT
23 and (3, 3) = dMX22 −X23 −XT

23 − (1 − ρ)Q.
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Corollary 1.16. [95] Under Assumption 1.2.1, the time delay system (S2) is
asymptotically stable if there exist matrices P > 0, P1, P2, Q > 0, and Xij ,
i ≤ j, i, j = 1, 2, 3 such that

⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎦ > 0

⎡

⎣
(1, 1) P − PT

1 + ATP2 (1, 3)
∗ dMX33 − P2 − PT

2 PT
2 Ad

∗ ∗ (3, 3)

⎤

⎦ < 0

where (1, 1) = ATP1 + PT
1 A + dMX11 + X13 + XT

13 + Q, (1, 3) = PT
1 A1 +

dMX12 −X13 + XT
23 and (3, 3) = dMX22 −X23 −XT

23.

In [108], an alternative Lyapunov-Krasovskii functional was defined,

V (t) =
[
x(t)
ẋ(t)

]T

EP

[
x(t)
ẋ(t)

]

+
∫ t

t−d

xT (s)Qx(s)ds

∫ t

0

∫ β

β−d

⎡

⎣
x(β)
ẋ(β)
ẋ(s)

⎤

⎦

T ⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎦

⎡

⎣
x(β)
ẋ(β)
ẋ(s)

⎤

⎦ dsdβ.

Theorem 1.17. [108] The time-delay system (S1) is asymptotically stable
for any delay d, 0 < d ≤ dM if there exist matrices P1 > 0, P2, P3, Q, X11,
X12, X22, Y1, Y2 and Z > 0 such that the following LMIs hold:

⎡

⎣
X11 X12 Y1

XT
12 X22 Y2

Y T
1 Y T

2 Z

⎤

⎦ ≥ 0

⎡

⎣
(1, 1) (1, 2) PT

2 Ad − Y1

∗ −P3 − PT
3 + dMZ PT

3 Ad − Y2

∗ ∗ −Q

⎤

⎦ < 0

where (1, 1) = PT
2 A+ATP2 + dMX11 +Q+Y1 +Y T

1 and (1, 2) = P1 −PT
2 +

ATP3 + dMX12 + Y T
2 .

For system (S2), we can get the descriptor system only by changing d into
d(t).

The descriptor system approach has been widely used to deal with various
problems of time delay systems in order to provide delay-dependent results,
see [43, 45, 202, 95, 108] for example.

Approach IV: Free-weighting matrix approach
From the Newton-Leibniz formula, the following equations are true for any

matrices Y and W , with appropriate dimensions:



12 1 Recent Results on Analysis of Systems with Time-Delay

2xT (t)Y
[

x(t) − x(t− d) −
∫ t

t−d

ẋ(s)ds
]

= 0

and

2xT (t− d)W
[

x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds
]

= 0.

On the other hand, the following equation is also true:

dζT (t)Xζ(t) −
∫ t

t−d

ζT (t)Xζ(t)ds = 0

where ζ(t) =
[
xT (t) xT (t− d)

]T , X =
[
X11 X12

XT
12 X22

]

.

With the above observations, the following delay-dependent condition can
be gotten.

Theorem 1.18. [184] The time-delay system (S1) is asymptotically stable
for any delay d, 0 < d ≤ dM if there exist matrices P > 0, Q > 0, Z > 0,
X11, X12, X22, Y and W such that the following LMIs

⎡

⎣
(1, 1) PAd − Y + WT + dMX12 dMATZ
∗ −Q−W −WT + dMX22 dMAT

d Z
∗ ∗ −dMZ

⎤

⎦ < 0

⎡

⎣
X11 X12 Y
∗ X22 W
∗ ∗ Z

⎤

⎦ ≥ 0

where (1, 1) = PA + ATP + Y + Y T + Q + dMX11.

Based on free-weightingmatrix approach, a great amount of delay-dependent
stability conditions has been derived, see [77, 79, 48, 208] for example.

1.4.2 Recent Results on Interval Time-Varying Delay
System

1.4.2.1 FWM-based results

Since the free-weighting matrix (FWM) method was proposed in [79], it plays
an important role in deriving delay-dependent stability conditions. But there
is room for further investigation. First, when estimating the upper bound of
the derivative of Lyapunov functional, some useful terms are ignored. For ex-
ample, in [46], [79] and [184], the derivative of

∫ 0

−dM

∫ t

t+θ ẋ
T (s)Zẋ(s)dsdθ

is often estimated as dM ẋT (t)Zẋ(t) − ∫ t

t−d(t) ẋ
T (s)Zẋ(s)ds and the term
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− ∫ t−d(t)

t−dM
ẋT (s)Zẋ(s)ds is ignored, which may lead to considerable conser-

vativeness.
Consider system (S2), and the time-varying delay satisfying Assumption

1.2.3. Define the following Lyapunov functional candidate:

V (t) = xT (t)Px(t) +
∫ t

t−dm

xT (s)Q1x(s)ds +
∫ t

t−dM

xT (s)Q2x(s)ds

+
∫ t

t−d(t)

xT (s)Q3x(s)ds +
∫ 0

−dM

∫ t

t+θ

ẋT (s)Z1ẋ(s)dsdθ

+
∫ −dm

−dM

∫ t

t+θ

ẋT (s)Z2ẋ(s)dsdθ.

By FWM approach, the following equations are true for any matrices N1,
Si and Mi, i = 1, 2, with appropriate dimensions:

2[xT (t)N1 + xT (t− d(t))N2]
[
x(t) − x(t− d(t)) − ∫ t

t−d(t)
ẋ(s)ds

]
= 0

2[xT (t)S1 + xT (t− d(t))S2]
[
x(t− d(t)) − x(t − dM ) − ∫ t−d(t)

t−dM
ẋ(s)ds

]
= 0

2[xT (t)W1 + xT (t− d(t))W2]
[
x(t− dm) − x(t− d(t)) − ∫ t−dm

t−d(t)
ẋ(s)ds

]
= 0.

Calculating the derivative of V (t), and noticing the following equations:

−
∫ t

t−dm

ẋT (s)Z1ẋ(s)ds = −
∫ t

t−d(t)

ẋT (s)Z1ẋ(s)ds−
∫ t−d(t)

t−dm

ẋT (s)Z1ẋ(s)ds

−
∫ t−dm

t−dM

ẋT (s)Z2ẋ(s)ds = −
∫ t−d(t)

t−dM

ẋT (s)Z2ẋ(s)ds−
∫ t−dm

t−d(t)

ẋT (s)Z1ẋ(s)ds

yields the following theorem.

Theorem 1.19. [76] Under Assumption 1.2.3, system (S2) is asymptotically
stable if there exist matrices P > 0, Qi ≥ 0, i = 1, 2, 3, Zj > 0, j = 1, 2, Ni,
Mi and Si, i = 1, 2 such that the following LMI holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 Φ12 M1 −S1 dMN1 δS1 δM1 ATU
∗ Φ22 M2 −S2 dMN2 δS2 δM2 AT

d U
∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ ∗ −dMZ1 0 0 0
∗ ∗ ∗ ∗ ∗ −δ(Z1 + Z2) 0 0
∗ ∗ ∗ ∗ ∗ ∗ −δZ2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

where δ = dM − dm and
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Φ11 = PA+ ATP +
3∑

i=1

Qi + N1 + NT
1

Φ12 = PAd + NT
2 −N1 + S1 −M1

Φ22 = −(1 − ρ)Q3 + S2 + ST
2 −N2 −NT

2 −M2 −MT
2

U = dMZ1 + δZ2.

Similarly, the authors also notice the conservatism led by using the over
bounding 0 to bound the term − ∫ t−d(t)

t−dM
ẋT (s)Zẋ(s)ds. By using Lemma 1.10,

and the following Lyapunov functional,

V (t) = xT (t)Px(t) +
dm

2

∫ 0

− dm
2

ds

∫ t

t+s

ẋT (θ)R1ẋ(θ)dθ

+
∫ t

t− dm
2

[
x(s)

x(s− dm

2 )

]T [
Q1 Q2

QT
2 Q3

] [
x(s)

x(s− dm

2 )

]

ds

+
∫ t

t− dM
2

[
x(s)

x(s− dM

2 )

]T [
Q4 Q5

QT
5 Q6

] [
x(s)

x(s− dM

2 )

]

ds

+
dM

2

∫ 0

− dM
2

ds

∫ t

t+s

ẋT (θ)R2ẋ(θ)dθ

+(dM − dm)
∫ −dm

−dM

ds

∫ t

t+s

ẋT (θ)Sẋ(θ)dθ

where P > 0,
[
Q1 Q2

QT
2 Q3

]

> 0,
[
Q4 Q5

QT
5 Q6

]

> 0, R1 > 0, R2 > 0 and S > 0 with

appropriate dimensions, the following delay-dependent stability condition is
given in [93], which is less conservative than [76].

Theorem 1.20. [93] Under Assumption 1.2.3, system (S2) is asymptotically

stable if there exist matrices P > 0,
[
Q1 Q2

QT
2 Q3

]

> 0,
[
Q4 Q5

QT
5 Q6

]

> 0, R1 > 0,

R2 > 0 and S > 0 such that
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 Ξ13 0 Ξ15 0
∗ Ξ22 0 S 0 S
∗ ∗ Ξ33 −Q2 0 0
∗ ∗ ∗ −Q3 − S 0 0
∗ ∗ ∗ ∗ Ξ55 −Q5

∗ ∗ ∗ ∗ ∗ −Q6 − S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

where

Θ =
1
4
(d2

mR1 + d2
MR2 + 4(dM − dm)2S)

Ξ11 = PA+ ATP + ATΘA + Q1 + Q4 −R1 −R2
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Ξ12 = PB + ATΘB,Ξ13 = Q2 + R1, Ξ15 = Q5 + R2, Ξ22 = BTΘB − 2S.

1.4.2.2 Jensen’s Inequality-Based Results

It is obvious that free-weighting matrix approach is effective in reducing con-
servatism in existing delay dependent results, however, since many matrix
variables will be introduced, which makes stability criteria very complicated.
Thus, based on Jensen’s inequality, the author of [151] provided the follow-
ing delay-dependent condition for system (S2). The resulting criterion has
advantages over some previous ones in that it involves fewer matrix variables
and has less conservatism, which is established theoretically.

Theorem 1.21. [151] Under Assumption 1.2.3, system (S2) is asymptotically
stable if there exist matrices P > 0, Qi > 0, i = 1, 2, 3 and Zj > 0, j = 1, 2,
such that the following LMIs hold:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Υ PAd Z1 0 dmATZ1 δATZ2

∗ −(1 − ρ)Q3 − 2Z2 Z2 Z2 dmAT
d Z1 δAT

d Z2

∗ ∗ −Q1 − Z1 − Z2 0 0 0
∗ ∗ ∗ −Q2 − Z2 0 0
∗ ∗ ∗ ∗ −Z1 0
∗ ∗ ∗ ∗ ∗ −Z2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

where Υ = PA+ ATP + Q1 + Q2 + Q3 − Z1.

Following a similar line and using a new method to get a tight upper bound
of the derivative of Lyapunov functional, the following new result is obtained
in [152].

Theorem 1.22. [152] Under Assumption 1.2.3, system (S2) is asymptotically
stable if there exist matrices P > 0, Qi > 0, i = 1, 2, 3 and Zj > 0, j = 1, 2,
such that the following LMIs hold:

Φ1 = Φ− [ 0 −I I 0
]T

Z2

[
0 −I I 0

]
< 0

and

Φ2 = Φ− [ 0 I 0 −I ]T Z2

[
0 I 0 −I ] < 0

where

Φ =

⎡

⎢
⎢
⎣

Υ PAd Z1 0
∗ −(1 − ρ)Q3 − 2Z2 Z2 Z2

∗ ∗ −Q1 − Z1 − Z2 0
∗ ∗ ∗ −Q2 − Z2

⎤

⎥
⎥
⎦

+
[
A Ad 0 0

]T (d2
mZ1 + δ2Z2)

[
A Ad 0 0

]
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with

Υ = PA + ATP +
3∑

i=1

Qi − Z1.

1.5 Conclusion

This chapter has reviewed certain stability analysis of time-delay systems.
LMI techniques in deriving both delay-independent and delay-dependent sta-
bility conditions have been reviewed. Firstly, some basic delay-independent
stability conditions are recalled. Secondly, four approaches have been intro-
duced for developing delay-dependent stability conditions, they are: Model
Transformation approach, Bounding Techniques, Descriptor System approach
and Free-Weighting Matrix approach. Finally, the more recent results on
delay-dependent stability conditions have been given.



Chapter 2

New Results on Stability of Systems
With Interval Time-Varying Delay

2.1 Introduction

Very recently, systems with time-varying delay in an interval have been stud-
ied in [76, 93, 151, 152]. In [76], delay-range-dependent stability criteria have
been proposed by preserving some useful terms when estimating the upper
bound of the derivative of Lyapunov functional. By using a new Lyapunov
functional and a tighter bounding technique, some delay-dependent stability
criteria have been provided, which are less conservative than [76]. It is worthy
mentioning that in [76] and [93], to obtain less conservative results, free ma-
trix variables are introduced during calculating the derivative of Lyapunov
functional, which makes stability criteria complicated. With the observations,
in [151], Jensen’s Inequality is used to derive an improved delay-dependent
stability criteria for systems with a delay varying in a range. Compared with
previous results, the stability criteria in [151] are with fewer matrix variables
and less conservatism. In [152], the author further improve the results in [151]
by using the idea of convex combination. Nevertheless, the criteria still have
room for further improvement in accuracy as well as complexity reduction.

In this chapter, our attention will be focused on delay-dependent stability
for systems with interval time-varying delay. By choosing an appropriate
Lyapunov functional and using Finsler’s Lemma, some new delay-dependent
stability criteria are obtained via linear matrix inequality approach. It is
worthy mentioning that the developed results in this chapter, compared with
recently published results, such as [92, 76, 93, 151, 152], involve fewer matrix
variables but have less conservatism. Numerical examples are provided to
demonstrate the advantages of the proposed stability criteria.

The chapter is organized as follows. Section 2.2 gives the problem formu-
lation and some preliminaries. The new sufficient conditions for system with
interval time-varying delay are presented in Section 2.3. Numerical simula-
tions are provided in Section 2.4 and some conclusion remarks are given in
Section 2.5.

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 17–23.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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2.2 Problem Formulation

Consider the following linear system with interval time-varying delay:

ẋ(t) = Ax(t) + Adx(t− d(t)), t > 0
x(t) = φ(t), t ∈ [−dM , 0] (2.1)

where x(t) ∈ R is the state vector, A and Ad are constant matrices with
appropriate dimensions, d(t) is an interval time-varying delay in the state,
φ(t) is a continuous vector-valued initial function of t ∈ [−dM , 0]. A natural
assumption on d(t) is made as follows.

Assumption 2.2.1 The time delays d(t) are assumed to be a uniformly con-
tinuous time-varying function satisfying dm ≤ d(t) ≤ dM and ḋ(t) ≤ ρ, where
dm and dM are constant positive scalars representing the lower and upper
bounds of d(t), respectively, and ρ is the upper bound of ḋ(t).

Before ending this section, we introduce the following well known lemma,
which will be used in the derivation of our main results.

Lemma 2.1. (Finsler’s Lemma): Let x ∈ Rn, P = PT ∈ Rn×n and
H ∈ Rm×n such that rank(H) = r < n. The following two statements are
equivalent:

1. xTPx < 0, ∀Hx = 0, x �= 0,
2. ∃X ∈ Rn×m such that P + XH + HTXT < 0.

2.3 Main Results

The main objective of this section is to derive a new delay-interval dependent
stability sufficient condition for system (2.1).

Theorem 2.2. Under Assumption 2.2.1, system (2.1) is asymptotically sta-
ble if there exist matrices P > 0, Q > 0, Z1 > 0 and Z2 > 0 such that the
following LMI holds
⎡

⎢
⎢
⎣

Ψ11 PAd − Z2 dMATZ1 (dM − dm)ATZ2

AT
d P − Z2 −(1 − ρ)Q− 2Z2 dMAT

d Z1 (dM − dm)AT
d Z2

dMZ1A dMZ1Ad −Z1 0
(dM − dm)Z2A (dM − dm)Z2Ad 0 −Z2

⎤

⎥
⎥
⎦ < 0(2.2)

where Ψ11 = ATP + PA + Q− Z1 − Z2.

Proof. Choose a Lyapunov functional candidate to be
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V (x(t)) = xT (t)Px(t) +
∫ t

t−d(t)

xT (s)Qx(s)ds

+dM

∫ 0

−dM

∫ t

t+s

ẋT (α)Z1ẋ(α)dαds

+(dM − dm)
∫ −dm

−dM

∫ t

t+s

ẋT (α)Z2ẋ(α)dαds. (2.3)

Calculating the derivative of V (x(t)) along the trajectory of system (2.1)
yields that

V̇ (x(t)) = 2xT (t)P ẋ(t) + xT (t)Qx(t) − (1 − ḋ(t))xT (t− d(t))Qx(t − d(t))

+d2
M ẋT (t)Z1ẋ(t) − dM

∫ t

t−dM

ẋT (α)Z1ẋ(α)dα

+(dM − dm)2ẋT (t)Z2ẋ(t) − (dM − dm)
∫ t−dm

t−dM

ẋT (α)Z2ẋ(α)dα

≤ 2xT (t)P ẋ(t) + xT (t)Qx(t) − (1 − ρ)xT (t− d(t))Qx(t − d(t))
+ẋT (t)

[
d2

MZ1 + (dM − dm)2Z2

]
ẋ(t)

−dM

∫ t

t−dM

ẋT (α)Z1ẋ(α)dα

−(dM − d(t))
∫ t−d(t)

t−dM

ẋT (α)Z2ẋ(α)dα

−(d(t) − dm)
∫ t−dm

t−d(t)

ẋT (α)Z2ẋ(α)dα. (2.4)

According to Jensen’s Inequality, the following three inequalities are true:

−dM

∫ t

t−dM

ẋT (α)Z1ẋ(α)dα ≤ −ξT
1 (t)Z1ξ1(t) (2.5)

−(dM − d(t))
∫ t−d(t)

t−dM

ẋT (α)Z2ẋ(α)dα ≤ −ξT
2 (t)Z2ξ2(t) (2.6)

−(d(t) − dm)
∫ t−dm

t−d(t)

ẋT (α)Z2ẋ(α)dα ≤ −ξT
3 (t)Z2ξ3(t) (2.7)

where ξ1(t) = x(t) − x(t − dM ), ξ2(t) = x(t − d(t)) − x(t − dM ) and ξ3(t) =
x(t− dm) − x(t− d(t)).

Then, taking into account (2.4)-(2.7) gives that

V̇ (x(t)) ≤ ξT (t)Σξ(t) (2.8)

where ξ(t) = [ẋT (t), xT (t), xT (t− d(t)), ξT
1 (t), ξT

2 (t), ξT
3 (t)]T and
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Σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d2
MZ1 + (dM − dm)2Z2 P 0 0 0 0

P Q 0 0 0 0
0 0 −(1 − ρ)Q 0 0 0
0 0 0 −Z1 0 0
0 0 0 0 −Z2 0
0 0 0 0 0 −Z2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It follows from (2.1) that
Aξ(t) ≡ 0

where Ā =
[
I −A −Ad 0 0 0
0 −I I I −I 0

]

.

Then, system (2.1) is asymptotically stable if for all ξ(t) subject to Āξ(t) =
0, ξT (t)Σξ(t) < 0. Now, from Finsler’s Lemma, ξT (t)Σξ(t) < 0 is equivalent

to Ā⊥TΣĀ⊥ < 0, where Ā⊥ =
[
AT I 0 I 0 I
AT

d 0 I 0 I I

]T

, which can be rewritten as

[
Φ11 Φ12

ΦT
12 Φ22

]

< 0 (2.9)

where

Φ11 = d2
MATZ1A + (dM − dm)2ATZ2A + ATP + PA+ Q− Z1 − Z2

Φ12 = d2
MATZ1Ad + (dM − dm)2ATZ2Ad + PAd − Z2

Φ22 = d2
MAT

d Z1Ad + (dM − dm)2AT
d Z2Ad − (1 − ρ)Q− 2Z2

which in turn equivalent to (2.2) by Schur complements. Then, V̇ (x(t)) <
−ε‖x(t)‖2 for a sufficiently small ε > 0, which ensures the asymptotic stability
of system (2.1), see e.g. [68].

Remark 2.3. It should be pointed out that although free-weighting matrix
method is helpful to reduce the conservatism of stability criteria, the criteria
are very complex since many free matrix variables are introduced. Based on
Finsler’s lemma, new delay-interval-dependent stability condition is obtained
by appropriately choosing Lyapunov functional. Compared with existing re-
sults, such as [92, 76, 93, 151, 152], the newly developed condition in this
chapter possesses some advantages. On the top of this, Theorem 2.2 involves
fewer matrix variables, i.e., only four positive define matrices in the Lyapunov
functional to be determined, thus Theorem 2.2 can be carried out more ef-
ficiently. Table 2.1 provides a comparison of the numbers of the variables
involved among recently published papers and this chapter. The another ad-
vantage associated with Theorem 2.2 is its less conservatism, which can be
seen from the numerical examples clearly.

When the information of the time derivative of delay is unknown, by setting
Q = 0 in the Lyapunov functional (2.3), we have the following result from
Theorem 2.2 immediately.
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Table 2.1 Comparison of the Numbers of the Variables Involved

Methods Number of variables involved
[76] 9n2 + 3n

[93] 6n2 + 4n

[151] 3n2 + 3n

[152] 3n2 + 3n

This chapter 2n2 + 2n

Corollary 2.4. Under Assumption 2.2.1, system (2.1) is asymptotically sta-
ble if there exist matrices P > 0, Z1 > 0 and Z2 > 0 such that the following
LMI holds

⎡

⎢
⎢
⎣

Ψ̃11 PAd − Z2 dMATZ1 (dM − dm)ATZ2

AT
d P − Z2 −2Z2 dMAT

d Z1 (dM − dm)AT
d Z2

dMZ1A dMZ1Ad −Z1 0
(dM − dm)Z2A (dM − dm)Z2Ad 0 −Z2

⎤

⎥
⎥
⎦<0 (2.10)

where Ψ̃11 = ATP + PA− Z1 − Z2.

2.4 Numerical Example

Example 2.5. Consider system (2.1) with

A =
[−2 0

0 −0.9

]

, Ad =
[−1 0
−1 −1

]

.

For various ρ, the admissible upper bound dM of the delay, which guarantee
the stability of system (2.1) are listed with given dm in Table 2.2, 2.3, and
2.4.

Table 2.2 Admissible upper bound dM for various dm and ρ = 0.5

dm = 1 dm = 2 dm = 3 dm = 4 dm = 4.4697
[76] 2.07 2.43 3.22 4.07 4.47
[151] 2.07 2.44 3.22 4.06 4.47
[152] 2.12 2.50 3.25 4.07 4.47

Theorem 2.2 2.63 3.63 4.63 5.63 6.10

It is easy to see that, in the above tables, the criteria derived in this chapter
improve over some recently published ones in that the computed admissible
upper bound of time delay is larger.

Example 2.6. Consider system (2.1) with
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Table 2.3 Admissible upper bound dM for various dm and ρ = 0.9

dm = 1 dm = 2 dm = 3 dm = 4 dm = 4.4697
[76] 1.74 2.43 3.22 4.07 4.47
[151] 1.76 2.44 3.22 4.06 4.47
[152] 1.87 2.50 3.25 4.07 4.47

Theorem 2.2 2.44 3.44 4.44 5.44 5.91

Table 2.4 Admissible upper bound dM for various dm and Unknown ρ

dm = 1 dm = 2 dm = 3 dm = 4 dm = 4.4697
[92] 1.64 2.39 3.20 4.06 –
[76] 1.7424 2.4328 3.2234 4.0644 4.47
[152] 1.8737 2.5049 3.2591 4.0744 4.4700
[93] 1.8043 2.5213 3.3311 4.1880 4.6009

Corollary 2.4 2.41 3.41 4.41 5.41 5.88

A =
[

0 1
−1 −2

]

, Ad =
[

0 0
−1 1

]

.

For ρ = 0.3 and unknown ρ, the admissible upper bound dM of the delay
are shown with given dm in Tables 2.5 and 2.6, respectively. From Table 2.5
and 2.6, it can be seen that with fewer matrix variables the stability results
obtained in the chapter are less conservative than those in existing references.

Table 2.5 Admissible upper bound dM for various dm and ρ = 0.3

dm = 1 dm = 2 dm = 3 dm = 4 dm = 5
[76] 2.2125 2.4091 3.3342 4.2799 5.2393
[151] 2.2128 2.4179 3.3382 4.2819 5.2403
[152] 2.2474 2.4798 3.3893 4.325 5.2773

Theorem 2.2 3.88 4.88 5.88 6.88 7.88

Table 2.6 Admissible upper bound dM for various dm and unknown ρ

dm = 0.3 dm = 0.5 dm = 0.8 dm = 1 dm = 2
[92] 0.91 1.07 1.33 1.50 2.39
[76] 0.9431 1.0991 1.3476 1.5187 2.4000
[151] 0.9806 1.1325 1.3733 1.5401 2.4100
[152] 1.0715 1.2191 1.4539 1.6169 2.4798

Corollary 2.4 1.71 1.91 2.21 2.41 3.41
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2.5 Conclusion

In this chapter, the problem of stability analysis has been performed for
systems with interval time-varying delay. By constructing a novel Lyapunov
functional and using Finsler’s Lemma, a new delay-interval-dependent sta-
bility criterion is obtained. The advantage of the resulting criterion lies in its
simplicity and less conservatism. The numerical results seem to suggest that
the proposed methods may improve the results in recently published papers.



Chapter 3

Stability and Stabilization for Discrete
Systems with Time-Delay

3.1 Introduction

Recently, much attention has been given to the delay-dependent stability
and stabilization of continuous systems with time-delay, see for example,
[146, 139, 99, 44, 188, 53, 109, 185, 78, 198, 203]. In those papers, many kinds
of Lyapunov-Krasovskii functional are proposed in order to derive less conser-
vative stability conditions. Correspondingly, some of the techniques adopted
in the above papers have been extended to the stability and stabilization
problem for discrete systems with time-delay. Less conservative stability con-
ditions for discrete systems with time-delay are also derived, see, [53, 201]
for example. However, discrete system with time-delay has an important fea-
ture, that is, it can be transformed into augmented delay-free system [3, 170].
Then, the stability and stabilization of such a system can be solved with a
simple Lyapunov function. Although the dimensions of augmented systems
could be larger if the time-delay is large, the stability conditions are simple
and convex, which can be checked easily by today’s fast developing computing
techniques.

In this chapter, the problems of stability and stabilization for discrete sys-
tems with time-delay are considered. Necessary and sufficient stability and
stabilization conditions for systems with constant time-delay are presented.
The system with time-varying delay is equivalent to a kind of switched sys-
tems. Sufficient stability and stabilization conditions are derived.

The chapter is organized as follows. Section 3.2 gives the problem formu-
lation and some preliminaries. Section 3.3 presents stability and stabilization
conditions for systems with both constant and time-varying delays. Numeri-
cal simulations are presented in Section 3.4 and some conclusion remarks are
given in Section 3.5.

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 25–34.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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3.2 Problem Formulation

Consider the following uncertain systems in discrete-time described by

x(k + 1) = (A + ΔA(k))x(k) + (Ad + ΔAd(k))x(k − τ(k))
+ (B + ΔB(k))u(k)

x(k) = ϕ(k), k = −τ̄ ,−τ̄ + 1, · · · , 0
(3.1)

where x(k) ∈ Rn and u(k) ∈ Rm are the states and system inputs, respec-
tively; A, Ad and B are matrices of appropriate dimensions with rank(B) =
m, integer τ(k) ≥ 0 denotes the amount of time delay, and assumed to be
constant or time-varying. It satisfies 0 ≤ τ(k) ≤ τ̄ when it is time-varying,
and τ̄ is a positive integer; ϕ(·) denotes the initial condition. ΔA(k), ΔAd(k)
and ΔB(k) are time-varying uncertain matrices of the following form

[ΔA(k) ΔAd(k) ΔB(k)] = DF (k)[Ea Ed Eb] (3.2)

where D, Ea, Ed and Eb are constant matrices with appropriate dimensions
and F (k) satisfies FT (k)F (k) ≤ I. In the following sections, the problems of
stability and stabilization for system (3.1) will be investigated.

3.3 Main Results

3.3.1 Stability analysis

It is well known that a discrete-time delay system can be lifted to a non-delay
system, so the lifted system now is explored.

First, we consider the case of an unforced system (3.1) where system ma-
trices are certain and the time-delay is constant, that is, τ(k) = τ , then
let

z(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(k)
x(k − 1)

...
x(k − τ + 1)
x(k − τ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ(0)
ϕ(−1)

...
ϕ(−τ + 1)
ϕ(−τ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Ā =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 Ad

I 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

then, system (3.1) without control can be written by the following system
without delay:

z(k + 1) = Āz(k). (3.4)

As (3.4) is a non-delayed system, then the techniques for stability of a non-
delayed system can be used to check the stability and stabilization conditions.
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From well-known stability results, we have the following result immedi-
ately.

Lemma 3.1. System (3.1) with constant delay τ is stable if and only if there
exists a positive definite matrix P ∈ R(τ+1)n×(τ+1)n such that the following
inequality holds:

ĀTPĀ− P < 0. (3.5)

Remark 3.2. Note that inequality (3.5) in Lemma 3.1 is a necessary and
sufficient condition for system (3.1) to be stable, any other existing delay-
dependent conditions could not be better than this one. It should be men-
tioned that the dimensions of the augmented system may be larger when the
time-delay is longer, however, this convex condition can be easily checked due
to the availability of fast computing techniques. This will be demonstrated
in Example 3.3.

Example 3.3. To show the effectiveness of Lemma 3.1, let us introduce one
example, which is considered by [201, 107], and will be used to compare our
results. Consider system (3.1) with

A =
[

0.8 0
0 0.91

]

, Ad =
[−0.1 0
−0.1 −0.1

]

.

By the delay-dependent stability condition in [107], it was given that the
maximum allowed delay is 41. By the method provided in [201], it was re-
ported that the maximum allowed delay is 42. By the condition in Lemma
3.1, it is found that system is still stable when the time-delay is 55, and could
be even larger.

Next, we consider the case for systems with uncertainties, the unforced
system (3.1) can be written as

z(k + 1) = (Ā + D̄F (k)Ē)z(k) (3.6)

where

Ā =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 Ad

I 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, D̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

D
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, ĒT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ET
a

0
...
0
ET

d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.7)

With the definition of quadratic stability for discrete system (3.6) referred in
[13], the following result is given.

Theorem 3.4. System (3.1) with uncertainty is quadratically stable if and
only if there exist a definite positive matrix P and a positive scalar ε satisfying
the following inequality:
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⎡

⎣
−P + εĒT Ē ĀTP 0

PĀ −P PD̄
0 D̄TP −εI

⎤

⎦ < 0.

Proof. From Definition 2.1 in [13], system (3.1) with uncertainty is quadrat-
ically stable if and only if the following inequality holds

[−P ĀTP
PĀ −P

]

< 0

which can be written as
[−P ĀTP
PĀ −P

]

+
[

0
PD̄

]

F (k)
[
Ē 0
]
+ (
[

0
PD̄

]

F (k)
[
Ē 0
]
)T < 0.

By Lemma 1 in [197], the above inequality holds if and only if the following
inequality is satisfied for any ε > 0

[−P ĀTP
PĀ −P

]

+ ε−1

[
0 0
0 PD̄D̄TP

]

+ ε

[
ĒT Ē 0

0 0

]

< 0.

Consequently,
[−P + εĒT Ē ĀTP

PĀ −P + ε−1PD̄D̄TP

]

< 0.

Using Schur complement formula with respect to −P + ε−1PD̄D̄TP , it leads
to

⎡

⎣
−P + εĒT Ē ĀTP 0

PĀ −P PD̄
0 D̄TP −εI

⎤

⎦ < 0

which completes the proof.

Finally, we consider the case that the system matrices of unforced system
(3.1) are certain, the delay is time-varying and satisfies 0 ≤ τ(k) ≤ τ̄ . Then,
let

z(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x(k)
x(k − 1)

...
x(k − τ̄ + 1)
x(k − τ̄ )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ(0)
ϕ(−1)

...
ϕ(−τ̄ + 1)
ϕ(−τ̄ )

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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Ā0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A + Ad 0 · · · 0 0 · · · 0 0
I 0 · · · 0 0 · · · 0 0
... ...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 0
0 0 · · · I 0 · · · 0 0
... ...

...
...

...
...

...
...

0 0 · · · 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Āj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A

(j−1)n
︷ ︸︸ ︷
0 · · · Ad 0 · · · 0 0

I 0 · · · 0 0 · · · 0 0
... ...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 0
0 0 · · · I 0 · · · 0 0
... ...

...
...

...
...

...
...

0 0 · · · 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

for j = 1, 2, · · · , τ̄ . Consequently, system (3.1) with time-varying delay is
equivalent to the following switched system:

z(k + 1) = Āσz(k) (3.9)

where σ is the piecewise constant switching signal taking value from the finite
index set F = {0, 1, · · · , τ̄}.

According to the theory of switched systems [172], we have the following
result.

Corollary 3.5. System (3.1) with time-varying delay τ(k) is stable if there
exists a positive definite matrix P ∈ R(τ̄+1)n×(τ̄+1)n such that the following
linear inequalities hold for any i ∈ {0, 1, · · · , τ̄}:

ĀT
i PĀi − P < 0. (3.10)

To show the less conservatism of the stability result in Corollary 3.5, the
following example, which is taken from [51], is investigated.

Example 3.6. Consider system (3.1) with

A =
[

0.8 0
0.05 0.9

]

, Ad =
[−0.1 0
−0.2 −0.1

]

where τ(k) is a bounded time-varying delay. It was obtained in [51] that sys-
tem (3.1) is asymptotically stable for all 2 ≤ τ(k) ≤ 7, that is, the maximum
delay is τ̄ = 7. However, using the method proposed in Corollary 3.5, it is
found that system (3.1) is stable for τ(k) ≤ 20. In fact, we can search for
even more larger delays τ(k) with LMI Tool-box such that (3.10) still holds.

3.3.2 Controller Design

As the lifting method is used, it seems that the controller design for discrete
systems with time-delay will be very complex. However, the following method
will make it much easier for controller design based on LMIs.
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3.3.2.1 Controller Design For Certain Systems with
Constant-Delay

Let u(k) = Kx(k), then the closed-loop system is

x(k + 1) = (A + BK)x(k) + Adx(k − τ). (3.11)

Defining z(k) as in (3.3), it follows from the lifting method that

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 Ad

I 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

K
[
I 0 · · · 0 0

]

= Ā + B̄KI1 (3.12)

then

z(k + 1) = Ãz(k). (3.13)

The following result will present an easy way to design the controller matrix
gain K.

Theorem 3.7. System (3.11) is stable if there exist a positive definite ma-

trices Q =
[
Q11 0
0 Q22

]

with Q11 ∈ Rn×n, Q22 ∈ Rτn×τn and a matrix

Y ∈ Rm×n such that the following inequalities holds
[ −Q QĀT + IT

1 Y
T B̄T

ĀQ + B̄Y I1 −Q
]

< 0. (3.14)

Then, the state feedback can be chosen as K = Y Q−1
11 with which the result-

ing closed-loop system is stable.

Proof. According to Lemma 3.1, system (3.11) is stable if and only if there
exists positive definite matrix P such that

ÃTPÃ− P < 0. (3.15)

By Schur complement, the above inequality is equivalent to the following
inequality,

[−P ÃT

Ã −P−1

]

< 0.
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Pre- and post-multiplying the above inequality by
[
P−1 0

0 I

]

, and let Q =

P−1, results in
[−Q QÃT

ÃQ −Q
]

< 0.

It follows from equation (3.12) that
[ −Q QĀT + IT

1 Q11K
T B̄T

ĀQ + B̄KQ11I1 −Q
]

< 0.

Let Y = KQ11, then the above inequality is equivalent to (3.14).

Remark 3.8. It is easy to see that inequality (3.14) is LMI with variables Q
and Y , then K can be designed easily with LMI Tool-box.

Note that in the above result, the variable Q has a special structure, which
may lead to some conservativeness. In order to reduce the conservativeness,
an extra variable can be introduced, and Q is still in a general form. To
this end, we recall the following lemma, which is useful for us to design the
controller for the above systems:

Lemma 3.9. [30] The following statements are equivalent

i There exists a positive definite matrix P such that

ATPA− P < 0. (3.16)

ii There exist a positive definite matrix P and a matrix V such that

[−Q V TAT

AV Q− V − V T

]

< 0. (3.17)

The following result is an extension of Theorem 3.7 with less conservatism.

Corollary 3.10. System (3.11) is stable if there exist a positive definite

matrix Q ∈ R(τ+1)n×(τ+1)n and matrices V =
[
V11 0
V21 V22

]

with V11 ∈
Rn×n, V21 ∈ Rτn×n, V22 ∈ Rτn×τn and Y ∈ Rm×n such that the following
inequality holds

[ −Q V T ĀT + IT
1 Y

T B̄T

ĀV + B̄Y I1 Q− V − V T

]

< 0. (3.18)

Then, the closed-loop system is stable with the state feedback K = Y V −1
11 .

Remark 3.11. From inequality (3.18), it can be deduced that V is invertible,
otherwise, there exists η �= 0 such that V η = 0, multiplying Q−V T − V < 0
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from both sides by ηT and η, respectively, leads to ηTQη < 0, which con-
tradicts the fact that Q > 0. Therefore, V11 is invertible. Inequality (3.18) is
LMI and Lyapunov matrix Q is in a general form although extra variable V
has a special structure.

3.3.2.2 Quadratic Stabilization for Uncertain Systems with
Constant Delay

When there are uncertainties, system (3.1) can be written as

z(k + 1) = (Ā + B̄K
[
I 0 · · · 0 0

]
+ D̄F (k)(Ẽ + Ē))z(k)

= (Ã + D̄F (k)(Ẽ + Ē))z(k) (3.19)

where Ā, D̄ and Ē are defined in (3.7) and B̄ =
[
BT 0 · · · 0 0

]T , Ẽ =[
EbK 0 · · · 0 0

]
. Then, we have the following result.

Corollary 3.12. System (3.1) is quadratically stabilizable if there exist a pos-

itive definite matrix Q ∈ R(τ+1)n×(τ+1)n and matrix V =
[
V11 0
V21 V22

]

with

V11 ∈ Rn×n, V21 ∈ Rτn×n, V22 ∈ Rτn×τn , Y ∈ Rm×n and a scalar λ
satisfying the following LMI

⎡

⎢
⎢
⎣

−Q V T ĀT + IT
1 Y

T B̄T 0 V T ĒT + IT
1 Y

TET
b

ĀV + B̄Y I1 Q− V − V T λD̃ 0
0 λD̄T −λI 0

ĒV + EbY I1 0 0 −λI

⎤

⎥
⎥
⎦ < 0. (3.20)

Then, the state feedback K = Y V −1
11 will result in the closed-loop system

being quadratically stable.

Proof. From Lemma 3.9, system (3.1) is quadratically stable if (3.17) is sat-
isfied, that is,

[ −Q V T (Ã + D̄F (k)(Ẽ + Ē))T

(Ã + D̄F (k)(Ẽ + Ē))V Q− V − V T

]

< 0

which can be written as
[−Q V T ÃT

ÃV Q− V − V T

]

+
[

0
D̄

]

F (k)
[
(Ẽ + Ē)V 0

]

+ [
[

0
D̄

]

F (k)
[
(Ẽ + Ē)V 0

]
]T < 0.

Using the same techniques as those in Corollary 3.4, the above inequality is
satisfied if and only if the following inequality holds for any ε > 0,
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⎡

⎣
−Q + εV (Ẽ + Ē)T (Ẽ + Ē)V V T ÃT 0

ÃV Q− V − V T ε−1D̄
0 ε−1D̄T −ε−1I

⎤

⎦ < 0.

Using Schur complement with respect to the term εV (Ẽ + Ē)T (Ẽ + Ē)V , it
yields

⎡

⎢
⎢
⎣

−Q V T ÃT 0 V (Ẽ + Ē)T

ÃV Q− V − V T ε−1D̄ 0
0 ε−1D̄T −ε−1I 0

(Ẽ + Ē)V 0 0 −ε−1I

⎤

⎥
⎥
⎦ < 0.

Let λ = ε−1 and Y = KV11, the above inequality is equivalent to (3.20).
The proof is completed.

3.3.2.3 Controller Design for Systems with Time-Varying Delay

When the time-delay is time-varying, the following stabilization condition
can be derived based on Corollary 3.5.

Corollary 3.13. The certain system (3.1) with time-varying delay τ(k) is
stabilizable if there exist a positive definite matrix Q ∈ R(τ+1)n×(τ+1)n, ma-

trices V =
[
V11 0
V21 V22

]

with V11 ∈ Rn×n, V21 ∈ Rτn×n, V22 ∈ Rτn×τn and

Y ∈ Rm×n such that the following inequalities hold for any i ∈ {0, 1, 2, · · · , τ̄}:
[ −Q V T ĀT

i + IT
1 Y

T B̄T

ĀiV + B̄Y I1 Q− V − V T

]

< 0. (3.21)

Then, the closed-loop system is stable with the state feedback K = Y V −1
11 .

Our last result in this chapter deals with the uncertain system (3.1) with
time-varying delays. With the notations Āi , i = 0, 1, 2, · · · , τ̄ defined in (3.8),
the following result is presented:

Corollary 3.14. System (3.1) with time-varying delay τ(k) is quadratically
stabilizable if there exists a positive definite matrix Q ∈ R(τ+1)n×(τ+1)n and

matrices V =
[
V11 0
V21 V22

]

with V11 ∈ Rn×n, V21 ∈ Rτn×n, V22 ∈ Rτn×τn ,

Y ∈ Rm×n and a scalar λ satisfying the following LMIs for i = 0, 1, 2, · · · , τ̄
⎡

⎢
⎢
⎣

−Q V T ĀT
i + IT

1 Y
T B̄T 0 V T ĒT + IT

1 Y
TET

b

ĀiV + B̄Y I1 Q− V − V T λD̃ 0
0 λD̄T −λI 0

ĒV + EbY I1 0 0 −λI

⎤

⎥
⎥
⎦ < 0. (3.22)
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Then, the closed-loop system is quadratically stabilizable with the state feed-
back K = Y V −1

11 .

Remark 3.15. The techniques developed in the chapter can also be easily
extended to the problem of H∞ and H2 control of discrete-time systems with
time-delay, and could be further extended to investigate the filtering problem
and model reduction problem for discrete-time delay systems, such as those
considered in [54, 52] and singular systems with time-delay [12, 35].

3.4 Numerical Example

Example 3.16. Consider system (3.1) with following system matrices and un-
certain parameters ([200]):

A =
[

1 −0.6
0.4 0.5

]

, Ad =
[

0.5 0.2
0.6 0.4

]

, B =
[

0.1 0.2
0 0.1

]

,M =
[

0.1
0.1

]

Ea =
[
0.02 0.03

]
, Ed =

[
0.02 0.01

]
, Eb =

[
2 1.5

]
(3.23)

which is unstable for the unforced nominal system ([200]). It is assumed time-
delay τ(k) is constant, and τ = 2 in [200]. When τ = 20, based on Corollary
3.12, LMI (3.20) has a feasible solution

Y =
[

1.0343 −0.2163
−1.3821 0.2839

]

, V11 =
[

0.2220 −0.0295
−0.0170 0.2727

]

.

Then, the closed-loop system (3.1) is quadratically stable with K = Y V −1
11 =[

4.6376 −0.2918
−6.1985 0.3708

]

at least for any constant τ ≤ 20.

3.5 Conclusion

This chapter has considered the problems of stability and stabilization of dis-
crete system with time-delay. A lifting method has been proposed to trans-
form the discrete system with time-delay to a delay-free system. Stability and
stabilization conditions have been established for constant and time-varying
delay systems with or without uncertainties. Numerical examples have been
included to demonstrate the advantage of the theoretic results obtained.



Chapter 4

Robust SMC for Uncertain
Time-Delay Systems

4.1 Introduction

The control problem of time-delay systems has received considerable atten-
tion over the past years, and different design approaches have been proposed
in [24], [128], [89], [31], [39], [136]. However, they are sensitive to the uncer-
tainty, which directly affects the control systems.

An alternative approach is sliding mode control (SMC), which has many
attractive features such as a fast response with asymptotic stability. The
salient advantages of this method are: (i) when the state is constrained to
the sliding surface, SMC can completely reject uncertainties which satisfy
the matching condition; and (ii) the high possibility of stabilizing some com-
plex non-linear systems which are difficult to stabilize by state feedback laws.
Because of these advantages, variable structure control theory has found ap-
plications to various kinds of plants ([85]). The existence condition of a linear
sliding surface for systems with mismatched uncertainties was given in [25],
[26], [100], but their methods cannot be applied to systems with time-delay.
In [161], a new robust stability criterion for uncertain time-delay systems is
given and the SMC is proved to be applicable. There, due to use of matrix
norm, the result is more or less conservative and complicated which leads
to inconvenience in designing the sliding surface for uncertain time-delay
systems.

In this chapter, we consider how to design sliding surface and reaching mo-
tion controller for a class of time-delay systems with mismatched uncertainties
and matched exogenous disturbance. An LMI condition for the existence of
linear sliding surfaces is derived. The solution to the condition can be used
to characterize linear sliding surfaces, and by selecting suitable reaching law
the reaching motion controller is designed. Our methods have the advantages
in computation since the given stability condition is represented by the LMI
which can be very efficiently solved by using powerful LMI algorithm [15].
Finally, we extend our results to the interval systems with time-delay.

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 37–48.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The chapter is organized as follows. Section 4.2 gives the problem formu-
lation and some preliminaries. In section 4.3, the results on designing sliding
surface and reaching motion controller are established, and then, those results
are extended to interval systems with time-delay. Numerical simulations are
presented in Section 4.4 and some conclusion remarks are given in Section 4.5.

4.2 Problem Formulation

Consider the uncertain time-delay system of the form

ẋ(t) = (A + ΔA)x(t) + (Ad + ΔAd)x(t− τ)
+ B(u(t) + Fw(t))

x(t) = ϕ(t), t ∈ [−τ, 0
] (4.1)

where x(t) ∈ Rn is the state, w(t) ∈ Rl is the disturbance whose each com-
ponent is bounded by the known wi(t), i.e., wi(t) ≤ wi(t), i = 1, 2, · · · , l,
u(t) ∈ Rm is the control input, A,Ad, B and F are real constant matrices
with appropriate dimensions and rank(B) = m. The model uncertainties are
described by

ΔA =
∑p

i=1 αi(t)Ai, |αi(t)| ≤ 1
ΔAd =

∑q
i=1 βi(t)Adi, |βi(t)| ≤ 1 (4.2)

where the matrices Ai, i = 1, · · · , p and Adj , j = 1, · · · , q are known with
rank(Ai) = ai and rank(Adi) = adi, αi(t) and βi(t) are Lebesgue-measurable.
Suppose Ai and Adi have full rank factorization of Ai = GiHi and Adi =
GdiHdi, respectively, where Gi ∈ Rn×ai , Hi ∈ Rai×n, Gdi ∈ Rn×adi and
Hdi ∈ Radi×n. Then

ΔA =
∑p

i=1 αi(t)Ai =
[
G1 G2 · · ·Gp

]
D
[
H1 H2 · · · Hp

]T = GDH
ΔAd =

∑q
i=1 βi(t)Adi

=
[
Gd1 Gd2 · · ·Gdq

]
Dd

[
Hd1 Hd2 · · · Hdq

]T = GdDdHd

(4.3)

where

D = diag
(
α1(t)Ia1×a1 α2(t)Ia2×a2 · · · αp(t)Iap×ap

)

Dd = diag
(
β1(t)Iad1×ad1 β2(t)Iad2×ad2 · · · βq(t)Iadq×adq

)
.

(4.4)

According to the structure of D and Dd, the following scaling matrices are
defined as

SD = {Y |Y = diag
(
Y1 Y2 · · · Yp

)

0 < Yi = Yi
T ∈ Rai×ai}

SDd
= {Yd|Yd = diag

(
Yd1 Yd2 · · · Ydq

)

0 < Ydi = Ydi
T ∈ Radi×adi}.

(4.5)



4.2 Problem Formulation 39

To get a regular form of the systems (4.1), a nonsingular matrix T can be
chosen such that

TB =
[

0(n−m)×m

B2

]

where B2 ∈ Rm×m is nonsingular. For convenience, let us choose

T =
[
U2

T

U1
T

]

where U1 ∈ Rn×m and U2 ∈ Rn×(n−m) are two sub-blocks of a unitary matrix
resulting from the singular value decomposition of B, i.e.,

B =
[
U1 U2

]
[

Σ
0(n−m)×m

]

V T

where Σ ∈ Rm×m is a diagonal positive-definite matrix and V ∈ Rm×m is
a unitary matrix. By the state transformation z = Tx, system (4.1) has the
regular form

ż(t) = (A + ΔA)z(t) + (Ad + ΔAd)z(t− τ)

+
[

0(n−m)×m

B2

]

(u(t) + Fw(t))

z(t) = ϕ(t), t ∈ [−τ, 0
]

(4.6)

where A = TAT−1, Ad = TAdT
−1, ΔA = TΔAT−1, ΔAd = TΔAdT

−1 and
ϕ(t) = Tϕ(t). System (4.6) can be written as:

ż1(t) = (A11 + ΔA11)z1(t) + (Ad11 + ΔAd11)z1(t− τ)
+(A12 + ΔA12)z2(t) + (Ad12 + ΔAd12)z2(t− τ)

ż2(t) = (A21 + ΔA21)z1(t) + (Ad21 + ΔAd21)z1(t− τ)
+(A22 + ΔA22)z2(t) + (Ad22 + ΔAd22)z2(t− τ)
+B2(u + Fw(t))

z1(t) = ϕ1(t), t ∈
[−τ, 0

]

z2(t) = ϕ2(t), t ∈
[−τ, 0

]

(4.7)

where z1 ∈ Rn−m, z2 ∈ Rm, B2 = ΣV T , A11 = UT
2 AU2, A12 = UT

2 AU1,
Ad11 =UT

2 AdU2, Ad12 =UT
2 AdU1, ΔA11 =U2

TGDHU2, ΔA12 = U2
TGDHU1,

ΔAd11 = U2
TGdDdHdU2, ΔAd12 = U2

TGdDdHdU1, ϕ1(t) ∈ R(n−m) and
ϕ2(t) ∈ Rm are the sub-blocks of ϕ(t).

It is obvious that the first equation of system (4.7) represents the sliding
motion dynamics of system (4.6), and hence the corresponding sliding surface
can be chosen as follows:

S =
[
C I
]
z = Cz1 + z2 = 0 (4.8)
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where C ∈ Rm×(n−m). Substituting z2 = −Cz1 to the first equation of system
(4.7) gives the sliding motion

ż1(t) = (A11 + ΔA11 −A12C −ΔA12C)z1(t)
+(Ad11 + ΔAd11 −Ad12C −ΔAd12C)z1(t− τ)

z1(t) = ϕ1(t), t ∈
[−τ, 0

]
.

(4.9)

Definition 4.1. [128] The uncertain sliding motion (4.9) is said to be quadrat-
ically stable if there exist symmetric positive-definite matrices P , Q ∈
R(n−m)×(n−m) and a constant ξ > 0 such that for any admissible uncertainty
the derivative of the Lyapunov functional

V (z1(t), t) = zT
1 (t)Pz1(t) +

∫ t

t−τ

zT
1 (s)Qz1(s)ds (4.10)

with respect to time t satisfies

L(z1(t), t) = V̇ (z1(t), t) ≤ −ξ||z1||2 (4.11)

for all pairs (z1(t), t) ∈ Rn−m ×R.
The objective in this chapter is how to design constant gain C ∈ Rm×(n−m)

and a reaching motion control law u(t) such that
1) Sliding motion (4.9) is quadratically stable;
2) System (4.7) is asymptotically stable with the reaching control law u(t).
To this end, the following lemmas are necessary.

Lemma 4.2. [100] Let D ∈ SD, Dd ∈ SDd
. Then for any X ∈ SD and

Xd ∈ SDd
, the following inequalities

GDH + (GDH)T ≤ GXGT + HTX−1H (4.12)

GdDdHd + (GdDdHd)T ≤ GdXdGd
T + Hd

TXd
−1Hd (4.13)

hold.

Lemma 4.3. [102] Let Q = QT , S, R = RT be real matrices of appropriate
dimensions, then [

Q S
ST R

]

< 0 (4.14)

is equivalent to
R < 0, Q− SR−1ST < 0 (4.15)

which is usually called the Schur complement theorem.
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4.3 Main Results

The first result of designing sliding surface can be stated as follows.

Theorem 4.4. The reduced order system (4.9) is quadratically stable if there
exist symmetric positive-definite matrices J ∈ Rm×m, Z ∈ Rm×m, X ∈ SD,
Xd ∈ SDd

and general matrix Y ∈ Rm×(n−m) such that
⎡

⎢
⎢
⎣

−J NT 0 LT

N M KT 0
0 K −X 0
L 0 0 −Xd

⎤

⎥
⎥
⎦ < 0 (4.16)

where L = HdU2Z − HdU1Y , M = J + ZA
T

11 + A11Z − Y TA
T

12 − A12Y +
UT

2 GXGTU2 + UT
2 GdXdG

T
d U2, N = Ad11Z −Ad12Y , K = HU2Z −HU1Y .

Moreover, the sliding surface of the system (4.7) is

S(t) = Y Z−1z1(t) + z2(t) = 0. (4.17)

Proof. Take symmetric positive-definite matrix variablesP,Q∈R(n−m)×(n−m)

and choose a Lyapunov functional as

V (z1, t) = zT
1 (t)Pz1(t) +

∫ t

t−τ

zT
1 (s)Qz1(s)ds (4.18)

which is positive-define for all z1(t) �= 0, it follows that the Lyapunov deriva-
tive corresponding to the system (4.9) is given by

V̇ (z1, t) =
[

Pz1

Pz1(t− τ)

]T

W

[
Pz1

Pz1(t− τ)

]

(4.19)

where Ã11 = A11 − A12C, ΔÃ11 = ΔA11 −ΔA12C = UT
2 GDH(U2 − U1C),

Ãd11 = Ad11−Ad12C, ΔÃd11 = ΔAd11−ΔAd12C = UT
2 GdDdHd(U2−U1C),

Z = P−1, J = ZQZ and

W =
[
ZÃT

11 + Ã11Z + J Ãd11Z

ZÃT
d11 −J

]

+
[
I
0

]

ZΔÃT
11

[
I 0
]

+
[
I
0

]

ΔÃ11Z
[
I 0
]
+
[

0
I

]

ZΔÃT
d11

[
I 0
]
+
[
I
0

]

ΔÃd11Z
[
0 I
]

it follows from Lemma 4.2 that for any matrices X ∈ SD and Xd ∈ SDd
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[
I
0

]

ZΔÃT
11

[
I 0
]
+
[
I
0

]

ΔÃ11Z
[
I 0
]

≤
[
I
0

]

(UT
2 GXGTU2 + Z(U2 − U1C)THT

×X−1H(U2 − U1C)Z)
[
I 0
]

(4.20)

and [
0
I

]

ZΔÃT
11

[
I 0
]
+
[
I
0

]

ΔÃd11Z
[
0 I
]

≤
[

0
I

]

Z(U2 − U1C)THT
d X

−1
d Hd(U2 − U1C)Z

[
0 I
]

+
[
I
0

]

UT
2 GdXdG

T
d U2

[
I 0
]

(4.21)

and, hence, by defining Y = CZ, it can be shown that

W ≤
[

V11 Ad11Z −Ad12Y

ZA
T

d11 − Y TA
T

d12 V22

]

(4.22)

where V11 = J + ZA
T

11 − Y TA
T

12 + A11Z − A12Y + UT
2 GXGUT

2 + (ZUT
2 −

Y TUT
1 ) ×HTX−1H(U2Z − U1Y ) + UT

2 GdXdG
T
d U2, V22 = −J + (ZUT

2 −
Y TUT

1 )HT
d X

−1
d Hd(U2Z − U1Y ).

Note that Lemma 4.3 implies the equivalence of (4.16) and
[

V11 Ad11Z −Ad12Y

ZA
T

d11 − Y TA
T

d12 V22

]

< 0.

Hence, W < 0, which also implies that there exists a sufficiently small ξ1 > 0
such that

W +
[
ξ1I(n−m)×(n−m) 0(n−m)×(n−m)

0(n−m)×(n−m) 0(n−m)×(n−m)

]

< 0.

It follows from (4.19) and above inequality that V̇ (z1(t), t) ≤ −ξ1||Pz1||2 ≤
−ξ1λmin(P )||z1||2 for all (z1(t), t) ∈ Rn−m×R. Therefore inequality (4.11) is
satisfied with ξ = ξ1λmin(P ) > 0, and the reduced system (4.9) is quadrati-
cally stable with C = Y −1Z. Moreover the sliding surface of the system (4.7)
is

S(t) =
[
C I
]
z = Y Z−1z1(t) + z2(t) = 0. (4.23)

The proof is completed.

Next the result of designing of reaching motion controller is given.

Theorem 4.5. Suppose (4.16) have solutions J , Z, Y , X, Xd and the linear
sliding surface is given by (4.17). Then the trajectory of the closed-loop system
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(4.7) can be driven onto the sliding surface in limited time with the control

u = −B−1
2 [KS + εsgn(S) + CAz(t) + CAdz(t− τ)

+ diag
(
sgn(s1) sgn(s2) · · · sgn(sm)

)
(N1 + N2 + N3)]

(4.24)

where

ST =
[
s1 s2 · · · sm

]T
, sgnT (S) =

[
sgn(s1) sgn(s2) · · · sgn(sm)

]T

wT =
[
w1 w2 · · · wm

]
, (B2F )T =

[
b1 b2 · · · bm

]T

NT
1 =

[
N11 N12 · · · N1m

]T
, NT

2 =
[
N21 N22 · · · N2m

]T

NT
3 =

[
N31 N32 · · · N3m

]T
, C

T
=
[
c1 c2 · · · cm

]T

C =
[
C I
]
, N1i =

p∑

j=1

|ciTAjT
−1z(t)|, N2i =

q∑

j=1

|ciTAdjT
−1z(t− τ)|

N3i =
m∑

j=1

|bij |wj ,K = diag(ki), ε = diag(εi)

in which ki and εi are positive constants.

Proof. We will complete the proof by showing that the control law (4.24) not
only can drive the system trajectory onto the linear sliding surface, but also
keep it there for all subsequent time. From the sliding surface

S =
[
C I
]
z

we have

Ṡ =
[
C I
]
ż = C(A + ΔA)z(t) + C(Ad + ΔAd)z(t− τ)

+ B2(u(t) + Fw(t)). (4.25)

and from the inequalities

ciΔAz(t) = ci

p∑

j=1

αj(t)TAjT
−1z(t) ≤

p∑

j=1

|ciTAjT
−1z(t)| = N1i

ciΔAdz(t− τ) = ci

q∑

j=1

βj(t)TAdjT
−1z(t− τ)

≤
q∑

j=1

|ciTAjT
−1z(t− τ)| = N2i

and
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biw =
m∑

j=1

bijwj ≤
m∑

j=1

|bij |wj = N3i

we deduce that each element of (4.25) with the control law (4.24), i.e.,

ṡi = −kisi − εisgn(si) − (Ni1sgn(si) − ciΔAz(t))
−(N2isgn(si) − ciΔAdz(t− τ)) − (N3isgn(si) − biw)

(4.26)

satisfies the reaching condition:
{
ṡi < 0, if si > 0
ṡi > 0, if si < 0

which shows that the trajectory of the system (4.7) can be driven onto the
sliding surface in limited time by the control law (4.24) and be maintained
there. Thus the proof is completed.

When time-delay τ is an unknown constant, the control law (4.24) is not
applicable for the terms of CAdz(t−τ) and Ni(i = 1, 2, 3) can not be obtained
in practice. The following control law will solve this problem.

Theorem 4.6. Assume that time-delay is an unknown constant, but it is
bounded by the known constant τ . Write the solutions of (4.16) as J , Z, Y ,
X, Xd and let the linear sliding surface be given by the equation (4.17). Then
the trajectory of the closed-loop system (4.7) can be driven onto the sliding
surface in limited time with the control

u = −B−1
2 [KS + εsgn(S) + CAz(t)

+diag
(
sgn(s1) sgn(s2) · · · sgn(sm)

)
(N1 + N2 + N3)]

(4.27)

where N2i = q|ci|(|TAdT
−1|+∑q

j=1 |TAdjT
−1|)|z(t)|, S,w, B2F,N1, N2, N3,

C, N1i, N3i,K and ε are defined as in Theorem 4.5.

Proof. It follows from the Razumikhin theorem [68] that for any solution
z(t + θ) of system (4.7), there exists a constant q > 1 such that

|z(t + θ)| ≤ q|z(t)|,−τ ≤ θ ≤ 0 (4.28)

which leads to the following inequality:

ciAdz(t− τ) = ciT (Ad +
q∑

j=1

βjAdj)T−1z(t− τ)

≤ q|ci|(|TAdT
−1| +

q∑

j=1

|TAdjT
−1|)|z(t)|

= N2i
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The rest of the proof is similar to that of Theorem 4.5, and omitted here.
The proof is completed.

Finally, we remark the results in Theorems 4.4-4.5 can be extended to the
time-delay interval systems of the form

ẋ(t) = Ax(t) + Adx(t − τ) + B(u(t) + Fw(t))
x(t) = ϕ(t), t ∈ [−τ 0

] (4.29)

where w(t) is defined as in (4.1), and A and Ad are such matrices whose
entries vary in the prescribed ranges:

A = (aij), aij ≤ aij ≤ aij , Ad = (adij), adij ≤ adij ≤ adij (4.30)

Let

A0 = (a0ij) = (
aij + aij

2
), D = (a0ij) = (

aij − aij

2
) (4.31)

Ad0 = (ad0ij) = (
adij + adij

2
), Dd = (ad0ij) = (

adij − adij

2
) (4.32)

then A and Ad can be re-expressed as

A = A0 +
∑n

i,j=1 kijeie
T
i Deje

T
j , (|kij | ≤ 1)

Ad = Ad0 +
∑n

i,j=1 kdijeie
T
i Ddeje

T
j , (|kdij | ≤ 1) (4.33)

where ei =
[ 0 · · · 0
︸ ︷︷ ︸

i−1

1 0 · · · 0 ]T ∈ Rn.

If kijeie
T
i Deje

T
j = 0 and ele

T
l DdemeT

m = 0 occur for some i, j, l,m, then
A and Ad can be also written as

A = A0 +
p∑

i

kiAi; Ad = Ad0 +
q∑

i

kdiAdi (4.34)

where |ki| ≤ 1, |kdi| ≤ 1, p and q are some positive integers. Thus, the system
(20) is transformed into

ẋ(t) = (A0 +
∑p

i kiAi)x(t) + (Ad0 +
∑q

i kdiAdi)x(t − τ)
+ B(u(t) + Fw(t))

x(t) = ϕ(t), t ∈ [−τ, 0
] (4.35)

which is just the form of system (4.7), so the previous result can be applied
to deal with the interval time-delay system (4.29).
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4.4 Numerical Example

In this section an illustrative example is given for testing the design method
developed in this chapter.

Example 4.7. Consider the interval time-delay system (4.29) with

A =
[ [−5 −3

] [
1 2
]

[−3.5 4.5
] [−3 −1

]
]

, B =
[

1
0

]

, Ad =
[ [

0.5 0.9
] [

0.4 1.2
]

[
0.4 0.8

] [
0.4 1.4

]
]

F = 1, τ = 0.5, ϕ(t) =
[

1
−1

]

, for t ∈ [−τ 0
]
, |w(t)| ≤ 0.8| sin t|.

Write A and Ad as

A = A0 + k1A1 + k2A2 + k3A3 + k4A4

Ad = Ad0 + kd1Ad1 + kd2Ad2 + kd3Ad3 + kd4Ad4

where |ki| ≤ 1 and |kdi| ≤ 1, i = 1, 2, 3, 4. Ai and Adi are factorized as follows:

A0 =
[−4 1.5

4 −2

]

, Ad0 =
[

0.7 0.8
0.6 0.9

]

A1 =
[

1
0

]
[
1 0
]
, A2 =

[
1
0

]
[
0 0.5

]

A3 =
[

0
1

]
[
0.5 0

]
, A4 =

[
0
1

]
[
0 1
]

Ad1 =
[

1
0

]
[
0.2 0

]
, Ad2 =

[
1
0

]
[
0 0.4

]

Ad3 =
[

0
1

]
[
0.2 0

]
, Ad4 =

[
0
1

]
[
0 0.5

]
.

According to (4.3), it can be shown that

G =
[

1 1 0 0
0 0 1 1

]

, H =

⎡

⎢
⎢
⎣

1 0
0 0.5

0.5 0
0 1

⎤

⎥
⎥
⎦

Gd =
[

1 1 0 0
0 0 1 1

]

, Hd =

⎡

⎢
⎢
⎣

0.2 0
0 0.4

0.2 0
0 0.5

⎤

⎥
⎥
⎦ .

Taking T =
[

0 1
1 0

]

, and LMI (4.16) has feasible solutions:

J = 1.484, Z = 0.3230, Y = 0.9971

X = diag(1.5910, 0.9600, 1.1177, 1.0027)

Xd = diag(1.0886, 0.9950, 0.9912, 0.9524).
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It follows from Theorem 4.4 that C = 3.0874, the linear sliding surface is
S(t) =

[
1 3.0874

]
x = 0.

From Theorem 4.5, the reaching control law can be taken as follows

u(t) = −[Ks + εsgn(s)
[
8.3496 −4.6748

]
x(t) +

[
2.5524 3.5787

]
x(t− 0.5)

+sgn(s)(N1 + N2 + N3)]

where
N1 = 2.5437|x1(t)|+3.5874|x2(t)|, N2 = 0.8175|x1(t−0.5)|+1.9437|x2(t−

0.5)|, N3 = 0.8| sin t|.
The parameter K and ε can be tuned to reduce the chattering on the

sliding surface. Fig. 4.1 is simulation result when choosing K = 15.5 and
ε = 1. Obviously the system is asymptotically stable and the sliding motion
trends to the origin in finite time in spite of time-delay and uncertainties.
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Fig. 4.1 States(x1, x2), sliding surface (S) and control input
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4.5 Conclusion

In this chapter, the problem of designing robust sliding surfaces based on
quadratic stability for a class of uncertain time-delay systems has been con-
sidered in which no matching condition is assumed for the state uncertainties.
In terms of LMI, sufficient condition is derived for the existence of a linear
sliding surface guaranteeing quadratic stability of the reduced-order equiva-
lent system restricted to the sliding surface. A new reaching motion controller
is proposed for uncertain time-delay systems by the reaching law. Both the
sliding motion and the reaching motion are robust against the mismatched
uncertainties and matched external disturbance. The results are also extended
to the interval systems with time-delay. The simulation results show that the
proposed methods are amenable and generalize previous results available in
the literature to date.



Chapter 5

Robust Delay-Dependent SMC for
Uncertain Time-Delay Systems

5.1 Introduction

Also, other SMC schemes were proposed for linear systems with state de-
lay ([161, 100]), and systems with input delay ([147, 148]). In the work of
[147, 148], methods were proposed for uncertain linear systems with input
delay, where the nonlinear parametric perturbations contained in the systems
are assumed to satisfy the matching conditions. Recently, Kim and Park [100]
presented delay-independent conditions for the existence of sliding mode for
systems with time-delay. The effect of uncertainties in the sliding mode, in-
cluding matching and unmatching conditions, has been considered in [161],
in which a variable structure controller is obtained. Based on Lyapunov func-
tional method, the conditions for the existence of sliding mode for the nominal
system are independent of the size of the delay. In the above proposed con-
ditions, the time delay is allowed to be arbitrarily large and thus, in general,
the results obtained by these conditions are conservative, especially when the
system stability depends on the size of the time delay.

In this chapter, the problem of designing both a linear sliding surface
and reaching motion controller for a class of uncertain time-delay systems is
considered. The uncertainties of the linear portion are assumed to have the
matrix polytope structure while the input matrix uncertainty is matched. A
delay-dependent LMI existence condition of a linear sliding surface for such
systems is derived. The solution obtained can be used to characterize lin-
ear sliding surfaces, and by selecting a suitable reaching law, the reaching
motion controller is designed. The methods proposed can be very efficiently
solved by the LMI toolbox ([15]) since the given stability condition is rep-
resented by the LMI. The results obtained in this chapter have extended
the work in [189]. More precisely, different types of Lyapunov function have
been proposed to analyze the stability of the sliding motion on the sliding
surface. Consequently, the conditions for the existence of sliding surface are
delay-dependent while they are delay-independent in [189]. Since the delay-
dependent criterion makes use of information on the length of delays, they

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 49–65.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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are less conservative than delay-independent ones. A numerical example has
been presented to show the advantages and the applicability of the developed
techniques.

The chapter is organized as follows. Section 5.2 gives the problem formu-
lation and some preliminaries. In section 5.3, the results on designing sliding
surface and reaching motion controller are established. Numerical simula-
tions are presented in Section 5.4 and some conclusion remarks are given in
Section 5.5.

5.2 Problem Formulation

Consider the following uncertain time-delay system described by

ẋ(t) = (A + ΔA)x(t) + (Ad + ΔAd)x(t− τ) + B(u(t) + Fw(t))
x(t) = ϕ(t), t ∈ [−τ, 0] (5.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and w(t) ∈ Rl are the states, system inputs,
and external disturbances, respectively, A, Ad, B and F are matrices of
appropriate dimensions and rank(B) = m, τ ≥ 0 is a constant time delay
(known or unknown), and ϕ(·) denotes the initial condition. The uncertainty
and disturbance are assumed to satisfy the following conditions:

1) ΔA =
∑p

i=1 αiAi, |αi| ≤ 1; ΔAd =
∑q

i=1 βiAdi, |βi| ≤ 1
2) |wi(t)| ≤ wi(t)

(5.2)

where the constant matrices Ai
′s,Adi

′s are known, rank(Ai)=ai, rank(Adi)=
adi, αi and βi are unknown scalars, and wi(t) (i = 1, 2, · · · , p) are known non-
negative functions, wi(t) is the i-th entry of w(t) ∈ Rl.

Suppose that Ai = GiHi and Adi = GdiHdi are full rank factorizations of
Ai and Adi, respectively, and Gi ∈ Rn×nai , Hi ∈ Rnai

×n, Gdi ∈ Rn×nadi and
Hdi ∈ Rnadi

×n, then

ΔA =
∑p

i=1 αiAi = GDH
ΔAd =

∑q
i=1 βiAdi = GdDdHd

(5.3)

where
G = [G1 · · · Gp], Gd = [Gd1 · · · Gdq]
H = [HT

1 · · · HT
p ]T , Hd = [HT

d1 · · · HT
dq]

T

D = diag(α1Ina1×na1
· · · αpInap×nap

)
Dd = diag(β1Inad1×nad1 · · · βqInadq

×nadq
).

(5.4)

To obtain a regular form of system (5.1), many methods can be used, such
as QR reduction (see, [37, 221]). Here, a nonsingular matrix T is chosen such
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that

TB =
[

0(n−m)×m

B2

]

(5.5)

where B2 ∈ Rm×m is nonsingular. For convenience, choose the state trans-
formation z(t) = Tx(t), where

T =
[
U2

T

U1
T

]

U1 ∈ Rn×m and U2 ∈ Rn×(n−m) are two sub-blocks of an unitary matrix
resulting from the singular value decomposition of B, i.e.,

B =
[
U1 U2

]
[

Σ
0(n−m)×m

]

Γ T . (5.6)

Then, system (5.1) can be written as

ż(t) = (A + ΔA)z(t) + (Ad + ΔAd)z(t− τ) +
[

0(n−m)×m

B2

]

(u(t) + Fw(t))

z(t) = ϕ(t), t ∈ [−τ, 0]
(5.7)

where

A = TAT−1, Ad = TAdT
−1, ΔA = TΔAT−1

ΔAd = TΔAdT
−1, B2 = ΣΓ T , ϕ(t) = Tϕ(t).

Then, the first (n−m) entries of z(t) of system (5.7) can be written as

ż1(t) = (A11 + ΔA11)z1(t) + (Ad11 + ΔAd11)z1(t− τ)
+(A12 + ΔA12)z2(t) + (Ad12 + ΔAd12)z2(t− τ) (5.8)

z1(t) = ϕ1(t), t ∈
[−τ, 0

]
(5.9)

where z1(t) ∈ Rn−m, ϕ1(t) = UT
2 ϕ(t) ∈ R(n−m) is the sub-blocks of ϕ(t),

A11 = UT
2 AU2, ΔA11 = U2

TGDHU2, Ad11 = UT
2 AdU2

A12 = UT
2 AU1, ΔA12 = U2

TGDHU1, Ad12 = UT
2 AdU1

ΔAd11 = U2
TGdDdHdU2, ΔAd12 = U2

TGdDdHdU1.

Without loss of generality, define the following sliding surface:

S =
[
C I
]
z = Cz1 + z2 = 0 (5.10)

where the gain C ∈ Rm×(n−m). Substituting z2 = −Cz1 to (5.8) gives the
sliding motion
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ż1(t) = (A11 + ΔA11 −A12C −ΔA12C)z1(t)
+(Ad11 + ΔAd11 −Ad12C −ΔAd12C)z1(t− τ)

z1(t) = ϕ1(t), t ∈ [−τ, 0]
(5.11)

which can also be written as

ż1(t) = Ã1z1(t) + Ãd1z1(t− τ)
z1(t) = ϕ1(t), t ∈ [−τ, 0]

(5.12)

where

Ã1 = A1 +ΔA1, A1 = UT
2 A(U2 −U1C), ΔA1 = UT

2 GDH(U2 −U1C) (5.13)

Ãd1 = Ad1+ΔAd1, Ad1 = UT
2 Ad(U2−U1C), ΔAd1 = UT

2 GdDdHd(U2−U1C).
(5.14)

Now, we recall the following definition:

Definition 5.1. [31] The uncertain sliding motion (5.12) is said to be ro-
bustly stable if the equilibrium solution z1(t) = 0 of the functional differential
equation associated to sliding motion (5.12) is globally uniformly asymptot-
ically stable for all admissible uncertainties ΔA1 and ΔAd1.

The objective in this chapter is to design a constant gain C and a reaching
motion control law u(t) such that

1) The sliding motion (5.12) is robustly stable; and
2) System (5.7) is asymptotically stable with the reaching control law u(t).

5.3 Main Results

This section will present the main results on designing a sliding surface and
reaching control law.

It is difficult to calculate the gain C which guarantees robust stability of
(5.12), because the gain C appears not only in the system matrix Ã1, but
also in the delayed system matrix Ãd1. Many techniques have been proposed
to deal with the problem of stability, such as robust stability and robust
stabilization. These techniques depend on the size of time-delay ([146, 101,
98, 84, 214]), but they cannot be applied to solve this problem directly. In this
chapter, the approach developed makes use of some appropriate Lyapunov-
Krasovskii functionals combined with some appropriate matrix inequalities,
and the results obtained are expressed in terms of linear matrix inequalities
which can be solved in a numerical way very efficiently using LMI algorithms
([15, 14, 12]).

The design consists of two stages. Firstly, a linear sliding surface is de-
signed, then in the second stage, the robust reaching motion control law is
derived. To facilitate the presentation of the main results, the following pre-
liminary result is needed.
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According to the structure of D and Dd defined in (5.3)-(5.4), we define
the following scaling matrices which can be used as design parameters.

SD = {Y |Y = diag
(
Y1 Y2 · · · Yp

)
, 0 < Yi = Yi

T ∈ Rai×ai} (5.15)

SDd
= {Yd|Yd = diag

(
Yd1 Yd2 · · · Ydq

)
, 0 < Ydi = Ydi

T ∈ Radi×adi}. (5.16)

Let us recall the following lemma which will be used in the proof of our main
results.

Lemma 5.2. [100] Let G, Gd and H be real matrices of appropriate dimen-
sions and D ∈ SD, Dd ∈ SDd

. Then we have
(a) for any X ∈ SD,

GDH + (GDH)T ≤ GXGT + HTX−1H (5.17)

(b) for any Xd ∈ SDd
,

GdDdHd + (GdDdHd)T ≤ GdXdGd
T + Hd

TXd
−1Hd. (5.18)

5.3.1 Design of Linear Sliding Surface

Now, we are ready to present our first result in this chapter.

Theorem 5.3. Consider the reduced-order system (5.12). Given a scalar τ >
0, this system is robustly stable for any constant time delay τ satisfying 0 ≤
τ ≤ τ if there exist symmetric positive-definite matrices P , Q, S1 and S2,
X1, X2 ∈ SD Xd1, Xd2, Xd3 ∈ SDd, V ∈ Rm×(n−m) satisfying the following
LMIs:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 ΠT
12 ΠT

13 ΠT
14 ΠT

15 S1 S2

Π12 −Π22 0 0 0 0 0
Π13 0 −X1 0 0 0 0
Π14 0 0 −Xd1 0 0 0
Π15 0 0 0 −Xd2 0 0
S1 0 0 0 0 −τ−1S1 0
S2 0 0 0 0 0 −τ−1S2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (5.19)

⎡

⎢
⎢
⎢
⎢
⎣

Θ11 ΘT
12 ΘT

13 ΘT
14 ΘT

15

Θ12 −Θ22 0 0 0
Θ13 0 −Θ33 0 0
Θ14 0 0 −X2 0
Θ15 0 0 0 −Xd3

⎤

⎥
⎥
⎥
⎥
⎦
< 0 (5.20)

where
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Π11 = UT
2 AU2P − UT

2 AU1V + UT
2 AdU2P − UT

2 AdU1V
+PUT

2 ATU2 − V TUT
1 ATU2 + PUT

2 AT
d U2 − V TUT

1 AT
d U2

+UT
2 GX1G

TU2 + UT
2 GdXd1G

T
d U2

Π12 = UT
2 AdU2P − UT

2 AdU1V
Π13 = HU2P −HU1V
Π14 = HdU2P −HdU1V
Π15 = HdU2P −HdU1V
Π22 = τ−1Q− UT

2 GdXd2G
T
d U2

Θ11 = −2P + Q
Θ12 = UT

2 AU2P − UT
2 AU1V

Θ13 = UT
2 AdU2P − UT

d AdU1V
Θ14 = HU2P −HU1V
Θ15 = HdU2P −HdU1V
Θ22 = S1 − UT

2 GX2G
TU2

Θ33 = S2 − UT
2 GdXd3G

T
d U2.

(5.21)

Moreover, the gain C = V P−1 and the sliding surface is S(t) = V P−1z1(t)+
z2(t).

Proof. Since the characteristic equation of system (5.12) is

det
(
sI − Ã1 − Ãd1e

−τs
)

= 0 (5.22)

whose solutions are the same as those of

det
(
sI − ÃT

1 − ÃT
d1e

−τs
)

= 0. (5.23)

Therefore, we will consider the following system instead of system (5.12)

ẏ(t) = ÃT
1 y(t) + ÃT

d1y(t− τ)
y(t) = Ψy(t), t ∈ [−τ, 0]

(5.24)

where Ψy(t) is an appropriate initial function for system (5.24). For t ≥ τ

y(t− τ) = y(t) − ∫ 0

−τ
ẏ(t + θ)dθ

= y(t) − ∫ 0

−τ
[ÃT

1 y(t + θ) + ÃT
d1y(t + θ − τ)]dθ.

(5.25)

Substituting y(t− τ) in (5.24) gives

ẏ(t) = [Ã1 + Ãd1]T y(t) − ÃT
d1

∫ 0

−τ

[ÃT
1 y(t + θ) + ÃT

d1y(t + θ − τ)]dθ. (5.26)

In view of the above, consider the following time-delay system:

η̇(t) = [Ã1 + Ãd1]T η(t) − ÃT
d1

∫ 0

−τ
[ÃT

1 η(t + θ) + ÃT
d1η(t + θ − τ)]dθ

η(t) = ψ(t), ∀t ∈ [−2τ, 0]
(5.27)
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where ψ(t) is the initial condition and τ is the time delay of system (5.24).
Observe that equation (5.27) requires initial data on [−2τ, 0].

Note that system (5.24) is a special case of system (5.27) and thus any
solution of system (5.24) is also a solution of system (5.27) (See [68], p.156).
Hence, the global uniform asymptotic stability of system (5.27) will ensure
the global uniform asymptotic stability of system (5.24). In the sequel, we
will study the stability of system (5.27) in order to ascertain the stability of
system (5.24).

We first show that system (5.24) is stable under the conditions (5.19)-
(5.20). Using the following Lyapunov functional candidate:

V (η, t) = V1(η(t), t) + V2(η(t), t) + V3(η(t), t) (5.28)

where

V1(η(t), t) = ηT (t)Pη(t) (5.29)

V2(η(t), t) =
∫ 0

−τ

(
∫ t

t+θ

ηT (λ)S1η(λ)dλ)dθ (5.30)

V3(η(t), t) =
∫ −τ

−2τ

(
∫ t

t+θ

ηT (λ)S2η(λ)dλ)dθ (5.31)

with P , S1 and S2 are symmetric positive-definite matrices to be chosen. It
is easy to see that there exist positive scalars β1 and β2 such that

β1||η(t)||2 ≤ V (η(t), t) ≤ β2 sup
θ∈[−2τ,0]

||η(t + θ)||2. (5.32)

The time derivative along the state trajectory of system (5.27) is

V̇ (η(t), t) = ηT (t)[(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T ]η(t) + μ1(η(t), t)(5.33)
+ μ2(η(t), t) + V̇2(η(t), t) + V̇3(η(t, t)

where

μ1(η(t), t) = −2
∫ 0

−τ

ηT (t)PÃT
d1Ã

T
1 η(t + θ)dθ (5.34)

μ2(η(t), t) = −2
∫ 0

−τ

ηT (t)PÃT
d1Ã

T
d1η(t + θ − τ)dθ (5.35)

V̇2(η(t), t) = τηT (t)S1η(t) −
∫ 0

−τ

ηT (t + θ)S1η(t + θ)dθ (5.36)

V̇3(η(t), t) = τηT (t)S2η(t) −
∫ 0

−τ

ηT (t + θ − τ)S2η(t + θ − τ)dθ. (5.37)

Since for any vectors u, v and any matrix S > 0 of appropriate dimension,
the following inequality holds:
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− 2uT v ≤ uTSu + vTS−1v. (5.38)

Thus, we have

μ1(η(t), t) ≤ τηT (t)PÃT
d1Ã

T
1 S

−1
1 Ã1Ãd1η(t)

+
∫ 0

−τ

ηT (t + θ)S1η(t + θ)dθ (5.39)

μ2(η(t), t) ≤ τηT (t)PÃT
d1Ã

T
1 S

−1
2 Ã1Ãd1Pη(t)

+
∫ 0

−τ

ηT (t + θ − τ)S2η(t + θ − τ).

Hence, it follows that

V̇ (η(t), t)
≤ ηT (t)[(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T ] + τ(S1 + S2

+PÃT
d1Ã

T
1 S

−1
1 Ã1Ãd1P + PÃT

d1Ã
T
1 S

−1
2 A1Ãd1P )]η(t)

≤ ηT (t)[(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T + τ(S1 + S2

+PÃT
d1[Ã

T
1 ÃT

d1]diag(S−1
1 , S−1

2 )[ÃT
1 ÃT

d1]
T Ãd1P )]η(t)

= ηT (t)[(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T

+τ(S1 + S2 + PÃT
d1Q

−1Ãd1P )
−τ(PÃT

d1(Q
−1 − [ÃT

1 ÃT
d1]diag(S−1

1 , S−1
2 ))[ÃT

1 ÃT
d1]

T )Ãd1P )]η(t)
≤ ηT (t)[(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T

+τ(S1 + S2) + τP ÃT
d1Q

−1Ãd1P ]η(t) (5.40)

where Q is a positive-definite matrix which satisfies

Q−1 > [ÃT
1 ÃT

d1]diag(S−1
1 , S−1

2 )[ÃT
1 ÃT

d1]
T . (5.41)

The matrix in (5.40) is negative definite if (5.41) and the following inequality:

(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T + τ(S1 + S2) + τP ÃT
d1Q

−1Ãd1P < 0 (5.42)

is satisfied.
Using the Schur complement argument ([103]), inequalities (5.41) and

(5.42) are equivalent to the following inequalities, respectively
⎡

⎣
−Q−1 ÃT

1 ÃT
d1

Ã1 −S1 0
Ãd1 0 −S2

⎤

⎦ < 0 (5.43)

and
[

(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T + τ(S1 + S2) PÃT
d1

Ãd1P −τ−1Q

]

< 0. (5.44)
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Pre- and postmultiplying (5.43) by diag(P, In−m, In−m) yields
⎡

⎣
−PQ−1P PÃT

1 PÃT
d1

Ã1P −S1 0
Ãd1P 0 −S2

⎤

⎦ < 0. (5.45)

From the equality

PQ−1P − 2P + Q = (P −Q)Q−1(P −Q) ≥ 0 (5.46)

we conclude that

− 2P + Q ≥ −PQ−1P. (5.47)

Thus, (5.45) will hold if the following inequality is satisfied for some P , Q,
S1 and S2 ⎡

⎣
−2P + Q PÃT

1 PÃT
d1

Ã1P −S1 0
Ãd1P 0 −S2

⎤

⎦ < 0. (5.48)

On the other hand, it follows from (5.13) and (5.14) that

(ΔA1 + ΔAd1)P =
[
UT

2 G UT
2 Gd

]
[
D 0
0 Dd

] [
H(U2 − U1C)P
Hd(U2 − U1C)P

]

. (5.49)

Hence, from Lemma 5.2, we have
(a) for any X1 ∈ SD and for any Xd1 ∈ SDd

,

(ΔA1 + ΔAd1)P + [(ΔA1 + ΔAd1)P ]T

≤ [UT
2 GX1G

TU2 + UT
2 GdXd1G

T
d U2] + [(H(U2 − U1C)P )TX−1

1

×H(U2 − U1C)P + (Hd(U2 − U1C)P )TX−1
d1 Hd(U2 − U1C)P ] (5.50)

(b) for any X2 ∈ SD,

[
0n×n

In×n

]

ΔA1P

[
In×n

0n×n

]T

+
[
In×n

0n×n

]

(ΔA1P )T

[
0n×n

In×n

]T

≤
[

0n×n

In×n

]

UT
2 GX2G

TU2

[
0n×n

In×n

]T

+
[
In×n

0n×n

]

[(H(U2 − U1C)P )TX−1
2 H(U2 − U1C)P

[
In×n

0n×n

]T

(c) for any Xd2 ∈ SDd
,

[
0n×n

In×n

]

ΔAd1P

[
In×n

0n×n

]T

+
[
In×n

0n×n

]

PΔA
T

d1

[
0n×n

In×n

]T
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≤
[

0n×n

In×n

]

UT
2 GdXd2G

T
d U2

[
0n×n

In×n

]T

+
[
In×n

0n×n

]

(Hd(U2 − U1C)P )TX−1
d2 Hd(U2 − U1C)P

[
In×n

0n×n

]T

(d) for any Xd3 ∈ SDd
,

[
02n×n

In×n

]

ΔAd1P

[
In×n

02n×n

]T

+
[
In×n

02n×n

]

(ΔAd1P )T

[
02n×n

In×n

]T

≤
[

02n×n

In×n

]

UT
2 GdXd3G

T
d U2

[
02n×n

In×n

]T

+
[
In×n

02n×n

]

×(Hd(U2 − U1C)P )TX−1
d3 Hd(U2 − U1C)P

[
In×n

02n×n

]T

. (5.51)

Now, applying the inequalities (5.50)-(5.51) to the right-hand sides of (5.44)
and (5.48) results in

[
(Ã1 + Ãd1)P + P (Ã1 + Ãd1)T + τ(S1 + S2) PÃT

d1

Ãd1P −τ−1Q

]

≤
[

Φ11 PA
T

d1

Ad1P Φ22

]

(5.52)
⎡

⎣
−2P + Q PÃT

1 PÃT
d1

Ã1P −S1 0
Ãd1P 0 −S2

⎤

⎦ ≤
⎡

⎣
Ψ11 PA

T

1 PA
T

d1

A1P Ψ22 0
Ad1P 0 Ψ33

⎤

⎦ (5.53)

where

Φ11 = (A1 + Ad1)P + P (A1 + Ad1)T + τ(S1 + S2)
+UT

2 GX1G
TU2 + UT

2 GdXd1G
T
d U2

+(H(U2 − U1C)P )TX−1
1 H(U2 − U1C)P

+(Hd(U2 − U1C)P )TX−1
d1 Hd(U2 − U1C)P

+(Hd(U2 − U1C)P )TX−1
d2 Hd(U2 − U1C)P

Φ22 = −τ−1Q + UT
2 GdXd2G

T
d U2

Ψ11 = (H(U2 − U1C)P )TX−1
2 H(U2 − U1C)P

+(Hd(U2 − U1C)P )TX−1
d3 Hd(U2 − U1C)P − 2P + Q

Ψ22 = −S1 + UT
2 GX2G

TU2

Ψ33 = −S2 + UT
2 GdXd3G

T
d U2.

(5.54)

Thus, the derivative of the Lyapunov function candidate V (η(t), t) will be
negative if the following conditions hold

[
Φ11 PA

T

d1

Ad1P Φ22

]

< 0 (5.55)



5.3 Main Results 59

⎡

⎣
Ψ11 PA

T

1 PA
T

d1

A1P Ψ22 0
Ad1P 0 Ψ33

⎤

⎦ < 0. (5.56)

By using Schur complement and let V = CP , we obtain that (5.55) and
(5.56) are equivalent to (5.19) and (5.20), respectively.

Thus, we can conclude that if (5.19) and (5.20) are satisfied, then (5.55)
and (5.56) hold for any constant time delay τ satisfying 0 ≤ τ ≤ τ . Hence,
V̇ (η(t), t) < 0 for any non-zero η(t) ∈ R(n−m) and any constant time delay
τ satisfying 0 ≤ τ ≤ τ . Therefore, system (5.27) is robustly stable, which
implies that system (5.12) is robustly stable for any constant time delay τ
satisfying 0 ≤ τ ≤ τ with the sliding function

s(t) = [C I]z = V P−1z1(t) + z2(t). (5.57)

The proof is completed.

Remark 5.4. It is worth mentioning that in the literature, some similar tech-
niques (see [187, 188]) have been used to transform nonlinear matrix inequal-
ity into LMIs, as we did in (5.46) and (5.47). Note that the approach employed
here adds no restrictions to the results obtained in this chapter, since only
a new unknown variable (another LMI) needs to be solved. The imposed
condition Q ≤ 2P is to ensure that the LMI toolbox can be used to solve
inequality (5.48). This is a relaxed condition comparing with the assumption
Q = P made in the work of [61]. The method proposed in [185] can also be
used to derive delay-dependent condition for the existence of linear sliding
surfaces

Based on the assumption that the time delay τ is constant, Theorem 5.3
establishes an LMI-based stability condition for system (5.1). Now, we come
to consider the problem of determining the upper bound for the time-delay
τ . Obviously, when τ is constant but unknown, (5.19) is nonlinear in τ . Let
ν = 1

τ , and note that when using the LMI toolbox to solve the generalized
eigenvalue problem (GEVP)

min
x

ν

subject to
A(x) < νB(x)

the matrix B(x) must be positive-definite. Thus, to cast the problem of max-
imizing the time-delay τ , i.e., minimizing ν, into the framework of GEVP, let
us introduce some auxiliary matrices W1 > 0, W2 > 0, W3 > 0 and rewrite
(5.19) as follows:
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π11 ΠT
12 ΠT

13 ΠT
14 ΠT

15 S1 S2

Π12 −W1 + UT
2 GdXd2G

T
d U2 0 0 0 0 0

Π13 0 −X1 0 0 0 0
Π14 0 0 −Xd1 0 0 0
Π15 0 0 0 −Xd2 0 0
S1 0 0 0 0 −W2 0
S2 0 0 0 0 0 −W3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0(5.58)

⎡

⎣
W1 0 0
0 W2 0
0 0 W3

⎤

⎦ < ν

⎡

⎣
Q 0 0
0 S1 0
0 0 S2

⎤

⎦ . (5.59)

We then have the following result:

Algorithm 5.3.1 The optimization problem that determines the upper bound
of the delay can be formulated as:

min
P,Q,V,X1,X2Xd1,Xd2,Xd3,,W1,W2,W3

ν

s.t. (5.20), (5.58), (5.59).

Remark 5.5. The above optimization problem consists of minimizing a gen-
eralized eigenvalue problem which is a quasi-convex optimization problem.
It is important to notice that this algorithm can be numerically solved with
very efficient methods ([15]).

5.3.2 Design of A Reaching Motion Controller

Now we are in the position to present our last result in this chapter, namely,
designing of reaching motion controller.

Theorem 5.6. When the time-delay, τ , is a known constant and C = V P−1

is given in Theorem 5.3, the trajectory of the closed-loop system (5.7) can be
driven onto the sliding surface in finite time by the control law

u = −B−1
2 [KS + εsgn(S) + CAz(t) + CAdz(t− τ)

+diag
(
sgn(s1) sgn(s2) · · · sgn(sm)

)
(N1 + N2 + N3)]

(5.60)

where
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S =

⎡

⎢
⎣

s1

...
sm

⎤

⎥
⎦ , sgn(S) =

⎡

⎢
⎣

sgn(s1)
...

sgn(sm)

⎤

⎥
⎦ , w =

⎡

⎢
⎣

w1

...
wm

⎤

⎥
⎦ , B2F =

⎡

⎢
⎣

b1
...
bm

⎤

⎥
⎦

N1 =

⎡

⎢
⎣

N11

...
N1m

⎤

⎥
⎦ , N2 =

⎡

⎢
⎣

N21

...
N2m

⎤

⎥
⎦ , N3 =

⎡

⎢
⎣

N31

...
N3m

⎤

⎥
⎦ , C =

⎡

⎢
⎣

c1
...
cm

⎤

⎥
⎦

N1i =
∑p

j=1 |ciTAjT
−1z(t)|, N2i =

∑q
j=1 |ciTAdjT

−1z(t− τ)|
N3i =

∑m
j=1 |bij |wj , i = 1, · · · ,m

C =
[
C I
]
, K = diag(ki), ε = diag(εi)

(5.61)

where ki and εi are positive constants.

Proof. It will be shown that control law (5.60) drives the system trajectory
onto the linear sliding surface and maintains the trajectory on the sliding
surface for all subsequent time, i.e. the reachability condition is satisfied.
Then from the sliding surface

S =
[
C I
]
z

one can obtain

Ṡ =
[
C I
]
ż

= C(A + ΔA)z(t) + C(Ad + ΔAd)z(t− τ) + B2(u(t) + Fw(t)). (5.62)

On the other hand, from the inequalities

ciΔAz(t) = ci

p∑

j=1

αjTAjT
−1z(t) ≤

p∑

j=1

|ciTAjT
−1z(t)| = N1i (5.63)

ciΔAdz(t− τ) = ci

q∑

j=1

βjTAdjT
−1z(t− τ) ≤

q∑

j=1

|ciTAdjT
−1z(t− τ)| = N2i

(5.64)
and

biw =
m∑

j=1

bijwj ≤
m∑

j=1

|bij |wj | = N3i (5.65)

it follows that each element of (5.62) with control law (5.60)

ṡi = −ksi − εisgn(si) − (Ni1sgn(si) − ciΔAz(t))
−(N2isgn(si) − ciΔAdz(t− τ)) − (N3isgn(si) − biw)

(5.66)

satisfies the reaching condition:
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{
ṡi < 0 if si > 0;
ṡi > 0 if si < 0. (5.67)

Thus the trajectory of system (5.7) is driven onto the sliding surface in finite
time by the controller (5.60), which completes the proof.

Note that the time-delay τ is constant but unknown, the control law (5.60)
is not applicable for the terms of CAdz(t − τ) and N2 cannot be obtained
in practice. Therefore this needs further consideration which results in the
following theorem.

Theorem 5.7. Assume that time-delay τ is an unknown constant, but bounded
by τ , i.e., 0 ≤ τ ≤ τ . Given C = V P−1 obtained in Theorem 5.3, then the
trajectory of system (5.7) can be driven onto the sliding surface in finite time
by the control law

u = −B−1
2 [KS + εsgn(S) + CAz(t)

+diag
(
sgn(s1) sgn(s2) · · · sgn(sm)

)
(N1 + N2 + N3)]

(5.68)

where S,w,B2F,N1, N2, N3, C, C,N1i, N3i,K, ε are defined as in (5.61),
N2i = q|ci|(|TAdT

−1|+∑q
j=1 |TAdjT

−1|)|z(t)|, and q > 1 is a constant to be
determined.

Proof. Following the Razumikhin Theorem (see [68], p.152), it is assumed
that for any positive scalar q > 1, the following relation holds:

|z(t + θ)| ≤ q|z(t)|, −τ ≤ θ ≤ 0 (5.69)

which leads to the following inequality:

ciAdz(t− τ) = ciT (Ad +
q∑

j=1

βjAdj)T−1z(t− τ)

≤ q|ci|(|TAdT
−1| +

q∑

j=1

|TAdjT
−1|)|z(t)|

= N2i. (5.70)

The rest of the proof can be carried out along the same lines as those in
Theorem 5.6.

5.4 Numerical Example

In this section, we demonstrate the theory developed in this chapter by a
numerical example.
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Example 5.8. Consider the interval time-delay system with

A =
[ [−5 −3

] [
1 2
]

[−0.5 0.5
] [−1 1

]
]

, Ad =
[ [−1.7 −1.3

] [
0.4 1.2

]
[
0.4 0.8

] [−3.4 −2.4
]
]

B =
[

1
0

]

, F = 1, ϕ(t) =
[

1
−1

]

, for t ∈ [−τ, 0
]
, |w(t)| ≤ 0.05|sint|.

Write A and Ad as

A = A0 + α1A1 + α2A2 + α3A3 + α4A4

=
[−4 1.5

0 0

]

+ α1

[
1 0
0 0

]

+ α2

[
0 0.5
0 0

]

+ α3

[
0 0

0.5 0

]

+ α4

[
0 0
0 1

]

Ad = Ad0 + β1Ad1 + β2Ad2 + β3Ad3 + β4Ad4

=
[−1.5 0.8

0.6 −2.9

]

+ β1

[
0.2 0
0 0

]

+ β2

[
0 0.4
0 0

]

+ β3

[
x0 0
0.2 0

]

+ β4

[
0 0
0 0.5

]

(5.71)

where |αi| ≤ 1 and |βi| ≤ 1, i = 1, 2, 3, 4. We factorize Ai and Adi as follows:

A1 =
[

1
0

]
[
1 0
]
, A2 =

[
1
0

]
[
0 0.5

]
, A3 =

[
0
1

]
[
0.5 0

]

A4 =
[

0
1

]
[
0 1
]
, Ad1 =

[
1
0

]
[
0.2 0

]
, Ad2 =

[
1
0

]
[
0 0.4

]

Ad3 =
[

0
1

]
[
0.2 0

]
, Ad4 =

[
0
1

]
[
0 0.5

]
.

(5.72)

According to (5.3) and (5.4), we can obtain

G =
[

1 1 0 0
0 0 1 1

]

, H =

⎡

⎢
⎢
⎣

1 0
0 0.5

0.5 0
0 1

⎤

⎥
⎥
⎦

Gd =
[

1 1 0 0
0 0 1 1

]

, Hd =

⎡

⎢
⎢
⎣

0.2 0
0 0.4

0.2 0
0 0.5

⎤

⎥
⎥
⎦ .

(5.73)

Taking T =
[

0 1
1 0

]

, we have the following sliding motions:

ż1(t) = (−0.5α3c + α4)z1(t) + (−2.9 − 0.6c− 0.2β3c + 0.5β4)z1(t− τ)
z1(t) = ϕ1(t), t ∈ [−τ, 0].

(5.74)
Note that α3 and α4 are uncertain parameters, and the gain c can not be
obtained using the delay-independent criteria proposed in [161] and [100]
as (A0, B) is not stabilizable. The delay-independent condition obtained
in [189] also can not be used to design c such that the uncertain sliding
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motion is quadratically stable. Based on Definition 1 in [189], sliding mo-
tion is quadratically stable if there exist symmetric positive-definite matrices
P,Q ∈ R(n−m)×(n−m) such that the following inequality is satisfied:

[
PÃ1 + ÃT

1 P + Q PÃd1

ÃT
d1P −Q

]

< 0 (5.75)

where Ã1 = (−0.5α3c + α4), Ãd1 = (−2.9 − 0.6c − 0.2β3c + 0.5β4). This is
the delay-independent condition used in [189]. Obviously, the parameter c
can not be found such that (5.75) is satisfied since α3, α4, β3 and β4 are
uncertain parameters, for example, if α3 and α4 are zero, that means Ã1 = 0,
then the condition [

Q PÃd1

ÃT
d1P −Q

]

< 0 (5.76)

can not be satisfied, no matter what c is.
Applying Algorithm 5.3.1 derived in Section 5.3.1 gives that system (5.74)

is robustly stable for 0 ≤ τ ≤ 0.0920. According to Theorem 5.3 and using
the LMI-toolbox, we obtain that c = 0.0037 for τ = 0.05. Then the linear
sliding surface is taken as

S(t) =
[
1 0.0037

]
x. (5.77)

From Theorem 5.3, we can take

u(t) = −[Ks + εsgn(s) +
[−5 1.5

]
x(t) +

[−1.4978 0.7893
]
x(t− 0.05)

+sgn(s)(N1 + N2 + N3)]
(5.78)

where N1 = 2.5437|x1(t)| + 3.5874|x2(t)|, N2 = 0.8175|x1(t − 0.05)| +
1.9437|x2(t− 0.05)|, N3 = 0.05|sint|.

The parameters K and ε can be tuned to reduce the chattering on the
sliding surface. Choosing K = 1, ε = 0.1, the simulation results shown in
Fig. 5.1 are obtained. It can be seen that the system is asymptotically stable
and the sliding surface dynamics reaches zero in finite time and thereafter
maintains the condition regardless of the delay and the uncertainties.

5.5 Conclusion

In this chapter, the problem of designing robust sliding surfaces for a class of
uncertain time-delay systems has been considered, where the uncertainty in
the states is not required to satisfy the usual matching condition. In terms
of LMIs, the delay-dependent sufficient condition for the existence of a linear
sliding surface guaranteeing quadratic stability of the reduced-order equiv-
alent system restricted to the sliding surface was derived. Furthermore, the
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Fig. 5.1 States (x1, x2), sliding surface S and control input u

reaching motion control problem was also studied. A new reaching motion
controller has been designed for uncertain time-delay systems by means of
both the reaching law and the inequality approaches. Both the sliding motion
and the reaching motion are robust against the mismatched uncertainties
and matched external disturbance. A numerical example was presented to
demonstrate the effectiveness and the potential of the developed techniques.



Chapter 6

Robust Adaptive SMC for Uncertain
Time-Delay Systems

6.1 Introduction

In this chapter, we consider how to design a sliding surface and reaching
motion controller for a class of time-delay systems with mismatched uncer-
tainties and exogenous disturbance, where the parameters of mismatched
uncertainties are known to lie in a priori specified intervals and the matched
uncertainties and exogenous disturbance are assumed to be bounded with
unknown bound. The aim of this chapter is to combine adaptive control and
variable structure control to realize their individual advantages. The use of
variable structure control improves the transient response of the overall sys-
tem significantly. As a result, the adaptive law proposed is able to reduce the
chattering due to the implementation of variable structure controller, and
possesses the desired characteristics of robustness and good performance.
Sufficient conditions for the existence of linear sliding surfaces are derived.
The solution to the condition can be used to characterize linear sliding sur-
faces, and by using smooth projection method for adaptive control law the
reaching motion controller is designed.

The chapter is organized as follows. Section 6.2 gives the problem formula-
tion and some preliminaries. The main results on designing robust adaptive
sliding surface and a reaching motion control law is presented in Section 6.3
such that the closed-loop system is convergent into a residual set of the origin
with the proposed reaching control law. Numerical simulations are presented
in Section 6.4 and some conclusion remarks are given in Section 6.5.

6.2 Problem Formulation

Consider the uncertain time-delay system of the form

ẋ(t) = (A + ΔA)x(t) + (Ad + ΔAd)x(t− τ(t))
+ B(u(t) + w(x, x(t − τ(t)), t))

x(t) = ϕ(t), t ∈ [−τ, 0
] (6.1)

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 67–83.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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where x(t) ∈ Rn is the state, w ∈ Rl is the matched uncertainty and distur-
bance. ΔA and ΔAd are unmatched uncertainties, τ is a constant which is
the upper bound of τ(t). u(t) ∈ Rm is the control input, A,Ad and B are
real constant matrices with appropriate dimensions and rank(B) = m.

Assumption 6.2.1 The uncertainties ΔA and ΔAd in (6.1) are assumed to
have the following form

ΔA =
∑p

i=1 θiAi

θ = [θ1 θ2 · · · θp]T ∈ Ω = {θ| |θi| ≤ 1}
ΔAd =

∑q
i=1 βiAdi

β = [β1 β2 · · · βq]T ∈ Ωd = {β| |βi| ≤ 1}
(6.2)

where the matrices Ai, i = 1, · · · , p and Adj , j = 1, · · · , q are known with
rank(Ai) = ai and rank(Adi) = adi, θi and βi are unknown constants.
Suppose that Ai and Adi have full rank factorization of Ai = GiHi and
Adi = GdiHdi, respectively, where Gi ∈ Rn×ai , Hi ∈ Rai×n, Gdi ∈ Rn×adi

and Hdi ∈ Radi×n. Then

ΔA =
∑p

i=1 θiAi =
[
G1 G2 · · ·Gp

]
D
[
H1 H2 · · · Hp

]T = GDH

ΔAd =
∑q

i=1 βiAdi =
[
Gd1 Gd2 · · · Gdq

]
Dd

[
Hd1 Hd2 · · · Hdq

]T

= GdDdHd

(6.3)

where
D = diag

(
θ1Ia1×a1 θ2Ia2×a2 · · · θpIap×ap

)

Dd = diag
(
β1Iad1×ad1 β2Iad2×ad2 · · · βqIadq×adq

)
.

(6.4)

Remark 6.1. The parameters θi and βi are unknown, which will be taken as
uncertainties when sliding surfaces are designed, and will be estimated by an
adaptive control law when reaching mode control is proposed.

Assumption 6.2.2 The matched uncertainty w(x, x(t− τ(t)), t) is assumed
to satisfy the following condition

||w(x, x(t − τ(t)), t)|| ≤ c + k||x(t)|| = ρ (6.5)

where c and k are constants, but it may not be easily obtained due to the
complexity of the structure of the uncertainty.

Assumption 6.2.3 It is assumed that the bounded τ(t) is time-varying and
differentiable, and τ̇ (t) ≤ d < 1.

To obtain a regular form of the systems (6.1), a nonsingular matrix T can
be chosen such that

TB =
[

0(n−m)×m

B2

]

where B2 ∈ Rm×m is nonsingular. For convenience, choose
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T =
[
U2

T

U1
T

]

where U1 ∈ Rn×m and U2 ∈ Rn×(n−m) are two sub-blocks of a unitary matrix
resulting from the singular value decomposition of B, i.e.,

B =
[
U1 U2

]
[

Σ
0(n−m)×m

]

JT

where Σ ∈ Rm×m is a diagonal positive-definite matrix and J ∈ Rm×m is a
unitary matrix. By state transformation z = Tx, system (6.1) has the regular
form

ż(t) = (A + ΔA)z(t) + (Ad + ΔAd)z(t− τ(t))

+
[

0(n−m)×m

B2

]

(u(t) + w(z(t), z(t− τ(t)), t))

z(t) = ϕ(t), t ∈ [−τ, 0
]

(6.6)

where A = TAT−1, Ad = TAdT
−1, ΔA = TΔAT−1, ΔAd = TΔAdT

−1

and ϕ(t) = Tϕ(t), w(z(t), z(t− τ(t)), t) = w(T−1z(t), T−1z(t− τ(t)), t). It is
obvious that ||w(z(t), z(t− τ(t)), t)|| ≤ c+k||T−1z(t)|| = ρ. System (6.6) can
be written as:

ż1(t) = (A11 + ΔA11)z1(t) + (Ad11 + ΔAd11)z1(t− τ(t))
+(A12 + ΔA12)z2(t) + (Ad12 + ΔAd12)z2(t− τ(t))

ż2(t) = (A21 + ΔA21)z1(t) + (Ad21 + ΔAd21)z1(t− τ(t))
+(A22 + ΔA22)z2(t) + (Ad22 + ΔAd22)z2(t− τ(t))
+B2(u + w(z(t), z(t− τ(t)), t))

z1(t) = ϕ1(t), t ∈
[−τ, 0

]

z2(t) = ϕ2(t), t ∈
[−τ, 0

]

(6.7)

where z1 ∈ Rn−m, z2 ∈ Rm, B2 = ΣJT , A11 = UT
2 AU2, A12 = UT

2 AU1,
Ad11 = UT

2 AdU2, Ad12 = UT
2 AdU1, ΔA11 = UT

2 GDHU2, ΔA12 = UT
2 GDHU1

ΔAd11 = UT
2 GdDdHdU2, ΔAd12 = UT

2 GdDdHdU1, ϕ1(t) ∈ R(n−m) and
ϕ2(t) ∈ Rm are the sub-blocks of ϕ(t).

It is obvious that the first equation of system (6.7) represents the sliding
motion dynamics of system (6.6), hence the corresponding sliding surface can
be chosen as follows:

δ(t) =
[
C I
]
z(t) = Cz1(t) + z2(t) = 0 (6.8)

where C ∈ Rm×(n−m). Substituting z2 = −Cz1 into the first equation of
system (6.7) gives the sliding motion
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ż1(t) = (A11 + ΔA11 −A12C −ΔA12C)z1(t)
+(Ad11 + ΔAd11 −Ad12C −ΔAd12C)z1(t− τ(t))

z1(t) = ϕ1(t), t ∈
[−τ, 0

]
.

(6.9)

For simplicity, the sliding motion can be written as

ż1(t) = Ãz1(t) + Ãdz1(t− τ(t))
z1(t) = ϕ1(t), t ∈

[−τ, 0
] (6.10)

where
Ã = A11 + ΔA11 −A12C −ΔA12C

Ãd = Ad11 + ΔAd11 −Ad12C −ΔAd12C.
(6.11)

To facilitate control design, scaling matrices and structural properties of
the system are introduced below.

In accordance to the structures of D and Dd defined in (6.4), the following
scaling matrices are defined and used as design parameters latter:

SD = {Y |Y = diag(Y1, · · · , Yp)

0 < Yi = Yi
T ∈ Rnai

×nai } (6.12)
SDd

= {Yd|Yd = diag(Yd1, · · · , Ydq)

0 < Ydi = Ydi
T ∈ Rnadi

×nadi }. (6.13)

To this end, the following lemma is recalled.

Lemma 6.2. [100] Let D ∈ SD, Dd ∈ SDd
. Then for any X ∈ SD and

Xd ∈ SDd
, the following inequalities

GDH + (GDH)T ≤ GXGT + HTX−1H (6.14)

GdDdHd + (GdDdHd)T ≤ GdXdGd
T + Hd

TXd
−1Hd (6.15)

hold.

6.3 Main Results

The objective in this chapter is to a design constant gain C ∈ Rm×(n−m) and
a reaching motion control law u(t) such that

1) The sliding motion (6.10) is quadratically stable; and
2) The trajectory of the closed-loop system (6.7) is convergent into a resid-

ual set of the origin with the reaching control law u(t).

Definition 6.3. [128]: The uncertain sliding motion (6.10) is said to be ro-
bustly stable if the equilibrium solution z1(t) = 0 of the functional differential
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equation associated to sliding motion (6.10) is globally uniformly asymptot-
ically stable for all admissible uncertainty ΔA1 and ΔAd1.

Now, we present our first result in this chapter.

Theorem 6.4. For given scalar λ > 0, the reduced order system (6.10) is
quadratically stable if there exist symmetric positive-definite matrix P ∈
R(n−m)×(n−m), symmetric semi-positive matrix Z ∈ R(n−m)×(n−m), general
matrices V ∈ Rm×(n−m),and Y,M,N,Q ∈ R(n−m)×(n−m), X ∈ SD, and
Xd ∈ SDd

such that
⎡

⎢
⎢
⎢
⎢
⎣

Θ11 Θ12 Θ13 Θ14 0
ΘT

12 Θ22 Θ23 0 Θ25

ΘT
13 ΘT

23 Θ33 0 0
ΘT

14 0 0 Θ44 0
0 ΘT

25 0 0 Θ55

⎤

⎥
⎥
⎥
⎥
⎦
< 0 (6.16)

and

Ω =

⎡

⎣
X Y M
Y T Z N
MT NT λP

⎤

⎦ ≥ 0 (6.17)

where

Θ11 = A11P −A12V + PA
T

11 − V TA
T

12 + M + MT + Q

+τX + UT
2 GXGTU2 + UT

2 GdXdG
T
d U2

Θ12 = ΘT
21 = Ad11P − A

T

d12V −M + NT + τY

Θ13 = ΘT
31 = τλ(PA

T

11 − V TA
T

12 + UT
2 GXGTU2

+UT
2 GdXdG

T
d U2)

Θ14 = ΘT
41 = PUT

2 HT − V TUT
1 HT

Θ22 = −N −NT − (1 − d)Q + τZ

Θ23 = ΘT
32 = τλ(PA

T

d11 − V TA
T

d12)
Θ25 = ΘT

52 = PUT
2 HT

d − V TUT
1 HT

d

Θ33 = −τλP + τ2λ2(UT
2 GXGTU2 + UT

2 GdXdG
T
d U2)

Θ44 = −X
Θ55 = −Xd

and the rest of entries are zero.
Moreover, gain C = V P−1 and the sliding surface of system (6.7) is

δ(t) = V P−1z1(t) + z2(t) = 0. (6.18)

Proof. Taking a scalar λ, symmetric positive-definite matrix variables P,Q ∈
R(n−m)×(n−m) and choosing the Lyapunov functional candidate as
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V(t) = xT (t)Px(t) +
∫ t

t−τ(t) x
T (s)Qx(s)ds

+ λ
∫ 0

−τ

∫ t

t+θ ẋ
T (s)P ẋ(s)dsdθ

(6.19)

it follows that the Lyapunov derivative corresponding to system (6.10) is
given by

V̇(t) = xT (t)[PÃ + ÃTP ]x(t) + 2xT (t)PÃdx(t− τ(t))
+xT (t)Qx(t) − (1 − τ̇ (t))xT (t− τ(t))Qx(t − τ(t))
+λτẋT (t)P ẋ(t) − λ

∫ t

t−τ
ẋT (s)P ẋ(s)ds

≤ xT (t)[PÃ + ÃTP ]x(t) + 2xT (t)PÃdx(t− τ(t))
+xT (t)Qx(t)
−(1 − d)xT (t− τ(t))Qx(t − τ(t)) + λτẋ(t)P ẋ(t)
−λ ∫ t

t−τ(t)
ẋT (s)P ẋ(s)ds.

(6.20)

It is easy to see that

x(t− τ(t)) = x(t) −
∫ t

t−τ(t)

ẋ(s)ds (6.21)

then, for any matrices M and N with appropriate dimensions, the following
equation is derived:

2[xT (t)M + xT (t− τ(t))N ][x(t) − x(t − τ(t)) −
∫ t

t−τ(t)

ẋ(s)ds] = 0. (6.22)

For any semi-positive definite matrices X , Z and general matrix Y such that

W =
[
X Y
Y T Z

]

≥ 0, the following result is obvious

[
x(t)

x(t− τ(t))

]T

W

[
x(t)

x(t− τ(t))

]

≥ 0 (6.23)

then,

τ

[
x(t)

x(t − τ(t))

]T

W

[
x(t)

x(t − τ(t))

]

−
∫ t

t−τ(t)

[
x(t)

x(t− τ(t))

]T

W

[
x(t)

x(t− τ(t))

]

ds

= (τ − τ(t))
[

x(t)
x(t − τ(t))

]T

W

[
x(t)

x(t − τ(t))

]

≥ 0.

For simplicity, let
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α(t) =
[

x(t)
x(t− τ(t))

]

, β(t, s) =

⎡

⎣
x(t)

x(t− τ(t))
ẋ(s)

⎤

⎦ . (6.24)

Then, adding nonnegative terms into the right side of (6.20) results in

V̇(t) ≤ xT (t)[PÃ + ÃTP ]x(t) + 2xT (t)PÃdx(t− τ(t))
+xT (t)Qx(t) − (1 − d)xT (t− τ(t))Qx(t − τ(t))
+λτẋ(t)P ẋ(t) − λ

∫ t

t−τ(t)
ẋT (s)P ẋ(s)ds + 2[xT (t)M

+xT (t− τ(t))N ][x(t) − x(t− τ(t)) − ∫ t

t−τ(t) ẋ(s)ds]
+ταT (t)Wα(t) − ∫ t

t−τ(t) α
T (t)Wα(t)ds

= αT (t)Φα(t) − ∫ t

t−τ(t) β
T (t, s)Ωβ(t, s)ds

(6.25)

where

Φ =
[
Φ11 Φ12

ΦT
12 Φ22

]

Φ11 = PÃ + ÃTP + τλÃTPÃ + M + MT + Q + τX

Φ12 = PÃd + τλATPÃd −M + NT + τY (6.26)
Φ22 = τλÃT

d PÃd −N −NT − (1 − d)Q + τZ

Ω =

⎡

⎣
X Y M
Y T Z N
MT NT λP

⎤

⎦ ≥ 0. (6.27)

Then, if Φ < 0 and Ω ≥ 0, V̇(t) < 0 for any α(t) �= 0. By Schur complement,
Φ < 0 is equivalent to the following inequality:

⎡

⎣
Φ11 − τλÃTPÃ Φ12 − τλATPÃd τλÃTP

(Φ12 − τλATPÃd)T Φ22 − τλÃT
d PÃd τλÃT

d P

τλPÃ τλPÃd −τλP

⎤

⎦ < 0. (6.28)

Multiplying both sides of inequalities (6.27) and (6.28) with diag(P−1, P−1,
P−1), and let P̃ = P−1, M̃ = P−1MP−1, Ñ = P−1NP−1,X̃ = P−1XP−1,
Q̃ = P−1QP−1, Ỹ = P−1Y P−1, yields

⎡

⎣
X̃ Ỹ M̃

Ỹ T Z̃ Ñ

M̃T ÑT λP̃

⎤

⎦ ≥ 0 (6.29)

⎡

⎣
Φ̃11 Φ̃12 Φ̃13

Φ̃T
12 Φ̃22 Φ̃23

Φ̃T
13 Φ̃T

23 Φ̃33

⎤

⎦ < 0 (6.30)



74 6 Robust Adaptive SMC for Uncertain Time-Delay Systems

where Φ̃11 = ÃP̃ + P̃ ÃT + M̃ + M̃T + Q̃+ τX̃, Φ̃12 = ÃdP̃ − M̃ + ÑT + τ Ỹ ,
Φ̃13 = τλP̃ ÃT , Φ̃22 = −Ñ−ÑT −(1−d)Q̃+τZ̃,Φ̃23 = τλP̃ ÃT

d , Φ̃33 = −τλP̃ .
Note that (6.11), and let V = CP̃ , Ω111 = A11P̃−A12V +P̃A

T

11−V TA
T

12+
M̃ +M̃T +Q̃+τX̃ , Ω121 = P̃A

T

d11−V TA
T

d12−M̃T +Ñ +τỸ T , Ω122 = −Ñ−
ÑT − (1− d)Q̃+ τ Z̃,Ω131 = τλ(A11P̃ −A12V ), Ω132 = τλ(Ad11P̃ −Ad12V ),
Ω133 = −τλP̃ and

Ω1 =

⎡

⎣
Ω111 ΩT

121 ΩT
131

Ω121 Ω122 ΩT
132

Ω131 Ω132 Ω133

⎤

⎦

Ω2 =

⎡

⎣
UT

2 G UT
2 Gd

0 0
τλUT

2 G τλUT
2 Gd

⎤

⎦

Ω3 =
[
HU2P −HU1V 0

0 HdU2P −HdU1V

]

D =
[
D 0
0 Dd

]

(6.31)

then, (6.30) can be written as

Ω1 + Ω2D
[
Ω3 0

]
+
[
Ω3 0

]T
D

T
ΩT

2 < 0. (6.32)

By Lemma 6.2, equation (6.32) holds if there exist X ∈ SD and Xd ∈ SDd

such that

Ω1 + Ω2

[
X 0
0 Xd

]

ΩT
2 +

[
Ω3 0

]T
[
X−1 0

0 X−1
d

]
[
Ω3 0

]
< 0. (6.33)

By Schur complement formula, inequality (6.33) is equivalent to
⎡

⎢
⎢
⎣

Ω1 + Ω2

[
X 0
0 Xd

]

ΩT
2

[
Ω3 0

]T

[
Ω3 0

] −
[
X 0
0 Xd

]

⎤

⎥
⎥
⎦ < 0. (6.34)

Remark 6.5. Theorem 6.4 presents a sufficient condition for the problem of
sliding motion stability, described by (6.10). A desired sliding surface can
be constructed by solving the matrix inequalities in (6.16) and (6.17), which
can be implemented by employing some standard numerical algorithms, see
for example, [15]. It should be noted that the underlying problem may not
always have feasible solutions. Fortunately, there is an adjustable scalar λ in
the inequalities. If the unsolvable case appears, then the feasible solutions
could still be obtained by appropriately adjusting the scalar.

Remark 6.6. When λ = 0, the condition is delay independent. When λ �= 0,
inequalities (6.16) and (6.17) are nonlinear since there are products of two
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variables. They can also be solved using LMI toolbox by fixing λ first, then
searching for feasible solutions using different values of λ. The introduction
equality (6.22) can give less conservative results than the method in [189],
the details can be found in [78] and [207].

The severe drawback of SMC is that it is discontinuous across sliding sur-
faces. The discontinuity leads to control chattering in practice, which involves
high-frequency dynamics. To remove control chattering, the following smooth
projection will be introduced.

Definition 6.7. [58] Let θ = [θ1 θ2 · · · θp]T ∈ Ω be an unknown parameter
vector, θ̂ be the estimate, and Ω ∈ Rp be a closed ball of known radius rΩ .
The projection algorithm Proj(y, θ̂) is given by

Proj(y, θ̂) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y, if p(θ̂) ≤ 0
y, if p(θ̂) ≥ 0 and ∂p(θ̂)

∂θ̂
y ≤ 0

y − p(θ̂) ∂p(θ̂)
∂θ̂

y

||∂p(θ̂)
∂θ̂

||2
∂pT (θ̂)

∂θ̂
, otherwise

(6.35)

where p(θ̂) = ||θ̂||2−r2
Ω

ε2+2εrΩ
, ε is an arbitrary positive real scalar. From (6.35), if

θ̂(0) ∈ Ω, the following nice properties follow immediately:

1)||θ̂(t)|| ≤ rΩ + ε, ∀t ≥ 0;
2) Proj(y, θ̂) is Lipschitz continuous;
3) ||Proj(y, θ̂)|| ≤ ||y||;
4) θ̃T Proj(y, θ̂) ≥ θ̃T y, (θ̃ = θ − θ̂).

Definition 6.8. [97] Consider the nonlinear system, ẋ = f(x, u), y = h(x)
where x is a state vector, u is the input vector and y is the output vector.
The solution is uniformly ultimately bounded (UUB) if for all x(t0) = x0,
there exists ε > 0 and T (ε, x0), such that ‖x(t)‖ < ε, for all t ≥ t0 + T .

Based on Theorem 6.4 and the Definition 6.3, that is, sliding motion enters
a neighborhood of equilibrium in finite time and remains within it thereafter
[28], the result of designing the reaching motion controller is given in the next
theorem.

Theorem 6.9. With the gain C obtained in Theorem 6.4 and the linear slid-
ing surface is given by (6.18). Then the trajectory of the closed-loop system
(6.7) can be driven onto the sliding surface in finite time with the control
(6.36) and evolves in a neighborhood around the sliding surface, and finally,
converges into a residual set at the origin.

u = −B−1
2 [Πδ(t) + CAz(t) + CAdz(t− τ(t)) + f1(z(t))θ̂

+f2(z(t− τ(t)))β̂] + uN (6.36)



76 6 Robust Adaptive SMC for Uncertain Time-Delay Systems

uN =

⎧
⎨

⎩

− BT
2 δ(t)

||BT
2 δ(t)|| ρ̂, if ρ̂||BT

2 δ(t)|| > ε

−BT
2 δ(t)

ε ρ̂2, if ρ̂||BT
2 δ(t)|| ≤ ε

(6.37)

and the adaptation laws are

˙̂
θ = q1Proj(fT

1 (z(t))δ(t), θ̂) (6.38)
˙̂
β = q2Proj(fT

2 (z(t− τ(t)))δ(t), β̂) (6.39)
˙̂c(t, z) = q3(−ε0ĉ + ||BT

2 δ(t)||) (6.40)
˙̂
k(t, z) = q4(−ε1k̂ + ||BT

2 δ(t)||||z||) (6.41)

where Π is a positive definite matrix, q1, q2, q3, q4, ε0 and ε1 are design
parameters, and C = [C I],

ρ̂ = ĉ(z(t), t) + k̂(z(t), t)||z(t)||
f1(z(t)) = [CTA1T

−1z(t) · · · CTApT
−1z(t)]

f2(z(t− τ(t))) = [CTAd1T
−1z(t− τ(t)) · · · CTAdqT

−1z(t− τ(t))].
(6.42)

Proof. We will complete the proof by showing that via the control law (6.36)-
(6.41), the trajectory of the closed-loop system (6.7) can be driven onto the
sliding surface in finite time and evolves in a neighborhood around the sliding
surface. In the steady state, it is convergent into a residual set at the origin.
Consider the following Lyapunov function:

V =
1
2
[δT (t)δ(t) +

1
q1
θ̃T θ̃ +

1
q2
β̃T β̃ +

1
q3
c̃2 +

1
q4
k̃2] (6.43)

where θ̃ = θ− θ̂, β̃ = β − β̂, c̃ = c− ĉ(z(t), t) and k̃ = k − k̂(z(t), t). Its time
derivation is

V̇ = δT (t)δ̇(t) − 1
q1
θ̃T ˙̂

θ − 1
q2
β̃

˙̂
β − 1

q3
c̃ ˙̂c− 1

q4
k̃

˙̂
k. (6.44)

From the sliding surface

δ(t) =
[
C I
]
z

we have

δ̇(t) =
[
C I
]
ż = C(A + ΔA)z(t) + C(Ad + ΔAd)z(t− τ(t))

+ B2(u(t) + w(z, z(t− τ(t)), t)). (6.45)

If ||BT
2 δ||ρ̂ > ε, with the control law defined in (6.36) and adaptation laws

defined in (6.38)-(6.41), we have



6.3 Main Results 77

V̇ = δT (t)[−Πδ(t) + CΔAz(t) + CΔAdz(t− τ(t)) − f1(z(t))θ̂

−f2(z(t− τ(t)))β̂] − θ̃T Proj(fT
1 (z(t))δ(t), θ̂)

−β̃T Proj(fT
2 (z(t− τ(t)))δ(t), β̂) + δT (t)B2uN

+δT (t)B2w(z(t), z(t− τ(t)), t) − c̃(−ε0ĉ + ||BT
2 δ(t)||)

−k̃(−ε1k̂ + ||BT
2 δ(t)||||z||)

where δTB2uN = −δTB2
BT

2 δ

||BT
2 δ(t)|| ρ̂ = −||BT

2 δ(t)||(k̂||z||+ ĉ).
From (6.2), we have

C̄ΔAz(t) = C̄
∑p

i=1 θiĀiz(t) =
∑p

i=1 θiC̄TAiT
−1z(t)

= [CTA1T
−1z(t) CTA2T

−1z(t)
· · · CTApT

−1z(t)]θ
= f1(z(t))θ.

(6.46)

Similarly, we have

C̄ΔAdz(t− τ(t)) = f2(z(t− τ(t)))β. (6.47)

Then we get

V̇ = −δT (t)Πδ(t) − δT (t)f1(z(t))θ̂ − δT (t)f2(z(t− τ(t)))β̂
+δT (t)f1(z(t))θ + δT (t)f2(z(t− τ(t)))β
−β̃T Proj(fT

2 (z(t− τ(t)))δ(t), β̂) − θ̃T Proj(fT
1 (z(t))δ(t), θ̂)

−||BT
2 δ(t)||(k̂||z|| + ĉ) + δT (t)B2w(z(t), z(t− τ(t)), t)

−c̃(−ε0ĉ + ||BT
2 δ(t)||) − k̃(−ε1k̂ + ||BT

2 δ(t)||||z||).

(6.48)

It follows from θ̃ = θ − θ̂, and β̃ = β − β̂
that

V̇ = −δT (t)Πδ(t) − δT (t)f1(z(t))θ̃ − θ̃T Proj(fT
1 (z(t))δ(t), θ̂)

−δ(t)fT
2 (z(t− τ(t)))β̃ + β̃T Proj(fT

2 (z(t− τ(t)))δ(t), β̂)
−||BT

2 δ(t)||(k̂||z|| + ĉ) + δT (t)B2w(z(t), z(t− τ(t)), t)
−c̃(−ε0ĉ + ||BT

2 δ(t)||) − k̃(−ε1k̂ + ||BT
2 δ(t)||||z||)

(6.49)

δT (t)f1(z(t))θ̃ = δT (t)
∑p

i=1 θ̃iC̄TAiT
−1z(t)

=
∑p

i=1 θ̃iδ
T (t)C̄TAiT

−1z(t).
(6.50)

It follows δT (t)CTA1T
−1z(t) ∈ R that

δT (t)CTA1T
−1z(t) = (CTA1T

−1z(t))T δ(t)
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δT (t)f1(z(t))θ̃ =
∑p

i=1 θ̃i(C̄TAiT
−1z(t))T δ(t)

= θ̃T [CTA1T
−1z(t) CTA2T

−1z(t)

· · · CTApT
−1z(t)]T δ(t)

= θ̃T fT
1 (z(t))δ(t).

(6.51)

Similarly we have

δT (t)f2(z(t− τ(t)))β̃ = β̃T fT
2 (z(t− τ(t)))δ(t). (6.52)

It follows from (6.42) and Assumption 6.2.3 that

V̇ ≤ −δT (t)Πδ(t) + θ̃T (f1(z(t))δ(t) − Proj(fT
1 (z(t)δ(t), θ̂)) (6.53)

+β̃T (t)(f2(z(t− τ(t))δ(t) − Proj(fT
2 (z(t− τ(t)))δ(t), β̂)

+ ||BT
2 δ(t)||(k||z|| + c) − ||BT

2 δ(t)||(k̂||z|| + ĉ)

−c̃(−ε0ĉ + ||BT
2 δ(t)||) − k̃(−ε1k̂ + ||BT

2 δ(t)||||z||).

From the Property 4 of the operator Proj(y, θ̂) and completing the squares
we obtain

V̇ ≤ −δT (t)Πδ(t) + ε0c̃ĉ + ε1k̃k̂

= −δT (t)Πδ(t) − ε0(ĉ− 1
2
c)2 − ε1(k̂ − 1

2
k)2 +

1
4
(ε0c2 + ε1k

2)

≤ −δT (t)Πδ(t) +
1
4
(ε0c2 + ε1k

2). (6.54)

If ||BT
2 δ(t)||ρ̂2 ≤ ε, with the control law defined in (6.37) and adaptation laws

defined in (6.38)-(6.41), we obtain

V̇ ≤ −δT (t)Πδ(t) − ||BT
2 δ(t)||2
ε

ρ̂2 + ||BT
2 δ(t)||(k||z|| + c)

− c̃(−ε0ĉ + ||BT
2 δ(t)||) − k̃(−ε1k̂ + ||BT

2 δ(t)||||z||)
= −δT (t)Πδ(t) − ||BT

2 δ(t)||2
ε

ρ̂2 + ||BT
2 δ(t)||ρ̂ + ε0c̃ĉ + ε1k̃k̂

= −δT (t)Πδ(t) − (
||BT

2 δ(t)||√
ε

ρ̂−
√
ε

2
)2 +

ε

4

− ε0(ĉ− 1
2
c)2 − ε1(k̂ − 1

2
k)2 +

1
4
(ε0c2 + ε1k

2)

≤ −δT (t)Πδ(t) +
ε

4
+

1
4
(ε0c2 + ε1k

2). (6.55)

It can be concluded now from (6.54) and (6.55) that all signals are uniformly
ultimately bounded.



6.4 Numerical Example 79

In order to obtain a continuous control law (6.36), the unknown parameters
are estimated with the smooth projection. The continuous positive scalar
valued function ρ satisfying Assumption 6.2.3 is estimated by a smoothed
SMC control law taking account of the boundary layer effect, that is the
part, uN . The benefits of this kind of smooth techniques have been stated in
[179], which offers a continuous approximation to the discontinuous SMC law
inside the boundary layer and guarantees the output tracking error within
any neighborhood of the sliding surface. However, asymptotic stability is lost
and it can only guarantee the bounded motion about the sliding surface.
Therefore, we cannot analyze the stability of the dynamics of the sliding
mode that is restricted on the sliding surface. In the following, the uniformly
ultimately bounded of sliding motion will be investigated. The dynamics of
the sliding motion around the sliding surface is described by

ż1(t) = (A11 + ΔA11 −A12C −ΔA12C)z1(t)
+(Ad11 + ΔAd11 −Ad12C −ΔAd12C)z1(t− τ(t))
+(A12 + ΔA12)δ(t) + (Ad12 + ΔAd12)δ(t− τ(t))

z1(t) = ϕ1(t), t ∈
[−τ, 0

]
.

(6.56)

It has been proved in Theorem 6.9 that δ(t) is ultimately bounded, the same
holds for δ(t− τ(t)) as t → ∞, then (A12 +ΔA12)δ(t)+ (Ad12 +ΔAd12)δ(t−
τ(t)) will be bounded as well, and can be viewed as a bounded disturbance
in the dynamics of (6.56). As gain C is designed to guarantee the quadratic
stability of system (6.10), which will not converge to zero due to the existence
of bounded disturbances, however, it will stay in a domain containing zero
within the prescribed precision.

Remark 6.10. When the time-delay is time-varying but unknown, the method
proposed in this chapter can also work with the slightly changed algorithm of
control law presented in this chapter. As time-delay τ(t) can not be used in the
control law, the terms containing time-delay can be viewed as uncertainties.
Then, the terms with time-delay and disturbances can be lumped together
and are bounded by a function similar to (6.5). Therefore a similar adaptive
control can be used, and the upper bound parameters can be estimated with
the adaptive law.

6.4 Numerical Example

In this section an illustrative example is given to verify the effectiveness of
the design method developed in this chapter.

Example 6.11. Consider the uncertain system (6.1) with



80 6 Robust Adaptive SMC for Uncertain Time-Delay Systems

A =
[−4 1.5

4 −2

]

, Ad =
[

0.7 0.8
0.6 0.9

]

, B =
[

1
0.5

]

τ(t) = 2.0806(1 + sin t
2×2.0806 ), F = 1, ϕ(t) =

[
1
−1

]

, for t ∈ [−2.0806 0
]
,

w(t) = 0.01 sin t.
Simply we consider

ΔA = θA1

ΔAd = βAd1

where |θ| ≤ 1 and |β| ≤ 1. A1 and Ad1 are factorized as follows:

A1 =
[

1 0
0 0

]

=
[

1
0

]
[
1 0
]

Ad1 =
[

0.2 0
0 0

]

=
[

1
0

]
[
0.2 0

]
.

According to (6.3), it can be shown that

G =
[

1
0

]

, H =
[
1 0

]

Gd =
[

1
0

]

, Hd =
[

0.2
0

]

.

According to Remark 6.6, when λ = 0, the condition is delay independent.
When λ �= 0, inequalities (6.16) and (6.17) are nonlinear. With LMI toolbox
by fixing λ first, then feasible solutions can be found using different values
of λ and d. The following table shows the upper bound of time-delay varies
with λ and d:

λ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 7.0612 4.0350 3.0432 2.5587 2.2729 2.0827 1.9447 1.8377 1.7504 1.6763
0.1 6.9989 3.9939 3.0094 2.5284 2.2443 2.0552 1.9178 1.8114 1.7246 1.6511
0.2 6.9252 3.9455 2.9700 2.4934 2.2119 2.0243 1.8881 1.7827 1.6969 1.6245

0.3 6.8362 3.8876 2.9234 2.4526 2.1746 1.9895 1.8552 1.7514 1.6673 1.5966
0.4 6.7263 3.8170 2.8673 2.4045 2.1314 1.9498 1.8185 1.7173 1.6356 1.5674

d 0.5 6.5865 3.7285 2.7986 2.3466 2.0806 1.9043 1.7773 1.6800 1.6020 1.5373
0.6 6.4015 3.6141 2.7118 2.2755 2.0201 1.8517 1.7311 1.6395 1.5668 1.5070
0.7 6.1426 3.4590 2.5985 2.1860 1.9466 1.7902 1.6793 1.5960 1.5307 1.4777
0.8 5.7467 3.2340 2.4425 2.0692 1.8557 1.7181 1.6219 1.5508 1.4957 1.4517
0.9 5.0319 2.8662 2.2102 1.9097 1.7415 1.6349 1.5615 1.5079 1.4670 1.4348

Taking T =
[−0.4472 0.8944
−0.8944 −0.4472

]

, we have B2 = −1.1180, and LMI (6.16)

has feasible solutions with λ = 0.5 and d = 0.5:
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V = 26.6564, P = 29.7355

X = 9.9225, Xd = 5.6653.

It follows from Theorem 6.4 that C = V P−1 = 0.8964, the linear sliding
surface is δ(t) =

[
0.8964 1

]
x(t).

From Theorem 6.9, the reaching control law can be taken as follows

u = 0.8944[ΠS(t) + [6.5997 − 2.6522]]x(t)
+[−0.6940 − 0.7171]x(t− τ(t)) +

[0.5793 1.1586]x(t)θ̂ + [0.1159 0.2317]x(t− τ(t))β̂] + uN

uN =

⎧
⎨

⎩

− BT
2 S

||BT
2 S|| ρ̂, if ρ̂||BT

2 S|| > ε

−BT
2 S
ε ρ̂2, if ρ̂||BT

2 S|| ≤ ε
. (6.57)

The parameter Π and ε can be tuned to reduce the chattering on the sliding
surface. Fig. 6.1 are simulation results with Π = 1 and ε=0.6. Obviously the
sliding mode is asymptotically stable and the trajectories of the system tends
to the origin in spite of time-delay and uncertainties.

The closed-loop dynamic responses are given in Fig. 6.1 to Fig. 6.4 with
the initial conditions x(0) = [−1, 1]T , θ(0) = 0.7, β(0) = 0.45, c(0) =
1, k(0) = 0.75. Fig. 6.1 shows that the original system states approach to a
small bounded region in finite time. Fig. 6.2 depicts the input control signal.
Fig. 6.3 shows the sliding mode surface. The estimated parameters are shown
in Fig. 6.4.
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Fig. 6.1 The controlled state trajectories
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Fig. 6.2 The control signal
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Fig. 6.3 The sliding mode surface

From the above figures, it can be seen that the algorithm proposed in
this chapter works well. There is no chattering on the sliding surface and
the control input is also very smooth. Parameters θ̂, β̂, ĉ and k̂ converge to
constants.
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Fig. 6.4 The estimated parameters with initial conditions q1 = 0.75; q2 = 0.31;
q3 = 1.2, ε0 = 0.5; q4 = 0.85, ε1 = 0.5

6.5 Conclusion

In this chapter, the problem of robust adaptive sliding mode control for a class
of uncertain time-delay systems has been considered in which no matching
condition is assumed for the state uncertainties. The aim of this study is to
attempt to combine the advantages of adaptive control and variable control
methods. The resulting combined method makes the system uniformly ulti-
mately bounded, robust in the presence of uncertainties and disturbance and
in addition, has a fast transient response.



Chapter 7

SMC of Uncertain Linear Discrete
Time Systems with Input Delay

Many papers have considered the problem of SMC for classes of uncertain
systems with time-delay [161, 147, 189, 160, 10, 8, 9]. Although much atten-
tion has been given to the control problem of discrete systems with time-delay
[96, 127, 168, 154, 51], few results have been reported on robust control of
systems with time-delay in discrete time with discrete SMC.

A discrete version of SMC is important when the implementation of the
control is realized digitally using a relatively slow sampling period. It is worth
pointing out that discrete sliding mode control cannot be obtained from their
continuous counterpart by means of simple equivalence. In [34], the problem
of discrete Variable Structure Control (VSC) was first considered. The con-
cept of the quasi-sliding mode was suggested in [134], and phenomena of
switching, reaching, and quasi-sliding mode were investigated in [55].

In continuous time, to compensate for the time delay in the inputs, Smith
predictor has been frequently used and is essential in solving the control
problem for systems with input delay. Though there are many fundamental
contributions made in control system design for systems in discrete time with
input delay, there are few results that exploit the idea of applying a predictor
in discrete time with an input delay that is in discrete time.

In this chapter, we consider the problem of designing both a linear sliding
surface and reaching motion controller for a class of uncertain discrete systems
with input delay. For linear systems with input delay, the main contributions
of the chapter lie in:

(i) the introduction of a novel predictor in discrete time;
(ii) the design of predictor-based sliding surface s(k) = 0 and reaching

control law u(k) such that the motion of the closed-loop system satisfies
the reaching condition; and

(iii) analysis of the stability of the quasi-sliding mode after it reaches the
sliding surface.

This chapter is organized as follows. Section 7.1 shows the control problem
and the definitions of quasi-sliding mode and reaching condition. Section 7.2

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 85–97.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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presents the predictor, its property and predictor-based controller without
bounded disturbance. In this section, robust predictor-based controller and
stability analysis of the quasi-sliding mode are also included. An example
is given in Section 7.3 to show the effectiveness of the controller proposed.
Section 7.4 presents the conclusion.

7.1 Problem Formulation

For convenience of analysis, we will first consider the linear systems with
input delay in discrete time described by

Σ1 :
{
x(k + 1) = Ax(k) + Bu(k − τ)

u(k) = ψ(k), k = −τ,−τ + 1, · · · , 0 (7.1)

where x(k) ∈ Rn and u(k) ∈ Rm are the system state and system input,
respectively, A and B are matrices of appropriate dimensions and rank(B) =
m, integer τ ≥ 0 denotes the amount of time delay, and ψ(·) denotes the
initial condition.

Assumption 7.1.1 The pair, (A,B), is completely controllable.
As we do not need A to be a stable matrix, the control problem is not trivial

because of the presence of the input delay. To solve the control problem for
linear systems with input time delay, we need the introduction of a novel
predictor which converts the control problem for systems with input time
delay to a system without the difficulty of time delay under the assumption of
known time delay. Then, the predictor based control is extended to uncertain
linear systems with input time delay in discrete time as follows:

Σ2 :

⎧
⎨

⎩

x(k + 1) = Ax(k) + Bu(k − τ) + d(x(k), x(k − τ0), u(k − τ), k)
x(k) = ϕ(k), k = −τ0,−τ0 + 1, · · · , 0
u(k) = ψ(k), k = −τ,−τ + 1, · · · , 0

(7.2)
where the unknown function d(x(k), x(k−τ0), u(k−τ), k) includes the extra-
neous disturbance, and non-linear perturbations with respect to the current
state and delayed state, respectively, and ϕ(·) denotes the initial condition.

Assumption 7.1.2 There is a positive constant, cd, such that

||d(x(k), x(k − τ0), u(k − τ), k)|| ≤ cd. (7.3)

For simplicity, we write d(k) instead of d(x(k), x(k − τ0), u(k − τ), k).

Remark 7.1. The above assumption might restrict the class of systems that
the approach can handle. But in reality, there are indeed some systems that
fall into this category. For example, there maybe exist bounded disturbances.



7.2 Predictor-Based SMC 87

It is known that the desired state trajectory of a discrete variable structure
control (VSC) system should have the following properties [55]:

P1. Starting from any initial state, the trajectory will move monotonically
toward the switching plane and cross it in finite time.

P2. Once the trajectory has crossed the switching plane the first time, it
will cross the plane again in every successive sampling period, resulting in
a zigzag motion about the switching plane.

P3. The size of each successive zigzagging step is non-increasing and the
trajectory stays within a specified band.

The above properties can be extended to multiple input cases by apply-
ing the rules to the m entries of the switching function independently. The
following definitions are recalled based on the above properties.

Definition 7.2. [55] The motion of a discrete VSC system satisfying prop-
erties P2 and P3 is called a quasi-sliding mode (QSM). The specified band
which contains the QSM is called the quasi-sliding mode band (QSMB) and
is defined by

{x : |si(x)| < δi, i = 1, · · · ,m} (7.4)

where 2δ = 2[δ1, · · · , δm]T ∈ Rm is the width of the band, s(x) = 0 is the
sliding surface.

Definition 7.3. [55] The quasi-sliding mode becomes an ideal quasi-sliding
mode when δi = 0, i = 1, · · · ,m.

Definition 7.4. [55] Discrete VSC is said to satisfy a reaching condition if
the resulting system possesses all the three properties: P1, P2, and P3.

7.2 Predictor-Based SMC

SMC design is usually broken down into two phases: (i) the construction of
a stable sliding surface, and (ii) the design of the reaching law. However,
for systems with input time delay, additional measures are needed. In this
chapter, we would like to explore the idea of using a predictor to convert the
original system with input time delay to a system where the input time delay
does not appear explicitly so that control system design can be constructed
with the new states, the states of the predictor.

7.2.1 Predictor in Discrete-Time

In continuous time, the Smith predictor plays a very important role. In this
chapter, we would like to introduce a predictor in discrete time, which is
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essential to solving the control problem due to the input time delay as will
be detailed later.

For simplicity, it is assumed that A is nonsingular. Let x̂(k) be the pre-
dicted states of system (7.1) and be defined as follows:

x̂(k) = Aτx(k) +
0∑

i=−τ+1

A−iBu(k − 1 + i) (7.5)

where x̂ ∈ Rn.

Proposition 7.5. The dynamics of the proposed predictor (7.5) for system
(7.1) can be conveniently described by system matrices, A and B, as

x̂(k + 1) = Ax̂(k) + Bu(k). (7.6)

Proof. Noticing system (7.1), the predictor (7.5) can be written as

x̂(k + 1) = Aτx(k + 1) +
0∑

i=−τ+1

A−iBu(k + i)

= Aτ (Ax(k) + Bu(k − τ)) +
0∑

i=−τ+1

A−iBu(k + i). (7.7)

Noting (7.5), we have

x̂(k + 1) = AτAx(k) + AτBu(k − τ) +
0∑

i=−τ+1

A−iBu(k + i)

= AτAx(k) + [
−1∑

i=−τ+1

A−iBu(k + i) + AτBu(k − τ)] + Bu(k)

= AAτx(k) + A

0∑

i=−τ+1

A−iBu(k − 1 + i) + Bu(k)

= A[Aτx(k) +
0∑

i=−τ+1

A−iBu(k − 1 + i)] + Bu(k)

= Ax̂(k) + Bu(k). (7.8)

Remark 7.6. Through the introduction of Predictor (7.5), the original system
with input time delay (7.1) has been converted into (7.6) without the explicit
appearance of time delay. As such, control system design can be carried out
for the equivalent system without the explicit appearance of time delay, i.e.,
control system design is carried out in the new predicted states rather than
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the original states. The possible disadvantage of the approach is the need for
a known time delay.

7.2.2 Predictor-Based SMC for System Σ1

The sliding surface is defined as

s(k) = Cx̂(k) (7.9)

where s = [s1, · · · , sm]T ∈ Rm and C = [CT
1 , · · · , CT

m]T ∈ Rm×n.
Without losing generality, we assume that the matrix C is of full rank and

the matrix CB is nonsingular.
After selecting the sliding surface, the next step is to choose the control law

such that the condition is satisfied. This condition ensures that the control
law will force system trajectories toward the sliding surface in finite time.

Noting that (7.6) and (7.9), s(k + 1) can be expressed as

s(k + 1) = CAx̂(k) + CBu(k). (7.10)

The equivalent control ueq(k) can be obtained by letting

s(k + 1) = 0 (7.11)

which leads to the equivalent control ueq(k) to be defined by

u(k) = −(CB)−1CAx̂(k). (7.12)

The ideal sliding motion is then described by

x̂(k + 1) = (I −B(CB)−1C)Ax̂(k). (7.13)

The above equation also describes the “equivalent system motion”. In this
chapter, let us consider the following reaching law

s(k + 1) − s(k) = −wTs(k) − εT sgn(s(k)) (7.14)

where

ε = diag
(
ε1 · · · εm

)

w = diag
(
w1 · · · wm

)

sgn(s(k)) = [sgn(s1(k)), · · · , sgn(sm(k))]T

εi > 0, wi > 0, 1 − wiT > 0, T is the sampling period. (7.15)
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In [55], it has been shown that the reaching control law can guarantee the
trajectory of the closed-loop system so that it is driven onto the sliding surface
in finite time, and the chattering is reduced by tuning the parameters, εi, and
wi properly.

In view of (7.10), the incremental change of s(k) is

s(k + 1) − s(k) = CAx̂(k) + CBu(k) − Cx̂(k)
= −wTs(k) − εT sgn(s(k)). (7.16)

Solving for u(k) gives the control law

u(k) = −(CB)−1[C(A− I)x̂(k) + εT sgn(s(k)) + wTs(k)]. (7.17)

When the discrete sliding mode controller is applied to the plant, the
state response of the system can also be separated into the following three
modes: the reaching, sliding, and steady-state modes. However, in all practical
situations, switching seldom occurs on the sliding surface, it will cross the
sliding surface in every successive sampling period after the system trajectory
passing through the sliding surface. With the control law (7.17), in the steady
state, the system trajectory will move within a band δ.

7.2.3 Robust Predictor Based SMC for System Σ2

To investigate the SMC law of system (7.2), let x̂(k) be the predicted states
of system (7.2). After some similar algebraic manipulations in the proof of
Proposition 7.5, we have

x̂(k + 1) = Ax̂(k) + Bu(k) + Aτd(k). (7.18)

Given the predictor-based sliding surface (7.9), then

s(k + 1) = CAx̂(k) + CBu(k) + CAτd(k). (7.19)

With the equivalent control (7.12), the ideal sliding motion in the presence
of bounded disturbance is then described by

x̂(k + 1) = (I −B(CB)−1C)[Ax̂(k) + Aτd(k)]. (7.20)

Note that Aτd(k) is not matched in general, i.e., Im(Aτd(k)) is not neces-
sarily included in Im(B), thus, the well-known “invariance” property of the
ideal sliding motion does not exist. In the presence of bounded uncertainties
d(k), it is almost impossible to control the state to approach zero. Instead of
controlling the state to zero, bounded motion about the sliding surface can
be guaranteed with the reaching law (7.14).
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Similar to (7.17), we might consider the following control

u(k) = −(CB)−1[C(A− I)x̂(k) +CAτd(k) + εT sgn(s(k)) +wTs(k)] (7.21)

provided that CAτd(k) is known. However, it is unknown. As such, we can
use the maximum bound of d(k) to suppress the uncertainty in robust control,
i.e.,

u(k) = −(CB)−1[C(A− I)x̂(k) + d̄(k) + εT sgn(s(k)) + wTs(k)] (7.22)

where
d̄(k) = cd||CAτ ||sgn(s(k)). (7.23)

The choice of d̄(k) is done to ensure that the sign of the incremental s(k)
of (7.16) is opposite to the sign of s(k).

Without loss of generality, it is assumed that |A| �= 0, then we can now
conclude our results of robust predictor-based SMC design in the following
main theorem.

Theorem 7.7. If the linear sliding surface is given by (7.9), system (7.2)
can be driven onto the sliding surface by the control (7.22) in a finite time.

Proof. Applying controller (7.22), then reaching condition developed in [55]
and [5], we know that system (7.18) will be driven around the sliding surface
by the control (7.22) in finite time. From equation (7.5), it is shown that
x(k) = A−τ [x̂(k)−∑0

i=−τ+1 A
−iBu(k− 1+ i)], then x(k) will also be driven

around the sliding surface.

7.2.4 Stability Analysis of Quasi-Sliding Motion

The switching law in a continuous-time sliding mode control can force sys-
tem trajectories toward the sliding surface in finite time and maintain on
the surface thereafter, despite the possible existence of any modelling errors
and disturbances with known bound. The underlying motivation is given by
the fact that the switching law can instantaneously react to any error such
that it is canceled out directly. Physically, we have made the assumption that
the slide mode control can switch at infinitely high frequency. This is obvi-
ously not possible in discrete-time. The switching function can only change
its value at specific time instant dictated by the sampling time, the system
will no longer stay on the sliding surface and no ‘true’ sliding mode will be
possible. The concept “discrete quasi-sliding mode” is introduced [55], which
means that the system state moves in a neighborhood around the sliding
surface s(k) = 0 when k is sufficiently large. Therefore, we cannot analyze
the stability of the dynamics of sliding mode strict to the sliding surface.
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Thus, the stability of sliding motion has to be investigated using Lyapunov
synthesis as will be detailed later.

To obtain a regular form of system (7.1), a nonsingular matrix U can be
always chosen such that

UB =
[

0(n−m)×m

B2

]

(7.24)

where B2 ∈ Rm×m is nonsingular. For convenience, choose the state trans-
formation z(k) = Ux̂(k), with

U =
[
U2

T

U1
T

]

where U1 ∈ Rn×m and U2 ∈ Rn×(n−m) are two sub-blocks of a unitary matrix
resulting from the singular value decomposition of B, i.e.,

B =
[
U1 U2

]
[

Λ
0(n−m)×m

]

V T (7.25)

where Λ ∈ Rm×m is a diagonal positive-definite matrix and V ∈ Rm×m is
a unitary matrix. With the state transformation z(k) = Ux̂(k), system (7.2)
can be rewritten as:

z1(k + 1) = A11z1(k) + A12z2(k) + d1(k)
z2(k + 1) = A21z1(k) + A22z2(k) + B2u(k) + d2(k) (7.26)

where z1(k) ∈ Rn−m, z2(k) ∈ Rm, A11 = UT
2 AU2, A12 = UT

2 AU1,
A21 = UT

1 AU2, A22 = UT
1 AU1, d1(k) = UT

2 Aτd(k) ∈ R(n−m) and d2(k) =
UT

1 Aτd(k) ∈ Rm are the sub-blocks of UAτd(k), the term d1(k) is called
unmatched uncertainty since it is in the null space of B, the term d2(k) is
called matched uncertainty since it in the range of B. The sliding surface, in
this case, is given by

s(k) = Cx̂(k) = CU−1Ux̂(k) = [C1, C2][zT
1 (k), zT

2 (k)]T = C1z1(k) +C2z2(k).
(7.27)

Noting that (7.19) and control law proposed in (7.22), are respectively,

s(k + 1) = CAx̂(k) + CBu(k) + CAτd(k) (7.28)

and

u(k) = −(CB)−1[C(A− I)x̂(k) + d̄(k) + εT sgn(s(k)) + wTs(k)]

then

s(k + 1) = s(k) − εT sgn(s(k)) − wTs(k) − d̄(k) + CAτd(k) (7.29)
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Without loss of generality, we assume that det(C2) �= 0. Using the following
coordinate transformation

[
z1(k)
s(k)

]

=
[
I 0
C1 C2

] [
z1(k)
z2(k)

]

(7.30)

we transform system (7.26) into the following system after some algebraic
manipulations

z1(k + 1) = Ā11z1(k) + Ā12s(k) + d1(k) (7.31)
s(k + 1) = s(k) − εT sgn(s(k)) − wTs(k) − d̄(k) + CAτd(k) (7.32)

where

Ā11 = A11 −A12C
−1
2 C1, Ā12 = A12C

−1
2 , (7.33)

Now we study the stability of quasi-sliding mode around sliding surface.
To facilitate the presentation of the main results, the following lemma is

introduced.

Lemma 7.8. [5] Assume that εiT is selected such that

εiT >
2cd(1 − wiT )

wiT
, i = 1, · · · ,m (7.34)

then the properties P1, P2 and P3 are met and system (7.18) will converge
in finite time to quasi-sliding mode band δ = [δ1, · · · , δm]T ∈ Rm given by

δi = εiT + 2|d̄(k)| = εiT + 2cd||CAτ ||, i = 1, · · · ,m. (7.35)

Let δ̄ = maxi=1,···,m{δi}, w̄ = maxi=1,···,m{wi}, ε̄ = maxi=1,···,m{εi}.
Based on the discrete version of the concept “uniformly ultimately bounded”,

that is, sliding motion enters a neighborhood of equilibrium in finite time and
remains within it thereafter [28], we have the following result:

Theorem 7.9. System (7.31) will be uniformly ultimately bounded with the
control law (7.22) if εT is selected such that condition (7.34) is satisfied.

Proof. Choose the Lyapunov function candidate as

V (k) = zT
1 (k)Pz1(k) + sT (k)s(k) (7.36)

where 0 < P = PT ∈ R(n−m)×(n−m). The incremental change of Lyapunov
function corresponding to system (7.31) is given by

V (k + 1) − V (k)
= zT

1 (k + 1)Pz1(k + 1) + sT (k + 1)s(k + 1) − zT
1 (k)Pz1(k) − sT (k)s(k)

= [Ā11z1(k) + Ā12s(k) + d1(k)]TP [Ā11z1(k) + Ā12s(k) + d1(k)]



94 7 SMC of Uncertain Linear Discrete Time Systems with Input Delay

−zT
1 (k)Pz1(k) + [s(k) − εT sgn(s(k)) − wTs(k) − d̄(k) + CAτd(k)]T

×[s(k) − εT sgn(s(k)) − wTs(k) − d̄(k) + CAτd(k)] − sT (k)s(k).

Note that from (7.31) and (7.32), we have

V (k + 1) − V (k)
= zT

1 (k)(ĀT
11PĀ11 − P )z1(k) + sT (k)(ĀT

12PĀ12 − 2wTI + T 2w2I)s(k)
+sT (k)[2ĀT

12PĀ11z1(k) + 2ĀT
12Pd1(k) − 2εT (1 − wT )sgn(s(k))

+2(1 − wT )(−d̄(k) + CAτd(k))] + dT
1 (k)Pd1(k) + 2dT

1 (k)PĀ11z1(k)
+T 2sgnT (s(k))ε2sgn(s(k)) + [−d̄(k) + CAτd(k)]T [−d̄(k) + CAτd(k)].

Note that (A,B) is completely controllable, then, there exits a matrix C such
that Ā11 in (7.33) is stable [176]. Therefore, there exists a positive definite
matrix P such that the following equation holds for any positive definite
matrix Q

ĀT
12PĀ12 − P = −Q. (7.37)

By Lemma 7.8, we have

V (k + 1) − V (k)
≤ −σmin(Q)||z1(k)||2 + 2(δ̄||ĀT

12PĀ11|| + cd||ĀT
11PU

T
2 A

τ ||)||z1(k)||
+||ĀT

12PĀ12 − 2wTI + T 2w2I||δ̄2 + 2cd||ĀT
12PU

T
2 Aτ ||δ̄ − 2mεT (1 − wT )δ̄

−2(1 − wT )cd||CAτ ||δ̄ + 2cd||(1 − wT )CAτ ||δ̄ + c2d||(Aτ )TU2U
T
2 Aτ ||

+mT 2ε̄2 + c2d||CAT ||2 + 2c2d||CAτ ||2 + c2d||(Aτ )TCTCAτ ||. (7.38)

For simplicity, let

δ̄1 = δ̄||ĀT
12PĀ11|| + cd||ĀT

11PU
T
2 Aτ ||

δ̄2 = ||ĀT
12PĀ12 − 2wTI + T 2w2I||δ̄2 + 2cd||ĀT

12PU
T
2 Aτ ||δ̄ − 2mεT (1− wT )δ̄

−2(1 − wT )cd||CAτ ||δ̄ + 2cd||(1 − wT )CAτ ||δ̄ + c2d||(Aτ )TU2U
T
2 Aτ ||

then

V (k + 1) − V (k) ≤ −σmin(Q)(||z1(k)|| − δ̄1
σmin(Q)

)2 +
δ̄2
1

σmin(Q)
+ δ̄2.

Therefore,

V (k + 1) − V (k) < 0, if||z1(k)|| > δ̄1 +
√
δ̄2
1 + σmin(Q)δ̄2
σmin(Q)

. (7.39)

The above means that the trajectory of z1(k) will enter into the ball

Ω(0, δ̄1+
√

δ̄2
1+σmin(Q)δ̄2

σmin(Q) ) with center at the origin and radius δ̄1+
√

δ̄2
1+σmin(Q)δ̄2

σmin(Q) ,
i.e.,



7.3 Numerical Example 95

{Ω(0,
δ̄1 +

√
δ̄2
1 + σmin(Q)δ̄2
σmin(Q)

) : ||z1(k)|| ≤ δ̄1 +
√
δ̄2
1 + σmin(Q)δ̄2
σmin(Q)

}. (7.40)

On the other hand, the trajectory of z1(k) converges in finite time to quasi-
sliding mode band δ. Therefore, the quasi-sliding motion will remain in the

domain of the intersection of the ball Ω(0, δ̄1+
√

δ̄2
1+σmin(Q)δ̄2

σmin(Q) ) and quasi-
sliding surface with band δ for all subsequent time. The uniform ultimate
boundedness thus follows using the discrete version of the result and termi-
nology in [28].

Remark 7.10. The size of radius of the ball Ω(0, δ̄1+
√

δ̄2
1+σmin(Q)δ̄2

σmin(Q) ) depends
on the bound of uncertainty, i.e., the constant cd, the size of radius of the ball
will be small as the bound cd is. At the same time, the ε, sampling time T , w
as well as matrix Q can be tuned to reduce the size of radius of the ball. From
equation (7.5), it is shown that x(k) = A−τ [x̂(k)−∑0

i=−τ+1 A
−iBu(k−1+i)],

then x(k) is also uniformly ultimately bounded.

7.3 Numerical Example

In this section, an illustrative example is given to verify the effectiveness of
the design method developed in this chapter.

Example 7.11. Consider system (7.1) with input-delay

A =
[

1.2 0.1
0 0.6

]

, B =
[

0
1

]

d(x(k), x(k − τ0), k) = 0.004sin(k(x(k) + x(k − τ0))), τ0 = 5, τ = 5
x(k) = 0, k = −τ0,−τ0 + 1, · · · , 0;u(k) = 0, k = −τ,−τ + 1, · · · , 0.

It is obvious that the open loop of system (7.1) is unstable. When τ =
0, d(x(k), x(k − τ0), k) = 0, it is the same as the example used in [55, 5].
Choose T = 0.01, ε = 10, q̄ = 25. The sliding surface is taken as

s(x) = C[Aτx +
0∑

i=−τ+1

A−iBu(k − 1 + i)] (7.41)

where C = [5 1]. Note that the upper bound of d(x(k), x(k − τ0), k) is cd =
0.004, the control law is obtained as

u(k) = −C(A− I)x̂− cdsgn(s)||CAτ || − 0.5sgn(s) − 0.25s.

Observe that cd||CAτ || = 0.024, inequality (7.34) is satisfied, we have the
following simulation results:



96 7 SMC of Uncertain Linear Discrete Time Systems with Input Delay

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−30

−20

−10

0

10

20

30

t(sec)

x1
x2
s

Fig. 7.1 States x1, x2 and sliding surface s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−15

−10

−5

0

5

10

15

t(sec)

co
nt

ro
l i

np
ut

Fig. 7.2 Control input u

From Fig. 7.1 and Fig. 7.2, it is shown that the system is open loop before
0.05 second because τ = 5. During this period, s diverges, so do x1 and x2,
and they will be in steady state after the control is implemented.
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7.4 Conclusion

In this chapter, after the introduction of a new predictor, the original system
with input delay was converted to an equivalent system without the explicit
appearance of time delay. Based on predictor-based sliding surface, a new
quasi-SMC has been proposed. The reaching control law has been designed
to ensure the existence of the quasi-sliding mode. The simulation results have
demonstrated the effectiveness of the developed control design techniques for
systems with input-delay and bounded uncertainties.



Chapter 8

SMC for Linear Systems with Input
and State Delays

8.1 Introduction

Mainly due to these advantages variable structure control theory has found
applications in various kinds of plants (see, e.g. [86], [175], [33], [85]. Other
SMC schemes are proposed for linear systems with state delay [161], [104],
[100], and system with input delay [147]. Their methods have the same ben-
efits, but cannot be applied to systems with both state and input delay. In
a recent paper [63], the authors propose the design methods of a SMC for
systems with both input and state delay. However, the results of [63] involve
the tuning and factorizing of a symmetric positive-definite matrix. Because
no tuning procedure for such matrix is available, this makes the use of these
methods somehow difficult, especially when one wants to find the largest
possible bound for the time delay which ensures stabilization.

In this chapter, the problem of SMC for systems with both input and state
delay is addressed. Two different design methods are proposed for the slid-
ing mode control of these systems. Delay-independent sufficient conditions as
well as delay-dependent ones are given for the existence of sliding manifolds
in terms of LMIs. A reaching motion controller is also proposed for such sys-
tems by means of both the reaching law and the inequality approach. The
proposed methods have the advantage that can be implemented numerically
very efficiently using standard LMI algorithms and that the problem of find-
ing the upper bound of time delay which ensures stabilization can be easily
solved. Moreover, they can be easily extended to uncertain linear systems as
well as to the case of multiple time delays.

The chapter is organized as follows. Section 8.2 gives the problem formula-
tion and some preliminaries. In section 8.3, the problem of compensator-based
SMC is considered, and both delay-independent and delay-dependent results
on designing sliding surface are presented, and then, the reaching motion con-
troller is established. In section 8.4, SMC for linear systems with time-varying
input and state delays is discussed. In section 8.5, compensator-based SMC

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 99–118.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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for systems with time-varying delays is presented. Numerical simulations are
presented in Section 8.6 and some conclusion remarks are given in Section 8.7.

8.2 Problem Formulation

Consider the following time-delay system described by

ẋ(t) = Ax(t) + Adx(t − τ) + B1u(t) + B2u(t− τ)
x(t) = ϕ(t), t ∈ [−τ, 0

]
(8.1)

u(t) = ψ(t), t ∈ [−τ, 0
]

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control. A, Ad, B1 and B2

are with appropriate dimensions. The following assumption is needed.

Assumption 8.2.1
A1 rank(B1 + B2) = m;
A2 (A + Ad, B1 + B2) is controllable.

The goal of this chapter is to address the following problems:

• How to design sliding mode and reaching law for system (8.1)?
• How long can the time delay be for the system (8.1) to be stabilized with

the designed sliding mode and reaching law?

8.3 Compensator-Based SMC for Systems with Time
Delay

The switching manifolds are taken as following

S(t) = Cx(t) +
∫ t

t−τ

CAdx(ξ)dξ +
∫ t

t−τ

CB2u(ξ)dξ + Π(t) (8.2)

where C ∈ Rm×n is a constant matrix satisfying the condition: C(B1 + B2)
is invertible, according to A1, there always exists such matrix satisfying this
condition. Π(t) is a sliding mode compensator and taken as

Π̇(t) = −C[(A+ Ad) − (B1 + B2)K]x(t) (8.3)

where K ∈ Rm×n is a constant matrix to be found.
After selecting the sliding manifolds, the next step is to choose a control

law such that it satisfies the condition for the existence of the sliding mode;
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ST Ṡ < 0. This condition ensures that the control law will force system tra-
jectories toward the sliding manifolds in finite time and maintain them on
the manifolds after then. The following control structure of the form is con-
sidered:

u(t) = ueq + uN (8.4)

where ueq is an equivalent control for the system (8.1), and uN is a switching
control. The equivalent control law ueq is derived by Ṡ = 0 for system (8.1).
Differentiating S with respect to time gives

Ṡ = C(A + Ad)x(t) + C(B1 + B2)u(t) + Π̇(t). (8.5)

It follows (8.3) that

Ṡ = C(B1 + B2)Kx(t) + C(B1 + B2)u(t). (8.6)

Then, the equivalent control is obtained by

ueq = −Kx(t). (8.7)

Now, in order to force the system trajectories toward the designed sliding
manifolds, the switching control uN is chosen by

Ṡ = −gS − εsgn(S) (8.8)

where g and ε are constant, sgn(S(z)) = [sgn(s1(z)), · · · , sgn(sl(z))]T . Then,

uN = −[C(B1 + B2)]−1[gS + εsgn(S)]. (8.9)

Thus, the following control law is obtained

u(t) = −Kx(t) − [C(B1 + B2)]−1[gS + εsgn(S)]. (8.10)

After the system trajectories reaching the sliding manifolds, the sliding mo-
tion on the sliding manifolds is

ẋ = (A−B1K)x(t) + (Ad −B2K)x(t− τ). (8.11)

Writing A = A−B1K, Ad = Ad −B2K, then (8.11) can be written as

ẋ = Ax(t) + Adx(t− τ). (8.12)

From the above, the design of a SMC is possible if (i) there exists K ∈
Rm×n which guarantees stability of (8.12), and (ii) there exists control law
which makes the sliding function asymptotically stable for a specified sliding
manifolds. The remaind of this section is devoted to the design of a sliding
manifolds and control law to satisfy these requirements.
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To motivate the technique used in this chapter, the following lemma is
needed to derive main results of this chapter.

Lemma 8.1. [106] The sliding motion (8.12) is stable for all τ ≥ 0 if there
exist symmetric positive-definite matrices P and Q which satisfy the following
inequality:

A
T
P + PA+ PAdQ

−1A
T

d P + Q < 0. (8.13)

Theorem 8.2. (delay-independent) The sliding motion (8.12) is stable for
all τ > 0 with K = LY −1 if there exist symmetric positive-definite matrices
Y ∈ Rn×n, J ∈ Rn×n and matrix L ∈ Rm×n such that the following LMI
holds [

Γ1 AdY −B2L
Y TAT

d − LTBT
2 −J

]

< 0 (8.14)

where Γ1 = AY + Y AT −B1L− LTBT
1 + J .

Proof. Assuming (8.14) holds. Pre-and post-multiplying both sides of (8.14)
by diag(Y −1, Y −1) and taking K = LY −1 yields

[
Γ2 Y −1(Ad −B2K)

(Ad − B2K)TY −1 −Y −1JY −1

]

< 0 (8.15)

where Γ2 = Y −1(A−B1K) + (A−B1K)TY −1 + Y −1JY −1.
Taking P = Y −1 and Q = Y −1JY −1, using Schur complement formula,

(8.15) is equivalent to

A
T
P + PA+ PAdQ

−1A
T

d P + Q < 0. (8.16)

From Lemma 8.1, the sliding motion (8.12) is stable for all τ > 0. The proof
is completed.

The above results are independent of the length of the time delay, i.e. the
time delay is allowed to be arbitrarily large, and thus they cannot handle
systems whose stability depends on the size of the time-delay. Thus, in gen-
eral, they are conservative, especially when practically existing time-delays
are small. The following results give delay-dependent criteria.

Theorem 8.3. (delay-dependent) The sliding motion (8.12) is stable for any
constant time delay τ satisfying 0 ≤ τ ≤ τ if there exist symmetric positive-
definite matrices P ∈ Rn×n, W ∈ Rn×n, Q ∈ Rn×n and matrix V ∈ Rm×n

such that the following LMIs hold
⎡

⎣
Γ3 Γ T

4 Q
Γ4 −τ−1W 0
Q 0 −τ−1Q

⎤

⎦ < 0 (8.17)
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[ −2P + W PAT
d − V TBT

2

AdP −B2V −Q
]

< 0 (8.18)

where Γ3 = (A + Ad)P + P (A + Ad)T − (B1 + B2)V − V T (B1 + B2)T ,
Γ4 = P (A + Ad)T − V T (B1 + B2)T .

Moreover, a stabilizing equivalent control law is given by ueq(t)=V P−1x(t).

Proof. Since the solutions of det|sI −A−Ade
−τs| = 0 are the same as those

of det|sI − A
T − A

T

d e
−τs| = 0, the following system is studied instead of

system (8.12)
ẏ = A

T
y(t) + A

T

d y(t− τ). (8.19)

Writing the system (8.19) in the form:

z(t) = y(t) +
∫ t

t−τ
A

T

d y(w)dw
ż(t) = (A + Ad)T y(t).

(8.20)

Next, consider the Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t)
V1(t) = zT (t)Pz(t)
V2(t) =

∫ t

t−τ

∫ t

w
yT (v)Qy(v)dvdw

(8.21)

where P and Q are symmetric positive-definite matrices. Then, differentiating
the functional along the solutions of (8.19) yields:

V̇ (t) = V̇1(t) + V̇2(t)
V̇1(t) = yT (t)(A + Ad)Pz(t) + zT (t)P (A + Ad)T y(t)

= yT (t)[(A + Ad)P + P (A + Ad)T ]y(t) + W (t)

V̇2(t) = −
∫ t

t−τ

yT (w)Qy(w)dw +
∫ t

t−τ

yT (t)Qy(t)dw

where

W (t) = 2
∫ t

t−τ

yT (t)(A + Ad)PA
T

d y(w)dw.

Recalling that for any vectors u, v and any matrix Q > 0 of appropriate
dimensions

2uTv ≤ uTQu+ vTQ−1v

then, for any matrix Q > 0

W (t) ≤
∫ t

t−τ

yT (t)(A + Ad)PA
T

d Q
−1AdP
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×(A + Ad)T y(t)dw +
∫ t

t−τ

yT (w)Qy(w)dw.

Hence, it follows that

V̇ (t) ≤ yT (t)[(A + Ad)P + P (A + Ad)T + τQ

+τ(A + Ad)PA
T

d Q
−1AdP (A + Ad)T ]y(t). (8.22)

The matrix in (8.22) is negative definite if the following inequality holds:

(A + Ad)P + P (A + Ad)T + τQ

+τ(A + Ad)PA
T

d Q
−1AdP (A + Ad)T < 0. (8.23)

In order to turn (8.23) into LMI expression, (8.23) is transformed into

(A + Ad)P + P (A+ Ad)T + τQ + τ(A + Ad)
×PW−1P (A + Ad)T − τ(A + Ad)P

×(W−1 −A
T

d Q
−1Ad)P (A + Ad)T < 0 (8.24)

where W is a symmetric positive-definite matrix which satisfies

W−1 > A
T

d Q
−1Ad. (8.25)

Thus, (8.23) is negative definite if (8.25) and the following inequality is sat-
isfied.

(A + Ad)P + P (A+ Ad)T + τQ

+τ(A + Ad)PW−1P (A + Ad)T < 0. (8.26)

By using the Schur complement argument (8.25) and (8.26) imply that
[
−W−1 A

T

d

Ad −Q

]

< 0 (8.27)

and ⎡

⎣
Γ5 (A + Ad)P Q

P (A + Ad)T −τ−1W 0
Q 0 −τ−1Q

⎤

⎦ < 0 (8.28)

where Γ5 = (A + Ad)P + P (A + Ad)T .
Pre- and post-multiplying (8.27) by diag(P, In), yields

[
−PW−1P PA

T

d

AdP −Q

]

< 0. (8.29)
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From the equality

PW−1P − 2P + W = (P −W )W−1(P −W ) ≥ 0

it can be shown that

− 2P + W ≥ −PW−1P.

Thus, (8.29) will hold if the following inequality is satisfied for some symmet-
ric positive-definite matrices P , W and Q

[
−2P + W PA

T

d

AdP −Q

]

< 0. (8.30)

Taking K = V P−1, then (8.17) and (8.18) will imply (8.28) and (8.30) hold
for any constant time delay τ satisfying 0 ≤ τ ≤ τ , respectively. Thus, the
LMIs (8.17)-(8.18) will guarantee the negativeness of V̇ (t) for any non-zero
y(t) ∈ Rn, which immediately implies the stability of the sliding motion
(8.12). The proof is completed.

In the following, another technique will be investigated to solve this prob-
lem and find some upper bound on the delay up to which the system is
stabilized by the proposed control law.

Adding m integrators (see, e.g. [132], [63]), system (8.1) is written as:

ẏ1(t) = Ay1(t) + Ady1(t− τ) + B1y2(t) + B2y2(t− τ)
ẏ2(t) = ũ, ũ ∈ Rm.

(8.31)

Consider the sliding surface

s(t) = y2(t) + Ky1(t) (8.32)

where K ∈ Rm×n.
After the system trajectories reaching the sliding surface, the sliding mo-

tion on the sliding surface is

ẏ1 = (A−B1K)y1 + (Ad −B2K)y1(t− τ). (8.33)

Then the conclusion obtained in Theorem 8.3 can be applied to this sliding
motion.

Remark 8.4. The stability of the equation y(t)+
∫ t

t−τ
Ady(w)dw = 0 is equiv-

alent to the stability of the corresponding characteristic equation, that is all
the solutions λ of the associated characteristic equation

det(In + Ad

∫ 0

−τ

eswdw) = 0, s ∈ C (8.34)
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have negative real part. One constraint should be added to guarantee the
stability of system (8.19). It is omitted here, for more details, see [188].

Remark 8.5. Theorem 8.3 provides delay-dependent condition for stabiliza-
tion of sliding motion (8.33) in terms of the solvability of linear matrix in-
equalities. This is in contrast with the results of [60], [63] which are based on
the solution of a Lyapunov equation. We note that the result of Gouaisbant et
al. (1999) involves the tuning and factorizing of a 2 × 2 symmetric positive-
definite matrix. Because no tuning procedure for such matrix is available,
this makes the use of these methods somehow difficult, especially when one
wants to find the largest possible bound for the time delay which ensures
stabilization.

The stabilization criteria of Theorem 8.3 have the advantages that they
do not require any parameter tuning and can be tested numerically very ef-
ficiently using standard LMI techniques: see, e.g. [15]. Another advantage is
that the problem of finding the largest τ which ensures stabilization using
the methods of Theorem 8.3 can be easily solved. For example, Let ν = 1

τ ,
then, using gevp of LMI toolbox to solve the generalized eigenvalue problem
(GEVP) which can be solved numerically very efficiently using LMI algo-
rithms [15].

min
P>0,W>0,Q>0,W1>0,W2>0,

ν (8.35)

subject to (8.18) and ⎡

⎣
Γ3 Γ4 Q
Γ T

4 −W1 0
Q 0 −W2

⎤

⎦ < 0 (8.36)

[
W1 0
0 W2

]

< ν

[
W 0
0 Q

]

(8.37)

where Γ3, Γ4 are defined as in Theorem 8.3, W1 W2 are symmetric positive-
definite matrices.

Now, with K = V P−1 obtained in Theorem 8.3, the following control law
is designed.

Theorem 8.6. Given K = V P−1 obtained in Theorem 8.3, the trajectory of
the closed-loop system (8.31) can be driven onto the sliding surface in limited
time with the following control law:

ũ(t) =

⎧
⎨

⎩

0 (||s(t)|| = 0)
−[K(Ay1(t) + B1y2(t))
+βs + N(t)sgn(s)] (||s(t)|| > 0)

(8.38)

where q1 > 1, q2 > 1, sgn(s) = [sgn(s1), · · · , sgn(sm)]T , N(t) =
diag(n1, · · · , nm), i = 1, · · · ,m, for ni defined as
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ni =
n∑

j=1

q1|(KAd)ij ||y1i(t)| +
n∑

k=1

q2|(KB2)ik||y2i(t)|. (8.39)

Proof. Applying the control law (8.38) to system (8.31). Consider the follow-
ing Lyapunov-Krasovskii functional:

V =
1
2
sT (t)s(t). (8.40)

Differentiating V (t) along the solutions of (8.31) with the control law (8.38)
is given by:

V̇ = sT (y(t))(K(Ay1(t) + Ady1(t− τ)
+B1y2(t) + B2y2(t− τ)) + u). (8.41)

From the Razumikhin Theorem (Hale and Lunel, 1993),

|y1i(t + θ)| ≤ q1|y1i(t)|, q1 > 1,−τ ≤ θ ≤ 0 (8.42)
|y2i(t + θ)| ≤ q2|y2i(t)|, q2 > 1,−τ ≤ θ ≤ 0 (8.43)

for i = 1, · · · , n.
We have

sTKAdy1(t− τ) =
m∑

i=1

si

n∑

j=1

(KAd)ijy1i(t− τ)

≤
m∑

i=1

|si|
n∑

j=1

q1|(KAd)ij ||y1i(t)| (8.44)

and

sTKB2y2(t− τ) =
m∑

i=1

si

m∑

k=1

(KB2)ijy2i(t− τ)

≤
m∑

i=1

|si|
m∑

j=1

q2|(KB2)ij ||y2i(t)|. (8.45)

It can be shown from above inequalities that V̇ < −β||s||2. Thus, the state
trajectories will reach the surface in a finite time with the control (8.38).
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8.4 SMC for Linear Systems with Time-varying Input
and State Delays

In this section, the time-delays in the state and input are time-varying and
different. Consider the following time-delay system described by

ẋ(t) = Ax(t) + Adx(t− τ(t)) + Bu(t) + Bdu(t− d(t)) (8.46)
x(t) = ϕ(t), t ∈ [−τM , 0] (8.47)
u(t) = ψ(t), t ∈ [−dM , 0] (8.48)

where x(t) ∈ Rn is system state, u(t) ∈ Rm is control input, τ(t) and d(t)
denote state delay and input delay, respectively. Furthermore, τM and dM

are two constant delays such that τ(t) ≤ τM and d(t) ≤ dM , respectively. For
state delay τ(t), there also exists τ̇(t) ≤ ρ < 1. System parameters A, Ad, B
and Bd are constant matrices with appropriate dimensions.

The following assumptions are needed.

A1 rank(B + Bd) = m;
A2 (A + Ad, B + Bd) is controllable.

8.5 Compensator-Based SMC for Systems with
Time-varying Delays

The switching manifolds are taken as following

S(t) = Cx(t) +
∫ t

t−τ0

CAdx(ξ)dξ +
∫ t

t−d0

CBdu(ξ)dξ + Π(t) (8.49)

where τ0 = τM

2 , d0 = dM

2 and C ∈ Rm×n is a constant matrix satisfying
the condition: C(B + Bd) is invertible, according to A1, there always exists
such matrix satisfying this condition. Π(t) is a sliding mode compensator
and taken as

Π̇(t) = −C[(A + Ad) − (B + Bd)K]x(t) (8.50)

where K ∈ Rm×n is a constant matrix to be found.
After selecting the sliding manifolds, the next step is to choose a control

law such that it satisfies the condition for the existence of the sliding mode;
ST (t)Ṡ(t) < 0. This condition ensures that the control law will force system
trajectories toward the sliding manifolds in finite time and maintain them
on the manifolds after then. The following control structure of the form is
considered:

u(t) = ueq(t) + uN(t) (8.51)
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where ueq(t) is an equivalent control for system (8.46), and uN(t) is a switch-
ing control. The equivalent control law ueq(t) is derived by Ṡ(t) = 0 for the
system (8.46). Differentiating S(t) with respect to time gives

Ṡ(t) = C(A + Ad)x(t) + C(B + Bd)u(t) + CAdx(t− τ(t)) − CAdx(t− τ0)
+CBdu(t− d(t)) − CBdu(t− d0) + Π̇(t). (8.52)

It follows (8.3) that

Ṡ(t) = C(B + Bd)Kx(t) + C(B + Bd)u(t) + CAd[x(t− τ(t)) − x(t− τ0)]
+ CBd[u(t− d(t)) − u(t− d0)]. (8.53)

Let Ω(t) = CAd(x(t− τ(t)) − x(t− τ0)) + CBd(u(t− τ(t)) − u(t− τ(t)).
Then, the equivalent control is obtained by

ueq(t) = −Kx(t). (8.54)

Now, in order to force system (8.46) trajectories toward the designed sliding
manifolds, the switching control uN is chosen by

Ṡ(t) = −gS(t)− εsgn(S) + Ω(t) (8.55)

where sgn(S(z)) = [sgn(s1(z)), · · · , sgn(sl(z))]T , g = diag{gi} and ε =
diag{εi} with two positive-constants gi and εi that can be chosen such that
ST (t)Ṡ(t) < 0. Then,

uN = −[C(B + Bd)]−1[gS(t) + εsgn(S)]. (8.56)

Thus, the following control law is obtained

u(t) = −Kx(t) − [C(B + Bd)]−1[gS(t) + εsgn(S)]. (8.57)

After the system trajectories reaching the sliding manifolds, the sliding mo-
tion on the sliding manifolds is

ẋ(t) = (A−B1K)x(t) + Adx(t− τ(t)) −BdKx(t− d(t)). (8.58)

Writing Ak = A−B1K, Bk = −BdK, then (8.58) can be written as

ẋ(t) = Akx(t) + Adx(t − τ(t)) + Bkx(t − d(t)). (8.59)

From the above, the design of a sliding mode control is possible if (i) there
exists K ∈ Rm×n which guarantees stability of (8.59), and (ii) there exists
control law which makes the sliding function asymptotically stable for a spec-
ified sliding manifolds. The remaind of this section is devoted to the design
of a sliding manifolds and control law to satisfy these requirements.
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Theorem 8.7. The sliding motion (8.59) is stable for any time-varying de-
lays τ(t) and d(t), if there exist symmetric positive-definite matrices P ∈
Rn×n, Q ∈ Rn×n, R1 ∈ Rn×n, R2 ∈ Rn×n and a matrix Y ∈ Rm×n such
that the following LMI holds

Σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 0 0 P
∗ Ξ22 0 Ξ24 Ξ25 τMR1 0 0
∗ ∗ −2β−1

2 P Ξ33 Ξ34 0 dMR2 0
∗ ∗ ∗ −τMR1 0 0 0 0
∗ ∗ ∗ ∗ −dMR2 0 0 0
∗ ∗ ∗ ∗ ∗ −τMR1 0 0
∗ ∗ ∗ ∗ ∗ ∗ −dMR2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

with

Ξ11 = AP −BY + PAT − Y TBT − α1β
−1
1 AdQ− α1β

−1
1 QAT

d

+ α2β
−1
2 BdY + α2β

−1
2 Y TBT

d − (1 − ρ)α2
1β

−2
1 Q

Ξ12 = P + α1β
−1
1 Q + β−1

1 AdQ + (1 − ρ)α1β
−2
1 Q

Ξ13 = P + α2β
−1
2 Q + β−1

2 BdY

Ξ14 = τMPAT − τMY TBT − τMα1β
−1
1 QAT

d + τMα2β
−1
2 Y TBT

d

Ξ15 = dMPAT − dMY TBT − dMα1β
−1
1 QAT

d + dMα2β
−1
2 Y TBT

d

Ξ22 = −2β−1
1 Q− (1 − ρ)β−2

1 Q
Ξ24 = τMβ−1

1 QAT
d

Ξ25 = dMβ−1
1 QAT

d

Ξ33 = −τMβ−1
2 Y TBT

d

Ξ34 = −dMβ−1
2 Y TBT

d .

(8.60)

Moreover, a stabilizing equivalent control law is given by ueq(t) =
−Y P−1x(t).

Proof. Construct the following Lyapunov-Krasovskii functional:

V (t) = xT (t)Px(t) +
∫ t

t−τ(t)

xT (s)Qx(s)ds +
∫ 0

−τM

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ

+
∫ 0

−dM

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ (8.61)

where P > 0, Q > 0, R1 > 0 and R2 > 0. Then, the time derivative of V (t)
along system trajectory (8.59) satisfies

V̇ (t) = 2xT (t)P ẋ(t) + xT (t)Qx(t) − (1 − τ̇(t))xT (t− τ(t))Qx(t − τ(t))
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+τM ẋT (t)R1ẋ(t)

−τM

∫ t

t−τM

ẋT (s)R1ẋ(s)ds + dM ẋT (t)R2ẋ(t)

−dM

∫ t

t−dM

ẋT (s)R2ẋ(s)ds.

Using Lemma 1.8, there exists:

−
∫ t

t−τM

ẋT (s)R1ẋ(s)ds ≤ −
∫ t

t−τ(t)

ẋT (s)R1ẋ(s)ds

≤ [xT (t) xT (t− τ(t))
]
[

MT
1 + M1 −MT

1 + M2

−M1 + MT
2 −M2 −MT

2

] [
x(t)

x(t− τ(t))

]

+τM

[
xT (t) xT (t− τ(t))

]
[
MT

1

MT
2

]

R−1
1

[
M1 M2

]
[

x(t)
x(t− τ(t))

]

and

−
∫ t

t−dM

ẋT (s)R1ẋ(s)ds ≤ −
∫ t

t−d(t)

ẋT (s)R2ẋ(s)ds

≤ [xT (t) xT (t− d(t))
]
[

NT
1 + N1 −NT

1 + N2

−N1 + NT
2 −N2 −NT

2

] [
x(t)

x(t− d(t))

]

+dM

[
xT (t) xT (t− d(t))

]
[
NT

1

NT
2

]

R−1
1

[
N1 N2

]
[

x(t)
x(t − d(t))

]

.

By using τ̇(t) ≤ ρ < 1 and Schur complement, it can be easily shown that

V (t) ≤ ξT (t)Σ1ξ(t) < 0 (8.62)

where

ξ(t) =
[
xT (t) xT (t− τ(t)) xT (t− d(t)) yT

1 (t) yT
2 (t) yT

3 (t) yT
4 (t)

]T

Σ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ1(1, 1) Σ1(1, 2) Σ1(1, 3) τMAT
k dMAT

k τMMT
1 dMNT

1

∗ Σ1(2, 2) 0 τMAT
d dMAT

d τMMT
2 0

∗ ∗ Σ1(3, 3) τMBT
k dMBT

k 0 dMNT
2

∗ ∗ ∗ −τMR−1
1 0 0 0

∗ ∗ ∗ ∗ −dMR−1
2 0 0

∗ ∗ ∗ ∗ ∗ −τMR1 0
∗ ∗ ∗ ∗ ∗ ∗ −dMR2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

Σ1(1, 1) = PAk + AT
k P + Q + MT

1 + M1 + NT
1 + N1

Σ1(1, 2) = PAd −MT
1 + M2



112 8 SMC for Linear Systems with Input and State Delays

Σ1(1, 3) = PBk −NT
1 + N2

Σ1(2, 2) = −(1 − ρ)Q−MT
2 −M2

Σ1(3, 3) = −NT
2 −N2

and y1(t), y1(t), y3(t) and y4(t) are arbitrary vectors with appropriate di-
mensions.

In order to obtain a stabilizing equivalent controller gain K, letting M1 =
α1P , M2 = β1Q, N1 = α2P , N2 = β2P and

Θ(α,β) =

⎡

⎣
P−1 0 0

−α1β
−1
1 Q−1 β−1

1 Q−1 0
−α2β

−1
2 P−1 0 β−1

2 P−1

⎤

⎦ .

Pre-multiplying and post-multiplying Σ1 < 0 by the diagonal matrix
diag{ΘT

(α,β) I I R−1
1 R−1

2 } and diag{Θ(α,β) I I R−1
1 R−1

2 }, respectively, it
can be changed to Σ2 < 0, where

Σ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ2(1, 1) Σ2(1, 2) Σ2(1, 3) Σ2(1, 4) Σ2(1, 5) 0 0
∗ Σ2(2, 2) 0 Σ2(2, 4) Σ2(2, 5) τMR−1

1 0
∗ ∗ Σ2(3, 3) Σ2(3, 4) Σ2(3, 5) 0 dMR−1

2

∗ ∗ ∗ −τMR−1
1 0 0 0

∗ ∗ ∗ ∗ −dMR−1
2 0 0

∗ ∗ ∗ ∗ ∗ −τMR−1
1 0

∗ ∗ ∗ ∗ ∗ ∗ −dMR−1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

Σ2(1, 1) = AkP
−1 + P−1AT

k − α1β
−1
1 AdQ

−1 − α1β
−1
1 Q−1AT

d

−α2β
−1
2 BkP

−1 − α2β
−1
2 P−1BT

k − (1 − ρ)α2
1β

−2
1 Q−1 + P−1QP−1

Σ2(1, 2) = P−1 + α1β
−1
1 Q−1 + β−1

1 AdQ
−1 + (1 − ρ)α1β

−2
1 Q−1

Σ2(1, 3) = P−1 + α2β
−1
2 Q−1 + β−1

2 BkP
−1

Σ2(1, 4) = τMP−1AT
k − τMα1β

−1
1 Q−1AT

d − τMα2β
−1
2 P−1BT

k

Σ2(1, 5) = dMP−1AT
k − dMα1β

−1
1 Q−1AT

d − dMα2β
−1
2 P−1BT

k

Σ2(2, 2) = −2β−1
1 Q−1 − (1 − ρ)β−2

1 Q−1

Σ2(2, 4) = τMβ−1
1 Q−1AT

d

Σ2(2, 5) = dMβ−1
1 Q−1AT

d

Σ2(3, 3) = −2β−1
2 P−1

Σ2(3, 4) = τMβ−1
2 P−1BT

k

Σ2(3, 5) = dMβ−1
2 P−1BT

k

letting P = P−1, Y = KP−1, Q = Q−1, R1 = R−1
1 and R2 = R−1

2 , the
inequality Σ2 < 0 is equivalent to Σ < 0.
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Now, we are in a position to prove that the trajectories of the closed-loop
systems can reach sliding surface in a finite time.

Theorem 8.8. Suppose inequality (8.60) in Theorem 8.7 has solutions P, Q,
R1, R2 and Y and the sliding surface is given by (8.49). Then the trajectory
of the closed-loop system (8.46) can be driven onto the sliding surface in finite
time with the control

u(t) = −Kx(t) − [C(B + Bd)]−1[gS(t) + εsgn(S)] (8.63)

where sgn((z)) = [sgn(s1(z)), · · · , sgn(sl(z))]T , g = diag{gi} and ε = diag{εi}
with two positive-constants gi and εi.

Proof. Choose the following Lyaponov functional

Vs(t) =
1
2
ST (t)S(t). (8.64)

Based on (8.49), (8.3) and (8.55), differentiating Vs(t) with respect to time
along the trajectories of systems (8.53), we have

V̇s(t) = ST (t)(−gS(t) − εsgn(S) + Ω(t))
= −gST (t)S(t) − εST (t)sgn(S) + ST (t)Ω(t). (8.65)

Since Ω(t) can be viewed as bounded functional, we can tune two parameters
g and ε appropriately, such that V̇s(t) < 0. Thus, the trajectories of the
closed-loop systems can reach sliding surface in a finite time.

8.6 Numerical Example

In this section, the theory developed in this chapter is demonstrated by means
of one example which was presented in [63].

Example 8.9. Consider the following time-delayed system [63]

ẏ(t) = Ay(t) + Ady(t− τ) + B2u(t− τ)

with

A =
[−2 3

0 1

]

, Ad =
[

1 2
−1 3

]

, B2 =
[

1
1

]

u(t) = 1, t ∈ [−τ, 0]
y(t) = [1 1]T , t ∈ [−τ, 0]
y1(t) = [y11 y12]T .

(8.66)

In the sequel, the stabilizability criterion of Theorem 8.3 is compared with
those of [60], [63].
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In the light of Theorem 8.3 it has been obtained using the software package
LMI Lab that the system (8.33) is stabilizable for any τ satisfying 0 ≤ τ ≤
0.3615. On the other hand, the method of [63] ensures the stabilizability of
system (8.33) for 0 ≤ τ ≤ 0.2472, whereas using the result of [60] the time
delay must satisfy 0 ≤ τ ≤ 0.0338. It should be noted that the results of
[60] and [63] are based on the solution of Lyapunov equation, furthermore,
the results of [63] involve the tuning and factorizing of a 2 × 2 symmetric
positive-definite matrix while it is difficult for tuning and factorizing such
matrix in order to maximize the bound for the time delay.
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Fig. 8.1 States (y11, y12), y2 , sliding surface S and control input (u)

Hence, for this example, the stabilizability criterion of the sliding motion
of this chapter gives a less conservative result than those obtained by the
methods of [60], [63].

Applying the control law (8.38) with q1 = 2, q2 = 2, β = 6, K =
[0.3434 4.4480], gives the following simulation using a delay of 0.3 (near
optimal one). Fig. 8.1 shows that the system is asymptotically stable in the
sliding mode and the chattering of the proposed control with appropriate
coefficients is not evident.

Example 8.10. The proposed method will be applied to design a sliding mode
controller for an inverted pendulum system to illustrate the results developed.
Consider the inverted pendulum on a cart such as in [16]. The physical struc-
ture is shown in Fig. 8.2. where M is the mass of the cart, m is the mass
of the pendulum rod, b is the friction coefficient of the cart. l is the length
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Fig. 8.2 Inverted pendulum Model.

of the correspond rod; F is the force acting on the cart, x is the horizontal
displacement of the cart, φ is the angle between the pendulum rod and the
vertical. Let state variables are x, ẋ, φ and φ̇ which corresponds to the hor-
izontal position, horizontal velocity of the cart, angle and angle velocity of
the pole respectively. We are interested only in the linear system about the
equilibrium point at the origin. The equations of motion derived by using
Newton’s Second Law can be obtained as follows:

ẋ = ẋ

ẍ =
−(I + ml2)b

I(M + m) + Mml2
ẋ +

m2gl2

I(M + m) + Mml2
φ +

(I + ml2)b
I(M + m) + Mml2

u

φ̇ = φ̇

φ̈ =
−mlb

I(M + m) + Mml2
ẋ +

mgl(M + m)
I(M + m) + Mml2

φ +
ml

I(M + m) + Mml2
u

where M = 1.096 Kg, m = 0.109 Kg, b = 0.1 N/m/sec, l = 0.25 m and
I = 0.034 kg·m·m.

In the following, we investigate the case of control pass networks, the state
delay and input delay of inverted pendulum model have to be considered.
Let state variables be x = x1(t), ẋ = x2(t), φ = x3(t) and φ̇ = x4(t), the two
delays be τ(t) = 0.2|sin(t)| and d(t) = 0.1|cos(t)|, we can obtained as

ẋ(t) = Ax(t) + Adx(t − τ(t)) + Bu(t) + Bdu(t− d(t)) (8.67)
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where

A =

⎡

⎢
⎢
⎣

0 0.7 0 0
0 −0.0618 0.4405 0
0 0 0 0.7
0 −0.165 19.4799 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0.6182

0
1.6496

⎤

⎥
⎥
⎦

Ad =

⎡

⎢
⎢
⎣

0 0.3 0 0
0 −0.0265 0.1888 0
0 0 0 0.3
0 −0.0707 8.3485 0

⎤

⎥
⎥
⎦ , Bd =

⎡

⎢
⎢
⎣

0
0.265

0
0.707

⎤

⎥
⎥
⎦ .

Then, using the Matlab LMI Control Toolbox to solve the LMIs (8.60) in
Theorem 8.7, the solution of it is obtained as follows:

P =

⎡

⎢
⎢
⎣

45.7759 −11.3435 0.1407 −0.5977
−11.3435 7.2390 0.1478 1.5145
0.1407 0.1478 0.3277 −1.4483
−0.5977 1.5145 −1.4483 9.1189

⎤

⎥
⎥
⎦

Q =

⎡

⎢
⎢
⎣

80.8251 −19.8415 0.2143 −1.0993
−19.8415 11.3501 0.0836 1.4963
0.2143 0.0836 0.3913 −1.8627
−1.0993 1.4963 −1.8627 10.8990

⎤

⎥
⎥
⎦

R1 =

⎡

⎢
⎢
⎣

37.5651 −6.7791 0.1996 0.0872
−6.7791 6.5049 −0.1253 1.3955
0.1996 −0.1253 1.4731 −6.9796
0.0872 1.3955 −6.9796 40.9957

⎤

⎥
⎥
⎦

R2 =

⎡

⎢
⎢
⎣

68.8773 −4.0952 0.6471 0.9340
−4.0952 39.0123 1.7623 2.7297
0.6471 1.7623 1.9660 −9.1944
0.9340 2.7297 −9.1944 51.7105

⎤

⎥
⎥
⎦

Y =
[
2.2859 5.0737 1.1375 5.8852

]
.

The largest state delay is τM = 0.2 and the largest input delay is dM = 0.1.
Moreover, a stabilizing equivalent control law is given by

ueq(t) = −Kx(t) = −Y P−1x(t) = [ 0.3217 1.4361 −27.0722 −5.1627 ]x(t).

It follows from C(B+Bd) is invertible that C = [ 0 0.1394 0 0.3721 ], the linear
sliding surface is given as (8.49). From Theorem 2, the reaching control law
can be taken as follows:

u(t) = −Kx(t) − [C(B + Bd)]−1[gS(t) + εSign(S)]

where parameter g and ε can be tuned to reduce the chattering on the sliding
surface. Fig. 8.3-Fig. 8.3 are simulation results when choosing g = 0.4 and
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ε = 0.02. x1(0) = x2(0) = x3(0) = x4(0) = 1, S(0) = 0.5115 and u(0) =
0. Obviously, system (8.67) is asymptotically stable and the sliding motion
trends to the origin in finite time.
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Fig. 8.3 State variable of system (8.67)

8.7 Conclusion

In this chapter, the problem of designing sliding mode controller for systems
with input and state delays has been considered. In terms of LMI, sufficient
conditions for the existence of two kinds of linear sliding manifolds guarantee-
ing stability of the sliding motion restricted to the sliding surface are derived.
A new reaching motion controller is proposed for these systems by means of
the reaching law.
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Chapter 9

Robust SMC for Uncertain
Time-Delay Systems Based on Delta
Operator

9.1 Introduction

A discrete version of SMC is important when the implementation of the
control is realized digitally using a relatively slow sampling period. In [34],
the problem of discrete VSC was first considered. The concept of the quasi-
sliding mode was proposed in [134], and phenomena of switching, reaching,
and quasi-sliding mode were investigated in [55, 5, 6] and reference therein.
It is worth pointing out that discrete SMC cannot be obtained from their
continuous counterpart by means of simple equivalence. When the sampling
is fast using the traditional shift operator, the poles are located in the sta-
ble boundary, the discrete systems will lose stability in finite word length
computer. To solve this problem, a delta operator instead of traditional shift
operator for sampling continuous systems is constructed in [88]. The delta
operator is defined by:

δx(t) =

⎧
⎨

⎩

dx(t)
dt , h = 0

x(t+h)−x(t)
h , h �= 0

where h is a sampling period. A class of systems in delta domain has been
studied in [195], [111], [23]. The problem of system instability in fast sam-
pling is successfully solved by using delta operator model in [36]. The delta
operator model also has the advantage of better numerical properties at high
sampling rates [169]. In contrast to the discrete shift operator, the delta oper-
ator approach means that the Euler derivative can lead to a quasi-continuous
time s-domain model for high sampling frequencies, see [41]. The robust-
ness problem for some delta operator systems with parametric uncertainties
also has been investigated. The problems of stability of delta operator sys-
tems were considered in [166] and [167]. A feedback control approach was
reported in [38], which proved that a discrete-time controller is approach to
a continuous-time controller using delta operator when h → 0.

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 119–136.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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In the time-domain approach, the direct Lyapunov method is a pow-
erful tool for studying the problems of stability and feedback control for
continuous-time systems and discrete systems. The problem of designing state
feedback controller for continuous systems with time-varying delay has re-
ceived considerable attention ([194], [189], [188], [7], [75]). However, there
have been few papers on SMC for discrete-time systems with time-varying
delay via delta operator approach. As a result, based on the delta opera-
tor approach, the reaching law proposed is able to reduce the chattering
due to the implementation of variable structure controller, and possesses the
desired characteristics of robustness and good performance. The proposed
method can unify some previous related results of the continuous and discrete
sliding mode control for systems into the delta operator systems framework
([191],[160], [9], [189]).

In this chapter, we focus on the delta operator systems with both lin-
ear fractional uncertainties and time-varying delays. The objective is to de-
sign a sliding mode controller such that the closed-loop systems is robustly
asymptotically stable for all admissible uncertainties. A new delay-dependent
approach is developed to design the sliding surface, and all results are ob-
tained by using some new Lyapunov functions and given in terms of LMIs.
The sampling-period h is an explicit parameter in our results so that it is
convenient to analyze the effect of the sliding mode controller with different
sampling periods. It is worth mentioning that we employ a fast sampling
method in discrete systems, where the delays are actually time-varying. It
is assumed that both the lower delay bound and upper delay bound can be
denoted to the summations of the same sampling periods, respectively. Nu-
merical example is given to illustrate the feasibility and effectiveness of the
developed technique.

Remark 9.1. Consider the following continuous-time system in s-domain
without time delays:

d

dt
x(t) = Ax(t) + Bu(t), y(t) = Cx(t).

Utilizing traditional shift operator, the above continuous-time system can be
changed to the discrete-time system in z-domain as below:

x((k + 1)h) = Azx(kh) + Bzu(kh), y(kh) = Czx(kh)

where Az = eAh, Bz =
∫ h

0
eA(h−s)Bds and Cz = C. When h → 0, there

exist limh→0 Az = I and limh→0 Bz = 0. It is shown that Az and Bz can
not approach A and B, respectively, when the sampling period tends to zero.
Utilizing delta operator, the discrete-time system in δ-domain can be given
as follows:

δx(kh) = Aδx(kh) + Bδu(kh), y(kh) = Cδx(kh)



9.2 Problem Formulation 121

where Aδ = (Az − I)/h, Bδ = Bz/h and Cδ = C. When h → 0, there
exist limh→0 Aδ = A and limh→0 Bδ = B, which is reasonable. The discrete
method by using delta operator can possess better numerical properties. In
this chapter, let t = kh for the sake of convenience in the following analysis.

The chapter is organized as follows. Section 9.2 gives the problem for-
mulation and some preliminaries. In section 9.3, results on designing sliding
surface and the reaching motion controller in δ-domain are established. Nu-
merical simulations are presented in Section 9.4 and some conclusion remarks
are given in Section 9.5.

9.2 Problem Formulation

In this chapter, the following uncertain delta operator system with time-
varying delays is considered:

δx(t) = (A + ΔA(t))x(t) + (Ad + ΔAd(t))x(t − d(t))
+B(u(t) + w(t))

x(t) = ϕ(t) for t ∈ [−dM , 0] (9.1)

where x(t) ∈ Rn is the state variable; u(t) ∈ Rm is control input; ϕ(t) is a
initial value at t; w(t) ∈ Rm is the disturbance with each component bounded
by the known wi(t), i.e., |wi(t)| ≤ wi(t), i = 1, 2, · · · ,m, |wi(t)| > 0, ∀t; the
time delay d(t) is a time-varying function that satisfies 0 ≤ dm ≤ d(t) ≤ dM ,
with dm = nmh and dM = nMh, nm and nM are two known positive and
finite integers, from which we let nm ≤ n ≤ nM . A, Ad and B are real
constant matrices with appropriate dimensions and rank(B) = m. The linear
fractional parametric uncertainties are described by

ΔA = GF̂ (t)H,ΔAd = GdF̂ (t)Hd

where

F̂ (t) = F (t) [I −WF (t)]−1 (9.2)

where G, H , Gd, Hd and W are known constant real matrices with appropri-
ate dimensions. F (t) is unknown time-varying matrix satisfying FT (t)F (t) ≤
I. It is assumed that the matrix [I −WF (t)]−1 is invertible for any F (t) and
I −WTW > 0.

Remark 9.2. The model (9.2) describes a wider class of parameter uncertain-
ties than norm-bounded parameter uncertainties. It is easy to see that the
linear fractional parameter uncertainties can be reduced to norm-bounded
parameter uncertainties when W = 0.
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To get a regular form of systems (9.1), a nonsingular matrix Ψ can be chosen
such that

ΨB =
[

0(n−m)×m

B2

]

where B2 ∈ Rm×m is nonsingular. For convenience, let us choose

Ψ =
[
U2

T

U1
T

]

where U1 ∈ Rn×m and U2 ∈ Rn×(n−m) are two sub-blocks of an unitary
matrix resulting from the singular value decomposition of B, i.e.,

B =
[
U1 U2

]
[

Σ
0(n−m)×m

]

V T

where Σ ∈ Rm×m is a diagonal positive-definite matrix and V ∈ Rm×m

which is an unitary matrix. By the state transformation z = Ψx, system
(9.1) has the regular form

δz(t)= (A + ΔA)z(t) + (Ad + ΔAd)z(t− d(t)) +
[

0(n−m)×m

B2

]

(u(t) + w(t))

z(t)= ϕ(t) for t ∈ [−dM , 0]
(9.3)

where A = ΨAΨ−1, Ad = ΨAdΨ
−1, ΔA = ΨΔAΨ−1, ΔAd = ΨΔAdΨ

−1 and
ϕ(t) = Ψϕ(t) is a initial value at t. System (9.3) can be written as:

δz1(t) = (A11 + ΔA11)z1(t) + (Ad11 + ΔAd11)z1(t− d(t))
+(A12 + ΔA12)z2(t) + (Ad12 + ΔAd12)z2(t− d(t))

δz2(t) = (A21 + ΔA21)z1(t) + (Ad21 + ΔAd21)z1(t− d(t))
+(A22 + ΔA22)z2(t) + (Ad22 + ΔAd22)z2(t− d(t)) + B2(u + w(t))

z1(t) = ϕ1(t) for t ∈ [−dM , 0]
z2(t) = ϕ2(t) for t ∈ [−dM , 0]

(9.4)
where z1(t) ∈ Rn−m, z2(t) ∈ Rm, B2 = ΣV T , A11 = UT

2 AU2, A12 =
UT

2 AU1, Ad11 = UT
2 AdU2, Ad12 = UT

2 AdU1, ΔA11 = U2
TΔAU2, ΔAd11 =

U2
TΔAdU2, ΔA12 = U2

TΔAU1, ΔAd12 = U2
TΔAdU1, A21 = UT

1 AU2,
A22 = UT

1 AU1, Ad21 = UT
1 AdU2, Ad22 = UT

1 AdU1, ΔA21 = U1
TΔAU2,

ΔAd21 = U1
TΔAdU2, ΔA22 = U1

TΔAU1, ΔAd22 = U1
TΔAdU1; initial val-

ues ϕ1(t) ∈ R(n−m) and ϕ2(t) ∈ Rm are the sub-blocks of ϕ(t).
It is obvious that the first equation of system (9.4) represents the sliding

motion dynamics of system (9.3), and hence the corresponding sliding surface
can be chosen as follows:

S = [ C I ] z = Cz1 + z2 = 0 (9.5)
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where C ∈ Rm×(n−m) is sliding surface parameter matrix. Substituting z2 =
−Cz1 to the first equation of system (9.4) gives the sliding motion

δz1(t) = (A11 + ΔA11 −A12C −ΔA12C)z1(t)
+(Ad11 + ΔAd11 −Ad12C −ΔAd12C)z1(t− d(t))

z1(t) = ϕ1(t) for t ∈ [−dM , 0] .
(9.6)

Let Ã = A11+ΔA11−A12C−ΔA12C, Ãd = Ad11+ΔAd11−Ad12C−ΔAd12C,
then the above equation can be written as

δz1(t) = Ãz1(t) + Ãdz1(t− d(t))
z1(t) = ϕ1(t) for t ∈ [−dM , 0] .

(9.7)

Definition 9.3. The uncertain sliding motion (9.7) is said to be quadrati-
cally stable if there exists a constant ξ > 0 such that for any admissible
uncertainties the delta operator manipulations of the Lyapunov functional
V (z1, t) in delta domain for all pairs (z1, t) ∈ Rn−m×R, with respect to time
t satisfies

L(z1, t) = δV (z1, t) ≤ −ξ‖z1‖2. (9.8)

The objective in this chapter is to design sliding surface parameter C ∈
Rm×(n−m) and a reaching motion control law u(t) such that

1) Sliding motion (9.7) is quadratically stable;
2) System (9.4) is asymptotically stable with the reaching control law u(t).
Before ending this section, the following lemmas will be used to prove our

main results in this chapter.

Lemma 9.4. [195] The property of delta operator: for any time function x(t)
and y(t)

δ(x(t)y(t)) = δx(t)y(t) + x(t)δy(t) + hδx(t)δy(t)

where h is a sampling period.

Lemma 9.5. [94] For any constant positive semi-definite symmetric matrix
Π, two positive integers r and r0 satisfying r ≥ r0 ≥ 1, the following inequal-
ity holds

(
r∑

i=r0

x(i)

)T

Π

(
r∑

i=r0

x(i)

)

≤ (r − r0 + 1)
r∑

i=r0

xT (i)Πx(i).

Lemma 9.6. [197] For some given matrices Υ , G and H of appropriate di-
mensions and with Υ symmetric, then

Υ + GF̂ (t)H + HT F̂T (t)GT ≤ 0
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with F̂ (t) is as in (9.2), if and only if there exists a scalar ε > 0 such that

[
ε−1HT εG

]
[

I −W
−WT I

]−1 [
ε−1H
εGT

]

+ Υ ≤ 0.

9.3 Main Results

The first result of designing sliding surface can be stated as follows.

Theorem 9.7. The reduced order system (9.7) is quadratically stable if
there exist symmetric positive-definite matrices J ∈ R(n−m)×(n−m), Z ∈
R(n−m)×(n−m), L ∈ R(n−m)×(n−m) and general matrix Y ∈ Rm×(n−m), as
well as a positive scalar α > 0 such that

⎡

⎢
⎢
⎢
⎢
⎣

Ω11 A11Z −A12Y Ad11Z −Ad12Y
∗ Ω22 Ω23

∗ ∗ −J − 1
dM

L

∗ ∗ ∗
∗ ∗ ∗

0 αUT
2 G

ZUT
2 HT − Y TUT

1 HT αUT
2 Gd

ZUT
2 HT

d − Y TUT
1 HT

d 0
−αI αW
∗ −αI

⎤

⎥
⎥
⎥
⎥
⎦
< 0

(9.9)
where

Ω11 = (h− 2)Z + dML

Ω22 = ZA
T

11 − Y TA
T

12 + A11Z −A12Y + (dM − dm + 1)J − 1
dM

L

Ω23 = Ad11Z −Ad12Y +
1
dM

L.

Moreover, the sliding surface of the system (9.4) is

S(t) = Y Z−1z1(t) + z2(t) = 0. (9.10)

Proof. Take symmetric positive-definite matrix variables P , Q, R with ap-
propriate dimensions and choose the following Lyapunov functional

V (z1, t) = V1(z1, t) + V2(z1, t) + V3(z1, t) + V4(z1, t)

which is positive-define for all z1(t) �= 0 and

V1(z1, t) = zT
1 (t)Pz1(t)

V2(z1, t) = h

n∑

i=1

zT
1 (t− ih)Qz1(t− ih)
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V3(z1, t) = h2
nM∑

i=nm+1

i∑

j=1

zT
1 (t− jh)Qz1(t− jh)

V4(z1, t) =
n∑

i=1

i∑

j=1

eT (t− jh)Re(t− jh)

where e(j) = z1(j)−z1(j+h), so there exist δz1(j) = −e(j)/h and e(t−ih) =
z1(t−ih)−z1(t−(i−1)h). Taking the delta operator manipulations of V (z1, t)
along the trajectory of system (9.7), using Lemma 9.4, we can obtain:

δV1(z1, t) = δT (z1(t))Pz1(t) + zT
1 (t)Pδ(z1(t)) + hδT (z1(t))Pδ(z1(t))

= zT
1 (t)ÃTPz1(t) + zT

1 (t− d(t))ÃT
d Pz1(t) + zT

1 (t)PÃz1(t)
+zT

1 (t)PÃdz1(t− d(t)) + hδT (z1(t))Pδ(z1(t)). (9.11)

Taking the delta operator manipulations of V2(z1, t) and V3(z1, t), it can be
obtained that

δV2(z1, t)

=
1
h

[

h

n∑

i=1

zT
1 (t− (i− 1)h)Qz1(t− (i− 1)h) − h

n∑

i=1

zT
1 (t− ih)Qz1(t− ih)

]

≤ zT
1 (t)Qz1(t) − zT

1 (t− d(t))Qz1(t− d(t)) + h

nM∑

i=nm+1

zT
1 (t− ih)Qz1(t− ih)

δV3(z1, t)

= h

nM∑

i=nm+1

⎛

⎝
i∑

j=1

zT
1 (t− (j − 1)h)Qz1(t− (j − 1)h)

−
i∑

j=1

zT
1 (t− jh)Qz1(t− jh)

⎞

⎠

= (dM − dm)zT
1 (t)Qz1(t) − h

nM∑

i=nm+1

zT
1 (t− ih)Qz1(t− ih). (9.12)

Using Lemma 9.5 and taking the delta operator manipulations of V4(z1, t),
there exists

δV4(z1, t)

=
1
h

⎡

⎣
n∑

i=1

i∑

j=1

eT (t− (j − 1)h)Re(t− (j − 1)h)
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−
n∑

i=1

i∑

j=1

eT (t− jh)Re(t− jh)

⎤

⎦

=
1
h

[
n∑

i=1

eT (t)Re(t) −
n∑

i=1

eT (t− ih)Re(t− ih)

]

≤ n

h
eT (t)Re(t) − 1

nh

[
n∑

i=1

e(t− ih)

]T

R

[
n∑

i=1

e(t− ih)

]

≤ dMδT (x(t))Rδ(z1(t)) − 1
dM

[z1(t− d(t)) − z1(t)]
T
R [z1(t− d(t)) − z1(t)] .

For the positive definite real matrix P , one has that

0 = −2δT (z1(t))P [δ(z1(t)) − Ã(t)z1(t) − Ãd(t)z1(t− d(t))]
= −2δT (z1(t))Pδ(z1(t)) + 2δT (z1(t))PÃ(t)z1(t)

+2δT (z1(t))PÃd(t)z1(t− d(t)).

It follows that the Lyapunov derivative corresponding to system (9.7) is given
by

δV (z1, t) =

⎡

⎣
Pδ(z1(t))
Pz1(t)

Pz1(t− d(t))

⎤

⎦

T

Θ

⎡

⎣
Pδ(z1(t))
Pz1(t)

Pz1(t− d(t))

⎤

⎦ (9.13)

where

Θ = Υ + ḠF̂ (t)H̄ + H̄T F̂T (t)ḠT (9.14)

Υ =

⎡

⎣
Υ (1, 1) Ã11Z Ãd11Z

∗ Υ (2, 2) Ãd11Z + 1
dM

L

∗ ∗ −J − 1
dM

L

⎤

⎦ , Ḡ =

⎡

⎣
UT

2 G
UT

2 Gd

0

⎤

⎦

H̄ =

⎡

⎣
0

ZUT
2 HT − Y TUT

1 HT

ZUT
2 HT

d − Y TUT
1 HT

d

⎤

⎦

T

with

Ã11 = A11 −A12C, Ãd11 = Ad11 −Ad12C

Z = P−1, J = ZQZ,L = ZRZ

Υ (1, 1) = (T − 2)Z + dML

Υ (2, 2) = ZÃT
11 + Ã11Z + (dM − dm + 1)J − 1

dM
L.
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By Lemma 9.6, Θ < 0 if and only if there exists a scalar ε > 0 such that the
following inequality is satisfied

Σ3 = Υ +
[
εH̄T ε−1Ḡ

]
[ −I W
WT −I

]−1 [
ε H̄

ε−1ḠT

]

< 0. (9.15)

Hence, by defining Y = CZ and using the Schur complement, Σ3 < 0 can be
written as Σ4 < 0, where

Σ4

=

⎡

⎢
⎢
⎢
⎢
⎣

Σ4(1, 1) A11Z − A12Y Ad11Z − Ad12Y
∗ Σ4(2, 2) Σ4(2, 3)
∗ ∗ −J − 1

dM
L

∗ ∗ ∗
∗ ∗ ∗

0 ε−1UT
2 G

ε(ZUT
2 − Y T UT

1 )HT ε−1UT
2 Gd

ε(ZUT
2 − Y T UT

1 )HT
d 0

−I W
∗ −I

⎤

⎥
⎥
⎥
⎥
⎦

where

Σ4(1, 1) = (T − 2)Z + dML

Σ4(2, 2) = ZA
T

11 − Y TA
T

12 + A11Z −A12Y + (dM − dm + 1)J − 1
dM

L

Σ4(2, 3) = Ad11Z −Ad12Y +
1
dM

L.

Pre-multiplying and post-multiplying Σ4 by the diagonal matrix diag(I, I, I,
ε−1, ε−1), and setting ε−2 = α, the inequality Σ4 < 0 is equivalent to (9.9).

Hence, Θ < 0, which also implies that there exists a sufficiently small
ξ1 > 0 such that

⎡

⎣
0(n−m)×(n−m) 0(n−m)×(n−m) 0(n−m)×(n−m)

0(n−m)×(n−m) ξ1I(n−m)×(n−m) 0(n−m)×(n−m)

0(n−m)×(n−m) 0(n−m)×(n−m) 0(n−m)×(n−m)

⎤

⎦+ Θ < 0.

It follows from (9.13) and above inequality that δV (z1(t), t) ≤ −ξ1||Pz1||2 ≤
−ξ1λmin(P )||z1||2 for all (z1(t), t) ∈ Rn−m ×R. Therefore, inequality (9.8) is
satisfied with ξ = ξ1λmin(P ) > 0, and the reduced system (9.7) is quadrat-
ically stable with C = Y Z−1. Moreover, the sliding surface of the system
(9.4) is

S(t) = [ C I ] z = Y Z−1z1(t) + z2(t) = 0. (9.16)

The proof is completed.

Now, we let h → 0, d(t) = τ(t), the delta operator systems (9.1) is sim-
plified into the general systems as system (1) in [189]. The simplified results
can be given as follows:

ẋ(t) = (A + ΔA(t))x(t) + (Ad + ΔAd(t))x(t − τ(t)) + B(u(t) + w(t))
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x(t) = ϕ1(t) for t ∈ [−dM , 0] . (9.17)

The delta operator systems (9.7) is simplified into

ż1(t) = (A11 + ΔA11 −A12C −ΔA12C)z1(t)
+(Ad11 +ΔAd11 −Ad12C −ΔAd12C)z1(t− τ(t))
z1(t) = ϕ1(t) for t ∈ [−dM , 0] .

(9.18)

The following corollary can be gotten:

Corollary 9.8. The reduced order system (9.18) is quadratically stable if
there exist symmetric positive-definite matrices J ∈ R(n−m)×(n−m), Z ∈
R(n−m)×(n−m), L ∈ R(n−m)×(n−m) and general matrix Y ∈ Rm×(n−m), as
well as a positive scalar α > 0 such that
⎡

⎢
⎢
⎢
⎢
⎣

Ξ11 A11Z −A12Y Ad11Z −Ad12Y
∗ Ξ22 Ξ23

∗ ∗ −J − 1
dM

L

∗ ∗ ∗
∗ ∗ ∗

0 αUT
2 G

ZUT
2 H

T − Y TUT
1 HT αUT

2 Gd

ZUT
2 H

T
d − Y TUT

1 HT
d 0

−αI αW
∗ −αI

⎤

⎥
⎥
⎥
⎥
⎦
< 0

(9.19)
where

Ξ11 = dML− 2Z

Ξ22 = ZA
T

11 − Y TA
T

12 + A11Z −A12Y + (dM − dm + 1)J − 1
dM

L

Ξ23 = Ad11Z −Ad12Y +
1
dM

L.

Proof. Considering h → 0, the simplified results of Lyapunov function in
delta domain can be changed to the ones in s-domain as below:

V (z1, t) = V1(z1, t) + V2(z1, t) + V3(z1, t) + V4(z1, t)

which is positive-define for all z1(t) �= 0 and where

V1(z1, t) = zT
1 (t)Pz1(t)

V2(z1, t) =
∫ t

t−τ(t)

zT
1 (s)Qz1(s)ds

V3(z1, t) =
∫ t−dm+1

t−dM

∫ t

s

zT
1 (v)Qz1(v)dvds

V4(z1, t) =
∫ t

t−τ(t)

∫ t

s

żT
1 (v)Rż1(v)dvds.
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Taking the derivative of V (t) along the trajectory of (9.17), we can get the
LMI (9.19).

In the next step, we will design a controller such that any trajectory of the
closed-loop system will be driven on to the sliding surface and then main-
tained on it thereafter, and will be convergent to the origin. Then, without
loss of generality [68], we assume that there exists a constant q > 1 such that

|z(t + θ)| ≤ q|z(t)|,−dM ≤ θ ≤ 0. (9.20)

Thus, the result of designing of reaching motion controller is given in the
following.

Theorem 9.9. Suppose inequality (9.9) in Theorem 9.7 has solutions J , Z,
L, Y and the linear sliding surface is given by (9.10). Then the trajectory of
the closed-loop system (9.4) can be driven onto the sliding surface in finite
time with the control

u = −B−1
2 [KS(t) + εsgn(S(t)) + C̄(A + ΨGWTHΨ−1)z(t)

+C̄(Ad + ΨGdW
THdΨ

−1)z(t− d(t)) + sgn(S(t))(N1 + N2)]
(9.21)

where

sgn(S(t)) = diag {sgn(s1) sgn(s2) · · · sgn(sm)}

sgn(S(t)) = [sgn(s1) sgn(s2) · · · sgn(sm)]T

BT
2 =

[
b1 b2 · · · bm

]T

biw =
m∑

j=1

bijwj ≤
m∑

j=1

|bij |wj = N2i

N1 =
[
N11 · · · N1m

]T (9.22)

N2 =
[
N21 · · · N2m

]T

N1i ≥ N2i

and C̄ = [ C I ], K = diag(ki), ε = diag(εi), ki and εi are positive constants.

Proof. Note that

S(t) =
[
C I
]
z(t) = Cz1(t) + z2(t)

δS(t) =
[
C I
]
δz(t). (9.23)

Then,

δS(t) = C̄
[
(A + ΔA)z(t) + (Ad + ΔAd)z(t− d(t))
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+
[

0(n−m)×m

B2

]

(u(t) + w(t))].

Let Vs(t) = ST (t)S(t), we have

δVs(t) = ST (t)δS(t) + δST (t)S(t) + hδST (t)δS(t)
= ST (t)C̄[(A + ΔA)z(t) + (Ad + ΔAd)z(t− d(t))

+
[

0(n−m)×m

B2

]

(u(t) + w(t))] + [(A + ΔA)z(t) + (Ad + ΔAd)

×z(t− d(t))
[

0(n−m)×m

B2

]

(u(t) + w(t))]T C̄TS(t) + hδST (t)δS(t).

(9.24)
It follows from Lemma 9.6 that there exist scalars β1 and β2 such that

ST (t)C̄ΔAz(t) + (C̄ΔAz(t))TS(t) + ST (t)C̄ΔAdz(t− d(t))
+(C̄ΔAdz(t− d(t)))TS(t)

≤ [β−1
1 (HΨ−1z(t))T β1S

T (t)C̄ΨG
]
[

I −W
−WT I

] [
β−1

1 HΨ−1z(t)
β1(ST (t)C̄ΨG)T

]

+
[
β−1

2 (HdΨ
−1z(t− d(t)))T β2S

T (t)C̄ΨGd

]

×
[

I −W
−WT I

] [
β−1

2 HdΨ
−1z(t− d(t))

β2(ST (t)C̄ΨGd)T

]

= β2
1S

T (t)C̄ΨGGTΨT C̄TS(t) + β−2
1 zT (t)Ψ−THTHΨ−1z(t)

− 2ST (t)C̄ΨGWTHΨ−1z(t) + β2
2S

T (t)C̄ΨGdG
T
d Ψ

T C̄TS(t)
+ β−2

2 zT (t− d(t))Ψ−THT
d HdΨ

−1z(t− d(t))
− 2ST (t)C̄ΨGdW

THdΨ
−1z(t− d(t))

≤ β3S
T (t)S(t) + β4z

T (t)z(t) + β5z
T (t− d(t))z(t− d(t))

− 2ST (t)C̄ΨGWTHΨ−1z(t) − 2ST (t)C̄ΨGdW
THdΨ

−1z(t− d(t))
(9.25)

where
β3 = λmax(β2

1 C̄ΨGG
TΨT C̄T + β2

2 C̄ΨGdG
T
d Ψ

T C̄T )

β4 = λmax(β−2
1 Ψ−THTHΨ−1), β5 = λmax(β−2

2 Ψ−THT
d HdΨ

−1).

Hence,

δVs(t) ≤ 2ST (t)C̄[Az(t) + Adz(t− d(t)) +
[

0(n−m)×m

B2

]

(u(t) + w(t))]

+hδST (t)δS(t) + β3S
T (t)S(t) + β4z

T (t)z(t)
+β5z

T (t− d(t))z(t− d(t)) − 2ST (t)C̄ΨGWTHΨ−1z(t)
−2ST (t)C̄ΨGdW

THdΨ
−1z(t− d(t)) + hδST (t)δS(t)

≤ 2ST (t)C̄[(A + ΨGWTHΨ−1)z(t) + (Ad + ΨGdW
THdΨ

−1)

×z(t− d(t)) +
[

0(n−m)×m

B2

]

(u(t) + w(t))] + β3S
T (t)S(t)+

(β4 + β5q
2)zT (t)z(t) + hδST (t)δS(t).

(9.26)
Based on the control input (9.21), we have
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δVs(t) ≤ −2ST (t)KS(t) − 2εsgn(S)S(t) + β3S
T (t)S(t) + (β4+

β5q
2)zT (t)z(t) + 2S(t)(−sgn(S(t)N1 − w(t)) + hδST (t)δS(t)

= −γSTS(t) + zT (t)(C̄T (γI − 2K − β3I)C̄ + β4I + β5q
2I)z(t)

−2εsgn(S)S(t) + 2S(t)(−sgn(S(t))N1 + B2w(t)) + hδST (t)δS(t).

(9.27)
Note that in the above inequality, the term hδST (t)δS(t) contains the un-

certainties, which can be suppressed by properly selected N1, K, ε. When
the uncertainties are large, the sampling interval h should be selected small
enough, then hδST (t)δS(t) is small, therefore, it can be suppressed by appro-
priately selected parameters N1, K, ε such that λmax(C̄T (γI−2K−β3I)C̄+
β4I +β5q

2I) < −σ, where γ, σ are proper positive scalars. Therefore, we can
get

δVs(t) < −γST (t)S(t) − 2εsgn(S)S(t) (9.28)

which implies that any trajectory of the system will be driven on to the
sliding surface and then maintained on it thereafter.

When time-delay d(t) is an unknown constant, the control law (9.21)
is not applicable for the terms of (Ad + ΨGdW

THdΨ
−1)z(t − d(t)) in the

control input can not be obtained in practice. Note that there exists a
constant q such that ‖(Ad + ΨGdW

THdΨ
−1)z(t − d(t))‖ ≤ qλmax((Ad +

ΨGdW
THdΨ

−1))‖z(t)‖ . Then we have the following corollary.

Corollary 9.10. Suppose that time-delay d(t) is unknown and inequality
(9.8) have solutions J , Z, L, Y and the linear sliding surface is given by
(9.10). Then the trajectory of the closed-loop system (9.4) can be driven onto
the sliding surface in finite time with the control

u = −B−1
2 [KS + εsgn(S) + C((A + ΨGWTHΨ−1)z(t) + sgn(S)N1]. (9.29)

9.4 Numerical Example

In this section, the first numerical example will show the characteristic dif-
ference between discrete-time system and delta operator system in sampling
continuous-time system.

Example 9.11. Consider a continuous-time system in s-domain:

ẋ(t) =
[−1 0

1 −2

]

x(t) +
[

0
1

]

u(t) (9.30)

y(t) =
[
1 1
]
x(t). (9.31)

By using shift operator and delta operator in sampling the above continuous-
time system, respectively. We get the relevant different discrete-time system
in z-domain and δ-domain. When h = 1, there exist
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x((k + 1)h) =
[

0.3679 0
0.2325 0.1353

]

x(kh) +
[

0
0.4323

]

u(kh)

δx(kh) =
[−0.6321 0

0.2325 −0.8647

]

x(kh) +
[

0
0.4323

]

u(kh).

When h = 0.55, there exist

x((k + 1)h) =
[

0.5769 0
0.2441 0.3329

]

x(kh) +
[

0
0.3336

]

u(kh)

δx(kh) =
[−0.7692 0

0.4438 −1.2130

]

x(kh) +
[

0
0.6065

]

u(kh).

When h = 0.1, there exist

x((k + 1)h) =
[

0.9048 0
0.0861 0.8187

]

x(kh) +
[

0
0.0906

]

u(kh)

δx(kh) =
[−0.9516 0

0.8611 −1.8127

]

x(kh) +
[

0
0.9063

]

u(kh).

From above results, it is easy to see that why the virtue of delta operator
systems in sampling continuous-time systems will come out when the sam-
pling is fast. Two output curve graphs of the above systems with different
sampling periods are given as follows:
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Fig. 9.1 The trajectories of the output in z-domain.

The following illustrative example is given for testing the design method
developed in this chapter.
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Fig. 9.2 The trajectories of the output in δ-domain.

Example 9.12. The proposed method will be applied to design a robust state
feedback controller for truck trailer system with time-delay proposed in [17]
and [173]. The time-delay model with uncertainties is given by:

ẋ1(t) = M [−ax1(t) − (1 − a)x1(t− d(t))] + q[u(t) + w(t)]
ẋ2(t) = M [−ax1(t) + (1 − a)x1(t− d(t))]
ẋ3(t) = qlsin{x2(t) + (M/2)[x1(t) + (1 − a)x1(t− d(t))]}

where M = vt̄
(L+ΔL(t))t0

, q = vt̄
lt0

with a = 0.7, v = −1.0, t̄ = 2.0, t0 = 0.5,
L = 5.5, l = 2.8 and −0.2519 ≤ ΔL ≤ 0.2891, w(t) = 0.001sin(t). When
x2(t) + a vt̄

2(L+ΔL(t))x1(t) + (1 − a) vt̄
2(L+ΔL(t))x1(t − d(t)) is about zero, and

it is easy to see that the truck trailer system can be sampled to the class of
delta operator system when h = 0.01, dm = 0.1 as follows:

δx(t) =
(
A + GF (t) [I −WF (t)]−1

H
)
x(t)

+
(
Ad + GdF (t) [I −WF (t)]−1

Hd

)
x(t− d(t)) + B(u(t) + ω(t)) (9.32)

with

A =

⎡

⎣
0.5109 0 0
−0.5109 0 0
0.5212 −4 0

⎤

⎦ , B =

⎡

⎣
−1.4338
0.0052
−0.0053

⎤

⎦ , Ad = [ad3×1 03×2]

Ad = [0.219 − 0.219 0.2234]T , F (t) = diag{sin(t) cos(t) sin(t)}
G = Gd = 0.05 · I3×3, W =0.01 · I3×3, H=[h3×1 03×2] , Hd = [hd3×1 03×2]



134 9 Robust SMC for Uncertain Time-Delay Systems Based on Delta Operator

h = [0.5091 − 0.5091 − 0.5091]T , hd = [0.2182 − 0.2182 − 0.2182]T .

Taking Ψ =

⎡

⎣
0.0036 1 0
−0.0037 0 1

−1 0.0036 −0.0037

⎤

⎦, such that ΨB =

⎡

⎣
0
0

1.4338

⎤

⎦, then

LMI (9.9) has feasible solutions:

Z = 105 ×
[

0.0008 0.0145
0.0145 2.5473

]

, L = 104 ×
[

0.0010 0.0185
0.0185 3.0645

]

J =
[

0.0008 0.0267
0.0267 2.0168

]

, Y =
[
12.7483 761.3555

]
, α = 692.5605.

The largest time delay is dM = 13.19. It follows from Theorem 9.7 that
C = [0.1234, 0.0023], the linear sliding surface is S(t) = [0.1234, 0.0023, 1]z =
0.

From Theorem 9.9, the reaching control law can be taken as follows:

u(t) = −0.6974× [KS(t) + εsgn(S(t)) +
[
0.0035 0.0021 0.5766

]
x(t)

+sgn(S(t))(N1)]

where N1, the parameter K and ε can be tuned to reduce the chattering on
the sliding surface. Fig. 9.3, Fig. 9.5 and Fig. 9.5 are simulation results when
choosing x1(0) = x2(0) = x3(0) = 1, S(0) = −0.87, u(0) = 2.85, K = 0.4,
ε = 0.02 and N1 = 0. Obviously the system is asymptotically stable and the
sliding motion trends to the origin in finite time in spite of time-delay and
uncertainties.
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9.5 Conclusion

In this chapter, the problem of designing robust sliding surfaces based on
delta operator for a class of uncertain time-delay systems has been considered
in which no matching condition is assumed for the state uncertainties. In
terms of LMI, sufficient condition is derived for the existence of a linear
sliding surface guaranteeing quadratic stability of the reduced-order equiv-
alent system restricted to the sliding surface. A reaching motion controller
is proposed for uncertain time-delay systems by the reaching law. Both the
sliding motion and the reaching motion are robust against the mismatched
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uncertainties and matched external disturbance. The simulation results show
that the proposed methods are amenable and generalize previous results avail-
able in the literature to date.



Chapter 10

ADRC for Uncertain Systems with
Time-Delay

10.1 Introduction

The majority of control systems are operated by proportional-integral- deriva-
tive (PID) controllers, which dates back to 1922 ([135], [110], [220]) well before
classical and modern control theory were born. Today, much work has been
done related to systems with time-delays, see for example, ([188], [189], [154],
[126]) and references therein. It should be noted that PID still remains as the
preferred controller in over 95% of industrial applications, as generally a good
performance can be achieved [22], [162]. Given the wide spread industrial use
of PID controllers, it is clear that even a small percentage improvement in
the design, a PID controller could have a tremendous impact on practical
applications. Despite this, it is unfortunate that currently there is not much
theory dealing with PID designs. Indeed, most of the industrial PID designs
are carried out using only empirical techniques and the mathematically ele-
gant and sophisticated theories developed in the context of modern optimal
control cannot be applied to them. This represents a significant gap between
the theory and practice of automatic control.

In the chemical industries, many processes can be modelled as a class of
multi-variable time-delay systems. Several control schemes have been pro-
posed to deal with this kind of systems (See for example [90] and references
therein). However, the problem of how to compensate for model uncertainties,
cross couplings and disturbances existing in the systems has not been fully
investigated yet. This problem is important and challenging in both theory
and practice, which provides the motivation for this study. In this chapter,
we propose a new methodology of control for multi-variable systems with
time-delay. It is based upon an unique Active Disturbance Rejection Con-
trol (ADRC) concept [194]. In this approach, the systems with time-delay
in the input are viewed as higher order systems without time-delay in the
input, and the error resulting from unmodelled dynamics and disturbances
are estimated using an extended state observer (ESO) and compensated for

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 137–149.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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during each sampling period. Since uncertainties and disturbances are esti-
mated and canceled via the ESO, there is no need for integral control. This
method was developed in [57]. The proposed ADRC control system consists
of the TD, the ESO and a nonlinear PD controller. It is designed under the
assumption of high degree of model uncertainties. The controller is designed
to be inherently robust against plant variations. Once it is set up for the
problem within a predetermined range of variation in system variables, no
tuning is needed for start up, or to compensate for changes in the system
dynamics and disturbance. This method, because of its robustness and dis-
turbance rejection capabilities, is particularly suitable for control of systems
with time-delay [215], [124]. Since parts of the idea of ADRC originate from
sliding mode control [73], it is also included in Part II.

The chapter is organized as follows. Section 10.2 gives the problem for-
mulation and some preliminaries. In section 10.3, the concept of tracking
differentiator (TD) and extended state observer (ESO) and nonlinear feed-
back are given. Numerical simulations are presented in Section 10.4 and some
conclusion remarks are given in Section 10.5.

10.2 Problem Formulation

Consider an uncertain multi-variable system with time-delay

y =

[
k11e−L11s

t11s+1
k12e−L12s

t12s+1
k21e−L21s

t21s+1
k22e−L22s

t22s+1

]

u (10.1)

where y ∈ R2, u ∈ R2, while k11 ∈ [k−11, k
+
11], k12 ∈ [k−12, k

+
12], k21 ∈ [a−21, k

+
21]

and k22 ∈ [k−22, k
+
22] are controller gains; t11 ∈ [t−11, t

+
11], t12 ∈ [t−12, t

+
12], t21 ∈

[t−21, t
+
21] and t22 ∈ [t−22, t

+
22] are positive time constants.

Let

a11 = − 1
t11

, a12 = − 1
t12

, a21 = − 1
t21

, a22 = − 1
t22

b11 =
k11

t11
, b12 =

k12

t12
, b21 =

k21

t21
, b22 =

k22

t22

then

a11 ∈ [a−11, a
+
11], a12 ∈ [a−12, a

+
12], a21 ∈ [a−21, a

+
21], a22 ∈ [a−22, a

+
22]

b11 ∈ [b−11, b
+
11], b12 ∈ [b−12, b

+
12], b21 ∈ [b−21, b

+
21], b22 ∈ [b−22, b

+
22]
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where a−ij and a+
ij , b

−
ij and b+ij are obtained appropriately according to the

value of k−ij , k
+
ij , t

−
ij and t+ij , i, j = 1, 2, respectively.

Remark 10.1. This model is well known in chemical control systems, such as
a class of chemical reactors, distillation columns, and fluidized bed combustor
[181]. There exist a lot of methods which have been applied to solve this kind
of problem, for example, Smith predictor method [1], decentralized control
[150], PI control [91], model reference adaptive control scheme [90], model
predictive control [164].

In order to study this kind of system, some transformations and approxi-
mations will be introduced.

First, write the transfer matrix (10.1) in the state space form
{
ẋ = Ax + B(u)
y = Cx

(10.2)

where

A =

⎛

⎜
⎜
⎝

a11 0 0 0
0 a12 0 0
0 0 a21 0
0 0 0 a22

⎞

⎟
⎟
⎠ , B(u) =

⎛

⎜
⎜
⎝

b11u1(t− L11)
b12u2(t− L12)
b21u1(t− L21)
b22u2(t− L22)

⎞

⎟
⎟
⎠

C =
(

1 1 0 0
0 0 1 1

)

. (10.3)

Using state transformation x = Tz, where

T =

⎛

⎜
⎜
⎝

1 0 −1 0
0 0 1 0
0 1 0 −1
0 0 0 1

⎞

⎟
⎟
⎠ . (10.4)

System (10.2) can be rewritten as
⎧
⎨

⎩

ż = Ãz + B̃(u)

y =
(
z1

z2

)
(10.5)

where

Ã =

⎛

⎜
⎜
⎝

a11 0 −a11 + a12 0
0 a21 0 −a21 + a22

0 0 a12 0
0 0 0 a22

⎞

⎟
⎟
⎠
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B̃(u) =

⎛

⎜
⎜
⎝

b11u1(t− L11) + b12u2(t− L12)
b21u1(t− L21) + b22u2(t− L22)

b12u2(t− L12)
b22u2(t− L22)

⎞

⎟
⎟
⎠ . (10.6)

Remark 10.2. Note that model (10.2)-(10.3) is not an unique presentation for
system (10.1) and there are other transformations for (10.2). The transfor-
mation (10.4) is applied here so that the output of the system is separated
and the techniques proposed in this chapter can be applied appropriately,
that is, y1 = z1 and y2 = z2. Then there is no cross terms between y1 and y2.
Thus, control inputs u1 and u2 will be designed such that outputs y1 and y2

can satisfactorily track the set points.
Now, system (10.5) can be treated as two subsystems:

{
ż1 = a11z1 + ff1 + b11u1(t− L11) + b12u2(t− L12)
y1 = z1

(10.7)

and
{
ż2 = a21z2 + ff2 + b21u1(t− L21) + b22u2(t− L22)
y2 = z2

(10.8)

where
a11 = a−

11+a+
11

2 , a21 = a−
21+a+

21
2 , b11 = b−11+b+11

2 , b12 = b−12+b+12
2 , b21 = b−21+b+21

2 ,

b22 = b−22+b+22
2 , ff1 = (a11 − a11)z1 +(−a11 + a12)z3 +(b11 − b11)u1(t−L11)+

(b12−b12)u2(t−L12), ff2 = (a21−a21)z2 +(−a21 +a22)z4 +(b21−b21)u1(t−
L21) + (b22 − b22)u2(t− L22)

To explain the idea in this chapter clearly, the following first-order approx-
imation for the dead time is used

e−τs ≈ 1 − TNs

1 + TDs
=

1 − μτs

1 + (1 − μ)τs
(10.9)

where μ = TN/τ ∈ [0, 1] is a provisionally parameter left free.

Remark 10.3. The term e−τs is not polynomial and cannot be realized in finite
dimensions. For small signal analysis, it can be approximated by a polynomial
transfer function. Generally, there are several ways to do this approxima-
tion, such as Bessel functions, Padè approximations, Laguerre polynomials
and hyperbolic functions. Among these alternatives, Padè approximations
are more accurate. Here, the first-order Padè approximation is used, the ap-
proximation error can be viewed as modeling errors. Since it is assumed that
a12 = − 1

t12
< 0, a22 = − 1

t22
< 0, it follows from the equations in (10.5) that

ż3 = a12z3 + b12u2(t− L12)
ż4 = a22z4 + b22u2(t− L22)
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and the states z3 and z4 are bounded while input u2 is bounded, therefore, z3

and z4 can be viewed as disturbances, then, the modeling errors and distur-
bances are lumped together, which will be observed by the ESO, the definition
of ESO will be given in Section 10.3.

Note that subsystems (10.7)-(10.8) can be written as
{
sz1 = a11z1(s) + ff1(s) + b11e

−L11su1 + b12e
−L12su2

y1 = z1
(10.10)

and
{
sz2 = a21z2(s) + ff2(s) + b21e

−L21su1 + b22e
−L22su2

y2 = z2
. (10.11)

According to (10.9), subsystem (10.10)-(10.11) can be taken as
{
sz1 = a11z1(s) + ff

1
(s) + b11

1−μ11L11s
1+(1−μ11)L11su1 + b12

1−μ12L12s
1+(1−μ12)L12su2

y1 = z1

(10.12)
and
{
sz2 = a21z2(s) + ff

2
(s) + b21

1−μ21L21s
1+(1−μ21)L21su1 + b22

1−μ22L22s
1+(1−μ22)L22su2

y2 = z2

(10.13)
where μij ∈ [0, 1], i, j = 1, 2 are free parameters.

ff
1
(s) = ff1(s) + b11e

−L11su1 + b12e
−L12su2 − (b11

1 − μ11L11s

1 + (1 − μ11)L11s
u1

+b12
1 − μ12L12s

1 + (1 − μ12)L12s
u2)

ff
2
(s) = ff2(s) + b21e

−L21su1 + b22e
−L22su2 − (b21

1 − μ21L21s

1 + (1 − μ21)L21s
u1

+b22
1 − μ22L22s

1 + (1 − μ22)L22s
u2).

Furthermore, subsystem (10.12)-(10.13) can be viewed as follows
{
sz1 = a11z1(s) + ff1(s) + b01

1
s+μ1

U1

y1 = z1
(10.14)

and {
sz2 = a21z2(s) + ff2(s) + b02

1
s+μ2

U2

y2 = z2
(10.15)

where
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ff1(s) = ff
1
(s) + b11

1 − μ11L11s

1 + (1 − μ11)L11s
u1 + b12

1 − μ12L12s

1 + (1 − μ12)L12s
u2

−b01 1
s + μ1

U1

ff2(s) = ff
2
(s) + b21

1 − μ21L21s

1 + (1 − μ21)L21s
u1 + b22

1 − μ22L22s

1 + (1 − μ22)L22s
u2

−b02 1
s + μ2

U2.

Remark 10.4. Note that U1 and U2 are virtual control inputs, which will help
us to design the actual controls u1 and u2. μi > 0, i = 1, 2 are free parame-
ters introduced to interpret the principle of the method used in this chapter
they are not used in the rest of this chapter. b01 and b02 are parameters to
be determined. Also, (10.14)-(10.15) can be regarded as simplified form of
(10.12)-(10.13), in which the modeling errors have been included in ff1(s)
and ff2(s) as uncertainties. This kind of uncertainties will be observed by
the ESO, and then will be actively compensated, consequently, subsystems
(10.14) and (10.15) are decoupled dynamically. The resulting controller can
be easily designed.

In order to simplify the structure of the observer of subsystems (10.14)-
(10.15), the following transformations are used:

{
s2z1 = a11z1(s)s + f̃ f1(s) + b01U1

y1 = z1
(10.16)

and {
s2z2 = a21z2(s)s + f̃ f2(s) + b02U2

y2 = z2
(10.17)

where f̃ f1(s) = (μ1 + s)ff1(s) + μ1a11z1(s) − μ1z1(s)s, f̃ f2(s) = (μ2 +
s)ff2(s) + μ2a21z2(s) − μ2z2(s)s

Let p1 = z1, p2 = sz1, p3 = z2, p4 = sz2, then subsystems (10.16)-(10.17)
can be written as

⎧
⎨

⎩

ṗ1 = p2

ṗ2 = a11p2 + L−1
a (f̃ f1(s)) + b01U1

y1 = p1

(10.18)

and ⎧
⎨

⎩

ṗ3 = p4

ṗ4 = a21p4 + L−1
a (f̃ f2(s)) + b02U2

y2 = p3

(10.19)

where L−1
a (.) denotes the inverse Laplace transformation.

The uncertain dynamics, L−1
a (f̃ f1(s)) and L−1

a (f̃ f2(s)) are difficult to
model accurately, which therefore limits the performance of model-based con-
trol methods. In addition to these modeling errors, external disturbances are
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inevitable in real situations and these disturbances also degrade the control
performance. Therefore, the controller should have a robust capability to
achieve this objective under the above circumstances. To achieve this robust-
ness, several approaches have been proposed, such as adaptive control, and
robust control. In adaptive control approaches, where there is no knowledge
of the bounding function, the control must be designed to measure the size
of uncertainties while compensating for them. This means that the unknown
load condition and system parameters are identified on-line. This approach
has a heavy computation and is limited to those systems where uncertain-
ties are structured. In the meantime, the so-called robust control technique
has been proposed which has the capability to guarantee the stability and
a prescribed performance for the control systems with uncertainties. Its de-
sign requires some knowledge about norm-bounded functions of the largest
possible size of the uncertainties and disturbances. While uncertainties be-
ing bounded ensures that a stabilizing control (if it exists) will be of finite
magnitude, but in most of cases, it is difficult to estimate the proper norm
bound, thus the usual robust control method for systems with uncertainties
of this kind can often result in a conservative design.

In the work of [57], the uncertainties are estimated using the extended state
observer (ESO), the control signals are then used to actively compensate for
its effect and the control problem is thus reduced to a simple one.

The objective in this chapter is to design a control law such that the
following goals can be achieved:

a) Robust stability;
b) Set-point following, i.e, the system asymptotically tracks stepwise set
point changes and minimize the impact of disturbances;
c) The couplings of the two closed-loop subsystems are to be reduced as
far as possible.

In order to understand the key idea of ADRC, which is composed of TD,
ESO and nonlinear feedback controller, the design philosophy and the main
components of the new paradigm are introduced. As for a class of multi-
variable time-delay systems, a special control structure is also proposed in the
next section. More details of the theoretical results and associated algorithms
can be found in [57]. A brief introduction is given below.

10.3 Concepts of TD, ESO and Nonlinear Feedback
Controller

In the work of [71], [72], two methods are presented to improve the perfor-
mance of the closed-loop systems to be designed: the tracking differentiator
(TD) and the extended state observer (ESO). Furthermore, the nonlinear
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feedback controller is composed of a PD controller. They can be described as
follows:

First, a transient profile is used. Engineers have long realized that set point
qr, also known as reference, shouldn’t be changed suddenly. Instead, it should
be changed gradually so that the output of the plant can follow closely. This
desired set point changing trajectory, qr , is denoted as transient profile. The
following tracking differentiator (TD) is used to arrange a transient profile.

I. The tracking differentiator (TD).

a. TD for non-discrete signal.
{
η̇1 = η2

η̇2 = −rsgn(η1 − qr + η2|η2|
2r )

(10.20)

where sgn(·) is defined as

sgn(x) =

⎧
⎨

⎩

1, x > 0
0, x = 0
−1, x < 0

(10.21)

and r represents the maximum actuation available in the system.
b. TD for discrete signal.

{
v1(t + h) = v1(t) + hv2(t)
v2(t + h) = v2(t) + hfst(v1 − qr(t), v2(t), r, h1)

(10.22)

where v1 and v2 are the state variables, qr(t) is the input signal, h is
the step size, h1 is a tuning parameter and functionfst(v1, v2, r, h) is
defined as:

d = rh, d0 = dh, g = v1 + hv2 (10.23)

a0 =
√
d2 + 8r|g| (10.24)

a =
{

v2 + g
h , |g| < d0

v2 + sgn(g)(a0−d)
2 , |g| ≥ d0

(10.25)

fst =
{ −r a

d , |a| ≤ d
−rsgn(a), |a| > d

. (10.26)

The impact of the TD is profound. Firstly, as a noise filter, it blocks any
part of the signal with an acceleration exceeding r. Secondly, TD has a
very desirable frequency filter response characteristic. In particular, it has
a much smaller phase shift compared to linear filters, while maintaining an
extremely flat gain over the bandwidth. Finally, perhaps the most impor-
tant role of TD is its ability to obtain the derivative of a noisy signal with
a good signal to noise ratio. It is well known that a pure differentiator is
not physically implementable. The error signal is often not differentiable
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in practice due to the noises in the feedback and the discontinuities in the
reference signal. However, a discrete time realization of the TD can im-
prove the numerical properties and can avoid high frequency oscillations.
Further explanations of this can be found in [56].
II.The extended state observer (ESO).
The ESO was first proposed [71] for on-line estimating the total dynamics,
which lumps the internal nonlinear dynamics and the external disturbance.
Two three-order ESOs for system (10.7) and (10.8) are proposed in the
following:

⎧
⎪⎪⎨

⎪⎪⎩

ε1 = w1 − y
ẇ1 = w2 − β01ε1
ẇ2 = w3 + f0(w1, w2) − β02Fal(ε1, α1, δ) + b0U
ẇ3 = −β03Fal(ε1, α2, δ)

(10.27)

where β01, β01, β03, b0, α1, α2 and δ are constants to be determined, w1 =[
w11

w12

]

, w2 =
[
w21

w22

]

, w3 =
[
w31

w32

]

∈ R2 are the states of the observer .

f0(w1, w2) =
[
a11w21

a22w32

]

, b0 =
[
b01 0
0 b02

]

, U =
[
U1

U2

]

, Fal(·) =
[
fal(·)
fal(·)

]

fal(·) is defined as

fal(e, α, δ) =
{ |ε|αsgn(e), |e| > δ

e
δ1−α , |e| ≤ δ

. (10.28)

Note that the third formula w3 in (10.27) is the most important. It shows
that w3 can estimate (or track) the total action of the uncertain models
and the external disturbances or the real-time action of the system dis-
turbances. Since w3 is the estimation for the total action of the unknown
disturbances, in the feedback, w3 is used to compensate for the distur-
bances. So the resulting systems after compensating for disturbance will
be in the type of second order cascade integrators, which will be easy to
control.
III. The active disturbance rejection control method (ADRC).
Since uncertainties are estimated and canceled via the ESO, there is no
need for integral control. Applying the ESO given above in (10.27), we
propose a nonlinear controller with a feedback block containing a filter

e1 = v1 − w1

e2 = v2 − w2

u0 = β1fal(e1, αc1, δL2) + β2fal(e2, αc2, δc)
u = u0 − b−1

0 w3

U = −af(U − u)

(10.29)

where af > 0 is filter gain, β1 =
[
β11

β12

]

, β2 =
[
β21

β22

]

.
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IV. Control input u1 and u2

From (10.29), the virtual control input U can be obtain, then the control
input u1(t) and u2(t) can be designed as follows:

u1(t) = b22U1−b12U2

b11b22−b12b21

u2(t) = b11U2−b21U1

b11b22−b12b21
.

(10.30)

To be more precisely, ADRC control scheme is illustrated by the following
figure:

Fig. 10.1 The structure of ADRC control scheme

Remark 10.5. The filter in (10.29) is used to obtain a control of better quality.
The stability analysis of the nonlinear continuous extended state observer can
be found in [82], [83]. This model can also be extended to multi input and
multi output cases with dimension larger than two.

10.4 Example

Example 10.6. In order to demonstrate the performance of the proposed con-
trol strategy, we borrow the following example which has been considered in
[181].

(
y1(s)
y2(s)

)

=

(
12.8e−2s

16.7s+1
−18.9e−4s

21.0s+1
6.6e−10s

10.9s+1
−19.4e−4s

14.4s+1

)(
u1(s)
u2(s)

)

. (10.31)

Using the control scheme proposed above, with reference qr(1)=2, qr(2)=1
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1) Transient process parameters: h = 0.01, r =
(

60
60

)

, h1 =
(

1.5h
1.5h

)

;

2) The ESO parameters: β01 = 110, β02 = 330, β03 = 100, α1 = 0.5, α2 =
0.25, δ = 0.05, b0 = 50;
3) Nonlinear feedback parameters: β11 = 0.01, β12 = 0.18, β21 = 0.01,
β22 = 0.18, αc1 = 0.75, αc2 = 1.0, δc = 0.2.
4) Filter parameter: af = 0.8.

1. As for the nominal system with t11 = 16.7, t12 = 21, t21 = 10.9, t22 =
14.4, k11 = 12.8, k12 = −18.9, k21 = 6.6, k22 = −19.4, L11 = 2, L12 = 4,
L21 = 10, L22 = 4, the results of a simulation study is as follows:
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Fig. 10.2 Step response of y1, y2, w11, w12 and control input u1, u2

2. 100% change in time delay, i.e, L11 = 4, L12 = 8, L21 = 20 and L22 = 8,
the results of simulation are
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Fig. 10.3 Step response of y1, y2, w11, w12 and control input u1, u2

3. 20% change in coefficients of the system, for example, 20% in t11, the
results of simulation are
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Fig. 10.4 Step response of y1, y2, w11, w12 and control input u1, u2

It can be seen from the above simulations that the states of observer w11

and w12 are very next to the outputs of the system y1 and y2. The control
scheme proposed in this chapter is robust against the uncertainties in coeffi-
cients of systems and time-delay in the input while preserving a satisfactory
transient and steady state performance.

Remark 10.7. A great deal of effort has been devoted to this topic, see [27] and
the references therein. However, these methods usually assume the knowledge
of the disturbance model and/or the plant model, and usually, a higher order
observer or derivatives of the measured signal are used. From the point of
ADRC, it regards all factors affecting the plant, including the nonlinear dy-
namics, uncertainties, the coupling effects and the external disturbances, as
a “total disturbance” (extended state) to be observed. This new vision facili-
tates solution for a series of challenging control problems, such as disturbance
rejection, dynamic linearization and decoupling control, in an ingenious way.
The proposed technique requires tuning more than three parameters com-
pared with using a standard PID controller. In fact, we use the same set
of parameters for the different control channels. Even when a standard PID
controller is in cascade with the TD, a better performance can be obtained.
Once the sampling time h is given and a predetermined range of variation in
system variables are estimated roughly, the parameters of the ESO will be
fixed, and the free parameters needed to be tuned are β1, β2, b0. In general,
the parameters α1 = 0.5, α2 = 0.25, δ = 0.05, δc = 0.2, αc1 = 0.75 and
αc2 = 1.0 are previously fixed. When the sampling period is h, the parameter
of TD is h1 = 1.5h, and the parameters of ESO are β01 = 1

h , β02 = 2×4
27×h2 ,

β03 = 16
272×h3 . If the simulation result is not satisfactory, then β01, β02 and

β03 may need to be suitably tuned.
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10.5 Conclusion

In this chapter, an active disturbance rejection controller (ADRC) design
method was proposed to deal with both robust stability and performance
specifications for a multi-variable process with time-delay in the input. It
was shown that a satisfactory performance can be obtained when system
contains parameter uncertainties (coefficients, time-delay).



Chapter 11

Analysis and Synthesis of NCSs with
Random Forward Delay

11.1 Introduction

With the development of network technology, more and more networks (e.g.,
Internet) have been applied to distributed control systems, which are termed
as networked control systems (NCSs) [143, 137, 2, 70, 180, 47, 49]. Although
the networks make it convenient to control large distributed systems, there
are many control issues, which occur in conventional control systems, such as
network delay and data dropout, sampling and transmitting methods [205].
To solve these problems, various methods have been developed. In the ADDM
(augmented deterministic discrete-time model method) [69], an augmented
deterministic discrete time model methodology has been proposed to control
a linear plant over a periodic delay network. The queuing method [122] has
used queuing mechanisms to reshape random network delays in an NCS to
deterministic delays such that the NCS becomes time-invariant. The optimal
stochastic control method [142] has treated the effects of random network
delays in an NCS as a linear quadratic Gaussian problem. The sampling time
scheduling method [80] has selected a sampling period for an NCS such that
network delays do not significantly affect the control system performance,
and the NCS remains stable. The robust control method [59] has designed a
networked controller in the frequency domain using robust control theory, and
a priori information about the probability distribution of network delays is
not required. The hybrid system stability analysis method [214] has modeled
networked control systems as hybrid systems. All these methods have put
some strict assumptions on NCS, e.g., the network time delay is less than a
sampling period [142]. Most of them simply treat the NCS as a system with
time delay, which ignores NCS features, e.g., random network delay and data
transmitted in packets. In paper [210], the problem of the design of robustH∞
controllers for uncertain networked control systems (NCSs) with the effects
of both the network-induced delay and data dropout is considered, and the
memoryless type H∞ controller is proposed. However, how to compensate for

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 153–176.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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the time-delay and data dropout has not been considered in the papers listed
above.

Although much research work has been done in networked control systems,
the most work has ignored a very important feature of networked control
systems. This feature is that the communication networks can transmit a
packet of data at the same time, which is not done in traditional control
systems. This chapter makes full use of this network feature and proposes
a new networked control scheme—networked predictive control, which can
overcome the effects caused by network delay [194, 118]. Furthermore, three
different ways to choose control input are discussed in the chapter and the
performances have been compared and analyzed.

This chapter is organized as follows: Section 11.2 presents a networked
predictive control scheme such that the closed-loop system is asymptotically
stable. Section 11.3 details the stability analysis of closed-loop networked pre-
dictive control systems. Real-time simulations and practical experiments are
presented in Section 11.4. Some conclusion remarks are given in Section 11.5.

11.2 Networked Predictive Control for Systems with
Networked Delay

This chapter considers the case where the system controller is far away from
the plant but the sensor is next to the plant. So, the network delay in the
feedback channel is not considered. A networked predictive control scheme
for NCS with random network delay in the forward channel is proposed.
The main part of the scheme is the networked predictive controller, which
compensates for the network delay in the forward channel and achieves the
desired control performance.

Consider a MIMO discrete system described in the following state space
form

xt+1 = Axt + But

yt = Cxt
(11.1)

where xt ∈ Rn, ut ∈ Rm, and yt ∈ Rl are the state, input, and output vectors
of the system, respectively, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n are the
system matrices. For the simplicity of stability analysis, it is assumed that
the reference input of the system is zero. Also, the following assumptions are
made.

Assumption 11.2.1 The pair (A,B) is completely controllable, and the pair
(A,C) is completely observable.

Assumption 11.2.2 The number of consecutive data dropouts is less than
N1, where N1 is a positive integer.
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Assumption 11.2.3 The upper bound of the network delay is not greater
than N , where N is a positive integer.

Remark 11.1. In a real NCS, if the data packet does not arrive at a destination
in a certain transmission time, it means this data packet is lost, based on the
commonly used network protocols. From the physical point of view, it is
natural to assume that only a finite number of consecutive data dropouts
can be tolerated in order to avoid that the NCS becomes open-loop. Thus,
the number of consecutive data dropouts should be less than a finite number
N1. Similarly, the network delay should also be bounded by a finite number
N . Clearly, the upper bound number of consecutive data dropouts should not
be greater than the upper bound of the network delay (i.e. N1 ≤ N).

The state observer is designed as

x̂t+1|t = Ax̂t|t−1 + Buot + L(yt − Cx̂t|t−1) (11.2)

where x̂t+1|t ∈ Rn and uot ∈ Rm are the one-step ahead state prediction and
the input of the observer at time t, respectively. The matrix L ∈ Rn×l can
be designed using observer design approaches.

The estimator of the state

x̂t|t = x̂t|t−1 + M(yt − Cx̂t|t−1) (11.3)

where x̂t|t−1 ∈ Rn is the one-step prediction, yt − Cx̂t|t−1 is the innovation,
M is filter gain to be determined.

Following the state observer described by (11.2), based on the output data
up to t− k, the state predictions from time t− k + 1 to t are constructed as

x̂t+1|t = Ax̂t|t−1 + Buot + L(yt − Cx̂t|t−1)
x̂t+2|t = Ax̂t+1|t + But+1|t

...
x̂t+N |t = Ax̂t+N−1|t + But+N−1|t.

(11.4)

In particular, based on (11.1)-(11.3), the augmented system without time-
delay, i.e., ut = ut|t, can be described as follows:

xt+1 = (A + BKMC)xt + (BK −BKMC)x̂t|t−1

x̂t+1|t = (A + BK − LC −BKMC)x̂t|t−1

+(BKMC + LC)xt.
(11.5)

Where the gain of feedback controller, K, can be designed based on modern
control theory in the case of no delay. To overcome unknown network trans-
mission delay, a networked predictive control scheme is proposed. It mainly
consists of a control prediction generator and a network delay compensator.
The control prediction generator is designed to generate a set of future con-
trol predictions. The network delay compensator is used to compensate the
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unknown random network delay. This chapter considers the case where the
system’s sensor is next to the plant. So, the transmission delay in the feedback
channel is not discussed. In order to compensate the network transmission
delay, a network delay compensator is proposed. A very important charac-
teristic of the network is that it can transmit a set of data at the same
time. Thus, it is assumed that predictive control sequence at time t is packed
and sent to the plant side through a network. The network delay compen-
sator chooses the latest control value from the control prediction sequences
available on the plant side. For example, if the following predictive control
sequences are received on the plant side:

[uT
t−k1|t−k1

, uT
t−k1+1|t−k1

, · · · , uT
t|t−k1

, · · · , uT
t+N−k1|t−k1

]T

[uT
t−k2|t−k2

, uT
t−k2+1|t−k2

, · · · , uT
t|t−k2

, · · · , uT
t+N−k2|t−k2

]T

...
[uT

t−kt|t−kt
, uT

t−kt+1|t−kt
, · · · , uT

t|t−kt
, · · · , uT

t+N−kt|t−kt
]T

(11.6)

where the control values ut|t−ki
for i = 1, 2, · · · , t, are available to be chosen

as the control input of the plant at time t, the output of the network delay
compensator, i.e., the input to the actuator will be

ut = ut|t−min{k1,k2,···,kt}. (11.7)

In fact, using the networked predictive control scheme presented in this sec-
tion, the control performance of the closed-loop system with network delay
is very similar to that of the closed-loop system without network delay.

While designing of the predictor, control input to the observer ut is needed
to improve the predictive precision. The control inputs to the actuator may
be different to the control inputs to the observer due to networked induced
time-delay and data dropout. There are three ways to obtain control inputs
to the observer, which are analyzed as follows:

Case 1: Use predicted value as the control input to actuator shown in
Fig. 11.1:

ut = Kx̂t|t−kt
(11.8)

while the control input to the observer is

uot = ut|t (11.9)

where K ∈ Rm×n is the state feedback control matrix to be determined using
modern control theory. Then, the control predictions are generated by

uot = ut|t = Kx̂t|t, ut+kt|t = Kx̂t+kt|t, for kt = 0, 1, 2, · · · , N, (11.10)

Thus, it follows from equation (11.4) that

x̂t+kt|t = (A + BK)kt−1x̂t+1|t. (11.11)
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Fig. 11.1 The diagram of Case 1

Based on equations (11.2), (11.3) and (11.9), it can be shown that

x̂t+kt|t = (A + BK)kt−1(BKMC + LC)xt

+(A + BK)kt−1(A + BK − LC −BKMC)x̂t|t−1 (11.12)

and

ut+kt|t = K(A + BK)kt−1(BKMC + LC)xt

+K(A+ BK)kt−1(A + BK − LC −BKMC)x̂t|t−1.(11.13)

Case 2: The control input to the observer is ut|t−k as ut which is sent
directly to the actuator of plant, as shown in Fig. 11.2:

ut = uot = ut|t−kt
= Kx̂t|t−kt

(11.14)

where the state feedback matrix K ∈ Rm×n, and kt is the network delay in

Fig. 11.2 The diagram of Case 2

forward channel. Using (11.4), (11.7) and (11.14), the output of the networked
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predictive control at time t is determined by

ut = Kx̂t|t−kt
(11.15)

= K(A + BK)kt−1x̂t−kt+1|t−kt

= K(A + BK)kt−1[Ax̂t−kt|t−kt−1 + But−kt + L(yt − Cx̂t−kt|t−kt−1)]

= K(A + BK)kt−1(A− LC)x̂t−kt|t−kt−1

+K(A+ BK)kt−1LCxt−kt + K(A+ BK)kt−1But−kt .

Case 3: The control input ut which is sent to the actuator of the plant is
transferred to the observer through the network, (shown in Fig. 11.3).

uat = ut|t−kt
, uot = ut−ft|t−kt−ft

= Kx̂t−ft|t−kt−ft
(11.16)

where the state feedback matrix K ∈ Rm×n, kt and ft are the network

Fig. 11.3 The diagram of Case 3

induced delay in forward channel. Using (11.5) and (11.16), the output of the
networked predictive control at time t is determined by

ut = Kx̂t|t−kt
(11.17)

= K(A + BK)kt−1x̂t−kt+1|t−kt

= K(A + BK)kt−1[Ax̂t−kt|t−kt−1 + But−kt + L(yt − Cx̂t−kt|t−kt−1)]

= K(A + BK)kt−1(A− LC)x̂t−kt|t−kt−1

+K(A+ BK)kt−1LCxt−kt + K(A+ BK)kt−1But−kt .



11.3 Stability Analysis of Closed Networked Predictive Control Systems 159

11.3 Stability Analysis of Closed Networked Predictive
Control Systems

Case 1:

Theorem 11.2. For the networked predictive control systems with random
network delay in the forward channel, the closed-loop system (11.1) is stable
if there exists a positive definite matrix P ∈ R(2N+2)n×(2N+2)n such that

A
T
(kt)PA(kt) − P < 0 (11.18)

for kt = 0, 1, 2, · · · , N , where

A(kt) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · M1(kt) 0 · · · 0 0 0 · · · M2(kt) 0 · · · 0 0
I 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0
...

... · · · ...
... · · · ...

... · · · ...
... · · · ...

...
0 0 · · · I 0 · · · 0 0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 I · · · 0 0 0 · · · 0 0 · · · 0 0
...

... · · · ...
... · · · ...

... · · · ...
... · · · ...

...
0 0 · · · 0 0 · · · I 0 0 · · · 0 0 · · · 0 0

M3(kt) 0 · · · 0 0 · · · 0 0 M4(kt) · · · 0 0 · · · 0 0
0 0 · · · 0 0 · · · 0 0 I · · · 0 0 · · · 0 0
...

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
...

0 0 · · · 0 0 · · · 0 0 0 · · · I 0 · · · 0 0
0 0 · · · 0 0 · · · 0 0 0 · · · 0 I · · · 0 0
...

... · · · ...
...

... · · · ...
... · · · ...

... · · · ...
...

0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
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⎥
⎥
⎥
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⎥
⎥
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⎥
⎥
⎥
⎦

(11.19)
with kt ∈ {1, 2, · · · , N}, A(kt) ∈ R2(N+1)n×2(N+1)n,

M1(kt) = BK(A+ BK)kt−1(BKMC + LC)
M2(kt) = BK(A+ BK)kt−1(A + BK − LC −BKMC)
M3(kt) = BKMC + LC, M4(kt) = A+ BK − LC −BKMC
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A(0) =

⎡
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... · · · ...
... · · · ...
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0 0 · · · I 0 · · · 0 0 0 · · · 0 0 · · · 0 0
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0 0 · · · 0 0 · · · I 0 0 · · · 0 0 · · · 0 0
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0 0 · · · 0 0 · · · 0 0 I · · · 0 0 · · · 0 0
...

... · · · ...
... · · · ...

...
... · · · ...

... · · · ...
...

0 0 · · · 0 0 · · · 0 0 0 · · · I 0 · · · 0 0
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⎥
⎥
⎥
⎦

where A(0) ∈ R2(N+1)n×2(N+1)n, M1(0) = A + BKMC, M2(0) = BK −
BKMC, M3(0) = BKMC + LC, M4(0) = A+ BK − LC −BKMC.

Proof. Since the control input to the actuator of the plant is ut = Kx̂t|t−kt
,

then, based on (11.13), the closed-loop system can be written as

xt+1 = Axt + But

= Axt + But|t−kt

= Axt + M1(kt)xt−kt

+ M2(kt)x̂t−kt|t−kt−1.

(11.20)

Since the control input to the observer is uot = ut|t = Kx̂t|t, then, based on
(11.2), the state observer has the following form

x̂t+1|t = Ax̂t|t−1 + But|t + L(Cxt − Cx̂t|t−1)
= (A− LC)x̂t|t−1 + LCxt + BK(x̂t|t−1

+ M(yt − Cx̂t|t−1))
= M4x̂t|t−1 + (BKMC + LC)xt.

(11.21)

Let

xT (t) = [xT
t xT

t−1 · · · xT
t−kt

xT
t−(kt+1) · · · xT

t−N x̂T
t|t−1

x̂T
t−1|t−2 · · · x̂T

t−kt|t−kt−1 · · · x̂T
t−N |t−N−1]

(11.22)

then, the augmented system can be expressed as

xt+1 = A(kt)xt.

When kt = 0, based on (11.5), the augmented system can be expressed as
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xt+1 = A(0)xt. (11.23)

It follows that the closed-loop system is a switched system which is composed
of N + 1 discrete-time subsystems, i.e.,

xt+1 = A(kt)xt (11.24)

where kt = 0, 1, · · · , N . The switched system can be described as

xt+1 = Aδ(k)xt (11.25)

where δ(k) : {0, 1, · · ·} → {0, 1, 2, · · · , N}, δ(k) is switching signal.
Let Vt = xT

t Pxt, then

Vt+1 − Vt = xT
t+1Pxt+1 − xT

t Pxt

= xT
t [A

T

δ(k)PAδ(k) − P ]xT
t . (11.26)

From (11.18), it follows that Vt+1−Vt < 0, for δ(k). Therefore, system (11.25)
is stable for all switching sequences δ(k).

Case 2:
Then, we are in a position to give the results for Case 2.

Theorem 11.3. For the networked predictive control system with random
network delay in the feedback channel, the closed-loop system (11.1) is stable
if there exists a positive definite matrix P ∈ R(2nN+mN+2n)×(2nN+mN+2n)

such that
ΛT (kt)PΛ(kt) − P < 0 (11.27)

for kt = 0, 1, 2, · · · , N , where

Λ(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(N+1)n
︷ ︸︸ ︷
M1(0) 0 · · · 0 0

Nm
︷ ︸︸ ︷
0 · · · 0 0 M2(0) 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · I 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 K 0 · · · 0 0
0 0 · · · 0 0 I · · · 0 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · I 0 0 0 · · · 0 0
M3(0) 0 · · · 0 0 0 · · · 0 0 M4(0) 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0 I 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.28)
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Λ(0) ∈ R(2nN+mN+2n)×(2nN+mN+2n), M1(0) = A+BKMC, M2(0) = BK−
BKMC, M3(0) = BKMC + LC, M4(0) = A + BK − LC −BKMC.

Λ(kt) =

⎡

⎣
Λ11(kt) Λ12(kt) Λ13(kt)
Λ21(kt) Λ22(kt) Λ23(kt)
Λ31(kt) Λ32(kt) Λ33(kt)

⎤

⎦ ∈ R(2nN+mN+2n)×(2nN+mN+2n)

(11.29)
for kt = 1, 2, · · · , N , where

Λ11(kt) = Λ12(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A

(kt−1)n
︷ ︸︸ ︷
0 · · · 0 Π(1) 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · I 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktm
︷ ︸︸ ︷
0 0 · · · Π(2) 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.30)

Λ13(kt) = Λ21(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktn
︷ ︸︸ ︷
0 0 · · · 0 Π(3) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktn
︷ ︸︸ ︷
0 0 · · · 0 Π(4) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.31)
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Λ22(kt) = Λ23(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktm
︷ ︸︸ ︷
0 0 · · · Π(5) 0 0 · · · 0 0
I 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · I 0 0 · · · 0 0
...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktn
︷ ︸︸ ︷
0 0 · · · 0 Π(6) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.32)

Λ31(kt) = Λ32(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LC

(kt−1)n
︷ ︸︸ ︷
0 · · · 0 Π(7) 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktm
︷ ︸︸ ︷
0 0 · · · Π(8) 0 0 · · · 0 0
I 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · I 0 0 · · · 0 0
...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.33)

Λ33(kt) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π(9)

(kt−1)n
︷ ︸︸ ︷
0 · · · 0 Π(10) 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 I 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 I · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.34)

where
Λ11(kt) ∈ R(nN+n)×(nN+n), Λ12(kt) ∈ R(nN+n)×(mN)

Λ13(kt) ∈ R(nN+n)×(nN+n), Λ21(kt) ∈ R(mN)×(nN+n)

Λ22(kt) ∈ R(mN)×(mN), Λ23(kt) ∈ R(mN)×(nN+n)

Λ31(kt) ∈ R(nN+n)×(nN+n), Λ32(kt) ∈ R(nN+n)×(mN)

Λ33(kt) ∈ R(nN+n)×(nN+n)

Π(1)=BK(A+BK)kt−1LC, Π(2) = BK(A+BK)kt−1B, Π(3)=BK(A+
BK)kt−1(A−LC), Π(4) = K(A+BK)kt−1LC, Π(5) = K(A+BK)kt−1B,
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Π(6) = K(A + BK)kt−1(A − LC), Π(7) = BK(A + BK)kt−1LC, Π(8) =
BK(A+BK)kt−1B, Π(9) = A−LC, Π(10) = BK(A+BK)kt−1(A−LC).

Proof. Since the control input to the actuator of the plant is ut = Kx̂t|t−kt
,

then, based on (11.15), the closed-loop system can be written as

xt+1 = Axt + But

= Axt + But|t−kt

= Axt + BK(A + BK)kt−1LCxt−kt

+ BK(A+ BK)kt−1But−kt + BK(A+ BK)kt−1(A− LC)x̂t−kt|t−kt−1

and the control input to the observer is the same as the one to the actuator
the plant, i.e., uot = ut = Kx̂t|t−kt

, then, the state observer has the following
form

x̂t+1|t = Ax̂t|t−1 + Buot + L(Cxt − Cx̂t|t−1)
= Ax̂t|t−1 + BKx̂t|t−kt

+ L(Cxt − Cx̂t|t−1)
= LCxt + BK(A + BK)kt−1LCxt−kt + BK(A+ BK)kt−1But−kt

+ (A− LC)x̂t|t−1 + BK(A+ BK)kt−1(A− LC)x̂t−kt|t−kt−1.

Let

Xt = [xT
t xT

t−1 · · · xT
t−kt+1 xT

t−kt
xT

t−kt−1 · · · xT
t−N+1 xT

t−N

uT
t−1 uT

t−2 · · · uT
t−kt+1 uT

t−kt
uT

t−kt−1 · · · uT
t−N+1 uT

t−N x̂T
t|t−1 xT

t−1|t−2

· · · x̂T
t−kt+1|t−kt

x̂T
t−kt|t−kt−1 xT

t−kt−1|t−kt−2 · · ·
x̂T

t−N+1|t−N x̂T
t−N |t−N−1 ]T

(11.35)
then, the augmented system can be expressed as

xt+1 = Λ(kt)xt.

When kt = 0, based on (11.5), the augmented system can be expressed as

xt+1 = Λ(0)xt. (11.36)

It follows that the closed-loop system is a switched system which is composed
of N + 1 discrete-time subsystems, i.e.,

xt+1 = Λ(kt)xt (11.37)

where kt = 0, 1, · · · , N . The switched system can be described as

xt+1 = Aδ(k)xt (11.38)

where δ(k) : {0, 1, · · ·} → {0, 1, 2, · · · , N}, δ(k) is switching signal.
Let Vt = xT

t Pxt, then

Vt+1 − Vt = xT
t+1Pxt+1 − xT

t Pxt
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= xT
t [A

T

δ(k)PAδ(k) − P ]xT
t . (11.39)

From (11.27), it follows that Vt+1−Vt < 0, for δ(k). Therefore, system (11.37)
is stable for all switching sequences δ(k).

It is assumed that the network delay kt and ft in the forward channel are
random but bounded by N , that is, kt ∈ {1, 2, · · · , N} and ft ∈ {1, 2, · · · , N},
respectively. The networked predictive controller is in the form of

ut = Kx̂t−ft|t−kt−ft
, subject to kt ≤ kt−1 + 1, ft ≤ ft−1 + 1. (11.40)

Under this control scheme, the closed-loop system will be a switched linear
system. The theory of switched systems can be used to judge whether the
closed-loop system with random time-delay is stable with the observer gain
L and feedback gain K ([32]).

Finally, we generalize the results of Case 2 in Case 3, where the input to
the observer is sent through network.

Case 3:

Theorem 11.4. For the networked predictive control systems with random
network delay in the feedback channel, the closed-loop system (11.1) is stable
if there exists a positive definite matrix P ∈ R(2nN+2mN+2n)×(2nN+2mN+2n)

such that

ΛT (kt, ft)PΛ(kt, ft) − P < 0 for kt, ft = 0, 1, 2, · · · , N (11.41)

where

Λ(kt, ft) =

⎡

⎣
Λ11(kt, ft) Λ12(kt, ft) Λ13(kt, ft)
Λ21(kt, ft) Λ22(kt, ft) Λ23(kt, ft)
Λ31(kt, ft) Λ32(kt, ft) Λ33(kt, ft)

⎤

⎦

∈ R(2nN+2mN+2n)×(2nN+2mN+2n) (11.42)

Λ(0, 0) is Λ(0) with the symbol mN replaced by 2mN , Λ(kt, ft is Λ(kt) with
the symbol mkt replaced by m(kt + ft).

Proof. If the random network delays are kt or ft �= 0, the control input
to the actuator of the plant is uat = Kx̂t|t−kt

, then, based on (11.17), the
closed-loop system can be written as

xt+1 = Axt + But

= Axt + But|t−kt

= Axt + BK(A + BK)kt−1LCxt−kt

+ BK(A+ BK)kt−1But−kt + BK(A+ BK)kt−1(A−LC)x̂t−kt|t−kt−1

and the control input to the observer is sent through the network, i.e., uot =
ut−kt−ft , then, the state observer has the following form
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x̂t+1|t = Ax̂t|t−1 + Buot + L(Cxt − Cx̂t|t−1)
= Ax̂t|t−1 + BKx̂t|t−kt

+ L(Cxt − Cx̂t|t−1)
= Ax̂t|t−1 + K(A+ BK)kt−1[Ax̂t−kt|t−kt−1 + But−kt−ft

+ L(yt − Cx̂t−kt|t−kt−1)] + L(Cxt − Cx̂t|t−1)
= LCxt + BK(A+ BK)kt−1LCxt−kt + BK(A+ BK)kt−1But−kt−ft

+ (A− LC)x̂t|t−1 + BK(A + BK)kt−1(A− LC)x̂t−kt|t−kt−1.

Combination of above equations, and let

Xt =
[
xT

t xT
t−1 · · · xT

t−kt+1 xT
t−kt

xT
t−kt−1 · · · xT

t−N+1 xT
t−N

uT
t−1 uT

t−2 · · · uT
t−kt+1 uT

t−kt
uT

t−kt−1 · · · uT
t−2N+1 uT

t−2N x̂T
t|t−1 xT

t−1|t−2

· · · x̂T
t−kt+1|t−kt

x̂T
t−kt|t−kt−1 xT

t−kt−1|t−kt−2 · · ·
x̂T

t−N+1|t−N x̂T
t−N |t−N−1

]T
.

(11.43)
While there is no time-delay, i.e., kt = 0 and ft = 0, based on (11.5), the
augmented system simply becomes

Xt+1 = Λ(0, 0)Xt. (11.44)

As the time-delay is random, the closed-loop system is a switched system
which is composed of (N + 1) × (N + 1) discrete-time subsystems, i.e.,

Xt+1 = Λ(it, kt)Xt (11.45)

where it = 0, 1, · · · , N and kt = 0, 1, · · · , N . The switched system can be
described as

Xt+1 = Λδ(k)Xt (11.46)

where δ(k) : {0, 1, · · ·} → {0, 1, 2, · · · , N} × {0, 1, 2, · · · , N}, δ(k) is switching
signal.

Let Vkt = XT
t PXt, then

Vt+1 − Vt = XT
t+1PXt+1 −XT

t PXt

= XT
t [ΛT

δ(k)PΛδ(k) − P ]XT
t . (11.47)

From (11.41), it follows that Vt+1−Vt < 0, for δ(k). Therefore, system (11.45)
is stable.

Remark 11.5. Since network delay kt and ft randomly vary from 0 to the
upper bound N , respectively. And it is necessary to design gain matrices
K and L to ensure matrices Λ(kt, ft) are stable (i.e., their eigenvalues are
within the unit circle), for kt, ft = 0, 1, ..., N . But, it does not mean that
the closed-loop system is stable because the closed-loop system with random
network delay is a switched system. Theorem 13.3 shows that the closed-loop
system is stable if (11.41) is satisfied. So, when gain matrices K and L are
designed, then (11.41) is a set of LMIs, which are only related to matrices
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A,B,C and random network delay kt and ft. The LMI Toolbox can be used
to find feasible solution P ([15]).

11.4 Realtime Simulation and Practical Experiment

11.4.1 Practical Experiments

Example 11.6. To implement networked control systems, a test rig was built,
based on an ARM9 embedded system. The forward channel is through a net-
work and the communication protocol between the controller and the sensor
is UDP. The kernel chip of the embedded board is ATMEL’s AT91RM9200,
which is a cost-effective, high-performance 32-bit RISC microcontroller for
Ethernet- based embedded systems. A 10M/100M self-adaptive network con-
troller is integrated in the chip and the chip also has a high computing per-
formance and can work at speeds up to 180 MHz. 2-channel 16-bit high speed
digital-analog (D/A) converters and 8-channel 16-bit high speed analog-
digital (A/D) converters in the controller board provide I/O interfaces for
the controlled plant. In order to validate the proposed method, a servo mo-
tor control system which consists of a DC motor, peripheral equipment, speed
sensors is considered. The model of the motor control plant at sampling pe-
riod 0.04 second was identified to be

G(z−1) =
A(z−1)
B(z−1)

=
0.3077z−1 − 0.05806z−2 − 0.09977z−3 − 0.09555z−4

1 − 0.3538z−1 − 0.3059z−2 − 0.2932z−3 + 0.006748z−4

The system can also be written as the state space form with the following
system matrices

A =

⎡

⎢
⎢
⎣

0.3538 0.3059 0.2932 −0.006748
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ (11.48)

C =
[
0.3077 −0.05806 −0.09977 0.09555

]
.

The matrices K, L and M were designed to be

K =
[−0.2468 −0.3097 −0.2931 0.0067

]
, L =

⎡

⎢
⎢
⎣

3.0459
2.4805
2.0067
−0.0515

⎤

⎥
⎥
⎦ , M =

[
2 2 2 2

]

which ensure the close-loop system without time delay is stable.
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To illustrate the operation of the proposed networked predictive control
scheme, three cases were considered:

a) Local control. There is no network in the closed-loop system, i.e., the
output signal from the sensor is directly connected to the controller. So, the
network delay is zero. The design of matrices K, L and M have ensured that
the closed-loop system is stable.

b) Intranet based control. In this case, the output signal of controller was
physically transmitted between two Intranet IP addresses 192.168.2.106 and
192.168.2.108 which were both located on the Chinese Academy of Sciences,
Beijing. It was measured that the maximum network delay was 0.12 second.
As the sampling period is 0.04 second, the upper bound N = 3. For kt =
0, 1, 2, 3, in each three cases, all eigenvalues of matrices Λ(kt) or Λ(kt, ft)
are stable and each common positive definite matrix P satisfying inequalities
(11.18), (11.27) and (11.41) were found using the LMI toolbox. That means
the closed-loop system is stable with K, L and M given above.

c) Internet based control. In this case, the output signal of controller was
transmitted between the same two Internet IP addresses 192.168.2.106 and
192.168.2.108 which were both located on the Chinese Academy of Sciences,
Beijing. From [13], we get that the maximum internet network delay was
measured to be 0.32 second. So we add 0.2 second random delay to simulate
the internet delay. The sampling period was still 0.04 second. So, the upper
bound N = 8. Similar to the Intranet control case, for kt = 0, 1, 2, ..., 8, all
eigenvalues of matrices Λ(kt) or Λ(kt, ft) are stable and also each common
positive definite matrix P satisfying inequalities (11.18), (11.27) and (11.41)
were found using the LMI toolbox. That implies that the closed-loop system
is stable for given K, L and M above.

To evaluate the performance of the networked predictive control scheme,
one real-time simulation and one real-time experiment were carried out.

Case 1: ut = Kx̂t|t−k, uot = ut|t = Kx̂t|t
1) Real-time simulation. In this simulation, the servo motor plant to be

controlled is represented by its model but the network was a real one. The
simulations were performed using Matlab/simulink/Real time Workshop. The
real-time simulation diagram is shown in Fig. 11.4. The reference input is a
square wave generated by the pulse generator block, which changes between
0v to 1000rpm with period 5s. The controller block Netctrl is the networked
predictive controller. Blocks Recv and Send are the receiver and sender of
the UDP communication protocol. All of them were designed using Mat-
lab S-Functions. The simulated plant and the controller were executed in a
ARM 9 embedded system. The real network (Intranet or Internet) was be-
tween UDP communication blocks Recv and Send in Fig. 11.4 Four real time
simulations were conducted: local control (i.e., no network), Internet based
control without delay compensation, Internet based control with delay com-
pensation and Intranet based control with delay compensation. The real-time
simulation results are shown in Fig. 11.5 and Fig. 11.6. The Internet based
control without delay compensation was also conducted, but it was found



11.4 Realtime Simulation and Practical Experiment 169

Fig. 11.4 The diagram of the real-time simulation

that the system was no longer stable due to the large network delay, which
was between 0.2-0.3s.
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Fig. 11.5 Outputs of servo plant (Simulation).

2) Real-time experiment. The difference between the real-time simulation
and real-time experiments is that the plant model of the servo motor in the
real-time simulation is replaced by D/A block Dac and A/D block Adc and
the real servo motor. The diagram of the real-time experiment is shown in Fig.
11.7. The two blocks Dac and Adc were the driver of the A/D and D/A chan-
nels in the embedded system and were designed in Matlab S-Function. Sim-
ilarly, four real-time experiments were made: local control (i.e., no network),
Intranet based control without delay compensation, Intranet based control
with delay compensation and Internet based control with delay compensa-
tion. The real-time experiment results are shown in Fig. 11.8 and Fig. 11.9.
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Fig. 11.6 Inputs of servo plant (Simulation).

Also, it was found that the Internet based control without delay compensation
was unstable.

Fig. 11.7 The diagram of the real-time experiment

Case 2: ut = ut|t−kt
= Kx̂t|t−kt

, uot = ut−kt .
1) Real-time simulation
2) Real-time experiment
Case 3: ut = Kx̂t|t− kt, uot = ut−kt−ft .
1) Real-time simulation
2) Real-time experiment
From the results of real-time simulations and real-time experiments, it is

clear that the network transmission delay degrades the performance of NCS.
But the networked predictive control scheme proposed in this chapter can
compensate for the network delay actively. Its performance is very close to
that of the local control scheme (i.e., no network).
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Fig. 11.8 Outputs of servo plant (Experiment).
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Fig. 11.9 Inputs of servo plant (Experiment)

Fig. 11.10 The diagram of the real-time simulation
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Fig. 11.11 Outputs of servo plant (Simulation).
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Fig. 11.12 Inputs of servo plant (Simulation).

The results also shows the performances of three different ways to get
ut. We can see that Case 2 is ideal, in which ut is obtained from the plant
directly. However, it is a pity that it is impossible in real-time experiment.
Comparing Case 1 with Case 2 and Case 3, we’ll find that the effect of Case
1 is very similar to Case 2,which is better than Case 3.

Although it is hard to make the model of the servo motor plant be exactly
the same as the real practical one, the results of the real-time experiments
are very similar to those of the real-time simulations.
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Fig. 11.13 The diagram of the real-time experiment
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Fig. 11.14 Outputs of servo plant (Experiment).

11.5 Conclusion

A new networked predictive control scheme in a state-space form has been
proposed for networked distributed control systems with random network
delay and the stability of the closed loop networked predictive control sys-
tems has also been discussed in this chapter. Based on the network feature
of transmitting a set of data each time, the proposed networked predictive
controller consists of the control prediction generator and the network delay
compensator. The former provides a set of future control predictions to satisfy
the system performance requirements. The latter compensates the random
network transmission delay. Three important theorems on the stability of the
closed-loop networked predictive control system have given the analytical sta-
bility criteria for different ut, respectively. Also, both real time simulations
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Fig. 11.15 Inputs of servo plant (Experiment).

Fig. 11.16 The diagram of the real-time simulation
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Fig. 11.18 Inputs of servo plant (Simulation)

Fig. 11.19 The diagram of the real-time experiment
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and practical experiments were presented to show the effectiveness of the
control scheme proposed in this chapter.



Chapter 12

Analysis and Synthesis of NCSs with
Random Feedback Delay

12.1 Introduction

Recently, there are some preliminary results on designing networked con-
trollers for compensating random time-delay and data dropout, see for exam-
ple, [116, 120, 119], where the random network delay in the forward channel in
NCS has been studied. But, the random network delay in the feedback chan-
nel makes the control design and stability analysis much more difficult. This
chapter proposes a predictive control scheme for networked control systems
with random time delay in the feedback channel and also provides analyti-
cal stability criteria of closed-loop networked predictive control systems. In
order to compensate for the network transmission delay, a network delay
compensator is proposed. The predicted sequences are sent to the actuator
in a package. The networked predictive controller chooses the latest input
value from the predicted sequences available on the actuator side. Under this
control scheme, the closed-loop system will be a switched linear system. The
theory of switched systems can be used to judge whether the closed-loop
system with random time-delay is stable.

This chapter is organized as follows: Section 12.2 presents a networked
predictive control scheme such that the closed-loop system is asymptotically
stable. Section 12.3 details the stability analysis of closed-loop networked
predictive control systems for system with both constant and random net-
work delay. Real-time simulations and practical experiments are presented in
Section 12.4. Some conclusion remarks are given in Section 12.5.

12.2 Design of Networked Predictive Controller

This chapter considers the case where the system sensor is far away from the
plant but the controller is next to the plant. So, the network delay in the

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 177–197.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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forward channel is not considered. A networked predictive control scheme
for NCS with random network delay in the feedback channel is proposed.
The main part of the scheme is the networked predictive controller, which
compensates for the network delay in the feedback channel and achieves the
desired control performance.

Consider a MIMO (multi-input multi-output) discrete system described in
the following state space form

xt+1 = Axt + But

yt = Cxt
(12.1)

where xt ∈ Rn, ut ∈ Rm, and yt ∈ Rl are the state, input, and output
vectors of the system, respectively, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n the
system matrices. For the simplicity of stability analysis, it is assumed that
the reference input of the system is zero. Also, the following assumptions are
made.

Assumption 12.2.1 The pair, (A,B), is completely controllable, and the
pair, (A,C) is completely observable.

Assumption 12.2.2 The number of consecutive data dropouts is less than
N1, where N1 is a positive integer.

Assumption 12.2.3 The upper bound of the network delay is not greater
than N , where N is a positive integer.

Remark 12.1. In a real NCS, if the data packet does not arrive at a destination
in a certain transmission time, it means this data packet is lost, based on the
commonly used network protocols. From the physical point of view, it is
natural to assume that only a finite number of consecutive data dropouts
can be tolerated in order to avoid that the NCS becomes open-loop. Thus,
the number of consecutive data dropouts should be less than a finite number
N1. Similarly, the network delay should also be bounded by a finite number
N . Clearly, the upper bound number of consecutive data dropouts should not
be greater than the upper bound of the network delay (i.e. N1 ≤ N).

The state observer is designed as

x̂t+1|t = Ax̂t|t−1 + But + L(yt − Cx̂t|t−1) (12.2)

where x̂t+1|t ∈ Rn and ut ∈ Rm are the one-step ahead state prediction and
the input of the observer at time t, respectively. The matrix L ∈ Rn×l can
be designed using observer design approaches.

Following the state observer described by (12.2), based on the output data
up to t− k, the state predictions from time t− k + 1 to t are constructed as
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x̂t−k+1|t−k = Ax̂t−k|t−k−1 + But−k + L(yt−k − Cx̂t−k|t−k−1)
x̂t−k+2|t−k = Ax̂t−k+1|t−k + But−k+1

...
x̂t|t−k = Ax̂t−1|t−k + But−1

(12.3)

which results in

x̂t−k+i|t−k = Ai−1(A− LC)x̂t−k|t−k−1 +
i∑

j=1

Ai−jBut−k+j−1

+Ai−1Lyt−k, i = 1, 2, 3, · · · , k. (12.4)

In order to compensate for the network transmission delay, a network delay
compensator is proposed. When the time-delay is random and data dropouts
happen in the feedback channel, the observer will still use measurement out-
put yt−1 received last time if measurement output yt is lost or yt is delayed,
otherwise, yt−j will be used if yt−i arrives after yt−j , and j < i. Thus, with
the introduction of bounded random scalar kt, measurement output yt−kt , de-
notes three types of measurement output transmitted in the feedback channel,
i.e., random delay, data dropout and first sent later arrived. A very important
characteristic of the network is that it can transmit a set of data at the same
time. Thus, the predicted sequences are sent to the actuator in a package.
The networked predictive controller chooses the latest input value from the
predicted sequences available on the actuator side, that is, the controller is
designed using the state feedback control strategy:

ut = Kx̂t|t−k (12.5)

where the state feedback matrix K ∈ Rm×n. This controller can compensate
for the network delay caused in the feedback channel. Using (12.4), the output
of the networked predictive control at time t is determined by

ut = KAk−1(A− LC)x̂t−k|t−k−1 +
k∑

j=1

KAk−jBut−k+j−1 + KAk−1Lyt−k.

(12.6)
From equation (12.6), it is clear that the future control predictions depend
on the state estimation x̂t−k|t−k−1, the past control input up to ut−1 and the
past output up to yt−k of the system.

In particular, the augmented system without time-delay and with ut =
Kx̂t|t−1 can be described as follows:

x̂t+1|t = (A + BK − LC)x̂t|t−1 + LCxt

xt+1 = Axt + BKx̂t|t−1.
(12.7)
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In the case of no network delay, it is assumed that the state-feedback con-
troller is designed by a modern control method, for example, LQG, eigen-
structure assignment, etc.

12.3 Stability of Networked Predictive Control
Systems

This section considers the stability of networked control systems for two cases:
one is the case of the constant network delay and the other is the case of the
random network delay.

12.3.1 Constant Network Delay

It assumes that the network delay in the feedback channel is constant. For
this case, there is the following theorem:

Theorem 12.2. For networked predictive control systems with constant net-
work delay k in the feedback channel, the closed-loop system is stable if and
only if all eigenvalues of the following matrix are within the unit circle.

Ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 0 · · · 0
KAk−1LC KB KAB · · · KAk−2B

0 I 0 · · · 0
...

...
... · · · ...

0 0 0 · · · I
LCAk AB LCAB · · · LCAk−2B

0 B 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0
0 0 0 · · · 0

B 0 0 · · · 0 0
KAk−1B 0 0 · · · 0 KAk−1(A− LC)

0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0

LCAk−1B A− LC 0 · · · 0 0
0 I 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0
0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.8)
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where Ψ ∈ R[km+(k+1)n]×[km+(k+1)n].

Proof. The necessary and sufficient condition of the closed-loop system sta-
bility is that the closed-loop poles are stable. Using the networked predictive
controller

ut = KAk−1(A− LC)x̂t−k|t−k−1 +
k∑

j=1

KAk−jBut−k+j−1 + KAk−1LCxt−k

(12.9)
results in the following closed-loop system:

xt+1 = Axt + But

= Axt + BKAk−1LCxt−k +
∑k

j=1 BKAk−jBut−k+j−1

+ BKAk−1(A− LC)x̂t−k|t−k−1.

(12.10)

The state observer gives

x̂t+1|t = (A− LC)x̂t|t−1 + LCxt + But. (12.11)

Combination of equations (12.9), (12.10) and (12.11) gives

ξ̄(t + 1) = Ωξ̄(t) (12.12)

where

ξ(t) =
[
xT

t xT
t−1 · · · xT

t−k+1 xT
t−k uT

t−1 · · · uT
t−k+1

uT
t−k x̂T

t|t−1 · · · x̂T
t−k+1|t−k x̂T

t−k|t−k−1 ]T (12.13)

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 BKAk−1LC BKB · · · BKAk−2B
I 0 · · · 0 0 0 · · · 0
...

...
...

...
...

... · · · ...
0 0 · · · I 0 0 · · · 0
0 0 · · · 0 KAk−1LC KB · · · KAk−2B
0 0 · · · 0 0 I · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · I
LC 0 · · · 0 BKAk−1LC BKB · · · BKAk−2B
0 0 · · · 0 0 0 · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
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BKAk−1B 0 · · · 0 BKAk−1(A− LC)
0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
KAk−1B 0 · · · 0 KAk−1(A− LC)

0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
BKAk−1B A− LC · · · 0 BKAk−1(A− LC)

0 I · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12.14)

Applying a state transformation such that the sub-matrix in the upper left
corner of the above matrix becomes zero, system (12.12) is equivalent to the
following system

ξ
′
(t + 1) = Ω′ξ

′
(t) (12.15)

where

ξ
′
(t) =

[
x′Tt x′Tt−1 · · · x′Tt−k+1 x′Tt−k u′T

t−1 · · · u′T
t−k+1 u′T

t−k x̂′Tt|t−1

· · · x̂′Tt−k+1|t−k x̂′Tt−k|t−k−1

]T

Ω′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 BKAk−1LC BKB · · · BKAk−2B
I 0 · · · 0 0 0 · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · I A 0 · · · 0
0 0 · · · 0 KAk−1LC KB · · · KAk−2B
0 0 · · · 0 0 I · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · I
LC LCA · · · LCAk−1 BKAk−1LC BKB · · · BKAk−2B

+LCAk

0 0 · · · 0 0 B · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
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BKAk−1B 0 · · · 0 BKAk−1(A− LC)
0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
KAk−1B 0 · · · 0 KAk−1(A− LC)

0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
BKAk−1B A− LC · · · 0 BKAk−1(A− LC)

0 I · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12.16)

Application of a state transformation such that the first sub-matrix row in
the above matrix is zero yields

ξ
′′
(t + 1) = Ω′′ξ

′′
(t) (12.17)

where

ξ
′′
(t) =

[
x′′Tt x′′Tt−1 · · · x′′Tt−k+1 x′′Tt−k u′′T

t−1 · · · u′′T
t−k+1

u′′T
t−k x̂′′Tt|t−1 · · · x̂′′Tt−k+1|t−k x̂′′Tt−k|t−k−1

]T

Ω′′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0 0 · · · 0
I 0 · · · 0 0 B · · · 0
...

...
...

...
...

... · · · ...
0 0 · · · I A 0 · · · 0
0 0 · · · 0 KAk−1LC KB · · · KAk−2B
0 0 · · · 0 0 I · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · I
LC LCA · · · LCAk−1 LCAk AB · · · 0
0 0 · · · 0 0 B · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0



184 12 Analysis and Synthesis of NCSs with Random Feedback Delay

0 0 · · · 0 0
0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
KAk−1B 0 · · · 0 KAk−1(A− LC)

0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 A− LC · · · 0 0
0 I · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12.18)

From the structure of equation (12.18), it is clear that the system is stable if
and only if the following system is stable

Z(t + 1) = ΞZ(t) (12.19)

where

Z(t) =
[
zT
1 (t) zT

2 (t) · · · zT
3k+1(t)

]

Ξ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 0 B 0 · · · 0
...

...
...

...
...

... · · · ...
0 · · · I A 0 0 · · · 0
0 · · · 0 KAkLC KB 0 · · · KAk−2B
0 · · · 0 0 I 0 · · · 0
... · · · ...

...
...

... · · · ...
0 · · · 0 0 0 0 · · · I

LCA · · · LCAk LCAk+1 AB 0 · · · 0
0 · · · 0 0 B 0 · · · 0
... · · · ...

...
...

... · · · ...
0 · · · 0 0 0 0 · · · 0
0 · · · 0 0 0 0 · · · 0
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0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
KAk−1B 0 · · · 0 KAk−1(A− LC)

0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 A− LC · · · 0 0
0 I · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12.20)

Using the state transformation such that the first k × n rows in (12.20) are
zeros, the following system is derived

Z ′(t + 1) = Ξ ′Z ′(t) (12.21)

where

Z ′T (t) =
[
z′T1 (t) · · · z′Tk (t) z′Tk+1(t) z

′T
k+2(t) · · · z′T2k(t)

z′T2k+1(t) z
′T
2k+2(t) · · · z′T3k(t) z′T3k+1

]T
(12.22)

Ξ ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 0 0 0 · · · 0
...

...
...

...
...

... · · · ...
0 · · · I A 0 0 · · · 0
0 · · · 0 KAk−1LC KB 0 · · ·
0 · · · 0 0 I 0 · · · 0
... · · · ...

...
...

... · · · ...
0 · · · 0 0 0 0 · · · I0

LCA · · · LCAk−1 LCAk AB LCAB · · · LCAk−2B
0 · · · 0 0 B 0 · · · 0
... · · · ...

...
...

... · · · ...
0 · · · 0 0 0 0 · · · 0
0 · · · 0 0 0 0 · · · 0



186 12 Analysis and Synthesis of NCSs with Random Feedback Delay

0 0 · · · 0 0
...

... · · · ...
...

B 0 · · · 0 0
KAk−1B 0 · · · 0 KAk−1(A− LC)

0 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
LCAk−1B A− LC · · · 0 0

0 I · · · 0 0
...

... · · · ...
...

0 0 · · · 0 0
0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12.23)

From the structure of equation (12.21), it can be concluded that the system
is stable if and only if the following system is stable

Z ′′(t + 1) = ΨZ ′′(t) (12.24)

where Ψ is defined in (12.8),

Z ′′(t) =
[
z′′T1 (t) z′′T2 (t) z′′T3 (t) · · · z′′Tk (t)

z′′Tk+1(t) z
′′T
k+2(t) · · · z′′T2k+1(t) z

′′T
2k+2(t)

]T
. (12.25)

Therefore, the closed-loop system is stable if and only if all eigenvalues of
matrix (12.8) are within the unit circle.

Remark 12.3. Since the matrix in (12.8) is related to gain matrices K and L,
in general, these gain matrices should be designed to guarantee the closed-
loop system with constant network delay is stable. If gain matrices K and L
are given, it is clear that the stability of the closed-loop system with constant
network delay is only related to matrices A,B,C and network delay k.

12.3.2 Random Network Delay

It is assumed that the network delay kt in the feedback channel is random
but bounded by N , that is, kt ∈ {1, 2, · · · , N}. The networked predictive
controller is in the form of

ut = Kx̂t|t−kt
, subject to kt ≤ kt−1 + 1 (12.26)

where the network delay kt is a random number but kt ∈ {1, 2, · · · , N}.
Under this control scheme, the closed-loop system will be a switched lin-

ear system. The theory of switched systems can be used to judge whether the



12.3 Stability of Networked Predictive Control Systems 187

closed-loop system with random time-delay is stable with the observer gain
L and feedback gain K ([32]).

In order to present the results in this section , for the sake of simplicity,
let

Λ(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(N+1)n
︷ ︸︸ ︷
A 0 · · · 0 0

Nm
︷ ︸︸ ︷
0 · · · 0 0 BK 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · I 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 K 0 · · · 0 0
0 0 · · · 0 0 I · · · 0 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · I 0 0 0 · · · 0 0
LC 0 · · · 0 0 0 · · · 0 0 A+ BK − LC 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 I 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(2nN+mN+2n)×(2nN+mN+2n) (12.27)

Λ(kt) =

⎡

⎣
Λ11(kt) Λ12(kt) Λ13(kt)
Λ21(kt) Λ22(kt) Λ23(kt)
Λ31(kt) Λ32(kt) Λ33(kt)

⎤

⎦ ∈ R(2nN+mN+2n)×(2nN+mN+2n)

(12.28)
for kt = 1, 2, · · · , N , where

Λ11(kt) = Λ12(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A

(kt−1)n
︷ ︸︸ ︷
0 · · · 0 Π(1) 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · I 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π(2) Π(3) · · · Π(4) Π(5) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.29)
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Λ13(kt) = Λ21(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktn
︷ ︸︸ ︷
0 0 · · · 0 Π(6) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktn
︷ ︸︸ ︷
0 0 · · · 0 Π(7) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.30)

Λ22(kt) = Λ23(kt) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

KB Π(8) · · · Π(9) Π(10) 0 · · · 0 0
I 0 · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · I 0 0 · · · 0 0
...

... · · · ...
...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ktn
︷ ︸︸ ︷
0 0 · · · 0 Π(11) 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.31)
Λ31(kt) = Λ32(kt) =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LC

(kt−1)n
︷ ︸︸ ︷
0 · · · 0 Π(12) 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

BKB Π(13) · · · Π(14) Π(15) · · · 0 0
0 0 · · · 0 0 · · · 0 0
...

... · · · ...
... · · · ...

...
0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 0 · · · 0 0
...

... · · · ...
... · · · ...

...
0 0 · · · 0 0 · · · 0 0
0 0 · · · 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.32)
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Λ33(kt) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π(16)

(kt−1)n
︷ ︸︸ ︷
0 · · · 0 Π(17) 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0
... ... · · ·

...
...

... · · ·
...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 I 0 · · · 0 0
... ... · · ·

...
...

... · · ·
...

...

0 0 · · · 0 0 I · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.33)

where
Λ11(kt) ∈ R(nN+n)×(nN+n), Λ12(kt) ∈ R(nN+n)×(mN)

Λ13(kt) ∈ R(nN+n)×(nN+n), Λ21(kt) ∈ R(mN)×(nN+n)

Λ22(kt) ∈ R(mN)×(mN), Λ23(kt) ∈ R(mN)×(nN+n)

Λ31(kt) ∈ R(nN+n)×(nN+n), Λ32(kt) ∈ R(nN+n)×(mN)

Λ33(kt) ∈ R(nN+n)×(nN+n)

Π(1) = BKAkt−1LC, Π(2) = BKB, Π(3) = BKAB, Π(4) =
BKAkt−2B, Π(5) = BKAkt−1B, Π(6) = BKAkt−1(A − LC), Π(7) =
KAkt−1LC, Π(8) = KAB, Π(9) = KAkt−2B, Π(10) = KAkt−1B,
Π(11) = KAkt−1(A − LC), Π(12) = BKAkt−1LC, Π(13) = BKAB,
Π(14) = BKkt−2AB, Π(15) = BKAkt−1AB, Π(16) = A − LC, Π(17) =
BKAkt−1(A− LC).

Then, the main results in this section can be stated as follows:

Theorem 12.4. For the networked predictive control systems with random
network delay in the feedback channel, the closed-loop system is stable if there
exists a positive definite matrix P ∈ R(2nN+mN+2n)×(2nN+mN+2n) such that

ΛT (kt)PΛ(kt) − P < 0 (12.34)

for kt = 0, 1, 2, · · · , N .

Proof. Following the case of the constant network delay, if the random net-
work delay is kt, kt �= 0, the control input, state prediction, and plant state
vectors are expressed by

ut =KAkt−1(A−LC)x̂t−kt|t−kt−1+
kt∑

j=1

KAkt−jBut−kt+j−1+KAkt−1LCxt−kt

(12.35)

x̂t+1|t = (A− LC)x̂t|t−1 + LCxt + BKAkt−1(A− LC)x̂t−kt|t−kt−1

+
kt∑

j=1

BKAkt−jBut−kt+j−1 + BKAkt−1LCxt−kt (12.36)
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xt+1 = Axt + BKAkt−1(A− LC)x̂t−kt|t−kt−1 +
kt∑

j=1

BKAkt−jBut−kt+j−1

+BKAkt−1LCxt−kt . (12.37)

Combination of equations (12.35), (12.36) and (12.37) gives the following
augmented system:

Xt+1 = Λ(kt)Xt (12.38)

where

Xt =
[
xT

t xT
t−1 · · · xT

t−kt+1 xT
t−kt

xT
t−kt−1 · · · xT

t−N+1 xT
t−N

uT
t−1 uT

t−2 · · · uT
t−kt+1 uT

t−kt
uT

t−kt−1 · · · uT
t−N+1 uT

t−N

x̂T
t|t−1 xT

t−1|t−2 · · · x̂T
t−kt+1|t−kt

x̂T
t−kt|t−kt−1

xT
t−kt−1|t−kt−2 · · · x̂T

t−N+1|t−N x̂T
t−N |t−N−1

]T
.

(12.39)

While there is no time-delay in the feedback channel, i.e., kt = 0, the aug-
mented system (12.7) simply becomes

Xt+1 = Λ(0)Xt. (12.40)

As the time-delay is random, the closed-loop system is a switched system
which is composed of N + 1 discrete-time subsystems, i.e.,

Xt+1 = Λ(kt)Xt (12.41)

where kt = 0, 1, · · · , N . The switched system can be described as

Xt+1 = Λδ(k)Xt (12.42)

where δ(k) : {0, 1, · · ·} → {0, 1, 2, · · · , N}, δ(k) is a switching signal.
Let Vt = XT

t PXt, then

Vt+1 − Vt = XT
t+1PXt+1 −XT

t PXt

= XT
t [ΛT

δ(k)PΛδ(k) − P ]XT
t . (12.43)

From (12.34), it follows that Vt+1−Vt < 0, for δ(k). Therefore, system (12.38)
is stable for all switching sequences δ(k).

Remark 12.5. Since network delay kt randomly varies from 0 to the upper
bound N , it is necessary to design gain matrices K and L to ensure matrices
Λ(kt) are stable (i.e., their eigenvalues are within the unit circle), for kt =
0, 1, ..., N . But, it does not mean that the closed-loop system is stable because
the closed-loop system with random network delay is a switched system.
Theorem 12.4 shows that the closed-loop system is stable if (12.34) is satisfied.
So, when gain matrices K and L are designed, then (12.34) is a set of LMIs,
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which are only related to matrices A,B,C and random network delay kt. The
LMI Toolbox can be used to find feasible solution P ([15]).

12.4 Simulation & Experiments

In this section, two illustrative examples are constructed to verify the design
method developed in this chapter.

12.4.1 Numerical Simulation

Example 12.6. Simulation studies are presented for an open-loop unstable
discrete system which is difficult to control and is in the form of (12.1) with
the following system matrices:

A =

⎡

⎣
−1.100 0.271 −0.488
0.482 0.100 0.24
0.002 0.3681 0.7070

⎤

⎦ , B =

⎡

⎣
5 5
3 −2
5 4

⎤

⎦ , C =
[

1 2 3
4 3 1

]

.

The matrices K and L are designed by pole assignment to ensure the
closed-loop system without network delay is stable and they are

K =
[

0.4471 −0.1073 −0.6597
−0.7316 0.0594 0.8210

]

, L =

⎡

⎣
−0.2879 0.3113
0.0281 0.0582
0.2610 −0.0572

⎤

⎦ .

For kt = 0, 1, 2, 3, all eigenvalues of matrices Λ(kt) are stable and a com-
mon positive definite matrix P satisfying inequalities (12.34) is found. Thus,
system (12.1) is stable with random delay kt ≤ 3 based on the results of
Theorem 12.4, For the initial conditions of the states, x(0) = [1 1 1]T ,
u(t) = [0 0]T , t ≤ 0. The simulation results for kt = 4 are shown in Fig.
12.1 and Fig. 12.2. However, it is found from simulation that if the standard
state feedback controller ut = Kx̂t−k|t−k−1 is used rather than the network
delay compensator ut = Kx̂t|t−k, the closed-loop system with the same K,
L is unstable for kt = 1, 2, 3.

12.4.2 Practical Experiments

Example 12.7. To implement networked control systems, a test rig is built,
based on an ARM 9 embedded system. The feedback channel is through a net-
work and the communication protocol between the controller and the sensor



192 12 Analysis and Synthesis of NCSs with Random Feedback Delay

0 5 10 15 20 25 30 35 40 45 50
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

t (sec)

x 1

0 5 10 15 20 25 30 35 40 45 50
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

t (sec)

x
2

0 5 10 15 20 25 30 35 40 45 50
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t (sec)

x
3

Fig. 12.1 States x1, x2 and x3
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is UDP. The kernel chip of the embedded board is ATMEL’s AT91RM9200,
which is a cost-effective, high-performance 32-bit RISC microcontroller for
Ethernet- based embedded systems. A 10M/100M self-adaptive network con-
troller is integrated in the chip and the chip also has a high computing per-
formance and can work at speed up to 180 MHz. 2-channel 16-bit high speed
digital-analog (D/A) converters and 8-channel 16-bit high speed analog-
digital (A/D) converters in the controller board provide I/O interfaces for
the controlled plant.

In order to validate the proposed method, a servo motor control system
which consists of a DC motor, load plate, speed and angle sensors is consid-
ered. The model of the motor control plant at sampling period 0.04 second
is identified to be

G(z−1) =
A(z−1)
B(z−1)

=
0.05409z−2 + 0.115z−3 + 0.0001z−4

1 − 1.12z−1 − 0.213z−2 + 0.335z−3
.

The system can also be written as the state space form with the following
system matrices

A =

⎡

⎣
1.12 0.213 −0.335
1 0 0
0 1 0

⎤

⎦ , B =

⎡

⎣
1
0
0

⎤

⎦ , C =
[
0.0541 0.1150 0.0001

]
.

The matrices K and L are designed to be

K =
[−0.0270 −0.575 −0.0001

]
, L =

⎡

⎣
6
6
6

⎤

⎦

which ensure the close-loop system without time delay is stable.
To illustrate the operation of the proposed networked predictive control

scheme, three cases are considered:
a) Local control. There is no network in the closed-loop system, i.e., the

output signal from the sensor is directly connected to the controller. So, the
network delay is zero. The design of matrices K and L has ensured that the
closed-loop system is stable.

b) Intranet based control. In this case, the output signal is physically trans-
mitted between two Intranet IP addresses 193.63.131.217 and 193.63.131.219
which are both located on the campus network of the University of Glamor-
gan. It is measured that the maximum network delay is 0.12 second. As the
sampling period is 0.04 second, the upper bound N = 3. For kt = 0, 1, 2, 3,
all eigenvalues of matrices Λ(kt) are stable and a common positive definite
matrix P satisfying inequalities (12.34) is found using the LMI toolbox. That
means the closed-loop system is stable with K and L given above.

c) Internet based control. In this case, the output signal is transmitted
between two Internet IP addresses 193.63.131.219 and 81.106.241.34. The
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former is located at the University of Glamorgan, UK. The latter is located
at the Pontypridd, Wales. The maximum network delay is measured to be 0.32
second and the sampling period is still 0.04 second. So, the upper bound N =
8. Similar to the Intranet control case, for kt = 0, 1, 2, ..., 8, all eigenvalues
of matrices Λ(kt) are stable and also a common positive definite matrix P
satisfying inequalities (12.34) is derived using the LMI toolbox. That implies
that the closed-loop system is stable for given K and L above.

To evaluate the performance of the networked predictive control scheme,
one real-time simulation and one real-time experiment are carried out.

1) Real-time simulation. In this simulation, the servo motor plant to be
controlled is represented by its model but the network is a real one. The
simulations are performed using Matlab/simulink/Real time Workshop. The
real-time simulation diagram is shown in Fig. 12.3. The reference input is a
square wave generated by the pulse generator block, which changes between
0v to 7v with period 5s. The controller block Netctrl is the networked pre-
dictive controller. Blocks Recv9 and Send9 are the receiver and sender of
the UDP communication protocol. All of them are designed using Matlab
S-Functions. The simulated plant and the controller are executed in a ARM
9 embedded system. The real network (Intranet or Internet) is between UDP
communication blocks Recv9 and Send9 in Fig. 12.3.

Fig. 12.3 Simulation Diagram

Four real time simulations are conducted: local control (i.e., no network),
Intranet based control without delay compensation, Intranet based control
with delay compensation and Internet based control with delay compensation.
The real-time simulations results are shown in Fig. 12.4 and Fig. 12.5. The
Internet based control without delay compensation is also conducted, but it
is found that the system is no longer stable due to the large network delay,
which is between 0.2-0.3s.

2) Real-time experiment. The difference between the real-time simulations
and real-time experiments is that the plant model of the servo motor in
the real-time simulations is replaced by D/A block Dac9 and A/D block
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Fig. 12.4 Outputs of servo plant (Simulation)

Fig. 12.5 Inputs of servo plant (Simulation)

Adc9 and the real servo motor. The diagram of the real-time experiments is
shown in Fig. 12.6. The two blocks Dac9 and Adc9 are the driver of the A/D
and D/A channels in the embedded system and are designed in Matlab S-
Function. Similarly, four real-time experiments are made: local control (i.e.,
no network), Intranet based control without delay compensation, Intranet
based control with delay compensation and Internet based control with delay
compensation. The real-time experiments results are shown in Fig. 12.7 and
Fig. 12.8. Also, it is found that the Internet based control without delay
compensation is unstable.

From the results of real-time simulations , it is clear that the network
transmission delay degrades the performance of NCS. But the networked
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Fig. 12.6 Experiment Diagram

Fig. 12.7 Outputs of servo plant (Experiment)

Fig. 12.8 Inputs of servo plant (Experiment)
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predictive control scheme proposed in this chapter can compensate for the
network delay actively. Its performance is very close to that of the local
control scheme (i.e., no network). Although it is hard to make the model
of the servo motor plant be exactly the same as the real practical one, the
results of the real-time experiments are very similar to those of the real-time
simulations.

12.5 Conclusion

The design and stability analysis of networked predictive control systems have
been discussed. The network time delay in the feedback channel is considered
in two cases: the fixed network delay and the random network delay. For both
cases, the stability criteria have been obtained for networked predictive con-
trol. It has been concluded that the closed-loop networked predictive control
system with bounded random network delay is stable if the corresponding
switched system is stable. This provides a significant foundation for the de-
sign and analysis of networked control systems. Also, numerical simulations
and practical experiments have successfully demonstrated the operation of
the networked predictive control scheme proposed in this chapter.



Chapter 13

Analysis and Synthesis of NCSs with
Random Forward and Feedback Delay

13.1 Introduction

The random network delays in the feedback channel and forward channel
NCS have been studied, respectively. But, the random network delay in the
forward and feedback channels makes the controller design and stability anal-
ysis much more difficult. This chapter proposes a predictive control scheme
for networked control systems with random network delay in both the feed-
back and forward channels and also provides an analytical stability criterion
for closed-loop networked predictive control systems. Some preliminary re-
sults have appeared in [120], however, the results obtained in this chapter
are more integrated, including detailed analysis, simulations and practical
experiments.

This chapter is organized as follows: Section 13.2 presents a networked pre-
dictive control scheme for systems with both forward and feedback network
delays. Section 13.3 details the stability analysis of closed-loop networked
predictive control systems for system with both constant and random net-
work delay in both forward and feedback channels. Real-time simulations and
practical experiments are presented in Section 13.4. Some conclusion remarks
are given in Section 13.5.

13.2 Design of NPC Systems with both Forward and
Feedback Network Delays

A networked predictive control scheme for NCS with random network delay
in the forward and feedback channels is proposed. The main part of the
scheme is the networked predictive controller, which compensates for the
network delay and data dropout in the forward (from controller to actuator)
and feedback (from sensor to controller) channels and achieves the desired

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 199–223.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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control performance. A very important characteristic of the network is that
it can transmit a set of data at the same time.

In order to compensate for the network transmission delay, a network delay
compensator in the channel from the controller to the actuator is proposed.
It is assumed that control predictions at time t are packed and sent to the
plant side through a network. On the actuator side, only the latest control
prediction sequence is kept. The network delay compensator chooses the con-
trol value from the latest prediction control sequence. For example, if the
latest predictive control sequence on the plant side is

[
uT

t−it|t−it
uT

t−it+1|t−it
· · · uT

t|t−it
· · · uT

t+M−it|t−it

]
(13.1)

where it is a bounded random integer, the control value ut|t−it
is available

to be chosen as the control input of the plant at time t, the output of the
network delay compensator will be

ut = ut|t−it
. (13.2)

From the above, it is shown that in the case of no network delay in the for-
ward channel, the input to the plant actuator is the output of the controller.
In the case of a delay iT , where T is the sampling period, the control input to
the actuator is the ith-step ahead control prediction received in the current
sampling period. If the data are lost within the current sampling period, the
control input should be the ith-step ahead control prediction for the current
time which is received in the previous sampling period. In the same way, when
the time-delay is random and data dropouts happen in the feedback channel,
the observer will use the measurement output yt−1 received at the last sam-
pling instant if the measurement output yt is lost or yt is delayed, otherwise,
yt−j will be used if yt−i arrives after yt−j , where j < i. Thus, with the intro-
duction of a bounded random integer kt, measurement output yt−kt , denotes
three types of measurement output transmitted in the feedback channel, i.e.,
random delay, data dropout and first sent late arrival. These methods play a
very important role in compensating for time-delay and data dropout in the
proposed networked predictive control implementation. When random net-
work delays exist in both forward channel and feedback channel, the scheme
proposed in this chapter can achieve the desired control performance, which
is similar to that of the system without network time delay. Thus, on the sen-
sor side, the measurement output is sent to the controller side through the
feedback channel. On the controller side, the control prediction sequence at
time t, which consists of the future control predictions, is packed and sent to
the plant side through the forward channel. The network delay compensator
chooses the latest control value from the control latest prediction sequence on
the plant side. The networked predictive control system is shown in Fig. 13.1
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Fig. 13.1 The networked predictive control system

Consider a MIMO (multi-input multi-output) discrete system described in
the following state space form

xt+1 = Axt + But

yt = Cxt
(13.3)

where xt ∈ Rn, ut ∈ Rm, and yt ∈ Rl are the state, input, and output vectors
of the system, respectively, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n the system
matrices. For simplicity in carrying out the stability analysis, it is assumed
that the reference input of the system is zero. Also, the following assumptions
are made:

Assumption 13.2.1 The pair (A,B) is completely controllable, and the pair
(A,C) is completely observable.

Assumption 13.2.2 The upper bound of the network delay in the forward
channel is not greater than M1 multiples of the sampling period of system
( M1 is a positive integer). i.e., delay ≤ M1T . For example, a delay in the
network of 0.6 sec, and with a sampling period of 0.03 sec, then the multiple
M1 will be 20.

Assumption 13.2.3 The upper bound of the network delay in the feedback
channel is not greater than N1 multiples of the sampling period of system (
N1 is a positive integer).

Assumption 13.2.4 The number of consecutive data dropouts in the for-
ward channel and feedback channel must be less than Md and Nd , both of
which are integer multiples of the sampling period of the system, respectively.

Remark 13.1. In a practical NCS, if the data packet does not arrive at a
destination in a certain transmission time, it means this data packet is lost,
based on the commonly used network protocols. From the physical point of
view, it is natural to assume that only a finite number of consecutive data
dropouts can be tolerated in order to avoid the NCS becoming open-loop.
Thus, the number of consecutive data dropouts in the channels from the
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controller to the actuator and from the sensor to the controller should be
less than the finite numbers Md and Nd, respectively. Similarly, the network
delay from controller to actuator and from sensor to controller should also be
bounded by finite numbers M1 and N1 multiple of the sampling period of the
system, respectively. Clearly, the upper bound number of consecutive data
dropouts and network delay should not be greater than the upper bound of
the length of prediction (i.e. N1+Nd+M1+Md ≤ M+N , where M+N is the
length of the control prediction sequence, which is sent from the controller
to the actuator.)

According to Assumption 13.2.1, the state observer is designed as

x̂t+1|t = Ax̂t|t−1 + But + L(yt − Cx̂t|t−1) (13.4)

where x̂t+1|t ∈ Rn and ut ∈ Rm are the one-step ahead state prediction and
the input of the observer at time t and the matrix L ∈ Rn×l, which can be
designed using observer design approaches.

Following the state observer described by (13.4) , based on the output data
up to t− k, where k is an integer multiple of the sampling period. The state
predictions from time t− k to t are constructed as

x̂t−k+1|t−k = Ax̂t−k|t−k−1 + But−k + L(yt−k − Cx̂t−k|t−k−1)
x̂t−k+2|t−k = Ax̂t−k+1|t−k + But−k+1

...
x̂t|t−k = Ax̂t−1|t−k + But−1

(13.5)

which results in

x̂t|t−k = Ak−1(A− LC)x̂t−k|t−k−1 +
k∑

j=1

Ak−jBut−k+j−1

+Ak−1Lyt−k, j = 1, 2, 3, · · · , k. (13.6)

When there is time-delay and data dropout in the forward channel, the
state prediction from time t to t + i are constructed by

x̂t+1|t−k = Ax̂t|t−k + But|t−k

x̂t+2|t−k = Ax̂t+1|t−k + But+1|t−k

...
x̂t+i|t−k = Ax̂t+i−1|t−k + But+i−1|t−k

(13.7)

where i is an integer multiple of the sampling period. In particular, for the
augmented system without time-delay, then, ut = Kx̂t|t−1, can be described
as follows:

x̂t+1|t = (A + BK − LC)x̂t|t−1 + LCxt

xt+1 = Axt + BKx̂t|t−1.
(13.8)
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For the case of no network delay, the controller and observer can be designed
separately based on Assumption 13.2.1. It is assumed that the state-feedback
controller is designed by a modern control method, for example, LQG, pole
assignment, H2 and H∞ in the presence of disturbance, etc. For the case
where there are both the forward network delay i and feedback network delay
k, the control predictions are calculated by

ut+i|t−k = Kx̂t+i|t−k (13.9)

where the state feedback matrix is K ∈ Rm×n. Thus,

x̂t+i|t−k = (A + BK)ix̂t|t−k

= (A + BK)i(Ak−1(A− LC)x̂t−k|t−k−1 +
∑k

j=1 A
k−jBut−k+j−1

+ Ak−1Lyt−k).
(13.10)

As a result, the output of the networked predictive control at time t is
determined by

ut|t−k = KAk−1(A−LC)x̂t−k|t−k−1 +
k∑

j=1

KAk−jBut−k+j−1 +KAk−1Lyt−k.

(13.11)
From equation (13.11), it is clear that the future control predictions depend
on the state estimation x̂t−k|t−k−1 and the past control input up to ut−1 and
the past output up to yt−k of the system. Since there exist the forward delay
i and feedback delay k, the control input of the plant is designed as

ut = ut|t−i−k. (13.12)

Combining this predictive controller with the networked delay compensator,
both the forward and feedback network delays will be compensated within
a certain range of time-delays. In the next section, stability analysis of the
closed-loop system will be presented using this control scheme.

13.3 Stability Criteria of Closed-Loop NPC Systems

With the networked predictive control scheme proposed in this chapter, a
very important problem is to study the stability of the closed-loop system.
Firstly, the stability of the closed-loop system with constant network delay
is investigated, and necessary and sufficient conditions for the closed-loop
system to be stable is derived. Secondly, for the random time delay, the
problem is more interesting because this case is closer to the time-delays
experienced in a real network system. In this case, the stability problem of
the closed-loop system is solved using the theory of switched systems.
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13.3.1 Constant Delays in both Forward and Feedback
Channels

In this case, it is assumed that the network delays i and k in the forward and
feedback channels are constant. The first result is presented as follows.

Theorem 13.2. For the networked predictive control systems with constant
network delay i and k in the forward channel and feedback channel, respec-
tively, the closed-loop system is stable if and only if all eigenvalues of the
following matrix are within the unit circle.

Ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 0 · · · 0 · · · 0
MiA

k−1LC 0 0 · · · MiB · · · MiA
k−2

0 I 0 · · · 0 · · · 0
...

...
...

...
... · · · ...

0 0 0 · · · I · · · 0
...

...
... · · · ...

. . .
...

0 0 0 · · · 0 · · · I
LCAk+i AB LCAB · · · LCAi+1B · · · LCAk+i−2B

0 B 0 · · · 0 · · · 0
...

...
... · · · ... · · · ...

0 0 0 · · · 0 · · · 0
0 0 0 · · · 0 · · · 0

B 0 0 · · · 0 0
MiA

k−1B 0 0 · · · 0 MiA
k−1(A− LC)

0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0

LCAk+i−1B A− LC 0 · · · 0 0
0 I 0 · · · 0 0
...

...
. . . · · · ...

...

0 0 0
. . . 0 0

0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13.13)

where Ψ ∈ R[(k+i)m+(k+i+2)n]×[(k+i)m+(k+i+2)n].

Proof. The necessary and sufficient condition for closed-loop system stability
is that its closed-loop poles are stable. Using the networked predictive con-
troller, from the predictive control obtained in the previous section, it is clear
that
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ut = K(A+ BK)i(Ak−1(A− LC)x̂t−i−k|t−i−k−1 +
k∑

j=1

Ak−jBut−i−k+j−1

+Ak−1LCxt−i−k) (13.14)

then,

xt+1 = Axt + But

= Axt + But|t−i−k

= Axt + BK(A + BK)i(Ak−1(A− LC)x̂t−i−k|t−i−k−1

+
∑k

j=1 A
k−jBut−i−k+j−1 + Ak−1LCxt−i−k)

(13.15)

and

x̂t+1|t = Ax̂t|t−1 + But + L(yt − Cx̂t|t−1)
= (A− LC)x̂t|t−1 + LCxt + BK(A+ BK)i(Ak−1(A− LC)
× x̂t−i−k|t−i−k−1 +

∑k
j=1 A

k−jBut−i−k+j−1 + Ak−1LCxt−i−k).
(13.16)

Let Mi = K(A + BK)i,
X(t + 1) =

[
xT

t+1 xT
t · · · xT

t−k+2 xT
t−k−i+1 uT

t uT
t−1 · · · uT

t−i · · · uT
t−k−i+1

x̂T
t+1|t x̂

T
t|t−1 · · · x̂t−k−i+2|t−k−i+1 x̂t−k−i+1|t−k−i

]T

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 BMiA
k−1LC 0 · · · BMiB · · · BMiA

k−2B
I 0 · · · 0 0 0 · · · 0 · · · 0
...

. . . · · · ...
...

... · · · ... · · · ...

0 0
. . . 0 0 0 · · · 0 · · · 0

0 0 · · · I 0 0 · · · 0 · · · 0
0 0 · · · 0 MiA

k−1LC 0 · · · MiB · · · MiA
k−2

0 0 · · · 0 0 I · · · 0 · · · 0
...

... · · · ...
...

...
. . .

... · · · ...
0 0 · · · 0 0 0 · · · I · · · 0
...

... · · · ...
...

... · · · ...
. . .

...
0 0 · · · 0 0 0 · · · 0 · · · I
LC 0 · · · 0 BMiA

k−1LC 0 · · · BMiB · · · BMiA
k−2B

0 0 · · · 0 0 0 · · · 0 · · · 0
...

... · · · ...
...

... · · · ... · · · ...
0 0 · · · 0 0 0 · · · 0 · · · 0
0 0 · · · 0 0 0 · · · 0 · · · 0
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BMiA
k−1B 0 0 · · · 0 BMiA

k−1(A− LC)
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0

MiA
k−1B 0 0 · · · 0 MiA

k−1(A− LC)
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 0

BMiA
k−1B A− LC 0 · · · 0 BMiA

k−1(A− LC)
0 I 0 · · · 0 0
...

...
. . . · · · ...

...

0 0 0
. . . 0 0

0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13.17)

Then, the closed-loop system can be written as

X(t + 1) = ΛX(t). (13.18)

Let

X̄(t) =
[
xt xt−1 · · · xt−k−i+1 xt−k−i u

′
t−1 · · · ut−k−i+1 ut−k−i

x̂t|t−1 · · · x̂t−k−i+1|t−k−i x̂t−k−i|t−k−i−1

]
(13.19)

and a state transformation be

X̄(t + 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I −A 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
0 I −A · · · 0 0 0 · · · 0 0 0 · · · 0 0
...

...
... · · · ...

...
... · · · ...

...
... · · · ...

...
0 0 0 · · · I −A 0 · · · 0 0 0 · · · 0 0
0 0 0 · · · 0 I 0 · · · 0 0 0 · · · 0 0
0 0 0 · · · 0 0 I · · · 0 0 0 · · · 0 0
...

...
... · · · ...

...
... · · · ...

...
... · · · ...

...
0 0 0 · · · 0 0 0 · · · I 0 0 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 I 0 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 0 I · · · 0 0
...

...
... · · · ...

...
... · · · ...

...
... · · · ...

...
0 0 0 · · · 0 0 0 · · · 0 0 0 · · · I 0
0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X̄(t)
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then, by the state transformation
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′′t
x′′t−1

...
x′′t−k−i+1

x′′t−k−i

u′′
t−1
...

u′′
t−k−i+1

u′′
t−k−i

x̂′′t|t−1

...
x̂′′t−k−i+1|t−k−i

x̂′′t−k−i|t−k−i−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 · · · 0 −B 0 · · · 0 0 0 · · · 0 0
0 I · · · 0 0 0 · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

... · · · ...
...

0 0 · · · I 0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 I 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 I · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · I 0 0 · · · 0 0
0 0 · · · 0 −B 0 · · · 0 I 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 I · · · 0 0
...

... · · · ...
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0 0 · · · I 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′t
x′t−1

...
x′t−k−i+1

x′t−k−i

u′
t−1
...

u′
t−k−i+1

u′
t−k−i

x̂′t|t−1

...
x̂′t−k−i+1|t−k−i

x̂′t−k−i|t−k−i−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

results in
ξ
′′
(t + 1) = Ω′′ξ

′′
(t) (13.20)

where

ξ
′′
(t) =

[
x′′Tt x′′Tt−1 · · · x′′Tt−k−i+1 x′′Tt−k−i u′′T

t−1 · · · u′′T
t−k−i+1 u′′T

t−k−i

x̂′′Tt|t−1 · · · x̂′′Tt−k−i+1|t−k−i x̂
′′T
t−k−i|t−k−i−1

]T
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Ω′′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0 0 · · · 0
I 0 · · · 0 0 0 · · · 0
...

. . . · · · ...
...

... · · · ...

0 0
. . . 0 0 0 · · · 0

0 0 · · · I A 0 · · · 0
0 0 · · · 0 MiA

k−1LC 0 · · · MiB
0 0 · · · 0 0 I · · · 0
...

... · · · ...
...

...
. . .

...
0 0 · · · 0 0 0 · · · I
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · 0
LC LCA · · · LCAk+i−1 LCAk+i AB · · · 0
0 0 · · · 0 0 B · · · 0
...

... · · · ...
...

... · · · ...
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0

· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0

· · · ...
...

...
... · · · ...

...
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0
· · · MiA

k−2 MiA
k−1B 0 0 · · · 0 MiA

k−1(A− LC)
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0

· · · ...
...

...
... · · · ...

...
· · · I 0 0 0 · · · 0 0
. . .

...
...

...
... · · · ...

...
· · · 0 0 A− LC 0 · · · 0 0
· · · 0 0 I 0 · · · 0 0

· · · ...
...

...
. . . · · · ...

...

· · · 0 0 0 0
. . . 0 0

· · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(13.21)
From the structure of equation (13.20), it can be concluded that the system

is stable if and only if the following system is stable

Z(t + 1) = ΞZ(t) (13.22)

where
Z(t) = [zT

1 (t) zT
2 (t) · · · zT

3(k+i)+1(t)]
T (13.23)
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Ξ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 0 B · · · 0
. . . · · · ...

...
... · · · ...

0
. . . 0 0 0 · · · 0

0 · · · I A 0 · · · 0
0 · · · 0 MiA

k−1LC 0 · · · MiB
0 · · · 0 0 I · · · 0
... · · · ...

...
...

. . .
...

0 · · · 0 0 0 · · · I
... · · · ...

...
... · · · ...

0 · · · 0 0 0 · · · 0
LCA · · · LCAk+i−1 LCAk+i AB · · · 0

0 · · · 0 0 B · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0

· · · 0 0 0 0 · · · 0 0

· · · ...
...

...
... · · · ...

...
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0
· · · MiA

k−2 MiA
k−1B 0 0 · · · 0 MiA

k−1(A− LC)
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0

· · · ...
...

...
... · · · ...

...
· · · I 0 0 0 · · · 0 0
. . .

...
...

...
... · · · ...

...
· · · 0 0 A− LC 0 · · · 0 0
· · · 0 0 I 0 · · · 0 0

· · · ...
...

...
. . . · · · ...

...

· · · 0 0 0 0
. . . 0 0

· · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(13.24)
By the state transformation
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z′1(t)
...

z′k+i(t)
z′k+i+1(t)
z′k+i+2(t)

...
z′2(k+i)(t)
z′2(k+i)+1(t)
z′2(k+i)+2(t)

...
z′3(k+i)(t)
z′3(k+i)+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 · · · 0 0 −B · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

... · · · ...
...

0 0 · · · I 0 0 · · · 0 −B 0 · · · 0 0
0 0 · · · 0 I 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 I · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · I 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 I 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 I · · · 0 0
...

... · · · ...
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0 0 · · · I 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1(t)
...

z(k+i)(t)
zk+i+1(t)
zk+i+2(t)

...
z2(k+i)(t)
z2(k+i)+1(t)
z2(k+i)+2(t)

...
z3(k+i)(t)
z3(k+i)+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

the following system is derived

Z ′(t + 1) = Ξ ′Z ′(t) (13.25)

where

Z ′(t) =
[
z′T1 (t) · · · z′T(k+i)(t) z

′T
k+i+1(t) z

′T
k+i+2(t) · · · z′T2(k+i)(t)

z′T2(k+i)+1(t) z
′T
2(k+i)+2(t) · · · z′T3(k+i)(t) z

′T
3(k+i)+1

]T (13.26)
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Ξ ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 0 0 0 · · · 0
. . . · · · ...

...
...

... · · · ...

0
. . . 0 0 0 0 · · · 0

0 · · · I A 0 0 · · · 0
0 · · · 0 MiA

k−1LC 0 0 · · · MiB
0 · · · 0 0 I 0 · · · 0
... · · · ...

...
...

...
. . .

...
0 · · · 0 0 0 0 · · · I
... · · · ...

...
...

... · · · ...
0 · · · 0 0 0 0 · · · 0

LCA · · · LCAk+i−1 LCAk+i AB LCAB · · · LCAk+i−1B
0 · · · 0 0 B 0 · · · 0
... · · · ...

...
...

... · · · ...
0 · · · 0 0 0 0 · · · 0
0 · · · 0 0 0 0 · · · 0

· · · 0 0 0 0 · · · 0 0

· · · ...
...

...
... · · · ...

...
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0
· · · MiA

k−2 MiA
k−1B 0 0 · · · 0 MiA

k−1(A− LC)
· · · 0 0 0 0 · · · 0 0
· · · 0 0 0 0 · · · 0 0

· · · ...
...

...
... · · · ...

...
· · · I 0 0 0 · · · 0 0
. . .

...
...

...
... · · · ...

...
· · · LCAk+i−2B LCAk+i−1B A− LC 0 · · · 0 0
· · · 0 0 I 0 · · · 0 0

· · · ...
...

...
. . . · · · ...

...

· · · 0 0 0 0
. . . 0 0

· · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(13.27)
From the structure of equation (13.25), it can be concluded that the system
is stable if and only if the following system is stable

Z ′′(t + 1) = ΨZ ′′(t) (13.28)

where Ψ is defined in (13.13). Therefore, the closed-loop system is stable if
and only if all eigenvalues of matrices (13.13) are within the unit circle.
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13.3.2 Random Network Delay

From Assumptions 13.2.1-13.2.4, it is assumed that the network delay and
consecutive data dropout in the forward and feedback channels are random
but bounded by M and N respectively, that is, for integers it and kt, it ∈
{0, 1, 2, · · · ,M}, kt ∈ {0, 1, 2, · · · , N}. Then, i and k in the constant case
are replaced by it and kt, respectively. Similar results to the constant case
can be obtained. However, the stability of the closed-loop NPCS will be
determined by all (M + 1) × (N + 1) matrices as it ∈ {0, 1, 2, · · · ,M} and
kt ∈ {0, 1, 2, · · · , N}.

Under this control scheme, the closed-loop system will be a switched linear
system, the theory of switched system can be used to design the observer gain
L and feedback gain K such that the closed-loop system with random time-
delay is stable ([172]).

In order to present the results in this section, for simplicity, let

Λ(0, 0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(M+N+1)n
︷ ︸︸ ︷
A 0 · · · 0 0

(M+N)m
︷ ︸︸ ︷
0 · · · 0 0 BK 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · I 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 K 0 · · · 0 0
0 0 · · · 0 0 I · · · 0 0 0 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · I 0 0 0 · · · 0 0
LC 0 · · · 0 0 0 · · · 0 0 A + BK − LC 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 I 0 · · · 0 0
...
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13.29)

Λ(0, 0) ∈ R[2n(M+N)+m(M+N)+2n]×[2n(M+N)+m(M+N)+2n]
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Λ(it, 0) =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A

itn
︷ ︸︸ ︷
0 · · · M1(it) · · · 0

(M+N)m
︷ ︸︸ ︷
0 · · · 0 0 0 · · · M2(it) · · · 0 0

I 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0 · · · 0 0
... ... · · ·

... · · · ... ... · · · ...
...

... · · · ... · · · ...
...

0 0 · · · I · · · 0 0 · · · 0 0 0 · · · 0 · · · 0 0
0 0 · · · M2(it) · · · 0 0 · · · 0 0 0 · · · M4(it) · · · 0 0
0 0 · · · 0 · · · 0 I · · · 0 0 0 · · · 0 · · · 0 0
... ... · · ·

... · · · ... ... · · · ...
...

... · · · ... · · · ...
...

0 0 · · · 0 · · · 0 0 · · · I 0 0 · · · 0 · · · 0 0
LC 0 · · · 0 · · · 0 0 · · · 0 0 M5(it) · · · 0 · · · 0 0
0 0 · · · 0 · · · 0 0 · · · 0 0 I · · · 0 · · · 0 0
... ... · · ·

... · · · ... ... · · · ...
...

... · · · ... · · · ...
...

0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0 · · · 0 0
0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R[2n(M+N)+m(M+N)+2n]×[2n(M+N)+m(M+N)+2n]

where it = 1, 2, · · · , Nca, M1(it) = BK(A + BK)it−1LC, M2(it) = BK(A +
BK)it−1(A+BK−LC), M3(it) = LC, M4(it) = K(A+BK)it−1(A+BK−
LC), M5(it) = BK(A+ BK)it−1LC.

Λ(it, kt) =

⎡

⎣
Λ11(it, kt) Λ12(it, kt) Λ13(it, kt)
Λ21(it, kt) Λ22(it, kt) Λ23(it, kt)
Λ31(it, kt) Λ32(it, kt) Λ33(it, kt)

⎤

⎦

∈ R[2n(M+N)+m(M+N)+2n]×[2n(M+N)+m(M+N)+2n] (13.30)

for i = 1, 2, · · · ,M and kt = 1, 2, · · · , N , where Mit = K(A+ BK)it
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Λ11(it, kt) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A

(it+kt−1)n
︷ ︸︸ ︷
0 · · · 0 BMitA

kt−1LC 0 · · · 0 0
I 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · I 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R[n(M+N)+n]×[n(M+N)+n]

Λ12(it, kt) =

[
itm

︷ ︸︸ ︷
0 · · · 0 BMitB · · · BMitA

kt−2B

BMitA
kt−1B 0 · · · 0 0

0[n(M+N)]×[m(M+N)]

]

∈ R[n(M+N)+n]×[m(M+N)]

Λ13(it, kt) =

⎡

⎢
⎣

(it+kt)n
︷ ︸︸ ︷
0 0 · · · 0 BMitA

kt−1(A− LC) 0 · · · 0 0
0[n(M+N)]×[n(M+N)+n]

⎤

⎥
⎦

∈ R[n(M+N)+n]×[n(M+N)+n]

Λ21(it, kt) =

⎡

⎢
⎣

(it+kt)n
︷ ︸︸ ︷
0 0 · · · 0 MitA

kt−1LC 0 · · · 0 0
0[m(M+N−1)]×[n(M+N)+n]

⎤

⎥
⎦

∈ R[m(M+N)]×[n(M+N)+n]

Λ22(it, kt) =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

itm
︷ ︸︸ ︷
0 · · · 0 MitB MitAB · · · MitA

kt−2B MitA
kt−1B 0 · · · 0 0

I · · · 0 0 0 · · · 0 0 0 · · · 0 0
... · · · ...

...
... · · · ...

...
... · · · ...

...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 0 · · · I 0 0 · · · 0 0
... · · · ...

...
... · · · ...

...
...

... · · · ...
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R[m(M+N)]×[m(M+N)]
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Λ23(it, kt) =

⎡

⎢
⎣

(it+kt)n
︷ ︸︸ ︷
0 0 · · · 0 MitA

kt−1(A− LC) 0 · · · 0 0
0[m(M+N−1)]×[n(M+N)+n]

⎤

⎥
⎦

∈ R[m(M+N)]×[n(M+N)+n]

Λ31(it, kt) =

⎡

⎢
⎣ LC

(it+kt−1)n
︷ ︸︸ ︷
0 · · · 0 0 0 · · · 0 0

0[n(M+N)]×[n(M+N)+n]

⎤

⎥
⎦

∈ R[n(M+N)+n]×[n(M+N)+n]

Λ32(it, kt) = 0(n(M+N)+n)×(m(M+N))

Λ33(it, kt) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A+ BK − LC

(it+kt−1)n
︷ ︸︸ ︷
0 · · · 0 0 0 · · · 0 0

I 0 · · · 0 0 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · I 0 0 · · · 0 0
0 0 · · · 0 I 0 · · · 0 0
... ... · · · ...

...
... · · · ...

...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

∈ R(n(M+N)+n)×(n(M+N)+n)

Then, the main results in this section can be stated as follows:

Theorem 13.3. For the networked predictive control system with random
network delays it and kt in both forward and feedback channels, respectively,
the closed-loop system is stable if there exists a positive definite matrix

P ∈ R[2n(M+N)+m(M+N)+2n]×[2n(M+N)+m(M+N)+2n]

such that
ΛT (it, kt)PΛ(it, kt) − P < 0 (13.31)

for it = 0, 1, 2, · · · ,M and kt = 0, 1, 2, · · · , N .

Proof. Following the case of the constant network delay, if the random net-
work delay in the forward channel is kt, kt �= 0, the control input, state
prediction, and plant state vectors are expressed by

ut = K(A + BK)it [Akt−1(A− LC)x̂t−it−kt|t−it−kt−1

+
∑kt

j=1 A
kt−jBut−it−kt+j−1 + Akt−1LCxt−it−kt ]

(13.32)
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xt+1 = Axt + But

= Axt + But|t−it−kt

= Axt + BK(A + BK)it [Akt−1(A− LC)x̂t−it−kt|t−it−kt−1

+
∑kt

j=1 A
kt−jBut−it−kt+j−1 + Akt−1LCxt−it−kt ].

(13.33)

As the input and output of the closed system are sent through the network,
control ut can be used by the actuator with the implementation of the network
delay compensator, but it can not be obtained by the observer previously
due to the network-induced delay, therefore, the observer is designed based
on (yt−kt , ut−kt) received on the side of the observer

x̂t−kt+1|t−kt
= Ax̂t−kt|t−kt−1 + But−kt + L(yt−kt − Cx̂t−kt|t−kt−1).

(13.34)
When there is no delay in the feedback channel, i.e., kt = 0, and it �= 0,

then,
x̂t+1|t = Ax̂t|t−1 + But + L(yt − Cx̂t|t−1)
x̂t+2|t = Ax̂t+1|t + But+1|t

...
x̂t+it|t = Ax̂t+it−1|t + But+it−1|t.

(13.35)

Let ut = ut|t−it
= Kx̂t|t−it

, then,

x̂t|t−it
= (A + BK)it−1[(A + BK − LC)x̂t−it|t−it−1 + LCxt−it ] (13.36)

ut = K(A + BK)it−1[(A + BK − LC)x̂t−it|t−it−1 + LCxt−it ]. (13.37)

The closed-loop system is

xt+1 = Axt + BK(A + BK)it−1LCxt−it+
BK(A + BK)it−1(A + BK − LC)x̂t−it|t−it−1

x̂t+1|t = (A + BK − LC)x̂t|t−1 + LCxt

ut = K(A+ BK)it−1[(A + BK − LC)x̂t−it|t−it−1 + LCxt−it ]

(13.38)

then, combination of equations (13.32), (13.33), (13.34) and (13.38) gives the
following augmented system:

Xt+1 = Λ(it, kt)Xt (13.39)

where

Xt =
[
xT

t xT
t−1 · · · xT

t−it−kt+1 xT
t−it−kt

xT (t− it − kt − 1) · · · xT
t−M−N+1

xT
t−M−N uT

t−1 uT
t−2 · · · uT

t−it−kt+1 uT
t−it−kt

uT (t− it − kt − 1) · · ·
uT

t−M−N+1 uT
t−M−N x̂T

t|t−1 xT
t−1|t−2 · · · x̂T

t−it−kt+1|t−it−kt

x̂T
t−it−kt|t−it−kt−1 xT t− it − kt − 1|t− it − kt − 2 · · ·

x̂T
t−M−N+1|t−M−N x̂T

t−M−N |t−M−N−1

]T

(13.40)
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it = 1, 2, · · · ,M , kt = 0, 1, 2, · · · , N , Δ(it, 0) for it = 1, 2, · · · , Nca and kt =
0 are defined in (13.30). While there is no time-delay in the forward and
feedback channels, i.e., it = 0 and kt = 0, the augmented system (13.8) is
extended as

Xt+1 = Λ(0, 0)Xt (13.41)

where Δ(0, 0) for it = 0, kt = 0 is described in (13.29). As the time-delay is
random, the closed-loop system is a switched system which is composed of
(M + 1) × (N + 1) discrete-time subsystems, i.e.,

Xt+1 = Λ(it, kt)Xt (13.42)

where it = 0, 1, · · · , N and kt = 0, 1, · · · , N . The switched system can be
described as

Xt+1 = Λδ(k)Xt (13.43)

where δ(k) : {0, 1, · · ·} → {0, 1, 2, · · · ,M}× {0, 1, 2, · · · , N}, δ(k) is switching
signal.

Let Vkt = XT
t PXt, then

Vt+1 − Vt = XT
t+1PXt+1 −XT

t PXt

= XT
t [ΛT

δ(k)PΛδ(k) − P ]XT
t . (13.44)

From (13.31), it follows that Vt+1−Vt < 0, for δ(k). Therefore, system (13.39)
is stable.

Remark 13.4. It can be deduced easily from (13.31) that each subsystem is
stable. If K and L are designed previously, then (13.31) is a set of LMIs. LMI
tool-box can be used to find a feasible solution P ([15]).

13.4 Simulation & Experiments

In this section, two illustrative examples are constructed to verify the design
method developed in this chapter.

13.4.1 Numerical Simulation

Example 13.5. An illustrative example is constructed to verify the design
method developed in this chapter, it is multi-input and multi-output sys-
tem, this simulation not only contributes to the theory development, but
also solves the practical problems which are modelled as the similar state-
space equations. Simulation studies are presented for an open-loop unstable
discrete system in the form of (13.3) with the following system matrices:
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A =

⎡

⎣
1.010 0.271 −0.488
0.482 0.100 0.24
0.002 0.3681 0.7070

⎤

⎦ , B =

⎡

⎣
5 5
3 −2
5 4

⎤

⎦ , C =
[

1 2 3
4 3 1

]

.

Take

K =
[

0.5858 −0.1347 −0.4543
−0.5550 0.0461 0.4721

]

, L =

⎡

⎣
−0.3614 0.3326
0.0332 0.0576
0.2481 −0.0750

⎤

⎦

for nominal system (13.3) such that the closed-loop system is stable. It can be
concluded from the simulation that the closed-loop system is not stable with
ut = Kx̂t−i−k+1|t−i−k, however, it is stable with control ut+i|t−k = Kx̂t|t−k−i

for i = 0, 1 and k = 0, 1, 2. By Theorem 13.3, there exists a common positive
definite matrix P ∈ R30×30 such that six inequalities in (13.31) are satisfied,
so the closed-loop system (13.3) is stable with random time-delay i = 0, 1 and
k = 0, 1, 2. The following figures are the response of the close-loop system
with time-delay i = 1 and k = 2. The initial conditions are

x0 =

⎡

⎣
0.1
0.1
0.1

⎤

⎦ , u(t) =
[

0
0

]

, for t = 0, 1, 2, 3.

13.4.2 Practical Experiments

Example 13.6. To implement networked control systems, a test rig is built,
based on two ARM 9 embedded boards. The two boards are used, one on the
controller side and the other on the plant side and are connected through the
network. The communication protocol between them is UDP. The kernel chip
of the embedded board is ATMEL’s AT91RM9200, which is a cost-effective,
high-performance 32-bit RISC microcontroller for Ethernet- based embedded
systems. A 10M/100M self-adaptive network controller is integrated in the
chip and the chip also has a high computing performance and can work at
speeds up to 180 MHz. 2-channel 16-bit high speed analog-digital (D/A)
converters and 8-channel 16-bit high speed analog-digital (A/D) converters
in the controller board provide I/O interfaces for the controlled plant. In
order to validate the proposed method, a servo motor control system which
consists of a DC motor, load plate, speed and angle sensors is considered. The
model of the motor control plant at sampling period 0.04 second is identified
to be

G(z−1) =
A(z−1)
B(z−1)

=
0.05409z−2 + 0.115z−3 + 0.0001z−4

1 − 1.12z−1 − 0.213z−2 + 0.335z−3
.
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Fig. 13.2 States x1, x2 and x3
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Fig. 13.3 Control inputs u1 and u2

The system can also be written in state space form with the following system
matrices

A =

⎡

⎣
1.12 0.213 −0.335
1 0 0
0 1 0

⎤

⎦ , B =

⎡

⎣
1
0
0

⎤

⎦ , C =
[
0.0541 0.1150 0.0001

]
.

The matrices K and L are designed to be
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K =
[−0.0270 −0.575 −0.0001

]
, L =

⎡

⎣
6
6
6

⎤

⎦

which ensure the closed-loop system without time delay is stable.
To illustrate the operation of the proposed networked predictive control

scheme, three cases are considered: a) Local control. There is no network in
the closed-loop system, i.e., the output signal from the sensor is directly con-
nected to the controller, so, the network delay is zero. The design of matrices
K and L has ensured that the closed-loop system is stable. b) Intranet based
control. In this case, the output and input signals are physically transmitted
between two Intranet IP addresses 193.63.131.217 and 193.63.131.219 which
are both located on the campus network of the University of Glamorgan.
It is measured that the maximum network delay between the two embed-
ded boards is 0.08 second, so the sum of the feedback and forward channel
time delay is less than 0.16 seconds. As the sample time is 0.04s, the upper
bound N=4. c) Internet based control. In this case, the output and input
signals were transmitted between two Internet IP addresses 193.63.131.219
and 81.106.241.34. The former is located at the University of Glamorgan,
UK., the latter is located off campus in Pontypridd, UK. The maximum net-
work delay is measured to be 0.16 between the two embedded board, so the
sum of the two channel time delay is less than 0.32s. The sampling period
is still 0.04 second, so the upper bound N = 8. To evaluate the performance
of the networked predictive control scheme, one real-time simulation and one
real-time experiment are carried out.

1) Real-time simulation. In this simulation, the servo motor plant to be
controlled is represented by its model but the network is a real one. The
simulations are performed using Matlab/Simulink/Real time Workshop. The
real-time simulation diagram is shown in Fig. 13.4, which is separated into
two parts: the controller side and the plant side. The two parts are imple-
mented in two ARM 9 embedded boards respectively. The reference input
is a square wave generated by the pulse generator block, which changes be-
tween 0v to 7v with period 5s. The block Netctrl is the control prediction
generator. The block Comp is the network delay compensator. The Blocks
Recv9 and Send9 are the receiver and sender of the UDP communication
protocol. All of them are designed using Matlab S-Functions. The simulated
plant and the controller are executed in an ARM 9 embedded system. The
real network (Intranet or Internet) is between UDP communication blocks
Recv9 and Send9 in Fig. 13.4.

Four real time simulations are conducted: local control (i.e., no network),
Intranet based control without delay compensation, Intranet based control
with delay compensation and Internet based control with delay compensation.
The real-time simulation results are shown in Fig. 13.5 and Fig. 13.6. The
difference between the results in the case of local control and Intranet control
without compensation is very small, which is hard to distinguish in Fig. 13.5
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Fig. 13.4 Simulation Diagram

and Fig. 13.6. The Internet based control without delay compensation is also
conducted, but it is found that the system is no longer stable due to the large
network delay, which is between 0.16-0.32s.

Fig. 13.5 Outputs of servo plant (Simulation)

2) Real-time experiment. The difference between the real-time simulation
and real-time experiments is that the plant model of the servo motor in the
real-time simulation is replaced by D/A block Dac9 and A/D block Adc9 and
the real servo motor. The diagram of the real-time experiment is shown in Fig.
13.7. The two blocks Dac9 and Adc9 are the driver of the A/D and D/A chan-
nels in the embedded system and are designed in Matlab S-Function. Simi-
larly, four real-time experiments are made: local control (i.e., no network),
Intranet based control without delay compensation, Intranet based control
with delay compensation and Internet based control with delay compensa-
tion. The real-time experiment results are shown in Fig. 13.8 and Fig. 13.9.
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Fig. 13.6 Inputs of servo plant (Simulation)

Also, it is found that the Internet based control without delay compensation
is unstable.

Fig. 13.7 Experiment Diagram

13.5 Conclusion

The design and stability analysis of networked predictive control systems have
been discussed in this chapter. The networked predictive control compensates
for the network delay and data dropout in the forward and feedback channels
and achieves the desired control performance. The network delays in both
forward and feedback channels have been considered in two cases: the fixed
network delay and the random network delay. For both cases, the stability
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Fig. 13.8 Outputs of servo plant (Experiment)

Fig. 13.9 Inputs of servo plant (Experiment)

criteria have been obtained for networked predictive control. Particularly, in
the case of random network delay, it has been concluded that the closed-loop
networked predictive control system is stable if the corresponding switched
system is stable. This gives fundamental results for the design and analysis
of networked control systems.



Chapter 14

Stochastic Analysis of NCSs with
Random Delay and Data Dropout

14.1 Introduction

The stability problem of closed-loop NCS in the presence of network delays
and data packet drops has been addressed in [214, 211, 210, 149]. In [142, 196,
182], the problem of stochastic stability of network worked control systems
with random time-delay or data dropout has been discussed, in which the
random time-delay is modelled as a Markov process. Furthermore, in [213],
the sensor-to-controller and controller-actuator delays are modeled as two
Markov chains, and the resulting closed-loop systems are jump linear systems
with two modes, where state feedback is proposed, the last received state is
used for feedback again if there are delays longer than one sampling period or
if there is a package loss. In the work of [117], the networked predictive control
with the modified MPC is proposed, but the time-delay in the forward channel
is constant. In this chapter, networked predictive control will be proposed for
control of NCSs with random network delay in both the forward channel and
feedback channel, where the network induced-delay is in the form of a Markov
chain.

This chapter is organized as follows. Section 14.2 gives the problem for-
mulation and the scheme of predictive control and Section 14.3 presents
the analysis of stochastic stability of the closed-loop system. Section 14.4
gives a numerical example and a practical experiment to demonstrate the
effectiveness of the proposed method. Some conclusion remarks are given in
Section 14.5.

14.2 Predictive Control of Networked Systems

To overcome unknown network transmission delay, a networked predictive
control scheme is proposed. It mainly consists of a control prediction generator

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 225–242.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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and a network delay compensator. The control prediction generator is designed
to generate a set of future control predictions. The network delay compensator
is used to compensate for the unknown random network delay. Consider an
MIMO discrete system described in the following state space form

xt+1 = Axt + But

yt = Cxt
(14.1)

where xt ∈ Rn, ut ∈ Rm, and yt ∈ Rl are the system state, input, and output
vectors, respectively. A, B, C are matrices of appropriate dimensions. The
following assumptions can reasonably be made:

1 The pair, (A,B), is completely controllable, and the pair, (A,C) is com-
pletely observable.

2 The upper bound of the network delay from the sensor to the controller
and from the controller to the actuator are not greater than Nscd and
Ncad, respectively (positive integers).

3 The number of consecutive data dropouts in the channels from sensor to
controller and from controller to actuator must be less than Ndsc and Ndca

( positive integers).

Remark 14.1. In a practical NCS, if the data packet does not arrive at a
destination in a certain transmission time, it means this data packet is lost,
based on the commonly used network protocols. From the physical point of
view, it is natural to assume that only a finite number of consecutive data
dropouts can be tolerated in order to avoid the NCS becoming open-loop.
Thus, the number of consecutive data dropouts in the channels from the
sensor to the controller and from the controller to the actuator should be
less than finite number Ndsc and Ndca, respectively. Similarly, the network
delay from sensor to controller and from controller to actuator should also be
bounded by finite numbers Nscd and Ncad, respectively. Clearly, the upper
bound number of consecutive data dropouts and time delay should not be
greater than the upper bounds Nsc and Nca (i.e. Ndsc + Nscd ≤ Nsc and
Ndca + Ncad ≤ Nca). Nca + Nsc is the length of prediction.

The state observer is designed as

x̂t+1|t = Ax̂t|t−1 + But|t + L(yt − Cx̂t|t−1) (14.2)

where x̂t+1|t ∈ Rn and ut|t ∈ Rm are the one-step ahead state prediction and
the input of the observer at time t, respectively; and matrix L ∈ Rn×l which
can be obtained using observer design approaches. The estimator of the state

x̂t|t = x̂t|t−1 + M(yt − Cx̂t|t−1) (14.3)

where x̂t|t−1 ∈ Rn is the state observer, M ∈ Rn×l is the matrix to be
determined. Assume that the controller is of the following form:

ut|t = Kx̂t|t (14.4)
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where K ∈ Rm×n is the state feedback control matrix to be determined
using modern control theory. In particular, the augmented system without
time-delay, i.e., ut = ut|t, can be described as follows:

x̂t+1|t = (A + BK − LC −BKMC)x̂t|t−1

+(BKMC + LC)xt

xt+1 = (A + BKMC)xt + (BK −BKMC)x̂t|t−1

ut = Kx̂t|t = K(I −MC)x̂t|t−1 + KMCxt.

(14.5)

In order to compensate for the network transmission delay, a network delay
compensator in the channel from the controller to the actuator is proposed.
A very important characteristic of the network is that it can transmit a
set of data at the same time. Thus, it is assumed that control predictions
at time t are packed and sent to the plant side through a network. The
network delay compensator chooses the latest control value from the control
prediction sequences available on the plant side. For example, when there is
no time delay in the channel from sensor to controller and the time-delay from
controller to actuator is it, and the following predictive control sequences are
received on the plant side:

[uT
t−i1|t−i1

, uT
t−i1+1|t−i1

, · · · , uT
t|t−i1

, · · · , uT
t+Nca−i1|t−i1

]T (14.6)

where the control values ut|t−ij
for j = 1, 2, · · · , t, are available to be chosen

as the control input of the plant at time t, the output of the network delay
compensator will be

ut = ut|t−min{i1,i2,···,it}. (14.7)

When random network delays exist in both sensor-to-controller and
controller-to-actuator channels, the scheme proposed in this chapter com-
pensates for the network delays in the controller-to-actuator and sensor-to-
controller channels and could achieve the desired control performance. Thus,
on the sensor side, the output sequence is packed and sent to the controller
side through the feedback channel. On the control side, the control predic-
tion sequence at time t, is packed and sent to the plant side through the
forward channel. The network delay compensator chooses the latest control
value from the control prediction sequences available on the plant side.

In this chapter, the time-delays in both the controller-to-actuator channel
and sensor-to-controller channel are modelled as an associated Markov chain
process (random jump process). The usefulness of such a model representa-
tion is that it permits the decision-maker to properly treat the discrete-events,
which significantly change the normal operation by exploiting the knowledge
of their occurrence and the statistical patterns of the arrival information.
Then, the transition probability from one time-delay to another will be de-
scribed in the following special structure of the transition matrix.

In the following result, the assumption is made that the network delay
in the controller to actuator channel is bounded by Nca. The network delay
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compensator is in the form of

ut = ut|t−it
, subject to it ≤ it−1 + 1 (14.8)

where the network delay it is modelled as a discrete state Markov chain taking
values in a finite set S Δ= {0, 1, 2, ....., Nca} , with transition probability (αij)
from mode i to mode j

αij = Prca(it+1 = j | it = i) (14.9)

where 0 ≤ i, j ≤ Nca, αij ≥ 0 and for any i ∈ S,
∑Nca

j=0 αij = 1. From (14.6),
a package containing Nca + 1 control predictions will be sent through the
network. If one package, such as

[uT
t−i1|t−i1

, uT
t−i1+1|t−i1

, · · · , uT
t|t−i1

, · · · , uT
t+Nca−i1|t−i1

]T

is sent through the network, in which, uT
t|t−i1

will be used as the control
input due to the network delay i1. uT

t+1|t−i1
will be used as the next control

input if there is no new coming package of future prediction sequences at
time t + 1 since the data may be lost or there is a longer delay. Then, from
the constraint (14.8), it follows that

αij = Prca(it+1 = j| it = i < j − 1) = 0 (14.10)

i.e, αij = 0, for i < j − 1. On the other hand, the delay it can be reduced
by up to the maximum number of steps. When the new package of the fu-
ture prediction sequence arrives, the old package will be discarded. Then, a
structured transition probability matrix is obtained as follows

Prca =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α00 α01 0
α10 α11 0
...

...
...

...
...

...
α(Nca−1)0 α(Nca−1)1 α(Nca−1)2

αNca0 αNca1 αNca2

0 · · · 0
α12 · · · 0
...

. . .
...

...
... 0

α(Nca−1)3 · · · α(Nca−1)Nca

αNca3 · · · αNcaNca

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(14.11)
In (14.11), each row represents the transition probabilities from one element
in a fixed package to the element in all the package coming in sequence.
The diagonal elements are the probabilities of package coming in sequence
with equal delays. The elements above the diagonal are the probabilities of
encountering longer delays, and the elements below the diagonal indicate
package loss or discarded old data.

As the random time-delay also occurs in the sensor-to-controller channel,
the same Markov chain model for this random time-delay kt is adopted. It
is assumed that the network delay kt in the feedback channel is random but
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bounded by Nsc, that is, kt ∈ {0, 1, 2, · · · , Nsc}. The networked predictive
controller is in the form of

ut = Kx̂t|t−kt
, subject to kt ≤ kt−1 + 1 (14.12)

where the network delay kt is modelled as a discrete state Markov chain taking
values in a finite set Ssc

Δ= {0, 1, 2, ....., Nsc} , and (βij) has a transition
probability from mode i to mode j of

βij = Prsc(kt+1 = j | kt = i) (14.13)

where 0 ≤ i, j ≤ Nsc, βij ≥ 0 and for any i ∈ Ssc,
∑Nsc

j=0 βij = 1. Then, from
the constraint (14.12), it follows that

Prsc(kt+1 = j|kt = i < j − 1) = 0. (14.14)

Then, a structured transition probability matrix is obtained as follows

Prsc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β00 β01 0
β10 β11 0
...

...
...

...
...

...
β(Nsc−1)0 β(Nsc−1)1 β(Nsc−1)2

βNsc0 βNsc1 βNsc2

0 · · · 0
β12 · · · 0
...

. . .
...

...
... 0

β(Nsc−1)3 · · · β(Nsc−1)Nsc

βNsc3 · · · βNscNsc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.15)

In this case, the delay in the sensor-to-controller channel and the delay
in the controller-to-actuator channel are modelled as Markov processes de-
scribed in (14.9) and (14.13), respectively. Then, the Markovian jump pa-
rameter is

rsca = (kt, it) (14.16)

Prsca = Prsc ⊗ Prca. (14.17)

14.3 Stochastic Stability of Closed-Loop Networked
Predictive Control Systems

Following the state observer described by (14.2), when kt = 0, ut−kt

will be ut|t which is defined as in (14.3) and (14.4). Based on the pair
(yt−kt , ut−kt)received on the side of the observer, and the input data ap-
plied by observer up to t− 1, the state predictions from time t− kt + 1 to t
are constructed as
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x̂t−kt+1|t−kt
= Ax̂t−kt|t−kt−1 + But−kt + L(yt−kt − Cx̂t−kt|t−kt−1)

x̂t−kt+2|t−kt
= Ax̂t−kt+1|t−kt

+ But−kt+1

...
x̂t|t−kt

= Ax̂t−1|t−kt
+ But−1

(14.18)
which results in

x̂t|t−kt
= Akt−1(A− LC)x̂t−kt|t−kt−1 +

∑kt

j=1 A
kt−jBut−kt+j−1

+ Akt−1Lyt−kt

(14.19)

where kt = 1, 2, 3, · · · , Nsc. As a result, the output of the networked predictive
control at time t is determined by

ut|t−kt
= KAkt−1(A− LC)x̂t−kt|t−kt−1 +

∑kt

j=1 KAkt−jBut−kt+j−1

+ KAkt−1Lyt−kt .
(14.20)

From equation (14.20), it is clear that the future control predictions depend
on the state estimation x̂t−kt|t−kt−1 and the past control input up to ut−1

and the past output up to yt−kt of the system. When there is no delay in the
feedback channel, i.e., kt = 0, and it �= 0, then,

x̂t+1|t = Ax̂t|t−1 + But + L(yt − Cx̂t|t−1)
x̂t+2|t = Ax̂t+1|t + But+1|t

...
x̂t+it|t = Ax̂t+it−1|t + But+it−1|t.

(14.21)

Let ut+i|t = Kx̂t+i|t, i = 1, 2, · · · , it − 1, and ut = ut|t−it
= Kx̂t|t−it

, then,

x̂t|t−it
= (A + BK)it−1[(A + BK − LC)x̂t−it|t−it−1 + LCxt−it ] (14.22)

ut = K(A + BK)it−1[(A + BK − LC)x̂t−it|t−it−1 + LCxt−it ]. (14.23)

The closed-loop system is

xt+1 = Axt + BK(A+ BK)it−1LCxt−it + BK(A + BK)it−1

×(A + BK − LC)x̂t−it|t−it−1

x̂t+1|t = (A + BK − LC −BKMC)x̂t|t−1 + (BKMC + LC)xt

ut = K(A + BK)it−1[(A + BK − LC)x̂t−it|t−it−1 + LCxt−it ].

(14.24)

For the case where there are both the network delay it in the controller-to-
actuator channel and the network delay kt in the sensor-to-controller channel,
the state prediction from time t + 1 to t + it are constructed by
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x̂t+1|t−kt
= Ax̂t|t−kt

+ But|t−kt

x̂t+2|t−kt
= Ax̂t+1|t−kt

+ But+1|t−kt

...
x̂t+it|t−kt

= Ax̂t+it−1|t−kt
+ But+it−1|t−kt

(14.25)

the control predictions are calculated by

ut+i|t−kt
= Kx̂t+i|t−kt

, i = 0, 1, · · · , it (14.26)

where the state feedback matrix K ∈ Rm×n. Thus,

x̂t+it|t−kt
= (A + BK)it x̂t|t−kt

= (A + BK)it(Akt−1(A− LC)x̂t−kt|t−kt−1

+
∑kt

j=1 A
kt−jBut−kt+j−1 + Akt−1Lyt−kt).

(14.27)

Since there exist the forward delay it and feedback delay kt, the control input
of the plant is given by

ut = ut|t−it−kt
. (14.28)

Combining this predictive controller with the networked delay compensator,
both the forward and feedback network delays will be compensated for a
certain amount of time-delay. In this section, stability analysis of the closed-
loop system will be presented using this control scheme.

When the random network delay in the controller-actuator channel is kt

(kt > 0) the control input, state prediction, and plant state vectors are ex-
pressed by

ut = K(A + BK)it [Akt−1(A− LC)x̂t−it−kt|t−it−kt−1

+
∑kt

j=1 A
kt−jBut−it−kt+j−1 + Akt−1LCxt−it−kt ]

(14.29)

xt+1 = Axt + But

= Axt + But|t−it−kt

= Axt + BK(A+ BK)it [Akt−1(A− LC)×
x̂t−it−kt|t−it−kt−1 +

∑kt

j=1 A
kt−jBut−it−kt+j−1 + Akt−1LCxt−it−kt ]

(14.30)

x̂t−kt+1|t−kt
= Ax̂t−kt|t−kt−1 + But−kt + L(yt−kt − Cx̂t−kt|t−kt−1). (14.31)

Note that Λ(0, 0) for it = 0, kt = 0 is described in (14.34), and Λ(it, 0)
for it = 1, 2, · · · , Nca and kt = 0 are defined in (14.35), then, combination of
equations (14.29), (14.30) and (14.31) gives the following augmented system:

Xt+1 = Λ(it, kt)Xt (14.32)

where
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Xt =
[
xT

t xT
t−1 · · · xT

t−it−kt+1 xT
t−it−kt

xT
t−it−kt−1 · · · xT

t−Nsc−Nca+1 xT
t−Nsc−Nca

uT
t−1 uT

t−2 · · · uT
t−it−kt+1 uT

t−it−kt
uT

t−it−kt−1 · · · uT
t−Nsc−Nca+1 uT

t−Nsc−Nca

x̂T
t|t−1 xT

t−1|t−2 · · · x̂T
t−it−kt+1|t−it−kt

x̂T
t−it−kt|t−it−kt−1 xT

t−it−kt−1|t−it−kt−2

· · · x̂T
t−Nsc−Nca+1|t−Nsc−Nca

x̂T
t−Nsc−Nca|t−Nsc−Nca−1

]T

(14.33)
and Λ(it, kt), it = 0, 1, · · · , Nca, kt = 0, 1, 2, · · · , Nsc are expressed as follows:

Λ(0, 0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ1(0, 0)
Λ21(0, 0) Λ22(0, 0)

Λ3(0, 0)
Λ41(0, 0) Λ42(0, 0) Λ43(0, 0)

Λ5(0, 0)
Λ61(0, 0) Λ62(0, 0) Λ63(0, 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14.34)

where
Λ(0, 0) ∈ R[2n(Nca+Nsc)+m(Nca+Nsc)+2n][2n(Nca+Nsc)+m(Nca+Nsc)+2n]

Λ1(0, 0) =

[

M1(0)

(Nca+Nsc)n
︷ ︸︸ ︷
0 · · · 0 0

(Nca+Nsc)m
︷ ︸︸ ︷
0 · · · 0 0

M2(0) 0 · · · 0 0

]

Λ21(0, 0) = I(Nca+Nsc)n×(Nca+Nsc)n

Λ22 = 0(Nca+Nsc)n×[n(Nca+Nsc)+m(Nca+Nsc)+2n]

Λ3(0, 0) =
[
K(I −MC) 0 · · · 0 0 0 · · · 0 0 KMC 0 · · · 0 0

]

Λ41(0, 0) = 0(Nca+Nsc−1)m×(Nca+Nsc+1)n

Λ42(0, 0) = I(Nca+Nsc−1)m×(Nca+Nsc−1)m

Λ43(0, 0) = 0[(Nca+Nsc−1)m×(Nca+Nsc)n+2n]

Λ5(0, 0) =
[
M3(0) 0 · · · 0 0 0 · · · 0 0 M4(0) 0 · · · 0 0

]

Λ61(0, 0) = 0[(Nca+Nsc)n+(Nca+Nsc)m+n]×[(Nca+Nsc+1]

Λ62(0, 0) = 0(Nca+Nsc)n×(Nca+Nsc)n

Λ63(0, 0) = 0(Nca+Nsc)n×n

Λ(it, 0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ1(it, 0)
Λ21(it, 0) Λ22(it, 0)

Λ3(it, 0)
Λ41(it, 0) Λ42(it, 0) Λ43(it, 0)

Λ5(it, 0)
Λ61(it, 0) Λ62(it, 0) Λ63(it, 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14.35)

where Λ(it, 0) ∈ R[2n(Nca+Nsc)+m(Nca+Nsc)+2n][2n(Nca+Nsc)+m(Nca+Nsc)+2n]

Λ1(it, 0) =

[

A

itn
︷ ︸︸ ︷
0 · · · M1(it) · · · 0

(Nca+Nsc)m
︷ ︸︸ ︷
0 · · · 0 0 0 · · · M2(it) · · · 0 0

]

Λ21(it, 0) = I(it+2)n×(it+2)n

Λ22(it, 0) = 0(it+2)n×[2n(Nca+Nsc)+m(Nca+Nsc)−itn]

Λ3(it, 0) =
[
0 0 · · · M3(it) · · · 0 0 · · · 0 0 0 · · · M4(it) · · · 0 0

]

Λ41(it, 0) = 0(Nca+Nsc−1)m×(Nca+Nsc+1)n
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Λ42(it, 0) = I(Nca+Nsc−1)m×(Nca+Nsc−1)m

Λ43(it, 0) = 0[(Nca+Nsc−1)m×(Nca+Nsc)n+2n]

Λ5(it, 0) =
[
M3(0) 0 · · · 0 0 0 · · · 0 0 M4(0) 0 · · · 0 0

]

Λ61(it, 0) = 0[(Nca+Nsc)n+(Nca+Nsc)m+n]×[(Nca+Nsc+1]

Λ62(it, 0) = 0(Nca+Nsc)n×(Nca+Nsc)n

Λ63(it, 0) = 0(Nca+Nsc)n×n

Λ(it, kt) =

⎡

⎣
Λ11(it, kt) Λ12(it, kt) Λ13(it, kt)
Λ21(it, kt) Λ22(it, kt) Λ23(it, kt)
Λ31(it, kt) Λ32(it, kt) Λ33(it, kt)

⎤

⎦

∈ R[2n(Nca+Nsc)+m(Nca+Nsc)+2n][2n(Nca+Nsc)+m(Nca+Nsc)+2n]

for it = 1, 2, · · · , Nca and kt = 1, 2, · · · , Nsc, where Φit = K(A + BK)it

Λ11 =
[

Λ111

In(M+N)×(n(M+N)
0
]

∈ R[n(M+N)+n]×[n(M+N)+n]

Λ111 =

[

LC

(it+kt−1)n
︷ ︸︸ ︷
0 · · · 0 BMitA

kt−1LC
0 · · · 0

]

∈ R[n×[n(M+N)+n]

Λ12(kt, it) =
[
Λ̂121

Λ̂122
0[(M+N+1)×(M+N)m−(it+kt)m]

]

Λ̂121(kt, it) =

[
itn

︷ ︸︸ ︷
0 · · · 0 Π(1) · · · Π(2) Π(3)

]

Λ̂122 = 0[n(M+N)+n]×[m(M+N)]

Λ13(kt, it) =
[

Λ131

0(n(M+N)×[n(M+N)+n]

]

Λ131 =

[
ktn

︷ ︸︸ ︷
0 0 · · · 0 Π(4) 0 · · · 0 0

]

Λ21(kt, it) =
[

Λ211

0[(m−1)(M+N)]×[n(M+N)+n]

]

Λ211 =

[
ktn

︷ ︸︸ ︷
0 0 · · · 0 MitA

kt−1LC 0 · · · 0 0

]

Λ22 =
[

Λ221(kt, it)
I(M+N−)m×(M+N−1)m

0(M+N)m×m

]

∈ R[m(M+N)]×[m(M+N)]

Λ221(kt, it) =
[

itn
︷ ︸︸ ︷
0 · · · 0 Π(5) Π(6) · · · Π(7) Π(8) 0 · · · 0

]

∈ R[m]×[m(M+N−1)]

Λ23(kt, it) =
[
Λ231

Λ232

]

Λ231 =

[
ktn

︷ ︸︸ ︷
0 0 · · · 0 Π(9) 0 · · · 0 0

]

Λ232 = 0[m(M+N−1)]×[n(M+N)+n]
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Λ31 =
[

Λ311

0(M+N)n×(it+kt+1)n
0
]

∈ R[n(M+N)+n]×[n(M+N)+n]

Λ311 =

[

LC

(it+kt−1)n
︷ ︸︸ ︷
0 · · · 0 0

]

∈ R[n×(it+kt+1)n

Λ32 = 0(n(M+N)+n)×(mN)

Λ33(kt, it) =
[

Λ331

Λ3311 Λ3312

]

Λ331 =

[
ktn

︷ ︸︸ ︷
A 0 · · · 0 0 0 · · · 0 0

]

Λ3311 = In(M+N)×n(M+N)nm

Λ3312 = 0n(M+N)×n

where A = A + BK − LC, M3(0) = BKMC + LC, M4(0) = A + BK −
LC + BKMC, Mit = K(A + BK)it , M1(it) = BK(A + BK)it−1LC,
M2(it) = BK(A + BK)it−1(A + BK − LC), M3(it) = K(A + BK)it−1LC,
M4(it) = K(A + BK)it−1(A + BK − LC), M5(it) = BK(A + BK)it−1LC,
M6(it) = BK(A+BK)it−1(A+BK−LC), M7(it) = D1K(A+BK)it−1LC,
M8(it) = D1K(A + BK)it−1(A + BK − LC), Π(1) = MitB, Π(2) =
BMitA

kt−2B, Π(3) = BMitA
kt−1B,Π(4) = BMitA

kt−1(A − LC), Π(5) =
MitA

kt−1LC, Π(6) = MitAB, Π(7) = MitA
kt−2B, Π(8) = MitA

kt−1B,
Π(9) = MitA

kt−1(A− LC).

Definition 14.2. [213] The jump system (14.32) with random time-delays is
said to be stochastically stable if for the initial mode r0, there exists a finite
number M(r0) > 0 such that

E

{ ∞∑

t=0

XT
r0

(t)Xr0(t)|r0
}

< M(r0). (14.36)

It is noted that the closed-loop system in (14.32) is a delay-free discrete-
time jump linear system with two modes. Then, we can utilize the existed
results on the stochastic stability and stabilization to perform the stability
analysis of system (14.32). Our main results in this section can be stated as
follows:

Theorem 14.3. System (14.32) with random time-delay kt in the channel
from the sensor-to-controller and random time-delay it in the channel from
the controller-to-actuator, where kt and it are Markov processes described
by (14.10) and (14.13), respectively, is stochastically stable if and only if
there exist symmetric positive definite matrices S(i, j), i = 0, 1, · · · , Nca; j =
0, 1, · · · , Nsc satisfying any one of the following four inequalities:

Λ(i, j)(
Nca∑

k=0

Nsc∑

h=0

αkiβhjS(k, h))ΛT (i, j) < S(i, j) (14.37)



14.3 Stochastic Stability of Closed-Loop 235

Nca∑

k=0

Nsc∑

h=0

αkiβhjΛ(k, h)S(k, h)ΛT (k, h) < S(i, j) (14.38)

ΛT (i, j)(
Nca∑

k=0

Nsc∑

h=0

αikβjhS(k, h))Λ(i, j) < S(i, j) (14.39)

Nca∑

k=0

Nsc∑

h=0

αikβjhΛ
T (k, h)S(k, h)Λ(k, h) < S(i, j) (14.40)

where

S(i, j) ∈ R[2n(Nca+Nsc)+m(Nca+Nsc)+2n]×
[2n(Nca+Nsc)+m(Nca+Nsc)+2n]

i = 0, 1, · · · , Nca; j = 0, 1, · · · , Nsc.

Proof. Sufficiency: Without loss of generality, it is assumed that (14.39) holds,
then, based on the algorithm proposed in this chapter, the stochastic stability
of the closed-loop systems is related to the time-delay in the feedback kt

channel and forward channel it. Then, a quadratic function can be taken as
follows:

V (Xt, t) = XT
t S(it, kt)Xt. (14.41)

It follows from (14.32) that

E {ΔV (Xt, t)}
= E {XT

t+1S(it+1, kt+1)Xt+1|Xt} −XT
t S(it, kt)Xt

= XT
t Λ

T (it, kt)(
Nca∑

k=0

Nsc∑

h=0

αitkβkthS(k, h))Λ(it, kt)Xt −XT
t S(it, kt)Xt.

If (14.39) is satisfied for i = 0, 1, · · · , Nca; j = 0, 1, · · · , Nsc, then, there exists
a positive scalar σ such that the following inequality holds:

E {ΔV (Xt, t)} ≤ −σ||Xt||2. (14.42)

Add the above inequalities from t = 0 to t = T , it results in

E {
T∑

i=0

||Xt||2} ≤ 1
σ

(E {V (X0, 0)} − E {V (XT+1, T + 1)}

≤ 1
σ

E {V (X0, 0)}. (14.43)

From the above inequality, it can been easily seen that (14.36) is satisfied,
then, the jump system (14.32) with random time-delays is stochastically
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stable. The other three conditions in Theorem 14.3 can be obtained by the
same techniques used in the proof.

The necessity of the proof is similar to the proof of Theorem 1 in [213], it
is omitted here.

Remark 14.4. At each sampling time, the current controller-to-actuator delay
it can be known by the proposed network delay compensator on the of side
of actuator. However, it is not known for the observer. The result obtained in
the above theorem is mainly on the stability analysis of this kind of systems.
The performance can also be improved with the method proposed in this
chapter, which can also be refereed to our recent results, which appeared
in [120].

Remark 14.5. Since the matrix inequalities in (14.37)-(14.40) are related to
gain matrices K and L, in general, these gain matrices should be designed to
guarantee that the closed-loop system with constant network delay is stable.
If gain matrices K and L are designed previously, then (14.37)-(14.40) are a
set of linear matrix inequalities (LMIs). Therefore, one can use LMI tool box
to find the feasible solutions.

Remark 14.6. Another important issue in a communication channel is the
problem of bandwidth. To solve such a problem, the quantization, as a popu-
lar way, has been considered, see [49, 47, 40, 114]. In a network environment,
signals are usually quantized before being communicated, and the number
of quantization levels is closely related to the information flow between the
components of the system and thus to the capacity required to transmit the
information. In the networked predictive control systems, as for how to solve
bandwidth problem using quantization, it remains our future study.

14.4 Examples

14.4.1 Numerical Example

Example 14.7. In this section, an illustrative example is constructed to verify
the design method developed in this chapter. Simulation studies are presented
for an open-loop unstable discrete system which is difficult to control and is
in the form of (14.1) with the following system matrices:

A =
[−1.100 0.271

0.188 0.482

]

, B =
[

0.5
0.3

]

, C =
[
0.1 0.2

]
.

It is assumed that the upper bound of the time-delay in the sensor-to-
controller channel and controller-to-actuator channel is 2, that is, Nsc = 2,
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Nca = 2, and the structured transition probability matrices for the random
time-delays are

Prca =

⎡

⎣
0.5 0.5 0
0.5 0.3 0.2
0.3 0.4 0.3

⎤

⎦ , P rsc =

⎡

⎣
0.6 0.4 0
0.3 0.4 0.3
0.3 0.5 0.2

⎤

⎦

then,

Prsca = Prca ⊗ Prsc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.2 0 0.3 0.2 0 0 0 0
0.15 0.2 0.15 0.15 0.2 0.15 0 0 0
0.15 0.25 0.1 0.15 0.25 0.1 0 0 0
0.3 0.2 0 0.18 0.12 0 0.12 0.08 0
0.15 0.2 0.15 0.09 0.12 0.09 0.06 0.08 0.06
0.15 0.25 0.1 0.09 0.15 0.06 0.06 0.1 0.04
0.18 0.12 0 0.24 0.16 0 0.18 0.12 0
0.09 0.12 0.09 0.12 0.16 0.12 0.09 0.12 0.09
0.09 0.15 0.06 0.12 0.20 0.08 0.09 0.15 0.06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrices K =
[
0.1634 −1.7594

]
, L =

[−3.3422
3.4661

]

and M =
[−1.9745 −0.3282

]
are designed such that the nominal system (14.1) is sta-

ble. Then, using LMI Toolbox, positive matrices S(i, j), i = 0, 1, 2; j = 0, 1, 2
satisfying inequalities (14.37) have been found, which is not presented here
because of its size. From Theorem 14.3, system (14.1) with random time-delay
kt in the channel from the sensor-to-controller and it in the channel from the
controller-to-actuator , where kt and it are Markov processes described by
(14.9) and (14.13) respectively, is stochastically stable.

14.4.2 Practical Experiments

Example 14.8. To implement networked control systems, a test rig is built,
based on an ARM 9 embedded boards. The figure of the board is shown in
Fig. 14.1. The kernel chip of the embedded board is ATMEL’s AT91RM9200,
which is a cost-effective, high-performance 32-bit RISC microcontroller for
Ethernet- based embedded systems. A 10M/100M self-adaptive network con-
troller is integrated in the chip and the chip also has a high computing per-
formance and can work at speeds up to 180 MHz. 2-channel 16-bit high speed
analog-digital (D/A) converters and 8-channel 16-bit high speed analog-
digital (A/D) converters in the controller board provide I/O interfaces for
the controlled plant.

In order to validate the proposed method, a servo motor control system
which consists of a DC motor, load plate, speed and angle sensors is consid-
ered. The figure of the plant is shown in Fig. 14.2.
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Fig. 14.1 ARM 9 Embedded Board

Fig. 14.2 Servo Plant

The model of the motor control plant at sampling period 0.04 second is
identified to be

G(z−1) =
A(z−1)
B(z−1)

=
0.05409z−2 + 0.115z−3 + 0.0001z−4

1 − 1.12z−1 − 0.213z−2 + 0.335z−3
.

The system can also be written as the state space form with the following
system matrices

A =

⎡

⎣
1.12 0.213 −0.335
1 0 0
0 1 0

⎤

⎦ , B =

⎡

⎣
1
0
0

⎤

⎦

C =
[
0.0541 0.1150 0.0001

]
.
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The matrices K and L are designed to be

K =
[−0.0270 −0.575 −0.0001

]
, L =

⎡

⎣
6
6
6

⎤

⎦

which ensure the close-loop system without time delay is stable.

14.4.2.1 Simulation

To verify the proposed networked predictive control scheme, three simula-
tions are considered: local control (i.e., no network), networked control with
compensation, networked control without compensation. It is assumed that
the Markov matrices for the forward and feedback channel time delay could
be described as

Prca =

⎡

⎣
0.5 0.5 0
0.5 0.3 0.2
0.3 0.4 0.3

⎤

⎦ , P rsc =

⎡

⎢
⎢
⎣

0.2 0.8 0 0
0.2 0.2 0.6 0
0.2 0.2 0.3 0.3
0.1 0.2 0.3 0.4

⎤

⎥
⎥
⎦ .

These simulations are carried out by Matlab Simulink. The diagram of
networked simulation is shown in Fig. 14.3. To simulate the network delay,
block Markov delay is developed. The function of this block is to make the
artificial random time delay but subject to Markov matrix. The block Netctrl
is the control prediction generator and the block Comp is the network delay
compensator. All these blocks are designed using Matlab S-Functions. The
simulation results are shown in Fig. 14.4 and Fig. 14.5.

Fig. 14.3 Simulation Diagram
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Fig. 14.4 Output of servo plant (Simulation)

Fig. 14.5 Input of servo plant (Simulation)

14.4.2.2 Real Time Experiment

The difference between the real-time simulations and real-time experiments
is that the plant model of the servo motor in the real-time simulations is
replaced by D/A block Dac9 and A/D block Adc9 and the real servo motor.
The diagram of the real-time experiments is shown in Fig. 14.6. The two
blocks Dac9 and Adc9 were the driver of the A/D and D/A channels in the
embedded system and were designed in Matlab S-Function. Similarly, three
real-time experiments were made: local control (i.e., no network), networked
control with compensation, networked control without compensation. The
real-time experiments results are shown in Fig. 14.7 and Fig. 14.8.
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Fig. 14.6 Diagram of real time experiment

Fig. 14.7 Input of servo plant (Experiment)

Fig. 14.8 Input of servo plant (Experiment)
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From the results of real-time simulations and real-time experiments, it is
clear that the network transmission delay degrades the performance of NCS.
But the networked predictive control scheme proposed in this chapter can
compensate for the network delay actively. Its performance is very close to
that of the local control scheme (i.e., no network). Although it is hard to make
the model of the servo motor plant be exactly the same as the real practical
one, the results of the real-time experiments are very similar to those of the
real-time simulations.

14.5 Conclusion

A new networked predictive control scheme has been proposed for MIMO
networked distributed control systems with random network delay and the
stochastic stability of the closed-loop networked predictive control systems
has also been discussed in this chapter. The criteria for the stochastic sta-
bility of the closed-loop networked predictive control system are given for
random network delays in both the controller-to-actuator channel and sensor-
to-controller channel.



Chapter 15

Networked Data Fusion with Packet
Losses and Variable Delays

15.1 Introduction

Multi-senor data fusion has received significant attentions for military and
nonmilitary applications in the recent years. Data fusion technique combines
data from multiple sensors, and relates information to achieve improved ac-
curacies and more specific inferences than those achieved by a single sen-
sor alone [105, 29, 130, 129, 171]. Applications of multisensor data fusion
are widespread. Military applications include: automated target recognition,
guidance for autonomous vehicles, remote sensing, battlefield surveillance,
and automated threat recognition systems, such as identification-friend-foe-
neutral(IFFN) systems. Nonmilitary applications include monitoring of man-
ufacturing processes, condition-based maintenance of complex machinery,
robotics, and medical applications.

Now networked data fusion is a new area in the signal processing area. By
network, the Data Processing Center (DPC) possesses the ability to process
the remote data measured with multi-senors. Particularly, Internet based data
fusion allows remote monitoring and fault detection over it, which makes
data fusion benefit from the ways of retrieving and processing data form
anywhere around the world at any time. The networked data fusion has also
opened up a complete new range of real-world applications, namely tele-
manufacturing, tele-surgery, museum guidance, space exploration, disaster
rescue, and health care. However, the insertion of communication network
brings about two issues which do not happen in conventional signal processing
scenarios. The one is that network-induced delays occur while exchanging
data among devices connected to the shared medium. The other is that some
packets not only suffer transmission delays but, even worse, may be lost
during transmission in that network itself can be viewed as a web of unreliable
paths [214]. Both of the two issues attract a myriad of attentions in the
signal processing and control areas where network is frequently employed as
an useful tool. [180, 190, 186, 118, 133, 178, 219].

Y. Xia et al.: Analysis and Synthesis of Dynamical Systems, LNCIS 387, pp. 243–270.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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An important and practical problem in data fusion systems is to find an
optimal state estimator, based on successive or disconnected measurements
[11]. Kalman filter, as it is, is the best known recursive least mean squares
(LMS) algorithm to optimally estimate the unknown states of a dynamic
system. As long as remote measurement data in time arrive at DPC, the
conventional Kalman filtering is carried on, and the resulting state estima-
tions are optimal in the LMS sense. Unfortunately, due to the unreliability
of the network, the remote data transmitted over network may fail to arrive
in sequence or be completely lost. Especially when serious data losses occur,
stability of the networked Kalman filter will be open to question. And also,
how to process the delayed data is another issue to be addressed when those
data in DPC are fused.

In recent researches on network models, paper [42] considered the state es-
timation with lost measurements resulting from time-varying channel condi-
tions and introduced a more general multiple state Markovian chain to model
the loss and nonloss channel states, and the asymptotic mean squares estima-
tion error for a suboptimal linear estimator was analyzed and optimized by a
linear matrix inequality (LMI) approach. In particular, paper [165] developed
a suboptimal jump linear estimator for complexity reduction in computing
the corrector gain using finite loss history where the loss process is modelled
by a two-state Markovian chain. Paper [163] investigated the filtering with
independent and identical distributed packet losses by identifying a threshold
condition. Paper [81] also modeled the transmission channel with a two-state
Markov chain, and provided a sufficient condition for the Kalman filter with
the observation losses. In particular, the sufficient condition turns to be a suf-
ficient and necessary one for scalar models. The contribution in paper [81] is
mainly cited as a criterion for deciding the stability of the networked Kalman
filter.

Many data processing methods have been proposed in recent years in the
presence of networks [131, 4, 121]. Paper [4] presented an optimal algorithm
for updating with out-of-sequence measurements, however, the method was
referring to one-step-lag measurements. A related problem has been studied
by paper [174], in which the transmission time from each radar to the fusion
center is assumed to be known only statistically but not exactly, that is, no
time tag is appended to the measurement. However, this assumption is not
realistic for today’s wide-band communication links. Paper [131] proposed
an algorithm for state estimate with the multiple step lags, however, the
algorithm is suboptimal for omitting the white noise estimate.

In this chapter, we present a practical architecture and some algorithms
for the networked data fusion system with packet losses and variable delays.
The data fusion system proposed in this chapter is based on the well-known
Federated Filter. The stability of the networked filter is judged by the cri-
teria proposed in paper [81]. One of the contributions of this chapter is the
algorithm presented in the section 15.3.3. Compared with the algorithm in
paper [131], the algorithm in this chapter is optimal. The optimal solution
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for multistep out-of-sequence measurements (OOSM) problem was presented
in paper [217]. However, the optimality of the algorithm for updating with
OOSMs is lost in the direct discrete-time model of the process noise, and it
remains effective only in the discretized continuous-time model and simple
OOSM scenario [218]. Besides, unlike contributions in paper [212], the system
considered in this chapter is equi-interval sampled and there is completely no
prior information about when packet delays occur. And also, the advantage
of the proposed algorithm is presented in Theorem 15.8.

This chapter is organized as follows: Section 15.2 gives the problem formu-
lation. Section 15.3 presents the method of data fusion. Subsection 15.3.1 is
the recall of the Federated Filter. subsection 15.3.2 shows the results of the
stability of networked Kalman Filter. Subsection 15.3.3 details the method
to process delay data. Subsection 15.3.4 presents the principle for data fu-
sion. A numerical example is designed in Section 15.4. Section 15.5 presents
conclusion.

15.2 Problem Formulation

M sensors provide measurements which are used for data fusion. It is as-
sumed that the network is inserted to transmit the remote data to the Data
Processing Center (DPC). DPC is constructed on the basis of the Federated
Filter, which comprises the Local Filters (LFs) and Master Filter (MF). Here,
the Local Filters receive specific measurements over network. The ith Local
Filter, for instance, corresponds to the measurements obtained with the ith
sensor.

Consider the discrete time-variant linear stochastic control system with M
sensors:

x(k) = Φ(k, k − 1)x(k − 1) + ω(k, k − 1) (15.1)

yi(k) = Hi(k)x(k) + vi(k) (15.2)

where x(k) ∈ Rn is the state, yi(k) ∈ Rm, i = 1, 2, . . . ,M are the measure-
ments, ω(k, k − 1) ∈ Rn is the input noise, vi(k) ∈ Rm are the measurement
noises and Φ(k, k − 1), Hi(k) are the time-variant matrices with compatible
dimensions.

Assumption 15.2.1 ω(k, k − 1), v(k)={vi(k), i = 1, 2, . . . ,M} are the un-
correlated white noises with zero mean and

E{ω(k, k − 1)ωT (j, j − 1)} = Q(k, k − 1)δkj

E{v(k)vT (j)} = R(k)δkj
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E{ω(k, k − 1)vT (j)} = 0.

Assumption 15.2.2 The initial state x(0) is independent of ω(k, k− 1) and

E{x(0)} = μ0

E{[x(0) − μ0][x(0) − μ0]T } = P0.

We will make full use of the measurements from all places to obtain state
estimations with high accuracy, and therefore, the well-known Federated Fil-
ter is a desirable choice here. However, for packet losses and delays, an inves-
tigation to the networked Kalman Filer is necessary, then delayed data pro-
cessing should also be considered in the course of data fusion. Note that the
cross-correlated sensor noises are independent here. Optimal Kalman Filter-
ing fusion formula for sensors network with dependent cross-correlated noises
are presented in paper [168]. The method and architecture developed in this
chapter hold even if FF is replaced with the proposed distributed filters in
paper [168].

15.3 Method of Data Fusion

15.3.1 Recall of Federated Filters

A decentralized filter has an advantage over a centralized filter in the amount
of computation and guarantee of stability of the filter. Among the decentral-
ized filters, the Federated filter [20, 21] is a well-known one and employed
here to work as ‘calculator’ in the Data Processing Center (DPC).

The architecture of the Federated Filter chosen in this chapter is shown
as Fig. 15.1. The Federated Filter consists of M Local Filters (LFs) which

Fig. 15.1 The architecture of Federated Filter
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estimate the states with M local measurements by the means of conventional
Kalman filtering, and a Master Filter (MF) whose task is only to fuse the data
from the M Local Filters. Since the Federated Filter is a mature technology
for distributed filtering, we only make a simple recall here.

To eliminate the correlation between the states in different Local filters, in-
formation distribution technology is introduced. Assume βi is the information
distribution coefficient for the ith Local Filter. Since the global covariance
P can be viewed as a representation of the total amount of the informa-
tion involved by the global estimation. That is, the state estimation of the
ith Local filter x̂i contributes β−1

i × P to the global estimation, so we have
M∑

i=1

β−1
i × P = P , furthermore,

M∑

i=1

β−1
i = 1. (15.3)

From paper [20, 21], when the Kalman filtering is carried on in the Local
Filters, to keep the states among Local Filters independent by means of
information distributed technology, we must guarantee that

I. initial local covariances are set to be βi× the common system value, and
II. local filters use βi× the common process noise covariance value.

Then the Master Filter fuses the data from M Local Filters as the following
criteria to derive the global state estimate x̂g.

Pg = [
M∑

i=1

P−1
i ]−1 (15.4)

x̂g = Pg

M∑

i=1

P−1
i x̂i (15.5)

where x̂i and Pi are the state estimation and corresponding error covariance
obtained in the Local Filter i, and x̂g and Pg, are the global optimal state
estimation and its covariance, shown in Fig. 15.1.

However, it does not suffice to keep the global optimality just with the
technology above to fuse the remote data. To resolve the problem, we intro-
duce ‘reset’ from the Master Filter to the Local Filters. As Fig. 15.1 displays,
x̂g and β−1

i Pg are introduced to the ith Local Filter to substitute for the
original state estimation and covariance. So the Federated Filter is global op-
timal with local filter being suboptimal, but if the ‘reset’ is not introduced,
the Federated Filter will be a suboptimal filter.
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15.3.2 Stability of Networked Kalman Filtering

The system model is given as follows [81]

x(k) = Φx(k − 1) + ω(k, k − 1) (15.6)

where x(k) ∈ Rn is the state, Φ ∈ Rn×n is the system transition matrix,
ω(k, k−1) is a zero-mean Gaussian white noise sequence and the initial state
is x0. The sensor measurements are obtained starting from k ≥ 1 in the form

y(k) = Hx(k) + v(k) (15.7)

where H ∈ Rm×n, y(k) ∈ Rm and then y(k) is transmitted by a channel.
Here ω(k, k−1) and v(k) are two mutually independent sequences of indepen-
dent and identical distribution (i.i.d) Gaussian white noise with covariance
matrices Q(k, k − 1) and R(k) > 0.

Remark 15.1. Here we omit the subscript of the measurement and let it be
y(k) for a concise derivation in this section.

In the conventional Kalman filtering, the covariance P (k + 1|k) is defined
as P (k + 1|k) = E{[x(k + 1) − x̂(k + 1|k)][x(k + 1) − x̂(k + 1|k)]T }. Now let
P (k + 1|k) = Pk+1. It is easy to derive the following Riccati equation:

Pk+1 = ΦPkΦ
T + Q− ΦPkH

T [HPkH
T + R]−1HPkΦ

T , k ≥ 1 (15.8)

γk ∈ {0, 1} is used to indicate the arrival (with value 1) of loss (with value
0) of a packet. To capture the temporal correlation of channel variation, γk

is modeled by a two-state Markovian chain with transition matrix

α =
[

1 − q q
p 1 − p

]

(15.9)

where p and q are called the failure rate and recovery rate, respectively , with
p, q > 0. 1−p, for instance, denotes the probability of the channel remaining
at the normal state 1 after one step if it starts with state 1. Without loss of
generality, we adopt the same assumption that γ1 = 1 as that in paper [81].
Due to the insertion of the network, Riccati equation (15.8) is modified as
follows.

Pk+1 = ΦPkΦ
T + Q− γkΦPkH

T [HPkH
T + R]−1HPkΦ

T , k ≥ 1. (15.10)

Assumption 15.3.1 The failure and recovery rate p, q are both in (0, 1).

Assumption 15.3.2 System [Φ,H ] is observable.

Two sequences {τk}, {βk} are introduced:

τ1 = inf{k : k > 1, γk = 0}.
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It is assumed that the infimum of an empty set is +∞, therefore, τ1 denotes
at the first time the channel state γk switches from normal state 1. Similarly,
we can define

β1 = inf{k : k > τ1, γk = 1}.

It is evident that βk denotes at the kth time the channel state γk equals
1, that is, recovering from the abnormal state 0.

It is clear that

1 < τ1 < β1 < τ2 < · · · < τk < βk < · · · .

Lemma 15.2. [81] Under Assumption 15.3.2, with probability one the two
sequences {τk, k ≥ 1} and {βk, k ≥ 1}, have finite values for each of their
entries.

Now we define

β−
k = βk − 1

and note that β−
k is the last instant in a period of successive packet losses. The

time β−
k is useful for analyzing the filtering performance in that it provides

a basis for estimating to what extent the covariance process may deteriorate
due to successive packet losses.

Labeling a subsequence of the covariance Pk by the sequence of times βk,
we denote

Mk = Pβk
.

In fact, from the assumption of prediction covariance for Riccati equation
in (15.8) Mk denotes the value of the covariance P (βk|β−

k ). For an unstable
scalar model, starting from τ + 1, Pt monotonically increases to reach a
maximum Mk at time βk before turning downward, therefore, the sequence
Mk, k ≥ 1 gives the upper envelope of the covariance process. For this reason,
we shall call Mk the peak covariance process [81].

Definition 15.3. [81] The sequence Mk is stable if supk>1 E‖Mk‖ < ∞.
Accordingly, it is to say that the filtering system satisfies peak covariance
stability.

Definition 15.4. [81] For the observable linear system [Φ,H ], the observ-
ability index is the smallest integer I0 such that [HT ΦHT · · · (ΦI0−1)THT ]
has rank n.

Let Sn denote the set of all n× n nonnegative definite real matrices, then
we define
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Sn
0 = {P : 0 ≤ P ≤ ΦP̃ΦT + Q, for some P̃ ≥ 0}

which is a convex subset of Sn.
We introduce some positive constants. For 1 ≤ i ≤ (I0 − 1)

∨
1, and di

0

and di
1 satisfy the following inequality

‖F (P )‖ ≤ di
1‖P‖ + di

0 ∀P ∈ Sn
0 (15.11)

where
∨

denotes choosing a greater number from its left side and right side.
By the fact F (p) ≤ ΦPΦT +Q, it is clear that the pair (d0

i , d
1
i ) always exists.

Lemma 15.5. [81] The peak covariance process is stable if the following two
conditions hold

(1) |λΦ|(1 − q) < 1

(2) [1 +
∞∑

i=1

d1
i (1 − p)i]

∞∑

j=1

‖Φj‖2(1 − q)j−1 < 1

where λΦ is an eigenvalue of the largest magnitude for matrix Φ.

For the scalar model with i.i.d packet losses, the peak covariance stability
is equivalent to the usual stability (i.e., supt≥1 E|Pt| < ∞). Although for the
vector model we can’t assert the foregoing equivalence, criteria (15.4), (15.5)
are still of usefulness since they cover some practical models with packet loss
as high as several percents. This will be used in analyzing the stability of
data fusion in this chapter.

15.3.3 Delay Data Processing

As Section 15.1 mentioned, the network can be viewed as a web of unreli-
able transmission paths, therefore, network-induced delays might exist during
packets transmission. In the scope of discussion, the network-induced delay
denotes the delayed arrival of the measurements. If such a case occurs, for
every measurement containing the information of the system, there is a ne-
cessity to make full use of it to assure the integrity of information in the
course of data fusion. But the problem is how to deal with the delay data. A
method introduced in the following portion is to solve this problem.

Before the proposed algorithm is introduced, we have the following as-
sumption to simplify the analysis without losses of generalization for practical
application.

Assumption 15.3.3 We assume all the sensors are faultless, and all the
measurements for the different Local Filters are compressed in the same pack-
ets, so the packet losses and delay caused by the unreliability of the transmis-
sion by network will be identical to all the Local Filters.
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The system state equation and observation equations are shown in (15.1)
and (15.2). We consider the following case as illustrated in Fig. 15.2, where
yi(k) denotes the measurement for the ith Local Filter at time k.

O O 

time

O 
...... 

O 

k−N k−N+1 k k+1 

y y y i (k−N) i (k) i (k−N) 

Fig. 15.2 Out of sequence measurement yi(k − N)

As Fig. 15.2 displays, measurement yi(k −N) which should arrive at the
Data Processing Center (DPC) at time k−N arrives at time k+1 after time
k. When such a case occurs, the DPC will think that measurement yi(k−N)
has lost at time k −N , and if criteria (15.4), (15.5) in Section 15.3.2 can be
satisfied with the conditions of the system and network, Kalman predication
technology can be used at time k −N to have a data fusion. But when time
k + 1 comes, measurement yi(k − N) arrives, and to keep the optimality of
the estimation, utilizing the delayed measurement yi(k − N) to modify the
obtained state estimation x̂i(k|k) and its error covariance Pi(k|k) is beneficial
so that some compensations can be given to the packet losses at time k−N .

Defining Φ(k, k − j) = Φ(k, k − 1) · · ·Φ(k − j + 1, k− j), j ∈ Z+ and using
(15.1), we obtain the relationship between x(k) and x(k −N)

x(k) = Φ(k, k −N)x(k −N) + ω(k, k −N) (15.12)

where

w(k, k −N) =
N∑

j=1

Φ(k, k − j + 1)ω(k − j + 1, k − j)

and Φ(k, k) = I.
We can derive

x(k −N) = Φ(k −N, k)x(k) + ω(k −N, k) (15.13)

where Φ(k−N, k) = Φ(k, k−N)−1, ω(k−N, k) = −Φ(k−N, k)ω(k, k−N).
It is clear that

E{ω(k −N, k)} = 0. (15.14)

Note that Φ(k, k − N) should always be invertible if it comes from a
real system, because Φ(k, k − N) comes from an exponential that is always
invertible.
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To utilize the delay measurement yi(k−N) arriving at time k+1, we first
construct an estimator for system states at time k − N with the obtained
state estimation x̂i(k|k). Based on (15.13), a new estimator is constructed in
the following form

x̂i(k −N |k) = Φ(k −N, k)x̂i(k|k) + ω̂i(k −N, k|k) (15.15)

where x̂i(k|k) denotes the state estimation for the ith Local Filter and ω̂i(k−
N, k|k) denotes the white noise estimation for the ith Local Filter.

For the measurement equation at time k −N , we have

yi(k −N) = Hi(k −N)Φ(k −N, k)x(k)
+Hi(k −N)ω(k −N, k) + vi(k −N). (15.16)

Then the estimator for yi(k−N) based on x̂i(k|k), when yi(k−N) arrives
at time k + 1, is

ŷi(k −N |k) = Hi(k −N)Φ(k −N, k)x̂i(k|k)
+Hi(k −N)ω̂i(k −N, k|k). (15.17)

Defining ỹi(k|j) = yi(k)−ŷi(k|j), x̃i(k|j) = x(k)−x̂i(k|j), ω̃i(k−N, k|k) =
ω(k −N, k) − ω̂i(k −N, k), we obtain

ỹi(k −N |k) = Hi(k −N)Φ(k −N, k)x̃i(k|k)
+Hi(k −N)ω̃i(k −N, k|k) + vi(k −N). (15.18)

Due to error information x̃i(k) contained in the expression (15.18), ỹi(k−
N |k) can be used to modify the obtained estimation x̂i(k|k).

A modified unbiased estimator for the state x(k) in the ith Local Filter is

x̂∗i (k|k) = x̂i(k|k) + Miỹi(k −N, k). (15.19)

From (15.14), (15.15), (15.16), (15.17), (15.18), it is clear that the esti-
mation for the white noise in the ith Local Filter must be computed first
in order to modify the obtained state estimation xi(k|k), so we have the
following theorem.

Theorem 15.6. Let the observation error be εi(k − n) = yi(k − n) − yi(k −
n|k−n−1), the covariance for noise ω(k−j+1, k−j) be Q(k−j+1, k−j) =
E{ω(k − j + 1, k− j)ωT (k − j + 1, k− j)}, the covariance for ω(k −N, k) be
Q(k−N, k) = E{ω(k−N, k)ωT (k−N, k)}, the error for the estimated white
noise ωi(k − N, k|k) be ω̃i(k − N, k|k) = ω(k − N, k) − ω̂i(k − N, k|k) and
the covariance for estimated white noise ωi(k − N, k|k) be Q∗

i (k − N, k) =
E{ω̃i(k − N, k|k)ω̃T

i (k − N, k|k)}, then the optimal estimator for the white
noise ωi(k −N, k) is given by
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ω̂i(k −N, k|k) = −Φ(k −N, k)
N−1∑

n=0

Ci(n)

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n)

+Ri(k − n)]−1εi(k − n) (15.20)

where

Ci(n) = {Φ(k, k − n)Q(k − n, k − n− 1)

+
N∑

j=n+2

Φ(k, k − j + 1)Q(k − j + 1, k − j) ×

[
j−1∏

m=n+1

Φ(k −m + 1, k −m)[I −Ki(k −m)Hi(k −m)]

]T

}

×HT
i (k − n). (15.21)

The covariance for the estimated white noise ωi(k −N, k) is computed by

Q∗
i (k −N, k) = Q(k −N, k) − Φ(k −N, k)

N−1∑

n=0

Ci(n)

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n) + Ri(k − n)]−1

×CT
i (n)ΦT (k −N, k) (15.22)

where

Q(k −N, k)

= Φ(k −N, k)

⎡

⎣
N∑

j=1

Φ(k, k − j + 1)Q(k − j + 1, k − j)ΦT (k, k − j + 1)

⎤

⎦

×ΦT (k −N, k). (15.23)

Proof. According to the Projection Theorem, the white noises can be esti-
mated in the following form:

ω̂i(k −N, k|k)
= ω̂i(k −N, k|k − 1) + E{ω(k −N, k)εTi (k)}E{εi(k)εTi (k)}−1εi(k)

and

E{ω(k −N, k)εTi (k)} = −Φ(k −N, k)

×E{
N∑

j=1

Φ(k, k − j + 1)ω(k − j + 1, k − j) [yi(k) − ŷi(k|k − 1)]T }
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= −Φ(k −N, k){Q(k, k − 1)HT
i (k) + E{

N∑

j=2

Φ(k, k − j + 1)

×ω(k − j + 1, k − j)x̃T
i (k − 1|k − 1))ΦT (k, k − 1)HT

i (k)}}
= −Φ(k −N, k){Q(k, k − 1)HT

i (k) + Φ(k, k − 1)Q(k − 1, k − 2)

× [I −Ki(k − 1)Hi(k − 1)]T ΦT (k, k − 1)HT
i (k) + E{

N∑

j=3

Φ(k, k − j + 1)

×ω(k − j + 1, k − j)x̃T
i (k − 2|k − 2)ΦT (k − 1, k − 2)

× [I −Ki(k − 1)Hi(k − 1)]T ΦT (k, k − 1)HT
i (k)}}

= −Φ(k −N, k){Q(k, k − 1)HT
i (k) + Φ(k, k − 1)Q(k − 1, k − 2)

× [I −Ki(k − 1)Hi(k − 1)]T ΦT (k, k − 1)Hi(k)
+Φ(k, k − 2)Q(k − 2, k − 3)[I −Ki(k − 2)Hi(k − 2)]TΦT (k − 1, k − 2)

×[I −Ki(k − 1)Hi(k − 1)]TΦT (k, k − 1)HT
i (k) + E{

N∑

j=4

Φ(k, k − j + 1)

×ω(k − j + 1, k − j) × x̃T
i (k − 3|k − 3)ΦT (k − 2, k − 3)

[I −Ki(k − 2)Hi(k − 2)]
×ΦT (k − 1, k − 2)[I −Ki(k − 1)Hi(k − 1)]TΦT (k, k − 1)HT

i (k)}}
=

...

= −Φ(k −N, k){Q(k, k − 1) +
N∑

j=2

Φ(k, k − j + 1)Q(k − j + 1, k − j)

×[
j−1∏

m=1

Φ(k −m + 1, k −m)[I −Ki(k −m)Hi(k −m)]]T }HT
i (k)

and

E{εi(k)εTi (k)} = Hi(k)Pi(k|k − 1)HT
i (k) + Ri(k).

By induction, we can obtain

ω̂i(k −N, k|k − n)
= ω̂i(k −N, k|k − n− 1) + E{ω(k −N, k)εTi (k − n)}

×E{εi(k − n)εTi (k − n)}−1εi(k − n)

E{ω(k −N, k)εTi (k − n)} = −Φ(k −N, k)Ci(n)

E{εi(k − n)εTi (k − n)} = Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n)

+Ri(k − n) (15.24)
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where

Ci(n) = {Φ(k, k − n)Q(k − n, k − n− 1) +
N∑

j=n+2

Φ(k, k − j + 1)Q(k − j + 1, k − j)

×
[

j−1∏

m=n+1

Φ(k −m + 1, k −m)[I −Ki(k −m)Hi(k −m)]

]T

}

HT
i (k − n).

In view of the fact that ω̂i(k −N + 1, k −N |k −N) = 0, we have

ω̂i(k −N, k|k)

= −Φ(k −N, k)
N−1∑

n=0

Ci(n)[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n)

+Ri(k − n)]−1εi(k − n). (15.25)

The covariance is

Q∗
i (k −N, k) = E{ω̃i(k −N, k|k)ω̃T

i (k −N, k|k)}
= E{ω̃i(k −N, k|k) [ω(k −N, k) − ω̂i(k −N, k|k)]T }

from the Projection Theorem, it is clear that

ω̃(k −N, k|k) ⊥ ω̂(k −N, k|k)

then the above expression is rewritten as follows:

Q∗
i (k −N, k) = E{[ω(k −N, k) − ω̂i(k −N, k|k)]ωT (k −N, k)}

= Q(k −N, k) − E{ω̂i(k −N, k|k)ωT (k −N, k)}

= Q(k −N, k) − E{−Φ(k −N, k)
N−1∑

n=0

Ci(n)

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n)

+Ri(k − n)]−1εi(k − n)ωT (k −N, k)}.

From the above derivation, we can have the following result immediately,

Q∗
i (k −N, k) = Q(k −N, k) − Φ(k −N, k)

N−1∑

n=0

Ci(n)

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n)

+Ri(k − n)]−1CT
i (n)ΦT (k −N, k).
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Covariance matrix Q(k −N, k) is easily obtained as follows:

Q(k −N, k) = E{ω(k −N, k)ωT (k −N, k)}

= Φ(k −N, k)[
N∑

j=1

Φ(k, k − j + 1)Q(k − j + 1, k − j)

×ΦT (k, k − j + 1)]ΦT (k −N, k).

This completes the proof.

Consequently, the modified state estimation is given in the following the-
orem.

Theorem 15.7. Let the modified state estimation error be x̃∗i (k|k) = x(k)−
x̂∗i (k|k), the covariance for the modified state estimate be

P ∗
i (k|k) = E{x̃∗i (k|k)x̃∗T

i (k|k)}

and the covariance between x̃i(k|k) and ω̃i(k, k −N |k) be

P x̃ω̃
i = E{x̃i(k|k)ω̃T

i (k, k −N |k)}

then the optimal filter for delayed data processing in minimum variance sense
is given by

x̂∗i (k|k) = x̂i(k|k) + Mi[yi(k −N) − ŷi(k −N |k)] (15.26)

Mi = [Pi(k|k)ΦT (k −N, k) + P x̃ω̃
i ]HT

i (k −N)W−1
i . (15.27)

The covariance is computed by

P ∗
i (k|k) = Pi(k|k) − [P x̃ω̃

i + Pi(k|k)ΦT (k −N, k)]HT
i (k −N)W−1

i Hi(k −N)
×[P x̃ω̃

i + Pi(k|k)ΦT (k −N, k)]T (15.28)

where

Wi = Hi(k −N){Φ(k −N, k)Pi(k|k)ΦT (k −N, k) + Φ(k −N, k)P x̃ω̃
i

+[Φ(k −N, k)P x̃ω̃
i ]T + Q∗

i (k −N, k)}HT
i (k −NT + Ri(k −N)

and

P x̃ω̃
i = Φ(k, k −N)

N−1∑

n=0

Pi(k −N |k −N)DT
i (n)

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n) + Ri(k − n)]−1

×CT
i (n)ΦT (k −N, k) − Φ(k, k −N)Q∗

i (k −N, k)
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where

Di(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Hi(k − n)Φ(k − n, k − n− 1) N = 1

Hi(k − n)Φ(k − n, k − n− 1)

×
N−2∏

j=n

[I −Ki(k − j − 1)Hi(k − j − 1)]

×Φ(k − j − 1, k − j − 2) N > 1

.

Proof. Using (15.19), we get

x̃∗i (k|k) = x(k) − x̂∗i (k|k)
= x̃i(k|k) −Miỹi(k −N |k)
= [I −MiHi(k −N)Φ(k −N, k)]x̃i(k|k)

−MiHi(k −N)ω̃i(k −N, k|k) −Mivi(k −N). (15.29)

Using (15.29), we get

P ∗
i (k|k)

= E{x̃∗i (k|k)x̃∗T
i (k|k)}

= [I −MiHi(k −N)Φ(k −N, k)]Pi(k|k)[I −MiHi(k −N)Φ(k −N, k)]T

−[I −MiHi(k −N)Φ(k −N, k)]P x̃ω̃
i [MiHi(k −N)]T

−MiHi(k −N)[P x̃ω̃
i ]T [I −MiHi(k −N)Φ(k −N, k)]T

+MiHi(k −N)Q∗
i (k −N, k)[MiHi(k −N)]T

+MiRi(k −N)MT
i . (15.30)

The following formula are of great use in our proof.

∂tr(XAT )
∂X

= A (15.31)

∂tr(AXT )
∂X

= A (15.32)

∂tr(XAXT )
∂X

= X(A + AT ). (15.33)

Using the above formula to differentiate tr(P ∗
i (k|k)) with respect to Mi

for a minimum variance estimate, we can derive

Mi = [Pi(k|k)ΦT (k −N, k) + P x̃ω̃
i ]HT

i (k −N)W−1
i (15.34)

where
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Wi = Hi(k −N){Φ(k −N, k)Pi(k|k)ΦT (k −N, k) + Φ(k −N, k)P x̃ω̃
i

+[Φ(k −N, k)P x̃ω̃
i ]T + Q∗

i (k −N, k)}HT
i (k −N) + Ri(k −N)

P x̃ω̃
i is derived in the following way,

P x̃ω̃
i = E{x̃i(k|k)ω̃T

i (k −N, k|k)}
= E{[Φ(k, k − 1)x̃i(k − 1|k − 1) + ω(k, k − 1) + Ki(k)εi(k)]ω̃T

i (k −N, k|k)}
= E{[Φ(k, k − 1)Φ(k − 1, k − 2)x̃i(k − 2|k − 2) + Φ(k, k − 1)ω(k − 1, k − 2)
+ ω(k, k − 1) + Φ(k, k − 1)Ki(k − 1)εi(k − 1) + Ki(k)εi(k)]ω̃T

i (k −N, k|k)}.

From Projection Theorem, we know ω̃i(k − N, k|k) ⊥ εi(k − n), n =
0, 1, . . . , k − 1, so the above expression can be rewritten by induction in the
following form.

P x̃ω̃
i = E{[Φ(k, k −N)x̃i(k −N |k −N)

+
N∑

j=1

Φ(k, k − j + 1)ω(k − j + 1, k − j)]ω̃T
i (k −N, k|k)}

= E{Φ(k, k −N)x̃i(k −N |k −N)ω̃T
i (k −N, k|k)}

+E{ω(k, k −N)ω̃T
i (k −N, k|k)}

= E{Φ(k, k −N)x̃i(k −N |k −N)ω̃T
i (k −N, k|k)}

−Φ(k, k −N)E{ω(k −N, k)ω̃T
i (k −N, k|k)}

= E{Φ(k, k −N)x̃i(k −N |k −N)ω̃T
i (k −N, k|k)}

−Φ(k, k −N)Q∗
i (k −N, k). (15.35)

The last term follows from Projection Theorem.
E{Φ(k, k−N)x̃i(k−N |k−N)ω̃T

i (k−N, k|k)} can be obtained as follows,

E{Φ(k, k −N)x̃i(k −N |k −N)ω̃T
i (k −N, k|k)}

= Φ(k, k −N)E{x̃i(k −N |k −N)[ω(k −N, k) − ω̂i(k −N, k|k)]T }
= −Φ(k, k −N)E{x̃i(k −N |k −N)ω̂T

i (k −N, k|k)}

= Φ(k, k −N)
N−1∑

n=0

E{x̃i(k −N |k −N)εTi (k − n)}

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n) + Ri(k − n)]−1

×CT
i (n)ΦT (k −N, k)

E{x̃i(k −N |k −N)εTi (k − n)} is derived as follow,

E{x̃i(k −N |k −N)εTi (k − n)}
= E{x̃i(k −N |k −N)[Hi(k − n)Φ(k − n, k − n− 1)x̃i(k − n− 1|k − n− 1)

+Hi(k − n)ω(k − n, k − n− 1) + vi(k − n)]T }
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= E{x̃i(k−N |k−N)[Hi(k−n)Φ(k−n, k−n− 1)x̃i(k−n− 1|k−n− 1)]T }
= E{x̃i(k −N |k −N)[Hi(k − n)Φ(k − n, k − n− 1)[I −Ki(k − n− 1)

Hi(k − n− 1)]Φ(k − n− 1, k − n− 2)x̃i(k − n− 2|k − n− 2)]T }
=

...
= Pi(k −N |k −N)DT

i (n)

where

Di(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Hi(k − n)Φ(k − n, k − n− 1) N = 1

Hi(k − n)Φ(k − n, k − n− 1)

×
N−2∏

j=n

[I −Ki(k − j − 1)Hi(k − j − 1)]

×Φ(k − j − 1, k − j − 2) N > 1

.

Then we know that

P x̃ω̃
i = Φ(k, k −N)Pi(k −N |k −N)

N−1∑

n=0

DT
i (n)

×[Hi(k − n)Pi(k − n|k − n− 1)HT
i (k − n) + Ri(k − n)]−1

×CT
i (n)ΦT (k −N, k) − Φ(k, k −N)Q∗

i (k −N, k). (15.36)

Substituting (15.34) into (15.30) yields

P ∗
i (k|k) = Pi(k|k) − Pi(k|k)ΦT (k −N, k)HT

i (k −N)W−1
i Hi(k −N) ×

Φ(k −N, k)Pi(k|k) − P x̃ω̃
i HT

i (k −N)W−1
i Hi(k −N)[P x̃ω̃

i ]T

−Pi(k|k)ΦT (k −N, k)HT
i (k −N)W−1

i Hi(k −N)[P x̃ω̃
i ]T

−P x̃ω̃
i HT

i (k −N)W−1
i Hi(k −N)Φ(k −N, k)Pi(k|k)

= Pi(k|k) − [P x̃ω̃
i + Pi(k|k)ΦT (k −N, k)]HT

i (k −N)W−1
i Hi(k −N)

[P x̃ω̃
i + Pi(k|k)ΦT (k −N, k)]T . (15.37)

This completes the proof.

If the delay time is equal to 1, it is clear that the main results in paper
[4] is a special case of Theorem 15.7. To show the advantage of the proposed
algorithm, we have the following theorem.

Theorem 15.8. The relation between Pi(k|k) and P ∗
i (k|k) is that

0 ≤ P ∗
i (k|k) ≤ Pi(k|k).

Proof. From the definition of P ∗
i (k|k), it is clear that 0 ≤ P ∗

i (k|k).
From (15.28), we can obtain
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Pi(k|k) − P ∗(k|k) = [P x̃ω̃
i + Pi(k|k)ΦT (k −N, k)]HT

i (k −N)W−1
i Hi(k −N)

×[P x̃ω̃
i + Pi(k|k)ΦT (k −N, k)]T .

It is clear that Pi(k|k) − P ∗(k|k) ≥ 0 if Wi ≥ 0.
From (15.18), we can have

E{ỹi(k −N |k)ỹT
i (k −N |k)}

= E{[Hi(k −N)Φ(k −N, k)x̃i(k|k) + Hi(k −N)ω̃i(k −N, k|k) + vi(k −N)]
×[Hi(k−N)Φ(k−N, k)x̃i(k|k) + Hi(k−N)ω̃i(k−N, k|k) + vi(k −N)]T }

= Wi.

Now we can know that

Wi ≥ 0.

Furthermore,

P ∗
i (k|k) ≤ Pi(k|k).

This completes the proof.

Remark 15.9. In this section, symbols x(k), and ω(k − N, k) represent the
state and noise of the original system, respectively. However, the outputs of
the two estimators, x̂i(k|k)(x̂∗i (k|k)), and ω̂i(k −N, k|k) are the estimations
for the state x(k) and the noise ω(k − N, k) of the original system from
the ith Local Filter as different Local Filters receives different measurements
obtained with different sensors. Therefore, two errors for the ith Local Filter
are defined as x̃i(k|k) = x(k) − x̂i(k|k)(x̃∗i (k|k) = x(k) − x̂∗i (k|k)), ω̃i(k −
N, k|k) = ω(k −N, k) − ω̂i(k −N, k|k).

One may ask if the stability can be guaranteed if the delayed data are
processed by the proposed algorithm in Theorems 15.6 and 15.7, as for this
problem, we have the following theorem.

Theorem 15.10. Local Filters are peak covariance stability if the delayed
data are processed by the proposed algorithm in Theorems 15.6 and 15.7.

Proof. The conclusion follows from the definition of the peak covariance sta-
bility and Theorem 15.8 directly.

The essential of our proposed algorithm can be interpreted in the way of
projection theory. Assume set I = {yi(t) : t �= k − N}, which indicates that
the measurement yi(k − N) may be lost or delayed. Assume at time t = k,
state estimation x̂i(k|k) and covariance Pi(k|k) have been obtained by the
conventional kalman filtering technology. According to the projection theory,
[x(k)− x̂i(k|k)] ⊥ I, however, when time k+1 comes, measurement yi(k−N)
arrives too, and measurement set becomes I

⋃
yi(k −N). Due to the change
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of measurement set, we cannot assert that [x(k)− x̂i(k|k)] ⊥ [I
⋃
yi(k−N)],

that is, x̂i(k|k) is no longer the optimal state estimate for x(k) in the ith Local
Filter, therefore, as presented in this section, a new algorithm is designed to
modify x̂i(k|k) to x∗i (k|k) so that [x(k) − x̂∗i (k|k)] ⊥ [I

⋃
yi(k −N)].

15.3.4 Principle for Data Fusion

The architecture for networked data fusion is shown as Fig. 15.3.

Fig. 15.3 Architecture for networked data fusion

Under Assumption 15.3.3, all the sensors are faultless, and the measure-
ments are compressed in one packet for transmission by network, however,
before the transmission, to guarantee the stability of the networked Kalman
filter, we must make a judgement on the network by criteria (15.4), (15.5).
If these two criteria can be met, the next work can be done, otherwise, some
measures must be taken to improve the quality of the network used for trans-
mission.

For the measurements are compressed in one packet, the scenarios of packet
losses and delay are identical to all the Local Filters, in the view of this, there
are two cases that should be considered in the Local Filters.

1. The packet is not delayed on transmission. There are also two scenarios in
this case.

a. The packet isn’t lost. For this normal case, conventional Kalman filter-
ing is applied in the Local Filters.

b. The packet is lost on transmission. When such a case occurs, due to the
lack of the measurements, conventional Kalman predication technology
has to be applied to predicate the state in the Local Filters.
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2. The packet is delayed on transmission. For the delayed packet, the pro-
posed algorithm in Section 15.3.3 can be applied to compensate the delay.

No matter which case as the above described occurs, (15.4) and (15.5) in
Section 15.3.1 are always the algorithm expressions for the Master Filter.

As Fig. 15.3 displays, when the packet is not delayed, the ‘reset’ is intro-
duced to the Local Filter, so in such case, the estimation in the Local Filter
is suboptimal and the global estimation is optimal, however, in another case,
the ‘reset’ is not introduced. From Theorem 15.7, the estimation in the Local
Filter is optimal, but the global estimation is suboptimal.

15.4 Numerical Examples

From criteria (15.4), (15.5), stability of networked Kalman filter based on
a unstable model can be identified. When it comes to a stable model, the
networked Kalman filter is stable under any network condition. What’s more,
it is stable in a sense of usual stability. In view of this, we design two numerical
examples, an unstable and a stable one, respectively, to show the effectiveness
of our method of data fusion.

15.4.1 An Unstable Example

We consider such an example as illustrated in Fig. 15.4.

Fig. 15.4 Structure for data fusion

Measurements obtained from the original system located in the distant
place are transmitted to the DPC over network. Due to the existence of
effect of noises while obtaining measurements with sensor 1 and sensor 2,
there is a necessity to utilize the Federated Filter to remove the effect of
noise on measurements and improve the accuracy of state estimation.
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To make the model nontrivial, we choose the vector model example in
paper [81] directly. Let the system be specified by

Φ(k, k − 1) =
[

1.3 0.3
0 1.2

]

, H1(k) =
[

1 1
]
, Hi =

[
1 1.5

]
, Q =

[
1 0
0 1

]

.

Assume R1 = 1.0, R2 = 1.5, β1 = β2 = 2 and take q = 0.65, p = 0.03.
In paper [81], the Networked Kalman Filter under such assumptions has
proven to be peak covariance stable, which can also be seen in the following
simulation.

Then a γk sequence corresponding to the chosen parameters p and q can
be chosen by analyzing the transition matrix (15.9). Let X denote the total
simulation steps and N1 denote how many times measurements are success-
fully accepted in the DPC, then in view of (15.9), the times channel state
γk switches from normal state 1 to abnormal state 0 are about N1p and the

average times channel state stays at state 0 are about
∞∑

j=1

j(1 − q)j−1, so we

have

N1 + N1p
∞∑

j=1

j(1 − q)j−1 ≈ X. (15.38)

According to expression (15.38), we derive

N1 ≈ q

p + q
X. (15.39)

If we take X = 1000, then N1 ≈ 956, N1p ≈ 28 and we can have Table
15.1, where k denotes the times channel state γk stays at abnormal state

Table 15.1 Transmission failure times

k P T

1 0.0195 19
2 0.006825 7
3 0.002389 2
4 0.000836 1
5 0.000293 0

0 if it starts with state 1 and P denotes the probability of that foregoing
case. T denotes how many times that case may emerge in the γk sequence for
simulation. Note that T is a round number, so it permits slightly modification.

Two cases are considered in our simulation. The one is that there only
exist data losses in the network, and the other is that there exist not only
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data losses but also network-induced delay.
Case 1:

As described above, we choose the following γk sequence as illustrated in
Fig. 15.5.

0 100 200 300 400 500 600 700 800 900 1000
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0.5

1

γ
k

Fig. 15.5 γk sequence for stability judgement

The result of simulation can be shown by observing the variation in the
length of the trace of covariance. Fig. 15.6 is the traces of error covariances
for Local Filters 1 and 2 and Master Filter with the γk sequence as shown
in Fig. 15.5. It is clear that filters are stable in the sense of peak covariance
process with parameter q = 0.65, p = 0.03. Besides, it can clearly be seen
that each filter’s accuracy is improved much.
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Fig. 15.6 Trace for covariance

Case 2:
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Fig. 15.7 is the γk sequence chosen to denote the network with packet
losses and delays. Note that here γk = N(N ≥ 1) indicates that packet lags
N − 1 times behind the time at which it should arrive.
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3

4

5

γ
k

Fig. 15.7 γk sequence for network with data losses and delay

Table 15.2 Comparison of covariance for Local Filter 1 with delayed data being
processed

N P1(k|k) P ∗
1 (k|k)

4
[

0.5526 −0.1906
−0.1906 0.5202

] [
0.5457 −0.1106
−0.1106 0.4020

]

5
[

0.5483 −0.1918
−0.1918 0.5197

] [
0.5471 −0.1827
−0.1827 0.0483

]

3
[

0.5745 −0.1693
−0.1693 0.5421

] [
0.5519 −0.1879
−0.1879 0.5104

]

2
[

0.5483 −0.1918
−0.1918 0.5197

] [
0.5469 −0.1918
−0.1918 0.5194

]

Table 15.3 Comparison of covariance for Local Filter 2 with delayed data being
processed

N P2(k|k) P ∗
2 (k|k)

4
[

0.5765 −0.2426
−0.2426 0.3664

] [
0.5962 −0.2347
−0.2347 0.3475

]

5
[

0.5723 −0.2423
−0.2423 0.3603

] [
0.5516 −0.2001
−0.2001 0.2769

]

3
[

0.5941 −0.2354
−0.2354 0.3699

] [
0.5759 −0.2432
−0.2432 0.3657

]

2
[

0.5723 −0.2423
−0.2423 0.3663

] [
0.5706 −0.2424
−0.2424 0.3659

]
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Table 15.4 Comparison of covariance for the Master Filter with delayed data
being processed

N Pg(k|k) P ∗
g (k|k)

4
[

0.2815 −0.1106
−0.1106 0.2106

] [
0.2775 −0.1036
−0.1036 0.1841

]

5
[

0.2794 −0.1107
−0.1107 0.2105

] [
0.2774 −0.0911
−0.0911 0.0167

]

3
[

0.2909 −0.1046
−0.1046 0.2147

] [
0.2811 −0.1102
−0.1102 0.2087

]

2
[

0.2794 −0.1107
−0.1107 0.2105

] [
0.2787 −0.1108
−0.1108 0.2103

]

Three tables, as shown in Tables 15.2, 15.3 and 15.4 can be obtained by the
principle proposed in Section 15.3.4, where N in the first column denotes the
value of γk greater than 1 with corresponding sequence in Fig. 15.7, Pi(k|k)
and P ∗

i (k|k) are covariance terms in the (15.28), respectively, and Pg(k|k) and
P ∗

g (k|k) are the covariance at the time before the delayed data are processed
and the one with delayed data being processed in Master Filter.

These three tables can show the effectiveness of the algorithm for process-
ing the delayed data and the rationality of the architecture for data fusion
in Section 15.3.4. First, the stability of the networked filter in the peak co-
variance sense can be guaranteed by criteria (15.4), and (15.5), and Theorem
15.10. Then from these three tables, the covariances for the Local Filters and
Master Filter reduce as shown in Theorem 15.8.

15.4.2 A Stable Example

A stable example is modeled by Φ(k, k − 1) =
[

0.8 0.3
0 0.9

]

, H1 =
[
1 1
]
, H2 =

[
1 1.5

]
, R1 = 1, R2 = 1.5, Q =

[
1 0
0 1

]

.

Since the networked Kalman filter based on a stable model is stable under
any condition, we still take q = 0.65, p = 0.03, β1 = 2, β2 = 2 for the
numerical example.

First of all, let’s compare the difference between the Federated Filter with
reset and that without reset, and the following γk sequence as illustrated in
Fig. 15.8, which still comply with the requirements of Table 15.1, is chosen
here. Note that Fig. 15.8 only displays the part needed for showing the results
of our comparison in the γk sequence, and in the other part , we have γk = 1.
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Fig. 15.8 γk sequence for comparison

As Fig. 15.8 displays, the network becomes bad suddenly in a certain part
of γk sequence, which can be used for comparing the difference between the
Federate Filter with reset and that without reset, and the simulation results
are illustrated in Fig. 15.9 and Fig. 15.10:
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Fig. 15.9 Trace for the covariance of Federated Filter with reset

It is apparent that the error covariance for the Federate Filter with reset
has much higher accuracy, however, the Federated Filter without reset can
recover from the abnormal state in the length of a larger number more quickly.

The γk sequence, used for Case 2 in the last numerical example is shown
in Fig. 15.7.

The process noises for the simulation are shown in Fig. 15.11.
The result of simulation for the first component of the system state is

shown in Fig. 15.12.
The result of simulation for the second component of the system state is

shown in Fig. 15.13 .
Like the simulation in the last subsection, three tables as shown in Tables

15.5, 15.6 and 15.7 can be obtained to show the effectiveness of the algorithm
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Fig. 15.10 Trace for the covariance of Federated Filter without reset
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Fig. 15.11 The process noise in the system

for processing the delayed data and the rationality of the architecture for data
fusion in Section 15.3.4.

15.5 Conclusion

In this chapter, a method of data fusion over network with packet losses and
delays has been considered. The Federated Filter is used for multi-sensor
data fusion, and the stability of networked filter can be guaranteed by known
criteria. The method to process delay data using the Federated Filter has
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Fig. 15.12 Comparisons of estimation for the first component of the the system
state based on the input process noise shown in Fig. 15.11
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state based on the input process noise shown in Fig. 15.11
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Table 15.5 Comparison of covariance for Local Filter 1 with delayed data being
processed

N P1(k|k) P ∗
1 (k|k)

4
[

0.4428 −0.1241
−0.1241 0.4498

] [
0.0666 −0.0103
−0.0103 0.4018

]

3
[

0.4597 −0.1090
−0.1090 0.4650

] [
0.3467 −0.1352
−0.1352 0.4487

]

2
[

0.4428 −0.1241
−0.1241 0.4498

] [
0.4364 −0.1328
−0.1328 0.4376

]

Table 15.6 Comparison of covariance for Local Filter 2 with delayed data being
processed

N P2(k|k) P ∗
2 (k|k)

4
[

0.4523 −0.1709
−0.1709 0.3150

] [
0.2560 −0.2332
−0.2332 0.2952

]

3
[

0.4655 −0.1656
−0.1656 0.3179

] [
0.4431 −0.2047
−0.2047 0.2066

]

2
[

0.4523 −0.1709
−0.1709 0.3150

] [
0.4509 −0.1598
−0.1598 0.2195

]

Table 15.7 Comparison of covariance for the Master Filter with delayed data
being processed

N Pg(k|k) P ∗
g (k|k)

4
[

0.2230 −0.0761
−0.0761 0.1821

] [
0.0470 −0.0343
−0.0343 0.0935

]

3
[

0.2302 −0.0718
−0.0718 0.1853

] [
0.1941 −0.0866
−0.0866 0.1259

]

2
[

0.2230 −0.0761
−0.0761 0.1821

] [
0.2215 −0.0753
−0.0753 0.1411

]

been proposed. Finally, two examples are given to illustrate the attainments
in this chapter, and the simulation results have shown the consistency of the
analysis in Section 15.3.



Index

H2 Control, 203
H∞ Control, 203

adaptive control, 67
ADRC, 137, 138

Bounding techniques, 6

Data fusion, 243
Descriptor system approach, 8
distributed control systems, 153
DPC, 245

ESO, 137
Euler derivative, 119

FWM, 12

GEVP, 59, 106

hybrid system, 153

independent and identical distribution,
248

Jensen’s inequality, 8, 15

LMI, 3, 37
LQG, 180, 203
Lyapunov functional, 124
Lyapunov-Krasovskii functional, 103
Lyapunov-Krasovskii functionals, 52

Markovian chain, 244
Model Transformation Approach, 6
Moon’s Inequality, 7

NCSs, 153
Networked data fusion, 243
networked predictive control, 154

OOSM, 245

Park’s Inequality, 6
PID, 137
pole assignment, 191, 203

QR reduction, 50
QSM, 87
QSMB, 87
quadratically stable, 40, 64, 70

Razumikhin Theorem, 62, 107
reaching condition, 61
robust stability, 52
robust stabilization, 52

Schur complement, 30, 33, 40, 56, 59,
73, 74, 102, 104, 127

singular value decomposition, 51, 69,
92, 122

sliding surface, 37, 39, 61
SMC, 37
switched systems, 29

TD, 138

uniformly ultimately bounded, 75, 78

Variable Structure Control, 85
VSC, 85, 119



Lecture Notes in Control and Information Sciences

Edited by M. Thoma, F. Allgöwer, M. Morari

Further volumes of this series can be found on our homepage:
springer.com

Vol. 387: Xia, Y.;
Fu, M.; Shi, P.:
Analysis and Synthesis of Dynamical Systems
with Time-Delays
283 p. 2009 [978-3-642-02695-9]

Vol. 386: Huang, D.;
Nguang, S.K.:
Robust Control for Uncertain Networked Control
Systems with Random Delays
159 p. 2009 [978-1-84882-677-9]

Vol. 385: Jungers, R.:
The Joint Spectral Radius
144 p. 2009 [978-3-540-95979-3]

Vol. 384: Magni, L.; Raimondo, D.M.;
Allgöwer, F. (Eds.):
Nonlinear Model Predictive Control
572 p. 2009 [978-3-642-01093-4]

Vol. 383: Sobhani-Tehrani E.;
Khorasani K.;
Fault Diagnosis of Nonlinear Systems
Using a Hybrid Approach
360 p. 2009 [978-0-387-92906-4]

Vol. 382: Bartoszewicz A.;
Nowacka-Leverton A.;
Time-Varying Sliding Modes for Second
and Third Order Systems
192 p. 2009 [978-3-540-92216-2]

Vol. 381: Hirsch M.J.; Commander C.W.;
Pardalos P.M.; Murphey R. (Eds.)
Optimization and Cooperative Control Strategies:
Proceedings of the 8th International Conference
on Cooperative Control and Optimization
459 p. 2009 [978-3-540-88062-2]

Vol. 380: Basin M.
New Trends in Optimal Filtering and Control for
Polynomial and Time-Delay Systems
206 p. 2008 [978-3-540-70802-5]

Vol. 379: Mellodge P.; Kachroo P.;
Model Abstraction in Dynamical Systems:
Application to Mobile Robot Control
116 p. 2008 [978-3-540-70792-9]

Vol. 378: Femat R.; Solis-Perales G.;
Robust Synchronization of Chaotic Systems
Via Feedback
199 p. 2008 [978-3-540-69306-2]

Vol. 377: Patan K.
Artificial Neural Networks for
the Modelling and Fault
Diagnosis of Technical Processes
206 p. 2008 [978-3-540-79871-2]

Vol. 376: Hasegawa Y.
Approximate and Noisy Realization of
Discrete-Time Dynamical Systems
245 p. 2008 [978-3-540-79433-2]

Vol. 375: Bartolini G.; Fridman L.; Pisano A.;
Usai E. (Eds.)
Modern Sliding Mode Control Theory
465 p. 2008 [978-3-540-79015-0]

Vol. 374: Huang B.; Kadali R.
Dynamic Modeling, Predictive Control
and Performance Monitoring
240 p. 2008 [978-1-84800-232-6]

Vol. 373: Wang Q.-G.; Ye Z.; Cai W.-J.;
Hang C.-C.
PID Control for Multivariable Processes
264 p. 2008 [978-3-540-78481-4]

Vol. 372: Zhou J.; Wen C.
Adaptive Backstepping Control of Uncertain
Systems
241 p. 2008 [978-3-540-77806-6]

Vol. 371: Blondel V.D.; Boyd S.P.;
Kimura H. (Eds.)
Recent Advances in Learning and Control
279 p. 2008 [978-1-84800-154-1]

Vol. 370: Lee S.; Suh I.H.;
Kim M.S. (Eds.)
Recent Progress in Robotics:
Viable Robotic Service to Human
410 p. 2008 [978-3-540-76728-2]

Vol. 369: Hirsch M.J.; Pardalos P.M.;
Murphey R.; Grundel D.
Advances in Cooperative Control and
Optimization
423 p. 2007 [978-3-540-74354-5]

Vol. 368: Chee F.; Fernando T.
Closed-Loop Control of Blood Glucose
157 p. 2007 [978-3-540-74030-8]

Vol. 367: Turner M.C.; Bates D.G. (Eds.)
Mathematical Methods for Robust and Nonlinear
Control
444 p. 2007 [978-1-84800-024-7]



Vol. 366: Bullo F.; Fujimoto K. (Eds.)
Lagrangian and Hamiltonian Methods for
Nonlinear Control 2006
398 p. 2007 [978-3-540-73889-3]

Vol. 365: Bates D.; Hagström M. (Eds.)
Nonlinear Analysis and Synthesis Techniques for
Aircraft Control
360 p. 2007 [978-3-540-73718-6]

Vol. 364: Chiuso A.; Ferrante A.;
Pinzoni S. (Eds.)
Modeling, Estimation and Control
356 p. 2007 [978-3-540-73569-4]

Vol. 363: Besançon G. (Ed.)
Nonlinear Observers and Applications
224 p. 2007 [978-3-540-73502-1]

Vol. 362: Tarn T.-J.; Chen S.-B.;
Zhou C. (Eds.)
Robotic Welding, Intelligence and Automation
562 p. 2007 [978-3-540-73373-7]

Vol. 361: Méndez-Acosta H.O.; Femat R.;
González-Álvarez V. (Eds.):
Selected Topics in Dynamics and Control of
Chemical and Biological Processes
320 p. 2007 [978-3-540-73187-0]

Vol. 360: Kozlowski K. (Ed.)
Robot Motion and Control 2007
452 p. 2007 [978-1-84628-973-6]

Vol. 359: Christophersen F.J.
Optimal Control of Constrained
Piecewise Affine Systems
190 p. 2007 [978-3-540-72700-2]

Vol. 358: Findeisen R.; Allgöwer
F.; Biegler L.T. (Eds.): Assessment and Future
Directions of Nonlinear
Model Predictive Control
642 p. 2007 [978-3-540-72698-2]

Vol. 357: Queinnec I.; Tarbouriech
S.; Garcia G.; Niculescu S.-I. (Eds.):
Biology and Control Theory: Current Challenges
589 p. 2007 [978-3-540-71987-8]

Vol. 356: Karatkevich A.:
Dynamic Analysis of Petri Net-Based Discrete
Systems
166 p. 2007 [978-3-540-71464-4]

Vol. 355: Zhang H.; Xie L.:
Control and Estimation of Systems with
Input/Output Delays
213 p. 2007 [978-3-540-71118-6]

Vol. 354: Witczak M.:
Modelling and Estimation Strategies for Fault
Diagnosis of Non-Linear Systems
215 p. 2007 [978-3-540-71114-8]

Vol. 353: Bonivento C.; Isidori A.; Marconi L.;
Rossi C. (Eds.)
Advances in Control Theory and Applications
305 p. 2007 [978-3-540-70700-4]

Vol. 352: Chiasson, J.; Loiseau, J.J. (Eds.)
Applications of Time Delay Systems
358 p. 2007 [978-3-540-49555-0]

Vol. 351: Lin, C.; Wang, Q.-G.; Lee, T.H., He, Y.
LMI Approach to Analysis and Control of
Takagi-Sugeno Fuzzy Systems with Time Delay
204 p. 2007 [978-3-540-49552-9]

Vol. 350: Bandyopadhyay, B.; Manjunath, T.C.;
Umapathy, M.
Modeling, Control and Implementation of Smart
Structures 250 p. 2007 [978-3-540-48393-9]

Vol. 349: Rogers, E.T.A.; Galkowski, K.;
Owens, D.H.
Control Systems Theory
and Applications for Linear
Repetitive Processes
482 p. 2007 [978-3-540-42663-9]

Vol. 347: Assawinchaichote, W.; Nguang,
K.S.; Shi P.
Fuzzy Control and Filter Design
for Uncertain Fuzzy Systems
188 p. 2006 [978-3-540-37011-6]

Vol. 346: Tarbouriech, S.; Garcia, G.; Glattfelder,
A.H. (Eds.)
Advanced Strategies in Control Systems
with Input and Output Constraints
480 p. 2006 [978-3-540-37009-3]

Vol. 345: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.)
Intelligent Computing in Signal Processing
and Pattern Recognition
1179 p. 2006 [978-3-540-37257-8]

Vol. 344: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.)
Intelligent Control and Automation
1121 p. 2006 [978-3-540-37255-4]

Vol. 341: Commault, C.; Marchand, N. (Eds.)
Positive Systems
448 p. 2006 [978-3-540-34771-2]

Vol. 340: Diehl, M.; Mombaur, K. (Eds.)
Fast Motions in Biomechanics and Robotics
500 p. 2006 [978-3-540-36118-3]

Vol. 339: Alamir, M.
Stabilization of Nonlinear Systems Using
Receding-horizon Control Schemes
325 p. 2006 [978-1-84628-470-0]

Vol. 338: Tokarzewski, J.
Finite Zeros in Discrete Time Control Systems
325 p. 2006 [978-3-540-33464-4]

Vol. 337: Blom, H.; Lygeros, J. (Eds.)
Stochastic Hybrid Systems
395 p. 2006 [978-3-540-33466-8]

Vol. 336: Pettersen, K.Y.; Gravdahl, J.T.;
Nijmeijer, H. (Eds.)
Group Coordination and Cooperative Control
310 p. 2006 [978-3-540-33468-2]


	front-matter
	Chapter 1
	Recent Results on Analysis of Systems with Time-Delay
	Introduction
	Problem Formulation
	Delay-Independent Conditions
	Delay-Dependent Conditions
	Basic Approaches
	Recent Results on Interval Time-Varying Delay System

	Conclusion


	Chapter 2
	New Results on Stability of Systems With Interval Time-Varying Delay
	Introduction
	Problem Formulation
	Main Results
	Numerical Example
	Conclusion


	Chapter 3
	Stability and Stabilization for Discrete Systems with Time-Delay
	Introduction
	Problem Formulation
	Main Results
	Stability analysis
	Controller Design

	Numerical Example
	Conclusion


	Chapter 4
	Robust SMC for Uncertain Time-Delay Systems
	Introduction
	Problem Formulation
	Main Results
	Numerical Example
	Conclusion


	Chapter 5
	Robust Delay-Dependent SMC for Uncertain Time-Delay Systems
	Introduction
	Problem Formulation
	Main Results
	Design of Linear Sliding Surface
	Design of A Reaching Motion Controller

	Numerical Example
	Conclusion


	Chapter 6
	Robust Adaptive SMC for Uncertain Time-Delay Systems
	Introduction
	Problem Formulation
	Main Results
	Numerical Example
	Conclusion


	Chapter 7
	SMC of Uncertain Linear Discrete Time Systems with Input Delay
	Problem Formulation
	Predictor-Based SMC
	Predictor in Discrete-Time
	Predictor-Based SMC for System $\Sigma_1$
	Robust Predictor Based SMC for System $\Sigma_2$
	Stability Analysis of Quasi-Sliding Motion

	Numerical Example
	Conclusion


	Chapter 8
	SMC for Linear Systems with Input and State Delays
	Introduction
	Problem Formulation
	Compensator-Based SMC for Systems with Time Delay
	SMC for Linear Systems with Time-varying Input and State Delays
	Compensator-Based SMC for Systems with Time-varying Delays
	Numerical Example
	Conclusion


	Chapter 9
	Robust SMC for Uncertain Time-Delay Systems Based on Delta Operator
	Introduction
	Problem Formulation
	Main Results
	Numerical Example
	Conclusion


	Chapter 10
	ADRC for Uncertain Systems with Time-Delay
	Introduction
	Problem Formulation
	Concepts of TD, ESO and Nonlinear Feedback Controller
	Example
	Conclusion


	Chapter 11
	Analysis and Synthesis of NCSs with Random Forward Delay
	Introduction
	Networked Predictive Control for Systems with Networked Delay
	Stability Analysis of Closed Networked Predictive Control Systems
	Realtime Simulation and Practical Experiment
	Practical Experiments

	Conclusion


	Chapter 12
	Analysis and Synthesis of NCSs with Random Feedback Delay
	Introduction
	Design of Networked Predictive Controller
	Stability of Networked Predictive Control Systems
	Constant Network Delay
	Random Network Delay

	Simulation & Experiments
	Numerical Simulation
	Practical Experiments

	Conclusion


	Chapter 13
	Analysis and Synthesis of NCSs with Random Forward and Feedback Delay
	Introduction
	Design of NPC Systems with both Forward and Feedback Network Delays
	Stability Criteria of Closed-Loop NPC Systems
	Constant Delays in both Forward and Feedback Channels
	Random Network Delay

	Simulation & Experiments
	Numerical Simulation
	Practical Experiments

	Conclusion


	Chapter 14
	Stochastic Analysis of NCSs with Random Delay and Data Dropout
	Introduction
	Predictive Control of Networked Systems
	Stochastic Stability of Closed-Loop Networked Predictive Control Systems
	Examples
	Numerical Example
	Practical Experiments

	Conclusion


	Chapter 15
	Networked Data Fusion with Packet Losses and Variable Delays
	Introduction
	Problem Formulation
	Method of Data Fusion
	Recall of Federated Filters
	Stability of Networked Kalman Filtering
	Delay Data Processing
	Principle for Data Fusion

	Numerical Examples
	An Unstable Example
	A Stable Example

	Conclusion


	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




