@WILEY

Jeff Duntemann

Assembly
Language

_Programming with Linux

Assembly Language
Step-by-Step

Assembly Language

Step-by-Step

Programming with Linux®

Third Edition

Jetf Duntemann

WILEY
Wiley Publishing, Inc.

Assembly Language Step-by-Step

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Jeff Duntemann

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-49702-9

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
oronlineathttp://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and /or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009933745

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Linux is a registered
trademark of Linus Torvalds. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is
not associated with any product or vendor mentioned in this book.

To the eternal memory of
Kathleen M. Duntemann, Godmother
1920-1999
who gave me books when all I could do was put teeth marks on them.
There are no words for how much I owe you!

About the Author

Jeff Duntemann is a writer, editor, lecturer, and publishing industry analyst. In
his thirty years in the technology industry he has been a computer programmer
and systems analyst for Xerox Corporation, a technical journal editor for
Ziff-Davis Publications, and Editorial Director for Coriolis Group Books and
later Paraglyph Press. He is currently a technical publishing consultant and also
owns Copperwood Press, a POD imprint hosted on lulu.com. Jeff lives with
his wife Carol in Colorado Springs, Colorado.

vii

Executive Editor
Carol Long

Project Editor
Brian Herrmann

Production Editor
Rebecca Anderson

Copy Editor
Luann Rouff

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Credits

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Dr. Nate Pritts, Word One

Indexer
J&]J Indexing

Cover Image
© Jupiter Images/Corbis/
Lawrence Manning

ix

Acknowledgments

First of all, thanks are due to Carol Long and Brian Herrmann at Wiley, for
allowing this book another shot, and then making sure it happened, on a much
more aggressive schedule than last time.

As for all three previous editions, I owe Michael Abrash a debt of gratitude
for constant sane advice on many things, especially the arcane differences
between modern Intel microarchitectures.

Although they might not realize it, Randy Hyde, Frank Kotler, Beth, and
all the rest of the gang on alt.lang.asm were very helpful in several ways, not
least of which was hearing and answering requests from assembly language
newcomers, thus helping me decide what must be covered in a book like this
and what need not.

Finally, and as always, a toast to Carol for the support and sacramental
friendship that has enlivened me now for 40 years, and enabled me to take on
projects like this and see them through to the end.

xi

Contents at a Glance

Introduction: “Why Would You Want to Do That?” XXVii
Chapter 1 Another Pleasant Valley Saturday 1
Chapter 2 Alien Bases 15
Chapter 3 Lifting the Hood 45
Chapter 4 Location, Location, Location 77
Chapter 5 The Right to Assemble 109
Chapter 6 A Place to Stand, with Access to Tools 155
Chapter 7 Following Your Instructions 201
Chapter 8 Our Object All Sublime 237
Chapter 9 Bits, Flags, Branches, and Tables 279
Chapter 10 Dividing and Conquering 327
Chapter 11 Strings and Things 393
Chapter 12 Heading Out to C 439
Conclusion: Not the End, But Only the Beginning 503
Appendix A Partial x86 Instruction Set Reference 507
Appendix B Character Set Charts 583

Index 587

xiii

Contents

Introduction: “Why Would You Want to Do That?”

Chapter 1

Chapter 2

Another Pleasant Valley Saturday
It's All in the Plan
Steps and Tests
More Than Two Ways?
Computers Think Like Us
Had This Been the Real Thing . . .
Do Not Pass Go
The Game of Big Bux
Playing Big Bux
Assembly Language Programming As a Board Game
Code and Data
Addresses
Metaphor Check!

Alien Bases
The Return of the New Math Monster
Counting in Martian
Dissecting a Martian Number
The Essence of a Number Base
Octal: How the Grinch Stole Eight and Nine
Who Stole Eight and Nine?
Hexadecimal: Solving the Digit Shortage
From Hex to Decimal and from Decimal to Hex
From Hex to Decimal
From Decimal to Hex
Practice. Practice! PRACTICE!

XXVii

O 0 O Ul = W N = =

[
N — O

W N NDNDNDNODNRNDE e -
— O 0 0 =k O O 0 oNUl

xvi Contents

Arithmetic in Hex 32
Columns and Carries 35
Subtraction and Borrows 35
Borrows across Multiple Columns 37
What's the Point? 38
Binary 38
Values in Binary 40
Why Binary? 42
Hexadecimal As Shorthand for Binary 43
Prepare to Compute 44
Chapter 3 Lifting the Hood 45
RAXie, We Hardly Knew Ye. .. 45
Gus to the Rescue 46
Switches, Transistors, and Memory 47
OnelIf by Land . .. 48
Transistor Switches 48
The Incredible Shrinking Bit 50
Random Access 52
Memory Access Time 53
Bytes, Words, Double Words, and Quad Words 54
Pretty Chips All in a Row 55
The Shop Foreman and the Assembly Line 57
Talking to Memory 58
Riding the Data Bus 59
The Foreman’s Pockets 60
The Assembly Line 61
The Box That Follows a Plan 61
Fetch and Execute 63
The Foreman’s Innards 64
Changing Course 65
What vs. How: Architecture and Microarchitecture 66
Evolving Architectures 67
The Secret Machinery in the Basement 68
Enter the Plant Manager 70
Operating Systems: The Corner Office 70
BIOS: Software, Just Not as Soft 71
Multitasking Magic 71
Promotion to Kernel 73
The Core Explosion 73
The Plan 74

Contents xvii

Chapter 4 Location, Location, Location 77
The Joy of Memory Models 77
16 Bits’ll Buy You 64K 79
The Nature of a Megabyte 82
Backward Compatibility and Virtual 86 Mode 83
16-Bit Blinders 83
The Nature of Segments 85
A Horizon, Not a Place 88
Making 20-Bit Addresses out of 16-Bit Registers 88
16-Bit and 32-Bit Registers 90
General-Purpose Registers 91
Register Halves 93
The Instruction Pointer 95
The Flags Register 96
The Three Major Assembly Programming Models 96
Real Mode Flat Model 97
Real Mode Segmented Model 99
Protected Mode Flat Model 101
What Protected Mode Won’t Let Us Do Anymore 104
Memory-Mapped Video 104
Direct Access to Port Hardware 105
Direct Calls into the BIOS 106
Looking Ahead: 64-Bit “Long Mode” 106
64-Bit Memory: What May Be Possible Someday vs.
What We Can Do Now 107
Chapter 5 The Right to Assemble 109
Files and What's Inside Them 110
Binary Files vs. Text Files 111
Looking at File Internals with the Bless Editor 112
Interpreting Raw Data 116
““Endianness”’ 117
Text In, Code Out 121
Assembly Language 121
Comments 124
Beware ““Write-Only”” Source Code! 124
Object Code and Linkers 125
Relocatability 128
The Assembly Language Development Process 128
The Discipline of Working Directories 129

Editing the Source Code File 131

Contents

Chapter 6

Assembling the Source Code File
Assembler Errors

Back to the Editor

Assembler Warnings

Linking the Object Code File
Linker Errors

Testing the .EXE File

Errors versus Bugs

Are We There Yet?

Debuggers and Debugging

Taking a Trip Down Assembly Lane

Installing the Software

Step 1: Edit the Program in an Editor

Step 2: Assemble the Program with NASM
Step 3: Link the Program with LD

Step 4: Test the Executable File

Step 5: Watch It Run in the Debugger
Ready to Get Serious?

A Place to Stand, with Access to Tools
The Kate Editor

Installing Kate

Launching Kate

Configuration

Kate Sessions
Creating a New Session
Opening an Existing Session
Deleting or Renaming Sessions

Kate’s File Management
Filesystem Browser Navigation
Adding a File to the Current Session
Dropping a File from the Current Session
Switching Between Session Files in the Editor
Creating a Brand-New File
Creating a Brand-New Folder on Disk
Deleting a File from Disk (Move File to Trash)
Reloading a File from Disk
Saving All Unsaved Changes in Session Files
Printing the File in the Editor Window
Exporting a File As HTML

Adding Items to the Toolbar

Kate’s Editing Controls
Cursor Movement
Bookmarks
Selecting Text

131
132
133
134
135
136
136
137
138
138
139
139
142
143
146
147
147
153

155

157
157
158
160
162
162
163
163
164
165
165
166
166
166
166
166
167
167
167
167
167
168
169
169
170

Contents

XX

Chapter 7

Searching the Text
Using Search and Replace
Using Kate While Programming
Creating and Using Project Directories
Focus!
Linux and Terminals
The Linux Console
Character Encoding in Konsole
The Three Standard Unix Files
I/0 Redirection
Simple Text Filters
Terminal Control with Escape Sequences
So Why Not GUI Apps?
Using Linux Make
Dependencies
When a File Is Up to Date
Chains of Dependencies
Invoking Make from Inside Kate
Using Touch to Force a Build
The Insight Debugger
Running Insight
Insight’s Many Windows
A Quick Insight Run-Through
Pick Up Your Tools . . .

Following Your Instructions
Build Yourself a Sandbox
A Minimal NASM Program
Instructions and Their Operands
Source and Destination Operands
Immediate Data
Register Data
Memory Data
Confusing Data and Its Address
The Size of Memory Data
The Bad Old Days
Rally Round the Flags, Boys!
Flag Etiquette
Adding and Subtracting One with INC and DEC
Watching Flags from Insight
How Flags Change Program Execution
Signed and Unsigned Values
Two’s Complement and NEG
Sign Extension and MOVSX

171
172
172
173
175
176
176
177
178
180
182
183
185
186
187
189
189
191
193
194
195
195
197
200

201
201
202
204
204
205
207
209
210
211
211
212
215
215
216
218
221
221
224

XX

Contents

Chapter 8

Implicit Operands and MUL

MUL and the Carry Flag
Unsigned Division with DIV
The x86 Slowpokes

Reading and Using an Assembly Language Reference

Memory Joggers for Complex Memories
An Assembly Language Reference for Beginners
Flags

NEG: Negate (Two’s Complement; i.e., Multiply by -1)

Flags affected

Legal forms
Examples

Notes

Legal Forms
Operand Symbols
Examples

Notes

What’s Not Here . . .

Our Object All Sublime
The Bones of an Assembly Language Program

The Initial Comment Block

The .data Section

The .bss Section

The .text Section

Labels

Variables for Initialized Data

String Variables

Deriving String Length with EQU and $

Last In, First Out via the Stack

Five Hundred Plates per Hour
Stacking Things Upside Down
Push-y Instructions

POP Goes the Opcode

Storage for the Short Term

Using Linux Kernel Services Through INT80

An Interrupt That Doesn’t Interrupt Anything
Getting Home Again

Exiting a Program via INT 80h

Software Interrupts versus Hardware Interrupts
INT 80h and the Portability Fetish

Designing a Non-Trivial Program

Defining the Problem
Starting with Pseudo-code

225
227
228
229
230
230
231
232
233
233
233
233
233
234
234
235
235
235

237
237
239
240
240
241
241
242
242
244
246
246
248
249
251
253
254
254
259
260
261
262
264
264
265

Contents

Successive Refinement 266
Those Inevitable “Whoops!”” Moments 270
Scanning a Buffer 271
“Off By One” Errors 273
Going Further 277
Chapter 9 Bits, Flags, Branches, and Tables 279
Bits Is Bits (and Bytes Is Bits) 279
Bit Numbering 280
“It’s the Logical Thing to Do, Jim. . .” 280
The AND Instruction 281
Masking Out Bits 282
The OR Instruction 283
The XOR Instruction 284
The NOT Instruction 285
Segment Registers Don’t Respond to Logic! 285
Shifting Bits 286
Shift By What? 286
How Bit Shifting Works 287
Bumping Bits into the Carry Flag 287
The Rotate Instructions 288
Setting a Known Value into the Carry Flag 289
Bit-Bashing in Action 289
Splitting a Byte into Two Nybbles 292
Shifting the High Nybble into the Low Nybble 293
Using a Lookup Table 293
Multiplying by Shifting and Adding 295
Flags, Tests, and Branches 298
Unconditional Jumps 298
Conditional Jumps 299
Jumping on the Absence of a Condition 300
Flags 301
Comparisons with CMP 301

A Jungle of Jump Instructions 302
““Greater Than” Versus ”Above” 303
Looking for 1-Bits with TEST 304
Looking for 0 Bits with BT 306
Protected Mode Memory Addressing in Detail 307
Effective Address Calculations 308
Displacements 309
Base + Displacement Addressing 310
Base + Index Addressing 310
Index x Scale 4 Displacement Addressing 312

Other Addressing Schemes 313

XX

Contents

Chapter 10

LEA: The Top-Secret Math Machine

The Burden of 16-Bit Registers
Character Table Translation

Translation Tables

Translating with MOV or XLAT
Tables Instead of Calculations

Dividing and Conquering
Boxes within Boxes
Procedures As Boxes for Code
Calling and Returning
Calls within Calls
The Dangers of Accidental Recursion
A Flag Etiquette Bug to Beware Of
Procedures and the Data They Need
Saving the Caller’s Registers
Local Data
More Table Tricks
Placing Constant Data in Procedure Definitions
Local Labels and the Lengths of Jumps
"Forcing”” Local Label Access
Short, Near, and Far Jumps
Building External Procedure Libraries
Global and External Declarations
The Mechanics of Globals and Externals
Linking Libraries into Your Programs

The Dangers of Too Many Procedures and Too Many

Libraries
The Art of Crafting Procedures
Maintainability and Reuse
Deciding What Should Be a Procedure
Use Comment Headers!
Simple Cursor Control in the Linux Console
Console Control Cautions
Creating and Using Macros
The Mechanics of Macro Definition
Defining Macros with Parameters
The Mechanics of Invoking Macros
Local Labels Within Macros
Macro Libraries As Include Files
Macros versus Procedures: Pros and Cons

315
317
318
318
320
325

327
328
329
336
338
340
341
342
343
346
347
349
350
353
354
355
356
357
365

366
367
367
368
370
371
377
378
379
385
386
387
388
389

Contents

XX

Chapter 11

Strings and Things
The Notion of an Assembly Language String
Turning Your “String Sense” Inside-Out
Source Strings and Destination Strings
A Text Display Virtual Screen
REP STOSB, the Software Machine Gun
Machine-Gunning the Virtual Display
Executing the STOSB Instruction
STOSB and the Direction Flag (DF)
Defining Lines in the Display Buffer
Sending the Buffer to the Linux Console
The Semiautomatic Weapon: STOSB without REP
Who Decrements ECX?
The LOOP Instructions
Displaying a Ruler on the Screen
MUL Is Not IMUL
Adding ASCII Digits
Adjusting AAA’s Adjustments
Ruler’s Lessons
16-bit and 32-bit Versions of STOS
MOVSB: Fast Block Copies
DF and Overlapping Block Moves
Single-Stepping REP String Instructions with Insight
Storing Data to Discontinuous Strings
Displaying an ASCII Table
Nested Instruction Loops
Jumping When ECX Goes to 0
Closing the Inner Loop
Closing the Outer Loop
Showchar Recap
Command-Line Arguments and Examining the Stack
Virtual Memory in Two Chunks
Anatomy of the Linux Stack
Why Stack Addresses Aren’t Predictable
Setting Command-Line Arguments with Insight
Examining the Stack with Insight’s Memory View
String Searches with SCASB
REPNE vs. REPE
Pop the Stack or Address It?
For Extra Credit . . .

393
393
394
395
395
402
403
404
405
406
406
407
407
408
409
410
411
413
414
414
414
416
418
419
419
420
421
421
422
423
424
424
427
429
429
430
432
435
436
438

xxiv Contents

Chapter 12 Heading Out to C

What’s GNU?
The Swiss Army Compiler
Building Code the GNU Way
How to Use gcc in Assembly Work
Why Not gas?
Linking to the Standard C Library
C Calling Conventions
A Framework to Build On
Saving and Restoring Registers
Setting Up a Stack Frame
Destroying a Stack Frame
Characters Out via puts()
Formatted Text Output with printf()
Passing Parameters to printf()
Data In with fgets() and scanf()
Using scanf() for Entry of Numeric Values
Be a Time Lord
The C Library’s Time Machine
Fetching time_t Values from the System Clock
Converting a time_t Value to a Formatted String
Generating Separate Local Time Values
Making a Copy of glibc’s tm Struct with MOVSD
Understanding AT&T Instruction Mnemonics
AT&T Mnemonic Conventions
Examining gas Source Files Created by gcc
AT&T Memory Reference Syntax
Generating Random Numbers
Seeding the Generator with srand()
Generating Pseudorandom Numbers
Some Bits Are More Random Than Others
Calls to Addresses in Registers
How C Sees Command-Line Arguments
Simple File I/O
Converting Strings into Numbers with sscanf()
Creating and Opening Files
Reading Text from Files with fgets()
Writing Text to Files with fprintf()
Notes on Gathering Your Procedures into Libraries

Conclusion: Not the End, But Only the Beginning

Where to Now?
Stepping off Square One

439
440
441
441
443
444
445
446
447
447
448
450
451
452
454
456
458
462
462
464
464
465
466
470
470
471
474
475
476
477
482
483
484
487
487
489
490
493
494

503
504
506

Contents xxv

Appenix A Partial x86 Instruction Set Reference 507
Notes on the Instruction Set Reference 510
AAA: Adjust AL after BCD Addition 512
ADC: Arithmetic Addition with Carry 513
ADD: Arithmetic Addition 515
AND: Logical AND 517
BT: Bit Test 519
CALL: Call Procedure 521
CLC: Clear Carry Flag (CF) 523
CLD: Clear Direction Flag (DF) 524
CMP: Arithmetic Comparison 525
DEC: Decrement Operand 527
DIV: Unsigned Integer Division 528
INC: Increment Operand 529
INT: Software Interrupt 530
IRET: Return from Interrupt 531
J?: Jump on Condition 532
JCXZ: Jump If CX=0 534
JECXZ: Jump If ECX=0 535
JMP: Unconditional Jump 536
LEA: Load Effective Address 537
LOOP: Loop until CX/ECX=0 538
LOOPNZ/LOOPNE: Loop While CX/ECX > 0 and ZF=0 540
LOOPZ/LOOPE: Loop While CX/ECX > 0 and ZF=1 541
MOV: Move (Copy) Right Operand into Left Operand 542
MOVS: Move String 544
MOVSX: Move (Copy) with Sign Extension 546
MUL: Unsigned Integer Multiplication 547
NEG: Negate (Two’s Complement; i.e., Multiply by -1) 549
NOP: No Operation 550
NOT: Logical NOT (One’s Complement) 551
OR: Logical OR 552
POP: Pop Top of Stack into Operand 554
POPA /POPAD: Pop All GP Registers 555
POPEF: Pop Top of Stack into 16-Bit Flags 556
POPFD: Pop Top of Stack into EFlags 557
PUSH: Push Operand onto Top of Stack 558
PUSHA: Push All 16-Bit GP Registers 559
PUSHAD: Push All 32-Bit GP Registers 560
PUSHE: Push 16-Bit Flags onto Stack 561
PUSHEFD: Push 32-Bit EFlags onto Stack 562
RET: Return from Procedure 563

ROL: Rotate Left 564

XXVi

Contents

ROR: Rotate Right

SBB: Arithmetic Subtraction with Borrow
SHL: Shift Left

SHR: Shift Right

STC: Set Carry Flag (CF)

STD: Set Direction Flag (DF)
STOS: Store String

SUB: Arithmetic Subtraction
XCHG: Exchange Operands
XLAT: Translate Byte via Table
XOR: Exclusive Or

Appendix B Character Set Charts

Index

566
568
570
572
574
575
576
577
579
580
581

583
587

Introduction: “Why Would You
Want to Do That?”

It was 1985, and I was in a chartered bus in New York City, heading for a
press reception with a bunch of other restless media egomaniacs. I was only
beginning my media career (as Technical Editor for PC Tech Journal) and my
first book was still months in the future. I happened to be sitting next to an
established programming writer/guru, with whom I was impressed and to
whom I was babbling about one thing or another. I won’t name him, as he’s
done a lot for the field, and may do a fair bit more if he doesn’t kill himself
smoking first.

But I happened to let it slip that I was a Turbo Pascal fanatic, and what I
really wanted to do was learn how to write Turbo Pascal programs that made
use of the brand-new Microsoft Windows user interface. He wrinkled his nose
and grimaced wryly, before speaking the Infamous Question:

“Why would you want to do that?”

I had never heard the question before (though I would hear it many times
thereafter) and it took me aback. Why? Because, well, because ... I wanted to
know how it worked.

“Heh. That’s what C’s for.”

Further discussion got me nowhere in a Pascal direction. But some probing
led me to understand that you couldn’t write Windows apps in Turbo Pascal.
It was impossible. Or ... the programming writer/guru didn’t know how.
Maybe both. I never learned the truth. But I did learn the meaning of the
Infamous Question.

Note well: When somebody asks you, “Why would you want to do that?”
what it really means is this: ““You've asked me how to do something that is
either impossible using tools that I favor or completely outside my experience,

xxvii

xxviii Introduction: “Why Would You Want to Do That?”

but I don’t want to lose face by admitting it. So ... how ‘bout those Black-
hawks?”
I heard it again and again over the years:

Q:How canIsetup a Cstring so thatI can read its length without scanning it?
A: Why would you want to do that?

Q: How can I write an assembly language subroutine callable from Turbo
Pascal?

A: Why would you want to do that?
Q: How can I write Windows apps in assembly language?

A: Why would you want to do that?

You get the idea. The answer to the Infamous Question is always the same,
and if the weasels ever ask it of you, snap back as quickly as possible, ““Because
I want to know how it works.”

That is a completely sufficient answer. It's the answer I've used every single
time, except for one occasion a considerable number of years ago, when I put
forth that I wanted to write a book that taught people how to program in
assembly language as their first experience in programming.

Q: Good grief, why would you want to do that?

A: Because it’s the best way there is to build the skills required to understand
how all the rest of the programming universe works.

Being a programmer is one thing above all else: it is understanding how
things work. Learning to be a programmer, furthermore, is almost entirely
a process of leaning how things work. This can be done at various levels,
depending on the tools you're using. If you're programming in Visual Basic,
you have to understand how certain things work, but those things are by and
large confined to Visual Basic itself. A great deal of machinery is hidden by
the layer that Visual Basic places between the programmer and the computer.
(The same is true of Delphi, Java, Python, and many other very high level
programming environments.) If you're using a C compiler, you're a lot closer
to the machine, and you see a lot more of that machinery—and must, therefore,
understand how it works to be able to use it. However, quite a bit remains
hidden, even from the hardened C programmer.

If, conversely, you're working in assembly language, you're as close to the
machine as you can get. Assembly language hides nothing, and withholds no
power. The flip side, of course, is that no magical layer between you and the
machine will absolve any ignorance and ““take care of” things for you. If you
don’t understand how something works, you're dead in the water—unless
you know enough to be able to figure it out on your own.

Introduction: “Why Would You Want to Do That?”

XXix

That’s a key point: My goal in creating this book is not entirely to teach
you assembly language per se. If this book has a prime directive at all, it is to
impart a certain disciplined curiosity about the machine, along with some basic
context from which you can begin to explore the machine at its very lowest
levels—that, and the confidence to give it your best shot. This is difficult stuff,
but it’s nothing you can’t master given some concentration, patience, and the
time it requires—which, I caution, may be considerable.

In truth, what I'm really teaching you here is how to learn.

What You'll Need

To program as I intend to teach, you're going to need an Intel x86-based
computer running Linux. The text and examples assume at least a 386, but
since Linux itself requires at least a 386, you're covered.

You need to be reasonably proficient with Linux at the user level. I can’t
teach you how to install and run Linux in this book, though I will provide
hints where things get seriously non-obvious. If you're not already familiar
with Linux, get a tutorial text and work through it. Many exist but my favorite
is the formidable Ubuntu 8.10 Linux Bible, by William von Hagen. (Linux for
Dummies, while well done, is not enough.)

Which Linux distribution/version you use is not extremely important,
as long as it's based on at least the version 2.4 kernel, and preferably
version 2.6. The distribution that I used to write the example programs was
Ubuntu version 8.10. Which graphical user interface (GUI) you use doesn’t
matter, because all of the programs are written to run from the purely tex-
tual Linux console. The assembler itself, NASM, is also a purely textual
creature.

Where a GUI is required is for the Kate editor, which I use as a model in the
discussions of the logistics of programming. You can actually use any editor
you want. There’s nothing in the programs themselves that requires Kate, but
if you're new to programming or have always used a highly language-specific
editing environment, Kate is a good choice.

The debugger I cite in the text is the venerable Gdb, but mostly by way of
Gdb’s built-in GUI front end, Insight. Insight requires a functioning X Window
subsystem but is not tied to a specific GUI system like GNOME or KDE.

You don’t have to know how to install and configure these tools in advance,
because I cover all necessary tool installation and configuration in the chapters,
at appropriate times.

Note that other Unix implementations not based on the Linux kernel may
not function precisely the same way under the hood. BSD Unix uses different
conventions for making kernel calls, for example, and other Unix versions
such as Solaris are outside my experience.

Introduction: “Why Would You Want to Do That?”

The Master Plan

This book starts at the beginning, and I mean the beginning. Maybe you're
already there, or well past it. I respect that. I still think that it wouldn’t hurt to
start at the first chapter and read through all the chapters in order. Review is
useful, and hey—you may realize that you didn’t know quite as much as you
thought you did. (Happens to me all the time!)

But if time is at a premium, here’s the cheat sheet:

1. If you already understand the fundamental ideas of computer program-
ming, skip Chapter 1.

2. If you already understand the ideas behind number bases other than
decimal (especially hexadecimal and binary), skip Chapter 2.

3. If you already have a grip on the nature of computer internals (memory,
CPU architectures, and so on) skip Chapter 3.

4. If you already understand x86 memory addressing, skip Chapter 4.

5. No. Stop. Scratch that. Even if you already understand x86 memory
addressing, read Chapter 4.

Point 5 is there, and emphatic, for a reason: Assembly language programming is
about memory addressing. If you don’t understand memory addressing, nothing
else you learn in assembly will help you one lick. So don’t skip Chapter 4
no matter what else you know or think you know. Start from there, and see
it through to the end. Load every example program, assemble each one, and
run them all. Strive to understand every single line in every program. Take
nothing on faith.

Furthermore, don’t stop there. Change the example programs as things
begin to make sense to you. Try different approaches. Try things that I don’t
mention. Be audacious. Nay, go nuts—bits don’t have feelings, and the worst
thing that can happen is that Linux throws a segmentation fault, which may
hurt your program (and perhaps your self esteem) but does not hurt Linux.
(They don’t call it “protected mode” for nothing!) The only catch is that
when you try something, understand why it doesn’t work as clearly as you
understand all the other things that do. Take notes.

That is, ultimately, what I'm after: to show you the way to understand what
every however distant corner of your machine is doing, and how all its many
pieces work together. This doesn’t mean I explain every corner of it myself—no
one will live long enough to do that. Computing isn’t simple anymore, but if
you develop the discipline of patient research and experimentation, you can
probably work it out for yourself. Ultimately, that’s the only way to learn
it: by yourself. The guidance you find—in friends, on the Net, in books like
this—is only guidance, and grease on the axles. You have to decide who is to
be the master, you or the machine, and make it so. Assembly programmers

Introduction: “Why Would You Want to Do That?”

xxxi

are the only programmers who can truly claim to be the masters, and that’s a
truth worth meditating on.

A Note on Capitalization Conventions

Assembly language is peculiar among programming languages in that there is
no universal standard for case sensitivity. In the C language, all identifiers are
case sensitive, and I have seen assemblers that do not recognize differences
in case at all. NASM, the assembler I present in this book, is case sensitive
only for programmer-defined identifiers. The instruction mnemonics and the
names of registers, however, are not case sensitive.

There are customs in the literature on assembly language, and one of
those customs is to treat CPU instruction mnemonics and register names as
uppercase in the text, and in lowercase in source code files and code snippets
interspersed in the text. I'll be following that custom here. Within discussion
text, I'll speak of MOV and registers EAX and EFLAGS. In example code, it
will be mov and eax and eflags.

There are two reasons for this:

m [n text discussions, the mnemonics and registers need to stand out. It’s
too easy to lose track of them amid a torrent of ordinary words.

= In order to read and learn from existing documents and source code
outside of this one book, you need to be able to easily read assembly
language whether it’s in uppercase, lowercase, or mixed case. Getting
comfortable with different ways of expressing the same thing is important.

This will grate on some people in the Unix community, for whom lowercase
characters are something of a fetish. I apologize in advance for the irritation,
while insisting to the end that it’s still a fetish, and a fairly childish one at that.

Why Am | Here Again?

Wherever you choose to start the book, it's time to get under way. Just
remember that whatever gets in your face, be it the weasels, the machine, or
your own inexperience, the thing to keep in the forefront of your mind is this:
You're in it to figure out how it works.

Let’s go.

Jeff Duntemann
Colorado Springs, Colorado
June 5, 2009

www . duntemann.com/assembly.htm

Assembly Language
Step-by-Step

CHAPTER

1

Another Pleasant
Valley Saturday

Understanding What Computers Really Do

It's All in the Plan

”Quick, Mike, get your sister and brother up, it’s past 7. Nicky’s got Little
League at 9:00 and Dione’s got ballet at 10:00. Give Max his heartworm pill!
(We're out of them, Ma, remember?) Your father picked a great weekend to go
fishing. Here, let me give you 10 bucks and go get more pills at the vet’s. My
God, that’s right, Hank needed gas money and left me broke. There’s an ATM
over by Kmart, and if I go there I can take that stupid toilet seat back and get
the right one.”

"I guess I'd better make a list. ...""

It's another Pleasant Valley Saturday, and thirty-odd million suburban
homemakers sit down with a pencil and pad at the kitchen table to try to make
sense of a morning that would kill and pickle any lesser being. In her mind,
she thinks of the dependencies and traces the route:

Drop Nicky at Rand Park, go back to Dempster and it’s about 10 minutes to
Golf Mill Mall. Do I have gas? I'd better check first—if not, stop at Del’s Shell
or I won’t make it to Milwaukee Avenue. Milk the ATM at Golf Mill, then
cross the parking lot to Kmart to return the toilet seat that Hank bought last
weekend without checking what shape it was. Gotta remember to throw the
toilet seat in the back of the van—write that at the top of the list.

Chapter 1 = Another Pleasant Valley Saturday

By then it'll be half past, maybe later. Ballet is all the way down Greenwood
in Park Ridge. No left turn from Milwaukee—but there’s the sneak path
around behind the mall. I have to remember not to turn right onto Milwaukee
like I always do—jot that down. While I'm in Park Ridge I can check to see
if Hank’s new glasses are in—should call but they won’t even be open until
9:30. Oh, and groceries—can do that while Dione dances. On the way back I
can cut over to Oakton and get the dog’s pills.

In about 90 seconds flat the list is complete:

m Throw toilet seat in van.

m Check gas—if empty, stop at Del’s Shell.

= Drop Nicky at Rand Park.

m Stop at Golf Mill teller machine.

m Return toilet seat at Kmart.

m Drop Dione at ballet (remember the sneak path to Greenwood).

m See if Hank’s glasses are at Pearle Vision—if they are, make sure they
remembered the extra scratch coating.

m Get groceries at Jewel.

m Pick up Dione.

m Stop at vet’s for heartworm pills.

m Drop off groceries at home.

m [f it’s time, pick up Nicky. If not, collapse for a few minutes, then pick up
Nicky.

m Collapse!

In what we often call a “laundry list”” (whether it involves laundry or not)
is the perfect metaphor for a computer program. Without realizing it, our
intrepid homemaker has written herself a computer program and then set out
(acting as the computer) to execute it and be done before noon.

Computer programming is nothing more than this: you, the programmer,
write a list of steps and tests. The computer then performs each step and
test in sequence. When the list of steps has been executed, the computer
stops.

A computer program is a list of steps and tests, nothing more.

Steps and Tests

Think for a moment about what I call a “test” in the preceding laundry list.
A test is the sort of either/or decision we make dozens or hundreds of times
on even the most placid of days, sometimes nearly without thinking about it.

Chapter 1 = Another Pleasant Valley Saturday

Our homemaker performed a test when she jumped into the van to get
started on her adventure. She looked at the gas gauge. The gas gauge would
tell her one of two things: either she has enough gas or she doesn’t. If she has
enough gas, then she takes a right and heads for Rand Park. If she doesn’t
have enough gas, then she takes a left down to the corner and fills the tank
at Del’s Shell. Then, with a full tank, she continues the program by taking a
U-turn and heading for Rand Park.

In the abstract, a test consists of those two parts:

m First, you take a look at something that can go one of two ways.

m Then you do one of two things, depending on what you saw when you
took a look.

Toward the end of the program, our homemaker gets home, takes the
groceries out of the van, and checks the clock. If it isn’t time to get Nicky from
Little League, then she has a moment to collapse on the couch in a nearly
empty house. If it is time to get Nicky, then there’s no rest for the ragged: she
sprints for the van and heads back to Rand Park.

(Any guesses as to whether she really gets to collapse when the program
finishes running?)

More Than Two Ways?

You might object, saying that many or most tests involve more than two
alternatives. Ha-ha, sorry, you're dead wrong—in every case. Furthermore,
you're wrong whether you think you are or not. Read this twice: Except for
totally impulsive or psychotic behavior, every human decision comes down to the
choice between two alternatives.

What you have to do is look a little more closely at what goes through
your mind when you make decisions. The next time you buzz down to Yow
Chow Now for fast Chinese, observe yourself while you're poring over the
menu. The choice might seem, at first, to be of one item out of 26 Cantonese
main courses. Not so. The choice, in fact, is between choosing one item and
not choosing that one item. Your eyes rest on chicken with cashews. Naw, too
bland. That was a test. You slide down to the next item. Chicken with black
mushrooms. Hmm, no, had that last week. That was another test. Next item:
Kung Pao chicken. Yeah, that’s it! That was a third test.

The choice was not among chicken with cashews, chicken with black
mushrooms, or Kung Pao chicken. Each dish had its moment, poised before
the critical eye of your mind, and you turned thumbs up or thumbs down on
it, individually. Eventually, one dish won, but it won in that same game of ““to
eat or not to eat.”

Let me give you another example. Many of life’s most complicated decisions
come about due to the fact that 99.99867 percent of us are not nudists. You've

Chapter 1 = Another Pleasant Valley Saturday

been there: you're standing in the clothes closet in your underwear, flipping
through your rack of pants. The tests come thick and fast. This one? No. This
one? No. This one? No. This one? Yeah. You pick a pair of blue pants, say.
(It's a Monday, after all, and blue would seem an appropriate color.) Then you
stumble over to your sock drawer and take a look. Whoops, no blue socks.
That was a test. So you stumble back to the clothes closet, hang your blue pants
back on the pants rack, and start over. This one? No. This one? No. This one?
Yeah. This time it’s brown pants, and you toss them over your arm and head
back to the sock drawer to take another look. Nertz, out of brown socks, too.
So it’s back to the clothes closet . ..

What you might consider a single decision, or perhaps two decisions
inextricably tangled (such as picking pants and socks of the same color, given
stock on hand), is actually a series of small decisions, always binary in nature:
pick ‘em or don’t pick ‘em. Find ‘em or don’t find ‘em. The Monday morning
episode in the clothes closet is a good analogy of a programming structure
called a loop: you keep doing a series of things until you get it right, and then
you stop (assuming you're not the kind of geek who wears blue socks with
brown pants); but whether you get everything right always comes down to a
sequence of simple either/or decisions.

Computers Think Like Us

I can almost hear the objection: ““Sure, it's a computer book, and he’s trying
to get me to think like a computer.” Not at all. Computers think like us. We
designed them; how else could they think? No, what I'm trying to do is get
you to take a long, hard look at how you think. We run on automatic for so
much of our lives that we literally do most of our thinking without really
thinking about it.

The very best model for the logic of a computer program is the very same
logic we use to plan and manage our daily affairs. No matter what we do,
it comes down to a matter of confronting two alternatives and picking one.
What we might think of as a single large and complicated decision is nothing
more than a messy tangle of many smaller decisions. The skill of looking at
a complex decision and seeing all the little decisions in its tummy will serve
you well in learning how to program. Observe yourself the next time you have
to decide something. Count up the little decisions that make up the big one.
You'll be surprised.

And, surprise! You'll be a programmer.

Had This Been the Real Thing. ..

Do not be alarmed. What you have just experienced was a metaphor. It was
not the real thing. (The real thing comes later.) I use metaphors a lot in this
book. A metaphor is a loose comparison drawn between something familiar

Chapter 1 = Another Pleasant Valley Saturday

(such as a Saturday morning laundry list) and something unfamiliar (such as
a computer program). The idea is to anchor the unfamiliar in the terms of
the familiar, so that when I begin tossing facts at you, you’ll have someplace
comfortable to lay them down.

The most important thing for you to do right now is keep an open mind. If
you know a little bit about computers or programming, don’t pick nits. Yes,
there are important differences between a homemaker following a scribbled
laundry list and a computer executing a program. I'll mention those differences
all in good time.

For now, it’s still Chapter 1. Take these initial metaphors on their own terms.
Later on, they’ll help a lot.

Do Not Pass Go

“There’s a reason bored and board are homonyms,” said my best friend, Art, one
evening as we sat (two super-sophisticated twelve-year-olds) playing some
game in his basement. (He may have been unhappy because he was losing.)
Was it Mille Bornes? Or Stratego? Or Monopoly? Or something else entirely?
I confess, I don’t remember. I simply recall hopping some little piece of plastic
shaped like a pregnant bowling pin up and down a series of colored squares
that told me to do dumb things like go back two spaces or put $100 in the pot
or nuke Outer Mongolia.

There are strong parallels to be drawn between that peculiar American
pastime, the board game, and assembly-language programming. First of all,
everything I said before still holds: board games, by and large, consist of a
progression of steps and tests. In some games, such as Trivial Pursuit, every
step on the board is a test: to see if you can answer, or not answer, a question
on a card. In other board games, each little square along the path on the board
contains some sort of instruction: Lose One Turn; Go Back Two Squares; Take
a Card from Community Chest; and, of course, Go to Jail. Things happen in
board games, and the path your little pregnant bowling pin takes as it works
its way along the edge of the board will change along the way.

Many board games also have little storage locations marked on the board
where you keep things: cards and play money and game tokens such as little
plastic houses or hotels, or perhaps bombers and nuclear missiles. As the
game progresses, you buy, sell, or launch your assets, and the contents of your
storage locations change. Computer programs are like that too: there are places
where you store things (“things” here being pure data, rather than physical
tokens); and as the computer program executes, the data stored in those places
will change.

Computer programs are not games, of course—at least, not in the sense
that a board game is a game. Most of the time, a given program is running
all by itself. There is only one “player” and not two or more. (This is not

Chapter 1 = Another Pleasant Valley Saturday

always true, but I don’t want to get too far ahead right now. Remember, we're
still in metaphor territory.) Still, the metaphor is useful enough that it's worth
pursuing.

The Game of Big Bux

I've invented my own board game to continue down the road with this
particular metaphor. In the sense that art mirrors life, the Game of Big Bux
mirrors life in Silicon Valley, where money seems to be spontaneously created
(generally in somebody else’s pocket) and the three big Money Black Holes
are fast cars, California real estate, and messy divorces. There is luck, there is
work, and assets often change hands very quickly.

A portion of the Big Bux game board is shown in Figure 1-1. The line of rect-
angles on the left side of the page continues all the way around the board. In the
middle of the board are cubbyholes to store your play money and game pieces;
stacks of cards to be read occasionally; and short detours with names such as
Messy Divorce and Start a Business, which are brief sequences of the same
sort of action squares as those forming the path around the edge of the board.
These are “’side paths” that players take when instructed, either by a square
on the board or a card pulled during the game. If you land on a square that
tells you to Start a Business, you go through that detour. If you jump over the
square, you don’t take the detour, and just keep on trucking around the board.

Unlike many board games, you don’t throw dice to determine how many
steps around the board you take. Big Bux requires that you move one step
forward on each turn, unless the square you land on instructs you to move
forward or backward or go somewhere else, such as through a detour. This
makes for a considerably less random game. In fact, Big Bux is a pretty linear
experience, meaning that for the most part you go around the board until
you're told that the game is over. At that point, you may be bankrupt; if not,
you can total up your assets to see how well you've done.

There is some math involved. You start out with a condo, a cheap car,
and $250,000 in cash. You can buy CDs at a given interest rate, payable
each time you make it once around the board. You can invest in stocks and
other securities whose value is determined by a changeable index in economic
indicators, which fluctuates based on cards chosen from the stack called the
Fickle Finger of Fate. You can sell cars on a secondary market, buy and sell
houses, condos, and land; and wheel and deal with the other players. Each time
you make it once around the board, you have to recalculate your net worth.
All of this involves some addition, subtraction, multiplication, and division,
but there’s no math more complex than compound interest. Most of Big Bux
involves nothing more than taking a step and following the instructions at
each step.

Is this starting to sound familiar?

Chapter 1

Another Pleasant Valley Saturday

7

THE GAME OF “BIG BUX!” —— By Jeff Duntemann

AN

Buy option on Pomegranite Computer.
Look out the window— —if you can see
the moon, stock falls. Make $50,000.

THE BANK

Mortgage: $153,000 11% adj.
Carloan: $ 15,000 10% fixed

YOUR PORTFOLIO
CD’s: $100.00

1N ANGAN

PAYDAY! Deposit salary into
checking acct.

YOUR CHECKING ACCOUNT

Balance: $12,255.00
Line of credit: $ 8,000.00

Take a card from:
The Fickle Finger of Fate.

OTHER ASSETS
Salary: $1000/week

BT

Did you get laid off? If so, detour
thru Start Your Own Business.

Are you married? If not, marry chief
programmer for $10,000. If so,
detour through Messy Divorce.

MARKET VALUES

Porsches: $48,000 Chevies: $10,000
BMWs: $28,000 Used Fords: $2700
2br Palo Alto condo: $385,000

4br Palo Alto house: $742,000

Start a
Business
Start Here:

Draw up a business plan and
submit to a venture firm.

Friday night. Are you alone?
If so, get roaring drunk and jump
back three squares.

Total car on Highway 101. Buy
antoher one of equal value.

Is your job boring? (Prosperity
Index > 0.6 but less than 1.2) If not,
jump ahead 3 squares.

Get promoted. Salary rises by 25%.
(If unemployed, get new job at
salary of $800/week.)

Have an affair with the Chief
Programmer. Jump back 5 squares.

Messy
Divorce
Start Here:

She moves out, rents
$2000/mo. apartment.

Are you bankrupt? If so, get
cheap lawyer. Jump ahead 4.
Hire expensive lawyer. Pay
$50,000 from checking.
Lawyer proves in court that
wife is a chinchilla.

Wife is sent to Brookfield Zoo.
Return to whence you came.

Holiday. NOTHING HAPPENS AT ALL!

Vest 5000 stock options. Sell at $10
X economic indicator.

Buy condo in Palo Alto for 15% down.

Are you bankrupt? If so, move to
Peoria. If not, detour through Start
of Business.

Friend Nick drops rumor of huge gov't
contract impending at Widgetsoft. Buy
$10,000 worth of Widgetsoft stock.

Did Widgetsoft contract go through?
If not, jump back two squares. If so,
sell and make $500,000 in one day.

Brag about insider trading to friend Nick.
An error. Nick is an SEC plant. Wave at
Peoria. Move to Joliet. End of game.

M A

Lawyer proves in court that
you are a chinchilla.

Court and wife skin you alive.
Lose 50% of everything.
Start paying wife $5000/mo.
for the rest of your life.

Go back to where
you came from.

The Fickle Finger of Fate.

Venture firm requires
$50,000 matching capital.

Have it? If not, return to
where you came from.

Add $850,000 to checking
account.

Hire 6 people. Subtract
$100,000 from checking acct.

Work 18 hours a day for a
year. Spend $200,000.

Spend $300,000 launching
the new product.

Take a card from:
The Fickle Finger of Fate.

First year’s sales:
$500,000 x economic ind.

Are you bankrupt? If not,
jump ahead 2 squares.

Go through messy divorce.

Return to where you came from.

Sell company for $10,000,000.
Buy another $65,000 Porsche.

Go back to where
you came from.

20%; housing prices by 5%. Re-valuate
your portfolio. Bank cuts your line of
credit by $2000. Have a good cry.

Major Bank Failure!

—$—
Decrement Economic Indicators line
by thirty percent. Bonds tumble by

Figure 1-1: The Big Bux game board

1000

100

50

30

20
12.0

Prosperity

7.0
4.0

Recession

$

ECONOMIC
INDICATORS

PEORIA)

Chapter 1 = Another Pleasant Valley Saturday

Playing Big Bux

At one corner of the Big Bux board is the legend Move In, as that’s how people
start life in California—no one is actually born there. That’s the entry point
at which you begin the game. Once moved in, you begin working your way
around the board, square by square, following the instructions in the squares.

Some of the squares simply tell you to do something, such as “Buy a Condo
in Palo Alto for 15% down.” Many of the squares involve a test of some kind.
For example, one square reads: “Is your job boring? (Prosperity Index 0.3 but
less than 4.0.) If not, jump ahead three squares.” The test is actually to see
if the Prosperity Index has a value between 0.3 and 4.0. Any value outside
those bounds (that is, runaway prosperity or Four Horsemen—class recession)
is defined as Interesting Times, and causes a jump ahead by three squares.

You always move one step forward at each turn, unless the square you land
on directs you to do something else, such as jump forward three squares or
jump back five squares, or take a detour.

The notion of taking a detour is an interesting one. Two detours are shown
in the portion of the board I've provided. (The full game has others.) Taking a
detour means leaving your main path around the edge of the game board and
stepping through a series of squares somewhere else on the board. When you
finish with the detour, you return to your original path right where you left it.
The detours involve some specific process—for example, starting a business
or getting divorced.

You can work through a detour, step by step, until you hit the bottom. At
that point you simply pick up your journey around the board right where
you left it. You may also find that one of the squares in the detour instructs
you to go back to where you came from. Depending on the logic of the game
(and your luck and finances), you may completely run through a detour or get
thrown out of the detour somewhere in the middle. In either case, you return
to the point from which you originally entered the detour.

Also note that you can take a detour from within a detour. If you detour
through Start a Business and your business goes bankrupt, you leave Start
a Business temporarily and detour through Messy Divorce. Once you leave
Messy Divorce, you return to where you left Start a Business. Ultimately, you
also leave Start a Business and return to wherever you were on the main path
when you took the detour. The same detour (for example, Start a Business)
can be taken from any of several different places along the game board.

Unlike most board games, the Game of Big Bux doesn’t necessarily end. You
can go round and round the board basically forever. There are three ways to
end the game:

m Retire: To do this, you must have assets at a certain level and make the
decision to retire.

Chapter 1 = Another Pleasant Valley Saturday

m Go bankrupt: Once you have no assets, there’s no point in continuing the
game. Move to Peoria in disgrace.

m Go to jail: This is a consequence of an error of judgment, and is not a
normal exit from the game board.

Computer programs are also like that. You can choose to end a program
when you’ve accomplished what you planned, even though you could con-
tinue if you wanted. If the document or the spreadsheet is finished, save it
and exit. Conversely, if the photo you're editing keeps looking worse and
worse each time you select Sharpen, you stop the program without having
accomplished anything. If you make a serious mistake, then the program may
throw you out with an error message and corrupt your data in the bargain,
leaving you with less than nothing to show for the experience.

Once more, this is a metaphor. Don’t take the game board too literally. (Alas,
Silicon Valley life was way too much like this in the go-go 1990s. It’s calmer
now, ['ve heard.)

Assembly Language Programming
As a Board Game

Now that you're thinking in terms of board games, take a look at Figure 1-2.
What I've drawn is actually a fair approximation of assembly language as
it was used on some of our simpler computers about 25 or 30 years ago.
The column marked “Program Instructions” is the main path around the
edge of the board, of which only a portion can be shown here. This is the
assembly language computer program, the actual series of steps and tests that,
when executed, cause the computer to do something useful. Setting up this
series of program instructions is what programming in assembly language
actually is.

Everything else is odds and ends in the middle of the board that serve
the game in progress. Most of these are storage locations that contain your
data. You're probably noticing (perhaps with sagging spirits) that there are
a lot of numbers involved. (They’re weird numbers, too—what, for example,
does “004B” mean? I deal with that issue in Chapter 2.) I'm sorry, but that’s
simply the way the game is played. Assembly language, at its innermost level,
is nothing but numbers, and if you hate numbers the way most people hate
anchovies, you're going to have a rough time of it. (I like anchovies, which is
part of my legend. Learn to like numbers. They’re not as salty.) Higher-level
programming languages such as Pascal or Python disguise the numbers by
treating them symbolically—but assembly language, well, it’s you and the
numbers.

Chapter 1 = Another Pleasant Valley Saturday

Program Data _

Instructions in Memory Registers
0040 | MOVE 6 t0 0000 | A e A>
0041 | MOVE 0000 to B 0001 L 0002 B>
0042 | MOVE data at B to A 0002 | e 5 c)
0043 |COMPAREAto " 0003 ‘ 0 [D
0044 |JUMP AHEAD 9 IFA <" 0004 t ; Carry>
0045 ggusr';tle’?rgr?trg rtTr]1e Stack 0005 !
0046 | GALL UpCase Program Counter The Stack
0047 |MOVE A to data at B 0000 | 0000
0048 | INCREMENT B 0001 | 0045
0049 |DECREMENT C PROCEDURE UpCase 0002
004A | COMPARE C to 0 oogo | COMPARE data at A 0003
004B | JUMP BACK 9 IF C > 0 001 [P AHEAD A 0004
004C | GOTO StringReady ooz | COMPARE data at A 0005
004D |ADD 12810 A 0083 [jUMIP AHEAD 2 0006
004E |JUMP BACK 6 0084 | ADD 32 to data at A —
o [

Figure 1-2: The Game of Assembly Language

I'should caution you that the Game of Assembly Language represents no real
computer processor like the Pentium. Also, I've made the names of instructions
more clearly understandable than the names of the instructions in Intel
assembly language. In the real world, instruction names are typically things like
STOSB, DAA, INC, SBB, and other crypticisms that cannot be understood without
considerable explanation. We're easing into this stuff sidewise, and in this
chapter I have to sugarcoat certain things a little to draw the metaphors clearly.

Code and Data

Like most board games (including the Game of Big Bux), the assembly
language board game consists of two broad categories of elements: game steps
and places to store things. The “game steps” are the steps and tests I've been
speaking of all along. The places to store things are just that: cubbyholes into
which you can place numbers, with the confidence that those numbers will
remain where you put them until you take them out or change them somehow.

Chapter 1 = Another Pleasant Valley Saturday

In programming terms, the game steps are called code, and the numbers in
their cubbyholes (as distinct from the cubbyholes themselves) are called data.
The cubbyholes themselves are usually called storage. (The difference between
the places you store information and the information you store in them is
crucial. Don’t confuse them.)

The Game of Big Bux works the same way. Look back to Figure 1-1 and
note that in the Start a Business detour, there is an instruction reading “Add
$850,000 to checking account.” The checking account is one of several different
kinds of storage in the Game of Big Bux, and money values are a type of data.
It’s no different conceptually from an instruction in the Game of Assembly
Language reading ADD 5 to Register A. An apD instruction in the code alters
a data value stored in a cubbyhole named register a.

Code and data are two very different kinds of critters, but they interact
in ways that make the game interesting. The code includes steps that place
data into storage (MOVE instructions) and steps that alter data that is already
in storage (INCREMENT and DECREMENT instructions, and ApD instructions). Most
of the time you’ll think of code as being the master of data, in that the code
writes data values into storage. Data does influence code as well, however.
Among the tests that the code makes are tests that examine data in storage, the
COMPARE instructions. If a given data value exists in storage, the code may do
one thing; if that value does not exist in storage, the code will do something
else, as in the Big Bux JUMP BACK and JUMP AHEAD instructions.

The short block of instructions marked PROCEDURE is a detour off the main
stream of instructions. At any point in the program you can duck out into
the procedure, perform its steps and tests, and then return to the very place
from which you left. This allows a sequence of steps and tests that is generally
useful and used frequently to exist in only one place, rather than as a separate
copy everywhere it is needed.

Addresses

Another critical concept lies in the funny numbers at the left side of the
program step locations and data locations. Each number is unique, in that
a location tagged with that number appears only once inside the computer.
This location is called an address. Data is stored and retrieved by specifying the
data’s address in the machine. Procedures are called by specifying the address
at which they begin.

The little box (which is also a storage location) marked PROGRAM COUNTER
keeps the address of the next instruction to be performed. The number inside
the program counter is increased by one (we say, “incremented” each time
an instruction is performed unless the instructions tell the program counter to do
something else. For example: notice the Jump BACK 9 instruction at address 004B.
When this instruction is performed, the program counter will “back up” by

12

Chapter 1 = Another Pleasant Valley Saturday

nine locations. This is analogous to the ““go back three spaces” concept in most
board games.

Metaphor Check!

That’s about as much explanation of the Game of Assembly Language as I'm
going to offer for now. This is still Chapter 1, and we're still in metaphor
territory. People who have had some exposure to computers will recognize
and understand some of what Figure 1-2 is doing. (There’s a real, traceable
program going on in there—I dare you to figure out what it does—and how!)
People with no exposure to computer innards at all shouldn’t feel left behind
for being utterly lost. I created the Game of Assembly Language solely to put
across the following points:

wm The individual steps are very simple: One single instruction rarely does more
than move a single byte from one storage cubbyhole to another, perform
very elementary arithmetic such as addition or subtraction, or compare the
value contained in one storage cubbyhole to a value contained in another.
This is good news, because it enables you to concentrate on the simple
task accomplished by a single instruction without being overwhelmed by
complexity. The bad news, however, is the following:

wm [t takes a lot of steps to do anything useful: You can often write a use-
ful program in such languages as Pascal or BASIC in five or six lines.
You can actually create useful programs in visual programming systems
such as Visual Basic and Delphi without writing any code at all. (The
code is still there ... but it is “canned” and all you're really doing is
choosing which chunks of canned code in a collection of many such
chunks will run.) A useful assembly language program cannot be imple-
mented in fewer than about 50 lines, and anything challenging takes
hundreds or thousands—or tens of thousands—of lines. The skill of
assembly language programming lies in structuring these hundreds or
thousands of instructions so that the program can still be read and
understood.

wm The key to assembly language is understanding memory addresses: In such
languages as Pascal and BASIC, the compiler takes care of where some-
thing is located—you simply have to give that something a symbolic
name, and call it by that name whenever you want to look at it or
change it. In assembly language, you must always be cognizant of
where things are in your computer’s memory. Therefore, in working
through this book, pay special attention to the concept of memory
addressing, which is nothing more than the art of specifying where some-
thing is. The Game of Assembly Language is peppered with addresses
and instructions that work with addresses (such as MOVE data at B

Chapter 1 = Another Pleasant Valley Saturday

13

to ¢, which means move the data stored at the address specified by
register B to register C). Addressing is by far the trickiest part of assem-
bly language, but master it and you’ve got the whole thing in your hip
pocket.

Everything I've said so far has been orientation. I've tried to give you a taste
of the big picture of assembly language and how its fundamental principles
relate to the life you've been living all along. Life is a sequence of steps and
tests, and so are board games—and so is assembly language. Keep those
metaphors in mind as we proceed to get real by confronting the nature of
computer numbers.

CHAPTER

2

Alien Bases

Getting Your Arms around Binary
and Hexadecimal

The Return of the New Math Monster

The year was 1966. Perhaps you were there. New Math burst upon the grade
school curricula of the nation, and homework became a turmoil of number
lines, sets, and alternate bases. Middle-class parents scratched their heads with
their children over questions like, “What is 17 in Base Five?”” and “Which sets
does the null set belong to?”” In very short order (I recall a period of about
two months), the whole thing was tossed in the trash as quickly as it had been
concocted by addle-brained educrats with too little to do.

This was a pity, actually. What nobody seemed to realize at the time was that,
granted, we were learning New Math—except that Old Math had never been
taught at the grade-school level either. We kept wondering of what possible use
it was to know the intersection of the set of squirrels and the set of mammals.
The truth, of course, was that it was no use at all. Mathematics in America has
always been taught as applied mathematics—arithmetic—heavy on the word
problems. If it won’t help you balance your checkbook or proportion a recipe,
it ain’t real math, man. Little or nothing of the logic of mathematics has ever
made it into the elementary classroom, in part because elementary school in
America has historically been a sort of trade school for everyday life. Getting
the little beasts fundamentally literate is difficult enough. Trying to get them

15

Chapter 2 = Alien Bases

to appreciate the beauty of alternate number systems simply went over the
line for practical middle-class America.

I was one of the few who enjoyed fussing with math in the New-Age style
back in 1966, but I gladly laid it aside when the whole thing blew over. I didn’t
have to pick it up again until 1976, when, after working like a maniac with a
wire-wrap gun for several weeks, I fed power to my COSMAC ELF computer
and was greeted by an LED display of a pair of numbers in base 16!

Mon dieu, New Math redux . ..

This chapter exists because at the assembly-language level, your computer
does not understand numbers in our familiar base 10. Computers, in a slightly
schizoid fashion, work in base 2 and base 16—all at the same time. If you're
willing to confine yourself to higher-level languages such as C, Basic or Pascal,
you can ignore these alien bases altogether, or perhaps treat them as an
advanced topic once you get the rest of the language down pat. Not here.
Everything in assembly language depends on your thorough understanding of
these two number bases, so before we do anything else, we're going to learn
how to count all over again—in Martian.

Counting in Martian

There is intelligent life on Mars.

That is, the Martians are intelligent enough to know from watching our
TV programs these past 60 years that a thriving tourist industry would not
be to their advantage. So they’ve remained in hiding, emerging only briefly
to carve big rocks into the shape of Elvis’s face to help the National Enquirer
ensure that no one will ever take Mars seriously again. The Martians do
occasionally communicate with science fiction writers like me, knowing full
well that nobody has ever taken us seriously. Hence the information in this
section, which involves the way Martians count.

Martians have three fingers on one hand, and only one finger on the other.
Male Martians have their three fingers on the left hand, while females have
their three fingers on the right hand. This makes waltzing and certain other
things easier.

Like human beings and any other intelligent race, Martians started counting
by using their fingers. Just as we used our 10 fingers to set things off in groups
and powers of 10, the Martians used their four fingers to set things off in
groups and powers of four. Over time, our civilization standardized on a set
of 10 digits to serve our number system. The Martians, similarly, standardized
on a set of four digits for their number system. The four digits follow, along
with the names of the digits as the Martians pronounce them: ® (xip), (" (foo),
N (bar), = (bas).

Like our zero, xip is a placeholder representing no items, and while Martians
sometimes count from xip, they usually start with foo, representing a single
item. So they start counting: Foo, bar, bas . ..

Chapter 2 = Alien Bases 17

Now what? What comes after bas? Table 2-1 demonstrates how the Martians
count to what we would call 25.

Table 2-1: Counting in Martian, Base Fooby

MARTIAN MARTIAN EARTH
NUMERALS PRONUNCIATION EQUIVALENT
C) Xip 0]
(Foo 1
N Bar 2
= Bas 3
) Fooby 4
[Fooby-foo 5
(N Fooby-bar 6
(= Fooby-bas 7
ne Barby 8
n(Barby-foo 9
NN Barby-bar 10
N= Barby-bas 11
=0 Basby 12
=(Basby-foo 13
=N Basby-bar 14
== Basby-bas 15
(06 Foobity 16
(of Foobity-foo 17
(en Foobity-bar 18
(0= Foobity-bas 19
(e Foobity-fooby 20
([Foobity-fooby-foo 21
([Foobity-fooby-bar 22
(= Foobity-fooby-bas 23
(ne Foobity-barby 24

(nf Foobity-barby-foo 25

Chapter 2 = Alien Bases

With only four digits (including the one representing zero) the Martians
can only count to bas without running out of digits. The number after bas
has a new name, fooby. Fooby is the base of the Martian number system, and
probably the most important number on Mars. Fooby is the number of fingers
a Martian has. We would call it four.

The most significant thing about fooby is the way the Martians write it out in
numerals: [©. Instead of a single column, fooby is expressed in two columns.
Just as with our decimal system, each column has a value that is a power of
fooby. This means only that as you move from the rightmost column toward
the left, each column represents a value fooby times the column to its right.

The rightmost column represents units, in counts of foo. The next column
over represents fooby times foo, or (given that arithmetic works the same way
on Mars as here, New Math notwithstanding) simply fooby. The next column
to the left of fooby represents fooby times fooby, or foobity, and so on. This
relationship should become clearer through Table 2-2.

Table 2-2: Powers of Fooby

[Foo x Fooby = (o (Fooby)
(o Fooby x Fooby = (06 (Foobity)
(06 Foobity x Fooby = (006 (Foobidity)
(066 Foobidity x Fooby = (00606 (Foobididity)
(06066 Foobididity x Fooby = (000606 (Foobidididity)
(00006 Foobidididity x Fooby = (06600606 and so on...

Dissecting a Martian Number

Any given column may contain a digit from xip to bas, indicating how many
instances of that column’s value are contained in the number as a whole. Let’s
work through an example. Look at Figure 2-1, which is a dissection of the
Martian number N= [O=, pronounced ““Barbididity-basbidity-foobity-bas.”
(A visiting and heavily disguised Martian precipitated the doo-wop craze
while standing at a Philadelphia bus stop in 1954, counting his change.)

The rightmost column indicates how many units are contained in the
number. The digit there is bas, indicating that the number contains bas units.
The second column from the right carries a value of fooby times foo (fooby
times one), or fooby. A xip in the fooby column indicates that there are no
foobies in the number. The xip digit in (© is a placeholder, just as zero is in
our numbering system. Notice also that in the columnar sum shown to the
right of the digit matrix, the foobies line is represented by a double xip. Not
only is there a xip to indicate that there are no foobies, but also a xip holding

Chapter 2 = Alien Bases 19

How is the following Martian number evaluated? m — [\ 6
X Fooby X Fooby X Fooby X Fooby

BYAYaYa

of # of # of # of # of
Foobididities Foobidities Foobities Foobies Foos

0

]
1]
D>

N +NOOO0O

Figure 2-1: The anatomy of N= [©=

the foos place as well. This pattern continues in the columnar sum as we move
toward the more significant columns to the left.

Fooby times fooby is foobity, and the [digit tells us that there is foo foobity
(a single foobity) in the number. The next column, in keeping with the pattern,
is foobity times fooby, or foobidity. In the columnar notation, foobidity is
written as [@©0. The = digit tells us that there are bas foobidities in the
number. Bas foobidities is a number with its own name, basbidity, which may
be written as =@®®. Note the presence of basbidity in the columnar sum.

The next column to the left has a value of fooby times foobidity, or foobidid-
ity. The N digit tells us that there are bar foobididities in the number. Bar
foobididities (written N@O®OO) is also a number with its own name, barbidid-
ity. Note also the presence of barbididity in the columnar sum, and the four
xip digits that hold places for the empty columns.

The columnar sum expresses the sense of the way a number is assembled: the
number contains barbididity, basbidity, foobity, and bas. Roll all that together
by simple addition and you get N= [©=. The name is pronounced simply by
hyphenating the component values: barbididity-basbidity-foobity-bas. Note
that no part in the name represents the empty fooby column. In our own

20

Chapter 2 = Alien Bases

familiar base 10 we don’t, for example, pronounce the number 401 as “four
hundred, zero tens, one.” We simply say, “four hundred one.” In the same
manner, rather than say “xip foobies,” the Martians just leave it out.

As an exercise, given what I've told you so far about Martian numbers,
figure out the Earthly value equivalent to N= [©=.

The Essence of a Number Base

Because tourist trips to Mars are unlikely to begin any time soon, of what
Earthly use is knowing the Martian numbering system? Just this: it's an
excellent way to see the sense in a number base without getting distracted by
familiar digits and our universal base 10.

In a columnar system of numeric notation like both ours and the Martians’,
the base of the number system is the magnitude by which each column of
a number exceeds the magnitude of the column to its right. In our base 10
system, each column represents a value 10 times the column to its right. In a
base fooby system like the one used on Mars, each column represents a value
fooby times that of the column to its right. (In case you haven’t already caught
on, the Martians are actually using base 4—but I wanted you to see it from
the Martians” own perspective.) Each has a set of digit symbols, the number of
which is equal to the base. In our base 10, we have 10 symbols, from 0 to 9. In
base 4, there are four digits from 0 to 3. In any given number base, the base itself
can never be expressed in a single digit!

Octal: How the Grinch Stole Eight and Nine

Farewell to Mars. Aside from lots of iron oxide and some terrific a capella
groups, they haven’t much to offer us 10-fingered folk. There are some
similarly odd number bases in use here, and I'd like to take a quick detour
through one that occupies a separate world right here on Earth: the world of
Digital Equipment Corporation, better known as DEC.

Back in the Sixties, DEC invented the minicomputer as a challenger to the
massive and expensive mainframes pioneered by IBM. (The age of minicom-
puters is long past, and DEC itself is history.) To ensure that no software could
possibly be moved from an IBM mainframe to a DEC minicomputer, DEC
designed its machines to understand only numbers expressed in base 8.

Let’s think about that for a moment, given our experience with the Martians.
In base 8, there must be eight digits. DEC was considerate enough not to invent
its own digit symbols, so what it used were the traditional Earthly digits from
0 to 7. There is no digit 8 in base 8! That always takes a little getting used to,

Chapter 2 = Alien Bases

21

but it’s part of the definition of a number base. DEC gave a name to its base 8
system: octal.

A columnar number in octal follows the rule we encountered in thinking
about the Martian system: each column has a value base times that of the
column to its right. (The rightmost column is units.) In the case of octal, each
column has a value eight times that of the next column to the right.

Who Stole Eight and Nine?

This shows better than it tells. Counting in octal starts out in a very familiar
fashion: 1,2,3,4,5,6,7 ... 10.

This is where the trouble starts. In octal, 10 comes after seven. What
happened to eight and nine? Did the Grinch steal them? (Or the Martians?)
Hardly. They re still there—but they have different names. In octal, when you
say 10" you mean ““8.” Worse, when you say 11" you mean “9.”

Unfortunately, what DEC did not do was invent clever names for the column
values. The first column is, of course, the units column. The next column to
the left of the units column is the tens column, just as it is in our own decimal
system—but there’s the rub, and the reason I dragged Mars into this: Octal’s
“tens”” column actually has a value of 8.

A counting table will help. Table 2-3 counts up to 30 octal, which has a value
of 24 decimal. I dislike the use of the terms eleven, twelve, and so on in bases
other than 10, but the convention in octal has always been to pronounce the
numbers as we would in decimal, only with the word octal after them. Don’t
forget to say octal —otherwise, people get really confused!

Remember, each column in a given number base has a value base times the
column to its right, so the “tens”” column in octal is actually the eights column.
(They call it the tens column because it is written 10, and pronounced ““ten.”)
Similarly, the column to the left of the tens column is the hundreds column
(because it is written 100 and pronounced “hundreds”), but the hundreds
column actually has a value of 8 times 8, or 64. The next column to the left has
a value of 64 times 8, or 512, and the column left of that has a value of 512
times 8, or 4,096.

This is why when someone talks about a value of ““ten octal,” they mean 8;
“one hundred octal,” means 64; and so on. Table 2-4 summarizes the octal
column values and their decimal equivalents.

A digit in the first column (the units, or ones column) indicates how many
units are contained in the octal number. A digit in the next column to the left,
the tens column, indicates how many eights are contained in the octal number.
A digit in the third column, the hundreds column, indicates how many 64s
are in the number, and so on. For example, 400 octal means that the number
contains four 64s, which is 256 in decimal.

22 Chapter 2 = Alien Bases

Table 2-3: Counting in Octal, Base 8

OCTAL NUMERALS OCTAL PRONUNCIATION DECIMAL EQUIVALENT
0 Zero 0
1 One 1
2 Two 2
3 Three 3
4 Four 4
5 Five 5
6 Six 6
Seven 7
10 Ten 8
11 Eleven 9
12 Twelve 10
13 Thirteen 11
14 Fourteen 12
15 Fifteen 13
16 Sixteen 14
17 Seventeen 15
20 Twenty 16
21 Twenty-one 17
22 Twenty-two 18
23 Twenty-three 19
24 Twenty-four 20
25 Twenty-five 21
26 Twenty-six 22
27 Twenty-seven 23
30 Thirty 24

Yes, it’s confusing, in spades. The best way to make it all gel is to dissect a
middling octal number, just as we did with a middling Martian number. This
is what’s happening in Figure 2-2: the octal number 76225 is pulled apart into
columns and added up again.

Chapter 2 = Alien Bases

23

Table 2-4: Octal Columns As Powers of Eight

OCTAL POWER OF 8 DECIMAL OCTAL
1 = 8° = 1x8 =10
10 = 8 = 8 x8 = 100
100 = 8?2 = 64 x 8 = 1000
1000 = 83 = 512 x 8 = 10000
10000 = 8* = 4096 x 8 = 100000
100000 = 8° = 32768 x 8 = 1000000
1000000 = 8° = 262144 x 8 = 10000000

How is the following octal number evaluated?

X8 X8 X8 X8
of # of # of # of # of
40965 512s 64s 8s 1s

5 5
2 20
2 200
6 6000
/ + 70000

s s o 76225,

/16225

5
4096s 512s 64s 8s 1s

o0 b b

28672 +3072+128+16+ 5

Figure 2-2: The anatomy of 76225 octal

= 31893,

It works here the same way it does in Martian, or in decimal, or in any
other number base you could devise. In general (and somewhat formal) terms:
each column has a value consisting of the number base raised to the power
represented by the ordinal position of the column minus one. For example, the
value of the first column is the number base raised to the 1 minus 1, or zero,
power. Because any number raised to the zero power is one, the first column
in any number base always has the value of one and is called the units column.

24

Chapter 2 = Alien Bases

The second column has the value of the number base raised to the 2 minus 1,
or first, power, which is the value of the number base itself. In octal this is 8;
in decimal, 10; in Martian base fooby, fooby. The third column has a value
consisting of the number base raised to the 3 minus 1, or second, power, and
so on.

Within each column, the digit holding that column tells how many instances
of that column’s value is contained in the number as a whole. Here, the 6 in
76225 octal tells us that there are six instances of its column’s value in the total
value 76225 octal. The six occupies the fourth column, which has a value of
8% — 1,which is 8%, or 512. This tells us that there are six 512s in the number as
a whole.

You can convert the value of a number in any base to decimal (our base 10)
by determining the value of each column in the alien (non-decimal) base,
multiplying the value of each column by the digit contained in that column
(to create the decimal equivalent of each digit), and then finally taking the
sum of the decimal equivalent of each column. This is done in Figure 2-2, and
the octal number and its decimal equivalent are shown side by side. Note in
Figure 2-2 the small subscript numerals on the right-hand side of the columnar
sums. These subscripts are used in many technical publications to indicate a
number base. The subscript in the value 762253, for example, indicates that the
value 76225 is here denoting a quantity in octal, which is base 8. Unlike the
obvious difference between Martian digits and our traditional decimal digits,
there’s really nothing about an octal number itself that sets it off as octal. (We
encounter something of this same problem a little later when we confront
hexadecimal.) The value 31893,,, by contrast, is shown by its subscript to be
a base 10, or decimal, quantity. This is mostly done in scientific and research
writing. In most computer publications (including this one) other indications
are used, more on which later.

Now that we’ve looked at columnar notation from both a Martian and an
octal perspective, make sure you understand how columnar notation works in
any arbitrary base before continuing.

Hexadecimal: Solving the Digit Shortage

Octal is unlikely to be of use to you unless you do what a friend of mine did
and restore an ancient DEC PDP8 computer that he had purchased as surplus
from his university, by the pound. (He said it was considerably cheaper than
potatoes, if not quite as easy to fry. Not quite.) As I mentioned earlier, the
real numbering system to reckon with in the microcomputer world is base 16,
which we call hexadecimal, or (more affectionately) simply “hex.”
Hexadecimal shares the essential characteristics of any number base, includ-
ing both Martian and octal: it is a columnar notation, in which each column has

Chapter 2 = Alien Bases

25

a value 16 times the value of the column to its right. It has 16 digits, running
fromOto... what?

We have a shortage of digits here. From zero through nine we’re in fine
shape. However, 10, 11, 12, 13, 14, and 15 need to be expressed with single
symbols of some kind. Without any additional numeric digits, the people
who developed hexadecimal notation in the early 1950s borrowed the first six
letters of the alphabet to act as the needed digits.

Counting in hexadecimal, then, goes like this: 1,2, 3,4, 5,6,7,8,9, A, B,C, D,
E,F, 10,11,12,13,14,15,16,17,18,19, 1A, 1B, 1C, and so on. Table 2-5 restates
this in a more organized fashion, with the decimal equivalents up to 32.

Table 2-5: Counting in Hexadecimal, Base 16

HEXADECIMAL PRONUNCIATION DECIMAL
NUMERALS (FOLLOW WITH “HEX") EQUIVALENT
0] Zero 0]
1 One 1
2 Two 2
3 Three 3
4 Four 4
5 Five 5
6 Six 6
7 Seven 7
8 Eight 8
9 Nine 9
A A 10
B B 11
C C 12
D D 13
E E 14
F F 15
10 Ten (or, One-oh) 16
11 One-one 17
12 One-two 18

Continued

26

Chapter 2 = Alien Bases

Table 2-5 (continued)

HEXADECIMAL PRONUNCIATION DECIMAL
NUMERALS (FOLLOW WITH “HEX") EQUIVALENT
13 One-three 19

14 One-four 20

15 One-five 21

16 One-six 22

17 One-seven 23

18 One-eight 24

19 One-nine 25

1A One-A 26

1B One-B 27

1C One-C 28

1D One-D 29

1E One-E 30

1F One-F 31

20 Twenty (or, Two-oh) 32

One of the conventions in hexadecimal that I favor is the dropping of words
such as eleven and twelve that are a little too tightly bound to our decimal
system and only promote gross confusion. Confronted by the number 11 in
hexadecimal (usually written 11H to indicate what base we’re speaking), we
would say, “one-one hex.” Don’t forget to say “hex” after a hexadecimal
number—again, to avoid gross confusion. This is unnecessary with the digits
0 through 9, which represent the exact same values in both decimal and
hexadecimal.

Some people still say things like “twelve hex,” which is valid, and means
18 decimal; but I don’t care for it, and advise against it. This business of alien
bases is confusing enough without giving the aliens Charlie Chaplin masks.

Each column in the hexadecimal system has a value 16 times that of the col-
umn to its right. (The rightmost column, as in any number base, is the units
column and has a value of 1.) As you might guess, the values of the individual
columns increase frighteningly fast as you move from right to left. Table 2-6
shows the values of the first seven columns in hexadecimal. For comparison’s
sake, note that the seventh column in decimal notation has a value of 1 million,
whereas the seventh column in hexadecimal has a value of 16,777,216.

To help you understand how hexadecimal numbers are constructed, I've
dissected a middling hex number in Figure 2-3, in the same fashion that

Chapter 2 = Alien Bases 27

Table 2-6: Hexadecimal Columns As Powers of 16

HEXADECIMAL POWER OF 16 DECIMAL
TH = 16%= 1x16= 10H
10H =16'= 16x16 = 100H
100H = 162= 256x 16 = 1000H
1000H =163= 4096 x 16 = 10000H
10000H =16%= 65536 x 16 = 100000H
100000H =16°= 1048576 x 16 =1000000H

1000000H =16°= 16777216 etc. . ..

How is the following hexadecimal number evaluated? 3 G O A 9
X16 X16 X16 X16

Y aYaYe

of # of # of # of # of
65536s 4096s 2568 16s 1s

9 9
A AO
0 000
C C000
3 +30000

3 12 0 10 9

655365 4096s 2565 163 1s 3CO0A 915
—

196608 + 49152+ 0 +160+9 = 245929,

Figure 2-3: The anatomy of 3COA9H

I dissected numbers earlier in both Martian base fooby, and in octal, base 8.
Just as in octal, zero holds a place in a column without adding any value to
the number as a whole. Note in Figure 2-3 that there are 0, that is, no, 256s
present in the number 3COA9H.

As in Figure 2-2, the decimal values of each column are shown beneath the
column, and the sum of all columns is shown in both decimal and hex. (Note
the subscripts!)

28

Chapter 2 = Alien Bases

From Hex to Decimal and from Decimal to Hex

Most of the manipulation of hex numbers you’ll be performing are simple
conversions between hex and decimal, in both directions. The easiest way
to perform such conversions is by way of a hex calculator, either a “real”
calculator like the venerable TI Programmer (which I still have, wretched
battery-eater that it is) or a software calculator with hexadecimal capabilities.
The default Ubuntu Linux calculator will do math in decimal, hex, and binary
if you select View — Scientific. The Windows calculator works exactly the
same way: The default view is basic, and you have to select the Scientific view
to get into any alien bases. The SpeedCrunch calculator installed by default
with Kubuntu/KDE 4 works hex and binary from the get-go.

Using a calculator demands nothing of your gray matter, of course, and
won’t help you understand the hexadecimal number system any better. So
while you're a relatively green student of alien bases, lay off anything that
understands hex, be it hardware, software, or human associates.

In fact, the best tool while you're learning is a simple four-function memory
calculator. The conversion methods I describe here all make use of such
a calculator, as what I'm trying to teach you is number base conversion, not
decimal addition or long division.

From Hex to Decimal

As you’ll come to understand, converting hex numbers to decimal is a good
deal easier than going the other way. The general method is to do what we’ve
been doing all along in the number-dissection Figures 2-1, 2-2, and 2-3: derive
the value represented by each individual column in the hex number, and then
add all the column values in decimal.

Let’s try an easy one. The hex number is 7A2. Start at the right column. This
is the units column in any number system. You have 2 units, so enter 2 into
your calculator. Now store that 2 into memory (or press the SUM button, if
you have a SUM button).

So much for units. Keep in mind that what you're really doing is keeping a
running tally of the values of the columns in the hex number. Move to the next
column to the left. Remember that in hex, each column represents a value 16
times the value of the column to its right, so the second column from the right
is the 16s column. (Refer to Table 2-6 if you lose track of the column values.)
The 16s column has an A in it. A in hex is decimal 10. The total value of
that column, therefore, is 16 x 10, or 160. Perform that multiplication on your
calculator and add the product to the 2 that you stored in memory. (Again, the
SUM button is a handy way to do this if your calculator has one.)

Remember what you're doing: evaluating each column in decimal and
keeping a running total. Now move to the third column from the right. This

Chapter 2 = Alien Bases

29

one contains a 7. The value of the third column is 16 x 16, or 256. Multiply
256 x 7 on your calculator, and add the product to your running total.

You're done. Retrieve the running total from your calculator memory. The
total should be 1,954, which is the decimal equivalent of 7A2H.

OK—let’s try it again, more quickly, with a little less natter and a much
larger number: C6FODBH:

1. Evaluate the units column. B x 1 =11 x 1 = 11. Start your running total
with 11.

2. Evaluate the 16s column. D x 16 = 13 x 16 = 208. Add 208 to your
running total.

3. Evaluate the 256s column. 0 x 256 = 0. Move on.

4. Evaluate the 4,096s column. F x 4,096 = 15 x 4,096 = 61,440. Add it to
your running total.

5. Evaluate the 65,536s column. 6 x 65,536 = 393,216. Add it to the running
total.

6. Evaluate the 1,048,576s column. C x ,048,576 = 12 x 1,048,576 =
12,582,912. Add it to your total.

The running total should be 13,037,787.
Finally, do it yourself without any help for the following number: 1A55BEH.

From Decimal to Hex

The lights should be coming on about now. This is good, because going in
the other direction, from our familiar decimal base 10 to hex, is much harder
and involves more math. What we have to do is find the hex column values
“within” a decimal number—and that involves some considerable use of that
fifth-grade bogeyman, long division.

But let’s get to it, again starting with a fairly easy decimal number: 449. The
calculator will be handy with a vengeance. Tap in the number 449 and store it
in the calculator’s memory.

What we need to do first is find the largest hex column value that is
contained in 449 at least once. Remember grade-school gazintas? (12 gazinta 855
how many times?) Division is often introduced to students as a way of finding
out how many times some number is present in—"‘goes into”’—another. This
is something like that. Looking back at Table 2-6, we can see that 256 is the
largest power of 16, and hence the largest hex column value, that is present in
449 at least once. (The next largest power of 16—512—is obviously too large
to be present in 449.)

Therefore, we start with 256, and determine how many times 256 ““gazinta’”
449: 449 / 256 = 1.7539. At least once, but not quite twice, so 449 contains

30

Chapter 2 = Alien Bases

only one 256. Write down a 1 on paper. Don't enter it into your calculator. We're
not keeping a running total here; if anything, you could say we’re keeping a
running remainder. The 1" is the leftmost hex digit of the hex value that is
equivalent to decimal 449.

We know that only one 256 is contained in 449. What we must do now is
remove that 256 from the original number, now that we’ve “counted” it by
writing a 1 down on paper. Subtract 256 from 449. Store the difference, 193,
into memory.

The 256 column has been removed from the number we’re converting. Now
we move to the next column to the right, the 16s. How many 16s are contained
in 193? 193 / 16 = 12.0625. This means the 16s column in the hex equivalent of
449 contains a ... 12? Hmm. Remember the digit shortage, and the fact that in
hex, the value we call 12 is represented by the letter C. From a hex perspective,
we have found that the original number contains C in the 16s column. Write a
C down to the right of your 1: 1C. So far, so good.

We’ve got the 16s column, so just as with the 256s, we have to remove the
16s from what’s left of the original number. The total value of the 16s column
is C x 16 =12 x 16 = 192. Bring the 193 value out of your calculator’s memory,
and subtract 192 from it. A lonely little 1 is all that’s left.

So we're down to the units column. There is one unit in one, obviously.
Write that 1 down to the right of the C in our hexadecimal number: 1C1.
Decimal 449 is equivalent to hex 1C1.

Now perhaps you can appreciate why programmers like hexadecimal cal-
culators so much.

Glance back at the big picture of the decimal-to-hex conversion. We're
looking for the hexadecimal columns hidden in the decimal value. We find
the largest column contained in the decimal number, find that column’s value,
and subtract that value from the decimal number. Then we look for the next
smallest hex column, and the next smallest, and so on, removing the value of
each column from the decimal number as we go. In a sense, we're dividing
the number by consecutively smaller powers of 16 and keeping a running
remainder by removing each column as we tally it.

Let’s try it again. The secret number is 988,664:

1. Find the largest column contained in 988,664 from Table 2-6: 65,536.
988,664 / 65,536 = 15 and change. Ignore the change. 15 = F in hex. Write
down the F.

2. Remove F x 65,536 from 988,664. Store the remainder: 5,624.

3. Move to the next smallest column. 5,624 / 4,096 = 1 and change. Write
down the 1.

4. Remove 1 x 4,096 from the remainder: 5,624 — 4096 = 1528. Store the
new remainder: 1,528.

Chapter 2 = Alien Bases

31

5. Move to the next smallest column. 1,528 / 256 = 5 and change. Write
down the 5.

6. Remove 5 x 256 from the stored remainder, 1,528. Store 248 as the new
remainder.

7. Move to the next smallest column. 248 / 16 = 15 and change. 15 = F in
hex. Write down the F.

8. Remove F x 16 from stored remainder, 248. The remainder, 8, is the
number of units in the final column. Write down the 8.

There you have it: 988,664 decimal = F15F8H.

Note the presence of the H at the end of the hex number. From now on, every
hex number in this book will have that H affixed to its hindparts. It's important
because not every hex number contains letter digits to scream out the fact that
the number is in base 16. There is a 157H as surely as a 157 decimal, and the
two are not the same number. (Quick, now: by how much are they different?)
Don’t forget that H in writing your assembly programs, as I'll be reminding
you later.

Practice. Practice! PRACTICE!

The best (actually, the only) way to get a gut feel for hex notation is to use it
a lot. Convert each of the following hex numbers to decimal. Lay each number
out on the dissection table and identify how many 1s, how many 16s, how
many 256s, how many 4,096s, and so on, are present in the number, and then
add them up in decimal:

CCH
157H
D8H
BB29H
7AH
8177H
A011H
99H
2B36H
FACEH
8DB3H
9H

32

Chapter 2 = Alien Bases

That done, now turn it inside out, and convert each of the following decimal
numbers to hex. Remember the general method: from Table 2-6, choose the
largest power of 16 that is less than the decimal number to be converted. Find
out how many times that power of 16 is present in the decimal number, and
write it down as the leftmost hex digit of the converted number. Then subtract
the total value represented by that hex digit from the decimal number. Repeat
the process, using the next smallest power of 16, until you've subtracted the
decimal number down to nothing.

39

413

22

67,349

6,992

41

1,117

44,919

12,331

124,217

91,198

307

112,374,777

(Extra credit for that last one.) If you need more practice, choose some
decimal numbers and convert them to hex, and then convert them back. When

you're done, check your work with whatever hex-capable calculator that you
prefer.

Arithmetic in Hex

As you become more and more skilled in assembly language, you'll be doing
more and more arithmetic in base 16. You may even (good grief) begin to do
it in your head. Still, it takes some practice.

Addition and subtraction are basically the same as what we know in decimal,
with a few extra digits tossed in for flavor. The trick is nothing more than
knowing your addition tables up to OFH. This is best done not by thinking to
yourself, “Now, if C is 12 and F is 15, then C + Fis 12 + 15, which is 27 decimal
but 1BH.” Instead, you should simply think, “C + Fis 1BH.”

Chapter 2 = Alien Bases

33

Yes, that’s asking a lot; but I ask you now, as I will ask you again on this
journey, do you wanna hack assembly ... or do you just wanna fool around?
It takes practice to learn the piano, and it takes practice to drive the core skills
of assembly language programming down into your synapses where they
belong

So let me sound like an old schoolmarm and tell you to memorize the
following. Make flash cards if you must:

9 8 7 6 5
+1 +2 +3 +4 +5
OAH OAH OAH OAH OAH
A 9 8 7 6
+1 +2 +3 +4 +5
OBH OBH OBH OBH OBH
B A 9 8 7 6
+1 +2 +3 +4 +5 +6
OCH OCH OCH OCH OCH OCH
C B A 9 8 7
+1 +2 +3 +4 +5 +6
ODH ODH ODH ODH ODH ODH
D C B A 9 8 7
+1 +2 +3 +4 +5 +6 +7
OEH OEH OEH OEH OEH OEH OEH
E D C B A 9 8
+ 1 +2 +3 +4 +5 +6 +7
OFH OFH OFH OFH OFH OFH OFH
F E D C B A 9 8
+1 +2 +3 +4 +5 +6 +7 +8
10H 10H 10H 10H 10H 10H 10H 10H
F E D C B A 9
+2 +3 +4 +5 +6 +7 +8
1TH 11H 11H 11H 11H 1TH 11H
F E D C B A 9
+3 +4 +5 +6 +7 +8 +9
12H 12H 12H 12H 12H 12H 12H
F E D C B A
+4 +5 +6 +7 +8 +9

o
T
o
T
o
T
o
T
o
T
o
T

34

Chapter 2 = Alien Bases

F E D C B A
+5 +6 +7 +8 +9 +A
14H 14H 14H 14H 14H 14H

F E D C B
_t6 +7 +8 +9 +A
15H 15H 15H 15H 15H

F E D C B
_t7 +8 +9 +A +B
16H 16H 16H 16H 16H

F E D C
_+8 +9 +A +B
17H 17H 17H 17H

F E D C
_t9 +A +B +C
18H 18H 18H 18H

F E D
_tA +B +C
19H 19H 19H

F E D
+B +C +D
1AH 1AH 1AH

F E
+C +D
1BH 1BH

F E
_+D +E
1CH 1CH

F
+E
1DH

F
+F
1EH

If nothing else, this exercise should make you glad that computers don’t
work in base 64.

Chapter 2 = Alien Bases

35

Columns and Carries

With all of these single-column additions committed (more or less) to memory,
you can tackle multicolumn addition. It works pretty much the same way it
does with decimal. Add each column starting from the right, and carry into
the next column anytime a single column’s sum exceeds OFH.

For example:

1
F 3 1A DH
+ 96 BAO0TH
5 E B B 4H

Qo N -

Carefully work this one through, column by column. The sum of the first
column (that is, the rightmost) is 14H, which cannot fit in a single column,
so we must carry the one into the next column to the left. Even with the
additional 1, however, the sum of the second column is 0BH, which fits in a
single column and no carry is required.

Keep adding toward the left. The second-to-last column will again overflow,
and you need to carry the one into the last column. As long as you have your
single-digit sums memorized, it’s a snap.

Well, more or less.

Here’s something you should take note of:

The most you can ever carry out of a single-column addition of two numbers is 1.

It doesn’t matter what base you're in: 16, 10, fooby, or 2. You will either
carry a 1 (in Martian, a foo) out of a column, or carry nothing at all. This fact
surprises people for some reason, so ask yourself: what two single digits in
old familiar base 10 can you add that will force you to carry a 2? The largest
digitis 9, and 9 + 9 = 18. Put down the 8 and carry the 1. Even if you have to
add in a carry from a previous column, that will bring you up (at most) to 19.
Again, you carry a 1 and no more. This is important when you add numbers
on paper, or within the silicon of your CPU, as you'll learn in a few chapters.

Subtraction and Borrows

If you have your single-column sums memorized, you can usually grind your
way through subtraction with a shift into a sort of mental reverse: “If E + 6
equals 14H, then 14H - E must equal 6.” The alternative is memorizing an
even larger number of tables, and since I haven’t memorized them, I won’t ask
you to.

But over time, that’s what tends to happen. In hex subtraction, you should
be able to dope out any given single-column subtraction by turning a familiar

36

Chapter 2 = Alien Bases

hexadecimal sum inside-out; and just as with base 10, multicolumn subtrac-
tions are done column by column, one column at a time:

F76CH
-A05BH
5711H

During your inspection of each column, you should be asking yourself:
“What number added to the bottom number yields the top number?”” Here,
you should know from your tables that B 4+ 1 = C, so the difference between
B and C is 1. The leftmost column is actually more challenging: What number
added to A gives you F? Chin up; even I have to think about it on an off day.

The problems show up, of course, when the top number in a column is
smaller than its corresponding bottom number. Then you have no recourse
but to borrow.

Borrowing is one of those grade-school rote-learned processes that very few
people really understand. (To understand it is tacit admittance that something
of New Math actually stuck, horrors.) From a height, what happens in a borrow
is that one count is taken from a column and applied to the column on its right.
I say applied rather than added to because in moving from one column to the
column on its right, that single count is multiplied by 10, where 10 represents
the number base. (Remember that 10 in octal has a value of 8, while 10 in
hexadecimal has a value of 16.)

It sounds worse than it is. Let’s look at a borrow in action, and you'll get
the idea:

9 2H
-4 FH

Here, the subtraction in the rightmost column can’t happen as-is because F
is larger than 2, so we borrow from the next column to the left.

Nearly 50 years later, I can still hear old Sister Marie Bernard toughing it out
on the blackboard, albeit in base 10: ““Cross out the 9; make it an 8. Make the
2 a 12. And 12 minus F is what, class?”’ It’s 3, Sister. And that’s how a borrow
works. (I hope the poor dear will forgive me for putting hex bytes in her mouth.)

Think about what happened there, functionally. We subtracted 1 from the
9 and added 10H to the 2. One obvious mistake is to subtract 1 from the 9 and
add 1 to the 2, which (need I say it?) won’t work. Think of it this way: we're
moving part of one column’s surplus value over to its right, where some
extra value is needed. The overall value of the upper number doesn’t change
(which is why we call it a borrow and not a steal), but the recipient of the loan
is increased by 10, not 1.

After the borrow, what we have looks something like this:

Chapter 2 = Alien Bases

37

(On Sister Marie Bernard’s blackboard, we crossed out the 9 and made it
an 8. I just made it an 8. Silicon has advantages over chalk—except that the 8's
earlier life as a 9 is not so obvious.)

Of course, once we're here, the columnar subtractions all work out, and we
discover that the difference is 43H.

People sometimes ask if you ever have to borrow more than 1. The answer,
plainly, is no. If you borrow 2, for example, you would add 20 to the recipient
column, and 20 minus any single digit remains a two-digit number. That is, the
difference won't fit into a single column. Subtraction contains an important
symmetry with addition:

The most you ever need to borrow in any single-column subtraction of two
numbers is 1.

Borrows across Multiple Columns

Understanding that much about borrows gets you most of the way there; but,
as life is wont, you will frequently come across a subtraction similar to this:

F O 0 OH
- 3 B 6 CH

Column 1 needs to borrow, but neither column 2 nor column 3 has anything
at all to lend. Back in grade school, Sister Marie Bernard would have rattled
out with machine-gun efficiency: “Cross out the F, make it an E. Make the 0
a 10. Then cross it out, make it an F. Make the next 0 a 10; cross it out, make
it an F. Then make the last 0 a 10. Got that?”” (I got it. In Catholic school, the
consequences of not getting it are too terrible to consider.)

What happens is that the middle two Os act as loan brokers between the F
and the rightmost 0, keeping their commission in the form of enough value to
allow their own columns’ subtractions to take place. Each column to the right
of the last column borrows 10 from its neighbor to the left, and loans 1 to the
neighbor on its right. After all the borrows trickle through the upper number,
what we have looks like this (minus all of Sister’s cross-outs):

E F F'0H
- 3B 6CH

At this point, each columnar subtraction can take place, and the difference
is B494H.

In remembering your grade-school machinations, don’t fall into the old
decimal rut of thinking, “cross out the 10, make it a 9.” In the world of
hexadecimal, 10H - 1 = F. Cross out the 10, make it an F.

38

Chapter 2 = Alien Bases

What's the Point?

. if you have a hex calculator, or a hex-capable screen calculator? The point
is practice. Hexadecimal is the lingua franca of assemblers, to multiply mangle
a metaphor. The more you burn a gut-level understanding of hex into your
reflexes, the easier assembly language will be. Furthermore, understanding
the internal structure of the machine itself will be much easier if you have that
intuitive grasp of hex values. We’re laying important groundwork here. Take
it seriously now and you’ll lose less hair later on.

Binary

Hexadecimal is excellent practice for taking on the strangest number base of
all: binary. Binary is base 2. Given what you’ve learned about number bases so
far, what can you surmise about base 2?

m Each column has a value two times the column to its right.

m There are only two digits (0 and 1) in the base.

Counting is a little strange in binary, as you might imagine. It goes like
this: 0, 1, 10, 11, 100, 101, 110, 111, 1,000, and so on. Because it sounds absurd
to say, “Zero, one, 10, 11, 100,” and so on, it makes more sense to simply
enunciate the individual digits, followed by the word binary. For example,
most people say “one zero one one one zero one binary” instead of “one
million, eleven thousand, one hundred one binary”” when pronouncing the
number 1011101 —which sounds enormous until you consider that its value
in decimal is only 93.

Odd as it may seem, binary follows all of the same rules we’ve discussed in
this chapter regarding number bases. Converting between binary and decimal
is done using the same methods described for hexadecimal earlier in this
chapter.

Because counting in binary is as much a matter of counting columns as
counting digits (as there are only two digits), it makes sense to take a long,
close look at Table 2-7, which shows the values of the binary number columns
out to 32 places.

One look at that imposing pyramid of zeroes implies that it’s hopeless to
think of pronouncing the larger columns as strings of digits: “One zero zero
zero zero zero zero zero ... " and so on. There’s a crying need for a shorthand
notation here, so I'll provide you with one in a little while—and its identity
will surprise you.

Chapter 2 = Alien Bases

39

Table 2-7: Binary Columns As Powers of 2

BINARY POWER OF 2 DECIMAL
1 =20= 1
10 =2'= 2
100 =22— 4
1000 =23= 8
10000 =24= 16
100000 =2°= 32
1000000 =26= 64
10000000 =27= 128
100000000 =28— 256
1000000000 =2%= 512
10000000000 =210= 1024
100000000000 =2""= 2048
1000000000000 =212— 4096
10000000000000 =213= 8192
100000000000000 =214= 16384
1000000000000000 =215= 32768
10000000000000000 =216= 65536
100000000000000000 =2"7= 131072
1000000000000000000 =218— 262144
10000000000000000000 =219= 524288
100000000000000000000 =220— 1048576
1000000000000000000000 =221= 2097152
10000000000000000000000 =222 4194304
100000000000000000000000 =25 8388608
1000000000000000000000000 =2%4— 16777216
10000000000000000000000000 =225— 33554432
100000000000000000000000000 =226— 67108864
1000000000000000000000000000 =227= 134217728

Continued

40

Chapter 2 = Alien Bases

Table 2-7 (continued)

BINARY POWER OF 2 DECIMAL
10000000000000000000000000000 =228— 268435456
100000000000000000000000000000 =229= 536870912
1000000000000000000000000000000 =230= 1073741824
10000000000000000000000000000000 =231= 2147483648
100000000000000000000000000000000 =232= 4294967296

You might object that such large numbers as the bottommost in the table
aren’t likely to be encountered in ordinary programming. Sorry, but a 32-bit
microprocessor such as the Pentium (and even its antiquated forbears like
the 386 and 496) can swallow numbers like that in one electrical gulp, and
eat billions of them for lunch. You must become accustomed to thinking in
terms of such numbers as 2%, which, after all, is only a trifling 4 billion in
decimal. Think for a moment of the capacity of the hard drive on your own
desktop computer. New midrange desktop PCs are routinely shipped with
500 gigabytes or more of hard disk storage. A gigabyte is a billion bytes, so
that monster 32-bit number can’t even count all the bytes on your hard drive!
This little problem has actually bitten some vendors of old (no, sorry, the word
is legacy) software. Twenty years ago, a 500-gigabyte hard drive seemed more
like fantasy than science fiction. Now you can buy that fantasy for $99.95. More
than one file utility from the DOS and early Windows eras threw up its hands
in despair anytime it had to confront a disk drive with more than 2 gigabytes
of free space.

Now, just as with octal and hexadecimal, there can be identity problems
when using binary. The number 101 in binary is not the same as 101 in hex, or
101 in decimal. For this reason, always append the suffix “B” to your binary
values to ensure that people reading your programs (including you, six weeks
after the fact) know what number base you're working from.

Values in Binary

Converting a value in binary to one in decimal is done the same way it’s done
in hex—more simply, in fact, for the simple reason that you no longer have
to count how many times a column’s value is present in any given column. In
hex, you have to see how many 16s are present in the 16s column, and so on.
In binary, a column’s value is either present (1 time) or not present (0 times).
Running through a simple example should make this clear. The binary
number 11011010B is a relatively typical binary value in relatively simple
computer work. (On the small side, actually—many common binary numbers

Chapter 2 = Alien Bases

a1

are twice that size or more.) Converting 11011010B to decimal comes down
to scanning it from right to left with the help of Table 2-7, and tallying any
column’s value where that column contains a 1, while ignoring any column
containing a 0.

Clear your calculator and let’s get started:

1. Column 0 contains a 0; skip it.

N

Column 1 contains a 1. That means its value, 2, is present in the value of
the number. So we punch 2 into the calculator.

Column 2 is 0. Skip it.

Column 3 contains a 1. The column’s value is 23, or 8; add 8 to the tally.
Column 4 also contains a 1; 2* is 16, which we add to our tally.
Column 5 is 0. Skip it.

Column 6 contains a 1; 2° is 64, so add 64 to the tally.

Column 7 also contains a 1. Column 7’s value is 27, or 128. Add 128 to the
tally, and what do we have? 218. That’s the decimal value of 11011010B.
It’s as easy as that.

® NS 9k W

Converting from decimal to binary, while more difficult, is done exactly the
same way as converting from decimal to hex. Go back and read that section
again, searching for the general method used. In other words, see what was
done and separate the essential principles from any references to a specific
base such as hex.

I'll bet by now you can figure it out without much trouble.

As a brief aside, perhaps you noticed that I started counting columns
from 0, rather than 1. A peculiarity of the computer field is that we always
begin counting things from 0. Actually, to call it a peculiarity is unfair; the
computer’s method is the reasonable one, because 0 is a perfectly good number
and should not be discriminated against. The rift occurred because in our real,
physical world, counting things tells us how many things are there, whereas
in the computer world counting things is more generally done to name them.
That is, we need to deal with bit number 0, and then bit number 1, and so on,
far more than we need to know how many bits there are.

This is not a quibble, by the way. The issue will come up again and again in
connection with memory addresses, which, as I have said and will say again,
are the key to understanding assembly language.

In programming circles, always begin counting from 0!

A practical example of the conflicts this principle can cause grows out of
the following question: what year began our new millennium? Most people
would intuitively say the year 2000—and back during the run-up to 2000 many

42

Chapter 2 = Alien Bases

people did—but technically the twentieth century continued its plodding pace
until January 1, 2001. Why? Because there was no year 0. When historians count
the years moving from Bc to AD, they go right from 1 Bc to 1 Ap. Therefore, the
first century began with year 1 and ended with year 100. The second century
began with year 101 and ended with year 200. By extending the sequence,
you can see that the twentieth century began in 1901 and ended in 2000.
Conversely, if we had had the sense to begin counting years in the current era
computer style, from year 0, the twentieth century would have ended at the
end of 1999.

This is a good point to get some practice in converting numbers from binary
to decimal and back. Sharpen your teeth on these:

110

10001

11111

11

101
1100010111010010
11000

1011

When that’s done, convert these decimal values to binary:

77

42

106
255

18
6309
121

58
18,446

Why Binary?

If it takes eight whole digits (11011010) to represent an ordinary three-digit
number such as 218, binary as a number base would seem to be a bad intel-
lectual investment. Certainly for us it would be a waste of mental bandwidth,
and even aliens with only two fingers would probably have come up with a
better system.

The problem is, lights are either on or off.

This is just another way of saying (as I will discuss in detail in Chapter 3)
that at the bottom of it, computers are electrical devices. In an electrical device,
voltage is either present or it isn’t; current either flows or it doesn’t. Very early
in the game, computer scientists decided that the presence of a voltage in a

Chapter 2 = Alien Bases

43

computer circuit would indicate a 1 digit, while lack of a voltage at that same
point in the circuit would indicate a 0 digit. This isn’t many digits, but it’s
enough for the binary number system. This is the only reason we use binary,
but it’s a rather compelling one, and we’re stuck with it. However, you will
not necessarily drown in ones and zeroes, because I've already taught you a
form of shorthand.

Hexadecimal As Shorthand for Binary

The number 218 expressed in binary is 11011010B. Expressed in hex, however,
the same value is quite compact: DAH. The two hex digits comprising DAH
merit a closer look. AH (or 0AH as your assembler will require it, for reasons
explained later) represents 10 decimal. Converting any number to binary
simply involves detecting the powers of two within it. The largest power of 2
within 10 decimal is 8. Jot down a 1 digit and subtract 8 from 10. What's left
is 2. Now, 4 is a power of 2, but there is no 4 hiding within 2, so we put a 0
to the right of the 1. The next smallest power of 2 is 2, and there is a 2 in 2.
Jot down another 1 to the right of the 0. Two from 2 is 0, so there are no 1s
left in the number. Jot down a final 0 to the right of the rest to represent the 1s
column. What you have is this:

1010

Look back at the binary equivalent of 218: 11011010. The last four digits are
1010—the binary equivalent of 0AH.

The same will work for the upper half of DAH. If you work out the binary
equivalence for 0DH as we just did (and it would be good mental exercise), it
is 1101. Look at the binary equivalent of 218 this way:

218 decimal
1101 1010 bhuﬂy
D A hex

It should be dawning on you that you can convert long strings of binary
ones and zeroes into more compact hex format by converting every four binary
digits (starting from the right, not from the left!) into a single hex digit.

As an example, here is a 32-bit binary number that is not the least bit
remarkable:

11110000000000001111101001101110

This is a pretty obnoxious collection of bits to remember or manipulate, so
let’s split it up into groups of four from the right:

1111 0000 0000 0000 1111 1010 0110 1110

44

Chapter 2 = Alien Bases

Each of these groups of four binary digits can be represented by a single
hexadecimal digit. Do the conversion now. You should get the following:

1111 0000 0000 0000 1111 1010 0110 1110
F 0 0 0 F A 6 E

In other words, the hex equivalent of that mouthful is

FOOOFAGE

In use, of course, you would append the H on the end, and also put a 0 at
the beginning, so in any kind of assembly language work the number would
actually be written OFOOOFA6EH.

This is still a good-sized number, but unless you're doing things like
counting hard drive space or other high-value things, such 32-bit numbers
are the largest quantities you would typically encounter in journeyman-level
assembly language programming.

Suddenly, this business starts looking a little more graspable.

Hexadecimal is the programmer’s shorthand for the computer’s binary numbers.

This is why I said earlier that computers use base 2 (binary) and base 16
(hexadecimal) both at the same time in a rather schizoid fashion. What I didn’t
say is that the computer isn’t really the schizoid one; you are. At their very
hearts (as I explain in Chapter 3) computers use only binary. Hex is a means by
which you and I make dealing with the computer easier. Fortunately, every
four binary digits may be represented by a hex digit, so the correspondence is
clean and comprehensible.

Prepare to Compute

Everything up to this point has been necessary groundwork. I've explained
conceptually what computers do and have given you the tools to understand
the slightly alien numbers that they use; but I've said nothing so far about
what computers actually are, and it's well past time. We will return to
hexadecimal numbers repeatedly in this book; I've said nothing thus far about
hex multiplication or bit-banging. The reason is plain: before you can bang a
bit, you must know where the bits live. So, let’s lift the hood and see if we can
catch a few of them in action.

CHAPTER

3

Lifting the Hood

Discovering What Computers Actually Are

RAXie, We Hardly Knew Ye...

In January 1970 I was on the downwind leg of my senior year in high school,
and the Chicago Public Schools had installed a computer somewhere. A truck
full of these fancy IBM typewriter gadgets was delivered to Lane Tech, and a
bewildered math teacher was drafted into teaching computer science (as they
had the nerve to call it) to a high school full of rowdy males.

I figured it out fairly quickly. You pounded out a deck of these goofy
computer cards on the card-punch machine, dropped them into the card
hopper of one of the typewriter gadgets, and watched in awe as the typewriter
danced its little golf ball over the green bar paper, printing out your inevitable
list of error messages. It was fun. I got straight A’s. I even kept the first
program I ever wrote that did something useful: a little deck of cards that
generated a table of parabolic correction factors for hand-figuring telescope
mirrors, astronomy being my passion at the time. (I still have the card deck,
though the gummy mess left behind by disintegrating rubber bands would
not be healthy for a card reader, assuming that one still exists.)

The question that kept gnawing at me was exactly what sort of beast RAX
(the computer’s wonderfully appropriate name) actually was. What we had
were ram-charged typewriters that RAX controlled over phone lines—that
much I understood —but what was RAX itself?

45

46

Chapter 3 » Lifting the Hood

I asked the instructor. In brief, the conversation went something like this:

Me: “Umm, sir, what exactly is RAX?”
He: “Eh? Um, a computer. An electronic computer.”

Me: “That’s what it says on the course notes; but I want to know what RAX
is made of and how it works.”

He: “Well, I'm sure RAX is all solid-state.”
Me: ““You mean, there’s no levers and gears inside.”
He: “Oh, there may be a few, but no vacuum tubes.”

Me: “I wasn’t worried about tubes. I suppose it has a calculator in it
somewhere; but what makes it remember that A comes before B? How
does it know what ‘format” means? How does it tell time? What does it
have to do to answer the phone?”

He: “Now, come on, that’s why computers are so great! They put it all
together so that we don’t have to worry about that sort of thing! Who
cares what RAX is? RAX knows FORTRAN and will execute any correct
FORTRAN program. That’s what matters, isn’t it?”’

He was starting to sweat. So was 1. End of conversation.

That June I graduated with three inches of debugged and working FOR-
TRAN punch cards in my book bag, and still had absolutely no clue as to what
RAX was.

It has bothered me to this day.

Gus to the Rescue

I was thinking about RAX six years later, while on the Devon Avenue bus
heading for work, with the latest copy of Popular Electronics in my lap. The
lead story described a do-it-yourself project called the COSMAC ELF, which
consisted of a piece of perfboard full of integrated circuit chips, all wired
together, plus some toggle switches and a pair of LED numeric displays.

It was a computer. (Said so right on the label, heh.) The article described
how to put it together, and that was about all. What did those chips do? What
did the whole thing do? There was no fancy robotic typewriter anywhere in
sight. It was driving me nuts.

As usual, my friend Gus Flassig got on the bus at Ashland Avenue and sat
down beside me. I asked him what the COSMAC ELF did. He was the first
human being to make the concept of a physical computer hang together for me:

These are memory chips. You load numbers into the memory chips by flipping
these toggle switches in different binary code patterns, where “up” means a
1-bit, and “down’” means a 0-bit. Each number in memory means something

Chapter 3 » Lifting the Hood

47

to the CPU chip. One number makes it add; another number makes it subtract;
another makes it write different numbers into memory, and lots of other things.
A program consists of a bunch of these instruction-numbers in a row in memory.
The computer reads the first number, does what the number tells it to do, and
then reads the second one, does what that number says to do, and so on until it
runs out of numbers.

If you don't find that utterly clear, don’t worry. I had the advantage of being
an electronics hobbyist (so I knew what some of the chips did) and had already
written some programs in RAX’s FORTRAN. For me, my God, everything
suddenly hit critical mass and exploded in my head until the steam started
pouring out of my ears. I got it!

No matter what RAX was, I knew that it had to be something like the
COSMAC ELF, only on a larger scale. I built an ELF. It was quite an education,
and enabled me to understand the nature of computers at a very deep
level. I don’t recommend that anybody but total crazies wire-wrap their own
computers out of loose chips anymore, although it was a common enough
thing to do in the mid to late 1970s.

As a side note, someone has written a Windows-based simulation of the
COSMAC ELF that looks just like the one I built, and it will actually accept
and execute COSMAC programs. It’s a lot of fun and might give you some
perspective on what passed for hobby computing in early 1976. The URL is as
follows:

http://incolor.inetnebr.com/bill_r/computer_simulators.htm

The site’s author, Bill Richman, has also reprinted the Popular Electronics
article from which I built the device. All fascinating reading—and a very good
education in the deepest silicon concepts underlying computing as it was then
and remains to this day.

In this chapter I will provide you with some of the insights that I obtained
while assembling my own computer the hard way. (You wonder where the
“hard” in “hardware’” comes from? Not from the sound it makes when you
bang it on the table, promise.)

Switches, Transistors, and Memory

Switches remember.

Think about it: you flip the wall switch by the door, and the light in the
middle of the ceiling comes on. It stays on. When you leave the room, you
flip the switch down again, and the light goes out. It stays out. Poltergeists
notwithstanding, the switch will remain in the position you last left it until
you or someone else comes back and flips it to its other position. Even if the
bulb burns out, you can look at the position of the switch handle and know
whether the light is on or off.

48

Chapter 3 » Lifting the Hood

In a sense, the switch remembers what its last command was until you
change it, and “overwrites”” that command with a new one. In this sense, a
light switch represents a sort of rudimentary memory element.

Light switches are more mechanical than electrical. This does not prevent
them from acting as memory; indeed, the very first computer (Babbage’s
nineteenth-century Difference Engine) was entirely mechanical. In fact, the far
larger version he designed but never finished was to have been steam-powered.
Babbage’s machine had a lot of little cams that could be flipped by other cams
from one position to another. Numbers were encoded and remembered as
patterns of cam positions.

Onelf by Land...

Whether a switch is mechanical, or electrical, or hydraulic, or something else
is irrelevant. What counts is that a switch contains a pattern: on or off; up
or down; flow or no flow. To that pattern can be assigned a meaning. Paul
Revere told his buddy to set up a code in the Old North Church: “One if by
land, two if by sea.” Once lit, the lamps in the steeple remained lit (and thus
remembered that very important code) long enough for Paul to call out the
militia and whup the British.

In general, then, what we call memory is an aggregate of switches that retain
a pattern long enough for that pattern to be read and understood by a person
or a mechanism. For our purposes, those switches will be electrical, but keep
in mind that both mechanical and hydraulic computers have been proposed
and built with varying degrees of success.

Memory consists of containers for alterable patterns that retain an entered pattern
until someone or something alters the pattern.

Transistor Switches

One problem with building a computer memory system of light switches is
that light switches are pretty specialized: they require fingers to set them, and
their outputis a current path for electricity. Ideally, a computer memory switch
should be operated by the same force it controls. This enables the patterns
stored in memory to be passed on to other memory storage locations. In the
gross electromechanical world, such a switch is called a relay.

A relay is a mechanical switch that is operated by electricity, for the purpose
of controlling electricity. You “flip”” a relay by feeding it a pulse of electricity,
which powers a little hammer that whaps a lever to one side or another. This
lever then opens or closes a set of electrical contacts, just as your garden-variety
light switch does. Computers have been made out of relays, although as you
might imagine, it was a long time ago, and (with a typical relay being about
the size of an ice cube) they weren't especially powerful computers.

Chapter 3 » Lifting the Hood

49

Fully electronic computers are made out of transistor switches. (Very early
computers were also made with vacuum tube switches.) Transistors are tiny
crystals of silicon that use the peculiar electrical properties of silicon to act
as switches. I won't try to explain what those peculiar properties are, as that
would take an entire book unto itself. Let’s consider a transistor switch a sort
of electrical black box, and describe it in terms of inputs and outputs.

Figure 3-1 shows a transistor switch. (It is a field-effect transistor, which in
truth is only one type of transistor, but it is the type that our current computers
are made of.) When an electrical voltage is applied to pin 1, current flows
between pins 2 and 3. When the voltage is removed from pin 1, current ceases
to flow between pins 2 and 3.

Common |

Transistor Switch

Input
Select

Output

Memory Cell

Figure 3-1: Transistor switches and memory cells

In real life, a tiny handful of other components (typically diodes and
capacitors) are necessary to make things work smoothly in a computer memory
context. These are not necessarily little gizmos connected by wires to the
outside of the transistor (although in early transistorized computers they
were), but are now cut from the same silicon crystal the transistor itself is cut
from, and occupy almost no space at all. Taken together, the transistor switch
and its support components are called a memory cell. I've hidden the electrical
complexity of the memory cell within an appropriate black-box symbol in
Figure 3-1.

Chapter 3 » Lifting the Hood

A memory cell keeps the current flow through it to a minimum, because
electrical current flow produces heat, and heat is the enemy of electrical
components. The memory cell’s circuit is arranged so that if you put a tiny
voltage on its input pin and a similar voltage on its select pin, a voltage will
appear and remain on its output pin. That output voltage remains in its set state
until remove the voltage from the cell as a whole, or remove the voltage from
the input pin while putting a voltage on the select pin.

The “on” voltage being applied to all of these pins is kept at a consistent
level (except, of course, when it is removed entirely). In other words, you
don’t put 12 volts on the input pin and then change that to 6 volts or 17 volts.
The computer designers pick a voltage and stick with it. The pattern is binary
in nature: you either put a voltage on the input pin or you take the voltage
away entirely. The output pin echoes that: it either holds a fixed voltage or no
voltage at all.

We apply a code to that state of affairs: The presence of voltage indicates a
binary 1, and the lack of voltage indicates a binary 0. This code is arbitrary. We
could as well have said that the lack of voltage indicates a binary 1 and vice
versa (and computers have been built this way for obscure reasons), but the
choice is up to us. Having the presence of something indicate a binary 1 is more
natural, and that is the way things have evolved in the computing mainstream.

A single computer memory cell, such as the transistor-based one we're
speaking of here, holds one binary digit, either a 1 or a 0. This is called a
bit. A bit is the indivisible atom of information. There is no half-a-bit, and no
bit-and-a-half.

A bit is a single binary digit, either 1 or 0.

The Incredible Shrinking Bit

One bit doesn’t tell us much. To be useful, we need to bring a lot of memory
cells together. Transistors started out fairly small (the originals from the 1950s
looked a lot like stovepipe hats for tin soldiers) and went down from there.
The first transistors were created from little chips of germanium or silicon
crystal about one-eighth of an inch square. The size of the crystal chip hasn’t
changed outrageously since then, but the transistors themselves have shrunk
almost incredibly.

Whereas in the beginning one chip held one transistor, in time semicon-
ductor designers crisscrossed the chip into four equal areas and made each
area an independent transistor. From there it was an easy jump to add the
other minuscule components needed to turn a transistor into a computer
memory cell.

The chip of silicon was a tiny and fragile thing, and was encased in an
oblong, molded-plastic housing, like a small stick of gum with metal legs for
the electrical connections.

Chapter 3 » Lifting the Hood

What we had now was a sort of electrical egg carton: four little cubbyholes,
each of which could contain a single binary bit. Then the shrinking process
began. First 8 bits, then 16, then multiples of 8 and 16, all on the same tiny
silicon chip. By the late 1960s, 256 memory cells could occupy one chip of
silicon, usually in an array of 8 cells by 32. In 1976, my COSMAC ELF computer
contained two memory chips. On each chip was an array of memory cells 4
wide and 256 long. (Picture a really long egg carton.) Each chip could thus hold
1,024 bits.

This was a pretty typical memory chip capacity at that time. We called them
1K RAM chips” because they held roughly 1,000 bits of random-access memory
(RAM). The K comes from kilobit—that is, one thousand bits. We'll get back to
the notion of what random access means shortly.

Toward the mid-1970s, the great memory-shrinking act was kicking into
high gear. One-kilobyte chips were crisscross divided into 4K chips containing
4,096 bits of memory. The 4K chips were almost immediately divided into
16K chips (16,384 bits of memory). These 16K chips were the standard when
the IBM PC first appeared in 1981. By 1982, the chips had been divided once
again, and 16K became 64K, with 65,536 bits inside that same little gum stick.
Keep in mind that we're talking more than 65,000 transistors (plus other odd
components) formed on a square of silicon about a quarter-inch on a side.

Come 1985 and the 64K chip had been pushed aside by its drawn-
and-quartered child, the 256K chip (262,144 bits). Chips almost always increase
in capacity by a factor of 4 simply because the current-generation chip is
divided into 4 equal areas, onto each of which is then placed the same number
of transistors that the previous generation of chip had held over the whole
silicon chip.

By 1990, the 256K chip was history, and the 1-megabit chip was state of the
art (mega is Greek for million). By 1992, the 4-megabit chip had taken over.
The critter had a grand total of 4,194,304 bits inside it, still no larger than that
stick of cinnamon gum. About that time, the chips themselves grew small and
fragile enough so that four or eight of them were soldered to tiny printed
circuit boards so that they would survive handling by clumsy human beings.

The game has continued apace, and currently you can purchase these little
plug-in circuit board memory modules with as much as two gigabytes in
them—which is over sixteen billion bits.

Will it stop here? Unlikely. More is better, and we’re bringing some stag-
geringly powerful technology to bear on the creation of ever-denser memory
systems. Some physicists warn that the laws of physics may soon call a
time-out in the game, as the transistors are now so small that it gets hard
pushing more than one electron at a time through them. At that point, some
truly ugly limitations of life called quantum mechanics begin to get in the way.
We'll find a way around these limitations (we always do), but in the process
the whole nature of computer memory may change.

52

Chapter 3 » Lifting the Hood

Random Access

Newcomers sometimes find “random’” a perplexing and disturbing word with
respect to memory, as random often connotes chaos or unpredictability. What
the word really means here is ““at random,” indicating that you can reach into
a random-access memory chip and pick out any of the bits it contains without
disturbing any of the others, just as you might select one book at random
from your public library’s many shelves of thousands of books without sifting
through them in order or disturbing the places of other books on the shelves.

Memory didn’t always work this way. Before memory was placed on
silicon chips, it was stored on electromagnetic machines of some kind, usually
rotating magnetic drums or disks distantly related to the hard drives we use
today. Rotating magnetic memory sends a circular collection of bits beneath
a magnetic sensor. The bits pass beneath the sensor one at a time, and if you
miss the one you want, like a Chicago bus in January, you simply have to wait
for it to come by again. These are serial-access devices. They present their bits
to you serially, in a fixed order, one at a time, and you have to wait for the
one you want to come up in its order.

There’s no need to remember that; we’ve long since abandoned serial-access
devices for main computer memory. We still use such systems for mass storage,
as I describe a bit later. Your hard drive is at its heart a serial-access device.

Random access works like this: inside the chip, each bit is stored in its own
memory cell, identical to the memory cell diagrammed in Figure 3-1. Each of
the however-many memory cells has a unique number. This number is a cell’s
(and hence a bit’s) address. It’s like the addresses on a street: the bit on the
corner is number 0 Silicon Alley, and the bit next door is number 1, and so on.
You don’t have to knock on the door of bit 0 and ask which bit it is, and then
go to the next door and ask there too, until you find the bit you want. If you
have the address, you can zip right down the street and park square in front
of the bit you intend to visit.

Each chip has a number of pins coming out of it. The bulk of these pins are
called address pins. One pin is called a data pin (see Figure 3-2). The address pins
are electrical leads that carry a binary address code. This address is a binary
number, expressed in 1s and Os only. You apply this address to the address
pins by encoding a binary 1 as (let’s say) 5 volts, and a binary 0 as 0 volts.
Many other voltages have been used and are still used in computer hardware.
What matters is that we all agree that a certain voltage on a pin represents a
binary 1. Special circuits inside the RAM chip decode this address to one of
the select inputs of the numerous memory cells inside the chip. For any given
address applied to the address pins, only one select input will be raised to five
volts, thereby selecting that memory cell.

Depending on whether you intend to read a bit or write a bit, the data pin is
switched between the memory cells” inputs or outputs, as shown in Figure 3-2.

Chapter 3 » Lifting the Hood

53

Read/Write Data
Pin Pin

T !
]

OFFFFF ||

OFFFFE ||

Address
Pins

Address Decoder Circuitry

Figure 3-2: A RAM chip

That’s all done internally to the chip. As far as you, on the outside, are
concerned, once you've applied the address to the address pins, voila! The data
pin will contain a voltage representing the value of the bit you requested. If
that bit contained a binary 1, the data pin will contain a 5-volt signal; otherwise,
the binary 0 bit will be represented by 0 volts.

Memory Access Time

Chips are graded by how long it takes for the data to appear on the data pin
after you've applied the address to the address pins. Obviously, the faster the
better, but some chips (for electrical reasons that again are difficult to explain)
are faster than others.

The time values are so small as to seem almost insignificant: 30 nanoseconds
is a typical memory chip access time. A nanosecond is a billionth of a second, so
30 nanoseconds is significantly less than one 10-millionth of a second. Great
stuff —but to accomplish anything useful, a computer needs to access memory
hundreds of thousands, millions, or (in most cases) billions of times. Those
nanoseconds add up. If you become an expert assembly language programmer,

54

Chapter 3 » Lifting the Hood

you will jump through hoops to shave the number of memory accesses your
program needs to perform, because memory access is the ultimate limiting fac-
tor in a computer’s performance. Assembly language expert Michael Abrash,
in fact, has published several books on doing exactly that, mostly in the realm
of high-speed graphics programming. The gist of his advice can be (badly)
summarized in just a few words: Stay out of memory whenever you can! (You'll
soon discover just how difficult this is.)

Bytes, Words, Double Words, and Quad Words

The days are long gone (decades gone, in fact) when a serious computer
could be made with only one memory chip. My poor 1976 COSMAC ELF
needed at least two. Today’s computers need many, irrespective of the fact
that today’s memory chips can hold a billion bits or more, rather than the
ELF’s meager 2,048 bits. Understanding how a computer gathers its memory
chips together into a coherent memory system is critical when you wish to
write efficient assembly language programs. Although there are infinite ways
to hook memory chips together, the system I describe here is that of the
Intel-based PC-compatible computer, which has ruled the world of desktop
computing since 1982.

Our memory system must store our information. How we organize a
memory system out of a hatful of memory chips will be dictated largely by
how we organize our information.

The answer begins with this thing called a byte. The fact that the granddaddy
of all computer magazines took this word for its title indicates its importance
in the computer scheme of things. (Alas, Byte magazine ceased publishing late
in 1998.) From a functional perspective, memory is measured in bytes. A byte
is eight bits. Two bytes side by side are called a word, and two words side
by side are called a double word. A quad word, as you might imagine, consists
of two double words, for four words or eight bytes in all. Going in the other
direction, some people refer to a group of four bits as a nybble—a nybble being
somewhat smaller than a byte. (This term is now rare and becoming rarer.)

Here’s the quick tour:

m A bit is a single binary digit, 0 or 1.

m A byte is 8 bits side by side.

m A word is 2 bytes side by side.

m A double word is 2 words side by side.

m A quad word is 2 double words side by side.

Computers were designed to store and manipulate human information. The
basic elements of human discourse are built from a set of symbols consisting

Chapter 3 » Lifting the Hood

55

of letters of the alphabet (two of each, for uppercase and lowercase), numbers,
and symbols, including commas, colons, periods, and exclamation marks. Add
to these the various international variations on letters such as & and 0 plus the
more arcane mathematical symbols, and you'll find that human information
requires a symbol set of well over 200 symbols. (The symbol set used in all
PC-style computers is provided in Appendix B.)

Bytes are central to the scheme because one symbol out of that symbol set
can be neatly expressed in one byte. A byte is 8 bits, and 2% is 256. This means
that a binary number 8 bits in size can be one of 256 different values, numbered
from 0 to 255. Because we use these symbols so much, most of what we do
in computer programs is done in byte-size chunks. In fact, except for the very
odd and specialized kind of computers we are now building into intelligent
food processors, no computer processes information in chunks smaller than
1 byte. Most computers today, in fact, process information one double word
(four bytes, or 32 bits) at a time. Since 2003, PC-compatible computers have
been available that process information one quad word (64 bits) at a time.

Pretty Chips All in a Row

One of the more perplexing things for beginners to understand is that a single
RAM chip does not even contain 1 byte, though it might contain half a billion
bits. The bulk of the individual RAM chips that we use today have no more
than four data pins, and some only one data pin. Whole memory systems are
created by combining individual memory chips in clever ways.

A simple example will help illustrate this. Consider Figure 3-3. I've drawn
a memory system that distributes a single stored byte across eight separate
RAM chips. Each of the black rectangles represents a RAM chip like the one
shown in Figure 3-2. There is one bit from the byte stored within each of the
eight chips, at the same address across all eight chips. The 20 address pins
for all eight chips are connected together, ““in parallel’” as an electrician might
say. When the computer applies a memory address to the 20 address lines, the
address appears simultaneously on the address pins of all eight memory chips
in the memory system. This way, a single address is applied simultaneously to
the address pins of all eight chips, which deliver all eight bits simultaneously
on the eight data lines, with one bit from each chip.

In the real world, such simple memory systems no longer exist, and there
are many different ways of distributing chips (and their stored bits) across a
memory system. Most memory chips today do in fact store more than one bit
at each address. Chips storing 1, 2, 3, 4, or 8 bits per address are relatively
common. How to design a fast and efficient computer memory system is an
entire subdiscipline within electrical engineering, and as our memory chips
are improved to contain more and more memory cells, the “best” way to
design a physical memory system changes.

Chapter 3 » Lifting the Hood

ENENEEEEEEENERNNNEN 8 Data Lines

20 Address Lines
Figure 3-3: A 1-megabyte memory system

It’s been a long time, after all, since we’ve had to plug individual memory
chips into our computers. Today, memory chips are nearly always gathered
together into plug-in Dual Inline Memory Modules (DIMMs) of various
capacities. These modules are little green-colored circuit boards about 5 inches
long and 1 inch high. In 2009, all desktop PC-compatible computers use
such modules, generally in pairs. Each module typically stores 32 bits at
each memory address (often, but not always, in eight individual memory
chips, each chip storing four bits at each memory address) and a pair of
modules acting together stores 64 bits at each memory address. The number
of memory locations within each module varies, but the capacity is commonly
512 megabytes (MB), or 1 or 2 gigabytes (GB). (I will use the abbreviations MB
and GB from now on.)

It's important to note that the way memory chips are combined into a
memory system does not affect the way your programs operate. When a pro-
gram that you've written accesses a byte of memory at a particular address,
the computer takes care of fetching it from the appropriate place in that jungle
of chips and circuit boards. One memory system arranged a certain way might
bring the data back from memory faster than another memory system arranged
a different way, but the addresses are the same, and the data is the same. From
the point of view of your program, there is no functional difference.

Chapter 3 » Lifting the Hood

57

To summarize: electrically, your computer’s memory consists of one or more
rows of memory chips, with each chip containing a large number of memory
cells made out of transistors and other minuscule electrical components. Most
of the time, to avoid confusion it’s just as useful to forget about the transistors
and even the rows of physical chips. (My high school computer science teacher
was not entirely wrong but he was right for the wrong reasons.)

Over the years, memory systems have been accessed in different ways.
Eight-bit computers (now ancient and almost extinct) accessed memory 8 bits
(one byte) at a time. Sixteen-bit computers access memory 16 bits (one word)
at a time. Today’s mainstream 32-bit computers access memory 32 bits (one
double word) at a time. Upscale computers based on newer 64-bit processors
access memory 64 bits (one quad word) at a time. This can be confusing, so
it’s better in most cases to envision a very long row of byte-size containers,
each with its own unique address. Don’t assume that in computers which
process information one word at a time that only words have addresses. It’s
a convention within the PC architecture that every byte has its own unique
numeric address, irrespective of how many bytes are pulled from memory in
one operation.

Every byte of memory in the computer has its own unique address, even in
computers that process 2, 4, or 8 bytes of information at a time.

If this seems counterintuitive, yet another metaphor will help: when you
go to the library to take out the three volumes of Tolkien’s massive fantasy
The Lord of the Rings, each of the three volumes has its own catalog number
(essentially that volume’s address in the library) but you take all three down at
once and process them as a single entity. If you really want to, you can check
only one of the books out of the library at a time, but doing so will require two
more trips to the library later to get the other two volumes, which is a waste
of your time and effort.

So it is with 32-bit or 64-bit computers. Every byte has its own address, but
when a 32-bit computer accesses a byte, it actually reads 4 bytes starting at the
address of the requested byte. You can use the remaining 3 bytes or ignore
them if you don’t need them—but if you later decide that you do need the
other three bytes, you’ll have to access memory again to get them. Best to save
time and get it all at one swoop.

The Shop Foreman and the Assembly Line

All of this talk about reading things from memory and writing things to
memory has thus far carefully skirted the question of who is doing the reading
and writing. The who is almost always a single chip, and a remarkable chip it
is, too: the central processing unit, or CPU. If you are the president and CEO of
your personal computer, the CPU is your shop foreman, who sees that your
orders are carried out down among the chips, where the work gets done.

Chapter 3 » Lifting the Hood

Some would say that the CPU is what actually does the work, but while
largely true, it’s an oversimplification. Plenty of real work is done in the
memory system, and in what are called peripherals, such as video display
boards, USB and network ports, and so on. So, while the CPU does do a good
deal of the work, it also parcels out quite a bit to other components within the
computer, largely to enable itself to do a lot more quickly what it does best.
Like any good manager, the foreman delegates to other computer subsystems
whatever it can.

Most of the CPU chips used in the machines we lump together as a group
and call PCs were designed by a company called Intel, which pretty much
invented the single-chip CPU way back in the early 1970s. Intel CPUs have
evolved briskly since then, as I'll describe a little later in this chapter. There
have been many changes in the details over the years, but from a height, what
any Intel or Intel-compatible CPU does is largely the same.

Talking to Memory

The CPU chip’s most important job is to communicate with the computer’s
memory system. Like a memory chip, a CPU chip is a small square of sili-
con onto which a great many transistors—today, hundreds of millions of
them!—have been placed. The fragile silicon chip is encased in a plastic or
ceramic housing with a large number of electrical connection pins protruding
from it. Like the pins of memory chips, the CPU’s pins transfer information
encoded as voltage levels, typically 3 to 5 volts. Five volts on a pin indicate a
binary 1, and 0 volts on a pin indicate a binary 0.

Like memory chips, the CPU chip has a number of pins devoted to memory
addresses, and these pins are connected to the computer’s system of memory
chips. I've drawn this in Figure 3-4, and the memory system to the left of
the CPU chip is the same one that appears in Figure 3-3, just tipped on its
side. When the CPU needs to read a byte (or a word, double word, or quad
word) from memory, it places the memory address of the byte to be read on
its address pins, encoded as a binary number. Some few nanoseconds later,
the requested byte appears (also as a binary number) on the data pins of the
memory chips. The CPU chip also has data pins, and it slurps up the byte
presented by the memory chips through its own data pins.

The process, of course, also works in reverse: to write a byte into memory,
the CPU first places the memory address where it wants to write onto its
address pins. Some number of nanoseconds later (which varies from system
to system depending on general system speed and how memory is arranged)
the CPU places the byte it wants to write into memory on its data pins.
The memory system obediently stores the byte inside itself at the requested
address.

Chapter 3 » Lifting the Hood

59

CPU Chip

Data
Lines

Address
Lines

Figure 3-4: The CPU and memory

Figure 3-4 is, of course, purely conceptual. Modern memory systems are a
great deal more complex than what is shown, but in essence they all work the
same way: the CPU passes an address to the memory system, and the memory
system either accepts data from the CPU for storage at that address or places
the data found at that address on the computer’s data bus for the CPU to
process.

Riding the Data Bus

This give-and-take between the CPU and the memory system represents the
bulk of what happens inside your computer. Information flows from memory
into the CPU and back again. Information flows in other paths as well. Your
computer contains additional devices called peripherals that are either sources
or destinations (or both) for information.

Video display boards, disk drives, USB ports, and network ports are the
most common peripherals in PC-type computers. Like the CPU and memory,
they are all ultimately electrical devices. Most modern peripherals consist of
one or two large chips and perhaps a couple of smaller chips that support
the larger chips. Like both the CPU chip and memory chips, these peripheral
devices have both address pins and data pins. Some peripherals, graphics
boards in particular, have their own memory chips, and these days their
own dedicated CPUs. (Your modern high-performance graphics board is a
high-powered computer in its own right, albeit one with a very specific and
limited mission.)

Peripherals “talk” to the CPU (that is, they pass the CPU data or take data
from the CPU) and sometimes to one another. These conversations take place
across the electrical connections linking the address pins and data pins that
all devices in the computer have in common. These electrical lines are called a
data bus and they form a sort of party line linking the CPU with all other parts
of the computer. An elaborate system of electrical arbitration determines when

60

Chapter 3 » Lifting the Hood

and in what order the different devices can use this party line to talk with one
another, but it happens in generally the same way: an address is placed on
the bus, followed by some data. (How much data moves at once depends on
the peripherals involved.) Special signals go out on the bus with the address
to indicate whether the address represents a location in memory or one of the
peripherals attached to the data bus. The address of a peripheral is called an
I/O address to differentiate between it and a memory address such as those we’ve
been discussing all along.

The data bus is the major element in the expansion slots present in most
PC-type computers, and many peripherals (especially graphics adapters) are
printed circuit boards that plug into these slots. The peripherals talk to the CPU
and to memory through the data bus connections implemented as electrical
pins in the expansion slots.

As convenient as expansion slots are, they introduce delays into a computer
system. Increasingly, as time passes, peripherals are simply a couple of chips
on one corner of the main circuit board (the motherboard) inside the computer.

The Foreman'’s Pockets

Every CPU contains a very few data storage cubbyholes called registers. These
registers are at once the foreman’s pockets and the foreman’s workbench.
When the CPU needs a place to tuck something away for a short while, an
empty register is just the place. The CPU could always store the data out
in memory, but that takes considerably more time than tucking the data in
a register. Because the registers are actually inside the CPU, placing data in
a register or reading it back again from a register is fast.

More important, registers are the foreman’s workbench. When the CPU
needs to add two numbers, the easiest and fastest way is to place the numbers
in two registers and add the two registers together. The sum (in usual CPU
practice) replaces one of the two original numbers that were added, but after
that the sum could then be placed in yet another register, or added to still
another number in another register, or stored out in memory, or take part in
any of a multitude of other operations.

The CPU’s immediate work-in-progress is held in temporary storage containers
called registers.

Work involving registers is always fast, because the registers are within the
CPU and are specially connected to one another and to the CPU’s internal
machinery. Very little movement of data is necessary—and what data does
move doesn’t have to move very far.

Like memory cells and, indeed, like the entire CPU, registers are made out of
transistors; but rather than having numeric addresses, registers have individual
names such as EAX or EDI. To make matters even more complicated, while
all CPU registers have certain common properties, some registers have unique

Chapter 3 » Lifting the Hood

61

special powers not shared by other registers. Understanding the behaviors and
the limitations of CPU registers is something like following the Middle East
peace process: There are partnerships, alliances, and always a bewildering
array of secret agendas that each register follows. There’s no general system
describing such things; like irregular verbs in Spanish, you simply have to
memorize them.

Most peripherals also have registers, and peripheral registers are even more
limited in scope than CPU registers. Their agendas are quite explicit and in
no wise secret. This does not prevent them from being confusing, as anyone
who has tried programming a graphics board at the register level will attest.
Fortunately, these days nearly all communication with peripheral devices is
handled by the operating system, as I'll explain in the next chapter.

The Assembly Line

If the CPU is the shop foreman, then the peripherals are the assembly-line
workers, and the data bus is the assembly line itself. (Unlike most assembly
lines, however, the foreman works the line much harder than the rest of his
crew!)

As an example: information enters the computer through a network port
peripheral, which assembles bits received from a computer network cable into
bytes of data representing characters and numbers. The network port then
places the assembled byte onto the data bus, from which the CPU picks it up,
tallies it or processes it in other ways, and then places it back on the data bus.
The display board then retrieves the byte from the data bus and writes it into
video memory so that you can see it on your screen.

This is a severely simplified description, but obviously alot is going on inside
the box. Continuous furious communication along the data bus between CPU,
memory, and peripherals is what accomplishes the work that the computer
does. The question then arises: who tells the foreman and crew what to do?
You do. How do you do that? You write a program. Where is the program? It’s
in memory, along with all the rest of the data stored in memory. In fact, the
program is data, and that is the heart of the whole idea of programming as we
know it.

The Box That Follows a Plan

Finally, we come to the essence of computing: the nature of programs and how
they direct the CPU to control the computer and get your work done.

We've seen how memory can be used to store bytes of information. These
bytes are all binary codes, patterns of 1 and 0 bits stored as minute electrical
voltage levels and collectively making up binary numbers. We’ve also spoken

62

Chapter 3 » Lifting the Hood

of symbols, and how certain binary codes may be interpreted as meaning
something to us human beings, things such as letters, digits, punctuation, and
so on.

Just as the alphabet and the numeric digits represent a set of codes and
symbols that mean something to us humans, there is a set of codes that mean
something to the CPU. These codes are called machine instructions, and their
name is evocative of what they actually are: instructions to the CPU. When the
CPU is executing a program, it picks a sequence of numbers off the data bus,
one at a time. Each number tells the CPU to do something. The CPU knows
how. When it completes executing one instruction, it picks the next one up
and executes that. It continues doing so until something (a command in the
program, or electrical signals such as a reset button) tells it to stop.

Let’s take an example or two that are common to all modern IA-32 CPU
chips from Intel. The 8-bit binary code 01000000 (40H) means something to
the CPU. It is an order: Add 1 to register AX and put the sum back in AX. That’s
about as simple as they get. Most machine instructions occupy more than a
single byte. Many are 2 bytes in length, and very many more are 4 bytes in
length. The binary codes 11010110 01110011 (0B6H 073H) comprise another
order: Load the value 73H into register DH. On the other end of the spectrum,
the binary codes 11110011 10100100 (0F3H 0A4H) direct the CPU to do the
following (take a deep breath): Begin moving the number of bytes specified in
register CX from the 32-bit address stored in registers DS and SI to the 32-bit address
stored in registers ES and DI, updating the address in both SI and DI after moving
each byte, and decreasing CX by one each time, and finally stopping when CX becomes
zero.

You don’t have to remember all the details of those particular instructions
right now; I'll come back to machine instructions in later chapters. The rest
of the several hundred instructions understood by the Intel IA-32 CPUs
fall somewhere in between these extremes in terms of complication and
power. There are instructions that perform arithmetic operations (addition,
subtraction, multiplication, and division) and logical operations (AND, OR,
XOR, and so on), and instructions that move information around memory.
Some instructions serve to ““steer”” the path that program execution takes within
the logic of the program being executed. Some instructions have highly arcane
functions and don’t turn up very often outside of operating system internals.
The important thing to remember right now is that each instruction tells the
CPU to perform one generally small and limited task. Many instructions handed
to the CPU in sequence direct the CPU to perform far more complicated tasks.
Writing that sequence of instructions is what assembly language programming
actually is.

Let’s talk more about that.

Chapter 3 » Lifting the Hood

63

Fetch and Execute

A computer program is nothing more than a table of these machine instructions
stored in memory. There’s nothing special about the table, nor about where it
is positioned in memory. It could be almost anywhere, and the bytes in the
table are nothing more than binary numbers.

The binary numbers comprising a computer program are special only in the
way that the CPU treats them. When a modern 32-bit CPU begins running,
it fetches a double word from an agreed-upon address in memory. (How this
starting address is agreed upon doesn’t matter right now.) This double word,
consisting of 4 bytes in a row, is read from memory and loaded into the CPU.
The CPU examines the pattern of binary bits contained in the double word, and
then begins performing the task that the fetched machine instruction directs it
to do.

Ancient 8088-based 8-bit machines such as the original IBM PC only fetched
one byte at a time, rather than the four bytes that 32-bit Pentium-class machines
fetch. Because most machine instructions are more than a single byte in size,
the 8088 CPU had to return to memory to fetch a second (or a third or a fourth)
byte to complete the machine instruction before it could actually begin to obey
the instruction and begin performing the task it represented.

As soon as it finishes executing an instruction, the CPU goes out to memory
and fetches the next machine instruction in sequence. Inside the CPU is a
special register called the instruction pointer that quite literally contains the
address of the next instruction to be fetched from memory and executed. Each
time an instruction is completed, the instruction pointer is updated to point
to the next instruction in memory. (There is some silicon magic afoot inside
modern CPUs that “guesses” what’s to be fetched next and keeps it on a
side shelf so it will be there when fetched, only much more quickly—but the
process as I've described it is true in terms of the outcome.)

All of this is done literally like clockwork. The computer has an electri-
cal subsystem called a system clock, which is actually an oscillator that emits
square-wave pulses at very precisely intervals. The immense number of micro-
scopic transistor switches inside the CPU coordinate their actions according to
the pulses generated by the system clock. In years past, it often took several
clock cycles (basically, pulses from the clock) to execute a single instruction.
As computers became faster, the majority of machine instructions executed
in a single clock cycle. Modern CPUs can execute instructions in parallel, so
multiple instructions can often execute in a single clock cycle.

So the process goes: fetch and execute; fetch and execute. The CPU works its
way through memory, with the instruction pointer register leading the way.
As it goes, it works: moving data around in memory, moving values around in
registers, passing data to peripherals, crunching data in arithmetic or logical
operations.

64

Chapter 3 » Lifting the Hood

Computer programs are lists of binary machine instructions stored in memory.
They are no different from any other list of data bytes stored in memory except in
how they are interpreted when fetched by the CPU.

The Foreman'’s Innards

I made the point earlier that machine instructions are binary codes. This is
something we often gloss over, yet to understand the true nature of the CPU,
we have to step away from the persistent image of machine instructions as
numbers. They are not numbers. They are binary patterns designed to throw
electrical switches.

Inside the CPU are a very large number of transistors. (The Intel Core 2
Quad that I have on my desk contains 582 million transistors, and CPU chips
with over a billion transistors are now in limited use.) Some small number of
those transistors go into making up the foreman’s pockets: machine registers
for holding information. A significant number of transistors go into making up
short-term storage called cache thatI'll describe later. (For now, think of cache as
asmall set of storage shelves always right there at the foreman’s elbow, making
it unnecessary for the foreman to cross the room to get more materials.) The
vast majority of those transistors, however, are switches connected to other
switches, which are connected to still more switches in a mind-numbingly
complex network.

The extremely simple machine instruction 01000000 (40H) directs the CPU
to add 1 to the value stored in register AX, with the sum placed back in AX.
When considering the true nature of computers, it’s very instructive to think
about the execution of machine instruction 01000000 in this way.

The CPU fetches a byte from memory. This byte contains the binary code
01000000. Once the byte is fully within the CPU, the CPU in essence lets
the machine instruction byte push eight transistor switches. The lone 1 digit
pushes its switch “up” electrically; the rest of the digits, all Os, push their
switches “down.”

In a chain reaction, those eight switches flip the states of first dozens, then
hundreds, then thousands, and in some cases tens of thousands of tiny tran-
sistor switches within the CPU. It isn’t random —this furious nanomoment of
electrical activity within the CPU operates utterly according to patterns etched
into the silicon of the CPU by Intel’s teams of engineers. Ultimately—perhaps
after many thousands of individual switch throws—the value contained in
register AX is suddenly one greater than it was before.

How this happens is difficult to explain, but you must remember that any
number within the CPU can also be looked upon as a binary code, including
values stored in registers. Also, most switches within the CPU contain more
than one handle. These switches, called gates, work according to the rules of
logic. Perhaps two, or three, or even more “up”” switch throws have to arrive

Chapter 3 » Lifting the Hood

65

at a particular gate at the same time in order for one “down”” switch throw to
pass through that gate.

These gates are used to build complex internal machinery within the CPU.
Collections of gates can add two numbers in a device called an adder, which
again is nothing more than a crew of dozens of little switches working together
first as gates and then as gates working together to form an adder.

As part of the cavalcade of switch throws kicked off by the binary code
01000000, the value in register AX was dumped trapdoor-style into an adder,
while at the same time the number 1 was fed into the other end of the adder.
Finally, rising on a wave of switch throws, the new sum emerges from the
adder and ascends back into register AX—and the job is done.

The foreman of your computer, then, is made of switches—just like all
the other parts of the computer. It contains a mind-boggling number of such
switches, interconnected in even more mind-boggling ways. The important
thing is that whether you are boggled or (like me on off-days) merely jaded
by it all, the CPU, and ultimately the computer, does exactly what we tell it to
do. We set up a list of machine instructions as a table in memory, and then, by
golly, that mute silicon brick comes alive and starts earning its keep.

Changing Course

The first piece of genuine magic in the nature of computers is that a string
of binary codes in memory tells the computer what to do, step by step. The
second piece of that magic is really the jewel in the crown: There are machine
instructions that change the order in which machine instructions are fetched and
executed.

In other words, once the CPU has executed a machine instruction that does
something useful, the next machine instruction may tell the CPU to go back
and play it again—and again, and again, as many times as necessary. The
CPU can keep count of the number of times that it has executed that particular
instruction or list of instructions and keep repeating them until a prearranged
count has been met. Alternately, it can arrange to skip certain sequences of
machine instructions entirely if they don’t need to be executed at all.

What this means is that the list of machine instructions in memory does
not necessarily begin at the top and run without deviation to the bottom. The
CPU can execute the first fifty or a hundred or a thousand instructions, then
jump to the end of the program—or jump back to the start and begin again.
It can skip and bounce up and down the list smoothly and at great speed. It
can execute a few instructions up here, then zip down somewhere else and
execute a few more instructions, then zip back and pick up where it left off, all
without missing a beat or even wasting too much time.

How is this done? Recall that the CPU includes a special register that always
contains the address of the next instruction to be executed. This register, the

66

Chapter 3 » Lifting the Hood

instruction pointer, is not essentially different from any of the other registers
in the CPU. Just as a machine instruction can add one to register AX, another
machine instruction can add/subtract some number to/from the address
stored in the instruction pointer. Add 100 to the instruction pointer, and the
CPU will instantly skip 100 bytes down the list of machine instructions before
it continues. Subtract 100 from the address stored in the instruction pointer,
and the CPU will instantly jump back 100 bytes up the machine instruction list.

Finally, the Third Whammy: The CPU can change its course of execution based
on the work it has been doing. The CPU can decide whether to execute a given
instruction or group of instructions, based on values stored in memory, or
based on the individual state of several special one-bit CPU registers called
flags. The CPU can count how many times it needs to do something, and then
do that something that number of times. Or it can do something, and then do
it again, and again, and again, checking each time (by looking at some data
somewhere) to determine whether it’s done yet, or whether it has to take
another run through the task.

So, not only can you tell the CPU what to do, you can tell it where to go.
Better, you can sometimes let the CPU, like a faithful bloodhound, sniff out
the best course forward in the interest of getting the work done in the quickest
possible way.

In Chapter 1, I described a computer program as a sequence of steps and
tests. Most of the machine instructions understood by the CPU are steps, but
others are tests. The tests are always two-way tests, and in fact the choice of
what to do is always the same: jump or don’t jump. That’s all. You can test for
any of numerous different conditions within the CPU, but the choice is always
either jump to another place in the program or just keep truckin” along.

What vs. How: Architecture and Microarchitecture

This book is really about programming in assembly language for Intel’s 32-bit
x86 CPUs, and those 32-bit CPUs made by other companies to be compatible
with Intel’s. There are a lot of different Intel and Intel-compatible x86 CPU
chips. A full list would include the 8086, 8088, 80286, 80386, 80486, the Pentium,
Pentium Pro, Pentium MMX, Pentium II, Pentium D, Pentium III, Pentium 4,
Pentium Xeon, Pentium II Xeon, Pentium Core, Celeron, and literally dozens
of others, many of them special-purpose, obscure, and short-lived. (Quick,
have you ever heard of the 80376?) Furthermore, those are only the CPU chips
designed and sold by Intel. Other companies (primarily AMD) have designed
their own Intel-compatible CPU chips, which adds dozens more to the full list;
and within a single CPU type are often another three or four variants, with
exotic names such as Coppermine, Katmai, Conroe, and so on. Still worse,
there can be a Pentium III Coppermine and a Celeron Coppermine.

Chapter 3 » Lifting the Hood

67

How does anybody keep track of all this?

Quick answer: Nobody really does. Why? For nearly all purposes, the great
mass of details doesn’t matter. The soul of a CPU is pretty cleanly divided into
two parts: what the CPU does and how the CPU does it. We, as programmers,
see it from the outside: what the CPU does. Electrical engineers and systems
designers who create computer motherboards and other hardware systems
incorporating Intel processors need to know some of the rest, but they are a
small and hardy crew, and they know who they are.

Evolving Architectures

Our programmer’s view from the outside includes the CPU registers, the
set of machine instructions that the CPU understands, and special-purpose
subsystems such as fast math processors, which may include instructions
and registers of their own. All of these things are defined at length by Intel,
and published online and in largish books so that programmers can study and
understand them. Taken together, these definitions are called the CPU’s
architecture.

A CPU architecture evolves over time, as vendors add new instructions,
registers, and other features to the product line. Ideally, this is done with an
eye toward backward compatibility, which means that the new features do not
generally replace, disable, or change the outward effects of older features. Intel
has been very good about backward compatibility within its primary product
line, which began in 1978 with the 8086 CPU and now goes by the catchall
term ““x86.”” Within certain limitations, even programs written for the ancient
8086 will run on a modern Pentium Core 2 Quad CPU. (Incompatibilities that
arise are more often related to different operating systems than the details of
the CPU itself.)

The reverse, of course, is not true. New machine instructions creep slowly
into Intel’s x86 product line over the years. A new machine instruction first
introduced in 1996 will not be recognized by a CPU designed, say, in 1993; but
a machine instruction first introduced in 1993 will almost always be present
and operate identically in newer CPUs.

In addition to periodic additions to the instruction set, architectures occa-
sionally make quantum leaps. Such quantum leaps typically involve a change
in the “width” of the CPU. In 1986, Intel’s 16-bit architecture expanded to 32
bits with the introduction of the 80386 CPU, which added numerous instruc-
tions and operational modes, and doubled the width of the CPU registers. In
2003, the x86 architecture expanded again, this time to 64 bits, again with new
instructions, modes of operation, and expanded registers. However, CPUs that
adhere to the expanded 64-bit architecture will still run software written for
the older 32-bit architecture.

68

Chapter 3 » Lifting the Hood

Intel’s 32-bit architecture is called IA-32, and in this book that’s what I'll be
describing. The newer 64-bit architecture is called x86-64 for peculiar reasons,
chief of which is that Intel did not originate it. Intel’s major competitor, AMD,
created a backward-compatible 64-bit x86 architecture in the early 2000s, and
it was so well done that Intel had to swallow its pride and adopt it. (Intel’s
own 64-bit architecture, called IA-64 Itanium, was not backward compatible
with [IA-32 and was roundly rejected by the market.)

With only minor glitches, the newer 64-bit Intel architecture includes the
IA-32 architecture, which in turn includes the still older 16-bit x86 architecture.
It’s useful to know which CPUs have added what instructions to the architec-
ture, keeping in mind that when you use a “new”” instruction, your code will
not run on CPU chips made before that new instruction appeared. This is a
solvable problem, however. There are ways for a program to ask a CPU how
new it is, and limit itself to features present in that CPU. In the meantime,
there are other things that it is not useful to know.

The Secret Machinery in the Basement

Because of the backward compatibility issue, CPU designers do not add new
instructions or registers to an architecture without very good reason. There
are other, better ways to improve a family of CPUs. The most important of
these is increased processor throughput, which is not a mere increase in CPU
clocking rates. The other is reduced power consumption. This is not even
mostly a “green” issue. A certain amount of the power used by a CPU is
wasted as heat; and waste heat, if not minimized, can cook a CPU chip and
damage surrounding components. Designers are thus always looking for ways
to reduce the power required to perform the same tasks.

Increasing processor throughput means increasing the number of instruc-
tions that the CPU executes over time. A lot of arcane tricks are associated with
increasing throughput, with names like prefetching, L1 and L2 cache, branch
prediction, hyper-pipelining, macro-ops fusion, along with plenty of others.
Some of these techniques were created to reduce or eliminate bottlenecks
within the CPU so that the CPU and the memory system can remain busy
nearly all the time. Other techniques stretch the ability of the CPU to process
multiple instructions at once.

Taken together, all of the electrical mechanisms by which the CPU does
what its instructions tell it to do are called the CPU’s microarchitecture. It's
the machinery in the basement that you can’t see. The metaphor of the shop
foreman breaks down a little here. Let me offer you another one.

Suppose that you own a company that manufactures automatic transmission
parts for Ford. You have two separate plants. One is 40 years old, and one
has just been built. Both plants make precisely the same parts—they have
to, because Ford puts them into its transmissions without knowing or caring
which of your two plants manufactured them. A cam or a housing are thus

Chapter 3 » Lifting the Hood

69

identical within a ten-thousandth of an inch, whether they were made in your
old plant or your new plant.

Your old plant has been around for a while, but your new plant was
designed and built based on everything you've learned while operating the
old plant for 40 years. It has a more logical layout, better lighting, and modern
automated tooling that requires fewer people to operate and works longer
without adjustment.

The upshot is that your new plant can manufacture those cams and housings
much more quickly and efficiently, wasting less power and raw materials, and
requiring fewer people to do it. The day will come when you’ll build an even
more efficient third plant based on what you’ve learned running the second
plant, and you’ll shut the first plant down.

Nonetheless, the cams and housings are the same, no matter where they
were made. Precisely how they were made is no concern of Ford’s or anyone
else’s. As long as the cams are built to the same measurements at the same
tolerance, the “how’”” doesn’t matter.

All of the tooling, the assembly line layouts, and the general structure of
each plant may be considered that plant’s microarchitecture. Each time you
build a new plant, the new plant’s microarchitecture is more efficient at doing
what the older plants have been doing all along.

So it is with CPUs. Intel and AMD are constantly redesigning their CPU
microarchitectures to make them more efficient. Driving these efforts are
improved silicon fabrication techniques that enable more and more transistors
to be placed on a single CPU die. More transistors mean more switches and
more potential solutions to the same old problems of throughput and power
efficiency.

The prime directive in improving microarchitectures, of course, is not to
“break” existing programs by changing the way machine instructions or
registers operate. That’s why it’s the secret machinery in the basement. CPU
designers go to great lengths to maintain that line between what the CPU
does and how those tasks are actually accomplished in the forest of those
half-billion transistors.

All the exotic code names like Conroe, Katmai, or Yonah actually indicate
tweaks in the microarchitecture. Major changes in the microarchitecture also
have names: P6, NetBurst, Core, and so on. These are described in great detail
online, but don’t feel bad if you don’t quite follow it all. Most of the time I'm
hanging on by my fingernails too.

I say all this so that you, as a newly minted programmer, don’t make more
of Intel microarchitecture differences than you should. It is extremely rare
(like, almost never) for a difference in microarchitecture detail to give you an
exploitable advantage in how you code your programs. Microarchitecture is
not a mystery (much about it is available online), but for the sake of your
sanity you should probably treat it as one for the time being. We have many
more important things to learn right now.

70

Chapter 3 » Lifting the Hood

Enter the Plant Manager

What I've described so far is less ““a computer” than ““computation.” A CPU
executing a program does not a computer make. The COSMAC ELF device
that I built in 1976 was an experiment, and at best a sort of educational toy.

It was a CPU with some memory, and just enough electrical support (through
switches and LED digits) that I could enter machine code and see what was
happening inside the memory chips. It was in no sense of the word useful.

My first useful computer came along a couple of years later. It had a
keyboard, a CRT display (though not one capable of graphics) a pair of 8-inch
floppy disk drives, and a printer. It was definitely useful, and I wrote numerous
magazine articles and my first three books with it. I had a number of simple
application programs for it, like the primordial WordStar word processor; but
what made it useful was something else: an operating system.

Operating Systems: The Corner Office

An operating system is a program that manages the operation of a computer
system. It’s like any other program in that it consists of a sequence of machine
instructions executed by the CPU. Operating systems are different in that they
have special powers not generally given to word processors and spreadsheet
programs. If we continue the metaphor of the CPU as the shop foreman,
then the operating system is the plant manager. The entire physical plant is
under its control. It oversees the bringing in of raw materials to the plant. It
supervises the work that goes on inside the plant (including the work done
by the shop foreman) and packages up the finished products for shipment to
customers.

In truth, our early microcomputer operating systems weren’t very powerful
and didn’t do much. They “spun the disks” and handled the storage of data
to the disk drives, and brought data back from disks when requested. They
picked up keystrokes from the keyboard, and sent characters to the video
display. With some fiddling, they could send characters to a printer. That was
about it.

The CP/M operating system was “‘state of the art”” for desktop microcom-
puters in 1979. If you entered the name of a program at the keyboard, CP/M
would go out to disk, load the program from a disk file into memory, and
then literally hand over all power over the machine to the loaded program.
When WordStar ran, it overwrote the operating system in memory, because
memory was extremely expensive and there wasn’t very much of it. Quite
literally, only one program could run at a time. CP/M didn’t come back until
WordStar exited. Then CP/M would be reloaded from the floppy disk, and
would simply wait for another command from the keyboard.

Chapter 3 » Lifting the Hood

71

BIOS: Software, Just Not as Soft

So what brought CP/M back into memory, if it wasn’t there when WordStar
exited? Easy: WordStar rebooted the computer. In fact, every time a piece of
software ran, CP/M went away. Every time that software exited, it rebooted
the machine, and CP/M came back. There was so little to CP/M that rebooting
it from a floppy disk took less than two seconds.

As our computer systems grew faster, and memory cheaper, our operating
systems improved right along with our word processors and spreadsheets.
When the IBM PC appeared, PC DOS quickly replaced CP/M. The PC had
enough memory that DOS didn’t go away when a program loaded, but rather
remained in its place in memory while application software loaded above it.
DOS could do a lot more than CP/M, and wasn’t a great deal larger. This was
possible because DOS had help.

IBM had taken the program code that handled the keyboard, the display,
and the disk drives and burned it into a special kind of memory chip called
read-only memory (ROM). Ordinary random-access memory goes blank when
power to it is turned off. ROM retains its data whether it has power or not.
Thus, thousands of machine instructions did not have to be loaded from disk,
because they were always there in a ROM chip soldered to the motherboard.
The software on the ROM was called the Basic Input/Output System (BIOS)
because it handled computer inputs (such as the keyboard) and computer
outputs (such as the display and printer.)

Somewhere along the way, software like the BIOS, which existed on
“non-volatile” ROM chips, was nicknamed firmware, because although it
was still software, it was not quite as, well, soft as software stored in memory
or on disk. All modern computers have a firmware BIOS, though the BIOS
software does different things now than it did in 1981.

Multitasking Magic

DOS had a long reign. The first versions of Windows were not really whole
new operating systems, but simply file managers and program launchers
drawn on the screen in graphics mode. Down in the basement under the icons,
DOS was still there, doing what it had always done.

It wasn’t until 1995 that things changed radically. In that year, Microsoft
released Windows 95, which had a brand-new graphical user interface, but
something far more radical down in the basement. Windows 95 operated in
32-bit protected mode, and required at least an 80386 CPU to run. (I'll explain
in detail what “protected mode”” means in the next chapter.) For the moment,
think of protected mode as allowing the operating system to definitely be
The Boss, and no longer merely a peer of word processors and spreadsheets.
Windows 95 did not make full use of protected mode, because it still had DOS

72

Chapter 3 » Lifting the Hood

and DOS applications to deal with, and such “legacy”” software was written
long before protected mode was an option. Windows 95 did, however, have
something not seen previously in the PC world: preemptive multitasking.

Memory had gotten cheap enough by 1995 that it was possible to have
not just one or two but several programs in memory at the same time. In
an elaborate partnership with the CPU, Windows 95 created the convincing
illusion that all of the programs in memory were running at once. This was
done by giving each program loaded into memory a short slice of the CPU’s
time. A program would begin running on the CPU, and some number of its
machine instructions would execute.

However, after a set period of time (usually a small fraction of a second)
Windows 95 would “preempt” that first program, and give control of the CPU
to the second program on the list. That program would execute instructions for
a few milliseconds until it too was preempted. Windows 95 would go down
the list, letting each program run for a little while. When it reached the bottom
of the list, it would start again at the top and continue running through the
list, round-robin fashion, letting each program run for a little while. The CPU
was fast enough that the user sitting in front of the display would think that
all the programs were running simultaneously.

Figure 3-5 may make this clearer. Imagine a rotary switch, in which a rotor
turns continuously and touches each of several contacts in sequence, once
per revolution. Each time it touches the contact for one of the programs, that
program is allowed to run. When the rotor moves to the next contact, the
previous program stops in its tracks, and the next program gets a little time
to run.

CPU

Program 1

Program 2

Program 3

Program 4

Program 5

LT

Figure 3-5: The idea of multitasking

The operating system can define a priority for each program on the list, so
that some get more time to run than others. High-priority tasks get more clock
cycles to execute, whereas low-priority tasks get fewer.

Chapter 3 » Lifting the Hood

73

Promotion to Kernel

Much was made of Windows 95’s ability to multitask, but in 1995 few people
had heard of a Unix-like operating system called Linux, which a young Finn
named Linus Torvalds had written almost as a lark, and released in 1991.

Linux did not have the elaborate graphical user interface that Windows
95 did, but it could handle multitasking, and had a much more powerful
structure internally. The core of Linux was a block of code called the kernel,
which took full advantage of IA-32 protected mode. The Linux kernel was
entirely separate from the user interface, and it was protected from damage
due to malfunctioning programs elsewhere in the system. System memory
was tagged as either kernel space or user space, and nothing running in user
space could write to (nor generally read from) anything stored in kernel space.
Communication between kernel space and user space was handled through
strictly controlled system calls (more on this later in the book).

Direct access to physical hardware, including memory, video, and periph-
erals, was limited to software running in kernel space. Programs wishing to
make use of system peripherals could only get access through kernel-mode
device drivers.

Microsoft released its own Unix-inspired operating system in 1993. Windows
NT had an internal structure a great deal like Linux, with kernel and device
drivers running in kernel space, and everything else running in user space. This
basic design is still in use, for both Linux and Windows NT’s successors, such
as Windows 2000, Windows XP, Windows Vista, and Windows 7. The general
design for true protected-mode operating systems is shown schematically in
Figure 3-6.

The Core Explosion

In the early 2000s, desktop PCs began to be sold with two CPU sockets.
Windows 2000/ XP/Vista/7 and Linux all support the use of multiple CPU
chips in a single system, through a mechanism called symmetric multiprocessing
(SMP). Multiprocessing is “‘symmetric” when all processors are the same. In
most cases, when two CPUs are available, the operating system runs its own
code in one CPU, and user-mode applications are run in the other.

As technology improved, Intel and AMD were able to place two identical
but entirely independent code execution units on a single chip. The result was
the first dual-core CPUs, the AMD Athlon 64 X2 (2005) and the Intel Core 2
Duo (2006). Four-core CPUs became commonly available in 2007. (This book
is being written on an Intel Core 2 Quad 6600.) CPUs with more than four
cores are possible, of course, but there is still a lot of discussion as to how such
an embarrassment of riches might be used, and as of now it’s a seriously open
question.

74

Chapter 3 » Lifting the Hood

Memory

The graphical
shell, plus all
ordinary
CPU) applications
Userslﬂéelelrface (Web browsers,

editors, etc., and
programs that
you write) run in
“user space.”

Display Driver

Hard Disk -
Periodically, the CPU gives each of the Driver

many programs running in memory a small
slice of execution time. Everything below
the dotted line
runs in “kernel
space” and has
Kernel special privileges
and protections.

H
0

Figure 3-6: A mature, protected-mode operating system

The Plan

I can sum all of this up by borrowing one of the most potent metaphors for
computing ever uttered: The computer is a box that follows a plan. These are
the words of Ted Nelson, author of the uncanny book Computer Lib/Dream
Machines, and one of those very rare people who have the infuriating habit of
being right most of the time.

You write the plan. The computer follows it by passing the instructions,
byte by byte, to the CPU. At the bottom of it, the process is a hellishly
complicated electrical chain reaction involving hundreds of thousands of
switches composed of many hundreds of thousands or even millions of
transistors. That part of it, however, is hidden from you so that you don’t have
to worry about it. Once you tell all those heaps of transistors what to do, they
know how to do it.

Chapter 3 » Lifting the Hood

75

This plan, this list of machine instructions in memory, is your assembly
language program. The whole point of this book is to teach you to correctly
arrange machine instructions in memory for the use of the CPU.

With any luck at all, by now you have a reasonable conceptual understanding
of both what computers do and what they are. It’s time to start looking more
closely at the nature of the operations that machine instructions direct the
CPU to perform. For the most part, as with everything in computing, this
is about memory, both the pedestrian memory out on the motherboard, and
those kings of remembrance, the CPU registers.

CHAPTER

4

Location, Location, Location

Registers, Memory Addressing, and Knowing
Where Things Are

I wrote this book in large part because I could not find a beginning text on
assembly language that I respected in the least. Nearly all books on assembly
start by introducing the concept of an instruction set, and then begin describing
machine instructions, one by one. This is moronic, and the authors of such
books should be hung. Even if you've learned every single instruction in an
instruction set, you haven't learned assembly language.

You haven’t even come close.

The naive objection that a CPU exists to execute machine instructions can be
disposed of pretty easily: it executes machine instructions once it has them in
its electronic hands. The real job of a CPU, and the real challenge of assembly
language, lies in locating the required instructions and data in memory.
Any idiot can learn machine instructions. (Many do.) The skill of assembly
language consists of a deep comprehension of memory addressing. Everything else is
details—and easy details at that.

The Joy of Memory Models

Memory addressing is a difficult business, made much more difficult by the
fact that there are a fair number of different ways to address memory in the x86
CPU family. Each of these ways is called a memory model. There are three major
memory models that you can use with the more recent members of the x86

77

78

Chapter 4 = Location, Location, Location

CPU family, and a number of minor variations on those three, especially the
one in the middle.

In programming for 32-bit Linux, you're pretty much limited to one memory
model, and once you understand memory addressing a little better, you'll be
very glad of it. However, I'm going to describe all three in some detail here,
even though the older two of the trio have become museum pieces. Don’t skip
over the discussion of those museum pieces. In the same way that studying
fossils to learn how various living things evolved over time will give you a
better understanding of livings things as they exist today, knowing a little
about older Intel memory models will give you a more intuitive understanding
of the one memory model that you're likely to use.

At the end of this chapter I'll briefly describe the 64-bit memory model that
is only just now hitting the street in any numbers. That will be just a heads-up,
however. In this book and for the next few years, 32-bit protected mode is
where the action is.

The oldest and now ancient memory model is called the real mode flat model.
It’s thoroughly fossilized, but relatively straightforward. The elderly (and now
retired) memory model is called the real mode segmented model. It may be the
most hateful thing you ever learn in any kind of programming, assembly
or otherwise. DOS programming at its peak used the real mode segmented
model, and much Pepto Bismol was sold as a result. The newest memory
model is called protected mode flat model, and it’s the memory model behind
modern operating systems such as Windows 2000/XP/Vista/7 and Linux.
Note that protected mode flat model is available only on the 386 and newer
CPUs that support the IA-32 architecture. The 8086, 8088, and 80286 do not
support it. Windows 9x falls somewhere between models, and I doubt anybody
except the people at Microsoft really understands all the kinks in the ways it
addresses memory—maybe not even them. Windows 9x crashes all the time,
and one main reason in my view is that it has a completely insane memory
model. (Dynamic link libraries, or DLLs—a pox on homo computationis—are
the other major reason.) Its gonzo memory model isn’t the only reason you
shouldn’t consider writing Win 9x programs in assembly, but it’s certainly the
best one; and given that Windows 9x is now well on its way to being a fossil
in its own right, you'll probably never have to.

I have a strategy in this book, and before we dive in, I'll lay it out: I will
begin by explaining how memory addressing works under the real mode flat
model, which was available under DOS. It's amazingly easy to learn. I discuss
the real mode segmented model because you will keep stubbing your toe on
it here and there and need to understand it, even if you never write a single
line of code for it. Real work done today and for the near future lies in 32-bit
protected mode flat model, for Windows, Linux, or any true 32-bit protected
mode operating system. Key to the whole business is this: Real mode flat model
is very much like protected mode flat model in miniature.

Chapter 4 = Location, Location, Location

79

There is a big flat model and a little flat model. If you grasp real mode flat
model, you will have no trouble with protected mode flat model. That monkey
in the middle is just the dues you have to pay to consider yourself a real master
of memory addressing.

So let’s go see how this crazy stuff works.

16 Bits’ll Buy You 64K

In 1974, the year I graduated from college, Intel introduced the 8080 CPU
and basically invented microcomputing. (Yes, I'm an old guy, but I've been
blessed with a sense of history—Dby virtue of having lived through quite a bit
of it.) The 8080 was a white-hot little item at the time. I had one that ran at 1
MHz, and it was a pretty effective word processor, which is mostly what I did
with it.

The 8080 was an 8-bit CPU, meaning it processed 8 bits of information at
a time. However, it had 16 address lines coming out of it. The “bitness” of a
CPU—how many bits wide its general-purpose registers are—is important,
but to my view the far more important measure of a CPU’s effectiveness is how
many address lines it can muster in one operation. In 1974, 16 address lines
was aggressive, because memory was extremely expensive, and most machines
had 4K or 8K bytes (remember, that means 4,000 or 8,000) at most—and some
had alot less.

Sixteen address lines will address 64K bytes. If you count in binary (which
computers always do) and limit yourself to 16 binary columns, you can count
from 0 to 65,535. (The colloquial “64K” is shorthand for the number 66,536.)
This means that every one of 65,536 separate memory locations can have its
own unique address, from 0 up to 65,535.

The 8080 memory-addressing scheme was very simple: you put a 16-bit
address out on the address lines, and you got back the 8-bit value that was
stored at that address. Note well: there is 10 necessary relation between the
number of address lines in a memory system and the size of the data stored at
each location. The 8080 stored 8 bits at each location, but it could have stored
16 or even 32 bits at each location, and still have 16 memory address lines.

By far and away, the operating system most used with the 8080 was
CP/M-80. CP/M-80 was a little unusual in that it existed at the top of installed
memory—sometimes so that it could be contained in ROM, but mostly just to
get it out of the way and allow a consistent memory starting point for transient
programs, those that (unlike the operating system) were loaded into memory
and run only when needed. When CP/M-80 read a program in from disk to
run it, it would load the program into low memory, at address 0100H —that
is, 256 bytes from the very bottom of memory. The first 256 bytes of memory
were called the program segment prefix (PSP) and contained various odd bits
of information as well as a general-purpose memory buffer for the program’s

80 Chapter 4 = Location, Location, Location

disk input/output (I/O). The executable code itself did not begin until address

0100H.

I've drawn the 8080 and CP/M-80 memory model in Figure 4-1.

16-Bit
Memory Address
OFFFFH 64K
Addresses Without
Installed Memory
T f Installed Often 16K,
Flemory 32K, or 48K
CP/M-80
Operating System
Unused Memory
Transient
Program Code
Code Execution
0100H h
B H
Program Segment egins Here
Prefix (PSP)
0000H

Figure 4-1: The 8080 memory model

The 8080’s memory model as used with CP/M-80 was simple, and people
used it a lot; so when Intel created its first 16-bit CPU, the 8086, it wanted to
make it easy for people to translate older CP/M-80 software from the 8080
to the 8086—a process called porting. One way to do this was to make sure
that a 16-bit addressing system such as that of the 8080 still worked. So,
even though the 8086 could address 16 times as much memory as the 8080

Chapter 4 = Location, Location, Location

(16 x 64K = 1MB), Intel set up the 8086 so that a program could take some 64K
byte segment within that megabyte of memory and run entirely inside it, just
as though it were the smaller 8080 memory system.

This was done by the use of segment registers, which are basically memory
pointers located in CPU registers that point to a place in memory where things
begin, be this data storage, code execution, or anything else. You'll learn a lot
more about segment registers very shortly. For now, it’s enough to think of
them as pointers indicating where, within the 8086’s megabyte of memory, a
program ported from the 8080 world would begin (see Figure 4-2).

20-Bit
Memory Address
OFFFFFH IMB
64K
Memory Segment
080000H <«— Segment Register CS
00000H

Figure 4-2: The 8080 memory model inside an 8086 memory system

82

Chapter 4 = Location, Location, Location

When speaking of the 8086 and 8088, there are four segment registers to
consider (again, we’ll be dealing with them in detail very soon). For the
purposes of Figure 4-2, consider the register called CS—which stands for
code segment. Again, it’s a pointer to a location within the 8086’s megabyte of
memory. This location acts as the starting point for a 64K region of memory,
within which a quickly converted CP/M-80 program could run very happily.

This was very wise short-term thinking—and catastrophically bad
long-term thinking. Any number of CP/M-80 programs were converted
to the 8086 within a couple of years. The problems began big-time when
programmers attempted to create new programs from scratch that had never
seen the 8080 and had no need for the segmented memory model. Too
bad—the segmented model dominated the architecture of the 8086. Programs
that needed more than 64K of memory at a time had to use memory in
64K chunks, switching between chunks by switching values into and out of
segment registers.

This was a nightmare. There is one good reason to learn it, however:
understanding the way real-mode segmented memory addressing works will
help you understand how the two x86 flat models work, and in the process
you will come to understand the nature of the CPU a lot better.

The Nature of a Megabyte

When running in segmented real mode, the x86 CPUs can use up to one
megabyte of directly addressable memory. This memory is also called real
mode memory. As discussed briefly in Chapter 3, a megabyte of memory is
actually not 1 million bytes of memory, but 1,048,576 bytes. As with the
shorthand term “64K,” a megabyte doesn’t come out even in our base 10
because computers operate on base 2. Those 1,048,576 bytes expressed in
base 2 are 100000000000000000000B bytes. That’s 2%, a fact that we’ll return
to shortly. The printed number 100000000000000000000B is so bulky that it’s
better to express it in the compatible (and much more compact) base 16, the
hexadecimal system described in Chapter 2. The quantity 2% is equivalent to
16°, and may be written in hexadecimal as 100000H. (If the notion of number
bases still confounds you, I recommend another trip through Chapter 2, if you
haven’t been through it already —or, perhaps, even if you have.)

Now, here’s a tricky and absolutely critical question: In a bank of memory
containing 100000H bytes, what’s the address of the very last byte in the
memory bank? The answer is not 100000H. The clue is the flip side to that
question: What's the address of the first byte in memory? That answer, you
might recall, is 0. Computers always begin counting from 0. (People generally
begin counting from 1.) This disconnect occurs again and again in computer
programming. From a computer programming perspective, the last in a row
of four items is item number 3, because the first item in a row of four is item
number 0. Count: 0, 1, 2, 3.

Chapter 4 = Location, Location, Location

83

The address of a byte in a memory bank is just the number of that byte
starting from zero. This means that the last, or highest, address in a memory
bank containing one megabyte is 100000H minus one, or OFFFFFH. (The initial
zero, while not mathematically necessary, is there for the convenience of your
assembler, and helps keep the assembler program from getting confused. Get
in the habit of using an initial zero on any hex number beginning with the hex
digits A through F.)

The addresses in a megabyte of memory, then, run from 00000H to OFFFFFH.
In binary notation, that is equivalent to the range of 00000000000000000000B to
11111111111111111111B. That’s a lot of bits—20, to be exact. If you refer back to
Figure 3-3 in Chapter 3, you'll see that a megabyte memory bank has 20 address
lines. One of those 20 address bits is routed to each of those 20 address lines,
so that any address expressed as 20 bits will identify one and only one of the
1,048,576 bytes contained in the memory bank.

That’s what a megabyte of memory is: some arrangement of memory chips
within the computer, connected by an address bus of 20 lines. A 20-bit address
is fed to those 20 address lines to identify 1 byte out of the megabyte.

Backward Compatibility and Virtual 86 Mode

Modern x86 CPUs such as the Pentium can address much more memory than
this, and I'll explain how and why shortly. With the 8086 and 8088 CPUs, the
20 address lines and one megabyte of memory was literally all they had. The
386 and later Intel CPUs could address 4 gigabytes of memory without carving
it up into smaller segments. When a 32-bit CPU is operating in protected mode
flat model, a segment is 4 gigabytes—so one segment is, for the most part,
plenty.

However, a huge pile of DOS software written to make use of segments
was still everywhere in use and had to be dealt with. So, to maintain backward
compatibility with the ancient 8086 and 8088, newer CPUs were given the power
to limit themselves to what the older chips could address and execute. When a
Pentium-class CPU needs to run software written for the real mode segmented
model, it pulls a neat trick that, temporarily, makes it become an 8086. This is
called virtual-86 mode, and it provided excellent backward compatibility for
DOS software.

When you launch an MS-DOS window or “DOS box”” under Windows NT
and later versions, you're using virtual-86 mode to create what amounts to a
little real mode island inside the Windows protected mode memory system. It
was the only good way to keep that backward compatibility, for reasons you
will understand fairly soon.

16-Bit Blinders

In real mode segmented model, an x86 CPU can “see” a full megabyte of
memory. That is, the CPU chips set themselves up so that they can use

84

Chapter 4 = Location, Location, Location

20 of their 32 address pins and can pass a 20-bit address to the memory system.
From that perspective, it seems pretty simple and straightforward. However,
the bulk of the trouble you might have in understanding real mode segmented
model stems from this fact: whereas those CPUs can see a full megabyte of
memory, they are constrained to look at that megabyte through 16-bit blinders.

The blinders metaphor is closer to literal than you might think. Look at
Figure 4-3. The long rectangle represents the megabyte of memory that the
CPU can address in real mode segmented model. The CPU is off to the right.
In the middle is a piece of metaphorical cardboard with a slot cut in it. The slot
is 1 byte wide and 65,536 bytes long. The CPU can slide that piece of cardboard
up and down the full length of its memory system. However, at any one time,
it can access only 65,536 bytes.

OFFFFFH

A full one megabyte (1,048,576
bytes) of memory is at the
CPU's disposal. However...

1

x86 CPU

l | in Real Mode
...the blinders force the CPU to
read and write memory in

chunks no more than 65,536
bytes in size.

00000H

Figure 4-3: Seeing a megabyte through 64K blinders

The CPU’s view of memory in real mode segmented model is peculiar.
It is constrained to look at memory in chunks, where no chunk is larger
than 65,536 bytes in length—again, what we call “64K.” Making use of those

Chapter 4 = Location, Location, Location

85

chunks—that is, knowing which one is currently in use and how to move
from one to another—is the real challenge of real mode segmented model
programming. It’s time to take a closer look at what segments are and how
they work.

The Nature of Segments

We’ve spoken informally of segments so far as chunks of memory within the
larger memory space that the CPU can see and use. In the context of real mode
segmented model, a segment is a region of memory that begins on a paragraph
boundary and extends for some number of bytes. In real mode segmented
model, this number is less than or equal to 64K (65,536). You've seen the
number 64K before, but paragraphs?

Time out for a lesson in old-time 86-family trivia. A paragraph is a measure
of memory equal to 16 bytes. It is one of numerous technical terms used to
describe various quantities of memory. We’ve looked at some of them before,
and all of them are even multiples of 1 byte. Bytes are data atoms, remember;
loose memory bits are more like subatomic particles, and they never exist in
the absence of a byte (or more) of memory to contain them. Some of these
terms are used more than others, but you should be aware of all of them,
which are provided in Table 4-1.

Table 4-1: Collective Terms for Memory

NAME VALUE IN DECIMAL VALUE IN HEX
Byte 1 01H

Word 2 02H

Double word 4 04H

Quad word 8 08H

Ten byte 10 0AH

Paragraph 16 10H

Page 256 100H

Segment 65,536 10000H

Some of these terms, such as ten byte, occur very rarely, and others, such
as page, occur almost never. The term paragraph was never common to begin
with, and for the most part was used only in connection with the places in
memory where segments may begin.

Any memory address evenly divisible by 16 is called a paragraph boundary.
The first paragraph boundary is address 0. The second is address 10H; the

86

Chapter 4 = Location, Location, Location

third address 20H, and so on. (Remember that 10H is equal to decimal 16.)
Any paragraph boundary may be considered the start of a segment.

This doesn’t mean that a segment actually starts every 16 bytes up and down
throughout that megabyte of memory. A segment is like a shelf in one of those
modern adjustable bookcases. On the back face of the bookcase are a great
many little slots spaced one-half inch apart. A shelf bracket can be inserted
into any of the little slots. However, there aren’t hundreds of shelves, but only
four or five. Nearly all of the slots are empty and unused. They exist so that a
much smaller number of shelves may be adjusted up and down the height of
the bookcase as needed.

In a very similar manner, paragraph boundaries are little slots at which a
segment may be begun. In real mode segmented model, a program may make
use of only four or five segments, but each of those segments may begin at
any of the 65,536 paragraph boundaries existing in the megabyte of memory
available in the real mode segmented model.

There’s that number again: 65,536 —our beloved 64K. There are 64K different
paragraph boundaries where a segment may begin. Each paragraph boundary
has a number. As always, the numbers begin from 0, and go to 64K minus
one; in decimal 65,535, or in hex OFFFFH. Because a segment may begin at
any paragraph boundary, the number of the paragraph boundary at which a
segment begins is called the segment address of that particular segment.

We rarely, in fact, speak of paragraphs or paragraph boundaries at all. When
you see the term segment address in connection with real mode segmented
model, keep in mind that each segment address is 16 bytes (one paragraph)
farther along in memory than the segment address before it. In Figure 4-4,
each shaded bar is a segment address, and segments begin every sixteen bytes.
The highest segment address is OFFFFH, which is 16 bytes from the very top
of real mode’s 1 megabyte of memory.

In summary: segments may begin at any segment address. There are 65,536
segment addresses evenly distributed across real mode’s full megabyte of
memory, sixteen bytes apart. A segment address is more a permission than
a compulsion; for all the 64K possible segment addresses, only five or six
are ever actually used to begin segments at any one time. Think of segment
addresses as slots where segments may be placed.

So much for segment addresses; now, what of segments themselves? The
most important thing to understand about a segment is that it may be up to
64K bytes in size, but it doesn’t have to be. A segment may be only one byte
long, or 256 bytes long, or 21,378 bytes long, or any length at all short of
64K bytes.

Chapter 4 = Location, Location, Location

87

OFFFFH ——

Segment addresses
in the range
0000H -OFFFFH

0002H ——

0001H ——

0000H ——

——— OFFFFFH

—— OFFFF8H

——— OFFFFOH

Memory addresses
in the range
00000H -OFFFFFH

—— 00028H

—— 00020H

—— 00018H

—— 00010H

—— 00008H

(etc.)
—— 00002H
— 00001H
— 00000H

Figure 4-4: Memory addresses versus segment addresses

Chapter 4 = Location, Location, Location

A Horizon, Not a Place

You define a segment primarily by stating where it begins. What, then, defines
how long a segment is? Nothing, really—and we get into some really tricky
semantics here. A segment is more a horizon than a place. Once you define
where a segment begins, that segment can encompass any location in memory
between that starting place and the horizon—which is 65,536 bytes down the
line.

Nothing dictates, of course, that a segment must use all of that memory. In
most cases, when a segment is defined at some segment address, a program
considers only the next few hundred or perhaps few thousand bytes as part of
that segment, unless it’s a really world-class program. Most beginners reading
about segments think of them as some kind of memory allocation, a protected
region of memory with walls on both sides, reserved for some specific use.

This is about as far from true as you can get. In real mode nothing is
protected within a segment, and segments are not reserved for any specific
register or access method. Segments can overlap. (People often don’t think
about or realize this.) In a very real sense, segments don’t really exist, except as
horizons beyond which a certain type of memory reference cannot go. It comes
back to that set of 64K blinders that the CPU wears, as I drew in Figure 4-3. 1
think of it this way: A segment is the location in memory at which the CPU’s 64K
blinders are positioned. In looking at memory through the blinders, you can see
bytes starting at the segment address and going on until the blinders cut you
off, 64K bytes down the way.

The key to understanding this admittedly metaphysical definition of a
segment is knowing how segments are used—and understanding that finally
requires a detailed discussion of registers.

Making 20-Bit Addresses out of 16-Bit Registers

A register, as I've mentioned informally in earlier chapters, is a memory
location inside the CPU chip, rather than outside the CPU in a memory bank
somewhere. The 8088, 8086, and 80286 are often called 16-bit CPUs because
their internal registers are almost all 16 bits in size. The 80386 and its twenty
years’ worth of successors are called 32-bit CPUs because most of their internal
registers are 32 bits in size. Since the mid-2000s, many of the new x86 CPUs
are 64 bits in design, with registers that are 64 bits wide. (More about this at
the end of the chapter.) The x86 CPUs have a fair number of registers, and they
are an interesting crew indeed.

Registers do many jobs, but perhaps their most important single job is
holding addresses of important locations in memory. If you recall, the 8086
and 8088 have 20 address pins, and their megabyte of memory (which is the
real mode segmented memory we're talking about) requires addresses 20 bits
in size.

Chapter 4 = Location, Location, Location

How do you put a 20-bit memory address in a 16-bit register? You don’t.

You put a 20-bit address in two 16-bit registers.

What happens is this: all memory locations in real mode’s megabyte of
memory have not one address but two. Every byte in memory is assumed to
reside in a segment. A byte’s complete address, then, consists of the address of
its segment, along with the distance of the byte from the start of that segment.
Recall that the address of the segment is the byte’s segment address. The byte’s
distance from the start of the segment is the byte’s offset address. Both addresses
must be specified to completely describe any single byte’s location within the
full megabyte of real mode memory. When written out, the segment address
comes first, followed by the offset address. The two are separated with a colon.
Segment:offset addresses are always written in hexadecimal.

I've drawn Figure 4-5 to help make this a little clearer. A byte of data
we’ll call “MyByte” exists in memory at the location marked. Its address is
given as 0001:0019. This means that MyByte falls within segment 0001H and
is located 0019H bytes from the start of that segment. It’s a convention in x86
programming that when two numbers are used to specify an address with a
colon between them, you do not end each of the two numbers with an H for
hexadecimal. Addresses written in segment:offset form are assumed to be in
hexadecimal.

The universe is perverse, however, and clever eyes will perceive that MyByte
can have two other perfectly legal addresses: 0:0029 and 0002:0009. How so?
Keep in mind that a segment may start every 16 bytes throughout the full
megabyte of real memory. A segment, once begun, embraces all bytes from
its origin to 65,535 bytes further up in memory. There’s nothing wrong with
segments overlapping, and in Figure 4-5 we have three overlapping segments.
MyByte is 2DH bytes into the first segment, which begins at segment address
0000H. MyByte is 1DH bytes into the second segment, which begins at segment
address 0001H. It’s not that MyByte is in two or three places at once. It’s in
only one place, but that one place may be described in any of three ways.

It’s a little like Chicago’s street-numbering system. Howard Street is 76
blocks north of Chicago’s “origin,” Madison Street. Howard Street is also four
blocks north of Touhy Avenue. You can describe Howard Street’s location
relative to either Madison Street or Touhy Avenue, depending on what you
want to do.

An arbitrary byte somewhere in the middle of real mode’s megabyte of
memory may fall within literally thousands of different segments. Which
segment the byte is actually in is strictly a matter of convention.

In summary: to express a 20-bit address in two 16-bit registers is to put the
segment address into one 16-bit register, and the offset address into another
16-bit register. The two registers taken together identify one byte among all
1,048,576 bytes in real mode’s megabyte of memory.

90 Chapter 4 = Location, Location, Location

MyByte could have
any of three possible
addresses:

0000 : 0029

0001 :0019

0002 : 0009 PIMAMIMAM AN
[—

A A T
9H Bytes
0002H
19H Bytes
29H Bytes
-y 000lH ——
Y 0000H ——

Figure 4-5: Segments and offsets

Is this awkward? You bet, but it was the best we could do for a good many
years.

16-Bit and 32-Bit Registers

Think of the segment address as the starting position of real mode’s 64K
blinders. Typically, you would move the blinders to encompass the location
where you wish to work, and then leave the blinders in one place while moving
around within their 64K limits.

This is exactly how registers tend to be used in real mode segmented model
assembly language. The 8088, 8086, and 80286 have exactly four segment

Chapter 4 = Location, Location, Location

registers specifically designated as holders of segment addresses. The 386 and
later CPUs have two more that can also be used in real mode. (You need to
be aware of the CPU model you're running on if you intend to use the two
additional segment registers, because the older CPUs don’t have them at all.)
Each segment register is a 16-bit memory location existing within the CPU
chip itself. No matter what the CPU is doing, if it’s addressing some location
in memory, then the segment address of that location is present in one of the
six segment registers.

The segment registers have names that reflect their general functions: CS,
DS, SS, ES, FS, and GS. FS and GS exist only in the 386 and later Intel x86
CPUs—Dbut are still 16 bits in size. All segment registers are 16 bits in size,
irrespective of the CPU. This is true even of the 32-bit CPUs.

m CS stands for code segment. Machine instructions exist at some offset into a
code segment. The segment address of the code segment of the currently
executing instruction is contained in CS.

wm DS stands for data segment. Variables and other data exist at some offset
into a data segment. There may be many data segments, but the CPU may
only use one at a time, by placing the segment address of that segment in
register DS.

m SS stands for stack segment. The stack is a very important component of the
CPU used for temporary storage of data and addresses. I explain how the
stack works a little later; for now simply understand that, like everything
else within real mode’s megabyte of memory, the stack has a segment
address, which is contained in SS.

m ES stands for extra segment. The extra segment is exactly that: a spare
segment that may be used for specifying a location in memory.

m IS and GS are clones of ES. They are both additional segments with no
specific job or specialty. Their names come from the fact that they were
created after ES (think, E, F, G). Don’t forget that they exist only in the 386
and later x86 CPUs!

General-Purpose Registers

The segment registers exist only to hold segment addresses. They can be forced
to do a very few other things in real mode, but by and large, segment registers
should be considered specialists in holding segment addresses. The x86 CPUs
have a crew of generalist registers to do the rest of the work of assembly
language computing. Among many other things, these general-purpose registers
are used to hold the offset addresses that must be paired with segment
addresses to pin down a single location in memory. They also hold values for
arithmetic manipulation, for bit-shifting (more on this later) and many other
things. They are truly the craftsman’s pockets inside the CPU.

92

Chapter 4 = Location, Location, Location

But we come here to one of the biggest and most obvious differences between
the older 16-bit x86 CPUs (the 8086, 8088, and 80286) and the newer 32-bit x86
CPUs starting with the 386: the size of the general-purpose registers. When
I wrote the very first edition of this book in 1989, the 8088 still ruled the
PC computing world, and I limited myself to discussing what the 8088 had
within it.

Those days are long gone. The fully 32-bit 386 is considered an antique,
and the original 1993 Pentium is seen as ever more quaint as the years go by.
It's a 32-bit world now, and the time will come when it’s a 64-bit world. The
“bitness”” of the world is almost entirely defined by the width of the x86 CPU
registers.

Like the segment registers, the general-purpose registers are memory loca-
tions existing inside the CPU chip itself; and like the segment registers, they
all have names rather than numeric addresses. The general-purpose registers
really are generalists in that all of them share a large suite of capabilities. How-
ever, some of the general-purpose registers also have what I call a “hidden
agenda”: a task or set of tasks that only it can perform. I explain all these
hidden agendas as I go—keeping in mind that some of the hidden agendas
are actually limitations of the older 16-bit CPUs. The newer general-purpose
registers are much more, well, general.

In our current 32-bit world, the general-purpose registers fall into three
general classes: the 16-bit general-purpose registers, the 32-bit extended
general-purpose registers, and the 8-bit register halves. These three classes
do not represent three entirely distinct sets of registers at all. The 16-bit and
8-bit registers are actually names of regions inside the 32-bit registers. Register
growth in the x86 CPU family has come about by extending registers existing in
older CPUs. Adding a room to your house doesn’t make it two houses—just
one bigger house. And so it has been with the x86 registers.

There are eight 16-bit general-purpose registers: AX, BX, CX, DX, BP, SI, DI,
and SP. (SP is a little less general than the others, but we’ll get to that.) These
all existed in the 8086, 8088, and 80286 CPUs. They are all 16 bits in size, and
you can place any value in them that may be expressed in 16 bits or fewer.
When Intel expanded the x86 architecture to 32 bits in 1986, it doubled the size
of all eight registers and gave them new names by prefixing an E in front of
each register name, resulting in EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

So, were these just bigger registers, or new registers?

Both.

As with a lot of things in assembly language, this becomes a lot clearer by
drawing a diagram. Figure 4-6 shows how SI, DI, BP, and SP doubled in size
and got new names—without entirely losing their old ones.

Chapter 4 = Location, Location, Location

93

32-bit register 16-bit register
names names
S|
St LTI TTTITTTI I I PTI I PT T Il I]
DI
eob LTI I I I I PPl T]
BP
eBp LI T T T TTTTITTI I T]d
SP
S LI T T T T T T I PTITTIPPTTI I TITIT]d
Bit 31 Bit 0
| The “high” 16 bits The “low” 16 bits |

The shaded portion of the registers is what
exists on the older 16-bit x86 CPUs: The
8086, 8088, and 80286.

Figure 4-6: Extending 16-bit general-purpose registers

Each of the four registers shown in Figure 4-6 is fully 32 bits in size. However,
in each register, the lower 16 bits have a name of their own. The lower 16 bits
of ESI, for example, may be referenced as SI. The lower 16 bits of EDI may be
referenced as DI. If you're writing programs to run in real mode on an 8088
machine such as the ancient IBM PC, you can only reference the DI part—the
high 16 bits don’t exist on that CPU!

Unfortunately, the high 16 bits of the 32-bit general-purpose registers do not
have their own names. You can access the low 16 bits of ESI as SI, but to get at
the high 16 bits, you must refer to ESI and get the whole 32-bit shebang.

Register Halves

The same is true for the other four general-purpose registers, EAX, EBX,
ECX, and EDX, but there’s an additional twist: the low 16 bits are themselves
divided into two 8-bit halves, so what we have are register names on not
two but three levels. The 16-bit registers AX, BX, CX, and DX are present as
the lower 16-bit portions of EAX, EBX, ECX, and EDX; but AX, BX, CX, and
DX are themselves divided into 8-bit halves, and assemblers recognize special
names for the two halves. The A, B, C, and D are retained, but instead of the
X, a half is specified with an H (for high half) or an L (for low half). Each
register half is one byte (8 bits) in size. Thus, making up 16-bit register AX,

94

Chapter 4 = Location, Location, Location

you have byte-sized register halves AH and AL; within BX there is BH and
BL, and so on.

Again, this can best be understood in a diagram (see Figure 4-7). As I
mentioned earlier, one quirk of this otherwise very useful system is that there
is no name for the high 16-bit portion of the 32-bit registers. In other words,
you can read the low 16 bits of EAX by specifying AX in an assembly language
instruction, but there’s no way to specify the high 16 bits by themselves. This
keeps the naming conventions for the registers a little simpler (would you like
to have to remember EAXH, EBXH, ECXH, and EDXH on top of everything
else?), and the lack is not felt as often as you might think.

H L
[TTTTTTTI I I I I I T ITTTIITTITITTITII] A
B, e e e e e e e e e
[TTTTTTITITITTIT T T T C
[TTTTTITITTFITITITITI I I T T AT 11+ D
Specifying EBX These 16 bits of the These 8 bits of the
embraces all 32 bits of ECX register may be EDX register may be
the extended register specified as CX specified as DL

Figure 4-7: 8-bit, 16-bit, and 32-bit registers

One nice thing about the 8-bit register halves is that you can read and change
one half of a 16-bit number without disturbing the other half. This means that
if you place the word-sized hexadecimal value 76E9H into register AX, you
can read the byte-sized value 76H from register AH, and OE9H from register
AL. Better still, if you then store the value 0AH into register AL and then read
back register AX, you'll find that the original value of 76E9H has been changed
to 760AH.

Being able to treat the AX, BX, CX, and DX registers as 8-bit halves can
be extremely handy in situations where you're manipulating a lot of 8-bit
quantities. Each register half can be considered a separate register, providing
you with twice the number of places to put things while your program works.

Chapter 4 = Location, Location, Location

95

As you'll see later, finding a place to stick a value in a pinch is one of the great
challenges facing assembly language programmers.

Keep in mind that this dual nature involves only the 16-bit general-purpose
registers AX, BX, CX, and DX. The other 16-bit general-purpose registers, SP,
BP, SI, and DI, are not similarly equipped. There are no SIH and SIL 8-bit
registers, for example, as convenient as that would sometimes be.

The Instruction Pointer

Yet another type of register lives inside the x86 CPUs. The instruction pointer
(usually called IP or, in 32-bit protected mode, EIP) is in a class by itself. In
radical contrast to the gang of eight general-purpose registers, IP is a specialist
par excellence—more of a specialist than even the segment registers. It can do
only one thing: it contains the offset address of the next machine instruction to
be executed in the current code segment.

A code segment is an area of memory where machine instructions are stored.
The steps and tests of which a program is made are contained in code segments.
Depending on the programming model you're using (more on this shortly)
there may be many code segments in a program, or only one. The current code
segment is that code segment whose segment address is currently stored in
code segment register CS. At any given time, the machine instruction currently
being executed exists within the current code segment. In real mode segmented
model, the value in CS can change frequently. In the two flat models, the value
in CS (almost) never changes—and certainly never changes at the bidding of
an application program. (As you'll see later, in protected mode all the segment
registers “belong’” to the operating system and are not changeable by ordinary
programs.)

While executing a program, the CPU uses IP to keep track of where it is in the
current code segment. Each time an instruction is executed, IP is incremented
by some number of bytes. The number of bytes is the size of the instruction
just executed. The net result is to bump IP further into memory, so that it
points to the start of the next instruction to be executed. Instructions come in
different sizes, ranging typically from 1 to 6 bytes. (Some of the more arcane
forms of the more arcane instructions may be even larger.) The CPU is careful
to increment IP by just the right number of bytes, so that it does in fact end up
pointing to the start of the next instruction, and not merely into the middle of
the last instruction or some other instruction.

If IP contains the offset address of the next machine instruction, then where
is the segment address? The segment address is kept in the code segment
register CS. Together, CS and IP contain the full address of the next machine
instruction to be executed.

The nature of this address depends on what CPU you're using, and the
programming model for which you're using it. In the 8088, 8086, and 80286,

Chapter 4 = Location, Location, Location

IP is 16 bits in size. In the 386 and later CPUs, IP (like all the other registers
except the segment registers) graduates to 32 bits in size and becomes EIP.

In real mode segmented model, CS and IP working together give you a
20-bit address pointing to one of the 1,048,576 bytes in real-mode memory. In
both of the two flat models (more on which shortly), CS is set by the operating
system and held constant. IP does all the instruction pointing that you, the
programmer, have to deal with. In the 16-bit flat model (real mode flat model),
this means IP can follow instruction execution all across a full 64K segment
of memory. The 32-bit flat model does far more than double that; 32 bits can
represent 4,294,967,290 different memory addresses. Therefore, in 32-bit flat
model (that is, protected mode flat model), IP can follow instruction execution
across over 4 gigabytes of memory—which used to be an unimaginable
amount of memory, and now is commonplace.

IP is notable in being the only register that can be neither read from nor
written to directly. There are tricks that may be used to obtain the current
value in IP, but having IP’s value is not as useful as you might think, and you
won’t often have to do it.

The Flags Register

There is one additional type of register inside the CPU: what is generically
called the flags register. It is 16 bits in size in the 8086, 8088, and 80286, and
its formal name is FLAGS. It is 32 bits in size in the 386 and later CPUs, and
its formal name in the 32-bit CPUs is EFLAGS. Most of the bits in the flags
register are used as single-bit registers called flags. Each of these individual
flags has a name, such as CF, DF, OF, and so on, and each has a very specific
meaning within the CPU.

When your program performs a test, what it tests are one or another of the
single-bit flags in the flags register. Because a single bit may contain one of
only two values, 1 or 0, a test in assembly language is truly a two-way affair:
either a flag is set to 1 or it isn’t. If the flag is set to 1, the program takes one
action; if the flag is set to 0, the program takes a different action.

The flags register is almost never dealt with as a unit. What happens is that
many different machine instructions test the various flags to decide which way
to go on some either-or decision. We're concentrating on memory addressing
at the moment, so for now I'll simply promise to go into flag lore in more detail
at more appropriate moments later in the book, when we discuss machine
instructions that test the various flags in the flags register.

The Three Major Assembly Programming Models

I mentioned earlier in this chapter that three major programming models are
available for use on the x86 CPUs, though two of them are now considered
archaic. The differences between them lie (mostly) in the use of registers to

Chapter 4 = Location, Location, Location

97

address memory. (The other differences, especially on the high end, are for the
most part hidden from you by the operating system.) This section describes
the three models, all of which we’ll touch on throughout the course of the rest
of this book.

Real Mode Flat Model

In real mode, if you recall, the CPU can see only one megabyte (1,048,576) of
memory. You can access every last one of those million-odd bytes by using the
segment:offset register trick shown earlier to form a 20-bit address out of two
16-bit addresses contained in two registers. Or, you can be content with 64K
of memory, and not fool with segments at all.

In the real mode flat model, your program and all the data it works on
must exist within a single 64K block of memory. Sixty-four kilobytes! Pfeh!
What could you possibly accomplish in only 64K bytes? Well, the first version
of WordStar for the IBM PC fit in 64K. So did the first three major releases
of Turbo Pascal—in fact, the Turbo Pascal program itself occupied a lot less
than 64K because it compiled its programs into memory. The whole Turbo
Pascal package—compiler, text editor, and some odd tools—came to just over
39K. Thirty-nine kilobytes! You can’t even write a letter to your mother (using
Microsoft Word) in that little space these days!

True, true. But that’s mostly because we don’t have to. Memory has become
very cheap, and our machines now contain what by historical standards is a
staggering amount of it. We’ve gotten lazy and hoggish and wasteful, simply
because we can get away with it.

Spectacular things once happened in 64K, and while you may never be
called upon to limit yourself to real mode flat model, the discipline that all
those now gray-haired programmers developed for it is very useful. More to
the point, real mode flat model is the “little brother” of protected mode flat
model, which is the code model you will use when programming under Linux.
If you learn the ways of real mode flat model, protected mode flat model will
be a snap. (Any trouble you'll have won’t be with assembly code or memory
models, but with the byzantine requirements of Linux and its canonical code
libraries.)

Real mode flat model is shown diagrammatically in Figure 4-8. There’s not
much to it. The segment registers are all set to point to the beginning of the
64K block of memory you can work with. (The operating system sets them
when it loads and runs your program.) They all point to that same place and
never change as long as your program is running. That being the case, you
can simply forget about them. Poof! No segment registers, no fooling with
segments, and none of the ugly complication that comes with them.

Because a 16-bit register such as BX can hold any value from 0 to 65,535, it
can pinpoint any single byte within the full 64K your program has to work
with. Addressing memory can thus be done without the explicit use of the

Chapter 4 = Location, Location, Location

segment registers. The segment registers are still functioning, of course, from
the CPU’s point of view. They don’t disappear and are still there, but the
operating system sets them to values of its own choosing when it launches
your program, and those values will be good as long as your program runs.
You don’t have to access the segment registers in any way to write your
program.

16-Bit
Offset Addresses
OFFFFH
The Stack
<«— SP

SP (Stack Pointer) points to the memory

location where the next “push” will

occur. The Stack is a temporary LIFO

(Last In First Out) buffer used by many

x86 machine instructions.

Unused
Memory Space
<«— BX | point to memory locations
where data is stored.
IP points to the memory
Your Program Code < IP location of the next
machine instruction
to be executed by the CPU.
Segment registers are set
0100H . by the operating system,
Program ?Igggl)ent Prefix and you don't fool with them!
0000H <«<— CS || DS || SS || ES

The PSP is a holdover
from ancient CP/M-80!

Figure 4-8: Real mode flat model

Most of the general-purpose registers may contain addresses of locations in
memory. You use them in conjunction with machine instructions to bring data
in from memory and write it back out again.

Chapter 4 = Location, Location, Location

929

At the top of the single segment that your program exists within, you'll see
a small region called the stack. The stack is a LIFO (last in, first out) storage
location with some very special uses. I will explain what the stack is and how
it works in considerable detail later.

Real Mode Segmented Model

The first two editions of this book focused entirely on real mode segmented
model, which was the mainstream programming model throughout the
MS-DOS era, and still comes into play when you launch an MS-DOS win-
dow to run a piece of “legacy” software. It’s a complicated, ugly system that
requires you to remember a lot of little rules and gotchas, but it’s useful to
understand because it illustrates the nature and function of segments very
clearly. Note that under both flat models you can squint a little and pretend
that segments and segment registers don’t really exist, but they are both still
there and operating, and once you get into some of the more exotic styles of
programming, you will need to be aware of them and grasp how they work.

In real mode segmented model, your program can see the full 1IMB of
memory available to the CPU in real mode. It does this by combining a 16-bit
segment address with a 16-bit offset address. It doesn’t just glom them together
into a 32-bit address, however. You need to think back to the discussion of
segments earlier in this chapter. A segment address is not really a memory
address. A segment address specifies one of the 65,535 slots at which a segment
may begin. One of these slots exists every 16 bytes from the bottom of memory
to the top. Segment address 0000H specifies the first such slot, at the very first
location in memory. Segment address 0001H specifies the next slot, which lies
16 bytes higher in memory. Jumping up-memory another 16 bytes gets you
to segment address 0002H, and so on. You can translate a segment address
to an actual 20-bit memory address by multiplying it by 16. Segment address
0002H is thus equivalent to memory address 0020H, which is the 32nd byte in
memory.

But such multiplication isn’t something you have to do. The CPU handles
the combination of segments and offsets into a full 20-bit address internally.
Your job is to tell the CPU where the two different components of that 20-bit
address are. The customary notation is to separate the segment register and
the offset register by a colon, as shown in the following example:

SS:SP
SS:BP
ES:DI
DS:SI
CS:BX

Each of these five register combinations specifies a full 20-bit address. ES:DI,
for example, specifies the address as the distance in DI from the start of the
segment called out in ES.

Chapter 4 = Location, Location, Location

I've drawn a diagram outlining real mode segmented model in Figure 4-9.
In contrast to real mode flat model (shown in Figure 4-8), the diagram here
shows all of memory, not just the one little 64K chunk that your real mode flat
model program is allocated when it runs. A program written for real mode
segmented model can see all of real mode memory.

16-Bit .
Segment Addresses 20-Bit
(Every 16 bytes Memory Addresses
in memory) OFFFFFH (IMB)
S8 = The Stack Address pointed to is
< 5P SS:SP
Stack Segment :
Address pointed to is
Data Segment <« bl ES:DI
Segment registers ES |—>
' c Address pointed to is
specify which Data Segment 8 DS:SI
paragraph boundary
begins a segment. DS >
Segment registers
do not contain Code Segment
memory addresses Next instruction executed is at
per se! cS < IP CS:IP
Code Segment You the programmer do
Segments need not not change code segments
be all the same size, directly. “Long jump”
and they may Over|ap. instructions alter CS as
needed.
Much of memory is taken up
by the operating system
and various buffers and
tables dedicated to its use.
Segment 0 00000H

Figure 4-9: Real mode segmented model

The diagram shows two code segments and two data segments. In practice
you can have any reasonable number of code and data segments, not just two
of each. You can access two data segments at the same time, because you have
two segment registers available to do the job: DS and ES. (In the 386 and later

Chapter 4 = Location, Location, Location

processors, you have two additional segment registers, FS and GS.) Each can
specify a data segment, and you can move data from one segment to another
using any of several machine instructions. However, you only have one code
segment register, CS. CS always points to the current code segment, and the
next instruction to be executed is pointed to by the IP register. You don’t load
values directly into CS to change from one code segment to another. Machine
instructions called jumps change to another code segment as necessary. Your
program can span several code segments, and when a jump instruction (of
which there are several kinds) needs to take execution into a different code
segment, it changes the value in CS for you.

There is only one stack segment for any single program, specified by the
stack segment register SS. The stack pointer register SP points to the memory
address (relative to SS, albeit in an upside-down direction) where the next stack
operation will take place. The stack requires some considerable explaining,
which I take up in several places later in this book.

You need to keep in mind that in real mode, there will be pieces of the
operating system (and if you're using an 8086 or 8088, that will be the whole
operating system) in memory with your program, along with important system
data tables. You can destroy portions of the operating system by careless use
of segment registers, which will cause the operating system to crash and take
your program with it. This is the danger that prompted Intel to build new
features into its 80386 and later CPUs to support a “protected” mode. In
protected mode, application programs (that is, the programs that you write,
as opposed to the operating system or device drivers) cannot destroy the
operating system or other application programs that happen to be running
elsewhere in memory via multitasking. That’s what the protected means.

Finally, although it’s true that there was a sort of rudimentary protected
mode present in the 80286, no operating system ever really used it, and it’s not
much worth discussing today.

Protected Mode Flat Model

Intel’s CPUs have implemented a very good protected mode architecture
since the 386 appeared in 1986. However, application programs cannot make
use of protected mode all by themselves. The operating system must set up
and manage a protected mode before application programs can run within
it. MS-DOS couldn’t do this, and Microsoft Windows couldn’t really do it
either until Windows NT first appeared in 1994. Linux, having no real-mode
“legacy”” issues to deal with, has operated in protected mode since its first
appearance in 1992.

Protected mode assembly language programs may be written for both Linux
and Windows releases from NT forward. (I exclude Windows 9x for technical
reasons. Its memory model is an odd proprietary hybrid of real mode and
protected mode, and very difficult to completely understand —and now almost

102

Chapter 4 = Location, Location, Location

entirely irrelevant.) Note well that programs written for Windows need not
be graphical in nature. The easiest way to program in protected mode under
Windows is to create console applications, which are text-mode programs that
run in a text-mode window called a console. The console is controlled through a
command line almost identical to the one in MS-DOS. Console applications use
protected mode flat model and are fairly straightforward compared to writing
Windows GUI applications. The default mode for Linux is a text console, so
it’s even easier to create assembly programs for Linux, and a lot more people
appear to be doing it. The memory model is very much the same.

I've drawn the protected mode flat model in Figure 4-10. Your program
sees a single block of memory addresses running from zero to a little over
4 gigabytes. Each address is a 32-bit quantity. All of the general-purpose
registers are 32 bits in size, so one GP register can point to any location in the
full 4GB address space. The instruction pointer is 32 bits in size as well, so EIP
can indicate any machine instruction anywhere in the 4GB of memory.

The segment registers still exist, but they work in a radically different way.
Not only don’t you have to fool with them; you can’t. The segment registers
are now considered part of the operating system, and in almost all cases
you can neither read nor change them directly. Their new job is to define
where your 4GB memory space exists in physical or virtual memory. Physical
memory may be much larger than 4GB, and currently 4GB of memory is not
especially expensive. However, a 32-bit register can only express 4,294,967,296
different locations. If you have more than 4GB of memory in your computer,
the operating system must arrange a 4GB region within memory, and your
programs are limited to operating in this region. Defining where in your larger
memory system this 4GB region falls is the job of the segment registers, and
the operating system keeps them very close to its vest.

I won't say a great deal about virtual memory in this book. It’s a system
whereby a much larger memory space can be “mapped” onto disk storage,
so that even with only 4GB of physical memory in your machine, the CPU
can address a “virtual” memory space millions of bytes larger. Again, this
is handled by the operating system, and handled in a way that is almost
completely transparent to the software that you write.

It's enough to understand that when your program runs, it receives a
4GB address space in which to play, and any 32-bit register can potentially
address any of those 4 billion memory locations, all by itself. This is an
oversimplification, especially for ordinary Intel-based desktop PCs. Not all of
the 4GBisat your program’s disposal, and there are certain parts of the memory
space that you can’t use or even look at. Unfortunately, the rules are specific
to the operating system you're running under, and I can’t generalize too far
without specifying Linux or Windows NT or some other protected-mode OS.

But it’s worth taking a look back at Figure 4-8 and comparing real mode flat
model to protected mode flat model. The main difference is that in real mode

Chapter 4 = Location, Location, Location

103

flat model, your program owns the full 64K of memory that the operating
system hands it. In protected mode flat model, you are given a portion of 4GB of
memory as your own, while other portions still belong to the operating system.
Apart from that, the similarities are striking: a general-purpose (GP) register
can by itself specify any memory location in the full memory address space,
and the segment registers are really the tools of the operating system—not
you, the programmer. (Again, in protected mode flat model, a GP register can
hold the address of any location in its 4GB space, but attempting to actually
read from or write to certain locations will be forbidden by the OS and trigger
a runtime error.)

32-Bit
“Flat” Addresses
4GB OFFFFFFFFH
The Stack
<«— ESP
<— ESI
Your Program Data 32-bit GP registers point

<— EDI | to memory locations
where data is stored.

<— EBX

Segment registers have

a new job now. They locate

PP Your Program Code EIP points to the memory
?’nog; ;‘tfnﬁ‘vfr'fl}alsﬁ]%m”rty g <— EIP | location of the next

machine instruction
The OS won't let you fool
with them! They're to be executed by the CPU.

“protected”!

Some portions of your
address space may be
“owned” by the operating
system and not available
for your program’s use.

CS || DS || SS || ES

> 0000H
Figure 4-10: Protected mode flat model

104

Chapter 4 = Location, Location, Location

Note that we haven't really talked about machine instructions in detail yet,
and we’ve been able to pretty crisply define the universe in which machine
instructions exist and work. Memory addressing and registers are key in this
business. If you know them, the instructions will be a snap. If you don’t know
them, the instructions won’t do you any good!

What difficulty exists in programming for protected mode flat model lies in
understanding the operating system, its requirements, and its restrictions. This
can be a substantial amount of learning: Windows NT and Linux are major
operating systems that can take years of study to understand well. I'm going
to introduce you to protected mode assembly programming in flat model in
this book, but you're going to have to learn the operating system on your own.
This book is only the beginning—there’s a long road out there to be walked,
and you're barely off the curb.

What Protected Mode Won't Let Us Do Anymore

People coming to this book with some knowledge of DOS may recall that in the
DOS environment, the entire machine was “wide open” to access from DOS
programs. DOS, of course, was a 16-bit operating system, and could only access
the lowest 1IMB of memory address space. However, a lot of interesting things
resided in that address space, and they were no farther away than loading an
address into DS:AX and having fun. Those days are long gone, and we’re all
better off for it, but there was an intoxicating simplicity in performing a lot
of useful functions that I confess that I miss. That simplicity made explaining
basic assembly language techniques a lot easier, as people who have read the
earlier editions of this book may remember.

It’s useful to understand what protected mode no longer allows us to do,
especially if (like me) you were active as a programmer in the DOS era.

Memory-Mapped Video

The original IBM PC used a very simple and extremely clever mechanism for
displaying text and low-resolution (by today’s standards) graphics. A video
adapter board contained a certain amount of memory, and this memory was
“mapped in” to the PC’s physical memory space. In other words, there was no
“magic”” involved in accessing the video board’s memory. Simply writing data
to a segment:offset memory address somewhere within the range of memory
contained on the video adapter board displayed something on the monitor.
This technique allowed programs to display full screens of text that just
“popped” into view, without any sense of the text gradually appearing from
the top to the bottom, even on early machines with bogglingly slow CPU
chips. The organization of the memory buffer was simple: starting at address
0B00:0 (or 0B800:0 for color displays) was an array of two-byte words. The first

Chapter 4 = Location, Location, Location

byte in each word was an ASCII character code. For example, the number 41H
encoded the capital letter ‘A’. The second byte was a text attribute: the color of
the glyph, the color of the background portion of the character cell, or special
presentations like underlining.

This arrangement made it very easy and very fast to display text using
relatively simple assembly language libraries. Unfortunately, direct access like
this to system peripherals is a violation of protected mode’s protections. The
“why”" is simple: Protected mode makes it possible for multiple programs to
execute at the same time, and if more than one executing program attempted
to change display memory at the same time, video chaos would result. Good
ol DOS was strictly a single-tasking operating system, so only one program
was ever running at a time anyway.

To have multitasking in a way that makes sense, an operating system has
to “manage’” access to video, through elaborate video-display code libraries
that in turn access the display hardware through driver software running
alongside the kernel in kernel space. Drivers enable the operating system
to confine a single program’s video output to a window on the screen, so
that any reasonable number of running programs can display their output
simultaneously without bumping into output from all the other programs.

Now, with all that said, there is a way to set up a buffer in user memory and
then tell Linux to use it for video display. This involves some fusswork around
the Linux framebuffer device dev/fb0 and the mmap and ioctl functions, but it
is nowhere near as simple, and nowhere near as fast. The mechanism is useful
for porting ancient DOS programs to Linux, but for new programs, it’s far
more trouble than it’s worth. Later in this book I'll demonstrate the favored
Linux method for handling text screen output, using a console window and
VT100 control sequences.

Direct Access to Port Hardware

Back in the DOS era, PCs had serial and parallel ports controlled by sepa-
rate controller chips on the motherboard. Like everything else in the machine,
these controller chips could be directly accessed by any software running under
DOS. By writing bit-mapped control values to the chips and creating custom
interrupt service routines, one could create custom ““fine-tuned”” serial inter-
face software, which enabled the plodding 300-character-per-second dial-up
modems of that time to work as fast as they were capable. That was routine,
but with some cleverness, you could make standard computer hardware do
things it was not really intended to do. By studying the hardware controllers
for the machine’s parallel port, for example, I was able to write a two-way
communications system in assembly that moved data very quickly from one
computer to another through their parallel ports. (This was actually pre-PC,
using CP/M for the Z80 CPU.)

106 Chapter 4 = Location, Location, Location

Again, as with video, the requirements of multitasking demand that the
operating system manage access to ports, which it does through drivers and
code libraries; but unlike video, using drivers for interface to ports is actually
much simpler than completely controlling the ports yourself, and I do not
mourn those “bad old days.”

Direct Calls into the BIOS

The third DOS-era technique we’ve had to surrender to the rigors of protected
mode is direct calls to PC BIOS routines. As I explained in Chapter 3, IBM
placed a code library in read-only memory for basic management of video and
peripherals like ports. In the DOS era it was possible for software to call into
these BIOS routines directly and without limitation. In earlier editions of this
book, I explained how this was done in connection with management of text
video.

Protected mode reserves BIOS calls to the operating system, but in truth,
even protected-mode operating systems do little with direct BIOS calls these
days. Almost all low-level access to hardware is done through installable
drivers. Operating systems mostly make BIOS calls to determine hardware
configuration information for things like power management.

As a sort of consolation prize, Linux provides a list of low-level functions
that may be called through a mechanism very similar to BIOS calls, using
software interrupt 80H. I'll explain what software interrupts are and how
they’re used later in this book.

Looking Ahead: 64-Bit “Long Mode”

The future is already with us, and you can buy it at Fry’s. All but the
least expensive desktop PCs these days contain AMD or Intel CPUs that are
technically 64 bits “wide.” In order to use these 64-bit features, you need an
operating system that was explicitly compiled for them and knows how to
manage them. Both Windows and Linux are available in versions compiled
for 64-bit “long mode.” Windows Vista and Windows XP have both been
available in 64-bit versions for some time. Windows 7 will be (as best we
know) available in both 32-bit and 64-bit versions. For both Windows and
Ubuntu Linux, you have to choose which version you want. One size does
not “fit all.” In this book I'm focusing on the 32-bit version of Linux, with the
reassurance that everything will run on 64-bit Linux in 32-bit compatibility
mode. However, it’s useful to get a sense of what long mode offers, so that
you can explore it on your own as your programming skills mature.

The 64-bit x86 architecture has a peculiar history: in 2000, Intel’s competitor
AMD announced a 64-bit superset of the IA-32 architecture. AMD did not
release CPUs implementing this new architecture until 2003, but it was

Chapter 4 = Location, Location, Location

107

a pre-emptive strike in the CPU wars. Intel already had a 64-bit architecture
called TA-64 Itanium, but Itanium was a clean break with IA-32, and IA-32
software would not run on Itanium CPUs without recompilation, and, in
some cases, recoding. The industry wanted backward compatibility, and the
response to AMD’s new architecture was so enthusiastic that Intel was forced
to play catch-up and implement an AMD-compatible architecture, which it
named Intel 64. Intel’s first AMD-compatible 64-bit CPUs were released in
late 2004. The vendor-neutral term “x86-64"" is now being applied to features
implemented identically by both companies.

The x86-64 architecture defines three general modes: real mode, protected
mode, and long mode. Real mode is a compatibility mode that enables the
CPU to run older real-mode operating systems and software like DOS and
Windows 3.1. In real mode the CPU works just like an 8086 or other x86
CPU does in real mode, and supports real mode flat model and real mode
segmented model. Protected mode is also a compatibility mode, and makes
the CPU “look like” an IA-32 CPU to software, so that x86-64 CPUs can run
Windows 2000/XP/Vista/7 and other 32-bit operating systems like Linux,
plus their 32-bit drivers and applications.

Long mode is a true 64-bit mode; and when the CPU is in long mode,
all registers are 64 bits wide, and all machine instructions that act on 64-bit
operands are available.

All of the registers available in IA-32 are there, and have been extended to
64 bits in width. The 64-bit versions of the registers are renamed beginning
with an R: EAX becomes RAX, EBX becomes RBX, and so on. Over and
above the familiar general-purpose registers present in IA-32, there are eight
brand-new 64-bit general-purpose registers with no 32-bit counterparts. These
brand-new registers are named R8 through R15. I haven’t said much about the
x86 architecture’s fast math features, and won’t in this book, but x86-64 adds
eight 128-bit SSE registers to IA-32’s eight, for a total of 16.

All of these new registers are like manna from heaven to assembly program-
mers seeking increases in execution speed. The fastest place to store data is
in registers, and programmers who suffered under the register scarcity of the
early x86 CPUs will look at that pile of internal wealth and gasp.

64-Bit Memory: What May Be Possible Someday vs.
What We Can Do Now

As I've described earlier, 32 bits can address only 4 gigabytes of memory.
Various tricks have been used to make more memory available to programs
running on IA-32 CPUs. In 64-bit long mode we have something like the
opposite problem: 64 bits can address such a boggling immensity of memory
that memory systems requiring 64 bits” worth of address space will not be
created for a good many years yet. (I hedge a little here by reminding myself

Chapter 4 = Location, Location, Location

and all of you that we’ve said things like that before, only to get our noses
rubbed in it.)

64 bits can address 16 exabytes. An exabyte is 2% bytes, which may be
described more comprehensibly as a billion gigabytes, which is a little over one
quintillion bytes. Our computer hardware will get there someday, but we're
not there yet. The kicker for the here and now is this: managing all the bits
in those 64-bit addresses takes transistors within the CPU’s microarchitecture.
So rather than waste transistors on the chip managing memory address lines
that will not be used within the expected lifetime of the CPU chip (or even
the x86-64 architecture itself), chipmakers have limited the number of address
lines that are actually functional within current chip implementations.

The x86-64 CPU chips that you can buy today implement 48 address bits for
virtual memory, and only 40 bits for physical memory. That’s still far more
physical memory than you can stuff into any physical computer at present:
2% represents one terabyte; basically a little over a thousand gigabytes, or one
trillion bytes. I know of higher-end machines that can accept 64GB. A terabyte
is a few years off yet.

I say all this to emphasize that you're not cheating yourself out of anything
by programming for the IA-32 architecture now and for the next few years.
The NASM assembler that I'll be describing in the next chapter can generate
code for 64-bit long mode, and if you have a 64-bit version of Linux installed,
you can write code for it right now. There are some differences in the way that
64-bit Linux handles function calls, but 64-bit long mode is still a flat model,
and it is far more similar to 32-bit flat model than 32-bit flat model is to the
benighted real mode segmented model that we suffered under for the first 15
or 20 years of the PC era.

That’s enough for the time being about the platform on which our code will
run. It’s time to start talking about the process of writing assembly language
programs, and the tools with which we’ll be doing it.

CHAPTER

5

The Right to Assemble

The Process of Creating Assembly
Language Programs

Rudyard Kipling’s poem “In the Neolithic Age” (1895) gives us a tidy little
scold on tribal certainty. Having laid about himself successfully with his trusty
diorite tomahawk, the poem’s Neolithic narrator eats his former enemies while
congratulating himself for following the One True Tribal Path. Alas, his totem
pole has other thoughts, and in a midnight vision puts our cocky narrator in
his place:

“There are nine and sixty ways of constructing tribal lays,

And every single one of them is right!”

The moral of the poem: Trust your totem pole. What's true of tribal lays
is also true of programming methodologies. There are at least nine and sixty
ways of making programs, and I've tried most of them over the years. They're
all different, but they all work, in that they all produce programs that can be
loaded and run—once the programmer figures out how to follow a particular
method and use the tools that go with it.

Still, although all these programming techniques work, they are not inter-
changeable, and what works for one programming language or tool set will
not apply to another programming language or tool set. In 1977 I learned
to program in a language called APL (A Programming Language; how pro-
found) by typing in lines of code and watching what each one did. That was
the way that APL worked: Each line was mostly an independent entity, which
performed a calculation or some sort of array manipulation, and once you

Chapter 5 = The Right to Assemble

pressed Enter the line would crunch up a result and print it for you. (I learned
it on a Selectric printer/terminal.) You could string lines together, of course,
and I did, but it was an intoxicating way to produce a program from an initial
state of total ignorance, testing everything one single microstep at a time.

Later I learned BASIC almost the same way that I learned APL, and later
still Perl, but there were other languages that demanded other techniques.
Pascal and C both required significant study beforehand, because you can’t
just hammer in one line and execute it independently. Much later still, when
Windows went mainstream, Visual Basic and especially Delphi changed the
rules radically. Programming became a sort of stimulus-response mechanism,
in which the operating system sent up stimuli called events (keystrokes, mouse
clicks, and so on) and simple programs consisted mostly of responses to those
events.

Assembly language is not constructed the same way that C, Java, or Pascal is
constructed. Very pointedly, you cannot write assembly language programs by
trial and error, nor can you do it by letting other people do your thinking for
you. It is a complicated and tricky process compared to BASIC or Perl or such
visual environments as Delphi, Lazarus, or Gambas. You have to pay attention.
You have to read the sheet music. And most of all, you have to practice.

In this chapter I'm going to teach you assembly language’s tribal lays as I've
learned them.

Files and What's Inside Them

All programming is about processing files. Some programming methods hide
some of those files, and all methods to some extent strive to make it easier for
human beings to understand what’s inside those files; but the bottom line is
you’ll be creating files, processing files, reading files, and executing files.

Most people understand that a file is a collection of data stored on a medium
of some kind: a hard disk drive, a thumb drive or Flash card, an optical disk, or
an occasional exotic device of some sort. The collection of data is given a name
and manipulated as a unit. Your operating system governs the management
of files on storage media. Ultimately, it brings up data from within a file for
you to see, and writes the changes that you make back to the file or to a new
file that you create with the operating system’s help.

Assembly language is notable in that it hides almost nothing from you; and
to be good at it, you have to be willing to go inside any file that you deal with
and understand it down to the byte and often the bit level. This takes longer,
but it pays a huge dividend in knowledge: you will know how everything
works. APL and BASIC, by contrast, were mysteries. I typed in a line, and
the computer spat back a response. What happened in between was hidden

Chapter 5 = The Right to Assemble

very well. In assembly language, you see it all. The trick is to understand what
you're looking at.

Binary Files vs. Text Files

The looking isn’t always easy. If you've worked with Windows or Linux
(and before that, DOS) for any length of time, you may have a sense of the
differences between files in terms of how you “look at” them. A simple text file
is opened and examined in a simple text editor. A word processor file is opened
in the species of word processor that created it. A PowerPoint presentation
file is opened from inside the PowerPoint application. If you try to load it into
Word or Excel, the application will display garbage, or (more likely) politely
refuse to obey the open command. Trying to open an executable program file
in a word processor or other text editor will generally get you either nowhere
or screen garbage.

Text files are files that can be opened and examined meaningfully in a
text editor, such as Notepad in Windows, or any of the many text editors
available for Linux. Binary files are files containing values that do not display
meaningfully as text. Most higher-end word processors confuse the issue by
manipulating text and then mixing the text with formatting information that
does not translate into text, but instead dictates things such as paragraph
spacing, line height, and so on. Open a Word or OpenOffice document in a
simple text editor and you'll see what I mean.

Text files contain uppercase and lowercase letters and numeric digits, plus
odd symbols like punctuation. There are 94 such visible characters. Text files
also contain a group of characters called whitespace. Whitespace characters give
text files their structure by dividing them into lines and providing space within
lines. These include the familiar space character, the tab character, the newline
character that indicates a line end, and sometimes a couple of others. There are
also fossil characters such as the BEL character, which was used decades ago
to ring the little mechanical brass bell in teletype machines, and while BEL is
technically considered whitespace, most text editors simply ignore it.

Text files in the PC world are a little more complicated, because there are
another 127 characters containing glyphs for mathematical symbols, charac-
ters with accent marks and other modifiers, Greek letters, and ““box draw”’
characters that were widely used in ancient times for drawing screen forms,
before graphical user interfaces such as Windows and Gnome. How well these
additional characters display in a text editor or terminal window depends
entirely on the text editor or terminal window and how it is configured.

Text files become even more complex when you introduce non-Western
alphabets through the Unicode standard. Explaining Unicode in detail is
beyond the scope of this book, but good introductions are available on
Wikipedia and elsewhere.

112

Chapter 5 = The Right to Assemble

Text files are easy to display, edit, and understand. Alas, there’s a lot more
to the programming world than text files. In previous chapters, I defined
what a computer program is, from the computer’s perspective. A program
is, metaphorically, a long journey in very small steps. These steps are a list
of binary values representing machine instructions that direct the CPU to do
what it must to accomplish the job at hand. These machine instructions, even
in their hexadecimal shorthand form, are gobbledygook to human beings.
Here’s a short sequence of binary values expressed in hexadecimal:

FE FF A2 37 4C OA 29 00 91 CB 60 61 E8 E3 20 00 A8 00 B8 29 1F FF 69 55

Is this part of a real program or isn’t it? You’d probably have to ask the CPU
to find out, unless you were a machine-code maniac of the kind that hasn’t
been seen since 1978. (It isn’t.)

But the CPU has no trouble with programs presented in this form. In fact,
the CPU can’t handle programs any other way. The CPU itself simply isn’t
equipped to understand and obey a string of characters such as

LET X = 42
or even something that we out here would call assembly language:
mov eax, 42

To the CPU, it’s binary only. The CPU just might interpret a sequence of text
characters as binary machine instructions, but if this happened it would be
pure coincidence, and the coincidence would not go on longer than three or
four characters” worth. Nor would the sequence of instructions be likely to do
anything useful.

From a height, the process of assembly language programming (or pro-
gramming in many other languages) consists of taking human-readable text
files and translating them somehow into files containing sequences of binary
machine instructions that the CPU can understand. You, as a programmer,
need to understand which files are which (a lot more on this later) and how
each is processed. Also, you need to be able to “open’ an executable binary
file and examine the binary values that it contains.

Looking at File Internals with the Bless Editor

Very fortunately, there are utilities that can open, display, and enable you
to change characters or binary bytes inside any kind of file. These are called
binary editors or hexadecimal editors, and the best of them in my experience (at
least for the Linux world) is the Bless Hex Editor. It was designed to operate
under graphical user interfaces such as Gnome, and it is very easy to figure
out by exploring the menus.

Bless is not installed by default under Ubuntu. You can download it free of
charge from its home page:

http://home.gna.org/bless/

Chapter 5 = The Right to Assemble

113

However, you can very easily install it from the Ubuntu Applications menu.
Select Add/Remove and leave the view set to All (the default). Type Bless in
the Search field, and the Bless Hex Editor should be the only item to appear.
(Give it a few seconds to search; the item won’t appear instantaneously.) Check
its check box to select it for installation, and then click Apply. Once installed,
the Bless Hex Editor will be available in Applications — Programming, or you
can create a desktop launcher for it if you prefer.

Demonstrating Bless will also demonstrate why it’s necessary for program-
mers to understand even text files at the byte level. In the listings archive for
this book (see the Introduction for the URL) are two files, ssmwindows.txt
and samlinux.txt. Extract them both. Launch Bless, and using the File — Open
command, open samlinux.txt. When that file has been opened, use File — Open
again to open samwindows.txt. What you'll see should look like Figure 5-1.

Fle Edit V\iew Search Tools Help

® W O o T B I8 I
Mew Open Save Cut Copy Paste Find Find and Replace

samlinux.txt & |samwindows txt 3

0000000052 61 6D OA 77 61 73 OA 61 DA 6D 61 6E 2E 0A Sam.was.a.man. .
Signed 8 hit: |§H i Signed 32 hir: ;W! Hexadecimal: |W| [x]
Unsigned 8 biL: |83 | unsigned 32 bit: |174340499 | Decirmal: |083 097 109 010 |
Signed 16 bit: |z4915 | Float 32 bit: |1.142944E-32 | Octal; |123 141 155 012 |
Unsigned 16 bit: [24315 | Float 64 bit: |2.52100493565032C-250 Binary: (01010011 01100001 01
& show little endian decading] show unsigned as hexadecimal ASCII Text: |Sarn
Offset: 0x0 [Oxe Selection: Nona NS

Figure 5-1: Displaying a Linux text file with the Bless Hex Editor

I've shortened the display pane vertically just to save space here on the
printed page; after all, the file itself is only about 15 bytes long. Each opened
file has a tab in the display pane, and you can switch instantly between files
by clicking on the tabs.

The display pane is divided into three parts. The left column is the offset
column. It contains the offset from the beginning of the file for the first byte
displayed on that line in the center column. The offset is given in hexadecimal.
If you're at the beginning of the file, the offset column will be 00000000. The
center column is the hex display column. It displays a line of data bytes
from the file in hexadecimal format. How many bytes are shown depends on
how you size the Bless window and what screen resolution you're using. The
minimum number of bytes displayed is (somewhat oddly) seventeen. In the
center column the display is always in hexadecimal, with each byte separated
from adjacent bytes by a space. The right column is the same line of data with

114

Chapter 5 = The Right to Assemble

any “visible” text characters displayed as text. Nondisplayable binary values
are represented by period characters.

If you click on the samwindows.txt tab, you'll see the same display for the
other file, which was created using the Windows Notepad text editor. The
samwindows.txt file is a little longer, and you have a second line of data bytes
in the center column. The offset for the second line is 00000012. This is the
offset in hex of the first (and in this case, the only) byte in the second line.

Why are the two files different? Bring up a terminal window and use the
cat command to display both files. The display in either case will be identical:

Sam
was
a

man.

Figure 5-2 shows the Bless editor displaying samwindows.txt. Look carefully
at the two files as Bless displays them (or at Figures 5-1 and 5-2) and try to
figure out the difference on your own before continuing.

Flle Edit V\iew Search Tools Help

i @ & o = B | I& €4

Mew Open Save Cut Copy Paste Find Find and Replace
samlinuxitxt £ | samwindows.tx £

D'é'b'oﬁ'ht{i}”i"sé 61 6D OD 0A 77 61 73 0D 0A 61 0D OA 6D 61 6E 2E
000000LL |OD DA

Sam..was..a..man.

Signed 8 hit: |§H—| Signed 32 hir: W| Hexadecimal: |W| [x]
Unsigned 8 bil: |83 | Unsigned 32 bit: [225272147 [Decirmal: |083 097 109 013 |
Signed 16 bit: |24915 | Float 32 bit: |7.314841E-31 | Octal; |123 141 155 015 |
Unsigned 16 bit: |24915 | Float 64 bit: | 6.10569305392504C | 247 Binary: 01010011 01100001 Ol|
& show little endian decoding | show unsigned as hexadecimal ASCII Text: |Sarn|E
Offset: Ox0 [Ox12 Selection: None NS

Figure 5-2: Displaying a Windows text file with the Bless editor

At the end of each line of text in both files is a 0OAH byte. The Windows
version of the file has a little something extra: a 0DH byte preceding each 0AH
byte. The Linux file lacks the ODH bytes. As standardized as “plain” text files
are, there can be minor differences depending on the operating system under
which the files were created. As a convention, Windows text files (and DOS
text files in older times) mark the end of each line with two characters: 0DH
followed by OAH. Linux (and nearly all Unix-descendent operating systems)
mark the end of each line with a 0AH byte only.

Chapter 5 = The Right to Assemble

As you've seen in using cat on the two files, Linux displays both versions
identically and accurately. However, if you were to take the Linux version of
the file and load it into the Windows Notepad text editor, you’d see something
a little different, as shown in Figure 5-3.

=15ix]
Fie EL Fomal Yiew Hep
Eamlwas0alman. 0 ;I

By

Figure 5-3: A Linux text file displayed under Windows

Notepad expects to see both the 0DH and the 0AH at the end of each text
line, and doesn’t understand a lonely 0AH value as an end-of-line (EOL)
marker. Instead, it inserts a thin rectangle everywhere it sees a 0AH, as it
would for any single character that it didn’t know how to display or interpret.
Not all Windows software is that fussy. Many or most other Windows utilities
understand that 0AH is a perfectly good EOL marker.

The ODH bytes at the end of each line are another example of a ““fossil”
character. Decades ago, in the Teletype era, there were two separate electrical
commands built into Teletype machines to handle the end of a text line when
printing a document. One command indexed the paper upward to the next
line, and the other returned the print head to the left margin. These were called
line feed and carriage return, respectively. Carriage return was encoded as 0DH
and line feed as 0AH. Most computer systems and software now ignore the
carriage return code, though a few (like Notepad) still require it for proper
display of text files.

This small difference in text file standards won’t be a big issue for you, and
if you're importing files from Windows into Linux, you can easily remove the
extra carriage return characters manually, or—what a notion!—write a small
program in assembly to do it for you. What’s important for now is that you
understand how to load a file into the Bless Hex Editor (or whatever hex editor
you prefer; there are many) and inspect the file at the individual byte level.

You can do more with Bless than just look. Editing of a loaded file can be
done in either the center (binary) column or the right (text) column. You can
bounce the edit cursor between the two columns by pressing the Tab key.
Within either column, the cursor can be moved from byte to byte by using the
standalone arrow keys. Bless respects the state of the Insert key, and you can
either type over or insert bytes as appropriate.

I shouldn’t have to say that once you've made changes to a file, save it back
to disk by clicking the Save button.

116 Chapter 5 = The Right to Assemble

Interpreting Raw Data

Seeing a text file as a line of hexadecimal values is a very good lesson in a
fundamental principle of computing: Everything is made of bits, and bit patterns
mean what we agree that they mean. The capital letter “S” that begins both
of the two text files displayed in Bless is the hexadecimal number 53H. It
is also the decimal number 83. At the very bottom, it is a pattern of eight
bits: 01010011. Within this file, we agree among ourselves that the bit pattern
01010011 represents a capital ““S.” In an executable binary file, the bit pattern
01010011 might mean something entirely different, depending on where in the
file it happened to be, and what other bit patterns existed nearby in the file.

This is why the lower pane of the Bless Hex Editor exists. It takes the
sequence of bytes that begins at the cursor and shows you all the various
ways that those bytes may be interpreted. Remember that you won't always
be looking at text files in a hex editor like Bless. You may be examining a data
file generated by a program you're writing, and that data file may represent a
sequence of 32-bit signed integers; or a sequence of unsigned 16-bit integers;
or a sequence of 64-bit floating-point numbers; or a mixture of any or all of
the above. All you'll see in the center pane is a series of hexadecimal values.
What those values represent depends on what program wrote those values to
the file and what those values stand for in the “real” world. Are they dollar
amounts? Measurements? Data points generated by some sort of instrument?
That’s up to you—and to the software that you use. The file, as with all files,
is simply a sequence of binary patterns stored somewhere that we display
(using Bless) as hexadecimal values to make them easier to understand and
manipulate.

Bounce the cursor around the list of hex values in the center column and
watch how the interpretations in the bottom pane change. Note that some of
the interpretations look at only one byte (8 bits), others two bytes (16 bits), or
four bytes (32 bits), or eight bytes (64 bits). In every case the sequence of bytes
being interpreted begins at the cursor and goes toward the right. For example,
with the cursor at the first position in the file:

m 53H may be interpreted as decimal value 83.
m 53 61H may be interpreted as decimal 21345.
m 53 61 6D 0AH may be interpreted as decimal 1398893834.

m 53 616D 0A 77 6173 0AH may be interpreted as the floating-point number
4.54365038640977%.

(The differences between a signed value and an unsigned value will have to
wait until later in this book.) The important thing to understand is that in all
cases it’s the very same sequence of bytes at the very same location within the

Chapter 5 = The Right to Assemble

117

file. All that changes is how many bytes we look at, and what kind of value
we want that sequence of bytes to represent.

This may become clearer later when we begin writing programs that work
on numbers. And, speaking of numbers . ..

“Endianness”

In the lower-left corner of the bottom pane of the Bless editor is a check box
marked “Show little endian decoding.” By default the box is not checked,
but in almost all cases it should be. The box tells Bless whether to interpret
sequences of bytes as numeric values in ““big endian” order or in ““little endian”’
order. If you click and unclick the check box, the values displayed in the lower
pane will change radically, even if you don’'t move the cursor. When you
change the state of that check box, you are changing the way that the Bless
editor interprets a sequence of bytes in a file as some sort of number.

If you recall from Chapter 4, a single byte can represent numbers from 0 to
255.If you want to represent a number larger than 255, you must use more than
one byte to do it. A sequence of two bytes in a row can represent any number
from 0 to 65,535. However, once you have more than one byte representing a
numeric value, the order of the bytes becomes crucial.

Let’s go back to the first two bytes in either of the two files we loaded earlier
into Bless. They’re nominally the letters “S” and ““a,”” but that is simply another
interpretation. The hexadecimal sequence 53 61H may also be interpreted as
a number. The 53H appears first in the file. The 61H appears after it (see
Figures 5-1 and 5-2). So, taken together as a single 16-bit value, the two bytes
become the hex number 53 61H.

Or do they? Perhaps a little weirdly, it’s not that simple. See Figure 5-4. The
left part of the figure is a little excerpt of the information shown in the Bless
hex display pane for our example text file. It shows only the first two bytes and
their offsets from the beginning of the file. The right portion of the figure is the
very same information, but reversed left-for-right, as though seen in a mirror.
It’s the same bytes in the same order, but we see them differently. What we
assumed at first was the 16-bit hex number 53 61H now appears to be 61 53H.

Did the number change? Not from the computer’s perspective. All that
changed was the way we printed it on the page of this book. By custom, people
reading English start at the left and read toward the right. The layout of the
Bless hex editor display reflects that. But many other languages in the world,
including Hebrew and Arabic, start at the right margin and read toward the
left. An Arabic programmer’s first impulse might be to see the two bytes as 61
53H, especially if he or she is using software designed for the Arabic language
conventions, displaying file contents from right to left.

It's actually more confusing than that. Western languages (including
English) are a little schizoid, in that they read text from left to right, but

118 Chapter 5 = The Right to Assemble

Reading from left to right
(English & most Reading from right to left
European languages) (Hebrew & Arabic)

Offset Increases > <] Offset Increases

00 01 01 00
53 61 61 53

Sois it “563 61H” or “61 53H” ?
Figure 5-4: Differences in display order vs. differences in evaluation order

evaluate numeric columns from right to left. The number 426 consists of four
hundreds, two tens, and six ones, not four ones, two tens, and six hundreds.
By convention here in the West, the least significant column is at the right,
and the values of the columns increase from right to left. The most significant
column is the leftmost.

Confusion is a bad idea in computing. So whether or not a sequence of
bytes is displayed from left to right or from right to left, we all have to agree
on which of those bytes represents the least significant figure in a multibyte
number, and which the most significant figure. In a computer, we have two
options:

m We can agree that the least significant byte of a multibyte value is at the
lowest offset, and the most significant byte is at the highest offset.

m We can agree that the most significant byte of a multibyte is at the lowest
offset, and the least significant byte is at the highest offset.

These two choices are mutually exclusive. A computer must operate using one
choice or the other; they cannot both be used at the same time at the whim of
a program. Furthermore, this choice is not limited to the operating system, or
to a particular program. The choice is baked right into the silicon of the CPU
and its instruction set. A computer architecture that stores the least significant
byte of a multibyte value at the lowest offset is called little endian. A computer
architecture that stores the most significant byte of a multibyte value at the
lowest offset is called big endian.

Figure 5-5 should make this clearer. In big endian systems, a multibyte value
begins with its most significant byte. In little endian systems, a multibyte value
begins with its least significant byte. Think: big endian, big end first; little
endian, little end first.

Chapter 5 = The Right to Assemble 119

Big Endian Little Endian

Offset Increases > Offset Increases >

00 01 00 01
it 53 61

Tl e

hex;g:::iitmal 61 53

Most Least Most Least
Significant Significant Significant Significant
Byte Byte Byte Byte

¥

¥

21345 decimal 24915

equivalent

Unsigned

Figure 5-5: Big endian vs. little endian for a 16-bit value

There are big differences at stake here! The two bytes that begin our example
text file represent the decimal number 21,345 in a big endian system, but 24,915
in a little endian system.

It’s possible to do quite a bit of programming without being aware of a
system’s “endianness.” If you program in higher-level languages like Visual
Basic, Delphi, or C, most of the consequences of endianness are hidden by the
language and the language compiler—at least until something goes wrong
at a low level. Once you start reading files at a byte level, you have to know
how to read them; and if you're programming in assembly language, you had
better be comfortable with endianness going in.

Reading hex displays of numeric data in big endian systems is easy, because
the digits appear in the order that Western people expect, with the most
significant digits on the left. In little endian systems, everything is reversed;
and the more bytes used to represent a number, the more confusing it can
become. Figure 5-6 shows the endian differences between evaluations of a
32-bit value. Little endian programmers have to read hex displays of multibyte
values as though they were reading Hebrew or Arabic, from right to left.

Remember that endianness differences apply not only to bytes stored in
files but also to bytes stored in memory. When (as I'll explain later) you
inspect numeric values stored in memory with a debugger, all the same rules

apply.

120 Chapter 5 = The Right to Assemble

Big Endian Little Endian

Offset Increases > Offset Increases >

00 01 02 03 00 01 02 03
53 61 6D 0A See |53 61 6D 0A

53 61 6D O0A ieietima OA 6D 61 53

Most Least Most Least
Significant Significant Significant Significant
Byte Byte Byte Byte
Unsi_gned

1398893834 Jocimal 174940499

Figure 5-6: Big endian vs. little endian for a 32-bit value

So, which “endianness” do Linux systems use? Both! (Though not at the
same time . .) Again, it’s not about operating systems. The entire x86 hardware
architecture, from the lowly 8086 up to the latest Core 2 Quad, is little endian.
Other hardware architectures, such as Motorola’s 68000 and the original
PowerPC, and most IBM mainframe architectures like System/370, are big
endian. More recent hardware architectures have been designed as bi-endian,
meaning they can be configured (with some difficulty) to interpret numeric
values one way or the other at the hardware level. Alpha, MIPS, and Intel’s
Itanium architecture are bi-endian.

If (as mostly likely) you're running Linux on an ordinary x86 CPU, you'll be
little endian, and you should check the box on the Bless editor labeled ““Show
little endian decoding.” Other programming tools may offer you the option of
selecting big endian display or little endian display. Make sure that whatever
tools you use, you have the correct option selected.

Linux, of course, can be made to run on any hardware architecture, so using
Linux doesn’t guarantee that you will be facing a big endian or little endian
system, and that’s one reason I've gone on at some length about endianness
here. You have to know from studying the system what endianness is currently
in force, though you can learn it by inspection: store a 32-bit integer to memory
and then look at it with a debugger or a hex editor like Bless. If you know your
hex (and you had better!) the system’s endianness will jump right out at you.

Chapter 5 = The Right to Assemble

121

Text In, Code Out

From a height, all programming is a matter of processing files. The goal
is to take one or more human-readable text files and then process them to
create an executable program file that you can load and run under whatever
operating system you're using. For this book, that would be Linux, but the
general process that I describe in this section applies to almost any kind of
programming under almost any operating system.

Programming as a process varies wildly by language and by the set of
tools that support the language. In modern graphical interactive development
environments such as Visual Basic and Delphi, much of file processing is done
“behind the scenes” while you, the programmer, are staring at one or more
files on display and pondering your next move. In assembly language that’s
not the case. Most assembly language programmers use a much simpler tool
set, and explicitly process the files as sequences of discrete steps entered from
a command line or a script file.

However it’s done, the general process of converting text files to binary
files is one of translation, and the programs that do it are as a class called
translators. A translator is a program that accepts human-readable source files
and generates some kind of binary file. The output binary file could be an
executable program file that the CPU can understand, or it could be a font file,
or a compressed binary data file, or any of a hundred other types of binary file.

Program translators are translators that generate machine instructions that
the CPU can understand. A program translator reads a source code file line
by line, and writes a binary file of machine instructions that accomplishes the
computer actions described by the source code file. This binary file is called an
object code file.

A compiler is a program translator that reads in source code files written in
higher-level languages such as C or Pascal and writes out object code files.

An assembler is a special type of compiler. It, too, is a program translator that
reads source code files and outputs object code files for execution by the CPU.
However, an assembler is a translator designed specifically to translate what
we call assembly language into object code. In the same sense that a language
compiler for Pascal or C++ compiles a source code file to an object code file,
we say that an assembler assembles an assembly language source code file to
an object code file. The process, one of translation, is similar in both cases.
Assembly language, however, has an overwhelmingly important characteristic
that sets it apart from compilers: total control over the object code.

Assembly Language

Some people define assembly language as a language in which one line of
source code generates one machine instruction. This has never been literally

122

Chapter 5 = The Right to Assemble

true, as some lines in an assembly language source code file are instructions to
the translator program (rather than to the CPU) and do not generate machine
instructions at all.

Here’s a better definition:

Assembly language is a translator language that allows total control
over every individual machine instruction generated by the translator
program. Such a translator program is called an assembler.

Pascal or C++ compilers, conversely, make a multitude of invisible and
inalterable decisions about how a given language statement will be translated
into a sequence of machine instructions. For example, the following single
Pascal statement assigns a value of 42 to a numeric variable called 1:

I := 42;

When a Pascal compiler reads this line, it outputs a series of four or five
machine instructions that take the literal numeric value 42 and store it in
memory at a location encoded by the name 1. Normally, you—the Pascal
programmer—have no idea what these four or five instructions actually are,
and you have utterly no way of changing them, even if you know a sequence
of machine instructions that is faster and more efficient than the sequence used
by the compiler. The Pascal compiler has its own way of generating machine
instructions, and you have no choice but to accept what it writes to its object
code file to accomplish the work of the Pascal statements you wrote in the
source code file.

To be fair, modern high-level language compilers generally implement
something called in-line assembly, which allows a programmer to “take back”
control from the compiler and “drop in” a sequence of machine instructions
of his or her own design. A great deal of modern assembly language work is
done this way, but it’s actually considered an advanced technique, because
you first have to understand how the compiler generates its own code before
you can “do better” using in-line assembly. (And don’t assume, as many do,
that you can do better than the compiler without a great deal of study and
practice!)

An assembler sees at least one line in the source code file for every machine
instruction that it generates. It typically sees more lines than that, and the
additional lines deal with various other things, but every machine instruction
in the final object code file is controlled by a corresponding line in the source
code file.

Each of the CPU’s many machine instructions has a corresponding mnemonic
inassembly language. As the word suggests, these mnemonics began as devices
to help programmers remember a particular binary machine instruction. For
example, the mnemonic for binary machine instruction 9CH, which pushes

Chapter 5 = The Right to Assemble

123

the flags register onto the stack, is pusuF—which is a country mile easier to
remember than 9CH.

When you write your source code file in assembly language, you arrange
series of mnemonics, typically one mnemonic per line in the source code text
file. A portion of a source code file might look like this:

mov eax, 4 ; 04H specifies the sys_write kernel call

mov ebx, 1l ; 01H specifies stdout

mov ecx,Message ; Load starting address of display string into ECX
mov edx,MessageLength ; Load the number of chars to display into EDX
int 80H; ; Make the kernel call

Here, the words mov and mov at the left margin are the mnemonics. The
numbers and textual items to the immediate right of each mnemonic are that
mnemonic’s operands. There are various kinds of operands for various machine
instructions, and some instructions (such as pusuF mentioned previously) use
no operands at all.

Taken together, a mnemonic and its operands are called an instruction.
(Words to the right of the semicolons are comments, and are not part of the
instructions.) This is the word I'll be using most of the time in this book to
indicate the human-readable proxy of one of the CPU’s pure binary machine
code instructions. To talk about the binary code specifically, I'll always refer
to a machine instruction.

The assembler’s most important job is to read lines from the source code file
and write machine instructions to an object code file (see Figure 5-7).

Mnemonic Operands Comment

mov ebp,esp ; Save the stack pointer in ebp

The assembler reads a line like this from the
source code file, and writes the equivalent
machine instruction to an object code file:

8BH ECH

Figure 5-7: What the assembler does

124

Chapter 5 = The Right to Assemble

Comments

To the right of each instruction is text starting with a semicolon. This text
is called a comment, and its purpose should be obvious: to cast some light
on what the associated assembly language instruction is for. The instruction
Mov EBX, ESP places the current value of the stack pointer into register
ebx—but why? What is the instruction accomplishing in the context of the
assembly language program that you're writing? Comments provide the why.

Structurally, a comment begins with the first semicolon on a line, and
continues toward the right to the EOL marker at the end of that line. A
comment does not need to be on the same line with an instruction. Much
useful description in assembly language programs exists in comment blocks,
which are sequences of lines consisting solely of comment text. Each line in a
comment block begins with a semicolon at the left margin.

Far more than in any other programming language, comments are critical to
the success of your assembly language programs. My own recommendation
is that every instruction in your source code files should have a comment to
its right. Furthermore, every group of instructions that act together in some
way should be preceded by a comment block that explains that group of
instructions ““from a height” and how they work together.

Comments are one area where understanding how a text file is structured
is very important—because in assembly language, comments end at the ends
of lines. In most other languages such as Pascal and C, comments are placed
between pairs of comment delimiters like (* and *), and EOL markers at line
ends are ignored.

In short: Comments begin at semicolons and end at EOL.

Beware “Write-Only” Source Code!

This is as good a time as any to point out a serious problem with assembly
language. The instructions themselves are almost vanishingly terse, and doing
anything useful takes a lot of them. In addition, whereas each instruction states
what it does, there is nothing to indicate a context within which that instruction
operates. You can build that context into your Pascal or Basic code with some
skill and discipline (along with identifiers that point to their purpose), but in
assembly language you can add context only through comments.

Without context, assembly language starts to turn into what is called
“write-only” code. It can happen like this: on November 1, in the heat of
creation, you crank out about 300 instructions in a short utility program that
does something important. You go back on January 1 to add a feature to
the program—and discover that you no longer remember how it works. The
individual instructions are all correct, and the program assembles and runs
as it should, but knowledge of how it all came together and how it works

Chapter 5 = The Right to Assemble

125

from a height have vanished under the weight of Christmas memories and
eight weeks of doing other things. In other words, you wrote it, but you can no
longer read it, or change it. Voila! Write-only code.

Although it’s true that comments do take up room in your source code disk
files, they are not copied into your object code files, and a program with loads
of comments in its source code runs exactly as fast as the same program with
no comments at all.

You will be making a considerable investment in time and energy when you
write assembly language programs—far more than in “halfway to heaven”
languages such as C and C++, and unthinkably more than in “we do it all for
you”” IDEs such as Delphi, Lazarus, and Gambeas. It's more difficult than just
about any other way of writing programs; and if you don’t comment, you may
end up having to simply toss out hundreds of lines of inexplicable code and
write it again, from scratch.

Work smart. Comment till you drop.

Object Code and Linkers

Assemblers read your source code files and generate an object code file
containing the machine instructions that the CPU understands, plus any data
you’'ve defined in the source code.

There’s no reason at all why an assembler could not read a source code
file and write out a finished, executable program as its object code file, but
this is almost never done. The assembler I'm teaching in this book, NASM,
can do that for DOS programs, and can write out .COM executable files for
the real mode flat model. More modern operating systems such as Linux and
Windows are too complex for that, and in truth, there’s no real payoff in
such one-step assembly except when you're first learning to write assembly
language.

So the object code files produced by modern assemblers are a sort of inter-
mediate step between source code and executable program. This intermediate
step is a type of binary file called an object module, or simply an object code file.

Object code files cannot themselves be run as programs. An additional step,
called linking, is necessary to turn object code files into executable program
files.

The reason for object code files as intermediate steps is that a single large
source code file may be divided up into numerous smaller source code files
to keep the files manageable in size and complexity. The assembler assembles
the various fragments separately, and the several resulting object code files
are then woven together into a single executable program file. This process is
shown in Figure 5-8.

126 Chapter 5 = The Right to Assemble

— e

.ASM

o
-

.ASM

MyProg

o
-

.ASM

o
-

.ASM

—
andi
—

-
=)
-

; Single
Source Assembler Object code Linker execu%able

code text ; ;
files binary files program file

Figure 5-8: The assembler and linker

When you're first learning assembly programming, it’s unlikely that you’ll
be writing programs spread out across several source code files. This may
make the linker seem extraneous, as there’s only one piece to your program
and nothing to link together. Not so: the linker does more than just stitch
lumps of object code together into a single piece. It ensures that function
calls out of one object module arrive at the target object module, and that
all the many memory references actually reference what they’re supposed to
reference. The assembler’s job is obvious; the linker’s job is subtle. Both are
necessary to produce a finished, working executable file.

Besides, you'll very quickly get to the point where you begin extracting
frequently used portions of your programs into your own personal code
libraries. There are two reasons for doing this:

1. You can move tested, proven routines into separate libraries and link
them into any program you write that might need them. This way, you

Chapter 5 = The Right to Assemble

127

can reuse code and not build the same old wheels every time you begin
a new programming project in assembly language.

2. Once portions of a program are tested and found to be correct, there’s
no need to waste time assembling them over and over again along with
newer, untested portions of a program. Once a major program grows to
tens of thousands of lines of code (and you'll get there sooner than you
might think!) you can save a significant amount of time by assembling
only the portion of a program that you are currently working on, linking
the finished portions into the final program without re-assembling every
single part of the whole thing every time you assemble any part of it.

The linker’s job is complex and not easily described. Each object module
may contain the following:

m Program code, including named procedures
m References to named procedures lying outside the module
= Named data objects such as numbers and strings with predefined values

m Named data objects that are just empty space ““set aside” for the program’s
use later

m References to data objects lying outside the module
m Debugging information

m Other, less common odds and ends that help the linker create the
executable file

To process several object modules into a single executable module, the linker
must first build an index called a symbol table, with an entry for every named
item in every object module it links, with information about what name (called
a symbol) refers to what location within the module. Once the symbol table is
complete, the linker builds an image of how the executable program will be
arranged in memory when the operating system loads it. This image is then
written to disk as the executable file.

The most important thing about the image that the linker builds relates
to addresses. Object modules are allowed to refer to symbols in other object
modules. During assembly, these external references are left as holes to be filled
later—naturally enough, because the module in which these external symbols
exist may not have been assembled or even written yet. As the linker builds
an image of the eventual executable program file, it learns where all of the
symbols are located within the image, and thus can drop real addresses into
all of the external reference holes.

Debugging information is, in a sense, a step backward: portions of the source
code, which was all stripped out early in the assembly process, are put back
in the object module by the assembler. These portions of the source code are

128

Chapter 5 = The Right to Assemble

mostly the names of data items and procedures, and they’re embedded in
the object file to make it easier for the programmer (you!) to see the names
of data items when you debug the program. (I'll go into this more deeply
later.) Debugging information is optional; that is, the linker does not need it
to build a proper executable file. You choose to embed debugging information
in the object file while you're still working on the program. Once the program
is finished and debugged to the best of your ability, you run the assembler
and linker one more time, without requesting debugging information. This
is important, because debugging information can make your executable files
hugely larger than they otherwise would be, and generally a little slower.

Relocatability

Very early computer systems like 8080 systems running CP/M-80 had a
very simple memory architecture. Programs were written to be loaded and
run at a specific physical memory address. For CP/M, this was 100H. The
programmer could assume that any program would start at 100H and go
up from there. Memory addresses of data items and procedures were actual
physical addresses, and every time the program ran, its data items were loaded
and referenced at precisely the same place in memory.

This all changed with the arrival of the 8086 and 8086-specific operating
systems such as CP/M-86 and PC DOS. Improvements in the Intel architecture
introduced with the 8086 made it unnecessary for the program to be assembled
for running at a specific physical address. All references within an executable
program were specified as relative to the beginning of the program. A variable,
for example, would no longer be reliably located at the physical address 02C7H
in memory. Instead, it was reliably located at an offset from the beginning
of the file. This offset was always the same; and because all references were
relative to the beginning of the executable program file, it didn’t matter where
the program was placed in physical memory when it ran.

This feature is called relocatability, and it is a necessary part of any modern
computer system, especially when multiple programs may be running at once.
Handling relocatability is perhaps the largest single part of the linker’s job.
Fortunately, it does this by itself and requires no input from you. Once the job
is done and the smoke clears, the file translation job is complete, and you have
your executable program file.

The Assembly Language Development Process

As you can see, there are a lot of different file types and a fair number of pro-
grams involved in the process of writing, assembling, and testing an assembly
language program. The process itself sounds more complex than it is. I've

Chapter 5 = The Right to Assemble

129

drawn you a map to help you keep your bearings during the discussions in the

rest of this chapter. Figure 5-9 shows the most common form that the assembly

language development process takes, in a ““view from a height.” At first glance

it may look like a map of the Los Angeles freeway system, but in reality the

flow is fairly straightforward, and you’ll do it enough that it will become

second nature in just a couple of evenings spent flailing at a program or two.
In a nutshell, the process cooks down to this:

1. Create your assembly language source code file in a text editor.
2. Use your assembler to create an object module from your source code file.

3. Use your linker to convert the object module (and any previously assem-
bled object modules that are part of the project) into a single executable
program file.

4. Test the program file by running it, using a debugger if necessary.

5. Go back to the text editor in step 1, fix any mistakes you may have made
earlier, and write new code as necessary.

6. Repeat steps 1-5 until done.

The Discipline of Working Directories

Programmers generally count from 0, and if we’re counting steps in the
assembly language development process, step 0 consists of setting up a system
of directories on your Linux PC to manage the files you'll be creating and
processing as you go.

There’s a rule here that you need to understand and adopt right up front:
Store only one project in a directory. That is, when you want to write a Linux
program called TextCaser, create a directory called TextCaser, and keep
nothing in that directory but files directly related to the TextCaser project. If
you have another project in the works called TabExploder, give that project
its own separate directory. This is good management practice, first of all, and
it prevents your makefiles from getting confused. (More on this later when I
take up make and makefiles.)

I recommend that you establish a directory scheme for your assembly
development projects, and my experience suggests something like this: Create
a directory under your Linux Home directory called “asmwork” (or make
up some other suitably descriptive name) and create your individual project
directories as subdirectories under that overall assembly language directory.

By the way, it's OK to make the name of a directory the same as the name
of the main .ASM file for the project; that is, textcaser.asm is perfectly happy
living in a directory called textcaser.

At this point, if you haven’t already downloaded and unpacked the listings
archive for this book, I suggest you do that—you're going to need one of the

130 Chapter 5 = The Right to Assemble

o

[]
[]
1 .0]
[]
1]

o

Previously assembled modules

]
No errors 8 .
1 .0 "
A] []
ssembler - . " ‘
Linker Linker
Assembly errors
errors

I No errors

MyProg

Asm | Source
file

Executable
Tryit...
Works
I ‘ perfectly!
Start Debugger You're
Here done!

Figure 5-9: The assembly language development process

files in the archive for the demonstration in this section. The archive file is

called asmsbs3e.zip, and it can be found at
www . copperwood.com/pub
or, alternatively, at

www . junkbox . com/pub

(I have these two domains on two different Internet hosting services so that
at least one of them will always be up and available. The file is identical,

whichever site you download it from.)

When unpacked, the listings archive will create individual project directories
under whatever parent directory you choose. I recommend unpacking it under

your asmwork directory, or whatever you end up naming it.

Chapter 5 = The Right to Assemble

131

Editing the Source Code File

You begin the actual development process by typing your program code into
a text editor. Which text editor doesn’t matter very much, and there are dozens
from which to choose. (I'll recommend a very good one in the next chapter.)
The only important thing to keep in mind is that word processors such as
Microsoft Word and OpenOffice Writer embed a lot of extra binary data in
their document files, above and beyond the text that you type. This binary
data controls things such as line spacing, fonts and font size, page headers and
footers, and many other things that your assembler has no need for and no
clue about. Assemblers are not always good at ignoring such data, which may
cause errors at assembly time.

Ubuntu Linux’s preinstalled text editor, gedit (which may be found in the
Applications — Accessories menu), is perfectly good, especially when you're
just starting out and aren’t processing thousands of lines of code for a single
program.

As for how you come up with what you type in, well, that’s a separate
question, and one that I address in a good portion of Chapter 8. You will
certainly have a pile of notes, probably some pseudo-code, some diagrams,
and perhaps a formal flowchart. These can all be done on your screen with
software utilities, or with a pencil on a paper quadrille pad. (Maybe I'm just
old, but I still use the pad and pencil.)

Assembly language source code files are almost always saved to disk with
an .ASM file extension. In other words, for a program named MyProg, the
assembly language source code file would be named MyProg.asm.

Assembling the Source Code File

As you can see from the flow in Figure 5-9, the text editor produces a source
code text file with an .ASM extension. This file is then passed to the assembler
program itself, for translation to an object module file. Under Linux and with
the NASM assembler that I'm focusing on in this book, the file extension
will be .O.

When you invoke the assembler from the command line, you provide it with
the name of the source code file that you want it to process. Linux will load
the assembler from disk and run it, and the assembler will open the source
code file that you named on the command line. Almost immediately afterward
(especially for the small learning programs that you’ll be poking at in this
book) it will create an object file with the same name as the source file, but
with an .O file extension.

As the assembler reads lines from the source code file, it will examine them,
build a symbol table summarizing any named items in the source code file,
construct the binary machine instructions that the source code lines represent,

132

Chapter 5 = The Right to Assemble

and then write those machine instructions and symbol information to the
object module file. When the assembler finishes and closes the object module
file, its job is done and it terminates. On modern PCs and with programs
representing fewer than 500 lines of code, this happens in a second or less.

Assembler Errors

Note well: the previous paragraphs describe what happens if the .ASM file
is correct. By correct, I mean that the file is completely comprehensible to
the assembler, and can be translated into machine instructions without the
assembler getting confused. If the assembler encounters something it doesn’t
understand when it reads a line from the source code file, the misunderstood
text is called an error, and the assembler displays an error message.

For example, the following line of assembly language will confuse the
assembler and prompt an error message:

mov eax,evx

The reason is simple: there’s no such thing as evx. What came out as Evx
was actually intended to be “EBX,”” which is the name of a CPU register. (The
V key is right next to the B key and can be struck by mistake without your
fingers necessarily knowing that they erred. Done that!)

Typos like this are by far the easiest kind of error to spot. Others that
take some study to find involve transgressions of the assembler’s many
rules—which in most cases are the CPU’s rules. For example:

mov ax, ebx

This looks like it should be correct, as 2x and EBx are both real registers.
However, on second thought, you may notice that ax is a 16-bit register,
whereas EBX is a 32-bit register. You are not allowed to copy a 32-bit register
into a 16-bit register.

You don’t have to remember the instruction operand details here; we’ll go
into the rules later when we look at the individual instructions themselves.
For now, simply understand that some things that may look reasonable to you
(especially as a beginner) are simply against the rules for technical reasons and
are considered errors.

And these are easy ones. There are much, much more difficult errors that
involve inconsistencies between two otherwise legitimate lines of source code.
I won't offer any examples here, but I want to point out that errors can be truly
ugly, hidden things that can take a lot of study and torn hair to find. Toto, we
are definitely not in BASIC anymore ...

The error messages vary from assembler to assembler, and they may not
always be as helpful as you might hope. The error NASM displays upon
encountering the “EVX” typo follows:

testerr.asm:20: symbol 'evx' undefined

Chapter 5 = The Right to Assemble

133

This is pretty plain, assuming that you know what a “symbol” is. And it
tells you where to look: The 20 is the line number where it noticed the error.
The error message NASM offers when you try to load a 32-bit register into a
16-bit register is far less helpful:

testerr.asm:22: invalid combination of opcode and operands

This lets you know you're guilty of performing illegal acts with an opcode
and its operands, but that’s it. You have to know what’s legal and what’s illegal
to really understand what you did wrong. As in running a stop sign, ignorance
of the law is no excuse, and unlike the local police department, the assembler
will catch you every time.

Assembler error messages do not absolve you from understanding the
CPU’s or the assembler’s rules.

This will become very clear the first time you sit down to write your
own assembly code. I hope I don’t frighten you too terribly by warning you
that for more abstruse errors, the error messages may be almost no help
at all.

You may make (or will make—Ilet’s get real) more than one error in writing
your source code files. The assembler will display more than one error message
in such cases, but it may not necessarily display an error for every error present
in the source code file. At some point, multiple errors confuse the assembler
so thoroughly that it cannot necessarily tell right from wrong anymore. While
it’s true that the assembler reads and translates source code files line by line, a
cumulative picture of the final assembly language program is built up over the
course of the whole assembly process. If this picture is shot too full of errors,
then in time the whole picture collapses.

The assembler will terminate, having printed numerous error messages.
Start at the first one, make sure you understand it (take notes!) and keep going.
If the errors following the first one don’t make sense, fix the first one or two
and assemble again.

Back to the Editor

The way to fix errors is to load the offending source code file back into
your text editor and start hunting up errors. This loopback is shown in
Figure 5-9. It may well be the highway you see the most of on this parti-
cular map.

The assembler error message almost always contains a line number. Move
the cursor to that line number and start looking for the false and the fanciful. If
you find the error immediately, fix it and start looking for the next. Assuming
that you're using Ubuntu’s GNOME graphical desktop, it’s useful to keep the
terminal window open at the same time as your editor window, so that you

134

Chapter 5 = The Right to Assemble

don’t have to scribble down a list of line numbers on paper, or redirect the
compiler’s output to a text file. With a 19" monitor or better, there’s plenty of
room for multiple windows at once.

(There is a way to make NASM write its error messages to a text file during
the assembly process, which you’ll see in the next chapter.)

Assembler Warnings

As taciturn a creature as an assembler may appear to be, it will sometimes dis-
play warning messages during the assembly process. These warning messages
are a monumental puzzle to beginning assembly language programmers: are
they errors or aren’t they? Can I ignore them or should I fool with the source
code until they go away?

Alas, there’s no crisp answer. Sorry about that.

Assembly-time warnings are the assembler acting as experienced consultant,
and hinting that something in your source code is a little dicey. This something
may not be serious enough to cause the assembler to stop assembling the file,
but it may be serious enough for you to take note and investigate. For example,
NASM will flag a warning if you define a named label but put no instruction
after it. That may not be an error, but it’s probably an omission on your part,
and you should take a close look at that line and try to remember what you
were thinking when you wrote it. (This may not always be easy, when it’s
three ayem or three weeks after you originally wrote the line in question.)

If you're a beginner doing ordinary, 100-percent-by-the-book sorts of things,
you should crack your assembler reference manual and figure out why the
assembler is tut-tutting you. Ignoring a warning may cause peculiar bugs to
occur later during program testing. Or, ignoring a warning message may have
no undesirable consequences at all. I feel, however, that it’s always better to
know what’s going on. Follow this rule:

Ignore an assembler warning message only if you know exactly what it means.

In other words, until you understand why you're getting a warning message,
treat it as though it were an error message. Only when you fully understand
why it’s there and what it means should you try to make the decision whether
to ignore it or not.

In summary: the first part of the assembly language development process (as
shown in Figure 5-9) is a loop. You must edit your source code file, assemble it,
and return to the editor to fix errors until the assembler spots no further errors.
You cannot continue until the assembler gives your source code file a clean bill of
health. I also recommend studying any warnings offered by the assembler until
you understand them clearly. Fixing the condition that triggered the warning
is always a good idea, especially when you're first starting out.

Chapter 5 = The Right to Assemble

135

When no further errors are found, the assembler will write an .O file to disk,
and you will be ready to go on to the next step.

Linking the Object Code File

As I explained a little earlier in this chapter, the linking step is non-obvious and
a little mysterious to newcomers, especially when you have only one object
code module in play. It is nonetheless crucial, and whereas it was possible in
ancient times to assemble a simple DOS assembly language program directly
to an executable file without a linking step, the nature of modern operating
systems such as Linux and Windows makes this impossible.

The linking step is shown on the right half of Figure 5-9. In the upper-right
corner is a row of .O files. These .O files were assembled earlier from correct
.ASM files, yielding object module files containing machine instructions and
data objects. When the linker links the .O file produced from your in-progress
.ASM file, it adds in the previously assembled .O files. The single executable
file that the linker writes to disk contains the machine instructions and data
items from all of the .O files that were handed to the linker when the linker
was invoked.

Once the in-progress .ASM file is completed and made correct, its .O file
can be put up on the rack with the others and added to the next in-progress
.ASM source code file that you work on. Little by little you construct your
application program out of the modules you build and test one at a time.

A very important bonus is that some of the procedures in an .O module may
be used in a future assembly language program that hasn’t even been begun
yet. Creating such libraries of “toolkit” procedures can be an extraordinarily
effective way to save time by reusing code, without even passing it through
the assembler again!

There are numerous assemblers in the world (though only a few really good
ones) and plenty of linkers as well. Linux comes with its own linker, called 1d.
(The name is actually short for “load,” and “loader”” was what linkers were
originally called, in the First Age of Unix, back in the 1970s.) We'll use 1d for
very simple programs in this book, but in Chapter 12 we're going to take up a
Linux peculiarity and use a C compiler for a linker ... sort of.

As I said, we're not doing BASIC anymore.

As with the assembler, invoking the linker is done from the Linux terminal
command line. Linking multiple files involves naming each file on the com-
mand line, along with the desired name of the output executable file. You may
also need to enter one or more command-line switches, which give the linker
additional instructions and guidance. Few of these will be of interest while
you're a beginner, and I'll discuss the ones you need along the way.

136 Chapter 5 = The Right to Assemble

Linker Errors

As with the assembler, the linker may discover problems as it weaves multiple
.O files together into a single executable program file. Linker errors are subtler
than assembler errors, and they are usually harder to find. Fortunately, they
are less common and not as easy to make.

As with assembler errors, linker errors are “fatal”’; that is, they make it
impossible to generate the executable file; and when the linker encounters one,
it will terminate immediately. When you're presented with a linker error, you
have to return to the editor and figure out the problem. Once you've identified
the problem (or think you have) and changed something in the source code
file to fix it, you must reassemble and then relink the program to see if the
linker error went away. Until it does, you have to loop back to the editor, try
something else, and assemble/link once more.

If possible, avoid doing this by trial and error. Read your assembler and
linker documentation. Understand what you're doing. The more you under-
stand about what’s going on within the assembler and the linker, the easier it
will be to determine what’s giving the linker fits.

(Hint: It's almost always you!)

Testing the .EXE File

If you receive no linker errors, the linker will create a single executable file that
contains all the machine instructions and data items present in all of the .O files
named on the linker command line. The executable file is your program. You
can run it to see what it does by simply naming it on the terminal command
line and pressing Enter.

The Linux path comes into play here, though if you have any significant
experience with Linux at all, you already know this. The terminal window is a
purely textual way of looking at your working directory, and all of the familiar
command-line utilities will operate on whatever is in your working directory.
However, remember that your working directory is not in your path unless
you explicitly put it there, and although people argue about this and always
have, there are good reasons for not putting your working directory into
your path.

When you execute a program from the terminal window command line, you
must tell Linux where the program is by prefixing the name of the program
with the ./ specifier, which simply means “in the working directory.” This is
unlike DOS, in which whatever directory is current is also on the search path
for executable programs. A command-line invocation of your program under
Linux might look like this:

. /myprogram

This is when the fun really starts.

Chapter 5 = The Right to Assemble

137

Errors versus Bugs

When you launch your program in this way, one of two things will happen:
The program will work as you intended it to or you'll be confronted with
the effects of one or more program bugs. A bug is anything in a program
that doesn’t work the way you want it to. This makes a bug somewhat more
subjective than an error. One person might think red characters displayed on
a blue background is a bug, while another might consider it a clever New Age
feature and be quite pleased. Settling bug-versus-feature conflicts like this is
up to you. You should have a clear idea of what the program is supposed to
do and how it works, backed up by a written spec or other documentation of
some kind, and this is the standard by which you judge a bug.

Characters in odd colors are the least of it. When working in assembly
language, it is extremely common for a bug to abort the execution of a program
with little or no clue on the display as to what happened. If you're lucky, the
operating system will spank your executable and display an error message.
This is one you will see far too often:

Segmentation Fault

Such an error is called a runtime error to differentiate it from assembler errors
and linker errors. Often, your program will not annoy the operating system. It
just won’t do what you expect it to do, and it may not say much in the course
of its failure.

Very fortunately, Linux is a rugged operating system designed to take buggy
programs into account, and it is extremely unlikely that one of your programs
will “blow the machine away,” as happened so often in the DOS era.

All that being said, and in the interest of keeping the Babel effect at bay,
I think it’s important here to carefully draw the distinction between errors
and bugs. An error is something wrong with your source code file that either
the assembler or the linker kicks out as unacceptable. An error prevents the
assembly or link process from going to completion and will thus prevent a
final .EXE file from being produced.

A bug, by contrast, is a problem discovered during execution of a program.
Bugs are not detected by either the assembler or the linker. Bugs can be benign,
such as a misspelled word in a screen message or a line positioned on the
wrong screen row; or a bug can force your program to abort prematurely. If
your program attempts to do certain forbidden things, Linux will terminate it
and present you with a message. These are called runtime errors, but they are
actually caused by bugs.

Both errors and bugs require that you go back to the text editor and change
something in your source code file. The difference here is that most errors
are reported with a line number indicating where you should look in your
source code file to fix the problem. Bugs, conversely, are left as an exercise for

138

Chapter 5 = The Right to Assemble

the student. You have to hunt them down, and neither the assembler nor the
linker will give you much in the line of clues.

Are We There Yet?

Figure 5-9 announces the exit of the assembly language development process
as happening when your program works perfectly. A very serious question is
this: How do you know when it works perfectly? Simple programs assembled
while learning the language may be easy enough to test in a minute or
two; but any program that accomplishes anything useful at all will take
hours of testing at minimum. A serious and ambitious application could take
weeks—or months—to test thoroughly. A program that takes various kinds
of input values and produces various kinds of output should be tested with
as many different combinations of input values as possible, and you should
examine every possible output every time.

Even so, finding every last bug in a nontrivial program is considered by
some to be an impossible ideal. Perhaps—but you should strive to come as
close as possible, in as efficient a fashion as you can manage. I'll have more to
say about bugs and debugging throughout the rest of this book.

Debuggers and Debugging

The final—and almost certainly the most painful—part of the assembly
language development process is debugging. Debugging is simply the system-
atic process by which bugs are located and corrected. A debugger is a utility
program designed specifically to help you locate and identify bugs.

Debuggers are among the most mysterious and difficult to understand of
all classes of software. Debuggers are part X-ray machine and part magni-
fying glass. A debugger loads into memory with your program and remains
in memory, side by side with your program. The debugger then puts ten-
drils down into your program and enables some truly peculiar things to be
done.

One of the problems with debugging computer programs is that they
operate so quickly. Tens or hundreds of thousands of machine instructions
can be executed in a single second, and if one of those instructions isn’t quite
right, it’s long gone before you can identify which one it was by staring at
the screen. A debugger enables you to execute the machine instructions in a
program one at a time, which enables you to pause indefinitely between each
instruction to examine the effects of the last instruction that executed. The
debugger also enables you to look at the contents of any location in the block

Chapter 5 = The Right to Assemble

139

of memory allowed to your program, as well as the values stored in any CPU
register, during that pause between instructions.

Debuggers can do all of this mysterious stuff because they are necessary,
and the CPU has special features baked into its silicon to make debuggers
possible. How they work internally is outside the scope of this book, but it’s
a fascinating business, and once you're comfortable with x86 CPU internals I
encourage you to research it further.

Some debuggers have the ability to display the source code with the machine
instructions, so that you can see which lines of source code text correspond
to which binary opcodes. Others enable you to locate a program variable by
name, rather than simply by memory address.

Many operating systems are shipped with a debugger. DOS and early
versions of Windows were shipped with DEBUG, and in earlier editions of
this book I explained DEBUG in detail. Linux has a very powerful debugger
called gdb, which I introduce in the next chapter, along with a separate
graphical utility used to manage it. Many other debuggers are available, and I
encourage you to try them as your skills develop.

Taking a Trip Down Assembly Lane

You can stop asking, “Are we there yet?”” where “there” means “ready to
build an actual working program.” We are indeed there, and for the rest of this
chapter we’re going to take a simple program and run it through the process
shown graphically in Figure 5-9.

You don’t have to write the program yourself. I've explained the process,
but I haven’t gone into any of the machine instructions or the CPU registers
in detail. I'll provide you with a very simple program, and give you enough
explanation of its workings that it’s not a total mystery. In subsequent chapters,
we’ll look at machine instructions and their operation in great detail. In the
meantime, you must understand the assembly language development process,
or knowing how the instructions work won't help you in the slightest.

Installing the Software

One of the fantastic things about Linux is the boggling array of software
available for it, nearly all of which is completely free of charge. If you've
used Linux for any length of time you’'ve probably encountered products
such as OpenOffice, Kompozer, Gnumeric, and Evolution. Some of these are

140 Chapter 5 = The Right to Assemble

preinstalled when you install the operating system. The rest are obtained
through the use of a package manager. A package manager is a catalog program
that lives on your PC and maintains a list of all the free software packages
available for Linux. You choose the ones you want, and the package manager
will go online, download them from their online homes (called repositories),
and then install them for you.

Actually, two package managers are installed with Ubuntu Linux. One
is the Gnome Application Installer, and this is the one that you see in the
Applications menu, as the item Add/Remove. This package manager is there
for its simplicity, but it doesn’t list every free software package that you might
want. Tucked away in the System — Administration menu is the Synaptic
Package Manager, which can (at least in theory) access any free software
product that has been committed to a known public repository. We're going to
use the Synaptic Package Manager to obtain the rest of the software we need
for the examples in this book.

Needless to say, you need an active Internet connection to use Ubuntu’s
package managers. Broadband is helpful, but the two packages we need to
download are not very large and will transfer through a dial-up Internet
connection if you're reasonably patient.

If you're coming from the Windows world, it’s good to understand that
under Linux you don’t have to worry about where software is being installed.
Almost all software is installed in the /usr directory hierarchy, in a place on
your file search path. You can open a terminal window and navigate to any
directory as your working directory, and then launch an installed application
by naming it on the command line.

In this chapter, we need a number of things in order to take a quick tour
through the assembly language development process: an editor, an assembler,
a linker, and a debugger:

m The gedit editor is preinstalled with Ubuntu Linux.
= The NASM assembler will have to be installed.
m The Linux linker 1d is preinstalled.

m The debugger situation is a little more complex. The canonical Linux
debugger, Gdb, is preinstalled. However, Gdb is more of a debugger
“engine” than a complete debugger. To make it truly useful (especially to
beginners), you have to download something to make its controls easier
to handle and its output easier to understand. This is a program called
KDbg, which is a “front end”” to Gdb. I explain how this works in the next
chapter. For now, just take it on faith.

Chapter 5 = The Right to Assemble 141

The Synaptic Package Manager enables you to select multiple packages to
install in one operation. Bring up Synaptic. It will refresh its index for a few
seconds, and then present you with the window shown in Figure 5-10.

File Edit package Settings Help

Quick search &
Reload Mark All Lpgrades nasm| saarih

All s Package Installed varsion | Latest Varsion Descriptio
Amateur Radio (universe) W 3 nasm 2.03.01-1 2.03.01-1 General-p
Base System O yasm 0.7.1-0ubuntul maodular g
Rase System (multiverse) |0 intelzgas 1.3.3-12 A convart|
dase System (restricted) [0 highlighting-kate-dac 0.2.1-3 library doc
Base System (universe) [71 libghes highlighting kate dev 02,13 syntax hig
Cormmunication LI lbghcs-highhghting-kate-prof 021-3 highlightir}
Communication (multiverse)

Cormmurnication (unverse)

Cross Platform mi 1, Gl

Cross Platform (multiverse) | no package is selected.
Cross Plattorm (universe)

Development

Developrnent (multverse)

Develapment (unverse)

Documentation

Docurmentation (mulliverse)
PRIy i SO VO | b
Sections
Status
Ongin

LCustom Filters

Search Results

| packages listad, 1380 installed, 0 broken. 0 to installupgrade, 0 ta remove

Figure 5-10: The Synaptic Package Manager

Click in the Quick Search field to give it the focus, and then type NASM.
You don’t need to click Search; Synaptic will search incrementally as you
type, and display any packages that it thinks match your entered search text.
NASM should be the first item shown. At the left edge of the results pane
will be a column of check boxes. Click on the check box for NASM. You
will get a confirming dialog, and from it select Mark for Installation. Now,
depending on the version of NASM, you may next be presented with a dialog
asking you, “Mark additional required changes?”” These are additional things
(typically code libraries) required to install the product, so click the Mark
button. Once you confirm the additional changes, the NASM line will change
to green, indicating that NASM is queued for installation. Whatever files
NASM depends on will also “turn green.”

142

Chapter 5 = The Right to Assemble

Do the same thing for KDbg. Type Kdbg in Quick Search, and enable its
check box when it appears. It also requires additional libraries for installation,
so click Mark when that dialog appears.

When all required installation line items are “’green,” click the Apply button
at the top of the window. A confirming Summary dialog will appear, listing
all the line items to be installed and the hard drive space that they will take.
Click Apply in the dialog, and Synaptic will take it from there. Downloading
smallish products such as NASM and KDbg won't take long on a broadband
connection. After both products are present on your PC, Synaptic will install
everything, and when the Changes Applied dialog appears, you're done!

Step 1: Edit the Program in an Editor

Several text editors are preinstalled with Ubuntu, and the easiest of them to
understand is probably gedit. You can launch it from the Applications —
Accessories menu, where it’s called Text Editor. Later I'll present Kate, a much
more powerful editor, but for the moment bring up gedit.

With File — Open, navigate to the eatsyscall directory from the book listings
archive. Double-click the eatsyscall.asm file in that directory. gedit will display
the file, shown in Listing 5-1. Read it over. You don’t have to understand it
completely, but it’s simple enough that you should be able to dope out what
it does in general terms.

Listing 5-1: eatsyscall.asm

Executable name : EATSYSCALL

Version : 1.0

Created date : 1/7/2009

Last update 2 1/7/2009

Author : Jeff Duntemann

Description : A simple assembly app for Linux, using NASM 2.05,

demonstrating the use of Linux INT 80H syscalls
to display text.

Build using these commands:
nasm -f elf -g -F stabs eatsyscall.asm
1d -o eatsyscall eatsyscall.o

SECTION .data ; Section containing initialized data

EatMsg: db "Eat at Joe's!",10
EatLen: equ $-EatMsg

Chapter 5 = The Right to Assemble

143

Listing 5-1: eatsyscall.asm (continued)

SECTION .bss ; Section containing uninitialized data
SECTION .text ; Section containing code
global _start ; Linker needs this to find the entry point!
_start:
nop ; This no-op keeps gdb happy (see text)
mov eax, 4 ; Specify sys_write syscall
mov ebx, 1 ; Specify File Descriptor 1: Standard Output
mov ecx,EatMsg ; Pass offset of the message
mov edx,EatLen ; Pass the length of the message
int 80H ; Make syscall to output the text to stdout
mov eax, 1l ; Specify Exit syscall
mov ebx, 0 ; Return a code of zero
int 80H ; Make syscall to terminate the program

At this point you could modify the source code file if you wanted to, but for
the moment just read it over. It belongs to a species of demo programs called
“Hello world!” and simply displays a single line of text in a terminal window.
(You have to start somewhere!)

Step 2: Assemble the Program with NASM

The NASM assembler does not have a user interface as nontechnical people
understand “user interface” today. It doesn’t put up a window, and there’s
no place for you to enter filenames or select options in check boxes. NASM
works via text only, and you communicate with it through a terminal and a
Linux console session. It’s like those old DOS days when everything had to be
entered on the command line. (How soon we forget!)

Open a terminal window. Many different terminal utilities are available for
Ubuntu Linux. The one I use most of the time is called Konsole, but they will
all work here. Terminal windows generally open with your home directory as
the working directory. Once you have the command prompt, navigate to the
“eatsyscall” project directory using the cd command:

myname@mymachine:~$ cd asmwork/eatsyscall

If you're new to Linux, make sure you're in the right directory by checking
the directory contents with the 1s command. The file eatsyscall.asm should

144

Chapter 5 = The Right to Assemble

at least be there, either extracted from the listings archive for this book, or
entered by you in a text editor.

Assuming that the file eatsyscall.asm is present, assemble it by (carefully)
entering the following command and pressing Enter:

nasm -f elf -g -F stabs eatsyscall.asm

When NASM finds nothing wrong, it will say nothing, and you will simply
get the command prompt back. That means the assembly worked! If you
entered the eatsyscall.asm file yourself and typed something incorrectly, you
may get an error. Make sure the file matches Listing 5-1.

Now, what did all that stuff that you typed into the terminal mean?
I've dissected the command line you just entered in Figure 5-11. A NASM
invocation begins with the name of the program itself. Everything after that
are parameters that govern the assembly process. The ones shown here are
nearly all of the ones you're likely to need while first learning the assembly
language development process. There are others with more arcane purposes,
and all of them are summarized in the NASM documentation. Let’s go through
the ones used here, in order:

NASM -felf -g -Fstabs eatsyscall.asm

The name of
the source
code file to be
assembled.
Specifies that debug
information is to be

generated in the
“stabs” format.

Specifies that debug
information is to be
included in the .o file.

Specifies that the .0
file will be generated
in the “elf” format.

Invokes the
assembler

Figure 5-11: The anatomy of a NASM command line

Chapter 5 = The Right to Assemble

145

-f elf: There are a fair number of useful object file formats, and each one
is generated differently. The NASM assembler is capable of generating most
of them, including other formats, such as bin, aout, coff, and ELF64, that you
probably won't need, at least for awhile. The -£ command tells NASM which
format to use for the object code file it's about to generate. In 32-bit IA-32
Linux work, the format is ELF32, which can be specified on the command line
as simply elf.

-g: While you're still working on a program, you want to have debugging
information embedded in the object code file so that you can use a debugger
to spot problems. (More on how this is done shortly.) The -g command tells
NASM to include debugging information in the output file.

-F stabs: As with the output file, there are different formats in which NASM
can generate debug information. Again, as with the output file format, if you're
working in IA-32 Linux, you'll probably be using the STABS format for debug
information, at least while you're starting out. There is a more powerful debug
format called DWAREF that can also be used with ELF (get it?), and NASM
will generate DWARF data instead of STABS data if you replace “’stabs” with
“dwarf” in this command. Remember too that Linux commands are case
sensitive. The -f command and the -F command are distinct, so watch that
Shift key!

eatsyscall.asm: The last item on the NASM command line is always the
name of file to be assembled. Again, as with everything in Linux, the filename
is case sensitive. EATSYSCALL.ASM and EatSysCall.asm (as well as all other
case variations) are considered entirely different files.

Unless you give NASM other orders, it will generate an object code file
and name it using the name of the source code file and the file extension
.O. The “other orders” are given through the -o option. If you include a -o
command in a NASM command line, it must be followed by a filename, which
is the name you wish NASM to give to the generated object code file. For
example:

nasm -f elf -g -F stabs eatsyscall.asm -o eatdemo.o

Here, NASM will assemble the source file eatsyscall.asm to the object code
file eatdemo.o.

Now, before moving on to the link step, verify that the object code file has
been created by using the 1s command to list your working directory contents.
The file eatsyscall.o should be there.

146

Chapter 5 = The Right to Assemble

Step 3: Link the Program with LD

So far so good. Now you have to create an executable program file by using
the Linux linker utility, Id. After ensuring that the object code file eatsyscall.o
is present in your working directory, type the following linker command into
the terminal:

1d -o eatsyscall eatsyscall.o

If the original program assembled without errors or warnings, the object file
should link without any errors as well. As with NASM, when ld encounters
nothing worth mentioning, it says nothing at all. No news is good news in the
assembly language world.

The command line for linking is simpler than the one for assembling, as
shown in Figure 5-12. The ““1d” runs the linker program itself. The -o command
specifies an output filename, which here is eatsyscall. In the DOS and Windows
world, executable files almost always use the .exe file extension. In the Linux
world, executables generally have no file extension at all.

Ild -0 eatsyscall eatsyscall.o

I Specifies the name
of the object code

file to be linked.

Specifies the
name of the
executable file that

Invokes will be generated.

the linker.

Figure 5-12: The anatomy of an Ild command line

Note that if you do not specify an executable filename with the -o command,
1d will create a file with the default name a.out. If you ever see a mysterious
file named a.out in one of your project directories, it probably means you ran
the linker without the -o command.

The last things you enter on the Id command line are the names of the object
files to be linked. In this case there is only one, but once you begin using code
libraries (whether your own or those written by others) you’ll have to enter
the names of any libraries you're using on the command line. The order in
which you enter them doesn’t matter. Just make sure that they’re all there.

Chapter 5 = The Right to Assemble

147

Step 4: Test the Executable File

Once the linker completes an error-free pass, your finished executable file will
be waiting for you in your working directory. It’s error-free if the assembler and
linker digested it without displaying any error messages. However, error-free
does not imply bug-free. To make sure it works, just name it on the terminal
command line:

. /eatsyscall

Linux newcomers need to remember that your working directory is not
automatically on your search path, and if you simply type the name of the
executable on the command line (without the “working directory”” prefix
/"), Linux will not find it. But when named with the prefix, your executable
will load and run, and print out its 13-character advertisement:

Eat at Joe's!

Victory! But don’t put that terminal window away just yet ...

Step 5: Watch It Run in the Debugger

Assuming that you entered Listing 5-1 correctly (or unpacked it from the
listings archive), there are no bugs in eatsyscall.asm. That’s an uncommon
circumstance for programmers, especially those just starting out. Most of the
time you’ll need to start bug-hunting almost immediately. The easiest way
to do this is to load your executable file into a debugger so that you can
single-step it, pausing after the execution of each machine instruction in order
to see what effect each instruction has on the registers and any variables
defined in memory.

Two programs work together to provide you with an enjoyable (well,
tolerable) debugging experience: gdb and KDbg. The gdb utility does the
way-down-deep CPU magic that debuggers do, and KDbg arranges it all
nicely on your display and allows you to control it. To kick off a debugging
session, invoke KDbg from the terminal window command line, followed by
the name of your executable file:

kdbg eatsyscall

KDbg is not so nearly mute as NASM and 1d. It's a KDE app, and puts up
a nice graphical window that should look very much like what’s shown in

148 Chapter 5 = The Right to Assemble

Figure 5-13. The eatsyscall program source code should be displayed in the
center pane. If the top pane doesn’t say “Register”” in its upper-left corner,
select View — Registers and make sure the Registers item has an X beside it.

File View Exccution Breakpoint Window Scttings Help

#O6BEHTLD 0K I
"X
[CIRegister @@Value genecoded value

; [xecutable name : CATSYSCALL

[

!
+ : WVersion : 1.8
+; Created date : 1/7/2009 e
+; Lasl update : 2/B/2009
+ : Author : Jeff Duntemann
+ ; Description : A simple program in assembly feor Linux, using NASM 2.05,
*: 5 demonstrating the use of Linux INT 88H syscalls to display text.
.
H
+ ; Build using these commands:
d nasm -f elf -g -F stabs eatsyscall.asm
o 1ld -o eatsyscall eatsyscall.o |
v E
"
Stack | Rreakpoints
X
[|| Add Breakpoint |
Location I Address | Hits lgn Condition | | | Add Watchpoint |

Line 10|

Figure 5-13: KDbg's startup window

To make a little more room to see your source code, close KDbg’s bot-
tom pane. Click the small X in the upper-right corner of the pane. KDbg is
capable of displaying a lot of different things in a lot of different windows;
but for this quick run-through, having the source code pane and the regis-
ters display pane will be enough. Having other windows open will simply
confuse you.

Chapter 5 = The Right to Assemble

149

If you recall from the overview earlier in this chapter, debuggers need to be
told where to stop initially, before you can tell them to begin single-stepping a
program—otherwise, they will scoot through execution of the whole program
too quickly for you to follow. You have to set an initial breakpoint. The way to
do this is to scroll the source code display down until you can see the code that
follows the label _start: at the left edge of the program text. Move down two
lines and left-click in the empty space at the left edge of the source code pane,
between the window’s frame and the plus symbol. A red dot should appear
where you clicked. This red dot indicates that you have now set a breakpoint
on that line of code, which in this case is the instruction mov Eax, 4. (Make
sure you insert a breakpoint at this instruction, and not at the Nop instruction
immediately above it in the program!)

Once you have the initial breakpoint set, click the Run button in the top
toolbar. The button looks like a page with a downward-pointing arrow to its
left. (Hover the mouse pointer over the button and it should say Run.) Two
things will happen, essentially instantaneously (see Figure 5-14):

m The red dot indicating the breakpoint will be overlain by a green triangle
pointing to the right. The triangle indicates the place in the program
where execution has paused, and it points at the next instruction that
will execute. Note well that the instruction where execution pauses for a
breakpoint has not been executed yet.

m The top pane, which was blank previously, is now filled with a listing of
the CPU registers. It’s a longish list because it includes all the CPU flags
and floating-point processor registers, but you only need to see the top
group for this demo.

At this point, the general-purpose registers will all be shown containing
zeroes. Your program has begun running, but the only instruction that has
run yet is the Nop instruction, which does ... nothing. (It’s a placeholder, and
why it’s here in this program will have to wait until the next chapter.)

This will soon change. To do the first single-step, click the Step Into By
Instruction button. Hover the mouse pointer over the buttons until you find it.
(The button has the focus in Figure 5-14.) As the name of the button suggests,
clicking the button triggers the execution of one machine instruction. The
green triangle moves one line downward.

Up in the Registers window, things are not the same. Two lines have turned
red. The red color indicates that the values shown have changed during the
execution of the single step that we just took. The EIP register is the instruction

150

Chapter 5 = The Right to Assemble

pointer, and it keeps track of which instruction will be executed next. More
interesting right now is the state of the EAX register. What had been 0x0
is now 0x4. If you look at the source code, the instruction we just executed
was this:

mov eax, 4

File View Execcution Breakpoint Window Scttings Help

R :
OE BH»THDS O K I
"X
[CIRegister aValue gg'ecoded value :LI
= GP and others
eax ox0]
acx axa 2] =
edx 0x0 :]
ebx 0x0 [i]
esp Bxbf815560 Bxbt815568
ebp oxo ox8
esi 0x0 a
adi axy 2]
Bip Gx8048081 0x8048081 < slarl+l>
fioff oxe a
fooff axg 2]
Top oxo i
0 Flaas
CF e — E—
nop ; This no-op keeps gdb happy...
L mov eax,d ; Specify sys write call
mov cbx,1 ; Specify File Descriptor 1: Standard Output
mov ecx,EdalMsy ; Pass offsel of the message
mov edx,EatLen ; Pass the length of the message
int 0oH ; Make kernel call
mov eax,l ; Code for Exit Syscall
mov ebx,0 ; Return a code of zero
int B8H ; Make kernel call

T T T e S S N e S S S

[2]

active Line 38|

The “MOV” mnemonic tells us that data is being moved. The left operand
is the destination (where data is going) and the right operand is the source
(where data is coming from.) What happened is that the instruction put the
value 4 in register EAX.

Click the Step Into By Instruction button again. The pointer will again move
down a line. And again, the red lines in the Registers window indicate what
was changed by executing the instruction. The instruction pointer changed

Chapter 5 = The Right to Assemble

151

again; that shouldn’t be a surprise. Every time we execute an instruction,
EIP will be red. This time, EAX has turned black again and EBX has turned
red. The value in EBX has changed from 0 to 1. (The notation “0x1” is just
another way of telling us that the value is given in hexadecimal.) Clearly,
we’ve moved the value 1 into register EBX; and that’s the instruction we just
executed:

mov ebx, 1

Click the button again. This time, register ECX will change radically (see
Figure 5-15). The precise number you see on your PC for ECX will differ
from the precise number I saw when I took the screen shot. The value
depends on the individual Linux system, how much memory you have, and
what the Linux OS is doing elsewhere in memory. What matters is that a
32-bit hexadecimal value has been moved into ECX. This instruction did the
work:

mov ecx,EatMsg

So what did we actually move? If you scroll up into the earlier part of the
source code temporarily, you'll see that EatMsg is a quoted string of ordinary
characters reading “Eat at Joe’s!” and not a 32-bit number; but note the
comment to the right of the instruction: ““Pass offset of the message.” What
we actually loaded into ECX was not the message itself but the message’s
address in memory. Technically, in IA-32 protected mode, a data item like
EatMsg has both a segment address and an offset address. The segment
address, however, is the property of the operating system, and we can safely
ignore it when doing this kind of simple user-space programming. Back
in the DOS era, when we had to use the real mode segmented memory
model, we had to keep track of the segment registers too; doing it the
protected mode way means one less headache. (Don’t worry; there are plenty
more!)

Click Step Into By Instruction again, and register EDX will be given the
value Oxe, or (in decimal) 14. This is the length of the character string EatMsg.

At this point all the setup work has been done with respect to moving
various values where they need to go. Click the button and execute the next
instruction:

int 80H

It looks like nothing has happened—nothing in the Registers window
changed —but hold on. Go into KDbg’s menus and select View — Output. A
simple terminal window will appear—and there’s EatMsg, telling the world
where to go for lunch (see Figure 5-16).

152 Chapter 5 = The Right to Assemble

File View Execcution Breakpoint Window Scttings Help
O BTS00 XK I
"
[CIRegister m@Value gq'Decoded value : l
= GP and others
eax ox4 4
ecx 8x8840824 1345169688
edx 0x0 :]
ebx 0x1 1
esp Bxbf815560 Bxbt815568
ebp oxo ox8
esi 0x0 a
adi Bxy 2]
Blp Gx80488908 BxB8048098 <_slarl+1l6>
fioff oxe 2]
fooff Bxg 2]
Top ox0 i} ZI
0 Flaas .
(4] («]2)
—_
0 nop ; This no-op keeps gdb happy... =]
@+ mov eaAx,d ; Specify sys write call
+ mov cbx,1 ; Specify File Descriptor 1: Standard Output
+ mov ecx,EalMsy ; Pass offsel of the message
-+ mov edx,EatLen ; Pass the Length of the message
' int 00N ; Make kernel call
+
+ mov eax,l ; Code for Exit Syscall
+ mov ebx,0 ; Return a code of zero
+ int BEH ; Make kernel call
!
+
.
"
+
. =
-
"
'
+
t |
+ v
active Line 30

Figure 5-15: Moving a memory address into a register

Eat at Joe's!

Figure 5-16: Program output in a terminal window

The INT 80H instruction is a special one. It generates a Linux system call
(affectionately referred to as a syscall) named sys_write, which sends data to
the currently active terminal window.

Sending EatVMsg to the output window is all that the eatsyscall program was
designed to do. Its work is done, and the last three instructions in the program

Chapter 5 = The Right to Assemble

153

basically tidy up and leave. Click the button and step through them, watching
to see that EAX and EBX receive new values before the final 1NT 80H, which
signals Linux that this program is finished. You'll get a confirmation of that in
the bottom line of KDbg’s window, which will say “Program exited normally”
along with the source code line where this exit happened.

One question that may have occurred to you is this: Why is the stepper
button called “Step Into By Instruction”? We just bounced down to the next
line; we did not step our way into anything. A full answer will have to wait for
a couple of chapters, until we get into procedures, but the gist of it is this: KDbg
gives you the option to trace execution step by step into an assembly language
procedure, or to let the computer run full speed while executing the procedure.
The button Step Into By Instruction specifies to go through a procedure step
by step. The button Step Over By Instruction (the next button to the right)
allows the procedure to execute at full speed, and pick up single-stepping on
the other side of the procedure call.

Why step over a procedure call? Mainly this: procedures are often library
procedures, which you or someone else may have written months or years
ago. If they are already debugged and working, stepping through them is
probably a waste of time. (You can, however, learn a great deal about how the
procedure works by watching it run one instruction at a time.)

Conversely, if the procedures are new to the program at hand, you may need
to step through them just as carefully as you step through the main part of the
program. KDbg gives you the option. This simple program has no procedures,
so the Step Into and Step Over buttons do precisely the same thing: execute
the next instruction in sequence.

The three single-stepping buttons to the left of Step Into By Instruction are
for use when debugging code in higher-level languages such as C. They enable
stepping by one high-level statement at a time, not simply one machine instruc-
tion at a time. These buttons don’t apply to assembly language programming
and I won’t be discussing them further.

Ready to Get Serious?

I've taken this chapter slowly; and if you're impatient, you may be groaning by
now. Bear with me. I want to make sure that you very clearly understand the
component steps of the assembly language programming process. Everything
in this book up until now has been conceptual groundwork, but at this point
the necessary groundwork has been laid. It's time to pull out some serious
tools, investigate the programmer’s view of the Linux operating system, and
begin writing some programs.

CHAPTER

6

A Place to Stand, with Access
to Tools

The Linux Operating System and the Tools That
Shape the Way You Work

Archimedes, the primordial engineer, had a favorite saying: “Give me a lever
long enough, and a place to stand, and I will move the Earth.” The old guy was
not much given to metaphor, and was speaking literally about the mechanical
advantage of really long levers, but behind his words there is a larger truth
about work in general: to get something done, you need a place to work, with
access to tools. My radio bench down in the basement is set up that way:
a large, flat space to lay ailing transmitters down on, and a shelf above where
my oscilloscope, VIVM, frequency counter, signal generator, signal tracer, and
dip meter are within easy reach. On the opposite wall, just two steps away, is
a long line of shelves where I keep parts (including my legendary collection
of tubes), raw materials such as sheet metal, circuit board stock, and scrap
plastic, and equipment I don’t need very often.

In some respects, an operating system is your place to stand while getting
your computational work done. All the tools you need should be right there
within easy reach, and there should be a standard, comprehensible way to
access them. Storage for your data should be “close by” and easy to browse
and search. The Linux operating system meets this need like almost nothing
else in the desktop computing world today.

Ancient operating systems like DOS gave us our “place to stand” in a limited
way. DOS provided access to disk storage, and a standard way to load and
run software, and not much more. The tool set was small, but it was a good
start, and about all that we could manage on 6 MHz 8088 machines.

155

156

Chapter 6 = A Place to Stand, with Access to Tools

In some ways, the most interesting thing about DOS is that it was created as
a “dumbed down” version of a much more powerful operating system, Unix,
which had been developed by AT&T’s research labs in the 1960s and 1970s.
At the time that the IBM PC appeared, Unix ran only on large and expensive
mainframe computers. The PC didn’t have the raw compute power to run
Unix itself, but DOS was created with a hierarchical file system very much like
the Unix file system, and its command line provided access to a subset of tools
that worked very much like Unix tools.

The x86 PC grew up over the years, and by 1990 or so Intel’s CPUs were
powerful enough to run an operating system modeled on Unix. The PC grew
up, and Unix “grew down”” until the two met in the middle. In 1991 the young
Finnish programmer Linus Torvalds wrote a Unix “lookalike” that would run
on an inexpensive 386-based PC. It was based on an implementation of Unix
called Minix, which was written in the Netherlands in the late 1980s as a Unix
lookalike capable of running on small computers. Torvalds” Linux operating
system eventually came to dominate the Unix world. Other desktop variations
of Unix appeared, the most important of which was BSD (Berkeley Software
Distribution) Unix, which spawned several small-system implementations and
eventually became the core of Apple’s OS/X operating system for the Mac.

That’s our place to stand, and it’s a good one; but in terms of access to tools,
it also helps to have a sort of software workbench designed specifically for the
type of work we're doing at the moment. The NASM assembler is powerful
but taciturn, and inescapably tied to the command line, as are most of the
venerable Unix tools you'll find in Linux. In the previous chapter, we ran
through a simple development project the old hard way, by typing commands
at the command line. You need to know how that works, but it's by no means
the best we can do.

The legendary success of Turbo Pascal for DOS in the 1980s was largely due
to the fact that it integrated an editor and a compiler together, and presented a
menu that enabled easy and fast movement between the editor, to write code;
to the compiler, to compile code into executable files; and to DOS, where those
files could be run and tested. Programming in Turbo Pascal was easier to grasp
and much faster than traditional methods, which involved constantly issuing
commands from the command line.

Turbo Pascal was the first really successful commercial product to provide
an interactive development environment (IDE) for programmers. Others had
appeared earlier (particularly the primordial UCSD p-System) but Turbo
Pascal put the idea on the map.

Chapter 6 = A Place to Stand, with Access to Tools

157

The Kate Editor

A little remarkably, there is no true equivalent to Turbo Pascal in the Linux
assembly language field. The reason for this may seem peculiar to you,
the beginner: seasoned assembly language programmers either create their
own development environments (they are, after all, the programming elite)
or simply work from the naked operating system command prompt. The
appeal of a Turbo Pascal-type IDE is not so strong to them as it may be
to you. However, there is a movement to IDEs for programming among the
higher-level languages such as C, C++, and Python. I think that assembly
language programmers will come along eventually. (Two general-purpose
IDEs to watch are Eclipse and KDevelop, though neither is much used for
assembly language work at this time.)

In the meantime, I'm going to present a simple IDE for you to use while
you're learning assembly language. It has the virtue of simplicity, and for the
sorts of small programs you’ll be writing while you get up to speed, I've not
found anything else like it. It’s called Kate, and it’s been around since 2002. As
a text editor, Kate is unusual for a number of reasons:

m [t is “aware” of assembly language source code formatting conventions,
and will highlight different elements of assembly source code in different
colors.

m |t includes features for managing your text files, as well as editing them,
through a side pane.

m [tintegrates a terminal window within its larger MDI (multiple document
interface) display, where you can launch programs to test them, and a
debugger to single-step them and examine memory.

m [t has project support in the form of sessions, where a session is the “’state”
of Kate while you're working on a particular project.

m [t is available as a software component; and by the use of KDE’s KParts
technology, it can be built into programs that you write for yourself.

Kate is in fact the editing component used in the “big’”” IDE KDevelop and
the Access-like database manager Kexi. Although Kate originated in the KDE
world and depends upon the Qt code libraries, it will install and run without
any difficulty in the GNOME-based Ubuntu Linux distribution.

Installing Kate

If you're using Ubuntu Linux, Kate is most easily installed from the Appli-
cations — Add/Remove menu item. Type “kate” in the Search field and it

158 Chapter 6 = A Place to Stand, with Access to Tools

will come right up. Check the box for installation, confirm the dependency
installs that it requires, and the package manager will do the rest. After you
select Kate, go back and search for KWrite, and check that for install as well.
KWrite is a simple editor based on the same editor engine as Kate; and while
it can be useful in its own right, you should install it for the sake of the Kate
plugins that it installs. Peculiarly, Kate itself does not install its own plugins,
and double peculiarly, KWrite cannot use the plugins that it installs for Kate.
(Nobody ever said this business always makes sense!)

Launching Kate

After installation, Kate can be launched from Ubuntu’s Applications menu,
in the Accessories group. If you're used to keeping icons in the desktop’s
top panel, you can place Kate’s icon there. Do it this way: pull down the
Applications — Accessories — Kate menu item, but before left-clicking on
Kate’s item to open it, right-click on the item instead. A context menu will
appear, the top item of which is ““Add this launcher to panel.” Right-click this
menu item, and Kate’s icon will be placed in the top panel. See Figure 6-1,
where I've already placed the icon in the panel so you can see where it appears:
just to the right of the Help button.

Q Applications | Places Sy