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Preface

We are in the middle of a genome period marked by the full sequencing

of complete genomes. Last year (2001) will be identified in the history

of biology by the publication of the first draft of the complete sequence

of the human genome. Much work still lies ahead to achieve the goal of

fully finishing many of these eukaryotic and prokaryotic genomes that,

as published, still contain gaps.

At a first glance, genomics has not produced a strong conceptual

change in biology. The fundamental problems remain: understanding

the origin of life, the complex organization of a cell, the pathways of

differentiation, aging, and the molecular and cellular bases for the

capabilities of the brain. What has happened is an explosion of molec-

ular information; genomic sequences will be followed in the near future

by exhaustive catalogs of protein interactions and protein function (as

proteomics takes the lead). This wealth of information can be analyzed,

visualized, and manipulated only with the help of computers. This

basic contribution of computers was initially not recognized by biolo-

gists. Certainly, by the time of the beginning of GenBank, in the 1980s,

the experimentalist could imagine an institute where computational bi-

ology was merely technical support for databases and access to Gen-

Bank, and maybe a classic Bohering metabolic chart hung on the wall

(initiated in the 1960s by G. Michal). The influence of genomes is such

that today what François Jacob conceived as the Mouse Institute would

do much better having on staff experimentalists, computer scientists,

statisticians, mathematicians, and computational biologists. We have

reached a point where biology articles are published with contributions

from researchers who recently were, for instance, computer scientists

working in logic programming.



This is no small change if we remember the place of theoretical and

mathematical biology as an activity that could be fascinating, but to

a large extent was done in isolation, having little influence on main-

stream experimental molecular biology. Today, the student, post-

doctoral fellow, or even young professor who is knowledgeable both in

biology and in computer science has much broader opportunities. Gen-

omics may really be opening the door to a more profound conceptual

change in the way we study living systems in the laboratory.

With a foot in sequence analysis, this book is centered on current

computational approaches to metabolism and gene regulation. This is

an area of computational biology that welcomes new methods, ideas,

and approaches with the goal of generating a better understanding of

the complex networks of metabolic and regulatory capabilities of the

cell. Classical concepts have to be redefined or clarified to address the

study of the genetics of populations and of the biochemical interactions

and regulatory networks organizing a living system. Given the con-

stant and pervading importance of comparative genomics, these con-

cepts must be precise when comparing genes, proteins, and systems

across different species.

The first chapter, by Jeremy Ahouse, is an exercise in thinking about

the concept of homology (the common origin of similarities) in order to

use it adequately when considering homologous networks of gene reg-

ulation between species.

Currently, DNA sequence data is the most abundant material with

which to begin a project in computational biology. Raw sequences from

genomes have to be analyzed and annotated, in ways that improve

continuously as the databases expand and sharper methods are used.

The second chapter, by Rolf Apweiler and colleagues, describes an

integrated system for this task. Databases centering on specific signals,

motifs, or structures have exploded in number in the last years. The

databases describe those pieces of macromolecules whose function we

know, and therefore are essential for algorithmic analyses. The third

chapter, by the team of Ralf Hofestädt, shows a system capable of in-

tegrating data from different databases, and its subsequent use in the

integration and modeling of metabolic pathways using a rule-based

system.

Once the computational and basic annotations are in place, we can

move from sequences to networks of gene regulation and cell differen-
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tiation. The second part of the book begins with chapter 4, by Gary

Stormo, who describes the foundations of weight matrices and their

biophysical interpretation in protein-DNA interactions. In a way, this

method and its variants are for regulatory motifs what the Smith-

Waterman algorithm was for coding sequence comparisons. Defining

the best matrix is based on the problem of defining the best multiple

alignment, given the constraints of no gaps, symmetry, and other prop-

erties describing most protein-DNA binding sites in upstream regions.

Abigail McGuire and George Church, in chapter 6, show how the inte-

gration of gene regulation has to be supported by experimental studies

of transcriptome analyses combined with computational motif searches.

Chapter 5, by Julio Collado-Vides and colleagues, is devoted to com-

putational studies of gene regulation in E. coli in which different pieces

are put together, making it feasible to think of a global computational

study of a complete network of transcription initiation in a cell. A

pair of chapters illustrate the complexity of these issues when studying

eukaryotes, as seen in the signal transduction modeling by Nikolay

Kolchanov and colleagues (chapter 7), and by the Boolean network

methodology and its plausible application to modeling the network of

factors involved in the biology of asthma by Sui Huang (chapter 8).

In chapter 9 Edward Marcotte presents a relatively novel approach

using phylogenetic profiles to define a quantitative definition of func-

tion in genomics. This is a powerful method that does not require

homology among genes to identify groups of genes involved in the

same function. Metabolic flux analysis as well as the comparison of

pathways in different genomes is illustrated in chapter 11, by Steffen

Schmidt and Thomas Dandekar. The book ends with a chapter by

Masaru Tomita that describes a more ambitious modeling that inte-

grates metabolism, regulation, translation, and membrane transport. A

comprehensive in silico complete cell model is still in its infancy, but

Tomita points to what lies ahead. Still more important is evaluating the

predictive capability of all these computational modeling and simula-

tion projects.

This book does not attempt to provide a complete account of

this expanding and exciting area of research. Many other databases,

algorithms, and mathematical approaches are enriching postgenomic

computational research. In 1995 and 1998 we participated in the

organization of two Dagstuhl seminars centered on modeling and
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simulation of metabolism and gene regulation. This book is the out-

growth of a summer school following the Dagstuhl seminars that we

organized in Magdeburg in the summer of 1999. We acknowledge the

sponsorship of the Volkswagen Foundation for these activities. We also

acknowledge Alberto Santos-Zavaleta and César Bonavides-Martı́nez

for their help in editing the book. Last but not least, we are both grate-

ful to our families for their support during the compilation of this book.
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1 Are the Eyes Homologous?

Jeremy C. Ahouse

Since the 1990s research in developmental genetics has followed the

approach of borrowing pathways described in one context and testing

to see if the members of a pathway or genetic regulatory circuit can be

found in a new context. This approach has raised questions of how the

concept of homology should be used when comparing genetic regula-

tory circuits. One particularly cautious response has been to claim that

gene expression patterns are informative for the understanding of mor-

phological evolution only when coupled with a detailed understand-

ing of comparative anatomy and embryology.

This reflects the concern that recruitment can lead to a situation where

orthologous genes are expressed in novel contexts during development,

thus suggesting that these similarities in gene expression patterns were

not derived from a common ancestor with the structure of interest. De-

fining homology as a property of structures, genetic networks, or genes,

rather than viewing homology as a particular way to explain observed

similarities, is confusing. Specifying the similarities first and then enter-

taining hypotheses to explain them (including appealing to common

ancestry, i.e., homology) allows us to dispense with tortured discussions

of levels of biological organization at which the concept of homology

may be applied.

Other chapters in this book address specific questions of gene reg-

ulation and metabolism without explicit mention of the connection

between networks and the phenotype. One of the challenges, compu-

tationally, in understanding gene regulation is finding, capturing, and

leveraging the information in better-studied networks. It is standard

practice to apply conclusions from well-studied proteins to similar,

but less well-understood, proteins. This is done when annotating for



function and even when trying to predict structure (see the cautions in

chapter 2 in this volume). This practice of borrowing annotations and

setting expectations relies on tacit assumptions about the transitive

nature of these attributes once homology has been established. It is

my goal in this essay to clarify what hypotheses of homology actually

are in the context of borrowing network and gene regulatory informa-

tion from one (well-described) regulatory circuit to another (less well-

understood).

To make the case for homology of regulatory circuits, and using what

is known in one context and applying it to another, we will have to

examine homology and the emergence of phenotype from regulatory

circuits. This is the current challenge in computational biology. As

genomes are sequenced, there comes the realization that interpreting

the genome sequence is not straightforward. Coding regions are inter-

spersed with noncoding regions, and an individual locus may give rise

to multiple gene products. This has stimulated experimental approaches

to identify the full spectrum of messenger RNAs (the transcriptome) and

their corresponding protein products (the proteome) (RIKEN, 2001). If

we now ask about the many modifications of proteins, and the numer-

ous interactions and the detailed biophysics of protein-protein, protein-

DNA, protein-RNA, and protein-lipid interactions (see chapter 9 in this

volume), we quickly see why sequence-based computational biology

hits a snag.

Part of the enthusiasm for moving to descriptions at the network

level is the hope (or intuition) that there will be regularities that allow

us to offer useful descriptions without losing the emergent biological

narrative in a fog of biophysical details. In addition, the increasing

availability of transcription profiles and the need to interpret them has

encouraged researchers to use known regulatory networks to establish

expectations against which profiling experiments can be statistically

compared. I will offer an operational definition of homology, watch it

at work in a current example of gene regulation (eye development), and

endorse hypotheses of gene regulatory homology that push experi-

mental work and set expectations for establishing statistical significance.

HOMOLOGY

Since evolution was championed in the mid-1800s, it has been possible

to define homologies as similarities due to shared ancestry (Lankester,
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1870; Donoghue, 1992; Patterson, 1987; Patterson, 1988). To understand

the use of this concept when thinking about developmental regulatory

circuits or pathways, it is worth reflecting on the use of the term

‘‘homology.’’ There is general agreement that attributions of homology

are shorthand for the claim that particular similarities are best ex-

plained by common ancestry (Abouheif et al., 1997; Bolker and Raff,

1997; de Beer, 1971; Hall, 1995; Roth, 1984; Roth, 1988; Wagner, 1989a;

Wagner, 1989b). There is still some confusion that flows from conflat-

ing ‘‘homology as an explanation for similarity’’ (as hypothesis) with

treating homology as if it were a (discernible) property of individual

things.

As more and more developmental pathway information becomes

available, comparative work becomes of particular interest. I will try to

provide the framework within which concepts of homology can be

based in these cases. My goal is to reciprocally illuminate the compari-

son of regulatory pathways and those explanations that rest on homol-

ogy. I will use examples from spatiotemporal gene expression patterns

in developmental biology because these are the best studied. But I think

much of the argument carries easily to gene regulatory circuits or met-

abolic pathways (see Burian, 1997 for tensions between developmental

and genetic descriptions).

Here is an example. The eyespots on the wings of butterflies in the

genera Precis and Bicyclus look very similar. In both species, eyespot

foci are established in the larval stage. However, at the pupal stage

things look quite different. The pattern of engrailed expression corre-

lates with the development of eyespot rings. Engrailed is a transcription

factor that is also involved in establishing body segments by activating

the secreted protein hedgehog. In Precis, engrailed expression extends

out to the second ring by 24 hours after pupation and then collapses

to the center of the ring by 48–72 hours. In Bicyclus, it is expressed at

the third ring but not in the second. Whereas both butterflies may use

the same mechanism to place eyespots, the ways in which they specify

the developing rings of the eyespot appear to be different, though the

adult pattern appears similar again (Keys et al., 1999). Given the prof-

ligate reuse of transcription factors in development, we have a real chal-

lenge in applying notions of homology and in borrowing annotations

from one situation to the next.

Reactions to complicated (i.e., actual) examples include the claim that

homology at one level does not require homology at another, or that
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homology means nothing more than shared expression patterns of im-

portant regulatory genes during development, or that any assignment

of homology must specify a level in order to be meaningful. Although

homology may apply to (developmental) mechanisms per se (‘‘process

homology’’), rather than to their structural end products, there is ten-

sion in the possibility that homology at one level of organization

may not imply homology at another. For example, nonhomologous

wings are said to have evolved from homologous forelimbs. Pterosaurs,

bats, and birds share the underlying pattern of homologous forelimb

bones of their tetrapod ancestor, but their wings have evolved inde-

pendently. The problem is that because there is no clear way to assign

levels unambiguously, one may conclude, unnecessarily, that gene

expression patterns should not be used as a primary criterion of

homology.

In addition to rejecting hypotheses of homology using gene expres-

sion patterns because they may disagree with each other at varying

levels of organization, some critics cite specific errors that have come

from using expression patterns (Abouheif et al., 1997; Bolker and Raff,

1997). These include the failure to distinguish between orthology and

paralogy,1 the confusion of analogy (convergence) and homology (not-

ing that gene-swapping experiments do not resolve this question), the

failure to notice that orthologous genes can be recruited and expressed

in structures whose similarities may not be due to common ancestry.

So, for example, the distal-less gene (the transcription factor that is the

first genetic signal for limb formation to occur in the developing zygote)

may be homologous in different animals, but its cis regulation may be

convergent in different lineages, so that finding distal-less expression in

different outgrowths does not, by itself, warrant the claim that the re-

sultant limbs are homologous.

These concerns all seem reasonable, and might chill our enthusiasm

for recognizing and borrowing knowledge gleaned from develop-

mental regulatory circuits in different contexts. Must any hypothesis of

morphological homology based on gene expression include, at a mini-

mum, a robust phylogeny, a reconstructed evolutionary history of the

gene, extensive taxonomic sampling, and a detailed understanding of

comparative anatomy and embryology? Or are these requirements

unnecessarily cumbersome? To untangle these issues I will return to a

definition of homology.
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HOMOLOGY: A DEFINITION

The use of the term ‘‘homology’’ implies that a given similarity is a

result of common ancestry. This definition has a critical requirement:

similarity comes first. There are many cases in which the similarity is

cryptic, but this should not fool us into thinking that we are explaining

something other than the similarity.

There are some instructive examples of structures that are not at first

glance similar, but are more obviously so once the hypothesis of com-

mon ancestry is considered seriously, as in studies of insect wing

evolution (Kukalova-Peck, 1983) and wing venation patterns (Kukalova-

Peck, 1985). But we generally begin with the perception of similarity

and then explain the similarities by appealing to a short list of possi-

bilities. Biologists usually consider similarity to be the result of shared

ancestry (homology), chance, convergence (homoplasy), or parallelism

(including repeated co-optation of the same regulatory genes), or an

intricate mix of these. Explanations that posit horizontal transfer are

still appealing to homology to explain similarity, even though they re-

lax the requirement for a unbroken shared lineage.

We should not appeal to homology to explain dissimilarity. And,

importantly, it is not at all clear what the claim that dissimilar objects

are ‘‘nonhomologous’’ would mean. Homology as I have defined it is

coherent only when we begin with similarity. Nonhomologous simi-

larity does make sense, however. Claiming that similarity is not due to

shared ancestry sends us to the other possibilities (convergence, chance,

and biomechanical constraint).

There are other uses of ‘‘homology’’ that we will set aside. There is

the unfortunate use of the word to refer to the degree of DNA sequence

identity or similarity (e.g., 30% homology). This use does not make

particular claims about the origin or process that gives rise to the

similarity.

Then there is the interesting phenomenon of serial homology, as

in the forelimbs and hind limbs of quadrupeds, the repeated segments

of a millipede, or the petals of a flower. A similar situation arises in

developmental genetic terms when, for example, the expression of

apterous in dorsal cells and engrailed in posterior cells in both wing and

haltere discs has been taken as evidence that these two appendages are

built on a ‘‘homologous groundplan’’ (Akam, 1998). Serial homology
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does not imply the existence of a common ancestor with just one seg-

ment, limb, or other structure; rather, it gives us insight into how

a structure develops. Sometimes paralogy is assumed to be ‘‘serial

homology’’ at the level of genes. However, paralogy of open reading

frames does imply a common ancestor with just one copy.

HOMOLOGY AS HYPOTHESIS

As biologists, when we give ourselves the task to explain similarity, we

have a limited list of options:

1. Mistaken perception: the similarity is solely in the eye of the be-

holder (flightlessness, an outgrowth, the coelom)

2. Shared ancestor had the anatomical structure, gene, regulatory

network, behavior, temporal and spatial protein distribution, or other

component (homology or horizontal transfer, developmental con-

straints)

3. Convergence, parallelism (adaptation)

4. Chance (drift, contingency, historical constraints)

5. Physical principles (biomechanics).

These options are not mutually exclusive. The claim that the percep-

tion of similarity itself is illusory is an epistemological question (and

not unique to biologists), so I will put it aside. Physical constraints have

been in vogue as an explanation of similarity periodically since the

work of D’Arcy Thompson. Contemporary practitioners who focus on

biomechanics (e.g., Mimi Koehl and Steven Vogel) are part of this tra-

dition, as are the recent wave of neostructuralists (Webster and Good-

win, 1996; Depew and Weber, 1996). The clearest examples of this kind

of similarity are in chemistry (ice crystals look similar due to the phys-

ical processes involved, not shared ancestor relationship between indi-

vidual water molecules).

Physical and chemical constraints do not play a large part in most

biologists’ explanations, so explanations involve appeals to the other

three. Much of the discussion of homology as structural, or dependent

on the relative position of surrounding parts or on the percent of iden-

tical bases or amino acids comes down to questions of the relative

merits of attributing overall similarity to common ancestors, not argu-

ments about the definition of homology.
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The job of explaining similarities is one of partitioning credit. Take

two gene sequences that can be aligned. There will be certain positions

where the residues are shared (i.e., the same). As we move along the

alignment, we can imagine that some of the shared residues reflect a

shared ancestor, whereas others have mutated since the common an-

cestor and have secondarily returned to the same residue thanks to

either drift (there are only four bases possible) or to convergence (the

protein works better if a particular residue is coded for at a particular

position). Clearly the observation of the similarity depends strongly on

the alignment (already an important hypothesis that privileges the idea

that shared residues are due to homology). It should be clear that

understanding what percent of the identities are due to homology,

chance, and convergence may be difficult, but it is at least formally

possible. Many biologists take identical residues to indicate common

ancestry in combination with stabilizing selection.

Sequence comparison allows us to partition credit, at least in princi-

ple. Doing the same thing when we are discussing morphology or gene

regulatory circuits is more difficult. This is both because it is much

harder to atomize the trait unambiguously and because the explana-

tions are deeply intertwined. This difficulty does not have to block

inquiry.

Focusing on convergence is the traditional way to gain insight into

the selectionist forces at work. Lineages are assumed to be independent

trials in a natural experiment, so convergence suggests similar selection

pressures (Losos et al., 1998). Alternatively, attention to the underlying

homologies2 offers insight into possible origins, and relationships

among and constraints on the evolution of forms in the taxa under

consideration (see Amundson, 1998 for a discussion of the structuralist

tradition). Devotion to chance events has been used to good effect in

both understanding the distribution and abundance of lineages and in

inferring times of divergence by using background mutation rates of

DNA sequences. The importance of contingent events in the history of

life is well described by Gould’s review of the Burgess shale fossils and

his discussion of which lineages got to participate in the Cambrian ex-

plosion (Gould, 1990). These three accounts are not mutually exclusive;

rather, they are the strands from which evolutionary explanations are

braided.3

Can gene circuits and spatial and temporal expression patterns be

perceived as similar? Certainly. Are they candidates for hypotheses of
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homology? I would say, absolutely yes! Now the question of diagnosis

is open and difficult—but the appeals to homology, chance, and con-

vergence as parts of an explanation are not especially problematic for

developmental genetics (see also Gilbert et al., 1996; Gilbert and Bolker,

2001). Due to changes in developmental timing, it is often a real chal-

lenge to identify the equivalent developmental stages across lineages.

Correlating equivalent developmental stages in different organisms is

much like testing multiple alignment hypotheses in sequence-based

comparison, though the criteria for identity are less obvious. However,

if we are comparing which regulatory elements are upstream or down-

stream in a circuit, we can anchor our particular questions to the circuit

under consideration, even before we have full resolution of the stage

problem.

Can regulatory genes be homologous if the structures they produce

are not? Again, I would answer this with an enthusiastic yes. I suspect

that what is usually meant by ‘‘not homologous’’ is that the structures

produced are not similar (or the part of the structures we are trying

to explain are not the similarities). I find it less likely, but formally

possible, that someone could convince us that the similarities of the

structures are best explained by an appeal to convergence or chance or

physical constraint even if the regulatory genes’ similarities were best

explained by their sharing a common ancestor (i.e., they are homolo-

gous). Are tissues homologous if similarity is cryptic and apparent only

at level of genes? We are constantly increasing the number of ways that

we can probe and understand a tissue. As should be clear by now, I

would prefer to reserve assertions of homology for the actual simi-

larities (the noncryptic gene similarities).

THE EVOLUTION OF THE EYE

The evolution of the eye stood for years as a paradigmatic example of

independent evolutionary paths fulfilling the same need. Vertebrates

and mollusks have single-lens eyes (though the photoreceptive cells

under the lens have opposite orientation), whereas insects have com-

pound eyes. These differences had been taken to imply that the eye

evolved (independently) numerous times. We now know that the large

morphological differences share a common developmental pathway of

elements for optic morphogenesis. The evidence for commonality in

these developmental pathways comes from looking at similar proteins
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in mammals and flies (the Pax proteins) (Gehring, 1999). A particular

protein, called eyeless for its mutant phenotype in fruit flies, was shown

to produce eye structures on wings and legs of flies when ectopically

expressed in those locations. It seems reasonable to conclude that it must

be near the top of the developmental hierarchy for eye development.

A mutation in a similar protein in mammals (Pax6, the eyeless

homologue, based on sequence and motif similarities) results in abnor-

mal formations of the eye. The mouse protein, when expressed in un-

usual locations in the fly, also results in production of ectopic fly eyes.

Whether Pax6 recruits native eyeless, which then auto-upregulates more

eyeless, or does the job itself is not known. But in either case, these two

proteins have very similar functions. This finding also suggests that ei-

ther (a) the common ancestor of flies and mice also had working eyes

whose development used this protein (i.e., the common ancestor of

Pax6 and eyeless) or (b) whatever this protein was doing in the common

ancestor, it facilitated the evolution of eyes in other lineages (a Pax6-

like protein is found in squid and octopus, too).

So are the eyes homologous? If we begin with similarities, we can

avoid a fruitless argument. The differences between compound fly eyes

and single-lens vertebrate eyes cannot support a hypothesis of homol-

ogy because they are differences. This allows us to focus on the simi-

larities; bilateral symmetry, positioning on the head, the expression

patterns of regulatory genes, the pathway itself (eyeless, twin of eyeless,

sine oculis, eyes absent, dachshund . . .). All of these similarities do seem to

be homologous; or, more carefully, we would credit those similarities

to shared ancestry.

It is relevant to point out that work on the regulation of chick muscle

development has shown that homologues of genes involved in mouse

eye development (Dach2, Eya2 and Six1) are involved in vertebrate

somite (muscle) development (Heanue et al., 1999). Again by focusing

on the similarities, in this case the regulatory feedback loops, we might

appeal to homology while simultaneously avoiding the question of

whether eyes are homologous to the segmentally organized meso-

dermal structures that are the embryonic precursors of skeletal muscle.

Do we need a new word for homologous gene circuits (e.g., true

homology, deep homology, homoiology), or should we talk about

homology at different levels? I have been arguing that attribution of

similarity to historical relatedness is an appeal to homology, whenever it

is made. The additional adjectives (‘‘true’’ or ‘‘deep’’) do not add much.
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Contingency, homology, selection (functional convergence), and physi-

cal constraints are constitutive parts of any explanation for a trait,

whether it is a gene sequence, a gene expression pattern, or an adult

tissue.

METHOD

While similarity surely results from a mix of explanations, a method-

ological preference for homology can still be defended. Looking for

and highlighting homology when discussing developmental regulation

serves us by generating hypotheses that inspire tests in ways that con-

tingency and convergence do not. This does not mean that the hypoth-

esis of homology will be supported by those tests, but we know what to

do next in the laboratory.

I would like to contrast the kinds of hypotheses that are generated

when we focus on differences attributed to selection rather than on

similarities attributed to homology. C. J. Lowe and G. A. Wray studied

several homeobox genes and concluded that they were recruited into

new roles: ‘‘Each of these cases [orthodenticle, distal-less, engrailed ex-

pression in brittle stars, sea urchins, and sea stars] represents recruit-

ment (co-option) of a homeobox gene to a new developmental role. . . .

Role recruitment implies that the downstream targets are different from

those in other phyla.’’ This assessment—that if the genes were recruited

into new roles, their downstream targets would be different—presents

a significant experimental challenge. Where to go next? What if, in-

stead, Lowe and Wray had asserted that the upstream and downstream

factors were what had been found previously in other organisms? They

would then have known which genes (and expression patterns) to hunt

for. This suggests that it may be methodologically useful to hypothe-

size homologies, especially when looking at pathways and develop-

mental circuits, since previously characterized networks provide a list

of candidates that might be involved in the new situation.

Most evolutionists recognize that explaining every feature of an or-

ganism as an adaptation can become mere storytelling. This is why

nonhomologous similarities are of special interest (i.e., distinct clades

that share the feature of interest). With multiple clades, if we have

ruled out homology, chance, and physical constraint, we can then look

to commonalities in the respective environments to suggest that there

may have been similar selection regimes. Dispensing with the compar-
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ative step can result in an uncritical adaptationism that explains (by an

appeal to natural selection) the existence of a trait that is unique or

novel in our lineage of interest. Without multiple lineages for compari-

son (focusing just on the autapomorphy) we are free to assert that the

population faced whatever challenges could select for the structures

under consideration.

These selectionist accounts are too difficult to challenge and can be

produced at will. Flying, for example, has arisen numerous times from

flightless ancestors. Should every structure that makes flight possible

be treated as a complete novelty in each lineage? Because of the possi-

bilities of finding developmental and structural homologies, there are

certain parts of the explanation of flight in these lineages that will be

better examined by restricting our inquiry to the three vertebrate clades

that had flight (pterosaurs, birds, and bats) as distinct from the flying

insects. It should be clear that comparative work is critical, and for-

tunately the sequencing projects and advances in transcript and protein

profiling make comparative work ever easier. And the information that

can be gleaned from comparative work (borrowing annotations and

candidates justified by hypotheses of homology) should motivate ever

more comparative studies.

From a methodological standpoint, then, identifying homologies

has salutary effects. First, it demands an actual comparison. Second, in

comparing across clades we can easily generate hypotheses. If our trait

of interest stands in particular relations to other features in one organ-

ism—a given regulatory gene, for example—we can hypothesize that it

will also do so in another. We still may not find the targets, but

hypotheses of homology can tell us what to test initially.

As we move from the initial wave of genome sequencing to the

wonderfully more complicated problems of understanding what pro-

teins do, how they interact, and how they are regulated, we will need

principled ways to interpret profiling information, generate network

hypotheses, and annotate myriad functions. In that project, homology

plays a useful role both in giving a methodological starting point for

generating candidate interactions and in reminding us that inference

from similarity is difficult. The use of comparative developmental

genetics to generate hypotheses of homology should be embraced. Ex-

pression patterns and regulatory networks are legitimate foci for hy-

potheses of homology, because they help us understand the origin and

evolution of structure. Finally, attributions of homology should be
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sought, solely on methodological grounds, because they offer us spe-

cific testable hypotheses.
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NOTES

1. The paralogy and orthology distinction was introduced to distinguish two kinds of

homology in proteins (Fitch, 1970). Paralogy is meant to cover those situations when a

gene duplication allows related proteins to evolve independently within the same lineage.

Orthologues are found in different individuals, and paralogues can be found in the same

individual (reviewed in Patterson, 1987).

2. ‘‘The importance of the science of Homology rests in its giving us the key-note of the

possible amount of difference in plan within any group; it allows us to class under proper

heads the most diversified organs; it shows us gradations which would otherwise have

been overlooked, and thus aids us in our classification; it explains many monstrosities; it

leads to the detection of obscure and hidden parts, or mere vestiges of parts, and shows

us the meaning of rudiments. Besides these practical uses, to the naturalist who believes

in the gradual modification of organic beings, the science of Homology clears away the

mist from such terms as the scheme of nature, ideal types, archetypal patterns or ideas,

&c.; for these terms come to express real facts.

The naturalist, thus guided, sees that all homological parts or organs, however much

diversified, are modifications of one and the same ancestral organ; in tracing existing

gradations he gains a clue in tracing, as far as that is possible, the probable course of

modification during a long line of generations. He may feel assured that, whether he fol-

lows embryological development, or searches for the merest rudiments, or traces grada-

tions between the most different beings, he is pursuing the same object by different routes,

and is tending towards the knowledge of the actual progenitor of the group, as it once

grew and lived. Thus the subject of Homology gains largely in interest’’ Charles Darwin,

On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects,

2nd ed. (London: John Murray, 1877), pp. 233–234.

3. This insistence on a pluralistic account (including homology, selection, and chance) is

not meant to defend claims of percent homologue. A particular similarity either is or is

not homologous. The use of ‘‘homology’’ with respect to gene sequences to indicate per-

cent similarity should be avoided. I am only making the uncontroversial claim that any

comparison of particular traits in toto will be require an appeal to homology, conver-

gence, and chance.
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2 Automation of Protein Sequence
Characterization and Its Application in
Whole Proteome Analysis

Rolf Apweiler, Margaret Biswas, Wolfgang

Fleischmann, Evgenia V. Kriventseva, and Nicola

Mulder

The first complete genome sequence of an organism, the five-kilobase

sequence of the bacterial virus phi-X174, was achieved by Fred Sanger

and coworkers in Cambridge (Sanger et al., 1978). Only more recently,

however, has the technology developed to a stage where the sequenc-

ing of the complete genome of a living organism can be contemplated

as a practical and routine possibility. A major breakthrough was the

sequencing of the first complete eukaryote chromosome, chromosome

III of Saccharomyces cerevisiae, in 1992 by a European Union-funded

consortium (Oliver et al., 1992). In 1995 the TIGR group published the

first complete sequence of a bacterial genome, that of Haemophilus in-

fluenzae (Fleischmann et al., 1995).

Since those dramatic events the complete sequences of more than 40

bacterial genomes have been published and at least 70 more are known

to be nearing completion. The sequencing of five eukaryotic genome

sequences—those of Saccharomyces cerevisiae (Goffeau et al., 1997), the

nematode Caenorhabditis elegans (The C. elegans Consortium, 1998), the

fruit fly Drosophila melanogaster (Adams et al., 2000), the plant Arabi-

dopsis thaliana (The Arabidopsis Initiative, 2000), and the alga Guillardia

theta (Douglas and Penny, 1999) has been achieved and the sequences

of other model eukaryotes are nearing completion. Large-scale sequenc-

ing of the genome of the laboratory mouse is well under way in the

United States, Japan, and Europe. The sequences of several important

protozoan parasites are close to being finished. In addition, the com-

plete genomes of many mitochondria and plastids have been deter-

mined. The ‘‘Holy Grail’’ of large-scale sequencing is, however, the

determination of the sequence of the human genome, estimated at

around 3 billion base pairs. The completion of the ‘‘first draft’’ of this



sequence was announced on 26 June 2000 by an international consor-

tium of public laboratories.

Various proteomics and large-scale functional characterization proj-

ects in Europe, Japan and the United States complement the large-scale

nucleotide sequencing efforts. These projects have all produced large

amounts of sequence data lacking experimental determination of the

biological function. To cope with such large data volumes and to

provide meaningful information, new approaches to characterize and

annotate the biological data in a faster and more effective way are

required. One promising but still error-prone approach is automatic

functional analysis, which is generated with limited human interaction.

AUTOMATIC ANNOTATION

The Pitfalls of Automatic Functional Analysis

Several solutions of automatic functional characterization of unknown

proteins are based on high-level sequence similarity searches against

known proteins. Other methods collect the results of different pre-

diction tools in a simple (http://pedant.gsf.de/; Frishman and
Mewes, 1997) or a more elaborate (http://jura.ebi.ac.uk:8765/
ext-genequiz/; Tamames et al., 1998; Hoersch et al., 2000) manner.
However, some of the currently used approaches have several draw-

backs, including the following:

. Since many proteins are multifunctional, the assignment of a single
function, which is still common in genome projects, results in the loss

of information and outright errors.

. Since the best hit in pairwise sequence similarity searches is fre-
quently a hypothetical protein, a poorly annotated protein, or simply a

protein that has a different function, the propagation of wrong annota-

tion is widespread.

. There is no coverage of position-specific annotation, such as active
sites.

. The annotation is not constantly updated, and thus is quickly

outdated.

It is also important to emphasize that a single sentence describing

some predicted properties of an unknown protein should not be re-
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garded as annotation. It may be regarded as an attempt to characterize

a protein, but not as an attempt to annotate the protein. Annotation

means the addition to a protein sequence of as much reliable and up-to-

date information as possible describing properties such as function(s)

of the protein, domains and sites, catalytic activity, cofactors, regulation,

induction, subcellular location, quaternary structure, diseases associated

with deficiencies in the protein, the tissue specificity of a protein, de-

velopmental stages in which the protein is expressed, pathways and

processes in which the protein may be involved, similarities to other

proteins, and so on.

The Annotation Concept of SWISS-PROT and TrEMBL

The SWISS-PROT protein sequence database (Bairoch and Apweiler,

2000) strives to provide extensive annotation as defined above. The

increased data flow from genome projects to the protein sequence

databases, however, challenges this time- and labor-intensive method

of database annotation. Maintaining the high quality of annotation

in SWISS-PROT requires the careful and detailed annotation of every

entry with information retrieved from the scientific literature and from

rigorous sequence analysis. This is the rate-limiting step in the produc-

tion of SWISS-PROT. It is of paramount importance to maintain the

high editorial standards of SWISS-PROT because the exploitation of the

sequence avalanche is heavily dependent on reliable data sources as the

basis for automatic large-scale functional characterization and annota-

tion by comparative analysis. This, then, sets a limit on how much the

SWISS-PROT annotation procedures can be accelerated. Recognizing

that it is also vital to make new sequences available as quickly as pos-

sible, in 1996 the European Bioinformatics Institute (EBI) introduced

TrEMBL (Translation of EMBL nucleotide sequence database). TrEMBL

consists of computer-annotated entries derived from the translation of

all coding sequences (CDS) in the EMBL database, except for CDS al-

ready included in SWISS-PROT.

To enhance the annotation of uncharacterized protein sequences

in TrEMBL, the SWISS-PROT/TrEMBL group at the EBI developed

a novel method for automatic and reliable functional annotation

(Fleischmann et al., 1999). This method selects proteins in the SWISS-

PROT protein sequence database that belong to the same group of

proteins as a given unannotated protein, extracts the annotation shared
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by all functionally characterized proteins of this group, and assigns this

common annotation to the unannotated protein.

Automatic Annotation of TrEMBL

To implement this methodology for the automated large-scale functional

annotation of proteins, three major components are required. First, a

reference database must serve as the source of annotation. SWISS-PROT

makes an excellent reference database due to its highly reliable, well-

annotated, and standardized information. Second, a highly reliable, di-

agnostic protein family signature database must provide the means to

assign proteins to groups. Initially, PROSITE (Hofmann et al., 1999) was

used, and in future, InterPro, described below, will be used. The third

component needed for the implementation of the automated large-scale

functional annotation methodology is a database (RuleBase) that stores

and manages the annotation rules, their sources, and their usage.

The Reference Database The basis for the automatic annotation

of TrEMBL is the functional information in the SWISS-PROT protein

sequence database. Many other annotation approaches try to predict

functions by comparative analysis with SWISS-PROT and other protein

databases like TrEMBL and Genpept. There are three main reasons for

using only SWISS-PROT annotation in automatic approaches.

First, SWISS-PROT is a comprehensive protein sequence database.

This may seem surprising, since as of October 2000 SWISS-PROT con-

tains only 88,000 proteins. Although these sequences represent—taking

redundancy into account—less than one-third of all known protein

sequences, SWISS-PROT contains around 60% of all proteins found

in comprehensive protein sequence databases (like SWISS-PROTþ
TrEMBL [SPTR] or protein entries in Entrez) with annotation of at least

basic experimentally derived functional characterization. This percent-

age was estimated from the number of papers (70,000) cited in SWISS-

PROT records compared with the number of papers in all SPTR or

Entrez protein entries (110,000) together. The calculation was based on

the assumption that the proportion of papers reporting sequencing to

papers reporting characterization is the same in SWISS-PROT records

as in TrEMBL records or in non–SWISS-PROT Entrez protein records.

However, an inspection of citations from SWISS-PROT compared with

citations from TrEMBL shows that SWISS-PROT contains a higher pro-
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portion of papers representing biochemical citation than do TrEMBL

papers.

This observation, together with the sequence redundancy in TrEMBL

and the non–SWISS-PROT records of Entrez proteins, indicates that

SWISS-PROT probably contains more than 60% of all annotated pro-

teins with at least basic biochemical characterization. Even more strik-

ing is the fact that more than 80% of all functional annotation found in

the comprehensive protein sequence database records (such as SPTR or

protein entries in Entrez) is SWISS-PROT annotation. SWISS-PROT an-

notation is, for the most part, stored in the CC (Comment), FT (Feature

Table), KW (Keyword) and DE (Description) lines. As of August 2000,

there are more than 410,000 CC lines, 460,000 FT lines, and 110,000 DE

lines in SWISS-PROT. This information in SWISS-PROT is abstracted

from more than 70,000 literature citations reporting sequencing and/or

characterization.

Another important reason is the standardization of annotation in

SWISS-PROT. This unique feature of SWISS-PROT allows the extrac-

tion of the ‘‘common annotation’’ described above. Using the stan-

dardized SWISS-PROT annotation leads eventually to the standardized

annotation of TrEMBL.

The last and perhaps most important reason is the fact that SWISS-

PROT distinguishes experimentally determined functions from those

determined computationally.

InterPro InterPro (Apweiler et al., 2001) is an integrated resource

for protein families, domains, and functional sites, developed as an in-

tegrative layer on top of the PROSITE, PRINTS (Attwood et al., 2000),

Pfam (Bateman et al., 2000), and ProDom (Corpet et al., 2000) data-

bases. The different approaches integrated in InterPro (hidden Markov

models [HMMs], profiles, fingerprints, regular expressions, etc.) have

different strengths and weaknesses. The combination of the strengths of

the different signature recognition methods, coupled with a statistical

and biological significance test, overcomes drawbacks of the individual

methods. InterPro reliably classifies proteins into families and recog-

nizes the domain structure of multidomain proteins. The use of In-

terPro should facilitate increased coverage of target sequences with

enhanced reliability (reduction of false positives and false negatives).

InterPro can currently classify around 60% of all known protein

sequences.
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RuleBase RuleBase stores the common annotation extracted from a

group of SWISS-PROT entries. The common annotation is linked to the

conditions and to the set of proteins from which the annotation was

derived. The concept of a rule is used so that every rule has one or

more conditions and one or more actions associated with it. If the con-

ditions hold for a target TrEMBL entry, then all the actions are applied

to that entry (Fleischmann et al., 1999).

Implementation The actual flow of information during automatic

annotation can be divided into five steps.

1. Use InterPro and additional a priori knowledge to extract the infor-

mation necessary to assign proteins to groups (conditions) and store

the conditions in RuleBase.

2. Group the proteins in SWISS-PROT by the stored conditions.

3. Extract from SWISS-PROT the common annotation shared by all

functionally characterized proteins from each group. Store this com-

mon annotation together with its conditions in RuleBase. Every rule

consists of conditions and the annotation common to all proteins of the

group characterized by these conditions.

4. Group the unannotated, target TrEMBL entries by the conditions

stored in RuleBase.

5. Add the common annotation to the unannotated TrEMBL entries.

The predicted annotation will be flagged with evidence tags, which will

allow users to recognize the predicted nature of the annotation as well

as the original source of the inferred annotation.

Because the reliability of the conditions is crucial to the reliability

of the methodology, measures are taken to minimize false-positive

automatic annotation. The InterPro database that is used to extract

conditions and to assign proteins to groups integrates different com-

putational techniques for the recognition of signatures that are diag-

nostic for different protein families or domains. In addition, every rule

ensures that the taxonomic classification of the unannotated protein

sequences lies within the known taxonomic range of the experimentally

characterized proteins.

This automatic annotation approach should overcome some limi-

tations of some existing automatic annotation methods in the following

ways:
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. By using only the annotation from a reliable reference database for

the predictions, the propagation of wrong annotation, one of the core

problems in functional annotation, is drastically reduced (Bork and

Koonin, 1998).

. By using the ‘‘common annotation’’ of multiple entries, the imple-
mented methodology will produce a significantly lower number of

overpredictions than methods based on the best hit of a sequence simi-

larity search.

. Using the ‘‘common annotation’’ from a reliable reference database

with standardized annotation and nomenclature ensures the stan-

dardized annotation of uncharacterized, target proteins by avoiding the

use of wrong nomenclature and of different descriptions for the same

biological fact.

. Since the method takes all potential annotation available in the refer-
ence database into account, a much higher level of annotation, includ-

ing position-specific annotation such as active sites, is possible.

. The ‘‘common annotation’’ approach can be used not only with pro-
tein families but also with conditions aiming at a higher level in the

protein family hierarchy. Only the annotation common to all members

of this (for instance) superfamily will be copied over.

. Our methodology is independent of the multidomain organization of
proteins. If a certain condition aims at a single domain that occurs with

various other domains, it can be expected that only the annotation re-

ferring to this single domain will be found in all relevant characterized

proteins. On the other hand, if the single domain always occurs with

another domain, the information for the other domain will be picked

up as well.

. Evidence tags will allow the automatic update of the predicted an-

notation if the underlying conditions or the ‘‘common annotation’’ in

RuleBase changes.

WHOLE PROTEOME ANALYSIS

A Four-Layer Approach to Whole Proteome Analysis

It is no longer ludicrous to envisage collecting vast amounts of genomic

data, although it remains a massive task. The challenge is in developing

the tools and methods required to analyze the data. In the sections
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above, we described how the SWISS-PROT group at the EBI combines

manual annotation and sequence analysis of SWISS-PROT entries with

rule-based automatic annotation of TrEMBL entries to provide a com-

prehensive, reliable, and up-to-date protein sequence database. With

existing methodology we are able to improve the annotation of ap-

proximately 25% of the incoming data. Exploiting this approach to the

full will enable us to annotate approximately 40–50% of the new and

existing sequence data in a reasonable way within a few years. How-

ever, tools developed by our group and by others make possible the

preliminary classification and characterization of many more sequences.

Capitalizing on these achievements, we developed a new four-layer

strategy for protein analysis:

1. Automatic protein classification

2. Automatic protein characterization

3. Rule-based automatic annotation

4. SWISS-PROT-style manual annotation.

From level 1 to level 4 there is an increase in the manual intervention

required and a decrease in both the computational power needed and

the number of protein sequences affected. The rule-based automatic

annotation of TrEMBL entries and the SWISS-PROT-style manual

annotation (levels 3 and 4) were described above. In the following

sections we will describe automatic protein classification and charac-

terization, and their application to provide statistical and compara-

tive analysis, as well as structural and other information, for complete

proteome sequences.

Whole Proteome Analysis at EBI

The EBI proteome analysis initiative aims to provide comprehensive,

easily accessible information as quickly as possible to the user commu-

nity. Proteome analysis data have been produced for all the completely

sequenced organisms spanning archaea, bacteria, and eukaryotes. Com-

plete proteome sets for each organism have been assembled from the

SPTR (SWISS-PROTþTrEMBLþTrEMBLnew) database (Apweiler, 2000)
to be wholly nonredundant at the sequence level. These proteome data

have been used in the analysis, and are easily accessible and down-

loadable from the proteome analysis pages (http://www.ebi.ac.
uk/proteome/).
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Automatic Protein Classification

For the automatic classification of proteins, InterPro (Apweiler et al.,

2001), CluSTr, HSSP (Sander and Schneider, 1991), TMHMM (Sonn-

hammer et al., 1998), and SignalP (Nielsen et al., 1999) are used. Sig-

nalP is used for the prediction of signal peptides and their cleavage

sites in eukaryotes and prokaryotes in order to classify secreted pro-

teins and transmembrane proteins with signal sequences. TMHMM

predicts transmembrane helices in proteins and is used for the iden-

tification and classification of transmembrane proteins. A list of

nonredundant proteins from the reference proteome with HSSP

(homology-derived secondary structure of proteins) links has been

generated from current releases of SWISS-PROT and TrEMBL. These

proteins, together with those having a corresponding PDB (Berman et

al., 2000) entry, represent the proteins with structural classification.

The resources with the highest information content are InterPro and

CluSTr. InterPro (http://www.ebi.ac.uk/interpro/) classifies
50–70% of all proteins in a proteome into distinct families. In addition,

InterPro provides insights into the domain composition of the classified

proteins. The proteome analysis pages (http://www.ebi.ac.uk/
proteome/) make available InterPro-based statistical analysis that

includes the following, among other information:

. General statistics—lists all InterPro entries with matches to the refer-
ence proteome. The matches per genome and the number of proteins

matched for each InterPro entry are displayed.

. Top 30 entries—lists the 30 InterPro entries with the highest number
of protein matches for the reference proteome.

. 15 most common domains—lists the InterPro entries with the largest
number of Pfam and profile matches (defined as domains) for the ref-

erence proteome. The matches per genome and the number of proteins

matched for each InterPro entry are shown.

ClusTr

There are several databases that focus on the analysis of complete pro-

tein sequences. The COG database (Clusters of Orthologous Groups

of proteins) is a phylogenetic classification of proteins encoded in

21 complete genomes of bacteria, archaea, and eukaryotes (http://
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www.ncbi.nlm.nih.gov/COG; Tatusov, 2000). ProtoMap offers a

hierarchical classification of proteins in the SWISS-PROT and TrEMBL

databases (http://www.protomap.cs.huji.ac.il/; Yona et al.,
2000) based on analysis of all pairwise similarities among the pro-

tein sequences. The searching algorithm SYSTERS (SYSTEmatic Re-

Searching) applies an iterative method for database searching to

cluster sequences from a number of databases that store protein

sequences (http://www.dkfz-heidelberg.de/tbi/services/
cluster/systersform; Krause et al., 2000).
CluSTr (http://www.ebi.ac.uk/clustr/), the database of clus-

ters of SWISS-PROT and TrEMBL proteins developed at EBI, will be

discussed in some detail in this chapter. It offers an automatic classifi-

cation of SWISS-PROTþTrEMBL (SPTR) proteins into groups of related
proteins. The clustering is based on analysis of all pairwise compar-

isons between protein sequences. Analysis has been carried out for dif-

ferent levels of protein similarity, yielding a hierarchical organization

of clusters.

Methodology

The clustering approach is based on two steps. First, a similarity matrix

of ‘‘all-against-all’’ protein sequences is built. The similarity matrix is

computed using the Smith-Waterman algorithm (Smith and Waterman,

1981). A Monte Carlo simulation, resulting in a Z-score (Comet et al.,

1999), is used to estimate the statistical significance of similarity be-

tween potentially related proteins. Initially, a Smith-Waterman score

between sequences A and B is calculated. If this score is higher than a

certain threshold, sequence A is compared with N shuffled sequences of

B (B�). Sequences B� have the same length and amino acid composition
as the initial sequence B. The Z-score is calculated as

ZðA;BÞ ¼ SWðA;BÞ � M

s
;

where, SWðA;BÞ is the initial Smith-Waterman score, M is the average

Smith-Waterman score between sequence A and sequences B�, and s is

the standard deviation. Sequence B is then compared with N shuffled

sequences of A (A�) and ZðB;AÞ is calculated. The final Z-score is

Z-score ¼ minðZðA;BÞ;ZðB;AÞÞ:
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The Z-score depends only on the compared sequences, not on the size

and composition of the sequence database. By storing all the scores

of unchanged sequences and calculating only ‘‘new-against-new’’ and

‘‘new-against-unchanged,’’ the CluSTr database can be updated incre-

mentally, avoiding time-consuming recalculations.

Second, clusters are built using a single linkage algorithm (Sneath

and Sokal, 1973) for different levels of protein similarity. There are two

major complications in automatic clustering procedures: different pro-

tein families have different levels of sequence similarity, and clusters of

proteins with different domains get pulled together by multidomain

proteins. One of the approaches to tackling these problems uses hier-

archical clustering that works with clusters at different levels of se-

quence similarity. The LASSAP package (Glemet and Codani, 1997) has

been used to calculate similarities and to build clusters.

Data Structure

Clusters for mammalian proteins, plant proteins, and the three com-

plete eukaryotic genomes (Caenorhabditis elegans, Saccharomyces cere-

visiae, and Drosophila melanogaster) have been built. The CluSTr data are

stored in a relational database that comfortably handles large amounts

of data and facilitates comprehensive data updates. Multiple users have

direct access to the database via Java servlets.

The main building blocks of the schema underlying the CluSTr

are Proteins, Groups, Similarities, and Clusters. The Proteins table de-

scribes SPTR entries, Groups describes protein sets for which clusters

were built and the history of comparison runs, Similarities contains the

pairwise scores between proteins, and Clusters represents the informa-

tion about and relationships between different clusters.

Keeping the data up-to-date has been another big challenge in the

design and implementation of the CluSTr database. The aim is to up-

date the CluSTr data incrementally, in a synchronized manner with the

weekly updates of SPTR. There are additional Oracle tables to facilitate

this. The Protein_New table gets populated with new protein data.

New, changed, and deleted proteins are checked for, using SPTR ac-

cession numbers and the circular redundancy check sum (CRC64). An

algorithm to compute the CRC64 is described in the ISO-3309 standard

(ISO-3309, 1993). While, in theory, two different sequences could have

the same CRC64 value, the likelihood that this would happen is quite
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low. A list of new and changed proteins is created, and the calculation

of similarities for this new set against itself and against unchanged

proteins is carried out.

User Interface

The CluSTr database is available for querying and browsing at

http://www.ebi.ac.uk/clustr. A query can be made using SPTR
accession numbers, SWISS-PROT ID entry names, sequence annotation,

key words, and taxonomic information. The result of the query is a

graphical presentation of corresponding clusters at different levels of

protein similarity. For example, the results for a text query of ‘‘human

sodium transport’’ proteins are shown in figure 2.1. On the right of the

Figure 2.1 Searching the CluSTr database. Results for a query of ‘‘human sodium trans-

port’’ proteins. The table contains accession numbers of proteins with the words ‘‘human’’

and ‘‘sodium transport’’ in their annotation and the corresponding clusters at different

z-levels.
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table are accession numbers of proteins with the words ‘‘human’’ and

‘‘sodium transport’’ in their annotation, and on the left is the cluster

structure which these proteins form at different Z-levels. Bigger groups

of clusters of size 16, 9, and 5 correspond to Sodium:neurotransmitter

symporter family (IPR000175), Sodium:dicarboxylate symporter family

(IPR001991) and Naþ dependent nucleoside transporter (IPR002668),

respectively. The next group of proteins is not well described. At

the bottom of the table are the sodium bile acid symporter family

(IPR002657) and sodium-dependent phosphate transport proteins.

A cluster of interest can be further investigated by clicking on its ID

number. For each cluster the list of proteins, their descriptions, and the

domain composition is provided (figure 2.2). Links to the Sequence

Retrieval System (SRS) (Etzold et al., 1996) allow users to download the

list of proteins from a cluster. The domain composition is defined using

InterPro. Links to the InterPro graphical view allow users to see at a

glance whether proteins from a particular cluster share common

domains or functional sites (figure 2.3). For each cluster a list of sec-

ondary structure cross-references from the Homology-derived Second-

ary Structure of Proteins (HSSP) database (Sander and Schneider, 1991)

is generated dynamically. The database also provides links to the Pro-

tein Data Bank (PDB) (Berman et al., 2000).

It has already been mentioned that the clusters are built for specific

taxonomic groups. For each of the organisms that have been studied,

the following information is displayed:

. General statistics—the number of clusters with two or more proteins,
the total number of proteins in these clusters, the number of singletons,

and the number of distinct families at different levels of protein simi-

larity.

. List of singletons—proteins that form clusters of size 1 at the lowest

studied protein similarity level.

. 30 biggest clusters—the 30 biggest protein clusters and their InterPro-
based functional classification.

. Clusters without InterPro links—clusters of size 5 or more which
have no matching InterPro families, domains, or functional sites.

. Clusters without HSSP links—clusters of size 5 or more for which
there are no HSSP matches.
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Figure 2.2 A cluster of the human sodium: neurotransmitter symporter proteins. The

presentation contains general information, a list of proteins, their description, and an

InterPro-based domain description of the cluster. At the bottom of the page are links to

the SRS-generated list of clustered proteins, the InterPro graphical representation, and

links to the HSSP and PDB databases.
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AUTOMATIC PROTEIN CHARACTERIZATION

The Gene Ontology (GO) (Ashburner et al., 2000), created by FlyBase

(The FlyBase Consortium, 1999), Saccharomyces Genome Database

(SGD) (Ball et al., 2000), and Mouse Genome Database (MGD) (Blake

et al., 2000) is gaining acceptance as a universal controlled vocabulary

to annotate genes and gene products. GO terms are currently being as-

signed to proteins in SWISS-PROT and TrEMBL, and to InterPro do-

mains and families. Before the GO mapping began, each InterPro

entry was assigned a functional classification in the form of a three-

letter code with the categories based on top-level GO terms. Using this

basic classification, SWISS-PROT key words, and manual inspection

of annotation of protein families, specific GO terms of all levels were

mapped to each InterPro entry.

This mapping is in progress, and of the three organizing principles of

GO (details can be found at http://www.geneontology.org/), bi-
ological processes and molecular function have been taken up first. If

Figure 2.3 Part of the InterPro graphical view for the cluster of the human sodium:

neurotransmitter symporter proteins (ID 53435) from figure 2.2).
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the number of proteins with a known or reliably predicted subcellular

location becomes significant, the cellular component of GO will also be

included in the classification. There are cases where InterPro entries

describe nonspecific protein domains or families that cannot be assigned

a specific GO term, and in addition there are cases where GO terms do

not yet exist (e.g., when the domain or family is specific to prokaryotes).

These InterPro entries, however, still contain the three-letter functional

classification code, which may be more general and includes the cate-

gories Unknown Function and Multifunctional Proteins.

Using the classification data and selecting only the top-level terms

in the GO hierarchy, a table has been created for each completed pro-

teome that lists the GO terms and the number of proteins mapped to

each term. These tables can be found through links from the proteome

analysis pages for each organism. For Drosophila melanogaster, for ex-

ample, the page is located at http://www.ebi.ac.uk/proteome/
DROME/go/function.html. A functional classification of the pro-

teins within each proteome set has thus been generated to show the

percentage of proteins involved in, for example, metabolism, transcrip-

tion, and so on. This is represented graphically for three eukaryotes in

figure 2.4. The functional classification and mapping to GO of InterPro

families and domains is a simple method for determining whole pro-

teome composition and provides a basis for comparative analysis. It

also provides a framework for the mapping to GO of all proteins in

SWISS-PROT and TrEMBL that have matches in InterPro, and for any

new or previously uncharacterized protein sequences searched for in

InterPro. In addition, the CluSTr database has links to InterPro, and

from there to the corresponding functional classification codes and GO

terms, thus making it possible to identify protein functions within

clusters.

COMPARATIVE PROTEOME ANALYSIS

Some of what are likely to be the most frequently requested compari-

sons are available from the index page for each of the reference pro-

teomes. Comparisons of the proteomes are based on InterPro statistics

and are precomputed. The proteomes for which such comparisons are

currently available are the archaea; Pyrococcus abyssi and Pyrococcus

horikoshii; various groups of bacteria: Bacillus subtilis and Escherichia

coli; Chlamydia pneumoniae, Chlamydia trachomatis, and Chlamydia mur-
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idarum; the two Helicobacter pylori strains (26695 and J99); and Myco-

plasma genitalium and Mycoplasma pneumoniae; and the three complete

eukaryotic proteomes Caenorhabditis elegans, Drosophila melanogaster,

and Saccharomyces cerevisiae. The incomplete proteome of Homo sapiens

has been compared with three complete eukaryotic proteomes, and the

resulting data are available from the index page for Homo sapiens

(http://www.ebi.ac.uk/proteome/HUMAN/).
Interactive InterPro-based comparisons can be made using the Inter-

Pro proteome comparisons program to select the proteomes of the

organisms to be compared and the type of comparative analysis to be

carried out (http://www.ebi.ac.uk/proteome/comparisons.
html). Comparisons that can be made include general statistics, top 30
entries, top 200 entries, 10 biggest protein families, and 15 most com-

mon domains. An additional feature is the option to compute a list of

shared InterPro entries that are common to all the selected proteomes

(similar in concept to the overlapping region of a Venn diagram).

Figure 2.4 Relative representation of different protein functions in the three complete

eukaryotic proteomes based on the InterPro classification system. GPCRs ¼ the G-protein
coupled receptors.
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SOME OBSERVATIONS FROM THE COMPARATIVE PROTEOME

ANALYSIS OF CAENORHABDITIS ELEGANS, DROSOPHILA

MELANOGASTER, AND SACCHAROMYCES CEREVISIAE

A comparative analysis of the three complete eukaryotic proteomes

was the first application of some of the resources described here. The

InterPro analysis plus manual data inspection enabled the assignment

of just over 50% of the proteins of the proteomes of Drosophila mela-

nogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae (Rubin et al.,

2000). The Proteome Analysis Database (http://www.ebi.ac.uk/
proteome/) now contains the comparative analysis of all complete

proteomes. The analysis is carried out using complete nonredundant

proteome sets that comprise records taken from the SWISS-PROT,

TrEMBL, and TrEMBLnew databases (Apweiler, 2000) corresponding

to the complete proteome. The proteome sets are wholly nonredundant

at the sequence level (http://www.ebi.ac.uk/proteome/CPhelp.
html). The average protein length and size range of full-length proteins
(excluding fragments) for each of the three eukaryotic proteomes are

presented in table 2.1. The average length of the proteins is similar in

all three organisms, and higher than the average length of bacterial

proteins (unpublished observation).

The smallest proteins in Saccharomyces cerevisiae are the 60S ribosomal

protein L41 (P05746) and the leader peptide CPA1 (P08521), while the

largest is a hypothetical 560 kDa protein (Q12019). The largest protein

from Caenorhabditis elegans is a 1368.6 kDa uncharacterized protein

(Q09165) that contains several domains and motifs, including fibro-

nectin type III repeats, a Von Willebrand factor type A domain,

and EGF-like domains. The smallest Drosophila melanogaster protein

Table 2.1 A comparison of the average protein length and size range of full-length pro-

teins for each of the three eukaryotic proteomes

Number of amino acid residues

Proteome Average protein length Size range

Saccharomyces cerevisiae 476.69G 375.13 25 to 4910

Caenorhabditis elegans 434.76G 384.38 20 to 13,055

Drosophila melanogaster 486.91G 451.66 8 to 7182
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(Q9VRD2) is predicted to be just 8 amino acids long and is known as

the CG11666 protein.

For each of the proteomes SignalP (Nielsen et al., 1999), a signal

peptide prediction program, was run to find all proteins that are local-

ized in the membrane or secreted. The transmembrane proteins were

identified using the transmembrane prediction program TMHMM ver-

sion 1.0 (Sonnhammer et al., 1998), and the secreted soluble proteins

were classified based on the prediction of signal proteins adjusted to

remove those that are membrane proteins. The percentage of the pro-

teome found to be secreted proteins was 21.6% for Caenorhabditis ele-

gans, 20.1% for Drosophila melanogaster, and 12.7% for Saccharomyces

cerevisiae; the percentage of the proteome predicted to be transmem-

brane proteins was 25.6% for Caenorhabditis elegans, 16% for Drosophila

melanogaster, and 17.1% for Saccharomyces cerevisiae. Caenorhabditis ele-

gans andDrosophila melanogaster have a similar representation of secreted

proteins, while Saccharomyces cerevisiae has a significantly lower pro-

portion of these proteins, a finding that may be explained by the fact

that Saccharomyces cerevisiae is unicellular. Surprisingly, Caenorhabditis

elegans has nearly double the proportion of transmembrane proteins

compared with the other two eukaryotes.

The comparative analysis is carried out using sequence similarity

searches against the InterPro database. Data for each of the three com-

plete eukaryotic proteomes are available along with the data for the

other complete proteomes. This data, updated weekly, is available at

http://www.ebi.ac.uk/proteome/. The InterPro database cur-

rently enables the characterization of 7293 of the 13,613 Drosophila mel-

anogaster proteins (53.6%), 9041 of the 16,606 Caenorhabditis elegans

proteins (54.4%), and 3231 of the 6174 Saccharomyces cerevisiae proteins

(52.3%) as belonging to a certain protein family or as possessing a cer-

tain domain or functional site. In total, 1673 of the 3208 InterPro entries

were found in the three eukaryotic proteomes: 1423 in Drosophila mela-

nogaster, 1291 in Caenorhabditis elegans, and 1073 in Saccharomyces cer-

evisiae, of which 823 were common to all three species.

Protein kinases belonging to a very extensive family of proteins

which share a conserved catalytic core (figure 2.5) with both serine/

threonine and tyrosine protein kinases are highly represented in the

proteomes all three organisms, accounting for around 2% of the pro-

teome. The C2H2-type zinc finger domain also is abundant in the pro-

teins of all three eukaryotes, making up about 1% of the proteomes of
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Caenorhabditis elegans and Saccharomyces cerevisiae, and accounting for

about 2.5% of the proteome of Drosophila melanogaster. The high abun-

dance of these protein types in all three eukaryotes would indicate that

these proteins are systematically conserved, are likely to have ortho-

logues across species, and are likely to be involved in a shared core

biology.

Several of the most abundant families or domains show striking dif-

ferences in abundance across the three eukaryotic proteomes. The WD

repeat is present in a large family of eukaryotic proteins that are impli-

cated in a wide variety of crucial functions (Smith et al., 1999), and the

RNA-binding motif, RNP-1, is found in a variety of eukaryotic RNA

binding proteins. Proteins of both these types are comparatively

underrepresented in Caenorhabditis elegans. On the other hand, proteins

that belong to the rhodopsin-like G-protein-coupled receptor (GPCR)

are unknown in Saccharomyces cerevisiae. In fact, only two families are

found on all three top 10 lists that number a total of 26 families across

the three organisms (table 2.2).

A number of protein types that are apparently unique to a particular

species may well define the species. Striking examples are the insect

cuticle protein (IPR000618), present only in Drosophila melanogaster;

the probable olfactory, nematode 7-helix G-protein coupled receptor

(IPR000168), present only in Caenorhabditis elegans (figure 2.6), and

the fungal transcription regulatory protein (IPR001138) and the yeast

transposon, Ty (IPR001042), in the Saccharomyces cerevisiae proteome.

The nematode 7-helix G-protein coupled receptor is the most abundant

protein family in the proteome of Caenorhabditis elegans, accounting for

3.3% of the proteome.

Together with the rhodopsin-like G-protein-coupled receptor (GPCR)

there are a further substantial number of the top ten InterPro families of

Figure 2.5 InterPro graphical view of representative sequences from the extensive pro-

tein kinase family described by InterPro entry IPR000719.
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Caenorhabditis elegans that are present in a much lower percentage in

Drosophila melanogaster and are absent in Saccharomyces cerevisiae. These

include the C4-type steroid receptor zinc finger (IPR001628), the C-type

lectin domain (IPR001304), the ligand-binding domain of nuclear

hormone receptor (IPR000536), and the collagen triple helix repeat

(IPR000087) (table 2.3). In contrast, among the top 10 InterPro families

Table 2.2 A comparison of the 10 biggest InterPro protein families for Drosophila melanogaster versus

Caenorhabditis elegans and Saccharomyces cerevisiae. Only protein kinases (IPR000822) and the C2H2-type

zinc finger domain (IPR000276) are found in the top 10 lists of all three organisms

D. melanogaster C. elegans S. cerevisiae

InterPro

Proteins

matched Rank

Proteins

matched Rank

Proteins

matched Rank Name

IPR000822 345 1 188 11 52 9 Zinc finger, C2H2 type

IPR000719 234 2 407 2 118 1 Eukaryotic protein kinase

IPR001254 205 3 13 220 1 926 Serine proteases, trypsin

family

IPR001680 175 4 140 15 94 3 G-protein beta WD-40

repeats

IPR002965 175 5 55 51 0 Proline rich extensin

IPR003006 152 6 88 28 1 727 Immunoglobulin and

major histocompatibility

complex domain

IPR000504 149 7 119 19 56 6 RNA-binding region

RNP-1 (RNA recognition

motif)

IPR002048 136 8 118 20 19 35 EF-hand family

IPR000379 134 9 116 21 37 14 Esterase/lipase/

thioesterase family active

site

IPR001611 107 10 54 53 7 132 Leucine-rich repeat

Figure 2.6 InterPro graphical view of the sequence of SRD-1 protein from Caenorhabditis

elegans (IPR000168).
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for Drosophila melanogaster, only the proline-rich extensin family

(IPR002965) is absent in Saccharomyces cerevisiae.

The same domain may be repeated a number of times across a pro-

tein sequence. In Drosophila melanogaster the type III fibronectin domain

(IPR001777) is repeated 39 times in BT gene product (Q9V4F7), the

EGF-like domain (IPR000561) is repeated 36 times in N gene product

(Q9W4T8), and 28 and 27 times in CG15637 gene product (Q9VR08)

and CRB gene product (Q9VC97), respectively. The C2H2-type zinc

finger domain (IPR000822) is repeated 23 times in CG11902 gene prod-

uct (Q9VBR8) and 18 times in CG17390 gene product (Q9V724). In

Caenorhabditis elegans the immunoglobulin and major histocompati-

bility complex domain (IPR003006) repeats 48 and 47 times in the

UNC-89 gene product (O01761) and hemicentin precursor (O76518),

respectively. The low-density lipoprotein (LDL)-receptor class A do-

main (IPR002172) is the next most common domain with 35 repeats in

Table 2.3 The top 10 InterPro families for Caenorhabditis elegans. The InterPro entries that have no protein

matches against Saccharomyces cerevisiae are shown

C. elegans D. melanogaster S. cerevisiae

InterPro

Proteins

matched Rank

Proteins

matched Rank

Proteins

matched Rank Name

IPR000168 583 1 0 0 7-Helix G-protein coupled

receptor, nematode

(probably olfactory) family

IPR000719 407 2 234 2 118 1 Eukaryotic protein kinase

IPR000276 378 3 104 13 0 Rhodopsin-like GPCR

superfamily

IPR001810 344 4 23 112 11 59 F-box domain

IPR001628 239 5 22 119 0 C4-type steroid receptor

zinc finger

IPR002900 210 6 0 0 Domain of unknown

function DUF38

IPR000822 188 7 345 1 52 9 Zinc finger, C2H2 type

IPR001304 188 8 40 52 0 C-type lectin domain

IPR000536 180 9 17 153 0 Ligand-binding domain of

nuclear hormone receptor

IPR000561 178 10 95 17 0 EGF-like domain
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the low-density lipoprotein receptor-related protein (Q04833), and the

EGF-like domain (IPR000561) is repeated 31 times in T20G5.3 gene

product (P34576). In Saccharomyces cerevisiae the C2H2-type zinc finger

domain (IPR000822) is repeated nine times in the transcription factor,

TFIIIA (P39933), and seven times in two other proteins (P47043 and

P53849).

As mentioned earlier, InterPro gives insights into the domain com-

position of the classified proteins. Drosophila melanogaster has a higher

proportion of multidomain proteins (2200) compared with Caeno-

rhabditis elegans (1750) and Saccharomyces cerevisiae (605). Some Droso-

phila melanogaster multidomain proteins are especially complex, for

example, the neutral-cadherin precursor (O15943) and the CG9138 gene

product (Q9VM55) each have hits to 11 different InterPro entries. The

most complex proteins from Caenorhabditis elegans have nine InterPro

hits (table 2.4), while the Saccharomyces cerevisiae multifunctional

carbamoylphosphate synthetase-aspartate transcarbamylase complex

(P07259) has seven InterPro hits.

CONCLUSION

Capitalizing on the four-layer strategy for protein analysis described

above, it is now possible to perform in-depth whole proteome analysis.

For three complete eukaryotic genomes—Drosophila melanogaster, Cae-

norhabditis elegans, and Saccharomyces cerevisiae—between 52% and 55%

of the total proteins are matched in InterPro, and the relative represen-

tation of the different protein functions in each set has been assigned

using the InterPro functional classification system (figure 2.4). The

three proteomes vary in composition, with the emphasis on different

cellular functions. For Saccharomyces cerevisiae, the largest set of pro-

teins is dedicated to general metabolism, followed by signal trans-

duction, protein synthesis, regulation, and transport. In Drosophila

melanogaster, metabolism is also the most highly represented function,

followed by regulation, signal transduction, and transport. For Caeno-

rhabditis elegans, the highest proportion of the proteome is dedicated to

regulation, followed by metabolism, signal transduction, GPCRs, and

transport. The highly represented protein kinases are represented in the

signal transduction category.

The percentage of the proteome dedicated to metabolism increases

from Caenorhabditis elegans to Drosophila melanogaster to Saccharomyces
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cerevisiae, reflecting the greater metabolic diversity of the unicellular

organism. Saccharomyces cerevisiae also has a higher percentage of pro-

teins dedicated to basic cellular functions, including DNA, RNA, and

protein synthesis and the cell cycle. The higher eukaryotes may have

evolved more streamlined systems to fulfill these roles. Differences

in proteome composition are expected as eukaryotes develop from

unicellular organisms to large, multicellular organisms with complex

developmental processes.

Table 2.4 The 15 proteins from Caenorhabditis elegans with the highest number of Inter-

Pro hits

Oscode Protein_ac Protein_id Protein name Hits

CAEEL Q20204 Q20204 F40E10.4 Protein 10

CAEEL O61528 O61528 Guanine nucleotide exchange factor

UNC-73

9

CAEEL Q09165 YM01_CAEEL Hypothetical 1368.6 kDa protein

K07E12.1 in chromosome III

9

CAEEL O44164 O44164 Hypothetical 105.5 kDa protein

F16B3.1 in chromosome IV

8

CAEEL P90891 P90891 F55H12.3 protein 8

CAEEL Q18990 Q18990 Hypothetical 242.6 kDa protein

D2085.1 in chromosome II

8

CAEEL Q19350 Q19350 Hypothetical 188.4 kDa protein

F11C7.4 in chromosome X

8

CAEEL O02425 O02425 Hypothetical 474.2 kDa protein R31.1

in chromosome V

7

CAEEL P91904 P91904 Laminin alpha (EPI-1 protein) 7

CAEEL Q10922 Q10922 Hypothetical 159.2 kDa protein

B0286.2 in chromosome II

7

CAEEL Q20535 Q20535 Similarity to EGF-type repeats 7

CAEEL Q22070 Q22070 Hypothetical 148.6 kDa protein

T01E8.3 in chromosome II

7

CAEEL Q22098 Q22098 Contains similarity to pfam domain

PF00520 (ION_TRANS), score ¼ 887.7,
E-value ¼ 1.2E�263, N ¼ 4.

7

CAEEL Q22275 Q22275 Hypothetical 244.6 kDa protein

W07E11.1 in chromosome X

7

CAEEL Q27512 Q27512 NEX-2 protein 7
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URLs FOR RELEVANT SITES

EBI home page. http://www.ebi.ac.uk/

SWISS-PROT and TrEMBL protein sequence databases.

http://www.ebi.ac.uk/swissprot

Sequence Retrieval System (SRS). http://srs.ebi.ac.uk/

InterPro. http://www.ebi.ac.uk/interpro/

CluSTr. http://www.ebi.ac.uk/clustr/

Proteome Analysis Database. http://www.ebi.ac.uk/proteome/

Proteome analysis data for human. http://www.ebi.ac.uk/proteome/HUMAN/

Program to run interactive proteome analysis for user-selected organisms.

http://www.ebi.ac.uk/proteome/comparisons.html

Information on and how do download the nonredundant complete proteome sets main-

tained at the EBI. http://www.ebi.ac.uk/proteome/CPhelp.html

PDB-Protein Data Bank. http://pdb-browsers.ebi.ac.uk/

OTHER USEFUL URLs

GO (the Gene Ontology Consortium). http://www.geneontology.org/

Methods for protein annotation.

http://jura.ebi.ac.uk:8765/ext-genequiz/

http://pedant.gsf.de/

Clustering methods. http://www.ncbi.nlm.nih.gov/COG/

http://www.protomap.cs.huji.ac.il/

http://www.dkfz-heidelberg.de/tbi/services/cluster/systersform

HSSP database, a database of homology-derived secondary structure of proteins for clas-

sification purposes. http://www.sander.ebi.ac.uk/hssp/

SignalP, which predicts the presence and location of signal peptide cleavage sites in

amino acid sequences. http://www.cbs.dtu.dk/services/SignalP/

TMHMM, for prediction of transmembrane helices in proteins.

http://www.cbs.dtu.dk/services/TMHMM-2.0/
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3 Information Fusion and Metabolic
Network Control

Andreas Freier, Ralf Hofestädt, Matthias Lange,

and Uwe Scholz

Molecular biology, biotechnology, and bioinformatics have started to

focus on the problem of gene-regulated metabolic network control. This

problem cannot be circumvented, because no open reading frame can

be expressed without the appropriate regulatory sequences. Moreover,

some genes code for proteins that turn other genes on and off. Groups

of these genes constitute networks with complex behaviors. These net-

works control other genes whose protein products catalyze specific

biochemical reactions. Hence the small molecules that are substrates or

products of these reactions can in turn activate or deactivate proteins

that control transcription or translation. Therefore, gene regulation can

be said to indirectly control biochemical reactions in cellular metabo-

lism, and cellular metabolism to exert control of gene expression.

For these reasons, the interdependent biochemical processes of me-

tabolism and gene expression can, and should, be interpreted and ana-

lyzed in terms of complex dynamical networks. Therefore modeling

and simulation are necessary. To solve this problem, we have to bring

together information from gene regulation and metabolic pathways.

These data have been, and will be, stored systematically in specific

databases that are accessible via the Internet. Recently many firms have

been established that provide essential data for the solution of scientific

and industrial problems and, even more important, the corresponding

infrastructure. As a result, there are more than 200 databases available

via the Internet for all known sequenced genes (e.g., EMBL), proteins

(e.g., SWISS-PROT, PIR, BRENDA), transcription factors (e.g., TRANS-

FAC), biochemical reactions (KEGG), and signal induction reactions

(e.g., TRANSPATH, GeneNet). Besides databases, simulators for meta-

bolic networks, which employ most of the currently popular modeling



methods, are also available via the Internet. In addition to the classical

methods of differential equations, discrete methods have become quite

important. The integration of relevant molecular database systems and

the analysis tools will be the backbone of powerful information systems

for biotechnology.

This chapter introduces the basics of database and information sys-

tems for molecular biology. Based on this introduction, we will discuss

the important topics of database integration for the automatic fusion of

molecular knowledge. Furthermore, computer science is developing

and implementing tools for the analysis of molecular data. The analysis

of molecular data and of metabolic networks are of equal importance.

The chapter presents the rule-based model of metabolic processes,

which is the core of our simulation shell, and also shows the prototype

of the MARG-Bench system (MARG, Modeling and Animation of Reg-

ulative Gene Networks), which integrates basic molecular database

systems and the simulation tool.

DATABASES AND INFORMATION SYSTEMS

For the physical storage and maintenance of data by means of com-

puters, specific software is necessary. In the simplest case, the functions

of the operating system are used and the data are stored in simple files.

Therefore the biological software tools themselves specify the internal

structure and sequentially write the data into related files. The tools are

as different as the file formats used. These range from unreadable bi-

nary format to well standardized XML (Extensible Markup Language).

In this respect the software engineer of each tool is responsible for the

data storage and must implement methods for data access, updates,

and backup (see figure 3.1).

This kind of data storage and access is often mistaken for a database

management system (DBMS). Some important disadvantages of such

cumulatively acquired data collections are lack of performance, data

redundancies, and lack of standardized query languages, synchronous

data updates, and explicit scheme information that can be called up.

These disadvantages are often unimportant for individual uses, but in

the case of multiple tool usage and massive global and public use, they

present a problem. Nevertheless, the necessity of their use is generally

accepted, because all collected data have to be analyzed, using several
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tools and techniques. It is important to enable efficient data access that

is independent from the implementation of the storage mechanism (see

figure 3.2).

Consequently, for a common and wide-ranging use of data, a homo-

geneous kind of data storage and access is essential. Therefore the main

tasks of a DBMS are the following (Codd, 1982):

. Uniform management of all data

. Provision of data operations such as storage, update, and search

. Covering a unique data description of all stored data (scheme)

. Consistency check

. Authorization control

. Transaction management

. Backup mechanism.

Today many DBMS are available that differ in price, data model (hier-

archical, relational, object-oriented, object-relational etc.), features (sup-

ported operators, transactions, indexes etc.), and query mechanism and

languages (SQL, OQL, QBE, etc.). Popular examples of such DBMS are

Oracle, INFORMIX, DB2, Microsoft SQL Server, POET, and Object Store.

The main advantages of such DBMS are very efficient searching and

access opportunities, common usable data, few data storage redun-

Figure 3.1 Schematic of individual dependent data access.
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dancies, and easy data access by software tools. Thus, DBMS are in-

creasingly used for biological data (Kemp et al., 1999; Xie et al., 2000).

In most cases stored biological data are not independent. Rather,

they are processed by related biological tools. That means that tools

and related data represent a coupled system, which is called an infor-

mation system (IS). An IS is a complex, coupled software system for

information processing. In other words, we can define an IS as a logical

union of the data itself, tools, and the import of external data. Conse-

quently, a DBMS may be identified as the central substructure of per-

sistent data storage of such a system.

Figure 3.2 Schematic of data access using a database management system.
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MOLECULAR DATABASES

In molecular biology a large number of research projects are currently

producing an exponentially increasing amount of data. A popular

example is the Human Genome Project. In this context alone about

3� 109 base pairs and mapping data must be stored (see http://
www.ornl.gov/hgmis/project/progress.html). The most pop-
ular public sequence database, EMBL, includes 4.7 million entries of

primary nucleotide sequences and related data (Baker et al., 2000). If

these databases are set in relation to the count of molecular databases,

an impression of the data volume may be given. These data are often

published in publicly accessible sources. Often the categories are very

different. One investigation has divided sequence and related data into

16 categories (Burks, 1999). In correspondence with this, about 200

WWW-based data sources are listed. This is meant to be only a fraction

of the overall number of databases available. In most cases these data

are stored for processing, analyzing, and other functions. A common

approach is to collect all available data, then decide which are dis-

pensable. However, storage capacity is not a problem today.

Nowadays the majority of the molecular database providers store

their research results in ‘‘quick-and-imperfect’’ systems. In most cases

simple flat files are used, which are managed by the directory and file

system structures of the operating system. Data access is achieved with

software that can handle the individual file format. As an interface for

external access, use of the WWW is popular. In those cases HTML

forms coupled with CGI scripts are used, and the data obtained by this

method are presented in HTML pages, using tables or other formats. A

popular example is the KEGG system (Ogata et al., 1999).

One of the reasons why the content of these databases constantly

increases is clarified in a special issue of Nucleic Acids Research that is

published annually in January and gives an overview of databases as

well as presenting selected systems in more detail. In order to pro-

vide a rough picture of the extent of currently available databases, a

selection of important databases is listed in the appendix. A quite de-

tailed collection on this topic has been compiled under the following

URL: http://www-bm.cs.uni-magdeburg.de/iti_bm/marg/
dataacquisition/data_sources.html. The most important sys-
tems in the field of molecular network control are listed below.
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Genes

. EMBL (http://www.ebi.ac.uk)

. GDB (http://gdbwww.gdb.org/)

. GenBank (http://www.ncbi.nlm.nih.gov)

Proteins and Enzymes

. ENZYME (http://www.expasy.ch)

. LIGAND (http://www.genome.ad.jp)

. PDB (http://www.pdb.bnl.gov/)

. PIR (http://pir.georgetown.edu)

. SWISS-PROT (http://expasy.hcuge.ch/sprot/sprot-top.
html)

Pathways

. ExPASy (http://www.expasy.ch)

. KEGG (http://www.genome.ad.jp)

. WIT (http://wit.mcs.anl.gov/WIT2)

Gene Regulation

. EPD (ftp://ftp.ebi.ac.uk/pub/databases/epd/)

. RegulonDB (http://www.cifn.unam.mx/Computational_
Genomics/regulondb/)

. TRANSFAC (http://transfac.gbf.de/)

. TRRD (http://www.bionet.nsc.ru/SRCG/index.html)

DATABASE INTEGRATION AND INFORMATION FUSION

In order to use these special databases, the user has to connect to each

database separately. However, the integration of databases can help in

detection of new information. An example is the interaction between

aligned gene sequences of an organism to supplement an unknown

part of a metabolism or suggest and predict alternative pathways
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(Luttgen et al., 2000). At first sight, two basic problems may arise when

handling such a distributed data retrieval:

. How does the user access each relevant database?

. How can the several query results be merged into a joined data set?

These problems lead directly to the field of database integration. The

integration of databases has several parts.

Data merging is the overcoming of the distributed data storage. On

the one hand, the data overlap between the several databases, and on

the other hand, the data are totally different. To produce a global data

set, it becomes necessary to implement a unique global data store.

There are two different ways to achieve this: copying all needed data

into one large database (materialized) and leaving the data where they

are and merging them virtually (nonmaterialized).

Derivation of an integrated scheme starts from the fact that every

local database provides its own data scheme. But in the case of global

access, a unique scheme over all databases is needed. The method used

to solve this problem specifies the degree of scheme integration. Con-

sequently, it is possible to define one global scheme over all local

schemes, meaning that all locally modeled data are integrated into a

global scheme (bottom up). The other kind of scheme integration is to

specify which data are needed by individual application scenarios, thus

making it possible to model several partly integrated global schemes

(top down).

For adequate access to the integrated data, a unique data access and

querying method is needed. For this, the mapping of local data models

and access methods to global ones has to be carried out. In the case of

read-only data access, this is no problem, but for writing operations,

problems occur that include transactions of global management meth-

ods for simultaneous writing on the same object, data consistency

mechanisms, and global integrity policies.

Besides the data retrieval, the quality of the integrated data is im-

portant. Therefore, it must be determined how reliable the data actually

are (Bork and Bairoch, 1996). It is generally accepted that databases in-

clude faulty or low-quality entries such as incorrect sequences, missed

annotation, and wrongly assigned enzyme numbers. Consequently,

these quality problems are propagated during the database integration

to the global data set. Hence, a mechanism for quality control of the

databases and their entries must be established.
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A software layer has to be provided that offers methods for data in-

tegration. Figure 3.3 illustrates this situation.

Approaches for software layers deal with such problems as inade-

quate support of standardized query languages, nonappropriate pro-

gramming interfaces, and insufficient consideration of individual user

requirements. These problems catalyzed the implementation of an al-

ternative approach, called MARG-Bench, which is described later in

this chapter.

Moreover, new concepts of ‘‘information fusion’’ have been devel-

oped that are focused on ‘‘information discovery’’ and on the basis of

database integration. The notion of transformation includes integration,

filtering, analysis, and preparation of data aimed to discover and rep-

resent the hidden knowledge.

Figure 3.3 Integrative data access using database integration software.
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Related Work

The main difficulties are the unique access to proprietary flat files,

Internet interfaces, and the large amount of data. Several ways of real-

izing database integration for biological data exist and are currently in

use:

. Hypertext Navigation: KEGG (Ogata et al., 1999)

. Data Warehouse: SRS (Etzold et al., 1996), PEDANT (Frishman and
Mewes, 1997), HUSAR (Senger et al., 1995)

. Multi Database Queries: BioKleisli (Davidson et al., 1997), OPM

(Topaloglou et al., 1999).

. Mediator techniques: Multiagents (Matsuda et al., 1999).

One of the most developed technologies of web integration of mo-

lecular databases uses SRS (Sequence Retrieval System (Etzold et al.,

1996). It is based on local copies of each component database, which

have to be provided in a text-based format. The results of the query are

sets of Internet links through which the user can navigate. As of 2000,

more than 100 databases on molecular biology are integrated under

SRS. However, within the limitations of this approach, data fusion is

still the task of the user. Real data fusion (i.e., data for one real-life ob-

ject, such as an enzyme) from two different databases (e.g., KEGG and

BRENDA) is not found to be represented twice by different web pages.

Therefore, research groups try to integrate molecular databases on

a higher level than the SRS approach. Results of current database re-

search, including federated database systems, data warehousing archi-

tectures, and data mining techniques (Conrad, 1997), are applied. Many

problems in bioinformatics require the following:

1. Access to data sources that are large in volume, highly heteroge-

neous and complex, constantly evolving, and geographically dispersed

2. Solutions that involve multiple, carefully sequenced steps

3. Smooth passing of information between the steps

4. An increasing amount of computation

5. An increasing amount of visualization.

BioKleisli (Davidson et al., 1997) is an advanced technology designed

to handle the first three requirements directly. In particular, it provides
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the high-level query language, CPL, that can be used to express

complicated transformation across multiple data sources clearly and

simply. In addition, while BioKleisli does not handle the last two

requirements directly, it is capable of distributing computation to ap-

propriate servers and initiating visualization programs.

The Idea of the Integration Approach

In consideration of the advantages of integrative data access and the

existence of inflexible approaches, a new system for database integra-

tion was developed (see http://www-bm.cs.uni-magdeburg.de/
iti_bm/marg/). According to the latest findings, the system offers a

scalable and flexible approach. This is achieved by the concept of wide-

ranging database access by a wrapper (adapter) technology. The data

merging is nonmaterialized, using set operations. Specific data integra-

tion-related schemes for the user can be defined, and the standardized

access to the integrated data can be performed by an SQL-like lan-

guage. For comfortable use, a JDBC driver is available.

MODELING OF METABOLIC NETWORKS

Using the rule-based modeling of metabolic processes, the simulation

environment MetabSim for the analysis and visualization of gene-

controlled metabolic processes was implemented. The advantage of this

concept is the integration of relevant molecular database systems that

are available via the Internet.

Related Work

The availability of the rapidly increasing volume of molecular data on

genes, proteins, and metabolic pathways improves the capability to

study cell behavior. To understand the molecular logic of cells, it must

be possible to analyze metabolic processes and gene networks in quali-

tative and quantitative terms. Therefore, modeling and simulation are

important methods.

Mathematical models may be subdivided into two categories: ana-

lytical and discrete. Analytical models perform the processes of ele-

ments, acting as functional relations (algebraic, integral-differential,

finite-differential, etc.) or logical conditions. An analytical model may
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be studied by qualitative, analytical, or numerical methods. Analytical

models are generally based on integral and differential systems of

equations. The paper published by Waser et al. (1983) presents a com-

puter simulation of phosphofructokinase. This enzyme is a part of the

glycolysis pathway. Waser and coworkers model all kinetic features of

the metabolic reaction, using computer simulation. This computer pro-

gram is based on the rules of chemical reaction, which are described

by differential equations. Franco and Canelas (1984) simulate purine

metabolism by differential equations; each reaction is described by the

relevant substances and the catalytic enzymes, using the Michaelis con-

stant of each enzyme.

Discrete models are based on state transition diagrams. Simple mod-

els of this class are based on simple production units, which can be

combined. Overbeek (1992) presented an amino acid production sys-

tem. A black box with an input set and an output set displays a specific

production. The graphical model of Kohn and Letzkus (1982), which

allows the discussion of metabolic regulation processes, is representa-

tive for the class of graph theoretical approaches. Kohn and Letzkus

expand the graph theory by a specific function that allows the model-

ing of dynamic processes. In this case, the approach of Petri nets is a

new method. Reddy et al. (1993) presented the first application of Petri

nets in molecular biology. This formalism is able to model metabolic

pathways (Hofestädt and Thelen, 1998). The highest abstraction level of

this model class is represented by expert systems and object-oriented

systems (Brutlag et al., 1991; Stoffers et al., 1992). Expert systems and

object-oriented systems are developed by higher programming lan-

guages (Lisp, Cþþ) and allow the modeling of metabolic processes

by facts/classes (protein and enzymes) and rules/classes (chemical

reactions).

The grammatical formalization is able to model complex metabolic

networks. Within this class of models one may consider the cell model

(E-CELL), developed by Tomita et al. E-CELL is the generic computer

software environment for modeling and simulation of whole cell

systems (see Tomita et al., 1999; see also chapter 11). It is an object-

oriented environment for the simulation of molecular processes in user-

definable models, equipped with interfaces that allow observation and

intervention, and written in Cþþ. Using E-CELL, one could construct a
hypothetical cell with a definite number of genes sufficient for tran-

scription, translation, energy production, and phospholipid synthesis.
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Rule-Based Modeling

The model is an extension of the Semi-Thue system. Using a universal

rule, this formalization allows the representation of genetic, biosyn-

thetic, and cell communication processes. Furthermore, it is necessary

to expand this discrete model by adding concentration rates for each

metabolite. Metabolites are substances or substance concentrations that

can be modified by biochemical reactions. Enzymes are specific pro-

teins that catalyze biochemical reactions. Inducers and repressors are

metabolites that can accelerate or slow down/prevent biochemical

reactions. The biochemical space (cell state) of a cell is a mixture of

these components. The set of all cell states will be denoted by Z. By

these definitions the abstract metabolism is defined by the actual cell

state and the biochemical reaction rules. The metabolic rule is the basic

unit of the metabolic system.

Let Z be a finite set of cell states. A 5-tuple ðB;A;E; I; pÞ with
p A ½0; 1�Q and B;A;E; I A Z is called a metabolic rule. p is rule probabil-

ity; B (Before) is a set of preconditions; A (After) is a set of post-

conditions; E (Enzyme) is a set of catalyzed conditions; and I (Inhibitor)

a set of inhibitor conditions.

Example 1 The reversible biosynthesis product glucose-6-phosphate

$ fructose-6-phosphate will be catalyzed by the enzyme glucosepho-

spat-isomerase. This process can be described by two rules:

. (fglucose-6-phosphateg, ffructose-6-phosphateg, fglucosephosphate-
isomeraseg, f g, p)

. (ffructose-6-phosphateg, fglucose-6-phosphateg, fglucosephosphate-
isomeraseg, f g, p).

On the basis of the metabolic rule, the basic model can be defined.

G ¼ ðZ;RÞ is a metabolic system. Z is a finite set of cell states, S A Z is

the start state, and R is the metabolic rule set.

In the following paragraph, the semantics of the metabolic system are

defined. The integration of the analyzed metabolic features is the basis

of this formalization and is the reason for specifying a stochastic paral-

lel derivation mechanism that will describe the change of actual cell

states, depending on the specified rule set. Therefore, the set of all acti-

vated rules must be fixed. This is the first step of the derivation process.

A rule is ‘‘activated’’ if its preconditions are elements of the actual state
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z A Z. Moreover, effects of inducer and inhibitor elements must be con-

sidered. If such metabolites are elements of the actual state z, then the

probability of this rule will be modified by inhibitor and inducer

effects. The special function CALCULATEðz; rÞ will determine the ab-
solute probability value as rule r depending on state z. A random gen-

erator (RANDOM), using the absolute probability value of the input,

works as a Boolean function and will produce either positive or nega-

tive results (true or false). Once the Boolean value is true (false), rule

r A R is described as activated (deactivated) and goes into action.

Let G ¼ ðZ;RÞ be a metabolic system, r ¼ ðB;A;E; I; pÞ A R a rule, and

z A Z a cellular state. r will be activated by z ðrzÞ, iff Ex A B; x A z. AðzÞ ¼
fr A R : r is activated by zg is the set of rules activated by z.

Example 2 Let G ¼ ðZ;R; z0Þ be a metabolic system and z0 ¼ fS;Dg
and R ¼ fr1; r2g with
r1 ¼ ðfSg; fH; Sg; fDg; fLg; 0:8Þ
r2 ¼ ðfDg; fXg; fEg; fDg; 0:6Þ
For the configuration z0 Aðz0Þ ¼ fr1g the rule r2 is not activated because

the repressor is available.

Any activated rule r A R can go into action. The action of r will mod-

ify the actual cellular state of the metabolic system. Elements of the

actual cellular state, which are elements of the Before set of rule r, will

be eliminated in z and all elements of the After component will be

added to z. Therefore, the action of rule r can produce a new state,

z 0 A Z.

Let G ¼ ðZ;RÞ be a metabolic system, z A Z the actual cellular

state, and rz ¼ ðB;A;E; I; pÞ A R. The action of rz is defined thus: If

RANDOMðCALCULATEðz; rÞÞ ¼ true, then z 0 ¼ ðz � BÞWA. The action

of rz will be written as z !r z 0.
According to the metabolic system defined in example 2, the action of

r1 will produce the state z 0 ¼ fH; S;Dg.
The one-step derivation of a metabolic system is defined by the

(quasi) simultaneous action of all activated rules. Therefore, the set of

all activated rules is considered and two new sets are determined: the

Before set and the After set. The Before set includes all B elements of

the activated rules. The definition of the After set is analogous. Using

these sets, the one-step derivation can be interpreted as an addition and

subtraction of elements.
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Example 3 Let G ¼ ðZ;R; z0Þ be a metabolic system and z0 ¼ fB;C;Eg
and R ¼ fr1; r2; r3g, with
r1 ¼ ðfBg; fS;Bg; fCg; f g; 0:9Þ
r2 ¼ ðfCg; fF;Cg; fEg; f g; 0:3Þ
r3 ¼ ðfC; Fg; fB;Cg; fEg; f g; 0:3Þ:
Aðz0Þ ¼ fr1; r2g is the set of activated rules. For z0 we can identify one-

step derivations that will produce the following states:

fB;C;E; Sg (action of r1)

fB;C;E; Fg (action of r2)

fB;C;E; S; Fg (action of r1 and r2)

fB;C;Eg (empty action).
Let G ¼ ðZ;RÞ be a metabolic system, z A Z the actual cellular

state, AðzÞ the set of all activated rules under z, and Bz ¼
fB : br A AðzÞ5B A rzg and Az ¼ fA : br A AðzÞ5A A rzg. The simulta-
neous action of AðzÞ is called one-step derivation if z 0 ¼ ðz � BzÞWAz. It

is written z ) z 0.
Each action can be interpreted as an independent event. Therefore,

the probability of each one-step derivation can be calculated in terms of

the absolute probability values of all activated and deactivated rules. In

the simulation system, this will be done by multiplying these values.

However, based on the one-step derivation, the derivation can

be defined inductively, and a probability for any derivation can be

calculated.

Let G ¼ ðZ;RÞ be a metabolic system. x A Zþ is a derivation in G iff

jxj ¼ 1 or jxj > 1; by 0 A Z�z 0, z 00 A Z : x ¼ z 0z 00 y and z 00 y is a derivation;
and z 0 > z 00.

Example 4 Let be G the metabolic system defined in example 3. The

following sequence of cellular states describes a derivation:

fB;C;Eg ) T fB;C;E; Sg ) T 0 fB;C;E; S;Fg ) T 00 ) fB;C;E; S; Fg . . .

where T ¼ fr1g, T 0 ¼ fr1; r2g, and T 00 ¼ fr2; r3g.
In the case of analytical modeling, it is necessary to expand the

model, using abstract concentration rates. To realize this requirement

for each component (metabolite), specific integer values must be

assigned. These values can be interpreted as abstract concentration

rates. Since these impacts can be included in the metabolic system, us-
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ing the formalization of multi-sets, the definition of the metabolic sys-

tem must be modified. Regarding the rule activation, the concentration

rate of any Before component must be satisfied in regard to corre-

sponding metabolites of the actual state. The concentration rate of these

metabolites must be higher than or equal to the corresponding Before

component of this metabolic rule.

Moreover, the function CALCULATE must be modified. In this case,

the influence of all concentration rates of inductor and repressor

metabolites will determine the absolute rule probability. All activated

rules can go into action simultaneously. With regard to corresponding

metabolites of the actual state (integer values), the addition and sub-

traction of the concentration rates of all Before and After components is

necessary. In this chapter, only the fundamental part of this formaliza-

tion is presented.

Let z A Z be a state. The multi-set k : z ! Z0 is metabolic concentra-
tion. K denotes the set of all metabolic concentrations.

Example 5 Let z ¼ fglucose, lactose, RNA-polymeraseg. [34 glucose,
lactose, 15 RNA-polymerase] defines a metabolic concentration of

34 molecules glucose, one molecule lactose, and 15 molecules RNA-

polymerase.

Based on the formalization of multi-sets, the analytical metabolic

system, which enables the discussion of kinetic effects, can be defined.

G ¼ ðZ;R; kÞ with A A Z the start state, k A K a multi-set ðK : A ! NÞ,
and R a finite set of metabolic rules, where r ¼ ðB;A;E; I; pÞ A R with

p A ½0; 1�Q and B;A;E; I are metabolic concentrations, is the metabolic

system.

The definition of activation is necessary. Regarding multi-sets, the

activation of any rule r A R depends on the specified concentration rates

of each rule component, the concentration rates of the actual state, and

the absolute rule probability.

Let G ¼ ðZ;R; kÞ be an analytical metabolic system, r A R a rule, and

z A Z a cellular state. r is activated by z (rz), iff Ex A B, x A z, and kðxÞa
kðzxÞ. AðzÞ ¼ fr A R : r is activated by zg is the set of rules activated by z.

Based on this definition, the one-step derivation can be modified. All

activated metabolic rules can go into action simultaneously. Regarding

the set of activated rules, all After concentration rates must be added to

the actual state and all Before concentration rates must be subtracted

from the actual state.
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G ¼ ðZ;R; kÞ is an analytical metabolic system; z, the actual cellular

state; AðzÞ, the set of all activated rules under z; and

Bz ¼ fB : br A AðzÞ B A rzg and jBzj :¼
X
b AB

kðbÞ

Az ¼ fA : br A AðzÞ A A rzg and jAzj :¼
X
a AA

kðaÞ:

The simultaneous action of AðzÞ is called one-step derivation iff

z 0 ¼ fx : x A Az or Ex A z; y A Bzx ¼ y and kðxÞ � kðyÞ > 0g. The one-step
derivation is written z ! z 0.
Using the one-step derivation operator, one can define the derivation

of an analytical metabolic system inductively.

Example 6 Let G be an analytical metabolic system with k ¼
½6A; 8B; 3E� and the rule set R with

r1 ¼ ð½2A�; ½3B�; ½E�; ½X�; 0:8Þ
r2 ¼ ð½2B�; ½3D�; ½E�; ½X�; 0:5Þ:
AðkÞ ¼ fr1; r2g and the set f½6A; 8B; 3E�; ½4A; 11B; 3E�; ½6A; 6B; 3D; 3E�;
½4A; 9B; 3D; 3E�g describes the different one-step derivations.

Application

The implemented universal metabolic rule allows the formalization of

biosynthesis, gene expression, gene regulation, and cell communication

processes. Regarding biosynthetic processes, the before, after, inducer,

and repressor components are used. For example, Enzyme E1 will cat-

alyze the biochemical process S1 into S2. This can be expressed by B ¼
S1, A ¼ S2, and E ¼ E1. Moreover, one can add any concentration rates.

For example, B ¼ 15S1, A ¼ 12S2, E ¼ 2E1. The probability value will
model the flux of this biochemical rule, which can be influenced by

specific inducer and repressor metabolites, depending on their concen-

tration rates.

In the case of simple cell communication processes, only the before

or after component will be used. From this, we obtain the following

interpretation: Substance A enters the cell by endocytotic processes.

Therefore, a rule must be defined in which only the after component

will be assigned specific substances. Moreover, such processes can be
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influenced by specific events that can be formulated regarding inducer

and repressor components.

Normally, metabolites will disintegrate after a specific time interval.

This can be expressed by a rule that represents only the specific before

component. Moreover, concentration rates and specific influence com-

ponents can be defined.

In the case of gene regulation, the activity of operons can easily be

modeled. If we choose an operon that represents two structure genes

ðS1; S2Þ, two operator genes ðO1;O2Þ, and one enhancer sequence, then
this can be expressed by

B ¼ ½RNA-polymerase; ribosome; amino acid; tRNA�
A ¼ ½S1; S2�; E ¼ ½IO1; IO2� and I ¼ ½O1;O2�:
However, this model allows the simulation of complex metabolic

networks, and the grammatical formalization allows the definition and

implementation of different languages. These languages represent spe-

cific biological aspects. For example, it is possible to produce the set of

all possible pathways, to produce metabolic pathways depending on

specific conditions (for example, the probability value), to search for the

appearance of specific substances (for example, toxic substances), and

so on.

Theoretical Aspects

The set of the attainable configurations is an infinite set, and the set of

all derivations is enumerable. Moreover, the set of all configurations is

undecidable (Hofestädt, 1996). Use of concentrations (multi-sets) is the

main reason for the undecidability. However, this result implies that

no interesting question can be solved in the field of biotechnology

research.

In practice, biochemical systems are restricted. In the model, the

depth and width of the derivation process can be restricted. Therefore,

important questions are decidable, and the complexity of the derivation

algorithm must be discussed. If the derivation depth is restricted, the

language LðG; iÞ is decidable. LðG; iÞ is the set of all configurations that
can be produced from the start configuration by the application of up

to i derivation steps. Hence, for a metabolic system with the generation

depth i, it is decidable if k is a member of LðG; iÞ. Based on the expo-
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nential complexity of the derivation process, this question cannot be

solved in practice if i is high. Thus the calculation of a derivation tree is

not possible in practice because the one-step derivation represents an

exponential time complexity. However, the simulation tool is used, the

derivation depth and/or width must be restricted.

MetabSim

The simulation system MetabSim is the current implementation of the

rule-based model described above. It consists of two main parts. The

first part, the object-oriented data structure, describes the metabolic

grammar. The main structure here is the metabolic rule. A rule contains

the stoichiometry of substrates and products, enhancers, inhibitors, and

factors, and the elasticity coefficients of one complex reaction. The user

can instantiate the rule type to build up rules according to reactions of

a metabolic network. The second data type is the metabolic state. The

user can define a metabolic state to act as a root configuration. All later

calculations will be based on this state. The whole data structure is

mapped into a database so that all rules and states are stored therein.

The second part of MetabSim is the derivation logic. Because the

system has been designed to be modular, several derivation modules

can be implemented and applied independently. Figure 3.4 shows the

information flow in the rule-based simulation system. After the rule set

and the root configuration (default cell states) are defined, the deriva-

tion logic can be applied to the data. In the first step, the Rule Selection

module accesses the current state and calculates the rules that can be

applied because their premises are true in relation to the current state.

The Rule Application module calculates the successive configuration(s).

Optionally, the reaction time is applied by a Rule Kinetics module. The

new configurations (states) are the input for the next derivation step.

In biochemistry, for a set of single metabolic systems, the systems

behavior is described by the use of differential equations. But the

problem is that this approach does not discuss all interactions in large

networks. It was decided to apply a simpler and more abstract method

as a compromise between the mathematical modeling and the data

outcome of molecular databases. The BRENDA database stores kinetic

parameters of enzymes. From this system one can get the Michaelis-

Menten value, the turnover rate, and the type of regulation of the
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enzyme. In MetabSim several kinetic behaviors are implemented (see

figure 3.5): the constant flux and the linear, hyperbolic, and sigmoid

dependencies from the substrate concentration. Their calculation re-

quires the Michaelis-Menten constant (Km), the maximum reaction rate

(VMAX), and the enzyme type (allosteric, hyperbolic, etc.). The types

read from the databases are mapped into the appropriate kinetic be-

havior and the calculation is done using the given parameters.

As an example, a rule network for the glycolysis pathway has been

built up to simulate the consumption and the production of ATP. The

following rules illustrate the stoichiometry of the metabolic system.

r0 ¼ ðfD-glucose; ATPg; fglucose-6-phosphate; ADPg;
fhexokinase; hypgÞ

r1 ¼ ðfglucose-6-phosphateg; fðfructose-6-phosphateg;
fphosphohexoseisomerase; hypgÞ

r2 ¼ ðffructose-6-phosphate; ATPg; ffructose-1;6-bisphosphate; ADPg;
fphosphofructokinase; sgmgÞ

r3 ¼ ðffructose-1;6-bisphosphateg; fglyceraldehyde-3-phosphate;
dihydroxyacetone phosphateg; faldolase; hypgÞ

Figure 3.4 Mechanism of the derivation process in MetabSim operators.
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Figure 3.5 Examples of abstract rule kinetic types from hyperbolic behavior to sigmoid

dependency function.
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r4 ¼ ðfdihydroxyacetone phosphateg; fglyceraldehyde-3-phosphateg;
ftriosephosphate isomerase; hypgÞ

r5 ¼ ðfglyceraldehyde-3-phosphate; Pig; f1;3-bisphosphoglycerateg;
fphosphoglyceraldehyde dehydrogenase; hypgÞ

r6 ¼ ðf1;3-biphosphoglycerate; ADPg; f3-phosphoglycerate; ATPg;
fphosphoglycerate kinase; hypgÞ

r7 ¼ ðf3-phosphoglycerateg; f2-phosphoglycerateg;
fphosphoglycerate mutase; hypgÞ

r8 ¼ ðf2-phosphoglycerateg; fphosphoenolpyruvateg; fenolase; hypgÞ
r9 ¼ ðfphosphoenolpyruvate; ADPg; fpyruvate; ATPg;

fpyruvatekinase; hypgÞ
In this rule set, metabolites and enzymes are included. The metabo-

lite D-glucose is consumed by the rules r4 and r5. One ATP is consumed

in the first part of the glycolysis, and 2 ATP are produced in the second

part. This concludes with the double application of rules r7 and r9. In

figure 3.6 the system is drawn as a graph by the Metabuis environment.

The application of the operator leads to the substance concentration

development shown in figure 3.7.

MARGBench

The purpose of our project, which is supported by the German

Research Council, is to present a virtual laboratory for the analysis

of molecular processes (Hofestädt and Scholz, 1998). Therefore, we

provide a full scalable system for a user-specific integration of dif-

ferent heterogeneous database systems and different interfaces for

accessing the integrated data with special analysis tools (e.g., the simu-

lation environment MetabSim, which was described earlier in this

chapter).

Architecture of MARGBench

The architecture of the prototype is shown in figure 3.8 and is avail-

able on the Internet at http://www-bm.cs.uni-magdeburg.de/
iti_bm/marg/. The system is divided into two main parts, the inte-

gration layer and the application layer. The integration layer consists
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of three modules: data acquisition (BioDataServer), data storage (Bio-

DataCache), and graphical data management (BioDataBrowser).

In general, the BioDataServer realizes a logical nonmaterialized

database integration based on the concept of federated databases. A

workable Internet access to the molecular biological databases is the

main prerequisite for a database integration. Within this context several

problems must be solved:

. Different interfaces (CGI, JDBC, etc.)

. Different query languages (SQL, OQL, nonstandardized, etc.)

. Different data structures (HTML, flat files, database objects, etc.)

. Different data models (ERM, OO, etc.)

Figure 3.6 Screen shot of Glycolysis graph in MetabVis.
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Figure 3.7 Development of substance concentration in MetabSim.
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Figure 3.8 Architecture of MARGBench.
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For such a homogeneous access to the several data sources, a func-

tional interface was defined that is implemented by special software

modules, called adapters. Using semiautomatic adapter generation, it

will be possible to dynamically connect relevant data sources. In the

case of an HTML data source, the adapter accesses the specific URL and

parses the resulting HTML page. For this generation a description file is

necessary. Such a description file contains structure and syntax infor-

mation about the data source, which should be integrated into our sys-

tem. This information enables a mapping between the data fields of the

docked data sources and the attributes of an integrated user scheme.

Regarding the user requirements to the integrated data, it is possible

to specify integrated data schemes. These schemes can be defined or

manipulated, using a special language. They describe the accessible

attributes of integrated data sources in transparent form.

In order to obtain a complete and wide spectrum of data, integration

of as many databases as possible is recommended. Using this special

integrated user scheme, the BioDataServer combines the outcomes of

adapter queries into integrated global results, known as information

fusion. The scheme is relational and defines the source for each attri-

bute and its internal dependencies. This is the basis for performing

logical data integration and provides a relational view of the fused

data. Thus it is possible to retrieve integrated data by a subset of SQL

queries.

As can be seen, an automatic mechanism is necessary to merge the

partitioned data values from the various databases. This is one task of

the BioDataServer, and can be solved using mathematical set operations.

The prerequisite to access the database integration server by com-

puter programs is the definition of an interface. Because the server

should be accessible via the Internet, a communication protocol and a

query language must be specified. Many database systems support a

subset of SQL as query language, which in turn is based on the relation

model and is well standardized. This was the reason for supporting

SQL elements by the BioDataServer. Different techniques in the field of

interfaces for remote database access have been established (e.g., JDBC

and ODBC). ODBC is supported only by Microsoft platforms. There-

fore, the BioDataServer currently offers a JDBC driver, which provides

a standardized database access to JAVA applications. Consequently,

any JAVA platform can access the BioDataServer by related JAVA pro-

grams.
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The main advantages of this BioDataServer are the transparent physi-

cal database access, the dynamic building of new nonmaterialized,

logical integrated databases, a standardized access interface, a client-

server capability, and platform independence. With the implemented

JDBC driver the integration service of the BioDataServer is also in-

dependently useful for other external JAVA applications. A demon-

stration of the BioDataServer is available at http://www-bm.cs.
uni-magdeburg.de/BDSDemo/.
The next level in the integration layer is the BioDataCache, which

handles the local storage of the fused data in a user-specific integration

database. Thus it is possible to build individual integrated databases

that reflect the individual user’s application requirements, and to per-

form data analysis, cleaning, improvements, and enrichment. The user

is able to interactively specify and create the integration database in

interface definition language (IDL) syntax. If the IDL is ready, the ser-

vice modules will be generated automatically. The individual data im-

port is based on specific, integrated user schemes of the BioDataServer,

which must be defined previously. The access to these integration

databases is possible by the Common Object Request Broker Architec-

ture (CORBA) (OMG, 1991) and OQL (Cattell, 1994).

The BioDataCache provides the materialized layer for the data

integration that is based on CORBA. The access for importing inte-

grated data from the BioDataServer is possible using the JBDC driver

of the integration layer. Furthermore, the BioDataCache has an in-

tegrated user scheme for the selection of attributes that should be inte-

grated. An empty database related to the integrated scheme is generated

automatically.

Once data from the integration service are read, they are stored in the

underlying standard object-oriented database.

By storing the fused information in the cache, an separate new data

source will be created. This new user-specific integration database rep-

resents a metadatabase and is comparable to a data warehouse. The

offered CORBA interface, similar to the BioDataServer, enables other

software tools to access the BioDataCache.

The third part in the integration layer is represented by the Bio-

DataBrowser. It is automatically generated during the generation of

an integration database. This module allows the user to graphically

manage and browse the fused data. Its functions are similar to a Win-

dows file browser. Furthermore, a JAVA interface is offered to access
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this component within JAVA applications. The development of DBMS-

supported applications forces the programming of database-related

user-interactive components to establish database connections, query

the data, transmit the results, store the data, and so forth. The Bio-

DataBrowser provides this feature and can be included as a component

in different JAVA applications.

Application of MARGBench

The application of MARGBench is done at different levels, because the

system consists of plugable components. Every user is able to access the

components that are essential for his or her specific integration problem.

One possibility is the use of the online integration provided by the

BioDataServer component. Here a uniform SQL interface with client/

server and multiuser/multiclient feature is available. A case study for

this kind of data analysis tool is available at http://www-bm.cs.
uni-magdeburg.de/phpMetaTool.
The software METATOOL (Pfeiffer et al., 1999) is an independent

system that has been written in the C programming language. Separate

programs are necessary to generate the input file and to read the output

files. The input for the integration architecture is obtained by the Bio-

DataServer. This client program has been implemented using the PHP

programming language, and enables the program to be used via the

Internet.

The second way to use MARGBench is to access automatically gen-

erated integration databases. Once the integration database (BioData-

Cache) has been established, the user can load his or her integration

database with integrated data. For coupling application programs, the

CORBA interface and the BioDataBrowser can be used.

As a reference application, MARGBench is used with the simulation

tool MetabSim. It accesses a specially configured BioDataCache to ob-

tain data and to build the rule network. First, a BioDataCache for stor-

ing information about metabolic networks is configured. After the data

structures for the cache are established, the BioDataCache installation

tool is used to compile and install an integration database (cache) called

MetabNets. From the tool a CORBA interface is obtained for accessing

the data structures previously defined. This interface can be used to

submit database queries and to operate on cache objects by creating,

modifying, and deleting operations. Data structures of MetabNets are,
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for instance, the classes metabolism, pathway, reaction, and enzyme.

Once the cache scheme is defined, the user can start the integration

procedure. During this process the BioDataServer is queried and ob-

jects of MetabNets are instantiated with the query results.

The data structures in the MetabSim program are also defined in

CORBA. Now it is necessary to implement a mapping algorithm to

produce rules out of the MetabNets objects. The program containing

this algorithm accesses the BioDataBrowser and the BioDataCache. In

this context, the browser is used for the interactive selection of meta-

bolic pathways and single reactions. An example of enzyme informa-

tion viewed with the BioDataBrowser is shown in figure 3.9. An active

interface for the data exchange between BioDataBrowser and applica-

tion is available. The application program (MetabSim) implements this

data exchange interface. When the user selects one or more objects from

the cache, the data exchange interface is called and the algorithm in

MetabSim processes the transformation into MetabSim rules.

In order to handle large networks, all entities of the MetabSim simu-

lation model are stored in a standard object-oriented database system.

The MetabVis program is the front end of the simulation. With this

graphical user interface, one can initiate the import of MetabNets data,

modify the rule, run the simulation, and display the results. As an ex-

ample of the result of access to different databases, figure 3.10 presents

the gene regulation system of the CRP operon in E. coli.

DISCUSSION

The scientific world is at the beginning of the century of biotechnology.

The progress of this new technology depends on the application of

methods and concepts of computer science, because the exponential

growth of experimental data must be handled. In other words, mo-

lecular database systems and analysis tools must be implemented.

Apweiler et al. show in chapter 2 that more than 200 molecular data-

base systems and hundreds of analysis tools are available via the In-

ternet. For the analysis and synthesis of molecular processes, the

integration of database systems is important. Therefore, the main goal

of bioinformatics is to develop and implement the information techno-

logical infrastructure for molecular biology.

Various companies have already entered the market. The most im-

portant are Human Genome Sciences (USA), Celera Genomics (USA),
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INCYTE Genomics (USA), Lion Bioscience (Germany), and Informax

(USA). The backbone of such information systems is the integration of

heterogeneous molecular database systems and analysis tools.

This chapter has described the current methods of database integra-

tion and the architecture of a molecular information system for the

analysis and synthesis of gene-controlled metabolic networks. An inte-

gration shell was implemented that allows the semiautomatic imple-

mentation of a user-specific integration database which represents an

information fusion process based on the integration of different molec-

ular database systems. The implementation integrated, as a case study,

Figure 3.9 Enzymes stored in BioDataCache viewed with BioDataBrowser.
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Figure 3.10 The CRP operon in E. coli viewed with MetabVis.
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seven different molecular database systems and the rule-based simula-

tion tool MetabSim, which allows the simulation of gene-controlled

metabolic networks.

The rule-based method is easy to handle and also allows the abstract

simulation of analytical effects. It does not have the vision of the virtual

cell like Tomita (see chapter 11), because the theoretical results show

that the complexity of the simulation of the complete metabolic pro-

cesses is exponential. That means that only parts of the metabolism can

be calculated. However, simulation is, and will be, one important point

in understanding the function of gene-regulated metabolic pathways.

Moreover, the algorithmic analysis of metabolic networks must be

achieved. Chapters 10 and 7 show the state of the art of the algorith-

mic analysis of metabolic networks. To understand the logic of life,

algorithms for the calculation of alignments of metabolic pathways or

for the prediction of metabolic pathways based on rudimentary knowl-

edge must be developed. Finally, the analysis process needs informa-

tion systems that integrate analysis tools and simulation environments

based on the integration of molecular database systems.
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URLs FOR RELEVANT SITES

General Data Collections
Entrez. Entrez allows retrieval of molecular biology data and bibliographic citations from

the NCBI’s integrated databases. http://www.ncbi.nlm.nih.gov

SRS. The Sequence Retrieval System (SRS) is a huge, systematic collection of molecular

databases and analysis tools that are uniquely formatted and accessible.

http://srs6.ebi.ac.uk
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Genes
CEPH. This is a database of genotypes for all genetic markers that have been typed in the

CEPH and for reference families for linkage mapping of human chromosomes.

http://www.cephb.fr

EMBL. The EMBL Nucleotide Sequence Database is a framed compilation of all known

DNA and RNA sequences. http://www.ebi.ac.uk

GDB. The GDB is the offical central database for all information that is collected in the

Human Genome Project. http://gdbwww.gdb.org/

GenBank. GenBank is the NIH genetic sequence database. It is an annotated collection of

all publicly available DNA sequences. http://www.ncbi.nlm.nih.gov

GeneCards. This database covers data of human genes, their products, and their involve-

ment in diseases. http://bioinfo.weizmann.ac.il/cards/

HGMD. The Human Gene Mutation Database represents an attempt to collate known

(published) gene lesions responsible for human inherited disease.

http://www.uwcm.ac.uk

MGD. The Mouse Genome Database contains information on mouse genetic markers,

molecular segments, phenotypes, comparative mapping data, etc.

http://www.informatics.jax.org

MKMD. Mouse Knockout and Mutation Database is a regularly updated database of

mouse genetic knockouts and mutations. References are directly linked to Evaluated

Medline. Published by Current Biology. http://www.biomednet.com

MTIR. Data about the expression of muscle-specific genes are available in this database.

http://agave.humgen.upenn.edu

PAHdb. Database that provides access to up-to-date information about mutations at

the phenylalanine hydroxylase locus, including additional data.

http://blizzard.cc.mcgill.ca

SCPD. This is a specialized promoter database of Saccharomyces cerevisiae.

http://cgsigma.cshl.org/jian

VBASE. VBASE is a comprehensive directory of all human germ line variable region

sequences compiled from over a thousand published sequences.

http://www.mrc-cpe.cam.ac.uk

Proteins and Enzymes
CATH. CATH is a hierarchical classification of protein domains. A lexicon that includes

text and pictures describing protein class and architecture is available.

http://www.biochem.ucl.ac.uk

ENZYME. ENZYME is a repository of information relative to the nomenclature of

enzymes. http://www.expasy.ch
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LIGAND. The Ligand Chemical Database for Enzyme Reactions is designed to provide

the linkage between chemical and biological aspects of life in light of enzymatic reactions.

http://www.genome.ad.jp

PDB. PDB is the single international repository for the processing and distribution of 3-D

macromolecular structure data primarily determined experimentally by X-ray crystallog-

raphy and NMR. http://www.pdb.bnl.gov/

PIR. This database is a comprehensive, annotated, and nonredundant set of protein se-

quence databases in which entries are classified into family groups and alignments of

each group are available. http://pir.georgetown.edu

PMD. The Protein Mutant Database will be valuable as a basis of protein engineering. It is

based on literature (not on proteins); that is, each entry corresponds to an article that

describes protein mutations. http://www.genome.ad.jp

PRF. The Peptide Institute, Protein Research Foundation, collects information related to

amino acids, peptides, and proteins: articles from scientific journals, peptide/protein

sequence data, data on synthetic compounds, and molecular aspects of proteins.

http://www.prf.or.jp

PRINTS. PRINTS is a compendium of protein fingerprints. A fingerprint is a group

of conserved motives used to characterize a protein family.

http://www.biochem.ucl.ac.uk

PROSITE. PROSITE is a database of protein families and domains. It consists of bio-

logically significant sites, patterns, and profiles that help to reliably identify to which

known protein family (if any) a new sequence belongs.

http://www.expasy.ch/ prosite/

REBASE. REBASE, the Restriction Enzyme data BASE is a collection of information about

restriction enzymes (methylases), the microorganisms from which they have been iso-

lated, recognition sequences, cleavage sites, etc. http://rebase.neb.com

SWISS-PROT. SWISS-PROT is a curated protein sequence database that strives to provide

a high level of annotations, a minimal level of redundancy, and a high level of integration

with other databases. http://expasy.hcuge.ch/sprot/sprot_top.html

Pathways
CSNDB. The Cell Signaling Networks DataBase is a data and knowledge base for signal-

ing pathways of human cells. http://geo.nihs.go.jp

ExPASy. This database contains links to the ENZYME Database and, for each entry, also

contains links to all maps of Boehringer Biochemical Pathways in which this entry

appears. http://www.expasy.ch

KEGG. The Kyoto Encyclopedia of Genes and Genomes is an effort to computerize cur-

rent knowledge of molecular and cellular biology in terms of the information pathways

that consist of interacting molecules or genes. http://www.genome.ad.jp/kegg

WIT. WIT is a web-based system to support the curation of function assignments made to

genes and the development of metabolic models. http://wit.mcs.anl.gov/WIT2
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Gene Regulation
EPD. The Eukaryotic Promoter Database is a collection of eukaryotic promoters in form of

DNA sequences. ftp://ftp.ebi.ac.uk/pub/databases/epd/

GRBase. The Growth Regulation Database contains information about proteins, genes,

and sequences in the field of gene regulation. http://www.access.digex.net

RegulonDB. This is a database on transcriptional regulation in E. coli.

http://www.cifn.unam.mx.unam.mx/Computational_Genomics/regulondb

TRANSFAC. This database compiles data about gene regulatory DNA sequences and

protein factors binding to and acting through them. http://transfac.gbf.de

TRRD. The Transcription Regulatory Regions Database is a curated database designed for

accumulation of experimental data on extended regulatory regions of eukaryotic genes.

http://www.bionet.nsc.ru/SRCG/index.html

Metabolic Diseases
BIOMDB. This consists of collected data on mutations causing tetrahydrobiopterin defi-

ciencies. http://www.unizh.ch

NORD. The NORD Resource Guide is an invaluable resource for families, health care

professionals, and libraries. http://www.stepstn.com

OMIM. The OMIM (Online Mendelian Inheritance in Man) database is a catalog of human

genes and genetic disorders written and edited by Dr. Victor A. McKusick and his col-

leagues. http://www3.ncbi.nlm.nih.gov

PATHWAY. PATHWAY, a database of inherited metabolic diseases, is divided into two

sections: substances and diseases. http://oxmedinfo.jr2.ox.ac.uk

PEDBASE. PEDBASE is a database of pediatric disorders. Entries are listed alphabetically

by disease or condition name. http://www.gretmar.com

RDB. The Rare Disease Database is a system for delivery of understandable medical in-

formation to the public, including patients, families, physicians, medical institutions, and

support organizations. http://www.rarediseases.org
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II Gene Regulation: From Sequence to
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4 Specificity of Protein-DNA Interactions

Gary D. Stormo

Gene expression is often regulated transcriptionally through the action

of protein factors that bind to DNA and affect the rate of initiation of

the (usually) nearby promoter, either increasing it (activators) or de-

creasing it (repressors). In order for this process to be promoter-specific,

rather than affecting the expression of all genes, at least some of the

transcription factors must recognize and bind to specific DNA se-

quences. The purpose of this article is to define a quantitative measure

of specificity and describe various models to represent the specificity of

a particular protein that can be used to predict binding sites in genomic

DNA. It also briefly describes how those models can be used in pattern

recognition methods to identify regulatory sites from sets of coregu-

lated genes.

QUANTITATIVE SPECIFICITY

Consider a DNA-binding protein that binds to sites that are l-long.

There are 4 l such sequences, and we refer to each one as Si with

1a ia 4 l (i and l are integers). Each sequence binds to the protein with

some free energy, denoted by Hi. Of course that will depend on the

binding conditions, but for simplicity it is assumed there is some stan-

dard condition that is always used. (It is very interesting to study

changes in Hi as a function of the reaction conditions, but that issue is

not addressed in this article.) Figure 4.1a represents the list of all 4-long

sequences and the binding energy to each one for some hypothetical

protein. The energies are shown relative to a sequence with average

affinity, so that those with negative values are preferred and those with

positive values are discriminated against by the protein. In general we



care only about the differences in binding energies, because those de-

termine the probabilities of binding to different sequences. For exam-

ple, the ratio of binding affinities, Ki;Kj, for two sequences, Si; Sj, is just

Ki

Kj
¼ e�HiþHj ð4:1Þ

At equilibrium the distribution of sites bound by the protein, fi, can

be obtained from the list of binding energies, Hi, and the distribution

of potential binding sites, gi, from the Boltzmann equation (Heumann

et al., 1994):

fi ¼ gie
�HiP4 l

j¼1 gje
�Hj

¼ gie
�Hi

Z
: ð4:2Þ

Figure 4.1 Specificity of a hypothetical DNA-binding protein. (a) The complete list of

binding free energies to all 256 4-long sequences. In this example the units are kcal/mole,

and the binding energies are relative to the site with average affinity. (b) The weight

matrix model that provides the same binding energies for all sequences. The energy for

an individual sequence is the sum of the values for the bases that correspond to that

sequence in each position (see figure 4.2).
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Z is the partition function and assures that
P

i fi ¼ 1. The temperature is
not included because it is assumed to be one of the conditions that is

held constant. gi is the number of occurrences of each sequence, Si, in

the set of possible binding sites. In vivo, gi would be the composition of

the genome in words of length l, or at least the composition of sites that

are available for binding to the protein. As stated above, it is only the

difference in binding energies that matters, because fi is unaffected by

replacing all values of Hi by Hi þ c.

One common choice for the baseline of energy is to set the energy for

the preferred sequence to 0, so that all other sequences have positive

energy (Berg and von Hippel, 1987). We often choose the average af-

finity as the baseline for the energy, such that Z ¼ G, the total number

of possible binding sites, which is the total number of available sites in

the genome when considering the in vivo situation. We can substitute

pi ¼ gi=G, where pi represents the probability of each sequence Si in the

set of possible binding sites.

Rearranging equation 4.2 provides a conceptually simple, but tech-

nically difficult, method to determine the binding energies of each

sequence:

Hi ¼ �ln fi
pi

ð4:3Þ

That is, you can imagine mixing all possible sequences together in

known amounts, pi, and then measuring the fraction of each sequence

bound to the protein at equilibrium, fi. The logarithms of those ratios

give exactly the energy values desired. Furthermore, at equilibrium the

average binding energy is simply

hHii ¼ �
X

i

fi ln
fi
pi
; ð4:4Þ

which is the relative entropy, or Kullbach-Leibler distance, between the

two distributions of the potential binding sites and the bound sites. The

derivation of this simple, but useful, relationship has been achieved

through the use of the Boltzmann equation, but there is an equivalent

derivation using Bayes’s theorem for conditional probabilities (Heu-

mann et al., 1994).
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MODELS FOR SPECIFICITY

While in theory we could measure Hi for every sequence and simply

put the measurement into a lookup table to use whenever needed, as in

figure 4.1(a), the task is impractical for typical sizes of l. Instead, one

usually employs some sort of model that provides an estimate of Hi for

all sequences. The simplest model is to assume that the protein binds to

some set of sequences (perhaps only one) and not at all (or at least very

much worse) to any other sequence. If it binds equally well to all of its

binding sites, each site gets some energy x, and every other sequence

has energy þy (or some large increase over the energy of the sites). For

example, the specificity shown in figure 4.1a could be modeled as

a negative free energy for the preferred sequence, AGCT, and a large

positive value for all other sequences, using the assumption that only

AGCT shows significant binding to the protein. Such an assumption

might be valid for some proteins, such as restriction and modification

enzymes that are extremely sequence-specific in their activities. How-

ever, most regulatory proteins are much less specific and show signifi-

cant binding to sequences other than their preferred sites. The model

could be modified to allow for binding to sequences similar to AGCT,

perhaps those sequences with one mismatch (there are 12 such se-

quences). Any method that searches for binding sites using a consensus

sequence, even allowing for some number of mismatches, implicitly

assumes such a model for binding energies.

The next, more complicated model employs a ‘‘weight matrix’’

Hðb;mÞ that contains an energy for each base, b A fA;C;G;Tg, at each
position, 1ama l, in the site (Stormo, 1990, 2000). Figure 4.1b shows

such a model for the hypothetical protein. The binding energy to any

sequence is Hi ¼ Hðb;mÞ � Si. In this notation Si is a matrix with 1 for the

base that occurs at each position and 0 elsewhere, so the dot product

selects the energies that correspond to the sequence, as shown in figure

4.2. The main advantage of weight matrix methods over consensus se-

quence methods is that they allow different mismatches from the pre-

ferred sequence to have different effects on the binding site predictions.

For the protein in figure 4.1, mismatches to the T at position 4 would

have dramatic effects on binding, whereas all other mismatches would

have smaller effects. In fact, many double mismatches and even the tri-

ply mismatched sequence CTTT bind with higher affinity than a single
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mismatch at position 4. Such differential effects are taken into account

naturally by the weight matrix model, and they are not uncommon in

the specificity of regulatory proteins, where some positions may be

highly conserved and others highly variable.

The weight matrix model assumes that the total binding energy is the

sum of the interactions at each position. For the hypothetical protein of

figure 4.1 we assume complete additivity, so that all 256 values in fig-

ure 4.1a can be obtained precisely from the 16 parameters of the model

in figure 4.1b. That additivity assumption may be reasonable for some

proteins, but may not be good enough for others. The model can be

made more complicated with a matrix that has a row for each dinu-

cleotide rather than for each base (and only l � 1 columns). That would
accommodate nonindependent interactions at adjacent positions in the

binding site. If that is still not good enough, the matrix can be made

with trinucleotide rows, or higher. (Of course this can be done as a

Markov chain rather than an explicit matrix of all possible base combi-

nations, but that only changes the notation.)

At some point the weight matrix method must provide a perfect

‘‘model’’ for the interaction because it becomes a matrix with 4 l rows

and only one column, the lookup table of figure 4.1a. For practical

reasons, primarily limited data, we usually assume that a simple

weight matrix (bases by positions) will be a sufficiently good model,

but we have to allow the data to drive us to more complicated models

when necessary. Exactly when a particular model is ‘‘good enough’’

often depends on how it will be used.

Given that we want to represent the specificity of a protein with a

weight matrix, there are several approaches that might be used to ob-

Figure 4.2 The energy of any particular sequence is determined by summing the matrix

values that correspond to the sequence. The boxed values correspond to the sequence

AACT and give a total binding energy of �0.38 kcal/mole. As the matrix is moved along,
the sequence different values will be added together to give the energy of the corre-

sponding sequence.
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tain one. Since the weight matrix has only 4l parameters (and since we

care only about the differences in each column, just 3l degrees of free-

dom), one might simply measure the change in binding energy to all

single base changes from the preferred sequence (Sarai and Takeda,

1989; Takeda et al., 1989; Fields et al., 1997). Alternatively, given a col-

lection of sequences with known binding energy, one could find the

matrix that provides the best fit to that quantitative data (Stormo et al.,

1986; Barrick et al., 1994). This latter approach has the advantage of

indicating whether the weight matrix provides a sufficiently good

model of the interaction. If not, even the best fit will be fairly poor and

more complicated models will be necessary (Stormo et al., 1986).

Probably the easiest and most common method is to collect a set of

known binding sites and develop the matrix from a statistical analysis

of those sites. The known sites may be naturally occurring or they may

be selected from a random pool (Schneider et al., 1986; Fields et al.,

1997). Because we assume a binding energy model of the form Hðb;mÞ,
we can treat the positions independently and convert the aligned col-

lection of known sites into a frequency matrix Fðb;mÞ that counts the
fraction of each base at each position in the aligned sites, as in figure

4.3. If we make the further assumption that the probability of a se-

quence, pi, is determined by its composition, and each base b has prob-

ability PðbÞ, then the best estimate of the energy matrix is

Hðb;mÞ ¼ �ln Fðb;mÞ
PðbÞ : ð4:5Þ

This method of estimating the binding energy for a protein based

on a collection of known sequences originated with Staden (1984), ex-

cept that he set PðbÞ ¼ 1. Schneider (1997) uses the same form with

PðbÞ ¼ 0:25. Berg and von Hippel (1987) substituted maxb Fðb;mÞ for
PðbÞ at each position m, so that the most common base is assigned en-

ergy 0 and all other bases get positive energy.

All of these approaches are equivalent if the PðbÞ are all approxi-
mately equal, but can be inappropriate if they are not or if the pi are not

well approximated by their composition. It is easy to show that if the pi

are well approximated by the composition, then the formula of equa-

tion 4.5 provides the values of Hðb;mÞ that maximize the probability of
binding to the known sites (Heumann et al., 1994). Then the average

binding energy to the known sites at equilibrium is
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hHiisites ¼ �
X

b

X
m

Fðb;mÞ ln Fðb;mÞ
PðbÞ ; ð4:6Þ

the relative entropy between the base frequencies at the sites and the

genomic base frequencies (Schneider et al., 1986; Stormo and Fields,

1998). This is a very useful objective function for the pattern recogni-

tion methods we employ because the set of sites that maximize the

relative entropy would be those sites with the highest probability of

binding to the protein under the assumptions of equilibrium, addi-

tivity, and a random background. Some of those assumptions can be

removed without increasing the complexity of the problem too much,

and we do so when it seems useful.

Figure 4.3 Determining the matrix for a set of binding sites. (a) An example set of bind-

ing sites. These are taken from the list of possible binding sites, based on their proba-

bilities. (b) The summary matrix of the 30 aligned sites, partially listed in (a). (c) The

frequency matrix, using a small sample size correction of adding 1 to each value in the

summary matrix, and dividing by the total (34). (d) The resulting energy matrix, using

PðbÞ ¼ 0:25 for all bases. These values have been converted back into units of kcal/mole,
using RT ¼ 0:62.
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DISCOVERING BINDING SITES

The previous section described how we can represent the specificity of

a DNA-binding protein as a weight (or energy) matrix, and how we can

obtain the best estimate for that matrix, given a collection of known

sites. However, often the problem of interest is how to discover the

binding site pattern (energy matrix) for a transcription factor, given

only a collection of genes that are known to be regulated by it. For

example, an expression array experiment can indicate sets of genes

that apparently are coordinately regulated (Spellman et al., 1998), and

therefore may each have a binding site for a common transcription fac-

tor. We don’t know the energy matrix for the protein, or where the

binding sites are, except that they are most likely to be in the promoter

regions for the genes. The goal then is to find an energy matrix such

that each of the coregulated sequences has at least one high-probability

binding site.

Several approaches now exist to find such sites. There are word-

based methods that try to find overrepresented words in promoter

regions. This approach was first presented by Galas et al. (1985), has

been modified several times, and most recently has been used ef-

fectively on sets of coregulated yeast genes (van Helden et al., 1998;

Brazma et al., 1998). Although the algorithms don’t work this way, it

is possible to think of them as dividing all potential binding sites into

two classes, those that bind (with some energy x) and those that don’t

(energy þy). Their objective is to maximize the probability of binding
to the coregulated promoter regions, which will increase if they have

more of the words that bind to the protein.

These methods can take the background probabilities, pi, into ac-

count by comparing the frequencies of the words identified to their

frequencies in other promoters (van Helden et al., 1998). These methods

don’t really produce an accurate binding energy description, because

most proteins do not bind with ‘‘all or nothing’’ affinities. But they can

still be effective at identifying the regulatory sites, which can then be

analyzed in other ways. This is especially true if the binding sites are

relatively short and highly conserved. However, in general, matrix-

based methods tend to be more reliable because they can also identify

the short, highly conserved sites and can allow for more variability in

the sites.
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There are four general methods, and several specific programs, for

identifying sites via weight matrix approaches: a greedy algorithm,

expectation-maximization (EM), a Gibbs’s sampling method, and a

network method for maximizing specificity. The goal in each case is

the same, so they often return the same solution. However, all of the

methods are heuristic and may not find the true maximum of their ob-

jective. Each algorithm attempts to maximize the objective in a different

way, and so may be susceptible to different local optima. It is usually

advisable to try multiple methods to see if consistent results are ob-

tained. Furthermore, there is usually a variety of parameters that can be

set which affect how the programs run, and exploring various parame-

ter values may be worthwhile.

Our CONSENSUS program is a greedy algorithm that builds up the

total alignment of sites by adding new ones at each iteration (Stormo

and Hartzell, 1989; Hertz et al., 1990; Hertz and Stormo, 1999). It is

somewhat similar to CLUSTAL (Higgins et al., 1996) in that it develops

the full multiple alignment of sites progressively, but has several im-

portant differences. First, it is specifically searching for ungapped local

alignments of length l. (The version WCONSENSUS does not require

the length to be specified, and will search for the optimum length dur-

ing the run.) Second, the program does not rely on a single best align-

ment at any step, but at each iteration keeps many (a user-defined

parameter, typically set to 1000 or more) potential multiple alignments

to be compared against the remaining sequences.

Third, the alignments are ranked by either their information content

or their p-values. Originally we ranked alignments based on their in-

formation content because of its relationship to the average binding

energy of the predicted sites. However, information content is always

nonnegative and, by itself, not directly related to the significance of an

alignment. But by taking into account the length and composition of

the promoter regions, as well as some other relevant parameters, it is

possible to compute the probability of finding by chance an alignment

with an information content above some value, which gives us the p-

value for each alignment (Hertz and Stormo, 1999). Ranking by p-value

allows direct comparison of the significance of alignments of different

lengths, different number of sites included, and even determination

of whether a particular pattern is symmetric or not. This last issue,

whether a binding site is a symmetric pattern, can indicate whether a
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regulatory protein binds as a homodimer, as is fairly common. Given

an alignment of sites that are intrinsically symmetric, it is always pos-

sible to obtain an asymmetric alignment with greater (or equal) in-

formation content, because each individual site has two ways to be

aligned. Only by considering the reduced number of degrees of free-

dom imposed by the symmetry of the pattern is its symmetry apparent.

Thus use of the p-value can provide improved estimates of the optimal

binding energy parameters.

The EM algorithm and the Gibbs’s sampling method are similar

overall, but have one important difference (Lawrence and Reilly, 1990;

Lawrence et al., 1993). Both are iterative algorithms that alternate be-

tween the two steps shown in figures 4.2 and 4.3. They usually start

with an arbitrary alignment of sites, but can also start with an arbitrary

matrix. Given a set of sites, a matrix is produced using the method in

figure 4.3. Then, using the matrix, the probability of the protein binding

to every site is determined from its predicted energy, as in figure 4.2.

This procedure is iterated and is guaranteed to converge in the case of

EM, and tends to higher values of information content with Gibbs’s

sampling.

The main difference is in how the sites from which the matrix is

made are chosen. In EM, every site contributes to the alignment but

is weighted by its probability. In Gibbs’s sampling, only one site is

selected in one sequence, using the matrix derived from the predicted

sites in the other sequences. The site chosen is based on its probability;

the higher the probability, the more likely it is to be chosen, but any site

may be chosen at each iteration. This stochastic aspect of the Gibbs’s

sampling procedure makes it able to escape from local optima, and

therefore it is more robust than EM. The objective used in the Gibbs’s

sampling method is identical to information content, using a small size

correction, as in figure 4.3 (see equations 1 and 2 in Lawrence et al.,

1993). The EM algorithm has been implemented in the MEME package

of programs (Bailey and Elkan, 1994; Grundy et al., 1996). Several newer

versions of Gibbs’s sampling algorithm exist (Spellman et al., 1998;

Roth et al., 1998; Wasserman et al., 2000).

Each of the weight matrix methods described thus far considers only

the promoters from the coregulated genes, although potential binding

sites from the rest of the genome influence the probability of those sites

being bound (equation 4.2). They assume that the rest of the genome

can be modeled as a random sequence with a given composition, PðbÞ.
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However, for many sets of coregulated promoters this assumption can

be misleading. For example, yeast promoters often contain strings of

A/T-rich sequences that occur much more often than expected, even

given the A/T-rich genome. Such patterns clearly are statistically sig-

nificant, given the random genome assumption, but they are not spe-

cific to the set of coregulated genes. Rather, they are patterns that are

common in many promoters, and so cannot be the sought-after binding

sites responsible for the coregulation.

To address this issue we developed an alternative algorithm, imple-

mented in the program ANN-Spec (Heumann et al., 1994; Workman

and Stormo, 2000). It still uses a weight matrix model for the binding

energy, but it determines the partition function explicitly using the en-

tire genome, or at least all of the promoter regions for eukaryotic organ-

isms. It starts with an arbitrary matrix and then selects binding sites

from each sequence using Gibbs’s sampling approach. It also calculates

the partition function and then determines the gradient of the site

probabilities as a function of the weight matrix parameters. It follows

this gradient until convergence.

This method is still heuristic, but tends to work as well as the

other methods we’ve tried on both simulated sequences (Workman and

Stormo, 2000) and real promoters from yeast and other eukaryotes

(unpublished results). When the background is approximately random,

its objective function is the same as information content (Heumann

et al., 1994), so it should give the same results as the other methods. But

its advantage is that it specifically identifies patterns that are able to

distinguish the coregulated genes from other promoters, and therefore

does not find the A/T-rich patterns that the other methods might

(Workman and Stormo, 2000).

Of course there are other methods to avoid those common patterns in

postprocessing steps. The AlignACE version of Gibbs’s sampling algo-

rithm identifies many potentially significant patterns and then filters

out the uninteresting ones based on a variety of criteria, including the

frequencies of the pattern in the coregulated genes and the rest of the

genome (Hughes et al., 2000).

FUTURE DIRECTIONS

One of the limitations of the approaches described is that they tend

to view proteins binding independently of one another. It is easy to
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accommodate situations in which two or more proteins compete for

binding to mutually exclusive sites. More problematic are situations

where proteins bind cooperatively. It is known that eukaryotic pro-

moters are not usually regulated by the binding of a single transcrip-

tion factor, as often happens in prokaryotes. Rather, it is common for

multiple factors binding to multiple sites to be involved in regulating

transcription. Provided each protein shows sufficient specificity on its

own to be identified, the methods already described should be able to

find all of the binding sites, either simultaneously or through iterated

application of the program. But if the patterns themselves are signifi-

cant only through their joint occurrence, then alternative methods are

necessary that can specifically look for composite patterns that are sig-

nificant jointly, even if not individually. Once combinations of individ-

ual patterns that lead to specific regulatory responses are identified,

then the combinatorial network of gene regulation can be more fully

modeled.

There has been some work in the area of defining complete, multi-

component regulatory patterns (Frech et al., 1997; Hu et al., 2000; Liu et

al., 2001; GuhaThakurta and Stormo, 2001), but more work is needed.

Additional extensions would include knowledge of operon organiza-

tion and regulatory proteins, as well as transcriptome experiments.
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The first genome sequence from a free-living organism was completed

in 1995. We do not know yet which will be the first genome to be com-

pletely deciphered, but Escherichia coli is a natural candidate for such a

feat. Certainly E. coli has been the most studied cell since the early days

of molecular biology. Fred Neidhardt, a well-known microbiologist,

said once that every biologist knows about at least two cells: the one he

is studying and working with, and—even if he is not aware of it—E.

coli. Nonetheless, there is a large amount of information still missing

about the genome of E. coli. For instance, currently there is functional

information for about half of its 4290 genes. While we know the tran-

scription unit (TU) organization of a third of such genes (around 1400

genes), only about 600 promoters have been experimentally mapped.

Despite being incomplete, the information gathered on E. coli, in a

sense, offers a benchmark for computational biology. Consider the an-

notation process of a new genome. This process consists in associating

the known and predicted biological properties of segments of DNA,

and their products, in the case of genes, with the corresponding region

in the genomic sequence. A first step is guessing genes by methods that

take into account the statistics of small oligonucleotide distributions

based on an initial set of genes. This ‘‘seed’’ is either a group of experi-

mentally known genes or a set of large ORFs (open reading frame, a



continuous region of DNA coding for a protein or a fraction of it) found

in the genome that by some evidence are likely to be genes.

Typically the seed is obtained by the use of a computer program de-

signed to translate the whole DNA sequence into all possible proteins,

then compare them against the database or repository of experimen-

tally known or predicted protein products (see chapter 2). It is here

that E. coli contributes a large number of experimentally characterized

genes and gene products. This chapter shows that in bioinformatics the

knowledge accumulated on E. coli extends to other goals in the in silico

description of the biology of gene regulation.

As a result of an initial review of transcriptional regulation in E.

coli (Collado-Vides et al., 1991), our laboratory has for years been

gathering data from the literature and organizing it into a database,

RegulonDB (for a detailed description of this database, see Salgado

et al., 2001). A relational structure supports its availability on the Web

(see http:/www.cifn.unam.mx/Computational_Genomics/
regulondb/). RegulonDB contains information on transcription initi-
ation as well as operon organization in E. coli K-12. Thus, the infor-

mation it contains can be mapped with its precise coordinate in the

chromosome. Table 5.1 summarizes the current contents of the data-

base.

Using the information gathered in RegulonDB, we have implemented

several methods to enlarge the known cases and complement them

with computational predictions. In this way a complete description of

genes in TUs and their associated regulatory elements can be proposed.

In this chapter we illustrate how this information can be used in the

analysis of global gene expression profiles in E. coli grown in different

conditions. This implies generating predictions of steady states of a

given regulatory network structure. Furthermore, some methods are

illustrated that use the experimentally determined transcriptome pro-

files to generate predictions of the structure of the network. Certainly,

we do not yet know all of the interacting molecules defining the net-

work and its dynamics. Finally, we discuss how these methods can be

extended to analyze other microbial genomes.

In the first part of this chapter we describe the methods used to pre-

dict the structure of the regulatory network using sequence infor-

mation. We also discuss the use of Bayesian methods to enrich some

of these predictions. Next we give some examples of the use of the
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information in the database in the analysis of transcriptome ex-

periments. Finally, we discuss how these methods are expected to

change with the increasing number of related genomes sequenced,

and discuss some ideas on the evolutionary origin of transcriptional

regulation.

Table 5.1 Contents of RegulonDB: Number of Elements and Increase from Previous

Years

Object 1997 1998 1999 2000a 2001b

Regulons 99 83 83 165 166

Regulatory Interactions 533 433 433 642 935

Sites 406 469 750

Products: 4405 4405 4405

Regulatory polypeptides 83 165 318c

RNAs 115 115 115

Other polypeptides 4207 3976 3972

Protein complexes 99 83 83 165 166d

Genes 542 456 4405 4405 4405

Transcription units 292 230 374 528 657

Promoters 300 239 432 624 746

Effectors 35 36 36 36 66

External References 2050 2011 4394 4704 4943

Synonyms 681 3525 3525 3525

Terminators 40 86 106

RBSs 59 98 133

Conformations 83 201

Conditions 10 10

aNumber of elements as of 1 October 2000 in RegulonDB.
bNumber of elements as of 7 November 2001 in RegulonDB.
cTotal of 318 transcriptional DNA-binding regulators, of which 165 have experimental

evidence and the rest have been predicted based on their helix-turn-helix DNA binding

motif.
dThe number of protein complexes decreased from 165 to 163 due to the constant verifi-

cation of the data. It was found that two pairs of regulatory polypeptides, with experi-

mental evidence, actually bind together to create two single protein complexes. See the

glossary for the definition of regulon, operon, and transcription unit.
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METHODS FOR COMPUTING GENOMIC ELEMENTS OF GENE

REGULATION

Regulatory Signals: Promoters and Regulatory Binding Sites

Transcriptional regulatory proteins affect the binding of the RNA pol-

ymerase (RNAP) to the promoter, that is, the binding sites of RNAP

located upstream of genes. By means of various mechanisms, regula-

tory proteins can alter any step in the transition involving the binding

and the subsequent steps leading to the initiation of a stable elongation

complex. Once the RNAP binds to the DNA, it undergoes conforma-

tional changes from the so-called closed complex to a conformation that

separates the DNA strands into an open complex. Transcription of the

first two to seven nucleotides initiates, in a process that can be aborted,

causing the unbinding of RNAP from the DNA and the liberation of

short oligonucleotides. If transcription continues, RNAP forms a stable

elongation complex that will proceed to termination of an mRNA tran-

script containing one or several genes (for a detailed review of this pro-

cess, see Mooney et al., 1998).

The amount of mRNA produced depends on the regulation of all

possible biochemical transitions involved in the complete process

(Gralla, 1990). We limit the discussion here to the regulation at the level

of transcription initiation, which depends on both intrinsic factors—

strength of RNAP binding to the promoter, speed of transcription ini-

tiation—and extrinsic factors. The latter basically consist of regulatory

proteins that bind to DNA around the promoter region and either fa-

cilitate or prevent transcription initiation.

Transcription initiation is highly specific. The RNAP holoenzyme

(RNAP core plus a sigma factor) recognizes the precise site of tran-

scription initiation. In the absence of the sigma factor, the RNAP binds

to DNA in a much less specific manner. While molecules are capable of

such exact recognition, the challenge is to generate mathematical and

computational methods that can mimic this high resolution of recogni-

tion. We are far from anything similar. Computational methods to pre-

dict promoters and other protein-binding sites, such as operator sites,

are known to generate a high number of false positives. Although one

can solve this problem by limiting the search to a threshold equal to the

average score of known sites, or to the average of such scores minus

106 Julio Collado-Vides et al.



one or two standard deviations (Robison et al., 1998), this solution elim-

inates weaker sites that could potentially be relevant.

Chapter 4 describes in detail the classic methodology of weight ma-

trices that is widely used to identify DNA binding sites. Figure 5.1

shows the weight matrices of the two conserved elements of E. coli

sigma 70 promoters, the �10 and the �35 boxes. The average scores of
the boxes are 3.12 and 2.17 bits, respectively, which add up to 5.28 bits.

This means that this signal might be found randomly every 25:28, or

around once every 60 base pairs (bp). The computational ability to

identify similar putative promoter sites depends on the universe to be

searched. Thus, Lukashin et al. (1989) claim that they can identify 99%

of promoters, but their search is limited to oligonucleotides of the same

size as the promoters. This is useless in searching for promoters in a

genome. The significant genomic universe to search for promoters can

be estimated by looking at the distance distribution of promoters in re-

lation to the beginning of genes.

Figure 5.2 shows that 90% of all sigma 70 promoters are located

within 250 bp upstream of the ATG of the beginning of the gene. These

496 promoters are located in 392 regulatory regions; in other words,

81.6% of known TUs have a single promoter, 13.1% have two pro-

moters, and 5.3% have three or more. Thus, the interesting challenge

for computational genomics is that of identifying promoters, usually

one, in regions of 200 to 300 bp. When identifying a promoter in a re-

gion of 250 bp, the efficiency can drop to 20%. For instance, searching

Figure 5.1 Weight matrices of the �10 and �35 boxes of E. coli sigma 70 promoter.

Consensus matrices were generated using the wconsensus program, This �10 consensus
pattern agrees with that reported in the literature. TTGACA is the classic consensus on

�35; our �35 differs from that in one base pair. We did not use the classic patterns as

seeds to make the matrices, as had been done in previous analyses (Hawley and Mac-

Clure, 1983; Harley and Reynolds, 1987; Lisser and Margalit, 1993).
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in the whole E. coli genome for thresholds equal to the average of scores

of experimentally known promoters generates 1341 possible promoters.

If we search using the weight matrices of figure 5.1, using a threshold

low enough to make sure we identify 90% of a set of known promoters

(commonly the average minus three standard deviations), we get an

average of 55 putative promoters per upstream region 250 bp long.

That is, there are on average more than 50 additional apparent

signals—or noise—mixed with each true signal. In fact, more than 50%

of these upstream regions show a putative promoter with a better score

than the true known promoter. Figure 5.3a shows the curves of spe-

cificity and sensitivity as a function of the threshold. The curve will

never rise above 50% sensitivity, since, as just mentioned, more than

50% of regulatory regions show a signal stronger than the true pro-

moter.

No doubt the statistics summarized in a weight matrix are a weak

reflection of the molecular ability of RNAP to recognize its binding

sites. We have implemented a method that improves the specificity of

recognition by an order of magnitude. The method consists of two

steps. The first is to obtain a large population of potential candidates,

using a low threshold. The second is a ‘‘competition’’ process that

Figure 5.2 Distance distribution of promoters, relative to the beginning of the gene in

E. coli. Distribution of 496 sigma 70 promoters in relation to the beginning of the down-

stream gene. Each promoter was positioned based on its �10 box. The highest fraction of
promoters falls around 50 bp upstream from the beginning of the gene.
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Figure 5.3 Evaluation of detection of promoters by several methods. Promoters were

searched in a region 250 bp ustream of the gene. (a) Classic method using consensus/

patser. (b) Selecting the strongest scoring site in the region. (c) Using the covering algo-

rithm of competition among putative promoters as described in the text. Sensitivity is

defined as the ratio of true positives divided by all true sites (the sum of true positives

and false negatives). Specificity is defined as the ratio of true negatives divided by the

sum of true negatives plus false positives. The positive predictive value is the ratio of true

positives divided by all the sites reported by the method (true positives plus false pos-

itives). True sites are those experimentally reported, and positive sites are those found by

the method.
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selects a few putative promoters based on a comparison of all candi-

dates within the regulatory region. The competition involves the ‘‘in-

trinsic’’ strength (the added scores of the �10 and �35 boxes, plus the
distance separating them) as well as information from the context (i.e.,

the distance to the beginning of the gene). Interestingly, the method

works better when this competition is performed by splitting all signals

into groups of candidate promoters with boxes separated by a given

distance. All candidate signals are split into seven groups (those whose

boxes are separated by a distance of 15 bp, up to those separated by 21

bp), and each group contributes one best candidate.

Although analyses splitting promoters in this way have already been

performed (O’Neill and Chiafari, 1989), we initially had no idea of why

this independent competition performs better. A plausible explanation

is that by means of this mechanism, we are conserving at the end sig-

nals that can overlap (since only promoters with different in-between

distances can overlap). This would imply that the precise recognition of

a promoter by RNAP is achieved by multiple promoter signals located

close together, overall providing a higher energy of binding (see chap-

ter 4). Our method yields a true promoter out of six candidates on av-

erage (with 80% efficiency; see figure 5.3b), compared with one out of

50 if selected at random.

The computational analyses of operator-binding sites for specific

transcriptional regulators around the promoter region follows the same

basic strategy of weight matrices that is applied to upstream regions in

a genome, but the number of known sites is fewer. RegulonDB cur-

rently accounts for around 160 DNA-binding transcriptional regulators

with experimental evidence. As of May 2001, we have been able to

gather experimental information on known binding sites for 62 pro-

teins. We can construct specific weight matrices (with at least four sites)

for 35 regulators and search for potential new sites in upstream regions

in the genome. This time, given the distribution of sites located around

200 bp upstream from the promoter initiation site (Gralla and Collado-

Vides, 1996), we have to search in a region of around 400 bp upstream

from the beginning of the gene. This interval is obtained by adding the

distance from the promoter to the beginning of the gene, and the dis-

tance from the sites to the promoter.

We did not consider promoter prediction to be reliable enough to

limit the search for sites to the vicinity of the predicted promoters. In

fact, if one looks at the information content of all regulatory proteins,
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the gradient goes from around 6 to 28 bits (figure 5.4). This indicates

that the promoter site (�35 plus �10), with around six bits, is on the
lower range of information content, compared with sites for transcrip-

tional regulators. Assuming that this information content reflects the

energy of binding, and therefore the equilibrium constant of the asso-

ciation between the protein and the DNA sites, it would make sense to

see a lower constant for RNAP, given the greater abundance of RNAP

compared with that of specific regulators (Robison et al., 1998).

Searching in the set of upstream regions of all genes in the genome, we

find more than 44,000 putative CRP sites, whereas for LexA we find

Figure 5.4 Information content of weight matrices for specific regulators in RegulonDB.

The information content was obtained using consensus with the reported binding sites of

35 regulatory proteins. The values were adjusted against the sample size. For instance,

two of the matrices obtained had less than 6 bits of information, and only one, corre-

sponding to ArcA, has 30 bits of information.
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only 160 sites (Thieffry, Salgado, et al., 1998). These numbers illustrate

the problem of high false positives or poor specificity in the search for

operator sites for transcriptional regulators. Furthermore, as mentioned

before, we have sites for only around one sixth of all transcriptional

regulators. A way to considerably diminish the false positives is by

restricting the predicted sites to those located at positions relative to the

beginning of transcription similar to positions of known sites. This can

be achieved by detailed analysis of the combination of sites into mod-

ules or ‘‘phrases’’ (Rosenblueth et al., 1996; Frech et al., 1997).

So far we have focused on methods that deal with sensors that are

built from a set of known binding sites for a given protein. The avail-

ability of transcriptome data has motivated the implementation of dif-

ferent types of methods aimed at identifying common motifs in sets of

regulatory regions of genes observed to be coexpressed (Goffeau, 1998).

Although programs in this direction were implemented years ago

(Waterman et al., 1984; Stormo, 1990), the recent boom of transcriptome

and chip methodologies has motivated new methodologies such as

Gibbs sampling (Lawrence et al., 1993) and others (see chapter 6). We

have implemented a method that searches exhaustively in all the space

of sequences, and identifies ‘‘words’’ or oligonucleotides up to seven

bases long that are overrepresented in a given family of upstream re-

gions (van Helden et al., 1998). Its performance has been similar to

several other methods when analyzing a set of coexpressed genes in

yeast. Later, a variation of this basic idea was implemented that allows

for the search for words with internal symmetry, with direct or inverted

repeats, or palindromes. This program is called dyad-detector (van

Helden et al., 2000).

More recently we have tested the performance of dyad-detector

against sets of coregulated genes obtained from RegulonDB. An inter-

esting observation in the first results enabled us to develop a strategy

that improves the accuracy of the method in detecting genes regulated

by a given protein, and to identify the binding site. This method starts

with a family of upstream regions containing the set of binding sites

for the known or unknown protein (if the set comes from coexpressed

genes, for instance). We then use the dyad-detector to identify the

overrepresented words. Most of these significant words accumulate

near true binding sites (figure 5.5). Focusing on islands of overlapping

words or motifs offers an additional step to increase the specificity of

the method.
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With additional information coming from other sources that define

groups of genes or operons as plausibly coregulated sets, we may be

able to predict, in principle, the binding sites for a set close to the com-

plete collection of 314 transcriptional regulators in E. coli (known and

predicted; see next section). This will be an important step forward in

the characterization of the structure of the network of transcriptional

interactions of the whole cell. We can imagine having 314 sets of bind-

ing sites distributed in the upstream regions of the genome, and defin-

ing the corresponding weight matrices that expand the currently

known 50 or so weight matrices.

Figure 5.5 Distances from binding site of all dyads detected at the upstream regions of

genes regulated by LexA. Dyads with a significance higher than 0 were obtained with the

dyad-detector program (van Helden et al., 2000). Their location in relation to the true

LexA sites is shown, with negative distances corresponding to those that overlap true

sites.

113 Genomics of Gene Regulation



We turn now to the analysis of transcriptional activators and re-

pressors that affect transcription initiation. Helix-turn-helix (HTH) is

the dominant motif used by these specific regulators to bind to DNA in

bacteria, although other motifs, such as beta-sheet and zinc fingers, are

found in a few cases. According to our estimates, more than 90% of

bacterial regulators involve an HTH motif (Pérez-Rueda and Collado-

Vides, 2000). Similar methods, based on weight matrices (profiles) and

regular expressions (pattern search, i.e., prosite patterns), can be used

to predict transcriptional regulators identifying the conserved HTH

motif by means of sequence similarity. In this way the set of 160 known

regulators expands to a total of 314 transcriptional regulators in E. coli.

These regulators are grouped in 24 different families, which are as-

sumed to be groups of proteins with a common evolutionary origin.

The functional roles of these families can be inferred from the observa-

tion that repressors have their HTH motif located predominantly at the

N-terminus, and activators have it at the C-terminus, of the protein

(Pérez-Rueda et al., 1998; see figure 5.6). This is another useful piece of

information that contributes to the solution of the problem of predict-

ing the whole network of regulatory interactions involved in transcrip-

tion initiation.

Assume that we have identified an equal number of families of pro-

tein-binding motifs as we have of transcriptional regulators. The prob-

lem then is to identify which protein binds to which set of sites, and

thus to identify which protein regulates which set of genes. Ideally, we

would like to directly identify the sequence of the operator site from

the sequence of the DNA-binding motif of the regulator, as has been done

for the GalS protein (Müller-Hill and Kolkhof, 1994). However, with the

data in RegulonDB we have verified that this striking observation is

indeed an exceptional case. A genomic approach putting together sev-

eral pieces of information seems reasonable. Some of these pieces and

their contribution to limiting the association of the regulator and its

corresponding regulatory sites and regulated genes are the following:

. Regulators are predicted as activators or repressors, and are also

predicted as members of a particular family of evolutionarily related

proteins. We have observed that families tend to regulate genes of rela-

tively similar function (Pérez-Rueda and Collado-Vides, 2000).

. The position of the binding site in relation to the regulated promoter
can corroborate if it is an activator or a repressor. Even in the case of
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dual proteins, we have observed that for a given specific regulator,

when it works as an activator, its sites are closer to the promoter,

compared with the positions of the sites used to repress (Gralla and

Collado-Vides, 1996).

. Transcriptome snapshots of a regulated transition would in principle
enable the search for correlations in the expression profiles of regula-

tory and regulated genes, and in this way contribute to restricting their

identification.

. Sets of genes subject to common regulation, or regulons, can be pre-
dicted on the basis of phylogenetic profiles (Pellegrini et al., 1999; see

Figure 5.6 Relative location of helix-turn-helix (HTH) motifs within regulatory proteins.

The total length in amino acids of each regulatory protein was normalized to 100, and the

relative position of the center of the HTH motif for each protein was obtained (see Pérez-

Rueda et al., 1998).
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also chapter 6), and on the basis of expanding the method of operon

prediction described below.

. We know that regulatory proteins are autoregulated in a good num-

ber of cases (Thieffry, Huerta, et al., 1998). Thus, finding a motif present

upstream of a regulatory protein gene would suggest that all genes

having similar sites are targets of the regulator.

A clustering approach can be implemented that uses all this informa-

tion and that is capable of grouping genes on the basis of both knowl-

edge from the database and data from transcriptome experiments. We

have implemented, and are currently evaluating, a clustering method

based on Bayesian statistics that is able to perform such tasks.

Operons

In bacteria, genes are clustered in monocistronic and polycistronic

(operons) TUs. The information available in RegulonDB for more than

400 TUs with experimental evidence enabled us to implement a method

that can predict operons. This method is based on the clearly different

distribution of intergenic distances of pairs of genes in the same operon,

as opposed to pairs at the boundaries of TUs. It also uses the conser-

vation of functional class of genes within an operon to predict operons

in the rest of the genome (Salgado et al., 2000).

The organization of all genes into TUs has motivated the definition of

the set of ‘‘minimal upstream regions’’ (MURs) of the genome as the set

of upstream regions of all TUs in the genome. This clustering simplifies

the problems of motif searching and of the architecture of the network

of interactions. Forty-two hundred genes and ORFs cluster in around

2600 TUs, and thus there are 2600 MURs.

We have shown that the set of TUs in a given regulon can be ex-

panded by the use of comparative genomics combined with evidence of

upstream regulatory motifs (Tan et al., 2001). In this example we show

that ‘‘orthologue TUs,’’ found in E. coli and Haemophilus influenzae, can

be added to a regulon if such TUs have a similar binding site. An ex-

pansion of this idea, as suggested by Galperin and Koonin (2000), takes

advantage of the high frequency of rearrangement of operons. It is

expected that such rearrangements of the gene elements of operons oc-

cur among related TUs (regulons). Starting with a set of genes known

to be part of a regulon in E. coli, one would need to find the orthologues
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in other genomes. If such orthologues are associated in an operon with

another gene, and that gene is also present in E. coli, there would be a

chance that this gene is part of the same regulon. Some evidence that

the rearrangements occur among related operons has been published

(Lathe et al., 2000).

A complete analysis would need TU predictions, in different genomes,

to start with. We have expanded the method originally developed in E.

coli and have found evidence suggesting that it works well in any pro-

karyotic genome. It will be very interesting to extrapolate some of these

pieces of the puzzle of genomic regulation and apply them to different

bacterial genomes. Certainly the role of E. coli as an oasis of annota-

tions, compared with much less studied related microorganisms, must

be extrapolated further (see more about these predictions in the section

‘‘Comparative Genomics and Evolution of Gene Regulation’’).

TRANSCRIPTOME ANALYSES

All the accumulated experimental knowledge and computational pre-

dictions of gene clustering in operons and gene regulation provide val-

uable information for analyzing expression profiles from transcriptome

experiments in E. coli. The analysis of any given condition requires

the identification of the function of the set of affected—induced or

repressed—genes, the organization of such genes into operons, their

regulatory regions with promoters and regulatory sites; that is, the

gathering of all known information on such genes. There is also a need

to have at hand methods that can organize and manipulate the in-

formation. We have implemented interfaces that integrate outputs of

programs that search in RegulonDB and display integrated informa-

tion about the regulation of gene expression of a given set of genes

(see http://www.cifn.unam.mx/Computational_Genomics/
GETools).
Several interesting questions can be raised when comparing the data

that have accumulated through years of experimentation with data

obtained in a single transcriptome. One question is to evaluate and

understand howcongruent the observedprofile is towhatwe knowabout

the network of interactions. At a first, broad level of analysis, statistical

evaluations of such congruence can be obtained. Genes grouped in

operons tend to be subject to a common mechanism of regulation.

Thus, most of the time one would expect that under any growth con-
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dition, all genes within an operon will be either induced or repressed.

We define such operons as congruent. We could count the fraction of

congruent operons as a function of the threshold of gene expression.

If the low expression values get mixed with the noise of detection,

one would expect a curve of increasing congruence as the threshold

rises. This is what we observe in several transcriptome experiments,

one of which is illustrated in figure 5.7. Although such a congruent be-

havior is not surprising, it is a useful index, based on the biology of E.

coli genes and operons, to use as an ‘‘internal control’’ of experiments

across different conditions. More interestingly, if the high region of

congruence of this curve has some biological meaning, it suggests that

for a large number of changes in growth conditions, E. coli adapts

Figure 5.7 Congruence of operons in transcriptome experiments. Evaluation of congru-

ence of transcriptome experiments as measured by the number of operons completely

expressed or repressed by the number of operons represented at different levels of in-

duction or repression (here shown as absolute value). The example shows the heat shock

experiments measured by fluorescence and by autoradiography.
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through the regulation of an important number of genes, no fewer than

100 or 150. This clearly suggests mechanisms for concerted regulation

of a number of genes that is well beyond the average number of genes

in a single known regulon.

There is enough information to analyze the congruence of cell be-

havior in more detail and from a different perspective. Snapshots of the

expression flexibility of the cell are like photographs taken from a boat

at high speed—the picture can easily be blurred. The set of regulatory

interactions in a cell forms a network in which the level of expression of

one gene can easily affect that of others, either directly or indirectly. In

order to evaluate the congruence of genes within such networks, we

need to consider all known interactions. This type of analysis, at a

given moment in time, can be called ‘‘internal congruence’’ or ‘‘syn-

chronous congruence’’—as opposed to the analysis of a transition of

the cell when changing the conditions of growth.

We investigated whether groups of genes known to be precisely cor-

egulated (by one or several proteins, but exactly the same set) show

homogeneous patterns of expression in transcriptome data. We con-

centrated on the study of absolute levels of expression of E. coli grown

at 37 �C in minimal medium, since we have data from the experiment

performed four times. These experiments were performed in the labo-

ratory of Fred Blattner at the University of Wisconsin, Madison. Defin-

ing expression levels as either on or off, based on their absolute values,

we can identify subsets of coregulated genes that behave in a homoge-

neous way—either on or off. A binomial analysis with a priori proba-

bilities p and (1� p) for on and off, based on their frequency in the

complete set of genes in the experiments, shows the statistical signifi-

cance of these results. A set of genes coregulated by a single protein

and with a statistically significant behavior is shown in table 5.2. This

may not be the case for all coregulated groups. More elaborated

analyses will surely be required to deal with the flexible response of

regulons.

In order to perform similar analyses, this time comparing tran-

scriptome experiments on E. coli in different conditions, we need to

employ a computational machinery that will simulate direct and indi-

rect effects and their state transitions. In a way, the ideas presented

here are rather simple in terms of simulation of networks. The recent

literature addressing the analysis of transcriptome data and modeling

of regulatory networks is growing very fast. (See, for instance, the
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approaches described in chapters 7, 8, and 11, as well as references and

suggested literature cited there.)

COMPARATIVE GENOMICS AND EVOLUTION OF GENE

REGULATION

Since the work by Zuckerkandl and Pauling (1963), we have been

aware of the historical content within macromolecular sequences. Con-

servation in the course of evolution is becoming a powerful source of

information for a new generation of computational methods that use

full genomic sequence and information. For instance, predicting regu-

latory elements in eukaryotic genomes was recognized until very re-

cently as a difficult computational problem. Although their position in

relation to the beginning of the genes is much more flexible than in

prokaryotes and allows remote positions, one would expect, when com-

paring two related organisms, that their functional sites are visible as

small, conserved regions as opposed to the rest of noncoding DNA.

Table 5.2 Internal congruence in gene expression of coregulated genes

Data

Experiments

Co-regulating proteins Gene 1 2 3 4 Off On

CsgD CsgG OmpR csgD off off off off 4 0

CsgD CsgG OmpR csgE off off off off 4 0

CsgD CsgG OmpR csgF off off off off 4 0

CsgD CsgG OmpR csgG off off off off 4 0

Totals on 0 0 0 0

Totals off 4 4 4 4 16 0

Summary

% genes off 1.00

% genes on 0.00

Probability 0.01

An example of a group of genes known to be precisely coregulated by three regulatory

proteins: CsgD, CsgG, OmpR. The group shows a homogeneous pattern of expression

in repetitions (experiments 1, 2, 3, and 4) of transcriptome data. The expression levels

are described as either on or off pattern, for which we analyzed the statistical significance

using a binomial distribution model.
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This identification is what is called a ‘‘phylogenetic footprint’’ (Fickett

and Wasserman, 2000; McCue et al., 2001) in an analogy to chemical

footprinting of operator sites.

We have mentioned that regulatory proteins can be grouped into

families with a common evolutionary origin. The interesting correlation

between the position of the HTH motif and the role in regulation of the

protein can be either the result of a convergent process in evolution due

to physical constraints, or a trace of the common origin of these pro-

teins. To address this issue, we expanded our data set of transcriptional

regulators, and compared them with all ORFs in sequenced bacterial

and archaeal sequenced genomes. Our accumulated evidence points to a

common origin of this positional restriction (Pérez-Rueda and Collado-

Vides, 2001). Certainly, when the HTH conserved sequence within a

family is analyzed, it expands beyond the strict functional, charac-

terized HTH motif, suggesting that a trace of similar sequence with no

binding task is still visible. Second, not only evolutionary families tend

to have conserved positions; the distribution of families across the dif-

ferent microbial genomes is such that we can estimate the point in

evolution when they emerged. A quite interesting observation in this

analysis is a set of four repressor families that show homologues in

archaea, indicating that this motif existed before the divergence,

around three billion years ago (Feng et al., 1997), between the current

bacteria and the archaea.

The evolutionary trace in operon organization is also rather striking

in the microbial world. The organization of operons in E. coli has

shown, as already mentioned, genes within operons with a strong

preference for short intergenic distances as opposed to a flat, almost

equiprobable distribution for a range of distances between genes at the

boundaries of TUs (figure 5.8). This is a strict genomic observation in

the sense of a property that can be analyzed only when complete

genomes are available. The intergenic distances aid in predicting func-

tional relationships between genes—because genes in the same operon

tend to participate in the same function—without any need for homol-

ogy detection among proteins.

In order to evaluate whether the same method can be applied in

predicting operons in bacteria other than E. coli, one needs known

sets of experimentally characterized operons in other bacteria. Fortu-

nately, a collection of experimentally characterized operons is avail-

able for Bacillus subtilis, a gram-positive bacterium. To our surprise,
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the predictive accuracy of our method for this set is as high as that for

the operons in RegulonDB, using the parameters defined with the E. coli

collection.

Still, evidence is necessary to show that the method is applicable to

any prokaryotic genome. Another observation about the properties of

genes within experimentally known operons, compared against genes

at TU boundaries, is that they have a higher tendency to be conserved

as neighbors in other genomes (figure 5.9). We tested to see if this holds

true for predicted genes within operons and predicted boundaries

(Moreno-Hagelsieb et al., 2001). This independent test gave the ex-

Figure 5.8 Intergenic distances of genes within operons and at TU borders. Distribu-

tion of intergenic distances of genes within operons (continuous line), and of genes at the

borders of transcription units (discontinuous line, upper part). The figure also displays

the log-likelihoods derived from the comparison of the frequency of pairs of genes within

operons separated by a given distance versus that among genes at TU borders (see Sal-

gado et al., 2000). Intergenic distances were obtained from known operons, and distances

at borders were obtained from transcription units (i.e., operons as well as genes tran-

scribed in isolation).
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pected results, that is, the method derives predicted genes within

operons that are conserved as neighbors more frequently than pre-

dicted boundaries. Other tests confirm the applicability of the method,

such as the conservation of the peak observed in the distance distribu-

tions of all genes transcribed in the same direction. The peak is always

Figure 5.9 Conservation of E. coli pairs of genes inside operons and at their border. The

first column in each organism represents pairs in operons, while the second represents

genes at the borders of transcription units. The column representing pairs in operons is

always higher, and fusions occur only among conserved genes corresponding to operons.

The labels mostly correspond to the file names at GENBANK: aquae, Aquifex aeolicus;

bbur, Borrelia burgdorferi; buch, Buchnera sp. APS; cjej, Campylobacter jejuni; cpneu, Chla-

mydia pneumoniae; hinf, Haemophilus influenzae Rd; hpyl: Helicobacter pylori 26695; nmen,

Neisseria meningitidis MC58, paer, Pseudomonas aeruginosa; rpxx, Rickettsia prowazekii, syn-

echo, Synechocystis PCC6803; tmar, Thermotoga maritima; tpal, Treponema pallidum; vcho,

Vibrio cholerae; xfas, Xylella fastidiosa; bhal, Bacillus halodurans; bsub, Bacillus subtilis; dra,

Deinococcus radiodurans; mgen, Mycoplasma genitalium; mtub, Mycobacterium tuberculosis;

uure, Ureaplasma urealyticum; aero, Aeropyrum pernix; aful, Archaeoglobus fulgidus; hbsp,

Halobacterium sp.; mjan, Methanococcus jannaschii; mthe, Methanobacterium thermoautotro-

phicum; pabyssi, Pyrococcus abyssi; tacid, Thermoplasma acidophilum; fly, Drosophila melano-

gaster; worm, Caenorhabditis elegans; yeast, Saccharomyces cerevisiae (see Moreno-Hagelsieb

et al., 2001).
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located at the same place, and it is a reflection of the abundance of

operons of each genome. This information on abundance can be used to

adjust the predictions for greatest accuracy, but in principle the method

performs surprisingly well in any prokaryotic genome.

In summary, we started with an expected observation: that pairs of

genes in the same operon tend to be close to each other, in contrast to

pairs of genes at the boundaries between two neighboring TUs. The

difference in the distribution is so clear that this single parameter suffi-

ces to predict operons with an accuracy higher than 80% in E. coli. A

similar accuracy in the set of known operons in Bacillus is rather sur-

prising, given the evolutionary distance between these organisms. Also

important is the different evolutionary conservation of pairs of genes in

operons, as opposed to genes at the boundaries of TUs. The resulting

methodology enables a quite accurate prediction of TUs in all microbial

genomes. This computational ability is based on a universal conserva-

tion of the basic architecture of operons within the microbial world.

CONCLUSIONS

Many questions are open, and some of them may remain mysteries for a

long time. Transcription regulation as a network of interactions clearly

illustrates the complexity of biological architectures. We do not know

how deeply we will be able to understand such networks with current

scientific approaches. There is no clear quantitative method to address

the emergent properties of complex biological systems. These limi-

tations bring a healthy skepticism to what we will be able to do

(Krischner et al., 2000). However, the defined phenotypes of individual

mutations in complex differentiation pathways, such as aging, suggests

that complex as biology may be, it is decomposable and subject to

analysis.

Transcriptional regulation and operon organization in bacteria bring

us to a different point in the history of the biological complexity, the

one of the origin of life, or at least the origin of cellular life and its early

speciation in what became the archaeal, bacterial, and eukaryotic

domains of life. E. coli or another bacterium may be the first completely

annotated genome in the near future.

It is true that in several aspects bacteria are simpler systems, com-

pared to higher organisms. But this simplicity does not prevent novel

methods and representations that can integrate the biology of a bacte-
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rial cell from being equally useful when studying eukaryotic cells. One

further step will be to study gene regulation and the associated meta-

bolic capabilities of the regulated genes in a single integrated model.
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SUGGESTED READING

Coe, M. (1992). Breaking the Maya Code. New York: Thames and Hudson. A summary of

lessons from anthropologists drawn from deciphering ancient human languages. Deci-

phering genomes is not that different, is it?

Collado-Vides, J., Magasanik, B., and Smith, T. F. (eds.). (1996). Integrative Approaches to

Molecular Biology: Cambridge, Mass.: MIT Press. A book that expands from databases to

regulation, metabolism, and evolution.

Jacob, F. (1997). La Souris, la Mouche, et l’ Homme. Paris: Editions Odile Jacob. We do not

know if there is an English version of this update of La Logique du Vivant by the same

author, summarizing his view of the recent history of molecular biology. It is worth

reading.

URLs FOR RELEVANT SITES

E. coli genome project in Madison, Wisconsin. http://www.genome.wisc.edu

RegulonDB access site and also access site laboratory of Program of Computational

Genomics, UNAM.

http://www.cifn.unam.mx/Computational_Genomics/regulondb
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6 Discovery of DNA Regulatory Motifs

Abigail Manson McGuire and George M. Church

Short, conserved sequence elements, or DNA motifs, located upstream

of the transcriptional start site are often binding sites for transcription

factors that regulate a group of genes involved in similar cellular func-

tions. Additional genes with this motif in their upstream regions are

good candidates for involvement in the same cellular function. Thus,

upstream regulatory motifs can provide powerful hypotheses about

links in the genetic regulatory network. These upstream regulatory

motifs can be discovered computationally by local alignment of up-

stream regions from coregulated sets of genes. Here we will focus on

the AlignACE motif-finding algorithm (Roth et al., 1998).

Figure 6.1 illustrates the process of motif discovery. In order to dis-

cover a motif computationally by using local alignment methods, an

accurate list of coregulated genes, or a regulon, is needed. The AlignACE

program can tolerate some noise in the alignment process from extra

sequence that does not contain the motif of interest, but too much extra

sequence will prevent the motif from being aligned. Thus, we must

employ additional experimental and computational methods to obtain

accurate regulon predictions.

Figure 6.2 illustrates several methods that can be used for regulon

prediction. Each of these methods will be discussed in more detail

below. mRNA expression data have proved to be very useful for

predicting coregulated sets of genes. Genes that are upregulated or

downregulated in a single experimental condition are likely to be co-

regulated, as are genes with similar mRNA expression profiles across

many conditions or time points. There are also several computa-

tional methods for predicting regulons that are based on compara-

tive genomics. Here we will discuss several methods for predicting

regulons, motif discovery algorithms, parameters for evaluating the



significance of a proposed regulatory motif, and applications of motif

finding using AlignACE in bacterial genomes and in Saccharomyces cer-

evisiae. An additional Web tutorial on topics covered in this chapter is

available at http://arep.med.harvard.edu/labgc/amcguire/
IBSS/index.html.

REGULON PREDICTION

Groups Derived from mRNA Expression Data

A powerful method for predicting regulons is to look for patterns in

mRNA expression data from DNA chips or microarrays. This has been

Figure 6.1 Process of motif discovery. The first step is to predict coregulated groups of

genes, or regulons. This can be done either using expression data from microarrays or by

computational methods based on comparative genomics. Next, the upstream regions of

genes within the predicted regulons are aligned, using a motif discovery algorithm. The

resulting DNA regulatory motifs can be illustrated using a motif logo, as shown here

(Schneider and Stevens, 1990). The height of a stack of letters is proportional to the infor-

mation content, and the relative frequency of each base is given by its relative height. The

presence of a significant regulatory motif found in this manner can be used to refine the con-

tents of the predicted regulons, because the presence of a regulatory motif provides addi-

tional evidence that this set of genes is coregulated. Experiments can also be designed to test

the function of the regulatory motif and to identify the transacting factor that binds to it.
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done for several sets of experimental conditions in S. cerevisiae (Tava-

zoie et al., 1999; Roth et al., 1998). One particularly effective method for

obtaining coregulated sets of genes from mRNA expression data is

to cluster genes on the basis of their expression profiles over a large

number of experimental conditions, or over a large number of time

points (Tavazoie et al., 1999; Wen et al., 1998; Eisen et al., 1998; Tamayo

et al., 1999). Different algorithms for clustering such data are reviewed

in Sherlock (2000). Many known motifs, as well as new motifs, have

been found in the upstream regions of S. cerevisiae genes clustered by

this method (Tavazoie et al., 1999). A database of expression data in S.

cerevisiae for 217 experimental conditions is available (Aach et al., 2000;

http://arep.med.harvard.edu/ExpressDB).

Figure 6.2 Methods for regulon prediction. Method (a) relies on experimental mRNA

expression data from microarrays. Methods (b), (c), and (e) are comparative genomics

methods based purely on sequence information. Methods (d) and (f) incorporate known

biology of well-studied organisms.
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Groups Derived from Conserved Operons

Operons (tandem genes, usually functionally related, that are tran-

scribed onto a single mRNA) are the main transcriptional regulatory

units in bacteria. Often several bacterial operons that share an up-

stream binding site for a common transcription factor are coregulated

to form a higher-order regulatory unit (a regulon). In different micro-

bial organisms the genes that make up a regulon are often assorted into

operons in different combinations. Two genes that are spatially sepa-

rated on the chromosome in one organism, but spatially close in several

other microbial species, are good candidates for being coregulated or

functionally related (Dandekar et al., 1998; Overbeek et al., 1998, 1999).

Such pairings between genes have been used to construct larger groups

of genes that are predicted to be functionally coupled (Overbeek et al.,

1999). Thus regulons can often be reconstructed by looking at con-

served operon composition across other genomes. Figure 6.3 shows a

simple example illustrating this method.

Figure 6.3 Predicting the E. coli purine biosynthesis regulon based on conserved oper-

ons. In B. subtilis, C. acetobutylicum, and several other bacteria, a large group of genes

involved in purine biosynthesis is found together in a single operon. In E. coli these genes

are split into seven different operons that are coordinately regulated by binding of the

transcription factor PurR to a specific DNA motif found in the upstream region of each

operon. Each color (not shown here) represents a separate but coregulated operon in

E. coli.
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In eukaryotes operon structures are less common, and each individ-

ual gene typically has an instance of the upstream regulatory motif in

order to achieve coordinated transcription. However, two genes in-

volved in the same pathway are often divergently transcribed from the

same intergenic region and share an upstream regulatory site. Hence,

divergently transcribed genes can be thought of as operons in a broader

sense (Zhang and Smith, 1998).

Several of the groups constructed in this manner (Overbeek et al.,

1999; McGuire and Church, 2000) correspond to known metabolic

pathways, including the purine and arginine biosynthesis pathways in

E. coli. By aligning the upstream regions of these groups of genes with a

motif-finding algorithm, the regulatory motifs for the DNA-binding

proteins that regulate these pathways (PurR and ArgR, respectively)

can be found (McGuire et al., 2000; McGuire and Church, 2000). There-

fore, the purine and arginine biosynthesis regulons, as well as the

binding motifs for PurR and ArgR, can be found ‘‘from scratch,’’ with

no input of biological data other than the genome sequence itself. This

method will become increasingly powerful as the number of genomes

sequenced increases.

Groups Derived from Protein Fusions

Two genes found to be part of the same multidomain protein fusion

in one organism, but scattered in the genome in another organism, are

good candidates for being functionally related (Marcotte et al., 1999a,

1999b; Enright et al., 1999). Figure 6.4 shows a simple example illus-

trating this method. This method will become more powerful as the

amount of genome sequence information increases.

Figure 6.4 Illustration of the protein fusion method (Marcotte et al., 1999a, 1999b) of

predicting functionally related genes. E. coli acetate Co-A transferases a and b are pre-

dicted to interact because their human homologues are fused into a single polypeptide

chain. Boxes represent protein domains.
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Groups Based on Protein Phylogenetic Profiles

Pellegrini et al. (1999) describe a method for determining functionally

related groups of genes based on the assumption that proteins that

function together in the cell are likely to evolve in a correlated fashion.

In each species functionally linked genes (i.e., all of the proteins that

make up a certain pathway) tend to be either all preserved or all elimi-

nated. Thus, genes present in the same set of organisms and absent in

the same set of organisms are likely to be functionally linked. Pellegrini

et al. constructed groups of evolutionarily correlated genes by con-

structing a phylogenetic profile for each protein (a vector representing

whether an orthologue to this protein is present or not present in each

organism) and clustering these vectors based on their similarity. Figure

6.5 illustrates this method for predicting functional interactions be-

tween genes.

Groups Derived from Metabolic and Functional Pathways

Metabolic and functional group categories tabulated in existing data-

bases are also useful data sets for motif finding. Some examples of

such databases are KEGG (Kyoto Encyclopedia of Genes and Genomes;

Ogata et al., 1999), MIPS (Munich Information Center for Protein Se-

Figure 6.5 Predicting functionally related genes based on conserved evolution (Pelle-

grini et al., 1998). Panel (A) illustrates which of the seven E. coli proteins (P1–P7) are

found in each of three additional bacterial genomes. In panel (B), a 1 or a 0 indicates that

the protein is found or not found in this organism, respectively. The rows in panel (B)

constitute the phylogenetic profile for this protein. By grouping genes with similar phy-

logenetic profiles, we obtain functionally linked groups of genes, illustrated in panel (C).

P2 and P7 are predicted to be functionally linked, as are P3 and P6.
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quences; Heinemeyer et al., 1998), and YPD (yeast protein database;

Hodges et al., 1999). Since these groups are based on a compilation of

experimental data in these organisms, the motifs found within these

groups are biased toward known motifs. However, new motifs have

also been found in the upstream regions of these groups. Hughes et al.

(2000) used the MIPS and YPD groups to search for motifs in S. cer-

evisiae, and McGuire et al. (2000) used the KEGG groups to search for

motifs in 17 complete prokaryotic genomes.

Groups Derived from Homologues to Footprinted Regulons in

Other Species

Groups based on known regulons in other organisms, such as ortho-

logues to the E. coli genes known to be regulated by 55 DNA-binding

proteins (http://arep.med.harvard.edu/ecoli_matrices/;
Robison et al., 1998), can also be used to search for upstream regulatory

motifs. Such methods have been used to identify known regulatory

motifs that are conserved in other organisms, as well as different motifs

that could regulate orthologous sets of genes in different organisms

(McGuire et al., 2000).

Combining Several Methods

Information obtained from a combination of the above methods can be

used to obtain better predicted regulons. For example, McGuire and

Church (2000) combined the three methods described above that rely

only on information derived from comparative genomics (methods

based on conserved operons, protein fusions, and phylogenetic pro-

files) to predict regulons in 24 complete genomes. These regulons were

then used to search for new regulatory motifs.

MOTIF-FINDING ALGORITHMS

Once a group of genes believed to be coregulated (a predicted regulon)

has been obtained by one of the methods described above, DNA regu-

latory motifs can be discovered by local alignment of the upstream

regions of this set of genes (Roth et al., 1998). Several different algo-

rithms have been used for motif discovery within DNA sequences. Only
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a sampling of the large number of motif-finding algorithms available

will be mentioned here.

The Gibbs sampling algorithm is based on the statistical method of

iterative sampling (Liu et al., 1995; Lawrence et al., 1993). This algo-

rithm has been optimized for use with DNA sequence alignments

in the program AlignACE (Roth et al., 1998; http://atlas.med.
harvard.edu). The AlignACE algorithm, along with applications of
AlignACE in bacterial genomes and in S. cerevisiae, will be discussed in

more detail below.

MEME (Multiple EM for Motif Elicitation) is a motif-finding algo-

rithm that uses an expectation maximization algorithm to locate one or

more repeated patterns in the input sequence (Bailey and Elkan, 1995;

Grundy et al., 1996; http://meme.sdsc.edu/meme/website/).
MEME searches by building statistical models of motifs (matrices of

discrete probability distributions) and maximizing the posterior proba-

bility of these models, given the data. MACAW (Multiple Alignment

Construction and Analysis Workbench) is a motif-finding algorithm

that allows the user to construct multiple alignments by locating, ana-

lyzing, editing, and combining blocks of aligned sequence segments

(Schuler et al., 1991). Several methods based on detection of over-

represented oligonucleotide frequencies have been proposed, including

a method by van Helden et al. (1998; http://embnet.cifn.unam.
mx/@jvanheld/rsa-tools). This simple and fast motif-finding

method defines the statistical significance of a site based on tables

of oligonucleotide frequencies in noncoding regions. However, this

method is limited to short, highly conserved motifs.

AlignACE Algorithm

For clarity in describing the Gibbs sampling algorithm used in Align-

ACE, we will present the simple case of searching for a single pattern of

fixed width W within each of N input sequences (S1 . . . SN). However,

the AlignACE algorithm allows for automatic detection of variable

pattern widths as well as multiple motif instances per input sequence.

The pattern is described by a probabilistic model of residue frequencies

at each position, qij, where i ranges from 1 to W and j ranges from 1 to 4

(A;C;T, and G). We also consider the background frequencies for each

base, pj, where j ranges from 1 to 4. The pij are different for each or-
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ganism. The start site for the motif within each input sequence is des-

ignated by a set of positions ak, where k ranges from 1 to N. To choose

the best pattern, the algorithm must choose values of ak that maximize

the ratio of the pattern probability to the background probability.

The first step is to choose random start positions (ak). The next step

(the predictive update step) is to choose one of the N sequences at ran-

dom (z), and calculate the qij for the current positions, excluding z. The

qij are calculated using the equation

qij ¼
cij þ bj

N � 1þ B
; ð6:1Þ

where cij is the count of nucleotide j at position i, bj is a residue-

dependent ‘‘pseudocount’’ suggested by Bayesian statistical analysis for

the purpose of pattern estimation, and B is the sum of the Bj.

The next step (the sampling step) is to consider every possible seg-

ment x of length W within z, and to calculate the probability Qx of

generating each such segment x according to the current pattern prob-

abilities qij, and the probability Px of generating each segment accord-

ing to the background probabilities pj. A weight equal to Ax ¼ Qx=Px is

assigned to segment x, and with each segment so weighted, a random

position is selected. This new position becomes the new value for az,

and the algorithm is iterated. The most probable alignment is the one

that maximizes the equation

F ¼
XW

i¼1

X4
j¼1

cij log
qij

pj
; ð6:2Þ

where cij is the count of nucleotide j at position i. As the pattern

description calculated in the predictive update step becomes more ac-

curate, the determination of the location in the sampling step also

becomes more accurate.

Several optimizations of the Gibbs sampler algorithm were added in

the AlignACE program for use in finding DNA motifs (Roth et al.,

1998; Hughes et al., 2000): both strands of DNA are now considered;

the near-optimum sampling method was improved in order to obtain

higher scoring alignments; simultaneous multiple motif searching was

replaced with an iterative masking approach; and the model for base

background frequencies was set to equal the background nucleotide

frequencies in the genome being considered.
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INDICES FOR EVALUATING THE SIGNIFICANCE OF A MOTIF

When using a motif discovery algorithm such as AlignACE, often a

large number of motifs are identified. Additional indices are necessary

to assess these motifs and identify those most likely to correspond to

specific regulatory motifs that are biologically relevant. Highly con-

served and common genomic elements, such as repetitive elements and

ribosome binding sites, are also found by AlignACE and must be sep-

arated from potential binding sites for specific transcription factors.

Several indices used in assessing newly discovered motifs are described

below.

MAP Score

The MAP score is the index used by AlignACE to determine the statis-

tical significance of alignments sampled, given the composition of the

input sequence (Liu et al., 1995). MAP scores are normalized so that the

score for an alignment of zero sites is assigned a score of 0. The MAP

score is higher for similar motifs with greater numbers of aligned sites

and for more tightly conserved motifs, and lower for an identical align-

ment of sites derived from a larger set of input sequences, motifs with

more dispersed information content, and motifs rich in nucleotides

more prevalent in the genome. The MAP score is useful for ruling out

alignments that are not statistically significant, but this score is not very

useful in discriminating real regulatory motifs from other statistically

significant motifs found by AlignACE because many nonspecific chro-

mosomal features have high MAP scores (i.e., ribosome binding sites

and repetitive elements).

Specificity Score

The specificity score is a measure of how specific a motif is for the se-

quence in which it was aligned, compared to the genome as a whole.

This is the most useful index for selecting functional motifs. Two dif-

ferent specificity score measures have been described: the specificity

score (S) is more useful for yeast and eukaryotes (Hughes et al., 2000),

while the site specificity score (Ssite) is more useful for bacterial se-

quences and genomes containing operons and multiple copies of a

motif within a single upstream region (McGuire et al., 2000). The main

difference between these two specificity scores is that S is a measure
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of how many of the top predicted ORF targets in the genome were used

to align the motif originally, whereas Ssite measures the probability

of obtaining the observed fraction of the top motif instances in the

genome within the sequence input to AlignACE.

For each motif a position-specific weight matrix is constructed and

the whole genome is searched for additional instances of the motif

(Hughes et al., 2000; McGuire et al., 2000). The Berg and von Hippel

weight matrix (Berg and von Hippel, 1987), implemented in the Scan-

ACE program (Hughes et al., 2000), is used to perform this search. To

calculate Ssite, the top 200 ScanACE hits are considered, and the number

of these sites located within the upstream regions used to align the

motif is calculated. The probability of obtaining this number of sites

within this subset of the genomic sequence by random means is calcu-

lated using the following equation (the hypergeometric distribution):

Ssite ¼
Xminðs1; s2Þ

i¼x

s1

i

� �
N � s1

s2 � i

� �

N

s2

� � : ð6:3Þ

N is the total number of possible sites (equal to the number of base

pairs in the genome), s1 is the number of ScanACE hits considered

(200), s2 is the total number of possible sites in the set of upstream

regions used to align the motif (equal to the number of base pairs in the

sequence input to AlignACE), and i is the intersection of s1 and s2. To

calculate S, the 100 ORFs that are the most likely targets for the factor

binding the motif are selected (the ORFs with the strongest sites in the

region between �100 and 500 bp upstream of the translational start).

This list of gene targets is compared against the list of genes in the

group used to find the motif, using the same equation as above; how-

ever, now N is the total number of ORFs in the genome, s1 and s2 are

the numbers of ORFs in the group used to find the motif and in the list

of target genes, respectively, and x is the number of ORFs in the inter-

section of the two lists.

Positional Bias

This is a measure of bias in the locations of the top ScanACE hits in the

genome relative to the start codon of the closest gene. The subset of the

top 200 ScanACE hits that fall within a certain distance s of the start

codon (300 bp for bacteria and 600 bp for S. cerevisiae) are considered. A
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smaller window w (30 bp for bacteria and 50 bp for S. cerevisiae) is then

chosen such that it contains the maximum number of hits within s. The

probability of seeing the observed number of sites or greater in a win-

dow of size w, out of a sample space of size s, is calculated as follows

(Hughes et al., 2000):

P ¼
Xt

i¼m

s1

i

� �
w

s

� �i

1� w

s

� �t�i

ð6:4Þ

Similarities Between Motifs

The CompareACE program (Hughes et al., 2000), used to compare two

motifs by finding the best alignment, calculates the Pearson correlation

between position-specific scoring matrices (Pietrokovski, 1996). Two

motifs with a CompareACE score greater than 0.7 are considered

similar (Hughes et al., 2000; McGuire et al., 2000). New motifs can be

compared against databases of known motifs using CompareACE,

including a database of footprinted E. coli motifs (Robison et al., 1998).

CompareACE scores can also be used as a metric to cluster motifs.

After calculating a matrix of pairwise CompareACE scores, motifs can

be clustered using a simple joining algorithm (Hartigan, 1975). Often

when a large set of motifs is analyzed, multiple instances of similar

motifs will be present, and clustering will reduce the set of motifs to

unique clusters.

Palindromicity

Many known bacterial motifs are palindromic. To identify palindromic

motifs, the CompareACE program can be used to compare a motif and

its reverse complement. The same CompareACE cutoff score as for com-

paring motifs to one other (0.7) has been used (McGuire et al., 2000).

ALIGNACE APPLICATIONS

Applications of AlignACE in Complete Bacterial Genomes

AlignACE has been applied to several kinds of potentially coregulated

groups of genes in prokaryotic genomes. McGuire et al. (2000) used

groups derived from conserved operons in the WIT database, groups
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derived from metabolic pathways in the KEGG database, and groups

derived from homologues in other species to members of known E. coli

regulons (Robison et al., 1998) to search for regulatory motifs in 17

prokaryotic genomes. Specific, new motifs were found using each

grouping method and in each organism. McGuire and Church (2000)

combined and compared three techniques for predicting functional

interactions based on comparative genomics (methods based on con-

served operons, protein fusions, and correlated evolution) in order to

construct predicted regulons in 22 complete prokaryotic genomes.

These predicted regulons were then used to find a large number of new

motifs using AlignACE.

Identifying motifs in bacterial genomes is complicated by the pres-

ence of operons. It is difficult to locate the regulatory region for a gene

within an operon. If the gene of interest lies within an operon, its pro-

moter could lie several genes upstream. Thus, we must include several

possible intergenic regions to ensure that we have included the seg-

ment containing the regulatory region (McGuire et al., 2000). This is

possible in bacteria because regulatory regions are shorter; hence, we

can include several intergenic regions without adding so much extra

sequence that the motif-finding algorithm will no longer be able to

align the regulatory motif.

An additional problem associated with motif finding in bacteria is

that there are fewer instances of most regulatory motifs because there is

usually only one instance per operon instead of one instance per gene.

Motif conservation can used to aid in finding new motifs by group-

ing upstream regions from closely related bacteria, thus increasing

the number of instances of each motif in the sequence to be aligned

(McGuire et al., 2000).

The effectiveness of AlignACE in finding known E. coli motifs was

analyzed. Of the 32 E. coli footprinted regulons in our database with 5–

100 known binding sites (Robison et al., 1998), 26 have motifs that can

be found by AlignACE (81%). The groups obtained from homologues

in other species to members of known E. coli regulons were used to

study conservation of E. coli DNA motifs in other organisms, as well as

to identify potential new mechanisms for regulating the same cellular

process in more distantly related organisms. At least 30% of the known

E. coli DNA regulatory motifs were found to be conserved in closely

related bacteria. A new motif can indicate either a different mechanism

for regulating a similar cellular process or divergence of binding site

residues in a conserved DNA-binding protein.
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Applications of AlignACE in Saccharomyces cerevisiae

AlignACE has been used for motif finding in S. cerevisiae with mRNA

expression data (Roth et al., 1998; Tavazoie et al., 1999), as well as with

functional group categories (Hughes et al., 2000). Selecting upstream

regions is more straightforward in yeast because there are no operons.

Because intergenic regions are longer in yeast, and regulatory elements

are often found farther upstream than in bacteria, longer stretches of

noncoding sequence have been used for motif finding (up to 600 bp).

Roth et al. (1998) first used AlignACE to find motifs, employing reg-

ulons derived from experiments employing Affymetrix GeneChips in

the following three systems: galactose utilization, mating type, and

heat shock response. By aligning the groups of genes with the largest

fold changes in these conditions, using AlignACE, they were able to

find the binding sites for many of the factors known to be involved in

these processes.

Tavazoie et al. (1999) looked at a time series of mRNA abundance

data measured over two synchronized S. cerevisiae cell cycles. These

data were used to group 3000 yeast genes into 30 clusters with similar

temporal expression profiles. These groups were highly enriched with

genes involved in the same cellular processes. By aligning the genes

making up these clusters with AlignACE, they were able to find many

known motifs as well as several new ones.

Hughes et al. (2000) used AlignACE to search for motifs upstream

of the genes making up the MIPS and YPD (yeast protein database)

functional groups. Many known and new motifs were found in this

analysis, including a new motif found upstream of genes involved in

proteasome formation. This motif has been independently identified as

the binding site for Rpn4 in Church’s lab as well as by Mannhaupt et al.

(1999). Several other potentially functional new S. cerevisiae motifs are

being experimentally tested.

CONCLUSIONS

The use of motif-finding algorithms to discover new regulatory motifs

is a powerful method for understanding the interconnections in genetic

regulatory networks. Groups of genes (predicted regulons) obtained

from mRNA expression data can be extremely powerful in this regard,

though such groups of genes have the drawback that they are depen-
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dent on the experimental conditions chosen. These groups can be com-

plemented by theoretically obtained predicted regulons that are less

dependent on the experimental conditions chosen. The presence of a

significant regulatory motif shared by the members of a predicted reg-

ulon provides additional evidence that this group of genes is actually

coregulated.

The motif-finding program AlignACE has been used successfully

to predict new motifs in S. cerevisiae, as well as in over 20 complete

bacterial genomes. A new motif discovered by AlignACE upstream of

proteasome subunits in S. cerevisiae has been confirmed experimentally,

and numerous other new motifs should be verified as well. AlignACE

has also been used to analyze conservation and divergence of regula-

tory mechanisms between microbial genomes.

The methods that we have described here for predicting regulons

and their cis-regulatory motifs will become increasingly powerful as

the size of the sequence database and the number of complete genomes

grows. The discovery of DNA regulatory motifs will be facilitated

by having complete genomes for a greater number of closely related

organisms, since sequences from closely related organisms can be

pooled to find conserved motifs that are found in only a few copies in

each genome. In addition, regulon-prediction methods based on com-

parative genomics (including the methods described here that involve

conserved operons, protein fusions, and phylogenetic profiles) will

yield more information about each organism as more complete and

partial genome sequences become available. Several complete genomes

have recently been made available, including Drosophila, C. elegans, and

several human chromosomes. As many as 50 additional bacterial

genomes could become available by 2002, along with the human

genome sequence. The framework described here for predicting reg-

ulons and their cis-regulatory motifs will soon become increasingly

powerful.
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Church lab web page. http://arep.med.harvard.edu

Course Web page for IBSS.

http://arep.med.harvard.edu/labgc/amcguire/IBSS/index.html

Motif Discovery Software
GibbsDNA (another Gibbs sampling program available on the Web).

http://argon.cshl.org/ioschikz/gibbsDNA/

Home page for AlignACE; AlignACE and accessory programs can be downloaded here.

http://atlas.med.harvard.edu/

MEME (Multiple EM for Motif Elicitation).

http://meme.sdsc.edu/meme/website/
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PRATT program for pattern discovery.

http://www.ii.uib.no/@inge/Pratt.html

Regulatory sequence analysis tools at UNAM.

http://copan.cifn.unam.mx/@jvanheld/rsa-tools/

Regulon Prediction
DNA binding-site matrices for 59 known E. coli DNA regulatory motifs.

http://arep.med.harvard.edu/ecoli_matrices/

ExpressDB RNA expression database.

http://arep.med.harvard.edu/cgi-bin/ExpressDByeast/EXDStart

KEGG (Kyoto Encyclopedia of Genes and Genomes) database (metabolic pathways and

functionally related groups of genes). http://star.scl.genome.ad.jp/kegg/

WIT (What Is There?) database (contains database of conserved operons).

http://wit.mcs.anl.gov/WIT2/

Yeast protein function assignment, using phylogenetic profiles and domain fusions.

http://www.doe-mbi.ucla.edu/people/marcotte/yeast.html
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7 Gene Networks Description and Modeling
in the GeneNet System

Nikolay A. Kolchanov, Elena A. Ananko, Vitali A.

Likhoshvai, Olga A. Podkolodnaya, Elena V.

Ignatieva, Alexander V. Ratushny, and Yuri G.

Matushkin

The molecular genetic systems that control the processes occurring in

organisms on the basis of the hereditary information contained in their

genomes are called gene networks.

Numerous biological, biochemical, and physiological molecular pro-

cesses occur simultaneously in humans, animals, and plants, as well as

in prokaryotes, eukaryotes, and archaea. Cells divide and differentiate,

tissues and organs are formed. Organisms enter into complex inter-

actions with the environment while consuming matter, energy, and in-

formation flows during their growth, development, and reproduction.

All of these diverse processes are regulated genetically. Gene networks,

with groups of genes functioning in concert as their central elements,

are the backbone of this regulation.

Theoretical studies of gene networks commenced in the 1960s. They

considered general organization patterns of molecular genetic systems

controlling functions of prokaryotes (Ratner, 1966) and described the

dynamics of gene networks within the simplest logic schemes (Kauff-

man, 1969; Sugita, 1961). Further studies involved approaches based on

differential equations (Thomas, 1973; Savageau, 1985; Bazhan et al.,

1995; Belova et al., 1995; Likhoshvai et al., 2000) and stochastic models

(McAdams and Arkin, 1997). Numerous methods for mathematical

simulation have been developed, including (1) Boolean networks (San-

chez et al., 1997) allowing gene networks to be reconstructed from

experimental data (Wahde and Hertz, 2000); (2) the logical approach

(Thieffry and Thomas, 1995; Sanchez et al., 1997); (3) Petri nets (Hofes-

tadt and Meineke, 1995); and (4) threshold models (Tchuraev, 1991).

However, insufficient experimental data limited the development of

the theory of gene networks until the mid-1980s. During the 1990s, the



appearance of efficient methods for studying molecular mechanisms

that regulate gene expression and successful research in structural-

functional organizations of various genomes triggered an explosive ac-

cumulation of experimental data on functions of gene networks. This

accumulation led to a wide diversity of databases on various features

of the gene network functions, genetic regulation of metabolic pro-

cesses, morphogenesis, development, and so on. It was a powerful

stimulus for developing both new and earlier methods, approaches,

and algorithms designed to detect functional regularities of biological

systems at all levels of organization.

The search for regularities based on contextual analysis of nucleotide

sequences is considered by McGuire and Church in chapter 6 of this

volume. In chapter 8 of this volume, Huang introduces the application

of logical approaches to the development of multicellular organisms. In

this chapter we consider the problems connected with regularities of

gene network function and point out two aspects of the question: (1)

developing methods for storing and preserving the information accu-

mulated both in experiments and by means of numeric analysis of

mathematical models; (2) working out the methods of compiling and

analyzing mathematical models of gene network functioning.

The databases listed here and many other databases are an impor-

tant source of information for both the experimental study and the

computer analysis of gene networks, genetically controlled metabolic

processes, physiological systems, and other items. The role and signifi-

cance of such databases will grow with the amount of experimental

information on functions of gene networks and genetically controlled

systems and processes. Consequently development of efficient tech-

nologies for accumulating this information in computer databases is of

the utmost importance.

Detailed here is the technology we have developed for computer-

assisted description of gene networks and the database GeneNet, con-

structed using this technology. Analysis of a variety of actual gene

networks (Ananko et al., 1997; Ignatieva et al., 1997; Podkolodnaya and

Stepanenko, 1997; Merkulova et al., 1997) suggested us two impor-

tant methodological principles for development of the technology in

question:

1. The function of any gene network in either a unicellular or a multi-

cellular organism involves a limited set of elementary structures and
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events of their interactions at different hierarchical levels of organiza-

tion (genes, cell nucleus, cytoplasm, nuclear membrane, intercellular

space, tissue, or organ). The specific combination of elementary units and

events generates a tremendous diversity of gene networks with typical

patterns of structural-functional organization and functional modes.

2. In any genetically controlled organism system, it is impossible to

separate in a pure form the genetic component itself (i.e., the compo-

nent that performs the control) and the controlled component (which

provides for a particular biochemical, physiological, or other elemen-

tary function). This means that description of a gene network implies

simultaneous consideration of these components.

This chapter details the technology of gene network description; the

GeneNet database (http://wwwmgs.bionet.nsc.ru/systems/
mgl/genenet/), created using this technology and containing the in-
formation on more than 20 gene networks of multicellular organisms;

and basic principles of the gene network organization and functions.

We also describe mathematical simulation of biological systems and

illustrate the method used by particular models of gene network

dynamics.

TECHNOLOGY FOR DESCRIBING GENE NETWORKS

Object-Oriented Approach

In the object-oriented approach (Schweigert et al., 1995) the compo-

nents of gene networks in the GeneNet database are divided into ele-

mentary structures (entities) and elementary events (relationships

between the entities). The hierarchy of GeneNet object classes is shown

in figure 7.1.

Elementary Structures We consider the following elementary struc-

tures to be significant for the function of gene networks: gene, RNA,

protein, and nonproteinaceous substance (figure 7.1). This list can be

extended, if necessary, with other elementary structures.

Each object class is described in a separate table, using a specialized

data representation format that takes into account the peculiarities of

each class. The database contains the following tables: GENE, RNA,

PROTEIN, and SUBSTANCE.
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Elementary Events In the GeneNet database we consider two types of

elementary events: reaction and regulatory event (figure 7.1).

Chemical notation is the basis for describing the elementary events.

Thus, any event is described as follows:

C1; . . . ;Ck

#
A1 þ � � �An ) B1 þ � � �Bm;
where A’s are the elementary entities in the interaction; C’s are the

entities modulating this interaction; and B’s are the products of the in-

teraction. Based on this model, we consider two types of interactions

between gene network components:

1. Reaction, the interaction between entities that leads to generation of

a new entity (assembly or disassembly of a multimeric complex, ex-

pression of a protein, secretion of certain substances, protein mod-

ifications, etc.). In some cases such a reaction corresponds to a single

biochemical reaction (e.g., protein phosphorylation), while in other

cases it corresponds to a series (cascade) of successive biochemical

reactions (e.g., expression of a protein). Interactions of the former type

are designated in the GeneNet database as direct reactions; of the latter

type, as indirect reactions.

2. Regulatory event, the effect of an entity (it may be a catalyst or an

inhibitor) on a certain reaction. Regulatory events of four types are

Figure 7.1 Class hierarchy in the GeneNet database.
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distinguished, depending on their effect on the reaction: switching on,

switching off, positive effect, and negative effect. Regulatory events

described in the GeneNet database are induction of gene expression,

repression of gene expression, activation of signal transduction path-

way by effector molecules, enzymatic catalysis etc.

Levels of Gene Network Representation

The GeneNet system allows the fact that gene network components

may be distributed in various organs, tissues, cells, and cell compart-

ments to be taken into account. As a first approximation, three main

hierarchical levels (organism, cell, and gene) are considered in the de-

scription of the gene network.

Organism Level The entities described at this level are organs, tis-

sues, particular types of cells, and secreted proteins and substances

affecting other organs, tissues, and cells. The description at this level

enables the spatial order of gene network components in the organism

to be considered.

Cell Level The entities described at this level are cell compartments

(for example, cytoplasm, nucleus, and mitochondria), proteins, RNAs,

genes, and substances (e.g., steroids, lipids, energy-stored mole-

cules, metabolites). The description at this level enables distribution of

the gene network components throughout cell compartments to be

considered.

Gene Level Regulation of gene expression is described in detail at

this level employing the information from the TRRD database (Kolcha-

nov et al., 2000).

FORMAT FOR DESCRIBING ELEMENTARY STRUCTURES AND

ELEMENTARY EVENTS

Elementary Structures

The elementary structures essential for the function of gene networks in

the GeneNet database are described in the tables GENE, PROTEIN,
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RNA, and SUBSTANCE. The data format used for describing the ele-

mentary structures involves several information fields.

For example, the entry shown in figure 7.2 indicates that chicken

protein GATA1-p is a transcription factor (NM) that is phosphorylated

(MD); exists in an active state (FN); has a synonymous name NF-E1

(SY); is described in databases TFFACTOR, SWISS-PROT, EMBL, and

PIR (DR); and is isolated from erythroid progenitor cells (SO); and the

information stored was obtained from a paper by K. Briegel et al. (1996)

(RF).

Elementary Events

Two types of interactions are considered when describing the gene

networks in the GeneNet database: reactions and regulatory events (see

above). In the GeneNet database, elementary events are described in

the table RELATION.

Figure 7.2 Description of the elementary structure in the table PROTEIN of GeneNet

database, exemplified by GATA1 transcription factor, which is essential for the function

of the gene network of erythrocyte differentiation and maturation.
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Reactions The data format used for describing reactions involves

several information fields.

Description of a reaction within the gene network of lipid metabo-

lism, shown in figure 7.3a, includes transformation of transcription

factor preSREBP1 into active transcription factor SREBP1, the key reg-

ulator of this gene network. The record means that the human protein

preSREBP1 transforms into human protein SREBP1, the reaction takes

place in the cytoplasm (ID), and the interaction described is direct (EF).

As is described below, this reaction requires sterol-regulated protease

(SRP). The activity of this protease decreases with the increase in cell

cholesterol level, thus closing the negative feedback circuit controlling

the cholesterol level in the cell.

Description of a regulatory event significant for the function of the

gene network of lipid metabolism (i.e. inhibition of SRP by cholesterol)

is shown in figure 7.3b. The SRP protease provides for activation

of the inert transcription factor preSREBP1 into the operative SREBP1.

The record shown means that cholesterol inhibits (AT) the reaction

Figure 7.3 Description of relationships in the GeneNet database. (a) reaction—transfor-

mation of the inactive precursor transcription factor preSREBP1 into the mature factor

SREBP1; (b) regulatory event: inhibition of SRP protease activity by cholesterol (gene

network of lipid metabolism).
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transforming preSREBP1 into active SREBP1, which requires SRP (ID).

The reaction takes place in the cytoplasm and is described as indirect

(EF).

DATA INPUT AND VISUALIZATION OF GENE NETWORK

STRUCTURE

Since the language described is rather complex, the user deals only

with a specially developed graphic interface (GeneNet Data Input GUI)

that generates and interprets the code of the language (Kolpakov and

Ananko, 1999).

With the help of this program, the user can input the data into the

GeneNet database, operating with concepts of molecular biology asso-

ciated with the expression of genes. The input interface automatically

translates the input information into a standard GeneNet format,

examples of which were considered above.

A specialized JAVA program, GeneNet Viewer, processes the for-

malized data accumulated in the GeneNet database and presents it to

the user as a graphic diagram (Kolpakov et al., 1998). The Viewer

allows the GeneNet database to be explored and visualized through the

Internet and includes tools for automated generation of gene network

diagrams, a system of filters, tools for data navigation, on-line help,

interactive cross-references within the GeneNet database, and refer-

ences to other databases (figure 7.4). A standard set of images corre-

sponding to elementary structures and events is used for gene network

visualization. Figure 7.5 demonstrates standard GeneNet graphical

representation of the elementary structures and events, some of which

(figure 7.5c,d) are described in figure 7.3.

TYPICAL EXAMPLES OF GENE NETWORKS DESCRIBED IN THE

GENENET DATABASE

Analysis of the information contained in the GeneNet database and the

available literature suggests several basic types of gene networks.

1. Gene networks controlling cyclic processes, such as the cell cycle

and the cycle of heart muscle contraction

2. Gene networks underlying cell growth and differentiation, morpho-

genesis of tissues and organs, growth and development of the organism
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Figure 7.4 GeneNet Viewer and hypertext navigation: visualization of the gene network

of lipid metabolism. Inner circle, nucleus; outer circle, cytoplasm enclosed by cell mem-

brane; black rectangles, genes; and small gray circles, protein molecules. Black squares

indicate nonproteinaceous compounds of the cholesterol biosynthesis pathway. (a) Gene

network of lipid metabolism. (b) Text window with the human LDLR gene description

from the GeneNet database. (c) Zooming of the diagram. Elementary structures (genes,

proteins, and metabolites) involved in the regulation of this gene network according to

the negative feedback mechanism (cholesterol, proteins preSREBP1, SREBP1, SRP, LDRL,

and gene LDLR) are framed. (d) Hypertext reference to the TRRD database.



3. Gene networks maintaining homeostases of biochemical and physi-

ological parameters of the organism

4. Gene networks providing for responses of the organism to changes

in the environment (e.g., stress response).

We will now consider certain typical patterns of gene networks.

Gene Networks Maintaining Homeostasis of the Organism

Negative feedback regulation plays an important role in the operation

of gene networks, providing for maintenance of a parameter within a

certain range around its optimal level (figure 7.6a). An example is the

gene network regulating intracellular cholesterol concentration (figure

Figure 7.5 Graphical representation of elementary structures and events essential for the

gene network function. (a) The GATA1 gene expression resulting in the emergence of

the inactive precursor of the transcription factor GATA1inact in the cytoplasm. (b)

Autoactivation of GATA-1 gene transcription by factor GATA1 encoded by this gene

(gene network of erythrocyte differentiation and maturation). (c) Transformation of the

transcription factor preSREBP1 inactive precursor into the mature factor SREBP1. (d) In-

hibition of SRP protease activity by cholesterol (gene network of lipid metabolism).
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7.4a). Cholesterol synthesis is implemented with the involvement of

mevalonate pathway enzymes (Ericsson et al., 1996). Increased tran-

scription of the genes coding for these enzymes raises the intracellular

cholesterol concentration.

The key regulators of this pathway are transcription factors of the

SREBP subfamily. They activate the transcription of a cassette of genes

coding for many enzymes of the mevalonate pathway, since regulatory

regions of all these genes contain binding sites for these factors.

SREBP1 is formed through proteolytic cleavage of its inactive pre-

cursor (preSREBP1), with a molecular weight of 125 kDa, performed by

a sterol-regulated protease, resulting in the active factor, with a molec-

ular weight of 68 kDa (Wang et al., 1995).

Figure 7.6 Two basic types of regulatory circuits in the gene networks. (a) Negative

feedback. (b) Positive feedback.
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An increase in cholesterol level suppresses SRP activity, slowing the

transition of preSREBP1 into the active form and decreasing the level of

active SREBP1 and the transcriptional activities of the genes of the

mevalonate pathway. In turn, decreases in the levels of the mevalonate

pathway enzymes reduce the rate of cholesterol synthesis, thus nor-

malizing its level in the cell.

The intensity of cholesterol transport across the cell membrane from

the intercellular space plays an important role in the maintenance of the

intracellular level of cholesterol. The transport involves low-density

lipoprotein receptor (LDLR). At a decreased cholesterol concentration,

the concentration of active SREBP1 is increased, activating transcription

of the gene encoding LDLR (Lloyd and Thompson, 1995). With an

increased intracellular cholesterol level, the activities of sterol-regulated

proteases, and therefore the concentration of active SREBP, decrease.

This in turn decreases the transcription activity of the LDLR gene and

cholesterol transport into the cell (figure 7.4a, c).

A characteristic feature of the gene network being considered is its

activation by the decrease in the level of the parameter it adjusts (cho-

lesterol concentration), and its halting when the level of this parameter

exceeds the optimal value. Such mechanisms are present in virtually all

the homeostatic gene networks (e.g., gene networks controlling the

thyroid system and physiological redox homeostasis, which are also

described in the GeneNet database).

Gene Networks Controlling Irreversible Processes

Cell differentiation, the morphogenesis of tissues and organs, and the

growth and development of organisms are examples of gene network-

controlled irreversible processes. Typically the gene networks control-

ling irreversible processes (1) are triggered by an external signal and (2)

contain positive feedback circuits, which essentially boost the external

signal and thereby trigger the irreversible processes of the gene net-

work function. Such circuits provide for the maximal effective devia-

tion of a parameter from its current value (figure 7.6b).

An example of the gene network providing for differentiation and

maturation of erythrocytes is shown in figure 7.7. The key external

regulator of this gene network is erythropoietin (EPO). Binding of

erythropoietin to the membrane receptor (EPOR) results in dimeriza-

tion of the latter (Elliott et al., 1996), triggering the signal transduction
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Figure 7.7 Gene network controlling erythrocyte differentiation and maturation. Desig-

nations as in figure 7.5; black squares indicate initial, intermediate, and final compounds

of the heme biosynthesis pathway. Elementary structures (genes and proteins) activating

this gene network through positive feedback mechanisms (EPO, protein complex EPO/

EPOR, transcription factor GATA1-p, and genes GATA-1 and EpoR) are framed.
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pathway implemented by cell protein kinases. As a result, certain tran-

scription factors are phosphorylated, transferred to the nucleus, and

acetylated (Boyes et al., 1998; Zhang et al., 1998). They activate tran-

scription of several genes, including the gene coding for transcription

factor GATA1 (figure 7.7) (Dalyot et al., 1993).

Transcription factor GATA1 is the key regulator of erythrocyte dif-

ferentiation and maturation. The presence of GATA1 binding sites in

regulatory regions of virtually all the genes constituting this gene net-

work underlies its key regulatory role.

The transcription factor GATA1 provides two positive feedback cir-

cuits that boost the initial differentiation signal received by the eryth-

ropoietin receptor through its interaction with erythropoietin, and

conveyed to the cell nucleus by the signal transduction pathway.

The first circuit functions as follows. Expression of the gene GATA1

results in the appearance of the inactive transcription factor precursor

GATA1inact in the cytoplasm (figure 7.5a). This precursor enters the

cell nucleus and acts there in a phosphorylated form (GATA1-p) with

its binding site in the promoter of the GATA1 gene. The presence of

GATA1 binding sites in the promoter of its own gene results in a rapid

self-enhancement of its transcription (figure 7.5b) according to the posi-

tive feedback mechanism (Tsai et al., 1991). This positive feedback is

very efficient and rapid because no other mediator genes are involved

in its function.

The second positive feedback circuit, enhancing the GATA1 gene

transcription, functions in the following way. The GATA1 binding site

is present in the promoter of the erythropoietin receptor (EPOR) gene

(Chin et al., 1995). Transcription activation of this gene increases the

number of erythropoietin receptor molecules on the cell membrane

and, correspondingly, the intensity of signal transduction from eryth-

ropoietin via its receptor to the gene GATA1. Thus, this positive feed-

back circuit is closed, providing for additional self-enhancement of the

GATA1 gene transcription.

When this positive feedback brings the level of transcription factor

GATA1-p to a threshold value, transcription of a cassette of genes is

activated simultaneously. This cassette includes genes coding for (1) a-

and b-subunits of hemoglobin (BG and AG in figure 7.7) (Gourdon et

al., 1992; Jackson et al., 1995) and (2) heme biosynthesis enzymes

(ALAS-E, ALAD, PBGD, URO-S, CPO, and FCH in figure 7.7) (Surinya
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et al., 1997; Kaya et al., 1994; Mignotte et al., 1989; Tanabe et al., 1997;

Tugores et al., 1994). Transcription of the cassette of genes encoding cell

surface antigens (GPD, GPB, and GPC) is also activated (Gregory et al.,

1996; Colin et al., 1990; Iwamoto et al., 1996). Finally, transcription of

the cassette of genes encoding transcription factors (HOXB2, TAL1, and

EKLF in figure 7.7), particularly important for switching to differentia-

tion, is activated (Lecointe et al., 1994; Vieille-Grosjean and Huber,

1995; Crossley et al., 1994). These factors provide for an additional

stimulation of erythroid-specific genes. In this way a cascade of pro-

cesses ensuring the terminal differentiation and maturation of the

erythrocyte is triggered.

The cassette-like activation of genes, positive regulatory effects, and

the key activators are observed in virtually all the gene networks

described in the GeneNet database that trigger irreversible processes in

the organism.

MATHEMATICAL SIMULATION OF GENE NETWORK

FUNCTIONAL DYNAMICS

Before considering the main body of results, some introductory

remarks on specifics of the objects simulated are necessary because they

essentially determined our selection of the simulation tools.

First, even the simplest gene networks comprise dozens of physical

components and interactions between them. Typically, gene networks

are composed of hundreds of elements and more. Structural-functional

organizations of many gene networks have been clarified in sufficient

detail. Of the utmost importance is the fact that, despite their great di-

versity, the structural-functional organization of gene networks permits

them to be directly and graphically represented by means of chemical

kinetic description of elementary events constituting the gene network

function.

Second, gene networks as actual objects exist simultaneously in a

variety of different physical (material) forms due to such natural phe-

nomena as gene polyallelism, genetic rearrangements, and performance

of similar functions in different organisms. The more complex a gene

network is, the wider the permissible diversity range of its variants.

The number of variants is increased considerably by construction of

artificial systems (such as expression vectors). In addition, gene net-

works themselves are elements of more complex biological systems.
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Thus, the methods used for formalization should allow not only

analysis of the initial gene networks and their minor modifications

(mutations), but also calculation of the dynamics of virtually any

genetic variants constructed from them. In other words, any model

of a gene network should potentially contain models of many gene

networks, including those drastically different from the initial one. A

generalized chemical kinetic method, developed earlier and already

applied to simulation of various gene networks (Bazhan et al., 1995;

Belova et al., 1995; Likhoshvai et al., 2000), meets all these require-

ments. This method provides a precise and effective simulation of the

gene network performance patterns because its computer realization

adequately reflects the basic properties of biological systems.

BRIEF DESCRIPTION OF GENERALIZED CHEMICAL KINETIC

SIMULATION METHOD

The generalized chemical kinetic simulation method is oriented to a

formalized, primarily portrait, description of the performance patterns

of arbitrary biological systems. Formalization is performed according

to a block principle: a simulated system is divided into elementary

subsystems in order to describe each subsystem individually. Ele-

mentary subsystems are described in terms of formal blocks. A formal

block is uniquely characterized by an ordered list of formal dynamic

variables X, an ordered list of formal parameters P, and the law of in-

formation transformation F (figure 7.8). The law of information trans-

formation F can be uninterrupted, discrete, logical, or stochastic. The

choice of elementary process description is determined by the nature of

a biological process, the task to be solved, and the preference of a

model’s author. Therefore the models worked out within the general-

ized kinetic simulation method are generally hybrid (i.e., they can have

uninterrupted, discrete, logical, and other blocks). The models that be-

long to the systems of common differential equations with a rational

right-hand side are an important class of models for successful

descriptions of gene network functioning. Such models appear when

elementary blocks with differential equations expressing the immediate

rate of concentration changes through immediate values of component

concentration changes (mRNA, proteins, nonproteinaceous substrates,

their complexes, etc.) in a simulated system are used as a law of infor-

mation transformation.

164 N. A. Kolchanov et al.



The chemical-kinetic approach is a methodological base for develop-

ing this class of models. The reason for its application is that biochemi-

cal reactions are the base of the processes controlled by gene networks.

Mono- and bimolecular reactions are the base of the simplest biochem-

ical reactions. The rate of changes in component concentration values in

the reactions proceeding in a perfect mixture can be described with the

systems of common and autonomous equations shown in figure 7.8,

Figure 7.8 Blocks of the Generalized Chemical Kinetic Simulation Method (GCKSM): X,

ordered list of formal variables; P, ordered list of formal parameters; and F, the law of

transformation of information.
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nos 1 and 2. It is not complicated to formulate a general system of

equations even when several mono- and bimolecular biochemical reac-

tions proceed in a medium simultaneously (figure 7.9).

It is necessary to use the rule of summing immediate velocities of the

simplest reactions: the product of changes in immediate concentration

velocities of the agent involved in several reactions is the sum of im-

mediate velocity changes of the given agent in these reactions. As can

be seen, the equation systems are quite simple when described only

with mono- and bimolecular reactions.

Velocities of concentration changes are formulated by means of

bilinear expressions from the same concentrations. In principle, two re-

action types (bi- and monomolecular) are quite sufficient to describe

arbitrary gene networks. However, such models will have a great many

variables and parameters. In addition it is necessary to conduct bio-

system decomposition on mono- and bimolecular reactions, although it

is not always justified due to the lack of knowledge about concrete

mechanisms of a particular gene network-controlled process. The nat-

ural way out of the deadlock is to consider more complicated processes

as elementary and describe the laws of their proceeding in the form of

autonomous equation systems with rational right-hand sides. The

Figure 7.9 Rule of summing immediate velocities in elementary processes.
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Michaelis-Menten equation, frequently used in approximate descrip-

tions of enzyme synthesis, is one of the most famous examples (figure

7.8, no. 3). More complicated reactions will be described with more

complicated equations. The right-hand sides can be arbitrarily rational

in a general case (figure 7.8, no. 4).

Since the rule of summing up immediate velocities does not depend

on the internal complexity of elementary processes, it does not make

the procedure of formulating a complete equation system more com-

plicated. The total of agent concentration velocity changes is still the

sum of the velocity changes in all elementary processes. It allows us

to formulate a common approach to the description of regularities in

the functioning of biological systems, particularly gene networks. The

simulated system splits into simpler parts that will be considered ele-

mentary. Further on, elementary processes will be the building blocks

used to develop the models not only of initial systems but also of their

various modifications.

A great number of other models can be developed out of elementary

processes in general, since any integration of an elementary process is a

potential model. In particular it is possible to construct the models of

practically arbitrary genetic variants of the initial network. There is no

need to construct all the models at once; each particular model is con-

structed as required. Our method in its most general realization

(Likhoshvai et al., 2000) implies the possibility of simulation not only of

trans-interactions but also of cis-interactions. The latter should be taken

into account in cases where patterns of gene network performance de-

pend not only on the functions, but also on relative location, of the

genes involved.

MATHEMATICAL MODEL OF REGULATION OF CHOLESTEROL

BIOSYNTHESIS IN THE CELL

Cholesterol, an amphiphilic lipid, is an essential structural component

of the cell membrane and the outer layer of the lipoproteins of blood

plasma. Simultaneously it is a precursor of corticosteroids, sex hor-

mones, bile acids, and vitamin D. Cholesterol is synthesized from ace-

tyl-CoA, and its major fraction in the blood plasma is in the low-

density lipoproteins (LDL). Cholesterol is removed from tissues with

involvement of high-density lipoproteins (HDL) to be transported to

the liver and transformed there into bile acids. In pathology, cholesterol
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is a factor causing atherosclerosis of vital cerebral arteries, heart mus-

cle, and other organs. A high ratio of LDL cholesterol to HDL choles-

terol in the plasma is observed in coronary atherosclerosis. This reveals

the great biomedical and applied importance of studying cholesterol

turnover in the organism.

The gene network regulating intracellular cholesterol biosynthesis

has now been studied in sufficient detail. Data on its performance pat-

terns are accumulated in the GeneNet database (http://wwwmgs.
bionet.nsc.ru/systems/mgl/genenet/). Acetyl-CoA is the

source of all the carbon atoms of the cholesterol molecule. The choles-

terol biosynthesis pathway has numerous stages and is controlled

by a variety of enzymes, including HMG-CoA reductase, farnesyl

diphosphate synthetase, and squalene synthetase. Syntheses of these

enzymes are activated by SREBP. The activity of SREBP depends, in

turn, on the intracellular cholesterol concentration in a negative feed-

back mode: the lower the concentration of metabolically active choles-

terol in the cell, the higher the SREBP activity.

We have developed a model of functional dynamics of this gene net-

work. It describes all the stages of cholesterol biosynthesis shown in

figure 7.4a as edges with adjacent nodes. In addition, the model

describes the mechanisms underlying the interchange of intracellular

and blood cholesterol. Negative feedbacks whereby cholesterol controls

its own synthesis and the synthesis of LDL receptors at the transcrip-

tion level (Wang et al., 1994) are also considered. The model fragment

that consists of three equations describing the cycle of molecules acetyl-

CoA, acetoacetyl-CoA, and HMG-CoA—three cholesterol precursors—

is presented in figure 7.10. The equations are based on considering six

processes in which they are agents. Right-hand equation members cor-

responding to one process are in braces and accompanied by indexes,

displayed as subscripts, following the right brace: 1, entry of acetyl-

CoA into the medium of the gene network functioning; 2, tiolase-cata-

lyzed synthesis of acetoacetyl-CoA from two molecules of acetyl-CoA;

3 and 4, withdrawal of acetyl-CoA and acetoacetyl-CoA from the me-

dium; 5, HMG-CoA synthase (HMGCS)-catalyzed synthesis of HMG-

CoA from acetoacetyl-CoA and acetyl-CoA; 6, HMG reductase

(HMGR)-catalyzed synthesis of mevalonic acid from HMG-CoA.

In totally, the model comprises 65 elementary processes. The model

of performance dynamics of this gene network described in the Gene-

Net database contains 40 products (dynamic variables) and 93 con-

stants. Values of a number of constants were assessed using the
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relevant published data. The rest of the parameters were determined

through numerical experiments using quantitative and qualitative

characteristics known in the literature as criteria of their adequacies

(Ratushny, Ignatieva, et al., 2000). This model allows the equilibrium

state of the biosystem to be calculated. The equilibrium persists while

the environmental conditions remain constant. If they change (e.g., the

content of LDL particles in blood plasma increases twofold), the system

equilibrium is disturbed (figure 7.11). Consequently the concentration

of receptors bound to LDL increases (e) and that of receptors unbound

to LDL decreases (d). Intracellular concentrations of free cholesterol (a)

and its esters (c) increase. Unless a new intervention occurs, the nega-

tive feedbacks restore the initial state of the system: the initial choles-

terol concentration in the cell is reestablished in approximately 3 hr,

and the overall initial state of the system is restored in 10–15 hr.

MATHEMATICAL MODEL OF REGULATION OF ERYTHROCYTE

MATURATION

Hematopoietic tissue belongs to the self-renewing systems of the or-

ganism that are operated through specific regulatory and self-regula-

tory mechanisms. Maintenance of a certain number of erythroid cells is

Figure 7.10 GeneNet model fragment controlling cholesterol biosynthesis.
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one of the necessary conditions for the organism to perform its vital

functions. From this standpoint theoretical research into proliferation

and differentiation of hematopoietic tissue cells is of both basic and

applied biomedical importance.

The main stages of erythrocyte maturation are regulated by the gene

network presented in figure 7.7. The hormone erythropoietin interacts

with immature erythroid cells (erythroid stem progenitors of CFU-E

type) and stimulates their proliferation, as well as syntheses of hemo-

globin and the enzymes involved in heme biosynthesis, that is, matu-

ration and differentiation of erythroid progenitors (Podkolodnaya et al.,

2000). Low partial pressure of oxygen in venous blood (hypoxia) is an-

other stimulator of erythropoietin synthesis.

Interacting with the cell receptor, erythropoietin activates the tran-

scription factor GATA1, a key regulator of erythrocyte differentiation.

GATA1 stimulates syntheses of a- and b-globins and the enzymes of

heme biosynthesis. In addition it activates its own gene and the gene

Figure 7.11 Kinetic changes in the main components of the system regulating cholesterol

biosynthesis in the cell (a) in response to a simulated twofold increase (by 30 min) in

LDL concentration in blood (b) x axis, time (h); y axis, molecules/cell. The main

changes are the following: (d) the number of receptors unbound to LDL decreases; (e) the

number of receptors bound to LDL increases; (a) intracellular concentration of free cho-

lesterol and (c) its esters increase; (f) protease (SRP) binds free cholesterol, causing a

decrease in SPEBP-1 concentration; (g) productions of the enzymes involved in the intra-

cellular cholesterol synthesis (HMG-CoA reductase) stops; (k, i) production of LDL re-

ceptors and intermediate low-molecular-weight components (mevalonic acid, squalene)

also stops. The system returns to the initial state until new input of exogenous cholesterol;

concentration of free cholesterol in the cell restores approximately in 3 hours; complete

restoration requires about 10–15 hours.
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of the erythropoietin receptor (positive feedback). Heme, a-globin,

and b-globin form hemoglobin, the major component of the mature

erythrocyte.

This biosystem functions according to a pattern completely different

from the system described in the previous section. This gene network is

inactive until erythropoietin triggers it to start the irreversible process

of erythrocyte maturation, in which positive feedbacks are predomi-

nant. The model of this gene network performance is described as a

sequence of events occurring in the maturating cells of the erythroid

lineage. The erythropoietin-responsive progenitor cell opens the lineage

closed by the mature erythrocyte. The model comprises 119 elementary

processes, 68 products, and 178 constants. Direct experimental data

were used to specify a number of constants. The rest of the parameters

were determined through numerical experiments using quantitative

and qualitative characteristics known from the literature (Ratushny,

Podkolodnaya, et al., 2000). The model developed predicts that pro-

duction of several components of the system follows oscillatory dy-

namics (figure 7.12). This pattern results from interaction of positive

and negative feedbacks, with the former regulation mode.

Figure 7.12 Dynamics of absolute concentrations of the main components of the eryth-

roid cell differentiation system, calculated with x axis, time (h); y axis, molecules/cell. In

(c), TfRTf-transferring receptors bound to transferring. Consecution of events: at begin-

ning of erythropoietin influence on the cell, the precursor initiates the program of eryth-

roid cell differentiation; 0–50 h is the total (transit) time of the function of erythroid cell

differentiation in the gene network; at 50 h, the nucleus is lost; and 50–80 h, residual

syntheses of the system’s components in erythrocyte.
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CONCLUSIONS

A limited set of elementary structures and events underlies the func-

tions of gene networks; however, its elements combine to bring forth a

tremendous diversity of existing gene networks and variants of their

functions. Obligatory components of each gene network are (a) a group

of genes expressed in a concerted manner (core of the gene network);

(b) proteins encoded by these genes, which fulfill structural, transport,

catalytic, regulatory, and other functions; (c) pathways transducing

signals from cell membranes to cell nuclei, which provide for activation

or suppression of gene transcription in response to stimuli external to

the cell; (d) nonproteinaceous components that trigger the gene net-

work function in response to external stimuli (hormones and other sig-

nal molecules); (e) various metabolites arising during the gene network

functions (Kolpakov et al., 1998).

A characteristic feature of gene network organization is its capacity

for self-regulation by means of closed regulatory circuits with negative

and positive feedbacks (Kolchanov, 1997). These two types of regula-

tory circuits make it possible to maintain a definite functional state of

the gene network or, on the contrary, enable its transition to another

function mode under the effect of various factors, including environ-

mental ones.

The gene network functions are regulated by hierarchically organ-

ized mechanisms whose cores are the key regulatory proteins coordi-

nating the functions of the rest of the genes constituting a particular

gene network. Groups of similar target sites in gene regulatory re-

gions, capable of interacting with key regulatory proteins and there-

by providing the cassette-type activation of large gene groups, form

the molecular basis of the function of such regulatory circuits. This

cassette-type activation of transcription of large gene groups is a char-

acteristic feature of the gene networks described in the GeneNet data-

base.

The hierarchical principle of the function of a gene network in a

multicellular organism is the most important feature. Figure 7.13 qual-

itatively illustrates the hierarchy of mammalian gene networks. The

lowest level of this hierarchy corresponds to gene networks controlling

basal cell metabolism. Their functions depend on the stage of the cell

cycle and can be suppressed or activated by regulatory effects coming

from gene networks of higher levels. These effects can change the rates
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and directions of both metabolic and cell division processes. The high-

est organization levels correspond to gene networks controlling exter-

nal signal reception and mental functions.

Despite the simplicity of the classification described, it nevertheless

allows the groups of gene networks with qualitatively similar func-

tions to be detected, and their interaction and cosubordination to be

described. In this global and hierarchically organized system of gene

networks, the controlling signals are directed not only from higher

levels to lower levels, but also in the opposite direction; and the

signals may have both positive (activating) and negative (suppressing)

effects.

The extreme complexity of gene networks requires application of

mathematical simulation methods for investigating the networks’

dynamics. The resulting models will allow the dynamics of both nor-

mal gene networks and those exhibiting pathologies, including those

connected with gene mutations, to be studied. In addition to the pos-

sibilities such models present for basic studies of the gene network

operation, they are very important for pharmacology and genetic

engineering.

Figure 7.13 Global gene network of an organism (hierarchical integration).
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Cell Signaling Networks Database (CSNDB) is a data- and knowledge base for signaling

pathways of human cells. It compiles the information on biological molecules, sequences,
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structures, functions, and reactions that transfer the cellular signals. Signaling pathways

are compiled as binary relationships of biomolecules and are represented by automati-

cally drawn graphs. http://geo.nihs.go.jp/csndb/

EcoCyc, the Encyclopedia of E. coli Genes and Metabolism, is a bioinformatics database

that describes the genome and the biochemical machinery of E. coli. The long-term goal of

the project is to describe the molecular catalog of the E. coli cell, as well as the functions of

each of its molecular parts, in order to facilitate a system-level understanding of E. coli.

http://ecocyc.pangeasystems.com/ecocyc/

ERGO is a curated database of genomic DNA with connected similarities, functions,

pathways, functional models, clusters, and more. Users may annotate and comment on

genes and pathways, but currently cannot edit sequences.

http://igweb.integratedgenomics.com/IGwit/

GeNet contains the information on functional organization of regulatory gene networks

acting at embryogenesis. The regulatory genes play a crucial role in embryogenesis, con-

trolling both activity of downstream regulatory genes (cross-regulation) and their own

activity (autoregulation). These are the autoregulatory and cross-regulatory functional

links, which unite the regulatory genes in gene networks.

http://www.csa.ru/Inst/gorb_dep/inbios/genet/genet.htm

Kyoto Encyclopedia of Genes and Genomes (KEGG) is an effort to computerize current

knowledge of molecular and cellular biology in terms of the information pathways that

consist of interacting molecules or genes, and to provide links from the gene catalogs

produced by genome sequencing projects. http://www.genome.ad.jp/kegg/

The Ligand Chemical Database for Enzyme Reactions (LIGAND) is designed to provide

the linkage between chemical and biological aspects of life in the light of enzymatic re-

actions. The database consists of three sections: ENZYME, COMPOUND, and the

REACTION. The PATHWAY data item contains the link information to the KEGG (see

above) metabolic pathway database: the pathway map accession number, followed by the

description. http://www.genome.ad.jp/dbget/ligand.html

MetaCyc, the metabolic Encyclopedia, is a meta-metabolic database because it contains

pathways from a variety of different organisms. It describes metabolic pathways, reac-

tions, enzymes, and substrate compounds. The MetaCyc data were gathered from a vari-

ety of literature and on-line sources, and contain citations to the source of each pathway.

MetaCyc employs the same database schema as EcoCyc and provides the same rich an-

notation for many of the pathways, based on the biomedical literature. Unlike EcoCyc,

MetaCyc does not provide genomic data. It is also based on the same retrieval and visu-

alization software as EcoCyc, the Pathway Tools.

http://ecocyc.pangeasystems.com/ecocyc/metacyc.html

The Signaling PAthway Database (SPAD) is an integrated database for genetic informa-

tion and signal transduction systems. SPAD is divided into four categories based on

extracellular signal molecules—(growth factor, cytokine, and hormone) and stress—that

initiate the intracellular signaling pathway. SPAD is compiled in order to describe infor-

178 N. A. Kolchanov et al.



mation on interaction between protein and protein, and protein and DNA, as well as in-

formation on sequences of DNA and proteins.

http://www.grt.kyushu-u.ac.jp/spad/

The University of Minnesota Biocatalysis/Biodegradation Database contains information

about microbial biocatalytic reactions and biodegradation pathways primarily for xeno-

biotic, chemical compounds. http://umbbd.ahc.umn.edu/

WIT is a Web-based system to support the curation of function assignments made to

genes and the development of metabolic models. http://wit.mcs.anl.gov/WIT2
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8 Regulation of Cellular States in
Mammalian Cells from a Genomewide
View

Sui Huang

INTRODUCTION

The development from a single fertilized oocyte to a mature multi-

cellular organism, as well as the maintenance of the complex adult tis-

sue architecture consisting of cells of distinct characteristics, requires a

tight temporal and spatial regulation of the ‘‘fate’’ of each cell, such as

division, differentiation, and death. That the fate of an individual cell is

subordinated to the needs of the collective is most impressively mani-

fest in the finding that the majority of cells in the mature tissue are not

in the proliferation mode despite the abundance of nutrients and the

optimal physicochemical conditions. Only in regenerative tissues such

as skin, intestinal epithelium, and bone marrow can a subset of cells

switch to the proliferation mode. Disturbance of the balance between

cell proliferation, differentiation, and death can lead to tumor forma-

tion.

Signal Transduction in a Multicellular Organism as Information

Processing

What tells a cell in a multicellular organism when to divide, differenti-

ate, or die? The signals involved in higher multicellular organisms are

fundamentally different from those in single-cell organisms, such as

bacteria and yeast, which have traditionally served as model systems

for the study of molecular control circuits. In the microorganisms, reg-

ulation is geared toward optimizing material and energy utilization

and stimulation of cell division, thus propagating the organism when-

ever environmental conditions are favorable. There is no subordination



to the needs of the whole organism. A well-studied control mechanism

is the lactose operon system in E. coli, which allows the bacterial cell to

switch its metabolism from glucose to lactose as the source of free en-

ergy (for a review see Reznikoff, 1992).

In contrast to free-living microorganisms, cells of multicellular

organisms in situ do not face the problem of having to adapt to fluctu-

ating environmental conditions and varying types of energy sources. A

liver cell, for instance, always sits in an environment in which temper-

ature, pH, and concentration of nutrients (e.g., glucose) stay within

narrow ranges. Here regulation serves tissue homeostasis (i.e., the

maintenance of the intricate tissue microarchitecture that is the basis of

organ function). Therefore, the regulated variable is the individual

cell’s decision between cell proliferation, differentiation, and death.

While a lactose molecule acts in E. coli both as nutrient and as signal to

activate the appropriate genetic program, messenger molecules for

mammalian cells are complex peptides (e.g., ‘‘growth factors’’) that

serve solely to convey a regulatory signal (e.g., to stimulate the cell to

differentiate or divide).

The cell is not interested in the free energy present in the peptide

bonds and amino acids of the growth factor. For a mammalian cell in

situ, free energy is not rate-limiting, and the task of acquiring energy is

delegated to a hierarchically higher level, the organism. Therefore, we

should speak of a regulatory network instead of a metabolic network

when referring to the network of genes and enzymes that governs cell

fate in multicellular organisms. As with other complex systems, such as

computers (as opposed to combustion engines) or modern societies (as

opposed to agricultural societies), with increasing complexity the cur-

rency on which the system operates shifts from energy to information

when the former is in abundant supply. Therefore, in a first abstraction,

the web of information exchange can be studied as a separate network,

although it is ultimately connected to the energy-supplying system.

Cell Fates as Cell States

In a simplified picture that will suffice for our discussion, we consider

only cell proliferation, differentiation, and death as the cell fates. From

a formal viewpoint we shall treat these cell fates as cell states rather

than processes: ‘‘Proliferation’’ (or growth) is the state of biochemical

competence for repeated cell divisions (an oscillatory state). ‘‘Differen-
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tiation’’ is the state in which the cell maintains its specialized, type-

characteristic features and engages in tissue-specific tasks. A cell can

have multiple differentiation states (e.g., the resting and the activated

states of a lymphocyte), but for simplicity we will deal with just one.

Although differentiated cells typically withdraw from the cell division

cycle, and thus are in a quiescent state, we sometimes use the term

‘‘quiescence’’ separately to describe the state when considering exit

from the proliferation mode independent of a differentiation process

(e.g., dormancy, or arrest at a cell-cycle checkpoint for DNA repair).

Finally, ‘‘programmed cell death’’ (or apoptosis) describes the state of

commitment to apoptosis with the ensuing processes being merely a

stepwise execution of cell death. The term ‘‘state’’ captures the essential

features of physiological cell fates because they are stable, qualitatively

distinct, and mutually exclusive, and can undergo transitions from one

to another under the influence of regulatory inputs.

Interestingly, unlike bacteria, for mammalian cells in culture, sup-

plying basic nutrients such as amino acids, fatty acids, and glucose, and

keeping temperature, osmolarity, and pH within the physiological

range, is not sufficient for the maintenance of viability and continued

cell division. In addition, the culture medium needs to be supple-

mented with 2–20% serum to keep the cells alive and proliferating. We

now know that this requirement for serum is essentially due to the

presence of growth factors in the serum. The need for growth factors to

keep cells alive and proliferating again illustrates the fact that regula-

tion in mammalian cells takes place at the level of information pro-

cessing and not of energy utilization.

Taken together, for the study of regulatory networks in cells of

higher organisms we can in a first approximation regard cells as open

(nonequilibrium) systems with a continuous supply of free energy, and

thus focus on the regulatory events as information processing that

leads to the decision either to maintain or to switch a cell state.

Traditional Paradigm of Cell Fate Regulation: A Pathway-centered

View

The advent of molecular biology techniques has stimulated unprece-

dented progress in the biochemical analysis of cell fate regulation that

started with the molecular cloning of growth factors and their recep-

tors, and led to today’s bewildering, complex picture of the molecular
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machinery that mediates the cellular response to these growth factors.

The general approach to elucidating the molecular mechanism by

which a growth factor determines cell fate consisted of breaking down

the intracellular biochemical processes into individual signal trans-

duction pathways that link the activation of a cell surface receptor by the

growth factor to the induction of gene expression in the nucleus.

The basic idea of this pathway concept is that the instruction for a

cell is encoded in the molecular structure of the extracellular ligand and

its specific recognition by its cognate receptor. This key-lock model also

applies to the ensuing intracellular events (Pawson and Scott, 1997).

The external instruction is passed down to the nucleus by a chain of

molecular recognition and (in)activation events that constitutes a signal

transduction pathway: a chain of events connects cause and effect. The

current state of our knowledge is typically summarized in the kind of

‘‘arrow-arrow’’ diagram in figure 8.1, where the flow of information

starts on the top, with cell surface receptor activation, and ends at the

bottom, with gene induction. Branching and cross connections between

the nominal pathways are increasingly built-in in such diagrams; feed-

back loops are only rarely considered, however, so the pathways re-

main mostly linear. Moreover, their final targets are usually vaguely

designated ‘‘gene induction.’’ How these genes then collectively con-

tribute to affecting the observed dynamic of cell fate remains unan-

swered by such schematic representations.

Analysis of entire genome sequences and large-scale gene expression

studies in lower metazoan and mammalian cells indicates that more

than 10% of the genome and up to 30% of the transcriptome consist of

genes that encode proteins involved in signal transduction (Chervitz et

al., 1998; Phillips et al., 2000; Venter et al., 2001). This high number of

signaling genes underscores the importance of information processing.

At the threshold to the postgenomic era of biology, we have now to

start to ask: Can cloning and characterizing all these signaling proteins,

and categorizing them into receptor-to-gene pathways, ultimately lead

to an encompassing, conceptual understanding of the principles of cell

fate regulation? More concretely, the central question is: How can we

map the current signaling pathway schemes onto the real dynamics of

cell behavior that consists of relatively few, distinct, mutually exclusive

cell fates, such as growth, differentiation, and death?

These questions are of central significance because the present ad hoc

‘‘arrow-arrow’’ cartoons are challenged by accumulating observations
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Figure 8.1 The current signal transduction paradigms in cell biology are based on

‘‘arrow-arrow’’ diagrams. The insets on top show how the biochemist’s formal represen-

tation of an underlying reaction (left) is ‘‘translated’’ into the cell biologist’s shorthand

notation (right). Molecule A is activated by phosphorylation, catalyzed by the kinase B,

and is inactivated by dephosphorylation, catalyzed by the phosphatase C. Inhibition might

also be achieved by a molecule that binds to B and prevents its catalytic action on A.

The bottom panel illustrates how in current cell and molecular biology the established

signaling pathways thought to govern the various cell fates are typically represented,

based on the above shorthand notation. Only the most salient, established molecules and

connections are shown. The canonical mitogenic pathway is depicted in boldface, consist-

ing of the sequence Ras-Raf1-MEK1/2-ERK1/2, the classical MAP kinase pathway. ERK

belongs to the MAP (mitogen-activated protein) kinases, which form a family of highly

conserved mediators of diverse extracellular signals to the nucleus. The more recently

described, central pathway for survival involves the PI3K-Akt sequence, also shown in

boldface. Note the cross talk between the classical pathways of Ras, PI3K, PKA and

PKC. All reactant labels are generic names of the proteins, except for the following

abbrevations: RTK, receptor tyrosine kinase, GPCR, G-protein coupled receptor, PIP3,

phosphatidyl-inositol-3, 4, 5-triphosphate, cyto-C, cytochrome c.



that cannot be accommodated by such complicated collections of indi-

vidual pathways. These findings indicate that there are regulatory

principles that can be conceived only in the broader picture of global

cellular regulation. One such principle is what can be summarized as

‘‘distributed information’’ in signaling, and is manifest in the intense

cross talk between the nominal pathways, in the pleiotropic effects of

signaling molecules, and in the fact that regulatory cellular proteins

often have multiple, opposing effects on cell fate (see below). These

phenomena, albeit found ubiquitously, are presently discussed as com-

plications or even paradoxes within our mental framework of linear,

point-to-point pathways.

In this chapter we briefly review the limitations of the current path-

way paradigm and demonstrate how the concept of Boolean networks

can serve as a simple modeling language to formalize the emergence of

cell fates as collective behavior of signaling molecules and to predict

the functional consequences. Thus, we will introduce the idea of Boo-

lean networks and their fundamental properties as far as it pertains to

cell fate regulation, but will then put emphasis on building the bridge

between the dynamics of the modeled network and the observed be-

havior of the real cell.

DISTRIBUTED INFORMATION PROCESSING IN CELL FATE

REGULATION

The habit of assigning ‘‘functions’’ to biological molecules and path-

ways, as exemplified by terms like ‘‘fibroblast growth factor’’ and

‘‘mitogenic pathway,’’ which has culminated in the creation of ‘‘func-

tional genomics,’’ needs to be contrasted with accumulating evidence

that the information conveyed by the signal transduction machinery

cannot always be localized to a particular pathway, let alone a mole-

cule, but is distributed among numerous pathways that collectively

form a genome–wide regulatory network. This has important implica-

tions for functional annotation of protein databases (as discussed in

chapter 2). While assigning biochemical functions based on sequence

analysis is relatively straightforward, many higher-order biological

functions, such as ‘‘growth promotion,’’ are often not intrinsic proper-

ties of individual proteins but depend on the cellular and tissue context

(as discussed below). Such ‘‘conditional functions’’ might require an

additional layer in protein function annotations, but certainly suggest
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that manual annotation based on experimental data will remain an im-

portant aspect of database annotation.

Cross Talk Between Pathways: Convergence and Pleiotropy

As the collection of known biochemical pathways has grown, it has

become clear that an intense cross talk takes place between the histori-

cally defined pathways. New physical interactions between known

genes or proteins, often from apparently unrelated ‘‘pathway systems,’’

are published almost weekly. With regard to the scheme of interactions

between nominal pathways, two forms of cross communication can be

distinguished: convergence and pleiotropy (figure 8.2).

Convergence describes the finding that different pathways impinge on

a same key target molecule. For instance, mitogenic signals from the

cell’s environment converge on the activation of the Ras-Raf-ERK

pathway (figure 8.1), which plays a critical role in the activation of

genes that stimulate entry into the cell cycle and drive progression of

the G1 phase into the S phase (DNA synthesis phase) (Lavoie et al.,

1996; Taylor and Shalloway, 1996). Similarly, signals from a variety of

stimuli necessary for cell survival (prevention of cell death) utilize the

PI3K-akt/PKB pathway (Franke et al., 1997; Downward, 1998; Kra-

silnikov, 2000). One important functional consequence of convergence

is redundancy, in that the activation of a key molecule, such as the

mitogen-activated protein kinase (MAPK) ERK, can be achieved by

various signals and that has been viewed as molecular basis for the

robustness of signal transmission. However, the fact that multiple non–

identical input signals impinge on the very same mediator has raised

the question of how signal specificity is maintained (Chao, 1992; Brunet

and Pouysségur, 1997; Tan and Kim, 1999).

Pleiotropy, on the other hand, refers to the finding that activation of

one molecule results in the fanning out of the biochemical signal,

resulting in the induction of a large array of genes. For instance, mon-

itoring of >6000 genes with DNA microarrays showed that activated

receptors for the growth factors FGF and PDGF induce the expression

of at least 60 genes (Fambrough et al., 1999) and that the Myc tran-

scription factor activates at least 27 genes (Coller et al., 2000). The

functional meaning of pleiotropy is not immediately plausible, since it

also tends to lessen signal specificity through overlap of the responses

of different input signals. However, because of their prevalence, con-
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Figure 8.2 Distributed information processing in signal transduction is embodied in the

various structures of interaction shown in the upper left: cross talk between the linear

pathways, convergence, and pleiotropy. Although these features are appreciated by the

traditional pathway paradigm, a nominal pathway consists mainly of a chain of events

connecting cause to effect. A network model (upper right) of signal transduction is pro-

posed here in which there is no single cause, and the effect is an emergent property of the

networked interactions. Circles indicate molecules, and arrows denote catalytic activity

upon another molecule, in the sense of figure 8.1. The bottom panel shows examples of

signaling proteins that exhibit disparate effects on cell fate, another manifestation of

distributed information processing. The thick arrows denote the original function first

assigned to the protein (for details see Huang and Ingber, 2000a).



vergence and pleiotropy appear to represent basic design principles of

signal transduction in cell fate regulation, and will be discussed in the

context of regulatory networks later in this chapter.

Regulatory Proteins with Multiple Disparate Functions

The continuing analysis of key signaling molecules has revealed that

many of them exert multiple, often disparate effects on cell fate. For in-

stance, the protein Ras, originally discovered on the basis of its trans-

forming (tumor-inducing) effect (Barbacid et al., 1987), not only

promotes growth but also induces apoptosis and quiescence—an ap-

parent paradox (figure 8.2). Ras promotes growth via the MAP kinase

ERK, but, in the absence of the proteins NF�B and PI3K, its activation
induces programmed cell death (Mayo et al., 1997; Kauffmann-Zeh et

al., 1997; Gire et al., 2000).

The transforming activity of Ras requires cooperation with other

immortalizing alterations, such as activation of the protein Myc (Wein-

berg, 1989). The notion of Ras being a growth-promoting protein stems

from the use of immortalized cell lines during its initial characterization.

In primary cells Ras fails to stimulate growth, but instead induces accu-

mulation of the cell cycle-inhibiting proteins p16 and p53 and puts cells

into quiescence (Serrano et al., 1997). Another known example is Myc,

also first characterized as an oncogene. Myc protein promotes cell

growth in the presence of serum or growth factors but triggers p53-de-

pendent apoptosis in their absence (Evan and Littlewood, 1998). Figure

8.2 shows some other selected examples of proteins with disparate

effects on cell fate (for details see Huang and Ingber, 2000a).

Multiple-Target or Nonspecific Perturbation

A third line of observation advocating a global (genomewide) approach

to cell fate regulation is the readiness with which a specific cell fate can

be induced, using an experimental perturbation that affects multiple

proteins across several nominal pathways. This contrasts with the cur-

rent paradigm of simple pathways, which is derived from the idea of

instructive regulation: the extracellular factor acts as a messenger that

carries in its unique three-dimensional structure the specific instruction

to be delivered to the cell by docking to the complementary receptor.

However, many small-molecule chemicals that do not act on one spe-
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cific receptor, but on multiple targets, are equally able to cause a dis-

tinct cell state switch—not just by triggering apoptosis, which one

could attribute to ‘‘nonspecific cytotoxicity,’’ but also by inducing full

differentiation with all the intricate cellular features.

Small organic molecules such as dimethylsulfoxide (DMSO), ethanol,

beta-mercaptoethanol, benzene, and genistein (a general tyrosine kin-

ase inhibitor) have been reported, for a large number of cell culture

systems, to switch cells from growth to differentiation (Yu and Quinn,

1994; Kulyk and Hoffman, 1996; Woodbury et al., 2000; Kalf and

O’Connor, 1993; Constantinou and Huberman, 1995). It appears that in

all these examples a simultaneous perturbation of multiple targets in

different pathways results in the cell’s channeling the biochemical re-

sponse in such a way that a well-orchestrated pattern of biochemical

activity arises that drives the cell toward a distinct cell fate.

Even external signals as ‘‘nonspecific’’ as physical inputs, such as ex-

ternally enforced change of cell shape, can regulate the choice of cell

fate, switching the cell between quiescence, growth, differentiation, and

apoptosis (Mooney et al., 1992; Chen et al., 1997; Huang and Ingber,

1999). The view held by most molecular biologists—that the cell is

instructed on how to behave by the message encoded in the structure of

regulatory molecules—cannot explain how these physical influences,

devoid of molecular specificity, can trigger a distinct cell fate.

Toward an Integrative View Based on Genomewide Networks

From the above examples it is clear that dissecting cell fate regulation

into individual pathways is problematic because the functional effects

of individual regulatory proteins are not intrinsic properties of the

proteins themselves, but instead depend on the cellular context (i.e., the

presence and activity of other cellular components). Hence, information

is distributed. It is the cell that integrates it into a distinct cell fate.

In recent attempts to bring some order to the richly intertwined web

of signal transduction pathways, the concept of modularity has been

proposed (Hartwell et al., 2000). Moreover, it has been suggested that

protein modules (multiprotein complexes) with multiple inputs and

outputs act as information processors (Bray, 1995). These suggestions

preserve the convenient and intuitively strong notion of individual,

separable pathways to which ‘‘functions’’ can be attributed without

embracing a global view. Whether or not there is a physical basis for an
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a priori assumption of functional modules beyond the subjective, oper-

ational definition by the investigator remains open.

One could envisage that the generally sparse interconnections (see

below) and the heterogeneity of cross-talk density throughout the

genomic regulatory network might justify the idea of modularity.

However, given the prevalence of unaccounted-for cross communica-

tion between ‘‘pathways,’’ we propose here an approach to cellular

regulation without an a priori notion of ‘‘functions’’ and modules, but

with a neutral assumption of a global network with distributed informa-

tion in which modularity emerges as a secondary entity—depending

on the ‘‘function’’ we are looking at. Further, we will show in this

chapter how the network approach can help resolve the questions on

cross talk, disparate effects of proteins, nonspecific stimuli, and the

preservation, despite convergence and pleiotropy, of signal specificity.

BOOLEAN NETWORKS AS A MODEL FOR CELLULAR

REGULATORY NETWORKS

A Qualitative Modeling Language

With the recent explosion of biological data on cell regulation, it has

become clear even to experimentalists that the counterintuitive, often

paradoxical features and the network nature of cellular regulation ex-

ceed the explanatory capacity of the current ad hoc, schematic models

used in cell and molecular biology. Mathematical models, or at least

more formal methods, will be necessary to support our efforts to make

sense of the continuing spate of experimental data. Traditional mathe-

matical modeling approaches typically aim at recapitulating the precise

kinetics of rather small regulatory circuitries using sets of differential

equations. Other approaches pursue the simulation of the living or-

ganism (or parts of it) as realistically as possible at various scales of

description, down to using stochastic methods to track individual mol-

ecules. All these modeling approaches have provided valuable insight

into many nonintuitive behaviors that are typical for nonlinear sys-

tems, such as oscillations, multistability, and hysteresis. A motivation

behind these approaches is that detailed simulations may one day

serve as prediction tools that could replace experimentation (McAdams

and Arkin, 1996; Tyson, 1999; Weng et al., 1999; Endy and Brent,

2001).
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However, these approaches do not aim at understanding basic de-

sign principles of regulation, and the problems discussed in the previ-

ous section have not been addressed. To study the regulation of cell

fate as a collective behavior mediated by distributed information proc-

essing, we have to deal with a massively parallel, genome wide system

of interacting parts and learn to describe how they give rise to the dis-

tinct, emergent behavior apparent at a higher level of organization—an

endeavor that lies beyond the possibilities of traditional modeling

paradigms.

The lack of knowledge of quantitative biochemical details and the

mathematical difficulties of accurately describing such complex systems

of networked interactions necessitates the use of very simple models, in

which certain abstractions have to be made, as well as aiming, in the

first place, at learning about general principles. The hope behind this

strategy is that some fundamental principles of regulation are typical

properties of the systems under study and are robust to theoretical

idealization, such that they are preserved in the simplifying model. In

fact, it turned out that the idealization and simplifications are not only

necessary but also sufficient for studying the generic, qualitative

dynamics of a cellular regulatory system as a whole (rather than to

predict specific quantitative responses).

A powerful model in this sense is the Boolean genetic networks in

which time and values of activity levels of the genes are made discrete.

Boolean networks were first proposed by Kauffman as a tool to address

the fundamental problem of spontaneous generation of order in com-

plex systems, in particular in metabolic and genetic networks (Kauff-

man, 1969, 1993). Here we will use the Boolean genetic network model

as a simple modeling language to illustrate how the global dynamics of

cell fate regulation can be understood as resulting from the interaction

of signaling molecules organized as a network.

Sigmoidal Kinetics and Discretization of Molecular Interactions

In a Boolean network an element of the network represents a gene or

a protein and can take only two values, ON (¼1) and OFF (¼0). The
idealization of a gene or protein activity as an ON-OFF switch (‘‘dis-

cretization’’) is based on the use of a step function to approximate a

steep sigmoidal function (ultrasensitivity) for the function that maps

the regulatory signal (input; e.g., level of a stimulating protein) to the
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response (output; e.g., the enzyme activity of the target) (Thomas et al.,

1995).

However, the observed switchlike behavior can be more than just an

approximation based on the limit of a steep sigmoidal input-output re-

lation. From the analysis of nonlinear dynamic systems we know that

sigmoidal functions can give rise to bistability in simple control circuits,

for example, mutual inhibition between two proteins, A and B, given

appropriate parameters. In such a feedback circuit only two states of

the system will be stable, one in which protein A is low and B is high,

and one in which A is high and B is low. Which state is taken by the

system depends on the initial protein activities relative to threshold

values (Glass and Kauffman, 1973).

The occurrence of sigmoidal input-output functions justifies the

discretization. But why can we assume the presence of sigmoidal,

ultrasensitivity functions for molecular interactions at all? Classical

Michaelis-Menten enzyme kinetics gives rise to hyperbolic functions

that exhibit saturation (flattening of the curve for high input signals)

but not the sigmoid behavior at the low level of input signals necessary

for bi- or multistability. The generation of sigmoidal threshold kinetics

depends on how the underlying kinetic mechanism is capable of sensi-

tivity amplification, and thus of generating ultrasensitivity (Koshland

et al., 1982). The best-known situation that generates a sigmoidal be-

havior is cooperativity, as classically studied for multimeric proteins

like hemoglobin. High cooperativity leads to ultrasensitivity. A cascade

in a signaling pathway can also produce an all-or-nothing response, as

has been shown for the MAP kinase signaling pathway (Ferrell and

Machleder, 1998).

However, even without these rather complicated control structures it

has been proposed that alone the particular nature of intracellular bio-

chemical reactions, which involves reaction on surfaces rather than in

free three-dimensional space (dimension restriction), and the relative

stability of ‘‘transition complexes’’ (e.g., protein-protein complexes)

contribute to a deviation from hyperbolic Michaelis-Menten kinetics

toward sigmoidal kinetics (Savageau, 1995). Moreover, it has been

suggested that stochastic fluctuations due to the low number of copies

of reactants in the cell will promote sensitivity amplification (i.e., cause

a gradual response to sharpen and behave like a threshold mechanism),

even in the absence of more complicated control circuits (Paulsson et

al., 2000).
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The discretization now allows the use of logical functions as a simple

way to directly capture the qualitative relationship between the inputs

inter se and their joint effect on the target, for which information is

readily available from common cell biology experiments. Molecular in-

formation processing that displays the basic features of logical gates in

fact takes place at promoter elements or in multiprotein complexes

(Yuh et al., 1997; Bray, 1995). Figure 8.3 shows two examples of the

encoding of molecular interactions into Boolean functions.

A common criticism of this digitalization is that the assumption of

ON/OFF states disregards the continuous nature of gene or protein

levels in the cell. It should therefore be emphasized that the ON/OFF

idealization is not an arbitrary coarsening, achieved by simply sub-

dividing a gradual response into two qualities, nor does it represent an

elementary molecular ON/OFF switch; rather, it reflects an ensemble

behavior of molecules in biochemical reactions that gives rise to bist-

ability. Therefore, an intermediate activity value of the enzymes around

the threshold will be unstable, and the activity will move toward one of

the two stable extremes, either maximal activity (corresponding to the

ON state) or minimal activity (OFF state). The essence of the approxi-

mation thus lies in the equating of potentially differing threshold

values across the network. Time discretization, on the other hand, reflects

the two situations before and after a threshold has been crossed. Here

the departure from reality lies in the synchrony of updating between all

network elements and the simultaneous passage of multiple proteins

through their threshold values within the same time interval.

Besides the theoretical justification, the discretization is also sup-

ported by the frequent experience of cell biologists that in dose-response

experiments monitored at the single-cell level, the cellular response typ-

ically exhibits an all-or-none behavior (Ferrell and Machleder, 1998).

Gradual responses, on the other hand, are mostly seen in ‘‘bulk’’ bio-

chemical studies where the response is averaged over an ensemble of

cells in which the respective threshold has a statistical distribution.

Basic Structure of Boolean Networks

We briefly review here the basic concepts of Boolean networks before

discussing how they provide new insights into cell fate regulation. (For

an introduction see also Somogyi and Sniegoski, 1996; Kaplan and

Glass, 1997; Huang, 1999.) For the sake of simplicity and concreteness,
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let us assume a regulatory network that consists of protein-protein

interactions (e.g., phosphorylation or proteolysis), as is the case for

most interactions involved in controlling cell fate. As discussed above,

the system can be abstracted as a network of N interconnected binary

elements, g1; g2; . . . gN , representing proteins that at a given time t can

Figure 8.3 Encoding regulatory multiprotein complex protein interactions into simple

two-input Boolean functions. Upper panel: cdk, the cyclin-dependent kinase (e.g., cdk4) is

the target protein that receives, in this simplification, just two inputs from its uptream

regulators, a cyclin (e.g., CD1) and a cdk-inhibitor, CDI (e.g., p27 or p21). The cdk re-

quires association with a cyclin to be activated. The CDI binds to the cyclin-cdk complex

(Guan et al., 1996) and inhibits cdk activity. This regulation can be encoded with a NOT

IF Boolean function shown on the far right: The cdk is ON (output ¼ 1) (active kinase)
only IF CDI is NOT present (¼ 0) AND the cyclin is present (1).

Lower panel: The protein akt (¼ PKB) undergoes conformation change after binding
of the phospholipid PIP3, allowing the phosphorylation at two sites by the kinase PDK

(PDK1 and PDK2) (Downward, 1998). The phosphorylated akt protein is now an active

kinase (see also figure 8.1). This regulation represents a simple AND Boolean function: akt

is active (output ¼ 1) only if both PDK AND PIP3 are present (¼ 1).
Note that in theses examples, CDI cannot bind cdk in the absence of cyclin, and PDK

cannot act on akt before PIP3 has bound. The Boolean function correctly encodes the net

outcome of the interaction, but it does not capture these temporal subtleties, although the

order of the inputs in the case of akt is essential for its activation by PDK.
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take the values ON : giðtÞ ¼ 1 or OFF :giðtÞ ¼ 0. The ON value repre-

sents, for example, a kinase that is expressed and activated in a suffi-

cient amount such that the total activity of all molecules is above the

relevant threshold, whereas the OFF value represents the kinase whose

activity is below the threshold or that is not expressed. Each network

element gi receives a number of ki inputs, and is assigned a Boolean

function that defines how the set of inputs affects the activity state of

that element, which represents the output. Figure 8.4 shows an example

of a network with N ¼ 4 elements. For simplicity we restrict ourselves
in this discussion to a subset of networks of low connectivity (kfN)

and constant ki ¼ k for all elements gi.

A Boolean function represents the multiprotein complex in which

specific protein-protein interactions determine the activity of the target

protein (figure 8.3). The connections of the network are defined by the

specificity of the interactions encoded in the molecular structure of the

proteins (key-lock principle), and collectively specify a precise connec-

tion diagram of the network. The network architecture thus consists of

the topology of the interactions (the wiring) and the logical function

assigned to each network element (for instance, ‘‘or,’’ ‘‘and,’’ ‘‘not if ’’ in

figure 8.4). Since, in a first approximation, protein structure and its en-

zymatic function are determined by the gene sequence, the architecture

of the network is ‘‘hardwired’’ in the genome and does not change un-

less affected by mutations (discussed later). What changes with time is

the activity status of all network elements giðtÞ at a given time, which
collectively form a pattern that represents the network state S at that

time point:

SðtÞ ¼ ½ g1ðtÞ; g2ðtÞ . . . gNðtÞ�:

The Dynamic Behavior of the Network: Constraints Imposed by the

Interactions

We are interested in the global dynamics of the regulatory network

(i.e., in how the pattern of protein activity, or the network state SðtÞ,
changes over time and governs cell behavior). Since the pattern of

activity of all the proteins across the genome determines the cellular

phenotype, every cell state corresponds to a distinct pattern of protein

activity and, therefore, to a network state in the model. Thus, the

dynamics of the network state determines the dynamics of the cell

state, and hence of cell behavior and fate.
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Figure 8.4 Basic principle of the Boolean network model and cellular states. An (N ¼ 4
element) network is used as an example to illustrate how attractors arise from the inter-

actions between the network elements. Left: network architecture of the four elements, A,

B, C, and D, proteins of a regulatory network. In this idealized case, all elements have two

inputs that can include input from the element itself, representing a direct feedback loop.

The thin arrows indicate specific regulatory interactions. Each element is assigned a Boo-

lean function, as shown in the corresponding boxes below.

Right: The state space and attractors, represented as proposed by Wuensche (1998).

Each element can be ON (¼ 1) or OFF (¼ 0). The set of all the ON/OFF statuses for all
elements defines a network state SðtÞ for a given time point, depicted as a box with four
binary digits. All possible network states together, in this case 24 ¼ 16, form the state

space. Following the rules defined by the wiring diagram and the Boolean functions on the

left, the individual network states transition into each other as indicated by the thick

arrows, which represent the trajectories. Attractor states are in boldface. Trajectories can

converge but not diverge, thereby contributing to the basins’ draining into the attractors.

The entire state space is divided into basins of attraction whose boundaries are shown with

dotted lines. Each attractor and its basin can be equated to a cell fate: differentiation,

quiescence, apoptosis, and proliferation. The proliferation attractor is a limit cycle (in this

case containing two states) corresponding to the oscillatory gene expression patterns

during repeated cell cycles.



Now, because of the interaction between the proteins, the network

state can change only according to the wiring diagram and the logical

rules for the interactions. For instance, if the wiring and rules are such

that protein A is an input on protein B, and unconditionally inhibits

protein B, then a network state with protein A being stably ON can

only transition into the subset of network states where B is OFF. All

network states in which both A and B are simultaneously ON would be

logically forbidden (i.e., would correspond to unstable activity patterns

that would transition into a stable one). Thus the dynamics of the net-

work state is severely restricted. Therefore, cell behavior is channeled

along the possibilities dictated by the wiring diagram. The constraints

of global cell behavior reflect the constraints of the dynamics of the

network state imposed by the network architecture. It is precisely in the

analysis of these constraints that our chance lies to understand how

cellular biochemistry, represented as a schematic diagram of signaling

pathways, translates into a global, ‘‘observable’’ behavior of the cell.

State Space and Trajectories, Attractors and Basins of Attraction

An important concept for the description of network dynamics is the

state space (figure 8.4). Briefly, in our binary approximation each net-

work state SðtÞ can be written as a string of length N of 1s and 0s, such

as [111000111. . . .]. A network state represents a point in the state space,

the N-dimensional space that contains all possible network states. Fig-

ure 8.4 (right panel) shows a graphical representation of a state space of

16 states as a projection into two dimensions. Similar states that differ

in the activity status of just a few proteins would be located close to-

gether in the state space (e.g., 111000 and 111001). The number of all

possible states is immense because of combinatorial explosion: for a

network of 10,000 distinct proteins (as estimated for a given mamma-

lian cell), there would be a theoretical number of 210000A 103000 differ-

ent states. However, because of the restrictions discussed above, not all

states are equally stable: a network state that is logically forbidden, and

hence unstable, will transition to neighboring states when the Boolean

function is executed.

Remember that the cellular regulatory network is an open system:

under physiological conditions, the cell is submerged in a bath of free

energy that is continuously replenished (e.g., available in the form of

198 Sui Huang



the molecule ATP, which is used for protein phosphorylation that

drives the regulatory reactions represented by the Boolean functions).

Thus, in a first approximation we can neglect energy considerations,

and assume that execution of the Boolean functions for all the proteins

of a network, also referred to as updating of the network, is therefore a

spontaneous (exergonic) process under physiologic conditions, such

that the network continuously updates itself. Consecutive updating of

the network state causes the cellular regulatory network to travel along

a chain of unstable states in the state space, thereby defining trajectories

(figure 8.4).

Because of the logical constraints and the ensuing dynamics of the

network state, the state space is not homogeneous: instead, unstable

states are forced to migrate along trajectories into stable states as the

Boolean rules are executed. Since the protein-protein interactions in the

multiprotein complexes have unambiguous biochemical effects (which

has allowed the representation as deterministic Boolean functions), a

network state can have only one successor state while it can have mul-

tiple predecessor states. Thus, trajectories in the protein activity state

space can converge but not diverge, and a network state does not have

a memory of where it came from. This property is fundamental to cel-

lular regulatory networks and gives rise to directionality and robust-

ness of cellular behavior. In the absence of any regulatory interactions,

all network states would be equally likely, and there would be no tra-

jectories and driving force.

Since the state space is finite, trajectories will eventually hit upon

states the network has already visited before, and because of the deter-

ministic nature of updating, it will reenter the same succession of state

transitions, thus forming loops in the state space. Of interest here are

the cases where the loop of succeeding states consists of just a few

states (a tiny fraction of the state space). In the extreme case, trajectories

end at network states that, when updated, yield the same state (i.e.,

Sðt þ 1Þ ¼ SðtÞ). These asymptomatic states, which occupy either a small

number of looping states in the state space or just one network state,

are called the attractor states of the state space, since they attract the

trajectories.1 Thus, attractors can either be oscillatory (limit-cycle attrac-

tors) or stationary (fixed-point attractor). The small example network in

figure 8.4 has one two-state limit cycle. The set of network states in the

state space that will end up in the same attractor forms the basin of
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attraction of the respective attractor. Basin boundaries divide the state

space into the basins of attraction. The state space thus has a struc-

ture: it is compartmentalized, and trajectories do not cross the basin

boundaries. This imposes a restriction on the dynamics of the global

protein activity patterns that is reflected in the rulelike behavior of the

cell.

The restricted, attractor-driven dynamics of the network can be pic-

tured as a marble on a landscape with valleys and pits that force the

marble to follow a certain path that ends in one of the pits—these local

minima would correspond to attractor states. The position of the mar-

ble at a given time represents a transient protein activity pattern, or

network state, that displays an urge to move along a given trajectory.

The choice of the destination attractor state depends on the marble’s

position (initial state), the ‘‘shape of the attractor landscape,’’ and ex-

ternal perturbations. We now move on to confront the model’s

dynamics with experimental observations in real cells.

CELL STATES IN REAL CELLS AS ATTRACTORS

Since every cellular state corresponds to a distinct protein activity pat-

tern, and the latter maps into a network state in the model, we have

now placed cell fate dynamics into the conceptual framework of regu-

latory networks in which we have driving forces, directionality of pro-

cesses, and stable, qualitatively distinct attractor states.

It has long been proposed that metabolic states or differentiated cell

types represent stable, stationary states in genetic circuits that exhibit

multistability or attractor states in genetic networks (Delbrück, 1949;

Monod and Jakob, 1961; Kauffman, 1973; Thomas, 1998). In view of the

enormous progress in our understanding of details of cell regulation in

the past few years, we present here a refined picture of the meaning of

attractor states as the most elementary emergent feature generated by

the interaction of network elements. Based on the distinct dynamic

features of cell fate regulation, we propose that phenotypic cell states

(i.e., the various cell fates) are attractor states of the underlying regulatory

network (Huang, 1999). In this model, the proliferating state, with its

recurring succession of distinct protein activation patterns during re-

peated cell division cycles, would correspond precisely to a limit cycle

attractor, while other cell states, such as differentiation, quiescence, or
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programmed cell death, would correspond to fixed-point attractors

(figure 8.4, right side).

Equating real cellular states to attractor states of the network model

allows us to address some aspects of real cell behavior from an inte-

grative viewpoint, and to describe the relation between cell fate regu-

lation and molecular pathways with a formal language instead of

resorting to intuitive, ad hoc explanations based on arrow-arrow

schemes (Figure 8.1).

We discuss in the following section some basic properties of real cell

states in the light of the network model, and show how some phenom-

ena that currently are described with an anthropomorphic verbiage,

including terms like ‘‘decision,’’ ‘‘switch of cell fates,’’ ‘‘balance of sig-

nals,’’ and the idea of ‘‘conflicting signals’’ (Raff, 1992; Evan and Little-

wood, 1998), can be put on a formal foundation.

Discreteness and Mutual Exclusiveness of Cell Fate

In response to a set of heterogeneous and often opposing stimuli, cells

have to make an all-or-nothing decision as to which fate to take: to di-

vide, to differentiate, or to die. This has raised the question of how the

cell shuts down, say, the multitude of biochemical pathways known to

promote apoptosis when it ‘‘decides’’ to enter the growth state. The

combination of cell states being attractors and the concept of attractor

basins now predicts that cellular states are a priori mutually exclusive,

since the network state can be in only one attractor at a time. This

would also agree with the all-or-none nature of transitions between cell

states and justify the use of the term ‘‘switch’’ to indicate transition be-

tween states. It has long been known that proliferation and differen-

tiation are reciprocal (Goss, 1967). In fact, removing cells from the

proliferating state by withdrawing the mitogenic factor from the me-

dium not only arrests the cell cycle in pluripotent precursor cells but

also very often triggers differentiation into the corresponding post-

mitotic mature cell, such as myocyte, adipocyte, or neuron (Olson,

1992; Harrison et al., 1985; Brüstle et al., 1999).

Even arresting the cell cycle by molecular manipulation of the regu-

latory network—for example, by overexpressing the cyclin-dependent

kinase inhibitor p21 (a cell-cycle inhibitor)—induces differentiation in

many cellular systems (Steinmann, 1994; Parker et al., 1995; Liu et al.,
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1996; Erhardt and Pittman, 1998). In all these cases no differentiative

instruction is given to the cell, just a signal that destabilizes the pro-

liferative state, following which the network falls into the attractor of

the differentiation state. In some cases, and depending on other factors

(growth condition, cell type), a growth arrest can also result in activa-

tion of cell death.

Of logical necessity the regulatory network’s wiring diagram not

only establishes the attractor states but also determines the changes of

the patterns of protein activity that occur in the cell as it travels along a

trajectory into a given attractor state (figure 8.4). Such changes of the

protein activity pattern then appear a posteriori in the traditional

pathway-centered view as an amazingly well-orchestrated, target-

oriented, and unlikely complicated process, when in fact these tem-

poral changes of protein activity pattern are ‘‘hardwired’’ into the

regulatory network that defines the basin of attraction and reflects the

self-driven execution of the Boolean rules.

Robustness of Cell States

Equating cell states with attractor states implies that the trajectories of

such states or the states themselves are intrinsically robust. Robustness

is stability against a wide variety of perturbations. In simulation of

networks, small perturbations consist of a ‘‘bit-flip’’ (changing the ON/

OFF status of just a few proteins), and will kick the network into a

nearby ‘‘forbidden’’ state. For minimal perturbations that hit only one

network element at a time, the system will flow back along trajectories

to the original attractor 80–90% of the time, as shown in computer

simulations (Kauffman, 1993). This robustness represents an important

buffer against biological noise, which is unavoidable, given the high

local fluctuations of protein activity levels due to the spatially hetero-

geneous intracellular milieu with just a few thousands of copies of each

distinct regulatory protein.

The observation that the same cell fate can be induced by treatment

with different, unrelated chemicals—as impressively demonstrated by

the ability of a variety of agents, including dimethylsulfoxide, retinoic

acid, flavones, and benzene, among others, to induce the process of

myeloid differentiation in promyelocytes (Birnie, 1988; Kalf and

O’Connor, 1993)—supports the picture of robust attractors with con-

verging trajectories.
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Compartmentalization of the State Space: Classification of

Environmental Inputs

Every major environmental input that perturbs the activity of one or

more proteins will displace the network state from the current attractor

state and place it at another spot somewhere in the state space, from

which it will relax into the respective attractor. The state space is com-

partmentalized by the boundaries of basins of attraction. Thus, the cell

classifies its environment into a few categories that correspond to the

attractors, and maps every environmental perturbation of the network

state into a distinct cell fate. This would explain why agents that do not

bind to a specific receptor but instead directly affect the activity of

many proteins, or why even physical perturbations can trigger a dis-

tinct cellular response as complex as differentiation, which is normally

thought to be induced by a specific physiological signal and requires a

concerted change of the activity of a large set of regulatory proteins.

The compartmentalization of the state space implies that the ‘‘deci-

sion’’ to take a cell fate is an inevitable process, and that the cell in a

given attractor state has only a few possible choices. The state of un-

decidedness is dynamically unstable because a network state at the

boundary between two attractor basins itself is unstable and has to

move toward one of the two attractors. It is the protein activity pattern

after the perturbation as such—no matter whether it was caused by one

specific signal or multiple, disparate external signals—that will deter-

mine in which particular basin the cell will fall, since the activity profile

as a whole determines the position of a network state relative to the

basin boundaries. This explains why nominally opposing signals, such

as the simultaneous stimulation to proliferate and to differentiate, still

result in one distinct cell fate, such as apoptosis. The widely used pic-

tures of ‘‘balance of signals’’ and ‘‘conflicting signals’’ inappropriately

compress the multidimensionality of the decision-making process at the

basin boundaries of the N-dimensional state space into a one-dimen-

sional weighing event.

Physical Inputs and Attractor States

The self-organized nature of distinct cell states not only allows for

nonbiological, ‘‘nonspecific’’ chemicals to elicit biologically coherent

responses, but also brings cell fate regulation into the realm of physical
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influences present in the cell’s environment. Experiments using micro-

patterning technology to manipulate cell shape have shown that dis-

tinct cell fates can be induced by purely physical perturbations, such as

change of cell shape and mechanical distortion of the cell (Chen et al.,

1997; Huang and Ingber, 1999). These physical signals lack the ability

to directly and specifically interact with molecular components of the

regulatory machinery, although at some point they have to be trans-

duced into a coherent protein activity pattern. The experimental find-

ing that change of cell shape induces the same alterations of protein

activity patterns as do specific growth factors provides experimental

support for the idea that cell fates can be represented by attractor states

of protein activity patterns (Huang et al., 1998; Huang and Ingber,

2000b).

The existence of attractors and their basins of attraction representing

cell fates enables physical factors, such as cell geometry and distortion,

to harness the molecular machinery of cell fate regulation. This will

massively increase the odds for evolutionary linking of the intricate

biochemistry of cell fate regulation with the physical world that lacks

specific, molecularly encoded information, which may thereby have

facilitated the evolution of larger organisms whose development and

function are subject to the laws of macroscopic physics, yet are gov-

erned by genes and proteins (Huang and Ingber, 2000b).

CELL FATE REGULATION AS TRANSITIONS BETWEEN

ATTRACTORS

How does the traditional description of cell fate regulation by serial

molecular interactions, organized in signal transduction pathways, fit

into the concept of network attractors? Cellular signaling triggered by

the treatment with growth factors promotes the switching of the cell

into another cell state, and hence must correspond to the switching of

attractor states of the network. Therefore, a signaling cascade repre-

sents a perturbation that results in the transition between attractor

states.

Signaling Events as Perturbation of Large Sets of Cellular Proteins

A transition between cell states requires a jump of the network state

from one attractor state into the basin of another attractor state. Since

204 Sui Huang



attractor states are intrinsically robust, most such transitions will

require the perturbation (change of activity status) of a large number

of proteins. The network architecture determines size and composi-

tion of the set of network elements whose joint perturbation can cause

a transition between attractor states, and which therefore form a

transition-causing set. The optimal size of such transition-causing sets

of perturbation targets can vary considerably.

This is illustrated in a network simulation, shown in figure 8.5, for a

small regulatory network (N ¼ 12, k ¼ 2), in which perturbations of sets
of m randomly chosen proteins were tested for their ability to cause the

network to switch the attractor (measured as the number of occur-

rences of a specified transition). m is the size of the perturbation set, or

the number of randomly chosen elements of the network that receive a

bit-flip perturbation; thus, m can be thought of as perturbation strength.

The results show a rich, nonmonotonic behavior of transition fre-

quencies as a function of the perturbation strength m. A high transition

frequency for a given m indicates that many perturbation sets of size m

exist that can cause that specified transition, and is a measure of ‘‘ease’’

and robustness of that transition. Thus, much as with attractor states,

the transition-causing sets themselves can display a characteristic

robustness. Each distinct transition (defined by origin and target

attractor) exhibits a different pattern of robustness. For instance, some

transitions occur rarely and only at perturbation strengths above a

minimal value, while for other transitions there is an optimal pertur-

bation strength.

This brings us back to the question of biochemical pleiotropy in sig-

nal transduction. The large number of proteins and genes whose activ-

ity is affected in the signal transduction cascades triggered by the

activation of a cell surface receptor may precisely reflect the need for a

perturbation set of a certain size in order to push the cell into another

basin of attraction. Thus, during evolution of the regulatory network

architecture, the ‘‘design’’ of signal transduction cascades and attractor

landscape must be tightly coupled to produce networks in which a

defined set of proteins needs to be turned ON/OFF to cause a certain

transition between attractors. Such characteristic sets of perturbation

targets can be likened to a code or password that provides access to a

specific attractor from another specific attractor. The extent of bio-

chemical pleiotropy in signal transduction thus might reflect evo-

lution’s fine-tuning of the m value, which in turn determines the
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constraint or ease for evolving physiological fate switching signals that

will ‘‘hook up’’ the network to extracellular cues. The information-

coding capacity of transition-causing sets allows the genome to encode

under which specific circumstances a cell can switch between which

cell states.

Figure 8.5 Simulation of transition between attractor states upon random perturbation.

Results are for an example network of N ¼ 12, k ¼ 2 with a randomly determined archi-
tecture, leading to three attractor states, a, b, and c. The top panel provides a graphical

representation of the three basins of attraction of different size (not drawn to scale). The

arrows denote transitions, with thicker arrows indicating increased transition frequency

(again not drawn to scale). The basins of attraction occupy varying fractions of the state

space (of total 212 ¼ 4;096 states): a, 83 percent; b, 15 percent; c, 2 percent. b is a limit cycle;

a and c are fixed-point attractors. All three attractor states were used as initial states to be

perturbed by randomly choosing a subset of m (m ¼ 1; 2; � � � ;N) elements that will under-
go a bit-flip. Per m value, 10,000 iterations of random selection and perturbation were

performed, and the occurrence of the three possible transitions (including the ones to the

same attractor) was measured. The lower panel shows, for all nine possible transitions

from the three initial attractor states, the relative frequency of the three possible tran-

sitions as a function of the perturbation strength m. Note the nonmonotonic behavior: for

instance, transition from a to b is most likely with perturbation sets of size m ¼ 10, and
least likely with m ¼ 5.
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The restriction imposed on transition events, as manifested in the re-

quirement for a pleiotropic response to signals, solves a fundamental

dilemma of systems with multiple attractor states that are all intrinsi-

cally stable. Without barriers to transitions, in the noisy cellular micro-

environment the cell would randomly bounce between the attracting

states. Too robust attractors would prevent any change of cell state. The

‘‘code-dependent’’ restriction of transitions allows the regulatory net-

work to maintain cell fates as robust, self-stabilizing entities in the form

of attractors, and yet to allow (tightly controlled) switches between

them.

Thus, the architecture of the regulatory network is poised to unite

local stability and global flexibility. Specifically, the transitions from the

differentiation or quiescence attractor into the growth or the apoptosis

attractor can so be restricted to a narrow range of specific external

conditions. In this sense, the biochemical pleiotropy acts as an epi-

genetic safeguard against uncontrolled growth or death. Pleiotropy is a

blessing for tightness of regulation, not a harm to signal specificity.

Analysis of gene expression with microarrays reveals groups of

‘‘coregulated’’ genes, which form regulons. As discussed in chapter 6,

such sets of genes have common upstream regulatory motifs. It is often

simply assumed that such genes ‘‘share the same or a similar function.’’

One reason why a single ‘‘function’’ is controlled by a whole group of

genes that are hardwired by the genomic sequence to be coregulated

might be precisely the necessity for having jointly acting genes (transi-

tion-causing sets) to trigger phenotypic changes of the cell. For in-

stance, stimulating fibroblasts with growth factors to undergo the

transition from the quiescence state to the growth state activates a set of

over 60 genes (Fambrough et al., 1999). This set of ‘‘immediate early

response genes’’ might represent the specific transition-causing pertur-

bation set that encodes the key to the growth state. In fact, activation of

growth via the bFGF receptor or the PDGF receptor elicits almost an

identical set of genes, although the immediate postreceptor biochemical

events for these two growth factors are different.

Overlapping Perturbation Sets, Multiple-function Proteins, and

Master Proteins

Since a given transition requires the activity change of a large, defined

set of proteins, control of cell fate is distributed among a large number
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of proteins. The profile of protein presence and activity of the cell

determines whether a given transition-causing set can be recruited.

Thus, the effect of a molecular signal is a function of the ‘‘cellular con-

text’’ defined by culture conditions, cell type, treatments, and so on. In

network simulations, signaling proteins that are part of more than one

(different) transition-causing set are readily found, indicating that

transition-causing sets often overlap. This translates directly into the

notion that regulatory proteins, such as Ras and Myc, can be part of

different perturbation sets that cause different transitions. This in turn

would explain the frequent but counterintuitive observation that signal

transduction proteins can have opposing effects on cell fate—depend-

ing on the cellular context (figure 8.2).

The proteins that are part of a transition-causing set can be viewed as

forming a rather loose functional module. The concerted activation of

such a set would be achieved most efficiently by a wiring diagram in

which a ‘‘master protein’’ would have as its downstream targets pre-

cisely such a set of proteins (or a portion of it). Cell surface receptors

obviously are such master switches. Inside the cell the Ras protein, the

ERK kinases, PI3K, or the Myc transcription factor might represent

such master proteins that have downstream effects that ramify broadly,

yet serve the same ‘‘function,’’ as represented in the concept of regulons

(Tavazoie et al., 1999). This gives rise to the appearance of functional

modules that appear to be ‘‘prewired’’ for switching cell states and

would explain the evolutionary conservation of entire pathways from

yeast to mammals, such as the MAPK- cascades, although they serve

different ‘‘functions’’ in these species (Waskiewicz and Cooper, 1995).

Environmental Cues: Epigenetic Modification of Attractor Landscape

and Pseudo Attractors

Imagine now that in the model network, one would keep some network

elements chronically in a given activity status, say ON. Although this

can be seen as a change of the cellular context discussed above, we can

express such changes in a more formal way. A persistent fixation of the

value of some network elements will obviously alter the attractor

landscape to some extent. Some attractor basins could shrink or even

disappear, and others could enlarge. The requirement for a transition

between attractors could be affected (i.e., the accessibility to certain

attractors might increase or decrease, or the ‘‘access code’’ to a specific
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attractor could become ‘‘invalid’’). New attractors could be created if

the chronic perturbations affect certain network elements. Thus, the

network architecture, inscribed in the genomic sequence, is not the sole

determinant of the ‘‘effective’’ structure of the attractor landscape; (re-

versible) environmental factors help in the fine sculpting of its final

shape.

The attractor landscape undergoes epigenetic modification. To distin-

guish the effective attractors that depend on continuous, external influ-

ence from the ‘‘true,’’ nominal attractors determined by the regulatory

network’s hardwired architecture, we use the term pseudo attractor. This

term should imply that these attractors exist only as long as the exter-

nal cues persist, and are not an intrinsic property of the network. On

the other hand, the genome can express the hardwired, nominal attrac-

tors only if all network elements are free to flip between ON and OFF.

The concept of pseudo attractors in regulatory networks is important

because real cells are also exposed to continuous signals from their tis-

sue environment, such as those originating from paracrine and juxta-

crine (cell-cell) interactions or from interaction with the extracellular

matrix. These contextual influences are thought to account for many of

the characteristic features of the differentiated phenotype that are often

lost when cells are removed from their natural tissue microenviron-

ment and grown in culture.

The picture of a (pseudo) attractor landscape allows formulation of

the biochemical effects of a regulatory input in a more general way.

While we have discussed the capability of signaling molecules to

switch cell fate, the epigenetic modification of the attractor landscape

as it is defined in the network architecture stored in the genome will

also influence the capacity of the external signals to switch cell state.

This brings together genetic determination and environmental modu-

lation. In a more encompassing category of thinking, one could envis-

age using the idea of pseudoattractor as a conceptual framework for

describing the riddle of the relationship among genes, environment,

and noise in determining the phenotype of an organism.

EXTENSION OF THE MODEL: CELL TYPES AND CANCER

Since we are focusing on cell fate regulation as the basis for tissue de-

velopment and homeostasis, we have so far discussed the regulation

within one tissue (i.e., within just one cell type) by equating attractor
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states with the various states that a cell can take. When the whole

organism is considered, we have to deal with different cell types and

the development of pluripotent cells into variously differentiated cells.

As mentioned earlier, it has long been suggested that differentiated

cell types correspond to attractor states. Kauffman refined this idea

and placed it into the framework of genetic Boolean networks (Kauff-

man, 1973; 1993). He went further proposing that a cancer cell can be

equated with a cell type: one that is abnormal and corresponds to an

attractor that is normally not visited by the organism. We briefly dis-

cuss here how the model of cell fate regulation presented in this chapter

can be extended to the whole-organism level in order to embrace the

diversity of cell types and the origin of cancer, which, as alluded to in

the introduction to this chapter, can be triggered by a disruption of cell

fate regulation.

Cell Types as Sets of Attractors

Since every cell type has a distinct (although overlapping) protein

activity pattern and can undergo the analogous cell fates, the extended

model would be that each tissue occupies a region of the protein activ-

ity state space that consists of several attractors representing the vari-

ous alternative cell states of that cell type. The growth attractor would

correspond to the self-renewing stem cell of that tissue, which upon an

appropriate stimulus can transition either into a differentiation attrac-

tor, representing a terminally differentiated cell, or into a quiescence

attractor, representing the ‘‘dormant,’’ pluripotent state characteristic of

stem cells (Fuchs and Segre, 2000). An important aspect of this view is

the varying accessibility to the cell state attractors in different tissues,

which is the basis for the differences of tissue dynamics. For example,

the terminally differentiated neural tissues have large differentiation

attractors but normally almost inaccessible growth or apoptosis attrac-

tors, whereas in intestinal, blood, and skin cells, which represent high

turnover, self-renewing tissues, the latter attractors are large and easily

accessible.

Since many proteins are expressed only during embryonic develop-

ment and organogenesis, one will have to assume that in the entire

genomic protein activity state space, regions exist with attractors that

correspond to embryonic cell types not present in the mature organism.

These attractors are occupied only during development, and are no
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longer accessible due to a different set of tissue cues in the adult or-

ganism that, via epigenetic modification of the attractor landscape, es-

tablish barriers that prevent access to the embryonic attractors. These

‘‘archaic attractors,’’ however, are still lurking somewhere in the state

space and might play a role in the origin of tumors.

Cancer: Reactivation of Embryonic Attractors and Enlargement of

the Basin of the Growth Attractor

In contrast to the epigenetic cues from the environment discussed so

far, mutations cause permanent changes to the wiring diagram of the

genome: they can affect the activity of a regulatory protein (perma-

nently shutting it off or turning it on) or its interaction properties, (e.g.,

disrupt an interaction or change target specificity). This rewiring of the

network can result in the permanent distortion of the attractor land-

scape such that novel attractors are created or existing ones that are

inaccessible in a given adult tissue become accessible in response to an

appropriate set of external stimuli. Based on this model, tumorigenic

mutations would lead to an enlargement of the basin of the growth

attractor in which the cell would be trapped. This increased robustness

of the growth state would result in cell proliferation in a broader range

of conditions (up to full independence of mitogenic signals), thus con-

tributing to cellular fitness in the microevolutionary development of

tumors. The most likely way for mutations to achieve an enlarged

growth attractor would be to co-opt a nearby ‘‘archaic attractor’’ repre-

senting an embryonic version of the same cell type, by making it (or a

distorted version of it) accessible from within an adult cell type.

Unlike cells in the tissue of mature organisms, in which the differen-

tiation attractor is dominant such that proliferating cells are rare, in the

embryo bulk cell proliferation is required for tissue expansion; thus this

embryonic attractor would be expected to be a large and robust growth

attractor. In fact, hallmarks of tumor cells are not only the increased

stability of the proliferative state, as manifested in the reduced re-

quirement for growth factors to proliferate, but also the features of im-

maturity in terms of differentiation characteristics. Tumor cells often

express embryonic proteins, such as alpha-fetoprotein, placental alka-

line phosphatase, or carcino-embryonic protein (Jacobs and Haskell,

1991). Moreover, phenotypes such as cell migration, tissue invasion,

and stimulation of blood vessel growth, which contribute to the
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malignancy of tumor cells, are all normal features of embryonic cells.

Numerous other generic properties of malignant cells—such as the

initially increased tendency to apoptosis, the occurrence of trans-

differentiation, and the existence of a few but distinct subtypes of a

given cancer type—are consistent with the concept of attractors, but are

beyond the scope of this chapter.

CONCLUSION AND OUTLOOK

In the wake of the unprecedented success of genomic technologies,

scholars of biology have criticized the reductionist nature of ‘‘big biol-

ogy’’ and its use of large-scale, high-throughput procedures to dissect

and discover—rather than to understand. They have advocated an

integrative view of living systems, in particular through the optics of

the emerging science of complex systems (Strohman, 1997; Coffey,

1998; Rose, 1998; Lewontin, 2000; Huang, 2000).

As a concrete case of such an integrative approach, we have focused

in this chapter on the problem of cell fate regulation in mammals as

first level of integration of gene effects into a higher-level functionality.

We have introduced the established ideas of Boolean networks as a ge-

neric model for signal transduction in cell fate regulation, and have

demonstrated how the collective behavior of the members of an inter-

action network can give rise to a rich and complex, but ordered, be-

havior restricted by rules.

However, we need to stress here that the Boolean network model is

no doubt an oversimplification, more of a symbolic modeling language

that serves as a tool to study—with the necessary coarse graining and

abstraction—the behavior of large systems of interacting molecules in

an integrated manner. Modifications and refinements of the theoretical

model system will be necessary to consider additional features of bio-

chemical reality, such as the temporal succession of inputs (including

differential affinity of interactions), asynchrony of network updating

(including differential kinetics), and multiple thresholds for enzymatic

activities.

We have also treated cells as homogeneous entities, though it is in-

creasingly appreciated that signal transduction takes place on sub-

cellular compartments that involve scaffold proteins (Tsunoda et al.,

1998; Burack and Shaw, 2000). The spatial organization of the interact-

ing partners could be encoded in more complex Boolean functions.
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Moreover, to achieve a complete picture of regulatory networks, one

will have to extend the model beyond the single layer of a protein in-

teraction network and include the protein-gene network (which com-

prises the interaction between transcription factors and cis-regulatory

elements) for which gene expression profiling is already providing ex-

perimental data (Tavazoie et al., 1999; Bucher, 1999).

The discrete network model should by no means obviate the need for

a detailed quantitative analysis of molecular machineries of cell regu-

lation. However, Boolean networks are at the moment one of the sim-

plest formalisms that can capture a wide range of properties of cell

regulation into a coherent, formal framework that does justice to our

mostly qualitative knowledge of molecular interactions, and, as such,

can reveal some basic principles for a truly integrative approach in

postgenomic biology.

It is obvious that beyond the generic model with anonymous genes

and proteins, we will have to incorporate the specifics of existing mo-

lecular networks into our model. The spate of gene-specific data trig-

gered by recent advances in genomic technologies, notably DNA

microarray-based gene expression profiling (Young, 2000; van Hal et

al., 2000) and proteomics (Dutt and Lee, 2000), hold promise of en-

abling this. However, profiling data are currently analyzed at a de-

scriptive level (e.g., by clustering of genes or conditions based on

similarities of expression patterns).

A first step beyond the descriptive interpretation of such functional

profile data, although still in the embryonic stage, is the efforts to ‘‘re-

verse engineer’’ the complete network architecture based on gene ex-

pression profiles. Algorithms have been proposed that—at least in

simple, idealized theoretical network models—can infer from series of

gene activation profiles on to the underlying network architecture

(Liang et al., 1998; Akutsu et al., 2000). Perhaps more practicable are

the recently initiated collaborative efforts to build signal transduction

pathway databases based on published, experimentally confirmed mo-

lecular interactions of the regulatory network (e.g., Biopathways Con-

sortium and Cell Signaling Networks Database). Such electronic

databases will ultimately lead to a map of the complete wiring archi-

tecture of regulatory networks of mammalian cells, similar to the clas-

sical charts of metabolic networks. These regulatory maps should serve

to organize and graphically represent the accumulated knowledge of

pathways and their relationships, and can also teach valuable lessons
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about universal, large-scale design principles of biological networks

(Jeong et al., 2000).

However, such knowledge databases of regulatory networks will be

mere static graphs of pathways if one does not breathe life into these

maps by simulating their dynamic behavior, as demonstrated in this

chapter with theoretical, anonymous networks. Given the intrinsic

robustness of biological networks (Alon et al., 1999; Salazar-Ciudad et

al., 2000), it is likely that an exhaustive knowledge of all the quantita-

tive parameters might not be necessary. Validation of the network

structure will be possible by comparing the simulated dynamic be-

havior with real data obtained from specific perturbation experiments

in which, using current and future technologies, gene expression pro-

files (transcriptome), and protein expression and activity profiles (pro-

teome, phosphorylome, activome, etc.), are monitored (MacBeath and

Schreiber, 2000).

This should launch the next big (postgenomic) endeavor of analyzing

the structure of the gene activity state space of real cellular systems, map-

ping the real attractor landscape of the human genome, and studying

its biological significance. The information on the dynamics might be

more valuable than the static network architecture map, since it links

directly to global cellular behavior. Knowledge of the state space

structure could pave the way toward developing the predictive capa-

bilities in cell fate regulation that one will need to understand regu-

lative disorders, such as cancer, and to explore the differentiation

potential (neighboring, accessible attractors) of somatic stem cells in

order to design therapeutics for a wide variety of diseases.

NOTE

1. Having few attractors that are either fixed points or small cycles is a property that

belongs to only a subset of possible network architectures, namely those that are sparsely

connected (kfN), as is the case in real cellular regulatory networks, and exhibit a bias

toward a subset of Boolean functions that is most likely to be implemented by molecular

interactions (high internal homogeneity). (For details see Kauffman, 1993.) Hereafter we

will deal with this subset of biologically reasonable network architectures.
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9 Predicting Protein Function and Networks
on a Genomewide Scale

Edward M. Marcotte

WHAT IS PROTEIN FUNCTION?

Perhaps the most significant finding from the more than 80 genomes

that have been sequenced as of 2002 has been the extent of our igno-

rance about the constituents of cells. In virtually every genome

sequenced, the majority of genes have never been studied directly. In

spite of this, for about half of the genes at least one near or distant rel-

ative has been studied, so we glean our knowledge from the activities

of these relatives. Until recently such methods for extending informa-

tion to proteins with similar sequences or structures (homology-based

methods) have been the only form of inference about protein function.

Homology-based annotation, with algorithms such as BLAST (Alt-

schul et al., 1997; http://www.ncbi.nlm.nih.gov/BLAST), has
been wildly successful in extending knowledge from the small set of

experimentally characterized proteins to the tens of thousands of pro-

teins found in genome sequencing projects. However, these methods

perform as one might expect: they provide information only for pro-

teins with very closely related functions. They reveal little about pro-

teins that work together but typically have unrelated sequences or

structures. Thus, the homology-based methods cannot be used to re-

construct metabolic or signaling pathways or other protein interaction

networks. That such a bias exists shows that there are different aspects

to protein function; methods that reveal one aspect do not necessarily

reveal others.

The two most important aspects of protein function, defined in figure

9.1, will be referred to as the molecular function and the cellular function

of proteins. The homology-based methods tend to find only the molec-



ular functions of proteins, but tell little about the context in which pro-

teins operate. In fact, the context is crucial: proteins virtually never

function alone in cells, but often interact with many partners. It has

been estimated that an average protein will physically interact with

2–10 partners (Marcotte et al., 1999a). It can also be estimated that a

protein will functionally interact—that is, participate in the same path-

way—with even more proteins, perhaps two to three times the number

of physical interactions. This interconnectedness is an important feature

of the cellular organization and regulation of proteins. For this reason,

protein networks are the subject of widespread study.

A new class of computational methods has been developed that finds

the cellular function of proteins. This type of method is not based on

comparisons of sequence or structure, but instead analyzes other

Figure 9.1 Two important components of protein function are the molecular (biochemi-

cal) function and the cellular (contextual) function (e.g., see Kim, 2000; Eisenberg et al.,

2000). The molecular function of a protein is essentially the traditional view. It is the spe-

cific action that the protein engages in, such as binding, activation, inhibition, catalysis,

fulfilling a structural role, etc. The cellular function is the system of interactions that the

protein participates in, the context within which it operates. Other aspects of function in-

clude the intracellular location of proteins and the times and conditions under which

proteins are expressed.
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attributes associated with genes. Broadly speaking, these nonhomology

methods draw inferences about relationships between genes by ana-

lyzing the context in which the genes are found. This chapter will

present an overview of these methods, along with a discussion of their

applications for finding protein function, reconstructing cellular path-

ways, revealing new metabolic systems, and even revealing physical

properties of proteins, such as their locations in cells.

GENOMES CONTAIN CONSIDERABLE INFORMATION ABOUT

PROTEIN FUNCTION

It is easy to think only of the coding potential of genes, since that seems

most immediately important for producing a protein. However, genes

have many different properties besides their coding potential, and in-

formation about the relationships between genes is often encoded in

these other properties. Important contextual properties of genes include

their position and order on the chromosome, the flanking control

regions, the distribution of homologues in other species, the occurrence

of fusions between genes, and so on. Table 9.1 summarizes many such

genomic sources of functional data and lists data derived from meas-

urements of protein and mRNA expression patterns.

Just as homology-based methods analyze conserved sequences or

structures to find proteins with related molecular function, so non-

homology methods analyze conserved contextual properties to find

proteins with related cellular function. At the heart of nonhomology

methods is the fact that proteins working together in the cell have

shared constraints—they must be encoded by the same genome, they

often are coregulated, they occasionally are fused into a single gene,

they must at some point be coexpressed, and so on. Nonhomology

methods exploit these constraints to identify proteins working together.

DISCOVERING PROTEIN FUNCTION FROM GENOMIC DATA

Finding Function from Domain Fusions

One of the most straightforward nonhomology methods needs large

numbers of protein sequences but does not require complete genomes.

It has been known for years that proteins encoded as separate genes in

one organism often are found in another organism fused into a single
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Table 9.1 Analysis of ‘‘contextual’’ information associated with genes

Contextual Information Applications

Information in genomes about

the relationships between genes

Information derived from a

single genome

Intergenic distance

Intragenomic conservation

of regulatory sequences

Operon reconstruction

Operon and regulon

reconstruction

Information derived from

comparisons of multiple

genomes

Distribution of sequence

homologues among

different organisms

Calculation of phylogenetic

profiles for pathway

reconstruction and cellular

localization

Conservation of relative

gene position

Operon reconstruction

Domain fusions Pathway reconstruction

Intergenomic conservation

of regulatory regions

Identification of

coregulated genes

Information in expression data

about the relationships

between genes

Clustering genes by their

expression profiles

mRNA expression profiles Identification of

coregulated genes and

pathway or operon

reconstruction

Spatial expression profiles Pathway reconstruction

Protein expression profiles Pathway reconstruction

Clustering genes by the

expression levels of all other

genes in one or more

experiments

Genomewide expression

as a gene phenotype

Pathway reconstruction

Beyond simply coding for genes and their regulatory sequences, genomes are rich in

information about the relationships between genes. Analysis of this information allows

reconstruction of cellular systems, pathways, and genetic networks. For the last entry,

the expression of all other genes is used as the phenotype when the gene in question is

disrupted. Genes are then clustered to maximally match their phenotypes.
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polypeptide. Two such examples are shown in figure 9.2. In each of the

two examples, the separately encoded E. coli proteins are drawn be-

neath the fusion protein from another organism. In both cases, the E.

coli proteins are members of the same pathway. In the bottom example,

the nitrite reductase proteins physically interact to form an active

nitrite reductase enzyme.

In fact, this trend is surprisingly common (Marcotte et al., 1999a;

Enright et al., 1999), especially among metabolic proteins (Tsoka and

Ouzounis, 2000). Thousands of such fusion events can be found—in

yeast, more than 45,000 pairs of proteins can be found as fusion pro-

teins in other organisms (Marcotte et al., 1999a). Almost universally,

the cellular functions of the component proteins are very closely re-

lated. Searching systematically for these fusion events therefore rapidly

generates functional links between proteins. For this reason, the fusion

proteins have been called ‘‘Rosetta Stone’’ proteins for their ability to

decode the functional links between component proteins (Marcotte et

al., 1999a).

Figure 9.2 Two examples of the domain fusion or Rosetta Stone method of finding

functional links. In each example the two lower proteins can be inferred to be functionally

linked because of the existence of the top fusion protein. For example, if we did not al-

ready know that the E. coli nitrite reductase large and small subunits formed a hetero-

complex, they could be inferred to be functionally linked after finding the K. pneumoniae

fusion protein.
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Rosetta Stone links are found by aligning a query protein’s amino

acid sequence against protein sequences from genomes or a large se-

quence database such as GenBank. The statistically significant hits from

this search include sequence homologues and candidate Rosetta Stone

proteins. These hits are then used as the query proteins for a second set

of searches against the sequence database. The statistically significant

hits from this second round of searches are then tested for similarity to

the original query protein. Those second-round hits without sequence

similarity to the original query protein are proteins with Rosetta Stone

links to the original query protein.

Not all fusions convey the same degree of confidence in the resulting

functional linkage. Individual domains have different propensities to

participate in these gene fusion events, and many cell signaling

domains, such as SH3 or tyrosine kinase domains, can be found fused

into literally hundreds of different genes. These promiscuous domains

still can be used to generate functional linkages, but it has been found

that limiting the Rosetta Stone analysis to nonpromiscuous domains

increases the functional similarity of the linked proteins. This filtering

step can be performed either by explicitly forbidding links generated

by promiscuous domains (Marcotte et al., 1999a; http://www.doe-
mbi.ucla.edu) or by requiring strong sequence homology or even
orthology between the individual proteins and the Rosetta Stone pro-

tein (Enright et al., 1999; Enright and Ouzounis, 2000). Regardless, it is

possible to generate thousands of significant links between pairs of

proteins in a genome by this method.

Finding Function from Coinheritance

One important consequence of the genomic revolution is the finding

that genomes have mosaic compositions, containing genes with widely

varying phylogenetic origins. This trend is especially strong among

prokaryotes due to processes such as horizontal gene transfer (Jain et

al., 1999; Koonin and Galperin, 1997), but is true to a considerable ex-

tent in eukaryotes as well (Marcotte et al., 2000). These variable phylo-

genetic origins of genes are another aspect of gene context for use in

these analyses.

This phylogenetic diversity can be explicitly described for each gene

by calculating its phylogenetic profile (Pellegrini et al., 1999, with related
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concepts in Gaasterland and Ragan, 1998; Huynen et al., 1998; Ouzou-

nis and Kyrpides, 1996; and Tatusov et al., 2001). A phylogenetic pro-

file describes the presence or absence of a gene across a set of

organisms with sequenced genomes. Genes with similar phylogenetic

profiles are therefore always inherited together or absent from the same

organisms. This similarity is unlikely to happen by chance if enough

species are examined, and such proteins are thus extremely likely to

function together. For 30 genomes, there are about 230, or 109, possible

phylogenetic profiles, making random matches of profiles unlikely.

When enough different species are examined to be statistically signifi-

cant, genes with similar phylogenetic profiles are inferred to be func-

tionally linked.

Constructing a phylogenetic profile for a gene requires performing

sequence alignments between that gene and all genes from each of the

fully sequenced genomes. Because thousands of sequence alignments

must be calculated, rapid alignment algorithms like BLAST (Altschul et

al., 1997) are typically used. The phylogenetic profile of a gene is then

calculated as a vector in which each entry represents a measure of se-

quence similarity between that gene and the most similar sequence

match in a given genome. This measure of sequence similarity Si; j can

be as simple as a binary code: Si; j ¼ 1 if a sequence homologue of gene i

is present in genome j and Si; j ¼ 0 if no homologue exists. Alter-
natively, the measure of sequence similarity can be a real, valued mea-

surement reflecting the degree of sequence similarity present. One such

measure that has empirically been shown to work satisfactorily is

Si; j ¼ �1=logðEÞ, where E represents the expectation value from the se-

quence alignment between gene i and the top-scoring sequence match

in genome j (Marcotte, 2000). Real-valued phylogenetic profiles calcu-

lated in this fashion are shown in figure 9.3.

Once a phylogenetic profile is calculated for each of the genes in

a genome, functional links can then be inferred between genes with

similar phylogenetic profiles. The simplest approach is to treat phylo-

genetic profiles as coordinate vectors positioning genes in a high-

dimensional space, then calculating distances between genes, using such

distance metrics as the Manhattan, Euclidean, or Mahalonobis distance.

Genes positioned close together in space can be inferred to be coin-

herited, and therefore functionally linked. Another approach is to apply

a statistical test such as a Fisher exact test on the binary phylogenetic

profile vectors to identify coinherited genes.
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Figure 9.3 Examples of phylogenetic profiles for a number of yeast proteins. Each pro-

file, drawn horizontally, indicates the degree of sequence similarity of a protein—for ex-

ample, MLH1—to the most similar protein in each of the fully sequenced genomes (listed

as abbreviations across the top.) Where there is no sequence homologue, the profile has

a white square, and where there is a statistically significant sequence homologue, the

square is colored to indicate the degree of homology, with black being most similar. Three

functional classes of proteins are profiled; profiles are shared within a functional class but

are quite distinct between classes.
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As an alternative to calculating pairwise links, the genes can simply

be clustered into coinheritance groups on the basis of similarity be-

tween their phylogenetic profiles. Many such clustering approaches

have been developed in computer science and statistics for clustering

points in high-dimensional spaces, such as k-means clustering, which

are appropriate for this task.

Finding Function from Relative Gene Position

Another powerful method for finding functionally linked genes comes

from examining the conservation of relative positions of genes in

genomes (Dandekar et al., 1998; Tamames et al., 1997; Overbeek et al.,

1999). As with the two previous methods, this aspect of gene context

can be analyzed in a straightforward fashion. The essence of the

method is that the order of genes in genomes tends to randomize over

time. Therefore, if two genes have similar positions relative to one an-

other in several genomes, the genes are likely to be functionally linked.

In the simplest case, this means that the genes are immediate neighbors

in several genomes, but the method could theoretically be extended to

any separation between the genes. On-line tools for investigating the

genomic neighbors of a gene include the Entrez genome (http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome) and
WIT (http://wit.mcs.anl.gov/WIT2) databases.
This method exploits the trend for prokaryotic genes to be organized

into operons, in which genes with a related function are clustered close

together on the genome to allow coordinate transcription and transla-

tion of the genes. Operons seem to be uncommon in most eukaryotes,

occurring mainly in unusual gene families such as the cadherins (Wu

and Maniatis, 1999). However, in prokaryotes, operons are virtually the

norm, and where genes from an operon are conserved in multiple spe-

cies, this method allows very reliable functional links to be inferred. In

fact, it has been shown that the observation of two genes as immediate

neighbors in two reasonably unrelated organisms is sufficiently statis-

tically significant to infer a functional link between the proteins (Over-

beek et al., 1999), as diagrammed in figure 9.4A and B.

A rough calculation of significance goes as follows. Given two adja-

cent genes in a genome, we would expect by random chance to find the

genes adjacent in a second genome of n genes, with all genes, but not

gene order, conserved between the two genomes, only two times out of
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n � 1. So, given a typical bacterial genome of n ¼ 4000 genes, we would
expect to find the two genes adjacent with a random probability

p ¼ 2=ð3999Þ, or 5� 10�4. Because of the ubiquity of operons and the
low random likelihood of conserved neighbors, the coverage of this

method can be quite high, and thousands of pairwise functional links

can be generated (Huynen et al., 2000a).

Finding Function from Intergenic Distances

A second promising method has been described that analyzes gene

position to find functional links between proteins. This method is

explicitly formulated to detect operons and works by analyzing the

number of nucleotides separating neighboring genes (Salgado et al.,

2000). Genes organized in bacterial operons are cotranscribed on a sin-

gle mRNA and translated in a coordinated fashion. This coordination

of transcription and translation for the genes in an operon probably

places a selective pressure on keeping genes close together, as com-

pared to an absence of selection for adjacent genes not in the same

operon. Thus, adjacent genes with short intergenic distances tend to be

in the same operon; adjacent genes with long intergenic distances tend

not to be.

One advantage of this method is that it can be performed for genes

unique to a genome—no gene conservation is required for the method

to operate. This ability to work on ORFans, the genes found only in a

Figure 9.4 (A) Comparing the genome of organisma1 with the genomes of several other

organisms allows a number of inferences to be drawn about the relationships between the

genes of organism a1. In the figure, genes, depicted as labeled white boxes, are arranged

on the genomes, drawn as heavy black horizontal lines. First, the genes A and B can be

found fused in organisma2, suggesting that A and B are functionally linked. Second, the

genes A, B, and C are found in the same set of organisms (a1, 2, and 5) and are absent

from the same set of organisms (a3 and 4). This coinheritance suggests A, B, and C are

functionally linked. Third, genes B and C are neighbors in more than one genome, sug-

gesting a selective pressure to maintain their relative positions. Likewise, the intergenic

distance between genes B and C is much smaller than the typical intergenic distance,

suggesting that B and C may belong to an operon. Fifth, the mRNA of genes C and D are

coexpressed in many different experiments, suggesting C and D are coregulated or func-

tion together. Each of these inferences can be conceptualized as generating a functional

linkage between two proteins. (B) The resultant network of functional links. Predicted

networks can be compared can complemented by experimental networks, such as the ex-

perimentally derived link between C and E.
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single genome (Fischer and Eisenberg, 1999), sets this method apart

from the other genomic methods described above. In this respect, the

analysis of intergenic distance has more in common with analysis of

expression data, which can also provide functional links for ORFans.

Finding Function from Regulatory Regions

The last obvious contextual property of genes useful for assigning pro-

tein function is the presence of regulatory regions found outside of

gene coding regions. These regulatory sites in DNA are recognized and

bound by transcription factors, enhancers, and repressors to control the

transcription of the neighboring genes. Because genes with related

functions are often coregulated, it would seem reasonable to create

functional links between genes with similar regulatory regions.

Unfortunately, regulatory regions are notoriously difficult to identify.

Judging the similarity between them is equally difficult. Although con-

sensus sequences have been identified for most major regulatory sites

(e.g., see the Eukaryotic Promoter Database, http://www.epd.isb-
sib.ch), the sites recognized by a given transcription factor or poly-
merase are often quite varied. Nonetheless, progress has been made in

identifying shared regulatory regions upstream of coexpressed genes

(Roth et al., 1998) and upstream of coinherited genes, Rosetta Stone

linked genes, and genes coconserved in operons (Manson McGuire and

Church, 2000). Since genes in these categories are often functionally re-

lated, it seems likely that the inverse process, clustering genes by their

regulatory regions, will also yield functional information. An attempt

at this process (Pavlidis et al., 2001) shows that such functional infor-

mation is available, although the method is not currently as powerful

as methods exploiting other sorts of contextual information. However,

such analyses of regulatory regions are likely to improve dramatically

with the explicit knowledge of transcription factor binding sites gen-

erated from DNA microarray mapping of transcription factor specific-

ities (Iyer et al., 2001).

DISCOVERING PROTEIN FUNCTION FROM EXPRESSION DATA

The genomic analyses discussed above examine static genomes and

draw inferences from the state of the genomes at one point in time.

However, genomes and cells are dynamic systems, and considerable

234 Edward M. Marcotte



information can be gleaned about cellular systems by analyzing these

dynamics. Wemight argue that genomes are dynamic on two time scales:

the evolutionary and the immediate. The methods discussed above an-

alyze events on the evolutionary time scale. Now we turn to events on

the more immediate time scale.

Finding Function from mRNA Expression Patterns

DNA microarrays and EST sequencing have produced literally millions

of discrete measurements of gene expression. This flood of data has in

turn stimulated many analyses of gene expression profiles. In general,

the analyses share the following form: A set of measurements of the

expression of a number of genes under different conditions is available,

from DNA microarrays (e.g., as in Lashkari et al., 1997), serial analysis

of gene expression (SAGE; Velculescu et al., 1995), or expressed se-

quence tags (EST; Adams et al., 1991). Expression vectors are then con-

structed for the genes, each vector describing the expression of a given

gene under a range of cellular conditions, cell types, genetic back-

grounds, and so on. These expression vectors are then clustered to find

genes with similar expression patterns (Eisen et al., 1998). Given

enough independent experiments (>100) with sufficient variation in the

conditions, genes clustered in this fashion tend to be functionally re-

lated (Marcotte et al., 1999b). Fortunately, unlike complete genome

sequences, data of this sort are readily generated. It is possible to per-

form large numbers of microarray experiments, producing enough ex-

pression data to find statistically significant functional links. Many

expression data sets are publicly available from sites such as the Stan-

ford Microarray Database (http://genome-www4.stanford.edu/
MicroArray/SMD).
A variation of this approach involves analysis of SAGE or EST libra-

ries collected from various tissues and cell conditions (e.g., the dbEST

database: http://www.ncbi.nlm.nih.gov/dbEST/index.html).
In this approach, mRNAs from cells are reverse transcribed into cDNAs

and sequenced. Since many thousands of mRNAs are typically se-

quenced, the EST or SAGE library is a fairly representative selection

of the mRNAs present under those cellular conditions, and thus can

serve in a fashion analogous to microarray expression measurements.

EST and SAGE libraries vary widely in size and completeness, so

calculations of expression vectors with their data are not entirely
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straightforward. However, related analysis can be performed, such as

Guilt-by-Association, which essentially creates functional links between

genes based on their copresence and coabsence from EST libraries

(Walker et al., 1999).

Coexpression analyses have advantages and disadvantages in regard

to genomic data for functional predictions. The primary disadvantage,

beyond having to collect additional data, is that the functional infer-

ences from coexpression are relatively weak until a large body of ex-

pression data is collected (Marcotte et al., 1999b). However, this is more

than compensated for by the advantage of learning information about

any gene for which expression can be detected, regardless of its con-

servation in other species. Coexpression analysis and the prediction of

operons using intergenic distances (Salgado et al., 2000) are currently

the only two computational methods capable of generating functional

information for ORFans (Fischer and Eisenberg, 1999).

Finding Function from Spatial Expression Profiles

The expression methods discussed above typically give no information

about the intracellular location of the expressed molecules. However,

spatial expression data should be useful for pathway reconstruction,

since we expect functionally linked proteins to be found at similar

subcellular locations. Therefore, the converse will often be true: pro-

teins that are always expressed at the same locations probably function

together. This approach to finding protein function is quite technically

demanding, but in spite of the difficulty, one group has collected such

spatial expression data for more than 1750 genes expressed in Xenopus

oocytes (Gawantka et al., 1998). More recently, the data have been in-

corporated into a database and methods to measure similarity between

mRNA spatial expression patterns have been developed (Pollet et al.,

2001). Although considerable work remains, this work establishes the

viability of this method for generating functional information.

Finding Function from Protein Expression Profiles

Gathering expression data for an entire proteome, or all of the proteins

encoded by a genome, is only now becoming feasible, due largely to the

development of high-throughput mass spectrometric analyses of pro-
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teins (Shevchenko et al., 1996; Hunt et al., 1986; Gygi et al., 1999; Jensen

et al., 2000). Although such protein expression data are not yet widely

available, they will be a valuable complement to the mRNA expression

data from EST libraries and chips. What is not yet clear is how well

protein expression data will correlate with mRNA expression data.

Early results comparing protein expression by mass spectrometry

and mRNA expression by SAGE suggested that mRNA and protein

expression patterns are quite different (Gygi et al., 1999). Recent devel-

opments with DNA chips have allowed quantification of mRNAs being

actively translated through analysis of polysomal mRNA fractions.

These chip-based measurements of protein expression show strong

correlation with chip-based measurements of mRNA expression (Joe

DeRisi, personal communication). Nonetheless, it is likely that the pro-

tein expression patterns will hold considerable value for inferring pro-

tein function.

In theory, protein expression data can be analyzed similarly to

mRNA expression data. It is likely that expression data will be col-

lected for many of the proteins in a proteome over many different

cellular conditions. As with mRNA expression data, these protein

expression data will compose expression vectors that can be clustered

and analyzed much as the mRNA data are.

However, protein expression data may contain an additional element

absent from mRNA expression data: mass-spectrometric methods have

the capability not only to measure protein expression levels but also to

identify protein modifications. Posttranslational modifications of pro-

teins are widespread in cells, both spontaneous unregulated events

such as oxidation, and enzymatic modifications such as lipidation,

phosphorylation, and ADP ribosylation. Such modifications often

modify the activity or localization of the proteins. Thus, it seems likely

that protein expression profiles will catalog not only expression pat-

terns but also protein states, such as on, off, activated, repressed, and so

on. These protein state vectors will provide a rich source of data for

protein function prediction.

MEASURING PROTEIN FUNCTION AND TESTING PREDICTIONS

Before testing any of these predictive methods, one must develop a

metric for measuring protein function. At first glance, protein function
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would seem difficult to quantify. However, several metrics have been

developed that perform quite well, allowing optimization and calibra-

tion of the methods.

Perhaps the most obvious metric is that of testing that the methods

recover known functional relationships. Using a database of known

pathways, such as the KEGG (Kanehisa and Goto, 2000; http://
www.genome.ad.jp/kegg/kegg2.html) or EcoCyc (Karp et al.,

2000; http://ecocyc.pangeasystems.com/ecocyc) database of
metabolic pathways, or the DIP database of protein interactions

(Xenarios et al., 2001; http://dip.doe-mbi.ucla.edu), each

method is evaluated by its coverage, the fraction of experimental links

correctly predicted by the algorithm, and by its accuracy, the fraction of

predicted links that are verified by an experimental link.

Unfortunately, the measurement of accuracy cannot be very exact,

since our knowledge of experimental pathways is limited and few

pathways are known completely. Thus, absence of a link from the ex-

perimental database does not necessarily mean the link is wrong. Due

to this limited knowledge, we can measure false negative predictions

accurately (failure to predict an experimental link), but cannot evaluate

false positive predictions (prediction of a functional link where none

exists). To some extent, the accuracy measurement, while not correct in

an absolute sense, can be treated as a relative value for optimization

and for comparisons between algorithms.

A second metric that performs well in practice is that of key word re-

covery or category matching (Marcotte et al., 1999b). For this approach,

genes of known function are first classified into a limited set of func-

tional categories. Many databases have such categorizations incorpo-

rated, sometimes explicitly (as in the MIPS database of yeast proteins;

Mewes et al., 1998) and sometimes implicitly (as in the key words

associated with proteins in the SWISSPROT protein sequence database;

Bairoch and Apweiler, 2000). Testing predictions is then reduced to

checking for agreement between the predicted and known key words

or categories for each characterized protein, and finding the average

agreement over all characterized proteins. An example is calculating

hkey word recoveryi ¼ 1

A

XA

i¼1

Xx

j¼1

nj

N
;

where x is the number of key words known for the protein i being
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tested, N is the number of key words predicted for the protein, and nj is

the number of times key word j from the protein’s known annotation

appears in the predicted key word list. The average key word recovery

is calculated for all A characterized proteins.

For many of the predictive methods, the prediction is not of a given

functional category but of a link between two proteins. In these cases,

for all predicted protein pairs involving proteins of known function, the

overlap between the key words or categories of the two proteins can be

calculated with a function such as the Jaccard coefficient:

hkey word overlapi ¼ 1

P

XP

i¼1

k1X k2
k1W k2

� �
;

where for each of the P pairs of linked, characterized proteins, the k1
key words of one protein are compared against the k2 key words of the

linked protein partner. The number of key words in the intersection is

divided by the number of key words in the union to give a normalized

measure of the overlap between the two sets of key words. The value of

this overlap averaged over all P pairs gives a measure of the accuracy

of the prediction algorithm. To optimize and compare prediction algo-

rithms, this measurement of method accuracy can be combined with

the measured coverage of known pathways.

ASSIGNING PROTEINS TO FUNCTIONAL CATEGORIES

One simple way to implement these methods is to test if proteins be-

long to given functional categories (Pavlidis et al., 2001; Marcotte et al.,

2000). To do this, an algorithm is trained to recognize the characteristics

of proteins in a given functional category. Such a discrimination algo-

rithm requires a set of quantitative features for each protein. Effec-

tively, these features are treated as coordinates mapping the protein

into a high-dimensional feature space. When the features are chosen

appropriately, proteins belonging to a given functional category fall in

a distinct region of this feature space and proteins from other func-

tional categories fall in other regions.

Many of the contextual properties of genes can be interpreted as fea-

tures. For example, the phylogenetic profile of a protein is a vector in

which each element describes the degree of similarity of the protein to

the most similar sequence in a given genome. When interpreted as a list
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of features, the phylogenetic profile describes the mapping of a protein

into a phylogenetic space. The attributes of this space are the following: It

is an n-dimensional space, where n is the number of genomes used to

calculate the phylogenetic profile. The axes of the space are not

orthogonal—some genomes are quite similar to each other, so some

axes are more correlated than others. (If we choose, we can orthogon-

alize the space—for example, by applying a whitening transformation.)

Last, proteins are not evenly distributed in this space. Certain system-

atic biases occur in the types of proteins encoded by a genome, and

these in turn introduce biases in the genes’ locations in phylogenetic

space. For example, each genome contains a fraction of genes unique to

that species; these genes all map to the same region of phylogenetic

space. Likewise, certain genes are broadly conserved among only

eukaryotes or prokaryotes—again, these genes all map to the same

general region of phylogenetic space. However, proteins with a related

function cluster in this space, as do eukaryotic proteins localized to

similar cellular compartments (Marcotte et al., 2000).

A discrimination algorithm defines a set of boundaries in this high-

dimensional space that separate proteins with the desired function

from all other proteins. Numerous algorithms have been adapted from

statistics and computer science for this purpose, including Bayesian

classifiers (elegantly described in Mosteller and Wallace, 1984), support

vector machines (Pavlidis et al., 2001), neural network discriminators,

and linear discrimination functions (Marcotte et al., 2000). The advan-

tage of this method of predicting function is that one can test for very

specific functions, as well as calculate the degree of confidence in the

results.

INTEGRATING METHODS TO DISCOVER PROTEIN FUNCTIONAL

AND INTERACTION NETWORKS

The discrimination algorithms described above work under the as-

sumption that a set of functionally related proteins is known, and more

proteins with the same function are desired. In this approach, the

algorithms must be trained on a set of positive examples, proteins

whose functions are known to match the desired function, as well as on

a set of negative examples.

However, a naive approach can be useful to discover what trends are

in the data and to look for naturally occurring clusters. The naive
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approach is also biologically motivated: it is now becoming apparent

that proteins are organized into large interaction networks in the cell.

One such experimentally derived protein interaction network is shown

for the proteins of yeast in figure 9.5, derived from high-throughput

measurements of protein interactions (Uetz et al., 2000; Ito et al., 2000)

and from mining biological literature for all previously known yeast

Figure 9.5 The proteins of yeast interact in an extensive network. Here, the vertices of

this graph are 1722 yeast proteins participating in 2612 experimentally observed inter-

actions, drawn as edges connecting the interacting partners. Two regions are expanded

to show an interaction network involving the ras protein and an interaction network

involving several DNA replication factors (RFC1–5). Many experimental techniques are

represented, including high-throughput two-hybrid interaction screens (Uetz et al., 2000;

Ito et al., 2000), mass spectrometry, and co-immunoprecipitation. The interactions are

available courtesy of Ioannis Xenarios, curator of the Database of Interacting Proteins

(Xenarios et al., 2001).
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protein interactions (Xenarios et al., 2001). Such networks reinforce the

notion that proteins never work alone. Ideally, the predictive methods

should reveal exactly these sorts of networks.

To discover such networks, the predictive methods can be applied to

produce functional links between pairs of proteins. Although the links

are generated in a pairwise fashion, extensive networks of proteins re-

sult when links are calculated for all of the genes in a genome. Different

types of networks are calculated, depending on the method used. For

example, mRNA expression links may produce coexpression networks,

and phylogenetic profiles will produce coinheritance networks. How-

ever, networks provide a logical framework for combining methods.

Using the metrics described earlier, each method can be optimized to

link proteins with a comparable degree of confidence. Then, links gen-

erated by each method can be combined to create a functional interac-

tion network. A simplified example is diagrammed in figure 9.4B,

derived from the gene context information for one the organisms (a1)
in figure 9.4A.

Actual networks calculated for all of the proteins encoded in a

genome are much more complicated. Figure 9.6 shows such a predicted

functional network for 2240 proteins of yeast. Inspection of the network

shows that it has considerable diversity in its structure, with many

highly connected subnetworks. Examination of such subnetworks

shows reasonable correspondence to many known pathways (e.g., see

Pellegrini et al., 1998; Marcotte, Pellegrini, Ng, et al., 1999; and Mar-

cotte, Pellegrini, Thompson, et al., 1999). Uncharacterized proteins can

therefore be assigned function by linking them with known pathways.

This approach allowed preliminary assignment of functions to more

than half the uncharacterized proteins of yeast (Marcotte, Pellegrini,

Thompson, et al., 1999; http://www.doe-mbi.ucla.edu/) and to
10% of the genes of M. genitalium (Huynen et al., 2000b).

Analysis of these predictive networks and their correspondence to

metabolic, signaling, and interaction networks is an ongoing area of

study. Open topics of study include defining subnetworks, cliques, and

network properties; determining which functional links correspond to

physical interactions and which have other interpretations; and dy-

namic models of networks. Predictive networks can be incorporated

into metabolic pathway models, such as those discussed in chapter 10

or those incorporated into the E-cell project, described in chapter 11.
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For these models, predictive networks may be especially useful for

completing input pathways known only partially from experiment.

DISCOVERING NEW METABOLIC SYSTEMS

An especially tantalizing aspect of the study of protein networks is

the discovery of novel cellular systems. Molecular biology has until

recently generated knowledge about proteins one at a time, each

researcher studying the system of his or her desire. The overall effect

has been a somewhat random patterning of knowledge over the

proteome.

Figure 9.6 A network of predicted functional links between yeast proteins. As in figure

9.5, proteins are drawn as vertices of the graph, and functional links are drawn as edges

between functionally linked proteins. In all, 2240 proteins are shown participating in

12,012 functional links, as calculated from phylogenetic profiles (adapted from Marcotte,

2000).
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However, the functional and physical interaction networks give the

best and most complete estimates of cellular pathways and systems.

Examining the networks shows exactly which systems have been well

studied and which have been neglected entirely. By searching for such

unstudied systems, the network analysis allows systematic discovery of

novel pathways.

One such novel system from Mycobacterium tuberculosis is dia-

grammed in figure 9.7. This system was found in a search for tightly

functionally linked but unannotated genes. The genes are linked by a

number of redundant functional linkages, increasing the likelihood that

the genes really function together. Of the seven genes in this putative

Figure 9.7 Novel pathways are revealed in computationally predicted networks. Shown

here is a network of M. tuberculosis genes linked together by a combination of predictive

methods. Multiple methods support each other in linking the genes, increasing confidence

that the proteins participate in the same pathway. At the time of this writing, functions

were unknown for all of the genes, with the exception of homology of Rv3741c and

Rv3742c to oxygenase subunits. This homology suggests that the genes in the network

may participate in a novel metabolic pathway in M. tuberculosis.
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pathway, none have a known function, although two are estimated

from sequence homology to be subunits of an uncharacterized oxygen-

ase. Here, the network analysis reveals only the cellular functions, but

not the molecular functions, of the proteins. We can only speculate,

based upon the oxygenase proteins, that this system is a novel meta-

bolic pathway in M. tuberculosis. Defining all such new systems is the

first step; what follows is perhaps the harder work of characterizing

and understanding the new systems.
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Figure 5.3 Evaluation of detection of promoters by several methods. Promoters were

searched in a region 250 bp ustream of the gene. (a) Classic method using consensus/

patser. (b) Selecting the strongest scoring site in the region. (c) Using the covering algo-

rithm of competition among putative promoters as described in the text. Sensitivity is

defined as the ratio of true positives divided by all true sites (the sum of true positives

and false negatives). Specificity is defined as the ratio of true negatives divided by the

sum of true negatives plus false positives. The positive predictive value is the ratio of true

positives divided by all the sites reported by the method (true positives plus false pos-

itives). True sites are those experimentally reported, and positive sites are those found by

the method.
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Tools for investigating the genomic neighborhood of a gene include the Entrez genome

web site: http://ww.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome and

the WIT database: http://wit.mcs.anl.gov/WIT2

The Eukaryotic Promotor database lists the consensus regulatory sequences derived from

promotors of many eukaryotic genes: http://www.epd.isb-sib.ch

DNA microarray protocols, numerous experiments, and data are available from the

Stanford Microarray Database:

http://genome-www4.stanford.edu/MicroArray/SMD

Additional measurements of gene expression are available in Expressed Sequence Tag

databases such as dbEST: http://www.ncbi.nlm.nih.gov/dbEST/index.html

Many known metabolic pathways and networks have been characterized in the KEGG

database: http://www.genome.ad.jp/kegg/kegg2.html

EcoCyc database: http://ecocyc.pangeasystems.com/ecocyc

Database of Interacting Proteins: http://dip.doe-mbi.ucla.edu

Last, several sequence databases also provide functional annotation of the genes that can

be used in benchmarking programs that predict gene function. Among these annotated

databases are

MIPS: http://www.mips.biochem.mpg.de/

Swiss-Prot: http://ca.expasy.org/sprot/

Gene Ontology Consortium: http://www.geneontology.org
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10 Metabolic Pathways

Steffen Schmidt and Thomas Dandekar

ENZYMATIC REACTIONS

Life is a process far from thermodynamic equilibrium. Different enzy-

matic chains and networks have to operate continuously to prevent

chemical or thermodynamic equilibrium from occurring, for that would

mean the death of the organism. The analysis of metabolic pathways

tries to understand and investigate the enzyme chains involved in this

process.

A qualitative focus considers which enzymes are involved, which

pathways are possible in a complex network (a nontrivial question),

and what happens if one enzyme is knocked out or a new one is added

to the set. Techniques developed in our laboratory to analyze metabolic

pathways qualitatively will be the focus of this chapter. It should be

noted, however, that there is also a detailed quantitative perspective

from which to analyze metabolic pathways in their conversions and

transitions—but it needs much more experimental data on the con-

sidered enzymes. It includes metabolite concentrations, substrate and

product affinities, and kinetic data on enzymes such as their turnover

number.

Isotope labeling of metabolites and NMR are advanced tools to pro-

vide experimental data for such studies (Christensen and Nielsen,

2000). These questions are only briefly discussed in this chapter. The

interested reader is referred to the excellent textbooks and reviews on

these questions (e.g., Fell, 1997; Hatzimanikatis, 1999; Stefanopoulos,

1999). Dynamics of metabolites may also be tackled in comprehensive

cellular simulations (e.g., Womble and Rownd, 1986). (This rapidly

developing area is discussed in chapter 11.)



Another aspect of all enzymatic reactions is that they can be divided

into two types. There are biochemical reactions, that can proceed from

substrate to product and vice versa: these are reversible reactions.

There are also reactions that proceed in only one direction: these are

irreversible reactions. In most cases the latter is achieved as the product

is either moved from the cell into outer compartments or by rapid con-

version of the product further down the enzymatic chain. There are over

2000 known biochemical reactions. Good references are the ENZYME

database (http://www.expasy.ch/enzyme/index.html) and the
BRENDA database (http://www.brenda.uni-koeln.de).
If there is a pathway of enzymatic reactions, the flow through the

system is called the metabolic flux (e.g., the rate of flow in micromoles

per minute) of substrates converted into products.

Another very general division of enzymes is between energy-

producing (exergonic reactions) and energy-consuming (endergonic

reactions). Similarly, on the metabolic level, metabolic pathways can

conveniently be divided into catabolic (metabolite degrading; any type

of metabolic ‘‘digestion’’) and anabolic (producing more complex bio-

logical metabolites). Anabolic pathways usually contain many ender-

gonic reactions because they require a great deal of energy to create the

more complex metabolites. They are generally more extensive in their

network and enzymatic reactions, and occur more often in all auto-

trophic organisms (such as plants, where the required energy is sup-

plied by photosynthesis). Relatively few metabolites serve as starting

materials for a variety of products.

In contrast, all animals (including man), as well as fungi, parasites,

and saprophytic organisms, rely for their energy supply on catabolic

pathways, which usually contain more exergonic enzymatic reactions.

Few common intermediates are produced from a large number of sub-

strates. An important first end product is often acetyl-CoA, and ulti-

mately, via oxidative pathways, oxidative phosphorylation of all

available reduction equivalents (NADH, FAD, etc.) to generate a maxi-

mum of ATP. Similarly, NADPH and ATP serve as major high-energy

components in transfer reactions in between.

A metabolic pathway is thus a series of connected enzymatic reac-

tions that produce a specific product. Ample examples are provided by

the KEGG metabolic database (http://www.genome.ad.jp/kegg/
pathway/map/map01100.html). Furthermore, pathways may be

branched or interconnected. Delineating a pathway from the metabolic
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network has until now mainly been done using traditional or chemical

knowledge. Algorithms are very helpful in gaining rationality and pre-

cision. The abundance of enzymes varies with the kind of organism,

cell type, nutrient status, and developmental stage. Another aspect,

which can be partly revealed by meticulous genome comparison and

annotation, is the detection of isoenzymes: the same enzyme is present

in different varieties, depending on tissue or developmental state; in

prokaryotes, even in the same cell. Different regulatory domains often

confer different regulation of isoenzymes, and thus tissue-specific or

condition-specific metabolization for the same type of reaction can be

achieved. An example is lactate dehydrogenase, in which heart-specific

and muscle-specific varieties exist, allowing for optimal adaptation of

the metabolism in the two different types of tissues.

Problems we will discuss are pathway identification and complete-

ness, identification of alternative pathways and all possible fluxes

through a given metabolic network, and better understanding of

the importance and the specific biological significance of pathway

variations.

Pathways are the next level of complexity after the protein reading

frame. On the other hand, they are only an abstraction, because in re-

ality there are always metabolic networks. In that respect, it is impor-

tant to have tools for their analysis as well as their synthesis.

FINDING THE ROUTE THROUGH THE METABOLIC NETWORK

Defining Metabolic Pathways

Cellular reactions are highly connected and entangled (figure 10.1;

Jeong et al., 2000). In order to get a good overview of the complexity of

metabolism, one can use standard literature and databases available on

the Internet (e.g., KEGG, EcoCyc, Boehringer Mannheim Map). How-

ever, metabolism is much more flexible than the well-known set of

pathways available from biochemistry textbooks. Using known infor-

mation about metabolism, computational calculations can help to find

new possible routes in the biochemical network that can then be proven

by experimental approaches such as isotope labeling of metabolites,

use of metabolic inhibitors, and knocking out of enzymes. Through

chemical reasoning or tradition, standard pathways such as glycolysis

are known for well-known metabolites. However, given the network
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nature of enzymatic interactions, are these the only possible routes

through an enzyme network? In a similar vein, new genome expression

data try to predict coregulation of enzymes, and in this way provide a

completely different approach to pathway definition. Can such coregu-

lated enzymes be called a pathway? To decide this on a more rational

basis, a more algorithmic definition of pathway is required.

Figure 10.1 The complexity and interconnectedness of metabolic pathways is sketched

in this simplified cellular pathway map, which considers only textbook pathways.
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Three different approaches are generally used to map the pathways

in a biochemical network from scratch. They do not require information

about enzyme kinetics, affinity, or metabolite concentrations—but this

means each of them is only stating whether a certain metabolic route (a

set of enzymes working together) is accessible to the set of enzymes

present in the cell. It does not give information on the extent to which

a certain metabolic path is used in the cell under a given metabolic

condition.

A first way to identify a pathway is by synthesis. Transformation

routes from a substrate to a product are found by successive addition

of reactions, very similar to the way in which the major, well-known

pathways were found by chemists. This can be done systematically,

and details of this type of analysis are available in Seressiotis and Bai-

ley (1986).

Elementary Mode Analysis

A powerful tool is the use of elementary flux modes (Schuster and Hil-

getag, 1994). This will be examined now in more detail.

An elementary mode is the minimal set of enzymes that can operate

at steady state, with the enzymes weighted by the relative flux they

carry. ‘‘Minimal’’ is to be understood in the sense that if only the

enzymes belonging to this set are operating, complete inhibition of a

further enzyme of this set would lead to cessation of any steady-state

flux in the system. With the help of the elementary modes, it can be

determined whether a stoichiometrically balanced path exists between

a particular set of substrates and products—no matter how complex

and entangled a metabolic network may be. Actually, it is not sufficient

to construct linear pathways just by following different metabolites,

because by-products that cannot be excreted by the cell would then

have to be balanced by additional reactions that produce further by-

products, and so on. After this the full set of nondecomposable steady-

state flows that the network can show, including cyclic flows (Leiser

and Blum, 1987), is enumerated. An actual steady-state flux pattern

such as measured by an experiment, will always be a non-negative lin-

ear combination of these modes. Thus the living cell is described as a

mixture of pure states of these elementary modes that form a unique set.

The stoichiometry of the network is critical for identifying the ele-

mentary flux modes (Clarke, 1981), the nondecomposable modes that
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allow a steady-state flux from substrates to products. At first the

enyzmes involved are abbreviated as is convenient, and from bio-

chemical knowledge it is determined in which direction the reactions

catalyzed would proceed. For example, in modeling a central part of

the metabolism involving glycolysis and the pentose phosphate cycle,

one could write

—ENZREV
PGI ALD TPI . . . (for phosphoglucoseisomerase, aldolase, and triose-
phosphate isomerase, etc.)

—ENZIRREV
HK PFK . . . (hexokinase, phosphofructokinase, etc., these are irrever-
sible)

Next the external and internal metabolites are defined. For an exter-

nal metabolite it is assumed that there is sufficient buffering capacity

either in the cell or in the enviroment so that the steady-state condition

is always fulfilled for this metabolite. In contrast, for any internal

metabolite all reactions have to be properly represented by stoichio-

metric equations in the model because it has to be properly supplied in

stable flux from the enzymes modeled in the system. For our example

this would be

—METINT
E4P S7P . . . (erythrose 4-phosphate, seduheptulose 7-phosphate, and so
on are internal; the example metabolites are internally created by the
pentose phosohate cycle)

—METEXT
CO2 NADP NADPH . . . (and so on; for example cofactors are involved
in so many other cellular reactions that they may be considered to be
externally created and buffered)

Finally, all enyzmatic reactions involved in the transformation are

written down:

—CAT
HK: GLC þATP ¼ G6P þADP
PGI: G6P ¼ F6P
PFK: F6P þATP ¼ FDP þADP

. . .
(the enzymatic reactions of hexokinase, phosphoglucose isomerase,
phosphofructokianse, and so forth)

The algorithm calculating the elementary modes from this informa-

tion is now briefly sketched. (A detailed computational protocol is at
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http://bms-mudshark.brookes.ac.uk/algorithm.pdf; exam-
ples and application to complex networks are described in Schuster et

al., 2000). The algorithm has been implemented as computer programs

in Smalltalk (program EMPATH, John Woods, Oxford) and C (program

METATOOL, Pfeiffer et al., 1999). Both are available from ftp://
bmshuxley.brookes.ac.uk/pub/mca/software/ibmpc. The

programs start from a list of reaction equations and a declaration of

reversible and irreversible reactions, and of internal and external

metabolites. As in several other metabolic simulators, this list is auto-

matically translated into a stoichiometric matrix (for an explanation of

this and related terms, see http://www.biologie.hu-berlin.de/
biophysics/Theory/tpfeiffer/metatool.html). This matrix is
then transposed and augmented with the identity matrix, to give a

matrix called the initial tableau. From this, further tableaux are consec-

utively computed by pairwise linear combination of rows so that the

columns of the transposed stoichiometric matrix successively become

null vectors. This procedure corresponds to ensuring that the steady-

state constraint is satisfied for each metabolite in turn.

Different metabolic pathways can be analyzed in this way. This

assumes that there has already been a detailed stocktaking of the

available enzymes. This will be explained by two methods, pathway

alignment and pathway completion by genome annotation.

Apart from just enumerating paths, applications of elementary mode

analysis include the following:

—Testing whether a set of enzymes allows production of a desired

product

—Detecting nonredundant pathways and enzyme activities (important

for drug design)

—Detecting pathways with maximal molar yields (important for bio-

technology and metabolic engineering) as well as alternatives with

nearly maximal yields

—Genome comparisons—it rapidly summarizes whether pathways are

complete, and detects gaps and inconsistencies in the annotation

—Medical or pathophysiological assessment of the impact of enzyme

deficiencies.

However, for several pharmacological applications, elementary mode

analysis is quite interesting:
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—Identifying toxic metabolites

—Following pharmacologically active, intermediary metabolites and

products accruing or created by the enzyme machinery of the body

after, for example, painkilling drugs or sedatives are metabolized

In metabolic engineering, the method also allows in silico tests to de-

termine whether artificially introduced pathways are likely to function

stoichiometrically. This could concern redox balance.

Furthermore, an improved analysis of the effects of adding other

substrates to the network is interesting. In some medically quite inter-

esting cases this may lead to either potentiation or reduction of the

effect of a drug.

Textbook descriptions of standard pathways can now be made much

more precise or complete by results from elementary mode analysis

(figure 10.2). Thus, analyzing the system composed of glycolysis and

the pentose phosphate cycle in some more detail (Schuster et al., 2000),

we could show that a total of seven modes can be obtained. Besides the

textbook pathways (modes 3 to 6), some additional modes of conver-

sion can be found: Mode 1 represents the usual glycolytic pathway.

Figure 10.2 Sketch of the elementary modes calculated for the pentose phosphate cycle

and glycolysis. After program input (for details, see text), the algorithm METATOOL cal-

culates seven elementary modes (listed below the input; products are given only quali-

tatively; modes 2 and 3 differ in their enzyme connectivity and their exact stoichiometry).

This illustrates that even such a simple network contains more modes of operation than

biochemical textbook knowledge would suggest.
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Modes 2 and 3 degrade G6P to pyruvate and CO2, producing ATP,

NADPH, and NADH. Mode 4 converts G6P into ribose-5-phosphate

(R5P) and CO2. It is of importance when the metabolic needs for

reducing power for biosynthetic purposes and for R5P in nucleotide

biosynthesis are balanced. In mode 5, five hexoses are converted into

six pentoses. This is important when the need for R5P exceeds that for

NADPH. Note that, depending on which type of utilization of R5P is

considered, additional ATP consumption may occur in modes 4 and 5.

The term ‘‘pentose phosphate cycle’’ applies to mode 6 best, because

carbons are cycled several times before ending up in CO2. Like modes 2

and 3, it is relevant when much more NADPH than R5P is required,

but does not lead to NADH and ATP production. Mode 7 is a futile

cycle formed by phosphofructokinase and fructose biphosphatase. The

futile cycle is biochemically relevant because it generates additional

heat in the organism—if required by environmental conditions. Further

complexities include various modes that arise if genome-specific varia-

tions are analyzed or the reversibility of reactions is changed. Further-

more, from the start a smaller or larger network can be considered.

Further details, descriptions, and conclusions on all these questions are

found in Schuster et al. (2000).

An alternative to elementary mode analysis is to think of all possible

metabolic fluxes as a type of space, the metabolic flux space. As in an-

alytical geometry, one may then ask how this space is set up by vectors.

These are the so-called basis vectors of flux space (Schilling and Pals-

son, 2000; Simpson et al., 1995; Fell, 1993). This has a problem, how-

ever: there are many possible solutions for the set of vectors defining

the flux space. Nevertheless, very nice studies have been done using

such flux balance studies—for example, investigating the comparative

robustness of the E. coli metabolic network to supply cell growth over a

wide range of different flux conditions (Edwards and Palsson, 2000a) or

the effect of E. coli gene mutants (Edwards and Palsson, 2000b), as well

as assessing the metabolic capabilities of Haemophilus influenza Rd

(Schilling and Palsson, 2000). The different methods are further com-

pared and discussed in detail in Schilling et al. (1999).

ANALYZING SPECIFIC PATHWAYS

We will now compare pathways in different genomes. This yields im-

portant information on their evolution, on pharmacological targets, and

on biotechnological applications. We will discuss a pathway alignment

259 Metabolic Pathways



approach in which three methods are combined: (1) analysis and com-

parison of biochemical data, (2) pathway analysis based on the concept

of elementary modes, and (3) comparative genome analysis. For the

last, the rapid increase of completely sequenced genomes is very help-

ful (e.g., see the available genomes under http://www.tigr.org/
tdb). Comparing 17 completely sequenced genomes for their conser-
vation of the glycolytic pathway could reveal a surprising plasticity of

this very central pathway. This concerns both presence and absence of

key enzymes as well as specific patterns of isoenzymes in different

species. More deviations than previously thought from the textbook

standard become apparent. Pathway alignment opens up new routes

for potential pharmacological targets and reveals interesting bypasses

such as the Entner-Doudoroff pathway. In a similar vein, archaean-,

bacterial-, and parasite-specific adaptations can be rapidly identified

and described.

Sequence alignment is a well-estalished tool for investigating and

comparing nucleic acid and protein sequences from different species

and for identifying characteristic gaps, insertions, and dissimilarities.

The availability of full genomic sequences and the increasing amount of

biochemical data open up higher-order possibilities for comparative

analysis (Bork et al., 1998). Alignment of biochemical pathways from

different species is an important step toward a more global physiologi-

cal comparison.

Recognition of such differences is interesting for biotechnology

(identification of alternative enzymes) and pharmacology (difference in

drug targets). Biochemical data are extended and compared with ele-

mentary mode analysis of substrate fluxes, comparative genome analy-

sis, and pathway alignment. Other valuable methods to consider and

include for large-scale comparisons of genomic data and pathways in-

clude clusters of orthologous sequences (COGs; Tatusov et al., 2000)

and the application of related enzyme clusters (Goto et al., 1997).

Pathway Alignment and Involved Bioinformatics Tools

The concept of this approach is to compare a range of organisms for

one specific pathway, indicate the presence or absence of the involved

enzymes by two different letters (or zeroes and ones), and then com-

pare the enzyme sets in the same way as sequences are normally

compared, marking well and less well conserved regions. Pathway
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alignment focuses on the biochemical capacity of the organisms com-

pared. The utilization of complementary data and tools extends the

biochemical approach and improves the predictive power of such

efforts. A solid knowledge basis from literature and experimental data

is established. Extensive use of sequence and genome analysis allows

the characterization of the full repertoire of enzymes present in the

analyzed organisms in regard to the analyzed pathway. The availabil-

ity of full genomic sequences is exploited, and pathway fluxes and

bypasses regarding the identified enzymes are tested for consistency by

elementary mode analysis. Also, the determination of futile cycles in

the different organism-specific enzyme sets is an indicator for allosteric

regulation of key enzymes involved.

The collection of biochemical and genomic data required to establish

presence or lack of enzymes prior to pathway alignment is greatly

facilitated by the availability of databases on the World Wide Web

(e.g., TIGR, http://www.tigr.org/tdb/; ExPASY, http://www.
expasy.ch/enzyme/index.html; KEGG, http://www.genome.
ad.jp/kegg/kegg2.html; WIT, http://wit.mcs.anl.gov/
WIT2/). These systems are continously developed further (e.g.,

the orthologue group tables for KEGG; Bono et al., 1998). Differential

metabolic display, another helpful pathway visualization and explora-

tion tool, is based on petri nets to generate all pathways satisfying cer-

tain constraints (Kuffner et al., 2000; http://cartan.gmd.de/ToPL/
ign.html). However, since databases are based on automated meth-
ods, including preformed pathway charts, these automated predictions

are further refined for an accurate analysis.

Available completely sequenced genomes should be extensively

cross-compared to better identify all encoded enzymes in these organ-

isms, because in different genomes, different nonorthologous sequences

may encode the same enzyme. Each of these families can be recognized

only if at least one member has been biochemicaly characterized, a fact

that stresses again the need for both genomic and biochemical data-

bases and data. Genomic information is particularly valuable for

organisms that are difficult to analyze biochemically. For genome cross-

comparisons we recommend the extensive use of differential genome

analysis, using assigned reading frames from one genome to com-

pare its protein content against that of another genome and using

application-specific chips for rapid sequence-to-sequence comparisons

(Huynen et al., 1998). Gene duplications, replacement by unrelated
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sequences (nonorthologous displacement; see Bork et al., 1998), and

gene neighborhoods also have to be taken into account. Phylogenetic

analysis has to be applied in order to further analyze gene duplication

events and clarify substrate specificities of the encoded enzymes.

Biochemical functions, sequence-based enzyme comparisons, and

detailed enzyme specificities are made more accurate by a careful

comparison of domain architecture and detection of duplication and

gene displacement events, operon organization, and gene families. This

is more exact than database overviews with a splendid amount of

genome data that rely strongly on an automated assignment of enzyme

functions by reciprocal gene similarities. As a medical application,

identified enzymes from parasite-specific pathway variants may po-

tentially be blocked pharmacologically.

Examples from Glycolysis

Applying pathway alignment for the analysis of glycolysis, the meta-

bolic flow and corresponding enzymes from glucose 6-phosphate on-

ward present a relatively well conserved region of the glycolytic

pathway. However, in a number of organisms several glycolytic

enzymes are missing, according to comparative sequence analysis and/

or biochemical data. For example, phosphofructokinase and aldolase

activity are absent in Mycoplasma hominis (Pollack et al., 1997). Simi-

larly, phosphofructokinase and pyruvate kinase seem to be lacking in

Helicobacter pylori.

Different alternatives to processing glucose to pyruvate become ap-

parent. In glycolysis two molecules of triose are derived from one hex-

ose, and the energy yield is 2 moles of ATP per mole of glucose. The

complete glycolytic pathway is present in E. coli. This is also the case in

most eukaryotic (including human) cells. However, a first variation

concerns the route of transfer of glucose into the cell. In contrast to

higher organisms, the major E. coli pathway for glucose transport uses

the PTS glucose transporter, which utilizes phosphoenolpyruvate as

an energy-rich compound to directly phosphorylate glucose to glucose

6-phosphate.

The connections of pathways to other parts of metabolism, such as

the connection of glycolysis to the pentose phosphate pathway, allow

for further plasticity (e.g., the Entner-Doudoroff pathway is used in-

stead of glycolysis in some bacteria; Danson and Hough, 1992). The

ATP yield is only 1 mole per mole of glucose.
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Furthermore, in Methanococcus jannaschii, all enzymes of the non-

oxidative PPP were identified (Selkov et al., 1997). In contrast, the two

dehydrogenases required for the oxidative PPP could be identified nei-

ther in the genome nor by biochemical assays. Glycolysis appears to be

operative although hexokinase, phosphofructokinase, aldolase, and

phosphoglycerate mutase could not be identified in the genome (Selkov

et al., 1997). Assuming that these enzymes or other enzymes are pres-

ent (for instance, there are some indications of ADP-dependent sugar

kinases in archaea; Selkov et al., 1997; Kengen et al., 1995). The ele-

mentary modes for this system can then be calculated (Dandekar et al.,

1999). One of these modes in fact allows the transformation of glucose

6-phosphate into ribose 5-phosphate, which is required for nucleotide

biosynthesis. Thus, the oxidative PPP is not needed for converting

hexoses into pentoses under steady-state conditions. This is in agree-

ment with results of Pandolfi et al. (1995) on glucose 6-phosphate

dehydrogenase deficiencies. A further tool for this type of analysis is

enzyme hierarchies to find common patterns between pathways based

on the EC classification (Tohsato et al., 2000)—which should be criti-

cally further classified by biochemical knowledge and comparisons.

Pathway alignment reveals species-specific pecularities and can be-

come particularly powerful if coupled to metabolic engineering. Exam-

ples, would be engineering Corynebacterium glutamicum mutants to

demonstrate two independent pathways not only for lysine but also for

DL-diaminopimelate as an important building block of the murein cell

wall of this bacterium (Sahm et al., 2000), or to better understand ace-

tate production in E. coli by comparing it against other species and

reducing its acetate synthesis by expressing a B. subtilis acetolactate

synthase (Yang et al., 1999). Planning criteria for such projects that take

results of metabolic flux analysis and a modular perturbation method

into account are explained by Kholodenko et al. (1998); experimental

suggestions for isotope labeling are given by Roscher et al. (2000).

PATHWAYS REVEALED BY GENOME ANALYSIS

Genome Annotation

Genome analysis is a complex and continuous process because the in-

terpretation of the original genome sequence available after a major

sequencing project and the experimental data available change during

subsequent years. Therefore, before discussing additional techniques,
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we will illustrate pathway identification in the process of genome an-

notation and, with more information becoming available, subsequent

reannotation.

For analysis the sequence has first to be available in electronic for-

mat. For a new sequencing project this is a rather cumbersome process

and requires a great deal of technology. However, for studying and

other purposes, many full genomic sequences and continuing public

sequencing projects are deposited in public Web sites such as TIGR

(http://www.tigr.org/tdb/).
In the next step, determining the position of potential reading frames,

one has to keep in mind the need to distinguish between protein-coding

and RNA-coding reading frames. This step is far from trivial. Impor-

tant enzyme reading frames necessary to identify a complete pathway

may, for example, escape detection because an extension of a reading

frame escaped detection or an important enzyme activity is encoded on

the opposite strand—not to mention notorious complications, particu-

larly in higher eukaryotes, from alternative splicing or even editing of

the mRNA.

If reading frames have been established and translated (note whether

the proper genetic translation table has been used), a function has to be

identified for the reading frame. Bioinformatics allows rapid compari-

son against existing data to achieve this. Thus protein reading frames

can be assigned a putative function by sensitive sequence similarity

comparisons. For detailed protocols and methodology the reader is re-

ferred to Bork et al. (1998) and Bork and Gibson (1996). However, to

illustrate how this process allows completion of pathways, including

identification of previously unnoted enzymatic activities, we will re-

view some examples from a recent genome reannotation effort we con-

ducted for Mycoplasma pneumoniae (Dandekar et al., 2000).

Pathway Completion by Reannotation

The reannotation of molecular functions can potentially provide some

answers regarding higher levels of cellular interactions, such as metab-

olism (but also, for example, regarding pathogenicity factors).

Mycoplasma pneumoniae is a pathogen with a compact genome that

causes atypical pneumonia in man. We analyzed the complete genome

of M. pneumoniae five years after the original sequence was published

(Himmelreich et al., 1996). The reannotation could rely on more data, in
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particular from molecular and biochemical analysis of M. pneumoniae

during the intervening five years as well as better software for se-

quence analysis developed during that time. A well known example is

PSI-BLAST, an iterative sequence search algorithm including sequence

alignment information from similar sequences found during the search

(Altschul et al., 1997).

In this way all individual reading frames of M. pneunmoniae were

reexamined (Dandekar et al., 2000). We will review here some exam-

ples regarding better pathway identification or completion during the

effort.

For example, the reading frame MPN547ðMP295Þ [the new MP genome

identifier is given first, followed by the (old MP genome identifier)] was

originally annotated as a homologue of MG369, a conserved hypotheti-

cal protein of unknown function. This function was also indicated in

the update of the M. genitalium genome sequence in December 1999.

However, detailed sequence analysis in the meantime revealed more

about the function. For example, there was a sequence similarity ap-

parent in PSI-BLAST searches (see above). The expected odds of

observing a similarity of this extent by chance was estimated to be 1 in

10 million (nevertheless, such expected values, E-values for short, are

nontrivial to estimate and should be taken only as an indication for

stronger confidence and for finding a biological confirmatory context

for the much higher than chance similarity detected between the two

sequences by the algorithm). There was similarity of the N-terminal 300

amino acids to experimentally characterized dihydroxyacetone kinases

from different bacteria and fungi. Another way to show this relies on

clusters of orthologous genes, COGs for short (Tatusov et al., 2000). The

M. pneumoniae sequence can be shown to be a member of such a cluster

of orthologous genes in which biochemically characterized members

are dihydroxyacetone kinases.

In M. pneumoniae, the dihydroxyacetone kinase domain could yield

ATP by transforming dihydroxyacetone phosphate and ADP into

dihydroxyacetone and ATP. This finding should be interpreted in the

context of other reading frames. Thus the predicted activity can be

metabolically connected to the remaining phospholipid metabolism

predicted for Mycoplasma pneumoniae. It could provide the necessary

supply of dihydroxyacetone phosphate via MPN051ðMP103Þ (glycerol 3-
phosphate dehydrogenase reading frame, confirmed in reannotation).

In addition, the remaining sequence of the MPN547ðMP295Þ reading
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frame (total length 558 amino acids) may in addition regulate or add to

this predicted enzyme activity.

To give another example, a ribulose uptake pathway is apparent from

the reannotation. Small operons had been known previously for fruc-

tose (MPN078ðMP077Þ, to MPN079ðMP076Þ) and mannitol (MPN651ðMP191Þ
to MPN653ðMP189Þ). Ribulose was now found to be transported

(MPN496ðMP346Þ, MPN494ðMP347Þ) and channeled via D-arabinose

6-hexulose 3-phosphate synthase (MPN493ðMP348Þ) and D-arabinose

6-hexulose 3-phosphate isomerase (MPN492ðMP349Þ) into fructose 6-

phosphate and glycolysis. Of these proteins, MPN496 and MPN493 had

not been functionally annotated before. MPN494 had been annotated as

a hypothetical phosphotransferase. These new functional assignments

can also be made apparent by integrating data from SWISS-PROT

annotations (the well-known large database of protein reading frames)

with further direct experimental data published for homologous pro-

teins. In addition, we could now add the description of and direct

experimental data (including mass-spectroscopy and sequence deter-

mination) for a small pentitol BC subunit of the ribulose transporter

(MPN495ðMP346:1Þ) not included previously.
An example of a more complex and nonmetabolic pathway identified

by genome reannotation in this study was the protein secretion system

in M. pneumoniae. Himmelreich et al. (1996) noted that they had identi-

fied the trigger factor, DnaK, SRP and FtsY as well as SecA, whereas

from the channel-forming proteins only SecY could be assigned, leav-

ing the secretion pathway incomplete. Now using extensive sequence

analysis methods, and integrating recent literature, bioinformtics, and

biochemical data, the reannotation identified the reading frames similar

to SecD, SecE, and SecG, yielding a new, more complete picture of this

secretory pathway in M. pneumoniae. Since several pathogenicity factors

are secreted, the respective protein channels are potential drug targets.

Similar analyses have been done on a number of different genomes,

for example, a reannotation of the Thermotoga maritima genome (Kyr-

pides et al., 2000). Another aspect is the inclusion of structure and

structural genomics, allowing analysis of structure-function relation-

ships. This can be done either in a more summary way for whole

genomes (e.g., comparing the spirochetes T. pallidum and B. burgdorferi.

These lack, among other things, several parts of lipid biosynthesis and

abundantly use, as is common in many other bacteria, TIM barrels and

P-loop NTP hydrolases (Das et al., 2000). In addition, detailed exami-
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nation of the enzymatic function, structure, and evolution of the differ-

ent TIM barrel families, comparing all available data (Copley and Bork,

2000), shows widespread recruitment of enzymes between the central

metabolic pathways.

PERSPECTIVE

We have given some examples of bioinformatic analysis of metabolic

pathways, focusing on qualitative analyses; the detailed examples pre-

sented were mostly from our own work. The additional references

given should make it clear that similar efforts have occurred in many

laboratories around the world, and this chapter should serve as an in-

centive for further pathway analysis.

Pathway analysis has become more and more important because

sequencing, and in particular the number of newly sequenced genomes,

is rapidly increasing. Genome content is biologically meaningless

unless interpreted in biological terms, and the metabolic pathways

present an important part of this information. The description of the

enzymatic capabilities based on functional genomics (e.g., via a tool

such as pathway alignment) makes it possible to classify the great

variety of organisms according to their different biochemical makeup.

Medical aspects can now be tackled in unprecedented detail (e.g., ana-

lyzing metabolic changes in the liver, such as strong induction of the

citric acid cycle and gluconeogenesis after major burns, which seem to

be deranged mainly by a strong induction of the liver antioxidant de-

fense pathways; Lee et al., 2000).

Missing enzyme activities and functional misassignment can happen

all too easily (Kyrpides and Ouzounis, 1999). If possible, several tools

(e.g., not only PSI-BLAST but also domain analysis, COGs, etc.) should

be combined. Chapter 9 explains how several indications for protein

function from genomics, in particular regarding interactions, are com-

bined for better predictions, including involved pathways. Similarly,

different lines of evidence should be combined (e.g., not only the

genome sequence but also biological data). It should also be taken into

account that any interpretation of biological data may change over time

as more knowledge becomes available. Experimental data for metabolic

pathway analysis are almost always incomplete. An interesting study

by de Atauri et al. (2000) predicts the effect of uncertain boundary

values in modeling a metabolic pathway. Such limitations and errors
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increase with integration to networks, cellular processes, or even the

complete cell. In consequence, most models of this sort (see chapter 11)

have to be interpreted with even more care.

The large-scale structure of metabolic networks has been investigated

by several authors (Jeong et al., 2000; Fell and Wagner, 2000). A fasci-

nating observation is that metabolic networks are connected as scale-

free networks, meaning an exponential decrease in the number of more

highly connected central metabolites. More complex organisms are

more strongly connected than less complex ones. This improves adapt-

ability to changing environmental conditions. The ‘‘diameter’’ of reac-

tions (i.e., the number of enzymatic conversions connecting one

enzymatic reaction of the network to a randomly chosen other one is

kept close to the theoretically smallest possible number. In this way

environmental perturbations rapidly spread over the network and are

optimally buffered by the different enzyme activities. The effect is thus

a ‘‘small world’’ way of connecting. Scale-free networks also apply to

Internet hyperlinks or the U.S. power grid and to the ‘‘small world’’

everyday experience that human relations are surprisingly well con-

nected via common friends or acquaintances.

The analysis of metabolic pathways is an overture to higher levels of

simulation, not only the fascinating regulation of the metabolic path-

ways (level þ 1, so to speak), but ultimately the whole cell (see chapter
11). A further valuable effort to bridge this gap while learning (or at

least speculating) about prebiotic evolution is the analysis by Segre et

al. (2000), modeling kinetically enhanced recruitment of simple amphi-

philic molecules leading to evolving and splitting catalytic noncovalent

assemblies.

The road to exploring the full metabolic network of the cell is open,

and there are a number of very useful tools to analyze metabolic path-

ways. Nevertheless, there is still a very long way to travel before we

can grasp the bewildering complexities of living cells.
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11 Toward Computer Simulation of the
Whole Cell

Masaru Tomita

It is still an open question whether or not computer simulation of a

whole cell by modeling all its metabolic pathways and other machi-

neries is feasible. Yet the time has come that we can begin working to-

ward this ultimate goal. The E-CELL project (Tomita et al., 1999) was

launched in 1996 at Keio University in order to model and simulate

various cellular processes, with the ultimate goal of simulating the cell

as a whole. The E-CELL simulation system is a generic software pack-

age for cell modeling, and its first version was completed in 1997. E-

CELL simulates the behavior of a model cell by computing interactions

among molecular species it contains. E-CELL allows the user to define

chemically discrete compartments such as membranes, chromosomes,

and cytoplasm. The total amounts of substances in all of the cellular

compartments comprise the internal representation of the cell state,

which can be monitored and/or manipulated by means of various

graphical user interfaces (figure 11.1).

The E-CELL system enables us to model not only metabolic path-

ways but also other higher-order cellular processes, such as protein

synthesis and membrane transport, within the same framework. E-

CELL also attempts to provide a framework for higher-order cellular

phenomena such as the gene regulation network, DNA replication, and

other events in the cell cycle. These various processes can then be inte-

grated into a single simulation model. A major challenge of the proj-

ect is to develop a method of modeling that is sufficiently robust to

accommodate a realistically large scale model consisting of hundreds

and thousands of processes with drastic differences in behavior and

time scale among them.



Using the E-CELL system, we have successfully constructed a virtual

cell with 127 genes sufficient for ‘‘self-support’’ (Tomita et al., 1999).

The gene set was selected from the genome of Mycoplasma genitalium,

the organism having the smallest known genome. The set includes

genes for transcription, translation, the glycolysis pathway for energy

production, membrane transport, and the phospholipid biosynthesis

pathway for membrane structure.

The rest of this section will review previous work related to com-

puter simulation of cellular processes. Following sections describe the

E-CELL simulation system and present the first ‘‘virtual cell’’ with 127

genes.

Figure 11.1 Screen dump of the E-CELL simulation system. Various graphical user in-

terfaces make it possible not only to monitor metabolism of the virtual cell, but also to

conduct virtual experiments in silico.
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The following cell models are currently being constructed using the

E-CELL system:

. Kinetic model of a human erythrocyte

. Signal transduction for bacterial chemotaxis

. Gene regulation network for E. coli’s lac and ara operons and the lytic-

lysogenic switch network of bacteriophage lambda

. Energy metabolism in mitochondria.

These models are presented in later sections of the chapter.

Many attempts have been made to simulate molecular processes in

both cellular and viral systems. Perhaps the most active area of cellular

simulation is the kinetics of metabolic pathways. Software packages for

quantitative simulation of cellular processes, based on numerical inte-

gration of rate equations, have been developed. KINSIM (Barshop et

al., 1983; Dang and Frieden, 1997), MetaModel (Cornish-Bowden and

Hofmeyr, 1991), SCAMP (Sauro, 1993), and MIST (Ehlde and Zacchi,

1995) deal with steady states and their metabolic control analysis

(MCA) coefficients. GEPASI (Mendes, 1993, 1997) calculates steady

states as well as reaction time behavior and characterizes the steady

state with MCA. SIMFIT (Holzhutter and Colosimo, 1990) and KINSIM

(Barshop et al., 1983; Dang and Frieden, 1997) integrate the simulation

of dynamic models and the parameter fitting program. V-Cell is a

solver for nonlinear PDE/ODE/algebraic systems, and can represent

the cellular geometry. Dbsolve (Goryanin et al., 1999) combines contin-

uation and bifurcation analysis. Several groups have proposed and

analyzed gene regulation and expression models by simulation (Mey-

ers and Friedland, 1984; Koile and Overton, 1989; Karp, 1993; Arita et

al., 1994; McAdams and Shapiro, 1995). The cell division cycle (Tyson,

1991; Novak and Tyson, 1995) and signal transduction mechanisms

(Bray et al., 1993) have also been areas of research for biological mod-

eling and simulation.

Previous work in biochemical and genetic simulations has usually

limited its models to focus on only one of the several levels of the time-

scale hierarchy in cellular processes. Bridging the gaps between the

various levels of this hierarchy is an extremely challenging problem

that has yet to be adequately addressed. We present a step toward

integrative simulation of large-scale cellular processes.
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THE E-CELL SOFTWARE ARCHITECTURE

The E-CELL software employs a structured substance-reactor model to

construct and simulate the cell model. The structured substance-reactor

model consists of three classes of objects—Substance, Reactor, and Sys-

tem—representing molecular species, reactions, and functional/physi-

cal compartments, respectively. To model chromosomes and other

genetic materials, the system also has sophisticated data structures

such as Genome, GenomicElement, and Gene.

Assuming rapid equilibrium in each compartment, the state of the

cell at a point in time and its dynamics are represented as a set of con-

centration vectors and reaction kinetics. Therefore, simulation of the

cell can be viewed as integration of ordinary differential equations

(ODEs). The numerical integration is performed in distributed form

with Stepper and Integrator class objects in the system. With this design,

the system can be extended to handle multicompartment, multischeme,

and multiphase numerical integration. In other words, time-step sizes

and integration algorithms can vary among different compartments,

and therefore parallel computation can be applied to cope with the

stiffness problem. The problem of stiffness occurs in a system like a cell

where there are very different scales of the time variable on which the

dependent variables are changing. The stiffness often results in various

kinds of numerical errors, some of which are fatal for the simulation.

The E-CELL system is written in Cþþ and designed with the object-

oriented MVC (model, view, and control) model, which facilitates in-

dependent development of the reaction rules (Model), user interfaces

(View), and simulation engine (Control). The kinetics of each reaction is

encapsulated into the Reactor class objects. In addition to general reac-

tion schemes provided by the system, task-specific reaction schemes

can be defined by a user without detailed knowledge of implementa-

tion of the other parts of the system.

The E-CELL simulation environment consists of several software

components: the core simulation system (E-CELL system), the E-CELL

manager, the rule file compiler, and other data converters/processors.

Besides the system-specific E-CELL rule format, the user can write

simulation rules using any commercially/publicly available spread-

sheet software. The rules are compiled into .eri (E-CELL Rule Inter-

mediate) format, which can be interpreted by the simulation system.

The core system reads a compiled rule, starts simulation, and outputs
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logged data. The simulation process can be automated using E-CELL

Script language (.ecs). The process of rule writing, simulation, and

analysis is managed by the E-CELL manager.

THE SELF-SUPPORTING CELL MODEL

Using the E-CELL system, we have successfully constructed a virtual

cell with 127 genes sufficient for ‘‘self-support’’ (figure 11.2). The gene

set was selected from the genome of Mycoplasma genitalium, the organ-

ism having the smallest known genome. The set includes genes for

transcription, translation, the glycolysis pathway for energy produc-

tion, membrane transport, and the phospholipid biosynthesis pathway

for membrane structure.

Figure 11.2 The self-surviving cell model with 127 genes. It uptakes glucose and

excretes lactate, generating ATP to be used to synthesize proteins. Since proteins degrade

over time, the cell has to keep synthesizing proteins in order to sustain its life.

277 Toward Computer Simulation of the Whole Cell



The hypothetical cell we have modeled uptakes glucose from the

culture medium, using a phosphotransferase system; generates ATP by

catabolizing glucose to lactate by glycolysis and fermentation path-

ways; and exports lactate out of the cell. Since enzymes and other pro-

teins are modeled to degrade spontaneously over time, they must be

constantly synthesized in order for the cell to sustain life. The protein

synthesis is implemented by modeling the molecules necessary for

transcription and translation: RNA polymerase, ribosomal subunits,

rRNAs, tRNAs, and tRNA ligases. The cell also uptakes glycerol and

fatty acid, and produces phosphatidyl glycerol for membrane structure,

using a phospholipid biosynthesis pathway.

The E-CELL interfaces provide a means of conducting experiments in

silico. For example, we can starve the cell by draining glucose from the

culture medium. The cell will eventually die because it runs out of ATP.

If glucose is added back, the cell may or may not recover, depending on

the length of starvation. We can also kill the cell by knocking out an

essential gene—for example, that for protein synthesis. The cell will

become unable to synthesize proteins, and all enzymes will eventually

disappear due to spontaneous degradation.

THE HUMAN ERYTHROCYTE MODEL

The human erythrocyte has been well studied since the 1970s, and ex-

tensive biochemical data on its enzymes and metabolites have been

accumulated (Joshi and Palsson, 1989–1990; Ni and Savageau, 1996a,

1996b; Lee and Palsson, 1990, 1992; Tanaka and Paglia, 1995). The cell

uptakes glucose from the environment and processes it through the

glycolysis pathway, generating ATP molecules for other cellular me-

tabolism. The ATP molecules are consumed mostly for cation transport

in order to keep the electroneutrality and osmotic balance. The cell also

has several other pathways, such as nucleotide metabolism and the

pentose phosphate pathway.

The first prototype of our cell model (basic model), which was com-

pleted in March 1999, consists of the glycolysis pathway, the pentose

phosphate pathway, and nucleotide metabolism (figure 11.3). Parame-

ters of their kinetic equations are based on experimental data found in

the literature. We obtained the steady state with this model and now

set out to analyze the consequences of enzyme deficiencies.
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The model has been extended in various ways since then, and the

latest version is capable of simulating the pH dependence of enzymes,

osmotic balance, electroneutrality, and oxygen and carbon dioxide

transportation by hemoglobin. The current model can also represent

the hemolysis and the destructive processing of abnormal erythrocytes

in the spleen. Since hemogrobin and carbon dioxide have a buffering

effect for pH change, and osmotic balance can absorb quantitative

changes of metabolic intermediates, these functions will probably en-

hance the robustness and tolerance of the model. We are currently

analyzing the effect of this expansion on robustness and tolerance.

Since the discovery of pyruvate kinase deficiency (Tanaka and

Paglia, 1995), erythroenzymopathies associated with hereditary hemo-

Figure 11.3 The erythrocyte model.
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lytic anemia have been extensively investigated. We are currently

trying to reconstruct the erythrocyte model with these deficiencies.

Simulation experiments using the basic model of the human eryth-

rocyte were carried out. Pyruvate kinase activity was set to zero at 2000

seconds. The ATP production rate became lower, and ATP was even-

tually exhausted. Increases of 2-phosphoglycerate, 3-phosphoglycerate,

and phosphoenolpyruvate were observed (figure 11.4). These phenom-

ena were reported in human erythrocytes from patients with PK (pyru-

vate kinase) deficiency. We plan to use the kinetic parameters of the

PK mutant to obtain the steady state of the defective erythrocyte.

SIGNAL TRANSDUCTION FOR BACTERIAL CHEMOTAXIS

Chemotaxis is the orientation of an organism in relation to the presence

of a particular chemical. The chemotactic response of E. coli depends on

the ability to modulate the flagellar motor in response to external stim-

uli. The flagellar motor has a switch protein that interacts with proteins

called CheY. The CheY protein in a phosphorylated form is known to

bind with the motor up to 20 times more frequently than that in an

Figure 11.4 Simulation of pyruvate kinase deficiency. Pi, inorganic phosphates; Mg, free

magnesium; tAMP, total AMP; tADP, total ADP; tATP, total ATP; T23 DPG, total 2,3-

diphosphoglycerate; 3PG, 3-phosphoglycerate; 2G, 2-phosphoglycerate; PEP, phosphoe-

nol pyruvate; LACi, lactate.
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unphosphorylated form. In this way, the phosphorylation controls

bacterial response to external stimuli by regulating the binding affinity

of the CheY protein and the motor switch.

The external stimulus bound to a bacterial receptor works as a initial

control element of the cytoplasmic phosphorylation cascade. If the

stimulus is an attractant, the phosphorylation flow is suppressed and

the motor rotates counterclockwise, resulting in smooth swim.

We are currently modeling the phosphorylation cascade for bacterial

(E. coli) chemotaxis in which the attractant is aspartate (figure 11.5). The

E-CELL system allows us to perform virtual experiments on the bac-

terial chemotaxis model. For example, mutants of the model can be

created by making a particular protein always zero. The simulated

behavior of each mutant, as well as the wild type, can then be com-

pared with the results of laboratory experiments, using indexes such as

swimming direction, response time, and phosphate flux. We also plan

Figure 11.5 Signal transduction for bacterial chemotaxis.
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to compare our results with other simulation systems (Bray et al., 1993;

Bray and Bourret, 1995).

GENE REGULATION NETWORK

This section presents a general framework for modeling gene expres-

sion using the E-CELL system. Using the framework, we modeled and

simulated the following three gene regulation systems: the lac operon

of E. coli, the ara operon of E. coli, and the lytic-lysogenic switch net-

work in bacteriophage lambda.

We had previously constructed a detailed model (Hashimoto et al.,

1998) of the gene expression system as a part of the ‘‘self-supporting

cell model.’’ The previous model faithfully reflected the gene expres-

sion system of M. genitalium, involving more than 100 objects including

subunits, factors, amino acids, nucleotides, and tRNAs, and their

ligases. However, in order to simulate complex gene regulation systems

with a large number of genes, a more abstract and simpler model is

desired for the sake of efficiency. The gene expression system used in

this work consists of four basic elements: (1) production of RNAs and

proteins, (2) regulation of expression by various factors, (3) time delay

between regulation and production, and (4) increase of the sigmoidal

curve of product over time. All gene expressions are reduced to these

four elements.

E. coli’s lac Operon and ara Operon

Based on the framework described above, we have modeled gene reg-

ulation systems of the lac operon and the ara operon in E. coli. We are

currently integrating the lac operon model with the glycolysis pathway

(figure 11.6), so that we can simulate E. coli’s sugar metabolism and

regulation with lactose and glucose. The ara operon model is being

integrated with the pentose phosphate cycle. Results of these simu-

lations will be compared and analyzed with experimental data reported

in the literature (Kepes, 1969).

Lytic-Lysogenic Switch Network of Bacteriophage Lambda

As a more complex gene regulation system, we are modeling the lytic-

lysogenic switch network of bacteriophage lambda. The model of the
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lytic-lysogenic switch network includes the effects of glucose depriva-

tion, ultraviolet light, and multiplicity of infection.

Since the E-CELL system allows easy substitution of individual reac-

tions, several variations of gene expression models of bacteriophage

lambda reported in the literature (McAdams and Shapiro, 1995;

Heidtke and Schulze-Kremer, 1998) will be constructed and compared

using the E-CELL system.

MITOCHONDRIA MODEL

We have also been developing kinetic models of various mitochondrial

metabolisms, including gene expression, energy metabolism, fatty acid

metabolism (beta oxidation), inner-membrane metabolite carriers, and

protein carriers (figure 11.7). In this section, we report the model of

Figure 11.6 Integrative simulation of energy metabolism and gene expression.
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Figure 11.7 The mitochondria model consists of gene expression system, protein trans-

port, metabolite carriers, TCA cycle, electron transport, and fatty acid metabolism. Its

genome has 37 genes, and the total of 30 enzymatic reactions are modeled.
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pathways for energy metabolism that was recently completed using the

E-CELL system.

A mitochondrion has three major energy metabolic pathways: elec-

tron transport, TCA cycle, and beta oxidation. The basic steps of energy

metabolism are listed below.

. Inner-membrane metabolite carriers transport pyruvate, fatty acid,
ADP, and Pi.

. Acetyl-CoA is produced from pyruvate by pyruvate dehydrogenase.

. Acetyl-CoA is made from fatty acid by beta oxidation.

. The TCA cycle oxidizes acetyl-CoA to produce NADH, the substrate
of electron transport.

. The four enzymes of electron transport oxidize NADH.

. At the end of electron transport, ATP synthase generates ATP.

There are five enzymatic reactions for electron transport, eleven en-

zymatic reactions, and nine other reactions for the TCA cycle, five en-

zymatic reactions for beta oxidation, and eight enzymatic reactions for

the metabolite carrier system. All the enzymatic reactions are modeled

on the basis of kinetic parameters found in the literature.

We will continue to enhance this mitochondrial model, adding other

major part of metabolism, including gene expression, fatty acid metab-

olism, and DNA replication. Our eventual goal is to apply this model to

pathological analyses of mitochondrial diseases such as Leigh syn-

drome, mitochondrial myopathy and encephalopathy, lactic acidosis,

and strokelike episodes.

CONCLUDING REMARKS

The E-CELL system has been available since July 1999 from our Web

site (http://www.e-cell.org). Some of the models described in this
chapter can be downloaded from this Web site. Our simulation work

with E-CELL has shown that large-scale modeling of various cellular

metabolisms using the same framework appears feasible.

One of the major problems in constructing large-scale cell models is

lack of quantitative data. Most of the biological knowledge available

is qualitative (e.g., functions of genes, pathway maps, which proteins

interact with what, etc.). For simulation, however, quantitative data

such as concentrations of metabolites and enzymes, flux rates, kinetic
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parameters, and dissociation constants are essential. A major challenge

is to develop high-throughput technologies for measurement of inner-

cellular metabolites. A great deal of data for a variety of cell states

can then be collected with the technologies to construct quantitative

models, and the models can be refined iteratively until the simulation

results match the data.

For this new type of simulation-oriented biology, Keio University

has established the Institute for Advanced Biosciences (http://
www.bioinfo.sfc.keio.ac.jp/IAB/). The institute consists of

centers for metabolome research, bioinformatics, and genome engi-

neering. The ultimate goal of this international research institute is to

construct a whole-cell model in silico, based on a large amount of data

generated by high-throughput metabolome analyses, then design a

novel genome based on the computer simulation and create real cells

with the novel genome by means of genome engineering.

As mentioned at the beginning of this chapter, whether or not com-

plete living cells can be modeled and simulated at the molecular level is

still an open question. However, the rapidly accumulating information

on cellular metabolism increases the likelihood that whole-cell simula-

tion of real organisms will be feasible in the near future.
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Glossary

Annotation The process of associating knowledge to macromolecule sequences, usually

genomes. This includes assigning all encoded protein activities, among them the pre-

dicted enzymes of a genome.

Apoptosis (also termed ‘‘programmed cell death,’’ PCD) Regulated, active, morpholog-

ically and biochemically distinct process during development and tissue homeostasis in

which a cell dies without causing inflammatory reaction in the surrounding tissue.

Autapomorphy A derived character state (apomorphy) that is unique to a particular

species or lineage in the group under consideration. For example, within a set of taxa

including fish, turtles, birds, and mammals, hair is a unique character, or autapomorphy,

of mammals.

Boltzmann distribution The probability distribution at equilibrium for the occupancy of

various states, each with a particular energy.

Cellular function The context of a protein; its interactions with other proteins in the

cell.

Chemotaxis The orientation of an organism in relation to the presence of a particular

chemical. The chemotactic response of E. coli, for example, depends on the ability to

modulate their flagellar motor in response to external stimuli.

Cholesterol An amphipathic lipid that is an essential structural component of the cell

membrane and outer layer of lipoproteins of blood plasma.

Clustering A process of grouping objects into classes of similar objects.

CluSTr A database that offers an automatic classification of SWISS-PROT and TrEMBL

proteins into groups of related sequences.

CORBA Common Object Request Broker Architecture. An open vendor-independent

architecture and infrastructure that computers use to work together over networks. It

uses the Interchange Interorb protocol for communication in the operation between

CORBA programs.

DBMS Database Management System. It is a computerized record-keeping system that

stores, maintains, and provides access to information. A database system involves four

major components: data, hardware, software, and users. The main advantage of using a



DBMS is that the formalism of the data model underlying the DBMS is imposed upon the

data set to yield a logical and structured organization. Given a fuzzy, real-world data set,

when a model’s formalism is imposed on that data set, the result is easier to manage, de-

fine, and manipulate. Different data models lead to different organizations. In general the

relational model is the most popular because it is the most abstract and the easiest to

apply to data while still being powerful.

Differentiation Process or state in multicellular organisms (although one can also envi-

sion differentiation in bacteria) in which a cell acquires or maintains its functional spe-

cialization. Differentiated cells exhibit specific cell-type features and frequently lose their

proliferative capacity.

Domains Protein domains are the separate and independent folding units of a protein.

In sequence analysis these are in most cases consecutive stretches of sequence carrying a

specific function, separated by small stretches of sequence with biased amino acid com-

position (low complexity regions). Enzymatic function can be better assigned if the dif-

ferent domains of the complete protein are considered.

Elementary mode Minimal set of enzymes that can operate at steady state with all ir-

reversible reactions proceeding in the appropriate direction.

Entrez A retrieval system for searching several linked databases (http://www.

ncbi.nlm.nih.gov/Entrez/).

Erythropoietin (EPO) A glycoprotein growth factor that regulates red cell production

and adapts the red cell mass to the oxygen needs of the tissues.

Eukaryote An organism formed by cells containing a nucleus that has one or several

chromosomes. Eukaryotic cells have a compartmentalized internal structure in which

different cellular functions are carried out in membrane-bounded organelles, such as

mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus. All multi-

cellular, and many single-cell, organisms are eukaryotes; bacteria are prokaryotes (cells

with no nucleus).

Expression array Method using DNA chips to simultaneously measure the mRNA ex-

pression levels of a large number of genes, usually all genes for a given organism.

External metabolites Metabolites that are buffered as they are connected to a reservoir.

Nutrients would be sources; waste products would be sinks.

Feedback Feedback occurs when the output of a process influences its own subsquent

states.

Formal language A formal language L over the alphabet A is a subset of A*, where *

denotes the star operator. Production systems are used to describe formal languages.

Gene network The molecular genetic system that controls the processes occurring in the

organism on the basis of hereditary information contained in its genome.

Genpept A database of translated protein-coding sequences derived from entries in the

GenBank nucleotide sequence data bank.

Glycolysis Primary energy metabolism in cytosol in which sugars are degraded and

ATP is produced.
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Growth, growth factors In microbiology the term ‘‘growth’’ is used to describe the pro-

cess by which a single-cell organism increases its size (cell volume). Often, cell growth is

coupled to cell division, in that cells double their size before undergoing mitosis. In con-

trast, in conjunction with mammalian biology, ‘‘cell growth’’ is used interchangeably with

cell proliferation (i.e., the process of increasing cell numbers and tissue mass by cell divi-

sion. ‘‘Growth factors’’ are natural, mostly proteinaceous molecules that bind with high

specificity to cellular targets and stimulate cell division. ‘‘Growth factors’’ are often used

interchangeably with ‘‘cytokines,’’ which comprise a large family of proteins that have

diverse effects on cells, including the stimulation of proliferation, migration, and differ-

entiation.

Homology From the Greek for ‘‘study of sameness.’’ In biology, ‘‘homology’’ refers to

similarities that are due to common ancestors having possessed the similar feature.

Homologies are the basis of inferences about the nested relationships among taxa and are

commonly used to motivate borrowing annotations in one biological context and apply-

ing them in another.

HSSP A database of Homology-derived Secondary Structure of Proteins.

IDL Interface Definition Language is the language for describing interfaces of CORBA

programs. For every CORBA implementation (binding), there is a precompiler to produce

client and server interfaces for a given document written in IDL.

Internal metabolites Metabolites participate only in reactions that are explicitly taken

into account in the pathway model. The formation of each internal metabolite has to be

exactly balanced by its consumption (steady-state assumption).

InterPro An integrated documentation resource for protein families, domains, and sites

(http://www.ebi.ac.uk/interpro/).

Irreversible reaction A reaction in which the rate of the forward reaction is so much

higher than the rate of the reversible reaction that the latter is relatively negligible.

IS An information system (IS) describes a coupling between a data storage system

and further data-processing applications. Such an IS can be characterized by its main

functions: data storage, information retrieval, data interconnection, and analysis of

information.

JAVA JAVA (TM) is a programming language designed for the development of com-

puter platform–independent software. To execute programmed applications in JAVA, an

interpreter (virtual machine) is required. JAVA programs are frequently used to imple-

ment Web pages.

JDBC The JDBC (TM) technology is an application programming interface that permits

access to any relational data source from the JAVA (TM) programming language. It pro-

vides cross-DBMS connectivity to a wide range of SQL databases.

Kinase An enzyme that catalyzes the transfer of a phosphate group from ATP or other

nucleoside triphosphate to a substrate.

Kullbach-Leibler distance Also known as relative entropy, this is a measure of the dis-

similarity between two probability distributions. The distance is 0 for identical dis-

tributions and increases as the distributions diverge.
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Markov chain A series of states in which the probability of a state depends on previous

states. In a zero-order Markov chain, the states are independent. In a first-order Markov

chain, the probability of the current state depends on the previous state. In a second-order

Markov chain the probability of the current state depends on the previous two states, and

so on.

Metric A quantitative measure of similarity or dissimilarity.

Molecular function The specific biochemical function of a protein: its catalytic, struc-

tural, or binding activities.

Negative feedback This occurs when the output of a process weakens its intensiveness.

Negative feedback can maintain automatic stability (homeostasis) of the regulated

parameters at the level required.

Operon A transcribed polycistronic unit (group of genes) with its associated regulatory

sites. An operon has to have at least two cotranscribed genes, as opposed to a transcrip-

tion unit, which can be a monocystronic unit. The definition used here implies that a gene

can belong only to a single operon but to several transcription units. Operons are often

found in prokaryotic genomes, and the genes within an operon are often functionally re-

lated. See Transcription unit.

OQL Object Query Language is a query language comparable with SQL that supports

the data model of the Object Database Management Group.

ORF The Open Reading Frame is a continuous region of DNA coding for a protein, or a

fraction of it, found in the genome. ORF is usually distinguished from a gene in that the

ORF is a predicted gene based on computer analyses.

Orthologous genes Two homologous genes in two different organisms that have

evolved from a common ancestor.

Orthology Homology of genes between lineages (contrast paralogy).

Palindromicity A measure of the similarity of a sequence element to its reverse com-

plement.

Paralogous genes Two homologous genes that diverged from a duplication event in the

same organism.

Paralogy Homology in which a gene duplication allows related proteins to evolve

independently within the same lineage (contrast orthology). Paralogues can be found in

the same individual. The orthologue/paralogue distinction is relevant when trying to

compare proteins across lineages.

PDB The Protein Data Bank is a repository for the processing and distribution of 3-D

macromolecular structure data primarily determined experimentally by X-ray crystallog-

raphy and NMR.

Pfam A collection of protein family sequence alignments that are constructed semi-

automatically, using hidden Markov models.

PHP PHP, which stands for ‘‘PHP: Hypertext Preprocessor,’’ is an HTML-embedded

scripting language. Much of its syntax is borrowed from C, JAVA, and Perl with some

unique PHP-specific features included. The goal of the language is to allow Web devel-

opers to write dynamically generated pages quickly.
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Phylogenetic profile A vector constructed for a given gene in a particular organism,

representing whether an orthologue to a particular protein is present or absent in each

additional genome sequence. It forms the basis for a computational method of predicting

protein function.

Positive feedback This occurs when the output of a process enhances its own activities.

Positive feedback leads to the system’s deviation from its stationary state.

PRINTS A compendium of protein fingerprints. A fingerprint is a group of conserved

motifs used to characterize a protein family.

ProDom A protein domain database that consists of an automatic compilation of ho-

mologous domains.

Production system A production system is defined by a finite set of production rules

and a finite alphabet A. Production rules are pairs of words over the alphabet A* that

define the derivation of the production system. A word w over A* will be derived by a

production rule (u, v) if the first component of the production rule (u), which will be a

subword of w, will be replaced by v. The rule is to be read as ‘‘rewrite u by v.’’

Prokaryote An organism, usually single-celled, formed by cells with no nucleus; it has a

simple internal organization lacking organelles.

PROSITE A database of biologically significant sites and patterns formulated in such a

way that, with appropriate computational tools, it can rapidly and reliably identify to

which known protein family, if any, the new sequence belongs.

Protease An enzyme that degrades proteins by hydrolyzing peptide bonds between

amino acid residues.

Protein fusion A protein containing two or more domains that appear separated in

other instances.

Protein kinase Enzyme that catalyzes phosphorylation of (transfers of a phosphate

group from ATP to) the hydroxyl groups of tyrosine, serine, and threonine residues of

proteins. Phosphorylation of proteins often regulates their enzymatic activity or their

affinity to other proteins. Signal transduction events typically consist of protein phos-

phorylation reactions in which protein kinases act both as substrates and as enzymes

whose kinase activity itself is induced by phosphorylation, thereby forming a cascade.

Proteome The complete set of proteins encoded by a genome.

QBE This nonprocedural language developed by IBM(TM) was designed for textual

querying and manipulating of relational DBS. QBE means ‘‘Query by Example’’ and is

implemented as an intuitive query construction using tables.

Regulatory motif (in DNA) A short conserved sequence element (usually 10–20 base-

pairs long) that is specifically recognized by a regulatory transcription factor.

Regulon A group of operons or genes controlled by one regulator. The initial definition

was the result of studies of the ArgR regulon in E. coli. It is common to find a relaxed

notion of a regulon as a group of operons or transcription units that are controlled by a

common regulator, independently of additional regulators affecting each operon or tran-

scription unit of the regulon differently.

Relative entropy Measures the difference between two probability distributions. Also

known as Kullbach-Leibler distance.
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Rosetta Stone protein A protein composed of two or more domains, each of which can

be found as an independent protein; used to find functional links between the indepen-

dent proteins.

RuleBase A database that stores and manages annotation rules derived from SWISS-

PROT and InterPro for the automatic annotation of TrEMBL.

Semi-Thue System A Semi-Thue system is a specific production system that is equiva-

lent to the Chomsky type-0 grammar.

Sequence search Comparison of a reading frame for significant (nonrandom) similarity

against any or some of the reading frames stored in a large database, using a sequence

similarity search algorithm.

Serial homology Repetitive structures of the same organism. The arms and legs of

tetrapods, mammalian cervical vertebrae, and the leaves and the branches of a tree are all

serial homologues. Crayfish have 19 pairs of appendages. These jointed appendages all

reflect the same basic morphological pattern but serve different functions, from chewing

to food handling to walking to mating. Serial homologies are not used to reconstruct

phylogenies, but they are relevant to understanding development.

Sigma factor Bacterial proteins that interact with RNA polymerase and dictate pro-

moter specificity.

SignalP A signal peptide prediction program.

Signal transduction pathway The process by which the information contained in an

extracellular physical or chemical signal (e.g., a hormone or growth factor) is received at

the cell by the activation of specific receptors, then conveyed across the plasma membrane

and along an intracellular chain of signaling molecules, to stimulate the appropriate cel-

lular response.

SPTR A comprehensive, nonredundant database composed of SWISS-PROT, TrEMBL,

and TrEMBLnew sequences.

SQL Structured Query Language is a nonprocedural language for interacting with a

relational DBMS. It allows the user to query, manipulate, and define data.

SRS Sequence Retrieval System is a specific system that incorporates tables from many

different biological databases.

Stiffness problem The problem of stiffness occurs in a simulation system where there

are very different scales of the time variable on which the dependent variables are

changing.

Structured substance-reactor model Framework for object—oriented cell simulation

used in the E-CELL system. It consists of three classes of objects, Substance, Reactor, and

System, representing molecular species, reactions, and functional/physical compart-

ments, respectively.

SWISS-PROT An annotated protein sequence database. It contains high-quality anno-

tation, is nonredundant, and is cross-referenced to many other databases.

Symplesiomorphy Ancestral (or primitive) character state that is shared by two or more

taxa. Shared ancestral character states are not helpful in grouping taxa when producing

the nested clades in a phylogenetic tree.
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Synapomorphy Derived character states (apomorphies) shared by two or more taxa

(i.e., the features have a common derivation). If the two groups share a character state

that is not the primitive one, it is plausible that they share a more recent common ancestor

than the one shared by the out-group (which defines the ancestral state). Synapomorphic

character states are used as evidence to group taxa into nested groups. Phylogenetic trees

are built by grouping taxa united by synapomorphies.

TMHMM A transmembrane prediction program.

Topology of a metabolic network This is a set of enzymes and metabolites, their con-

nections, and the stochiometry and directionality of the reactions.

Transcription factor Regulatory protein that binds specifically to short DNA sequences

(5–20 nucleotides) and interacts with RNA polymerase enzyme in order to modulate

transcription.

Transcription unit One or more genes that are cotranscribed. More precisely, we have

limited its use to one or more cotranscribed genes from a single promoter. The main dif-

ferences between a transcription unit and an operon as here defined are (1) operons must

have at least two genes, and (2) a gene can belong to one or more transcription units but

to only one operon. See Operon.

TrEMBL A computer-annotated supplement to SWISS-PROT. TrEMBL contains the

translations of all coding sequences (CDS) present in the EMBL Nucleotide Sequence

Database that are not yet integrated into SWISS-PROT.

XML Extensible Markup Language is a format for structured documents and data. It is

well defined by the World Wide Web Consortium (W3C) and has become a standard for

text-based data exchange.
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algorithms, 229
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Arrays. See Microarrays
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B. subtilis, 121, 124

purine biosynthesis, 132

Bacteria. See also specific bacteria

chemotaxis, 280–281

DNA-binding regulators, 114

DNA regulatory motifs, 139–142

glycolysis, 262–263

operon prediction, 121–124
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transcriptional units, 116–117
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Basic Local Alignment Search Tool
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BioKleisli, 57–58

Biological noise, 208–209
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modeling, 64
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transduction pathways
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and cancer, 209–212
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definitions, 182–183

and gene network hierarchy, 172–173

perturbations, 189–190, 201–209

robustness, 202

in rule-based model, 60

Cell surface antigens, 163

Chance, 6, 7, 8

Chemical kinetic simulation, 164–167

Chemotaxis, 280–282

Cholesterol, 155–156, 158–160

mathematical model, 167–169

Cleavage sites, predicting, 27
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as analysis approach, 27–32

coinheritance groups, 231

databases, 27–28

DNA regulatory motifs, 140

and expression profiling, 213

hierarchical, 29

on mRNA expression, 131

by regulatory region, 234

of related enzymes, 260

and transcription regulation, 116
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Co-A transferase, 133
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Signal transduction pathways

Comparative analysis
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on eukaryotic proteomes, 34–42

of genomes, 103–104, 232, 233

and RNAP binding, 110–117

Concentration rates, in models, 63, 65

velocities, 166–167

Congruence, 117–120

Conservation

of DNA regulatory motifs, 141

of genes in operons, 122–124

and phylogenetic space, 240

Context

and cell states, 208–209

and protein function, 223–224, 225, 226–

234, 239–240

Contingent events, 7

Convergence

and homology, 6, 7, 8

in signal transduction, 187–189

Cooperativity, 193

CORBA (Common Object Request Broker

Architecture), 74, 76

Database Management Systems (DBMS),

51–52

Database of Interacting Proteins (DIP), 238

Databases

biochemical, 49, 252, 261

classification, 29–32

for clustering, 27–28

vs. DBMS, 50–52

enzymes, 54

EST, 235

for functional groups, 134–135

gene network, 150

gene regulation, 54

genomic neighbors, 231

integrating, 54–58, 69–76

listing, 54

microarray, 235

pathways, 49, 54, 213–214, 238

promoters, 234

protein interactions, 238

quality control, 55

redundancy, 29–30

remote access, 73

Saccharomyces, 33

search algorithms, 28

sequence annotation, 20–25

sequences, 27–28, 49, 53, 54, 228, 264

transcription factors, 49

transcriptome experiments, 105

user queries, 30–32

Data merging, 55

Data Warehouse, 57

DBMS. See Database Management Systems

Differentiation

and Boolean network, 197, 200–202

as cell state, 182–183

gene network control, 160–163

induced, in culture, 190

vs. quiescence, 183

Digitalization. See Boolean Networks

Dihydroxyacetone kinase, 265

DIP. See Database of Interacting Proteins

Distal-less gene, 4, 10

Distance, intergenic

and coinheritance, 229

and functional relatedness, 116, 121, 122,

124, 132, 229, 233–234

in regulatory motif search, 139–140

in S. cerevisiae, 142

from start codon, 139–140

Distribution, hypergeometric, 139

DL-diaminopimelate, 263

DNA-binding proteins, 87–93, 98. See also

Weight matrices

DNA microarrays, 235

DNA regulatory motifs, 139

DNA replication factors, 241

DNA sequences

motif discovery within, 135–140

similarity, and homology, 5

Domain fusions, 225–228

Domains

annotation, 25, 34

C2H2-type zinc finger, 37–38, 40, 41

classification, 29

collagen triple helix repeat, 39

comparative distribution, 38

composition, 41

C-type lectin, 39

C4-type steroid receptor zinc finger, 39

EGF-like, 40, 41

fibronectin type III, 40
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Domains (cont.)

immunoglobulin, 40

LDL-receptor, 40–41

ligand-binding, of nuclear hormone

receptor, 39

major histocompatibility complex, 40

nonspecific, 34

repeated across sequence, 40

Rosetta Stone links, 225–228

Drosophila melanogaster

comparative analysis, 36–41

domain repetition, 40–41

Dyad-detector method, 112

E-CELL

cell models, 277–280

gene regulation model, 282–283

mitochondria model, 283–285

scope, 273–275

signal transduction model, 280–282

software, 59

EcoCyc, 238

Electroneutrality, 279

Elementary modes, 255–259, 263

EMBL. See European Molecular Biology

Laboratory

EMPATH, 257

Encephalopathy, mitochondrial, 285

Energy. See also Glycolysis

binding, 87–89, 90–93

and Boolean networks, 198–199

and enzyme types, 252

and mitochondria, 285

multicellular organisms, 181–182, 198–

199

Engrailed expression, 3, 10

Entner-Doudoroff pathway, 262

Entrez, 22–23, 231

Entropy, relative, 89, 93

Environmental modulation, 208–209

ENZYME database, 54, 252

Enzymes. See also specific enzymes

and cholesterol, 159–160, 168

databases, 54

defined, 60

elementary modes, 255–259, 263

heme biosynthesis, 162–163

hierarchies, 263

Michaelis-Menten kinetics, 193

modeling, 59, 66–67

nitrite reductase, 227

pH dependence, 279

types, 252–253

EPD. See Eukaryotic Promoter Database

Erythrocytes

as irreversible process, 160–163

models, 169–171, 278–280

and pyruvate kinase deficiency, 279–280

Erythroid progenitor cells, 154

Erythropoietin, 160, 170–171

Escherichia coli

acetate Co-A transferase, 133

acetate synthesis, 263

adaptation, and congruence, 118–119

chemotactic response, 280

coregulated genes, 112–113, 119–120

DNA regulatory motifs, 141

and domain fusion, 227

flux conditions, 259

gene conservation, 123

gene regulation simulation, 282

glycolysis, 262, 282

lactose, 182

metabolic model, 78

phosphorylation, 281

promoters, 107–116

purine biosynthesis, 132

transcription, 104, 113–114, 116–117

EST. See Expressed Sequence Tags

Eukaryotes

and operons, 133

phylogenetic diversity, 228

Eukaryotic Promoter Database (EPD), 54,

234

Eukaryotic proteomes

cluster data, 29

comparative analysis, 35–41

complete sets, 26–27

domain distribution, 38

phylogenetic classification, 27–28

RNA binding, 38

European Molecular Biology Laboratory

(EMBL), 49, 53, 54

E-values, 265
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Events, reaction vs. regulatory, 152–153,

155–156

Evolution. See also Phylogenetic profiles

and Boolean network, 205–207, 208

and transcription regulation, 105, 121,

124

ExPASy. See Expert Protein Analysis

System

Expectation-maximization (EM) method,

96

Expected values (E-values), 256

Expert Protein Analysis System (ExPASy),

54, 261

Expert systems, 59

Expressed Sequence Tags (EST), 235

Expression

basic elements, 282

of distal-less gene, 4, 10

E-CELL model, 282–283

mRNA, 130–131, 142–143, 235–236

profiling, 213

and promoter specificity, 87

and protein function, 234–237

from proteomes, 236–237

RegulonDB search, 117

Eye, homology, 8–9

Eyespots, of butterflies, 3

False positives, 106, 109, 111–112

Feedback

and Boolean network, 193

cholesterol, 158–160, 168–169

erythrocytes, 161, 162, 171

positive and negative, 172

Flight, 11

Flowers, petals of, 5

FlyBase, 33

Footprinting, 120, 135, 140

Fossils, Burgess shale, 7

Functional dynamics, 163–167

Function(s). See also Protein functions

and DNA motifs, 129

of network types, 156–163

relatedness, 133–135

and transcription regulation, 114

Fungal protein, 38

Fusion, domain, 225–228

Galactose utilization, 142

GATA1, 170–171

GATA1-p, 154, 158, 161, 162

GDB. See Genome Database

GenBank, 54, 228

GeneNet, 49, 150–158, 168

Gene Ontology (GO), 33, 34

Genes. See also Expression

coexpression, 112

context, 225, 226–234, 239–240

coregulated, 112–113, 119–120, 140–141

(see also Regulons)

distal-less, 4, 10

distance between, 116, 121, 122, 124, 132,

229, 233–234

functionally related, 133–135

homeobox, 10

homology, 8

within operons, 117–118, 121, 122–123

regulatory, 8

relative positions, 231–233

signaling, 184

transition-initiating, 207

Genomes. See also Proteomes

comparative analysis, 35

human, 35

pathway annotation, 263–267

and protein function, 225–234

protein networks in, 240–243

relative positions in, 231–233

signal transduction portion, 184

starting new, 103–104

Genome Database (GDB), 54

Gibbs’ sampling, 96–97, 112, 136

in AlignACE, 136–137

Gluconeogenesis, 267

Glucose, lactose, RNA-polymerase,

63–64

Glucose-6-phosphate, 60–61

Glycolysis

E. coli simulation, 282

elementary modes, 258–259

pathway alignment, 262–263

rule network, 67–68

in simulated cells, 278–279

G-protein coupled receptor, 38

Greedy algorithms, 95
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Growth and development, 160–163

Growth factors, 183–184, 189

Haemophilus influenzae, 116, 259

Heat shock response, 142

Hedgehog protein, 3

Helicobacter pylori, 262

Helix-turn-helix, 114, 121

Hemoglobin, 193, 279

Hemolysis, 279

Hemolytic anemia, 279–280

Hidden Markov Models (HMMs), 23

Homeobox genes, 10

Homeostasis, 158–160, 167–169

Homology

benefits, 11–12

definitions, 2–3, 5–6

at differing levels, 3–4, 9–10

and dissimilarity, 5

distal-less gene, 4, 10

DNA sequences, 5

gene expression patterns, 4

of gene vs. end product, 8–10

as hypothesis, 3, 6–8

limitations, 223–224

vs. paralogy, 6

of regulatory circuits, 1–2

serial, 5–6

and surrounding parts, 6

Homology-derived secondary structure of

proteins (HSSP), 27, 31

HTML. See HyperText Markup Language

Human genome, 35

Human Genome Project, 53

Human Genome Sciences, 76

HUSAR, 57

Hypergeometric distribution, 139

HyperText Markup Language (HTML), 53,

73

Immunoglobulin domain, 40

INCYTE Genomics, 77

Information fusion, 56, 74

Information system(s)

defined, 52

signal transduction as, 181–182, 186–188,

205–206

Informax, 77

Insect cuticle protein, 38

Internal congruence, 119

InterPro

and CluSTr, 34

for comparative analysis, 35, 37–41

controlled vocabulary, 33–34

description, 23

and domain composition, 41

and GO, 34

protein analysis, 27

user interface, 33

Jaccard coefficient, 239

JAVA, 73–75, 156

JDBC (Java DataBase Connectivity), 58,

73–74

KEGG. See Kyoto Encyclopedia of Genes

and Genomes

Key word recovery, 238–239

Kullbach-Liebler distance, 89, 93

Kyoto Encyclopedia of Genes and

Genomes (KEGG)

and database integration, 57

and DNA regulatory motifs, 141

and functional relationships, 238

interface, 53

and metabolic pathways, 49, 134–135,

252, 261

url, 54

Lactate dehydrogenase, 253

Lactic acidosis, 285

Lactose, 63–64, 182

LASSAP, 29

Leigh syndrome, 285

LexA, 111–112, 113

LIGAND database, 54

Limbs, 4, 5

Lion Bioscience, 77

Lipidation, 237

Lipids

biosynthesis, 266–267

metabolism, 155–156

Liver, 267

Low-density lipoproteins (LDLs)

304 Index



domain, 40–41

role, 160, 167–168

Lysine, 263

Lytic-lysogenic switch, 282–283

MACAW. See Multiple Alignment

Construction and Analysis Workbench

Major histocompatibility domain, 40

Mammals, 172–173

MAP (mitogen-activated protein) kinase,

185, 187, 193

cascades, 208

MAP score, 138

MARGBench. See Modeling and

Animation of Regulatory Gene

Networks

Markov models, hidden (HMMs), 23

Mating type, 142

Matrices. See Elementary modes; Weight

matrices

MEME. See Multiple EM for Motif

Elicitation

Metabolic flux space, 259

Metabolic networks

diagrams, 59

glucose-6-phosphate, 60–61

glycolysis pathway, 67–69

and homology, 223

MARGBench example, 56, 69–76

mathematical models, 58–59

Metab-Sim simulation, 58, 66–69, 71

in multicellular organisms, 182

rule-based modeling, 60–66, 76–79

simulators, 163–167

Metabolic pathways

alignment, 259–263, 265

boundaries, uncertain, 267

branched and interconnected, 252–253

catabolic and anabolic, 252

defined, 252–253

genome analysis, 263–267

identification

elementary modes, 255–259, 263

by synthesis, 255

and organism complexity, 268

Metabolism

comparative analysis, 41–42

proteome proportion, 41–42

Metabolites

identification, 257–258

in models, 60, 62–63, 65

MetabSim, 58, 66–69, 71

and MARGBench, 75–76

Methanococcus jannaschii, 263

Metrics, of protein function, 238

Mevalonate pathway, 159–160

MGD. See Mouse Genome Database

Michaelis-Menten kinetics, 66–67, 165, 167,

193

Microarrays, 235

Millipedes, 5

Minimal upstream regions, 116

MIPS. See Munich Information Centre for

Protein Sequences

Mitochondria, 283–285

Modeling and Animation of Regulatory

Gene Networks, 56, 69–75

application, 75–76

Models. See also Boolean networks;

Simulation

chemical-kinetic, 164–167

of cholesterol biosynthesis, 167–169

gene regulation, 65

mathematical, 150, 191–192

of metabolic pathways, 267–268 (see also

Metabolic pathways)

rule-based, 60–66

Modularity, 190–191

Molecular databases, 53–58

Morphogenesis, 160–163

Motifs

common, 112

discovery process, 129, 130

DNA-binding, 114

DNA regulatory, 135–140

overlapping, 112–113

palindromic, 140

RNA-binding, 38

Mouse Genome Database (MGD), 33

mRNA expression, 130–131, 142–143, 235–

236

Multiagents, 57

Multicellular organisms, 181–182, 209–

212

305 Index



Multiple Alignment Construction and

Analysis Workbench (MACAW), 136

Multiple EM for Motif Elicitation (MEME),

136

Munich Information Centre for Protein

Sequences (MIPS), 134–135, 142, 238

MURS. See Minimal Upstream Regions

Muscle development, 9

Mutations

and Boolean networks, 210–212

in simulated cell, 281

Myc, 189, 208

Mycobacterium tuberculosis, 244–245

Mycoplasma genitalium, 265, 277–280, 282

Mycoplasma hominis, 262

Mycoplasma pneumoniae, 264–265, 266

Myopathy, mitochondrial, 285

Nematodes, 38

Neostructuralists, 6

Network(s). See also Metabolic networks

cholesterol biosynthesis, 167–169

components, 172

congruence, 119

control, 152

defined, 49, 149

diversity, 163–164

elementary structures, 151

functional dynamics, 163–167

functional types, 156–158

gene regulation, 282

homeostasis-maintaining, 158–160

and irreversible processes, 160–163, 169–

171

lytic-lysogenic, 282–283

mammalian, 172–173

in multicellular organisms, 182

object oriented analysis, 151–158

organization, 150–151, 163, 172–173

protein interaction, 240–243

signal transduction, 188, 190–191 (see also

Boolean networks)

transcription initiation, 104, 106–117, 124

Nitrite reductase, 227

Noise, biological, 208–209

Nucleotides, 263, 278

Object-oriented systems, 59, 66

for gene networks, 151, 163, 164–167, 172

Object Query Language (OQL), 74

ODBC. See Open Database Connectivity

Oligonucleotides, 136

Open Database Connectivity (ODBC), 73

Open Reading Frame (ORF), 103–104, 139

Operator sites, 106–107

Operons

in bacteria, 121–124, 132, 141

in E. coli, 104, 116–117

in eukaryotes, 133, 231

and evolution, 122–124

genes within, 117–118, 121, 122–124

lac and ara, in E. coli, 282

and protein function, 231–233

and regulatory motifs, 141

OPM, 57

OQL. See Object Query Language

ORF, ORFs. See Open Reading Frame

Organisms, multicellular, 181–182, 209–

212

Organs, morphogenesis, 160–163

Orthologues, 38, 116. See also Clusters of

Orthologous Groups (COGs)

Osmosis, 279

Oxidation, 237

Oxygen transport, 279

Palindromes, 140

Paralogy, 6

Pathways. See also Signal transduction

pathways

databases, 54

liver antioxidant, 267

MAP kinase, 185, 187, 193

metabolic (see Metabolic pathways)

modeling, 65

novel, 244–245, 253

ribulose, 266

PDB. See Protein Data Bank

Pearson correlation, 140

PEDANT, 57

Pentose phosphate cycle, 258–259, 262,

278, 282

Peptides, signal, 27
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Petri nets, 59

pH, 279

Phosphofructokinase, 59, 262

Phospholipid biosynthesis, 274, 278

Phosphorylation

and Boolean networks, 195–196, 198–199

and external stimuli, 280–282

and metabolic pathway, 252

and protein modification, 237

Phylogenetic footprints, 120, 135, 140

Phylogenetic profiles, 115, 134, 228–231

Phylogenetic space, 240

PIR. See Protein Information Resource

P13K-Akt sequence, 185

Pleiotropy, 187–189, 205–207

Prediction

of cell regulative disorders, 214

of protein-binding sites, 106

of protein functions, 237–239

of regulatory network, 104, 106–117

of regulons, 130–135

of signal peptides, 27

Predictive value, 109

Profiling, gene expression, 213

Proliferation, 181

Proliferation, cellular, 197, 211–212

Promoters

and discretization, 194

in E. coli, 103, 107–117

predicting, 106–107, 109

and RNAP, 106–117

specificity, 87, 94, 98

PROSITE database, 22

Protease, sterol-regulated, 155, 160

Protein Data Bank (PDB), 31, 54

Protein functions

categories, 34, 41, 239–240

and expression, 234–237

and gene position, 231–233

measuring, 237–239

metrics, 238

molecular vs. cellular, 224

phylogenetic profiles, 228–231

Rosetta Stone approach, 225–227

structure-function relationship, 266

Protein fusion, 225–228

Protein-gene interactions, 114, 213

Protein Information Resource (PIR), 49, 54

Protein interaction networks, 241–243

Protein kinases, 37–38

Protein-protein interactions

in Boolean networks, 195–198, 199

and homology, 223–224

Proteins. See also Yeast

annotation, 20–25

chicken, 154

classification, 26–34, 41

constraint sharing, 225

DNA-binding, 87–89

eukaryotic (see Eukaryotic proteomes)

fungal transcription, 38

fusion, 225–228

Hedgehog, 3

human, 155

insect cuticle, 38

lengths, 36–37

master, 208

modifications, 237

multidomain, 41

Myc, 189, 208

Ras, 189, 208, 241

reading frames, 264

regulatory, 106, 189

rhodopsin-like, 38

RNA-binding, 38

secreted, 27, 37

species-unique, 38

SREBP, 155, 159–160, 168

synthesis simulation, 278

transition-causing, 208

transmembrane, 27, 37

Proteolysis, 195–196

Proteomes. See also Comparative analysis;

Eukaryotic proteomes

analysis, 25–33

annotation, 20–25

of bacteria, 26–27, 34–35

classification, 25–33

comparative analysis, 34–41

expression profiles, 236–237

functional analysis, 34, 41

sequencing history, 19–20
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ProtoMap database, 28

Pseudo attractors, 208–209

PSI-BLAST, 265

Purine biosynthesis, 132, 133

Purine metabolism, 59

Pyruvate kinase, 262, 279–280

Quality, of data, 55

Queries, 30–33, 55, 57–58. See also Searches

Ras, 189, 208, 241

Reaction events, 152, 155

Reading frames

protein- vs. RNA-coding, 264

reannotating, 265

Reannotation, 264–267

Receptors, 7-helix G-protein coupled, 38

Redox balance, 257–258

Redundancy

in databases, 29–30, 51–52

in signaling, 187

Regulation, in multicell organism, 182. See

also Feedback; Transcription factors

Regulatory circuits, 1–2, 172

Regulatory events, 152–153, 155–156

Regulatory genes, 8

Regulatory regions, 234

RegulonDB database, 54, 105, 110

expression regulation, 117

and protein gene regulation, 112

and transcriptional units, 104

Regulons

and Boolean networks, 207–208

defined, 132

prediction methods, 130–135

purine biosynthesis, 133

and transcriptional units, 116–117

Replication factors, 241

Reverse engineering, 213

RFC1-5, 241

Rhodopsin-like G-protein-coupled

receptor (GPCR), 38

Ribosylation, 237

Ribulose uptake pathway, 266

RNA-binding motif, 38

RNA-polymerase (RNAP), 63–64, 106–117

RNP-1, 38

Rosetta Stone method, 225–228

RuleBase, 22, 24, 25

Rule-based modeling, 60–66

Saccharomyces cerevisiae. See also Yeast

comparative analysis, 36–41

DNA regulatory motifs, 139–140, 142

mRNA expression, 131

repeated domains, 41

Saccharomyces Genome Database (SGD),

33

SAGE, 237

Searches, 30–33, 55, 57–58

RegulonDB, 117

SQL, 73, 75

SYSTER, 28

Semi-Thue system, 60

Sensitivity amplification, 193

Sequence Retrieval System (SRS), 57

Sequences. See also DNA sequences

alignment, 260

annotation, 20–25

binding specificity (see Specificity)

coding regions, 2

databases, 49

DNA, 5, 135–140

domain repetition, 40

P13K-Akt, 185

regulatory network, 104, 106–117

similarities, 229, 265

specific, 87

Serum, growth factors in, 183

Sigma factor, 106

SignalP, 27, 37

Signal transduction pathways

annotation, 185, 186, 188

basic concept, 184

as Boolean network, 204–209

cascades, 193, 204–205, 208

for chemotaxis, 280–282

conflicting signals, 203

and context, 208–209

convergence, 187

cooperativity, 193

erythrocytes, 160–162
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homology, 223

modularity, 190–191

perturbations, 189–190

simulation, 280–282

subcellular, 212–213

Similarities

explanations, 6–8

nonhomologous, 5

in phylogenetic profiles, 229

statistical significance, 28–29, 265

Simulation. See also Models

of cell (see E-CELL)

chemical kinetic, 164–167

E. coli chemotaxis, 281

essential data, 285–286

metabolic pathways, 268

of networks, 163–167

signal transduction, 191–192, 214

software for, 275–277

stiffness problem, 276

Simulators, 49–50, 58

Size, of proteins, 36–37

Sodium transport query, 30–32

Software, simulation, 275–277

Specificity

definition, 109

of DNA-binding protein

quantitative aspect, 87–89

weight matrix models, 89–97

RNAP transcription, 106–107, 110–117

to species, 263

Specificity score, 138–139

SPTR database, 26, 28

SQL. See Structured Query Language

SREBP proteins, 155, 159–160, 168

Stanford Microarray Database, 235

State space, 197, 198–200, 203, 214

Statistical analysis, 27, 31

Statistical significance

of similarities, 28–29

Sterol-regulated protease, 155–156, 160

Stiffness, 276

Structure-function relationships, 266

Structured Query Language (SQL), 73, 75

SWISS-PROT

annotation, 21–23, 24

and clustering, 28

and GO, 34

and protein functions, 238, 266

and proteome analysis, 26

controlled vocabulary, 33

database, 54

Synchronous congruence, 119

SYSTERS (SYSTEmatic Re-Searching), 28

T. pallidum, 266

Thermotoga maritima, 266

TIGR. (The Institute for Genomic

Research), 261, 264

TIM barrels, 266–267

Tissue dynamics, 210

Tissues, morphogenesis, 160–163

TMHMM, 27, 37

Transcriptional units (TUs)

in bacteria, 116–117

boundary genes, 116, 121, 122, 124

Transcription factors

binding sites, 94, 98, 129

and Boolean networks, 208, 213

and cholesterol, 155, 159

and cis-regulators, 213

of erythrocyte differentiation, 162

Gene-Net depiction, 154, 155

for purine biosynthesis, 132

site recognition, 234

Transcription regulation

activators vs. suppressors, 114–115

in bacteria, 114

evolutionary origin, 105, 121

false positives, 106, 109, 111–112

and gene function, 114

initiation, 104, 106

Transcription Regulatory Regions

Database (TRRD), 54

Transcriptomes, 2

TRANSFAC database, 54

Transition complexes, 193

Transmembrane proteins, 27

TRANSPATH, 49

TrEMBL

annotation, 21–23, 24

and clustering, 28

309 Index



controlled vocabulary, 33

and GO, 34

and proteome analysis, 26

TRRD. See Transcription Regulatory

Regions Database

Tus. See Transcriptional Units

Von Willebrand factor, 36

WD repeat, 38

Weight matrices

and DNA regulatory motifs, 139

of E. coli promoter, 107, 108–110, 113

expectation-maximization (EM), 96

Gibbs’ sampling, 96–97

greedy algorithms, 95

limitations, 110

network method, 97

in RegulonDB, 111

as specificity model, 90–93

Wings, 4, 5

WIT database, 54, 140–141, 231, 261

Yeast. See also Saccharomyces cerevisiae

and domain fusion, 227

in network, 241–242, 243

phylogenetic profile, 230

Yeast Protein Database (YPD), 135, 142
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