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Foreword 

The emphasis on modern research in the earth sciences has shifted from the ex-
planatory to the predictive. In the past, geologists, hydrologists, oceanographers, 
and other students of the earth were content to observe and describe natural phe-
nomena and to expostulate on how things came to be the way they are. Now these 
scientists not only theorize about the operation of natural processes, they must 
devise ways to test their theories and predict the possible consequences implicit in 
the theories. The human race is no longer restricted to a minor role as a gatherer of 
the wealth created by nature. Instead, modern society exerts an increasingly im-
portant influence on the physical and chemical processes that operate on and near 
the surface of the earth and within the atmosphere and oceans of our planet. To 
understand these processes requires that we devise models that describe the dy-
namics of their behavior and manipulate these models in order to estimate the 
consequences of our activities. 

Geological models have evolved from purely deterministic to probabilistic to 
geostatistical models incorporating the hybrid concept of regionalized variables. 
Geostatistical methods are among the most powerful techniques presently avail-
able for constructing models of the spatial variation in natural properties. However, 
these geostatistical models are only static representations of the state of nature at 
an instant in time; they must be combined with other models (in the current state 
of the art, usually deterministic) that simulate dynamic behavior. Spatiotemporal 
models, as described in this seminal volume by George Christakos, represent the 
next evolutionary step in geological modeling, because such models combine dy-
namic processes with spatial variability and incorporate the inevitable uncertain-
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ties that result from incomplete knowledge of both spatial patterns and dynamic 
behavior. 

This book will place serious demands on the reader because it is both heavily 
mathematical and very philosophical. George perhaps could have written a more 
approachable treatment of spatiotemporal models by concentrating on methodo-
logical nuts and bolts, emphasizing anecdotes, examples, and case studies. How-
ever, such an approach would not have served the dual purpose of this volume: 
(a) to lay a foundation for spatiotemporal modeling as a fundamental methodology 
in the earth sciences and (b) to fit spatiotemporal modeling into the general frame-
work of the scientific method. George's objective has necessitated the careful ex-
position of assumptions and the painstaking development of the philosophical 
justifications behind them, as well as the detailed derivations of consequences that 
spring from the fundamental assumptions. Of course, it may also be true that his 
concern for philosophical underpinnings reflects in part the Christakos heritage, 
rooted as it is in the land of Greece, the birthplace of western philosophy. 

After completing undergraduate work at the University of Athens, George 
Christakos continued engineering studies at the University of Birmingham (U.K.), 
receiving a master's degree in soil mechanics, and at M.I.T., where he obtained a 
master's degree in civil engineering. This was followed by a one-year stay at the 
Centre de Géostatistique in Fontainebleau, France, where he acquired an extensive 
background in geostatistics. He then returned to Athens, where he incorporated 
his knowledge of both deterministic and geostatistical modeling into his doctoral 
research in mining engineering. Noting the criticisms that have been directed at 
early geostatisticians for their failure to demonstrate the many connections be-
tween geostatistics and other forms of mathematical modeling, George, in this 
book, has taken great pains to demonstrate how the random field model relates to 
the various aspects of geostatistics, to the classical models of time series analysis 
and stochastic processes, and to the other variant models of physical phenomena. 

Following his graduate studies, George came to the United States as a visiting 
research scientist at the Kansas Geological Survey. For two years, the Kansas Sur-
vey provided an environment where he could organize his thoughts and consolidate 
them into the manuscript that eventually resulted in this book. With the coopera-
tion of the Survey, preparation of the text continued over the following two years 
while George pursued a second Ph.D. and conducted research in the Division of 
Applied Sciences at Harvard University. The Mathematical Geology Section of the 
Kansas Geological Survey takes special pride in George's contribution and is 
pleased to have been instrumental in the preparation and publication of this volume. 
This book is not only a valuable contribution to science but also a testimony to the 
benefits that come from our support and encouragement of the exchange of scien-
tists between nations. George Christakos is one in a succession of international 
scholars that have worked and studied at the Kansas Geological Survey; all have 
brought new ideas and viewpoints and have made lasting contributions to both our 
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organization and to science in general. It is our hope that George's book will direct 
researchers into new lines of investigation and increase the interaction between 
geoscientists and environmental scientists in all parts of the world. After all, the 
problems that must be addressed in energy, natural resources, and environment are 
global in nature. Fortunately, George Christakos has assembled a powerful collec-
tion of tools with which to address them. 

John C. Davis 
Kansas Geological Survey 

Lawrence, Kansas 



Preface 

"If y ou do not fix your foot outside the earth, you will never 
make it to stay on her." 

O. Elytis 

This book is about modeling as a principal component of scientific investigations. 
In general terms, modeling is the fundamental process of combining intellectual 
creativity with physical knowledge and mathematical techniques in order to learn 
the properties of the mechanisms underlying a physical phenomenon and make 
predictions. The book focuses on a specific class of models, namely, random field 
models and certain of their physical applications in the context of a stochastic data 
analysis and processing research program. The term application is considered here 
in the sense wherein the mathematical random field model is shaping, but is also 
being shaped by, its objects. 

Since the times of Bacon, Mill, Whewell, Pierce, and other great methodologists 
of science, it has been recognized that in scientific reasoning it is as important to 
operate with the right concepts and models as it is to perform the right experiments. 
Conceptual innovation and model building have always been central to any major 
advance in the physical sciences. Scientific reasoning employs to a large extent 
probabilistic concepts and stochastic notions. Indeed, scientific induction (in the 
Baconian tradition) is concerned with hypotheses about physical situations as well 
as with the gradation of the inductive support that experimental results give to 
these hypotheses. Such a gradation is needed, for these hypotheses are expected to 
generate predictions that extrapolate beyond the existing experimental data. The 
gradation is also necessary because all models possess some evidential support and 
counterexamples. To choose between them, the degree of support must be ad-
dressed. In scientific hypothetico-deduction (in the sense of Pierce and Popper), 
on the other hand, one first formulates a hypothesis and then exposes it and its 
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logical consequences to criticism, usually by experimentation. In both cases (in-
duction and hypothetico-deduction), the fact that one makes hypotheses implies 
that one is not dealing with certain knowledge but rather with probable knowledge 
where the gradation of the support that the experimental results give to hypotheses 
is achieved by means of probabilistic (stochastic) terms. In Poincaré's words: "Pre-
dictable facts can only be probable." Lastly, modeling is an important component 
of sophisticated instrumentation, which forms the conditions for and is the media-
tor of much of modern scientific knowledge (as is emphasized by instrumental 
realists, like Ihde, Hacking, and others). 

Unfortunately, it seems that these fundamental truths are not always well appre-
ciated nowadays. In particular, unlike physics where conceptualization-modeling 
and observation-experimentation are closely linked to each other following paral-
lel paths, in some geological and environmental fields measurement is heavily over-
emphasized, while little attention is given to important modeling issues; even less 
attention is given to the problem of the rationality of model testing. Undoubtedly, 
such an approach, besides being very unpleasant to one's sense of symmetry, 
violates the most central concepts of scientific reasoning, the latter being consid-
ered hypothetico-deductive, neo-inductive, or instrumental-realistic. As a conse-
quence, it may be a particularly inefficient and costly approach, which provides 
poor representations of the actual physical situations and leads to serious misinter-
pretations of experimental findings. 

Furthermore, it is sometimes argued that conceptual innovation and advanced 
modeling are not likely to be practical and, hence, one should restrict oneself to 
classical methods and techniques that have been in use for long periods of time. 
Besides being distinctively opposed to the very essence of scientific progress, this 
view grossly misinterprets the real meaning of both terms, "practical" and "clas-
sical." Regarding the former term, it suffices to state Whittle's own words: "The 
word 'practical' is one which is grossly and habitually misused and the com-
mon antithesis between it and the word 'theoretical' is largely false. A practical 
solution is surely one which, for all it may be approximate, is approximate in 
an enlightened sense, shows insight and gets to the bottom of things. However 
the term is much more often used for a solution which is quick and provisional — 
quick and dirty might be nearer the mark. The world being what it is, we may need 
quick, provisional solutions, but to call these 'practical' is surely degradation of an 
honourable term." In fact, before any meaningful practical solution to a physical 
problem is obtained, the fundamental conceptual and physical aspects of the prob-
lem must be first completely understood and a powerful theory must be developed. 
A good example is the problem of fluid flow turbulence. Despite its great prac-
tical importance and intensive applied research over several decades, a completely 
satisfactory practical solution to the problem is still not available. And this is 
largely due to the fact that the fundamental theoretical aspects of turbulence are 
still unresolved. 
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As regards the term "classical," the most influencial writers in the area of mod-
ern scientific methodology (such as Kuhn, Lakatos, and Nagel) have repeatedly 
emphasized the fact that scientific achievement is but an endless series of historical 
data where problems that could not be handled by the then classical approaches 
were solved in terms of novel concepts and mathematically more advanced meth-
ods; which then became classical themselves, only to be replaced in turn by more 
powerful new models and techniques. This has always been the way that science 
progresses. In fact, according to Lakatos, all great scientific achievements had one 
characteristic in common: They were all based on new concepts and models, and 
they all predicted novel facts, facts that had been either undreamt of or had indeed 
been contradicted by previous classical theories. Scientific progress is a revolution-
ary process in the sense of Kuhn. Moreover, as Rescher stated: "Progress in basic 
natural science is a matter of constantly rebuilding from the very foundations. 
Significant progress is generally a matter, not of adding further facts, but of chang-
ing the framework itself. Science in the main does not develop by sequentially 
filling-in of certain basically fixed positions in greater and greater detail." Modern 
quantum mechanics, for example, has predicted and explained an enormous num-
ber of effects in physics and chemistry that could not be predicted or explained in 
terms of classical mechanics. Quantum mechanics, however, is not a refined or 
extended version of classical mechanics; it is rather a revolutionary step toward 
changing the classical framework itself (e.g., the renowned von Neumann's world, 
which is entirely quantum, contains no classical physics at all). 

In earth sciences and environmental engineering, important problems nowadays 
include the assessment of the space-time variability of hydrogeologic magnitudes 
for use in analytical and numerical models; the elucidation of the spatiotemporal 
evolution characteristics of the earth's surface temperature and the prediction of 
extreme conditions; the estimation of atmospheric pollutants at unmeasured points 
in space and time; the study of transport models that are the backbone of equations 
governing atmospheric and groundwater flow as well as pollutant fate in all media; 
the quantitative modeling and simulation of rainfall for satellite remote-sensing 
studies; the design of optimal sampling networks for meteorological observations; 
and the simulation of oil reservoir characteristics as a function of the spatial posi-
tion and the production time. 

These are all problems where the development and implementation of the appro-
priate model is of great significance. The importance of the modeling aspect be-
comes even more profound in physical situations at large space-time scales where 
controlled experimentation is very difficult or even impossible. Furthermore, all 
the above problems are characterized by the significant amount of uncertainties in 
the behavior of the natural processes involved. Such uncertainties constitute an 
essential part of many controversial scientific investigations and policy responses. 
A good, timely example is the global warming problem. Global warming from the 
increase in greenhouse gases has become a major scientific and political issue 
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during the past decade. This is due mainly to the huge uncertainty involved in all 
global warming studies. For example, forecasts of the space-time variability of 
natural processes, such as soil moisture or precipitation, have large uncertainties. 
Also, uncertainties in the future changes in greenhouse gas concentrations and 
feedback processes that are not properly accounted for in the models could produce 
greater or smaller increases in the surface temperature. Policy responses are de-
layed because scientists are not able to properly quantify these uncertainties and 
use them in the context of climate models. Therefore, modeling tools and ap-
proaches leading to satisfactory solutions to these difficult problems are extremely 
important. And this is why the problem of uncertainty, probability, and probable 
knowledge is not a problem of armchair philosophers. It has grave scientific, ethi-
cal, and political implications and is of vital social and economic relevance. 

Of course, the fact that research in earth sciences and environmental engineering 
faces a series of difficult problems nowadays should by no means dishearten us. 
On the contrary, it should encourage us to reconsider the usefulness of many of our 
traditional approaches and techniques and develop novel, more sophisticated 
models. At the same time, we should increase our confidence in pursuing difficult 
problems. This last issue is very important, for it provides the surest guarantee for 
the continuing vitality and rapid growth of any scientific discipline. The great sig-
nificance of the confidence issue in scientific research underlies Einstein's aphor-
ism: "I have little patience with scientists who take a board of wood, look for the 
thinnest part and drill a great number of holes where drilling is easy." 

In the light of the above considerations, this book is concerned with the study 
of problems of earth and environmental sciences by means of theoretical models 
that have as an essential basis a purely random (stochastic) element. In particular, 
the term stochastic data analysis and processing refers here to the study of spatial 
and spatiotemporal natural processes in terms of the random field model. As we 
saw above, spatial and spatiotemporal natural processes occur in nearly all the 
areas of earth sciences and environmental engineering, such as hydrogeology, en-
vironmental engineering, climate predictions and meteorology, and oil reservoir 
engineering. In such a framework, geostatistics, stochastic hydrology, and envi-
ronmetrics are all considered as subdomains of the general stochastic research 
program. 

From a mathematical viewpoint, random fields (spatial or spatiotemporal) con-
stitute an area that studies random (nondeterministic) functions. This is an area of 
mathematics that is usually called stochastic functional analysis and deals with any 
topic covered by the ordinary (deterministic) theory of functions. In addition, the 
existence of the random component makes stochastic functional analysis a much 
larger, considerably more complex, and also more challenging subject than the 
ordinary theory of functions. The mathematical theory of random fields works in 
all these physical situations, where traditional (deterministic) models do not, be-
cause (a) it has the clearest theoretical justification and captures important char-
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acteristics of the underlying natural processes that traditional methods do not; and 
(b) it has a superb analytical apparatus and is able to solve complex physical prob-
lems on which the traditional methods fail. 

In fact, as one probes more deeply into the origin of this highly mathematical 
discipline, it becomes quite clear that the pioneers of the random field theory are 
in fact hardheaded realists, driven to develop the new approach only because of the 
failure of the esteemed traditional approaches to provide an accurate description of 
nature in problems such as those described above. By now, the stochastic approach 
has been applied successfully to several engineering applications. As Medawar 
could have stated it, engineering is complex, richly various, and challenging —just 
like real life. Perhaps it travels slower nowadays than quantum physics or nuclear 
chemistry, but it travels nearer to the ground. Hence, it should give us a specially 
direct and immediate insight into science in the making. 

Certainly the choice between the various possible models depends partly on 
one's guess about the outcome of future experiments in earth sciences and environ-
mental engineering and partly on one's philosophical view about the world. For the 
mathematical methods, though, to become operational and to obtain an objective 
meaning in the sense of positive sciences, it is necessary to be associated with the 
empirical theses and computational notions of the stochastic data analysis and 
processing research program. Certainly the utilization of the stochastic research 
program in practice raises technical questions that can be answered by way of a 
framework weighting all sorts of data and knowledge available, describing the 
specific objectives, and choosing the appropriate technique. The computer as a 
research instrument provides the powerful means of implementing stochastic data 
analysis and processing in complex physical situations. The technology that 
emerges from the use of computers has exciting implications as regards the tradi-
tional relationship between theory-modeling and observation-experimentation. 

More specifically, the book is organized as follows: We start with discussions of 
the science of the probable, the various theories of probability, and the physical 
significance of the random field model. Random field representations of unique 
natural processes are rich in physical content and can account for phenomena pos-
sessing complex macroevolution and microevolution features. In this context, var-
ious problems in earth sciences, where the use of the random field approach is 
completely justified, are reviewed throughout the book. The subject of random 
fields is vast. Inevitably we have to restrict our interests to reasonably specific 
areas. The choice of these areas is directly dependent on their importance in the 
context of applied environmental sciences. The entropy-related sysketogram func-
tion is introduced and its advantages over the traditional correlation functions are 
discussed. Following a critical and concise summary of the fundamental concepts 
and results of the general random field theory, the intrinsic spatial random field 
model, which describes generally nonhomogeneous distributions in space, is es-
tablished in terms of generalized functions. The latter involve more complex math-



XXVI PREFACE 

ematical concepts and tools. However, it pays here to use more sophisticated 
mathematics, since this provides us with a more complete description of random 
fields, which strengthens the theoretical support of the intrinsic model and leads to 
novel results. The power of the underlying mathematical structure lies in its capac-
ity to capture essential features of complex physical processes, to replace assump-
tions regarding physical processes by more powerful and realistic ones, and to pave 
the way for establishing important connections between the intrinsic spatial ran-
dom field model and stochastic differential equations. The study of natural pro-
cesses in space-time is achieved by introducing the spatiotemporal random field 
concept. More precisely, a theory of ordinary as well as generalized random fields 
is built on the appropriate space-time structure. The results obtained act then as 
the theoretical support to practical space-time variability models and optimal 
space-time estimation methods. The concept of factorable random fields provides 
the means for studying an important set of problems of nonlinear systems analysis 
and estimation in several dimensions. Space transformation is an operation that 
can solve multidimensional problems by transferring them to a suitable unidimen-
sional setting. The underlying concept has both substance and depth, possessing 
elegant and comprehensive representations in both the physical and frequency do-
mains. It can be used as a valuable tool in testing the permissibility of spatial and 
spatiotemporal correlation functions, in the study of differential equation models 
governing subsurface processes, as well as in the simulation of environmental 
properties. The spatial and spatiotemporal estimation problems are solved in all 
generality. A heuristic adopted to the stochastic research program yields a Baye-
sian-maximum-entropy approach to the spatial estimation problem, which incor-
porates into analysis prior information and knowledge that are highly relevant 
to the spatial continuity of the natural process under estimation. The Bayesian-
maximum-entropy concept may have significant applications in multiobjective de-
cision analysis and in artificial intelligence studies. Interesting solutions can be 
obtained concerning certain important time-series-related problems, such as sys-
tem nonlinearity. These time series are involved in a variety of water resources and 
environmental problems, including streamflow forecasting, flood estimation, and 
environmental pollution monitoring and control. Multidimensional simulation is a 
valuable tool in applied sciences. In the book various random field simulation tech-
niques are reviewed and their relative advantages are discussed. Lastly the sam-
pling design problem is discussed. An estimation variance factorization scheme 
with attractive properties is studied, which leads to an efficient and quick multiob-
jective sampling design method. Several other sampling methods of considerable 
importance in earth sciences and environmental engineering are reviewed too. 

This work has been influenced by discussions with many friends, colleagues, 
and even certain theoretical opponents. My sincere thanks are due to Drs. M. B 
Fiering, J. J. Harrington, and P. P. Rogers of Harvard University; A. G. Journel of 
Stanford University; J. C. Davis, R. A. Olea, and M. Sophocleous of Kansas 
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Geological Survey; C. Panagopoulos, I. Ikonomopoulos, K. Mastoris, N. Apos-
tolidis, and P. Paraskevopoulos of National Technical University of Athens; P. 
Whittle and J. Skilling of University of Cambridge, England; G. B. Baecher and 
D. Veneziano of Massachusetts Institute of Technology; G. Baloglou of State Uni-
versity of New York at Oswego; M. David of Montreal University, Canada; R. 
Dimitrakopoulos of McGill University, Canada; and V. Papanicolaou of Duke Uni-
versity. The author is grateful to all these friends, as well as to Mrs. C. Cowan, 
who typed the original manuscript, and Mrs. R. Hensiek, who drafted several of 
the illustrations. 

George Christakos 



Prolegomena 

"Common sense is the layer of prejudice laid down in 
the mind prior to the age of eighteen." 

A. Einstein 

1. The Science of the Probable and the Random Field Model 

There are numerous phenomena in the physical world a direct (determinis-
tic) study of which is not possible. In fact, physics, geology, meteorology, 
hydrology, and environmental engineering have introduced us to a realm 
of phenomena that cannot give rise to certainty in our knowledge. However, 
a scientific knowledge of these phenomena is possible by replacing the 
study of individual natural processes by the study of statistical aggregates 
to which these processes may give rise. A statistical aggregate is a configur-
ation of possibilities relative to a certain natural process. The properties of 
such aggregates are expressed in terms of the concept of probability, more 
specifically, under the form of a probability law. It is important to recognize 
that the probability law is a perfectly determined concept. The difference 
between a probabilistic and a deterministic law is that, while in the deter-
ministic law the states of the system under consideration directly characterize 
an individual natural process, in a probabilistic law these states characterize 
a set of possibilities regarding the process. 

The application of the mathematical theory of probability to the study 
of real phenomena is made through statistical concepts. Therefore, it is 
essentially in the form of statistical knowledge that a science of the probable 
is constituted. This implies that the science of the probable replaces a direct 
study of natural processes by the study of the set of possibilities to which 
these processes may give rise. 

1 

1 
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Since knowledge regarding these processes is achieved only indirectly by 
way of statistical concepts, it will be characterized as probable or stochastic 
knowledge. Modern science provides convincing evidence that such probable 
knowledge is no less exact than certain knowledge. Naturally, the constitu-
tion of a science of the probable raises two fundamental philosophical 
problems: 

(a) The elucidation of the content of the concept of probability. 
(b) The foundation of probable or stochastic knowledge as a concept 

directly related to the application of the concept of probability to the 
study of real phenomena. 

Clearly, these two problems are closely related to each other. For example, 
the concept of probability must be such that it can be used in the empirical 
world. Each one of these problems, however, possesses certain distinct 
aspects that deserve to be studied separately. 

Problem (a) can be considered under the light of either a subjectivist 
explanation of the notion of probability, taken in itself, or an objectivist 
explanation. More specifically, according to the subjectivist explanation, 
probability is a measure attached to the particular state of knowledge of 
the subject. It may correspond to a degree of certitude or to a degree of 
belief (say, about where the actual state of nature lies); or to the attitude 
with which a rational person will approach a given situation that is open 
to chance (say, the attitude with which one is willing to place a bet on an 
event whose outcome is not definitely known in advance). According to 
explanations of the objectivist type, probability is a measure attached to 
certain objective aspects of reality. Such a measure may be regarded as the 
ratio of the number of particular outcomes, in a specific type of experiment, 
over the total number of possible outcomes; or as the limit of the relative 
frequency of a certain event in an infinite sequence of repeated trials; or 
as a characteristic property (particularly, the propensity) of a certain experi-
mental arrangement. The main point of the last view is that it takes as 
fundamental the probability of the outcome of a single experiment with 
respect to its conditions, rather than the frequency of outcomes in a sequence 
of experiments. (See, e.g., Keynes, 1921; von Mises, 1928; Popper, 1934, 
1972; Jeffreys, 1939; Savage, 1954; Byrne, 1968.) 

In conclusion, there exist more than one meaning of probability. Figure 
1.1 merely represents a skeleton outline of various complex and diversified 
analyses of the notion of probability considered over the years by several 
eminent mathematicians, scientists, and philosophers (see Poincaré, 1912, 
1929; Borel, 1925, 1950; Kolmogorov, 1933; Reichenbach, 1935; Nagel, 
1939; Boll, 1941; Gendre, 1947; Servien, 1949; Carnap, 1950; Polya, 1954; 
Polanyi, 1958; Fisher, 1959; Rüssel, 1962; Jaynes, 1968; de Finetti, 1974). 
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More than one P 

General or 
Common Sense 

P (Pg) 

Scientific P (Ps ) 

Mathematical P Sociological P 

Psychological P Mathematical P 

Statistical Frequency 
(Pf) 

Measure Theory 

Logical Relationship Propensity 

Figure 1.1 The various meanings of the concept of probability P 

A subjective (sociological, Psc, or psychological, Py) concept of probability 
is of importance in social and psychological sciences, but it cannot serve 
as a basis for inductive logic or a calculus of probability applicable as a 
general tool of science. An objective (logical relationship, Pr , or propensity 
Pp) notion of probability is based on the assumption that objectivity is 
equivalent to formalization. It is, however, open to question whether formal 
logic can achieve the goals of the Pr concept, as has been demonstrated by 
Graig's theorem regarding empirical logic and by Godel's theorem on the 
limitation of formalization. Moreover, modern approaches to logic argue 
that the world obeys a nonhuman kind of reasoning and, hence, to cope 
with natural processes we must scrap our mode of human reasoning in 
favor of a new so-called quantum logic. The Pp concept, on the other hand, 
has been seriously criticized on the basis of the argument that what people 
understand by probability is broader than mathematical formalization. Last, 



4 Chapter 1. Prolegomena 

to restrict probability to a mathematical meaning (Pm) is for many philosoph-
ers an ineffective approach, because the notion of probability transcends 
the bounds of mathematics (e.g., Byrne, 1968; Benenson, 1984). 

Naturally, this variability of theoretical viewpoints reflects to an analogous 
variability in the practical implementation of the theory of probability. It 
seems that in the various fields of science and engineering, people do not 
stick to a unique meaning of probability. Occasionally, they prefer to choose 
what they consider to be the most appropriate meaning for the specific 
problem at hand. 

The problem of probable knowledge [problem (b) above] is closely related 
to important modern scientific areas such as, for example, artificial intel-
ligence and expert systems. With regard to this problem, two types of 
answers have been given: One is related to a subjectivist interpretation of 
probable knowledge, and the other is related to an objectivist interpretation. 
According to the former, the phenomena we are studying with the aid of 
probability theory are in themselves entirely determined and, therefore, they 
could be, ideally, the object of certain knowledge. And, if we are obliged 
to restrict ourselves to a probable knowledge of these phenomena, it is 
merely because we have at our disposal only incomplete information. The 
limitation of our information can be conceived either as purely contingent 
(due to insufficient sources of knowledge, inadequate measuring instruments 
and computers, etc.), or as a limitation in principle (because our capacities 
are inherently limited). The former point of view is used by classical 
statistical mechanics, while the latter is used in the context of the so-called 
orthodox theory of quantum mechanics. On the other hand, the objective 
interpretation of probable knowledge assumes that the incompleteness of 
our information is due to the object itself. Probable knowledge is then the 
expression of an objective contingency of the real phenomena. This contin-
gency reflects either a principle of chance that exists in the very elementary 
components of the physical phenomena, or the lack of access to the various 
processes that determine these phenomena. 

Evidently, there is a mutual relationship between the two aforementioned 
sets of problems: the subjective (objective) explanation of probability is 
well suited to the subjective (objective) explanation of the foundation of 
probable knowledge. But this is not always the case. For example, a subjec-
tive explanation of probability can well be used in the context of an objective 
interpretation of probable knowledge. Therefore, it is necessary that these 
two sets of problems be distinguished one from the other. 

In any case, satisfactory answers to problems (a) and (b) above clearly 
belong to the field of epistemology and, thus, they require access to multi-
dimensional philosophical considerations. In particular, any argument con-
cerning the objectiveness or the subjectiveness of the concept of probability 
demands a deeper understanding of human nature and knowledge. To adopt 
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the subjectivist or the objectivist interpretation of probable knowledge is a 
decision closely related to understanding of the nature of the world. In this 
regard, all the aforementioned attempts to answer the fundamental phil-
osophical problems (a) and (b) are without doubt inadequate. It is far from 
being evident that we have at our disposal today the philosophical tools 
necessary to obtain a true understanding of the concepts of probability and 
probable knowledge. There is, perhaps, in the probabilistic concept the 
emergence of a type of knowledge very different from that considered by 
traditional schools of philosophy. In fact, people begin to realize that full 
consciousness of what is involved in knowledge of this sort is going to 
oblige us to modify fundamental concepts such as truth, knowledge, and 
experience. 

In view of the above considerations, in this book we will not define 
probability as a concept in itself and will not indulge the epistemological 
problematics of probable knowledge. Had we decided to do so we would 
then have had the extremely difficult task of providing sound justification 
for a number of issues: If we had adopted the subjectivist explanation, we 
should explain why and how we have the right to suppose that the natural 
phenomena are entirely determined in themselves, and also why and how 
our knowledge, supposedly inadequate (be it in principle or merely in fact), 
turns out nevertheless to be quite adequate at the level of the statistical 
aggregates. If we had chosen the objectivist interpretation, we should justify 
why and how contingency appears in the physical phenomena, and why 
and how phenomena supposedly undetermined in themselves can give rise 
to statistical aggregates that are, for their part, entirely determined. 

This book will focus attention on the language of probability, which is 
not at all constituted from some given epistemology, but from certain 
concrete problems that the traditional methods were not able to solve. Our 
concern will be on issues of application of the science of the probable in 
the context of the so-called random field (RF) model. In particular, the RF 
model will be considered a statistical aggregate about which we will make 
two a priori assumptions: 

(i) Randomness is not a property of reality itself but, instead, a 
property of the RF model used to describe reality. 

(ii) Probable knowledge cannot be considered as an image of reality. 
Through it we aim at reality and we learn something about it, but the 
relationship between our knowledge and its object becomes indirect and 
remote. 

Under the light of assumptions (i) and (ii), the concept of probability in 
all its richness of content is of far greater importance for real world 
applications than the words and terms used to express it. By using probable 
knowledge the real is approached only through an abstract construction 
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that involves the possible and is rather like a detecting device through which 
one grasps certain aspects of reality. Thanks to the detecting device, one 
can register certain reactions of reality and thus know it, not through an 
image of it, but through the answers it gives to one's questions. 

The RF formalism does not restrict our concept of probable science to 
a physical theory of natural phenomena, governed by "randomness" or 
"chance"; or to a logical theory of plausible reasoning in the presence of 
incomplete knowledge. These theories, as well as several others, are viewed 
as potential modeling tools and detecting devices, rather than as unique 
realities. Within the RF context, we are looking at real problems that are 
in principle very subtle and complex. Therefore, like many other human 
enterprises, the practice of the science of the probable requires a constantly 
shifting balance between a variety of theories and methods, such as stochas-
tic calculus, probability and statistics, logic and information theory. 

As a matter of fact, RF methods have proven themselves very useful, 
although the notion of probability itself has not been philosophically well 
defined. This is true for almost all scientific theories. For example, despite 
the fact that terms such as mass, energy, and atom are philosophically 
undefined or ill-defined, theories based on these terms have led to extremely 
valuable applications in science and engineering. 

In this book we study the use of RF models in the context of stochastic 
data analysis and processing. More precisely, the term stochastic data 
analysis and processing refers to the study of a natural process on the basis 
of a series of observations measured over a sample region of space (spatial 
series), over a sample period of time (time series), or over a spatial region 
for a sample time period (space-time series). In general, the aim of such a 
study is to evaluate and reconstruct the properties of the underlying unique 
physical process from fragmentary sampling data, by accommodating the 
probabilistic notion of RF. Hence, before proceeding with the description 
of the stochastic data analysis and processing research program, it is 
appropriate to discuss the physical content implicit in the RF representation 
of a natural process. 

2. The Physical Significance of the Random Field Model 

In this section our efforts will be focused on an exposition of theses and 
arguments that justify the use of RF models to represent physical processes 
that vary in space and/or time. Let χί9 i = 1, 2 , . . . , m be a spatial series of 
values of a physical variate χ. For illustration, a porosity profile (%; 
Christakos, 1987b) is depicted in Fig. 1.2; also, a lead concentration surface 
(Pb in ppb; Journel, 1984) around a Dallas smelter site is shown in Fig. 



2. The Physical Significance of the Random Field Model 7 

Porosity (β/β) 

10 20 30 40 
0 

10 

20 
Depth 

(m) 

30 

4 0 

Figure 1.2 A typical soil porosity profile 

1.3. The pattern of change of these series in space constitutes an evolution 
process. Particularly, by careful examination of these figures one notices 
two important descriptive features of the evolution process: 

(i) A well-defined spatial structure at the macroscopic level (i.e., 
well-defined trends in the spatial variability of the porosity; also, a 
high dome centered at the smelter site, an NE trend of high lead values 
corresponding to the direction of prevailing winds, areas where changes 
in lead are rapid, areas with less rapid change, etc.). 

(ii) A very irregular character at the microscopic level (that is, 
complex variations of the porosity within short distances; erratic local 
fluctuations in the lead surface, etc.). 

These macroevolution and microevolution features are equally relevant 
to the understanding of the evolution process of a natural variable. (The 
reader may detect some similarities between these features and the wavelike 
and particlelike properties of matter and electromagnetic radiation.) The 
coexistence of macroscopic and microscopic properties in a natural variable 
is called macro-micro duality. 
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Figure 1.3 A lead concentration surface (in ppb; · denotes the smelter site) 

The origins of these properties depend on the nature of the phenomenon 
under study. In subsurface hydrology, for example, the macroscopic and 
the microscopic properties are closely related to the natural hierarchy of 
distinct spatial and temporal observation scales (e.g., atomic, hydrodynamic, 
pore, representative elementary volume, lab and field). The very concept 
of such a hierarchy has old as well as deep philosophical roots in the 
Baconian tradition: there is a hierarchy of explanatory laws to be discovered 
in physical sciences, and the scientific investigator should expect to make 
a gradual ascent to more and more comprehensive laws, each law leading 
to new experiments strictly within the domain and scale of its validity. It 
is clear that any adequate model of the above spatial series should take 
into account both features (i) and (ii). The model, in turn, should give rise 
to a number of fundamental considerations. For example, one might ask if 
the model should be continuous in its spatial coordinates; or how sound 
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is the assumption that the evolution process underlying this model is 
differentiable, and in what sense; or if the model accounts for rough and 
erratic changes in the morphology of the spatial series. Additional consider-
ations include the directionality of the model in space, and the complexity 
of the trends (local or global) involved. From the application point of view, 
a large number of important issues about spatial series are intimately tied 
up with the above modeling considerations. 

A purely deterministic model of the spatial series is not appropriate for 
the case, for such a model will involve the estimation of an extremely large 
number of parameters, which is not practically possible due to the limited 
number of samples available. In the classical theory of probability, a random 
variable x = x(u) is a function of elementary events u e Ω defined on Ω (Ω 
is the sample space of a random experiment) and assuming real values 
(rigorous definitions are given in Chapter 2). Hence, one may consider the 
possibility of modeling the above spatial series by applying the classical 
theory of probability, where each observation \ t is considered the outcome 
of a random variable xf = x,(w), i = 1, 2 , . . . , m. However, by definition the 
random variables x, do not change in space, and the relative distances and 
the geometric configuration of the observation points in space do not enter 
the analysis of the correlation structure of the spatial series. Consequently, 
the random variable model does not determine any law of change of the 
underlying natural variable in space, and therefore it does not constitute 
an adequate description of the evolution process. One may also try to model 
spatial series by a finite set of random variables (also called vector random 
variables). In reality, however, an infinite set of random variables is needed 
to describe the evolution process at every location in space and, as is well 
known, classical probability theory cannot study such sets. 

In fact, it is precisely the concept of spatial evolution that guides us to 
represent a spatial series by means of a theoretical process, which we call 
the spatial random field (SRF). The specific nature of SRF, which makes 
it an appropriate model for the spatial evolution process, manifests itself 
when regarding it as a function whose properties are coordinated with the 
algebraic structure of the space, viz., X(s) = X(u9 s), where M e Ω and s G R" 
(Rn is the «-dimensional Euclidean space). More specifically, in the SRF 
formalism s accounts for the spatial structure of the evolution process at 
the macroscopic level and u accounts for the random character at the 
microscopic level. It is important to realize that the concept of randomness 
is used here as an intrinsic part of the spatial evolution of the physical 
variate, and not only as a statistical description of possible states. As a 
result of its functional structure, the SRF model is fully equipped with the 
necessary mathematics to account for all modeling considerations men-
tioned earlier. In relation to these considerations, the following methodo-
logical hypothesis is made: "The series of values χί9 ι = 1,2, . . . , m is 
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assumed to constitute a single realization from the infinite number of 
realizations that constitute a particular SRF X(s)." In other words, while 
in classical statistics population and sample are the two vital concepts, in 
the above setting the equivalent concepts are the (theoretical) SRF and the 
realization or observed spatial series. Also, the methodological hypothesis 
of many SRF realizations is quite similar to the so-called many worlds 
interpretation of quantum physics, according to which reality consists of a 
steadily increasing number of parallel universes (e.g., DeWitt and Graham, 
1973). 

The SRF paradigm can be extended in the space-time domain. A given 
space-time series χΚί, i = 1 ,2 , . . . , m and ί e T ç R+,{o} is assumed to be a 
single sample from a particular spatiotemporal random field (S/TRF) 
X(si9t) = X(w9si9t)9 where we i l and (si9 t)e R" xT. (Notice that, by 
definition, the S/TRF is an RF whose arguments vary over some subset of 
the product set "Euclidean n-dimensional space x time axis.") The pro-
cedure by which \ i t is generated from X(si91) indicates the manner in 
which the spatiochronological series is formed at each location/instant 
(sI51) but, due to its stochastic nature, it does not determine the actual 
value of the space-time series at any location/instant. In this sense, S/TRF 
are fundamentally different from vector time series: The latter do not 
constitute an adequate model for the combined space-time evolution pro-
cess, for reasons similar to those according to which the aforementioned 
vector random variable did not form an appropriate representation of the 
spatial evolution process. 

On the basis of the discussion above, the laws of nature for which the 
RF concept constitutes an appropriate model include not only (i) causal 
laws, but also (ii) noncausal laws, as well as (iii) laws dealing with the 
relationships between (i) and (ii). This classification is, indeed, in accord-
ance with the fact that a causal law is not applicable for all possible events 
in nature; to the contrary, its applicability is limited by means of Heisen-
berg^ uncertainty relation. In the RF context, the notion of causal connec-
tions is a modeling approximation that offers a partial treatment of certain 
aspects of the macrostructure of the natural process. The notion of noncausal 
contingencies is another approximation that deals with certain aspects of 
the microstructure of the process. These two notions must be completed by 
a consideration of their interconnections. 

From the prediction point of view, when working with RF one considers 
essentially models of limited predictability to which one assigns some 
measure of accuracy. This is the method to which modern science is moving. 
It uses no principle other than that of predicting with as much assurance 
as possible, but with no more than is possible. That is, it idealizes the future 
from the outset, not as completely determined, but as determined within a 
defined area of uncertainty. 
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3. The Mathematics of Random Fields 

From a mathematical viewpoint, random fields (SRF or S/TRF) constitute 
an area that studies random (nondeterministic) functions. This is an area 
of mathematics usually called stochastic functional analysis and deals with 
any topic covered by the ordinary (deterministic) theory of functions. In 
addition, the existence of the random component makes stochastic func-
tional analysis a much larger, considerably more complex, and, also, more 
challenging subject than the ordinary theory of function (see, e.g., Einstein, 
1905; Langevin, 1908; Wiener, 1930; Heisenberg, 1930; Kolmogorov, 1941; 
Chandrasekhar, 1943; Levy, 1948; von Neumann, 1955; Yaglom, 1962; 

Stochastic Functional Analysis 

Doma 3< 
Spatial Random Fields 

Spatiotemporal Random Fields 

Continuity-Differentiability-Integrability 
(Various Modes) 

Factorable Random Fields 
Probability Measures (Laws) 

< 
Gaussian 

Non-Gaussian 

Regularity îîZkC 

^ Non-Factorable Random Fields 

Homogeneity-Stationarity 

Nonhomogeneity-Nonstationarity 

. w Zero memory (Independency) 
M e m o r y ] ^ Markovian 

^ Non-Markovian 

Correlation Analysis 

Spectral Analysis 

Ergodicity-Microergodicity 

Space Transformations 

Differential Equations 
Spatial 

Spatiotemporal 
Figure 1.4 The mathematics of the RF model 
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Bohr, 1963; Kallianpur, 1980). Furthermore, as happens with ordinary 
functional analysis, the RF theory in several spatial or spatiotemporal 
dimensions deals with significantly more complicated problems than the 
one-dimensional theory of random processes, where the single argument is 
usually time (for an interesting discussion of the significant differences 
between time series analysis and RF theory see Ripley, 1988). Figure 1.4 
summarizes certain of the most important mathematical topics of stochastic 
functional analysis. For the definitions of the various terms in Fig. 1.4 see 
later chapters of the book. 

The SRF theory, in particular, has led to startling advances on literally 
every scientific front (see, e.g., Matern, 1960; Gandin, 1963; Matheron, 
1965; Beran, 1968; Panchev, 1971; Journel and Huijbregts, 1978; Yaglom, 
1986; Dagan, 1989). However, it is widely admitted that SRF is tough to 
work with, mainly for two reasons : the difficulty of the mathematics involved, 
and the nonexistence of systematic books on the subject. The published 
literature is notably lacking in completeness and coherence. It is, therefore, 
useful to construct an SRF model that incorporates all stochastic concepts 
and mathematical tools necessary for the effective implementation of 
stochastic data analysis and processing notions and techniques. In addition, 
the emergence of more complex physical problems requires that the SRF 
model be significantly extended and that novel notions and tools be 
developed. The situation is even more uncomfortable as regards S/TRF. 
The mathematical literature devoted to S/TRF is definitely very sparse and 
incomplete. In this book an attempt is made to elaborate to a certain extent 
toward a mathematical theory of specific classes of S/TRF, all of which 
are of practical importance. 

In conformity with the above considerations, an adequate approach to 
the stochastic data analysis and processing problem should combine efforts 
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Figure 1.5 Theoretical and practical aspects of the stochastic research approach 
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on both grounds of theoretical and experimental investigations; this is 
illustrated in Fig. 1.5. To avoid misuse, the theory should not be used merely 
as a tool or as a procedure without a deeper understanding of its underlying 
mathematical structure. Moreover, these mathematical results obtain 
empirical meaning and substance only if they are associated with the 
philosophical theses of the stochastic research program. 

4. The Philosophical Theses of the Stochastic Research 
Program 

The stochastic data analysis and processing research program can be 
described in terms of certain philosophical theses on the methodology of 
scientific research programs (e.g., Lakatos, 1970). In particular, the stochas-
tic research program consists of (see also Fig. 1.6) 

(a) A hard core of fundamental concepts and constitutive hypotheses 
in terms of RF theory, which are not subject to direct experimental test 
(e.g., the hypothesis "the spatial series available constitutes a realization 
of an SRF"). 

(b) A set of auxiliary hypotheses and model parameters linking the 
RF theory with the observed phenomenon. Certain of these auxiliary 
hypotheses and model parameters are testable, in the sense that 
they possess real counterparts that can be observed, measured, and tested 
after the event (e.g., the hypothesis of local homogeneity, or certain 
correlation parameters expressed in terms of spatial integrals). In such a 
circumstance, and in accordance with Popper's criterion of falsification 
(Popper, 1934, 1972), these hypotheses and parameters have an objective 
meaning (see, also, Matheron, 1978). In addition to being compatible 
with the data over the sampled area, the testable hypotheses and 
parameters must establish the desirable duality relations between part (a) 
and the real phenomenon, so that physical inferences about the latter can 
be made by means of the former. The auxiliary hypotheses may also 
contain testable information themselves. The latter is not included in the 
data and comes from knowledge and experience with the physics of the 
particular problem. On the other hand, nontestable are these auxiliary 
hypotheses and parameters that do not possess real counterparts that can 
be observed, measured, and tested after the event. They are, however, 
valuable in the process of choosing a model that is compatible with 
the nature of the real process it represents (e.g., homogeneous, 
multi-Gaussian, or factorable RF). Or, they are related to certain 
sources of qualitative information. Nontestable auxiliary hypotheses 
can only be judged by the successes they lead to. 
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Figure 1.6 The methodology of the stochastic research program 

(c) A heuristic, that is, group of methodological rules for choosing 
auxiliary hypotheses, that, with the help of sophisticated mathematical and 
numerical techniques, provide conclusions and predictions with regard to 
real problems. The choice of auxiliary hypotheses can only be made 
intelligently if there is significant physical understanding. 

In the stochastic data analysis and processing context the final conclusions 
and predictions are operational, in the sense that they concern unknown 
but potentially observable quantities and are expressed solely in terms of 
testable auxiliary hypotheses and parameters. For example, the minimum 
mean square error estimator of a natural process at an unsampled location 
in a soil deposit is a function of the measurements available at known 
locations and the experimentally calculated spatial correlation functions. 

At this point the stochastic research program is consistent with the Bohrian 
position expressed as, "If a parameter cannot be measured, it cannot be 
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used for prediction" (Bohr, 1963). If the conclusions in (c) are refuted one 
must go back to part (b) and choose another set of auxiliary hypotheses. 
This fact is, in turn, consistent with the Lakatosian concept, according to 
which prediction-testing is important to revise a research program, while 
sticking to its hard core. Part (b) must be revised—by means of the heuristic 
part (c)—in a progressive way. This means that the replacement successfully 
anticipates previously refuted predictions and leads to valuable novel con-
clusions and advances, which were not possible by previous research pro-
grams. 

It is instructive to mention some progressive cases carried out by the 
stochastic research program: 

(i) The use of stochastic functional analysis throughout the book gives 
a sound interpretation to important features of physical quantities, such 
as spatial variability and continuity, which are not detected by, say, 
classical statistics. 

(ii) The concept of generalized spatiotemporal random fields (Chapter 
5) provides the means for successfully representing natural processes 
that have irregular, spatially nonhomogeneous, and time-nonstationary 
properties. Such a representation is not possible in terms of traditional 
time series methods. Moreover, the spatiotemporal estimation scheme 
takes into account time-related information and, therefore, provides 
improved results compared to those obtained by purely spatial estimation 
techniques. 

(iii) The operations of space transformations (Chapter 6) materialize 
the intuitively attractive concept of simplifying the study of a natural 
process in several dimensions by "conveying" analysis to a suitable one-
dimensional space. Space transformations provide solutions to practical 
problems, such as the establishment of comprehensive permissibility 
criteria for multidimensional correlation functions, the simulation of 
anisotropic natural processes in the space domain, and the solution of 
multidimensional stochastic differential equations. 

(iv) The Bayesian, maximum-entropy-based estimation formalism 
(Chapter 9) enables one to use a variety of sources of prior information 
and, at the same time, to significantly restrict the range of arbitrariness; 
this is not possible by means of traditional spatial estimation approaches. 
The formalism relies heavily on the assumption that a significant part of 
physical sciences is related closely to the concept of information. 

(v) Hypotheses associated with the notion of factorability (Chapter 4) 
can lead to significant extensions and offer solutions to certain 
model-related problems of nonlinear geostatistics. 

These five cases emphasize the progressive nature of the stochastic 
research program in general, and the crucial role of part (c) in particular. 
If the heuristic is well-established and operational in the context of a specific 
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physical problem, the difficulties associated with the application of the 
stochastic data analysis and processing program become merely mathe-
matical. 

The stochastic research program is also equipped with the concept of 
corroboration. By the latter we mean concise reports evaluating the program 
with respect to the way it solves its problems, its degree of testability, the 
severity of tests it has undergone, and the way it has withstood these tests. 
In the long run these tests are part of what is usually called the sanction 
of practice. And scientists know that the latter acts somehow like natural 
selection: It mercilessly eliminates inadequate models and insufficient 
approaches. In the short run corroboration is essentially comparative. One 
can claim only that the stochastic program has a higher degree of corrobor-
ation than a competing program, in the light of critical considerations that 
include testing up to some time t. However, the degree of corroboration at 
time t says nothing about the degree of corroboration of the program at a 
time later than /. In this sense corroboration does not verify any program; 
it shows only its heuristic power. 

5. The Practice of the Stochastic Research Program and the 
Spectrum of Its Applications 

The methodology of the stochastic research program applies to a variety 
of real-life phenomena that occur in space and/or in time. For illustration 
let us mention a few of them: 

(i) Transport processes in porous media 
(ii) Space-time concentrations of atmospheric pollutants 

(iii) Spatial distribution of hydrologie data 
(iv) Fluid flow and rock mechanics studies 
(v) Agricultural crop yield 

(vi) Turbulent fluctuations of météorologie elements 
(vii) Safety assessment of earth dams 

(viii) Image processing and remote sensing 
(ix) Random sea surfaces 
(x) Oil reservoir characterization parameters 

(xi) Ore reserve evaluation and grade control processes 

In such a framework, geostatistics, stochastic hydrology, environmetrics, 
etc., are all considered subdomains of the general stochastic data analysis 
and processing area. It is a widely recognized fact that in earth sciences 
traditional (deterministic, etc.) mathematical models of complex physical 
phenomena and natural processes are giving way to stochastic mathematical 
models, because only the latter provide the theoretical concepts and practical 
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tools needed to describe quantitatively the combinations of complexities, 
heterogeneities, and uncertainties involved in these phenomena. In hydro-
geology, for example, the incorporation of the spatial and temporal variabil-
ity of soil and hydraulic properties in the study of fluid flow and solute 
transport can be achieved only by means of stochastic models. In petroleum 
engineering, probability functions of the fracture geometry underly the study 
of geologic media. In meteorology, due to complex inherent fluctuations 
and lack of information, atmospheric processes resolved by deterministic 
models rely on unrealistic conceptual representations of the underlying 
physical mechanisms. The modeling of the spatiotemporal evolution of 
mesoscale storm systems is possible only in terms of random field concepts 
(for an excellent discussion see NRC, 1991). 

Practical stochastic data analysis and processing generally involves data 
collections, analysis, and interpretation. In particular, the practical use of 
stochastic data analysis and processing is first to discover possible laws in 
the spatial and/or chronological evolution of the natural process, then to 
express these laws by means of the appropriate models, and finally to allow 
predictions. Examples of such predictions are given in Table 1.1 

The completion of these predictions can be approached in an efficient, 
cost-effective manner or in an inefficient, cost-ineffective manner. As a 
matter of fact, a fundamental problem of practical stochastic data analysis 
and processing is the widespread lack of appreciation concerning what the 
different RF models and techniques can actually accomplish. Accordingly, 
the choice of RF models and techniques discussed in this book has been 
governed primarily by their usefulness in practical stochastic data analysis 
and processing. 

Model construction is a primary constituent of stochastic data analysis 
and processing. It involves intellectual creativity, physical knowledge, and 

Table 1.1 Examples of Stochastic Analysis and Processing Problems 

(i) Quantitative assessment of spatial and temporal variability in the hydrologie 
properties of crustal rocks and fluid pressures; such assessments constitute a crucial 
prerequisite for a deeper understanding of the role of pore fluids in tectonic processes. 

(ii) Reconstruction of the whole field of an environmental process in terms of the 
fragmentary space-time data available. 

(iii) Simulation of oil reservoir characteristics, such as permeability and porosity, as a 
function of the spatial coordinates and the production phase. 

(iv) Study of the relations between the mechanisms of earth dam failures and random 
hydrologie processes such as streamflow, hydraulic conductivity, seepage velocity, and 
precipitation. 

(v) Modeling and simulation of rock fracture networks. 
(vi) Optimal dynamic sampling design of meteorological observations. 



18 Chapter 1. Prolegomena 

mathematical techniques by means of a two-fold operation: sorting out the 
relevant parameters, which may or may not be directly observable as a part 
of the available data, and trying to discover possible causal and noncausal 
laws as well as laws dealing with the relationships between them. In practice, 
model building may be seen as an operation that establishes a quantitative 
description of the relationship between a set of observable natural processes 
and a set of free parameters to be fitted to the data. The aim of stochastic 
data analysis and processing is to learn more or to learn more efficiently, 
and to produce information that can be applied in decision making or 
problem solving. In other words, the stochastic data analysis and processing 
task may not be the actual or ultimate problem in need of a solution. 
Completing the stochastic data analysis and processing task produces infor-
mation for solving one or more other problems. Once the data processing 
has been performed, it is the job of the decision maker to use the information 
obtained. For instance, the simulation of oil reservoir characteristics pro-
duces information for decision making; it does not produce decisions. 
Similarly, the completion of a land-use inventory with remotely sensed data 
produces land-use information for decision making. In view of the foregoing 
remarks, the outcomes of stochastic data analysis and processing may be 
considered as input information to the decision-making part. Such consider-
ations include the possibility of incorporating highly corroborable models 
and informative statements, which are available under a format that can be 
used in the stochastic context. 

Before applying any of the stochastic analysis and processing techniques 
to a particular problem, it is necessary to develop a framework for weighting 
all sorts of data and knowledge available and choosing the appropriate 
technique: 

1. Preliminary stage: In this stage it must be decided if the stochastic 
analysis and processing can actually provide information that will help 
the solution of the problem. For example, geotechnical procedures for 
predicting soil performance consist of three parts, namely 
(a) constitutive models; (b) stochastic data analysis and processing 
methods for the estimation of soil parameters used in these models; 
and (c) numerical approaches to apply the models in practice. The 
accuracy in estimating the soil parameters in (b) obviously affects the 
reliability of any prediction made, and is, therefore, of significant 
practical consequence. 

Certainly, decisions regarding the appropriateness of stochastic 
analysis are based on experience and, therefore, it is difficult to 
generalize. Familiarity with the problem's specific discipline is at least 
as important as experience with stochastic procedures. For example, 
confronted with a groundwater flow problem, a stochastic data analysis 
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and processing expert with a hydrologie background will respond better 
than a structural engineer. 

2. Determination of the objectives of stochastic data analysis and processing : 
This part raises certain questions concerning the proper specification of 
stochastic data analysis and processing objectives. For example, the 
geologists may want to find out if there exist rough and erratic changes in 
the morphology of the bedrock. The petroleum engineer may be interested 
in the spatial continuity of the oil reservoir depths. Additional considerations 
may include the directionality of the natural process in space, and the 
complexity of the trends (local or global) involved. In many situations the 
objective may be the optimal design of a rainfall observation network. 
Another objective may be the exploration level of the unknown object, say 
an oil deposit. Is it sufficient? If it is not, by which means and to what 
extent should the exploration be continued? Are the results of stochastic 
analysis and processing going to be used in the context of groundwater 
modeling? (For example, estimated log transmissivities and hydraulic heads 
can be combined by means of inverse modeling to obtain improved estimates 
of the former.) Answers to such questions help in selecting one data 
processing technique over another. 

3. Data and resources available: It is necessary that enough data are 
collected to ensure that the stochastic technique will function properly and 
that the immediate and foreseeable objectives of stochastic analysis and 
processing will be completed. The quality of the data is also important; 
some stochastic data analysis and processing techniques cannot produce 
results of some specified reliability and accuracy unless all input information 
is at least of that reliability and accuracy. Some of the data may have 
to be disregarded for technical reasons or due to unacceptably low 
quality. 

Under certain circumstances, it may be possible to take into account 
prior information that is highly relevant to the spatial variability of the 
natural processes involved. Such information may be, for example, 
knowledge of the physics of the underlying phenomena, geological 
interpretations, intuition, and experience with similar site conditions. 
Of course, the data and the resources required depend on the objectives 
of the stochastic data analysis and processing. For example, to assure 
a high level of exploration accuracy it may be necessary to take an increased 
number of observations. Finally, easy access to computer facilities will favor 
the use of stochastic methods. 

4. Choice and implementation of the appropriate technique: In general, the 
choice of the "best" stochastic approach will depend on the following 
factors: (i) the objectives (part 2 above), (ii) the data and resources available 
(part 3 above), and (iii) the choices to be made, as well as parameters to 
be evaluated on-line during the specific project. 
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For example, one will choose, among the various types of theoretical RF, 
the one that best represents the natural process of interest, on the basis of 
scientific understanding as well as data analysis. Before making a decision 
concerning the use of a specific estimation technique, the earth scientist 
should be asked to define precisely the physical quantity of interest: Is it 
the observed process, or is it another quantity related to the observed process 
by means of some physical model? In the latter case, estimation may provide 
numerically more accurate and physically more meaningful results by incor-
porating the model in the analysis. Also, the choice of an estimation 
technique depends on the previous identification of the spatial variability. 

The selected stochastic approach should be robust, and it should provide 
consistency throughout the various steps of implementation. The latter must 
be adopted to the ever-changing needs of the project. Nonfeedback methods 
are inappropriate. 

Effective implementation depends on the clear understanding of the RF 
concept, as well as experience with the particular scientific discipline. In 
addition to these, an important issue is the development of libraries of 
interactive computer programs with multiple optional forms and automatic 
procedures. Computers constitute a very important part of stochastic data 
analysis and processing. For example, computerized procedures are 
necessary to simulate several equiprobable alternative maps of saturations, 
porosities, etc., to be used as inputs to reservoir flow models. These maps 
have in common whatever information is available and by studying their 
differences—using manipulation methods such as visualization, trans-
formation, reduction, etc.—valuable insight is gained regarding spatial 
uncertainties. Automatic procedures may be used to assign values to random 
field-related parameters that have no real counterparts, to solve huge 
systems of equations, etc. 

In conclusion, the development of the stochastic research program rep-
resents an intellectual experience that cannot be considered simply a pro-
longation of well-established approaches; it is a procedure in which 
gradually novel concepts and insightful conclusions will be emerging. In 
the history of thought, actual experience always precedes human under-
standing of it. And this understanding emerges only very slowly. In general, 
a new experience is first interpreted in the framework of preexisting theories, 
and it is only step by step that its true nature appears and that there is 
discovered the true novelty it involves. And so it is for the stochastic research 
program. 



The Spatial Random 
Field Model 

"Models are to be used, but not to be believed." 
H. Theil 

1. Introduction 

Due to their importance in almost any scientific discipline, spatial random 
fields (SRF) constitute an active area of current research. A lot of work has 
been done in the theory of SRF, but many important topics still remain to 
be studied. On the other hand, it is widely admitted that SRF are tough to 
work with, mainly for two reasons: the difficulty of the mathematics involved, 
and the absence of systematic books on the subject. 

This chapter, therefore, is organized as follows: In the first few sections 
we develop a critical and concise summary of the fundamental concepts 
and results of the theory of SRF that have important applications in the 
stochastic analysis and processing research program. Although most of these 
results will be repeatedly used in subsequent sections of the treatise, certain 
proofs and other details will not, so they will not be discussed. Instead, 
instructive examples, illustrating the most important application-related 
aspects of these proofs, will be discussed. We consider both scalar and 
vector SRF. Scalar SRF represent physical processes characterized by a 
single quantity, such as soil porosity or hydraulic conductivity. Vector SRF 
represent processes that require more than one quantity; for example, the 
soil strength at a point within a soil layer may be characterized by the 
undrained active, passive, and direct shear strength. 

Much attention is drawn to characterizing an SRF by means of its spatial 
as well as its spectral moments. By studying these moments, important 

2 
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insight is gained regarding the mathematical structure underlying the SRF 
concept. Additional information is obtained by studying the sample function 
stochastic properties of the SRF. In this regard, the usefulness of the 
geometrical features of the SRF in providing valuable visual clues is strongly 
advocated. In fact, this is precisely the material needed for the numerous 
potential applications in earth sciences, meteorology, environmental 
engineering, physics, image processing, and many other fields. 

We will classify SRF in a number of different ways, each one of which 
reflects certain of their most important properties. These classifications are 
very useful from the stochastic analysis viewpoint, as well as for the efficient 
implementation of the theoretical results in the practical situations to be 
considered in this book. In connection with the latter, certain auxiliary 
hypotheses are explored in detail in the remainder of this chapter. These 
hypotheses are related to the classes of homogeneous SRF, isotropic SRF, 
and to a specific class of nonhomogeneous SRF with regard to which some 
new developments are discussed. These developments prove to be important 
in practical applications, and they also form the gist of a significant part 
of the theory to be presented in subsequent chapters. 

Finally, the notions of ergodicity, quasi-ergodicity, and microergodicity 
are considered in light of the preceding theory, and their significance with 
regard to stochastic inferences is studied. 

In a mathematical text the question of notation is always a crucial one. 
Here, random variables are denoted by lowercase letters, x, y, etc., random 
fields by uppercase letters X, Y9 etc., but for their values Greek letters, χ, 
ψ, etc., are used. 

2. Basic Notions 

2.1 The Spatial Random Field Concept 

The formal description of the basic notions in stochastic analysis is based 
on set-theoretic notions. Though the set-theoretic approach provides rather 
general concepts, it is by no means "art pour Tart." On the contrary, the 
notions it deals with are of fundamental importance in developing stochastic 
functional analysis. (For a more detailed treatment of the basics on stochastic 
analysis see, e.g., Yaglom, 1962; Gihman and Skorokhod, 1974a, b, and c.) 
In fact what we do is to translate set-theoretic concepts into probabilistic 
ones. 

Let (Ω, F, P) be a probability space, where Ω is the sample space, F is a 
σ-field (or Borel field) of subsets of Ω, and P is a probability measure on 
the measurable space (Ω, F) satisfying Kolmogorov's axioms: 

(a) Ρ(Ω) = 1; 
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(b) 0 < P(A,-) < 1 for all sets Af G F ; and 

(c) if A,· n A - 0 (f * . / ) , then p ( Ü A,-) = £ P(A,·). 

The sets A, of the field F are called events. The probability space (Ω, F9 P) 
serves as the basic model on which all stochastic calculations are performed. 

Remark 1: A parenthetical remark may be appropriate at this point. In the 
context of stochastic functional analysis, axiomatic probability is considered 
a formal method of manipulating probabilities using the Kolmogorov 
axioms. To apply the theory, the probability space Ω must be defined and 
the probability measure assigned. These are a priori probabilities that, at 
this point, suffice to be considered purely mathematical notions lacking any 
objective or subjective meaning (see discussion in Chapter 1). 

Example 1: Let \ t be the air pollution concentration at a specific location 
i and let c, be the permissible pollution level, which is determined on the 
basis of environmental and ecological (etc.) considerations. Consider the 
sample space Ω = {(%i9 q): \i9 c, e P1}, where P 1 is the set of real numbers 
(real line). The event Af, "the permissible level c, has been exceeded," is 
defined as the subset A, = {(%i9 c,·): Xi > ct} of Ω, to which one can assign a 
probability measure P(Ai) satisfying Kolmogorov's axioms (a), (b), and 
(c) above. This rather simple setup constitutes a very powerful construction 
for our future investigations. 

An important concept in stochastic functional analysis is that of a random 
variable. 

Definition 1: Let (P 1 , ^ 1 ) be a measurable space, where 3 1 is a σ-field of 
Borel sets on the real line P 1 . A (real-valued) random variable x(w), where 
w e Ω are elementary events, is a measurable mapping x from (Ω, F) into 
( P 1 , ^ 1 ) , so that 

V P G S 1 , x~l(B) = {ueil:x(u)eB}eF (1) 

The terms probability measure and random variable never occur isolated 
from each other. Indeed, on the strength of Definition 1, x(u) (or simply 
x) is said to be an F-measurable (real-valued) random variable, where 
measurability induces a probability measure μΧ on (P1 , 31) such as 

VP E S1, μΛΒ) = P[x~\B)] = P[x = x(u) e B] (2) 

Naturally, the study of a random variable x(u) can be accomplished by 
studying the probability measure μχ on ( P 1 , ^ 1 ) . For real-valued random 
variables it is convenient to introduce the distribution function of the 
measure μχ. 
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Definition 2: Let us define the set 

Ia = {X:x^a,aeR1} (3) 

Then the function 

Fx(*) = /*,(/,) = P[x<=*] (4) 
is called the distribution function of the random variable x (or the distribution 
function of the measure μχ). 

In most cases of practical interest the distribution function (4) can be 
replaced by the probability density function. 

Definition 3: If the probability measure of Eq. (4) is absolutely continuous 
and m is the Lebesgue measure on Rl, the function χ. defined on Rl so that 

ί ft 

for each Borel set B, is called the probability density of the random variable 
x(u). 

Below we introduce a space of random variables that exhibits certain 
useful properties. 
Definition 4: Let (Ω, F, P) be a probability space. An Lp(il, F, P) space (or, 
simply, an Lp-space), p> 1, is a linear normed space of random variables 
x on (Ω, F, P) that satisfy the condition 

= J|x(« 
The corresponding norm is defined by the usual formula 

||*|| ={£|*n , /" (7) 
and Lp is a complete space. 

In this book we consider random variables that satisfy Definition 4 for 
p = 2. These random variables are called second-order random variables. 
Notice that an L2 space equipped with the scalar product 

(χι9
χ2) = E[x1x2]= Xi(u)x2(u)P(du) (8) 

where xx and x2 are random variables, is a Hubert space. 
Let s = ( s i , i 2 , . . . , i n ) € Ä ' 1 , n > 1, be spatial coordinates such that 

S Λι , Λ2 , . . . , Sn 

and 

(5) 

(6) 
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where α = (al9 α 2 , . . . , αη) is a multi-index of nonnegative integers such 
that |α| = Σ"=1 a« and α! = αλ! a2\... an !. We recall that a study of a real-
valued random variable can be made by studying probability measures (2) 
or, equivalently, probability density functions (5). 

However, when dealing with a natural process that is observable at several 
points within the Euclidean space Rn, such a study loses track of the spatial 
model underlying the process. If we consider several random variables 
X!, x2,..., xm at points sl, s 2 , . . . , sm in Rn, the corresponding probability 
measures μΧχ, μΧ2,..., μΧηι are not by themselves sufficient to express all 
the important features of the random variables xi9x29... ,xm

 a n d of their 
correlations. It seems, therefore, natural to consider X = (χλ, x 2 , . . . , xm) a 
measurable mapping from (Ω, F) into (Rm, $ m ) , where %m is a suitably 
chosen cr-field of subsets of Rm, and define a suitable new measure by 
extending definition (2). Then, a complete study of the random variables 
x\ > x2 ·> · · · > xm and of their spatial relations can be achieved on the basis of 
the measure of the random quantity X, which is the collection of the random 
variables under consideration. In addition, in most applications (such as 
statistical continuum problems) the set of points {s1? s2 , . . .} is infinite. For 
example, the complete characterization of a turbulent velocity field requires 
the joint probability distribution over the infinite family of random variables 
{χλ, x2,...}. These ideas lead to the following definition of a spatial random 
field. 

Definition 5: Let (Ω, F, P) be a probability space and let (Ä1,^1) t>e a 

measurable space, both in the sense defined above. A spatial random field 
(SRF) X(s), se Rn is a family of random variables {xi9 x29...} at points 
Si, s 2 , . . . , where each random variable is defined on (Ω, F, P) and takes 
values in (R1, ^ 1 ) . 

The space of all SRF will be denoted by Y. An SRF is termed continuous-
parameter or discrete-parameter according to whether the argument s takes 
discrete or continuous values. In the light of the foregoing considerations 
and since one can define the random variable as a function of elementary 
events ueü [i.e., x = x(u)], it follows that the SRF can be considered as 
a function of both the elementary events ueü and the spatial positions 
seR" [i.e., X(s) = X(s, «)]. To a family of random variables 
{xi, x 2 , . . . , xm} we associate a family of probability measures of the form 

= P[X-\B)] = P[(Xl,...,xm)eB] (9) 

for every B e $m. (Note that to emphasize the dependency of the probability 
measure on the spatial positions the notation μ&ι,.„,8ηι(Β) is used.) According 
to Kolmogorov (1933), a necessary and sufficient condition for the existence 
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of the SRF X(s), seR", is that the probability measures (9) satisfy the 
following conditions: 

(a) Symmetry condition: Let 

ßUlit..^m(B) = P[(xh9...9xim)eB] 

where ι Ί , . . . , im is a permutation of the indices 1 , . . . , m. Symmetry 
requires that 

μ.1....^(Β) = μ.Ιι,..ΛΜ(Α) (10) 
for any permutation. 

(b) Consistency condition: It holds that 

μ , w ( ß X Ä k ) ^ s , . , J ß ) (11) 
for any m, k>\ and Be%m. 

Again, it is convenient to work in terms of the distribution function of the 
measure (9) defined as 

FSl,...,Sm(Xi, - - . , Xm) = P[xi ^Xi,---,xm^Xm] (12) 
for any m. Then, conditions (10) and (11) can be written, respectively, 

Fa,it..^lm(Xil9..., Xim) = i \ , . . . , *„ , (* i , . . . , Xm) (13) 

FBl,...ißmßm + lt...jtm+k(Xi9. · · , Xm, °°, · · · , 00) = FSu_Sm(x1,. ..,Xm) (14) 

Furthermore, we usually assume the existence of the probability density 
functions corresponding to (12) and denoted by 

Λ Ι Λ Ι ) · · · ? Xm) JSi,...,sm\Xl9 · · · 5 Xm) 

= - :— FSl_Sm(xu ...,xm) (15) 
άΧι'" dxm 

In the following, both symbols fx(Fx) and fs(Fs) will be used to denote 
probability densities (distributions) of SRF. 

One may also define the conditional probability densities of an SRF as 

Jx\Xk+\ ? · · · s Xm \Xl 5 · · · ? Xk) =Jsl,...,sm\Xk+l ? · · · ? Xm \ Xl 5 · · · j Xk) 

Jsi ,...,sm \Xl ? · · · 5 Xm ) _ ^ l i (16) 
Jsx ,...,sk \Xl » · · · 5 Xk ) 

An interesting consequence of Eq. (16) is the expression 

fx(Xl, · - 9 Xm) =fx(Xl)fx(X2\Xl) * * 'fx(Xm\Xl9'-,Xm-l) ( 1 7 ) 

Equation (17) has proven to be a very useful tool in a variety of random 
field applications such as, for example, spatial simulation of natural pro-
cesses (see Chapter 8). 

(17) 
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Last, the m-dimensional Fourier transform of the probability density (15) 
yields the so-called characteristic function 

<f>x(wl9...9 wm) = £ exp i Σ wk*k 

exp i Σ wkxk \fx(Xi,.'.9Xm)dx1--dxm 
jRm L k = 1 J 

= f T [ ^ i , . . . j J ] (18) 

where i' = v^-T. Equation (18) uniquely determines the probability density 
function fx(x\,..., xm). The fact that the probability density function and 
the characteristic function constitute a Fourier transform pair implies that 
the narrower the former, the wider the latter. Other interesting properties 
of the characteristic function include the following: 

k x ( w , , . . . , w m ) | < l (19) 

<M0,.. . ,0) = 1 (20) 

Φχ(™1, . . . , Wm_k) = <j)x{W\ , · · · , Wm-k, Wm-k+1 = 0, . . . , Wm = 0) (21) 

The SRF X(s), seRn is specified completely by means of all finite 
dimensional probability measures (9), probability distributions (12), proba-
bility densities (15), or characteristic functions (18) of orders m = 1,2, 
Other approaches for defining an SRF include one that is analogous to the 
definition of a random variable and one in terms of the linear normed 
spaces discussed earlier. 

Definition 6: Let A be the set of all real-valued functions in Rn and let G 
be a suitable (7-field of subsets of A. An SRF X(s), se Rn is a measurable 
mapping from (Ω, F) into (A, G). 

Definition 7: Let L2(fl, F, P) be the Hubert space of the random variables 
x at se R". An SRF X(s) is defined as a mapping on Rn with values in the 
Hubert space L2(H, F, P) , viz., 

X : R" ^ L2(Ü, F, P) (22) 

Example 2: The case of a two-dimensional SRF X(s), se R2, representing, 
say, a lead concentration surface, is illustrated in Fig. 2.1. Clearly, there 
are two alternative viewpoints from which one can look at an SRF: 

(i) Vertically, as a collection of random variables x(u) (s = (sl9 s2) is 
fixed in R2 and the generic element u is varying in Ω). 

(ii) Horizontally, as a family of realizations ^(s) (u is given in il and 
s varies in R2). 

Viewpoint (i) is recommended for theoretical studies while (ii) is more 
appropriate in a modeling context. 

(21) 
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Realization 1 

Realization 2 

Realization i 

Figure 2.1 An illustration of an SRF X(s), seR2 

Remark 2: If instead of seR", the argument is seR1 (or time teT9 T is 
the time axis ç#+,{0}), the X(s) [or X(t)] is called a random process (RP). 

Last, it is worth mentioning that a complete stochastic characterization 
of an SRF X(s) can also be achieved through the concept of the characteristic 
functional. Let q(s) be a nonrandom function such that the integral (con-
tinuous linear functional) 

X(q) = (q(s),X(s))=\ q(s)X(s) ds -I (23) 
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where l / ç R", exists for almost all realizations of X(s). Then, the charac-
teristic functional of the SRF X(s) is defined as follows: 

<!>(q) = E{exp[iX(q)]} (24) 

Clearly, the Φ(<?) must be known for any q(s). When the Φ(#) is available, 
one may derive the characteristic function (18), the corresponding probabil-
ity density, and the moments of X(s). Other interesting properties of the 
characteristic functionals are as follows: 

(i) If Φι(^) and Φ2[#] are characteristic functionals, and al9 a2 —0 
such that ax + a2= 1, then the αιΦι[<?] + α2Φ2(<3θ and Φι[^]Φ2[^] are 
characteristic functionals, as well. 

(ii) Let Φι[#] and Φ2[#] be the characteristic functionals of the SRF 
Xi(s) and X2(s), respectively. Suppose that 

X2(s') = L[Xx(s')] = I / ( s , s')Xi(s) ds 
J u 

where / ( s , s') is a suitable deterministic function. Then 

Φ2[*] = <*>AL*[q]} = φ{\υ /( s ' ' s)^(s) <*s] 

where L* is a conjugate to the operator L. 
(iii) Let ΦΜ[<?] be a family of characteristic functionals that depend 

on the random variable u. Then, the 

Φ[«]= f *uiq]dFu(v) (25) 
J u 

where Fu(v) is the probability distribution of u, is a characteristic 
functional too. 

The functional characterization of SRF is closely related to the theory of 
intrinsic SRF (Chapter 3); as we will see, in this case the functions g(s) 
are assumed to belong to the Schwartz spaces of functions. The functional 
treatment of SRF is particularly useful in the study of stochastic differential 
equations modeling physical systems (e.g., Beran, 1968). 

2.2 Vector Spatial Random Fields 

The foregoing theory deals with scalar SRF. However, it can be extended 
to include the case of a set of SRF stochastically correlated to one another. 

Definition8: A vector SRF X(s), s e R" is a set of SRFXj(s), X2(s), ...,Xk(s) 
denoted by the vector notation 

X(s) = [X1(s) ,X2(S) , . . . ,X f c(S)]T (26) 

(24) 
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where the SRF Xi(s), X 2 ( s ) , . . . , Xk(s) are called component-SRF of the 
vector SRF X(s). 

The specification of a vector SRF X(s) is made by analogy with the case 
of a single SRF X(s). That is, all the multivariate probability densities of 
the component SRF Xi(s), X 2 ( s ) , . . . , X&(s) should be determined. 

2.3 Classifications of the Spatial Random Field Model 

The SRF model may be classified in five distinct ways. Brief descriptions 
of these classifications are as follows (detailed discussions are given in later 
sections): 

Classification A: The first way of classifying SRF depends on whether the 
space argument, s G Rn

9 and the realizations of the SRF X(s) are discrete 
or continuous. In particular: 

(i) discrete s—discrete X(s) 
(ii) discrete s—continuous X(s) 

(iii) continuous s—discrete X(s) 
(iv) continuous s—continuous X(s) 

Cases (i) and (ii) can be derived from cases (iii) and (iv), respectively, by 
discretization. 

Classification B: The second way of classifying SRF depends on whether 
the space argument, seRn, and the SRF X(s) are scalar or vector. More 
specifically four subclasses of SRF can be distinguished: 

(i) Both the space argument and the SRF are scalar, viz., an RP X(s) 
or X(t). 

(ii) The space argument is scalar but there are several SRF, viz., 
a vector RP X(s) = [X^s) , X2(s),..., Xk(s)]T. 

(iii) The space argument is vector but the SRF is scalar, viz., X(s). 
(iv) Both the space argument and the SRF are vectors, viz., a vector 

SRF X(s) = [Xx(s), X 2 ( s ) , . . . , Xk(s)]T. 

Classification C: Another way of classifying SRF is by means of the form 
of the corresponding probability laws. Broadly speaking, we may consider 
Gaussian and non-Gaussian SRF. An SRF is called a Gaussian SRF if all 
its finite dimensional probability density functions are multivariate 
Gaussian. This sort of field is most frequently encountered in practical 
applications and it has several important properties: For example, a 
Gaussian SRF is completely characterized by its mean and covariance. Also, 
if an SRF is Gaussian, then any linear transformation of the SRF is a 
Gaussian SRF too. Much more will be said about the Gaussian SRF later. 
Important SRF are the so-called factorable SRF (Chapter 4). 
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Classification D: SRF can be classified according to the spatial variability 
of X(s) over seR". More specifically an SRF can be characterized as 
spatially homogeneous or spatially nonhomogeneous. The latter refers to SRF 
whose statistical properties depend on the space origin, while the former 
refers to SRF that are independent of the space origin. Classification D 
plays a crucial role in the stochastic research program [particularly parts 
(b) and (c); see Section 4 of Chapter 1]. 

Classification E: This sort of classification is based on the memory of the 
SRF. An SRF with zero memory (also called an independent SRF) is an 
SRF that is completely specified by means of the univariate density / s (*) , 
since in this case 

m 

/8ι,...,8„(ΑΊ , . . . , Xm) = Π f;iXi) (27) 
f = l 

for all m. Equation (27) represents complete chaos. An RP with a very useful 
structure is the Markov RR According to the Markov assumption, knowl-
edge of only the present determines the future. In terms of the conditional 
probabilities and assuming that tx < t2< · · · < tm, Eq. (17) gives 

fhj2,...jm(Xl, - · - , Xm) =fh(Xl)ft2,h(X2\Xl) ' ' ' ftm,tm_x(Xm\Xm-l) (28) 
It must be noted that each of the above classifications is independent of 

the others. That is, a Gaussian SRF can be either homogeneous or non-
homogeneous, Markov or non-Markov; a homogeneous SRF can be 
Gaussian or non-Gaussian, etc. 

3. Characterization of Spatial Random Fields by Means of 
Their Second-Order Statistical Moments—Correlation 
Theory 

The SRF considered are second-order SRF (scalar or vector), i.e., they 
consist of second-order random variables. In applied sciences usually it is 
not possible to completely characterize an SRF on the basis of its distribution 
functions; this is primarily due to the small number of available realizations. 
(In most cases we have only one sequence of measurements.) Thus, we are 
limited to a characterization of the RF in terms of its statistical moments 
of order up to two. The part of the general SRF theory that studies only 
the properties of SRF determined by their statistical moments of order up 
to two is called correlation theory. In this case there is no need to mention 
the relevant probability distributions. Throughout this work, all the above 
statistical quantities are assumed to be real-valued continuous functions in 
R". Also we will always assume that all the SRF under consideration have 
finite means and variances. 

(27) 

(28) 
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3.1 Scalar Statistical Moments up to Second Order 

In the case of scalar SRF the corresponding statistical moments of order 
up to two are defined as follows. 

Definition 1: The mean value mx(s) and the covariance cx(s, s') of an SRF 
X(s) are defined by 

- J -mx(s) = E[X(s)]=\Xf.(x)dx (1) 

and 

cx(s, s') = E[[X(s) - mx(s)][X(s') - mx(s')]] 

[x-mx(s)][x'-mx(s')]fs,Ax,x') άχάχ' (2) 

respectively; s and s' are constants under the integration. The class of all 
covariances in Rn is denoted by Cn. 

Remark 1: Equation (1) is also called the first moment. Equation (2) is the 
central second moment; in this sense the E[X(s)X(s')] is called the noncen-
tered second moment (or covariance) and it follows that 

cx(s, s') = E[X(s)X(s')] - mx(s)mx(s') (3) 

The mean mx(s) may be constant or may be any function of s. In the 
latter case it describes systematic variations of the SRF X(s) and is also 
known as trend. Once the covariance is known we can define two more 
useful statistical moments: 

(i) the variance 

σ2
χ($) = ^($,*' = $) (4) 

which describes local random variations; and 
(ii) the spatial correlation function 

cx(s,s') 
νσχ(8)νσχ(8') 

which expresses spatial relations. The class of all correlation functions in 
Rn will be denoted Ln. 

An SRF X(s) is called an uncorrelated SRF if 

x(s) if s = s' 
otherwise 

cx(s,s) = | o 

As we shall see later, such an SRF is also called a white-noise SRF. In 
general, it is not true that an uncorrelated SRF is independent, too; that 

(5) 

(6) 
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is, Eq. (6) does not necessarily imply that ^ ( s , s') =fx(s)fx(s') (recall that 
as stated in Section 2.1 both symbols fx(s) and / s(*) are used to denote 
probability densities). Hence, while Eq. (6) offers us a measure about the 
extent of the relationship between X(s) and X(s'), it does not represent 
the entire relationship given by fx(s9 s'). It is clear, however, that indepen-
dency always implies lack of correlation. 

To a specific covariance correspond more than one SRF, often quite 
dissimilar to each other. For example, let X2(s) = vXi(s)9 where v is a 
zero-mean random variable independent of Χλ(s) for any se R" and E[v2~\ = 
1; it is easily seen that both SRF, Xi(s), and X2(s), have the same covariance 
although their realizations may be quite different. However, the statistical 
mean and covariance functions have proven extremely useful in the correla-
tion theory of SRF for at least the following reasons: 

(a) A number of characteristics of an SRF can be specified completely 
in terms of the mean and the covariance. 

(b) Under certain circumstances, which usually apply in practice, the 
mean and covariance can be calculated accurately and with much less 
effort than other probabilistic characteristics. 

(c) The very important class of Gaussian SRF (Section 3.3 below) is 
completely characterized by the corresponding means and covariances. 
Therefore, it is expected that these two statistical moments will play a 
fundamental role in this presentation. 

Within the framework of correlation theory, certain important properties 
of the covariance function are discussed next: 

Property 1: A function cx(s, s') is a covariance [i.e., C X (S ,S ' )GC„] if and 
only if it is of the nonnegative-definite type; that is, 

m m 

L I W x ( s . . S y ) ä 0 (7) 
1 = 1 j = \ 

for all nonnegative integers m, all points s,, s, e R", and all real (or complex) 
numbers ql9 q2,..., qm. Inequality (7) is a direct consequence of 

E^q^Xis^-mAs^ 

m m 

= ΣΣ ^{^[Χ(8 ()-^ηχ(8 ι)][Χ(8,)-^ηχ(8,)]}^0 
' = 1 .7 = 1 

Property 2: Each covariance cx(s, s')e Cn is a symmetric function; that is, 

cx(s,s') = cx(s' ,s)eC„ (8) 
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Property 3: It is valid that 

lim cx(s,s') = 0 (9) 
|s—s'|-*co 

Property 4: The class Cn of covariances is closed under addition, multiplica-
tion, and passages to the limit; in other words, given the sequence of 
covariances {cx k(s, s')} e Cn, k = 1, 2 , . . . , the 

Σ c x > , s ' ) e C „ (10) 

and 

lim cx,k (s, s') = cx (s, s ')eC„ (11) 
k-»oo 

assuming that the above limit exists for all pairs (s, s'). 

Property 5: If ß(u) is a measure on a space U and cM(s, s' · u) is a function 
integrable on a subspace V of 1/ for each pair (s, s'), then 

cM(s,s'· wMdw) = cx(s,s')eC„ (12) 
J V 

Property 6: Every covariance cx(s, s ')eC„ is also the covariance of a 
Gaussian SRF. 

According to Property 1, some nonnegative-definite function can be the 
covariance function of some SRF. Property 3 means that when the distance 
between s and s' tends to infinity the correlation between X(s) and X(s') 
tends to zero. Properties 4 and 5 provide interesting means of constructing 
covariances; let us discuss a few examples. 

Example 1: If the cxk(s, s'), k = 1, 2 , . . . are covariances, the quantities 

c * ( s , s ' ) = £ a p [ c x > , s ' ) ] p (13) 

and 

cx(s,s') = lim Σ * P K P ( S , S ' ) ] P (14) 
fc^-oo . 

p<fc 

-a 

(14) 

where ap > 0 and p < k are covariances too. 

Example 2: In Eq. (12) let cx(s, s') = cx(r), where 
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and 
ß(du) = </)(«) du 

Then 

^(τ ) = σ2 exp - ^ U ( w ) < / w (15) 

where the function φ(η) must be such that j^° φ(η) du = 1. If we choose 

* (M)=dbexp[-fe)] 
Eq. (15) yields cx(r) = σ2 e x p [ - u / a ] . For c/>(u) = 8(u-a), Eq. (15) gives 
cx(r) = a2exp[-u2/a2]. 

Property 6 is of particular interest: First, it is easily seen that a similar 
property holds for every mean value mx(s), as well. Then, an important 
implication is that the study of any SRF in terms of its mean and covariance 
is equivalent to the study of a Gaussian SRF that has the same mean and 
covariance. The consequences of this fact are significant in various problems 
of the SRF theory, such as estimation and simulation of SRF on the basis 
of their means and covariances (Chapters 8 and 9). 
Remark 2: The construction of multidimensional non-Gaussian probability 
distributions on the basis of the mean value and the covariance function 
can lead to inconsistent results. However, as already mentioned, in the 
context of the correlation theory this fact does not create any problem, for 
there is no need to deal with the form of the multidimensional probability 
distribution. 

Higher-order moments may also be defined. For example, a third-order 
moment that is useful in applications (e.g., analysis of historical hydrologie 
series) is the skewness function defined as 

\(s) = E[X(s)-mx(s)f (16) 
The skewness expresses the lack of symmetry of the probability distribution. 
Usually, the skewness function is divided by a3

x(s), leading to the coefficients 
of skewness 

E[X(s)-mx(s)f 
y ( s ) = ^77\ ( 1 7 ) 

Moreover, moments of any order can be derived by differentiating the 
multivariate characteristic function (ßxiwi,... ,wm) and setting w = 
(w 1 , . . . ,w„ l ) = ( 0 , . . . , 0 ) = 0 ; that is, 

E[X«MX*(*2) · · · X ' « ( 0 ] = Γ Σ " - 4 Plfp'lPk
 Λ Ρ Φχ^] 

(18) 
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3.2 Vector Statistical Moments up to Second Order 

Under certain circumstances it is possible to study two or more SRF that 
are related to each other. We then define an additional statistical moment, 
namely the spatial cross-covariance. 

Definition 2: Let X\(s) and X2(s'), s, s'eR" be two SRF. The spatial 
cross-covariance function is defined as 

cXlX2(s, s') = B[ [X, ( s ) - mXl(s)][X2(s') - mX2(s')]] 

[Xi-mXi(s)ÏÏX2-™X2(s')]fs,AXi>X2) άχχ άχ2 (19) 

where ί^ΑΧι,Χι) is n o w the joint probability density of Xi(s) and X2(s'). 

By analogy to Eq. (5), the coefficient of spatial cross-correlation is defined 
as 

p^s')=jif¥m (20) 

V<(s)V^X2(s') 
where σΧι(β) and crX2(s') are the variances of the SRF Xi(s) and X2(s'), 
respectively. 

The definition above can be easily extended to more than two SRF. Let 
X(s) = [X!(s), X 2 ( s ) , . . . , Xfc(s)]T be a vector SRF. The corresponding matrix 
of cross-covariances between the component SRF is 

Cx = [cJCpXq(si,s/)] (21) 

where /?, q = 1, 2 , . . . , k. Some interesting properties of the cross-covariance 
matrix (21) are summarized below: 

Property 1: A matrix Cx is nonnegative-definite type, that is, 

qTCxq^0 (22) 

for all vectors qT = [qx, q2,..., qk\- This is because it must hold 

Var[qTX(s)]^0. 

Property 2: The Cx is a symmetric matrix, since by definition 

cxpxq Vsi» s j / = Cxqxp Vs; ? s i / 

However there is no symmetry, in general, with respect to s, and s,. 

Property 3: A straightforward application of the Schwartz's inequality yields 

\cXpXq(si9 s,-)l W<j-xp(Si) y/a2
Xq(sj) (23) 

for all /?, q = 1, 2 , . . . , k and /, j = 1 ,2 , . . . , m. 

where a2
Xi(s) and cr^2(s') are the variances of the SRF Xi(s) and X2(s'), 

respectively. 
The definition above can be easily extended to more than two SRF. Let 

X(s) = [X!(s), X 2 ( s ) , . . . , Xfc(s)]T be a vector SRF. The corresponding matrix 
of cross-covariances between the component SRF is 
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To clarify some aspects of the matrix algebra involved consider the 
following example. 

Example 3: Let k = 2 so that 

. Γ cXl(si9Sj) cXlX2(s,,s7)l 
lcX2Xl(Sj9Si) CX2(shSj) ] 

If we define the SRF 
2 

y(Si)=I«AW 
k = l 

where qkeRx (k=\ and 2), the corresponding covariance is given by 
2 2 

cY(si9sj)=YJ Σ akqk'CXkXk,(si9Sj) 
/c = l k'=\ 

which must be a nonnegative-definite function. 
Let X = [xi,..., xm]T and Y = [yl,..., ymY be vectors of random vari-

ables from the SRF X(s) and Y(s)9 respectively. The conditional mean of 
X given Y = Ψ = [ψλ,..., i/>m]T is the deterministic vector 

ηιΧΙΨ = Ε[Χ\Ψ]= I xfx]Y(x\V)dX (24) 
J Rm 

The conditional covariance of X given Ψ is the deterministic matrix 

Cx,„, = E{[X- mx,*][X - mX|^]T | Ψ} 

■L [X - «χ | * ] [χ - »ΐχ|*]Τ/χ|γ(χ|Ψ) ^Χ (25) 

If Y is regarded as random, the conditional mean vector and the co-
variance matrix become random quantities as well, namely 

»ΐχ|γ=Ί χ/χ|γ(χ|Υ) <*X (26) 
J Rm 

and 

CX|Y = E{[X - mx, Y][X - mx| Y ] T | Y} 

= | [χ -«χ |γ ] [χ-» ι Χ | Υ ]7 Χ | Υ (χ |Υ)</χ (27) 
J Rm 

Remark 3: A useful relationship is provided by the chain rule for conditional 
expectations of SRF 

EY{Ex[X(s)\ Y(s)]} = Ex[X(s)] (28) 
where the symbols Ex and EY denote expectation with respect to the SRF 
X(s) and Y(s), respectively. 
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3.3 Gaussian and Related Spatial Random Fields 

The family of the so-called Gaussian SRF is very important for a variety 
of reasons, such as: 

(i) Members of this family have convenient mathematical properties 
that greatly simplify calculations involving linear transformations; in fact, 
many results can be worked out only for Gaussian SRF. 

(ii) It is the limit approached by the superposition of a large number 
of other non-Gaussian SRF; this is a famous result of the well-known 
central limit theorem (e.g., Feller, 1966). 

(iii) It has been found that the distribution of many natural processes 
can be approximated very satisfactorily by means of Gaussian SRF. 

(iv) For any SRF with finite first and second-order moments it is 
always possible to construct a Gaussian SRF with the same mean 
and covariance. This is not true for non-Gaussian SRF. In fact, the 
construction of multivariate non-Gaussian probability densities on the 
basis of first and second-order moments can lead to inconsistent results. 

(v) The Gaussian SRF maximizes the probabilistic entropy function 
subject to the constraints associated with the first and second-order 
moments (for more details, see Section 13 below; also, Chapters 7 and 
9). 
Definition 3: A multivariate Gaussian SRF is an SRF X(s) for which the 
multivariate probability density function of the vector random variable 
X = [*!,..., x m ] T for all m is given by 

A(x) = ( 2 7 r r / 2 | C x | 1 / 2 ex P [ J (29) 

where χ = [χλ,,.., xmf and Cx = [cx(si9 s,·), /, j = 1, 2 , . . . , m]. If m = 2, 
X(s) is called bivariate (or two-dimensional) Gaussian SRF; if m = 3, it is 
called a trivariate (or three-dimensional) Gaussian SRF. 

Moreover, a multivariate Gaussian SRF has the following important 
properties: 
Property 1: A multivariate SRF X(s) is completely characterized by its first 
and second-order moments 
Property 2: The conditional probability density for any two random vectors 
X and Y from a multivariate Gaussian SRF is also multivariate Gaussian 
and is given by [notation as in Eqs. (24) through (28) above] 

/χ |γ(χ|Φ) = ^ W 2 , r [I7^exP ' , \ (30) 

where 
™ΧΙΨ = ΟχγΟγ^Ψ - mY] + mx 
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and 

CX|qr = CX — CX YCY CX Y 

Property 3: A multivariate Gaussian SRF X(s) is an independent SRF if 
and only if it is an uncorrelated SRF; that is, if CXY = [0]. 

Property 4: It is valid that 

E{[X(sl)-mx(simX(s2)-mx(s2)] · · · [X(sm)-mx(sJ]} 
= 0 if m = odd 

= Σ c*(sii>sl2)cx(sf3,si4) · · · cx(sim_i9sim) 

if m = even (31) 

for all distinct pairs of subscripts 0Ί, *2, · · · , *m) that are permutations of 
( 1 , 2 , . . . , m ) . 

Property 5: If X(s) is a Gaussian SRF, then so are its derivatives in the 
mean square sense. (These derivatives are defined as limits of linear combi-
nations of Gaussian variables; see next section.) In addition, the joint 
distribution of X(s) and its derivatives are multivariate Gaussian as well. 

Of considerable importance in applications is the lognormal SRF defined 
as follows. Consider a nonlinear function of the form 

F(s) = exp[X(s)] (32) 

Its inverse is 

X(s) = logF(s) (33) 

where F ( s )>0 . 
Assume that X(s) is a Gaussian SRF with univariate density 

fx(x)= /-— exp — 2 — 

Then, the Y(s) is a lognormal SRF with a univariate density of the form 

(34) /v-(<A)=-7=^z~7exP| ^~2 
/2ττσχψ L 2σ"χ 

Moreover, the following classical relationships hold true, 

E[ Yk(s)] = E{exp[kX(s)]} = cxp[kmx +$k2a2
x] (35) 

cy(h) = m2
y{exp[cx(h)]-l} (36) 

and 

Ty(h) = [1 + cy(0)]{l -exp[-y x (h)]} (37) 
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where γ( · ) is the so-called semivariogram function to be defined in Section 
11 below. Lognormal SRF occur in hydrology, turbulence, biology, mining, 
etc. 

4. Certain Geometrical Properties of Spatial Random Fields 

The study of the behavior of an SRF with respect to mathematical notions 
such as continuity, differentiability, and integrability can lead to conclusions 
regarding the geometry of the SRF and, consequently, the regularity, 
homogeneity, etc of the natural process modeled by the SRF (see, also, 
Chapter 7). Just as for deterministic function / (s ) , where questions about 
the geometrical properties of f(s) are transferred to questions about the 
convergence of the series {/(s„)}, as s„ ~^Z s, geometrical questions con-
cerning the SRF X(s) reduce to the concept of stochastic convergence of 
the corresponding sequence of random variables, 

{xn=X(sn)}, 11 = 1,2,. . . 

4.1 Stochastic Convergence 

There are several types of convergence in a stochastic framework. 

Definition 1: Let {x„} be a sequence of random variables of L2(H, F, P). 
The {xn} is said to converge to the random variable x: 

on the continuity set of Fx. 

(d) Weakly or in distribution 

(c) In probability 
for all u£S). 

(or, 3 S ç i l satisfying 

(b) Almost surely (a.s.) or with probability one 

(a) In the mean square sense 

if 

(4) 

(3) 

(2) 

(1) lim £ | x „ - x | 2 = 0 
n-*oo 

P[ lim xn 
n-*oo 
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The types of convergence above are related to each other. Particularly 
m.s. 

X„ > X 

a.s. 

p -\ F 

Remark 1: Moreover, the following assertion holds (e.g., Sobczyk, 1991). 
If for some k > 0, 

oo 

Σ E\xn-x\k<oo 
n = l 

then xn - ^ * x. 
Since the (second-order) random variable xn e L2(il, F9 P), the L2-conver-

gence is convergence in the m.s.s. Let xn
 J M l * X and ym

 J Î H L > >>. Then, 

E[(xnym-xy)] = £[(x„ -x ) (y m - >>)] + £[(*„ -x) j ; ] + £[x()>m - j ) ] 
From Schwartz's inequality, 

\E[(xn-x)(ym-y)]\<JE\xn-x\2JE\ym-y\2^0 as n,rn^oo 

and 
\E[x(ym-y)]\^0 

which lead to the following. 

Proposition 1: If x„ -^^ x and ym
 J2Hl> y9 then E[xn] -» £ [x ] and £[x„.ym] -» 

£[xy] . Thus, the operators "l.i.m." and " £ [ . ] " commute. 
In accordance with the analysis above, the SRF X(s) is said to converge 

to X(s0) when s-»s0, in the sense of one of the aforementioned types, if 
the corresponding sequence of random variables {xn = X(s)} at s = 
$!, s2 , s „ , . . . tends to x0 = X(s0) as n -> oo. For the SRF theory, conver-
gence in the m.s.s. and a.s.s. are the two most important types (e.g., Loeve, 
1953). 
Proposition 2 (M.s. convergence criterion): Let X(s) be an SRF and let s0 
be a fixed point in Rn. Then X(s) - ^ ^ X(s0), if and only if E[X(s)X(s')] -> 
E[X(s0)~\2 when s, s' -» s0. (Note that the convergence of X(s) is in the m.s.s., 
while that of E[X(s)X(s')] is in the ordinary sense.) 

4.2. Stochastic Continuity 

Definition 2: A second-order SRF X(s) is continuous in the m.s.s. at s G Rn 

if X(s') -ΪΞ;£ι* X(s) as s'->s or, which is the same, if 

X(s + h ) - ^ X ( s ) as h ^ O (6) 

(5) 
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When Eq. (6) holds for all s in the domain of X(s), the latter is m.s. 
continuous everywhere. 

On the strength of Proposition 2 we obtain the proposition below. 

Proposition 3: An SRF X(s) is continuous in the m.s.s. at s e Rn, if and only 
if its covariance cx(s, s') is continuous at (s,s'= s)e Rn x Rn. X(s) is 
everywhere continuous if cx(s, s') is continuous at every diagonal point 
(s,s' = s). 

Proposition 3 shows that the m.s. continuity of a second-order SRF is 
determined by the ordinary continuity of the corresponding covariances. A 
stronger form of continuity, which is also of particular importance within 
the context of this book, is continuity of the realizations of the SRF, namely 
almost sure or sample function continuity. 

Definition 3: An SRF X(s) is almost surely (a.s.) continuous at se R" if 

X(s + h ) - ^ X ( s ) as h^O (7) 

When Eq. (7) holds for all s in the domain of X(s), the latter is a.s. 
continuous everywhere. This type of continuity is also called sample function 
continuity. 

It can be shown (Belyaev, 1972; Adler, 1980) that if 

E\X(s+h)-X(s)\^^^ (8) 

where a is a positive constant, λ > 0, and β > λ, then the SRF X(s), se R" 
is a.s. continuous over any compact set C <= Rn. In view of this result and 
by setting λ = 2, it is not difficult to prove the following proposition, which 
provides sufficient conditions for sample function continuity. 

Proposition 4: Let cx(s, s') be the covariance function of the SRF X(s), 
s e Rn. If for all s, h e C, it is true that 

| L | 2 M 

cx(s + h,s + h ) -c x ( s + h , s ) - c x ( s , s + h) + c x ( s , s )<-— ι+β (9) 
|log|h|| β 

where /3>2, the X(s) is a.s. continuous. 

M.s. continuity is the one usually applied in second-order SRF studies, 
and it does not imply sample function continuity. A classical example is 
the Poisson process. While it is m.s. continuous, almost all of its realizations 
have discontinuities. Nevertheless, a stochastic research program uses both 
forms of stochastic continuity to study the geometrical properties of the 
underlying SRF. 
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4.3 Stochastic Differentiation 

Definition 4: A second-order SRF X(s) is differentiable in the m.s.s. with 
respect to the component s, of the point s = (sl9...9si9...9sn)eRn

9 if there 
exists an SRF X(l)(s) such that 

X ( s + / i £ t ) - X ( s ) m., 
> X(l)(s) as h^O (10) 

where ε, is the unit vector along direction i; i.e., a vector whose ith element 
is 1 with all the others being zero ( l < i < n ) . SRF X(i)(s) = dX(s)/dsf is 
called the ith partial derivative of X(s) at s and is also denoted by 

dX(s) X ( s + / i e , ) - X ( s ) 
= l.i.m. (11) 

ÔSi h^O h 

which means that 

arX(s+he,)-X(s) dX(a)~\2_Q 

o L h dSf J 
lim 
h 

When Eq. (10) holds for all s in the domain of X(s), the latter is m.s. 
differentiable everywhere. 

We can define higher-order derivatives duX(s)/(dsh · · · dsiv) in a similar 
manner. For example, the second-order i, jth partial derivative is given by 

= l.i.m. —[Xis+hei + rSj) 
dSidSj Λ,Γ-Ο hr J 

- X(s+ hei) - X( s+ rej) + X(s)] (13) 
where 1 < i, 7 < «. 

Definition 4 is not always useful, since it includes the unknown SRF 
X (0(s). An alternative definition is as follows: A second-order SRF X(s) 
is differentiable in the m.s.s. with respect to the component s, of the point 
s = (sl9...9si9 ....9sn)eRn if 

lim Erx(,+ki*l)-x(,)_x(,+k*l)-xMVxi0 (14) 
hi,h2-+0 L ^1 h2 J 

One of the important consequences of the alternative definition (14) is that 
it leads to the following proposit ion (e.g., Loeve, 1953). 

Proposition 5: An SRF X ( s ) is m.s. differentiable, if and only if, (a) the 
mean value £ [ X ( s ) ] is differentiable and (b) the covariance 

(12) 

(10) 
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(dX(s) dX(s')\ 
cov , — 

_d2cx(s,s') 
dSi ds'i 

= lim —[cx(s+ hei9s
f + rsi) - cx(s,s' + ret) 

h,r-*oo hr 

-c x (s+f ie„s ' ) + cx(s,s')] (15) 

exists and is finite at all diagonal points s = s'. Since we are assuming zero 
mean SRF, condition (a) may be relaxed. 

Remark 2: M.s. differentiability of an SRF X(s) at seRn implies m.s. 
continuity of X(s) at s G R"9 for 

l im£ |X(s+fc e f ) -X(s ) | 2 

h^O 

= lim h2 l im-^ E\X(s+ het) -X(s)\2 

r:ôh2 = Oxlimy^[cx(s+/ie I , s+Zie,) 

-2c x (s + hei9 s) + cx(s, s)] = 0x 2
9 = 0 

where the second derivative of the covariance is finite by hypothesis. 
Generalizations of the above results are straightforward. 

Proposition 6: The dvX(s)/(dsh · · · dsiv) exists in the m.s.s., if and only if the 

/ d"X{*) SVX(B') \ d2"cx(s9s') 
covl , — - 1 = - (16) 

Xds^ - · · dsiv ds'h · · · ds'ij dsh · · · dsiv ds'h · · · ds'iv 

exists and is finite at all diagonal points s = s'. 

Example 1: Consider the partial derivative d"X(s)/ds?: It exists in the m.s.s. 
if and only if 

(dvX(s) d"X(s')\ <92tcx(s,s') 
covl^^'"l^j=-^r^r (17) 

exists and is finite at all s = s'. Furthermore, if the m.s. derivatives 
duX(s)/(dsh · · · dsj and dttX(s')/(ds,

h · · · ds'ij exist, then 
/ d:X(s) d»X(s') \ " d^cx(s9s') 

cov ,— - ) = - (18) 
\dS: · · · dSi ds'it · · · ds'i / dsit · - - dSi ds'u · · · ds'i 
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Similarly, if Xi(s) and X2(s) are two SRF and the derivatives 
dl,Xl(s)/(dsh - - - dsiv) and dttX2(s')/(dsf

il · · · ds'i) exist, the cross-covariance 
is 

/ a-x^s) d"x2(*') \ ^+%X2(s,s') 
COV , — ; - ) = L J - (19) \dsh · · · dsiv ds'h · · · ds'J dsh · · · dsiv ds'h · · · dsl 

Example 2: Let X(s), s e R1 be a stationary RP. If 

-Y(s) = 0 

which implies 

]imi^2[cx(0)-cx(h)] + cY(0)-2E[XiS + h)
h

 X(s)Y(s) ] } -
or 

lim 
h 

a {^[Cx(0) - cx(h)] + cY(0) j -2<v(0) = 0 

or 

cx(/i) = c x (0 ) - cy(0) / t 2 

as ft -»0. Clearly, if X(s) is m.s. differentiable the last equation implies 

<ΜΑ)| 
dh 

= 0 

Moreover, the following related results can be derived without any 
difficulty. 

, r v n i J.. X(s + h)-X(s)l 
E[Y(s)] = E l.i.m. 

■.\\mT{E[X{s + h)]-E[X(s)]} 
h^o h 

= — E[X(s)] 
as 

exists it is a stationary RP too. By the definition of the m.s. derivative, 
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E[Y(s)X(s')] = E\ U.m.T[X(s + h)-X(s)]X(s') 
L h->0 h J 

= lim j[cx(s + h, s') - cx(s, s')] 
h^o h 

= — cx(s,s') 
ds 

and 

E[Y(s)Y(s')] = E\u.m.^[X(s + h)-X(s)][X(s'+r)-X(s')]\ 
L h,r^o hr J 

= lim — \im-[cx(s + h, s'+ r) — cx(s + h, s') 
h^o h r^o r 

-cx(s9s' + 

h^o h L 

92 < 

■r) + cx(s, 

{s + h,s') 

ds' 

s') 

*')] 
dcx(s, 

ds' 
°Λ~ 

dsds' 

Just as for the concept of stochastic continuity, another important form 
of SRF stochastic differentiability is the differentiability of the realizations 
of the SRF, also termed almost surely differentiability. 

Definition 5: A second-order SRF X(s) is almost surely (a.s.) differentiahle 
at sei?" , if there exists an SRF X(i)(s) such that 

X ( s + f t e t ) - X ( s ) a., 
>X(l)(s) as /i->0 (20) 

which is also called SRF sample function differentiability. 

Assume that the m.s. derivative of the SRF X(s) is 

dSi 

and its covariance is 
a2cx(s,s') 

cv ( s. s ) = 

Then, using the result of Proposition 4 we conclude that the X(l)(s) is a.s. 
continuous (i.e., it has continuous realizations) if 

cX(i)(s + h, s + h) - cX(i)(s + h, s) - cX(0(s, s + h) + cX(/)(s, s) < J 1+β 

(21) 

(20) 
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where ß>2, for all s, heC. Sufficient conditions with regard the sample 
function continuity of higher-order derivatives can be obtained in a similar 
way. Just as with sample function continuity, the m.s. differentiability does 
not imply a.s. differentiability. 

4.4 The Central Limit Theorem 

The central limit theorem is, perhaps, the most renowned theorem in 
statistics and probability theory. Generally speaking, it states that under 
certain conditions a probability distribution (typically the distribution of 
the sum of a large number of independent random variables) will tend to 
approach the Gaussian (or normal) probability distribution. 

More specifically, let us consider the limit theorem associated with the 
convergence of probability distributions. Assume that {xk}, k = 1, 2 , . . . is a 
sequence of independent random variables with mean values mk, variances 
σ\ Φ 0, and E\xk - mk\

3<oo. Let 

Σ (xk-mk) 

yn
: 

Vt σ\ 

(22) 

be a sequence of random variables with probability distributions {Fn{$)}. If 

lim , 
■mk\ 

' f c = l 

= 0 (23) 

oi 

then the {F„(i/0} tends to the standard Gaussian distribution JV(0, l) as 
n->oo. 

This is one type of limit theorem. For a detailed treatment of the subject 
see Cramer (1946), Loeve (1953), and Rosenblatt (1956). An illustrative 
example follows. 

Example 3: Let xx, x2,..., xk be identically distributed independent random 
variables with mean m and variance σ2. If Sk =Σ,·=ι *;> then 

lim P [^^xh^Lexp[-^]du 

for all x&Rl; that is, 

Sk — km 
N(0,1) 
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4.5 Stochastic Integration 

Let us first consider m.s. Riemann integration. 
Definition 6: Let X(s) be an SRF. The integral 

Z(w)= a(w,s)X(s)ds (24) 
J v 

where V<= Rn and a(w; s) is a deterministic bounded and piecewise con-
tinuous function, exists in the m.s.s. if the limit of the sum 

m 

Zm(w) = Σ «(«; s . W s . ) A(s,) (25) 
i = l 

exists for m-»oo (also in the m.s.s.). This limit is called the m.s. Riemann 
integral of X(s). Here A(s,) is an infinitesimal volume centered at s,·, where 
the measure of the largest A(sf) tends to zero, and the sum of all A(s,) 
equals V. (Clearly, both Z(w) and Zm(w) are random variables.) Then it is 
valid that 

Z(w) = l.i.m.Z„,(w) (26) 
m~*oo 

and the SRF X(s) is said to be integrable in the m.s.s. 

Working along the lines of Definition 6 the proposition below can be 
proven (e.g., Gihman and Skorokhod, 1974a). 
Proposition 7: An SRF X(s) is integrable in the m.s. Riemann sense if and 
only if 

£[Z 2(w)]= a(w; s)a(w; s')cx(s, s') ds ds'<oo (27) 
J V J V 

where a(w;s') denotes the complex conjugate of a(w;s'), and Vc:Rn as 
before. 

Under certain circumstances one may need to define the so-called 
Riemann-Stieltjes integral. 
Definition 7: Consider the integral 

i = j a(w; Z(w) = J^a(w;s)<m x (s ) (28) 

where Kx is a random additive set function associated with the SRF X(s), 
s e V c i ? " ; the Xx is defined on some class si of sets Sl^Rn. Let V = 
U"=i S/m) (m = 1, 2 , . . . ) be such a sequence of partitions {Pm} of V that 

Am=max sup Is -s i »0 
' s,s'eS' Xm) 

In this case, the counterpart of the sum in Eq. (25) is 

Zm(w) = £a( W ; s i m ) )X x (S i ' " ) ) (29) 



5. Spectral Characteristics of Spatial Random Fields 49 

where s!m) is any point of the region S-"°. Then, the m.s. Riemann-Stieltjes 
integral (28) is defined as 

Z(w) = l.i.m.Zm(w) (30) 
m->oo 

Proposition 7 above also holds true in the m.s. Riemann-Stieltjes sense 
where, though, the integral in Eq. (27) must be replaced by one in the 
ordinary Riemann-Stieltjes sense (see, e.g., Loeve, 1953; Pugachev and 
Sinitsyn, 1987). 

Of significant importance is the construction of the so-called integral 
canonical representation of an SRF X(s), namely 

a(w; 
J v 

X(s) = mx(s)+\ a(w;s)<iKx(w) (31) 
J V 

where the Xx has now zero mean. To Eq. (31) one can associate an integral 
canonical representation of its covariance. 

In applications, it is sometimes useful to express stochastic integrals as 
integrals containing white noise SRF, viz. 

I a(s'; s) rfKx(s') = | a(s'; s) e(s') ds' (32) 
J v J v 

in which e(s') is a zero-mean white-noise SRF (for more details on white-
noise SRF see Chapter 3). On the basis of Eq. (32) the following integral 
canonical representation of the SRF X(s) may be constructed. 

J V 
X(s) = mx(s)+ a (s ' ; s )e (s ' )ds ' (33) 

J v 
Representation (33), when possible, has important consequences in applica-
tions related to the stochastic differential equation modeling of earth 
systems. 

M.s. integrals have the formal properties of ordinary integrals. Some 
other results of stochastic integration will be discussed below in the context 
of specific classes of SRF. 

5. Spectral Characteristics of Spatial Random Fields 

5.1 Scalar Spatial Random Fields 

The stochastic integration analysis of the previous section are used here by 
setting 

exp[—iw · s] 
a(w; s )=-

(2π) n/2 
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where i = V-T. More specifically one may define an SRF in the frequency 
domain as follows (without loss of generality we assume zero mean SRF): 

Definition 1: An SRF X(s) is said to be a harmonizable SRF if there exists 
an SRF X(w), w e F such that 

■-J. X(s) = exp[iw · s] X(w) </w (1) 
J Rn 

Equation (1) is a Riemann integral representation of the SRF X(s). 
By applying the theory of the previous section we find that 

^ ( w ) = /0 W2 exp[-îw · s] X(s) ds 
{Ζπ) JR» 

exists in the m.s.s. if and only if 

— e x p C - i K - s . - w ^ S ; ) ] 
-IT) JRn JRn 

|£[X(W l)X(w,)] | = 
(2i 

cx(si9Sj)d&idSj\ <oo (2) 

for all wf, W/G #", where X(w,) denotes the complex conjugate of the SRF 
X(w,). On the basis of the foregoing, besides the characterization of SRF 
on the basis of statistical moments of order up to two, an equivalent 
characterization can be made in terms of spectral moments of order up to 
two. These are the n-fold Fourier transforms of the statistical moments of 
order up to two. As happened with the statistical moments, the spectral 
moments are assumed to be continuous functions in Rn. 

Definition 2: The spectral density function of an SRF X(s) is defined by 

Cx(wi,w/) = JB[X(wi)X(w/)] 

• f f „ , ^ . ^ , , , , ^ (3) 
\ίπ) JRn JRn 

assuming that the integral exists. 

Remark 1: In certain applications (e.g., statistical continuum media), one 
may need to define Fourier transforms (FT) of statistical moments of higher 
orders, such as 

VT{E[X(sl)X(s2) · · · X(sfc)]} = JB[X(w1)X(w2) · · · X(wk)] 

The CxiWijW,·) in Eq. (3) may be viewed as the covariance function of 
the SRF X(w) and is such that 

I I Cx(*t,*j)dwtdmj*:0 (4) 
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for all V c Rn. In view of the above definition, cx(sf, s,) can also be defined 
as the inverse Fourier transform of the spectral density Cx(wf, w,); that is, 

cx(si9 Sj) = exp[/(Wj · s, -Yfj · Sj)]Cx(Yfi9 w,) d\Vi dv/j 
J Rn J R" 

(5) 

Certain important special classes of SRF, like the homogeneous SRF 
(Section 7 below), do not possess a Fourier transform and, therefore, they 
do not admit the Riemann integral representation (1). However, it can be 
shown that all classes of SRF, including the homogeneous ones, admit the 
Fourier-Stieltjes representation 

- J . X(s) = exp[/w · s] dKx(w) (6) 
J R" 

where Xx(w) is a random field that is not necessarily differentiable (also, 
Section 7 later). If Kx(w) is differentiable, the Fourier-Stieltjes integral 
reduces to the Riemann integral. But the functions Nx(w) associated to 
homogeneous SRF do not satisfy this property. 

The covariance function cx(si9Sj) of the SRF (6) can be written 

cx(si9 SJ) = E\\ ^ exptiw, · sf] έϊΚ*(ιΟ J ^ exp[-iw, · s,] dKx(w;) 

expt/K · s,- -w,· · s/)]£[dKx(wi) </Kx(w,)] (7) 
J Rn J Rn 

exptKw, · s,· -w,· · Sj)] dQx(vfi9 vfj) (8) 
J R" Jl R" J R" 

where Qx(wi9Wj) is the so-called spectral distribution function of X(s) and 
is not necessarily differentiable; note that Qx(vfi9 w,·) can be also viewed as 
the covariance of the random field Xx(w). By comparing Eqs. (5) and (7) 
one gets 

Cx(Wj, w,) dWj dwj = Ε[άΗχ(^) dKx(*j)] (9) 

Furthermore, if Qx(vfi9Wj) is differentiable, 

r( \ ^Qx(Wj,w;) Cx(Wj,wl-)= (10) 
dwh · · · dwin dwjt · · · dwjn 

and then Eq. (8) coincides with Eq. (5). When a covariance can take the 
form (5), it is said to be harmonizable. The proposition below establishes 
an important link between an SRF and its covariance (Loeve, 1953). 

Proposition 1: An SRF is harmonizable if and only if its covariance is 
harmonizable. 
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According to Proposition 1 the stochastic integral representations (1) of 
an SRF exist if and only if the deterministic integral representation of the 
corresponding covariance, see Eq. (5), exists. 

Remark 2: From mathematical analysis we find that there are certain 
conditions with respect to cx(si9Sj) and Cx(wi5 w7) for convergence of the 
deterministic Fourier integral (3) and the inverse Fourier integral (5), 
respectively. These conditions must be checked carefully when the above 
formulas are used (see, e.g., Sections 7 and 9, later). 

Example 1: As an illustration of how a covariance can be represented in 
the form (8) consider in Rl the SRF 

X(s) = v exp[/sa] (11) 

where v is a zero-mean random variable with E[v2] = c2 and a is a random 
variable independent of v having probability distribution 

Fa(w) = P[e*<w] (12) 

Then 

E[X(s)] = E[v]E[exp(isa)] = 0 

and 

cx(h) = E[X(s)X(s + h)] = E[v2]E[exp(iha)] 

= c2 exp[ï7iw] dFa(w) = exp[i7iw] dQx(w) (13) 
JR1

 JR1 

where Qx(w) = c2Fa(w) is an arbitrary nondecreasing bounded function 
such that Qx(w)->0 when w-»-oo. 

Remark 3: In the case of real-valued covariance and spectral density func-
tions, the exponentials in the above equations are replaced by cosine 
functions. Nevertheless, from a mathematical point of view, it is usually 
convenient to use exponential forms even in the real case. 

Definition 3: The second-order spectral moment of a SRF X(s) is defined by 

J R" J R" 

Higher-order spectral moments may be defined in a similar fashion. 

Remark 4: It can be easily shown that 

a2cx(s,s')l 
dSi ds'j 

(15) 

(14) 
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5.2 Linear Transformation of Spatial Random Fields 

Let us consider the following definitions. 
Definition 4: A linear transformation $[ · ] is a transformation which, when 
applied on an SRF X(s), yields the new SRF 

y(s) = 3[X(s)] (16) 
such that if X,(s), i = 1, 2 , . . . , m are SRF, then 

Γ ^ 1 ^ 
3 L *«(*)= L $[*«(»)] (17) 

for all nonnegative integers m. 

Remark 5: The transformation $[ · ] is translation-invariant if 
3[Ss,X(s)] = Ss^[X(s)] (18) 

for all s'eR", where 5sX(s) = X(s + s') is the shift operator. 
Example 2: Common transformations in the sense of Definition 4 are (i) 
the differentiation of mth order 

3 [ · ] = θ , Γ ^ · · · * 0 [ · ] (19) 

where Σ]=ι mj = m\ an<^ (u) t n e integration 

3 H = f /(»)[·]</» (20) 

where/(s) is a suitable function in JR". 
Definition 5: The transfer function of the transformation St*] is defined by 

g [exp [ iws ] ] 
H(w) = — (21) 

exp[iw · sj 
Assume now that the SRF X(s) is harmonizable in the sense of Eq. (6) 

above. Then we can write 

y(s) = 3[X(s)] = 3 y exp[ fws]dK x (w)J 

= | S [exp[ /ws ] ]dK x (w) (22) 
J Rn 

By comparing Eqs. (21) and (22) we obtain 

Y(s) = exp[/w · s] H(w) dKx(w) (23) 
J R" 

exp[ iws]dXy(w) (24) 
J Rn 

Assume now that the SRF X(s) is harmonizable in the sense of Eq. 
above. Then we can write 

(6) 
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where dXy(w) = H(w) dXx(w). It is easy to show that the spectral density 
functions of the SRF X(s) and Y(s) (if they exist) are related by 

CY(mi9 w,) = H(Wl-)H(w,)Cx(Wl-, w,) (25) 

5.3 Evolutionary Mean Power Spectral Density Function 

Suppose that X(s) is a nonhomogeneous SRF represented by 

X(s)=\ H(s,w)dKx(w) (26) 
J Rn 

where Xx(w) is a random field with uncorrelated increments and variance 
Qx(w) and H(s,w) has the form 

H(s9 w) = ©(s, w) exp[ iw · s] (27) 
where 0(s, w) is an amplitude-modulating function that varies slowly 
with s. 

On the basis of these spectral representations one can define another 
useful concept in the spectral analysis of nonhomogeneous SRF, namely 
the evolutionary mean power spectral density function (Veneziano, 1980; 
Priestley, 1981). 
Definition 5: Let X(s) be a nonhomogeneous SRF represented as in Eq. 
(26) above where the variance Qx(w) of the random field Xx(w) is differenti-
able; that is, 

Γ ( Λ a"&(w) 

dWi * · · dWn 

Then, the evolutionary mean power spectral density function is defined by 
Cx(s,w) = |@(s,w)|2Cx(w) (28) 

Note that in this case the evolutionary mean power spectral density 
function Cx(s, w) is not the Fourier transform of the covariance function 

5.4 Vector Spatial Random Fields 

We saw above that when one deals with two stochastically correlated SRF, 
the cross-covariance function should be involved into the analysis. Then 
the corresponding spectral cross-density function is defined as follows. 
Definition 6: Let Xp(s) and Xq(&')9 s, s'e Rn be two SRF. The cross-spectral 
density function writes 

Κί'Π) J Rn J R" 

xcXpX(si9Sj)dSidSj (29) 
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Let Cx be the symmetric matrix of cross-covariances of the vector SRF 
X(s) = [Xi(s), X2(s), · . . , Xk(s)]T. The definition of the symmetric matrix of 
cross-spectral density functions is straightforward. 

Definition 7: The cross-spectral density matrix of a vector SRF X(s) is 
defined as 

C , = [CXpXq(*i9 w,·)], p 9 q = l929...9k (30) 

where the component cross-spectral density functions CXpXq(vti9 w,·) are given 
by Eq. (29), assuming that these integrals exist. 

6. Auxiliary Hypotheses 

The study of an SRF by means of its statistical moments up to second order 
(Section 3) requires certain auxiliary hypotheses so that the purely mathe-
matical model of SRF is compatible with the nature of the phenomenon it 
describes and, at the same time, this model is applicable under practical 
circumstances. The first hypothesis that follows is a constitutive hypothesis 
necessary for inference. 

Hypothesis 1: A natural process is modeled as a homogeneous—in the wide 
sense—SRF. This implies that 

mx(s) = m (1) 

and 

cx(s,s') = cx(h = s - s ' ) (2) 

that is, its mean value is a constant and its covariance depends only on the 
vector distance between two points in space. 

The homogeneity property of the SRF X(s), the latter considered as a 
function with values in the Hilbert space L2(H, F, P) , amounts to the fact 
that there exist in the closed linear subspace H spanned by the random 
variable x in L2(H, F, P) a group of unitary operators Uh such that 

UhX(s) = X(s + h) (3) 

where s ,hei?". The physical meaning of homogeneity is that the large-scale 
characteristics (macrostructure) of the underlying physical variate do not 
change over space. 

Remark 1: In the one-dimensional case, where the SRF becomes an RP 
X(s)9 seRl

9 homogeneity is equivalent to the assumption of stationarity 
(of time series analysis, etc.). 
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Remark 2: In general an SRF X(s) is called homogeneous in the strict sense 
if the probability distributions of the sequences x(sj), x ( s 2 ) , . . . , x(sk) for 
any integer k and all points &i9.. ,9sk remain the same when all the points 
S!, s 2 , . . . , sfc are translated by an arbitrary vector heR". Clearly if the mean 
and covariance of such an SRF exist they will satisfy Eqs. (1) and (2). 
Wide-sense homogeneity, however, does not necessarily imply homogeneity 
in the strict sense. An important special case of SRF where wide and strict 
homogeneity imply each other is the Gaussian SRF. Nevertheless, strict 
homogeneity is very rarely applicable in practical situations and, thus, 
further on wide-sense homogeneous SRF will simply be called homogeneous 
SRF. The following hypothesis is an extension of the previous one in the 
sense that all directions in space are taken as equivalent. 

Hypothesis 2: A natural process is modeled as an isotropic—in the wide 
sense—SRF. In this case the SRF is assumed to have constant mean and 

cx(s,s') = cx(r = |s-s1) (4) 

that is, its covariance depends only on the length of the vector distance 
between any two points in space. 

Remark 3: One may also define an isotropic SRF in the strict sense similarly 
to the strictly homogeneous SRF discussed in Remark 2 above. 

Our third hypothesis, following, is essential in the case that hypotheses 
1 and 2 do not apply, that is, when the SRF under study is nonhomogeneous. 

Hypothesis 3: A natural process is modeled as an ordinary SRF with 
homogeneous increments of some order v (OSRF-v) or an intrinsic SRF of 
order v (ISRF-v). This means that, although the SRF X(s) itself is non-
homogeneous, there exists a linear transformation T such that the 

Y(s)=T[X(s)] (5) 

is a homogeneous SRF (Section 9 below and Chapter 3). The term OSRF-z/ 
has its origin in the theory of random distributions (Ito, 1954; Gel'fand, 
1955), while the term ISRF-*> is used in the geostatistical literature 
(Matheron, 1973). It can be shown that, in this case, the nonhomogeneous 
covariance function cx(si9 s,) of X(s) consists of a homogeneous part fcx(h), 
h = s, — s,·, called a generalized spatial covariance of order v9 (Matheron, 1973; 
the term generalized is used here to distinguish kx(h) from the ordinary 
covariances) and a polynomial part of order v in s, and s,, pv(si9 s,). 

Remark 4: A homogeneous SRF is also an ISRF-*> for any value of v9 but 
the converse is not generally true. We will see below that in certain cases 
of nonhomogeneity one may make use of alternative tools of stochastic 
inference such as the structure or the semivariogram function (Section 11), 
and the aforementioned generalized spatial covariance function (Chapter 3). 
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Hypothesis 4: A natural process is assumed to be represented by an ergodic 
SRF X(s). Ergodicity, which is a term borrowed from statistical mechanics 
(Khinchin, 1949), implies that the mean and covariance of X(s) coincide 
with those calculated by means of the single available realization (more 
detailed definitions in Section 12 below). 

The above hypothesis arises from the fact that in most practical problems 
we have only one available sequence of measurements. (As we shall see in 
Chapter 7 ergodicity is a working or methodological hypothesis, that is, a 
hypothesis which, while not necessarily always verified in practice, can be 
tested on the basis of the successes to which it leads.) 
Remark 5: In many practical applications the validity of the above 
hypotheses is restricted to limited domains over space. Then, hypotheses 
1,3, and 4 are called quasi-homogeneity, quasi-intrinsity, and quasi-ergodicity 
(or microergodicity), respectively. 

7. Homogeneous Spatial Random Fields 

7.1 Scalar Homogeneous Spatial Random Fields 

To study homogeneous SRF it is appropriate to start by defining a very 
important type of complex-valued SRF, namely the so-called SRF with 
orthogonal increments, say Nx(w), we R". This SRF is such that for any pair 
of disjoint sets Sl9 52<= Rn

9 it is valid that 

^ [ ^ ( S O X ^ ) ] ^ (1) 
An important property of Xx(w) is that it determines a measure Qx(w) 

that satisfies £[|Nx(w)|2] = Qx(w). The foregoing considerations imply that 
a homogeneous SRF admits the Fourier-Stieltjes representations 

X(s) = exp[iw · s] </Kx(w) (2) 
J Rn 

From the definitions of Section 3 we obtain the following expression of 
the homogeneous covariance function. 

cx(h) = E[[X(s) - mx(s)][X(s + h) - mx(s + h)]] 

= I [#i - rnx(s)][x2- mx(s + h)]/SjS+h(/Yi, χ2) d\x άχ2 (3) 

Moreover, by setting s, =s , + h, Eqs. (7) and (8) of Section 5 yield 

c x (h )= f I exp[i(w,· · (s,· + h) - w,· · 8,)]Ε[</ΝΧΚ·) </Kx(w,)] (4) 
J Rn J R" 

exp[i(^i'(Sj + h)-i¥j'Sj)]dQx(Yfi9Yfj) (5) 
J Rn J Rn 
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Assuming that the Qx(wi9 w,·) is differentiable and since 

Cx(*j) «(w, -*j) dw, d*j = E[dKx(*i) dKx(y*j)] (6) 
where 

awj · · · dwn 

is the so-called spectral density function, Eq. (5) becomes 

cx(h) = exp[iwh]dQ x(w) (7) 
J R" 

exp[iwh]C x(w)dw (8) 
J R" 

By taking the inverse Fourier transform of Eq. (8) one gets 

C * ( w ) = — ^ ί exp[ - /wh]c , (h)dh (9) 
(2TT) JR» 

These results lead to the following proposition. 

Proposition 1: Any homogeneous SRF X(s) admits a spectral representation 
of the form of Eq. (2), where Xx(w) is a complex-valued SRF with orthogonal 
increments. To X(s) one can attach a spectral density function Cx(w), 
provided that Eq. (6) is satisfied. 

Remark 1: As in Remark 2, Section 5, there are certain conditions for 
convergence of the integral representation (8). In the case of homogeneous 
SRF these conditions lead to the conclusion that if the covariance cx(h) 
tends to zero fast enough with |h|-»oo, then 

L |cx(h)|dh<oo (10) 

and the cx(h) can be represented by Eq. (8), where Cx(w) is given by Eq. 
(9) above. In other words, if cx(h) is an absolutely integrable function in 
R", then the spectral density function Cx(w) exists. In this case 

L Cx(w)dw=cx(0)<oo (11) 
I R" 

that is, the spectral density is always integrable. 

Remark 2: Usually we are dealing with real fields where both cx(h) and 
Cx(w) are even functions. In this case, they are related by the Fourier cosine 
transform 

cos(w 
J Rn 

cx(h)= cos(wh)Cx(w)dw (12) 
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and 

C * ( w ) = - ^ - [ cos(w h)cx(h) dh (13) 

It is always assumed that these integrals exist. For example, in R1 the 
existence of the integral (12) requires that lim|w|.*o[wCx(w)]==0 and 
\im{w^oo[wCx(w)] = 0. 

Let X(s) be a homogeneous SRF, and let 

cx(0) 

be the homogeneous correlation function corresponding to cx(h). Then the 
following properties are valid. 

Property 1: The covariance and the correlation function are symmetric 
functions, that is, 

cx(h) = cx(-h) and Px(h) = px(-h) (15) 

They also are bounded functions; that is, 

cx(h)<cx(0) (16) 

|Px(h) |^l (17) 

Property 2: At infinity we have 
cx(h) 

, S N ™ = 0 (18) 

Property 3: If px(h) e $?„0 ($?Π)0 is the class of the homogeneous correlation 
functions that are continuous everywhere extfept, perhaps, at the space 
origin), then 

px(h) = a5(h) + /3Pb(h) (19) 

where 5(h) denotes the Kronecker delta (the same symbol is also used to 
denote delta function, see Remark 3 below), pb(h) e $?„ c ($?„>c is the class 
of homogeneous correlation functions in Rn that are everywhere con-
tinuous) and α, β are nonnegative coefficients. This is the case of the 
so-called nugget-effect phenomenon of geostatistics; for a detailed discussion 
about this phenomenon, as well as the SRF models used to describe it 
mathematically, see Chapter 7. Equation (19) implies that a homogeneous 
SRF X(s) with px(h) G ̂ fn>0 can be written as 

X(s) = Xa(s) + X6(S) 

where Xa(s) is the "chaotic" component and Xb(s) is the m.s. continuous 
component of X(s). 

(14) 
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Property 4: If px(h)e $f„c, then 

Px(h) = £{exp[ /wh]} (20) 

where w is an n -dimensional random vector. That is, the px(h) can be 
considered as the characteristic function of w. 

The proof of Property 1 is available in any reference on SRF (e.g., Gihman 
and Skorokhod, 1974a). For Property 2 see Christakos (1984b), and for 
Properties 3 and 4 see Matern (1960). 

Remark 3: Associated with the nugget-effect phenomenon are the mathe-
matical notions of (a) the delta (or Dirac) function, which is defined as 
JR« 5(h) dh= 1; 5 (h^0 ) = 0; and (b) Kronecker delta, which is defined by 

or by 

if h = 0 
otherwise 

^ 
if i=j 

0 otherwise 

In this book, the symbol 8(h) will be used in both cases (a) and (b), and 
the appropriate interpretation will be obvious from the text. The delta 
function models nugget effects in the continuous-parameter case; the 
Kronecker delta is used to model nugget effects of discrete-parameter SRF 
(see also Chapter 7). 

In the case of homogeneous SRF, the following formulas are straightfor-
ward consequences of the stochastic differentiation results obtained in 
Section 4.3: 

/ d"X(») a"X(s') \ d2-cx(h) 
Λβί,, dsh · ■ · dslu' ds'h ds'h ■ · ■ ds'J dh\dh\ ■ ■ ■ dh\ 

and 

ja^)s(,ir^w (22) 
\ dsvi ' dsf ) K ) dhïdhf K ' 

Example 1: Let X(s) be a zero mean stationary RP and let Y(s) = dX(s)/ds, 
which is a stationary RP too. By differentiating the integrable representation 
(2) we find 

-i. Y(s)=\ exp[iws]iw dKx(w) (23) 

(21) 
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The covariance is given by 

cY(h)= Qxp[iwh]w2 dQx(w) (24) 
JR1 

The same result is obtained by combining Eq. (21) above with the spectral 
representation 

cx(h) = exp[iwA] dQx(w) (25) 
JR1 

By comparing Eq. (24) with equation 

cY(h)=\ Qxp[iwh] dQY(w) (26) 
JR1 

we find dQY(w) = w2 dQx(w). The integral (24) exists if the following 
condition holds true. 

i. w2 dQx(w) <oo (27) 

A homogeneous but in general not isotropic SRF is characterized by 

cx(h) = cx(yfafGh) (28) 

where G is a nonnegative matrix. This situation is sometimes called 
geometrical anisotropy. Note that if G is the identity matrix, then cx(h) = 
cx(\h\) and the SRF is isotropic. Interesting covariance models of 
homogeneous but anisotropic SRF are the 

(32) 

(29) 

(30) 

where a > 0. 

Example 2: A special case of Eq. (29) is the anisotropic Gaussian covariance 

(31) 

A straightforward generalization of Eq. (30) leads to the covariance 

with det B Φ 0, where B is the matrix with elements bij9 i,j =1 ,2 , and 3. 

where al9 a2, a3>0, and the 
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For future reference, we summarize here the most important classes of 
homogeneous correlation functions: (a) the class $?„ of homogeneous, in 
general, correlation functions in Rn; (b) the class ^Cn0 of homogeneous 
correlation functions in Rn, which are everywhere continuous except, per-
haps, at the origin; (c) the class $f„jC of homogeneous correlation functions 
in Rn, which are continuous everywhere. Clearly, $?„5C<= ^η,ο^ ^η-

7.2 The Geometry of Homogeneous Spatial Random Fields 

Just as for arbitrary SRF, the geometry of an homogeneous SRF is related 
to the behavior of the covariance at the origin (h = 0 ) . More specifically, 
the proposition below is a straightforward consequence of the results of 
Section 4 above. 

Proposition 2: Let X(s) be a homogeneous SRF. (a) If cx(h) is continuous 
at h = 0 , it is continuous everywhere in Rn-, then and only then the X(s) 
is m.s. continuous, (b) If the 

cov 
/ dvX(s) dvX(s') \ 
\dsh dsh · · · dSiy'ds^ ds'i2 · · · ds'J 

d2vcx(h) 
( irdhldh%-.-dhl 

exists and is finite at h = O, then and only then the partial derivative 

d"X(s) 
dstl dsi2 - · · dsiv 

exists in the m.s.s. (c) If cx(h) is continuous in Rn
9 the stochastic integral 

of Eq. (24), Section 4 exists in the m.s.s. When cx(h) is not continuous at 
h = 0 (nugget effect), the homogeneous SRF X(s) will not be m.s. con-
tinuous at any point se Rn. 

As a particular case of (b), the dvX(s)/ds? exists in the m.s.s. if and only 
if the (-l)"(d2vcx(h)/dh*v) exists and is finite at h = 0 . A very interesting 
result is introduced by the following corollary. 

Corollary 1: The homogeneous SRF X(s) is m.s. differentiable (that is, the 
dvX{s)/dsVi exists in the m.s.s.) if and only if 

d2"-Ic*(li) I 
ahi 

2v- = 0 (33) 
h = 0 

Example 3: Consider the spatial covariance 

C*(h) : l = exp[-^] 
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where a > 0. It is continuous at h = O, where all its derivatives are defined 
and are finite. Therefore, the associated SRF X(s) is m.s. continuous and 
differentiable of any order. 

dh 
7*0 

h=0 

and therefore the associated RP X(s), while continuous in the m.s.s., is not 
m.s. difïerentiable. 

Example 5: Condition (27) is equivalent to the existence of 

d2cx(h)\ 

dh2 <oo (34) 
h=0 

and, therefore, according to Proposition 2 above the RP X(s) is m.s. 
difïerentiable. [It is worth noticing that condition (27) for the existence of 
the spectral representation (24) is equivalent to the expression (34), which 
involves the covariance function itself.] 

Regarding Proposition 2, one may distinguish three major shapes of cx(h) 
near the origin (h = O): 

(i) If cx(h) is discontinuous at h = 0 (nugget effect), the SRF is not 
continuous in the m.s.s. and, thus, is very irregular; the SRF becomes 
more irregular if the covariance is discontinuous at the origin and then 
drops immediately to zero for h > O (pure nugget effect). 

(ii) If the covariance behaves linearly near the origin h = O, that is, 
the cx(h) is continuous and once difïerentiable, the SRF is continuous in 
the m.s.s. but not difïerentiable. 

(iii) If the shape of cx(h) near the origin is parabolic, the cx(h) is 
continuous and twice difïerentiable; the corresponding SRF is also 
continuous and once difïerentiable in the m.s.s. 

Remark 4: The following point must be stressed: The existence of the 
Kh-order spatial derivatives V^X(s) imposes certain requirements on the 
spectral density Cx(w) of the SRF X(s), viz., it must hold true that 
£ [VX(s) ] 2 <oo , or 

L |w|2"Cx(w)ifw<oo 

Example 4: The unidimensional covariance 

is continuous at h = 0. However, 
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In R3 the last inequality requires that the Cx(w) decreases as |w|-»oo faster 
than H"3-2". 

For example, the spectral density of an SRF with an exponential covari-
ance [see Eq. (11) of Section 8 below] does not satisfy the above condition 
for v = \ (the spectral density falls off with |w| as |w|~4 and hence the SRF 
is not differentiable). 

As regards the stochastic integration of homogeneous SRF, the condition 
expressed by Eq. (27) of Section 4 becomes 

E[Z2(w)]= a (w;s )ds a(w; s ' K ( s - s ' ) </s'<oo (35) 
J V J V 

Following Matheron (1965) and Dagan (1989) and assuming a(w;s) = l, 
the stochastic integral (24) of Section 4 and Eq. (35) can be written as 

and 

respectively, where 

-L /(s)X(s) ds (36) 

E[Z2]=\ A(h)cx(h)dh<oo (37) 

- { ; otherwise 

is the indicator function and 

A(h)= I J ( s ) / ( s+h )ds ~L 
7.3 A Criterion of Permissibility for Spatial Covariances 

Just as in the general case of SRF, the necessary and sufficient condition 
that a continuous function must satisfy to be a co variance cx(h) of a 
homogeneous SRF is the nonnegative-definite condition, namely, 

m m 

Σ Σ WxOO^O (38) 

where 11 = 8,-8,, for all integers m, distance vectors h, and coefficients 
4 l > 4 2 , - - - , 9 m · 

Alternatively, since the application of (38) is practically impossible, one 
applies Bochner's theorem (Bochner, 1959): In general, a continuous func-
tion cx(h) is a nonnegative-definite function if and only if it can be expressed 
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as in Eq. (7) above, where dQx(w) is a nonnegative finite measure on the 
Borel sets of Rn. Furthermore, it is usually assumed that the necessary 
conditions are satisfied for a representation of the form of Eq. (8) or (12) 
to be valid. 

Under these circumstances, the following first criterion of permissibility 
(COP-1) is much more comprehensive to apply: A continuous and sym-
metric function cx(h) m Rn will be called a permissible covariance of a 
homogeneous SRF; that is, it satisfies the nonnegative-definiteness condition 
(38), if and only if it is the n-fold Fourier transform of a nonnegative 
bounded function Cx(w). In other words, we must have 

Cx(w)>0 (39) 

for all w e r . 

Remark 4: COP-1 imposes certain restrictions on cx(h), namely, it must be 
such that (i) the integral in Eq. (9) or (13) converges, and (ii) the integral 
is nonnegative for all w. For more details on the practical implementation 
of COP-1, as well as other COPs to be discussed in the following sections, 
see Chapter 7. 

Some illustrative examples are discussed below. 

Example 6: Consider the RP introduced by Eq. (11) of Section 5.1 above. 
This is obviously a stationary process in Rl and, as Khinchin (1934) has 
proved, the covariance of any stationary RP can be represented in the form 
of the integral (13), Section 5.1. Conversely, every function of the form of 
Eq. (13), Section 5.1 is a permissible covariance of a stationary RP. 

Example 7: Let us define the function 

cx(h) = aô(h) (40) 

where a > 0, and 5(h) is the delta function. The function of Eq. (40) is such 
that 

|cx(h) |dh= aô(h)dh = a<oo 
JRn J Rn 

and, hence, it can be represented by the integral (8) above, where 

C * ( w ) = - ^ > 0 
(2TT) 

This implies that Eq. (40) is a permissible covariance function (the corres-
ponding SRF is a white noise). 

Example 8: Consider in R1 the function 

cx(h) = nexp[-h2] (41) 
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The spectral density is 

Cx(w)= — e x p [ - — J^O 

for all w and, therefore, Eq. (41) is a permissible covariance in R1. 

7A Linear Transformation of Homogeneous Spatial Random Fields 

The analysis of Section 5.2 above remains valid, where now both Kx(w) 
and Xy(w) are SRF with uncorrelated increments. In addition 

£[|N*(w)i2] = a ( w ) 

and 

£[|*Mw)|2] = Qy(w) (42) 

The spectral density function of Y(s) is 

c y (h)= exp[ /wh]£[dK y (w) dKy(w)] (43) 
J Rn 

= | exp[Jwh] |H(w) | 2 £[dX x ( W )Ï ÏK^)] (44) 
J R" 

By comparing Eqs. (43) and (44) we find that 

£[</Ky(w) <my(w)] = |//(w)|2£[dKx(w) ~dKW] (45) 

or 

dQY(*) = \H(*)\2dQx(v) (46) 

Naturally, if the functions (?y(w) and Qx(w) are differentiable, Eq. (46) can 
be expressed by means of the spectral densities, viz., 

Cy(w) = |H(w)|2Cx(w) (47) 

7.5 Vector Homogeneous Spatial Random Fields 

In the case of several correlated homogeneous SRF, the most important of 
the results of Section 3.2 above apply by restricting analysis in terms of 
distance vectors h = s - s'. One can now define one more statistical moment 
of second order, the homogeneous cross-covariance. 

Definition 2: Let Xp(s) and Xp(s'), s, s'eR" be two homogeneous SRF. 
The homogeneous cross-covariance is defined as 

cXpXp(h) = E{[Xp(s) - mXp(s)] [Xp>(s + h) - m v ( s + h)]} 

[XP - rnXp(s)][xp,- mx (s + h)]f^+h(xp9 χρ.) άχρ άχρ. (48) 
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where h = s - s ' ^ndfss+h(xp9 χρ>) is now the joint probability density of Xp(s) 
and Xp.(s'). 

The coefficient of cross-correlation can be written 

pXpXp{h) = ^ x ß = = (49) 

where a2
Xp(s) and crXp,(s + h) are the variances of the SRF Xp(s) and Xp>(sf), 

respectively. 
The definition above can be easily extended to more than two SRF. Let 

X(s) = [X1(s)9X2(s),...,Xk(s)]T 

be a vector homogeneous SRF. The corresponding matrix of homogeneous 
spatial cross-covariances between the component SRF is 

Cx = [cXpV(h,)] (50) 

where h0 = s, - s, for all /?, p' = 1, 2 , . . . , k. 
The properties below are straightforward consequences of the preceding 

analysis. 

Property 1: The matrix Cx is nonnegative-definite, namely, 

qTCxq^0 (51) 

for all deterministic vectors q = \_qx,..., qk]
T. Just as for scalar SRF, this is 

an immediate consequence of the fact that if 
k 

ΥΜ=ΣιΡΧρΜ 
p = \ 

it must hold true that 
k k 

Var[Y(s , - ) ]=£ Σ %1pCXpXp.(htj)^0 
p = \ p'=\ 

Property 2: The Cx is a symmetric matrix, since 

cXpXp.(hij) = cXplXp(hß) (52) 

where hß = -hl7. However, in general, 

Cx^XM^c^Xh,,-) (53) 

Property 3: A straightforward application of the Schwartz's inequality yields 

|^ρν(Η,)|<ν/σ2
Χρ(8ι·)νσ2

Χρ,(8,) (54) 

for all /?, p' = 1, 2 , . . . , k and ij = 1, 2 , . . . , m. 
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Given the matrix of homogeneous cross-covariances (50), the definition 
of the corresponding matrix of cross-spectral density functions is rather 
straightforward, namely, the symmetric matrix 

Cx = [CXpV(wy·)] (55) 

where wy = w, - w,·, and p,p'= 1 , . . . , fc; the component cross-spectral density 
functions CXpV(wy) are 

CXpXp{y/ij) = —— J Mexp[-ml7-hl7]cXpXp,(h0) dh0 (56) 

assuming that these integrals exist. 
The covariance corresponding to 

Y(Si)=SLqPXP(si) 

IS 

<v (h / , )=£ Σ gp^cXpXp,(hl7) 
p = \ p'=l 

The Cy(hy) must be nonnegative-definite, which, according to COP-1, 
implies that its spectral density function must be CY(wy) >: 0 for all wy GR". 
This, in turn, implies that 

k k 

Cy(w,y)=E Σ <?P<?p-Cw(wiy)>0 

for all gp and qp>9 p9 p ' = l , . . . , f c Hence, the symmetric matrix (55) is 
nonnegative-definite. Conversely, for any vector of deterministic coefficients 
ψ Τ = [Ψι, · · · , Φτη\ it is valid that 

mm Ç 

Σ Σψ/Οχψ,^ âTCxa>0 

where α = Σ]1ι expC-iiw-s,·)^·. 
On the basis of these considerations, one obtains the following second 

criterion of permissibility (COP-2) : In order that the matrix (50) be the matrix 
of permissible cross-covariance functions of a homogeneous vector SRF, it 
is necessary and sufficient that the matrix (55) of the corresponding spectral 
cross-density functions be nonnegative-definite for all wl7 eRn. By virtue of 
the matrix theory the latter means that the principal minor determinants of 
the matrix (55) must be nonnegative. 

Let us elaborate a bit on this criterion by means of a simple example. 
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Example 8: Let k = 2; then 

Γ cXl(hij) cXlX2(h0-)l 
LcX2Xl(hji) cX2(hij) J 

C 

If we define the SRF 
2 

y ( S i ) = I î p W 
p = \ 

with covariance 
2 2 

p = \ p'=\ 

the latter must be, naturally, a nonnegative-definite function. This happens 
if and only if CY(w0·) > 0 for all w,7 G R"9 or, 

2 2 

p = l p ' = l 

for any numbers qx and g2- This implies that the symmetric matrix 

; Γ CXl(w,) CX l X 2(w,)l 
' x l_cX2Xl(w,,) cX2(^j) J 

is nonnegative-definite. In terms of the principal minor determinants of the 
above matrix the latter requirement yields 

CXl(w0),CX2(w^)^0 (57) 

and 

|CXlX2(wl7)|2 = |CX2Xl(w,·,·)!2^ C^w^C^y) (58) 

Remark 5: Note that by using the theory of matrices (e.g., Horn and Johnson, 
1985), one can derive several other useful results regarding the permissibility 
o fC x . 

8. Isotropic Spatial Random Fields 

8.1 Basic Formulas 

An SRF is called an isotropic SRF if its covariance function is a function 
of the distance r = |h| only, viz., 

cx(h) = cx(r) (1) 
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Similarly, in the frequency domain the spectral density function can be 
written 

Cx(*) = Cx(co) (2) 

where ω = |w|. 
Obviously, if X(s) is an isotropic SRF then it is an homogeneous SRF 

too. (However, the converse is not generally true.) Therefore, the results of 
Section 7 can be transformed into their isotropic equivalents by simply 
applying the «-dimensional spherical coordinates 

w = ( w 1 , . . . , w / , . . . , wn) 

wx = ω cos 0i 
i - l 

(3) 

Wi = ω cos 0, J i sin 0, for i = 2, 3 , . . . , n -1 
7 = 1 

M —1 

Wn = ω Π Sm fy 

and by setting w h = wr cos θλ. 
The fundamental Eqs. (8) and (9) of Section 7, which relate the covariance 

and the spectral density functions, become 

cx{r) = W V Jln-»l£"?2 CA*)*"-'άω (4) 
Jo K(or) 

and 

c^=ë^)0 {„rr-^CÀr)r dr (5) 

respectively, where J^-D/I is the Bessel function of (n - 2)/2th order (Grad-
shteyn and Ryzhik, 1965). In order that cx(r) be a covariance function of 
an isotropic SRF, it is necessary and sufficient that this function admits a 
representation of the form (4), where Cx(w) is a nonnegative bounded 
function. 

Example 1: In R2, Eqs. (4) and (5) yield, respectively, 
/"CO 

cx(r) = 27r J0{a)r)Cx{(û)ù) d(o (6) 
Jo 

and 

Cx(a>)=^- I Ua*r)cx{r)rdr (7) 
2π Jo 

(4) 

(5) 
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lnR\ 

cx(r) = 4π 
Jo 

sin (cor) 
CX{Ù))Ù) άω 

and 

Cx((o) 
1 f°°si 

~27T2Jo 

sin (wr) 
cx{r)rdr 

71 

(8) 

(9) 

Example 2: Useful covariances of isotropic SRF are (i) the Gaussian 
covariance 

cx(r) = cx(0)exp 5 

where a > 0; (ii) the exponential covariance 

cx(r) = cx(0)exp — 

where a > 0; and (iii) the spherical covariance of geostatistics 

cx(r) = {i-frê] Cx(0) 

10 if r > a 

if r e [ 0 , a ] 

where a > 0. 

(10) 

(Π) 

(12) 

8.2 The Geometry of Isotropic Spatial Random Fields 

The geometrical properties of isotropic SRF are immediate consequences 
of the corresponding properties of homogeneous SRF. More specifically: 

(a) The isotropic SRF X(s) is m.s. continuous, if and only if the cx(r) 
is continuous at r = 0. 

(b) The partial derivative 

dvX(s) 

dsit dsi2 · · · dsiv 

exists in the m.s.s., if and only if the 

d"X(s) ( (TX(s) dvX(s') \ 
COVl , — ; ; ~ 

\dsh dsh · · · dsiv dsf
tl ds'h · · · ds'J 

- ( - D ' T T I ? ^ Br^ dr% ■ ■ ■ dri 

exists and is finite at r = 0. 



72 Chapter 2. The Spatial Random Field Model 

(c) If cx(r) is continuous in Rn, the stochastic integral of Eq. (24), Section 
4 exists in the m.s.s. When cx{r) is not continuous at r = 0, the isotropic 
SRF X(s) will not be m.s. continuous at any point se Rn. 
(This is the case of an isotropic nugget effect.) 

The dl/X(s)/dsl/, in particular, exists in the m.s.s. if and only if the 

1 ' dr2v 

exists and is finite at r = 0. Moreover, on the basis of Corollary 1 of Section 
7 we find that the d"X(s)/dsv exists in the m.s.s. if and only if 

or \r=Q 

Note that if X(s) is an isotropic SRF, its partial derivatives are homogeneous 
but not necessarily isotropic SRF. 

Example 3: The Gaussian covariance (10) is continuous at r = 0, and all its 
derivatives are defined and are finite at r = 0. Therefore, the associated SRF 
X(s) is m.s. continuous and differentiable of any order. 

Example 4: The covariance 

cx(r) = e x p [ - ( f / ] (14) 
where ß e (0,1] is also continuous covariance at r = 0, but 

dcx{r) I 
dr 

7*0 
r = 0 

Hence, the corresponding SRF X(s) is m.s. continuous but not m.s. 
differentiable. Similar geometrical properties possess the exponential covari-
ance (11) and the covariance 

cx(r) = exp cos(br) (15) 

where a and b are suitable coefficients. 

8.3 Criteria of Permissibility 

The COP-1 presented in Section 7 is obviously valid in the case of isotropic 
SRF. 

(13) 

(14) 
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Example 5: In Rl the covariance function 

c,(0) 
c*(r)=-

cosh G) 
(16) 

where ( a > 0 ) is associated with the spectral density 

0Cx(O) 
Cx(o>)=-

, / παω\ 
coshl — I 

>0 

for all ω. Thus, by reference to COP-1, the permissibility of the covariance 
(16) is assured. 

For further illustration, certain important covariance functions are plotted 
in Fig. 2.2; the spectral densities are plotted in Fig. 2.3. 

In addition, the following third criterion of permissibility (COP-3 Chris-
takos, 1984b), despite the fact that it is only sufficient and deals with a 
rather specific class of models, is very convenient for it imposes conditions 
directly on the covariance and not on the spectral density function: A 
continuous function cx(r), where r = |h|ejRn, is a permissible covariance 
(in other words, it is a nonnegative-definite function) if at the origin it holds 
true that 

c'x(r) 

if at infinity it is true that 

dcx(r) 

lim 

dr 

cx(r) 
„( l -« ) /2" 

<0 (17) 

(18) 

Figure 2.2 The covariances (a) cx(r) = [Kl/3(r/c)/G(l/3)]Y4r/c; (b) cx(r) = exp[ - r / c ] ; 
and (c) cx(r) = exp[-(r /c) 2 ] 



74 Chapter 2. The Spatial Random Field Model 

0.3 h \ 

0.2 
3, 

X 

U 

0.1 

\ (c) 

\ \ ( b ) 

( a ) \ ; 

-L _L J_ _L 
0 0.4 0.8 1.2 1.6 2.0 2.4 

CO) 

Figure 2.3 The spectral densities of the covariances of Fig. 2.2 

and if 

c"x(r) = 
d2cx(r) 

dr2 > 0 in Rl 

I :dcx(r)>0 in R2 

cx(r)-rcx'(r)>0 in R3 

Example 6: In R3, the exponential model 

[-;]■ ■>· 
gives 

cx(r) = exp 

c i ( r ) | r = 0 = — < 0 a 

,· c » ,· Γ Ί 
hm —-r- = l i m r exp — = 
r^oo r r -co |_ a j 

0 

and 

c î ( r ) - r c : ' ( r ) = - ^ e x p [ - ^ ] > 0 

(19) 

(20) 

(21) 
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Therefore, according to COP-3 the above model is a permissible covariance 
model in R3 and, of course, the same applies in R2 and in Rl. 

8.4 Certain Classes of Isotropic Correlation Functions 

Let px(r) be an isotropic correlation function. Three important classes of 
correlation functions will be considered: 

(a) The class In of isotropic, in general, correlation functions in Rn. 
(b) The class In0 of isotropic correlation functions in Rn that are 

everywhere continuous except, perhaps, at the origin. 
(c) The class Inc of isotropic correlation functions in R", which are 

continuous everywhere. Clearly, J„>c<= In,o
Œ In-

By means of the above classification, a number of interesting properties 
can be derived (Matern, 1960; Schoenberg, 1938; Veneziano, 1980). 

Property 1: Assume that px(r) e J„; then, 

PÂr)^~- (22) 
n 

for all r. If px(r) e In0, then 

Px(r)^lnf[a!0) /a(M)j (23) 

where a = (n-2)/2, and Ja{u) is the Bessel function of the first kind. 

Property 2: If px(r)eln with n > l , and px(r*) = l for some r*>0 , then 
px(r) = 1 for all r. 

Property 3: Let px(r)e Inc with n > 1; then it can be written as 

px(r) = a + ( l - a ) p j ( r ) (24) 

where 0 < α < 1 , and p*(r) is a continuous correlation function such that 
lim^oo p*(r) = 0. If px(r) e J „ 0 , then px(r) can be decomposed into three 
parts; more precisely, a delta function component is added to the right 
hand-side of Eq. (24). 

Property 4: This is the so-called Schoenberg's conjecture. The class I„-In0 

is empty for all n>\. 

Example 1: For n = 2, 3 and 4, Eq. (23) gives px(r) > -0.403, px(r) > -0.218 
and px(r)> —0.133, respectively. 

where a = (n-2)/2, and Ja{u) is the Bessel function of the first kind. 
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9. Scales of Spatial Correlation 

The concept of a scale of spatial correlation provides a measure of the 
extent of spatial correlations (long versus short correlations in space, etc.). 
First, assume that we are dealing with isotropic SRF. Then, interesting 
scales of spatial correlation are introduced as follows: 

Definition 1: The correlation radius rc, is defined as 

1 f°° rc=—7^\ cx{r)dr (1) 
cx(0) Jo 

This is the distance over which significant correlations prevail. At distance 
rc the value of the covariance is approximately 50% of the value of the 
corresponding variance. In time series analysis, the counterpart of the 
correlation radius is called correlation time. 

Example 1: For the Gaussian covariance, rc = {\[π/2)α\ for the exponential 
covariance, rc = a; and for the spherical covariance, rc = 3a/8. 

Definition 2: The range ε is another scale of spatial correlation defined as 
the distance beyond which the covariance can be considered approximately 
equal to zero. Practically, the range ε is the distance for which the value 
of the covariance is less or equal to approximately 5% of the variance. 

Example 2: For the Gaussian covariance, ε=>/3α; for the exponential 
covariance, ε = 3α; and for the spherical covariance, ε = a. On the basis of 
the values of the correlation radius rc and the range ε we conclude that the 
exponential covariance has the longest correlations and the spherical the 
shortest. 

With anisotropic but homogeneous covariances, both scales of spatial 
correlation, rc and ε, vary with direction in space. Consider, for example, 
the anisotropic Gaussian covariance of Eq. (31), Section 7 above. The 
coefficients al9 a2, and a3 characterize the scales of spatial correlation along 
the directions hl9 h2, and h3, respectively. With covariances of the form of 
Eq. (30), Section 7, the coefficient a characterizes the correlation radius rc 

in the direction perpendicular to the plane defined by c1h1 4- csh2 + c3h3 = 0. 
On that plane, as well as on all planes parallel to it, spatial correlation 
occurs up to infinity. 

10. Relationships between the Spatial and the Frequency 
Domains—The Uncertainty Principle 

We saw in previous sections that the covariance function and the spectral 
density function form a Fourier transform pair. As a consequence, an 
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isotropic covariance cx(r) is uniquely determined by means of the spectral 
density Cx((o), and vice versa. Another noticeable feature is the inverse 
relationship between the widths of the two functions. More precisely, a 
wide cx(r) (which implies a long correlated SRF) corresponds to a narrow 
Cx(o>); conversely, a narrow cx(r) (short correlated SRF) corresponds to a 
wide Cx{w). 

This relationship between cx(r) and Cx(w) can be expressed quantitatively 
by means of the so-called uncertainty principle (the term has been borrowed 
from the famous Heisenberg principle of quantum mechanics; Messiah, 
1965). The distance r can be viewed as a random variable with probability 
density 

cx(r) 
fr(r) = 2rccx(0) 

mr=^oMl rCx(r)dr (1) 

where rc is the correlation radius defined by Eq. (1), Section 9 above. In 
R\ for example, the mean and the variance of the random variable r are 
given by 

cx(0) J*· 

and 

σ' = ν ^ 7 ^ \ (r-mrfcx(r)dr (2) 

respectively. Similarly, ω can be considered as a random variable too with 
probability density/ω(ω) = Cx(œ)/cx(0). Its mean and variance are, respec-
tively, 

m<o=—777 (uCx{(o)d(o (3) 
cx(0) JÄi 

and 

σ»=-7^\ (œ-mJ2Cx(œ)dœ (4) 

On the basis of Eqs. (1) through (4), and by using some well-known Fourier 
transform properties, it can be shown that 

στσω>\ (5) 

which is the aforementioned uncertainty principle. The ar and σω are 
considered as the uncertainties (widths) of the covariance and the spectral 
density, respectively. The equality in (5) occurs when the covariance function 
cx(r) is Gaussian (see example below). 
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Example 1: In Rl, the Gaussian covariance and its spectral density are 

cx(r) = cx(0) exp 

and 

cx(0)a Γ aW] 

respectively. The spatial uncertainty is ar = α/Vï, and the frequency uncer-
tainty is σω =y/2/a-9 hence, in this case σνσω = 1. 

When the SRF of interest is anisotropic in Rn(n > 2), the correlation radii 
differ along various directions in space. This means that there exist n 
uncertainty principles, namely, 

ar.aWi > 1 (6) 

for all i = 1 , . . . , n\ r, are distances, and wf are frequencies along directions 
sx,..., sn in space. 

11. Spatial Random Fields with Homogeneous Increments 

11.1 An Extension of the Hypothesis of Homogeneity 

There are several important RP X(s), like the Wiener or the Poisson 
processes, which, while nonstationary themselves (their variances increase 
continuously with s), the increments of X(s) defined by 

Yh(s) = X(s + h)-X(s) (1) 

where h is a fixed real number, are stationary RP. Situations like this have 
led to relevant extensions of the hypotheses of stationarity (in Rl) and 
homogeneity (in Rn). These extensions were originally developed by Kol-
mogorov (1941), Ito (1954), Gel'fand (1955), Yaglom and Pinsker (1953), 
Yaglom (1955, 1957, 1986). In geosciences they have been elaborated in a 
more practical context by Gandin (1963) and others. In geostatistics, similar 
results have been introduced by Matheron (1965, 1973), David (1977), and 
Journel and Huijbregts (1978). 

In view of these extensions, it seems quite appropriate to study in more 
detail the incremental SRF 

-5] 

Yh(s) = X(s + h)-X(s) (2) 
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(It is assumed that X(s) and Yh(s) are continuous in the m.s.s.) Naturally, 
the statistical moments of order up to two of the Yh(s) will be its mean 

mYh(s) = E[Yh(s)] = E[X(s + h)-X(s)] = mx(s + h)-mx(s) (3) 

and its covariance function 

Cyh(si9sj) = E[Yhi(si)Yhj(sj)] 

= E[[X(si + hi)-X(si)]x[X(sj + hj)-X(sJ)J] 

= Dx(si9Sj-9hi9hj) (4) 

Equations (3) and (4) establish duality principles between the SRF X(s) 
and Yh(s). The function Dx(si9 sj9 hf, h,·) is called the structure function of 
the SRF X(s) and is related to the covariance function by 

Dx(s„ s,·; hi9 h,) = cx(sf + hf, Sj + hj) - cx(si9 Sj + hj) 

-cx(st + h,·, Sj) + cx(Si, Sj) (5) 

Let us define the function 

yx(Si, s,·; h,·, h,) = jDx(si9 s,·; h,·, h,·) (6) 

If we assume s, = s7 = s and h, = hj = h, Eq. (6) implies 

r x ( s , h ) = ^ [ X ( s + h ) - X ( s ) ] 2 (7) 

which is the usual form of the geostatistical semivariogram of X(s), where 
a constant mean value is assumed. If the mean is not constant the operator 
E[ - ]2 must be replaced by Var[ · ]. After some manipulations we find that 

2yx(Si, s,·; hf, h,·) = yx(Si + hi, s,) + yx(Si, ŝ  + ĥ ·) 

-yx(Si + hi, Sj + h7·) - yx(Si, s,·) (8) 

Hence, the general form (6) of the semivariogram is uniquely determined 
by the simpler form (7), which is the form to be used herein. Next, by 
further exploring the duality principles between X(s) and Yh(s) we establish 
the definition below. 

Definition 1: An SRF X(s) will be called an SRF with homogeneous incre-
ments Yh(s), given by Eq. (2) above, if the mean value and the semivariogram 
depend only on the vector difference h, that is, 

myh(s) = £[y h (s ) ] = mx(h) (9) 
and 

rx(s, h) = $E[ yh(s)]2 = kvh(o) = 7x(h) (io) 

for any vector difference h. 
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By definition the yx(h) is an even, nonnegative function such that γ χ (0) = 
0. However, we shall see in subsequent sections that it is possible that 
yx(h) 5* 0 as h-> O, and then we talk about the already mentioned nugget-
effect phenomenon. On the strength of Definition 1, Eq. (8) yields the 
interesting formula 

2yx(hi9hj) = E[Yhi(s)Yhj(s)] 

= E{[X(s + hi)-X(s)][X(s + hj)-X(s)]} 

= rx(hI) + rx(h,)-7,(hI-hJ) (11) 

Remark 1: In the case of a homogeneous SRF X(s) 

mx(h) = 0 (12) 

and 

yx(h) = c x (0) -c x (h) (13) 

for all h (see Fig. 2.4). 
Furthermore, Eq. (11) becomes 

27*01,·, h,) = cx(0) + cx(h,· - h , ) - cx(h,·) - cx(h,·) (14) 

for all h,, h,. 

Figure 2.4 Spatial semivariogram yx(h) and covariance cx(h) functions for a homogeneous 
SRF 
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Proposition 1: Let X(s) be a nonhomogeneous SRF with homogeneous 
increments. Then 

mx(hi + h/-) = mx(hi) + mx(hJ-) (15) 

and 

γ χ (^ + ^ ) < γ χ ( ^ ) + γχ(^) + 2νγχ(^-)γχ(Ιι,·) (16) 

for all hl? h,. 

Proof: Equation (15) is an immediate consequence of Eq. (9). To prove Eq. 
(16), let 

£ [ X ( s + hI + hJ.)-X(s + h,)]2 = 27x(hI.) 

E[X(s + hj)-X(s)]2 = 2yx(hj) 

and 

E{[X(s + hi + hj)-X(s + hj)][X(s + hj)-X(s)]} 

= Κ£[Χ(8 + ^ + ^ · ) -Χ(8) ] 2 

- £ [ X ( s + h i + h70-A:(s + h/)]2-^[A'(s+h_/)--X'(s)]2} 

= yx(hI- + h7) - γχ(η.) - γχ(η,) 

Then by applying Schwartz's inequality we obtain 

that is, Eq. (16). □ 

The mx(h) is continuous in h and the linearity condition (15) implies 

mx(h) = E[X(s + h)-X(s)] = a · h (17) 

where a is a vector coefficient in Rn. In geostatistics the mx(h) is called the 
drift of the SRF X(s). If a = O we say that the SRF has no drift. 

Herein, unless stated otherwise, an SRF X(s) will be considered as an 
SRF with homogeneous increments if Eq. (10) still holds true and, in 
addition, mx(h) = 0 is valid instead of Eq. (9) for any he Rn. Equivalently, 
if the SRF X(s) is differentiable, it will be termed a nonhomogeneous SRF 
with homogeneous increments if all its partial derivatives 

ΥΜ-ψ- (.8) 
i = 1 ,2 , . . . , n are zero-mean homogeneous SRF. It is important to stress 
the fact that while the SRF Yh(s) always exist, the SRF Y,(s) exist only 
when the X(s) is differentiable. Moreover, it is obvious that any 
homogeneous SRF X(s) is an SRF with homogeneous increments. 



Corollary 1: 

and for any 

It 

h* 

is valid that 

Ύχ 

> 0 there exists 

(2mh)<4m
r x (h) 

a constant b such that 

h2 - ° 

(19) 

(20) 
Π 

for all h >h*. 

Proof: Let in Eq. (16) h, = h, = h, then yx(2h) < 4yx(h) and by induction we 
obtain Eq. (19). Furthermore by substituting h for h/2m in (19) we find 

y x (h)^y x (h /2") 
h2 (h/2m)2 

for any m. But any h > h* satisfies h G [2mh*, 2 m + V ] , which implies (h/2m) G 
[h*, 2h*]. Hence, by letting b be the maximum of yx(h)/h2 in the interval 
[h*, 2h*], we obtain Eq. (20). □ 

Example 1: Let X(s) be a nonstationary RP with stationary increments 

Yh(s) = &l
sX(s) = X(s + h)-X(s) (21) 

The corresponding covariance of the increments Yh(s) will be 

cYh(s-s') = E[MX(s)Al,X(s')] 

= cx(s + ft, s'+ h) - cx(s + ft, s')-cx(s, s' + h) + cx(s, sf) 

= M>Mcx(s,sf) (22) 

= yx(s-s' + h) + yx(s-s'-h)-2yx(s-s') (23) 

Thus, if the nonstationary RP and its stationary increments are related 
by Eq. (21), the corresponding covariances are related by Eq. (22). Now 
let s = s'; then Eq. (22) can be written 

c n (0) = AiAlcx(s ,s) 

= cx(s + ft, s + ft) - cx(s, 5 + ft) - cx(s + ft, 5) + cx(s, 5) = 2yx(ft) (24) 

These considerations imply that the semivariogram yx(ft) characterizes 
completely the correlation structure of the nonstationary X(s). In con-
clusion, if we know cx(s, 5') we can determine cYh(s — sf) and yx(ft), but the 
converse is not generally true. In the special case of a stationary X(s)9 

Eq. (24) is written 

c n (0) = 2cx(0)-2cx(ft) = 2yx(ft) 

or 

7*W = cx(0)-cx(ft) = k n ( 0 ) (25) 

82 Chapter 2. The Spatial Random Field Model 
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Remark 2: Based on the results of Section 5 above, it follows that if in 
Example 1 the derivative d2cx(s, s')/(ds ds') exists and is finite, it is the 
covariance of the m.s. derivative of X(s), Y(s) = dX(s)/ds. Then 

d2 

-cx(s,s') = E[Y(s)Y(s')] = cY(s-s') (26) 
öS öS 

Note that Yh(s) always exist, while the Y(s) exists only when X(s) is 
differentiable. 

11.2 Spectral Characteristics of Spatial Random Fields with 
Homogeneous Increments 

The gist here is the existence of spectral moments corresponding to the 
semivariogram yx(h) of the SRF X(s) in Rn. 

Assume that the X(s) is a differentiable SRF with homogeneous incre-
ments. According to definition (18) the Y,(s) = dX(s)/dsi9 i = 1, 2 , . . . , n are 
homogeneous SRF. If cy.(h) is the covariance of Y,(s), the theory of Section 
7 indicates that 

> = exp[r(w 
J R" 

Cy.(h) = exp[r(w · h)] i/Qy.(w) 
J R" 

where Qy,(w) are positive summable measures in R" without atom at origin. 
Define the covariance 

cY(h) = έ <V,(h) = I exp[f(w · h)] rf<?y(w) 

where 

n 

i — \ 

is also a positive summable measure without atom at origin. Note that 

<v(h = s - s ) = 2^ cYi(h) = 2^———r-
i = l i = i dSfdSi 

The above considerations imply that the yx(h) satisfies the relation 

V^rx(h) = cy(h) (27) 

where 

" a2 

h h**t 
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is the Laplacian operator, and it admits the spectral representation 

[ l -cos(w · h)] y*(h)=f ! 

J Rn 

■L 

? d(?y(w) + a 
w 

[ l - cos (wh) ]dQ x (w) + a (28) 

where a is an arbitrary constant. Since 

| l - c o s ( w h ) | < ^ - ^ 

it follows that 

YAh)\*h\ dQY(*)\h\2 = a\hf 
J R" 

where a < oo, or by applying the dominated convergence theorem and using 
the fact that an SRF with homogeneous increments of first order has also 
homogeneous increments of higher orders, 

l i m ^ ^ = 0 (29) 
N-oo |h|2 

which is the existence condition for the integrals (28) (Eq. (29) is a special 
case of Eq. (60), Section 3 of Chapter 3). If the SRFX(s) is not differentiable 
and possesses a drift, the yx(h) admits the spectral representation 

f l - c o s ( w . h ) r f Q y ( w ) + b h 2 + fl 

[ l -cos(w · h)] </Qx(w) + fch2 + a (30) 

or 

y*(h)=[ 
J R" 

[ l - c o s ( w h ) ] X x ( w ) J w + 6 h 2 + a (31) 

where a and b are arbitrary coefficients; the measure Qy(w) now satisfies 

(32) 

(33) 

and 

where the Kx(w) and Cy(w) are the corresponding spectral functions 
[assuming that the Qx(w) and Qy(w) are differentiable]. 
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Conversely, every function yx(h) of the form (30) or (31) is the semi-
variogram of an SRF X(s) with homogeneous increments. The inversion 
of Eq. (31) yields (for simplicity we assume that a = b = 0) 

w 2 ^(w) = - ^ r I w - V7x(h) sin(w · h) dh (34) 
(2π) JR» 

To illustrate some important aspects of the preceding analysis, a few 
examples are discussed below. 

Example 2: Let X(s) be an m.s. differentiable, nonstationary RP with 
stationary increments. That is, if 

ΥΜ-*ψ- (35) 
as 

exist, then the Y(s) is a stationary RP. Equation (35) implies 

X(s)-X(0)=\ Y(t)dt=\\\ exp[ifw]A L/Ny(w) 

exp[i5w] —1 L ΪΗ7 

where 

dKY(w) (36) 

~i Y(t)=\ exp[itw] dKY(w) 

is the spectral representation of Y(s), or 

-I e x p [ « w ] - l d t M w ) + x ( o ) 

On the other hand, we can also write 

X(s)= exp[ww]dKx(w) 

which assigns the measure 

dKx(w)= : 

to the RP X(s). Let 

Cy(h)= I exp[iAw] dQY(w) 
JR 1 

(37) 

exist, then the Y(s) is a stationary RP. Equation (35) implies 
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Then, 

yx(h)=1
2E[X(h)-X(0)f 

{exp[*7iw] - l}{exp[-i7iw] - 1 } 

-J, 
(iw)2 

1-cos wli Ι Λ . x 
2 dQY(w) 

■E\dKY(w)\2 

where 

dQY(w) = w2dQx(w) 

These measures are summable, viz., 

dQY(w)=\ w2dQx(w)<oo 
JR1 JR1 
I R J R 

Hence, 

yx(h)= (1 -cos wh)dQx(w) 
JR1 

If the functions QY(w) and Qx(w) are differentiable it holds true that 

CY(w)dw=\ w2Kx(w)dw<oo 
JR1 JR1 

with CY(w) = w2Kx(w), where CY(w) and Kx(w) are the corresponding 
spectral functions. [Note that the last equation relates the spectral density 
function of the stationary random process Y (s) with the spectral density 
of the nonstationary process X(s).] In this case 

JR1 
yx(h)=\ (1 -cos wh)Kx(w)dw (38) 

JR1 

For the existence of the integral in Eq. (38) it is required that 

\im[w3Kx(w)] = 0 
μμο 

and 

lim [wKx(w)] = 0 
|w|-»oo 

It is interesting to compare the last two requirements with those for the 
existence of the covariance (12) of Section 7 (n = 1), viz., 

lim [wCx(w)] = 0 and lim [wCx(w)] = 0 
| νν|-*Ό |νν|-*οο 
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We notice immediately that the requirements imposed on Kx and Cx for 
the convergence at infinity are the same, but the requirement for the 
convergence at zero is less severe for the semivariogram (38) than for the 
covariance (12), Section 7. Hence, there may be situations where the semi-
variogram exists and the covariance does not. By inverting Eq. (38) we obtain 

Kx(w)=— sin(wft) dh 
7TW Jo an 

and 

ΚΧ(*)=—2Γ 
7TVV J 0 

cos (w/i) d
2yx{h) 
dh2 dh 

(39) 

(40) 

For the integral (39) to exist we must have 

lim „>^1=0 _.._ ...... 
dh J fc^°°L dh 

. .. \dyx(h) 
and hm ■ 

On the other hand, the existence of the integral (40) requires that 

lim / d2yx{h) 
dh2 = 0 and lim 

f i^oo|_ 

d2jÀh) 
dh2 ] - . 

Now assume that the point w = 0 is a jump discontinuity of Ky( w); that 
is, 

l i m [ K y ( e ) - N y ( - e ) ] = fl^0 

where a is a random variable, in general. Then we find that 

\im[QY(s)-QY(-s)] = E\a\2>0 

In other words, the point w = 0 is a jump discontinuity of QY(w), as well; 
and 

and 

X(s) 

■L 

exp[/sw] ί/Κχ(νν) + α lim 
vv-»0 

Qxp[isw]-l 

IW 

exp[isw] i/Nx(w) + as 

-ί. 
(1-cos wh)Kx(w) dw + 2a2\im-

w-*0 

1 — cos wh 

w 

(1-cos wh)Kx(w) dw + a2h2 (41) 
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Since |cos z - l | < ^ z 2 , Eq. (38) gives 

\yx{h)\^bh2 (42) 

where 

JR1 
w2Kx(w) dw 

Note that by applying the dominated convergence theorem Eq. (42) yields 
[see also Eq. (29)] 

hm l f l 2 = 0 
|hhoo \h\2 

Now, taking the Laplace transform of (42) we obtain 

or 

and since 

we get 

I i2w2 

-T—-Kx(w)dwi£2b 
R- t +w 

t2 

lim ■ ^ - -

w2Kx(w) dw<oo 
IR1 

Consequently, Eq. (42) implies 

I w2 

Kx(w)dw<co (43) Ri 1 + w2 

An interesting point here is that the condition (43) for the existence of 
the spectral representation (41) is equivalent to the expression (42), which 
involves the semivariogram function itself. Spectral representations like the 
ones above may be obtained for any nondifferentiable RP. In the latter 
case, however, the spectral measure may be not summable (i.e., the integral 

CY(w)dw= w2Kx(w) dw 
JR1 JR1 

may become infinite) and one needs the condition 

w2Kx(w)dw+\ Kx(w)dw«x> (44) 
Jo Ja 
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for any a > 0. As a consequence, unlike the case of homogeneous RP in 
which it is required that 

f Cx(w) dw <oo 

here it is necessary only that near zero frequency the integral 

w2Kx(w) dw <oo 

while at infinity 

Kx(w) dw <oo J 
Within the framework of spectral analysis one may also define the so-

called spectral variogram function. 

Definition 3: The spectral semivariogram function Tx(w) of a non-
homogeneous, in general, but with homogeneous increments SRF X(s) is 
defined as the Fourier transform of the semivariogram function yx(h). For 
nonhomogeneous SRF, Tx(w) will exist only in the sense of generalized 
functions (Schwartz, 1950-51; see, also, tables of Fourier transforms of 
generalized functions, Gelfand and Shilov, 1964). 

For homogeneous SRF, the following proposition can be proven (Chris-
takos, 1984b). 

Proposition 2: If X(s) is a homogeneous SRF with variance cx(0), the 
relationships below are valid. 

rx(w) = c x (0)S(w)-C x (w) (45) 

and 

L r x ( W )dw=r*(0 ) (46) 

Example 3: Let X(s) be a differentiate and nonstationary RP with stationary 
increments and a semivariogram of the form 

yx(h) = arm (47) 

where r = |ft|, a > 0 , and 0 < m < 2 . From Eqs. (27) and (33) and by using 
tables of Fourier transforms of generalized functions (e.g., Gelfand and 
Shilov, 1964) we get 

= β — ^ " S i n - - \ w \ m ' (48) 
2π 2 
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where G is the gamma function. Moreover, using the same tables it can be 
found that 

Tx(w) = -Kx(w) 

Assuming now that the RP X(s) is Gaussian we get 

X(»> J . 0 - + . 

where W0(s) is a Wiener process with 

yWo(r) = ar 

(For definition of the Wiener process, see Chapter 3.) 

Example 4: In Fig. 2.5 the unidimensional semivariogram functions 

(49) 

(50) 

(51) 

jAr) 

(special case of Eq. (47)) and 

y*(r) = cx(0) 1 1 -

-m 
3/47 

| M 3 

(52) 

(53) 

Figure 2.5 The semivariograms of (a) Eq. (52) and (b) Eq. (53) 
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where Kl/3 is a Bessel function of the second kind (Gradshteyn and Ryzhik, 
1965), are plotted; their spectral densities are plotted in Fig. 2.6. Note that 
the second semivariogram is a special case of 

yx(r) = cx(0) 
G{m) "-(il (54) 

where m> - 1 / 2 . 

In most cases we will consider isotropic semivariogram and spectral 
semivariogram functions. (Obviously, this does not necessarily imply 
isotropic SRF.) Working with n-dimensional spherical coordinates, Eq. (31) 
yields (assume a = b = 0) 

where 

Jo 
[1-Αη(ωΓ)]Κχ(ω)άω 

Λ„(χ) = 
2(n-2)/2G(n/2) 

fn-2)/2 J{n-2)/2{ (x) 

(55) 

and 

I x-±-i <oo, Κχ(ω)>0 
\ + ωζ 

Figure 2.6 The spectral densities corresponding to the semivariograms of (a) Eq. (52) and 
(b) Eq. (53) 
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Finally, for isotropic SRF, using Eq. (4) of Section 8 and Eq. (13) above 
one obtains the following useful expressions: 

yx(r) = 2w 
Jo 

[l-J0(ù)r)]Cx((u)a)d(D in R2 (56) 

and 

%(Γ) = 4 π Γ [ ΐ - -sin(wr) 

wr 
Cx{a))o)2do) in R3 (57) 

where r = |h| and ω = |w|. 

11.3 Criteria of Permissibility for Spatial Semivariograms 

In the case that the SRF considered is homogeneous, the nonnegative-
definiteness condition that a semivariogram yx(h) should satisfy is readily 
obtained from COP-1 of Section 7.3 by simply making use of the relation 
introduced by Eq. (13) above. More precisely, assuming isotropic functions, 
the spectral domain equivalent of Eq. (13) is (see also Proposition 2 above) 

rx((o) = cx(0)o(co)-Cx(a>) 

On the basis of this observation, the following fourth criterion of permissi-
bility (COP-4) is, essentially, the equivalent of the COP-1 in terms of 
semivariogram functions: Let X(s) be a homogeneous SRF in Rn. A con-
tinuous and isotropic function yx(r) is a permissible semivariogram function 
if and only if 

- Γ χ ( ω ) ^ 0 (58) 

for all ω > 0 + [actually, cx(0) δ ( ω ) - Γ χ ( ω ) > 0 for all ω]. 
The semivariogram yx(h) of a nonhomogeneous SRF X(s) with 

homogeneous increments Yh(s) is a so-called conditionally nonnegative-
definite function; that is, 

m m 

- Σ E^yx(s,-s,)^o (59) 

for all nonnegative integers m, all points s,, s, eR", and all real or complex 
numbers ql9 q2i..., qm satisfying the condition 

m 

Σ * = 0 (60) 
i — l 

The conditional nonnegative-definiteness condition (59) is a consequence 
of the usual nonnegative-definiteness property of the ordinary covariance 
Cx(sf, s,), in combination with the fact that the variance of the homogeneous 
increments Yh(s) is finite. 
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Just as with the usual case of nonnegative-definiteness, the conditional 
nonnegative-definiteness property (59) is not usually applicable in practical 
situations. This is not a problem, however, since one can use the following 
equivalent but much more comprehensive fifth criterion of permissibility 
(COP-5; Christakos, 1984b): Let X(s) be a nonhomogeneous SRF with 
homogeneous increments in R". A continuous and isotropic function yx(r) 
is called a permissible semivariogram function if and only if it decreases 
slower than r2 as r -» oo; that is, 

l i m ^ = 0 (61) 

and the corresponding spectral function Κχ(ω) exists (in the sense of 
Schwartz, 1950-51), includes no atom at origin, and is such that the ω2Κχ(ω) 
is nonnegative and bounded on Rn. In other words, 

ω2Κχ(ω)>0 (62) 

for all ω. 

Example 5: Consider Example 3 above. Clearly, 

lim ^ 4 ^ = 0 and ω2Κχ(ω)>0 
r-*oo r 

Therefore the function (47) is a permissible semivariogram model. 

Example 6: The function yx(r) = r[l + cos(ar)] is not a permissible semi-
variogram function in Rl

9 for the 

2 ω2 

ωζΚχ{ω) = 2 + - -2 + 
(ω-α)ζ (ω + α)ζ 

is not a bounded (finite) measure. The fact that the present function is not 
a permissible semivariogram model can be verified by using Eq. (19) above 
for m = l, a = l, and r = m As Eq. (19) shows, a semivariogram should 
satisfy yx(27r)<4yx(7r). However, this is not the case for the present 
function, which gives γχ(2π) = 47τ and γχ(π) = 0. 

COP-5 is equivalent to the following criterion, which can be established 
with the help of representation (55): Any function of the form (55) where 
Κχ(ω) satisfies the associated restrictions is a permissible semivariogram 
function. 

11.4 The Geometry of Spatial Random Fields with 
Homogeneous Increments 

We consider continuous semivariogram functions. By analogy with the 
results of Section 4 above, the following propositions can be proven. 
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Proposition 3: A continuous in the m.s.s. SRF implies a continuous semi-
variogram function. Conversely, a continuous semivariogram function 
implies an m.s. continuous SRF. Also, an SRF is differentiable in the m.s.s. 
if and only if the corresponding semivariogram is twice differentiable. 

Proof: Indeed, if the SRF X(s) is m.s. continuous at point s, then 

l i m £ [ X ( s + h ) - X ( s ) ] 2 = 0 

lim 2yx(s + h, s) = 0 = 2γ χ (0) (63) 

From the last equation it is obvious that the converse is also true. The proof 
for the differentiability can be established in an analogous setting. □ 

Let X(s) be a nonhomogeneous, in general, SRF but with homogeneous 
increments. Assuming that the X(s) is m.s. differentiable; that is, the 

v , , SX(s) . X(s+ / is , ) -X(s ) 
A ( I ) ( S ) = = l.i.m. 

K> dSi fc-o h 

exist for all i = 1, 2 , . . . , n. By definition they will be homogeneous and such 
that (see Section 4 above) 

rX(s+feet-)-X(s) I 2 

\%E[ 1 *«><■) J = 0 

or 

H m [ ^ γχ(Λε,)] + cxJO) -2 lim E ^ 8 + * ^ X ^ X ( i ) ( s ) = 0 

or 

Hm[^yx(Äe|) = S.,(°) 

The last equation implies 

7χ(Αε,·)=-τ- cX( i l(0) as ft-»0 (64) 

and 

θγχ(Λε,) 

dh 
= 0 (65) 

for all i = 1 ,2 , . . . , n. The generalization of the analysis above leads to the 
following useful corollary. 
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Corollary 2: The SRF X(s) with homogeneous increments is m.s. differenti-
able of order v (that is, the dpX(s)/ds" exist in the m.s.s. for all i = 1 ,2, . . . , n) 
if and only if 

_17x(h) 
dh2rl = 0 (66) 

for all i = 1 ,2 , . . . , n. 

Analogous expressions may be derived in the frequency domain: Taking 
Eq. (31) into consideration we find that the dvX(s)/ds? exist in the m.s.s. 
for all i = l , 2 , . . . , n if and only if 

d2"yx(h) 
dhV 

= (-iy+1 w?"Kx(w) dw 
1 = 0 J Rn 

< 0 0 (67) 

for all i = 1, 2 , . . . , n. Similar expressions may be obtained in terms of the 
spectral semivariogram functions Tx(w). 

Example 7: Let X(s) be a random process with stationary increments, and 
assume that the derivative 

. dX(s) . X(s + h)-X(s) 
as h^o h 

exists in the m.s.s. Then, by definition it will be stationary and such that 

h)-X(s) Y(s)J = { 

Consequently, 

2 
lim ΤΪΎΛΗ) + c x (0 ) -21 im£ 

X(s + h)-X(s) 

] -Y(s) =0 

or 

lim^y.wj + cy(0)-2cy(0) = 0 

or 

yAh) = 
Cy(0) h2 as Λ^Ο (68) 

The last equation implies that the derivative of the semivariogram must be 
zero at origin, viz. 

dyx(h) \ 
dh 

= 0 
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Consider the Taylor expansion of a semivariogram around the origin in 
R", viz. 

n ■* n 

y,(h) = yx(0)+£«,,*,,+- Σ α,„ΛΑ+··· 
»1 = 1 ' « 1 · « 2 = 1 

1
 n 

Σ α,,,,-Λ,···ν ι
 + · · · (69) 

«1 

where 

(9-1)! , . . 

Expansion (69), when possible, may provide useful information regarding 
the geometry of X(s). In particular, (i) since by définition the X(s) is m.s. 
continuous if and only if the yx(h) is continuous at origin, Eq. (69) shows 
that this can happen if and only if γχ(Ο) = 0; (ii) according to Corollary 
2, the X(s) is differentiable in the m.s.s. if and only if ah = 0 in expansion 
(69), etc. 

Remark 3: It is instructive to examine the expansion (69) in the special case 
of an isotropic semivariogram yx(r), r = |h|. Taking Eq. (69) into consider-
ation, the latter can, in general, be expanded around the origin as (Matheron, 
1965) 

7x(r) = γ * ( 0 ) + £ α2^+Σ by+Σ ^r2» log(r) (70) 
k λ μ 

where a2k, K, and c2k are suitable coefficients, /c, μ = 1, 2 , . . . , and λ are 
real numbers different from even integers. Let λ* and μ,* be the lower λ 
and μ values, respectively. If λ*<2μ,*, the i'-th derivative of X(s) exists 
in the m.s.s. if and only if X>2v\ while if 2μ,*<λ*, only the μ*-1 m.s. 
derivative of X(s) exists (and not the μ,* m.s. derivative). Let us consider 
a few examples. 

Example 8: Assume that a nonhomogeneous SRF X(s) with homogeneous 
increments is characterized by the semivariogram 

Tx(h) = |h|m (71) 
where 0 < m < 2 . The semivariogram (71) is continuous but it is not twice 
differentiable. Moreover, 

dyxW 
dh 

#0 
h = 0 

Therefore the underlying SRF X(s) is m.s. continuous but it is not m.s. 
differentiable. 
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Example 9: The isotropic semivariogram 

y,(r) = l-exp[~J (72) 

where r = |h| e Rn and a > 0 is continuous at r = 0, but 

<*?*(r) 
dr 

5*0 
r = 0 

Hence the corresponding SRF X(s) is m.s. continuous but not m.s. 
differentiable. 

Finally, let us consider the sample function continuity and differentiability 
of a nonhomogeneous, in general, SRF in terms of its semivariogram 
function: By using previous results, we immediately find that if 

yAh^ïï^&ï (73) 

where c is a positive constant and ß >2, then the SRF X(s), seR" is a.s. 
continuous over any compact set C <= Rn. Sufficient conditions for the sample 
function continuity of the m.s. derivatives of X(s) can be derived by 
replacing yx(h) in (73) by the semivariogram function of the derivative. In 
the case of a real-valued Gaussian SRF X(s), Eq. (73) leads to the following 
simpler condition 

r * ( h ) " ö ^ (74) 

for all h e C, where now ß > 0. 

11.5 Vector Spatial Random Fields with Homogeneous Increments 

Several of the results above can be extended to vector SRF. However, one 
should be aware of certain differences. 

Let X(s) = [Xi(s), X 2 ( s ) , . . . , Xfc(s)]T be a vector SRF. The corresponding 
semivariogram matrix is 

Gx = [ r w ( h ) ] (75) 

where the component cross-semivariograms are given by 

yXpX/h)=m[XP(^h)-Xp(s)][Xp{s^h)-Xp/(s)]} (76) 

Similar relations may be derived in terms of spatial cross-covariances. If 
the vector SRF is homogeneous, the cross-covariances are related to the 
cross-semivariograms by 

2yXpV(h) = 2cXpXp,(0) - cXpXp,(h) - cXplXp(h) (77) 
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Notice that the cross-covariance is in general nonsymmetric, and the 
yXpXp,(h) and cXpXp,(h) are no longer equivalent spatial correlation functions. 
Moreover, while yXpXp(h) > 0, the yXpXp{h), (ρ^ρ') may take negative values, 
as well. 

Under certain conditions, the isotropic semivariograms yXpXp,(r) may be 
represented by 

> = ί [1 -Λ„ 
Jo 

%„*>) = [l-A„(<or)]KXpXp.(co)d<o (78) 
Jo 

where An(x) is defined in Eq. (55), and ΚΧρΧρ(ω) are cross-spectral density 
functions such that the trace 

Κχ(ω)=Ϋ,ΚΧρΧ(ω) 

of the nonnegative-definite matrix 

satisfies 
00 ω2Κχ(ω) day Γ 

Jo 

2 <oo, Κ χ ( ω ) > 0 (79) 
1 + ω 

The above representation leads to the following sixth criterion of permissi-
bility (COP-6): For Gx of Eq. (75) to be a matrix of permissible semi-
variograms, the matrix Φ χ must be nonnegative-definite and its trace must 
satisfy the conditions of Eq. (79). 

12. On the Ergodicity Hypotheses of Spatial Random Fields 

We have seen above that ergodicity is a working hypothesis (the term 
working is used here to distinguish ergodicity from auxiliary hypotheses, 
such as homogeneity, etc.) that is needed because in most circumstances 
in nature we have only one available sequence of measurements. Then, an 
SRF X(s) will be called an ergodic SRF if its mean and/or covariance 
(semivariogram) coincide with the corresponding spatial averages calculated 
over the single available realization. In this case we are talking about 
ergodicity in the mean and/or the covariance (semivariogram), respectively. 
Obviously, for ergodicity to hold it is necessary that one of the auxiliary 
hypotheses holds too. For example, ergodicity in the mean requires that 
the SRF has a constant mean (i.e., it is homogeneous in the mean). 
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More specifically the following types of ergodicity can be established: 

(i) Ergodicity in the mean requires that the underlying SRF X(s) has 
constant mean E[X(s)~\ = mx, and that 

'■L)nLL-
l i m w î = l i m — — X(s)ds=mx (1) 
L^oo L-»oo yZL·) 

where the domain of integration UL is the n -dimensional cube UL = 
{s: \si\ < L, i = l , 2 , . . . , n}; m* is a random variable depending on UL but 
not on s. Clearly 

E[m*] = mx (2) 

Among the various forms of stochastic convergence discussed in 
Section 4, we will consider first the m.s. convergence. Then, some results 
will be presented with regard to the a.s. convergence, as well. In the case 
of m.s. convergence, Eq. (1) leads to the condition 

lim E[m*-mxf= lim——^ cx(s,s') ds ds' = 0 (3) 
L^oo L-oo (2L) JuL JUL 

If the SRF X(s) is homogeneous, Eq. (3) becomes 

lim ——: cx (h)dh = 0 (4) 

In the spectral domain, condition (4) is equivalent to the requirement 
that the spectral density Cx(w) be continuous at the origin w = O. 
Equation (4) can be also written in terms of the semivariogram, namely, 

>.Lr)uL 
i™(2lr I yx(h)db = cx(0) 

A mathematically sufficient but not necessary condition for (5) to hold 
is limM^oo yx(ue) = cx(0) for all e ^ O. In the case of isotropic SRF the 
sufficient condition reduces to 

\imyx(r) = cx(0) (6) 
r-»oo 

Example 1: The semivariogram 

7x(r) = cx(0){l - e x p [ - a r ] } 

satisfies (6) and, hence, it corresponds to an SRF that is ergodic in the 
mean. On the contrary the semivariogram 

ΎχΚΠ =—ζ-{1 - e x p [ - a r ] } 

(5) 
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does not satisfy (5) and (6) and the underlying SRF is not ergodic in the 
mean. 

(ii) Ergodicity in the covariance or in the semivariogram involves higher-
order moments. The former also requires that the SRF is homogeneous, 
while for the latter it is necessary that the SRF has homogeneous increments. 
More specifically, a homogeneous SRF is ergodic in the covariance if 

Jim c*(h) = lim - j - f [X(s) - m*] 
L^oo L-oo (2L) J UL 

x[X(s + h)-m$]ds=cx(h) (7) 

Note that E[c*(h)] = cx(h). In the light of m.s. convergence, definition (7) 
leads to the condition 

l im£[c*(h) -c x (h ) ] 2 = 0 (8) 
L->00 

Equation (8) may also be expressed in the more tractable form 

Î I T J L 
}[m7TF^\ cz(h)dh = 0 (9) 
L^OO(2L) JUL 

where 

cz(h) = E{[Z<(s + h) - cx(*')] [ZA*) - cx(*')]} 

is the covariance of 

Z,(h) = [X(h + s') - m*] [X(h) - m*] 

In the special case of Gaussian homogeneous SRF, condition (9) reduces to 

l i m 7 ^ l *x(h)2dh = 0 (10) 
L^OO(2L) JUL 

In the spectral domain, condition (10) is equivalent to the requirement 
that the spectral density Cx(w) is continuous for all wei?". Again, Eq. (10) 
can be expressed in terms of the semivariogram, viz., 

l i m 7 ^ l yx(h)[2cx(0)-yx(h)]dh = c2
x(0) (11) 

L-OO(2L) JuL 

Now consider the case where the SRF X(s) is nonhomogeneous but its 
increments Yh(s) = X(s + h) —X(s) are Gaussian homogeneous SRF with 
covariance 

cYh(u = s-s') = E[Yh(s)Yh(s')] 

= E{[X(s + h)-X(s)][X(s' + h)-X(s')]} 

= yx(u + h) + y x ( i i -h ) -2y x (u ) 
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By applying condition (11) we immediately find that the condition for 
ergodicity in the semivariogram can be written 

l i m 7 ^ l [7x(u + h) + y x (u-h)-2y x (u) ] 2 r fu = 0 (12) 

An equivalent condition may be derived as follows: Consider the 
spatial integral 

tto-wkrL \_X(s+h)-X(s)fds (13) 

where E[y*(h)] = yx(h). Ergodicity in the semivariogram implies 

limE[7*(h)-7x(h)]2 

= , l i m ï 7 ^ f f E{[X(s+h)-X(s)] î oo 4(2L) JUL JuL 

x[X(s ' + h ) -X(s ' ) ]} 2 i / s i i s ' -y
x

(h ) 2 = 0 (14) 

Since the Yh(s) = X ( s + h ) - X ( s ) are Gaussian homogeneous SRF, 

E[ Yl(s) Yl(s')] = E[ Y2
h(s)]E[ Yi(s')] + 2{E[ Yh(s) Y„(s')]}2 

= 4rx(h) + 2 [y x ( s - s ' + h ) + r x ( s - S ' - h ) - 2 y x ( s - S ' ) ] 2 

and Eq. (14) yields 
l i m 7 7 r ^ | | { r x ( s - S ' + h ) + y x ( s - s ' - h ) - 2 r x ( s - s ' ) } 2 d s r f s ' = 0 
i.^» 2(2L) JuL JuL 

(15) 

Example 2: The semivariogram yx(h) = a|h| satisfies the above conditions 
and, hence, the underlying SRF is ergodic in the semivariogram. 

An interesting aspect of ergodicity emerges in cases where we are only 
interested in the behavior of the covariance or the semivariogram near the 
origin, h ^ O. It then suffices to verify some sort of ergodicity only near the 
origin. Practically, this means that the SRF is only ergodic in volumes 
significantly small as compared with the scales of spatial correlation. This 
sort of ergodicity has been assigned the names of quasi-ergodicity (Monin 
and Yaglom, 1971), and microergodicity (Matheron, 1978). For quasi-ergo-
dicity to make sense, the volume V must satisfy certain conditions. For 
example, in the three-dimensional isotropic case, we usually require that 

rc«W«L (16) 

Since the Yh(s) = X(s + h ) - X ( s ) are Gaussian homogeneous SRF, 

(14) 

and Eq. (14) yields 

E[ Yl(s) Y2
h(s')] = E[ Yl(s)]E[ Y2

h(s')} + 2{E[ Y„(s) Yh(sW 

= 4Ti(h) + 2 [y x ( s - s ' + h) + r ; c ( s - s ' - h ) - 2 r x ( s - s ' ) ] 2 



102 Chapter 2. The Spatial Random Field Model 

where rc is the correlation radius and L is the transverse dimension of the 
volume V. Here microergodicity will be examined with the help of the 
results of Section 11. 

Consider a nonhomogeneous SRF X(s) that possesses homogeneous 
Gaussian increments with an isotropic semivariogram yx(r), r = |h|. Accord-
ing to the preceding theory, the yx(r) expansion near the origin established 
by Eq. (70) of Section 11 is characterized by the term with the lowest degree; 
that is, yx(r) = crx* as r-»0, where λ*<2 . In order that the actual semi-
variogram yx(r) can be determined accurately in terms of the local integral 
yt(r), which is a random variable, it is required that the m.s. 

l.i.m.—— = 1 (17) 
r-o yx(r) 

After some manipulations the m.s. convergence condition (17) entails 

limEm j^jm 
r*° lyx(r) J '-o Lrx(nJ 

r Var[y*(r)] 
= hm j — — = 0 

r-o y2
x{r) 

For small r, 

Var[y ï ( r ) ]__ _ 4_2λ* 
yi(r) 

and, hence, Eq. (17) holds only if λ * < 2 and not for λ* = 2. The latter 
means that in order that microergodicity in the semivariogram be a sound 
assumption, the SRF must not be difïerentiable in the m.s.s. 

Example 3: The semivariogram 

yx(r) = Cojl-expl ~^\\ 

which corresponds to an m.s.-differentiable SRF is not microergodic, while 
the aforementioned semivariogram yx(r) = arm, 0 < m < 2 is microergodic. 
This fact emphasizes the attractive properties of polynomial-type spatial 
correlation functions, regarding stochastic inferences of nonhomogeneous 
SRF. Such correlation functions will play an important role in subsequent 
investigations of this treatise. 

To establish the ergodicity conditions above in the case of a.s. convergence 
it is convenient to assume that the domain UL is an n -dimensional rec-
tangular {s: |sf| < Li9 i = 1, 2 , . . . , n} with V = Π"= 1 5,·. After some manipula-
tions and assuming homogeneous SRF, the a.s. convergence corresponding 
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to Eq. (1) leads to the condition 

*?ΙΤ-ΠΗί)('-£)·"(·-*) 
*7x(fci, h2,..., K) dhx dh2... dhn = cx(0) (18) 

(Condition (18) also holds in the m.s. sense). 

Example 4: The random process with a semivariogram of the form 
f Γ ^ 

y*(A) = Cx(0)jl-exp 

satisfies condition (18) for it holds 

ί™.ζΓ(1-ζ)*(*)''* 

=!^Π-ζ){—[-;]}—<· > 
Moreover, it is valid that [y î ( r ) / r A ] -^-> ft as r ^ O , where 6<oo and λ < 2 
(this is also true in the m.s. sense). Lastly, note that on the basis of Eq. (5) 
of Section 4, the m.s. and the a.s. convergence imply convergence in P and 
F as well. 

Remark 1: It must be noted, however, that in many practical situations it 
may be difficult or even impossible to verify ergodicity by means of the 
above conditions. In these situations, while ergodicity may be a nonverifiable 
hypothesis, it can still be considered as a falsifiable hypothesis on the basis 
of the successes it leads to (in the sense of Chapter 1). This, in fact, explains 
the characterization "working hypothesis" given earlier. The matter will be 
discussed in more detail in Chapter 7. 

13. Information and Entropy of Spatial Random Fields 

Consider the SRF X(s), and \etfx(xi,... xm) be the multivariate probability 
density function of the vector of random variables X = [ x l 9 . . . , x m ] T of 
X(s), defined at points S ! , . . . , sm. 

There are several definitions of the concept of information. Here, we will 
give the traditional definition (Shannon, 1948). Continuous random vari-
ables are considered, but similar definitions are valid for discrete random 
variables, as well. 

-!} 

(Condition (18) also holds in the m.s. sense). 

Example 4: The random process with a semivariogram of the form 

(18) 
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Definition 1: The information contained in the vector of random variables 
X = [*!,..., xm]T about the SRF X(s), is given by 

Inf [ x j , . . . , xm] = - l o g [ / x ( * i , . . . xmy\ (1) 

where the logarithm can be taken with arbitrary base b> 1. 

When the logarithm is taken to the base b = 2, the unit of the entropy 
scale is called a "bit" (binary digit); when the natural logarithm to base e 
is taken, the unit is called a "nit." According to Eq. (1), the more informative 
is the random vector X, the less probable it is to occur. 

Closely related to the concept of information is the notion of entropy, 
defined as follows. 

Definition 2: The quantity 

ε(Χ) = E{lnf[Xl,..., xm]} = E{-\og[fx(Xi,..., Xm)]} 

I 1 0 g [ / x ( * l , . . - , Xm)]fx(Xl ,--,Xm)dx1...dxm 

v ¥ / 

m times 
(2) 

is called the entropy of the random vector X. 
The ε(Χ) provides a measure of the amount of uncertainty in the probabil-

ity density fx(xi,..., xm) a priori, before experimentation. 

Example 1: The entropy of the Gaussian random vector X is given by 

e(X) = log[(27re)m|Cx|]1/2 (3) 

Remark 1: Letfx(x) and/J,(i/f) be the univariate probability densities of the 
SRF X(s) and ^(s) , respectively. An interesting inequality can be estab-
lished as follows. 

lf"w°s[m\äx"> <4) 

The inequality holds if and only if fx{x)=fy{^). 

Probability densities are assigned by maximizing the entropy function 
(2), subject to constraints provided by the existing information and incorpor-
ated using Lagrange multipliers. This is the so-called principle of maximum 
entropy (Jaynes, 1957). Constraints usually concern statistical moments. 

Example 2: The uniform probability density is the unique density possessing 
the maximum entropy among all the densities of continuous random vari-
ables with possible values within the same bounded region; the univariate 

~ 
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exponential density possesses the maximum entropy among all the densities 
with the same mean value; and the univariate Gaussian density possesses 
the maximum entropy among all the densities with the same mean value 
and variance. Moreover, the multivariate Gaussian density possesses the 
maximum entropy among all the densities with the same covariance matrix. 

Definition 3: The conditional entropy of a random variable x given that y = ψ 
is given by 

e(x\y) = E{-log[fx]y(x\it>)]} 

= - \ Ιο8[/χφ\ψ)]/χ1γ(χ\ψ) dX (5) 
J R1 

The entropy of Eq. (5) is a random variable and, hence, one can define 
the average conditional entropy of x with respect to y as follows: 

j;(x) = Ey[e(x\y)]= ε(χ\γ)/γ(ψ) άφ 
J Rl 

= - [ | ΙοάΑ\γ(χ\ψ)υ^{χ,Φ)αχαφ (6) 
J RX J Rl 

On the basis of the above definitions several interesting results can be 
derived. First, it holds true that 

ε{χ)>τ~γ(χ) (7) 

(equality holds if and only if the random variables x and y are independent). 
An obvious extension of Eq. (7) is as follows: 

ε(χ) > j;(x) > ε^ (χ ) 2> ~ε^(χ) 

The entropy of x and y satisfies the relationships 

ε(χ, y) = eW+J^iy) = e(y) + ε^(χ) (8) 

and 

e(x,y)^e(x) + e(y) (9) 

(Again, equality holds if and only if the random variables x and y are 
independent.) 

Definition 4: The amount of information on a random variable x in another 
variable y is defined by 

Ty(x) = e(x)-J-y(x) (10) 

The physical meaning of Definition 4 is that while observing a natural 
process y one receives valuable information about another process x 
depending on y. This information is measured by means of Eq. (10), which 



106 Chapter 2. The Spatial Random Field Model 

expresses the intuitively justifiable concept that a process y provides infor-
mation about another process x whenever it changes the probability law of 
x from its prior formfx(x) to the new, posterior form/χ\γ(χ\φ). 

It is to be remarked that 

Iy{x) = Uy) = E(x) + e(y)-e{x,y) (11) 

In other words, the amount of information in y on x is equal to the amount 
of information in x on y. Hence, Eq. (11) measures the mutual information 
between the random variables x and y and is indifferent to which of the 
two is taken as source. Clearly, 

ΧΑΑχ,Ψ)αχαψ>0 (12) 

where the equality holds if the x and y are independent random variables. 

Remark 2: A problem with considerable practical consequences is as follows. 
Let X(s) be an SRF modeling an observable natural process, and Y(s) be 
an SRF modeling an unobservable process. Suppose that Z(s) = g[X(s)] is 
a transformation of X(s). How does the amount of information about Y(s) 
contained in X(s) compare to that contained in Z(s)? With respect to this 
problem, it can be shown that 

(a) No transformation g[ · ] can increase the amount of information 
about Y(s). 

(b) Transformations g[ · ] that are one-to-one mappings contain the 
same amount of information about Y(s) as that contained in X(s). The 
same happens with sufficient transformations (a transformation g[ · ] is 
called sufficient if for any other transformation h[ · ] such that the 
equations g[x] = ζ and h[x] = ζ have unique solution with respect to χ, 
the conditional density of W(s) = h[X(s)] at Y(s) = ψ, Z(s) = ζ is 
independent of ψ). 

(c) Any other transformation leads to loss of information. 

Interesting applications of the entropy function can be found in areas 
such as the modeling, estimation, and sampling of natural processes (see 
Chapters 7, 9, and 10). 

On the basis of the analysis above, the so-called sysketogram function is 
defined in Section 9.3 of Chapter 10. 



The Intrinsic Spatial 
Random Field Model 

"All is flux, nothing is stationary." 
Heracleitus 

1. Introduction 

This chapter is concerned with the most general case of nonhomogeneously 
distributed spatial processes, where certain of the spatial variability assump-
tions of Chapter 2 are not fulfilled in reality. Experimental data have shown, 
however, that such processes, while nonhomogeneous themselves, can be 
transformed to homogeneous spatial processes by means of some linear 
transformation. These experimental findings constitute the original and 
compelling motivation leading to the representation of spatial processes 
with complex nonhomogeneous characteristics by means of spatial random 
fields (SRF) with homogeneous increments of order v or, equivalently, 
intrinsic SRF of order v (ISRF-^). These classes of SRF can be viewed as 
an extension of the theory of ordinary (nongeneralized) homogeneous SRF 
(see Yaglom and Pinsker, 1953; Yaglom, 1955; Pinsker, 1955). This view 
makes no reference to the mathematical theory of generalized (nonordinary) 
functions (or distributions, Schwartz, 1950-51) and is the one currently 
applied in geostatistical studies (Matheron, 1973). Geostatistics is also 
responsible for a number important results in the context of the correlation 
analysis of I S R F - K 

The present treatise, however, favors another point of view. The ISRF-^ 
paradigm can arise within the context of the theory of random distributions 
or generalized random functions originally developed by Ito (1954), 
Gel'fand (1955), and Gel'fand and Vilenkin (1964). A unified theory of 
SRF will be developed that will include as special cases all classes of SRF 
considered in Chapter 2 as well as several other classes. The accommodation 

3 

107 



108 Chapter 3. Intrinsic Spatial Random Field Model 

of the concept of generalized SRF (GSRF) strengthens the theoretical 
support of the ISRF model and further generalizes its results. In addition, 
it provides the means for extending the theory in the context of spatiotem-
poral random fields (see Chapter 5). 

Aside from strengthening the theoretical background of the SRF model, 
practical considerations require a retreat to discrete notions of the ISRF 
concepts and definitions; this task is carried out by the second part of this 
chapter. There the results bear more particularly on a variety of issues: The 
power of the GSRF structure lies in its mathematical "smoothness" (in the 
mean square sense), which enables it to handle problems that cannot be 
handled by ordinary SRF; such problems are related to the practical sig-
nificance of the mathematical notion of point SRF, the representation of 
complex, nonhomogeneously distributed natural processes, stochastic infer-
ences of nonordinary correlation functions, etc. Also, under certain circum-
stances, the homogeneous increments of order v constitute a filter that 
removes unimportant quantities and emphasizes the specific properties of 
interest, leading to a truer picture of the facts. On this view, every feature 
specification entered in the ISRF representation of a natural process is 
really an instruction that some particular spatial pattern is not to apply. 
ISRF representations comprise conditions on what type of nonhomogeneous 
spatial trends and correlations may be marked. 

The GSRF capacity for capturing essential features of the natural process 
paves the way for establishing intriguing connections with stochastic 
differential equations representing, for example, flow in natural soil forma-
tions and pollutant transport in atmosphere, as well as stochastic difference 
equations modeling, for example, soil profiles. 

Finally, it must be remarked that the results of this chapter get consider-
able play in the remainder of this book. 

2. Generalized Spatial Random Fields 

2.1 Definition and Basic Properties 

Just as with the SRF of Chapter 2, the random fields to be considered in 
this chapter will be termed continuous-parameter or discrete-parameter 
according to whether the argument s takes discrete or continuous values. 
Let us commence with the notion of generalized SRF due to Ito (1954) and 
Gel'fand (1955). Let Q be some specified linear space of elements q and 
let 3€& = L2(ü, F, P) be the Hubert space of all random variables x(q) on 
Q: (i) endowed with the scalar product 

(x(qi), x(qi)) = E[x(ql)x(q2)] 

= 11 XiX2dFx(xl9x2) (1) 
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for all qt e Q and all (real or complex) numbers A, (/ = 1 ,2 , . . . , JV). The 
elements q e Q are in Rn; that is, q = q(s), se R". Various kinds of spaces 
Q may be suitable for the purpose of this study, such as the well-established 
Schwartz spaces (Schwartz, 1950-51): K, the space of infinite differentiable 
functions in Rn, which vanish, together with their derivatives, outside a 
finite support; and 5, the space of infinitely differentiable functions, which, 
together with their derivatives of all orders, approach zero more rapidly 
than any power of l/ |s | as |s| -> oo. 

Definition 1: Let L2(il, F9 P) be the aforementioned Hubert space of random 
variables in R". A generalized SRF (GSRF), X(q)9 is the random mapping 

X:Q^L2(Ü9F,P) (3) 

Herein it will be assumed that all GSRF considered are continuous; that 
is, 

E\X(qn)-X(q)\2^0 when qn-^+q (4) 

The qn > q means that all functions qn(s) and q(s) vanish outside a 
compact support and all the partial derivatives of qn(s) converge to the 
corresponding partial derivatives of q(s) on this support. The set of all 
continuous GSRF will be denoted by & 

The second-order characteristics of the GSRF X(q) include the 

mx(q) = E[X(q)] = ^ XdFx(x) (5) 

which is called the mean value, and the 

cx(qi, q2) = E[(X{qx) - mx(q1))(X(q2) - mx(q2m (6) 

which is called the (centered) covariance functional. Both the mean and the 
covariance functional will be assumed to be real-valued and continuous in 
the sense that 

mx(qn)^rnx(q) when qn n^ > q (7) 

and 

cx(qn,q'n)^cx(q9q') when qn ^ > q, q'n > q' (8) 

(2) 

where Fx(xl9x2) denotes the joint probability distribution of the random 
variables x(qi)9 x(q2) with ||x(^)||2 = £|x(g) |2<oo; and (ii) satisfying the 
linearity condition 

(7) 

(8) 
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Notice that the functional mx(q) is linear, since 

and therefore the mx(q) is a generalized function on Q. On the other hand, 
due to the linearity of X(q), the covariance functional cx(qx, q2) is a bilinear 
functional on Q. Moreover, as 

cx(q9q) = E[\X(q)-mx(q)\2]>0 

the cx(g1? g2) is a nonnegative-definite bilinear functional. The above func-
t ional e Q\ where Qr is the dual space of Q. 

2.2 Representations of Generalized Spatial Random Fields 
and Their Physical Significance 

Let X(s) be an ordinary SRF in the sense of Chapter 2 above (herein these 
fields will be denoted in brief by OSRF). To this OSRF we can associate 
a GSRF by means of the continuous linear functional (CLF) 

-i X(q) = (q(s),X(s))=\ q(s)X(s) ds (9) 
J u 

where U ç R" ; for simplicity the symbol U will usually be dropped. Clearly, 
the space Y of all OSRF may be considered as a subset of the space of all 
GSRF, that is, Y c ^ . Moreover, since a GSRF X(q) cannot be assigned 
values at isolated points s, we introduce the convoluted SRF (CSRF) 

0>-J Yq(s) = (q(s')9 SsX(s')) = J 9(s')S.X(s') ds' (10) 

where SsX(s') = X(s' + s) is the shift operator. Equation (10) yields Yq(0) = 
X{q) for all qtQ\ also, taking into acjount the relation SsX(q) = 
(q(s'\ SsX(s')) = (Ssq(*'), *(»')> = X(S_sq)9 we find that 

Yq(s) = SsX(q) = X(S_sq) (11) 

Let us now comment on the physical significance of representations (9) 
and (10). 

(a) Quite often in practice one realizes that concepts such as "the 
value of the natural process X at point s in space, viz., X(s)" are purely 
mathematical, and that what one actually observes and measures is "the 
value of the natural process X averaged over some neighborhood U of 
the point s in space, viz., Eq. (9) or (10)" (e.g., the concept of porosity). 
Function q(s) may be associated with a measuring device, an 
instrument's window, etc. Hence, under certain circumstances, it may be 
more realistic to develop mathematical models in terms of X(q) and 
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Yq(s) rather than in terms of X(s). In fact, most of the important 
instrumentation and scale results obtained within the context of the 
multiphase transport theory by Cushman and others (see, e.g., Cushman, 
1984) can be derived and generalized further in terms of the GSRF theory 
above. 

(b) On the other hand, the proper choice of q(s) may assure that the 
derived SRF X(q) and Yq(s) possess certain desirable properties. For 
example, since X(q) and Yq(s) have smoother geometrical characteristics 
than the OSRF X(s) (m.s. continuity, differentiability, etc.), they may 
provide better representations of spatial variability. (For a detailed 
discussion see below.) 

(c) Equation (10) defines a, filter whose input is the OSRF X(s) and 
output the CSRF Yq(s). Depending on the choice of the function q(s) one 
may develop a filter that removes noise and other useless quantities and 
emphasizes only the properties of interest, (e.g., a filter that yields maps 
containing high-frequency information—maps that enhance details of the 
spatial pattern of the natural process; see Chapter 9). 

(d) Analysis in terms of X(q) and Yq(s) can solve problems not otherwise 
tractable (e.g., the study of space nonhomogeneous SRF; Section 3 and 4). 
It may also lead to the development of basic and adjoint differential models 
of flow and pollutant transport, which capture essential features of the 
phenomena they describe and simplify considerably the solution of the 
related problems (Section 5). 

It is easily shown that the means and covariances of X{q) and Yq(s) are 
linearly related to those of the corresponding OSRF, particularly 

mx(q) = (q(s),mx(s)) (12) 

mY(s) = (q(s'), mHX(s')) = q(s) * mx(s) (13) 

where * denotes convolution and 

cx(qi, q2) = «cx(s, s'), ?i(s)>, q2(s')) (14) 

M s , s') = <<cx(SsX(s"), S,X(s"0), 9l(sw)>, g2(s'")> (15) 

If we set s = s'we find that the corresponding mean values and covariance 
functions are, respectively, 

mx(q) = mY(0) 
(16) 

cx(qi,q2) = cY(0,0) 

We have already seen that the covariance functional of the GSRF X(q) 
is a nonnegative-definite bilinear functional in the sense that 

cx(q,q) = E[\X(q)-mx(q)\2^0 (17) 
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for all qeQ. Conversely, every continuous nonnegative-definite bilinear 
functional cx(ql9 q2) in Q is a covariance functional of some GSRF X(q). 
On the other hand, the covariance function cy(s, s') is also a nonnegative-
definite function in the ordinary sense. The fields X(q) and Yq(s) are always 
differentiable, even when X(s) is not. Indeed, choose Q = K and let 

X((i)(q) = (q(s)9X
(>\s)) (18) 

where p = (pi ,p2 , · · · , p«) is a multi-index of nonnegative integers; the 
superscript p denotes partial differentiation of the order p in space; that is, 

Pi 
χ,"<*=£%· «■» '-w-έ 

By applying integration by parts, Eq. (18) can be written 

X(«,)(9) = (-l)"X(9
( p )) (19) 

For the CSRF it is valid that 

r(,p)(s) = (-ir5 sX(9
<« , )) (20) 

Since the mean mx(q) is a generalized function, it has a specific form, 
viz. (Gel'fand and Vilenkin, 1964) 

mx(q) = (Σ <7 ( P )(S), /P(S)\ = ( Σ ( " D T ^ s ) , q(*)) (21) 

where ^ is a suitable number, q(s)eK andfp(s) are continuous functions 
in Rn (i.e.,^p(s) G C), only a finite number of which are different from zero 
on any given finite support of K. Working along the same lines it can be 
shown without any difficulty that 

mY(s) = ( Σ ( - l ) p S . / ? V ) , q(*')) (22) 

where for subsequent use letussetgp(s)=/<,p)(s). 

2.3 Homogeneous Generalized Spatial Random Fields 

A spatially homogeneous (in the wide sense) GSRF X(q) is a GSRF whose 
mean value mx(q) and covariance functional cx(ql9 q2) are invariant with 
respect to any shift of the parameters, that is, 

mx(q) = mx(Shq) (23) 

cx(qi9q2) = cx(Shqi9Shq2) (24) 
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for any heR", qi9q2eQ. The space of all homogeneous GSRF will be 
denoted by % c ®· The proof of the following proposition for n -dimensional 
homogeneous SRF is in no way different from the corresponding proof in 
terms of the unidimensional stationary random processes given in Ito (1954). 

Proposition 1: Let X{q) be a homogeneous GSRF on K. Then there exists 
one and only one generalized functional cx(ql9 q2)e Kf satisfying (24). 

Similarly, the CSRF Yq(s) will be termed a homogeneous CSRF if 

mY(s) = constant (25) 

cy(s,s') = cy(h = s - s ' ) (26) 

for any he R". When the X(q) is homogeneous, the cx{qx, q2) is a translation 
invariant, nonnegative-definite bilinear functional on Q, while the cy(s, s') is 
a nonnegative-definite function. The former implies that the cx(qi9 q2) can 
be written in the form 

Cx(9i,g2) = <Co,9i* Î2> (27) 

where * denotes convolution and v denotes inversion [i.e., q2(h) = q2(—h)]; 
the c0 is a nonnegative-definite generalized function, which is the Fourier 
transform of some positive tempered measure <£(w) in Rn, that is 

f: rf0(w) 
•<oo (l + |w|2)p 

for some p>0. Moreover, it is true that 

cx(qi, q2) = <c0, 0i * q2) = (φ, qxq2) 

which implies that 

cx(qi,q2)=\ ξι (w)g2(w) άφ(ψι) (28) 

where ^i(w) and q2{vi) are the Fourier transforms of ^ ( s ) and ^2(s), 
respectively [the line above q2{y/) means "the complex conjugate of."] The 
<£(w) will be called the spectral measure of the GSRF X{q). 

Taking into consideration Eqs. (21) and (23) it follows that the functions 
fp(s) are constants; as a consequence, 

gP(s)=/<,p)(s) = 0 for all p^\ 

=p0°\s) = m for p = 0 

and the mx(q) will have the form 

mx(q) = m(q(s),l) (29) 
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where m is a constant; moreover, the space of derivatives q{p\s) in Eq. 
(21) coincides with the linear subspace Kp a K, which consists of functions 
q(s)e K satisfying 

(i
(p)(s),sp> = 0 (30) 

In this case, hence, it is convenient to restrict ourselves to q(s) e Kp. In the 
same context the homogeneity of the OSRF X(s) implies that the covariance 
functional cx(ql9 q2) is such that 

h,q2) = \\cx cx(h)qi(s)q2(s + h)dsdh 

= j cx(h)[j qx (s)g2(s + h) ds dh 

= (cx(h), qx * q2(h)) = cx{qx * q2) = cx(q) (31) 

for all qi,q2£ Kp and 

q(h) = I g1(s)^f2(s + h) ds=qx* q2(h)e Kp 

Equation (31) is the variance of the CSRF Yq(s) = X(S-sq)9 while its 
covariance can be written 

cShx(q) = cYq(h) = <cx(s + h), qx * q2(s)) 

= J cx(s + h)q(s) ds (32) 

The latter depends only on h and, therefore, the CSRF Yq(s) = X(S-sq) is 
homogeneous too. 

Example 1: As we saw above, depending on the choice of the space Q, the 
GSRF X{q) can be differentiable as many times as we wish, even if the 
corresponding OSRF X(s) is not differentiable. We reconsider this interest-
ing property of GRSF in the light of the results on homogeneity. Let X(s) 
be a homogeneous OSRF with mean mx = constant and covariance cx(h), 
and let X(q) be the corresponding homogeneous GSRF, X(q) = 
(q(s), X(s)), with mean 

m^\q(s)mx(s)äs=mx^) 

= \ q(s)mx(s + h)ds = mx(q(s), 1) 
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and covariance 

cx(s,s ') = cx (s,s' + h) 

g(s)g(s')cx(s'-s + h) ds ds' 

The derivatives Xip\q) = (-l)pX(qip)) always exist, assuming that we 
choose q(s)e Kp. By expanding the covariance around the origin h = 0 , 

n 1 
cx(s + h) = c x ( s ) + £ ahhh + — 

'1 = 1 

n 
χ Σ *iXhKh+' ' ' 

i 1 , i 2 = l 

where ah...ikx = cx
k_1)(s); then by choosing q(s) such that cx(q

{1)) = 0, insert-
ing the above expansion in (32) and differentiating we find that 

-^77 h=o = 0, for all i = l , 2 , . . . , n 

which, since X(g) is m.s. differentiable, is an expected result. It is also an 
intuitively justified result, in the sense that the averaging applied by q(s) 
on X(s) should lead to a field X(q), which possesses a smoother spatial 
variability. 

It would be interesting to investigate the conditions under which the SRF 
Yq(s) = X(S_sq) is zero-mean homogeneous, even when the associated OSRF 
X(s) is nonhomogeneous. As will be shown in the next section, this can 
happen under certain conditions concerning the choice of the functions 
q(s) as well as the form of the functions gp(s). 

3. Spatial Random Fields with Space Homogeneous 
Increments or Intrinsic Spatial Random Fields 

3.1 Basic Notions 

The previous results on homogeneous SRF lead us naturally to the concept 
of SRF with space homogeneous increments of order v, in the ordinary or 
in the generalized sense. Let us begin with the following definition. 

Definition 1: A CSRF Yq(s) = X(S.sq) will be called a CSRF of order 
v(CSRF-v) if q belongs to the space 

Qv = {qeQ:(q(s),gp(s)) = 0 for all p<v) (1) 
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where the functions gp(s) belong to the space 

C, = {gp(s)eC:<g(s),gp(s)> = 0 

=»<9(s),ShgP(s)> = 0 for all p^v) (2) 

In this case the space Qv will be termed an admissible space of order v (AS-v). 
Equation (1) assures a zero mean value for the SRF Yq(s) at the origin 

s = O, while the closeness of Cv to translation [Eq. (2)] is necessary in order 
that the statistical properties of X{q) remain unaffected by a shift Sh of the 
origin. Functions gp(s) that satisfy the conditions (1) and (2) are of the 
general form gp(s) = spexp[a · s], where a is a (real or complex) vector. 
Herein, due to convenient invariance and linearity properties, it will be 
assumed that the gp(s) are pure polynomials, viz., 

gp(s) = sp = sp>sp
2>...sp

n» (3) 

where p = |p| = £"=1 p,. In connection with the notion of AS-P , the properties 
below are valid. 

Vi(s)eQ„=»9(s) €<?„_, (4) 

Vq(8)eQv=*q<v+1)(s)eQv (5) 

Vq(s)eQv=*Shq(s)eQv (6) 

and 

V g*(s) e S=ïq(s) = 5(s) - q*(s) e Qv (7) 

In view of the preceding theory, the validity of Eqs. (4) and (5) is obvious. 
For Eq. (6) note that, by definition, for any gp(s) of the form (3) and qeQv 

it holds true that 

q(s)spds = 0 

Next, by applying the shift operator Sh we get 

[ q(s)(s + hyds= ί q(s)\ £ C ^ ' s V ^ l ds 

J J L|k|=o J 

= Σ 4kiv-k 
|k|=o 

x ^(s)ski/s = 0 
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Hence Shq(s)eQu. Alternatively, the proof of (6) is a straightforward 
consequence of the following: 

(Shq(s),gP(s)) = (q(s)9Shgp(s)) 

= <g(s),è^;g,(s)gp_,(h)> 

p 

Finally, to prove Eq. (7) assume that the q*(s) e S is denned by its Fourier 
transform 

9*(w) = [ l + - ^ T + · · · + — 7 T - J exp[-a|w|2] 

where a > 0 and 2v'> v. Then 

^ gp(s)[Ô(s)-q*(s)]ds 

= 1 gp(s)| I [ l - 9 * ( w ) ] e x p [ - i ( w s ) ] i / w | d s 

= ! 5(p)(w)[l-9*(w)]rfw 

J = ( - l ) p 5(w)[l-4*(w)] ( p )iiw 

= (- l )"[ l-9*(w)] (" ) |w_o = 0 

for all p up to 2v'> V, by definition of g*(w). The last equation implies 
Eq. (7). 

Definition 2: A GSRFX(q) with homogeneous increments of order v (GSRF-
v) is a linear mapping 

X : Q ^ L 2 ( i i , F , P ) (8) 

where the corresponding CSRF Yq(s) is zero-mean homogeneous for all 
qeQv and all seR". 

Remark 1: In view of Definition 2 all partial derivatives of order v + \ of 
a GSRF-*', namely, 

Y(q) = Dl'+l)X(q) (9) 

where D ( " + 1 ) X( 9 ) = X ("+ 1 )(9) = ( - l ) I , + 1 X( i
( , , + 1 ) ) are zero-mean homo-

geneous GSRF. A similar result was first proven by Ito (1954) for stationary 



118 Chapter 3. Intrinsic Spatial Random Field Model 

random processes. In particular, he showed that any generalized stationary 
random process Y(q) whose spectral measure QY( w) satisfies the condition 

f dQY(w) _ 

coincides with the i> +1 derivative of some ordinary random process X(s). 
On the basis of the foregoing, an ordinary or intrinsic SRF-j' will be defined 
as follows. 

Definition 3: An OSRF X(s) is called an ordinary or intrinsic SRF of order 
v {OSRF-v or ISRF-v) if for all qeQv the corresponding CSRF-^ Yq(s) is 
zero-mean homogeneous. 

In fact, the zero mean condition is imposed for convenience and does 
not restrict generality. In connection with Definition 3, if the derivatives 

D(v+l)X(s) = X{v+l\s) = Y(s) (10) 

exist and are zero-mean homogeneous SRF, the X(s) is an ISRF-*>. (Note 
that unlike GSRF-^, which are always differentiable, there exist ISRF-J / 

that are not differentiable; they can, however, be expressed as the sum of 
an infinitely differentiable ISRF-*> and a homogeneous SRF; Proposition 4 
in Section 3.2.) To further illustrate this point consider the proposition 
below. 

Proposition 1: Let Y(s) be a zero-mean continuous homogeneous SRF and 
let Xv{s) be a differentiable SRF, both in R1 satisfying 

Div+1)Xv(s)=Y(s) (11) 

Then the Xv(s) is an ISRF-ΪΛ 

Proof: First note that the unidimensional stochastic differential equation 
(11) yields 

XAs)=\S^Z^Y(u)du (12) 
Jo v\ 

For v = 0, Eq. (12) yields X0(s) = $s
0 Y(u) du, which is an ISRF-0 since for 

qeQ0, the 

Yq(s) = (q(s'),SsX0(s')) = (q(srSs[^ Y(u) dul^ 

is a homogeneous CSRF-0. For v > 0 Eq. (12) can be written in the recursive 
form 

Xv(s)= Xv-i(u)du (13) 
Jo 
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where Xv-X is an ISRF-( ^ - 1 ) . To continue the proof we will apply induc-
tion: If Xv_x is an ISRF-(*/-1), it will be shown that the SRF defined by 
Eq. (13) is an ISRF-κ Let us choose qeQv and set 

Yq(s) = (q(s'),SsXv(s')) 

g(s'),S5J Xv_x{u)du 

Next define q* so that 

In other words, 

Yq*(s)=YJs) (14) 

(q*(s')9 SsX^(sf)) = (q(s'), Ss j X^(u) du 

The q* satisfies 

<<rV), gP=v-i(s')) = (q(s'), J g^-M du 

= (q(s'),gP^(s')) = 0 

which implies that q* e Qv_x. This result, in combination with the fact that 
the Xv-\ is an ISRF- (^ - l ) , implies that the Yq*(s) is a zero-mean 
homogeneous CSRF- (^ - l ) . But then, due to Eq. (14), Yq(s) is also a 
zero-mean homogeneous SRF and, finally, since qeQv, the Xv(s) is an 
ISRF-^. For completeness, note that the 

Y(q) = (q(s), Y(s)) = (q(s),XÏ+»(s))= Υ^+1)(0) 

is a homogeneous generalized field. □ 

Clearly, if X(s) is an ISRF-*>, it is also an ISRF-μ, for all μ> v. By 
convention, the homogeneous SRF is considered as an ISRF-(-l). 

Example 1: The SRF with homogeneous increments defined in Section 11 
of Chapter 2 is an ISRF-0. In addition it is an ISRF of any order v > 0. 
The following proposition describes a certain case of ISRF-^ that can be 
characterized by means of an analytic expression in s having random 
variables as parameters. 

Proposition 2: The SRF 

* ( s ) = Σ ßPgP(s) (15) 

where βρ are random variables in L2(il, F, P), is an ISRF-ΪΛ 
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Proof: Let qtQv\ 

(q(s'),Ssgp(s')) = 0 for all p^v 

Then it is true that 

Yq(S) = (q(S'),SsX(s')) 

V 

According to Eq. (15) the ISRF-*> is completely characterized by the joint 
distribution of the random variables βρ{ρ < v). The realizations of the field 
(15) have a polynomial form and, therefore, issues such as continuity and 
differentiability can be studied in the usual sense. 

3.2 The Generalized Representation Set 

By definition, to a given generalized X{q) one may assign various ordinary 
X(s), all having the same CSRF Yq(s). More precisely, the following 
definition makes sense. 

Definition 4: The set of all ISRF-*> Xq = {Xa(s)9 a = 1,2, . . .} that have the 
same CSRF-^ Yq(s) will be called the generalized representation set of order 
v (GRS-v). Each member of the GRS-i' Xq will be called a representation 
of X(q). In other words, the correspondences below are valid. 

X(q)±»{Xa(s), a = 1,2, . . .} 

lî 4Î (16) 

X(S.sq)=Yq(s) 

Proposition 3: Let X°(s) be a representation of X(q) in the sense of 
Definition 4. For the SRF X a(s) to be another representation it is necessary 
and sufficient that it can be expressed by 

Xa(s) = X°(s)+ Σ cpgp(s) (17) 
p=|pls" 

where the cp, p<v are random variables in L2(iî, F, P) such that 

cp = (Vp(s),X"(s)) (18) 

and the TJP(S) satisfy the 

< *«.*«>-{j othê é (19) 
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Proof: If X°(s) is any specific representation of X(q), then for all q&Qv 

Eq. (17) gives 

(q(s\Xa(s)) = (q(s)9X°(s)) 

+ Σ cp(q(8),gp(s)) 
p = |p|<„ 

and, since (q(s), gp(s)) = 0, we obtain X a(s) = X°(s). Hence, Xa(s) is a 
representation of X(q) too. Conversely, if X°(s) is a representation of X(q) 
we shall show that any other representation Xa(s), a^O will be of the form 
(17). If q e Q„ then 

(* . (» ' ) - Σ gp'(s)v(sO,gP(s')) 

= <«.(»'), &(»')>- Σ *p'(e)<V(»'),gp(»')> 
p' = |p'|<„ 

= gp(s)-gP(s) = 0 

for all p s j / , due to Eq. (19). [Here, 5s(s') means 5_s 5(s').] Therefore we have 

ί*(β') = δ.(β')- Σ g P ( s h P ( s ' ) e a (20) 
ρ = |ρ|<ϊ/ 

for all p < ι/, g*(s') = Ss<?*(s'). Moreover, (g(s), g?(s')> = <?(s) and, thus, 

%*) = x0W = W U V ) > (2D 
or 

AT°(s)- Σ gP(s)<T?p(S '),XV)) = A:0(s) 
p = |p|<»/ 

or 

<T,P(S') ,X°(S')> = 0 (22) 

for all p < i>. If ATa(s) is another representation, 

(,,*(SU'(S')) = (,*(SUV)) 
or 

* " ( s ) - $2 gP(s)<7,p(s'),Xa(s')> 
P^IPI^Ï / 

= Χ°(β)- Σ & , ( S ) < I Ï P ( S ' ) , * V ) > 
p = |p|<„ 

or, due to Eq. (22), 

X"(s) = X°(s) + Σ gp(s)<77p(s'XXa(s')> 
p = |p |<i / 
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and the validity of Eq. (17) is evident. □ 

Proposition 4: A continuous but not necessarily differentiable ISRF-^ X(s) 
can be expressed as the sum of an infinitely differentiable ISRF-^ X*(s) 
and a homogeneous SRF Yq(s), viz., 

X(s) = X*(s)+Y,(s) (23) 

Proof: We saw above [Eq. (7)] that if we define g*(s) e 5, then 

q(s) = S(8)-q*(s)eQv 

By Definition 3, 

Yq(8) = (8(s')-q*(s'),SuX(s')) 

is homogeneous and 

y,(s) = X(s) -(q*(s'), SsX(s')> = X(s) -X*(s) (24) 

For all qeQ„, 

<g(s), X*(s)) = <«(s), <g*(s'), ^X( s ' ) » 

= <«*(s),X(S_.i(s'))> 
that is, the X*(s) is an ISRF-ΖΛ Particularly, it is a representation of the 
GSR -v 

X*(q) = (q*(s),X[S-sq(*')]) 

and, since g*(s)e 5, the X*(s) is an infinitely differentiable ISRF-^. Π 

3.3 The Correlation Structure 

Turning to the correlation structure of the ISRF-^, we observe that in view 
of Eq. (9) above the generalized field X{v\q) has a constant mean given by 

E[X^(q)] = mx"\q) = {-\)vmx(q
M) = a(q(s), 1) = aq(0) (25) 

The covariance cx{q\v*x\ ^^+ 1 )) can be written 

cAq\P+l\ q(rl)) = ElX(qY+»)X(q£+»)] 

= E[X^\qi)X
iv+l\q2)} = cY(qx, q2) (26) 

which is a translation-invariant bilinear functional. This entails that the 
mean value and the covariance functional of a GSRF-^ X(q) have as 
follows: 

mx(q)= Σ 0p<slpU(s)> 
o<|p|<„ 

= Σ Σ Σ aPlP2...pn(silsS2 - · · <", *(s)> (27) 
Pï P2 Pn 
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where ap are suitable coefficients, 0 < p = |p| = £"=1 px< v, and 

cx{qi, q2) = £i(w)£2(w) άφ(ν) 
Jin 

+ Σ Σ "kxßkVx (28) 
|k|=i/+l |λ|=^+1 

where $1 = R" - {O} , φ is a positive-tempered measure such that 

[ |w|2"AMw)<oo; j8fc = <9l(s),sk> 
Jo<|w|<i 

and 

T7A = < ^ ( S ) , S X ) 

satisfying ßk = ηλ = 0 for |k| < */, |λ| < ^; the afcA are numbers such that for 
any set of complex numbers {ci9 |i| = v) the 

Σ Σ 
is positive-definite. 

Conversely, any bilinear functional of the form (28) is the covariance 
functional of a GSRF-κ Next we define the important concept of generalized 
spatial covariance first introduced by Matheron (1973). 

Definition 5: Let X(s) be a continuous ISRF-^, and let Yq(s) be the associated 
CSRF-ΪΛ A continuous function fcx(h), h = s - s ' in R" is called a generalized 
spatial covariance of order v (GSC-v) if and only if 

(X(qi),X(q2))=(kx(s-s'),qi(s)q2(s'))>0 (29) 

for all ql9q2eQv. 

In practice it is usually assumed that the GSC-^ is isotropic, that is, 

kx(h) = kx(r) (30) 

where r = |h|. Let us now return to Eq. (26). It is true that 

cx(q
(rl\ q^X)) = (cx(s, *'), i S F + 1 ) ( e ) i r V ) > 

= (D(2^2)cx(s9s'\qi(s)q2(s')) 

= (cY(s-s,),ql(s)q2(s')) 

That is, 

Di2"+2)cx(s,s') = cY(s-s') (31) 

The deterministic differential equation (31) is associated with the stochastic 
differential equation (10) and it may be solved with respect to cx(s, s'). For 
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illustration let us consider the unidimensional case: According to Proposi-
tion 1, ifX(s) is a differentiate ISRF-*/ in R1 such that D(v+l)X(s) = Y(s), 
then the Y(s) is a homogeneous SRF. We saw above that any generalized 
stationary random process Y(q) whose spectral measure QY(w) satisfies 
the condition 

ί „.ö&r^00 <32) 

(tempered measure), coincides with the *>+l derivative of some ordinary 
nonstationary, in general, random process X(s). In this case the latter 
process is an ISRF-^ and can be represented by 

X(s) = [ [exp[îws] - - — [ — έ (j^r] dX(w) (33) 

where ι = >/—T, and the X( w) is such that the spectral measure ^Θ = £|dX|2 

satisfies 

dS(w) <oo, w2 l / + 2^0(w)<oo 
J — oo J-ε 

and 
Λοο 

d&(w)<oo I 
for all ε > 0 . The covariances of X(s) and Y(s) are related by 
D(2l/+2)cx(s, s') = cY(h), where h = s-s'. The solution of the last differential 
equation is 

where 

and 

Çx(M') = M » ) + A ( y ' ) (34) 

Çh(h-u)2v+1 

kx(h) = (-iy+l\ y——t—cY{u)du (35) 
Jo (2v + \)\ 

PAS, s') = Σ ap{s')sp + Σ ap(s)s'p (36) 
p = 0 p=0 

Solving for cY(h) we obtain 

cy(A) = (-l),'+1D(2i'+2)fcK(ii) (37) 

To throw additional light on the nature of the GSC-^, let us discuss a 
few examples. 
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Example 2: Take the random process in R1 defined by X(s) = a0-\-als9 where 
a0, ax are uncorrelated random variables. This process is a unidimensional 
ISRF-0 with linear drift and GSC-0 

kx(h) = -yx(h) = -m^\2]h2 

Note that the kx(h) is here unbounded, for 

£[kl2]*o 
Example 3: The Wiener process W0(s) in R1 is a zero-mean Gaussian process 
with stationary independent increments (once more recall that the term 
"stationary" is the one-dimensional equivalent of the term "homogeneous," 
which is used in more than one dimension) satisfying 

cW0(s,s') = E[W0(s)W0(s')] = a2 min (s, s') (38) 

and 

Var[ W0(s + h) - W0(s)] = a2\h\ (39) 

where |A| = |s —s'| and σ2 is a parameter (for simplicity one may assume 
σ2 = 1). The W0(s) is an ISRF-0, and Eq. (38) can be written 

<Λ., σ2 

cW0{s,sf) = -—\h\ + —(s + s') 

which is Eq. (34) with 

and 

M*) = -yl*l 

2 2 

Po(s, s') = a0(s
f) + a0{s)=—s' + — s 

The covariance of e{s) = dW0(s)/ds is written 

E[e(s)e(s')] = -£jp E[ W0(s) W0(s')] 

J 2 

= -—— σ2 min(s,s') = a2ô(s-s') (40) 
as as 

Due to the presence of the delta function, the derivative above exists in the 
generalized sense. In the stochastic context this implies that the e(s) is a 
generalized stationary RP, but not an ordinary stationary RP. Since covari-
ance (40) is a function of the difference s — s', e(s) is a homogeneous process 
(with zero mean). Moreover, the spectral density corresponding to (40) is 
equal to σ2 and consequently the e(s) is a white-noise process. The latter 
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is also a Gaussian process, for the increments of W0(s) are Gaussian. 
Consequently, if W0(s) is a Wiener process with covariance (38), its deriva-
tive is a Gaussian white-noise process with covariance (40). Now consider 
the random process 

——^ cWv(s, s') = cWo(s - s') = cWo(h) 
öS öS 

and 
a 2 ( „ + l ) 

— ^ — — λ cWv(s, s') = ce(s - s') = ce(h) = σ2 8(h) (42) 
ds dS 

where h = s-s'. By integrating (42) first v + \ times with respect to 5 and 
then v +1 times with respect to s' we obtain an expression of the form (34), 
namely, 

cWv(s9 s') = kWv{h)+pv{s, s') 

where 

Ch(h-u)2v+l \h\2l/+l 

M * ) = (-D"+1 \ 0 ' . ô(u)du = (-iy+l-^-— (43) Jo (2ι/ + 1)! (2*> + l ) ! 

On the strength of Definition 5, a continuous function fcx(h) in Rn is a 
G S C - Ï ' if and only if it is a conditionally nonnegative-definite function, namely, 

(kx(h)9ql(s)q2(s'))^0 (44) 

for all q\,q2^Qv In this case, the function /cx(h) will be called a permissible 
GSC-u. Assume now the following representation of the ISRF-z' X(s), 
X(^*) = X°(s) = <g*(s'),XV)>. 

The covariance is written 

cx(s, s') = £[<<?s*(s"), X°(s"))(q$(s"), X°(s")>] 

= E[ Yq% Yqt] = (qîWqiitT), /cx(s"-s'")) 

with 

<?s*(s") = Ss(s")- Σ gP(*)VpW)eQ* 
p = |p|<„ 

This is an ISRF-*>, and by differentiating with respect to s we get 

(41) 

Clearly, the corresponding covariances satisfy 
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More precisely, 

cx(s,s') = (Ss(s")8As'"),kx(s"-s·")) 

- Σ gP(s)<7?p(s"))Ms"-S')> 

- Σ gP(s')<T/p(s"),Ms-s")> 
p = |p|<ï/ 

+ Σ Σ &,(>)*>') 
p = \9\<v p' = |p'|<i> 

x<i?p(s")v(sw),fcx(sw-sw)> 

or 
cx(s,s') = fcx(s-s')- Σ , ap(s')gp(s) 

ρ = |ρ|<ι/ 

- Σ «p(s)gp(s')+ Σ 
p = |p|<i/ p = | p |<„ 

X Σ , ^pp'gP(s)gp'(s') 
p'= | P ' |<I / 

for appropriate coefficients ap( · ) and cpp . These results lead to the following 
proposition. 

Proposition 5: Assume that X(s) is an ISRF-^ in R". Then its covariance 
function can be expressed by 

cx(s, s') = kx(h) + />„(s, s') (45) 

where h = s —s', kx(h) is the associated GSC-^ and pv(s9 s') is a polynomial 
with variable coefficients, of degree v in s, s'. 

On the basis of Proposition 5, the following corollary is straightforward. 

Corollary 1: Let X(q) be a GSRF-^ in # " ; then it is valid that 

(46) 

Let X(s) be a differentiable ISRF-^ in R". By definition all 

(47) 

are zero-mean homogeneous SRF for any 

Consider the homogeneous linear differential operator of order v +1 

(48) 
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where ßp = ßPl...Pn are coefficients and Y(s) is a zero-mean homogeneous 
SRF. To the operator (48) we associate the auxiliary homogeneous poly-
nomial of order v 

PAs) = Σ V*p = Σ · · · Σ bPi...Pns
PS . . . sp

n» (49) 
| ρ | - Ρ Pi Pn 

such that Lv+l[pu(s)] = 0. We usually assume that )3P=1 for all p. An 
interesting case of the operator (48) arises by setting 

y ; ( s ) = | T T T x ( s ) (50) 
dS,· 

These are, by definition, homogeneous SRF for all i = l , 2 , . . . , n. The 
corresponding homogeneous linear differential operator of order v +1 is 

Lu+l[X(s)] = Vv+1X(s)=Y(s) (51) 

The covariance of each Ya(s) in Eq. (47) can be written 

cYa(h) = ß[D (
a"+»X(S) Dl"+1)X(s')] 

= D(
a
2"+2)cx{s,s') (52) 

and, naturally, that of Y(s) becomes 

cy(h)= Σ < V » = Σ Df+2)cx(s,s') (53) 

In the case of Eq. (50), the corresponding covariances are given by 

<V,(h) = ^ ,+i n ,y+i cx(s, s') (54) 

and 
^ + 2 

Cy(h) = Σ Σ ^ + ι ^ + ι C*(s, »') (55) 
i=lj=sldSi dSj 

In view of Eq. (45), Eq. (55) yields 
n ^ + 2 

Cy(h) = ( - l ) " + 1 X ; 775^2 M W 
1 = 1 a , I i 

= ( - i r + 1 V 2 " + 2 M h ) (56) 

Example 4: If X(s) is an ISRF-1, Eq. (51) gives the usual Laplace equation 
V2X(s) = AX(s)= F(s). The covariances of the fields involved are related 
byc y (h ) = A s ^c x ( s , s ' ) = A2^(h). 

The spectral representations of the covariances cYa(h) are written 

> = exp[/(w c y ( h ) = exp[i(wh)]dQy e(w) 



CY 

3. Intrinsic Spatial Random Fields 129 

where by Bochner's theorem the QYa are positive summable measures in 
R", without atom at the origin. Naturally, 

0 0 = Σ cy e (h)=f exp[i(wh)]rfÇy(w) (57) 
aeAv+i J 

where QY = Σ α ε A„+1 Qya is also a positive summable measure in Rn, without 
atom at the origin. Clearly, the spectral representation (57) remains valid 
for the case of the covariance (55); furthermore, by combining Eqs. (56) 
and (57) we see that the measure QY is the Fourier transform of 
(- ir+ 1A"+ 1 /cx(h), and that 

fexp[/(wvh)] f cos(w · h) ^ 
fc*(h)= r-j2^2 dQY(w)= ■ ,2 y + 2 dQY(yf) (58) 

J |W| J |W| 

taking into account that kx(h) is a real function. But this integral is not 
convergent near zero. We can, however, take care of this difficulty by writing 

/ iu\ Γ cos (w-h) - /7„ (wh) ^ 

The existence of the polynomial 

PHPM" (2P) ! 

does not cause any problem, since it is filtered out by the Δ1"*"1 operator. 
In general, GSC-v kx(h) of the form 

, , , f cos(w h)-pJw - h) ,_ , , , N , N 
x ( ) = J |w2,+2 ^<?y(w)+p 2 , (h)<oo (59) 

where />2l,(h) is an even polynomial of degree <2^, provide solutions to the 
partial differential equation (56). In other words, if one GSC-^ is known, 
all the others can be derived by adding even polynomials of degree <2κ 
These covariances constitute the class &*x

v of the GSC-κ A GSC-^ is also 
a GSC-μ, for all μ > v. Then, from the obvious inequality 

(w · h)2v+2 

|cos(w · h) -pu(yf - h)| < 
(2^ + 2)! 

it follows that 

M . xl ^J ^ C M W ) |h|2^+2 ^|K|2^+2 
h ) | (2*> + 2 ) ! | h | " a | h | 

where a < oo, or 

/cx(h) 
1ΐΓηΐΓΪ2ΤΤ5 = 0 ( 6 °) 
|hhao |h| 

The existence of the polynomial 
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which assures the existence of the integral (59). Moreover the uniqueness 
of the spectral representation (59) together with Eq. (56) implies that fcx(h) 
is 2^ + 2 times differentiable [hence, the X(s) is v + 1 times differentiable] 
if and only if Eq. (59) is valid. Since 

( - i r + 1 [cos(w · h) -ρν(ψ · h)] > 0 

it follows that 

(-iy+lkx(h)>0 (61) 

Representations (58) and (59) associate with kx(h) the spectral measure 

dQY(w) 
dKx(*) |wP+2 

which is the same for the various elements kx(h)e^. The latter fact 
emphasizes the importance of the spectral measure in stochastic analysis. 
For example, the conditions for differentiability can be generalized as 
follows: 

Corollary 2: The GSC-^ fcx(h) is 2λ times differentiable, which implies that 
the I S R F - Ï ; X ( S ) is λ times differentiable, if and only if 

i: dQY(w) , , 
x <oo (62) (l + |w|2)-

For λ = v+1, Eq. (62) implies 

dQY(w)= \yt\2v+2Kx(w)dw<oo 

The reader may find it interesting to compare this condition with the 
condition imposed by the existence of V*+1X(s) in the case of homogeneous 
SRF (see remark 4, Section 7 of Chapter 2). When λ = v = 0, Eq. (62) gives 

f dQrM f |w[2 
Γ Τ Γ = TT?^x(w)aw 

J i + |w|2 J i + |w|2 
< 0 0 

(compare with the relevant condition for the spectral representation of SRF 
with homogeneous increments; see also Eq. (32), Section 11 of Chapter 2). 

To proceed further we note that, since the GSC-J> kx(h) satisfies Eq. (60) 
it is a tempered generalized function and, therefore, kx(h) admits a Fourier 
transform in the sense of generalized functions. Hence, the following 
definition makes sense. 

Definition 6: The generalized spectral density function of order v9 Kx(vf), is 
defined in the sense of generalized functions as the «-fold Fourier transform 
of the GSC-^Mh) . 
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In view of the last definition we can write 

W+2KXW = CY(*) (63) 

where Cy(w) = dQY(w)/dw is the spectral density function [Fourier trans-
form of the covariance cy(h)]. Equation (63) is the spectral equivalent of 
the differential form (56). The analysis above can be extended to the case 
where the ISRF-^ is not in general differentiable. More precisely, by using 
Proposition 4 the following proposition, which is a generalization of the 
results obtained in Section 11 of Chapter 2, can be proven (Matheron, 1973). 

Proposition 6: A continuous and symmetric function kx(h) on Rn is a GSC-^; 
that is, it is a conditionally nonnegative-definite function in the sense of 
Definition 6 if and only if it admits the representation 

■-J KW= | FW^ dQY(w)+p2v(h) (64) 

where lß(w) is the indicator of a neighborhood of the origin w = O and QY 

is a positive measure not necessarily summable, but without atom at the 
origin, and such that 

ί dQA») . < o o 

(i+M2r 
[tempered measure, see also Eq. (32); Eq. (65) is (62) for λ = 0 ] . Notice 
that it is always assumed that the ISRF-*> is without drift (E[X] = 0); in 
the case that there is a drift, ρ2Λ^) should be replaced by an even polynomial 
of degree <2*> + 2. 

Example 5: If Y(s) is a zero-mean white-noise random process with 
covariance 

cY(r) = 8(r) (66) 

Eq. (35) gives 

W r ) = (-1 ) F + ,(^)i (67) 

[Compare with Eq. (43) above.] 

Example 6: Suppose that 

cy(r) = exp[- r ] (68) 

The corresponding unidimensional GSC-^ from Eq. (35) is 

(65) 

(69) 
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where γ( ·, · ) denotes the incomplete gamma function. For example, if 
v = 0, Eq. (69) becomes 

- l - ( r - l ) e x p [ r ] 
K(r)= — 

exp[r] 
Finally, the following proposition is due to Matheron (1973). 

Proposition 7: Let X(s) be a zero-mean ISRF-ΖΛ If the GSC-^ of X(s) satisfy 
inequalities of the form |fcx(h)|< a + b|h|2l/, where a and b are constants, 
then X(s) is the restriction of a continuous ISRF-(^ —1); that is, X(s) can 
be considered to be a ISRF- (^ - l ) . 

3.4 Permissibility Criteria for Generalized Spatial Covariances of Order v 

In view of Definition 5, a function can serve as a permissible GSC-^ if and 
only if it is a conditionally nonnegative-definite function. However, the 
application of condition (44) is not possible in practical situations. It is 
thus necessary to establish alternative criteria capable of testing, in an 
analytically and computationally tractable way, whether a function is per-
missible as a GSC-K 

Such a criterion—the seventh criterion of permissibility (COP-7; 
Christakos, 1984b)—which can be derived with the help of Proposition 6 
above, is as follows: A continuous, symmetric, and isotropic function fcx(r), 
r = |h| in Rn is a permissible GSC-^ if and only if it decreases slower than 
r2v+2 as r-*oo; that is, 

l i m ^ a = 0 (70) 
r->oo r 

and the corresponding generalized spectral function Κχ(ω) exists (in the 
sense of generalized functions), includes no atom at the origin, and is such 
that the ω2ν+2Κχ{ω) is a nonnegative measure on Rn; that is, 

ω2ν+2Κχ(ω)>0 (71) 

Remark 2: Clearly, an isotropic function that is a permissible GSC-i' in n 
dimensions is also permissible in any dimension m<n. In view of the 
foregoing analysis, several classes of GSC-^ may be constructed as follows: 

(i) Assume a model for the stationary unidimensional covariance 
cY(r). 

(ii) Apply Eq. (35) to derive a GSC-^ kx{r) in R\ 
(iii) Use space transformations (Chapter 6) to derive the isotropic 

GSC-^ model in the space of interest Rn. 
The following examples give some insight regarding this matter. 
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Table 3.1 Permissibility Conditions for Model (72) 

i> = 0:ao,co>0 

j/ = l : a o , c o , c 1 > 0 

/20(n + 3) 
v = 2: a0, c0, c 2 >0, and cx > - W — — — c0c2 

Example 7: Covariance (67) can be generalized to R" (Delfiner, 1976) 

kx(r) = a08(r)+£ (~1)Ρ+1 cpr
2p+1 (72) 

where the coefficients a0 and cp satisfy certain permissibility conditions 
derived by means of COP-7; see Table 3.1. 

At this point, it is interesting to note that a unidimensional ISRF-*> admits 
a GSC-^ of the polynomial form (72) if and only if it can be expressed as 

X(s) = b0W(s) + bl W(v)dv 

· + 

i ί W(v) 
Jo 

K \S(S~V][.1 W(v)dv 
Jo ("-!)! 

where bp, p = 0 , 1 , . . . , v are real coefficients and W(s) is a unidimensional 
ISRF-0 with GSC-0 kw(h) = -\h\9 say a Wiener process. 

Example 8: Consider the model 

( -1)- + 1 y(2v + 2,-br) 
KAr)~{2v + \)\ b2v+2exp[b/·] K'V 

where b>0. Equation (74) is obtained from the homogeneous 
unidimensional covariance cY(r) = exp[-6r] , b>0 (see also Example 6 
above). After some manipulations Eq. (74) may also be written as 

**( 0 = 72^2 ΠΓί l - e x p ( M 2^ — — *r zcxp[br]l i = 0 i! J 

Equation (74) is a permissible model in R1. In # " the coefficient b may 
need to satisfy some additional constraints, which again may arise from 
COP-7. 

3.5 Cross-Generalized Spatial Covariances of Orders v and v' 

Let Xp(s) and Xp>(s) be two ISRF of orders v and *>', respectively. The 
Yp(s) = X^+ 1 )(s) and y^(s) = X^'+1)(s) are, by definition, homogeneous 

(75) 

(73) 

(74) 
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SRF. Consider the matrix 

Kx = [fcXpV(h)] (76) 

where kXpXp,(h), p,p'= 1 , . . . , fc, andh = s - s ' e Rn are cross-GSC-{v, v'). The 
kXpXpl(h) are continuous functions in R" satisfying 

E[ Yqp(s) Yqp(s')] = (kXpXp,(h), qp(s)qp.(s'))>0 (77) 

for all qpeQU9 qp£Qv. Here Yqp(s) and Yqp.(s') are the corresponding 
C S R F - Ï ' and v\ respectively. The generalized and ordinary covariances are 
related by 

D(*+1-'+1)cXpV(s, s') = (-iy+"'D^'+l)kXpXp,(h) 

= cYpYp,(h) (78) 

Example 9: Consider the processes Wv(s) and Wv>(s)9 defined by Eq. (41) 
for v' 7^ v. The cross-covariances are written 

Working along similar lines we find that the cross-GSC-^, v' (v>v') of 
Wv(s) and W^(s) is written 

fcw,w,(*) = (-l)y'+\ lyT.+' , (80) 
\v+ v +1)! 

Under certain conditions (see analysis of previous sections), the GSC-^ 
kXpXp,(h) may be represented by 

WW-{[.«(.-«-*<.-W]*W»>*· (»» 
where KXpXp,(w) are cross-spectral functions such that the trace 

k 

of the nonnegative-definite matrix KX = [XX X ,(w)] satisfies 

|w|2"+2Kx(w) dw r^ , . Λ 
n-L 2^+1 < 0 0 > * x ( w ) ^ 0 (82) 
(1+w ) 

i1 

The above representation leads to the following eighth criterion of permissi-
bility (COP-8): For Kx of Eq. (76) to be a matrix of permissible GSC-^, 
the matrix Kx must be nonnegative-definite and its trace must satisfy the 
conditions of Eq. (82). 

(80) 

(79) 

(82) 
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4. Discrete Linear Representations of Spatial Random Fields 

4.1 Discrete Intrinsic Spatial Random Fields of Order v 

Since in practice the data are discretely distributed in space, the matter 
calls for a discrete linear representation^ suitable for practical applications. 
Within this context the notion of spatial polynomials is relevant. More 
precisely, in Ä" a polynomial of the form 

ΡΛ*)= Σ fepgp(s)= Σ ^PSP 

o<|p|<^ o<|p|<^ 

Pi Pn 

will be called the spatial polynomial of order v (SP-v). 

Example 1: In one dimension and for v = 2 

p2(s)= Σ bPuP2s
Pssp

2> 
0< P l +p 2 <2 

= 6 0 0 + fcloSl + ^01^2+^20^1 + ^02^2+^11^1^2 (2
) 

Consider now the discrete SRF X(s f), s, e R", i = 1, 2 , . . . , m. Let q e Qm\ 
that is, q is a real measure on Rn with finite support such that 

m m 

q(s) = Σ <7(s.) 5(s, - s ) = Σ * 8M (3) 
i = 1 i: = 1 

The corresponding discrete GSRF and CSRF are written, respectively, 
Im \ m 

Χ(9) = ( Σ 9/δι(β),Χ(β)) = Σ **(■«) (4) 

and 
Im \ m 

n(») = ( Σ * «.·(»'), 5 sX(s')) = Σ 9»£*(β,) (5) 
V = l ' i = l 

Equipped with the above notions we can now formulate definitions and 
results analogous to those obtained in Section 3. 

Definition 1: The discrete SRF Yq(s) of Eq. (5) will be called a spatial 
increment of order v (SI-v) if 

m 

Σ *&»(»<) = 0 (6) 
i = l 

for all p = |p| < v. In this case the coefficients {g,}, i = 1, 2 , . . . , m will be 
called admissible coefficients of order v (AC-v). 

In other words, condition (6) assigns weights g, to points s,, i = 1 ,2, . . . , m 
so that monomials of degree up to v in the coordinates of s, are canceled. 

(1) 

(2) 
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Table 3.2 Conditions (6) in Two Dimensions 

v = 0: 

m 

ί = 1 

v = \: 

Σ 9; =0; Σ qisil = 0 and Σ 1isii = 0 
i = l 

v = 2: 

Σ 4« = 0; Σ to*ii = 0 and £ ^ s l 2 = 0 
i = l i=1 i=1 

m m m 

Σ fc*?i = 0; Σ QiAi = 0 and Σ <1ι*ι\*α = 0 
i = l i = l i = l 

The number of conditions is equal to that of monomials of degree p < v. 
In Table 3.2 conditions (6) are presented for the common in practice 
two-dimensional case [s, = (sn, si2) e R2]. 

Remark 1: Since by Definition 1, Σ?=ι Qi = 0 (p = 0), the SI-*> ^ ( s ) can be 
viewed as a high-pass filter, so that the resulting pattern enhances details 
of the original SRF X(s). 

Definition 2: A discrete ISRF-v is an ISRF X(s) for which the corresponding 
SI-^ Yq(s) is a zero-mean homogeneous SRF. 

Example 2: See Fig. 3.1, where s,· = (sn, sl2) e R2, i = 1, 2 , . . . , 13. Let 
13 

n ( s . ) = Σ 9iX(*i) = 20X(s,) -8X(s 2 ) -8X(s 3 ) 
i = \ 

-8X(s 4 ) -8X(s 5 ) + 2X(s6) + 2X(s7) + 2X(s8) 
+ 2X(s9) + X(s10) + X ( s n ) + X(s12) + X(sl3) (7) 

By taking into account the geometry of Fig. 3.1 we find 
13 

Σ <?, = 2 0 - 4 x 8 + 4 x 2 + 4 x 1 = 0 
i = l 

and 
13 

Σ qisil=20su-8(su + Δs)-Ssu-S(su-^s) 
i = l 

- 8 5 1 1 + 2(511 + Δ5) + 2(511 + Δ5) + 2 ( 5 1 1 - Δ 5 ) 

+ 2 ( 5 1 1 - Δ 5 ) + 511 + 2Δ5 + 511 

+ s11-2As + 5„ = 0 
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S 1 2 AS 

Similarly, 

and 

■o-
s4 As 

Ô-

Q S 13 

As 

-6 

As 

Si As 

As 

As 

Ô Sj 

Figure 3.1 The R case 

s2 As >10 

Si=(S ü ,S i 2 ) 

i=1.2 13 

Σ, qiSi2 = 0, £ qiS2
n = 0, Σ ^2 = 0 

Σ 4isnsi2 = 0 

Hence, the conditions of Definition 1 are satisfied and the Yq(s) is an SI-2. 
If Yq(s) is a zero-mean homogeneous SRF, the corresponding X(s) is an 
ISRF-2. Conversely, if X(s) is an ISRF-2, Yq(s) is a zero-mean SI-2. 
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Proposition 1: Any discrete unidimensional process X(s) represented by 
the difference equation 

A:+1X(s)=Yq(s) (8) 
where 

Αζ+ιχ(*) = Σ(-ιΥεί+ιχ(*+ν+ι-ΐ) (9) 
i=0 

is the finite difference operator of order v +1 in s, Cl+l = CV), and Yq(s) 
is homogeneous, is an ISRF-ΖΛ [The argument in Eq. (9) is, in general, of 
the form s-(i-v-l) As, where As is the unit step; nevertheless, for 
simplicity and without loss of generality, it is assumed that As = 1.] 
Proof: According to Definition 2 it suffices to show that 

^,Ρ = Σ(-ΐ)^',+1ίρ = ο (io) 
ι=0 

for all p < v. Indeed, Eq. (10) is valid (Riordan, 1983), and this completes 
the proof. □ 
Remark 2: Solutions of the difference equation (8) are 

s—v—1 v+\ 

x{s)= Σ cr_,-1y,(/) = E Y,(S) (ID 
1=0 s 

where £ j + denotes the summation of order v + \ in s, s>v + \ and 
X(s< v) = 0. All discrete I S R F - Ï / X(s) admit representations of the form 
(11). 
Example 3: Consider the ISRF-^ 

Jo v\ 
Xv(s)= r^YWdu (12) 

Jo v\ 
where Y(s) is a homogeneous field (see Proposition 1, Section 3 above). 
By choosing 

q(s) = Σ (-1)'C"„+1 «„+1-»(s) = Δ.Γ+1 8(s) (13) 
i = 0 

the SI-*' Yq(s) may be expressed by Eq. (8) above, viz., 
y , W = A ; + % w (14) 

which is the discrete analog of the CSRF-i>. Furthermore, assuming that 
Xv(s) is differentiable, the generalized field 

v+l 

i = 0 

= yy+I>«» = £ (-i)'cl+lxï+1\Si) (15) 

(9) 

(10) 



4. Discrete Linear Representations 139 

is homogeneous too. It is interesting to compare representations (11) and 
(12): All discrete-parameter ISRF-*> admit a representation of the form 
(11), while for a continuous-parameter ISRF-^ to be represented by (12) 
it is necessary that it is v +1 times differentiable in s. 

4.2 The Generalized Spatial Covariance of Order v 

Just as for continuously distributed SRF, the discrete version of the condi-
tional nonnegative-definiteness property of the GSC-^ states that a function 
/cx(h) in R" is a GSC-v if and only if for all pairs of AC-*' {g,} and {q\}, 

E[X(q)X(q')] = E[Yq(0)Yq{0)] 

[ m m "1 

Σ q,XM Σ q',X(a',) 
i = l i = l -I 

m m 

= Σ Σ < 7 Α ( Μ ^ 0 (16) 
i = l 7 = 1 

or equivalently, 

[ m ~\2 m m 

1 = 1 -I i = l 7 = 1 

(17) 
where h,·,· = sf—s,·. 

Example 4: Consider, again, Proposition 1 above. The corresponding 
homogeneous covariance will be 

cYq(s -s') = E[A:+1X(S) ΔΓ1Χ<5')] 

v + \ v+\ 

i = 0 i'=0 

x c x ( s - / + » ' + l , s ' - r + i ' + l ) 
= Δ ; + 1 Δ Γ ! ^ , 5 ' ) . (is) 

Since X(s) is an ISRF-^, there exists a GSC-^ satisfying (18). The latter, 
taking Eq. (8) into account, becomes 

2^+2 

cYq(h) = (-iy+1 Σ (-iyC2l,+2kx(h + p + l-i) 
i = 0 

= ( _ ι Γ + 1 Δ 2 ( , + 1 ) ^ ( Λ _ ^ _ υ ( 1 9 ) 

where h = s - s'. If kx( · ) is known, Eq. (19) for h = 0 allows us to calculate 
the variance of any SI-^ Yq(s). Moreover, by inverting the last equation, 

(16) 

(17) 

(18) 

(19) 
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the GSC-Ï> can be expressed in terms of the ordinary homogeneous covari-
ance as follows 

h-v-l 

Mft)=(-ir+i Σ c\+
+\%cYq(i) 

i = 0 

-\(-\Y^cx
hX2;cYq{0) (20) 

Remark 3: Notice the difference between the continuous formula (35), 
Section 3 and the discrete (20): Assuming that the Y (s) is a white-noise 
process with cY(h) = 8(h), Eq. (35), Section 3 gives 

while, with the same assumptions regarding Yq(s)9 Eq. (20) gives (h>0) 

fc(t,.(_irl^...<»;-,·) 

Example 5: Consider now Eq. (12) above. The corresponding GSC-^ satisfy 
the following interesting formulas 

Ι = - Γ Α < 2 f 
Jo Jo 

and 

M*) = " du2 duxkXv_x{ux) (23) 
Jo Jo 

K(h) = (-i)" \h du2v... ί"2Λ,Μ«ι) 
Jo Jo 

= (-irJo (^W^U)dU m 

For example, if fcXb(A) = - | n | , Eq. (24) yields Eq. (21) above. 
The proposition that follows is useful in constructing SI-^ in practice. It 

also plays a central role in deriving the system of spatial estimation equations 
(see Chapter 9 later). 

Proposition 2: Assume that X(s) is an SRF and let 
m 

X ( S 0 ) = £ À , X ( S , ) (25) 
i = 1 

be the linear estimator of X(s) at the location s0 so that 

£ [X(s o ) -X(so) ] = 0 (26) 

and 

E[X(s0)]= Σ VP*Po (27) 
\p\*v 

(21) 

(22) 

(24) 

(25) 
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where r/p are suitable coefficients. Then, the difference 
m 

Υ,(βο) = X(so) - X(so) = Σ λ,Χ(β,) (28) 
i = 0 

where λ 0 = - 1 , is a SI-ΪΛ 

Proof: From Eqs. (25), (26) we immediately obtain 
m 

£ À , . £ [ X ( S , ) ] = 0 
i = 0 

and by inserting Eq. (27), 

£*.{ Σ *?xl=o 
1=0 H p M " J -IPI 

o r 

IPI 

or 
m 

^ A f s p = 0 for all |p |<v 
i = 0 

Then, according to Definition 1 above the SRF (28) is an SI -K □ 

Remark 4: Obviously, if the Yq(s) of Eq. (28) is homogeneous, the X(s) is 
by definition an ISRF-ΪΛ Conversely, if X(s) is an ISRF-*>, the Yq(s) of Eq. 
(28) is a homogeneous SI -K 

Remark 5: There are several linear estimators of the form (25). A convenient 
choice may be as follows. Assume that the ISRF-*> X(s) is of the form (15) 
of Section 3 above. We can fit an estimator 

*(*>) = Σ M (29) 

by least squares, where 
m 

/8ρ = Σ ^ Ρ * ( * ι ) (30) 
i = l 

are estimates of βρ of Eq. (15) of Section 3 for suitable coefficients bip. 
This yields 

m 

Χ(8ο) = Σ λ / Χ ( 8 , ) 
i = l 

where 

λ,- = Σ MS 
I P M " 
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and the SRF 

Yq(s0) = X(s0) - X ( s 0 ) = Σ λ,Χίβ,) 
i = 0 

Σ [ Σ wl = V Γ V A. celX(S l .)-X(so) (31) 
-IPI 

is a SI-ΪΛ Note that 
m 

£ λ / β ? = ο (λ0 = - ι , | Ρ | ^ ) 
i = 0 

or 

S S ' - Σ Ι Σ ^pSS|sSf = 0 (32) 
i = l HPN*' J 

for all I P ' I ^ K In summary: First find coefficients bip(i = 1 , . . . , m and 
p = 0 , . . . , v) satisfying Eq. (32); then use Eq. (31) to construct SI-*'. 

Remark 6: The above results may be used to provide an instructive proof 
of Proposition 5, Section 3 above. The field Yq(s0) = X(s0)-X(s0), where 

*(so)= Σ AX 

is a least squares estimate of the ISRF-^ X(s0), is a SI-*>. The corresponding 
covariance is 

cx(s0, si) = E[X(8o)X(s'o)] = E[ Yq(s0) Yq(s'0)] 

- Σ E{Yq(*o)fa*'o9 

IPI^" 

- Σ E[Yq(s'0)ßpK 
I P N " 

+ Σ Σ E[0JP.]8W 
|p |<i / |p'|<i/ 

On the other hand, 
m m 

E[ Yq(s0) Yq(s'0)] = ΣΣ A|Ajfc,(s( -s'j) 
i = 0./=0 

= /c x ( s 0 - s 0 ) - Σ , Σ , ^fpfcx(so-sj) sg 
|P|<„ L/=i J 

Ι Ρ ' Ι ^ Li = i J 

By combining the last two equations we obtain Eq. (45) of Section 3 above. 

IP'N 
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4.3 The Generalized Representation Set of Order v 

In Section 3.2 we demonstrated that, given a GSRF-^ X{q) one may assign 
various ISRF-*/ X(s), all having the same CSRF-^ Yq(s) = X(S_sq). In fact 
we saw that there can be defined a whole set of X(s), which was termed 
GRS-^ and was denoted by Xq. The subscript q means that while the 
members X(s) of the GRS-^ are functions of s, the set Xq itself is a function 
of the AC-^ {qi} chosen. Here is an example of such a set. 

Example 6: Let X^s ) be an ISRF-2 in Rl and let 

F1(s) = X1(s + 3/i)-3X1(s + 2/i) + 3X1(s + / i ) -X 1 ( s ) (33) 

be a zero mean stationary process. The latter is a SI-2 since 
4 

£<7, = l - 3 + 3 - l = 0 
i = l 

4 

Σ qiSi = s + 3h-3(s + 2h) + 3(s + h)-s = 0 
i = \ 

and 
4 

£ g I s 2 = (s + 3 /0 2 -3 ( s + 2/i)2 + 3(s + / i ) 2 - s 2 = 0 
i = l 

Now assume that X2(s) is another random process defined by 

X2(s) = Xx(s) + a2s
2 + axs 4- a0 (34) 

where the coefficients a0, al9 and a2 are all random variables. After some 
manipulations involving the last two equations, the incremental process 

Y2(s) = X2(s + 3h)-?>X2(s + 2h) + ?>X2{s + h)-X2{s) 

leads to the equality Y2{s) = Yi(s). In other words, we see here that if the 
ISRF-2 Xi(s) is a representation eXqi the X2(s) given by Eq. (34) is also 
an ISRF-2, sharing the same SI-2 with Xt(s)9 that is, X2(s)eXq. In fact, 
Xi(s) and X2(s) are two different solutions of Eq. (33). 

To fix ideas, Proposition 3 of Section 3 will be now reconsidered in the 
light of the discretely distributed SRF. 

Proposition 3: Assume that the discrete ISRF-J> X°(S) is a representation 
from a set X^. The SRF Xa(s) is another representation of Xq if and only 
if it can be expressed as 

Xa(s) = X°(s)+ Σ <V*P (35) 
I P I ^ " 

where the coefficients ap are random variables in L2(il, F, P). 
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Proof: First, let X°(s) e Xq. We will show that any other representation, say 
Xa(s)eXq9 will be of the form (35). Both ISRF-*> X°(s) and Xa(s) have 
the same SI-*> so that 

m 

Σ<?,.[Χο(8 ι)-Χα(8,)] = 0 for all AC-* {<?,} 
i = l 

Then Xfc(s) = X° ( s ) -X a ( s ) is an ISRF-v with SI-* 

m 

1 = 1 

By letting 
λ,= Σ kp*po 

IPM" 

as in Remark 5 above, we get 
m 

X"(SO) = E A , X 1 , ( S , ) 
1 = 1 

= Σ iêb,pxb(Sl.) 
|p|=S„ Li = l 

= Σ «pss 
I P N " 

where 
m 

i= l 

]sg 

Thus, 

X°(s)-Xa(s)= Σ «psg 
IPM" 

which is Eq. (35). Conversely, assume that Xa(s) is given by Eq. (35), where 
X°(s) is a representation from the GRS-^ X,, and ap9 p = 0 , 1 , . . . , v are 
random variables. It will be shown that Xa(s) is another representation 
from Xq. Indeed, (35) is written 

m m 

+ Σ* Σ vo 
«=ι L|p|^, J 

But the AC-*> {qù (i = 1 , . . . , m) cancel out all polynomials of degree p < v, 
and so 

m m 

Σ Φ*-(βι)=Σ Φ^0(*Ι)=ν») □ 
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According to the analysis above, there should exist several covariances 
{ca(s, s'), a = 1,2, . . .} corresponding to the members of the set Xq. Let 
X°(s) be a representation of the Xq and c°(s, s') be the corresponding 
covariance; also, let Xa(s) be another representation from Xq, so that Eq. 
(35) is valid. Then, if ca(s, s') is the covariance of Xa(s) , 

c*(s,s') = c ° ( s , s ' ) + Z E[apX°(s')W 

+ Σ E[acX°(s)]s* 

+ Σ Σ £K^]sV* 
IPI^VICM«/ 

Hence, we can write, in more concise form, 

ce(s,s') = c°(e,s')+ £ Ms')sP 

+ Σ ft«·" 

+ Σ Σ <*Λ" (36) 
IPMHÉM»' 

where ap(s'), /^(s), and cpi are suitable coefficients. 

4.4 Cross-Generalized Spatial Covariances of Orders v and i>' 

In Example 9, Section 3 the determination of the unidimensional cross-GSC-
^ v1 cWvWv{s,s') of the ISRF-*> W„(s) and ISRFV Wv(s) was discussed. 
Here we will examine these results in a discrete context. 

Let Xi(s) and X2(p) be two ISRF of order v and v\ respectively. Let 
Yqi(s) and Yq2(s) be the corresponding SI-^ and S I V . A function fcXlX2(h), 
heR" will be called a cross-generalized spatial covariance of order v, v' 
(CGSC-v, v') if and only if 

r mi mi η 

£[n,(0)n2(0)] = £ Σ <Zu*.(s.) Σ lijXiisj) 
L i = i j = i J 

= Σ Σ qi.iqi.jKxJ&i "«!/) (37) 
i = l./ = l 

for all AC-*> {<?M}, i = l,29... ,m1 and A C V {^2j},7 = 1 ,2 , . . . , m2. 

Example 7: The setting is the same as in Example 5 above. Here, though, 
we seek the determination of the cross-GSC-^, v' kXvXv(h) for any two ISRF 
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Xv(s) and Xp>(s) of orders v and v\ respectively. Assume that v>v' so 
that Xv>(s) can be considered as an ISRF-^, also. Then by letting 

P^ = E[a:+lXv(s)^s'
+iXAs)] 

= Σ Σ (-l)i+JCl+1Ci,+ikx^,(i-j) (38) 
1=0 j = 0 

and by working along similar lines as in Example 5 we obtain 

J^fc,.A.(*) = (-l)"M*) (39) 

For example, if kXo(h) = — \h\, Eq. (39) gives 

W)=(-D"+1 J^TTl, (40) 

5. Stochastic Differential and Difference Equations 

5.1 Basic Equations 

Stochastic differential equations (SDE) over space are mathematical 
descriptions of physical systems expressed under the general form 

L[X(s)]=Y(s) (1) 

where X(s) is the unknown SRF, L[ · ] is a given operator, and Y(s) is a 
known SRF—also called a forcing function. The notion of randomness 
enters the SDE models in three basic ways: 

(a) random initial conditions; 
(b) random forcing function; and 
(c) random coefficient of the operator L[ · ]. 

Forms (a), (b), and (c) are not mutually exclusive; in fact, many SDE are 
a mixture of these three forms. 

While many of the basic theoretical problems in the study of SDE are 
essentially the same as those for classical (deterministic) differential 
equations (existence and uniqueness of solutions, stability, dependence of 
solutions on coefficients and initial conditions, etc.), there are considerable 
differences, as well. These differences naturally arise from the study of the 



5. Stochastic Differential and Difference Equations 147 

SRF described by the SDE. For example, the sense of an SDE will depend 
on whether the SRF is viewed as a collection of random variables (mean 
square sense) or as a family of realizations (sample function sense). 

As a consequence, stochastic solutions to SDE may be obtained in more 
than one way: 

(i) In terms of SRF representations (in the mean square or the sample 
function sense). 

(ii) By determining the probability distribution functions or the 
characteristic functions of the SRF involved (in more complicated 
situations functional need to be used). 

(iii) By means of the deterministic differential equations that govern 
the corresponding statistical moments, or the deterministic algebraic 
equations relating the corresponding spectral functions. 

When approach (iii) is used, one should first verify the existence and 
uniqueness of the SDE solutions (this should be done, even when the 
derivation of the solutions themselves is not a feasible objective). Another 
important aspect of the statistical moments approach (iii) is the so-called 
closure problem. More specifically, a closure problem arises when we have 
a hierarchy of N equations with N+l statistical moments. It is then 
necessary to establish a suitable approximation technique of converting the 
infinite hierarchy of equations into a closed set. 

There are several good references on the subject of SDE, including Syski 
(1967), Gihman and Skorokhod (1972), Arnold (1974), Friedman (1975, 
1976), Da Prato and Tubaro (1987), Sobczyk (1991). Some examples of 
SDE related to earth sciences are given in Chapter 6. Here, as well as in 
the following sections, we will focus only on a limited number of SDE 
topics closely related to the random field models considered in the book. 

Certain interesting results emerge from a fruitful interaction of the gen-
eralized SRF theory and the theory of SDE. For illustration purposes, let 
X(s) be an ISRF-κ By definition, all 

Yi(s)=^—1X(s) 
dS i 

are homogeneous SRF and so is the field defined by the SDE 

n 

n s ) = E ν,(β)=ν+ιΛ-(β) (2) 
i — \ 

Here L[ · ] = V + 1 [ · ]. Equation (2) is interpreted in the m.s.s. [under certain 
conditions—Y(s) is a white-noise SRF, etc.—Eq. (2) may also be interpreted 
as an equation for the sample function]. 
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In R3 the solution to Eq. (2)—assuming that all stochastic conditions of 
its validity exist—is written 

X( S )= Γ - Γ 7 Γ I | u - s r _ 2 y ( u ) d u 
2" 

(3) 

with appropriate boundary conditions. Similarly, in R the 

X(s)= r / 1 _ A -12 \\u-tf-l\og\a-a\Y(u)du 

also satisfies (2). The corresponding covariance functions are related by 
(see also Section 3 above) 

V2"+ 2Mh) = Δ"+^Χ(Η) = (- l )"+ 1cy(h) (4) 
Equation (4) can be solved with respect to kx(h): In R3 

^Γ·ο(ψ) 
* . ( » = 2 - + ν " ά ( Λ i) J i»-'ΐ"""--''»dy <« 

and in R2 

k W = 2 2 y + 1 l (Fl ) 2 J i v - h ^ l oS |v-h|c^(v) </v (6) 

Example 1: If the ISRF-1 X(s) and the homogeneous SRF Y(s) satisfy the 
Poisson SDE (which is used, e.g., in hydrology to model steady-state 
groundwater flow) 

V2X(s) = AX(s)=Y(s) (7) 

one may study X(s) by means of Y(s). More precisely, in R3 we obtain 

X{s) = -j-\p^.du (8) 
47Γ J | u - s | 

X(s)=T~ log |u-s |y(u)du 
2π J 

and in R 

(9) 

The covariances satisfy 

= V X ( h ) = cy(h) (10) 
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Given the homogeneous covariance cy(h), the last equation can be solved 
with respect to M h ) . In ^3» 

M h ) = —f- I \v-h\cY(v)dv (11) 
o7T J 

and in R 

M h ) = ^ J (v -h ) 2 log|v-h|cy(v) dv (12) 

For example, in the isotropic three-dimensional circumstance with c y ( r ) = 
exp[-fcr], the GSC-1 is given by 

k^r) = KS„ US 
_4 r_ 
b5r b3 

Other GSC-1 may be obtained by adding to Eq. (13) the polynomial 
c0+cxr + c2r

2 for properly chosen c0, cl9 and c2. 
In the case of discrete-parameter ISRF, the semivariogram function is 

closely related to stochastic difference equation models. 

Example 2: Consider the on-line difference model (Christakos, 1982) 

X(Si) = aX(Si - h) + WM (14) 

where a is a deterministic coefficient and W(Si) is an SRF with, usually, 
zero mean and variance σ\. Physically, models of the form (14) are based 
on the ascertainment that many natural processes have a structure not so 
arbitrary but of some low-order recursive form. It is easily seen that for 
a = 1, it holds that 

yx(h)=Ww (15) 

For more complex situations of spatial variability, it is possible to fit to 
the data difference equations of the form 

K 

X(s,)= Σ a*X(s,-fc) + W s , ) (16) 
fc = l 

where ak and β are suitable coefficients. Equations (15) and (16) imply a 
connection between stochastic difference equations and the notion of spatial 
increments discussed above: If the coefficients ak and β are chosen so that 
they constitute a set of admissible coefficients of some order v (AC-Ï>), then 
the SRF W(Si) is an SI-*>. 

(13) 
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5.2 Adjoint Equations—The Air Pollution Problem 

The generalized SRF formalism discussed in the previous sections provides 
simple solutions to stochastic partial differential equation (SPDE) problems, 
which are difficult to solve or cannot be solved in terms of ordinary SRF. 

Consider an SPDE of the general form (1) above, with the appropriate 
initial conditions. Equation (1) generates an ordinary SRF X(s); it will be 
called here the "basic SPDE." To Eq. (1) we associate the functional 

(L[X(s)],X*(s)> = (F(s),X*(S)) (17) 

where X*(s) is an ordinary SRF whose meaning will become clear shortly. 
Assume now that by using the functional operators introduced in previous 

sections Eq. (17) is transformed into the form 

<L*[X*(s)], X(s)> = F[X(s) , X*(s)] + ( Y(s), X*(s)> (18) 

where F[ · ] is a suitable function of SRF. Let us next denote 

L*[X*(s)] = <?(s) (19) 

Equation (19) will be termed the "adjoint SPDE." In view of Eq. (19), Eq. 
(18) becomes 

X(q) = F[X(s), X*(s)] + < F(s), X*(s)> (20) 

where X(q) = (X(s), q(s)) is a generalized SRF in the sense given in the 
preceding sections. 

Therefore, the "basic SPDE" (1) has been transformed into the functional 
equation (20), where X*(s) is the solution of the "adjoint SPDE" (19). 
What are the practical implications of this transformation? To answer this 
question, it is necessary to consider the following facts: 

(a) First, the physical interpretation of the generalized SRF X(q) 
depends on the choice of the function q(s). If we choose q(s) = 5 (s -s ' ) , 
then 

X(q) = X(s') (21) 

In other words, Eq. (21) gives the value of X(s') at point s'; if we let 

i if seV 

0 otherwise 
<?(s) = < 

then 

X(q)=^^X(s)ds (22) 

that is, the mean value of X(s) within the volume V. 
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(b) A class of very important practical problems in earth sciences can 
be solved faster and more efficiently by means of the generalized SRF. For 
illustration purposes consider the example below (see also Marchuk, 1986, 
for the deterministic counterpart of the problem). 

Example 3: Let the ordinary SRF X(s) represent the concentration of aerosol 
substance transported in the atmosphere over a region A. For simplicity, 
assume that the phenomenon is spatially one dimensional (the three-
dimensional, time-dependent version will be studied in Chapter 5) and is 
governed by the basic stochastic differential equation 

μ Y1-VX(S)=WÔ(S-S0) (23) 
ds 

with initial conditions X(±oo) = 0, where μ is the diffusion coefficient, v is 
a quantity that has inverse time dimension, W is the capacity of the pollution 
source, and s0 determines the location of the pollution source. The problem 
is to find a region U <= A so that for all s0 e U, the pollution over a specific 
area G<^ A does not exceed a permissible level c, viz., 

X(s')<c (24) 

for all s'eG. 
To solve this problem in the "traditional" way, one needs to solve Eq. 

(23) many times for various possible s0eA and check the solution with 
respect to Eq. (24), to determine the region U. This is clearly not practical. 
The generalized SRF concept, on the other hand, offers a better alternative, 
as follows. First, by applying the procedure of Eqs. (18) and (19) we find 
that the adjoint SPDE is 

μ^ψμ_νχ*ω = φ) (25) 
dS 

with initial conditions X*(±oo) = 0. Next, from Eq. (20) we get 

X(q)=WX*(s0) (26
) 

By choosing q(s) = 8(s-s')9 we obtain [Eq. (21)] X(q) = X(s')9 and the 
solution of Eq. (25) is given by 

:*(s,s')= Î-T=exp[-^(5-5')sgn(5-^)] (27) 

where sgn(s - s') > 0 if s > s', and <0 if s < s' [assuming that all the stochastic 
conditions for the validity of solution (27) are satisfied]. By substituting 

(26) 

with initial conditions 0. Next, from Eq. (20) we get 
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Eq. (27) into Eq. (26) and taking Eq. (24) into account we find 

w—7^expÎ~VM(So~s,) sgn(so-s') <c (28) 

for all s'e G, which determines the required region U. Moreover, for each 
given location s0e U of the pollution source, spatial realizations of the 
aerosol concentration X(s) can be found from Eq. (26), viz., 

X(s)= W-
2μ 

—=exp -^J-(s0-s)sgn(s0-s)\ (29) 



The Factorable 
Random Field Model 

'One of the peculiar difficulties in Probability Theory is 
that its difficulties sometimes are not seen. " 

G. Boole 

1. Introduction 

This chapter introduces the class of factorable random fields (FRF). The 
factorability concept stems from the study of the orthogonality structure of 
the probability density functions involved and applies in a spatial, temporal, 
or a spatiotemporal context. The key role is played here by a probabilistic 
entity called the theta function of the RF on a probability space. Under 
certain integrability conditions, this function has an interesting orthogonal-
ity structure in a measurable space. 

Hence attention is focused on fields that exhibit such a structure and are 
called factorable random fields. These concepts are defined precisely in 
Section 2, where their properties both in the space and the frequency 
domains are explored. In Section 3, it is proven that any strictly monotonie 
function of an FRF is itself factorable. How an FRF can arise is the topic 
of Section 4. It is shown that, under fairly broad conditions, random fields 
satisfying the Pearson differential equation may belong to the class of FRF. 
Also, SRF whose bivariate probability density function is of the so-called 
isofactorial form (these densities have been used in nonlinear geostatistics) 
constitute a special group of FRF. This being the case, the applicability of 
nonlinear geostatistics can be significantly extended by means of the theory 
of FRF. Section 5 introduces the on-line nonlinear state-nonlinear observa-
tion system, and its compatibility with the assumption of factorability is 
discussed. 

4 

153 
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Common features of the unidimensional FRF (also called factorable 
random processes, FRP) and the Markov and martingale processes are 
pointed out. The nonlinear state-nonlinear observation system is introduced 
and its compatibility with the assumption of factorability is discussed. 
Analysis shows that under the factorability assumption, on-line nonlinear 
state-nonlinear observation systems are equivalent to linear ones with 
coefficients determined in terms of theta functions. This is an interesting 
property of FRF that is directly linked to optimal real-time estimation 
problems, such as estimation of air pollution concentration at the receptor, 
stream flow forecasting, and soil parameter identification. This set of prob-
lems, which will be discussed in Chapter 9, is intended as nuclei around 
which new areas of applications are expected to crystallize. 

2. The Theory of Factorable Random Fields 

In earth sciences, the idea of representing natural processes in terms of 
mutually orthogonal functions has been used extensively. Good examples 
are the Fourier integrals and series, which depend on the orthogonality of 
the sinusoids. In this section, the same basic idea will be considered in a 
stochastic context, by means of the theory of factorable random fields. 

Let (Ω, F, P) be a probability space and let (R, B) be a measurable space, 
where R is the real line and B is the cr-field of Borel sets on R. The random 
variables xi9 i = l ,2 , . . . , m are defined on (il, F, P) and take values in 
(R, B). Assume that g(xx,..., xm) is a function of L2(R

m, Px); that is, it is 
a square integrable function with respect to a measure Px with density 

PAdXi...dXm) 

αχχ... dxm 

This means that 

—JJ---J g2(Xl,· - -,Xm)fx(Xl) · · Jx(Xm) 4 * 1 · · · d * m < ° ° U ) 

m times 

where fx(Xi), i = l ,2 , . . . , m are univariate probability densities. Let 
{Pi,k(Xi)}* i = 1, 2 , . . . , m and k = 0 , 1 , . . . , be sets of complete polynomials 
of degree k in L2(R9 P«), which are orthogonal with respect to Ρ^άχ^/άχι = 
fx(Xi), in the sense that 

E[pk(Xi)pdXt)] = j Pk(Xi)pÀXi)fx(Xi) dXi = 0 (2) 

for all k Φ λ = 0 , 1 , . . . and i = 1 ,2 , . . . , m. Then, it is possible to expand the 
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function g(xl,..., χη) as follows: 
oo oo 

g(Xl,---,Xm)=Y< ·"· Σ gkl...kmPkl(X\)'..Pkm(Xm) (3) 
*i=0 fcm=0 

m times 

where {pkl(xi)9..., />*„,(*«)}, fci,. · · , km = 0 , 1 , . . . , are complete sets of 
orthogonal polynomials. Thus, quite formally we have that 

gkx...km = I · · · I g(Xl,' · -,Xm)Pkx(Xl) . -Pkm(Xm) 

Xgl(*l) · · · gm(Xm) άχΧ... dxm (4) 

The coefficients gkx...km determined by Eq. (4) have an interesting minimizing 
property: the minimum value of 

< ? = · · * g(Xl,-.,Xm)- Σ * * * Σ Ckx...kmPkx(X\)."Pkm(Xm) 
J J L fc1=0 km=0 

xfx(Xi) · . Jx(Xm) άχχ... dXm (5) 

is attained only for Ckx...km
 = gkx...km- The corresponding completeness 

relationship is given by 
oo oo 

Σ · * ' Σ glx...km = rm (6) 
fcj-0 km=0 

which assures that the series expansion of g(xi,... ,xm) in L2 converges 
to g(xi9...,xm) in L2. 

Let L2(il, F, P) be the Hilbert space of the random variables {x,} at 
s = s l 9 s 2 , . . . , sf, The SRF X(s ) , se Rn is defined as a function on R" 
with values in the Hilbert space L2(H, F9 P) , viz., 

X:Rn^L2(il9F9P) (7) 

(see also Chapter 2). The manipulations (l)-(7) motivate the following 
definition. 

Definition 1: Letfx(xi9 Xj) be the bivariate probability density of the random 
variables Xi = X(Si) and Xj = X(sj). Let {#,*(*/)} and {j5,-A (*,)}, k,\ = 
0 , 1 , . . . , be two complete sets of orthogonal polynomials in L2(R9fi) and 
L2(R9fj), respectively [where/ =fx(Si) and^/J =fx(Sj) are the corresponding 
univariate probability densities]. The SRF X(s)9 seR" will be called a 
factorable random field (FRF) if (a) the theta function 

ni \ Jx\Xii Xj) / o \ 

fx(Xi)fx(Xj) 
(8) 

(7) 

(6) 
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is in L2(R
2
9fifj); that is, the integral 

r2 = \ \ °2(Xi9 XiMxM'W dXid* (9) 

is finite, and (b) the quantities 

hq(Xi) = J θ(χί9 Xj)fx(Xj)pq(Xj) dxj (10) 

hq(Xj) = J θ(Χί, Xj)fx(Xi)pq(Xi) dXi (11) 

are polynomials of degrees up to q in xt and χ} respectively. 

The completeness of {pk(Xi)} and {ρλ(%)} in L2(R,fi) and L2(RJj), 
respectively, is of great consequence for the convergence of orthogonal 
expansions. This circumstance enhances the significance of the fact that 
any arbitrary orthogonal set in L2 is capable of being completed to an 
orthogonal set, complete in L2 (see, e.g., Alexits, 1981). It is convenient 
that the coefficients 

0kk = J J β(*" *>Ä^'>ÄU)/x(^)/x(^/) dXi dxj (12) 
called the factorability coefficients, be chosen such that 

0k\ = Sk\0k (13) 
where 

e^Elp^x^ixj)] (14) 

and where the polynomials {pk(Xi)} and {pk(Xj)} are subsets of the complete 
sets {pk(Xi)} and {px(xj)}, respectively. Then, condition (13) leads to the 
following proposition (Christakos, 1989). 

Proposition 1: If X(s) is an FRF, complete sets {pk(Xi)} and {px(Xj)} 
k, λ = 0 , 1 , . . . , of orthogonal polynomials in L2(R,fi) and L2(R,fj), respec-
tively, can be defined, such that 

E[Pk(Xi)pAXj)] = 0 when k^X (15) 
and the theta function S(xi9Xj) can be expanded as the bilinear diagonal 
form 

oo 

θ(χ„ Xj) = Σ OuPkixMixj) (16) 
fc = 0 

where 
oo 

ΣβΙ = '2 (17) 
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Definition 2: Definition 1 can be naturally extended to a pair of SRF X(s) 
and y(s), in the sense that, if the joint theta function 

ni I \ fxY\Xi* tfe) / 1 0 \ 

ίχ(Χί)ίγ(Ψ]) 

is in L2(R
2,fi9fj), and the quantities 

hq{Xi) = j 0(*„ ψί)ίγ(ψΐ)ρΜ) d*J (19) 

* ( * , W/xtelAte) «to- (20) W = j 
are polynomials of degrees up to q in χ{ and ψ]9 respectively, then the 
processes X(s) and Y(s) are termed jointly factorable random fields (JFRF). 

The corresponding factorability coefficients 

Qkx — J 0(Xi, ΦΜ(Χι)ρΛΦΜΛχί)ϊν(Φ]) dXi d<t,j (21) 

are such that 6kA = okx6k, where 6k = E[pk(Xi)pk(yj)]. 

Remark 1: Early investigations of bilinear expansions of bivariate densities 
include those of Lancaster (1958), Pearson (1901), and Barrett and Lampard 
(1955). Pearson introduced the so-called tetrachoric series expansion of the 
bivariate Gaussian density. Barrett and Lampard showed how such bilinear 
models can be generated by a physical process. Lancaster modified Pearson's 
contingency coefficient φ2 by using the Radon-Nykodim derivative of the 
bivariate distribution with respect to the univariate distributions; and he 
showed that, if φ2 is bounded, the bivariate distribution can be expanded 
in an eigenfunction expansion. In fact, in the light of the general theory of 
orthogonal expansions, φ2 is related to r2 by r2= \ + φ2. 

The polynomials pk{xi) and Pk(Xj) depend, in general, on the values s = s, 
and 8 = 8,·. So do the theta functions θ(χί9 Xj) and the factorability coefficients 
Bk. In the case that the SRF is homogeneous, the orthogonal polynomials 
are independent of s, and the 0k functions depend only on h = s f-sJ · . It is 
easily shown that 

Po(Xi)=Po(Xj) = l (22) 

ΡΛχί) = ̂ ψ (23) 

and 

/>.(*) = * f[f (24) 

(18) 

(19) 
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In other words, the mean E[·] and the standard deviation σ [ · ] of the 
random variables may be derived from the orthogonal polynomials, and 
vice versa. The preceding results emphasize the importance of the coefficients 
0k in the study of FRF. Some additional properties are summarized below. 

Proposition 2: For the factorability coefficients 6k the following relations 
hold: 

|0fc|<l (25) 

0o=l (26) 

e,= c^f, (27) 

Moreover, 

E[pk(Xi)pk(xj)] = Si*ek (28) 

which is the factorability property of significant consequence in the non-
linear estimation context to be considered in Chapter 9, and 

0k = E[pk(Xi)\xß 
Pk(Xj) 

Proof: See Christakos (1989). 

Interesting results can be obtained in the frequency domain, as well. 

Definition 3: The spectral theta function is defined as 

φ(ωί9 <Oj)=\ I e(xi9Xj) expUfaiXi + cOjXj)] άχ,άχ^ (30) 

which is the two-dimensional Fourier transform of #(*,, Λ)) and Ϊ — ^ΓΛ. 

In the light of the above definition, the following proposition can be 
proven (Christakos, 1989). 

Proposition 3: The spectral theta function can be expressed as 

φ(ωί9ω]) = 4π2δ(ωί)δ(ω]) £ 6kVk (—) Vk(—) (31) 

where i)k{ · ) and r)k{-) are polynomials of degree k, and δ( · ) is the usual 
delta measure. 

In most cases of practical importance, one deals with a symmetric theta 
function, in the sense that 

e(Xi,Xj) = e(xJ9xi) (32) 

This implies that the bivariate density is also symmetrical, 

fx(Xi, Xj) =fx(Xj, Xi) (33) 

(29) 

(30) 
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The univariate probability densities have the same functional fo rm/ c ( · ) 
and so do the orthogonal polynomials Pk(') Consequently, the symmetric 
theta function of an FRF X(s) is an L2(R

2
9fi9fj) function given by 

<x> 

θ(Χι, Xj) = Σ BkPk{Xi)pk{Xj) (34) 
fc = 0 

where {pk(Xi)}, {Pk(Xj)} are complete sets so that Eq. (28) holds. Similarly, 
in the case of JFRF X(s) and Y(s)9 the symmetric theta function becomes 

θ(χ„*j)=TTTTrk= έ ekPk(Xi)pMj) (35) 
JXKXÎUYWJ) k=o 

which belongs to the class of L2 functions too. 
For simplicity, unless stated otherwise, FRF with symmetric theta func-

tions, zero mean, and unit variance is considered for the rest of this chapter. 
Since classification of SRF based on statistical regularity or memory does 
not make specific reference to the detailed form of the probability densities, 
an FRF may be coupled with properties from either one or both of these 
classifications (e.g., homogeneous and/or Gaussian properties). Proposition 
4 below illustrates this fact in the unidimensional case. 

Naturally, in one dimension we deal with factorable random processes 
(FRP). Before we proceed, let us recall some results regarding RP. Let χυ 

be the σ-field generated by {X(v)9 0 < v < s}. First, suppose that X(s) is a 
Markov process; that is, 

E[X(s)\Xu] = E[X(s)\X(v)] 

By definition of factorability, the conditional mean can be expressed as 

E[X(s)\X(v)] = elX(s) 

where θλ = p < 1 is the correlation coefficient between state X(s) and state 
X(v). On the basis of the last two equations the following proposition can 
be proven (Christakos, 1989). 

Proposition 4: Let (Ω, F, P) be a probability space and let X(s), se T be 
an FRP defined on it such that E\X(s)\<oo. If X(s) is a Markov FRP 
with respect to χυ, then it is also a martingale process (with respect to χυ) ; 
that is, it is valid that 

E[X(s)\Xv] = elX(s) (36) 

where L> < s. Note that the X(s) is a supermartingale if θιΧ(ν) < Χ(ι>), and 
it is a submartingale if θίΧ(ν)> X(v). 

Based on Proposition 4, the proof of the following corollary is straight-
forward. 
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Corollary 1: If X(s) is a Markov FRP with respect to χν = σ{Χ(ν), 0< v < s} 
and E\Xk(s)\ < oo9 pk[X(s)] is a martingale with respect to χ„; particularly, 

E{pk[X(s)]\Xv}=ekPk[X(s)] (37) 

Remark 2: It is interesting to compare the result of Proposition 4 with 
Jensen's theorem (e.g., Doob, 1960) of martingale theory, which under the 
same integrability conditions states that if X(s) is a martingale process, 
then the |X(s)| is a submartingale. 

3. Nonlinear Transformations of Factorable Random Fields 

In various applications of nonlinear systems of modeling and estimation, 
one may define an output process Z(s), which is the nonlinear transforma-
tion of the input process X(s). In other words, 

Z(s) = F[X(s)] (1) 

Let zs = F(xs) and zs> = F(xs>). The corresponding univariate densities are 

fzs=f[xs = F ( z s ) ] — 
dzs 

and 

r rr 17-1/ λΊ dF~\zs) 
fzs=f[xs' = F \zs.)]— 

dzs, 
The bivariate probability density is 

dzs dzs> 
OO 

=/«Λ· Σ 0kPk[F-\zs)}pk[F-\zs.)} 
k=0 

which leads to the following proposition. 

Proposition 1: If X(s), se R" is an FRF, the process Z(s), seR" defined 
by a transformation of the form (1), where F [ · } is a strictly monotonie 
function, is also an FRF. The theta function associated to Z(s) has the 
same functional form as that of X(s), particularly if 6(xS9 xs>) is a function 
in L2(R

2JxJXs) the function 

θ(ζ„ zs) = θ[χ5 = F'\zs), xs. = F~\zs)-] (2) 

is in L2(R\fZsfZs). 
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4. Construction of Factorable Random Fields 

Factorability restricts the class of SRF of interest to the ones with theta 
functions 0(xi9Xf) satisfying Definition 1 of Section 2. That is, S(xi9Xj) 
should be a function in L2(R

2
9fifj) and complete sets {pk(Xi)}, {Pk(Xj)} of 

orthogonal polynomials in L2(R,f]), L2(R9fj)9 respectively, should be 
derived. 

Essentially, constructing a factorable theta function means establishing 
an expansion of the form (34), Section 2. In this context a comprehensive 
approach to calculating pk(x), which are orthogonal with respect to fx(x) 
is available in the case that the density satisfies the Pearson differential 
equation 

1 dfx(x) w(x) 
fx(x) dx ν(χ) 

where χε[χι, χ2] and 

The product ν(χ)/χ(χ) vanishes at both boundaries χ1 and χ2\ that is, 

»(χ.)/*(Χι) = «(*2)Λ(*2) = 0 (4) 

For/cOr) to serve as a weighting function for sets of orthogonal polynomials 
{pk(x)}9 the statistical moments of any order must be bounded; that is, 

£ [x" ]<oo (5) 

where n < oo. 
The density functions that satisfy the above restrictions are of significant 

theoretical and practical importance. These include the Gaussian, exponen-
tial, and Pearson (Type I) densities (Jackson, 1941). The corresponding 
orthogonal polynomials are given by 

ρΛχ) = 7^-Λ^-τ[ν"(χ)/χ(χ)] (6) 
fx(x) dx 

Let us first consider the case where the bivariate density is known, the 
0(Xi> Xj) is a n ^2-function and, therefore, the problem is to establish a series 
expansion of the form (34), Section 2. 

Example 1: The given bivariate density is of the Gaussian form 

si \ * Γ X* + Xj-2PXiXj] (n, 
fx(XnXj)= ^ = e x p l— 1\ (7) 

2 W l - p 2 L 1-p2 J 

(1) 

(3) 

(2) 

(7) 
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where -oo<^ l ? ^ < o o , and p is the correlation coefficient. The univariate 
probability density is 

The theta function of L2(R
2,f2

x) is expressed by 

θ{χ»*)=7Γ7>*χρΙ Ί^7) J (9) 

where r 2 = l / ( l - p 2 ) , |ρ |<1· Since fx(x) given by Eq. (8) satisfies the 
conditions (l)-(5), the corresponding orthogonal polynomials can be found 
from Eq. (6): They are the Hermite polynomials Hk(-). In these circumst-
ances, the expression (9) may be expanded as 

oo 

β(χ» Xj) = Σ pkHk(Xi)Hk(Xj) (10) 
k = 0 

Obviously, 6k = pk. 
Equation (10) is the so-called Hermitean model of nonlinear geostatistics 

(Journel and Huijbregts, 1978). In fact, all the isofactorial bivariate probabil-
ity densities used in disjunctive kriging satisfy the factorability hypothesis 
(e.g., Armstrong and Matheron, 1986). Furthermore, the theory of FRF 
provides the means for constructing numerous other bivariate probability 
densities of significant importance in the context of nonlinear geostatistics 
(Christakos, 1986c). 

An interesting situation of building FRF arises when the univariate 
probability density fx(x) is given and the factorability coefficients 6k are 
prescribed. In this case, the polynomials pk(x) can be calculated as before 
and 0(Xi9 Xj) can be constructed as in Eq. (34), Section 2, provided that the 
0k are such that the expansion (34), Section 2, is nowhere negative. 

Example 2: The density 

4\ίπ 
Λ(*)=^-νϊ^7 (il) 

where - 1 < ^ < 1 . Equation (11) satisfies conditions (l)-(5); thus, Eq. (6) 
gives 

p^=JWMcik(x) (i2) 

where G( · ) is the gamma function and Ck( · ) are Gegenbauer polynomials. 
The theta function is written 

^ 2(fc+l)! , 
k=o C/(/c + 2) 

(8) 

(9) 

(10) 

(12) 

(13) 
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where the 6k assigned must be such that Eq. (13) is nowhere negative. For 
this, a proper choice is 

2fc! j 
ek = G(kÏ2)Ck{x) 

Example 3: The density 

/ , (* ) = exp[-*] (14) 

where 0 < ^ —°° is the weighting function for the Laguerre polynomials 
Lk(x). The associated process is a stationary Markov process; thus, using 
some results by Karlin and McGregor (1960), the coefficients 6k are pre-
scribed as 

ek = Qxp[-akr], (15) 

where ak is a function of k and τ= *,· — *,·>(). For the 6k of Eq. (15), Eq. 
(34) of Section 2 becomes 

OO 

Kn, Xj) = Σ cxp[-akT-\Lk(Xi)Lk(Xj) (16) 
k = 0 

and the corresponding FRP is a martingale. 

Remark 1: The choice of factorability coefficients (15) produces a rich class 
of FRP. Equation (34), Section 2, after some manipulations, can be written 
as the integral equation 

ί WXi> Xj)*k(Xj) àXj = Okek(Xi) 

where 

y/fx(Xi)fx(Xj) 

is the kernel and 

are the eigenfunctions. The 6k play here the role of the corresponding 
eigenvalues, which must form a complete set and should not depend on 
T=ti-tj. If 0k are given by (15), the process is Markov with transition 
probability density 

oo 

l(Xi, Xj\ T) =fx(Xj) Σ exp[-<*kT]Pk(Xi)Pk(Xj) (18) 

satisfying the well-known Kolmogorov equations (see, e.g., Gihman and 
Skorohod, 1974a). The class of theta functions corresponding to (18) is of 

(17) 
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Ö(Xi,Xj)= Σ exp[-akT]pk(Xi)pk(Xj) (19) 

and Eq. (16) is a special case of (19). 

For a given univariate density fx(x) there may be more than one possible 
factorable theta function. 

Example 4: Starting from the Gaussian univariate density (8) one may derive 
the theta function 

e(Xi,Xj)=tLp2kH2k(Xi)H2k(xj) (20) 

where the Hermite polynomials are of even order. The associated FRP is 
different from that generated by Eq. (10), since the bivariate density that 
corresponds to (20) is no longer Gaussian, but it is given by 

Furthermore, by comparing Eqs. (10) and (20), one finds that, Eq. (20) = \ 
[Eq. (10), with correlation coefficient p] + i [Eq. (10), with correlation 
coefficient-p]. 

A short list of FRF together with the associated univariate probability 
densities and orthogonal polynomials is given in Table 4.1 Moreover, by 

Table 4.1 FRF with the Associated Univariate Probability Densities and Orthogonal 
Polynomials 

UPD 

Normal 

Gamma/ chi-squared 

Negative exponential/Rayleigh 
Uniform 

Weighting function 

e X P["t] 
* * β χ ρ [ - * ] , * > 0 

exp[-*L*>0 
1 , - 1 < * < 1 

1 
— 1 < v < 1 

1 - , A ^ λ ^ A 

* k l o g * , * > o 
( i - * ) f c O + * ) \ - i < * < i 

ρΛχ) 

Hermite 

Generalized 
Laguerre 
Laguerre 
Legendre 

Gegenbauer 

Chebyshev 

Stieltjes-Wigert 
Jacobi 

(21) 
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using Proposition 1 of Section 3, various factorable processes may be 
constructed. For instance, we may take any of the examples of this section 
and apply a monotonie transformation: The resulting process will be an 
FRP too. Several other examples are given in Christakos (1986c). 

5. The Nonlinear State-Nonlinear Observation System 

Nonlinear phenomena occur quite frequently in earth sciences. Examples 
include the forecasting of block grade distributions (Matheron, 1975), 
streamflow estimation and flood forecasting (Mein et al, 1974; Bras and 
Georkakakos, 1980), soil parameter identification (Christakos, 1985), and 
herring-bone cloud formations (Infeld and Rowlands, 1990). 

Typically, nonlinear characteristics are represented through 

(a) direct transformations, if the nonlinearities can be expressed by 
explicit functions that are analytically tractable; 

(b) power series expansions, such as Taylor series and polynomial series; 
and 

(c) integral transformations, such as Fourier and Laplace transforms. 

In addition to these methods, the results of the preceding sections can 
be used to study nonlinear characteristics of stochastic systems by means 
of FRP. Let us consider the on-line nonlinear state-nonlinear observation 
system (NSNOS) of the scalar form 

X(s) = G[X(s-l),s-l]+W(s-l) (1) 

Y(s) = B[X(s),s]+V(s) (2) 

where X(s) and Y(s) are FRP, and the W(s), V(s) are white noises; W(s) 
and V(s) are assumed to be independent, and W(s) is independent of the 
initial condition X(0). 

Results regarding NSNOS are derived by making the following assump-
tions (Christakos 1989). 

Assumption 1: The processes X(s) and Y(s) are FRP in the sense defined 
in the previous sections. 

Assumption 2: The state G[X(s -1), s - 1 ] and the observation B[X(s), s~\ 
are L2(R,fx(x)) functions, in the sense defined above. 

Proposition 1: Retain the assumptions of NSNOS above. If GKs-x and Bk s, 
k = 0 , 1 , . . . are expansion coefficients of the L2 functions G[X(s -1), s - 1 ] 
and B[X(s), s] , respectively, then 

G[X(s-l),s-l] 
O^-i-Oifcfl! -Olk [3) 

X(s-l) 
(3) 



" J 
The fx(xs\xs-i) can be computed from Eq. (1), namely, 

fx(Xs \Xs-i) =/w(«s-i) at W(s - 1 ) = X(s) - G[X(s -1), 5 - 1 ] 

Equation (5) then gives 

ί Xsfx(Xs\Xs-i) dxs = G(xs-!,5-1) (6) 

Also, on the strength of Eqs. (28) of Section 2 above and 

fx(Xs\Xs-l) = 0(Xs, Xs-l)fx(Xs) 

the left-hand side of (6) yields 
r oo 

Xsfx(Xs\Xs-l)dxs=Yd 0 f cPfc (*s - l ) 
J k=0 

X J XsPk(Xs)fx(Xs) dXs = 6>ί^-ι = σ(*5_! , 5 - 1 ) 

where Proposition 1 has been used. The state model (1) is compatible with 
the assumption of an FRP. 

Since Eq. (1) generates a Markov process with respect to the σ-field 

Zs_l = a{X{u),0^u^s-\) 

by Proposition 4 of Section 2, we have 

E[X(s)\Zs_l] = 0ïxs.1 (7) 

thus leading to the corollary below. 

(5) 

and 

Equation (1) can be used to evaluate the univariate density fx(xs) in terms 
offx(Xs-i). By applying Bayes rule, we have 

BUs = E{B[X(s)9s]X(s)} 

where 

and 
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(4) 
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Corollary 1: If X(s) is an FRP, Eq. (1) generates a martingale process with 
respect to the σ- field 

Zs_! = CT{X(M), 0 < u < s - 1 } 

The following corollary is a direct consequence of Proposition 1. 

Corollary 2: Retain Assumptions 1 and 2. The NSNOS (1) and (2) reduces 
to the linear state-linear observation system (LSLOS) 

X(s) = as-lX(s-l)+W(s-l) (8) 

Y(s) = bsX(s)+V(s) (9) 

where as^ = 0f = GM_!, and bs = 0 f = Bls. 
Corollary 2 is particularly important within the estimation context, as we 

see in Chapter 9. 



The Spatiotemporal 
Random Field Model 

1. Introduction 

"The views of space and time which I wish to lay 
before you have sprung from the soil of experimental 
physics, and therein lies their strength. They are 
radical. Henceforth space by itself, and time by itself, 
are doomed to fade away into mere shadows, and only 
a kind of union of the two will preserve an independent 
reality. " 

H. Minkowski 

This chapter is devoted to the study of spatiotemporal natural processes, 
that is, processes that develop simultaneously in space and in time. In 
Section 2 we discuss the emergence of spatiotemporal natural processes in 
various branches of applied physical sciences and address the fundamental 
hypotheses and problems regarding the quantitative description of such 
processes. Several practical issues of spatiotemporal data analysis and 
processing are presented and the variety of potential applications is 
reviewed. The latter is followed by a critical discussion of the inadequacies 
of previous works on the subject. 

To proceed with the rigorous mathematical modeling of natural processes 
that change in space and time, one must elaborate on a theory of spatiotem-
poral random field (S/TRF). This theory is presented in Section 3 through 
6. The preceding mathematical results then act as the theoretical support 
for the discrete parameter representations, as well as the optimal space-time 
estimation and simulation methods discussed in a more practical context 
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in the second part of the present chapter (section 7), and in Chapters 8 and 
9, respectively. 

The presentation in this chapter is intended to be sufficiently general to 
allow the application of the analysis to space-time problems not mentioned 
in this book. 

2. Spatiotemporal Natural Processes—A Review 

Spatiotemporal processes, that is, processes that develop simultaneously in 
space and time, occur in nearly all the areas of applied sciences, such as 
hydrogeology (e.g., water vapor concentrations, soil moisture content, and 
precipitation data consisting of long time series at various locations in 
space); environmental engineering (e.g., concentrations of pollutants in 
environmental media—water/air/soil/biota); climate predictions and 
meteorology (e.g., variations of atmospheric temperature, density, moisture 
content, and velocity); and oil reservoir engineering (e.g., porosities, per-
meabilities, and fluid saturations during the production phase). 

In this context, important issues include the assessment of the spatiotem-
poral variability of the earth's surface temperature and the prediction of 
extreme conditions; the assessment of space-time trends in runoff on the 
basis of a spatially and temporally sparse database; the estimation of the 
soil moisture content at unmeasured locations in space and instants in time; 
the reconstruction of the whole field of a climate parameter using all the 
space-time data efficiently; the study of the transport of pollutants through 
porous media; the elucidation of the spatiotemporal distribution of rainfall 
for satellite remote-sensing studies; the optimal sampling design of meteoro-
logical observations; and the simulation of oil reservoir characteristics as 
a function of spatial position and production time. 

The issues above are parts of the general problem of analysis and processing 
of data from space-time physical phenomena. In all these situations, the 
spatiotemporal pattern of change of the natural processes involved possesses 
a certain structure at the macroscopic level and a purely random character 
at the microscopic level. The latter implies a significant amount of uncer-
tainty in spatiotemporal variation. Moreover, this variation is, in general, 
space nonhomogeneous and time nonstationary (there may exist complex 
trends in space, time-varying correlation structures, significant space-time 
cross-effects, etc.). Practicing scientists and engineers need to have a working 
understanding and quantitative assessment of this uncertainty and its impli-
cations. For example, spatiotemporal variability plays an extremely substan-
tial role in the understanding, modeling, and prediction of surficial processes 
in space-time. It is also very important in improving our basic knowledge 
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regarding the climatological influences on the hydrogeology of a region. If 
neglected, spatiotemporal-parameter variability of water management 
models may adversely influence management decisions. 

Typically, space-time data analysis and processing problems have been 
handled under some convenient but rather simplistic assumptions. In hydro-
geology and water resources research, common statistical methods of analysis 
create artificial decompositions of hydrologie processes—one in space and 
one in time—and study them separately (Rodriguez-Iturbe and Mejia, 1974; 
Delhome, 1977); or focus on time averages (monthly, seasonal, annual) of 
the hydrologie parameters; or make additional assumptions, like space 
homogeneity and weak time dependency (e.g., Bras and Rodriguez-Iturbe, 
1985). The multivariate analysis concept that has been used in a number 
of hydrologie problems (e.g., Quenouille, 1957; Fiering, 1964) accounts for 
the vector formulation of the scalar time series model, where the component 
time series are correlated to each other. Variability in space is not taken 
into consideration and the modeling of the combined evolution of these 
series in space and in time is clearly not an issue addressed by multivariate 
analysis. Similar decomposition has been applied in some recent studies 
on the assessment of Ireland's wind power resource (e.g., Haslett and 
Raftery, 1989). Moreover, classical statistics and time-series methods have 
failed to provide a conceptual framework determining the correlation struc-
ture of the spatiotemporal heterogeneity of soil-water properties from local 
to global scales. 

In environmental research the existing models (e.g., Bennett and Chorley, 
1978; Gilbert, 1987) either apply traditional methods of classical statistics, 
which are incapable to capture important features of the space-time struc-
ture or have been designed to handle problems that are significantly different 
in nature than those arising in the spatiotemporal data analysis and process-
ing context considered above. In particular, the class of classical statistics 
models does not determine any law of change of the environmental pa-
rameters, and the relative distances of the sample locations/instances over 
space-time do not enter the analysis of the correlation structure. Under 
certain circumstances, stationarity may be impossible to define (Granger, 
1975). 

The second class of environmental models available concern either 
specific space-time interaction systems where the input/ output physical 
parameters are treated at each spatial location as separate time series, or 
the description of the system's transfer function by means of some special 
space-time patterns. These models do not provide an adequate quantitative 
assessment of spatiotemporal variability in general, and they do not account 
for the space nonhomogeneous and/ or time nonstationary characteristics 
of the environmental parameters in particular. In some recent environmental 
studies the spatio-chronological order of the data is not properly considered, 
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and arbitrary but not well justified decompositions of the correlation func-
tions are assumed. Moreover, optimal reconstruction schemes general 
enough to cover the majority of applications have not been developed (see, 
e.g., comments made in Shinn and Lynn (1979), also by Bilonick (1985), 
and by Rouhani and Hall (1989) in a geostatistical framework). Space-time 
models based on the distributed parameter concept (Stavroulakis, 1983) are 
not in general appropriate for most environmental problems. These models 
are assumed to be governed by a differential equation of a particular form 
that does not represent adequately the majority of the spatiotemporal natural 
processes of interest; issues of stability, controllability, and observability 
involve serious difficulties. 

In reservoir characterization, space-time data processing does not exist at 
present. Most of the techniques available exclusively account for the spatial 
variation of geological reservoir processes, when in reality these processes 
are simultaneously a function of spatial location and production time 
(Journel and Alabert 1988; Lake and Carrol, 1986). Also, current practices 
in data collection—with the exception of some oil sand deposits—do not 
account for time. One of the reasons that space-time models do not exist 
at present in reservoir characterization is because the need for detailed and 
advanced reservoir characterization has been recognized only recently. 

The methods used for statistical climate modeling and prediction are usually 
somewhat primitive versions of the methods used for weather analysis and 
prediction (e.g., Gandin, 1963; Lindzen, 1989; Von Storch et al, 1989). Many 
of them suffer the same limitations with the methods used in hydrology. 
For example, the basic ansatz of multivariate techniques such as "principal 
oscillation pattern" and "principal interaction pattern" (Von Storch et al, 
1989) is based on the arbitrary assumption that the space-time characteristics 
of a low-order system are the same as those of the full system. Also, important 
issues such as the characterization of spatiotemporal intermittency or spotti-
ness in rainfall as it pertains to various notions of scaling as well as the 
physically observed features of clustering, growth, and decay of convective 
cells, and larger-scale spatiotemporal forms observed in mesoscale rainfall 
systems cannot be addressed by the existing statistical methods (see, e.g., 
NRC, 1991). 

In global warming research, aspects of current interest are as follows: 

(a) Many eminent authors claim that while one cannot assert that no 
warming occurred, the existing statistical analysis of earth's surface 
temperature data does not provide adequate assessments regarding 
temperature's space-time variability and it does not lead to convincing 
arguments supporting the concept that changes at the macroscopic level 
are due to greenhouse warming rather than to space-time natural 
variability (e.g., Lindzen, 1989). 
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(b) In water resources management the existence of a warming trend 
raises the question whether the global warming has been sufficient to 
translate into a corresponding change in the spatiotemporal structure of 
runoff series. Again, current statistical analyses of runoff series are subject 
to serious questions given that they are based on observations relating to 
a spatially and temporally sparse database and they assume no model about 
the underlying spatiotemporal evolution of the runoff series. 

Clearly, the temperature data (a) and the rainfall series (b) studies above 
are typical examples of analyses where the theoretical models used are 
incapable of providing adequate representations of the spatiotemporal 
variability and, hence, they cannot give satisfactory answers to crucial 
questions concerning climate and water resources problems. 

The main reasons for such—clearly inadequate from various viewpoints— 
analyses of spatiotemporal data should be attributed to the following facts: 

(i) the importance of spatiotemporal variability in the study of 
space-time phenomena was not fully appreciated until recently; and 

(ii) most of the theoretical tools and mathematical techniques of data 
processing available have been designed to operate exclusively in time 
(time series methods; e.g., Grenander and Rosenblatt, 1957) or 
exclusively in space (random fields, geostatistics; e.g., Matheron, 1973; 
Ivanov and Leonenko, 1989). 
Undoubtedly, the literature on the subject of applied space-time data 
analysis and processing is very limited and most aspects of importance in 
the analysis, modeling, and estimation of spatiotemporal parameters have 
not been studied adequately. 

In view of the foregoing considerations, the following conclusions are 
drawn: 

(a) Any modeling assumption should reflect adequately the 
macroscopic and microscopic evolution characteristics of the underlying 
processes over space and time. Spatial and temporal scales of variability 
should be intimately connected. This is a requisite for the understanding 
and prediction of spatiotemporal processes in hydrogeology, climate 
modeling, and environmental pollution monitoring and control. 

(b) Due to the random character in the variability of the data at the 
microscopic level, these processes must naturally be described 
stochastically; the concept of randomness should be viewed as an 
intrinsic part of the space-time evolution, and not only as a statistical 
description of possible states. 

(c) The proper model should be capable to assess quantitatively any 
space-nonhomogeneous/time-nonstationary variability features and to 
provide efficient solutions to practical problems, such as space-time 
estimation. 
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Taking these issues into account, it seems quite reasonable that the concept 
of an S/TRF is the appropriate stochastic model for spatiotemporal pro-
cesses. Within the framework of the S/TRF model (see Fig. 5.1), space and 
time form a combined process having simultaneous and interrelated effects 
on the evolution of the natural variable it represents. Suitable methodologi-
cal hypotheses and operational tools assure that the mathematical concept 
of S/TRF is compatible with the physics of the variate it describes and, 
thus, it is applicable in practice. Finally, conclusions regarding the 
spatiotemporal variability (trends in space, periodicities in time, non-
homogeneous/ nonstationary correlations, etc.) can be established in terms 
of duality principles that relate the mathematical notions and the physical 
behavior of the process they model (see Chapter 1, the methodology of the 
stochastic research program). Here, stochastic spatiotemporal correlation 
functions provide the means for structural inferences. 

In general, the objectives of spatiotemporal data analysis and processing 
include two important aspects: 

(a) To assess quantitatively the spatiotemporal variability of the 
natural processes of interest (degree of regularity, continuity, 
nonhomogeneous spatial features, nonstationary characteristics, etc.). 

I SPATIOTEMPORAL VARIATE I 

1 PHYSICAL BEHAVIOR j 

SPATIO-CHRONOLOGICALI 
ORDER I 

I MATHEMATICAL INTERPRETATION! 

SYSTEMATIC 
STRUCTURE 

IN SPACE-
TIME I 

HYPOTHESES AND 
OPERATIONAL TOOLS 

FOR STOCHASTIC 
INFERENCE 

SPATIOTEMPORAL RANDOM 
HELD (SfTRF) 

Figure 5.1 Modeling spatiotemporal natural processes by means of S/TRF 
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(b) To provide efficient and computationally attractive procedures for 
deriving optimal (in a well-defined mathematical sense) and physically 
meaningful estimation maps of the natural process, at unknown points in 
space and/or instants in time, based on fragmentary space-time data. 

Of course, the outcome of space-time data analysis and processing may 
be not an end in itself. Several important consequences will emerge in the 
context of earth sciences. More specifically, 

(i) A deeper understanding of the physics of the space-time processes 
will be obtained. For instance, knowledge about the spatiotemporal 
variability of the various climate parameters will improve our basic 
understanding of how the global climate actually functions. 

(ii) The predictive capabilities of many computer-based differential 
equation models in hydrology and environmental research are limited 
because the parameters of the models are difficult to determine. Much of 
this difficulty may stem from (a) the spatiotemporal variability of the 
media, and (b) identifiable differences in initial physical assumptions. It 
is, hence, of significant importance to understand how (a) and (b) 
influence the outcomes of modeling. 

(iii) Space-time data analysis and processing will provide the 
necessary means for solving important problems in various areas of water 
resources. Information about the spatiotemporal-parameter variability of 
a water resource system will allow the detailed simulation of the system 
and will influence considerably management decisions. The assessment of 
the spatiotemporal variability of pollutant concentrations will provide the 
knowledge needed to monitor and control environmental pollution. 
Storm runoff depends on the space-time structure of rainfall and other 
parameters. Random space-time rainfall patterns can be used in 
evaluating strategies for satellite remote-sensing of rainfall and for 
development of procedures for converting radiant intensity received by 
an instrument from its field of view into rainfall amount. S/TRF 
simulations of the anticipated effects on surface temperature due to the 
increase of carbon dioxide in the atmosphere over a specific time period 
will provide valuable insight into the study of global warming issues. In 
connection with this, the possible effects of the coupled increase of 
precipitation and temperature on the hydrology of a particular region 
can be determined; then, conclusions could be derived about the 
incorporation of climatic changes into the planning of future earth 
systems, and the modification of the operating rules of existing water 
resource systems. 

An S/TRF is termed continuous parameter or discrete parameter accord-
ing to whether its space-time arguments of an S/TRF take continuous or 
discrete sets of values. The first part of this chapter (Sections 3-6) treats 
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continuous parameter S/TRF and certainly constitutes a legitimate mathe-
matical activity on its own merit—but this has not been our only purpose. 
The first part will act as the theoretical support to the discrete parameter 
spatiotemporal variability models developed in a more practical context in 
Section 7. 

3. Ordinary Spatiotemporal Random Fields 

3.1 The Basic Space-Time Notions 

Let s = (sx, s2,..., sn) e Rn (Rn is the Euclidean space of dimensionality 
n>\) with 

| S | = A / £ S 2 and teT 
i = l 

( T c R i t 0 = { i e Ä 1 : i > 0 } ) 

In the Cartesian product R" x T let (s, t) e R" x T denote space-time coor-
dinates, such that |(s, i)|2 = |s|2+f2. We also define 

where ß is a nonnegative integer and a. = (αλ, α 2 , . . . , otn) is a multi-index 
of nonnegative integers such that |α| = Σ"=ι αχ an<^ α · = <χλ\α2\... α„ !. Let 
(Rn, Φ, φ) and (T, Ψ, ψ) denote the corresponding measured spaces in R" 
and Γ, respectively. 

In the Cartesian product R" x T let 3 be the set of all A x B with AeR" 
and BeT. For these sets we define the spatiotemporal measure μ(Α x B) = 
φ(Α)ψ(Β)9 which is countably additive on & Ο η ^ χ Γ let Φ®Ψ be the 
σ-field generated by the set $. Then Φ®Ψ is termed the product σ-field 
on Ä" x T. The measure μ, on Φ® Ψ will be called a product measure </> x ψ. 
The spatiotemporal measure μ can be expanded to a countably additive 
measure on the product σ-field Φ®Ψ generated by 3 but, in general, such 
an expansion is not unique. Here, however, we will assume that the necessary 
conditions under which this extension is unique are satisfied and, therefore, 
it can be written in terms of iterated integrals in R" xT. Let (Rn, Φ, φ) and 
(Τ,Ψ,ψ) be cr-finite measured spaces, and let X(s, t) be an ordinary 
spatiotemporal function from Rn xT into [0, oo]. We can view X(s, t) either 
as a random field in an w + 1-dimensional space, or as a time-dependent 
random field in an n -dimensional space. The latter view is more convenient 
for nonrelativistic problems. The X(s, t) is measurable for Φ®Ψ; that is, 

X(s9t)eLx(R
nxT9 Φ®Ψ, μ = φχφ) 
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Then 

f X(S, t) άμ(β, t) = f I X(S, t) <ty(s) # ( f ) 
J RnxT J Rn J T 

-Ü, X(s, 0 άφ(ί) d^(s) 

(Naturally, the support of the X(s, t) is the closure of the set of all 
(s, t)eRnxT that satisfy X(s, t) Φ 0.) To prove that 

X f o O e L ^ / r x T , Φ®Ψ, μ = φχφ) 

we can prove that X(s, f) is <ï>®^-measurable and such that 

[ f l*(M)l 
J R" JT 

d<£(s) d\p{t) <oo 

or 

f | | X ( s , i ) | # ( 0 ^ ( s ) < o o 

(For simplicity, in the following the symbol RnT under the integrals will 
usually be omitted.) 

We define some spaces of spatiotemporal function X(s, t) in Rn x T, 
which are useful within the framework of the present study: the space C 
of all real and continuous functions in space-time with compact support; 
the space K of all real, continuous and infinitely differentiable functions 
in space and time with compact support; the space 5 of all real, continuous, 
and infinitely differentiable functions which, together with their derivatives 
of all orders, approach zero more rapidly than any power of l/|(s, i)| as 
|(s, f)|->oo. Notice that S => K9 as all functions in K vanish identically outside 
a finite support, whereas those in S merely decrease rapidly at infinity. 
Spaces K and S are of particular importance in this study. The topology 
in K and S is in the sense of Schwartz (1950-51) where, in view of the 
aforementioned space-time considerations, the argument is now (s, t) e 
R" x Γ. 

In the special case that the time-instant t e T is fixed, the symbol 
S/f = ( 5 l / i J S2/t9 - · · > Sn/t) 

may be used to denote the spatial position in Rn. Then 
n 

S / i ' S / i = 2-» Si/tSi/t 
i = l 

is the scalar product of vectors s/f and S/f, 
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is the distance between s/f and S/f, and 

ls/rl = yJY-Svt 
i = l 

is the length of the vector s/r. Similarly, the symbol t/s may be used in the 
case where t varies while s is fixed. 

By considering the space-time coordinates (s, t) as auxiliary variables 
for the geometrical description of the spatiotemporal distribution of a 
natural process, one may assume that the process is projected on the domain 
(s, t). Then, since the (s, f)-domain is an auxiliary element, there may be 
constructed other domains on which natural processes could be projected. 
As we shall see in the next section, such a domain is, for example, the 
Fourier (or frequency) domain (w, λ), where w and λ are frequency charac-
teristics. Another useful domain can be constructed in terms of the space 
transformation operator; this is the (s · θ, Θ, t)-domain (see Chapter 6). The 
(s, t)-9 (w, λ)-, and (s · θ, Θ, i)-domains provide equivalent representations 
of the natural process defined on them. And while one's intuition is better 
adopted to the (s, 0-domain, in many cases it is more convenient to work 
in the other two domains. 

3.2 Definition of Ordinary Spatiotemporal Random Fields and Certain of 
Their Physical Applications 

Let z = (s, t). We denote by 3€k = L2(ü, F, P) the Hubert space of all con-
tinuous-parameter random variables χλ,..., xm defined at τχ,..., zm and 
endowed with the scalar product 

(xi,x2) = E[x1x2]= I I XiX2dFx(xl9x2) (1) 

where Fx(xl,x2) denotes the joint probability distribution of the random 
variables xx and x2, while 

||x||2 = £|x|2 = j x2dFx(x)<°c (2) 

where Fx(x) denotes the probability distribution of x. Usually Fx(x) and 
Fx(xi, χ2) are assumed to be differentiate so that they can be replaced by 
the probability densities fx(x) &ηά/χ(χΐ9χ2). 

Definition 1: The ordinary S/TRF (OS/TRF) X(s, t) is defined as the 
function on the Cartesian product Rn xT with values in the Hubert space 
£2(Ω, F, P), viz., 

X : / r x T - » L 2 ( a , F , P ) (3) 
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Just as for SRF (Chapter 2), an S/TRF X(z) = X(s, t) is specified com-
pletely by means of all finite dimensional probability measures μχ(Β) 
associated with the families of random variables xl9...,xm at τχ,..., zm; 
viz., 

μΛΒ) = ßZl,...,Zm(B) = P[(xx , . . . , xm)e £ ] 

for every B e %m ( $ m is a suitably chosen σ-field of subsets of Rm) and all 
m = 1, 2, The corresponding probability density functions are written as 

fx(Xl>- >-9Xm)dxl... d\m =fXl,...,Zm(Xi,. ..9Xm)dXi... ifrm 

= P[Xl ^ *(Zl) ^ Xl + dXi , . . . , Xm < X ( z m ) < Xm + i/^m] (4) 

for all m. All OS/TRF to be considered will be continuous in the mean 
square sense; that is, E\X(s\ t')-X(s9 t)\2^Q, when s'-»s and t'^t. 
Moreover, OS/TRF are, in general, taken to represent space-
nonhomogeneous/ time-nonstationary natural processes (e.g., spatiotemporal 
history of soil shear stresses during an earthquake, oil reservoir porosity 
distribution in space-time during the production phase). The simplest 
examples of space-nonhomogeneous/time-nonstationary fields are those of 
the form 

X ( s , i ) = y ( s , t)+pVtH,(s, t) 

where Y(s91) is a space-homogeneous/time-stationary OS/TRF (Section 
3.3 below) and / ^ ( s , t) is a polynomial of degree v in s and μ in t, with 
random coefficients. The space of all continuous OS/TRF will be denoted 
by X. 

The stochastic model of Eq. (3) will be equipped with these analytical 
tools, which will allow it to describe adequately the manner in which the 
underlying natural process develops over space-time. This development is 
a reflection of a certain pattern of combined spatiotemporal correlations 
between values in the natural process. In the sequel we will consider 
second-order OS/TRF; that is, the analysis will be based on up to second-
order statistical moments assumed to be continuous and finite. More pre-
cisely, an OS/TRF X(s, t) will be characterized in terms of its spatiotemporal 
mean value 

mx(s, 0 = E[X(s, 0 ] = J Xfx(x) dX (5) 

the centered spatiotemporal covariance function 

cx(s, t; s', /') = E[(X(s, 0 - mx(s, t))(X(s', t') - mx(s', *'))] 

= 11 (X\-mx){x2-m2)fx(xl9x2)dxxdx2 (6) 
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and the spatiotemporal semivariogram or structure function 

yx(M; s\ i') = 5£[X(M)-X(s ' , i')]2 

-iff ür,-X2)2fx(Xi9X2)dxldx2 (7) 

In some cases of nonzero mean the operator £ [ · ] may be replaced by 
Var[ · ]. When s = s' and t = t\ 

cx(s, t; s, r) = £ [X(s , 0 - mx(s, f)]2 = Vx(s, t) 

where Vx(s, t) is the spatiotemporal variance of the S/TRF X(s, t) at 
point/instant (s, t). A continuous function cx(s, t\ s', t') is the covariance 
function of an OS/TRF if and only if it satisfies the nonnegative-definiteness 
condition 

m ki m kr 

Σ Σ Σ Σ «</9ίτ^(8.··(/;8Γ,ί/)^ο (8) 
i = l 7 = 1/ f ' = l j'=\v 

for all m, fcf, fci'( = l ,2 , ...)> all (s,·, *,·)£ # " x T, and all numbers (real or 
complex) qij9 qVj>\ here fc, denotes the number of time instants tj9j = li9 

2 , · , . . . , fc,· used, given that we are at the spatial position s,. 

Remark 1: Interesting special cases of the spatiotemporal covariance 
cx(s, t\ s', t') are the purely spatial covariance (fixed t), namely, 

cx(s/t, s;f) = E[(X(s/t) - mx(s/f ))(X(s;f - mx(s;t ))] 

and the purely temporal covariance (fixed s), namely, 

cx(t/., t'/s) = E[(X(t/s) - mx(t/s))(X(t'/s)-mx(t
f
/s))] 

Instead of the centered covariance function one may also define the noncen-
tered spatiotemporal covariance function 

σχ(*, t; s', t') = £ [X(s , i)X(s', t')] = cx(s, t; s', t') + mx(s, t)mx(s\ t') (9) 

The other mode of second-order analysis is that in the frequency domain. 
The harmonic expansions of X(s, t) can be considered as an extension in 
the space-time context of the relevant results for SRF presented in Chapter 
2. In particular 

X(s, 0 = exp [ / (ws + Ai)]A'(w,A)dwdA (10) 

where i =V--T, and X(w, A) is the so-called spectral amplitude of X(s, 0 · 
[For certain spatiotemporal RF, it may be more convenient to use the factor 
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exp[-/Ai] than exp[i\t] in the harmonic expansions of X(s, t).] The corres-
ponding spectral density function Cx(w, λ; w', λ') is defined by 

cx(s, i;s' , t')= exp [ / (ws + w' · s' + λί + λ'ί ')] 

x Cx(w, λ; w', A') dw dk dW dk1 (11) 

where Cx(w, A; w', A') is a positive summable function in RnxT. The 
Cx(w, A; w', A') forms an Rn x Γ-fold Fourier transform pair with the 
spatiotemporal covariance cx(s, t; s', t'). 

The example below discusses the emergence of the S/TRF model in the 
context of nonlinear wave phenomena. The latter play a very important 
role in applied sciences, including hydrodynamics, meteorology, and 
geophysics. 

Example 1: Consider the stochastic Kortweg-de Vries (KdV) equation 
modeling dispersive waves in a nonlinear one-dimensional medium 

5ϊ£ΰ-«,Μ)«^+ΐ·3£!ί_™ (12) 
dt dS dS 

where the S/TRF X(s, t) represents the wave field, and the Y(t) is a 
zero-mean stationary and Gaussian random process. Given suitable initial 
conditions the solution of Eq. (12) is (Orlowski and Sobczyk, 1989) 

X(s, t)= V(t)-2k2sech2[ks-4k3t + kw(t)] (13) 

where k is a function of known wave parameters, 

V(t)= I Y(u)du 

and 

w(0 = 6 I V(u)du 

)= [ Y{u) 
Jo 

\ = 6 V(u) 
Jo 

The mean of the S/TRF X(s, t)9 mx(s, t) is plotted in Fig. 5.2, where Y(t) 
is assumed to be a white-noise process with covariance cY(t, ί') = 2δ(τ), 
r=t-t'. 

Additional examples that offer an idea of the variety of applications of 
the S/TRF model are discussed below. 

Example 2: In climate modeling, the OS/TRF X(s, t) may denote the 
space-time distribution of earth's surface temperature. Space-time correla-
tion analysis can provide valuable information regarding the spatiotemporal 
patterns followed by temperature. 
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-m x (s , t ) 

Figure 5.2 The mean value of the S/TRF X(s, t) of Eq. (13) 

Moreover, if V(s) denotes the space sampled around point s during the 
time period T(t) (say, t±8t), the V(s) · T(t) will denote the space-time 
support of the sample, and the average temperature within V(s) · T(t) will 
be 

*(s> 0 = w * f f Ss,,X(s', t>) ds' dt' (14) 
V(s)T(t) Jv(S) Jno 

On the basis of X(s, t)9 maps of the averaged surface temperature over 
space and time may be constructed. 

Example 3: In hydrology, the S/TRF X(s, t) may represent the precipitation 
intensity at location s at time t. Then the total streamflow for an area V 
over the time period T may be written as 

'"UZ1* t)X(s, t) ds dt (15) 

where / ( s , t) is a weighting function. 
Similarly, if X(s, t) is the rainfall rate at location and time t, the average 

rainfall over an area V during the time period T is given by 

R-^T)v)r 
X(s, t) ds dt (16) 

(e.g., Bell, 1987). 
Moreover, weather processes such as dynamic, thermodynamic, and cloud 

microphysical processes operate over a variety of spatiotemporal scales, 
which are strongly related to each other; but they also interact with other 
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variables like soil moisture, surface orography, and roughness discon-
tinuities. The spatiotemporal structure of these processes must be explored, 
if we hope to understand the physical interactions between hydrology, 
weather, and climate, and to construct reliable predictions. 
Example 4: In meteorology, X(s, t) could be the wind velocity at site s on 
day t Then knowledge of the space-time correlation structure of the S/TRF 
X(s, t) can be translated into quite precise knowledge of the average 
available kinetic energy in the wind at a new site (e.g., Haslett and Raftery, 
1989). 

Example 5: In environmental studies, the S/TRF X(s, t) may represent the 
sulfate deposition at location s and time t. Then, analysis of the spatio-
temporal covariance and semivariogram functions may provide valuable 
information regarding the patterns followed by the sulfate deposition and 
produce useful sulfate deposition maps (e.g., Bilonick, 1985). 

S/TRF models can be used to simulate air-pollution processes from 
routine monitoring data. Consider, for example, data for sulfur dioxide 
(S02) and assume that the region is one-dimensional along, say, the east-
west coordinate; S0 2 concentrations X(s, t) are described by the atmos-
pheric diffusion equation 

dX(s, t) , „dX(s, t) d2X(s9t) 
— — — + V — P-—2—= γ(*> 0 (17) 

dt ds ds 
where V is the wind velocity, μ is a diffusion coefficient, and Y(s, t) is the 
rate of emission of S02 (e.g., Omatu and Seinfeld, 1981). 

The quantity 

* = £ j ) J^+ß?jX(*9t)dsdt (18) 

[X(s, t) is the concentration of aerosol substance, ßt are coefficients that 
account for the fraction of the aerosol that gets into the soil] provides a 
global measure of the environmental pollution over the ecologically impor-
tant (non-overlapping) zones Dt during the time periods Tt (i = 1 , . . . , k). 
X accounts for the total amount of aerosol that settles on the surface of 
the earth, and is of considerable importance in making sound judgements 
regarding the pollution of soil and water. The effect of the latter on the 
environmental ecology can be significant within the framework of bio-
cenosis. 

3.3 Space-Homogeneous/Time-Stationary Ordinary Spatiotemporal 
Random Fields 

An OS/TRF X(s, t), (s, t)e Rn xT will be called space homogeneous/time 
stationary in the strict sense, if all the multidimensional probability densities 
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are invariant under the translation ζ-»ζ + δζ (where, as before, z = (s, t)); 
viz., 

P[Xi ^x(zi)^Xi + dxi,...,xm^ x(zm ) < xm + dxm] 

= Ρ[χι^χ(ζί + δζ)<χι + άχι,...,χηι 

<x{zm + 8z)<xm + dXm-\ (19) 

or 

Jzx,...,zm\X\ 9 · · · » Xm) = / Z 1 + 6Z,...,ZW + 5 Z ( A I ? · · · 9 Am) ( 2 0 ) 

for all m = 1, 2, Space-homogeneous/time-stationary RF occur, for 
example, in the case of blackbody radiation within a large cavity maintained 
at a constant temperature. 

An OS/TRF X(s91) will be called space homogeneous/ time stationary in 
the wide sense, if its mean and covariance do not change under a shift of 
the parameters; that is, 

™*(s, t) = constant (21) 

and 

cx(s, i ;s ' , i ' ) = cx(h,T) (22) 

where h = s - s', τ= t-f. The spatial-homogeneity/ time-stationarity 
property of the OS/TRF X(s, t)9 the latter considered as a function with 
values in the Hubert space L2(il, F, P) , amounts to the fact that there exist 
in the closed linear subspace H spanned by the random variables in 
L2(iî, F, P) a group of unitary operators UhT such that 

Uh,TX(s,t) = SKTX(s9t) (23) 

where s,heR" and t,re T [here, 5h>TX(s, t) = X(s + h, ί + τ) is the shift 
operator]. It is easily seen that in the case of space-homogeneous/time-
stationary fields the covariance (6) and the semivariogram (7) are related 
by (assuming zero mean) 

cx(h,r) = C x ( O , 0 ) - 7 x ( h , r ) (24) 

The set of all space-homogeneous/time-stationary ordinary fields will be 
denoted by X0 c X. 

The results of Chapter 2 on homogeneous SRF can be extended in the 
space-time context. In particular, the space-homogeneous/time-stationary 
RF X(s, t) admits the Fourier-Stieltjes representation 

X(s,t)= e x p [ / ( w s + A0]dN*(w,A) (25) 

where Xx(w, A) is a random field such that 
Cx(w, A) S(w-w') δ(λ -λ') = F[<mx(w, A) dKx(w',A')] 

(20) 
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where Cx(w, A) is the spectral function satisfying the spectral representation 
of the covariance cx(h, τ), viz., 

cx(h, T)= I I exp[ / (wh + Ar)]Cx(w,A)dwiA (26) 

and 

Cx(w,A) = \' j j e x p [ - / ( w h + Ar)cx(h,r)^hi/T (27) 

Equations (26) and (27) are the space-time extensions of Khitchin's 
(1949) time-stationary covariance, spectral-density pair of functions. Since 
the covariance cx(h, r) is a nonnegative-definite function, according to 
Bochnefs theorem 

Cx(w,A)^0 (28) 

for all w, λ. For real-valued even spatiotemporal covariances, cx(h, τ) = 
cx(-h, - T ) , and the exponential factor above can be replaced by cos(w · h + 
λτ). When physically justified, the class of space-homogeneous/time-
stationary RF largely simplifies computations. 

Example 6: Consider the stochastic partial differential equation 

d2x(s, t) \d4x(s, t) a4x(s, Ql , „ a4x(s, t) 
a 7Ϊ + b \ , c4 + , c 4 + 2 6 ^ 2 , 2 = Y(*> 0 (29) 

In the light of the analysis above and assuming that a solution to Eq. (29) 
exists in the mean square sense, the latter can be written in terms of spectral 
representations as follows: 

r(w,A) 
bvf4-a\2 * ( w , A ) = — H - 7 2 (30) 

As a consequence, the correlation structure of X(s, i) can be expressed by 

cx(h,T) = J jexp[iXw-h + A T ) ] ^ ^ ^ i i h d T (31) 

The purely spatial spectral representations of a random field can be 
derived by means of ex(h, r) and Cx(w, A), as follows: 

C*(w) = — ^ [ e- , w hc,(h, 0) </h (32) 
(2TT) J 

and 

Cx(w) = j c x ( w , A ) d A (33) 

(28) 

(27) 

(29) 
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Similarly, the purely temporal spectral representations can be expressed as 

CM)=^\e-^cMr)dT (34) 

and 

Cx(A) = j Cx(w,A)dw (35) 

Example 7: A noteworthy use of the preceding analysis arises in the context 
of modeling spatiotemporal processes such as turbulent fluid flows and 
rainfall intensity at the ground surface. In these situations the variations of 
the S/TRF X(s, t) are determined by the variability of the SRF Y(s), which 
travels with a constant velocity vector v. As a consequence, the so-called 
frozen field is defined as X(s, t) = Y(s-v i ) . The corresponding covariances 
and spectral density functions are related by 

cx(h, r) = c y ( h - v r ) 

and 

Cx(w, λ) = Cy(w) δ(λ - w · v) 
where Cx(w) = Cy(w). Assuming that the SRF Y(s) has the isotropic covari-
ance in R3 

cy(r) = or2 expl - ^ I 

where r - |h|, one obtains the spectral density function 
2 3 

Cx((o)=—7==exp[-Kûû>)2] 
8VTT3 

where ω = |w| and ϋ = |v|, and 

^ , , σ2α Γ α2λ21 

^
( A ) =

y^
e x p

L"^J The cx(h, r) will be termed space-time separable if 

cx(h,r) = cx(h)cx(r) (36) 
Clearly, this implies Cx(w, λ) = Cx(w)Cx(A). When physically justified, 
separability is an extremely convenient property, from a mathematical point 
of view. 
Example 8: In hydrology, the point-precipitation intensity at location s 
during the time t is considered as an S/TRF X(s, t) with separable covari-
ance of the form 

cx(h, τ) = σ-χρχ(1ι)ρχ(τ) 

The cx(h, r) will be termed space-time separable if 

(36) 

where ω = |w| and v = Ivl, and 
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where σ\ is the point variance of X(s, t), px(h) is the spatial correlation, 
and ρχ(τ) is the temporal correlation. By taking advantage of covariance 
separability, comprehensive charts for rainfall-network design can be con-
structed (see Chapter 10; also Bras and Rodriguez-Iturbe, 1985). 

In practice one usually makes an additional assumption, namely, that of 
space-isotropic/ time-stationary RF: The covariance and spectral functions 
are 

cx(h,r) = cx(r,r) (37) 

and 

Cx(w,A) = Cx(*>,A) (38) 

where r = |h| and ω = |w|. Using spherical coordinates in Eq. (26) above, the 
following ninth criterion of permissibility (COP-9) can be proven: In order 
that cx(r, r) be a covariance function of a space-isotropic/time-stationary 
RF, it is necessary and sufficient that this function admits a representation 
of the form 

J-oo Jo (ω/ 
cx(r,r) = ( 2 7 r r / 2 ' ' ^ΜΑ^ 

(ωΓ) ( "" 2 ) / 2 

xexp[iAT]iün_1Cx(cü, λ) dw d\ (39) 

where Cx(w, λ ) > 0 on the half-plane (ω, λ), we[0, oo), \e (-00,00). An 
analogous criterion is valid in terms of the corresponding space-time semi-
variogram defined in Eq. (24) above. 

Example 9: A useful spatiotemporal semivariogram in R1 x T is 

c(r, r) = c | l - e x p l - y ^ + ^ I (40) 

where c > 0. The corresponding spectral density is 

abc 
C > ' A ) = 2j(l + aV + ^ > 0 

The space-range of the semivariogram is defined as the r-value for which 
yx(r, 0) = 0.95c; viz., r = es = 3a. Similarly the time-range is defined as the 
r-value for which γχ(0, τ) = 0.95c; viz., r = st = 3b. 

Other combinations of spatial homogeneity and temporal stationarity, in 
the strict or the wide sense, are also possible. Thus, an S/TRF is called 
time stationary in the strict sense if its multivariate probability density does 
not depend on the absolute time, but only on the time differences. This is 
the case, for example, of the steady-state turbulent flow through a pipe. An 
S/TRF X(s, t) is called time stationary in the wide sense if 

(41) 
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where τ = t — t'. An S/TRF is said to be space homogeneous in the strict sense 
if its multivariate probability density does not depend on the absolute 
positions in space, but only on the vector distances between these positions. 
Finally, the X(s, t) is called space homogeneous in the wide sense if 

cx(s, i;s ' , t') = cx(h;t, t') (42) 

where h = s - s'. The space-time covariances satisfy relationships similar to 
those discussed for purely spatial RF (Chapter 2); for example, for a 
time-stationary S/TRF (in the wide sense) it is valid that 

k ( s , s ' ; T ) | < V C X ( S , S ; 0 ) C X ( S ' , S ' ; 0 ) 

Moreover, the sysketogram function can also be defined in the space-time 
context (see also Section 9.3 of Chapter 10). 

4. Generalized Spatiotemporal Random Fields 

4.1 Definition and Basic Properties 

In dealing with space nonhomogeneous and/or time nonstationary natural 
processes it will be useful to introduce the notion of generalized S/TRF. 
The latter is an extension in the space-time context of the notion of random 
distribution due to Ito (1954) and Gel'fand (1955). Let Q be some specified 
linear space of elements q and let 5?^ = £2(Ω, F, P) be the Hubert space 
of all random variables x(q) on Q endowed with the scalar product 

(*(9i), x(q2)) = E[x(qi)x(q2)] = J j χλχ2 dF(Xl, χ2) (1) 

where F{\x, χ2) denotes the joint probability distribution of the random 
variables x(q\),x(q2) with ||x(g)||2 = E\x(q)\2<oo, and satisfying the 
linearity condition 

( N \ N 

Σ λ , ί , ) = Σλ ,χ ( * ) (2) 
for all q{ e Q and all (real or complex) numbers A, (i = 1, 2 , . . . , N). The 
elements qe Q are in Rn x T; i.e. that is, q = q(s, t). Among the Q spaces 
suitable for the purpose of this study are the spaces K and S of Section 3.1. 

Definition 1: A generalized S/TRF (GS/TRF) on Q, X(q), is the random 
mapping 

X:Q->L2(il,F,P) (3) 

(2) 
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The GS/TRF considered will always be assumed continuous in the sense 
that E\X(qn)-X(q)\2^0 when q„ ^ > q. [The qn η ^ > q means that 
all functions qn(s, t) and q(s9t) vanish outside a compact support and all 
the partial derivatives of qn(s, t) converge to the corresponding partial 
derivatives of q(s, t) on this support.] The set of all continuous GS/TRF 
on Q will be denoted by & 

The second-order characteristics of the GS/TRF are the spatiotemporal 
mean value 

'-i mx(q) = E[X(q)] = ] XdFx(X) (4) 

where FX(X) denotes the probability distribution of X(q)9 and the 

cx(qi, <fc) = E[(X(qi) - mx(qx))(X(q2) - mx(q2))] (5) 

which will be called the (centered) spatiotemporal covariance functional of 
the GS/TRF X(q). Both the mean and the covariance functional will be 
assumed to be real-valued and continuous relative to the topology of Q, in 
the sense that mx(qn)^mx(q) when qn η^> q, and cx(q„, q'n)^cx(q, q') 
when qn n^oo > q9 q'n WH>OO > q' for q9 q\ qn9 q'n e Q. Also, a useful second-
order characteristic is the spatiotemporal structure or semivariogram func-
tional defined by 

yx(qi,q2)=lE[X(qi)-X(q2)]
2 (6) 

Finally, mathematically equivalent space-time second-order functional 
may be constructed in the frequency domain by taking the Fourier transform 
of the covariance and the semivariogram functionals. The functional mx(q) 
is linear, for mxÇlui^lkiqi) = Y4i=xkimx(qi). Hence, mx(q) is a distribution 
(or generalized function) on Q, in the sense of Schwartz (1950-51). Moreover, 
due to the linearity of X(q), cx(ql9 q2) is a bilinear functional on Q. These 
functionals e Q\ where Q' is the dual space of Q. 

4.2 Continuous Linear Functional Representations of Generalized 
Spatiotemporal Random Fields 

In the sequel we will concentrate on GS/TRF that are of the continuous 
linear functional form (CLF) 

X(q) = (q(s9t),X(s9t)) ■ÎJ q(s9t)X(s9t)dsdt (7) 

where q e Q and X(s, t) is an OS/TRF in the sense of Definition 1, Section 
3 above. As Eq. (7) shows, an ordinary S/TRF X(s, t) admits a linear 
extension that is the GS/TRF X(q) defined by (7). Depending on the choice 
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of the function q, the CLF (7) may admit a variety of physical interpretations. 
Let us consider the following example. 

Example 1: Assume that X(s, t) represents the concentration of an aerosol 
substance in the atmosphere. By choosing q(s, f) = £(s-s*) <5(ί-ί*), Eq. 
(7) gives the value of the substance at the point/instant (s, t). If one let 

Λ i 1 ' i f 

M ) = l0, otl 
f ) , - , - se V and te[tl9t2] 

A otherwise 

Eq. (7) provides the total amount of substance in the volume V during the 
time period [tl9 t2]. 

Since a GS/TRF X(q) cannot be assigned values at isolated points/in-
stances (s, t) (unless q is a delta function), we introduce the following field. 

Definition 2: A convoluted S/TRF (CS/TRF) is defined as the S/TRF 

Yq(s,t) = (q(s\t'),Ss>tX(s\t')) 

-i. q(s',t')Ss^X(s',t')ds'dt' (8) 

We can now make the following observations: The CS/TRF (8) is charac-
terized by Yq(0,0) = X{q) for all q e Q. Also, since 

Ss,,X(q) = (q(s',t'),Ss,,X(s',t')) 

= (Ss,q(s'> O, X(s\ t')) = X(S-s,-,q) 

it holds true that 

Yq(s,t) = Ss,,X(q) = X(S-s^q) 

for all qeQ and all (s,t)eR"xT. The space Έ of OS/TRF may be 
considered as a subset of the space 'S of GS/TRF, viz., "Χ<^<β. Moreover, 
the fields X(q) and Yq(s, t) have certain important properties, as follows. 

Property i: The means and covariances of X(q) and Yq(s, t) are written 

mx(q) = E[X(q)] = <mx(s, t), q{s, f)> (9) 

mY(s, t) = E[ Yq(s, t)] = (mSs , x(s' , t'), q(s', t')) (10) 

and 

cAqi, q2) = £[(X(<7i) - mx(qMX(q2) - mx(q2))] 

= «cx(s, t; s', ί'), q^s, i)), q2(s', 0) (11) 

cY(s, t; s', t') = E[( Yqi(s, t) - mY(s, ())( YJs', t') - mY(s', t'))] 

= ((cx(Ss,,X(s", t"), Ss. ,X(s'", t'")), qi(s", t")), q2(s'", t'")) (12) 
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The means and covariances of the GS/TRF and CS/TRF are linearly related 
to those of the corresponding OS/TRF. From Eqs. (10) and (12) we find 
that the corresponding mean values and covariances functions are written, 
respectively, 

mx(q) = mY(O90) (13) 

Cx(gi,«2) = MO,0 ;O ,0 ) (14) 

Property ii: The covariance functional of the GS/TRF X(q) is a nonnegative-
definite bilinear functional in the sense that 

cx(q9q) = E[\X(q)-mx(q)\2]>0 (15) 

for all q e Q. Conversely, every continuous nonnegative-definite bilinear 
functional cx(ql, q2) in Q is a covariance functional of some GS/TRF X(q). 
On the other hand, the covariance function cy(s, i; s', t') is also a nonnega-
tive-definite function in the ordinary sense defined earlier. 

Property iii: The fields X(q) and Yq(s, t) are always differentiable, even 
when X(s, t) is not. To see this assume Q = K and let 

Xip'C\q) = (q(s9t\X^\s9t)) 

= I I q(s, t)X^\s9 t) ds at (16) 

where ζ is a nonnegative integer and p = {px, p 2 , . . . , pn) is a multi-index 
of nonnegative integers; in other words, the superscript (p, ζ) denotes partial 
differentiation of the order p in space and differentiation of order ζ in time 

χ , .α( ί > , ) = 0,,οχ(!,,)=_^ί1_[^χ(Μ)] (17) 

where ρ = |ρ| = Σ"=ι ρ,. By applying integration by parts, Eq. (16) can be 
written 

X<"-(\q) = (-1)<·+ί | I q^Xs, t)X(s, t) ds dt 

= ( - l ) p + V ' % , t), X(s, t)) = (-iy+(X(q^) (18) 

Similarly for the CS/TRF, 

Y^\s, t) = ( - l ) ' + i J j q^c\s, t)Ss,,X(s', t') ds' dt' 

= ( - i r + V - f ) ( s , t),SvX(s',t')) 
= (-iy+%,,X(q(p'c)) (19) 

(16) 
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Therefore, although there may exist no X ( p i ) ( s , t) as such, we can always 
obtain Xip,n(q) and Yq

p,a(s, t) in the sense defined above. This feature of 
the GS/TRF has several interesting consequences. For example, it leads to 
a more realistic evaluation of the microscale properties that are closely 
related to the space-time pattern of the random field: The behavior of the 
covariance or semivariogram near the space-time origin governs the most 
important geometrical characteristics of random fields, such as mean square 
continuity and differentiability. 

Property iv: By applying the Riesz-Radon theorem in terms of generalized 
functions we find that the mean mx(q) can be written as 

mx{q) = ( Σ Σ <7(P,i)(s, 0,/Λί(β, θ ) (20) 

where v and μ are nonnegative integers, q(s, t)eK9 and fp^(s, t) are con-
tinuous functions in Rn x T, only a finite number of which are different 
from zero on any given finite support U of K. Integration by parts yields 

mx{q) = ( Σ Σ (-DP+W^s, t), q(s, t)\ (21) 

A similar expression may be derived for the mean my(s, t) of Yq(s, i), 
namely, 

mY(s, 0 = ( Σ Σ ( - i rX/^V, a q(s', t')\ (22) 

For convenience in the subsequent analysis let us put 

g * { ( M ) = / & f ) ( M ) (23) 
Closely related to Property (iv) is the following section. 

4.3 Space-Homogeneous/Time-Stationary Generalized Spatiotemporal 
Random Fields 

A GS/TRF X(q)9 q(s,t)eQ, (s,t)eR"xT will be called space 
homogeneous/ time stationary in the wide sense if its mean value mx(q) and 
covariance functional cx(qx, q2) are invariant with respect to any shift of 
the parameters; that is, 

mx{q) = mx{SKTq) (24) 

cx(qi, q2) = cx(S^Tql, ShTq2) (25) 

for any (h,r)eRnx T. Clearly, when the X(q) is space homogeneous/time 
stationary, the cx(ql9q2) is a translation-invariant, nonnegative-definite 
bilinear functional on Q, and the following proposition can be proven 
(Christakos, 1991c). 

(20) 
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Proposition 1: If X(q) is a space-homogeneous/time-stationary GS/TRF 
on Q9 there exists one and only one generalized functional cx(ql9 q2)e Q' 
such that 

(X{qx)9 X(q2)) = cx(qi, qi), qi,q2zQ 

We shall denote by % the set of all space-homogeneous/time-stationary 
generalized fields. Note that 3f0c= % c <£ Similarly, the CS/TRF Yq(s9 t) is 
called space homogeneous/ time stationary if 

my(s, t) = constant (26) 

and 

cy(s, i;s ' , t') = cY(h9T) (27) 

where h = s - s ' , r=t-t'9 for any (h, r)eR"xT. The cy(s, t\ s', t') is a 
nonnegative-definite function. In view of Eq. (22) and condition (24) it 
follows that the functions fp^(s91) are constants. Therefore, 

g p > , 0 = / ^ } ( M ) = 0 for all ρ > 1 , £ > 1 

= / $ 0 ) ( M ) = m for p = £ = 0 (28) 

and the rax(g) will have the form 

mx(q) = m q(s9t)dsdt = m(q(s9t)9l) (29) 

The cx(ql, g 2 ) e Ç' can be expressed in terms of the corresponding cx(h, r) 
as follows: 

Cx(^i, q2) = (cx(h, r ) , q1 * g2(h, τ)> = cx{qx * g2) (30) 

for all qi9q2e Q, where * denotes convolution and v denotes inversion 
[i.e., q2(h9T) = q2(-h9-r)]. 

Example 1: Let us define in R*x T a zero-mean Wiener S/TRF W(s, t)9 

s G [sl, s2]9 te[09 oo) as a Gaussian S/TRF with covariance function 

cx(s91\ s'9 t') = min(s-sl9 s'-s2) min(i, t') (31) 

The X(s9 t) = dW(s9 t)/dsdt will be zero-mean white-noise S/TRF with 
covariance function 

cx(h9r) = 8(h9r) (32) 

where h-s-s\ r=t-tf and the spatiotemporal delta function 8(h9 r) is 
such as 

ô(h9 r)dhdr=\ ô(h)ô(r)dhdr 
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The corresponding GS/TRF X(q) = (X(s, t), q(s, t)) has covariance 

cx(qi, q2) = (cx(h, r ) , qx * q2(h, r)> 

= <S, 9i * qi) = (qx * g2)(0, 0) = 8(ql * &) (33) 

The above results can be generalized to more than one spatial dimension. 
More specifically, one may define in R" xT the so-called Brownian sheet 
W(s91), which is a zero-mean Gaussian S/TRF with covariance. 

cw(s, t; s', t') = mm{sx, s\)... min(s„, s'n) min(i, t') (34) 

Brownian sheet has important applications in the context of stochastic 
partial differential equations. 

Since cx(ql9 q2) is a translation-invariant bilinear functional, it will have 
the form cx(qx, q2) = (c0, qx * q2), where c0 is a nonnegative-definite general-
ized function that is the Fourier transform of some positive-tempered 
measure 0(w, λ) in Rn x T; that is, 

c0(q)= I I 

and 

g(w,A)d0(w,A) 

αφ(Υί,λ) 
-<oo for some /?>0 (ΐ + |Κλ)|2)" 

Moreover, in the light of the Fourier transform properties of generalized 
functions, it is valid that 

cx(qi, q2) = <c0, qx * q2) = (Φ, ξιξι) 

which yields the following result (see, also, Christakos, 1991c). 

Proposition 2: Let X(q) be a GS/TRF in Rn x T. The covariance functional 
is written 

cx(qi9q2)= 5i(w, A)£2(w, A)d^(w,A) (35) 

where #i(w, A) and q2(w9 A) are the Fourier transform of the ^ ( s , t) and 
q2(s,t), respectively, and $(w, A) is some positive-tempered measure in 
Rn xT.ln this case the </>(w, A) is called the spectral measure of the GS/TRF 

Example 2: Consider once more the Example 1 above. Since 

cx(qi, q2) = <c0, <?i * <J2> = <δ, <?i * q2) = (Φ, ξιξ2) 

and the Fourier transform of c0=8 is dyi d\ (Lebesgue measure), we 
conclude that the spectral measure ofX(^f) is άφ(\ν, A) = dw d\. 
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The space-homogeneous/time-stationary analysis leads to the fifth 
property. 

Property v: The CS/TRF Yq(s, t) can be zero-mean space homoge-
neous/time stationary even when the associated OS/TRF X(s, t) is space 
nonhomogeneous/time nonstationary. This can happen under certain 
conditions concerning the choice of the functions q(s, t) as well as the form 
of the functions gPfi(s, t). More specifically, we must define spaces 

Qv/» = {q£Q'-(q(s,t),gp,c(s,t)) = 0 for all ρ<ν,ζ<μ} (36) 

and 

%/μ = {gPJs, t) e C: (q(s, t), gpJs, t)) = 0 

=>(q(s,t),SKTgpJs,t)) = 0 for all ρ^ν,ζ^μ} (37) 

where C is the space of continuous functions in Rn xT with compact 
support. Equation (36) assures a zero-mean value for the CS/TRF Yq(s, t) 
at (s, t) = (O, 0), while the closeness of %>ν/μ to translation [Eq. (37)] is 
necessary in order that stochastic inference about X{q) makes sense (i.e., 
in order that the stochastic correlation properties of X(q) remain unaffected 
by a shift ShT of the space/time origin). Functions gp,^(s, t) that satisfy 
these conditions are of the form 

gP,i(s, t) = s?tc exp[a · s +ßt] (38) 

where a and ß are (real or complex) vector and number, respectively. 
Indeed, suppose that gp^(s, 0 is of the form (38) and let 

q(s9 i ) s p ^ e x p [ a - s + /3i] dsdt = 0 

Then, by applying a shift ShT we get 

g(s, 0(s + h)p(i + r)^ exp[ot · (s + h) + /3(i + r)] ds dt ίί 
= ί ί Φ, θί Σ ctk|'eV-k έ CJI'rV-"] 

J J L|k|=0 m=0 -» 

xexp[a · (s + h) + /3(i + r)] ds di 

= Σ Σ C f r C ^ ^ ' - V - " 1 exp[a-h + i8r] 

|k| = 0 m=0 

x g(s, i)skim exp[a - s + /3i] dsdt = 0 

In other words, the conditions of Eq. (37) are fulfilled. 
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Example 3: Let us choose the function q*(s,t)eS so that its Fourier 
transform g*(w, λ) satisfies 

[l-4f*(w,A)](^)|(w>A)=(0fo) = 0 
for all p up to 2v'> v and all ζ up to 2μ> μ. (For example, a function 
with a Fourier transform 

£*(W} λ ) = Π + £ £ | W | 2 A 2 + · · · + ^ ^ |w|2" λ2^1 exp[-(a|w|2 +/3λ2)] 
L 4 4ρζ J 

where α, β > 0 and v\ μ are integers satisfying 2v'> ν, 2μ> μ.) We will 
show that q(s, t) = £(s, t) - g*(s, t) e Qv/lx. Indeed, 

JJ gP,i(s, t)[S(s,t)-q*(s,t)]dsdt 

= | J gp,{(s, i) | j I [ l -9*(w,A)]exp[ - i (ws+Ai) ]< /wdAJ<ieA 

δ(Λί)(Μ>, λ)[1 - ç*(w, A)] dw d\ 

= ( - D p + i | | «(w, A)[l - 9*(w, A)]<p-f) dw dA 

= ( - l ) p + i [ l -9*(w, λ)](Λ»|(.,Α)_(ο,0) = 0 
for all p up to 2i>'> v and all ^ up to 2μ> μ, by definition of g*(w, λ). 

From a practical point of view, the modeling of spatiochronological 
variations and the estimation of spatiotemporal processes is easier and more 
efficiently carried out when the gp,^(s, t) are pure polynomials, viz., 

gPAs,t) = spti = sPssp
2i...s

p„»t' (39) 

where ρ = |ρ| = ΣΓ=ι Ρί· This is due mainly to convenient invariance and 
linearity properties that the latter satisfy. In conclusion, the "derived" fields 
X(q) and Yq(&91) have a very convenient mathematical structure. From a 
physical viewpoint this means that even if X(s,t) represents an actual 
natural process which has, in general, very irregular, space-
nonhomogeneous/time-nonstationary features, we can derive fields X(q) 
and Yq(s91) that have regular, space-homogeneous/time stationary-features 
(see Fig. 5.3). Hence, analysis and processing are much easier. 

We will close this section with a final remark. Just as for SRF (Chapter 
2), a complete stochastic characterization of an S/TRF X(s, t) is given by 
its characteristic functional defined as follows: 

<P(q) = E{exp[iX(q)]} (40) 

which must be known for any g(s, t) such that the integral (7) exists for 
all possible realizations of X(s, t). 

(40) 
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Figure 5.3 Linking actual and derived variâtes (processes) by means of Properties i 
through v 

When the <£>(q) is available, one may derive the characteristic function, 
probability density, and the space-time moments of the S/TRF X(s, t). For 
example, it holds true that 

1 δ*Φ[£] 
m^(s,t) = E[Xk(s,t)]. 

ik 8qk(s9t) 
(41) 

q(s,t) = 0 

where δ/ôq denotes the functional derivative. Most of the characteristic 
functional properties of SRF discussed in Chapter 2 are valid for S/TRF, 
as well. 

5. Spatiotemporal Random Fields of Order νΐμ (Ordinary 
and Generalized) 

5.1 Random Fields with Space-Homogeneous/Time-Stationary 
Increments 

We now come to what is, for our present concern, the most interesting 
aspect of S/TRF, namely, the concept of S/TRF with space-homoge-
neous/time-stationary increments of orders v in space and μ in time, in 
the ordinary or in the generalized sense. 

Definition 1: A CS/TRF Yq(s, t) will be called a CS/TRF of order v in 
space/μ in time (CS/ TRF-v/μ) if q e Qu//JL. In this case the space Q ^ will 
be termed an admissible space of order vjμ {AS-v/ μ). 

Definition 2: Let Qu/fJL be an AS-v/μ. A GS/TRF X(q) with space 
homogeneous of order v/time stationary of order μ increments (GS/TRF-
v/μ) is a linear mapping 

X:Qw^L2(il,F,P) (1) 
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where the corresponding CS/TRF Yq(s, i) is zero-mean space-
homogeneous/time-stationary for all q e Q ^ and all ( h , r ) e i ? " x T. 

The set of all continuous GS/TRF-v/μ will be denoted by %/μ. The 
definition above is equivalent to the following one, which we unfold in an 
extended Ito-Gel'fand spirit: 

Definition 3: A GS/TRF-^/^t X(q) is a GS/TRF for which all differential 
operators of the form 

Y(q) = Div+htl+1)X(q) (2) 

where Div+1-li+l)X(q) = Xiv+1-li+l\q) = (-iy^X(q{v+l^+l)) are zero-
mean space-homogeneous/time-stationary generalized fields. 

The OS/TRF associated with the space %/μ will be defined as follows: 

Definition 4: An OS/TRF X(s, t) is called an OS/TRF of order ν/μ 
{OS/TRF-v/μ) if for all qeQWfJL the corresponding CS/TRF Yq(s, t) is 
zero-mean space-homogeneous/time-stationary. 

The zero-mean condition is imposed for convenience and does not restrict 
generality. A flowchart summarizing the various steps involved in the con-
struction of an S/TRF-*V/x (ordinary or generalized) is presented in Fig. 
5.4. In light of Definition 4, if the 

y(s, t) = D ( l ^ + 1 ) X ( s , 0 = X(l-+1^+1)(s, t) (3) 

exist and are zero-mean space-homogeneous/time-stationary fields, then 
the X(s, t) is an OS/TRF-ν/μ. 

In connection with this, the following propositions can be proven (Chris-
takos, 1991b and c). 

Proposition 1: The solutions of the stochastic partial differential equation 
in RlxT 

D^^+l)Xw.(s,t)=Y(s,t) (4) 

where Y(s, t) is zero-mean space-homogeneous/time-stationary, are 
OS/TRF ρ/μ. Note that in this case the 

Y(q) = (q(s, 0, Y(s, 0> = <«U 0, XiT^+l\s, ί)> = η"+1·Μ+1)(0) (5) 
is a space-homogeneous/time-stationary generalized field. 

Proposition 2: The OS/TRF 

P=0 ζ = 0 

where βρΧ {p^v and ζ < μ) are random variables in fflk = L2(Cl, F, P), is 
an OS/TRF ρ/μ. 

(6) 



198 Chapter 5. The Spatiotemporal Random Field Model 
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Figure 5.4 Flowchart depicting the various steps in constructing an S/TRF-ÏV/Z 

In view of Eqs. (7) and (8) of Section 4 above, to each generalized X{q) 
correspond various ordinary X(s, t), all having the same CS/TRF Yq(s, t) = 
X(S_S_,<7); that is, we can write 

X{q) ~ { Χ α ( Μ ) , α = 1,2,...} 
iî iî (7) 

X(S^_tq) = Yq(s,t) 

Hence, 

Definition 5: The set 

Xq = {Xa(s9t\ a = 1,2,...} 
of all OS/TRF-ϊζ/μ that have the same CS/TRF-*//μ Yq(s, t) in Q will be 
termed the generalized representation set of order v/μ (GRS-v/μ). Each 
member of the GRS-^/μ will be called a representation of the X(q). 
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We can now state the proposition below (Christakos, 1991c). 

Proposition 3: Let X°(s, t) be a representation eXq of X(q). The OS/TRF 
Xa(s, t) is another representation if and only if it can be expressed as 

Xa(s, t) = X°(s, 0 + Σ Σ Cp,rfW(s, 0 (8) 

where the cpX, p<v, and ζ < μ are random variables in L2(il, F, P) such that 

cP,c = (vP,c(s9t)9X
a(s,t)) (9) 

where the r/p^(s, t) satisfy the 

(*w(s, 0,gp,r(s, *» = | 0 QÜ (vPAs,t),gp,As,t)) = \„ o therw.se 

An OS/TRF-^//x is not always differentiable. It can, however, be 
expressed in terms of a differentiable OS/TRF- v/ μ as shown in the proposi-
tion below (Christakos, 1991b and c). 

Proposition 4: Let X(s, t) be a continuous OS/TRF- v/ μ. Then it follows that 

X(s9t) = X*(s,t)+Yq(s,t) ( ID 

where X*(s, t) is an infinitely differentiable OS/TRF-^/μ and Yq(s9t) is 
a space-homogeneous/time-stationary random field. 

5.2 The Correlation Structure of Spatiotemporal Random Fields 
of Order νΐμ 

In this subsection we will study the spatiotemporal trend and correlation 
structure of a S/TRF-i>//x. In view of the preceding results, the generalized 
field Χ{ν>μ)^) = (-\)ν+μΧ^{ν'μ)) has constant mean; that is, we can write 

E[X(^\q)] = mx^\q) = (-\Υ+μηιχ(^
μ)) = aq(0, 0) (12) 

while the covariance functional is expressed as 

cx(q[v+lt"+1\ q{2+x^+l)) = E[X(q[v+h>i+1))X(q2
v+l^+1))] 

= E[Xiv+l^+l\qi)X
iv+1^+1\q2)] = cY(qi, q2) (13) 

But as was shown above, the cY(ql9q2) in Eq. (13) is a translation-
invariant bilinear functional and, therefore, so is οχ(α\ν+λ,μ+ι\ q2

v+l,^+l)). 
Taking into account the properties of bilinear functionals (for the relevant 
theory see Gel'fand and Vilenkin, 1964), Eqs. (12) and (13) lead to the 
proposition below. 

(10) 

(ID 

(9) 
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Proposition 5: Let X{q) be a G S / T R F - * > / M in RnxT. Its mean value and 
covariance functional have the following forms 

mx(q)= Σ Σ a9j(8
9t'9q(s,t)) 

= Σ Σ · · · Σ Σ aPlP2.m.pJsïsp
22... sp

n"t<9 q(s9 ί)> (14) 
P\ Pi Pn ζ 

where apX are suitable coefficients, 0 < p = |ρ| =Σ"=ι P/ — ^ anc^ 

c*(<7i, <?2) = I l 5i(w, A)£2(w, λ) d<^x(w, A) 

+ σ[9(
1"+1·μ+1)(ο, o), ^ + 1 ' μ + 1 ) ( ο , ο ) ] (15) 

where 9t = Ä " - { 0 } and $ = Γ - { 0 } , Φ* is a certain positive-tempered 
measure, and G is some function in ξ[ν+1-μ+1)(0, O) and g2

v+l i /1+1)(0, O). 

Example 1: Consider in R2 x T the case v = μ = 1. According to Proposition 
5, the mean value of X{q) will be 

mx(q)= Σ Σ aPlP2C(sps&t'9q(s9t)) 
0 < p < l 0<£<1 

= aooo + aiooisi, q) + aoioisi, q) + aoo\(U q) 

+ al0l(sxt9q) + a0U{s2t9q) 

The mean value of Y(q) is 

mY(q) = m[22\q) = D™mx(q) = * V * g )
 2 * dsPldsP2dt2 

where pl-\-p2 = 2. It is valid that 

d4mx(q) d4mx(q) d4mx(q) 
ds2dt2 dsldt2 dsxds2dt2 = 0 

In other words, Y(q) has zero mean as expected. Obviously, 

d2mx(q) 
mx^\q) = 

ds^ds^dt 

is constant for all possible combinations of px and p2 such that px + p2 - 1; 
that is, the X(1,1)(q) is a constant-mean, space-nonhomogeneous/time-
nonstationary GS/TRF in general. 

We proceed with the analysis of the spatiotemporal correlation structure 
of OS/TRF-*7/u, by introducing the following definition. 
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Definition 6: Consider a continuous OS/TRF-^/μ X(s, t). A continuous 
and symmetric function /^(h, r) in Rn x T is termed a generalized spatiotem-
poral covariance of order v in space and μ in time (GS/ TC-v/μ) if and only 
if 

(X(q1)9X(q2)) 

= (kx(h,T),qi(s,t)q2(s'9t'))>0 (16) 

where h = s - s ' and r = t — t\ for all ql9 q2e Q„//Jt. 
In other words, in order that a given function be a permissible model of 

some GS/TC-P/μ it is necessary and sufficient that the condition (16) is 
satisfied. We saw above that with a particular GS/TRF-z///x X(q) we can 
associate a GRS-v/μ %q whose elements are the corresponding OS/TRF-
v/μ X(s, t). Similarly, with a particular X(q) we can associate a set of 
GS/TC-^/μ satisfying Definition 6; this set will be called the generalized 
spatiotemporal covariance representation set of order v/μ (GS/TCRS-v /μ), 
and will be denoted by &%μ. The concept of the GS/TC-v/ μ kx(h, T) c a n 

be considered as the space-time extension of the purely spatial generalized 
covariance in the sense of Matheron (1973) (see also Chapter 3). We will 
see below that some interesting properties of 9%JlL may be obtained by 
assuming that the GS/TC-*>//x is space isotropic, that is, 

kx(h,r) = kx(r9r) (17) 

where r = |h|. 
Let us now explore Eq. (13) a little more in light of Definition 6. We have 

cx(q
(r^+l\ q{2+^+1)) = (cx(s, i; s', f'), qï+l"+1\*, O i ^ + V , '')> 

= (D^+2>2»+2)cx(s, t; s', t'), qt(s, t)q2(s\ t')) 

= (cY(s-s\ t-t'), qi(s, t)q2(s\ t')) 

It is also true that 
D(2l/+2 '2^+2)cx(s, t; s', t') = cY(s-s\ t-t') (18) 

The above partial differential equation can be solved with respect to 
cx(s, t\ s', t'). For illustration consider first the RlxT case: According to 
Proposition 1 above, if X(sy t) is a differentiate OS/TRF-^/μ in Rlx T 
such that D(v^l^+l)X(s91) = Y(s, t), the Y(s, t) is space homogeneous/time 
stationary. The corresponding covariances of X(s, t) and Y(s91) are related 
by D(2v+2^+2)cx(s, t;s\ t') = cY(r, r), where r = s-s' and r=t-t'. The 
solution of this partial differential equation is 

cx(s, t\ s', t') = kx(r, τ) +p„t|£(s, f; s\ t') (19) 

where 

«'·"-<->>"* J. J. Qrl l ) !^.) . «-<*.)«■» (20) 
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is the corresponding GS/TC-p/μ and pv^{s, t\ s\ t') is a polynomial of 
degree v in s, sr and μ in t, t'. Equation (20) can be solved with respect to 
cY(r, r) , viz., 

cY(r, r) = (-ir+-D^+2^+2)kx(r, r) (21) 

In R" xT the analysis above leads to the following proposition (Chris-
takos, 1991b and c). 

Proposition 6: Let X(s, t) be an OS/TRF-iV/x in Rn x T. Its covariance 
function can be expressed in the following form 

c,(s, t\ s', t') = kx(K τ) + ρ„,Μ(β, i; s', t') (22) 

where /cx(h, r) (h = s - s ' and r=t-t') is the associated GS/TC-^/μ and 
Ρν,μ.(&91\ s » *') is a polynomial with variable coefficients of degree v in s, s', 
and degree μ in ί, ί'. 

Proposition 6 together with the definition of GS/TRF-^/μ, conclude the 
following result. 

Corollary 1: If X(q) is a GS/TRF-^/μ in R" x T9 then 

c*(<7i, q2) = (cx(s91; s', ί'), 9i(s, 0 ^ ( s ' , 0) 

= <fc,(h,T)f9l(s,0g2(s',O> (23) 
In view of Corollary 1, condition (16), satisfied by all GS/TC-*V/x M h , r) , 

can also emerge from the fact that cx(ql9 q2) is a nonnegative-definite bilinear 
functional in 0ν/μ that satisfies Eq. (23). A continuous and symmetric 
function fcx(h, r) in Rn x Γ is a permissible GS/TC-^//x if and only if 

(kx(h9r)9q(s9t)q(s\t'))>0 (24) 

for all q e Q^/ M. We will also say that the kx(h, r) is a conditionally nonnega-
tive-definite function of order ν/μ. 

Let X(s, 0 be a differentiable OS/TRF-^/μ. By definition the 

Ya(s9t) = D(;+l>^X(s9t) (25) 

is a zero-mean space-homogeneous/time-stationary random field for all 
a e A, with 

Α = {α = (ν*,μ + 1) 

= (!>!, ^ 2 , . . · , * ν μ + 1): Σ i/f = ^ + l j· 

The spectral representation of the covariance of each Ya(s, t) is written 

cYa(h, τ) = exp[/(w · h + λτ)] d(f>Ya(yv, λ) 
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where </>ya(w, λ), a e A are positive summable measures in R" x T, without 
atom at the origin. We define the covariance 

<v(h,r) = Σ cYa(K 0 
aeA 

= E Σ £#""1,"+1)Χ(β, ί) DÏ^-^Xis', t') 

-ίί exp[i(w · h +Ar)] d</>y(w, λ) (26) 

where φγ(ν, λ) = Σα&ΑφΥα(\ν9 λ) is also a positive summable measure in 
Rn xT, without atom at the origin. 

A function /cx(h, r) is a permissible GS/TC-zVμ in the sense of Definition 
6 if and only if it admits the following spectral representation. 

t(h,T) = J [exp[i(w · h)] -/?2,+i[i(w · h)]] 

x[exp[i(Ar)] -ρ2μ+ι(ίλτ)] 
x [ w 2 „ + 2 A 2 M + 2 r l 

Χ Α Μ * , Α ) + / > 2 Ι , , 2 / 4 ( 1 Ι , Τ ) (27) 

where 
2f+l / U\P 

p = 0 P ! 

^ 1 ( λτ ) ' 
Ρ2μ+ΐ(ίλτ)= £ iC—-

ζ = 0 * ' 

and /?2^2/a(h, r) is an arbitrary polynomial of degree <2v in h and <2μ, in τ. 
Note that since the GS/TC-^/μ, is a real-valued function, Eq. (27) can 

also be written in an imaginary part-free form, in terms of cosine and sine 
functions (Christakos, 1990b). A GS/TC-*>///, is also a GS/TC-ι/ '/μ' for all 
v'> v and μ>μ. On the basis, now, of the obvious inequality 

|exp[*(w · h)] -p2v+i[i(w · h)]| |exp[i'(Ar)] -ρ2μ.+ι(ΐλτ)\ 

J w h n A r ) 2 ^ 2 

~ (2*> + 2)!(2μ + 2)! 
it follows that 

JJ άφγ(γ/9 A) 
M h ' T ) | " ( 2 , + 2)!(2M + 2 ) ! | h | 

= a |h | 2 " + 2 T 2 < l + 2 

2i/+2 2μ+2 
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where a < oo, or 

fcipM^"0 (28) 

which assures the existence of the integral (27). In view of the foregoing 
considerations, if fcx(h, r ) e ^f//x, then kx(h9 τ)-\-ρ2^2μ(Κ r)e &*/μ too. 

Clearly, the G S / T C - J V / A satisfies the relation 
-2μ+2 

Vh"2 -T^l fcx(h, r) = ( - l ) ^ c y ( h , T) (29) 

In relation to Eq. (29), the measure </>y(w, A) is the Fourier transform of 
Β2μ+2 

d? (-ir-vr2f__Mh,r) 
Employing Proposition 4 it is not difficult to show that the representation 
(27) is in general true for any X(s9 t)9 not necessarily difïerentiable. 

In the case now where <£y(w, λ) is difïerentiable, we can define the 
generalized spectral density function of order v/μ Kx(w9 λ) as the n-fold 
space/time Fourier transform of kx(h, τ). The lemma below is an immediate 
consequence of the preceding spectral analysis. 

Lemma 1 (Tenth criterion of permissibility, COP-10): Let X(s9 t) be a 
difïerentiable OS/TRF-^/μ. A continuous function kx(h9 r) in Rn x T is a 
permissible G S / T C - P / M if and only if Eq. (28) holds true and the corres-
ponding Xx(w, λ) exists (in the sense of generalized functions), includes 
no atom at origin, and is such that the |w|2i,+2A2/A+2Xx(w, λ) is a nonnegative 
measure. 

It is noteworthy that if the space isotropic cY(r9 r ) , r = |h| is space-time 
separable [i.e., cY(r9 r) = cY(r)cY(r)]9 then the kx(r, r) is separable too [i.e., 
kx(r9 r) = kx(r)kx(r)]. We shall be examining a series of cases of this type. 

Example 2: Consider the stochastic partial differential equation (4), where 
Y(s91) is a zero-mean white-noise S/TRF in RxxT with covariance 

cY(r9r) = ô(r9r) = ô(r)ô(r) (30) 

Equation (20) gives 
2^+1 2μ+ϊ 

* ^ > - < - » ' * ( 2 , + i ) . a . + i ) l
 ( 3 1

) 

A generalization of the covariance (31) in Rn x T is the isotropic GS/TC-
ν/μ 

kx(r, r) = Σ Σ ( - D P % ^ + 1 ^ + 1 (32) 
P = 0 ζ = 0 

(31) 

(32) 
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where the coefficients αρζ should satisfy certain permissibility conditions so 
that the fcx(r, r) is a conditionally nonnegative-definite function in the sense 
of Eq. (24); see also Lemma 1. More precisely the coefficients αρζ must be 
such that the following condition is satisfied: 

Σ Σ G((2p + n + l)/2)[(2p + l)!][(2f+l)!]/p! 
p=0 £ = 0 

χαρζω
2(ι/-ρ)λ2(μ~ζ)^0 (33) 

where G( · ) is the gamma function for all ω > 0 and λ > 0. 

Based now on the observation that an OS/TRF-*>//z of the form (4) can 
be assigned a GS/TC-P/ μ of the polynomial form (31), the proof of the 
following proposition is straightforward (see also Christakos, 1991b). 

Proposition 7: Assume that an OS/TRF-^/μ, in Rl x T can be expressed by 

X(s, 0 = Σ Σ «* 77^—L Π«, v) du dv (34) 

p=0 ζ=0 Jo Jo PHI 
where αρζ9 p = 0 , 1 , . . . , P, and ζ = 0 , 1 , . . . , μ are suitable coefficients and 
Y(s, t) is a zero-mean white-noise S/TRF in R1 x T. Then its GS/TC-P/μ 
is of the form (32). 
Example 3: Working along lines similar to those of Example 2 we find that 
if 

Cy(r9 τ) = α çxp[-br-cr] (35) 

the corresponding GS/TC-P/μ in Rl x T is 

a ( - l ) y + l * y(2^ + 2, -br)y(2/* + 2, - c r ) 
(2* + l)!(2/x + l ) ! fc2i/+2c2^+2exp[fcr+cr] KX\r9T) — (^_ , i M / ^ . . , I M ι 2ν+2 _2^+2 r L„ ι „_Ί 

where γ( ·, · ) denotes the incomplete gamma function. After some manipula-
tions Eq. (36) may also be written as 

^ ( r , r ) = ^ + V / A + 2 e x p [ 6 r + c r ] [ l - e x p ( 6 r ) Σ " T j - J 

x i l - e x p ^ r ^ ^ ^ l (37) 

Consider, for instance, the case P = μ = 0; then, Eq. (37) gives 

a[ l + (&r- l )exp(6r) ] [ l + ( c r - l ) e x p ( c r ) ] 
M r , T H - ftVexptfer+cr] 

Proposition 7: Assume that an OS/TRF-^/μ, in Ä1 x T can be expressed by 

(34) 

where αρζ9 p = 0 , 1 , . . . , v, and ζ = 0 , 1 , . . . , μ are suitable coefficients and 
Y(s, t) is a zero-mean white-noise S/TRF in R1 x T. Then its GS/TC-v/μ 
is of the form (32). 

(36) 
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6. Stochastic Partial Differential Equations 

6.1 Basic Equations 

Stochastic differential equations over space-time have the general form 

L[X(s,t)]=Y(s,t) (1) 

where X(s, t) is the unknown S/TRF, L[ · ] is a given operator, and Y(s, t) 
is a known S/TRF—also called a forcing function. Space-time stochastic 
differential equations can be classified in a fashion similar to the spatial 
stochastic differential equations discussed in Chapter 3. Despite significant 
progress over the last decade or so, much work remains to be done in the 
theory of stochastic partial differential equations (SPDE). A partial list of 
references was given in Section 5 of Chapter 3. 

Just as in Chapter 3, our attention in this section will be focused on only 
a few specific SPDE topics that have certain interesting connections with 
the S/TRF models considered above. The relevance of such connections 
owe to the fact that a variety of natural processes are governed by such 
equations (e.g., flow through porous media, hydroclimatic systems, and 
transport and diffusion in the atmosphere). 

Furthermore, these connections can be valuable tools in the improvement 
of existing physical models. For example, in flood prediction, an important 
problem is the quantitative precipitation forecasting. By studying the 
spatiotemporal residual series of model errors, it is possible to develop 
corrections to the model to account for persistent errors. In groundwater 
contaminant transport modeling, there often arise structural errors in model 
predictions due to complexities in the subsurface system that cannot reason-
ably be modeled deterministically. The ability to model stochastically the 
resulting space-time processes offers the potential of developing corrections 
to the model predictions to better reflect the true system. 

We saw above that, by definition, a continuous-parameter OS/TRF-*V/A 
obeys certain SPDE, and the corresponding covariances (ordinary and 
generalized) satisfy the corresponding deterministic differential equations: 
If X(s, t) is an O S / T R F - Ï V / X , by definition, all 

-,ν + μ + 2 

y^t)=—^r—^x{s,t) (2) 
oSi ol 

are space-homogeneous/time-stationary RF. The field 

Y(; t) = Σ Yi(», 0 = v*+1 ̂  x(s, o (3) 
f = i dt 

where L[-~\ = Vv+1(dti,+1/dtfJ'+1)['] is space homogeneous/time stationary, 
too. This observation leads to the following result. 
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Proposition 1: Let Y(s, t) be a space-homogeneous/time-stationary field. 
Then, there is one and only one OS/TRF-^/μ X(s, t) with representations 
satisfying the differential equation 

72k 

dt 

32λ 

X(s,t) = V2k-rxZ(s9t) (5) 

The covariances associated with expressions (2) and (3) are, respectively, 

dsr1 ds?*1 dt»*'1 dt' 

and 

c y , ( h , T ) = a „ , + i a ^ + i a # M + i ^ / M + i c ^ ^ s ' ' ' ) 

n2/x+2 n n à2v+2 

92μ+2 

= V r 1 V r 1 — T r T - 7 ^ î C x ( S , i ; s ' , i ' ) 

a7 = ( - i r V 2 " 2 ^ M h , r ) 

Example 1: Suppose that the OS/TRF-1/1 X(s, i) and the space-
homogeneous/time-stationary RF Y(s, t) are related by 

Vt^-2X(s,t)=Y(s,t) (8) 
dt 

One may now study the stochastic properties of the field X(s, t) by means 
of Y(s, t)\ the corresponding covariance functions are related by 

'(h'T) - h h ^ ? L at2 st'2 \ 
= v s 2 V s

2 . - I — 5 c x (s , (;s ' , i ') 

a4 
=v:-^fc ; c (h ,T) (9) 

(4) 

An immediate consequence of Proposition 1 is the corollary below. 

Corollary 1: If X(s, t) is an OS/TRF-^/μ, then there exists an O S / T R F - ^ * 
2fc)/(/x + 2A) Z(s, 0 such that 

(6) 

(7) 
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6.2 Adjoint Equations—The Air Pollution Problem 

The results obtained in Section 5.2 of Chapter 3 can be easily extended to 
S/TRF models. In particular, the "basic SPDE" (1) can be transformed 
into the functional equation 

X(q) = F[X(s9 i) ,X*(s, 0 ] + <Hs, t)9X*(s91)) (10) 

where X{q) - (X(s, t)9 q(s91)) is a generalized S/TRF in the sense given in 
the preceding sections, and X*(s, t) is the solution of the "adjoint SPDE" 

L*[X*(M)] = <7(M) (11) 

Examples about the physical interpretation of the generalized S/TRF 
X(q) were given in previous sections. 

Example 2: Let X(s9 t) denote the concentration of aerosol substance in 
the atmosphere in a domain of interest A within a time period T. Suppose 
that A is cylindrical with total surface S = SB+ ST+ Sh9 where 5 B , ST, and 
5L denote the base, top, and lateral surfaces of A. Substance transport and 
diffusion within A is governed by 

a X ( s ' ° -+VVX(s,0 + »X(M) 
dt 

ds3 dS3 

with initial conditions 

X ( M ) = 0 (seSL) 

dX(s91) 
dS3 

dX(s91) 

= aX(s9t) (seSB) (13) 

= 0 ( S G 5 T ) 
dS3 

Moreover, it is assumed that 

X(s ,T) = X(s,0) (14) 

In the above equations, V is the velocity vector of air particles with com-
ponents Vi, V29 and V3, along the horizontal directions sl9 s2, and the 
vertical direction s3; μ and v are the horizontal and vertical diffusion 
coefficients, respectively; v is a quantity that has an inverse time dimension, 
a > 0 is a parameter determining the interaction of the impurities with the 
underlying surface; W is the intensity of the aerosol discharge, and s0 is 
the location of the aerosol source (e.g., industrial plant). 

(12) 
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The problem is to find a region U <= A where a new industrial plant can 
be located, so that for all s0e U the resulting pollution over a nearby 
populated area D c A during the time period T does not exceed a permis-
sible level c, imposed by global and local sanitary requirements, viz., 

X(s)<c (15) 

for all se D. It is assumed that all necessary information about the wind 
fields in the region is available. 

Let us consider the functional 

JA JO 
X(q)=\ q(s9t)X(s,t)dsdt (16) 

JA JO 

where q(s, t) = l/T + ßo(s3) (se A), = 0(sé A); ß is a coefficient discussed 
earlier in Example 5 of Section 3. The "adjoint SPDE" with respect to Eqs. 
(12) through (14) above is 

dX*(s, 0 
dt 

-+VVX*(s, t) + vX*(s, t) 

■— v r ^ - i i V ^ s , 0 = q(s, t) 
ds3 ds3 

and 
X*(s,i) = 0 ( s e S J 

= aX*(s,t) (seSB) ^* (» .0_ . . v . 
ds3 

dX*(s9 t) 
(18) 

= 0 (seST) 
ds3 

X*(s, T) = X*(s,0) 
After solving Eqs. (17) and (18) we substitute X*(s, t) into Eq. (16) to find 

i = W\ X*(s, 
Jo 

X(q)=W X*(s9t)dt = Xq(s) 
Jo 

Finally, from the condition (15) we can find the locations s0: Xq(s0)<c, 
which determines the region U. 

7. Discrete Linear Representations of Spatiotemporal 
Random Fields 

The key element in passing from abstract theory to a practical analysis of 
spatiotemporal data is the development of suitable discrete linear representa-
tions of the S/TRF model. This is necessary because real data are usually 
discretely distributed in space-time. 

(17) 
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Let X(si9 tj), where (s,·, (,·) eR"xT, i = 1, 2 , . . . , m and j = 1 ,2, . . . , k be 
a discrete-parameter OS/TRF. Let qeQ = Qm, where <âm is the space of 
real measures on Rn xT with finite support and such that 

m Pi 

9(s, 0 = Σ Σ 9(s„ (,·) «(s,· - s , ί,- - 0 
i = l j = 1, 

m P, 

= Σ Σ ^Λ(Μ) (i) 
i = l j=li 

where /?, denotes the number of time instances tj (j= 1,, 2i9...,/?,·) used, 
given that we are at the spatial position s,. 

The corresponding discrete GS/TRF and CS/TRF are, respectively, 

*(9) = ( Σ Σ«ί/ΜΜ),*(Μ)) 
* / = 1 f = 1 - ' 

m Pi 

= Σ Σ qvx(*i, h) 
i = l j = li 

and 

*>>') = \ Σ Σ qijôij(s\t'),Ss,tX(s',0 

m P,· 

= Σ Σ qijS«X(si9 tj) (3) 
i = l 7 = l i 

Definition 1: The discrete S/TRF Yq(s, t) of Eq. (3) will be called a spatiotem-
poral increment of order v in space and μ in time {S/TI-v/μ) on Ον/μ if 

m Pi 

Σ Σ ^sfif = 0 (4) 
i = l 7 = 1, 

for all p<*> and £ ^ μ . In this case the coefficients { ^ } e < ? ^ c â m , i = 
1, 2 , . . . , m and 7 = 1,, 2 f , . . . , /? , will be termed admissible coefficients of order 
ν/μ (AC-p/μ). 

On the basis of the above definition the next follows naturally. 

Definition 2: The discrete OS/TRF X(s, t) will be called a OS/TRF-v/μ 
on Qv/tx if the corresponding S/Tl-v/μ Yq(s, t) is a zero-mean space-
homogeneous/time-stationary RF. 

A summary of continuous S/TRF-related notions and their discrete 
analogs are given in Table 5.1. 

Example 1: Consider the case illustrated in Fig. 5.5, where (s, t)eR2xT 

(i) 

(2) 
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Table 5.1 S/TRF-Related Notions and Their Discrete Analogs 

i = l j = l , 

Theory Practice 

~ I 

X(q) = (q(s, t), X(s, i)> X(q) = Σ Σ *y*(S|. ';) 
i = l -/ = !« 

y, (s, ί) = x(s.^) y,(s, o = x(sM<?) 

=<9(s', n, 5s>ix(s', o) = Σ Σ ^^(si+s, ÎJ+O 
« = 1 j = l , 

mx(q) = (q(s, t), mx(s, 0) ™χ(<7)=Σ Σ <lijmx(si> *j) 

m li 

{q(s,t),gH(S,t)) = 0 P^V Σ Σ««βρί(·ι.';) = ° C " 
fc — μ ,=i 7=ι, & —/* 

™x(q)= Σ Σ apf<fe(s, 0 ,9(s , 0> % ( ί ) = Σ Σ b
PcSPc^ 0 

( ^ ( β - β ' , ί - ο , ΐ ί β , θ ΐ ί β ' , ί ' ^ ο Σ Σ Σ Σ ^ ^ T M s i - s i ' » i i - / / ) - 0 

i = \ j = \i i ' = l j'=lr 

qzQv/fi {Qij} ^C-v/μ 

and s = (51? 52). Let 
5 3 

yq(si,s2,t) = YJ Y.qijXisn.Sa.tj) 
i = l j = \ 

= Χ(5 ! + Δ5, s2, t + Δt)-2X(sl + Δs9s29t) 

+ Χ(5 ! + Δ5, 5 2 , ί - Δ 0 + Χ(^ι + Δ5, 5 2 , ί + Δί) 

-2X(sl9 52 + Δ5, 0 + * ( s i , Ä2 + AÄ, Î - Δ Ο 

+ X ( s 1 - A s , 52, ί + Δ ί ) - 2 Χ ( 5 ! - Δ 5 , s2, t) 

+ X ( s 1 - A s , s 2 , ί - Δ 0 + Χ ( 5 ! , 5 2 - Δ 5 , ί + Δί) 

- 2 Χ ( 5 ΐ 9 5 2 - Δ 5 , 0 + ^ ( ^ 1 , 5 2 - Δ Α , r - Δ ί ) 

- 4 [ Χ ( 5 1 ? 52, i + A 0 - 2 X ( s l 5 s2, t) + X(sl9s2, t-Δί)] (5) 

It is easily shown that 

i = l 7 = 1 

forallp1 + p2— 1 a n d £ < 1.Therefore,the Yq(sl9 s2, t) aboveisanS/TI-1/1. 
If in addition it is space homogeneous/time stationary, the corresponding 
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( s r s2 + As, t + At) 

O ( Sj + As, s 2 , t + At) 

(Sj , s 2 + As, t) 

O ( S j + A s , s 2 , t ) 

(S j , s 2 + As, t - At) 

O ( s , + A s , s 2 , t - A t ) 

( s r s 2 , t - A t ) 

"(Sj, s 2 - As, t - At) 

Figure 5.5 The (s, t)eR2xT case 

X(sl9 52, 0 is an OS/TRF-1/1 with mean value 

0 < P l + p 2 < l 0<£<1 

= ^000"'" #10051 "^ # 0 1 0 ^ 2 + #001 ^"1" #101^1 f + #011^2^ 

Proposition 1: Any discrete space-nonhomogeneous/time-nonstationary RF 
in R1xT represented by the spatiotemporal autoregressive model of order 
v + \ in space and μ + Ι in time, 5 / TAR ( v + 1, μ + 1) 

Δ ^ + 1 ) Χ ( Μ ) = ^ ( Μ ) (6) 
where 

Δ ^ + 1 ) Χ ( Μ ) = Σ Σ (-1)P+'CS+1C<+1 
p=0 ζ = 0 

x X ( s - p + */ + l , f - £ + /x + l) (7) 
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is the finite difference of order ^ + 1 in 5 and μ, + l in t9 Yq(s9t) is a 
space-homogeneous/time-stationary random field and 0 · = (]), is an 
OS/TRF-*//*. 
Proof: See Christakos (1991c). 

It is interesting to compare representations (4) of Section 5 and Eq. (7) 
above: All discrete-parameter OS/TRF-*///, admit a representation of the 
form (7), while for a continuous-parameter OS/TRF-*//*, to be represented 
by (4) it is necessary that it is v 4-1 times differentiable in s and μ +1 times 
in t. 

Proposition 2: Let X(s9 t) be an OS/TRF on Qv/fJL and let 
m Pi 

χ(*ο,ί0) = Σ Σ λί,-χίβ,-, tj) (8) 
i = l j = \ 

be the linear estimator of X(s, t) at point/instant (s0, t0) such that 

E[X(so,to)-X(so,to)] = 0 (9) 

and 

Ε[Χ(*ο,*ο)]=Σ Σ Vpt*M (10) 

where ηρζ are suitable coefficients. Then the difference 

Yq(s09t0) = X(s09t0)-X(s09t0) 
m Pi 

, = 0 j = 0 

where λ 0 0 = - 1 and λΙΟ = λ θ 7 =0 ( / jVO), is an S/TI-J>/JLI on Qv/tJL. 

Proof: See Christakos (1991c). 
Notice that if the Yq(s9t) of Eq. (11) is space homogeneous/time station-

ary, the X(s9 t) is by definition an OS/TRF-*///,. Conversely, if X(s, t) is 
an OS/TRF-*//x, the Yq(s91) of Eq. (11) is a space-homogeneous/time-
stationary S/ΎΙ-ρ/μ. 

In the discrete framework, Eq. (16) of Section 5 implies that a function 
kx(h9 T) in R" x T is a generalized spatiotemporal covariance of order v in 
space and μ in time (GSTC-v/μ) if and only if for all AC-v/μ {q^} 

[ m Pi Π 2 

■ 

(11) 

where λ 0 0 = - 1 and λΙΟ = λ θ 7 =0 ( / jVO), is an S/TI-*///, on ζ)„/μ. 

Ptoo/; See Christakos (1991c). 

(12) 

In the discrete framework, Eq. (16) of Section 5 implies that a function 
/cx(h, T) in R" x T is a generalized spatiotemporal covariance of order v in 
space and μ in time {GSTC-v/μ) if and only if for all AC-v/μ {q^} 

where h„ = s, - s r and rjr = tj - tr. 
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In practical applications where a finite number of discretely distributed 
data are available, it is convenient to use GS/TC-p/μ fcx(h, r) of the 
space-time polynomial form (32) of Section 5. The parameters of the model 
(32) of Section 5 (orders v and μ,, as well as the coefficients αρζ, ρ = 
0 , 1 , . . . , v and ζ = 0 , 1 , . . . , μ) can be estimated on the basis of the available 
data by means of parameter estimation techniques such as least squares or 
maximum likelihood (see, e.g., Rao, 1973). Note that the estimated values 
of the coefficients αρζ should satisfy the conditions implied by Eq. (33), 
Section 5 above. 



Space Transformations 
of Random Fields 

"It isn't that they can't see the solution. It is that they 
can't see the problem. " 

G. K. Chesterton 

1. Introduction 

The analysis of some problems in the applied sciences is considerably 
simpler in one than in several dimensions. Such problems include the 
modeling of spatially distributed hydrogeologic data, groundwater contour 
mapping, and simulation of groundwater flow. In these circumstances, the 
mathematical operations of space transformations introduced in this chapter 
simplify the study of a physical process that takes place in several spatial 
dimensions by "conveying" its study to a suitable one-dimensional space. 

This "conveyance" has both substance and depth, and is established in 
terms of suitable Radon operations (Radon, 1917) that act on the random 
field representing the physical process of interest. These operations, which 
will be termed space transformations (ST), apply in spatial and spatiotem-
poral random fields (SRF and S/TRF, respectively). ST have elegant and 
comprehensive representations both in the space (physical) and the 
frequency domains and preserve the second-order correlation structure of 
a random field (in the sense that a homogeneous SRF in Rn is transferred 
to an SRF in R"~k, which is homogeneous too). 

Random field representations show that a random field in space R" can 
be represented by a linear combination of statistically uncorrelated random 
processes in space Rl. Expressions relating the corresponding spatial corre-
lation characteristics of the two spaces are established. 

215 

6 
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The ST operators are very powerful tools in the study of multidimensional 
differential equation models governing natural processes, such as flow 
systems in spatially variable soils. Much that seemed problematic about the 
application of stochastic differential equation theory in the study of earth 
systems may be resolved by means of ST. 

Furthermore, comprehensive and analytically tractable expressions of the 
most important criteria of permissibility (for ordinary as well as generalized 
correlation functions) can be developed with the help of ST. Finally, ST 
constitute a particularly attractive instrument in the context of random field 
(ordinary or generalized) simulation (Matheron, 1973; Journel, 1974; this 
matter deserves a detailed study, which is carried out in Chapter 8). 

2. Space Transformations 

Let us begin by defining the concept of space transformations in terms of 
functions /„(s), se R", which belong to the Schwartz spaces K and S (see 
Chapter 3). These spaces possess a number of properties that make it easier 
to connect the general space transformation theory with concrete applica-
tions. Moreover, under certain circumstances the analysis applies to ele-
ments of the dual spaces K' and S' of distributions or generalized functions. 

In particular, the space transformation of a function fn(s) is defined as 
follows. 

Definition 1: Let {Ηη_λ\ Θ, s · Θ} be a set of hyperplanes passing through a 
given point in Rn, where the subscript n - 1 denotes the dimension of the 
hyperplanes Hn-X in Rn (belonging to the space En of all hyperplanes in 
Rn). The unit vector θ = ( 0 l 5 . . . , θη) defines the orientation of Hn_x and 
s · Θ is the inner product that defines its distance from the origin so that 

S f ( s - e ) d s = l ; S,(s-e) = 0 if i ^ s - θ (l) 
J Rn 

The space transformation of first kind (ST-1), Tl
n9 maps a function/„(s), 

seR" into the following set of functions 

/i .e(0 = Tl
n[fn(s)] = ί /„(s) e,(s · Θ) ds (2) 

J Rn 

on several hyperplanes {Ηη_λ\ Θ, s · θ}. 

The ST-1 will be considered as completely defined if Eq. (2) is known 
for all s and Θ. 
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Definition 2: The space transformation of the second kind (ST-2), Ψ", assigns 
to the set of functions f#{t)9 defined on a set of hyperplanes {Hn_l9 Θ, t = 
s · Θ} passing through a given point in Rn, the function 

l=f M(M)/i.e' 
J0„ 

/»(s) = Ψ? [ / , . · ( 0 ] = " (s , θ)/1>β(8 · θ) </θ (3) 

where M (s, Θ) is a weight function and the integration is carried out over 
the closed surface Θ„ in Rn. 

ST-1 is a Radon-type transformation (see, e.g., Helgason, 1980; Deans, 
1983; Christakos, 1984a; 1986a and b). An interesting special case of ST-1 
emerges if we set θ = (1, 0 , . . . , 0). Then Eq. (2) becomes 

fiM = r i [ /„(s)] = I /„(s) SSl(s · Θ) ds 
J R" 

ί = fn(si,s2, ...,sn)ds2... dsn (4) 
J U 

where U<=Rn (for simplicity, symbols under the integral are sometimes 
omitted). 

Regarding ST-2, it may be convenient to assume that Θ„ is the surface 
Sn of the n-dimensional unit sphere (Sn denotes both the surface of the 
n-dimensional unit sphere and its surface area). The surface area is given by 

2rn/2 

(f) 
where G is the gamma function. Moreover let w(s, θ) = l /5„, that is, uniform 
weight. In this case we have 

'-έί/-Λ ( β ) = * ΐ [ / ι , β ( ί ) ] = 7 | / i .e(s-e)de (5) 

with weight function l /5„. 
ST-1 and 2 may be extended to the case of hyperplanes H„_k of dimension 

n-k, in general. For example, Eq. (4) may be generalized as 
follows: 

fn-k(sl9 S2, . . . , Sn_k)= T"n-k[fn(s)] 

= fn(sl9s29 ...9sn) dsn_k+l ...dsn (6) 

An illustration of ST-1 and 2 for n = 2 and k = 1 is given in Fig. 6.1. 
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fA, ,e ( ° = T2[f2^] = J f2<s> St(s ■ Θ) ds 

f/») - ViLfi.e»>J - "ET Jfi./» ■« * 

Figure 6.1 ST-1 and ST-2 in R2 

When/(s) is an isotropic function, that is,/„(s) =fn(s = |s|), the following 
expressions are obtained (Christakos, 1986a) 

dfn(u) 
fn+l(s)=T"n

+1[fn(s)] = - - ΓΊ=^= 
■π Js V(M -

fn+2(s)=T"n
+2[fn(s)] = -

s2) du 

1 df„(s) 

du 

2 ns du 

(7) 

(8) 

where the T"„+i and T"„+2 are the inverse ST-1 (IST-1); and 

/„_1(5)=ΨΓ1[/„ω]=-
*<ψν· 

(n-l)G 

/ .-iW^ruwi^Ti^lw] Ù1 
n-2 ds' 

(9) 

(10) 

where the Ψ""1 and Ψ"'2 are the inverse ST-2 (IST-2). 

t fixed 
s varies 
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Let us now consider ST in a stochastic framework, particularly in terms 
of covariance functions of homogeneous SRF, which are the fundamental 
sources of information regarding the spatial correlation structure. It will be 
shown later that the same concept applies in terms of generalized covariances 
of nonhomogeneous SRF, spectral density functions, and realizations X„(s) 
of SRF themselves. 

We denote by c„(h), h e Ä " the covariance of the homogeneous SRF 
Xn(s). Assume that cn(h)eK or 5; it is also possible that eKf and S' 
[consider, for example, the case of a white-noise covariance c„(h) = 8(h), 
where δ( · ) is the delta function]. 

According to the preceding definitions, an ST-1 maps a covariance func-
tion c„(h), he Rn into the following set of covariances 

c i , e ( 0 = r i [ c n ( h ) ] = | c n (h )e f (h -e )dh (11) 
J Rn 

on the lines {Ηη_λ\ Θ, h · Θ}. 
Similarly, the ST-2 assigns to the set of covariances clt9(t), defined on a 

set of hyperplanes {Ηη_λ\ Θ, t = h · Θ} passing through a given point in Rn, 
the covariance 

^ ( « = Ψ?Κβ(0 ]= - ί - ί ^ ,βθι -θ^θ (12) 
&n J Sn 

with weight function l/Sn. 
To fix ideas, let us discuss the following examples. 

Example 1: Illustrations of ST-1 and 2 for two-dimensional covariances are 
shown in Figs. 6.2 and 6.3. In Fig. 6.2, Θ, t are fixed while h is varying on 
the line defined by Θ, t. Then the ST-1 cue(t) is the integral of c2(h) along 
this line, viz., 

ί ι ,β(0= I c2(h) S,(h · Θ) dh (13) 
JR2 

In Fig. 6.3a, h is now fixed while the Θ, t vary; that is, we consider all lines 
passing through the given point P. Then, ST-2, c2(h) is the integral of c1>e(i) 
over the surface S2 of the unit circle, that is, 

c 2 ( h ) = ^ I C l , e (h -e )de (14) 
^ 2 J S2 
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Ci,e(t) = T2(c2(h)] 

Figure 6.2 ST-1 representation of covariance functions in R2 

For computational convenience the equivalent representation of Fig. 6.3b 
may be used: Point P is now transferred to the origin, Θ is the unit vector 
along the line, and t is the projection of h onto the line. 

Manipulations (11) through (14) motivate the following question. "How 
are covariances cXQ{t) and c1Q(t) related?" The answer to this question is 
given by the proposition below. 

Proposition 1: The inverse space transformation of the second kind (IST-2), 
Ψι„, of the ST-2 ΨΊ is as follows: 

ci,e(0 = ^ i [ ^ ( h ) ] = a[c1,e(0] 

in which 

Ω = 

( —l)m52m+i d 
2(27r)2m 

(-i)m-1s2m 

dtz 
■[ · ] 

{ . 2 * 1 - 1 Ϊ 

if n = 2 m + l 

if n=2m 

(15) 

(16) 

[2(2n)2m-

where H denotes Hubert transform. 

Proof: See Christakos (1987a, 1990b). 

As an immediate consequence of Eq. (15), the inverse space transforma-
tion of the first kind (IST-1), 77, of the ST-1 T\9 is written 

^ ( h ) = r ï [ Î l t e ( i ) ] = * ï { n [ Î l f e ( i ) ] } (17) 

In other words, 77 = Ψ?Ω. 
Some interesting results are obtained in the frequency domain 

(Christakos, 1987a, 1990b). 
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(a) 

ο2^) = Ψ,[ο e(t)] 

\e^ 

(b) 

Figure 6.3 ST-2 representations of covariance functions in R2 when (a) O^P and 
(b) 0 = P 
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Proposition 2: Assumptions of Eqs. (11) and (12) above. In the frequency 
domain the space transformation operators are expressed by the following 
simple algebraic relationships. 

C1,e(û>)=Ti[CII(w)] = Cll(w) (18) 

and 

C(w) = Y?[CÎ,e(a>)] = . 2,n_l C1Jè(a>) (19) 
Sn\*>\ 

where w= ωθ and Cue(œ) is the spectral density that corresponds to Ci,e(0· 
(Note that depending on the expression of the n-fold Fourier transform 
used, the right-hand side of Eq. (18) is sometimes multiplied by a constant.) 

Example 2: In the isotropic case, viz., C„(w) = Cn(w = |w|), we have 

Cn+k(<») = r r f c [C n (oi ) ] = Cn(*>) (20) 

Cn{a>) = Ψ ? [ ^ ( ω ) ] = - Λ = ϊ ^ι(ω) (21) 

Remark 1: In summary the space transformations are related as follows: 
(a) In the space domain, 

TJ[ ·] = *?{«[ · ]} and Ψι
η['] = η{Τι

η[-]} 

(b) In the frequency domain, 

Τ?[ · ] = (Τ · ) " 1 [ · ] and Ψ ΐ [ · ] = ( Ψ ? ) - , [ · ] 

The next proposition is a straightforward application of the analysis 
above (Christakos and Panagopoulos, 1992). 
Proposition 3: Assumptions of Eqs. (11) and (12) above. The co variance 
c„(h), he Rn is uniquely determined by means of its ST-1 or IST-2. 

Example 3: In R3 the c3(h) is uniquely defined if the values of che(t) are 
known along all lines passing through a given point, or if the values of 
^2,e(0 are known on all planes passing through a given line. Similarly, c3(h) 
is uniquely determined if the cie(t) or c2,e(i) are known for all Θ. (Note 
that uniqueness requires an infinite number of hyperplanes; that is, c3(h) 
is not uniquely determined by any finite set of c1>e(i) or c2>e(0·) 

Assuming that cn(h) is everywhere continuous, and since cn(h) and C„(w) 
form a Fourier transform pair in Rn, there exists a random variable w in 
Rn that has cn(h)/cn(0) as a characteristic function; that is, 

i ^ = £ [ e x p ( i h - w ) ] (22) 

(20) 

(21) 

(a) In the space domain, 

(b) In the frequency domain, 
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where the probability density of w is/„jW(co) = C„(w)/cn(0). In the isotropic 
case fn^(iu) will be a function of ω = |ω| only, which is written as fn^((o). 
Let /ω(ω) be the probability density of ω, that is, one-dimensional. Then 
an interesting situation is described by the following proposition (Christakos 
and Panagopoulos, 1992). 

Proposition 4: If/i w(cu) is the one-dimensional probability density obtained 
by applying ST-2 on the density/„,w(co),/i,w(w) is related ίο/ω(ω) as follows: 

/ ι ^ ( ω ) = Ψ ΐ [ / ^ ( ω ) ] = ^ / „ ( ω ) (23) 

where Ψι
η[ · ] = Sn(o

n~x/2 is the frequency domain expression of the IST-2. 

3. Space Transformation Representations of Spatial Random 
Fields 

3.1 Random Field Representations 

On the basis of the above results it is evident that it is possible to apply 
the ST approach to find solutions to n-dimensional problems of SRF theory 
by transferring analysis to one-dimensional random processes (RP). The 
fundamental problem may be summarized as follows: "When can an SRF 
in R" be represented as a linear combination of statistically uncorrelated 
RP in RlV Regarding this problem two results can be proven (Christakos 
and Panagopoulos, 1992). 

Proposition 1 (SRFrepresentation; finite case): The SRFX*(s), s G Rn admits 
a linear representation 

N 

Χί(8*) = ΣβΗ*ι . ι (β*·β*) . aueRl (1) 
i = 1 

of pairwise statistical uncorrelated one-dimensional RP X M along lines θ,, 
i = 1, 2 , . . . , N passing through a given point, if and only if the correspond-
ing covariance admits the linear representation 

N 

c*(h = sk - s A ) = Σ akiaxicUi(h · θ,) (2) 
i = l 

where c1>f(h · θ,) is the one-dimensional covariance of the RP Xi,,-(s · θ,), 
i = 1, 2 , . . . , N. (For simplicity, it is assumed that Xhi(s · θ,) have zero mean 
and unit variance.) 

In the general case, ST appear in the scene. 



2 2 4 Chapter 6. Space Transformations of Random Fields 

Proposition 2 (SRF representation ; general case): The SRF X„(s), seR" 
allows the representation 

X„(s) = ̂ ?[X l fe(r)] (3) 

with weight function a(s, Θ), where r = s · Θ and Χχ$(τ) are pairwise uncor-
related RP along lines Θ passing through a given point, if and only if the 
corresponding covariances are related by 

c„(h = s k - s A ) = *?[c l fe(/)] (4) 

with weight function a(ski Θ) · a(sA, Θ), where t = h · Θ. 

3.2 A Few Additional Remarks 

A useful result—immediate consequence of the SRF representation results 
above and the central limit theorem—is introduced by the following 
corollary. 

Corollary 1: Assumptions of Proposition 1. Moreover, in Eq. (1) let aki = 
l/x/ÏV; that is, 

1 N 

X Î ( s ) = ^ E * u ( s · » . · ) 

The corresponding covariance will be given by [see Eq. (2)] 

(5) 

c * ( h ) = ^ Î > i ( h · » . ) (6) 

Let 

X„(sk)=l im X*n(sk) (7) 

If the limit is finite, then Xn(sk) is an SRF with Gaussian univariate density 
and covariance 

c„(h)=lim c*(h) = YÏ[c l te(f)] (8) 
JV-»oo 

where t = h · Θ and the weight function is l/Sn. 
On the strength of Corollary 1 above, given an SRF Xn(s) with covariance 

c„(h) the factorization of X„(s) as a weighted sum of N statistically uncorre-
lated random processes Xi,,(s · θ,), i = 1 ,2 , . . . , N is equivalent to a de-
scription of the factorization of c„(h) in the form of a weighted sum of 
the one-dimensional covariances cx θ(ί) . The latter factorization tends, as 
N ^ o o , to the ST-2, *?[c l te(0l · 
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In some situations of practical importance, several deviations from the 
assumptions of Corollary 1 may apply, such as 

(i) finite number of lines N, or 
(ii) nonexistence of the second moments of the variables Χλ ,(s · θ,), 

/ = 1,2,...,ΛΓ. 

Regarding (i), it is important to mention that all the integral relations defined 
in the preceding sections hold exactly as an infinite set of projection angles 
Θ, exists. Naturally, in practice only a finite number of Θ, will be taken, so 
that certain of the results obtained are only approximations of the integral 
relations above. This is not a novel fact; all types of integral transforms, 
like the Fourier, the Abel, and the Radon transforms, experience similar 
problems. Nevertheless, it turns out that in most applications of practical 
importance these approximations are very satisfactory. In the case that the 
univariate densities of the variables Xi,,(s · θ,) are non-Gaussian and N<<x>, 
the SRF (5) may be only approximately Gaussian. Nevertheless, in most 
situations in the simulation practice of engineering processes such an 
approximation is satisfactory. 

Regarding (ii), an interesting situation arises when the Xifi(s · 0,·), 
i = 1,2, . . . , N all have Cauchy densities, 

1 
TTÜ + X^s-e, · ) ) 

Second moments do not exist and the SRF Xn(s) of Eq. (5) is distributed 
with density 

1 

which under no circumstances tends to the Gaussian density. This aspect 
may be important in practice, for experimental results show that certain 
natural processes do not satisfy the Gaussian assumption. 

In general, a certain amount of experimentation with various numerical 
approaches and different algorithms is essential for the efficient application 
of the ST approach in practice. 

3.3 The Case of Nonhomogeneous Spatial Random Fields 

In the case of nonhomogeneous SRF the variance might not exist, and then 
the semivariogram y„(h) is used instead of the ordinary covariance c„(h) 
(Chapter 2). The ST results derived above still apply by simply replacing 
c„(h), che(t)9 and cue(t) with y„(h), r i , e (0 = ^ [ y „ ( h ) ] and yhB(t) = 
Tl

n[y„(h)], respectively. 
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In more complex situations of spatial variation one can model the underly-
ing nonhomogeneous SRF by means of ISRF-i/ (Chapter 3). Again, the ST 
theory is seen to be valid simply by replacing c„(h), che(t), and clfi(t) with 
the GSC-p fc„(h), kue(t) = Ψ1„[Κ0*)] and kue(t) = T\[kn(h)], respectively. 

4. Stochastic Differential Equation Models 

4.1 The Space Transformation Approach 

There are certain important problems in the application of the existing 
stochastic approaches in the study of hydrogeologic processes in space-time. 
Such problems include (i) The spatial multidimensionality of the stochastic 
differential equations, (ii) The existence of the solution of these differential 
equations, before any statistical moments or spectral density functions can 
be meaningfully derived, (iii) Physically inadequate approximations and 
unrealistic assumptions (e.g., small fluctuations, spatial homogeneity, 
infinite flow domains), (iv) The closure problem (when solutions in terms 
of statistical moments are derived). 

Multidimensionality, in particular, creates serious mathematical and tech-
nical difficulties in the study of stochastic partial differential equations 
(SPDE) representing natural processes, such as pollutant transport in the 
atmosphere. It also makes the treatment of the corresponding equations 
computationally demanding (due to the large number of mesh points, etc.). 
Apart from the sheer size of the computation, the real deterrent to a 
computational attack on spatially multidimensional equations is the very 
serious convergence difficulties that this size implies. Computations in 
multiple dimensions may be most reluctant to converge, and can only be 
made to do so by using soundly judged initial conditions and sophisticated 
devices for accelerating convergence. 

A better alternative to the purely computational approach is to try to 
simplify the complex SPDE analytically. This can be achieved most 
efficiently by means of the ST approach, which transforms the original 
multidimensional problem to a much simpler unidimensional space. Apart 
from its intrinsic interest, an ST analytical attack has two attractions. If 
there are difficulties in applying the stochastic differential equation methods 
to porous media hydrodynamics and solute transport, analysis will show 
their nature more clearly than a computational approach. Furthermore, 
even if the analysis is not wholly successful, it may give us enough informa-
tion to start a convergent computation in the considerably simpler 
unidimensional setting. The stochastic ST approach uses spatial as well as 
spatiotemporal RF concepts and tools. Space-time is treated in a dynamical 
way, rather than being imposed on the analysis rigidly. This allows us to 
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consider flow and transport under the general conditions of space non-
homogeneity and time nonstationarity. Also, the theory can be extended to 
more realistic situations of finite domains and boundary conditions. 

Certain classes of solutions of SPDE may have the same structure as 
functions of the ST-families discussed above. (Herein, when we say that a 
function belongs to the T or the Ψ-family, we shall mean that the forms 
of the function in spaces of one, two, and three dimensions are related by 
the ST-1 or the ST-2 operator, respectively.) This observation is especially 
important in the context of transport-type models describing flow through 
porous media; first the multidimensional SPDE is transferred into a suitable 
unidimensional equation by means of ST, then the differential equation is 
solved in R1, and finally, by applying 1ST, solutions of the corresponding 
multidimensional equation are constructed. 

As already mentioned, the ST operators are valid in the case of spatiotem-
poral fields X„(s, t). More precisely, it holds true that 

Xl,e(s,t)=T1
n[Xn(s,t)] (1) 

Χ„ (Μ)=ΓΡ 1 > Θ (Μ) ] (2) 

Xn(Sl, S2, · · · » Sn<> 0 = Tn + k[Xn + k(Si, 5 2 , . . . , Sn + k, t)\ 

= Xn+k(s\, s2, · · · J sn+k, 0 dsn+i... dsn+k (3) 

and 

Χ „ ( Μ ) = Ψ?[ΧΙ ,Θ(Μ) ] (4) 

X l teU0 = *i [Xn(s,0] (5) 
at s = su. Additional expressions can be derived in the frequency domain 
(see preceding sections). 

Consider the SPDE 

W ^ ( M ) ] = Σ apD^-ß^\Xn(s,t) = 0 (6) 
L|p|=„ àt J 

where a9 = aPl...Pn, |p| = Σ"=ι Pf = ^ anc* βμ are constant coefficients. Assume 
that the initial conditions consist of a set of equations 

^ϊ *π(Μ) | , -ο =/*(») (7) 

dt 

where /c = 0, l , . . . , / x — 1. 

Step 1: If we apply ST-1 to Eqs. (6) and (7) we obtain 
W * i , e ( M ) ] = | Σ ^p^-ß^\x^(s9t) = 0 (8) 

where k = 0, l , . . . , / x — 1. 

Step 1: If we apply ST-1 to Eqs. (6) and (7) we obtain 



In case (a) we will be dealing with deterministic differential equations, 
and case (b) with deterministic algebraic equations. 
Step 3: Finally, by using the IST-1, realizations of the multidimensional 
differential equation (6) are derived, viz., 

X„(s, t)=TÎ[Xlt9(s, 0 ] = ΨΓίϊ[*ι,β(* 0 ] (10) 
In addition to providing a useful way of solving important SPDE, the 

ST approach offers valuable insight into the interrelations between the 
one-dimensional and the multidimensional structure of the underlying 
natural processes. 
Example 1: Consider the particular case of Eq. (6), 

L3/0[X2(s)]= Σ *pD(3)X2(s) 
|p| = 3 

d3X2(s) , d3X2(s) , <93X2(s) 
bs\ dsids2 dsxdsl 

+ α ο 3 " ^ Γ = 0 

In this case the application of ST-1 gives 
<93 

L3/0[X,,e(s)] = Σ αρ0ρ—3Χ,.β(ί) 
IPI-3 ds 

= "3001 r i + «2101^2 7 1 

öS öS 

where 

and 

where 
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(9) 

(a) their correlation functions, or 
(b) their spectral density functions. 

Step 2: The one-dimensional differential equation (8) can be solved with 
respect to Χι,θ(Λ 0 , assuming that the necessary conditions for the existence 
of the solution in the mean square sense are satisfied. A number of methods 
for solving unidimensional stochastic differential equations are reviewed 
in, for example, Gihman and Skorokhod (1972). Note that apart from 
solutions in terms of realizations of spatial and spatiotemporal RF rep-
resentations, the SPDE can also be studied by means of 



4.2 The Wave and Related Stochastic Partial Differential Equations— 
Some Examples from the Hydrosciences 

Let us consider next the wave equation. The reason for this choice is that 
fundamental solutions of a unidimensional wave (hyperbolic) equation can 
give us solutions to a Laplace (elliptic) or diffusion (parabolic) equation. 
The following statement is a straightforward consequence of the ST 
approach above. 

If Xn(s91) is a solution of the wave equation 

[*?- V s
2 ,„R(s, t) = a(t) 8(Sl) 8(s2)... 8(sn) (11) 

where V2.,„ =Σ"=ι à2Ids] and a{t) is a given function of time i, then X„(s, t) 
belongs to the Γ-family of ST-1 related by Eq. (3) above; that is, the 
realizations 

Xn+1(s,t)=T"n
+1[Xn(s9t)] (12) 

are fundamental solutions of the equation 

[^-Vs
2,M+1]X„+1(s, 0 = a(t) S(Sl) S(s2)... 8(sn) 8(sn+1) (13) 

where now 

s'"+1 £35? 
To fix ideas we consider the following examples. 

Example 2: Taking the ST-1 of 

[^-vs
2,Mjxn(s,o = o 

[ d2 d2 1 
â?"â?JX l ( s ' i ) = 0' where χ · (5 ' ί) = Γ»[χ«(8'ί)] 

we find 

This can be factored as 

μ+Αΐμ_ΑΐΧι(Μ)=0 
Idt dsjldt ds] 

which implies that 

aX\(s, t) dXx(s, t) 
dt ds 

is a function of s -1 alone. 
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Example 3: In this example we will see how we can obtain solutions for 
the Laplace equation modeling the three-dimensional steady flow in soil 
when the condition of permeability is the same in all directions, viz., 

-V2
s,3h3(sl9s29s3) = ô(Sl)ô(s2)8(s3) (14) 

where h3(s) is the hydraulic head and the delta functions represent a well 
at the space origin. 

First note that in one dimension the solution of Eq. (11) is Xi(s9 t) = 
f(t-s)/29 where df{t)/dt = a{t). Note that if a{t) = 8{t)9 then/ ( i ) = l 
when t > 0, = 0 otherwise. Hence Xi(s91) = \ if t > s and = 0 otherwise. We 
will derive isotropic solutions, that is, solutions satisfying X„(s) = Xn(s = |s|) 
for n = 2 and 3. More specifically, 

X2(s9t)=T2
1[Xi(s9t)]= — r^dpldu in R2 (15) 

2π K \lu2-s2 

and 

Γ 3 Γ ^ / - . M a ( i - s ) 
Χ 3 (Μ) = Φ ι ( Μ ) ] = ^ ; in R3 (16) 

47Γ5 

(Notice that, due to isotropy, the directional vector Θ is no longer present.) 
Alternatively, one may work in the frequency domain where, for example, 
if Χι(ω, t) and Χ3(ω91) are the spectral functions of the realizations Xi(s91) 
and X3(s91)9 respectively, it is valid that 

F(t-ü)) 
Χ3(ω9ί) = Χλ(ω9ί)=

 V
2 

where F(t-œ) is the Fourier transform of f(t-s). Taking now the inverse 
Fourier transform in R3 we find X3(s91) = a(t — s)/4ws, which is the same 
result as in Eq. (16) above. Next, from Eqs. (11) and (16) and assuming 
a(t) = 1 if t> 0, = 0 otherwise one gets the solution 

h3(s) = lim X3(s,t)=— in R3 (17) 
r^oo 47TS 

In R2
9 following a similar procedure one finds 

— h2(s) = \im—X2(s,t) 
OS t^ocdS 

where 

v i . 1 p du 
X2(s9t)=— -== 

2nL Vw2-
And, by differentiating we get the solution 

h2(s) = -^-\og(s) (18) 
2π 

In R2, following a similar procedure one finds 



4. Stochastic Differential Equation Models 2 3 1 

Example 4: Let us reconsider the three-dimensional flow model studied by 
Bakr et al (1978), under the light of the ST approach. We assume, for the 
moment, that the "small-perturbation" assumptions of the power series 
expansions used in these studies are valid. Then, the perturbation approxi-
mation of the stochastic flow equation will be given by 

V i , A , ( . W ^ (19) 

where ft3(s), se R3 is the hydraulic head, / is the mean hydraulic gradient 
in the sx direction, and /3(s) = log[X(s)], where K(s) is the hydraulic 
conductivity. Model (19) allows perturbations to both the flow and the 
hydraulic conductivity in three dimensions. 

By applying IST-2, Eq. (19) reduces to the one-dimensional differential 
equation 

^-2hhe(s) = Jel^-fhe(s) (20) 
dS dS 

where hie(s) =^J[/i3(s)] and fhe(s) = yl
3[f3(s)]. Note that we could also 

apply ST-1 to obtain 
d2 d 

—2hM = J0i-fi,e(s) 
dS dS 

where 

Ke(s)=Tl[h3(s)] and fhe(s)=Tl[f3(s)] 

Now Eq. (20) is easily solved, viz., 

· = /βι ί /i.e(« 
Jo 

hUe(s) = J0i\ / Ι ,Θ(" ) du + axs + a0 Jo 
(where, again, the coefficients ax and a0 are to be determined on the basis 
of the initial conditions). 

Realizations of h3(s) satisfying Eq. (19) can be constructed in terms of 
the ST-2; that is, 

* 3 « = ¥?[*i.e(*)] (2D 
at s = sd. 

In the context of stochastic correlation analysis, the ST-based approach 
can be applied to study the partial differential equations governing the 
corresponding covariances (ordinary or generalized), or the algebraic 
expressions relating the associated spectral density functions. More 
specifically, in the spectral domain the differential representation (19) leads 
to the following algebraic representation. 

J2w2 

C M (w)=-VQ 3 (w) (22) 
w 

where 
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where CM(w) and Q3(w) are the three-dimensional spectral density func-
tions of fc3(s) and /3(s), respectively. By applying IST-2, Eq. (22) yields 

Ch,1(wl)=—2CÂ1(wl) (23) 

which is the spectral equation governing unidimensional, steady-state, satur-
ated groundwater flow in the Si direction. Note that the unidimensional 
spectral density of the hydraulic head fluctuations is related to CA3(w) by 

CKl{wx) = ^3[C„,3(w)] = 2 T W ? C M ( W ) 

Also, the hydraulic conductivity spectrum satisfies 

C/,1(w1) = Yl[C / f3(w)] = 27rw?C/,3(w) 

(Here the spectral densities are as usual evaluated at w= νν^θ, where Θ is 
the unit vector determining the sl direction in R3.) 

By means of Eq. (23), the study of a three-dimensional hydrogeologic 
process has been reduced to the study of a unidimensional process along 
the Sj direction. The corresponding unidimensional spectral and covariance 
functions have a definite physical meaning and can be calculated experi-
mentally much easier than their three-dimensional counterparts. We can 
proceed further by assuming that the unidimensional covariance of the 
hydraulic conductivity is 

C/,l(r) = ̂ ( l - f )exp[-f] (24) 

where a represents correlation distance. ST-2 yields the corresponding 
three-dimensional isotropic covariance, viz., 

c/,3(r) = ^ [ c / ; i ( r ) ] = ^ e x p [ - ^ ] (25) 

(Note that this result coincides with the covariance model assumed by Bakr 
et al., 1978). Taking the Fourier transform of (24) one gets 

„ , x 2aja3w2 

CVi(wi) =—-—-—, - , 

and the model (23) yields 

2aja3J2 

CM(w1)=- 2 2 2 
7r(l + a w j 

Since C^3(w) and Chl(w) are related by means of the ST-2 operator (ω = |w|), 

CUW)= 2 , / . 2 2x2— (26) 
π (1 + a ω ) ω 
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which is the required three-dimensional hydraulic head fluctuation spectrum 
(22). Taking the Fourier transform of (26) we obtain the corresponding 
covariance function. (Note that the covariance functions belong to the 
Ψ-family, as well.) 

To verify the result (26) one can proceed in several ways: For example, 
we can take the Fourier transform of the covariance (25) and insert it into 
the three-dimensional model (22) to get for Ch>3(w) the same expression as 
Eq. (26). Similar results can be obtained for other stochastic flow models. 
Remark 1: As has been mentioned in previous chapters, when the statistical 
moments or the spectral functions approach is used, one should first deal 
with the question whether any solution of the corresponding SPDE in terms 
of SRF representations does actually exist. For if such a solution does not 
exist, the application of the above methods makes no sense. Another 
important aspect of the statistical moments approach is the closure problem; 
that is, we have a hierarchy of N equations with N + 1 statistical moments. 
Then an appropriate approximation technique must be used that will convert 
the infinite hierarchy of equations into a closed set. In stochastic hydro-
geology, the most widely used method of closure is the power series method 
(e.g., Ababou and Gelhar, 1990). However, in many practical circumstances 
the series method may be incapable of representing the fundamental charac-
teristics of the flow and transport, and it may lead to quite unreasonable 
results (Christakos, 1990c). 

4.3 Stochastic Partial Differential Equations of Intrinsic Spatial Random 
Fields of Order v 

Consider the SPDE in R3 (Poisson differential equation) 
Vi3X3(s)=Y3(s) (27) 

where X3(s) is an ISRF-1 and Y3(s) is a homogeneous SRF. (Poisson 
equation is widely used, for example, as a perturbation approximation of 
the steady-state flow model in a fully saturated spatially random medium.) 

The ST approach yields solutions of the general form 

x3(s) = -^-v\Tl[ y3(s)] = ~Ψ\[ ?ι,β(β · β)] 

= -^-2 I ?ι,·(8·β)«/θ (28) 

οπ Js2 

The correlation structure associated with Eq. (27) is given by 
V4

s,3k3(h) = c3(h) (29) 
Assuming isotropy, Eq. (29) becomes 

- 7 7 [ r * 3 ( r ) ] = c3(r) (30) 
r dr 

(29) 

(30) 

The correlation structure associated with Eq. (27) is given by 

Assuming isotropy, Eq. (29) becomes 



4*i(r) = ci(r) (31) 
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where r = |h|. Now apply IST-2 to Eq. (30) to get 

I4 

dr 

where 

*.(»·) = *J[*,(r)] = ^ [1*3(1·)] 

Ci(r) = ^ [ c 3 ( r ) ] = ^ [ « 3 ( r ) ] 

Equation (31) can be solved to obtain 

Ç r (r _ u\3 
fcx(r)= ———cx(u) du + axr + a0 

Jo 3! 

where the coefficients ax and a0 are to be determined on the basis of the 
initial conditions of the particular problem. Next, by employing the ST-2 
we find that 

fc3(r) = ^^fc 1(r)=- I kx{u)du 
r Jo 

1 fr 2 

= — u(r-ufc,{u)du+ Σ bj+lr
j (32) 

For example, if c3(r) = exp[-br] , fc3(r) is given by 

, , x _ i _ 4 r t r2
 t 4exp[-frr] , exp[-br] 

k*r)-b* tfr 63 + 6 b 2 + b5r + fc4 

(compare with Eq. (13), Section 5 of Chapter 3). 

4.4 Stochastic Partial Differential Equations with Variable Coefficients 

In addition to the analysis proposed above, the analytical apparatus of the 
ST approach is capable of studying more complicated SPDE with variable 
coefficients that represent, for example, realistic groundwater flow and solute 
transport problems. 

Investigations in the context of SPDE with variable coefficients require 
that the ST and the 1ST be defined for products of spatial and spatiotemporal 
natural processes, as well as for their derivatives. For illustration let us 
study the following example. 
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Example 5: Suppose one needs to determine the 1ST T\[ · ] of the product 
Xx e(s) Yhe(s), where Xi#(s) and Yi,e(s) are the unidimensional representa-
tions of the SRF X3(s) and Y3(s), respectively. Using the theory of the 
previous sections, the 1ST Tj[ · ] of the product X\#(s) Yi,o(s), is defined as 

X3(s)Y3(s)=T3
l[Xue(s)Yue(s)] 

JR3\JR1 
Vs

2 βχρ[-ΐώβ·β] 
2(2ττ)4 

x ΑΓ1ιβ(ω) * Υι,β(ω) Λω | dQ (33) 

where * denotes convolution. Moreover, by using well-known convolution 
and Fourier transform properties, Eq. (33) can also be written as 

X3(s) YM = -ττ^-τ-^Ι f f g(s, s', s")X3(s') Y3(s") ds' ds" (34) 
2(2TT) J R 3 J R 3 

where 

g(s , s ' , s w )=f i f dw\ e x p [ ^ e - ( s " - s ) ] 

xexp[ia>'e · (s'-s'O] ί/ω'ί ί/θ (35) 

Such ST formulas are important in the context, for example, of ground-
water flow analysis represented by the steady-state SPDE 

V-[X3(s)-VH3(s)] = 0 (36) 

where H3(s) is the hydraulic head in a three-dimensional saturated porous 
medium with spatially variable conductivity K3(s). [Note that if power 
series expansions together with small-perturbation assumptions are used to 
solve the closure problem (as, e.g., in Bakr et al, 1978; Ababou and Gelhar, 
1990), Eq. (36) reduces to the perturbation approximation expressed by 
Eq. (19) above.] 

In the case of Eq. (36), the ST analysis above will provide the necessary 
expressions for the quantities ^ [ ^ ( s ) -VH3(s)], T\[KlQ(s) d/ds Hlfe(s)]9 

etc. Here, Α^,Θ(Ό = T\[K3(s)] is the unidimensional hydraulic conductivity 
and Hie(s) = T3[H3(s)] is the unidimensional hydraulic head along the Θ 
direction. If the flow domain is assumed to be finite, the ST of the original 
multidimensional finite flow domain will lead to a unidimensional domain, 
which is also finite. The ST should also be applied on the original boundary 
conditions. Then, the ST version of Eq. (36), together with the ST finite 
domain and boundary conditions, completely define the unidimensional 
flow problem. The solution of the latter is considerably simpler than the 
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original multidimensional flow model. Certainly, a significant amount of 
work remains to be done along these lines of thought, for a number of 
properly chosen finite domains and boundary conditions. This will naturally 
include the development of a physically adequate closure method regarding 
the hierarchy of equations of higher order correlations, which will arise 
when the statistical moments of the ST-reduced unidimensional version of 
Eq. (36) are derived (Christakos, 1990c). 

In summary, the space transformation approach to SPDE is as follows: 

(a) Transform the study of multidimensional SPDE from the n-
dimensional space (n = 2 or 3) to the one-dimensional space, by means 
of the ST operators. 

(b) Examine the existence and uniqueness of the solutions of the 
unidimensional stochastic differential equations. Conditions for the 
existence and uniqueness in n dimensions may be related to those in one 
dimension through the ST operators. 

(cl) Either derive solutions of the unidimensional stochastic 
differential equations, or 

(c2) when step (cl) is not achievable, one may work in terms of the 
equations relating the corresponding statistical moments or spectral 
density functions. In this case, the associated multidimensional closure 
problem will be reduced to a unidimensional problem. 

(d) Finally, obtain solutions to the original multidimensional 
equations by means of the inverse ST. 

5. Criteria of Permissibility 

Within the context of the criteria of permissibility (COP, see previous 
chapters), the following result establishes a means of testing if a function 
that is a permissible ordinary covariance in R1 is also a permissible covari-
ance in R" (Christakos and Panagopoulos, 1992). 

Proposition 1: A function c„(h) is a covariance in Rn if and only if the 
corresponding ST functions, c1>e(0> ci,e(0 are such in jR1. 

Example 1: Let the candidate function in R3 be 

c3(0 = exp[-i2] (1) 

where t = |h| (isotropic function). The corresponding ST-1 function in Rl is 

cl(t) = wcxp[-t2] (2) 

(Note that, due to isotropy, the subscript Θ is no longer present.) The 
function cx(t) is a covariance in R1 (see Example 8, Section 7 of Chapter 
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2) and, therefore, so is c3(t) in R3. Alternatively, one can apply IST-2 to find 

cl(t) = (l-2t2)exp[-t2] (3) 

Again, since cx(t) is a covariance in R1
9 the c3(t) is a covariance in R3. 

Proposition 1 is also valid in terms of semivariograms and generalized 
covariances. In the case of isotropic covariance, semivariogram, or general-
ized covariance models an alternative, and sometimes practically more 
comprehensive ST-based approach, is as follows: (i) Find the spectral 
function of the candidate model in R\ and check its permissibility by using 
the appropriate COP. (ii) If it is permissible in Rl apply the IST-1 to obtain 
the spectral function in the space of interest R", and apply COP to check 
its permissibility. To clarify things consider the following example (see also 
Chapter 7). 
Example 2: Assume we are given the model 

y(r) = l-exP[-f] (4) 

where a>0. Its spectral function in Rl is 

Ι \(ω) = -
ττ(1 + α2ω2) 

Clearly the appropriate COP-4 (Chapter 2) is satisfied; that is, -ΓΊ (ω)>0 
for all ω. By applying ST-1, we obtain the spectral semivariogram function 
in R2, which, again, satisfies the corresponding COP, namely, 

dTx{u)~ 

π Jn {du lu du JJ du 

In R3 

r[y/l + a2<o2] 
- > 0 

■Γ3(ω) = 
1 άΤλ{ω) 

2πω άω 

for all ω 

π\\ + α2ω2) 
; > 0 for all ω 

Proposition 1 can also be used to derive new covariance models in Rn 

starting from one-dimensional covariances. For example, let the covariance 
in R1 be cl(t) = exp[-t2]; ST-2 applied in R2 becomes c2(t) = I0(t)-L0(t), 
where J0( · ) and L0( · ) are Bessel and Struve functions, respectively, both 
of order zero. Several other examples are discussed in Christakos (1984b). 
Finally, the application of the ST theory in the simulation of random fields 
will be discussed in detail in Chapter 8. 



Random Field Modeling 
of Natural Processes 

1. Introduction 

"The sciences do not try to explain, they hardly even 
try to interpret, they mainly make models. By a model 
is meant a mathematical construct which, with the 
addition of certain verbal interpretations, describes 
observed phenomena. The justification of such a 
mathematical construct is solely and precisely that it is 
expected to work. " 

J. von Neumann 

Hydrogeologie parameters such as permeability, porosity, hydraulic head, 
transmissivity, storage coefficient, and rainfall are all functions whose 
properties are coordinated with the algebraic structure of the space and/ or 
time. The same happens with the vast majority of pertinent natural processes 
in environmental engineering, mining, meteorology, etc. 

The study of the spatial and temporal behavior of such natural processes 
by applying concepts and methods from the theory of random fields (RF) 
presented in previous chapters constitutes an important part of the stochas-
tic research program (see also Chapter 1). More specifically, description of 
the dominant features of a natural process is achieved by means of 

(a) certain fundamental working hypotheses, that belong to the hard 
core of the stochastic data processing research program; 

(b) a set of auxiliary hypotheses together with some duality relations, 
which relate the natural processes to the mathematics of the RF model; 

238 

7 
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(c) a heuristic—a set of methodological rules—for determining spatial 
correlation models by means of experimental procedures (in the case of 
ordinary covariance and semivariogram functions), as well as automatic 
procedures (when generalized models are involved). 

The implication of this approach is that the model parameters and auxiliary 
hypotheses are assigned real counterparts that are operationally determined. 
As a consequence, the conclusions obtained about the spatial structure of 
the natural processes represented in terms of spatial RF (SRF) have an 
objective meaning. Simultaneous references to experimental data support 
the theoretical claims. 

Certain ways to incorporate qualitative (soft) information into the analysis 
are explored. Experience with the problem's specific discipline is very 
important here. Since the subject includes serious pitfalls, one should 
proceed with great caution. Particularly interesting is the situation where 
the natural process of interest is undersampled or unobservable, but is well 
correlated to processes about which a significant amount of information is 
available. Relevant is the case of data interrupted by measurement errors. 

In practice, another useful approach of incorporating soft data into 
analysis is provided by the so-called indicator formalism. Within the same 
framework, a technique that determines spatial correlation models by an 
approach that maximizes entropy subject to all the information available 
about the spatial variability of the specific hydrologie process, is presented. 
The approach attributes great significance to procedures translating qualita-
tive knowledge into appropriate quantitative conditions. In relation to this, 
it is argued that the real power of subjective analysis is in fulfilling the need 
for normative rules, according to which these translations will be carried out. 

The use of space transformations largely simplifies things through the 
reduction of multidimensional processes to spaces of lower dimensionality. 
In connection with this, we outline certain important issues concerning the 
effective application of the theoretical permissibility criteria of spatial corre-
lation models developed in previous chapters. 

Finally, the various stages of the identification of the spatial and temporal 
variability are combined into a comprehensive step-by-step procedure whose 
outcomes can be clearly interpreted and appreciated. Moreover, it is possible 
to make some tentative observations about which of the various auxiliary 
hypotheses and duality rules will function better in complex real situations. 
Also, we will find that the distinction between testable and nontestable 
auxiliary hypotheses is not always clear-cut. For example, while under 
certain circumstances homogeneity can be taken as a nontestable hypothesis, 
it will appear to be testable in many other cases; this suggests that the 
distinction between testable and nontestable hypotheses is to some extent 
a matter of how hypotheses apply rather than their inherent content. These 
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observations emphasize the fact that the effective application of the spatial 
and temporal structure identification procedure requires a deep understand-
ing of the physics of the natural process of interest, intuition, and a broad 
knowledge of the specific scientific discipline. 

2. Descriptive Features of Natural Processes and the Basic 
Working Hypotheses 

Natural processes distributed in space are physically unique and rather 
descriptive. However, as was pointed out in Chapter 1, this spatial distribu-
tion displays two distinct features, namely, 

(a) The overall causal spatial structure, which includes geological 
trends, transition zones, as well as location, size, and orientation of the 
individual samples. For example, a soil parameter takes its values within 
a geometrically well-defined region such as an earth dam, or the 
foundation medium under a construction site. Some locations are 
especially important for engineering performance: when predicting the 
soil settlement under a building, a sample located beneath the centerline 
may be more important than one outside the stress bulb. One tests 
samples that are determined precisely with their location, geometrical 
shape, dimensions, and orientation within the soil deposit. The latter 
may affect the sort of test to be performed in the laboratory, say active, 
passive, or direct shear strength tests. Sample size is known to affect the 
measured strength of stiff fissured clays, where small samples may 
overpredict the average in-situ value. Also, when estimating the in-situ 
coefficient of consolidation or the permeability of soils like varved clays, 
one may need large laboratory samples to obtain reasonable values. 

(b) The local noncausal randomness, in the sense that the values 
measured cannot be determined in advance in terms of, say, an analytical 
expression. For example, the soil settlement pattern shown in Fig. 7.1 
exhibits an overall structure obeying some specific laws or mechanisms 
of nature but, at the same time, the local variation of soil settlement is 
irregular enough to be considered as random. Consider, also, Fig. 7.2 
which describes the Zn concentrations (%) from a mine at Lavrion 
(Greece). Both features of structure and randomness are apparent in this 
case, too. That is, there are areas rich in Zn and areas with low 
concentration in Zn; on the other hand, the Zn concentration presents 
locally erratic fluctuations. 

In spatial data analysis such natural processes are called topographic (see, 
e.g., Whittle, 1954; Gandin, 1963); in geostatistics they are called regionalized 
(Matheron, 1965; Journel and Huijbregts, 1978). As we discussed in Chapter 
1, any scientific approach to the problem of modeling and analyzing such 
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Figure 7.1 The pattern of expected soil settlements (centimeters) 

natural processes should take both issues of randomness and spatial struc-
ture into account. In this context, the issue of randomness immediately 
excluded any deterministic model. Then, a representation of the spatial 
variation in statistical terms would not be appropriate, due to the assumption 
of spatial independence between observations. (Clearly, this assumption 
fails to incorporate in the analysis the most important issue of spatial 
structure mentioned above.) In view of this discussion, the conclusion of 
Chapter 1 was that the approach to be employed should be based on the 
interpretation of a natural process by means of the SRF model. The implica-
tions of this interpretation were fully understood by noticing that as a result 
of the functional nature of the SRF model, we were able to attach the 
appropriate mathematical content to features of both macroscopic structure 
and microscopic randomness. 

To proceed further with the application of the SRF model developed in 
Chapters 2 through 6, it is necessary to make certain physically well-
motivated working hypotheses. These are methodological hypotheses that 
belong to the hard core of the stochastic research program (see also Section 
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Figure 7.2 Zn concentrations (percent) from the mine of Lavrion 

4, Chapter 1) and should be considered a modeling of reality rather than 
as the physical reality itself. The philosophy behind this view is that one 
cannot prove anything about the real world by means of a mathematical 
model. One develops such a model, studies its behavior, and uses it to make 
predictions about a natural process. Then one may evaluate the usefulness 
of the model in terms of the degree to which its behavior and predictions 
agree with reality. 

Hypothesis HI: The set of all available measurements in space is considered 
one of several realizations (sample functions) of an SRF. 

In other words, while locally the natural process is viewed as a random 
variable, globally it is characterized by the spatial dependence of the 
adjacent random variables that constitute the SRF (see, e.g., Fig. 2.1 of 
Chapter 2). Hypothesis HI is a nontestable (after the event) hypothesis and 
should be considered a fundamental methodological choice that opens the 
way for applying the SRF model to our problem. In this connection, the 
next step is to choose, among the various parameters of an SRF model, 
those that will make the SRF representation of a natural process practically 
feasible. 
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Hypothesis H2: All calculations pertinent to the stochastic structure of an SRF 
will be carried out on the basis of the statistical moments of order up to two, 
in the ordinary or in the generalized sense. 

By applying hypothesis H2 we essentially restrict ourselves to that part 
of the general theory of SRF—called correlation theory—which studies only 
those aspects of SRF determined by their statistical moments. To carry on, 
however, with practical aspects an additional hypothesis is indispensable. 

Hypothesis H3: All the information related to the statistical structure of the 
natural process is included in the single realization available. 

The methodological hypothesis H3 is heuristically most important: Since 
in reality the natural process is unique and, hence, only one realization of 
the SRF is available, H3 allows the determination of those model parameters 
having real counterparts that can be observed and measured, and, therefore, 
they are testable (after the event). More specifically, the theoretical statistical 
moments (mean value, covariance, and semivariogram functions) should 
now be expressed in terms of their real counterparts, namely, 

m * ( h ) = ^ J X(s + h )ds (1) 

c * ( h , h ' ) = ^ J [X(s + h ) - m î ( h ) ] 

x [X(s + h ' ) -m*(h ' ) ]ds (2) 

y * ( h , h ' ) = ^ J [X(s + h ) - X ( s + h')]2ds (3) 

where U is an appropriate domain of integration in Rn and V is the volume 
of the domain. The V is chosen so that its transverse dimension L is 
significantly larger than the correlation radius rc (defined in Chapter 2). 
For example, in the three-dimensional domain, L ~ W» rc. 

From a heuristic viewpoint the important element here is that while the 
theoretical statistical moments are purely mathematical notions, their real 
counterparts (1) through (3) can be evaluated in practice (we will see how 
in Section 5 below) and, therefore, they are testable model parameters. 
According to the philosophical theses of the stochastic data processing 
program (Section 4 of Chapter 1), this implies that the parameters (1) 
through (3) represent a physical reality and that they have an objective 
meaning. 

The auxiliary hypotheses of the heuristic part of the stochastic data 
processing program include SRF homogeneity, isotropy, and intrinsity of 
some order v (see also Section 6 of Chapter 2). These hypotheses, which 
play a very significant role in the SRF-based representation of the natural 
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process, are not theoretically testable on the basis of a single SRF realization; 
however, they now obtain real counterparts that can be operationally recon-
structed and tested for the domain of interest U, in terms of the expressions 
(1) through (3). As a consequence, all the predictions and model outcomes 
derived in terms of these testable parameters and hypotheses (e.g., the 
estimates of a natural process at unknown locations in space and the 
associated estimation variance) can also be operationally determined and, 
therefore, they possess an objective meaning. Furthermore, as we shall see 
in the following section, the study of the experimental statistical moments 
reveals a significant amount of valuable information in the physical sense. 

Note that in the specific situation where the SRF is homogeneous, H3, 
essentially implies that the corresponding SRF is ergodic; then the Eqs. (1) 
and (2) become (see also Section 12 of Chapter 2) 

v\v 
X(s) ds (4) 

y Ju 

c*(h -hO=-^J [X(s + h ) -m*] [X(s + h ' ) - m * ] d s
 (5) 

^ h ) = ^ 7 7 ^ ί [*(s + h ) - X ( s ) ] 2 ds (6) 

where the domain of integrations now is l/(h) = U n LLh( t/_h is the transla-
tion of U by h), and V(h) is the n-dimensional volume of t/(h). 

In the case of spatiotemporal natural processes, the following real counter-
parts may be defined: If X(s, t) is a space-homogeneous/time-stationary 
RF, one can write 

• ^ ' - Ï M X ™ 8 · ' » - " · 3 

x [X(s + h, t + T) - m*] ds dt (7) 
where 

■■-—\ r X(s, 0 ds dt (8) 

In Eq. (8) it is assumed that the transverse dimension L of V and the time 
period IT are significantly larger than the correlation radius rc and the 
correlation time rc, respectively; viz., L » rc and IT» rc. If the random field 
X(s, t) is only space homogeneous, it is valid that 

c*(h,U')=^J [X(M)-mî(0] 
x[X(s + M ' ) - t f i * ( i ' ) ] d s (9) 

If the process is an ISRF-0 (Chapters 2 and 3), Eq. (3) becomes 

(5) 
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where 

m*x(t)=^j X(s,t)ds (10) 

with L » rc. Finally, if X(s, t) is only time stationary, 

c * ( s , s ' , r ) = ^ J T [ X ( M ) - m î ( s ) ] 

x[X(s',t+T)-m*(s')]dt (11) 

where 

m*(s) = 2 r j T
X ( s ' i M i (12) 

with 2T»TC. 

Besides spatial variability, another important source of spatial uncertainty 
is attributed to measurement errors. Some factors contributing to measure-
ment errors are random, while others are related to sample disturbance, 
simulation in the laboratory of in-situ conditions, etc. (Davis and Poulos, 
1967; Milovic, 1970; Bishop et al, 1973). The laboratory procedures for 
determining the relative density of sands offer a good example of serious 
errors and variability between laboratories (Tavenas et al, 1972). Also, 
significant differences may exist between measurements taken in the labora-
tory and in-situ (Yucement et al, 1973). When measurement errors are 
present, one does not observe the actual SRF X(s,) at each location in 
space, but instead the measured SRF y(sf), which includes errors V(sf). 
Usually, linear models taking into account such measurement errors are of 
the form 

y(si) = oX(s i)+V(s i) (13) 

where a is a deterministic coefficient derived from testing experience and 
V(s,) is a white-noise SRF uncorrelated with X(s,) and Y(Si); the V(s,) is 
assumed to have zero mean and variance ^ ( s , ) . 

3. Duality Relations between the Natural Process and the 
Spatial Random Field Model—Examples from the 
Geosciences 

The next step in developing our model is to examine how one can derive 
conclusions about the behavior of the natural process, starting from the 
study of the mathematical properties of the corresponding SRF model. In 
other words one seeks to establish a set of auxiliary hypotheses, which we 
will call duality relations, between the in-situ behavior of the natural process 
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and the mathematical features of the SRF model. Hence, the fundamental 
role is played by the parameters associated with the spatial correlation 
functions (in the ordinary or the generalized sense). 

The duality relations below stem from the theoretical results of Chapter 
2 and are illustrated in Fig. 7.3 in the case of an ordinary semivariogram 
function yx(h), but they are also valid for the corresponding covariance 
function. 
Duality relation DR1: The variation of the semivariogram or the covariance 
function along several directions in space displays information about non-
isotropic properties of the natural process. 

That is, if the covariance varies significantly along different directions in 
space the SRF in anisotropic, and the same holds for the spatial variability 
of the natural process. For example, Fig. 7.4 shows the covariances of the 
soil settlement pattern of Fig. 7.1, computed along the four principal 
directions in space (the average covariance is also shown). Also, the direc-
tional semivariograms of marine clay strata thickness beneath a sand-fill 
embankment are plotted in Fig. 7.5. The implication of these plots is that 

Behavior along 
Different Directions 

Shape at Large 
Distances 

Figure 7.3 An illustration of the duality relations for the case of the semivariogram 
function 
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both the settlement pattern and the map of clay thickness are anisotropic. 
Anisotropy is due, in general, to the geological structure of the soil. For 
example, the undrained strength anisotropy of clays consists of two major 
components: inherent and stress-induced anisotropies, related to the sample 
orientation in-situ (Ladd et a i , 1977). 
Duality relation DR2: The range ε of the semivariogram or the covariance 
function determines the zone of influence of a local value of the natural 
process. 

The range is directly related to the rate of decrease of the covariance 
down from its initial value (variance) and confirms what earth scientists 
know by experience: The samples of a natural process that are close to 
each other are subject to stronger interactions than those that are far from 
each other. Naturally, samples whose distance from each other exceeds the 
range should be considered independent (and hence they will be omitted, 
for example, in estimation problems; see Chapter 9 later). In the case of 
an anisotropic process, the range may take different values along different 
directions; this will offer an additional parameter for determining the degree 
of the process lack of isotropy. The notion of range makes sense only in 
the case of homogeneous spatial distributions, such as the covariance of 
the standard penetration (SPT) blow counts data shown in Fig. 7.6. In the 
case of nonhomogeneous spatial variability the range of the semivariogram 
is not defined (see, for example, Fig. 7.5). 

Duality relation DR3: The behavior of the covariance or the semivariogram 
at large distances determines the degree of homogeneity of the process. 

In this way, an asymptotic behavior such as that of Fig. 7.6 predicts the 
homogeneous variation of the SPT blow counts. A linear covariance at large 
distance and a slow convergence toward zero, or the fast growth (usually 
linear) of the semivariogram at large distances, imply nonhomogeneous 
spatial processes, as in the soil settlement covariance and the clay thickness 
semivariogram in Fig. 7.4 and 7.5, respectively. To obtain some insight into 
how the presence of a trend may be evidenced by the behavior of the 
semivariogram at large lags h, consider the case of a linear trend mx(s) = a · s. 
The sample semivariogram y(h) will be calculated by Eq. (23), Section 4 
below and will be related to the actual semivariogram γ(η) by Eq. (42) of 
Section 4. Note that it is valid that 

| £ [ X ( s + h ) - X ( s ) ] 2 = r x ( h ) + i[mx(s + h ) -m x ( s ) ] 2 

= y*(h)+è[a-(s + h ) - a - S ] 2 

= yx(h)+|a2h2 

with 
rx(h) = iVar[X(s + h ) - X ( s ) ] 
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Figure 7.6 Covariance of SPT blow counts 

At large distances, |a 2 h 2 is the dominant (parabolic) term that causes the 
observed fast growth of the semivariogram. 

Duality relation DR4: The behavior of the semivariogram or the covariance 
function at the origin determines the degree of regularity in the spatial 
variation of the process. 

DR4 is a consequence of the theoretical result according to which the 
behavior of the semivariogram or the covariance at origin determines the 
m.s. continuity and differentiability of the SRF (Chapter 2). So, a parabolic 
(at origin) covariance represents a continuous and differentiable SRF, and 
a process modeled by means of such an SRF will have a very regular spatial 
variation. This is the case of the covariance of Fig. 7.6 and the semi-
variograms of Fig. 7.5 (the corresponding map of clay thickness verifying 
the regular spatial variability is shown in Fig. 7.7). A linear behavior 
characterizes a continuous but not differentiable SRF and, consequently, a 
nonsmooth process; in this case, the degree of irregularity will be directly 
dependent on the slope of the covariance or the semivariogram at the origin. 

The semivariogram of the water content data plotted in Fig. 7.8 corres-
ponds to a process with such an irregular spatial variability. A possible 
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Figure 7.7 Spatial distribution of the thickness of marine clay stratum beneath a sand-fill 
embankment 

discontinuity of the covariance at origin emphasizes the irregular features 
of the process. As we saw in previous chapters, this discontinuity is called 
the nugget effect in the geostatistical jargon (a discussion of the physical 
interpretation of the nugget-effect phenomenon and the RF models used 
to describe it mathematically will be given shortly); the process is then 
expected to be not continuously varying in space and highly irregular (see 
the covariance of cone penetration resistance in Fig. 7.9). The nugget effect 
may be due to microstructures, random variances, or measurement errors. 
An interesting case is that with zero covariance for distances greater than 
zero. This is a white noise or pure nugget effect and the variation of the 
process is purely random; see both the covariance and semivariogram 
functions of Fig. 7.10, corresponding to the time history of shear stresses 
during an earthquake (Fig. 7.11). 
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Figure 7.8 The semivariogram of water content data 

At this point, it may be instructive to consider the following simple 
example: Let yx(s) be the semivariogram of the unidimensional process 
X(s) plotted in Fig. 7.12. The length of the line ΡλΡ2... Pn-xPn can be 
considered a measure of the "smoothness" of X(s) (that is, the smaller the 
length, the smoother the process), and we can write 

n — 1 M —1 

L = £ ( i > . P j + 1 ) 2 = E [*(('' + !) Δ5)-Χ(/Δί)]2 + (η-1) As2 (1) 

1.0» 

h(m) 

Figure 7.9 Covariance of cone penetration resistance with a discontinuity at origin 
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Figure 7.10 Semivariogram and covariance functions for the time history of shear stresses 
during an earthquake (shown in Fig. 7.11) 

where As is the distance between the P;'s and 
E[L] = 2yx(As) + (n-l)As2 (2) 

Clearly, the smaller the value of the semivariogram at small distances As 
(e.g., a parabolic shape implies a smaller value than a linear one), the 
smaller is the mean value of L and, thus, the smoother is the X(s). 

Finally, notice that the behavior of the covariance or the semivariogram 
at very small distances affects substantially the smoothness of the estimated 
process (see Chapter 9). The estimation error may be significantly smaller 
for a covariance or a semivariogram that is parabolic at origin than for a 
linear one. Table 7.1 summarizes the duality relations in the space-time 
context. 

Most of the preceding duality relations are associated with the 
mean square stochastic properties of the SRF X(s). The following relation 
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Figure 7.11 Time history of shear stresses during an earthquake 

provides valuable information regarding the spatial behavior of a natural 
process by means of the sample function stochastic continuity and differen-
tiability properties discussed in Chapter 2. 

X(s) 

s 
Figure 7.12 The unidimensional process X(s) 
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Table 7.1 Duality Relations 

Covariance Model In situ Bçhgvior 

Shape at the space-time 
origin 

Regularity, Continuity in the 
spatiotemporal variation 

Shape at large space-time 
distances 

Spatial homogeneity, 
Time stationarity 

Ranges in space-time 
(if any) 

Zones of influence 
in space-time 

Behavior within 
the range 

Periodicities, anomalies, 
etc. 

Behavior along different 
directions in space 

Anisotropies in space, 
transition zones, etc. 

Duality relation DR5: If it can be shown that 

ri(h)^wr 
where c is a positive constant and ß>2, the SRF X(s), seR" is a.s. 
continuous and, consequently, the underlying natural process is spatially 
continuous. If, in addition, the above inequality holds true in terms of the 
semivariograms of the m.s. partial derivatives of X(s), the sample functions 
of these derivatives are a.s. continuous and we have a very smooth process. 

Remark 1: From a physical point of view, a reasonable interpretation of 
sample function continuity is often associated with the notion of scale. For 
example, it is possible that while the sample functions of the (theoretical) 
SRF are changing discontinuously by discrete jumps, the real process is 
observable in a sufficiently large scale where these jumps are infinitesimal 
and the sample function can be approximated by a continuous surface. 

For more complex spatial distributions, similar duality relations and 
comments are valid in terms of the generalized spatial covariances of order 
v (GSC-*/; Chapter 3). 
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(i) A natural process characterized by a linear GSC, fcx(h) = -c0 |h|, is 
continuous but not very regular; the larger the slope c0, the more 
irregular is the spatial variation. The corresponding SRF is m.s. 
continuous but not difïerentiable. 

(ii) A GSC of the form kx(h) = Cj|h|3 characterizes an SRF that is m.s. 
difïerentiable once. The natural process is locally more regular than (i), 
but fluctuates significantly at the macroscopic scale. 

(iii) The GSC /cx(h) = -c3 |h|5 corresponds to a twice difïerentiable SRF 
and represents a natural process that, while very smooth at short 
distances, exhibits wide fluctuations at large distances. 

Clearly, the higher the order of spatial variability v, the more non-
homogeneous is the spatial process. When the GSC-^ is a combination of 
the above powers [e.g., kx(h) = -c0 |h| + Ci|h|3 - c3|h|5], the spatial variability 
is characterized primarily by the component with the lowest power (here, |h|). 

All these features of the spatial correlation structure (ordinary covariance 
and semivariograms, generalized covariances, etc.) have several other impor-
tant implications in practical applications. In general, knowledge of sources 
of spatial variability within a site allows improvement in sampling designs. 
This is why an expert in a field can sample more efficiently than other 
persons. Practically, the sampling network accuracy depends on the specific 
spatial variability characteristics of the natural process of interest. In many 
cases, the more irregular and discontinuous the spatial variability, the lower 
the estimation accuracy and the larger the required number of observations. 
Finally, it must be remarked that most of the results on purely spatial RF 
discussed above can be easily extended to spatiotemporal RF. 

4. Certain Practical Aspects of Spatial and Temporal 
Variability Characterization 

4.1 Application of the Permissibility Criteria 

After the theoretical background provided by the various criteria of permissi-
bility (COP) developed in Chapters 2, 3, and 6, we now pass to some 
practical aspects concerning their effective application. The following pro-
cedure is recommended: 

Step 1: (This is a preliminary step.) Check whether the necessary conditions 
are satisfied. Particularly, 

(i) In the case of homogeneous spatial processes the following must 
hold. 

r c ( h ) n m 
M™ \h\^-n^2 = 0 ( 1 ) 

|hh°° lnl 
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in R". Also, 

c(h)<c(0)inRl (2) 

and if the SRF is isotropic, the covariance must satisfy 

c(r) >-0.403c(0) in R2 (3) 

c(r) >-0.218c(0) in R3 (4) 

where r = |h|. In terms of semivariograms it must hold true that 

r(fc)s2c(0) (5) 

\y(h)-y(h + h')\^V2yW) (6) 
y(2mh)*4my{h) (7) 

in Ä1, where m is a nonnegative integer; also 

7(r)<1.403c(0) in R2\ (8) 

y(r)<1.218c(0) in R3 (9) 

(ii) For nonhomogeneous SRF it must hold true that 

l i m ^ = 0 in R" (10) 
|hhoo h 

(ISRF-0), and 

u M Mr) 
dr 

< 0 (12) 
r = 0 

where r = \h\e Rn. At infinity Eq. (1) must be valid, and 

dV(r) 
dr 

c"(r)=—^>0 in Rl (13) 

Γ " dc"(r)>0 in R2 (14) 
y/^-r 

2 

c"(r)-rc" ' ( r )>0 in fl3 (15) 

(ID 

(ISRF-^>0). 

Step 2: Here we can distinguish among five possible cases. 

(i) If the underlying process is isotropic, check whether the candidate 
covariance or semivariogram models satisfy the following sufficient 
conditions: At the origin it must hold true that 
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Similar conditions are obtained in terms of the semivariogram y(r), 
by simply replacing c(r) by c (0 ) -y ( r ) . For example, the equivalent of 
Eq. (12) by means of y(r) is 

- y ' ( r ) U = -
dy(r) 

dr 
<0 

(ii) If the candidate spatial correlation model is of a convenient, closed 
form (i.e., one can find its FT in R1 by using the existing Fourier transform 
tables), calculate the particular spectral function in Rl and check its 
permissibility by using the appropriate criterion of permissibility. If the 
answer is affirmative, calculate the spectral function in the field of interest 
R2 or R3 by applying the space transformation formulas of Chapter 6; then 
apply the appropriate criterion of permissibility again. 

(iii) If the candidate semivariogram model is of a transitive, polygonal 
form (see Fig. 7.13) use the formula 

1 m 

Γχ(ω) = î £ [ώ(Γ,) - ûKr,·-!)] cos(a>r,) (16) 

where ώ(η) is the slope at lag ri9 to find the unidimensional spectral 
semivariogram; then apply space transformations to find the spectral 
semivariogram in the field of interest R2 or R3', finally, apply the 

c(o) 

γ(Γ) 

Figure 7.13 Semivariogram model of transitive polygonal form 
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corresponding criterion of permissibility. Notice that the polygonal 
models can be fit arbitrarily closely to the data, and this makes them 
popular among practitioners. 

(iv) If the candidate model is of some complex, arbitrary form, we might 
have to approximate the spectral functions by using formulas of the form 
(Christakos, 1984b) 

Γι(ω)=-^Στ(-Μ^) in *' (17) 

n R> (19) 

where Ju is the Bessel function of wth order (u = 0 and 1) and ik are the 
zeros of J0. Similar formulas can be derived in terms of the ordinary spatial 
covariances and the generalized spatial covariances. 

(v) In the case of generalized spatial covariances of order v (GSC-^) 
that are of the isotropic polynomial form (Chapter 3) 

V 

Κ^) = α0δ(Γ)+Σ ("1)P +V 2 P + 1 (20) 
p = 0 

the application of the criteria of permissibility (in Rn) implies that the 
coefficients a0 and cp should satisfy the constraints summarized in Table 
3.1 of Chapter 3. 

(vi) If vector SRF is involved, one should apply the COP-2, -6, and -8 
(see Sections 7.5 and 11.5 of Chapter 2 and Section 3.5 of Chapter 3). 

(vii) In the case of spatiotemporal RF, one should consult COP-9 of 
Section 3.3, Chapter 5, and COP-10 of Section 5.2, Chapter 5. 

4.2 Evaluation of Spatial Variability Characteristics 

In practice, and to make inferences about a natural process that is unique 
but partially unknown in space, it is necessary to evaluate certain spatial 
variability characteristics like means, ordinary covariances, semivariograms 
and, in more complex situations, generalized covariances and semi-
variograms, in terms of the fragmentary data available. In the context of 
stochastic data analysis and processing, this evaluation can be made by 
means of 

(a) a heuristic—a set of empirical rules and tactics for choosing testable 
auxiliary hypotheses and model parameters; and 

(18) 
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(b) physical models that describe the evolution of a natural process over 
space (algebraic operators, differential and difference equations, etc.). 

4.2.1 Ordinary Spatial Covariance and Semivariogram 
Although the ordinary covariance and semivariogram are similar in form 
and use, the latter is mean free and, therefore, its empirical calculation is 
subject to smaller errors. Moreover, the semivariogram may exist in cases 
where there is no finite a priori variance and the covariance does not exist 
(see, e.g., the semivariogram of the clay thickness values, Fig. 7.5). 

Experimental Calculations 
If data are available at regular intervals along transects, the sample covari-
ance and semivariogram can be calculated by 

1 N 

cx(s„Sl + h)=— Ε [ ^ ) - 4 ( 0 ) ] ^ ( 8 , - + « - 4 ( Ι ι ) ] (21) 
™ i = l 

where the sample mean value is 

1 N 

ûxW=— Σ *(».· +«0 (22) 

and 
Λ N ( h ) 

γχ(8ι.,8ι. + η ) = ^ ^ Σ [*(s,- + li)-*(s.·)]2 (23) 

respectively. There are N data available, and JV(h) is the number of data 
pairs sampled at an interval h. 

A particular situation arises when we have data at regular intervals on a 
two-dimensional grid; in such a case we can write (assuming constant mean) 

1 K L 

&( Ai , W = — Σ Σ [x(si9 sj) - mx][x(Si + hx, Sj + h2) - mx] (24) 
i = l j = l 

and 

y^^=2N{hi)N{hi) Σ 
N(h2) 

x Σ [X(s, + hl,sj + h2)-x(s„sj)]2 (25) 
J = l 

where s = (si9 Sj),h = (hi9h2), K is the number of rows and L is the number 
of columns of the grid; N(hi) and N(h2) are the number of data pairs 
separated by hx and hl9 respectively. 

When the data are irregularly spaced, it may be convenient to group them 
by distances and directions. The method is illustrated in Fig. 7.14: The 
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Figure 7.14 Experimental calculation of the semivariogram or covariance functions of 
irregularly spaced data 

direction chosen forms an angle φ with the horizontal, and for each h all 
data within the element defined by the range Ah and the angle Δ# are used 
in the calculation of the covariance or the semivariogram. In relation to 
this method, common problems encountered in getting "sensible" experi-
mental covariances or semivariograms include limited data, unsuitable 
choice of distance classes or working scale, and outliers (e.g., Gajem, 1981; 
Armstrong, 1984; Webster, 1985; Cressie, 1985). To overcome such problems 
it may be necessary to quantify geological information, rearrange data, or 
apply data cleaning and robust statistical techniques. Useful robust semi-
variogram estimators have been suggested by Cressie and Hawkins (1980). 
In practice, one fits to the data simply formed mathematical functions. 
Naturally, the final choice is affected by what is known about the underlying 
natural process, as well as by the graphic display of sampled values and 
the experience of the analyst. The fitting of the model chosen to the data 
can be achieved in a number of ways. Traditional methods include least 
squares, maximum likelihood, and weighted area (e.g., David, 1977; Marshal 
and Mardia, 1985; Stein, 1987). On the other hand, practitioners may find 
very convenient the "by eye" technique, which allows them to incorporate 
intuition and experience into the fit. However, not every function that 
appears to fit the data will serve as a covariance or a semivariogram model. 
It is necessary to satisfy the corresponding criteria of permissibility. 

In conclusion, the heuristic here is that Eqs. (21) through (25) and the 
setting of Fig. 7.14 provide an approximate calculation of the spatial integrals 
of Eqs. (1) through (3), Section 2 above, on the basis of the fragmentary 
data available. The important element of such an approximation is that the 
mean value, covariance, and semivariogram are now measurable and, hence, 
testable (after the event) model parameters. In addition, the auxiliary 



4. Certain Practical Aspects of Spatial and Temporal Variability Characterization 261 

hypotheses and duality relations established for the domain of interest V 
on the basis of these parameters (such as homogeneity, incremental 
homogeneity of order v, behavior at origin, and range of influence) are, 
also testable physical realities. For example, if the calculations (21) through 
(23) yield mx = constant, and cx(s,·, sf + h) = cx(h)9 one may conclude that 
the natural process is homogeneous within V. Several other practical aspects 
are covered in the geostatistical literature [see, e.g., Sophocleous (1983), 
Hohn (1988), and Isaaks and Srivastava (1989)]. An excellent source on 
the subject of semivariogram estimation is Cressie (1991). 

Examples 
Let us now discuss a few examples. 

Example 1: Consider the water content data of Fig. 7.8. To the experimental 
semivariogram calculated by means of Eq. (23), we fitted the model 

J{r) =1~6χρ[-έ] cos(0.3r) (26) 

The unidimensional spectral semivariogram function associated to model 
(26) is 

39.78 + ω2 

- Γ , ( ω ) = : :>0 (27) [39.69 + (ω -0.3)2][39.69 + (ω + 0.3)2] ' 

for all ω > 0. Hence model (26) is a permissible semivariogram, and it can 
be used to describe unidimensional correlations of the water content data. 

Example 2: The polygonal model shown in Fig. 7.15 is not a permissible 
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Figure 7.15 A nonpermissible semivariogram model of polygonal form 



262 Chapter 7. Random Field Modeling of Natural Processes 

one, since the application of Eq. (16) above yields 

const 
- Ι \ ( ω ) = Y1 [1 +15 cos(4w) - 1 6 cos(5w)] (28) 

ω 
which takes negative values. The model of Fig. 7.15 is immediately rejected 
by application of the necessary condition (7) [for m = l, h =0.5 we get 
γ(2χ0.5) = γ(1)>4γ(0.5)] . In connection with this example, the applica-
tion of Eq. (16) can offer valuable hints concerning the permissibility of a 
variety of commonly used polygonal transitive correlation models. For 
example, a large initial slope contributes importantly to the permissibility 
of the candidate model (in Fig. 7.15 the initial slope is only 0.25). The same 
applies to a nonincreasing slope of the semivariogfam [in Fig. 7.15 the slope 
increases from r = 0.8(-) to 0.8(+)]. 

Example 3: Consider in R3 the model 

y^=TT? (29) 

which is fitted to the experimentally calculated semivariogram shown in 
Fig. 7.16. The spectral function of the experimental semivariogram is calcu-
lated by means of Eq. (19) above, and is plotted in Fig. 7.17; the theoretical 
spectral function is also plotted, for comparison. Obviously, the spectral 
function is always nonnegative and hence the model (29) is permissible in 
R3. (And, of course, also in R1 and R2.) 

The Maximum-Entropy Formalism 
The maximum entropy formalism can be used to assign any positive func-
tion, subject to the information we have about it (a detailed discussion of 
the maximum entropy formalism is given in Chapter 9). Here we will see 
how one can determine a spatial correlation function such as an ordinary 
covariance or an ordinary semivariogram by maximizing the entropy, subject 
to the information we have about the spatial variability. 

Let yx(s,, Sj) = yx{r) (r = |s, — s7|) be an Isotropie semivariogram function 
and let Cx(w) be the corresponding spectral density function. Assume that 
the information we have regarding spatial variability is expressed by the 
constraints 

[°2 Cx(a>)[\-ei^]da> = yx{rq) (30) 

q = 1, 2 , . . . , Q, where ωχ and ω2 are suitable frequencies, given a priori or 
determined in some other way. These constraints express mathematically a 
rather common situation in practice; namely, when due to the spatial 
distribution of the available data the semivariogram can be calculated only 

(28) 
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Figure 7.16 Calculated and fitted isotropic semivariogram models in R3 

for a particular number of intervals rq(q = 1 ,2, . . . , Q). An additional con-
straint is the normalization equation 

f Cx{o>) αω = γχ(ε) (3D 

where C x (w)>0 for all ω and ε is the range of influence of the semi-
variogram so that γχ(ε) = σ2; σ2 is the variance. 

Given the constraints (30) and (31), the problem of determining yx(r) 
has been converted into the equivalent one of determining Cx(w). In this 
case it is sufficient to maximize the so-called Burg entropy function (Burg, 
1972) 

Γω2 

s(Cx)=\ 
J (üi 

log[Cx(w)]dw (32) 

with respect to Cx(w), subject to the constraints (30) and (31). 
The general solution to this type of constrained maximization problem 

is well known (see, e.g., Ewing, 1969). By expressing the general solution 
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Figure 7.17 Calculated and theoretical spectral semivariogram functions for the 
semivariogram model of Fig. 7.16 

in terms of the particular setting above, one finds that the spectral density 
must be of the form 

Cx(w) = 
1 

Μ ο + Σ Vqe11 

(33) 

where μη9 q = 1, 2 , . . . , Q are Lagrange multipliers. Then, the semivariogram 
function yx{r) can be determined by applying inverse Fourier transform 
methods. 

Example 4: In the unconstrained case where the only information available 
is the variance σ-2, the solution is a pure nugget-effect semivariogram, 
yx{r) = σ2 8(r). It is important to realize that the pure nugget-effect model 
is not necessarily the actual semivariogram. It is, however, the model that 
most honestly represents the given state of incomplete knowledge regarding 
spatial variability, without assuming anything else. Any other solution will 
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necessarily take into consideration information not really available. Intui-
tively this implies that one needs more than just the variance to be able to 
derive sound conclusions about spatial correlation. Let us assume that in 
addition to the variance we obtain information about the frequencies ωχ = 
-ω0 and ω2 = ω0. Analysis based on Eqs. (30) through (33) will take into 
consideration the new information; the spectral density will now maximize 
(32) subject to the constraint (31), namely, 

C X ( Û > ) = - — (if -ω0<ω<ω0)9 = 0 otherwise (34) 
2ω0 

The corresponding semivariogram is 

J sin(aj0r)l 
yx(r) = σ \ \ (35) 

L ω0Γ J 

which is the so-called hole-effect model. 

Model Cross-Validation 
It is always useful to test the hypotheses made, and the parameter estimates 
obtained, by predicting the value of the natural process at known locations 
in space. More specifically, this concept consists of the following steps. 
First, consider the data points {sl5 s 2 , . . . , s„} and remove one of them, say 
s,. Then, by using the form of the semivariogram or co variance model 
supposed, obtain an estimate X(s,) of the removed data value X(s,) and 
the associated estimation error al(st) on the basis of the remaining data, 
by applying the estimation method of Chapter 9. Moreover, since the actual 
value X(Si) is known, one can calculate the actual estimation error 

a*(si) = X(si)-X(si) 

Do the same thing for all data points, one at a time, and calculate the 
quantities 

and 

_ 1 y Γσ*(θ12 

The more appropriate the hypotheses made and the semivariogram or the 
co variance chosen, the closer to 0 is the ε -value and the closer to 1 is the 
η -value. 
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4.2.2 Generalized Spatial Covariance and Semivariogram 
Things are quite different with the statistical inference of the generalized 
spatial covariances of order v (GSC-^)· As the theory (Chapter 3) indicates, 
there is not an analytical expression for the GSC-v in terms of the data 
values and, also, there is not a unique GSC-^ for a particular I S R F - K 
Therefore, unlike the means, covariances, and semivariograms, the GSC-v 
do not have a real counterpart that can be directly measured and tested 
(after the event). 

The heuristic part of the stochastic data processing program is carried 
out in terms of an automatic procedure that determines GSC-P by testing 
their compatibility with reality, solely on the basis of the successful estimates 
of known data points they lead to. Automatic fitting includes identification 
of both the order of spatial intrinsity v—which corresponds to the degree 
of the spatial polynomial trend surface—and the GSC-^, fc(h). Identification 
may require the use of some parameter estimation technique like ranking, 
or least squares, or maximum likelihood, and at this point empirical research 
is of great help in providing guidance. For practical reasons, analysis is 
usually restricted to moving neighborhoods instead of a unique one. That 
is, we partition the domain of the natural process into a number of sub-
domains and we consider local models of the SRF that take into account 
only data within a neighborhood. In such a setting notions like local 
homogeneity, local intrinsity of order v, local behavior, etc., will arise 
naturally. 

More specifically, a possible step-by-step automatic structure iden-
tification procedure may run as follows (a variety of procedures may be 
found in Delfiner, 1976; Kafritsas and Bras, 1980; Kitanidis, 1983): 

Step 1: Data Input 
(1.1) Set the data in matrix form: first the spatial coordinates, then the 

measured value of the natural process. Sometimes erroneous individual 
data must be rejected at this point, to ensure the objectivity of the 
analysis. 

(1.2) Check for double points (i.e., points that are very close to one 
another in space and, hence, might cause numerical problems in 
subsequent calculations). Rearrange the data, if necessary, and let D = 
{sx, s 2 , . . . , s„} be the set of data points after the double points have been 
eliminated. 

Step 2: Identification of the Order v of Spatial Nonhomogeneity 
(2.1) As an initial choice of a GSC-^ use the k(r) = -r. Such a choice 

is perfectly legitimate, since the linear model is a valid GSC-^ for all 
possible values of v. 

(2.2) For each data point s , eD, ί = 1, 2 , . . . , n, develop a local 
neighborhood JVf of surrounding points. This can be done (a) either by 
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including in the neighborhood Nt the n(i) data points closest to point sf, 
or (b) by including all neighboring points that lie within a circle having 
its center at the point s, and radius r, (see Fig. 7.18). The choice of the one 
or the other method depends on the spatial distribution of the data. If the 
data are evenly distributed in space, method (b) may be applied; in the 
case of unevenly distributed data, method (a) may be more appropriate. 

(2.3) Remove the data points s, e D one at a time, and estimate them 
from the surrounding points s, 6 Ni9 j Φ i9 assuming in turn v = 0, 1, and 2. 
Let the estimates and the associated error variances be denoted by 

j 

and 

σ 2
χ > , ) = E[Xv(Si) - ΧΛ*)]2 = *l 

respectively, where A, are coefficients to be determined by minimizing σ\ν 

(see Chapter 9). 
(2.4) At each point s,· e D compare the error variances σ?0, ο~Ιι, and σ?>2, 

and assign ranks 1, 2, and 3. [For example, if σ\0> σ\2> &\\, then rank 
(i, 0) = 3 > rank(i, 2) = 2 > rank(i, 1) = 1.] 

(2.5) Take average ranks over all points s, e D, viz., 

2^ rank(i, v) 
Avrank(D, v)=- for each ^ = 0 ,1 , and 2 

The v that gives the smallest Avrank(D, v) is the order of intrinsity. 

°1 
Figure 7.18 An illustration of a circular moving neighborhood 
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Step 3: Determination of the GSC-^ 
Given the order v, there is a set of suitable GSC-^ {kp(r),p = 

1,2, . . . , 3>) of the polynomial form of Eq. (20) above. The problem is to 
determine the corresponding coefficients apQ and cp p, p = 0 , 1 , . . . , v so 
that the polynomial GSC-^ (20) above fits the data available, while the 
permissibility conditions of Table 3.1 of Chapter 3 are satisfied. This can 
be done as follows. For each p = 1 ,2 , . . . , SP. 

(3.1) Produce spatial increments of order v (SI-*') 

Y(si)= Σ 1ßX(sj) (36) 
jeNi^{i} 

by letting 

qn = -\ and <?;,· = A,· (iV 7) (37) 

where A, are the estimation coefficients obtained when each point s, is 
estimated from its neighborhood Ni9 assuming that kp

0)(r) = - r (see step 
2 above). 

(3.2) Write 

A, = £ [ Y ( S , ) ] 2 = | Σ Σ qjatqjbM*ja-*jb)\ (38) 

for several s, G D, where the weights qjai and qjbi are given by means of 
the estimation coefficients λ,, step (3.1) above. Then let 

F=E[ns.)2-A]2 OP) 
ie£> 

(3.3) Insert the GSC-^ kp(r) into Eq. (38) and then calculate the 
covariance coefficients aPf0 and cpp (p = 0 , 1 , . . . , v), by minimizing Eq. 
(39) with respect to these coefficients; that is, set 

dF dF 
0 (40) daP,o dcp,p 

for all p = 0 , 1 , . . . , v, and solve to find ap)o and cp)l. The latter form a 
first approximation of the covariance coefficients, and the corresponding 
approximation of the GSC-^ is kp

l)(r). 
(3.4) Repeat the procedure (3.1)-(3.3), but this time use the GSC-^ 

kp
x)(r). This should be done m times until convergence is achieved, that 

is, 
^(m-l) (m) r(m-l) (m) ( n — ft 1 , Λ 
ap,0 ~ ap,0 > Cp,p ~ Cp,p \P — U> A» · · · , v ) 

and, thus, kp
m-x\r)~kp

m\r). 
Procedure (3.1)-(3.4) yields 0>'<0> permissible GSC-^ (that is, 

covariances that satisfy the permissibility conditions). 
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(3.5) Choose among the SPf permissible GSC-^ determined above the 
one that best fits the data. This can be done if we let 

VP=-

Σ y(S/)
2 

_D (41) 

and calculate the ^-values corresponding to each one of the 9' G S C - K 
(Instead of r/p, one may use a jackknife estimator of ηρ.) Then keep the 
three GSC-^ that yield ^-values closest to one. Finally, using in turn these 
three co variances repeat step 2, where now the order v is known. The GSC-z^ 
that gives the lowest Avrank(D, v) is selected. 
Example 5: We now apply the above algorithm to a specific case study 
(Christakos and Olea, 1992). The spatial hydrologie process of interest here 
is the water table elevation (in feet) in an area that includes most of the 
Equus Beds, a major aquifer in Kansas (see Fig. 7.19). The Equus beds are 
stream-laid deposits of the Pliocene Blanco and the Pleistocene Meade and 
Sanborn formations. These consist of poorly sorted sediments ranging in 
size from silt to gravel with abundant clay lenses. Thickness varies from 0 

Figure 7.19 The Equus Beds in Kansas 
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to about 280 ft. The aquifer is the main water supply in the area extending 
for about 1400 square miles. The largest single user is the city of Wichita, 
pumping close to 50,000 gal/day. Other agricultural, industrial, municipal, 
and domestic users account for an additional 100,000 gal/day. The aquifer 
faces lowering of the water table due to pumpage in excess to the recharge 
as well as threats to the chemical quality of the groundwater caused mainly 
by past brine disposal practices by the oil industry, seepage of poor quality 
water from the Arkansas river, and leaks from the underlying Wellington 
aquifer high in mineral content (Spinazola et al, 1985). The water table 
elevation is of great importance for the agriculture of Kansas; lowering of 
water table levels can result in a significant reduction of the agricultural 
production. In this context, the identification of the spatial correlation 
structure of water levels is essential for the prediction of future systematic 
local or global changes in the water table. 

In relation to this, the identification of the spatial correlation structure 
of the water table elevations is a necessary prerequisite for the mapping of 
water table levels over the entire region of interest and the design of a 
sampling network of future wells, as we will see in the continuation of this 
example in Chapters 9 and 10. 

Data used in this study were chosen by analyzing measurements taken 
in the context of a statewide survey. To avoid measurement errors due to 
the excessive pumping in the summer months, only measurements taken 
during the winter have been selected. Also, a number of wells were not 
taken into consideration due to their uneven distribution in space, or to 
avoid "double points." As a result, the January 1981 data, which were 
available at 226 locations in an area of 800 square miles, were selected for 
analysis. 

More specifically the numerical outputs of the step-by-step algorithm 
above are as follows: 

Step 1: Here, D = {sl9s29..., S22O} is the set of data points to be used 
(there are no double points in this case). 

Step 2: The local neighborhoods Nt developed include n(i) = 12 to 16 
wells each. The choice of the wells in each local neighborhood was made 
on the basis of two requirements: to be as close as possible to the point 
to be estimated and to surround the point on all sides. Initially it is 
assumed that k(r) = - r , and the average ranks over all points s, e D, i = 
1,2, . . . , 226 are found to be 

L·, rank(i, v) 
Avrank(D, v) = ieD _ = 1.9634 

226 
for v = 0; = 1.9589 for v = 1; = 2.0731 for v = 2. The v = 1 gives the 
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smallest Avrank(D, 0) = 1.9589 and, hence, it is chosen as the order of 
spatial nonhomogeneity in this case. 

Step 3: By solving the system of the corresponding equations we find 
c(i!o = 39.66, c^i = —33.15, and ^ 3 = 4.91. These are a first approximation 
of the covariance coefficients, and the corresponding approximations of the 
GSC-1 are k\1\r) = 39.66 8(r), k(

2
1\r) =-33.15 r and k{

3
l)(r) = 4.91r3. Other 

possible covariance models were eliminated since they failed to satisfy the 
GSC permissibility conditions. By using these new GSC-1 we repeat this 
procedure until the values obtained converge; this is achieved after m = 6 
repetitions, k[6\r) = 28.75 5(r), k2

e\r) = -24.22r and kf\r) = 2.33r\ For 
these three permissible GC-1 the corresponding ^-values are 7̂  = 0.72, 
M2 = 0 .83 , and n3 = 1.81. The GSC-1 with an revalue closest to one is the 
k2(r) = — 24.22r. This covariance also gives the lowest Avrank(D, 1) = 1.80 
(step 2 above) from all three GSC-1. Therefore, the GSC-1 model that best 
fits the data is k{r) = -24.22r. As a cross-validation test for the order v we 
repeat step 2, this time using k(r) = -24.22r instead of k(r) = -r. The 
corresponding results are Avrank(D, 0) = 2.11, Avrank(D, 1) = 1.80, and 
Avrank(D, 2) = 2.09. The lowest value is obtained for v = l9 which coincides 
with the result of step 2. 

The conclusion of the spatial variability identification part is that the 
spatial variation of the water table elevations in the Equus Beds is non-
homogeneous but continuous in space and rather regular, characterized by 
a locally linear trend. The results of the analysis above will serve as inputs 
to subsequent stages of stochastic data processing, such as estimation (see 
Chapter 9). 

Remark 1: In some situations in practice, the automatic procedure may be 
more reliable than the experimental calculation of the ordinary covariance 
or semivariogram models, especially when a limited number of data are 
available. In this case, while the number of the experimental data pairs 
required for each point on a two-dimensional semivariogram may be greater 
than 30, inference in terms of GSC requires moving neighborhoods of about 
8-16 points. Furthermore, when a nonconstant trend is present the experi-
mental semivariogram may be biased. Indeed, it holds true that 

Λ 7V(h) 

£[y*(h)] = y , ( h ) + — — Σ {£[X(s( + h ) ] - £ [ X ( S / ) ] } 2 (42) 

In other words, the sample semivariogram yx(h) is a biased estimator of 
the true one, yx(h). Equation (42) shows how yx(h) may be distorted by 
the presence of a nonconstant trend leading, therefore, to misinterpretations 
regarding the nature of the spatial structure (see also Section 3 above). The 
situation is even worse with the experimental covariance. As Cressie (1991) 



272 Chapter 7. Random Field Modeling of Natural Processes 

shows, even a small amount of trend contamination can have disastrous 
effects in the estimation of the covariance. This disturbing situation does 
not exist with the automatic fitting procedure, which relies on homogeneity 
of the increments and eliminates question of trend. The latter does not need 
to be estimated and subtracted from the data; instead, it is simply identified 
by its degree v. 

As we saw above, the GSC-^ cannot be calculated experimentally from 
the data in terms of analytical expressions, such as those of Eqs. (21)-(25). 
However, when the data are along lines and sampled at regular intervals, 
the so-called generalized spatial semivariogram of order v may be computed 
experimentally by means of the formula (e.g., Chiles, 1979) 

y x W = 7 ~ ï ^ V a r | Σ (-lYCl+lX[s+(p + l-t)r]\ (43) 

where r = |h|, and C™ = k\/(k-m)lm\. Definition (43) is essentially a 
generalization of the ordinary semivariogram. The generalized semi-
variogram is well determined as a linear function of the GSC-^; that is, it 
is true that 

yÄr)=-err\ Σ (-D'CZtVkAtr)] (44) 

The reverse is generally not true, except when v = 0; then yx{r) = -kx(r). 
Hence, while one can determine the corresponding permissible generalized 
spatial semivariogram of order v from a permissible GSC-^, one cannot, 
in general, do the reverse. In this case, to determine a permissible generalized 
semivariogram one may occasionally operate indirectly. For example, if the 
fitted generalized semivariogram is of polynomial form, one can start by 
determining its order v. Then find the form of the corresponding GSC-^ 
from Eq. (20); but the coefficients a0 and cp will still be unknown. To 
estimate them, Eq. (44) is used; if the so-estimated a0 and cp satisfy the 
conditions of Table 3.1, Chapter 3, the sample semivariogram is considered 
permissible. 

4.3 The Nugget-Effect Phenomenon and Its Modeling 

When making reference to the term "nugget effect," it is important to 
distinguish between two things: the nugget-effect phenomenon and the 
modeling of the nugget effect. In geostatistics nugget effect is a term used 
to describe a phenomenon, not a random field model. Random fields are 
the discrete noise and the white noise, which are used to model nugget 
effects in the discrete parameter and the continuous parameter case, respec-
tively. Let us be more specific. 
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The nugget-effect phenomenon is defined as a discontinuity of the semi-
variogram or the covariance function at the origin. The physical interpreta-
tion of the nugget-effect is that if measurements of a natural process 
represented by an SRF X(s) are taken at locations s and s + h, which are 
very close to each other, the increment Yh = X(s + h ) - X ( s ) does not tend 
to zero (in the mean square sense); instead, it continues to fluctuate with 
an irreducible dispersion (see, e.g., Delfiner, 1979). 

The modeling of the nugget effect is another, considerably more compli-
cated issue. In general, two types of models can generate a nugget effect, 
a discrete parameter model called discrete noise, and a continuous parameter 
model called white noise. 

(i) A discrete noise SRF consists of discretely valued, uncorrelated 
random variables e(s,) (i = 1, 2 , . . . , m) with zero mean and common 
variance, say c. In this case the nugget effect is generated by adding e(sf) 
to the data, as measurement errors (not to the natural process itself); that 
is, assuming that e(s,) are uncorrelated with X(s,), 

X*(si) = X(si) + e(si) (45) 

Then, if the X(s,) has a continuous semivariogram y(h), we can write 

if h = 0 ™-{: (46) 
y(h) + c if h ^ O v ; 

In other words, the nugget effect is modeled here in terms of a 
semivariogram with zero range. The special case of a pure nugget effect 
is modeled in the discrete domain by means of the semivariogram 

ye(h) = c[l-8(h)] (47) 

where 5(h) denotes the Kronecker-delta [8(h) = 0 if h Φ O; = 1 if h = O]. 
There should be no confusion with the so-called delta function or Dirac 
function of measure theory, for here the analysis is in the discrete 
domain. The delta or Dirac function, also denoted by 5(h), is used in the 
continuous case (see also discussion in Chapter 2). 

(ii) A white-noise SRF is a generalization of the discrete noise in the 
continuous parameter case. It is defined as a zero-mean random field 
with a constant spectral density over all frequencies. White noise does 
not exist in the sense of ordinary functions. It is, however, well defined 
in terms of distributions or generalized functions (Schwartz, 1950-51). A 
generalized RF does not necessarily have point values, but if we take its 
convolution with a well-behaved function q(h)e Q (for the definition of 
the space Q see Chapter 3) one can obtain an ordinary RF. The 
covariance of a white-noise SRF e(h) is 

ce(h) = c5(h) (48) 
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where 8(h) denotes now the delta or Dirac function. The latter is defined 
by the continuous linear functional 

8(q) = (89q) = j 8(h)q(h)dh = q(0) 

where q(h) G Q. In practice, the data may have a finite support v; that is, 

X u ( s ) = - X(s + u)du 
v Jv 

Then, the nugget effect is imposed on the semivariogram of X^s) by means 
of a semivariogram reaching a sill a = c/v after a transition zone reflecting 
the geometry of the support v. Finally, the white noise by itself can serve 
as a continuous parameter model of a pure nugget-effect phenomenon. 

4.4 Stochastic Inferences by Means of Physical Models 

In some cases, stochastic inference may also use a body of information that 
comes from physical principles and models, such as stochastic partial 
differential equations governing the spatial or the spatiotemporal evolution 
of a natural process. 

Let us consider a few examples (some of these have been presented in 
detail in previous chapters). As we saw in Chapter 6, the isotropic general-
ized covariance associated to the stochastic Poisson differential equation 
modeling, for instance, a perturbation approximation of steady-state flow 
in a fully saturated spatially random medium in R3, is given by 

1 [r 

kx(r)=— u(r-u)3cY(u) du + b3r
2 

6r Jo 

+ b2r+bx + b0r~x 

where the input covariance cY(u) is known and the coefficients can be 
determined from the initial conditions of the particular problem. 

In Chapter 5 we found that the covariances of the space-time model 

V s
2 ^ X ( s , 0 = n M ) 
ot 

are related as 

d4 

at ot 

In Example 1, Section 3 of Chapter 5 we discussed the stochastic KdV 
equation modeling dispersive waves in a nonlinear one-dimensional 
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medium, arising in hydrodynamical, meteorological, and geophysical appli-
cations. The mean value of X(s, t) is approximated by 

, x 4fc Γ (ks-4k3t)2l 

The stochastic flow equation studied in Example 4, Section 4 of Chapter 
6, gave rise to the following expression of spectral density functions (in R3) 

J2w2 

C,(w)=— T
i C / (w) 

w 

The two-dimensional hyperbolic stochastic differential equation, 

d2X(sl9s2) . dX(sl9s2) , dX(sl9s2) \-αλ Va2 
dSx dS2 dSx dS2 

+ axa2X(sl9s2) = W(sl9s2) 

in which W(sl9 s2) is a white-noise SRF, represents natural processes with 
separable covariances of the form cx(hl9h2) = exp[-a2\hl\]exp[-al\h2\'] 
where E[W2(sl9 s2)] = 4/ala2. 

A useful means for performing stochastic inferences is the simulation 
approach (Chapter 8). This approach allows one to use valuable information 
contained in physical laws. Consider an example from the study of flow 
and transport in porous media: First, simulated alternative realizations of 
log-transmissivities z(s) with known mean mz(s) and covariance cz(h) or 
semivariogram yz(h) provide the input to groundwater flow models; then, 
the model is solved to yield an ensemble of realizations of the piezometric 
head h(s)9 Finally, the mean mh(s) and the covariance ch(h) or the semi-
variogram γΛ(Η) of the piezometric head can be calculated in terms of these 
realizations, using the experimental formulas presented in a previous section. 

Other interesting applications may be found in the literature. Beran (1968), 
for example, applies the theory of functionals to derive the statistical 
moments associated with the Navier-Stokes equations and the continuity 
equation for an incompressible fluid. Locaiciga (1989), uses the advection-
dispersion equation governing mass transport to obtain the mean and 
covariance of chloride concentration over space-time. 

It must be remarked that this section is closely related to the discussion 
in Section 5 that follows. Also, some related results may be found in Chapter 
8 on simulation. 

5. Qualitative (Soft) Information 

During data processing, it may be advisable that consideration be given 
not only to quantitative information in the form of a limited number of 



276 Chapter 7. Random Field Modeling of Natural Processes 

field observations or laboratory tests (also called hard data), but also to a 
significant amount of qualitative information (also called soft data), such 
as geologic mapping, soil mechanics, intuition, and experience with similar 
site conditions. The combination of these two types of information may be 
an important part of spatial correlation analysis which, if properly handled, 
might contribute, among others, to the reduction of statistical uncertainty 
(Christakos, 1987b and d). 

When working with SRF it is necessary to express the qualitative informa-
tion in a consistent, quantitative manner. Experience and intuition will 
improve one's ability to translate qualitative knowledge into explicit mathe-
matical constraints under a suitable format. In connection with this, it seems 
that the real power of subjective analysis is in fulfilling the need for normative 
rules according to which such translations will be carried out. Nevertheless, 
one should generally avoid using qualitative knowledge that is too vague 
to be expressed in quantitative form. Modern approaches to the subject 
include the maximum-entropy approach (Section 8 of Chapter 9) and the 
indicator approach (Section 5.2 below). But first we restrict discussion 
to empirical, occasionally useful, approaches to utilizing qualitative 
information. 

5.1 Empirical Approaches 

One such approach is to develop criteria of favorable soil performance for 
the particular site and then to assign to each criterion a weight that reflects 
its importance relative to the other criteria as a soil performance indicator. 
Differences in opinion among engineers as to weights naturally result. The 
preparation of a list of criteria is closely related to the information level of 
the site. If investigation is initiated in a completely unknown site, the 
favorable criteria may be stratigraphy, slope geometry, external loading, 
etc. In a partially explored area, however, the criteria may include engineer-
ing properties, stress history, potential failure mechanisms, etc. 

A practically more efficient approach is to utilize empirical relationships 
between groups of soil properties or different testing techniques to create 
subjective data for an unobserved or undersampled property. For instance, 
index tests are correlated with engineering properties; undrained strength 
may be measured through field vane tests or through controlled laboratory 
tests related to the former via empirical charts. In the context of groundwater 
contamination, the cost of analysis for an inorganic contaminant is usually 
much lower than that for an organic contaminant. Let the empirical model 
be of the linear form 

X(s)=YéaiYi(s) (1) 
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where X(s) is the soil property about which we do not have sufficient data, 
and Yj(s) are properties about which a significant amount of easily collected 
information is available. The spatial correlation structure of X(s) can be 
evaluated in terms of the correlation structure of the Y,(s). For example 
the corresponding semivariogram and cross-semivariogram functions are 
related by 

Τ*(«=ΣΣ*.·*,·7ν,ν,00 (2) 
' j 

where the cross-semivariogram is defined by 

r y | y /h)=è£{[Y;(s+h)-Y; . (s ) ] 

x [ ^ ( s + h ) - ^ ( s ) ] } (3) 

The semivariogram (2) may then be used to generate X(s)-values, by 
applying some SRF simulation method (see Chapter 8). Similar relations 
may be derived in terms of spatial cross-covariances. The latter are related 
to the cross-semivariograms by 

2yYiYj(h) = 2cYiYj(0) - cYiYj(h) - cYjYi(h) (4) 

Note that the cross-covariance is in general nonsymmetric, and the yy.y.(h) 
and Cy.y (h) are no longer equivalent spatial correlation functions. 

Example 1: Figure 7.20 shows experimental data relating standard penetra-
tion resistance X(s) and vertical stresses Y(s), and also the estimated 

SPT N Value (Bows/0.3 m) 
20 30 40 50 

Figure 7.20 Empirical relationship between standard penetration resistance and vertical 
stresses for a cohesionless soil 
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empirical relationship X(s) = 1.35 + 7.9 Y(s). The loci of the confidence 
limits for a 5% significance level are curved with a minimum separation 
occurring at about the mean mY = 2.9 [some data fall outside the 95% 
confidence limits, but these limits are for the mean of a sample of X(s) at 
a given value of Y(s), and we do not have replicate measurements]. 
Assuming the parameter of vertical stresses to be statistically well estab-
lished, the aforementioned empirical relationship leads to the mean and 
covariance of the standard penetration resistance, respectively, mx = 
1.35 + 7 .9xm y and cx(h) = 62.4x cY(h). From sensitivity analysis it was 
found that 10% change in cY(h) will cause a 0.6% change in the variance 
E[X(s) - mx]2 and about 0.75% change in the coefficient 7.9; this indicates 
that the empirical model used was, in fact, quite good. 

In many applications, especially in the geostatistical context, the analysis 
above may be used to obtain optimal linear estimates of one natural process 
in terms of the measured values of other processes. This matter will be 
discussed in Chapter 9 (see, also, Journel and Huijbregts, 1978; Myers, 
1982; Ahmed and De Marsily, 1987; Yates and Warrick, 1987). 

When the empirical model is of some nonlinear form 

*(»)=Σ/[*;(*)] (5) 

the nonlinearities may be approximated by means of orthogonal polynomial 
expansions. Orthogonal polynomials have properties that are theoretically 
and computationally attractive, and may be compared favorably to Taylor 
series or conventional statistical linearization expansions (see, e.g., 
Christakos, 1988a and b; 1989). For example, if Hermite polynomials are 
used and by assuming Gaussian distributions we can write 

Χ(*)=ΣΣ/*Β*[ΥΜ] (6) 
i k 

where Hk[y] are Hermite polynomials of degree k and fik are Hermite 
coefficients (Gradshteyn and Ryzhik, 1965). The above setting leads to the 
following 

rx(h)=EEE/^[cW0)-cWh)] (?) 
i j k 

Finally, a popular method among practitioners utilizes the fact that 
experimental findings and empirical values are available for statistical 
parameters such as coefficient of variation 

cov=^|EM m 
E[X(s)] 

for various soils (see Singh and Lee, 1970; Kraft and Mukhopadhyay, 1977; 
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Haldar and Tang, 1979). For example, a typical value for the overall COV 
of the dynamic cyclic stress required to cause liquefaction is about 0.35. 
The COV of the shear strengths along a failure surface typically ranges 
between 0.1 and 0.5, depending on whether the slope analysis is made using 
total or effective stresses. With the COV known and the average of the soil 
field calculated for the particular site, the variance can be obtained from 
Eq. (8). Then, random soil data may be generated by the Monte Carlo 
simulation method. An application of this empirical method is given below. 
However, the method may best be appreciated within the context of spatial 
estimation (see Chapter 9). 

Example 2: The purpose of this project was to provide assessments of the 
spatial variability of undrained shear strength (5M) data and obtain reliable 
estimates for geotechnical analysis (Christakos, 1987b). Figure 7.21 and 
7.22a show the site with the sampling locations and the foundation condi-
tions, respectively. The marine clay stratum had the Atterberg limits and 
natural water content values also depicted in Fig. 7.22a. An essential task 
of the project was the determination of the strength of the marine clay over 
the site. This was achieved through a testing program consisting of 49 field 
vane tests at locations labeled VH-1 to VH-49, over a four-year period. A 
typical strength profile obtained along the VH-23 is shown in Fig. 7.22b. 
To describe horizontal variabilities, it was decided to assign at each vane 
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Figure 7.21 Site with the sampling locations of the field vane tests 
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values come from two statistically different populations. These two popula-
tions may belong to geologically distinct zones, or they may arise by mixing 
field vane data from the two different exploration campaigns carried out a 
few years apart. The experimental semivariograms along four principal 
directions in space are plotted in Fig. 7.24. The graphic appearance of the 
semivariograms implies that the spatial variation of the surface strength is 
nonhomogeneous and experiences a moderate regularity. It also reveals 
anisotropies, since the plots at different directions display different vari-
ations. All semivariograms increase linearly at large lag intervals except the 
one along the NW-SE direction, which seems to exhibit a transitive charac-
ter; that is, it oscillates around a sill of about 32 kPa2. 

Due to nonhomogeneities, further study of the spatial structure requires 
the use of generalized SRF. Several of the field vane measurements, say 
y(s,), are interrupted by measurement errors modeled by a linear model 
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Figure 7.24 Experimental semivariogram of shear strengths based on the 49 field vane 
tests along four principal directions 
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of the form of Eq. (1) of Section 2 above, where X(s,) are the actual soil 
strength values, a = 1 and V(s,) is a white-noise measurement error uncorre-
lated with X(s,) and F(s,); the V(sr) is assumed to have a zero mean and 
variance ^(s,·) = 12.25 kPa2 (this value has been chosen on the basis of 
empirical charts of the field vane correction factor versus plasticity index 
values (see Ladd et al, 1977). In this case the generalized covariances of 
interest are kx(s{ϊ-β^ + σ2^,·) 8ij9 where δ0· is the Kronecker delta (=1 if 
i=j, = 0 i f !*/)■ 

Following the steps of the algorithm discussed in previous sections, the 
order v of nonhomogeneity and the associated GSC-z^ must be determined. 
We decided to work with moving neighborhoods instead of a unique one, 
because due to the spatial nature of the field vane values the degree of 
nonhomogeneity of the local structure is smaller than the overall model of 
undrained strengths may suggest, thus corresponding to a lower degree 
trend at short distances. The limited number and the configuration of the 
vane holes imply that spatial variability is best known at short lags where 
the sample semivariograms are less uncertain. Working with moving 
averages of about 12 data points, we find that for v = 0 ,1 , and 2, the average 
error rank in estimating the 49 data points is 2.06,1.88, and 2.17, respectively. 
Since the value v = 1 gives the lowest error rank it will be chosen as the 
order of field vane nonhomogeneity (that is, the underlying field vane surface 
is locally linear). 

The corresponding permissible GSC-1 are /^(h) = -3.5542 x 10~2|h| and 
fc2(h) = 0.1352 x 10"5|h|3. To decide which one of these two covariances best 
represent the available field vane data, we perform the tests discussed in 
Section 4.2.2. The covariance k^h) leads to a jackknife estimator jx = 0.9875, 
which is closer to unity than the j2= 1.7473 derived by fc2(h). In addition, 
the average error rank produced by the first covariance is lower than that 
of the second (1.4082 against 1.5918). Consequently, we conclude that /cj(h) 
is the most proper GSC-1. 

Since the cost of extensive sampling is usually prohibitive even in extensive 
geotechnical investigation programs, the application of a method that pro-
duces "subjective" strength values based on experimental findings and 
understanding of the geology of the site becomes very useful. In the present 
project the reliability of such a method could be tested, since the results 
already obtained are very satisfactory due to the sufficient number of 
observations available as well as the adequate geometrical configuration of 
the installed vane holes. Since the source of strength data is field vane tests, 
results of extensive studies on the subject (see, e.g., Bjerrum, 1973; Ladd 
et al., 1977) were manipulated with the data of the particular site to yield 
a value for the coefficient of strength variation, COV = 0.25. With this value 
and since the mean strength is known, the variance can be derived from 
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Eq. (8) above. Then the Monte Carlo simulation procedure (e.g., Johnson, 
1987) is employed to generate random strength values at 119 points on a 
square grid. The spatial structure identification of the 168 data (49 "objec-
tive" field measurements and 119 "subjective" data) leads to the semi-
variograms of Fig. 7.25. 

Comparing Fig. 7.24 and 7.25, we see that the latter also exhibits the 
characteristics of a nonhomogeneous spatial structure of moderate con-
tinuity. Notice that, as happened in Fig. 7.24, the semivariogram along the 
NW-SE direction oscillates around a sill of about 32 kPa2. In this case 
the spatial structure identification is determined by the same order v = 1 
and the GSC-1, fc(h) = -2.9752 x 10"3|h|. The slope of the GSC-1 is now 
smaller than before, thus implying a more regular spatial variability; 
this should also be expected, due to the significantly larger number of 
data used. 

5.2 The Indicator Approach 

This approach has been developed in geostatistics by Journel (1984, 1986, 
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1989), Journel and Alabert (1988), and others. The basic idea here is to 
transform the original spatial RF into a derived RF that can still throw light 
on the spatial variability characteristics of the data, but whose analysis is 
simpler and faster. 

5.2.1 Indicator Random Fields 

Let X(s) be a homogeneous spatial RF, with univariate and bivariate 
probability distribution functions Fx(x) = P[X(s)<x], and Fx(x,x') = 
P[X(s) < x, X(s') < χ'], respectively. 
Definition 1: The indicator RF is defined by 

f l if 
to otl otherwise 

which is a homogeneous RF, as well. 
Note that while X(s) is a continuously valued function, the Jx(s, ζ) is a 

discretely valued function. Moreover, the indicator RF (9) has certain 
attractive features: 

(i) It allows nonparametric assessments of local uncertainty. The 
uncertainty model takes the form of a law concerning the probability that 
the unknown value at any unmeasurable location is greater than a given 
threshold value. This probability law, which does not need to be of the 
Gaussian type, can be expressed by means of the indicator function (9). 

(ii) The data can be statistically characterized by means of a few 
simple moments that can be computed easily and fast. 

(iii) The indicator formalism reduces significantly any "noise" 
contaminating the original data. 

(iv) The problem of outliers is essentially eliminated. 
(v) A variety of sources of soft information can be taken into 

consideration. 
The last feature is the concern of this section. However, before we proceed 

with this subject, let us present a brief summary of the correlation theory 
of an indicator RF. 

The mean value of the indicator RF (9) for each threshold value ζ is 
given by 

111,(8, ζ) = E[Ix(s, £)] = P [* ( s ) ^ζ] = Fx(s, ζ) (10) 
When the SRF is homogeneous, Fx(s, ζ) is independent of the position s; 
that is, Fx(s, ζ) = Fx(£) for all s. Then, the noncentered and the centered 
covariances can be written as 

σΚ*,ζ) = Ε[Ιχ(*,ζ)Ιχ(* + Κζ)] 

= P [X(s )<£ ,X( s + h )<£] 

= Fx(h; £,£' = £) (ID 

(9) 
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and 
cl(h^) = a2

l(h^)-m2
l (12) 

respectively. Clearly, 

Var[Jx(s,i)] = / 7x( i ) [ l - i 7x( i ) ] 
and the indicator correlogram is given by 

Fx(c)[\-Fx(cy\ 
Finally, an important second-order spatial moment is the indicator 
semivariogram 

r i ( h ; 0 = ^ [ 4 ( s + h , n - / x ( s , i ) ] 2 (14) 
Just as for ordinary RF, it is not difficult to show that in the case of indicator 
RF the semivariogram and the covariance are related by 

y,(h; ζ) = c,(0; ζ) - c,(h; ζ) = Fx(0 ~ cr2(h; ζ) (15) 
One of the most interesting outcomes of the analysis above is that the 

univariate and the bivariate probability distributions can be calculated in 
terms of the first and second-order moments of the indicator RF. In addition, 
the indicator statistical moments above can be expressed in terms of the 
corresponding moments of the original SRF X(s). For example, the mean 
values and the centered covariances are related by 

,-jv 
Jo 

E[X(s)]=\ {ί-ΕΙΙ(»,ζ)]}άζ (16) 

and 

Jo Jo 
cx(h)=\ c,(h; £ £ ' ) # « ; ' (17) 

respectively. 
Assume that X(s) is a bivariate Gaussian RF, and let ζ - 0. The indicator 

correlogram of Eq. (13) can be expressed in terms of the correlogram of 
X(s) as follows: 

P l ( h ; 0 ) = - a r c s i n p x ( h ) (18) 

The last equation implies that 

|pi(h;0) |< |P j c (h) | (19) 

In addition, it leads to the following interesting corollary. 
Corollary 1: A bivariate Gaussian RF X(s) is an independent RF if and 
only if the corresponding indicator RF Jx(s, ζ) is independent. 

(13) 
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5.2.2 Bayesian Coding of a Priori Information 
Typically, the measurement space of a natural process consists of hard data 
of the form 

X(si) = Xi, ieAl (20) 

The hard data of Eq. (20) can be readily coded in terms of indicator RF, 
namely, 

S"Û = {1 o« otherwise 

Apart from hard data, several other sources of high-quality knowledge 
are usually available. The first operation applied to the a priori qualitative 
knowledge should convert it to the appropriate quantitative relationship 
space 9Î. In general, elements of the space 3t are provided by scientists and 
engineers as a result of their expertise about a scientific field. The information 
thus conveyed could be, in many cases, equivalent to a large number of 
measurements. In geosciences, a particularly useful relationship space ΐϋ 
includes the following types of soft data: 

(a) Ranges for values of X(s); typical examples are the constrained 
interval data 

X(sj)e(aj9bjl jeA2 (21) 

(b) Truncated or contaminated values X(sq)=xq, qtA3 (e.g., indirect 
estimation of porosity by means of seismic inversion techniques). In this 
case, some sort of uncertainty measure, usually highly subjective, must 
be associated with the truncated values. 

(c) Subjective prior probability distributions expressing degress of 
expert beliefs, geological interpretations, experience, etc. For example, 
given information about the depth of the peat underlying the levee, an 
expert may assign a probability of slope failure. 

(d) Correlations between the values of X(s) at various locations in 
space. Correlations between X(s) and other natural processes may be 
available through calibration scattergrams. For example, seismic travel 
data supply indirect information about local porosity values through 
prior calibration statistics represented by a scattergram. Nonlinear 
relationships will be discussed shortly. 

Remark 1: At this point, some scientists may argue that techniques for 
constructing relationships from qualitative knowledge is not good theoretical 
research. One should not forget, however, that in practice there is strong 
need for such relationships, because important qualitative knowledge can 
be communicated only by means of these relationships. 
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The formation of the relationship space 5t leads naturally to the following 
extension of the indicator RF. 

Definition 2: The generalized indicator RF is defined by 

Fx(s, ζ) = P[X(s) < £|SR] = FxU\!ft) (22) 

The concept of the probability of a probability is intrinsic in the formalism 
of Eq. (22). That is, to the probability distribution Fx(£|3t) we are assigning 
a probability density /γ(ψ\ΐΛ). As we shall see shortly the probability density 
/γ(ψ\$1) is a useful instrument in the estimation of some calibration param-
eters. Note that while Fx(£) is independent of the spatial location s, the 
Ρχ(ζ\^) depends on s; on the other hand, the Yx(s, ζ) is assumed to be a 
homogeneous RF. Moreover, the indicator RF (9) is related to the general-
ized indicator RF as follows: 

Υχ(*,ζ) = Ε[Ιχ(*,ζ)\Μ] (23) 

Clearly, if 9Î consists of a hard datum at location s, then Eq. (23) reduces 
to Yx(s,x) = Ix(s,x). 

The indicator formalism [Eqs. (9) and (22)] can provide particularly 
useful means for incorporating soft data into spatial variability assessments. 
Prior knowledge offers, in turn, valuable information about the preposterior 
probability distribution Yx(s9 ζ)9 before any measurements are taken into 
consideration. To obtain some insight, let us consider a few examples. 

Example 3: Constrained interval data [Eq. (21)] can be expressed as follows 
fO if £<o,· 

yx(s,-,£) = | undefined if Ce(aj9bj] (jeA2) 

[ l if C>bj 

Other types of soft data can also be expressed in terms of Eq. (22). For 
example, a prior probability distribution concerning the attribute X(s) of 
slope failure at point s given the depth z(s) = h of peat underlying the levee 
is equal to Fx(s, £)] = Fx(C\h) e [0,1]. 

Let us see now how Eq. (22) can be calculated in practice. Assume that 
9Î consists of a number of soft data at several locations in space. Then, the 
yx(s, ζ) can be approximated on the basis of these data by means of a 
minimum mean square error estimation technique, such as those discussed 
in Chapter 9 (before proceeding, the reader is advised to review the relevant 
material in Chapter 9). More specifically, the present problem can be 
considered an estimation problem where one seeks the estimation of Jx(s, χ) 
at a location s, in terms of data at neighboring locations s, (i = 1 , . . . , m). 
The best minimum mean square error estimator is the nonlinear estimator 

t ( s , ζ) = Fx(£|9t) = E[Ix(s, f )|9t] (24) 
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Equation (24) is an unbiased estimator of Jx(s, χ). Indeed, 

£ i K ( s , ζ) - Jx(s, ζ] = EMUAs, i)l»t]} - El[Ix(s9 £)] 

= Ει[ΙΧ(*,ζ)]-ΕΙ[ΙΧ(*,ζ)] = 0 

It is, also, a conditionally unbiased estimator, for 

Ei{[Ix(*> ζ) - /x(s, f )]|»l} = £*{£i[/x(s, £)|3t]|9i} 
- £,[ Jx(s, £)|3t] = £,[ Jx(s, £)|3i] - Ετ[ Jx(s, £)|SR] = 0 

In most applications, however, we usually restrict ourselves to linear 
estimators of the form 

m 

/x(s,£) = E A , . ( s , £ ) n ( s „ £ ) (25) 
i = l 

with weighted coefficients Af(s, ζ) > 0 (i = 1, 2 , . . . , m), and such that 

Σλ,(».£) = ι 
i = l 

A more complete linear estimator is provided by 
k m 

£(s, ί) = Σ Σ A((s, 0) yx(sis £■) (26) 
7 = 1 ϊ = 1 

where indicator data at various threshold values ζ^Φζ (j = 1 , . . . , k) are 
included, as well. 

Remark 2: Apart from minimum mean square error estimation, another way 
to calculate the probability distribution of Eq. (22) is suggested by the 
maximum entropy approach already presented in Section 4 above. The idea 
is to maximize the entropy of the corresponding probability density function 
subject to all data available, hard and soft. This is a very promising approach, 
regarding which significant research effort is currently underway (see also 
Chapter 9). 

5.2.3 The Markovian Approximation 
The use of Eqs. (25) and (26) in practice involves complicated inference 
and joint modeling of covariances and cross-covariances. Thus, the efficient 
implementation of the estimation process above may require some additional 
assumptions, such as the following Markovian approximation (Journel and 
Zhu, 1990): "Hard information always prevails over any soft collocated 
information." In quantitative terms this approximation implies that 

E[Ix(s\ £)| Jx(s, ζ) = 1, yx(s, ζ) = γ] = Ε[ΙΧ(*', ί)|/χ(β, ζ) = 1] (27) 

and 

E[Ix(s\ £)|Jx(s, ζ) = 0, yx(s, ζ) = γ] = E[Ix(s\ ζ)\ΐχ(*9 ζ) = 0] (28) 
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for all y e [0,1] and all s, s'e R". In this way, the covariances required for 
the application of Eqs. (25) and (26) reduce to the covariances c^h; ζ). In 
particular, the following proposition can be proven (Journel and Zhu, 1990). 

Proposition 1: Under the Markovian approximation, the spatial correlation 
structure of the indicator RF and the generalized indicator RF are given by 

ci y(h; ζ) = Cov[/x(s + h; ζ), Yx(s; £)] = B(£)ci(h; ζ) (29) 

for all h; 

cy(h; ζ) = Cov[ Yx(s + h; ζ), Yx(s; £)] = Β\ζ)ο^ ζ) (30) 

for all h > 0 ; and 

B [ n ( e , 0 ] = Fx(i)m(1)(i) + [ l -FJ C( i ) ]m( 0 ) ( i ) (31) 

The Β(ζ) and ra(,)(£) (i = 0,1) are calibration parameters defined by 

B(i) = m ( 1 ) ( i ) - m ( 0 ) ( i ) e [ - l , l ] (32) 

and 

τη(ί)(ζ) = Ε[Υχ(*;ζ)\ΐχ(*',ζ) = ί]ε[0911 ί = 0 and 1 (33) 
On the basis of Proposition 1 the proof of the following corollary is 

straightforward. 

Corollary 2: It is valid that 

M O ; ζ) = Var[ Fx(s; £)] = V^(i) + V^(i) (34) 
where 

Vi(i) = F x ( f ) [ l - F x ( i ) ] B 2 ( i ) (35) 

and 

ν}(ζ) = Fx{C)a2
{lU) + [1 - Fx(i)]o-(

2
0)(i) (36) 

where 

cr2
0(f) = Var[ r x (s ; i ) | /x(s ; i ) = / ] , / = 0 and 1 (37) 

The parameters Β(ζ), τηω(ζ) and σ2
0(£)(ί = 0 and 1), V2(i), and ν}(ζ) 

are independent of h. Furthermore, they provide valuable measures of 
accuracy and precision regarding the soft data. More specifically, 

(a) The parameters ra(1)(£) and cr2
1}(£) are, respectively, the mean and 

the variance of those soft data Fx(s; ζ) = >>x(s; ζ) for which the actual 
value is known to be indeed no greater than the threshold value ζ. 
Hence, ra(1)(£) provides a measure of the accuracy of the soft data 
yx(s; ζ) in predicting that X(s)<£ , and σ2

{λ){ζ) offers a measure of the 
precision of the prediction. For perfectly accurate and precise soft 
information, these parameters become ra(1)(£) = 1, and cr2

1}(£) = 0; that is, 
the soft data are equivalent to hard indicator information. 
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(b) The parameters m(0)(£) and σ2
0)(ζ) measure the accuracy and 

precision of the soft data yx(s; ζ) in predicting that X(s) > ζ. The best case, 
again, occurs when m(0)(£) = l and σ2

0)(ζ) = 0. 
(c) The parameter Β(ζ) = m(1)(£) - τη{0)(ζ) is an accuracy index for the 

soft data yx(s\ ζ)\ the most informative case corresponds to Β(ζ) = 1 or - 1 , 
and the less informative to Β(ζ) = 0. 

Note that the m(,)(£) and of0(£) (i = 0 and 1) are the means and variances 
of Yx(s; ζ) with respect to the conditional probability densities /Υ(ψ\$ϊΐ). 
The ÎHi correspond to the relationships (prior information) Jx(s; ζ) = i, i = 0 
and 1. In practice, one needs first to estimate the probability densities 
/γ(ψ\^ΐ)9 usually through the appropriate scattergrams, and then to calcu-
late the calibration parameters. 

Remark 3: From Eq. (30) one obtains 

lim cY(h;C)=V2
cU) 

|hho+ 

By comparing this result with Eq. (34) one finds that the covariance of 
yx(s; ζ) can be decomposed as 

M h ; i ) = V/(i)«(ii) + c*y(ii;i) (38) 

where Cy(h; ζ) is proportional to C/(h;£), viz., c*(h; ζ) = Β2(ζ)οι(\ϊ'9 ζ). 
Note that even if c^h; ζ) does not have a nugget effect and, hence, the 
Cy(h; ζ) is everywhere continuous, the cy(h; ζ) will always have a discon-
tinuity at origin. 

5.2.4 Nonlinear a Priori Relationships 
In certain situations in practice it may be appropriate to express prior 
knowledge by forming relationship functions of an arbitrary form Φ(Κ); Κ 
is a vector consisting of the natural process of interest, X(s), as well as 
other natural processes Z,(s) (i = 1 , . . . , m) related to X(s). These functions 
may express prior knowledge about X(s), such as information provided by 
a variety of, in general, nonlinear scattergrams between X(s) and the 
processes Z,(s). 

Example 4: The functions Φ(Χ) may include (see Fig. 7.26) 
(a) Ratio, 

X(s) a n X(s)-a 

(b) Arc, 

Vx2(s) + Z?(s) 
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Ζ,(β) 

Zj(8) 
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X(s) 

(d) 

Figure 7.26 Examples of functions Φ 

(c) Product, 

X(s)xZ,(s) 

In cases such as the above, to determine the function Yx(s9 ζ) one can 
proceed as follows: 

(i) First, the probability density /Φ(φ\ΐϋ) is estimated using prior 
knowledge, 

(ii) Next, one can determine the density 

Λ(ν|31) = / Φ ( ? | Μ ) 

|/(K)I 
(39) 

where | /(X)| is the appropriate Jacobian. 
(iii) Integration of Eq. (39) with respect to Z,(s) (i = 1 , . . . , m) gives the 

probability density fx(x\fft). 
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(iv) Finally, integration from —oo to ζ yields the required probability 
distribution Fx(f |9t) = yx(s, ζ). 

6. Some Final Comments about the Stochastic 
Research Program 

When real life is regarded as an inseparable guide of theoretical develop-
ments, one is inevitably forced to consider what appear to be desirable 
goals of a scientific application; we may call them desiderata. Such desiderata 
are as follows: 

(a) We know from experience that the primary emphasis on the logic 
of the problem, rather than the mathematics, is necessary in the early 
stages of any scientific study. Before any formal mathematical technique 
is applied, the relevance of conceptual matters and cause-and-effect 
relationships on the conclusions that we should draw from a given set of 
facts must be clarified and understood. For example, the inductive basis 
of site exploration rests on developing hypotheses and assigning degrees 
of plausibility to them, while the conclusions drawn from exploration 
contain more than the samples themselves. These are tasks of logic and 
judgment, not of mathematical formalisms. 

(b) In many practical situations we deal with a limited amount of 
hard data and, hence, it is important that other sources of prior 
information (in the form of qualitative models, physics, geological 
interpretations, intuition, and experience, etc.) should be taken into 
account. For instance, environmental hazards cannot be judged rationally 
if we look only at the set of "hard" data available and ignore the prior 
information about the mechanism at work. Also, it is only by fully 
appreciating the implications of incomplete prior knowledge that 
hydrologists can successfully manage their groundwater resources. 

(c) The problem-solving power of a quantitative model comes from the 
knowledge it processes and the physically meaningful requirements it 
accounts for, not only from the mathematical formalisms and inference 
schemes it uses. It is, therefore, important that information processing 
approaches incorporate into analysis the knowledge one may have about 
the natural process to be studied and the specific physical or 
mathematical properties one wishes the stochastic data processing to 
account for. 

The implication of desiderata (a) through (c) is that, apart from the 
physical properties of the hydrogeology of a region, stochastic analysis 
should also account for an important characteristic of scientific develop-
ment, namely intelligence. The latter is neither an inherent property of a 
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theory or a model in itself, but rather an ability exhibited by the scientist 
as a person who puts things together, based on knowledge—understanding 
of an area of expertise. Therefore, to examine the various sources of 
knowledge in hydrogeology, we may be bound to consider the hydrogeol-
ogist as the person developing and using (i) a theory or a model, as well 
as (ii) his knowledge in the domain of application. These considerations 
show another interesting dimension of the stochastic approach in the context 
of expert knowledge formalization and propagation. 

To account for these desiderata, a powerful heuristic is adopted by the 
stochastic data processing program leading to a Bayesian maximum-entropy 
formalism. According to this heuristic, stochastic data processing may be 
considered an approach 

(a) for conducting scientific inferences in real problems; 
(b) for providing the technical means that will take into account 

incomplete prior information and the consistent rules for improving the 
existing state of knowledge as soon as new data become available; 

(c) for quantifying and conveying physical models all the way to earth 
systems design and engineering. 

One example of the application of this approach was discussed in Section 
4. Some additional results will be discussed in Chapter 9. 



8 

Simulation of 
Natural Processes 

"If one wishes to learn what are the methods 
theoretical physicists use do not listen to their words, 
fix your attention on their deeds." 

A. Einstein 

1. Introduction 

Engineers, geologists, and other applied scientists deal with complex and 
changeable natural phenomena such as multiphase flow in porous media, 
sea waves, oil reservoir characteristics, and ore deposits. These phenomena 
have several aspects. Among the most important and at the same time most 
complex aspects are spatial and spatiotemporal variabilities. The latter are 
immensely important for interpreting spatially and spatiotemporally dis-
tributed observations, respectively, and for predictive performance. For 
example, in the context of hazardous wastewater site management and 
decision-making, some of the most difficult problems are related to model 
uncertainties caused by the spatial variability of model parameters. The 
adequate assessment of the spatial and temporal variability of geological 
reservoir processes is a requisite for an efficient reservoir characterization 
and oil production planning. It is, therefore, necessary that practicing 
scientists and engineers have a working understanding of spatial variability 
and its implications. 

This chapter presents spatial and spatiotemporal variability in the light 
of the stochastic simulation concept, and should be considered as a continu-
ation of the modeling issues discussed in the previous chapter. As we saw 
in preceding chapters, spatial variability is characterized in practice through 
the spatial covariance, semivariogram, and generalized covariance functions 

294 
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or by means of their frequency domain equivalents, spectral density, spectral 
semivariogram, and generalized spectral density functions. In this circum-
stance, spatial random field (SRF) simulation can be a very powerful and 
indispensable tool for constructing realizations that take into account the 
structural dependence in space of the natural process. Particularly, both 
the actual (but unknown) natural process and the simulated process are 
considered as realizations of the same SRF. They share the same mean, 
covariance, or semivariogram (ordinary, or generalized in the case of com-
plex nonhomogeneous spatial variability) and univariate probability distri-
bution, and under certain circumstances (e.g., no measurement errors) they 
will honor the measured values at the data points. Certain simulation 
methods may take into consideration other important sources of prior 
information ("soft" data, see Chapter 7). By studying the morphology of 
the simulated process one may derive valuable information about the 
variation in space of the actual process. 

The space transformation (ST) approach of Chapter 6 enables one to 
establish a theory of random field simulation where a group of useful spatial 
simulation methods, such as the turning bands method and the spectral 
method, can be derived in a unified and powerful general setting. 

Apart from ST simulation, other random field simulation techniques, 
which have proved useful in the study of earth systems, are discussed. These 
include frequency-domain methods; the lower-upper triangular matrix 
method, the Karhunen-Loeve expansion method, stochastic partial differen-
tial equation methods; and sequential indicator simulation. The simulation 
of vector random fields is also discussed. 

In most cases the underlying probability distributions are assumed to be 
Gaussian, but non-Gaussian distributions can also be considered. 
Spatiotemporal natural processes are generated in terms of ST and other 
simulation techniques. Theoretically and technically interesting results are 
established in the physical as well as in the frequency domains. These 
include the simulation of integrated natural processes, the study of stochastic 
transport systems, and the effect of measurement errors. 

The advantages and disadvantages of each one of the above methods can 
best be judged by means of specific cases. Finally, it must be remarked that 
there is a considerable literature devoted to simulation techniques, and the 
intent in this chapter is certainly not to review them all; however, several 
references are provided for the interested reader. 

2. The Physical Significance of Simulation 

Before proceeding with technical details, and to give a more concrete feeling 
of the simulation approach, we discuss a few examples: In ocean engineer-
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ing, maps of sea waves' surface elevations like that of Fig. 8.1, which is 
the output of computer simulation using random fields concepts (for 
the underlying theory see following sections), closely resemble real sea 
wave topography as given by aerial stereophotogrammetry methods. In 
applying simulation techniques, the necessary spectral functions (direc-
tional wave spectrum, frequency spectrum, etc.) are obtained either on the 
basis of field measurements or they are of a standard functional form 
(e.g., Borgman, 1969; Goda, 1980). Simulation of Fig. 8.1 contributes to a 
detailed understanding of sea waves transformation toward the shore, after 
they have been developed by the wind in the offshore region. This under-
standing is a prerequisite for the reliable estimation of the action of sea 
waves on maritime structures. 

£ 2 2 b U eiO, 0.25) 
<0HHJP U €[0.25, 0.50) 

A P I U > 0.50 
Figure 8.1 Simulated map of sea waves surface; u = h/hSi where h is the water surface 
elevation (in meters) and hs is the significant wave height (in meters) 
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In mining engineering, spatial variability of ore characteristics exercises 
a significant influence on predictions concerning ore favorability as well as 
on the choice of mining and haulage technology. Fig. 8.2 depicts a simulated 
contour map of Zn concentrations (%) from the mine of Lavrion (Greece). 
This is one possible realization of the SRF modeling the real deposit. The 
realization exhibits the same spatial characteristics as the real deposit (its 
covariance is calculated on the basis of the data available and geologic 
information from similar deposits worked out) and is forced to meet the 
measured Zn values at the data points, by applying a conditioning method. 
The usefulness of such maps is significant: They enable richer areas (in Zn) 
to be identified and ranked. Production planning is optimized taking into 
account technical constraints and monetary factors. By essence of SRF 
simulation, there can be several realizations like those of Fig. 8.2 that will 
honor the data points but which nevertheless will differ from each other. 
By studying their differences one may derive a measure of the uncertainties 
in the spatial distribution of the Zn concentrations. Furthermore, based on 
expertise about the particular natural phenomenon, one will be able to 
select the realization that best represents knowledge, past experience, and 
observation. 

11500 11700 11900 12100 

Figure 8.2 Simulated map of Zn concentrations (%) of the mine of Lavrion 
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In geology the simulation approach is used to visualize fluctuations in 
major geologic patterns, to investigate the morphology of fossils, and to 
map stratigraphical and structural surfaces. Recent research in the Arctic, 
motivated by the existence of rich natural resources (minerals, hydrocar-
bons, etc.), involves extensive use of numerical simulation to study the 
deformation and progressive failure of ice during ice-structure interaction 
and ice penetration. 

Simulation may not be an end in itself. In many cases, the simulated 
values, once obtained, are used to initiate a course of action or generate 
values of another natural process. In this larger context, simulation may be 
considered a model-dependent process in the sense that the simulated 
surface may be controlled by laws that govern the underlying physical 
mechanisms, the morphology of the deposit or the operational program of 
research and production. In hydrology, for example, simulated alternative 
realizations of a spatial process (e.g., permeability), which share in common 
the statistical information available regarding the process, can provide the 
inputs to flow models (Fig. 8.3). The latter, which are usually stochastic 
partial differential equations, will then be solved numerically with respect 
to the output variables (e.g., hydraulic head), and the ensemble of output 
realizations will be studied statistically to yield the mean value, the covari-
ance or semivariogram functions, as well as the probability distribution of 
the output variable at each point in space. This sort of application of the 

Input Output 
Simulations Solutions 

Figure 8.3 The input-output simulation process 
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0 100 200 300 400 500 600 700 Le^e 

Figure 8.4 The sea-depth cable example 

stochastic simulation concept constitutes one of its most important advan-
tages over spatial estimation. Another situation in practice where SRF 
simulation is a more realistic approach than SRF estimation is illustrated 
in Fig. 8.4. Estimation techniques are designed to minimize local uncertaint-
ies and not to reproduce global spatial patterns. Simulation yields a better 
reproduction of the fluctuations of the sea depth and, therefore, a more 
accurate evaluation of the necessary total length of the cable. 

3. Simulation of Random Fields 

3.1 Unconstrained Simulation 

The random field simulation methods to be discussed in this section are 
called unconstrained, to be distinguished from simulations where the realiz-
ations derived are constrained by the available values of the natural process. 

Let us first consider a general-purpose method of random field simulation. 
Assume that X(s) is an SRF with probability density fx(x\,..., xm). As we 
saw in Section 2 of Chapter 2, the following general expression is valid 

fx(Xl , · · · , Xm) =fx(Xl)fx(X2\Xl) - · JxiXm \X\ , · · · , Xm-l) ( 1 ) 

The X(s) can be simulated through Eq. (1) as follows: 
Step 1: Given the fx(xi,..., xm), one can calculate the probability 
densities fx(Xi), fxiXilxi), · · , a n d / x ( * m | * i , . . . ,*m-i) · The 
corresponding probability distributions can also be found; namely, 

f*1 
Fx(Xi)= fx(u)du 

Jo 

Fx(X2\Xi)= \Mu\Xi)du 
Jo 

and so on. 
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Step 2: Next, the following system of equations of marginal and conditional 
distributions is developed. 

Fx(xi)=Vl 

Fx(x2\Xi)=V2 

(2) 

-*~x \Xm I Xl 9 · · · ? Xm — 1 / ' m 

where Vf (i = 1 ,2, . . . , m) are independent random numbers. 

Step 3: Finally, realizations of the SRF X(s) can be generated by solving 
the system (2) with respect to χχ,..., and xm. 

Example 1: An SRF X(s) with a multivariate Cauchy probability distribution 
can be simulated by means of the above method. More specifically, the 
marginal distributions in Eq. (2) are univariate Cauchy, and the conditional 
distributions are univariate student's t with m degrees of freedom. A variety 
of procedures generating realizations of random variables with these univari-
ate distributions (as well as several others) are reviewed in Bratley et al 
(1983) and in Johnson (1987). 

When the conditional distributions in Eq. (2) are hard to determine, a 
simulation method based on a convenient transformation of the X(s) in 
terms of suitable univariate random variables (usually independent) may 
be used. "Suitable" means that procedures generating these variables are 
already available in the literature. 

Example 2: An SRF with a multivariate Gaussian distribution can be 
simulated through a linear transformation of independent Gaussian random 
variables. A multivariate Cauchy X(s) is simulated by means of the transfor-
mation χι = ζΐ/y, where ζί and y are independent Gaussian variables and 
the square root of a gamma G{\9 2) variable, respectively. 

The formulas of Table 8.1 generate some important univariate probability 
densities and are useful tools in SRF simulation studies. 

Remark 1: Formula (1) above leads to the sequential indicator simulation 
(see Section 13 below), which is a very useful method, especially in situations 
where the underlying probability distribution is non-Gaussian. The latter 
can be estimated with the help of the indicator coding of "soft" data 
discussed in Chapter 7. 



3. Simulation of Random Fields 301 

Table 8.1 Formulas for the Generation of Random Variables with a Specific Probability 
Density Function" 

Probability density Simulation formula 

Standard Gaussian: 

/2 

Gaussian: 

fx(x)= /=- exp 
V27TCr, 

fcexp[-y] *=tUi 

L 2o-J J V n i = 1 

Exponential: 

/*(*) = Aexp[-A*L ( * > 0 , λ > 0 ) Χ = ζΪ + ζ2
2, ( λ = γ ) 

Standard Rayleigh: 

/x(*) = *exp - — , ( * ^ 0 ) * = V-21ogM 

Rayleigh: 

fÀx) 

Chi-squared with In degrees of freedom 

a L 2 a J 

lared with 2w degrees of freedom: 

fx(x) = w 7 ^ 7 — r 7 e x p - — X=LCt, or * = 2 ^ ? 7 i 2n/zG{n/2) L 2 J . = 1 i = 1 

α The values of w,, £,·, and 17, are (0, 1) uniformly distributed, (0, σ2
χ) Gaussian, and exponentially 

distributed random numbers, respectively. 

3.2 Constrained Simulation 

From a physical intuition point of view, in addition to the above characteris-
tics, it is desirable that the SRF simulations honor the measured values at 
the data locations (assuming, of course, that there is no measurement error). 
The latter requires the implementation of some sort of a conditioning 
approach, so that the generated SRF realizations are constrained by the 
available data. In other words, assuming that values of the SRF X(s) are 
available at locations sf (1 = 1 , . . . , m), one generates realizations of the 
constrained SRF 

X*(s) = X(s)\XM = Xi (/ = 1 , . . . , m) (3) 

The conditioning can be achieved by means of one of the spatial estimation 
approaches discussed in Chapter 9. Constrained simulation is also called 
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conditional simulation; however, this terminology is not used here, to avoid 
confusion with the conditional distribution methods of the previous sub-
section. 

Of particular importance is the case where the SRF X(s) is Gaussian. 
Realizations of the conditional SRF X*(s) can be obtained by means of 
the expression 

X*(s) = x(s) + s(s) (4) 
where x(s) is an estimate of the actual process (e.g., Kriging; see Chapter 
9), and e(s) = x'(s) ~x'(s) is the error between a realization of the uncondi-
tional X(s) and its estimator. It is easily shown that the SRF (4) shares the 
same second-order statistics with the original SRF and passes through the 
data points. 

In the majority of practical applications, however, very rarely the multi-
variate probability density is known or can be estimated on the basis of the 
data available. Hence, one is often restricted to a more limited objective, 
namely, the generation of random field simulations solely on the basis of 
its second-order statistics. In particular, most of the SRF simulation tech-
niques used in earth sciences produce realizations of Gaussian SRF. These 
realizations preserve the mean, covariance, and semivariogram (ordinary 
or generalized), and the univariate probability distribution of the actual 
natural process. 

The purpose of the following sections is to present some of the most 
powerful of the second-order statistics simulation techniques. 

4. Simulation of Spatial Random Field by Space 
Transformations—Examples 

SRF simulation in more than one dimension is more difficult, in general. 
The difficulties are of both mathematical and technical nature. As we shall 
see next, the space transformation theory of Chapter 6 provides a general 
and powerful means of transforming a simulation technique from one to 
several dimensions. 

4.1 The Turning Bands Method 

The first example is the turning bands method of simulation introduced by 
Matheron (1973) and Journel (1974) for isotropic Gaussian random fields 
in the space domain, and by Mantoglou and Wilson (1982) in the spectral 
domain. The method has been generalized within the framework of space 
transformations by Christakos (1984a; 1987a and c). 

The basic steps of the turning bands method of simulation are as follows: 
Step 1: Determine the covariance model cn(h) of the SRF Xn(s) [or the 
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spectral density C„(w)] that characterizes the spatial variability of the 
natural process of interest. In practice the covariance model will be the 
result of a (sometimes tedious) procedure of fitting spatial functions to 
experimental data. The fitted function must be nonnegative-definite and 
there are permissibility criteria to ensure this (Chapter 7). The spectral 
density model is determined as the n -dimensional Fourier transform of the 
covariance model. Generally, previous experience with the particular natural 
process and formal cross-validation methods contribute to the choice of 
the proper covariance or spectral density function model. 

Step 2: Given the covariance cn(h) [or the spectral density C„(w)] of the 
SRF X„(s), find the one-dimensional covariance che.(t) [or the spectral 
density Q β.(ω)] on each line Θ, [the necessary formulas to do this are 
Eqs. (15) and (19), respectively, Section 2 in Chapter 6]. 

Step 3: Generate several on-line realizations Xl j(s · θ,), i = 1, 2 , . . . , N lines, 
on the basis of cue.(t) [or Che.(œ)]. For this purpose, certain of the most 
important unidimensional simulation techniques are presented in Section 
5 below. Regarding the number N of on-line simulations necessary in 
practice, it has been found that for two and three-dimensional applications, 
the generation of a maximum of N = 16 and N = 15 on-line realizations, 
respectively, produces excellent results. 

Step 4: The idea now is to simulate an SRF in R" by summing contributions 
from random processes in R1. In doing so, use Eq. (5) of Section 3 of 
Chapter 6 to produce realizations of Xn(s). The corresponding simulated 
covariance c*(h) will be given by Eq. (6), Section 3 of Chapter 6. 

Step 5: Carry out sensitivity analysis of the results obtained, by comparing 
the initial model c„(h) and the simulated covariance c*(h), or by 
investigating the influence on the produced simulations Xn (s) of the 
approximations involved in steps 1 through 4 like, for example, the number 
N of lines in summations (5) and (6) of Section 3, Chapter 6. 

For computational purposes, instead of vectors it is usually convenient 
to work with spherical coordinates, namely, w= (\νλ , . . . , wk9..., wn) with 

(1) 
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where k = 2 , 3 , . . . , n -1, and the angles φί9 i = 1 ,2 , . . . , n define the direc-
tion of the corresponding line Θ, in Rn. More details concerning the computa-
tions and assumptions of the procedure above will be given in the applica-
tions to be discussed next. 

Example 1: An illustration of the simulation method is shown in Figs. 8.5 
through 8.9 for the case n = 2. Figure 8.5 depicts the simulation geometry; 
the line at angle φ is the domain of the one-dimensional realization 
XiA* ' θ,). 

According to the simulation algorithm discussed above and working in 
the frequency domain, we proceed as follows. First, the SRF X2(s), seR2 

to be simulated is assumed to have a mean equal to six and an anisotropic 
covariance of the form 

c2{hx, h2) = exp[-70.7225/i? + 0.3025/^] (2) 

Figure 8.5 Simulation geometry on the plane. Line at angle φ is the domain of the one-
dimensional realization Xlje,(s · θί); X2(s) is t n e simulated two-dimensional SRF 
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(Fig. 8.6). This theoretical example has been chosen to illustrate sensitivity 
analysis of the quality of the simulation results obtained. In practice, 
however, the model (2) will be the outcome of a process that combines 
experience with the specific physical variâtes and sometimes tedious experi-
mental calculations. 

Next, the two-dimensional Fourier transform of Eq. (2) is calculated, 
inserted into Eq. (19), Section 2 of Chapter 6, and spherical coordinates 
applied to yield the one-dimensional spectral density along the lines at 
angle φ, 

r , x 0·1093ω 
^φ{ω) [0.2186 +(0.3025 cos2 φ + 0.7225 sin2 φ)ωψ2 Κ } 

Equation (3) is plotted in Fig. 8.7 for ω > 0 and 0 < φ <2ττ. 

From this one-dimensional simulation Χ1ίβ|(8· θ,) are generated along 
several lines using the spectral method (for details, see Section 5 below), viz., 

M 

XxM = V2 £ Aj cos(<o'jSi + fa (4) 
7 = 1 

where s f = s · θ,, M = 400 terms and A,· = V C 1 ^ ( Û > / ) Δω (the Ολφ{ω^ has 
negligible value outside the interval [-ω0, ω0], ω0= 100); ωΊ = ω]^δω]9 

where ω}, = —ω0 + 0' - ΐ ) Δω and Δω = 2ωο/Μ = 0.5 is the discretization 
frequency; φ] are random angles distributed uniformly and independently 
inside the interval [0, 2π]. To avoid periodicities, a small random frequency 

Figure 8.6 The two-dimensional covariance of Eq. (2) 

(3) 

(4) 
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Figure 8.7 The one-dimensional spectral density function of Eq. (3) 

increment δω, is uniformly distributed in the interval (—A<oj/2, Δω]/2), 
where Δω,·« Δω,. In this application N = 16 equally spaced lines have been 
used. 

We can now apply summation (5), Section 3 of Chapter 6 for n = 2 and 
N = 16, viz., 

1 16 

* 2 « = ; ^ = Σ > ι . β | ( * ) (5) 

where si = s - e i , to produce simulated values on a grid of 4800 points 
(80 x 60), leading to the contour map of Fig. 8.8. The corresponding perspec-
tive plot is shown in Fig. 8.9. 

The sampled mean of the simulation map of Fig. 8.8 is about 6.015, which 
is close to the model (6.0). The simulated co variance, that is, the co variance 
that corresponds to the SRF (5), is given by [Eq. (6), Section 3 of Chapter 
6 for n = 2] 

cf(h)=^f;c1(h-ei) (6) 
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Simulated covariances calculated for various values of the number N of 
lines used in summations (5) and (6), converge to the theoretical model of 
Eq. (2) very fast as the number N increases. The simulated covariances 
corresponding to N = 16 lines show excellent agreement with the theoretical 
ones. For this number of lines, the simulated marginal distribution of the 
realizations X2(s), se R2 is found to be practically Gaussian. Several simu-
lated maps like that of Fig. 8.8 were produced and then used to calculate 
the ensemble statistics of the underlying process. As the number of the 
simulated maps taken increases, the ensemble statistics converge to the 
theoretical ones, thus proving the ergodicity of the method (Christakos, 
1987a). An interesting result is suggested by the following proposition. 

Figure 8.8 Simulated contour map 
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Figure 8.9 Perspective plot for the contour map of Fig. 8.8 

Proposition 1: By means of the space transformation concept, a white-noise 
process in Rn can be simulated by summing contributions from random 
processes in Rl that are no longer white noises. 

Proof: A white-noise SRF V(s), s e Rn, is generated by a covariance function 
of the form 

cM = crU(h) (7) 

where h e Ä n and σ\ is the variance of the white noise. The corresponding 
spectral function is 

By applying Eq. (19) of Section 2, Chapter 6 the one-dimensional spectral 
density for simulations along lines Θ can be written 

which clearly is the spectral density of a non-white noise process. □ 

For completeness, the one-dimensional covariance corresponding to Eq. 
(9) is given below (Christakos, 1987a; Christakos and Panagopoulos, 1992). 

(8) 

(9) 
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Corollary 1: Let Eq. (7) be the covariance function of a white-noise SRF 
in Rn. The corresponding one-dimensional covariance defined by means of 
the ST formalism of Chapter 6 is as follows: 

CiM) = <r2v 
( - l ) w S 2 w + 1 d2m 

2(27r)2m dt2m 8(t) if n = 2 m + l 

and 

cUe(t) = <r2v 
2 ( - l ) 3 m - 1 ( 2 m - 2 ) ! o 1 

(27r)2m 
s2m~^, if n=2m 

(10) 

(Π) 

The five-step simulation approach above also applies in the case of 
nonhomogeneous physical processes, by simply replacing the covariance 
c„(h) with the semivariogram y„(h) or the generalized covariance model 
kn(h) (see Fig. 8.10). In this case, if 

Mr)=E(-l)P+V2p+1 

p=0 

(12) 

KW i^f^lM MW 

V 
K,}w I 

FT 

V 
c^T^IL~L^(T) 

■ * φ -
x..8 i(

s) 1 
i = l , 2 , - ,N | 

V i = i j 

Figure 8.10 Flowchart of the turning bands simulation procedure 
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(r = |h|) is the GSC-^ in Rn
9 the corresponding GSC-^ in Rl is given by 

fc1(o=E(-irl-^/-2"+i (i3) 

where 

Example 2: The measured quantity in the mine of Lavrion (Greece) is the 
Zn concentration (%). In the area of interest (Fig. 8.11) there are seventy 
five (75) measurements available, arbitrarily distributed in space and not 
interrupted by considerable measurement errors. The spatial variation of 
the Zn values is nonhomogeneous and, thus, it must be represented in terms 
of ISRF-*> (Chapter 3). The identification of the spatial variability of Zn 
concentrations is performed by means of the procedure detailed in Section 
4.2.2 of Chapter 7. The results are order of intrinsity v = 0 and a two-
dimensional generalized spatial covariance (GSC-0) 

fc2(r) = -0.1375r (14) 

where r = |h|. The corresponding unidimensional GSC-0 can be found by 
applying IST-2, viz., 

W ) = * i [ M r ) ] = - | θ . 1 3 7 5 ί (15) 

Next, simulations of the one-dimensional ISRF-0 X\#.(& · Θ,), having the 
GSC-0 of Eq. (15), are produced along 16 lines. As it is shown in Section 
5 below, the one-dimensional ISRF-0 on line ι, Χ\#.(τ)9 T = S · Θί5 can be 
generated by 

Χι ,θ ,ω = ν ^ W0(T) = yj0.1375 ^ W0(T) (16) 

where W0(T) is a Wiener process. Realizations of W0(T) can be constructed 
by means of WO(T + A T ) = WO(T) + V 2 4 A T V ( T ) , where V(r) is a random 
variable uniformly distributed inside the interval [-5,5]· 

The summation formula, Eq. (5) above, is applied to generate Zn values 
on a grid of 3200 points (80 x 40). Among the several possible Zn realizations 
we keep one that honors the measurements at the 75 data locations (assum-
ing, of course, that there is no measurement error). The constraining of the 
simulation process to the data is achieved by means of the method described 
in Section 3.2 above. The resulting simulated contour map is shown in 
Fig. 8.2. 
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Figure 8.11 The area of the mine of Lavrion, Greece 

To examine the sensitivity of the simulation results, the following tests 
were performed: 

(a) We repeat the procedure above, this time using the 3200 simulated 
Zn values: We again obtain the same order of intrinsity v = 0, while the 
two-dimensional GSC-0 is now k$(r) = -0.1419/*. This is very close to the 
original GSC-0, k2(r) = -0.1375r, which was obtained before using the 75 
Zn values. Hence, the produced simulation maps restore the spatial 
variability characteristics of the Zn data available. 

(b) Simulation maps of Zn concentration were generated by means of 
the procedure above, using first N = 32 and then N = 64 lines. Then, the 



312 Chapter 8. Simulation of Natural Processes 

spatial structure identification procedure was applied to the two new sets 
of simulated Zn values. The spatial variability characteristics (order of 
intrinsity and GSC) obtained were, for the first set of simulated Zn 
values, v = 0 and fc*(r) = -0.1406r; and for the second set of values, 
v = 0 and k%{r) = -0.1396r. Both GSC-0 are very close to the original 
one, implying that the 16 lines used are in fact sufficient for the particular 
case study. 

Example 3: In Fig. 8.12 various cases of spatial simulation are shown, 
including isotropic, anisotropic, and nonhomogeneous SRF. 

Remark 1: All methods of SRF simulation involve approximations. The 
turning bands method, in particular, produces SRF that are approximately 
Gaussian; other approximations are due to the finite number of simulation 
lines, the discretization along the lines Δτ, the discretization frequency Δω, 
and the number M of the terms in the series (4). A detailed sensitivity 
analysis of the influence of the above parameters on the simulation accuracy 
can be found in Mantoglou and Wilson (1982). From a practical point of 
view, perhaps the most useful way to demonstrate whether a simulation 
method works is to investigate its statistical behavior on synthetic data 
generated from models with known parameters. 

4.2 The Spectral Method 

Another useful simulation technique can be developed as follows. Bartlett 
(1955) and Matern (1960) have shown that, if w is a random variable with 
isotropic probability density /ηΛν(ω), (ω = |ω|) and w is a one-dimensional 
random variable independent of w and uniformly distributed between 0 and 
277, the SRF 

X„(s) = exp[i'(s-w+ii)] (17) 

has 

cn(i) = cn(0)£{exp[î(h-w)]} (18) 

where t = |h|, as covariance. 
By applying the ST concept, the analysis above leads to the following 

simulation approach. 

Step 1: Given c„(i), find/„5W(w) [Section 2 of Chapter 6]. 

Step 2: Apply Eq. (23), Section 2 of Chapter 6 to get/ltW(a>). 

Step 3: Then generate simulations 

X„(s) = exp[/(ws · Θ+ II)] (19) 
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mx = 6.0, cx(r) = exp[ - r], r = |h 

T 7 ^ τ 
W.& 
& 0 ) 0 ,6.SQ 

S.5o-

Ό 1 

t?x 

O 

60CK 

mx = 0.0, cx(r) = 0.8rK1(0.8r), r = |h 

(a) 

Figure 8.12 Examples of spatial simulation: (a) Isotropie SRF; (b) anisotropic SRF; 
(c) nonhomogeneous SRF, ISRF-0; (d) nonhomogeneous SRF, ISRF-1; and 
(e) nonhomogeneous SRF, ISRF-2. (Figure continues) 
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01, = 6.0, (^(η,,η^ = exp[- .^0.85* «hj + 0.202 * h^J , h = (h,,h2) 

v.MUAt^mmui 
(b) 

cx(s,rf) = kx(r)+p0(s,sf), v = 0 and k x (r )=-r , r = | s - s ' | = |h 

Figure 8.12 ( Continued ) 
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cx(s,s') = kx(r) + Pl(s,s·), v = 1 and kx(r) = r3, r = | s - s'| = |h| 

cx(s,s') = kx(r) + p2(s,s·), v = 2 and kx(r) = - r5, r = j s - s'| = |h| 

/ / / / / / / / / / / / / / / / / , 

7/////////////// 
(e) 

Figure 8.12 (Continued) 
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where ω has one-dimensional probability density/lw(a>) and Θ has a uniform 
density 1/S„. 

Remark 2: This method has been used extensively in hydrologie sciences 
for the generation of spatial processes (e.g., Mejia and Rodriguez-Iturbe, 
1974). 

5. Techniques of One-Dimensional Simulation 

In the preceding section, a multidimensional simulation was shown to be 
technically reducible to a much simpler one-dimensional simulation. The 
problem of generating one-dimensional realizations remains. Recall that 
the terms "random process," "stationary," etc., are the one-dimensional 
counterparts of the terms "random field," "homogeneous," etc., which are 
used when more than one spatial dimension is involved. 

The most important of the various existing one-dimensional simulation 
methods will be reviewed briefly. These methods can be classified into more 
than one way. For example, one classification considers two major groups 
of simulation techniques: space-domain and frequency-domain (spectral) 
techniques. Another classification distinguishes between techniques for 
simulating stationary random processes, and techniques for simulating 
nonstationary random processes. 

5.1 Convolution Techniques 

An extensively used technique for simulating stationary random processes 
is one where the unidimensional covariance is expressed by the convolution 
of a properly chosen function p(v), viz., 

c,(r)= I p{v)p{v + r)dv (1) 

Line realizations are obtained as the weighted summation 

M 

Xi(s)= Σ p(jàs)U(s+j) (2) 
j = -M 

where U(s) are random variables. The latter are independent of each other 
and have the same distribution with zero mean and known variance (e.g., 
Journel, 1974). 
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5.2 Moving-Average-Autoregressive Techniques 

Unidimensional stationary simulations also may be produced by a moving-
average process similar to Eq. (2), namely, 

M 

XM= Σ PjU(s-j) (3) 
j = -M 

where U(s) are Gaussian white-noise processes with zero mean and unit 
variance; M is chosen so that 

I i M I 
| l 2 Σ Pj\<e 

Crxj = -M I 

where ε is a small positive number and the coefficients pj are calculated by 

As[^s [CM (ω) 
COS(JÛ> As) ί/ω 

Δ* 

where ΟΊ(ω) is the spectral density of the process Xi(s) and As is the 
discretization step along the simulation line (note that /?,=/?_,). Since the 
U(s) are Gaussian, Eq. (3) generates Gaussian processes too. 

Stationary simulations can be generated by the autoregressive process 
M 

Xl(s) = ^ajXi(s-j)+W(s) (4) 
7 = 1 

where a, are coefficients and W(s) is a zero-mean Gaussian process with 
specified variance, whereas the state {Xi(s —j)\j = s -1,..., s - M} must 
be determined before start of recursion. 

Furthermore, combining Eqs. (3) and (4), on-line simulations can be 
generated by an autoregressive-moving-average process. The same role may 
be played by random differential equations whose solutions may serve as 
realizations of the process (e.g., Ripley, 1981). 

5.3 Spectral Techniques 

Spectral techniques concentrate on the spectral function of the process. 
Rice (1954) created a popular method in which the simulation is expressed 
as a series of cosine functions 

M 

Xl(s) = £ V2C1(Û>/) Δω œs((OjS + φ/j (5) 
j = i 

where Ci(<Oj) is the unidimensional spectral density that vanishes outside 
the interval [—ω0,ω0], Δω=2ω 0 /Μ, ω, = —ω0 + 0'—|)Δω, and φ^ are ran-
dom phase angles uniformly and independently distributed in the interval 
(0, 2π). Due to the central limit theorem, Xx(s) is a stationary Gaussian 
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random process; it is, also, periodic. The covariance and spectrum of the 
process can be shown to approach their true values at the rate 1/M2, where 
M is the number of terms in the series. 

To avoid periodicities, Shinozuka and Jan (1972) recommend another 
version of Eq. (5) where in place of ω, they use ω] = ω] + δω,, viz., 

M 

Xt(s) = Σ MC^Wj) Δω c o s t ' s + φ}) (6) 
J = I 

where δω, is a small random frequency increment, uniformly distributed in 
the interval (-Δω]/2, Δω]/2), where Δω]« Δω,. Again, the generated ran-
dom process X\{s) is stationary and Gaussian; it is, also, ergodic irrespective 
of N. This technique was used in Example 1 of Section 4 above. 

5.4 Fast Fourier Transform Techniques 

Some spectral techniques are based on fast Fourier transform algorithms. 
In fact, both convolution and cosine series methods can be written in forms 
suitable for the fast Fourier transform. 

For example, Eq. (5) may be written as 

Xi(s) = Re| Σ WlC^Wj) Δω exp[/<£,]] expfia^s] | (7) 
l/=i J 

where Re means "real part of." Fast Fourier transform techniques may be 
applied with efficiency to convolution (2) too. The Fourier transform Ζχ(ω) 
of X\{s) is first specified from the Fourier transforms of p(v) and U(s). 
Then, Xi(s) is obtained by an inverse Fourier transform 

Xl(s) = FT1[Z1(a>)] (8) 

The choice of one or the other method is based on several considerations: 
the ease in calculating the one-dimensional covariance or spectral functions, 
the desired accuracy, the relative rates of convergence, and the cost of the 
numerical simulator for the particular case. Furthermore, in practice, 
evaluating the function p(v) of the convolution form Eq. (1) in the space 
domain is not always possible. This may not be a problem in the frequency 
domain were Eq. (1) becomes Οχ{ω) = |Ρ(ω)|2 and Ρ(ω) is the Fourier 
transform of p(v). [Obtaining Ρ(ω) from Οχ(ω) may be easy if (^(ω) is 
rational.] If the spectrum Ολ{ω) is known, an inverse Fourier transform 
will yield p(v), which may be used for on-line simulations in the space 
domain. The cost of a multidimensional simulation is directly proportional 
to the cost of the on-line simulations and, of course, the number of lines used. 
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5.5 Nonstationary Random Processes 

For the purposes of this book the most important case of nonstationary 
simulation is that of unidimensional ISRF-^ (or, equivalently, intrinsic 
random process of order *>, IRP-i^). 

To simulate an IRP-^ Xi(s) with a generalized covariance of order v 
kx{h), one needs to apply the representation (73), Section 3.4 of Chapter 
3, viz., 

X1(5) = fc0Wro(*) + fti W0(v)dO + -- + bv Jo 

f5 (s-vY~l 

x ~, 7ΤΓ W0(v) dv (9) 
Jo (v-l)\ 

where 

(a) The W0(s) is an IRP-0 with kWo(h) = -\h\. Usually, W0(s) is taken 
to be a Wiener random process. Realizations of W0(T) are constructed 
through the simple recursive formula 

W0(s + h)=W0(s) + y/2XhV(s) (10) 

where V(T) is a random variable uniformly distributed inside the interval 
[~\A~\ (Orfeuil, 1972; Dimitrakopoulos, 1990). 

(b) The bp (p = 0 , 1 , . . . , v) are coefficients that can be calculated in 
terms of the coefficients of kx(h). Suppose that the kx(h) is of the form 

fci(*)=è(-l)P+1Cpl*|2p+1/(2p + l ) ! 
p=0 

Then the coefficients bp are related to the covariance coefficients cp as 
follows: 

v I v I 2 

" (11) 
p=0 ' p = 0 

where i = \T-\. 

For illustration, Table 8.2 provides simulation formulas for the important 
cases of v = 0, 1, and 2. This technique was used in Example 2 of Section 
4 above. 

A method of constructing nonstationary simulations, not necessarily 
IRP-*', is provided by extending Eq. (5), where the random phase φ] is now 
taken to be nonuniformly distributed. Then, by assuming that a relationship 
between the nonhomogeneous characteristics of Xx(s) and the probability 
density of φ] can be established, Eq. (5) generates nonstationary processes. 
Some authors (e.g., Veneziano, 1980) suggest the replacement of the spectral 

(9) 
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Table 8.2 Simulation Formulas for IRP-^ 

v = 0: 

XM=>fcW0(s) 

v = l: 

; ί w0(v) 
Jo 

Xl(s)=yfc~0W0(s) + yfc~l I W0(v)dv 

v = 2: 

Xl(s) = ^0W0(s) + sf^+27wT2 

X WQ(v)dv + y/c2 
Jo 

x (s-v)W0(v)dv 
Jo 

density function C^o*,·) in Eq. (5) by the evolutionary mean power spectral 
density function C^s, ω,) (for definitions see Section 5.3 of Chapter 2), so 
that the formula of nonstationary simulation becomes 

M 

X,(s) = £ y/2Cx(s9 a>j) Δω COS((ÜJS + <£,·) (12) 
7 = 1 

Another approach, also based on an evolutionary spectral density func-
tion, is suggested by the expression 

χ 2 ( 5 ) = Α Um [LC^s, ω)] da) (13) 

where the evolutionary spectral density function is defined as 

C^s, ω) = cY{s, t) exp[—iwt] dt 
J Rl 

and 

c , (M)=7 f XMX^u + ^du 
L J s-L 

However, the practical application of this approach needs some additional 
information regarding the correlation structure of the process X\(s). 

Finally, a powerful nonstationary simulation method in terms of the 
impulse response function h(u) is as follows. Assume that one seeks the 
simulation of the random process Xi(s) with a given spectral density 
function Cx(s, ω). Choose a process Zx{s) that can be simulated easily, say 

(12) 
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a nonstationary white-noise process with a spectral density Cz(s, ω). The 
Fourier transform of Cz(s, ω) determines the covariance cz(s, u) of Zx{s). If 

cz(s-(o9u) 
ß(s9w)= — 

C2(s, U) 

the following system of equations must be solved with respect to h(u), 
Η(ω), 00 , u), and S(s, ω) (see, e.g., Cacko et al, 1988), 

Η(ω)= h(u) QXp[-i(ou] du 
Jo 

6(s,u) = ß(s9u)h(u) 
(14) 

Γ°° 0(s, ω) = 6(s, u) exp[i(ou] du 

Jo 

Cx(s9 ω) = H((o)&(s, o))Cz(s, ω) 

Assuming that the solution of the system (14) yields a function h(u) such 
that h(u) —-—> 0, the process Xi(s) can be simulated by 

M 

Xxis) = YjPjZ{s-j) (15) 

where the coefficients Pj = h(j As) As are such that pj -> 0 for all j> M. 

6. Simulation of Integrated Natural Processes 

The ST concept may introduce valuable insights into the study of spatially 
integrated patterns. Assume that the ST-1 projections of a geologic process 
Xn(s) can be measured along lines or over planes, as, for example, the total 
or integrated bulk density along well logs. Then the ST formulas developed 
in Chapter 6 connect these projections with the original process in both the 
space and frequency domains. Consequently, the geologic process may be 
simulated by means of these projections (see also Christakos, 1987a). 

The ST-1 integrations are defined over hyperplanes (i.e., over the entire 
range of the process). However, in practical applications, the integral or 
the average of a geologic process X„(s) may be taken over finite sets such 
as mining blocks or polluted regions. If this is the case, the factor 

A(c, w) 
{exp[/(c-w)]}2 

(15) 
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i 
where A(c, w) depends on geometric characteristics of the sets, may be 
inserted in the calculation. To evaluate this factor, the finite ST-1 projection 
must be defined. Specifically, let 

x^)=^k)}Qy
x"is)ds (l) 

be the ST-1 projection of Xn(s) over the finite set Qy, which belongs to a 
linear subset of R"; vector y defines the position of Qy and the symbol 
V(Qy) denotes its surface. 

Matern (1960) has shown that if s, s' are points chosen independently 
and at random in the set Qy and Qy, respectively, and c = y -y ' , then A(c, w) 
is the characteristic function of the difference h = s - s ' . Moreover, analytical 
expressions for certain shapes of Qy were derived: for example, when Qy 

is an n -dimensional rectangular block with sides di9 i = 1 , . . . , n 

A(c, w) = 
sin 

djWj 

2"exp[/(c-w)]Il 
J = I 

djWj 

Using this result, 

C0(w) = 
sin 

djWj 

djWj 
C„(w) 

(2) 

(3) 

CQ(W) is now the spectral function of the average process Eq. (1) to be 
simulated and C„(w) is the spectral function of the point process X„(s). 

The quantity within brackets in Eq. (3) is the operator transfer function 
of the linear system defined in Eq. (1) for the particular geometry of the 
set Qy. Taking into account Eq. (19), Section 2 of Chapter 6, Eq. (3) gives 

Q>(wH-
sin 

djWj 

2«Π 
djWj 

£Ί,β(ω) (4) 

which implies that the X^Qy) may be simulated by applying the turning 
bands operator directly on the one-dimensional point process Xue. 
Equations (3) and (4) illustrate certain important features of the frequency 
domain approach of simulating geologic processes: for example, the statis-
tical properties of the output process Xv(Qy) may be evaluated in terms of 
the properties of the input process X„(s). 

7. Simulation of Dynamic Stochastic Systems 

As we saw in Chapter 6, space transformations may lead to an interesting 
method of studying transport-type equations such as those representing 
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hydrologie processes. Examples included partial differential equations used 
to model flow in porous media. By decomposition into ST-projections, the 
multidimensional equation can be reduced formally to an equation of the 
same type in R1; after this has been solved, solutions of the original equation 
can easily be constructed. 

A similar approach can be applied within the framework of stochastic 
simulation, aiming at the study of dynamic and uncertain environments in 
several dimensions. Realizations of an output spatial process may be gener-
ated by summing contributions from one-dimensional simulations of the 
input process. 

Example 1: Consider the two-dimensional equation governing perturbations 
in steady groundwater flow (Mizell et al9 1982) 

d2h(s1, s2) t d2h(sl, s2) dr(sl, s2) 

ds2 dsl dsx
 l 

where h(sl9 s2)9 r(sl9 s2) are fluctuations about the means MH(si) and MT 
of the hydraulic head / / ( s j , s2) and the log transmissivity log T(sx, s2). The 
mean MH(si) is assumed to be a function of only the ^ direction, whereas 
the mean MT is constant, Jx = —dMH(si)/dSi is the mean gradient. Assuming 
homogeneity of the processes involved and working in the convenient 
frequency domain, Eq. (1) becomes 

CK2(wi9 w2) = -J- j-CT( l fe )(cü) (2) 
πω 

where Ch2(wl9 w2), and <^τ(1θ)(ω) are the two-dimensional head spectrum 
and the one-dimensional log transmissivity spectrum. Equation (2) allows 
the generation of two-dimensional simulations of hydraulic head directly 
from on-line simulations of the corresponding unidimensional log trans-
missivity. The latter is simply the IST-2 of r(sl9 s2). 

Example 2: Let X(sl9 s2) be an SRF representing the concentration of an 
aerosol substance transported with an air flow in the atmosphere. Assume 
that the phenomenon is two-dimensional and is governed by the equation 
(e.g., Marchuk, 1986) 

ΛΤ dX(sl9s2) Λ, dX(sl9s2) 2 
Vi : + V2 : /xV X(sl9s2)= W8(s-s0) (3) 

dS! ds2 

where Vx and V2 are the random velocity components, W is the capacity 
of the source exhausting the aerosol into the atmosphere, μ is the diffusion 
coefficient, and s0 determines the location of the exhaust point. 

The SRF Vl and V2 can be expressed in terms of their means mVl9 m^ 
and the perturbations V[, V2, namely, Vt = mv. + V[, ί = 1, 2. For an infinite 

(1) 
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domain, the solution of Eq. (3) is given by 

W 
X(si,s2)=-—exp 

2πμ 2μ J 

~ Is so| 
2μ 

where 
/•oc 

exp[-\chip] άψ, χ>0 

(4) 

Κο(χ)=Γ 
Jo 

is the McDonald function. Assuming that their covariances (or spectral 
density functions) are known, one may first generate realizations of the 
SRF Vx and V2, and then use Eq. (4) to produce simulations of the SRF 
X(sl9s2). 

The discussion above gives rise to other important features of the simula-
tion approach. The quality of the simulated processes may be further 
improved by incorporating into the analysis laws known to govern the 
controlling mechanisms in the field. The simulations, in turn, may provide 
numerical solutions for the corresponding equations that model transport 
phenomena in porous media, turbulent motions in the atmosphere, the 
action of sea waves on structures, as well as in other applications. Finally, 
the simulation maps of aerosol transport can be used in the study of optimum 
location of industrial plans; similar maps of polluting hydrosol transport 
are valuable in the determination of the location of pollution sources in 
water bodies and coastal seas. 

8. The Effect of Measurement Error 

If the statistical information about the spatial process includes measurement 
errors, these may play an important role in the simulation. To simplify the 
analysis, the process is assumed statistically isotropic and the measurement 
model linear 

y„(s) = x„(s)+vn(s) (i) 
Yn(s) are the measured values of the actual process X„(s), and the measure-
ment error V„(s) is a zero-mean white-noise with variance σ2

ν, uncorrelated 
to X„(s) and Y„(s). Covariances of the processes in Eq. (1) then satisfy 

cy„(r) = cx„(r) + c72
v5(r) (2) 

Expressions similar to Eq. (2) may arise, also, when simulating from 
covariances having an impulse at the origin (nugget effect). In the frequency 
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domain, the n-dimensional Fourier transform pair [£(s), l/(27r)"] can be 
taken into account together with Proposition 1 and Corollary 1 of Section 
4 above to yield 

* i 1 Ι ^ ω - 1 

(2TT)"J 2(2TT)" 

which relates the Fourier transform of the 8(s) and its Ψ1» space transform. 
The Fourier transform of Eq. (2) can now be formed 

CYn{a>) = CXn{a>) + CVn (3) 

where CVn = σ2
ν/(2π)η is the spectrum of the white noise V„(s), which is 

constant over the interval (0, 2π) assuming discrete sampling concepts. 
Applying the Ψι

η operator in Eq. (3) 

C y » = CXl(û>) + CVl(a>) (4) 

where 

2{2π)η^ 
CVl(a>)= ——— σν 

is the spectrum of the unidimensional error process Vx{s). As we see above, 
a white error process in Rn is generated by summing contributions from 
on-line simulations of a process no longer white (see also Proposition 1 of 
Section 4). Similar conclusions may be derived for covariances that contain 
an impulse at the origin. For dealing with these situations, simulation in 
the frequency domain may be preferable, as the spatial covariances are not 
always easy to simulate (Christakos, 1987a). 

9. Simulation of Spatial Random Fields by Means of 
Frequency Domain Techniques 

The multidimensional frequency-domain simulation techniques are 
extensions of the unidimensional techniques discussed in Section 5 above. 
Multidimensional frequency-domain simulation techniques have been 
applied extensively in numerous applications (see, e.g., Borgman, 1969; 
Shinozuka, 1971; Shinozuka and Jan, 1972). 

Let us consider first homogeneous SRF. The simulation method that 
follows generates Gaussian SRF. The fundamental simulation equation in 
Rn is 

M l Mn Γ Π "I 

* ( s ) = Σ · · · Σ A 0 \ , . . . , 7 J c o s Σ < Λ + </>,,■.;„ (1) 

(3) 
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where 

the spectral density function Cx(wl 7 l , . . . , wnjn) is assumed to be negligible 
outside a given domain 

W = {w: -ω, < w, < ω,, ω, G #+ ; ι = 1 , . . . , η} 

A w f = — , w ^ = w^ + ÔWf 

where δνν, are random frequencies uniformly distributed between -Δ\ν[/2 
and ΔΗ>!/2 (Δ>ν!« Δνν,); the φ^..^η is a random angle distributed uniformly 
between 0 and 2π. 

For nonhomogeneous SRF the spectral density function Cx(wijl9..., wnjn) 
in Eq. (2) should be replaced by the corresponding evolutionary 
mean power spectral density function Cx(s, wljl9..., wnjn) (Section 5.3 of 
Chapter 2), viz., 

A(s, j l 9 . . . Jn) = V2Cx(s, w V l , . . . , wnjn) ΔΗ^ . . . Δνν„ (3) 

Fast Fourier transform algorithms are useful tools in SRF simulation. In 
the case of Eq. (1), for example, the application of the fast Fourier transform 
algorithm leads to 

X(*) = Rej Σ ' ' * Σ AUi, - - - Jn) exp ί ( Σ < * + 4>Ju...jH) } (4) 

A frequency domain technique that has been used with considerable 
success in hydrology (e.g., Bras and Rodriguez-Iturbe, 1985) is based on 
the expression 

x(s) = V ^ J V P ^ cos(Wj "s+^} (5) 
.7 = 1 

where w7 are independent random vectors with probability density function 
Cx(w)/cx(0), and φ] are random angles distributed independently and 
uniformly between 0 and 2π, as before. 

10. The Lower-Upper Triangular Matrix Technique 

The lower-upper triangular matrix technique (LU; see, e.g., Elishakoff, 
1983, Alabert, 1987) is a technique that produces Gaussian SRF, as well. 

(2) 
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Let cx(si9Sj), be the covariance of a zero mean SRF X(s). Assume that 
we seek simulations at m grid points. The application of the LU approach 
to this kind of problem consists of three steps: 

Step 1: For the given covariance model cx(si9 s,) (i,j = 1, 2 , . . . , m), 
develop the corresponding covariance matrix of size m x m as follows: 

C x ( S l > S l ) · · · C x ( S l 5 S m ) 
Cx(S2> S l ) · · · Cx(S>2, S m ) | 

K-xV^m» &l) · · · ^xV^mj ^ m H 

Step 2: Equation (1) is a nonnegative-definite symmetric matrix that can 
be decomposed into a product of a lower triangular matrix L and an 
upper triangular matrix U by means of the Cholesky algorithm (see also 
Example 1 below); that is, 

C.-LU (2) 

where U = LT. 

Step 3: Suppose that V is a vector of m independent standard Gaussian 
random variables, and define the vector 

X = LV (3) 

where XT = [X(sx) , . . . , X(sm)] . The simulations generated by Eq. (3) 
have zero mean and covariance 

£[(LV)(LV)T] = L£[VVT]U = LIU = Cx 

as required. Moreover, since (3) is a linear combination of independent 
identically distributed random variables, according to the central limit 
theorem it will produce simulations of Gaussian SRF. 

Remark 1: Let Z(s) be an SRF with a nonzero mean value E[Z(s)]. By 
setting Z(s) = X(s) +E[Z(s)]9 where X(s) is a zero mean SRF, one can 
generate realizations of Z(s) by 

Z = LV + M (4) 

where Z T = [ Z ( S l ) , . . . , Z ( s J ] , MT=[E[Z(sl)],..., £[Z(s m )] ] is the cor-
responding mean vector, and the X(s) is simulated through the LU-matrix 
technique discussed above. 

Example 1: Consider an SRF X(s) with a covariance matrix Cx having 
elements cl7 (i,j = 1 , . . . , m). The elements of the corresponding lower 
triangular matrix L will be given by (Cholesky decomposition): 

. ! /2 

Ki = Cn(cu)~
1/2 and λ„ 

L fc=i -I 

(1) Cx 
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for 1< i < m ; and 

A0 = 
Cij - Σ Kk^jk A / for 1 <j < i : m 

[0 for i<j<m 

Then, realizations of the SRF are generated by means of Eq. (3) above. 

11. The Karhunen-Loeve Expansion Technique 

This method is based on the Karhunen-Loeve theorem (e.g., Loeve, 1953). 
According to this theorem, an SRF X(s) defined on a domain U has the 
orthogonal expansion 

oo 

1 = 1 

where λ, are constant coefficients, xt are random variables to be determined 
such that 

E[xiXj] = 8ij (2) 

and </>,(s) are deterministic functions such that 

I φ,(*)φ}(β)ά* = δν (3) 

if and only if |A,|2 and ^ ( s ) are, respectively, the eigenvalues and eigenfunc-
tions of the integral equation 

I CX(S,SO<MSVSHA,- |>, (S) (4) 

Then the series (1) converges in the mean square sense uniformly on U. 
For practical purposes the series (1) is truncated at the mth term giving 

m 

Χ(») = Σ * Λ * ( « ) (5) 
i = l 

where 

x,=f I X(s)4>Mds (6) 

The mean and covariance are 

£[*,-] =7- f ElXMWMds (7) 

(1) 

Then, realizations of the SRF are generated by means of Eq. (3) above. 

where λ, are constant coefficients, xt are random variables to be determined 
such that 
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and 

respectively, where 

c*(s, s') = Σ Σ Ψϋλί^ΦΜΦΑ*') 
« = 1 J = l 

φυ = E[{xt - E[Xi]}{xj -E[xj]}] 

= VV\ I cx(s,s')^(s)<fc(s')dsds' 
"fAf J u J U 
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(8) 

(9) 

(i,j = 1 , . . . , m). Using the results above the simulation problem can be 
solved by means of the LU technique discussed in the previous section. 

More specifically, the steps of the Karhunen-Loeve simulation technique 
are as follows: 

Step 1: For the given covariance model cx(s, s'), solve the integral 
equation (4) to obtain the eigenvalues A, and the eigenfunctions <£,(s). In 
some cases a closed-form analytical solution is possible; in other cases a 
numerical approach may be necessary. 

Step 2: Substitute the solutions into Eqs. (7) and (9) to obtain Ε[χ{\ and 
</fy(i,7 = l , . . . , m ) . 

Steps 3, 4, and 5: Apply steps 1, 2, and 3 of the LU technique, with 
(Remark 1) 

Z T = [Xl,..., xml MT= [E[Xll..., E[xm]] 

and 

C , = 

«All · · · Ψΐ* 

ΦΐΙ . . . Φΐη 

12. Simulation of Vector Spatial Random Fields 

12.1 The Turning Bands Method 

Mathematically, the extension of a scalar SRF simulation technique to a 
vector SRF simulation technique usually poses little difficulty. For the 
turning bands technique, such an extension involves merely notational 
changes. 

Consider, for example, the case of homogeneous SRF. The scalar SRF 
Xn(s) is replaced by the vector SRF 

Xn(s) = [X1(s)X2(s).. .X f c(s)]T (1) 
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the co variance cx(sf, s7) is replaced by the covariance matrix 

Cx(h) = 

and the summation (5), Section 3 of Chapter 6 becomes 

cXl(h) . 

cX2XlW · 

cXkXlW · 

-cXlXk(h) 

•cX2Xk(h) 

. cXk(h) 

(2) 

1 N 

χ - ( » ) = ^ Σ χ ι . · , ( β · β « ) (3) 

where Χ1 θ | are vectors of unidimensional random processes associated to 
Eq. (1) through space transformation (e.g., Mantoglou, 1987). 

Similarly, in the case of nonhomogeneous SRF the semivariogram y„(h) 
and the generalized co variances kn (h) must be replaced by the corresponding 
semivariogram and generalized covariance matrices. 

12.2 Stochastic Partial Difference Equation Techniques 

Stochastic partial difference equation techniques (SPDE; Larimore, 1977) 
can be used to simulate vector homogeneous Gaussian SRF. The concept 
of this technique is based on two aspects: 

(a) the spectral representation of a homogeneous SRF X(s) is a well-
defined RF X(w) on the frequency domain that has independent 
increments; and 

(b) several discrete SRF can be represented by stochastic partial 
difference equations excited by white-noise SRF. 

Assume that the vector SRF 

X(s) = [X1(s)X2(s)...Xfc(s)]T 

is expressed by 

where 

L1(5h)X(s + h) = L2(Sh,)U(s + h') (4) 

USh)= Σ B(h)5h 

L2(Sh.)= Σ A(h')Sh. 
h'en2 

5h is the familiar shift operator [5hX(s) = X(s + h)]; A(h') and B(h) are 
coefficient matrices of size kxk such that A(0) = B(0) = l, the identity 
matrix; the Ωχ and Ω2 are finite subdomains of the spatial simulation domain; 
and U(s) = [Ul(s)Ui(s)... Uk(s)]T is a white-noise vector SRF having a 
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covariance kxk matrix Q with elements o(s-s')-E[l/f(s)[7)(s')], hj = 
1,2, . . . ,* . 

The measured vector SRF is 

Y(s) = X(s) + V(s) (5) 

where Y(s) = [ y,(s) Y2(s)... Yk(s)]T, and V(s) = [ V^s) V2(s). . . Vk(s)]T is a 
vector of additive measurement noises independent of X(s). On the basis 
of Eq. (5), the spectral representation of the vector SRF X(s) is related to 
that of U(s) by 

X(dw) = H(w)Ü(dw) (6) 

where H(w) is the so-called matrix transfer function of size kxk 
(Chapter 2), 

H(w) = Lr^exptiw · h]}L2{exp[/w · h]} (7) 

Consequently, the cross-spectral density matrix of Y(s) is related to that 
ofX(s) andU(s)by 

Cy(w) = Cx(w) + Cv(w) = H(w)Cu(w)HW + Cv(w) (8) 

where the bar denotes the complex conjugate transpose and Cv(w) is the 
cross-spectral density matrix of the noise vector V(s). It can be shown that 
the likelihood function of the measurements is approximated by 

S[Y(w) ,WGi l m ,ß ] = -y l0g{27T} 

~\ Σ [log|Cy(w)|]+Y(S)Cy1(w)Y(s)] (9) 

where the dependence of Cy(w) on the vector of the unknown parameters 
ß is provided by Eqs. (6) and (7), and the A(h'), B(h), and Q are assumed 
to be parameterized as functions of ß. Also, m is the number of measure-
ments at the set of points seR" in a rectangle of the simulation domain of 
interest with components 0 < st < m^ and m = mxm2... m„; Çïm is the set of 
discrete frequencies w with components 

w, = for 0 < A, < m, 
rrit 

In the light of the analysis above, the SPDE algorithm consists of the 
following three steps: 

Step 1: Use numerical optimization techniques to maximize the 
likelihood function in Eq. (9) with respect to the vector of the unknown 
parameters β. 
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Step 2: Express the unknown elements of the matrices A(h'), B(h), and Q 
in terms of ß. 

Step 3: Substitute matrices into Eq. (4) to produce simulations of the vector 
SRF X(s). 

Finally, the frequency domain methods of Section 9 can be generalized 
with efficiency to simulate vector SRF (see, e.g., Shinozuka and Jan, 1972; 
Wittig and Sinha, 1975). 

13. Simulation of Non-Gaussian Spatial Random Fields 

13.1 The Nonlinear Transformation Approach 

As a result of the central limit theorem, the turning bands method generates 
realizations of SRF with Gaussian probability distribution (or at least 
approximately Gaussian). As we saw above, the same holds true for most 
simulation methods. In some cases, however, the probability distribution 
of the simulated SRF cannot be approximated by a Gaussian distribution. 
Then, some sort of nonlinear transformation must be applied before the 
simulation method is used. 

In particular, let X(s) be an SRF with a non-Gaussian univariate probabil-
ity distribution fx(x) and a covariance cx(h). For simplicity, assume that 
the X(s) has zero mean and unit variance. 

We can always define a transformation G so that 

X(s) = G[Z(s)] (1) 

where Z(s) is a Gaussian SRF with zero mean and unit variance. Assuming 
that G is strictly monotonie, it is valid that 

G( Î ) = F ; , [ F I ( Î ) ] (2) 

where Fz(f ) is the standard Gaussian distribution. The covariance cx(h) is 
given by 

cx(h)= , 
2Wl -c f (h ) 

x ί ί GU)G{£) 
JR1 JR1 

r £2-2c2(h)£r+r2l JyJW m 
X e X PL" 2[l-^(h)] \άζάζ ( 3 ) 

where/Ζ(ζ, ζ') and cz(h) are the bivariate probability density and the covari-
ance of Z(s). 
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The simulation of the SRF X(s) could now be achieved by means of the 
following procedure: 

Step 1: Solve Eq. (3) with respect to cz(h), viz., 

cz(h) = B[cx(h)] (4) 

where B[ · ] is a suitable function. 

Step 2: Apply the turning bands method to generate simulations of the 
Gaussian SRF Z(s) with covariance given by Eq. (4). 

Step 3: Simulations of the original non-Gaussian SRF X(s) are provided 
by Eq. (1), where the transformation G is determined by Eq. (2). 

The implementation of the simulation procedure is straightforward when 
analytical expressions are available for Eqs. (2) and (4). 

Example 1: Assume that the SRF X(s) has a log-normal distribution. 
Equations (2) and (4) give, respectively (see, e.g., Chapter 2), 

X = GU) = exvm (5) 

and 

■fêH cz(h) = l o g ^ ^ + l J (6) 

Example 2: Let X(s) be a uniformly distributed within [-6, b]. In this case 
Eqs. (2) and (4) yield 

X = GU) = b[2en{C)-\l (7) 

where erf(£) is the error function (e.g., Gradshteyn and Ryzhik, 1965), and 

ircx(h) 
cz(h) = 2cz(0)sin -t 2b2 (8) 

Problems associated with the practical implementation of the above 
simulation approach arise from the fact that in many situations it is not 
possible to define the transformation G analytically, in terms of Eq. (2), 
or to obtain a solution of Eq. (3) in the closed form suggested by 
Eq. (4). Consequently, one may have to resort to some sort of numerical 
approximation. 

As regards transformation G, a possible numerical approximation follows: 
First the standard Gaussian distribution of Z(s) is confirmed to a properly 
chosen interval [—b,b]; this leads to a so-called truncated standard Gaussian 
distribution. Then, several values of ζ are selected using the experimental 
cumulative frequency distribution together with equation 

Fx(Xi) = FMi) (9) 
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Note that a common approximation is F x (^ t )~ i/(m + l) , where m is the 
number of the data values sorted as χχ < χ2 ^ · · · ̂  xm. 

For the calculation of cz(h), the expansion of the bivariate Gaussian 
distribution in terms of Hermite polynomials can be applied. More 
specifically, by inserting Eq. (10), Section 4 of Chapter 4 into Eq. (3) one 
finds 

M 

cx(h)=£a2
fcc*(h) (10) 

k = 0 

where 

ak=\ 0(ζ)ΗΜ)*ΧΡ[^/2]αζ (11) 
JR1 V2TT 

and Ηϊ(ζ) are Hermite polynomials. As soon as the transformation G has 
been calculated as above, the coefficients ak can be found from Eq. (11). 
The last step is to obtain a numerical solution of Eq. (10) with respect to cz(h). 

13.2 The Sequential Indicator Approach 

This approach, which is useful when a significant amount of quantifiable 
"soft" data is available, is based on the fundamental multivariate distribu-
tion formula (1) of Section 3 above and the indicator coding of "soft" data 
discussed in Chapter 7. 

In particular, the sequential indicator simulation steps are as follows 
(Journel, 1989): 

Step 1: Assuming that one seeks simulations at m grid points, start at 
any point Sx of the grid and with the aid of Section 5.2 of Chapter 7 
derive the indicator function 

ΥΛ*ι,ζ) = ΡΙΧ(*ι)^ζ\Μ] (12) 

where ÎR is the relationship space generated from the information 
available. 

Step 2: From yx(s l 5 ζ) generate a value of X ^ ) , say ^i1} [the 
superscript (1) denotes that the value belongs to the first realization of 
the SRF X(s)]. 

Step 3: Consider another point s2, and derive the indicator function 

n ( s 2 , n = i > [X(s2)^i |9î(s1)] (13) 
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where ^ ( s j denotes that the information available now includes the value 

Step 4: From Yx(s2, ζ) derive a value of X(s2), say χ{
2
λ). 

Step 5: Repeat steps 2 to 4 using all remaining grid points sf, 
i = 3 , 4 , . . . , m. 

The set of values χ\ι) (i = 1, 2 , . . . , m) constitutes one possible realization 
of theSRF X(s). 

14. Simulation in Space-Time 

Several of the simulation approaches considered above can be extended to 
produce realizations of spatiotemporal random fields (S/TRF). 

By means of the ST simulation concept, for example, the space n-
dimensional x time random field X„(s, t), where (s, t) e Rn x T, can be simu-
lated by summing contributions from several random processes Xlte.(si9t)9 

where s, = s · θ ί? (si9 t)e i?1 x Γ; viz., 

1 N 

χ „ ( 8 , ο = ^ Σ * ι . β , ( * , ο (i) 

in which N is the number of simulation lines. On-line realizations of the 
S/TRF XltB.(si91) can be generated in terms of its spectral density function 

C1,e(û>,A) = * i [C f l (w ,A) ] (2) 

where w = ωθ, by using the simulation formula 
M K 

* ι ( Μ ) = Σ Σ J2CUB(a>j, Afc) kcoj A\k <κ)8(ω/5-2πλΑί + φΜ) (3) 
j=\ k=\ 

where the phase angles </>jtk are distributed randomly but uniformly within 
[0, 2π]. Equation (3) is the space-time generalization of the spectral tech-
niques of Section 5. Of course, if values of the S/TRF are available at 
certain points in space-time, Eq. (1) should be constrained to honor these 
values by means of a technique similar to that described in Section 3.2 above. 

Another useful space-time simulation approach can be developed on the 
basis of the frequency-domain techniques of Section 9. For example, an 
R2xT extension of Eq. (1) of Section 9 is 

M, M2 

X(sl9 s2, t) = Σ Σ A(i9j) cosiWiSi cos 0, + wts2 sin 0/-A/i + <£u) (4) 

where 

(5) 
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CX(A,·, 6j) is the so-called directional wave spectral density function, the 0, 
denote angles between the s^-axis and the propagation direction of com-
ponent waves, A, denote wave frequencies, and φ^ are random angles 
distributed independently but uniformly between 0 and 2π (Goda, 1980). 

Spatiotemporal simulation is a valuable tool in the context of random 
moving surfaces studies, such as sea waves and their action on structures, 
atmospheric pollutants, and meteorological elements. Also, the simulation 
method may be used to develop a spatiotemporal model for rainfall gener-
ation. Space-time rainfall simulations can be used in evaluating strategies 
for satellite remote sensing of rainfall and for studying storm runoff 
problems. 

We will conclude this chapter by noticing that other useful simulation 
techniques include Boolean methods, simulated annealing, and Markovian 
procedures. For more discussion, the reader is referred to publications like, 
for example, Ripley (1981), Johnson (1987), and Deutsch and Journel 
(1991). 



Estimation in 
Space and Time 

"Never let yourself be goaded into taking seriously 
problems about words and their meanings. What must 
be taken seriously are questions of fact, and assertions 
about facts; theories and hypotheses; the problems they 
solve; and the problems they raise." 

K. R. Popper 

1. Introduction 

In environmental engineering, the design of any remedial measure regarding 
groundwater pollution caused by industries and municipalities requires 
knowledge of the extent of subsurface contamination. It is thus important 
to create predictive subsurface contamination maps that will cover the whole 
area of interest and will provide information regarding the shape, the size, 
and the existing trends in the spatial variability of the contaminant plume. 
In geotechnical engineering, procedures for predicting soil performance 
consists of three parts: (1) constitutive models (stress strain, rhéologie, 
etc.); (2) methods for the estimation of soil parameters used in the above 
models; and (3) numerical approaches to apply the models in practice (finite 
elements, finite differences etc.). The accuracy in estimating the soil pa-
rameters obviously affects the reliability of any prediction made and is, 
therefore, of practical importance in earth sciences. These are two typical 
estimation problems that can be handled by means of spatial random field. 

The first part of this chapter deals with the spatial estimation of natural 
processes. The general spatial estimation problem is defined and its various 
forms are examined. Several approaches to the problem are reviewed. 

337 

9 
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Spatial estimation can be studied in the context of the stochastic research 
program, by using results from the previous chapters. At this point, the 
hard core of the stochastic research program discussed in Chapter 1 includes 
a few additional methodological assumptions. In particular, the estimators 
considered should meet certain fundamental stochastic optimality criteria. 
Both linear and nonlinear estimators are discussed. These include the 
traditional Wiener-Kolmogorov type estimators, kriging estimators, and 
nonlinear factorable estimators. Their applicability covers a wide range of 
homogeneous as well as nonhomogeneous spatial random fields. Important 
properties of the estimation approaches are examined in detail, and their 
mathematical and physical interpretations are investigated. The outcomes 
of the estimation approach are maps representing values of the natural 
processes over the entire region of interest, together with the maps of the 
accuracy (or estimation error variance) with which the processes are rep-
resented. These maps can be valuable inputs to decision-making processes, 
risk evaluation methods, control and investment policies. 

A factorization scheme of the estimation error variance is discussed. This 
scheme possesses certain attractive properties that allow significant savings 
in the computations. An important application of this factorization scheme 
is developed within the context of sampling design, to be discussed in 
Chapter 10. 

The spatiotemporal estimation problem is defined and a stochastic solu-
tion is discussed, by means of the theory of spatiotemporal random fields 
developed in Chapter 5. An interesting feature of the space-time correlation 
decomposition discussed in that chapter is that stochastic inferences can 
be made and optimal linear estimators of discrete-valued spatiotemporal 
random fields can be derived solely in terms of the generalized spatiotem-
poral covariances. Estimation takes into account important time-related 
information and, therefore, under certain circumstances it provides 
improved results compared to those obtained by purely spatial estimation 
techniques. 

The last part of this chapter presents a different heuristic adopted by the 
stochastic data processing program regarding the spatial estimation problem. 
This is a Bayesian/maximum-entropy approach according to which the 
estimation equations emerge through a process that balances two require-
ments: high prior information about the spatial variability and high posterior 
probability about the reconstructed map. The first requirement enables one 
to use a variety of sources of prior information and involves the maximi-
zation of a so-called Bayes function. This approach yields, in general, 
nonlinear estimates and does not call for any Gaussian-type hypothesis. 

Spatiotemporal problems can also be considered in the light of the 
aforementioned Bayesian/maximum-entropy approach. The latter probably 
does not suffice, in its present form, to account for all sorts of prior 
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information, but it does significantly restrict the range of arbitrariness, and 
it has several other important properties that contribute to the progressive-
ness of the stochastic research program. 

2. A Brief Review of Nonstochastic Estimators and the 
Emergence of Stochastic Estimation 

We do not give a detailed review of the various nonstochastic estimation 
techniques here, but we consider briefly some of the most important of 
them; for the interested reader, several references are provided. Common 
deterministic linear estimators of spatial processes are those of least squares, 
of Lagrange, and of weighted coefficients. 

The least squares approach assumes that the estimator of the value of a 
natural process at an unobservable location in space seR" is the linear 
combination of the base functions pk(s) (usually polynomials); that is, 

Ai=2LAfci/>fc(s) 
k 

at each s. The coefficients A, are determined by means of the least squares 
difference between the estimators above and the true values (see, e.g., Daniel 
et al, 1971; Davis, 1973). A crucial disadvantage of the method is that it 
leads to estimates that do not coincide with the known values at the data 
points (this happens because least squares actually yield estimates of the 
mean value of the spatial process). This is a purely formal feature of the 
method without any physical motivation behind it. For instance, in estimat-
ing a porosity field hydrologists will not give credit to an estimation method 
that is not consistent with the known values of the field. Moreover, the 
method does not take into consideration the structure of the natural pro-
cesses and does not provide information regarding the accuracy of the 
obtained estimates. This is a serious shortcoming when it comes to applying 
optimal exploration strategies, decision analysis, etc. 

Lagrange's method makes similar assumptions concerning the nature of 
the estimator, but the coefficients A, are calculated so that the estimated 
surface passes through the data points (Davis, 1975). The results are satisfac-
tory only when the spatial variation is very regular. Also, the use of 
polynomials pk(s) of higher degrees often lead to nonrealistic estimates, 
which are in no way related to the properties of the natural processes under 
study. This method does not provide any information about the accuracy 
of its estimates, either. 

The method of weighted coefficients is based on the prior selection of λ,, 
which usually are distance functions between the point s where an estimate 
of the natural process is needed, and the data points s,, i = 1, 2 , . . . , m (e.g., 
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A, = | s I - s | " a , = e x p ( - a | s , - s | ) , ae R1). Weak points of the method are the 
subjective choice of the coefficients λ,, and the fact that it does not account 
for the relative positions of the data points and spatial variabilities of the 
natural processes. Just as for the previous ones, the weighted coefficients 
method lacks any physical content and has a rather conventional and purely 
instrumental character. 

Certain of the above methods can also be formulated in statistical terms. 
Even then, however, they fail to incorporate inportant features of the natural 
process. Consider, for example, the statistical version of the least squares 
method (Davis, 1973). Each sample χ{ is viewed as a realization of the 
corresponding random variable x,·, the distribution of which depends on 
the nonrandom coordinates s,·. Fundamental is the assumption that there 
is no correlation among the random variables. This, however, is a rather 
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Figure 9.1 Recursive versus nonrecursive estimation procedures. W is state fluctuations; X 
is system state; V is measurement disturbance; Y is measurements; X is system state 
estimator (output); and Z is system output 
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nonrealistic modeling of the spatial process since it fails to account for 
interactions and dependencies of neighboring samples. Furthermore, the 
method still cannot, by its nature, reproduce the known values at the data 
points and yields mean values rather than local estimates, especially when 
the natural process exhibits irregularities in its spatial variation. 

In view of the foregoing considerations, it becomes apparent that the 
traditional solutions to the estimation problem evade central physical issues 
rather than face them. On the other hand, by taking into account the 
modeling considerations discussed in Chapter 1, physical intuition guides 
one to use estimation methods where the natural processes of interest are 
modeled as spatial random fields. Random field estimation methods are 
generally known as optimum stochastic estimation methods. These methods 
are classified in various ways, such as 
(i) By means of the form of the estimator assumed (i.e., linear versus 

nonlinear estimators), 
(ii) By means of the optimality criterion used (i.e., minimum mean 

square error, maximum likelihood, Bayesian, etc., estimators), 
(iii) By means of constraints imposed on the estimation process (i.e., 

unbiased versus biased estimators), 
(iv) By means of the operational format of the estimation process (for 

instance, in Fig. 9.1 the flowcharts of recursive versus nonrecursive 
estimation procedures are compared). 

The concept underlying optimal stochastic estimation was first introduced 
by Kolmogorov (1941) and Wiener (1949), and subsequently applied in 
various fields like physics (e.g., Davis, 1952), electrical engineering (e.g., 
Wainstein and Zubakov, 1962), meteorology (e.g., optimum interpolation, 
Gandin, 1963), mining and petroleum engineering (e.g., kriging, Matheron, 
1965; David, 1977; Journel and Huijbregts, 1978; Hohn, 1988), and civil 
engineering (e.g., Veneziano, 1980). 

3. Optimum Stochastic Spatial Estimation 

3.1 General Considerations 

The general setting of the stochastic spatial estimation problem to be 
considered here is as follows: 
Problem 1: Let X(s) and F(s) be two jointly distributed SRF. We would 
like to estimate X(s) at a location sk e R" from measurements of Y(s), say 
*1>ffl = { Y(Si) = ψΐ\ i = 1 , . . . , m} at the locations s{f e Rn

9 i = 1, 2 , . . . , m. The 
estimator X(sk) of X(sk) is assumed to be an arbitrary function of F(s,), 
i = 1 ,2 , . . . , m, namely, 

(1) 
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Let L[X(sfc), X(sk)] be the loss-function associated to the estimator (1); the 
L[X(sk), X(sk)] is a suitable function that expresses the "loss" of guessing 
the X(sfc) when in fact the real field is X(sk). We seek an estimator of the 
form (1), such that the following optimality criterion is satisfied: the expected 
value of the loss-function 

E[L]= · · · L[F(<Ai,.· . , (Am), Xk]fx,Y(Xk,*l>i,...,*l>m)dxk άφλ...άφη 

L[F(Vltm), Xk\fxAXk, Ψ ι , J dXk άΨ^ (2) 

m + 1 t imes 

is minimum with respect to F (unless stated otherwise, the integration 
ranges will be assumed to vary from -oo to oo). 

Note that since Y(s) is a random quantity we cannot say which value ψ 
it will take in any specific realization; hence, the estimator X(sk) of Eq. 
(1) is a random field as well. 

We now proceed to the solution of Problem 1. By minimizing E[L] with 
respect to F one obtains the following fundamental integral equation 

J — fx,Y\Xk, *i ,m) dxk = 0 (3) 

The general solution to Problem 1 is obtained by solving (3) with respect 
to F and simultaneously using Eq. (1). Naturally, a sufficient condition for 
a minimum is given by 

d2L[FC9hm)9Xk] 
dF2 

To proceed further, let us consider some interesting special cases of the 
loss function. First, assume that the loss function is of the quadratic form 

L[X(sk), X(sk)] = [X(sk) -X(sk)f (4) 

The optimality criterion (2) is then called the minimum mean square error 
criterion, and Eq. (3) yields the conditional mean estimator 

X(8k) = Ex[X(sk)\9l9m-] (5) 

If we choose the loss function to be the absolute error, that is, 

L[X(sk), X(sk)] = \X(sk)-X(sk)\ (6) 
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then Eq. (3) becomes 

ί fx,Y(Xk9^l,m) dxk 

1 fxAXk^l,m)dxk 

which implies that the X(sk) =\k is the median estimator. 
Finally, if we let 

i={° if 

1 U otl 

L[x(sk),x(Sk)]=\: -*<■*>-*<■*> ( 7 ) 
otherwise 

the integral equation (3) leads to the mode estimator. 

Remark 1: In the following we will use mainly the minimum mean square 
error criterion. There are several reasons for doing so, theoretical as well 
as practical. Some of these reasons are as follows: 

(i) In the case of Gaussian SRF, which are very popular models for 
a variety of applications, the minimum mean square error estimator turns 
out to be a linear combination of the data. This result has many 
convenient properties from both the analytical and the computational 
points of view. 

(ii) In the general case the minimum mean square error estimator is 
determined explicitly in terms of a conditional mean. This fact 
establishes illuminating connections with several aspects of the theory of 
SRF. 

(iii) When analysis is restricted to the classes of linear estimators (e.g., 
linear kriging), the results obtained are probability distribution-free, and 
depend solely on the means, the covariances, and the semivariograms of 
the natural processes involved. 

(iv) Linear minimum mean square error estimators have several other 
attractive features, as well. For example, the estimation system of 
equations and the estimation error variances do not depend on the 
specific values of the data, but only on the spatial locations of the data 
and on information in terms of means, covariances, and semivariograms. 

(v) Linear minimum mean square error concepts are closely related to 
important topics from the areas of linear differential and difference 
equations, as well as matrix and integral equations. 

3.2 More on Conditional Mean Spatial Estimation 

It is instructive to consider another way of obtaining the solution of Problem 
1, in the special case that of the loss-function (4). Then Eq. (2) can also be 
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written in the familiar form 

a2
x(sk) = E[e(sk)]

2 = E[X(sk) - X(sk)f (8) 

where e(sk) = X(sk)-X(sk) is the estimation error; or as 

a2
x(sk) = EXY[F(Yhm)-X(sk)f 

= EY{EX[{F( Yl%n) -X(sk)}
2\Vhm]} (9) 

In the light of Eq. (9), the minimization of a2
x(sk) is equivalent to the 

minimization of 

p2
x(sk) = Ex{[X(sk)-X(sk)]

2\VhJ (10) 

with respect to X(sk). This requires that 

dp2
x(Sk) _0 

dxk 

or 

2Ex{[X(sk)-X(sk)]^hm} 

= 2Ex[X(sk)^hm]-2Ex[X(sk)\Vhm] = 0 

which leads to the conditional mean estimator (5). Furthermore, 

d2p2
x(*k) 

dXk 

which assures that the estimator (5) is a global minimum over all possible 
functions F [ · ] . 

The above estimator is unbiased (i.e., it assures absence of systematic 
over-estimation or under-estimation), for 

Ex[X(sk)-X(sk)] 

= EY{Ex[X(sk)^hm]}- Ex[X(sk)] 

= Ex[X(sk)]-Ex[X(sk)] = 0 

which leads to the equation 

E[X(sk)] = E[X(sk)] (11) 

Remark 2: The X(sk) is a conditionally unbiased estimator, too; indeed, 

Ex{[X(sk)-X(sk)]^hm} 

= EY{Ex[X(sk)^hm]^hm}-Ex[X(sk)\Vhm] 

= Ex[X(sk)\9Um] - Ex[X(sk)\9Um] = 0 
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Other important properties of the estimation process above are as follows: 
First, on the basis of the preceding analysis we can conclude that 

EAe(sk)X(sk)^hm] = EA[X(sk)-X(sk)]F(Yhm)^hm} 

= F(VuJEx{[X(sk)-X(sk)]\9ltm] 

= FWhm){Ex[X(Sk)\Vi,m] - X(*k)} = 0 
In other words, 

Ex[e(sk)X(sk)\9Um] = Ex[e(sk)F( YUm)\Vl9m] = 0 (12) 

In addition, by expecting the last equation with respect to Y(s) we find that 

EY{Ex[e(sk)F(Yhm)\VUm]} = 0 

or 

EXY[e(sk)X(sk)] = EXY[e(sk)F( y1>m)] = 0 (13) 

Equations (12) and (13) are called the orthogonality conditions. 

Remark 3: Notice that the estimator provided by Eq. (5) constitutes the 
most general case of minimum mean square error spatial estimation, where 
no restrictions are imposed regarding the functional form of the estimator, 
the underlying probability laws, or the regularity (homogeneity, etc.) charac-
teristics of the SRF X(s) and Y(s). Its application, on the other hand, 
requires information regarding the m +1 variate probability distributions 
of the SRF involved. In practice, this sort of information is usually inacces-
sible, with the notable exception of the multivariate Gaussian and 
homogeneous SRF (in the Gaussian case, the conditional mean estimator 
reduces to a linear estimator that can be constructed on the basis of 
second-order statistical moments). In addition, most practical applications 
will require the establishment of a model relating the field of interest X(s) 
with the measured field Y(s). 

3.3 Functional Estimation 

In more complicated applications one may seek the estimation of a linear 
functional $[X(s)] of X(s) over a specific region Vk, as well as an assessment 
of the associated statistical error of the estimation. The data points s, are 
usually, but not always, located within Vk. 

Generally, the functional $ [ . ] may take one of the following forms: 

S[X(sk)] = X(sk) (14) 

which is the case of point estimation considered above; 

Vk Jvk 

(15) 
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that is, the mean process value within a volume Vk<^ Rn, where Vk is the 
domain of the natural process; 

S[*(s f c ) ]= I X(sk+s)g(s)ds (16) 

that is, the moving mean process value weighted by g(s); and 

$[X(sfc)] = g r a d X ( s ) U k (17) 

that is, the slope of the process at point sk. Other forms of the estimation 
problem are possible, too. In this book we will deal in detail mainly with 
the case of point estimation. Nonetheless, wherever it is necessary, we will 
point the way for extending the results to other cases. 

Estimation problems of the forms considered above can be found in 
almost any area of applied physical science, such as hydrology (e.g., estima-
tion of the transmissivities of an aquifer, prediction of subsurface contamina-
tion), geology (e.g., mapping the depth to bedrock), geotechnical engineer-
ing (e.g., prediction of the soil settlement pattern), environmental engineer-
ing (e.g., forecasting of atmospheric pollutants), and meteorology (e.g., 
construction of prognostic charts). 

4. Certain Classes of Linear Spatial Estimators 

In this section we will consider the most important classes of linear minimum 
mean square error spatial estimators. These include the Wiener-Kolmogorov 
estimator and its various derivatives, such as the linear kriging estimators 
of geostatistics. An excellent presentation of the various types of kriging 
estimators can be found in Journel (1989). 

Despite certain problems related to linearity (see, e.g., Wilde and Beight-
ler, 1967; Beveridge and Schechter, 1970), linear estimators continue to be 
popular because they have certain important advantages over nonlinear 
ones. More precisely, they require substantially fewer assumptions and 
simpler mathematics; they are much faster and computationally more 
efficient; they usually lead to unique solutions; and last but not least, based 
on significant experience we know that they function properly in the majority 
of applications (Whittle, 1963; Aoki, 1967; Kailath, 1974; Christakos and 
Paraskevopoulos, 1986). 

4.1 Unconstrained Wiener-Kolmogorov Estimator 

Consider the linear estimator of the form (see Fig. 9.2 for a two-dimensional 
illustration) 

X(sk) = AT\ (1) 



4. Certain Classes of Linear Spatial Estimators 347 

s 2 > ^ o 

Figure 9.2 Linear estimation of the natural process X(s) at point sfc by means of data 
values of the process Y(s) at points sit i = 1 , . . . , 11; Af = weights assigned by the estimator 
to the data points 

where 

and 

yT=[Y(s1)Y(s2)...Y(sm)] 

Ατ=[λ1λ2. . .Am] 

is a vector of coefficients to be determined through the estimation process. 
This setting leads us to our second estimation problem. 

Problem 1: Let X(s) and Y(s) be two jointly distributed SRF. Find estimates 
X(sk) of X(sk) at points sk given data Ψ = { Y(st) = ^,; i = 1, 2 , . . . , m} at 
the points S,G,R", I = 1 ,2 , . . . , m, such that the estimates (i) are linear 
combinations of the data [see Eq. (1)] and (ii) minimize the estimation 
error variance given by Eq. (8) of Section 3 above. 
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This is an unconstrained optimization problem, which can be solved with 
the help of the following proposition. 

Proposition 1: The solution of Problem 1 is given by those coefficients λ, 
(i = 1,2, . . . , m) that satisfy the set of equations 

where 

C = 

and 

CA = H 

E[Y(Si)]
2 ... E[Y(Si)Y(sm)] 

E[Y(sm)Y(Sl)-\ . . . E[Y(sm)f 

(2) 

Λ τ = [λ,λ2...λ„,] 

HT = [E[Y(Sl)X(sk)] ...E[Y(sm)X(sk)]] 

The corresponding estimation error variance is given by 

a2
x(sk) = £[X(s f c )]2-ATH = E[X(sk)f-H

TC-lH (3) 

Proof: The proof is straightforward. In particular, by inserting the linear 
estimator (1) into Eq. (8) of Section 3 above we get 

σ ^ ) = £[Χ(8,)]2-2ΛτΗ + ΛτΟΛ (4) 

By minimizing Eq. (4) with respect to the coefficients A, (i = 1 , . . . , m), we 
find Eq. (2). The solution of system (2) yields A = C_1H. Substituting this 
solution into Eq. (4) we obtain Eq. (3) above. □ 

Important theoretical features of the unconstrained Wiener-Kolmogorov 
estimator above include the following: (i) the estimator is mean value-free; 
(ii) it is not an unbiased estimator, in general (this means that when a priori 
statistical information is available, it can be exploited to produce more 
accurate results than an unbiased estimator); and (iii) in theory, there is 
no need to make any assumption regarding the regularity characteristics 
(homogeneity, etc.) of the SRF involved in the estimation process. Neverthe-
less, when the Wiener-Kolmogorov approach is applied in practice certain 
modifications may be necessary, such as (i) the development of a model 
relating the SRF of interest X(s) with the observed SRF Y(s) and (ii) the 
restriction of estimation to homogeneous (in the wide sense) SRF. 

Remark 1: In the special case where the measurable process and the natural 
process under estimation coincide, the symbol Y in the right-hand side of 
Eqs. (1), (2), and (3) must be replaced by the symbol X. In this case, of 
course, we must have k^i (i = 1, 2 , . . . , m). The stochastic inference part 
of the analysis is considerably simplified, for the latter is now restricted to 
only one SRF. 
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Example 1: Suppose that the SRF of interest X(s) and the observed SRF 
Y(s) are related by means of the model Y(s) = X + i/(s), where l/(s) is a 
zero-mean white noise uncorrelated to X and Y(s); notice that in this case 
X is independent of s and E[ Y(s)] = E[X~\. The system of equations (2) 
becomes 

m 

Σ A(E[Y(s()r(s,)] = E [Xr ( s , ) ] 0 = 1,2, . . . , m) 

where 

E [y ( S i ) Y(sj)] = E[X2] + E[U2] 8tJ 

and 

E[XY(sj)] = E[X2] 

The solution of this system yields 

E[X2] 
Xi~mE[X2] + E[U2Y *-h2,...,m 

By substituting these values into Eqs. (1) and (3) we obtain the optimal 
estimate and the associated estimation error variance 

mE[X2] + E[U2]^ 

and 

respectively. 

σΙ = 
E[X2]E[U2] 

mE[X2] +E[U2] 

4.2 Constrained Wiener-Kolmogorov and Ordinary Kriging Estimators 

The estimator assumed here is, again, of the form of Eq. (1), but now some 
additional constraints are imposed. 

Problem 2: Find estimates X(sk) of X(sk) at points sk given data Υ(&ι) = ψ( 

(ι = 1 ,2 , . . . , m), such that the estimates (i) are linear combinations of the 
data, as in Eq. (1) above; (ii) satisfy the unbiasedness condition (11) of 
Section 3; and (iii) minimize the estimation error variance given by Eq. (8) 
of Section 3. 

Proposition 2: The solution of Problem 3 is given by those coefficients A, 
(i = 1 ,2 , . . . , m) that satisfy the set of equations 

E[X(sk)] = ATWiY (5) 
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where M^ = [ £ [ ^ ( s , ) ] . . . E[ Y(sm)]], and 

C A - ^ M y = H (6) 

where μ is a Lagrange multiplier. The estimation error variance is 

σ ^ ) = £ [ Χ ( 8 , ) ] 2 - Λ τ [ Η - μ Μ ν ] 

= £[X(sfc)]2-[H + /xMy]TC-1[H-MMv.] (7) 

Proof: This is a constrained minimization problem, where we seek the 
minimization of the quantity 

g = a2
x(sk) + 2ß^E[X(sk)]- Σ λ,Ε[ y(e,)]J 

Γ m Ί 2 Γ m Λ 
= £ X(sk) - £ λ, Y(s,) +2μ E[X(sk)] - Σ Α(£[ ν(β,)] 

L ί = 1 J l i=i J 

with respect to λ, and μ. This yields the system of Eqs. (5) and (6). Finally, 
taking into account Eq. (6), Eq. (4) yields Eq. (7). D 

The constrained Wiener-Kolmogorov estimator above is an unbiased 
estimator. Just as for the unconstrained estimator, in practical applications 
one needs to develop a model relating X(s) and F(s); moreover, estimation 
is usually performed for homogeneous spatial RF. 

Example 2: Consider, again, Example 1. Since E[Y(s)] = E[X], Eq. (5) 
gives Σ?=ι λ,- = 1. Also, the system of equations in (6) becomes 

m 

Σ λ,Ε[ Y(s,) Y(sj)] - μΕ[Χ] = E[XY(sj)] 0 = 1,2 , . . . , m) 
i=l 

The solution of this system yields AI = l /m (i = 1, 2 , . . . , m), and μ = 
E[U2]/E[X]m. Then, the optimal estimate and the associated estimation 
error variance are 

1 m 

and 

respectively. 

m i = l 

2 E[U2] 
crx = 

m 

Remark 2: The so-called ordinary kriging of geostatistics is a special case 
of the constrained Wiener-Kolmogorov estimator. More specifically, in its 
most popular form, ordinary kriging makes two additional assumptions: 
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(a) the measurable process is the SRF X(s) itself (in this case, of course, 
it is supposed that the data are available at locations different than those 
under estimation); and (b) the SRF X(s) is homogeneous, with mean value 
E[X(Si)] — mx for all i = 1, 2 , . . . , m. For more details see Remark 4 below. 

4.3 Simple Kriging Estimator 

This is a linear estimator of the form 

X(sfc) = AjY0 (8) 
where Y j = [ l Y ( S l ) n s 2 ) . . . Y(sm)] and Λ ^ λ ο λ ^ . . . Am] are 
coefficients that remain to be determined. This leads to a slightly different 
form of the estimation Problem 1 above. 

Problem 3: Find estimates X(sk) of the SRF X(sk) at points sk given data 
Ψ = { Y(Si) = φι\ i = 1, 2 , . . . , m}, such that the estimates (i) are linear combi-
nations of the data of the form of Eq. (8) above, (ii) satisfy the unbiasedness 
condition (11) of Section 3 above, and (iii) minimize the estimation error 
variance (8) of Section 3. 

This constrained optimization problem can be solved by means of the 
following proposition. 

Proposition 3: The solution of Problem 3 is given by these coefficients A, 
(i = 0 , 1 , . . . , m), which satisfy the set of equations 

E[X(sk)] = AT
0Ml (9) 

where M[ = [1 E[ Y ( S l ) ] . . . [ Y(sm)]l and 

C*A = H* (10) 

in which 

C* = 

C y i S i , ^ ) . . . Cy(Si ,Sm)" 

C v ( S m » S l ) · · · C y ( S m ) S m ) 

and 

where 

and 

H — [CXY(SI9 sk)... c x y (s m , sfc)J 

<V(S/, s,) = E[ Y(s,) Y(Sj)] - E[ Y(Si)]E[ Y(Sj)] 

cx y(S i , sk) = E[ r ( s , ) X ( s J ] - £ [ r ( S i ) ]£ [X(s k ) ] 

The estimation variance is given by 

<r2
x(sk) = cx(s„s f c )-H*TC*-1H* (11) 
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Proof: The proof here is similar to that of Proposition 1 and offers no 
conceptual difficulty. More precisely, by inserting the linear estimator (8) 
into Eq. (8) of Section 3 above, and by minimizing with respect to the 
coefficients λ,, i = 0 , 1 , . . . , m, subject to the constraint (11) of Section 3, 
we find the system of Eqs. (9) and (10). The solution of this system gives 
Λ = C*_1H*. Substituting this solution into Eq. (8) of Section 3, we obtain 
Eq. (11) above. □ 

The simple kriging estimator has the following properties: (i) the mean 
values of the spatial RF involved must be known, and (ii) it is an unbiased 
estimator. The practical application of simple kriging is restricted to 
homogeneous fields, and requires the construction of a model relating X(s) 
with Y(s). 

Remark 3: Equation (8) can also written as X(sk) = E[X(sk)] + ΛΤΥ*, where 

Y^ = [Y(sl)-E[Y(sl)]...Y(sm)-E[Y(smm 

That is, the simple kriging is a linear regression-type estimator. 

Example 3: Consider, once more, Example 1. In this case, Eqs. (10) become 
m 

Σ \iCY(si9 Sj) = cXY(sj) (7 = 1,2, . . . , m) 
i = \ 

where 

<v(s,·, s,·) = E[ y(S | ) Y(sj)] - E[ y ( s , ) M Y(sj)] 

= Ε[Χ2]-{Ε[Χ]}2 + Ε[ΙΙ2]δν 

and 

cxv (s,) = E[XY(sj)] - E[X]E[Y(sj)] = E[X2] - {E[X]}2 

The solution of this system yields the following values for the estimation 
coefficients 

Λ E[X2]-{E[X]}2 

' m[E[X2]-{E[X]}2] + E[U2V ' 1 ' z ' - ' m 

Then, from Eq. (9) we get 

A r r r i f l >n[E[X2]-{E[X]}2] ] 
Ao * L A J r m[E[X2]-{E[X]}2] + E[U2]\ 

By substituting these values into Eqs. (8) and (11) we obtain the optimal 
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estimate and the associated estimation error variance 
m 

E[X]E[U2] + [E[X2]-{E[X]}2] Σ YM 

m[E[X2]-{E[X]}2] + E[U2] 

and 

2 _ E[U2][E[X2]-{E[X]}2] 
Œx m[E[X2] - {E[X]}2] + E[ U2] 

respectively. 
If we compare the last error estimation variance with the ones obtained 

in Examples 1 and 2, we find that, in this case: 
σ2

χ (simple kriging) < σ2, (unconstrained Wiener-Kolmogorov) < σ\ (con-
strained Wiener-Kolmogorov or ordinary kriging). 

Remark 4: It may be instructive to summarize the above estimators under 
the following conditions: (a) the measurable process is the RF X(s) itself 
(in this case, of course, it is supposed that the data are available at locations 
different than those under estimation); (b) the RF X(s) is homogeneous, 
with mean value £[X(s , ) ] = mx for all i = 1, 2 , . . . , m. To emphasize the 
fact that the estimation coefficients of the various estimators are not equal, 
different notations have been used (see Table 9.1). 

4.4 Intrinsic Kriging Estimator 

This, is perhaps, the most interesting of all kriging estimators, from a 
theoretical point of view. Assume that the spatially nonhomogeneous, in 
general, natural process is modeled as an ISRF-κ This is the key assumption, 
and the solution of the estimation problem emerges naturally from the 
theory developed in previous chapters. Initially, we will assume that the 
measurable process is the SRF X(s) itself. In the subsequent sections we 
shall also deal with the situation where the available measurements come 
from another process, Y(s). 

Problem 4: Let X(s) be an ISRF-*>. Find estimates X(sk) of X(sk) at points 
sk given data X(sf) = #,· (/ = 1 ,2 , . . . , m; i 7e k), such that the estimates (i) 
are of the linear form 

X ( s f c H A T X (12) 

where XT= [X(s!)X(s 2 ) . . . X(sm)] ; (ii) satisfy the unbiasedness condition 
(11) of Section 3 above; and (iii) minimize the estimation error variance 
given by Eq. (8) of Section 3. 



354 Chapter 9. Estimation in Space and Time 

Table 9.1 Summary of Estimators0 

(i) Estimator form: 

Unconstrained Wiener- Kolmogorov : 

ΧΜ = ΣΚΧΜ 
i = l 

Ordinary kriging: 

χΜ = Σζίχ(*ί) 
i = l 

Simple kriging: 

m 

X(sk) = E[X(sk)] + Σ £i{X(*i)-£[*(s,)]} 
i = l 

(ii) Estimation system: 

Unconstrained Wiener- Kolmogorov : 
m 

Σ X,B[X(M,)X(tj)] = E[X(sk)X(Sj)] or 
i = l m Γ m ~| 

Σ ^iCx(^Sj) = cx(skiSj) - m2
x\ Σ λ , - 1 7 = 1 ,2 , . . . , m 

Ordinary kriging: 

Σ ££*(«„ s , ) - /A = cx(sk,s,·), or 
i = l 

£ ζιΕ[Χ(*ι)Χ(*])]-μ = E[X(sk)X(Sj)l j = 1, 2 , . . . , m, and 
i = l 

m 

i = l 

Simple kriging: 

m 

Σ ^cx(s i ,s J ) = cx(sfc,s7), or 
i = l 

m Γ m ~| 

Σ ^ [ Χ ( 8 ι . ) Χ ( 8 ] ) ] = £ [ ^ ) Χ ( ^ ) ] + Γη̂  L f i - l . 7 = 1,2 m 
i = l L , = x J 

aNo measurement error is involved. 

Proposition 4: If X(s) is an ISRF-r, the solution of Problem 4 above is 
provided by those coefficients A, (i = 1, 2 , . . . , m) that satisfy the set of 
equations 

ΚΞ = 0 (13) 

Ordinary kriging: 
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where 

355 

K = 

MO) 

Κχ \ rm 1 ) 

1 

Λ(· ι ) 

Pp(*l) 

kx(rlm) 1 Pifa) 

K(0) 1 /71(sm) 
1 0 0 

Λ(»™) 0 0 

Pp(Sl) 

/ > p ( 0 

0 
0 

ft(Sm) 0 0 

Ty = Isf-s,! and p<v 

Ξ τ = [λχλ2 · · · Am^oMi · · · μ-ρ] 
μ,ρ are Lagrange multipliers, and 

Or = [kx(rlk)... fcx(rmfc)l/71(sfc)... pp(sk)] 

Proof: We know (Chapter 3) that the SRF Z(sfc) = X(sfc) -X(s f c) is a spatial 
increment of order v (SI-i>) and its variance is given by 

E[Z(sk)]
2 = E[X(sk)-X(sk)] [ m,k - |2 

i = l j = l 
m 

- 2 H À i M e i - » k ) + M O ) (14) 

(À)c= -1 ) . Moreover, since Z(sk) is a spatial increment of order v it holds 
that (letpp(s) = sp) 

£λι»? = Sfc (15) 

where 0 < |p|< v. By minimizing Eq. (14) with respect to the A, subject to 
the constraint (15) we obtain the system of Eqs. (13). □ 

In view of the preceding analysis, the step by step application of the 
intrinsic kriging is as follows (see Fig. 9.3): 
(a) Solve the system of Eqs. (13) for A, (i = 1, 2 , . . . , m) and μ] (j = 

0 , 1 , . . . , p). 
(b) Substitute the coefficients A, into Eq. (12), to find the optimal 

estimates X(sk)9 and 
(c) then into Eq. (14) to find the estimation error variance a2

x(sk). 

Another useful expression for the latter is given by 
a2

x(sk) = E[Z(sk)]
2 = M O ) - Ξ τ θ (16) 

Example 4: Let us reconsider the Equus Beds case study of Example 5, 
Section 4, Chapter 7. Using the information derived in that example, we 
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Figure 9.3 The intrinsic kriging procedure 

solve the estimation system (13) and obtain values for the water table 
elevations and the associated error variances (16) at numerous locations 
on a properly specified grid. These values are then inserted into a plotting 
computer program to produce the contour map of water table elevations 
(in feet, Fig. 9.4) together with the contour map of error variances (in feet2, 
Fig. 9.5). 

When an interactive graphics terminal is available, the procedure can be 
controlled by the user, who can intervene to sort data, refine the estimates, 
or gauge the visual effects. In connection with this, when a specified level 
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Figure 9.4 Contour map of water table elevation (in feet). The locations of the 226 
observation wells are also shown 

of accuracy of water table predictions is needed, one may increase the 
number of observations in areas showing high error variance and decrease 
the number of observations in areas showing low error variance. 

5. Properties and Physical Interpretations of Linear 
Spatial Estimators 

A careful examination of the estimation equations leads to interesting 
conclusions concerning both the mathematical and the physical components 
of the linear spatial estimation approaches. 
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Figure 9.5 Contour map of the estimation error variance (in feet2) for the water table 
elevation surface of Fig. 9.4 

5.1 Certain Features of the Estimation System 

As we have seen (Chapter 3) cx(s,, s7) is, in general, decomposed into 
fcx(r = ls«-s/l) an(* a polynomial component Q(si9Sj) that cannot be esti-
mated from the data. One of the most appealing features of the estimation 
scheme above is that we need only the homogeneous GSC-^ kx(r) and not 
the nonhomogeneous ordinary covariance cx(si9 s,·) for the optimal estima-
tion of the SRFX(s) . 

The solution estimation equations (13) of Section 4 are independent of 
the coordinate system. If two of the data points s,- coincide, the system of 
equations has no solution, since two of the estimation equations will be 
identical. Furthermore, the solution will not be unique for certain symmetric 
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combinations of the points s, that make at least two of the Eqs. (13) of 
Section 4 above identical. 

Tips regarding the reduction of the number of equations in the estimation 
system include: (i) Use symmetry of the data points configuration, (ii) 
Ignore, if possible, a certain number of data points, (iii) Force the system 
to give the same weight to groups of points. 

5.2 The Exact Interpolation Property 

The estimation scheme leads to exact interpolations, if no measurement error 
is present. This simply follows from the fact that the minimum value of 
E[X(sk)-X(sk)~\2, when sk is a data point, is attained for X(sk) = X(sk), 
when we have min E[X(sk) - X(sk)]

2 = 0. 

5.3 Confidence Intervals of the Estimates 
A. 

We can often assume that the estimation error X(sk)-X(sk) is normally 
distributed with zero mean and variance o-*(sfc). Then it is possible to define 
confidence intervals for the estimates X(sk). For example, the 95% confidence 
interval will be [-2wa2

x(sk), 2y/a2
x(sk)], and the estimate of X(sk) with 

95% confidence will be X(sk)±2yfo^(H). 

5.4 The Data-Independence Property 

The estimation system and the estimation error variance [Eqs. (13) and 
(16), Section 4 above] do not depend on the specific values of the data. 
Therefore the system can be solved and the variance can be computed as 
long as the positions of the field observations are known. Herein we will 
refer to this as the data-independence property of the estimation variance. 
But the extrapolation to the limit might not be valid: No design is possible 
without knowledge of v and /cx(·), for which a minimum sampling or 
extrapolation of structural identification from a nearby area is required. 

5.5 Linear Spatial Estimation as a Filtering Process 

As we saw in Chapter 3, in the case where X(s) is an ISRF-^, the 
m 

z{sk) = x{sk)-x{sk) = Y^kix{si)-x(sk) 
i = l 

m,k 

= Σ λ,χ(β,) 
i = l 

is a SI-*' which, because Σ?=ι ̂ ,- = 0 , can be considered as a high-pass filter 
with point spread function PSFH(s,·) =Σ?=ι λ ι · 
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High-pass filtering is a property associated with an estimation process 
that enhances detail of the spatial pattern; in other words, the derived maps 
contain high-frequency information. In light of these considerations the 
spatial estimator can be written as 

m,k 

X(sfc) = ^ A / X ( s I ) + X(sk) (1) 

where \k = - 1 . Furthermore, since the coefficient of X(sk) is one, Eq. (1) 
yields (see also Fig. 9.6) 

X(sk) = PSFH(sfc) * X(sk) + PSFL(sfc) * X(sk) (2) 

where the PSFL(sfc) = l represents a low-pass filter spread function and * 
denotes the convolution operation. (A low-pass filter smooths the detail in 
the spatial pattern.) 

In the light of Eq. (2), the intrinsic spatial estimator can be seen as the 
sum of a high-pass and a low-pass filter. If sk is a data point, in view of 
the exact interpolation property of the spatial estimation concept [X(sk) = 
X(sfc)], Eq. (2) gives 

X(sk) = PSFH(sk) * X(sk) + PSFL(sfc) * X(sk) 

This is a fundamental identity of image processing-related filtering theory 
(e.g., Schowengerdt, 1983; Carr, 1990) and establishes an interesting link 
between the latter and the spatial estimation theory discussed above. 

5.6 Possible Modifications of the Estimation Scheme 

The intrinsic estimation scheme can be adjusted to other forms of the %[ · ] 
function [see Eqs. (15)-(17), Section 3]. For example, in the case of Eq. 
(15) of Section 3, we replace fcx(s, -s fc) by fcx(s,, Vk), where the latter is the 
mean value of the GSC-^ between the point sf and the volume Vk; also, 
kx(0) is replaced by kx( Vk, Vk)9 the mean value of the GSC-v within the 
volume Vk. 

PSFH(sk) 

X(sk) - ® © — X(sk 

PSFL(sk) 

Figure 9.6 Spatial estimation as a filtering process 
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It is possible that the measured values, say F(s,), include some measure-
ment error Vfa) so that [see also Eq. (13), Section 2 of Chapter 7] 

Yfa) = aXfa)+Vfa) (3) 
where a is a known deterministic coefficient and V(s,) is a white-noise 
process with zero mean and variance alfa), uncorrelated with X(s,). In 
this case we should replace the terms fc^s,·—s,·) and kx(Si-sk) in the 
estimation system by ^kxfa-s^ + alfa) δϋ and akxfa-sk), respectively. 
The associated error estimation variance is written as 

a2
x(sk) = kx(0)-aYJ\ikxfa-sk) + - Σ ßppp(sk) (4) 

i = i ao*\P\*v 

Obviously, if only a subset of the data points includes measurement 
errors, the alfa) should be equal to zero at the points that are not interrupted 
by measurement errors. 

Example 5: This example illustrates the quantitative analysis of the spatial 
variability of soil settlements, and also the prediction of settlement patterns 
coupled with the associated error maps. The insight thus obtained will be 
used in the design of the foundations, the optimal location of the buildings, 
and the site exploration. In the area of interest a heavy industry was to be 
founded. The subsoil structure is dominated by clay soils with sand layers 
in some parts of the site. Borings were spaced at locations where footings 
of the buildings were to be placed. Measurements were made of the settle-
ments at each point, based on conventional stress-strain analysis and 
laboratory tests with simulated loading conditions (see Lambe and Whitman, 
1969). Thus we implicitly included in the analysis dependencies of settle-
ments on the nonuniform variation of stresses imposed by the foundations 
on the subsoil and on the spatial distribution of other soil parameters. 

Starting with the spatial variability identification, we note that the settle-
ment variability shows a complex trend. This is apparent from the five 
different concentrations in the histogram of the data (Fig. 9.7). The experi-
mental covariances along different directions in space as well as the average 
covariance are shown in Fig. 7.4 of Chapter 7. The inspection of the behavior 
of the covariances at the origin and at large distances led to the conclusion 
that the spatial variability of the settlement surface is expected to be 
nonhomogeneous but regular. Also, the covariance presents the highest 
variability along directions 2-2 and 3-3, and the lowest variability in direc-
tions 1-1 and 4-4. 

Several of the settlement measurements included measurement errors 
modeled by a linear model of the form of Eq. (3) above, where Y fa) are 
the measured settlements, Xfa) are the actual settlements, a = 1 and V(s,) 
are a white-noise measurement error with zero mean and variance alfa) = 
0.35 cm2. In this case the generalized covariances of the settlement pattern 
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\ 

2 3 4 5 6 7 

Settlement (cm) 

Figure 9.7 Histogram of soil settlements with five peaks evidencing the existence of local 
trends 

are fc^s* -s,·) + o-^(sf) δ^. Areas containing 16 data points each were selected 
so that the settlement increments obtained are homogeneous. In this respect, 
the calculated order of settlement variability is v = l, while the correspond-
ing GSC-1 is 

kx(h) = -0.4648|h| + 3.835 x 10"3|h|3 

For the specific stratification we observe linearly varying settlement trends, 
while the term in |h|3 evidences the regularity of the settlement surface, 
which is in agreement with the previous findings. 

The next step in the soil settlement data processing deals with the 
production of predictive soil settlement patterns over the area of interest. 
Such a map was plotted in Fig. 7.1 of Chapter 7, where the boring locations 
were also shown. Clearly, samples located inside the stress bulb are 
especially important for predicting soil settlements in space. The estimation 
procedure was carried out using measurements within a bounded neighbor-
hood with a radius of about 65 m. These neighborhoods were selected 
according to physically motivated criteria, such as data quality and smooth 
trends. 

Clearly, the size of the memory required in this case is much smaller than 
if we had employed all the available data. The accuracy obtained is optimal, 
given the data we want to use. This is justified in practice where, after a 
certain number, the taking of further data may have a negligible effect on 
the estimation accuracy gained, and the use of a unique neighborhood 
would be useless. Moreover, the SRF-based hypotheses of stochastic infer-
ence (incremental homogeneity, isotropy, etc.) are more realistic in a local-
scale settlement pattern than in a global one. Figure 7.1 shows that some 
areas are expected to settle more than others, due either to heavy buildings 

CD 

15 

10 

5 

n 
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or to different soil properties. However, no excessive differential settlements 
are observed. The corresponding map of estimation error variances (Fig. 
9.8) depicts relatively large values at the side parts of the site, which are 
clearly due to the small number of observations. 

Once more, by making use of the "data value-independence" property 
of the estimation error variance, the reduction of the estimation error 
variance was computed for an additional number of five "fictitious" borings, 
before installing new borings with the associated costs. This would help 
determine whether such an installation is worthwhile, where the additional 
borings should be located, etc. In this case the locations of the five 
"fictitious" borings are shown in Fig. 9.9, together with the map of the new 
estimation error variances obtained. Comparing this map with the previous 
one (Fig. 9.8), we can clearly see the improvement in accuracy. This sort 
of sensitivity analysis may also guide the geotechnical engineer in choosing 
among different techniques of soil settlement prediction; certainly, the 
measurement errors introduced by each one of these techniques will play 
an important role here. Furthermore, the careful study of these maps will 
offer valuable information regarding the foundation design, the optimal 
location of the various buildings, and the site exploration. 

If the spatial variation is homogeneous the estimation can be significantly 
simplified. The GSC-^ kx( · ) are reduced to the ordinary covariances cx( · ) 

Figure 9.8 Contour map of spatial estimation error variances in predicting the settlement 
pattern of Fig. 7.1 of Chapter 7 
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Figure 9.9 Contour map of spatial estimation error variances of the settlement pattern 
after the addition of five boreholes 

and pp(') = 1, μ0=-μ9 and μρ = 0, p>\. Therefore, Eq. (13) of Section 4 
yields 

ΟΜ = Ψ, 

where 

Γ cx(0) . . . cx(rlm) l l 

C = " * 
cx(rml) . . . cx(0) 1 

[ 1 . . . 1 0 j 

Μ τ = [ λ 1 λ 2 . . . λ „ , - μ ] 

and 

VT=[cx(rlk)...cx(rmk)l] 

We have already seen in Chapter 7 that, in several practical situations in 
addition to the natural process of interest, say X0(s), there might exist a 
significant amount of data regarding other natural processes, say X,(s), 
i = 1 ,2, . . . , μ, which are well correlated with X0(s). In these circumstances, 
it is natural to estimate X0(s) based on the measurements not only of X0(s), 
but also of X,(s), i = 1, 2 , . . . , μ. For example, in petroleum engineering the 
hydrocarbon pore volume can be estimated by well log measurements and 
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seismic data, where the latter are well correlated with the former. In 
hydrologie studies, the transmissivity in an aquifer can be estimated by 
means of pumping tests, as well as specific capacity measurements. The 
necessary modifications of the estimation scheme, which in the case of 
geostatistics is called co-kriging (e.g., Maréchal, 1970; Francois-Bongarcon, 
1981; Myers, 1982; Stein et al, 1988), are relatively straightforward. One 
essentially replaces the scalar natural process X(s) with the vector of the 
natural processes involved, viz., 

X(s)T=[X0(s),X1(s),. . . ,XAA(s)] (5) 
The estimator X0(Sk) of X0(Sk) at location sk is written 

*o(sfc) = £ A 7 X , (6) 
i=0 

where 
Xj = [Xi(sl),Xi(s2),...,Xi(smi)] 

Λ7 = [λ(1λι2 . . . AimJ, I = 0, 1 , . . . , μ 

and m, is the number of locations where data are available for the natural 
process X,(s); the estimation system now includes generalized covariances 
and cross-generalized covariances between the elements of X(s) in Eq. (5). 

5.7 Physical Significance of the Estimation System 

Physical reasoning underlying the estimation system accounts for certain 
important factors, such as 

(i) The relative positions between the data points and the points to be 
estimated [items (sf, sk), i = 1, 2 , . . . , m]. 

(ii) The geometry of the data points configuration [items (s,, s,), 
ij = 1,2, . . . , m ] . 

(iii) The spatial variability of the natural process [through the GSC-^ 
kx( - ) and the order of intrinsity v], 

(iv) The support Vk, in the case of volume estimation [items (s,, Vk) 
and(Vfc, Vk), i = 1 ,2 , . . . , m]. 

(v) The measurement errors, when they exist (through the measurement 
model). 

(vi) Spatial correlations between the natural process of interest and 
other natural processes (through the vector form of the estimation 
scheme). 

5.8 The Notion of Neighborhood 

Estimation systems call for the notion of neighborhood. If a unique neighbor-
hood is used, so all the available data are taken into account when estimating 
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each value, only the right-hand sides of Eqs. (13) of Section 4 above change. 
Thus the covariance matrix must be inverted only once. Moving neighbor-
hoods, on the other hand, restrict calculations to a local model of the spatial 
RF; that is, only data at a certain distance from the estimated point are 
used each time. 

There are several reasons for choosing moving neighborhoods instead of 
a unique one: 

(i) Reduced computational effort and better precision of the results, 
due to the smaller number of estimation equations. 

(ii) More reliable hypotheses of statistical inferences are made at small 
distances where the fitting of structural models is easier. Indeed, it is 
much more realistic to expect homogeneity for SI-^ taken over a limited 
area than over the entire region. Also, the GSC-ι^ are best known at 
small lags h. 

(iii) Neighborhoods are selected according to a physically motivated 
criterion, such as data quality or smooth trends. 

(iv) In practice, after a certain number the taking of further data in 
estimating unknown values may have a negligible effect on the accuracy 
gained, and a unique neighborhood would be useless. 

Example 6: This section constitutes a follow-up of the analysis of Example 
2, Section 5 of Chapter 7. On the basis of the spatial variability identification 
results obtained in that example, we can estimate the shear strength over 
the entire region of interest. First we use only the 49 field measurements; 
the estimated shear strength map is shown in Fig. 9.10. The histogram of 
the estimates (Fig. 9.11) maintains the bimodal shape of the histogram of 
the data (Fig. 7.23 of Chapter 7), a fact that shows consistency of the 
estimated structure with the structure identified earlier on the basis of the 
field vane (FV) tests. In practice, the estimation map is always accompanied 
by the map of the estimation error variances (Fig. 9.12). The latter is very 
accurate in regions covered by a significant number of vane holes; the 
accuracy decreases with the distance from the data points. If we assume 
that the estimation error is approximately normally distributed, a good 
measure of the estimation precision may be offered by the confidence interval 

[X(sk) -2 vVx(sk), X(sk) + 2 v^(s f c ) ] 

of the actual strength values, where X(sk) and a2
x(sk) are readily available 

from Fig. 9.10 and 9.12, respectively. Taking advantage of the "data value-
independence" property of the estimation error variance, we added three 
"fictitious" data points at the eastern part of the site. The new error variances 
show an improvement in the accuracy of the estimated strength in the area 
by about 25%. Of course, this percentage is rapidly reduced with the distance 
from the "fictitious" observation points. 
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Figure 9.10 Map of shear strength estimates obtained from the field data 

Next we incorporated into the analysis all 168 data (49 field measurements 
and 119 "subjective" data). (For the corresponding semivariogram see Fig. 
7.25, Chapter 7.) The new estimation map is plotted in Fig. 9.13 and is very 
similar to the one obtained before on the basis of the 49 field measurements 
(Fig. 9.10). This should be expected, because the spatial variability iden-
tification has led in both cases to similar results (Example 2, Section 5 of 
Chapter 7). In addition to this consistency, which may be attributed partially 
to the adequate geometrical configuration of the installed vane holes, the 
new error map (Fig. 9.14) shows that the estimation accuracy improved 
significantly (mainly due to the reduction of the statistical error). 

The insight gained by the soil strength data processing allowed a better 
understanding of the marine clay behavior, and it was used to guide 
engineering decisions and complement conventional design (Christakos, 
1987b). 

5.9 Estimation Error Variance Factorization 

Depending on the analytical expression for the GSC-^, further significant 
simplifications in the computation of estimation variances can be accom-
plished by factoring Eq. (13) of Section 4 above, as follows (Christakos, 
1990b). 
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Proposition 1: Let 

K(r) = GTR (7) 

be a polynomial GSC-^ (Chapter 3), written in matrix form, where 

GT=[coClc3... c2p+1... c2„+1] and R T = [ S ( r ) r r 3 . . . r2p+1... r2"+1] 

where the coefficients c0=a0 and c2p+i = ( - l ) p + 1 c p (watch for change in 
notation) satisfy the conditions depicted in Table 3.1 of Chapter 3. Then, 
for any fixed covariance coefficient ct9 ί = 0,1,3, . . . ,2 ι> + 1, the estimation 
variance of Eq. (16), Section 4 is written as 

a2
x(sk) = cts

2
x (8) 

where s2
x = s2

x(cq, ct) is the estimation variance obtained when cf = l, and 
the co variance coefficients cq, q = 0 ,1 , 3 , . . . , 2p +1 are replaced by cq = 
cql ct. Herein we will refer to such estimation variance as reference estimation 
variance. 

Example 7: Let v = \ and kx(r) = c0 8(r) + cxr+c3r
3. For t = 3, Eq. (8) gives 

o-2
x(sk) = c3s

2
x(c0,Ci,c3), where c0=c0/c3, c1 = cl/c3, c3 = l. Similar 

expressions are obtained if, instead of t = 3, one takes t = 0. 

6. Nonlinear Estimation 

6.1 A Class of Nonlinear Estimators 

In this section we will consider nonlinear minimum mean square error 
estimators of the quite general class defined by 

m 

χ(*Λ=Σο[γ(βΙ),βι] (î) 
i = l 

Note that special cases of Eq. (1) are, among others, (i) the linear estimators 
considered in the previous section; and (ii) the so-called disjunctive kriging 
estimator (Matheron, 1976; Maréchal, 1976; Kim et al, 1977) 

m 

X(s,) = Z&[ns,·)] (2) 
i = l 

On the basis of the above setting, the nonlinear estimation problem is 
stated below. 

Problem 1: Find estimates X(sk) of the actual values X(sk) at points sk, 
on the basis of measurements of Y(s) at the points s, (i = 1,2, . . . , m). The 
estimator is assumed to be of the nonlinear form (1) above, and the 
optimality criterion to be satisfied is the minimization of the estimation 
error variance given by Eq. (8) of Section 3. 
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By substituting Eq. (1) into Eq. (8) of Section 3, and then minimizing 
with respect to G[ · ], the proposition below can be proven. 

Proposition 1: The solution of Problem 1 is given by these functions G[ · ], 
which are the solutions of the system of integral equations below. 

m Λοο 

: = Σ GtyJ9Sj 
7 = i J-°° 

XkfxY(Xk^i)dxk = YJ G(il/J9Sj)fY(il/i9il/j)dilfj (3) 
O · _ j J — OO 

for i = 1, 2 , . . . , m. Let us call this estimator the G-nonlinear estimator. 
By integrating both sides of Eq. (3) with respect to ψί we find that 

m 

E[X(sk)] = Σ E{G[ Y(sj), Sj]} = E[X(sk)] (4) 
7 = 1 

That is, the G-nonlinear estimator is unbiased. 

Remark 1: If we set Ω[φ]9 s,] = λ]ψ] into Eq. (3), then multiply by ψί9 and 
finally integrate with respect to ψ( we derive the system of equations of the 
unconstrained Wiener-Kolmogorov estimator of Section 4.1. 

6.2 Orthogonal Expansions of Nonlinearities 

According to the theory discussed in Section 2 of Chapter 4, if the function 
G[<A, s], as well as the bivariate probability density functions fXY{xk9 φι) 
and /γ(ψι9 <Α/), satisfy the necessary convergence conditions, the following 
series expansions are valid. 

oo oo 

ίγ(Ψί,Ψ])=/γ(Ψί)/γ(Ψ]) Σ Σ Φαο(*ΐ,^)Ρα(Ψΐ)Ρο(Ψ^ ( 5 ) 
α = 0 b = 0 

oo oo 

fxviXk, Ψί) =/*(**)/y(<fc) Σ Σ £ab(sfc, Si)pa(xk)p^i) (6) 

and 
oo 

σ[*,»] = Σ &(»)/*(*) (7) 

where pa(x) and ρι,(ψ) (α, b = 0 , 1 , 2 , . . . ) are sets of complete polynomials 
that are orthogonal with respect t o / x ( * ) and/V(</0, respectively; i.e. 

E[Pa(x)Pt(x)] = J Pa(x)pb(x)fx(x) dX = 8ab (8) 

Ε[ρα(ψ)ρΛφ)] = jΡα(Ψ)ρΛΨ)/γ(Ψ) άφ = ôab (9) 

(5) 

(6) 
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The corresponding expansion coefficients are 

<Ms„ s,) = 1 1 /γ(φί9 ψ^ρα(Ψΐ)Ρο(Ψ]) αφί diffj (10) 

and 

&(s) = J /γ(Ψ)0[ψ, 8\ρά(ψ) άφ (12) 

Remark 2: We now present a few specific expansion coefficients and poly-
nomials that will be useful in the following: 

0oo(Si,S/) = ioo(Sfc,Si) = l 

0Ol(Sf, Sy) = <£io(Sj, S,·) = ioi(Sfc> Si) = £lo(Sfc, Si) = 0 

0 1 l ( S ; , S , ) = — — 

oyfoOcMs,·) 
« / x Cxy(Sfc,S, ·) 
i i i ( S f c , S i ) = 

<rx(sk)aY(Si) 

Ρο(Φΐ) = PoiXk) = 1 

lAi-StHS;)] 

and 

Ρι(Ψΐ) = 

Pi(Xk) = 

aY(Si) 

Xk-E[X(sk)] 

<rx(sk) 

Proposition 2: Retain the orthogonality assumptions above. Then, the 
equations (3) of Proposition 1 reduce to the system of equations 

oo m 

Σ Σ &(^)Φαο(*ί,&]) = Cao(Sk9*i)E[X(sk)] + ζα^,β^σχ^) ( 1 3 ) 
b=0j=l 

for all ί = 1 ,2, . . . , m, and a = 0,1, 

JRroo/; By taking into consideration Eqs. (5), (6), and (7), Eq. (3) can be 

(10) 

( H ) 

The corresponding expansion coefficients are 
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written as 
oo oo oo /· m 

ίγ(Ψί) Σ Σ Y*Pb(*l>i) Ρα(Ψ])ρΑψβ)ίγ(Ψ]) dlltjY, iciSj^atiSitSj) 
b = 0 α=0 c = 0 ·* _/ = l 

oo oo r 

=/Υ(ΨΪ) Σ ZPb(^i)ieb(Sk,s«) Xkfx(Xk)PaiXk) dxk (14) 
b = 0 o = 0 * 

for ail i = 1, 2 , . . . , m. On the other hand, from Eqs. (8), (9), and by taking 
into account Remark 2 we find that 

j Ρα(ΦΜ(Ψ^/γ(Ψ]) dtj = 8ab (15) 

also 

I XkPaiXk)fx(Xk) dxk = 0 

if a 7*0,1; =£[X(s f c)] if a = 0; and =crx(sfc) if a = 1. Finally, the last two 
integral equations in combination with Eq. (14) yield Eq. (13). D 

Equation (13) consists of an infinite number of integral equations whose 
solution will provide the optimum nonlinear estimator of the form of Eq. 
(1). The implementation, however, of the above nonlinear estimation process 
will require certain additional assumptions, such as (i) only a limited number 
of the series expansion terms will be retained; in this case, of course the 
resulting solution will be an approximation; and (ii) the RF involved will 
be considered spatially homogeneous or isotropic. 

6.3 Nonlinear Spatial Estimation in the Light of the Theory of Factorable 
Random Fields 

In this section we will assume that the spatial RF involved in the estimation 
process are factorable RF (see Chapter 4). 

Proposition 3: Assume that in Proposition 2 the spatial RF X(s) and Y(s) 
are factorable RF. Then, the nonlinear estimator reduces to a linear one, 
and the estimation system (13) becomes 

m 

Σ , f i ( s / )MSi , s,·) = cXY(sk9 Si)aY(Sj) (16) 
7 = 1 

for all i = 1 ,2 , . . . , m. 

Proof: Since X(s) and Y(&) are factorable RF, the expansion coefficients 
in Eqs. (5) and (6) become <£ab(sf, s,·) = fab(Sfc, sf) = 0 for a ^ b; and 
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<t>aa(*i, Sj) = (/>a(sh s,·), iaa(sfc, s.) = £fl(sfc, sf) for a = b. Consequently, the fol-
lowing series expansions of the corresponding bivariate probability densities 
are valid (see also Chapter 4) 

oo 

ΙΥ(Φ„ </0) = /Υ(Ψ,)/Υ(Ψ^ Σ Φα(*„ Sj)Pa(<l>i)Pa(<l>j) (17) 
α=0 

oo 

fxriXk, Φι) =/χ(χύ/γ(Φΐ) Σ , ia(sfc, *ί)Ρα(Χι<)Ρα(Ψΐ) (18) 
α=0 

By taking into account the last two equations, the system (13) reduces to 
only one equation, namely, 

m 

Σ fi(s/)0i(Si, s,·) = ^(Sfc,Si)ax(sk) 
7 = 1 

for each i = 1, 2 , . . . , m; the latter is Eq. (16). G 

Remark 3: Note that in the case of the disjunctive kriging form (2), the 
system of Eq. (16) becomes the disjunctive kriging system. Some interesting 
applications of disjunctive kriging in earth sciences are discussed in Rendu 
(1980) and Yates et al (1986), among others. 

6.4 Recursive On-Line Estimation Using Factorable Random Fields 

The nonlinear on-line problem (e.g., time series) involves the estimation of 
a state process on the basis of an on-line observation process. Both the state 
and the observation models are nonlinear and are assumed given on some 
probability space. The estimates are to be determined recursively (see Fig. 
9.1 above) in the minimum squared error sense. 

The nonlinear problem has been tackled in a number of ways, leading 
to a growing literature in recent years. The first attempts to solve the problem 
were directed toward the generalization of well-known results of the linear 
estimation theory (see, e.g., Bucy, 1965; Stratonovich, 1968). Despite the 
several interesting theoretical results obtained (e.g., exact solutions were 
derived, but they required an infinite-dimensional system), the problem of 
deriving a practical as well as mathematically more substantial estimation 
procedure was not solved. 

In the area of approximate estimators, practically useful algorithms have 
been constructed by using series expansions of either the state nonlinearity 
(Athans et al, 1968; Jazwinski, 1966), or the probability density of the state 
conditioned on all available measurements (Sorenson and Stubberud, 1968; 
Willman, 1981). Within the framework of approximate nonlinear estimators, 
statistical linearization techniques have been of some success, particularly 
when the nonlinear functions are not differentiable (Mahalanabis and 
Farooq, 1971; Gelb, 1974). 

(17) 

(18) 
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More recent approaches have as a starting point well-established stochas-
tic differential equations for the nonlinear estimator, such as the Fujisaki-
Kallianpur-Kunita and the Duncan-Mortensen-Zakai ones (Fujisaki et al, 
1972; Duncan, 1967). Such approaches include the application of martingale 
theory to nonlinear estimation problems (Kallianpur, 1980), the Lie alge-
braic methods (Brockett, 1981; Hazewinkel and Marcus, 1982), and func-
tional integration and group representations (Mitter, 1980). Davis (1981) 
emphasizes the relevance of the pathwise estimation theory to practical 
applications, and Pardoux (1981) suggests a solution of the nonlinear 
estimation problem, based on a pair of stochastic partial differential 
equations, one backward and one forward. 

In this section the nonlinear problem is considered in light of the theory 
of factorable random processes (FRP) developed in Chapter 4. The estima-
tion algebra is optimal for a broad class of time series, all of which possess 
the property of factorability. The setting of the FRP algorithm is such that 
it is readily applicable in practice, its use requiring the same computational 
effort as the standard (linear) Kaiman filter. At the same time the theory is 
much simpler and the prerequisites are significantly lesser than in the 
aforementioned approaches. 

Let Ψχ_τ be the σ field of the sample path { Y(u)9 0 < u < s - τ) and let 
s be a fixed real number. Estimation is concerned with making estimates 
X(s/s-r) about the process X(s) at s on the basis of Ψ5_τ. If r = 0, the 
estimation problem is called filtering; if r > 0, it is called prediction. As was 
shown in Corollary 2, Section 5 of Chapter 4, the optimum nonlinear 
estimator of an FRP generated by the nonlinear state, nonlinear observation 
system (NSNOS) (1) and (2), Section 5 of Chapter 4 is identical to the 
optimum linear estimator of the linear state, linear observation system 
(LSLOS) (8) and (9). As a matter of convenience, it turns out that these 
coefficients need not be calculated for application of the FRP estimator. 
The ordinary Kaiman filter algorithm can be used with processes generated 
by the linear system (8), (9), where the noise and initial densities satisfy 
the factorability assumption. These results are summarized below (Chris-
takos, 1989). 

Proposition 4: The optimum recursive estimator of the NSNOS (1) and (2), 
Section 5 of Chapter 4 is as follows, with filtered state and error variance 
given by 

X(s/s) = X(s/s-l) + ßMs) (19) 

a2
s/s = [\-B{ßs)fa

2
s/s_x + ß2E[V\s)] (20) 

where 

s(s)=Y(s)-B[X(s/s-l)] (21) 
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is the innovation process, which is a zero-mean white noise with variance 

re = flV./s-i) + £[V2(5)] (22) 

and 

ß Btf^ 
rs 

is the so-called gain. The predicted state and error variance are given by 

X(s/s -1) = G[X(s -1/5 -1)] (24) 

a2
s/s.x = G2(as_l/s^) + E[ W2{s - 1)] (25) 

Corollary 3: On the strength of Proposition 1, Section 3 of Chapter 4, the 
estimation algorithm of Proposition 2 above is valid for any random process 
that can be expressed as a strictly monotonie function of an FRP. 

Remark 4: Note that, to apply the nonlinear estimation scheme above, we 
need to assure the validity of the factorability property for the processes 
X(s) and Y(s). In accordance with the theory of FRP, the relevant theta 
functions must belong to L2 classes of functions. For example, in the 
bivariate Gaussian case, the integrability condition (9), Section 2 of Chapter 
4 becomes r2 = 1/(1 - p 2 ) < oo, \p\ < 1, where p is the correlation coefficient. 

Remark 5: The bivariate Gaussian regression model underlies most of the 
important results of the theory of random processes. In the estimation 
context, the conclusion of this section is that several of these results can 
be extended to the significantly richer bivariate factorability model. 

Example 1: To gain some insight about the theory developed above, and 
to compare the FRP-based algorithm and the well-established extended 
Kaiman algorithm (EKA; Gelb, 1974), the following NSNOS proposed in 
Jazwinski (1970) was simulated over time (i.e., s-t) 

Xt = 99.95 x ΚΓ 2 *, - ! + 4 x 10~4X2
t.x + Wt.x (26) 

Yt = X2
t + X*+Vt (27) 

wherethefollowingnotationisused:X, = X(i ) , Yt= Y(t), Wt.1= W(t-l), 
and Vt=V(t); the initial state is Gaussian with mean 2 and variance 10~2; 
and Wt_l9 Vt are zero-mean Gaussian white noises with variances 5x 10~5 

and 9x 10~2, respectively. NSNOS of Eqs. (26) and (27) may be used, for 
example, to generate soil profiles. The simulated measurements are shown 
(Fig. 9.15). On the basis of Eqs. (26) and (27), the EKA Jacobians are 
α Μ =99.95χ10" 2 + 8χ1 (Γ 4 χΧ ί / ί _ 1 , fcM = 2Xf/f_1 + 3A'j /f_1. For both the 
FRP and the EKA, the initial conditions assumed are X0/0 = 2, σΙ/0= 10~2. 
The FRP estimated state Xt/t is shown in Fig. 9.16. Because the true state 

(23) 
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0.2 0.4 0.6 0.8 1.0 1.2 

t 

Figure 9.15 Simulated measurements 

1.4 1.6 

Xt is known, the estimation error Xt/t = Xt-Xt/t using ±2^a2
t/t as 

confidence intervals can be plotted (Fig. 9.17). The error Xt/t is small (its 
mean is about 2.4 x 10~4) and only about 0.7% lies outside the bounds. The 
last FRP variance available is close to the sample variance (0.25 x 10~4 and 

2.10 

1.98 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

t 

Figure 9.16 Estimated states (FRP) 
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Figure 9.17 Error estimates and confidence intervals 

0.20 xlO - 4 , respectively). The innovation process ε,, together with the 
confidence interval ±2\[7t provided by the FRP (Fig. 9.18), shows none of 
the et values exceeding the bounds, whereas the mean is close to zero 
(~ 3.4 x 10"3 < 1.96 y/σΐ/η = 5.84 x 10"2, n is the number of simulated data). 
Only 2.67% of the sample correlation coefficient ρε lies outside the bounds 
±1.96/Vn = ±0.16 (Fig. 9.19). Therefore, et is a zero-mean white-noise 
process, which implies the proper functioning of FRP. The estimation error 
Xt/t (FRP) provided by the FRP is compared with that provided by the 
EKA, Xt/t (EKA) (Fig. 9.20); AXf/, = |Xr/,(FRP)| - \Xt/t(EKA)| establishes 
the superior performance of FRP (note that negative ΔΧ,Λ values indicate 
more accurate FRP, whereas positive ΔΧίΛ values indicate more accurate 
EKA). This superiority becomes more distinct as t increases. 

To examine the sensitivity of the two algorithms to variations in the 
statistics of the state noise W„ the NSNOS of Eqs. (26) and (27) again is 
considered where now the variance E[ W2

t] takes the values of 10"5, 5 x 10~5, 
and 9 x 10"5. The plots of Fig. 9.21 show the FRP estimation variance cr2

/t. 
Note the rapid reduction of the σ2/, with the number of observations 
processed, leading to increasingly accurate estimates. This reduction seems 
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Figure 9.18 Innovation process and confidence intervals 

to continue after the last observation available. The same setting for the 
EKA (Fig. 9.22) verifies that FRP also gives better results in this regard: 
smaller σ?7, values and less sensitivity to changes in E[W2

t\ 

7. Optimal Estimation of Spatiotemporal Random Fields 

7.1 General Considerations 

In Chapter 5 a theory of spatiotemporal random fields (S/TRF) was 
developed. Several interesting properties of such a class of random fields 
were examined and valuable insight into their mathematical structure was 
gained. In this section we will deal with the spatiotemporal estimation 
problem, which has various applications in almost any scientific discipline. 
In general the spatiotemporal estimation problem can be summarized as 
follows: 

Problem 1: X(q) be a GRS-v/μ, and let Χν/μ be the Hubert space generated 
by the representations X(s, t) of X(q) [the X(s,1) may represent, for 
instance, the precipitation, the atmospheric pollution, or a météorologie 
element at position s at time / ] . Let X(sk9tq)eXv/fJL. We want to find 
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Figure 9.19 Sampled correlation and confidence intervals 

estimates X(sk9 tq) of the actual values X(sk9 tq) of the natural process of 
interest at unknown positions sfc and time instances tq. The calculations are 
to be made on the basis of experimental data (observations) X(si9 tj)9 

i = 1 ,2 , . . . , m and j = li9 2i9..., /?, (as before, the /?, denotes the number 
of time instances tj used in estimation, given that we are at the spatial 
position s,). More precisely, an estimate X(sfc, tq) is defined as an element 
of ^ / / α , which fulfills the following requirements: 

(i) Linearity, viz., 

X ( S f c , 0 = ETX (1) 

where Έ.τ = [ξν] (i = 1 ,2 , . . . , m9j = li9. ..9pd is a vector of real 
coefficients £0 to be calculated during the estimation process, and 
XT= [X(si9 tj)] is a vector of known elements X(si9 tj) e 9€ν/μ9 (si9 tj) e A, 
where A is a compact set of data points/time instances. (Figure 9.23 
illustrates the RxxT case of such a linear estimator.) 

(ii) Unbiasedness, that is, 

E[Z(sk9tq)] = 0 (2) 

where Z(sfc, tq) = X(sk9 tq)-X(sk9 tq). 
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Figure 9.21 Error variances for FRP 
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Figure 9.22 Error variances for EKA 

(iii) Optimality (minimum mean square error); that is, it must 
minimize the estimation error 

a2
x(sk9tq) = E[Z(sk,tq)]

2 (3) 

This is a constrained optimization problem in Rn xT whose solution 
depends on the regularity properties of the random field X(s, 0 over 
space-time. 

7.2 Optimal Estimation of Space-Homogeneous/Time-Stationary 
Processes 

We assume here that the natural process of interest is represented by a 
space-homogeneous and time-stationary random field X(s, 0 , i-e. an 
S / T R F - ( - l / - l ) . Taking into account Eq. (1), Eq. (3) can be written as 

m Pi m Pr 

<r2
x(sk9tq) = Yé Σ Σ Σ £y£ycx(hir,7)r) 

1 = 1.7 = 1,· i ' = l / = l r 

- 2 Σ Σ ^ x ( h k i , T j + cx(0,0) (4) 
i = lj=li 

and the unbiased condition (2) is given by 
m Pi 

ΣΣί(=ι (5) 
' = 1.7 = 1, 



2. A Brief Review 383 

to be estimated. 

where data are available. 

X ( s 3 , t 3 ) = X Z ξ X ( s . , t j ) . (LINEAR) 
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Figure 9.23 The RlxT case of linear space-time estimation 

By minimizing (4) with respect to ξϋ subject to the condition imposed 
by Eq. (5), one finds the following system of equations written in matrix form 

CA = H (6) 

where C = [cx(sf, tj9sV9 tr)\ i, V = 1, 2 , . . . , m; j = li9...9pi9 / = l r , . . . , p v ] 
is a matrix of ordinary space-time covariances; Λ τ = [£,, /x; i = 1, 2 , . . . , m; 
j = lf, , Pf] is a vector of estimation coefficients ξϋ including the Lagrange 
multiplier μ; and HT=[cx(sfc, tq;si9 /,·); / = 1,2, . . . m;7 = l f , . . . , / ? , ] . 

As soon as the estimation system (6) is solved with respect to £ij9 the 
latter can be inserted into Eqs. (1) and (4) to obtain the optimal space-time 
estimate and the associated error variance, respectively. 
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7.3 Optimal Estimation of Space-Nonhomogeneous/Time-Nonstationary 
Processes 

Suppose now that the natural process can be represented by a S/TRF-P/ μ 
X(s, t) (Chapter 5). On the basis of Proposition 2, Section 7 of Chapter 5, 
the 

Z(sk , tq) = X(sk9 tq)-X(sk9 tq) 

is a S/Tl-p/ μ9 and its variance is given by 
m Pi m Pr 

<rl(sk,tq) = Y^ Σ Σ Σ èijèi'j'kx(K',Tjr) 
i = \ j = l( i ' = l / = l r 

- 2 Σ Σ ^ x ( h ^ ^ ) + /cx(0,0) (7) 
1 = 17 = 1, 

( ^ = - 1 and Çiq = &,· = 0 (iV k,j Φ q)). The fact that Z(sfc, tq) is a S/Tl-v/μ 
implies that 

m P« 

Σ Σ&8?ί/=8Ε'!ί (8) 
1 = 1 7 = 1 , 

for all 0 < |p| < v and 0 < f < μ,. [Note that Eq. (8) expresses the unbiasedness 
condition (2).] The minimization of Eq. (7) with respect to the ξϋ subject 
to the constraint (8) yields the system of equations 

ΚΞ* = Θ (9) 

where K = [fcJC(si, (,·; s r , tr), s?tj; i9 i'= 1, 2 , . . . , m; j=li9...9Pi; f = 
If, · · · » /V; |p| — v9 £ — M] is a matrix of GS/TC-P/ μ and space-time poly-
nomials; Ξ* τ = [£,, ψρζ, i = 1, 2 , . . . , m; j = li9..., /?,; p = |p| < z/; f < μ] is a 
vector of coefficients ξϋ that includes the Lagrange multipliers ψρζ9 and 
the vector Or = [kx(sk9 tq;si9 tj)9 s

9
kt

c
q9 i = 1 ,2 , . . . , m; ; = \i9... 9pi9 \p\<v, 

7.4 Properties of Optimal Space-Time Estimation 

The optimal space-time estimation scheme (7) through (9) above depends 
only on the GS/TC-P/μ. Figure 9.24 presents the flowchart of the estimation 
scheme. Physical reasoning underlying the above estimation setting accounts 
for: (i) the spatiotemporal correlation structure of the data (through the 
matrix K); (ii) the support and the space-time geometry of the data configur-
ations (terms in i9j9 i'9 a n d / ) ; and (iii) the relative positions/time instances 
between the data points/ instances and the points/instances to be estimated 
(terms in i9j and k9 q). 

The accuracy of the estimation scheme will be significantly improved 
compared to that of the pure spatial estimation, since we now take into 
account important time-related information. The estimator is consistent, in 
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X ( s k > t q ) = HX 

Β=Η[ξΜ].Χ = χ [ ν ι . 

GSITI-νΙμ Z(s f c , t j=x(s k , t q ) - X ( s j j | 

ΚΞ* = Θ , Η ' = Ξ*[ξϋ ,Ψ ρ ζ ] 

K = K[kI(si,tj;s1.,tj.),sftj] 

e = e [ k x ( s k , t q ; s 1 , t j ) , s i , 5 ] 

*, 

Figure 9.24 Flowchart of the spatiotemporal estimation approach 

the sense that given the same data everyone using them should get the same 
result. 

It is possible that the space-time data are interrupted by measurement 
errors. These errors may have various causes, such as inaccuracies in the 
instruments, errors in the primary processing and coding of the information, 
and errors in decoding and plotting the data. Naturally enough, the presence 
of such errors in the observations can have a considerable effect on the 
quality of a spatiotemporal analysis and estimation. In this situation suitable 
measurement models must be chosen by means of empirical research, and 
the necessary modifications in the estimation scheme should be made. In 
some applications one may seek the optimal estimator of some functional 
of the form 

F[X(s, ••»-*U X(s + s', t+t')ds' dt' (10) 

where VT is the support of the actual natural process X(s, t)9 U is a spatial 
volume, and T is a time interval. In this case certain modifications of the 
estimation scheme of Fig. 9.24 are necessary to obtain estimates F[X(s, t)] 

385 
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of the functional F[X(s, f )]. More specifically, the point/instant covariances 
/cx(h, T) should be replaced by the spatial volume/time averaged covariances 
*,(£/, Γ), etc. 

The following section discusses some interesting deviations from the 
fundamental assumptions of the minimum mean square error estimation 
methods developed above. 

8. A Bayesian/Maximum-Entropy View of the 
Estimation Problem 

8.1 General Considerations 

An important feature of the minimum mean square error methods discussed 
in previous sections is that they rely primarily on the data values available. 
In principle, they do not incorporate into the analysis prior information, 
such as knowledge of the physics of the phenomena involved, geological 
interpretations, intuition, and experience with similar site conditions. This 
can be a disadvantage for an estimation method, especially in situations 
where the prior information is highly relevant to the spatial and/or temporal 
variability of the natural processes under estimation. 

Within the framework of nonlinear geostatistics, important deviations 
from the above concept include disjunctive kriging and the multivariate 
Gaussian kriging (see, e.g., Journel and Huijbregts, 1978). Nonlinear estima-
tion techniques require Gaussian-related hypotheses about the multivariate 
probability law of the underlying RF. In a more general context, an estimator 
of the considerably richer class of factorable random processes discussed 
in Chapter 4 was developed above. All these estimators, however, do not 
account for important sources of prior information like constraint intervals, 
inequality-type data, and "soft" qualitative data, which can specify different 
prior probability laws (Section 5.2.2 of Chapter 7). The most notable 
attempts to incorporate these issues into the estimation process have been 
made recently by Journel (see, e.g., Journel, 1986), who revived the import-
ance of posterior cumulative distribution function determination as opposed 
to mere minimum mean square error methods. This approach, however, 
does not give a definite rule for setting up prior probabilities from the 
prior information available, and a certain amount of information may 
be lost due to the use of approximations in some stages of the estimation 
process. 

In view of the foregoing, it will be interesting to search for an estimation 
method that will be capable of processing the highest possible prior informa-
tion and of yielding insightful conclusions while, at the same time, it will 
not be lacking any of the important features of the traditional stochastic 
methods (i.e., the method should incorporate objective information, give 
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consistent results, etc). To proceed in a stochastic context, we will first 
present four theses on which our analysis will be built. Herein we will refer 
to this estimation approach as the Bayesian-maximum-entropy approach 
(BME). 

Thesis 1: Any prior information concerning the spatial structure of the 
natural process under estimation will be defined by reference to its prior 
probability. In fact, there is an inverse relation between the prior information 
and the prior probability: The more informative an assessment about the 
unknown value of a natural process, the less probable it is to occur. 

In other words, the more narrowly the assessment restricts the possibilities 
it leaves open, the more informative it is. This is a widely accepted concept 
with deep philosophical roots, which have been extensively elaborated by 
Popper (1934; 1972), Carnap (1950), and others. It is not quite clear, 
however, how one may translate prior information into prior probability in 
an unambiguous, objective way. This leads to the next thesis. 

Thesis 2: One stems high prior information (or, equivalently, low prior 
probability) about the spatial variability of the natural process of interest. 
In the stochastic context this can be achieved by considering the expected 
value of the appropriate information measure and then trying to maximize 
it. 

Thesis 3: One's knowledge about the spatial distribution of the natural 
process after seeing the measurements (probability on evidence or posterior 
probability) is related to his knowledge before seeing the measurements 
(i.e., prior probability) by means of Bayes law. 

Thesis 4: The high probability that one desires for his hypotheses is clearly 
posterior probability. In the estimation context this implies a posterior 
cumulative distribution function with minimum uncertainty attached to it. 

From an intuitive point of view, it is reasonable to expect that the more 
improved are the emerging estimates, the more restrictive is the prior 
information. (Here, the word "restrictive" refers to the restraints imposed 
by the prior information on the solutions to the estimation problem.) In 
connection with this, the approach suggested by theses 1 to 4 tries to balance 
two requirements: high prior information about the natural process under 
estimation and high posterior probability for the resulting estimates. 

8.2 The Estimation Approach 

The estimation approach will be developed by applying the logical reasoning 
of the four foregoing theses. In doing so, let X(s) be an SRF that represents 
a spatially distributed natural process, and assume that observed values χ{ 

of this process are available at points sI9 ί = 1, 2 , . . . , m in space. Let X(sk) 
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be the estimator of X(sk) at a point sk, k^ i, where no observations are 
available. If fx(Xk,Xi9 · · · ,Xm) is the joint probability density function of 
the associated random variables xfc, x x , . . . , xm, prior to observing the data 
x, =Xi9 the fundamental normalization constraint is satisfied. 

I fx(Xk,Xi,--.,Xm)dxkdx1...dxm = l (1) 

m + l times 

where the integrations are carried out over the ranges of the random variables 
above. Herein, unless stated otherwise, these ranges will be assumed to vary 
from -oo to oo. 

The Rationale of the Estimation Procedure 
In view of thesis 1, the probability density fx(Xk,Xi, · · · ,Xm) should be 
derived by means of an estimation process that takes into consideration 
physical constraints that represent either: 

(a) the prior information and knowledge one may have about the 
natural process to be estimated, or 

(b) the specific properties one wishes the estimator X(sk) to account for. 
The choice, however, of an information measure is not, in general, an 

easy task. In the context of this study the traditional definition of the 
information measure (see, e.g., Shannon, 1948) has been chosen. More 
particularly, the information contained in the vector of random variables 
X = [xfc, X ! , . . . , x m ] T is assumed to be measured by (Chapter 2) 

Inf[xk, X ! , . . . , xm] = -log[/x(;ttc, χλ,..., xm)] (2) 
The motivation underlying this choice is that Eq. (2) provides a mathematical 
expression of the inverse relation between the prior information and the 
prior probability of spatial variability as introduced by thesis 1 above: 
According to Eq. (2), the more informative the random vector X, the less 
probable it will occur. 

In relation to the information measure (2), the expected information 
considered in thesis 2 will be 

ε(Χ) = £{Inf [xfc, x x , . . . , xm]} = £{-log[/x(*fc, χχ,..., xm)]} 

I log[/x(**,*i , . . . ,#m)] 

m + l times 

xfxiXk, Xi9-.>,Xm) dxk άχχ... dxm (3) 
where ε(Χ) is the entropy function (Chapter 2) of the natural process under 
estimation. Hence, the ε(Χ) appears as a measure of the amount of uncer-
tainty in the probability density fx(xk, Xi,..., xm). By maximizing expected 

-
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information (or, which is the same, by maximizing uncertainty) with respect 
to fx(Xk, X\, · · · , Xm), subject to constraints of the form (a) and (b) above, 
one essentially maximizes the corresponding entropy function. Remarkably, 
while the maximum entropy concept has been used extensively in a variety 
of fields such as pattern recognition, thermodynamics, information theory, 
statistics, and time series (see, e.g., Kullback, 1968; Burg, 1972; Shore and 
Johnson, 1980; Jaynes, 1982), its application in the context of spatial and 
spatiotemporal RF is extremely limited and the published literature is very 
fragmentary. 

Since the estimates X(sk) are in principle expressed in terms of expecta-
tions of some function of the SRF X(s), it is reasonable to consider prior 
physical constraints that can be expressed mathematically as 

E[gq] = . . . gqiXk, Xi, · · · , Xm)fx(Xk, Xi,.",Xm) dxk άχχ... d\m 

m + \ times 
(4) 

where gq(xk9 χχ,..., * m ) , q = 1, 2 , . . . , Q, are suitable functions of X(s). A 
few examples of such functions are given below (Christakos, 1990a; 1991a). 
Notice that we take g0(xk9 χχ,..., xm) = 1, so that the E[g0] = 1 defines the 
normalization constraint (1). 

Example 1: Let X(sk) be the estimator of the homogeneous SRF X(sk). In 
order that X(sk) takes into account the means £[X(s,)] and covariances 

Cx(s„ s,) = E{[X(Si) - mx(Si)][X(Sj) - mx(s,)]} 

of the data values X(sI)=A/i, t n e functions gq(xk,xi9... ,xm) should be 
written 

gq(Xi) = Xi (5) 

where i = 1, 2 , . . . , m and k; q = 1 ,2 , . . . , m + 1 . Also, 

gq(Xi, Xj) = ÎXi - ™x(Si)][Xj - mx(sj)] (6) 

where ij = 1 ,2 , . . . , m and k; q = m + 2, m + 3 , . . . , (m + l ) (m+4) /2 . Then, 
the resulting E[gq~\ yield the specified means f}[X(s,)] and covariances 
cx(s/, s,). Similarly, in the case that the information about spatial variability 
is available in the form of the semivariograms 

yx(si9Sj)=±E[X(si)-X(sj)]
2 

the gq functions should be written 

gq(Xi,Xj)=\VXi-Xjf (7) 

where ij= 1 ,2 , . . . , m and k\ q = 1 ,2 , . . . , m(m + l ) /2 . 
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Example 2: To incorporate into the analysis information of the form of 
interval-type data, such as (Section 5.2.2 of Chapter 7) 

^ [ Ο , ώ , ] ^ 1 (8) 

one may define the indicator function 

gq(Xi) = Ix(Xi, ai) = 1 if Xi^ui9=0 otherwise (9) 

where g = 1, 2, . . . , m + l. Moreover one can write 

gq(si9 Sj) = [Ix(Xi, ώ,·) - m7(sI5 u>i)][ic(Ai·, fy) - m7(s„ ώ,)] (10) 

where m/(s,, ώ() = £[Jx(X(s () , ώ,)], and q = m+29 ra+3,..., (m + l ) x 
(m + 4)/2. Then, the £[gg(s;)] = 1 would define constraints (8) while the 

E[gq(Xi, Xj)] = cov[Jx(X(Si), ώ,·), iciA'is,·), ω,·)] 

is the indicator cross-covariance for the two threshold values ώ, and ώ,. 
Also, let 

gq(Xi,Xj)=lUx(Xi, äi)-Ix(Xj9 öi)][Ix(xi9 ùjj)-lx(xj9 ùjj)] (11) 

where i,j = 1, 2 , . . . , m and /c; q = 1 ,2 , . . . , m(m +1)/2. In this case the 
£[&?] defines the corresponding indicator cross-semivariograms. 

Example 3: If X(s) is an ISRF-*/ (Chapter 3), the g^-functions should be 
written, in general, as 

(12) gq(Xi, Xj) = I Σ 4/cSSl*J I Σ Qk'SSjXk' I 

In particular, let X(s) be an ISRF-^ in Rl with Yq(Si) = ̂ +1X(st), where 

A"+1x(5/) = Z(-Dfcc!;+1x[5i-(fc-l'-i)55] 

is the finite difference operator of order v +1 and 

«.-en 
(for simplicity and without loss of generality it will be assumed that 8s = 1). 
Then 

g,(^,A}) = [A"+1Af,][A''+1^] (13) 

the corresponding covariances turn out to be as follows 

cY(sl-sl) = ^+l^+lcx(s„5j) 
2i/+2 

= (-D"+1 Σ ( - i m „ + A U - * , + *> + ! -£) 
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If the X(s) is differentiable in the mean square sense, all 

n ( s i ) = 7 T M ^ ( s i ) ( f c = l , 2 , . . . , i i ) 
dsik 

are by definition homogeneous SRF. Also, the y(s,) = Vi/+1X(sI) is a zero-
mean homogeneous SRF; in this case 

gq(x„Xi) = [V"+ix,W+itf (14) 
and the covariance of Y(&i) is given by 

cY(h)=YJ Σ ^+i^v+iCx(si9Sj) 

= (-iy+lV2v+2kx(h) 

Example4: Let X(s, t) be an OS/TRF-^/μ, (Chapter 5). The g^-functions are 

gqiXiv, Xjrj) = Y^LqkpSs^Xkp 
L k p -I 

L k' p' -I 
If X ( s , t) is a differentiable O S / T R F - ^ / μ , all 

^ ( s » ^ ) = -TTTT^TT ^ ( S M K) (fc = 1, 2 , . . . , n) 

are by definition zero-mean space-homogeneous/t ime-stationary random 
fields and so is 

n s „ 0 = ^ - r T T V " + 1 X ( S l . , i u ) 

In this case, 

g,(^,^J = [^rV''+Viü][^V''+1
Ä-,77] (16) 

Experience and intuition will improve one's ability to translate qualitative 
knowledge into explicit mathematical constraints under the format of Eq. 
(4). In connection with this, it seems that the real power of subjective 
analysis is in fulfilling the need for normative rules according to which such 
translations will be carried out. Nevertheless, to assure the objectivity of 
the estimation approach, one should in general avoid the use of qualitative 
knowledge that is too vague to be expressed in a quantitative form. 

The prior probability fx(xk, ΑΊ, . . , xm) considered up to now includes a 
prior model for the relation between X(sk) and the X(Si) that refers to our 
knowledge regarding spatial variability before any specific measurements 

(15) 
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of the natural process have been taken into consideration. On the other 
hand, the posterior probability of thesis 3 (probability on evidence) 
f*(Xk\xi, · · · , Xm) refers to the (updated) knowledge, after these measure-
ments have been incorporated into the estimation process. These two prob-
abilities are related by the conditional probability law 

/
* / I \ JxKXki Xl 9 · · · 5 Xm) /+n\ 

xKXklXi, ·..,Xm)=—7-( r~ (17) 
Jx\X 1 9 · · · » Xm) 

which will be our basic tool in conducting sound stochastic inferences 
throughout the estimation process. Equation (17) constitutes a Bayes up-
dating formulation in which any updating requires knowledge of the prior 
probability model fx(xk, χλ,..., xm) of the unknown X(sk) and the data 
X(Si). In relation to this, it will be useful to set 

Bx(Xk) = log[/î(Xfclxi , . . . , *« , ) ] 

= log[/x(*fc, Xi, · . · , Xm)] -log[fx(Xi,..., Xm)] (18) 

where Bx(xk) will be herein called the BME function. 
The high posterior probability required by thesis 4 will be the final concern 

of the BME: The posterior probability f*(Xk\xi, · · · , Xm) or, equivalently, 
the Bx(xk) should be maximized with respect to xk. Note that in this case 
the xk is considered as a parameter of the posterior probability or the BME 
function of the underlying SRF. 

The Estimation Scheme 
In view of the above considerations, we can now formulate the BME version 
of the estimation problem as follows. 

Problem 1: Let X(s) be an SRF. Find estimates X(sk) of X(sk) at points 
sfc given data X(sf) = χί9 i = 1,2, . . . , m(iV k), such that 

(I) the entropy ε(Χ) of the prior model [Eq. (3)] is maximized with 
respect to fx(xk, X\,..., xm), subject to the normalization constraint (1) 
and the physical constraints (4); and 

(II) the BME function Bx(xk) is maximized with respect to xk; the 
latter will be the desired value of the estimator X(sk) at the point sk. 

The BME solution to the Problem 1 is provided by the following proposi-
tion (Christakos, 1990a). 

Proposition 1: The solution of Problem 1 above consists of the estimate 
X(Sfc) =Xk, which is the solution of the equation 

Z dgq(Xk9Xl9 · · · >Xm)\ Λ ,ΛΓίλ 

V>R — \xk=Xk
=0 (19) 

q = 0 dXk 

(17) 

(19) 
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where g0(xk9Xi9...9xm) = l and the μς (q = 0,1,..., Q) are Lagrange 
multipliers to be determined from the set of equations below 

M.= -log{±Jj\J[ 
m + 1 times 

x exp Σ PqgqiXk, Xi, ■ ■ ■, Xm) \dxk d\x... dxm \ (20) 

and 

m + l times 

xexp 51 μ^(χ^Xi9...9Xm)\dxkdx1...dxm = E[gq] (21) 

where q = l929...9Q and 

A =\ . . . I exp 52 PqgqiXk, Xi9--,Xm)\dxkdxl... dxm (22) 

m + l times 

The associated error variance can be determined by substituting the solution 
of Eq. (19) into 

a2
x(sk) = E[X(sk)-X(sk)f (23) 

Remark 1: Note that requirement (I) of Problem 1 leads to the following 
general expression for the joint probability density: 

fxiXk, Xi, · · -, Xm) = — expl £ ßqgq(Xk, Xi, · · · , Xm) \ (24) 

where A is given by Eq. (22). The probability density (24) is generally 
non-Gaussian. Moreover, according to requirement (II) of Problem 1 above 
we must have 

dBx(xk) = 0 
Xk=Xk dxk 

or 
dlogfx(xk9xl9...9xm) 

Λ = 0 (25) 
Xk=Xk dXk 

In view of the above results, the proposed estimation approach will consist 
of the following steps: 

(i) Solve the system of Eqs. (20) and (21) to determine the Lagrange 
multipliers μη (q = 0 , 1 , . . . , Q). 
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(ii) Substitute μ(1 into Eq. (19) and^solve with respect to X(sk) = \ k . This 
will lead to an estimate of the form X(sk) = xk = F[xx, χ2,..., * m ] , where 
F[. ] is, in general a nonlinear function. 

(iii) Substitute X(sk) into Eq. (23) to find the associated estimation error. . 

It is important to notice that the range of values of the natural processes 
involved in the estimation process determine the domains of integration in 
the entropy function as well as the constraints equation. Consequently, the 
solutions of Eqs. (20) and (21) depend on these ranges and so do the 
estimates obtained by means of Eq. (19). This should be intuitively expected, 
because the specific range of a natural process is valuable information that 
the BME incorporates into the estimation process. 

In relation to this, the solutions of Eqs. (20) and (21) may have a closed 
analytical form, or a numerical method may have to be applied. The latter 
will probably be the most common situation in practical applications where 
the different information sources may lead to specific integral domains and 
a variety of gq functions. Also, in certain cases a discretization process may 
be used. 

8.3 Properties of the Bayesian/Maximum-Entropy Estimator 

Given measurements of a natural process at a limited number of locations 
in space, the BME yields estimates of the process most likely to occur at 
unknown locations in space, subject to the a priori information about the 
spatial variability characteristics. In this regard, significantly different esti-
mates can be derived for different prior information sources. 

Depending on the form of the functions gq(xk,χί9...,xm), these esti-
mates are, in general, nonlinear combinations of the data. Moreover, Eq. 
(19) does not involve the explicit form of the prior probability (24), which 
rather is a convenient vehicle for the development of the estimation scheme. 
This is a very useful feature of the estimation process, since the integral A 
of Eq. (22) may require tedious calculations. 

It is natural to expect that as the number Q of the physical constraints 
(4) increases [that is, as the prior probability fx(xk,Xi,... ,xm) becomes 
more restrictive], the estimates X(sk) will be significantly improved. In the 
limiting case where there exists no physical constraint, the prior probability 
law obtained will be uniformly distributed over all possible X(sk) values, 
imposing no restrictions on the analysis. In this case the estimation problem 
has no unique solution. Therefore, for an estimation process to make sense, 
certain minimum prior information may be necessary, such as the spatial 
mean and covariance, the median, and any other quantile, or in general 
any spatial moment of any order. 



8. A Bayesian/Maximum-Entropy View of the Estimation Problem 395 

In relation to this, an important part of the estimation problem is to 
identify that set of gq constraints (4) which, together with the available 
measurements, assure the desired estimation accuracy (23). If the given set 
of constraints fully characterize the probabilistic structure of the underlying 
SRF, any further improvement of the accuracy (23) will depend mainly on 
two factors: (i) the experimentally calculated quantities E[gq]9 which are 
the operational parameters of the analysis, and (ii) the quality and number 
of the measurements available. On the other hand, if the given constraints 
do not provide a sufficient characterization of the underlying SRF, the 
estimation accuracy (23) will depend on the introduction of a more appropri-
ate set of constraints (which will offer a better characterization of the SRF), 
as well as on the factors (i) and (ii) above. 

The incorporation of the gq-constraints, can improve significantly the 
characterization of the physical system under consideration. These con-
straints, which may be of a linear or a nonlinear form, in general, stress 
the model-dependent character of the BME concept. That is, its ability to 
incorporate as part of the analysis a body of information that should come 
from physical models. For illustration let us consider a few examples. 

Example 5: When estimating piezometric heads it will be more realistic that 
some of the gq constraints represent conditions imposed by the flow models 
and the head boundary conditions of an aquifer. For instance, in the case 
of a steady two-dimensional flow without sources or sinks, the stochastic 
groundwater flow model and the associated boundary conditions may be 
written as 

à Γ ^ χ*Λ(β)1 à Γ , χ θ Λ ( ί ) 1 Λ 
— Γ ( β ) — — + — T(s — — = 0 
às\ L àsx J ds2 L ds2 J 

and 

fi— fiHs)=f3 

respectively, where h(s) is the piezometric head, T(s) is the transmissivity, 
dh{s)/drj is a derivative normal to the boundary, and fi9 i = 1,2, and 3 are 
given functions on the boundary. These equations can lead to gq constraints, 
in terms of the probability densities of h(s) and T(s), or their second-order 
moments. 

Example 6: Constraints may be imposed by groundwater management 
models, where gq should take into consideration inequalities of the form 
Rf <c*, where R is a concentration response matrix which is developed on 
the basis of steady-state groundwater flow and solute transport equations, 
f is a vector whose elements correspond to solute disposal rates, and c* is 
a vector of water quality standards (e.g., Gorelick, 1982). 
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Example 7: Other constraints arising in the context of water quality manage-
ment may be of the form P[c(s, i) — c*(s, 0]— A where c(s,t) denotes 
spatiotemporal contaminant concentrations simulated on the basis of 
stochastic solute transport models, c*(s, t) denotes the local water quality 
standards, and p are specified reliability levels (see "soft" data in Chapter 
7; also, Wagner and Gorelick, 1987). 

As we saw before, the Lagrange multipliers μ^ (q = 0 , 1 , . . . , Q) have 
certain interesting features linked to the spatial structure of the process 
under estimation. Particularly, Eq. (21), in addition to 

entails that 

and 

-^V-=B[*«*«'J (26) 

To fix ideas, consider the case of Example 1 above where for simplicity 
let m = 2. It holds true that 

dßo , v dßo 3μ0 - — =mx(*i), - — =rnx(s2), - — =mx(sk) 
d/Xi θμ2 ομ3 

_ ^ = ^ ( S l ) = - ^ , - ^ = c,(Sl,S2) 
θμ4 όμλ θμ5 

„ — c^^s^Sk;, ^ — o-x{s2) — ^ 2 
θμ6 βμΊ θμ 2 

~2 

-—-= cx(sl9 sk), ——-= o-̂ (Sfc) = ——^ 

Higher order moments may also be obtained; for example 

d μο = £{[X(S l) - mx(Sl)][X(s2) - mx(s2)][X(sk) - mx(sk)]
2} 

Βμ68μ% 

These properties of the Lagrange multipliers μη may be useful in the 
context of multi-objective sampling strategies and economic analyses. 

The BME reasoning does not require, in general, any Gaussian-type 
hypothesis. Moreover, the estimation scheme does not include any require-
ment of unbiasedness (as in ordinary kriging, for instance, where the sum 
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of the weighting coefficients is required to be equal to unity). The lack of 
such a requirement allows the estimation scheme to consider additional 
information about the data. 

Equation (17) is the expression approximated in the context of indicator 
kriging (Journel, 1986). There is, however, no maximization of entropy 
involved in that approximation. Some interesting connections between the 
Bayesian/maximum-entropy estimator and the kriging estimators will be 
discussed in the following section. 

In the rather rare circumstance where the multivariate probability law 
fxiXk, X\ 9 · · · , Xm) is known a priori, it can be directly inserted into Eq. (25) 
to solve for the desired estimate X(sk) = xk. Notice that the maximum 
loglikelihood equation, viz., 

dlogfx(Xi9...9Xm\xk)\ _d\ogfx(Xk,Xi,"-,Xm) 

=xk
 dXk dXk 

d log/xOft) 
= 0 

Xk=Xk dXk 

yields the same estimates with Eq. (25) if the prior probability density fx(xk) 
is uniform. 

The Bayesian/maximum-entropy formalism can be extended to the 
case of S/TRF X(s, t), (s,t)eRnxT (Chapter 5). For example, the 
information measure contained in a set of random variables in 
space-time, {xkp, xn, x 1 2 , . . . , xmr} with joint probability density 
fxiXupy Xu, Xn, · · · , Xmr) is given by 

Inf [xkp, xn, x 1 2 , . . . , xmr] = -log[fx(Xkp, Xn, *i2, · · · , Xmr)] (27) 

The corresponding prior constraints involve expectations in space-time, 
spatiotemporal correlation functions, etc. Several of the space-time results 
just reflect analogous results of the SRF context discussed above, but there 
may be interesting differences as well (see, e.g., Chapter 5). 

8.4 The Linear Case 

To gain some insight about the BME estimator, Proposition 2 below con-
siders a special but very important case (Christakos, 1990a). 

Proposition 2: The solution to Problem 1 when the physical constraints are 
of the form (5) and (6)—that is, when the properties the estimator must 
account for are the spatial mean and co variance of the homogeneous random 
function X(s)—is given by 

vr \ ( \ °~x(sfc) sr Xi-mx(Si) / 0 0 x 
0fck i = 1 <rx{sk)ax{8i) 
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where aki are known functions of the covariances cx(sf, s,·), ij = 1, 2 , . . . , m 
and k. 

In relation to Proposition 2, the following points may be stressed: 

(a) The input to the estimation approach is restricted to the spatial 
means and covariances. 

(b) The probability law of the underlying SRF is found to be, in this 
case, multivariate Gaussian. 

(c) The corresponding estimator is a linear combination of the data 
available. 

On the basis of (a) and (b), if the underlying SRF X(s) is Gaussian, 
constraints (5) and (6) are sufficient to fully characterize X(s). 

In view of these facts, it might be interesting to compare the estimator 
(28) with some kriging estimators: Simple kriging (see, e.g., Journel, 1989) 
in the presence of a multivariate Gaussian probability density amounts 
simply to consider for estimate 

[X(*k)]sK 

the corresponding conditional mean that happens to be linear in the data 
Xi9 i = 1 ,2 , . . . , m. One the basis of Eq. (17), and since f*(Xk\xi, · · · , Xm) 
is Gaussian, its mean is also the value that maximizes the BME function 
Bx(Xk) with respect to xk. Hence the following corollary holds true. 

Corollary 1: Equation (28) coincides with the simple kriging estimator. 

Example 8: Assume that the only information we have about the SRF X(s) 
in R1 is its mean E[X(s)] = 0 and its covariance function cx(s, s'). From 
Eq. (28), the estimate of the SRF at point s, given data at points s' and s", 
see Fig. 9.25, becomes 

XM = 2, \x[a)n ^ [*<*'>+ X(S"K (29) (Tx{s) + cx{2a) 

XK(s) = t1X(s') + Ç2X(s") 

S' S S" 
o x 0 

a a 

Figure 9.25 Estimation in R1 

The corresponding ordinary kriging estimator will be 

(29) 
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where the weights ξλ and ξ2 are determined by minimizing the estimation 
error variance E[XK(s)-X(s)]2, subject to the unbiasedness condition 
E[XK(s)-X(s)] = 0. The result is 

Xk(s)=&X(s') + X(s")] (30) 

It is obvious that while Eq. (29) accounts for spatial variability, Eq. (30) 
does not. The latter is, simply, a "naive" estimator, namely, the arithmetic 
mean of the two values available. 

On the other hand, disjunctive kriging is a nonlinear estimator, which 
corresponds to reproduction of a particular type of Gaussian-related bivari-
ate probability density (isofactorial densities). Constraints of the type (6) 
correspond to reproduction of the spatial covariance and, therefore, con-
straints (6) alone would fail to represent the disjunctive kriging approach. 

Working along the lines of Proposition 2, the following result can be 
proven. 

Proposition 3: The solution to Problem 1 when the physical constraints are 
of the form (7)—that is, when the property the estimator must account for 
is the spatial semivariogram of the homogeneous SRF X(s)—is given by 

m 

Σ bkiXi 
* ( s * ) = ^ (31) 

i = 1 

where bki are functions of the semivariograms yx(si9Sj)9 ij = 1 , 2 , . . . , ra 
and k that are determined from the constraints (7) and the normalized 
constraint (1). 

Despite the fact that in the homogeneous case the covariance and the 
semivariogram functions are considered equivalent tools of statistical infer-
ence, the estimates (28) and (31) do not coincide. This is due to the additional 
sources of information—namely, the spatial means—incorporated in the 
derivation of the estimate (28). 

8.5 Some Final Remarks 

The Bayesian/maximum-entropy approach to the spatial estimation is very 
promising, for a variety of reasons. More specifically, the approach 

(i) Takes into account not only the data, but also the prior 
information and knowledge that are highly relevant to the spatial 
variability of the natural process under estimation. 

(ii) Leads to a posterior probability with minimum uncertainty 
attached to it. 
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(iii) Yields, in general, nonlinear estimators; it does not call for any 
Gaussian-type hypothesis or unbiasedness assumption. 

(iv) Attributes great significance to procedures translating qualitative 
knowledge into appropriate quantitative constraints; in its present form, 
the Bay esian/maximum-entropy approach may not suffice to account for 
all sorts of qualitative prior information, but it does significantly restrict 
the range of arbitrariness. 

(v) It can be applied in the case of spatiotemporal random fields as well. 
(vi) Yields results similar to those derived by well-established estimation 

methods, when the same amount of information is used. 
(vii) In addition, it has fruitful applications in sampling design and 

terminal decision analysis (see Chapter 10). 



101 

Sampling Design 

"It is probably true quite generally that in the history 
of human thinking the most fruitful developments 
frequently take place at those points where two different 
lines of thought meet. These lines may have their roots 
in quite different parts of human culture, in different 
times or different cultural environments or different 
religious traditions; hence, if they actually meet, that is, 
if they are at least so much related to each other that a 
real interaction can take place, then one may hope that 
new and interesting developments may follow." 

W. Heisenberg 

1. Introduction 

Many issues concerning water resources management, hazardous waste site 
exploration, industrial and municipal wastewater treatment systems are 
closely related to the quantitative evaluation of certain important charac-
teristics of the underlying natural processes. For example, the classification 
of soil (contaminated versus noncontaminated) depends on the estimation 
of the concentration of contaminants in space. Groundwater quality 
monitoring in an aquifer can act as an early warning device in preventing 
groundwater contamination problems; the reliability of such monitoring is 
based on the quantitative assessment of the uncertainty in the model para-
meters. Subsurface pollution caused by industries and municipalities is a 
localized process and, hence, the design of any remedial measure requires 
information about the size, the direction, and the existing trends in the 
spatial variability of the contamination levels. In the context of site manage-

401 
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ment and decision-making, some of the difficult problems are related to 
model uncertainties caused by the variability of model parameters and 
experimental procedures. 

Issues such as the above need to be answered by the statistical analysis 
of site samples obtained on the basis of an exploration project. Particularly, 
exploration of natural processes is a procedure prepared and performed to 
get that amount of information that will allow an adequate physical under-
standing of the process. This is accomplished through partial sampling of 
extensive soil domains. In this chapter, the term sampling design refers to 
a mathematical procedure that provides the parameters associated with the 
arrangement of a number of observations over the particular site; such 
parameters are the sampling pattern (i.e., systematic, stratified, random, 
square, hexagonal, etc.), sampling density in space (i.e., number of samples 
per unit area), and sampling frequency in time (i.e., number of samples per 
unit time). Sampling leads to imperfect knowledge that is subject to sampling 
error. To reduce overall predictive uncertainty requires a more spatially 
disaggregate model than the one used by approaches based on classical 
statistics. Moreover, most natural processes exhibit a nonhomogeneous 
spatial variability with complex trends. This implies that a trade-off is being 
made between exploration uncertainty and spatial variability. The increase 
of the complexity and the cost of most sampling projects makes an optimum 
design of sampling necessary, in order to gain maximum information for a 
given cost. 

Site exploration, on the other hand, may not be the actual or ultimate 
problem in need of a solution. Completing the exploration task produces 
information for solving other problems. The latter may be related, for 
example, to waste site management and planning; classification of water 
resources prospects and determination of whether the prospects warrant 
further study; and environmental policy decisions. In a realistic sampling 
design, the amount of information required, the kind of data to be collected, 
and the optimality criterion to be used are important factors that depend 
on the specific objectives of the problem at hand. 

Certainly, there is not a universally best sampling design approach. In 
this chapter we do not intend to cover all possible aspects of sampling 
design in practice, such as management and planning objectives, social and 
economic factors, physical models, experimental conditions, and the multi-
ple utilities of sampled data. Our main purpose will be to discuss several 
general methods that aim at the maximization of the efficiency of the 
sampling design in determining specific site exploration parameters, using 
concepts from the theory of random fields and stochastic estimation. It is 
then left to the scientists and engineers to judge the appropriateness of these 
methods for the specific conditions and objectives of the problem at hand. 

The sampling design methods to be exploited in this chapter are prepared 
and performed 



2. About Sampling 403 

(a) to derive optimal values of the sampling parameters for the target 
site, such as sampling pattern, sampling density in space and 
frequency in time, and expected sampling accuracy; 

(b) to construct predictive maps and identify boundaries between 
geologic formations, contaminated and uncontaminated soils, etc.; 
and 

(c) to provide the model inputs necessary for site management, 
planning, and decision making. 

Parts (a) through (c) above should take into consideration the physical 
structure of the natural processes involved and should be accomplished in 
a computationally efficient and cost-effective manner. 

This chapter is mainly concerned with sampling in R2, but certain results 
in Rn (n>2) are also discussed. For practical applications, the sampling 
approaches are classified in a variety of ways. First, certain simple but 
useful practical solutions to the sampling problem, in terms of simple 
arithmetic mean estimators and dispersion variances, are discussed. Then, 
more sophisticated solutions are considered, based on the results of Chapter 
9. The application of these results makes it possible to simplify the mathe-
matics behind spatial sampling and, at the same time, to gain in generality 
in order to expand in applicability. On practical grounds, the establishment 
of systematic, step-by-step procedures is possible, where the required values 
of the accuracy parameters for the particular site are derived from readily 
available reference charts and entered into simple yet accurate formulas. 

Within the more general framework of terminal decision analysis, the 
Bayesian/ maximum-entropy approach of Chapter 9 allows us to incorporate 
into exploration strategies useful measures of information content, explana-
tory power, and equivocation of physical models. 

2. About Sampling 

2.1 General Considerations 

In general, sampling design aims at an arrangement of observations of a 
spatially distributed natural process wherein certain objectives of site explor-
ation are satisfied. In many cases the only objective is that the error in 
estimating the process is the smallest possible among a number of practically 
conceivable arrangements. In several other situations, however, additional 
factors, such as sampling cost and physical constraints, may need to be 
taken into account, as well. Finally, parameters related to site management, 
planning, and decision making may exert a major control on the effectiveness 
of the sampling design. 
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A sampling technique must account for the spatial variability characteris-
tics of the natural process sampled. The analysis of spatial variability is the 
key to efficient sampling. Principles of sampling design can be understood 
by realizing how assumptions or knowledge about spatial structure have 
been taken into consideration in the design. After all a sampling case does 
not exist when a site is known to have no spatial variability: Increasing the 
sample size would not provide any new information. It is only when there 
exists some degree of spatial variability that an increase in the sample size 
tends to increase the accuracy of the estimation. 

Classical sampling techniques are of limited help in analyzing this type 
of exploration survey. More specifically, the limitations of classical tech-
niques for site characterization are as follows: classical techniques do not 
treat spatially correlated observations; they do not address geometric prob-
lems of search and pattern recognition; and they deal, essentially, with 
estimates of frequencies in large populations, not with decisions. 

As we will see below, a much better approach is provided by the random 
field model and the stochastic estimation methods discussed in previous 
chapters. The random field approach can be used advantageously to specify 
important spatial variability characteristics, to design a sampling network, 
and to analyze and evaluate the results obtained. While in theory the 
sampling design methods to be discussed in this chapter are generally valid 
for spatially distributed natural processes that can be modeled as random 
fields, from a practical standpoint a number of important issues may arise. 
For example, practicing engineers and geologists know that it is not the 
same to measure depth to bedrock as it is to sample a particulate material; 
also, the experimental procedures to sample hydraulic conductivities at 
points in space are not the same with the ones used to measure trans-
missivities. Hence, although all the above natural processes can be modeled 
in terms of random fields, they drastically differ with respect to a variety 
of issues, such as experimental devices, instrumental biases, measurement 
errors, and scales of observation (e.g., Gy, 1982; Cushman, 1984). These 
important experimental issues will not be addressed in this chapter. Rather 
it will be assumed that observations can be obtained in space as a result of 
an experimental procedure that respects all the necessary rules of good 
sampling (controllable extraction biases, reproducible conditions, undistur-
bed samples, etc.). If this is not possible in practice, the mathematical 
sampling design methods cannot be used. 

2.2 Optimal versus Suboptimal Solutions 

In general, the derivation of optimal sampling designs, in a well-defined 
mathematical sense, is a difficult problem. In some cases, an optimal solution 
to this problem may not exist. Optimal sampling designs for fixed sample 
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size N, when they exist, are in general difficult to determine, even in one 
dimension (e.g., Benhenni and Cambanis, 1990). Asymptotically optimal 
and approximate solutions are possible only under certain restrictive condi-
tions (e.g., Ylvisaker, 1975). 

From a statistician's point of view, a typical optimal sampling problem 
may be posed as follows. Let X(s) be an SRF, and suppose that 9Î = 
{S: S = {s,; i = l , . . . , N}} (N is a fixed integer) is the space of all possible 
sets S of sampling points s, within the domain U(s) of X(s). Choose a set 

S* = {sf;/ = l , . . . , JV}eSt 

satisfying 

σ2(5*) = min E \ f / (s)X(s) ds - £ A,X(sf ) 
λ ' LJl / ( s ' ) i = i 

= min min E\ / (s)X(s) ds-Σ ΑΛ(β,) I (1) 
Se9î λ, LJl/(s') I = 1 J 

in which/(s) is a known continuous function on l/(s)<= Ä". 
The above sampling problem can be put in a more general framework, 

by using the loss function 

L[X(s), X(s)] = L{F[X(Sl), ί = 1 , . . . , AT]; X(s)} 

(for notation see Section 3 of Chapter 9). In this case, the set 5* of sampling 
points must satisfy 

σ2(5*) = min E[L{F[X(sf\ i = 1 , . . . , N ] ; X(s)}] 

= minmin£[L{F[X( S l ) , i = 1 , . . . , N ] ; X(s)}] (2) 
&eut F 

Generally, depending on the choice of the loss function, to use criterion 
(2) one needs to know the underlying multivariate probability distributions. 
This usually makes the application of criterion (2) a more demanding 
proposition than that of (1). 

In scientific applications, on the other hand, one faces a variety of 
sampling design problems. In a large group of sampling design problems, 
one is interested in the areal performance of the sampling network with 
respect to some efficiency indices (usually variances of estimates for linear 
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functional). This group is considered in detail in this chapter. In particular, 
the simplest areal efficiency index used is the variance 

a2
A(S) = E[Xv-XO]2 (3) 

in which 

Xu~u\uv 
X(s) ds (4) 

uw) 
is the mean and its estimator is given by 

1 N 

*υ=^Σ*(^) (5) 
i = l 

where S = {sf; i = 1 , . . . , JV}e9t. In this case, the objective of sampling 
design is to choose a set S*e9t so that the estimation variance (3) is 
minimized, viz., 

a2
A(S*) = mina2

A(S) (6) 
Se m 

Note that the expectation in Eq. (3) may be written as 
E H = fU£ s p [ · ]} (7) 

where Ex means expectation with respect to the SRF X(s) and Esp denotes 
expectation with respect to the randomness of the sampling pattern, if any. 
Moreover, for f(s) = l/ U and Af = l/JV, expressions (1) and (6) coincide. 

When the more sophisticated optimal estimation methods of Chapter 9 
are used, the sampling efficiency may be evaluated through several areal 
efficiency indices, like the average estimation error over the domain U, 
viz., 

*Α(5)=^Σ<^(>*) (8) 
K k=i 

where K is the number of the estimated points in U\ sk are the points 
(usually on a regular grid) where estimates are obtained by means of the 
methods of Chapter 9 and a2

x(sk) are the point estimation errors. For 
example, one may write 

AXsf c)-£Af c iX(sf) 

where m < N < K. Another areal efficiency index is provided by the 
maximum estimation error, viz., 

σ2
Μ(5) = η κ ι χ [ σ ^ ) ] (9) 

Sfc 

Finally, the minimum estimation error is the trivial value zero at the 
sampling points. The objective of sampling design is to choose the set of 
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sampling points that minimizes the areal efficiency index. When the areal 
efficiency index (8) is used one is looking for the set S* that minimizes the 
average estimation error variance, viz., 

a2
A(S*) = mm a2

A(S) (10) 

In the case of (9) the set S* is the one that minimizes the maximum 
estimation error; that is, 

<r2
M(S*) = mina2

M(S) (11) 
Se M 

Clearly, different areal efficiency indices may lead to different sampling 
designs. In earth science, criterion ( 10) is used in the majority of applications. 
In some special cases, however, different sampling criteria may be used, 
depending on the objectives of site exploration. For example, in Section 
2.5 we consider criteria that account for the minimization of exploration 
cost and other constraints. In Section 5 we exploit some optimality criteria 
in the form of loss functions L[ · ]; in many situations of practical impor-
tance, however, there are serious difficulties in assessing a realistic loss 
function. In Section 9 we study criteria based on the maximization of the 
sampling entropy. In general, one should first formulate the purposes of 
sampling explicitly, and then choose the appropriate criterion. 

In most scientific applications, on the other hand, a mathematically 
optimal solution to the sampling problem is neither achievable nor 
necessary. Due to a variety of reasons, such as site uncertainties, economic 
factors, mathematical and computational difficulties, one is restricted to the 
best suboptimal solutions. There are, of course, many variations to the 
meaning of the term "best suboptimal solution." In practice it usually 
implies a sampling design that performs satisfactorily with respect to specific 
site exploration objectives and constraints. 

2.3 Important Sampling Notions 

The application of spatial estimation methods in sampling design calls 
for the notions of sampling pattern, sampling density, and estimation 
neighborhood. 

Sampling pattern refers to the geometrical configuration of observations 
in space. The most important two-dimensional patterns fall into three major 
groups, as follows. 

(i) Systematic (regular) sampling patterns-, such as the hexagonal, the 
square, and the triangular patterns (Fig. 10.1). By convention, the names 
are assigned on the basis of partitioning the sampling area in a way that 
considers each sampling point as the centroid of a Voronoi polygon (see, 
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Figure 10.1 Systematic sampling patterns: (a) hexagonal, (b) square, and (c) triangular. 
The shaded areas are the basic repeating patterns 

e.g., Fig. 10.2). As we will see below, a circular pattern (i.e., a pattern 
consisting of disjoint circles), although mathematically interesting, has no 
immediate practical consequence, since such a pattern is not easily 
implemented in practice. 

(ii) Stratified sampling patterns; such as the hexagonal and the square 
patterns (Fig. 10.3). These patterns are obtained by dividing the sampling 
area into mutually exclusive partitions (e.g., polygons) and then selecting 
randomly a point from each partition. 

(iii) Random sampling patterns; such as in Fig. 10.4. Other groups of 
sampling patterns are the clustered, the regular clusters, the 
bisymmetrical, and the orthogonal regular traverses (some examples are 
shown in Fig. 10.5; also, see Olea, 1984). 

The size of the sampling pattern is an important factor in sampling. When 
this size is small it may produce a border effect. In theory, the sampling 
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Figure 10.2 Voronoi polygons and systematic sampling patterns: (a) hexagonal, (b) 
square, and (c) triangular 
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Figure 10.3 Sampling mechanisms for stratified sampling pattern: (a) hexagonal, (b) 
square. The shaded areas are the basic repeating patterns 
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Figure 10.5 Other examples of sampling patterns: (a) Clustered sampling pattern with one 
cluster; (b) clustered sampling pattern with five clusters; (c) regular clusters with sixteen 
points; and (d) regular clusters with four points per cluster 
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patterns are supposed to extend to infinity in order not to have to account 
for obvious bounding effects on the average estimation error. In practice, 
however, the average estimation error for the above, as well as for several 
of the following charts, has been calculated by considering samples of 64 
points. More specifically, 

(a) For systematic sampling patterns, the estimation variance shows a 
repeating pattern. Therefore it is required only to study the estimation 
variance within the basic repeating pattern to know the characteristics for 
an infinite pattern. The basic repeating pattern is always small enough, 
relative to the sample of 64 points, so that when up to 32 points are used 
to estimate there is no boundary effect in the estimations. In addition the 
solution is unique. In some cases, an integer multiple of the basic pattern 
may be necessary to focus attention within a rectangular or square area. 
In Figs. 10.1, 10.3, and 10.4 the shaded areas denote the basic repeating 
patterns; for example, in the case of a hexagonal sampling pattern the 
average estimation variance was computed over the rectangle comprising 
12 basic repeating pattern units; in the case of a triangular sampling 
pattern the average estimation variance was computed over the rectangle 
comprising six basic repeating pattern units. 

(b) On sampling patterns fully or partially random, there is no longer 
a small repeating pattern to represent the entire population. In this case 
judicious selection of the area to estimate is to be made in order to 
consider the largest area that will not have much of a boundary effect, 
taking advantage of the symmetry when possible. The solution is not 
unique. Each class, like a random pattern, involves an infinite number of 
possible point arrangements, each one with its own average estimation 
error. 

Sampling density Θ is the number of observations per unit area (e.g., the 
number of boreholes per square kilometer). In some cases sampling density 
and pattern completely define the pattern configuration (e.g., regular pat-
tern). This is not the case, however, of a random or a stratified pattern 
where there is more than one configuration per pattern. 

The estimation neighborhood m is a sampling factor that appears in the 
case of optimal linear estimation methods (Section 4 below), and denotes 
the minimum number of sampling points necessary for the estimation system 
to be solvable. 

2.4 Search Algorithms 

As we saw above, an important part of sampling design is the choice of a 
set of sampling points that minimizes an areal efficiency index or, more 
generally, that satisfies a given optimality criterion. This is a search problem. 
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In most cases, mathematically optimal solutions to the search problem are 
very hard or even impossible to determine, so one is restricted to the best 
suboptimal solution. Search algorithms play an important role in the context 
of local sampling methods; see Section 5 later in this chapter. 

In R2 the minimization of the areal efficiency indices a2(S) = a2
A(S) or 

CMÎS), can be achieved by means of computational algorithms that yield 
good suboptimal solutions quickly. All search algorithms to be considered 
here assume that the number N of sampling points to be taken is fixed; 
moreover, the N sampling points must be selected from a domain U that 
is finite and well defined in space. 

The most successful algorithms seem to be the annealing algorithms. 
These algorithms use random starting patterns to avoid a solution that is 
only locally minimum. An important ingredient of such algorithms is the 
probability irk of going from a set of sampling points Sk to a set Sk+l. 
Examples of irk include (Metropolis et al, 1953; Geman and Geman, 1984; 
Sacks and Schiller, 1988): the probability 

7Tk = min{l, exp[-yk(er2(Sfc+1) - a2(Sk))]} (12) 

where yk = logk/y (/c>2) and y is a parameter to be specified by the 
analysis, and the probability 

lo.f 
. . if a2(Sk+1)-a

2(Sk)<0 
^ = A f +u . (13) 

otherwise 

The search algorithm summarized in Table 10.1 is based on a method 
proposed by Sacks and Schiller (1988); it can be used for two-dimensional 
domains when the number of sampling points is fixed (say N). As is obvious 
from Table 10.1, the algorithm depends on certain parameters, namely 770, 
8', a, δ, and M, which need to be specified (experience plays an important 
role here). In practice, the algorithm of Table 10.1 seems to perform well 
for parameter values such as a = 0.01, δ e [0.3,0.5], and M e [100, 250]. 

The search algorithm of Table 10.1 is still valid when the minimization 
of the areal efficiency indices is replaced by other optimality criteria; such 
as, for example, the maximum-entropy sampling criterion discussed in 
Section 9 below. 

Less sophisticated, but nevertheless useful in practice, search algorithms 
are the greedy algorithm and the sequential exchange algorithm. These 
algorithms are used when one wants to pick N sampling points from among 
M candidate locations within the domain U, according to some optimality 
criterion. These locations are known a priori and their number M is much 
larger than N. Then, the number of possible combinations of N sampling 
points among M candidate locations is in the order of MN. 

(12) 
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Table 10.1 The Annealing Search Algorithm 

Step 1: Start by picking a set 5 0 of N sampling points at random from the domain U of 
the natural process, and let π0 = 0.7. 

Step 2: At stage k+1 pick a point s' at random from the set U-Sk, and find another point 
s" e Sk satisfying 

(T2(Sk u s ' - s " ) = min c r 2 (S k us ' - s ) 
s<=Sk 

If o-2(Sfc u s ' - s " ) < σ 2 ( 5 | ί ) , take Sk + 1 = Sk u s ' - s " ; if not, take Sk + 1 = S k u s ' - s with 
probability irk and Sk+1 = Sk with probability l -7 r k . 

Step 3: In the case that Sk+i = Sk pick a point s* at random from U-Sk - s ' , and repeat 
step 2 using s* instead of s'. 

Step 4: Repeat step 3, if necessary, η0 times, i70< K - N (K is the number of estimated 
points and N is the number of sampling points). If, after r/0 trials, no movement has 
occurred, take Sk+l = Sk and 7rk+1 = min{l, 7rk/(l - δ ' ) } ; change to stage k + 2 and return to 
step 2. 

Step 5: Let 

Ul-8)nk if σ^Λ^α-^τηϊη^σ2^) 
[ 7Tk otherwise 

Step 6: The sampling procedure is terminated when there have been M trials since a 
change in 7rk. 

The greedy algorithm (see Table 10.2) is very simple, and involves NxM 
possible combinations of N sampling points from the M candidate loca-
tions. It is by no means optimal, but it seems to perform well as a first guess 
in practice. 

The sequential exchange algorithm (Table 10.3) does not get optimal 
solutions, in general. It involves kx NxM combinations, where fc is a 
small integer. According to Aspie and Barnes (1990), a reasonable range 
of values is 1 < fc< 5, while most often fc = 1 or 2. Other interesting search 
algorithms include the genetic algorithm (e.g., Goldberg, 1989), the integer 
programming branch and bound algorithm (e.g., Garside, 1971), and the 
discretized partial gradient algorithm (e.g., Fedorov, 1972). 

Table 10.2 The Greedy Search Algorithm 

Step 1: Start by picking a single best sampling point (with respect to the given optimality 
criterion) among the M candidate locations. 

Step 2: Choose as a second sampling point among the M — 1 remaining locations the one 
that makes the best combination with the first point determined in step 1. 

Step 3: Continue until all N sampling points have been selected. 
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Table 10.3 The Sequential Exchange Search Algorithm 

Step 1: Start by picking an initial set 50 of N sampling points among the M possible 
locations (e.g., the greedy algorithm can provide an initial choice 50). 

Step 2: Keep N - l samples of the set S0 fixed and find the best sampling location for the 
Nth sample; this will yield a new set 5 t . 

Step 3: Do the same for each one of the remaining N - l points; let 5N_X be the last set of 
sampling locations, after all N points have been used. 

Step 4: Repeat steps 1 through 3 starting with the set 5 Ν _ ! instead of 5 0 . After k repeats 
the algorithm converges to a final set of sampling points, where no further improvement is 
possible. 

2.5 Multiple Objectives in Sampling Design 

As already mentioned, in many exploration projects the decision maker 
seeks to achieve more than one objective or goal in selecting the course of 
action. In addition, constraints imposed by site conditions, economic factors, 
and binding regulations might be incorporated into the analysis (see, e.g., 
Hwang and Masud, 1979; Zeleny, 1982; Christakos and Olea, 1988; 1992). 

Within the framework of practical sampling strategies, the objectives 
above and at least the most important constraints may be effectively incor-
porated in terms of 

(a) two major quantifiable objectives, minimization of estimation error 
(or, equivalently, maximization of estimation accuracy), and 
minimization of exploration cost; 

(b) a set of constraints arising from the structural identification of a 
particular site as well as the budget of the exploration project; 

(c) a preference (or loss, or cost) function which, given the objective 
levels attained, allows the decision maker to assess the relative value of 
the trade-off information between (a) and (b). 

In mathematical terms, the issues (a), (b), and (c) may be summarized 
as follows: 

Minimize PF[fl,f2,r] (14) 

subject to 

/ i , / 2 e C (15) 

where PF is the so-called preference, loss, or total cost function; / i , / 2 are 
objective functions associated with the estimation accuracy and the cost of 
the sampling effort, respectively; r is the trade-off between objectives; and 
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C is a set of constraints on fl9f2 imposed by sampling factors, subsurface 
conditions, or budget limitations. 

2.6 Some Classifications of Sampling Design Methods 

For application purposes, sampling approaches can be classified in a variety 
of ways. 

The first, and perhaps most important, classification considers two major 
groups of sampling methods, namely, global (Section 3 and 4) and local 
methods (Section 5). The global approaches try to optimize the location of 
several observations at the same time by examining the efficiency of various 
sampling patterns by means of areal efficiency indices. They are fast and 
simple, and particularly useful when one needs to evaluate a group of 
possible sampling designs still on the drawing board or to perform extensive 
redesigns to maintain the efficiency of a sampling network. In the 
local approaches, the influence of additional sampling locations is analyzed 
separately. This is achieved either by means of variance reduction functions 
or in terms of the expected value of suitable loss functions. The local 
approaches may require the knowledge of multivariate probability distribu-
tions; they are used when one needs to expand an existing irregular sampling 
network or to partition a region into different zones. 

The second kind of classification consists of methods based on simple 
averages, optimal linear estimators, and Bayesian/maximum-entropy analy-
sis. The first two groups of methods (Section 3 and 4) apply minimum mean 
square error spatial estimation techniques and do not require the knowledge 
of multivariate probability distributions. On the contrary, to use the 
Bayesian/maximum-entropy sampling methods (Section 9) one needs to 
know the underlying multivariate probability distributions. 

A third kind of classification distinguishes between methods for sampling 
homogeneous natural processes and methods for sampling non-
homogeneous processes. 

Other groups of sampling design methods may be classified on the basis 
of the optimality criteria they apply. Each one of the above kinds of 
classification is independent of the others. For instance, a sampling approach 
based on optimal linear estimation may be used to sample homogeneous, 
as well as nonhomogeneous natural processes. 

3. Simple Global Approaches to Sampling Design 

3.1 Sampling Variances 

The sampling problem to be examined here is the one described by Eqs. 
(3) through (6) in Section 2 above. The SRF are assumed to be homogeneous 



416 Chapter 10. Sampling Design 

and, hence, Ε[Χυ-Χυ] = 0. Let us first consider some interesting 
expressions of the estimation variances. By substituting Eqs. (4) and (5) of 
Section 2 into Eq. (3) of Section 2 it can be shown that 

a2
A=cx(U9 U) + cx(N9N)-2cx(U9N) (1) 

where, cx(U9 U) is the mean value of the covariance cx(h) when the two 
extremities of the vector h = s1 - s 2 independently describe the domain l/(s); 
that is, 

cx(U9U)=^-2\ [ cx(sl-s2)dslds2 (2) 
U J t/(s) J L/(s) 

cx(N9 N) is the mean value of the covariance cx(h) when the two extremities 
of the vector h independently describe the set of sample locations s, 
(i = l , . . . , N ) ; that is, 

1 TV TV 

οχ(Ν9Ν)=—2Σ Σ ^ - S ; ) (3) 
™ i = l j = \ 

cx(U9 N) is the mean value of the covariance cx(h) when one extremity of 
the vector h describes the set of sample locations {si5 i = 1 , . . . , N} and the 
other extremity independently describes the domain U(s)9 that is, 

1 m Γ 
ϊχ(υ>Ν)=τϊΓτΣ cx(si-sl)dsl (4) 

WU i = i Ju(s) 

A similar expression is valid in terms of semivariograms of SRF with 
homogeneous increments (Chapter 2), namely, 

a2
A = 2yx(U9N)-yx(U9U)-yx(N9N) (5) 

with obvious notation. 
Furthermore, if continuous observations are available within a domain 

t>, the variance in estimating Xv of Eq. (4) of Section 2 by 

Χυ=- I X(u)du (6) 

is given by 

σ\= cx(U9 U) + cx{v9 v)-2cx(U9 v) (7) 

where cx( U9 v)9 for example, is the mean value of the covariance cx(h) when 
one extremity of the vector h describes the domain U(s) and the other 
extremity independently describes the domain t>(s')· Under the same circum-
stances, Eq. (5) yields 

cr2A = 2yx(U9v)-yx(U9 U)-yx{v9v) (8) 

with, again, obvious notation. 

(8) 
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Remark 1: The sampling variance depends on the form of the sampling 
pattern. A well-known result states that for sampling patterns consisting of 
domains with different shapes but with equal areas the following ranking 
of sampling variances holds true: 

o i ( C ) < σ\(Η) < a2
A(S) < σ\{Τ) (9) 

where C, H, S, and T denote circle, regular hexagonal, square, and equi-
lateral triangle sampling patterns, respectively. 

Suppose now that the domain U(s) is divided into N equal units vi9 such 
that U = Y™=1 Vi = Nv. The dispersion variance D2

x(v/V) is defined as the 
mean value over i/(s) of the variance σ2

χ in estimating 

:M-UL X(u) du 
(s) 

by 

X„(s,)=-i X(u)du 

of unit υ in C/(s); that is, 

D2
x(v/U)=^-\ a2

A(U(s),v(Sl))dSl (10) - - Î ' 
Using Eqs. (7) and (8), Eq. (10) can be written as 

D2
x(v/U) = cx(v9v)-cx(U9U) = yx(U9U)-yx(v9v) (11) 

If v consists of a single point, Eq. (11) gives 

D2
x(0/U) = cx(O)-cx(U,U) = yx(U,U) (12) 

and the D2
X(0/ U) may be viewed as the sample variance per sample point. 

As we shall see shortly, the dispersion variance D2
X(0/ U) plays an important 

role in sampling. 

Remark 2: It can easily be shown that 

D2
x(v/ U) = D2

X(0/ U) - D2
x(0/v) (13) 

The D2
x(v/U) can be calculated in terms of auxiliary functions available 

in Journel and Huijbregts (1978). More generally, the following well-known 
Krige's formula can be proven (Matheron, 1971). 

D2
x(v/ V) = D2

x(v/ U) + D2
X{ U/ V) (14) 

where v c U <= V. 
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3.2 Some Important Sampling Patterns 

Let us consider first the simplest case of random sampling in a domain U. 
The average sampling variance is given by 

cr2
A = j;D2

x(Q/U) (15) 

where N is the total number of samples taken, and D*(0/ U) is the dispersion 
variance of Eq. (12) above. 

In the case of a stratified sampling pattern, assume that the domain U 
is divided into k mutually exclusive partitions t>, (i = 1 , . . . , /c) of the same 
size v. Moreover, suppose that N/k samples are taken independently with 
uniform distribution within each vt. Then, the sampling variance is given 
by 

<r2A = jjD2
x(0/v) (16) 

where D2
x(0/v) = cx(0)-cx(v9 υ) = yx(v, v). By taking into consideration 

Eq. (13) it is easily found that 

a2
A(SP)<<r2

A(RP) (17) 

where SP and RP denote stratified and random sampling patterns, respec-
tively. For a given area t>, the best choice is the stratified sampling pattern 
with circular partitions vi9 followed by the hexagonal and the square patterns 
(see also Remark 1 above). 

Let us now discuss the case of systematic sampling, where the domain 
U is again divided into N equal units vi9 with the same size v. If one 
sampling point is taken within each unit, the sampling variance is given by 

cr^jjcrlWvi) (18) 

where σ^Ο/υ,) is the variance in estimating 

X(u) du 
" ( S i ) 

by X(Sj); that is, 

σ2
χ(0/νί) = Ε\- [ X ( o ) d u - X ( S i ) 

It is assumed that the elementary error variances σ-^Ο/υ,) are independent. 
Equation (18) is a good approximation, even for small N. Other approxima-
tions are proposed in Matern (1960). 
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Table 10.4 Rates of Convergence of the Sampling 
Variance σ\ in Rn for Certain Important Patterns 

Random: N 
Stratified: .N-[i+(2/«)] 
Systematic (midpoint): N~4/n 

Finally, Table 10.4 (Tubilla, 1975) summarizes the asymptotic behavior 
of the sampling variance σ2

Α, as ΛΓ-»οο, assuming that X(s) is a 
homogeneous SRF in R" with a smooth covariance (i.e., a covariance whose 
partial derivatives of order k exist for all k). 

Remark 3: Under certain conditions, several of the above results on purely 
spatial RF can be extended to spatiotemporal RF. Consider, for instance, 
the case of a zero-mean RF X(s, t) with space-time separable correlation 
structure of the form cx(h, τ) = σ2

χρχ{\ϊ)ρχ{τ), where σχ is the point variance 
of X(s, t) and px(h), ρχ(τ) are the spatial and the temporal correlation 
functions, respectively. For fixed time i, the mean value of X(s, t) over the 
area U is given by 

U J u(s) 
Xu(t)=-j X(s,t)ds (19) 

which has zero mean and covariance 

cXu(tl9t2) = a2
xpx(U,U)px(T) (20) 

where 

px(U,U)=—j Px(s1-s2)ds1ds2 

and 

r = \u-t2\ 

4. Optimal Linear Estimation Approaches to Global 
Sampling Design 

4.1 General Considerations 

In Section 4 of Chapter 9 several optimal linear estimators were presented. 
All these estimators led to estimation variances that can be utilized as 
guidelines for sampling design. For example, one should give priority 
regarding future sampling to those parts of the site that have the highest 
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estimation variances. Furthermore, these estimation variances are indepen-
dent of the specific values of the natural process under consideration 
(data-independence property; Section 5.4 of Chapter 9). This property is 
of significant importance in sampling design, for it allows the assessment 
of the estimation error of an observation network before any observation 
is performed. 

The estimation error values given in Chapter 9 are point efficiency indices 
throughout the sampling domain. As we saw above, however, in sampling 
one is rather interested in the areal performance of the sampling network, 
as measured through the areal efficiency indices. Just as for point estimation 
errors, the areal efficiency indices discussed in a previous section depend on 

(i) The spatial variability characteristics of the natural process. For 
homogeneous natural processes these characteristics are the ordinary 
covariance cx(h) and the semivariogram yx(h); for more complex, 
nonhomogeneous processes spatial variability is characterized in terms of 
the order of intrinsity v and the generalized covariance fcx(h). These are 
noncontrollable parameters for the designer; that is, they are inherent in 
the spatial distribution of the natural processes being sampled. The 
designer cannot alter such characteristics but instead must lead efforts to 
properly perform the modeling. Sampling designs may not be robust to 
changes in the spatial variability characteristics. 

(ii) The estimation neighborhood m, which is a semicontrollable 
parameter. The latter means that depending on the spatial structure 
characteristics of the natural process, there is a minimum value that m 
must take for the estimation system to be solvable. Usually, it is not 
necessary to use all observations to evaluate a desired level of estimation 
accuracy. A subset might do as well. The break point in estimation is not 
a constant but a function of other factors. 

(iii) The sampling pattern and the sampling density 0, which are 
controllable parameters; that is, they can be manipulated by the designer 
at will. 

In global sampling design, the unknown locations s, of the samples are 
assumed to belong to one of a series of possible sampling patterns (random, 
stratified, systematic square, hexagonal, etc.). Then, the set of sampling 
points S = {sf; i = 1 , . . . , N} is described by means of two parameters: the 
sampling pattern and the sampling density 0. In such a context, a number 
of possibilities exist, such as 

(a) Both the sample size N and the sampling pattern are unknown. 
(b) The sample size N is fixed a priori (e.g., due to limited budget 

requirements). 
(c) Sampling is restricted to a few or even one specific type of pattern 

(e.g., due to physical constraints). 
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(d) The sample size N is not fixed and needs to be specified so that 
the resulting sampling network satisfies certain accuracy requirements; 
for example, the average estimation variance over the domain of interest 
U is below a certain value c, viz., 

cr2
A(S)<c (1) 

or the maximum estimation error is below a certain value c, viz., 

<r2
M(S)<c (2) 

In all these cases the required sampling parameters need to be determined 
as a result of the sampling design process. The sampling design approach, 
of course, will depend on the type of problem at hand. When, for example, 
the sample size N is fixed, one may use a search method (Section 2.4 above). 
Global sampling approaches based on linear spatial estimation techniques 
for homogeneous SRF models have been the most widely applied in various 
attempts to deal with practical sampling problems in hydrogeology, mining 
engineering, soil science, etc. 

When the areal accuracy indices of Eqs. (8) or (9) of Section 2 are used, 
the point estimation errors o"*(sfc) are obtained through one of the optimal 
estimation methods of Chapter 9. For instance, when the ordinary kriging 
estimator (Table 9.1 of Chapter 9) is used, the point sampling variance for 
homogeneous processes is given by 

m 

crx(sfc) = cx(0) - Σ CjCx(Sk~Sj) - μ (3) 
7 = 1 

This variance is independent of the specific values of the natural process; 
hence, assuming that the covariance cx(h) is known, a2

x(sk) can be calculated 
before any observation is made. Then, depending on the particular problem 
(a) through (d) above, the best sampling design S* is determined by applying 
the optimality criteria of Eqs. (10) or (11) of Section 2, Eqs. (1) and (2) 
above, etc. 

Various interesting applications may be found in the literature (e.g., 
Newton, 1973; Jones et al, 1979; McBratney et al, 1981; McBratney and 
Webster, 1981; Webster and Burgess, 1984; Bogardi et al.9 1985; Bras and 
Rodriguez-Iturbe, 1985). 

4.2 Sampling of Natural Processes Modeled as Intrinsic Spatial Random 
Fields of Order v 

A particularly attractive global sampling procedure is available for non-
homogeneous natural processes, which are modeled in terms of ISRF-^ 
(Christakos and Olea, 1988; 1992). In this case, the application of the 
factorization property (Proposition 1, Section 5 of Chapter 9) can simplify 
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significantly the mathematics behind sampling design. The effect of sampling 
pattern and sampling density on estimation is implicitly imposed by the 
generalized covariance matrices K. 

Let r(/- = | s i - s / | be the distance between locations s, and s, on a given 
two-dimensional pattern with sampling density Θ points per unit area, and 
let fij be the corresponding distance for the same type of pattern when the 
density is 0. Then we can write 

(An example is given in Fig. 10.6.) The case 0 = 1 (unit density) will be the 
reference pattern of the given sampling pattern (with density 0). Equation 
(4) yields 

e-(f <5) 

Now, the following proposition can be proven (Christakos, 1990b). 

(b) 

Figure 10.6 An illustration of Eq. (4). (a) rtj = 1 (unit of distance) and Θ = 0.5 (points/unit 
area); (b)r0=0.5 (units of distance) and 0 = Θ x (r^ / r^)2 = 2 (points/unit area) 

(4) 
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Proposition 1: Assumptions of Proposition 1, Section 5 of Chapter 9. Let 
the pattern density be 0. For any fixed coefficient c,(i = 0 , 1 , 3 , . . . , 2i> +1), 
of the GSC-^ fcx(h), the average sampling error variance is given by 

_c, 
θ' 

σΑ = ΤΓη*2Α (6) 

where sA = s2
A(cq, ct, Θ) is the reference sampling error variance obtained 

when the coefficients cq of the polynomial generalized covariance model 
are replaced byjq = cq6

(t~q)/2/ct (q Φ t)9 ct = 1, and the pattern density is 
assumed to be 0 = 1. 

Example 1: Consider Example 7 of Section 5, Chapter 9. In this case, Eq. 
(6) becomes 

2 _ C3 2 
σ Α ~ Λ 3 / 2 5 Α 

where 

- Co03/2 

c0 = , c1 = cle/c39 c3 = l 

Table 10.5 summarizes these results for several GSC-^ of practical interest. 
Table 10.5 is graphically displayed in Fig. 10.7. 

A maximum of m = 32 points were used in the estimation. The average 
estimation error σ\ depends on the order of intrinsity v and the GSC-*> 
Kir) (noncontrollable parameters), the estimation neighborhood m (semi-
controllable parameter), and the sampling pattern and the sampling density 
Θ (controllable parameters). As shown in Fig. 10.8, other parameters being 
the same, the higher the degree of intrinsity v, the higher the reference 

Table 10.5 Estimation Variance Factorization 

Case 1: 
If v = 0,1, or 2 and kx(r) = c0 8(r), 
then σ\ = cQs2

A, where s\ = s\{c0= 0 = 1). 

Case 2: 
If v = 0, 1, or 2 and kx(r) = ctr\ t = 1, 3, or 5, 

c ~ 
then (T2A = -^S2

A, where s\ = s\{ct = θ = \). 

Case 3: 
If v = 0, 1, or 2 and kx(r) = c0 5(r) + ̂ = i 3 cqr\ 

ct ( cö ( , , " , ) / 2 « \ 
then σ^ = ^ s i , where s2

A = sUc^-3—^ , 0 = 1 1. 
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Figure 10.7 Graphical display of the results of Table 10.5 
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100 

estimation variance. Figure 10.8 also shows that a specific number of 
observations is needed to achieve a desired level of estimation accuracy. 
Figure 10.9 presents the average reference estimation variances for a random 
scheme (R) and all possible two-dimensional systematic patterns: triangular 
(T), square (S), and hexagonal (H). On the other hand, the effect of density 
can be directly observed in Table 10.5. Notice that the estimation error is 

'5 8 
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Figure 10.8 Change of average estimation variance with the order v and the estimation 
neighborhood m 
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Figure 10.9 Change in average reference estimation variance with the sampling pattern 
and the reference nugget effect c0 

independent of density only in the case that the spatial variation is purely 
random (the white-noise SRF). 

4.3 Reference Charts and a Sampling Design Procedure 

Reference charts, like those of Figs. 10.8 and 10.9, apply in any case, 
independent of the particular site conditions. Additional reference charts 
are presented in Figs. 10.10 through 10.15. Figure 10.10 describes the 
variation of the estimation variance in a particular case: fc^r) = c0 8(r) + cxr, 
the c0 varies between 0.0001 and 100, v = 0,1 or 2; square sampling pattern; 
sampling density m - 10. 

In Fig. 10.11 the order of intrinsity is zero while the sampling density 
takes the values m = 3, 10, and 32. In Fig. 10.12 we plot the reference 
estimation variance as a function of the estimation neighborhood m and 
the sampling pattern, assuming a linear GSC-0. The hexagonal sampling 
pattern is the most accurate for the spatial structure data of Fig. 10.13. 
Figures 10.14 and 10.15 concern systematic square and random sampling 
patterns, respectively. In both charts we assume a GSC-1 of the cubic form 
kx{r) = c08{r) + clr + c3r

3 and m = 10. 
Provided that the appropriate reference charts are at hand, sampling 

design can be performed according to the sampling design procedure of 
Table 10.6. 

Example 2: Assume that the spatial structure of a natural process is described 
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Figure 10.10 Change in average reference estimation variance with the order v and the 
reference nugget effect c0 

by v = Q and kx(r) = -5.5r. Suppose that in making decisions an accuracy 
at the level of σ2

Α = 6.35 is required, while a random sampling pattern is by 
far the most comprehensive, given the morphology of the ground. From 
these data we need to find the optimal sampling density Θ. By applying the 
procedure of Table 10.6, we first go to Fig. 10.12 to find that s2

A = 0.57. Then 
from case 2 of Table 10.5 we obtain 

0 = c i ( ~T I = 0-24 samples/unit area 

Let us now suppose that v = l9 kx(r) = 3.79 5(r) +17.61 r3, m = 10 points. 
Suppose that we can afford a sampling density of Θ = 0.60 points/unit area. 
We want to find the sampling pattern that provides the highest degree of 
accuracy. The answer to such a problem is immediately obtained from Fig. 
10.9, which shows that the best pattern is the systematic hexagonal one. 

From the same chart and for c0 = (co/c3)03/2 = 0.1 we see that the corres-
ponding reference estimation variance is s2

A = 0.28; and the estimation error 
of the particular sampling network will be σ\= 10.60. 

Example 3: Let us revisit Example 4 of Section 4, Chapter 9. The 226 wells 
are arbitrarily distributed over an area of 800 square miles, with sampling 
density 0 = 0.28 wells/square mile. Due to the uneven distribution of the 
observation wells (about 80% of the observation wells are located in the 
southern half of the Equus Beds area), which yields relative small number 
of data at some parts of the site, one should expect rather large estimation 
errors there. These locally large error variances have the most significant 
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Figure 10.11 Change in average reference estimation variance with the estimation 
neighborhood m and the reference nugget effect c0 

contribution to the rather large value of the average estimation variance 
over the whole area, σ\ = 99.60 ft2. Should the number of data points 
increase in these parts, the estimation accuracy would be significantly 
improved. 

The evaluation of the effectiveness of a sampling network is well correlated 
with the spatial variabilities of the natural processes involved. If the param-
eters characterizing the spatial variability are known one may optimize the 
choice of the sampling pattern (systematic, random, stratified; square, 
triangular, hexagonal; etc.) that offers the desired accuracy with the lowest 
possible sampling density. 

In the case of the Equus Beds the sampling design method developed 
above shows that the present observation well network is not optimal and 
that a regular or even a stratified observation well network should offer 
higher accuracies in the estimation of the form of the water table elevation. 
In particular, given the spatial variability characteristics of the water table 
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Figure 10.12 Change in average reference estimation variance with the sampling pattern 
and the estimation neighborhood m (H, S, T are systematic hexagonal, square, and 
triangular sampling patterns; R is a random pattern) 

elevation process, v = 1 and k(r) = —24.22r, and the sampling neighborhood 
m = 16, we find that the reference estimation error is s2

A = 0.40 (systematic 
hexagonal sampling pattern), =0.41 (systematic square pattern) and =0.44 
(systematic triangular pattern). Therefore the systematic hexagonal samp-
ling pattern should be the most efficient pattern, and since the sampling 
density is Θ = 0.28 wells/square mile, the corresponding average estimation 
variance will be 

crl-
24.22x0.40 

v/Ö28 
= 18.30 ft2 

This average error variance is significantly smaller than the one obtained 
above on the basis of the existing well network (i.e., 99.60 ft2); i.e., the 
average error variance of the existing network has decreased by 81.63%. It 
can be also shown that the level of accuracy of the existing network could 
have been achieved by using only 48 observation wells on a systematic 
hexagonal pattern over the Equus beds area. 

Furthermore, if we assume that the estimation error is approximately 
normally distributed, then we can establish the 95% confidence interval 

[X(sk) - 2>/σ2(sfc), X(sk) + 2s/a2
x(sk)] 

Here the estimate X(sk) at each point sfc and the estimation error variance 
<7-2(sfc) are obtained from Figs. 9.4 and 9.5 of Chapter 9. 
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Figure 10.13 Change in average reference estimation variance with the sampling pattern 
and the reference nugget effect c0 

4.4 Multiobjectives in the Sampling Design of Intrinsic Spatial Random 
Fields of Order v 

Let us now discuss the case of more than one objective. For illustrative 
purposes, a simple but quite realistic multiobjective optimization problem 
is considered next: 

Minimize [PF = 0 + τσ2
Α] (7) 

where τ expresses the trade-ofl: of increases in 0 and decreases in σ\. The 
optimal sampling procedure above provides all the elements to solve the 
problem for a variety of alternatives. Assume, for example, that the GSC-*> 
is of the linear polynomial form (fcx(r) = cfr'). Then we have a simple 
expression in 0, which, when differentiated and equated to zero, provides 
the solution for the optimal sampling density 0*, viz., 

k 2/(/+2) 

•* = (^«i) (8) 

429 
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sampling pattern with the reference coefficient c3 and the reference nugget effect c0 

The corresponding average estimation variance σ%2 and minimum total cost 
P$ will be 

<2 = {c^V{t+2)(^) 
t/U+2) 

(9) 
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Figure 10.15 Change in average reference estimation variance for a random sampling 
pattern with the reference coefficient c3 and the reference nugget effect c0 
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Table 10.6 A Sampling Design Procedure 

Step 1: Apply stochastic inference of random field representations to assess the spatial 
variability characteristics v and kx(r) of the natural processes of interest (see also 
Chapter 7). At this point, data and experience from previous sites worked out will play a 
very important role. 

Step 2: Depending on the results of step 1, choose the proper reference charts and find the 
reference values for the sampling parameters (like s\). 

Step 3: Apply formulas of Table 10.5 to obtain the required site values of the sampling 
parameters for the target site. 

and 
Γ/Λ2/(ί+2) /Λ~2/( ί+2)Ί 

ΡΪ = (οΛτ)2/{ί+2)[(^ + ( y J (io) 
respectively. Equations (8) through (10) are graphically displayed in Figs. 
10.16 through 10.18. 
Example 4: Assumptions of Example 2 above (v = 0 and kx{r) = -5.5r). In 
addition suppose that the designer is willing to trade r = 3 units of increased 
Θ for one unit of decreased error σ\. In this case we first repeat the procedure 
applied in Example 2 to find s i = 0.57. Then by applying Eq. (8) or by 
using the chart of Fig. 10.16 we get Θ* = 2.8 samples/unit area. 
Remark 1: A flowchart summarizing the various stages of the sampling 
design procedure above is shown in Fig. 10.19. Of course, the implementa-
tion of the sampling approach in practice requires some initial assessment 
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Figure 10.17 Change in normalized optimal estimation error σ* with the degree of the 
GSC and the trade-off coefficient τ 

of the spatial variability characteristics. This important issue concerns most 
sampling methods and is discussed in Section 6 below. As already men-
tioned, neither the actual implementation of in-situ sampling nor the solution 
of large systems of equations are expected to be necessary at the early stages 
of exploration. Hence, the sampling design procedure of Fig. 10.19 will be 
particularly useful when the analyses of sampling networks are still on the 
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Figure 10.18 Change in normalized minimum total cost P% with the degree of the GSC 
and the trade-off coefficient τ 
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Figure 10.19 A sampling design flowchart 

drawing board. However, in later stages of the sampling project the applica-
tion of the above procedure will be a feedback process. That is, the current 
stage of sampling design will be improved as soon as new data become 
available during the sampling project. 

5. Local Sampling Design Approaches 

5.1 Sampling Design for a Set of Additional Observations 

Local sampling design is best suited to expand an already existing network 
of M observations within the domain of interest U9 by adding a set of new 
observations S = {sf; i = 1 , . . . , N}9 where the sample size N is fixed 
a priori. 
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Given the appropriate optimality criterion, most local sampling 
approaches are essentially straightforward applications of the search 
algorithms discussed in Section 2.4. 

Example 1: Assume that the optimality criterion chosen is the minimization 
of the areal estimation variance over U [see Eqs. (8) and (10) of Section 
2]. Then, the best locations of the N new observations could be determined 
by applying the search algorithm of Table 10.1 in terms of the minimum 
areal estimation variance criterion. Just as for the global sampling 
approaches of Section 4, the point estimation variances are calculated here 
by means of the optimal spatial estimation methods of Chapter 9. In this 
case both the M available observations and the N additional sampling 
locations are used. 

An interesting formulation of the local approach arises when the objective 
of site exploration is the partitioning of the region U into different zones. 
For example, in hazardous waste applications one may seek the partitioning 
of a site into zones of high contamination and zones of low contamination. 
In this case a suitable optimality criterion must be chosen. In some cases, 
the minimization of an areal efficiency index like that above may suffice. 
In many other situations, however, the incorporation of a loss function may 
be necessary. For illustrative purposes let us discuss the following example. 

Example 2: Suppose that the SRF X(Sj) represents a contamination process 
in a region U, and let X(s7), s, e U be its estimator (obtained through one 
of the optimal spatial estimation methods of Chapter 9). Suppose that M 
samples are available over U. The problem is where to locate N additional 
samples in order to obtain a better identification and characterization of 
the contamination zones. We will follow the methodology proposed by 
Aspie and Barnes (1990). Let a denote the predetermined threshold limit 
value of contamination, and let ß = ß(Sj) denote the classification cutoff at 
point Sj. 

Based on these values the following indicator RF (see, also, Chapter 7) 
are defined 

I°x(sj9a,ß) = l if X(sj)<a and X(s , )> ß, 

= 0 otherwise (1) 

and 

Iu
x(sj9a,ß) = l if X(sj)>a and X(s,)<j3, 

= 0 otherwise (2) 

A reasonable, though rather simplistic, loss function is 

L[X]= Σ { ^ / ^ , α , / 3 ) + ^/ΐ(8,·,α,)β)}Δ(8,·) (3) 
SjeU 
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where A(s,·) is an elementary area in U centered at s,, c0 is the over-
classification cost per unit area, and cu is the underclassification cost per 
unit area. The expected value of the loss function (3) over the domain of 
interest U is given by 

E[L] = Σ {c0E[I0
x(Sj,a,ß)] 

s, e l / 

+cuE[Iu
x(sj,a,ß)]}A(sj) (4) 

where 

Ε[Ι°χ(^,α,β)] = Ρ[Χ(^)<α and X ( S J ) > J 3 ( S , ) ] (5) 

and 

E[Ix(Sj,a,ß)] = P[X(sj)>a and X(Sj)<ß(Sj)] (6) 

The optimal classification cutoff at each point s,, j8(s,·), is determined by 
minimizing E[L]; that is, we set dE[L]/dß = 0, which yields 

P[X(Sj)>a\X(sj) = ß(Sj)]=-^- (7) 
c 4- c 

The practical application of the analysis above is achieved only under 
specific probability distribution assumptions on X(s). In particular, the 
latter is assumed to be a multivariate Gaussian SRF, or an SRF that has a 
probability distribution that can easily be transformed to a multivariate 
Gaussian distribution (for example, a multivariate lognormal distribution). 
Under this assumption, the sampling design consists of the following stages: 

(i) The first and second-order statistics of X(Sj) and X(s,), s7 e U are 
estimated by means of an optimal spatial estimation method (e.g., simple 
kriging; see Chapter 9), where both the M available observations and the 
N additional sampling locations are used. 

(ii) Then, the quantities (5) and (6) as well as the cutoff coefficients 
ß(Sj) in Eq. (7) can be calculated in terms of these statistics. 

(iii) Finally, the best sampling design 5* is the one that minimizes 
Eq. (4). Again, the implementation of the sampling design process (i) 
through (iii) is achieved with the aid of a search algorithm (Section 2.4 
above). 

5.2 The Variance Reduction Approach 

Variance reduction is another local approach that is particularly useful 
when our goal is to expand an existing, usually irregular, network. Its main 
feature is that it examines the influence of a single additional sampling 
point on the efficiency of the existing sampling network. In particular, the 
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improvement in the efficiency of the existing sampling network is measured 
by means of the variance reduction function. This is discussed in the 
following proposition due to Rouhani (1985). 

Proposition 1: Let X(s) be an ISRF-^, representing a natural process with 
domain U. Assume that S = {s,·, i = 1 , . . . , N} is the set of existing sampling 
points in U. Then, the estimation variance reduction, VRk/q, at point ske S 
due to a new observation at point sq e S'Φ S is given by 

1 Γ N 

YRk/q = V (N) I kx^k9 Sq>> ~ ̂  Alfcx^S" Sfc^ 

- Σ ßPPP(*k) (8) 
IPM* J 

where kx{ · ) is the generalized covariance; Vq(N) is the estimation variance 
at sq prior to the new observation; λ,, μ,ρ, and pp(sk) are the intrinsic kriging 
parameters [estimation coefficients, Lagrange multipliers and monomials 
(for notation see Chapter 9)] in estimating X(sk) prior to the new 
observation. 

Similar expressions of VRfc/q are valid for homogeneous SRF, as well as 
for other methods of estimation. The total gain in accuracy or the information 
gain due to the new observation at sq e S' is measured by the total reduction 
variance (TRV) due to sampling, viz., 

TVR,= Σ VR,·/, (9) 
SjeU 

The potential sampling points sq can be ranked in terms of the values of 
the corresponding TVRq; that is, one should pick the sampling point with 
the maximum TVR9. 

Under certain conditions, the local approach can account for observation 
costs by introducing a function that measures the expected economic benefit 
of further sampling. In particular, let Z(sf) = X(s,) - X(sf) be the sampling 
error, and consider the loss function 

L[Z(Sl-)] = c0Z(Sl)+ + cuZ(s,)_ (10) 

where Z(s,)+ = Z(sf) if Z(s,) >0 , =0 otherwise; Z(s,)_ = Z(sf) if Z(s,) < 0 , 
=0 otherwise; cu is the loss per unit of underestimating X(s,); and c0 is 
the loss per unit of overestimating X(Si). (For example, if X(s,) is the actual 
piezometric head in feet, cu is the loss per foot of underestimation and c0 

is the loss per foot of overestimation.) The expected loss will be simply 

>-i E{L[Z(Si)]}=\ Κζ)/Λζ)αζ (11) 

where /Ζ(ζ) is the probability density of Z(s,). 
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Assuming that the/ r (£) is Gaussian, Eq. (11) gives 

£{L[Z(s,.)]} = ̂ f^a x ( S i ) (12) 
V27T 

Using Eq. (12), the total loss reduction (TLR) due to an additional measure-
ment at sq is defined by 

T L R ^ ^ ^ Σ k W - M i i ) - ^ ] (13) 

and the net expected benefit (NEB) of a new sampling point is 

N E B q = T L R 9 - M C 9 (14) 

where MCq is the cost of the additional observation at s^. Clearly, all points 
with negative NEBg should be eliminated as potential sampling locations 
(Rouhani, 1985). 

A few important notes concerning the variance reduction approach above 
are worth mentioning here. First, the new sampling location sq must be 
selected from a set M of candidate location within the domain U; this set 
M must be finite and its elements well defined in space. Second, the analysis 
applies when only one additional sampling point is considered; in other 
words, the variance reduction caused by a set of additional sampling points 
is not equal to the sum of the corresponding VR,·^. Third, the additional 
observations are not expected to significantly affect the assumed generalized 
covariance kx{-)\ however, some sensitivity studies have shown that even 
a small level of fluctuations in the additional observations may cause large 
changes in the parameters of the estimated generalized covariance. 
Nevertheless, in a more recent work Rouhani and Fiering (1986) show that 
their impact on selected points may not be too significant. Fourth, the loss 
function (10) may be too simplistic for many applications; in addition, with 
only very few exceptions (such as the Gaussian assumption), the calculation 
of the expected loss function (11) is prohibitively tedious. 

Other interesting works on local sampling design include Davis and 
Dvoranchik (1971), Veneziano and Kitanidis (1982), and Barnes (1988). 

6. Statistical Inference Problems in Sampling Design 

Clearly, before a sampling design approach can be used in a particular 
problem, the latter must be developed beyond the "initial phase" to the 
point where enough prior information is available to determine the needed 
input parameters, such as cx(h), yx(h), v, and kx{r). 
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However, in many practical applications very few observations are avail-
able, or no observations at all. Then, the following guidelines may assist in 
the determination of the input parameters above: 

(a) Use knowledge about the physical laws governing the sampled 
natural processes, information provided by historic data, experience from 
previous sites worked out, as well as intuition and intelligent guessing. 
This important matter was discussed in Chapter 7. 

(b) Choose input parameters [cx(h), yx(h), v, and fcx(r)], that, in 
addition to being compatible with (a) above, give a sampling design that 
performs satisfactorily for a wide range of actual (but unknown) 
parameters. 

For example, one may consider several possible combinations of v and 
Kir), and use the reference charts to obtain the corresponding values of 
the sampling parameters (expected sampling error, cost, etc.). Then, on the 
basis of these values, useful conclusions regarding the most appropriate 
sampling design can be derived. This strategy is particularly fruitful when 
the linear form of the GSC-Ï^ makes the implementation of such a strategy 
most efficient. Under certain circumstances, it may be shown that for most 
possible combinations of v and kx(r) the systematic hexagonal sampling 
pattern offers the lowest sampling error. Or, in the case of a nugget effect, 
it may turn out that the choice of the sampling pattern has a rather small 
influence on the resulting values of the sampling error variance. Or, one 
may use the fact that under specific site conditions, certain natural processes 
exhibit similar v and GSC-^; in connection with this, tables of v values 
and kx{r) models for important natural processes will be of great help in 
sampling design. 

7. The Design of Spatiotemporal Sampling Networks 

Many natural processes change in space and time, such as rainfall, top soil 
pH values, the concentration of a chemical species dissolved in groundwater, 
and the earth's surface temperature. These processes are modeled by means 
of spatiotemporal random fields (Chapter 5). 

The design of sampling networks for observing natural processes varying 
in space-time can be achieved in terms of the spatiotemporal estimation 
theory developed in Chapter 9. The main problem here is to find the 
set S* of sampling points in space-time {s,, ί,; i = 1, 2 , . . . , N and 
j = 1,, 2 i 5 . . . , Pi} that minimizes the average estimation error in the domain 
of interest, viz., 

a2
A(S*) = mina2

A(S) (1) 
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where 
1 M

 Ai 

^(5) = ̂ ΣΣ^(»<.ϋ) (2) 
i = l j = \t 

K =Σ,·=ι Λ,· is the number of estimated points in space-time, and al(si9 tj) 
is the optimal estimation variance at location s, and time tj obtained in 
Section 7 of Chapter 9. Other objectives can be taken into consideration in 
a manner similar to that for spatial sampling designs. 

When the hypothesis of space-time separable correlation structure is 
physically realistic, the sampling design process can be simplified sig-
nificantly. As we saw in Example 8, Section 3 of Chapter 5, in hydrology 
the point-precipitation intensity at location s during the time t is considered 
as an S/TRF X(s,t) with separable covariance of the form cx(h, τ) = 
a2

xpx(h)px(r) [σ2
χ is the point variance of X(s, t), px(h) is the spatial 

correlation, and px(r) is the temporal correlation]. By taking advantage of 
the covariance separability, the sampling variance of the regional mean 
rainfall 

1 N T 
x ^ = — Σ Σ*(Μ) (3) 

(TV is the number of stations over the region U and T is the number of 
months, years, or seasons that the network is in operation) can be expressed 
as (Bras and Rodriguez-Iturbe, 1985) 

Var[Xu,T] = a2
xFl(N)F2(T) (4) 

where F^N) and F2(T) are reduction factors due to sampling in space and 
in time, respectively. F^N) depends on the spatial correlation structure 
px(h), the sampling pattern and the sampling density. F2(T) depends on 
the temporal correlation structure ρχ(τ) and the length of time that the 
sampling network has been in operation, and is independent of the number 
of stations. When Eq. (4) is applied, trading temporal sampling versus 
spatial sampling, while possible, is an expensive approach. 

Interesting case studies of space-time sampling designs may be found in 
Rodriguez-Iturbe and Mejia (1974) and Loaiciga (1989). 

8. A Taxonomy of Site Exploration Tasks 

On the basis of the preceding analysis, a typical temporal division of site 
exploration is presented in Table 10.7. For many scientists the strength of 
such a taxonomy is that it produces an organizing reference for the problems 
of exploration, in which functionally similar tasks are grouped together 
(e.g., Baecher, 1980). Decision models are logical structurings of possible 
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Table 10.7 Taxonomy of Site Exploration Tasks 

(1) Reconnaissance: Reviewing existing information to identify spatial or spatiotemporal 
variability. Selecting the appropriate values of sampling parameters to optimally allocate 
exploration effort. 

(2) Actual sampling of natural processes: Using field and laboratory tests to infer in situ 
natural processes related to the site characterization. 

(3) Pattern recognition and reconstruction: Recognizing the spatial or spatiotemporal 
distributions of the natural processes of interest, and estimation of their values in areas not 
actually observed. 

(4) Decision-making parameters: Providing the inputs to decision processes, strategy 
modeling, risk analysis, etc. 

site exploration outcomes and the decisions regarding management and 
planning that particular outcomes would lead to. 

9. Terminal Decision Analysis and Sampling Design 

9.1 Extensive Form Analysis 

Suppose that (E, Z, X, X) is a quadruple comprising spaces of experiments 
e, observations (samples) ζ of the SRF Z(s), estimates X(s) = χ and actual 
values χ of the SRF of interest X(s) (see Fig. 10.20). In the decision analysis 
context one may seek answers to questions such as 

• What amount of information is contained in experiment e of Z(s) 
regarding the process X(s)? (For example, Z(s) and X(s) may represent 
specific capacity and aquifer transmissivity, respectively; E may 
represent a well field.) 
• Which is the most informative experiment e or which is the "best" 
field of experiments ΕΊ (For example, which is a cost-effective well field 
E that assures water supply demands, maintains certain groundwater 
levels, etc.?) 
• How good is a model whose undetermined parameter is X(s)? (For 
example, how good is a simulation model of a groundwater system for 
studying management-decision variables, such as hydraulic heads, 
pumping rates, etc.?) 

■2 ^ ζ 3 ψ χ,χ 4 

——► α;-^ ■► α ™ -► ο 

Figure 10.20 The terminal decision analysis setting 

G : 
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• How is a model Z(s) affecting a strategy about X(s)? (For example, 
how can hydraulic conductivity affect the dewatering strategy of a site?) 

The first part of the decision analysis that follows can be associated with 
the extensive form analysis (e.g., Raiffa and Schlaifer, 1961; Rosenkrantz, 
1970), which involves working backward from node 4, successively expecting 
out the X(s) and Z(s), to node 2. More specifically (see also Christakos, 
1991a): 

Node 4: This is the posterior state, where a particular experiment e has 
been performed, ζ has been observed, and the actual value of X(s) 
turned out to be χ. 

Node 3: The utility function chosen is the information measure of 
performing e and observing £, viz., 

U(e9 ζ9 x) = Inf [x | ζ] = - log[/x„(*, f )] (D 

where /Χ\ζ(χ9 ζ) is the posterior probability density of X(s). The specific 
utility for each couple (e9 ζ) is the expected posterior value 

ϋ(^ζ) = Εχ{ζ{Ιηΐ[χ\ζ]} = εζ(χ) (2) 

The χ = χζ: Max^/x(i is the Bayes estimate against fx\c. For instance, it 
may be the estimate χζ of transmissivity at an unmeasured location, 
given observations ζ of specific capacity. 

Node 2: The utility after experimentation is 

ϋ(β) = Εχ[εζ(χ)] = ε;(χ) (3) 

Note that while εζ{χ) is the entropy of X(s) conditional on the 
specific value ζ9 ε7(χ) is the average entropy of X(s) conditional on the 
random variable z. It is true that [Eq. (8), Section 13 of Chapter 2] 

Ύ~Ζ{χ) = ε{χ9 ζ)-ε(ζ) (4) 

Node 1: Let U(e0, ζθ9χ) = Inf[x] = -\og[fx] [fx = prior probability 
density of X(s), e0 = null experiment, and ζ0 = dummy observation). The 
utility of immediate action without the benefit of experimentation is 

Ü(e0) = Ex{lnfM} = e(x) (5) 

Here, χ = χ0: Max^/X is the prior Bayes estimate against fx. For instance, 
it may be the estimate of transmissivity at an unmeasured location without 
using any specific capacity observations. 

9.2 Information Measures 

In the light of the analysis above, let us denote the experiment e by 
e = [Z(s),X(s),fX9fz\x]. As we saw, ε(χ) is a measure of the amount of 

(3) 

(2) 

(1) 
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uncertainty infx. In connection with this, the function 

I(e) = e(x)-ec{x) (6) 

is called conditional sample information (CSI) and provides a measure of 
the amount by which an observation ζ on Z(s) is expected to reduce 
uncertainty about X(s). Then, the function [see Eq. (10), Section 13 of 
Chapter 2] 

1(e) = Ez[I(e)] = ε(χ)- ΕΖ[εζ(χ)] = ε(χ)-ΤΖ(χ) (7) 

is called expected sample information (ESI) and is a measure of the average 
amount by which the experiment e reduces the uncertainty about X(s). In 
other words, T(e) is the amount of average information contained in e and, 
hence, it provides a means for choosing the most informative experiment. 
Clearly, an experiment ex is more informative than e2 if T(e1)>T(e2) for 
all fXi and strict inequality holds for some fx. 

Just as T(e) is a measure of the evidence that e of Z(s) provides, the 
function 

I*(e) = e(z) - Εχ[εχ(ζ)] = ε(ζ) - ε"(ζ) (8) 

is a measure of the explanatory power of the model used to study X(s). 
Note that the T*(e) is minimum (=0) when the SRF X(s) and Z(s) are 
independent [ε(ζ) = ε^(ζ)]; and it is maximum [ = ε(ζ)] in the case of a 
decisive experiment e \Jx~{z) = 0]. The 7*(e) provides the means for deciding 
if the assumed model is satisfactory in studying X(s), or whether another 
model will do a better job. For example, suppose that fx and f\ are the 
two probability densities regarding a hydrologie magnitude X(s), which 
are derived by means of two different hydrogeologic models of the aquifer. 
Then, the explanatory powers of these two models can be evaluated and 
compared by means of Eq. (8). 

When we want to compare the explanatory powers of two models, which 
are associated with different experiments, a more meaningful measure of 
the explanatory power may be provided by 

ï*(e) 
ε(ζ) 

where ε(ζ) expresses the initial uncertainty. Again, note that R(e) = 0 when 
the X(s) and Z(s) are independent; R(e) = l when the experiment e is 
decisive. In relation to this, the quantity Q(e) = l-R(e) expresses the 
equivocation of the model whose undetermined parameter is X(s). 

From a stochastic point of view, a physical model maximizes explanatory 
power in the sense of measure /*(e), if the most probable hypotheses 
regarding its parameters X(s) impose the strongest possible constraints on 

(9) 
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the possible outcomes of the relevant set of experiments E. Note that for 
practical considerations, Eq. (8) may be written as 

7*(e) = [max e-7Ç(z) ] - [max ε-ε(ζ)] (10) 

where max ε is the entropy of the uniform probability density. This formula 
shows that /*(e) results from two separable constraints: (i) the constraint 
cx = max ε-ε(ζ), which reflects the a priori predictability of the outcomes 
of the experimental field E (say, E = a well field), and (ii) the constraint 
c2 = max ε - ε^(ζ) reflecting the predictability of the outcomes by the hydro-
geologic model per se. Clearly, 7*(e) is decreasing in cl9 however, it must 
be noted that the latter may depend on the number of possible experimental 
outcomes selected, the sampling strategy, etc., which have nothing to do 
with the explanatory power of the hydrogeologic model per se. In fact, this 
is sometimes one of the reasons for using Eq. (9), which measures the 
explanatory power by the magnitude of the transmitted information relative 
to that of the initial uncertainty. 

When the experiments of the field E are carried out in such a manner 
that before performing a new one, we know the result of the last one, some 
additional measures of information may be introduced. For example, the 
experiment e2, which is carried out after the experiment ex was performed 
and the outcome ζ1 was observed, may be denoted as 

e2U) = [Z(s),X(s)JxlCi9fzlx] 

The average information contained in e2 with respect to X(s) after el has 
been performed is 

7(e2|e,) = ^ [ / ( e 2 ( f ) ) ] (11) 

Then, the information contained in the whole field E of m experiments, 
say E = em = (el9 e2,..., em), will be given by 

m - l 

/ ( £ ) = /(<>,)+£ T(ei+1\e>) (12) 
i — \ 

Remark 1: Similarly, when several natural processes or models are involved 
in a problem, the above measures will have to be extended appropriately. 
For example, in the case of two processes Zx(s) and Z2(s) associated with 
the experiments ex and e29 respectively, Eq. (7) will be written as T(e1, e2) = 
ε(χ)-Έ^2(χ), etc. 

9.3 The Sysketogram Function 

On the basis of the foregoing analysis, as well as the results in Chapter 2, 
we can define a powerful measure of spatial correlation as follows. 
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Definition 5: The sysketogram function ßx(s, s') of an SRF X(s) is defined 
by 

ßx(s, s') = ex(s) - ëxlAs9 s') > 0 (13) 

where sx(s) is the entropy of X(s) and ex(x'(s,s') is the average conditional 
entropy function at point s given the value of the SRF at point s'. 

Notice that in practical applications we usually consider the discrete case 
where the entropy is given by ex(s) = ~Σχ/χ(χ) l°Zfx(x) anc* the average 
conditional entropy is defined as 

ex|x.(s, s') = -ΣΣ/χΑχ> Χ') log/x|x'(*l*') 
x' x 

The equality in Eq. (13) holds if and only if the X(s) and X(s') are 
independent. For homogeneous SRF this is true when h = |s-s' |-»oo; 
moreover, when |h| = 0, jßx(s, s') = ex(s), which is a maximum. The sys-
ketogram provides a measure of spatial correlation information, that is, a 
measure of the amount of information on X(s) that is contained in X(s'). 
In other words, ex(s) in Eq. (13) is the information obtained by observing 
the SRF X(s) at point s only, while ëx\x>(&, s') is the average conditional 
information obtained by observing the SRF X(s) when its value at point s' 
is already known. 

In general, ex(s) ^ ëx|x(s, s'), since the knowledge about X(s') can provide 
a certain amount of information about the value of X(s) if the latter is 
spatially correlated with the former. Hence the difference, as expressed by 
Eq. (13), is the part that is no longer considered as new information when 
the SRF is observed at point s after it has been observed at point s'. As a 
consequence, ßx(s, s') measures the strength of spatial correlation. Also 
notice that in contrast to the entropy ex(s), the j3x(s, s') allows a convergent 
counterpart in the continuous case. 

A useful expression for /3x(s, s') is given by 

ßx(s, s') = sx(s) + BX(S') - e ^ ( s , s') (14) 

The sysketogram function has certain important properties that in many 
physical situations may favor its use instead of the traditional covariance 
function cx(s, s'). More specifically: (a) The /3x(s, s') is zero if and only if 
the X(s) and X(s') are independent, while the cx(s, s') may be zero even 
when they are not independent; hence, the sysketogram contains more 
information about spatial correlation than the covariance. (b) /3x(s, s') 
depends only on the probability laws, while the cx(s, s') depends on both 
the probability laws and the numerical values of X(s) and X(s'). (c) It can 
be shown that 

β(*9*') = β(Φ,Φ') (15) 
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where φ = </>[X(s)] and φ' = </>'[X(s')] are one-one functions; that is, the 
sysketogram is not affected if the X(s) is replaced by some function of it, 
provided that the latter is one-one. An important implication of (15) is that 
the sysketogram is completely independent of the scale of measurement of 
X(s). This property is extremely useful in stochastic hydrogeology, for 
example, where the concepts of "scale of measurement" and "instruments 
window" play a crucial role (e.g., Cushman, 1984; Dagan, 1989). Finally, 
one may define the relative sysketogram function by 

* W - * ä $ ^ « [ M ] (16) 

where h = | s - s ' | . It is worth noticing that Eq. (16) experiences some 
similarities with the so-called relative semivariogram function 

ryx(h) = — € [0,1] 
Cx(0) 

The sysketogram function defined above can be extended in the space-
time context. In particular, the sysketogram function ßx(s, i;s ' , t') of the 
S/TRF X(s, 0 is given by (Christakos, 1991b) 

/3x(s, t; s', t') = ex(s, t) - εφ.(*, φ ' , t') (17) 

where ex(s, t) is the entropy function at (s, t) and ëx|x(s, φ ' , t') is the average 
conditional entropy function at (s, t) given the value of the S/TRF at (s', t'). 

The space-time sysketogram (17) has similar properties with its spatial 
equivalent. For example, the sysketogram is not affected if the S/TRF 
X(s, t) is replaced by some function of it, provided that the latter is one-one. 
This property implies that the sysketogram (17) is an absolute quantity 
rather than a relative one, in the sense that the space-time correlation 
defined by the sysketogram is independent of the scale of measurement 
used. For example, assume that we are interested about the probability law 
of the distribution of aerosol particles whose space-time coordinates are 
random variables. The correlation information as expressed by Eq. (17) is 
independent of the coordinate system chosen. Mutantis mutandis, the 
absoluteness property of the sysketogram brings in one's mind a basic result 
of modern physics according to which only absolute quantities (i.e., quan-
tities independent of the coordinate system) can be used as the ingredients 
of a valid physical law (a law built according to such specifications is called 
co variant). 

9.4 Sampling Design 

The analysis above provides the means for developing a sampling design 
process, as follows (see also Shewry and Wynn, 1987): 
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Suppose that Π is the finite set of all possible observation points, S c Π 
is the target set of sampling points, and S' is its complement with respect 
to Π. Then, we can write [Eq. (8), Section 13 of Chapter 2] 

e(Xn) = E(Xs) + %(XsO (18) 

where Xn is the vector of all possible random variables for s, e Π, Xs is the 
vector of sampled variables (for s,· e S), and Xs> is the vector of unsampled 
variables (s, e S'). 

The amount of information about Xs> contained in Xs is given by 

Js(Xs0 = e(Xs0-%(Xs' ) (19) 
Optimum sampling design, therefore, seeks the minimization of 

Τ^(Χ8.) = ε(Χη)-ε(Χ8) 

But since ε(Χπ) is fixed and finite, this is equivalent to the maximization 
of e(Xs) with respect to the sampling locations s, e 5, that is, 

max s(Xs) (20) 
s,eS 

Of course, to apply the criterion (20) a search algorithm such as those 
discussed in Section 2 must be used. 

Example 1: Suppose that the random vector Xn is multivariate Gaussian. 
In this case, Eq. (20) reduces to the simple expression 

maxlog|Cs| (21) 
s,eS 

where C s is the covariance matrix of Xs and | · | denotes the determinant 
of the matrix. 
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150-152. See also Stochastic differential 
equation 

Admissible coefficients 
of order v (AC-v), 135,139, 145 
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Air pollution, 23, 150-152, 182 
Amplitude-modulating function, 54 
Anisotropie, 61, 246 
Annealing search algorithm, 412-413 
Arctic, 298 
Areal efficiency index, 406 ff 

controllable parameters of, 420 
noncontrollable parameters of, 420 
semicontrollable parameters of, 420 

Atmospheric 
diffusion equation, 182 
pollutants, 346 

Atterberg limits, 279-280 
Autoregressive moving-average process, 317 
Autoregressive process, 317 
Auxiliary homogeneous polynomial of order v, 

128 
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Stochastic research program 
Average estimation error, 406 ff 

Bayesian coding of a priori information, 
286-288 

Bayesian/maximum-entropy (BME) 
and the progressiveness of the stochastic 

research program, 15 
sampling design, 415, 445-446 

Bayesian/maximum-entropy estimation, 338, 
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linear case of, 397-399 
and maximum loglikelihood, 397 
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and physical constraints, 388 
rationale of, 388-392 
and simple kriging, 398 
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BME function, 392. See also Bayesian/ 

maximum entropy 
Bochner's theorem, 64, 184 
Borel field, 22 
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Burg entropy function, 263 

Canonical representation of spatial random field, 
49. See also Spatial random field 

Cartesian space-time product, 175 ff 
Cauchy probability density, 225, 300 
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and Heisenberg's uncertainty relation, 10 
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and model construction, 18 
relationship with noncausal laws, 10. See also 

Noncausal laws 
Central limit theorem, 47, 224 
Central second moment, 32 
CGSC-ν,ν.' See Cross-generalized spatial 

covariance of orders v and v.' 
Chain rule for conditional expectations, 37 
Chaotic spatial random field, 59 
Characteristic 

function, 27, 35 
functional, 28, 29, 195 ff 

Chi-squared probability density, 164, 301 
Cholesky 

algorithm, 327 
decomposition, 327 

CLF. See Continuous linear functional 
Climate modeling and prediction, 171 
Closure problem, 233 
Cloud microphysical processes, 181 
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of correlation, 32 
of cross-correlation, 36 
of skewness, 35 
of variation, 278 

Common sense probability, 3. See also 
Probability 

Complete chaos, 31 
Completeness relationship, 155 
Computer and the stochastic data analysis and 

processing research program, 19 
Conditional mean spatial estimation, 342, 

343-345 
Conditional probability, 26 

and the Bayesian/maximum-entropy 
formalism, 392 

of Gaussian spatial random field, 38 
of Markov process, 31 
and random field simulation, 299-300. See 

also Simulation 
Conditionally nonnegative-definite function, 92, 

126 
of order ν/μ, 202 

Conditionally unbiased estimator, 344 
Conditional sample information, 442 
Conditional simulation. See Constrained 

simulation 
Confidence intervals, 359 
Constrained simulation, 301-302. See also 

Simulation 

Constrained Wiener-Kolmogorov estimation, 
349-351 

Continuity. See Stochastic continuity 
Continuous linear functional (CLF) 

in space domain, 110 
in space-time domain, 188 

Convergence of random variables. See Stochastic 
convergence 

Convoluted spatial random field (CSRF) 
definition of, 110 
homogeneous, 113 
of order v(CSRF-v), 115 

Convoluted spatiotemporal random-field 
(CS/TRF) 

definition of, 189 
of order v in space and μ in time (CS/TRF-v/ 

μ), 197 
space homogeneous/time stationary, 197 

Convolution, 316. See also Convoluted spatial 
random field; Convoluted spatiotemporal 
random field 

techniques of one-dimensional simulation of, 
316-317 

COR See Criterion of permissibility 
Correlation 

radius, 76, 243-244 
theory, 31,243 
time, 76, 244 

Correlation function 
of a homogeneous spatial random field, 59 
spatial, 32 

Corroboration, 16. See also Stochastic research 
program 

Covariance function. See Spatial covariance 
function; Spatiotemporal covariance 
function 

Criterion of permissibility (COP) 
eighth, 134 
fifth, 93 
first, 65 
fourth, 92 
ninth, 186 
second, 68 
seventh, 132 
sixth, 98 
tenth, 204 
third, 73 

Cross-covariance function, 36, 37, 67. See also 
Spatial cross-covariance 

and its relation to the cross-semivariogram 
function, 97 
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Cross-generalized spatial covariance of orders v 
and ν ' (CGSC-ν,ν'), 133-134,145-146 

Cross-semivariogram function, 97 
and its relation to the cross-covariance 

function, 97 
Cross-spectral density function, 54-55, 68, 134 
CSRF. See Convoluted spatial random field 
CS/TRF. See Convoluted spatiotemporal random 

field 
CS/TRF-v/μ. See Convoluted spatiotemporal 

random field of order v in space and μ in 
time 

Data 
hard, 276 
soft, 276, 286, 300 

Data independence property, 359, 366, 419 
Delta function, 60. See also Dirac function 
Density function, 24, 26. See also Probability 

density function 
Deterministic 

law, 1 
model, 9 

Difference equation, 138 
Differentiation. See Stochastic differentiation 
Diffusion differential equation, 229 
Dirac function, 60. See also Delta function 
Directional wave spectrum, 296 
Discrete analogs of spatiotemporal random 

field-related notions, 211 
Discrete intrinsic spatial random field of order v, 

136 ff. See also Intrinsic spatial random 
field of order v. 

Discrete linear representations 
of spatial random fields, 135-146 
of spatiotemporal random fields, 209-214 

Discrete noise, 272-273 
Discrete ordinary spatiotemporal random field of 

order ν/μ, 210 
Discrete spatial random field, 135 
Disjunctive kriging, 162, 370, 399. See also 

Kriging estimators 
and the Bayesian/maximum-entropy 

formalism, 399 
and optimal nonlinear estimation, 370 

Dispersion variance, 417 
Distribution function, 24, 26. See also 

Probability distribution function 
Dominated convergence theorem, 88 
Drift, 81,131 

Duality relations, 13-14, 245-255. See also 
Stochastic research program 

Dummy observation, 441 

Earth dam failure, 17 
Earth's surface temperature, 171, 172, 180 
Eigenfunctions, 328 
Eigenvalues, 328 
EKF. See Extended Kaiman filter 
Elliptic differential equation, 229 
Entropy, 103-106 

average conditional, 105 
conditional, 105 
and the estimation of random fields, 388 
principle of maximum, 104. See also Principle 

of maximum entropy 
of a random vector, 104 
of a spatial random field, 103-106 

Environmental engineering, 346 
Environmental research, 170 
Environmentrics, 16 
Epistemology, 4, 5 
Equivocation, 442 
Equus Beds aquifer, 269-270, 355, 426-428 
Ergodic, 244 
Ergodicity, 57, 98-103 

and the almost sure convergence, 102 
in the covariance, 100-101 
in the mean, 99 
and the mean square convergence, 99 
in the semi variogram, 100-101 

Estimation, 337 ff. See also Stochastic estimation 
Estimation error, 344 

average, 406 
maximum, 406 
minimum, 406 

Estimation error variance, 347-348, 350-351, 
355,361 

factorization, 367-370, 423 
reduction, 435 

Estimation neighborhood, 365 ff, 411 
Event, 23 
Evolutionary mean power spectral density 

function, 54, 320 
Evolution process, 7-10. See also Natural 

process 
macro-micro duality of, 7 
macroscopic, 7 
microscopic, 7 
space-time, 10 
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Exact interpolation property, 359 
Expected sample information, 442 
Explanatory power, 442 
Exponential 

probability density, 161, 301 
spatial covariance, 71, 73, 74-76,105 

Extended Kaiman filter (EKF), 376-379 
versus factorable estimator, 376-379 

Extensive form analysis, 440-441 

Factorability 
coefficients, 156 
and the progressiveness of the stochastic 

research program, 15 
relations of, 158 

Factorable estimation, 338, 373-379 
Factorable random fields (FRF) 

construction of, 161 
definition of, 155 
jointly, 157 
Markov, 159 
and martingale processes, 159 
nonlinear spatial estimation of, 373-374 
nonlinear transformations of, 160 
notion of, 30,153 
recursive on-line estimation of, 374-379 

Factorable random process (FRP), 154,159, 
375 ff 

Falsifiable hypothesis, 103 
Falsification criterion, 13 
Fast-Fourier transform, 318 

and one-dimensional simulation, 318. See also 
Simulation 

Field vane, 279 ff 
Filter 

high-pass, 359-360 
and linear spatial estimation, 359-360 
low-pass, 360 

Fluid flow, 16,17 
F-measurable, 23 
Fourier-Stieltjes representation of spatial 

random field, 51, 57 
Fourier transform (FT), 50 ff 

of statistical moments of higher orders, 50 ff 
Frequency domain methods of simulation. See 

Spatial simulation; Spatiotemporal 
simulation 

FRF. See Factorable random fields 
Frozen field, 185 
FRR See Factorable random process 

FT. See Fourier transform 
Functional estimation, 345-346, 385-386 

Gamma probability density, 164 
Gaussian probability density, 161, 162, 300, 

301 
Gaussian spatial covariance, 71 
Gaussian spatial random field, 30, 31, 38-40, 

97. See also Spatial random field 
and almost sure continuity, 97 
bivariate, 38 
central limit theorem, 47 
conditional probability density of, 38 
derivatives of, 39 
and ergodicity, 100-101 
homogeneous, 56 
independent, 39 
indicator, 285 
multivariate, 38 
three-dimensional, 38 
two-dimensional, 38 
trivariate, 38 
uncorrelated, 39 

Gegenbauer polynomials, 162 
Generalized indicator random field, 287 
Generalized Laguerre polynomials, 164 
Generalized representation set of order v 

(GRS-v) 
definition of, 120 
discrete case, 143 
necessary and sufficient expression of, 120, 

143 
Generalized representation set of order ν/μ 

(GRS-v/μ) 
definition of, 198 
necessary and sufficient expression of, 199 

Generalized spatial covariance of order v 
(GSC-v) 

calculation by means of automatic procedures, 
266-269 

class of, 129 
definition of, 123 
discrete representation of, 139 
isotropic, 123 
necessary and sufficient representation of, 

131 
notion of, 56 
polynomial, 133, 258, 309, 422 
representation set of (GRS-v), 120 
spectral measure of, 130 
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Generalized spatial random field (GSRF), 
108-115 

covariance functional of, 109 
definition of, 109 
homogeneous, 112-115 
mean value of, 109 
physical significance of, 110-111 
representations of, 110 
second-order characteristics of, 109 
spectral measure of, 113 

Generalized spatial random field with 
homogeneous increments of order v 
(GSRF-v) 

covariance functional of, 122-123 
definition of, 117 
mean value of, 122 

Generalized spatial semivariogram of order v, 
272 

Generalized spatiotemporal covariance of order 
v in space and μ in time (GS/TC-v/μ) 

definition of, 201 
discrete representation, 214 
representation set of (GS/TCRS-v/μ), 201 
space isotropic, 201 

Generalized spatiotemporal random field 
(GS/TRF), 187-196 

continuous linear functional representation of, 
188-191 

covariance functional of, 188 
definition of, 187 
mean value of, 188 
and the progressiveness of the stochastic 

research program, 15 
semivariogram functional of, 188 
space homogeneous/time stationary, 191-196 
structure functional of, 188 

Generalized spatiotemporal random field of 
order v in space and μ in time (GS/TRF-vl 

μ) 
definition of, 197 
covariance functional of, 200 
mean value of, 200 

Generalized spectral density function of order v, 
130-131 

Generalized spectral density function of order 
ν/μ, 204 

General probability, 3. See also Probability 
Geology, 298,346 
Geometrical anisotropy, 61 
Geometrical properties of spatial random fields, 

40-49. See also Spatial random field 

Geometry of homogeneous spatial random 
fields, 62-64. See also Spatial random field 

Geosciences, 79, 245 
Geostatistics, 16, 60, 79, 81, 107,172 
Geotechnical, 279, 346 
Global sampling design, 415, 419-433 
Global warming, 171 
G-nonlinear estimator, 371 ff 
Godel's theorem, 3 
Graig's theorem, 3 
Greedy search algorithm, 412-413 
Groundwater, 395, 401 
GRS-v. See Generalized representation set of 

order v 
GRS-v/μ. See Generalized representation set of 

order ν/μ 
GSC-v. See Generalized spatial covariance of 

order v 
GSRF. See Generalized spatial random field 
GSRF-v. See Generalized spatial random field 

with homogeneous increments of order v 
GS/TC-v/μ. See Generalized spatiotemporal 

covariance of order v in space and μ 
in time 

GS/TCRS-v/μ. See Generalized spatiotemporal 
covariance representation set of order v in 
space and μ in time 

GS/TRF-v/μ. See Generalized spatiotemporal 
random field of order v in space and μ in 
time 

Hard core, 13, 241. See also Stochastic research 
program 

Hard data, 276 
Harmonizable 

spatial covariance, 51 
spatial random field, 50, 53 

Hazardous waste site exploration, 401 
Heisenberg 's uncertainty relation, 10, 77 
Hermitean model, 162 
Hermite polynomials, 162, 278 
Heuristic, 14. See also Stochastic research 

program 
Hubert space, 24, 27, 55, 108, 109,155, 177, 

183,187,379 
Histogram, 362, 368 
Hole-effect model, 265 
Homogeneity, 56 
Homogeneous convoluted spatial random field, 

113 
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Homogeneous generalized spatial random field, 
112. See also Spatially homogeneous 

Homogeneous linear differential operator of 
order v+1,127 

Homogeneous spatial random field, 57-70. See 
also Spatially homogeneous 

cross-covariance of, 67 
cross-spectral density function of, 68 
criterion of permissibility of, 65-66 
Fourier-Stieltjes representation of, 57 
geometry of, 62-64 
mean square continuous, 62-63 
mean square differentiable, 62-63 
scalar, 57 
spectral density function of, 58 
stochastic differentiation of, 60-61 
stochastic integral of, 64 
in the strict sense, 56 
vector, 67-70 
in the wide sense, 55 

Hydraulic conductivity, 17, 231 
Hydraulic head, 231, 298, 323 
Hydrogeology, 16,170, 233 
Hydrology, 148,185,298 
Hydrosol, 324 
Hyperbolic differential equation, 229, 275 
Hyperplane, 216 

IFT. See Inverse Fourier transform 
Image processing, 16 
Impulse response function, 320 
Incremental spatial random field, 79 
Independent spatial random field, 31, 39. See 

also Spatial random field 
Indicator cross-covariance, 390 
Indicator cross-semivariogram, 390 
Indicator function, 64 
Indicator random field 

correlogram of, 285 
covariance (centered) of, 284 
covariance (noncentered) of, 284 
definition of, 284 
features of, 284 
generalized, 287 
mean value of, 284 
minimum mean square error estimator of, 

287 
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Inductive logic, 3 

Infinite hierarchy of equations, 233 
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qualitative, 275 
soft, 275 

Information measure 
conditional sample information, 441 
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of spatiotemporal random field, 397 

Innovation process, 378 
Integral equation, 342, 373 
Intrinsic kriging estimator, 353-357 
Intrinsic random process of order v (IRP-v), 319 

simulation formulas of, 320 
Intrinsic spatial random field of order v 
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and the Bayesian/maximum-entropy 

formalism, 390-391 
definition of, 118 
discrete linear representation of, 135-139 
correlation structure of, 122-132 
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random field of order v 

Inverse Fourier transform (IFT) 
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Inverse space transformations (1ST). See Space 
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IRP-v. See Intrinsic random process of order v 
Isofactorial density, 162 
Isotropie spatial random field, 69 ff 

criteria of permissibility of, 73-75 
geometry of, 71-72 
nugget effect, 72 
in the strict sense, 56 
in the wide sense, 56 

ISRF-v. See Intrinsic spatial random field of 
order v 

1ST. See Inverse space transformations 

Jensen's theorem, 160 
Jointly factorable random fields, 157 
Joint theta function, 157 

Kaiman filter, 375 
extended, 376-379 
versus factorable estimator, 376-379 
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Karhunen-Loeve 
expansion method of simulation. See 

Simulation 
theorem, 328 

KdV. See Kortweg-de Vries equation 
Knowledge 

scientific, 1 
statistical, 1 
stochastic, 2 

Kolmogorov's 
axioms, 22, 23 
consistency condition, 26 
equations, 163 
symmetry condition, 25 

Kortweg-de Vries (KdV) equation, 180 
Krige's formula, 417 
Kriging estimators 

comparisons of, 353-354 
and constrained simulation, 302 
disjunctive, 162, 370, 399 
intrinsic, 353-357 
ordinary , 349-351 
simple, 351-353 

Kronecker delta, 60 

Lead concentration surface, 7 
Least squares estimation, 339 
Linear estimator, 346, 353, 380 
Linear minimum mean square error spatial 

estimators, 346 
as a filtering process, 359 
possible modifications of, 360-361 
properties and physical interpretations of, 

357-370 
Linear state-linear observation system, 167 
Linear transformation of spatial random field 

definition of, 53 
homogeneous, 66 
transfer function of, 53 

Local sampling design, 415, 433 ff 
Logical relationship meaning of probability, 3. 

See also Probability 
Lognormal spatial random field, 39 
Log transmissivity, 323 
Loss function, 342, 405, 414 
Lower-upper triangular matrix method. See 

Spatial simulation 
L2 space, 24, 41, 108 ff, 154 
Lp space, 24 

Lagrange multipliers, 350, 355, 383-384, 393, 
396 

Lagrange's estimation, 339 
Laguerre polynomials, 163 ff 
Laplace differential equation, 128, 229-230 
Lavrion (mine of), 240, 297, 310-311 
L2 convergence, 41. See also Stochastic 

convergence 

Macro-micro duality, 7. See also Evolution 
process 

Macroscopic, 7,8. See also Evolution process 
Many realizations methodological hypothesis, 9 

and its relation to the many worlds 
interpretation of quantum physics, 9 

Many worlds interpretation of quantum physics, 
9 

and its relation to the many realizations 
methodological hypothesis, 9 

Marine clay, 246 
Maritime structures, 296 
Markovian approximation, 288 
Markov random process, 31,159,160,163,166 
Martingale process, 159 

sub-, 159 
super-, 159 

Mathematical probability, 3,4. See also 
Probability 

Maximum estimation error, 406 
Maximum loglikelihood, 397 

and the Bayesian/maximum entropy 
formalism, 397 

Mean hydraulic gradient, 231 
Mean process estimation, 346 
Mean square convergence criterion, 41. See also 

stochastic convergence 
Measurement 

errors, 245, 324-325, 361, 365, 385 
linear model, 245, 324-325 

Measure theory interpretation of probability, 3. 
See also Probability 

Median estimator, 343 
Mesoscale storm systems, 16 
Meteorology, 16, 182 
Microergodicity, 57, 101. See also Quasi-

ergodicity 
Microscopic, 7,8. See also Evolution process 
Minimum estimation error, 406 
Minimum mean square error criterion, 342 ff 
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Mining engineering, 297 
Mode estimator, 343 
Moving average process, 317 
Moving mean estimation, 346 

National Research Council (NRC), 17,171 
Natural hierarchy, 8 

and the Baconian tradition, 8 
of explanatory laws, 8 
of spatial and temporal observation scales, 8 

Natural process 
and the basic working hypotheses, 240-245 
descriptive features of, 240 
and duality relationships, 245-255 
estimation of, 337 ff. See also Estimation 
evolution process of, 7 ff 
modeling of, 238 ff 
simulation of, 294 ff. See also Simulation 
study of, 1,238 ff 

Natural water content, 279 
Negative exponential probability density, 164 
Neighborhood, 365 ff, 411 

moving, 366 
unique, 365 

Net expected benefit, 437 
Noncausal laws, 10 

and Heisenberg's uncertainty relation, 10 
and model construction, 17 
relationship with causal laws, 10. See also 

Causal laws 
Noncentered second moment, 32. See also 

covariance function 
Non-Gaussian spatial random field, 30 ff, 35. 

See also spatial random field 
Nonhomogeneous spatial random field. See 

Spatially nonhomogeneous 
Nonlinear factorable estimation. See Factorable 

estimation 
Nonlinear minimum mean square error 

estimators, 370 ff 
and disjunctive kriging, 370 
and G-nonlinear estimator, 371 
and linear estimators, 370 
and the theory of factorable random fields, 

373-374 
Nonlinear state-nonlinear observation system 

(NSNOS), 165, 375 ff 
Nonlinear transformations of factorable random 

fields, 160 
Nonnegative-definite bilinear function, 110 

Nonnegative-definite condition, 64,179 
Nonnegative-definite function, 33, 69, 73 

conditionally, 92 
Nonnegative-definite matrix, 36, 67-69 
Nonrecursive estimation, 340-341 
Nonrelativistic, 175 
Nonstationary random process, 85 

simulation of, 319-321 
with stationary increments, 85 

Nonstochastic estimation, 339-340 
Lagrange's, 339 
least squares, 339 
weighted coefficients, 339 

Normal probability density, 164 
NRC. See National Research Council 
NSNOS. See Nonlinear state-nonlinear 

observation system 
Nugget effect 

model, 272-274 
phenomenon, 59, 60, 212-21A 

Null experiment, 441 

Objectivist explanation 
of probability, 2 
of probable knowledge, 4 

Ocean engineering, 295-296 
Oil reservoir characterization, 16-17 
One-dimensional simulation, 316 ff 

convolution techniques of, 316-317 
fast-Fourier transform techniques of, 318 
moving average-autoregressive techniques of, 

317 
of nonstationary random processes, 319-321 
spectral techniques of, 317-318 

Operational, 14. See also Stochastic research 
program 

Operator transfer function, 322 
Optimality criterion, 342, 382 
Optimum stochastic estimation. See Stochastic 

estimation 
Ordinary kriging estimation, 349-351. See also 

Kriging estimators 
and the Bayesian/maximum-entropy 

formalism, 398 
Ordinary spatial random field with homogeneous 

increments of order v (OSRF-v), 56 
Ordinary spatiotemporal random field (OS/TRF) 

basic space-time notions of, 175 ff 
covariance function (centered) of, 178 
covariance function (noncentered) of, 179 
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definition of, 177 
mean value of, 178 
semivariogram function of, 179 
space homogeneous/time stationary, 182-187 
space isotropic/time stationary, 186 
structure function of, 179 
variance of, 179 

Ordinary spatiotemporal random field of order v 
in space and μ in time (OS/TRF-v/μ) 

and the Bayesian/maximum-entropy 
formalism, 391 

correlation structure of, 199-206 
definition of, 197 
discrete, 210 
discrete linear representations of, 209 ff 
generalized representation set of, 198 

Ore reserve, 16 
Orthogonal expansions of nonlinearities, 371 ff 
Orthogonal increments, 57 
Orthogonality conditions, 345 
Orthogonal polynomials, 154, 164, 371-373 
OSRF-v. See Ordinary spatial random field with 

homogeneous increments of order v. 
OS/TRF. See Ordinary spatiotemporal random 

field 
OS/TRF-v/μ. See Ordinary spatiotemporal 

random field of order v in space and μ in 
time 

Parabolic differential equation, 229 
Parallel universes, 10 
Pattern recognition and reconstruction, 440 
Pearson 

contigency coefficient, 157 
differential equation ,153,161 
type I density, 161 

Permeability, 17, 230, 298 
Permissibility. See also Criterion of 

permissibility 
conditions, 133 
criteria, 255-258 

Permissible covariance 
of a homogeneous spatial random field, 65 

Permissible cross-covariance 
of a homogeneous vector spatial random field, 

68 
Perturbations in steady groundwater flow, 323 
Petroleum engineering, 17 
Physical process, 6. See also Natural process 
Piezometric heads, 395 

Plausible reasoning, 6 
Pleistocene Meade, 269 
Plioce Blanco, 269 
Point estimation, 345 
Poisson process, 42, 78 
Poisson stochastic differential equation, 148, 

233,274 
Polynomials 

Chebyshev, 164 
Gegenbauer, 162 
generalized Laguerre, 164 
Hermite, 162 
Jacobi, 164 
Laguerre, 163 
Legendre, 164 
orthogonal, 154, 164 
Stieltjes-Wigert, 164 

Porosity, 6, 7, 17 
Porous media, 16 
Positive tempered measure, 113, 123 
Posterior state, 441 
Power series method, 233 
Precipitation, 17, 181, 185, 379 
Preference function, 414 
Principal interaction pattern, 171 
Principle of maximum entropy, 104 
Principal minor determinant, 69 
Principal oscillation pattern, 171 
Prior information, 386 ff 
Prior probability, 387 ff, 441 
Probabilistic law, 1 

versus deterministic law, 1 
Probability 

calculus of, 3 
concept of, 2 
common sense, 3 
general, 3 
logical relationship, 3 
mathematical, 3,4 
measure theory, 3 
psychological, 3 
propensity, 2, 3 
scientific, 3 
sociological, 3 
statistical frequency, 2, 3 
various meanings of, 2, 3 

Probability density function, 23, 24, 26 
conditional, 26 
transition, 163 

Probability distribution function, 24, 26 
Probability measure, 22, 23 
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Probability space, 22 
Probable knowledge, 1-5 

objectivist interpretation of, 4 
philosophical foundation of, 2 
science of, 1. See also Science of the probable 
subjectivist interpretation of, 4 
versus certain knowledge, 2 

Production planning, 297 
Progressive, 14-15. See also Stochastic research 

program 
Propensity, 2, 3. See also Probability 
Psychological probability, 3. See also 

Probability 
Pure nugget effect phenomenon, 250. See also 

Nugget effect 

Qualitative information, 275 ff 
empirical approaches to, 276-283 
indicator approach to, 283-292 

Quantum logic, 3 
Quasi-

ergodicity, 57, 101 
homogeneity, 57 
intrinsity, 57 

Radon-Nykodim derivative, 157 
Radon transform, 217, 225 
Rainfall, 181, 336 
Random distribution, 56, 187 
Random field (RF) model 

a priori assumptions of, 5 
indicator, 284. See also Indicator random field 
mathematics of, 11-13 
physical significance of, 6 ff 
and the science of the probable, 1 
spatial, 9. See also Spatial random field 
spatiotemporal, 10. See also Spatiotemporal 

random field 
Random process (RP), 28 

nonstationary, 85 ff 
stationary, 45, 55, 65 

Random sampling pattern, 408 ff, 418 
basic repeated pattern of, 411 

Random sea surfaces, 16. See also Sea waves 
surface 

Random variable 
mathematical definition of, 23 
physical significance of, 9 
second-order, 24 
stochastic convergence of, 40 ff 
vector, 9 

Range, 76, 248 
Rayleigh probability density, 164, 301 
Real counterparts, 13, 243-244. See also 

Stochastic research program 
Realizations of spatial random field, 9, 27 

continuous, 30 
discrete, 30 
and the many worlds interpretation of 

quantum physics, 9 
methodological hypothesis of many, 9 

Reconnaissance, 440 
Recursive estimation, 340-341, 374-379 
Reference 

charts, 425 ff 
estimation variance, 370 
pattern, 422 
sampling error variance, 422 

Regionalized process, 240 
Relationship space, 286, 290 
Relative density of sands, 245 
Remote sensing, 16 
Reservoir characterization ,171 
RF. See Random field 
RP. See Random process 
Rock fracture networks, 17 
Rock mechanics, 16 

Sample function continuity, 42. See also 
Stochastic continuity 

Sample function differentiability, 46. See also 
Stochastic differentiability 

Sample space, 22 
Sampling density in space, 402 ff, 411 
Sampling design, 401 ff 

Bayesian/maximum entropy, 415 
classifications of, 415 
global, 415, 419-432 
of intrinsic spatial random fields, 421-433 
in the light of optimal estimation, 406 ff 
local, 415, 433 ff 
and multiple objectives, 414-415, 429 ff 
optimal, 404 ff 
for a set of additional observations, 433 ff 
and spatial variability characterization, 

404 
spatiotemporal ,419 
statistical inference of, 437-438 
suboptimal, 407 
variance reduction approach of, 435-437 

Sampling frequency in time, 402 ff 
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Sampling pattern, 402 ff, 407 ff 
clustered, 408,410 
orthogonal regular traverses, 408 
random, 408-410, 418. See also Random 

sampling pattern 
regular clusters, 408, 410 
size of, 408 
stratified, 408-409, 418. See also Stratified 

sampling pattern 
systematic, 407-408, 418. See also 

Systematic sampling pattern 
Sampling variances, 415 ff 

asymptotic behavior of, 419 
Sanborn formations, 269 
Satellite remote sensing, 336 
Scalar spatial random field. See Spatial random 

field 
Scales of spatial correlation, 76-17, 254 
Schoenberg's conjecture, 75 
Schwartz spaces 

in space domain, 109 
in space-time domain, 176 

Science of the probable, 1 
fundamental philosophical problems of, 2 

Scientific 
knowledge, 1 
probability, 2. See also Probability 

SDE. See Stochastic differential equations 
Sea-depth cable, 299 
Search algorithms, 411 ff 

annealing, 412-413 
greedy, 412-413 
sequential exchange, 413-414 

Sea waves surface, 296 
Second order 

spatial random field, 31 
spectral moment, 52 

Seepage velocity, 17 
Semivariogram function. See Spatial 

semivariogram function 
Semivariogram functional. See Spatial 

semivariogram functional 
Semivariogram matrix, 97, 98 
Separable spatiotemporal random field, 185 
Sequential exchange search algorithm, 413 
Sequential indicator simulation approach, 

334-335. See also Spatial simulation 
Set-theoretic notions, 22 

and probabilistic notions, 22 
Shear 

strength, 21, 240, 279 ff, 366 ff 

stress, 250 ff 
σ-field, 22. See also Borel field 
SI-v. See Spatial increment of order v 
SI-v/μ. See Spatial increment of order ν/μ 
Simple kriging estimation, 351-353. See also 

Kriging estimators 
and the Bayesian/maximum-entropy 

formalism, 398 
Simulation, 294 ff. See also Spatial simulation; 

Spatiotemporal simulation 
conditional. See Constrained simulation 
constrained, 301-302 
of dynamic stochastic systems, 322-323 
general purpose method of, 299 
of integrated natural processes, 321-322 
one-dimensional, 316-321. See also One-

dimensional simulation 
in space-time, 335-336 
unconstrained, 299-301 

Site exploration, 402 ff 
taxonomy of tasks, 439 

Skewness function, 35 
Slope estimation, 346 
Small-perturbation assumptions, 231 
Sociological probability, 3. See also Probability 
Soft data, 276, 286, 300 
Soft information, 275 

empirical approaches to, 276-283 
indicator approach to, 283-292 

Soil settlement, 240, 246, 346, 361 
Solute transport, 16, 395 
SP-v. See Spatial polynomial of order v 
Space homogeneous/time stationary generalized 

spatiotemporal random field, 191-196 
Brownian sheet, 193 
definition of, 192 
generalized functional of, 192 
spectral measure of, 193 
white noise, 193 
Wiener, 192 

Space homogeneous/time stationary ordinary 
spatiotemporal random field, 182 ff 

correlation structure of, 183-184 
Fourier-Stieltjes representation of, 183 
in the strict sense, 182 
in the wide sense, 183 

Space-time coordinates, 175 
Space transformation (ST), 216-223 

approach to stochastic partial differential 
equation, 236 

and the criteria of permissibility, 236-238 
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Space transformation (ST) (continued) 
of the first kind, 216 
in the frequency domain, 222 
inverse of the first kind, 218 
inverse of the second kind, 218, 220 
methods of simulation. See Simulation 
of nonhomogeneous spatial random fields, 

225-226 
notion of, 215 
of the product of functions, 235 
and the progressiveness of the stochastic 

research program, 15 
random field representation, 223-224 
of the second kind, 217 
and the semivariogram function, 225, 237 
in the space domain, 222 
of spatiotemporal random fields, 227 
and stochastic partial differential equations, 

226-236 
in terms of covariance functions, 219-220, 

223,225-226,232-234 
Spatial coordinates, 24 
Spatial covariance function, 32 

and the maximum entropy formalism, 
262-264,389,399 

experimental calculation of, 259-260 
exponential, 71 
Gaussian, 71 
model cross-validation of, 265 
spherical, 71 

Spatial cross-covariance function, 36, 67 
generalized of order v and v' (CGSC-v, v'), 

133-134,145-146 
and its relation to spatial cross semivariogram 

function, 97 
Spatial estimation, 337 ff 

compared to spatial simulation, 299 
Spatial increment of order v (SI-v), 135, 136 
Spatially homogeneous 

generalized spatial random field, 112 
spatial random field, 31, 51 
spatiotemporal random field, 187 

Spatially nonhomogeneous 
spatial random field, 31, 54 
spatiotemporal random field, 178 ff 

Spatial mean value, 32 
Spatial polynomial of order v (SP-v), 135 
Spatial random field (SRF) 

anisotropic, 61-62 
canonical representation of, 49 
classifications of, 30, 31 

concept of, 21,22 
correlation theory of, 31 
discrete, 135ff 
entropy of, 103-106 
ergodic, 57, 98 
factorable, 30, 153 ff. See also Factorable 

random field 
functional characterization of, 28-29 
Gaussian, 30, 31. See also Gaussian spatial 

random field 
geometrical properties of, 40-49 
harmonizable, 50 
homogeneous, 31, 51, 
with homogeneous increments, 78 ff 
with homogeneous increments of order v, 

107 ff 
incremental, 78 
independent, 31 
information of, 103-106 
Kolmogorov's necessary and sufficient 

conditions for the existence of, 25 ff 
linear transformation of, 53-54 
lognormal, 39 
mathematical definition of, 25 ff 
memory of, 31 
non-Gaussian, 30, 31 
with orthogonal increments, 57 
physical significance of, 6 ff. See also 

Random field model 
realization of, 9, 27 
scalar, 29, 30 
second-order, 31 
spectral characteristics of, 49-55 
stochastic continuity of, 41-42 
uncorrelated, 32 
vector, 29, 30, 67-70 
white noise, 32 
with zero memory, 31 

Spatial random field with homogeneous 
increments, 78 ff 

criteria of permissibility of, 92-93 
definition of, 79 
geometry of, 93-97 
spectral characteristics of, 83-92 
vector, 97-98 

Spatial random field with homogeneous 
increments of order v, 107 ff. See also 
Intrinsic spatial random field of order v. 

Spatial semivariogram function, 39, 40, 56, 
59 ff 

cross-, 97 
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experimental calculation of, 259-260 
hole-effect model, 265 
isotropic, 91 
and the maximum entropy formalism, 

262-264,389,399 
model cross-validation, 265 
Taylor expansion of, 96 
transitive, polygonal, 257 

Spatial simulation, 294 ff 
frequency domain methods, 295, 325-326 
of Gaussian spatial random fields, 295 
influence of measurement errors, 295, 

324-325 
Karhunen-Loeve expansion method of, 295, 

328-329 
lower-upper triangular matrix method of, 

295,326-328 
of non-Gaussian spatial random fields, 295, 

332-335 
physical significance of, 295-299 
sequential indicator approach of, 334-335 
space transformation methods of, 295, 

302-316 
spectral method of, 312, 317-318 
stochastic differential equation methods of, 

295,330-332 
turning bands method of, 302-316, 

329-330 
of vector spatial random fields, 329-332 

Spatial structure, 7, 240. See also Spatial 
variability 

Spatial uncertainty. See Spatial variability 
Spatial variability, 7, 15, 19, 31, 111, 115, 149, 

239, 245-246, 248-249, 255, 258, 262, 
264,271, 282-283,287,365,401, 404, 
420 

Spatiochronological series, 10 
Spatiotemporal autoregressive model of order 

v + l/μ + 1 (S/TAR-v + l/μ + 1), 212 
Spatiotemporal covariance 

function (centered), 178 
function (noncentered), 179 
functional, 188 

Spatiotemporal estimation 
functional, 385-386 
optimal, 379-386 
and the progressiveness of the stochastic 

research program, 15 
properties of, 384-386 
of space homogeneous/time stationary 

processes, 382-383 

of space nonhomogeneous/time nonstationary 
processes, 384-386 

Spatiotemporal increment of order ν/μ (S/TI-
ν/μ), 210 ff 

Spatiotemporal mean value, 178,188 
Spatiotemporal natural processes, 168-175 
Spatiotemporal random field (S/TRF). See 

Ordinary spatiotemporal random field; 
Generalized spatiotemporal random field 

correlation structure of, 184 
Fourier-Stieltjes representation of, 183 
frozen, 185 
generalized, 187 ff. See also generalized 

spatiotemporal random field 
mathematical definition of, 177 
notion of, 9, 168 
of order ν/μ, 196 ff 
ordinary, 175-187. See also ordinary 

spatiotemporal random field 
physical significance of, 9. See also Random 

field model 
separable, 185 
space homogeneous in the strict sense, 187 
space homogeneous in the wide sense, 187 
space homogeneous/time stationary, 

182-187 
See also Space homogeneous/time 
stationary ordinary spatiotemporal 
random field, 

with space homogeneous/time stationary 
increments, 196 ff 

time stationary in the strict sense, 186 
time stationary in the wide sense, 186 

Spatiotemporal random field of order ν/μ (S/ 
TRF-v/μ), 196 ff 

generalized (GS/TRF-v/μ), 197 
Spatiotemporal sampling design, 419 

reduction factors of, 439 
Spatiotemporal semivariogram 

function, 179 
functional, 188 

Spatiotemporal simulation, 335-336 
frequency-domain techniques of, 335-336 
turning bands method of, 335 

Spatiotemporal structure 
function, 179 
functional, 188 

Spatiotemporal uncertainty. See spatiotemporal 
variability 

Spatiotemporal variability, 169-175 
Spatiotemporal variance, 179 
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SPDE. See Stochastic partial differential 
equation 

Spectral amplitude, 179 
Spectral density function 

evolutionary mean power, 54 
of a homogeneous spatial random field, 58 
of a spatial random field, 50 
of a spatiotemporal random field, 180 

Spectral distribution function, 51 
Spectral one-dimensional simulation techniques, 

317-318. See also One-dimensional 
simulation 

Spectral semivariogram function, 89 
isotropic, 91 

Spectral spatial simulation method, 312, 
317-318. See also Spatial simulation 

Spectral theta function, 158 
Spherical coordinates, 70 
Spherical spatial covariance, 71 
SRF. See Spatial random field 
ST. See Space transformation 
Standard penetration blow counts, 248 
S/TAR-v + l/μ + 1 . See Spatiotemporal 

autoregressive model of order v + l/μ + 1 
Stationarity, 55 
Stationary random process, 45, 55, 65 
Statistical 

aggregate, 1, 5 
continuum, 25, 50 
frequency, 2,3. See also Probability 
knowledge, 1 

Statistical linearization, 374 
Statistical moments up to second order 

scalar, 32-36 
vector, 36, 37 

Steady-state groundwater flow, 148, 230 ff, 395 
Stereophotogrammetry, 296 
Stochastic continuity, 41-42 

in the almost surely sense, 42, 97 
and its relation to the ordinary 

differentiation of the covariance 
function, 42 

in the mean square sense, 41-42 
and its relation to the ordinary 

differentiation of the covariance 
function, 42 

Stochastic convergence, 40-41 
almost surely, 40,102 
criterion of mean square convergence, 41 
in distribution, 40 
and L2 convergence, 41 

in probability, 40 
with probability one, 40 
in the mean square sense, 40, 99, 100 
weakly, 40 

Stochastic data analysis and processing research 
program, 6. See also Stochastic research 
program 

choice and implementation of appropriate 
technique of, 18 

data and resources available, 19 
determination of objectives of, 19 
preliminary stage of, 18 

Stochastic difference equations, 149 
and the notion of spatial increments, 149 

Stochastic differential equations (SDE), 146 ff 
adjoint equations, 150-152 
basic equations, 146-149 
closure problem of, 147 
Duncan-Mortensen-Zakai, 375 
Fujisaki-Kallianpur-Kunita, 375 
and the generalized spatial random field 

theory, 147 
methods of simulation. See Simulation 
and nonlinear estimation, 375 
with random coefficients, 146 
with random forcing function, 146 
with random initial conditions, 146 
solutions to, 147 
and the space transformation approach, 

226-236 
Stochastic differentiation, 43-47 

almost surely, 46 
and its relation to the ordinary 

differentiation of the covariance 
function, 46 

in the mean square sense, 43 
and its relation to mean square continuity, 

44 
and its relation to the ordinary 

differentiation of the covariance 
function, 44 

Stochastic estimation, 337 ff 
Bayesian/maximum-entropy, 338, 386 ff. See 

also Bayesian/maximum-entropy 
estimation 

emergence of, 339-341 
factorable. See Factorable estimation 
functional, 345-346 
general form of optimum spatial, 341-342 
kriging. See Kriging estimation 
vs. nonstochastic estimators, 339-341 
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space-time estimation. See Spatiotemporal 
estimation 

Wiener-Kolmogorov. See Wiener-
Kolmogorov spatial estimation 

Stochastic functional analysis, 11 ff, 22, 23 
Stochastic hydrology, 16 
Stochastic inference, 274-275 
Stochastic integration of spatial random field, 

48 ff 
canonical representation, 49 
mean square Riemann, 48 
mean square Riemann-Stieltjes, 48-49 

Stochastic knowledge, 1. See also Knowledge; 
Probable knowledge 

Stochastic Kortweg-de Vries (KdV) equation, 
180, 274 

Stochastic partial differential equation (SPDE), 
146 ff, 184,197,206-209 

adjoint, 150, 208 
basic, 146, 206 
of intrinsic spatial random fields of order v, 

233-234 
method of simulation, 295, 330-332. See also 

Spatial simulation 
and the space transformation approach, 

226-236 
with variable coefficients, 234-236 

Stochastic research program 
auxiliary hypotheses of, 13, 243 
corroboration of, 18 
desiderata of, 292-293 
duality relations of, 13-14, 245-255 
examples of, 17 
hard core of, 13, 241 
heuristic of, 14 
methodology of, 13 
model construction of, 17 
model parameters of, 13, 243 
and natural processes, 238 ff 
objective meaning of, 13 
operational predictions of, 14 
philosophical theses of, 13-16 
practice of, 16-20 
progressive, 15 
real counterparts of, 13, 243-244 
spectrum of applications of, 16-20 
theoretical versus practical aspects of, 12 

Storm runoff, 336 
Stratified sampling pattern, 408-409, 418 

basic repeated pattern of, 411 
hexagonal, 408- 409 

square, 408-409 
Streamflow, 17 
S/TRF. See Spatiotemporal random field 
S/TRF-v/μ. See Spatiotemporal random field of 

order ν/μ 
Structure function, 56, 79. See also 

Semivariogram function 
Subjective data, 367 
Subjectivist explanation 

of probability, 2 
of probable knowledge, 4 

Subsurface contamination, 346 
Subsurface hydrology, 8 
Submartingale process, 159 
Supermartingale process, 159 
Sysketogram function 

of a spatial random field, 444-445 
of a spatiotemporal random field, 445 ff 

Systematic sampling pattern, 407-408, 418 
hexagonal, 408-409 
square, 408-409 

Tetrachoric series expansion, 157 
Theta function, 155-157 

joint, 157 
spectral, 158 

Topographic process, 240 
Total cost function, 414 
Total loss reduction, 437 
Total reduction variance, 436 
Trade-off, 414, 429-432 
Transfer function, 53. See also Linear 

transformation of spatial random field 
Transition probability density function, 163 
Transmissivities, 346 
Transport processes, 16 
Trend, 32, 248 
Turbulent 

fluctuations of météorologie elements, 17 
velocity field, 25 

Turning bands method of simulation, 302-316, 
329-330, 335-336. See also Spatial 
simulation; Spatiotemporal simulation 

Unbiased estimator, 344, 353, 371, 380 
Uncertainty principle, 77-78 
Unconditional simulation. See Unconstrained 

simulation 
Uncorrelated spatial random field, 32 
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Unconstrained simulation, 299-301. See also 
Simulation 

Unconstrained Wiener-Kolmogorov estimation, 
346-349,371 

Unitary operator, 55, 183 
Utility function, 441 

after experimentation, 441 

Variance 
spatial, 32 
spatiotemporal, 179 

Variance reduction approach of sampling design, 
435-437 

Vector 
random process, 30. See also Random process 
random variable, 9. See also Random variable 

Vector spatial random field, 29, 54-55, 66-69. 
See also Spatial random field 

Vector spatial random field with homogeneous 
increments, 97-98. See also Spatial 
random field with homogeneous increments 

Voronoi polygons, 407 ff 

Water quality management, 396 
Water resources research, 170 

Water table elevation, 269, 356-357 
Wave equation, 229 
Weather 

analysis and prediction, 171 
processes, 181 

Weighted coefficients estimation, 339 
Weighted summation, 316 
White noise 

random process, 125, 131, 140, 308-309, 
378-379 

spatial random field, 32, 49, 65, 245, 250, 
272-274,349 

spatiotemporal random field, 204 
Wiener-Kolmogorov spatial estimation, 338 ff 

constrained, 349-351 
and ordinary kriging estimators, 349-351 
unconstrained, 346-349, 371 

Wiener process, 78, 90, 125, 126 
Wind power resource, 170 

Zero memory spatial random field, 31. See also 
Spatial random field 

Zn concentration, 240, 297, 310-312 
Zone of influence, 248 


