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Foreword

First Edition of Fracture Mechanics by Dr. Nestor Perez

I had the pleasure and the privilege of reading the original book, particularly some
of the important chapters of the book on fracture mechanics by Dr. Nestor Perez.
I find the book, in general, very well written for the academicians as well as
for the practitioners in the field of engineering fracture mechanics. The language
is simple, clear, and straight to the point. Each chapter is developed in such a
way that the mathematical treatment supports the main physical mechanism of
fracture. The equations are arranged in an orderly fashion in harmony with the
descriptive concepts of a phenomenon that is highly complex, very nonlinear, and
often unpredictable. The main objective of a mathematical analysis is to explain
and clarify a physical phenomenon and definitely not to jeopardize it by undue and
unwanted complexity at the cost of brevity. If this is true for a textbook or any
treatise for that matter, Dr. Perez’s book has done the job quite elegantly.

This book is suitable as a textbook for senior undergraduate and graduate students
of a one-semester course in mechanical, civil, chemical, and industrial engineering,
materials science, as well as applied physics and applied chemistry programs.

Each chapter is self-contained and self-sufficient in descriptive details, but it
keeps a smooth continuity with its preceding and following chapters. The analytic
and the algebraic illustrations are just in place with theoretical analyses and
examples. Unlike many voluminous works on fracture mechanics, in this book,
mathematics does not overburden the physics of fracture mechanics and thus shows
a more realistic route to solve a particular problem. Hence, practicing engineers
in consulting firms and design offices can use this book in a very handy and
straightforward fashion. Also it is a good reference book in the personal library
of many retired professionals and professors who still like to keep in touch with the
reality as a hobby, pastime, or pleasure.

I highly recommend this book to any technical publishing house for the timely
birth of this solid but simple work on engineering fracture mechanics.

Journal of Mechanical Behavior Jay K. Banerjee, Ph.D., P.E., M.Ed.
of Materials
Editor (2003)
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viii Foreword

Second Edition of Fracture Mechanics by Dr. Nestor Perez

It is just over a decade since Dr. Nestor Perez published his book on fracture
mechanics. During these 10 years, many emerging fields have gained momentum
and expanded their boundaries related to the failure of materials through instability
and fracture. Some of them are the rupture of cell membranes and tissues in tissue
mechanics, the plastic flow and fracture of bones and tendons in the knees and
elbows, as well as the allied areas of biomechanics and sports medicine. I am sure
that the fundamental concepts of flow and fracture in all “engineerable” materials
as developed and presented by Dr. Perez in the first edition of his book, Fracture
Mechanics, has served in many of the emerging areas of materials science and
technology as mentioned above.

In continuation with this spirit, Dr. Perez has added new concepts in the second
edition of his book. In each chapter, additional approaches are introduced in simple
but convincing manners through a variety of examples. Besides, new numerical
problems are added as examples on how to apply the advanced theories in practice.
Such examples do help not only the students and their instructors in a classroom
environment but also the researchers and their mentors in a laboratory of fracture
mechanics.

In sum, in the second edition, Dr. Perez not only reinforces the basic concepts
of fracture mechanics by presenting new examples on their applications but also
adds and hence expands them into the novel and emerging branches of materials
science. This new edition will help enhance both teaching at the undergraduate-
and graduate-level courses as well as will facilitate the researchers to advance
their theoretical concepts and apply them in practice in the realm of the failure of
materials. These are the improvements in the second edition worth navigating and
exploring into the unknown of the matter: the materials research.

Professor of Manufacturing Processes Jay K. Banerjee, Ph.D., P.E., M.Ed.
and Systems
Mechanical Engineering Department
University of Puerto Rico at Mayaguez
Mayaguez, PR, USA
2016



Preface

This second edition of the book retains all the features of the previous edition while
new ones are added. The main work in this edition includes refining text in each
chapter, expansion of some sections in several chapters, and addition of examples,
problems, and new sections, such as conformal mapping and mechanical behavior
of wood.

The purpose of this book is to present, in a closed form, analytical methods in
deriving stress and strain functions related to fracture mechanics. This book contains
a compilation of work available in the literature in a scatter form and, to a certain
extent, selected experimental data of many researchers to justify the theoretical
fracture mechanics models in solving crack problems. It is a self-contained and
detailed book for the reader (senior and graduate students and engineers) involved in
the analysis of failure using a mathematical approach for designing against fracture.
However, it is important that the reader understands the concept of modeling,
problem solving, and interpreting the meaning of mathematical solution for a
particular engineering problem or situation. Once this is accomplished, the reader
should be able to think mathematically, foresee metallurgically the significance
of microstructural parameters on properties, analyze the mechanical behavior of
materials, and recognize realistically how dangerous a crack is in a stressed
structure, which may fail catastrophically.

In spite of the advances in fracture mechanics, many principles remain the same.
Dynamic fracture mechanics is included through the field of fatigue and Charpy
impact testing. The material included in this book is based upon the development
of analytical and numerical procedures pertinent to particular fields of linear elastic
fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-
mode-loading interaction. The mathematical approach undertaken herein is coupled
with a brief review of several fracture theories available in cited references.

Fracture mechanics of engineering materials deals with fracture of solids under-
going large deformation (ductile materials) and/or fracture (brittle materials) when
subjected to extreme loading. The analysis of a solid responding to loads is
concerned partly with microscopic mechanisms of fracture, establishing fracture
criteria, and predicting the fracture stress from a macroscopic approach.
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x Preface

Chapter 1 includes definitions of variables such as force, load, stress, strain,
and displacement. These are vital for the understanding of state properties of solid
materials and for characterizing the mechanical behavior of crack-free or cracked
solids.

Chapter 2 deals with the introduction to fracture mechanics. It also includes the
close form of Griffith crack theory and the strain-energy release rate associated with
fracture.

Chapter 3 is devoted to solid bodies under quasi-static stress modes containing
cracks. The theory of linear elastic fracture mechanics (LEFM) is integrated in this
chapter using an analytical approach for deriving field equations ahead of a crack
tip.

Chapter 4 includes the derivation of elastic field equations for mode I (tension),
mode II (sliding), and mode III (tearing) loadings.

Chapter 5 is devoted to crack tip plasticity and relevant configuration. The yield-
ing phenomenon is analyzed for a better understanding of the plastic deformation
ahead of a crack tip.

Chapter 6 deals with the energy principles for assessing the elastic behavior of
solids containing cracks. The energy terms included in this chapter are the energy
release rate and the J-integral which are used to define fracture criteria.

Chapter 7 includes the theoretical concepts of plastic fracture mechanics for
deriving the HRR field equations using the J-integral approach. An engineering
approach is also included for determining the plastic J-integral.

Chapter 8 deals with a realistic engineering problem related to mixed-mode
fracture mechanics. This is the case for a crack in a component being subjected to a
mixed-mode loading, such as tension and torsion (mode I and II stress loading). A
closed-form analytical approach is used in this chapter for deriving the field elastic
equations.

Chapter 9 is devoted to fatigue crack growth since fatigue in solid materials being
subjected to repeated cyclic loading is a cumulative damage phenomenon. Fatigue
crack initiation is modeled using a crystallographic approach, and the fatigue crack
growth rate is determined as a function of the change of the stress intensity factor.
Thus, a fatigue life formula is derived for predicting fracture.

Chapter 10 is devoted to fracture toughness correlations, including indentation-
induced cracking, Charpy impact energy, and dynamic effects.

A solution manual is available for educators or teachers upon the consent of
the book publisher. Also, all images, pictures, or data taken from reliable sources
are included in this book for educational purposes and academic support only.
Additional material to this book can be downloaded from http://extras.springer.com.

Mayaguez, Puerto Rico Nestor Perez
2016

http://extras.springer.com
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1Theory of Elasticity

1.1 Introduction

The definition of variables such as force, load, stress, strain, and displacement is
vital for the understanding of state properties of solid materials and for characteriz-
ing the mechanical behavior of crack-free or cracked solids. Clearly, the latter have
a different mechanical behavior than the former, and it is characterized according
to the principles of fracture mechanics, which are divided into two areas. Linear-
elastic fracture mechanics (LEFM) considers the fundamentals of linear elasticity
theory, and elastic-plastic fracture mechanics (EPFM) characterizes plastic behavior
of cracked ductile solids. In order to characterize cracked solids, knowledge of the
aforementioned variables is necessary. The term force in the fracture mechanics
field is an applied mechanical load being fixed, quasi-static or dynamics. In physics,
a dynamic force, F D ma, depends on the acceleration (a) of a moving mass (m).
However, if this mass is stationary and susceptible to be deformed, a quasi-static
force or mechanical force must be defined. Both dynamic and mechanical forces
have the same units, but different physical meaning. Moreover, this mechanical force
is analogous to load (P). Obviously, this is the point of departure in this chapter for
defining an important engineering parameter called elastic stress, � D P=Ao, where
Ao is the original cross-sectional area of a specimen.

Now, the strain is defined as � D d�=dx where d� is the change of displacement,
say, in the x-direction. The intent here is to indicate how certain parameters or
variables are related to one another. Nevertheless, if two variables are known, the
third one can be estimated or predicted. This is one of the benefits of mathematics
for solving engineering problems, which have their own constraints for dictating
the magnitude of a particular variable. In fact, one or more variables may define a
material property, while a property depends on the microstructure of a solid material.

© Springer International Publishing Switzerland 2017
N. Perez, Fracture Mechanics, DOI 10.1007/978-3-319-24999-5_1
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2 1 Theory of Elasticity

1.2 Definitions

This section is concerned with some definitions the reader needs to assimilate
before the fracture mechanics theories and mathematical definitions are introduced
in a progressive manner. It is important to have a clear and precise definition of
vital concepts in the field of applied mechanics so that the learning process for
understanding fracture mechanics becomes obviously easy. However, basic concepts
such as stress, strain, safety factor, deformation, and the like are important in
characterizing the mechanical behavior of solid materials subjected to forces or
loads in service [1, 2]. Hence,

Deformation: The movement of points in a solid body relative to each other.
Deformation is also the change in shape of objects due to applied forces and it
may be elastic or plastic.

Displacement: The movement of a point in a vector quantity in a body subjected
to a loading mode.

Strain: This is a geometric quantity, which depends on the relative movement
of two or three points in a body. Strain is also a measure of deformation of the
material based on a reference length.

Stress: A stress at a point on a body represents the internal resistance of the body
due to an external force. Thus, the load (P) and the cross-sectional area (A) are
related as indicated by the equation of equilibrium of forces. This implies that
stress is defined as force per unit area.

X
Fy D P � �A D 0 (1.1)

� D P

A
(1.2)

If A is the original cross-sectional area (Ao), then � is an engineering stress;
otherwise, it is a local stress. The theory of elasticity deals with isotropic
materials subjected to elastic stresses, strains, and displacements. In engineering,
the elasticity behavior of a material is characterized by the tensile modulus of
elasticity and the elastic limit. The latter is just the transition stress between
elastic and plastic deformation.

Safety Factor: This is a parameter used in designing structural components to
assure structural integrity. Simply stated, the safety factor is a design factor
defined by

SF D Strength

Stress
> 1 (1.3)

Here, the strength may represent a material’s property, such as the yield strength
� ys, and the stress � is the variable to be applied to a structure. The role of
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SF in this simple relationship is to control the design stress so that � < � ys in
designing applications, where it is desirable to have a prolong design life for
assuring structural integrity.

Usually, the safety factor is in the order of two, but its magnitude depends on
the designer’s experience or on a design code.

1.3 Stress State

According to the theory of elasticity, the field equations are based on the normal
strains (�i) and the shear strains (� ij). These are related to displacements (ui), which
are illustrated in Fig. 1.1 for an element being distorted due to an external applied
load.

Consequently, the reference point P becomes P� and the element gets distorted
at angle � . In general, the strains associated with distortion in three dimensions are
defined by

�x D @�x

@x
� xy D @�y

@x
C @�x

@y
D � xy

G

�y D @�y

@y
� yz D @�z

@y
C @�y

@z
D � yz

G
(1.4)

�z D @�z

@z
� zx D @�x

@z
C @�z

@x
D � zx

G

where G D Shear modulus of rigidity (MPa)
According to the theory of elasticity, stresses and strains are generalized as

�ij D f .� ij/, � ij D f .� ij/, � ij D f .�ij/, and � ij D f .� ij/. These quantities are
treated as second-rank tensors, and the matching mathematical framework of tensor
analysis can be found elsewhere [3,4]. It is not intended herein to review the theory
of elasticity, but include simplified forms of stresses and strains so that the reader is
reminded about the use of these second-rank tensors as powerful tools for solving
engineering problems or situations.

Fig. 1.1 Displacement of a
point



4 1 Theory of Elasticity

In addition, the relationships between stresses and strains are known as con-
stitutive equations, which are classified as equilibrium equations, compatibility
equations, and boundary equations [1].

Problems, whose solutions require the analysis of stresses, strains, and displace-
ments, are normally encountered in engineering structures, which are susceptible to
develop dangerous cracks during service. Thus, it is important to visualize stresses
and strains as three-dimensional entities that develop around discontinuities in
microstructures, such as dislocations.

Triaxial Sate of Stress Consider a homogeneous and isotropic solid body in
equilibrium subjected to an external loading. As a result, elastic deformation takes
place to an extent, provided that the applied external stress .�/ does not exceed the
yield strength .� ys/ of the body.

In order to understand the level and distribution of the resultant elastic internal
stress, the use of a three-dimensional element helps visualizing the type and location
of acting stresses on the element. Figure 1.2 shows an ideal model for defining the
element of a solid being elastically deformed.

In general, the stresses acting on the entire solid body are continuously dis-
tributed over the surface and are the same acting on the element in equilibrium.
At equilibrium, the shear stresses are related as � xy D � yx, � yz D � zy, and � zx D � xz,
and the tensile stresses are � x, � y, and � z.

According to Hooke’s law for isotropic solid materials, the strain components
and related elastic stresses (Fig. 1.2) are defined below, without proof, for elastic
bodies being elastically deformed in tension mode. Hence, the three-dimensional
entities in Cartesian coordinates are

�x D � x

E
�y D �z D ��� x

E

�y D � y

E
�x D �z D ��� y

E
(1.5)

Fig. 1.2 Three-dimensional
stress element
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�z D � z

E
�x D �y D ��� z

E

� D ��y

�x
D � �z

�x

where � D Poisson’s ratio
Using the principle of superposition (process of adding stress or strain solutions

for an identical geometry), the strains and stresses in matrix form are

2

4
�x

�y

�z

3

5 D 1

E

2

4
� x � v �� y C � z

�

� y � v .� x C � z/

� z � v �� x C � y
�

3

5 (1.6)

For convenience, the stresses as functions of strains may be defined in a matrix form
as indicated below. The stresses along the principal axes are

2

4
� x

� y

� z

3

5 D E

.1C �/ .1 � 2�/

2

4
.1 � �/ �x C v

�
�y C �z

�

.1 � �/ �y C v .�x C �z/

.1 � �/ �z C v
�
�x C �y

�

3

5 (1.7)

and the shear stresses on planes are

2

4
� xy

� yz

� zx

3

5 D G

2

4
� xy

� yz

� zx

3

5 D E

2 .1C �/

2

4
� xy

� yz

� zx

3

5 (1.8)

since the shear modulus of elasticity is

G D E

2 .1C �/
(1.9)

where E D Elastic modulus of elasticity (MPa)

Biaxial Sate of Stress If � z D � zx D � zy D � xz D � yz D 0, then Eq. (1.6) gives the
strain entities for the biaxial state. These are defined in matrix form below

2

4
�x

�y

�z

3

5 D 1

E

2

4
� x � v� y

� y � v� x

�� �� x C � y
�

3

5 (1.10)

2

4
� xy

� xz

� yz

3

5 D 1

G

2

4
� xy

0

0

3

5 (1.11)
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and the stresses are

2

4
� x

� y

� z

3

5 D E

.1 � �2/

2

4
�x C ��y

�y C v�x

0

3

5 (1.12)

2

4
� xy

� yz

� zx

3

5 D E

2 .1C �/

2

4
� xy

0

0

3

5 (1.13)

In addition, the principle stresses and strains occur on the main axes, and their
maximum and minimum values can be predicted using the Mohr’s circle on a point.
Mohr allows the determination of the normal and shear stress in a two-dimensional
plane.

Hence, if � z D 0, then the principle stresses and strains can be predicted from
the following expressions:

�1;2 D � x C � y

2
˙
r�� x � � y

2

�2 C �2xy (1.14)

�1;2 D � x C � y

2
˙ �max (1.15)

Recall that the third principal stress is perpendicular to the outward plane of the
paper implying that �3 D � z. In addition, if the shear stress � xy D 0, then �1 and
�2 are principle stresses, which are related to their principal directions. The angle
between the principal directions is 90ı.

Conversely, the principle strains are strains in the direction of the principle
stresses. For a two-dimensional analysis, the principle strains are determined using
the following quadratic expression:

�1;2 D �x C �y

2
˙
s
��x � �y

2

�2 C
�
� xy

2

�2
(1.16)

The principle stresses and principle strains are the components of the stress tensor
and strain tensor when the shear stress components become zero. A tensor stands
for an entity that has nine components (� ij or �ij) defining the stress state, and it is
defined as vector T.n/ D n � � or T.n/ D n� ij, where n is the unit length vector.

Example 1.1. Compute the principle stresses acting on a steel machine part if the
rectangular stress components are

� x D 280 MPa � y D �120 MPa � z D 140 MPa

� xy D 280 MPa � yz D 0 � zx D 0
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Solution. From Eq. (1.14),

�1;2 D 280 � 120
2

˙
s�

280C 120

2

�2
C 2802

�1;2 D 80 MPa ˙
p
1:184 � 105

�1;2 D 80 MPa ˙ 344 MPa

�1 D 80 MPa C 344 MPa D 424 MPa

�2 D 80 MPa � 344 MPa D �264 MPa

�3 D � z D 140 MPa

1.4 Engineering Stress State

This section includes the engineering stress that is based on specimen bulk
dimensions and the applied external loading mode, while the engineering strain
depends on specimen bulk dimensions during or after deformation of a solid body.
On the other hand, the theory of elasticity provides internal or surface elastic
stresses, strains, and displacements in two or three dimensions that develop during
elastic deformation.

For uniaxial tension testing, the state of stress and the state of strain are described
by the uniaxial relationships. From an engineering point of view, the tensile or
longitudinal strain is defined as elongation or stretching, which is related to Hooke’s
law of elastic deformation. For a uniaxial tensile test on a crack-free specimen
shown in Fig. 1.3, the strain and Hooke’s law are

�t D
Z l

lO

dl

l
D ln

�
l

lo

�
(natural or true strain) (1.17)

� D 	l

lo
(engineering strain) (1.18)

� D �

E
(Hooke’s Law) (1.19)

Here, 	l is the change in gage length of a line segment between two points on
a solid, and lo is the original gage length. It is clear that Hooke’s law gives a linear
stress-strain relationship. Most structural materials have some degree of plasticity,
which is not defined by Hooke’s law.

In general, the mechanical behavior of a material under a stress-loading mode
depends on the microstructure, strain rate, and environment. The behavior of an
initially crack-free material is characterized by one of the typical stress-strain curves
shown in Fig. 1.4.
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Fig. 1.3 Schematic tensile
crack-free round specimen

Fig. 1.4 Schematic stress-strain curves

Typical tension properties, such as yield strength, tensile strength, ductility, and
the modulus of elasticity, are obtained from these curves. The strength refers to a
property and stress is a parameter related to an applied loading mode.

Nevertheless, the area under the curve is a measure of fracture toughness in
terms of strain energy density, which is not a common variable used by engineers
in structural analysis, but it may be used as a controlling parameter in classifying
structural materials. Particularly, the SMA curve in Fig. 1.4 is for a shape memory
alloy, such as 55Ni-45Ti (nitinol), which exhibits significant high strain to failure
(superelastic) and high total strain energy density [5, 6].

In fact, the strain energy density W (Joules=m3) is the energy required to deform
the material. According to Fig. 1.4, this energy is the area under the curve. For elastic
behavior (up to the yield point), fracture toughness is the elastic strain energy density
known as resilience, and it is defined as

W D
Z �

o
�d� (1.20)

This expression represents an elastic behavior up to the yield strain for points a, b,
c, and d in Fig. 1.4. Hooke’s law, Eq. (1.19), is used to solve the integral given by
Eq. (1.20). Thus, the elastic strain energy density becomes
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W D
Z �ys

o
E�d� D 1

2
E�2ys D �2ys

2E
(1.21)

On the other hand, tough materials have fracture toughness based on oe and SMA
curves. Thus, the strain energy density for curve oe takes the form

W D
Z �e

f

o
�d� D

Z �ys

o
�d� C

Z �e
f

�ys

�d� (1.22)

W D �2ys

2E
C
Z �e

f

�ys

�d� (1.23)

This integral can be solved once a stress function in terms of strain, � D f .�/,
is available. The most common plastic stress functions applicable from the yield
strength � ys (YS) to the ultimate tensile strength or simply the tensile strength
� ts (TS) as the maximum strength on a stress-strain curve, Fig. 1.4, are known as
Ramberg–Osgood [7] and Hollomon [8] equations. These functions are defined as

� D � ys

�
�

˛0�ys

�1=n0

for � � � ys (Ramberg–Osgood) (1.24)

� D k�n for � � � ys (Hollomon) (1.25)

where n; n0 D Strain-hardening exponents
k D Strength coefficient or proportionality constant (MPa)
� D Plastic stress (MPa)
� ys D Yield strength (MPa)
� D Plastic strain
˛0 D Constant

Both Eqs. (1.24) and (1.25) give effective or true plastic stresses and plastic
strains within the convex shape (parabolic) of a stress-strain curve. Conversely,
the strain-hardening exponent n or n0 measures the rate at which a metallic solid
body becomes strengthened or hardened as a result of plastic straining. The main
mechanism for plastic straining arises due to dislocation interactions in most
polycrystalline structures. This physical phenomenon can also be referred to as
dislocation strengthening which is very important in cold-work hardening or simply
work hardening. However, plastic deformation due to martensitic phase transforma-
tion (stainless steels), mechanical twinning, strain rate, and testing temperature can
affect the convex shape of a stress-strain curve, and therefore, Eqs. (1.24) and (1.25)
may not describe the plastic behavior of a metal or an alloy. The magnitude of the
strain-hardening exponent depends on the nature of the material. In fact, n < 1 and
n0 > 1 due to the nature of the empirical mathematical models.

In addition, Eq. (1.24) predicts that � ! 1 as � ! 1 for 0 < n < 1, but
experimental observations reveal that � must have a finite magnitude at high strains.
On the other hand, if � ! k when n ! 0, then the material approaches a true plastic
behavior with vanishing strain or work-hardening capability.
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For a strain hardenable material, the Hollomon or power-law equation may be
used as an effective stress expression in Eq. (1.23) so that the integral can easily be
solved. Inserting Eq. (1.25) into (1.23) and integrating yields the total strain energy
density up to the tensile strength (TS) point

W D �2ys

2E
C k�nC1

n C 1

ˇ̌
ˇ̌
�ts

�ys

(1.26)

W D �2ys

2E
C k

�
�nC1

ts � �nC1
ys

�

n C 1
(1.27)

W D We C Wp (1.28)

Here, the first and second terms are the elastic (We) and plastic (Wp) strain energy
densities. Since Hooke’s law applies up to the yield point, the total energy as per
Eq. (1.28) takes the form

W D �2ys

2E
� k

n C 1

�� ys

E

�nC1 C k�nC1
ts

n C 1
(1.29)

An ideal tough material must exhibit high strength and ductility. Despite that ductile
materials are considered tough; they have low strength and high ductility. However,
if a notched tensile specimen made of a ductile material is loaded in tension, the
plastic flow is shifted upward since a triaxial state of stress is developed at the root
of the notch. This is a constraint against plastic flow, but it enhances the magnitude
of the elastic stresses at the notch root [9].

In summary, the yield strength (material property) and the fracture toughness in
terms of total strain energy density of crack-free materials can be compared using
the inequalities shown below

�ductile
ys < � tough

ys < �brittle
ys (1.30)

Wbrittle < Wtough < Wductile (1.31)

This analogy implies that the yield strength decreases and the total strain energy
density increases with increasing strength and decreasing strain to failure. These
expressions can be used for classifying solid materials. However, an ideal material
for practical engineering applications should be characterized according to the
above inequalities, but slightly modified as indicated below for certain applications.
Therefore,

�ductile
ys << � tough

ys � �brittle
ys (1.32)

Wbrittle << Wtough � Wductile (1.33)

since high ductility is not desired.
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1.4.1 Plane Conditions

One important material’s condition for characterizing the mechanical behavior of
either a cracked or a crack-free specimen is its thickness. Thus, plane conditions are
classified below.

Plane Stress: This is a stress condition used for thin bodies (plates), in which
the specimen thickness must be B << w, where w is the width. Therefore, the
negligible stresses through thickness are

� z D � yz D � zx D 0 (1.34)

Most solid bodies under a quasi-static or dynamic loading are subjected to
monotonic or fracture mechanics testing, where � z D 0 at the surface and � z ' 0

at the mid-thickness plane.
Plane Strain: This particular condition is for thick bodies, which develop a

triaxial state of local stress at the crack tip. The through-thickness stress in
Cartesian coordinates is

� z ' v
�
� x C � y

�
(1.35)

which is a controlling stress entity.

1.5 Equilibrium Equations

The objective of this section is to show the equilibrium field equations used for
analytically deriving solutions to the unknown elastic stresses � x, � y, and � xy.
Subsequently, this requires an elementary treatment of the theory of elasticity.

Rectangular Coordinates Consider a small two-dimensional element of unit
thickness in equilibrium as shown in Fig. 1.5.

Fig. 1.5 Stresses in
Cartesian coordinates
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For a two-dimensional stress analysis as per Fig. 1.5, the sums of the forces in
the x-direction and y-direction in Cartesian coordinates are respectively

X
Fx D 0 (a)

0 D
�
� x C @� x

@x
dx

�
dy � � xdy (b)

C
�
� yx C @� xy

@y
dy

�
dx � � yxdx C Fxdxdy

X
Fy D 0 (c)

0 D
�
� y C @� y

@x
dx

�
dy � � ydy (d)

C
�
� xy C @� xy

@y
dy

�
dx � � xydx C Fydxdy

Divide Eqs. (b) and (d) by dxdy; let dx ! 0 and dy ! 0 and � yx D � xy due to
symmetry. Hence, the equilibrium equations become

@� x

@x
C @� xy

@y
C Fx D 0 (1.36)

@� xy

@y
C @� y

@x
C Fy D 0 (1.37)

Here, Fx and Fy are body-force intensities. The resultant stress equations in plane
Cartesian coordinates along with body forces are defined components of the stress
tensor [1, 10, 11]. Hence,

� x D @2


@y2
C Fx

� y D @2


@x2
C Fy (1.38)

� xy D � @2


@x@y

The body forces Fx and Fy commonly arise from the gravitational field, which has
insignificant effects on the elastic stresses given by (1.38). In such a case, Fx D 0

and Fy D 0 for computational purposes.
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Fig. 1.6 Stresses in polar
coordinates

Polar Coordinates Consider a small two-dimensional element in equilibrium of
unit thickness shown in Fig. 1.6.

For a two-dimensional stress analysis as per Fig. 1.6, the sum of the forces
in the radial direction (r-direction) and tangential direction (�-direction) in polar
coordinates are, respectively

X
Fr D 0 (a)

0 D
�
� r C @� r

@r
dr

�
.r C dr/ d� � � rrd� � ��rdr cos .d�=2/ (b)

C
�
� r� C @��r

@�
d�

�
dr cos .d�=2/ �

�
�� C @��

@�
d�

�
dr sin .d�=2/

� ��dr sin .d�=2/C Frrdrd�

and

X
F� D 0 (c)

0 D
�
� r� C @� r�

@r
dr

�
.r C dr/ d� � � r� rd� � � r�dr sin .d�=2/ (d)

C
�
� r� C @� r�

@�
d�

�
dr sin .d�=2/ �

�
�� C @��

@�
d�

�
dr cos .d�=2/

� ��dr cos .d�=2/C F� rdrd�
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Rearranging and dividing Eqs. (b) and (d) by drd� , letting � r� D ��r and,
dr ! 0 and d� ! 0 in an infinitely small element gives the equilibrium equations
defined by

@� r

@r
C 1

r

@� r�

@�
C 1

r
.� r � ��/C Fr D 0 (1.39)

1

r

@��

@�
C @� r�

@r
C 2� r�

r
C F� D 0 (1.40)

Here, Fr and F� are also body-force intensities. The resultant stress equations in
polar coordinates are defined by Timoshenko and Goodier [1], Sadd [11], Dally and
Riley [10]

� r D 1

r

@


@r
C 1

r2
@2


@�2

�� D @2


@r2
(1.41)

� r� D 1

r2
@


@�
� 1

r

@2


@r@�
D � @

@r

�
1

r

@


@�

�

In general, body forces are categorized as gravitational forces (gravitational forces),
electromagnetic forces (electromagnetic field), and inertial forces (motion). For
example, gravitational forces arise when a single fixed-end cantilever beam is
subjected to its own mass-weight force, while inertial forces arise from a rotating
shaft with an accelerating force direction acting on it with opposite direction [11].
The mass of the shaft is in motion and acquires an acceleration of low magnitude.
Consequently, inertial forces are induced by motion and are considered fictitious
forces. Recall that inertia is the resistance of a body to changes in its state of motion.
On the other hand, internal forces arise within a body being subjected to external
forces and are induced uniformly and continuously within the body.

Normally, the rate of work done on an elastic solid by the external loads deter-
mines the state of elastic deformation as a quasi-static or dynamics. Subsequently,
the related Airy elastic stresses are determined without the body-force components,
which are considered vanish within the solid.

1.6 Biharmonic Equation

The goal in this section is to show how to transform the rectangular biharmonic
equation into polar coordinates using the Airy stress function 
. The limitation of
any arbitrary 
 function is that it must satisfy the biharmonic equation. Once this is
accomplished, the stresses given by Eq. (1.41) are also satisfied.

The starting point is to find a relation between rectangular and polar coordinates.
This is given by
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r2 D x2 C y2, r D
p

x2 C y2

x D r cos � , y D r sin � (1.42)

� D arctan
�y

x

�

from which

@r

@x
D x

r
D cos � ,

@�

@x
D � y

r2
D �1

r
sin � (1.43)

@r

@y
D y

r
D sin � ,

@�

@y
D � x

r2
D C1

r
cos �

If 
 D f .r; �/, then

@


@x
D @


@r

@r

@x
C @


@�

@�

@x
D @


@r
cos � � 1

r

@


@�
sin � (1.44)

@


@y
D @


@r

@r

@y
C @


@�

@�

@y
D @


@r
sin � C 1

r

@


@�
sin �

Thus,

@2


@x2
D
�
@

@r
cos � � 1

r
sin �

@

@�

��
@


@r
cos � � 1

r

@


@�
sin �

�

D @2


@r2
cos2 � � 2

r

@2


@�@r
cos � sin � C 1

r

@


@r
sin2 � (1.45)

C 2

r2
@


@�
cos � sin � C 1

r2
@2


@�2
sin2 �

and

@2


@y2
D
�
@

@r
sin � � 1

r
sin �

@

@�

��
@


@r
sin � C 1

r

@


@�
sin �

�

D @2


@r2
sin2 � C 2

r

@2


@�@r
cos � sin � C 1

r

@


@r
cos2 � (1.46)

� 2

r2
@


@�
cos � sin � C 1

r2
@2


@�2
cos2 �

Adding Eqs. (1.45) and (1.46) gives

@2


@x2
C @2


@y2
D @2


@r2
C 1

r

@


@r
C 1

r2
@2


@�2
(1.47)



16 1 Theory of Elasticity

Take the fourth derivatives of Eq. (1.47) to get the biharmonic equations in
rectangular and polar coordinates. Hence,

r4
 .x; y/ D
�
@2

@x2
C @2

@y2

��
@2


@x2
C @2


@y2

�

r4
 .x; y/ D @4


@x4
C 2

@4


@x2@y2
C @4


@y4
D 0 (1.48)

and that for polar coordinates becomes

r4
 .r; �/ D
�
@2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2

��
@2


@r2
C 1

r

@


@r
C 1

r2
@2


@�2

�
D 0 (1.49)

Therefore, r4
 .x; y/ D r4
 .r; �/ D 0.
Expanding and simplifying Eq. (1.49) requires a step-by-step algebraic manip-

ulation of the partial derivatives of any Airy stress function 
. The algebraic
manipulation is carried out by the nine multiplication steps. They are:

.1/
@

@r2

�
@2


@r2

�
D @4


@r4

.2/
@2

@r2

�
1

r

@


@r

�
D 2

r3
@


@r
� 2

r2
@2


@r2
C 1

r

@3


@r3

.3/
@2

@r2

�
1

r2
@2


@�2

�
D 6

r4
@2


@�2
� 4

r3
@3


@r@�2
C 1

r2
@4


@r2@�2

.4/
1

r

@

@r

�
@2


@r2

�
D 1

r

@3


@r3
(1.50)

.5/
1

r

@

@r

�
1

r

@


@r

�
D 1

r2
@2


@r2
� 1

r3
@


@r

.6/
1

r

@

@r

�
1

r2
@2


@�2

�
D 1

r3
@3


@r@�2
� 2

r4
@2


@�2

.7/
1

r2
@2

@�2

�
@2


@r2

�
D 1

r

@4


@�2@r2

.8/
1

r2
@2

@�2

�
1

r

@


@r

�
D 1

r3
@3


@�2@r

.9/
1

r2
@2

@�2

�
1

r2
@2


@�2

�
D 1

r4
@4


@�4
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The subsequent step for completing this analytical procedure is the determination
of the elastic stresses using a particular Airy stress function 
. This is accomplished
in the next section.

1.7 The Airy Stress Function

The Airy stress function approach [12] is used in order to analytically determine the
unknown stresses � x, � y, and � xy in two-dimensional elasticity problem. The use of
the type of coordinates depends on the nature of the problem and the complexity
of the needed analytical approach, such as the equilibrium, compatibility, and
governing biharmonic equation. Hence, the objective of this section is to describe
the method for finding solutions of engineering problems using the Airy stress
function 
, which must also satisfy boundary conditions.

In a two-dimensional analysis, the general mathematical definition of the elastic
stress field in terms of the Airy stress function in Cartesian coordinates is

� x D @2


@y2
C�

� y D @2


@x2
C� (1.51)

� xy D � @2


@x@y

Here, � D �.x; y/ is the body-force field that includes forces due to gravity, water
pressure in porous materials, and centrifugal forces in rotating machine parts. Once
an Airy stress function 
 is selected, the stress solutions may not necessarily satisfy
the equilibrium equation. Instead, the biharmonic equation is used in order to verify
if the stress definitions meet the equilibrium requirements.

The body-force intensities or the body force of magnitudes are

Fx D �@�
@x

Fy D �@�
@y

(1.52)

The stress compatibility equation is [1, 10, 11]

r2
�
� x C � y

� D �ˇ
�

�
@Fx

@x
C @Fy

@y

�
(1.53)

where ˇ D 1 for plane stress condition
ˇ D 1=.1 � �/ for plane strain condition

For a crack-free hollow cylinder is of the type [10]


 D a1 C a2 ln .r/C a3r
2 C a4r

2 ln .r/ (1.54)
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and for a cracked plate, 
 may be of the form [13]


 D r�C1f .�/ (1.55)


 D g .r/ f .�/ (1.56)

where � is an eigenvalue and f .�/ is an unknown trigonometric function.

1.7.1 Airy Power Series

Theoretically, any Airy stress function 
 used for finding the solution to plane
elasticity engineering problems with no body forces should satisfy a respective
biharmonic equation. However, the choice of coordinates depends on the boundary
conditions induced by the loading mode imposed on a particular specimen geometry.
Excluding any environmental effects on a stressed body, the governing equations of
interest must include primarily the stresses, which are summarized below.

• Rectangular coordinates: 
 D 
.x; y/ for � x, � y, and � xy if r4
 .x; y/ D 0

• Polar coordinates 
 D 
.r; �/ for � r, �� , and � r� if r4
 .r; �/ D 0.

It should be mentioned that the Airy stress function 
 is also used for determining
the stress and strain fields around edge dislocations in isotropic and continuous
media. A mathematical and theoretical treatment on this particular subject is given
in a book written by Meyers and Chawla [3] in which isostress contours indicate the
maximum tension, compression, and shear stresses.

Let the Airy stress function 
 be defined as an Airy power series having ai the
polynomial coefficients


 D
mX

iD1
aix

m�iyi�1 (1.57)

For convenience, the first-order derivatives of this function, Eq. (1.57), with respect
to two-dimensional Cartesian coordinates are

@


@x
D

mX

ID1
.m � i/ aix

m�i�1yi�1 (1.58)

@


@y
D

mX

ID1
.i � 1/ aix

m�iyi�2 (1.59)

A polynomial described by Eq. (1.57) must satisfy the biharmonic expression,
Eq. (1.48). For instance, let the order of the polynomial be
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 D
5X

iD1
aix

5�iyi�1 (1.60)


 D a1x
4 C a2x

3y C a3x
2y2 C a4xy3 C a5y

4 (1.61)

Thus, the pertinent derivatives are

@4


@x4
D 24a1

@4


@y4
D 24a5 (1.62)

@4


@x2@y2
D 4a3

Substituting Eq. (1.62) into (1.48) yields a non-satisfactory result

r4
 D @4


@x4
C 2

@4


@x2@y2
C @4


@y4
(1.63)

r4
 D 24a1 C 8a3 C 24a5 ¤ 0 (1.64)

This problem can be solved by letting r4
 D 0 in Eq. (1.64) so that

24a1 C 8a3 C 24a5 D 0 (a)

Solving Eq. (a) for a5 yields

a5 D � .a1 C a3=3/ (b)

Now, substituting a5 in Eq. (1.62) gives the redefined Airy stress function as


 D a1
�
x4 � y4

�C a2x
3y C a3

�
x2y2 � 1

3
y4
�

C a4xy3 (1.65)

from which the fourth-order derivatives are

@4


@x4
D 24a1

@4


@y4
D �24a1 � 8a3 (1.66a)

@4


@x2@y2
D 4a3
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Substituting these fourth-order derivatives, Eq. (1.66a), into the biharmonic expres-
sion, Eq. (1.48), yields r4
 D 0. The reader should verify these partial results as an
exercise.

Therefore, Eq. (1.65) satisfies the condition r4
 D 0. Subsequently, using
Eqs. (1.51) and (1.65) gives the expected stress equations along with zero body-
force field as

� x D @2


@y2
D �12a1y

2 C 2a3
�
x2 � 2y2

�C 6a4xy

� y D @2


@x2
D 12a1x

2 C 6a2xy C 2a3y
2 (1.66b)

� xy D � @2


@x@y
D �3a2x

2 � 4a3xy � 3a4y
2

This particular exercise shows that a fourth-order polynomial does not satisfy the
biharmonic equation unless the above adjustment is made. Apparently, a third-order
polynomial can give a straightforward solution. This is left as an exercise.

An example can make this procedure sufficiently clear how to determine the
elastic stresses using the Airy stress function for a cantilever beam.

Example 1.2. Consider a cantilever beam of width b and height h being supported
at its ends and uniformly loaded under plane stress condition by a load P per unit
length. This is shown in the figure below.

Find the stresses in Cartesian coordinates using an Airy stress function defined
by (From ref. [10])


 D a1x
2 C a2x

2y C a3

�
x2y3 � 1

5
y5
�

C a4y
3 (a7)

Loading conditions:

� y D � xy D 0 at y D �h=2 (a1)

� y D �P=b at y D h=2 (a2)
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� xy D 0 at y D h=2 (a3)

R D
Z h=2

�h=2
� xydy D PL

2
at x D ˙L

2
(a4)

Z h=2

�h=2
� xdy D 0 at x D ˙L

2
(a5)

Z h=2

�h=2
� xydy D 0 at x D ˙L

2
(a6)

Solution. Equations (a4) and (a5) indicate that there is no longitudinal force and
bending coupling at the ends of the beam.

Now, use the given polynomial to derive the derivatives of the fourth order


 D a1x
2 C a2x

2y C a3

�
x2y3 � 1

5
y5
�

C a4y
3 (a7)

from which

@4


@x4
D 0

@4


@y4
D �24a3y (a8)

@4


@x2@y2
D 12a3y

These expressions satisfy the condition r4
 D 0. Thus, the elastic stresses take the
form along with � D 0

� x D @2


@y2
D a3

�
6x2y � 4y3

�C 6a4y (a9)

� y D @2


@x2
D 2a1 C 2a2y C 2a3y

3 (a10)

� xy D � @2


@x@y
D �2a2x � 6a3xy2 (a11)

Let us use the given loading conditions in order to determine the polynomial
constants ai. Using Eq. (a10) along with the loading condition given by Eqs. (a1)
and (a2) gives

� y D 2a1 C 2a2y C 2a3y
3 D 0 at y D �h=2 (b1)

� y D 2a1 C 2a2y C 2a3y
3 D �p=b at y D Ch=2 (b2)
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or

a1 � a2

�
h

2

�
� a3

�
h3

8

�
D 0 (b3)

a1 � a2

�
h

2

�
� a3

�
h3

8

�
D �P=2b (b4)

Solving Eqs. (b3) and (b4) simultaneously for a1 yields

a1 D � P

4b
(b5)

Furthermore, using Eq. (a11) along with y D �h=2 yields

� xy D �2a2x � 6a3xy2 D 0 (c1)

0 D �a2 � 3a3y
2 (c2)

0 D a2 C 3a3

�
�h

2

�2
(c3)

a2 D �3
4

a3h
2 (c4)

Substituting Eqs. (b5) and (c4) into (b3) gives

a3 D P

bh3
(c5)

Combining Eqs. (a6) and (a9) yields

Z h=2

�h=2
� xydy D 0 @ x D L

2
(d1)

Z h=2

�h=2

�
a3
�
6x2y � 4y3

�C 6a4y
	

ydy D 0 @ x D L

2
(d2)

Z h=2

�h=2

�
a3
�
6x2y2 � 4y4

�C 6a4y
2
	

dy D 0 @ x D L

2
(d3)

Z h=2

�h=2



a3

�
3

2
L2y2 � 4y4

�
C 6a4y

2

�
dy D 0 (d4)

Solving this integral and using Eq. (c5) gives

a4 D a3

�
h2

10
� L2

4

�
(d5)
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a4 D P

20bh3
�
2h2 � 5L2

�
(d6)

If the moment of inertia of the beam having a rectangular cross section is
I D bh3=12, then Eq. (d6) becomes

a4 D P

240I

�
2h2 � 5L2

�
(d7)

Inserting a1 through a4 into Eqs. (a9) through (a11) yields the required stresses

� x D P

8I

�
4x2 � L2

�
y C P

60I

�
3h2y � 20y3

�
(e1)

� y D P

24I

�
4y2 � 3h2y � h3

�
(e2)

� xy D Px

8I

�
h2 � 4y2

�
(e3)

Conventional strength of materials gives the stress in the x-direction as

� x D My

I
D P

8I

�
4x2 � L2

�
y (e4)

Here, M is the moment. Furthermore, Eq. (e4) implies that the second term can be
interpreted as a correction term. Therefore, Eq. (e1) is more accurate than Eq. (e4)
because of the extra term in the expression.

In conclusion, it has been shown that the use of an appropriate Airy stress
function gives suitable results.

Example 1.3. (a) A large beam is subjected to a line of uniform distribution of load
as indicated below. Determine the elastic stresses in polar coordinates when (a)
˛ D 90ı; (b) plot the resultant radial stress equation when � D 30ı and � D 60ı,
and P D 100MPa mm. The upward load reaction is defined as R D R 


o � rr sin �d� .
Assume that the analysis of the line of point forces included in this example provides
accurate results.
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Solution.

X
Fy D R � P D 0 (a)

Z 


o
� rr sin �d� � P D 0 (b)

(a) For ˛ D 90ı and P D Py, let the Airy stress function be


 D ar� cos � (c)

Using Eqs. (1.63) on (1.62) follows that

r4
 D


@4


@r4

�
C


2

r3
@


@r
� 2

r2
@2


@r2

�
C


6

r4
@2


@�2
� 4

r3
@3


@r@�2
C 1

r2
@4


@r2@�2

�

C


1

r

@3


@r3

�
C


1

r

�
� 1

r2
@


@r
C 1

r

@2


@r2

��
C 1

r

�
� 2

r3
@2


@�2
C 1

r2
@3


@r@�2

�

C


1

r

@4


@r2@�2

�
C


1

r3
@3


@�2@r

�
C


1

r4
@4


@�4

�
(d)

and

r4
 D 0C 2a�

r3
cos � � 1

r3
.4a sin � C 2a� cos �/

C 0 � a

r3
� cos � C 1

r3
.2a sin � C a� cos �/

C 0 � 1

r3
.2a sin � C a� cos �/C 1

r4
.4ar sin � C ar� cos �/ (e)

Therefore, Eq. (c) satisfies r4
 D 0. Furthermore, the elastic stresses can be
defined in terms of trigonometric functions. According to Eq. (1.58), the elastic
stresses in polar coordinates are

� r D 1

r

@


@r
C 1

r2
@2


@�2
D �2a

r
sin � (f)

�� D @2


@r2
D 0 (g)

� r� D 1

r2
@


@�
� 1

r

@2


@r@�
D 0 (h)

These results imply that the boundary conditions were correct. Combining
Eqs. (b) and (f) provides the final expression for the load P and the constant a.
Thus,
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P D �
Z 


o
� rr sin �d� D �2a

Z 


o
sin2 �d� (i1)

P D �
a (i2)

a D �P=
 (i3)

Substituting Eq. (i3) into (f) yields the radial stress

� r D 2P


r
sin � (j)

(b) For P D 100MPa mm, sin .30ı/ D 1=2, and sin .60ı/ D p
3=2, Eq. (j) gives

the radial stress distribution shown in the figure below.

� r D .31:831MPa mm/ =r for � D 30ı (k1)

� r D .55:133 MPa mm/ =r for � D 60ı (k2)

Thus, the distribution of � r is depicted in the figure below.

Denote that the radial stress, � r, for both selected angles decreases very
rapidly from the upper edge of the plate for small radius r. These results imply
that � r reaches a greater magnitude as the angle � approaches 90ı D 
=2

despite that the loading mode is vertically downward.
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1.8 Complex Variable Theory

The application of complex variable theory for solving many plane elasticity
problems [11, 14] is briefly introduced in this section to gain sufficient theoretical
background on the subject matter. Hence, one will be able to find and accurately
interpret solutions to problems using the powerful method of complex variable
theory, which is usually an inherently two-dimensional approach where z is the
complex variable. Figure 1.7 shows the complex plane of an infinite solid in
Cartesian coordinates, where a point z and its conjugate z are located in the
domain D. The letter C in this figure represents an arbitrary and continuous contour
enclosing the complex z-plane.

For any complex function, the independent variable x and the dependent variable
y may be separated into real and imaginary parts. Thus, the complex variable z
defines a point as (x; y) in the domain D in the z-plane and has an image point called
complex conjugate variable z. These points are defined as

z D x C iy and z D x � iy (1.67a)

where i D p�1 is the imaginary unit (i2 D �1, i3 D �i, i4 D 1/, Re .z/ D x is the
real part of z, and Im .z/ D y is the imaginary part of z.

Converting the complex variable z to polar coordinates yields the Euler’s formula.
Thus,

z D rei� D r .cos � C i sin �/ (1.67b)

z D re�i� D r .cos � � i sin �/ (1.67c)

zm D rme˙im� D rm .cos m� ˙ i sin m�/ (1.67d)

where

jzj D r D
p

x2 C y2 D
p
.x C iy/ .x � iy/ (1.67e)

jzj D r D p
zz and r2 D zz (1.67f)

Fig. 1.7 Complex z-plane
within a contour C
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1.8.1 Cauchy–Riemann Equations

This section describes the Cauchy–Riemann equations (criterion) for characterizing
a complex function f .z/ with respect to its analyticity on some domain D and its
differentiability in D. Let

f .z/ D u .x; y/C iv .x; y/ (1.68)

which is analytic if it satisfies the Cauchy–Riemann equations

@u

@x
D @v

@y
(1.69)

@u

@y
D �@v

@x

where u.x; y/ and v.x; y/ are real-valued continuous functions.

Analytic Function: Let

f .z/ D z2 D x2 � y2 C 2ixy (1.70)

u D u .x; y/ D x2 � y2 (1.71a)

v D v .x; y/ D 2xy (1.71b)

The continuous first-order partial derivatives are

@u

@x
D 2x &

@v

@x
D 2y (1.72)

@u

@y
D �2y &

@v

@y
D 2x (1.73)

Thus,

@u

@x
D @v

@y
D 2x (satisfied) (1.74)

@u

@y
D �@v

@x
D �2y (satisfied) (1.75)

Therefore, f .z/ D z2 is analytic everywhere because it satisfies the Cauchy–
Riemann criterion. The sum of the second partial derivatives yields the Laplace
equations
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@2u

@x2
C @2u

@y2
D 2 � 2 D 0 (1.76)

@2v

@x2
C @2v

@y2
D 0C 0 D 0 (1.77)

These expressions, Eqs. (1.76) and (1.77), imply that u and v are harmonic.
Not Analytic Function: Let

f .z/ D z D x � iy (1.78)

u D x & v D y (1.79)

from which

@u

@x
D 1 &

@u

@y
D 0 (1.80)

@v

@x
D 0 &

@v

@y
D �1 (1.81)

and

@u

@x
¤ @v

@y
(not satisfied) (1.82)

@u

@y
D �@v

@x
D 0 (satisfied)

Therefore, f .z/ D z D x� iy, Eq. (1.78), is not analytic because @u=@x ¤ @v=@y.

1.8.2 Complex Potential Functions

Consider a two-dimensional approach in plane elasticity for assessing the elastic
behavior of isotropic materials using complex variable theory. The mathematical
treatment is concerned with the determination of two complex potential, �z and
 , for defining the state of stress in a domain on the z-plane. The driving force
for deriving the state of stress at particular point on the complex domain is the
connection between the complex analytic potential functions �z and  . Eventually,
these complex potentials should give the stress distribution on the z-plane at suitable
distance r from the chosen origin of the rectangular or polar coordinates

This section treats the Airy stress function 
 in terms of functions of a complex
variable z; 
 D 
 .z; z/. The aim is to find the general solution to a particular
plane elasticity problem, involving two complex potential, � .z/ and  .z/, within a
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infinite domain D (Fig. 1.7). A comprehensive and detail analysis of this topic can
be found elsewhere [11, 15]. According to Muskhelishvili [15, 16], the complexity
of a problem in plane theory of elasticity can be simplified very significantly by
finding � .z/ and  .z/, which must satisfy the problem boundary conditions.

Thus, one can generalize the Airy stress function as 
 .z; z/ D f Œ� .z/ ;  .z/�.
For instance, consider the existence of several small regions (holes) within a large
region in the z-plane. This is known as an infinite multiply connected system. Now,
assume that the z-plane represents a plate subjected to external stresses which must
remain bounded at infinity. The goal is to derive the elastic displacements and
stresses at a point in the z-plane as a representation of the mechanical behavior
of a solid. The complex potentials or complex stress functions that may provide a
solution to the elasticity problem can be expressed as [11]

� .z/ D �
Pm

jD1 Fj

2
 .1C �/
log .z/C

�
�1

x C �1
y

4

�
z C �� .z/ (1.83)

 .z/ D �
Pm

jD1 Fj

2
 .1C �/
log .z/C

�
�1

y � �1
x C 2i�1

xy

2

�
z C  � .z/ (1.84)

Here, m represents internal boundaries; Fj D Fx C iFy or Fj D Fx � iFy is the
resultant force on a contour, where the overbar in Fj indicates the conjugate function
of Fj obtained by replacing i with �i. Both �� .z/ and  � .z/ are arbitrary analytic
functions outside the region enclosing all contours, and the � is the plane elasticity
factor defined as

� D 3 � 4v for plane strain (1.85)

� D 3 � v
1C v

for plane stress

Here, v is the Poisson’s ratio. Using power series theory, the analytic functions,
�� .z/ and  � .z/ given in Eqs. (1.83) and (1.84), can be expressed as complex
polynomials [11]

�� .z/ D
1X

nD1
anz�n (1.86)

 � .z/ D
1X

nD1
bnz�n

The number of terms in the series is determined by the boundary conditions. Now,
let us derive a complex expression for the Airy stress function 
 D 
 .z; z/ : Firstly,
develop the following operators:
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@


@x
D @


@z
C @


@z
(a)

@


@z
D 1

2

�
@


@x
� i
@


@y

�
(b)

@


@y
D i

�
@


@z
� @


@z

�
(c)

@


@z
D 1

2

�
@


@x
C i

@


@y

�
(d)

Secondly, use the differential operators, Eqs. (a) through (d), repeatedly to get the
harmonic (r2
) and biharmonic (r4
) operators [11]

r2
 D 4
@2


@z@z
(e)

r4
 D 16
@4


@z2@z2
(f)

Thus, the governing biharmonic equation defined by Eq. (1.41) becomes

@4


@z2@z2
D 0 (1.87)

Integrating Eq. (1.87) yields the general Airy stress function in terms of arbitrary
complex potentials of the complex variable z and z [11, 14, 16, 17]


 .z; z/ D 1

2

h
z� .z/C z� .z/C � .z/C � .z/

i
(1.88)


 .z; z/ D Re Œz� .z/C � .z/� (1.89)

Using Eq. (1.40) without body forces and (1.89) yields the stress components in
terms of the complex potentials [11, 15]

� x D Re
�
2� 0 .z/ � z� 00 .z/ � �00 .z/

	

� y D Re
�
2� 0 .z/C z� 00 .z/C �00 .z/

	
(1.90)

� xy D Re
�
z� 00 .z/C �00 .z/

	

where the primes indicate differentiation with respect to z. Furthermore, the arbitrary
function � .z/ can be expressed as

� .z/ D
Z
 .z/ dz or  .z/ D �0 .z/ D d� .z/

dz
(1.91)
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The complex displacement function U D u C iv and its boundary condition give
[11, 15]

2GU D �� .z/ � z� 0 .z/ �  .z/ (1.92)

where � is defined by Eq. (1.85) and G is the shear modulus of elasticity, which is
related to the tensile modulus of elasticity E and Poisson’s ratio v in the following
form:

2G D E

1C v
(1.93)

In addition, the Airy stress function 
, as defined by Eq. (1.89), can be used to
determine stress relationships by adding to it its conjugate, which in turn will give
twice the real part.

The procedure to carry out the analytical work can be found in Timoshenko and
Goodier book, Chap. 7 [1]. The resultant function is

2
 .z; z/ D z� .z/C � .z/C z� .z/C � .z/ (1.94)

Applying Eq. (1.58) to (1.94) yields the general stress relationships, including
Eq. (1.92) for convenience

� x C � y D 2
h
� 0 .z/C � 0 .z/

i
D 4Re

�
� 0 .z/

	

� y � � x C 2i� xy D 2
�
z� 00 .z/C  0 .z/

	
(1.95)

2GU D �� .z/ � z� 0 .z/ �  .z/

Extracting and combining the real parts of the first two expression in Eq. (1.95) gives
the combination of stresses as

� x C � y D 4Re
�
� 0 .z/

	
(1.95a)

� y � � x D 2Re
�
z� 00 .z/C  0 .z/

	
(1.95b)

Add these two equations to get

� y D 2Re
�
� 0 .z/

	C Re
�
z� 00 .z/C  0 .z/

	
(1.95c)

� x D 2Re
�
� 0 .z/

	 � Re
�
z� 00 .z/C  0 .z/

	
(1.95d)

For a case when the solid is half-space in the region D, where y � 0 with the system
boundary at y D 0, Eq. 1.95 becomes [18]
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� x C � y D 4Re
�
� 0 .z/

	

� y � i� xy D � 0 .z/C � 0 .z/C .z � z/ � 00 .z/ (1.96a)

2GU D �� .z/ � z� 0 .z/ �  .z/
where z D 1=z.

The stresses and displacements in polar coordinates are [11]

� r C �� D � x C � y

�� � � r C 2i� r� D �
� y � � x C 2i� xy

�
ei2� (1.96b)

ur C iu� D .u C iv/ e�i�

Recall that � r is the normal stress component in the radial direction and �� is the
normal stress component in the circumferential direction. Furthermore, the general
stress relationship in terms of complex potentials for a circular domain with arbitrary
edge loading may be expressed as [11]

� r � i� r� D � 0 .z/C � 0 .z/ � e2i�
�
z� 00 .z/C  0 .z/

	
(1.97)

This equation is very useful for determining power series coefficients. A classical
example can illustrate the application of the complex variable theory for determining
the stresses and displacements [11, 17].

Example 1.4. This example illustrates the usefulness of Eqs. (1.95) and (1.96b) for
determining stress and displacement equations with unknown coefficients an and
bn. Consider the following complex potential functions for deriving equations for
stresses and displacements.

� .z/ D .a1 C ia2/ z

 .z/ D .b1 C ib2/ z

Solution. Rectangular coordinates: The derivatives are

� 0 .z/ D .a1 C ia2/ ;  0 .z/ D .b1 C ib2/ ; � 00 .z/ D 0 &  00 .z/ D 0

From Eq. (1.95),

� x C � y D 2
h
� 0 .z/C � 0 .z/

i
D 2 Œ.a1 C ia2/C .a1 � ia2/� (a)

D 4Re � 0 .z/ D 4a1

� y � � x C 2i� xy D 2
�
z� 00 .z/C  0 .z/

	 D 2 Œ0C .b1 C ib2/� (b)

D 2Re 0 .z/C 2 Im 0 .z/ D 2b1 C 2ib2
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Equating real and imaginary parts gives

� y � � x D 2b1 (c1)

2i� xy D 2ib2 or � xy D b2 (c2)

Adding Eqs. (a) and (c1) and substituting the resultant expression into (c1) give

� y D 2a1 C b1 (c3)

� x D 2a1 � b1 (c4)

Polar coordinates: From Eq. (1.96b) and the above results, the stress relation-
ships are

� r C �� D � x C � y D 4a1 (d1)

�� � � r C 2i� r� D �
� y � � x C 2i� xy

�
ei2� D .2b1 C 2ib2/ .cos 2� C i sin 2�/

D 2b1 cos 2� C 2ib1 sin 2� C 2ib2 cos 2� � 2b2 sin 2�

D 2 .b1 cos 2� � b2 sin 2�/C 2i .b1 sin 2� C b2 cos 2�/
(d2)

Separating and equating real and imaginary terms yields

�� � � r D 2 .b1 cos 2� � b2 sin 2�/ (d3)

� r� D b1 sin 2� C b2 cos 2� (d4)

Combine Eqs. (d1) and (d3) to get the circumferential and radial stress compo-
nents, respectively:

�� D 2a1 C b1 cos 2� � b2 sin 2� (d5)

� r D 2a1 � b1 cos 2� C b2 sin 2� (d6)

Displacements: From Eq. (1.92),

2G .u C iv/ D �� .z/ � z� 0 .z/ �  .z/ (e1)

D � .a1 C ia2/ z � z .a1 � ia2/ � .b1 � ib2/ z

D Œ� .a1 C ia2/ � .a1 � ia2/ � .b1 � ib2/� z

D Œ� .a1 C ia2/ � .a1 � ia2/ � .b1 � ib2/� .x C iy/

D Œa1 .� � 1/ x � a2 .� C 1/ y � b1x � b2y�

C i Œa1 .� � 1/ y C a2 .� C 1/ x � b1y C b2x�
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Then,

.u C iv/ D 1

2G
Œa1 .� � 1/ x � a2 .� C 1/ y � b1x � b2y� (e2)

C i

�
1

2G

�
Œa1 .� � 1/ y C a2 .� C 1/ x � b1y C b2x�

Equating the real and imaginary parts yields

u D 1

2G
Œa1 .� � 1/ x � a2 .� C 1/ y � b1x � b2y� (e3)

v D 1

2G
Œa1 .� � 1/ y C a2 .� C 1/ x � b1y C b2x� (e4)

ur C iu� D .u C iv/ e�i� (e5)

D .u C iv/ .cos � � i sin �/ (e6)

D .u cos � C v sin �/C i .v cos � � u sin �/ (e7)

Equating the real and imaginary parts yields

ur D u cos � C v sin � (f1)

u� D v cos � � u sin � (f2)

The directions of these displacements in the interval 0 � � � 
=2 are:

• If � D 0, then ur D u and u� D v in the positive direction.
• If � D 
=2, then ur D v in the positive direction and u� D �u in negative

direction.
• If 0 < � < 
=2, then ur and u� fluctuate depending on the values of u and v.

Example 1.5. Consider an infinite elastic plate containing a circular hole sub-
jected to a uniform tensile far field (remote). The loading condition and the
boundary conditions are �1

x D S, �1
y D 0, �1

xy D 0 at r D 1, and � r � i� r� D 0

at r D a, respectively: (a) expand the complex power series up to three terms, (b)
derive the Airy stress function 
 D 
 .r; �/, (c) derive the stress expressions for � r,
�� , and � r� in polar coordinates and evaluate them at the edge of the hole when
� D 
=2 D 3
=2, and (d) calculate the values of these stresses if S D 100MPa,
a D 0:025m, r D 2a, and � D 
=4.
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Solution. Loading condition:

�1
x D S, �1

y D 0 and �1
xy D 0 at r D 1

Boundary conditions:

� r � i� r� D 0 at r D a

(a) Power series expansion: An examination of Eqs. (1.83) and (1.84) indicates
that log .z/ vanishes due to the discontinuity represented by the stress-free hole.
From Eqs. (1.83) and (1.84) and (1.87) and (1.88) and the loading condition,
the complex potentials become

� .z/ D Sz

4
C �� .z/ D Sz

4
C

2X

nD1
anz�n (a1)

 .z/ D �Sz

2
C �� .z/ D �Sz

2
C

2X

nD1
bnz�n (a2)

and

� .z/ D Sz

4
C a1

z
C a2

z2
C a3

z3
(a3)

 .z/ D �Sz

2
C b1

z
C b2

z2
C b3

z3
(a4)

From Eq. (1.91), the integration of the complex potential  .z/, Eq. (a4), yields
a new complex potential. Thus,

� .z/ D
Z
 .z/ dz D

Z �
�Sz

2
C b1

z
C b2

z2
C b3

z3

�
dz (a5)

� .z/ D �Sz2

4
C b1 log z � b2

z
� b3
2z2

(a6)
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(b) Denote that log .z/ in Eq. (a6) is just the result of integration and therefore, it
does not vanish. Substituting Eqs. (a3) and (a6) into (1.89) yields the Airy stress
function in terms of the complex variable z


 .z; z/ D Re



z

�
Sz

4
C a1

z
C a2

z2
C a3

z3

�
� Sz2

4
C b1 log .z/ � b2

z
� b3
2z2

�

(a7)

where

z D rei� D r .cos � C i sin �/

z D re�i� D r .cos � � i sin �/ (a8)

z2 D r2ei2� D r2 .cos 2� C i sin 2�/

z3 D r3ei3� D r3 .cos 3� C i sin 3�/

Inserting Eq. (a8) into (a7) gives 
 .z; z/ ! 
 .r; �/ and collecting cos m� ˙
i sin m� D e˙im� terms yields


 .r; �/ D Re
1

r2

�
1

4
Sr4 � 1

4
Sr4e2i� C r2a1e

�2i� C ra2e
�3i� C a3e

�4i�

�

C Re
1

r2



r2 .log r/ b1e

i� � rb2e
�i� � 1

2
b3e

�2i�

�

Extracting the real parts along with sin2 � D .1 � cos 2�/ =2 gives the Airy
stress function, 
 D 
 .r; �/, in a simplified form


 D 1

r2

�
1

2
Sr4 sin2 � C r2a1 cos 2� C ra2 cos 3� C a3 cos 4�

�
(a9)

C 1

r2

�
r2b1 .log r/ � rb2 cos � � 1

2
b3 cos 2�

�

(c) This expression, Eq. (a9) satisfies r4
 D 0. Applying Eq. (a9) to (1.41) gives
the elastic stresses in polar coordinates as

� r D 1

r

@


@r
C 1

r2
@2


@�2

� r D 1

r4

�
1

2
Sr4 cos 2� � 4r2a1 cos 2� � 10ra2 cos 3� � 18a3 cos 4�

�

C 1

r4
�
r2b1 C 2rb2 cos � C 3b3 cos 2�

�
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�� D @2


@r2
D 1

r4

�
1

2
Sr4 � 1

2
Sr4 cos 2� C 2ra2 cos 3� C 6a3 cos 4�

�

� 1

r4
�
r2b1 C 2rb2 cos � C 3b3 cos 2�

�
(a10)

� r� D 1

r2
@


@�
� 1

r

@2


@r@�
D � @

@r

�
1

r

@


@�

�

� r� D � 1

r4

�
1

2
Sr4 sin 2� C 2r2a1 sin 2� C 6ra2 sin 3� C 12a3 sin 4�

�

C 1

r4
.2rb2 sin � C 3b3 sin 2�/

Using � r � i� r� D 0 at r D a, one can collect .cos m� ˙ i sin m�/ D e˙im�

terms and equate like powers of e˙im� . The resultant equation is

0 D 1

2
Sr4 C r2b1 C 1

2
Sr4 .cos 2� C i sin 2�/C 2rb2 .cos � � i sin �/

C 3b3 .cos 2� � i sin 2�/ � 4r2a1 cos 2� C 2ir2a1 sin 2� (a11)

� 18a3 cos 4� C 12ia3 sin 4� � 10ra2 cos 3� C 6ira2 sin 3�

Let �4r2a1 cos 2� C 2ir2a1 sin 2� D �3r2a1 cos 2� � r2a1 cos 2� C
3ir2a1 sin 2� � ir2a1 sin 2� so that

0 D 2rb2e
�i� C 1

2
Sr4 C r2b1 C 3b3e

�i2� C 1

2
Sr4ei2�

� 3r2a1 .cos 2� � i sin 2�/ � r2a1 .cos 2� C i sin 2�/ (a12)

� 18a3 cos 4� C 12ia3 sin 4� � 10ra2 cos 3� C 6ira2 sin 3�

0 D 2rb2e
�i� C 1

2
Sr4 C r2b1 C 3b3e

�i2� C 1

2
Sr4ei2� � 3r2a1e

�i2� � r2a1e
i2�

� 18a3 cos 4� C 12ia3 sin 4� � 10ra2 cos 3� C 6ira2 sin 3�

Equating like powers of e˙im� and letting r D a yields the coefficients an and
bn. Hence,

1
2
Sr4 D �r2b1 �r2a1ei2� D 1

2
Sr4ei2� �3r2a1e�i2� D 3b3e�i2�

b1 D � 1
2
Sa2 a1 D � 1

2
Sa2 b3 D �a2a1

b2 D 0 a2 D a3 D 0 b3 D � 1
2
Sa4

Inserting the above coefficients into Eq. (a9), the Airy stress function becomes
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 D 1

r2

�
1

2
Sr4 sin2 � C 1

2
Sa2r2 cos 2� � 1

2
Sa2r2 .log r/ � 1

4
Sa4 cos 2�

�

(a13)

Applying Eq. (1.58) or (a10) to (a13) yields the elastic stresses as reported in
Timoshenko and Goodier book, page 80 [1]

� r D S

2

�
1 � a2

r2

�
C S

2

�
1 � 4a2

r2
C 3a4

r4

�
cos 2�

�� D S

2

�
1C a2

r2

�
� S

2

�
1C 3a4

r4

�
cos 2� (a14)

� r� D �S

2

�
1C 2a2

r2
� 3a4

r4

�
sin 2�

The stresses at the edge of the hole, r D a, become

� r D � r� D 0

�� D S � 2S cos 2� D S .1 � 2 cos 2�/ (a15)

�max D �� D 3S @ � D 
=2 D 3
=2

If � D 
=2 D 3
=2 and r D a, then

�max D �� D 3S

which gives the maximum value of the concentration factor as

Kt D �max

S
D 3 (a16)

(d) If S D 100MPa, a D 0:025m, r D 2a, and � D 
=4, then the elastic stresses
are

� r D 37:50MPa

�� D 62:50MPa (a17)

� r� D �65:63MPa

For comparison purposes, assume that the loaded plate has no hole and the
origin of the polar coordinates remains in the center of the plate. Let the Airy
stress function be


 D S

2
y2 D 1

2
S .r sin �/2 (b1)


 D S

4
r2 .1 � cos 2�/ (b2)
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As a result, the elastic stress becomes

� r D S

2
.1C cos 2�/

�� D S

2
.1 � cos 2�/ (b3)

� r� D �S

2
sin 2�

1.9 Conformal Mapping

The connection between harmonic and complex functions provides the driving force
for conformal mapping, or transformation of a point (zo) in the z-plane onto a point
(�o) in the �-plane can be accomplished since harmonic functions are infinitely
differentiable on a z-plane. In fact, a complex-valued function f .z/ depends on
a single complex variable z D x C iy, defined by Eq. (1.64). Thus, conformal
(angle preserving) mapping is a mathematical technique used to convert or map
one mathematical problem and its solution onto another complex plane, usually,
in two dimensions. Thus, a complex mapping function takes every point in one
complex plane (z-plane) and maps it onto another complex plane (�-plane) as shown
in Fig. 1.8.

In fact, when the boundary conditions in the original domain D (z-plane) are not
suitable for solving a plane elasticity problem, it is convenience and advantageous to
use a conformal mapping function of the form z D f .�/ and its inverse � D f �1 .z/
to solve the problem.

The function z D f .�/ maps the point .x; y/ of the z-plane onto the �-plane as
point .� ,�/. Conversely, � D f .z/ maps the point .� ,�/ of the �-plane back onto
the z-plane as point .x,y/. Denote that the z-plane in Fig. 1.8 has an arbitrary region
D containing four points to be mapped onto a unit circle in the �-plane. Finding
the function z D f .�/ for an arbitrary region D is complicated task; however, one
can find in the literature mapping functions for regular shapes, such as round hole,
elliptical hole, elliptical crack, straight crack, and the like. Then the mapping is
mostly done onto a unit circle as depicted in Fig. 1.8.

Fig. 1.8 Conformal mapping
of points (x,y) of an arbitrary
z-plane into a �-plane on an
infinite plate.
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In general, carrying out a conformal mapping requires that the angle of intersec-
tion of any two lines or curves remains unchanged between a given set of elements
in a domain D of the z-plane and another set of elements in a codomain R of the
�-plane. Thus, mapping of complex functions preserves angles if and only if f .z/ is
analytic or f .z/ is anti-analytic (conjugate). Thus, df=dz D f 0 .z/ ¤ 0 and f 0 .z/ ¤ 0

[19–21].
Let z and � be complex variables so that

z D w .�/ D f .�/ & � D f .z/ (1.98)

The mapping function z D w .�/ is very common in the literature. Instead, z D f .�/
is adopted in this section, Nonetheless, f .�/ and f .z/ are analytic and z D f .�/ is
the conformal mapping function, which is to be found using a suitable analytical
procedure that includes some boundary conditions. Nonetheless, the analytical
procedure requires that there must be a one-to-one mapping of points between the
z-plane and the �-plane. This simply means that points on the z-plane are mapped
onto the �-plane by means of the function � D f .z/ as indicated in Fig. 1.18 [22].
Thus, � D f .z/ is the transformation function of interest.

Basically, the significance of conformal mapping is to determine a mapping
function that will transform a complex region in the z-plane into a simple region
in the �-plane. Let us illustrate the application of conformal mapping theory by
using a simple transformation found elsewhere [19].

In general, transformation can be envisioned rather readily by letting � D � C i�
be a single-valued function of z D xCiy so that �Ci� D f .x C iy/. This means that
� D f .x; y/ and � D f .x; y/. For instance, given a point P located at zo D .xo; yo/

in the z-plane, there corresponds a point P0 at �o D .�o; �o/ in the �-plane. This is
illustrated in Fig. 1.9 for an arbitrary PQ trajectory being mapped as an arbitrary
P’Q’ trajectory. Thus, point P’ at �o D .�o; �o/ is the image of P at zo D .xo; yo/.
Similarly, Q’ is the image of Q.

On the other hand, a multiple-valued function is commonly used for mapping
a region onto a circle or half-plane because the analytical procedure generally
provides simple expressions of the boundary conditions. Apparently mapping onto
a unit circle is most common since complex potentials can be expressed by power
series. For instance, Fig. 1.10 schematically illustrates the conformal mapping of an

Fig. 1.9 Conformal mapping
of points P and Q
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Fig. 1.10 Conformal mapping of an elliptic region D into a unit circle C.

elliptical region D onto a unit circle R having a contour C. For the sake of clarity,
marked points on the elliptical contour are mapped as � points on the contour C.

The elliptical region in Fig. 1.10 with semimajor axis a and semiminor axis b
may represent an elliptical hole in a large plate or an embedded elliptical crack in
a solid material subjected to an external loading mode. This elliptical region can be
mapped using a mapping function defined by Sadd [22]

z D c

�
� C d

�

�
(1.99)

where the constants c and d take the form

c D .a C b/

2
(1.100)

d D .a � b/

.a C b/
(1.101)

The inverse mapping function of Eq. (1.99) is

� D f �1 .z/ D 1

2c

�
z C

p
z2 � 4dc2

�
(exterior with j�j > 1 (1.102)

� D f �1 .z/ D 1

2c

�
z �

p
z2 � 4dc2

�
(interior with j�j < 1 (1.103)

Either inverse function maps the ellipse onto the unit circle. However, one has to
select the exterior or the interior mapping based on the absolute value of j�j. Usually,
exterior mapping the ellipse onto the exterior of the unit circle is common when the
elliptical hole or crack is treated as a traction-free discontinuity.

In general, the literature offers many examples of analytical and numerical
solutions to hole and crack problems being independently influenced by a simple or
biaxial loading mode. Most of these solutions do not include environmental effects
and some include dislocation models to describe the influence of dislocations near
a crack tip [23].
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For the sake of clarity, the graphical procedure to map the ellipse onto the circle
is as follows:

• First: If z D rei� and � D z1=2, then z D 1=z at jzj D 1 and the first points are
z1 D r1ei�1and �1 D p

r1ei�1=2.
• Second: If z2 D r2ei�2 D r1ei�2 and �2 D p

r2ei�2=2 D p
r1ei�2=2 since r D r1 D

r2. The five points shown in Fig. 1.10 are determined as follows:
• If �1 D 0 and r1 D 1, then

j�1j D ei0 D 1 and j�1j D 1 D � C i�

• If �2 D 
=2 and r2 D 1, then

�2 D �1e
i
=2 and ei
=2 D � C i�

• If �3 D 
 and r3 D 1, then

�3 D �1e
i
 and ei
 D � C i�

• For �4 D 3
=2 and r4 D 1,

�4 D �1e
i3
=2 and ei3
=2 D � C i�

• For �5 D 2
 and r5 D 1,

�5 D �1e
i2
 and ei2
 D � C i�

Denote that z1 D z5 in Fig. 1.10. At any rate, the above procedure can also be
presented as

�1 D 0 and r1 D 1 so that j�1j D ei0 D 1 and j�1j D 1 D � C i�

�2 D 
=2 and r2 D 1 so that �2 D �1e
i
=2 and ei
=2 D � C i�

�3 D 
 and r3 D 1 so that �3 D �1e
i
 and ei
 D � C i�

�4 D 3
=2 and r4 D 1 so that �4 D �1e
i3
=2 and ei3
=2 D � C i�

�5 D 2
 and r5 D 1 so that �5 D �1e
i2
 and ei2
 D � C i�

The main goal on conformal mapping hereby is to expand the theoretical work in
order to determine complex potentials for deriving displacement and stress field
equations.
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1.9.1 Cauchy Integral Formula

So far the complex functions � .z/ and  .z/ do not have useful mathematical
forms. However, using the powerful Cauchy integral theorem (CIT), and the Cauchy
integral formula (CIF), one can derive useful complex expressions to solve a
particular plane elasticity problem. Thus, [15, 19, 22, 24]

• (1) The Cauchy integral theorem (CIF) states that if a function f .z/ is analytic
in a region D at all points interior to and on a closed contour C, then

Z

C
f .z/dz D 0 (1.104)

• (2) The Morera’s integral theorem states if f .z/ is a continuous function of z in
the region D and

Z

C
f .z/dz D 0 (1.105)

about any closed contour C in D, then f .z/ represents an analytic function in D.
• (3) The Cauchy integral formula states that if f .z/ is analytic everywhere within

a region D and on the boundary of a simply connected contour C, and for any
point zo inside D, there holds

f .zo/ D 1

2
 i

Z

C

f .z/

z � zo
dz (1.106)

f .n/ .zo/ D nŠ

2
 i

Z

C

f .z/

.z � zo/
nC1 dz (1.107)

where f .n/ .zo/ represents derivatives of all orders in D that are analytic functions,
f .n/

0

.zo/ ¤ 0, in D. Here, n D 0, 1, 2, . . . . and nŠ D 0Š, 1Š, 2Š, . . . .(n factorial).
According to calculus of residues along with � D 1=� and z D � D 1, the following
conditions hold:

1

2
 i

Z

C

1

�n .� � z/
d� D

(
0 for n > 0

1 for n D 0

)
(1.108)

From Eq. (1.106) [11, 15],



1

2
 i

Z

C

� .�/

� � z
d�

�

1

C
"
1

2
 i

Z

C

z� 0 .�/
� � z

d�

#

2

C
"
1

2
 i

Z

C

 .�/

� � z
d�

#

3

D


1

2
 i

Z

C

h.�/

� � z
d�

�

4

(1.109)

Each square bracket has a subscript for proper identification.
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The evaluation of Eq. (1.109) is most suited using the Taylor series for determin-
ing the coefficients an and bn that contribute to the stresses and displacements and
to the constant boundary function h .�/ D h, which, in turn, depends on the remote
or infinity loading condition.

Procedure: The procedure to find the proper expressions for � .z/ and  .z/ is
described by Muskhelishvili [15] in Chap. 15, and it is included in this section
for convenience. Thus, the reader may have a better insight on the application
of Cauchy integral formula for solving some plane elasticity problems. The
procedure requires proper evaluation of the integrals defined by Eq. (1.109).

• The First Integral: It is simply the Cauchy integral formula term in
Eq. (1.109)

� .z/ D


1

2
 i

Z

C

� .�/

� � z
d�

�

1

D
1X

nDo

anzn (1.110)

Let � .z/ be a polynomial from which � 0 .z/ and � 0 .z/ are easily obtained. Hence,

� .z/ D
1X

nDo

anzn D ao C a1z C a2z
2 C : : : : (1.111)

� 0 .z/ D
1X

nDo

annzn�1 D a1 C 2a2z (1.112)

� 0 .z/ D
1X

nDo

annzn�1 D a1 C 2a2z (1.113)

• The Second Integral: Using Eq. (1.113) in the second integral gives
"
1

2
 i

Z

C

z� 0 .�/
� � z

d�

#

2

D a1z C 2a2 (1.114)

where zz D z=z D 1 and z� 0 .z/ D z .a1 C 2a2z/ D a1z C 2a2.

• The Third Integral: In order to evaluate the third integral some requirements
must be met. Let

� .z/C z� 0 .z/C  .z/ D h.z/ (1.115a)

� .z/C z� 0 .z/C  .z/ D h.z/ (1.115b)

From Eq. (1.115b), the Cauchy integral formula for the conjugate complex
potential � .z/ takes the form
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1

2
 i

Z

C

� .�/

� � z
d� D � .z/ D � .z D 0/ D 0 (1.115c)

Handling the above integral requires that z be replaced by � inside the integral
and set z D 0 in the solution so that � .z/ D � .0/ D 0. Now, the Cauchy integral
formula for the term z� 0 .z/ in Eq. (1.115b) is

1

2
 i

Z

C

�� 0 .�/
� � z

d� D 1

2
 i

Z

C

� 0 .�/
� .� � z/

d� D 1

2
 i

Z

C

� 0 .�/
�

d�

� � z

D � 0 .z/
z

� a1
z

(1.116)

Solving Eq. (1.115b) for  .z/, the solution for the third integral follows

 .z/ D 1

2
 i

Z

C

h .�/

� � z
d� � 1

2
 i

Z

C

�� 0 .�/
� � z

d� � 1

2
 i

Z

C

� .�/

� � z
d�

 .z/ D 1

2
 i

Z

C

h .�/

� � z
d� � � 0 .z/

z
C a1

z
� � .0/ (1.117)

• The Fourth Integral: The remaining procedure is for defining the constants
an ¤ 0. In fact, an D 0 for n > 2 as implicitly suggested in Eq. (1.111) [15, 22].
Then, Eq. (1.109) becomes

Œ� .z/�1 C
"
1

2
 i

Z

C

z� 0 .�/
� � z

d�

#

2

C
h
� .0/

i

3
D


1

2
 i

Z

C

h .�/

� � z
d�

�

4

� .z/C a1z C 2a2 D


1

2
 i

Z

C

h .�/

� � z
d�

�

4

(1.118)

Let [15]

1

2
 i

Z

C

h .�/ d�

� � z
D 1

2
 i

Z

C

h .�/ d�

� .1 � z=�/

D 1

2
 i

Z

C
h .�/

�
1C z

�
C z2

�2

�
d�

�

1

2
 i

Z

C

h .�/ d�

� � z
D 1

2
 i

Z

C

h .�/ d�

�
C z

2
 i

Z

C

h .�/ d�

�2
(1.119)

C z2

2
 i

Z

C

h .�/ d�

�3
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so that Eqs. (1.110), (1.114), and (1.119) yield

� .z/C a1z C 2a2 D 1

2
 i

Z

C

h .�/ d�

�
C z

2
 i

Z

C

h .�/ d�

�2
(1.120)

C z2

2
 i

Z

C

h .�/ d�

�3

The first derivative of Eq. (1.120) with respect to z gives

� 0 .z/C a1 D 1

2
 i

Z

C

h .�/ d�

�2
C z


 i

Z

C

h .�/ d�

�3
(1.121)

Letting z D 0 Eq. (1.112) yields � 0 .0/ D P1
nDo annzn�1 D a1 and consequently,

Eq. (1.121) becomes

� 0 .0/C a1 D 1

2
 i

Z

C

h .�/ d�

�2

a1 C a1 D 1

2
 i

Z

C

h .�/ d�

�2
(1.122)

Take the second derivative of Eq. (1.121) with respect to z to get

� 00 .z/ D 1


 i

Z

C

h .�/ d�

�3
(1.121)

From Eq. (1.112) at z D 0, � 00 .z/ D P1
nD1 an .n � 1/ zn�2 D 2a2. Then, Eq. (1.121)

becomes

� 00 .0/ D 1


 i

Z

C

h .�/ d�

�3
D 2a2

a2 D 1

2
 i

Z

C

h .�/ d�

�3
(1.123)

The final results based on the unit disk or unit circle mapping are summarized along
with h D h .�/ as

� .z/ D 1

2
 i

Z

C

h .�/

� � z
d� � a1z (1.124)

 .z/ D 1

2
 i

Z

C

h .�/

� � z
d� � � 0 .z/

z
C a1

z
(1.125)

a1 C a1 D 1

2
 i

Z

C

h .�/

�2
d� (1.126)

a2 D 1

2
 i

Z

C

h .�/

�3
d� (1.127)
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from which the complex potentials � .z/ and  .z/ can be determined according to a
particular plane elasticity problem and its loading conditions. This implies that the
constants a1 and a1 and the boundary function h .�/ D h also depend on the loading
condition.

The application of this technique can be made clear using the classic example
of a circular disk under concentrated forces applied to its boundary. This boundary
value problem is described in Muskhelishvili’s classic book [15], and it is also found
solved in Sadd’s modern book [11].

For the sake of clarity, the example below illustrates the usefulness of the Cauchy
integral formula for determining the elastic stress equations of crack-free planes.
In addition, the above procedure is used in Chap. 4 for determining the stress and
displacement field equations near a crack tip in the z-plane.

Among the applications of the Cauchy integral formula based on the complex
function f .z/, the Laurent Series of the form

f .z/ D
1X

nD0
an .z � z0/

n (1.128)

can be solved using the Cauchy integral formula for defining the power series
coefficients. Hence,

an D 1

2
 i

I
f .z/

.z � zo/
nC1 dz for n D 0; 1; 2; 3; : : : (1.129)

where f .z/ is analytic at all points on a closed curve C and z0 is a point interior to C
on the z-plane. If f .z/ is not analytic, then f .nC1/.zo/ D 0 and the result is called a
singular point [11].

Example 1.6. Consider a unit circular disk subjected to a uniform compressive
pressure as shown in the figure below to determine the hydrostatic state of stress.

Solution. The boundary traction is

Tx C iTy D .� r C i� r� / z where � r� D 0

Tx C iTy D � rz D �Pz D �Pei�
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Let

h.z/ D i
Z �

0

�
Tx C iTy

�
d� D �i

Z �

0

Pei�d�

h.z/ D �Pz

Substituting this result into Eq. (1.124) yields

� .z/ D 1

2
 i

Z

C

h.�/

� � z
d� � a1z D � 1

2
 i

Z

C

P�

� � z
d� � a1z

Evaluate the Cauchy integral formula such that

1

2
 i

Z

C

P�

� � z
d� D Œf .�/��Dz D ŒP���Dz D Pz

Then,

� .z/ D �Pz � a1z

� 0 .z/ D �P � a1

From Eq. (1.126),

a1 C a1 D � 1

2
 i

Z

C

P�

�2
d� D � 1

2
 i

Z

C

P

�
d� D �P

From Eq. (1.125),

 .z/ D � 1

2
 i

Z

C

P�

� � z
d� C P C a1

z
C a1

z

 .z/ D � 1

2
 i

Z

C

P

� .� � z/
d� C P

z
C 1

z
.a1 C a1/

 .z/ D � 1

2
 i

Z

C

P

� .� � z/
d� C P

z
� P

z
D 0

From Eqs. (1.95) and (1.96b), respectively,

� x C � y D 2
h
� 0 .z/C � 0 .z/

i
D �2P

� y � � x C 2i� xy D 2
�
z� 00 .z/C  0 .z/

	 D 0

� r C �� D � x C � y D 2
h
� 0 .z/C � 0 .z/

i
D �2P

�� � � r C 2i� r� D �
� y � � x C 2i� xy

�
ei2� D 0
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Thus,

�� D � r D �PI � x D � y D �P & � xy D � r� D 0

These represent the hydrostatic state of stress of the disk under uniform compression.

1.10 Problems

1.1. A thin sheet made of an aluminum alloy having E D 67GPa, G D 25:125GPa,
and v D 1=3 was used for two-dimensional surface strain measurements. The
measurements provided the strains as �x D 10:5 � 10�5, �y D �20 � 10�5,and
� xy D 240 � 10�5. Determine the corresponding stresses in Cartesian coordinates.
An element is shown below. [Solution: � x D 2:89MPa, � y D �12:44MPa, and
� xy D 60:45MPa. ]

1.2. Determine (a) the principle stresses and strains and (b) the maximum shear
stress for the case described in Problem 1.1.

1.3. Calculate (a) the diameter of a 1-m long wire that supports a weight of 200
Newton. If the wire stretches 2 mm, determine (b) the strain and the stress induced
by the weight. Let the modulus of elasticity be E D 207GPa. [Solution: � D 0:20%,
� D 414MPa, and d D 0:78mm.]

1.4. Derive an expression for the local uniform strain across the neck of a round
bar being loaded in tension. Then, determine its magnitude if the original diameter
is reduced to 80%.
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1.5. The torsion of a bar containing a longitudinal sharp groove may be character-
ized by a warping function of the type [after F.A McClintock, Proc. Inter. Conf. On
Fracture of Metals, Inst. of Mechanical Eng., London, (1956) 538]

w D �z D �

Z r

o
ydx � �

Z r

o
xdy

The displacements are �x D 0 and �y D rz�, where � and r are the angle of twist
per unit length and the crack tip radius, respectively. The polar coordinates have
the origin at the tip of the groove, which has a radius (R). Determine w, the shear
strains � rz and � z� . In addition, predict the maximum of the shear strain [Solution:
If r ! 0, then � rz D �max ! �1].

1.6. A steel cantilever beam having a cross-sectional area of 1:5 cm2 is fixed at the
left-hand side and loaded with a 100N downward vertical force at the extreme end
as shown in the figure shown below.

(a) Derive the stress equations in Cartesian coordinates if the Airy stress function
is 
 D a1xy C a2xy3. The loading conditions are

Z h=2

�h=2
� xydy D P

b

� xy D 0 at y D ˙h

2

(b) Calculate the stresses and the strains at 8 cm from the fixed end of the shown
steel cantilever beam. The steel modulus of elasticity of is E D 207GPa.
[Solution: (a) � x D 96MPa, � y D � xy D 0, and (b) � D 4:64 � 10�4.]

1.7. The stress-strain behavior of an annealed low-carbon steel (� ys D 900MPa
and E D 207GPa) obeys the Hollomon equation with k D 1200MPa and n D 0:25.
(a) Plot the true and the engineering stress-strain curves. Calculate (b) the tensile
strength (� ts) and (c) the strain energy density up to the instability point.
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1.8. The figure below shows a schematic cross-sectional view of a pressure vessel
(hollow cylinder) subjected to internal and external pressures.

Determine the stresses at a point P .r; �/ in polar coordinates when (a) Pi ¤ 0 and
Po ¤ 0, (b) Po D 0, (c) Pi D 0, (d) a D 0 so that the hollow cylinder becomes a
solid cylinder. (e) Plot � r D f .r/ and �� D f .r/. Let a D 450mm, b D 800mm,
Po D 0 and P D 40MPa. The valid radius range must be 0:45m � r � 0:80m. Use
the following Airy stress function


 D c1 C c2 ln .r/C c3r
2

along with the boundary conditions � r D �Pi & � r� D 0 @ r D a and � r D �Po

& � r� D 0 @ r D b. This problem can be found elsewhere [13].

1.9. Consider an infinite plate with a central hole subjected to a remote uniform
stress as shown in Example 1.5. The boundary conditions for this loaded plate are
(1) �1

x D � x D S and � y D � xy D 0 at r D 1 and (2) � r D � r� D 0 at r D a. Use
the following complex potentials [14]:

 0 .z/ D S

4

�
1 � 2a2

z2

�
and �00 .z/ D �S

2

�
1 � a2

z2
C 3a4

z4

�

to determine � r, �� and � r� (in polar coordinates).

1.10. Use the Cauchy–Riemann condition to show that (a) f .z/ D 1=z is analytic
and (b) its derivative is f .z/ D �1=z2.

1.11. Solve the Cauchy integral formula given below for the complex function
f .z/ D ez at z D zo and z D 2.

f .zo/ D 1

2
 i

Z
f .z/

z � zo
dz
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1.12. Evaluate the Cauchy integral formula given below for the complex function
when zo D 
 .

f .zo/ D 1

2
 i

Z
cos z

z2 � 1dz
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2Introduction to Fracture Mechanics

2.1 Introduction

The theory of elasticity used in Chap. 1 served the purpose of illustrating the
close form of analytical procedures in order to develop constitutive equations for
predicting failure of crack-free solids [1]. However, when solids contain flaws or
cracks, the field equations are not completely defined by the theory of elasticity
since it does not consider the stress singularity phenomenon near a crack tip. It only
provides the means to predict general yielding as a failure criterion. Despite the
usefulness of predicting yielding, it is necessary to use the principles of fracture
mechanics to predict failure of solid components containing cracks.

Fracture mechanics is the study of mechanical behavior of cracked materials
subjected to an applied load. In fact, Irwin [2] developed the field of fracture
mechanics using the early work of Inglis [3], Griffith [4], and Westergaard [5].
Essentially, fracture mechanics deals with the irreversible process of rupture due to
nucleation and growth of cracks. The formation of cracks may be a complex fracture
process, which strongly depends on the microstructure of a particular crystalline
or amorphous solid, applied loading, and environment. The microstructure plays
a very important role in a fracture process due to dislocation motion, precipitates,
inclusions, grain size, and type of phases making up the microstructure. All these
microstructural features are imperfections and can act as fracture nuclei under
unfavorable conditions. For instance, brittle fracture is a low-energy process (low-
energy dissipation), which may lead to catastrophic failure without warning since
the crack velocity is normally high. Therefore, little or no plastic deformation may
be involved before separation of the solid. On the other hand, ductile fracture is
a high-energy process in which a large amount of energy dissipation is associated
with a large plastic deformation before crack instability occurs. Consequently, slow
crack growth occurs due to strain hardening at the crack tip region.

© Springer International Publishing Switzerland 2017
N. Perez, Fracture Mechanics, DOI 10.1007/978-3-319-24999-5_2
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Fig. 2.1 Sinusoidal stress vs.
interatomic displacement

2.2 Theoretical Strength

Consider the predicament of how strong a perfect (ideal) crystal lattice should be
under an applied state of stress and the comparison of the actual and theoretical
strength of metals. This is a very laborious work to perform, but theoretical
approximations can be made in order to determine or calculate the stress required
for fracture of atomic bonding in crystalline or amorphous crystals.

Assume a simple sinusoidal stress-displacement law with a half period of �=2
shown in Fig. 2.1 which predicts the simultaneous separation of atoms when the
atomic separation reaches a critical value.

For an ideal crystal subjected to a tensile load and a shear load, which generates
small displacements, the sinusoidal stress functions are

� D �max sin

�
2
x

�

�
'
�
2
x

�

�
�max (2.1a)

� D �max sin

�
2
x

ao

�
'
�
2
x

ao

�
�max (2.1b)

Thus, the maximum theoretical tensile and shear stresses become

�max D
�
�

2
x

�
� (2.2a)

�max D
� ao

2
x

�
� (2.2b)
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Table 2.1 Theoretical and
experimental fracture
strength [6]

Material E (MPa) �max-Eq. (2.4) � f -Exp. �max=� f

Silica fibers 97.10 30.90 24.10 1.28

Iron whisker 295.20 94.00 13.10 7.18

Silicon whisker 165.70 52.70 6.50 8.11

Alumina whisker 496.20 158.00 15.20 10.39

Ausformed steel 200.10 63.70 3.10 20.55

Piano wire 200.10 63.70 2.80 22.75

The interpretation of Fig. 2.1 is that the strength to pull atoms apart increases with
increasing atomic distance, reaches a maximum strength (peak strength) equals to
the theoretical (cohesive) tensile strength �max D � c, and then decreases as atoms
are further apart in the direction perpendicular to the applied stress. Consequently,
atomic planes separate and the material cleaves perpendicularly to the tensile stress.

Assuming an elastic deformation process, Hooke’s law gives the tensile modulus
and the shear modulus of elasticity defined by

E D Tensile Stress

Strain
D �

x=ao
(2.3a)

G D Shear Stress

Strain
D �

x=ao
(2.3b)

where ao D �=2 D Equilibrium atomic distance (Fig. 2.1)
Combining Eqs. (2.2) and (2.3) yields the theoretical fracture strength of solid

materials

�max D E



(2.4)

�max D G

2

(2.5)

Table 2.1 contains theoretical and experimental data for some elastic materials tested
in tension.

The discrepancy between �max and � f values is due to the fact that the sinusoidal
model assumes a concurrent fracture of atomic bonding until the atomic planes
separate and � f is associated with plastic flow and dislocation motion. Physically,
the discrepancy is due to the presence of small flaws or cracks on the surface or
within the material.

Using the energy at fracture for a tension test, the fracture work per unit area can
be defined by a simple integral

W 0 D
Z �=2

o
�max sin

�

x

�=2

�
dx D

�
�




�
�max (2.6)
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Fig. 2.2 Schematic variation
of bonding force and bonding
energy as functions of
interatomic spacing x

Letting 2� D W 0 be the total surface energy required to form two new fracture
surfaces and combining Eqs. (2.4) and (2.6) yields the theoretical tensile strength in
terms of surface energy and equilibrium spacing

� c D
s

E�

ao
(2.7)

In addition, the atomic bonding in solids is related to bonding forces and energies. In
fact, the atomic bonding is due to repulsive and attractive forces that keep the atoms
together to form symmetrical arrays. These forces as well as the potential energies
depend on the interatomic spacing or distance between adjacent atoms. Figure 2.2
schematically shows the forces and the energies as functions of interatomic spacing
(separation distance between centers of two atoms) for two ideal atoms. In general,
atoms are considered spherical electric structures having diameters in the order of
0:1 nm. According to the theoretical plot depicted in Fig. 2.2, both attractive and
repulsive forces act together to keep the atoms at their equilibrium spacing. These
forces depend on temperature and pressure. The general form of the potential or
bonding energy .U/ and the net force .F/ are defined by

U D CR

xn
� CA

xm
D UR C UA (2.8)

F D dU

dx
D FR C FA (2.9)

where x D Interatomic distance
UR D Repulsive energy
UA D Attractive energy
FR D Repulsive forces
FA DAttractive force
CR;CA D Constants
n;m D Exponents

The curves in Fig. 2.2 are known as Condon-Morse curves and are used to
explain the physical events of atomic displacement at a nanoscale. At equilibrium,
the minimum potential energy and the net force are dependent of the interatomic
spacing; that is,

Uo D f .ao/ < 0 and F D g .ao/ D 0 (a)
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However, if the interatomic spacing (ao) is slightly perturbed elastically by the
action of an applied load, a repulsive force builds up if x < ao or an attractive
force builds up if x > ao. Once the applied load is removed, the two atoms have the
tendency to return to their equilibrium position at x D ao

Conclusively, an array of atoms form a definite atomic pattern with respect to
their neighboring atoms, and as a result, all atoms form a specific space lattice
consisting of unit cells, such as body-centered cubic (BCC), hexagonal, monoclinic,
and the like.

The reason atoms form a space lattice consisting of a unique atomic structure
is due to the attractive and repulsive atomic forces being equal, but opposite in
sense. Hence, the atoms are considered to be in their equilibrium state forming a
particular structure. Thus, atoms are then bonded in a sea of electrons, forming
metallic bonding. X-ray diffraction technique is used to reveal the type metallic
structures. There are 7 types of crystal structures and 14 possible lattice geometries
called Bravais lattices.

Any elastic perturbation of the lattice structure due to an external loading mode
induces atomic deformation defined as the deformation strain (�x), which can be
defined as a fractional change in the atomic spacing x (Fig. 2.2). Hence, �x D .x �
a/=a, x is the strained spacing.

Furthermore, Eq. (2.8) resembles the Lennard-Jones potentials [7] used to treat
gases, liquids, and solids. There are other interatomic potential functions based
on the quantum mechanical treatment of many particles. Among many references
available in the literature, the book written by Michael Rieth [7] includes significant
theoretical details for determining the potential energy for atomic interactions. This
book includes the Buckingham, the Morse, the Lennard-Jones potentials and the
Schommers potentials for aluminum, and so forth.

The most common Lennard-Jones potentials for materials 1 and 2 are of the form

U D 4�

"�
C

x

�12
�
�

C

x

�6#
(2.9a)

where the potential � and the constant C are defined by the Lorentz-Berthelot mixing
rules [7]

� D �12 D p
�1�2 (2.9b)

C D C12 D C1 C C2
2

(2.9c)

These variables are just empirical correction factors.
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2.3 Stress Concentration Factor

Generally, structural components subjected to external loads should be analyzed
or examined by determining the stress distribution on the loaded area and the
theoretical stress concentration factor (Kt) at particular point about a notch with
a radius of curvature (�). This can be accomplished by using a suitable Airy stress
function 
 or any other appropriate function. This section partially illustrates the
methodology for determining the circumferential stress component in elliptical
coordinates and Kt in infinite flat plates containing circular and elliptical holes. This
is purposely done prior to the introduction of fracture mechanics in order for the
reader to have a basic understanding of singular stress fields in components having
notches instead of cracks.

Symmetric Elliptical Hole in an Infinite Plate Consider an infinite plate contain-
ing an elliptical hole with major axis 2a and minor axis 2b as shown in Fig. 2.3,
where the elliptical and Cartesian coordinates are (�;  ) and (x; y), respectively.
It is assumed that the flat plate has uniform dimensions and contains a through-
thickness smooth elliptical hole, which is symmetric about its center. The equation
of the elliptical curve can be represented by f� .x; y/ D � and the one for a hyperbola
is f .x; y/ D  , where � and  are constants [8].

The equation of an ellipse in Cartesian coordinates is given by

x2

a2
C y2

b2
D 1 (2.10)

Fig. 2.3 Elliptic coordinates
in an infinite plate



2.3 Stress Concentration Factor 59

where

x D c cosh � cos (2.11a)

y D c sinh � sin (2.11b)

x C iy D c cosh .� C i / (2.11c)

and

a D c cosh .�o/ (2.12a)

b D c sinh .�o/ (2.12b)

Here, the foci of the ellipse is at x D ˙2c which becomes the crack length when
�o ! 0 and b ! 0. In fact, the foci always lie on the major (longest) axis, spaced
equally on each side of the center of the ellipse. The radius of the ellipse at the end
of the major x-axis (point “P” in Fig. 2.3) is

� D b2

a
(2.13)

Now, it is desirable to derive the maximum circumferential or tangential elastic
stress component at an elliptical hole tip along the major axis 2a and the minor
axis 2b [9]. Denote that and elliptical home becomes an elliptical crack if 2b !
0. Nevertheless, Inglis [3] derived the elastic stress distribution in an infinite plate
subjected to a remote tension stress perpendicular to the major axis 2a of a flat
plate. It was assumed that the plate width and height were B >> 2a and h >> 2b,
respectively, in order to avoid the effect of the plate boundary and to assure that
the applied tension stress is remotely located from the elliptical hole surfaces. The
resultant circumferential stress component for an elliptical hole (Fig. 2.3) is [3]

�� D �e2�o

"�
1C e�2�o

�
sinh .2�o/

cosh .2�o/ � cos .2 /
� 1

#
(2.14)

Using Eq. (2.12) yields

tanh �o D b

a
(a)

The maximum local stress equation at the tip of the elliptic hole (point a in Fig. 2.3
where  D 0 and cos .2 / D 1) can be derived by manipulating Eq. (2.14) along
with the following hyperbolic relationships

e2�o D sinh .2�o/C cosh .2�o/ (b)

e�2�o D sinh .2�o/ � cosh .2�o/ (c)

2 sinh2 .�o/ D cosh .2�o/ � 1 (d)
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cosh2 .2�o/ D sinh2 .�o/C cosh2 .�o/ (e)

sinh .2�o/ D 2 sinh .�o/ cosh .�o/ (f)

The resultant equation is

���max D �max D � y D �



1C 2 cosh .�o/

sinh .�o/

�
(2.15)

Combining Eqs. (2.12) and (2.15) yields the well-known expression in the literature
for the maximum local stress in a plate containing an elliptic hole. Thus,

�max D �

�
1C 2a

b

�
(2.16)

The reader should consult other references [10–12] in the field of theory of elasticity
applied to components containing notches and specific stress concentration factors.
With respect to Eq. (2.16), the expression .1C 2a=b/ is known as the theoretical
stress concentration factor for an ellipse. Thus,

Kt D 1C 2a

b
D �max

�
(2.17)

Combining Eqs. (2.13) and (2.16) yields the axial stress equation as

�max D
�
1C 2

r
a

�

�
� (2.18)

For a sharp crack, a >> �,
p

a=� >> 1 and Eq. (2.18) becomes

�max D
�
2

r
a

�

�
� (2.19)

Thus, the theoretical stress concentration factor becomes

Kt D 2

r
a

�
D �max

�
(2.20)

In fact, the use of the stress concentration approach is meaningless for characterizing
the behavior of sharp cracks because the theoretical axial stress concentration factor
is Kt ! 1 as � ! 0. Therefore, the elliptic hole becomes a sharp crack, and the
stress intensity factor KI is the most useful approach for analyzing structural and
machine components containing sharp cracks.

Here, � is the nominal stress or the driving force. If a D b, then Eq. (2.16)
gives Kt D 3 and �max D 3� for a circular hole. On the other hand, if b ! 0
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Fig. 2.4 Normalized axial and transverse stresses along the x-axis near a circular hole in a thin
plate under tension loading

and � ! 0, then a sharp crack is formed and �max ! 1, which is singular
and meaningless. In addition, Kt is used to analyze the stress field at a point in
the vicinity of a notch having a radius � >> 0. However, if a crack is formed
having � ' 0 at a microscopic level, the stress field at the crack tip is defined in
terms of the stress intensity factor .KI/ instead of the stress concentration factor
.Kt/. In fact, microstructural discontinuities and geometrical discontinuities, such
as notches, holes, grooves, and the like, are sources of crack initiation when the
stress concentration factor is sufficiently high.

Symmetric Circular Hole in an Infinite Plate Figure 2.4 shows the distribution
of the axial and transverse normalized stresses along the x-axis near a circular hole
in a wide, thin, and infinite plate loaded in tension.

Consider an infinite isotropic plate containing a circular hole as shown in Fig. 2.4.
It is desirable to determine the elastic stresses in rectangular and polar coordinates
when the plate is remotely loaded in tension.

The detailed analytical procedure for deriving the generalized stress equations
in polar coordinates, based on the method of superposition, can be found in a book
written by Dally and Riley [1]. Thus, these equations evaluated at point P .r; �/ are

� r D �

2

��
1 � a2

r2

�

1C

�
3a2

r2
� 1

�
cos 2�

�


�� D �

2


�
1C a2

r2

�
C
�
1C 3a4

r4

�
cos 2�

�
(2.21)

� r� D �

2


�
1C 3a

r2

��
1 � a2

r2

�
sin 2�

�
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Letting � D 0 and r D x in Eq. (2.21) yields the stress distribution along the x-axis
at point P .x; 0/ in Fig. 2.4, where � r D � x, �� D � yy and � r� D � xy D 0. Thus,
Eq. (2.21) becomes [1, 12]

� x

�
D 3

2

�a

x

�2 � 3

2

�a

x

�4

� y

�
D 1C 1

2

�a

x

�2 C 3

2

�a

x

�4
(2.22)

� xy

�
D 0

2.4 Griffith Crack Theory

The development of linear-elastic fracture mechanics (LEFM) started with Griffith
work on glass [4]. Fundamentally, the Griffith theory considers the energy changes
associated with incremental crack growth. He used an energy balance approach to
predict the fracture stress of glass and noted in 1921 that when a stressed plate of
an elastic material containing cracks, the potential energy per unit thickness (	U)
decreased and the surface energy per unit thickness (Us) increased during crack
growth. Then, the total potential energy of the stressed solid body is related to
the release of stored energy and the work done by the external loads. The “surface
energy” arises from a nonequilibrium configuration of the nearest neighbor atoms
at any surface in a solid [13–15].

Consider a large or an infinite brittle plate containing one center through-
thickness crack of length 2a with two crack tips as depicted in Fig. 2.5. When the
plate is subjected to a remote and uniform tensile load perpendicular to the crack
plane along the x-axis, the stored elastic strain energy is released within a cylindrical
volume of material of length B.

Fig. 2.5 A large plate
containing one
through-thickness central
crack. Also shown are two
idealized energy release areas
ahead of the crack tips



2.4 Griffith Crack Theory 63

When the elastic or brittle solid body (specimen) is remotely loaded from the
crack faces, the product of the released elastic strain energy density (

R
�d�) and the

cylindrical volume element (2
a2B) about the crack (Fig. 2.5), where this energy is
released, yields the elastic strain energy as

We D �2 �
a2B
� Z

�d� D �2 �
a2B
� Z

E0�d� (2.23)

We D �2 �
a2B
� �E0�2

2

�
D � �
a2B

� ��2

E0

�
(2.24)

where � D E0� D Hooke’s law
E0 D E for plane stress
E0 D E=

�
1 � v2� for plane-strain conditions

E D Modulus of elasticity (MPa)
� D Elastic strain
� D Applied remote stress (MPa)
a D One-half crack length (mm)
v D Poisson’s ratio
4aB D 2.2aB/ D Total surface crack area (mm2)
B D Thickness (mm)

Denote that the factor E0 is introduced in Eq. (2.23) for controlling either plane
stress or plane-strain condition. In addition, Eq. (2.24) can also be derived by
inserting the Inglis displacement equation (�y) in the y-direction [3] into the
following expression:

We D �4B
Z a

o

1

2
��ydx D �4B

Z a

o

1

2
�

�
2�

E0
p

a2 � x2
�

dx (a)

We D �
�
4B�2

E0

�Z a

o

p
a2 � x2dx D �

�
4B�2

E0

��

a2

4

�
(b)

We D � �
a2B
� ��2

E0

�
(2.25)

Now, the elastic surface energy for creating new crack surfaces during crack growth
(from two crack tips) is [4]

Ws D 2 .2aB� s/ (2.26)

where � s D Specific surface energy for atomic bond breakage (J/mm2)
For an elastically stressed solid body, Griffith energy balance takes into account

the decrease in potential energy (due to the release of stored elastic energy and the
work done by external loads) and the increase in surface energy resulting from the
growing crack, which creates new surfaces. For the energy balance, the total elastic
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energy of the system, referred to as the total potential energy, takes the mathematical
form

W D Ws C We D 2 .2aB� s/ � �

a2B

� ��2

E0

�
(2.27)

For convenience, divide Eq. (2.27) by the thickness B to get the total potential energy
per unit thickness as

U D Us C Ue (2.28)

U D 2 .2a� s/ � 
a2�2

E0 (2.29)

where Us D Elastic surface energy per unit thickness (J/mm)
Ue D Released elastic energy per unit thickness (J/mm)

Thus, the Griffith’s energy criterion for crack growth is Ue � Us when dU=da D
0. Then, the energy balance gives 4a� sE

0 D ˇ
a2�2, from which the applied
stress (� ), the crack length (a) or the strain energy release rate (GI) for brittle solid
materials are easily derivable. They are, respectively,

� D
r
.2� s/E0

a

(2.30)

a D .2� s/E
0


�2
(2.31)

GI D 2� s D 
a�2

E0 (2.32)

At fracture, Eqs. (2.30) through (2.32) give the critical entities. Rearranging
Eq. (2.32) yields the elastic stress intensity factor

�
p

a D p

.2� s/E0 D
p

GIE0 (2.33)

KI D �
p

a (2.34)

The parameter KI is called the stress intensity factor which is the crack driving
force, and its critical value is a material property known as fracture toughness,
which, in turn, is the resistance force to crack extension [16]. The interpretation
of Eq. (2.34) suggests that crack extension in brittle solids is completely governed
by the critical value of the stress intensity factor.

Griffith observed that � f
p

ac was nearly a constant for six (6) cracked circular
glass tubes under plane stress condition, Table III in ref. [4]. The average value is

� f
p

ac D 0:2378˙ 0:0062 ksi
p

in (a)



2.4 Griffith Crack Theory 65

For convenience, using Eq. (2.34) yields the plane-strain fracture toughness

KIC D � f
p

ac ' 0:42˙ 0:01 ksi

p
in (b)

KIC D 0:46˙ 0:01MPa
p

m

In addition, taking the second derivative of Eq. (2.29) with respect to the crack
length yields

d2 .U/

da2
D �2
�

2B

E0 (2.35)

Denote that d2U=da2 < 0 represents an unstable system. Consequently, the crack
will always grow [15]. Fundamentally, linear-elastic fracture mechanics requires a
stress analysis approach to predict nonphysical or conceptual infinite local stresses
(� ij ! 1) at a crack tip despite that yielding occurs, to an extent, in most
engineering brittle solids. Glass and the pure brittle materials are an exception. The
yielding process truncates the local stresses, specifically the stress perpendicular
(� y) to the crack plane. Eventually, the maximum applied stress is a critical (� c) or
fracture stress (� f ) that causes fracture of the solid is less than the yield strength
(� ys) of the solid body due to the existence of cracks or defects.

Example 2.1. A large and wide brittle plate containing a single-edge crack (a)
fractures at a tensile stress of 4MPa. The critical strain energy release rate (Gc)
and the modulus of elasticity (E) are 4 J=m2 and 65;000MPa, respectively. Assume
plane stress condition and include the thickness B D 3mm in all calculations. (a)
Plot the theoretical total surface energy (Us), the released strain energy (Ue), and
the total potential energy change (W). Interpret the energy profiles. Determine (b)
the critical crack length and (c) the maximum potential energy change (Wmax); (d)
will the crack grow unstably? (e) What is the critical stress intensity factor for this
brittle plate?

Solution. Given data:
� D 4MPa; E0 D E D 65;000MPa for plane stress condition
Gc D 4 J=m2 D 4 � 10�6 J=mm2

� s D Gc=2 D 2 J=m2 D 2 � 10�6 J=mm2
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(a) For single-edge crack with one crack tip, Eq. (2.27) is divided by 2. Thus, the
surface energy becomes

Ws D 2aB� s D .2/
�
3 � 10�3 m

� �
2 J=m2

�
a D �

12 � 10�3 J=m
�

a

Ws D �
12 � 10�6 J=mm

�
a

On the other hand, the released strain energy is also divided by 2 so that

We D � �
a2B
� � �2

2E

�

We D � .
/
�
3 � 10�3 m

�
.4 MPa/2 a2

.2/ .65000 MPa/
D � �1:16 � 10�6 MPa m

�
a2

We D � .1:16 Pa m/ a2 D
�
1:16 J=m2

�
a2

We D �
�
1:16 � 10�6 J=mm2

�
a2

Thus, the potential energy change becomes

W D Ws C We

W D �
12 � 10�6 J=mm

�
a �

�
1:16 � 10�6 J=mm2

�
a2

The energy profiles are given below. The total potential energy associated with
crack growth is simply the sum of the surface energy and the released strain
energy. The former energy is needed for creating new crack surfaces by allowing
the breakage of atomic bonds. The latter energy is negative because it is released
during crack growth and it is needed for unloading the regions near the crack
flanks.
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Moreover, stable crack growth occurs when W < Wmax, but W > 0. At the
maximum potential energy, the crack length reaches a critical value a D ac and
the slope becomes dW=da D 0. Beyond this critical state, the potential energy
change decreases very significantly because crack growth continues to occur at
a very high velocity causing catastrophic failure.

(b) The critical crack length can be determined by letting the first-order derivative
of the total potential energy equals to zero. Thus,

W D �
12 � 10�6 J=mm

�
a �

�
1:16 � 10�6 J=mm2

�
a2

dW

da

ˇ̌
ˇ̌
aDac

D �
12 � 10�6 J=mm

� �
�
2:32 � 10�6 J=mm2

�
ac D 0

ac D 12 � 10�6

2:32 � 10�6 D 5:17 mm D 0:20 in

Therefore, ac D 5:17mm is not a very large crack, but it is the maximum
allowable crack length in the system. If a similar structure is to be put in
service, then a crack detection technique has to be implemented in order to
avoid fracture when a D ac.

(c) The maximum potential energy is

Wmax D �
12 � 10�6 J=mm

�
ac �

�
1:16 � 10�6 J=mm2

�
a2c

Wmax D �
12 � 10�6 J=mm

�
.5:17 mm/ �

�
1:16 � 10�6 J=mm2

�
.5:17 mm/2

Wmax D 31:03 � 10�6 J

Thus, the point .ac;Wmax/ D �
5:17 mm, 31:03 � 10�6 J

�
is plotted on the figure

above. At this critical point, the derivative of the total potential energy change
is d .W/ =da D 0 and W D Wmax at a D ac.

(d) From part (a),

W D �
12 � 10�6 J=mm

�
a �

�
1:16 � 10�6 J=mm2

�
a2

dW

da
D �

12 � 10�6 J=mm
� �

�
2:32 � 10�6 J=mm2

�
a

d2W

da2
D �2:32 � 10�6 J=mm2

Therefore, the crack will grow unstable because d2W=da2 < 0.
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(e) The critical stress intensity factor or the plane stress fracture toughness for the
brittle plate is determined by using Eq. (2.34). Thus,

KC D �
p

ac

KC D .4 MPa/
p

 .5:17 � 10�3 m/

KC D 0:51 MPa
p

m

In addition, combining Eqs. (2.30) and (2.34) along ˇ D 1, KI D KC and
a D ac gives

KC D p
2� sE D

r
2
�
2 J=m2

�
.65000 � 106 Pa/

KC D
p
2 .2 Pa m/ .65000 � 106 Pa/

KC D 5:1 � 105 Pa
p

m

KC D 0:51 MPa
p

m

Also, combining Eqs. (2.29) and (2.34) yields

KC D
s
2E

acB
.2acB� s � Wmax/ D 0:51 MPa

p
m

Therefore, the above mathematical equations give the same low result for KC,
which, in turn, indicates that the material is brittle and it is an important
property of the material for design applications. In fact, KC is the plane stress
fracture toughness that defines the material resistance to brittle fracture when
the crack length reaches a critical value ac. Furthermore, a low KC value implies
that the material absorbs a small quantity of strain energy prior fracture. This
indicates that the materials is elastic or brittle. Hence, brittle materials can be
used in specific engineering applications.

On the other hand, a large KC value specifies a larger consumption of
strain energy and the material fractures in a tearing-like mode. This, then,
defines a ductile material, which may have significant applications in industrial
structures.

2.5 Strain Energy Release Rate

It is well known that plastic deformation occurs in engineering metal, alloys, and
some polymers. Due to this fact, Irwin [2] and Orowan [17] modified Griffith’s
elastic surface energy expression, Eq. (2.32), by adding a plastic deformation energy
or plastic strain work �p in the fracture process. For tension loading, the total elastic-
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plastic strain energy is known as the strain energy release rate GI , which is the
energy per unit crack surface area available for infinitesimal crack extension [16].
Thus,

GI D 2
�
� s C �p

�
(2.36)

GI D 
a�2

E0 (2.37)

Here, E0 D E=ˇ. Rearranging Eq. (2.37) gives the stress equation as

� D
r

E0GI


a
(2.38)

Combining Eqs. (2.34) and (2.37) yields

GI D K2
I

E0 (2.39)

This is one of the most important relations in the field of linear fracture mechanics.
Hence, Eq. (2.39) suggests that GI represents the material’s resistance .R/ to crack
extension, and it is known as the crack driving force. On the other hand, KI is the
intensity of the stress field at the crack tip.

The condition of Eq. (2.39) implies that GI D R before relatively slow crack
growth occurs. However, rapid crack growth (propagation) takes place when GI !
GIC, which is the critical strain energy release rate known as the crack driving force
or fracture toughness of a material under tension loading. Consequently, the fracture
criterion by GIC establishes crack propagation when GI � GIC. In this case, the
critical stress or fracture stress � c and the critical crack driving force GIC can be
predicted using Eq. (2.39) when the crack is unstable. Hence, the critical or fracture
stress is defined as

� f D � c D
r

E0GIC


a
(2.40)

Griffith assumed that the crack resistance R consisted of surface energy only for
brittle materials. This implies that R D 2� s, but most engineering materials undergo,
to an extent, plastic deformation so that R D 2

�
� s C �p

�
. Figure 2.6 shows a plastic

zone at the crack tip representing plasticity or localized yielding, induced by an
external nominal stress. This implies that the energy �p is manifested due to this
small plastic zone in the vicinity of the crack tip.

It is clear that the internal stresses on an element of an elastic-plastic boundary
are induced by plasticity and are temperature-dependent tensors. The stress in front
of the crack tip or within the plastic zone exceeds the local microscopic yield stress,
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Fig. 2.6 Single-edge crack
configuration showing the
plastic zone and stresses at
the crack tip is rectangular
and polar coordinates

which may be defined as the theoretical or cohesive stress for breaking atomic
bonds. If microscopic plasticity through activated slip systems does not occur, as in
glasses, then a linear-elastic fracture is achieved as the controlling fracture process.
In essence, the fracture process is associated with plasticity at a microscopic level.

If large plasticity occurs at the crack tip, then the crack blunts and its radius of
curvature increase. This plastic deformation process is strongly dependent on the
temperature and microstructure. Regardless of the shape of the plastic zone, the
irreversible crack tip plasticity is an indication of a local strain hardening process
during which slip systems are activated and dislocations pile up and dislocation
interaction occurs.

Example 2.2. This worked example illustrates the application of fracture mechan-
ics to determine the behavior of a cracked solid body subjected to a static stress.
A hypothetical (1-m/ � .100-mm/ � .3-mm) sheet of glass containing a 0.4-mm-
long central crack (slit) is loaded in tension by a hanging person having a mass of
80Kg. (a) Calculate KI and GI at fracture. (b) Determine whether or not the glass
sheet will fracture. The fracture toughness and the modulus of elasticity of glass
are KIC D 0:80MPa

p
m and E D 60GPa, respectively. Calculate (c) the critical

crack length (ac) which is the maximum allowable crack size before fast fracture
occurs, (d) the fracture or critical stress, (e) the reduction in strength if the crack-
free (sound) fracture stress is 165MPa, and (f) the maximum allowable mass (mc).
Assume a Poisson’s ratio of 0:3 and plane stress conditions because the plate is
very thin.
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Solution.

(a) The applied mass has to be converted to a load, which in turn is divided by the
cross-sectional area of the plate as if the crack is not present. Also, the specimen
configuration is given below.

The applied stress, the stress intensity factor, and the strain energy release
rate are, respectively,

� D P=Ao D
.80 Kg/

�
9:81 m=s2

�

.100 � 10�3 m/ .3 � 10�3 m/
D 262 MPa

KI D �
p

a D .262 MPa/

p

 .0:2 � 10�3 m/ D 0:07 MPa

p
m

GI D K2
I

E
D
�
0:07 MPa

p
m
�2

11 � 103 MPa
D 4:45 � 10�7 MPa D 0:445 J=m2

(b) The sheet of glass will not fracture because KI < KIC.
(c) Let KI < KIC and a < ac in Eq. (2.34) so that the maximum allowable crack

length under the loading condition becomes

KIC D �
p

ac

ac D 1




�
KIC

�

�2
D 1




�
0:80 MPa

p
m

262 MPa

�2
D 29:68 mm

(d) From Eq. (2.39), GI D GC

GC D K2
IC

E
D
�
0:80 MPa

p
m
�2

60 � 103 MPa

GC D 1:067 � 10�5 MPa � m D 10:67 J=m2
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From Eq. (2.38), the applied stress at fracture is just the critical stress; that
is, � D � c

� c D
r

EGC


a
D
s
.60 � 103 MPa/ .9:71 � 10�6 MPa � m/


 .0:2 � 10�3 m/

� c D 31:92 MPa

The critical stress for fracture can also be calculated using the critical stress
intensity factor KIC. Thus,

� c D KICp

ac

D 0:80 MPa
p

m
p

 .0:2 � 10�3 m/

� c D 31:92 MPa

(e) The reduction in strength due to a small crack is

165 � 31:92
165

� 100% D 80:65%

This particular result indicates how critical is the presence of small defects in
solid bodies.

(f) The maximum allowable or critical mass can be determined using the following
critical stress equation

� c D mcg

Ao

mc D Ao� c

g

Hence, the critical mass is

mc D Ao� c

g
D
�
100 � 10�3 m

� �
3 � 10�3 m

� �
31:92 � 106 N=m2

�

�
9:81 m=s2

�

mc D 976:15 Kg

The critical mass can also be calculated using the critical stress intensity factor
(plane-strain fracture toughness) as follows:

mc D AoKIC

g
p

ac

D
�
100 � 10�3 m

� �
3 � 10�3 m

� �
0:80 � 106 Pa

p
m
�

�
9:81 m=s2

�p

 .0:2 � 10�3 m/

mc D 976:01 Kg

The slight difference in the critical mass is due to the truncation error involved
in all calculations.
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It is obvious, in general, that the existence of different crack configurations
is quite detrimental or fatal to structures under a loading mode. The current
example is very simple, but exhibits an important analysis in determining the
critical crack length a structural component can tolerate before crack propa-
gation toward fracture takes place. This example also reflects the importance
of fracture mechanics in designing applications to assure structural integrity
during a design lifetime.

2.6 Grain-Boundary Strengthening

This technique is used to enhance the strength and the fracture toughness of
polycrystalline materials, such as low-carbon steels. The classical Hall–Petch model
[18, 19] is commonly used to predict the mechanical behavior of polycrystalline
materials since it correlates the yield strength with the grain size (d) to an extent. The
Hall–Petch model is based on a planar dislocation pileup mechanism in an infinite
and homogeneous medium as schematically shown in Fig. 2.7. The dislocation
pileup is modeled as a series of edge dislocations (?) emanating from a source
toward the grain boundary on a particular slip plane.

The mathematical form of the Hall–Petch model for the yield strength is

� ys D �o C kyd�1=2 (2.41)

where �o D Lattice friction stress (MPa)
ky D Dislocation locking term (MPa

p
m)

Briefly, if a dislocation source is activated, then it causes dislocation motion
to occur toward the grain boundary, which is the obstacle suitable for dislocation
pileup. Thus, dislocation motion encounters the lattice friction stress �o as dis-
locations move on a slip plane toward a grain boundary. This dislocation-based
model assumes that dislocation motion is the primary mechanism for plastic flow
in crystalline materials and it is the basis for the Hall–Petch equation. In addition,

Fig. 2.7 Edge dislocation
pileup model
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the pileup causes a stress concentration at the grain boundary, which eventually
fractures when the local stress (shear stress) reaches a critical value. Therefore, other
dislocation sources are generated. This is a possible mechanism for explaining the
yielding phenomenon from one grain to the next. However, the grain size dictates the
size of dislocation pileup, the distance dislocations must travel, and the dislocation
density associated with yielding. This implies that the finer the grains, the higher
the yield strength.

If a suitable volume of hard particles exists in a fine-grain material, the yield
stress is enhanced further since three possible strengthening mechanisms are
present, that is, solution strengthening, fine-grain strengthening, and particle (dis-
persion) strengthening. If these three strengthening mechanisms are activated, then
the Hall–Petch model is not a suitable model for explaining the mechanical behavior
of polycrystalline materials. This suitable explanation is vital in understanding that
the grain size plays a major role in determining material properties such as the yield
strength and fracture toughness.

Further, the Hall–Petch model can also be used to correlate hardness and grain
size as indicated below:

H D Ho C khd�1=2 (2.42)

Here, Ho and kh are constants which are determined through a curve fitting proce-
dure. Nonetheless, the physical foundation of this empirical equation is assumed to
be associated with dislocation pileup within grains.

The understanding of the mechanical behavior of polycrystalline materials from
nano- to microscales is very important scientifically and technologically because the
grain size (d) plays a critical role in designing materials having desired mechanical
properties.

The crossover from normal to inverse Hall–Petch model is depicted in Fig. 2.8
[20, 21]. The inverse Hall–Petch model is found in the new generation of advanced
materials with nanostructures or nano-grains [7, 22–25].

Figure 2.8 illustrates three different regions: (1) the micro-grain region in which
the conventional Hall–Petch can be used, (2) the transitional region where the
maximum hardness corresponds to a critical grain size (dc) and beyond this point
the Hall–Petch model is reversed having a negative slope, and (3) the nano-grain
region in which the grains are very small leading to large values of d�1=2, which
in turn cause a decrease in hardness. The specific hardness or yield strength
profile for materials having very small grains at a nanoscale depends on the
inherent peculiarities of the nanostructures, which have large grain-boundary areas.
Currently, excellent publications on the reverse Hall–Petch model are available in
the literature; however, this is a subject of so much controversy [21].

Furthermore, letting the crack length be in the order of the average grain size
(d D a), it can be shown that both yield strength (� ys) and the critical strain energy
release rate (GIC) known as fracture toughness depend on the grain size. Using the
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Fig. 2.8 Schematic hardness
profile showing the normal to
inverse Hall–Petch model

Hall–Petch equation, Eq. (2.41), for � ys and Eq. (2.40) for � f , it is clear that these
stress entities depend on the grain size. Hence,

� f D
�

E0GIC




�1=2
d�1=2 D kf d

�1=2 (2.43)

where kf D Constant (MPa
p

m)
Denote that Eqs. (2.41) and (2.43) predict that � ys D f .d/ and � f D f .d/. The

slopes of these functions, ky and kf , respectively, have the same units, and they
may be assumed to be related to fracture toughness. The slope ky is referred to
as the dislocation locking term that restricts yielding from a grain to the adjacent
one. Mathematically, the analysis of Eq. (2.40) through (2.43) for materials having
temperature and grain size dependency indicate that � ys ! 1, � f ! 1 and
H ! 1 as d ! 0. Physically, these entities have limited values and � f � � ys due
to the inherent friction stress (�o) at a temperature T1. At a temperature T2 > T1, � ys

decreases since �o and ky also decrease, and GIC increases and, therefore, � f must
decrease.

One can observe that � ys ! �o for d�1=2 D 0, which means that �o is regarded
as the yield stress of a single crystal. However, � ys ! �o and � f ! �o as d !
1 is an unrealistic case. Therefore, grain size refinement is a useful strengthening
mechanism for increasing both � ys and � f .

Finally, if one combines Eqs. (2.34) and (2.42) along with d D a, one can
determine that the KI is inversely proportional to hardness. Thus,

KI D kh�
p



H � Ho
� kh�

p



H
(2.44)

Here, it can be assumed that kh is a correction factor and H >> Ho.
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2.7 Problems

2.1. Show that the applied stress is � ! 0 when the crack tip radius is � ! 0.
Explain.

2.2. In order for crack propagation to take place, the strain energy is defined by the
following inequality U.a/ � U.a C	a/ � 2	a�; where 	a is the crack extension
and � is the surface energy. Show that the crack driving force or the strain energy
release rate at instability is defined by G � dU.a/=da.

2.3. One .1-mm/� .15-mm/� 100-mm steel strap has a 3-mm-long central crack.
This strap is loaded in tension to failure. Assume that the steel is brittle having the
following properties: E D 207GPa, � ys D 1500MPa, and KIC D 70MPa

p
m:

Determine (a) the critical stress and (b) the critical strain energy release rate.

2.4. Suppose that a structure made of plates has one cracked plate. If the crack
reaches a critical size, will the plate fracture or the entire structure collapse? Explain.

2.5. What is crack instability according to Griffith criterion?

2.6. Assume that a quenched 1:2%C-steel plate has a penny-shaped crack. Will the
Griffith theory be applicable to this plate?

2.7. Will the Irwin theory be valid for a changing plastic zone size during crack
growth?

2.8. What are the major roles of the surface energy and the stored elastic energy
during crack growth?

2.9. What does happen to the elastic energy during crack growth?

2.10. What does dU=da D 0 mean?

2.11. Derive Eq. (2.29) starting with Eq. (2.20).
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3Linear-Elastic Fracture Mechanics

3.1 Introduction

Solid bodies containing cracks can be characterized by defining a state of stress
near a crack tip and the energy balance coupled with fracture. Introducing the
Westergaard stress function and will allow the development of a significant stress
analysis at the crack tip. These particular functions can be found elsewhere [12]. For
instance, Irwin [20] treated the singular stress field by introducing a quantity known
as the elastic stress intensity factor, which is used as the controlling parameter for
evaluating the critical state of a crack.

The theory of linear-elastic fracture mechanics (LEFM) is integrated in this
chapter using an analytical approach that will provide the reader useful analytical
steps. Thus, the reader will have a clear understanding of the concepts involved
in this particular engineering field and will develop the skills for a mathematical
background in determining the elastic stress field equations around a crack tip. The
field equations are assumed to be within a small plastic zone ahead of the crack tip.
If the plastic zone is sufficiently small, the small-scale yielding (SSY) approach is
used for characterizing brittle solids and for determining the stress and strain fields
when the size of the plastic zone is sufficiently smaller than the crack length; that
is, r << a. In contrast, a large-scale yielding (LSY) is for ductile solids, in which
r � a.

Most static failure theories assume that the solid material to be analyzed is
perfectly homogeneous, isotropic, and free of stress risers or defects, such as
voids, cracks, inclusions, and mechanical discontinuities (indentations, scratches, or
gouges). Actually, fracture mechanics considers structural components having small
flaws or cracks which are introduced during solidification, quenching, welding,
machining, or handling process. However, cracks that develop in service are difficult
to predict and account for preventing crack growth.

© Springer International Publishing Switzerland 2017
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3.2 Modes of Loading

Assume that a solid body (material) containing a crack is subjected to a continuously
and gradually increasing loading mode. Initially the crack grows stably until the
applied stress level reaches a critical level (� ! � c). Once � > � c, the crack
propagates (rapid growth) and, as a result, the solid body fractures (breaks). In order
to understand crack growth, it is relevant to firstly study the mechanical behavior of
a crack-free body based on its microstructure and the related mode of elastic or
elastic-plastic deformation.

Consider a crack in a homogeneous and linear-elastic body being subjected to a
particular loading mode of crack displacement, inducing a stress distribution ahead
of the crack tip responsible for stable growth. In this case, a load-displacement
curve is generated for determining the critical stress level and related critical stress
intensity factor, which depends on the applied stress, specimen size, geometry, and
crack size. Hence, the mechanical behavior of a solid containing a crack of a specific
geometry and size can be predicted by evaluating the elastic stress intensity factors
KI , KII , and KIII for the specimen geometries shown in Fig. 3.1a.

On the other hand, Fig. 3.1b depicts the elastic stresses ahead of the crack tip that
must be derived in Cartesian coordinates using theory of elasticity. Polar coordinates
will be used for this purpose in a later chapter.

The reader should denote the meaning of each subscript assigned to each elastic
stress intensity factor. Although a combined loading can be encountered in structural

Fig. 3.1 Stress loading
modes and crack coordinate
system. (a) Stress modes and
(b) stress components ahead
of the crack tip
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components, KI is the most studied and evaluated experimentally for determining its
critical value called fracture toughness, which is a material property.

In addition, specimens and structural components having flaws or cracks can be
loaded to various levels of the applied elastic stress intensity factor for a particular
stress mode as shown in Fig. 3.1a. This is analogous to sound components being
loaded to various levels of the applied stress � .

If crack growth occurs along the crack plane perpendicular to the direction of the
applied external loading mode, then the elastic stress intensity factors (KI , KII and
KIII) are defined according to the American Society for Testing Materials (ASTM)
E399 Standard Test Method. Hence,

KI D lim
r!0

�
� yy

p
2
r

�
fI .�/ D � y

p
2
r @ � y D � y .r; � D 0/ (3.1)

KII D lim
r!0

�
� xy

p
2
r

�
fII .�/ D � xy

p
2
r @ � xy D � xy .r; � D 0/ (3.2)

KIII D lim
r!0

�
� yz

p
2
r

�
fIII .�/ D � yz

p
2
r @ � yz D � yz .r; � D 0/ (3.3)

where fI .�/, fII .�/, and fIII .�/ are trigonometric functions to be derived analyti-
cally, r is the plastic zone size, and KI is the stress intensity factor developed by
Irwin [20].

The stress intensity factor for a particular crack configuration and specimen
geometry can be defined as a general function

Ki D f .�; Crack Configuration; Specimen Geometry;Temp:/ (3.4)

where i D I; II; III.
The parameter Ki can be used to determine the static or dynamic fracture

stress, the fatigue crack growth rate, and corrosion crack growth rate. For elastic
materials, the strain energy release rate Gi, known as the crack driving force, is
related to the stress intensity factor and the modulus of elasticity. Thus, Gi also
depends on several variables as Ki does. The relationship between these two fracture
mechanics parameters is

Gi D K2
i

E0 (3.5)

where E0 D E for plane stress (MPa)
E0 D E=

�
1 � v2� for plane strain (MPa)

E D Elastic modulus of elasticity (MPa)
v D Poisson’s ratio

This expression, Eq. (3.5), is a fundamental mathematical model in the field of
fracture mechanics, specifically for mode I loading since Griffith’s work on sheets
of glass containing central cracks was published. Denote that both parameters Ki

and Gi can become material properties at a specific stress level for crack instability
to occur.
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3.3 Westergaard Stress Function

The Westergaard single stress function (complex function) gives the general solution
for stresses and displacements near the crack tip subjected to a particular loading
mode.

Consider mode I as a basic loading for crack growth. The coordinate system
defining a double-ended crack in a complex z-plane is shown in Fig. 3.2. Consider
the coordinates origin at the center of the elliptical crack so that the complex variable
z is defined as z D x C iy. Thus, z represents a point in the z-plane where the elastic
stresses, � x, � y, and � xy, are determined at ˛ D 
=2 � � . However, the origin may
be moved to the right crack tip as illustrated in Fig. 3.2. In this case, z D r and if
y D o, then �x < z < x, � D 0 and � y is the only nonzero elastic stress. This
means that the crack occupies a straight segment treated as a straight line along the
x-axis in Cartesian coordinates subjected to a remote and perpendicular force (F1

y )
or stress (�1

y ).
This is a classical representation of Westergaard’s approach for developing stress

functions near an elliptical crack of total length 2a. The primary goal using the
approach is to derive stresses and strains ahead of a crack tip. Recall that strains
are proportional to stresses, while displacements are derived from integration of the
strains.

The Airy and Westergaard stress functions are defined in terms of the complex
function Z, respectively [12, 23]:


 D Re Z C y Im Z (Airy) (3.6)

Z .z/ D Re Z C i Im Z (Westergaard) (3.7)

where Re Z D Real part
Im Z D Imaginary part
Z D Analytic stress function
i D p�1
i2 D �1

Fig. 3.2 The crack tip stress
field in complex coordinates
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Below are some supportive and useful expressions for developing the elastic
stress functions. Hence,

Z D
Z

Z0dz or Z0 D dZ

dz
(3.9a)

Z D
Z

Zdz or Z D dZ

dz
(3.9b)

Z D
Z

Zdz or Z D dZ

dz
(3.9c)

@ .Re Z/

@x
D Re Z0 (3.9d)

@ .Re Z/

@y
D � Im Z0 (3.9e)

@ .Im Z/

@x
D Im Z0 (3.9f)

@ .Im Z/

@y
D Re Z0 (3.9g)

@
��y Re Z C Im Z

�

@x
D y Im Z0 � Re Z (3.9h)

For the ellipse in Fig. 3.2, the complex function and its conjugate are, respectively,

z D x C iy D r exp .i�/ (3.10)

z D x � iy D r exp .�i�/ (3.11)

and

exp .˙i�/ D cos � ˙ i sin � (3.12)

y D r sin � (3.13)

Furthermore, the Cauchy–Riemann equations in some domain D are considered
fundamental and sufficient for a complex function to be analytic in region D. Letting
z D u.x; y/ C iv.x; y/, then the Cauchy–Riemann important theorem states that
@u=@x D @v=@y and @u=@y D �@v=@x so that the function z be analytic. The
Cauchy–Riemann condition is of great practical importance for determining elastic
stresses. Hence,

r2 Re Z D r2 Im Z D 0 (3.14)
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which must be satisfied by an Airy stress function. The harmonic operator r2 in
rectangular and polar coordinates takes the form

r2 D @2

@x2
C @2

@y2
C @2

@z2
(3.15a)

r2 D @2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2
(3.15b)

Assume that the Airy partial derivatives given by Eq. (1.40) are applicable to
homogeneous and elastic materials without body forces. Hence,

� x D @2


@y2
(3.16)

� y D @2


@x2
(Airy) (3.17)

� xy D � @2


@x@y
(3.18)

Thus,

@


@x
D @

�
Re Z

�

@x
C @

�
y Im Z

�

@x
D Re Z C y Im Z (3.19)

@2


@x2
D @

�
Re Z

�

@x
C @ .y Im Z/

@x
D Re Z C y Im Z0

@


@y
D @

�
Re Z

�

@y
C @

�
y Im Z

�

@y
D � Im Z C y Re Z C Im Z D y Re Z

@2


@y2
D @ .y Re Z/

@y
D Re Z

@ .y/

@y
C y

@ .Re Z/

@y
D Re Z � y Im Z0

@2


@x@y
D @

�
Re Z

�

@y
C @ .y Im Z/

@y
D � Im Z C y Re Z0 C Im Z D y Re Z0

Substituting Eq. (3.19) into (3.18) along with � D 0 yields the Westergaard stress
function in two dimensions:

� x D Re Z � y Im Z0

� y D Re Z C y Im Z0 (Westergaard) (3.20)

� xy D �y Re Z0
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These are the stresses, Eq. (3.20), that were proposed by Westergaard as the stress
singularity field at the crack tip. However, additional terms must be added to
the stress functions, Eq. (3.20), analytic over an entire region, for an adequate
representation of a stress field adjacent to the crack tip. This implies that when
solving practical problems, additional boundary conditions must be imposed on the
stresses.

Consequently, this leads to the well-known boundary value problem in which
the boundary value method (BVM), which is an alternative technique to the most
commonly finite element method (FEM) and finite difference method (FDM).
Therefore, the original Westergaard stress function no longer gives a unique
solution, despite that the analysis of the stress field in a region near the crack tip
is of extreme importance. Thus, the stress intensity factor represents the intensity of
these stresses.

3.3.1 Far-Field Boundary Conditions

Consider the classical problem in fracture mechanics in which a homogeneous
or isotropic infinite plate containing a central elliptical crack, shown in Fig. 3.2,
is subjected to uniaxial tension. In this case, the Westergaard stress function Z is
used as an analytic function because its derivative dZ=dz is defined unambiguously.
If the coordinate origin is located at the center of the ellipse, then the Westergaard
stress function is

Z D z�p
z2 � a2

D �
q
1 � .a=z/2

(3.21)

However, the far-field boundary conditions require that z ! 1 and z >> a.
Consequently, Eq. (3.21) becomes

Z D z�p
z2

D � (3.22)

from which Re Z D � and Im Z0 D 0: Substituting Eq. (3.22) into (3.20) yields

� x D Re Z � y Im Z0 D �

� y D Re Z C y Im Z0 D � (3.23)

� xy D �y Re Z0 D 0

On the crack surface: If y D 0 and z D x for �a � x � Ca, then Re Z D 0 and
� x D � y D � xy D 0. Therefore, Z is not an analytical function because it does not
have a unique derivative at a point z.
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3.3.2 Near-Field Boundary Conditions

Locate the origin at the crack tip in Fig. 3.2 so that the Westergaard stress function
becomes [12]

Z D .z C a/ �
q
.z C a/2 � a2

D .z C a/ �p
z2 C 2az

(3.24)

Here, the near-field boundary conditions are z << a near the crack tip and zn D
rn exp .in�/, where n is a real number. Hence, Eq. (3.24) becomes

Z D a�p
2az

(3.25a)

Z D �

r
a

2
z�1=2 D �

r
a

2r
exp

��i�=2
�

(3.25b)

Z D �

r
a

2r

�
cos

�

2
� i sin

�

2

�
(3.25c)

from which the real and imaginary parts are extracted as

Re Z D �

r
a

2r
cos

�

2
(3.26a)

Im Z D ��
r

a

2r
sin

�

2
(3.26b)

The Westergaard stress function, Eq. (3.20), along the crack line, where y D 0 and
� D 0, takes the form

� x D Re Z � y Im Z0 D �

r
a

2r
D �

r
a

2r

� y D Re Z C y Im Z0 D �

r
a

2r
(3.27)

� xy D �y Re Z0 D 0

If the plastic zone ahead of the crack tip is r ! 0, then the stress becomes � ! 1.
This stress defines what is referred to as a “singularity” state of stress which is in
the order of r�1=2 along the x-axis.

Substituting Eq. (3.27) into (3.1) yields the stress intensity factor for infinite
specimen dimensions (uncorrected) and finite specimen dimensions (corrected)
under mode I, respectively:

KI D �
p

a (uncorrected) (3.28)

KI D ˛�
p

a (corrected) (3.29)
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Fig. 3.3 Linear behavior of
the stress intensity factor

where ˛ D Specimen finite geometry correction factor
˛ D f .a=w/ for plates and ˛ D f .di=do/ for cylindrical components
a D Crack length (Also called crack size)
w D Specimen width
di, do D Inside and outside diameters

The equation ˛ D f .a=w/ is a function of normalized crack length a=w and it
makes the surface traction stresses vanish [27]. Basically, ˛ is a geometry function
that considers the effect of crack configuration and boundary conditions. In fact, ˛
is just a multiplier. If a=w ! 0, then ˛ D f .0/ � 1. Hence, Eq. (3.29) reduces to
(3.28). In addition, KI has units in MPa

p
m or ksi

p
in.

The KI expression, Eq. (3.28), is for an infinite (large) plate and it is a linear
function of the applied stress (�), and it increases with initial crack size (a). This
is shown in Fig. 3.3. On the other hand, Eq. (3.29) is for a finite plate. Thus, the
stress intensity factor is corrected due to specimen geometry effects. In certain cases,
crack shape and plasticity effects can also be included in the KI equation. The onset
of crack propagation is a critical condition so that the crack a) extends suddenly
by tearing in a shear-rupture failure or b) extends suddenly at high velocity for
cleavage fracture. All this means that the crack is unstable when a critical condition
exists due to an applied load. In this case, the stress intensity factor KI reaches a
critical magnitude, and it is treated as a material property called fracture toughness,
which represents the resistance of a elastic material to fracture. For sufficiently
thick specimens, KI D KIC is called plane-strain fracture toughness, and for thin
specimens, KI D KC is known as plane stress fracture toughness.

Moreover, KIC and KC are material properties that measure crack resistance.
Since Mode I testing the most common loading condition, KIC is the most used in
designing applications. Nonetheless, the fracture criterion by KIC states that crack
propagation occurs when KI � KIC for brittle materials. This simply implies that
the crack extends to reach a critical crack length (a D ac), defining a critical state
in which the crack velocity may reach the magnitude of the speed of sound for most
brittle materials. In fact, the crack velocity is referred to as the subcritical crack
growth rate, da=dt, for time-dependent cracking. Particularly, the crack velocity in
stress corrosion cracking (SCC) studies takes the form [28, 29]
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da

dt
D c1K

n
I (for mode I) (3.29a)

where c1 and n are material constants that depend on the environment.
Furthermore, the LEFM theory is well documented, and the ASTM E399

Standard Test Method, Vol. 03.01, validates the KIC data and assures the starting
crack length and the minimum plate thickness through Brown and Strawley [9]
empirical equation. Thus,

a;B � 2:5

�
KIC

� ys

�2
for a >> r (3.30)

This is a maximum constraint set forth by requiring large specimen dimensions, a
deep crack, and a very small plastic zone.

3.4 Specimen Geometries

3.4.1 Through-Thickness Cracks

In general, the successful application of linear elastic fracture mechanics to
structural analysis, fatigue, and stress corrosion cracking requires a known stress
intensity factor equation for a particular specimen configuration. Cracks in bodies
of finite size are important since cracks pose a threat to the instability and safety
of an entire structure. Ordinarily, structural integrity can be assessed by using
proper design methodology and by periodic nondestructive evaluation (NDE) during
service. However, the presence of cracks in stressed structural components can
reduce the material strength and its design lifetime or cause fracture [31, 41, 42].

Accordingly, fracture mechanics provides a methodology for evaluating the
behavior of cracked solid bodies subjected to stresses and strains. In fact, mode I
(opening) loading system is the most-studied and evaluated mode for determining
the mechanical behavior of solids having specific geometries exposed to a particular
environment. Some selected specimen geometries and related through-thickness
crack configurations are shown in Table 3.1 along with the related geometry
correction factors, ˛ D f .a=w/.

These specimens are subjected to a remote external load. An exception is the KI

equation for an embedded (internal) pressurized crack in Table 3.1 is not corrected
because the crack is only subjected to an internal pressure on the crack surfaces.

The stress intensity factor .KI/ for mode I is normally corrected through a finite
geometry correction factor ˛ expression, and its critical value is referred to as plane-
strain fracture toughness KIC under plane-strain conditions.

In addition, there are several finite geometry correction factor ˛ for a plate
containing a through-thickness center crack. For convenience, some expressions for
˛ D f .a=w/ are listed in Table 3.1, and others are given below as per individual
authors.
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Table 3.1 Through-thickness crack configurations for solid specimens [37]

(continued)
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Table 3.1 (Continued)
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˛ D
r

sec
�
a

w

�
for 0 < a � 0:5 [16] (3.31a)

˛ D
r

w


a
tan

�
a

w

�
for 0 < a � 0:5 [21] (3.31b)

˛ D 1 � .a=w/C 1:304 .a=w/2
p
1 � 2a=w

for 0 < a � 0:5 [25] (3.32)

These ˛ equations yield similar values. Therefore, the reader is bound to use one
particular ˛ equation based on a smart judgment. The reason for using ˛ is that
most current crack growth models rely on an assessment of geometry correction
factors for the stress intensity factor to provide transferability between different
crack configurations. This then ensures that calculations of ˛ and KI are sufficiently
accurate to produce reliable crack growth modeling. Also, ˛ accounts for a finite
plate width.

Example 3.1. Consider a 4340 steel plate with KIC D 41MPa
p

m and � ys D
1900MPa. Use some of the single-edge specimen configurations from Table 3.1
to determine the least allowable applied tension stress (�) for common specimen
dimensions w D 10mm, B D w=2, S D 2:4w, and a D 5mm. Start with the center
cracked specimen.

Solution. KI D ˛�
p

aI � D KIC=

�
˛

p

a
� I a D 5mmI x D a=w D 0:5

Center cracked specimen

˛ D �
1 � 0:5x C 0:37x2 � 0:044x3

�
=
p
1 � x D 1:1837

� D �
41 MPa

p
m
�
=
�
.1:1837/

p

 .5 � 10�3 m/

�
D 276:36 MPa

Single-edge cracked specimen

˛ D 1:12 � 0:23x C 10:55x2 � 21:70x3 C 30:38x4 D 2:8288

� D �
41 MPa

p
m
�
=
�
.2:8288/

p

 .5 � 10�3 m/

�
D 115:64 MPa

Single-edge bend specimen

˛ D
�

3S

w
p



�
1:99 � x .1 � x/

�
2:15 � 3:93x C 2:70x2

�

2 .1C 2x/ .1 � x/3=2
D 5:0985

� D �
41 MPa

p
m
�
=
h
.5:0985/

p

 .5 � 10�3 m/

i
D 64:16 MPa
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Disk-shaped compact specimen

˛ D .2C x/
�
0:76C 4:8x � 11:58x2 C 11:43x3 � 4:08x4

�

.
x/1=2 .1 � x/3=2
D 8:1173

� D �
41 MPa

p
m
�
=
�
.8:1173/

p

 .5 � 10�3 m/

�
D 40:30 MPa

Compact tension specimen

˛ D .2C x/

.1 � x/3=2
�
0:886C 4:64x � 13:32x2 C 14:72x3 � 5:60x4

�

˛ D 9:6591

� D �
41 MPa

p
m
�
=
�
.9:6591/

p

 .5 � 10�3 m/

�
D 33:87 MPa

Therefore, the fracture stress as well as fracture toughness depends on the specimen
configuration and geometry. This exercise induces to conclude that normalized
crack depth (a=w), specimen width (w), and thickness (B) affect the fracture stress as
well as fracture toughness. It should also be mentioned that aggressive environments
affect, in general, material properties.

Example 3.2. A large plate (2a << w) containing a through-thickness center
crack 40-mm long is subjected to a tension stress as shown below and illustrated
in Table 3.1. If the crack growth rate is 10mm=month and fracture is expected
at 10months from now, calculate the fracture stress. Use the plane-strain fracture
toughness KIC D 30MPa

p
m.

Solution. If the crack growth rate is defined by

da

dt
D 2ac � 2a

t
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then

2ac D 2a C t

�
da

dt

�

2ac D 40mm C .10 month/ .10 mm=month/

2ac D 140 mm

ac D 70 mm

Therefore, the total critical crack length is 100mm longer than the original or
ac D 3:5a.

Now, the fracture stress can be calculated using Eq. (3.29). A large plate implies
that a=w ! 0 and from Table 3.1 the geometric correction factor becomes

˛ D
p

sec Œ
 .a=w/� ! 1

Thus, the fracture stress becomes

� f D KIC

˛
p

ac

� f D 30MPa
p

m

.1/
p

 .70 � 10�3 m/

D 64 MPa

This result indirectly implies that � f << � ys because � f has a significantly low
value (magnitude).

Example 3.3. A large and thick brittle plate containing a 4-mm long through-
thickness center crack fractures when it is subjected to an external tensile stress
of 7MPa. Calculate the strain energy release rate using (a) the Griffith’s theory and
(b) the LEFM approach. Should there be a significant difference between results?
Explain. Assume stable crack growth and use the following material’s properties
E D 62; 000MPa and v D 0:20.

Solution.

(a) For a total crack size of 2a D 4mm, Eq. (2.35) yields the critical strain energy
release rate (fracture toughness in terms of strain energy) at fracture
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� f D
r

E0GIC


a

GIC D 
a�2f
E0 D 


�
1 � v2� a�2f

E

GIC D 

�
1 � 0:22� �2 � 10�3 m

�
.7 MPa/2

62;000 MPa

GIC D 4:77 � 10�6 MPa m D 4:77 J=m2

(b) Using Eq. (3.29) along with ˛ D p
sec .
a=w/ D 1 (see Table 3.1) and letting

the stress intensity factor reach its critical value under plane-strain condition,
KI D KIC; give

KIC D ˛�
p

a

KIC D .1/ .7 MPa/
p

 .2 � 10�3 m/

KIC D 0:555 MPa
p

m

This is a very small value, implying that the material is very brittle such as
glass. From Eq. (2.35),

GIC D K2
IC

E0 D
�
1 � v2�K2

IC

E

GIC D
�
1 � 0:22� �0:555 MPa

p
m
�2

62;000 MPa

GIC D 4:77 � 10�6 MPa m D 4:77 J=m2

These results indicate that there should not be any difference in the strain energy
release rate because either approach gives the same result.

3.4.2 Elliptical Cracks

This section deals with elliptical, semielliptical, circular, and semicircular cracks in
structural components subjected to an external remote stress. In fact, small cracks
developing from rivet holes are very common defects encountered in lap joints
of plates. A particular specimen containing an embedded elliptical crack can be
analyzed using a semielliptical crack geometry due to symmetry. This is depicted in
Fig. 3.4. It can be assumed that the semielliptical crack (solid curve) can grow to a
semicircle (dash curve). The goal in this type of problem is to determine the stress
intensity factor (KI) on the perimeter of the crack at angle � when the crack length
(a) is the depth of the semi-ellipse.
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Fig. 3.4 Embedded
semielliptical crack [19]

It is common to encounter embedded and surface elliptical cracks in certain
structural components. In such a case, the stress intensity factor KI has received
ample consideration by the engineering and the scientific community to predict
fracture susceptibility.

According to Irwin’s analysis [21], which is also cited in Broek’s book [8], on
an infinite plate containing an embedded elliptical or semielliptical crack remotely
loaded in tension, the stress intensity factor is defined by

KI D �
p

a

ˆ



sin2 �C

�a

c

�2
cos2 �

�1=4
(3.33)

which can be evaluated at a point on the perimeter of the crack. This point is located
at an angle � with respect to the direction of the applied tensile stress. Also shown
in Fig. 3.4 is a semielliptical surface crack that grows to a semicircle as in the case
of some pressure vessels.

The term ˆ in Eq. (3.33) accounts for the crack shape effects, and it takes the
form of an elliptic integral of the second kind defined as [21]

ˆ D
Z 
=2

o



1 �

�
c2 � a2

c2

�
sin2 �

�1=2
d� (3.34)

where a and c are as defined in Fig. 3.4. This mathematical expression can be
simplified in order to obtain the geometry correction factor for a circular crack.
This can be accomplished by letting the crack depth become equals to the radius of
the circle; that is, if a D c, the ellipse becomes a circle and the integral in Eq. (3.34)
gives

ˆ D
Z 
=2

o
d� D 


2
(3.34a)

Substituting ˆ D 
=2 in Eq. (3.33) yields the stress intensity factor for a circular
crack of radius a, known as a penny-shaped crack, embedded in an infinite solid
subjected to a uniform tension stress developed by Sneddon [34]

KI D 2



�

p

a (3.35)
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In this specific case, the finite geometry correction factor for a circular crack is
simply given by ˛ D 1=ˆ D 2=
 . Actually, Eq. (3.35) can also be used for a
specimen containing semicircular surface flaw.

Furthermore, values of ˆ can be found in mathematical tables, or it can be
approximated by expanding Eq. (3.34) in a Taylor’s series form [8]. Hence, ˆ
becomes

ˆ D 


2

"
1 � 1

4

�
c2 � a2

c2

�
� 3

64

�
c2 � a2

c2

�2
� . . . . . . .

#
(3.36)

Neglecting higher terms in the series, the margin of error is not significant; therefore,
the correction factor ˆ can further be approximated using the first two terms in the
series given by Eq. (3.36). Thus,

ˆ D 


2



1 � 1

4

�
c2 � a2

c2

��
D 


2



3

4
C
� a

2c

�2�
(3.37)

Inserting Eq. (3.37) into (3.33) gives

KI D 2�
p

a



h
3=4C .a=2c/2

i



sin2 �C
�a

c

�2
cos2 �

�1=4
(3.38)

Evaluating Eq. (3.38) on the perimeter of the ellipse yields the stress intensity factor
for two extreme cases. Thus,

KI D 2�
p

a



h
3=4C .a=2c/2

i @ � D 
=2 (maximum) (3.39)

KI D 2�
p

a



h
3=4C .a=2c/2

i
r

a

c
@ � D 0 (minimum) (3.40)

The condition � D 
=2 is vital in evaluating an elliptical crack behavior because KI

is computed as a maximum applied entity for predicting crack instability at fracture.

3.4.3 Cylindrical Pressure Vessels

The stress intensity factor KI at a point on the perimeter of embedded elliptical or
circular cracks is located at an angle � which is described below. In this section, the
influence of internal surface cracks are analyzed in a cylindrical pressure vessel as
schematically depicted in Fig. 3.5.



3.4 Specimen Geometries 97

Fig. 3.5 Front face correction factor MK for a semielliptical surface flaw in thin-wall pressure
vessel [6, 24]

The general mathematical definition of KI in an infinite body subjected to a
remotely uniform tensile stress is defined by Irwin [21]

KI D �

r

a

Q



sin2 �C

�a

c

�2
cos2 �

�1=4
(3.41)

where Q is the shape factor given by

Q D ˆ2 � 2

3


�
�

� ys

�2
(3.42)

It is very common in machine parts to have a combination of stresses on the same
part leading to different values of KI due to different applied modes of type I loading.

Of particular interest in this section is the pressure vessel schematically depicted
in Fig. 3.5 in which the hoop stress and the internal pressure act as a combined
loading system. Consequently, the principle of superposition requires that the total
stress intensity factor KI be the sum of each stress intensity factor components [5,8].

For a cylindrical pressure vessel (Fig. 3.5), the principle of superposition
assumes that KI arises from the hoop stress (�h) and the internal pressure (Pi), which
loads the crack surfaces. In this case, the total stress intensity factor due to the hoop
stress and the internal pressure is
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KI .�/ D KI(�h) C KI(Pi) (3.42a)

Here, the total stress � D �h C Pi and KI .�/ D KI will cause fracture if the critical
crack depth is ac < B. Conversely, if a D B, then the criterion that governs the
failure mode is known as the leak before break, which is a concept to be dealt with
in the next section.

Accordingly, evaluating Eq. (3.41) at � D 
=2 D 90 ı (Fig. 3.4) and including
additional correction factors yields the stress intensity factor for thin-wall and thick-
wall vessels. Thus,

KI D MMk�

r

a

Q
For thin-wall vessels (3.43a)

KI D �

r

a

Q
For thick-wall vessels (3.43b)

�h D Pidi

2B
For thin-wall vessels, do=di < 1:1 & B � di

20
(3.43c)

�h D
"
.do=di/

2 C 1

.do=di/
2 � 1

#
Pi For thick-wall vessels, do=di > 1:1 (3.43d)

where M D Magnification correction factor [24]
Mk D Front face correction factor [5, 24] shown in Fig. 3.5
�h D Hoop stress, di D Internal diameter and do D Outer diameter

The magnification correction factor takes the form [5, 6, 24]

M D 0:4C 1:2
� a

B

�
For 0:5 � a

B
� 1:0 (3.44)

The hoop stress (�h) defined above will be derived later for cylindrical pressure
vessels only. Combining Eqs. (3.37) and (3.42) yields a convenient mathematical
expression for predicting the shape factor

Q D
�

2

�2 
3
4

C
� a

2c

�2�2 � 7

33

�
�

� ys

�2
(3.45)

The shape factor has also been reported to have the form [36]

Q D 1C 1:464
�a

c

�1:65
for a=c � 1 (3.45a)

Manipulating Eq. (3.45) and rearranging it yields a very important equation in the
fracture mechanics for characterizing cracked pressure vessels. Hence,

a

2c
D
2

4 2



s

Q C 7

33

�
�

� ys

�2
� 3

4

3

5
1=2

(3.46)
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Fig. 3.6 Shape factor Q for
internal and surface flaws

Subsequently, Eq. (3.46) can be used to plot a series of curves as depicted in
Fig. 3.6. Furthermore, if a back free-surface correction factor of 1:12 and plastic
deformation are considered, then Eq. (3.41) is further corrected as

KI D 1:12MMk�
p

.a C r/=Q For � D 
=2 (3.47)

In general, a correction factors are used to improve the accuracy of a particular
model and they must contain physical meaning. As indicated in Eq. (3.47), the
correction factors are combined to account for the increase or decrease in the stress
intensity factor.

So far only cracks in the interior of the cylindrical part of a pressure vessel have
been presented. A pressure vessel has welded nozzles which may be troublesome
in certain occasions. For instance, corner cracks are dangerous and may be found at
intersections of the pressure vessel and the nozzle. Obviously, the fracture analysis
of nozzle corner cracks in pressure vessels is very imperative and critical for
assessing structural integrity of pressure vessels. Consequently, a reliable pressure
vessel design must include all possible flaw-generation sites to ensure the structural
integrity of the pressure vessels.

In general, pressure vessels can theoretically have any shape, but a cylindrical
shade pressure vessel is common, but the presence of internal cracks leads to the
determination of further corrected .KI/ using the shape factor Q. It is common to
correct the .KI/ expression, which indirectly corrects .GI/ using Eq. (2.39).

Example 3.4. A steel thin-wall pressure vessel (Fig. 3.5) is subjected to a stress of
420MPa (�h C P) perpendicular to the crack depth. The vessel has an internal
semielliptical surface crack of dimensions a D 3mm, 2c D 10mm. (a) Use
Eq. (3.42) to calculate KI. (b) Will the pressure vessel leak? Explain. (c) determined
the pressure P and the hoop stress �h. Use the following data set needed for the
required computations: � ys D 700MPa and KIC D 60MPa

p
m, B D 6mm,

di D 500mm.
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Solution.

(a) The following parameters are needed for calculating the stress intensity factor.
Thus,

a

2c
D 0:30;

a

B
D 0:50;

�

� ys
D 0:60

Q D 1:7 [from Eq. (3.45) and Fig. 3.6]

Mk D 1:12 (from Fig. 3.5)

M D 1:00 [from Eq. (3.44)]

The plastic zone size can be determined using Eq. (3.1) when � yy D � ys. This
implies that a plastic zone develops as long as the material yields ahead of the
crack tip. Collecting all correction factor gives

˛ D 1:12MMk=
p

Q D 0:9621

KI D ˛�
p

a D 39:23 MPa

p
m

(b) The pressure vessel will not leak because KI < KIC, but extreme caution should
be taken because KI D KIC=SF D 0:6538KIC. Thus, the safety factor is SF D
60=39:23 D 1:53. If KI D KIC, then leakage would occur.

(c) Furthermore, the pressure can be determined using Eqs. (3.43c) and (3.43d).
Thus,

� D �h C Pi D Pidi

2B
C Pi

� D
�

di

2B
C 1

�
Pi

Then,

Pi D �

�
di

2B
C 1

��1
D .420 MPa/

�
500 mm

2 � 6 mm
C 1

��1

Pi D 9:84 MPa

�h D 420 MPa � 9:84 MPa D 410:16 MPa

Example 3.5.

(a) Derive the stresses associated with internal and external pressures for a
cylindrical pressure vessel, which is schematically shown in the figure below.
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Use the modified Airy stress function published by Dally [12]


 D ao C bo ln r C cor2

The boundary conditions for this problem are

� r D �Pi & � r� D 0@ r D ri

� r D �Po & � r� D 0 r D ro

(b) Derive Eq. (3.43d).

Solution.

(a) Let


 D ao C bo ln r C cor2 (a)

Combining Eqs. (1.58) and (a) yields the radial stress (� r) and the tangential or
hoop stress (�� D �h)

� r D 1

r

@


@r
C 1

r2
@2


@�2
D bo

r2
C 2co

�� D @2


@r2
D �bo

r2
C 2co (b)

� r� D 1

r2
@


@�
� 1

r

@2


@r@�
D 0

The constants ao, bo, and co are determined using the boundary conditions on
the inside and outside wall surfaces of the circular model. These are

� r D �Pi � r� D 0 @ r D ri (c)

� r D �Po � r� D 0 @ r D ro
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Combining Eqs. (b) and (c) yields the coefficients ao, bo, and co, and the
resultant expressions substituted back into (b) give the radial stress (� r) and
the tangential or hoop stress (�� D �h) as

� t D � r D r2i r2o .Po � Pi/�
r2o � r2i

�
r2

C r2i Pi � r2oPo

r2o � r2i

�h D �� D � r2i r2o .Po � Pi/�
r2o � r2i

�
r2

C r2i Pi � r2oPo

r2o � r2i
(d)

� r� D 0

Denote that shear stress � r� does not have any contribution to the stress state.
For closed-end pressure vessel, the hoop stress is actually the uniform axial
stress in the wall of the pressure vessel.

If Po D 0 or Pi >> Po and r D ri, then Eq. (d) gives the stress distribution
over the wall thickness for pipes and cylinders. Hence, the compressive and
tension elastic stress acting on the crack are uniform across the thickness and
take the form

� t D
"
1 � .ro=ri/

2

.ro=ri/
2 � 1

#
Pi < 0 (Compressive) (e)

�h D
"
.ro=ri/

2 C 1

.ro=ri/
2 � 1

#
Pi > 0 (Tension) (f)

(b) Equation (3.43d) has been already derived in terms of radii. If the diameter of
a perfect circle is d D 2r, then, Eq. (f) becomes the hoop stress as the crack
opening stress for stable crack growth

�h D
"
.do=di/

2 C 1

.do=di/
2 � 1

#
Pi For thick walls (3.43d)

Rearrange Eq. (f) along with B D ro � ri so that

�h D



r2o C r2i
r2o � r2i

�
Pi

�h D



r2o C r2i
.ro C ri/B

�
Pi (h)

Mathematically, letting ro D ri in Eq. (h) leads to (3.43c) along with ri D di=2.
Thus, the hoop stress expression takes the common mathematical definition
encountered in many textbooks. Hence,
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�h D riPi

B
D diPi

2B
For thin walls (3.43c)

The current pressure vessel analysis in this example is devoted to large-scale
industrial applications to store liquids and gases in containers of diverse
geometries at a pressure P.

Example 3.6. A long steel pipe having a diameter ratio of 1:25 and an internal
diameter of 80mm is subjected to a pressure of 60MPa. Assume that a semielliptical
surface crack, a D 2mm and 2c D 4mm, develops during service and that it
is perpendicular to the hoop stress as shown in Fig. 3.5. Assume that the design
lifetime of the pressurized steel pipe is 20 years and that an undesired pressure
surge will burst the pipe. Calculate (a) the possible fracture pressure if the steel
has KIC D 30MPa

p
m and � ys D 550MPa and (b) the time it takes for a pressure

surge if the crack velocity is define as v D c1Kn
I , where v is in m=s, KI is in MPa

p
m,

c1 D 2x10�13:6 .m=sec/.MPa
p

m/�n, and n D 1:5.

Solution.

(a) From do=di D 1:25 and di D 80mm, the outside diameter and the vessel
thickness are do D 100mm and B D .do � di/=2 D 10mm, respectively. The
pipe is a thick-wall pressure vessel because the diameter ratio is do=di D 1:25 >

1:1 and B > di=20 D 4mm, respectively.
The applied stress � and stress intensity factor KI equations are

�h D
"
.do=di/

2 C 1

.do=di/
2 � 1

#
P D



1:252 C 1

1:252 � 1
�

P D 4:56P (a1)

� D �h C P D 4:56P C P D 5:56P (a2)

KI D �

r

a

Q
D 5:56P

r

a

Q
(a3)

The stress ratio needed to calculate the shape factor Q is

�

� ys
D 5:56.60 MPa/

550 MPa
D 0:61 (a4)

Using Fig. 3.6 or Eq. (3.44) with a=2c D 2=4 D 0:5 yields

Q D
�

2

�2 
3
4

C
� a

2c

�2�2 � 7

33

�
�

� ys

�2
(a5)

Q D
�

2

�2 
3
4

C .0:5/2
�2

� 7

33
.0:61/2 D 2:39 (a6)
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From Eqs. (a2) and (a3), the initial applied stress and the initial stress intensity
factor are

� D .5:56/ .60 MPa/ D 333:60 MPa (a7)

KI D �

r

a

Q
D .333:60 MPa/

r

 .2 � 10�3 m/

2:41
D 17:03 MPa

p
m (a8)

Therefore, fracture will not occur because KI < KIC. Now, the fracture pressure
Pf can be calculated by letting KI D KIC in Eq. (b) and solve for P D Pf . Thus,

Pf D KIC

5:56

r
Q


a
D 30 MPa

p
m

5:56

s
2:39


.2 � 10�3 m/
D 105:23 MPa (a9)

(b) The crack velocity can be redefined using the chain rule as follows:

v D da

dt
D da

dKI

dKI

dt
(b1)

v D c1K
n
I (b2)

KI D �

r

a

Q
(b3)

KIC D � f

r

a

Q
(b4)

a D QK2
I


�2
(b5)

da

dKI
D 2QKI


�2
(b6)

Combining Eqs. (b1) and (b6) yields

v D 2QKI


�2
dKI

dt
(b7)

from which

dt D 2QKI


v�2
dKI (b8)

Substituting Eq. (b2) into (b8) gives

dt D 2QKI


c1Kn
I �

2
dKI D 2QK1�n

I


c1�2
dKI (b9)
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Integrating yields

Z t

o
dt D 2Q


c1�2

Z KIC

KI

K1�n
I dKI (b10)

t D � 2Q


 .n � 2/ c1�2
�
K2�n

IC � K2�n
I

	
(b11)

Thus, the time for a pressure surge to occur is calculated using Eq. (b11) as

t D � 2 .2:39/


 .1:5 � 2/ .2 � 10�13:6/ .333:60/2
�
302�1:5 � 17:032�1:5	

t D 7:3505 � 108 s D 23:31 years

The stable crack velocity is

v D c1K
n
I D �

2 � 10�13:6.m=s/.MPa
p

m/�1:5
	 �
17:03 MPa

p
m
�1:5

v D 3:53 � 10�12 m=s

Example 3.7. A cylindrical vessel made of AISI 4147 is pressurized at 80MPa,
and it has an internal semielliptical surface crack 5-mm deep and 10-mm long.
The diameter and thickness are 50 and 25 cm, respectively. In order to account for
the effects of both the applied pressure and the hoop stress, calculate (a) the stress
intensity factor. Will the pressure vessel fracture? If not, determine (b) the maximum
pressure that would cause fracture. Data: KIC D 120MPa

p
m, � ys D 945MPa, and

� ts D 1062MPa.

Solution. Given data: a D 5mm; 2c D 10mm, di D 0:5m and B D 25 cm

Pi D 80 MPa and a=2c D 0:50

Which cylindrical pressure vessel theory should be used?

B D .do � di/

2

do D di C 2B D 50 cm C 2 � 25 cm D 100 cm

do

di
D 100

50
D 2

Therefore, the thick-wall theory must be used because do=di > 1:1.
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(a) Using Eq. (3.43d) yields the hoop stress

�h D
"
.do=di/

2 C 1

.do=di/
2 � 1

#
Pi D



4C 1

4 � 1
�

Pi

�h D 5

3
Pi D 5

3
.80 MPa/ D 133:33 MPa

� D �h C Pi D 5

3
Pi C Pi D 8

3
Pi D 8

3
.80 MPa/

� D 213:33 MPa

Then, the stress ratio is

�

� ys
D 213:33 MPa

945 MPa
D 0:23

Using Eq. (3.45) yields the shape factor

Q D
�

2

�2 
3
4

C
� a

2c

�2�2 � 7

33

�
�

� ys

�2

Q D
�

2

�2 
3
4

C .0:5/2
�2

� 7

33
.0:23/2

Q D 2:46

Using Eq. (3.42) gives the total stress intensity factor

KI D �

r

a

Q
D 8

3
Pi

r

a

Q

KI D 8

3
.80 MPa/

r

 .5 � 10�3 m/

2:46

KI D 17:05 MPa
p

m

Therefore, fracture will not occur because KI < KIC D 120MPa
p

m.
(b) The maximum pressure is

Pmax D 3KIC

8

r
Q


a

Pmax D 3

8

�
120 MPa

p
m
�
s

2:46


 .5 � 10�3 m/

Pmax D 563:14 MPa
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This implies that the critical stress becomes

� c D �h D 5

3
Pmax � 939MPa � � ys

This would cause catastrophic failure if a pressure surge occurs. However, if the
applied pressure is constant and crack growth is time dependent, then leakage
would occur due to the lack of sufficient thickness for the crack to run through.
This can be determined by calculating the critical crack length as

ac D Q




�
3KIC

8Pi

�2

ac D 2:46




�
3 � 120
8 � 80

�2

ac D 24:78 cm � B D 25 cm

This results indicate that the remaining ligament, b, of the cylindrical vessel
wall is very small. Thus,

b D B � ac D 25 cm � 24:78 cm

b D 0:22 cm D 2:2 mm

Therefore, these results, ac D 24:78mm and b D 2:2mm, suggest that the
cylindrical pressure vessel is near catastrophe. It either can burst or leak
because ac ! B and b ! 0: This means that the crack nearly grew through
the entire wall thickness. The technical terminology for this situation is that
there exists a through-wall crack, which can grow to unstable size.

3.4.4 Leak-Before-Break Criterion

In general, internal surface cracks in pressure vessels may grow by fatigue or stress
corrosion at faster rate than external cracks [7]. In any event, fracture mechanics
methods can be used to provide the foundation for assessing the structural integrity
of pressure vessels, which can be designed under thin-wall (B � di=20) or thick-
wall (B > di=20) technique. Thus, the leak-before-break (LBB) criterion requires
a stable vessel and implies that the failure mode of a cracked pressure vessel is a
leaking through-thickness crack, having length 2c and depth a. This simply means
that a semielliptical or semicircular crack penetrates the vessel wall thickness before
a catastrophic break occurs. Technically, the LBB concept is widely used in the
nuclear industry, and useful information on this topic can be found elsewhere [2].

The applied internal stress that causes crack growth is based on the superposition
principle; � D �h C P, where �h is the hoop (circumferential) stress and P is
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the internal pressure acting the crack surfaces. This stress is a fraction of the yield
strength of the material used to make pressure vessels. Thus, � D ˇ� ys, where
0 < ˇ < 1 and it can be defined as the inverse of a safety factor (ˇ D 1=SF). Once
the crack reaches the thickness of the pressure vessel, a D B, it becomes a leaking
through-thickness crack having a specific leakage rate. For a semielliptical crack,
the length (2c) of a leak can be expected to be greater than the vessel thickness;
2c > B.

Designing thin-wall pressure vessels to store fluids is a common practice in
engineering. If curved plates are welded to make pressure vessels, the welded
joints may become the weakest areas of the structure since weld defects can be
the source of cracks during service. Accordingly, the internal pressure P acts in
the radial direction (Fig. 3.5), and the total force for rupturing the vessel is P .diL/,
where dL is the projected area. Assuming that the stress across the thickness is
the hoop stress �h and that the cross-sectional area is A D 2BL, then the force
balance is P .dL/� �h .2BL/ D 0 which gives Eq. (3.43c). The hoop stress �h is the
longitudinal stress and it is twice the transverse or radial stress; as �h D 2� t. Hence,
�h and � t are principle stresses in designing against yielding. Normally, the design
stress is �d D �h=SF, where SF is the safety factor in the range of 1 < SF < 5.

For welded joints in pressure vessels, a welding efficiency, 0:80 � " � 1, can be
included in the hoop stress expression to account for weak welded joints [15]. Thus,
Eq. (3.43c) becomes

�h D Pd

2"B
(3.48)

If the limiting stress �h is the yield strength � ys, then the thickness of the pressure
vessel should be

B � Pd

2"� ys
(3.48a)

and letting a D B yields the hoop stress and the internal pressure requirements to be
defined as

�h � KIC

˛
p

B

(3.48b)

P � 2


d

�
KIC

˛� ys

�2
(3.48c)

Thus, Eq. (3.48c) sets the criterion for LBB using the parameter
�
KIC=� ys

�2
. This

implies the maximum pressure to assure safety when selecting a material for a
pressure vessel with the highest

�
KIC=� ys

�2
.

Let us assume that internal surface cracks develop at welded joints or at any other
area in a pressure vessel. In such a scenario, the leak-before-break criterion proposed



3.4 Specimen Geometries 109

by Irwin et al. [22] can be used to predict the fracture toughness of pressure vessels.
This criterion allows an internal surface crack to grow through the thickness of the
vessel so that a D B for leakage to occur.

The fracture toughness relationship between plane stress and plane-strain con-
ditions to establish the leak-before-break criterion may be estimated using an
empirical relationship developed by Irwin et al. [22]. Thus, the plane stress fracture
toughness .KI D KC/ equation is

KC D KIC

s

1C 7

5B2

�
KIC

� ys

�4
(3.49a)

Irwin’s expression [22] for plane stress fracture toughness is derived in Chap. 5, and
it is given here for convenience. Thus, the plane stress intensity factor is of the form

K2
C D 
a�2

1 � 0:5 ��=� ys
�2 (3.49b)

Combining Eqs. (3.49a) and (3.49b) along with � D � ys as the critical condition and
a D B (through-wall crack) yields the leak-before-break criterion for plane-strain
condition

K6
IC C 0:71B2�4ysK

2
IC � 4:49B3�6ys D 0 (3.50)

The use of this criterion requires that the vessel thickness meets the ASTM E399
thickness requirement for a cracked pressure vessel in order to withstand the internal
pressure.

In summary, the applicability of the leak-before-break (LBB) concept to pressure
vessel (closed container designed to hold gases or liquids at a pressure P > Patm/

is based on the concept that a crack would grow through the thickness of the vessel
wall, resulting in a leak when crack length equals the wall thickness (a D B).

Typically, pressurized water reactors for the main coolant line in nuclear reactor
are commonly designed using LBB, provided that severe degradation due to
corrosion, erosion, creep, and fatigue is not a concern.

Example 3.8. A thin-wall pressure vessel made of Ti-6Al-4V alloy using a welding
fabrication technique is used in rocket motors as per Faires [15]. Helium (He) is
used to provide pressure on the fuel and lox (liquid oxygen). The vessel internal
diameter and length are 0:5m and 0:6m, respectively, and the internal pressure
is 28MPa. Assume that a semicircular crack develops; use a welding efficiency of
100% and a safety factor of 1:5 to calculate the uniform thickness of the vessel. Use
the resultant thickness to calculate the fracture toughness according to Eq. (3.50).
Select a yield strength of � ys D 900MPa.

Solution. The design stress against general yielding is
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� D � ys

SF
D 900 MPa

1:5
D 600 MPa

From Eq. (3.48),

B D Pd

2"�
D .28 MPa/ .0:5 m/

.2/ .1/ .600 MPa/
(3.48)

B D 1:17 � 10�2 m D 1:17 cm D 0:46 in:

From Eq.(3.50),

0 D K6
IC C 0:71

�
1:17 � 10�2 m

�2
.900 MPa/4 K2

IC (3.50)

� 4:49
�
1:17 � 10�2 m

�3
.900 MPa/6

KIC D 119:49 MPa
p

m

From Eq. (3.49a),

KC D KIC

s

1C 7

5B2

�
KIC

� ys

�4
(3.49a)

KC D �
119:49 MPa

p
m
�
s

1C 7 .39:16/4

5 .1:17 � 10�2/2 .900/4

KC D 121:66 MPa
p

m

In summary, select the proper heat treatment for Ti-6Al-4V alloy so that � ys D
900MPa and KIC D 119:49MPa

p
m. According to these results, AISI 4147

(Table 3.2) meets the design requirements. However, the ASTM E399 thickness
requirement is not met since

BASTM D .2:5/

�
119:49 MPa

p
m

900 MPa

�2
D 4:41 � 10�2 m

BASTM D 4:41 cm > B

Therefore, the pressure vessel plates are not under plane-strain conditions.

3.4.5 Radial Cracks Around Cylinders

Another commonly encountered surface crack configuration under a remote applied
tension, torsion, or a combined loading system is shown in Fig. 3.7. The mixed-
mode interaction is of great interest in this section.
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Fig. 3.7 Radial crack around
a cylinder

These stress intensity factors are geometrically corrected using f .d=D/ and
g.d=D/ depicted in Fig. 3.7.

The stress intensity factors for the mixed loading system (mode I and mode III)
depicted in Fig. 3.7 are

KI D f .d=D/ �
p

a (3.51)

KIII D g .d=D/ �
p

a (3.52)

For a gradually applied torque T , the torsional shear stress becomes

� D 16T


D3
(3.53)

The correction factors, f .d=D/ and g.d=D), were derived by Koiter and Benthem
[25] as

f .d=D/ D 1

2

r
D

d

"
D

d
C 1

2
C 3

8

�
d

D

�
� 5

14

�
d

D

�2
C 11

15

�
d

D

�3#
(3.54)

g .d=D/ D 3

8

r
D

d

"�
D
d

�2 C 1
2

�
D
d

�C 3
8

C 5
16

�
d
D

�

� 35
128

�
d
D

�2 C 13
62

�
d
D

�3

#
(3.55)

The crack length (size) is estimated as

a D .D � d/=2 (3.56)
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Example 3.9. This example includes the state of stress ahead of a crack based
on mixed-mode I and III interactions. Problems of this type are encountered in
multi-phase materials such as welded structures, reinforced concrete structures and
the like. In order to simulate this type of mixed-mode interactions, consider two
identical high-strength steel rods which are prepared for a tension test at 106MPa
and torsion at 69MPa. Calculate KI and KIII . The rod dimensions are d D 4mm and
D D 8mm. If KIIIC D p

3=4KIC, (a) Will the rods fracture? Explain. (b) Calculate
the theoretical fracture tensile and torsion stresses if fracture does not occur in part
(a). Use KIC D 25MPa

p
m.

Solution. Given data: � D 106MPa � D 69MPa KIC D 25MPa
p

m

(a) The crack length and the diameter ratios are, respectively,

a D D � d

2
D 8 mm � 4 mm

2
D 2mm

d

D
D 4 mm

8 mm
D 0:5

D

d
D 8 mm

4 mm
D 2

From Eqs. (3.54) and (3.55) or Fig. 3.7, f .d=D/ D 1:90 and g .d=D/ D 2:91.
Hence, the applied stress intensity factors are calculated using Eqs. (3.51) and
(3.52)

KI D f .d=D/ �
p

a D 16 MPa

p
m

KIII D g .d=D/ �
p

a D 16 MPa

p
m

KIIIC D
p
3=4 � KIC D 21:65 MPa

p
m

Therefore, neither rod will fracture since both stress intensity factors are below
their critical values; that is, KI < KIC and KIII < KIIIC.

(b) Correspondingly, the state of stress ahead of the crack is given by the fracture
stresses. Thus,

� f D KIC

f .d=D/
p

a

D 166 MPa

� f D KIIIC

g .d=D/
p

a

D 94 MPa

It has been shown that both tensile and shear fracture mechanisms can occur at
the crack tip.
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3.5 Fracture Control

Structures usually have inherent flaws or cracks introduced during 1) welding
process due to embedded slag, holes, porosity, and lack of fusion and 2) service
due to fatigue, stress corrosion cracking (SCC), impact damage, and shrinkage.

A fracture-control practice is vital for design engineers in order to assure the
integrity of particular structure. This assurance can be accomplished by a close
control of:

1) Design constraints 4) Maintenance
2) Fabrication 5) Nondestructive evaluation (NDE)
3) General yielding 6) Environmental effects

The pertinent details for the above elements depend on codes and procedures that are
required by a particular organization. However, the suitability of a structure to brittle
fracture can be evaluated using the concept of fracture mechanics, which is the main
subject in this section. For instance, the elapsed time for crack initiation and crack
propagation determines the useful life of a structure, for which the combination of
an existing crack size, applied stress, and loading rate may cause the stress intensity
factor reach a critical value.

In order to describe the technical aspects of a fracture-control plan, consider a
large plate (infinite plate) with a certain plane-strain fracture toughness KIC so that
KI < KIC for a stable crack. Thus, the typical design philosophy [18] uses Eq. (3.28)
or (3.29) as the general mathematical model in which a D amax is the maximum
allowable crack size in a component, � is the design stress, and KI is the applied
stress intensity factor. However, the minimum detectable crack size depends on the
available equipment for conducting nondestructive tests, but the critical crack size
(ac) can be predicted when the stress intensity factor reaches a critical value, which
is commonly known as the plane-strain fracture toughness (KI D KIC) for thick
plates. In fact, KI < KIC can be taken as the material fracture constraint; otherwise,
the crack becomes unstable when it reaches a critical length, a D ac, which is
strongly controlled by KIC. Thus, solving Eq. (3.29) for the critical crack length
yields

ac D 1




�
KIC

˛�

�2
(3.57)

This expression implies that the maximum allowable crack length depends on the
magnitude of KIC and the applied stress � < � ys. Conclusively, crack propagation
occurs when the applied stress intensity factor is equal or greater than fracture
toughness, KI � KIC for plane strain or KI � KC for plane stress condition.

The literature has a vast amount of fracture toughness data for many materials
used in engineering construction. For convenience, Table 3.2 is included in this
chapter to provide the reader with typical fracture toughness data for some common
materials.
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Table 3.2 Mechanical properties at room temperature

� ys � ts KIC E

Material (MPa) (MPa) MPa
p

m (GPa) %EL %RA Ref.

AerMet 100 1724 1965 126 207 14 65 [11]

AerMet 310 1896 2172 71 207 14 60 [11]

Marage 300 2000 2034 77 207 11 57 [11]

Ti-6Al-4V 869 958 87 117 11 16 [43]

Ti-6Al-4V 1007 1034 40 130 14 29 [43]

AISI 4340 1089 1097 110 207 14 49 [6]

AISI 4147 945 1062 120 207 15 49 [6]

AISI 4340 1476 1896 81 207 10 [32]

Inconel 1172 1404 96 15 18 [39]

18Ni(250) 1290 1345 176 15 66 [43]

2014-T651 455 24 [18]

2024-T3 345 44 [18]

7075-T6 572 641 24 72 12 [38]

Ni49Fe29 800 800 12 [26]

P14B6 Si2
Ni69B14Si8 1268 1268 42 [26]

Cr6Fe3
SiC 460 460 3.7 72 [4]

Al2O3 4.5 380 [10]

A typical fracture-control plan includes the following:

• The applied stress intensity factor must be KI < KIC so that it can be used as a
constraint to assure structural integrity since crack propagation is restricted.

• The inequality B � 2:5.KIC=� ys/
2 for brittle materials assures that the thickness

of designed parts do not fall below a minimum thickness.
• If use of welding is necessary, then it must be used very cautiously since it can

degrade the toughness of the welded material, especially in the heat-affected zone
(HAZ) which may become brittle as a consequence of rapid cooling leading to
smaller grains.

• Control environment to avoid degradation of the structure due to stress corrosion
cracks (SCC).

• Limitations of the allowable crack size can be predicted by Eq. (3.57).
• Use of nondestructive test (NDT) techniques must be employed in order to detect

flaws or cracks.
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3.6 Significance of Thickness

It is clearly shown in Fig. 3.8 how fracture toughness is strongly dependent on the
material thickness up to a limiting value. For a thin plate, plane stress condition
(�Z D 0) governs the fracture process because the plate is too thin to sustain
through-thickness stress. For a thick plate, plane-strain condition (� z ¤ 0) prevails
in which KIC becomes a material’s property. It is this property, KIC, that the designer
must use to assure structural integrity. The characteristics of a fracture surface, as
schematically indicated in Fig. 3.8, vary between both plane stress and plane-strain
modes of fracture. The former fracture mode shows a slant fracture (shear lips at
approximately 45 ı) as an indication of partial ductile fracture, and the latter exhibits
a flat fracture surface as a representation of brittle fracture. Any combination of
these modes of fracture leads to a mixed-mode fracture surface.

In addition, plane stress fracture toughness (KC) is related to metallurgical
features and specimen geometry, and plane-strain fracture toughness (KIC) depends
only on metallurgical features, strain rate, and temperature.

The effect of plastic zone size (r) to plate thickness and macroscopic fracture
surface appearance is also taken into account. For instance, plane stress state is
associated with a maximum toughness and slant fracture, and plane-strain state is
related to a minimum toughness and flat fracture. Therefore, plane stress or plane-
strain condition depends on � ys.

Since the plane-strain fracture toughness KIC is a property for a given material,
the applied stress level exhibits a dependency on the crack size. This is schematically
shown in Fig. 3.9 for two hypothetical materials. Notice that both KIC and ac

influence the stress and the curve is shifted upward at higher KIC level. This means
that ductility also has a major influence on the stress and KIC. Let curves A and
B represent failure trends at two different conditions. The interpretation of Fig. 3.9
indicates that there exists an initial crack size (ao) for material A or B.

This fracture phenomenon proceeds in a stable manner, provided that both crack
size and applied stress are within a controllable range such as ao < a < ac and

Fig. 3.8 Effect of specimen
thickness on fracture
toughness [17]
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Fig. 3.9 Influence of crack length on fracture stress

�d < � < � ys: Furthermore, crack instability occurs when a ! ac and � ! �d.
This schematic representation of crack growth applies to both A and B curves, which
represent the fracture behavior of two hypothetical materials.

In fact, the higher KIC, the greater ac since the resistance to fracture is controlled
by the level of the plane-strain fracture toughness. Hence, for the hypothetical
materials included in Fig. 3.9, ac.B/ > ac.A/ and KIC.B/ > KIC.A/ at � D
�d. This implies that material A allows a smaller crack extension than material
B. Although material B is the most attractive for engineering applications, its
mechanical behavior can be significantly affected by changes in temperature and a
corrosive environment. In addition, the solid curves represent ideal elastic behavior,
but most materials exhibit plasticity due to the yielding phenomenon.

In general, fracture toughness is one of the most important properties of a
solid material for design applications. Despite that plane-strain fracture toughness
of a material in the form of a plate depends on the plate thickness, it is also
influenced by microstructural features, strain rate, environment, and temperature.
Of specific interest is the microstructure of a polycrystalline material since it can
be manipulated by using a heat treatment procedure in which the heat treatment
temperature, heat treatment time, and cooling medium play a very important role in
obtaining a specific microstructure and its corresponding fracture toughness.

3.7 Fracture Tests

The reader should consult the American Society for Testing and Materials (ASTM)
test methods for precise details on procedures and guidelines to prepare metallic
specimens with well-defined cracks. The goal is to conduct experiments that provide
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Fig. 3.10 Load-line
displacement for plane-strain
KIC test

repeatable fracture toughness data having a small data scatter. Briefly, fracture
toughness is a material property that is determined when initial crack growth occurs
at a specific quasi-static or dynamic loading rate in a particular environment.

Several standard testing methods are available nowadays for determining fracture
toughness of cracked metallic materials. Among them, ASTM E339 and ASTM
E1820 require that all specimens containing notches be sharpened with fatigue
cracks.

3.7.1 ASTM E399 Plane-Strain KIC Test

The reader should consult the ASTM E399 Standard Test Method for precise
details. Figure 3.10 schematically displays three typical load-displacement curves
used to determine a valid KIC value. The tests are conducted at slow loading rates
on specimens having rather strict crack length to width ratios in the range of
0:45 � a=w � 0:55. The specimens must exhibit brittle behavior for which the
plastic zone, if formed, must be very small compared with the crack length; that is,
r << a.

The procedure calls for the following steps:

• Machine a C(T), SE(B), or disk-shaped compact DC(T) specimen with a suitable
notch

• Sharpen the specimen notch with a fatigue crack. Also, 0:45 � a=w � 0:55

• Load the specimen at convenient load rate to obtain a load-displacement curve
(Fig. 3.10)

• Draw a 5 % secant line (dash line) and determine the value for PQ and Pmax.
• If Pmax=PQ < 1:1, then calculate KQ D ˛�

p

a where � D PQ=Ao. Otherwise,

the test is not valid.
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• If a; b;B � 2:5
�
KQ=� ys

�2
, then KQ D KIC; otherwise the test is not valid. Here,

b D w � a is the specimen ligament size.

Fracture mechanics testing techniques are based on the ASTM standard test
procedures for evaluating the effects of specimen geometry, crack configuration,
microstructural features, environment, and metallurgical variables, such as heat
treatment time at temperature T or temperature at time t. Among several specimen
geometries, the compact tension C(T) specimen prevails. In fracture testing in the
field of corrosion, the material specimen geometry plays an important factor in order
to evaluate the stress corrosion cracking (SCC) mechanism using suitable specimen
geometries, but the most important factors are the loading mode and environment.

Example 3.10. The load-displacement curve to determine KIC for an annealed,
quenched, and tempered compact tension C(T) specimen made out of a hypothetical
steel having � ys D 900MPa, � D 1=3, and E D 207GPa. Assume that during
fatigue cracking the machine notch produced a very sharp crack prior to testing
the specimen. The total original crack length, including the notch depth and the
fatigue crack, is 29mm. The specimen dimensions are B D 30mm, w D 60mm, and
h=w D 0:6. Find KIC.

Solution. Specimen dimensions: 0:45 � a=w � 0:55, b D w � a D 31mm,
B=w D 0:52 and h D 0:6w D 36mm

From the given figure,

Pmax

PQ
D 20

19:2
D 1:04

Pmax

PQ
< 1:1
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Proceed the computation since Pmax=PQ < 1:1. The applied stress is

� D PQ

Ao
D 19:2 � 10�3 MN

.30 � 10�3 m/ .60 � 10�3 m/

� D 10:67 MPa

From Table 3.1 and x D a=w D 29=60 D 0:48333, the finite specimen geometry
correction factor is

˛ D .2C x/

.1 � x/3=2
�
0:886C 4:64x � 13:32x2 C 14:72x3 � 5:6x4

�

˛ D 9:1837

Then, the possible fracture toughness becomes

KQ D ˛�
p

a D .9:1837/ .10:67 MPa/

p

 .29 � 10�3 m/

KQ D 29:58 MPa
p

m

The size requirements, including b D w � a, are

.a; b;B/ASTM � 2:5
�
KQ=� ys

�2 D 2:5

�
29:58 MPa

p
m

900 MPa

�2

.a; b;B/ASTM � 2:70 mm (minimum requirement)

Original : a D 29 mm, b D 31 mm and B D 30 mm

Finally, the plane-strain fracture toughness is

KIC D KQ D 29:58 MPa
p

m

since both ASTM E399 requirements, Pmax=PQ < 1:1 and a; b;B � 2:70mm, are
met; therefore, the test is valid. Details on the procedure for obtaining a valid
fracture mechanics test using different specimen geometries can be found in a
corresponding ASTM standard book. Hence, fracture toughness testing on solid
specimens can be evaluated using linear-elastic fracture mechanics (LEFM) as
well as the elastic-plastic fracture mechanics (EPFM). This implies that fracture
toughness is a generic property that measures the resistance to stable crack growth.

3.7.2 ASTM E1820 KI, JI, and CTOD Tests

This is a standard that includes tension (mode I) test procedures for determining
linear fracture toughness (KIC), the elastic-plastic fracture toughness (JIC) in terms
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Fig. 3.11 Schematic crack
length and load-displacement
curves

of the J-integral , and the crack tip opening displacement (ıtc D CTOD) of metallic
materials. This test method is less strict than ASTM E399 standard test method since
it allows a wider a=w range, that is, 0:45 � a=w � 0:70, and provides means to test
a particular specimen geometry without knowing the type of test needed. Details on
JIC and ıc fracture mechanics theories will be dealt with in later chapters; however,
it is convenient at this moment to schematically show the crack lengths used for
determining JIC and KIC. This is shown in Fig. 3.11a.

Figures 3.11b and c schematically show two possible load-displacement (P-�)
curves [5]. Denote that Fig. 3.11b is for a KIC test because the load-line displacement
curve (P-�) or plot shows a linear behavior. On the other hand, Fig. 3.11c is for JIC

and ıc tests due to the partial P-� nonlinearity, which is the graphical representation
of plasticity ahead of the crack tip at a macroscale.

In addition, measuring fracture toughness of elastic-plastic materials requires a
J resistance curve; J D f .	a/. This can be done by measuring the crack length
ai and, subsequently, computing the J-integral Ji and the crack extension 	ai D
ai � ao, where a D ao is the original crack length. Figure 3.12 shows a schematic JI

resistance curve as per ASTM E1820 method for mode I. The ultimate goal of this
procedure is to determine the critical value of the J-integral (JIC) as a measure of
fracture toughness when the ASTM E399 method gives unacceptable results.
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Fig. 3.12 Schematic
J-resistance curve for
measurement of fracture
toughness as per ASTM
E1820 Standard Test Method
for mode I loading

For a single specimen technique under mode I loading, the construction line in
Fig. 3.12 is given by

JI D M� y	a (3.58)

� y D 0:5
�
� ys C � ts

�
(3.59)

where � y D Flow stress or effective yield strength
� ys D Yield strength
� ts D Ultimate tensile strength

Then, construct the other straight lines with the same slope (M� y) as shown in
Fig. 3.12. Here, � y is the flow stress and usually M D 2. The term Jmax is the largest
of the values given by

Jmax D b� y=10 (3.60)

Jmax D B� y=10 (3.61)

and calculate the maximum crack extension as

	amax D 0:25b (3.62)

where b D w � a D Ligament, B D Thickness and w D Width.
Once Jmax and 	amax are determined, curve fitting is done on the data for

JI D f .	a/ between 	amin and 	amax using a power-law equation such as

JI D C1 .	a/C2 (3.63)
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where C1 and C2 are nonlinear regression constants. Then, graphically locate the
value of the JQ-integral on Fig. 3.12 and compute the size requirements defined by

B; b � 25JQ

� y
(3.64)

If the size requirements are satisfied, assign the value of JQ to JIC; that is, JQ D JIC.
Explicitly, JIC represents the total J-integral for the onset of crack growth, and it
is the sum of the elastic (JIe) and plastic (JIp) J-integral components. According to
the ASTM E1820 “Calculations for the Basic Test Method,” the generalized total
J-integral and its components for mode I quasi-static loading configuration take the
form

JI D JIe C JIp (3.65)

JIe D K2
I

E0 (3.66)

JIp D �A

bB
(3.67)

Here, B is the specimen thickness of a rectangular plate, and A is the plastic area
under the load-displacement curve shown in Fig. 3.11b. If a load-line displacement
record is used, then � D 1:9, and for a crack mouth opening displacement record, �
takes the form

� D 3:667 � 2:199 .a=w/C 0:437 .a=w/2 [SE(B)] (3.68)

� D 2C 0:522 .b=w/ C(T) and DC(T) (3.69)

where [SE(B)] = Single-edge bend specimen [14]
C(T) = Compact Tension specimen
DC(T) = Disk-shaped compact specimen

The J-integral is an energy term for assessing fracture toughness, especially, of
brittle materials, but it can also be applied to evaluate cracked ductile solids. The
latter topic is dealt with in a later chapter. Nonetheless, the J-integral is determined
in accordance with the J-controlled or J-dominance approach for considering
theoretical constraints ahead of the crack tip.

The general resultant mathematical treatment for determining the total J-integral,
Eq. (3.65), includes the correction factor due to plasticity in front of the crack tip as
indicated in Eq. (3.67) through the n factor.
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Fig. 3.13 Crack plane
identification for plastically
deformed plates as per ASTM
E399 standard [3]

3.7.3 Crack Plane Identification

Figure 3.13 schematically shows specimens having mechanically induced preferred
orientation of cracks in plastically deformed plates [3]. A two-letter code is used
for crack plane identification. The first letter designates the loading direction and
the second letter represents the crack plane. The reader should consult the ASTM
Designation E399 for crack plane identification in solid cylinders.

For isotropic polycrystalline materials (solids that are composed of many grains
of varying size and orientation) being evaluated at a macroscale, KIC or JIC becomes
independent of crack plane orientation. Thus,

KIC.T-L/ ' KIC.L-T/ ' KIC.S-L/ (3.70)

For anisotropic materials, the identification of the crack plane in plates is very
important due to variations in mechanical properties. For instance, the inhomogene-
ity of plastic deformation is due to grain deformation and microstructural defects
(dislocations, voids, and the like). For instance, cold rolled plates exhibit anisotropy
in mechanical properties, such as the plane-strain fracture toughness (KIC), the
critical J-integral (JIC), yield strength (� ys), and other mechanical properties when
determined per crack plane orientation. Thus,

KIC.T-L/ ¤ KIC.L-T/ ¤ KIC.S-L/ (3.71)

Therefore, material properties depend on the loading direction normal to the
crack plane. Moreover, most single crystals exhibit anisotropy in mechanical
properties according to the direction along which they are measured. In general,
if anisotropy is a problem in selecting a material for a particular application, then
heat treatment becomes a suitable option to make an anisotropic plate into an
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Fig. 3.14 Experimental
J �	a curves for ASTM
A285 Grade B low-carbon
steel tested at 60ıC in air.
L-T and T-L compact tension
C(T) specimens with B =
0.475 in. were used as per
ASTM E1820 Standard Test
Method. Author’s specimen
identification codes: AD-5,
QS and AD-9, QS [35]

isotropic material due to atomic diffusion at relatively high temperature. The final
microstructural condition in a plate depends on the cooling method being used.
Unfortunately, this topic is out of the scope of this section.

In addition, the characterization of a solid material is usually done by developing
resistance curves or R-curves, and if the material is anisotropic, then properties
become dependent on the crack plane orientation. For instance, Fig. 3.14 shows
experimental data for two crack plane orientations, L-T and T-L, in C(T) specimens
made out of ASTM A285 Grade B [35]. Denote that this particular J-	a experi-
mental data sets exhibit, to an extent, a power-law behavior. The significance of the
J-	a curves in Fig. 3.14 is that L-T specimens show higher J-integral values than
the T-L configuration; therefore, the crack plane orientation has a strong effect on
fracture toughness of anisotropic solid materials.

Another R-curve is shown in Fig. 3.15 for an ASTM A588 Grade A steel
plate being calcium treated (CaT) containing 0.003 % sulfur level, normalized at
899 ıC, and air cooled [40]. This solid material clearly exhibits crack orientation
dependency. In addition, Fig. 3.16 shows fracture toughness experimental data for
the ALCOA 5xxx series wrought aluminum alloy, C557 ALCOA Al-Mn-Mg-Sc
alloy. This Al-alloy exhibits slight variations on plane-strain fracture toughness
KJIC at the anticipated service temperatures using the T-L and S-L crack plane
orientations [13]. Denote that KJIC in Fig. 3.16 was determined using the J-integral
approach [13] on T-L and S-L specimens.

It is clear from Figs. 3.14 through 3.16 that fracture toughness (JI or KI) is
sensitive to crack plane orientation, specifically in cold worked polycrystalline
plates. This can be attributed to the microstructure with preferred orientation of
crystallographic planes. Therefore, it is significant to document the crack plane
orientation designations in fracture toughness measurements relative the specimen
configuration (geometry) [1].
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Fig. 3.15 Variation in KJIC

of C557 sheet with crack
plane and test temperature.
The J-integral was used to
determine the plane strain
fracture toughness KJIC [13]

Fig. 3.16 Variation in KJIC

of C557 sheet with crack
plane and test
temperature [13]

Anyway, the crack plane orientation should be identified because of the
anisotropy effects on material’s properties. Conversely, isotropic materials are
considered to have microstructural homogeneity when tested at a macroscale for
determining the mechanical properties in a particular environment.

Furthermore, the ASTM E399 standard has sketches of crack plane orientation
code for rectangular and for bar and hollow cylinder sections. Also available is the
ASTM method B645 for fracture toughness testing of aluminum alloys.

3.8 Problems

3.1. A steel strap 1-mm thick and 20-mm wide with a through-thickness cen-
ter crack 4-mm long is loaded to failure. (a) Determine the critical load if
KIC D 80MPa

p
m for the strap material. (b) Use an available correction factor,

˛ D f .a=w/, for this crack configuration and calculate the critical stress as
� c D .Fraction/�1.

3.2. A steel tension bar 8-mm thick and 50-mm wide with an initial single-edge
crack of 10-mm long is subjected to an uniaxial stress � D 140MPa. Determine
(a) the stress intensity factor KI . Is the crack stable? Calculate (b) the critical crack
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size and (c) the critical load. Data: KIC D 60MPa
p

m. [Solution: (a) 34MPa, (b)
31:1mm, and (c) 98:84 kN].

3.3. A very sharp penny-shaped crack with a diameter of 22-mm is completely
embedded in a highly brittle solid. Assume that catastrophic fracture occurs when
a stress of 600MPa is applied. (a) What is the fracture toughness for this solid?
Assume that this fracture toughness is for plane-strain conditions. (b) If a sheet
5-mm-thick plate is prepared for fracture toughness testing, would the fracture
toughness value calculated in part (a) be an acceptable number according to the
ASTM E399 standard? Use � ys D 1342MPa. (c) What thickness would be required
for the fracture toughness test to be valid?

3.4. A guitar steel string has a miniature circumferential crack of 0:009mm deep.
This implies that the radius ratio is almost unity, d=D ' 1. Another string has
a localized miniature surface crack (single-edge crack like) of 0:009mm deep.
Assume that both strings are identical with an outer diameter of 0:28mm. If a
load of 49N is applied to the string when being tuned, will it break? Given data:
KIC D 15MPa

p
m and � ys D 795MPa.

3.5. A 7075-T6 aluminum alloy is loaded in tension. Initially the 10-mm-thick,
100-mm-wide, and 500-mm-long plate has a 4-mm single-edge through-thickness
crack. (a) Is this a valid test? (b) Calculate the maximum allowable tension stress
this plate can support. (c) Is it necessary to correct KI due to crack tip plasticity?
Why or why not? (d) Calculate the design stress and then stress intensity factor
if the safety factor is 1:5. Use the following properties: � ys D 586MPa and
KIC D 33MPa

p
m. [Solution: (a) It is a valid test because BASTM < Bactual, (b)

� D 261MPa, (c) It is not necessary because KI ' KIC, and (d) �d D 174MPa and
KI;d D 22MPa

p
m].

3.6. A steel plate (30-mm thick, 1:2-m wide, and 2:5-m long) is under tension.
It is operated below its ductile-to-brittle transition temperature (with KIC D
28:3MPa

p
m). If a 65-mm long through the thickness central crack is present,

calculate (a) the tensile stress for catastrophic failure. Compare this stress with the
yield strength of 240MPa. (b) Determine the safety factor.

3.7. Show that the following inequality dKI=da > 0 is valid for crack instability in
a large plate under a remote external tension stress.

3.8. The plate below has an internal crack subjected to a pressure P on the crack
surface. The stress intensity factors at points A and B are



3.8 Problems 127

Use the principle of superposition to show that the total stress intensity factor is
defined by KI D P

p

a.

3.9. A pressure vessel is to be designed using the leak-before-break criterion
based on the circumferential wall stress and plane-strain fracture toughness. The
design stress is restricted by the yield strength � ys and a safety factor (SF). Derive
expressions for (a) the critical crack size and (b) the maximum allowable pressure
when the crack size is equal to the vessel thickness.

3.10. A stock of steel plates with GIC D 130 kJ=m2, � ys D 2200MPa, E D
207GPa, v D 1=3 are used to fabricate a cylindrical pressure vessel (di D 5m
and B D 25:4mm). The vessel fractured at a pressure of 20MPa. Subsequent
failure analysis revealed an internal semielliptical surface crack of a D 2:5mm
and 2c D 10mm. (a) Use a fracture mechanics approach to predict the critical crack
length this steel would tolerate. (b) Based on this catastrophic failure, another vessel
was constructed with do D 5:5m and di D 5m. Will this new vessel fracture at a
pressure of 20MPa if there is an internal semielliptical surface crack having the
same dimensions as in part (a)?

3.11. A cylindrical pressure vessel with B D 25:4mm and di D 800mm is
subjected to an internal pressure Pi. The material has KIC D 31MPa

p
m and

� ys D 600MPa. (a) Use a safety factor to determined the actual pressure Pi. (b)
Assume that there exists an internal semielliptical surface crack with a D 5mm
and 2c D 25mm and that a pressure surge occurs causing fracture of the vessel.
Calculate the fracture internal pressure Pf and (c) the critical crack length.

3.12. This is a problem that involves strength of materials and fracture mechanics.
An AISI 4340 steel is used to design a cylindrical pressure having an inside diameter
and an outside diameter of 6:35 cm and 12:07 cm, respectively. The hoop stress is
not to exceed 80% of the yield strength of the material. (a) Is the structure a thin-
wall vessel or a thick-wall pipe? (b) What is the internal pressure? (c) Assume that
an internal semielliptical surface crack exist with a D 2mm and 2c D 6mm. Will
the vessel fail? (d) Will you recommend another steel for the pressure vessel? Why?
Or Why not? (e) What is the maximum crack length AISI 4340 steel can tolerate?
Explain.
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3.13. A simple supported beam made of soda glass (E D 71MPa and GIC D
12 J=m2) is subjected to a bending load as shown in the figure below. Assume an
initial crack length of 0:1mm due to either stress corrosion cracking (SCC) or
a mechanical defect introduced during fabrication or handling. The design stress
(working stress) and the crack velocity equation are 0:10MPa and v D ˇKm

I D
.6:24 m=s/K15:83, respectively. Use this information to calculate the lifetime of the
beam if the maximum bending stress is given by � D .MB=2/ =I and M D �dL2=8,
where the second moment of area is I D wB3=12.

3.14. Plot the given data for a hypothetical solid SE(T) specimen and determine the
plane-strain fracture toughness KIC. Here, ˛ D f .a=w/

p

 is the modified geometry

correction factor.

a�1=2 �m�1=2� 6 9.8 15 18 22 25 35 38
˛� .MPa/ 30 50 70 90 116 122 175 190

3.15. A pressure vessel (L >> B D 15mm, di D 2m) is to be made out of a
weldable steel alloy having � ys D 1200MPa and KIC D 85MPa. If an embedded
elliptical crack (2a D 5mm and 2c D 16mm) as shown below is perpendicular to
the hoop stress, due to welding defects, the given data correspond to the operating
room temperature, and the operating pressure is 8MPa; then calculate the applied
stress intensity factor. Will the pressure vessel explode?

3.16. A steel alloy pressure vessel subjected to a constant internal pressure of
20 MPa contains an internal semielliptical surface crack with dimensions shown
below. Calculate KI using (a) Q and �=� ys as per Eq. (3.45) and (b) Q D 1 C
1:464 .a=c/1:65 as per reference [30]. (c) Compare results and explain. (d) If fracture
does not occur, calculate the safe factors S.a/F and S.b/F . Explain the results. Data:
KIC D 92MPa

p
m, � ys D 900MPa, v D 0:30, and B D 30mm.
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3.17. An aluminum alloy plate has a plane-strain fracture toughness of 30MPa
p

m.
Two identical single-edge cracked specimens are subjected to tension loading. (a)
One specimen having a 2-mm crack fractures at a stress level of 330MPa. Calculate
the geometry correction factor ˛ D f .a=w/. (b) Will the second specimen having
a 1-mm crack fracture when loaded at 430MPa? [Solution: (a) ˛ D 1:1469, (b)
KI D 27:64MPa

p
m].
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4Linear-Elastic Field Equations

4.1 Introduction

Linear-elastic fracture mechanics (LEFM) and a quasi-static load action are con-
sidered in this chapter in order to derive the stress, strain, and displacement
field equations in two dimensions adjacent to a crack tip of an arbitrarily shaped
crack. The field equations can be derived in series form using rectangular and
polar coordinates. Any dynamic or local unloading is neglected in the foregoing
mathematical procedures for modeling the plastic zone being as a circle with
different radius r. It is intended henceforward to demonstrate that the trigonometric
functions f .�/ and g.�/ have increasing terms as the radius r increases. However,
the irreversible action that takes place at the crack tip suggests that a few terms in
a series expansion may be needed for characterizing the crack tip field equations,
which ought to be manipulated using a symbolic software design for this purpose.

4.2 Field Equations: Mode I

The analytical approach used in this chapter assumes a very small plastic zone,
where higher-order stress terms are neglected. It is also assumed that the field
equations are valid and exact for r ! 0. The aim here is to derive the stress field
equations as functions of the stress intensity factor (KI), the plastic zone size (r), and
trigonometric functions fij .�/. Recall that KI D �

p

a is defined by Eqs. (2.34)

and (3.28) for a cracked specimen under tension load (mode I) and in general,
KI D f .�; a/. For an uncracked specimen in tension, the applied stress is defined by
Eq. (1.2) as � D P=A, where P is the applied load, A is the cross-sectional area, and
� D f .P/. Actually, KI is limited to its critical value known as fracture toughness
KC for plane stress and KIC for plane-strain conditions, and � is limited to the yield
strength of the material. For an elastic perfectly plastic material, a small plastic zone
develops ahead of the crack tip; otherwise, the material would be perfectly elastic
or pure brittle such as glass.

© Springer International Publishing Switzerland 2017
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Fig. 4.1 Crack tip at the
center of the circular plastic
zone having a contour C in
the domain D

Consider a domain D containing a single-edge crack and a round plastic zone as
depicted in Fig. 4.1. Let the crack tip be located at the center of the plastic zone with
an inclined radius r at an angle � .

The goal here is to derive the elastic stresses near the crack tip using complex
variable theory. Generalizing Eq. (3.1) in series form along with Ao D KI=

p
2


yields the Westergaard stress function Z and Z0 as [21]

Z D
MX

mDo

Amzm�1=2 (4.1)

Z0 D dZ

dz
D

MX

mDo

�
m � 1

2

�
Amzm�3=2 (4.2)

For convenience, redefine the complex variable z and Z0 using Euler’s formula for a
real angle � and a real coefficient m. Hence,

Z D
MX

mDo

Amrm�1=2
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�
m � 1

2

�
� C i sin
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2
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�

�
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Z0 D
MX

mDo

�
m � 1

2

�
Amrm�3=2
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�
m � 3

2

�
� C i sin

�
m � 3

2

�
�

�
(4.4)

The general definitions of the complex variable z and the dependent variable y in
polar coordinates are given below:

z D x C iy D rei� (4.4)

e˙im� D cos m� ˙ i sin m� (4.5)

y D r sin � D 2r sin
�

2
cos

�

2
(4.6)
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The real and imaginary parts [consult Eq. (3.9)] for the Airy stress function defined
by Eq. (3.6) are

Re Z D
MX

mDo

Amrm�1=2 cos

�
m � 1

2

�
� (4.7)

Re Z0 D
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2
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�
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2

�
� (4.8)

Im Z D
MX
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Amrm�1=2 sin

�
m � 1

2

�
� (4.9)

Im Z0 D
MX

mDo

�
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2
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Amrm�3=2 sin

�
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2

�
� (4.10)

The stresses in complex form as per Eqs. (1.40), (3.18), or (3.20) are

� x D Re Z � y Im Z0

� y D Re Z C y Im Z0 (4.11)

� xy D �y Re Z0

Inserting Eq. (4.7) through (4.10) into (4.11) yields the stresses in series form with
0 � m � M
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(SSY) Assume that a small-scale yielding phenomenon takes place in elastic solids
and that the crack can be treated as a semi-infinite defect. Thus, Eq. (4.1) or (4.2)
indicates that the number of terms in the series and the amount of experimental data
decrease when M ! 0 as r ! 0.

Let m D M D 0 in Eq. (4.12) so that the first-order stress field equations for
mode I become

� x D KIp
2
r

cos
�

2

�
1 � sin

�

2
sin

3�

2

�

� y D KIp
2
r

cos
�

2
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1C sin

�

2
sin

3�

2

�
(4.13)

� xy D KIp
2
r

cos
�

2
sin

�

2
cos

3�

2

The stress in the z-direction is of particular interest because it defines plane
conditions as express by Eqs. (1.34) and (1.35). Hence, � z D 0 for plane stress
and for plane strain

� z D v
�
� x C � y

�
(4.14)

� z D 2vKIp
2
r

cos
�

2
(4.15)

Figure 4.2 depicts the trigonometric trends of the functions given by Eqs. (4.13)
and (4.15). This is to show the reader how these functions vary with increasing
angle � .

Observe that most curves exhibit relatively nonuniform trends or shape as the
angle � increases. Therefore, these curves show the elastic stress behavior near the
crack tip.

Additionally, letting the angle be � D 0 implies that the crack grows along the
x-axis (crack plane) in a self-similar manner and so that only one term is needed for
characterizing the crack tip stress field, which in turn, is independent of specimen

Fig. 4.2 Normalized stress
distribution for mode I



4.2 Field Equations: Mode I 135

size and geometry. In this case, Eqs. (4.13) and (4.15) for plane-strain conditions in
Cartesian coordinates become

� x D KIp
2
r

for � D 0

� y D KIp
2
r

for � D 0 (4.16)

� xy D 0 for � D 0

� z D 2vKIp
2
r

for � D 0

For instance, loading a cracked specimen in tension one can deduce from Eq. (4.16)
that the stress intensity factor is simply dependent on the stress

�
� y
�

perpendicular
to the crack plane and the plastic zone size .r/. Thus,

KI D � y

p
2
r for � D 0 (4.16a)

If the crack length and the applied stress are a D 2r and � D � y, respectively,
then the stress intensity factor takes the same mathematical definition as Eq. (3.28).
Hence,

KI D �
p

a for � D 0 (4.16b)

Substituting Eq. (4.13) into (1.10) and (1.11) and the resultant expressions into (1.4)
yields the strain and displacement field equations
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Here, Eq. (4.18) indicates that the displacement �z is singular since �z ! 1 as
r ! 0 whereas �x D �y D 0. Therefore, �z is the only displacement singularity
in the order of r�1=2. In general, Weertman [50] describes that a crack displacement
occurs when the theoretical tensile stress � ts causes a theoretical separation y '
2b, where b is the length of the Burgers vector of a dislocation. If � ts reaches its
theoretical fracture value, then atomic bonds break and the crack faces are no longer
subjected to traction forces. The latter condition is referred to as stress-free crack.
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Basically, these displacement distributions are just plots of the trigonometric
functions, which show the trend of each elastic displacement for an ideal isotropic
solid subjected to an external or infinite uniaxial loading . Denote that the displace-
ment �x drastically decreases reaching negative values at � � 0, �y fluctuates, and
�z increases very slightly with increasing angle � .

In fact, fracture toughness is strongly influenced by microstructure, thickness,
strain rate, environment, and temperature, but in particular, the fracture toughness
transition from plane stress to plane strain is remarkably due to increasing plate
thickness. This is depicted in Fig. 3.8 for plates having through-thickness cracks.
However, part through-thickness cracks encountered in pressure vessel and pipe
walls behave differently. This type of defect is in the form of internal, embedded, or
external cracks, which may eventually grow through the thickness.

In addition, the thickness of a plate is defined below using the real variable x3
along the z-axis since z is utilized as a complex function in Chaps. 3 and 4. Thus,
the thickness of a plate can be defined by the integral

Z
@x3 D B (4.19)

Further, the above equations for Mode I loading have been derived assuming that
solid materials are isotropic and brittle and that crack growth occurs along its own
plane, namely the x-axis. However, the stress field at the crack tip can be broken
up into three components, mode I, mode II, and mode III, as schematically shown
in Fig. 3.1. This implies that the main crack in mode I branches out, specifically
in crystalline materials due to microstructural features such as secondary phases,
voids, grain boundaries, dislocations, and a possible combination of these defects.

The above field equations, Eqs. (4.17) and (4.18), give an approximation to
the stress intensity factor KI and strongly depend on trigonometric functions.
For instance, Fig. 4.3 shows the distribution of the normalized displacements as
functions of the angle � in radians for v D 0:3.

Theoretically, an applied quasi-static mode I causes the crack to open and grow
along the x-axis at an angle � D 0. This means that crack growth occurs in a
self-similar manner even if the applied stress intensity factor KI is less than the

Fig. 4.3 Distribution of
normalized displacements for
mode I
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plane-strain fracture toughness KIC of the material. In certain cases, a straight crack
under tension may change growth direction due to microstructural features such
as particles, grain-boundary resistance, and the like. In the latter case, fracture can
occur at an angle relative to the original crack plane.

4.3 Field Equations: Mode II

Deriving the stress and displacement field equations in shear mode II is of particular
importance for analyzing mixed-mode systems. Assuming that the crack is loaded
with a remote shear stress � interesting results can be determined. Specifically, two-
dimensional problems in cracked structural components can be evaluated using the
Westergaard stress functions. For instance, the stress function Z for an infinite sheet
containing a central crack of length 2a has been introduced in Chap. 3.

Let the Westergaard stress function Z; Z0, and Z along with Bo D KII=
p
2
 be

defined by
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These functions are essential in determining the elastic stresses at the crack tip being
introduced in Chap. 3. Thus, the development of the stress equations is presented
first due to its simplistic approach.

Combining Eqs. (4.4) and (4.5) into (4.20) through (4.22) gives
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From which the real (Re) and imaginary (Im) parts are, respectively,
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and
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The Airy stress function for the sliding shear mode can be defined by [21]


 D �y Re Z (4.32)

According to Eqs. (3.16) through (3.18) without body forces .� D 0/ and
Eq. (4.32), the stress equations become
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� x D 2

MX

mDo

�
m � 1

2

�
Bmrm�1=2 sin

�

2
cos

�

2
cos

�
m � 3

2

�
�

C2
MX

mDo

Bmrm�1=2 sin

�
m � 1

2

�
�
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� y D �2
MX

mDo

�
m � 1

2

�
Bmrm�1=2 sin

�

2
cos

�

2
cos

�
m � 3

2

�
� (4.34)

� xy D
MX

mDo

Bmrm�1=2 cos

�
m � 1

2

�
�

�2
MX

mDo

�
m � 1

2

�
Bmrm�1=2 sin

�

2
cos

�

2
sin

�
m � 3

2

�
�

The first terms in the series are sufficient to obtain accurate results. Thus, let m D 0

in Eq. (4.34) along with Bo D KII=
p
2
 to get

� x D � KIIp
2
r

sin
�

2



2C cos

�

2
cos

3�

2

�

� y D KIIp
2
r

sin
�

2
cos

�

2
cos

3�

2
(4.35)

� xy D KIIp
2
r

cos
�

2



1 � sin

�

2
sin

3�

2

�

Substituting Eq. (4.35) into (1.10) and (1.11) and the resultant expressions into (1.4)
yields the strains and displacements functions. Thus, the strains for a two-
dimensional analysis are

�x D � KIIp
2
rE

sin
�

2



2C .1C �/ cos

�

2
cos

3�

2

�

�y D KIIp
2
rE

sin
�

2



2v C .1C �/ cos

�

2
cos

3�

2

�
(4.36)

� xy D 2 .1C �/KIIp
2
rE

cos
�

2



1 � sin

�

2
sin

3�

2

�

and the displacements are

�x D 2 .1C �/KII

E

r
r

2

sin

�

2



2

1C �
C cos2

�

2

�

�y D 2KII

E

r
r

2

cos

�

2



.� � 1/C .1C �/ sin2

�

2

�
(4.37)

�z D 2�BKII

E

r
r

2

sin

�

2
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Obviously, these displacement expressions are strongly dependent on the trigono-
metric functions. The reader should plot these functions to observe how divergent
they are for a constant Poisson’s ratio �.

Evaluating Eq. (4.37) at � D 0 yields one nonzero displacement as

�x D 0

�y D 2 .� � 1/KII

E

r
r

2

(4.37a)

�z D 0

Apparently, mode II seems to be a very simple case since only one displacement
is needed Cartesian coordinates at � D 0. The Mode II characterization, as well
as other modes of loadings, must include the determination of the stress field, and
related strains and displacements, and the driving force GII that defines the fracture
toughness of any elastic or elastic perfectly plastic material. In fact, mode II tests
can be done under quasi-static and fatigue loading conditions.

4.4 Polar Coordinate Formulation

4.4.1 Mode I andMode II Cases

Consider an elastic plate containing a single-edge crack subjected to a quasi-static
tension loading shown in Fig. 4.4 [5, 33].

In the absence of body forces, equilibrium is satisfied through the Airy stress
function in polar coordinates. In a two-dimensional analysis, the general mathemat-

Fig. 4.4 Single-edge crack
and stresses in polar
coordinates at a point in the
domain D
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ical definition of the elastic stress field in terms of the Airy stress function 
 in polar
coordinates is

� r D 1

r

@


@r
C 1

r2
@2


@�2

�� D @2


@r2
(4.38)

� r� D 1

r2
@


@�
� 1

r

@2


@r@�

These equations were initially derived in Chap. 1, Sect. 1.5, but they are included
here for convenience. According to the crack configuration illustrated in Fig. 4.4,
the boundary conditions for a single-edge crack are defined as [33]

�� D � r� D 0 for � D ˙˛ (4.39)

Now, it is convenient to use the Airy stress function as follows [52]:


 D r�C1f .�/ (4.40)

Substituting Eq. (4.40) into (1.62) yields an expression in terms of the eigenvalue �.
The resultant expression is a fourth-order partial differential homogeneous equation
with f D f .�/ [33]. Thus,

@4f

@�4
C 2

�
�2 C 1

� @2f
@�2

C
�
�2 � 1

�2
f D 0 (4.41)

The general solution of this high-order polynomial is

f D C1 cos .� � 1/ � C C2 sin .� � 1/ � C C3 cos .�C 1/ � C C4 sin .�C 1/ �

(4.42)

with the following boundary conditions: f D 0 and df=d� D 0 for � D ˙˛. Using
a homogeneous equation with constant coefficient technique, the following general
function is used to determine the eigenvalue �

f D Cie
ri� (4.43)

where Ci D Constants
ri D Roots

Hence, Eq. (4.43) gives

@f

@�
D Cirie

r�

@2f

@�2
D Cir

2
i er� (4.44)
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@3f

@�3
D Cir

3
i er�

@4f

@�4
D Cir

4
i er�

Substituting these derivatives into Eq. (4.41) yields a fourth-order polynomial

r4 C 2
�
�2 C 1

�
r2 C

�
�2 � 1

�2 D 0 (4.45)

The solution of Eq. (4.45) gives four roots defined by

r1 D i .� � 1/
r2 D �i .� � 1/ (4.46)

r3 D i .�C 1/

r4 D �i .�C 1/

For convenience, the symmetric and antisymmetric parts of Eq. (4.42) for mode I
and II, respectively, are given in matrix form [33]



cos .� � 1/ ˛ cos .�C 1/ ˛

.� � 1/ sin .� � 1/ ˛ .�C 1/ sin .�C 1/ ˛

� 

C1
C3

�
D


0

0

�
(4.47)



sin .� � 1/ ˛ sin .�C 1/ ˛

.� � 1/ cos .� � 1/ ˛ .�C 1/ cos .�C 1/ ˛

� 

C2
C4

�
D


0

0

�
(4.48)

Setting the determinants of Eqs. (4.47) and (4.48) to zero along with the trigonomet-
ric function 2 sin A cos B D sin .A C B/ sin .A � B/ yields

sin .2�˛/˙ � sin .2˛/ D 0 (4.49)

If ˛ D 
 , then sin .2
/ D sin .360ı/ D 0 and the solution of Eq. (4.49) is a
characteristic equation of the form

sin .2�˛/ D 0 (4.50)

which has only real roots for � D n=2 where n D 1; 2; 3; 4; : : : :: The constants in
Eqs. (4.47) and (4.48) take the form [33]

C3n D � n�2
nC2C1n C4n D �C2n

C3n D �C1n C4n D � n�2
nC2C2n

For n D 1; 3; 5; 7 : : : :

For n D 2; 4; 6; 8 : : : :
(4.51)
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Substitute Eq. (4.51) into (4.42), and if the resultant expression along with f D f .�/
is substituted back into (4.40), the Airy stress function in power series form along
with � D n=2 and ˛ D � becomes


 D
NX

nD1;3:::
r1Cn=2

(
C1n

�
cos

�
n
2

� 1� � � n�2
nC2 cos

�
n
2

C 1
�
�
	

CC2n
�
sin
�

n
2

� 1� � � sin
�

n
2

C 1
�
�
	
)

(4.52)

C
NX

nD2;4:::
r1Cn=2

(
C1n

�
cos

�
n
2

� 1� � � cos
�

n
2

C 1
�
�
	

CC2n
�
sin
�

n
2

� 1� � � n�2
nC2 sin

�
n
2

C 1
�
�
	
)

Substituting Eq. (4.52) into (4.38) yields the elastic stresses for mode I

� r D
NX

nD1;3;:::

1

4
rn=2�1C1n



n .6 � n/ cos

�
n
2

� 1� �
�n .2 � n/ cos

�
n
2

C 1
�
�

�

C
NX

nD1;3;:::

1

4
rn=2�1C2n



n .6 � n/ sin

�
n
2

� 1� �
�n .2C n/ sin

�
n
2

C 1
�
�

�

C
NX

nD1;3;:::

1

4
rn=2�1C1n



n .6 � n/ cos

�
n
2

� 1� �
�n .2 � n/ cos

�
n
2

C 1
�
�

�

C
NX

nD2;4;:::

1

4
rn=2�1C2n



n .6 � n/ sin

�
n
2

� 1� �
�n .2 � n/ sin

�
n
2

C 1
�
�

�
(4.53)

�� D
NX

nD1;3;:::

1

4
rn=2�1C1n



n .2C n/ cos

�
n
2

� 1� �
�n .2 � n/ cos

�
n
2

C 1
�
�

�

C
NX

nD1;3;:::

1

4
rn=2�1C2n



n .2C n/ sin

�
n
2

� 1� �
�n .2C n/ sin

�
n
2

C 1
�
�

�

C
NX

nD2;4;:::

1

4
rn=2�1C1n



n .2C n/ cos

�
n
2

� 1� �
�n .2C n/ cos

�
n
2

C 1
�
�

�

C
NX

nD2;4;:::

1

4
rn=2�1C2n



n .2C n/ sin

�
n
2

� 1� �
�n .2 � n/ sin

�
n
2

C 1
�
�

�
(4.54)
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� r� D
NX

nD1;3;:::

1

4
rn=2�1C1n



n .2 � n/ sin

�
n
2

� 1� �
Cn .2 � n/ sin

�
n
2

C 1
�
�

�

C
NX

nD1;3;:::

1

4
rn=2�1C2n



n .2 � n/ cos

�
n
2

� 1� �
�n .2C n/ cos

�
n
2

C 1
�
�

�

C
NX

nD2;4;:::

1

4
rn=2�1C1n



n .n � 2/ sin

�
n
2

� 1� �
�n .n C 2/ sin

�
n
2

C 1
�
�

�

C
NX

nD2;4;:::

1

4
rn=2�1C2n



n .2 � n/ cos

�
n
2

� 1� �
Cn .n � 2/ cos

�
n
2

C 1
�
�

�
(4.55)

with

C11 D KIp
2


(4.56)

C21 D KIIp
2


(4.57)

Simplifying Eqs. (4.53) through (4.57) with n D 1 gives the dominant stresses
adjacent to the crack tip for r ! 0. This means that a single term in the series
is sufficient to determine the stress field equations. Thus, the stresses in polar
coordinates for mode I are [11]

� r D KIp
2
r

�
5

4
cos

�

2
� 1

4
cos

3�

2

�
D KIp

2
r
cos

�

2

�
1C sin2

�

2

�

(4.58a)

�� D KIp
2
r

�
3

4
cos

�

2
C 1

4
cos

3�

2

�
D KIp

2
r
cos

�

2

�
1 � sin2

�

2

�

(4.58b)

� r� D KIp
2
r

�
1

4
sin

�

2
C 1

4
sin

3�

2

�
D KIp

2
r
sin

�

2
cos2

�

2
(4.58c)

and those for mode II take the form

� r D KIIp
2
r

�
�5
4

sin
�

2
C 3

4
sin

3�

2

�
D KIIp

2
r
fr .�/II (4.59a)

�� D KIIp
2
r

�
�3
4

sin
�

2
� 3

4
sin

3�

2

�
D KIIp

2
r
f� .�/II (4.59b)

� r� D KIIp
2
r

�
1

4
cos

�

2
C 3

4
cos

3�

2

�
D KIIp

2
r
fr� .�/II (4.59c)
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Fig. 4.5 Plots of f .�/ functions representing the distribution of normalized stresses for modes I
and II as per Eqs. (4.58) and (4.59)

Fig. 4.6 Displacements at a
point near the single-edge
crack in the domain D

The distribution of normalized stresses, such as 4� r

p
2
r=KI D fr .�/I , given in

Eqs. (4.58) and (4.59) is governed by the trigonometric functions, which are plotted
in Fig. 4.5 for convenience.
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Consider a single-edge crack model shown in Fig. 4.6 and related radial and
circumferential displacements �r and �� , respectively. Accordingly, the strains are
defined by

�r D @�r

@r

�� D �r

r
C 1

r

@��
@�

(4.60)

� r� D 1

r

@�r

@r
C @��

@r
� ��

r

Furthermore, Hooke’s law for plane conditions states that the strain (amount
by which a solid body is deformed) is linearly related to the stress (force causing
the deformation). Thus, those materials that exhibit linear-elastic deformation are
referred to as Hookean materials, and the amount of deformation for plane stress
and plane-strain conditions are approximated by the following strain equations:

E�r D � r � ���
E�� D �� � �� r for plane stress (4.61)

G� r� D � r�

and

2G�r D .1 � �/ � r � v��
2G�� D .1 � �/ �� � �� r for plane strain (4.62)

G� r� D � r�

Substitute Eqs. (4.58) and (4.59) into (4.61) and (4.62), and solve for �r and
�� . Then, substitute these strains into Eq. (4.60) and integrate the strains to get the
displacement expressions. Thus,

�r D KI

4G

r
r

2




.2� � 1/ cos

�

2
� cos

3�

2

�
for mode I (4.63)

�� D KI

4G

r
r

2




� .2� � 1/ sin

�

2
C sin

3�

2

�
for mode I

and

�r D KII

4G

r
r

2




� .2� � 1/ sin

�

2
C 3 sin

3�

2

�
for mode II (4.64)

�� D KII

4G

r
r

2




� .2� � 1/ cos

�

2
C 3 cos

3�

2

�
for mode II
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where

� D 3 � �
1C �

for plane stress (4.65)

� D 3 � 4� for plane strain (4.66)

If � D 0 and � D 1=3, Eqs. (4.63) and (4.64) yield

�r D KI

4G

r
r

2

Œ.2� � 1/ � 1� > 0 for mode I

�� D 0 for mode I (a)

�r D v0 for mode II

�� D KII

4G

r
r

2

Œ� .2� � 1/C 3� > 0 for mode II

Thus,

�r > 0 and �� D 0 for mode I

�r D 0 and �� > 0 for mode II & plane stress (b)

�r D 0 and �� > 0 for mode II & plane strain

Therefore, the displacements in polar coordinates vary according to the type of
loading case.

4.4.2 Mode III Loading Case

This section includes the mathematical procedure for determining the elastic
displacements and elastic shear stresses for mode III loading. This particular stress
mode involves the tearing fracture process for plates (Fig. 3.1) and the torsional
fracture process for shafts. The mathematical treatment that follows is for isotropic
and homogeneous materials subjected to quasi-static mode III loading [33].

Consider the crack model given in Fig. 4.7 which represents a single-edge crack
in a plate or a radial face on a shaft as illustrated in Fig. 4.8.

Thus, a two-dimensional stress analysis indicates that the displacements and
stresses are independent of the coordinate z D x3 [33]. The resulting mechanical
deformation generates anti-plane shear or mode III entities such that �x D �y D 0

and � x D � y D � z D � xy D 0 along the line of interaction. Consequently, the
nonzero shear stresses and displacement in Cartesian coordinates are � xz ¤ 0,
� yz ¤ 0; and �z ¤ 0. In polar coordinates, � rz ¤ 0 and ��z ¤ 0.

Hooke’s law in polar coordinates (Fig. 4.7) gives the shear stresses as

� rz D G� rz D G
@�z

@r
(4.67)

��z D G��z D G

r

@�z

@�
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Fig. 4.7 Anti-plane stress
components in the domain D
surrounded by the contour C

Fig. 4.8 Surface cracks on
cylinders subjected to mode
III by torsion

The equilibrium equation, the bipotential equation and the boundary condition
for �z are, respectively

@ .r� rz/

@r
C @��z

@�
D 0 (4.68)

r2�z D @2�z

@r2
C 1

r

@�z

@r
C 1

r2
@2�z

@�2
(4.69a)

r2�z D 0 (4.69b)

��z D @�z

@�
D 0 For � D ˙˛ (4.70)

Now assume that the out-of-plane displacement is defined by [33]

�z D r�f .�/ (4.71)

Letting f D f .�/ and taking the derivatives needed in Eq. (4.69a), and simplifying
the resultant expression, yields the governing second-order differential equation:

@2f

@�2
C �2f D 0 (4.72)

The solution of Eq. (4.72) can be determined by letting the function f be defined by

f D Der� (4.73)
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Furthermore, Eq. (4.72) yields an equation that has no real solution

r2 C �2 D 0 (4.74)

r D �i� (4.75)

where i is loosely defined as i D p�1 is the imaginary unit in complex variable
theory and � is referred to as the eigenvalue term.

For the sake of clarity, the prefix eigen in eigenvalue is the German word for
innate (inherent). Nonetheless, inserting Eq. (4.75) into (4.73) gives the characteris-
tic equation as the solution of Eq. (4.72) needed for determining the antisymmetric
displacement �z when � D 0. Hence,

f D Im
�
Dei��

� D Im D .cos�� C i sin��/ (a)

f D D sin�� (4.76)

Differentiating Eq. (4.76) generates the boundary condition expression, which in
turn is the characteristic equation

df

d�
D D� cos�� D 0 for � D ˙˛ (4.77)

so that

cos�� D 0 (4.78)

Let ˛ D 
 in Eq. (4.78) in order to simulate a crack in a solid body (Fig. 4.7) under
mode III loading. Consequently, the eigenvalues � take the form

� D n

2
for n D 1; 3; 5; 7; : : : : (4.79)

Clearly, Eq. (4.78) becomes

cos�
 D 0 (4.80)

cos



2
D cos

3


2
D cos

5


2
D cos

7


2
D 0 (4.81)

Consequently, the antisymmetric displacement along the crack line and the respec-
tive shear stresses defined by Eqs. (4.71) and (4.67), respectively, become

�z D Dnrn=2 sin
n�

2
(4.82)

� rz D G
@�z

@r
D nG

2
Dnrn=2�1 sin

n�

2
(4.83)
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Fig. 4.9 Distribution of
normalized shear stresses for
mode III and n = 1

��z D G

r

@�z

@�
D nG

2
Dnrn=2�1 cos

n�

2
(4.84)

The normalized shear stress distribution is depicted in Fig. 4.9. Notice that these
stresses, Eqs. (4.83) and (4.84), have an opposite distribution because of the
trigonometric terms in the equations.

Furthermore, the constant Dn for n D 1 becomes [33]

D1 D KIII

G

r
2



(4.85)

The parameter D1 in Eqs. (4.82) through (4.84) corresponds to the dominant term in
the series. So far the mechanics framework for including higher-order terms in the
stress series has been described for a purely linear-elastic stress field at the crack
tip. This analytical treatment allows a small plastic zone (r) and predicts the shear
stress field. In fact, KIII is the anti-plane stress intensity factor or the stress intensity
factor for mode III loading condition which is applicable to torsion tests. Recall that
G is the shear modulus of rigidity defined by Eq. (1.9). Thus, mode III is found by
the solution of an anti-plane shear problem which the simplest mode of loading to
solve in the field of fracture mechanics.

Evaluating Eqs. (4.82) through (4.84) along with Eq. (4.85) at � D 0 yields the
following results

��z D � yz D KIIIp
2
r

for � D 0 (4.86)

� rz D � xz D 0 for � D 0 (4.87)

�z D 0 for � D 0 (4.88)

Denote that Eq. (4.86) estimates the out-of-plane shear stress ��z being proportional
to the inverse square root of r (��z _ r�1=2) and predicts the shear stress field
singularity, which means that the shear stress becomes infinitely large as the plastic
zone size approaches zero (��z ! 1 as r ! 0).
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Despite the singularity stress case, it is apparent that the theory of linear elasticity
is applicable at a very small distance from the crack tip, where ��z ! 1 as r ! 0.

4.5 Higher-Order Stress Field

Assume that the damage ahead of the crack tip is characterized by second-order
local stresses, which are dependent of specimen size and geometry as opposed to
the first-order terms. Consequently, the stress field is no longer singular as r ! 0,
and the second-order term in the series of expansion is known in the literature as
the T-stress (Tx) for elastic behavior which accounts for effects of stress biaxiality.
Several T-stress solutions are available in the literature [9, 17, 25–29, 42].

For elastic-plastic and fully plastic materials, the second-order term is also
known as the J-Q approach [9]. In particular, O’Dowd and Shih [40, 41] can be
consulted for obtaining details of the J-Q theory which describes the fundamentals
that provide quantitative measures of the crack tip deformation. Nevertheless, the
term Q accounts for plasticity in the triaxiality state crack tip stress field.

Considering a mixed-mode fracture process and the effects of the T-stress in
cracked bodies, the asymptotic stress state at the crack tip can be determined by
adding Eqs. (4.13) and (4.35) and the T-stress. Thus, for mode I and II interaction,
the stresses are



� x � xy

� xy � y

�
D KIp

2
r



fx .�/ fxy .�/

fxy .�/ fy .�/

�
(4.89)

C KIIp
2
r



gx .�/ gxy .�/

gxy .�/ gxy .�/

�
C



Tx 0

0 0

�

With regard to the T-stress theory, Larsson and Carlsson [36] and Sherry et al. [47]
defined Tx as the non-singular stress that acts in the direction parallel to the crack
plane, and it is given as [46]

Tx D � x � KIp
2
r

fx .�/ (4.90)

For � D 0, the stress state Eq. (4.89) becomes



� x � xy

� xy � y

�
D KIp

2
r



1 0

0 1

�
C KIIp

2
r



0 1

1 0

�
(4.91)

C



Tx 0

0 0

�

and for pure mode I loading, KII D 0; the T-stress becomes
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Tx D � x � KIp
2
r

(4.92)

Tx D � x � � y

In fact, this equation is the modified � x stress function in Eq. (4.13). Moreover,
Leevers and Radon [37] defined Tx to be independent of the stress intensity factor as

Tx D ˇ� (4.93)

Here, � is the remote applied stress (MPa). The geometric correction factor
˛ D f .a=w/ introduced in Chap. 3 can be included in Eq. (4.93); that is, Tx D ˛ˇ� .
Similarly, for pure mode II, the T-stress is [17]

Tx D � x C KIIp
2
r

(4.94)

Tx D � x C � xy (4.95)

In addition, the parameter ˇ in Eq. (4.93) is the dimensionless stress biaxiality ratio
defined by [37]

ˇ D Tx
p

a

KI
(4.96)

For convenience, the geometry correction and the biaxiality factors for some
common specimen configurations are

• Single-edge cracked plate (SET) in tension (Table 3.1) with L=w � 1:5 and
x D a=w [25]:

Tx

�
D 1

.1 � x/2


 �0:526C 0:641x C 0:2049x2

C0:755x3 � 0:7974x4 C 0:1966x5

�
(4.97)

ˇ D 1p
1 � x


�0:469C 0:1414x C 1:433x2 C 0:0777x3

�1:6195x4 C 0:859x5

�
(4.98)

• Double-edge cracked plate DE(T) in tension (Table 3.1) with L=w � 1:5 and
x D a=w [25]:

Tx

�
D �0:526 � 0:0438x C 0:0444x2 C 0:12194x3 (4.99)

ˇ D �0:469 � 0:071x C 0:1196x2 C 0:2801x3 (4.100)
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• Double-edge cracked plate DE(T) in tension (Table 3.1) with L=w D 1 and
x D a=w [25]:

Tx

�
D �0:526C 0:1804x � 2:7241x2 C 9:5966x3 � 6:3883x4 (4.101)

ˇ D �0:469C 0:1229x � 1:2256x2 C 6:0628x3 � 4:4983x4 (4.102)

• Double cantilever beam DCB(T) in tension (Fig. 6.5) [25]:

Tx D ˇKIp

a

D P

r
12


ah



a=h C 0:68

0:681 .h=a/C 0:0685

�
(4.103)

ˇ D 1

0:681 .h=a/C 0:685
For h=a < 1:5 (4.104)

KI D P

r
12

h
.a=h C 0:68/ (4.105)

where P D Load per unit length (MN/m)

• Compact tension C(T) specimen in tension (Table 3.1) with L=w D 0:6 and
a=w < 1 [47]:

Tx

�
D 6:063 � 78:987x C 380:46x2 � 661:70x3 C 428:45x4 (4.106)

The significance of the T-stress (Tx) can be explained by plotting, say, Eq. (4.101)
along with (4.102) as shown in Fig. 4.10 for a double-edge cracked plate DE(T) (see
Table 3.1) with L=w D 1 and x D a=w [25].

Tx

�
D �0:526C 0:1804x � 2:7241x2 C 9:5966x3 � 6:3883x4 (4.101)

ˇ D �0:469C 0:1229x � 1:2256x2 C 6:0628x3 � 4:4983x4 (4.102)

The Tx=�profile shown in Fig. 4.10 exhibits a transition for the double-edge
cracked plate DE(T) at approximately a=w D 0:70. Similarly, the dimensionless
stress biaxiality ratio ˇ also exhibits nearly equal trend as the Tx=� curve. For
Tx=� < 0, the local crack tip stresses are below the limits predicted by the small-
scale yielding since the Tx is in the compressive state stabilizing the crack path [9].
The opposite occurs for Tx=� > 0, leading to a high degree of triaxiality in the crack
tip stresses since Tx is in the tensile state [35]. These two cases may be interpreted
as if a mode I crack in homogeneous solids tends to grow along its plane when the
Tx in front of the crack is negative (Tx < 0), whereas it deviates from its original
plane or becomes directionally unstable if the Tx is positive (Tx > 0) [19].

These observations, Tx < 0 and Tx > 0, have also been reported [3, 4, 31] to
occur in an adhesive bond under mode I loading. In addition, the T-stress has also
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Fig. 4.10 Normalized
T-stress as a function of
normalized crack length for a
double-edge specimen loaded
in tension

been reported [34] that it has a significant effect on crack initiation angles in brittle
fracture of functionally graded materials [34].

Initially, the T-stress is below the yield limit of the material; Tx < � ys, and it is
negative because is in compression. After some crack growth has occurred, Tx < � ys

become positive since it changes to a tension entity. Figure 4.10 depicts the Tx < � ys

transition from compression to tension. Moreover, these observations means that the
relations Tx < � ys and Tx < � ys D 0 imply stable crack growth as the external load
is increasing. As a result, the plastic zone increases and more plastic deformation is
accumulated.

According to Williams [52], the T-stress (Tx) can be derived using an Airy stress
function in polar coordinates for a cracked body having the coordinates origin at the
crack tip. This equation can also be found in a compendium of the T-stress solutions
reported by Fett [25]. Thus, the symmetric Airy stress function for mode I loading is


I D �w2
1X

mD0

� r

w

�mC3=2
Am

"
cos

�
m C 1

2

�
� � m C 3

2

m � 1
2

cos

�
m � 1

2

�
�

#

C�w2
1X

mD0

� r

w

�mC2
Bm Œcos .m C 2/ � � cos m�� (4.107)

and the antisymmetric part for mode II becomes


II D �w2
1X

mD0

� r

w

�mC3=2
Cm



sin

�
m C 1

2

�
� � sin

�
m � 1

2

�
�

�
(4.108)

C�w2
1X

mD0

� r

w

�mC2
Dm



sin .m C 3/ � � m C 3

m C 1
sin .m C 1/ �

�

where w is the characteristic dimension.
According to Fett [25], Eq. (4.107) can be used to determine the T-stress as
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Tx D �4�Bo � �.o/x (4.109)

Here, �.o/x is the stress contribution in the crack-free body. The effect of the T-stress
on crack path in crystalline solids and adhesively bonded joints is an interesting
subject in fracture mechanics. This implies that the directionality of cracks is
significantly influenced by the magnitude of the T-stress, which can describe the
stress field near the crack tip for mode I or II under certain assumptions [29].

A mathematical treatment for determining the T-stress can be based on the West-
ergaard stress function, Williams stress function based on Airy’s approach, Green’s
function method, Boundary collocation method, and principle of superposition [25].
Further details on this topic can be found elsewhere [25, 35, 42, 46].

4.6 Method of Conformal Mapping

This section is an extension of conformal mapping being introduced in Chap. 1.
Basically, conformal mapping is a powerful method to transform a region having an
arbitrary shape in the z-plane into a region in the �-plane using complex variables.
This means that the interior or exterior of a particular domain D can be mapped
into a domain R by using two complex potentials or complex stress functions, � .z/
and  .z/ ; which have certain mathematical forms to be determined henceforward.
These complex potentials are known as Kolosov–Muskhelishvili potentials, which
have found wide application in several boundary problems.

Despite the large number of conformal mapping being developed for different
applications [1, 2, 10, 12, 14, 15, 30, 38, 44, 48], the general picture of conformal
mapping or transformation of interest in this section is schematically illustrated
in Fig. 4.11. This illustration implies that an arbitrary region D can be mapped or
transformed into region R through the complex function z D f .�/, commonly for a
unit circle with j�j D 1. Conversely, � D f .z/ maps points in the �-plane onto the
z-plane. The general complex functions that enable interior and exterior mapping
onto a circle may be defined as complex power polynomials [44]. Thus,

Fig. 4.11 Conformal
mapping of region D in the
z-plane into the �-plane
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Fig. 4.12 Internal and
external conformal mapping
of an ellipse into a unit circle

z D
NX

nD0
cn�

n (inside C)

z D rei� D r .cos � C i sin �/ (on C) (4.110)

z D A

�
C

NX

nD0
cn�

n (outside C)

Here, constants A and cn depend on the shape of the region R. Details on complex
formulation of plane elasticity problems, specifically circular domains, can be found
elsewhere [38, 44, 48]. For example, Fig. 4.12 schematically shows the conformal
mapping of a point P outside the ellipse into a point P’ inside (j�j < 1) and P”
outside (j�j > 1) the circle. Recall that the absolute value of � is defined as j�j D
˙
q
�2 C �2 or j�j D � D 1 for a unit circle.

The complex functions for mapping point P shown in Fig. 4.12 are defined by the
following complex equations [38]

z D c

�
1

�
C m�

�
(exterior) (4.111a)

z D c

�
� C m

�

�
(interior) (4.111b)

where c D .a C b/ =2 and m D .a � b/ = .a C b/ with a D semimajor axis and
b D semiminor axis.

According to Muskhelishvili [38], once a region in the infinite z-plane is mapped
onto a unit circle with j�j < 1, it can always be transformed back into the infinite
plane with a circular hole with j�1j > 1. Thus, it is sufficient to make the substitution
� D 1=�1 for accomplishing the transformation. In addition, finite simply connected
regions can be mapped onto a unit circle with j�j < 1 and infinite simply connected
regions onto a region where j�j > 1.
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Fig. 4.13 Center crack in an
infinite plane

The complex functions for exterior and interior mapping of region D in the
z-plane onto the region R in the �-plane and conversely [38, 44, 48] can be deduced
from the complex function for an elliptical hole.

From Chap. 2, if b ! 0, then the ellipse becomes a crack and Eqs. (4.111a)
and (4.111b) along with c D a=2 and m D 1 become the mapping functions for a
straight crack [44] as shown in Fig. 4.13a.

Thus, the mapping function for a straight central crack in an infinite plate is of
the form

z D f .�/ D a

2

�
1

�
C �

�
(4.112)

If dz=d� D 0, then � D ˙1 or j�j D 1. Solving for � in Eq. (4.112) yields a quadratic
equation, �2 � .2z=a/ � C 1 D 0, and its solutions for exterior conformal mapping
of the circular domain R depicted in Fig. 4.12 is

� D f .z/ D 1

a

�
z C

p
z2 � a2

�
(exterior) (4.113)

The application of conformal mapping to fracture mechanics is specifically illus-
trated in Fig. 4.13 for a stress-free (traction-free crack faces) straight central crack
of length 2a in an infinite plate having a domain D in the z-plane.

If the plate is uniformly and remotely loaded in tension along the y-axis, then the
loading condition in this particular case is �1

y D � , �1
x D �1

xy D 0. It is assumed
that the crack is stress-free and bounded by its edges making a contour C, which is
expanded for clarity in Fig. 4.13b.

Exterior conformal mapping enables the development of the analytical procedure
for deriving the elastic stress field equations near the crack tip. In exterior mapping,
the interior of the stress-free crack is not included. This can be accomplished using
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the complex potentials � .z/ and .z/ defined by Eqs. (1.83) and (1.84) for mapping
an arbitrary shaped region into a circular domain. Accordingly,

� .z/ D �
Pm

jD1 Fj

2
 .1C �/
log .z/C

�
�1

x C �1
y

4

�
z C �� .z/

(4.113)

 .z/ D �
Pm

jD1 Fj

2
 .1C �/
log .z/C

�
�1

y � �1
x C 2i�1

xy

2

�
z C  � .z/

where �� .z/ and  � .z/ are analytic and single-valued functions in the solid
body [24].

The plane conditions factor � is based on the Poisson’s ratio �. Thus,

� D 3 � 4� for plane strain (a)

� D 3 � �
1C �

for plane stress (b)

According to Muskhelishvili [38] and Sadd [44], the complex mapping function
z D f .�/ defined by Eq. (4.112) for a circular domain has the general form

f .�/ D A��1 C ' (c)

log .z/ D log Œf .�/� D � log .�/C '1 (d)

where A is a constant and ' and '1 are analytic functions.
This suggests that f .�/ approaches ��1 and consequently,

log .z/ D log f .�/ ! log
�
��1� D � log .�/

Accordingly, the complex potentials defined by Eq. (4.113) can be expressed in
terms of the complex variable �. Hence, [38, 44]

� .z/ D F

2
 .1C �/
log .�/C

�
�1

x C �1
y

4

�
� C �� .�/

(4.114)

 .z/ D � �F

2
 .1C �/
log .�/C

�
�1

y � �1
x C 2i�1

xy

2

�
� C  � .�/

Assume that the resultant forces in the interior boundary C vanish; F D F D 0 and
that the complex potentials,�� .z/ and  � .z/, do not contribute to the stresses and
displacements for exterior mapping of the crack onto the exterior of a unit circle.
Making use of these assumptions and applying the loading condition, �1

y D �

and �1
x D �1

xy D 0, to Eq. (4.113) yields the first set of complex potentials for
exterior mapping of a straight crack. In this case, � .z/ ! �o .z/ and  .z/ !  o .z/
such that
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�o .z/ D �

4
z

(4.115)

 o .z/ D �

2
z

In fact, the force components, F D Fx C iFy and F D Fx � iFy, and the complex
potential �� .z/ and  � .z/ in Eq. (4.113) vanish since the crack is internally stress-
free and the conformal mapping of interest is external or exterior.

Further, a second set of complex potentials which are referred to as the image
complex potentials, say �1 .z/ D � im .z/ and  1 .z/ D  im .z/, must be determined
assuming that the boundary of the crack or hole becomes traction-free under the
uniaxial tension mode [30]. Make use of the superposition principle so that the net
response caused by the two stimuli (external loading condition and traction at the
crack or hole) leads to the complete set of complex potentials � .z/ D �o .z/ C
�1 .z/ and  .z/ D  o .z/ C  1 .z/. Hence, �1 .z/ and  1 .z/ are assumed to be
analytic outside the boundary of a unit circle and can be found using Cauchy integral
formula.

4.6.1 Cauchy Integral Formula

A complete development of this technique [38] is out of the scope in this book,
but a brief description of this topic is included in Chap. 1, and for convenience, an
additional material is covered herein for determining the stress field equations ahead
of a crack tip.

It is apparent that the Cauchy integral formula, which is also referred to as
Cauchy’s differentiation formula, provides an analytic approach to find appropriate
complex potentials, � .z/ and  .z/, for deriving the elastic displacements and
stresses near a crack tip in two dimensions.

The Cauchy integral formula describes contour integrals by letting a contour C be
a closed curve traversed counterclockwise. It is required that the complex function
f .z/ be analytic everywhere inside or outside C so that its derivative is nonzero,
f 0.z/ ¤ 0.

For any point z D x C iy inside C, the following integral holds [38]

f .z/ D 1

2
 i

Z

C

f .�/

� � z
d� (4.116)

which is not analytically continued when z passes from region DC to region D� or
vice versa as shown in Fig. 4.14 [38]. Further, f .z/ ! 0 as z ! 1 or simply put
f .1/ D 0.

Recall that the Cauchy integral formula introduced in Chap. 1, Eq. (1.109), is
used in this section in order to find closed forms of the complex potentials � .z/
and  .z/. The Cauchy integral formula are
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Fig. 4.14 Central crack in an
infinite plane subjected to a
tension loading
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(4.117)

The solutions of these integrals, as defined by Eq. (1.124), are conveniently summa-
rized as [13, 44]

� .z/ D 1

2
 i

Z

C

h .�/

� � z
d� � a1z

 .z/ D
Z

C

h .�/

� � z
d� � � 0 .z/

z
C a1

z
(4.118)

a1 C a1 D 1

2
 i

Z

C

h .�/

�2
d�

a2 D 1

2
 i

Z

C

h .�/

�3
d�

The application of the Cauchy integral formula to fracture mechanics requires fur-
ther work. For instance, Fig. 4.14, which is an extension of Fig. 4.13, schematically
illustrates two regions to be used for determining the crack tip field equations
at a distance r. The z-plane is divided into upper DC and lower D� regions. In
general, this is referred to as the Riemann-Hilbert problem which requires two
continuous and analytic boundary functions �C .z/ and �� .z/ for regions DC and
D�, respectively. These boundary functions, �C .z/ and �� .z/, are referred to as
Plemelj functions which form part of the Cauchy integral formula.

Now, the combination of stress expressions determined in Chap. 1, Eq. (1.95), for
conformal mapping a domain D onto a unit circle may be modified by considering

equal traction vectors
�!
TC and

�!
T�, but opposite in direction as shown by the arrows
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in Fig. 4.14. This is the case when a solid is half-space in the region DC where y � 0

with the system boundary at y D 0. The resultant stress combination expressions are
[38, 44]:

• For unit circle, the stresses and the displacement function, U D u C iv, are

� x C � y D 2
h
� 0 .z/C � 0 .z/

i
D 4Re

�
� 0 .z/

	

� y � � x C 2i� xy D 2
�
z� 00 .z/C  0 .z/

	
(4.119)

2GU D �� .z/ � z� 0 .z/ �  .z/

• For a half-space in the region DC,

� x C � y D 4Re
�
� 0 .z/

	

� y � i� xy D � 0 .z/C � 0 .z/C .z � z/ � 00 .z/ (4.120)

2GU D �� .z/ � z� 0 .z/ �  .z/

Due to displacement continuity and traction conditions outside the crack, the last
expression of Eq. (4.120) may be defined as

� .z/ � z� 0 .z/ �  .z/ D g .z/ (4.120a)

�� .z/C z� 0 .z/C  .z/ D h .z/ (4.120b)

where the boundary functions g .z/ and h .z/ are assumed to be continuous and
analytic. Adding Eqs. (4.120a) and (4.120b) gives

.� C 1/ � .z/ D g .z/C h .z/ (4.121)

which is an equation that relates the unknown complex potential � .z/ with two
unknown complex functions, g .z/ and h .z/. Further, solving this two-dimensional
crack problem requires use of superposition principle of complex variable formu-
lation. Thus, the boundary conditions for the upper DC and the lower D� crack
surfaces lead to a relationship between elastic stresses and traction forces as

� y � i� xy D i
�
TC

x C iTC
y

�
(4.122a)

� y � i� xy D �i
�
T�

x C iT�
y

�
(4.122b)

such that

� 0C .z/C � 0� .z/ � g0� .z/ D i
�
TC

x C iTC
y

�
(4.123a)

� 0� .z/C � 0C .z/ � g0� .z/ D �i
�
T�

x C iT�
y

�
(4.123b)
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For the special case where tractions acting on the crack faces are equal and opposite
(TC

x D �T�
x and TC

y D �T�
y ), the Cauchy integral formula can be used to find a

complex potential, say �1 .z/, which is referred to as the image term of the complex
potential �o .z/ due to crack-free or hole-free plane [30]. In fact, the Cauchy integral
formula for the crack configuration shown in Fig. 4.14 is related to boundary values
of sectionally analytic functions on opposite sides of the crack line and has the
general form [20, 38? ]

�
0

1 .z/ � g0 .z/ D � .z/

2
 i

Z

C

h .�/

�C .�/ .� � z/
d� C P .z/ � .z/ (4.124)

where the Plemelj functions, � .z/ and �C .�/, and the arbitrary polynomial P .z/
with unknown constants must be determined from conditions at infinity [20, 38].
Hence,

� .z/ D 1p
z2 � a2

�C .�/ D 1

i
q

a2 � �2
(4.124a)

P .z/ D
1X

nD0
cnzn D co C c1z C : : :

For uniform traction TC
x D �T�

x D �1
xy D � , TC

y D �T�
y D �1

y D � , the boundary
functions and the polynomial in Eq. (4.124) are [20]

h .�/ D � ��1
y C i�1

xy

�
(4.124b)

g0� .z/ D P .z/ D 0

and consequently, Eq. (4.124) reduces to

�
0

1 .z/ D � .z/

2
 i

Z

C

h .�/

�C .�/ .� � z/
d� (4.125)

Further, h .�/ in Eq. (4.125) is a function prescribed on the crack contour C defined
by �a < x < a. Also, �C .�/ and �� .�/ are boundary values of � .z/ when z
approaches a point � along any path on the upper (C) or lower (�) region of the
contour C. In this case, � .z/ is assumed to be continuous at � from the upper (C) or
lower (�) region [38].

In fact, this integral, Eq. (4.125), is simply a Riemann-Hilbert problem described
by Muskhelishvili [38] as a problem of linear relationship for providing analytic
(holomorphic) solutions when cracks (cuts) in isotropic solids are considered as
discontinuities, which are subjected to force tractions on their faces. The crack line
has upper and lower faces (Fig. 4.14), and the boundary conditions for the crack
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can be placed on these faces independently. Further, the general solution of the
homogeneous Riemann-Hilbert problem, as defined by Eq. (4.125), has been used
[16, 20] to describe the behavior of incremental displacement and stress fields of
interface cracks in prestressed composite materials under anti-plane shear (mode
III) using conformal mapping.

Substituting Eqs. (4.124a) and (4.124b) into (4.124) yields

f 0 .z/ D �
�
�1

y C i�1
xy

�

2

p

z2 � a2

Z

C

q
a2 � �2
� � a

d� (a)

f 0 .z/ D �
�
�1

y C i�1
xy

�

2

p

z2 � a2

Z Ca

�a

q
a2 � �2
� � a

d� (b)

The radical above may be evaluated using power series as [38]

q
a2 � �2 D �i�

s

1 � a2

�2
D �i�

�
1 � a2

2�2
C : : : : : :

�
(c)

Instead, evaluate the integral as described by Muskhelishvili [38] on page 501
or take the solution from Azhdari et al., Eq. (B2b), page 6472 [8] The resultant
solution is

Z

C

q
a2 � �2
� � a

d� D 
 i

�q
a2 � �2 C i�

�
(d)

which can be written along with � D z as

Z

C

q
a2 � �2
� � a

d� D 

�p

z2 � a2 � z
�

(e)

This solution can also be found elsewhere [20]. Substituting Eq. (e) into (a), one gets

f 0 .z/ D �
�
�1

y C i�1
xy

�

2

�
1 � zp

z2 � a2

�
(f)

Hence, the sought complex function is determined by integrating Eq. (f)

f .z/ D
Z

f 0 .z/ dz D �
�
�1

y � i�1
xy

�

2

�
z �

p
z2 � a2

�
(g)

Collecting the real and imaginary parts gives

f .z/ D ��
1
y

2

�
z �

p
z2 � a2

�
C i

�1
xy

2

�
z �

p
z2 � a2

�
(4.126)
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Then, the sought second set or image term �1 .z/ D � im .z/ of �o .z/ for the infinite
z-plane containing the central crack becomes

�1 .z/ D Re Œf .z/� D ��
1
y

2

�
z �

p
z2 � a2

�
(4.127)

Thus, for a unit circular domain with j�j D 1, add Eqs. (4.115) and (4.127) to find
the complete set of the complex potential � .z/ by superposition principle as [13,44]

� .z/ D �o .z/C �1 .z/

D �1
y

4
z � �1

y

2

�
z �

p
z2 � a2

�
(4.128)

D �1
y

4

�
2
p

z2 � a2 � z
�

The second complex potential  .z/ needed for determining the displacement and
stress field equations ahead of the crack tip is found elsewhere [13, 44, 45], and it is
given below along with Eq. (4.128) evaluated at �1

y D � . Hence,

� .z/ D �

4

�
2
p

z2 � a2 � z
�

(4.129)

 .z/ D �

2

�
z � a2p

z2 � a2

�
(4.130)

In addition, if  .z/ D  o .z/ C  1 .z/ and  .z/ is given by Eq. (4.130), then the
image term of  o .z/, Eq. (4.115), is deduced as

 1 .z/ D  im .z/ D ��
2

�
a2p

z2 � a2

�
(4.130a)

These multiple-valued complex potentials are made single-valued because of the
existing crack and are considered to be discontinuous functions [13]. Applying
Eqs. (4.129) and (4.130) to (4.119) yields the sought combination of stress expres-
sions in terms of the complex variable z [44]

� x C � y D 4Re
�
� 0 .z/

	 D � Re

�
2zp

z2 � a2
� 1

�

D � Re

 
2z

p
.z C a/ .z � a/

� 1
!

(4.131)

� y � � x C i2� xy D �

"
zp

z � a2
� zz2

.z2 � a2/3=2

#

C�
"

C za2

.z2 � a2/3=2
C 1

#
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Fig. 4.15 (a) Central elliptical crack and (b) single-edge crack in an infinite solid subjected to a
uniform state of stress �1

y and �1

xy at infinity

The application of Eq. (4.131) to a tension loaded plate containing either a central
elliptical crack or a single-edge crack is demonstrated using the crack coordinates
shown in Fig. 4.15 [22, 24, 42, 44, 50].

According to the crack coordinates for a point P in Fig. 4.15a, it is convenient
to use polar coordinates along with the auxiliary angles, �1 and �2, because of the
following important definitions:

p
z2 � a2 D

p
.z C a/ .z � a/ D p

r2e
i�2=2

p
rei�=2

z � a D rei� ; z D r1e
i�1 ; z C a D r2e

i�2 (a)

r sin � D r1 sin �1 D r2 sin �2

�
 � � � 
 ; 0 � � � 
 & 0 � �2 � 2


where � D 
 , �2 D 0 at y D 0C,and �a � x � a for the upper crack surface. And
thus � D 
 , �2 D 2
 at y D 0�, and �a � x � a for the lower crack surface. These
conditions lead to z2 � a2 D �rr2 D x2 � a2.

Now, assume a traction-free crack surface as the boundary condition and apply
the proper definitions given above to Eq. (4.131a) to get

� x C � y D � Re

 
2r1ei�1

p
r2ei�2rei�

� 1
!

D � Re

�
r1p
r2r

ei�1

ei�2=2ei�=2
� 1

�

D � Re



r1p
r2r

ei.�1��2=2��=2/ � 1
�
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D � Re

�
r1p
r2r



cos

�
�2 C �

2
� �1

�
C i sin

�
�1 � �2 � �

2

��
� 1




D �



r1p
r2r

cos

�
�1 � �2 � �

2

�
� 1

�
(4.132)

For r1 D a and r2 D 2a at �1 D �2 D 0 and r > 0 at � ! 
 , Eq. (4.132) becomes

� x C � y D �

�
ap
2ar

cos
�

2
� 1

�
(4.133)

Similarly,

� y � � x C 2i� xy D � C i
2a2�r sin �

.r2r/
3=2



cos

3 .� C �2/

2
� i sin

3 .� C �2/

2

�

� y � � x C 2i� xy D � C i
2a2�r sin �

2ar
p
2ar



cos

3�

2
� i sin

3�

2

�
(4.134)

� y � � x C 2i� xy D � C 2a�p
2ar

�
sin � sin

3�

2
C i sin � cos

3�

2

�

Extracting the real and imaginary parts of Eq. (4.134) yields along with (4.133) the
combination of crack tip stress expressions

� x C � y D 2�
p

ap

2
r
cos

�

2
� �

� y � � x D 2�
p

ap

2
r
sin

�

2
sin

3�

2
C � (4.135)

i� xy D i
�

p

ap
2
r

cos
�

2
sin

�

2
cos

3�

2

Manipulating and simplifying the stress expressions defined by Eq. (4.135) gives the
elastic stresses near the crack tip in a convenient closed form. Hence, the analytical
expressions for predicting the individual elastic crack tip stress field in Cartesian
coordinates become exactly the same as derived in a previous section. The individual
elastic stresses are

� x D �
p

ap
2
r

cos
�

2

�
1 � sin

�

2
sin

3�

2

�

� y D �
p

ap
2
r

cos
�

2

�
1C sin

�

2
sin

3�

2

�
(4.136)

� xy D �
p
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2
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cos
�

2
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�

2
cos

3�

2
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Using the definition of the stress intensity factor for mode I, KI D �
p

a, provides

the elastic stress field near the crack tip as defined by Eq. (4.13). Hence,

� x D KIp
2
r

cos
�

2

�
1 � sin

�

2
sin

3�

2

�
D KIp

2
r
fx .�/I

� y D KIp
2
r

cos
�

2

�
1C sin

�

2
sin

3�

2

�
D KIp

2
r
fy .�/I (4.13)

� xy D KIp
2
r

cos
�

2
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�

2
cos

3�

2
D KIp

2
r
fxy .�/I

In polar coordinates,

� r D KI

4
p
2
r

�
5 cos

�

2
� cos

3�

2

�
D KI

4
p
2
r

fr .�/I

�� D KI

4
p
2
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�
3 cos

�

2
C cos

3�

2

�
D KI

4
p
2
r

f� .�/I (4.58)

� r� D KI

4
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2
r

�
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�

2
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2

�
D KI

4
p
2
r

fr� .�/I

Assume that a solid deforms under plane-strain condition and that it is subjected to
bounded stress conditions under mixed-modes I and II at infinity. In such a case, the
stress field near the crack tip can be derived using the Airy stress function [13]


 D KI

3
p
2


r3=2
�

cos
3�

2
C 3 cos

�

2

�
� KIp

2

r3=2

�
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2
C sin

�

2

�
(4.137)

In addition, the complex displacement is U D u C iv. Excluding details on
the algebra required to manipulate Eq. (4.119), the displacement components in
rectangular coordinates are

u D KI

G

r
r

2

cos

�

2



� � 1
2

C sin2
�

2

�
(4.138a)

D KI

2G

r
r

2
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�

2
Œ� � cos ��

v D KI

G

r
r

2
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�

2



� C 1

2
� cos2

�

2

�
(4.138b)

D KI

2G

r
r

2

sin

�

2
Œ� � cos ��

Therefore, Eq. (4.138) takes into account the effect of Poisson’s ratio � through the
parameter �, which defines either plane stress or plane-strain condition under mode
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I loading. Denote that �x D � and �y D v, and if � D 0 for crack growth along the
x-axis, it gives �x > 0 and �y D 0.

Example 4.1. Consider an infinite plate containing a single-edge crack subjected
to mode III loading as shown in the sketch given below. Find the elastic shear stress
and displacement field equations using the given complex potential, which are used
for mapping an arbitrary shaped region into a circular domain.

Solution. Use the crack coordinates given in Fig. 4.15b so that

� .z/ D �1pz2 � a2 D �1p.z C a/ .z � a/

� 0 .z/ D �1zp
z2 � a2

D �1z
p
.z C a/ .z � a/

Now, let the complex variable z be related to the auxiliary crack angles as

z D r1e
i�1

z C a D r2e
i�2

z � a D rei�

then

� 0 .z/ D �1r1ei�1
p

r2ei�2rei�

� 0 .z/ D r1�1
p

r2r
exp



i

�
�1 � �2 C �

2

��

Letting r1 D a and r2 D 2a at �1 D 0 gives the conjugate potential function and
the elastic entities. Hence, the potential function becomes

� 0 .z/ D a�1
p
2ar



cos

�
�1 � �2 C �

2

�
C i sin

�
�1 � �2 C �

2

��
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Then, the real and imaginary parts give the shear stresses as

� yz D Re � 0 .z/ D a�1
p
2ar

cos

�
�1 � �2 C �

2

�

� xz D Im � 0 .z/ D a�1
p
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�
�1 � �2 C �

2

�

The out-of-plane displacement is

uz D 1

G
Im � .z/ D 1

G
�1pr2ei�2rei�

uz D 1

G
�1p

2ar sin

�
�2 C �

2

�

For �1 D �2 D 0, the shear stresses and the displacement are
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Now, evaluating these entities by letting � D 0, the shear stresses and the out-of-
plane (antisymmetric) displacement become

� yz D a�1
p
2ar

� xz D 0

uz D 0

This implies that crack growth under mode III is governed by a single elastic shear
stress � yz. Recall that mode III is also referred to as the antisymmetric, tearing
or anti-plane shear mode loading. The real and imaginary trigonometric parts, as
determined above, can be evaluated at �1 D �2 D 
 Thus,

� yz D Re � 0 .z/ D a�1
p
2ar

cos

�

 � 
 C �

2

�

� xz D Im � 0 .z/ D a�1
p
2ar
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�

 � 
 C �

2
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The normalized shear stress distributions for � yz and � xz are depicted in the figure
given below.

The next figure shows the distribution of the normalized shear � yz at several
values of �2 and fixed �1 D 0.

Denote that � yz uniformly decreases with increasing � at the given auxiliary
angle �2.

Example 4.2. Consider an infinite plate containing an embedded elliptical crack
shown below subjected to remote and uniform uniaxial tension (mode I fracture).



4.6 Method of Conformal Mapping 171

A complete stress analysis must include shear stresses along slip planes due to
the applied tension loading condition and shear stresses due to dislocations arbi-
trarily located along the slip planes. A complete stress analysis is very complicated,
and for this reason, transforming or mapping the exterior of the ellipse in the z-
plane into the exterior of a unit circle in the �-plane is considered. The mapping
function for the elliptical crack and its inversion expressions are, respectively,

z D c

�
� C m

�

�

� D z

c
C
r� z

2c

�2 � m

where c > 0, 0 � m � 1, b D a=2, a D 2mm, b D 1mm and

c D a C b

2

m D a � b

a C b

� D b2=a (crack tip radius)

The required analytical work for determining all necessary stresses is complicated
and difficult to obtain. However, conformal mapping of the elliptical crack in the
z-plane onto a unit circle in the �-plane can alleviate the complicated algebra to
an extent using Fischer and Beltz [30] approach, which includes the image terms
� im .�/ and  im .�/ of the complex potentials �o .z/ and  o .z/, respectively. The
complete set of complex potentials are � .�/ D �o .�/ C � im .�/ and  .�/ D
 o .�/C  im .�/ where

�o .�/ D c�

4

�
� C m

�

�

� im .�/ D �c�

2

�
1C m

�

�
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 o .�/ D c�

2

�
� C m

�

�

 im .�/ D �c�

2

0

@1C m

�
C
.1C m/

�
1C m�2

�

�
�
�2 � m

�

1

A

Determine the elastic stresses ahead of the crack tip using Eq. (1.95) and the applied
stress intensity factor KI. Use an applied stress of � D �1

y D 100MPa and assume
that crack growth occurs along the crack plane (x-axis).

Solution. The constants are

c D a C a=2

2
D 3a

4
D 1:5 mm b D a=2 D 1 mm

m D c � c=2

c C c=2
D 1

3
D 0:33

� D b2=a D a=4 D 0:5 mm (crack tip radius)

Recall that r D 1 and j�j > 1 for a unit disk and � D 0 on the x-axis. Therefore,

z D rei�=2 D r .cos �=2C i sin �=2/ D 1

z D re�i�=2 D r .cos �=2 � i sin �=2/ D 1

The complex potentials in the �-plane are

� .�/ D c�
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�
� � 2C m

�
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2

2

4� � 1

�
�
.1C m/

�
1C m�2
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�
�
�2 � m

�

3

5

and the complex variable � and its derivative d�=dz are

� D z

c
C
q
Œz= .2c/�2 � m

d�

dz
D 1

c
C z

2c
p

z2 � 4c2m

Use the chain rule to find the derivatives of � .�/ and  .�/ with respect to z. Due
to the complexity of the mathematics, not all details are shown. Hence,
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and

� 00 .z/ D d� 0 .z/
d�

d�

dz
D �c�

4

�
2 .m C 2/

�3

��
1

c
C z

2c
p

z2 � 4c2m

�

� 00 .z/ D �c�

4

2

6664
2 .m C 2/

�
z=c C

q
Œz= .2c/�2 � m

�3

3

7775

�
1

c
C z

2c
p

z2 � 4c2m

�

� 00 .z/ D .0:875C 0:64082i/ � (b)

Then,
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From Eq. (1.95), the real parts are

� x C � y D 4Re
�
� 0 .z/

	 D �

� y � � x D 2Re
�
z� 00 .z/C  0 .z/

	 D 3:1405� (d)

� xy D Im
�
z� 00 .z/C  0 .z/

	 D 6:281�
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from which the opening stress and the stress intensity factor become

� y D 2Re
�
� 0 .z/

	C �
z� 00 .z/C  0 .z/

	

KI D ˚
2Re

�
� 0 .z/

	C �
z� 00 .z/C  0 .z/

	�p

a

Inserting Eqs. (a) through (c) into (d) the above combination of stress equations
yields the elastic stresses as

� y D 2:0753� ; � x D 1:0753� ; � xy D 6:281� (e)

If � D 100 MPa, then the elastic stresses near the crack tips are

� y ' 207:53MPa; � x D 107:53 MPa; � xy D 628:10 MPa

The stress intensity factor with a correction factor ˛ can be found in Chap. 3 as

KI D ˛�
p

a

Although ˛ depends on the crack geometry and crack type, Eq. (e) for � y gives the
general correction factor for the KI equation. The conformal mapping used in this
example yields ˛ D � y=� D 2:0753

KI D � y
p

a D 2:0753�

p

a & ˛ D 2:0753 (Conformal mapping)

KI D .2:0753/ .100 MPa/
p

 .1x10�3 m/

KI D 11:63 MPa
p

m

Using Eq. (4.13) yields the same value for stress intensity factor along with � D 0

such that the crack will grow along its own plane (x-axis). Hence,

KI D � y
p

a cos

�

2

�
1C sin

�

2
sin

3�

2

�
@ � D 0

KI D 2:0753�
p

a & ˛ D 2:0753

KI D .2:0753/ .100 MPa/
p

 .1x10�3 m/

KI D 11:63 MPa
p

m

For comparison purposes, use an approximation scheme similar to the one intro-
duced in Chap. 3 for pressure vessels to get the stress intensity factor KI for a infinite
plane. Thus, the corrected KI equation is

KI D � y

p

a=Q:f .�/

f .�/ D



sin2 .�/C
�a

c

�2
cos2 .�/

�1=4

Q D 1C 1:464
�a

c

�1:65 D 1C 1:464

�
c=2

c

�1:65
D 1:4665
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where Q is the flaw shape factor, Eq. (3.44) or Fig. 3.6, and the maximum KI value
is obtainable when � D 90ı (Fig. 3.5) such that f .�/ D 1 [6]. Then,

KI D � y

p

a=Q:f .�/ D 2:0753�

p

a=1:4665

KI D 1:7196�
p

a & ˛ D 1:7196 (Crack geometry)

KI D .1:7196/ .100 MPa/
p

 .1 � 10�3 m/

KI D 9:64 MPa
p

m

Despite that conformal mapping and the Airy stress function approaches do not
incorporate any correction factor due to the crack geometry, the induced correction
factor ˛ for KI is due to the fundamental combination of stresses. Both complex
variable methods provided the same KI value under the current conditions, and it
is approximately 17% higher than the KI equation due to the crack shape factor Q
(crack geometry factor). Hence,

KI D �
11:63 MPa

p
m
�

cos
�

2

�
1C sin

�

2
sin

3�

2

�

KI.max/ D 11:63 MPa
p

m at � D 0

KI .min/ D 4:45 MPa
p

m at � D 
=2 D 90ı

The figure below shows that KI yields a nonlinear curve, which has extreme points
at � D 0 and � D 
=2 corresponding to the maximum and minimum KI values,
respectively. It has been assumed that the crack extends along its own plane.
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Despite that the stress intensity factor is one of the most important parameters
in the fracture mechanics, determining its value at a particular loading mode related
to specimen configuration is rather an experimental difficulty due to the ASTM
requirements for validity.

This example problem only includes the logical mathematical procedure in a
complex domain for calculating the stress intensity factor KI . The ASTM validity
assessment is not included since the determination of the plane-strain fracture
toughness, KIC, is not required. Therefore, the above procedure is acceptable from
a theoretical perspective.

4.6.2 Point Forces

Although there are many reports and solutions to elasticity problems that can be
found in the literature, it is pertinent to highlight a complex variable method for
solving the problem of concentrated forces on the face of a rivet hole containing
a crack in an infinite plate [7, 32, 39, 43, 49, 51]. Figure 4.16 schematically shows
a rivet hole under uniform pressure (Fig. 4.16a) and two cracks emanating from a
rivet hole (Fig. 4.16b) due to concentrated forces.

Consider the infinite plate containing a single hole bounded by the contour C and
assume that the origin of the Cartesian coordinates lies in the center of the hole. If
the resultant force F D X C iY acts over C (Fig. 4.16a), then Eq. (4.114) gives the
analytic complex potentials as

� .z/ D � X C iY

2
 .1C �/
log .z/C �� .z/

(4.139)

 .z/ D � .X � iY/

2
 .1C �/
log .z/C  � .z/

where �� .z/ D P1
nD1 anz�n and  � .z/ D P1

nD1 bnz�n are analytic and single-
valued complex potentials in the plate for large jzj [24, 38].

In fact, �� .z/ and  � .z/ can be eliminated from Eq. (4.139) since log .z/
dominates the complex potentials at large distances from the hole. This implies that
the moment is zero when the contour C surrounds the point z D 0 and consequently,
the resultant force is simply X C iY [24]. Thus,

� .z/ D � X C iY

2
 .1C �/
log .z/

(4.140)

 .z/ D � .X � iY/

2
 .1C �/
log .z/

However, if the resultant force X C iY and the moment M act at a point zo, then the
induced complex potentials are [24]
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Fig. 4.16 (a) Rivet hole under uniform force and (b) a crack emanating from a rivet hole under
concentrated forces on the upper face in an infinite plate

� .z/ D � X C iY

2
 .1C �/
log .z � zo/

(4.141)

 .z/ D � .X � iY/

2
 .1C �/
log .z � zo/C � .X C iY/

2
 .1C �/

zo

z � zo

C iM

2
 .z � zo/

Consider the case shown in Fig. 4.16b for a single force acting on the hole at point
So . Thus, the applicable complex potentials described by Muskhelishvili [38] for a
region mapped outside the unit circle take the form

� .z/ D � X C iY

2
 .1C �/
log .z/C �o .z/

(4.142)

 .z/ D � .X � iY/

2
 .1C �/
log .z/C  o .z/

For a point force on the unit circle, the boundary condition on the contour C is

h .z/ D � .z/C � 0 .z/C  .z/ (1.143)

Substituting Eq. (4.142) into (4.143) yields

ho D .X � iY/

2

log .z/C .X � iY/

2
 .1C �/

�
1C z2

�

.1 � z2/
(4.144)
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Assume that the Cauchy integrals are

�o .z/ D � 1

2
 i

Z

C

hod�

� � z
(4.145)
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� � z
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�2 C 1

�

�2 � 1 �
0

o .�/

Then, the solution of the Cauchy integrals is [32]

�o .z/ D � .X � iY/

2

Œlog .� � z/ � log .�/�

 o .z/ D .X � iY/

2

Œlog .� � z/ � log .�/� (4.146)
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Combining Eqs. (4.142) and (4.146) gives

� .z/ D �X C iY

2




log .� � z/C �

� C 1
log .�/

�

 .z/ D � .X � iY/

2
 .1C �/
log .�/C .X � iY/

2

Œlog .� � z/ � log .�/� (4.147)
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�

Figure 4.16b illustrates that there exists multiple forces having real and imaginary
parts. Hence, the total complex force and its conjugate take the form

F D
mX

nD1
.Xn C iYn/ (a)

F D
mX

nD1
.Xn � iYn/ (b)

Substituting Eqs. (a) and (b) into (1.47) yields potential functions

� .z/ D � F

2




log .� � z/C �

� C 1
log .�/

�

 .z/ D �F

2
 .1C �/
log .�/C F

2

Œlog .� � z/ � log .�/� (4.148)
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Fig. 4.17 Traction forces
acting on the elliptical crack
surface in the z-plane

where F and F are total forces per unit thickness. Now the complex stress intensity
factor (SIF) equation at the crack tips can be defined as [23, 32]

KI � iKII D 2

r



a
� 0 .z/ for jzj D ˙1 (4.149)

From Eq. (4.148),

KI � iKII D F

r
1


a



1

z � � � �

.� C 1/ �

�
(4.150)

where KI and KII are the real and imaginary parts given by Eq. (4.150), respectively.

4.6.3 Complex T-Stress

Furthermore, it is appropriate to include the T-stress (Tx) in terms of complex
potentials to account for the effects of stress biaxiality on the stress intensity
factor KI . The theoretical analysis that follows is described by Chen et al. [18] using
the crack front position and crack back position techniques Consider the case when
a stress distribution or traction forces (Py � iPxy) act on the crack surface. Thus,
Eq. (4.89) along with the Tx acting parallel to the crack flanks can be written as



� x � xy

� xy � y

�
D KIp

2
r



fx .�/ fxy .�/

fxy .�/ fy .�/

�
(4.151)

C KIIp
2
r



gx .�/ gxy .�/

gxy .�/ gxy .�/

�
C



Tx Pxy

Pxy Py

�

For mode I, assume a straight crack in a infinite plate subjected to infinite biaxial
stresses, and let the origin of the Cartesian coordinates be located at the crack tip as
shown in Fig. 4.17.
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Evaluating Eq. (4.151) at � D 0 and r D x as r ! 0 yields

� x D KIp
2
r

C Tx and � y D KIp
2
r

C Py (4.152)

and subtracting the expressions in Eq. (4.152) gives the T-stress in the crack front as

Tx D lim
r!0

�
� x � � y

�C Py or Tx D � lim
r!0

�
� y � � x

�C Py (4.153)

For mode II, the upper and lower stresses due to the traction forces acting on the
crack surfaces (Fig. 4.14) are evaluated at � D ˙
 and r D �x as r ! 0 so that

�C
x D � 2KIIp

2
r
C Tx and �C

y D Py at � D C
 (4.154a)

��
x D 2KIIp

2
r
C Tx and ��

y D Py at � D �
 (4.154b)

Combining Eqs. (1.95) and (4.153) yields the T-stress in terms of complex
potentials at the crack front [18]

Tx D � Re
�
� y � � x C 2i� xy

	
zDr C Py

Tx D �2Re
�
z� 00 .z/C  0 .z/

	
zDr C Py (4.155)

Similarly, Eqs. (1.95) and (4.154) yields the T-stress for the crack back position

Tx D lim
r!0

��
�C

x C �C
y

�C �
��

x C ��
y

�	
zDr

� Py

Tx D 2Re
h
� 0 .z/C C � 0 .z/�

i

zD�x
� Py (4.156)

Tx D 4Re
�
� 0 .z/C

	
zD�x � Py

In summary, the T-stress expressions, Eqs. (4.155) and (4.156), can be evaluated in
the interval �1 < z < 1 when y D 0. If mode I prevails, then Tx is determined
by Eq. (4.89). It should be mentioned that the influence of shear stresses due to
dislocations ahead of the crack tip has been excluded in the above analytical analysis
in order to keep the mathematics as simple as possible.
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4.7 Problems

4.1. (a) Calculate KI using the singularity and non-singularity stresses for a single-
edge cracked plate having a D 4mm, x D 0:1, and L=w � 1:5 and subjected to
300MPa in tension. (b) Plot the stress ratio Tx=� and the stress biaxiality ratio ˇ as
functions of x D a=w. Here, w is the width of the plate.

4.2. Using the information given in problem 4.1, calculate the stress intensity factor
when Tx D 0.

4.3. Assume that a single-edge crack in a plate is loaded in tension. Derive the
dominant near crack tip stresses in rectangular coordinates using the Westergaard
stress function

Z .z/ D KIp
2
z

where KI D �
p

a

4.4. Consider a unit circle with its center at the origin and let the function F .z/ D
P .z/C iQ .z/ be holomorphic inside the contour C. Also let the function F .�/ take
definite boundary values where � D eiı gives the points on C. If the boundary
condition is

F .�/C F .�/ D f .ı/

determine the Cauchy integral formula and the integral for F .z/.

4.5. Show that the fundamental combination of stresses can be defined in terms of
Cauchy integral formula:

� x C � y D 1


 i

Z

C

hd�

.� � z/2
C 1


 i

Z

C

hd�

.� � z/2
� 1


 i

Z

C

h .�/ d�

�2

� y � � x C 2i� xy D 1


 i

Z

C

hd�

.� � z/3
C 1


 i

Z

C

hd�

.� � z/2
C 1


 iz2

Z

C

hd�

.� � z/2

� 1


 iz2

Z

C

hd�

�2

4.6. Suppose that a plate containing a single unstressed crack (Fig. 4.15) is
deformed by unknown stresses at infinity and assume that the complex potential,
f 0 .z/ D � yy � i� xy, represents the stress distributions across the crack contour C. (a)
Determine the stress distribution on y D 0 outside the crack and (b) the upper and
lower boundary functions for jxj � a.
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4.7. Consider an infinite plate subjected to a remote tensile stress (S) normal to the
direction of a central crack. If the complex potentials for this type of crack are

� .z/ D S

4

h
2
p

z2 � a2 � z
i

�0 .z/ D  .z/ D S

2



z � a2p

z2 � a2

�

then determine the crack tip stresses using the Westergaard stress function Z .z/ D
2� 0 .z/ when x >> a.

4.8. Consider the elliptical crack shown below and assume that the crack is in the
z-plane where z D � C a and p .z/ D p .�/. Derive the stress equations using the
given crack geometry and the Westergaard complex method. Make assumptions if
needed.

4.9. Assume that an infinite plate contains a through-central crack along the
x-axis. If the plate is subjected to a remote or infinite stress loading condition,
� y D �1

y D S, �1
x D �1

xy D 0, then use the Sanford [18] complex equation

2� 0 .z/ D Z .z/ �  � .z/

Here, � 0 .z/ may be defined by a Cauchy integral, Z .z/ is the Westergaard stress
function,  � .z/ is a complex polynomial, and z is the complex variable define as
z D x C iy . Based on this information, determine a function for the stress intensity
factor KI and expand  � .z/ when n D 0 and 1. Let z D a be half the total crack
length.

4.10. Derive the stresses defined by Eq. (4.13) using the Westergaard functions and
the complex stress equations given below

Z0 D KIp
2
 .z � a/

and Z00 D KIq
4
 .z � a/3

and

� x D Re Z0 � y Im Z00

� x D Re Z0 C y Im Z00

� xy D �y Re Z00
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5Crack Tip Plasticity

5.1 Introduction

This chapter includes some theoretical aspects of linear-elastic fracture mechanics
(LEFM) when a crack tip undergoes some plasticity [1–10, 12–24]. For a small-
scale yielding (SSY) approximation, the plastic zone size (r) is used to define the
classical singularity in the elastic field equations derived in Chap. 4 as r�1=2. Some
models for the plastic zone size (r) are considered herein since r can be related to
an effective crack length (ae D a C r) for determining the effective stress intensity
factor (Keff ) for modes I, II, or III. Generally, mode I is the most common load.
However, if plasticity ahead of the crack tip is significantly large, then elastic-plastic
fracture mechanics (EPFM) is used to characterize the fracture resistance of a ductile
material.

As a result of plastic deformation ahead of the crack tip, the plastic zone develops
and the crack tip blunts to an extent, while the crack faces separate, making the crack
mouth opening displacement (CMOD), the crack opening displacement (COD), the
crack tip opening displacement (CTOD), or the crack tip opening angle (CTOA)
a measurable parameter related to fracture resistance [32]. In particular, during the
plastic deformation process, the plastic region ahead of the crack tip is characterized
by determining its size. Usually, the crack tip opening displacement (ıt D CTOD)
[68] and the J-integral [52] are the two most common parameters used in EPFM
for determining the fracture toughness of an elastic-plastic material. In fact, EPFM
considers a substantial plastic deformation under quasi-static conditions, and it
is analyzed using the large-scale yielding (LSY) approach for which r in elastic-
plastic (ductile) materials is significantly large (r � a;w;B) and failure is typically
governed by the critical crack tip opening displacement (ıtc D CTOD) and the
path-independent J-integral (JIC) at the onset of crack growth under mode I loading.
Recall that the J-integral is a line integral around the crack tip that measures fracture
toughness in terms of nonlinear energy release rate for crack growth. The J-integral
can also be used for other loading modes.
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5.2 Crack Tip Stress State

Consider mode I loading under quasi-static conditions in the field of linear-elastic
fracture mechanics (LEFM), where the crack opening stress derived in Chap. 4

takes the form � y D
�

KI=
p
2
r

�
fI .�/. This equation describes the magnitude

of the stress (KI=
p
2
r) and its distribution ahead of the crack tip at (r; �). Recall

that fI .�/ is a trigonometric function, r is the plastic zone size, and theoretically
� y ! 1 as r ! 0. In practice, � y is limited to the yield strength (� ys) of the
material, r is very small (SSY D small-scale yielding) compared with the specimen
dimensions (r << a;w;B), and fracture is governed by the critical stress intensity
factor KC D GC=E for plane stress and KIC D �

1 � v2�GIC=E for plane-strain
conditions, where GC or GIC is the critical strain energy release rate or the driving
force for crack propagation at ac > a, where ac is the critical length and a is allowed
to grow to a maximum so that a D ac.

Most engineering metallic materials are subjected to an irreversible plastic
deformation. If plastic deformation occurs, then the elastic stresses are limited by
yielding since stress singularity cannot occur, but stress relaxation takes place within
the plastic zone. This plastic deformation occurs in a small region and it is called
the crack tip plastic zone.

On the other hand, a large-scale yielding (LSY) corresponds to a large plastic
zone, which occurs in ductile materials due to r >> a. As a consequence of plastic
deformation ahead of the crack tip, the linear-elastic fracture mechanics (LEFM)
theory is limited to r << a; otherwise, elastic-plastic fracture mechanics (EPFM)
theory controls the fracture process since (r � a).

Plane Strain

1. Large thickness B, �z ' 0 in an internal region and � z D v
�
� x C � y

�
: This

means that the material is constrained in the z-direction due to a sufficiently
large thickness and the absence of strain in this axis. In fact, the stress in the
z-direction develops due to the Poisson’s effect.

2. Yielding is suppressed due to the kinematics constraints from the surrounding
elastic material. Kinematics describes the motion of points.

3. Plastic deformation is associated with the hinge mechanism (internal necking in
Fig. 5.1).

4. The plastic zone size is small in the midsection of the plate (Fig. 5.1a). This
condition implies that the plastic zone must be smaller than the crack length.

Plane Stress

1. The thickness B is small, � z D 0, and �z ¤ 0 through the whole thickness.
Consequently, a biaxial state of stress may result.

2. If � y � � x > 0 (Tresca criterion), then yielding occurs by a cumulative slip
mechanism (Fig. 5.1b).
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Fig. 5.1 Schematic plastic zone shapes. (a) 3-dimensional plastic zone and the plastic hinge
model [25] and (b) plastic zone surfaces [13]

3. The height of the yielded zone is limited due to the slip mechanism.
4. The total motion has a necking effect in front of the crack as it opens.

5.3 The Plastic Zone Shape

Figure 5.1 shows schematic plastic zones for plane stress (thin plate) and plane-
strain (thick plate) conditions. Some requirements for plane conditions were
introduced in Chap. 1, but they are included henceforth from a different perspective.
Also depicted in Fig. 5.1 is the hinge model for plasticity ahead of a crack tip
[9, 16, 25–34, 36, 44, 49].

In this chapter, a few models for the configuration or the shape of the crack
tip plasticity are included. It is essential to have a thorough knowledge of the
shape and size of the plastic zone in order to compare theoretical and experimental
results for plane stress and plane-strain conditions. Furthermore, the formation of
the plastic zone depends on the material properties, specimen or structural element
configuration, and loading conditions [50–65, 67–70].
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Most solid materials develop plastic strains when the yield strength is exceeded
in the region near a crack tip. Thus, the amount of plastic deformation is restricted
by the surrounding material, which remains elastic during loading.

Theoretically, linear-elastic stress analysis of sharp cracks predicts infinite
stresses (� ij ! 1) at the crack tip. In fact, inelastic deformation, such as plasticity
in metals and crazing in polymers, leads to relaxation of crack tip stresses caused by
the yielding phenomenon at the crack tip [2]. As a result, a plastic zone is formed
containing microstructural defects such as dislocations and voids. Consequently,
the local stresses are limited to the yield strength of the material. This implies that
the elastic stress analysis becomes increasingly inaccurate as the inelastic region
at the crack tip becomes sufficiently large and, consequently, linear-elastic fracture
mechanics (LEFM) is no longer useful for predicting the field equations [2].

The size of the plastic zone (r) can be estimated when moderate crack tip yielding
occurs. Thus, the introduction of the plastic zone size, as a correction parameter
that accounts for plasticity effects adjacent to the crack tip, is vital in determining
the effective crack length (ae D a C r) and the effective stress intensity factor,
Keff D f .�; ae/. The plastic zone, which develops in materials subjected to local
yielding at the crack tip, can be determined for plane conditions, that is, plane strain
for maximum constraint on relatively thick components and plane stress for variable
constraint due to thickness effects of thin solid bodies.

For convenience, Eqs. (3.27) and (3.28) are included in this chapter as a starting
point for determining the plastic zone size equation. Thus,

� y D �

r
a

2r
(5.1)

KI D �
p

a (5.2)

Setting � y D � ys in Eq. (5.1) means that plasticity exists adjacent to the crack tip.
Notice that the double subscript in this local stress has being changed to one just for
convenience. Combining these equations yields the plastic zone size as [28]

r D a

2

�
�

� ys

�2
(5.3)

Here, � is the applied stress (MPa), � ys is the yield strength (MPa), and a is the
starting crack length. It has been reported [28] that yielding at the crack tip causes
the crack to behave as if it is larger than the actual size and, therefore, the tensile
stress reaches a finite value.

Furthermore, the stress � y produces plastic work when � ys � � y � �u due to an
external applied stress � , and it is transferred into strain energy density for plastic
deformation to occur. This implies that the plastic zone size reaches a maximum
magnitude when � y D �u, where �u is the ultimate tensile strength. Consequently,
the effective crack size, ae D a C r, becomes the fictitious crack length, which
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extends through the plastic zone due to initiation and coalescence of voids. This
may repeat and continue until the actual crack reaches a critical value at the onset
of crack propagation for fracture or separation.

5.4 Irwin’s Approximation

Irwin [28] has shown that the effect on the plastic zone is to artificially extend the
crack by a distance r1 (Fig. 5.2) known as Irwin’s plastic zone correction under
small-scale yielding (SSY) for plates with thickness B.

The crack model in Fig. 5.2 can be modeled as a two-dimensional plate surface
containing a crack as a plane with a particular domain in the (x,y) Cartesian
coordinates. Accordingly, r and � become the polar coordinates with the origin at
the crack tip on the same plane.

The elastic stress distribution shown in Fig. 5.2 indicates that � y ! 1 as r ! 0.
Actually, � y is limited to � ys as shown by the elastic-plastic stress distribution. This
means that � y ! 1 occurs mathematically, not physically.

In order to account for the changes due to the artificial crack extension or virtual
crack length and to visualize the plastic zone as a cylinder, the crack length a can
be replaced by ae in Eq. (5.3). Moreover, the virtual crack length defined by ae is
referred to as the effective crack length.

The conditions of equilibrium for a stationary crack tip include internal and
external forces per unit length [5,69]. In such a case, the areas related to the shedding
loads Ps and Pys due to equal yielding; that is, APs D APys when the plastic zone
size is r << a. This is schematically depicted in Fig. 5.2 for SSY . In fact, Irwin’s

Fig. 5.2 Crack tip plastic zone model for mode I loading
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approximation is an elastic-plastic fracture mechanics approach since r > 0 and
r << a, but the elastic fracture mechanics part controls the fracture process ahead
of the crack tip. These loads are the equilibrium forces per unit length defined by
[16, 28]

Ps D B
Z r1

o

�
� � �� ys

�
dx (5.4)

Pys D B
Z r2

o
�� ysdx (5.5)

where � D 1 for plane stress and � D p
3 for plane strain [28].

For equilibrium conditions, the force balance
P�

Ps C Pys
� D 0 leads to the

determination of the plastic zone size. Hence,
Z r1

o

�
� � �� ys

�
dx �

Z r2

o
�� ysdx D 0 (5.6)

Inserting Eq. (3.1) into (5.6) and integrating yields

Z r1

o

�
KIp
2
x

� �� ys

�
dx �

Z r2

o
�� ysdx D 0 (a)

2r1KIp
2
r1

� �� ys .r1 C r2/ D 0 (b)

2r1� y � �� ys .r1 C r2/ D 0 (5.7)

When yielding occurs, the boundary between the elastic and the plastic regions is
limited to the yield strength (� ys) of the solid material. Thus,

� y D �� ys (5.8)

Inserting Eq. (5.8) into (5.7) gives 2r1 D r1 C r2 which implies that r1 D r2 and
r D r1 C r2 as shown in Fig. 5.2. Recall that the effective crack length is defined
as ae D a C r, and it is referred to as the virtual crack length proposed by Irwin
[16, 28].

Replacing the crack length a for ae D a C r into Eq. (3.28) provides the effective
stress intensity factor for a stationary crack under monotonic mode I loading as

KI D �
p

 .a C r/ D �

p

ae (5.9)

This KI equation is the corrected stress intensity factor due to finite specimen size
and plasticity. Now, inserting Eq. (5.3) into (5.9) yields

KI D �

vuut
a

"
1C 1

2

�
�

� ys

�2#
(5.10)
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Furthermore, the plastic zone size for plane conditions can easily be determined by
combining Eqs. (3.1) and (5.8). Thus, Irwin’s plastic zone expression is derived as

r D 1

2


�
KI

�� ys

�2
D a

2

�
�

�� ys

�2
(5.11)

5.5 Dugdale’s Approximation

Dugdale [19] proposed a strip yield model (cohesive zone model) for thin elastic
perfectly plastic material to characterize the plastic zone under mode I plane stress
conditions. Barenblatt [4] considered a slightly different approach to yield similar
results.

Consider Fig. 5.3 which shows the plastic zones in the form of narrow strips
extending a distance r each and carrying a closure stress equals to the yield stress
� ys to prevent the crack from opening [5, 19]. The phenomenon of crack closure is
caused by internal stresses since they tend to close the crack in the region where
a < x < c.

In addition, the term ıt D 2�y in Fig. 5.3 is the so-called the crack tip
opening displacement (CTOD) being twice the displacement (�y) in the y-direction
perpendicular to the applied stress. Details on CTOD are included in a later section.

The Dugdale’s model introduces an effective crack length (ae) by adding the
wedge-like plastic zone size (r). For half crack length due to symmetry, ae D a C r
which makes the crack fictitiously longer than the real crack size. Consequently, this
treatment induces an effective stress intensity factor Ke > KI .

The central crack problem in Fig. 5.3 can be modeled using Westergaard complex
function of the form [60]

Z .z/ D P




p
a2 � x2

.z � x/
p

z2 � a2
(5.12)

Now the internal stress along the crack plane in the complex plane z D x C iy with
the system boundary at y D 0 is

� y D Re Z .z/ D P




p
a2 � x2

.z � x/
p

z2 � a2
(5.13)

Fig. 5.3 Dugdale strip yield
model [19] for non-strain
hardening solids under plane
stress conditions: Dugdale’s
strip yield model for a wedge
crack loaded in tension.
Taken from [9]
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The stress intensity factor due to wedge internal forces is derived using Eqs. (3.1)
and (5.14). For point A in Fig. 5.3,

KA D lim
r!0

� y

p
2
r and r D .x � a/ (5.14)

KA D lim
z!a

P




p
.a C x/ .a � x/

p
2
 .z � a/

.z � x/
p
.z C a/ .z � a/

(a)

KA D lim
z!a

P




p
.a C x/ .a � x/

p
2


.z � x/
p
.z C a/

(b)

KA D P




p
.a C x/ .a � x/

p
2


.a � x/
p
.a C a/

(c)

Simplifying Eq. (c) yields

KA D Pp

a

r
a C x

a � x
(5.15)

Similarly, the stress intensity factor at point B is

KB D Pp

a

r
a � x

a C x
(5.16)

Furthermore, assume that stress singularities disappear when the following equality
is true K� D �KI , where K� is the applied stress intensity factor and KI is due to
yielding ahead of the crack tip [9]. The total stress intensity factor, KI D KA C KB,
is derived in a practical mathematical form by using a differential load per unit
thickness, dP D � ysdx. Thus,

dKA D dPp

a

r
a C x

a � x
D � ysp


a

r
a C x

a � x
dx (a)

dKB D dPp

a

r
a � x

a C x
D � ysp


a

r
a � x

a C x
dx (b)

and

dKI D � ysp

a

Z aCr

a

 r
a C x

a � x
C
r

a � x

a C x

!
dx (5.17)

KI D 2� ys

r
a




Z aCr

a

dxp
a2 � x2

(5.18)

KI D 2� ys




p

 .a C r/ arccos

a

a C r
(5.19)
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Equating Eqs. (5.9) and (5.19) yields


�

2� ys
D arccos

a

a C r
(5.20)

Let y D 
�=2� ys so that

a

a C r
D cos y (5.21)

r D a .sec y � 1/ (5.22)

Expanding the trigonometric function Eq. (5.22) gives

sec y D 1C y2

2Š
C y4

4Š
C y6

6Š
C : : : ' 1C y2

2
(5.23)

Inserting Eq. (5.23) into (5.22) gives

r D ay2

2
D a

2

�

�

2� ys

�2
(5.24)

Substituting Eq. (5.24) into (5.9) gives the corrected stress intensity factor due to
plasticity at the crack tip

KI D �

vuut
a

"
1C 1

2

�

�

2� ys

�2#
(5.25)

This expression, Eq. (5.25), is similar to Irwin’s expression, Eq. (5.10). Figure 5.4
compares the normalized stress intensity factors as per Irwin’s and Dugdale’s plastic
zone models.

The curves significantly differ as �=� ys ! 1; however, similarities occur at
0 < �=� ys < 0:2. This strongly suggests that both Irwin’s and Dugdale’s method
should be used very carefully at large stress ratios because of their differences in
normalized stress intensity factors.

Essentially, if r << a plasticity corrections are not necessary. If r > a, linear-
elastic fracture mechanics (LEFM) is a doubtful approach for solving engineering
problems using brittle or elastic solids, and, therefore, the most attractive approach
is the elastic-plastic fracture mechanics (EPFM), which will be dealt with in a later
section.
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Fig. 5.4 Normalized stress intensity factor as a function of stress ratio for plane stress condition

Comparing Irwin’s and Dugdale’s strip yield model, also known as Dugdale’s
approximation, can easily be done by combining Eqs. (5.11) and (5.24) for plane
stress conditions. Thus,

r ŒIrwin� D 0:41r ŒDugdale� (5.26)

Furthermore, Dugdale’s strip yield model assumes that the stress singularity
predicted by linear-elastic fracture mechanics vanishes because the elastic stress
� y ! � ys near the crack tip, inducing plastic deformation. Actually, Dugdale’s
original work on crack tip plasticity is a convenient tool for characterizing thin
sheets in mode I, where plastic deformation ahead of the crack tip is confined within
an infinitely thin strip placed along the crack plane.

Example 5.1. Plot r=a D f
�
�=� ys

�
as per Irwin’s and Dugdale’s plastic zone size,

Eqs. (5.11) and (5.24), respectively. Compare.

Solution. Irwin’s Eq. (5.11): r=a D 0:5
h

�
.1/�ys

i2 D 0:5
�
�=� ys

�2
for plane

stress and r=a D 0:5



�

.
p
3/�ys

�2
D 0:16667

�
�=� ys

�2
for plane strain Dugdale’s

Eq. (5.24): r=a D 0:5
h

�
2�ys

i2 D 1:2337
�
�=� ys

�2
for plane stress
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5.6 Yield Criteria

It is well known that significant crack tip plasticity occurs in elastic-plastic
materials. The Von Mises and the Tresca yield criteria are commonly used to derive
analytical closed-form solutions for the plastic zone sizes, which in turn give the
crack plastic zone shapes.

5.6.1 VonMises Yield Criterion

This criterion is deduced from the maximum distortion energy theory in which the
state of stress is referred to as the principal stress directions. The Von Mises yield
criterion is

.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2 D 2�2ys (5.27)

and the principal stress �1 are �2 defined by

�1; �2 D � x C � y

2
˙
r�� x � � y

2

�2 C �2xy (5.28)

Substituting Eq. (4.13) into (5.28) yields the principle stresses defined by

�1 D KIp
2
r

cos
�

2

�
1C sin

�

2

�
(5.29)

�2 D KIp
2
r

cos
�

2

�
1 � sin

�

2

�
(5.30)
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�3 D 0 For plane stress (5.31)

�3 D 2vKIp
2
r

cos
�

2
For plane strain (5.32)

Substituting Eq. (5.29) through (5.32) into (5.27) and manipulating the resultant
expressions yields the Von Mises yield criterion as

K2
I

2
r



3

2
sin2 � C h .1C cos �/

�
D 2�2ys (5.33)

from which the plastic zone size takes the following analytical form

r D 1

4


�
KI

� ys

�2 

3

2
sin2 � C h .1C cos �/

�
(5.34)

Here, h D 1 for plane stress and h D .1 � 2v/2 for plane strain. Substituting
Eq. (3.29) into (5.34) along with � D 0 gives the plastic zone as

r D h

2


�
KI

� ys

�2
D ha

2

�
˛�

� ys

�2
(5.35)

This equation resembles Eqs. (5.3) and (5.11) for plane stress condition.

5.6.2 Tresca Yield Criterion

This criterion is based on the maximum shear stress theory, which predicts that
yielding occurs when the maximum shear stress reaches half value of the yield stress
in a uniaxial tension test. This is known as the Tresca yield criterion. Thus,

�max D 1

2
� ys (5.36)

According to Mohr’s circle theory, the maximum shear stress for plane strain is the
largest of the following �max equations

�max D 1

2
.�1 � �2/ (5.37)

�max D 1

2
.�1 � �3/ (5.38)

Henceforward, �1 is algebraically the largest and �3 algebraically the smallest
principal-stress components. Combining Eqs. (5.36) and (5.37) yields the maximum
shear stress or Tresca yield criterion as
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�1 D � ys for plane stress (5.39)

�1 � �2 D � ys for plane strain (5.40)

�1 � �3 D � ys for plane strain (5.41)

Substituting the stresses given in Eq. (5.29) through (5.32) into (5.39) through (5.41)
yields the plastic zone size as

r D 1

2


�
KI

� ys

�2 
�
cos

�

2

��
1C sin

�

2

��2
from Eq. (5.39) (5.42)

r D 1

2


�
KI

� ys

�2 �
2 cos

�

2
sin

�

2

�2
from Eq. (5.40) (5.43)

r D 1

2


�
KI

� ys

�2
cos2

�

2

�
1 � 2v C sin

�

2

�2
from Eq. (5.41) (5.44)

The shapes of the normalized plastic zone size [2
r
�
� ys=KI

�2
], as per Eqs. (5.34)

and (5.43), are plotted in polar coordinates as depicted in Fig. 5.5 for plane stress
and plane-strain conditions. As expected, the former condition gives a larger plot
than the latter one.

In addition, McClintock and Irwin [43] used the Von Mises yield criterion to
determine the plastic zone shapes for mode II and III loading. Figure 5.6 shows these

Fig. 5.5 Normalized plastic zone shapes for mode I loading according to (a) Von Mises (blue
continuous line) and (b) Tresca yield criteria (dashed line)
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Fig. 5.6 Plastic zone shapes for modes II and III [43]

authors’ analyses. Nevertheless, the preceding analytical and theoretical results were
limited to the yield strength. This analytical procedure led to an error on the plastic
zone size expressions due to the exclusion of the extra load that a material has to
carry outside the plastic zone boundaries [9]. It is apparent that the mathematical
models for plotting the plastic zone size do not include the main effect of strain
hardening during plastic deformation ahead of the crack tip.

Measurements of the plastic zone can be accomplished by using techniques like:

1. Surface replicas 4. Photoelastic coatings

2. Moiré patterns 5. Etching

3. X-ray diffraction 6. Microhardness

Figures 5.7 and 5.8 illustrate experimental results obtainable by using relaxation
methods [31]. For instance, Fig. 5.8 compares experimental and theoretical normal-
ized results from several authors [6, 24, 29, 54, 64]. The data scatter in this figure is
due to different theoretical procedures used by these authors.

However, difficulties do arise when analyzing the outcome of experiments
because the elastic and plastic strains cannot easily be distinguished, and the
measurements are usually restricted to specimen surfaces. These difficulties may
be avoided, to an extent, by using the Hahn–Rosengren etching technique [14, 39],
which requires a proper polycrystalline material and an etching solution so that
dislocations and slip band would be etched in all grains. This way the area of
plastic yielding can be delineated with fewer difficulties. Nonetheless, Hahn and
Rosenfield [24] affirmed that the above theoretical mathematical approaches do not
provide satisfactory description of the plastic zone shape. Therefore, none of the
existing theories appear suitable for predicting the plastic zone shape and size at
� D 0. Figure 5.9 shows real plastic zone shapes obtained by using the Hahn and
Rosenfield etching technique [24].
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Fig. 5.7 Plastic zones in mode I according to (a) Tuba [64] and (b) Rice [51]

Fig. 5.8 Effects of
normalized stress on the
normalized plastic zone
size [24]

Additionally, Theocaris and Andrianopoulos [63] used the Von Mises yield,
r D f .�/, and the Strain Energy Density Factor, S D f .�/, criteria for developing
the plastic zone shapes under mixed-mode I and II conditions. These theoretical
results are depicted in Fig. 5.10, in which the plastic zone shape for the Von Mises
yield criterion is larger than the one for the Strain Energy Density Factor (S).
Furthermore, these shapes get enlarged and rotated as the inclined angle ˇ increases.
Denote that the plastic zone shapes depicted in Fig. 5.10 are similar at different crack
incline angles.

Moreover, inherent local mixed-mode interaction, during plastic deformation
ahead of the crack tip, is associated with the local normal stress (� y ! � ys)
becoming a finite stress instead of a singularity stress. As a result, the plastic zone
reaches a maximum size prior to incremental crack advance (growth).
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Fig. 5.9 (a) Interference pattern with strain contours (top-left corner) and the corresponding
plastic zone revealed by etching a 3Si-steel specimen with a thickness of 0.4 mm [24] and (b)
shape region of high shear in plane stress plastic zone of an Al-Cu-Mg alloy [8]

Fig. 5.10 Mixed-mode I and II interaction of a through-thickness inclined crack in a plate
exhibiting several plastic zone shapes [63]. (a) Plate, (b) plastic zones

Example 5.2. A thin steel plate having a 8-mm through the thickness single-edge
crack size is designed to hold a 50 kN static tension load. The steel properties are
KIC D 71 MPa

p
m, � ys D 1896MPa, and v D 0:30. The plate is 4 m long,

60mm wide, and 3mm thick. Assume that the steel plate is part of a structure that
operates at room temperature and controlled environment, and that the nominal
applied stress is a Von Mises stress. Determine (a) the safety factor .SF/ based on the
fracture mechanics approach, (b) the critical crack length and the crack extension.
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For comparison purposes, calculate (c) the applied stress using the above safety
factor and (d) the Von Mises plastic zone size using the yielding criterion (strength
of materials) approach. Explain.

Solution. (a) Calculate the nominal stress:

� D P

A
D P

Bw
D 50;000 N

.3 � 10�3 m/ .60 � 10�3 m/
' 278 MPa

For a=w D 8=60 D 0:13, the geometry correction factor is

˛ D 1:12 � 0:23
� a

w

�
C 10:55

� a

w

�2 � 21:71
� a

w

�3 C 30:38
� a

w

�4

˛ D 1:12 � 0:23 .0:13/C10:55 .0:13/2 � 21:71 .0:13/3 C30:38 .0:13/4 D1:23

From Eq. (3.29),

KI D ˛�
p

a D .1:23/ .278 MPa/

p

 .8 � 10�3 m/ ' 54 MPa

p
m

Thus, the safety factor is

SF D KIC

KI
D 71 MPa

p
m

54 MPa
p

m
' 1:31

This safety factor is actually very low for designing against fracture. Therefore,
crack propagation or sudden fracture may be expected to occur at small
overloads.

(b) The critical crack length is

KIC D ˛�
p

ac

ac D 1




�
KIC

˛�

�2
D 1






71 MPa

p
m

.1:23/ .278 MPa/

�2
' 14 mm

Therefore, the crack extended is 	a D ac � a D 14 mm � 8 mm D 6 mm
(c) The applied stress as per the yielding criterion is

� D � ys=SF D .1896 MPa/ =1:31 ' 1447 MPa
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which is much greater than 278MPa. Therefore, fracture mechanics is the most
restrict approach for designing against fracture because the specimen contains
a crack (defect). On the other hand, the yielding criterion assumes that there
are no defects prior to loading the specimen.

(d) Using Eq. (5.35) along the crack plane .� D 0/ the plastic zone size becomes

r D h

2


�
KI

� ys

�2

r D .1 � 2v/2
2


�
KI

� ys

�2
D Œ1 � 2 .0:3/�2

2


�
54 MPa

p
m

1896 MPa

�2

r D 20:66 �m

Therefore, the steel is brittle as deduced from the calculated small plastic zone
size. The figure below shows the profile of the plastic zone size as a function of
the yield strength. Denote the nonlinear behavior.

Conclusively, the plastic zone size, r D f .�/ys, exhibits a nonlinear
behavior as the yield strength increases. However, the inherent local mixed-
mode interaction during plastic deformation ahead of the crack tip must be
associated with the local normal stress, � y ! � ys, which becomes a finite stress.
As a result, the plastic zone reaches a maximum size prior to an incremental
crack advance. In other words, LEFM requires a sharp crack subjected to a
remote opening stress, inducing local infinite stress (� y ! 1) at the crack tip.
This means that the actual plastic zone size is entirely finite, and consequently,
the local opening stress is totally finite as well since � y ! � ys.
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5.7 Fracture Parameters

The most common fracture resistance parameters used nowadays for characterizing
stable crack growth in thin and ductile metallic materials under quasi-static load-
ing are

ım D The crack mouth opening displacement (CMOD) [2]
ıt D The crack tip opening displacement (CTOD) [2, 68]
ı5 D The crack opening displacement (COD) [32]
 t D The crack tip opening angle (CTOA) [17]

These parameters require special procedures for determining their critical values
as measure of fracture toughness of most common specimens, such as bend-
ing SE.B/, compact C.T/, and middle-crack M.T/ geometries having specific
dimensions in order to control the required low constraint. The critical values are
determined from force (P) versus crack extension (	a) plots. For instance, the
ASTM E2472 standard method provides relevant details on test procedures for low
constraint and fatigue pre-cracked C.T/ and M.T/ specimen geometries with low
constraint conditions, which are assured by having specimens with a=B � 4 and
b=B � 4 [46]. Here, a is the original crack length, B is the specimen thickness, b is
the specimen ligament (b D w � a), and w is the specimen width.

In general, experimental force (P) versus crack extension (	a) or P versus
displacement (�) plots are needed for assessing fracture behavior, followed by
measurements of the CMOD, CTOD, COD, and CTOA parameters, which, in turn,
can be implemented in finite element analysis to predict crack growth behavior and
their critical values [34, 41, 45]. Figure 5.11 illustrates the locations of ım, ıt, ı5,
and  t.

Fig. 5.11 Definition of
CMOD, ı5 CTOD, and
CTOA
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5.8 Crack Tip Opening Displacement

So far, the characterization of cracked brittle materials has been restricted to
the linear-elastic fracture criterion (LEFM), which treats localized plasticity as a
small deformed area at a small-scale yielding (SSY); otherwise, LEFM invalidates
the applicability of closed-form analytical solutions associated with a material
resistance to crack growth at a large-scale yielding. In the latter case, therefore,
the physical sense of KIC, acting as the controlling fracture (critical) parameter, is
lost to a great extent due to large plasticity ahead of the crack tip.

The aforementioned plasticity ahead of the crack front is fundamentally and
quantitatively governed by elastic-plastic fracture mechanics (EPFM) through
models that include the crack tip opening displacement (CTOD ! ıt-model),
the crack tip opening angle (CTOA !  t-model), and the J-integral (J-model)
as parameters. Subsequently, these models provide the fracture criteria at critical
states for determining fracture toughness, which is determined at the onset of crack
growth.

In particular, Wells [68] first proposed the CTOD as a fracture criterion when
ıt � ıtc, Dawicke–Sutton [17] idealized the CTOA criterion when  t �  tc,
and Rice [51] developed the J-integral as energy fracture criterion, say, JI � JIC

for mode I. Both CTOD and CTOA are a measure of fracture toughness of solid
materials that undergo plane stress-strain transition and elastic-plastic or fully
plastic behavior as in large structures (ships, pressure vessels) [64]. On the other
hand, the J-model treats the presence of relatively large deformations as an integral
part of analytical formulations that comprehensively describe the state of plastic
stresses and strains [14, 21].

According to the ASTM E1290 Standard, the critical CTOD (ıtc) is used when
the KIC requirements are not met [64]. From Fig. 5.3b, ıt is defined as twice the
displacement of the crack flanks in the y-direction [9]. Hence,

ıt D 2�y (5.45)

Furthermore, definitions of ıt for two cases are defined as [9, 53]

3ıt D 4�

E

p
a2 � x2 (uncorrected) (5.46)

ıt D 4�

E

q
.a C r/2 � x2 (corrected) (5.47)

If x D a, then Eq. (5.47) becomes [9, 10, 24]

ıt D 4�

E

q
.a C r/2 � a2 ' 4�

E

p
2ar (5.48)
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Inserting Eqs. (5.11) and (5.24) independently into (5.48) under plane stress condi-
tions yields the crack tip opening displacement as

ıt D 4a�2


E� ys
D 4K2

I


�E� ys
(Irwin) (5.49)

ıt D 2
a�2

E� ys
D 2K2

I

E� ys
(Dugdale) (5.50)

These two equations can be related as

ıIrwin
t D 2



ıDugdale

t (5.51)

Alternatively, Burdekin [12] and Rice [51] independently developed ıt closed-form
solutions based on Dugdale’s strip yield model [19] and the definition of Eq. (5.45)
for plane stress and plane-strain conditions, respectively. Hence,

ıt D 8a� ys


E
ln



sec

�

�

2� ys

��
(Burdekin) (5.52)

ıt D 2 .� C 1/ .1C v/ a� ys


E
ln



sec

�

�

2� ys

��
(Rice) (5.53)

and from Eqs. (4.65) and (4.66),

� D 3 � �
1C �

for plane stress (5.54)

� D 3 � 4� for plane strain (5.55)

Expanding the natural logarithmic function in Eqs. (5.52) and (5.53) using Taylor’s
series, ln x ' x � 1 for 0 < x < 2, along with the approximation given by Eq. (5.23)
yields

x D 1C y2

2
(5.56)

ln x ' x � 1 D 1C y2

2
� 1 (a)

ln x 'D y2

2
(5.57)

ln



sec

�

�

2� ys

��
' 1

2

�

�

2� ys

�2
(5.58)

Thus, Eqs. (5.52) and (5.53) become the elastic CTOD
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Fig. 5.12 Comparison of
crack tip opening
displacement for a material
having E D 207GPa,
� ys D 700MPa,
KIC D 60MPa

p
m, and

v D 1=3. Legend: Dugdale D
curve 1, Irwin D curves 2 and
4, Burdekin D curve 3, and
Rice D curves 5 and 6

ıte D 
a�2

E� ys
D K2

I

E� ys
(Burdekin) (5.59)

ıte D .� C 1/ .1C v/ a�2

4E� ys
D .� C 1/ .1C v/K2

I

4
E� ys
(Rice) (5.60)

The preceding procedure provides a selection of mathematical models, which define
(ıt). In fact, the applicability of these models for characterizing fracture of thin
sheets is of great importance since the dimensional requirements are not too strict
as in the KI-criterion for thick materials (ASTM E399 standard).

Figure 5.12 shows the relationship of ıt D f .KI/ as per the above models for
plane stress and plane-strain conditions.

Denote that the ıt curves do not agree with each other due to different
assumptions used by each cited author to develop a ıt-model. However, Burdekin’s
model, Eq. (5.59), agrees with the work done by Broek and Vlieger [10], Robinson
and Tetelman [56], and Bowles [7].

Considerable work has been confined to the ıt-model since it has the advantage
of measuring fracture toughness for elastic materials and it is very sensitive to
variations in temperature, loading rate, specimen thickness, and thermomechanical
processing [63].

In general, yielding in the vicinity of a crack tip is related to complex dislocation
networks, such as dislocation pileup. In this regard, reference should be made to
the classical work of Weertman [66], Puttick [50], Stroh [62], and Rogers [57], who
analyzed and studied several dislocation models for the nucleation of cracks.

Returning to the ıt-model, the crack tip plastic deformation in a thin sheet is
not restricted to lateral contraction which causes localized thinning at the crack tip.
Thereby, crack tip blunting causes an extensive increase in the crack tip radius (�) in
the order of sheet thickness (B), and thus, the plastic zone size (r) may be estimated
as r ' B [65].

In addition, ASTM E1820 standard includes the basic and resistance curve
procedures for determining the CTOD for some specimen configurations. According
to the LEFM approach, the hinge model is schematically depicted in Fig. 5.13 for a
SE(B) specimen under quasi-static mode I loading [2].
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Fig. 5.13 Hinge model for plastic crack mouth opening displacement (CMOD) in a SE(B)
specimen, after reference [2]. (a) SE(T) specimen, (b) similar triangles

This, then, induces the elastic CTOD (ıte) to be defined by

ıte D K2
I

m� ysE0 (5.61)

Using similar triangles with shared parts shown in Fig. 5.13 gives [2]

ıp

rpb C a C z
D ıtp

rpb
(5.62)

Solving for ıtp, the plastic CTOD, yields

ıtp D rpbıp

rpb C a C z
(5.63)

where m D 1 and E0 D E for plane stress, m D 2 and E0 D E=
�
1 � v2� for plane

strain, v is the Poisson’s ratio, rp is the plastic rotational factor, ı D ıe C ıp is the
CMOD, and z is the knife-edge height.

For SE.B/ and C.T/ specimens, the ıtp expressions along with the ligament b D
w � a are, respectively [2],

ıtp D 0:44 .w � a/ ıp

0:44 .w � a/C a C z
! SE.B/ (5.64)

ıtp D 0:4

(
1C 2



1

2
C a

b
C
�a

b

�2�1=2 � 2
�
1

2
C a

b

�)
! C.T/ (5.65)

According to the ASTM E1820 standard, the total CTOD expression for any point
on the load-displacement curve, P D f .�/, becomes

ıt D
�
1 � v2�

2

K2
I

� ysE
C rp .w � a/ ıp

rp .w � a/C a C z
(5.66)
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Example 5.3. If the critical strain energy release rate and the yield strength of
a 13-mm thick C(T) steel specimen are 32 kJ=m2 and 1500MPa, respectively,
determine (a) the validity of the fracture mechanics tension test as per ASTM
E399 for the plate containing a single-edge crack of 10 mm long at fracture,
(b) the fracture stress if the plate is 20 mm wide, (c) the critical crack tip opening
displacement, (d) the displacement, and (e) the plastic zone size and (f) interpret
the results with regard to plane-strain condition. Given data for steel: v D 1=3

(Poisson’s ratio), E D 207GPa, and � ys D 1500MPa.

Solution. Given data:
GIC D 32 kJ=m2 D 32 � 10�3 MPa m, � ys D 1500MPa
E D 207;000MPa, v D 1=3, a D 10mm, w D 20mm
a=w D 0:5, B D 13mm

(a) Using Eq. (3.5) yields the critical stress intensity factor

GIC D K2
IC

E0 D
�
1 � v2�K2

IC

E

KIC D
s

EGIC

.1 � v2/ D
s
.207;000 MPa/ .32 � 10�3 MPa m/

1 � 1=9
KIC D 86:33 MPa

p
m

The ASTM E399 minimum size requirements Eq. (3.30), are,

amin;Bmin � 2:5

�
KIC

� ys

�2
D 2:5

�
86:33 MPa

p
m

1500MPa

�2
D 8:28 mm

Therefore, the test is valid because a;B .10; 13/ > amin;Bmin .8:28/ mm and
a=w D 0:5 is within the 0:2 � a=w � 1 valid range. Proceed with the required
calculations.

(b) The fracture stress along with ˛ D 9:6591 since a=w D 0:5 (consult Table 3.1)
and KIC D ˛� f

p

a is

� f D KIC

˛
p

a

D 71 MPa
p

m

.9:6591/
p

 .10 � 10�3 m/

D 41:47 MPa < � ys

(c) The crack tip opening displacement is calculated using Rice’s equation,
Eq. (5.60), with � D 3 � 4v D 5=3 and .� C 1/ .1C v/ D 32=9

ıtc D .� C 1/ .1C v/K2
IC

4
E� ys

ıtc D 32

36


�
86:33 MPa

p
m
�2

.207;000 MPa/ .1500 MPa/
D 6:80 �m
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(d) From Eq. (5.45), the displacement is

�y D ıtc=2 D .6:80 �m/ =2 D 3:40 �m

(e) The plastic zone can be calculated using Eq. (5.35) along with the constant
h D .1 � 2v/2 D 1=9

r D h

2


�
KIC

� ys

�2
D 1

18


�
86:33 MPa

p
m

1500 MPa

�2
D 58:57 �m

(f) The above results suggest that the plate met the ASTM E399 size requirements
because .a;B/ > .amin;Bmin/ and 0:2 � a=w D 0:5 � 1. It can be assumed
that the C(T) specimen breaks in a brittle manner because both the plastic zone
size (r) and the crack tip opening displacement ıtc are very small. These results
suggest that ASTM E399 standard test is most suitable for brittle material in
question.

Example 5.4. A single-edge bend, SE.B), specimen made out of a hypothetical
ductile metallic material having mechanical properties like � ys D 400MPa,
KIC D 60 MPa

p
m, v D 1=3 (Poisson’s ratio) and E D 72 GPa was tested

according to the ASTM E1820 specifications for the crack tip opening displacement
approach. The specimen configuration and the schematic load-displacement plot
are, respectively,

Assume that the material’s microstructural homogeneity prevails. The elastic .ıe/

and plastic .ıp/ opening displacements at the crack mouth are graphically defined
in the load-displacement plot. The specimen dimensions are

B D 20 mm a D 8 mm

S D 150 mm ıp D 0:4 mm

w D 40 mm z D 1:5 mm
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Calculate the critical crack tip opening displacement, CTOD ıtc, when the maximum
load is 38 kN. Recall that ıtc is a genetic term for the resistance to crack growth,
namely, fracture toughness of the material, and that the ıt is done materials that
exhibit plastic deformation prior to failure.

Solution. For the elastic behavior, the geometry correction factor for the SE.B/
specimen configuration along with x D a=w D 8=40 D 0:2 is

˛ D 3x1=2
˚
1:99 � x .1 � x/

�
2:15 � 3:93x C 2:7x2

	�

2 .1C 2x/ .1 � x/3=2

˛ D 3 .0:2/1=2
˚
1:99 � .0:2/ .1 � 0:2/ �2:15 � 3:93 � 0:2C 2:7 � 0:22	�

.2/ .1C 2 � 0:2/ .1 � 0:2/3=2
˛ D 1:1749

According to the ASTM E1820 standard, the elastic stress intensity factor becomes

KI D ˛PS

Bw3=2

KI D .1:1749/ .38000 N/
�
150 � 10�3 m

�

.20 � 10�3 m/ .40 � 10�3 m/3=2

KI D 41:86 MPa
p

m < KIC

Adding Eqs. (5.61) and (5.64) gives the total CTOD ıt expression in the form given
below [2]

ıtc D ıte C ıtp D K2
I

m� ysE0 C rp .w � a/ ıp

rp .w � a/C a C z

The elastic CTOD (ıte) for plane strain along with E0 D E=
�
1 � v2� is given by

ıte D K2
I

m� ysE0 D .1 � 1=9/ .41:86/2
.2/ .400/ .72000/

ıte D 2:7041 � 10�2 mm ' 0:027041 mm

For the SE.B/ specimen, the plastic rotational factor is rp D 0:44 and the plastic
CTOD ıtp becomes

ıtp D 0:44 .w � a/ ıp

0:44 .w � a/C a C z
D .0:44/ .40 � 8/ .0:4/
.0:44/ .40 � 8/C 8C 1:5

ıtp D 0:23885 mm
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Thus, the critical CTOD is

ıtc D ıte C ıtp D 0:027041 mm C 0:23885 mm

ıtc D 0:26589 mm ' 0:27 mm

Therefore, ıtp > ıte as expected.

Example 5.5. Apply the effective crack length ae on Eq. (5.60) to calculate the
elastic CTOD for plane conditions. Let the Poisson’s ratio be 1=3, � ys D 400MPa,
KI D 30 MPa

p
m, a D 4 mm, and E D 72GPa. Assume a single-edge crack under

tension loading.

Solution. Irwin’s effective crack length, ae D a C r, approach on Rice’s CTOD,
Eq. (5.60), becomes

ıte D .� C 1/ .1C v/ ae�
2

4E� ys
D .� C 1/ .1C v/ �2

4E� ys
.a C r/ (a)

where the plastic zone size and the plane condition factor are

r D 1

2


�
KI

� ys

�2
& � D 3 � v

1C v
(b)

Useful expressions:

KI D �
p

a & K2

I D 
a�2 (c)

� D KIp

a

& �2 D K2
I


a
(d)

Thus, Eq. (a) becomes

ıte D .� C 1/ .1C v/ �2

4E� ys

"
a C 1

2


�
KI

� ys

�2#

ıte D .� C 1/ .1C v/K2
I

4
aE� ys

"
a C 1

2


�
KI

� ys

�2#

Substituting the given values gives

ıte D 0:03 mm
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For plane strain,

r D 1

6


�
KI

� ys

�2
& � D 3 � 4v

ıte D .� C 1/ .1C v/K2
I

4
aE� ys

"
a C 1

6


�
KI

� ys

�2#

Thus,

ıte D 0:02 mm

These results are small, implying that ıtp >> ıte.

5.8.1 Crack Opening Displacement (COD) ı5

The crack opening displacement, COD ı5, is a force-induced separation between
two points as depicted in Fig. 5.14 and described in the ASTM E2472 standard
for performing experiments using C(T) or M(T) specimens. The ı5 parameter is
measured using a 5-mm COD transducer (COD clip gage) located at the fatigue
pre-crack tip. This simply implies that the clip gage is place 2:5mm above and
below the initial fatigue crack tip [46]. In fact, COD ı25 (25-mm separation) has
been used for characterizing asphalt concrete samples [61].

The main purpose of the ı5 measurements is to determine stable crack exten-
sion (	a). Suitable data includes P D f .ı5/ and ı5 D f .	a/, where P is the
applied load. Here, P D f .ı5/ and ı5 D f .	a/ are nonlinear functions to be
determined numerically using experimental data for a particular specimen geometry.
Figure 5.15 schematically depicts a possible P D f .ı5/ profile for a ductile metallic
material [46].

Furthermore, fracture mechanics tests can be performed using the ı5 definition
under quasi-static or cyclic loading modes at temperatures, provided that the ı5
gage is designed for this purpose. Besides the C(T) or M(T) specimens, other
specimen sizes and geometries should be considered for evaluating possible effects
of specimen dimensions using the ı5 method. Abundant experimental and predicted
results using the ı5 method can be found elsewhere [33, 46].

Fig. 5.14 The 5-mm crack
tip opening displacement
(ı5 COD) method for a stable
crack growth
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Fig. 5.15 Schematic
P D f .ı5/ profile

5.8.2 Crack Tip Opening Angle (CTOA)

Once crack growth occurs in a thin ductile material, the crack front may exhibit
a slight curvature within the specimen thickness. This deformation phenomenon is
schematically depicted in Fig. 5.11, and it implies that the crack length measured on
the specimen surface is slightly smaller than that in the interior. This observable
plastic deformation is known as crack tunneling, where the crack front bows
out forming a curvature along the crack front. The tunneling crack front shape
can be analyzed in an interrupted load manner followed by fatigue cracking in
order to resharpen the crack [32, 47]. This process is usually characterized by
a two-dimensional [45] or three-dimensional [34] analysis along with the proper
constraints (plane stress and plane-strain conditions).

Figure 5.11 also depicts a schematic top view of the crack front and possible
location for experimental measurements of the local angle ( t) and the local
constraint. This means that  t can be determined at different locations along the
crack front boundary as a function of distance xt behind the crack tip [18, 34].
The local constraints along the crack front curvature go from high constraint at the
crack midpoint (high triaxial plane-strain condition) to lower constraint at the crack
surface (high stress condition) [34]. Actual crack faces show a zigzag pattern [71].

The above schematic crack tunneling model suggests that the crack front
curvature has significant effects on fracture toughness due to the varying crack
extension (	a) in this region. Nowadays, ıt or  t criterion is widely used to
characterize the crack initiation in ductile thin plates and thin sheets.

Simple trigonometry (Fig. 5.11) gives a straightforward relationship between ıt

and  t in a closed form. Thus,

tan . t=2/ D ıt=2

xt
(5.67)

ıt D 2xt tan . t=2/ (5.68)

 t D 2 tan�1
�
ıt

2xt

�
(5.69)
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where xt is a common distance behind the crack tip for  t and ıt. The ıt and  t
relationship can also be derive using the J-integral approach for strain hardening
materials in the limit of small-scale yielding as [2, 22, 38]

J D m� ysıt D m�Fıt (5.70)

where m D 1 for plane stress and m D 2 for plane-strain conditions [22] and � ys

is the monotonic yield strength, which can be replaced by the flow stress, �F D
0:5

�
� ys C � t

�
. Moreover, the strip yield criterion for nonhardening materials also

assumes m D 1 under plane stress conditions [2]. Fundamentally, strain hardening
is a basic metallurgical property of a metal since a flow stress is required for plastic
deformation.

The derivative dJ=da is the slope of the JR-curve (Fig. 3.12), and it can be defined
here using Eq. (5.70). Thus [22],

dJ

da
D dJ

dıt

dıt

da
D m� ys

dıt

da
(5.71)

Solving Eq. (5.71) for dıt=da gives the definition of  t [22, 42]

 t D dıt

da
D dJ=da

m� ys
(5.72)

For mode I loading, the J-integral defined by Eq. (3.63) and its derivative with
respect to crack extension 	a are

JI D C1 .	a/C2 (5.73)

dJI

d .	a/
D C1C2 .	a/C2�1 (5.74)

Then  t becomes

 t D dıt

d .	a/
D dJI=d .	a/

m� ys
(5.75)

 t D C1C2 .	a/C2�1

m� ys
(5.76)

Recall that C1 and C2 are least-squares curve fitting coefficients. Measurements of
CTOA for a particular specimen may exhibit constant CTOA values from crack
growth initiation to failure [46]. Significant details on the CTOA criterion and
CTOA measurements can be found elsewhere [37, 38, 46] using microtopography
for characterizing ductile fracture behavior. Figure 5.16a depicts a schematic  t D
f .	a/ curve which represents a typical  t behavior.
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Fig. 5.16 Crack tip opening angle (CTOA) profiles. (a) CTOA vs. crack extension and (b) critical
CTOA vs. plate thickness

Initially,  t decreases with increasing crack extension (	a), apparently due to
crack tunneling during the initial stable crack tip tearing, followed by a constant  t
value referred to as the critical CTOA; that is,  t D  tc. At some maximum load
(vertical dashed line), a transition from stable to unstable crack growth takes place
at  tc [17, 34, 40, 41].

Figure 5.16b schematically shows the effect of plate thickness (B) on  tc. Hence,
 tc D f .B/ decreases with increasing thickness up to a limit, not yet defined
[40, 41]. Furthermore, ductile fracture can also be characterized using the tearing
modulus as per Paris et al. [48]. For mode I loading, the tearing modulus is defined as

TI D E

�2ys

dJ

da
(5.77)

Combining Eqs. (5.71), (5.72), and (5.77) yields [55]

TI D m� ys
E

�2ys

dıt

da
(5.78)

TI D
�

mE

� ys

�
 t (5.79)

Example 5.6. A single-edge cracked thin sheet made out of a hypothetical ductile
Al-alloy is subjected to a quasi-static tension loading mode. Assume that the crack
extension (	a) and the  tc (CTOA) values are 	a1 D 3mm and  

tc1
D 15ı and

	a2 D 6mm and  
tc2

D 14ı. Calculate (a) ıtc and xt, (b) JI, and (c) the power-law
coefficients. Assume plane stress conditions.
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Solution. (a) The critical COTD are

ıtc1 D 2 .1 mm/ tan .15
=180/ D 0:54 mm

ıtc2 D 2 .1 mm/ tan .14
=180/ D 0:50 mm

The distance xt behind the crack tip for  t measurements are

xt1 D ıtc1

2 tan . tc1=2/
D 0:54 mm

2 tan .15ı/
D 1:01 mm

xt2 D ıtc2

2 tan . tc2=2/
D 0:50 mm

2 tan .14ı/
D 1:00 mm

(b) The J-integral values along with m D 1 are

JI D m� ysıtc

JI1 D .1/ .500 MPa/
�
0:54 � 10�3 m

� D 0:27 MJ=m2

JI2 D .1/ .500 MPa/
�
0:50 � 10�3 m

� D 0:25 MJ=m2

(c) The JI power law

JI D C1 .	a/C2

ln .JI/ D ln .C1/C C2 ln .	a/

Then,

C2 D ln .JI2=JI1/

ln .	a2=	a1/
D ln .0:27=0:25/

ln .6=3/
D 0:11103

C1 D JI1

.	a1/
C2

D 0:27 MJ=m2

.3 � 10�3 m/0:11
D 0:51154 MJ=m2:11103

Hence, the power-law equation becomes

JI D .0:51154/ .	a/0:11103

for 3 mm � 	a � 6 mm.
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5.9 Problems

5.1. Use the inequality KIC � KI as a criterion for crack instability where KI is
defined by Irwin’s plastic zone corrected expression for a finite size, to determine
if a steel pressure vessel is susceptible to explode under � D 200MPa hoop stress.
The vessel contains an internal circular crack perpendicular to the hoop stress. If
the properties of the steel are KIC D 60 MPa

p
m and � ys D 700MPa, and the

crack size is a D 20mm, (a) determine the ASTM E399 thickness requirement and
the minimum thickness to be used to prevent explosion. (b) Will crack propagation
occur at 200MPa? (c) Plot B D f

�
�=� ys

�
for a D 10, 20, and 30mm, and

(d) will the pressure vessel explode when the crack size is 30mm? Why or why
not? (e) When will the pressure vessel explode? [Solution: (a) Bmin D 8:28mm; (b)
no, it will not because KI < KIC; (d) no; and (e) it explodes when ac D 67:91mm].

5.2. A project was carried out to measure the elastic strain energy release rate as a
function of normalized stress

�
�=� ys

�
of large plates made out a hypothetical brittle

solid. All specimens had a single-edge crack of 3-mm long. Plot the given data
and do regression analysis on this data set. Determine (a)the maximum allowable
�=� ys ratio for GIC D 30 kPa m and (b) KIC in MPa

p
m. Given data: � D 0:3,

� ys D 900MPa, E D 207GPa,

�=� ys 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

GIC 0 0.40 1.70 1.90 7.00 12.00 19.00 26.00 36.00 48.00

5.3. Calculate the critical crack length of Problem 5.2. [Solution: ac D 3mm].

5.4. A large brittle plate containing a central crack 4-mm long is subjected to a
tensile stress of 800MPa. The material has KIC D 80MPa

p
m, � ys D 1200MPa and

� D 0:30. Calculate (a) the applied KI , (b) the plastic zone size using the Von Mises
yield criterion and prove that r D rmax when � D �o. Consider all calculations for
plane stress and plane-strain conditions, and (c) draw the entire plastic zone contour
where the crack tip is the origin of the coordinates.

5.5. Use the data given in Example 3.4 for a pressure vessel containing a semiellip-
tical crack (Fig. 3.6) to calculate Irwin’s and Dugdale’s (a) plastic zones, (b) using
Kabayashi’s finite size correction factor and plasticity correction factor. (c) Compare
results and determine the percent error against each case. (d) Is it necessary to
include a plastic correction factor? Explain. [Solution: (a) r .Irwin/ D 0:54mm,
and r .Dugdale/ D 1:33mm, (b) KI .Irwin/ D 5:63 MPa

p
m and KI .Dugdale/ D

6:22 MPa
p

m].

5.6. A 50-mm thick pressure vessel is to support a hoop stress of 300MPa at room
temperature under no action of corrosive agents. Assume that a semielliptical crack
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(Fig. 3.6) is likely to develop on the inner surface with the major axis 2c D 40mm
and semiminor axis a D 10mm. A 300-M steel, which is normally used for
airplane landing gear, is to be considered. Will crack propagation occur at 300MPa
hoop stress? Make sure you include the Irwin’s plastic zone correction in your
calculations. Is it necessary to do such a plastic correction? Use the data below
and select the suitable tempered steel.

300-M Steel � ys .MPa/ KIC

�
MPa

p
m
�

650 ıC Tempering 1070 152

300 ıC Tempering 1740 65

5.7. If localized plasticity is to be considered, explain the physical meaning of the
following inequality 
a�2=E > ıt� ys.

5.8. Show that r D ıt=
�
2
�ys

�
where r is the plastic zone size due to dislocation

networks within the plastic zone area ahead of the crack tip.

5.9. Show that ıt=�ys D �
KI=� ys

�2
and give a reasonable interpretation of this

equality.

5.10. A large strong plate containing a through-the-thickness central crack of
2ac D 20mm has E D 207MPa, � ys D 1275MPa and ıc D 9:47 �m at service
temperature. Determine (a) the plane-strain fracture toughness, (b) the design stress
intensity factor for a safety factor (SF) of 2, (c) the critical fracture stress, and (d)
the design service stress.

5.11. Predict ıt for a glass using ı D
�
4�

p
a2 � x2

�
=E.

5.12. Derive an expression for ıt using a Von Mises material. Compare it with that
of a Tresca material under plane-strain conditions.

5.13. A material has E D 70MPa, � ys D 500MPa and � D 1=3:It has to be
used as a plate in a large structure. Nondestructive evaluation detects a central crack
of 50mm long. If the displacement at fracture is 0:007mm and the plate width is
three times the thickness, calculate (a) the crack tip opening displacement, (b) the
plane-strain fracture toughness, (c) the plane-strain energy release rate, and (d) the
plate thickness, and (e) what is the safety factor being indirectly included in this
elastic-plastic fracture mechanics approach? Assume plane-strain conditions as per
Eq. (5.49) and a fracture load of 200 kN. [Solution: (a) ıc D 0:014mm, (b) KIC D
41:61 MPa

p
m, (c) � c D 148:48MPa, (d) B D 21:19mm, and (e) SF D 5:43].

5.14. Repeat Problem 5.13 using Eq. (5.60). Compare results.
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5.15. A hypothetical large metallic plate containing a 10-mm central crack is
30-mm wide and 5-mm thick and mechanically loaded in tension. This plate has
E D 69GPa, � ys D 500MPa, v D 1=3 and � D 0:3% for plane stress strain.
Determine (a) ıt, (b) GI and (c) � as per Irwin, Dugdale, Burdekin, and Rice
equations. Compare results. [Solution: (a) ıt D 0:015mm, (b) GI D 7:5 kJ=m2

and (c) � .Irwin/ D 161MPa, � .Dugdale/ D 128MPa, � .Burdekin/ D 182MPa,
� .Rice/ D 322 MPa].

5.16. Determine (a) the critical crack tip opening displacement (ıc), (b) the plastic
zone size (r) and (c) the fracture stress (� f ) for a large aluminum alloy plate
containing a central crack of 5-mm long. Use the following available data and
assume plane-strain conditions: KIC D 25 MPa

p
m, � ys D 500MPa, and E D

70MPa.

5.17. Show that ı ' ıt

q
1C .E=8a�/2 ı2t for plane stress conditions. Plot

ı D f .ıt/ for various � and fixed a value.

5.18. If the plane-strain fracture toughness (KIC) and the yield strength (� ys) of
a 12-mm thick C.T/ steel specimen are 71 MPa m1=2 and 1896MPa, respectively,
determine (a)the strain energy release rate (GIC) and the validity of the fracture
mechanics tension test as per ASTM E399 for the plate containing a single-edge
crack of 10mm long at fracture, (b) the fracture stress if the plate is 20mm wide,
(c) the critical crack tip opening displacement, and (d) the plastic zone size and
(e) interpret the results with regard to plane-strain condition. Use a Poisson’s ratio
of 1/3 and assume that the elastic modulus of the steel 207GPa.

5.19. Assume that isotropic solid material having a single-edge crack is subjected
to a remote tensile stress at room temperature. Let the properties of the material be
� ys D 500MPa, Poisson’s ratio v D 1=3, and E D 72GPa. Let the applied stress
intensity factor for mode I loading be KI D 20 MPa

p
m. Excluding microstructural

details and microscale defects, use the Tresca yielding criterion to derive (a) an
expression for the critical plastic zone angle (� c) and its magnitude when minimum
principle stresses are equal (�2 D �3) and (b) determine when �min D �2 and
�min D �3 by knowing the value of � c, (c) the plastic zone size at � c, and KI D
20 MPa

p
m. The Tresca yielding criterion is based on the maximum shear stress

reaching a critical or failure level. Hence, the definition of the maximum shear stress
for this criterion is �max D 0:5 .�max � �min/ D 0:5� ys, where �max and �min are
principle stresses and � ys is the monotonic tensile yield strength of a solid material.
Let �max D �1 and �min D �2 or �min D �3.
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5.20. Consider a ductile steel plate containing a 50-mm through-thickness central
crack subjected to a remote tensile stress of 40MPa. If the yield strength of the steel
is 300MPa, then calculate as per LEFM, Irwin’s approximation and the Dugdale’s
strip yield criterion. Compare results. Repeat all calculations for a 290MPa remote
stress. Explain.

5.21. A single-edge SE(B) specimen with B D 20mm, w D 40mm is used to deter-
mine the critical CTOD ıtc and JIC. See Example 5.4 for the specimen configuration
and the load-displacement plot. Assume plane-strain conditions and let

Pmax D 38 kN; � ys D 800MPa; E D 207GPa
KIC D 60MPa

p
m; v D 0:3

B D 20mm; w D 40mm; ıp D 1:00mm
S D 150mm; z D 1:5mm; a D 12mm
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6The Energy Principle

6.1 Introduction

In this chapter, the elastic behavior of solids containing cracks is examined using
the energy principle approach, which includes all forms of energy since loading
develops mechanical work, energy absorption around the crack tip, and energy
dissipation as heat. Williams [25] and Broek [3] undertook this energy approach
as the primary form of energy (mechanical work) being considered. If work is done,
then crack growth occurs and elastic energy is released. With the exception of pure
brittle solids, engineering materials undergo some form of plastic deformation at the
crack tip due to an applied external stress. Such plastic deformation is an irreversible
process or plastic flow.

Theoretically, the action of a remote external force on a body containing at least
one crack is to cause crack growth and to disturb the material potential energy. This
action introduces mechanical energy that balances out with the potential energy of
the body, inducing energy dissipation as the body deforms ahead of the crack tip.
Some of this input mechanical energy is absorbed by the body as strain energy, and
some is dissipated as heat during mechanical deformation. In practice, the potential
energy (stored energy) of the body changes upon the introduction of a crack and
upon the action of the external force under a quasi-static or dynamic loading mode.

This chapter includes an energy balance for characterizing the fracture of elastic
materials containing cracks. The goal is to minimize the energy in relation to the
crack length in order to derive the critical stress for crack propagation.

In a general sense, plastic flow is referred to as a permanent and non-recoverable
deformation in most common solid materials. On the other hand, viscous flow
describes the mechanical behavior of plastics, such as noncrystalline polymers, and
it is temperature and time dependent. The term viscoelasticity is also used to indicate
viscous flow.

© Springer International Publishing Switzerland 2017
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6.2 Energy Balance

The focus of this section is to determine the energy balance and the crack driving
force for a slow crack growth event due to the action of an external quasi-static load.
The crack may be embedded, on the surface or through-the-thickness. Consider a
body with a boundary contour � as shown in Fig. 6.1 subjected to an energy input
increment (dU) due to an external loading [3, 7, 25].

From Fig. 6.1, the shaded area represents a very small process zone surrounded
by an elastic continuum; Sc and SC

c are the existing and new crack surface [7].
The energy change in a loaded plate occurs due to the displacements arising
from the fracture area change dA D B@a for a constant thickness B and variable
crack length a. Thus, the input energy change (dU1) is divided into the change in
dissipated energy (dU2) as heat which arises due to the irreversible process during
plastic or viscous flow, the change in stored energy or total potential elastic energy
(dU3), and the change in kinetic energy (dU4) of the system [25].

For an isothermal case, dU2 is transferred across the contour � of the system,
and for an adiabatic case, dU2 is not transferred and the system temperature rises.
Consequently, the conservation of energy change due to the displacements arising
from the fracture area change dA can be defined as [25]

dU1

dA
� dU2

dA
D dU3

dA
C dU4

dA
(6.1)

For a growing crack, dU2=dA is the energy dissipated in propagating fracture over
an increment of area dA which is referred to as the fracture resistance R. On the other
hand, dU1=dA � dU2=dA can be defined as the net energy input. In fact, the energy
dissipated can be treated as the strain energy release rate during fracture [25].

Fig. 6.1 Cracked body with
energy changes
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The energy dissipated is the strain energy release rate during fracture. On the
other hand, the input energy is the supplied energy to a crack tip for inducing crack
growth and possible plastic deformation ahead of the crack tip. The input energy
must balance out with the amount of energy dissipated during the formation of new
crack surfaces, which are related to crack extension.

Another important definition is the energy release rate Gi, where the subscript
stands for mode of loading; that is, i D I; II; III or a combination of loading modes
described in Fig. 3.1. Thus [25],

Gi D dU1

dA
� dU3

dA
(6.2a)

Gi D dU1

Bda
� dU3

Bda
(6.2b)

Combining Eqs. (6.1) and (6.2) along with R D dU2=dA and U4 D 0 for a stationary
body, the strain energy release rate criterion for crack tip instability is [25]

GiC � R (6.3)

Here, R is the materials fracture resistance. If the cracked plate shown in Fig. 6.1 is
subjected to an external load P and the crack grows very slowly, then the load points
undergo a relative displacement d� perpendicular to the crack plane, and the crack
length extends an amount da. Consequently, the work done responsible for such an
increment in displacement and crack length is defined by the input energy gradient.
Thus,

dU1

da
D P

d�

da
(6.4)

Nonetheless, Gi is the energy release rate for crack growth, commonly known as
the strain energy release rate. Assuming that the plastic zone or the size and shape
of the energy dissipation zone remains nearly constant during brittle fracture, then
the strain energy release rate reaches a critical value (GiC), also known as fracture
toughness. Thus, GiI D GiC at fracture and it is universally accepted as a material
property in linear-elastic fracture mechanics.

Logically, fracture toughness in terms of energy is normally converted into a
critical stress intensity factor (KiC) used in designing applications. Actually, mode I
is the most studied and used type of loading for doing fracture mechanics testings.
Thus, GiC ! GIC and KiC ! KIC.

Generally, GiC in Eq. (6.3) depends on the applied load and specimen geometry,
while R depends on the fracture properties of the materials as well as the specimen
geometry. Fundamentally, GiC is the energy of the mechanics of solids containing
discontinuities known as flaws or cracks. Anyhow, if GiC D R, then GiC is a material
property.
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6.3 Linear Compliance

Assume that the solid body is elastic and its elastic mechanical behavior can be
characterized by a linear load-displacement relationship, P D f .�/, as depicted in
Fig. 6.2 for which the slope is 0 < dP=da < 1 [7]. The slope is referred to as the
stiffness and the inverse of stiffness is called the compliance.

Consider mode I (tension) loading shown in Fig. 6.2, where the curve AB is a
possible load-displacement trajectory P .�; a/ for a moving crack [7].

The stored energy due to tension loading can be defined as the area under the
curve (Area OAE) [25]

U3 D 1

2
P� (6.5)

from which

dU3

da
D P

2

d�

da
C �

2

dP

da
(6.6)

Inserting Eqs. (6.4) and (6.6) into (6.2b) gives

GI D 1

2B

�
P

d�

da
� �dP

da

�
(6.7)

GI D 1

B

dU3

da
@ P D Constant (6.7a)

For essentially elastic response, the linear compliance is the inverse of the slope of
the load-line OA in Fig. 6.2, from which the displacement takes the form [25]

� D PC (6.8)

Fig. 6.2 Schematic linear
load-displacement for a
growing crack. OA and OB
are the loading and unloading
lines, respectively, and the
curve AB is a possible
trajectory P.�; a/ for a
moving crack during
unloading. After reference [7]
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from which

d�

da
D P

dC

da
C C

dP

da
(6.9)

Substituting Eqs. (6.8) and (6.9) into (6.7) yields the crack driving force as

GI D P2

2B

dC

da
(6.10)

GI D 1

2B

��
C

�2 dC

da
(6.11)

GI D U3

BC

dC

da
(6.12)

Moreover, the GI expression, Eq. (6.7), can also be derived using the segments and
areas given in Fig. 6.2 [7]. For instance,

• OA D Initial loading line
• AB D Unloading line since

P ! .P � dP/ as � ! .�C d�/ (a)

Consequently, the crack area changes from A to A C dA or the crack grows from
a to a C da.

• Area OAE D Stored energy at fracture

OAE D P�=2 (b)

• Area OBC D Stored energy after fracture

OBC D .P � dP/ .�C d�/ =2 (c)

• Area ABCE D Work done along with external fixed load P

ABCE D
Z �Cd�

�

Pd� D Pd� (d)

• Area OAB D OAECABCE�OBC D Release of elastic energy = GIdA D GIBda.
Thus, the strain energy release rate equation becomes

OAB D 1

2
P�C Pd� � 1

2
.P � dP/ .�C d�/

GI D 1

2B

�
P

d�

da
� �dP

da

�
(6.7)
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Furthermore, this expression, Eq. (6.7), can take two different definitions based on
special cases. For instance, when the applied load P is constant, GI Eq. (6.7) gives

GI D P

2B

d�

da
(a)

On the other hand, if the displacement is constant, then

GI D � �

2B

dP

da
@ � D Constant

6.4 Nonlinear Compliance

The possible load lines for a nonlinear behavior is shown in Fig. 6.3 [3, 7, 25]. The
analysis is carried out using a nonlinear compliance expression of the form [25]

� D .PCn/
1=n (6.13)

where n = strain hardening exponent
The strain energy release rate is defined by [25]

GI D 1

B



P

d�

da
� d

da

�
P�

1C n

��
(6.14)

GI D 1

.1C n/B

�
nP

d�

da
� �dP

da

�
(6.15)

Combining Eqs. (6.13) and (6.15) yields

GI D 1

.1C n/B
P.1Cn/=nC.1�n/=n

n

dCn

da
(6.16)

Fig. 6.3 Possible load
trajectory for a growing crack
in a nonlinear-elastic-plastic
material
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GI D 1

.1C n/B

�1Cn

C2
n

dCn

da
(6.17)

GI D U3

BCn

dCn

da
(6.18)

A remarkable observation is that if n D 1, then Eq. (6.16) yields Eq. (6.10).

6.5 Traction Forces

Consider two-dimensional problems in rectangular system x, y, where z D x3 has a
unit length, and it is treated here as a coordinate. Assume that the path of the crack
tip is along x-axis and that the origin is at the crack tip (Fig. 6.1) for a pure elastic
state under quasi-static loading. This implies that the crack area along with a unit
length in the x3-axis becomes 	A D 	ax3 ! 	a.

By definition, the traction exerted through SC
c from the continuum on the process

zone is ��!
T D fTig, where i denotes the type of stress per stressing mode I, II, or III.

According to Hellan [7], the magnitudes of the traction forces on the upper and
lower crack sides are Ti D �� yi and Ti D C� yi or Ti D �� yi

�C� yi
�
, respectively.

The corresponding displacements are �i D �C
i and �i D ��

i or �i D �C
i

�
��

i

�
.

Furthermore, the dominant stresses along the crack line can be determined at
� D 0 and the displacements along the crack sides at � D ˙
 . This implies that
the crack tip is located at .x; y/ D .� 0; 0/ for the principle stresses and .x; y/ D
.� 0; 0/ for the displacements.

Accordingly, the translation of the fields at the crack front leads to 	a ! 0,
which is required to determine the limit of the crack driving force. This can clearly
be appreciated by considering a two-dimensional analysis of a pure elastic solid
body subjected to a quasi-static loading as depicted in Fig. 6.1. Thus, the strain
energy release rate on the elastic continuum over the crack surface SC

c can be defined
by [7]

Gi D lim
	A!0

Z

SC

c

 Z .b/

.a/
Tid�i

!
ds for 	A ! 0 (6.19)

Gi D lim
	a!0

Z 	a

o

"Z .b/

.a/
� yid

�
�C

i � ��
i

�
#

dx (6.20)

Gi D 1

2	a

Z 	a

o
�
.a/
yi

�
�C

i � ��
i

�.b/
dx (6.21)

where ds D Differential surface area
d�i D Displacement increments at ds
	A D Change in crack area
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.a/ D Representation of a stage for plastic process

.b/ D Representation of a stage for crack extension
In order to solve Eq. (6.21), the stresses and the displacements for the three modes

of loading (as depicted in Fig. 3.1) being derived in Chap. 4 can be defined in a
general form by replacing the plastic zone size r for x in the stress equations for each
stress mode and r for 	a � x in the displacement equations when crack extension
occurs.

Moreover, if stable crack growth occurs along the crack plane, then the displace-
ments are related as follows: �C

y D ���
y and �C

y � ��
y D 2�C

y .
For the symmetric mode I at y D 0 and �˙

y D ��� ,

� y D �� D KIp
2
x

for x � 0; � D 0 (6.22)

�ẏ D ˙ .� C 1/ .1C �/KI

E

r
� x

2

for x � 0; � D ˙
 (6.23)

� y
�
�C

y � ��
y

� D .� C 1/ .1C �/K2
I


E

r
	a � x

2

(6.24)

For the antisymmetric mode II at y D 0 and �˙
x D ��r,

� xy D � r� D KIIp
2
x

for x � 0; � D 0 (6.25)

�ẋ D ˙ .� C 1/ .1C �/KII

E

r
� x

2

for x � 0; � D ˙
 (6.26)

� xy
�
�C

x � ��
x

� D .� C 1/ .1C �/K2
II


E

r
	a � x

2

(6.27)

For the antisymmetric mode III at y D 0,

� yz D � z� D KIIIp
2
x

for x � 0; � D 0 (6.28)

�ż D ˙4 .1C �/KIII

E

r
� x

2

for x � 0; � D ˙
 (6.29)

� yz
�
�C

z � ��
z

� D 4 .1C �/K2
III


E

r
	a � x

2

(6.30)

From Chap. 4, the constant � is defined by

� D 3 � �
1C �

for plane stress (6.31)

� D 3 � 4� for plane strain (6.32)
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Substituting Eqs. (6.24), (6.27), and (6.30) into (6.21) yields the crack driving force
for a mixed-mode interaction:

Gi D 1

2	a

Z 	a

o

�
� y
�
�C

y � ��
y

�C � xy
�
�C

x � ��
x

�C � yz
�
�C

z � ��
z

�	
dx (a)

Gi D 2 .1C v/


	aE



� C 1

4

�
K2

I C K2
II

�C K2
III

� Z 	a

o

r
	a � x

x
dx (b)

The integral can be solved by letting x D 	a sin2 ˛ for 0 � ˛ � 
=2 so that
dx D 2	a sin˛ cos˛ � d˛. Thus,

Z 
=2

o

r
	a � x

2

dx D 2	a

Z 
=2

o
cos2 ˛ � d˛

D 	a



˛

2
C sin 2˛

4

�
=2

0

(c)

D 
	a

2

and

Gi D .1C v/

E



� C 1

4

�
K2

I C K2
II

�C K2
III

�
(6.33)

Algebraic manipulation of Eq. (6.33) along with Eqs. (6.31) and (6.32) gives Gi for
crack motion on its tangent plane

Gi D K2
I

E0 C K2
II

E0 C .1C v/K2
III

E
(6.34)

where E0 D E for plane stress
E0 D E=

�
1 � v2� for plane strain.

For convenience, the effect of Poisson’s ratio on the strain energy release rate for
mode I loading is shown in Fig. 6.4.

Thus far it has been assumed that the material is homogeneous, isotropic, and
linear elastic and that the crack extends in a self-similar manner (along its own

Fig. 6.4 Variation of the
energy release rate
E0GI D f .KI/
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plane). Based on these assumptions, the strain energy release rate schematic profile
depicted in Fig. 6.4 was produced using Eq. (6.34) for mode I. Evidently, E0GI D
f .KI/ is fundamentally a simple relation, but gives a nonlinear profile dependent on
the Poisson’s ratio v.

6.6 Load and Displacement Control

Assume that the slender .a >> h/ double cantilever beam (DCB) shown in Fig. 6.5
is loaded in tension with no rotation at the end of the beam. If the displacement and
linear compliance equations are [5, 7, 25]

� D 2Pa3

3E0I
(6.35)

C D �

P
D 2a3

3E0I
(6.36)

where a D Crack length
I D Moment of inertia D Bh3=12

For a constant load condition, the gradients of the compliance, displacement,
and load gradient are, respectively,

dC

da
D 2a2

E0I
(6.37)

d�

da
D 2Pa2

E0I
(6.38)

dP

da
D 0 (6.39)

Fig. 6.5 Slender double
cantilever beam (DCB) with
a >> h
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Substituting Eqs. (6.38) and (6.39) into (6.7) gives

GI D P

2B

d�

da
(6.40)

GI D P2a2

BE0I
for P D constant (6.41)

If Eq. (6.10) is used instead of (6.7), it yields the same result. Thus,

GI D P2

2B

dC

da
D P2a2

BE0I
for P D constant (6.42)

As a result, GI / a2 (proportional) which implies that GI increases rapidly as a
increases due to the availability of strain energy. Crack propagation occurs when
GI D GIC and a D ac. In addition, crack instability occurs under load-control if
dP=da < 0 when GI / a2: This is clearly demonstrated by solving Eq. (6.42) for P
and deriving the load gradient

P D
p

GIBE0I
a

(6.43)

dP

da
D �

p
GIBE0I

a2
< 0 (6.44)

Consider the slender DCB under constant displacement. In this case, the load and
load gradient expressions are

P D �

C
D 3�E0I

2a3
(6.45)

dP

da
D �9�E0I

2a4
(6.46)

d�

da
D 0 (6.47)

Insert Eqs. (6.46) and (6.47) into (6.7) to get

GI D � �

2B

dP

da
D 9�2E0I

4Ba4
For � D Constant (6.48)

This result suggests that GI / a�4 and GI decreases as a increases. Therefore, crack
stability occurs if d�=da > 0 and dGI=da < 0 when GI / a�4; that is,

� D 2a2

3

r
4GIB

9E0I
(6.49)
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Fig. 6.6 Normalized crack
driving force as a function of
crack length under load
control system

Fig. 6.7 Normalized crack
driving force as a function of
crack length under
displacement control system

d�

da
D 4a

3

r
4GIB

9E0I
> 0 (6.50)

dGI

da
D �9�

2E0I
Ba3

< 0 (6.51)

The theoretical trend of the behavior of the strain energy release rate as per
Eqs. (6.42) and (6.48) is shown in Figs. 6.6 and 6.7, respectively.

To this point, the energy principles being described in terms of the strain energy
release rate provide significant supplementary insight into the fracture mechanics
field. For instance, the derived equations for GI at constant load P and constant
displacement �y are the fundamental mathematical expressions for generating an
important foundation for analytical methods in fracture mechanics. The importance
of the energy principle methods is further explained below in relation to Eqs. (6.42)
and (6.48).

It is evident that GI strongly depends on the crack length (a) at constant load
condition. According to Eq. (6.42), GI has a nonlinear behavior since GI / a2. This
implies that any small amount of crack growth induces a steep increment on GI .
This is actually depicted in Fig. 6.6.

On the other hand, GI is also strongly dependent on the crack length (a) at
constant displacement condition. In this case, GI / a�4 and GI exhibits a nonlinear
behavior in the opposite sense. Therefore, GI drastically decreases as a increases as
shown in Fig. 6.7.

Therefore, there is a significant difference between the two energy methods since
the strain energy release rate has been shown to depend on the exponent of the
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crack length; GI / a2 and GI / a�4. As shown in Figs. 6.6 and 6.7, they are
essentially opposite in trend. However, understanding the differences between these
two analytical results is extremely important when characterizing crack growth and
determining fracture toughness of a particular material.

Fundamentally, the strain energy release rate is the crack tip energy release rate
during crack growth, and it quantifies the rate of change of the potential energy of the
cracked elastic solid undergoing elastic deformation. If the solid is elastic perfectly
plastic, then the rate of change of the potential energy is inherently a mixed-mode
interaction.

Example 6.1. Suppose that three specimens made of 7075-T651 Al-alloy (E D
70GPa, � ys D 850MPa and v D 0:30) that have identical dimensions were loaded
in tension and exhibited linear behavior. The data shown below was obtained at
room temperature.

No. a (mm) B (mm) P (kN) �y (mm) Fracture

1 25:00 25 145 Yes
2 25:00 25 100 0:2500 No
3 25:50 25 100 0:2525 No

Determine the plane-strain fracture toughness KIC.

Solution. The compliance for specimens 2 and 3 and the compliance gradient are

C2 D �y2

P2
D 0:2500 � 10�3 m

100 � 103 N
D 2:500 � 10�9 m=N

C3 D �y3

P3
D 0:2525 � 10�3 m

100 � 103 N
D 2:525 � 10�9 m=N

dC

da
' C3 � C2

a3 � a2
D 2:525 � 10�9 m=N � 2:500 � 10�9 m=N

.25:50 � 25:00/ � 103
dC

da
' 5:00 � 10�8 N�1

From Eq. (6.42),

GIC D P2f
2B

dC

da

GIC D
�
145 � 103 N

�2 �
5:00 � 10�8 N�1�

2 .25 � 10�3 m/

GIC D 21; 025N=m ' 0:021025MN=m
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For pure mode I loading, Eq. (6.34) yields

GIC D K2
IC

E0 D
�
1 � v2�K2

IC

E
(6.34)

KIC D
s

GICE

.1 � v2/

KIC D

vuut .0:021025MN=m/
�
70 � 103 MN=m2

�

1 � 0:302
KIC D 40:22MPa

p
m

According to the ASTM E399 standard thickness requirement is

BASTM � 2:5

�
KIC

� ys

�2
D 5:60mm

Therefore, this result is valid because B > BASTM.

6.7 Crack Resistance Curves

For plane stress conditions, the Griffith energy criterion for crack growth (R D Gi)
was modified by Irwin [11] when he proposed that crack instability should occur
when

dGi

da
D dR

da
(6.52)

The shape of the crack resistance curve (R-curve) is horizontal for pure brittle
materials since the surface energy is an invariant material property and R is
independent of crack size [1, 3]. For pure mode I, the Griffith instability criterion
on the R-curve is shown in Fig. 6.8a as a dashed horizontal line for which G D
GIC D R [2]. The characterization of this fracture criterion anticipates that R
increases when the plastic zone at a small-scale yielding (SSY) increases and strain
hardens. However, local material separation should occur due to void initiation and
coalescenceat high strains and stresses. In this case, the plastic zone must reach a
critical size for crack growth to occur since sufficient energy must be available;
otherwise, the crack would be stationary. Hence, both GI and R increase with
increasing stress level, and subsequently, unstable crack growth occurs when the
crack acquires a critical value shown in Fig. 6.8b at a stability point where KI D KIC

at a particular load P4.
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Fig. 6.8 Schematic resistance curves showing the instability point for graphically defining
fracture toughness using (a) the strain energy release rate and (b) the stress intensity factor for
mode I loading

Accordingly, the ASTM E561 Standard Practice includes the R-curve to provide
a toughness diagram in the form of applied KI D f .	a/ so that crack instability
(onset of unstable fracture process) occurs when KI D KIC and a D ac for a
specific applied load P4 (Fig. 6.8b). This implies that the resistance to fracture of
a metallic solid containing an initial crack size (a) may be characterized by an R-
curve, provided that crack growth or extension develops slowly and stably.

Furthermore, the R-curve can be constructed by drawing secant lines on a load-
displacement curve as shown in Figure 6.9a [2]. The slope of the secant lines as a
measure of the compliance C and the crack lengths ai are determined. Subsequently,
follow the sequence in Fig. 6.9.

Plot the compliance C as a function a=w, where a D ao C	a C r is the effective
crack length. This is depicted in Fig. 6.9b. Plot ˛ D f .a=w/ (Fig. 6.9c). Calculate
KI and GI , and plot GI as a function of crack length a. The resultant plot is the
R-curve for GI as shown in Fig. 6.9d.

The point of intersection between the secant line and the R-curve defines the
critical strain energy release rate .GIC/, which in turn is related to the critical stress
intensity factor or plane-strain fracture toughness .KIC/.

Thus far, the above compliance approach has been based on elastic deformation
ahead of the crack tip. For most materials, the stresses induced at the crack tip
cause initially elastic deformation, and subsequently, plastic deformation induces
further energy dissipation confined to a small plastic zone. The main goal so far
is to introduce analytical methods for determining the energy associate with crack
growth and the critical energy at fracture or at the onset of slow crack growth.
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Fig. 6.9 Schematic (a) load-displacement, (b) compliance-normalized crack length, (c) geometry
correction factor and (d) resistance diagrams for mode I loading

6.8 The J-Integral

Consider the two-dimensional crack being surrounded by two arbitrary counter-
clockwise contours �1 and �2 shown in Fig. 6.10. If a small-scale yielding prevails,
then the quantities Ki and Gi, where i D I, II, and III represent the loading modes
as defined in Chap. 4, can describe the stress state near the crack tip when the field
is elastic with a relatively small plastic zone r << a; otherwise, Ki and Gi do
not describe the elastic-plastic behavior of tough materials containing large plastic
zones r � a (large-scale yielding) (LSY). Nevertheless, the need to characterize
tough solids prevails since many engineering materials are of this category.

In order to determine an energy quantity that describes the elastic-plastic behav-
ior of tough materials, Rice [22] introduced a contour integral or line integral that
encloses the crack front shown in Fig. 6.10. This integral was originally introduced
by Eshelby [4] as

J D
Z

�

 
Wdy � �!

T
@�!�
@x

ds

!
(6.53)

where J D Effective energy release rate (MPa:m or MN=m)
W D Elastic strain energy density or plastic loading work (J=m3)�!� D Displacement vector at ds



6.8 The J-Integral 243

Fig. 6.10 J-integral contours
around the crack surfaces

ds D Differential element along the contour
n D Outward unit normal to ��!
T
�
@�!�=@x

�
ds D Input work

s D Arc length�!
T D Tension vector (traction forces) on the body bounded by �
� D Arbitrary counterclockwise contour

The term J in Eq. (6.53) is a line of surface integral defined around a contour � .
It characterizes the stress–strain field around the crack front, and therefore, it must
be the energy release to the crack tip during crack growth. Due to this fact, the
J-integral is used as a failure criterion, and it is a measure of the fracture toughness
at the onset of slow crack growth for elastic and elastic-plastic metallic materials
(Fig. 3.11). The inherent characteristics of the J-integral exhibits (a) remarkable
path, contour size and shape independence, and (b) an invariability in magnitude
when the contour lies either inside or outside the plastic zone [15]. The former
characteristic indicates that the J-integral vanishes .J D 0/ around an arbitrary
closed contour as shown by Parton and Morozov [20] using Green’s formula.

The interpretation of the J-integral includes the following observations:

• The J-integral vanishes along the closed contours �1 and �2 because the traction

forces are
�!
T D 0 along the crack lower and upper surfaces and dy D 0 along AC

and BD. Thus, Eq. (6.53) becomes J�1 �J�2 D 0. Therefore, the J-integral is path
independent, and it is a measure of the straining at the crack tip that accounts
for significant plastic deformation at the onset of crack initiation. The contour
path can be defined arbitrarily for computational advantages [7], as it will be
shown in a later section, since J is conserved. This means that the contour � can
conveniently be defined along the plastic zone boundary so that the Von Mises
plastic zone size, Eq. (5.53), can define the contour shape as shown in Fig. 5.6.

• The crack line can be included in the contour �1 or �2 without contributing to the
value of J. For this reason, points A and B or C and D do not need to coincide.

• The J-integral along a contour around the crack is the change in potential energy
(elastic energy) for a virtual crack extension da. Thus,
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J D � 1
B

dU3

da
(6.54)

• Remarkably, the J-integral can be evaluated along remote paths, where small
crack tip yielding does not interfere.

With regard to Eq. (6.53), the traction forces and the strain energy density are
defined as

�!
T D � ijn .i; j/ D 1; 2; 3 (6.55)

W D
Z
� ijd�ij (6.56)

In general, the elastic stresses needed in Eq. (6.56) are defined in matrix form

� ij D
2

4
� x � xy � xz

� yx � y � yz

� zx � zy � z

3

5 (6.57)

Thus, the strain energy density (SED) can be expressed as

W D 1

E0

"
1
2

�
�2x C �2y C �2z

� � v �� x� y C � y� z C � z� x
�

C .1C v/
�
�2xy C �2yz C �2zx

�
#

(6.58)

Recall that plane stress condition requires that � z D � zx D � zy D 0 and E0 D E.
Consequently, Eq. (6.58) reduces to

W D 1

2E

�
�2x C �2y � 2�� x� y C 2 .1C v/ �2xy

	
(6.59)

For pure tension loading, W becomes

W D �2y

2E
(6.60)

However, the elastic mixed-mode interaction described by Eq. (6.34) can be used to
predict the J-integral, provided that r << a. This means that J D G so that

J D K2
I

E0 C K2
II

E0 C .1C �/K2
III

E
(6.61)

The J-integral is used as a critical parameter for determining the onset of stable
crack growth and predicting fracture toughness. The fracture criterion by JIC for the
initiation of stable crack growth is established when the applied J-integral reaches a
critical value. This is indicated below for elastic and elastic-plastic materials

J D Jc D GC For elastic behavior (6.62)

J D Jc ¤ GC For elastic-plastic behavior (6.63)

JI D JIC D GIC For elastic behavior under mode I loading (6.64)
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JI D JIC ¤ GIC For elastic-plastic behavior for mode I (6.65)

Similar fracture criteria can be used for mode II and III loading systems. In general,
JIC may be used as a brittle or ductile fracture toughness criterion for characterizing
a material behavior that does not meet the requirements of KIC as per ASTM E399
Standard Test Method, Vol. 03.01.

For a large-scale yielding case, the J-integral becomes the controlling factor
in characterizing plastic behavior of ductile materials containing stationary cracks
since J is the available energy per unit crack extension at the crack tip. In fact, crack
blunting may occur at the crack tip and the fracture criterion used for determining
the onset of crack instability depends on the amount of plasticity ahead of the crack
tip. Hence, the plastic zone size is r � a.

The elastic-plastic fracture mechanics (EPFM) field or the large-scale yielding
approach can be used for characterizing the behavior of an existing stationary crack
tip, which undergoes significant plasticity. As a result, the critical crack tip opening
displacement (ıtc) or the critical J-integral (JC) measures the onset of crack growth
in elastic-plastic solids [22].

Using the Dugdale’s strip yield model, the crack tip opening displacement
.CTOD/ ıt indicated in Fig. 5.3 can be related to the J-integral, provided that the
path of integration is arbitrarily chosen in the elastic regime and the contour curve
� is taken around the yield strip or plastic zone boundary.

According to Hellan’s analysis [7] for thin plates and Tresca properties, the
Dugdale’s model shown in Fig. 5.3 can be used as the path contour � needed to
solve the J-integral. Thus, the arbitrary contour depicted in Fig. 6.10 can be shrunk
to a shape similar to Dugdale’s strip yield model, which is shown in Fig. 6.11 for
convenience.

Let x D a at the lower crack side before localized yield occurs and x D a C
r at the upper crack side after yielding be the limits of the J-integral under pure
tension loading (mode I). As a result, dy D 0 along the crack plane and the traction
force becomes T D � y D � ys. Consequently, the J-integral defined in Eq. (6.53)
becomes [7]

JI D �
Z

�

�!
T
@�!�
@x

ds (a)

JI D �
Z aCr

a
� ys

@

@x

�
�C

y � ��
y

�
dx (b)

Fig. 6.11 Dugdale’s strip
yield model for COD
measurements [7]
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JI D
Z ıt

a
� ysd

�
�C

y � ��
y

� D � ysıt (6.66)

Here, �C
y and ��

y are the upper and lower displacements. Denote that this
expression, Eq. (6.66), resembles Eq. (5.42) when JI D GI for small-scale yielding
under plane stress conditions.

It is well known that energy dissipation is confined to a small plastic zone
where energy is released. Thus, the above result, Eq. (6.66), represents a simple
mathematical model for determining the J-integral as the energy being released at
the crack tip. So this result is used to compute the critical J-integral and the crack tip
opening displacement, ıt, at the onset of crack growth. This suggests that Eq. (6.66)
may be taken as a postulate for a fracture criterion. If mode I is considered at onset
of crack growth, then JIC is the fracture energy taken as the fracture toughness of a
ductile material, and on the other hand, ıtc would also be a parameter representing
fracture toughness.

Regardless of the actual mechanisms involved during crack growth, a small
amount of surface energy is required to create two new crack surfaces, and
subsequently, more plastic zone involves as more elastic-plastic energy is released
ahead of the crack tip. This energy, then, can be quantified using Eq. (6.66) by
simply measuring the crack tip opening displacement ıt as the crack grows. At
fracture, a D ac, ıt D ıtc and JI D JIC is computed as expected.

6.9 The J-Integral Measurements

Most practical fracture mechanics applications are base on mode I loading. How-
ever, mode II and III may be important in certain engineering situation. In fact,
mixed-mode fracture mechanics is a complex theory and it will be dealt with in
details in Chap. 8.

The J-integral measurement is valid if unloading does not occur. In such a case,
the region J	A D JB	a shown in Fig. 6.12 represents the area between the loading
curves for crack areas A and A C	A. In fact, Fig. 6.12 illustrates load-displacement
curves for determining the critical value of the J-integral JIC (fracture toughness)
at the onset of slow crack growth [7, 8] under two different conditions, and it is the
nonlinear equivalent of Figure 6.2. The ASTM E1820 standard method should be
consulted for experimental details.

In addition, Eq. (6.54) can be redefined according to the constant load and the
constant displacement conditions indicated in Figs. 6.12a and b, respectively. Thus,

J D 1

B

Z P

o

�
d�

da

�

P

dP (6.67a)

J D � 1
B

Z �

o

�
d�

da

�

�

d� (6.67b)
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Fig. 6.12 Load-
displacement curves for
identical specimens at
(a) fixed load and (b) at fixed
displacement

Fig. 6.13 Experimental J-integral vs. displacement [3, 12]

Obviously, either Eq. (6.67) can be solved if an expression for d�=da is known.
With respect to Eq. (6.61), one can see that the J-integral (J) is directly related to

the stress intensity for a brittle material. For a large plate containing a small crack
loaded in tension (mode I), Eq. (6.61) reduces to

JI D K2
I

E0 D 
a�2

E0 (6.67c)

Furthermore, Fig. 6.13 shows experimental data for a Ni–Cr–Mo–V steel alloy
obtained using specimens containing variable original cracks [6,11]. The data
represents J D f .�/ for an initial crack length 2a, and all three curves represent
mechanical behavior, which is displaced downward as 2a increases.

Also shown in Fig. 6.13 is the fracture toughness JIC D 0:17MJ/m2, which is the
critical value of the J-integral at the onset of slow crack growth under plane-strain
conditions. Denote that J is linear at � � 0:25mm. This leads to a conclusion
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in accordance with experimental observations that a direct measurement of the
J-integral (line integral) is carried out by assuming a general plane stress state under
small-scale yielding (SSY) or large-scale yielding (LSY) conditions. In principles,
J-integral measurements can be carried out using any specimen configuration
containing different initial crack lengths as depicted in Fig. 6.13 [3, 12]. A close
control experimental setup is vital in accordance with the ASTM E1820 standard
for obtaining valid data.

The primary goal in this section is to elucidate the analytical background
confined to theoretical aspects of the J-integral as a strain energy release rate
criterion for assessing experimental observations.

According to Rice [22] original postulate, the path-independent J-integral
describes the strain field around a crack tip, and it can be used as an energy fracture
criterion for the onset of crack growth. Despite that the J-integral is confined to
the onset of crack growth, there remains the theoretical interest in determining
the amount of crack extension prior to fracture or crack propagation using this
energy approach. For most materials, the J-integral is a suitable energy method for
characterizing fracture toughness by determining the crack tip opening displacement
(ıt) and the yield strength of materials. The simplest mathematical definition for JI

is described by Eq. (6.66).
In general, the J-integral method is applicable to elastic and elastic-plastic

materials under plane conditions. For fracture toughness concept, Rice [22]
J-integral becomes Griffith [6] strain energy release rate for elastic materials. In
other words, for mode I loading JIC D GIC for elastic behavior.

Example 6.2. Show that J-integral vanishes in the square counterclockwise con-
tour a-b-c-d shown in figure below. The square contour has four segments such
as � D ab � bc � cd � da. Determine the strain energy density W and the
J-integral for (a) plane stress and (b) plane-strain conditions if the applied stress is
700MPa. Given data for a steel plate: w D 50:80mm, � ys D 800MPa, v D 1=3

and E D 207GPa.
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Solution. For mode I and linear metal behavior, � D E0� (Hooke’s law) and

W D
Z
� ijd�ij D

Z
E0�d�ij D �2

2E0
�!
Ti D � ij

�!n D � yn

(a) For plane stress condition .� xx D � zz D � zx D � zy D 0/, Eq. (6.53) gives

Jab D
Z b

a

�
Wdy � Ti

@�

@x
dx

�
D 0 since dy D 0, @�=dx D 0, ds D dx

Jbc D
Z c

b

�
Wdy � Ti

@�

@x
dy

�
D
Z c

b
Wdy D .c � b/ �2

2E
since Ti D 0, ds D dy

Jcd D
Z d

c

�
Wdy � Ti

@�

@x
dx

�
D 0 since dy D 0, @�=dx D 0, ds D dx

Jda D
Z a

d

�
Wdy � Ti

@�

@x
dy

�
D
Z a

d
Wdy D .a � d/ �2

2E
since Ti D 0, ds D dy

Thus,

Jbc D .�w=2 � w=2/ �2

2E
D �w�2

2E
D �wW

Jda D .w=2C w=2/ �2

2E
D w�2

2E
D wW

and

J� D
X

Ji D Jab C Jbc C Jcd C Jda

J� D 0 � w�2

2E
C 0C w�2

2E
D 0

Therefore, the J-integral vanishes.
If w D 50:80mm, � D � ys D 700MPa, v D 1=3 and E D 207GPa, then

W D �2

2E
D .700MPa/2

.2/ .207; 000MPa/
D 1:18MPa

W D 1:18MJ=m3

Jda D �Jbc D w�2

2E
D wW D �

50:80 � 10�3 m
� �
1:18MJ=m3

�

Jda D �Jbc ' 60 kPa m D 60 kJ=m2
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(b) For plane strain, � z D v
�
� x C � y

� D v� and

W D �2

2E0 D
�
1 � v2� �2
2E

Similarly,

J� D
X

Ji D Jab C Jbc C Jcd C Jda

J� D 0 � w
�
1 � v2� �2
2E

C 0C w
�
1 � v2� �2
2E

D 0

Therefore, the J-integral vanishes.

If w D 50:80mm, � D � ys D 700MPa, v D 1=3 and E D 207GPa, then

W D
�
1 � v2� �2
2E

D .1 � 1=9/ .700MPa/2

.2/ .207; 000MPa/
D 1:05MPa

W D 1:05MJ=m3

Jda D �Jbc D w
�
1 � v2� �2
2E

D wW D �
50:80 � 10�3 m

� �
1:05MJ=m3

�

Jda D �Jbc ' 53:34 kPa m D 53:34 kJ=m2

6.10 TearingModulus

Those materials (ductile) that exhibit appreciable plasticity at fracture usually show
slow and stable crack growth before fracture. Stable crack growth starts at JIC, but
further increase of the applied stress is required to maintain the crack growing. The
resistance curve in these materials is the JR-curve, which is equivalent to the R-curve
discussed previously. The crack driving force is JI instead of GI [8]. The criteria for
stable and unstable (instability) crack growth are

dJ

da
<

dJR

da
for stable crack growth (6.68)

dJ

da
� dJR

da
for unstable crack growth (6.69)

Paris et al. [19] have proposed a dimensionless tearing modulus .TJ/ defined by
multiplying Eq. (6.69) by E=�2ys so that

TJ D E

�2ys

dJ

da
(6.70)
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Fig. 6.14 Schematic
J-resistance curve describing
the fracture resistance of a
material

TR D E

�2ys

dJR

da
(6.71)

In fact, TJ is nothing but the crack resistance for crack growth and TR is the material
resistance. Then, crack instability is reached when TJ D TR and fracture occurs if
TJ > TR. Here, dJ=da is the slope of the J-	a resistance curve in the stable crack
growth regimen (Fig. 6.14) designated using the following crack extension range

	amin � 	a � 	amax

Assuming that the large-scale yielding in finite bodies does not lose its uniqueness
(loss of constraint) at the crack tip [21], the J-integral for crack initiation is
determined from the curve generated by a power-law function, JI D C2 .	a/C2 , by
letting JI D JIC at 	a & 	amin, provided that the ASTM E1820 size requirements
are met [23]. Details on this type of nonlinear regression analysis is given in Chap. 3,
Fig. 3.12.

Actually, Hutchinson–Paris [9] devised a procedure to validate the J-integral
crack growth by stating that

1. the elastic unloading region in the fracture process zone requires that 	a << r
and

2. J must increase rapidly with crack extension so that the region of non-
proportionality is small and dJ=da >> J=r.

Furthermore, the slope dJR=da in Eq. (6.71) can be derived using the power-law
expression, found in the ASTM E1820 Standard Test Method and elsewhere [1, 14]
for performing nonlinear least-squares analysis. Thus,

JR D C1 .a � ao/
C2 (6.72)

where C1 and C2 are curve fitting constants.
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Now, take dJR=da and manipulate the algebra to get [1]

dJR

da
D C2C1 .a � ao/

C2�1 D C2C
1=C2
1 J.C2�1/=C2

R (6.73)

Inserting Eq. (6.73) into (6.71) yields the materials resistance modulus as

TR D
 

E

�2ys

C2C
1=C2
1

!
J.C2�1/=C2

R (6.74)

Solving for JR gives

JR D
 

�2ysTR

EC2C
1=C2
1

!C2=.C2�1/
(6.75)

Similarly, assume a cracked material under mode I loading condition which
develops a small plastic zone so that a plastic J-integral is Jp << Je. Under this
condition, take the derivative dJI=da from Eq. (6.67c) and manipulate the resultant
expression to get

dJI

da
D 
�2

E0 D JI

a
(6.76)

Now, substitute Eq.(6.76) into (6.70) to get the applied tearing modulus for plane
conditions as

TJ D
 

E

a�2ys

!
JI (6.77)

JI D
 

a�2ys

E

!
TJ (6.78)

Denote that TR D f .JR/ or JR D f .TR/ is a nonlinear function that gives an
exponential curve, while TJ D f .JI/ or JJ D f .TJ/ is a linear function that provides
a straight line. Mathematically, TR, as defined by Eq. (6.74), can be anticipated to
have an exponential decay as the applied load is increased.

Additionally, the instability criterion can be defined in terms of these modulus as
indicated below:

TJ D TR (6.79)

Thus, the J-integrals become nonlinearly related to each other as defined by

JI D
�

aC2C
1=C2
1

�
J.C2�1/=C2

R (6.80)

JR D
 

JI

aC2C
1=C2
1

!C2=.C2�1/
(6.81)

The above theoretical background can be made clear through an example.
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Example 6.3. A hypothetical solid plate containing a single-edge crack is sub-
jected to a remote stress of unknown value. Assume that this material has power-law
behavior described by JR D 300	a0:485 in kJ/m2 and 	a in meters. (a) Develop a
JR D f .TR/ diagram and identify the instability point and (b) find the instability
stress for the stable crack growth limit. Given data: E D 200; 000MPa, �o D � ys D
400MPa, ao D 5mm, and v D 0:3.

Solution. From the given JR curve fitting equation,JR D 300	a0:485, one gets C1 D
300 and C2 D 0:485. Carrying out calculations using Eqs. (6.75) and (6.78) gives

JR D
 

�2oTR

EC2C
1=C2
1

!C2=.C2�1/
D 60:259 .TR/

�0:94175 (a)

JI D
�

a�2o
E

�
TJ D 4:0TJ (b)

From Eq. (6.67c), the J-integral equation becomes

JI D K2
I

E0 D 
a
�
1 � v2� �2

E

JI D 7:1471 � 10�11�2 (c)

The figures below show the J-TR, J-TJ, and JI-� plots as per Eqs. (a)–(c).
The most obvious feature shown in the figure below is its intersection point

which immediately defines the crack instability point, which represents the sta-
ble crack growth limit for a given load. The instability point in this figure is
located at .J;Tx/ D .4:04; 16:17/ This figure depicts also he instability point at
.J; �/ D .4:76; 16:17/. For convenience, the former instability-point coordinates
are calculated by letting JR D JI so that

TJ D TR D 4:0425
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Then, the J-integral and the applied or instability load are, respectively,

JI D JR D 4:0TJ D 16:17 kJ=m2

� D
s

EJI


a .1 � v2/ D 4:76 � 105 kPa D 470MPa

Now that JR D has a known value, the crack extension 	a at instability can be
calculated using the given power-law equation and, subsequently, determine the
crack length at the instability load. Thus,

JR D 300	a0:485

	a D .JR=300/
1=0:485 D 2:42 � 10�3 m D 2:42mm

a D 	a C ao D 2:42C 5 D 7:42mm @ � D 470MPa

Finally, fracture should occur when � > 470MPa.

In light of the above J-integral approach, there are other J-theories applied to
linear-elastic materials [29]. These are the J-T theory where T is known as T-stress
and it is used for quantifying the crack tip constraint effect [13], the J-Q theory
which is based on numerical analysis that includes small-scale yielding (SSY) and
large-scale yielding (LSY) conditions [16, 17], and the J-A2 theory which is an
asymptotic three-term solution for higher-order crack tip field under elastic-plastic
conditions in power-law hardening materials [26–28]. Each of the J-theories has its
own theoretical background describing its usefulness and applicability in the field
of fracture mechanics.

6.11 Problems

6.1. Use Dugdale’s model for a fully developed plane stress yielding confined to a
narrow plastic zone. Yielding is localized to a narrow size roughly equal to the sheet
thickness (B). This is a fully elastic case in which the plastic strain may be defined
as � D ıt=B, where ıt is the crack tip opening displacement. If the J-integral is
defined by dJ D �dı, then show that

ıt D 
˛2a�2

E� ys

6.2. The crack tip opening displacement (ıt) for perfectly plastic solution to the
Dugdale’s model was derived by Rice in 1966 [14] as defined by Eq. (5.35). Show
that the path-independent J-integral is defined by

J D .� C 1/ .1C v/ 
a�2

E
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6.3. A bending test specimen made out of carbon steel showed a load-displacement
behavior If the area under the curve P D f .�/ is 10 J at the onset of crack

growth, determine (a) the fracture toughness in terms of JIC as per ASTM E1820
standard, (b) KIC and its validity as per ASTM E399 testing method, and (c)
ıtc using Eq. (5.31) with � D p

3, (d) the fracture strain �f , and (e) the plastic
zone size. Explain the meaning of the results. [Solutions: (a) JIC D 32 kJ/m2, (b)
KIC D 81:39mpA

p
m, (c) ıtc D 0:016mm, (d) �f D 0:064%, (e) r D 0:16mm.]

6.4. If JI D � ysıt is used to determine the fracture toughness, will ıt be a path-
independent entity? Explain.

6.5. Assume that crack growth occurs when JI � JIC. If a well-developed plastic
flow occurs, will this inequality be valid? Explain.

6.6. A double cantilever beam (DCB) is slowly loaded in tension up 10 MN as
schematically shown in Fig. 6.5. Assume that there is no rotation at the end of the
beam and that the beam is made of an isotropic steel having the following properties:
KIC D 47MPa

p
m, E D 207GPa, and � D 0:3. Will fracture occur? Dimensions:

a D 20mm, B D 20mm, and h D 10mm.
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7Elastic-Plastic Fracture Mechanics

7.1 Introduction

This chapter describes the stress and strain fields at a crack tip for materials that will
obey the Ramberg–Osgood [21] nonlinear stress–strain relation. These materials
are considered to be strain hardenable, specially under tension loading. A two-
dimensional field equations are characterized for ductile or low-strength materials,
which can be strain hardened at a large-scale yielding. In fact, hardening in a
polycrystalline material is due to plastic deformation, in which dislocation motion
is the primary phenomenon for this irreversible process. However, dislocation-
imperfection interactions impede the mobility of dislocations leading to strain
hardening. For instance, the dislocation distribution within a plastic zone is normally
a complex and mixed phenomenon.

The mechanism of fracture is related to plastic deformation at the crack tip where
high stresses and strains are developed. Therefore, the use of a dislocation model
for determining stresses and strains would be an ideal mathematical approach for
predicting crack instability. Instead, for a cracked elastic-plastic material subjected
to an external load, the onset of plastic flow occurs at the crack tip, and the flow
criterion that predicts the onset of crack instability is usually the J-integral, which is
limited to a stationary crack in a strain hardening material.

According to Rice [22], the J-integral is a particular version of the rate of
change in potential energy, and it is mathematically defined as a path-independent
line integral. The usefulness of the J-integral in the field of elastic-plastic fracture
mechanics is fundamentally significant for determining fracture toughness at the
onset of crack growth. Some details on how to interpret the JR-curve are given in
Sect. 3.7.2.

© Springer International Publishing Switzerland 2017
N. Perez, Fracture Mechanics, DOI 10.1007/978-3-319-24999-5_7
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7.2 J-Controlled Crack Growth

Hutchinson [12] and Rice and Rosengren [24] in separate publications in 1968
showed that the J-integral characterizes the stress and strain fields at the crack tip in
nonlinear-elastic materials. Their work is referred to as the HRR theory, which is as
an extension of linear fracture mechanics that account for a large-scale yielding
(LSY) phenomenon and related microscopic fracture mechanisms, such as void
formation and void coalescence within the plastic zone. Subsequently, the pertinent
mathematical relationships have become known as the HRR field equations appli-
cable near the crack tip within the J-dominated region as schematically illustrated
in Fig. 7.1a [6, 13].

Since the J-integral is path independent, a circular path of radius r is convenient
for deriving the field equations. This implies that the nonlinear fracture mechanics
approach can be used for analyzing rate-independent materials under monotonic
loading [22]. Particularly, the J-integral and the Ramberg–Osgood semiempirical
uniaxial stress–strain relationship are widely used for characterizing crack growth
at a large-scale yielding [21]. Therefore, nonlinear fracture mechanics has a
semiempirical foundation.

Furthermore, the crack growth model shown in Fig. 7.1 indicates that the
J-dominated region, where microscopic separation occurs, is within a relatively
large plastic zone. One particular characteristic of a cracked ductile and strain
hardenable material is the occurrence of crack blunting (Fig. 7.1b) before appre-
ciable crack growth takes place under monotonic loading. Despite that the J-integral
does not model elastic unloading, the J-controlled crack growth requires that the
region of elastic unloading and distinct non-proportional loading be contained with
the J-dominated region of the deformation theory [13]. Thus, the amount of crack
growth must be related to the plastic zone size r, the J-integral, and the crack tip
opening displacement ıt. For crack extension,

	a < r (a)

J= .dJ=da/ < r (b)

r > ıt (c)

In fact, the inequality 	a < r assures that crack advance and unloading take place
within the J-dominance zone.

Fig. 7.1 Schematic process
zone within the J-dominant
region [6, 13]. (a)
J-dominance and (b) crack-tip
blunting
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7.3 Plastic Field Equations

The analysis given below is for a study on strain hardening plasticity within the
HRR regime. These authors defined the J-Integral as the crack driving force for
characterizing plastic solids containing cracks. For instance, Hutchinson’s analysis
[12] is also found elsewhere [5, 10, 17].

Figure 7.2 schematically shows the stages of a ductile fracture process for load
control systems.

It should be pointed out that Begley et al. [2, 3] proposed the use of the
J-integral [22] as the crack driving force for characterizing the onset of crack
growth (crack extension) at a large-scale yielding. Crack growth may be stable if
the concentration of the HRR field on the crack tip region, during deformation, is
continuous, irreversible, and maintained, to an extent, a plastic level. This means that
the J-integral and the crack tip opening displacement characterize plastic fracture at
the crack tip region, where the HRR fields are located. Hence, fracture toughness is
defined at the onset of stable crack growth for a J-controlled situation [14, 31].

Assuming deformation plasticity as per the multiaxial stress J2-deformation
theory of plasticity and isotropic hardening, the invariant J2, the nonlinear multiaxial
strains (�ij), the first deviatory stress (Sij), and the von Mises effective stress (� e) for
incompressible materials under tension are, respectively [7],

J2 D 1

2
SijSij (7.1)

�ij D 3˛0�oSij

2� e

�
� e

�o

�n

(7.2)

Sij D � ij � 1

3
� kkıij (7.3)

� e D
r
3

2
SijSij (7.4)

Fig. 7.2 Schematic crack
growth behavior of ductile
materials [17]
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where ˛0 D Constant
n D Strain hardening exponent
�o DYield strain or reference strain = �o=E
�o D Yield strength or reference stress (MPa)

These are common entities used in deformation theory of plasticity, which is
basically a nonlinear-elasticity theory [24]. In fact, plasticity is a term used to
describe a solid material undergoing an irreversible process of shape change due
to an applied external stress greater than a threshold stress referred to as the yield
strength. In general, plastic deformation implies the above, and it is characterized
by a particular physical mechanism, such as formation of dislocations due to active
slip and possibly twinning systems in crystalline materials (long-range atomic order)
and crazing in amorphous materials (lack of long-range order). From an engineering
point of view, some failure criteria are used to characterize solid materials subjected
external mechanical loads.

Of particular interest is the von Mises failure criterion which utilizes the
effective stress for the above purpose, and it can be defined in polar and Cartesian
coordinates as

� e D
q
�2r C �2� � � r�� C 3�2r� for plane stress (7.5)

� e D
r
3

4
.� r � ��/2 C 3�2r� for plane strain (7.6)

� e D 3

2
p
2

�
� x � � y

�
for plane strain (7.7)

� e D 1p
2

q
.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2 (7.8)

C3 ��212 C �213 C �223
�

� e D
p
3

2
.�1 � �2/ I �1 > �2 for plane strain (7.9)

With regard to the strain hardening exponent n, low-strength (ductile) materials
have greater hardening exponents than high-strength ones. As a result, large tensile
stresses at the crack front in ductile materials cause nucleation of voids and void
coalescence as the source for crack nucleation. Consequently, the effects of yielding
and strain hardening at the crack front is a major concern in fracture mechanics.

The phenomena of yielding and strain hardening are schematically shown
in Fig. 7.3 for quasi-static tension loading. Common experimental results for
characterizing materials at a macroscale are presented as stress–strain curves
of crack-free solids. Denote that the strain hardening exponent increases with
increasing ductility [12].
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Fig. 7.3 Schematic
stress–strain curves showing
the effect of strain hardening
during deformation

Further, the hydrostatic stress and the Kronecker delta are, respectively,

� kk D � x C � y C � z (7.10)

ıij D
2

4
1 0 0

0 1 0

0 0 1

3

5 (7.11)

For an elastic-plastic behavior and a circular plastic zone with radius r, the Airy
stress function defined by Eq. (1.60) can be used here for deriving the plastic stresses
at the crack front [10]. Thus,


 D r�C1f .�/ (7.12)

The polar stresses are defined by Eq. (1.58), but they are included in this chapter for
convenience. Hence,

� r D 1

r

@


@r
C 1

r2
@2


@�2

�� D @2


@r2
(7.13)

� r� D 1

r2
@


@�
� 1

r

@2


@r@�
D � @

@r

�
1

r

@


@�

�

The boundary conditions can be set as

�� D � r� D 0 for � D ˙˛ (a)

f D f .�/ D df

d�
D 0 for � D ˙˛ (b)
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The strain compatibility equation that must be satisfied is of the form

@2��

@r2
C 2

r

@��

@r
� 1

r

@2� r�

@r@�
� 1

r2
@� r�

@�
C 1

r2
@2�r

@�2
� 1

r

@�r

@r
D 0 (7.14)

Inserting the partial derivatives of the Airy stress function, Eq. (7.12), into (7.13)
yields

� r D r��1


.�C 1/ f C d2f

d�2

�
D r��1 Q� r

�� D r��1� .�C 1/ f D r��1 Q�� (7.15)

� r� D r��1�f D r��1 Q� r�

Thus, the equivalent stress as defined by Eqs. (7.5) and (7.6), respectively, becomes

� e D r��1
q

Q�2r C Q�2� � Q� r Q�� C 3Q�2r� for plane stress (7.16)

� e D r��1
r
3

4
. Q� r � Q��/2 C 3Q�2r� for plane strain (7.17)

One can observe that these stresses depend on the plastic zone size (r), which, in
turn, affects the J-integral defined by Eq. (6.53). The J-integral along with y D
r sin � , Eq. (4.6), dy D r cos �d� , and ds D rd� can be written as [24]

J

r
D
Z 


�


"
W .r; �/ cos � � �!

T .r; �/
@�!� .r; �/

@x

#
d� (7.18)

The remaining analytical procedure for deriving the trigonometric functions for
the field equations is lengthy and complicated. Therefore, only relevant results are
included as reported in the literature. Important papers on the subject are cited
accordingly.

The essential mathematical approach for deriving the HRR field equations is
a well-developed method, and yet, a sophisticated technique for assessing the
plastic J-integral [12, 24]. Essentially, a rigorous computational skill is required to
explicitly characterize the crack behavior in the elastic-plastic regime, which is a
complex nonlinearity manifested through the strain hardening phenomenon at the
crack tip region, where the J-controlled crack growth is characterized.

An elastic-plastic or a ductile crack behavior, as opposed to brittle crack behavior
along with a very small plastic size (r), exhibits a significant crack tip blunting
before the onset of crack growth (crack extension), complicating the applicability of
the aforementioned mathematical technique [17]. Also, the stress–strain state of a
practical structural component having a finite thickness must be taken into account
due to the constraints either plane stress or plane-strain conditions imposed on any
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mathematical treatment, which must include single or mixed mode of loading and
crack orientation with respect to the load direction. This problem is alleviated using
Hutchinson’s work [13] on plastic stress field equations.

Plastic field equations: According to Hutchinson [13], the Airy stress function
in polar coordinates (r; �) for a nonlinear or strain hardening material containing a
crack is of the form


 D rs Q
1 C rt Q
2 C : : : : : : ' rs Q
1 (7.19)

Here, s and t are exponents dependent on the Ramberg–Osgood strain hardening
exponent n, and Q
1 and Q
2 are dimensionless functions of � being independent of
geometry and boundary conditions [21]. Subsequently, Hutchinson [13] considered
the dominant singular term of the asymptotic expansion at the crack tip by assuming
that s < t and introducing Kp as the amplitude of the stress function 
. In fact, Kp can
be defined as the plastic stress intensity factor [20, 26]. Hence, Eq. (7.19) becomes


 D Kprs Q
1 (7.20)

where

s D 2n C 1

n C 1
(7.21)

Kp D
�

J

˛0�o�oIn

�1=.nC1/
(7.22)

Thus, the stress tensor components � ij and the equivalent stress � e are

� ij D Œ� r; �� ; � r� � D Kprs�2 Q� .�; s/ (7.23)

� e D Kprs�2 Q� e .�; s/ (7.24)

Inserting Eqs. (7.21) and (7.22) into (7.23) and (7.24) gives the HRR stress field
equations (HRR singularities). For mode I loading, the asymptotic crack tip field
equations are [13]

� ij D Œ� r; �� ; � r� � D �o

�
J

˛0�o�oInr

�1=.nC1/
: Q� ij .�; n/ (7.25a)

�ij D Œ�r; �� ; � r� � D ˛0�o

�
J

˛0�o�oInr

�n=.nC1/
:Q�ij .�; n/ (7.25b)

�i D �
�r; �� ; �z

	 D ˛0�or

�
J

˛0�o�oInr

�n=.nC1/
: Q�i .�; n/ (7.25c)
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Fig. 7.4 Distribution of plastic stresses and plastic strains in a strain hardening material [12]

Table 7.1 Values of In at
� e D 1 [7, 12]

n 3 5 9 13

Plane stress 3.86 3.41 3.03 2.87

In D 4:55� 0:272 86n C 1:111 2 � 10�2n2

Plane strain 5.51 5.01 4.60 4.40

In D 6:2511� 0:293 81n C 1:172 4� 10�2n2

where Q� ij D Œ Q� r; Q�� ; Q� r� � �o D � ys

Q�ij D ŒQ�r; Q�� ; Q� r� � �o D �ys

Q�i D � Q�r; Q�� ; Q�z

	

Mathematically, for a power-law hardening material, the crack tip field equations
are proportional to the plastic zone size as indicated below [1, 24]

� ij / r�1=.nC1/ (7.26a)

�ij / r�n=.nC1/ (7.26b)

�i / r1=.nC1/ (7.26c)

Figure 7.4 shows the numerical distribution of dimensionless stress Q� ij .n; �/ D
Œ Q� r; Q�� ; Q� r� � and strain Q�ij .n; �/ D ŒQ�r; Q�� ; Q� r� � functions [12], and Table 7.1 gives
some numerical results for the constant In D f .n/.

Table 7.1 gives the numerical results for the constant In D f .n/. Furthermore, the
interpretation of the strain hardening exponent (n) is based on the type of mechanical
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behavior of the solid material being tested and the size of the plastic zone in terms of
the crack length, such as r � 0:02a for the J-controlled condition [8]. For fully linear
elasticity, the strain hardening is n D 1 and the field equations have a singularity
in the order of � ij / r�1=2, �ij / r�1=2, and �ij / r�1=2 which is exactly the order
as determined in Chap. 4 . Conversely, n D 1 for fully nonlinear plasticity so that
� ij � �o.

Furthermore, the interpretation of the strain hardening exponent (n) is based on
the type of mechanical behavior of the solid material being tested and the size of
the plastic zone in terms of the crack length, such as r � 0:02a for the J-controlled
condition [8].

For fully linear elasticity, the strain hardening is n D 1, and the field equations
have a singularity in the order of � ij / r�1=2, �ij / r�1=2, and �i / r1=2 which is
exactly the order as determined in Chap. 4. Conversely, n D 1 for fully nonlinear
plasticity yields � ij � �o.

For convenience, divide Eq. (7.25c) by (7.25b) to get the plastic zone size as

r D �i

�ij

Q�i .�; n/

Q�ij .�; n/
(7.28)

Substituting Eq. (7.28) into (7.25a) yields the J-integral as

J D ˛0�o�iIn

�
�o

�ij

��
� ij

�o

�nC1
:Qfij (7.29)

where

Qfij D Q�ij .�; n/

Q�i .�; n/



1

Q� i .�; n/

�nC1
(7.30)

It is clear from Eq. (7.29) that the plastic J-integral can be regarded as a measure of
the intensity of the field parameters at the crack tip and accounts for a large-scale
yielding tied to the small-strain theory. Therefore, J characterizes the crack tip field
parameters.

Most efforts to assess the J-dominance, modeled in Fig. 7.1 as a circular region,
have been focused on plane-strain condition under mode I loading [13]. Both KI

and JI characterize local field parameters, but KI is strictly used for a small-scale
yielding (SSY) and JI for small-scale and large-scale yielding cases.

The complete assessment of the fracture process includes fracture mechanisms
because fracture toughness is a measure of fracture ductility of a material having a
particular crack configuration within its geometrical shape. The concept of fracture
ductility, as reported by Liu [19], depends on hydrostatic tensile stresses during
deformation, during which the tearing modulus is a measure of the increase in
fracture ductility.

For instance, combining Eqs. (7.25a) and (7.25b) for tension loading yields the
widely used Ramberg–Osgood relationship for plastic flow [21]. Thus,
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� D ˛0�o

�
�

�o

�n Q� .�; n/
Œ Q� .�; n/�n for � � �o (Ramberg–Osgood) (7.31)

If Q� .�; n/ = Œ Q� .�; n/�n D 1 (vanishes), then Eq. (7.31) becomes the Ramberg–
Osgood equation, which is compared with the Hollomon equation for comparison
purposes. Hence,

� D ˛0�o

�
�

�o

�n

for � � �o (Ramberg–Osgood) (7.32a)

� D
�
�

ky

�1=m

for � � �o (Hollomon) (7.32b)

Rearranging Eqs. (7.32a) and (7.32b) gives the monotonic plastic stress equations as

� D �o

�
�ij

˛0�o

�1=n

for � � �o (Ramberg–Osgood) (7.33)

� D ky�
m for � � �o (Hollomon) (7.34)

Denote that both exponents in Eqs. (7.31) and (7.32) or (7.33) and (7.34) have the
same meaning, but differ in magnitude since 1 < n < 1 and 0 < m < 1. Typically,
3 < n < 6 for high hardening and n � 20 for low hardening [13]. The ky term
in Eqs. (7.32) and (7.34) is called the strength coefficient in the literature. Both
Ramberg–Osgood [21] and Hollomon [11] equations are used to predict the plastic
uniaxial stress–strain relationship schematically depicted in Fig. 7.3. These power-
law relationships indicate that the contributions to the strains that depend linearly
on the stress are simply negligible.

Moreover, for pure tension loading, the equivalent stress, Eq. (7.5) or (7.6), is
simply defined by

� e D  � (7.35)

where  D 1 for plane stress
 D p

3=2 for plane strain

Example 7.1. This example requires use of the J-integral concept in the HRR field
equation for a power-law strain hardening ASTM A533B steel being subjected to a
monotonic stress at infinity. Consider a large plate having an infinitely long single-
edge crack. Calculate the plastic zone size r for compact tension C(T) specimen
made of ASTM A533B steel at a strain of 0:1. Consider plane-strain condition and
use the data reported by Kumar [17]. The steel obeys the Ramberg–Osgood stress–
strain relation [21]. Assume that J D Je C Jp D 22:22 MJ=m2. Data:

Solution. From Hooke’s,
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�o D 414MPa n D 9:71 ao D 117mm

E D 207GPa ˛0 D 1:12 ac D 121mm

T D 93ıC w D 203mm � D 4:7mm

� D‹ B D 0:5w JIC D 1:00MJ=m2

�o D �o

E
D 414MPa

207; 000MPa
D 0:002

Plot the stress–strain curve using Eq. (7.32). This is to verify that the given strain
corresponds to an applied stress greater than the yield strength. Hence,

� D �o

�
�

˛0�o

�1=n

D 776:05�1=9:71

� D 612:21MPa @ � D 0:1

Therefore, � > �o. The stress–strain plot is

Therefore, the requirement that � > � ys has been met. Now, using Eq. (7.25a)
and Table 7.1 yields the constant In and r.

In D 6:2511 � 0:293 81n C 1:172 4 � 10�2n2 D 4:5036

r D J

˛0�o�oIn

��o

�

�nC1

r D .22:22 MPa m/

.1:12/ .414MPa/ .0:002/ .4:5036/

�
414MPa

612:21MPa

�10:71

r D 80:60mm

This is a large plastic zone. From Eq. (7.25c), the displacement becomes
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� D ˛0
o�or

�
J

˛0r�o�oIn

�1=.nC1/

� D 0:27mm

Therefore, 612:21MPa applied stress induces a sufficiently large plastic zone and a
small crack mouth displacement.

7.3.1 Strain Hardening Effects

The general approach for modeling a strain hardening material during plastic
deformation is to represent its stress–strain behavior through a power-law strain
hardening equation, such as the Ramberg–Osgood [21] defined by Eq. (7.33),
for crack-free specimens and its crack growth through the J-integral when the
specimen contains a specific crack configuration. The most suitable approach is
to determine the total J-integral near the crack tip by incorporating the elastic and
plastic contributions.

Characterization of the J-integral, the crack opening displacement (ı D COD),
and the load-line displacement (�) has numerically been established as an engineer-
ing approach (an approximation scheme) for elastic [25, 29, 32] and fully plastic
[3, 15, 16, 22] fracture analyses.

Figure 7.5 depicts the schematic sequence of plastic zone size formation and
related J-integral [17].

Fig. 7.5 Schematic
elastic-plastic fracture
behavior [17]
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The fully plastic analysis is strictly based on the Ramberg–Osgood power-
law equation (Eq. (7.33) [21]). However, the Hollomon stress–strain power law
[Eq. (7.34)] can also be used for the same purpose [11].

The elastic-plastic J-integral analysis can be defined in a general form as the sum
of the elastic and plastic parts [30]

J D Je .ae/C Jp .a; n/ (7.36)

ı D ıe .ae/C ıp .a; n/ (7.37)

� D �e .ae/C �p .a; n/ (7.38)

where ae D Irwin’s effective crack length [17]
a D Original crack length

In addition, Irwin’s effective crack length accounts for strain hardening effects
mathematically defined as [1, 17]

ae D a C$r (7.39a)

with

$ D 1

1C .P=Po/
2

(7.39b)

r D
�
1


ˇ

��
n � 1
n C 1

��
KI

�o

�2
(7.39c)

where ˇ D 2 for plane stress
ˇ D 6 for plane strain

7.3.2 Near-Field J-Integral Approximation

Consider the single-edge notched (SEN) specimen shown in Fig. 7.6 containing �1
and �2 as the near-field and far-field contours for predicting the J-integral. The
specimen edges constitute the contour �2. Use of half of the entire contour due
to symmetry is a practical assumption.

Kang and Kobayashi [15] developed a J-estimation procedure for two dimen-
sional states of stress and strains. Consider the near-field J-Integral and a strain
hardening material that obeys the Ramberg–Osgood [21] relation defined by Eq.
(7.30) in order to solve the integral for the plastic strain energy density, which is
needed in the J-integral equation. Thus,

Wp D
Z
�d� D

Z
�o

�
�

˛0�o

�1=n

d� (7.40)

Wp D
�

n

n C 1

�
�o

.˛0�o/
1=n
�.nC1/=n (7.41)
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Fig. 7.6 SEN specimen
having two contours:
near-field �1, 1-2-3-4-5-6,
and far-field �2, a-b-c-d-e-f

Substituting Eq. (7.30) back into (7.41) along with Hooke’s law yields the most
practical expression for the plastic strain energy density

Wp D ˛0�2o
E

�
n

n C 1

��
�

�o

�nC1
(7.42)

The evaluation of the plastic J-integral (Jp) is restricted to the square segment
illustrated in Fig. 7.6 as �1 or �2. For the contour �1, the J-integral is applied on
each segment of the upper half of the contour. Hence,

Jp D
Z

23

�
Wdy � Ti

@�

@x
dx

�
C
Z

45

�
Wdy � Ti

@�

@x
dx

�
(7.43)

C
Z

34

�
Wdy � Ti

@�

@x
dx

�
C
Z

52

�
Wdy � Ti

@�

@x
dx

�

where T23 D T45 D 0, ds D dy and y23 D y45
dy34 D dy52 D 0 and d�34 D d�52 D 0

Thus,

Jp D
Z

23

Wpdy C
Z

45

Wpdy D 2

Z y23

0

Wpdy D 2Wpy23 (7.44)

Substituting Eq. (7.42) into (7.44) yields

Jp D 2˛0�2o
E

�
n

n C 1

��
�

�o

�nC1
y23 (7.45)

For pure tension, the fundamental elastic J-integral is defined by Eq. (6.61) as

Je D K2
I

E0 D 
a�2

E0 (7.46)
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Finally, the total J-integral, JI D Je C Jp, becomes

J D 
a�2

E0 C 2˛0�2o
E

�
n

n C 1

��
�

�o

�nC1
y23 (7.47)

Similarly, the contour �2 for the far-field condition yields

JI D 
a�2

E0 C 2˛0�2o
E

�
n

n C 1

��
�

�o

�nC1
ybc (7.48)

The only difference between Eqs. (7.47) and (7.48) is the height of the upper vertical
segments; that is, ybc > y23.

In summary, the J-integral components are generalized as Je D f .a; �/ and
Jp D f .n; �/ functions. This provides information based on strain hardening effects.

Example 7.2. (a) Calculate the total J-integral .JI/ for a steel plate under plane
stress conditions (Fig. 7.6). Determine (b) if the elastic J-integral contributes
significantly to the total value of JI . (c) What does the plastic strain energy density
W measure? (d) Plot the plastic stress–strain and J D f .�/. Use the following data
to carry out all calculations: a D 1:40 mm, w D 19 mm, B D 0:8 mm, L D 10 cm,
�o D 64 MPa, E D 207; 000 MPa, ˛0 D 0:35, n D 5, P D 1:01 kN (load) and
y23 D w=3.

Solution. (a) The following calculations are self-contained. Thus,

�o D �o

E
D 64

207000
D 3:0918 � 10�4

A D wB D 15:20 � 10�6 m2

� D P

A
D 1:01 � 10�3 MN

15:20 � 10�6 m2
D 66:45MPa > �ys

y23 D w

3
D 19mm

3
D 6:33mm

From Eq. (1.21),

We D �2o
2E

D .64MPa/2

2 .207; 000MPa/
D 9:89 � 10�3 MPa D 9:89 kPa

We D 9:89 kJ=m3
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From Eq. (7.42),

Wp D ˛0�2o
E

�
n

n C 1

��
�

�o

�nC1

Wp D .0:35/ .64MPa/2

.207; 000MPa/

�
5

6

��
66:45

64

�6 �
103

� D 7:23 kPa

Wp D 7:23 kJ=m3

and

W D We C Wp D 9:89 kJ=m3 C 7:23 kJ=m3

W D 17:12 kJ=m3

From Eq. (7.44),

Jp D 2Wpy23 D .2/
�
7:23 kJ=m3

��19
3

� 10�3 m

�

Jp D 91:58 J=m2

For a single-edge crack with ˛ ' 1,

Je D K2
I

E
D 
a˛2�2

E
D 


�
1:40 � 10�3 m

�
.1/2 .66:45MPa/2

207; 000MPa

Je D 93:82 J=m2

The total J-integral is

JI D Je C Jp D 93:82 J=m2 C 91:58 J=m2 D 185:40 J=m2

(b) These results indicate that Je D 0:51J and Jp D 0:49J. Therefore, Je and Jp

contribute about the same amount to the total J-integral J. More accurate results
can be obtained if the geometry factor ˛ D f .a=w/ is calculated using the
equation in Table 3.2.

(c) The meaning of the plastic strain energy density .Wp/ is that it measures
the toughness of a material as the area under the stress–strain curve. This
area represents the strain energy per unit volume (17:12 kJ=m3) the material
absorbs during straining irreversibly. Obviously, the plastic strain energy
density depends on the applied load, and it represents the total amount of energy
stored in the material.
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(d) The required stress–strain curve can be determined using Eq. (7.33). Thus,

� D �o

�
�

˛0�o

�1=n

D .322:08MPa/ 5
p
�

The stress–strain plot is shown below

The J-integral plot along with the load point is based on the following equation:

JI D 
a�2

E
C 2˛0�2o

E

�
n

n C 1

��
�

�o

�nC1
:y23

JI D 2:1247 � 10�2�2 C 1:0638 � 10�9�6 in J=m2

The J-integral vs. applied stress plot is given above. It is clear that the trend of the
JI D f .�/ nonlinear as expected, and it resembles the trend shown in Fig. 7.5. This
result proves that the J-integral theory given above is correct or acceptable.

7.3.3 Far-Field J-Integral Approximation

Consider the single-edge notched (SEN) specimen with �2 contour as large as the
specimen shown in Fig. 7.6 for characterizing the far-field J-integral using only half
of the entire contour due to symmetry. The present stress field requires that � y D �

and � x D � xy D 0 for the assumed contour a-b–c-d-e-f with segments ab-bc-cd-
de-ef and fa. Thus, the far-field J-integral evaluation can be treated as a reasonable
approximation for the near field. For an axial tension loading, Kang and Kobayashi
[15] using Moiré interferometry evaluated the J-integral as the sum of the vertical
and horizontal parts of half the contour due to symmetry. Thus, the J-integral for the
traction free vertical edges of the segments bc and de becomes

Jv D
Z

bc
Wdy C

Z

de
Wdy (7.49)

Jv '
X

.Wi	yi/bc C
X

.Wi	yi/de (7.50)
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and that for the horizontal part along with � x D � xy D 0 and �x D 0 on the crack
line is

Jh D
Z

cd
Ty
@�

@x
dx D

Z

cd
� y
@�

@x
dx (7.51)

Jh '
X
�

� y
	�y

	xi

�
	xi

�

cd

(7.52)

The total J-integral due to symmetry becomes [15]

JI D 2 .Jv C Jh/ (7.53)

Once more, the J-integral represents the strain energy release rate, which is also
referred to as mechanical work per unit surface area during the onset of crack
growth. With respect to the concept that the J-integral contour can have an arbitrary
shape, thus the rectangular contour shown in Fig. 7.6 agrees with such a concept.

Nevertheless, the above approximation is a suitable approach for defining the
J-integral in simplistic mathematical manner by using the approximated integral
method.

It should be mentioned that the concept of a path-independent integral determines
the intensity of a singularity of a field quantity of an arbitrary field shape.
Apparently, Cherepanov [4] and Rice [22–23] were the pioneers who introduced
this concept into fracture mechanics as the J-integral. Subsequently, the field of
fracture mechanics has evolved since then in a fast mode and besides complicated
mathematical treatments available in the literature for finding solutions to fracture
mechanics problem, simplified mathematical approaches seem to gain momentum
for the same purpose. Therefore, the above integral approximation demonstrates the
use of path-independent J-integral in a simple manner.

7.4 Engineering Approach

Kumar et al. [17] developed another approximation scheme for characterizing
simple specimen configurations. Assume that a material obeys the Ramberg–
Osgood [21] power law [Eq. (7.30)] and that the plastic field is controlled by the
J-integral for limited crack growth. It is also assumed that unloading does not
occur behind the crack tip during the irreversible plastic deformation [14] and that
the onset of unstable crack growth (crack propagation) occurs at the maximum
load carrying capability of the component. The measurement of the J-integral is
carried out by determining the displacement from the deformation properties of the
Ramberg–Osgood material [27].

The simplified methodology for predicting fracture of structural components is
based on Eqs. (7.36) through (7.38) along with modified (7.30), and � ys D �o and
�ys D �o. The general field equations for elastic-plastic fracture analysis are defined
as [1, 17]
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J D P2

E0 f1 C ˛0�o�o�1h1

�
P

Po

�nC1
(7.54a)

ı D P

E0 f2 C ˛0a�oh2

�
P

Po

�n

(7.54b)

� D P

E0 f3 C ˛0a�oh3

�
P

Po

�n

(7.54c)

where P D Load per unit thickness (MN/m)
Po D Limit load per unit thickness (MN/m)
h1,h2; h3 D Constant tabulated in Ref. [1, 17]
f1,f2; f3 D Constant tabulated in Ref. [32]

The constants �1 and Po are defined in Table 7.2. The above field equations are
strongly dependent on increasing load raised to the power n. Therefore, the plastic
part of these equations are dominant in strain hardenable materials [17].

Figure 7.7 shows a crack driving force diagram for an axially cracked and
internally pressurized cylinder made of ASTM A533B steel [18].

This diagram represents a complete history of deformation and crack growth.
Thus, the onset of crack growth can be predicted when J D JR at the intercept of
JR-Pfixed. This intercept is the instability point where

JIC ' 10 in:kips=in2 ' 21 kJ=m2

P ' 5:5 kips D 24:47 kN

ac ' 2:6 in: D 6:60 cm

ao ' 2:25 in: D 5:72 cm

	a D 0:88 cm

Furthermore, careful attention to the data in Fig. 7.7 indicates stable crack growth
is 	a D 0:88mm for the monotonic load-controlled system. This amount of crack
growth is considered very small prior to crack propagation. If the load is P > Pc,
then the crack becomes unstable and grows very rapidly.

Additionally, He and Hutchinson [8] derived principles associated with upper
and lower bounds on the J-integral for a finite crack in an infinite plane (central
crack case) and edge crack in a semi-infinite plane. These principles are based on
the complementary potential energy and potential energy theories. The resultant J-
integral equation [8] is also given in Refs. [9, 27, 28]. Thus,

Jp D 3
a�e� e
p

n

4

�
�

� e

�2
(7.55)

Let Eq. (7.30) be an equivalent expression so that
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Table 7.2 Crack configurations and related geometric correction factors for Jp, ıp

and �p [1, 17]
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Fig. 7.7 Experimental J-integral diagram for an axially cracked and internally pressurized
cylinder made of ASTM A533B steel [18]

�e D ˛0�o

�
� e

�o

�n

(7.56)

Substituting Eqs. (7.34) and (7.56) into (7.55) yields the upper bound J-integral for
plane conditions

Jp D 3
a
p

n

4 1�n ˛
0�o�

�
�

�o

�n

(upper bound) (7.57)

He and Hutchinson [8, 9] also derived an upper bound J-integral as

Jp D 
ah
p

n�e� e (7.58)

where h D 1 for a central crack
h D 1:26 for an edge crack

Similarly, substitute Eqs. (7.34) and (7.56) into (7.58) to get

Jp D 
ah ˛0pn�o�

�
 �

�o

�n

(upper bound) (7.59)

The constant h1: The constant h1 in Eq. (7.54a) can be derived for the specimen
configurations illustrated in Table 7.2. This can be done very easily by equating
Eqs. (7.54a) and (7.57) and using the proper definitions of
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h1 D 3
a
p

n

4 1�n�1

�
�

�o

�nC1 �Po

P

�nC1
(7.60)

where  is defined by Eq. (7.34) and h1 D h1 .a=w; n/.
For the central cracked plate given in Table 7.2, �1 D a .w � a/ and this constant

becomes

h1 D 

p

n
�
1 � a

w

�n
CC(T) specimen (7.61)

Rearranging Eq. (7.60) gives a different constant defined by

H .a=w; n/ D H1 D 3
a
p

n

4 1�n�1
(7.62)

Then,

H1 D h1
��o

�

�nC1 � P

Po

�nC1
(7.63)

This expression, Eq. (7.63), can be derived by defining the J-integral in a general
form for mode I as

J D ��aH
� a

w
; n
�

(7.64)

where the strain � for linear and nonlinear materials is defined by Hooke’s law and
Ramberg–Osgood equation [21], respectively,

� D �

E
for � < �o & n D 1 (7.65)

� D ˛0�o

�
�

�o

�n

for � > �o & n > 1 (7.66)

Substituting these strain � equations into Eq. (7.64) yields the elastic and plastic
J-integrals as

Je D �o�oa

�
�

�o

�2
H
� a

w
; n
�

for n D 1 (7.67)

Jp D ˛0�o�oa

�
�

�o

�nC1
H
� a

w
; n
�

for n > 1 (7.68)

Inserting Eq. (7.63) into (7.68) yields the plastic J-integral as
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Jp D ˛0�o�oa

�
P

Po

�nC1
h1
� a

w
; n
�

for n > 1 (7.69)

Equating Eqs. (7.68) and (7.69) gives

�
�

�o

�nC1
H
� a

w
; n
�

D
�

P

Po

�nC1
h1
� a

w
; n
�

(7.70)

and solving for H .a=w; n/ yields Eq. (7.63). For linear (elastic) materials,
H .a=w/ D 
 f .a=w/2 D 
˛2, n D 1, and f .a=w/ are the usual geometry
correction factor listed in Table 3.2. Denote also that if n D 1 in Eq. (7.68), then
˛0 D H .a=w; n/ D 1 and the resultant expression becomes Eq. (7.67).

Example 7.3. Use the Hollomon equation to derive the J-integral similar to
Eq. (7.69).

Solution. From Eq. (7.31),

� D
�
�

ky

�1=m

(a)

�o D
�
�o

ky

�1=m

(b)

�

�o
D
�
�

�o

�1=m

(c)

� D �o

�
�

�o

�1=m

(d)

Substitute the last � equation into Eq. (7.64), multiply the resultant expression
by �o=�o, and replace the strain hardening exponent n for m to get the plastic
J-integral as

Jp D �o�oa

�
�

�o

�.mC1/=m

H
� a

w
;m
�

(e)

Jp D �o�oa

�
P

Po

�.mC1/=m

h1
� a

w
;m
�

(f)

where

.�=�o/
.mC1/=m H .a=w;m/ D .P=Po/

.mC1/=m h1 .a=w;m/ (g)
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was used in Eq. (e). Apparently, results for h1
�

a
w ;m

�
using the Hollomon equation

are not available in the literature at this moment [11]. The Hollomon strain
hardening exponent m was assumed to be a constant; however, it may be strain
dependent, n D f .�/.

Example 7.4. Calculate (a) the total J-integral .J D Je C Jp/ for a 2024 Al-alloy
plate having a through the thickness central crack under plane conditions. Assume
that the material obeys the Ramberg–Osgood relation. Use the following data: a D
1:40 mm, w D 19 mm, B D 8 mm, �o D 64 MPa, E D 72; 300 MPa, ˛0 D 0:35,
n D 5, � D 0:3 ,and � D 80 MPa. (b) Plot JI vs:� for plane-strain conditions.
Explain.

Solution. (a) The solution requires the following parameters:

a

w
D 0:0737 and

�
1 � a

w

�
D 0:9263

�o D �o

E
D 0:0009

From Eq. (3.29) and Table 3.1, the applied stress intensity factor is

KI D ˛�
p

a (3.29)

˛ D


1C 0:5

� a

w

�2 C 20:46
� a

w

�4 C 81:72
� a

w

�6�1=2 ' 1

KI D .80MPa/
p

 .1:40 � 10�3 m/ D 5:31MPa

p
m

and from Eq. (6.61) for pure tension loading, the elastic J-integral becomes

Je D K2
I

E0 D
�
1 � v2�K2

I

E
D 3:55 � 10�4 MPa m D 0:36 kJ=m2 (6.61)

Let us determine Jp using Eq. (7.54a) and Table 7.2

Jp D ˛0�o�o�1h1

�
P

Po

�nC1
(7.51)

Using Table 7.2 for plane-strain condition yields

�1 D a
�
1 � a

w

�
D �

1:40 � 10�3 m
�
.1 � 0:0737/ D 1:30 � 10�3 m

P D 2w� D 2
�
19 � 10�3 m

�
.80MPa/ D 3:04MN=m

Po D 4 .w � a/ �op
3

D 4
�
19 � 10�3 m � 1:4 � 10�3 m

�
.64MPa/p

3

Po D 2:60MN=m
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From Eq. (7.61), the constant h1 along with  D p
3=2 and n D 5 is

h1 D h1 D 

p

n
�
1 � a

w

�n
(7.61)

h1 D 

p
5 .1 � 0:0737/5

h1 D 4:7906

and Eq. (7.63) gives

H1 D h1

�
�o

�

P

Po

�nC1
D .4:7906/

�
64

80

3:04

2:60

�5C1

H1 D 3:2087 < h1

Thus,

Jp D ˛0�o�o�1h1

�
P

Po

�nC1

Jp D .0:35/ .64MPa/ .0:0009/
�
1:30 � 10�3 m

�
.4:7906/

�
3:04

2:60

�5C1

Jp D 3:2079 � 10�4 MPa m ' 0:32 kJ=m2

The plastic J-integral is now calculated using Eqs. (7.57) and (7.59) for comparison
purposes. Thus,

Jp D 3
a
p

n

4 1�n ˛
0�o�

�
�

�o

�n

(Upper bound) (7.57)

Jp D 3

�
1:40 � 10�3 m

�p
5

4
�p

3=2
�1�5 .0:35/ .0:0009/ .80 MPa/

�
80MPa

64MPa

�5

Jp D 3:1908 � 10�4 MPa m ' 0:32 kJ=m2

and the plastic J-integral is

Jp D 
ah ˛0pn�o�

�
 �

�o

�n

(Upper bound) (7.59)

Jp D 

�
1:4 � 10�3 m

�
.1/

 p
3

2

!
.0:35/

p
5 .0:0009/ .80MPa/

 p
3 � 80MPa

2 � 64MPa

!5

Jp D 3:1908 � 10�4 MPa m ' 0:32 kJ=m2
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Denote that Eqs. (7.54a), (7.57) and (7.59) yield similar results up to two decimal
places. The former gives approximately 0:5% higher value than the latter equation.
The total J-integral is

JI D Je C Jp D 0:36 kJ=m2 C 0:32 kJ=m2 D 0:68 kJ=m2

(b) The second part of the example requires the determination of a function JI D
f .�/ with the stress � in MPa. From part (a), the elastic J-integral becomes

Je D 

�
1 � v2� a�

E

Je D 

�
1 � 0:32� �1:40 � 10�3� �2

72; 300
D 5:5358 � 10�8�2

and the plastic J-integral gives

Jp D 3
a
p

n

4 1�n ˛
0�o�

�
�

�o

�n

Jp D 3

�
1:40 � 10�3�p

5

4
�p

3=2
��4 .0:35/ .0:0009/ .80 MPa/

� �
64

�5

Jp D 9:7375 � 10�14�5

JI D 5:5358 � 10�8�2 C 9:7375 � 10�14�5 in kJ=m2

The required plot for plane-strain condition is shown below.

This plot indicates that the elastic contribution to J is significant up to approxi-
mately 10�10�3 kJ=m2 at 40MPa. Beyond this stress value, the plastic contribution
becomes apparent as shown above at � D 80MPa.
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Furthermore, the resultant plot in this example resembles Fig. 7.5. Recall from
Chap. 3 that the critical value of the total J-integral is, in essence, the strain energy
release rate per unit surface area. The critical J-integral, say, for mode I, is JIC at
onset of crack growth. In this example, JIC is the energy for a large-scale yielding
(LSY).

The above approach for characterizing the J-integral of an elastic-plastic mate-
rial excludes a more realistic evaluation based on uncertainty of random loads
encountered in engineering structures. Hence, the application of conventional
J-integral engineering approaches for determining fracture toughness must include
statistics to assure structural integrity of linear-elastic materials. This implies that
a deterministic fracture mechanics model must include all possible loads, crack
orientation and crack geometry, and environmental effects. Subsequently, a large
safety factor required by fracture mechanics design application is important in
selecting the proper material for a specific structural component.

7.4.1 Practical Aspects

In light of the above, it appears obvious that the J-integral offers the most realistic
engineering approach for characterizing structural damage due to the presence
of cracks. Nondestructive evaluation (NDE) of structural components may reveal
cracks using visual inspection, acoustic emission, and the like. Once a crack is
detected, the load and the J-integral are estimated and compared their values against
a design code in order to determine the degree of damage in a structural component.

For mode I loading, if JI < JIC, then the critical load P D Pc must be determined
so that JI D JIC for the onset of crack growth. The disadvantage of the J-integral
approach is that it does not predict the amount of crack extension prior to crack
propagation or fracture. Therefore, the practical application of fracture mechanics
in industry for assessing structural integrity depends on the design application
guidelines. For instance, the basic engineering stress component for structural
integrity is the ultimate strength of the undamaged structure for specified design
applications. Hence, the design life associated with a limit damage is determined
prior to crack detection, followed by crack repair or component replacement.

Moreover, assessing the safety and reliability of a structure, a failure assessment
diagram (FAD) can be useful as a failure curve relating brittle fracture and general
yielding of structures containing flaws or cracks. Development of a FAD curve is
included in Chap. 10.

7.5 Problems

7.1. Determine (a) the J-integral (J) and (b) dJ=da for a hypothetical steel plate
containing a central crack of 114-mm long loaded at 276 MPa and exposed to room
temperature air. What does TJ < TR mean? Assume plane-strain conditions and that
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the stainless steel obeys the Ramberg–Osgood relation with curve fitting parameters
such as ˛0 D 1:69 and n D 5:42. Explain the results based on the strain hardening
effect. Data: �o D 207MPa, E D 206; 850MPa, � D 0:3, and JIC D 130 kJ=m2.
Dimensions: w D 4a, L D 2w, and B D a. [Solution: a) J D 248:29 kJ=m2 and
dJ=da D 4:05MJ=m3.]

7.2. A single-edge cracked plate made out of ASTM A533B steel is loaded in
tension at 93 ıC. Plot the given uniaxial stress–strain data and perform a regression
analysis based on the Ramberg–Osgood equation. Determine the elastic-plastic J-
integral. Will the crack grow in a stable manner? Why? or Why not? Assume
plane-strain conditions and necessary assumptions. Let a D 100mm, � D 0:30,
E D 207GPa, L D 3w, w D 400mm, JIC D 1:20m MPa, and B D 150mm.

�
��10�3� 0 1.00 2.24 2.30 5.00 7.50 10 20 40

� .MPa/ 0 381 414 415 450 469 483 519 557

7.3. Repeat Problem 7.2 using the Hollomon equation, � D ky�
m, for the plastic

region. Curve fitting should be performed using this equation for obtaining ky and
m. Assume plane strain conditions and make the necessary assumptions. Compare
the results from Problem 7.2. What can you conclude from these results? Assume a
contour as shown in Fig. 7.6 with y23 D 70mm. [Solution: JI D 1:86m MPa.]

7.4. A steel plate having a single-edge crack is loaded in tension at room tem-
perature. Calculate (a) the load-line displacement (�) and (b) the crack opening
displacement (ı) that corresponds to a point on the resistance curve (not included).
Assume plane-strain conditions and use the following data: JIC D 1:20m MPa,
E D 206; 850MPa, and � D 500MPa. Variables: n D 0:3, h1 D 0:523, h2 D 1:93,
h3 D 3:42, B D 150mm, w D 400mm, L D 1:20m, and a D 0:1m.

7.5. Determine the strain hardening exponent for a steel with �o D 400MPa,
E D 207GPa. Assume that it obeys the Hollomon equation, � D ky�

m, with
ky D 700MPa. Consider the maximum plastic stress in your calculations. [Solution:
n D 0:0895.]

7.6. (a) Derive an expression for the J-integral ratio, Jp=Je D f .�=�o/, using Rice
model. (b) Plot the resultant expression for a remote stress ratio range 0 � �=�0 �
1. Explain the resultant plot.
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7.7. (a) Calculate the total J-integral (JI) for a 2024 Al-alloy plate containing a
single-edge crack under plane stress conditions. (b) Plot the � D f .�/ and J D .�/.
Use the following data to carry out all calculations: a D 1:40mm, w D 19mm,
B D 0:8mm, L D 10 cm, �o D 64MPa, E D 72; 300MPa, ˛0 D 0:35, n D 5, and
F D 1:01 kN. [Solution: JI D 539:46 J=m2]

7.8. The plastic J-integral (Jp) for some configurations can be defined by J D
�W= .Bb/, where W D absorbed energy, Bb D cross-sectional area, b D .w � a/ D
ligament, and � D constant. This integral can then be separated into elastic and
plastic components. For pure tension,

J D Je C Jp D K2
I

E0 C �pWp

Bb

Consider a strain hardenable material and a specimen with unit thickness B. If the
plastic load is defined by

P D C�p

where C is the compliance and n is the strain hardening exponent, then the load
displacement and J-P profiles are schematically shown below:

Derive an expression for �p.
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8Mixed-Mode Fracture Mechanics

8.1 Introduction

Practical structures are not only subjected to tension but also experience shear
and torsion loading leading to a mixed-mode interaction. Correspondingly, the
stress state ahead of a crack is frequently based on mixed-mode I/II type of
interactions, which designate the amplitude of the crack tip stresses because of
skew-symmetric loading. Problems of this type are encountered in multiphase
materials such as welded structures, adhesive joints, composite materials, plain
and reinforced concrete structures, bridges, aircrafts, and so forth. A mixed-mode
interaction can also arise when crack branching occurs, that is, when a crack changes
direction in which the classical energy balance of Griffith can no longer be carried
out in a simple manner since cracking is not collinear as it has been assumed in
previous chapters.

In addition, cracks may develop in the skin of aircraft fuselages and can be
subjected to mixed-mode loading. In general, crack initiation and growth must be
correlated with the governing stress intensity factors in a complex state of stress.
This means that the crack tip fields are inherently three dimensional with varying
distribution through the thickness of the solid component. Therefore, the field
equations must be determined for a better understanding of mixed-mode fracture
mechanics [1–7]. Nonetheless, cracks loaded in tension and shear which may exhibit
crack branching or kinking must be characterized using traditional singular and
high-order terms in the stress field. The mixed-mode analysis of branched cracks
requires the determination of stress intensity factors for the original and branched
crack parts in terms of the stress field surrounding the crack tip [1–28]. Therefore, an
optimal kink angle and an additional T-stress component can be determined based
on far-field boundary conditions in homogeneous or heterogeneous materials.

© Springer International Publishing Switzerland 2017
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8.2 Elastic State of Stresses

Among many structural parts containing skewed cracks subjected to asymmetry
loading inducing inherent mixed-mode fracture, Fig. 8.1 shows two ideal specimen
configurations containing symmetric cracks with respect to specimen dimensions
and directions of the remote applied stress loading. In order to develop mathematical
procedures for characterizing the mixed-mode crack behavior and for determining
the magnitude of the local stress intensity factors, it is assumed that the specimens
are subjected to quasi-static and steady loadings that induce crack extension,
and subsequently, crack propagation occurs when the local crack tip principal
stresses reach a critical state. These specimens are symmetric representing ideal
models of real situations encountered in structural components subjected to inherent
internal stresses that weaken the structural integrity and eventually provoke crack
propagation.

Using the linear superposition of stresses in rectangular or polar coordinates,
the elastic state of stress at the crack tip is obtained very easily. For a mixed-mode
I/II shown in Fig. 8.1a, the total stress in rectangular coordinates is the sum of the
stresses of each loading mode component derived in Chap. 4. For a brittle, isotropic,
homogeneous, and semi-infinite plate, the stresses in Cartesian coordinates are
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(8.1)

Considering a liner elastic two-dimensional analysis in Cartesian coordinates,
the near-tip displacements can be determined by integrating the strains, but they

Fig. 8.1 Mixed-mode
interactions. (a) Plate and
(b) solid cylinder
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can also be defined by the sum of Eqs. (4.18) and (4.37). Hence, the displacements
along the x, y, and z coordinates in an ideally elastic solid materials under uniform
and quasi-static loading are

�x D 2KI
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r
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�

2



.1 � v/C .1C v/ sin2
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(8.2)
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In general, the transformation of rectangular into polar coordinates requires use of
the transformation relations between the stress components of the two coordinate
systems. In light of this, the transformation of Eq. (8.2) requires that the derivatives
with respect to x and y be carried out in terms of r and � . In order to avoid a lengthy
mathematical manipulation, simply adopt the polar stress components from Chap. 4,
and add them up for the current mixed-mode I/II problem.

For polar coordinates, adding Eqs. (4.58) and (4.59) yields
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(8.3)
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Rearranging Eq. (8.3) yields [1]
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Now the displacements are obtained from Eqs. (4.63) and (4.64)
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Here, plane stress and plane-strain conditions are controlled by the plane factor �
defined by

� D 3 � �
1C �

for plane stress (8.6)

� D 3 � 4� for plane strain (8.7)

where � is the Poisson’s ration. Recall that plane stress is for thin bodies with � z D 0

and plane strain is for thick bodies with � z > 0.
From Chap. 4, the stresses and displacements for the specimen configuration

shown in Fig. 8.1b are
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For mode III only in Cartesian coordinates,
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Therefore, the stress state ahead of the crack tip is three dimensional, and the
concept of plane stress or plane strain does not apply in this case.

8.3 Strain EnergyMethodology

8.3.1 Mode-Mode I and II

This section includes the strain energy release rate associated with mixed-mode
stress intensity factor interactions during elastic deformation of a solid containing
an inclined crack. This is the available energy for crack growth, but it must overcome
the material resistance, such as surface energy, energy dissipation, and plastic work.

The main objective in this section is to develop fracture criteria based on the
strain energy release rate for mixed I and II interaction.

In principle, assume that the basic three modes interact on an elastic component
so that the elastic J-integral and the elastic strain energy release rate become equal.
The J-integral is used as a critical property for determining the onset of stable crack
growth. Thus, Eq. (6.61) for the elastic mixed-mode interaction is applicable for
stable crack motion in its tangent plane

Ji D Gi D GI C GII C GIII (8.10)

Gi D K2
I

E0 C K2
II

E0 C .1C v/K2
III

E
(8.11)

where E0 D E for plane stress
E0 D E=

�
1 � v2� for plane strain

Recall that for pure mode I loading at fracture (crack propagation), the plane-
strain fracture toughness expression is

GIC D GI D K2
IC

E0 (8.12)

Substituting Eq. (8.12) into (8.11) gives the mixed-mode fracture criterion based on
the strain energy release rate G-criterion

K2
IC D K2

I C K2
II C E0 .1C v/K2

III

E
(G-criterion) (8.13)

This equation indicates that any combination of the stress intensity factors may give
the value for fracture toughness KIC:

Now, consider the mixed-mode I/II configuration shown in Fig. 8.1a, where the
stress tensor components are defined by

� x D � sin2 ˇ (8.14a)

� y D � cos2 ˇ (8.14b)

� xy D � sinˇ cosˇ (8.14c)
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and the applied stress intensity factors are

KI D � y
p

a D �

p

a cos2 ˇ (8.15)

KII D � xy
p

a D �

p

a sinˇ cosˇ (8.16)

The G-criterion as a circle model: In this case, the G-criterion, Eq. (8.13),
becomes the equation of a circle with radius KIC

K2
I C K2

II D K2
IC (circle) (8.17)

This fracture criterion can be named because of the nature of Eq. (8.17) defining the
mixed-mode I/II interaction.

Inserting Eqs. (8.15) and (8.16) into (8.17) yields the fracture stress as a function
of plane-strain fracture toughness and inclined crack angle

� f D KICp

a

1

cos2 ˇ
D KICp


a
sec2 ˇ (circle) (8.18)

This is a fundamental equation for predicting the plane-strain fracture toughness
where cos2 ˇ is a correction factor.

Figure 8.2 shows how the fracture stress, Eq. (8.18), varies with increasing
incline angle at a fixed crack length and various levels of the plane-strain fracture
toughness. Denote how � f under the mixed-mode interaction I/II strongly depends
on ˇ > 40ı and also on the KIC value.

Fig. 8.2 Effect of inclined angle ˇ on fracture stress for a fixed crack length and varying fracture
toughness



8.3 Strain Energy Methodology 295

Assume that a solid has a small or large degree of ductility so that the prediction
on crack growth behavior due to mixed-mode loading conditions must include
crack instability dominated by tensile stress and shear stress ahead of the crack tip.
According to the above mathematical analysis, mode I loading seems to dominate
crack growth after some crack extension has occurred. This is indirectly predicted
by Eq. (8.13) which is based on the Griffith strain energy release rate (G-criterion)
approach for a small amount of crack extension along the original crack plane at an
inclined angle ˇ.

In reality, the main goal in this section is to show that crack growth in a self-
similar manner is no longer the predictable crack behavior; instead crack growth
takes place at a fracture angle �o. This is accomplished next.

Fracture angle in a circle model: Consider the incline crack shown in Fig. 8.1a
and the tangential stress �� . For the mixed-mode defined by Eq. (8.17), solve
Eqs. (4.58b) and (4.59b) for KI and KII , respectively, and substitute them into (8.17)
and then solve for �� . The resultant expression is of the form
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For pure mode I, �� , @��=@� D 0 and � D �o at fracture, respectively, are
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Therefore, crack propagation occurs in a self-similar manner since �o D 0 as per
G-criterion.

For pure mode II, @��=@� D 0 and � D �o at fracture gives
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Again, crack propagation occurs in a self-similar manner since �o D 90ı as per
G-criterion.
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Real inclined cracks or mixed-mode cracks, on the other hand, have the tendency
to become mode I cracks so that 0 < j�oj < 90ı.

The G-criterion as a ellipse model: Dividing KI and KII in Eq. (8.17) by their
respective plane-strain fracture toughness and letting KIIC D p

3=2KIC as a practical
definition [4] give the equation of an ellipse under mixed-mode I/II interaction:

�
KI

KIC

�2
C
�

KII

KIIC

�2
D 1 (ellipse) (8.20)

K2
I C 2

3
K2

II D K2
IC (ellipse) (8.21)

In light of the above, Eq. (8.21) can be defined in a general form by introducing an
arbitrary constant Ce ¤ 1 so that

K2
I C CeK2

II D K2
IC (ellipse) (8.21a)

Figure 8.3 shows the trend of Eqs. (8.17) and (8.21) for a quarter of an ellipse. The
elliptical fracture criterion is based on the assumption that crack propagation takes
place in a self-similar manner; the mixed-mode crack tends to become a mode I
crack when the principal stress �1 dominates the stress state [21, 22].

Substituting Eqs. (8.15) and (6.16) into (8.21) gives

� f D KICp

a



1

3
.2C cosˇ/

��1=2
(ellipse) (8.22)

where � is the critical or fracture stress when KI D KIC.
The advantage of these criteria is that they can be combined with material

properties, the tensile and shear strengths, and that there is no restriction on
specimen size.

Most safety evaluations and life predictions of cracked components are based
on mode I loading, but many engineering structural components are subjected to
mixed-mode I/II interaction. Consequently, crack growth may not occur along the
crack plane, but at a fracture angle �o.

Fig. 8.3 Locus of the
circular and elliptic fracture
criteria
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Fracture angle in a ellipse model: Similarly, combining Eqs. (4.58b), (4.59b),
and (8.21) yields a slight different �� equation for an elliptical equation describing
a fracture criterion. Hence,

�� D KIC
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2
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2
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(8.23)

Letting @��=@� D 0 at fracture for individual modes gives the same results as the
G-criterion as a circle model above.

Example 8.1. A large steel plate has a 8-mm long and inclined central crack
at 20o. If the applied stress is 200 MPa, determine whether or not the plate will
fracture. The fracture toughness of the steel is KIC D 30 MPa

p
m.

Solution. From Eqs. (8.15) and (8.16),

KI D �
p

a cos2 ˇ D .200MPa/

�p
4
 � 10�3 m

�
cos2 .
=9/

KI D 19:80MPa
p

m

KII D �
p

a sinˇ cosˇ D .200MPa/

�p
4
 � 10�3 m

�
sin .
=9/ cos .
=9/

KII D 7:21MPa
p

m

Thus,

q
K2

I C K2
II D 21:07MPa

p
m < KIC

The fracture stress should be calculated using Eq. (8.18)

� f D KICp

a cos2 ˇ

D 30MPa
p

m�p
4
 � 10�3 m

�
cos2 .
=9/

D 300:07MPa

Therefore, the plate will not fracture because KIC > 21:07MPa
p

m and � < � f for
a fixed crack length.

Example 8.2. A brittle steel plate containing a 6-mm long and inclined central
crack (Fig. 8.1a)is loaded in tension. Use both the circular and the elliptical fracture
criteria to determine the fracture stress when ˇ D 
=4 and 
=3. Given data: KIC D
40MPa

p
m and E D 206; 850MPa.
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Solution. It is expected that �.c/f (circle) ¤ �
.e/
f (ellipse). Thus, Eqs. (8.18)

and (8.22) yield, respectively,

�
.c/
f D KICp


a cos2 ˇ
D 40MPa

p
m

p

 .3 � 10�3 m/: cos2 .
=4/

�
.c/
f D 824:05MPa

�
.e/
f D

s
3


a .cos2 ˇ C 2/

KIC

cosˇ

�
.e/
f D

s
3


 .3 � 10�3 m/ Œcos2 .
=4/C 2�

�
40MPa

p
m
�

cos .
=4/

�
.e/
f D 638:31MPa > �.c/f

Therefore, the fracture stress values are different as expected.

8.3.2 Mode-Mode I and III

In practice, structures are not only subjected to tension loading (mode I) but to shear
(mode II) and torsion (mode III) loadings. When a structural component is subjected
to mixed-mode I/III loading, the crack simultaneously experiences a mixed tension
and torsion interactions, and as a result, the component is exposed to a mixed-mode
cracking failure mode.

In principle, the direction of crack growth and the orientation of the crack tip in a
mixed-mode I/III interaction in a cylindrical specimen are expected to be orthogonal
due to the nature of the specimen configuration. In such a case, the crack grows in
mode I, but the principal stress field is expected to rotate, inducing crack splitting at
a critical angle of rotation �R of the principal stress field [29].

In any event, it is expected that crack growth or fracture of elastic and elastic-
plastic solids under mixed-mode I/III loading starts along the radial direction. This
implies that crack propagation occurs along the crack plane where the maximum
tensile and shear stresses must remain perpendicular and parallel to the crack plane,
respectively.

The dependency of fracture toughness on the stress-based mixed-mode I/III
plastic mixity parameter (Mp13) and displacement-based I/III mixity parameter
(ˇp13) of a elastic-plastic solid material is fundamentally inherent in mixed-mode
experiments using, for example, symmetric and asymmetric bend specimens. The
ˇp13 parameter arises due to the out-of-plane displacement in torsional loading
(mode III). This topic can be found elsewhere [30]. Despite that mode I tensile
loading is the most common in fracture mechanics, mode II being the shear sling
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loading and mode III being the anti-plane loading have to be considered to an
extent in real engineering situations. In addition, mode I and III and mode II and
III interactions have the apparent tendency to be overstresses by the mode I after
some crack growth. This means that mode I is the apparent dominant mode in a
mixed-mode situation.

Consider the crack configuration for a solid cylinder shown in Fig. 8.1b. For a
mixed-mode I/III, the cylinder is subjected to a biaxial loading ahead of the crack
tip. Thus, Eq. (8.13) reduces to

K2
IC D K2

I C E0 .1C �/K2
III

E
(8.24)

K2
IC D K2

I C K2
III

1 � v for plane strain (8.25)

K2
C D K2

I C .1C v/K2
III for plane stress (8.26)

Furthermore, denote that KIC is changed to KC for plane stress. These expressions
indicate that crack growth occurs in a self-similar manner or crack motion manifests
itself along its tangent plane. This is in accord with the basis for deriving Eq. (8.13).
Therefore, the crack fracture angle is �o D 0.

8.4 Principle Stress Criterion

The principal stress theory is a fundamental theory of failure for controlling the
maximum principal stress reaching the tensile yield strength of brittle materials. In
the literature, this theory is also known as normal stress theory.

In principle, this theory has been implemented in mixed-mode fracture mechan-
ics as a fracture criterion because in many practical situations structural components
experience tensile and shear loading simultaneously.

The mixed-mode fracture criterion, �� -criterion, is equivalent to the mixed-mode
strain energy release rate criterion [3, 5, 6]. The principal stress theory postulates
that crack growth takes place in a direction perpendicular to the maximum principal
stress. Hence, the fracture criterion requires maximum principal tension stress for
opening the crack along its plane.

@��

@�
D � r�

ˇ̌
ˇ̌
�D�o

D 0 (8.27a)

@2��

@�2
< 0 for �� > 0 (8.27b)

Consider the tension loading that produces a mixed-mode I/II interaction as shown
in Fig. 8.1a and that the stress �� in Eq. (8.4) is a principal stress if @��=@� D � r� D
0. Setting � r� D 0 in Eq. (8.4) makes �� a principal stress, and using Eqs. (8.15)
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and (8.16) yields

KI sin �o C KII .3 cos �o � 1/ D 0 (8.28a)

sin �o C .3 cos �o � 1/ tanˇ D 0 for ˇ ¤ 0 (8.28b)

Using sin �o D 2 sin .�o=2/ cos .�o=2/ and .3 cos �o � 1/ D 2Œcos2 .�o=2/ �
2 sin .�o=2/�, letting x D KI=KII in Eq. (8.28b), and solving for �o yields [3, 7]

2KII tan2 .�o=2/ � KI tan .�o=2/ � KII D 0 (8.29a)

so that

tan .�o=2/ D 1

4

KI

KII
C 1

4

s�
KI

KII

�2
C 8 (2.29b)

tan .�o=2/ D x

4
C
q
.x=4/2 C 1=2 for x D KI=KII D cotˇ (2.29c)

�o D 2 arctan

2

41
4

cotˇ C
s�

1

4
cotˇ

�2
C 1=2

3

5 (2.30)

For pure mode II loading, Eqs. (8.28a) and (2.29b) give the fracture angle as

cos �o D 1

3
! �o D 70:53ı (8.30a)

tan .�o=2/ D p
2=2 ! �o D 70:53ı (8.30b)

The maximum principal stress is defined, after manipulating the trigonometric
functions in Eq. (8.4), by

�1 D �� .� D �o/ D 4p
2
r

cos3
�o

2



KI cos

�o

2
C 3KII sin

�o

2

�
(8.31)

For pure mode I loading at fracture with KI D KIC, Eq. (8.31) becomes

�1 D 4KICp
2
r

(8.32)

Equating Eqs. (8.31) and (8.32) yields the fracture criterion as a trigonometric
function

KIC D KI cos4
�o

2
C 3KII sin

�o

2
cos3

�o

2
(�� -criterion) (8.33)
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Fig. 8.4 Distribution of bij as
functions of fracture angle �o

Furthermore, the fracture toughness ratio can be determined by substituting the
fracture angle �o D �70:53 into Eq. (8.33) for pure mode II at fracture. Thus,
KII D KIIC and

KIIC D
r
3

4
KIC ' 13

15
KIC ' 1:15KIC (�� -criterion) (8.34)

For convenience, squaring Eq. (8.33), manipulating, and simplifying the trigono-
metric identities yield

K2
IC D b11K

2
I � 2b12KIKII C b22K

2
II (�� -criterion) (8.35)

where the bij are defined by

b11 D 1

8
.1C cos �o/

3 (8.36a)

b12 D 3

8
sin �o .1C cos �o/

2 (8.36b)

b22 D 9

8
sin2 �o .1C cos �o/ (8.36c)

The distribution of each constant bij is shown in Fig. 8.4.

8.5 Strain Energy Density Factor

Sih [2] proposed this criterion using the strain energy density factor (S) for a
two-dimensional stress field. This criterion states that the initial crack growth
takes place in the direction along which the strain energy-density factor reaches
a minimum stationary value so that

@S

@�
D 0 for � D �o (8.37)

@2S

@�2
> 0 for � 
 < �o < 
 (8.38)
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This theory can predict crack propagation in an arbitrary direction, and it states that
crack propagation occurs when S D Sc at � D �o, where Sc is the critical strain
energy density factor and �o is the fracture angle.

The development of S-criterion is achieved by inserting the previously derived
stresses and displacements into the strain energy density equations (with unit
thickness). This criterion is related to the work done by the an external load, which
is the stored strain energy density in solids. Thus, Eq. (6.58) in rectangular and polar
coordinates becomes

dW

dV
D 1

2E

�
�2x C �2y C �2z

�
(8.39)

� v
E
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� x� y C � y� z C � z� x

�

C 1

E
.1C v/

�
�2xy C �2yz C �2zx

�

dW

dA
D 1

2



� r
@�r

@r
C ��
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(8.40)
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@�r
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C 1

r

@��
@r
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r

�

Here, V is the volume and dA D rd�dr is the inner area (region) of the plastic zone
model shown in Fig. 8.5 [2]. This region should not have its sides coincide with the
free crack surface which corresponds to the trivial case when S D 0.

The strain energy density factor is derived by combining Eqs. (8.5) and (8.40).
Thus,

S D r
dW

dA
D a11K

2
I C 2a12KIKII C a22K

2
II (8.41)

where aij D constants
G D E= Œ2 .1C v/� D Shear Modulus
E D Modulus elasticity in tension
� D Poisson’s ratio

The constants aij are

a11 D 1

16G
Œ.1C cos �/ .� � cos �/�

a12 D 1

16G
sin � Œ2 cos � � .� � 1/� (8.42)

a22 D 1

16G
Œ.� C 1/ .1 � cos �/C .1C cos �/ .3 cos � � 1/�

Figure 8.6 shows the distribution of the constants aij as a function of � for
Poisson’s ratio of v D 0:3 and modulus of elasticity of E D 70GPa under plane-
strain condition.
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Fig. 8.5 Stress field of an
element at the circular plastic
zone boundary in polar
coordinates [2]

Fig. 8.6 Distribution of aij

for a material having �D 0:3

under plane-strain condition

For pure mode II, KI D 0 and Eq. (8.41) yields

SII D a22K
2
II (8.43)

Letting @S=@� D 0 at � D ��o yields

cos �o D � � 1
6

(8.44)

�o D � arccos
� � 1
6

(8.45)

and Eq. (8.43) becomes

SIIC D .� C 1/
���2 C 14� � 1�

96E
K2

IIC (8.46)

For instance, if Poisson’s ratio is v D 0:3, then the fracture angle under plane
conditions become

�o D � arccos
1 � �
3

D �76:51ı for plane stress (8.47)

�o D � arccos
1 � 2�
3

D �82:34ı for plane strain (8.48)
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On the other hand, if KII D 0 in Eq. (8.41), then

SI D a11K
2
I (8.49)

Letting @S=@� D 0 in Eq. (8.49) at � D ��o gives

cos �o D � � 1
2

(8.50)

Thus, Eq. (8.49) becomes

SIC D .� C 1/ .� C 1/2

32E
K2

IC (8.51)

Letting @S=@� D 0 at � D ��o in Eq. (8.41) for KI > 0 and KII > 0 gives the
equation for the fracture angle

0 D Œ.1 � � C 2 cos �o/ sin �o�K
2
I

C2 �.2 cos �o � � C 1/ cos �o � 2 sin2 .�o/
	

KIKII (8.52)

C Œ.� � 1 � 6 cos �o/ sin �o�K
2
II

Simplifying Eq. (8.52) gives

0 D Œ.1 � � C 2 cos �o/ sin �o�

C2 �.2 cos �o � � C 1/ cos �o � 2 sin2 .�o/
	 �KII

KI

�
(8.53)

C Œ.� � 1 � 6 cos �o/ sin �o�

�
KII

KI

�2

This equation can be used to determine �o knowing KII=KI values. The S-criterion
for a mixed-mode I/II can be determined by inserting Eq. (8.51) into (8.41). Thus,

K2
IC D 32E

.� C 1/ .� C 1/2

�
a11K

2
I C 2a12KIKII C a22K

2
II

	
�D�o

(8.54)

Applying Eq. (8.54) at fracture under mode II loading yields

K2
IIC D .� C 1/ .� C 1/2

32Ea22
K2

IC (8.55)

If

a22 D .� C 1/
���2 C 14� � 1�

96E
(8.56)
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Fig. 8.7 Some mixed-mode I/II fracture criteria [7]

Then,

KIIC D
s

3 .� C 1/2

14� � �2 � 1KIC (8.57)

For plane-strain conditions along with � D 1=3 and � D 3 � 4v, Eq. (8.57)
yields exactly the same result as predicted by the principal stress theory given by
Eq. (8.34).

The numerical results of Eq. (8.54) along with other criteria for negative values
of �o (tension) and positive applied stress are shown in Fig. 8.7 [7].

On the other hand, Fig. 8.8 shows the theoretical relationship between the
fracture and inclined angles for tension loading [2].

Note that these numerical results indicate that both �o and ˇ theoretically depend
on the Poisson’s ratio (�) level. Hence, the higher �, the higher �o at fixed value of ˇ.

It is usually assumed that crack propagation occurs in a self-similar manner, but
in reality this takes place at a fracture angle (�o/ as shown numerically in Fig. 8.8
and experimentally illustrated in Table 7.1.

In addition, notice the remarkable agreement on the fracture angle �o between
experimental and theoretical results for Plexiglas given in Table 8.1 [2]. This
illustrates the usefulness of these criteria for predicting the fracture angle in elastic
solids.

Example 8.3. A large 2024 Al-alloy plate containing a central crack inclined at an
angle ˇ is subjected to a combined mode I/II loading. The plate fractures at a tensile
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Fig. 8.8 Theoretical results
for an inclined central crack
uniformly loaded in tension
mode [2]

Table 8.1 Experimental and theoretical values of the
fracture angle for plexiglas plates with a crack length
a D 25:4mm each and w, L >> a (dimensions:
228.60 mm � 4570.20 mm � 4.76 mm) [2]

ˇ C30.0ı C40.0ı C50.0ı C60.0ı C70.0ı C80.0ı

�o (Exp.) �62.4ı �55.6ı �51.6ı �43.1ı �30.7ı �17.3ı

�� -criterion �60.2ı �55.7ı �50.2ı �43.2ı �33.2ı �19.3ı

S-criterion �63.5ı �56.7ı �49.5ı �41.5ı �31.8ı �18.5ı

G-criterion �60.0ı �50.0ı �40.0ı �30.0ı �20.0ı �10.0ı

stress of � y D 138MPa and a shear stress of � xy D 103MPa. Use (a) the maximum
principal stress and (b) the strain energy density factor criteria to calculate the
fracture angle �o, the incline angle ˇ, and the plane-strain fracture toughness KIC

and KIIC and the critical strain energy density factor. Use the following data: crack
length 2a D 76 mm, � D 1=3, and E D 72; 300 MPa.

Solution. (a) Maximum Principle Stress Criterion: If a D 38 mm, � y D 138 MPa,
� xy D 103 MPa, the stress intensity factors are

KI D � y
p

a D .138MPa/

p

 .38 � 10�3 m/ D 47:68MPa

p
m

KII D � xy
p

a D .103MPa/

p

 .38 � 10�3 m/ D 35:59MPa

p
m

x D KI

KII
D 4

3
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From Eq. (8.30),

�o D 2 arctan

"
x

4
C
r� x

4

�2 C 1=2

#
D 2 arctan

2

41
3

C
s�

1

3

�2
C 1=2

3

5

�o D 1:6795 rad D 96:23ı

The crack inclined angle ˇ is

KI

KII
D �

p

a cos2 ˇ

�
p

a sinˇ cosˇ

D cotˇ

ˇ D arccot

�
KI

KII

�
D arccot

�
4

3

�
D 0:6435 rad D 36:87ı

Inserting the value of �o, KI and KII into Eq. (8.33) yields

KIC D KI cos4
�o

2
C 3KII sin

�o

2
cos3

�o

2
(�� -criterion)

KIC D cos4
�
1:6795

2

� �
47:68MPa

p
m
�

C3 sin

�
1:6795

2

�
cos3

�
1:6795

2

� �
35:59MPa

p
m
�

KIC D 33:13MPa
p

m

From Eq. (8.34),

KIIC D
r
3

4
KIC D

r
3

4

�
33:13MPa

p
m
� D 28:69MPa

p
m

(b) Strain Energy Density Factor Criterion: For plane-strain condition,

� D 3 � 4� D 3 � 4=3 D 5=3

Using an iteration procedure on Eq. (8.53) yields the fracture angle

0 D Œ.1C cos �o/ sin �o � .sin �o/ .� � cos �o/�

C2 Œ.cos �o .2 cos �o � � C 1// .2 cos �o � � C 1 � 2�o sin �o/�

�
3

4

�

C Œ.� C 1/ sin �o � .sin �o/ .3 cos �o � 1/ � 3 .1C cos �o/ sin �o�

�
3

4

�2

�o D 0:5130 rad D 29:39ı
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From Eqs. (8.42) and (8.54),

a11 D 1C v

8E
Œ.1C cos �/ .� � cos �/� D 1:1485 � 10�5 MPa�1

a12 D 1C �

8E
sin � Œ2 cos � � .� � 1/� D 4:0744 � 10�6 MPa�1

a22 D 1C �

8E
Œ.� C 1/ .1 � cos �/C .1C cos �/ .3 cos � � 1/�

a22 D 2:595 � 10�5 MPa�1

and

KIC D
s

32E

.� C 1/ .� C 1/2

�
a11K2

I C 2a12KIKII C a22K2
II

	

KIC D 72: 85MPa
p

m

The fracture toughness for mode II, Eq. (8.57), and the critical strain energy
density factor, Eq. (8.41), are respectively,

KIIC D
s

3 .� C 1/2

14� � �2 � 1KIC D 76:09MPa
p

m

and

a11 D 1C v

8E
Œ.1C cos �/ .� � cos �/� D 1:1485 � 10�5 MPa�1

a12 D 1C �

8E
sin � Œ2 cos � � .� � 1/� D 4:0744 � 10�6 MPa�1

a22 D 1C �

8E
Œ.� C 1/ .1 � cos �/C .1C cos �/ .3 cos � � 1/�

a22 D 2:595 � 10�5 MPa�1

Sc D a11K
2
IC C 2a12KICKIIC C a22K

2
IIC

Sc D �
1:1485 � 10�5 MPa�1

� �
72:85MPa

p
m
�2

�2 �4:0744 � 10�6 MPa�1
� �
72:85 MPa

p
m
� �
76:09MPa

p
m
�

C �
2:595 � 10�5 MPa�1

� �
76:09MPa

p
m
�2

Sc D 0:17 kPa m D 0:17 kJ=m2 (Critical)
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Therefore, crack propagation takes place when Sc D 0:17 kJ=m2 at �o D
29:39ı. The critical strain energy density factor SC surface profile is given
below. This 3D plot represents the critical state of the current mixed-mode
interaction.

The mixed-mode fracture criterion provides a 3-D surface plot showing that the
critical strain energy density factor Sc increases with increasing fracture toughness
values. Nonetheless, this plot represents the fracture resistance of the material.

In addition, the figure below exhibits the trend of the fracture toughness ratio
with increasing Poisson’s ratio �. Note that there is a theoretical maximum limit for
the Poisson’s ratio of approximately 0.7. At � > 0:7, KIIC=KIC ! 1.

Example 8.4. Suppose that a thin-wall cylindrical pressure vessel made of AISI
4340 steel with KIC D 50MPa

p
m, E D 207 GPa, � ys D 1; 793MPa, � D 1=3, and

Sc D 1080 N=m contains an internal semielliptical surface crack (2a D 4 mm deep
and 2c D 12 mm long) inclined at 30ı with respect to the circumferential (hoop)
stress �� . This does not coincide with the principle stresses, and consequently, it will
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grow at a fracture angle �o as shown in the figure below. The cylindrical pressure
vessel containing such an inclined crack can be found elsewhere [31]. The vessel
thickness and inside diameter are B D 6 mm and di D 500 mm, respectively.
Calculate the fracture internal pressure Pc.

Solution. The hypothetical pressure vessel above is just a closed structure to store
liquids or gases under pressure P > Patm, and it is treated as a thin-walled structure.
In addition, the direction of crack extension in mixed-mode fracture is assumed
to occur at a fracture angle �o. Thus, a self-similar crack grown along the crack
plane no longer prevails in the analysis required in this mixed-mode I/II example
problem. The hoop stress �� in mixed-mode I/II fields compares with the stress in
an unconstrained mode I field for crack growth along the crack plane. From Chap. 3,
the circumferential (hoop stress) and the longitudinal stresses are

�� D Pd

2B
& � z D ��

2
(a)

From Eqs. (8.15) and (8.16),

KI D ��
p

a cos2 ˇ

KII D ��
p

a sinˇ cosˇ

A more exact treatment of the problem using the hoop stress gives

KI D Pd

2B

p

a cos2 ˇ

KII D Pd

2B

p
3
a sinˇ cosˇ

where the stress intensity factor ratio becomes

KI

KII
D cot .ˇ D 
=6/ D p

3

x D KII

KI
D tan .ˇ D 
=6/ D

p
3

3
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Now consider the strain energy density factor in light of the above

S D a11K
2
I C 2a12KIKII C a22K

2
II

S D 
a

�
Pd

2B

�2
f .�; ˇ/

where the function f .�; ˇ/ is defined by

f .ˇ/ D a11 cos4 ˇ C 2a12 sinˇ cos3 ˇ C a22 sin2 ˇ cos2 ˇ

f .ˇ/ D 0:5625a11 C 0:64952a12 C 0:1875a22

since ˇ D 30ı D 
=6, sinˇ D 1=2, sin2 ˇ D 1=4, cosˇ D p
3=2 and

cos2 ˇ D 3=4. Before determining the coefficients aij, let’s find the value of the
fracture angle by letting dS=d� D 0 and � D �o at fracture. Hence, iterate the
following equation to find �o

0 D Œ.1 � � C 2 cos �o/ sin �o�

C2 �.2 cos �o � � C 1/ cos �o � 2 sin2 .�o/
	 �KII

KI

�

C Œ.� � 1 � 6 cos �o/ sin �o�

�
KII

KI

�2

0 D 4

3
sin � � 8 sin 2� � 4

3
.cos �/

p
3C 4

p
3 cos 2�

�o D 28:91ı

Now that �o is known, the constants aij follow

a11 D 1C �

8E
Œ.1C cos �/ .� � cos �/�

a12 D 1C �

8E
sin � Œ2 cos � � .� � 1/�

a22 D 1C �

8E
Œ.� C 1/ .1 � cos �/C .1C cos �/ .3 cos � � 1/�

and

a11 D 1:1948 � 10�6 MPa�1

a12 D 4:1878 � 10�7 MPa�1

a22 D 2:7230 � 10�6 MPa�1
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Thus,

f .ˇ/ D a11 cos4 ˇ C a12 sinˇ cos3 ˇ C a22 sin2 ˇ cos2 ˇ

f .ˇ/ D 1:3186 � 10�6 MPa�1

The fracture pressure is now calculated based on the critical strain energy density
factor. Hence,

Sc D 
a

�
Pcd

2B

�2
f .�; ˇ/

Pc D 2B

d

s
Sc


af .�; ˇ/

so that

Pc D .2/ .6mm/

500mm

s
1080 � 10�6 MPa m


 .2 � 10�3 m/
�
1:3186 � 10�6 MPa�1

�

Pc D 8:67MPa

Calculate the stress intensity factor for mode I based on the critical pressure Pc in
order to determine if fracture occurs in mode I loading. Thus,

KI D Pcd

8B

p

a cos2 ˇ

KI D .8:67MPa/ .500mm/

2 .6mm/

p

 .2 � 10�3 m/ cos2 .
=6/

KI D 21:48MPa
p

m < KIC D 50 MPa
p

m

Therefore, fracture does not occur in this mode because KI < KIC.
Will fracture occur in mode II? Let us find out by estimating the corresponding

fracture toughness and by calculating the applied stress intensity factor for mode II.
Thus, from Eq. (8.57),

KIIC D
s

3 .� C 1/2

14� � �2 � 1KIC D 22:44MPa
p

m

and

KII D Pcd

8B

p

a sin .ˇ/ cos .ˇ/

KII D .8:67MPa/ .500mm/

2 .6mm/

p

 .2 � 10�3 m/ sin .
=6/ cos .
=6/

KII D 12:40MPa
p

m
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KII D
�p

3=3
�

KI D
�p

3=3
� �
21: 48MPa

p
m
� D 12:40MPa

p
m

KII D 12:40MPa
p

m < KIIC No fracture occurs in this mode

Therefore, fracture does not occur in this mode II. In light of the above calculations,
the pressure vessel hypothetically can withstand a higher pressure before fracture
or burst occurs.

8.6 Crack Branching

It is recognized that the tensile cracks in solids can significantly branch out due to
mechanical, microstructural, or environmental effects. Changes in crack path are
normally induced by (1) multiaxial far-field stresses, (2) interaction of the crack
tip with microstructural defects, and (3) sudden changes in load and embrittlement
effects of an aggressive environment [8–12].

Figure 8.9 illustrates some examples of severely branched cracks in ductile
materials during different conditions, which can be found in the cited references.

The effects of crack branching can be rationalized based on the stress intensity
factors for the small-branched cracks shown in Fig. 8.10. However, numerous
solutions for kinked and forked cracks have been proposed, but there have been
considerable disagreements.

The stress intensity factors K1 and K2 for kinked and forked cracks are smaller
than the nominal KI and KII . Based on the projected length of the crack, K1 and K2
are meaningful if the plastic zone is smaller than the zone of dominance of the KI

and KII singular fields.
The stress intensity factor solutions for kinked and forked elastic cracks under

mixed-mode I/II loading are based on the models shown in Fig. 8.10 [13–16].
Thus,

K1 D a11 .˛/KI C a12 .˛/KII (8.58)

K2 D a21 .˛/KI C a22 .˛/KII

where aij .˛/ are defined as

a11 .˛/ D 1

4

�
3 cos

˛

2
C cos

3˛

2

�

a12 .˛/ D �3
4

�
sin

˛

2
C sin

3˛

2

�
(8.59)

a21 .˛/ D 1

4

�
sin

˛

2
C sin

3˛

2

�

a22 .˛/ D 1

4

�
cos

˛

2
C 3 cos

3˛

2

�
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Fig. 8.9 (a), (b), and (c) mode I crack branching in an Al-2.9Cu-2.1Li-0.12Zr alloy, (d) kinking
of a fatigue crack in 2020-T651 Al-alloy, (e) stress corrosion crack branching in 9Ni-4Co-0.45C
martensitic steel, and (f) creep crack branching in copper

These coefficients are the solutions for an infinitesimal kink or branch crack b=a !
0. A simple analysis of these equations implies that if a D 0, then the stress intensity
factors for crack kinking become equal to the nominal counterparts; that is, K1 D KI
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Fig. 8.10 Nomenclature for
mode I/II crack branching [7].
(a) Kinked crack and (b)
forked cracks

and K2 D KII . The profiles for aij .˛/ and normalized stress intensity factors for the
branched crack are depicted in Fig. 8.11.

The strain energy release rate for crack extension in a self-similar manner (in
the plane of the original crack plane) was derived previously as Eq. (6.34). For an
infinitesimally small crack branched out, the strain energy release rate, Eq. (6.34),
is now defined in terms of the stress intensity factor for the kinked crack tip

G .˛/i D K2
1

E0 C K2
2

E0 C .1C �/K2
3

E
(8.60)

The stress intensity factors K1 and K2 derived by Hussain et al. [17] and K3 by Sih
[18] are

K1 D
�

4

3C cos2 ˛

��

 � a


 C ˛

�˛=2
 �
KI cos˛ C 3

2
KII sin˛

�

K2 D
�

4

3C cos2 ˛

��

 � a


 C ˛

�˛=2
 �
�1
2

KI sin˛ C KII cos˛

�
(8.61)

K2 D
�

 � a


 C ˛

�˛=2

KIII
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Fig. 8.11 Variation of constants aij with kink angle ˛

Substituting Eq. (8.61) into (8.60) yields an expression for the strain energy release
rate as a function of kink fracture angle ˛. Thus,

G .˛/i D 4�

.3C cos2 ˛/2 E0


 �
1C 3 cos2 ˛

�
K2

I C .4 sin 2˛/KIKII

C �
9 � 5 cos2 ˛

�
K2

II

�

C� .1C �/K2
III

E
(8.62)

where

� D
�

 � a


 C ˛

�˛=

(8.62a)

The hypothesis states that crack extension takes place in a direction of maximum
strain energy release rate G .˛/max and that crack branching occurs at a fracture
angle ˛ D ˛o. Hence,

@G .˛/

@˛
D 0 for ˛ D ˛o (8.63a)

@2G .˛/

@˛2
< 0 for ˛ D ˛o (8.63b)

Crack propagation takes place when G .˛/i D G .˛/c. For pure mode I at fracture,
Eq. (8.62) becomes

G .˛/IC D K2
IC

E0 (8.64)
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Letting G .˛/IC D G .˛/i in Eq. (8.62) yields the fracture criterion

K2
IC D 4�

.3C cos2 ˛/2
��
1C 3 cos2 ˛

�
K2

I C .4 sin 2˛/KIKII
	

C 4�

.3C cos2 ˛/2
�C �

9 � 5 cos2 ˛
�

K2
II

	
(8.65)

CE0� .1C �/K2
III

E

Denote that if ˛ D 0 in Eqs. (8.62) and (8.65), the former reduces to Eq. (6.34) and
the latter becomes Eq. (8.13).

Furthermore, the above mathematical treatment of mixed-mode fracture mechan-
ics problems has been based on the stress field surrounding the crack tip where stress
singularities exist as r ! 0. Including the influence of the T-stress (Tx) in the mixed-
mode I/II process, the generalized stress based on Williams [23] K-field solution for
unkinked crack is defined as [24]

� D KIfI .�/C KIIfII .�/p
2
r

C Tx (8.66)

Recall from Chap. 4 that Tx is a second-order term in the series expansion of the
stress field and it is non-singular, but specimen size and geometry dependent. As
pointed out by Becker et al. [24], Tx represents the strength in the crack x-direction.
For mode I loading, Tx < 0 and KII D 0 for stabilizing the crack. Conversely, crack
branching may occur when Tx > 0 and KII > 0 at angle ˛ as indicated in Fig. 8.10.
Further theoretical or numerical details on crack kinking can be found elsewhere
[25–28].

8.7 Wood

Wood is an important material in our modern world. For instance, wood can be used
as a material for construction, tools, decoration, and furniture. It comes in a variety
of natural colors ranging from white (sapwood) to black (ebony). In a single sample
of wood, coloration can also change. Figure 8.12 illustrates a transverse section of
a stem of wood exhibiting the characteristics of the wood fibers along the principle
axes [32, 33].

Thus, wood is characterized by its concentric layers known as annual rings or
growth rings, which in turn are used for characterizing softwoods and hardwoods.
Each of these types of woods are also classified as earlywood and latewood
or as sapwood and heartwood, respectively. Nonetheless, wood consists of hard
hexagonal like cells. The microscopic, macroscopic, and physical characteristics
of wood can be found elsewhere [34].
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Fig. 8.12 Characteristics of wood texture

The bear tree trunk can be treated as a fiber-reinforced composite or a cylindrical
orthotropic material solid that responses to external stresses, temperature, and
environment. Thus, the structural integrity can be assessed by determining the
fracture behavior of wood. Basically, wood has a heterogeneous internal structure,
and it is anisotropic with respect to the cylindrical principle axes, which are denoted
as radial (R), tangential (T), and longitudinal (L) directions. Consequently, the
mechanical properties and the fracture behavior of wood are strongly affected by the
internal structure of the material and the direction of applied forces. For instance,
crack growth direction in a wooden component or specimen must be characterized
according to the fiber orientations illustrated in Fig. 8.13 [35].

Furthermore, a wooden specimen can be subjected to a mixed-mode loading as
shown in Fig. 8.14 for ponderosa pine specimens. The wood photo was taken from
Ref. [36].

Thus, KI and KII are the main parameters in characterizing the mixed-mode
fracture, and their magnitudes strongly depend on the crack orientation with respect
to the fiber direction. Denote that the specimen in Fig. 8.14 does not exhibit knots
which are the bases for lateral tree branches and are obstacles for crack growth.
Thus, this material may be classified as a clear wooden specimen which would
experience crack growth along the radial (R) direction at a fracture angle �o. This
implies that cracks in clear wood usually grow along the fibers [37].

The reader interested in further details on fracture mechanics or fracture of wood
should consult relevant references [37–45]. Nonetheless, the experimental fracture
data from Mall, Murphy, and Schottafer [41] for Eastern red spruce wood and
Hunt and Croager [42] for Scots pine wood has been used by Jernkvist [37] to
derive fracture mechanics criteria based on the linear-elastic fracture mechanics
(LEFM) framework. Further use of the same experimental data gives the mixed-
mode fracture behavior shown in Fig. 8.15.

Denote in Fig. 8.15 that an empirical mixed-mode fracture criterion was fitted to
the experimental data described above. The mixed-mode fracture criterion is of the
form
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Fig. 8.13 Directions of crack growth in wood [35]

Fig. 8.14 LR specimens
made of ponderosa pine
wood. The photo was taken
from Ref. [36]. (a) CCT and
(b) SE(T)
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Fig. 8.15 Mixed-mode fracture criterion for pine and spruce woods. Data from Refs. [41, 42]

�
KI

KIC

�m

C
�

KII

KIIC

�n

D 1 (8.67)

Here, m D 1 and n D 2. The values of KIC and KIIC are given in Fig. 8.15 for both
pine and spruce woods. It is clear that this empirical model predicts the mixed-mode
fracture behavior of these anisotropic materials [37].

The mixed-mode fracture criteria discussed in previous sections are not suited for
these data. The reader should confirm this statement by working out Problem 8.7.

Furthermore, the mixity parameter KII=KI increases with increasing mode II
loading due to an increase in fracture energy [37]. Thus, KIIC=KIC D 5:0 for
the Eastern red spruce (TL specimens) and KIIC=KIC � 4 for the Scots pine
(RL specimens) represent relatively high fracture toughness ratios, which indicate
that different fracture process takes place at the crack tip in mode I and II, regardless
of the type of specimens made of different softwoods [37, 39].

In addition, it has been reported [39, 45] that smooth surface cracks occur in
softwood due to crack growth through weak planes along fibers (tracheids) creating
a low energy consumption fracture process, while rough surface cracks develop in
mode II due to a high fracture energy consumption for opening and coalescence of
microcracks ahead of the main crack tip.

Figure 8.16 shows the fracture angle predicted by the principal stress fracture
criterion, Eq. (8.29). Denote that the fracture angle �o for both data sets follows
a similar trend and exhibits a strong dependency on the mixity parameter at 0 <
KII=KI < 5 or 0 < KII=KI < 80

ı which diminishes for KII=KI � 8 [37].
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Fig. 8.16 Fracture angle for Scots pine and Eastern red spruce woods [37]

Table 8.2 Stress and displacement equations per mode of loading

Mode I Mode II Mode III

� x D K1
p

2
r
cos �

2

�
1� sin � �

2
sin 3�

2

� � KII
p

2
r
sin �

2

�
2C cos �

2
cos 3�

2

� C0
� y D KI

p

2
r
cos �

2

�
1C sin �

2
sin 3�

2

� KII
p

2
r
sin �

2
cos �

2
cos 3�

2
C0

� z D
(
0 Plane stress

v
�
� x C � y

�
Plane strain

(
0 Plane stress

v
�
� x C � y

�
Plane strain

C0

� xy D KI
p

2
r
cos �

2
sin �

2
cos 3�

2
C KII

p

2
r
cos �

2

�
1� sin �

2
sin 3�

2

� C0
� xz D 0 C0 � KIII

p

2
r
sin �

2

� yz D 0 C0 C KIII
p

2
r
cos �

2

ux D KI
2G

p r
2


cos �
2

�
� � 1C 2 sin2 �

2

� KII
2G

p r
2


sin �
2

�
� C 1C 2 cos2 �

2

� C0
uy D KI

2G

p r
2


sin �
2

�
� C 1� 2 cos2 �

2

� C KII
2G

p r
2


cos �
2

�
� � 1� 2 sin2 �

2

� C0

uz D
(

� vB
E .� x C � y/ Plane stress

+0 Plane strain

(
� vB

E .� x C � y/ Plane stress

+0 Plane strain
C 2KIII

G

p r
2


sin �
2

As a final remark, Table 8.2 summarizes the most common stress and displace-
ment equations for the three modes of loading. It is convenient and advantageous
to make use of these equations for solving a problem related to a particular infinity
loading system.
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8.8 Problems

8.1. A large plate (2024-0 Al-alloy) containing a central crack is subjected to a
combined mode I/II loading. The internal stresses are � sy D 138MPa and � xy D
103MPa. Use the maximum principle stress criterion (�� -criterion) to calculate the
fracture toughness (KIC and KIIC). Data: crack length 2a D 76mm, � D 1=3, and
E D 72; 300MPa. [Solution: KIC D 72:5MPa

p
m and KIIC D 62:77MPa

p
m.]

8.2. Repeat Problem 8.1 using the strain energy density factor criterion
(S-criterion).

8.3. Determine (a) the applied tensile stress and (b) the safety factor for a loaded
plate containing a 76-mm central crack inclined at 53:25ı. The strain energy release
rate mode I is 9:642 kJ=m2. Data: E D 207GPa, � ys D 958MPa, and � D 0:35.
[Solution: � D 201:38MPa and SF D 4:46.]

8.4. Calculate the critical stress (fracture stress) for the problem described in
Problem 8.3 according to the �� -criterion. Will crack propagation take place?

8.5. Repeat Problem 8.4 using the S-criterion with � D 215MPa: [Solution: � c D
204MPa].

8.6. Show that the stress intensity factor is KI D
�p

8=11
�

KIC when KI D 2KIII

and the Poisson’s ration is � D 1=3.

8.7. Use the experimental mixed-mode fracture data for Solid A and Solid B
given below to compare the mixed-mode fracture criteria discussed in this chapter.
Determine which criterion is the most suited for predicting the mixed-mode fracture
behavior of these solids.

Solid A Solid B

KII KI KII KI

(MPa
p

m/ (MPa
p

m/ (MPa
p

m/ (MPa
p

m/

0.49 0 0.42 0

0.43 0.52 0.41 0.10

0.33 1.02 0.43 0.21

0.31 1.10 0.38 0.40

0.28 1.20 0.40 0.50

0.26 1.25 0.37 0.60

0.16 1.40 0.39 0.65

0 1.50 0.37 0.80

0.31 1.20

0.27 1.26

0.20 1.55

0 1.65
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8.8. A large and wide plate has a small through-thickness center crack as shown
in the figure below. Use the free-body diagram (FBD) to derive expressions for (a)
the normal (�N) and shear (� ) stresses and (b) the intensity factors KI and KII as
functions of ˇ.

8.9. Two identical cracked plates as shown in Problem 8.8 are to be tested to
determine KIC and KIIC. The observed critical tension loads and the incline angles
were 120 MPa @ ˛ D 0 and 130 MPa @ ˛ D 
=4, respectively. Use the equations
given below to determine the fracture toughness for mode I and II.

KI

KIC
C
�

KII

KIIC

�2
D 1

�
KI

KIC

�2
C
�

KII

KIIC

�2
D 1
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9Fatigue Crack Growth

9.1 Introduction

Fatigue in materials subjected to repeated cyclic loading can be defined as a
progressive failure due to crack initiation (stage I), crack growth (stage II), and
crack propagation (stage III) or instability stage. For instance, crack initiation of
crack-free solids may be characterized by fatigue crack nuclei due to dislocation
motion, which generates slip bands at the surface having slip steps in the order of
0:1�m in height [11, 80] or slip may occur at matrix-inclusion interfaces. These
steps produce surface intrusions and extrusions as schematically indicated below
for stages I and II. These intrusions caused by reversed slip due to load reversal
are the source for crack initiation, which may consume most of the solid life before
crack growth. This crack initiation may occur along the slip direction due to a local
maximum shear stress. After the consumption of many cycles, the crack may change
in direction when the maximum principal normal stress (in the vicinity of the crack
tip) governs crack growth. In this stage II, some materials show striations and beach
marks as common surface features of fatigue fracture.

In general, fatigue is a form of failure caused by fluctuating or cyclic loads over
a short or prolong period of time. Therefore, fatigue is a time-dependent failure
mechanism related to microstructural features. The fluctuating loading condition
is not a continuous failure process as opposed to cyclic loading. The former is
manifested in bridges, aircraft, and machine components, while the latter requires
a continuous constant or variable stress amplitude until fracture occurs. It is also
important for the reader to know that fatigue failure or fracture can occur at a
maximum stress below the static yield strength of a particular material. Obviously,
temperature effects must be considered in fatigue failure characterization. From an
engineering point of view, predicting fatigue life is major a requirement.
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9.2 Cyclic Stress History

Figure 9.1 shows schematic cyclic stress fluctuating curves with constant stress
amplitude (symmetrical) and random loading as function of time. These schematic
curves represent cyclic stress histories from which the number of cycles is accounted
for fatigue life (N).

The stress history or stress spectrum can be

• Axial due to tension-compression applied stresses
• Flexural due to bending applied stress
• Torsion due to twisting

From Fig. 9.1, the stress range (	� ) is the algebraic difference between the
maximum and minimum forces in a cycle expressed as 	� D �max � �min. Other
common stress parameters extracted from a stress spectrum are the mean stress (�m),
alternating stress (�a), the stress ratio, and the stress amplitude (As)

�m D �max C �min

2
(9.1)

�a D 	�

2
D �max � �min

2
(9.2)

R D �min

�max
D Kmin

Kmax
(9.3)

Fig. 9.1 Schematic stress
histories. (a) Symmetrical
and (b) asymmetrical
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As D �a

�m
D �max � �min

2�m
D 1 � R

1C R
(9.4)

These stress parameters can be varied while conducting fatigue tests for characteriz-
ing materials having specific geometries, weldments, or microstructural features. In
fact, varying stress ratio is the most common parameter in determining the fatigue
behavior of crack-free and cracked specimens.

The mechanics of fatigue and fracture is concerned with the reliability and
effectiveness of structural components in engineering applications. Thus, a precise
determination of fatigue crack growth rate (da=dN) and fatigue remaining life (N)
and a detailed understanding of how materials respond to fluctuating or cyclic loads
are important for assuring structural integrity.

In reality, structural components are generally subjected to a wide spectrum of
stresses over their lifetime that strongly affects fatigue life. The wide spectrum on a
structural component may consists of constant stress amplitude (CSA) and variable
stress amplitude (VSA) blocks as schematically shown in Fig. 9.1b.

For crack-free or notched specimens, the usual characterization of fatigue
behavior is through a stress-cycle curve, commonly known as a S-N diagram.
Figure 9.2 shows two schematic S-N curves for two hypothetical materials.

For crack-free specimens, the number of cycles to initiate a fatigue crack
is known as the fatigue-crack initiation life .Ni/, which can have a very large
magnitude representing most of the usual life of a component. The remaining
fatigue life (Np) is related to stable fatigue crack growth till the crack reaches a
critical length, and consequently, crack propagation occurs very rapidly without
any warning. As a result, a component can have a fatigue life defined by the total

Fig. 9.2 Schematic fatigue S-N curves
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number of cycles, N D Ni C Np, consumed during testing or service. Conversely, a
preexisting crack reduces fatigue life because Ni D 0 and N D Np.

Despite that fatigue represents a cumulative damage in structural components,
it is the fluctuating or cyclic local stresses and strains imparted by an external or
nominal loading mode that are the primary factors for localized crack initiation
and growth. Therefore, fatigue life can be prolonged if the nominal fluctuating or
cyclic stress level is reduced or eliminated, if the microstructure is homogeneous, if
dimensional changes are not severe enough, or if the environment is not significantly
corrosive.

It should be pointed out that the fatigue limit (for infinite life) was formerly
called the endurance limit, and it is the stress level below which fatigue failure
does not occur. Generally, ferrous alloys such as steels exhibit a stress limit, while
nonferrous do not show an asymptote, and the stress continues to decrease with
increasing cycles to failure. The latter materials are characterized by determining
the fatigue strength at a specific life (N). This stress is meaningless if the specific
life is not identified.

Typically, fatigue life exhibits data scatter as schematically shown in Fig. 9.2
for ferrous and titanium alloys. Nonferrous alloys also exhibit data scatter. There-
fore, the difference in failure response of test specimens is due to microstruc-
tural defects and machining defects. In addition, a particular material having a
fine-grained microstructure exhibit superior fatigue properties over coarse-grained
microstructure.

Metal fatigue is a significant engineering problem because it can occur due
to repeated or cyclic stresses below the static yield strength; unexpected and
catastrophic failure of a vital structural part may occur and rack initiation may start
at discontinuities in highly stressed regions of the component. Fatigue failure may
be due to discontinuities such as inadequate design, improper maintenance, and so
forth.

Fatigue failure can be prevented by

• Avoiding sharp surfaces caused by punching, stamping, and the like
• Preventing the development of surface discontinuities during processing
• Avoiding misuse, abuse, assembling errors, and improper maintenance
• Using proper material and heat treatment procedures
• Using inert environments whenever possible

Normally, the nominal stresses in most structures are elastic or below the static
yield strength of the base material. In pertinent cases, crack-free specimens are
tested using repeated or cycle loading to determine the strain-life curve (�-N) at
low cycles with variable strain amplitude.

On the other hand, the stress-life curve (S-N) in high-cycle fatigue schemes with
variable stress ratio (R) is very important for determining the total number of cycles
to failure. Consequently, fatigue failure, in general, is a weakening process of the
material since internal or external defects are the sources for crack formation.
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9.3 Fatigue Crack Initiation

It is not intended here to include a detailed background on crystallography, but a
brief explanation on this subject can make the reader be aware of the implications
in preventing and understanding fracture initiation at a atomic or nanoscale. With
regard to common metallic structural materials, metals and engineering alloys are
crystalline in nature since atoms are arranged uniformly forming unique repetitive
three-dimensional arrays, which constitute what is known in crystallography as unit
cells. As a result, the unit cells repeat themselves within grains (crystals) and their
atomic mismatch is known as grain boundary. Figure 9.3a shows a schematic unit
cell within the space lattice, and Fig. 9.3b depicts the atomic arrangement in a body-
centered cubic (BCC) showing primary slip system (110)[111].

On the other hand, Fig. 9.4 shows two real and different types of microstructures,
and therefore, the static and dynamic behavior of the corresponding alloys have
distinct mechanical behavior. This means that the microstructure plays a very
significant role in mechanical behavior of solid bodies. Figure 9.5 exhibits two
different dislocation networks as the representative line defects that develop during
permanent deformation [56–58]. These figures are intended to show the different
microstructural features of polycrystalline materials responsible for any observable
mechanical behavior.

In general, fatigue crack initiation and growth depend on microstructural fea-
tures, the maximum fluctuating stress, and the environment. Conversely, plastics or
polymers are composed of molecules and are also important engineering materials;
however, their fatigue mechanism is different from metals.

Consider a polycrystalline solid with a smooth surface being subjected to an
elastic-cyclic stress range, in which �max < � ys, but �max is high enough to activate
a slip mechanism such as the Cottrell–Hull modified mechanism [16, 20, 26, 54]
shown in Fig. 9.6.

Fig. 9.3 Atomic
arrangement within a crystal.
(a) Repetitive array of unit
cells and (b) body-centered
cubic (BCC) showing the slip
direction (s), direction of the
applied stress (� ), and the
most dense plane for shear
motion of atoms along the
shown direction
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Fig. 9.4 Microstructural features of (a) 41 % cold rolled stainless steel type AISI 304 showing
austenite grains and (b) rapidly solidified alloy exhibiting hard boride particles embedded in an
Ni-Mo matrix [56–58]

Fig. 9.5 Bright field TEM photomicrographs showing dislocation networks [57]. (a) AISI 304
S.S., (b) RSA Ni53MO35Fe9B2
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Fig. 9.6 Cottrell–Hull fatigue mechanism in ductile materials [16, 20, 26, 54]

Let the stress ratio be R D �1 for a fully reversed cyclic load system causing
irreversible damage after many cycles. Take the slip planes A and B for convenience
so that dislocation pileups occur on both sides of the planes, but having opposite
signs as indicated in Fig. 9.6a. When the slip system fhklg < uvw > is activated due
to the local maximum shear stress � , a surface step is created at �max > 0 (Fig. 9.6b).
Then dislocation motion is reversed once �min > 0 (Fig. 9.6c). Also, the upper
part moves toward its original position, leaving an inward step called intrusion
(Fig. 9.6d) in the order of the Burger’s vector b D 3mm [20]. This mechanism
is repeated many times until a deeper intrusion acts as a microcrack (Fig. 9.6e). In
polycrystalline materials, microcracks (not visible to the naked eye) interact with
the material microstructural features, such as grain boundaries, secondary particles,
or phases and dislocation networks induced by previous plastic deformation during
cold working or a stress-time history (Fig. 9.6f).
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Microcracks can also develop in concrete due to the cement hydration process
and compressive loads. Consequently, easy microcrack growth is restricted to an
extent during monotonic or fatigue testing.

During this stage I, many life cycles are consumed before crack growth in the
direction perpendicular to the local principal normal tension stress, which governs
the crack growth behavior, and the Cottrell mechanism no longer applies in a simple
manner. This mechanism can take place in a few grains before the crack changes
direction. Once this occurs other dislocation mechanisms such as the Frank-Read
source may take place. When multiple cross-slip occurs, the Frank-Read source
may not complete a loop cycle [16].

Nevertheless, the microcrack becomes long enough, causing an increase in the
stress concentration at the crack tip, and subsequently, the local stress is truncated
to the yield strength of the solid. This leads to a stage II crack growth during which
many grains are deformed making the plastic zone, which eventually reaches a
critical size for crack growth continuation in the direction of the local principal
stress which governs the stress field at the crack tip.

Since each grain has a different preferred orientation, crack growth may be in a
zigzag manner due to different slip directions. As a result, fatigue surface features
may consist of curved beach marks and striations in between. It is believed that
each striation corresponds to a cycle and many striations are formed between beach
marks. Therefore, it is possible that the plastic zone growth is related to sets of
striations, and its rupture at a critical size may be attributed to the formation of a
beach mark. In addition, solid bodies subjected to a fluctuating load, as opposed
to a monotonic load, may develop cracks that may grow very slowly. The fatigue
maximum tension load (lower than the monotonic maximum) causes crack opening.
On the other hand, the minimum load closes the crack.

Fatigue and fracture in a cyclic mechanical process are strongly influenced by the
applied constant and variable stress amplitudes. The variable stress amplitude can be
treated as random or semi-random stress amplitude, and it may be more detrimental
than the constant stress amplitude, specifically when overloads occur.

Moreover, fatigue is a complex phenomenon since it may initiate in slip zones
adjacent to the outer surface or in internal defects, such as voids or inclusions. It
should be made clear to the reader that the phrase “fatigue fracture” means rupture
or separation of a component. This is basically an overload that makes the crack
reach its critical length (a D ac) for rapid growth called crack propagation.

Furthermore, the mechanism of fatigue fracture may be initiated at a microscopic
defect since a cumulative displacement between slip planes occurs. Thus, an
intrusion, as formed in a slip direction, may be the original source for a microcrack.
A triple point at grain boundaries may be a source of crack initiation or cracks may
be developed by stress corrosion action, such as hydrogen embrittlement.

However, the direction of fatigue crack growth may change from the slip
orientation (stage I) to an average cracking normal to the maximum tension direction
corresponding to the stage II process. Thus, the characteristics of crack growth
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may be transcrystalline either by progressive plastic straining, which causes typical
striations, or by cleavage at low temperatures or in the presence of brittle inclusions.

On the other hand, crack growth may be intercrystalline due to bonding
deficiency, aggressive environment, or initiation and coalescence of voids within or
between grains. Then, the final stage (III) of fatigue fracture is caused by a dynamic
crack propagation mechanism, in which the applied maximum stress intensity factor
reaches a critical value equals to the plane-stress or plane-strain fracture toughness
of the material.

The most common fatigue evaluation is normally focused on tension loading, and
it is apparent that crack growth in stage III occurs perpendicularly to the direction
of the variable applied stress. As a result, fracture surfaces may include fatigue
striations, microvoid coalescence, and cleavage facets (for brittle materials). Hence,
fatigue failure analysis must reveal these types of fracture surface features in order
to determine the mechanism of fatigue fracture.

9.4 Fatigue Crack Growth Rate

Since fatigue is a cyclic dissipation of energy process related to a cumulative damage
process, the elapsed time for damage is expressed in terms of load cycles (N). The
control parameter that is used to evaluate this process is the rate of crack growth per
cycle (da=dN). Hence, da=dN depends on the applied stress intensity factor range
(	K) and N is the well-known fatigue life term.

For crack initiation in stage I, the threshold stress intensity factor is

	Kth D ˛	� th
p

a (9.5)

Here, ˛ is the geometry correction factor given in Eq. (3.29), and 	� th is the
threshold stress range, which is analogous to the fatigue limit SL introduced in
Fig. 9.2. Nonetheless, this equation indicates that if 	� < 	� th crack growth does
not occur.

On the other hand, in the early 1960s, Paris [54] empirically expressed the fatigue
crack growth rate (da=dN) in stage II as a function of the stress intensity factor range
(	K). The pertinent relationship became known as the Paris power-law for stage II
fatigue crack growth (FCG). Thus, the mathematical model is of the form [54]

da

dN
D A .	K/n (9.6)

where 	K D Kmax � Kmin D .1 � R/Kmax for R � 0

	K D Kmax for R � 0

A D Constant (MPa�n m1�n=2=cycles)
n D Exponent
	� D �max � �min D Stress range
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Fig. 9.7 Schematic fatigue
crack growth curves

Denote that A and n in Eq. (9.6) are material constants determined empirically
from fatigue crack growth rate data and are independent of crack length. On the
other hand, 	K depends on the crack length and can be defined as

	K D 	�
p

a (uncorrected) (9.7)

	K D ˛	�
p

a (corrected) (9.8)

Here, ˛ is the specimen geometry correction factor introduced in Chap. 3, and it is a
function of normalized crack length, that is, ˛ D f .a=w/ for finite plates containing
relatively short cracks. It should be clear that Eq. (9.6) through (9.8) exclude the
effects of crack closure, related residual stresses at the crack tip [17, 18], and crack
tip blunting.

In addition, Fig. 9.7 schematically shows the procedure for estimating the
tangential slope da=dN of a D f .N/ for a constant stress ratio R. Denote that da=dN
increases rapidly as crack growth occurs and significantly approaches a critical
stress state. Subsequently, increasing R increases da=dN and accelerates fracture.

Moreover, the Paris law, Eq. (9.6), is the most common mathematical equation
used for modeling fatigue crack behavior of structural components, but it can
empirically be modified in order to incorporate the effects of cyclic stress ratio R
and plane-stress or plane-strain fracture toughness on da=dN. Hence,

• Forman equation [21]:
da

dN
D A .	K/n

.1 � R/KC �	K
for plane stress and R > 1 (9.9)

da

dN
D A .	K/n

.1 � R/KIC �	K
for plane strain and R > 1 (9.10)

• Broek and Schijve equation [9, 19]:



9.4 Fatigue Crack Growth Rate 337

da

dN
D AK2

max .	K/n (9.11)

• Walker equations [77]:

da

dN
D AKm

max .	K/n (9.12)

da

dN
D A�max .1 � R/

p

a For R > 1 (9.13)

• Hartman and Schijve equation [25]:

da

dN
D A .	K �	Kth/

n

.1 � R/KC �	K
for plane stress and R > 1 (9.14)

9.4.1 Crack Closure

Denote that da=dN D f .	K/ gives a conservative fatigue life prediction by using
crack closure-free data. If crack closure is included in a suitable da=dN expression,
then	K is replaced by an effective stress intensity factor range	Keff < 	K. Here,
	Keff D Kmax � Kop and Kop > Kmin is the stress intensity factor that opens the
crack. Thus, it can be assumed that the stress intensity factor for closing the crack
is similar to that for opening it, that is, Kop ' Kcl. Although the difference between
Kop and Kcl may generally be small and negligible [7, 33], the Elber’s mathematical
model [17, 18] for crack closure is adopted in this section which is similar to Paris
model. Accordingly,

da

dN
D C

�
	Keff

�m
(9.14a)

	Keff D U	K (9.14b)

Thus far, U < 1 at low stress ratios and U ! 1 at high stress rations [66]. If
U ! 1, then the effect of crack closure is ineffective. The reader should verify that
the factor U in Eq. (9.14b) along with the effective stress ratio Reff D Kop=Kmax can
be defined as

U D Kmax � Kop

Kmax � Kmin
D 1 � Kop=Kmax

1 � Kmin=Kmax
(9.14c)

U D 1 � Reff

1 � R
For R ¤ 1 and Reff ¤ 1 (9.14d)

Mathematically,	K D 0 when R D 1means that there are no cyclic loads and Kmax

becomes a monotonic quantity [74]. Nonetheless, U also depends on Kmax as shown
in Eq. (9.14c). If Kmin D 0, the factor U becomes independent of the nominal stress
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ratio R D Kmin=Kmax and acquires the following definition

U D 1 � Kop

Kmax
D 1 � Reff (9.14e)

It is clear now that the phenomenon of crack closure is less effective when Reff ! 0

and U ! 1, and the effect of crack closure completely vanishes when Reff D 0

because U D 1 and 	Keff D 	K.
Further, during crack closure the crack surfaces remain in contact at the crack

tip during a portion of the unloading part of the fatigue cycle. Nonetheless, crack
closure at the crack tip may significantly influence the fatigue crack growth rate
at low stress intensity factors and low stress ratios, and it can be explained
through mechanisms such as plasticity-induced crack closure (PICC), roughness-
induced crack closure (RICC), oxide-induced crack closure (OICC), and phase
transformation-induced crack closure (PTICC) affect fatigue crack growth rate. The
reader should consult papers on these specific topics and their related mathematical
models available in the literature for relevant theoretical background, experimental
observations, and reference citations [41, 48–50, 52, 59].

9.5 Fatigue Life Calculations

The goal here is to develop a mathematical model that predicts fatigue life (N)
for a given stress range at a constant load amplitude. Since mode I loading is the
most studied, integration of Eq. (9.6) is carried out for this mode for convenience;
however, other modes of loadings may be used instead. Nevertheless, the sought
fatigue life (N) is

Z N

No

dN D
Z a

ao

da

A .	K/n
D 1

A
�
˛	�

p


�n

Z a

ao

da

an=2
(9.15)

R
da

an=2 D � 2a

.n�2/a 12 n

Inserting Eq. (9.8) into (9.15), integrating and arranging the resultant expression
yields

	N D .N � No/ D
2
�

a1�n=2
o � a1�n=2

�

A .n � 2/ �˛	�p


�n for n ¤ 2 (9.16)

	N D .N � No/ D ln .a=ao/


A .˛	�/2
for n D 2 (9.16a)

Here, 	N is the constant-amplitude load cycles required for crack growth from the
original (initial) crack length (ao) to a larger size a > ao. Eventually fracture occurs
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when the crack length reaches a critical size so that a D ac and Kmax D KIC or
Kmax D KC.

For plane strain conditions, the critical crack length along with Kmax D KIC and
	� can be predicted using a modified form of Eq. (3.29). Thus,

ac D 1




�
KIC

˛

�2
	��2 (9.17)

Substituting Eq. (9.17) along with a D ac into (9.16) and arranging terms yields
an expression for determining the stress range 	� when the final or critical crack
length is unknown. Thus,

C1 .	�/
n C C2 .	�/

n�2 � C3 D 0 (9.18)

The constants Ci with i D 1; 2, and 3 are

C1 D A .n � 2/ .N � No/ .KIC/
n

C2 D 2




�
KIC

˛

�2
(9.19)

C3 D 2 .a/1�n=2
�
1




�n=2 �KIC

˛

�n

Note that Eq. (9.18) is a polynomial of order n, which is a nonnegative integer
exponent, and the solutions of this equation are called the roots of the polynomial.

Example 9.1. A high-strength steel string has a miniature round surface crack of
0:09 mm deep and an outer diameter of 1:08 mm. The string is subjected to a
repeated fluctuating load (�min D 0; �max > 0) at a stress ratio R D 0. The
threshold stress intensity factor is 	Kth D 5 MPa

p
m, and the crack growth rate

equation is given by

da

dN
D
�
5 � 10�14 MN�4 m�1

cycles

�
.	K/4

Determine (a) the threshold stress	� th the string can tolerate without crack growth,
(b) the maximum applied stress range 	� , (c) the maximum (critical) crack length
for a fatigue life of N D 104 cycles and (d) Will the string fracture? Use the
following steel properties: KIC D 25 MPa

p
m and � ys D 880 MPa.

Solution.
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It is assumed that the plastic zone with a cyclic range 	K is smaller than that for
KI applied monotonically and that the surface crack can be treated as a single-edge
crack configuration. Note that No D 0 since ao already exists.

(a) From Eq. (3.56),

a D D � d

2
(3.56)

d D D � 2a D 1:08 mm � 2 .0:09 mm/ D 0:90 mm

d

D
D 0:8333 and

D

d
D 1:20

Now, Eqs. (3.54) and (9.5) yield, respectively

f .d=D/ D 1

2

r
D

d

"
D

d
C 1

2
C 3

8

�
d

D

�
� 5

14

�
d

D

�2
C 11

15

�
d

D

�3#
(3.55)

˛ D f .d=D/ D 1:198 9

	� th D 	Kth

˛
p

ao

D 5 MPa
p

m

.1:198 9/
p

 .0:09 � 10�3 m/

D 248:02 MPa

	�min < 	� th

This is a rather large threshold stress range, but it serves the purpose of
illustrating the methodology for determining the limit for a minimum stress
range.

(b) Use Eq. (9.19) and subsequently (9.18) to get

C1 D
�
5 � 10�14 MN�4 m7

cycles

�
.4 � 2/ �104 cycles

� �
25

MN

m2

p
m

�4

C1 D 3:906 3 � 10�4 m

C2 D 2




�
KIC

˛

�2
D 2




�
25 MPa

p
m

1:198 9

�2
D 276:82 MPa2 m (9.19)

C3 D 2
�
0:09 � 10�3 m

�1�4=2
�
1




�4=2 �
25 MPa

p
m

1:198 9

�4

C3 D 4:257 1 � 108 MPa4 m

and

3:906 3 � 10�4	�4 C 276:82	�2 � 4:257 1 � 108 D 0
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Solving the above biquadratic equation yields four roots. The positive root is

	� D 864:93 MPa

�max D 	� D 864:93 MPa since �min D 0

�max < � ys

Thus,

Kmax D ˛�max
p

a D .1:198 9/ .864:93 MPa/

p

 .0:09 � 10�3 m/

Kmax D 17:44 MPa
p

m

(c) The critical crack size is calculated from Eq. (9.17)

ac D 1






KIC

˛

�2
	��2 D 1






25 MPa

p
m

.1:198 9/ .864:93 MPa/

�2
(9.17)

ac D 0:185 mm D 2:056ao

	a D ac � ao D 0:095 mm

In addition, ac can also be calculated using the following expression

ac D a

�
KIC

Kmax

�2
D .0:09 mm/

�
25 MPa

p
m

17:44 MPa
p

m

�2

ac D 0:185 mm

(d) The stress intensity factor range is

	K D ˛	�
p

a

	K D .1:198 9/ .864:93 MPa/
p

 .0:90 � 10�3 m/

	K D 55:14 MPa
p

m > 25 MPa
p

m

Therefore, the string fractures because Kmax D 	K > KIC.

Example 9.2. Consider a hypothetical brittle material subjected to a fatigue load
range given next. The objective in this example is to illustrate how the fatigue crack
growth rate is affected by the effective stress intensity factor range. (a) Derive an
expression for the stress intensity factor Kop using Elber’s model 	Keff D U	K
[17] and (b) calculate Kop and da=dN if U D 0:8, R D 0, Kmax D 100 MPa

p
m,

n D 4, and A D 5 � 10�16 MN�4m�1=cycle.
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Solution.

(a) Derive an expression for the stress intensity factor Kop

	Keff D U	K

Kmax � Kop D U .Kmax � Kmin/

1 � Kop

Kmax
D U

�
1 � Kmin

Kmax

�

1 � Kop

Kmax
D U .1 � R/

Kop D Kmax .1 � U C UR/

(b) Calculations along with U D 0:8, R D 0, Kmax D 100 MPa
p

m, n D 4, and
A D 5 � 10�16 MN�4m�1=cycle give the opening stress intensity factor as

Kop D Kmax .1 � U C UR/ D Kmax .1 � U/

Kop D .100 MPa/ .1 � 0:8/
Kop D 20 MPa

In reality, this value represents the local minimum stress intensity factor on the
reverse loading stress spectrum.

The effective and the applied stress intensity factor ranges are

	Keff D Kmax � Kop D 100 MPa
p

m � 20 MPa
p

m D 80 MPa
p

m

	K D Kmax � Kmin D 100 MPa
p

m � 0 MPa
p

m D 100 MPa
p

m

Thus, the fatigue crack growth rate is calculated using 	Keff and 	K individu-
ally. The results are

da

dN
D A .	K/4 D 5:00 � 10�6 m=cycle @ 	K D 100 MPa

p
m

da

dN
D A

�
	Keff

�4 D 2:05 � 10�6 m=cycle @ 	Keff D 80 MPa
p

m

These results indicate that the fatigue crack growth rate due to the effective
stress intensity factor range is the lowest, implying that crack stable growth
is the slowest among the two calculated results. Hence, the magnitude of the
intensity of the applied stress range has a strong effect on the fatigue crack
growth of the hypothetical material in question.
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9.6 Crack Growth Rate Diagram

In addition, a detailed fatigue crack growth behavior (sigmoidal curve) is schemati-
cally shown in Fig. 9.8 [65].

The ASTM E647 includes steps on how to conduct this type of fatigue test.
Stage I is a slow crack growth region in which the fatigue threshold stress intensity
factor range is usually less than DeltaK < 9 MPa

p
m [65]. Below this value

fatigue crack growth does not occur. In addition, stage I is rather a complex region
from a microscale point of view, but it is related to a non-continuum crack growth
mechanism, which strongly depends on the material’s microstructure, the applied
stress ratio R, and the environment.

Analysis of Fig. 9.8
Stage I: This is a slow crack growth process which is related to non-

continuum mechanisms and slow fatigue crack growth rate in the order of
da=dN � 10�6 mm=cycle. Thus, this fatigue process strongly depends on the

• Grain size, precipitates, dislocation density, etc.
• Mean tress and stress ratio
• Aggressiveness of the environment
• Surface damage initiation

Fig. 9.8 Schematic stages of fatigue crack growth rate [65]
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Stage II: This fatigue process is referred to as the power growth behavior usually
characterized by the Paris law, and it slightly depends on the parameters in stage I.
Particularly, surface characteristics are the formation of beach marks and striations
in some metallic materials. Furthermore, the specimen thickness does not strongly
influence the fatigue crack growth rate.

Striations are microscopic fatigue features that can be observed with the scanning
electron microscope (SEM) and the transmission electron microscope (TEM) at
relatively high magnifications. Conversely, each striation indicates a successive
advance of one stress cycle. The width of a striation represents the advance of the
crack front during one stress cycle, but it depends on the magnitude of the applied
stress range. Normally, the appearance of service fatigue striations is irregular due
to changeable stress amplitude. Striation is dealt with in the later section. Then,
this irregularity in striation configuration is an indication of nonsteady crack growth
rate, which may be restricted to geometry dependency and load history, leading to
an enhanced or retarded rate.

Stage III: This fatigue process strongly depends on the microstructural parame-
ters cited in stage I and on the specimen thickness. Since the applied stress intensity
factor is sufficiently large, the fatigue crack growth rate is high, and the process is
under an instable damage process. Therefore, this is the instability region in Fig. 9.8
and fracture occurs when the stress intensity factor reaches a critical value.

Figure 9.9 schematically shows the influence of R on stage I da=dN [22].
Figure 9.10 depicts experimental da=dN D f .R; 	K/ for a structural steel [5]

For instance, the most common engineering metallic materials have a BCC, FCC, or
HCP atomic structure; therefore, the fatigue behavior of these materials is expected
to be different. Generally, surface crack initiation occurs in this stage I in which the
crack growth rate is very slow. In addition, stage II is known as the power crack
growth, which is less dependent on the microstructure, stress ratio, and environment
than stage I. The log-log linear fatigue behavior is referred to as the Paris Law,
which empirically define by Eq. (9.6). The characteristics of the surface fracture
appearance may include beach marks and striations that are observable in certain
materials such as aluminum and aluminum alloys. Both fatigue fracture features

Fig. 9.9 Schematic effects of
the stress ratio (R) on the
crack growth rate curves [22]



9.6 Crack Growth Rate Diagram 345

Fig. 9.10 Effect of stress
ratio on fatigue crack growth
rate of ASTM A533B
steel [5]

Table 9.1 Fatigue crack growth rate equations for steels [5]

Steel Paris equation (m=cycle) Strength

Martensitic da
dN D 1:35� 10�10 .	K/2:25 � ys > 483MPa

	K in MPa
p

m � ts > 621 MPa

Ferritic–Pearlitic da
dN D 6:90� 10�12 .	K/3 207 MP < � ys < 552 MPa

Austenitic da
dN D 5:60� 10�12 .	K/3:25 207 MP < � ys < 345 MPa

are concentric ridges of circular, semicircular, or semielliptical shape. Beach marks
are known as clamshell marks, and from Materials Science point of view, they are
macroscopic band-containing striations, represent the position of the crack of length,
and are formed due to interruptions of the cyclic stress loading during service.

Despite the experimental data scatter found in steels, Barsom and Rolfe [5]
determined conservative crack growth rate expressions as given in Table 9.1 based
on Paris equation for fatigue stage II at R D 0. If experimental data is not available
for a particular steel, these equations can be used in designing with proper caution.

Fatigue crack growth data is quite abundant in the literature, but some selected
experimental data are included in Table 9.2 as a reference. Useful experimental data
can be found elsewhere [1–3, 6, 8, 10, 13, 15, 17, 18, 24, 28, 30, 31, 35, 37–39, 42–
46, 51, 53, 55, 60, 63, 67, 70–73, 79, 81].

With regard to Fig. 9.8, the transition between stage II and III apparently is
related to tearing mechanism when the crack tip strain reaches a critical value [3].
For R D 0, 	K D 	Kmax and the onset of the transition apparently occurs at a
constant crack tip opening displacement (ıt).

According to Barsom’s relationship, the crack tip opening displacement for the
onset of transition is [4]

ıtrans D 	K2
tran

E�F
(9.20)
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Table 9.2 Fatigue crack growth data for some materials

Materials � ys (MPa) KIC R 	Kth n A Ref.

12Cr S.S. 730 102 0 5.00 3.5 1:70� 10�9 [71]

304 S.S. 1400 66 0 4.60 3.6 4:77� 10�11 [70]

403 S.S. 100 115 0.50 5.52 2.6 1:90� 10�11 [1]

Ti-6Al-4V 1172 70 0.40 14.7 4.0 1:00� 10�12 [81]

Ti-6Al-4V 880 91 0.02 5.00 3.6 1:91� 10�13 [63]

AerMet 100 1724 34 0.5 2.90 3.0 2:00� 10�11 [51]a

Nb-37Ti-13Cr 1107 26 0.10 7.00 5.5 3:40� 10�14 [39]

Nb-15Al-49Ti 660 110 0.10 5.00 9.7 5:00� 10�19 [43]

KIC; 	Kth, and 	K in MPa
p

m and A in MN�n m1�n=2=cycle: S.S. = Stainless
steel
aT D �171 ıC

Here, �F is called the flow stress and it is simply defined as a arithmetic mean
(arithmetic average)

�F D � ys C � ts

2
(9.21)

where 	Ktran is the transition stress intensity factor, which can be set equals to the
upper limit of the valid range of 	K in stage II. Actually, �F is the flow stress for
this transition and E is the modulus of elasticity.

In addition, Fig. 9.11 shows recently published da=dN data using compact
tension (CT) specimens according to the ASTM E647 Standard Test Method for
Measurement of Fatigue Crack Growth and a specific software [64]. The testing
material apparently was a steel alloy. From this figure, the threshold stress intensity
factor approximately 	Kth ' 7:8 MPa

p
m agrees with the information given in

Fig. 9.8 that 	Kth < 9 MPa
p

m.
The reason for selecting this particular data is to inform the reader that fracture

mechanics tests can be conducted using state-of-the-art instrumentation accompa-
nied with reliable software to speed up calculations and avoid human errors. Hence,
modern testing equipment and instrumentation are nowadays available as state-of-
the-art closed loop uniaxial and biaxial systems with computer automation and
digital data acquisition. Reliable instrumentation exists for accurate displacement
and strain measurements.

The curve fitting equation for the data given in Fig. 9.11 is a polynomial of second
degree, which represents an average da=dN D .	K/ curve.

da

dN
D 2 � 107 .	K/2 � 107 .	K/ � 4 � 107 (9.22)

This numerical approach is common in experimental data analysis, and the resultant
equation does not resemble any of the above empirical and semiempirical models
for fatigue crack growth rate.
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Fig. 9.11 Experimental
fatigue crack growth data for
a compact tension (CT) steel
specimen [64]

The purpose of this curve fitting is to demonstrate the use of a numerical method
for obtaining an average curve fitting curve for fluctuating experimental data. For
instance, the ASTM Standard E647 includes a numerical method for determining
the da=dN derivatives, as schematically shown in Fig. 9.7. In addition, certain
fracture mechanics problems, to a large extent, can be analyzed and solved using
numerical methods such as boundary element method (BEM) and finite element
method (FEM) which are specialized numerical topics. The reader can find books
on BEM and FEM available in the literature.

Furthermore, from a metallurgical point of view, Paris [53] compared fatigue
crack growth rate data for FCC, BCC, and HCP metallic solids. For convenience,
only FCC and BCC data are shown in Fig. 9.12. Therefore, it is clear that this data
set correlates with the Paris law (Eq. (9.6)).

An analogous da=dN behavior for polymers is depicted in Fig. 9.13. Therefore,
fatigue crack growth behavior is mathematically described by the function da=dN D
f .	K/, the simplest being the Paris equation.

The polymeric materials and their da=dN profiles depicted in Fig. 9.13 exhibit
significantly different mechanical behaviors when subjected to fatigue loading. It is
expected that those polymers showing high fatigue crack growth rates have inferior
fatigue strength.

In general, the fatigue behavior of engineering materials must be characterized
using crack-free and cracked specimens for comparing results and determining
the degree of fatigue resistance reduction due to the presence of a crack. Thus,
assessing structural integrity requires a careful experimental setup to simulate
service conditions.
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Fig. 9.12 Comparison of
FCC and BCC crack growth
rates [53]

Fig. 9.13 Fatigue crack growth behavior of polymers and two metals [40]

9.7 Weldments

Welding is a fabrication process for joining two or more parts to form one single
part. The joining process is a localized metallurgical process related to solidifica-
tion. The resultant welded area is metallurgically heterogeneous with respect to
microstructural features. Nevertheless, the joining process can be achieved by laser
beam welding (LBW), arc and gas welding, brazing, and soldering using relatively
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Fig. 9.14 Fatigue crack
growth behavior of pressure
vessel steel weldments in air
at 24 ıC [32]. This reference
was taken from Lancaster
[36]

low melting temperature metals (Pb-Sn), explosive welding, ultrasonic welding,
and friction stir welding technique [47]. The reader should consult the American
Welding Society, the Welding Institute of the United Kingdom, and a new technical
article published by the American Society for Metals International. Figure 9.14
shows a typical plot for welded pressure vessel steel specimens [32, 36].

Figure 9.15 depicts Viswanathan’s model [76] for microstructural changes in the
heat-affected zone (HAZ) adjacent to the weld, which in turn, is related to the Fe-C
phase diagram. This schematic representation of the microstructural changes in the
base metal with respect to grain size and grain morphology is typical in submerged
arc welding (SMAW) process of Cr-Mo steels. Consequently, mechanical properties
in the HAZ are affected by the cooling rate within the welded region and grain size
in the HAZ. In alloy steels, martensite may form as an undesirable phase because
it is brittle. The different microstructures are labeled schematically in Fig. 9.15 as
zones. These different microstructural zones disturb the microstructural symmetry
of the parent metal, and as a consequence, mechanical and corrosion properties vary
through the HAZ. One particular solution to this metallurgical problem is to heat
treat the welded part whenever possible to obtain a uniform microstructure.

In general, welding cracks or HAZ cracking may occur due to tensile residual
stresses that develop upon contraction of the welding bead. Therefore, welding
should be done properly in order to avoid welding defects because they have a
strongly affect mechanical properties.
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Fig. 9.15 Heat-affected zone (HAZ) adjacent to the weld [76]

The Paris law is the most common approach for correlating da=dN with 	K
in weldments. In fact, the weld bead or solid-phase weld is the part of the joined
materials that is tested and characterized. It is apparent that a good correlation exists
for da=dN D f .	K/ in stage II, where the Paris law describes the observed fatigue
behavior of welded specimens [32].

The assessment of welded structures is very complicated due to the complexity
of weld deposit, but is important to carry out experiments on welded specimen
in order to improve the usage of welded material being dynamically loaded by
fatigue loading. Sometimes fracture of a structural component initiates from a defect
being introduced by an inadequately welding procedure. Therefore, an optimum
fatigue design method for testing welded components is a must in order to integrate
appropriate welding procedures in particular welded structures, such as ship hulls
and the like.

9.8 Surface Fracture Appearances

This section is focused on the appearance of fracture surfaces that are vital in
failure analysis in conjunction with knowledge of the load history in a particular
environment. Figure 9.16 shows Schijve’s model [67] that provides details of a
fracture surface exhibiting typical ductile fracture features encountered in many
engineering materials under quasi-static loads. These features are affected by
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Fig. 9.16 Schematic fracture
surface showing the transition
from flat to slant appearance
during quasi-static
loading [67]

applied stress conditions, specimen geometry, flaw size, mechanical properties, and
the environment. Subsequent fatigue crack growth or crack extension is associated
with increasing applied stress, which in turn increases the stress intensity factor.
Some solid materials can show a shear lip as an indicative of ductile fracture, and
as a result, the fracture surface exhibits a slant (SL) area. According to Fig. 9.16,
the crack surface is initially flat, and as crack growth progresses, it continues on its
own plane and then changes direction at 45ı, leaving a shear lip on the edge. Some
materials exhibit double-shear lips which are indications of ductile fracture due to
an overload. Conversely, a brittle fracture surface is normally flat without shear lips.

In addition, environmental effects, such as low and high temperatures and
corrosive media, can have a significant impact on the mechanical behavior and
fracture appearances of solid bodies. For instance, a ductile steel alloy may become
brittle at relatively low temperatures.

Stage II Fatigue Failure This is due to a change in crack growth direction of stage
I as shown in Fig. 9.6, in which the crack in a polycrystalline material advances
along crystallographic planes of high shear stress. The surface characteristics for
fatigue failure in stage II are schematically depicted in Fig. 9.17 for a round solid
cylinder such as a shaft. In fact, fatigue cracks often produce striations (small ridges)
on the fracture surface perpendicular to the direction of crack growth plane.

The possible fatigue fracture surface events during stable crack growth are
described as follows:

• Crack growth occurs by repetitive plastic blunting and sharpening of the crack
front.

• Shear deformation direction reverts to complete a full cycle in compression. This
event may cause cleavage fracture in brittle materials.

• If rapid crack growth rate occurs, then rapid failure takes place, and beach marks
and striations may be absent, regardless if the material is ductile or brittle.

• Intercrystalline fracture is possible, particularly at the lower range of stress.
When inherent fracture mode of a material takes place during crack growth, a
mixture of brittle transcrystalline and brittle intercrystalline fracture might be
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Fig. 9.17 Schematic fatigue
fracture surface

evident. However the latter depends significantly on grain size and secondary
phases present in the microstructure since they are obstacles for straightforwardly
dislocation motion.

• Formation of striations depends on the nature of the materials, such as aluminum
and Al alloys. However, steels may exhibit cleavage mechanism as a dominant
fracture mode. Apparently, striations are formed by the instantaneous action of
the cyclic stress, stress frequency, and plastic strain.

• Striations indicate the changing position of the crack front with each new cycle
of loading. Striations are not visible to the naked eye, but they can be revealed
using SEM high magnifications.

• Ripple (annual ring) patterns can form on the fracture surface.
• The domain of high-cycle fatigue prevails during stage II.

Model for the formation of striations: Figure 9.18 shows Broek’s possible
mechanism [8] for the formation of striations in certain materials, such as aluminum
alloys and in some strain-hardened alloys.

The possible stages during the formation of striations are

(1 & 2) Slip formation occurs at the crack tip due to a stress concentration. Slips
form in the direction of maximum shear stress as explained by the Cottrell–
Hull mechanism (Fig. 9.6), and the crack opens and extends in length (	a).
A particular model for a slip system, (100)[111], in BCC structure is shown
in Fig. 9.3b.

(3) Other slip planes are activated and consequently, cross-slip may occur.
(4) Crack tip blunting occurs due to strain hardening, which may activate other

slip planes.
(5) The crack re-sharpens due to plastic deformation (plastic zone) embedded

in the elastic surroundings. During load release, the elastic surroundings
excerpt compressive stresses on the plastic zone. This reversed plastic
deformation process closes and re-sharpens the crack tip.
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Fig. 9.18 Model for the
formation of fatigue
striations [8]

(6 & 7) Crack closure and re-sharpen occur due to repeated loading, leading to more
crack growth (extension).

The cyclic opening and closing of the crack develops a typical pattern of ripples
called fatigue striations. The above model (Fig. 9.18) of striation formation is a
general representation of crack blunting and re-sharpening in ductile or sufficiently
ductile materials. However, a cleavage mechanism may involve brittle striations, as
opposed to ductile striations.

In addition, Fig. 9.19 shows a unique microphotograph of wavy slip lines in
BCC niobium (Nb) [34]. This particular striation morphology can be attributed
to cross-slip mechanism since it induces not only the wavy slip bands but tangled
dislocations as well. Hence, the wavy slip pattern can be attributed to an easy cross-
slip. Nonetheless, cross-slip can produce wavy slip patterns in certain materials and
planar slip in other materials.

On the other hand, cross-slip can directly be related to stacking-fault energy
associated with plastic deformation of a material. This implies that the higher the
stacking-fault energy, the more wavy the slip pattern.
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Fig. 9.19 Wavy slip lines in
niobium after static
deformation [34]

Fig. 9.20 Fatigue striations
on a crack surface of an Al
alloy. Magnification:
12,000X [30]

Figure 9.20 shows the characteristic fatigue striations of an Al alloy having a
modulus of elasticity approximately equal to E D 72;000 MPa. These striations
are ripples on the fractured surface caused by perturbations in the cyclic stress
system. The width of a striation depends on the fatigue stress, but it is in the order
of 10�4 mm or less.

Furthermore, the apparent stress intensity factor range is related to striation
spacing as empirically proposed by Bates and Clark [6]

	K D E

r
x

6
(9.23)

where E D Modulus of elasticity (MPa)

x D Average striation spacing (�m)
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Certainly, fatigue striation spacing, as well as height, relates to fatigue crack
growth, but it seems impossible to determine the minimum and maximum loads
from the fatigue fracture surface. Again, it turns out that Eq. (9.23) gives a
reasonable	K value for a structural component subjected to specific fatigue service
conditions.

The striation spacing is a measure of slow crack growth per stress cycle and it
may be constant for constant stress amplitude. However, striations may not form
when the stress range and the maximum stress are relatively large, leading to fast
fatigue crack growth rate

Fatigue fracture surface exhibits features which can aid in understanding the
mechanism associated with fracture. For instance, fatigue crack growth, specifically
in ductile materials, normally produces thousands of striations which assist in
determining the directionality of crack propagation and the location of the initiation
site. However, fatigue mechanical damage by friction of the fracture surfaces can
occur during opening and closing the crack, and as a result, fine striations are
not revealed using SEM and TEM techniques. Consequently, the average striation
spacing using the visible striations may not be suitable enough for statistical
purposes.

Example 9.3. Determine the apparent stress intensity factor range and the fatigue
crack growth rate using the aluminum alloy fracture surface shown in Fig. 9.20. Use
a modulus of elasticity of 72;000 MPa.

Solution.
The solution to this problem requires that the actual average striation spacing be

determined using the magnification given in Fig. 9.20. The average striation spacing
is approximately

x D 4 mm

12;000
D 3:3333 � 10�4 mm D 333:33 �m

Then, using Eq. (9.23) yields the apparent stress intensity factor range

	K D E

r
x

6
D .72;000MPa/

s
4 � 10�3 m

.6/ .12;000/
(9.23)

	K ' 17 MPa
p

m

Since the striation spacing is a measure of slow crack growth per stress cycle, the
estimated fatigue crack growth rate can easily be calculated using the following
approximation:

da

dN
' 	a

	N
D 333:33

�m

cycle

Therefore, crack extension for one cycle is simply 333:33�m.
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For convenience, plot the 	Kempirical equation to reveal the 	K trend with
increasing striation spacing x, that is, 	K D f .x/.

The plot exhibits a slight nonlinearity trend. This implies that 	K relates to
striation spacing in a nearly linear manner.

Example 9.4. Let us use Fuchs and Stephen Problem 8.13 [22] with reference to
a fractograph reported by Crooker et al. [14] to illustrate another approximation
technique in fatigue failure analysis. One 17-4 HP stainless steel plate containing
a 6-mm single-edge crack was subjected to a constant cyclic loading with a stress
ratio of R D 0. The plate was 5-mm thick, 20-mm wide, and sufficiently long. The
crack growth rate as per Paris equation is

da

dN
D �

10�12 m=cycle
�
.	K/3:5
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Calculate the apparent stress intensity factor range and the maximum load.
Explain the results.

Solution.
Given data: a D 6 mm, w D 20 mm, B D 5 mm, b D w � a D 14 mm

a=w D 0:3;R D Kmin=Kmax D 0;Kmin D 0

Firstly, the geometry correction factor for this crack configuration is given in
Table 3.1. Thus,

˛ D 1:12 � 0:23
� a

w

�
C 10:55

� a

w

�2 � 21:71
� a

w

�3 C 30:38
� a

w

�4

˛ D 1:66

From the micron marker on the fractograph, linear interpolation allows the
determination of the fatigue crack growth rate. Firstly, the average striation spacing
is calculated using linear interpolation. The micron bar is approximately 13-mm
long and it is equivalent to 1�m as the magnification factor. Thus,

13 mm ! 1�m

1 mm ! x

x D .1 mm/ .1�m/

13 mm
D 7:69 � 10�2 �m

x D 7:69 � 10�8 m

For one cycle, the average striation spacing represents the crack growth per cycle.
Thus,

da

dN
' 	a

	N
D x

	N
D 7:69 � 10�8 m=cycle

Solving the Paris equation for the stress intensity factor range, 	K yields the
numerical result equals to Kmax. Hence,

	K D
�

da=dN

A

�1=n

D
�
7:69 � 10�8

10�12

�1=3:5

	K D 24:89 MPa
p

m D Kmax

For comparison purposes, Eq. (9.23) along with E D 207 GPa gives

	K ' E

r
x

6
D �

207 � 103 MPa
�
r
7:69 � 10�8 m

6
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	K ' 23:44 MPa
p

m D Kmax

which is approximately 6% lower than the previous result. Therefore, both methods
can yield reasonable results.

Secondly, taking 	K ' 24:17 MPa
p

m as the average value, one can calculate
the maximum load assuming a zero minimum. Hence, 	K D Kmax and Pmax is

Kmax D ˛�max
p

a D ˛Pmax

Bw max

p

a

�max D Kmax

˛
p

a

D 24:17 MPa
p

m

.1:66/
p

 .6 � 10�3 m/

D 106:05 MPa

Pmax D Bw�max D �
5 � 10�3 m

� �
20 � 10�3 m

� �
106:05

MN

m2

�

Pmax D 10:61 kN

Despite the undertaken approximation for determining the apparent stress intensity
factor range and related striation spacing, the preceding calculations denote
acceptable or reasonable results using quantitative fractography, which is a micro-
scopic technique for revealing features on fractured surfaces being related to
loading modes and certain characteristics of fracture mechanics.

According to the above results, Eq. (9.23) is a useful empirical relationship
because it provides quantitative information for estimating 	K. Despite that a
striation spacing relates to the position of an advancing crack front and it increases
with increasing 	K since SK / 	K2. Finally, SK represents discrete crack advance
increments as depicted in Fig. 9.20.

9.9 Mixed-Mode Fatigue Loading

In this section, the physical basis and application conditions of fracture mechanics
theory concerned with mixed-mode fatigue loadings are considered for characteriz-
ing crack growth rate and for developing a mixed-mode fatigue fracture criterion.

The slow fatigue crack growth 	K dependency in elastic solids has been
investigated under mixed-mode interactions based on remote tension [2, 46] and
biaxial cyclic loadings [2, 28, 35, 37, 46]. A remarkable observation is that 	Kth

decreases as the stress ratio R increases as in the case of mode I loading depicted in
Fig. 9.10. However, if the starting crack size is large and the biaxial stress level is
low, da=dN is independent of 	K [35].

In conducting mixed-mode fatigue studies, a defined effective stress intensity
factor	Ke may be used in the Paris law for brittle [2,28,35,37,46] or ductile [60,79]
materials. Effectively, the definition of 	Ke D 	Keff depends on the mathematical
technique and theoretical background one uses. Nevertheless, the Paris law [53, 55]
takes the general and empirical form
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da

dN
D A .	Ke/

n (9.24)

For a mixed-mode I and II interaction, Eqs. (8.17) and (8.18) may be used to defined
the effective stress intensity factor range as

	K2
e D 	K2

I C	K2
II (9.25)

	K2
e D 
a .	�/2 sinˇ (9.26)

For pure mode I at fracture,	Ke D KIC (similar argument was presented in Chap. 8)
for R D 0 and Eqs. (9.25) and (9.26) become

K2
IC D 	K2

I C	K2
II (9.27)

K2
IC D 
ac .	�/

2 cos2 ˇ (9.28)

Combining Eqs. (8.15), (8.16), (9.27), and (9.28) yields an expression similar to
Eq. (9.18)

D1 .	�/
n C D2 .	�/

n�2 � D3 D 0 for n ¤ 0 (9.29)

where

D1 D A .n � 2/ .N � No/ .KIC/
n

D2 D 2




�
KIC

˛ sinˇ

�2
(9.30)

D3 D 2 .a/1�n=2
�
1




�n=2 � KIC

˛ sinˇ

�n

An example can make the above analytical procedure clearly usable for solving
mixed-mode problems under cyclic stress systems.

Example 9.5. Assume that a solid cylinder of 25 mm in diameter has a round
surface crack inclined at ˇ D 20ı and that the material has an average plane-
strain fracture toughness and threshold stress intensity factor of 15 MPa

p
m and

5MPa
p

m, respectively. If the crack depth is 0:09mm and the applied cyclic stresses
are 	� D �max and �min D 0, calculate (a) the minimum stress range 	�min,
(b) the applied stress range 	� D �max, and (c) the critical length ac for a fatigue
life of 104 cycles. How much will the crack grow? The Paris equation is

da

dN
D
�
5 � 10�12 MN�4 m�1

cycles

�
.	K/4
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Solution.

(a) Letting 	Kth D 	Ke gives

	� th D 	Kth

˛
p

ao

D 5 MPa
p

m

.1:198 9/
p

 .0:09 � 10�3 m/ sin .20/

D 776:25 MPa

	�min < 	� th

(b) For maximum stress range, Eq. (9.29) gives

D1 D A .n � 2/ .N � No/ .KIC/
n D 5:0625 � 10�3 m

D2 D 2




�
KIC

˛ sinˇ

�2
D 976:16 MPa2 m (9.30)

D3 D 2 .a/1�n=2
�
1




�n=2 � KIC

˛ sinˇ

�n

D 5:2939 � 109 MPa4 m

0 D 5:0625 � 10�3 .	�/4 C 976:16 .	�/2 � 5:2939 � 109
	� D 964:74 MPa

(c) From Eq. (9.28), the critical crack size is

ac D K2
IC


 .	�/2 cos2 ˇ
D

�
15 MPa

p
m
�2


 .964:74 MPa/2 cos2 .
=9/
D 0:09 mm

	a D ac � ao D 0:09 mm � 0:09 mm D 0

Therefore, the crack grew 	a D 0 which represents a pure brittle material.

9.9.1 Crack Growth Rate Measurements

Characterizing a particular fatigue crack growth behavior involves the determination
of uncertainties in crack length (a), stress intensity factor range (	K), and the
crack growth rate da=dn in a specific environment. The rationalization to organize
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and integrate an experimental setup or to analyze fatigue data for characterizing
fatigue crack growth rate, based on geometry-independent or geometry-dependent
specimens, should incorporate elastic and elastic-plastic stress fields in front of
a crack. Instead, fatigue crack growth rate assessment is conventionally based on
crack extension after N number of cycles are consumed. For instance, ASTM E647,
“Standard Method for Measurement of Fatigue Crack Growth Rates,” Sect. 9.3,
Volume 03.01 covers the recommended general procedures for such a purpose
assuming steady-state fatigue crack growth rates.

However, the ASTM E647 recommended experimental procedure includes cer-
tain restrictions for conducting fatigue tests. Therefore, details on this matter must
be taken into account for providing valid experimental data. Basically, fatigue crack
growth is affected by test conditions such as test cyclic frequency and waveform,
strain amplitude and strain rate, temperature and aggressive environments, and
residual stresses induced by a manufacturing process.

In principle, Griffith strain energy criterion for characterizing fatigue crack
growth rate under mode I or even mixed-mode (Eq. (9.27)) loading offers a
deterministic mathematical model in which the outcomes are precisely determined
through known stress intensity factor(s).

In general, for small increments of the crack length in the order of 1mm or less,
the following procedure gives acceptable results, that is, the fatigue crack growth
rate can be approximated by

da

dN
' ai � ai�1

Ni � N�1
for i D 1; 2; 3; 4; 5; : : : : (9.31)

Then, compute the average crack length and the specimen geometry correction
factor, respectively, as

a D ai C ai�1
2

(9.32)

˛ D f .a=w/ (9.33)

For i D 0; ai D ao, and Ni D N D 0 since the initial crack length exists. The
American Society for Testing Materials (ASTM) E647 Standard Test Method is
widely used for measuring the crack length and the elapsed fatigue cycles at constant
loading stress amplitude and frequency. This method deals with the procedure for
determining low and high steady-state fatigue crack growth rates. This particular
test method does not restrict specimen geometry and specimen thickness as long as
buckling is precluded and the specimen ligament is large enough.
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9.10 Stress-Induced Corrosion

In general, stress-induced corrosion is a phenomenon caused by the combination of
quasi-static or cyclic stress and a corrosive environment (hostile chemical solution).
If a material is susceptible to deteriorate under these conditions, then a corrosion
behavior is established. However, if the material undergoes anodic dissolution at
the crack tip, a stress corrosion cracking (SCC) mechanism dominates with the aid
of the static or cyclic stress. Secondary cracks may develop on the surface of a
component, while the crack tip dissolves and the crack growth rate increases.

The purpose of conducting SCC experiments is to determine the effects of a
particular fluid, temperature, applied strain rate, or applied voltage on solid bodies.
Hence, the SCC mechanism can prevail since it occurs on ductile and brittle material
surfaces containing initially smooth surfaces.

Secondary crack formation on a smooth surface prevails as the source for a major
crack to grow statically and cyclically (dynamically). Figure 9.21 shows tensile
fracture surfaces of a 304 stainless steel tested in 0:1N H2SO4 solution at room
temperature and at strain rate of 5:5�10�5 s�1 [56]. This material was produced by
rapidly solidification and subsequently, consolidated and 50% cold rolled. Smooth
rods were prepared [56] for conducting slow strain rate (SSR) stress corrosion
cracking tests in the mentioned environment.

Figure 9.21a also shows secondary cracks tested at �200mV under the same
environmental conditions, but the primary crack grew in a semielliptical manner
from opposite sides of the specimen, and the final fracture area due to a stress
overload exhibited an elliptical configuration as illustrated by the SEM image in

Fig. 9.21 Secondary cracks and overload fracture areas in a 50 % cold rolled (CR) RSA 304
stainless steel [56]
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Fig. 9.21b. A typical SCC mechanism is the formation of secondary cracks on the
specimen gage length (Fig. 9.21a).

If a component has an initial crack, the fatigue crack growth rate process does
not include an incubation period as in testing smooth components. Generally, the
corrosion fatigue behavior relates to a high plastic strain at the crack tip [20], which
is suitable for anodic dissolution. Apparently, the combination of high plastic strains
enhances metal dissolution, which in turn, accelerates fatigue crack growth rates. In
addition, if a material is susceptible to develop beach marks and striations as fatigue
fracture features in a suitable environment, these features may not be observed or not
be cleared enough if metal dissolution takes place on the fracture surface, coating
these features with a corrosive product. This corrosion product may be difficult to
remove; however, the ultrasonic cleaning technique may be appropriate for this task.

On the other hand, if the corrosive environment, containing hydrogen ions, does
not provoke metal dissolution at the crack tip, the phenomenon is called hydrogen
embrittlement. This mechanism is highly localized inducing brittle regions that
develop at the crack tip [23, 75, 78]. This, then, indicates that the applied cyclic
stresses, which induce cyclic strains at the crack tip, and the action of hydrogen
atoms, enhance the crack growth rate due to an accelerated breakage of atomic
bonds at the crack tip. Thus, atomic hydrogen (H), as oppose to molecular hydrogen
(H2), diffuses into the metal, especially if the amount of hydrogen exceeds that of the
solubility limit, at favorable atomic sites at the crack tip. Therefore, the accelerated
crack growth rate, specifically in stage II fatigue, may be attributed to this hydrogen
diffusion-controlled mechanism since the atomic hydrogen radius is relatively small.
These atomic sites are grain boundaries, voids, and inclusions.

However, atomic hydrogen can precipitate in a gaseous or solid form when
it reacts with the exposed metal, such as irons and steels, under appropriate
environmental (thermodynamics) conditions. Apparently, gaseous precipitation of
hydrogen atoms located at these sites react to form hydrogen molecules, which in
turn combine themselves to form bubbles at extremely high pressure of 1:3GPa as
an upper limit [20]. Moreover, the solid precipitation of hydrogen with Ti and Zr,
among many other elements, is referred to as hydride precipitation, which hardens
the material in question [13].

Many investigators have reported the application of linear-elastic fracture
mechanics (LEFM) to many material-environment systems, and the literature in
this particular engineering field is quite abundant for Al alloys, Fe alloys (steels),
Ti alloys, and so on. However, the controlling macroscopic parameter for assessing
crack growth has been the stress intensity factor KI for mode I loading, the most
common loading mode in fracture mechanics.

In general, many materials are sensitive to combinations of stress, environments,
and microstructure. One particular case is shown in Fig. 9.22 for a Ni-base alloy
steel tested in 3 % NaCl saline solution and in air at different test frequencies (cpm
D cycles per minute) [29].

Despite that the experimental data obeyed the Paris equation with a common
exponent of 2, the environmental effect on the da=dN for the Ni-base alloy steel
is evident even at Kmax < KISCC, which contradicts the stress corrosion cracking
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Fig. 9.22 Corrosion fatigue
crack growth behavior as a
function of different test
frequency for 12Ni-5Cr-3Mo
alloy steel in 3 % NaCl
solution and air. All test
conducted at
Kmax < KISCC [29]

Fig. 9.23 Stress intensity
factor as a function time to
break

behavior depicted in Fig. 9.23. The term KISCC stands for the stress intensity
factor for mode I loading below which stress corrosion cracking does not occur.
One possible reason for this discrepancy is that crack growth does not occur at
Kmax < KISCC for constant load tests due to a protective passive film at the crack
tip. However, this film is sensitive to cyclic stresses and consequently, fatigue
crack growth occurs [27]. The phrase stress corrosion cracking (SCC) is part of
the environment-assisted cracking (EAC) field.

Figure 9.23 illustrates important criteria described in Hertzberg’s book [27] when
stress intensity factor is time dependent at constant load. Thus,

• If KI < KISCC, then failure is not expected in an aggressive or corrosive fluid.
• If KISCC < KI < KIC, then crack growth and fracture occur after a prolong period

of time.
• If KI > KIC; then sudden fracture is expected upon loading.

Figure 9.23 represents the possible mechanical behavior of a stressed structural
component exposed to an aggressive environment during service. Therefore, care
should be taken when using this type of data in designing against stress corrosion
cracking.
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Fig. 9.24 Experimental
crack growth rate data sets for
fatigue assessment of
Zr41:2Ti13:8Cu12:5Ni10Be22:5
under sinusoidal loading and
in different common
environments [68]

In addition, Fig. 9.24 shows fatigue and corrosion fatigue of a Zr-based glass
forming metallic alloy [68, 69].

This alloy exhibits fatigue crack growth .da=dN/ behavior comparable to ductile
crystalline metals in deionized water and ambient air. However, da=dN is very
sensitive in 0.5 M NaCl solution at room temperature. This corrosion fatigue
behavior shows a plateau at approximately 2 � 10�7 m=cycle for 1 MPa

p
m �

	KI � 3 MPa
p

m, and it is an indication of stress-corrosion fatigue. According
to Schroeder et al. [68], the plateau in the corrosion fatigue curve occurs about
da=dN D 4 � 10�7 m=cycle at a frequency of approximately 25 cycle=s, which is
equivalent to a crack velocity of [68]

da

dt
D CKm

max D 10�5 m=s

It is likely that high da=dN and da=dt values in the NaCl solution may be attributed
to a slow and incomplete repair of stress-induced damage to the oxide film at the
crack tip [68]. Nonetheless, fatigue crack growth rate in NaCl can be defined as
[68, 69]

da

dN
D
Z 1=f

o

�
da

dt

�

SCC

dt (9.34)

where f in the integral is the applied frequency.
In addition, the SCC can mathematically be evaluated using an expression for the

rate of crack growth or crack velocity (da=dt) defined as

da

dt
D CKm (9.35)

where da D Crack growth

dt D Time interval



366 9 Fatigue Crack Growth

Fig. 9.25 Crack velocity
profiles

C, m D Material constants which depend on the environment
K D Stress intensity factor for a particular stress mode

Commonly, stress-induced corrosion (SIC) damage under continues action of
electrochemical reactions is a dynamic process during which (1) metal atoms on
the specimen surface become removable ions from weakest areas at the crack tip
and (2) the mechanical surface damage induces the formation of dislocations along
preferred slip planes. In this case, inherent damage is due to a combination of stress
and anodic reactions at the crack tip. From a macroscale standpoint, the severity of
fatigue damage can be characterized by determining the effect of an applied stress
rate d�=dt, which causes crack growth to behave in a particular manner and induces
a strain rate d�=dt at the crack front.

Generalizing the crack velocity (da=dt) and the strain rate (d�=dt) as stress rate-
dependent entities in the stress-induced corrosion field, one can define them as Paris
type equations. For steady crack growth conditions, da=dt and �=dt are defined in
closed form as [12, 61, 62]

da

dt
D Aa

�
d�

dt

�ma

(9.36)

d�

dt
D A�

�
d�

dt

�m�

(9.37)

where Aa D ac=
�
� f � � th

� D Constant as per Ref. [61]

ac D Critical or maximum crack length
� f D Fracture stress
� th D Threshold stress
A� D Constant
ma D 1 in Ref. [61]
m� ' 1 in Ref. [12]

Mathematically, da=dt D f .d�=dt/ at 0 < ma < 1 can exhibit a unique
behavior that depends on the value of Ma. Letting 0:6 � ma � 1:5 in Eq. (9.36) gives
the profiles shown in Fig. 9.25. Correspondingly, the strain rate d�=dt D f .d�=dt/
yields similar trends (not shown).
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In fact, da=dt D f .d�=dt/ and d�=dt D f .d�=dt/ profiles must depend on the
properties and microstructural features. Also, A� must have a meaningful definition
dependent on the material’s properties.

Plotting Eqs. (9.36) and (9.37) on log-log scale exhibit linearity as the common
Paris expression, da=dN D A.	K/n. In light of the above, stress-induced corrosion
can be characterized using the effect of steady stress rate, d�=dt < 1 MPa=s�1, on
crack behavior in a corrosive medium [62].

In order to have a complete assessment on stress-induced corrosion, the fracture
surface morphology must be examined to reveal the mechanism of crack growth as
intergranular, transgranular, or mixed-mode type. Normally, a stable crack growth
is assumed to take place within a range of the applied stress rate for a meaningful
characterization of crack growth due to stress-induced corrosion. For instance,
Eq. (9.36) predicts that da=dt increases with increasing d�=dt. But at very high
d�=dt, the rate of crack growth, da=dt, is faster than the anodic rate of metal
dissolution at the crack tip, and as a result, crack propagation takes place without
the effect of the corrosive environment during testing.

9.11 Problems

9.1. Show that Paris equation can take the form

da=dN D A
�
E� ys=

�
1 � v2�	n=2

: .	ıt/
n=2

where 	ıt is the change of crack tip opening displacement, E is the modulus of
elasticity, and A is a constant.

9.2. (a) Show that da=dN D C .	Ke/
n, where C D A .1 � R/�n.1�˛/ and

	Ke D Kmax .1 � R/˛ is Walker’s effective stress intensity factor range. (b) Plot
da=dN D C .	Ke/

n and da=dN D A .	Ke/
n for a 4340 steel having � ys D

1254 MPa, � ts D 1296 MPa, KIC D 130 MPa
p

m, ˛ D 0:42, n D 3:24, R D 0:7,
and A D 5:11 � 10�11.

9.3. Suppose that a single-edge crack in a plate grows from 2 to 10 mm at a
constant loading frequency of 0:020Hz. The applied stress ratio and the maximum
stress are zero and 403 MPa, respectively. The material has a plane-strain fracture
toughness of 80 MPa m1=2 and a crack growth behavior described by da=dN D
3:68 � 10�12 .	K/4. Here, da=dN and 	K are in m=cycle and MPa

p
m units,

respectively. Determine the time it takes for rupture to occur. [Solution: t D 3:87 h].
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9.4. If a large component is subjected to a cyclic loading under	� D 300MPa and
R D 0. The material behaves according to Paris law da=dN D 2 � 10�8 .	K/2:45,
where da=dN and	K are in mm=cycle and MPa

p
m units, respectively. Determine

the plane-strain fracture toughness for the component to endure 37,627 cycles so
that a single-edge crack grows from 2mm to ac.

9.5. Consider a part made of a polycrystalline metal that is stresses in the elastic
stress range. If the metal contains inclusions and has an imperfectly smooth exterior
surface and natural dislocation, would the metal experience irreversible changes in
a microscale? Explain.

9.6. Why most service fatigue fractures are normally not clear?

9.7. What is the physical meaning of the slope of the stage II line in the Paris
model?

9.8. Suppose that d .2a/ =dN D 0:001 mm=cycle and n D 4 in the Paris equation
for 7075-T6 (FCC), 2024-T3 (FCC), Mo (BCC), and steel (BCC). Determine (a) the
constant A and its units and (b) which of these materials will have the higher crack
growth rate?

9.9. A Ti-6Al-4V large plate containing a 4-mm long central crack is subjected
to a steady cyclic loading (R D 0:10) The plane strain and the threshold fracture
toughness are 70 and 14:7MPa

p
m, respectively. Determine (a) the minimum stress

range, (b) the maximum applied stress range for a fatigue life of 3000 cycles, and
(c) the critical crack size for 3000 cycles. Let the Paris equation be applicable so
that n D 4 and A D 10�12 MN4 mm

�1
=cycle. [Solution: (a) 	�min < 185:45 MPa,

(b) 	� D 642 MPa, and (c) ac D 3:10 mm]

9.10. Plot da=dN D f .	K/ for 403 S.S. using the Paris, Forman, and
Broek/Schijve equations. Use the data given in Table 9.2 and a (20 mm)�(300 mm)�
(900 mm) plate containing a single-edge crack of 2-mm long. Let 20 MPa

p
m �

	K � 80 MPa
p

m.

9.11. Plot the data given below and use Eq. (9.6) as the model to draw a curve
fitting line on log–log scales. Determine the constants in such an equation. [Solution:
n D 3:50 and A D 5:98 � 10�13 MPa�3:5 m3=4]

	K
�
MPa

p
m
�

20 30 40 50 60 70

da=dN
��10�7 m=cycle

�
0.241 0.884 2.42 5.29 10 17.20
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9.12. A steel plate containing a single-edge crack was subjected to a uniform stress
range 	� at a stress ratio of zero. Fatigue fracture occurred when the total crack
length was 0:03m. Subsequent fatigue failure analysis revealed a striation spacing
per unit cycle of 7:86 � 10�8 m. The hypothetical steel has a modulus of elasticity
of 207GPa. Predict (a) the maximum cyclic stress for a crack length of 0:01m,
(b) the striation spacing per unit cycle when the crack length is 0:02m, (c) the Paris
equation constants, and (d) the plane-strain fracture toughness.

9.13. A 2-cm thick pressure vessel made of a high strength steel welded plates burst
at an unknown pressure. Fractographic work using a scanning electron microscope
(SEM) revealed a semielliptical fatigue surface crack (a D 0:1 cm and 2c D 0:2 cm)
located perpendicular to the hoop stress and nearly in the center of one of the
welded plates. The last fatigue band exhibited three striations having an average
length of 0:34mm at 10,000 magnification. The vessel internal diameter was 10 cm.
Calculate (a) the pressure that caused fracture and (b) the time it took for fracture
to occur due to pressure fluctuations. Assume a pressure frequency of 0:1 cycles
per minute (cpm). Given data: � ys D 600MPa, E D 207GPa, KIC D 75 MPa

p
m,

and da=dN D 4:50 � 10�7 .	K/2. [Solution: (a) P D 154:40 MPa and (b) t D
85:30min]

9.14. Show that ac D a .KIC=Kmax/
2.
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10Fracture Toughness Correlations

10.1 Introduction

Optimistically, mode I (1) plane-strain fracture toughness (KIC) from the theory
of linear-elastic fracture mechanics (LEFM) and (2) critical J-integral (JIC) as
per elastic-plastic fracture mechanics (EPFM) theory are properties determined
in a laboratory. Hence, KIC and JIC data sets can be used in practical designing
procedures. In addition, tension (� ys) and impact energy (U) and fracture mechanic
(KIC and JIC) laboratory tests provide properties of solid materials used in designing.
Thus, fracture toughness correlations can be very useful for property conversion.

This chapter is devoted to a brief review of fracture toughness of crack-free and
notched specimens. Fracture toughness can be defined as the strain energy absorbed
by a material prior to fracture. Thus, this energy is defined as the strain energy
density in a tension test, the intensity of the stresses (KI) ahead of a crack tip, and the
strain energy release rate also known as the crack driving force (GI or JI) for crack
growth or the dynamic strain energy (U) for conventional and instrumented Charpy
impact tests. Some useful empirical correlations for determining the plane-strain
fracture toughness (KIC) from Vickers microhardness measurements and impact
tests are included.

Furthermore, impact testing and microhardness measurement techniques are
widely used in materials evaluation since they are simple and cost effective.
Thus, fracture toughness correlations have evolved indicating the usefulness of the
impact and indentation techniques when proper precautions are taken in conducting
experiments. For instance, the dynamic behavior of the Charpy impact test can be
understood by modeling the striker and specimen as a spring-mass system.

© Springer International Publishing Switzerland 2017
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10.2 Failure Assessment Diagram

For assessing the safety and reliability of a structure, a failure assessment diagram
(FAD) can be developed as a failure curve relating brittle fracture and general
yielding of structures containing flaws or cracks [21, 22, 27]. Conventional FAD
procedures can be found in the British R6 [60] and BS 7910 [15] standards.

The construction of a FAD failure curve is based on Dugdale’s strip yield model
[2, 22], also known as Dugdale’s approximation, shown in Fig. 5.3 under small-
scale yielding conditions and on Burdekin and Stone [16] work. For convenience,
the J-integral (JI) defined by Eq. (6.66) and the crack tip opening displacement (ıt),
Eq. (5.34), are used as the starting point. At fracture,

JIC D ıtc� ys (10.1)

ıtc D 8a� ys


E
ln



sec

�

�

2� ys

��
(10.2)

Inserting Eq. (10.2) into (10.1) at fracture yields

JIC D 8a�2ys


E
ln



sec

�

�

2� ys

��
(10.3)

Using Eq. (6.61) for Mode I loading only and letting the stress intensity factor be an
effective term to account for plasticity effects at the crack tip gives

JIC D K2
IC

E
(Plane Strain) (10.4a)

JC D K2
C

E
(Plane Stress) (10.4b)

For convenience, combine Eqs. (10.3) and (10.4a) and solve for the plane strain
fracture toughness

KIC D � ys
p

a

�
8


2
ln



sec

�

�

2� ys

��
 1=2
(10.5)

Recall that the nominal stress intensity factor is also define by Eq. (3.29) as

KI D ˛�
p

a (10.6a)

where the remotely applied stress takes the form

� D P

wB
(10.6b)
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The stress � in Eq. (10.6a) is referred to as the reference stress, P is the applied load,
and A D wB is the gross cross-sectional area of a plate. On the other hand, the yield
strength � ys in Eq. (10.5) can be replaced by a collapse stress (� c) [62], which is
the stress for gross plastic deformation of a structural component containing a crack
configuration, but it is common to replace it with the flow stress (�F) to account for
strain hardening effects [12, 19]. Thus,

� c D �F D � ys C � ts

2
(10.7)

Nevertheless, dividing Eq. (10.6a) by (10.5) gives [2]

KI

KIC
D ˛�

� ys

�
8


2
ln



sec

�

�

2� ys

��
�1=2
(10.8)

Let the reference stress intensity factor ratio and the reference load ratio be,
respectively,

Kr D KI

KIC
(10.9a)

Sr D �

� ys
D P= Œ.w � a/B�

� ys
(10.9b)

Denote that A D .w � a/B is the net cross-sectional area of a plate and Sr is found in
the literature as Lr. Finally, insert Eq. (10.9b) into Eq. (10.8) to get the stress-based
FAD function Kr D f .Sr/ defined by

Kr D Sr

�
8


2
ln
h
sec

�

2

Sr

�i
�1=2
(10.10)

which is plotted in Fig. 10.1. It is clear that Kr and Sr are the two dimension-
less parameters that determine the potential for failure of a cracked structural
component.

Mathematically, Eq. (10.10) yields Kr D 0 at Sr D 0 which means that there is
no applied load on a cracked component, but the plot predicts that Kr D 1 at Sr D 0

for brittle fracture and Kr D 0 at Sr D 1 for ductile or collapse failure by general
yielding. In order to plot the FAD curve using Eq. (10.10), it was necessary to use
the load ratio inequality 0:001 � Sr � 0:999, which gave Kr D 1:000 at Sr D 0:001

and Kr D 0:437 at Sr D 0:999. To complete the plot, it was necessary to extrapolate
from Kr D 0:437 to Kr D 0 at Sr D 1.

The FAD plot or FAD failure curve can be used as a reliability and system
safety analysis technique to assess the integrity of a cracked structure exposed
to a particular environment. According to the information in the FAD plot, any
assessment point falling on or outside the curve represents failure [2, 19, 62].
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Fig. 10.1 Failure assessment diagram (FAD) using the Dugdale’s strip yield model based on
Dugdale’s approximation, Eq. (10.10)

In addition, Sr D 1 is the selected cut-off value used to construct the FAD
diagram (Fig. 10.1). Cut-off values larger than unity can be used to construct a
FAD plot based on the J-integral approach to account for strain hardening effects
[2, 3, 10, 12, 15, 19, 36, 60, 62, 70]. For a FAD based on the J-integral, the driving
force and the load ratios are defined by

Jr D Je .a;P/

Je .ae;P/C Jp .a; n;P/
(10.10a)

Here, a is the original crack length, ae is an effective crack length, Je .a;P/ is
the usual elastic J-integral, Je .ae;P/ is the effective J-integral, and Jp .a; n;P/ is the
plastic J-integral that accounts for strain hardening effects. In light of the above,

Krj D
p

Jr D
s

Je .a;P/

Je .ae;P/C Jp .a; n;P/
D
s

Je .a;P/

Jn
(10.10b)

Sr D P

Po .a;P/
(10.10c)

where Krj D f .Sr/ D f .Je; Jn/ is the function for a FAD based on the J-integral and
strain hardening effects [12].

Example 10.1. Use the FAD plot to predict failure of a 7075-T6 aluminum plate
containing a 6-mm long through-thickness center crack if it is designed to support a
load of 200 kN. (a) Will this load cause failure? (b) Calculate the fracture load and
the safety factor SF. Use the data given in Table 3.2.
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Solution. (a) From Table 3.2, � ys D 572 MPa, � ts D 641 MPa, and KIC D
24 MPa

p
m

Brittle fracture: From Table 3.1 along with x D a=w D 3=100 D 0:03

˛ D
q
1C 0:5 .0:03/2 C 20:46 .0:03/4 C 81:72 .0:03/6 D 1:00

� D P

wB
D .0:200MN/

.0:1m/ .0:01m/
D 200MPa

KI D ˛�
p

a D .1:00/ .200MPa/

p

 .3 � 10�3 m/ D 19:42MPa

p
m

Let KIC D 24MPa
p

m so that

Kr D KI

KIC
D 19:42MPa

p
m

24MPa
p

m
D 0:81

Collapse: This is an incipient plastic collapse used as a failure load or stress.

� D P

.w � a/B
D .0:200MN/

.0:1m � 0:003 m/ .0:01m/
D 206:19MPa

� c D � ys C � ts

2
D 572C 641

2
D 606:50MPa

Sr D �

� c
D 206:19MPa

606:50MPa
D 0:34

Plotting the coordinate .Sr;Kr/A D .0:34; 0:81/ in Fig. 10.1 defines point A.
(b) The failure load is determined by using point B on the FAD curve (Fig. 10.1).

This point arises by extrapolating the load line from zero through A to B. Thus,
.Sr;Kr/B D .0:38; 0:92/ gives the applied stress intensity factor as

Kr D KI

KIC
D 0:92

KI D 0:92KIC D 0:92
�
24MPa

p
m
� D 22:08MPa

p
m

This result implies that elastic-plastic failure occurs at KI D 22:08MPa
p

m <

KIC. Nonetheless, the failure load Pf using the calculated KI value is
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KI D ˛� f
p

a D ˛Pf

wB

p

a

Pf D wBKI

˛
p

a

D .0:1 m/ .0:01m/
�
22:08MPa

p
m
�

.1/
p

 .3 � 10�3 m/

D 227:44 kN

The failure load based on collapse is

� D Sr� c D .0:38/ .606:50MPa/ D 230:47MPa

Pf D .w � a/B� D .0:1m � 0:003 m/ .0:01m/ .230:47MPa/ D 223:56 kN

Then, the safety factor can be determined as SF D 227:44=223:56 D 1:02. A
similar example problem can be found in Collins’ Book, Example 3, page 79
[19].

10.3 Grain Size Refinement

The grain size refinement technique is used for enhancing the yield strength (� ys)
and fracture toughness (KIC), and it has been successfully applied to some body-
centered cubic (BCC) steels containing molybdenum (Mo), vanadium (V), titanium
(Ti), and aluminum (Al). These alloying elements react in the solid-solution state
to form either particles or cause microstructural changes that are accountable for
pinning grain boundaries and dislocations. The phase transformation mechanism
evolved in adding these elements to carbon steels can be found elsewhere [32].

Subsequently, the controlling property, such as yield strength or fracture tough-
ness, is limited to (1) the strength if an applied external load exists, (2) the fracture
toughness if absorption of strain energy occurs prior to fracture, and (3) the ductility
if metal shaping or forming is required.

From an empirical point of view, monotonic properties and fracture toughness
can be correlated using Orowan [48] and the Hahn-Rosenfield [26] plastic constraint
factor (�) at the crack tip. Thus,

� D � f

� ys
(Orowan) (10.11)

� D 1C ˇ

�
KIC

� ys

�
(Hahn-Rosenfield) (10.12)

Here, ˇ D 20 m�1=2 for strain hardening mild steels [26]. The yield and fracture
strengths as per Hall-Petch-type equation are defined as

� ys D �oy C kyd�1=2 (10.13)

� f D �of C kf d
�1=2 (10.14)
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where �oy D Friction stress due to particle, dislocations, etc. (MPa)

�of D Stress constant (MPa)
ky D Dislocation locking term (MPa mm1=2)
kf D Constant (MPa mm1=2)
d D Grain size (mm)

Combining Eqs. (10.11) and (10.12) along with Eqs. (10.13) and (10.14) yields
the plane-strain stress intensity factor as [20, 56, 59]

KIC D 1

ˇ

�
� f � � ys

�
(10.15)

KIC D 1

ˇ

�
�of � �oy

�C 1

ˇ

�
kf � ky

�
d�1=2 (10.16a)

KIC D Ko C Kdd�1=2 (10.16b)

Remarkably, Eq. (10.16b) exhibits a linear correlation KIC D f .d�1=2/, where Ko is
the stress intensity factor due to defect internal stresses and Kd is the slope or the
rate of change of KIC D f .d�1=2/.

Example 10.2. Using Stonesifer and Armstrong [72] linear regression analysis
for A533B steel at room temperature having an average grain size of 10�m and
modulus of elasticity of 207GPa, calculate (a) � and ˇ, and (b) predict the elastic
strain energy density (We) as a measure of elastic fracture toughness for sound
specimens subjected to tension loading. The mechanical properties depend on the
average grain size d. Thus,

� ys D 572MPa C �
0:11 MPa m1=2

�
d�1=2 D 606:79 MPa

� f D 1750MPa C �
3:30 MPa m1=2

�
d�1=2 D 2793:55 MPa

KIC D 60MPa
p

m C .0:16 MPa m/ d�1=2 D 110:60 MPa
p

m

Solution.

(a) From Eqs. (10.11) and (10.12), the plastic constraint factor (�) after localized
yielding has occurred at the crack tip and the strain hardening factor (ˇ) is
calculated for plane-strain condition:

� D � f

� ys
D 2793:55MPa

606:79MPa
D 4:60

ˇ D .� � 1/
�
� ys

KIC

�
D .4:60 � 1/

�
606:79MPa

110:60MPa
p

m

�

ˇ D 19:75m�1=2
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which agree with Orowan and Hahn-Rosenfield [26] approximations given
above. In addition, � represents the local plasticity ahead of defects, and it is
also a multiplier for the fracture stress; � f D �� ys D 4:6� ys.

(b) From Eq. (6.60), the maximum elastic strain energy density as the area under
the typical stress-strain curve is calculated as

We D �2ys

2E
D .606:79MPa/2

2 .207 � 103 MPa/
D 0:89MJ=m3

This is the required strain energy density known as the elastic resilience, which
is the maximum elastic energy the material absorbs prior to plastic deformation
since the maximum elastic stress is allowed to be equal to the yield strength of
the material.

Furthermore, the strain energy density of a material relates to the defor-
mation gradient, and it is the energy stored by a solid material undergoing
deformation in a particular environment. In other words, the strain energy
density of a material is defined as the strain energy per unit volume, and it is
equal to the area under the stress-strain curve of a material. The elastic strain
energy is measured from 0 to epsilonys, which is the maximum elastic strain or
the transition strain between elastic and plastic deformation.

10.4 Indentation-Induced Cracking

In this section, the theory of indentation is strictly used to measure “indentation
hardness” which implies resistance to penetration as depicted in Fig. 10.2 [8].
The most common hardness tests are mechanically static in nature, which have
industrial and research applications. Thus, “hardness” can be measured by using
the Brinell, Rockwell, and Meyer tests. On the other hand, “microhardness”
can be measured using the Knoop and Vickers indentation techniques. The term
microhardness indicates the hardness of a very small area such as a grain and/or
a particle that constitute the microstructure of a polycrystalline material. Herein,
attention is devoted to the Vickers indentation-hardness measurement technique,
which has been used very extensively in research for predicting Vickers fracture
toughness of brittle materials. The technical procedure for employing the Vickers
hardness testing can be found in the ASTM E92 (1997) Standard Test Method. The
term microhardness refers to as small micro-indentation hardness due to relatively
common light applied load that ranges from 1 kgf to 120 kgf .

The Vickers indentation is made with a diamond pyramidal-shaped indenter.
In fact, the indenter impression schematically shown Fig. 10.2 is a square-based
inverted pyramid with a face angle of 136ı, and it is so small that it must
be observed with a microscope. For brittle materials, such as ceramics (fused,
sintered or cemented metallic oxides), cermets (powder metallurgy products con-
taining ceramic particles), polymers, and amorphous metallic materials, indentation-
induced cracking overcome difficulties in specimen preparation in a conventional
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Fig. 10.2 Schematic indentation-induced cracking systems [8]. (a) Side view and (b) top view
showing four cracks

manner as recommended by the American Society for Testing Materials (ASTM)
E399 for plane-strain fracture toughness and for the J-integral approach [8]. As
a result, an empirical equation may be used to determine the Vickers fracture
toughness.

The Vickers hardness (Hv) can be calculated as follows:

Hv D 2P sin .�=2/

D2
D 1:8544P

D2
(10.17)

where P D Applied load (kg)

D D Mean diagonal (mm)
� D 136ı D Face angle

The advantages of Vickers hardness measurements are (1) its simplicity; (2) it
can be applied to microstructural constituents; (3) it does not require fatigue pre-
cracking, which is difficult to accomplish in brittle materials; (4) it is cost effective
since small specimens are needed; and (5) the tests are considered nondestructive
in at macroscale. However, specimen preparation is a slightly time-consuming
procedure since a polished surface is required so that uniform indentations are
made on a reflective flat plane, which is a must in order to obtain consistent and
reproducible results.

In fact, hardness measurements are made for screening materials and character-
izing microstructures; subsequent use is made for determining the Vickers fracture
toughness, which inevitably shows some degree of inaccuracy when compared
with conventional fracture toughness. Nevertheless, this technique has become an
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Fig. 10.3 Effects of
indentation load on the crack
length. The Palmquist
fracture toughness for
Al2O3 � TiC cermet is the
inverse of the linear slope
[75]

excellent approach for characterizing ceramics, cermets (e.g., TiC-Al2O3, WC-Co
composites), and amorphous metals and their alloys.

In the 1950s, Palmquist [50] recognized that indentation-induced cracking
observed on cermets was related to fracture toughness, and he developed a procedure
to predict fracture toughness. Vickers is the most common and suitable test method
due to four possible cracks that may emanate from the corners of the indenter.
A typical Palmquist fracture toughness analysis requires a linear plot of total crack
length (a) vs. applied load (P); that is, a D f .P/. This is shown in Fig. 10.3 for an
alumina-titanium carbide cermet (Al2O3-TiC). The inverse of the slope of the line is
a measure of Palmquist fracture toughness in terms of work done (WC), which may
be taken as the strain energy release rate (GC) [75].

The prediction of fracture toughness for many brittle materials using empirical
formulations can be found in the literature [37, 42, 54, 55, 68]. However, the most
common expression is the following general form:

KIC D �

�
E

Hv

�x � P

a3=2

�
(10.18)

where � D Indentation geometry factor (� < 1)

E D Modulus of Elasticity (MPa)
P D Indenter load (MN)
Hv D Vickers hardness (MPa)
x D Exponent a D Average crack length (m)

Rearranging and manipulating Eq. (10.18) gives

KIC D p

˛Pa�3=2 (10.19)

˛ D �p



�
E

Hv

�x

(10.20)
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Fig. 10.4 Comparison of
Vickers and conventional
fracture toughness for brittle
ceramics and WC-Co
cermets. Experimental data
taken from Refs. [4, 37]

Observe that Eq. (10.19) resembles Eq. (3.29) for the conventional plane stress
fracture toughness. Moreover, the exact numerical form of Eq. (10.18) depends on
the crack configuration (Fig. 10.2) and the material’s properties [4,28,37,54,55,68].
In order to illustrate the usefulness of Eq. (10.18) or (10.19), let us curve fit Laugier
[37] and Anstis et al. [4] data for several ceramics and cermets, respectively. Notice
the remarkable correlation depicted in Fig. 10.4 for Vickers fracture toughness and
conventional fracture toughness testing method (ASTM E399). The pertinent values
for each parameter in Eq. (10.18) can be found in the cited references [4, 37].

Despite that Vickers hardness technique has been used for decades, it is still
a classical research tool for characterizing materials. For instance, Phelps et al.
[53] evaluated toughness of female baboon femurs of 6- to 27-year-old using
this technique. On the other hand, Iost and Bigot [33] made use of the Vickers
hardness measurements to characterize the brittleness index, which depends on
fracture mechanics and hardness, for metallic and ceramics materials, and flux-
grown ErFeO3 single crystals [69].

Furthermore, Sridhar and Yovanovich [71] found a power-law relation, Hv D
cDn, that fitted hardness data for a tool steel 01, AISI 304 stainless steel, and Ni200.
In addition, Berces et al. [9] determined the dynamic Vickers hardness asHv D
P=D2 for the characterization of plastic instability of an Al-3:3Mg binary alloy at a
loading range of 1:4–70MN.

The search for finding different avenues to characterize materials continues
beyond a researcher’s imagination, but apparently, the Vickers hardness measure-
ment technique remains as a research tool.

Recently, Milekhine et al. [42] used Vickers indentation-induced cracking for
evaluating the plane-strain fracture toughness of FeSi using Palmquist-type cracks.
As a result, KIC(Vickers) D KIC(ASTM) D 2:46MPa

p
m.
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In general, high fracture toughness values are desired for assuring structural
integrity and reliability. The ultimate goal is to determine fracture toughness using a
cost-effective technique, such as the indentation-induced cracking approach. Appar-
ently, Vickers indentation seems to be the most common experimental approach for
determining fracture toughness as accurate as possible. The data shown in Fig. 10.4
is a good example for universally comparing fracture toughness results from other
techniques.

Despite that the Vickers indentation technique is limited to small surface areas
for measuring fracture toughness, it can provide local fracture toughness data
using small amounts of materials. This is an attractive cost-effective experimental
technique due to its simplicity.

In addition, the Knoop indentation is also a cost-effective technique for the
same purpose. However, it is possible that Vickers and Knoop microhardness and
indentation fracture toughness results may differ to an extent due to their load
dependency.

10.5 Charpy Impact Testing

In general, impact tests are performed to measure the response of a material to
dynamic loading. The most common laboratory test configurations are the pendulum
machine and the drop tower. The results obtained from a standard impact tests are
usually a single value of the impact energy or energy spent on a single specimen.
This is of limited value in describing the dynamic behavior of a particular sample
material. Therefore, instrumenting an impact machine yields information on the
impact forces, impact velocities, displacements, and strain energies of the striker
at any time during the dynamic test. Figure 10.5 shows a conventional Charpy
impact testing machine used to measure fracture toughness of a three-point bending
specimen (3PB) under an impact loading system at low velocity.

Fig. 10.5 The three-point bending (3PB) specimen and the conventional Charpy impact testing
machine [14]
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Fig. 10.6 Tinius Olsen
Model 84 Instrumented
Charpy impact machine
equipped with in situ heating
and cooling system, optical
encoder for measuring the
impact velocity, and
motorized hammer (striker)
return [43]

Impact loads generate high strain rates in solid materials. For instance, conven-
tional and instrumented Charpy impact testing machines impart low strain rates at
low velocity when compared to ballistic impact velocity. The former technique has
been used for characterizing the dynamic behavior of some particular composite
materials [1, 13, 18, 25, 29, 34, 39, 49] and the latter technique promotes impact at
a high velocity, which varies according to the type of gun projectile being used.
Excellent work in the ballistic field can be found elsewhere [17, 24, 31, 77].

The instrumented Charpy impact machine remains a key means for fracture
toughness testing due to its low cost, convenience, reliability based on certification
standards, and simple use. A particular instrumented Charpy impact machine is
shown in Fig. 10.6. Thus, the transient load history during a Charpy test is readily
obtained by placing strain gages on the striker so that it becomes the load cell.
Using software during an impact, one can record the displacements by integrating
the acceleration versus time twice with respect to time. The accuracy of these
measurements may be affected by the inertial forces in the striker, variations in the
contact force distribution between the striker and the specimen, striker geometry,
and strain gage location on the striker [40].

Figure 10.7 illustrates a typical load history for a relevant case [40]. The
interpretation of Fig. 10.7 is very vital for characterizing a material dynamic
behavior. Denote the characteristic load information and the velocity profile in
this figure. This type of plot represents the dynamic load response to dynamic
displacement cause by the impact process in a Charpy specimen.

The use of instrumented Charpy impact machine has the advantage of providing
information on the toughness characteristics of a specimen [11, 38, 40, 63–67]. In
general, the load-time history for a three-point bending (3PB) Charpy specimen
can be divided into fracture initiation and fracture propagation regions expressed in
terms of areas under the curve (Fig. 10.7).

These areas are measures of the elastic strain energy (Ue) and plastic strain
energy (Up). These energies are strongly dependent on the temperature, specimen
size, and impact velocity imparted by the kinetic energy of the striker. Thus, the
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Fig. 10.7 Schematic
P D f .�/ and � D f .�/
plots, obtainable using MPM
ImpactTm v3.0 software [39]

total impact or strain energy a specimen can absorb during impact is known as the
Charpy V-notch (CVN) energy defined by the following general relationship [32]

U D Ue C Up (10.21)

U D v

Z
Pdt (10.21a)

v D p
2gh (10.22)

where v D Striker velocity on contact with the specimen (m/s)

P D Impact load (N)R
Pdt D Impulse (N s)

h D Pendulum initial height (m)
g = 9.81 m/s2

Thus, one must analyze the load-time curve very carefully with respect to the
elastic and plastic strain energies. These energies may be used for classifying solid
materials as Ue > Up for brittle materials and Ue < Up for tough and ductile
materials.

The Charpy or Izod notched specimens are used for this purpose, the Charpy
V-notched specimen being the most common. This technique became a conventional
testing method when it was revealed in the 1940s that welded ships, large pipelines,
and other monolithic steel structures fractured at notch roots.

This is a dynamic (impact) testing technique recommended by the ASTM E23
standard test method. The applied impact load (P) is through an impact blow from
a falling pendulum hammer (striker).

The resultant energy measurement is commonly referred to as Charpy impact
energy (U), which is a measure of the fracture toughness of a material at testing
temperatures. Thus, U D f .T/ is normally determined experimentally in order to
reveal the effects of impact loads on the dynamic behavior of materials at relatively
low and high temperatures.
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In general, structural steels usually have low fracture toughness at relatively
low temperatures. In general, hindering the dislocation motion along preferred
crystallographic planes and grain-boundary sliding at low temperatures increases
strength and decreases the impact energy and ductility, specifically elongation at
low temperatures.

In light of the above, relatively ductile materials may exhibit a brittle behavior at
low temperatures. Consequently, these types of materials undergo a ductile-to-brittle
transition with respect to dynamic or impact behavior.

10.6 Dynamic Effects

The Charpy impact testing machine and its dynamic characteristic can be under-
stood using Williams’ [78] one degree of freedom spring-mass model as shown in
Fig. 10.8. For a perfectly elastic deformation on impact, the contact stiffness k1 (=
1/compliance) is high compared with that of the specimen k2, and consequently,
considerable load oscillations are likely over a short period of time.

Firstly, the equation of motion of the system shown in Fig. 10.8 is [78]

mRu C .k1 C k2/ u D k1vt (10.23)

where k1 D Stiffness of the striker-specimen interface

k2 D 1=C D Stiffness of the specimen
C D Compliance of the specimen
m D Mass of the specimen

Using the boundary condition Vu D u D 0 yields the solution of Eq. (10.23)

u D v

!

�
k1

k1 C k2

�
Œ!t � sin .!t/� (10.24)

where the natural angular frequency (!) and the period of oscillations (�) are,
respectively,

! D
r

k1 C k2
m

(10.25)

� D 2


!
(10.26)

Fig. 10.8 Spring-mass
model of the Charpy impact
machine. After Ref. [78]
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Secondly, assume that the striker slows down insignificantly upon striking the
specimen mass (m) so that the spring k2 expands at velocity v and the spring k1
compresses. In this case, the impact load (force) can be defined by

P D k1 .vt � u/ (10.27)

Substituting Eq. (10.24) into (10.27) and rearranging the resultant expression yields

P D vk2
!

�
k1=k2

1C k1=k2

�

!t �

�
k1
k2

�
sin .!t/

�
(10.28)

Let � be defined as

� D !P

vk2

�
1C k1=k2

k1=k2

�
D


!t �

�
k1
k2

�
sin .!t/

�
(10.29)

The oscillatory behavior of Eq. (10.29) is shown in Fig. 10.9 as a diagram exhibiting
two discrete values of �. This diagram illustrates that the spring-mass system
oscillates as k1=k2 increases. The ideal elastic case dictates that k1=k2 D 0 and load
oscillations do not occur as indicated by the straight line. However, real systems are
bound to experience load oscillations after the initial contact between the striker and
the specimen. These oscillations are likely over a small interval of time.

If loss of contact occurs when the striker bounces in the opposite direction, then
the impact load is zero at that instance, but impact reloading resumes in a short
interval of time as shown by lines 1 through 5 in Fig. 10.9. In this case, the specimen
undergoes free oscillations, and the dynamic behavior that describes this event is
defined by the following equation of motion:

mRu C .k1 C k2/ u D 0 (10.30)

The loss of contact occurs when P D 0 and as a result, Eq. (10.28) gives

!t �
�

k1
k2

�
sin .!t/ D 0 (10.31)

and

!t ' 
 .1C k2=k1/ (10.32)

Combining Eqs. (10.21a) and (10.28) and integrating the resultant expression yields
the impact energy lost by the striker

U D k1=k2

.1C k1=k2/
2

(
.!t/2

2
C k1

k2
Œ1 � cos .!t/�

)
mv2 (10.33)

This expression illustrates that the striker kinetic energy (mv2) is transformed into
strain energy U, which is absorbed by the specimen during the impact process.
However, this dynamic event exhibits an oscillation behavior to the impact response
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Fig. 10.9 Load-time
diagram showing oscillations
when k1 D k2 > 0

as indicated by the cosine term in Eq. (10.33). Consequently, bouncing generates
load oscillations and eventually gives discrete values of energy as illustrated in
Fig. 10.9 where all curves coincide when !t D 
 . Thus, Eq. (10.33) becomes [78]

U

mv2
D k1=k2

.1C k1=k2/
2




2

2
C 2

�
k1
k2

��
(10.34)

For rigid body contact, the stiffness ratios becomes k2=k1 ! 0 or k1=k2 ! 1 and
Eq. (10.34) yields a simplified form of the impact strain energy

U ' 2mv2 For
k1
k2

! 1 (10.35)

Analysis of theoretical and experimental data is a very important issue because
erroneous conclusions may be drawn. For example, plotting Eq. (10.33) when
k1=k2 � 1 and k1=k2 > 1 yields different dynamic behavior, while kinetic energy
is converted to strain energy as the specimen bends and slows down. The obvious
significance of this observation is shown in Fig. 10.10. The curves for k1=k2 > 1

coincide at !t D 
 . This is attributed to the first load oscillation since this
behavior is also observed in Fig. 10.9. Eventually, a second impact may occur at
time predicted by Eq. (10.26) for further kinetic energy transfer.

In summary, an impact is generated by imparting energy from a pendulum
carrying large mass that acts as an indenter to the stationary specimen. During
this dynamic process, the pendulum swings toward the specimen surface and an
impact load-displacement is recorded, and also the pendulum displacement u.t/
is recorded as a function of time. Eventually energy loss is inevitable during the
specimen deformation. This is dealt with next.
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Fig. 10.10 Energy
ratio-time diagram for impact
loading

Fig. 10.11 Energy
conversion and energy losses

Energy Loss. Despite there are different sources of motion in an impact test, the
rigid body motion is considered in the Charpy test analysis. The general overview
of the striker kinetic energy (KE) transformation is depicted in Fig. 10.11 [41].

The general equation for kinetic energy is [41, 78]

UKE D 1

2

�
Mv2 C I!2

� D Mgh C 1

2
I!2 � Uw � Uf (10.36)

where M D Mass of the striker ! D Rotational velocity

I D Moment of inertia v D Translational velocity
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Uw D Windage energy
Uf D Friction energy

This expression takes into account (1) the force transmitted to the points of
rotation when the center of percussion (striking) is at an eccentric point from the
specimen axis of rotation and (2) the energy losses due to windage and friction of
the pendulum [78].

A convenient and realistic model considers a heavy striker (large mass M) and a
light specimen (small mass m) in which the displacement is due to relative motion
of both bodies. The equation of motion for M > m is [78]

mRu C
�
1C m

M

�
fe .u/C

�
1C m

M

�
fd
�Vu� D 0 (10.37)

Here, fe .u/ is the elastic contact stiffness function and fd
�Vu� is the dissipation

function. In fact, elastic stiffness of a solid represents mechanical resistance to
elastic deformation under the action of an external loading system, which may be
linear or nonlinear. A more exact conceptual treatment of stiffness in a dynamic
sense defines it as the stiffness function fe .u/. On the other hand, the dissipation
function fd

�Vu� relates to energy dissipation during dynamic elastic deformation.
The solution of this differential equation, Eq. (10.37), along with the coefficient

of restitution (COR) e [78]

e D Rebound velocity

Initial impact velocity
D vf

vi
(10.38)

is the kinetic energy loss of the striker, from which the strain energy absorbed by
the specimen and that lost in impact are deduced as [78]

US D
�

1C e

1C m=M

�

1 � m

2M

�
1C e

1C m=M

��
mv2 (Striker) (10.39)

UA D 1

2

�
1C e

1C m=M

�2
mv2 (Specimen) (10.40)

UA ' 1

2
.1C e/2 mv2 For m=M << 1 (10.41)

UL D 1

2

�
1 � e2

1C m=M

�
mv2 '

�
1 � e2

2

�
mv2 (Impact) (10.42)

The coefficient of restitution (COR) e is a measure of the bounciness of the collision
between the striker and the specimen. Actually, the coefficient of restitution e is a
factor that quantifies the energy loss during impact.

According to Eq. (10.38), e is the ratio of the rebound velocity (vf ) and the initial
velocity (vi) of the striker. In other words, e is the ratio of the final velocity (after)
to the initial (before) velocity of the collision between two objects. Hence,

e D 0 for lack of rebound velocity of the striker, the specimen (object) is plastic,
and the kinetic energy of the striker is dissipated as heat during the collision or
deformation. Therefore, vf D evi D 0.
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e D 1 for perfect rebound velocity, the specimen (object) is elastic, and no kinetic
energy is dissipated as heat. Instead, the kinetic energy is converted to strain energy
during collision. Therefore, vf D evi D 1.
0 < e < 1 for elastic-plastic materials. Some kinetic energy is dissipated as

heat and some is transformed to strain energy. For a striker impacting a flexible
or soft object COR is low, while impacting a rigid object COR is high. Therefore,
0 < vf < vi.

Example 10.3. For a linear motion during impact along with m=M << 1, rota-
tional effects are neglected, and consequently, the energy loss of the striker becomes
dependent on its kinetic energy and the coefficient of restitution e. Graphically,
determine the strain energy US and UA trends when the kinetic energy of the striker
range is 0 � mv2 � 200 mJ and the coefficient of restitution is e D 0:5 and 0:8.
Explain.

Solution.
From Eq. (10.39),

US D
�

1C e

1C m=M

�

1 � m

2M

�
1C e

1C m=M

��
mv2

US D �
1 � e2

� �1
2

mv2
�

for m=M << 1

UA D 1

2

�
1C e

1C m=M

�2 �
1

2
mv2

�

UA D .1C e/2
�
1

2
mv2

�
for m=M << 1
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Denote that energies US and UA exhibit increasingly linear trends with slopes
0:5.1 � e2/ and 0:5.1 C e/2, respectively. These energy straight lines get steeper
with increasing e. Therefore, the specimen can bend and slip through the anvil
before a fully crack propagates, leading to loss of kinetic energy as the coefficient
of restitution increases.

10.7 Dynamic Strain Energy Release Rate

In quasi-static fracture mechanics, a stationary crack under a remotely slow and
steady strain rate loading can be characterized by the strain energy release rate as
described in previous chapters. In light of this, this energy is the driving force for
crack growth or crack propagation, inducing energy dissipation during the formation
of new crack surface areas. On the other hand, dynamic fracture mechanics takes
into account crack growth including the effects of inertia due to high enough applied
strain rates. Subsequently, the term dynamic strain energy release rate appears as the
dynamic driving force for assessing the behavior of dynamic crack growth.

This section describes the fracture mechanics of impact testing and how dynamic
corrections are derived and demonstrates how impact tests are a coherent part of
fracture mechanics. A basic analysis is outlined using elementary linear-elastic
fracture mechanics (LEFM) for mode I loading. It is possible to measure GI

concurrently with an impact test by measuring Charpy elastic strain energy U.
The mathematical connection between these energies requires a dynamic correction
factor 
. This is defined by [78]

GI D U


Bw
D K2

I

E0 (10.43)

The general stress intensity factor and that for a 3PB Charpy specimen are,
respectively,

K2
I D 
af 2 .a=w/P

Bw
(10.44)

K2
I D f 2 .a=w/

�
6M

Bw2

�
a D EP2

2B

dC

da
(10.45)

and the bending moment is

M D PS

4
(10.46)

where E0 has been defined in Eqs. (3.5), (6.34), and (8.11).
Specimen variables are given in Fig. 10.5. For brittle materials, this analytical

procedure incorporates the Charpy elastic strain energy into GI as deduced from
Williams [78] relationships using a Charpy three-point bending (3PB) specimen.
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Fig. 10.12 Charpy impact
data on HDPE specimen
showing the kinetic energy
value. Given data:
v D 3:36m/s, 
 � 4,
� D 103 kg/m3, L D 41mm,
B D 12mm, and
w D 6mm [78]

Experimentally, measure U D f .x D a=w/ and, subsequently, plot U D f .
Bw/ to
obtain GI D GIC from the slope of the straight line.

The significance of this method is shown in Fig. 10.12 for HDPE polymer, which
exhibits the apparent linearity of the strain energy. The slope of this linear plot is
the critical strain energy release rate as GIC D 5:6mJ=M2, and the intercept is to
the kinetic energy of the striker UKE ' 2mv2 ' 67mJ. The energy absorbed by the
HDPE specimen as strain energy is approximately

Uspec ' UKE � U D UKE � 
BwGIC ' UKE ' 67mJ (10.47)

Furthermore, rearranging Eq. (10.45) yields the derivative of the compliance with
respect to the crack length along with x D a=w

dC

da
D
�

9S2

2Bw2E0

�
xf 2 .x/ (10.48)

Integrating Eq. (10.48) gives the total compliance

C D 9S2x2f 2 .x/

4Bw2E0 C Co (10.49)

where Co is an integration constant defined as the compliance for a crack-free
specimen.

Thus, [78]

Co D S

BwE0 for tension loading (10.50)
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Co D S3

4Bw3E0 for 3-point bending loading (10.51)

From Eq. (10.49), the new compliance equation is

dC

dx
D 9S2xf 2 .x/

2Bw2E0 (10.52)

C D
Z
9S2xf 2 .x/

2Bw2E0 dx C Co (10.53)

Now, the energy calibration factor for a 3PB specimen is defined along with x D
a=w by


 D C

dC=dx
D
R

xf 2 .x/ dx

xf 2 .x/
C S

18wxf 2 .x/
(10.54)

The geometric calibration factor, f .x/, for a Charpy 3PB specimen is given by
Brown and Strawley [14] in polynomial form for two span-to-width ratios. The
resultant polynomials for S=w D 4 and S=w D 8 are

f4 .x/ D 1:93 � 3:07x C 14:53x2 � 25:11x3 C 25:80x4 (10.55)

f8 .x/ D 1:96 � 2:75x C 13:66x2 � 23:98x3 C 25:22x4 (10.56)

Inserting Eqs. (10.55) and (10.56) into (10.54) and evaluating the resultant expres-
sion yields 10th-order polynomials, which can be approximated by the following
functions:


4 ' 2

7
x
for S=w D 4 (10.57)


8 ' 1

2
x
for S=w D 8 (10.58)

Figure 10.13 shows the numerical result for the energy calibration factor phi. Denote
that the functions defined by Eqs. (10.57) and (10.58) give slight higher results than
the polynomials at a=w � 0:18 for both S=w D 4 and S=w D 8.

The calibration factor phi decreases very rapidly at x D a=w < 0:1. It continues
decreasing very insignificant at x D a=w > 0:1.

10.8 Ductile-to-Brittle Transition

Ideally, Fig. 10.14 shows complete S-shaped curves, U D f .T/, for quasi-static
(slow-bend) and dynamic testing conditions. Note that the dynamic ductile-to-
brittle transition, known as the nil-ductility-transition (NDT) temperature, which is
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Fig. 10.13 Energy calibration factor 


Fig. 10.14 Schematic
quasi-static and dynamic
impact energy

referred to as To, is shifted to the left for the quasi-static testing, and the upper
region is shifted downward. This temperature shift in Fig. 10.14 is defined as
T�

o D To �	T , and it defines the upper limit of the plane-strain condition for valid
KIC values. This clearly indicates that the loading rate affects the transition region.
With respect to the schematic dynamic curve, at U � UNDT values, elastic behavior
prevails since it is a material low-energy consumption process and it is strongly
dependent on the notch acuity and thickness of the specimen. In fact, increasing the
notch acuity increases the stress concentration at the notch tip and decreases the
impact energy.

On the other hand, at U > UNDT values, elastic-plastic behavior occurs in the
transition region, while a pure plastic behavior becomes asymptotic accompanied
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Fig. 10.15 Typical Charpy
fractured surface showing a
mixture of ductile (dull and
gray) and brittle (shiny)
fracture modes [51]

by a tearing type of fracture, and the material energy consumption is increased at
relatively high temperatures. All this implies that the material behaves elastically at
low temperatures (below the NDT temperature) and plastically at high temperatures.

Failure analysis on brittle fracture or low-energy fracture would reveal a shiny
and flat surface appearance (Fig. 10.15) since small amount of energy is absorbed
prior to fracture in an elastic deformation fracture mode. This type of fracture is
caused by a cleavage fracture mechanism in which individual grains separate along
definite crystallographic planes.

Brittle fracture literally indicates that only elastic flow occurs and the impact
force provides the absorbed energy. However, in order for the notch to grow as
crack, the structure strain energy must be released so that new crack surfaces are
generated until total separation occurs. On the other hand, the ductile fracture or
shear fracture has different characteristics since yielding occurs due to plastic flow,
which causes a dull fibrous surface appearance as depicted in Fig. 10.15.

In general, the transition from ductile-to-brittle depends on the microstructure,
testing temperature, strain rate, and notch acuity. This may be reflected on ductile
and notch insensitivity steels, which may become brittle if tested at a relatively low
temperature or at a relatively high strain rate [7]. At the transition region, the fracture
appearance is a mixture of brittle and ductile fracture surfaces. If the material has an
extended degree of anisotropy and if it is tested several times at a fixed temperature
in the transition region, then one specimen may exhibit a dominant brittle behavior
and another may show dominant ductile behavior. Therefore, this transition behavior
causes a wide data scatter as encountered in most BCC low-carbon steels.

Moreover, Fig. 10.16 shows a schematic U D f .T/ reference curve for a
nonlinear regression procedure. Among several mathematical models that may fit
U data, a model based on the hyperbolic tangent function can give reasonable
results. Oldfield [46, 47] used such a function to interpret the physical meaning of
the nonlinear curve fitting parameters. Thus,

U D A C B tanh

�
T � To

C

�
(10.59)
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Fig. 10.16 Schematic Charpy V-notch energy, U D f .T/, curve showing regression parame-
ters [46]

where A, B, C, To D Regression parameters (Fig. 10.16)

T D Testing temperature

The lower shelf energy in Fig. 10.16 represents a brittle behavior in which plane-
strain condition should exist. Thus, brittle fracture requires a low consumption of
energy. On the other hand, the upper shelf energy is a ductile response and fracture
occurs by tearing, which is a fracture process that absorbs a large amount of strain
energy.

The slope of the transition region can be defined as an energy gradient and can
mathematically be defined by

@U

@T

ˇ̌
ˇ̌
TDTo

D B

C
sec h2

�
T � To

C

�
D B

C
(10.60)

Additionally, the following functions may give good results as well

U D A C B arctan

�
T � To

C

�
(10.61)

U D D

1C F exp .�ET/
(10.62)

Figure 10.17 shows data for a 25% cold rolled (CR) ASTM A710 steel, and the
nonlinear least-squares fitting curves are drawn as per Eqs. (10.59) and (10.61). The
curve fitting equations along with T in ıC and U in joules (J) are [52]

U D 64:07C 53:55 tanh

�
T � 70:62
10:67

�
(10.63)
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Fig. 10.17 Notch toughness of a 25 %CR A710 steel [2]

U D 64:34C 36:66 arctan

�
T � 70:57
5:38

�
(10.64)

U D 119:46

1C 23; 703:73 exp .�0:15T/
(10.65)

The impact energy data for the A710 steel was fitted to Eq. (10.62) and the resultant
expression is given by Eq. (10.65).

Extensive efforts have been devoted to correlate impact fracture toughness (U)
and plane-strain fracture toughness (KIC) data [6, 35, 44–47, 58, 61, 73, 74, 76].

Let the plane-strain fracture toughness and the Charpy impact energy be empiri-
cally defined by

KIC D A C B tanh

�
T � To

C

�
(10.66)

U D D C E tanh

�
T � To

F

�
(10.67)

These two expressions give a similar S-shaped trend, and the transition temperature
(To) should be the same for a particular data set. Letting tanh x ' x and solving
Eq. (10.67) for T and substituting the resultant expression into Eq. (10.66) yields
along with H D F=.CE/

KIC D A C B tanh ŒH .U � D/� (10.68)

where H D F=.CE/.
The expressions, Eqs. (10.66) and (10.68), for characterizing the plane-strain

fracture toughness (KIC) are confined to the lower shelf region. Thus, valid KIC

values are obtainable at T � To:
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Other empirical expressions for U D f .T/, KIC D f .T/, and KIC D f .U/ have
been successfully used by Nogata and Takahashi [45] for evaluating sound and
irradiated materials. One expression is defined by

KIC D A C B exp .CT/ (10.69)

Combining Eqs. (10.62) and (10.69) and eliminating T yields [45]

KIC D A C q

�
D

U
� 1

�m

(10.70)

where m D �C=E

q D B=Fm

D D Upper shelf fracture toughness

This particular correlation, Eq. (10.70), was suitable for evaluating pressure
vessels made of ASTM A533B-1 steel [45]. Furthermore, Eqs. (10.62) and (10.69)
were fitted to experimental data for evaluating this particular steel, and the resultant
empirical equations as functions of testing temperature T (ıC) take the form [45]

KIC D 20C 95:5 exp .0:016T/ (in MPa
p

m/ (10.71)

U D 196

1C exp .�0:0297T/
(in Joules/ (10.72)

and subsequently, Eq. (10.70) becomes [45]

KIC D 20C 139

�
196

U
� 1

��0:54
(in MPa

p
m/ (10.73)

This expression, Eq. (10.73), requires that U � 196 J; otherwise, KIC cannot be
determined. Figure 10.18 shows the response of Eq. (10.73) for the structural steel-
type A533B-1.

Observe that there is a semi-linear correspondence in the selected lower shelf
energy. There is an apparent linearity at 20 J � U � 65 J. The slope dKIC=dU
changes very slightly in this Charpy impact energy range.

Barsom and Rolfe [6] have reported KIC D f
�
U; � ys

�
for the upper energy shelf

of ASTM A723 steel. The fitted expression is

KIC D
q
0:644U� ys � 0:006�2ys (10.74)

where U is in Joules, � ys in MPa and KIC in MPa
p

m.
Other empirical correlations can be found in the literature. Of significance is

the Hertzberg’s book [30], which contains many compiled expressions in a tabular
form. Ideally, KIC and U correlations should correspond to the same loading rate,
but quasi-static KIC values can be estimated from dynamic U experimental data,
taking into account the related temperature shift.
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Fig. 10.18 Fracture toughness for A533B steel [45]

In this regard, a simple correlation for ABS-C, A302-B, and A517-F steels in the
transition region has been reported [5,6] to give conservative results. The reported
mathematical expression is of the form

KIC D p
AEU for � ys � 690MPa (10.75)

where E D Modulus of elasticity (MPa)

A D 37.51 for dynamic tests (MPa m/J)
A D 46.89 for quasi-static tests (MPa m/J)

For the upper shelf energy, which is not strongly dependent on notch acuity
and loading rate, Barsom and Rolfe [6] and Rolfe and Novak [57] evaluated
several medium-strength high-toughness steels listed in Table 10.1 by normalizing
Eq. (10.75) with the room temperature yield strength. Curve fitting such a data set
yields an empirical expression with a correlation coefficient of 0.99

�
KIC

� ys

�2
D 4:69

�
U

� ys

�
� 0:20 (10.76)

The units of KIC and U in Eq. (10.76) are given in Table 10.1. Figure 10.19 shows
the curve fitting results.
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Table 10.1 Longitudinal mechanical properties of some steels at 27 ıC

� ys � ts U KIC

No Steel (MPa) (MPa) %EL %RA (J) (MPa
p

m)

1 A517-F 758 834 20 66 84 187

2 4147 945 1062 15 49 35 120

3 HY-130 1027 1096 20 68 121 271

4 4130 1089 1151 14 49 31 110

5 12Ni-5Cr-3Mo 1262 1317 15 61 81 242

6 12Ni-5Cr-3Mo 1282 1324 17 67 88 249

7 18Ni-8Co-3Mo (200 Grade) 1310 1351 12 54 34 123

8 18Ni-8Co-3Mo (190 Grade) 1289 1345 15 66 66 176

9 18Ni-8Co-3Mo (190 Grade) 1696 1772 12 54 22 96

The 0.2 % offset method for the yield strength [7]

Fig. 10.19 Normalized fracture toughness for steels (Table 10.1)

10.9 Smart Hybrid Composites

This section is devoted to composite materials because of their technological impor-
tance in manufacturing lightweight structures. Some theoretical and experimental
results obtained by using the instrumented Charpy impact machine are included. The
effect of low velocity imparted by the Charpy striker may be considered as a non-
penetrating striker. A common low velocity impact is the event of dropping a hard
and sharp tool or a falling bulk and heavy object on a substrate surface. This event
may cause permanent surface damage on metals and alloys due to the irreversible
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Fig. 10.20 Schematic principal failure mechanisms of a }Œ0=90�s bending. Delamination is due
to fiber-matrix debonding for weak interface, the matrix cracking occurs due to brittle matrix, and
fiber fracture forms a crack. The dashed lines represent the bending path of the composite

plastic deformation mechanism. If the substrate is a composite laminated material,
then the surface damage may be severe enough for reducing the load carrying
capacity of composites [23].

Figure 10.20 schematically shows a three-point bending (3PB) model indicating
the possible failure mechanisms encounter in unidirectional composite bars sub-
jected to impact bending loading at low velocity. The model indicates that the impact
energy provided by an object traveling at low velocity is absorbed by the composite
bar generating defects, and if the plate is thin enough and sufficiently long, some
of the impact energy is absorbed by general bending [23]. Thus, the composite
specimen damage caused by the impact is represented by delaminations, cracks,
and fiber breakage on the opposite side of the impact point P in Fig. 10.20.

Adding tough fibers to the matrix can enhance the impact and fracture resistance
of brittle composite materials. For instance, hybrid composites containing embed-
ded shape memory alloy (SMA containing 55Ni-45Ti or Ni42Ti45Cu13) fibers or
particulates into the matrix materials, such as polymers, fiber-reinforced polymers,
have good impact properties due to the superelastic behavior of SMA materials.

The SMA material undergoes martensitic transformation due to high strain
levels. Thus, the stress-induced martensitic transformation mechanism imparts
strain energy dissipation, which suppress, to an extent, the formation of defects.
Consequently, brittle composites containing SMA fibers become tough to an
extent because of the strain energy dissipation upon impact loading. Nevertheless,
improving the impact resistance may be accomplished at the expense of material
strength.

According to Elber [21], the matrix properties govern the damage initiation
and its extent and fiber properties and, on the other hand, control the penetration
resistance or the impact resistance. In fact, a superelastic shape memory alloy has
a remarkably high strain to failure primarily due to the stress-induced martensitic
phase transformation creating a plateau region in the stress-strain curve and a recov-
erable elastic strain up to 8% [14, 27]. Consequently, SMA fibers in composites
absorb much more strain energy than other fibers before their failure. Thus, SMA
hybrid composites become tough.
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Fig. 10.21 Strain energy
plot for SMA [5]

Figure 10.21 shows the relationship between the absorbed strain energy and the
martensite fraction on the surface of a SMA beam under bending load. Observe
that the martensitic phase transformation absorbs most of the strain energy in the
structure. For a martensite fraction of 0:9%, the superelastic SMA absorbs at least
twice the strain energy of the martensitic SMA [14].

10.10 Problems

10.1. (a) Plot the given U D f .T/ data for a hypothetical steel. (b) Calculate
KIC using the Charpy impact energy U values up to zero ıC, and plot KIC-cal. vs.
temperature and KIC-exp. vs. temperature. Is there a significant difference between
these plots? If so, explain.

T (ıC) �125 �100 �60 �40 �12 0 10 25 40 45

U.J/ 12 18 20 28 40 78 98 110 125 126

KIC � exp :.MPa m1=2/ 40 50 80 88 150 210

10.2. A mild steel plate has a through the thickness single-edge crack, a yield
strength of 800MPa, and a static fracture strength of � f D 3:2� ys. If the plate
is loaded in tension and fractures at 600MPa, calculate the plane-strain fracture
toughness of the steel plate and the critical crack length.

10.3. A standard Charpy specimen with B D 5 cm, w D 5 cm, and S=w D 4 was
tested at a room temperature. The measured impact energy was 30 J. The tested
material has a modulus of elasticity of 70; 000MPa. Calculate the KIC for this
hypothetical specimen having x D a=w D 0:2. [KIC D 42:98MPa

p
m].

10.4. Suppose that a design code calls for a Charpy impact energy of 22 J for
building a large pressure vessel containing an inert gas. If A533B and A723 (� ys D
1100MPa) steel plates are available for such a purpose, then (a) select the steel that
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will tolerate the largest critical crack length (depth of a surface semielliptical crack)
when the hoop stress is 500MPa, and (b) determine the minimum plate thickness as
per ASTM E399 standard for the selected steel.

10.5. Plot the fracture toughness data for a hypothetical polymer and determine the
brittle-ductile transition temperature.

T .ıC/ �160 �120 �90 �80 �75 �70 �60 �50 �30
KIC

�
MPa

p
m
�
4:10 4:11 4:00 4:05 4:10 4:5 5:50 6:60 11:00

10.6. For linear motion during Charpy impact tests, the energy lost by the striker
.US/ and the kinetic energy data for some polymers with different masses and spans
to depth (S=w) ratios [78] are given below. Let m=M << 1 and (a) plot US D f .mv2/
and estimate the coefficient of restitution e for these data. What does 0 < e < 1

mean? Theoretically, determine (b) the US=
�
mv2

�
ratio for the first bound which is

transformed into specimen strain energy and c) the US=
�
mv2

�
ratio when there is

no bouncing.

mv2 .mJ/ 0 50 100 150 200

US .mJ/ 0 75 150 222 297

10.7. A large and thick ASTM A533B-1 steel plate containing a 4-mm-long
through-thickness center crack fractures when it is subjected to a tensile stress
of 7MPa. Plot U, KIC, and GIC at �200ıC � T � 100ıC. Which of the plots
is more suitable for determining the transition temperature To? Explain. Data:
E D 207; 000MPa and v D 1=3.

10.8. A large plate made of 18Ni-8Co-3Mo Grade 200 alloy is part of structure
exposed to relatively high temperature. Charpy impact tests were carried out and
the average impact energy is 60 J. Use this information to calculate (a) the plane-
strain fracture toughness, (b) the minimum thickness ASTM requirement. The plate
width is at least twice the thickness. Is this thickness practical? (c) Assume that a
single-edge through the thickness crack develops. What will the critical crack length
be? Will its value be reasonable?
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AMetric Conversions

Prefixes

Factor Prefix SI symbol

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

10�3 milli m

10�6 micro �

10�9 nano n

10�12 pico p

10�15 femto f

10�18 atto a

Greek alphabet

A ˛ Alpha N � Nu

B ˇ Beta „ � Xi

� � Gamma O o Omicron

	 ı Delta … 
 Pi

E � Epsilon P � Rho

Z � Zeta † � Sigma

H � Eta T � Tau

‚ � Theta Y � Upsilon

I i Iota ˆ ' Phi

K � Kappa X � Chi

ƒ � Lambda ‰  Psi

M � Mu � ! Omega

Physical constants

Avogadro’s number NA D 6:023� 1023 atom/mol

Boltzmann’s constant k D 1:38� 10�23 J/atom K

Gas constant R D 8:315 J/K mol

Plank’s constant h D 6:63� 10�34 J s
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Length

1 m D 1010 Å 1 Å D 10�10 m

1 m D 109 nm 1 nm D 10�9 m

1 m D 106 �m 1�m D 10�6 m

1 m D 103 mm 1 mm D 10�3 m

1 m D 102 cm 1 cm D 10�2 m

1 m D 3.28 ft 1 ft D 0.3049 m

1 m D 39.36 in. 1 in. D 0.0275 m

1 cm D 10 mm 1 mm D 0.10 cm

1 cm D 3.28 � 10�2 ft 1 ft D 30.48 cm

1 cm D 0.394 in. 1 in. D 2.54 cm

1 mm D 3.28 � 10�3 ft 1 ft D 304.8 mm

1 mm D 3.94 � 10�2 in. 1 in. D 25.4 mm

Area

1 m2 D 1020 Å2 1 Å2 D 10�20 m2

1 m2 D 1018 nm2 1 nm2 D 10�18 m2

1 m2 D 1012 �m2 1�m2 D 10�12 m2

1 m2 D 106 mm2 1 mm2 D 10�6 m2

1 m2 D 104 cm2 1 cm2 D 10�4 m2

1 m2 D 10.76 ft2 1 ft2 D 9.29 � 10�2 m2

1 m2 D 1.55 � 103 in.2 1 in.2 D 6.45 � 10�4 m2

Volume

1 m3 D 1027 nm3 1 nm3 D 10�27 m3

1 m3 D 1018 �m3 1�m3 D 10�18 m3

1 m3 D 109 mm3 1 mm3 D 10�9 m3

1 m3 D 106 cm3 1 cm3 D 10�6 m3

1 m3 D 35.20 ft3 1 ft3 D 2.83 � 10�2 m3

1 m3 D 6.10 � 104 in.3 1 in.3 D 1.64 � 10�5 m3

1 cm3 D 3.53 � 10�5 ft3 1 ft3 D 2.83 � 104 cm3

1 cm3 D 6.010 � 10�2 in.3 1 in.3 D 16.39 cm3

1 cm3 D 2.642 � 10�4 gal (US) 1 gal (US) D 3.79 � 103 cm3

1 liter (l) D 103 cm3 1 cm3 D 10�3 liter

1 liter (l) D 0.2642 gal (US) 1 gal (US) D 3.785 liters

Mass

1 kg D 103 g 1 g D 10�3 kg

1 kg D 2.205 lbm 1 lbm D 0.454 kg

1 g D 2.205 � 10�3 lbm 1 lbm D 454 g

1 g D 3.53 � 10�2 oz 1 oz D 28.35 g

1 lbm D 16 oz 1 oz D 6.25 � 10�2 lbm
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Density

1 kg/m3 D 10�3 g/cm3 1 g/cm3 D 103 kg/m3

1 kg/m3 D 0.0624 lbm/ft3 lbm/ft3 D 16.03 kg/m3

1 kg/m3 D 3.61�10�5 lbm/in.3 lbm/in.3 D 2:77 � 104 kg/cm3

1 g/cm3 D 0.0361 lbm/in.3 lbm/in.3 D 27.70 g/cm3

Force

1 N D 1 kg m/s2 1 dyne D 1 g cm/s2

1 N D 105 dynes 1 dyne D 10�5 N

1 N D 0.2248 lbf 1 lbf D 4.448 N

1 dyne D 2.248 � 10�6 lbf 1 lbf D 4.448 � 105 dyne

Stress

1 MPa D 0.145 ksi 1 ksi D 6.895 MPa

1 MPa D 145 psi 1 psi D 6.90 � 10�3 MPa

1 MPa D 0.1019 kgf /mm2 1 kgf /mm2 D 9.81 MPa

1 MPa D 7.25 � 10�2 Tonf /in.2 1 Tonf /in2 D 13.79 MPa

Energy

1 J D 107 ergs 1 erg D 10�7 J

1 J D 6.24 � 1018 eV 1 eV D 1.60 � 10�19 J

1 J D 0.239 cal 1 cal D 4.184 J

1 J D 9.48 �10�4 Btu 1 Btu D 1054 J

1 J D 1.3558 ft lbf 1 ft lbf D 0.7376 J

1 cal D 3.97 � 10�3 Btu 1 Btu D 252 cal

Fracture toughness

1 MPa
p

m = 0.91 ksi
p

in. 1 ksi
p

in. D 1.10 MPa
p

m

1 MPa
p

m = 910 psi
p

in. 1 psi
p

in. D 1.10 � 10�3 MPa
p

m

1 ksi
p

in. D 103 psi
p

in. 1 psi
p

in. D 10�3 ksi
p

in.
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A.1 Fracture Toughness Data

The average data below can be found elsewhere [1–3] (Table A.1).

Table A.1 Mechanical
properties [1–3]

� ys KIC

Material Temp. (MPa) (MPa
p

m)

Steels

AISI 1045 �4 ıC 269 50

AISI 4340 RTa 1567 57

AISI 4340 RT 1408 85

D6AC RT 1495 93

HP 9-4-20 RT 1295 143

18Ni (200) RT 1450 110

18Ni (300) RT 1931 74

ASTM A538 RT 1722 111

Aluminum alloys

2020-T651 RT 532 25

2024-T351 RT 378 38

2024-T851 RT 450 26

6061-T651 RT 296 28

6061-T651 �80 ıC 310 33

7075-T651 RT 538 29

7075-T7351 RT 428 33
aRoom temperature

References

1. H.O. Fuchs, R.I. Stephens, Metal Fatigue in Engineering (Wiley, New York, 1980)
2. J.A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention

(Wiley, New York,1981)
3. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd edn.

(Wiley, New York,1989)



Index

A
Aggressive environment, 335, 343
Airy stress function, 16, 58, 82, 262

biharmonic equation, 14, 16
cantilever beam, 20
Cartesian coordinates, 18, 20
complex form, 28–31, 34, 36, 37, 138
eigenvalue, 18, 141
elastic field, 17
general definition, 18, 141
hollow cylinder, 17
plastic field, 263
polar coordinates, 24, 51, 101, 154, 167
power series, 18, 19, 143, 154

Alloying elements, 378
Anisotropic material, 123
Anisotropy, 123
Antisymmetric displacement, 149

mode III, 148–150
Antisymmetric mode II, 234
Antisymmetric mode III, 234
Artificial crack extension

see Effective crack length, 191
ASTM standard test method

E1290, 206
E1820, 119, 251
E23, 386
E399, 81, 88, 109, 117, 245, 381, 383
E561, 241
E647, 343, 346, 361
E813, 381
E92, 380

ASTM thickness requirement, 88
Austenite grain growth, 378

B
Ballistic field, 385
Ballistic impact velocity, 385
BCC materials, 73, 344, 378, 397

BCC slip system, 331, 352
BCC structure, 331
BCC unit cell, 331
Beach marks, 344, 351, 363
Bending stress, 328
Biaxial fatigue stress level, 358
Biaxial loading, 5, 299
Biharmonic equation, 17, 30

Cartesian coordinates, 16
complex theory, 30
polar coordinates, 16

Bipotential equation, 148
Body-force field, 17
Body-force intensity, 12, 14, 17
Boundary function, 44, 47, 160, 161
Brittle fracture, 53, 397
Brittle materials

ceramics, 380
cermets, 380
polymers, 380

Burger’s vector, 333

C
Calculus of residues, 43
Cantilever beam, 20
Cauchy integral formula, 43, 47, 159, 160,

162
Cauchy integral formulae, 43
Cauchy integral theorem, 43
Cauchy–Riemann equations, 27
Cauchy-Riemann condition, 83
Cauchy-Riemann equations, 83

analytic, 27
not analytic, 28

Center of percussion, 391
Charpy impact energy

lower shelf, 398, 400
upper shelf, 398, 400, 401

Charpy impact machine, 394
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Charpy impact test
3-point bending, 384, 403
conventional machine, 384
correlations, 395
dynamic correction factor, 393
energy, 386
energy lost, 388
energy release rate, 393
instrumented machine, 385
load history, 385
oscillations, 388
regression parameters, 398
smart hybrid composites, 402
spring-mass model, 387
temperature effects, 396
velocity, 386

Circular domain, 156–158
Cleavage fracture, 87, 335, 351, 397
Combined loading system, 110
Complex displacement, 31, 167
Complex forces, 158, 178
Complex plane, 26, 39
Complex potential functions, 29, 158
Complex T-stress, 179, 180
Complex variable, 132

Cartesian coordinates, 26
polar coordinates, 26
power series, 155

Compliance, 230, 236, 387, 394, 395
nonlinear, 232

Composite materials, 402
Condon-Morse curves, 56
Conformal mapping, 39, 155–157

function, 40, 41
inverse function, 41

Corrosion-induced corrosion, 362
Cottrell-Hull mechanism, 331
Crack area, 63
Crack branching, 313
Crack closure, 193, 336–338, 353
Crack configuration, 81, 91, 275

circular crack, 111
internal crack, 95

Crack driving force, 259
GIC, 69, 228
GI , 64, 373
GiC, 81
JI , 259, 373
mixed mode, 235, 293

Crack fracture angle, 295, 296, 300, 303
Crack kinking, 313
Crack length, 63
Crack mouth opening displacement, 206
Crack opening displacement, 268

Crack plane identification, 123
Crack propagation, 69, 87, 113, 188, 237, 274
Crack resistance, 69
Crack resistance curve, 275

G-criterion, 240
J-criterion, 121
K-criterion, 240

Crack sources, 61
Crack surface energy

elastic, 69
plastic, 69

Crack tip
blunting, 70, 208, 245, 258, 352
critical strain, 345
ellipse, 59
energy absorption, 227
energy dissipation, 53, 227, 241, 246, 283,

403
hardening region, 53
HRR field equations, 258
instability, 53, 69, 229
plastic constraint, 378
plasticity, 69, 189, 243

Crack tip auxiliary angles, 165
Crack tip displacement field

Cartesian coordinates, 135
mode I, 146, 234
mode II, 146, 234
mode III, 148, 234
polar coordinates, 146

Crack tip opening angle, 206, 215
Crack tip opening displacement, 120, 206, 245,

258
transition, 345

Crack tip strain field
Cartesian coordinates, 135, 139
polar coordinates, 146

Crack tip stress field, 263
Cartesian coordinates, 134
complex form, 85, 133
higher order, 151
mode III, 149
modes I and II, 151
polar coordinates, 141
power series, 133, 138
principal stress, 327
singularity, 53
T-stress, 180

Crack velocity, 53, 87, 365
Critical condition, 87
Critical crack length, 87, 113
Cumulative damage, 330
Cyclic stress fluctuation, 328

alternating stress, 328
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mean stress, 328
stress amplitude, 328
stress ratio, 328

Cylindrical pressure vessel, 96

D
Deformation, 2
Deformation theory of plasticity, 259
Design philosophy, 113
Design stress, 108
Deviatory stress, 259
Discontinuities, 4, 61, 79, 330
Dislocation density, 74
Dislocation locking term, 73, 75, 379
Dislocation mechanism

see. Frank-Read source, 334
Dislocation networks, 331
Dislocation pile-up, 73
Displacement, 2, 50, 54, 135, 230, 233, 237,

391
cantilever beam, 236
out-of-plane, 148, 150
vector, 242

Dissipation function, 391
Dissipation of energy, 403
Ductile fracture, 53
Ductile-to-brittle transition, 395, 397
Ductility, 8, 10, 115, 265, 378
Dugdale’s plastic zone, 193, 195
Dugdale’s strip yield model, 193, 195, 196, 216
Dynamic effects, 387
Dynamic test, 384, 395

E
Effective crack length, 187, 190, 191, 241, 269
Effective stress

for plane stress, 260
von Mises, 259

Effective stress intensity factor, 187, 190, 192,
193, 358, 359

Effective stress intensity factor range, 358
Eigenvalue, 141, 149
Eigenvalue function, 141
Elastic behavior, 8
Elastic unloading, 258
Elliptic integral, 95
Elliptical coordinates, 58
Energy balance, 63
Energy dissipation, 228
Energy losses, 390
Energy principle, 227
Engineering strain, 7

Equilibrium equation
Cartesian coordinates, 11, 12
polar coordinates, 14

Equilibrium spacing, 56
Equivalent stress, 262
Etching technique, 200
Euler’s formula, 26, 132

F
Failure assessment diagram (FAD), 374, 375
Far-field boundary conditions, 85
Fatigue crack growth, 329, 335, 343, 351, 358,

364
Fatigue crack growth rate, 329, 335, 336, 343,

344, 361, 363
BCC materials, 347
measurements, 361
polymers, 347
weldments, 349

Fatigue crack initiation, 331
Fatigue crack mechanism

beach marks, 327, 334
extrusions, 327, 333
intrusions, 334, 335
striations, 327, 333–335

Fatigue failure
appearance, 350
prevention, 330
stage I, 334
stage II, 334
stage III, 335

Fatigue fracture, 334, 335, 344, 363
Fatigue life, 328, 338
FCC materials, 344
Fracture control, 113
Fracture process zone, 188, 228, 233, 251, 258,

265
Fracture tests, 116
Fracture toughness, 8, 64, 229

Charpy test, 384
correlations, 109, 373
CTOA-criterion, 216
CTOD-criterion, 120, 206
data, 113, 401
G-criterion, 74
J-criterion, 120, 243
K-criterion, 123
mixed-mode, 293
Palmquist model, 382
plane strain, 87, 136
plane stress, 109, 115, 383
thickness dependency, 115
Vickers hardness, 380
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Frank-Read source, 334
Friction energy, 391
Friction stress, 73, 379
Front face correction factor, 98

G
Gage length, 7
Geometry correction factor, 87, 95
Grain size, 73, 74
Grain size refinement, 73, 378
Griffith crack theory, 62, 240
Griffith, A.A., 77

H
Hall-Petch equation, 73, 75, 378
Hardness, 74, 75
Harmonic equation, 30, 84
HCP materials, 344
Heat affected zone, 349
Higher order stress field

see T-stress, 151
Hinge mechanism, 188
Hollomon equation, 9, 265
Hooke’s law, 4, 7, 55, 146

shear, 147
Hoop stress, 97, 98, 108
HRR field equations, 258, 263
HRR singularities, 263
HRR theory, 258
Hydrogen embrittlement, 363
Hyperbolic relationships, 59

I
Impact energy, 384, 386, 388, 396,

400
Inglis, C.E., 53
Interatomic potential, 57
Interatomic spacing, 56, 57
Internal pressure, 97, 108
Intrusions, 333
Irreversible process, 53, 70, 188, 227, 257
Irwin’s approximation, 191
Irwin’s plastic zone, 191, 195
Irwin, G.R., 68
Isotropic material, 124
Isotropy, 123

J
J-curve, 250
J-dominance, 258

J-integral, 242, 258, 259, 269, 374
elastic, 122, 268, 270
engineering, 274
far-field, 273
mixed-mode, 244
near-field , 269
plastic, 271
specimen geometry, 124

L
Large scale yielding, 245
Large-scale yielding, 79, 188, 242, 245, 258
Leak-before-break, 107–109
Lennard-Jones potentials, 57
Linear-elastic fracture mechanics, 65, 79, 187,

190
Load frequency, 361, 363
Load oscillations, 387–389
Load-displacement curve, 120, 246
Localized yielding, 69
Lorentz-Berthelot mixing rules, 57

M
Magnification correction factor, 98
Mapping function, 39, 40, 156–158
Material defects, 79
Maximum distortion energy theory, 197
Mechanical behavior, 73
Mechanical properties, 113, 345, 401
Microstructures, 331
Mixed-mode interaction, 110, 201

Gi-criterion, 235
�� -criterion, 299
circle, 294
ellipse, 296
fatigue, 358
G-criterion, 293
J-integral, 293
K-criterion, 293
modes I and II, 179
modes I and III, 298
modess I and II, 151
S-criterion, 301
wood, 318
wood data, 318

Mixity parameter, 298, 320
Modes of loading, 80
Modulus of elasticity, tensile, 5
modulus of elasticity, tensile, 31
Modulus of rigidity, shear, 3, 31
Mohr’s circle theory, 198
Morera’s integral theorem, 43
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Multi-phase materials, 289
Muskhelishvili, N.I., 29

N
Nil-ductility-transition temperature, 395
Nitinol, 8
Nonlinear fracture mechanism, 258
Nonlinear regression, 397

O
Orowan, E., 68

P
Paris law, 335, 336
Penny-shaped crack, 95
Plane strain, 11, 17, 63, 192, 266, 269
Plane stress, 11, 17, 63, 188, 189, 192, 266, 269
Plane-strain fracture toughness, 65, 374
Plastic constraint factor, 378
Plastic strain energy density, 269, 271
Plastic zone shape, 197, 200

photomicrographs, 200
schematic, 188

Plastic zone size, 81, 150, 188, 191, 258
approximation, 208
Dugdale’s model, 193
equation, 190
Irwin’s equation, 193
Tresca equation, 199
von Mises equation, 198

Plemelj functions, 160, 162
Poisson’s ratio, 5, 29, 31, 235
Potential energy, 56, 62, 64
Pressure vessel, 97, 98, 100
Principal strain, 6
Principal stress, 6
Principal stress theory, 299
Principal stresses, 108, 197, 233
Principle of superposition, 5, 97, 161, 164
Projected area, 108

R
Ramberg-Osgood equation, 9, 265
Resilience, 8
Riemann-Hilbert problem, 160, 162
Rotational velocity, 390

S
S-N diagram, 329
Safety factor, 2, 108

Saline solution, 363
Second-rank tensors

strains, 3
stresses, 3

Secondary cracks, 362
Shape factor, 97, 98
Shape memory alloy, 403, 404
Shear lip, 351
Shedding loads, 191
Skew-symmetric loading, 289
SMA fibers, 403
SMA hybrid composites, 403
Small-scale yielding, 79, 134, 187, 191, 206,

240, 242, 246, 265
Space lattice, 331
Specific surface energy, 63
Specimen geometries, 88, 91, 275
Stable crack growth, 259
Stiffness function, 391
Strain, 2
Strain compatibility equation, 262
Strain energy density, 10, 63, 242, 244, 379

resilience, 8
Strain energy density factor, 201, 301, 302
Strain energy release rate, 64, 81

compliance, 237
limit, 233
mixed mode, 235
nonlinear, 232

Strain field equations, 4
Strain hardening exponent, 9, 232, 260
Strain tensors, 6
Strain-hardening exponent, 9
Strength, 3, 9
Strength coefficient, 9
Strengthening mechanism, 74, 75
Stress, 2
Stress biaxiality, 151, 152
Stress biaxiality ratio, 152, 153
Stress compatibility equation

Cartesian coordinates, 17
Stress components

complex potentials, 30
polar coordinates, 14

Stress concentration factor, 58, 60, 61
stress concentration release rate, 283
Stress corrosion cracking, 362
Stress element, 4
Stress field equations, 84

Cartesian coordinates, 12, 17
complex theory, 30, 31
element, 11, 13
plastic stresses, 262
polar coordinates, 13
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Stress function
see Airy stress function, 9
see Westergaard stress function, 9
see Williams stress function, 155

Stress intensity factor, 60
complex form, 179
Dugdale’s equation, 195
elastic, 64, 80, 134

Irwin’s equation, 192
indentation, 75
mode I, 64
plastic, 263
SCC, 364
transition, 346

Stress intensity factor range, 335
Stress loading modes, 80
Stress state

engineering, 7
vector, 6

Stress tensors, 6
Stress-strain diagram, 7, 260
Stress-strain equation

Hollomon, 9
Ramberg-Osgood, 9

Stress-strain matrix, 5
Striations, 344, 351, 352, 363

formation, 352
in Al-alloy, 354
lack of, 355
mechanism, 352
perturbations, 354
ripples, 353
size, 354

Subcritical crack-growth rate
see Crack velocity, 87

Surface energy, 56, 64
Surfaces fracture appearance, 350
Symmetric circular hole, 61
Symmetric loading, 328
Symmetric mode I, 234

T
T-stress, 151–155, 179, 180
Taylor’s series, 96
Tearing mode III, 80
Tearing modulus, 250
Tensile strength, 9
Theoretical fracture strength, 54–56

Theory of indentation, 380
Thick-wall pressure vessel, 98
Thin-wall cylindrical pressure vessel, 98
Thin-wall pressure vessel, 98, 108
Threshold stress intensity factor, 335
Traction forces, 233, 243, 244
Translational velocity, 390
Tresca yield criterion, 188, 197, 198
Triaxial state of stress, 4
True strain, 7

U
Unit circle, 40, 155
Unstable crack growth, 259

V
Virtual crack length

see Effective crack length, 191
Void coalescence, 191, 240, 258, 260
Von Mises yield criterion, 197–199, 201

W
Wedge internal forces, 194
Welding cracks, 349
Welding efficiency, 108
Welding zones, 349
Weldments, 348
Westergaard stress function, 79, 82, 84–86,

137, 155, 193
power series, 132, 182

Westergaard, H.M., 77
Windage energy, 391
Wood, 317

Characteristics, 317
crack growth directions, 318
fracture angle, 320
mixed-mode loading, 318

Y
Yield strength, 4, 9, 10, 73–75
Yielding, 53
Yielding phenomenon, 74, 75
Young’s modulus

see Modulus of elasticity, 5
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