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 1 

 Introduction 

 This pocket guide will cover  confi rmatory factor analysis  (CFA), 

which is used for four major purposes:  (1)  psychometric evaluation 

of measures;  (2)  construct validation;  (3)  testing method effects; and  

(4)  testing measurement invariance (e.g., across groups or populations) 

(Brown, 2006). This book is intended for readers who are new to CFA 

and are interested in developing an understanding of this methodology 

so they can more effectively read and critique research that uses CFA 

methods. In addition, it is hoped that this book will serve as a nontechni-

cal introduction to this topic for readers who plan to use CFA but who 

want a nonmathematical, conceptual, applied introduction to CFA be-

fore turning to the more specialized literature on this topic. To make this 

book as applied as possible, we will take two small data sets and develop 

detailed examples of CFA analyses; the data will be available on the In-

ternet so readers can replicate analyses as they work through the book. 

A brief glossary of some common CFA terms is provided. Finally, the 

programs for running the sample analyses in Amos 7.0 are included in 

this book, and very brief instructions for using the software are provided 

in Appendix A. However, in general, this book is not intended as a guide 

to using the software, so information of this type is kept to a minimum. 
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When software instructions are presented, I have tried to select features 

and commands that seem unlikely to change in the near future. 

 A word of caution: In attempting to provide a conceptual understand-

ing of CFA, there are times when I have used analogies, which I hope help 

illustrate the concepts. However, the analogies only work to a point and 

should not be taken literally. Also, in providing a nontechnical discus-

sion, some details or fi ner points will be lost. It is hoped that interested 

readers—especially those planning to use CFA on their own data—will 

turn to some of the more technical resources provided at the end of each 

chapter for more information. 

 This chapter focuses on what CFA is, when to use it, and how it 

compares to other common data analysis techniques, including princi-

pal components analysis (PCA), exploratory factor analysis (EFA), and 

structural equation modeling (SEM). This is a brief discussion, with ref-

erences to other publications for more detail on the other techniques. 

The social work literature includes a number of good examples of the 

use of CFA, and a few of these articles are briefl y summarized to illus-

trate how CFA can be used.  Research on Social Work Practice  publishes 

numerous articles that examine the validity of social work assessments 

and measures; several of these articles use CFA and are cited as examples 

in this book. 

 Signifi cance of Confi rmatory Factor Analysis for Social Work Research 

 Social work researchers need to have measures with good reliability and 

validity that are appropriate for use across diverse populations. Devel-

opment of psychometrically sound measures is an expensive and time-

 consuming process, and CFA may be one step in the development process. 

Because researchers often do not have the time or the resources to de-

velop a new measure, they may need to use existing measures. In addition 

to savings in time and costs, using existing measures also helps to make 

research fi ndings comparable across studies when the same measure is 

used in more than one study. However, when using an existing measure, 

it is important to examine whether the measure is appropriate for the 
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population included in the current study. In these circumstances, CFA 

can be used to examine whether the original structure of the  measure 

works well in the new population. 

 Uses of Confi rmatory Factor Analysis 

 Within social work, CFA can be used for multiple purposes, including—

but not limited to—the development of new measures, evaluation of the 

psychometric properties of new and existing measures, and examination 

of method effects. CFA can also be used to examine construct validation 

and whether a measure is invariant or unchanging across groups, popu-

lations, or time. It is important to note that these uses are overlapping 

rather than truly distinct, and unfortunately there is a lack of consistency 

in how several of the terms related to construct validity are used in the 

social work literature. Several of these uses are briefl y discussed, and a 

number of examples from the social work literature are presented later 

in this chapter. 

 Development of New Measures and Construct Validation 

 Within the social work literature, there is often confusion and inconsis-

tency about the different types and subtypes of validity. A full discussion 

of this issue is beyond the scope of this book, but a very brief discus-

sion is provided for context so readers can see how CFA can be used to 

test specifi c aspects of validity. Construct validity in the broadest sense 

examines the relationships among the constructs. Constructs are un-

observed and theoretical (e.g., factors or latent variables). However, al-

though they are unobserved, there is often related theory that describes 

how constructs should be related to each other. According to Cronbach 

and Meehl (1955), construct validity refers to an examination of a mea-

sure of an attribute (or construct) that is not operationally defi ned or 

measured directly. During the process of establishing construct validity, 

the researcher tests specifi c hypotheses about how the measure is related 

to other measures based on theory. 
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 Koeske (1994) distinguishes between two general validity concerns—

specifi cally, the validity of conclusions and the validity of measures. 

Conclusion validity focuses on the validity of the interpretation of study 

fi ndings and includes four subtypes of validity: internal, external, statis-

tical conclusion, and experimental construct (for more information, see 

Koeske, 1994 or Shaddish, Cook, & Campbell, 2002). Issues of conclu-

sion validity go beyond what one can establish with CFA (or any other) 

statistical analysis. On the other hand, the validity of measures can be 

addressed, at least partially, through statistical analysis, and CFA can be 

one method for assessing aspects of the validity of measures. 

 Within measurement validity, there are three types: content, criteri-

on, and construct validity; within construct validity, there are three sub-

types: convergent, discriminant, and theoretical (or nomological) validity 

(Koeske, 1994). Discriminant validity is demonstrated when measures of 

different concepts or constructs are distinct (i.e., there are low correla-

tions among the concepts) (Bagozzi, Yi, & Phillips, 1991). Although the 

criteria for what counts as a low correlation vary across sources, Brown 

(2006) notes that correlations between constructs of 0.85 or above indi-

cate poor discriminant validity. When measures of the same concept are 

highly correlated, there is evidence of convergent validity (Bagozzi et al., 

1991); however, it is important to note that the measures must use dif-

ferent methods (e.g., self-report and observation) to avoid problems of 

shared-method variance when establishing convergent validity (Koeske, 

1994). For example, if we are interested in job satisfaction, we may look 

for a strong relationship between self-reported job satisfaction and co-

workers’ ratings of an employee’s level of job satisfaction. If we fi nd this 

pattern of relationships, then we have evidence of convergent validity. If 

we believe that job satisfaction and general life satisfaction are two dis-

tinct constructs, then there should be a low correlation between them, 

which would demonstrate discriminant validity. 

 When examining construct validity, it is important to note that the 

same correlation between two latent variables could be good or bad, de-

pending on the relationship expected. If theory indicates that job satis-

faction and burnout are separate constructs, then based on theory, we 

expect to fi nd a low or moderate correlation between them. If we fi nd 
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a correlation of –0.36, then we have evidence of discriminant validity, as 

predicted by the theory. However, if we fi nd a correlation of –0.87, then 

we do not have evidence of discriminant validity because the correlation 

is too high. If theory had suggested that job satisfaction and burnout are 

measuring the same construct, then we would be looking for convergent 

validity (assuming we have different methods of measuring these two 

constructs), and we would interpret a correlation of –0.36 as not sup-

porting convergent validity because it is too low, but the correlation of 

–0.87 would suggest good convergent validity. The important thing to 

note here is that the underlying theory is the basis on which decisions 

about construct validity are built. 

 Within this broad discussion of construct validity, CFA has a limited, 

but important role. Specifi cally, CFA can be used to examine structural 

(or factorial) validity, such as whether a construct is unidimensional or 

multidimensional and how the constructs (and subconstructs) are in-

terrelated. CFA can be used to examine the latent (i.e., the unobserved 

underlying construct) structure of an instrument during scale develop-

ment. For example, if an instrument is designed to have 40 items, which 

are divided into four factors with 10 items each, then CFA can be used 

to test whether the items are related to the hypothesized latent variables 

as expected, which indicates structural (or factorial) construct validity 

(Koeske, 1994). If earlier work is available, CFA can be used to verify the 

pattern of factors and loadings that were found. CFA can also be used 

to determine how an instrument should be scored (e.g., whether one 

total score is appropriate or a set of subscale scores is more appropriate). 

 Finally, CFA can be used to estimate scale reliability. 

 Testing Method Effects 

 Method effects refer to relationships among variables or items that result 

from the measurement approach used (e.g., self-report), which includes 

how the questions are asked and the type of response options avail-

able. More broadly speaking, method effects may also include response 

bias  effects such as social desirability (Podsakoff, MacKenzie, Lee, & 

 Podsakoff, 2003). Common method effects are a widespread problem 
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in  research and may create a correlation between two measures, making 

it diffi cult to determine whether an observed correlation is the result of 

a true relationship or the result of shared methods. Different methods 

(e.g., self-report vs. observation) or wording (e.g., positively vs. nega-

tively worded items) may result in a lower than expected correlation 

between constructs or in the suggestion that there are two or more 

constructs when, in reality, there is only one. For example, when mea-

sures have negatively and positively worded items, data analysis may 

suggest that there are two factors when only one was expected based 

on theory. 

 The Rosenberg Self-Esteem Scale (SES) provides a good example of 

this problem. The Rosenberg SES includes a combination of positively 

and negatively worded items. Early exploratory factor analysis work con-

sistently yielded two factors—one consisting of the positively worded 

items and usually labeled positive self-esteem and one consisting of the 

negatively worded items and usually labeled negative self-esteem. How-

ever, there was no strong conceptual basis for the two-factor solution 

and further CFA research found that a one-factor model allowing for 

correlated residuals (i.e., method effects) provided a better fi tting model 

than the earlier two-factor models (Brown, 2006). The conceptualization 

of the concept of self-esteem (i.e., the underlying theory) was a criti-

cal component of testing the one-factor solution with method effects. 

Method effects can exist in any measure, and one of the advantages of 

CFA is that it can be used to test for these effects, whereas some other 

types of data analysis cannot. 

 Testing Measurement Invariance Across Groups or Populations 

 Measurement invariance refers to testing how well models generalize 

across groups or time (Brown, 2006). This can be particularly impor-

tant when testing whether a measure is appropriate for use in a popula-

tion that is different from that with which the measure was developed 

and/or used with in the past. Multiple-group CFA can be used to test for 

 measurement invariance and is discussed in detail in Chapter 5. 
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 Comparison of Confi rmatory Factor Analysis 
With Other Data Analysis Techniques 

 Confi rmatory factor analysis is strongly related to three other common 

data analysis techniques: EFA, PCA, and SEM. Although there are some 

similarities among these analyses, there are also some important distinc-

tions that will be discussed below. 

 Before we begin discussing the data analysis techniques, we need to 

defi ne a few terms that will be used throughout this section and the rest 

of this book (see also the Glossary for these and other terms used in this 

book).  Observed variables  are exactly what they sound like—bits of in-

formation that are actually observed, such as a person’s response to a 

question, or a measured attribute, such as weight in pounds. Observed 

variables are also referred to as “indicators” or “items.”  Latent variables

are unobserved (and are sometimes referred to as “unobserved variables” 

or “constructs”), but they are usually the things we are most interested 

in measuring. For example, research participants or clients can tell us if 

they have been feeling bothered, blue, or happy. Their self-report of how 

much they feel these things, such as their responses on the Center for 

Epidemiological Studies Depression Scale (Radloff, 1977), are observed 

variables. Depression, or the underlying construct, is a latent variable 

 because we do not observe it directly; rather, we observe its symptoms. 

 Exploratory Factor Analysis 

 Exploratory factor analysis is used to identify the underlying factors or 

latent variables for a set of variables. The analysis accounts for the rela-

tionships (i.e., correlations, covariation, and variation) among the items 

(i.e., the observed variables or indicators). Exploratory factor analysis 

is based on the  common factor model , where each observed variable is a 

linear function of one or more common factors (i.e., the underlying la-

tent variables) and one unique factor (i.e., error- or item-specifi c 

 information). It partitions item variance into two components: 

(1)  Common variance, which is accounted for by underlying latent factors, 
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and (2)  unique variance, which is a combination of indicator-specifi c re-

liable variance and random error. Exploratory factor analysis is often 

considered a data-driven approach to identifying a smaller number of 

underlying factors or latent variables. It may also be used for generating 

basic explanatory theories and identifying the underlying latent variable 

structure; however, CFA testing or another approach to theory testing is 

needed to confi rm the EFA fi ndings (Haig, 2005). 

 Both EFA and CFA are based on the common factor model, so they are 

mathematically related procedures. EFA may be used as an explo ratory 

fi rst step during the development of a measure, and then CFA may be 

used as a second step to examine whether the structure identifi ed in the 

EFA works in a new sample. In other words, CFA can be used to confi rm 

the factor structure identifi ed in the EFA. Unlike EFA, CFA requires pre-

specifi cation of all aspects of the model to be tested and is more theory-

driven than data-driven. If a new measure is being developed with a very 

strong theoretical framework, then it may be possible to skip the initial 

EFA step and go directly to the CFA. 

 Principal Components Analysis 

 Principal components analysis is a data reduction technique used to 

identify a smaller number of underlying components in a set of ob-

served variables or items. It accounts for the variance in the items, rather 

than the correlations among them. Unlike EFA and CFA, PCA is not 

based on the common factor model, and consequently, CFA may not 

work well when trying to replicate structures identifi ed by PCA. There 

is debate about the use of PCA versus EFA. Stevens (2002) recommends 

PCA instead of EFA for several reasons, including the relatively simple 

mathematical model used in PCA and the lack of the factor indetermi-

nacy problem found in factor analysis (i.e., factor analysis can yield an 

infi nite number of sets of factor scores that are equally consistent with 

the same factor loadings, and there is no way to determine which set is 

the most accurate). However, others have argued that PCA should not be 

used in place of EFA (Brown, 2006). In practical applications with large 

samples and large numbers of items, PCA and EFA often yield similar 
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results, although the loadings may be somewhat smaller in the EFA than 

the PCA. 

 For our purposes, it is most important to note that PCA may be used 

for similar purposes as EFA (e.g., data reduction), but it relies on a differ-

ent mathematical model and therefore may not provide as fi rm a foun-

dation for CFA as EFA. Finally, it is important to note that it is often 

diffi cult to tell from journal articles whether a PCA or an EFA was per-

formed because authors often report doing a factor analysis but not what 

type of extraction they used (e.g., principal components, which results 

in a PCA, or some other form of extraction such as principal axis, which 

results in a factor analysis). Part of the diffi culty may be the labeling used 

by popular software packages, such as SPSS, where principal components 

is the default form of extraction under the factor procedure. 

 As mentioned earlier, because EFA and CFA are both based on the 

common factor model, results from an EFA may be a stronger founda-

tion for CFA than results from a PCA. Haig (2005) has suggested that EFA 

is “a latent variable method, thus distancing it from the data reduction 

method of principal components analysis. From this, it obviously follows 

that EFA should always be used in preference to principal components 

analysis when the underlying common causal structure of a domain is 

being investigated” (p. 321). 

 Structural Equation Modeling 

 Structural equation modeling is a general and broad family of analy-

ses used to test measurement models (i.e., relationships among indica-

tors and latent variables) and to examine the structural model of the 

relationships among latent variables. Structural equation modeling is 

widely used because it provides a quantitative method for testing sub-

stantive theories, and it explicitly accounts for measurement error, 

which is ever present in most disciplines (Raykov & Marcoulides, 2006), 

including social work. Structural equation modeling is a generic term 

that includes many common models that may include constructs that 

cannot be directly measured (i.e., latent variables) and potential errors 

of  measurement (Raykov & Marcoulides, 2006). 
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 A CFA model is sometimes described as a type of measurement 

model, and, as such, it is one type of analysis that falls under the SEM 

family. However, what distinguishes a CFA from a SEM model is that 

the CFA focuses on the relationships between the indicators and latent 

variables, whereas a SEM includes structural or causal paths between 

latent variables. CFA may be a stand-alone analysis or a component or 

 preliminary step of a SEM analysis. 

 Software for Conducting Confirmatory Factor Analysis 

 There are several very good software packages for conducting confi rma-

tory factor analyses, and all of them can be used to conduct CFA, SEM, 

and other analyses. Amos 7.0 (Arbuckle, 2006a) is used in this book. Al-

though any of the major software packages would work well, Amos 7.0 

was chosen because of its ease of use, particularly getting started with 

its graphics user interface 1 . Byrne (2001a) provides numerous examples 

using Amos software for conducting CFA and SEM analyses. Other soft-

ware packages to consider include LISREL (see  http://www.ssicentral.

com/lisrel/index.html ), M plus  (see  http://www.statmodel.com/ ), EQS 

(see  http://www.mvsoft.com/index.htm ), or SAS CALIS (see  http://

v8doc.sas.com/sashtml/stat/chap19/sect1.htm ). One other note—several 

of the software packages mentioned here have free demo versions that 

can be downloaded so you can try a software package before deciding 

whether to purchase it. Readers are encouraged to explore several of the 

major packages and think about how they want to use the software 2  be-

fore selecting one to purchase. 

1  Many software packages allow users to either type commands (i.e., write syntax) or use a 
menu (e.g., point-and-click) or graphics (e.g., drawing) interface to create the model to be 
analyzed. Some software (e.g., SPSS and Amos) allow the user to more than one option. 
2  Some software packages have more options than others. For example, M plus  has extensive 
Monte Carlo capabilities that are useful in conducting sample size analyses for CFA (see 
Chapter 3 for more information). 

http://www.ssicentral.com/lisrel/index.html
http://www.ssicentral.com/lisrel/index.html
http://www.statmodel.com/
http://v8doc.sas.com/sashtml/stat/chap19/sect1.htm
http://v8doc.sas.com/sashtml/stat/chap19/sect1.htm
http://www.mvsoft.com/index.htm
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 As Kline (2005, p. 7) notes, there has been a “near revolution” in the 

user friendliness of SEM software, especially with the introduction of 

easy-to-use graphics editors like Amos 7.0 provides. This ease of use is 

wonderful for users who have a good understanding of the analysis they 

plan to conduct, but there are also potential problems with these easy-

to-use programs because users can create complex models without really 

understanding the underlying concepts. “To beginners it may appear that 

all one has to do is draw the model on the screen and let the computer 

take care of everything else. However, the reality is that things often can 

and do go wrong in SEM. Specifi cally, beginners often quickly discover the 

analyses fail because of technical problems, including a computer system 

crash or a terminated program run with many error messages or uninter-

pretable output” (Kline, 2005, pp. 7–8). In the analysis examples provided 

later in this book, we use data that is far from perfect so we can discuss 

some of the issues that can arise when conducting a CFA on real data. 

 Confi rmatory Factor Analysis Examples from the Social Work Literature 

 With a growing emphasis on evidence-based practice in social work, 

there is a need for valid and reliable assessments. Although many journals 

publish articles on the development and testing of measures,  Research on 

Social Work Practice  has a particular emphasis on this, and therefore pub-

lishes a number of very good examples of CFA work. We briefl y review 

several articles as examples of how CFA is used in the social work lit-

erature, and then end with a longer discussion of the Professional Opin-

ion Scale, which has been subjected to CFA testing in two independent 

 samples (Abbott, 2003 and Greeno, Hughes, Hayward, & Parker, 2007). 

 Caregiver Role Identity Scale 

 In an example of CFA used in scale development, Siebert and Siebert 

(2005) examined the factor structure of the Caregiver Role Identity Scale 

in a sample of 751 members of the North Carolina Chapter of NASW. 

The sample was randomly split so that exploratory and confi rmatory 
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analyses could be conducted. A principal components analysis was ini-

tially conducted, which yielded two components. This was followed 

by an EFA using principal axis extraction with oblique rotation on the 

fi rst half of the sample. The EFA yielded a two-factor solution, with fi ve 

items on the fi rst factor and four items on the second factor; the two 

factors were signifi cantly correlated ( r  = 0.47;  p  < 0.00001). The CFA was 

conducted using LISREL 8.54 and maximum likelihood (ML) estima-

tion  (estimation methods are discussed in Chapter 2) with the second 

half of the sample. The CFA resulted in several modifi cations to the fac-

tor structure identifi ed in the EFA. Specifi cally, one item was dropped, 

 resulting in an eight-item scale, with four items on each of the two fac-

tors. In addition, two error covariances were added (brief defi nitions for 

this and other terms can be found in the Glossary). The changes resulted 

in a signifi cant improvement in fi t, and the fi nal model fi t the data well 

(Siebert & Siebert, 2005). (We discuss model fi t in Chapter 4, but briefl y 

for now, you can think of model fi t in much the same way that you evalu-

ate how clothing fi ts—poorly fi tting garments need to be tailored before 

they can be worn or used.) Siebert and Siebert concluded that the two-

factor structure identifi ed in the EFA was supported by the CFA and that 

the fi ndings were consistent with role identity theory. 

 Child Abuse Potential Inventory 

 In an example of a CFA used to test the appropriateness of a measure 

across cultures, Chan, Lam, Chun, and So (2006) conducted a CFA on the 

Child Abuse Potential (CAP) Inventory using a sample of 897 Chinese 

mothers in Hong Kong. The CAP Inventory, developed by Milner (1986, 

1989, and cited in Chan et al., 2006), is a self-administered measure with 

160 items; 77 items are included in the six-factor clinical abuse scale. The 

purpose of the Chan et al. (2006) paper was to “evaluate if the factorial 

structure of the original 77-item Abuse Scale of the CAP found by Milner 

(1986) can be confi rmed with data collected from a group of Chinese 

mothers in Hong Kong” (p. 1007). The CFA was conducted using LIS-

REL 8.54. The CFA supported the original six-factor structure; 66 of the 

77 items had loadings greater than 0.30, and “the model fi t reasonably 
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well” (Chan et al., 2006, p. 1012). Chan et al. (2006) concluded that “Al-

though the CAP Abuse Scale is relevant for use with Chinese mothers in 

Hong Kong, it is clear that it is not parsimonious enough” (p. 1014). The 

low loadings (below 0.30) for 11 of the 77 items suggest that it may be 

 possible to drop these items, resulting in a shorter scale. 

 Neglect Scale 

 In another example of CFA used to examine the use of a measure across 

populations, Harrington, Zuravin, DePanfi lis, Ting, and  Dubowitz (2002) 

used CFA to verify a factor structure identifi ed in earlier work. The 

 Neglect Scale was developed by Straus, Kinard, and Williams (1995) as 

an easy-to-administer, retrospective self-report measure of child neglect. 

Straus and colleagues suggested that the “relative lack of research on ne-

glect may be due to the absence of a brief yet valid measure that can be 

used in epidemiological research” (pp. 1–2). The scale was found to have 

high internal consistency reliability and moderate construct validity in 

their sample of college students, most of whom were Caucasian. 

 Harrington et al. (2002) used the Neglect Scale in two studies of child 

maltreatment in Baltimore and were concerned that the measure would 

not work as well in a low-income, predominantly African-American 

sample as it had in Straus and colleagues’ original work. An initial CFA 

indicated that the factor structure identifi ed by Straus and colleagues did 

not fi t the Baltimore data well; using modifi cation indices and an expert 

panel, an alternative factor structure was identifi ed that fi t the data better. 

The CFA indicated that the original factor structure of the Neglect Scale 

did not fi t well in the Baltimore sample, and modifi cations were needed 

for use of this measure with a low-income, minority population. How-

ever, because the model involved several modifi cations, it needs further 

study and replication. 

 Professional Opinion Scale 

 The Professional Opinion Scale (POS) is discussed in detail because it is 

one of the few social work measures on which two CFA studies have been 
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performed; we briefl y review both studies to provide an example of how 

a scale may evolve through the use of CFA. The POS was developed “to 

provide a methodologically sound and convenient means for assessing 

degree of commitment to social work values” (Abbott, 2003, p. 641). The 

200 initial POS items were designed to refl ect the recent (then-1980s) 

NASW policy statement topics, including AIDS, homelessness, domestic 

violence, substance abuse, human rights, and others. A panel of experts 

reviewed the items and retained 121 items determined to be clear and accu-

rate and likely to be able to detect variability. Approximately half the items 

were worded negatively and half were worded positively. Positively worded 

items were reverse coded, and all items were coded as follows: 1=  strongly

disagree , 2 =  disagree , 3 =  neutral , 4 =  agree , and 5 =  strongly agree . 

 The initial subscale structure was identifi ed using a diverse sample of 

508 participants with data collected in 1988 (Abbott, 2003). Abbott (2003) 

refers to the data analysis as an EFA, but then states “The responses of the 

1988 sample to the entire 121 POS items were examined using principal 

components factor analysis [with varimax rotation] . . . for the purpose 

of identifying value dimensions (factors) within the POS” (p. 647). Based 

on this analysis, “The 10 items having the highest loadings on each of the 

four remaining factors were retained, resulting in a 40-item, four- factor 

scale” (Abbott, 2003, p. 647). The labels for the four factors or value 

 dimensions—“respect for basic rights, support of self-determination, 

sense of social responsibility, and commitment to individual freedom”—

were based on the NASW Code of Ethics and the values identifi ed in the 

social work literature (Abbott, 2003, p. 647). Finally, “A second analysis of 

the 1988 sample was conducted using maximum likelihood with oblique 

rotation with only the 40 items that make up the four factors” (Abbott, 

2003, p. 650). Based on Abbott’s comments, it appears that both a PCA 

and an EFA were conducted on the 1988 sample, and these analyses 

provided the foundation for the Abbott (2003) CFA that was conducted. 

 Abbott (2003) Confi matory Factor Analysis 

 Two CFA studies have been published on the POS since its initial devel-

opment. Abbott (2003) conducted a series of CFAs using Amos 3.6 with 
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ML estimation (estimation methods are described in Chapter 2) and list-

wise deletion of cases (ways of handing missing data, including listwise 

deletion, are discussed in Chapter 3) on the POS using a sample collected 

in 1998. The 1998 sample differed from the 1988 sample in several ways, 

but Abbott (2003) noted that “the differences tended to refl ect general 

shifts within the social work profession” (p. 654). The initial CFA did 

not fi t the data well. To improve the model fi t, Abbott (2003) conducted 

additional analyses and made modifi cations to the model (like tailoring 

an article of clothing to get it to fi t better). After several modifi cations, 

including dropping eight items and allowing for correlated errors for 

four pairs of items with similar content, an adequately fi tting model was 

developed (Abbott, 2003). 

 Abbott (2003) concluded that the CFA “supported the construct va-

lidity 3  of the [four] value dimensions (factors) originally identifi ed in the 

POS (Abbot, 1988). . . . Overall, the 1998 CFA provides additional evi-

dence that reaffi rms the construct of the 1988 generated factors” (p. 660). 

Interestingly, she also noted the question of whether positive and nega-

tive wording of items differentially impacted responses but that the issue 

was not a “major concern” (p. 663). Finally, she commented that addi-

tional work was still needed on the POS and that future studies should 

address a number of issues, including testing more diverse samples and 

examining and reporting reliability of the factors. 

 Because Abbott (2003) made a number of modifi cations to her 

model, what began as a CFA ended as an exploratory analysis, which in 

turn needs to be replicated. Even when model revisions are well-founded 

in the empirical literature and are theoretically based, once a model is re-

specifi ed (i.e., revised), it is no longer a confi rmatory analysis and the re-

sulting revised model needs to be confi rmed in another sample (Brown, 

2006). The second study of the POS was designed to confi rm the CFA 

reported by Abbott (2003). 

3  Abbott’s (2003) use of the term “construct validity” is in the broad sense of the term 
and, more specifi cally, could be referred to as structural (or factorial) validity using the 
terminology suggested by Koeske (1994). 
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 Greeno, Hughes, Hayward, and Parker (2007) CFA 

 Greeno et al. (2007) conducted a series of CFAs on the POS using LISREL 

8.7 with ML estimation and multiple imputation (multiple imputation 

is a way of addressing missing data that is discussed in Chapter 3). Data 

were collected in early 2006 using a mailed survey and a randomly se-

lected sample of 234 NASW members (47.5% response rate). Although 

the 40-item version of the POS was used for the survey, the “initial CFA 

was conducted on the 32-item POS that resulted from Abbott’s (2003) 

study. [The] fi rst CFA model did not include the . . .  error covariances 

from Abbott’s 2003 study as the authors wanted to see if the error covari-

ances were sample specifi c” (p. 487). This model did not fi t well, and the 

authors removed four items with very low factor loadings; this resulted 

in a better fi t, but there was still room for improvement. The fi nal model 

reported included the 28 items and six error covariances suggested by the 

modifi cation indices (i.e., data-driven suggestions about ways to improve 

the model fi t); the six error covariances included the four identifi ed in 

Abbott’s (2003) model. The fi nal model fi t well, and Greeno and col-

leagues (2007) concluded that the “CFA supported a 28-item POS with 

six error correlations. The four subscales that Abbott (2003) proposed 

were also supported” (p. 488). However, the discriminant validity for the 

social responsibility and individual freedom factors is questionable given 

the high correlation (0.83) between these two factors. 

 Although Greeno et al.’s (2007) fi ndings generally supported Abbott’s 

(2003) fi ndings, several modifi cations needed to be made to the model to 

achieve adequate fi t, and consequently, a CFA of the Greeno et al. (2007) 

fi ndings on an independent sample would strengthen their conclusions. 

As you may guess from this example, CFA may be thought of as a process

—both within a single study as the model is modifi ed to achieve adequate 

fi t and across studies using the same measure as the latent structure of the 

measure is tested for fi t across different samples or populations. 

 Chapter Summary 

 This chapter provides an introduction to the use of CFA in social work 

research and includes examples from the social work literature. CFA was 



Introduction      19

also briefl y compared to other data analysis techniques, including EFA, 

PCA, and SEM. Software for conducting CFA was briefl y discussed and 

the software package used in this book was introduced. Finally, fi ve pub-

lished CFA articles were briefl y discussed to provide examples of how 

CFA has been used in the social work literature. 

 Suggestions for Further Reading 

 Brown (2006) provides the fi rst book-length treatment of CFA, which 

is a wonderful resource for more information on CFA, in general, and 

particularly some of the more technical aspects of CFA that are beyond 

the scope of the current book. Brown (2006) also provides more infor-

mation on the fi ve software packages mentioned in this chapter and CFA 

examples using each package. Kline (2005) and Raykov and Marcoulides 

(2006) provide good introductions to SEM; both provide a chapter on 

CFA and discuss other applications of SEM, including path analysis and 

latent change analysis. Kline (2005) also includes a useful chapter on 

“How to Fool Yourself with SEM.” Byrne’s (1998, 2001a, 2006) books on 

SEM with LISREL, Amos, and EQS (respectively) provide extensive in-

formation on using the software packages and multiple examples, several 

of which involve CFA. Byrne (2001b) compares Amos, EQS, and LISREL 

software for conducting CFAs. 

 There are many articles that provide overviews of SEM in specifi c 

content areas. For example, Hays, Revicki, and Coyne (2005) provide a 

brief overview and examples of SEM for health outcomes research, and 

Golob (2003) provides a similar overview and examples of SEM for travel 

behavior research. Given the number and variety of these articles now 

available, it is likely that readers can fi nd a similar article in their area of 

interest. 

 Many multivariate statistics books (e.g., Stevens, 2002) provide intro-

ductions to PCA specifi cally, and others (e.g., Tabachnick & Fidell, 2007) 

provide a combined introduction to PCA and factor analysis, focusing 

on the similarities between the two analyses. Grimm and Yarnold (1994, 

2000) provide nontechnical introductions to PCA, EFA, and CFA as well 

as SEM and testing the validity of measurement, respectively. 
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 Koeske (1994) provides an excellent discussion of construct validity, 

including recommendations for the consistent use of validity terminol-

ogy within social work research. Haynes, Richard, and Kubany (1995) 

discuss content validity as a component of construct validity; they also 

provide recommendations for examining and reporting evidence of 

content validity. See Shadish, Cook, and Campbell (2002) for an exten-

sive discussion of validity as it relates to research design. Podsakoff et al. 

(2003) review the sources of common method biases, ways of addressing 

them, and information on correctly using CFA to control for method 

effects.    
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 2 

 Creating a Confi rmatory Factor 
Analysis Model 

 This chapter will focus on creating and specifying a confi rmatory 

factor analysis (CFA) model, beginning with the role of theory and 

prior research in CFA. We will then discuss how a CFA model is specifi ed, 

examining the role of observed and latent variables and model param-

eters, followed by a discussion of the importance of model identifi cation, 

scaling latent variables, and estimation methods. We will end this chapter 

with a detailed example of testing a CFA model. 

  Specifying the Model  

 Theory and/or prior research are crucial to specifying a CFA model to 

be tested. As noted in Chapter 1, the one-factor solution of the Rosen-

berg Self-Esteem Scale was tested based on the conceptualization of self-

 esteem as a global (i.e., unitary) factor, although the existing exploratory 

factor analysis (EFA) work found two factors. Early in the process of 

measurement development, researchers may rely entirely on theory to 

develop a CFA model. However, as a measure is used over time, CFA can 

be used to replicate EFA or other analyses that have been conducted on 
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the measure. In the Professional Opinion Scale (POS) example discussed 

in Chapter 1, Abbott’s (2003) initial CFA was based both on underlying 

theory and an earlier EFA, whereas the Greeno et al. (2007) CFA was 

based on Abbott’s (2003) earlier CFA work. Confi rmatory factor analysis 

may not be an appropriate analysis to use if there is no strong under-

lying foundation on which to base the model, and more preliminary 

work, such as EFA or theory development, may be needed. This chapter 

includes many terms that are used in CFA, which will be defi ned here 

and in the Glossary. See Figure 2.1 for a basic CFA model with variables 

and parameters labeled. 

  Observed Variables  

 As discussed in Chapter 1, observed variables are those items that are 

directly observed, such as a response to a question. In CFA models, ob-

served variables are represented by rectangles. 

Observed
Variable 1

Observed
Variable 2Latent Variable 1

“1”: variable was
scaled to this

observed variable
1

Observed
Variable 3

E1

E2

E3

Observed
Variable 4

Observed
Variable 5Latent Variable 2

Single headed arrow:
factor loading or

regression coefficient
from latent to observed

variable

“E”: measurement
error for each

observed variable

Double headed
arrow (may be

curved): correlation/
covariance between

latent variables
1

Observed
Variable 6

E4

E5

E6

Figure 2.1 CFA Model With Parameters Labeled
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  Latent Variables  

 Latent variables are the underlying, unobserved constructs of interest. 

Ovals are used to represent latent variables in CFA models (sometimes 

circles are also used, but we will use ovals in this book). There are two 

types of latent variables: exogenous and endogenous. Exogenous vari-

ables are not caused by other variables in the model; they are similar to 

independent variables (IV), X, or predictors in regression analyses. En-

dogenous variables are–at least theoretically–caused by other variables, 

and in this sense they are similar to dependent variables (DV), Y, or out-

come variables in regression analyses. In complex models, some variables 

may have both exogenous and endogenous functions. 

  CFA Model Parameters  

 Model parameters are the characteristics of the population that will be 

estimated and tested in the CFA. Relationships among observed and 

 latent variables are indicated in CFA models by arrows going from the 

latent variables to the observed variables. The direction from the latent to 

the observed variable indicates the expectation that the underlying con-

struct (e.g., depression) causes the observed variables (e.g., symptoms of 

unhappiness, feeling blue, changes in appetite, etc.). The factor loadings 

are the regression coeffi cients (i.e., slopes) for predicting the indicators 

from the latent factor. In general, the higher the factor loading the better, 

and typically loadings below 0.30 are not interpreted. As general rules of 

thumb, loadings above 0.71 are excellent, 0.63 very good, 0.55 good, 0.45 

fair, and 0.32 poor (Tabachnick & Fidell, 2007). These rules of thumb are 

based on factor analyses, where factor loadings are correlations between 

the variable and factor, so squaring the loading yields a variance account-

ed for. Note that a loading of 0.71 squared would be 50% variance ac-

counted for, whereas 0.32 squared would be 10% variance accounted for. 

In CFA, the interpretation of the factor loadings or regression coeffi cients 

is a little more complex if there is more than one latent variable in the 

model, but this basic interpretation will work for our purposes. 

 Whereas each indicator is believed to be caused by the latent fac-

tor, there may also be some unique variance in an indicator that is not 
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 accounted for by the latent factor(s). This unique variance is also known 

as measurement error, error variance, or indicator unreliability (see E1 to 

E6 in Figure 2.1). 

 Other parameters in a CFA model include factor variance, which is 

the variance for a factor in the sample data (in the unstandardized so-

lution), and error covariances, which are correlated errors demonstrat-

ing that the indicators are related because of something other than the 

shared infl uence of the latent factor. Correlated errors could result from 

method effects (i.e., common measurement method such as self-report) 

or similar wording of items (e.g., positive or negative phrasing). 

 The relationship between two factors, or latent variables, in the model 

is a factor correlation in the completely standardized solution or a fac-

tor covariance in unstandardized solutions. Factor correlations represent 

the completely standardized solution in the same way that a Pearson’s 

correlation is the “standardized” relationship between two variables (i.e., 

ranges from –1 to +1 and is unit-free—it does not include the original 

units of measurement). Similarly, factor covariances are unstandardized 

and include the original units of measurement just as variable covari-

ances retain information about the original units of measurement and 

can range from negative infi nity to positive infi nity. Factor covariances 

or correlations are shown in CFA models as two-headed arrows (usually 

curved) between two latent variables. 

 Identifi cation of the Model 

 Confi rmatory factor analysis models must be identifi ed to run the model 

and estimate the parameters. When a model is identifi ed, it is possible to 

fi nd unique estimates for each parameter with unknown values in the 

model, such as the factor loadings and correlations. For example, if we 

have an equation such as  a  +  b  = 44, there are an infi nite number of 

combinations of values of  a  and  b  that could be used to solve this equa-

tion, such as  a  = 3 and  b  = 41 or  a  = −8 and b  = 52. In this case, the 

model (or the equation) is underidentifi ed because there are not enough 

known  parameters to allow for a unique solution—in other words, there 
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are more unknowns ( a  and  b ) than there are knowns (44) (Kline, 2005; 

Raykov & Marcoulides, 2006). Models must have degrees of freedom ( df  ) 

greater than 0 (meaning we have more known than unknown param-

eters), and all latent variables must be scaled (which will be discussed 

later in this chapter) for models to be identifi ed (Kline, 2005). When we 

meet these two conditions, the model can be solved and a unique set of 

parameters estimated. Models can be under-, just-, or overidentifi ed. 

 Underidentifi ed Models 

 Models are underidentifi ed when the number of freely estimated param-

eters (i.e., unknowns) in the model is greater than the number of knowns. 

Underidentifi ed models, such as the  a  +  b  = 44 example given earlier, 

cannot be solved because there are an infi nite number of parameter es-

timates that will produce a perfect fi t (Brown, 2006). In this situation we 

have negative  df , indicating that the model cannot reach a unique solu-

tion because too many things are left to vary relative to the number of 

things that are known. The number of unknowns can be reduced by fi x-

ing some of the parameters to specifi c values. For example, if we set  b  = 4 

in the aforementioned equation, then  a  can be solved because we know 

have more knowns ( b  and 44) than unknowns ( a ). 

 Just-Identifi ed Models  

 Models are just-identifi ed when the number of unknowns equals the 

number of knowns and  df  = 0. In this situation, there is one unique set 

of parameters that will perfectly fi t and reproduce the data. Although 

this may initially sound like a great idea (What could be wrong with a 

perfectly fi tting model?), in practice, perfectly fi tting models are not very 

informative because they do not allow for model testing. 

 Overidentifi ed Models 

 Models are overidentifi ed when the number of unknowns is smaller than 

the number of knowns and  df  are greater than 0. Our  a  +  b  = 44 example 
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stops working here because it is too simplistic to illustrate overidentifi ed 

models, but Kline (2005) provides a nice example of how this works with 

sets of equations if you are interested in more information on identifi -

cation of models. The difference between the number of knowns and 

unknowns is equal to the degrees of freedom ( df  ) for the model. When 

a model is overidentifi ed, goodness of fi t can be evaluated and it is pos-

sible to test how well the model reproduces the input variance covariance 

matrix (Brown, 2006). Because we are interested in obtaining fi t indices 

for CFA models, we want the models to be overidentifi ed. 

 Scaling Latent Variables 

 As stated earlier, in addition to having  df  greater than 0, the second 

condition for model identifi cation is that the latent variables have to 

be scaled. Scaling the latent variable creates one less unknown. Because 

latent variables are unobserved, they do not have a pre-defi ned unit of 

measurement; therefore, the researcher needs to set the unit of measure-

ment. There are two ways to do this. One option is to make it the same 

as that of one of the indicator variables. The second option is to set the 

variance equal to 1 for the latent variable. In general, the fi rst option is 

the more popular (Brown, 2006). Although these two options generally 

result in similar overall fi t, they do not always do so and it is important 

to realize that the option chosen for scaling the latent variable may in-

fl uence the standard errors and results of the CFA (Brown, 2006; Kline, 

2005). 

 Scaling the latent variable (or setting its unit of measurement) is 

a little like converting currency. Imagine that you are creating a latent 

variable for cost of living across the United States, United Kingdom, and 

France, and you have three indicators—one in U.S. dollars, one in British 

pounds, and the other in Euros. Dollars, pounds, and Euros all have dif-

ferent scales of measurement, but the latent variable can be scaled (using 

the aforementioned option 1) to any one of these. If scaled to U.S. dollars, 

the latent variable will be interpretable in terms of dollars. But, the latent 

variable could also be scaled to either pounds or Euros—whichever will 

be most interpretable and meaningful for the intended audience. 
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 Determining Whether a Model is Identifi ed 

 As discussed earlier, you will want your CFA models to be overidenti-

fi ed so that you can test the fi t of your model. Assuming that the la-

tent variables have been properly scaled, the issue that will determine 

whether a model is identifi ed is the number parameters to be esti mated 

(i.e., the unknowns) relative to the number of known parameters. 

There are several rules of thumb available for testing the identifi ca-

tion of models, such as the  t -Rule and the Recursive Rule; however, 

these rules provide necessary but not suffi cient guidance (Reilly, 1995), 

meaning that meeting the rule is necessary for identifi cation, but the 

model may still be underidentifi ed because of other issues. Fortunately 

for our purposes, SEM software used to conduct CFA will automati-

cally test the identifi cation of the model and will provide a message if 

the model is under- or just-identifi ed, which should be suffi cient for 

most situations. 

 Estimation Methods 

 “The objective of CFA is to obtain estimates for each parameter of the 

measurement model (i.e. factor loadings, factor variances and covarianc-

es, indicator error variances and possibly error covariances) that produce 

a predicted variance-covariance matrix (symbolized as  Σ ) that represents 

the sample variance-covariance matrix (symbolized as  S ) as closely as 

possible” (Brown, 2006, p. 72). In other words, in CFA we are testing 

whether the model fi ts the data. There are multiple estimation methods 

available for testing the fi t of an overidentifi ed model, and we briefl y 

 discuss several. The exact process of how the model is estimated using 

different estimation methods is beyond the scope of this book, but I will 

provide a general idea of how it works. Fitting a model is an iterative 

process that begins with an initial fi t, tests how well the model fi ts, adjusts 

the model, tests the fi t again, and so forth, until the model converges or 

fi ts well enough. This fi tting process is done by the software used and will 

generally occur in a “black box” (i.e., it will not be visible to you). 
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 This iterative fi tting process is similar to having a garment, such as 

a wedding dress or suit, fi tted. You begin with your best guess of what 

size should fi t, and then the tailor assesses the fi t and decides if adjust-

ments are needed. If needed, the adjustments are made and then the 

garment is tried on again. This process continues until some fi tting 

criteria are reached (i.e., the garment fi ts properly) or some external 

criteria (i.e., the wedding date) forces the process to stop. If the fi t-

ting criteria are reached, then the fi t is said to converge and we have a 

well-fi tting garment (or CFA model). But, if the fi tting criteria are not 

reached, we may be forced to accept a poorly fi tting garment (or CFA 

model) or to begin again with a new size or style (or a different CFA 

model). Just as there are multiple tailors available who will use slightly 

different fi tting criteria, there are also multiple estimation methods 

available for CFA—each with its own advantages and disadvantages. 

 Some of the estimation methods that you may see in the literature in-

clude maximum likelihood (ML), weighted least squares (WLS), general-

ized least squares (GLS), and unweighted least squares (ULS). Although 

GLS and ULS are available in Amos 7.0 and may appear in the literature, 

both are used with multivariate normal data (Kline, 2005), and if data are 

multivariate normal, then ML is a better estimation procedure to use, so 

we will not discuss GLS and ULS. For this introductory text on CFA, we 

will limit our discussion to the best of the common estimation methods 

that are available in Amos 7.0. 

 Maximum Likelihood 

 Maximum likelihood (ML) is the most commonly used estimation 

method. Maximum likelihood “aims to fi nd the parameter values that 

make the observed data most likely (or conversely maximize the likeli-

hood of the parameters given the data)” (Brown, 2006, p. 73). Maximum 

likelihood estimation is similar (but not identical) to the ordinary least 

squares criterion used in multiple regression (Kline, 2005). It has several 

desirable statistical properties:  (1)  it provides standard errors (SEs) for 

each parameter estimate, which are used to calculate  p -values (levels of 
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signifi cance), and confi dence intervals, and  (2)  its fi tting function is used 

to calculate many goodness-of-fi t indices. 

 There are three key assumptions for ML estimation. First, this esti-

mation procedure requires large sample sizes (sample size requirements 

will be discussed in more detail in Chapter 3). Second, indicators need to 

have continuous levels of measurement (i.e., no dichotomous, ordinal, 

or categorical indicator variables). Third, ML requires multivariate nor-

mally distributed indicators (procedures for assessing normality will be 

discussed in Chapter 3). ML estimation is robust to moderate violations, 

although extreme non-normality results in several problems:  (1)  un-

derestimation of the SE, which infl ates Type I error;  (2)  poorly behaved 

(infl ated) χ2  tests of overall model fi t and underestimation of other fi t 

indices (e.g., TLI and CFI, which will be discussed further in Chapter 4); 

and (3)  incorrect parameter estimates. When there are severe violations 

of the assumptions, formulas are available for calculating robust SE esti-

mates and the chi-square statistic as long as there are no missing data (see 

Gold, Bentler, & Kim, 2003). Importantly, the effects of non-normality 

worsen with smaller sample sizes (Brown, 2006). In addition, when the 

violations of the underlying assumptions are extreme, ML is prone to 

Heywood cases (i.e., parameter estimates with out-of-range values), such 

as negative error variances. In addition, minor misspecifi cations of the 

model may result in “markedly distorted solutions” (Brown, 2006, p. 75). 

Therefore, ML should not be used if the assumptions are violated. 

 Other Estimation Methods 

 If the model includes one or more categorical indicator variables or if there 

is extreme non-normality, ML is not appropriate to use and there are sev-

eral alternative estimation methods available:  (1)  WLS, which is called as-

ymptotically distribution-free (ADF) in Amos 7.0;  (2)  robust weighted least 

squares (WLSMV); and  (3)  ULS (Brown, 2006). However, each of these 

estimation methods has limitations, as discussed below. For non-normal 

continuous indicators, ML with robust SE and χ2  (MLM) can be used. At 

this time, the Mplus program has the best options for handling categorical 

data because of the availability of the WLSMV estimator (Brown, 2006). 
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 Of the estimation methods that are broadly available, including in 

Amos, ADF “estimates the degree of both skew and kurtosis in the raw 

data” and therefore makes no assumptions about the distribution of 

the data (Kline, 2005, p. 196). Although this addresses the problem of 

non-normality in the data, a drawback of this approach is that it gener-

ally requires very large sample sizes of 200 to 500 for simple models and 

thousands of cases for complex models (Kline, 2005, p. 196). In addition 

to the sample size requirements, Brown (2006) notes that ADF or WLS 

does not perform well with categorical data, especially when samples are 

not suffi ciently large. 

 Gold et al. (2003) compared ML and ADF estimation methods for 

non-normal incomplete data and found that direct ML (the form of ML 

that can handle missing data, which is available in Amos and other soft-

ware packages) performs better than ADF with pairwise deletion, regard-

less of missing data mechanism (p. 73). Gold et al. (2003) concluded that 

ADF should not be used with missing data, and if there are missing 

data, even when there is non-normality, “ML methods are still preferable, 

although they should be used with robust standard errors and rescaled 

chi-square statistics” (p. 74). Savalei and Bentler (2005) also concluded 

that direct ML is generally recommended when there are missing data 

and non-normality. Missing data and normality will be discussed further 

in Chapter 3. 

 In Amos Graphics 7.0, the available estimation methods are ML, GLS, 

ULS, scale-free least squares, and ADF. Only ML can be used if there are 

missing data. If there are missing data and one of the other estimation 

methods is needed, then some form of data imputation needs to be done 

before the other estimation method can be used in Amos. Readers who 

are likely to have problematic data may want to consider using a software 

package other than Amos. 

 Testing a Confi rmatory Factor Analysis Model Example 

 In this section, we will use Amos 7.0 to test a CFA model using the 

Maslach Burnout Inventory (MBI; Maslach, Jackson, & Leiter, 1996). Brief 
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 instructions for using Amos 7.0 to conduct this analysis are provided in 

Appendix A. The data for this example are from a study of U.S. Air Force 

Family Advocacy Program (FAP) workers (Bean, Harrington, & Pintello, 

1998; Harrington, Bean, Pintello, & Mathews, 2001). The sample includes 

139 FAP workers and the response rate for the survey was 74%. Before 

continuing, it is important to note that this sample size is considered 

medium (Kline, 2005) for this analysis (although one can fi nd published 

CFA articles with similar and even smaller size samples). Therefore, it is 

offered only as an example data set that readers can play with, not one 

from which conclusions should be drawn. Ideally, the sample size would 

be larger, as will be discussed in Chapter 3. 

 Specifying the Model 

 The MBI was developed in the late 1970s by Maslach and Jackson to 

measure burnout in human service workers. It is considered the most 

widely accepted and often used self-report index of burnout in research 

studies and employee assessment. This 22-item self-report scale treats 

burnout as a continuous variable that can be divided into three com-

ponents: emotional exhaustion (EE), depersonalization (DP), and per-

sonal accomplishment (PA). Each item is measured on a seven-point 

Likert-type scale assessing the frequency of occurrence (ranging from 

0 = never to 6 = a few times a day). For EE and DP, higher scores indi-

cate higher levels of burnout, with higher levels of emotional exhaus-

tion and depersonalization, respectively. For PA, higher scores indicate 

lower levels of burnout and higher levels of personal accomplishment. 

Maslach suggests that each subscale be scored separately rather than 

as a composite because this provides the best representation of the 

multidimensional nature of burnout as a construct (Schaufeli & Van 

 Dierendonck, 1995). 

 As discussed earlier, specifying the model to be tested should be based 

on theory and prior research. There has been extensive work on the MBI, 

including a CFA on the three-factor MBI in a sample of child welfare 

workers (Drake & Yadama, 1995). There has also been extensive debate 
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about how the three factors are related to burnout, whether they are all 

components of burnout, or whether EE is really the indicator of burnout, 

with PA and DP being related but separate constructs. 

 Like Drake and Yadama (1995), we will begin by testing the three-

factor structure of the MBI as defi ned by Maslach et al. (1996). The 

observed variables for the model are the 22 items that participants re-

sponded to, and the latent variables are the three factors identifi ed by 

Maslach et al. (1996). The indicators for each latent variable were cho-

sen based on scoring instructions provided by Maslach and colleagues 

(1996). Because the three factors are believed to be related to each other, 

covariances (or correlations) among the latent variables are included 

in the model (shown as the two headed curved arrows in Figure 2.2 

below). 

 Identifi cation of the Model 

 The MBI CFA model is overidentifi ed with 206  df , which means that there 

are fewer parameters to be estimated than there are known parameters. 

Each latent variable is scaled, with the path coeffi cient for one observed 

variable being set to “1” for each latent variable. 

 Estimation Method 

 Maximum likelihood (ML) estimation was used for this model. The MBI 

observed variables can be treated as continuous and the data are approx-

imately normally distributed (data considerations will be discussed in 

Chapter 3), making ML a reasonable estimation method to use. It should 

be noted that the sample size for this example is smaller ( n  = 139) than 

desired for this or any other CFA estimation procedure, but these data are 

used for example purposes only. 

 Model Fit 

 All the observed variables are signifi cantly related to the latent variables and 

EE and DP are signifi cantly correlated as expected. However, contrary to 
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expectations, PA and DP are not correlated ( r  = − 0.127;  p  = 0.261), and PA 

and EE are not correlated ( r  = − 0.226;  p  = 0.056). Although the model test-

ed was based on a well-developed and tested measure, the model does not fi t 

as well as desired. We will discuss assessing model fi t in detail in Chapter 4. 
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Graphics) 
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 Model Respecifi cation 

 Drake and Yadama (1995) also found that the 22-item, three-factor MBI 

CFA did not fi t well. To respecify their model (respecifi cation will be 

discussed in more detail in Chapter 4, but briefl y to respecify means to 

revise), they examined intercorrelations among items and deleted two 

items (2 and 16) that were very similar in content and highly correlat-

ed with other items. Drake and Yadama (1995) also examined squared 

multiple correlations and dropped two items (4 and 21) with very low 

squared multiple correlations. Finally, modifi cation indices suggested 

that allowing the error terms to be correlated for items 5 and 15 on the 

DP scale and items 9 and 19 on the PA scale would improve model fi t; 

because both of these changes seemed reasonable, the error terms were 

allowed to covary. Drake and Yadama’s fi nal model fi t well and indicators 

loaded on latent variables as expected. 

 Using Drake and Yadama’s (1996) prior work as guidance, the MBI 

CFA was respecifi ed according to their fi nal model (i.e., 18 items, three fac-

tors, and adding two error covariances). Similarly to Drake and Yadama’s 

(1996) fi ndings, the respecifi ed model fi ts much better than the original 

22-item, three-factor model. Figure 2.2 shows the standardized output for 

the fi nal model. All regression weights in the model are signifi cant and in-

dicators load on the expected latent variables, EE and DP are signifi cantly 

correlated ( p  < 0.0005), and EE and PA are signifi cantly correlated (  p  = 

0.013); the correlation between PA and DP is nonsignifi cant ( p  = 0.193). 

 Conclusion 

 The respecifi ed model fi t the data adequately, supporting the modifi ed 

structure reported by Drake and Yadama (1995). The changes made to 

the model by Drake and Yadama (1995) were data-driven, and they noted 

that their fi ndings should be considered preliminary with further CFA 

work needed with other samples. The fi ndings in this example cautiously 

(because of the small sample size) suggest support for the 18-item model 

Drake and Yadama (1995) reported, rather than the original Maslach et al. 

(1996) 22-item model. 
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 Chapter Summary 

 This chapter focused on creating and specifying a CFA model, including 

the use of theory and prior research. Observed and latent variables, CFA 

model parameters, model identifi cation, and scaling the latent variables 

were defi ned, and conventions for drawing CFA models were presented. 

Estimation methods used in the CFA literature were briefl y discussed, 

and ML estimation was discussed in detail. Finally, a detailed example of 

a CFA on the MBI was presented. 

 Suggestions for Further Reading 

 See Arbuckle (2006) for much more information on using Amos 7.0 

Graphics. Byrne’s (1998, 2001a, 2006) books on structural equation 

modeling with LISREL, Amos, and EQS (respectively) provide a number 

of CFA examples using these software packages. Reilly (1995) provides 

instructions and examples using the Rank Rule to determine whether a 

CFA model will be identifi ed. Brown (2006) provides more information 

on how the estimation methods and fi tting functions work. See Drake 

and Yadama (1995) for more detail on how they conducted the CFA that 

was replicated in this chapter. See Gold, Bentler, and Kim (2003) and 

Savalei and Bentler (2005) for more information on the Monte Carlo 

studies they conducted to compare ML and ADF estimation methods 

with missing data and non-normality. 
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 3 

 Requirements for Conducting 
Confi rmatory Factor Analysis 

 Data Considerations 

 This chapter will focus on the requirements for conducting a con-

fi rmatory factor analysis (CFA), including reviewing issues around 

missing data, normality, categorical variables, and sample size adequacy. 

Because these issues are quite technical, a brief introduction and sug-

gestions for ways to address each issue, as well as suggested readings for 

additional information, will be provided. 

 Missing Data 

 Most data sets have some missing data, but researchers often fail to in-

dicate the amount of missing data and how missing data were handled 

in the analyses. Missing data can affect any kind of data analysis, in-

cluding confi rmatory factor analysis (CFA). Missing data can result in 

reduced power if cases with missing values are dropped from an analy-

sis; for studies that plan for the necessary sample size using an a priori 

power analysis, missing data can result in an underpowered study and 

nonsignifi cant fi ndings. If there is a pattern to the missing data, then 
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there may be  misleading results and the possibility of erroneous impli-

cations being drawn from the fi ndings. There are several common ways 

of handling missing data, and each has implications for analyses—using 

different methods of addressing missing data can result in different fi nd-

ings, therefore it is extremely important to report how missing data were 

handled. In addition, it is important to note that the amount of missing 

data may be less important than the pattern of missingness (Savalei & 

Bentler, 2005; Tabachnick & Fidell, 2007). 

 The best way to handle missing data depends on the type of missing 

data that exists in the study. There are three types of missing data: 

(1)  missing completely at random,  (2)  missing at random, and  (3)  nonignor-

able or missing not at random. Data can be  missing completely at random

(MCAR), in which case the probability of missing data is unrelated to 

values of Y and other variables in the data set (Brown, 2006). Research-

ers can test whether data are MCAR (Brown, 2006). Data are  missing at 

random  (MAR) when the probability of missing data on Y may depend 

on X but is not related to the value of Y when X is held constant. In other 

words, MAR data may be predictable from other variables in the data 

set. For example, in a long survey of adults over the age of 65 years, a 

 researcher may fi nd that age is related to not answering all the questions 

at the end of the survey, and it could just be that the oldest participants 

were more likely to become fatigued and stop answering the questions. 

MAR is more likely to hold in applied research than MCAR, but it is im-

possible to test for in applied data (Brown, 2006). Fortunately, mistakenly 

assuming that data are MAR often has only a small impact on standard 

errors and estimates (Schafer & Graham, 2002).  Nonignorable  missing 

data occur when data are missing in a predictable pattern that is related 

to other variables. For example, if respondents who do not report their 

income have higher incomes than those who do report their income, 

then missing data on income are nonignorable. 

 It is important to know how your software handles missing data. 

Several data analysis software packages, including SPSS and SAS, gen-

erally default to dropping all cases with any missing data on variables 

included in an analysis (this process is known as listwise deletion). This 

default process can result in the loss of a large number of cases without 
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the researcher’s awareness. Amos 7.0 will automatically address missing 

data when using maximum likelihood estimation, and whereas this may 

sound ideal, it can be problematic if there is a great deal of missing data 

or if it is nonignorable. No matter how your software addresses missing 

data, it is necessary to check for the extent and pattern of missing data be-

fore conducting confi rmatory factor analysis (CFA) or any other analysis. 

It is also important for the researcher to decide how to handle missing 

data, but unfortunately, none of the options are ideal, and sometimes the 

researcher is forced to choose between several bad options (Tabachnick 

& Fidell, 2007). We discuss some of the available options for addressing 

missing data below. 

 Checking for Missing Data 

 You can check for missing data using frequencies and descriptive statis-

tics in any data analysis software package, and the SPSS Missing Values 

Analysis (MVA), in particular, is designed to identify patterns of missing 

data and has several options for imputing (i.e., replacing) missing values 

(Tabachnick & Fidell, 2007). MVA will provide extensive information on 

both the amount and pattern of missing data. As mentioned in Chapter 2 

when discussing estimation methods, it appears that the pattern of miss-

ing data is more important than the amount of missing data. There are 

no guidelines for how much missing data is too much. Tabachnick and 

Fidell (2007) suggest that for large data sets with 5% or less of the data 

points missing at random, then the problems are unlikely to be serious 

and any method for handling missing data should be ok. 

 Deletion of Cases With Missing Data 

 Two of the most common ways of handling missing data in general are 

listwise and pairwise deletion of cases. With listwise deletion, only cases 

with complete data are retained and used in data analyses. Listwise dele-

tion is very common and is often the default option in software packages 

(e.g., SPSS and SAS). Pairwise deletion retains more data than listwise 

deletion because cases are only dropped from correlations in which they 
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did not answer one or both of the variables, rather than being dropped 

from all correlations because one response was missing. Pairwise deletion 

includes cases for correlations (or covariances) for all pairs of variables 

with valid responses. 

 Listwise deletion results in the same sample size for all correlations 

or covariances produced for a matrix, whereas pairwise deletion gener-

ally results in different sample sizes for different correlations or covari-

ances, depending on the pattern of missing data. In general, deletion of 

cases with missing data is not recommended. Both listwise and pairwise 

deletion can result in a loss of power. Additionally, when the data are 

not MCAR, case deletion procedures may result in biased parameter es-

timates, standard errors, and test statistics. For minor departures from 

MCAR, the bias may be minor, but the extent of the bias is hard to de-

termine (Schafer & Graham, 2002). Finally, even when the missing data 

are MCAR, estimates produced with listwise or pairwise deletion are less 

effi cient than when other methods of handling missing data are used 

(Enders, 2001). 

 Mean Substitution 

 One approach to handling missing data is to substitute the variable mean 

for all missing values on that variable. This used to be a very common 

approach, and it is still an option for handling missing data in many 

procedures, such as factor analysis, in SPSS and other software packages. 

However, this is not a good approach, and it should be avoided (Shafer 

& Graham, 2002). 

 Imputation of Missing Data 

 Another method for handling missing data is to impute missing values 

before the data are used for the CFA analysis. There are several ways to do 

this, but one of the more common is the expectation maximization (EM) 

algorithm available in SPSS. Expectation maximization employs a two-

step iterative process. In the estimation step, missing values are replaced 

with predicted values based on a series of regression equations. In the 
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M  step, maximum likelihood (ML) estimates are calculated as if the data 

were complete (Enders, 2001). These two steps are repeated (this is the it-

erative part of the process) until the solution converges, meaning that the 

covariance matrices produced at subsequent steps are extremely similar. 

At the end of this process, missing data can be estimated (i.e., imputed), 

resulting in what looks like a complete data set. However, note that the 

imputation does not include a random error component that would be 

present if the data were complete. Therefore, standard errors generated 

from the imputed dataset may be somewhat negatively biased, and correct 

estimates must be calculated using bootstrap techniques (Enders, 2001). 

However, as noted below under Estimation Methods for Non-Normal 

Data, bootstrapping is not recommended; therefore, whereas SPSS MVA 

is useful for examining missing data patterns, the EM procedure is not 

universally recommended for imputing missing data. 

 Recommended Strategies for Handling Missing Data 

 Although listwise and pairwise deletion are commonly used to handle 

missing data, they are not recommended. Two strategies that are recom-

mended for handling missing data when conducting a CFA are maxi-

mum likelihood (which is called several different things, including direct 

ML, full information ML, or ML estimation based on all available data) 

and Bayesian multiple imputation (Allison, 2003; Brown, 2006; Schafer 

& Graham, 2002). Both approaches use all available data and produce pa-

rameter estimates, standard errors (SEs), and test statistics that are con-

sistent (i.e., unbiased) and effi cient (i.e., less data are lost) when MCAR 

or MAR holds and data have a multivariate normal distribution (Brown, 

2006). Savalei and Bentler’s (2005) fi ndings suggest direct ML also works 

well with some non-normality. Amos 7.0 computes direct ML estimates 

by default whether there are missing or complete data. However, it is im-

portant to note that Amos assumes the data are missing at random and 

should not be used if the missingness is not random (Arbuckle, 2006b). 

In addition, direct ML should only be used when the assumptions for ML 

have been met; this method is not appropriate if the data are extremely 

non-normally distributed (Enders, 2001). The direct ML approach uses 
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all available information, but not all fi t indices (e.g., goodness-of-fi t 

index [GFI]) can be computed with this approach and it may produce 

indefi nite covariance matrices. When using direct ML, missing values are 

not imputed, but parameters are estimated as if complete data were avail-

able (Enders, 2001). 

 If the assumptions for ML have not been met and another fi tting func-

tion is needed, then multiple imputation is recommended (Allison, 2003; 

Brown, 2006). Multiple imputation involves multiple steps and is beyond 

the scope of this book. Allison (2003) cautions that multiple imputation 

can be used in most situations, but the results vary every time you use 

it and there are multiple ways to implement multiple imputation, which 

can be challenging for novices. If the missing data are non-ignorable, then 

there are extensions of both ML and multiple imputation that can be 

used, but they are diffi cult to implement, vulnerable to misspecifi cation, 

and should only be used when the researcher understands the missing 

data mechanism. However, it is important to note that even when the data 

are not missing at random, methods that assume the data are missing at 

random, such as direct ML, can produce good results (Allison, 2003). 

 Normality 

 Multivariate normality is assumed for most CFA estimation methods, 

including maximum likelihood (as discussed Chapter 2). Multivariate 

normality means all variables are univariate normally distributed, the dis-

tribution of any pair of variables is bivariate normal, and all pairs of vari-

ables have linear and homoscedastic scatterplots (Kline, 2005). Although 

it is diffi cult to assess all aspects of multivariate normality, checking for 

univariate normality and outliers will detect most cases of multivariate 

non-normality (Kline, 2005). 

 Univariate Normality 

 A non-normal distribution may be detected because of signifi cant skew 

or kurtosis. Skew is a measure of how asymmetric a unimodal distribu-
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tion is. If most of the scores are below the mean, then the distribution is 

positively skewed, whereas if most of the scores are above the mean, then 

the distribution is negatively skewed. Kurtosis is a measure of how well 

the shape of the bell conforms to that of a normal distribution. Positive 

kurtosis, or a leptokurtic distribution, occurs when the middle of the 

distribution has a higher peak than expected for a normal distribution 

(imagine someone trapped under a normal distribution who is leaping 

up and down trying to get out—they would bump up the middle of the 

distribution). Negative kurtosis, or a platykurtic distribution, occurs 

when the middle of the distribution is fl atter than expected for a nor-

mal distribution (imagine a platypus with a slightly rounded but fl attish 

back). 

 You can test whether a variable has signifi cant skew or kurtosis by di-

viding the unstandardized skewness or kurtosis index by its correspond-

ing standard error; this ratio is interpreted as a  z -test of skew or kurtosis 

(Kline, 2005). Therefore, ratios greater than 1.96 would have  p -value less 

than 0.05, and ratios greater than 2.58 would have  p -value less than 0.01, 

indicating signifi cant skewness or kurtosis in the data. However, in large 

samples, these tests may be overly sensitive to non-normality. An alter-

native to the ratio test is to interpret the absolute values of the skew and 

kurtosis indexes, with absolute values of skew greater than 3.0 indicat-

ing the distribution is extremely skewed and absolute values of kurtosis 

greater than 10.0 suggesting a problem; values greater than 20.0 indicate 

a potentially serious problem with kurtosis (Kline, 2005). 

 Outliers 

 Outliers are extreme or very unusual cases that can bias estimators and 

signifi cance tests (Yuan & Bentler, 2001). Cases can be univariate or mul-

tivariate outliers. Univariate outliers have extreme scores on one variable 

and can be detected by examining  z -scores; cases with  z- scores greater 

than 3.0 in absolute value are unusual and may be outliers (Kline, 2005). 

However, in very large data sets, using  z -scores greater than 3.0 may be 

too conservative, and using a cut-point of 4.0 or greater in absolute value 

may more accurately identify outliers. 
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 Multivariate outliers may have extreme scores on more than one vari-

able or may have an unusual combination of values, but none of the in-

dividual variables have extreme scores. For example, in a survey of job 

satisfaction and burnout among social workers, you might ask for respon-

dents’ age and work experience measured in number of years in the same 

job. If the age range for the sample is from 23 to 70 years, and the number 

of years in the same job ranges from 1 to 35, a 58-year-old with 35 years 

experience in the same job may not be an outlier on either age or job 

experience, but the combination of being 58 years old with 35 years of 

experience in the same job may be unusual enough that the respondent 

is a multivariate outlier. Mahalanobis distance (D) can be used to identify 

multivariate outliers; roughly speaking, D indicates how unusual a case is 

on the set of variables compared with the sample centroids (i.e., means or 

mid-points) for all the variables. Signifi cance tests for D can be obtained 

from several software packages, including SPSS, and a conservative sig-

nifi cance level ( p  < 0.001) is recommended for this test (Kline, 2005). 

 Outliers can be problematic because they may cause non-normality and 

may result in Heywood cases (Brown, 2006). Problematic outliers can be 

dropped from the analyses (Meyers, Gamst, & Guarino, 2006) if the sam-

ple size is suffi ciently large to allow that as an option; however, if outliers 

are dropped, then you should consider how this affects the generalizability 

of your fi ndings. Another option is to winsorize the outliers (Shete et al., 

2004)—that is, recode the variable for the extreme case so that the case still 

has the highest score but no longer one that is so extreme. For example, in 

a sample with incomes ranging from $27,000 to $123,000 for all cases but 

one, which has an income of $376,000, you might recode the case with the 

highest income from $376,000 to $125,000—a value that is still the highest 

in the data set, but not one that is so extreme as to distort all other statistics. 

Winsorization can reduce skewness and platykurtosis (Shete et al., 2004). 

 Data Checking with SPSS and Amos 

 Univariate normality is easy to assess in any data analysis software package. 

Because this book is intended as an initial introduction to CFA, it is assumed 
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that readers may be more familiar with general data analysis software (such 

as SAS or SPSS) than with SEM software (such as Amos). Therefore, the eas-

iest way to examine univariate normality may be through descriptive statis-

tics in whichever data analysis software program you are most comfortable 

using. For the JSS dataset (which will be discussed in detail in Chapter 4), 

the descriptive statistics shown in Table 4.1 in Chapter 4 were generated in 

SPSS. Amos 7.0 does not provide tests of univariate and multivariate nor-

mality for data sets with missing data; however, normality checks are avail-

able for complete data (such as those shown in Table 4.3 in Chapter 4) .1

 Estimation Methods for Non-Normal Data 

 Although ML estimation assumes that the data are multivariate normal 

and is robust to minor non-normality, it is particularly sensitive to exces-

sive kurtosis (Brown, 2006). Using the rules of thumb provided by Kline 

(2005), this suggests that absolute values of kurtosis indices greater than 

20.0 may be problematic with ML estimation. If extreme non-normality 

exists, it is better not to use ML. The best approach for handling extreme 

non-normality is to use the robust ML (MLM) estimator (Brown, 2006), 

but this estimator is not available in Amos 7.0. If you are using Amos 7.0, 

the best option is direct ML with robust estimators (see Yuan, Bentler & 

Zhang, 2005). Other approaches to non-normality, such as bootstrap-

ping, item parceling, and data transformation are not recommended 

(Brown, 2006) and therefore are not discussed here. 

 Levels of Measurement 

 Data can be categorical, ordinal, or continuous. Most of the estimation 

methods used for CFA assume continuous data, but it is not always clear 

whether the types of response options used for many measures can be 

1  For more information on obtaining the normality statistics in Amos, see the  
“NormalityCheck Method” under Amos Help. 



Requirements for CFA  45

treated as continuous. Some variables are clearly categorical (such as race 

or ethnicity), and others are clearly continuous (such as age in years or 

income in dollars). However, many instruments use Likert-type response 

options, where respondents are asked to rate how much they agree or dis-

agree with a statement on a multiple-point scale. When there are only a 

few response options (e.g., very, somewhat, or not satisfi ed), treating the 

variables as continuous—that is, ignoring their categorical or ordinal na-

ture—can result in biased results with some estimation methods, such as 

ML (Raykov & Marcoulides, 2006). However, it may be possible to treat the 

variables as continuous when there are at least fi ve response categories, the 

sample size is suffi ciently large, and the data are approximately normally 

distributed (i.e., no extreme skewness or kurtosis) (Cohen, Cohen, West, 

& Aiken, 2003). (The JSS dataset, which will be discussed in Chapter 4, in-

cludes Likert-type variables that meet these criteria and are treated as con-

tinuous variables.) ML assumes continuous data are being used; therefore, 

another estimator must be used for categorical variables. Asymptotically 

distribution-free (ADF) estimation can be used with categorical data in 

very large samples, but MLM (i.e., direct ML) is preferred (Brown, 2006). 

 Sample Size Requirements 

 Although researchers agree that the larger the sample size, the better for 

CFA, there is no universal agreement about how large is large enough. In 

addition, some estimation procedures (such as ADF used for non-normal 

data) require even larger sample sizes than are necessary with normally 

distributed data and ML estimation (Lee & Song, 2004). Unfortunately, 

there is no easy way to determine the sample size needed for CFA. The 

four existing approaches are briefl y discussed: rules of thumb, the Satorra–

Saris method, the MacCallum approach, and Monte Carlo studies. 

 Rules of Thumb 

 There are some very rough guidelines for sample sizes: less than 100 

is considered “small” and may only be appropriate for very simple 
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 models; 100 to 200 is “medium” and may be an acceptable minimum 

sample size if the model is not too complex; and greater than 200 is 

“large”, which is probably acceptable for most models (Kline, 2005). 

Small sample sizes may result in technical problems when running 

the analysis (such as non-convergence or improper solutions) and low 

power (Kline, 2005). 

 For CFA models with small or medium sample sizes, Kline (2005, 

citing Marsh & Hau, 1999) suggests using indicators with good psycho-

metric properties and standardized factor loadings greater than 0.60, im-

posing equality constraints (i.e., forcing parameters to be equal rather 

than freely estimated) on the unstandardized loadings of indicators on 

the same factor, and using parcels (i.e., groups of indicators) for categori-

cal items. However, as noted earlier, Brown (2006) recommends against 

using item parcels or any of the multiple rules of thumb for determining 

what the sample size should be. 

 Lee and Song (2004) conducted a simulation study comparing ML 

and Bayesian estimation with small sample sizes. They concluded that 

ML is not recommended with small sample sizes, even when data are 

normally distributed; however, the Bayesian approach is recommend-

ed with small sample sizes as long as the sample size is two to three 

times as large as the number of unknown parameters to be estimated. 

Performance of the Bayesian approach improves with larger samples 

and “produces accurate parameter estimates and reliable goodness-

of-fit test” (Lee & Song, 2004, p. 680) when the ratio of sample size to 

parameters is 4:1 or 5:1. Lee and Song’s (2004) findings suggest that 

under some cases, these rough rules of thumb may provide reason-

able guidance for sample size estimates, at least for normally distrib-

uted data. However, Muthén and Muthén (2002) caution that no rule 

of thumb is applicable across all situations because the “sample size 

needed for a study depends on many factors, including the size of the 

model, distribution of the variables, amount of missing data, reliabil-

ity of the variables, and strength of the relations among the variables” 

(pp. 599–600). Finally, Gignac (2006) suggests that sample size 

 requirements should be treated as recommendations to be tested 
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and that in some cases SEM may be appropriate in sample sizes as small 

as 100. 

 Satorra–Saris Method  

 The Satorra–Saris (1985; Saris & Satorra, 1993) method is a model-based 

quantitative approach, which is better than the rules of thumb, but has 

several disadvantages, so it is not recommended (Brown, 2006). The 

 Satorra–Saris method is only mentioned here because readers may see it 

referenced in the literature. 

 MacCallum Approach 

 MacCallum and Hong (1997) extended the work of MacCallum, Brown, 

and Sugawara (1996) and concluded that power analysis should be based 

on the root mean square error of estimation fi t index, rather than the GFI 

(these are goodness of fi t indices that will be discussed in Chapter 4) be-

cause of “the undesirable infl uence of degrees of freedom on GFI-based 

[power] analyses” (p. 209). MacCallum, Widaman, Preacher, and Hong 

(2001) examined the role of model error in sample size requirements for 

factor analysis and concluded that the traditional sample size rules of 

thumb are of limited value and EFA can work well when communalities 

are high—almost regardless of sample size, model error, or level of over-

determination of the factors (p. 636). 

 Preacher and MacCallum (2002) extend this conclusion and state 

that “As long as communalities are high, the number of expected fac-

tors is relatively small, and model error is low (a condition which often 

goes hand-in-hand with high communalities), researchers and reviewers 

should not be overly concerned about small sample sizes” (p. 160). How-

ever, if communalities are low and factors are not highly overdetermined, 

then much larger sample sizes are needed. Overall, they found that no 

general recommendations about sample size could be made. Although 

these studies involved EFA, the authors concluded that the results should 

be equally valid for CFA as long as the CFA is “not badly misspecifi ed” 

(MacCallum et al., 2001, p. 636). 
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 Monte Carlo Approach 

 Muthén and Muthén (2002) demonstrated the use of a Monte Carlo 

study with M plus  to identify the appropriate sample size and to  determine 

power for CFA. Monte Carlo studies are conducted by generating data 

from a population with hypothesized parameter values. Multiple sam-

ples are drawn, the model is estimated for each sample, and the “param-

eter values and standard errors are averaged over the samples” (p. 600). 

Before conducting the Monte Carlo study, the researcher must decide on 

the model to be tested and select population values for every parameter 

in the model. Estimates may come from theory or prior research, with 

the best estimates coming from prior studies. Then the researcher must 

decide how many samples will be drawn (i.e., how many replications 

there will be) and select multiple seed values (i.e., the starting points 

for the random selection of the samples). There must be enough repli-

cations to achieve stable results, and Muthén and Muthén (2002) used 

10,000 replications in their study. Before you panic and decide that this 

is overwhelming and impossible, remember that the computer software 

is going to do the vast majority of the work for you! You will not actually 

be running 10,000 replications—you will be programming the software 

to do it for you. Muthén and Muthén (2002) provide the M plus  fi les for 

conducting the analyses they report. 

 A major advantage of the Monte Carlo approach is that it allows the 

researcher to consider important aspects of the data, such as missing-

ness and normality. Patterns and amounts of missing data and skewness 

and kurtosis can be specifi ed. In their Monte Carlo study, Muthén and 

Muthén (2002) used ML estimation; an estimator that is robust to non-

normality was used with the non-normal data to estimate the SEs. For 

their CFA model, Muthén and Muthén (2002) found a sample size of 

150 was needed when the data were normally distributed and there were 

no missing data. The necessary sample size increased to 175 when there 

were randomly missing data, 265 for non-normal complete data, and 

315 when the data were non-normal and had some missingness. These 

fi ndings clearly indicate the impact of the distribution and  missingness 

of the data on sample size requirements needed for adequate power. 
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 Chapter Summary 

 This chapter focused on data considerations and assumptions for con-

ducting CFA. Types of missing data and checking for and addressing 

missing data were addressed. Normality was also discussed, including 

how to assess univariate and multivariate normality as well as estima-

tion methods for non-normal data. Levels of measurement and associ-

ated estimation methods were briefl y mentioned. Finally, approaches to 

determining the sample size required for CFA, such as rules of thumb, the 

Satorra–Saris method, the MacCallum approach, and the Monte Carlo 

approach were introduced. 

 Suggestions for Further Reading 

 Allison (2003) discusses techniques for handling missing data for SEM 

and provides a detailed discussion of multiple imputation. Brown (2006) 

provides more information on how to test whether data are missing at 

random and on how to conduct multiple imputation to address miss-

ing data. Enders (2001) reviews three maximum likelihood algorithms 

for handling missing data: multiple-group approach, direct ML, and EM. 

Graham (2003) discusses the advantages of including “auxiliary” vari-

ables “that are correlated with variables containing missingness” (p. 80), 

which can improve estimation of structural equation models; he also 

provides examples and syntax for doing this using Amos. Schafer and 

Graham (2002) review the methods available for handling missing data 

and describe the strengths and limitations of each method; several of the 

methods they review are not recommended or are not typically appli-

cable for CFA (e.g., ipsative mean imputation), so they are not discussed 

in this book, but readers may fi nd those methods useful for other types of 

data analyses. The details of running a Monte Carlo study to determine 

sample size and power are beyond the scope of this introductory text, but 

interested readers can see Brown (2006, pp. 420–429) for an introduction 

to this approach and Muthén and Muthén (2002) for how to use M plus

to conduct a Monte Carlo study.      
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 4 

 Assessing Confi rmatory 
Factor Analysis Model Fit 

and Model Revision 

 This chapter will focus on how to determine whether a model fi ts 

well, including a discussion of the various fi t indices available, which 

ones to use, and thresholds for determining acceptable fi t. We will also 

examine how to revise a model that does not fi t well, including incorpo-

rating theory-based changes and the use of modifi cation indices. Finally, 

a detailed confi rmatory factor analysis (CFA) example is presented that 

includes a discussion of all the aspects of specifying, testing, assessing, 

and revising the model. 

 Assessment of Model Fit 

 There are several different goodness-of-fi t indices, and most of them 

can be best viewed as describing the lack of fi t of the model to the data. 

Each type of fi t index provides different information about model fi t (or 

non-fi t), so researchers generally report multiple fi t indices when evalu-

ating model fi t. Although there are many recommendations for which 

fi t indices to report and their corresponding criteria for what indicates 
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adequate or good fi t (e.g., Kline, 2005; Raykov, Tomer, & Nesselroade, 

1991), we will use Brown’s (2006) recommendations because they are 

based on both popularity of use in the research literature and perfor-

mance in Monte Carlo research. Brown identifi es three categories of fi t 

indices:  (1)  absolute fi t indices,  (2)  parsimony correction indices, and 

(3)  comparative fi t indices. In addition to these three categories of fi t 

 indices, we will also briefl y discuss predictive fi t indices. 

 Absolute Fit Indices 

 Absolute fi t indices test the hypothesis that  Σ  =  S  —that is, wheth-

er the predicted variance-covariance matrix ( Σ ) is equal to the sample 

 variance–covariance matrix ( S ). In other words, absolute fi t indices an-

swer the question “Is the residual (unexplained) variance appreciable?” 

(Chan et al., 2006, p. 1012). The most common absolute fi t index is the 

model chi-square (χ2 ), which tests whether the model fi ts exactly in the 

population. There are multiple limitations to the model chi-square (e.g., 

it is dependent on sample size and will almost always be signifi cant with 

large samples), but it is useful for testing nested models, which are dis-

cussed later in this chapter. Other absolute fi t indices include the Root 

Mean Square Residual (RMR), which is the average discrepancy between 

the covariances in the input matrix and the covariances predicted by the 

model. Because the RMR is affected by the metric of the input variables, 

it can be diffi cult to interpret. The Standardized Root Mean Square Re-

sidual (SRMR) is based on the discrepancy between the correlations in 

the input matrix and the correlations predicted by the model, which 

is standardized and therefore easier to interpret and, consequently, is 

 generally preferred over the RMR (Brown, 2006). 

 Parsimony Correction Indices 

 The parsimony correction indices incorporate a penalty for poor parsi-

mony, therefore more complex models will be viewed as having poorer fi t. 

The root mean square error of approximation (RMSEA) tests the extent 

to which the model fi ts  reasonably  well in the population; it is  sensitive 
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to model complexity, but unlike the model chi-square, it is relatively in-

sensitive to sample size. Close fi t (CFit) indicates the probability ( p ) that 

RMSEA is less than or equal to 0.05 (Brown, 2006). 

 Comparative Fit Indices 

 Comparative fi t indices are used to evaluate the fi t of a model relative to 

a more restricted, nested baseline model. Examples include the compara-

tive fi t index (CFI) and the Tucker-Lewis index (TLI) or non-normed fi t 

index (NNFI). 

 Predictive Fit Indices 

 Predictive fi t indices “assess model fi t in  hypothetical  replication samples 

of the same size and randomly drawn from the same population as the 

researcher’s original sample … these indexes may be seen as population 

based rather than sample based” (Kline, 2005, p. 142). The Akaike infor-

mation criterion (AIC) is used with maximum likelihood (ML) estima-

tion and “favors simpler models” so, in some senses, it is also a parsimony 

fi t index (Kline, 2005, p. 142). The AIC is generally used to compare be-

tween two (or more) non-nested models tested on the same data set. A 

smaller AIC suggests that the model is more likely to replicate, has fewer 

parameters, and fi ts better; therefore, when comparing models, the one 

with the smaller AIC is chosen as the “better” model. The expected cross-

validation index (ECVI) is also used when comparing models and will 

result in the same rank ordering of models as the AIC (Kline, 2005). Sim-

ilarly to the AIC, the ECVI is population-based and parsimony adjusted. 

The predictive fi t indices are used for comparing models, so unlike the 

other categories of fi t indices, there are no guidelines for what represents 

acceptable fi t. 

 Recommendations for Assessing Acceptable Model Fit 

 There are multiple guidelines available for “acceptable” model fi t. Brown 

(2006) recommends RMSEA close to 0.06 or less; SRMR close to 0.08 
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or less; CFI close to 0.95 or greater; and TLI close to 0.95 or greater. It is 

important to note that these are not rigid guidelines, and Brown com-

ments that his use of “close to” is purposeful. Kline (2005) recommends 

that model chi-square, RMSEA, 90% confi dence interval for RMSEA, 

CFI, and SRMR be reported. According to Kline (2005) “RMSEA ≤ .05 

indicates close approximate fi t, values between .05 and .08 suggest rea-

sonable error of approximation, and RMSEA ≥ .10 suggests poor fi t” 

(p. 139). CFI “greater than roughly .90 may indicate reasonably good fi t 

of the researcher’s model” (Kline, 2005, p. 140), and SRMR values “less 

than .10 are generally considered favorable” (Kline, 2005, p. 141). It is 

important to note that although Brown (2006) and Kline (2005) recom-

mend reporting several of the same fi t indices, their criteria for accept-

able fi t are different, with Brown (2006) being a bit more conservative. 

 Sources of Poor Fit 

 It is not unusual for the initially specifi ed CFA model to fi t poorly (or at 

least not as well as one may wish). Poor fi t can result from a number of 

causes, including specifying too few or too many factors, selecting inap-

propriate indicators, or defi ning an incorrect pattern of indicator-factor 

loadings. In addition, a model may fi t poorly because the error theory is 

incorrectly specifi ed—that is, the model may incorrectly identify mea-

surement errors as uncorrelated or correlated. If the model does not fi t 

well, then the researcher may want to consider revising the model. 

 Model Revision 

 If a model does not fi t well, the researcher will need to identify the areas 

of poor fi t; then, depending on the areas of poor fi t and the indicated 

revisions, the researcher may modify the model. There are multiple ways 

to identify areas of poor fi t, but changes to the model should only be 

made when they are consistent with theory or prior research and “make 

sense.” Areas of poor fi t can be identifi ed by examination of modifi cation 

indices and localized areas of strain (i.e., residuals). 
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 Modifi cation Indices 

 Modifi cation indices (MI) are generated by the software packages; they 

are data-driven indicators of changes to the model that are likely to im-

prove model fi t. MI are analogous to single df χ2  tests; therefore, an MI 

greater than 3.84 (or roughly 4) indicates a change that will probably re-

sult in a signifi cant improvement in model fi t. MI can suggest changes to 

any aspect of the model, including adding paths between latent variables, 

adding paths from latent variables to observed variables not originally 

specifi ed as indicators of that latent variable, adding error covariances be-

tween observed variables, and so forth. MI for covariances suggest adding 

error covariances—either between two errors or between an error and a 

latent variable. MI for variances suggest adding variances between latent 

variables. MI for regression weights suggest adding regression paths to 

the model; for example, suggested paths can be from a latent variable 

to an observed variable or one observed variable to another. Many of 

the modifi cations suggested by the MI may not make sense given theory 

and prior research; such nonsensical modifi cations should not be made 

regardless of how large the parameter change would be. 

 Localized Areas of Strain 

 Residuals can be examined to identify localized areas of strain. Standardized 

residuals greater than 1.96 (for  p  < 0.05) or 2.58 (for  p  < 0.01) may indicate 

areas of strain. Positive standardized residuals indicate that the model’s 

parameters underestimate the relationship, whereas negative standardized 

residuals indicate the model’s parameters overestimate the relationship. 

 Specifi cation Search 

 Once you start modifying a model based on MI or standardized residuals, 

even if the modifi cations are justifi ed, you have moved out of the con-

fi rmatory framework and into exploratory work. Consequently, respeci-

fi ed models should be interpreted with caution and substantial changes 

should be replicated in independent samples (MacCallum, 2003), or, if 
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the original study has a suffi ciently large sample size, it can be randomly 

split in half so the initial CFA through model respecifi cation can be con-

ducted on one half of the sample, and then the fi t of the fi nal model can 

be tested in the second half of the sample. MacCallum (2003) suggests 

that model respecifi cation: 

 “should begin with careful review of study design and model specifi ca-

tion in search of oversights, alternative designs for evaluating the model 

of interest, or reasonable alternative or competing models that should be 

evaluated. . . . one should focus on residual correlations or covariances 

to identify possible aspects of the model that are not explaining data 

well and that call for closer examination. Given such information, the 

model may be modifi ed, or perhaps the study itself re-designed, and a 

new evaluation of the model conducted. Of critical importance is when 

a model is modifi ed and eventually found to fi t the data well, that model 

must be validated on new data.” (p. 129) 

 MacCallum (2003) also recommends against the common approach of 

using modifi cation indices to create a better fi tting model because such 

procedures capitalize on chance and produce unstable results. “Rather 

than evaluate a single model in isolation, it is often more informative and 

productive to compare a set of alternative models and possibly select a 

preferred model from the set” (MacCallum, 2003, p. 130). 

 Nested Models 

 Model revision may result in a  nested model  that “contains a subset of the 

free parameters of another model, which is often referred to as the  parent

model ” (Brown, 2006, p. 48). A nested model may result from constrain-

ing, rather than freely estimating, some parameters. The χ2  difference test 

can be used to test for signifi cance of model improvement with nested 

models. The χ2  difference test is conducted by fi nding the difference 

 between the χ2  for the parent and nested models (i.e., χ2  for the parent 

model minus χ2  for the nested model) and then fi nding the difference 

between the  df  for the parent and nested models (i.e.,  df  for the parent 

model minus  df  for the nested model). The χ2  difference is then tested for 

signifi cance for the associated  df  difference. 
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 For example, if the χ2  for the parent model equals 246.44 and the χ2

for the nested model equals 191.07, then the χ2  difference equals 55.37. 

If the parent model  df  equals 74 and the nested model  df  equals 73, then 

the df  difference equals 1. Using a table of critical values for χ2 , we fi nd 

that the critical value for a 1  df  test is 3.841 (see  http://www.itl.nist.gov/

div898/handbook/eda/section3/eda3674.htm  or almost any introductory 

statistics book for critical values of the chi-square distribution). There-

fore, because our obtained χ2  difference is greater than 3.841, we can con-

clude that the change in the model resulted in a signifi cant ( p  < 0.05) 

improvement in model fi t. 

 Job Satisfaction Scale Confi rmatory Factor Analysis Example 

 We are now going to look at a detailed example of a CFA of the Job Sat-

isfaction Scale (JSS; Koeske, Kirk, Koeske, & Rauktis, 1994) using Amos 

7.0 (the raw data can be downloaded from this book’s companion Web 

site). The JSS (Koeske, Kirk, Koeske, & Rauktis, 1994) is a 14-item self-

report questionnaire to assess overall satisfaction with employment. As 

Koeske and colleagues (1994) noted in their introduction, a valid and 

reliable measure of job satisfaction was needed to advance research and 

practice in the area of job satisfaction. Much of the prior social work 

literature approached job satisfaction as a unidimensional factor, rather 

than as a multidimensional construct with a number of different facets, 

such as “intrinsic versus extrinsic, interpersonal relations, pay and ben-

efi ts … [The JSS is a] brief and direct facet-based measure of job satisfac-

tion among people employed in social services” (Koeske et al., 1994). It 

is important to note that whereas several theories have been used as the 

foundation for the job satisfaction construct (van Saane, Sluiter, Verbeek, 

& Frings-Dresen, 2003), Koeske and colleagues did not provide a specifi c 

theoretical foundation for their measure. 

 Responses on the JSS are measured on a seven-point Likert-type 

scale ranging from 1 (very dissatisfi ed) to 7 (very satisfi ed). Items are 

categorized into three subscales.  Intrinsic dynamics  include the factors 

specifi c to the nature of the work, the type of clients served, and coworker 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
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 interaction.  Organizational structure  includes the quality of supervision, 

clarity of job demands, adequacy of funding, and opportunity for em-

ployee input. The  salary and promotion  subscale includes items on salary 

and benefi ts and the opportunity for advancement. 

 The JSS yields a full-scale score in addition to the three subscale 

scores (Koeske & Kelly, 1995). The JSS has adequate reliability and valid-

ity and internal consistency reliabilities have been reported between 0.83 

and 0.89 for the full scale and subscales (Koeske & Kelly, 1995). For the 

full JSS scale and the three subscales, higher scores indicate higher levels 

of job satisfaction. 

 Factor Structure of the Job Satisfaction Scale 

 Using an initial merged sample ( n  = 159), “The initial 16-item analysis 

yielded a four-factor structure, with the fourth factor containing only a 

single variable or facet (amount of funding for programs). In addition, 

one item, interpersonal relations with fellow workers, loaded weakly and 

complexly on the fi rst two factors and had the lowest communally [sic] 

in the set. Consequently, these two items were dropped, and the data were 

reanalyzed with a three-factor extraction criterion” (Koeske et al., 1994). 

Using principal axes extraction with varimax rotation, Koeske et al. 

reported that all three factors had eigenvalues greater than 1, 53.5% of 

the common variance was explained, and all fi nal communalities were 

0.35 or greater. Oblique rotation did not “markedly alter or improve the 

solution” (Koeske et al., 1994). These initial analyses were conducted on 

data collected using an 11-point response scale of –5 (very dissatisfi ed) 

to +5 (very satisfi ed). 

 The initial 14-item factor structure was partially replicated in a sam-

ple of 176 NASW members. However, 3 of the original 14 items were 

replaced, and a new 7-point response scale was used (1 = very dissat-

isfi ed; 7 = very satisfi ed). However, because the results were somewhat 

different, a two-factor solution was also tested in both samples. “In gen-

eral, the two-factor solution produced a good result for both the merged 

and the NASW samples. ‘Chances for acquiring new skills’ was the only 

complex item in both analyses [with loadings of .41 on intrinsic, .29 on 
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 organization, and .37 on salary and promotion]. The supervision, sal-

ary, and promotion items all loaded on the organization-referring fac-

ets, producing a convincing extrinsic job satisfaction (EJS) factor; the IJS 

[intrinsic job satisfaction] factor remained intact. As might be expected, 

however, the salary and promotion items had weak loadings on the ex-

trinsic factor in the two-factor solution for the merged sample” (Koeske 

et al., 1994). 

 Based on the set of analyses, Koeske et al. (1994) concluded “the 

14-item Job Satisfaction Scale is a short, reliable, and valid measure of job 

satisfaction in the human services. The intrinsic and organization satisfac-

tion subscales can provide more specifi c information, and we suggest sum-

ming the salary and promotion items to provide a third scale. The salary 

and promotion pair not only split off as a separate factor in most factor 

analyses, they also relate differently from IJS [intrinsic job satisfaction] and 

OJS [organizational job satisfaction] to many other variables. An extrinsic 

score that encompasses OJS and salary and promotion may, nonetheless, 

be theoretically compatible and suitable in some circumstances.” In a later 

study, a 13-item version of the JSS was used with a three-factor “structure 

refl ecting intrinsic job satisfaction (e.g., challenge of the job, rewards of 

working with clients), organizational job satisfaction (e.g., amount of 

 authority granted), and extrinsic satisfaction (e.g., salary and benefi ts)” 

(Belcastro & Koeske, 1996). Alphas for the intrinsic, organizational, and 

extrinsic subscales were 0.89, 0.70, and 0.34, respectively; the 13-item scale 

had an alpha of 0.90. I have provided detailed information about the devel-

opment and testing of the JSS because the factor analysis fi ndings and their 

conclusions provide important information for modifi cations that can be 

reasonably made in the CFA model that is tested here. 

 Data for this Example 

 The data for this example are from a study of U.S. Air Force Family Advo-

cacy Program (FAP) workers (Bean, Harrington, & Pintello, 1998; Har-

rington, Bean, Pintello, & Mathews, 2001). Based on the Koeske et al. 

(1994) article, we used the 16-item version of the JSS and the 7-point 

 response set. Item 15 “Your feeling of success as a professional” was 
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changed to “Your feeling of success as a social worker/nurse” to be more 

applicable for the FAP workers. The sample included 139 FAP workers 

and the response rate for the survey was 74%. Cronbach’s alpha was 0.89 

for the 16-item full scale, 0.86 for the 7-item intrinsic subscale, 0.84 for 

the 5-item organizational subscale, and 0.64 for the 2-item salary/promo-

tion subscale. These are acceptable levels of internal consistency reliability 

for the full, intrinsic, and organizational scales. The internal consistency 

reliability for the salary/promotion subscale is a little lower than desirable, 

and analyses involving this subscale should be interpreted with caution. 

 Table 4.1 provides a list of the JSS items by subscale, means, medi-

ans, skewness, kurtosis, and number of missing cases calculated using 

SPSS 15.0. The data presented in Table 4.1 are based on all available data 

(similar to using pairwise deletion), so the sample size varies from 139 

for items that all participants answered to a low of 116 for the item that 

23 participants did not answer (JSS15). 

 Data Considerations 

 As discussed in Chapter 3, there are several important data consider-

ations that need to be addressed, including missing data, normality, and 

sample size requirements. 

 Missing Data 

 As part of preparing data for analysis, it is important to look for missing 

data. In the FAP dataset, there was some missing data on the JSS. Ap-

proximately 80% of the respondents provided valid responses to all 16 

JSS items ( n  = 110; 79.1%). Nineteen (13.7%) respondents had missing 

data on one item, and 10 (7.2%) respondents missed two to fi ve items. 

Table 4.1 provides the number of respondents who did not answer the 

item for each JSS item. 

 As discussed in Chapter 3, there are two recommended options for 

handling missing data:  (1)  run the analysis with missing data allowing 

the software to estimate parameters (i.e., direct ML), or  (2)  impute (i.e., 

use computer software to replace missing values with plausible guesses 



Table 4.1 FAP Sample JSS Items, Means, Medians, Skewness, Kurtosis, and Percent Missing (n = 139)

Items by Subscale Mean Median Skewness (se skew) Kurtosis (se kurt)
n and % 
Missing

Intrinsic Job Satisfaction
 1. Working with your clients. 5.90 6.00 –0.547 (0.209) –0.773 (0.416) 5   (3.6%)
 6. The challenge your job provides you. 5.26 6.00 –1.004 (0.207)  0.248 (0.411) 2   (1.4%)
 8. Chances for acquiring new skills. 4.44 5.00 –0.358 (0.206) –0.775 (0.408) 0       (0%)
 9. Amount of client contact. 5.47 6.00 –1.017 (0.208)  0.334 (0.413) 3   (2.2%)
10. Opportunities for really helping people. 5.53 6.00 –1.334 (0.207)  1.729 (0.411) 2   (1.4%)
15.  Your feelings of success as a social worker/

nurse.
5.39 6.00 –1.152 (0.225)  0.648 (0.446) 23 (16.5%)

16. Field of specialization you are in. 5.42 6.00 –1.046 (0.209)  0.947 (0.414) 4   (2.9%)

Organizational Job Satisfaction
 2.  The amount of authority you have been given to 

do your job.
5.10 6.00 –0.833 (0.206) –0.463 (0.408) 0       (0%)

 7. The quality of supervision you receive. 4.28 5.00 –0.252 (0.206) –1.446 (0.410) 1   (0.7%)
12. Clarity of guidelines for doing your job. 4.27 5.00 –0.170 (0.207)  –1.219     (.411) 2   (1.4%)
13.  Opportunity for involvement in decision-

making.
4.78 5.00 –0.597 (0.206) –0.644 (0.408) 0       (0%)

14.  The recognition given your work by your 
supervisor.

4.32 4.00 –0.277 (0.206) –1.271 (0.410) 1   (0.7%)

Salary and Promotion Job Satisfaction
 4. Your salary and benefi ts. 4.75 5.00 –0.569 (0.206) –0.729 (0.410) 1   (0.7%)
 5. Opportunities for promotion. 2.87 2.50  0.641 (0.208) –0.718 (0.413) 3   (2.2%)

Items Included in JSS Full Scale Score, but not on any Subscales
 3. Interpersonal relations with fellow workers. 4.99 5.00 –0.713 (0.206) –0.475 (0.408) 0       (0%)
11. Amount of funding for programs. 3.33 3.00  0.274 (0.206) –1.013 (0.410) 1   (0.7%)
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or estimates of what a response might have been) the missing data before 

running the analysis (Brown, 2006). For the current example, the analy-

ses were fi rst performed on the raw data (i.e., without imputing missing 

data) in Amos 7.0 using direct ML and estimate means and intercepts, 

which is an option under  Analysis Properties ,  Estimation,  to handle the 

missing data. Because this approach does not include generation of 

modifi cation indices, we will also impute the missing data and rerun the 

analysis in Amos 7.0 (this analysis is described later in this chapter). 

 Normality 

 Skewness and kurtosis indices are presented in Table 4.1. Following 

Kline’s (2005) suggestion that only variables with skew index absolute 

values greater than 3 and kurtosis index absolute values greater than 10 

are of concern, none of the variables in this analysis has problematic 

levels of skewness or kurtosis. Therefore, the JSS data appear to be suf-

fi ciently univariate normally distributed. By default, Amos 7.0 does not 

report normality check statistics, and they are not available for data with 

missing values. 

 Sample Size 

 With a sample size of 139 for this example, Kline (2005) would consider 

this a medium sample size—not so small as to be untenable, but cer-

tainly not large either. Given the medium sample size, caution should be 

used in drawing conclusions, and the possibility of low power should be 

considered. 

 Conducting the Confi rmatory Factor Analysis in Amos 

 Figure 4.1 shows the Amos 7.0 Graphics input used to run the initial 

CFA on the JSS. The Graphics interface in Amos 7.0 is easy to use, and 

the drawing features are similar to those in Microsoft Word; brief in-

structions for running a CFA in Amos are provided in Appendix A. One 

of the advantages of Amos is its relative ease of use, and the  graphics 
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 interface makes it quite easy to run an analysis if you know what it 

should look like. 

 Amos Graphics follows the conventions of structural equation 

modeling (SEM) diagrams. The ovals represent latent (or unobserved) 

variables—in this case,  Intrinsic ,  Organizational , and  Salary/Promotion

represent the three subscales of the JSS. The rectangles represent observed 

variables, which are the actual JSS items (as listed in Table 4.1). The curved 

double-headed arrows represent the correlations or covariances among 

the latent variables (for the standardized and unstandardized solutions, 

respectively), and the straight single-headed arrows represent the fac-

tor loadings of the observed variables on the latent variables. The small 

circles with arrows pointing from the circles to the observed variables 

represent errors or unique factors (Arbuckle, 2006b). Notice in Figure 4.1 

Organizational

e2JSS2

e7JSS7

e12JSS12

e13JSS13

e14JSS14

Salary/Promotion
e4JSS4

e5JSS5

Intrinsic

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

e1JSS1

1
e6JSS6

e8JSS8

e9JSS9

e10JSS10

e15JSS15

e16JSS16

Figure 4.1 JSS CFA Model Amos 7.0 Graphics Input File
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that each latent variable has a 1 next to the path from it to one observed 

variable (e.g., from  Intrinsic  to JSS1). This serves to constrain the param-

eter and defi ne the scale of the latent variable (Arbuckle, 2006b); each 

latent variable must be scaled. 

 Job Satisfaction Scale Confi rmatory Factor Analysis Amos 7.0 Output 

 The standardized estimates output provided by Amos 7.0 using ML esti-

mation with missing data is shown in Figure 4.2. The correlations among 

the latent variables are shown next to the curved lines. The correlation 

between  Intrinsic  and  Organizational  is 0.66, the correlation between 

Intrinsic  and  Salary/Promotion  is 0.39, and the correlation between  Orga-

nizational  and  Salary/Promotion  is 0.49. These correlations suggest that 

the latent variables are somewhat related, as would be expected given that 

they are all hypothesized to be aspects of job satisfaction, but the correla-

tions are not so high as to suggest that they are all measuring the same 

construct. The factor loadings are shown on the arrows from the latent 

variables to the observed variables. The loadings for the seven variables 

on  Intrinsic  range from 0.47 (JSS8) to 0.83 (JSS10 and JSS15). The load-

ings for the fi ve variables on  Organizational  range from 0.56 (JSS12) to 

0.80 (JSS13), and the loadings for the two variables on  Salary/Promotion

are 0.54 (JSS4) and 0.94 (JSS5). All loadings and correlations among the 

latent variables are signifi cant (p < 0.05) and all are 0.47 or greater. Using 

the rules of thumb (Tabachnick & Fidell, 2007) presented in Chapter 2, 

all the factor loadings are considered fair to excellent, and all indicator 

variables signifi cantly load on the expected latent variable. 

 The numbers at the upper right hand corner of each observed vari-

able are the squared multiple correlations for each observed variable. For 

example, the squared multiple correlation for JSS1 is 0.35, which indi-

cates that 35% of the variance in JSS1 is accounted for by  Intrinsic  and 

“is an estimate of the lower bound on the reliability” (Arbuckle, 2006b, 

p. 148) for this item. The remaining 65% of the variance in JSS1 is ac-

counted for by the unique factor e1, which represents the unique aspects 

of the item or measurement error. The squared multiple correlations for 

the JSS items range from 0.22 for JSS8 to 0.88 for JSS5. 
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 Model Fit 

 The initial three-factor JSS CFA model did not fi t well, with χ2  = 221.875, 

df = 74, and p less than 0.0005. For this example, all fi t indices provided 

by Amos 7.0 are shown in Table 4.2. In addition to the fi t indices rec-

ommended by Brown (2006), Amos provides a number of additional fi t 

indices that you may see in the literature; although not all fi t indices are 

recommended, different journals may have different reporting require-

ments. Using Brown’s (2006) recommendations of RMSEA close to 0.06 

or less; CFI close to 0.95 or greater; and TLI close to 0.95 or greater, we 

see that this model does not fi t well, with RMSEA = 0.120, CFI = 0.827, 

and TLI = 0.755. These fi t indices suggest that the model needs to be 

modifi ed. 
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Figure 4.2 FAP Sample JSS CFA Model Standardized Estimates (n = 139) 



Table 4.2 FAP Sample Three-Factor JSS CFA Model Fit Summary (n = 139) 
(Amos 7.0 Output)

CMIN

Model NPAR CMIN DF p CMIN/DF

Default model 45 221.875 74 0.000 2.998
Saturated model 119   0.000 0
Independence model 14 959.792 105 0.000 9.141

Baseline Comparisons

Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI

Default model 0.769 0.672 0.833 0.755  .827
Saturated model 1.000 1.000 1.000
Independence model 0.000 0.000 0.000 0.000 0.000

Parsimony-Adjusted Measures

Model p-RATIO p-NFI p-CFI

Default model  .705 .542 .583
Saturated model  .000 .000 .000
Independence model 1.000 .000 .000

NCP

Model NCP LO 90 HI 90

Default model 147.875 106.907 196.476
Saturated model   0.000   0.000   0.000
Independence model 854.792 759.389 957.645

FMIN

Model FMIN F0 LO 90 HI 90

Default model 1.608 1.072 0.775 1.424
Saturated model 0.000 0.000 0.000 0.000
Independence model 6.955 6.194 5.503 6.939

RMSEA

Model RMSEA LO 90 HI 90 p-CLOSE
Default model .120 .102 .139 .000
Independence model .243 .229 .257 .000

AIC

Model AIC BCC BIC CAIC

Default model 311.875 322.851
Saturated model 238.000 267.024
Independence model 987.792 991.207

(continued )
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 Multiple models (i.e., default, saturated, and independence) are 

shown for many of the fi t indices. The  default model  is the model speci-

fi ed by the user, so this will provide the fi t indices for the model you are 

testing. The  saturated model  is the most general model possible without 

any constraints; “it is a vacuous model in the sense that it is guaranteed to 

fi t any set of data perfectly. Any Amos model is a constrained version of 

the saturated model” (Amos 7.0 Reference Guide Appendix C: Measures 

of Fit). The  independence model  is the opposite extreme of the saturated 

model and “is so severely constrained that you would expect it to provide 

a very poor fi t to any interesting set of data. It frequently happens that 

each one of the models that you have specifi ed can be so constrained as 

to be equivalent to the independence model” (Amos 7.0 Reference Guide 

Appendix C: Measures of Fit). Finally, a  zero model  is available for all 

estimation methods except ML; in this model, all parameters are fi xed 

at zero (the zero model is not shown in Table 4.2 because ML estimation 

was used for this model). 

 One of the nice features of Amos 7.0 is that many headings in the Text 

Output shown in Table 4.2 are hyperlinks, and clicking on them will open 

a box that describes the fi t index and provides additional information 

about it. For example, clicking on RMSEA will produce the information 

box shown in Figure 4.3; notice that the defi nitions for RMSEA and the 

confi dence interval (labeled LO 90 and HI 90), a relevant reference, and a 

rule of thumb for interpretation are provided. 

ECVI

Model ECVI LO 90 HI 90 MECVI

Default model 2.260 1.963 2.612 2.339
Saturated model 1.725 1.725 1.725 1.935
Independence model 7.158 6.467 7.903 7.183

HOELTER

Model HOELTER .05 HOELTER .01

Default model 60 66
Independence model 19 21

Table 4.2 FAP Sample Three-Factor JSS CFA Model Fit Summary (n = 139) 
(Amos 7.0 Output) (continued )



Figure 4.3 Amos 7.0 Information Box for RMSEA 
in Text Output Model Fit Summary Table



 Missing Data and Model Modifi cation 

 Because the initial model does not fi t well, we may want to consider 

modifi cations, which can be based on modifi cation indices (MI) or ex-

amination of residuals. At this point, we still have incomplete data, there-

fore MI are not available in Amos 7.0. As discussed earlier, prior research 

and theory are important considerations for specifying a CFA model. 

However, although the prior work with the JSS suggests some possible 

 modifi cations, MI would also be helpful. 

 To examine the MI, SPSS missing values analysis (MVA) using the 

expectation maximization algorithm was used to impute missing data 

for the FAP sample. It is important to note that Brown (2006) indicates 

that this approach has limitations and may result in inconsistent stan-

dard errors and, consequently, compromised confi dence intervals and 

signifi cance tests; however, other authors (e.g., Schafer & Graham, 2002) 

recommend this approach. After running the MVA to impute missing 

data, we have a “complete” data set because all missing values have been 

replaced with plausible values. We can now use Amos to generate MI. 

Figure 4.4 shows the standardized output from Amos 7.0 for the FAP 

sample with imputed missing data. 

 As can be seen by comparing Figures 4.2 and 4.4, the standardized es-

timates are very similar before and after imputing the missing data. Simi-

larly to the original model, this model does not fi t well, with RMSEA = 

0.130, CFI = 0.821, and TLI = 0.780. (Imputing missing data should 

not result in extremely different parameter estimates or fi t indices, and 

it is important to compare the analyses conducted both ways. If there 

are major differences between the analyses, then more work is needed to 

examine the missing data patterns.) However, in Amos 7.0, this model 

differs from the original in that we can now obtain an assessment of nor-

mality and MI (see Tables 4.3 and 4.4, respectively). 

 Normality Check 

 An additional benefi t of having a data set without missing data in Amos 

7.0 is that you can obtain normality checks, including skewness and 

kurtosis indexes (as shown in Table 4.3). Mardia’s coeffi cient is a test 
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of  multivariate normality—specifi cally kurtosis—available in Amos. In 

Table 4.3, Mardia’s coeffi cient is equal to 40.328, and its critical ratio is 

equal to 11.232. In Amos 7.0, the critical ratio for Mardia’s coeffi cient 

is equal to Mardia’s coeffi cient divided by its standard error; “assuming 

normality in very large samples, each of the critical values shown in the 

table [i.e. Table 4.3] … is an observation on a standard normally dis-

tributed random variable” (Amos 7.0 Discussion of NormalityCheck ex-

ample). In other words, the critical ratio can be interpreted as a  z -score. 

It is very important to note that the Amos 7.0 help information reports 

that this information is of limited use, and it is only of any use when one 

knows how robust to non-normality the chosen estimation procedure is. 

Using the criteria provided by Kline (2005), skewness and kurtosis do not 

appear to be problematic for this example. 
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 Modifi cation Indices 

 The MI generated by Amos include the actual MI estimate (e.g., 6.682 

for adding a covariance between e13 and e5) and Par Change, which is 

the estimated parameter change that would be obtained if this change 

were made to the model. Changes made to the model based on MI are 

data-driven, and as such, making changes based on the MI moves the re-

searcher from the realm of confi rmatory analysis into exploratory analy-

sis. However, with that caution in mind, it can be helpful to examine 

MI for ways to improve model fi t and for possible directions for future 

research. Because the JSS CFA model does not fi t well, it seems reasonable 

to explore ways of possibly improving model fi t. 

 Examining the MI in Table 4.4, two things stand out. First, the largest 

MI suggests adding a covariance between the errors for JSS9 and JSS10, 

which allows the model to include an estimate of the amount of relation-

ship between these two errors. Job Satisfaction Scale item 9 is amount of 

contact with clients and JSS10 is opportunity for really helping people; 

Table 4.3 Amos Output Assessment of Normality for FAP JSS Model With 
Imputed Data (n = 139)

Assessment of Normality (Group Number 1)

Variable min max skew c.r. kurtosis c.r.

JSS5 0.741 7.000  0.607  2.921 –0.786 –1.890
JSS4 1.000 7.000 –0.552 –2.657 –0.748 –1.799
JSS14 1.000 7.000 –0.260 –1.254 –1.272 –3.062
JSS13 1.000 7.000 –0.591 –2.843 –0.663 –1.597
JSS12 1.000 7.000 –0.170 –0.821 –1.215 –2.925
JSS7 1.000 7.000 –0.262 –1.262 –1.433 –3.449
JSS2 1.000 7.000 –0.824 –3.968 –0.489 –1.178
JSS16 1.000 7.000 –1.000 –4.812  0.761  1.831
JSS15 0.670 7.000 –1.025 –4.934  0.380  0.913
JSS10 1.000 7.000 –1.258 –6.057  1.352  3.253
JSS9 1.000 7.000 –0.991 –4.772  0.213  0.514
JSS8 1.000 7.000 –0.354 –1.705 –0.790 –1.901
JSS6 1.000 7.000 –0.982 –4.725  0.199  0.479
JSS1 3.000 7.000 –0.547 –2.631 –0.758 –1.824
Multivariate 40.328 11.232

c.r.= critical ratio
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both are part of the  Intrinsic  factor. It makes sense that the amount of 

contact a professional has with clients would be related to opportunities 

for helping people, in which case adding the covariance between these 

two errors may be reasonable. (It is important to note that one can al-

most always come up with a justifi cation for why two error terms could 

be related and one should be cautious about stretching this logic too far.) 

The second thing that is apparent from the MI is that several of them in-

volve JSS8, and this item in particular seems to be related to all three fac-

tors. From the earlier discussion of the development of the JSS, we know 

that Koeske and colleagues (1994) found that item 8 was complex and 

had loadings on all three factors. Given their fi nding, it is not surprising 

that there are a number of MI associated with JSS8. Specifi cally, the MI 

suggest adding paths from  Salary/Promotion  and  Organizational  to JSS8 

(MI of 10.615 and 8.696, respectively). In addition, the MI suggest add-

ing paths between JSS8 and fi ve other variables (JSS5, JSS6, JSS7, JSS13, 

and JSS14). Finally, the MI suggest adding covariances between the error 

for JSS8 and all three latent variables and three other errors (e5, e6, and 

e13). This pattern may either suggest allowing this item to be related to 

all three factors or dropping it. 

 Because examination of the MI suggests two primary changes to the 

model, we will examine the impact of both. First, we will add a covariance 

between e9 and e10, meaning that we will allow the errors for items JSS9 

and JSS10 to be correlated or covary. This results in a nested model (the 

parent model is the one reported in Figure 4.2) with χ2  = 191.072 and 

df  = 73. Comparing this with the parent model, which had χ2  = 221.875 

and df  = 74, we can use the χ2  difference test to determine whether the 

change to the model results in a signifi cant improvement. The difference 

between χ2  for the two models is 221.875 – 191.072 = 30.803,  df  = 1, p less 

than 0.0005, indicating that adding the covariance between the errors for 

JSS9 and JSS10 results in an improvement in the model. Other fi t indices 

also show some improvement in model fi t (RMSEA = 0.108, CFI = 0.878, 

and TLI = 0.847); however, the model still does not fi t well. 

 Examining the MI for this modifi ed model, we see that several of the 

suggested modifi cations still involve JSS8, including adding paths from 

Organizational  and  Salary/Promotion  to JSS8, and adding paths between 



Table 4.4 Amos Selected Output Modifi cation Indices for FAP JSS Model With 
Imputed Data (n = 139)

Covariances: (Group Number 1—Default Model)

Modifi cation Index Par Change

e13 ↔ e5  6.682  0.392
e7 ↔ e14  6.679  0.497
e16 ↔ e4  7.020  0.393
e16 ↔ e13  4.124 –0.230
e15 ↔ e4  4.881  0.286
e15 ↔ e13  4.432  0.209
e15 ↔ e16 15.495  0.355
e10 ↔ e4  4.051 –0.262
e10 ↔ e16 14.870 –0.352
e9 ↔ Salary/Promotion  7.576 –0.267
e9 ↔ e13  6.104 –0.292
e9 ↔ e12  6.016  0.376
e9 ↔ e16 10.616 –0.355
e9 ↔ e15  9.667 –0.292
e9 ↔ e10 46.201  0.647
e8 ↔ Salary/Promotion  6.104  0.330
e8 ↔ Organizational 10.387  0.514
e8 ↔ Intrinsic  9.251 –0.224
e8 ↔ e5 10.185  0.645
e8 ↔ e13  9.886  0.512
e6 ↔ Salary/Promotion  6.856  0.262
e6 ↔ e5 10.284  0.486
e6 ↔ e12 17.750 –0.666
e6 ↔ e8  5.614  0.384
e1 ↔ e16  6.284  0.205

Regression Weights: (Group Number 1—Default Model)

Modifi cation Index Par Change

JSS5 ← JSS8  7.396  0.194
JSS4 ← JSS16  4.058  0.183
JSS13 ← JSS8  8.548  0.168
JSS12 ← JSS6  6.719 –0.209
JSS16 ← JSS4  6.821  0.135
JSS16 ← JSS10  4.293 –0.131
JSS16 ← JSS9  5.052 –0.139
JSS15 ← JSS4  4.288  0.093
JSS15 ← JSS13  4.300  0.096
JSS15 ← JSS16  7.636  0.156

(continued )
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all three latent variables and the error term for JSS8. Given this pattern 

and Koeske and colleagues’ (1994) fi nding that JSS8 was a complex item, 

we will try omitting this variable from the model. This second modifi ca-

tion results in the following fi t indices: χ2  = 148.030 and  df  = 61, RMSEA = 

0.102, CFI = 0.904, and TLI = 0.877. Although this model still does not 

reach the guidelines provided by Brown (2006), the model fi ts noticeably 

better than the earlier two models. 

 Finally, examining the MI for this second modifi ed model, there are 

now many fewer MI reported and most are smaller than in the initial 

model (see Table 4.5). The largest remaining MI suggest adding error co-

variances between e6 and e12 (MI = 13.976) and e5 and e6 (MI = 10.626). 

JSS5 is “opportunities for promotion” (on the  Salary/Promotion  factor), 

JSS6 is “the challenge your job provides you” (on the  Intrinsic  factor), and 

JSS12 is “clarity of guidelines for doing your job” (on the  Organizational

factor). One could argue that all three items may refl ect constraints put 

JSS15 ← JSS9  4.732 –0.117
JSS10 ← JSS4  6.273 –0.113
JSS10 ← JSS16  7.216 –0.152
JSS10 ← JSS9 22.265  0.255
JSS9 ← Salary/Promotion  6.907 –0.272
JSS9 ← JSS5  6.529 –0.135
JSS9 ← JSS4  6.917 –0.142
JSS9 ← JSS16  5.089 –0.152
JSS9 ← JSS10 13.341  0.241
JSS8 ← Salary/Promotion 10.615  0.464
JSS8 ← Organizational  8.696  0.304
JSS8 ← JSS5 11.488  0.246
JSS8 ← JSS14  8.796  0.193
JSS8 ← JSS13 14.975  0.295
JSS8 ← JSS7  5.537  0.143
JSS6 ← JSS5  5.047  0.122
JSS6 ← JSS12 13.526 –0.204
JSS6 ← JSS8  4.306  0.119

Table 4.4 Amos Selected Output Modifi cation Indices for FAP JSS Model With 
Imputed Data (n = 139) (continued )

Regression Weights: (Group Number 1—Default Model)

Modifi cation Index Par Change
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on professionals by the organization in which they are employed, which 

would suggest that it might be reasonable to add covariances between 

e6 and e12 and between e6 and e5. (At this point, we are clearly into 

data-driven changes, and as such the modifi ed model would need to be 

replicated!) 

 The fi nal version of the JSS model retains the original three-factor 

structure but drops item 8 and adds three error covariances between the 

error terms for items 9 and 10, items 6 and 12, and items 5 and 6. The 

Amos Graphics fi nal modifi ed model is shown in Figure 4.5, and the stan-

dardized output is shown in Figure 4.6. This third and fi nal modifi cation 

Table 4.5 Amos Selected Output Modifi cation Indices for FAP JSS Model With 
Imputed Data After Making Modifi cations 1 and 2 (n = 139)

Covariances: (Group Number 1—Default Model)

Modifi cation Index Par Change

e13 ↔ e5  6.891  0.399
e7 ↔ e14  7.057  0.514
e16 ↔ Organizational  5.765 –0.254
e16 ↔ e4  5.014  0.312
e16 ↔ e13  6.870 –0.279
e15 ↔ e13  4.496  0.197
e10 ↔ e16  6.066 –0.177
e9 ↔ e13  5.052 –0.223
e6 ↔ Salary/Promotion  5.141  0.247
e6 ↔ e5 10.626  0.508
e6 ↔ e4  4.028 –0.328
e6 ↔ e12 13.976 –0.607
e1 ↔ e16  5.417  0.182
e1 ↔ e9  8.422  0.211

Regression Weights: (Group Number 1—Default Model)

Modifi cation Index Par Change

JSS12 ← JSS6  6.397 –0.204
JSS16 ← JSS4  4.114  0.098
JSS16 ← JSS13  5.918 –0.121
JSS16 ← JSS10  4.438 –0.125
JSS9 ← JSS1  5.290  0.180
JSS6 ← JSS5  4.967  0.124
JSS6 ← JSS12  9.699 –0.177
JSS1 ← JSS9  5.469  0.114
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results in the following fi t indices: χ2  = 125.049,  df  = 59, RMSEA = 0.090, 

CFI = 0.927, and TLI = 0.903. Using Brown’s (2006) recommendations of 

RMSEA close to 0.06 or less, CFI close to 0.95 or greater, and TLI close to 

0.95 or greater, we see that this model does not fi t perfectly, but it comes 

much closer to the recommended levels than the previous models. 

 This sequence of modifi cations has resulted in a better fi tting model, 

and whereas the changes seem plausible given the fi ndings reported by 

Koeske et al. (1994), the changes are primarily data-driven, and as such 

the model should be tested in an independent sample, which we will do 

in the Chapter 5. Two other general comments about this CFA example: 

First, the  Salary/Promotion  subscale only has two items, which may con-

tribute to the moderate fi t of this model. In general, models should have 

at least three indicators for each latent variable. Second, there are several 
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limitations to this analysis, including the moderate sample size and mod-

ifi cations made to one of the items for the original study. Therefore, the 

fi ndings should be interpreted cautiously and  not  taken as an indication 

of problems or limitations with the JSS. 

 Chapter Summary 

 This chapter examined assessing CFA model fi t and model revision. As-

sessment of model fi t involves considering a number of indices of model 

fi t; fi t indices were grouped into categories of absolute fi t, parsimony 

correction, comparative fi t, and predictive fi t. Recommendations for 

identifying acceptable model fi t were presented, and methods of fi nding 
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sources of poor fi t were discussed. Model revision, including the use and 

testing of nested models, modifi cation indices, localized areas of strain, 

and specifi cation search, was discussed. A detailed CFA example using 

JSS data was presented, and each aspect of conducting a CFA, including 

prior research and theory, data considerations, conducting the CFA in 

Amos 7.0, model fi t, and model modifi cation, was addressed. 

 Suggestions for Further Reading 

 See Arbuckle (2006b) and Byrne (2001a) for much more information on 

how to use Amos 7.0 Graphics. 
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 5 

 Use of Confi rmatory Factor 
Analysis with Multiple Groups 

 This chapter will focus on using multiple-group confi rmatory factor 

analysis (CFA) to examine the appropriateness of CFA models across 

different groups and populations (multiple-group CFA across time will 

be briefl y discussed in Chapter 6). Two examples of multiple-group CFA 

from the social work literature will be discussed, and then we will pres-

ent a detailed multiple-group CFA building on the Job Satisfaction Scale 

(JSS) example presented in the Chapter 5. Please note that this is one of 

the more complex uses of CFA, and this chapter is intended to briefl y 

introduce this topic; interested readers should examine other resources 

provided at the end of the chapter for more information. 

 Multiple Group Confi rmatory Factor Analysis 

 One of the major advantages of CFA is the ability to examine the equiva-

lence of the measurement and structural models across multiple groups 

(Brown, 2006). The measurement model includes the measurement 

characteristics of the observed measures, including the factor loadings, 

intercepts, and residual variances. The structural model includes the la-

tent variables and their factor variances, covariances, and latent means. 
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In addition, multiple-group CFA compares groups within the latent 

variable measurement model context, adjusting for measurement errors, 

correlated residuals, and so forth. Multiple-group CFA involves simulta-

neous CFAs in two or more groups, using separate variance–covariance 

matrices (or raw data) for each group. The equivalence or invariance of 

measurement can be tested by placing equality constraints on param-

eters in the groups. Equality constraints require parts of the model to be 

equivalent across groups; they will be discussed in detail and will be used 

in a data example later in this chapter. 

 Considerations for Conducting a Multiple-Group Confi rmatory Factor Analysis 

 Several factors may affect the appropriateness of conducting a multi-

ple-group CFA. As discussed in Chapter 3, CFA requires relatively large 

samples. Several aspects of CFA testing (e.g., the χ2  difference test) are 

dependent on sample size, so equal or similar size groups will make in-

terpretation easier. However, multiple-group CFA does not require equal 

sample sizes in each group and can be performed with unequal group 

sizes. If unequal groups are be used, then interpretation of the results 

should consider this issue (Brown, 2006). 

 Partial measurement invariance is a second consideration, where in-

variance is present for some, but not all, parameters (Brown, 2006). Byrne 

(2001a) suggests that partial measurement invariance complicates testing 

further invariance but that it can still be performed. Allowing for partial 

measurement invariance can be “very helpful in cases where the evaluation 

of structural parameters is of greatest substantive interest” (Brown, 2006, 

p. 300). There are currently no guidelines for how much invariance is ac-

ceptable. Moreover, analyses with partial invariance are exploratory and 

may capitalize on chance, and therefore, they should be interpreted with 

caution, and fi ndings should be cross-validated if possible (Brown, 2006). 

 Marker variable selection (i.e., scaling the latent variable, as discussed 

in Chapter 2) is a third consideration. Marker variable selection is always 

an important consideration, but it is even more important in multiple-

group CFA, where selection of a marker variable that is not invariant across 

groups could result in poor fi t indices and tests of partial  invariance. 
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Brown (2006) suggests running the multiple-group CFA several times 

with different marker indicators each time. 

 A fi nal consideration involves the use of the χ2  difference test. As dis-

cussed in Chapter 4, there are multiple fi t indices that are recommended 

for testing the goodness of fi t of CFA models. Although χ2  is used for 

testing nested models, it is not generally recommended for testing the 

overall fi t of a model because of its dependence on sample size. However, 

even with this limitation, the χ2  statistic is used for testing invariance 

across multiple groups. Because of the sensitivity to sample size for χ2 , it 

is possible to have a signifi cant χ2  test but not be able to identify any areas 

of strain in the model where constraints should be relaxed, suggesting 

that the signifi cant χ2  is detecting trivial changes without any substantive 

importance (Brown, 2006, p. 303). 

 Steps in Conducting a Multiple-Group Confi rmatory Factor Analysis 

 In its strictest sense, a multiple-group CFA would be fully constrained so 

that all parts of the model have to be exactly equal in all groups. There 

are two basic ways that this can be tested. The fi rst method would be 

to start by testing the fully constrained multiple-group CFA model and 

then relax constraints if the fully constrained model does not fi t well. 

The potential diffi culty with this approach is that if the fully constrained 

model does not fi t well, it can be diffi cult to isolate the parts of the model 

that need to have the constraints relaxed. The second approach is to 

build from the least constrained to a fully constrained multiple-group 

CFA model. Using this approach may involve more steps if the fully con-

strained model ultimately fi ts well, but given that this is far from guaran-

teed, the extra steps will make it easier to identify the parts of the model 

that are not equivalent across groups. 

 Brown (2006, pp. 269–270) recommends the following steps for test-

ing a multiple-group CFA: 

  1. Test the CFA model separately in each group. 
  2. Conduct the simultaneous test of equal form (identical factor 

structure). 
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  3. Test the equality of factor loadings. 
  4. Test the equality of indicator intercepts. 
  5. Test the equality of indicator residual variances (optional). 
  6. Test the equality of factor variances. 
  7. Test the equality of factor covariances (if applicable—that is, there 

is more than one latent factor). 
  8. Test the equality of latent means. 

 The fi rst fi ve steps test measurement invariance; the fi fth step of testing 

the equality of indicator residual variances is optional because it rarely 

holds in real data and is highly restrictive (Brown, 2006). However, this 

condition is less important than the fi rst four steps. Steps six through 

eight test population heterogeneity and would only be tested if that is of 

interest. Because constrained models are nested within less constrained 

models, the χ2  difference test can be used to test whether adding con-

straints signifi cantly changes the fi t of the model. 

 Equality Constraints 

 The different parameters that can be estimated in a CFA model were 

briefl y introduced in Chapter 2. There are three types of parameters: 

(1)  freely estimated,  (2)  fi xed, and  (3)  constrained.  Freely estimated,  or “ free ,” 

parameters are unknowns that are estimated by the analysis. The analysis 

will fi nd the best value for each freely estimated parameter that together 

with other model estimates, will minimize “the differences between the 

observed and predicted variance-covariance matrices” (Brown, 2006, 

p. 237).  Fixed  parameters are set to a specifi c value by the researcher. For 

example, in Chapter 2 we discussed scaling the latent variable, which is 

often done by setting or fi xing the factor loading for one indicator to 

“1” so that the latent variable will be scaled (i.e., have the same unit of 

measurement) to that indicator. Another example of a fi xed parameter 

is when we do not estimate error covariances in a model, in which case 

the error covariances are set or fi xed to 0.  Constrained  parameters are 

unknowns, like free parameters, but in this case, the parameters are not 
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free to be any value because they have been constrained or restricted to 

certain values.  Equality constraints  force the unstandardized parameters 

to be equal; these are the most common type of constrained parameters 

(Brown, 2006, p. 237). 

 It is important to note that the constraints are placed on the  un stan-

dardized solution and the constrained parameters must have the same 

metric. For example, on the JSS, all the items are measured on the same 

Likert-type scale, so they have the same metric, and it would be possible 

to constrain the factor loadings to be equal for all items that load on one 

latent variable. However, if we had indicators measured on different met-

rics (e.g., some on a 7-point Likert-type scale and others on a 1-to-100 

scale), then it would not be appropriate to constrain the parameters to 

be equal. Models with equality constraints are nested models, and there-

fore χ2  difference testing can be used to statistically compare the models 

(Brown, 2006). 

 There are just a few more pertinent defi nitions to cover before we 

turn to the specifi cs of multiple-group CFA.  Congeneric indicators  are 

expected to measure the same construct, but their measurement errors 

are independent and their factor loadings and measurement errors are 

free to vary (Brown, 2006). The CFA model presented in Figure 2.1 is an 

example of a congeneric model. Note that congeneric indicators load on 

only one latent variable. 

 There are two more restrictive types of models.  Tau-equivalent

models have “a congeneric solution in which the indicators of a given 

factor have equal loadings but differing error variances” (Brown, 2006, 

p. 239). If Figure 2.1 were tau-equivalent, observed variables 1, 2, and 

3 would have equal loadings on latent variable 1, and observed vari-

ables 4, 5, and 6 would have equal loadings on latent variable 2; error 

variances would be allowed to differ. Models with  parallel indicators

have the most restrictions, requiring equal loadings and equal error 

variances, meaning that “parallel indicators are assumed to measure 

the latent construct with the same level of precision (i.e., refl ected by 

equivalent error variances)” (Brown, 2006, p. 239). If Figure 2.1 were 

a parallel model, then the observed variables for each latent variable 

would need to have equal loadings and equal error variances. When 
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indicators are parallel, they are interchangeable indicators of a latent 

construct (Brown, 2006, p. 247). 

 Multiple Group Confi rmatory Factor Analysis Examples 
in the Social Work Literature 

 Several examples of multiple-group CFAs can be found in the social work 

literature, and readers are encouraged to look for examples in their sub-

stantive area of interest. We will briefl y review two articles that used 

 multiple-group CFA. 

 Group Engagement Measure 

 Macgowan and Newman (2005) examined the factor structure of the 

Group Engagement Measure across clinical and nonclinical groups. The 

Group Engagement Measure (Macgowan, 1997, cited in Macgowan & 

Newman, 2005) was developed as a 37-item scale with seven dimensions 

based on theory. The sample included 207 adults; data were collected as 

part of three separate studies, which yielded 125 participants from clini-

cal settings and 82 social work graduate students (i.e., the nonclinical 

sample). Confi rmatory factor analyses were conducted using Amos 4.0.1 

with maximum likelihood (ML) estimation. The 37-item model had ac-

ceptable fi t in the combined sample, but the authors eliminated 10 items 

to create a shorter version. The 27-item model fi t well (Standardized 

Root Mean Square Residual [SRMR] = 0.05, root mean square error of 

approximation [RMSEA] = 0.05, comparative fi t index [CFI] = 0.95, and 

factor loadings were all strong). 

 Although the CFA model fi t well in the combined group, minimum 

fi t criteria were not met when the sample was split into the clinical and 

nonclinical groups. Specifi cally, minimum fi t was not achieved in the 

nonclinical student group, and a negative error estimate was found for 

one of the items. Even after deleting the problematic item, fi t indices were 

still unacceptable (CFI = 0.88 and RMSEA = 0.10). The authors then 

re-examined the factor that included the problematic item and decided 
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that the factor (contracting) may not have the same meaning for the stu-

dents and clinical group. The revised six-factor model fi t well in the com-

bined group, but the model still did not fi t adequately in the two separate 

groups. To achieve adequate fi t in both groups, a second factor (atten-

dance) was dropped; the fi nal fi ve-factor model fi t adequately across both 

groups. The authors concluded that separate models of engagement may 

be needed for clinical and nonclinical groups. 

 Safe At Home Instrument 

 The Safe At Home instrument is “a 35-item self-report measure designed 

for social work assessment of individuals’ readiness to change their inti-

mate partner violence behaviors” (Begun et al., 2003, p. 80). Men were 

recruited from two sources in Milwaukee, Wisconsin ( n  = 1,247) and 

Howard County, Maryland ( n  = 112). An initial exploratory factor analy-

sis (EFA) was conducted on a sample of 829 men from the Milwaukee 

sample; a three-factor solution (Precontemplation, Contemplation, and 

Preparation/Action) based on the stages of change model was identifi ed. 

The eight items with the highest loadings on each of the three factors 

were selected, resulting in a 24-item scale. Two CFAs were tested for the 

three eight-item factors identifi ed in the EFA “to determine whether or 

not the scale structure was consistent (a) across new samples and 

(b) across intake and postintervention administrations” (Begun et al., 2003, 

p. 93). The fi rst CFA on intake data included the Howard County sample 

and 418 men from Milwaukee who were not included in the initial EFA. 

Post-intervention data from Howard County and Milwaukee were used 

in the second CFA. Analyses were conducted using LISREL 8.3, with ML 

estimation. 

 An additional CFA was conducted to assess measurement invariance 

across samples from fi ve intervention programs (Begun et al., 2003). 

Begun and colleagues (2003) noted that “whereas the fi t indices change 

very little when moving from the baseline to the full measurement invari-

ance model, the difference in χ2  observed across groups is signifi cant. This 

suggests some lack of measurement invariance” (p. 97). Examination of 

modifi cation indices suggested that one item loaded differently in the 
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groups, and allowing that one item to have different loadings across the 

fi ve samples resulted in “only a marginal reduction in fi t relative to the 

baseline model ( p  > .015), suggesting that apart from this item, the test is 

measurement invariant over the different programs” (p. 97). The authors 

note that the fi ndings were specifi c to men who had been violent to-

ward female intimate partners, and additional research was needed with 

women and for same-sex partners. 

 Job Satisfaction Scale Multiple-Group Confi rmatory Factor Analysis 

 We will continue to use the JSS data presented in Chapter 4 for a  multiple-

group CFA example. The second sample is from an Internet survey of 

social workers; the same 16-item version of the JSS used in the U.S. Air 

Force Family Advocacy Program (FAP) study was included in the survey. 

Ninety-eight respondents completed the JSS as part of the larger Internet 

survey (the data for this example are available at this book’s companion 

Web site). Following Brown’s (2006) recommendations, we will begin by 

conducting the CFA in the two samples separately. 

 The results of the CFA for the FAP sample were reported in Chap-

ter 4. Briefl y, in the FAP sample, the fi nal version of the JSS model re-

tained the original three-factor structure, but dropped item 8 and added 

three error covariances between the error terms for items 9 and 10, items 

6 and 12, and items 5 and 6. The revised model has the following fi t indices: 

χ2  = 125.049,  df  = 59, RMSEA = 0.090, CFI = 0.927, and Tucker–Lewis 

index (TLI) = 0.903. Using Brown’s (2006) recommendations of RMSEA 

close to 0.06 or less; CFI close to 0.95 or greater; and TLI close to 0.95 or 

greater, we see that there is still room for improvement, but the model fi ts 

reasonably well. 

 Internet Sample Job Satisfaction Scale Confi rmatory Factor Analysis 

 Because the modifi cations needed to produce an adequately fi tting model 

in the FAP sample may have been sample-specifi c, we will begin by testing 

the initial JSS three-factor structure in the Internet sample. In Amos 7.0, 
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it is very easy to run the same CFA model on a new sample of data. Open 

the Amos 7.0 Graphics fi le used to run the JSS CFA on the FAP sample 

(shown in Figure 4.1), then click on File, then Data Files, and browse 

under File Name to fi nd the new data set to be analyzed. (After you have 

selected the new data set, you may want to save the Amos fi le to a new 

name so that you can keep the results from the two samples separate.) 

Before conducting the CFA, we need to check the normality assumption 

to determine whether ML estimation can be appropriately used. Because 

the Internet sample has complete data, the assessment of normality is 

available in Amos 7.0 and is shown in Table 5.1 for this sample. Follow-

ing Kline’s (2005) recommendations, none of the variables are consid-

ered signifi cantly skewed or kurtotic, and ML estimation can be used. 

The standardized solution for the Internet sample is shown in Figure 5.1, 

and selected Amos output is presented in Table 5.1. The fi t indices for 

the Internet sample are χ2  = 222.320,  df  = 74, χ2 / df  = 3.004, Root Mean 

Square Residual (RMR) = 0.223, goodness-of-fi t index (GFI) = 0.751, 

TLI = 0.798, CFI = 0.836, RMSEA = 0.144, 90% confi dence interval for 

RMSEA = 0.122 to 0.166, Akaike information criterion (AIC) = 284.320, 

and expected cross-validated index (ECVI) = 2.931. 

 Similarly to the FAP sample JSS CFA, this initial model does not fi t 

well, although all loadings and correlations among the latent variables 

are signifi cant. Correlations among the latent variables range from 0.48 

between  Salary/Promotion  and  Intrinsic  job satisfaction to 0.84 between 

Organizational  and  Intrinsic  job satisfaction. Standardized factor load-

ings range from 0.63 for JSS1 to 0.86 for JSS6 for  Intrinsic  job satisfaction; 

from 0.63 for JSS7 to 0.86 for JSS2 for  Organizational  satisfaction; and 

from 0.56 for JSS4 to 0.79 for JSS5 for  Salary/Promotion  satisfaction. The 

initial model fi t for the Internet sample is remarkably similar to the initial 

model fi t for the FAP sample (see Table 4.2). 

 Internet Sample Model Modifi cation 

 Because the model does not fi t well, we will examine the modifi cation in-

dices (MI) shown in Table 5.1. The pattern of MI for the Internet sample 

is a bit different than the pattern seen for the FAP sample. In the FAP 
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sample, examination of the MI suggested two primary changes to the 

model:  (1)  adding a covariance between e9 and e10, meaning that we 

will allow the errors for items 9 and 10 to be correlated or covary, and 

(2)  dropping JSS8 from the model. Although these changes did not result 

in an adequately fi tting model, fi t was noticeably better. After those two 

modifi cations, the largest remaining MI suggested adding error covari-

ances between e6 and e12 (MI = 13.976) and e5 and e6 (MI = 10.626), 

which resulted in a reasonably well fi tting model for the FAP sample. 

 Examining the MI for the Internet sample, we see that the largest MIs 

are for adding an error covariance between e9 and e14 (MI = 17.373) and 

adding an error covariance between e1 and e9 (MI = 15.558). (Note that 

none of the MI for the Internet sample are as large as those found for 

the FAP sample.) JSS8 again appears to be a complex item, with an MI 
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Table 5.1 Internet Sample JSS CFA Amos 7.0 Output

Assessment of Normality (Group Number 1)

Variable Min Max Skew c.r. Kurtosis c.r.

JSS5 1.000 7.000  0.051  0.205 –1.047 –2.116
JSS4 1.000 7.000 –0.364 –1.473 –0.888 –1.794
JSS14 1.000 7.000 –0.512 –2.069 –1.007 –2.035
JSS13 1.000 7.000 –0.778 –3.145 –0.461 –0.932
JSS12 1.000 7.000 –0.674 –2.723 –0.376 –0.761
JSS7 1.000 7.000 –0.275 –1.113 –1.108 –2.240
JSS2 1.000 7.000 –1.285 –5.195  1.027  2.075
JSS16 1.000 7.000 –1.549 –6.262  2.939  5.939
JSS15 1.000 7.000 –1.109 –4.480  1.103  2.229
JSS10 1.000 7.000 –1.579 –6.381  1.831  3.701
JSS9 1.000 7.000 –1.221 –4.934  1.116  2.256
JSS8 1.000 7.000 –0.697 –2.818 –0.597 –1.207
JSS6 1.000 7.000 –1.303 –5.267  1.282  2.591
JSS1 1.000 7.000 –1.536 –6.207  2.517  5.086
Multivariate 47.461 11.099

Estimates (Group Number 1—Default Model)
Scalar Estimates (Group Number 1—Default Model)
Maximum Likelihood Estimates
Regression Weights: (Group Number 1—Default Model)

Estimate S.E. C.R. p Label

JSS1 ← Intrinsic 1.000
1.567
1.435
1.669
1.315
1.295
1.000
0.874
0.946
1.113
1.052
1.000
1.356
1.360

JSS6 ← Intrinsic 0.227 6.899 *** par_1
JSS8 ← Intrinsic 0.240 5.981 *** par_2
JSS10 ← Intrinsic 0.246 6.786 *** par_3
JSS15 ← Intrinsic 0.209 6.298 *** par_4
JSS16 ← Intrinsic 0.192 6.763 *** par_5
JSS2 ← Organizational
JSS7 ← Organizational 0.128 6.821 *** par_6
JSS12 ← Organizational 0.106 8.931 *** par_7
JSS13 ← Organizational 0.114 9.761 *** par_8
JSS14 ← Organizational 0.126 8.330 *** par_9
JSS4 ← Salary/Promotion
JSS5 ← Salary/Promotion 0.356 3.808 *** par_10
JSS9 ← Intrinsic 0.210 6.490 *** par_11

(continued)



Standardized Regression Weights: (Group Number 1—Default Model)

Estimate

JSS1 ← Intrinsic .632
JSS6 ← Intrinsic .855
JSS8 ← Intrinsic .707
JSS10 ← Intrinsic .836
JSS15 ← Intrinsic .756
JSS16 ← Intrinsic .832
JSS2 ← Organizational .857
JSS7 ← Organizational .633
JSS12 ← Organizational .768
JSS13 ← Organizational .813
JSS14 ← Organizational .732
JSS4 ← Salary/Promotion .558
JSS5 ← Salary/Promotion .789
JSS9 ← Intrinsic .786

Table 5.1 Internet Sample JSS CFA Amos 7.0 Output (continued )

Covariances: (Group Number 1—Default Model)

Estimate S.E. c.r. p Label

Intrinsic ↔ Organizational 0.942 0.204 4.621 *** par_12
Organizational ↔ Salary/
 Promotion

0.941 0.285 3.297 *** par_13

Intrinsic ↔ Salary/Promotion 0.396 0.148 2.668 0.008 par_14

Correlations: (Group Number 1—Default Model)

Estimate

Intrinsic ↔ Organizational 0.840
Organizational ↔ Salary/Promotion 0.686
Intrinsic ↔ Salary/Promotion 0.479

Variances: (Group Number 1—Default Model)

Estimate S.E. c.r. p Label

Intrinsic 0.676 0.200 3.379 *** par_15
Organizational 1.863 0.362 5.142 *** par_16
Salary/Promotion 1.009 0.411 2.459  .014 par_17
e1 1.017 0.154 6.622 *** par_18
e6 0.609 0.110 5.545 *** par_19
e8 1.391 0.216 6.448 *** par_20
e9 0.771 0.126 6.124 *** par_21
e10 0.813 0.141 5.760 *** par_22

(continued)



Estimate S.E. c.r. p Label
e15 0.877 0.140 6.275 *** par_23
e16 0.506 0.087 5.798 *** par_24
e2 0.672 0.132 5.096 *** par_25
e7 2.131 0.327 6.524 *** par_26
e12 1.164 0.194 6.010 *** par_27
e13 1.182 0.209 5.656 *** par_28
e14 1.785 0.288 6.198 *** par_29
e4 2.230 0.397 5.624 *** par_30
e5 1.123 0.459 2.444 0.015 par_31

Table 5.1 Internet Sample JSS CFA Amos 7.0 Output (continued )

Squared Multiple Correlations: (Group Number 1—Default Model)

Estimate

JSS5 .623
JSS4 .312
JSS14 .536
JSS13 .661
JSS12 .589
JSS7 .401
JSS2 .735
JSS16 .692
JSS15 .571
JSS10 .698
JSS9 .619
JSS8 .500
JSS6 .732
JSS1 .399

Modifi cation Indices (Group Number 1—Default Model)
Covariances: (Group Number 1—Default Model)

Modifi cation Index Par Change

e14 ↔ Intrinsic  4.435 –0.165

e13 ↔ Organizational  4.294  0.206
e13 ↔ Intrinsic  8.257 –0.189
e13 ↔ e14 11.494  0.571
e7 ↔ e14 11.935  0.740
e7 ↔ e13  4.103 –0.366
e7 ↔ e12  8.373  0.507
e2 ↔ Intrinsic  6.017  0.125
e2 ↔ e14  5.736 –.316
e2 ↔ e13  4.033  0.221

(continued)



Modifi cation Index Par Change

e2 ↔ e7  5.473 –0.332
e15 ↔ e14 11.638  0.479
e10 ↔ e2 10.324  0.301
e9 ↔ e14 17.373 –0.555
e9 ↔ e13  4.533 –0.240
e9 ↔ e12  7.389  0.296
e9 ↔ e10  5.186  0.209
e8 ↔ Salary/Promotion  9.618  0.397
e8 ↔ Intrinsic  4.392 –0.143
e8 ↔ e5  9.095  0.526
e8 ↔ e16  4.009 –0.191
e6 ↔ Salary/Promotion  9.132  0.274
e6 ↔ e4  7.118  0.373
e6 ↔ e8  7.934  0.300
e1 ↔ e14  5.442 –0.344
e1 ↔ e15 10.123 –0.327
e1 ↔ e9 15.558  0.384

Table 5.1 Internet Sample JSS CFA Amos 7.0 Output (continued )

Regression Weights: (Group Number 1—Default Model)

Modifi cation Index Par Change

JSS14 ← JSS4  4.554  0.169
JSS14 ← JSS7  6.790  0.197
JSS14 ← JSS9 10.767 –0.330
JSS14 ← JSS1  6.013 –0.269
JSS13 ← JSS14  4.910  0.137
JSS13 ← JSS9  5.172 –0.193
JSS12 ← JSS7  4.772  0.135
JSS12 ← JSS9  5.252  0.188
JSS7 ← JSS14  5.022  0.174
JSS2 ← JSS10  6.788  0.151
JSS15 ← JSS14  6.072  0.125
JSS15 ← JSS1  5.831 –0.185
JSS9 ← JSS14 10.383 –0.155
JSS9 ← JSS1  8.972  0.218
JSS8 ← Salary/Promotion 11.354  0.484
JSS8 ← JSS5 13.563  0.265
JSS6 ← JSS4  8.765  0.145
JSS1 ← JSS9  5.306  0.170
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 suggestive of allowing it to load on the  Salary/Promotion  latent  variable, 

and MIs suggesting e8 is related to both the  Salary/Promotion  and  

Intrinsic  latent variables. Although there are larger MI for this sample, 

given the earlier discussion of item JSS8 and its complex loadings on all 

three factors, it seems reasonable to try dropping that variable from the 

analysis as the fi rst modifi cation. The fi t indices for the Internet sample 

three-factor model without JSS8 are χ2  = 190.877,  df  = 62, χ2 / df  = 3.079, 

RMR = 0.210, GFI = 0.770, TLI = 0.803, CFI = 0.844, RMSEA = 0.146, 

90% confi dence interval for RMSEA = 0.123 to 0.170, AIC = 248.877, 

and ECVI = 2.566. Again the fi t indices are lower than desired, but be-

cause the MI found for this analysis suggest adding error covariances that 

were not found for the FAP sample (e.g., error covariance between e9 

and e14; MI = 16.511), we will try fi tting the multiple groups CFA for the 

JSS rather than proceeding with changes based on the Internet sample 

analysis MI. 

 Multiple-Group Analysis for Job Satisfaction Scale 

 To run the multiple groups analysis in Amos 7.0 Graphics, the model 

will be built the same way it was for the one-group CFA models (i.e., as 

shown in Figure 4.1), and the data for the two samples can be held in two 

separate data fi les. The appropriate data fi les for each group are identi-

fi ed under File, Data Files. Because of the known complexity of JSS8 and 

given that dropping it from both of the single-group confi rmatory factor 

analyses resulted in improved model fi t, we will run the multiple-group 

CFA on the three-factor model without JSS8. The model to be tested is 

shown in Figure 5.2 and has six items on the  Intrinsic  latent factor, fi ve 

items on the  Organizational  latent factor, and two items on the  Salary/

Promotion  latent factor. (Note the labels for each parameter in Figure 5.2, 

such as ccc1_2 for the covariance between  Intrinsic  and  Organizational , 

are added by Amos 7.0 when running a multiple-group CFA.) 

 In Amos 7.0 Graphics, you can test equality constraints by clicking on 

Analyze, then Multiple-Group Analysis. A message box will pop up that 

says “The program will remove any models that you have added to the list 
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of models at the left-hand side of the path diagram. It may also modify 

your parameter constraints.” Click OK, which will bring up a window like 

that shown in Figure 5.3. The Parameter Subsets set constraints on the 

models as follows:  (1)  measurement weights constrain the factor load-

ings to be equal;  (2)  measurement intercepts constrain the “intercepts 

in the equations for predicted measured variables” (Arbuckle, 2006, p. 

384);  (3)  structural weights constrain the regression weights among 

the latent variables;  (4)  structural intercepts constrain the regression 

intercept(s) in the model;  (5)  structural means constrain the means of 

the latent variables;  (6)  structural covariances constrain the variances of 

the latent variables;  (7)  structural residuals constrain the variance of the 

structural latent variable; and  (8)  measurement residuals constrain the 
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Figure 5.2 Amos 7.0 Graphics Model for Running the Multiple-Group CFA on 
the JSS for the FAP and Internet Samples
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 residuals. Notice in Figure 5.3 that three of the parameter subsets (struc-

tural weights, structural intercepts, and structural residuals) are not op-

tions for the CFA model to be fi tted. This is because the CFA model does 

not include structural relationships among the latent variables. Also no-

tice that each consecutive model adds additional constrains in a manner 

similar to that suggested by Brown (2006). 

 All fi ve models could be fi tted to the data, and the model fi t summary 

is shown in Table 5.2. Notice in Table 5.2 that the Model Fit Summary 

is provided for multiple models. The Unconstrained Model is when the 

two groups are fi tted separately, and there are no equality constraints 

imposed. Overall, the unconstrained model fi ts reasonably well, with χ2

= 369.916,  df  = 124, χ2 / df  = 2.983, TLI = 0.776, CFI = 0.847, RMSEA 

= 0.092, 90% confi dence interval for RMSEA = 0.081 to 0.103, AIC = 

537.916, and ECVI = 2.289. 

 In the Measurement weights model, the measurement weights (i.e., 

regression coeffi cients or factor loadings) are constrained to be equal. 

The Measurement Intercepts are constrained to be equal in the third 

model; the structural covariances (i.e., the correlations among the latent 

variables) are constrained in the fourth model; and the measurement re-

siduals (i.e., the errors) are constrained in the fi fth model. Notice that 

Figure 5.3 Amos 7.0 Graphics Window for Conducting a Multiple-Group Analysis
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although χ2  increases across the fi ve models, the ratio of χ2 /df decreases 

across the fi rst four models and even in the highly restrictive fi fth model, 

the ratio is still lower than for the unconstrained model. Table 5.3 pro-

vides the signifi cance tests for the nested model comparisons. Constrain-

ing the measurement weights does not signifi cantly change the model fi t 

(p  = 0.092) from the unconstrained model. Adding the measurement in-

tercepts constraints results in a signifi cant change from the unconstrained 

and measurement weights constrained models ( p  = 0.001), but adding 

the structural covariances does not result in a signifi cant change in model 

fi t from the measurement intercepts constraint model ( p  = 0.072). The 

TLI and RMSEA both improve slightly as the constraints are added for 

measurement weights and intercepts and the structural  covariances. 

 Although CFI decreases for each model, the decreases are small. Overall, 

Table 5.2 Model Fit Summary for the Multiple-Group CFA of the JSS (Amos 7.0 
Output)

Model Fit Summary
CMIN

Model NPAR CMIN DF p CMIN/DF

Unconstrained 84 369.916 124 0.000 2.983
Measurement weights 74 386.193 134 0.000 2.882
Measurement intercepts 61 421.915 147 0.000 2.870
Structural covariances 55 433.505 153 0.000 2.833
Measurement residuals 42 491.450 166 0.000 2.961
Saturated model 208 0.000 0
Independence model 26 1790.757 182 0.000 9.839

Baseline Comparisons

Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI

Unconstrained 0.793 0.697 0.852 0.776 0.847
Measurement weights 0.784 0.707 0.848 0.787 0.843
Measurement 
 intercepts

0.764 0.708 0.833 0.788 0.829

Structural covariances 0.758 0.712 0.829 0.793 0.826
Measurement residuals 0.726 0.699 0.800 0.778 0.798
Saturated model 1.000 1.000 1.000
Independence model 0.000 0.000 0.000 0.000 0.000

(continued)



NCP

Model NCP LO 90 HI 90

Unconstrained  245.916  191.962  307.503
Measurement weights  252.193  197.198  314.830
Measurement intercepts  274.915  217.289  340.183
Structural covariances  280.505  222.128  346.527
Measurement residuals  325.450  262.742  395.791
Saturated model    0.000    0.000    0.000
Independence model 1608.757 1476.794 1748.137

FMIN

Model FMIN F0 LO 90 HI 90

Unconstrained 1.574 1.046 0.817 1.309
Measurement weights 1.643 1.073 0.839 1.340
Measurement intercepts 1.795 1.170 0.925 1.448
Structural covariances 1.845 1.194 0.945 1.475
Measurement residuals 2.091 1.385 1.118 1.684
Saturated model 0.000 0.000 0.000 0.000
Independence model 7.620 6.846 6.284 7.439

RMSEA

Model RMSEA LO 90 HI 90 p-CLOSE

Unconstrained .092 .081 .103 .000
Measurement weights .089 .079 .100 .000
Measurement intercepts .089 .079 .099 .000
Structural covariances .088 .079 .098 .000
Measurement residuals .091 .082 .101 .000
Independence model .194 .186 .202 .000

Table 5.2 Model Fit Summary for the Multiple-Group CFA of the JSS (Amos 7.0 
Output) (continued)

(continued)

Parsimony-Adjusted Measures

Model p-RATIO p-NFI p-CFI

Unconstrained 0.681 0.541 0.577
Measurement weights 0.736 0.577 0.621
Measurement intercepts 0.808 0.617 0.670
Structural covariances 0.841 0.637 0.694
Measurement residuals 0.912 0.662 0.728
Saturated model 0.000 0.000 0.000
Independence model 1.000 0.000 0.000
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AIC

Model AIC BCC BIC CAIC

Unconstrained  537.916  561.627
Measurement weights  534.193  555.080 
Measurement intercepts  543.915  561.134
Structural covariances  543.505  559.030
Measurement residuals  575.450  587.305
Saturated model  416.000  474.712
Independence model 1842.757 1850.096

Table 5.2 Model Fit Summary for the Multiple-Group CFA of the JSS (Amos 7.0 
Output) (continued)

ECVI

Model ECVI LO 90 HI 90 MECVI

Unconstrained 2.289 2.059 2.551 2.390
Measurement weights 2.273 2.039 2.540 2.362
Measurement intercepts 2.315 2.069 2.592 2.388
Structural covariances 2.313 2.064 2.594 2.379
Measurement residuals 2.449 2.182 2.748 2.499
Saturated model 1.770 1.770 1.770 2.020
Independence model 7.842 7.280 8.435 7.873

HOELTER

Model HOELTER .05 HOELTER .01

Unconstrained  97 105
Measurement weights 100 108
Measurement intercepts 100 107
Structural covariances 101 108
Measurement residuals  96 103
Independence model  30  32

this pattern of fi ndings suggests that the same JSS model fi ts the data 

equally well for the FAP and Internet samples. 

 Chapter Summary 

 Multiple-group CFA was presented in this chapter, including consider-

ations for conducting this type of analysis and steps in conducting the 

analysis. Equality constraints were discussed in detail. Finally, a detailed 

multiple-group CFA for the JSS was presented. 
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Table 5.3 Nested Model Comparisons for Multiple Group CFA on the JSS (Amos 
7.0 Output)

Nested Model Comparisons
Assuming Model Unconstrained to be Correct:

Model DF CMIN p
NFI

Delta-1
IFI

Delta-2
RFI

rho-1
TLI
rho2

Measurement 
 weights

10  16.276 0.092 0.009 0.010 –0.010 –0.011

Measurement 
 intercepts

23  51.999 0.001 0.029 0.031 –0.011 –0.013

Structural 
 covariances

29  63.589 0.000 0.036 0.038 –0.015 –0.017

Measurement 
 residuals

42 121.534 0.000 0.068 0.073 –0.002 –0.003

Assuming Model Measurement Weights to be Correct:

Model DF CMIN p
NFI

Delta-1
IFI

Delta-2
RFI

rho-1
TLI
rho2

Measurement 
 intercepts

13  35.723 0.001 0.020 0.022 –0.001 –0.001

Structural 
 covariances

19  47.313 0.000 0.026 0.029 –0.005 –0.006

Measurement 
 residuals

32 105.257 0.000 0.059 0.064  0.008  0.009

Assuming Model Measurement Intercepts to be Correct:

Model DF CMIN p
NFI

Delta-1
IFI

Delta-2
RFI

rho-1
TLI
rho2

Structural 
 covariances

 6  11.590 0.072 0.006 0.007 –0.004 –0.004

Measurement 
 residuals

19  69.535 0.000 0.039 0.042  0.009  0.010

Assuming Model Structural Covariances to be Correct:

Model DF CMIN p
NFI

Delta-1
IFI

Delta-2
RFI

rho-1
TLI
rho2

Measurement 
 residuals

13  57.945 0.000 0.032 0.035  0.013  0.014

 Suggestions for Further Reading 

 Byrne (2001a) provides extensive coverage of testing invariance across 

groups using Amos, including an example with partial measurement 
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invariance. Byrne (2004) provides additional information on conduct-

ing multiple-group CFA using Amos Graphics. Brown (2006) and Kline 

(2005) discuss MIMIC—multiple indicators, multiple causes— models 

(also known as CFA with covariates) as an alternative approach to 

 examining invariance in multiple groups. MIMIC models are more lim-

ited than multiple groups CFA models regarding what they can test, but 

they have smaller sample size requirements and may be less cumber-

some when there are more than two groups in the analysis. Finally, in 

addition to the social work CFA examples cited in this chapter, Hertzog, 

Van Al stine, Usala, Hultsch, and Dixon (1990) provide an example of a 

 multiple-group CFA of the CES-D. 
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 6 

 Other Issues 

 Presenting Confi rmatory Factor Analysis Results 

 A good article or presentation reporting the results of a confi rmatory fac-

tor analysis (CFA) will include suffi cient information so that the reader can 

easily understand how the analysis was performed. Whether you are read-

ing or writing articles using CFA, they should include information on: 

 • Model specifi cation: The conceptual model should be clearly 
presented, along with the underlying theory or prior research that 
guided the initial model specifi cation. 

 • Input data: The sample and type of data should be clearly described 
and should indicate how data were checked and how problems (e.g., 
missing data) were addressed. 

 • Model estimation: Indicate what software (including version num-
ber) and estimation method were used. 

 • Model evaluation, including: 

 •  Multiple-fi t indices should be reported: Some suggestions and 

guidelines have been presented here, but different journals may 
have different requirements. 
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 •  Localized areas of strain: how were areas of strain identifi ed .
 •  Parameter estimates (factor loadings, factor and error variances) 

and their meaning .
 •  Rationale for respecifi cation: If the model was respecifi ed, provide 

the rationale for changes made to the model. 
 •  If you have respecifi ed the model, remind the reader that you have 

moved from model verifi cation to exploration and that further 
studies will be needed to verify the respecifi ed model. 

 • Substantive conclusions: what do the fi ndings mean, and what (if 
any) additional work is needed on the model .

 Longitudinal Measurement Invariance 

 Confi rmatory factor analysis can also be used to test whether construct 

measurement is invariant over time, which is often assumed, but not tested 

in longitudinal research. If the assumed invariance does not hold over time, 

then analyses and conclusions about change over time may be mislead-

ing. Specifi cally, researchers may conclude that the underlying construct 

changes over time when it is actually the measurement of the construct 

that changes over time. For example, consider the Children’s Depression 

Inventory (CDI), a 27-item self-report scale for depression in children and 

young adolescents 8 to 14 years of age (Kovacs, 1992, cited in Craighead, 

Smucker, Craighead, & Ilardi, 1998). In a large sample of children and ado-

lescents, Craighead and colleagues (1998) found similar factor structures 

on the CDI for the two groups; however, there was a biological dysregula-

tion factor found for adolescents but not children. Although their CFAs 

were conducted with cross-sectional data, the fi ndings suggest that the 

 factor structure of the CDI may not be invariant over time, and caution is 

needed in interpreting longitudinal changes on the CDI. 

 Brown (2006) suggests that measurement invariance over time should 

be tested before proceeding with structural equation modeling analy-

ses of longitudinal data. Longitudinal measurement invariance can be 

tested using the multiple-group CFA approach described in the previous 

 chapter, treating each wave or time-point as a separate group (see Brown, 

2006 for other ways of testing longitudinal measurement invariance). 
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 Equivalent Models 

 Equivalent models have different model specifi cations but fi t the data 

equally well and yield the same predicted covariance matrices within a 

given data set (Brown, 2006); they are common in research but are gener-

ally ignored, although they should be addressed when reporting CFA re-

sults (MacCallum & Austin, 2000). MacCallum and Austin (2000) “urge 

researchers to generate and evaluate the substantive meaningfulness of 

equivalent models in empirical studies. Ruling out their existence or 

meaningfulness would strengthen the support of a favored model. More 

generally, any effort to examine alternative models can provide some 

protection against confi rmation bias [i.e. favoring the proposed model] 

and bolster support of a favored model” (p. 213). 

 Multilevel Confi rmatory Factor Analysis Models 

 Often, data have a clustered or nested structure, such as individual stu-

dents nested within classrooms. With such data structures, there can 

be individual level effects (i.e., student effects) and there can be group 

level effects (i.e., classroom effects) that need to be addressed in the data 

analysis. Multilevel (or hierarchical) linear modeling can be used to test 

these types of data structures (for a brief introduction to multilevel linear 

modeling, see Tabachnick & Fidell, 2007). Whereas multilevel CFA mod-

els are beyond the scope of this book, it is important to note that such 

models are possible and should be considered when data have a nested 

structure. 

 Chapter Summary 

 This chapter provides suggestions for critiquing or reporting CFA results 

in presentations or publications and very briefl y introduces several topics 

that are important in CFA but are beyond the scope of this book to ad-

dress in detail, including longitudinal measurement invariance, equiva-

lent models, and multilevel models. 
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 Suggestions for Further Reading 

 Beadnell, Carlisle, Hoppe, Mariano, Wilsdon, Morrison, Wells, Gillmore, 

and Higa (2007) provide an example of a multilevel CFA for a measure 

of adolescent friendship closeness. Brown (2006, Table 4.6, pp. 145–146) 

provides a thorough list of information to report in a CFA study. 

 Conclusion 

 As you may have noticed throughout this book, there are a number of 

places (e.g., sample size requirements) where there is no consensus on 

recommendations or guidelines for conducting CFA. Compared to many 

of the data analysis techniques that social workers commonly use, such 

as regression or analysis of variance, CFA is a relatively new analysis tech-

nique and certain aspects of it are still being developed. It is hoped that 

this short book pocket has provided you with an overview of this analy-

sis, as well as an introduction to some of the issues involved in using CFA. 

For each topic discussed, I have tried to provide references and sugges-

tions for further reading that represent the current state of the art in this 

area, but readers are encouraged to continue to look for new and updated 

information on CFA as they read and use this technique. 
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Glossary

Convergence a set of parameters are estimated that cannot be improved 
upon to reduce the difference between the predicted and sample 
covariance matrices 

Endogenous variables caused (at least theoretically) by other variables; in 
this sense they are similar to dependent variables (DV), Y, or outcome 
variables in regression analyses 

Equality constraints parameters are forced to be equal and are not allowed 
to be freely estimated 

Error covariances correlated errors demonstrating that the indicators are 
related because of something other than the shared infl uence of the 
latent factor 

Error variance the unique variance in an indicator that is not accounted 
for by the latent factor(s); also known as measurement error or indicator 
unreliability 

Exogenous variables not caused by other variables in the model; they are 

similar to an independent variable (IV), X, or predictor in regression 
analyses



Factor correlation the relationship between two factors, or latent variables, 
in the completely standardized solution 

Factor covariance the relationship between two factors, or latent variables, 
in the unstandardized solution 

Factor loadings the regression coeffi cients (i.e., slopes) for predicting the 
indicators from the latent factor 

Factor variance the sample variance for a factor (in the unstandardized 
solution)

Heywood cases parameter estimates with out-of-range values 

Invariance equivalence across groups or time 

Latent variable unobserved, unmeasured, underlying construct; usually 
represented by an oval in CFA or SEM fi gures 

Measurement model relationships among indicators and latent variables 

Method effects relationships between variables caused by a common 
measurement method, such as self-reporting 

Modifi cation indices data-driven suggestions available through most 
software packages about ways to improve the model fi t 

Observed variable exactly what it sounds like—a bit of information that is 
actually observed, such as a person’s response to a question or a measured 
attribute such as weight in pounds; also referred to as indicators or 
items; usually represented by a rectangle in CFA and SEM fi gures 

Structural model relationships among latent variables 
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 To create the Amos 7.0 Graphics fi le for running a CFA, click on FILE, 

then NEW, which will open a blank drawing screen as shown in Fig-

ure A.1. The drawing functions in Amos 7.0 are similar to those found in 

other Windows-based software packages, such as Word and PowerPoint. 

Icons along the left side of Figure A.1 are used for many of the drawing 

functions, such as adding observed and latent variables (the rectangle 

and oval, respectively), adding paths (the left pointing arrow), and add-

ing covariances (the two headed arrow). Resting the cursor on each icon 

will bring up a small box indicating what it does. 

 To defi ne the observed and latent variables in the model, right-click 

on the rectangle or oval, which will bring up a menu of options, includ-

ing Object Properties. Click on Object Properties. Under Text, you can 

add variable names and labels, and choose font size and style. “Variable 

name” must match the variable name in the dataset. Each observed vari-

able must have a “unique variable” or error term, which is indicated by 

the small circles in the Amos drawing. Error terms can be named any-

thing you wish; in this book they are labeled e and an item number; for 

instance, in the example presented in Chapter 2, the MBI has 22 items, so 

the error terms are labeled e1 to e22. The latent variables can be scaled by 

right-clicking on the regression path for the variable you wish to use to 

scale each latent variable (e.g., the path from EE to “emotionally drained” 

in Figure A.2). Right-clicking will bring up a menu of options,  including 

Appendix A
Brief Introduction to Using Amos
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Object Properties. Click on Object Properties. Under Parameters, you 

can set the Regression weight to 1 to scale the latent variable. This will 

create the Amos 7.0 Graphics input fi le shown in Figure A.2. 

 Amos 7.0 will read data fi les from multiple sources. To choose the 

data for the analysis, click on File, then Data Files, which will bring up 

the box shown in Figure A.3. Click on File Name, which will allow you to 

browse through fi les to fi nd the one you want. After selecting the desired 

fi le, click OK. Once the model has been drawn and the appropriate data 

fi le opened, you will need to specify the estimation method to be used 

and the desired output. 

 To choose the estimation method, click on View, then Analysis Prop-

erties, then the Estimation tab, which will bring up the box shown in Fig-

ure A.4. Maximum likelihood estimation can be used with complete or 

incomplete data and is generally the best option as long as the normality 

assumption is adequately met (this was discussed in detail in Chapter 3). 

Figure A.1 Amos 7.0 Graphics New File Screen
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Figure A.2 Amos 7.0 Graphics Input File for the MBI CFA
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If the data set has missing data, then you must click on Estimate means 

and intercepts. 

 To choose the output for the analysis, click on View, then Analysis 

Properties, then the Output tab, which will bring up the box shown in 

Figure A.5. Modifi cation indices and Tests for normality and outliers are 

only available for complete data. 

 To run the model, click on Analyze, then Calculate Estimates. Then 

to view all text output, click on View, then Text Output. To view the CFA 

model with coeffi cients, click on the “View the output path diagram” 

and choose Unstandardized estimates or Standardized estimates, as de-

sired. The Standardized output Amos 7.0 Graphics Screen for the MBI 

example presented in Chapter 2 is shown in Figure A.6. Notice that the 

Amos 7.0 Graphics screen view shown in Figure A.6 divides the screen 

into three sections. The left section includes all the icons for many of 

the commands used in Amos. The middle section (with the darker gray 

background) provides information on the analysis being conducted. 

This middle section is divided into six sections, three of which help the 

user navigate through the output:  (1)  the top section shows two but-

tons (“view the input path diagram [model specifi cation]” and “view the 

output path diagram”); these two buttons let you switch back and forth 

Figure A.3 Amos 7.0 Graphics Data Files Menu 
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between viewing the input and output path diagrams;  (2)  the second sec-

tion identifi es the groups used and lets you switch between the output for 

different groups in a multiple group analysis; and  (3)  the fourth section 

has “Unstandardized estimates” and “Standardized estimates” and allows 

you to switch between the two output versions. 

Figure A.4 Amos 7.0 Graphics Analysis Properties Estimation Menu



112 Appendix A

Figure A.5 Amos 7.0 Graphics Analysis Properties Output Menu
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Figure A.6 Standardized Output Screen View in Amos 7.0 Graphics for MBI CFA
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