
Lecture Notes in Artificial Intelligence 4826
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Petra Perner Ovidio Salvetti (Eds.)

Advances in Mass Data
Analysis of Signals
and Images in Medicine
Biotechnology and Chemistry

International Conferences, MDA 2006/2007
Leipzig, Germany, July 18, 2007
Selected Papers

13



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Petra Perner
IBAI - Institute of Computer Vision and Applied Computer Science
Arno-Nitzsche-Str. 43, 04277 Leipzig, Germany
E-mail: pperner@ibai-institut.de

Ovidio Salvetti
Italian National Research Council (CNR
Institute of Information Science and Technologies (ISTI)
via G. Moruzzi 1, 56124 PISA, Italy
E-mail: Ovidio.Salvetti@isti.cnr.it

Library of Congress Control Number: 2007940157

CR Subject Classification (1998): H.2.8, I.4.6, J.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-76299-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-76299-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12181568 06/3180 5 4 3 2 1 0



Preface 

The automatic analysis of images and signals in medicine, biotechnology, and chemistry 
is a challenging and demanding field. 

Signal-producing procedures by microscopes, spectrometers, and other sensors have 
found their way into wide fields of medicine, biotechnology, economy, and environmental 
analysis. With this arises the problem of the automatic mass analysis of signal information. 
Signal-interpreting systems which generate automatically the desired target statements 
from the signals are therefore of compelling necessity. The continuation of mass analyses 
on the basis of classical procedures leads to investments of proportions that are not 
feasible. New procedures and system architectures are therefore required.  

The scope of the International Conference on Mass Data Analysis of Images and 
Signals in Medicine, Biotechnology and Chemistry MDA (www.mda-signals.de) is to 
bring together researchers, practitioners, and industry people who are dealing with 
mass analysis of images and signals to present and discuss recent research in these 
fields.  

The goals of this workshop are to: 

 Provide a forum for identifying important contributions and opportunities for 
research on mass data analysis on microscopic images 

 Promote the systematic study of how to apply automatic image analysis and 
interpretation procedures to that field  

 Show case applications of mass data analysis in biology, medicine, and 
chemistry 

Topics of interest include (but are not limited to): 

 Techniques and developments of signal and image producing procedures  
 Object matching and object tracking in microscopic and video microscopic 

images  
 1D, 2D, and 3D shape analysis and description  
 1D, 2D, and 3D feature extraction of texture, structure, and location 
 Algorithms for 1D, 2D, and 3D signal analysis and interpretation 
 Image segmentation algorithms 
 Parallelization of image analysis and interpretation algorithms 
 Semantic tagging of images from life science applications 
 Applications in medicine, biotechnology, chemistry, and others 
 Applications in crystallography  
 Applications in proteomics  
 Applications in 2D and 3D cell images analysis 
 Image acquisition procedures for mass data analysis 

This volume is a post-proceedings of papers from MDA 2006 and MDA 2007. A 
large number of the papers propose new image-segmentation techniques for biological 
and medical applications. Image segmentation is a crucial step in image processing and 
the accuracy of this step heavily influences the final result. In the methodology the 
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authors use they try to identify classes of images first and then they propose algorithms 
that should work robustly and accurate enough for this class of images. 

The second portion of papers deals with new applications where imaging and 
signal-interpretation methods are used. These imaging methods range from optical 
methods to ultra-sonic microscopy. The applications are in air monitoring for 
hazardous materials, quality control of cereals, proteomics and drug design, as well as 
in the characterization of piezo-electric properties. Spectrometers are used for algae 
classification. 

Other papers deal with specific topics such as semantic tagging of biological 
images, shape characterization under time-varying conditions, and statistical analysis 
of time-series for DNA sequencing. 

Altogether, we were pleased to see how many different problems for imaging and 
signal interpretation have been presented, showing that there is a tremendous need for 
automatic methods. We hope we have managed to bring these problems into the center 
of attention and inspire many other researchers to work on these real applications. 

The next International Conferences on Mass Data Analysis of Signals and Images 
will be held in July 2008. We are looking forward to your submissions. 

 
July 2007                      Petra Perner

Ovidio Salvetti 
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Image Acquisition and Analysis of Hazardous 
 Biological Material in Air 

Christoph Sklarczyk1, Horst Perner2, Hans Rieder1, Walter Arnold1, 
and Petra Perner2 

1 Fraunhofer-Institute for Non-Destructive Testing (IZFP),  
Bldg. E 3.1 University, D-66123 Saarbrücken, Germany 

2 Institute of Computer Vision and Applied Computer Sciences, 
 IBaI, Leipzig, Germany 

Abstract. Human beings are exposed every day to bio-aerosols in the various 
fields of their personal and/or professional daily life. The European 
Commission has rules protecting employees in the workplace from biological 
hazards. Airborne fungi can be detected and identified by an image-acquisition 
and interpretation system. In this paper we present recent results on the 
development of an automated image acquisition, probe handling and image- 
interpretation system for airborne fungi identification. We explain the 
application domain and describe the development issues. The development 
strategy and the architecture of the system are described and some results are 
presented. 

Keywords: Microscopic image acquisition, microbiological probe handling, 
image analysis, image interpretation, case-based object recognition, case-based 
reasoning. 

1   Introduction 

Airborne microorganisms are ubiquitously present in various indoor and outdoor 
environments. The potential implication of fungal contaminants in bio-aerosols on 
occupational health is recognized as a problem in several working environments. 
There is a concern on the exposure of workers to bio-aerosols especially in 
composting facilities, in agriculture, and in municipal waste treatment. The European 
Commission has therefore guiding rules protecting employees in the workplace  
from airborne biological hazards. In fact, there are an increasing number of incidents 
of building-related sickness, especially in offices and residential buildings. Some of 
these problems are attributed to biological agents, especially in relation to airborne 
fungal spores. However, the knowledge of health effects of indoor fungal 
contaminants is still limited. One of the reasons for this limitation is that appropriate 
methods for rapid and long-time monitoring of airborne microorganisms are not 
available. 

Besides the detection of parameters relevant to occupational and public health, in 
many controlled environments the number of airborne microorganisms has to be kept 
below the permissible or recommended values, e.g. in clean rooms, in operating 
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theaters, and in domains of the food and pharmaceutical industry. Consequently, the 
continuous monitoring of airborne biological agents is a necessity for the detection of 
risks of human health as well as for the flawless operation of technological processes. 

At present a variety of methods are used for the detection of fungal spores. The 
culture-based methods depend on the growth of spores on an agar plate and on the 
counting of colony-forming units [14]. Culture-independent methods are based on the 
enumeration of spores under a microscope, the use of a polymerase chain reaction or 
on DNA hybridization for the detection of fungi [14]. However, all these methods are 
limited by time-consuming procedures of sample preparation in the laboratory. This 
paper describes the development and the realization of an automated image-
acquisition and probe handling unit of biologically dangerous substances and the 
automated analysis and interpretation of microscope images of these substances.  

In the system described here, contaminated air containing bio-aerosols is collected 
in a defined volume via a carrier agent. They are recorded by an image-acquisition 
unit, counted, and classified. Their nature is determined by means of an automated 
image-analysis and interpretation system. Air samples are automatically acquired, 
prepared and transferred by a multi-axis servo-system to an image-acquisition unit 
based on a standard optical microscope with a digital color camera. This part of the 
system is described in Section 2. To obtain a sufficient image quality, special 
requirements have to be fulfilled by the image-acquisition unit which will be 
described in Section 3.  

The variability of the biological objects is very broad. Given the constraints of the 
image acquisition, this variability is found in the appearance of the objects as well. 
There are no general features allowing one to discern the type of the detected fungi. In 
the system employed here, images are stored, and a more generalized description for 
the different appearances of the same objects is used. We will describe this novel 
case-based reasoning approach for the image analysis and its interpretation in  
Section 4. Finally, we summarize our work in Section 5. 

2   System Requirements 

The system to be developed should allow to collect dust and biological aerosols in 
well-defined volumes over microscope slides, deposit them there, image them with an 
appropriate method and count and classify them with an automated image analysis 
and interpretation method, in order to determine the following parameters from the 
images: 

 
 Total number of airborne particles 
 Classification of all particles according to the acquired image features 
 Classification of biological particles, e.g. spores, fragments of fungal mycelia, and 

fragments of insects 
 Number of respirable particles 
 Total number of airborne particles of biological origin 
 Number of dead particles of biological origin 
 Number of viable and augmentable particles of biological origin  
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 Identification of species or geni exploiting the characteristic shapes of spores and 
pollen 

 Proportion of airborne abiotic and biotic particles 
 Proportion of dead and viable airborne microorganisms. 

 

At the beginning of the project the following requirements concerning the optical 
and the mechanical system were defined: 

 

 Color images should be produced in order to facilitate the separation of dead and 
living objects. 

 It should be possible to generate images in at least three defined depths of field. 
 A marker liquid like lactophenol should be used to further enhance the separation 

of dead and living objects (blue color for living objects). For that a cover slip is 
necessary in order to uniformly distribute the marker drop on the object slide. 

 The object slide should be covered with an adhesive in order to fix the airborne 
germs. 

Table 1. Strains of fungi used and selected properties of spores 

Species Strain no. Spore shape Spore color Spore size [µm]  

Alternaria alternata J 37 (A1) Septated, clavate to 

ellipsoidal  

Pale brown 18 – 83 × 7-18  

Aspergillus niger i400 (B2) Spherical, ornamented 

with warts and spines 

Brown  Ø 3.5 - 5  

Rhizopus stolonifer J 07 (A) Irregular in shape, often 

ovoid to elliptical, 

striate  

Pale brown 7-15 × 6-8 

Scopulariopsis 

brevicaulis 

J26 (A) Spherical to ovoid Rose-brown 5-8 × 5-7  

Ulocladium 

botrytis 

i171(B) Septated, ellipsoidal Olive-brown 18-38 × 11-20 

Wallemia sebi J 35 (A) Cubic to globose Pale-brown Ø 2.5 – 3.5  

1(A): from culture collection of JenaBios GmbH, Jena, Germany. 
2(B): from the fungal stock collection of the Institute of Microbiology, University of 
Jena, Jena, Germany. 

Six fungal strains representing species with different spore types were identified as 
important species in different environments (Tab. 1) by our industrial project partner 
JenaBios GmbH. A database of images from the spores of these species was produced 
and was the basis of our development. The number of imaged spore per species was 
about 30-50. Since no commercial system was known fulfilling all requirements, a 
corresponding system was developed which is described in what follows. 
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3   The Automated Imaging System 

3.1   The Microscopic Image-Acquisition System 

Following the specifications given in Section 2 we developed an automated probe-
handling and digital image-acquisition system for taking microbiological material 
from air samples [12]. An existing optical Leitz microscope was upgraded and 
expanded in its hardware. A lens from Olympus with a magnification of 60X and a 
numerical aperture of 0.7 was used. Its focal length of 1.7 mm provided sufficient 
clearance between the lens and the object slide including the cover glass to avoid 
collisions due to their variability in thickness. The lens was inserted in an 
autofocusing device from Physik Instrumente (PI, Karlsruhe, Germany) which was 
mounted on the lens revolver. A motorized xy-table from Märzhäuser (Wetzlar, 
Germany) with a motion controller was used to arbitrarily shift the object slide in both 
x and y direction. For the digital image acquisition a 1.4 Mpixel color digital camera 
from Soft Imaging System (SIS, Münster, Germany) was used. Our estimates showed 
that a pixel number larger than 1.4 Mpixel is sufficient for the given magnification. 
Fig. 1 demonstrates that the optical resolution is sufficient to recognize details in 
spores like Ulocladium. 

 

Fig. 1. Image demonstrating the resolution of the optical microscope used. The microscopical 
image displays spores of Ulocladium. The field of view is 134×100 µm². The sample was 
prepared by AUA/JenaBios, lens Olympus 60X/0.70. The resolution in this image is 5 μm. 

The functions of image acquisition and image storage, movement of the specimen 
in x and y direction, and auto-focusing in z-direction are controlled by the AnalySIS 
Pro software from SIS. A pattern of images at any image position can be freely 
programmed and stored in a macro-code. This holds as well for the number of images 
to be captured. If necessary it is possible to capture automatically images at different 
depths of focus around the optimum position. By the automatic shading correction, 
the effect of an inhomogeneous illumination of the object can be removed. 
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3.2   The Automatic Probe-Acquisition and Handling System 

The following chapter describes the main units and functions of the demonstration 
set-up realized in the course of the project. A stock of special object slides covered 
with a sticky layer from Umweltanalytik Holbach [1], (Fig. 2) is kept in a slide 
storage. A sliding gripper takes the lowest slide in the storage and transports it into 
the slit impactor from Umweltanalytik Holbach (Fig. 3). The object slides are 
separated by distance holders with a corresponding recess, in order to avoid sticking 
between the slides. The distance holder is removed by the same gripper, now moving 
in opposite direction and depositing the distance holder into a box. The distance 
holders can be used again when the slide deposit is reloaded. 

 
 
 

Fig. 2. Object slide of standard size 
76×26×1 mm³ with a central sticky layer [1]; 
Image obtained from Umweltanalytik Hol-
bach 

Fig. 3. Slit impactor for collection of air-
borne particles [1]; Image from Umweltan-
alytik Holbach 

Dosing pump

Air collector

Object-slide 
storage

Cover glass 
storage

 

Fig. 4. Top view of the mechanical unit for moving object slides, indicating also the position of 
the cover-glass storage, the dosing pump for lactophenol, the slit impactor or air collector, and 
the storage for the object slides. The numbers 1 – 5 indicate the sequences of the movements; 
axis No. 6 is not shown. 
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In the slit impactor the air (Fig. 3), potentially containing airborne germs, is guided 
on the sticky area of the object slide by the air stream generated by a microprocessor 
controlled air pump. After a few tens of seconds which can be adjusted accordingly, 
the pump is switched off and the object slide is transported to the pipetting unit driven 
by the dosing pump (Cavro XL 3000 from Tecan Systems San Jose, Ca, USA. To this 
aim it has to change its transporting axis and thus its direction of movement. From a 
thin nozzle one drop of lactophenol is deposited on the sticky area of the object slide 
which is afterwards transported via the axis crossing to the cover-slip gripper unit. 
This gripper acts as a low-pressure sucker and takes one cover glass from the deposit 
and puts it with one edge first on the object slide. Then the cover glass falls down on 
the object slide and flattens the drop so that it will be distributed all over the sticky 
area forming a thin layer. In this way the airborne germs collected in the sticky layer 
are immersed in the lactophenol. In lactophenol living germs get a blue color. The 
object slide is then transported back to an axis crossing-point where it again changes 
its direction of movement by 90° and is transported to the xy-table of the microscope 
which takes over the slide and transports it directly under the lens. The timing of the 
transportation units, the air and dosing pump is controlled by a distributed multi-axis 
motion-unit. To this end an additional module was integrated into the AnalySIS Pro 
software. It controls the manual or automated shift of the xy-table between the image-
acquisition position under the lens and the loading position, where the object slide is 
shifted from the object-slide preparation unit to the xy-table. After the object slide has 
reached the image acquisition position, the microscope camera then grabs the images 
at the programmed slide positions after auto-focusing of the microscope lens at each 
position. The cycle of shifting the xy-table to the defined positions, auto focusing, 
image acquisition and storage is programmable in a macro-code integrated into the 
AnalySis Pro software. This can also be done for other procedures like shading 
correction or image acquisition at different z-positions. After having finished the 
imaging sequence, the slide is transported away from the xy-table with a special arm 
 

1

2

3

4

 

Fig. 5. Prototype set-up showing the dosing pump (arrow 1), several axes, the optical 
microscope with xy-table (arrow 2), and the digital camera (CC-12, arrow 3). The auto-
focusing unit holds the lens (arrow 4). 
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and falls into a box. When the image grabbing procedure by the microscope unit is 
still under way, the object-slide preparation unit already starts with the preparation of 
a new object slide. 

The object-slide preparation and manipulation is performed by a hardware 
controller and by dedicated software written in C++. The transfer from the AnalySIS 
Pro software to the C++ software and vice versa is controlled by a communication 
protocol as interface between both software units. Altogether six different mechanical 
axes have to be handled, not counting the axes of the xy-table (Fig. 4). The unit for 
object-slide preparation and the expanded microscope are shown in Fig. 5. 

4   Image Analysis 

Once an image has been taken it is given to the image-analysis unit for further 
processing. We describe the overall architecture of the system [4][5] and its single 
components in the next sections. 

4.1   The Architecture 

The architecture of the system is shown in Figure 6. Objects are recognized in the 
microscopic image by a case-based object-recognition unit [3]. This unit has a case-
base of shapes (case base_1) for fungi spores and determines on a similarity-based 
inference if there are objects in the image that have a similar shape as the ones stored 
in the case base. In this case the objects get labeled and are transferred for further 
processing to the feature-extraction unit. To ensure proper performance of this unit, 
the general appearance of the shapes of the fungi spores have to be learned. To this 
end we have developed a semi-automated procedure [3] that allows one to acquire the 
shape information from the raw image data and to learn groups of shape-cases and 
general shape-cases. A more detailed description of the case-based object-matching 
unit can be found in Section 4.2. 

Image Data 
Base

Feature_Extr_1

Case Base_2 
Feature+Weights

Feature 
Selector

Up-date Feature 
Weights

CBR

Case Base 
Maintenance/Learning

New Image

Feature_Extr_2

Feature_Extr_3

Feature_Extr_n

...

Install New Feature 

Case-Based Object 
Recognition

Labelled Objects

Case Base_1
Shapes

 Critique
Class

Yes

 
Fig. 6. System architecture 
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The feature-extraction procedures are based on the knowledge of an expert. Note 
that a particular application requires special feature descriptors. Therefore not all 
possible feature-extraction procedures can be implemented into such a system from 
the beginning. Our aim was to develop a special vocabulary and the associated 
feature-extraction procedures for application on fungi identification, as described in 
Section 4.3. 

Based on the feature description, the second case-based reasoning unit decides 
about the type of the fungi spore. This unit employs a prototype-based classifier [11]. 
It starts its performance on prototypical cases that were selected or created by the 
expert. It can learn with time the different appearances of the fungi spores. The 
special features of this unit ensure its proper performance. It can learn the relevant 
prototypes from the subjectively selected set of prototypes, as well as create new 
prototypes. It can also learn the importance of the features of the cases. The final 
result of the system will be the identification of the fungi spores that appear in the 
image and the number of these spores. This is shown on the display of the system and 
in a file, together with the date and the time when the data were acquired.  

Suppose that fungi species are wrongly identified by the system. Then a case-based 
maintenance process will start. First it has to be checked by the system developer 
whether new features have to be acquired for each case, or whether the whole case 
representation should be updated based on the learning procedures. The feature 
weights are learnt, as well as a subset of relevant features (see Section 4.4). To 
acquire new features means that the necessary feature-extraction procedures have to 
be developed and that for all cases the new features have to be calculated and fed into 
the existing case description. Therefore we keep the digital images acquired so far in 
the image-data base. Then the case representation has to be updated as well as the 
index structure. This ensures that we can come up step-by-step with a system which 
can describe the variability of the different biological objects that can appear. 

4.2   Case-Based Object Recognition 

The objects in the image are highly structured. Our study has shown that the images 
specified in Table 1 cannot be segmented by thresholding. The objects in the image 
may be occluded touching, or overlapping. It can also happen that only some parts of 
the objects appear in the image. Therefore we decided to use a case-based object 
recognition procedure [3] for the detection of objects in the image.  

A case-based object-recognition method uses cases that generalize the original 
objects and matches them against the objects in the image. During this procedure a 
score is calculated that describes the quality of the fit between the object and the case. 
The case can be an object model which describes the inner appearance of the object as 
well as its contour. In our case the appearance of the entire objects can be very 
diverse. The shape seems to be the feature that generalizes the objects. Therefore, we 
decided to use contour models. We do not use the gray values of the model, but 
instead use the object’s edges. For the score of the match between the contour of the 
object and the case we use a similarity measure based on the scalar product. It 
measures the average angle between the vectors of the template and the object. 
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Input
Image

Calculation
Image

Pyramid Matcher Evaluation
Score
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Index

Case Base

no

Final
Score

yes

no

yes

Input
Image

Calculation
Image

Pyramid Matcher Evaluation
Score

Final Node
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Index

Case Base

Index

Case Base

nono

Final
Score

yes

nono

yes

 

Fig. 7. Principle of case-based object-recognition architecture 

4.2.1   Case-Base Generation 

The acquisition of the case is done semi-automatically. Prototypical images are shown 
to an expert. The expert manually traces the contour of the object with the help of the 
cursor of the computer. Afterwards the number of contour points is reduced for data-
reduction purposes by interpolating the marked contour by a first-order polynom. The 
marked object shapes are then aligned by the Procrustes Algorithm [4]. From the 
sample points the direction vector is calculated. From a set of shapes general groups 
of shapes are learnt by conceptual clustering which is a hierarchical incremental 
clustering method [5]. The prototype of each cluster is calculated by estimating the 
mean shape [5] of the set of shapes in the cluster and is taken as a case model. 

4.2.2   Results for Case-Based Object Recognition 

We had a total of 10 images for each class at our disposal. From this set of images 
two images were taken for the case generation. In these two images there were 
approx. 60 objects. These objects were labeled and taken for the case generation 
according to the procedure as described in Section 4.2.1. The result was a data base of 
cases. These cases were applied to the image for the particular class.  

The threshold for the score was set to 0.8. We calculated the recognition rate as the 
number of objects that was recognized in the image to the total number of objects in the 
images. Note that the recognition rate can be higher than 100 %, since our procedure 
also operates in image regions where no objects are present due to background noise. 
The aim is to set-up the case-based object-recognition unit in such a way that the 
number of false alarms is low.  

The results of the matching process are shown in Figs. 8 and 9. The highest 
recognition rate can be achieved for the objects Aspergillus niger and Scopularioupsi, 
since the shape of these objects does vary much. This is also expressed by the number 
of models, see Table 2. These classes have the lowest number of cases. For those 
classes where the variation of the shape of the objects is high, the number of the  
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Alternaria Alternata Aspergillus Niger Rhizopus Stolonifer 

  
Scopulariopsis Brevicaulis Ulocladium Botrytis Wallenia Sebi 

 

Fig. 8. Recognized objects in the image 

 
(b for the 
minimal gradient = 24.53

(c )Threshold)Threshold  for the 
minimal gradient = 100

(d) Test image including
the object numbers 

rate: 112.5% RecognitionRecognition rate: 87.5%  

Fig. 9. Comparison of the matched objects by applying different thresholds for the minimal 
gradient 

cases is also high. The recognition rate shows that we do not have enough cases to 
recognize the classes with a good recognition rate (see Ulocladium botrytis and 
Alternaria alternata). Therefore we need to increase the number of cases. For this task 
we developed an incremental procedure for the case acquisition in our tool. Objects 
that have not been recognized well will be displayed automatically for tracing and 
then the similarity to all other shapes will be calculated. The clustering will be done in 
an incremental fashion as well [5]. This procedure will ensure that we can learn the 
natural variation of the shape during the usage of the system. 
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Table 2. Results of matching 

 
Classes 

 
Number of models 

 
Recognition rate 

Alternaria alternata 34 65.9 
Aspergillus niger 5 95.2 
Rhizopus stolonifer 22 87.7 
Scopularioupsi 8 94.5 
Ulocladium botrytis 30 77.2 
Wallenia sebi 10 90.3 

4.3   Case Description and Feature Extraction 

We choose an attribute-value pair-representation for the case description. The case 
consists of the solution which is the type of fungi spores and the features describing 
the visual properties of the object (see Figure 9). From each recognized object a set of 
features is extracted. One feature is the case number which represents the shape of the 
object, the similarity score between the actual shape and the shape in the case base, 
the size of the object, various gray-level features, and the texture inside the object. For 
the description of the texture we use our texture descriptor based on random sets 
described in [6]. 

4.4   Classification 

Our case-based reasoning procedure to recognize spores relies on prototypical-based 
classification schemes [11]. Usually such schemes are generalized from a set of single 
cases. Here, we have prototypical cases represented as images that were selected by 
humans. That means when building our system, we start from the top and have to 
collect more information about the specific class during the usage of the system. 
Since a human has selected the prototypical images, his decision on the importance of 
an image might be biased, and to select only one image might be difficult for a 
human. He can have stored more than one image as prototypical images. Therefore 
we need to check the redundancy of the many prototypes for one class before taking 
them all into the case base. According to this consideration, our system has the 
following function to fulfill:  
 

• Classification based on the nearest neighbor rule 
• Prototype selection by a redundancy-reduction algorithm; Feature weighting to 

determine the importance of the features for the prototypes 
• Feature-subset to select the relevant features from the whole set of the respective 

domain. 
 

The classification method is based on the nearest-neighbor rule. Since the prototypes 
are available at the same time, we choose a decremental redundancy-reduction 
algorithm proposed by Chang [7] that deletes prototypes as long as the classification 
accuracy does not decrease. The feature-subset selection is based on the wrapper  
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approach [8] and an empirical feature-weighting learning method [9] is used. 
Furthermore, cross validation is used to estimate the classification accuracy. The 
prototype selection, the feature selection, and the feature-weighting steps are 
performed during each run of the cross-validation process. This rule classifies x  in 
the category of its nearest neighbor [10]. More precisely, we call 

{ }nin xxxxx ,...,,...,, 21∈′  a nearest neighbor to x  if ( ) ( )xxdxxd ni ,,min ′= , where i 
= 1, 2, …n.  The nearest neighbor rule chooses to classify x  into category Cn where 

nx′  is the nearest neighbor to x and
nx′ belongs to class Cn. For the k-nearest neighbor 

we require k-samples of the same class to satisfy the decision rule. As a distance 
measure we use the Euclidean distance. The recognition rate was evaluated on a data 
base of 50 samples for each class based on cross-validation. The result is shown in 
Table 3. From that we can conclude that the classification accuracy is higher than the 
recognition rate for some classes. That means that it is more difficult to recognize the 
objects that are most likely to be fungi spores than to classify them based on the 
extracted features. 

Table 3.  Classification accuracy  

Classes Classification accuracy 
Alternaria Alternata 90.4 
Aspergillus Niger 95.0 
Rhizopus stolonifer 92.0 
Scopularioupsi 96.0 
Ulocladium botrytis 94.0 
Wallenia sebi 92.0 

 

 

Fig.  10. Screenshot of the final system 

A print-out of a result obtained by the system described in this paper is shown in 
Fig. 10. In the display the operator will find the acquired image in one window and in 
the other window the determined fungi spores and their total number. The system 
called Fungi PAD correctly identified the name of the fungi spores and their number.  
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5   Conclusion 

In this paper a system for an automated image acquisition and analysis of hazardous 
biological material in air is described. It consists of an image-acquisition unit, its 
sample-handling hardware, and the image-interpretation system. The sample-handling 
and image-acquisition unit collects the airborne germs, deposits them on an object 
slide, disperses them with a marker fluid, and takes digital images of the germs in a 
programmable pattern. The stored images are analyzed in order to identify the germs 
based on a novel case-based object-recognition method. The case generation is done 
semi-automatically by manually tracing the contour of the object, by automated shape 
alignment and by shape clustering, and eventually by prototype calculation. Based on 
the acquired shape cases, the object-recognition unit identifies objects in the image 
that are likely to be fungi spores. The further examination of labeled objects is done 
by calculating more distinct object features, from which a prototype-based classifier 
determines the kind of fungi spores. After all objects have been classified by their 
type, the number of one type of fungi spores is calculated and displayed for the 
operator on the computer screen.  

The recognition rate is good enough for on-line monitoring of environments. The 
final information can be used to determine its contamination with biological 
hazardous material. It can be used for health monitoring as well as for process control. 
The described system is the base. 
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Abstract. Segmentation is an important research area in image analy-
sis. In particular, effective segmentation methods play an essential role in
the computerization of the analysis, classification, and quantification of
biological images for high content screening. Image segmentation based
on thresholding has many practical and useful applications because it is
simple and computationally efficient. Different methods based on differ-
ent criteria of optimality give different choices of thresholds. This paper
introduces a method for optimal thresholding in gray-scale images by
mimizing the variograms of object and background pixels. The mathe-
matical formulation of the proposed technique is very easy for computer
implementation. The experimental results have shown the superior per-
formance of the new method over some popular models for the segmen-
tation cell images.

Keywords: Segmentation, variograms, bioimaging.

1 Introduction

Thresholding is a simple pattern classification procedure for image segmentation.
The key issue of a thresholding algorithm is to choose an optimal threshold value
so that the number of misclassified image pixles is kept as low as possible – this is
known as the minimum error threshold approach for image segmentation [1,2]. In
theory, the optimal threshold value can be determined using Bayes decision rule if
the probabilistic distributions of both background and object (foreground) pixels
are known [3,4]. However, in most practical cases we do not know the separate
distributions but a mixture of both. To handle this problem, we have to make
some assumptions about the forms of the distributions and try to determine the
optimal threshold according to the principle of statistical decision.

In addition to what we have mentioned above, the inherent difficulty of image
segmentation we often encounter is that there are many background pixels that
have similar values as those which belong to the object or vice versa. These pix-
els are usually found in the proximity of the boundaries between the background
and the object. These phenomena are particularly common in many bioimaging
problems. As a result, these images produce a vague valley in the histograms,
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which makes it a challenging task for any threshold-based image segmentation
methods. There have been numerous attempts for developing image threshold-
ing methods for handling different types of images. Many image segmentation
methods can be found in several literature reviews over the last three decades [9].
Most general approaches for image segmentation are based on thresholding, clus-
ter analysis, edge detection, and region growing. However, a general agreement
is that there is no single segmentation method that can be effectively applied to
all types of images [10]. Thus, there arises a need for developing new algorithms
that may be used for different purposes [11,12,13].

In this paper, a threshold selection method based on a spatial objective cri-
terion known as the variogram is introduced for the segmentation of gray-scale
images. The mathematical formulation of the variogram is derived from the
theory of regionalized variables, which was developed by Matheron [14]. A re-
gionized variable is defined as a random variable that is distributed in space.
The spatial variability of the regionalized variables can be characterized by both
random and structured aspects: (1) they are considered to be erratic in relation
to the surrounding variables, and (2) they are spatially related with respect to
the distance separating the variables. This spatial structure is called the var-
iogram which is a geostatistical function that expresses the spatial relation of
the regionalized variables. This conceptual framework is highly applicable to im-
age modeling where the pixel values can be thought as being both random and
spatially related.

The rest of this paper is organized as follows. In Section 2, we will discuss the
concept and procedure for selecting an optimal threshold using the variogram
criterion. In Section 3, we will then illustrate and assess the performance of the
proposed method by means of the segmented results of fluorescent cell puncta
obtained by the proposed and other popular image segmentation methods. The
final section is our concluding remarks about the new approach as well as other
issues for future development.

2 Threshold Selection from Gray-Level Variograms

Consider a gray-scale image which has intensity values between [0, T ] where
T is the maximum intensity level. The pixels can be modeled as regionalized
variables [14] in the sense that their values are random and they are spatially
related. By such hypothesis, the variogram [14,15] of an image is a function
which expresses the spatial correlation of the regionalized variables of the image.
In probabilistic notation, the image variogram, denoted as 2γ(h), can be defined
as the expected value of the image intensities spatially distributed apart with a
distance h:

2γ(h) = E{[xi − xj ]2}, hij = h (1)

where xi and xj are the intensity values of the pixels located at positions i and
j of the image respectively, and h is the spatial distance that separates xi and xj .
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The values of h are taken in any directions in the discrete image. In this study,
for the sake of simplicity, h takes the integer values in the horizontal and vertical
directions of the image.

The semi-variogram, denoted as γ(h), is therefore half of the variogram. The
experimental semi-variogram for lag distance h is defined as the average squared
difference of values separated by h:

γ(h) =
1

2N(h)

∑

(i,j)|hij=h

(xi − xj)2 (2)

where N(h) is the total number of data pairs separated by the distance h.
The behavior of the semi-variogram can be graphically illustrated by the the-

oretical semi-variogram using the spherical or the Matheron model which is
defined as [15]

γ(h) =
{

s
[
1.5h

r − 0.5(h
r )3

]
: h ≤ r

s : h > r
(3)

where r and s are called the range and the sill of the semi-variogram respectively.
Figure 1 shows the spherical semi-variogram model defined in (3). When

h = 0, two samples are taken at the same position and the difference between
the two must be zero. When h > 0, the two samples move a distance apart and
some positive difference between the two values can be expected. As the samples
move further apart, the differences should increase accordingly. Ideally when the
distance becomes very large and reaches r, the sample values become indepen-
dent of one another. The semi-variogram γ(h) will then become constant at s as
the result of the calculation of the difference between the pairs of independent
samples.
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Fig. 1. Example of a semi-variogram – the spherical model with s = 1 and r = 20
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The properties of the semi-variogram can be further explored by again letting
h be the distance between two variables xi and xj , and by an assumption that the
random variables in the random function model has the same mean μ and vari-
ance σ2. These two properties show the relationship between the semi-variogram
and the covariance by the following derivation [15]:

γ(h) =
1
2
E{[xi − xj ]2} =

1
2
E{x2

i } +
1
2
E{xj}2 − E{xixj}

= E{x2} − E{xixj} = [E{x2} − μ2] − [E{xixj} − μ2]
= σ2 − Cij (4)

where Cij is the covariance of xi and xj .
We now consider an image which has bright object and dark background pixels

and wish to segment the image into two classes: object (O) and background (B).
Using the concept of the semi-variogram, the total spatial covariance, denoted
as γI(h), of the partition of the image can be expressed as

γI(h) = γB(h) + γO(h) (5)

where γB(h) and γO(h) are the semi-variograms of the background and object
pixels respectively.

Our strategy for image segmentation is to select a threshold that separates
the image into two groups of homogeneous and spatially related pixels. Thus,
a procedure to satisfy this criterion is to minimize the image spatial variance
γI(h). In other words, we seek to minimize the sum of the two spatial variances
γB(h) and γO(h). Since the segmentation of the two classes is dependent on the
variable threshold t and contain pixels with gray values in [0, t] and [t + 1, T ]
respectively, the spatial variance of I can be rewritten as

γI(h, t) = γB(h, t) + γO(h, t) (6)

where γB(h, t) and γO(h, t) denote the semi-variograms of dark pixels which are
less than or equal to t, and bright pixels which are greater than t respectively.
The spatial functions γB(h, t) and γO(h, t) are respectively defined as

γB(h, t) =
1

2N(h)

∑

(i,j)|hij=h

(xi − xj)2; xi, xj ≤ t (7)

γO(h, t) =
1

2N(h)

∑

(i,j)|hij=h

(xi − xj)2; xi, xj > t (8)

The purpose is to capture the spatial relationships of the pixels at small distances
because most vague pixels are in the proximity of the boundaries of the objects
and the background pixels. Thus, small magnitudes of h would be sufficient to
model the spatial correlation of the image data. Because each lag distance h may
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yield a different value for γI(h, t), we can compute the resultant semi-variogram
of the image as the average value of γI(h, t) by

γ̄I(t) =
1
H

H∑

h=1

γI(h, t) (9)

where H is the number of the values of h.
Finally, the spatial optimal threshold value, denoted as tV , can be determined

by searching for the value in the range [0, T ] so that γ̄I(t) is minimum. That is,

tV = arg min
0≤t≤T

γ̄I(t). (10)

3 Experimental Results

We tested the proposed method with many real fluorescent images of peroxisomes
contained in cells. The discrimination and measurement of fluorescent-labeled
vesicles using microscopic analysis of fixed cells presents a challenge for biologists
interested in quantifying the abundance, size and distribution of such vesicles in
normal and abnormal cellular situations. Good image segmentation results will
allow the precise quantification of changes to the population of a major organelle,
the peroxisome, in cells from normal control patients and from patients with a
defect in peroxisome biogenesis.

Fig. 2. Original image A

To compare the proposed variogram-based method with some other segmen-
tation methods, we used the Otsu’s method [16], the fuzzy c-means (FCM) [17],
and the watershed algorithm [2] using the Matlab Image Processing Toolbox to
carry out the segmentation of the same images. Two typical images of fluores-
cent puncta as shown in Figures 2 and 9. These images show the variability of
the image database and were selectively collected to test the proposed method.
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Fig. 4. Semi-variogram of original image A

Fig. 5. Otsu-method segmentation of A
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Fig. 6. FCM-based segmentation of A

Fig. 7. Watershed-based segmentation of A

Fig. 8. Variogram-based segmentation of A

The fluoresecence-stained background between and along the boundaries of the
spots makes it a difficult task for extracting the correct sizes of the objects [18].

Figures 3, and 10, show the histograms of the original images in Figures 2,
and 9 respectively. The two histograms do not show the distinct modes of the
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Fig. 9. Original image B

foreground and background pixels, which make it a difficult task for image seg-
mentation. Figures 4, and 11 show the semi-variograms of the original images in
Figures 2, and 9 respectively. The behaviors of these image semi-variograms are
similar to that of the ideal semi-variogram using the spherical model as defined
in (3) and graphically illustrated in Figure 1.

Figures 5, and 12 show the segmentation results of the original images in
Figures 2, and 9 respectively by the Otsu methd. Figures 6, and 13 show the
segmentation results of the original images in Figures 2, and 9 respectively by the
FCM method. Figures 7, and 14 show the segmentation results of the original
images in Figures 2, and 9 respectively by the watershed algorithm. Figures
8, and 15 show the segmentation results of the original images in Figures 2,
and 9 respectively by the proposed approach. For the proposed variogram-based
thresholding, γ̄I(t) was taken as the average of the five semi-variograms having
five lag distances ranging from 1 to 5.

It is well-known that the assessment of image segmentation results are not
straightforward [7,19,20,21]. In general, segmentation results are considered fa-
vorable if the segmented regions are homogeneous and have smooth and spatially
accurate boundaries [6]. In addition, the assessment of the segmentation results
of biological images are particularly dependent on the experts when classication
does not involve [21]. Using this guideline and by visual obervation of biology
experts, the results presented in all the figures show that the proposed method
provided better segmented images than other methods. The variogram-based
thresholding could better recognize the true boundaries of the objects than
both Otsu thresholding and FCM-based segmentation. The two latter meth-
ods yielded many false positive pixels and resulted in over-segmentation. The
watershed-based method provided similar results with those obtained from the
proposed segmentation method. However, it can be observed that the segmenta-
tion result obtained from the watershed method for the images shown in Figure 2
fails to highlight the larger spots; whereas this visual effect can be noticed in
those obtained from the proposed approach. The superior performance of the
variogram-based method to the watershed-based method can be better observed
in the results for the original images shown in Figure 9 where the watershed al-
gorithm oversegmented the object areas. In general, the variogram-based thresh-
olding gives the segmentation of the spots with more accurate boundaries than
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Fig. 11. Semi-variogram of original image B

the other methods and therefore can be effective for the task of cell-imaging
quantification.

The main advantages of the proposed method are its abilities to segment
images where the sizes of the object and background pixels are heavily unequal,
and to assign pixels which are scatteredly distributed over the whole image as the
background ones. This type of images are very common in cellular and molecular
imaging where the regions of interest occupy only a very small part of the image,
and the staining effect is usually scattered over the whole image space. Regarding
the computational time, for an image size of 1040×1392, runnning Matlab codes
on an average PC, it took about one second for Otsu thresholding; a few seconds
for the watershed method, twelve minutes for the FCM-based segmentation; and
about seven and two minutes for the variogram-based thresholding taking five
(h=1, . . . , and 5) and three (h=1, 2, and 3) separating distances respectively
and both giving similar results for this type of images. It is observed in many
cases that using only h=1 or h=1 and 2 for the geo-thresholding method, good
results are obtained for the segmentation of cell images and the running time is
dramatically reduced.
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Fig. 12. Otsu-method segmentation of B

Fig. 13. FCM-based segmentation of B

Fig. 14. Watershed-based segmentation of B

Fig. 15. Variogram-based segmentation of B
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4 Conclusion

A new optimal thresholding method for image segmentation based on the var-
iogram criterion has been discussed. The experimental results have shown its
promising application to the segmentation of cell puncta in low-contrast and
fluorescent-stained images. Effective segmentation of such biological images helps
life-science researchers obtain useful imaging information for downstream anal-
ysis including disease diagnosis, treatment, and new drug discovery. The thresh-
olding obtained from the minimization of the variograms is considered optimal
in a spatial context, which can be combined with other optimal criteria for gen-
eralization or can be used for hysteresis thresholding as a hard-core threshold
[1] by taking into account the information at various spatial distances.
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Abstract. A new segmentation method is suggested to distinguish the 
foreground from the background in gray-level images. The method is based on 
a 2-step process, respectively employing non-topological pixel removal (non-
topological erosion) and topological region growing (topological expansion). 
The first step is aimed at identifying suitable seeds, corresponding to the objects 
of interest in the image, while the second step associates to the identified seeds 
pixels removed during the first step, provided that fusions are not created. 
Segmentation is accomplished by using also information derived from a lower 
resolution representation of the image, with the purpose of reducing the number 
of foreground components to the most significant ones. Some hints regarding 
extension of the method to color images are also discussed. 

1   Introduction 

Image analysis deals with the automatic processing of digital images. Whichever is 
the final goal, a crucial task that has to be faced is image segmentation. This process 
is necessary to distinguish the foreground from the background and the method to be 
used depends on problem domain.  

A computationally convenient segmentation scheme is based on histogram 
thresholding. A threshold is determined, based on the histogram of the gray-levels, 
and all pixels with gray-level larger than the threshold are assigned to one of the two 
sets (the foreground or the background), while all the remaining pixels are assigned to 
the other set. In this way, a dichotomy of the image is originated. If the original image 
is naturally a binary image, e.g., a graphical document including written text, logos 
and drawings, only two values are used to denote the obtained foreground and 
background, respectively. Alternatively, when the information carried on by gray-
levels are still necessary to further analyze the foreground components, the resulting 
image will consist of a foreground, whose pixels have the same gray-levels as their 
homologous pixels in the original image, superimposed on a homogeneous 
background. A recent survey of about 40 thresholding methods can be found in [1]. 
Besides categorizing the various methods in terms of the information used to achieve 
the goal (histogram shape, measurement space clustering, entropy, object attributes, 
spatial correlation and local gray-level surface), the survey also presents an interesting 
performance evaluation of several histogram thresholding methods. 
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Histogram thresholding is computationally convenient, but does not take into 
account spatial information. Thus, it may be difficult to identify a single threshold for 
image binarization. This happens, for instance, when the same gray-levels 
characterize pixels that a user would classify, depending on the local context, in some 
parts of the image as belonging to the background, and in other parts of the image as 
belonging to the foreground. For these images the threshold should assume different 
values in different parts of the image, to allow correct assignment of pixels to the 
foreground and the background, respectively. The best results are obtained by 
resorting to locally adaptive thresholding methods, which compute a different 
threshold for each pixel in the image, by means of measures accomplished in suitable 
pixel neighborhoods (see, e.g., [2-6]).  

Besides, histogram thresholding, a number of alternative approaches to image 
segmentation have been suggested in the literature, such as those based on feature 
space clustering, edge-detection, or watershed transformation. All these methods have 
advantages and disadvantages. We do not discuss these alternative methods, since the 
technique that we suggest in this paper is somehow more related to histogram 
thresholding than to the other approaches mentioned above. A comprehensive 
description of these approaches can be found in [7-11].  

Our image domain consists of microscope images of cells, where the foreground is 
perceived as locally darker than the background, consistently through the whole 
image, even if the same gray-levels can characterize both pixels in areas understood 
as belonging to the foreground and pixels in areas perceived as belonging to the 
background. Gray-levels are in the range [0-255] and we assume that 0 corresponds to 
the lightest gray-value (white) and 255 to the darkest one (black). 

Similarly to histogram thresholding methods, we use the histogram of the gray-
levels to identify the range of gray-levels that we regard as certainly characterizing 
the foreground and the background for the specific application. Differently from 
histogram thresholding methods, the not yet assigned pixels, i.e., those whose gray-
levels are in between the gray-levels regarded as definitely characterizing foreground  
pixels and background pixels, undergo an iterated 2-step process, respectively 
employing non-topological pixel removal (called in the following non-topological 
erosion) and topological region growing (called topological expansion). The number 
of iterations is fixed a priori as the number n into which the range of gray-levels of the 
not yet assigned pixels is sampled. At the k-th iteration, if gk is the maximum gray-
level value that we consider, only the not yet assigned pixels with gray-level up to gk 
are examined. Non-topological erosion is done to orderly remove pixels with gray-
level up to gk, provided that they belong to the border of foreground components, in 
order to split these components into a number of disjoint sets (the seeds). Topological 
expansion is then accomplished by adding again to the seeds those pixels, among the 
previously removed ones, which do not create fusions of regions. If at the k-th 
iteration all the removed pixels can be added again, this means that no separation of 
foreground components occurs in correspondence of gray-levels until gk. In any case, 
the process continues and the possible foreground separations at a higher gray-level 
are searched. Thus, our method can be classified as a multi-threshold method, since 
foreground components can be separated at different gray-level values. A peculiarity 
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of our method is that we avoid an excessive reduction of the size of foreground 
components, due to the accomplished topological expansion that restores all removed 
pixels, except those in the fusion areas. Another feature of our method is that we use 
information derived from a lower resolution representation of the image to reduce the 
number of foreground components to the most significant ones. 

2   The Method 

In the following, we will describe our method by using as running example the image 
G shown in Fig. 1 with its histogram. For visualization purposes, the running example 
has a small resolution (128×128), but we actually process larger size images. 

         

Fig. 1.  Running example and gray-level histogram 

Let g denote any pixel of G as well as its associated gray-level. We need to fix two 
thresholds, θi and θf, depending on the gray-level distribution in G. The value of θi 
should be such that all pixels with gray-level g≤θi can definitely be interpreted as 
background pixels in the specific application. The value θf should be such that all 
pixels with gray-levels g>θf certainly belong to the foreground. In general, θi and θf 
can be set in correspondence with the leftmost and the rightmost valleys in the 
histogram, by assuming that the first and the last peaks of the histogram, including the 
lightest and the darkest gray-levels respectively, definitely allow to identify portions 
of the background and of the foreground.  

If the histogram is mainly bimodal, a generally large valley separates the two main 
peaks and the two thresholds can be set at the two extremes of the valley. For a 
multimodal histogram, the thresholds can be shifted towards more internal valleys, 
depending on user's needs. In fact, a too small value of θi could cause the detection of 
a number of noisy components, erroneously interpreted as belonging to the 
foreground. In turn, the value of θf should be set in such a way to prevent excessive 
foreground fragmentation, which would split foreground components perceived as 
individual entities into a number of meaningless components. In the current version of 
the method, the selection of θi and θf is not automatic, but is based on a priori 
knowledge on the characteristics of the input image. Pixels with gray-level value g, 
θi<g<θf, can be foreground pixels or background pixels in different parts of the image. 
For the running example, the two thresholds have been set to θi=176 and θf=206. 
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2.1   Non-topological Erosion 

The range of gray-levels between θi and θf is sampled into n groups. Each group 
gathers δ successive gray-levels. In our case, it is δ=5. This choice is motivated by a 
compromise in computational efficiency (the larger is δ, the smaller is n and, hence, 
the number of iterations of the process) and quality of the result (with a small δ, also 
perceived foreground components which are remarkably lighter with respect to other 
foreground components can be singled out. In turn, if δ is large, lighter foreground 
components risk to be lost, since no seeds would be detected in correspondence with 
them at any iteration to allow their recovery after non-topological erosion). For the 
running example it results n=6 and, hence, six iterations of the process are 
accomplished. At the first iteration, pixels with gray-level g, θi<g<θi+δ, are examined. 
In general, at the k-th iteration, pixels with gray-level g, θi<g<θi+k×δ, are examined.  

To separate foreground components that result to be merged in a fusion area 
characterized by a gray-level value, which is smaller than θi+k×δ, the pixels placed in 
the fusion area have to be identified and have to be assigned to the background (i.e., 
their gray-levels have to be set to the background value θi). To this purpose, non-
topological erosion is accomplished.  

Pixels with gray-level g, g<θi+k×δ, are examined in increasing gray-level order and 
those having at least one horizontal/vertical neighbor in the background, i.e., at least a 
neighbor with gray-level equal to θi, are temporarily assigned to the background, 
regardless of the topology changes possibly caused by this operation. Non-topological 
erosion is carried on until border pixels are found. Though border pixels are removed 
independently of whether connectedness is preserved in their neighborhoods, the 
number of connected components of pixels with gray-level greater than θi+k×δ 
present in the neighborhood of any removed pixel is counted by using the 
connectivity number C8 introduced in [12]. If for a pixel p it results C8>1, this 
indicates that p was actually a fusion point among foreground components. Thus, a 
fusion flag fc, initially set to zero, can be suitably changed to record the event.  

At the end of non-topological erosion, the flag fc is examined. If fc=0, no fusion 
occurred at the current iteration, and all removed pixels can be recovered to preserve 
the information contents of the image. In turn, if fc≠0, some fusion actually occurred. 
In this case, only the removed pixels that are far from the fusion area can be 
recovered. In any case, before proceeding to the successive iteration of non-
topological erosion, topological expansion is performed, to restore size and shape of 
foreground components, which have been modified by non-topological erosion.  

A crucial difference with respect to a thresholding method that would assign to the 
background all pixels with gray-level g, g<θi+k×δ, is that our criterion removes only 
border pixels. Thus, pixels characterized by gray-level g, g<θi+k×δ, possibly present 
within a darker component are not assigned to the background, so that spurious 
background components are not created. Another advantage of removing pixels by 
our method is that we can record the list L of removed pixels in the order they have 
been removed. This will play a useful role during topological expansion.  

In Fig. 2, the images resulting after the 5-th iteration and the 6-th iteration of non-
topological erosion are shown, where black and gray respectively denote the seeds 
and the pixels (temporarily) assigned to the background. We note that the individual 
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Fig. 2. Results after the 5-th iteration, left, and the 6-th iteration, right, of non-topological 
erosion 

seed in the bottom-left part of the image in Fig. 2 left, is split in two seeds in the 
image in Fig. 2 right. 

2.2   Topological Expansion 

During the k-th iteration of topological expansion, recovery of pixels removed at the 
same iteration of non-topological erosion is done in such a way to maintain separated 
the components whose seeds have been singled out. The process is straightforward if 
no fusion occurred at the k-th iteration, since all pixels stored in L are just newly 
assigned their initial gray-level in the image G.  

A more tricky process is necessary if fc≠0, i.e., if some fusion occurred. In this 
case, the pixels recorded in L are examined and set to their initial value in G in the 
opposite order with respect to the order in which they were inserted in the list. In fact, 
the pixels that were removed last are the first ones that can be recovered, being the 
closest ones to the seeds identified by non-topological erosion. The number, C8, of 
components of foreground pixels (i.e., pixels with gray-level greater than θi) is 
counted in the neighborhood of each pixel p restored from L in the image G. If C8>1, 
p is assigned on G its initial gray-level, but it is also marked in G as a fusion point. 

The set of pixels marked as fusion points is generally not sufficient to separate 
foreground components associated to distinct seeds. Thus, a marker propagation 
process is performed to identify all pixels in the fusion areas. To this aim, after all 
pixels of L have been processed and restored in G, all the pixels recovered from L and 
neighbors of marked pixels are also marked as fusion points. Obviously, by 
indefinitely iterating the marker propagation process as far as recovered pixels can be 
marked, the detected set of fusion points will generally include a larger number of 
pixels with respect to those whose removal is really necessary to maintain separated 
the foreground components associated to distinct seeds. In some cases, all the 
removed and recovered pixels surrounding a seed result to be marked as fusion points 
at the end of marker propagation. Therefore, to assign to the background a limited 
number of pixels, a suitable process is performed to remove the marker from pixels 
far from the actual fusion areas. Pixels still marked as fusion points are finally set to 
θi, so obtaining the separation of foreground components at the k-th iteration. 

The images resulting after the 5-th iteration and the 6-th iteration of topological 
expansion are shown in Fig. 3, where black and gray denote foreground and 
background, respectively.   

 



32 G. Ramella and G. Sanniti di Baja 

   

Fig. 3. Results after the 5-th iteration, left, and the 6-th iteration, right, of topological expansion 

The iterated application of non-topological erosion and topological expansion 
allows us to separate foreground components whose average gray-levels differ, or 
have similar average gray-levels but are separated by portions of the background 
characterized by different average gray-levels. This is not possible if a single image 
thresholding is accomplished. We point out that once a foreground component, lighter 
than other components, has been singled out at a given iteration, this component will 
be preserved even when, at some successive iteration, non-topological erosion, will 
completely remove such a component for a suitable value of θi+k×δ. In fact, the first 
pixel recovered by topological expansion in correspondence of such a component will 
be characterized by C8=0, being an isolated pixel, and all successively recovered 
pixels will be characterized by C8=1, so that none of the recovered pixels of the 
component will be marked as fusion point. This is the case, for example, for the 
foreground components in the top right and top left portions of the images in Fig. 3, 
for which no seeds were detected (see Fig. 2). Actually, those components were 
singled out at the first iteration. During all successive iterations, they are completely 
removed by non-topological erosion and recovered by topological expansion. 

2.3   Using Lower Resolution Image Representation 

Though the foreground is perceived as consisting of sets of rather homogeneously 
dark pixels, gray-level variations not necessarily meaningful but still enough to split a 
foreground component in more than one seed are possible. This is particularly true 
when the value selected for δ is rather small, as it is in our case. The negative effect of 
a small δ is that the number of seeds results larger than the number of perceived 
foreground components and some components obtained at the end of the topological 
expansion are scarcely meaningful. Since increasing δ could prevent us to single out 
some desired lighter foreground components in correspondence of which no seeds 
would be found, we suggest an alternative criterion to remove the seeds that do not 
correspond to meaningful regions, based on the use of a lower resolution 
representation of the image. 

It is well known that if representations at different resolution of a gray-level image 
are available, only the most significant regions will be perceived at all resolutions. 
Regions with lower significance, which can be interpreted as fine details, are 
perceived only at sufficiently high resolution. Thus, if non-topological erosion and 
topological expansion are accomplished on the image at full resolution as well as on a 
lower resolution representation of the image, the components detected at full 
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resolution, but that are not present at lower resolution, can be regarded as less 
significant with respect to components found in both images.  

To build a lower representation of the image, we use a decimation process that 
associated to each 2×2 set of pixels in the full resolution image a single pixel p’ in the 
lower resolution image G’. The gray-level of p’ is computed in terms of the gray-level 
of one of the pixels, say p, placed in block of 2×2 pixels in the full resolution image, 
as well as of the gray-levels of the eight neighbors of p. Since there are four possible 
ways to divide G into blocks of 2×2 pixels, the pixel p can actually be in any of the 
four positions of a block. For the same reason, the eight neighbors of p can be present 
in one or more of the four possible blocks. Horizontal/vertical neighbors of p belong 
to two different blocks, while each diagonal neighbor of p belongs to one block only. 
Thus, we can weight the gray-levels of the neighbors of p with values 2, for 
horizontal/vertical neighbors, and 1, for diagonal neighbors. Since p is present in all 
four blocks, the gray-level of p can be weighted as 4.  In this way, we can compute 
the gray-level of p’ in a way almost independent of the division of G into blocks of 
2×2 pixels. Obviously, gray-levels have to be rescaled to the range [0-255]. To 
compute G’, pixels in even rows and columns of G are considered as the bottom right 
pixels in the 2×2 blocks corresponding to single pixels in G’. It is immediate to see 
that, given a pixel p’ with coordinates (i,j) in G’, the coordinates of the four pixels in 
the corresponding 2×2 block in G can be easily determined. 

If a representation of G at even lower resolution is desired, the same process can be 
repeated on G’. In practice, a pyramid representation of G can be built. See, for 
example, [13,14] where multi-scale pyramid representation was discussed. There, a 
preliminary version of the segmentation method here illustrated was used to segment 
the full resolution image so as to build a topology-preserving pyramid. 
Selection of the lower resolution representation to be used in order to reduce the 
number of components detected at full resolution depends on problem domain. If the 
objects perceived in the input image by the expert have large size, a quite lower 
resolution will still reasonably reflect the properties of G and the most important 
components will still be those detected at the low resolution representation. Of course, if 
G includes small size foreground components, resorting to a very low resolution image 
is not advisable, since the input image would be represented in a too coarse way. For 
the running example, we consider the image G’ with resolution 64×64 pixels as 
adequate to the aim. See Fig. 4 top, showing the full resolution image and the 64×64 
lower resolution image.  

Non-topological erosion and topological expansion are accomplished on both G 
and G’. Components identified in G, such that the relative 2×2 blocks all correspond 
to background pixels in G’ are removed (i.e., their pixels are assigned to the 
background).  

In Fig. 4 bottom, the components found in G and G’ at the end of the process are 
shown on a gray background. A lighter gray tone is used to mark in the full resolution 
image the components that will be assigned to the background, due to the information 
derived from the lower resolution image. 
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Fig. 4. Top: the 128×128 image, left, and its 64×64 lower resolution representation, right. 
Bottom: the components found at the end of the process for the 128×128 image, left, and the 
64×64 image, right. 

 

 

Fig. 5. The segmentation obtained for the running example 

In Fig. 5, the segmentation of the running example is shown. The white lines, 
superimposed on the original image, identify the borders of the components of the 
foreground that have been singled out. 

3   Extending the Method to Color Images 

In this section, we briefly discuss a possible way to extend our method to color 
images. Starting from an input color image C, the three gray-level images in the 
(RGB) color space are computed. The segmentation process is applied to each of 
these images, by selecting for each of them the proper values for θi and θf.  

A simple way to combine the three resulting images, is to binarize them and 
compute the OR image to obtain the foreground components of the input image. The 
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Fig. 6. A color input image, left, and its segmentation, right 

effect is shown in Fig. 6, where the white lines superimposed on the input image 
identify the borders of the detected foreground components. 

Alternatively, the three binary images could be added to each other, producing an 
image with values ranging from 0 to 3. Pixels with value 3 belong to components 
identified in all the segmented images, pixels with value 2 or 1 belong to components 
detected in two or just one segmented image. Obviously, pixels with value 0 have 
been classified as background pixels in the three segmented images. Pixels belonging 
to each connected component of 3’s, 2s and 1’s could be labeled with the average 
color of the corresponding region in the input image. We have noted that, if this 
method is adopted, some region merging becomes necessary. We are currently 
working on this problem.  

4   Conclusion 

In this paper we have presented a segmentation scheme for gray-level images based 
on two processes: non-topological erosion and topological expansion. The method is 
semi-automatic since the user is requested to select, based on the gray-levels 
histogram, two thresholds, θi and θf, to assign to the background and to the 
foreground pixels definitely perceived as belonging to these two sets. The remaining 
pixels undergo iterated non-topological erosion and topological expansion. To this 
aim, the range of gray-levels of the not assigned pixels is sampled into n intervals 
including a small number δ of successive gray-levels. Non-topological erosion will 
remove, at the k-th iteration, only pixels, which are adjacent to background pixels and 
have gray-level smaller than θi+k×δ. These pixels will be recovered by topological 
expansion, provided that they are not found in fusion areas.  

Advantages of the method with respect to a thresholding method that would assign 
to the background all pixels with gray-level smaller than a given threshold, is that 
during non-topological erosion pixels characterized by small gray-levels, possibly 
present within a darker component, are not assigned to the background and spurious 
background components are not created. Moreover, foreground components whose 
average gray-levels differ, or foreground components with similar average gray-levels 
but separated by portions of the background characterized by different average gray-
levels, can be singled out.  

To reduce the number of detected components to the most significant ones, we 
have also used information derived from a lower resolution representation of the input 
image. In particular, the lower resolution image undergoes non-topological erosion  
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and topological expansion, and components found in the full resolution image that are 
not also identified in the lower resolution image are assigned to the background. 

We have also suggested a possible extension of the method to color images. In this 
respect, our work is at a preliminary stage and further research activity is planned for 
the future. 
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Abstract. The relationship between geometric folding of the chromatin
fiber and genome function is a key issue in cell biology. We propose dif-
ferent approaches based on statistical shape theory to investigate the
geometric variability of chromatin folding in nuclei of interphase human
fibroblasts. Our main purpose is to assess the degree of variability of
folding of the chromatin fiber, measured by fluorescent in situ hybridiza-
tion, using BAC probes in combination with 3D confocal microscopy.
We employ point-based registration, the complex Bingham distribution,
generalized Procrustes method, and the Kendall spherical coordinate sys-
tem. The approaches have been applied using 337 3D multi-channel mi-
croscopy images. We have analyzed the geometric structure formed by
gene-rich highly expressed genomic regions and areas that are gene-poor
and have a low transcriptional activity. It turned out that the structure
formed by these genomic regions exhibit high shape variation, however,
most of them can be characterized by a non-uniform shape distribution.

1 Introduction

The common model of the 3D structure of chromatin assumes that the DNA
folds around histone octamers, forming arrays of nucleosomes in a 10 nm fiber,
which folds into 30 nm diameter chromatin filament. Remarkably, little is known
about higher order folding, despite the fact that the 3D organization of the chro-
matin fiber plays an important role in the control of gene expression [1]. In this
work we are interested in the 3D geometric properties of large-scale chromatin
fiber of interphase cells. The general motivation consists in relating geometric
information to genome function, in order to obtain a better understanding of
how the large-scale chromatin structure affects gene regulation in normal and
abnormal cells (for recent surveys on this issue we refer to [2] and [3]). The main
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purpose of our work is to analyze the variability of the 3D geometric structure
formed by different genomic regions identified by fluorescent in situ hybridization
(FISH) with bacterial artificial chromosome (BAC) probes. We have acquired
337 three-color 3D confocal microscopy images of nuclei of human fibroblasts in
which three genomic regions were FISH labelled on the q-arm of chromosome 1.
In this way each image contains a cell nucleus with three spots, representing
three genomic regions on the same chromosome, that form a triangle, denoted
as BAC-triangle (see Fig. 1, top left and bottom). We analyze the gene-rich and
highly expressed genomic regions (called ridges [4]) and the gene-sparse genomic
regions showing low gene expression (called anti-ridges). To assess the variability
of the structures labelled by the BACs we propose different approaches.

Prior to a statistical evaluation we first apply 3D point-based registration
to transform the BACs onto the x-y plane. The purpose is to normalize the
data and to reduce the dimensionality of the problem from 3D to 2D. Second,
we perform statistical shape analysis to evaluate the shape variability of the
datasets. Our analysis is based on the following two approaches: The complex
Bingham distribution model [5], which involves one parameter that characterizes
the degree of variability of the data, and the generalized Procrustes method
[6], which captures the dominant variation of the data. In addition, we employ
Kendall’s spherical coordinate system [6] to visualize the shape distribution of
the BAC-triangles. According to our knowledge statistical shape analysis has not
yet been used to assess the variability of the 3D structure of chromatin fibers.

Fig. 1. Top left: One section of a 3D original microscopy image of a cell nucleus; Top
right: Relation between BACs and groups of datasets; Bottom: 3D visualization of a
cell nucleus and three BACs
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2 3D Image Data

Our study is based on 337 3D microscopy images of human fibroblasts in which
three specific positions on the chromatin fiber of individual chromosomes have
been labeled by fluorescence in situ hybridization (FISH). The multichannel
images have a resolution of 512 x 512 x 100 voxels. The data was acquired in
five groups according to the scheme sketched in Fig. 1, top right. In subsequent
groups there is an overlap of two BACs. For example, within group 1 the positions
1,2,3 are labeled, whereas in group 2 these are positions 2,3,4. In total, we have
acquired 337 datasets that are divided in 10 groups: 5 groups for a ridge and
5 groups in an anti-ridge. Each group depicts a specific BAC-triangle measured
in about 30 cells. Generally, two BAC-triangles can be observed in a nucleus,
since the cells are diploid. However, in ca. 60% of our real image data only one
BAC-triangle can be identified unambiguously. In total, we thus have 457 BAC-
triangles for our analysis. After applying threshold-based segmentation we have
computed the center of mass for each BAC labeled site with sub-voxel resolution
and positions have been corrected for chromatic aberration.

Besides the real datasets we have also generated two sets of simulated data
which serve as reference datasets. First, we created 50 triangles with low vari-
ability. The vertices of the triangles are isotropic normally distributed N(μ, σ),
where σ = 0.05 and the mean side length of the triangles is 0.82. We denote this
dataset by ”stable triangles”. Also, we created a dataset ”random triangles”
which consists of 50 triangles, whose vertices are uniformly distributed within a
unit cube.

3 Methods

3.1 Point-Based Rigid Registration

Prior to applying different techniques from statistical shape theory, we employ
3D point-based rigid registration (translation, rotation) to transform all 3D
BAC-triangles onto the x-y plane (reference system). 3D point-based registra-
tion can be formulated as follows. Given k source points pi, and k target points
qi, the task is to find a rigid transformation R such that

∑k
i=1 ‖qi −pi ◦ R‖2 is

minimized. To register BAC-triangles (k = 3) onto the x-y plane, we arbitrarily
selected a triangle in this plane as the target structure, and applied the algorithm
of Horn [7]. After registration, each vertex of the triangles can be represented
by a 2D coordinate or a complex number.

Note, that originally the BAC-triangles are labeled clockwise or counter-
clockwise. However, after point-based registration, there is exclusively one kind
of labeling order, i.e. either only clockwise or only counter-clockwise, because
the counter-clockwise order and the clockwise order can be transformed to each
other by a 3D rotation. This is called removing the reflection shape [6].
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3.2 Complex Bingham Distribution

After having transformed the BAC-triangles onto the x-y plane, we use the
complex Bingham distribution to model the shape distribution. This technique
provides an elegant framework for the analysis of 2D shape data [6]. The main
advantage is that only one parameter is involved and that this parameter char-
acterizes the degree of shape variability, e.g., it indicates whether the shape
distribution of triangles has the tendency to be uniform. Below, we introduce
the complex Bingham distribution in the context of our application.

Given a set of n triangles (number of vertices k = 3), which have been trans-
formed onto the x-y plane. Each triangle can be represented by a 3D complex
vector z̃i = (z̃i1, z̃i2, z̃i3), where z̃ij ∈ C, i = 1, ..., n, and j = 1, 2, 3. A central
issue is to examine whether the shape distribution of these triangles is uniform.
In this case the shape of the triangles is random. First we have to remove un-
desirable effects from scaling and translation. To perform this step we need a
special transformation (for details we refer to [6]). The transformed triangles
are represented by 2D complex vectors zi = (zi1, zi2). The complex Bingham
distribution has the following rotation-invariant probability density function:

f(z) = c(A)−1 exp(z∗Az) (1)

where A is a (k − 1) × (k − 1) Hermitian matrix, c(A) is the normalizing con-
stant, and z∗ represents the complex conjugate of the transpose of z. In the case
of triangles (k = 3) A has two distinct eigenvalues λ1 and λ2 where λ1 > λ2.
In order to investigate the form of the shape distribution, we need to determine
λ1 and λ2, and examine whether λ1 and λ2 are approximately zero. If this is
the case, then the triangles tend to have a uniform distribution in shape space.
However, in our application the eigenvalues generally cannot be close to zero.
The reason is, that for a uniform shape distribution both labeling orders for
triangles must be included, however, 3D triangles only have one labeling order.

The eigenvalues of A can be computed based on:

c(A) = 2π2
k−1∑

j=1

aj exp(λj), a−1
j =

k−1∏

i�=j

(λj − λi) (2)

Note, that the Bingham distribution remains unchanged if a constant is added
to all eigenvalues. The consequence is that for the λi there is no unique solution.
Fortunately, this non-uniqueness can be conveniently removed by setting the
largest eigenvalue to zero without lost of generality. In our case, we set λ1 = 0,
which implies that the second eigenvalue λ2 is negative. Then only one parameter
remains, which makes our analysis easier. Hence

c(A) = 2π2(
1

−λ2
+

exp(λ2)
λ2

) (3)

λ2 is usually estimated by means of maximum-likelihood estimation (MLE).
First let S =

∑n
i=1 ziz∗i be the (k − 1) × (k − 1) complex sum of squares and
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products matrix. In the case of triangles (k = 3) S has two positive and distinct
eigenvalues, i.e. l1 > l2 > 0. Note that l1+ l2 = n. The log-likelihood for the data
reads: L = l2λ2 − n log[c(A)] where l2 is the smaller eigenvalue of the matrix S
defined above.

Test of Uniformity. To answer the question whether the data has a random
shape, i.e., whether the BAC-triangles have uniform shape distribution, we per-
form the following statistical test. Generally, the shape space of 2D triangles is a
spherical space instead of an Euclidean space. Its southern hemisphere contains
all triangles with clockwise labeling, whereas all triangles with counter-clockwise
labeling are located on the northern hemisphere. However, the shape space of 3D
triangles consist of just one hemisphere [6], since 3D triangles have only one kind
of labeling as mentioned above. Thus standard methods of directional statistics,
which are particularly designed for statistics of spherical data, are not suited.
However, the uniformity on the full sphere implies the uniformity on its both
hemispheres. Therefore, one possible solution to overcome this drawback is to
map half of the 3D triangles onto the other hemisphere. If the mapped dataset
is uniform, then the original one is also uniform. To perform the mapping, for
each triangle we randomly assign either its original or its reflected shape as input
data. Using this scheme half of the data are located on the northern hemisphere
and half of the data are located on the southern hemisphere. Subsequently we
apply a statistical test on the spherical data as described by Mardia and Jupp
[8]. First we need to establish the sum of squares and products matrix Ŝ, where
the corresponding eigenvalues are l̂1 and l̂2. The test statistic F = 3(l̂1 − l̂2)2/n
has a chi-squared distribution, i.e. F � χ2

3. This value can be used to determine
whether the data is uniform, which is the case for large values of F at a certain
significance level, e.g., for the upper 1% quantile of χ2

3 we have the value 11.34.

3.3 Generalized Procrustes Method

Apart from the evaluation based on the complex Bingham distribution we also
investigate the dominant shape variation of BAC-triangles. The generalized Pro-
crustes method uses principal components to characterize the main tendency of
structural variability (the term ”generalized” indicates, that there are more than
two objects involved).

First, it is necessary to compute the full Procrustes estimate of the mean shape
[9] for a set of triangles. Afterwards, one can examine how the triangles vary
with respect to the mean shape. For this purpose we take advantage of principal
components analysis (PCA) of the Procrustes residuals [6]. Let the real vectors
ri, i = 1, ..., n be the Procrustes residuals, and M be the sample covariance
matrix of ri, i.e. M = 1

n

∑n
i=1(ri−r)(ri−r)T where r = 1

n

∑
ri. The orthonormal

eigenvectors of M denoted by γi, are the principal components (PCs) of M with
corresponding eigenvalues λi. The percentage of variability captured by the ith
PC is 100λ2

i /
∑

λ2
i . The effect of the i−th PC can be visualized by adding r on

the mean shape, where r = r + cλ
1/2
i γi for a range of values of the standardized

PC score c, typically c = ±3.
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3.4 Kendall’s Spherical Coordinates

To visualize the shape distribution of triangles we use Kendall’s spherical co-
ordinate system. Using this coordinate system each triangle is mapped to one
point on a sphere. The points on the southern hemisphere represent the reflec-
tion shape of those triangles on the northern hemisphere. Furthermore, the two
poles of the sphere correspond to an equilateral triangle and its reflection shape,
whereas the flat triangles are found in the regions close to the equator. In our
case, the reflection shapes of the triangles have been removed after 3D point-
based registration. Hence we need to consider only one hemisphere of Kendall’s
spherical coordinate system. Before constructing this coordinate system it is
necessary to compute Kendall’s coordinates (u, v) ∈ R

2 for each triangle (for de-
tails we refer to [6]). The Kendall’s coordinates can be converted into Kendall’s
spherical coordinates using the following formula:

x =
1 − r2

2(1 + r2)
, y =

u

1 + r2 , z =
v

1 + r2 (4)

where r2 = u2 + v2. Using (4) every triangle can be mapped to a point on the
sphere.

Since we need to consider the shape distribution only on one hemisphere, we
take advantage of the polar aspect of the Lambert-azimuthal equal-area pro-
jection to visualize our data. In this projection the north pole of the sphere is
mapped to the center of one circle, whereas the equator is represented by the
circle self.

3.5 Multidimensional Scaling (MDS)

To reconstruct the 3D structure of the BACs we apply multidimensional scaling
(MDS). As input MDS uses a distance matrix. With this approach it is assumed
that the shape variation of the BAC-triangles is relatively low. To establish the
distance matrix in our application, we use the mean distances between each two
BACs.

4 Experimental Results

For all datasets described in section 2 above we have applied 3D point-based rigid
registration. As an example, Figs. 2a,b show the results of the registration for the
real datasets AR1 and AR2. Figs. 2c,d visualize the datasets of the stable trian-
gles and the random triangles. The registration removes the reflection shapes in
the 2D plane. Therefore the transformed triangles can be evaluated using the com-
plex Bingham distribution. Tab. 1 lists the values of |λ2| for all real datasets. The
larger the value of |λ2|, the lower is the shape variability of the triangles. For a com-
parison, we have also calculated the |λ2| value for the stable and random triangles
yielding |λs| = 162.52 and |λr| = 5.63, respectively. Apparently, the real data are
far from stable shapes. Except AR2 and AR4 all datasets are not random, since
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Fig. 2. Results after 3D point-based registration: Datasets AR1 (a), AR2 (b), stable
triangles (c) and random triangles (d)

their |λ2| values are larger than |λr|. We have also applied the test of uniformity
described in section 3.2 using a significance level of 1% yielding χ2

3;0.01 = 11.34.
The listed values for F in Tab. 1 reveal that all datasets except AR2 and AR4 are
not uniformly distributed. This confirms the result using the complex Bingham
distribution and the |λ2| values. Moreover, we can draw the same conclusion, if we
use the heuristic criterion that the mean length of the triangles should be larger
than three times the standard deviation of isotropic normally distributed vertices
(which corresponds to a threshold value of |λ2| = 6.3).

Table 1. Computed absolute values of λ2 and result of the uniformity test for the real
datasets. The last row lists the number of BAC-triangles for each dataset (sum: 457).

Anti-ridge BACs Ridge BACs

AR1 AR2 AR3 AR4 AR5 R1 R2 R3 R4 R5

|λ2| 12.28 5.07 8.32 4.52 9.07 10.17 11.35 6.70 10.06 6.69

F 104.2 2.21 49.99 5.56 28.36 52.48 28.81 20.32 41.13 38.26

n 70 53 61 21 44 45 26 24 45 68
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Fig. 3. The results of generalized Procrustes method and the corresponding percentage
of variability captured by the i-th PC: Datasets AR1 (a), AR2 (b), stable triangles (c),
and random triangles (d)

In Fig. 3 the results of the generalized Procrustes method are shown. Figs. 3a,b
refer to the real datasets AR1 and AR2, and Figs. 3c,d to the stable and random
triangles. The small circles represent the mean shape of the triangles (mean
triangle). The vectors (circles attached to line segments) indicate the direction
and magnitude of the variation along a certain principal component (PC) of the
Procrustes residual. Generally the first PC captures the most dominant variation.
In comparison to the random triangles (Fig. 3d), both real datasets have a larger
dominant variation along the first PC compared to the other PCs. However, the
other two PCs still have a relatively high variability, in particular, compared to
the stable triangles. Note that the magnitude of the vectors for dataset AR1 is
smaller than for dataset AR2. Analysing all 10 real datasets it turns out that all
BACs-triangles possess high shape variability.

Fig. 4 illustrates the shape distribution of the BAC-triangles using Kendall’s
spherical coordinate system. The points for dataset AR1 are located primarily
in one quarter of the large circle. In contrast, the points for the dataset AR2
are scattered randomly, which is similar to the random dataset. The points of
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Fig. 4. Kendall’s spherical coordinate system using Lambert’s azimuthal equal-area pro-
jection. The north pole is represented by the center of the large circle. The results corre-
spond to the datasets AR1 (a), AR2 (b), stable triangles (c), and random triangles (d).

Fig. 5. Result of multidimensional scaling of anti-ridge and ridge BACs displayed from
two different perspectives

the stable dataset aggregate into a small region as expected. These observations
agree with the computed |λ2| values of the complex Bingham distribution.

Finally we show the feasibility of multidimensional scaling (MDS). Fig. 5
displays the polygon through all investigated five anti-ridge and five ridge BACs
(based on mean distances between every two BACs as mentioned above). It turns
out that the structure of the anti-ridge BACs coils more compactly than that
of ridge BACs, which is what we expect. This is an interesting result, since we
applied MDS although knew (based on the analysis above) that two of the ten
dataset groups are randomly distributed.
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5 Conclusion

We have presented different approaches based on statistical shape theory for
analysing and assessing the variability of large-scale structure formed by gene
regions (BACs) on chromatin fibers of interphase cells. Our real data is divided
into the two groups: anti-ridge BACs and ridge BACs. Additionally, stable and
random datasets have been simulated and used as reference datasets. To evaluate
the data we have used 3D point-based rigid registration, the complex Bingham
distribution, generalized Procrustes method, and Kendall’s spherical coordinate
system. From our experiments it turned out that all of the investigated dataset
groups exhibit high shape variation, however, most of them can be characterized
by a non-uniform shape distribution. This means that the structure of most of
them is not random. We have also used multidimensional scaling to reconstruct
the 3D structure based on the given BACs.
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Abstract. In this paper, we introduce a novel unsupervised segmenta-
tion method using a histogram fitting method to find out the optimal
histogram clustering based on multi Gaussian models. The fitting prob-
lem is performed via the trust region reflective Newton method to min-
imize a predefined cost function. The histogram clustering is the global
information describing the probability of a given gray value belonging to
a category. Together with the consideration of the spatial information,
the image segmentation is performed. We demonstrate some applications
on medical images such as brain CT and MRI.

Keywords: histogram clustering, curve fitting, trust-region method, im-
age segmentation.

1 Introduction

Image segmentation is a basic step in many image processing techniques. Espe-
cially, it is a pre-processing and low-level process in the computer vision field.
This is an old but important topic in many medical applications. The general
goal of segmentation is to group the image primitives having similarity together.
The image primitives can be low-dimensional such as pixel gray level, texture,
or they can be hyper-dimensional such as a composition of many useful features.

There are many histogram based image segmentation articles over the past
decade. It is difficult to categorize them because the amount of related stud-
ies is too large. We however divide them into two groups: parametric [1,2] and
nonparametric method [3]. Normally, the parametric method can handle the
unsupervised image segmentation problem because they use some models to
represent the characteristics of objects or background. On the contrary, the non-
parametric methods such as [4] usually need some information as training data
or references to help performing the segmentation task.
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Also, the case-based reasoning methods [5] for image segmentation have been
developed that adjust the model parameters for the processed image by retrieving
past successfully solved cases from a case base and that can incrementally learn
new case solutions to improve the segmentation quality.

In the case of unsupervised clustering, image segmentation is performed by
setting a model describing the nature of the feature distribution and finding out
the optimal model parameters without any prior knowledge (training data). The
prerequisite is that the model should be general and available for this kind of
images since this is the only framework information. Different from the super-
vised clustering, the feature distribution for unsupervised clustering is mostly
assumed to be compact and hyperellipsoidal [6,7]. This is because we have no
priori knowledge on the feature distribution. A frequently used model is nor-
mal distribution [8]. Other models used in computer vision can be found in [9].
However, the distribution can also be assumed to be non-hyperellipsoidal but
continuous and locally linear such as locally linear embedding method [10,11].

On the other aspect, the feature selection is also important. A good feature
selection can well represent the objects so that the following clustering then be-
comes easier. Since we do not know the distribution in advance, it is easier to
solve the problem by supervised clustering methods. With the help of training
data, the feature distribution can be sampled and the boundaries can be found,
for instance by support vector machine [12,13]. However, based on a reasonable
assumption that spatially close pixels are likely to belong to the same tissue
type [14], the segmentation can be better done with the consideration on the
features (either local or global information) together with the spatial informa-
tion. We human beings recognize objects also based on the features and the
spatial information. We therefore have to consider the coordinate relationship.
Simultaneously, the similar object can also appear at another place so that we
need global information such as colors or textures. The segmentation can be well
done only when these two information sources are simultaneously considered. For
example, in [2] the image segmentation is performed via annealing maximum a
posteriori estimation to compute the optimal histogram clustering solutions.
With a suitable feature selection method, a simple histogram clustering method
can segment texture images as well.

In this paper, we introduce a method using unsupervised histogram clustering
via a curve fitting process based on multi Gaussian models. The histogram is
an invariant feature available for medical image processing. Simultaneously, we
take the spatial information into consideration to reduce the noise effect and to
connect the thin object which is disconnected by noises.

The paper is organized as follows: We propose a model using a curve fit-
ting technique to solve the histogram clustering problem in section 2. Then a
segmentation approach is introduced using the spatial information as auxiliary
knowledge in grouping objects in section 3. In section 4 we demonstrate exam-
ples of segmentation on CT and MRI brain images to show the performance of
our algorithm. The final discussion and conclusion are issued afterwards.
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2 Histogram Fitting Model

2.1 Basis Function

Curve fitting is a process of finding a curve which matches a series of data points
and possibly other constraints based on a predefined model. Normally we have
to choose a model composed of many basis functions to describe the curve to
be fitted. For example, the polynomial function, the sinusoidal function, or the
exponential function can be used as basis functions to form a model. In this
paper, we use Gaussian-like function as our basis function. It is based on the
assumption that every object (tissue type) in the medical image has a Gaussian-
like distribution in the histogram. The clustering task is transformed to a fitting
problem, which fits the histogram by a given number of model distributions.
The potential of the feature belonging to some cluster is then determined by the
probability of the model distribution with the consideration of the local spatial
information. We will discuss it more in details in section 3.

Therefore, three parameters describe the i-th distribution as follows:

pi(x; ai, bi, ci) = pi(x) = aiφi(x) = ai exp(−((x − bi)/ci)2), (1)
with the constraints: ai > 0, bi ≥ 0 and ci �= 0

where ai is the intensity (or weighting), bi is the translation on the gray level and
ci is the standard deviation. The function is slightly different from the normal
distribution since the integration of this function does not have to be 1. In order
to have a short form, we use pi(x) instead of the complete form p(x; ai, bi, ci).
The parameter set vi = (ai, bi, ci) is omitted in the following paragraphs.

The cluster number determination is an important aspect, however, it is not
within the scope of this study. In treating the medical images such as CT or
MRI, we normally know the cluster number in advance. Assuming there are k
clusters, our model to fit the histogram can then be formulated as follows:

p(x) =

⎧
⎪⎨

⎪⎩

p1(x) 0 ≤ x < th1

pi(x) thi ≤ x < thi+1, 1 < i < k

pk(x) thk ≤ x ≤ 255
(2)

where thi denotes the ith threshold, which is the cross point of two Gaussian-like
functions. The thresholds are determined directly by checking their relationship.
The technical details are given in the appendix. Note that bi’s denoting the
centers of the Gaussian-like distributions are not necessary to be in an ascending
order (see Fig. 1.) The reason is that the mean center can be anywhere for
representing an arbitrary distribution on the histogram. The basis function is
ordered by index i which is used to determine the range of fitting period.

Once the model is determined by 3k parameters, the cost function of the
fitting problem is then easily defined by sum of the least squares:

vopt = arg min
v

∑

x

(h(x) − p(x))2 (3)
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Fig. 1. The thick solid curve is the model curve which is composed of three Gaussian-
like functions: (b1, b2, b3) = (115, 77, 154)

where v = {vi} is the parameter set of the model p(x) and h(x) is the curve
to be fitted. The trust-region reflective Newton method [15,16] is applied as an
iterative optimization tool to find out the optimal parameter set v; see Fig. 2 for
an example of this fitting method on a real histogram.

2.2 Scaling Problem

The scaling is very important in the fitting and optimization process including
its convergence efficiency. In a medical image it is very often that the background
contains large area. Therefore, it results in a huge peak on the histogram and it
causes problems in fitting. Here we use a power instead of the original histogram
to scale the ordinate. The transformation is defined as follows:

h(x) = h′n(x), n =
1

�log(N)� (4)

where N is the pixel number of the image. Here the power is an elementwise
operation. Afterwards, h(x) is normalized between [0, 1] and then can be used
in Eq.(3). The scaling on the abscissa is linearly transformed from [0, 255] to
[0, 10].

2.3 Initialization and Optimization

Normally, the initialization is an important aspect in the iterative optimization
process. This is because the minimization might fall into local minimum which
is not the optimal solution. The initializations of bi are uniformly distributed
on the abscissa according to cluster number k. The initial values of ai are the
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samples on h(bi) and the initial values of ci = 1. The lower and upper bounds
are set and the trust-region reflective Newton method is applied to iteratively
solve the minimization problem. Here a total of 3k parameters have to be solved
iteratively.

3 Segmentation

Image segmentation is a process to distinguish objects from background. The ap-
plications on medical images are to distinguish different tissues. Traditionally,
four popular categories are classified: threshold techniques, edge-based method,
region-basedmethods, and connectivity-preserving relaxation methods. The med-
ical images are quite different from popular images obtained from cameras. They
are specific and there are anatomical models or knowledge to increase the accu-
racy of segmentation techniques. In this study, we focus on medical images such
as CT and MRI. In this kind of images, the tissue segmentation can be done via
a thresholding technique and with the considerations on spatial information.

After the histogram clustering is done with the histogram fitting models de-
scribed in section 2, all thresholds can be obtained. We then establish a label
matrix B of the same size as the raw image R. In the label matrix all pixels are
represented by label index, i.e. [1, · · · , C]. In matrix B we found many isolated
pixels like noises. Normally, the tissues are connected without isolated pixels. In
order to avoid the disconnections, the spatial information has to be considered.

To ease the computation, total C matrices are set:

Ml(x, y) =

{
1 if B(x, y) = l

0 otherwise.
for all (x, y) and 1 ≤ l ≤ C.

We examine every point (x, y) on B and count the number of point having the
same label, i.e. l = B(x, y), around this point on Ml(x, y) in a neighborhood
region Ω.

Nl =
∑

(x+δ1,y+δ2)∈Ω

Ml(x + δ1, y + δ2), (5)

where Ω is the area of the size 7 × 7 and centered at (x, y). If Nl > 42, then
class l has major neighborhood points having the same labels. We then set the
resulting label matrix B̂(x, y) = l. Otherwise, we have to consider if it is a thin
object. The value 42 is chosen because the mask width is 49 − 42 = 7 so that it
is possible to detect thin objects.

For this purpose some masks are defined:

mask1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 v1 0 0 0
0 0 0 v2 0 0 0
0 0 0 v3 0 0 0
0 0 0 v4 0 0 0
0 0 0 v3 0 0 0
0 0 0 v2 0 0 0
0 0 0 v1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where the factors vi denote the weightings at the respective positions. The mask1
considers the thin structure such as vertical lines. Moreover, a horizontal and two
diagonal structure matrices are constructed for detecting thin lines of different
directions, in which v4 is always at the center. We denote them as mask2, mask3
and mask4.

For every point on B whose corresponding N is less than 43, we then examine
if it is a thin object. The weightings in mask1 are given as [v1, v2, v3, v4] =
[0.7 0.8 0.9 1]. The points near the center get larger weightings to emphasize the
connectivity. All labels appear in current Ω centered at x = (x, y) are saved in
a vector lx.

w(l, i) =
∑

(x+δ1,y+δ2)∈Ω

Ml(x + δ1, y + δ2) · maski(δ1, δ2)

for all l ∈ lx and 1 ≤ i ≤ 4.

The larger value in w denotes the larger connectivity and homogeneity of this
thin object.

lmax = max
l

w(l, i)

Thus we assign B̂(x, y) = lmax.

4 Results and Discussion

We have tested some CT brain images with the novel algorithm. Due to page
limitation only one example is shown here. Figure 2 demonstrates one of the
tests using our fitting model.1 Fig.2(c) is the brain CT image. Its histogram
and the fitting curve are shown in Fig.2(a). The total cluster number is five and
the basis functions are shown in Fig.2(b) superimposed on the histogram. The
different clusters are shown by five gray levels in Fig.2(d).

Figure 3 demonstrates a result that our method is applied on the CT images
having a tumor. There are many images in this sequence and the other results
are similar. This result shows the ability of segmenting tumors in CT images.

As an example we also demonstrate our algorithm on MRI brain images.
Figure 4 shows automated clustering and segmentation results.

An important aspect is the way of initialization. We use in this study uniformly
distributed seeds for the parameter bi. This way is not robust. However, we
also found that once the initializations for bi are approaching to the “correct”
positions, then the initializations for parameters ci are not important. They can
easily converge to the global/local minimum.

The method is unsupervised because it does not need any priori knowledge
on the probability distribution of the feature histogram. The determination of
cluster number is given manually which is not within the scope of this study.

1 A PDF file of this paper with color figures can be downloaded from http://wwwmath.
uni-muenster.de/u/xjiang/papers/MDA2007.pdf
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Fig. 2. A CT brain image segmentation using our method: (a) The histogram of the
image in (c). The fitting curve (the smoother curve) is superimposed on the histogram.
(b) All basis functions and the histogram. (c) Brain CT image. (d) The segmentation
result in five gray levels. Cluster number k = 5.

The program is written on the Matlab platform [16]. The optimization process
is the trust region reflective Newton. The computation time for curve fitting is
around 2 sec on a PC with a 1.8 GHz CPU. The segmentation takes longer and
it depends on the image size. For an image of the size 460 × 480 it takes about
8 to 10 sec.

5 Conclusion

We have developed a novel algorithm using the fitting technique to solve the
histogram clustering problem and consider the spatial information as the auxil-
iary knowledge in grouping objects. This algorithm is simple to be implemented.
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0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

(c) (d)

Fig. 3. A CT brain image segmentation using our method: (a) The histogram of the
image in (c). The fitting curve (the smoother curve) is superimposed on the histogram.
(b) All basis functions and the histogram. (c) Brain CT image having a tumor. (d)
The segmentation result in five gray levels. Cluster number k = 5.

Some experiments are made on CT and MRI brain images and the results are
convincing to be useful in segmenting such as bone, brain tissues, CSF, and
hematoma. This measuring system is useful for clinical quantification studies.
The future goals of this study are to automatically determine the cluster number
and to give a robust initialization for the iterative optimization process.
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Fig. 4. A MRI brain image segmentation using our method: (a) The histogram of the
image in (c). The fitting curve (the smoother curve) is superimposed on the histogram.
(b) All basis functions and the histogram. (c) Brain MRI image. (d) The segmentation
result in seven gray levels. Cluster number k = 7.
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Appendix

The cross points of two Gaussian-like functions defined as p1(·) and p2(·) can be
obtained directly as follows. Let (a1, b1, c1) and (a2, b2, c2) denote the parameter
sets of the two functions. In order to obtain the cross points, we have to solve
the equation:

a1 exp(
−(x − b1)2

c2
1

) = a2 exp(
−(x − b2)2

c2
2

)

where ai > 0, bi ≥ 0, and ci �= 0. Therefore, the equation can be solved using
nature log functions on both sides:

ln a1 − (x − b1)2

c2
1

= ln a2 − (x − b2)2

c2
2

⇒ (c2
2 − c2

1)︸ ︷︷ ︸
A

x2 + (2b2c
2
1 − 2b1c

2
2)︸ ︷︷ ︸

B

x + (c2
2b

2
1 − c2

1b
2
2 − c2

1c
2
2(ln a1 − ln a2))︸ ︷︷ ︸

C

= 0

http://www.mathworks.com
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This is a quadratic equation and if B2 −4AC > 0, then it has two real solutions.
Assuming q1 and q2 are the two cross points and q1 < q2. We choose q1 as the
threshold point if it satisfies:

p1(q1 − δ) > p2(q1 − δ),

otherwise we choose q2 as the threshold point if it satisfies:

p1(q2 + δ) < p2(q2 + δ),

where δ > 0 is a small constant. If c1 = c2 and b1 �= b2, then it reduces to one
solution and this solution is the threshold point. The threshold values are deter-
mined via checking the relationship between these two functions. Theoretically,
it is possible to get none real solution. In this case, we give a random value vec-
tor instead of p(x). This is a technique to increase the error in the optimization
process.
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Abstract. We performed microspectroscopic evaluation of the pigment
composition of the photosynthetic compartments of algae belonging to
different taxonomic divisions and higher plants. In [11], a supervised
Gaussian bands decompositions was performed for the pigment spectra,
the algae spectrum was modelled as the linear mixture, with unknown
coefficients, of the pigment spectra, and a user-guided fitting algorithm
was employed. The method provided a reliable discrimination among
chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative
analysis of absorption spectra highlighted the evolutionary grouping of
the algae into three main lineages in accordance with the most recent
endosymbiotic theories. In this paper, we adopt an unsupervised statisti-
cal estimation approach to automatically perform both Gaussian bands
decomposition of the pigments and algae fitting. In a fully Bayesian set-
ting, we propose estimating both the algae mixture coefficients and the
parameters of the pigment spectra decomposition, on the basis of the
alga spectrum alone. As a priori information to stabilize this highly un-
derdetermined problem, templates for the pigment spectra are assumed
to be available, though, due to their measurements outside the protein
moiety, they differ in shape from the real spectra of the pigments present
in nature by unknown, slight displacements and contraction/dilatation
factors. We propose a classification system subdivided into two phases.
In the first, the learning phase, the parameters of the Gaussians decom-
position and the shape factors are estimated. In the second phase, the
classification phase, the now known real spectra of the pigments are used
as a base set to fit any other spectrum of algae. The unsupervised method
provided results comparable to those of the previous, supervised method.
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1 Introduction

The term algae has no formal taxonomic standing, nevertheless it is routinely
used to indicate a polyphyletic, non-cohesive and artificial assemblage, of O2-
evolving, photosynthetic organisms. No easily definable classification system
acceptable to all exists for algae, since taxonomy is under constant and rapid re-
vision at all levels following every day new genetic and ultrastructural evidence.
Keeping in mind that the polyphyletic nature of the algal group is somewhat
inconsistent with traditional taxonomic groupings, though they are still useful to
define the general character and level of organization, and aware of the fact that
taxonomic opinion may change as information accumulates, we have adopted a
scheme of classification mainly based on that of Van Den Hoek et al . [1]. Ac-
cording to the most recent theories, different evolutionary lineages can be recog-
nized within the algal world [2]. Three major eukaryotic photosynthetic groups
have descended from a common prokaryotic ancestor through an endosymbiotic
event. The three lineages of primary plastids were found in the Glaucophyta, in
the green algae and plants, and in the red algae. Photosynthetic compartments
contain the pigments for absorbing light and channeling the energy of the excited
pigment molecules into a series of photochemical and enzymatic reactions. All
those pigments are organized in supra-molecular structures of pigment-protein
complexes embedded in the membrane of sac-like flat compressed vesicles, the
thylakoids. The pigments present in algal cells (i.e. different type(s) of chloro-
phylls, different type(s) of carotenoids, and different type(s) of phycobiliproteins)
provide a convenient paradigm to explain evolutionary development involving
endosymbiotic acquisition of photosynthetic cellular organelles. The absorption
spectra measured in vivo on region of the photosynthetic compartment, i.e. mi-
crospectrophotometry, can give us very precise and accurate information about
the spectral range in which pigment molecules organized in the thylakoid mem-
branes capture photons in their natural environment [3]. Since each pigment
possesses its own distinctive absorption spectrum in the visible range, and their
combination constitutes the unique absorption spectrum of thylakoid compart-
ment of the alga, the high quality absorption spectra obtained by means of
microspectroscopy can be used to discriminate effectively the pigment molecules
that contribute to the whole spectrum. The use of microspectrophotometry can
expand the perception of taxonomists, who identify algae in relation to natural
pigmentation to supplement classification based on morphology. As consequence
it is possible to predict the presence of a specific pigment in an alga, to give an
unknown alga a plausible taxonomic framing, and to contribute to support the
phylogenetic tree of the endosymbiotic events. Over the last 30 years there have
been considerable efforts to identify the components of algal absorption using
mathematical techniques [4][5] [6][7][8][9]. These methods produced good results
in the identification of spectral peaks of light absorbing pigments.

In this paper, we propose a method to classify algae by identifying the major
absorption peaks in the eleven algal divisions sensu Van der Hoeck [1]. First,
the alga spectrum is measured by using microspectroscopy, and then modelled
as the linear mixture, with unknown coefficients, of a set of unknown pigment
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spectra. We propose analyzing the alga spectrum by means of a statistical blind
estimation approach, in order to detect the pigments and their relative weights
(the mixture coefficients). Adopting a fully Bayesian blind estimation method,
both the mixture coefficients and the pigment spectra should be estimated on
the basis of the alga spectrum alone. A priori, biologically grounded, knowl-
edge is however exploited to stabilize the highly underdetermined problem. In
particular, we assume that each pigment spectrum is, in turn, represented by a
mixture of Gaussians, whose weights and parameters must be estimated as well.
Templates for the pigment spectra are also available, though, due to their mea-
surements outside the protein moiety, they differ in shape from the real spectra
of the pigments present in nature by unknown, slight displacements and contrac-
tion/dilatation factors. We propose a classification system subdivided into two
phases. In the first, the learning phase, a given, possibly large, set of spectra of
algae, each containing an unknown subset of the pigments for which a template is
available, are fitted using the pigments themselves as bases, in order to estimate
the parameters of the Gaussians mixtures and the shape factors. Once the sys-
tem has learned the parameters, in the second phase, the classification phase, the
real spectra of the pigments are assumed known and used as a base set to fit any
other spectrum of algae whose pigments are unknown. Since in nature pigments
are of the order of hundreds, for each new alga a ”residual”, unknown pigment,
still in the form of Gaussian mixture, can be eventually estimated together with
the weights of the pigments given.

2 Materials and Methods

2.1 Algae Cultures

All the cultures were grown in chemically defined media as described in Barsanti
et al.[11]

2.2 Absorption Microscopy

Absorption spectra in the visible range, from 400 nm to 700 nm, were measured
in vivo on photosynthetic compartments (thylakoid membranes, or chloroplasts)
of single cells belonging to the different algal divisions. The apparatus to perform
in vivo measurements was previously described in details [10]. All the absorption
spectra were recorded from 400 nm to 700 nm, with a step size of 0.5 nm and scan
speed of 100 nm ∗ sec−1. For each wavelength, 10,000 values of optical density
were averaged. The resolution achieved with this step size and wavelength width
was sufficient to distinguish between the major pigment classes present in the
photosynthetic compartments.

3 Formulation of the Problem

We formulate the problem of classifying algae on the basis of the pigments they
contain as the problem of estimating both the coefficients and the pigment bases
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of the linear mixtures which models the spectrum of the alga measured by mi-
crospectroscopy. Such a problem falls in the class of problem that can be tackled
by means of Blind Source Separation (BSS) techniques. BSS became an active
research topic in statistical signal processing in the last decade [15][12][18], with
applications in audio processing, removal of underlying artifact components of
brain activity from EEGs, search for hidden factors in parallel financial series,
and, more recently, in image processing and computer vision [16], for feature
extraction or noise removal, for separation of components in astrophysical mi-
crowave maps [19] and for document restoration [20]. BSS consists of separating
a set of unknown signals from a set of mixtures of them, when no full knowledge
is available about the mixing operator. Assuming that the signals are mutually
independent and the data are noiseless, separation techniques based on inde-
pendent component analysis (ICA) have been proven to perform satisfactorily
in many applications. Independence is however a strict requirements which can-
not be fulfilled in most practical cases. The literature regarding approaches to
BSS able to cope with noisy data, cross-correlation among the sources and auto-
correlation inside the single sources, different numbers of sources and data sig-
nals, convolutive or nonlinear mixtures, is by now very rich [14][17][13]. Among
the others, the Bayesian estimation setup seems to be very promising to solve
various instances of BSS, since it offers a natural and flexible way to approach
the integrated solution of two or more problems, and to account for any prior
knowledge we may have about a problem [21].

According to the BSS formalism, the generic data model we consider is:

xa(λ) = As(λ) + n(λ) λ = 1, 2, ..., Λ (1)

where xa(λ) is the vector of the measurements, the alga spectra, s(λ) is the
column vector of the unknown sources, i.e. the pigment spectra, and n(λ) is
the noise or measurement error vector, at wavelength λ, and A is the unknown
mixing matrix, assumed location-independent. We assume different numbers Na
and Np of measured and source signals, with Na ≥ Np, so that A is an Na×Np
matrix. In a fully Bayesian approach, both A and s are assumed as independent
unknowns, and are assigned with prior distributions P (A) and P (s), respectively.
Then, at least in principle, A and s can be simultaneously estimated, according
to the Maximum A Posteriori (MAP) estimation criterion, by maximizing the
posterior distribution P (s, A|xa):

P (s, A|xa) ∝ P (xa|s, A)P (s)P (A) (2)

or, equivalently, by minimizing the negative logPosterior, or energy function,
E(s, A|xa):

E(s, A|xa) = −logP (xa|s, A) − logP (s) − logP (A) (3)

where xa = (xa(1), ...,xa(Λ)), s = (s(1), ..., s(Λ)), and P (xa|s, A) is the likeli-
hood, i.e. the noise distribution. Since the noise is basically due to the measure-
ment process, it is reasonable to consider it as a white, Gaussian and stationary
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process with zero mean. The choice of proper P (A) and P (s) is fundamental to
restrict the set of solutions associated to the likelihood part of eq. 3.

According to the above formulation, for each set of algae to be classified, only
a number of pigments smaller or equal to the number of measured algae can
be estimated. This presents two orders of inconvenient. First, we know that in
nature pigments are of the order of hundreds; second, some algae share the same
pigments. Thus, re-estimating them each time a new set of algae is measured
becomes uneconomic. We then propose to devise a system subdivided into two
phases: a learning phase and a classification phase. In the learning phase, the
system is provided with a large set of algae belonging to the eleven divisions
identified by the classification scheme of Van Den Hoek et al . (1995) [1]. The
pigments of these algae belong to a set of predefined, though not fully known,
pigments, characteristic of those divisions. The above formulation of the problem
allows the estimation of these pigments along with the algae mixing coefficients.
In the classification phase, any alga can be given as input to the system and,
exploiting the now fully known pigments, only the weights of the mixture need
to be estimated. The principle, in both cases, is the minimization of eq. 3, but
with respect to both A and s in the learning phase, and restricted to the only
A in the classification phase. For a better fitting, however, in the classification
phase the problem is augmented with a new, unknown ”residual” pigment, still
in the form of Gaussian mixture, to be estimated together with the weights of
the pigments given. These two phases will be described in details in the two
subsequent sections, where the specific form adopted for P (A) and P (s) will be
also detailed.

4 The Learning Phase

In the learning phase, we assume the availability of a set xa of Na real spectra
of algae, each containing an unknown subset of a fixed set s of Np pigments. As
already said, the algae spectra are assumed to be linear mixtures, with unknown
coefficients Aij , i = 1, ..., Na, j = 1, ..., Np of the pigment spectra. Thus, in
the assumption of a white, Gaussian noise with zero mean, the logarithm of the
likelihood log(P (xa|s, A) is given by:

log(P (xa|s, A) = −
Na∑

i=1

Λ∑

λ=1

⎛

⎝xai(λ) −
Np∑

j=1

Aijsj(λ)

⎞

⎠
2

(4)

where Λ represents the number of sampling data points in the range [400nm,
700nm]. The set of fixed pigments needs not to be fully known, but some infor-
mation about them should be available in order to define the prior P (s).

In this respect, the spectra of the pigments are assumed to be well represented
by mixtures of Gaussians, whose number NGj , parameters (λjk , σjk) and weights
wjk, j = 1, ..., Np, k = 1, ..., NGj are however unknown. The Gaussian model
constitutes a first good approximation usually adopted in the literature. This
spectral decomposition could be equally performed using Lorentzian or Voigt
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profiles (convolution of Lorentzian and Gaussian). However, we used Gaussian
fitting because the signal measured by a spectrophotometer (i.e. the spectrum)
is transformed by the instrument into a Gaussian curve.

Furthermore, we assume the availability of a set xp of Np templates for
the spectra of these pigments. Due to the method adopted to construct the
pigment templates, it is expected that slight factors of displacement dj and
contraction/dilatation cj , j = 1, ..., Np, will affect each pigment template with
respect to the real pigment spectrum, so that these templates cannot be directly
used as bases for algae fitting.

According to the Bayesian formalism described in the previous section, the
Gaussian mixture modelling together with the pigment models and templates
represent the a priori knowledge we have on the source pigments, and can be
expressed through P (s) in the following way:

logP (s) = −
Np∑

j=1

Λ∑

λ=1

(xpj(λ) − sj(λ;dj , cj))
2 (5)

where

sj(λ) =
NGj∑

k=1

wjkexp

(
−(λ − λjk)2

2σ2
jk

)
∀λ, j = 1, ..., Np (6)

and

sj(λ;dj , cj) =
NGj∑

k=1

wjkexp

(
−(λ − (λjk + djk))2

2(σjk + cjk)2

)
∀λ, j = 1, ..., Np (7)

It is now clear that minimizing the energy function in eq. 3 with respect to
A and s is equivalent to minimize it with respect to A and all the parameters
that define the Gaussian mixtures in eqs. 6-7. By calling Ω the set of these
parameters, the overall energy function to be minimized in the learning phase is
thus given by:

El(Ω) =
Np∑

j=1

Λ∑

λ=1

(xpj(λ) − sj(λ;dj , cj))
2+β

Na∑

i=1

Λ∑

λ=1

⎛

⎝xai(λ) −
Np∑

j=1

Aijsj(λ)

⎞

⎠
2

−logP (Ω)

(8)
in view of eqs. 6-7, and where P (Ω) is a prior on Ω, expressing all other infor-
mation, such as bounds, positivity and so on, we may have on the parameters,
and including P (A). Parameter β is a weight balancing the fidelity of the two
data sets, algae and pigment templates.

When attempting to fit a distribution or signal with a Gaussian mixture, the
choice or estimation of the number of Gaussian components is a very critical is-
sue. For an arbitrary number of Gaussians, the fitting algorithm will always tend
to use all of them. This, of course, can give rise to solutions that are biologically
unfeasible. Thus, the number of Gaussians for a given pigment should be the
minimum compatible with biological plausibility and knowledge. An attempt to
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automatically determine the optimal number should exploit the above informa-
tion under the form of suitable constraints to be added to the energy function.
However, in this first application of our approach, we assume the exact knowl-
edge of the number of Gaussian components for each real pigment spectrum, so
that the set of parameters to be estimated results in:

Ω = {A,w, λ, σ, c,d} (9)

where w, λ, σ, c, and d, are each a set of Np vectors.

5 The Classification Phase

In the classification phase, we assume that the pigment parameters are now
known, so that the problem reduces to fit the algae to be classified to the set
of fixed, exactly known pigments. The energy function to be minimized with
respect to A only is given by:

Ec(A) = −
Na∑

i=1

Λ∑

λ=1

⎛

⎝xai(λ) −
Np∑

j=1

Aijsj(λ)

⎞

⎠
2

− log(P (A)) (10)

where the s are considered fixed base signals.
To ameliorate the fitting, the base set can be incremented with a new, un-

known ”residual” pigment, still in the form of Gaussian mixture, to be estimated
together with the coefficients of A. Since the ”residual” pigment is likely to be
different from alga to alga, in this case the classification system will be feeded
with a single alga, and the energy function becomes:

Ec(A,w, λ, σ) = −
Λ∑

λ=1

⎛

⎝xa(λ) −
Np∑

j=1

Ajsj(λ) − ANp+1

NG∑

k=1

wkexp

(
−(λ − λk)2

2σ2
k

)⎞

⎠
2

− log(P (A)) − logP (w, λ, σ)

(11)
The minimization of eq. 11 should be performed with respect to A and {w, λ, σ},
where {w, λ, σ} indicate now the vectors of the weights, means and standard de-
viations, respectively, of the NG Gaussian components of the ”residual” pigment.

It is worth noting that the ”residual” pigment is not a ”true” pigment, but
an algae component that accounts for all the extra pigments contained in the
alga in addition to the base pigments.

6 The Estimation Schedule

In both the learning and classification phases, the joint minimization of the
energy functions of eqs. 8 and 11 (or the equivalent maximization - MAP esti-
mation - of the related posterior probabilities) with respect to all the parameters
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is very computationally intensive. Thus, it is usually approached by means of
alternating componentwise maximization with respect to groups of variables in
turn. In this case, we subdivide the parameters Ω into three groups, assumed
mutually independent, and, with reference to the learning phase, we adopt the
following scheme:

Â = arg max
A

P (xa|s, A)P (A) (12)

(ŵ, μ̂, σ̂) = arg max
w,μ,σ

P (xa|s, A)P (s)P (w, μ, σ). (13)

(ĉ, d̂) = arg max
c,d

P (s)P (c,d). (14)

where the priors P (A) and P (s) are chosen in such a way to probabilistically
enforce the over-mentioned constraints. We solve the above scheme by an overall
Simulated Annealing scheme, where, at each steps, we alternate a Metropolis
algorithm for separately estimating A and {c,d}, with a deterministic update
for {w, λ, σ}, based on gradient ascent.

7 Experimental Results

Absorbance maxima of the spectra of all algae divisions and plants are concen-
trated in the blue portion of the visible spectrum (and to lesser extent, in the red
portion) where absorbance of chlorophyll a is higher. Absorbance attributable
to accessory pigments is often difficult to quantify. For this reason, the ability
to discriminate among distinct phylogenetic groups and potential species will
depend upon the robustness of the technique chosen to differentiate the diverse
components within the portion of the spectrum where carotenoids, phycobilipro-
teins and other chlorophylls absorb.

The learning phase of the classification method described in the paper was ap-
plied taking as input the spectra of 16 algae chosen to be representative of the 11
algal divisions, and the template spectra of 19 principal pigments among chloro-
phylls, carotenoids, phycobiliproteins and cytochromes. This phase resulted in
the estimation of the Gaussian bands that compose each pigment, corrected
for the distortions affecting the template pigments with respect to the ”natu-
ral” ones, and the classification of the 16 algae. We assumed a maximum of
12 Gaussian bands for each pigment. At least in principle, the envelopes of the
19 pigments estimated in this phase can be considered reliable for successive
classification of any other alga.

As per the classification part, some biological constraints were enforced, re-
garding the coefficients of A, which must be in [0, 1], the non-simultaneous pres-
ence of chlorophyll b and c and the presence of more than one carotenoid in a
same alga. Although the possible contribution from extra pigments has not been
considered in this case, the algae fitting based on the only 19 available pigments
was always satisfactory, with a root mean squared error no higher than 0.01.

The computational cost of the learning phase was high, due to the many
parameters to be estimated via simulated annealing, and the many local minima
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Fig. 1. Top left: fitting of Leptolyngbya sp.; Top right: fitting of Nannochloropsis sp.;
Bottom left: fitting of Cyanophora paradoxa; Bottom right: fitting of Rhodomonas sp..
In all diagrams, solid line represents chlorophyll (a in the first three algae, a and c
in the last one), dotted line represents the envelope of the phycobiliproteins, dashed
line represents the envelope of the carotenoids, and, finally, dashdotted line represents
cytochromes.

of the energy function which required the adoption of a very slow annealing
scheme. However, as already said, the learning phase can be performed only once,
while for the classification phase one alga at a time is feeded to the algorithm,
so that the 19 coefficients of A alone need to be estimated.

From the analysis of the classification results of the 16 considered algae, we
can state that chlorophyll a, chlorophyll b, chlorophyll c group and cytochromes,
always have the same absorption maxima in all the algal division, though the
relative intensity of their absorption bands can be different. On the other hand,
carotenoids and phycobiliproteins show a variable pattern of peaks which is
characteristic of each algal division. The results of the analysis of four of the dif-
ferent absorption spectra of the algal representatives are shown in Figure 1. The
spectrum recorded on the trichomes of Leptolyngbya (Cyanophyta) (Figure 1,
top left) shows that the main pigments of this cyanobacterium are chlorophyll
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a, β-carotene (55% of the total amount of carotenoids), and among the phyco-
biliproteins, phycoeritrocyanin, c-phycocyanin and allophycocyanin are present.
In the case of Nannochloropsis, (Heterokontophyta) , only violaxantin is the main
carotenoid (about 50% of the total amount), and the phycobiliproteins are absent
(Figure 1, top right). In the spectrum of Cyanophora paradoxa (Glaucophyta)
(Figure 1 bottom left) only chlorophyll a is present, together with carotenoids,
and phycobiliproteins. Zeaxanthin is the main carotenoid (about 50% of the to-
tal amount), and the phycobiliproteins are represented by c-phycocyanin and
allophycocyanin. In Rhodomonas sp. (Cryptophyta) (Figure 1, bottom right),
both chlorophyll a and c are present, and the main carotenoid is alloxanthin
(about 25% of the total amount). Among the phycobiliproteins, phycoerithrin is
the only one detected, with the absorption maximum at 545 nm.

8 Conclusions

Absorbance attributable to accessory photo pigments often is difficult to quantify
and routinely discern for great number of these. For that reason, the ability to
discriminate among distinct phylogenetic groups (and potential species) will be
dependent upon the effectiveness of the techniques chosen to finding out ”real”
Gaussian bands and their successive groupings. The microspectrophotometric
absorbance spectra and the successive Gaussian bands decomposition and their
fitting into the spectral envelope of pigment templates provides a realistic dis-
crimination between the different algal divisions. For each division sensu Van
den Hoeck [1] the contribution and the spectral position of each pigment cat-
egory is well defined. Even taking into account the inevitable approximations
we made in the template reconstructions, we consider our list of spectra the
most complete description of pigment distribution in the algal divisions grown
under laboratory condition. It can constitute a reference for different growing
conditions and diverse natural habitats.
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Abstract. Detailed, consistent semantic annotation of large collections of 
multimedia data is difficult and time-consuming. In domains such as eScience, 
digital curation and industrial monitoring, fine-grained high-quality labeling of 
regions enables advanced semantic querying, analysis and aggregation and 
supports collaborative research. Manual annotation is inefficient and too 
subjective to be a viable solution. Automatic solutions are often highly domain 
or application specific, require large volumes of annotated training corpi and, if 
using a ‘black box’ approach, add little to the overall scientific knowledge. This 
article evaluates the use of simple artificial neural networks to semantically 
annotate micrographs and discusses the generic process chain necessary for 
semi-automatic semantic annotation of images. 

Keywords: multimedia semantic annotation, semantic gap, artificial neural 
networks. 

1   Introduction 

Semantic annotation of media is recording high-level descriptive terms about the 
content of the media. It may be coarse-grained (descriptions at the image level) or 
fine-grained (descriptions at the segment or region level). Manual annotation (i.e., 
annotation by a human expert) is expensive, time-consuming, inconsistent and 
subjective. Tools and algorithms are available that can automatically extract low-level 
feature data from media objects such as color, shape, size, trajectory etc. However, 
these features are insufficient to support the queries required by domain experts who 
prefer to access data using higher-level terms such as catalyst, gaseous microemboli 
or mitochondria. Bridging the distance (often called the “multimedia semantic gap”) 
between automatically extracted low-level features and high-level semantic terms is 
the focus of a great deal of research. 

The concept of the “semantic gap” was initially defined in the field of psychology 
[1] and refers to the distance between information that can be extracted from the 
visual data and the interpretation that different users have for this same data. The 
difficulty is that humans cannot always describe what they see or explain why they 
interpret it in a certain way. Also there is rarely complete agreement between a group 



70 S. Little, O. Salvetti, and P. Perner 

of users about the interpretation of media content. Because of this, choosing the 
algorithms to extract low-level information from the media is also more complicated 
as we do not know what the key features are and therefore what procedure to apply.  

Overcoming or mitigating this semantic gap to enable rapid and accurate semantic 
annotation of images is of particular importance in domains such as biology, geology, 
astronomy and industrial monitoring. Fields like these use high-resolution, high-
throughput sensors and analytical machines to produce very large volumes of media 
content. Researchers need to be able to analyze and label objects of interest within 
these images and manage the quantity of data they provide.  

This article discusses an approach to addressing the semantic gap using artificial 
neural networks in the context of the requirements for semi-automatic semantic 
annotation of scientific media. It summarizes of some of the main approaches to 
bridging the semantic gap (section 2) and outlines the motivations and characteristics 
of a sample applications (section 3). We present a generic processing chain for 
classifying images (section 4) and discuss the key challenges. Section 5 describes the 
use of artificial neural networks to classify image regions of a 3D slice sequence and 
presents the results of an initial evaluation.  

2   Related Work 

A variety of research efforts have investigated the use of techniques to extract 
semantic labels from different low-level visual or audio features. These approaches 
range from interfaces to facilitate user-driven annotation to systems integrating 
formalized knowledge structures, prototype based applications and automatic 
classification using machine-learning technologies. This section presents some 
examples of the more common approaches.  

Interfaces that assist users to annotate or to link semantic terms to examples or sets 
of visual features are one approach to addressing the semantic gap. M-Ontomat-
Annotizer [2] from the aceMedia project provides a graphical user interface for 
experts to link ontologies with low-level media features. The Rules-By-Example 
interface [3,4] also enables expert users to define mappings from low-level MPEG-7 
features to high-level semantic terms using semantic web technologies such as OWL 
and RuleML/SWRL. 

More traditional approaches have used machine-learning techniques such as 
statistical analysis, hidden markov models or artificial neural networks to determine 
semantic terms based on sets of low-level features. Chang et al. [5] applied a library 
of examples approach, which they call semantic visual templates. Zhao and Grosky 
[6] employ a latent semantic indexing technique which integrates a variety of 
automatically extracted visual features (global and sub-image color histograms and 
anglograms for shape-based and color-based representations) to enable semantic 
indexing and retrieval of images. Adams et al. [7] manually annotate atomic audio 
and video features in a set of training videos and from these develop explicit 
statistical models to automatically label the video with high-level semantic concepts. 
Work by Naphade et al. [8,9] proposed a statistical factor graph framework to bridge 
the gap between low-level features and semantic concepts. IBM alphaWorks have 
developed a tool, MARVEL [10,11], for “Multimedia Analysis and Retrieval” that 
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applies heuristic techniques to automatically label image and video repositories based 
upon semantic models derived from sets of training examples. 

Colantonio et al. [12] and Di Bona et al. [13] use neural networks to segment and 
characterize medical images. Previous work by Perner has shown that neural 
networks to tend generalize better than other methods [14] and can model non-linear 
decision surfaces. However, neural networks require a labeled training set of suitably 
significant size and variation. In contrast, a decision tree is a method that can easily be 
trained but they do not generalize as well as neural nets. If the variation in the data is 
very high then the preferred method would be case based reasoning [15,16]. This 
method does not necessarily generalize; it relies on samples and can incrementally 
learn. Unlike neural networks, both decision trees and case-based reasoning have the 
capability to explain their classifications.  

The use of taxonomies or ontologies, either in combination with a user interface or 
with machine-learning approaches, enables reasoning using the relationships defined 
in the ontology and query expansion for better searching over the annotated dataset. 
Benitez and Chang [17] exploit structural semantics to label media objects by using 
WordNet [18] as a source of keywords in combination with Bayesian networks to 
provide media classification. Hollink et al. [19] use multiple ontologies to support the 
annotation of art images and applied a similar approach [20] to the annotation of news 
videos by combining links between visual features in a multimedia ontology (MPEG-
7) and general semantic concepts defined in Wordnet. Bloehdorn et al. [21] have also 
used an MPEG-7 based ontology to formalise the relationships between high- and 
low-level visual features and semantic terms by recording ‘prototype’ instances that 
define the visual feature values. 

The commonalities between these different approaches include the requirement for 
appropriate extraction of sets of low-level media features, the need for high-level, 
preferably well-defined, semantic terms to label and classify the media. The 
approaches that employ machine-learning techniques usually require a significant set 
of examples for training. The next section of this article presents an example 
application that needs support for automatic or semi-automatic annotation of image 
regions but is not able to initially supply a training set of statistically significant size. 

3   Application 

At the Institute for Molecular Bioscience of the University of Queensland, the Visible 
Cell project [22, 23] aims to increase understanding of the mammalian cell via the 
synthesis of physical data, models, mathematical and statistical simulations, and 
bioinformatics data. The objective of the project is to provide a visualization 
environment that seamlessly embeds macro-molecular structures, networks and 
quantitative simulations based on mathematical and complex-system models into a 
3D mammalian cell reconstructed from high resolution tomograms and electron 
micrographs.  

Figure 1 illustrates the data in this application which consists of 2D micrographic 
digital images of thin slices taken sequentially through a cell from a pancreas (a 3D 
object). We had 31 digital images from one cell. These 2D slices are used to create a 
3D model of the sub-cellular structure. To build this 3D model and support the type of 
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Fig. 1. 2D slices of a 3D object1 

integrated, semantic queries desired by users, we need to label the single sub-cellular 
objects within the 2D slices. The objects of interest in this project are: mitochondria, 
ribosome, golgi stack, endoplasmic reticulum, mature granules, tubular vesicles. 

A sample image is shown in Section 4.2, Figure 2. Finding an automatic image 
segmentation algorithms for images like this one is not easy since the cell is highly 
structured. Parallel research at the IMB [24] is working on algorithms for automated 
segmentation. However, until efficient and accurate automatic segmentation 
algorithms are able to be developed the method of choice is to manually label the 
objects. This means that a human user is sitting in front of a computer and circles 
objects of interest they can detect. The correct label for each object is not always 
obvious to the user and can only be determined after examining other images in the 
3D stack to find adjacent regions that could be more easily identified. The user was 
able to label 7580 regions in the set of 31 slices. This is only the regions that the user 
was able to manually circle and identify – we cannot be certain that the user was able 
to identify all possible objects correctly.  

To correctly label all these regions is time-consuming and difficult for a human 
user. Therefore an approach to automate part or all of the procedure is necessary. 
Initially, work using semantic inferencing rules was extended to evaluate the Rules-
By-Example interface [3,26]. In this article we use artificial neural networks (ANN) 
since they are widely used in image classification [14] to discuss the generic process 
for semantic annotation and classification of images. 

Our dataset consists of 5548 entries. Of the 7580 regions labeled by the expert, 
2032 were identified using class labels that were not used in this evaluation being of 
minor objects that were of less interest. Each entry represents a region with the set of 
extracted low-level features and the user-assigned label. The distribution of the 
classes is shown in Table 1. The evaluation of the network, in terms of the accuracy 
rate, was done by test and train. The dataset was divided into sets of 70% for training 
and 30% for testing. The neural network architecture used was a simple feedforward 
network trained using a backpropogation algorithm. The features in the dataset are: 
Area, ConvexArea, FilledArea, MajorAxisLength, MinorAxisLength, Eccentricity, 
Solidity, Extent and DominantColor. Excluding DominantColor, which was 
                                                                 
1 3D cell structure adapted from http://commons.wikimedia.org/wiki/Image:Biological_cell.svg 
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calculated separately, these terms are extracted using MATLAB’s regionprops 
function from the Image Processing Toolbox. Through discussion with the expert 
users, general features such as size and shape were noted as being of particular 
importance and usefulness in distinguishing the different objects in the cell 
micrograph. This process of knowledge acquisition is not an easy procedure and 
requires experience to be able to extract relevant and useful knowledge from expert 
users. A methodology for doing so is presented in [27]. 

Table 1. Overall Sample Distribution (test and training sets) 

 Endoplasmic 
Reticulum 

Golgi Mitochondria Mature 
Granules 

Ribosome Tubular 
Vesicle 

Number 
of 
Objects 

2486 (45%) 1463 
(26%) 

221 (4%) 105 
(2%) 

1125 
(20%) 

148 
(3%) 

Future work includes converting the shape features used here to the more general 
MPEG-7 Shape Descriptors based on moments. MPEG-7 Region-base Shape 
Descriptors [31] would have been useful in this instance but extractors for generating 
them were not available at the time. The MPEG-7 standard itself does not bridge the 
gap between the low-level features and the higher semantic terms. Using standard 
MPEG-7 features helps with interoperability and provides an abstraction hierarchy or 
taxonomy of the different features for viewing or reasoning. The standard does not 
provide this hierarchy, however work on ontologies that incorporate the MPEG-7 
feature terms include [28,29,30] and aims to achieve this level of structure. These 
proposed ontologies also add more intermediate terms to the media description 
vocabulary.  

4   (Semi-)Automatic Annotation 

The previous section presented an example application that would benefit from the 
ability to semi-automatically semantically annotate images. This section discusses the 
different levels of “semantic” labels and then describes the generic semantic 
annotation process for images. 

4.1   Semantic Labels 

Figure 2 shows the different types of semantic labels that can be applied to an image 
and gives some examples of the features and some possible values. The automatically 
or semi-automatically extracted low-level features have numerical values and, as such, 
are not easily understood or interpreted by a human user. The descriptors defined in 
the MPEG-7 standard [31] are examples of this type of feature. However, MPEG-7 
does not give us a sufficient level of semantic terms for the visual features. It 
concentrates on descriptors such as region-based shape, scalable color or homo-
geneous texture, etc. 
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Fig. 2. Overview of different levels of semantic annotations 

Of more use for human interpretation are visually descriptive or semantic features 
which describe characteristics in more usable, often symbolic vocabularies and may 
be drawn from standards such as BIRADs [32]. The highest-level of semantic labels 
are domain specific descriptors. These may be defined in a domain ontology, 
taxonomy or standard such as MeSH [33] or GO [34] and are rich, descriptive terms 
about the content of the image.   

The visual semantic terms can be used to define mappings to the domain level 
terms. For example, “if object is long and thin and close to an object that is identified 
as ‘Golgi’ then the object is a ‘Golgi’ ”. 

 

Fig. 3. Sample segmented pancreas cell micrograph, example regions for Endoplasmic 
Reticulum, Golgi and Mitochondria have been highlighted 

In the example application described in section 3, the 2D slices contain objects that 
are described by human experts using both intermediate terms and labeled or 
classified using domain terms. For example, the sections labeled ‘mitochondria’ in 
Figure 3 have an uneven texture with distinct internal striations, they are circular in 
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shape and generally large in area. By contrast the regions which make up the structure 
labeled the golgi stack have less distinctive visual features in common; they are 
generally smooth in texture, often long and thin in shape. Their most distinctive visual 
characteristic is their spatial relationships as the regions tend to lie in long, parallel 
alignments close to each other. A further example of the importance of spatial 
relationships is the endoplasmic reticulum regions which are only distinguishable by 
the presence of the small ribosome region touching it. As the ribosome generally only 
touches the endoplasmic reticulum object at one point in 3D space, it is often only 
able to be identified in a small subset of the 2D slices. Its presence in other slices is 
inferred through the adjacency of regions along the z-plane. 

As you can see these descriptions are not numerical values but rather intermediate 
descriptors used to describe the objects of interest in terms of their shape, texture and 
location within the complete scene. In order to generate the high-level domain terms, 
useful for querying and to assist in generating the final 3D models, semantic 
mappings need to be developed from the low-level to the intermediate terms and then 
from the intermediate to the domain level descriptions. The next section describes a 
generic process chain for image annotation and classification. 

4.2   The Generic Process Chain Necessary for Semi-automatic Semantic 
Annotation 

The process of semantically annotating images based on low-level features usually 
follows a common abstract procedure. The generic processing chain for image 
understanding is shown in Figure 4. 

 

Fig. 4. Generic process chain for image annotation or classification 

The first step is segmentation where the image is segmented into background and 
objects of interest. Ideally algorithms for automatic segmentation should be used to 
analyze and divide the images. However, devising a general procedure for segmenting 
images is not always possible and sometimes manual or semi-automatic processes are 
required. 

Once we have determined what image pixels belong to which object, we need to 
label the regions representing the objects. Using these regions, we can then extract the 
object features (e.g., low-level features such as graylevel, simple shape features, 
texture and color) to produce a feature set for each object.  

These low-level features need to be mapped to intermediate semantic terms such as 
‘circular’, ‘long’, ‘angular margin’, ‘spicular margin’, etc. These semantic terms, 
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more familiar to an expert user, can be used to describe the class or category of an 
object in the image. This is the first phase of mapping to semantic terms. 

To achieve fine-grained, high-level descriptions of objects is sometimes only 
possible by taking into account intermediate descriptors such as spatial information 
about location or relation to other objects within the image. Coarse-grained 
descriptions of the complete scene requires the grouping of objects and describing 
their spatial relation to each other. The intermediate level semantic terms need to be 
mapped to domain level terms which describe the content depicted in the image. This 
is the second phase of mapping to semantic terms. 

There is no universal algorithm available that can automatically process the 
semantic information for all kinds of images. This means that specific images need 
special processing functions in order to implement the processing chain described in 
this section. 

5   Results and Discussion 

Table 2 shows the evaluation results of the neural network using the test data set of 
1627 objects. User Labeled is the number of objects in the test set that were labeled as 
a specific ‘class’ by the expert user. Objects Classified is the number of objects in the 
test set that the network classified as ‘class’ while Objects Correctly Classified is the 
number of the Objects Classified whose class label corresponds with that given by the 
expert user. Precision, Recall and f-measure are terms from the information retrieval 
domain [25]. Precision and recall are both measurements of classification quality. f-
measure provides a more useful measure of the overall performance since it takes into 
account the generally opposing qualities of precision and recall (i.e. high recall 
generally results in lower precision and vice versa). They are calculated as follows.  

• Precision (Prec.) is Objects Correctly Classified / User Labeled 
• Recall is Objects Correctly Classified / Objects Classified 
• f-measure is (2*Recall*Prec.)/(Recall + Prec.)  

Table 2. Results of simulating the trained neural network using the test data set 

Object Class User 
Labeled 
in Test 
dataset 

Output of 
Neural 
Network 

Objects 
Correctly 
Classified 

Prec. Recall f-measure 

Endoplasmic 
Reticulum 

435 482 226 0.469 0.520 0.493 

Golgi 696 928 474 0.511 0.681 0.584 
Mitochondria 38 30 30 1.000 0.789 0.882 
Mature Granules 63 67 47 0.701 0.746 0.723 
Ribosome 354 305 291 0.954 0.822 0.883 
Tubular Vesicles 41 28 26 0.929 0.634 0.754 

The accuracy of the system is calculated as the total number of correctly classified 
objects (1094) divided by the total number of objects (1627). This gives an accuracy 
rate of 0.627.  
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The high precision for Mitochondria and to a lesser extent for Ribosome and 
Tubular Vesicles indicates the better visual distinction based around the shape of 
these objects – Mitochondria are large and tend to be more circular (higher 
Eccentricity values); Ribosome are small and more irregular in shape while Tubular 
Vesicles are circular (very high Eccentricity values) and consistently very small in 
size.  

The poor performance in identifying Endoplasmic Reticulum and Golgi objects is 
possibly due to their low visual distinction when only considering basic shape 
features. As section 4.1 discussed, they are much more easily described using texture 
and more intermediate descriptors such as spatial relations.  

Neural networks are generally better at discriminating between classes, as is shown 
in [14]. Therefore the difficulty this network has in distinguishing between Golgi and 
Endoplasmic Reticulum is interesting. However, we feel this is attributable to the lack 
of spatial relations in the input features. 

We didn’t achieve the accuracy that we were hoping for since we mapped directly 
from the low-level features to the class label. In addition we did not have a large 
enough set of features such as spatial relationship to other objects. This meant that 
information about spatial relations and intermediate shape and texture descriptors 
were not incorporated into the classification process.  

Also the testing and training data all came from a single example cell. This means 
that this dataset might not represent adequate statistical variation among the data from 
different cells. It is not clear that this network would perform as well using data from 
another cell. When new data is added, the ANN needs to be retrained in order to 
achieve good performance. Neural nets do not support incremental learning. Other 
methods such as decision trees or case-based reasoning are preferred for this reason.  

Overall, the small sample set and the limited variation in the source object (one 
cell) restricts the statistical significance of these results and the conclusions that can 
be made from this evaluation. However, the result from this network provide support 
for the view that mapping from low-level features to intermediate terms and then from 
intermediate terms to domain descriptions is likely to be a more successful approach. 

6   Conclusion and Future Work 

Using artificial neural networks to map from low-level media features directly to 
high-level semantic terms for image regions does not demonstrate a particularly high 
level of accuracy. While previous applications have shown that neural networks can 
be effective in image classification tasks [12,13,14], we believe that a multi-stage 
process, as proposed in section 4.2, is likely to be more effective for semantic 
annotation of image regions.  

However, until efficient and accurate automatic segmentation algorithms are able 
to be developed, techniques are needed for semi-automatic semantic annotation that 
can handle small input data sets, evolving models and rapidly increasing data. 
Therefore, we aim to develop a system that can operate on an initial, small dataset but 
incrementally adapt and improve with the addition of further data as it becomes 
available. The classification system will eventually become more generalized and 
have improved accuracy as new cell slices are incorporated into the data set. This 
situation is common in many medical and scientific research fields where the 



78 S. Little, O. Salvetti, and P. Perner 

available experimental data may initially be relatively small but which will increase 
as further experiments and analysis are conducted.  

We believe that to generate a semantic description of an image you can not use the 
low-level features directly, you have to first map them to intermediate symbolic or 
semantic terms that make sense for a domain expert. Therefore we intend to focus on 
a multi-step classification procedure where intermediate terms (such as ‘circular’, 
‘fine speckled margin’, ‘adjacent’ etc.) are created from the automatically extracted 
low-level features. These terms can then be used to build better classification systems 
using techniques such as inferencing rules [2,3], case-based reasoning [15,16] or 
decision trees [27]. 
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Abstract. The development of an automated production of thin films and the 
characterization of their piezoelectric properties in high-throughput is desc-
ribed. A library of 50 undoped as well as doped lead zirconate titanate 
Pb(Zr,Ti)O3 (PZT) coatings was produced by sol deposition. Afterwards, the 
piezoelectric properties of the library films were analyzed by automated atomic 
force microscopy employing the ultrasonic piezo-mode. 

Keywords: PZT, combinatorial chemistry, high throughput, sol-gel synthesis, 
AFM. 

1   Introduction 

There is in increasing interest in thin films of ceramics with defined mechanical, 
magnetic or electro-active properties with applications ranging from protective 
coatings, magneto-optical image storage devices, and micro-electro-mechanical 
systems (MEMS). A new approach using high-throughput technology to discover 
materials having defined ferroelectric properties is presented. For the investigation of 
new piezoelectric materials a lead zirconate titanate Pb(Zr,Ti)O3 (PZT) sol-gel-
synthesis was applied, which can be modified in a combinatorial way. The use of an 
acidic sol-gel-recipe allows a broad variation in composition and doping with many 
elements.  

2   Synthesis 

Single-element precursor solutions were mixed by a pipetting robot to form 17 
undoped PZT sols of different composition by varying the ratio of lead to zirconium 
to titanium as piezoelectric reference materials and 33 PZT sols (Pb1.1 Zr0.58 Ti0.42) 
doped with 6 mol-% of different elements. Subsequently, the precursor solutions were 
deposited onto a pre-structured silicon wafer (Figs. 1 & 2) by chemical solution 
deposition (CSD) /1/. 
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Fig. 1. Schematic view of the spread of the liquid on a structured substrate /2/ 

  

Fig. 2. (a) Micrograph of chemical solution deposition of a thin-film library on a structured 6“-
silicon wafer, and (b) an enlarged image (3 × 3.5 cm²) of this library 

3   Measurement Technique 

The piezoelectric properties of the films on the library were automatically 
investigated by atomic force microscopy (AFM) employing the ultrasonic piezo-mode 
/3/. A sinusoidal voltage is applied between an electrically conductive cantilever and a 
base electrode below a piezoelectric sample (Fig. 3) /4/. The localized electric field 
emanating from the sensor tip of the AFM induces a deformation on a local scale due 
to the inverse piezoelectric effect. The ac frequency corresponds to the contact 
resonance of the conductive cantilever. The amplitude and phase of the induced 
surface displacement is sensed by the tip. The library was analyzed by the AFM tool 
“programmed move”, which allows the cantilever to be positioned automatically to 
every of the samples on the library. The ultrasonic piezo-mode is an acoustic near-
field technique which has been extensively discussed for example in a special session 
of the International Symposium on Acoustical Imaging (AI27) which was held in 
Saarbrücken in 2003 /5/. 

 

Fig. 3. Principle of the AFM ultrasonic piezo-mode 
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4   Results of Automated Analysis Using Ultrasonic Piezo-Mode 

A topography image of the surface was acquired simultaneously with the acoustic 
image. The ultrasonic piezo-mode images of 17 piezoelectric reference films as well 
as 15 of the 33 doped PZT- films revealed dark and bright areas corresponding to high 
and low local vibration amplitudes. The samples doped with the following elements 
showed a contrast in the ultrasonic piezo-mode image: Ba, Ce, Co, Cu, Li, Sr, Na, K, 
La, Pr, Rb, Ag, Te, V(III), and V(V) indicative of piezoelectric properties. Fig. 4 
illustrates examples of topography images of three different samples ((a), ( c), and (e)) 
together with their corresponding ultrasonic piezo-mode images ((b), (d), and (f)) /1/.  

  

Fig. 4. (a), (c), and (e): Topography images of three different samples doped with Ba, Sr and 
Er, respectively. The image size is 10×3 µm². The scale covers 50 nm difference in height. (b), 
(d), (f): Corresponding ultrasonic piezo-mode images of the same surface areas as shown in (a), 
(c), and (e). The amplitude range of the ultrasonic piezo-mode images is 1.5 V.  

The contrast in the ultrasonic piezo-mode image is caused by ferroelectric 
domains, but false positives resulting from variation of film roughness cannot yet be 
excluded. To exclude such topography effects, the samples have been examined by 
impedance spectroscopy as well yielding ε. For the PZT coating doped with Sr an ε-
value of 194.36 was obtained which is typical for perovskites. These results confirm 
the ultrasonic AFM piezo-mode measurements. 

5   Conclusion 

We have described the development of an automated production of thin films and the 
characterization of their piezoelectric properties in high-throughput. A library of 50 
undoped as well as doped lead zirconate titanate Pb(Zr,Ti)O3 (PZT) coatings was 
produced by sol deposition. Afterwards, the piezoelectric properties of the library 
films were analyzed by automated atomic force microscopy employing the ultrasonic 
piezo-mode. The results show that the piezoelectric properties can be determined by 
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using the atomic force microscopy employing the ultrasonic piezo-mode. For the 
automatic determination of the piezoelectric properties an image processing procedure 
is needed that will be developed in future. 
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Abstract. Cellular imaging is an exciting area of research in compu-
tational life sciences, which provides an essential tool for the study of
diseases at the cellular level. In particular, to faciliate the usefulness of
cellular imaging for high content screening, image analysis and classifica-
tion need to be automated. In fact the task of image classification is an
important component for any computerized imaging system which aims
to automate the screening of high-content, high-throughput fluorescent
images of mitotic cells. It can help biomedical and biological researchers
to speed up the analysis of mitotic data at dynamic ranges for various
applications including the study of the complexity of cell processes, and
the screening of novel anti-mitotic drugs as potential cancer therapeutic
agents. We propose in this paper a novel image feature based on a spatial
linear predictive model. This type of image feature can be effectively
used for vector-quantization based classification of nuclear phases. We
used a dataset of HeLa cells line to evaluate and compare the proposed
method on the classification of nuclear phases. Experimental results
obtained from the new feature are found to be superior to some recently
published results using the same dataset.

Keywords: Feature extraction, microscopic imaging, cellular classifica-
tion, high content screening.

1 Introduction

By the use of fluorescence-based reagents, high content screening (HCS) studies
cell functions by extracting the temporal and spatial information about target
activities within cells [1]. Particularly due to the huge volumes of acquired im-
ages, the automation of HCS systems has become necessary to help life-science
researchers understand the complex process of cell division or mitosis at a rapid
speed [2,3]. Its power comes from the sensitivity and resolution of automated
light microscopy with multi-well plates, combined with the availability of flu-
orescent probes that are attached to specific subcellular components, such as
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(a) (b)

Fig. 1. Progress of cell division after a period of time – (a) typical fluorescence mi-
croscopy image of cells; (b) division of cells showing changes in temporal and spatial
information

chromosomes and microtubules, for visualization of cell division or mitosis using
standard epi-fluorescence microscopy techniques [17]. By employing a carefully
selected reporter probes and filters, fluorescence microscopy allows specific imag-
ing of phenotypes of essentially any cell component [13]. With these probes we
can determine both the amount of a cell component, and most critically, its dis-
tribution within the cell relative to other components. Typically, 3-4 different
components are localized in the same cell using probes that excite at different
wavelengths. Any change in cell physiology would cause a redistribution of one or
more cellular components, and this redistribution provides a certain cytological
marker that allows for scoring of the physiological change.

In time-lapse microcopy images are usually captured in a time interval of
more than 10 minutes. During this period dividing nuclei may move far away
from each other and daughter cell nuclei may not overlap with their parents.
Figure 1(a) shows a microscopic image of cells; whereas Figure 1(b) shows a
typical example of the progress of cell division after some period of time.

An essential task for high content screening is to measure cell cycle progression
(inter phase, prophase, metaphase, and telophase) in individual cells as a func-
tion of time. Cell cycle progress can be identified by measuring nuclear changes.
Thus, automated time-lapse fluorescence microscopy imaging provides an impor-
tant method for the observation and study of cellular nuclei in a dynamic fashion
[6,10]. Stages of an automated cellular imaging analysis consist of segmentation,
feature extraction, classification, and tracking of individual cells in a dynamic
cellular population; and the classfication of cell phases is considered the most
difficult task of such analysis [4].

Given the advanced fluorescent imaging technology, there still remain tech-
nical challenges in processing and analyzing large volumes of images gen-
erated by time-lapse microscopy. The increasing quantity and complexity
of image data from dynamic microscopy renders manual analysis unreasonably
time-consuming. Therefore, automatic techniques for analyzing cell-cycle progress
are of considerable interest in the drug discovery process. Being motivated by the
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desire to study drug effects on HeLa cells, an ovarian cancer cell line, we developed
a classification model for identifying individual cell phase changes during a period
of time. We seek to extract the information of image spatial-continuity as a novel
feature using the concept of geostatistics [7] and the theory of linear predictive
coding (LPC) [12]. The theory of LPC has been successfully applied for extracting
spectral feature of one-dimensional sequential data [16]. In this study we present
a scheme for extracting two-dimensional image feature known as the spatial linear
predictive coding (SLPC) coefficients. We have implemented the vector quantiza-
tion (VQ) method [5] to design a template for each SLPC-based cell-phase model
for pattern matching.

The rest of this paper is organized as follows. In the next section, based on
the motivation of extracting spatial information of cells in fluorescence images,
we will introduce the derivation of spatial LPC coefficients using the theory of
geostatistics as a new type of feature of cellular images. We will then address how
we have implemented the method of vector quantization to design the prototypes
for cell phases based on the spatial LPC coefficients. Following the technical
presentations, we will illustrate the performance of the proposed approach by
testing and comparing the SLPC-VQ based classifier with real image data and
other methods respectively. We will conclude the finding and suggest some issues
for future research.

2 SLPC-Based Image Feature

Spatial linear predictive coding (SLPC) coefficients can be determined using the
method of ordinary kriging (OK) introduced in the theory of geostatistics [9,7].
This geostatistical method tries to predict the unknown value using the following
weighted linear combination of the available samples:

x̂0 =
k∑

i=1

wi xi (1)

where x̂0 is the estimate of x0, wi is the weighting parameter that expresses the
relationship between value x0 and available value xi.

There are different approaches for determining the weights to the available
or neighbor data with respect to the unknown value, and different approaches
lead to different computational schemes. One particular approach for computing
these weights optimally is to minimize the average error of estimation. Let rj

denote the error between any particular estimated x̂j value and the true value
xj :

rj = x̂j − xj (2)

then the average error, denoted as ra, of k estimates is

ra =
1
k

k∑

j=1

rj (3)
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However, minimizing ra is unrealistic because the true values x1, . . . , xk are
not known. In other words, it is not possible to minimize the variance of the
actual errors, but it is possible to minimize the variance of the modeled error
which is defined as the difference between the random variables modeling the
estimate and the true value. Such optimal solution for the weights wi for all i
can be obtained by kriging known as the best linear unbiased estimator. Let
V (x1), . . . , V (xk) be the random variables for k samples x1, . . . , xk respectively;
and V (x0) be the random variable for x0. These random variables are assumed
to have the same probability distribution, and the expected value of the random
variables at all locations is E{V }. Thus, the estimate of x0 is also a random
variable and expressed by a weighted linear combination of the random variables
at k locations:

V̂ (x0) =
k∑

i=1

wi V (xi) (4)

And the error of estimation is

R(x0) = V̂ (x0) − V (x0) (5)

Alternatively we have

R(x0) =
k∑

i=1

wiV (xi) − V (x0) (6)

The expected value of the error of estimate is

E{R(x0)} =
k∑

i=1

wiE{V (xi)} − E{V (x0)} (7)

Based on the assumptions of stationary random function and unbiased esti-
mation, the variance of the error can be expressed as [7]

σ2
R = σ2 +

k∑

i=1

k∑

j=1

wiwjCij − 2
k∑

i=1

wiCi (8)

where Cij stands for the covariance of xi and xj ; and the above equation defines
the variance of error as a function of w1, . . . , wk.

An optimal choice for the weighting parameters w1, . . . , wk is to minimize σ2
R

subject to
∑

i wi = 1. A solution can be obtained by the Lagrange multiplier
method:

σ2
R = σ2 +

k∑

i=1

k∑

j=1

wiwjCij − 2
k∑

i=1

wiCi + 2β(
k∑

i=1

wi − 1) (9)

where β is a Lagrange multiplier.
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The error variance term, σ2
R, can now be minimized by differentiating (9) with

respect to the weights and the Lagrange parameter, and setting each one to zero.
By doing so, we obtain the following equations.

k∑

j=1

wjCij + β = Ci0, ∀i = 1, . . . , k (10)

k∑

i=1

wi = 1 (11)

The above system of equations are known as the ordinary kriging system,
which can be expressed in matrix notation as

C w = D (12)

where

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 · · · C1k 1
· · · · · ·
· · · · · ·
· · · · · ·

Ck1 · · · Ckk 1
1 · · · 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

w =
[
w1 · · · wk β

]T

D =
[
C10 · · · Ck0 1

]T

Thus the values of the weights can be obtained by solving

w = C−1 D (13)

The sample covariance used for the kriging estimator can be calculated as

C(h) =
1

N(h)

∑

(i,j)|hij=h

xixj − (
1
n

n∑

k=1

xk)2 (14)

in which the sample covariance is a function of the lag distance h, N(h) is the
number of pairs that xi and xj are separated by h, and n is the total number
of data. In this sense, it very convenient to include the spatial correlation of an
image in different geometrical directions. Due to the structured format of pixels,
one easy way is to compute C(h) in the vertical and horizontal directions of the
image.

Furthermore, on the derivation of the error of variance, it is assumed that the
random variables have the same mean and variance which lead to the develop-
ment of the mathematical relationship between the variogram, denoted as γ(h),
and the covariance [7]

γ(h) = σ2 − C(h) (15)
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where the sample γ(h) is defined as

γ(h) =
1

2N(h)

∑

(i,j)|hij=h

(xi − xj)2. (16)

3 Spatial LPC-VQ-Based Classification

Generally speaking, to calculate a distortion measure between two vectors x and
y, denoted as D(x,y), is to calculate a cost of reproducing any input vector x as a
reproduction of vector y. Given such a distortion measure, the mismatch between
two signals can be quantified by an average distortion between the input and the
final reproduction. Intuitively, a match of the two patterns is good if the average
distortion is small. One popular distortion is the Itakura-Saito distortion measure
[8]. It was pointed out that the Itakura-Saito distortion measure is connected
with many statistical and information theories [16] including the likelihood ratio
test, discrimination information, and Kullback-Leibler divergence. Based on the
notion of the Itakura-Saito distortion measure, the spatial LPC likelihood ratio
distortion between two signals s and s′ is derived and expressed as

DLR =
w′T Cs w′

wT Cs w
− 1 (17)

where Cs, which is expressed in (13), is the spatial covariance matrix of sequence
s associated with its SLPC coefficient vector w, and w′ is the SLPC coefficient
vector of signal s′.

Assume that we have a set of T feature vectors obtained the trained im-
ages, which are represented by the corresponding set of T SLPC vectors W =
{w1,w2, . . . ,wT }, where wt = (wt1, wt2, . . . , wtp). It can be seen that these
SLPC vectors represent a type of feature of the image. To handle the problem
of large data of feature vectors which is particularly common in high content
screening, we seek to compress the feature space using a vectorized-signal com-
pression technique of vector quantization. In fact vector quantization is one of
the most suitable methods for compressing LPC-based vectors [12,16].

Let the codebook of the SLPC vectors be {c1, c2, . . . , cN}, where cn =
(cn1, cn2, . . . , cnp), n = 1, 2, . . . , N are codewords. Each codeword cn is assigned
to an encoding region Rn in the partition Ω = {R1, R2, . . . , RN}. The source
LPC vector wt can be represented by the encoding region Rn through the map-
ping V (wt) expressed by

V (wt) = cn, if wt ∈ Rn (18)

The main idea of SLPC based vector quantization (VQ) is to find an optimal
codebook such that for a given training set W and a codebook size N , the
average distortion in representing each SLPC vector wt by the closest codeword
cn is minimum. In mathematical terms we express

D∗ = min
cn

[
1
T

T∑

t=1

min
1≤n≤N

(D(cn,wt))

]
(19)
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where D is an LPC distortion and D∗ is the average distortion of the vector
quantizer.

There are several data partioning methods for the determination of an opti-
mal VQ codebook. One of the most popular methods for VQ is the LBG algo-
rithm [11]. The LGB-VQ method requires an initial codebook, and iteratively
bi-partitions the codevectors based on the optimality criteria of nearest-neighbor
and centroid conditions until the number of codevectors is reached. The spatial
distortion measure we used in this study is the LPC likelihood distortion as de-
fined in (17). The procedure for computing the codebook can be summarized as
follows.

1. Given a training data set W = {w1,w2, . . . ,wT }, where wt =
(wt1, wt2, . . . , wtp), t = 1, 2, . . . , T .

2. Given ε > 0 (small real number)
3. Set N = 1, compute initial cluster center

c∗1 =
1
T

T∑

t=1

wt (20)

Compute SLPC average distortion D∗ using (19).
4. Splitting:

cn1 = (1 + ε)c∗n, 1 ≤ n ≤ N

cn2 = (1 − ε)c∗n, 1 ≤ n ≤ N

Set N = 2N
5. Set i = 0 and let D(i) = D∗. Iteration:

(a) Assign vector to closest codeword

V (wt) = c∗n = arg min
n

(‖wt − c(i)
n ‖2)2,

1 ≤ t ≤ T, 1 ≤ n ≤ N (21)

(b) Update cluster centers

c(i+1)
n =

1
|V (at)|

∑

wt∈V (wt)

wt, 1 ≤ n ≤ N (22)

where |V (wt)| is the number of V (wt) = c∗n.
(c) Compute D(i+1) as the updated average distortion.
(d) If

|D(i+1) − D(i)|
D(i+1) > ε (23)

then set i = i + 1, D∗ = D(i), c∗n = c(i)
n , 1 ≤ n ≤ N , and go to step (a)

6. Repeat steps 4 and 5 until the desired number of codewords is obtained.

Thus, the decision rule is made by assigning the unknown image pattern w
to class ω ∈ Ω, where Ω is the set of the nuclear phases, if the spatial distortion
between the unknown pattern and the codevector of the nuclear phase ω is
minimum. That is

ω = arg min
n

D(cn,w), ω ∈ Ω (24)
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4 Experimental Results

We used a dataset of HeLa cells available at Harvard Medical School, which
contains 375841 cells in 892 nuclear sequences to evaluate the proposed SLPC-
VQ method for classifying the nuclear phases. The average number of cells per
sequence is 421. Imaging was performed by time-lapse fluorescence microscopy
with a time interval of 15 minutes. Two types of sequences were used denoting
drug treated and untreated. Cell cycle progress was affected by drug and some
or all of the cells in the treated sequences were arrested in metaphase. Cell
cycle progress in the untreated sequences was not affected. Cells without drug
treatment will usually undergo one division during this period of time.

Table 1. Rates of correct classification of HeLa-cell phases

Method Rate (%)

k-NN 82.04
k-means 85.25
VQ 85.54
SLPC-VQ 90.15

In time-lapse fluorescence microscopy images of nuclei are bright objects pro-
truding out from a relatively uniform dark background. Thus, we carried out
the segmentation by histogram thresholding. In this work the ISODATA algo-
rithm [4] was used to perform image thresholding. By applying the ISODATA
technique, each image was initially segmented into two parts using an initial
threshold value. The sample mean of the gray values associated with the nuclear
pixels and the sample mean of the gray values associated with the background
pixels were computed. A new threshold value was then computed as the average
of the two sample means. The process was repeated until the change of threshold
values reaches convergence. We found that this algorithm correctly segmented
most isolated nuclei, but it was not able to segment touching nuclei. The al-
gorithm fails because it assigns the pixels to only two different groups (nuclear
and background). If two nuclei are so close and there are no background pixels
between them the algorithm will not be able to separate them. We therefore
applied a watershed algorithm to handle this case [14].

After the segmentation process, we applied the SLPC model to extract the
spatial feature of the images. We then used the VQ method to build the codebook
of sizes 8, 16, and 32 for each nuclear phase model. There are 5 phases to be
identified: interphase, prophase, metaphase, anaphase, and arrested metaphase.
We divided the data set into 5 subsets for training 5 models and a subset for
identification. Each of the 5 training sets for 5 phases contains 5000 cells, which
were extracted from the cell sequences labeled from 590 to 892. These sequences
were used to obtained the SLPC-VQ codebook. The identification set contains
sequences labeled from 1 to 589. There are 249,547 cells in this identification set.

In our previous study [15], we used other 7 features of the nuclear images.
These features include maximum intensity, mean, stand deviation, major axis,
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minor axis, perimeter, and compactness. Based on these 7 features, we applied
the k-nearest neighbor (k-NN), k-means algorithm, and VQ to classify the five
nuclear phases. The classificaton rates of the k-NN = 82.04%, k-means = 85.25%,
and VQ = 85.54%. Where as the classification rates obtained from the SLPC-VQ
= 88.27%, 90.32%, and 91.87% for the codebooks of 8, 16, and 32 codevectors
respectively. Table 1 shows the classification rates obtained from k-NN, k-means,
and VQ methods using the seven features being described above, and the average
classification rate obtained the VQ method using the new spatial LPC feature.

It can be seen that various experimental results reported herein demonstrate
the superiority of the proposed approach. Such new classification rate indicates
a significant level of improvement over a large dataset of high-content screening.
From a technical standpoint, the new result has been achieved because (1) the
spatial LPC coefficients can provide a good model for extracting spatial infor-
mation,(2) the distortion measure is derived based on a rigorous mathematical
model for signal error comparsion, and (3) the vector quantization is an optimal
computational procedure for constructing feature prototypes for pattern clas-
sification. In addition, measuring the dissimilarity between two signal patterns
in terms of average or accumulated spectral distortion appears to be a very
reasonable method for comparing patterns, both in terms of its mathematical
tractability and its computational efficiency.

5 Conclusion

We have applied several pattern recognition methods for the classification of cell
phases using time-lapse fluoresence microscopic image sequences. We have found
that the new spatial LPC feature coupled with the method of vector quantization
provides the best performance for the classification of cell phases. The selection
of useful features is a very important task for any classifier, because effective
image features can certainly enhance the performance of any classifiers. In this
study we have not considered other versions of the distortion measures including
the cepstral distances which have been successfully used for speech recognition
[16]. The incorporations of probabilistic and fuzzy-set models to the SLPC-VQ
approach may likely further improve the classification results.

Acknowledgement. The image dataset was provided by Dr. Randy King of the
Department of Cell Biology, Harvard Medical School.
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Abstract. Gray-level image segmentation is the first task for any image analy-
sis process, and is necessary to distinguish the objects of interest from the 
 background. Segmentation is a complex task, especially when the gray-level 
distribution along the image is such that sets of pixels characterized by a given 
gray-level are interpreted by a human observer as belonging to the foreground 
in certain parts of the image, and to the background in other parts, depending on 
the local context. It very seldom happens that the background is characterized 
by an almost uniform gray-level. Thus, in the majority of cases, segmentation 
cannot be achieved by simply thresholding the image, i.e., by assigning all pix-
els with gray-level lower than a given threshold to the background and all re-
maining pixels to the foreground. One of the most often adopted segmentation 
techniques is based on a preliminary partition of the input gray-level image into 
regions, homogeneous with respect to a given property, to successively classify 
the obtained regions in two classes (foreground and background). In this paper, 
we follow this approach and present a powerful method to discriminate regions 
in a partition of a gray-level image obtained by using the watershed transforma-
tion. The basic idea underlying the classification is that for a wide class of gray-
level images, e.g., a number of biological images, the boundary between the 
foreground and the background is perceived where locally maximal changes in 
gray-level occur through the image. Our classification procedure works well 
even starting from a standard watershed partition, i.e., without resorting to seed 
selection and region growing. However, we will also briefly discuss new crite-
ria to be used when applying digging and flooding techniques in the framework 
of watershed transformation, so as to produce a less fragmented partition of the 
image. By using the so obtained partition of the gray-level image, the succes-
sive classification is facilitated and the quality of the obtained results is  
improved. Some hints regarding the use of multi-scale image representation to 
reduce the computational load will also be introduced. 

1   Introduction 

Gray-level image segmentation is a necessary step in any image analysis process to 
single out the subsets of the image constituting the objects of interest (foreground) 
and so to distinguish them from the background.  

Recent surveys of different approaches to image segmentation can be found in 
[1,2]. Histogram thresholding (see e.g., [3]) is characterized by low computational 
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complexity, but is suitable mainly for images where gray-level distribution is roughly 
articulated in two well defined peaks, separated by a not too broad and flat valley, i.e., 
images perceived as naturally binary such as written documents. To overcome these 
limits, rule-based methods combined with learning methods such as case-based rea-
soning have been developed [4]. Based on a rule set the histogram is properly 
smoothed and the right number of peaks is selected. Case-based reasoning ensures the 
incremental learning of the rule set with the proper parameters. Another approach is 
based on feature space clustering (see e.g., [5]), which is based on the assumption that 
each region of the image constitutes an individual cluster in the feature space. This 
method is easy to implement, but the selection of the proper features is critical and, 
analogously to histogram-based techniques, it does not take into account spatial 
 information. Thus, this technique fails in presence of regions that a human observer 
assigns to either the foreground or the background depending on the local context. 
Region-based approaches (see e.g., [6]) require a suitable selection of seeds from 
which a growing process is done to group pixels in homogeneous regions. Of course, 
the selection of the seeds plays a key role for the quality of the obtained results and 
the method works well when the region homogeneity criterion can be defined in an 
easy manner. A related approach is based on edge detection techniques (see e.g., [7]). 
This approach follows the way in which a human observer perceives objects by taking 
into account the difference in contrast between adjacent regions. A segmentation 
method exploiting both the region-based approach and edge detection is based on the 
watershed transformation [8]. Fuzzy approaches use a membership function to repre-
sent the degree of some properties and are generally characterized by high computa-
tional cost. Neural network techniques can also be used to perform classification of 
regions, but the training phase is long and the results may be biased by the initializa-
tion phase. 

The segmentation procedure to be adopted depends on the specific image domain. In 
this paper we consider the class of images where the distinction between foreground and 
background is based only on the analysis of gray-level information, without involving 
other features, such as the shape [9] expected to characterize the foreground compo-
nents. In particular, we refer to images where the foreground is either consistently lo-
cally lighter (or consistently locally darker) than the background. This class includes, for 
example, a number of biomedical images. In the digitized version of a histological 
specimen, the regions of interest are characterized by a different gray-level, either be-
cause these regions actually have different intensity in the specimen, or because they are 
placed at a different depth in the slide and, hence, some of them result out of focus.  

For the class of images considered in this paper, a segmentation method based on 
the use of the watershed transformation is the most suited one. Once the gray-level 
image has been partitioned into homogeneous regions, we classify the regions as be-
longing to either the foreground or the background, depending on the analysis of the 
locally maximal changes in gray-level between pairs of adjacent regions. Our classifi-
cation procedure can be applied to the basic partition obtained by standard watershed 
transformation, i.e., without taking into account suitable procedures to select the sig-
nificant seeds. Better results are achieved if the classification is accomplished on a 
more sophisticated watershed partition, e.g., the partition obtained by using the algo-
rithm introduced in [10], which significantly reduces the excessive fragmentation of 
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the input image into regions. An alternative way to reduce oversegmentation is to re-
sort to multi-scale image representation. When a gray-level image is observed at dif-
ferent resolutions, only the most significant regions are perceived at all resolutions. In 
turn, regions with lower significance, which can be interpreted as fine details, are per-
ceived only at sufficiently high resolution. Thus, if the seeds for watershed segmenta-
tion are detected at lower resolution, and these seeds are used to discriminate between 
significant and non-significant seeds in the image at full resolution, the partition is 
expected to consist mainly of the most significant regions.  

This paper is organized as follows. In Section 2, we briefly discuss the standard 
watershed transformation as well as the method [10] to partition a gray-level image 
into a set of regions. In Section 3, we describe the procedure to classify the obtained 
regions in the two classes (foreground and background). In Section 4, we give some 
hints regarding the use of multi-scale image representation to reduce the computa-
tional load of segmentation. Finally, concluding remarks are given in Section 5. 

2   Watershed Partition 

The 2D gray-level input image, used in this paper as running example, has been pro-
vided by courtesy of Dr. V. Guglielmotti and includes pyramidal neurons of rabbit 
cerebral cortex. See Fig.1, left. Gray-levels are in the range [0, 255]. In the running 
example, the foreground is perceived as locally darker with respect to the background. 
Thus, the foreground consists of the pixels having locally lower gray-level, according 
to the generally followed criterion for which the highest gray-level 255 corresponds to 
white, while the smallest possible value 0 corresponds to black. 

             

Fig. 1. The input image used as running example, left, and the relative gradient image, right 

A gray-level image can be interpreted as a 3D landscape, where for every pixel in 
position (x,y), its gray-level plays the role of the z-coordinate. High gray-levels are 
mapped into mountains of the landscape, and low gray-levels into valleys. An easy 
way to explain how watershed transformation produces a partition of the image is the 
following. Let us assume that the landscape is immersed in water, after the bottom of 
each valley has been pierced. As a result, the valleys are flooded. Filling of a valley 
begins as soon as the water level reaches the bottom of that valley. A dam is built to 
prevent water to spread from a catchment’s basin into the neighboring ones, wherever 
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waters from different basins are going to meet. When the whole landscape has been 
covered by water, the basins are interpreted as the parts into which the landscape is 
partitioned by means of watershed lines. 

In a standard watershed transformation, the bottoms of all the valleys, i.e., the re-
gional minima, are detected in the gradient image of the input gray-level image, see 
Fig. 1 right. The regional minima are used as seeds for region growing. Watershed 
transformation generates a partition of the (gradient) image into regions characterized 
by homogeneity in gray-level.  

As it can be seen with reference to Fig.2 left, where the watershed lines are super-
imposed onto the input image, the image is fragmented in a quite large number or re-
gions (1010 for the running example). Oversegmentation is caused by the too many 
detected regional minima, which are not all perceptually significant. 

To reduce oversegmentation, a careful selection of the regional minima to be used 
for region growing is necessary. Flooding and digging techniques are generally em-
ployed to cause disappearance of those regional minima that are recognized in the gra-
dient image as corresponding to non-significant regions. Of course, the definition of 
significant region is crucial to obtain a meaningful partition. In [10], a new criterion has 
been introduced to evaluate the significance of the regions and to merge non-significant 
regions only with selected adjacent regions. Merging is obtained by applying again the 
watershed transformation on a suitably modified gradient image, which includes a 
smaller number of regional minima with respect to the original landscape. 

             

Fig. 2. Standard watershed partition, left, and watershed partition by the algorithm [10], right 

In [10], as soon as the watershed partition is available, the significance of a region 
X is defined by evaluating the interaction of X with every adjacent region Y. Two pa-
rameters are used to define the interaction: i) the maximal depth of X when the water 
reaches the local overflow pixel, i.e., the pixel with minimal height along the water-
shed line separating X from Y, and ii) the absolute value of the difference in height 
between the regional minima of X and Y. If non-significant regions exist in the cur-
rent watershed transform, the watershed transformation needs to be applied again  
after the seeds corresponding to the non-significant regions have been suitably re-
moved. Three cases are possible: 

1. X is significant with respect to each adjacent region Y. Then, X is definitely 
meaningful and no merging is necessary. 
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2. X is non-significant with respect to each adjacent region Y. Then, X has to be ab-
sorbed by (some) adjacent region(s). To this aim, the regional minimum of X has 
to be removed before applying again the watershed transformation. Flooding is 
accomplished by setting all pixels of X with gray-level lower than the lowest lo-
cal overflow value q, to value q. X will result as merged to Y, when the water-
shed transformation is applied again. 

3. X is significant in correspondence of some adjacent regions only. Then, X has to 
be merged with proper regions, selected among those with respect to which X is 
non-significant. Along the watershed line between X and any such a candidate 
region Y, a local overflow pixel exists, which is not necessarily the lowest local 
overflow pixel. Digging is performed, in this case, to open a canal connecting X 
with the region Y, which will absorb X when the watershed transformation is 
newly applied. The canal is identified as the minimal length path linking the re-
gional minima of X and Y, and passing through the local overflow pixel common 
to X and Y. The gray-level of all the pixels in the path is set to the lower value 
between those of the regional minima of X and Y. When the watershed transfor-
mation is newly applied, the water can flow through the canal from X to Y, and 
the desired merging is obtained. The watershed lines of X, which were already 
detected as separating significant regions, are not altered. 

The process is iterated until all resulting regions are significant. A remarkable re-
duction in the number of seeds, hence of the regions of the partition, is obtained. In 
turn, the computational cost is higher than that of standard watershed transformation, 
due both to the repeated application of the watershed transformation, and to the proc-
ess aimed at computing region significance and possibly perform region merging via 
flooding and digging.  For the running example, instead of 1010 regions characteriz-
ing the partition obtained by standard watershed transformation, only 259 regions are 
found. See Fig.2 right. Non-significant regions have been absorbed by adjacent sig-
nificant regions. Non-significant regions have never been grouped to form a new, un-
expected, significant region, or a region whose shape is altered with respect to the 
foreseen shape. 

3   Classification of Regions  

The watershed transformation has partitioned the image into N regions, whose mem-
bership to either the foreground or the background has not yet been established. Since 
the pixels constituting a region Ri of the partition don’t have all the same gray-level, 
we compute the average, ri, of the gray-levels of all pixels in Ri, and use it as the rep-
resentative gray-level for the whole region. Adjacent regions with the same value of ri 
are interpreted as constituting a single region. 

We first classify the regions whose representative gray-level is smaller (greater) 
than the representative gray-levels of all their adjacent regions, as belonging to the 
foreground (background). This initial classification is done by means of a global 
process, which detects, in a parallel way, all gray-level local minima and local 
maxima. Obviously, only the pits of the valleys and the peaks of the mountains in the 
landscape are classified by this process.  
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The still unclassified regions constitute the slopes in between peaks and pits. For 
these regions, our classification method is inspired by visual perception and is based 
on the difference in gray-level between adjacent regions. In fact, the boundary sepa-
rating the foreground from the background is perceived as placed wherever strong dif-
ferences in gray-level occur. Thus, for any pair of adjacent regions Ri and Rj, out of 
which at least one is still unclassified, we compute the difference Di,j=|ri-rj|. Without 
losing generality, we assume that the first region, Ri, in any such a pair (Ri, Rj) is the 
darker one and the second region, Rj, is the lighter one, i.e., we assume ri<rj.    

An iterative classification process is performed, at each iteration of which the cur-
rent value Δ=max{Di,j}, i.e., the currently maximal difference in gray-level, is used to 
select the pairs of regions in between which the boundary is more likely to be placed. 
The process is iterated until all regions are classified. 

At each iteration, two cases are possible, depending on the number k of adjacent 
regions Rk

i and Rk
j with difference Δ that are found.  

When k=1, we classify the darker region Rk
i of the unique selected pair, as belong-

ing to the foreground, and the lighter region Rk
j as belonging to the background. 

Moreover, we also classify in a global way all the unclassified regions that are charac-
terized by representative gray-level not larger than rk

i (and, hence, darker than Rk
i) as 

belonging to the foreground, and all unclassified regions with representative gray-
level not smaller than rk

j (and, hence, lighter than Rk
j) as belonging to the background.  

When k>1, classification is still done by using a global process only if the k darker 
regions Rk

i have their representative gray-levels smaller than the representative gray-
levels of all the lighter regions Rk

j. In other words, if the value maxmin= maxk{rk
i} is 

smaller than the value minmax= min k{rk
j}, we classify all regions with representative 

gray-level not greater than maxmin as belonging to the foreground, and all regions with 
representative gray-level not smaller than minmax as belonging to the background.   

In turn, if at least one of the k, k>1, darker regions Rk
i has representative gray-level 

not smaller than the representative gray-levels of all the lighter regions Rk
j, the same 

global classification would lead to conflictual assignments. For example, the region 
with representative gray-level minmax should be assigned to the background, since that 
region is the lighter one in the pair including it, but it should be assigned to the fore-
ground, since it results to be darker than the region with representative gray-level 
maxmin. To avoid conflicts, we classify globally only the regions with representative 
gray-level not larger than minmin=min k{rk

i} (not smaller than maxmax=max k{rk
j}) as 

belonging to the foreground (background). For any remaining region Rk
i belonging to 

a pair of regions with difference Δ, the following local investigation is done. All as-
cending paths, consisting of unclassified regions with increasing representative gray-
levels, are traced along the slope including Rk

i until a classified region is met. Since 
along the slope, more than one pair of adjacent regions with difference Δ can be 
found, a decision has to be taken to select, among the encountered pairs, the pair 
where the separation between the foreground and the background has to be placed. 
We select the pair for which rk

i is the greatest one, so as to favor assignment of most 
of the slope to the foreground.  

Once all regions have been classified, a final local process is accomplished, aimed 
at possibly changing the classification status of some regions that have been classified 
as belonging to the background during the iterative classification process, and are 
placed at the border with respect to foreground components along the slopes. This  
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final process depends on the problem domain. If the purpose is to favor region grow-
ing without merging already detected foreground components, the change of status is 
done only if it does not cause a topology change. In turn, if clusters of foreground 
components are desired, e.g., to analyze the spatial organization of the foreground, the 
change of status is done only if it causes a topology change.  

             

Fig. 3. Pixels classified as belonging to the foreground, starting from the standard watershed 
partition, left, and from the partition obtained by using the algorithm [10], right 

In Fig.3, the result of the classification process is shown for the running example, 
starting from the standard watershed partition, left, and from the more sophisticated 
watershed partition [10]. Foreground pixels are shown with their original gray-levels, 
while all background pixels have been set to 255. Both results can be regarded as sat-
isfactory, even if an obviously more accurate segmentation is obtained by using the 
partition obtained by the method [10]. As already pointed out in Section 2, the method 
[10] is computationally more expensive. Thus, the choice of which partition to adopt 
depends on a compromise between quality of the results and cost of the process. 

4   Reducing Oversegmentation by Multi-scale Representation 

We describe here an alternative way to reduce oversegmentation, based on the use of 
a multi-scale image representation. This method requires that the standard watershed 
transform be computed only twice, while it has to be computed for a larger number of 
times if the algorithm [10] is used. When observing a gray-level image at different 
scales, the most significant regions are perceived at all resolutions, while regions with 
lower significance, e.g., fine details, are perceived only at sufficiently high resolution. 
Thus, if the seeds for watershed segmentation of the gray-level image are detected in 
a representation of the image at a lower resolution with respect to the full resolution 
of the input image and are, then, used to distinguish significant and non-significant 
seeds in the image at full resolution, the resulting partition is expected to consist 
mainly of the regions that are perceived as the most significant ones.  

To build a lower resolution representation of the input image I, we superimpose 
onto I a partition grid, each cell of which includes a fixed size block of pixels (chil-
dren). We associate to each cell of the grid a single pixel (parent) in the representa-
tion of I at lower resolution, I’. The gray-level of a parent pixel is computed in terms 
of the gray-levels of its children. Depending on the position of the grid, the size of the 
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cells, and the rule used to compute the gray-level of parent pixels, different lower 
resolution representations can be obtained. We here use the grid introduced in [11], 
whose cells are blocks of 2×2 pixels, so that the size of I’ is a fourth of the size of I. 
The rule we adopt to compute the gray-level of the parent pixels is such to produce an 
almost shift invariant lower resolution image representation. Moreover, the parent-
child relations are preserved, so that it is easy to transfer onto the full resolution im-
age I, the information derived by analyzing its lower resolution representation I’. 

More in detail, we inspect in forward raster fashion only pixels belonging to even 
rows and columns of I. This means that we use the bottom right child pixel in the 2×2 
block to find the coordinates of its parent pixel in I’. For each inspected pixel in posi-
tion (i,j) of I, the parent pixel in I’ will be in position (i/2,j/2).  

As for the gray-level of the parent pixel in position (i/2,j/2) of I’, we note that the 
sampling grid could be placed on I in four different ways and, hence, any pixel in the 
3×3 window centered on (i,j) could be the bottom right pixel of a block of the parti-
tion grid. If we consider the nine 3×3 windows, that in I are respectively centered on 
(i,j) and on each of its eight neighbors, then the pixel in position (i,j) is included in all 
the nine windows, its edge-neighbors are included in six windows and its vertex-
neighbors in four windows.  

                

Fig. 4. Full resolution image, left, lower resolution image, middle, and markers, right 

We use the above numbers 9 for the pixel in (i,j), 6 for its edge-neighbors, and 4 
for its vertex-neighbors, as the proper weights to be used in a multiplicative mask to 
compute the gray-level of the parent pixel (i/2,j/2) of I’. By using the mask, we take 
into account the gray-levels of the pixel (i,j) and of its eight neighbors in a manner in-
dependent of the position of the grid. Rescaling of the computed gray-levels is done to 
have them still in the range [0, 255]. 

In Fig. 4 middle, the representation of the running example at lower resolution is 
shown. The full resolution image is given to the left, for the reader’s convenience. 

Since I is well represented by its lower resolution representation I’, we can use the 
seeds detected in the gradient image of I’, ∇’, as markers to select the significant 
seeds in the gradient image of I, ∇. Due to the preservation of the parent-child rela-
tions, we can easily project the seeds found in ∇’ onto a full resolution image. Since 
any parent pixel has four children, for each seed found in ∇’ we identify a projected 
seed consisting of the union of 2×2 blocks of pixels in ∇. See Fig. 4 right. 
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We regard a seed detected in ∇ as significant, if the partition region associated with 
it in the standard watershed transform includes at least one pixel of a projected seed. 
Seeds originally detected in ∇, but such that the associated partition regions of the 
standard watershed transform do not include any pixel of projected seeds are regarded 
as non-significant. By means of a flooding process, the partition regions of the  
standard watershed transform corresponding to non-significant seeds are merged to 
adjacent regions. In practice, the gray-level of the non-significant seeds is suitably in-
creased, so that those pixels will not be newly identified as regional minima, when the 
watershed transformation is applied for the second time to obtain the final partition. 

                

Fig. 5. Final result of the process to identify foreground components 

The results of using multi-scale representation are shown in Fig. 5. The watershed 
lines partitioning the running example into only 153 regions are shown to the left, and 
the foreground components detected by using the process described in Section 3 are 
shown to the right, superimposed onto a uniform background.   

For completeness, we point out that the resolution of the image I’ could be fur-
thermore reduced by applying to I’ the same decimation process that we have applied 
to I.  By using an image I’ with even lower resolution, the number of significant seeds 
detected as significant in the full resolution image is expected to diminish. However, 
this could produce a too rough segmentation of the input gray-level image. 

5   Conclusion 

We have introduced a segmentation method based on a preliminary partition of a 
gray-level image into regions by means of the watershed transformation. The partition 
regions have been classified in two classes (foreground and background) by taking 
into account only gray-level information. Our segmentation method has been tested 
on a variety of images in different domains even if, in this paper, only one running 
example relative to biological images has been shown. The method is suited to gray-
level images, where the boundary between foreground and background is perceived in 
correspondence with the locally maximal changes in gray-level through the image.  

We have shown the classification results obtained starting from standard watershed 
transform, i.e., without resorting to seed selection and region growing. When this is 
done, the computational burden of the whole segmentation process is rather limited. 
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Better results are obtained, at the expense of a higher computational cost, if the gray-
level image is partitioned by using a more sophisticated watershed transformation, in-
cluding digging and flooding techniques to produce a less fragmented partition of the 
image. This more complex procedure is necessary when a finer segmentation is indis-
pensable. We have also suggested an alternative way to reduce oversegmentation, by 
using multi-scale image representation. A lower resolution representation of the input 
image is built and the seeds for watershed partition found in this image are used as 
markers to discriminate between significant and non-significant seeds in the full reso-
lution image. Segmentation done by using this approach has a cost that is intermediate 
between the cost of segmentation based on the standard or a more sophisticated wa-
tershed transformation, still producing good results.  
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Carolina Wählby1,2, Patrick Karlsson1, Sara Henriksson2, Chatarina Larsson2,
Mats Nilsson2, and Ewert Bengtsson1

1 Centre for Image Analysis, Uppsala University, Sweden
carolina@cb.uu.se
http://www.cb.uu.se

2 Dept. of Genetics and Pathology, Uppsala University, Sweden
http://www.genpat.uu.se

Abstract. Many modern molecular labeling techniques result in bright
point signals. Signals from molecules that are detected directly inside
a cell can be captured by fluorescence microscopy. Signals representing
different types of molecules may be randomly distributed in the cells or
show systematic patterns indicating that the corresponding molecules
have specific, non-random localizations and functions in the cell. As-
sessing this information requires high speed robust image segmentation
followed by signal detection, and finally pattern analysis. We present and
discuss this type of methods and show an example of how the distribution
of different variants of mitochondrial DNA can be analyzed.

1 Introduction

Data mining can be defined as the science of extracting useful information from
large data sets. In this case, the input data is digital images of cells captured
using fluorescence microscopy, and the information we aim to retrieve is that of
spatial distribution patterns of different variants of fluorescence labeled molecu-
lar targets. New probing and staining techniques allow a large variety of molec-
ular targets to be visualized in situ and imaged by fluorescence microscopy.
Biological processes can be studied at the ultimate level of single molecules, and
with sufficient precision to distinguish even closely similar variants of molecules.
It is thus possible to study the inter- or subcellular context of molecules that
otherwise may go undetected at the level of populations of molecules and cells.
At the same time, large numbers of cells have to be analyzed to retrieve statis-
tically significant information. Extracting information from the resulting image
data will therefore require efficient and robust cell segmentation as well as signal
detection and, finally, pattern analysis.

Before signals can be assigned as coming from a particular cell, each cell has to
be delineated. Segmentation is the process in which an image is divided into its
constituent objects, or parts, and background. Cells can be visualized in many
different ways, using different kinds of probes or stains that bind to structures
within a cell. It is therefore difficult to define a single algorithm that will always
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find the individual cells in an image, independent of method for visualization
and cell morphology. Instead, cell image segmentation can be seen as a modeling
problem where different approaches more or less explicitly are based on models
of the cells. For example, thresholding methods can be seen as being based on a
model stating that cells have an intensity that is different from the surroundings.
More robust segmentation can be obtained if a combination of features, such as
intensity, edge gradients, and cellular shape, is used.

In many applications in cell biology, where fluorescence marked probes are
applied, the resulting images are composed of signals seen as spots of different
shapes and intensities. The localization of these regions can yield important bio-
logical information. In multiple labeling experiments in particular, measurements
of relative positions of regions labeled with different marker molecules can pro-
vide insight in the functional relationship between organelles and/or processes.
Visual inspection is, apart from being tedious, beset with various sources of er-
ror. The positions of signals in an image should be determined automatically to
derive objective information and allow further extraction of image information,
such as signal intensity distribution, relative positioning and pattern analysis.
The human mind is exceptional at finding patterns, it will even find patterns in
data that is completely random. It is therefore valuable to have computerized
methods that can search for patterns in a more objective way.

We present an image based data mining example where the distribution of
different variants of the genetic information contained in mitochondria (i.e.,
mtDNA) has been examined. MtDNA is present in multiple copies in the mi-
tochondrion of the cell. It is inherited together with the cytoplasm during cell
replication. Genetic diseases are often caused by mutations where one single nu-
cleotide has been substituted by another, a so-called point mutation. To be able
to study and diagnose such disease with limited material from patients, there is
a need for methods to detect point mutations in situ. Padlock probes and rolling
circle amplification (RCA) combines highly specific target sequence recognition
with a high signal-to-noise ratio. Padlock probes have been successfully used for
detecting point mutations in mitochondrial DNA by [10]. We combine cell seg-
mentation, padlock probes, signal detection and pattern analysis to examine the
distribution of mtDNAs. This type of methods could also be used in applications
ranging from detection of infectious organisms to studies of tumors.

2 Methods

The methods section is divided into three parts, describing methods for segmen-
tation of cells, detection of signals, and evaluation of patterns in the detected
signal distribution. A specific example is thereafter brought up in the Experi-
ments and results section.

2.1 Cell Segmentation: Finding Cells

The difficulty of the segmentation problem is highly dependent of the type of
specimen that is to be analyzed, and the result of the segmentation usually
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determines eventual success of the final analysis. If we are dealing with cytolog-
ical specimens where the cells are lying singly on a clean background with well
stained nuclei, and if the analysis task is limited to nuclear properties, then a
simple automatic thresholding method may be sufficient. Thresholding is often
based on histogram characteristics of the pixel intensities of the image, see [21].
In order to get a satisfactory segmentation result by thresholding, a sufficiently
uniform background is required. The transition between object and background
may be diffuse, making an optimal threshold level difficult to find also after
background correction. At the same time, a small change in the threshold level
may have a great impact on the further analysis; feature measures such as area
and volume are directly dependent on the threshold. Adaptive thresholding, i.e.,
local automatic thresholding, can be used to circumvent the problem of varying
background or as a refinement to a coarse global threshold, see [17]. The prob-
lems of segmenting clustered objects and choosing a suitable threshold level for
objects with unsharp edges will, however, remain.

If we model the objects as consisting of connected regions of similar pixels
we obtain region growing methods. A popular region growing method which
has proved to be very useful in many areas of image segmentation is the so
called watershed algorithm. The method was originally suggested by Digabel
and Lantuéjoul, and extended to a more general framework by [3]. Watershed
segmentation has then been refined and used in very many situations, see [14]
and [22] for an overview. If the intensity of the image is interpreted as elevation in
a landscape, the watershed algorithm will split the image into regions similar to
the drainage regions of this landscape. To avoid over-segmentation, i.e., splitting
of the image into too many regions, water can be allowed to rise only from places
marked as seeds [2,9,11,14,22]. Seeds may be found manually or by automated
methods. Over-segmentation can also be reduced by rule-based merging, e.g.,
shown by [15].

Cell nuclei are usually convex and fairly round or elliptic and the shape can
therefore be used as part of the object model. Touching nuclei that are not
separated by an intensity threshold can be separated by distance transforming
[4] the binary image and applying watershed segmentation, see work done by
[12], [17], and [23].

None of the above described methods will alone produce a satisfactory result
on the more difficult types of cell and tissue images. We may for instance have
problems if (1) the cells are clustered, (2) the image background is varying, and
(3) there are intensity variations within the cells. By combining the methods,
more powerful models can be created, and more complex segmentation problems
be solved. Our experience is that the seeded watershed approach is a useful
core component in such segmentation models. Complex segmentation methods
often require a large number of input parameters that have to be optimized
for each type of input data. In case based reasoning, the segmentation step is
initiated by classifying each image as belonging to one of a number of pre-defined
cases, and input parameters optimized for the particular case are applied during
segmentation, see [19].
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2.2 Signal Detection: Finding Molecules

The most common method for finding structures such as proteins and organelles
in situ is using antibodies labeled with fluorescing molecules. Fluorescence la-
beled secondary antibodies can be used to amplify the signal and increase signal
to noise ratios. The genetic information contained in the DNA in a cell can be
stained as a whole using non-specific chemical dyes, or in a more specific way
using oligonucleotide probes that search for a particular DNA sequence. Fluo-
rescence in situ hybridization (FISH) is such a method, and can detect larger
mutations such as duplications, translocations and deletions, but it is not sensi-
tive enough to distinguish between single nucleotide sequence variations. Primed
in situ labeling (PRINS) reaction uses a specific primer that will initiate synthe-
sis of DNA from fluorescent labeled nucleotides at the site of sequence detection,
see [7]. The method does however not give signals from single-copy genes that
are distinguishable from noise caused by insertions of fluorescing nucleotides
in other places in the genome. In the oligonucleotide ligation assay (OLA), as
shown by [8], oligonucleotides are hybridized juxtaposed with the junction at
the point mutation. If there is a perfect match, the two probes can be enzymat-
ically hybridized and detected. There is however a risk of wrong probes being
ligated, especially when trying to find many different sequence variants in the
same sample. This can be avoided by, instead of using two separate probes, us-
ing a single linear probe, a so called padlock probe. The padlock probe has ends
that are designed to hybridize juxtaposed at the point mutation and if correctly
base paired at the point mutation, the two ends can be enzymatically ligated,
forming a circular DNA molecule, see [16]. The specifically reacted circular DNA
can thereafter be amplified using rolling circle amplification (RCA) generating
molecules that are bound by hundreds of fluorescing probes, see [1]. These sig-
nals can be detected by fluorescence microscopy as bright spots at or below the
resolution of the microscope, the image resolution limited by the point spread
function of the microscope.

An image that contains multiple, and sometimes clustered spots with different
maximum intensities can be segmented in many different ways. Regions found
by procedures such as intensity thresholding often contain more than one local
maximum of intensity, indicating that the region consists of more than one spot.
Top-hat transforms, see [5], in combination with threshold procedures fail to
divide the image into separate domains each containing one local maximum of
intensity as the top-hat transform is unable to distinguish a local maximum
from a saddle-point. If each spot contains a single local maximum, watershed
segmentation, as described above, in combination with a background threshold,
may be used to delineate individual signals. Another approach is the largest
contour segmentation by [13], where the domain of each signal is defined by
a local maximum and an iterative region-growing. If two or more signals are
clustered into a spatially large signal, where the individual signals do not contain
individual intensity maxima (due to tight clustering or signal saturation), the
shape of the signal can provide clues as to how the signals should be detected.
In work by [6], the curvature of the edge of each signal cluster is examined, and
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signals are positioned within the cluster starting from the position where the
greatest curvature is found.

2.3 Hypotheses Testing: Finding Patterns

Patterns in image data can be evaluated by interpreting the signal distribution
as image texture, and using texture measurements. Some of the most commonly
used texture measures are derived from the Grey Level Co-occurrence Matrix
(GLCM). The GLCM is a tabulation of how often different combinations of
pixel brightness values (grey levels) occur in a pixel pair in an image, see [5].
Multi-interval discretization has also shown to give useful information for cell
pattern classification, see [20]. Different kinds of distance measures can also
be used to evaluate spatial relationships between signals once they have been
detected. In the case where we want to know if red and green signals are randomly
distributed in the cytoplasm or not, we can simply count how often a red signal
has a green signal as its closest neighbor, and how often a red signal has a
red signal as its closest neighbor (and the other way around). To evaluate the
outcome, we have to know what distributions can be expected. By creating a
virtual cell, where possible positions and number of signals of different types is
given as input, different hypotheses can be tested. We can then compare the
spatial relationships between signals in real cells with those in a virtual cell with
the same input parameters. Signals in the virtual cell can be positioned based
on a hypotheses, i.e., either randomly, or according to a pattern. Thousands of
randomized virtual cells can thereafter be created, and the probability of the
real cell having the hypothesized signal distribution pattern can be examined.
Factors such as staining efficiency and noise may also be added to the virtual
cell for comparison.

3 Experiments and Results

To illustrate the concepts discussed we will here describe a project where model
based cell segmentation is combined with padlock probing for molecule detec-
tion, model based signal detection, and pattern analysis to examine the spatial
distribution of mtDNAs.

3.1 Finding Cells

In the presented experiment, no general stain defining the cytoplasm is available.
We do however have a general stain defining the nucleus of each cell. Combin-
ing this information with the fact that the over all signal variance is higher
within the cytoplasm than in the image background, a model defining cyto-
plasms is created. The three markers (i.e. nuclear stain, padlock probe 1, and
padlock probe 2) are shown as three images, see Fig. 1 A, B, and C, each cap-
tured with a different filter set in the fluorescence microscope. Cells segmenta-
tion is initiated by intensity thresholding of the image showing the nuclear stain.
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A suitable threshold is found using Otsu’s method, which searches for the thresh-
old level that minimizes the intra-class variance of foreground as well as back-
ground, see [18]. The resulting binary image is shown in Fig. 1 D. Intensity
thresholding is not enough to separate nuclei that are very close to one another.
Thanks to their round shape, touching nuclei can be separated by applying wa-
tershed segmentation to a distance map of the binary image. Over-segmentation
due to multiple local maxima is avoided by smoothing of the distance map. The
distance map is shown in Fig. 1 E, and the result after watershed segmentation
is shown in Fig. 1 F. The region surrounding each nucleus, not belonging to the
image background, is the cytoplasm. The image background has less variance
than the parts of the image containing cells, and can thus be found by variance
filtering. The variance map of the sum of B and C (Fig. 1 G) is thresholded
using Otsu’s method. Small, disconnected regions are removed by morphological
opening, and larger disconnected regions are re-connected by dilation. In both
cases, a disc-shaped structure element of radius 10 pixels was used. The choice
of structure element depends on size and density of signals.

Each pixel of the resulting binary image (Fig. 1 H) is assigned to the closest
nucleus by seeded watershed segmentation, using the segmentation result from
the segmentation of the nuclei as seeds. Non-seeded regions are discarded as
background. Fig. 1 I shows the final segmentation result on top of a projection
of the three input images.

3.2 Finding Molecules

In the presented experiment, a model system with padlock probes was used.
It consists of different detection sequences that represent real point mutations.
Four different padlock probes were used for testing efficiency of staining and
evaluation of signal distribution patterns. Two of the padlock probes hybridize
to different sites on the same mtDNA fragment, i.e., they are non-competing.
One is detected using Cy3 (red), and one using FITC (green). The other two
probes bind to the same site, and are therefore competing.

Signal detection was initiated by first reducing the background variation
present in the images. As the cells are cultured on a glass surface, they are
comparably flat. Despite this, it is necessary to image them in more than one
focal plane to make sure that all signals are detected. In the presented study,
the slides were studied in a fluorescence microscope (Axioplan II Zeiss) using a
63x objective. Images were collected with Axiovision 4.3 software as a 16 layers
z-stack with 0.5um between consecutive layers. The nuclear stain DAPI emission
was collected at 360nm excitation wavelength for 200ms, green padlock detection
fluorochrome FITC at 470nm for 200ms and red padlock detection fluorochrome
Cy3 at 546nm for 450ms. Background was reduced in each z-image separately
by morphological tophat filtering, using a disc of radius 10 pixels. Tophat fil-
tering removes intensity variations that have a spatial extent greater than that
of the disc. The 16 layers were thereafter combined using maximum intensity
projection. Projection of the 3D information to a single image will result in loss
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Fig. 1. A: Part of an image of DAPI stained cell nuclei. B: Image of the same cells
showing logarithm of signals from padlock probe 1 (stained with Cy3) and C:, logarithm
of signal from padlock probe 2 (stained with FITC). D: Binary image after thresholding
of A. E shows the same image after distance transformation, and F is the result after
watershed segmentation on the distance map, i.e., the final segmentation of the nuclei.
G: The cytoplasm is found by combining the two images showing padlock probes (B
and C) and applying a variance filter. H: Potential cytoplasm after thresholding of
variance map and morphological opening to remove noise. I: Final segmentation result
based on shape of nuclei and variance of cytoplasm.

of spatial information in the z-direction. As the extension of cultured cells in
z-direction is only a fraction of their extension i x-, and y- direction, the 3D
information was considered less important. This would however not be the case
if cells in tissue were observed.

The result after pre-processing and maximum intensity projection of a small
fraction of an image is shown in Fig. 2 A. Simple intensity thresholding will
separate the signals from the image background, but signals that are clustered
will not be separated from each other. To separate clustered signals, Watershed
segmentation, starting from all local maxima, is applied to the image, and the
watershed regions are allowed to extend until they reach a predefined background
threshold. The resulting signal centers after watershed segmentation of Fig. 2 A
are shown in Fig. 2 B.
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A B

Fig. 2. A: Enlarged image showing signals from padlock probes after image pre-
processing. B: Positions of detected signals using watershed segmentation.

3.3 Finding Patterns

The patterns of red and green signal distributions were examined by searching
for aggregations of signals, i.e., the existence of groups of signals with the same
color. The affinity of red and green signals was measured as the number of
red signals with a green nearest neighbor, the number of red signals with a red
nearest neighbor, the number of green signals with a green nearest neighbor, and
finally the number of green signals with a red nearest neighbor. To normalize
the observed result and evaluate the probability of non-random pattern, virtual
cells with truly random patterns were created. Virtual cells with random signal
distributions were created by keeping the number of red and green signals the
same as in the real cell. Red and green signals were then randomized within
an area corresponding to the cytoplasm region with the 10% greatest variance.
Virtual cells were re-created 1000 times, neighborhood relations were examined,
and the resulting distributions were compared with observed distributions.

A number of restrictions have to be taken into consideration when creating the
virtual cells. First of all there is a limit in closeness between signals in the real
data due to the point-spread function. Two signals that are of the same color will
not be separated if they are closer than the width of a single signal. This has to
be compensated for in the randomized data, or else it will affect the outcome of
the analysis of the neighbor relations. Randomized signals that appeared closer
to one another than the two closest signals in the real data were simply removed,
and a new pair of random signals was created and tested for closeness with exist-
ing randomized signals. Fig. 3 A, top, shows the true signal distribution within
the cytoplasm of a cell with competing padlock probes, red and green signals
as + and o respectively. Fig. 3 A, bottom, shows one of the 1000 virtual cells
with randomized signals. Fig. 3 B, top, shows the true signal distribution within
the cytoplasm of a cell with non-competing padlock probes, red and green sig-
nals as + and o respectively. Fig. 3 B, bottom, shows one of the 1000 virtual
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cells with randomized signals in the non-competing case. As can be seen, it is
not trivial to pick out the cells showing random distributions compared to those
showing a non-random affinity between red and green signals. Comparing the
randomized data with the true signal distributions shows that the pattern falls
within the randomized distribution in the case with competing probes, while the
non-competing probes show a red-green affinity three standard deviations greater
than that of the randomized distribution. This agrees with what one would
expect as the non-competing probes can bind to the same mtDNA fragment.

Competing probes, real distribution

Competing probes, random distribution

A

Non−competing probes, real distribution

Non−competing probes, random distribution

B

Fig. 3. Cells treated with two competing (A) or non-competing (B) padlock probes
in a 50-50 concentration. Top: true signal distribution, bottom: randomized signal
distribution. Red and green signals as + and o respectively. Nucleus and cytoplasm
outlined.

4 Conclusions

Patterns and spatial relationships between molecules in cells are of great in-
terest in many types of analysis. One way of examining patterns in cells is by
visualizing the molecules of interest using highly specific detection probes, and
comparing observed signal distributions with randomized distributions in a vir-
tual cell. Before patterns can be examined, signals from detection probes have to
be found, and clustered signals separated. More than one cell is often observed
simultaneously, and automated identification of each individual cell in an image
provides efficient analysis of large data sets with little impact from observer bias.
In order to obtain a successful cell segmentation method it is important to use
as much a priori information as possible about the appearance of the objects
that are to be segmented, without resorting to models that are too complex or
too difficult to train or apply.
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Abstract. In this paper, we propose a novel, completely automated method for 
the segmentation of lymphatic cell nuclei represented in microscopic specimen 
images. Actually, segmenting cell nuclei is the first, necessary step for 
developing an automated application for the early diagnostics of lymphatic 
system tumours. The proposed method follows a two-step approach to, firstly, 
find the nuclei and, then, to refine the segmentation by means of a neural 
model, able to localize the borders of each nucleus. Experimental results have 
shown the feasibility of the method.  

Keywords: Microscopic Cell Images; Color Image Segmentation; Fuzzy 
Clustering; Artificial Neural Networks. 

1   Introduction 

A great deal of research has concerned, in the last years, the development of automated 
systems for the early diagnosis of lymphatic tumors based on the morphological 
analysis of blood cells in microscopic specimen images. Actually, pathologists usually 
make diagnosis by analyzing the morphology of specimen cells [1] [2]. 

The first and necessary step for automating cell analysis is an accurate 
segmentation of the cells themselves, which is then followed by the extraction of 
significant morphological parameters. Unfortunately, cell segmentation is usually an 
ill-posed problem: due to poor dye quality, cell boundary could be not well 
distinguishable and parts of the same tissue could be not equally stained; two or more 
cells could be very close to each other or even overlapping; the chromatin distribution 
inside the cells could generate strong computed edges which mislead the 
segmentation. 

In past years, many segmentation methods have been presented [3] [4]. They 
include watersheds [5] [6], region-based [7] and threshold-based methods [8]. The 
limit of these methods consists of the lack of shape information of the cell, which can 
be useful in presence of noise.  

Recently, the application of Active Contours has been widely investigated for cell 
segmentation [9] [10]. However, such methods require an initialization of the snake, 
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making the segmentation not completely automated. Moreover, having to select 
which cell the snake should be apply to, much information regarding all the cells 
represented in the images is lost. 

Other contour-based methods include Active Shape Models (ASM) [11], Active 
Appearance Models (AAM) [12] and variational deformable models (Strings) [13]. In 
the first two cases, a boundary model and its allowed variations are learned from a set 
of example boundaries and represented by a set of labeled points, encoding only 
shape information in ASM, also image features in AAM. The Strings method differs 
from the previous ones in adopting a continuous instead of discrete boundary 
representation, together with a multiple features description, giving place to a 
multivariate curve representation in functional space (instead of a point representation 
in vector space). All these methods require initialization and allow modeling only the 
variation seen in the training set of boundary examples. 

The application of case-based object recognition has been also investigated [14]: to 
capture the great variation in cell appearance, a set of cases is learned, stored in a case 
base, and then used for segmentation by means of a matching procedure based on a 
similarity measure. 

The method we propose in this paper has the main characteristic to be completely 
automated. Moreover, it is suitable to segment all the cells contained in the images, 
thus allowing for the extraction of data not only from the malignant ones. 

Following a two-step approach, images are first clustered, in order to perform a 
rough segmentation and localize the cells. In a second processing step, an Artificial 
Neural Network (ANN) is applied to the image portions containing the localized cell 
for individuating cell borders. 

Such an approach assures a high level of robustness, because the ANN performs a 
classification of the image and then it can distinguish among different kinds of 
structures, e.g. cell nucleus, cytoplasm, background, artifacts and so forth. 

2   The Fuzzy-neural Segmentation  

Microscopic cell images are acquired as footprints of lymphoid tissue stained 
according to the Romanovsky-Giemsa technique and digitized as color images. 

Each image I contains a number, say n, of cells which are constituted by the 
internal body – the nucleus –, which is the structure of interest to be segmented, and 
the cytoplasm. Due to the staining procedure, artifacts can be present in the images, as 
well as not perfectly stained cells that can be then considered as added noise.  

The proposed method is suitable to detect nuclei borders and consists in applying 
to each image I a two-stage procedure as follows: 

 

• Cell dislocation detection: a cluster analysis, based on the fuzzy c-means 
algorithm, is applied to identify and label homogeneous regions in the image. 
The clustered regions are then used to divide the entire image in disjoint sub-
parts for further processing (image partition). 

• Cells contours extraction: from each image partition relevant features are 
extracted and a dedicated ANN is used to complete the segmentation by 
identifying the contours of each cell. 

 



 Automatic Fuzzy-neural Based Segmentation of Microscopic Cell Images 117 

A sketch of the method is shown in Fig. 1. 
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Fig. 1. The two-step method for cell segmentation 

 

In the following, each step is described in more details. 

2.1   Cells Dislocation Detection  

In order to individuate how cells are dislocated in the microscopic images, a fuzzy 
cluster analysis is performed and each image is partitioned in disjoint parts for next 
step elaboration.  
 

Cluster Analysis.  Homogeneous image regions are labeled using an unsupervised 
clustering method, based on the fuzzy c-means algorithm (FCM) [15]. This algorithm 
groups a set of data in a predefined number of classes so as to iteratively minimize a 
criterion function, namely the sum-of-squared-distance from region centroids, 
weighted by a cluster membership function. A membership grade p∈[0,1] is 
associated to each element of the data set, describing its probability to belong to a 
particular cluster. 

For each cell image I, a features vector 
(I0(x), I1(x), I2(x),…, Iq(x)) 

is computed for any pixel x, considering I(x) as a vector of the three color component  
I(x)=(r,g,b). Then I0(x) = I, and for k = 1,…,q, Ik(x) = I∗Γk(x), where Γk  is a Gaussian 
filter with σ = k. In this way, we obtain a data set D = {v1, v2, …, vm} where each vh, 
h=1,…,m is a vector in ℜp representing image elements at different resolutions. 

Let Ucm be a set of real c × m matrices, with c being an integer, 2 ≤ c < m; the fuzzy 
c-partition space for D is, then, the set: 

1 1

{ : [0,1], 1,0 }
c m

cm ih ih ih
i h

U U u u u m
= =

Ω = ∈ ∈ = < <∑ ∑
. 

(1) 

where uih is the membership value of vh in cluster i (i = 1,…,c). 
By applying FCM, an optimal fuzzy c-partition and corresponding prototypes are 

found minimizing the objective function: 
2
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(2) 

where Λ = (λ1, λ2,…, λc) is a matrix of unknown cluster centers λi ∈ ℜp, ||⋅|| is any 
norm, e.g. the Euclidean norm, expressing the similarity between each data vector vh 
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and the center λi, and the weighting exponent η ∈ [0,∞) is a constant that influences 
the membership values. 

Fuzzy partition is carried out through an iterative minimization of (2), calculating 
the cluster centers at each iteration t = 1,2,… as: 
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and updating the membership values as: 
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(4) 

The iterative process stops when |U(t+1)-U(t)| follows under a certain threshold or the 
maximum number of iterations is reached. 

Applying the FCM on the cell images induces a partition of each slide into a set 
P={R1,R2,…} of disjoint connected regions R, where the indices 1,2,… are region 
labels. In other words, by clustering, we obtain a rough segmentation which can be 
refined reducing the computation by the following step of image partitioning. 
 

Image Partitioning. Once clustered the image, the convex hull of each connected 
region is calculated in order to delimitate the largest image portion (convex image) 
containing the corresponding connected region.  

Starting from the convex hull, an image partition is extracted slightly enlarged in 
both directions the convex image. Such partition contains what the FCM has classified 
as a unique cell. However, the contour of the clustered region can be inaccurate, 
including, for instance, the cytoplasm; moreover, it can happen that two very closed 
or touching cells are clustered as a unique region. For these reasons, it is necessary to 
refine the clustering in a further step. 

2.2   Cells Contour Extraction  

In order to detect the exact cell contour, from each image partition, a set of features is 
extracted and classified by a dedicated ANN.  
 

Features Extraction. Analyzing the properties of cell images and of the similar cells, 
the following vector of features ℑ(x) is computed for characterizing each pixel x of 
the segmented image partition:  
 

 Color values: I(x) = (r,g,b); 
 Mean color value: M(x) = (Mr, Mg, Mb) computed applying an average 

filter F(x), i.e. M(x) = I(x) ∗F(x); 
 Gradient norm: ||∇I(x)|| and its mean, computed along the three color 

components;  
 Radial gradient: Grt(x), defined as the gradient component in the radial 

direction r̂  from the centre of the connected region; 
 Radial position: Pr(x), computed in the radial direction; 
 Membership value to the clustered region: ui(x), where i is the cluster 

index considered as a cell in the image partition. 
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ANN for contours identification. The vectors of the extracted features ℑ(x) are 
processed by a dedicated ANN. It consists in a Multilayer Perceptron, trained 
according to the Error Back-Propagation (EBP) algorithm [16] to recognize five 
different classes. At present, to resolve ambiguity in case of touching cells and let the 
network learn and generalize better, five pixel classes are selected: 

1. Cell border 
2. Cell internal body 
3. Cytoplasm 
4. Background 
5. Artifact 

 

Let oj(ℑ(x)) be the answer of the output units of the network when the features 
vector ℑ(x) is being processed; then, the pixel membership to one of the above 
mentioned classes can be computed as 

Φ(x) = argmaxj=1,…,5(oj(ℑ(x))) . (5) 

A set of pre-classified images has been used to train the network, using the 
Resilient Back-Propagation [17] version of the EBP algorithm. Once defined the 
desired ψp output for each input vector of the training set TS = {ℑp(x)}, the cost 
function 

| |
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=
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. 
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where op = (o1,o2,…,oj) is the output vector of the network, is minimized iteratively 
computing the weight update at each iteration step t as follows: 

( )

( ) ( )

         if ( ) 0

         if ( ) 0

0                otherwise

t
ij

ij

t t
ij ij

ij

E
t

w

E
w t

w

∂⎧−Δ >⎪ ∂⎪
⎪ ∂⎪Δ = −Δ >⎨ ∂⎪
⎪
⎪
⎪⎩ . 

(7) 

where wij is the weight between the network units i and j, and Δij is the amount of 
weight change which, starting from a chosen value Δ0, varies at each step t according 
to the following equation: 

( 1)

ij ij

( ) ( 1)

ij ij

( 1)

E E
    if ( 1) ( ) 0

w w

E E
    if ( 1) ( ) 0

w w

        otherwise

ij

ij ij

ij

t

t t

t

t t

t t

ε

ε

+ −

− −

−

∂ ∂⎧ Δ − ⋅ >⎪ ∂ ∂⎪
⎪ ∂ ∂⎪Δ = Δ − ⋅ <⎨ ∂ ∂⎪
⎪ Δ⎪
⎪⎩ . 

(8) 

where 0 < ε- < 1 < ε+ are parameters used to regulate weight modifications. 
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The final result of this step is discussed in the following section. 

3   Results 

Footprints of lymphoid tissues were Romanovsky-Giemsa stained and digitized with 
digital camera mounted on Leica DMRB microscope using PlanApo 100/1.3 
objective. The equivalent size of a pixel was 0,0064 µ2; 24-bit color images were 
stored in TIFF format of dimensions 1200 × 1792. A total number of 800 microscopic 
images were considered, with an average number of 20 cells for each. An example of 
a microscopic cell image and its three color components is reported in Fig. 2. 

     
 Original  Red Component 

     
 Green Component Blue Component 

Fig. 2. An example of microscopic cell image: the original image and the three color 
components 

 

The cluster analysis was designed to be performed on the features vectors (I0(x), 
I1(x), I2(x),…, Iq(x)) with q = 5, but, among such components, only I3(x) and I5(x) 
were considered relevant. The input vectors represented in the form of color images 
are shown in Fig. 3. The same feature vector for each of the color components of the 
image is reported in Fig. 4. 

 

     
Fig. 3. An example of the three-component feature vector used for clustering: from left to right, 
original, σ = 3 and σ = 5 
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Red component 

     
original σ = 3 σ = 5 

Green component 

     
original σ = 3 σ = 5 

Green component 

     
original σ = 3 σ = 5 

Fig. 4. An example of the feature vector with the original values I0(x) and I3(x) and I5(x) for 
each of the three color components 

 

The FCM algorithm is applied to divide image pixels into two clusters 
corresponding to cell and background. A filling operation is performed to eliminate 
little holes, while clustered regions of negligible area are deleted. An example of the 
clustering results is reported in Fig. 5. 
 

   

Fig. 5. Example of the clustering results: rough clustered image (left), clustered image after a 
filling operation and after deletion of regions of negligible area (right) 
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Examples of image partitions extracted for detecting the exact borders of a cell are 
shown in Fig. 6. 

From each partition, the set of the mentioned features is extracted. To illustrate the 
significance of such set, Fig. 7 shows an example of the gradient regarding the green 
component. 
 

  

  

  

Fig. 6. Image partitions containing the cells to be segmented 

 

The set of 800 images was partitioned in (i) a sub-set of 300 images, used for 
training, and (ii) a sub-set of the remaining 500 images used for the testing phase. A 
semi-automatic segmentation was performed for the training set, consisting in a 
classification of images according to the different classes of pixels. 

     

Fig. 7. Example of the computation of the green component gradient along the horizontal axis 
(left), along the vertical axis (middle) and the norm of the same gradient (right) 

 

Different architectures were tested, varying the number of the hidden units: the 
best performance was achieved with only one hidden layer of 20 units. An example of 
the segmentation results is illustrated in Fig. 8, where the entire classification results 
are reported too. 
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 Original ANN classification 

   
 Contour Extracted 

Fig. 8. Example of segmentation. upper left: original cell image; upper right: results of the 
ANN classification (five classes with different colors); lower left: identified contours of each 
cell; lower right, color legend.  

4   Discussion and Conclusions 

A two-step method for segmenting microscopic cell images has been presented. 
The first step consists of a fuzzy clustering of images performed to obtain a rough 

segmentation and to detect cell dislocation. In the second step, a dedicated ANN is 
applied to refine the segmentation by discriminating image components, i.e. cell 
borders, cell internal body, cytoplasm, background, and artifacts. 

The main features of the proposed method are  
 complete automation of segmentation 
 possibility of extracting all the cells represented in the images  
 robustness due to the ANN application which allows resolving ambiguity 

of closed or touching cells. 
An example of the last characteristic is shown in Fig. 9, where it can be seen how 

two cells that are clustered as a unique region by the FCM are well separated by the 
ANN thanks to the individuation of cytoplasm.  

Different cases in which the ambiguity due to cell closeness is solved are shown in 
Fig. 10.  

Due to the staining technique, two or more cells can touch each other along the 
cytoplasm. This ambiguity is easily solved by our classification method. In rare cases, 
two nuclei can overlap in great portions of their boundaries and also their appearance, 
after staining, can be very similar. In these cases (see Fig. 11), our algorithm is not 

 Cell internal body 

 Cell contour 

 Cytoplasm 

 Background 

 Artifact 
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able to overcome completely the problem (also human experts are not able to 
distinguish clearly the cells). In such critical situations, we could face the problem 
considering the derivability properties of the cells contours curves.  

 

                

Fig. 9. Example showing the robustness of the proposed method: (left) rough segmentation 
obtained by FCM that individuates a unique region corresponding to three different cells; 
(right) result of the ANN algorithm where the cells are correctly separated by classifying pixels 
in cell body, cytoplasm and artifact (see Fig. 8 for explanation of colors). Example of the 
robustness of the proposed method: the image on the right shows the classification of the 
connected region of the image on the left by the ANN algorithm. 

 

    
 Original Segmented  

    
 Original Segmented 

Fig. 10. Examples in which the ambiguity due to cell closeness is solved by the neural 
classification 

In fact, we can identify the two singularity points P1, P2  (see Fig. 12) that are 
located in the two opposite semi-planes individuated by the maximal inertial axis of 
the segmented global structure, and, then, apply a curve prediction algorithm, 
determining independently the possible contours of each cell. Then, the actual 
contours of the two merged cells could be computed by means of a deformation 
process of the original boundaries in the region fixed by the two predicted curves. 
This separation procedure is under development, even if the very limited statistical 
occurrence of overlapping cases has not a relevant role in our problem. 
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 Original Segmented 

   
 Original Segmented 

                      
 Original Segmented 

Fig. 11. Examples of cases in which the overlapping ambiguity is not solved by the 
classification procedure. In the bottom case, it is difficult to establish if the segmented structure 
is a single cell or two overlapping cells. Three cases of overlapping cells. In the bottom case, it 
is really difficult to establish if the segmented structure is a single cell or two overlapping cells. 

 

Fig. 12. Example of information that can be used in the separation procedure of two 
overlapping cells: the dashed line is the maximum inertial axis of the segmented global 
structure, the two points P1 and P2 are the two singularity points individuated along the contour 
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Abstract. This paper describes a digital system designed for the automatic 
detection and measurement of the velocity of moving objects in images 
acquired by means of a common TV-camera mounted onto a microscope. The 
main characteristics of this system are the following: 1) it can perform a real-
time gray level difference between two  successive frames in order to detect 
moving objects and to suppress stationary objects (subtraction procedure); 
usually the delay between two successive frames varies linearly from 40 msec 
to 1920 msec;  2) it reduces the size of images resulting from the subtraction  
procedure (difference images) and stores them in the frame  memory; the result 
of these operation, all performed in real-time, is a film of time sequences;  3) it 
performs an automatic labelization in order to recognize  the moving 
microorganisms and to calculate their area in each  difference image;  4) it 
calculates and plots the variation of the average area of  the cells moving in the 
microscope field;  5) it completes the analysis in few seconds.  

1   Introduction 

The exact determination of the speed parameters of swimming microorganisms can be 
a very useful tool for the study of both behavioral and physiological aspects of 
motility, that is an essential. Speed parameters can be obtained by means of 
photomicrographic [1] and cinematographic techniques [2]. These methods, however, 
turn out to be time consuming. Statistical counting techniques can be utilized as well 
[3], but they are tedious, and prone to human errors. Other methods utilize more 
sophisticated techniques such as spectral analysis of the light scattered by the 
microorganisms [4], or analogic elaboration of the video signal of a TV-camera 
mounted onto a microscope [5]. In these cases, however, the instrumentation 
necessary for speed parameter determination has the drawback to be not portable. A 
further alternative is represented either by the digital tracking microscope, which can 
determine speed parameters by reconstructing the entire movements of swimming 
microorganisms [6], [7], [8] or by the simple method we will describe. This method 
automatically and in real time determines the speed of swimming microorganisms. 
The biflagellate algae Dunaliella salina has been used as experimental subject. 



 Real-Time Measurement and Analysis of Translational and Rotational Speeds 129 

Substantially, this method utilizes the subtraction operation, which has already been 
used by other authors for the detection of motion [9]; however our procedure 
performs automatically and in real-time both the detection of the moving 
microorganisms and the determination of their speed parameters. Our results are 
consistent with previous published speed data of Dunaliella salina obtained with the 
other methods [10]. 

2   Materials and Methods 

A Pulnix TM860 (Pulnix, USA) CCD video camera was mounted onto a Zeiss 
Axioplan microscope (Zeiss, Germany) equipped with 16x and 60x objectives and 
100W halogen lamp as light source. Cells were placed in a small chamber obtained by 
fixing a PVC ring onto a microscope slide. The chamber was closed by means of a 
cover slip so as to avoid sample drying-out. The microorganisms can freely swim 
within a narrow layer of growth medium placed between a slide and a cover slip. 

The signal of the camera was the input of a FG100 AT Frame Grabber (Image 
Technology, USA) plugged into a Pentium V personal computer 750MHz clock. For 
the translational speed determination experiment, a sequence of images taken at 
known intervals of time was acquired, stored, and processed using the automatic 
procedure of Gualtieri and Coltelli [11]. For the rotational speed experiment, the light 
reflected by the cell eyespot was measured. The experimental set-up was the same 
used previously, with the addition of a custom-made slide. This custom-made slide 
allowed the lateral illumination of the cell sample by means of an optical fiber 
delivering the light coming from a Schott KL1500 fiber optic illuminator (Schott, 
Germany). 

Photographs were recorded with an Olympus Camedia C-30303 digital camera 
(Olympus, Japan) mounted on the Zeiss Axioplan microscope (Zeiss, Germany). 

3   Operation Procedures 

Real time detection of microorganisms under the microscope is performed by 
differencing continuously each frame of the video image from a previous frame, with 
a variable delay, during the acquisition process. This operation is made possible by 
programming the 12-bit input Look-up-table (LUT) of the board. This LUT, which is 
located between the digitization circuit and the frame memory, transforms the image 
before it is stored into the frame memory. Thanks to a feed-back circuit between the 
frame memory and the LUT, operations are made on combinations of stored and 
newly-acquired data. We program the LUT in order to move the six most significant 
bits from the A/D converter (the newly acquired data) to the six most significant bits 
in the frame memory; then the LUT subtracts the same six most significant bits of 
A/D data from those previously stored in the six most significant bits of the frame 
memory (the previous frame); the resulting six bits are then stored in the least 
significant bits of the frame memory. The resulting difference image is always 
available in the lower six 1-bit planes of the frame memory; while the upper six 1-bit 
planes contain the most recent data of the A/D converter, which are used as input for 
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the next frame subtraction. In the case that the images of a moving cell in two 
successive frames are partly overlapping, the subtraction operation gives a zero value 
for the overlapping region of the cell and for the background, a negative value for that 
part of the cell image which is present only in the previously acquired frame and a 
positive value for that part of the cell image which is present only in the newly 
acquired frame. In order to follow the increasing of the cell image, which will 
increase up to the whole cell size during the delay progression, we program the LUT 
to clip to zero the negative value, (Figure 1). 

 

Fig. 1. Subtraction operation 

In order to store several difference images in real time in the frame memory, we 
could reduce the spatial resolution of the image being acquired by means of the 
hardware Zoom.  In order to store the (reduced) image into its proper position of the 
frame memory, the X and Y coordinates of its origin are shifted in real time by means 
of Pan and Scroll operations. In this way we can store images, by moving the 
coordinates of their origin toward the right and downward. At the end of this 
procedure, the frame memory is displayed as a patchwork of (reduced) images. In 
order to identify moving cells and to extract its features such as baricenter 
coordinates, contours, axis and areas, a segmentation and labelization procedure is 
applied to each difference image [11]. This procedure lasts 2 seconds for the whole 
memory.   

4   Results and Discussion 

Figures 2a and 2b represents 10-images time sequence (400 msec). Each difference 
image is represented as a framed image. The number visible in the first column 
represents the delay between the two frames on which the system has performed the 
difference. The system acquires a couple of frames utilizing for each frame six bits of 
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the frame memory and performs the subtraction operation as previously explained. 
Usually we choose a delay that varies linearly, but the delay can progress in a 
different way as well. In our case, because of the CCIR standard, the delay between 
two successive frames is 40 msec, or a multiple of 40 msec. The first image (40 msec) 
represents the real time difference between the first acquired frame and the second 
acquired frame; the second image (80 msec) is the real time difference between the 
third acquired frame and the fifth acquired frame. The position of the frames in the 
successive couples can be easily extrapolated by the delay number. After subtraction 
every difference image is placed in its proper position of the frame memory in real 
time by means of pan and scroll operations. For the determination of the translational 
speed value of the cell we have to measure the distance covered by the cell and the 
time lapse; if no stimuli are applied to the environment, the swimming speed of the 
cells can be considered constant. Therefore, the time a cell takes to cover a distance 
equal to its long axis can be used for the determination of its speed. As the difference 
procedure presented in Figure 1 suggests, until the cell doesn't cover a distance equal 
to its size, the area value will be lower than the real one. Greater the delay between 
the frames, less two successive images of the cell are superimposed; there is a delay 
for which the  subtraction operation gives two separate images of the same cell, i.e. 
the area value of the cell is the real value. A higher delay between the two frames still 
separates the two images of the cell, but the area value of the cell will remain 
constant. In Figure 2a and 2b, the cells, which are represented by the whitish areas, 
can be hardly recognized in the first frames because the difference between two 
successive images of the same cell consists of a small agglomerate of pixels. In the 
last frame of the same figure, the cells are instead easily recognizable, because in this 
case the difference between the two images of the same cell is the whole cell area. In 
order to determine quantitatively the cell area variation every reduced image is 
segmented and labelized, (last column of Figure 2a, 2b). Because of the reduced 
thickness of the medium, the swimming path of the cells is planar, i.e. the cells are 
always focused. The average area of the cells moving in the field is calculated and the 
detected cells are contoured. For each reduced image a pre-established standard 
deviation value determines the selection of an area value range. Therefore, touching 
cells are automatically rejected because their area is too big; similarly, small 
agglomerate of pixels, produced by the subtraction operation in the case of moving 
cells which intrudes onto the area formerly occupied by a different cell, or when a cell 
enters the field of view between the two frame on which the subtraction operation is 
performed, are rejected. The variation of cell number in the microscope field during 
the acquisition is not critical for the analysis, because we calculate the average area of 
the labeled cells present in each difference images. Twenty sequences are measured 
and the calculated areas averaged. 

Figure 3 shows the plot of the average cells area versus the delay progression. By 
interpolating the data of this plot, we obtain two intersecting straight lines. The first 
line shows that the average area value increases with the increasing of the delay 
because the overlapping of two successive images of the same cell decreases. The 
second lines shows that the average area value becomes steady because there is no 
more overlapping between the two successive images of the same cell. The 
intersection of these two lines identifies the time delay which has to be used for the 
determination of the exact swimming speed of the microorganisms.  In our case about  
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Fig. 2a. Procedure for translational speed determination (first five frames) 

150 msec is the time Dunaliella cells need to cover a distance equal to its long axis. A 
quantitative determination of the long axis of Dunaliella, by means of our labelization 
procedure, gives an average value of about15 μ. Previous studies reported a velocity 
of 100 μ/sec for Dunaliella cells, [12], therefore we can state that our system gives a 
correct evaluation of the swimming speed of this microorganism.  

To investigate the rotational speed we store in the computer memory the frames 
acquired under lateral illumination as described in the Material and Methods section. 
The eyespot of Chlorophyta such as Dunaliella is a quarter-wavelength multi layered 
organization of osmophilic granules, which reflects very efficiently the light that 
strikes upon it. As the cell moves, we can detect this brilliant spot and verify if the 
cell rotates or not. For the wild type of Dunaliella frames were acquired every 40 ms, 
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were thresholded and labelized so the eyespot is recognized as present in the image, 
(Figure 4). 

The resulting duty cycle from a 600 ms recording shows that these cells rotate with 
a frequency of 8 Hz. (Figure 5). 

The time resolution of our system, which is 40 msec, can be considered sufficient 
to determine speed parameters of moving microorganism, as the study of 
physiological aspects of motility is usually based on the microscope observation of 
these phenomena. Due to its integration time, the human visual system has a time 
resolution of 250 msec, which is 6-time greater than that of our system [13]. Because 
the problem to be solved is the quantitative determination of visual phenomena, our 
system can be considered quite adequate for this purpose.   

 

Fig. 2b. Procedure for translational speed determination (last five frames) 
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Fig. 3. The plot of the average area value of the cells vs. the delay between frames 

 

Fig. 4. Procedure for rotational speed determination 

 

Fig. 5. The plot of the event of the eyespot detection vs. the elapsed time 600 
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Abstract. In this paper, we present a general approach to shape charac-
terization and deformation analysis of 2D/3D deformable visual objects.
In particular, we define a reference dynamic model, encoding morpho-
logical and functional properties of an objects class, capable to analyze
different scenarios in heart left ventricle analysis.

The proposed approach is suitable for generalization to the analysis
of periodically deforming anatomical structures, where it could provide
useful support in medical diagnosis. Preliminary results in heart left ven-
tricle analysis are discussed.

1 Introduction

Deformable structures arise frequently in human anatomy and, in many cases,
their deformation modes are of key importance in understanding the functional
properties of the related organs and assessing their health-state. The main ex-
ample is given by cardiac dynamic analysis, since many heart pathologies are
correlated to the deformation pattern of the organ. In cardiac analysis, well-
established imaging techniques are of great support in medical diagnosis, since
they allow to acquire video sequences of the heart, from which its dynamical
behavior can be inferred. However, the interpretation of the acquired data (tem-
poral sequences of 2D/3D images, possibly from different imaging modalities)
is difficult or, at least, time consuming; in daily practice, sometimes, physicians
extract the most salient frames from the video sequence (end diastole and sys-
tole) and perform direct comparison among images in the selected subset. It is
likely that, considering the full video sequence, more precise and rich information
about the state of the heart can be discovered.

Motivated by these problems and extending the works [1,2], we believe that
it is fruitful to define, in some generality, the concept of periodically deforming
visual objects (see section 2 for a precise definition) and to propose a method-
ological approach to their study.

Besides providing modules for structures reconstruction and characterization,
that have their own importance in biomedical applications as automatic tools to
speed up diagnosis, the main idea is to define a reference dynamic model of an
objects class: this model can be understood as an encoding of morphological and
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functional properties of a periodically deforming object during its full deforma-
tion cycle. In particular, shape changes and evolution of local object properties
are depicted in a coincise form in the reference dynamic model, thus allowing
for deformation analysis and deformation pattern classification.

The paper is organized as follows. In section 2 we define the class of objects we
are interested in, making explicit the necessary assumptions. Then in section 3,
the proposed approach is outlined and its basic modules leading to the reference
dynamic model are described in detail. More precisely three modules are consid-
ered: object reconstruction (sec. 3.1), in which every object is reconstructed in
Euclidean space as a collection of manifolds, object characterization (sec. 3.2),
in which local shape descriptors and functional features are coded into property
functions and, finally, deformation pattern assessment (sec. 3.3) where the ref-
erence dynamic model is actually built. Preliminary results in heart dynamic
analysis are then presented in section 4, whereas conclusions and directions for
further work are briefly discussed in section 5.

2 Periodically Deforming Visual Object

A visual object O embedded in the background space Ω ⊂ IRd (d = 2, 3) is a
collection

O = {(V α, Pα)}α=1,2,...,k

where each V α is a smooth manifold (possibly with boundary) embedded in Ω

and Pα : V α → IRd(α) is a smooth properties function assuming its values in a
suitable properties space.

The smoothness assumption is a quite common hypothesis in computational
anatomy (see e.g. [3]) and it is satisfied in practice to a large extent; it implies for
example that differential geometric properties (like normals, curvatures,...) can
be computed everywhere. We use, moreover, collection of manifolds -instead of
a single one- to be able to describe object subparts (possibly of different dimen-
sionality) by attaching them specific salient attributes via a dedicated properties
function. For example, in heart left ventricle modelling, the object of interest is
the myocardium, that can be modelled as a 3D manifold, whose boundaries are
two surfaces: the epicardium and the endocardium. It is convenient to attach to
the boundary surfaces a different (actually richer) set of attributes than those
used for internal points.

A deforming visual object O = (Ot)t=1,2,... is a temporal sequence of visual
objects satisfying some smoothness constraint. Each Ot = {(V α, Pα)}1≤α≤k

should be regarded as the snapshot of the deforming object at time t.
We require that each manifold V α

t appearing in the snapshot at time t can
be smoothly deformed into V α

t+1 in the subsequent snapshot. Tears or crack of
any object subpart are, therefore, ruled out; moreover, in such a way, we avoid
dealing with changes in topology, that would require to model shape transitions,
a task far beyond our present scopes.

Finally, a periodically deforming visual object is a deforming object for which
there exists an integer T such that ∀t : Ot = Ot+T . In other words, the deforming
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object depicts a periodic motion; thus, a periodically deforming object is char-
acterized by a finite list of snapshots (O1, O2, . . . , OT ), which will be referred to
as its deformation cycle.

We make a final assumption about the data available to describe a periodically
deforming visual object. It is assumed that a sufficiently rich set of synchronous
signals and images, possibly from different modalities, has been acquired so as
to represent faithfully a physical body or phenomenon of interest. In particular,
the data set should include at least one 2D/3D image sequence (It)1≤t≤T , from
which morphology and regional properties of the object can be inferred.

3 Methodology Definition

With the previous assumptions, a reference dynamic model of an object of inter-
est is constructed by coding the dynamics of the object in a rich representation
of its shape and functional properties.

The approach consists in three modules, each one performing specific tasks.
Essentially, the first two modules are dedicated to extract a suitable periodically
deforming visual object from image data. Then the periodically deforming visual
object is analyzed and used to construct the reference dynamic model. A more
precise outline of the modules used to obtain the aforementioned model is as
follows:

Object reconstruction: For each phase t, the collection of manifolds {V α
t } is

identified and reconstructed in 2D/3D space by applying neural algorithms
to the image sequence (It)1≤t≤T ;

Object characterization: Morphological features and dynamic descriptors are
extracted and coded in a property function Pα

t that for each point x of the
manifold V α

t returns the property vector (Pα
1 (x), . . . , Pα

m(x)), where each Pα
i

represents one of the selected features;
Deformation pattern assessment: Suitable and significant shape descriptors

are extracted and spatial distribution of the property functions are evaluated
in order to obtain a description of the object dynamics.

In the following sections, these steps are described in more details.

3.1 Object Reconstruction

The 3D reconstruction of the visual object O is achieved via voxelwise classifi-
cation, that is by labeling each voxel in the image domain with semantic classes
which describe voxel membership to the collection of manifolds {V α

t }.
The classification is performed applying an advanced neural architecture to a

set of extracted features. The involved features can be divided into two classes.
First, low-level features are considered: they are context-independent and do not
require any knowledge and/or pre-processing. Some examples are voxel position,
gray level value, gradients and other differentials, texture, and so forth. Middle-
level features are also selected, since voxel classification can benefit from more



A General Approach to Shape Characterization for Biomedical Problems 139

accurate clues, specific of the problem at hand. In particular, if an intrinsic
reference system can be individuated to describe the object shape, it can be used
to define a relative voxel position. If, in addition, a priori information about the
object shape is available, a reliable clue for detecting edges in the images is given
by the gradient along the normal direction to the expected edge orientation.

Moreover, a multiscale approach is adopted: the features are computed on
blurred images, supplying information about the behavior of the voxel neighbor-
hood, which results in a more robust classification.

The set of selected features are processed to accomplish the voxel classifica-
tion by means of a Multilevel Artificial Neural Network (MANN), which assures
various computational advantages [4]. For each voxel x, its computed features
vector is splitted into vectors Fk(x), each one containing features of the same
typology and/or correlated. Then each Fk(x) is processed by a dedicated clas-
sifier based on an unsupervised Self Organizing Maps (SOM) architecture. The
set of parallel SOM modules constitutes the first level of the MANN which aims
at clustering each portion of the feature vector into crisp classes, thus reducing
the computational complexity. The output of this first level is then passed to
a second and final level, consisting in a single Error Back-Propagation (EBP)
module, which supplies voxel classification.

Its output describes voxel membership to the various manifolds V α
t in the

collection {V α
t }1≤α≤k.

3.2 Object Characterization

The reconstructed object is further characterized by assigning a significant prop-
erties function Pα

t : V α
t → IRd(α) to each manifold V α

t .
Three types of properties are considered:

– intensity based properties;
– local shape descriptors;
– local dynamic behavior descriptors.

Examples of properties of the first type are gray level value, gradients, tex-
tures and so on. They are extracted form the image sequence It –the one which
leads us to object reconstruction. If data collected from other imaging modali-
ties are available, after performing registration, we can fuse this information to
further annotate the object (for example, in the case of the heart, information
regarding perfusion and metabolism, obtained e.g. by means of PET imaging,
can be referred to the reconstructed myocardium). Geometric based properties,
belonging to the second type, are extracted directly from the collection of man-
ifolds {V α

t }, and are essential to describe locally the shape of the object. Again,
we may distinguish between context independent features (automatically com-
putable for every manifold of a given dimensionality, such as Gaussian and mean
curvature for surfaces) and problem-specific properties.

Finally, the local dynamic behavior may be described by properties borrowed
from continuous mechanics (such as velocity field and strain tensor); they, how-
ever, require, at least, local motion estimation, that we haven’t pursued yet.
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3.3 Deformation Pattern Assessment

The periodically deforming visual object obtained in the previous steps can be
used to assess the dynamic behavior of the object and identify its deformation
pattern. However, the voxelwise characterization of the reconstructed objects is
not suited for state assessment. Indeed, the given description of the whole objects
(collection of manifolds described by functions) has a dimensionality far too high
to make the problem computationally feasible. Moreover, it would be essential to
be able to compare anatomical structures belonging to different patients and, at
the moment, the idea is to use a deformable model (given for example by mass-
spring models [5] ) and to normalize every instance of anatomical structure to
that model: in this way anatomical structures (belonging to the same family)
are uniformly described and can be then compared.

Combining these two issues, we should look for a new set of ‘more intrinsic’
features Ft that should be enough simple and, at the same time, capturing
essential information about the objects.

To obtain these new kinds of features, global information about the objects
can be extracted from the properties function, without introducing any model.
For example, one may consider the ‘property spectrum’, by which we mean
the probability density functions (PDF) of a given component of the property
function Pα

t (·). This consists in a function capturing how the property is globally
distributed; thus, comparison of different property spectra is directly feasible; to
reduce dimensionality, moreover, it is effective to compute the momenta of the
PDF (mean, variance,. . . ).

However, properties spectrum does not convey any information at all about
regional distribution of the property. In practical situation, this is a drawback
which cannot be ignored: for example, a small ‘highly abnormal’ region may not
affect appreciably the PDF, but its clinical relevance is, usually, not negligible.
Hence, spatial distribution of properties has to be analyzed; in some cases, ap-
proaches which do not need a refined model of the object (e.g., Gaussian image,
spherical harmonics or Gabor spherical wavelets) may be suitable. However, in
general one should define a model of the objects (whose primitives -elementary
bricks- are regions, patches or landmarks) and then propagate it to the set of
instances to be analyzed by using matching techniques. Then, we may consider
the average of a property on regions or patches (or the value in a landmark) as
a good feature, since comparisons between averages on homologous regions can
be immediately performed.

Following this recipe, a vector of features Ft with the desired properties is
obtained for each phase of the cycle. The deforming object is then described by
the dynamics of the temporal sequence of feature vectors obtained at different
phases of the deformation cycle.

A further fruitful feature transformation may be performed exploiting our
assumptions on deformable visual objects. Indeed, the smoothness of deforma-
tions implies that a visual object has mainly low frequency excited deformation
modes. We extend this slightly assuming that this holds true also for the features
lists (Ft)1≤t≤T . We assume that the fundamental frequency of the motion is also



A General Approach to Shape Characterization for Biomedical Problems 141

the main component of each feature tracked on time. With these assumptions,
an obvious choice is given by the Fourier transform, followed by a low pass filter,
which supplies a new features vector Θ.

The evaluation of the above mentioned parameters Ft, at each phase t, implic-
itly codifies information regarding object dynamics. Actually, we avoid defining
a complex model of the object kinematics and exploit its periodic characteristic
by constructing a rich representation of each phase of the deformation cycle.

4 Results

An elective case study for the presented methodology is cardiac analysis, whose
clinical relevance can be hardly overestimated. We restrict our analysis to the
left ventricle (LV) that, pumping oxygenated blood around the body, is the part
of the heart for which contraction abnormalities are more clinically significant.

The proposed methodology is, of course, not universal, in the sense that there
are some intrinsic limitations that prevent it to be potentially applied in any sce-
nario. Indeed, our analysis is limited to a single deformation cycle and so only
pathologies that affect every deformation cycle can be considered. Moreover, we
require that physiological and (selected) pathological states induce different fea-
ture dynamics. This requirement is not too restrictive; actually, it is well known
that many pathologies are correlated to abnormal shape patterns at end systole.

The LV structure is modelled as a 3D manifold (the myocardium) with bound-
ary. The boundary has two connected components which are the surfaces corre-
sponding to epicardium and endocardium.

We describe henceforth how the steps of the methodology are applied. First,
the deformable visual object structure is extracted from the available data, con-
sisting in a sequence of short axis gradient echo MR images, acquired with the
FIESTA, GENESIS SIGNA MRI device (GE medical system), 1.5 Tesla, TR
= 4.9 ms, TE = 2.1 ms, flip angle 45◦ and resolution (1.48 × 1.48 × 8) mm. Sets
of n = 30 3D scans, consisting of k = 11 2D slices, were acquired at the rate
of 30 ms for cardiac cycles [diastole-systole-diastole]. Various clinical cases were
considered, for a total of 360 scans, corresponding to 12 cardiac cycles.

To perform reconstruction, we first used a pre-processing step devoted to the
automatic localization of the left ventricle cavity (LVC) [6].

The located LVC is then exploited to define an Intrinsic Reference System
(IRS), given by a hybrid spherical/cylindrical coordinates system. This choice is
dictated by the fact that LV approximately resembles a bullet-shaped structure;
moreover, in the IRS, image partial derivatives w.r.t. radial coordinate are an
efficient clue for heart surfaces detection.

The IRS is used to extract the following features for voxel classification:

– Position w.r.t. IRS
– Intensity and Mean intensity (computed applying Gaussian filters)
– Gradient norm ||∇It||
– Partial derivative in the radial direction ∂It

∂r .
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Using the 2-level ANN, voxels are classified on the basis of their features vector
as belonging or not to epi- and endocardial surfaces. More in detail, the set of
extracted features is divided into two vectors F1, F2 containing respectively
position, intensity and mean intensity, and position, gradient norm and partial
derivative ∂It

∂r . The position w.r.t. IRS is replicated in both vectors because it
reveals salient for clustering both features subsets. Then, the first level of the
MANN consists of two SOM modules, which have been defined as 2D lattice of
neurons and dimensioned experimentally, controlling the asymptotic behaviour
of the number of excited neurons versus the non-excited ones, when increasing
the number of total neurons [7].

A 8 × 8 lattice SOM was then trained, according to Kohonen’s training
algorithm[8], for clustering the features vector F1, while F2 was processed by a
10 × 10 lattice SOM.

A single EBP module has been trained to combine the results of the first
level and supply the final response of the MANN. The output layer of this final
module consists in two nodes, which are used separately for reconstructing the
epicardium and the endocardium. Since each cardiac surface divides the space
into two connected regions (one of which is bounded), each output node can be
trained using the signed distance function with respect to the relative cardiac
surface. In this way, points inside the surface are given negative values, whereas
positive values are given to points in the outside. Henceforth the surface of
interest correspond to the zero-level set of the output function.

Different architectures have been tested, finding the best performance for a
network with only one hidden layer of 15 units, trained according to the Resilient
Back-Propagation algorithm [9].

The voxel classification, supplied by the MANN, may be directly used for
visualization purposes by using an isosurface extraction method, as shown in
figure 1.

Characterization of the reconstructed structure is obtained annotating ev-
ery voxel with intensity, Gaussian and mean curvature, wall thickness and IRS
properties. In particular, Gaussian and mean curvature have been included as
shape descriptors whereas wall thickness, which is a classical cardiac parameter,
is one example of problem-specific property: it is defined as the thickness of the
myocardium along a coordinate ray and it is expected to increase during con-
traction (since myocardium, being almost water, is, with good approximation,
incompressible).

This characterization is translated in a more amenable form by computing prop-
erties spectrum and regional features. In computing spectrum, coordinates w.r.t.
IRS have been disregarded, with the exception of radial coordinate; intensity has
also been excluded. For any property only mean and variance have been consid-
ered. For computing regional features, so far, we used a popular model of the LV
(see [10] for a review of 3D-cardiac modelling). In 2D, as shown in Figure 3, it is
defined by the intersections of cardiac surfaces with a pencil of equally spaced
rays. The 3D version is obtained by stacking the 2D construction along the axis
of the LV.
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Fig. 1. Different views of the rendered left ventricle at end diastole. The surfaces are
obtained applying marching cubes on the two output functions of the network. To
eliminate satellites, a standard island removing procedure is applied.

Fig. 2. Wall thickness at end diastole and systole, shown as an attribute of epicardial
surface. Estimation is performed according to the centerline method and values are
expressed in millimeters.

Fig. 3. The pencil of equally spaced rays used to computed local features

5 Conclusions and Further Work

In this paper, we define a reference dynamic model, encoding morphological and
functional properties of an objects class, capable to analyze different scenarios in
heart left ventricle analysis. In particular, a framework for the shape characteri-
zation and deformation analysis has been introduced for the study of periodically
deforming objects.
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This framework consists of several modules performing a) object reconstruc-
tion, b) object characterization, c) pattern deformation assessment. Solutions
to specific tasks proposed in each module are, to a large extent, independent
and may be combined with other methods, thus broadening the potential ap-
plication field of the framework. In particular, an approach based on multi-level
artificial neural network has been selected as a general purposes strategy for
object reconstruction, motivated by the promising results presented in [4]. A
quantitative evaluation of segmentation performance, based on comparison be-
tween images automatically segmented and images annotated by a committee of
expert observers, however, is still in progress.

The elective case studies are represented by the analysis of heart deformable
anatomical structures. Actually, for demonstrating the effectiveness of the pro-
posed framework, we have shown the preliminary results in the study of the heart
left ventricle dynamics. The next step will be to employ the obtained results for
defining a general method to classify the state of the deformable object, and, in
particular, the physio-pathological states of the left ventricle.
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Abstract. In automated DNA sequencing, the final algorithmic phase,
referred to as basecalling, consists of the translation of four time signals
in the form of peak sequences (electropherogram) to the corresponding
sequence of bases. Commercial basecallers detect the peaks based on
heuristics, and are very efficient when the peaks are distinct and reg-
ular in spread, amplitude and spacing. Unfortunately, in the practice
the signals are subject to several degradations, among which peak su-
perposition and peak merging are the most frequent. In these cases the
experiment must be repeated and human intervention is required. Re-
cently, there have been attempts to provide methodological foundations
to the problem and to use statistical models for solving it. In this pa-
per, we exploit a priori information and Bayesian estimation to remove
degradations and recover the signals in an impulsive form which makes
basecalling straightforward.

1 Introduction

In automated sequencing, a reaction of extension from the initial primer of a
given DNA strand generates a complete set of fragments in which the last base
is marked with a fluorescent dye out of four different types, one for each type
of base. Fragments are then sorted by length by means of electrophoresis and
detected, as they pass under a laser, by four optical sensors, capturing the emis-
sion in the distinct wavelength ranges where the four dyes emit. The result is an
electropherogram, that is four time series in the form of peak sequences, each
representing the variation with time of the concentration of DNA fragments end-
ing with the same base. Each peak in the four signals represents a base, its size
is related to the number of DNA fragments of a given length, while its time
location is related to the specific length and reflects the position of the base in
the DNA strand under consideration. Basecalling is the final algorithmic phase
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of automated sequencing, and consists in obtaining the DNA base sequence from
the electropherogram by the ordered reading of the peaks.

The most popular commercial basecallers are the software developed by ABI
[1], running on the ABI Prism sequencers, and Phred [5] [6], which has been used
in the Genome Project. Both are based on peak detection algorithms refined
with heuristics, and are very efficient when the peaks are well distinct and quite
regular in spread, amplitude and spacing.

Unfortunately, in the practice data production is subject to several processes
that lead to degradations of the electropherograms, particularly near the end of
the sequence. Among those, the most important and frequent are peak superpo-
sition, known as cross-talk, due to the spectral overlapping between fluorescent
dyes, and peak merging, known as diffusion, due to mobility shifts and deviations
of the fragments in the gel. Signal leakage may also occur, resulting in secondary
peaks. These degradations may seriously affect the performance of basecalling
algorithms, and, in the current practice, they entail repeating the experiment,
comparing the base sequence with that of the complementary strand [7], and
manual editing.

The availability of economic DNA sequencers and reliable and fast basecalling
algorithms, which allow to reduce as much as possible the intervention of human
operators, is still an open issue and is especially important in order to cope
with large scale sequencing of whole genomes, sequencing of the genomes of as
many as possible species, comparative genomics and evolutionary studies, and
the increasing diffusion of sequencing of individual DNA segments in the clinical
practice. Furthermore, accuracy up to a single base would be essential for reliable
locations of SNPs, and for the efficiency of gene prediction software, e.g. to avoid
premature termination due to false stop codons.

In the literature, there have been several attempts to provide methodological
foundations to basecalling, and to use statistical models which allow the incor-
poration of prior knowledge about the structure of the problem and the data
directly into the basecalling algorithm, without resorting to heuristics [3], [8],
[10], [11], [12]. In particular, in [8] hidden Markov models and Markov chain
Monte Carlo methods are used.

In this paper, the problem of removing cross-talk and diffusion in electrophero-
grams is formulated as one of joint blind source separation and blind deconvo-
lution. In particular, Bayesian estimation and a priori information are exploited
to recover the signals in an impulsive form which makes the task of basecalling
straightforward.

2 Problem Formulation and Bayesian Estimation

In ideal conditions (i.e. same velocity for all fragments of a given length, fluo-
rescence emission in four separated wavelength ranges) the ideal electrophoretic
signal sj , j = 1, 2, 3, 4, would be an impulse train, where the impulse locations
identify the mutual positions of the bases of type j out of four types (namely,
A, T, C and G) along the DNA strand under consideration, and the impulse
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magnitudes vary in time according to the changing color concentration, i.e the
changing number of fragments of a given length. It is immediate to see that in
such a case the task of basecalling would be straightforward. Conversely, the
fragment mobility is a random process, subject to variations due to the nature
of the experiment, and the j − th measured signal xj , j = 1, 2, 3, 4, represents
the intensity of fluorescence emitted in one of four wavelength ranges, where the
emission spectra overlap. The electropherograms can thus be considered as the
result of the application to the ideal signals of two operators in cascade: a convo-
lution with a kernel related to the mobility distribution (diffusion), followed by a
mixture of the four signals, modelling the superposition of the fluorescence emis-
sion spectra in four wavelength ranges (cross-talk). The data model we consider
is thus:

xi(t) =
4∑

j=1

Aij (hj ∗ sj) (t) + bi(t) ∀t, i = 1, 2, 3, 4 (1)

where bi is a noise term incorporating the left error sources, A is the 4 × 4 un-
known cross-talk matrix, and hj is the unknown impulse response which models
the diffusion effect. This is related to the peak shape, depending on the casual-
ity of fragment mobility. In general, hj can be considered a Gaussian function,
with unknown and time-varying variance. Indeed, longer fragments are more
prone to mobility variations, so that it is expected that the variance of the im-
pulse response slowly increases with time. Asymmetric, heavy-tailed peaks, due
to deviations in the gel of long fragments, could be modelled as a mixture of
Gaussians.

In the current practice, noise removal, cross-talk correction (also referred to
as color separation) and deconvolution are performed off-line and separately, as
steps of pre-processing of the electropherogram, prior applying basecaller soft-
ware. As per the noise, this is assumed as constituted of two terms. A white,
Gaussian term is suitable for modelling error sources such as fluorescent impurity
in the gel, electronics and light scattering, and, since the actual DNA fluores-
cence is a very slowly varying signal, low pass filtering is usually employed to
filter this noise out. Another noise term is the baseline, i.e. an error term due to a
constant value of background fluorescence, which is modelled as a slowly increas-
ing function of time. The correction of the baseline error is usually performed
by removing a roughly constant waveform from the recorded signals.

To eliminate the cross-talk between the four channels of the electropherogram,
usually a linear operator is applied. As already said, cross-talk is due to the
overlapping of the outputs of the optical filters that separate the fluorescence
from each of the four tags. This overlapping is linear and can be modelled through
a mixing matrix. When this matrix is known, the cross-talk can be eliminated
by applying its inverse to the data. The mixing matrix, however, is not known,
and must be determined. To this purpose, techniques mostly based on analysis
of the second order statistics of the signal have been proposed.

Given the data model of eq. 1, our aim is instead to jointly perform estima-
tion of mixing and diffusion, and color separation and deconvolution, using a
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priori knowledge that one might have about the problem. Thus, recovering the
ideal signals, i.e. removing the cross-talk and peak spreading effects, is seen as a
problem of joint blind source separation and blind deconvolution. In a Bayesian
framework, we propose a Maximum A Posteriori (MAP) estimate for the un-
knowns of the problem:

(ŝ, Â, ĥ) = arg max
s,A,h

P (s, A,h|x) = arg max
s,A,h

P (x|s, A,h)P (s)P (A)P (h) (2)

where P (x|s, A,h) is the noise distribution, and P (s), P (A), and P (h) are the
prior distributions for the three independent sets of variables. At present, we
consider the noise term to be in its whole a white, Gaussian and stationary
process. Although in our approach the baseline is considered incorporated in a
generic Gaussian noise term, from experiments conducted on synthetic data we
have seen that the proposed method is robust enough against non-stationary
noise, whose variance is slowly increasing with time.

The prior adopted for the signals has been chosen on the basis of the mini-
mum number of constraints one may reasonably enforce on the expected, ideal
output of the electrophoresis process. In blind source separation, when as in our
case both the mixing and the sources are unknown, a typical constraint which
is enforced to sort out a solution from the infinite ones which fit the data, is
statistical independence of the sources. This approach has given rise to a num-
ber of very efficient methods and algorithms known as independent component
analysis (ICA) [2] [4] [9]. In our case, however, ICA is not suitable, since we
know that the four electrophoretic signals should not be superimposed to each
other. This means that the sources are actually dependent, but, at the same
time, this information provides us with a very powerful constraint for efficiently
bounding the problem. Thus, in our method, to obtain separation, at each time
t only one signal out of the four is allowed to be non-zero. For deconvolution, we
enforce positivity and minimum energy of the signals. Indeed, these constraints
used together are able to produce super-resolution, and then are very effective
for the deconvolution of impulsive signals. With respect to the estimation of the
mixing and diffusion operators, we considered generic constraints for both A and
h. In particular, the adopted prior for A constrains its elements to be positive,
while h is modelled as a Gaussian function and bounds on its variance are used.

The joint MAP estimation of eq. 2 is usually approached by means of alter-
nating componentwise maximization with respect to the three sets of variables
in turn:

ĥ = arg max
h

P (x|s, A,h)P (h) (3)

Â = arg max
A

P (x|s, A,h)P (A) (4)

ŝ = arg max
s

P (x|s, A,h)P (s). (5)

where the priors P (h), P (A) and P (s) are chosen in such a way to probabilis-
tically enforce the over-mentioned constraints. We solve the above scheme via
a Simulated Annealing algorithm in A and h, alternated with deterministic up-
dates for s, based on gradient ascent.
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3 Experimental Results

To quantitatively measure the performance of the proposed method, we car-
ried out a number of experiments on synthetically generated DNA electrophero-
grams. Two of such experiments are illustrated in Figures 1-3, for the noiseless
and noisy cases, respectively. The data were generated by convolving four non
superimposed impulse trains with Gaussian impulse responses, and then linearly
mixing the four resulting signals. For each impulse train, the number of impulses,
their locations and amplitudes, were chosen randomly, and the standard devia-
tion of the corresponding impulse response was kept fixed along the sequence, in
the assumption that diffusion can be considered stationary for short sequences.

Fig. 1. Top: noiseless synthetic DNA sequencing data; Middle: color corrected data;
Bottom: output from joint separation and deconvolution

Figure 1 shows the results of the method in the noiseless case. In particular,
the top panel shows the very bad quality electropherogram considered as data,
the middle panel shows the intermediate result of blind color separation, and the
bottom panel shows the final signals reconstructed after both color separation
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Fig. 2. Left: data scatterplot; Right: reconstruction scatterplot

and blind deconvolution. Note, however, that the algorithm directly produces
the final reconstruction starting from the data alone, and the intermediate color
separation result has been obtained by multiplying the data with the inverse
of the estimated mixing matrix. In this case, the final reconstruction exactly
reproduces the positions of the original impulse trains considered, apart from
scale factors in the amplitudes. The symbols marking the different impulses
indicate the four kinds of DNA bases (A, T, C, G). The original mixing matrix
adopted for generating the data was:

Atrue =

⎡

⎢⎢⎣

1.0000 0.4976 0.1277 0.2129
0.9536 1.0000 0.3723 0.2415
0.6725 0.7184 1.0000 0.3345
0.2725 0.2136 0.3266 1.0000

⎤

⎥⎥⎦

while the estimated one was:

Aest =

⎡

⎢⎢⎣

1.0000 0.4675 0.1348 0.2185
0.9525 1.0000 0.3697 0.2422
0.6862 0.6683 1.0000 0.3453
0.2717 0.2693 0.3014 1.0000

⎤

⎥⎥⎦

For comparison purposes, the two matrices has been rescaled by dividing each
column for its highest value. The mean square error between Atrue and Aest was
0.0217. The standard deviations of the four Gaussian impulse responses were
estimated up to an accuracy of 0.001. Figure 2 shows the scatterplots of the data
(left panel) and of the reconstructed signals (right panel). While a high degree
of correlation is present between each couple of data signals, the reconstructions
are perfectly uncorrelated.

In another experiment, shown in Figure 3, we added same noise to the con-
volved and mixed signals. This was a white, Gaussian process, with standard
deviation slowly increasing with time, to simulate the baseline error. Also in



152 A. Tonazzini and L. Bedini

Fig. 3. Top: noisy synthetic DNA sequencing data; Middle: color corrected data; Bot-
tom: output from joint separation and deconvolution

this case the reconstructions of the signals, the mixing matrix and the im-
pulse response standard deviations were more than satisfactory, showing that
the method is robust enough even against non-stationary noise.

Other experiments were conducted on real data, for which results from auto-
matic sequencing machines were available. In particular, we performed tests on
several segments of the genome of a Gymnochlora sp. alga. With our method, we
obtained some improvements with respect to the performance of the commercial
basecallers, even for high quality electropherograms. Figure 4 shows the result
obtained on a segment for which the reliability of the calls of the commercial base-
caller was very low. For this segment, the highly reliable sequencing of the comple-
mentary strand was available. We could thus perform a biological validation of the
results, based on an estimate of the true sequence, obtained for complementarity
from the dual strand. In particular, we observed that the sequence provided by
the commercial sequencer contained seven errors (mainly missing bases, i.e. dele-
tions), while ours only three errors. Finally, Figure 5 shows a short sequence of
satisfactory quality where, however, the software running on the commercial au-
tomated sequencing machine produced an error in the interval 100-150 where the
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Fig. 4. Top: real DNA sequencing data; Bottom: output from joint separation and
deconvolution

Fig. 5. Top: real DNA sequencing data; Bottom: output from joint separation and
deconvolution
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sequence ”ATA” was recognized. In fact, according to the other strand, considered
reliable by the biologists, the middle ”T” should instead be an ”A”. As shown in
the bottom panel of Figure 5, in the same position our algorithm correctly recog-
nized an ”A”.

4 Conclusions

We have proposed a method based on statistical models for the processing of
electrophoretic time series produced in automated DNA sequencing, with the aim
at removing typical degradations and improving basecalling. The degradations
we considered are the most frequent ones, that is peak superposition (cross-talk)
and peak merging (diffusion). We formulate the problem in a Bayesian estimation
framework as one of joint blind source separation and blind deconvolution. In
particular, the a priori information we exploited allows to obtain the restored
electropherograms in an impulsive form which makes basecalling straightforward.
Preliminary results on synthetically generated data and real DNA sequences
showed the promising performance of the method, even against very bad or
noisy electropherograms. In addition, the method is suitable for handling any
kind of constraint. Further improvements could thus be obtained, for instance,
by including constraints on the number of allowed bases and bounds on the
spacing between bases. Another possible extension could consists in enforcing
the bases to be complementary with those of the other strand, when, as it often
happens, this is available as well.
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Abstract. 3D-stacks of optical sections through the vertebrate retina with 
fluorescent stained cell nuclei were measured with a laser scanning microscope. 
The evaluation of the data volumes with dedicated digital imaging algorithms 
gives access to complex morphometric tissue-characters that are discussed in 
terms of functional morphology. The thickness of nuclear layers and the 3D-
coordinates of cell nuclei are detected automatically to measure cell densities, 
cell ratios and to create character-distribution-maps of the entire retina. 

1   Introduction 

Confocal laser scanning microscopy combined with any fluorescence staining tech-
nique is a powerful and elegant method to get three-dimensional structural data from 
biological tissues. Usually the result of a single xyz-scan-measurement is a stack of 
evenly spaced and perfectly aligned greyscale images (“optical sections”) with a con-
siderable data volume and information content. Frequently these stacks are used to 
generate attractive displays of the stained structures (e.g. brightest point projections, 
colour channel overlays, surface renderings), but rarely for thorough evaluation of the 
stack’s information content by means of three-dimensional morphometric analysis. 
Many complex tissue characters are hardly revealed to an intuitive understanding by 
mere visual contemplation of 3D-data stacks or evade from a precise manual evalu-
ation in an acceptable period of time. Digital imaging algorithms, however, allow the 
extraction of both simple and complex characters from huge data stacks in a time-
saving way even on a standard PC. Still usually they have to be programmed and 
tailored to the specific object and scientific question by the scientist himself. Since 
biologists normally recoil from this challenge, most morphometric studies usually do 
not reach the third dimension to this day. In this study an example is presented for a 
computer-aided investigation and description of three-dimensional patterns of cell 
nuclei in the vertebrate retina. On the one hand retinal tissue is particularly suitable 
for optical-sectioning microscopy due to its transparency and low thickness, on the 
other hand the layered structure and high degree of geometrical order of this brain-
derivative carries valuable information for the functional morphologist. For this study 
the retina of the European anchovy Engraulis encrasicolus (Teleostei, Engraulididae) 
was chosen to make a contribution to the morphometric description of the vertebrate 
retina in general and to approach to a more profound understanding of an uncommon 
retina in special, that is specialized for polarization contrast vision [1,2]. 
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2   Material and Methods 

2.1    Tissue Preparations 

Adult European anchovies (Engraulis encrasicolus) where obtained from local fisher-
man just returning from their nocturnal catches in the Mediterranean (Adriatic sea, 
Rovinj). For the time of death dated back less than 1.5 hours, the retinal tissue of 
cooled animals could be regarded as in-vivo. Eyes where enucleated, the eyeballs per-
forated by razorblade-cuts through the cornea and fixed with 4% formaldehyde in 
0.1M phosphate buffer at pH 7.4 plus 3% sucrose for several hours. The cornea, lens 
and vitreous body were removed in cold buffer, thereafter the entire retina of a right 
eye (diameter 8mm) was cut into 48 pieces whose original positions were docu-
mented. The retinal fragments were rinsed in buffer and embedded in 4% agarose at 
45°C in separate dishes of two 24-well culture plates. From the centre of each 
fragment radial slices (thickness 50 µm) were made with a Leica VT1000S vibratome 
for subsequent radial optical sectioning. The slices were submersed in a 1µM-solution 
of TO-PRO-3 (Invitrogene, λmax(Excitation) = 642nm, λmax(Emission) = 660nm) in 
buffer for 10 to 60 minutes at ambient temperature for fluorescent staining of the cell 
nuclei. After the staining each slice was placed in a drop of anti-fading mounting 
medium (Vectashield®) between a glass slide and a cover glass and sealed with nail 
varnish. To avoid deformation of the slices by squeezing, the cover glass was braced 
by two pieces of cover glass as spacers (thickness 150µm) directly glued to the slide. 
A second preparation was accomplished to obtain 24 retinal fragments directly placed 
between 300µm spacers, pigment epithelium oriented downward for sub-sequent 
tangential optical sectioning. 

2.2    Microscopy 

The tissue preparations were imaged with a confocal laser scanning microscope 
(Leica TSC SP2 on an inverse Leica DM IRBE). For excitation of TO-PRO-3 the 
633nm HeNe-line was used and attenuated to 10% to restrict bleaching. The beam-
splitter was a triple dichroic (488, 568, 633nm) by default, the spectral detection 
window of the photomultiplier was set to 650-740nm. For the radial optical sections a 
Leica UV 25x PL Fluotar NA 0.75 oil objective was used (working distance 180µm, 
nominal resolution xy: 260nm, z: 1108nm), the voxel size was adjusted to 405nm in 
xy-plane by 810nm in z-direction (voxel-geometry: integral multiple of a cube). This 
allows both the display of radial slices through the thickest part of the retina in the 
“visual field” of the photomultiplier (207.4µm x 207.4µm allocated to 512 x 512 
pixels) and a comfortable digital slice spacing without interpolation. Gain and offset 
of the photo-multiplier were optimized to exploit the 8bit-dynamic of the sensor with 
reference to the available signal. For the tangential optical sections a Leica UV 63x 
HCX PL Apo NA 1.32 oil objective was used, voxel size adjusted to 310nm in xy-
Plane (158.7µm x 158.7µm allocated to 512 x 512 pixels) by 936nm in z-direction. 
The xyz-scans started near the cover glass towards the glass slide (against gravity), in 
each plane four optical sections were averaged to improve signal-to-noise ratio. 
Depending on the retina thickness and the tilt angle of nuclear layers in the tissue 
slices the number of optical slices was varied between 27 and 118. The resulting 
stacks of greyscale images had a data volume between 7.1 and 30.4 MB, altogether 
0.9 TB of raw data were generated.  
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2.3    Digital Image Analysis 

For further processing the image data stacks generated by the acquisition software of 
the confocal laser scanning microscope were imported in IDL (interactive data langu-
age, Research Systems Inc.) on a standard PC (2.7GHz, 1MB RAM) and subjected to 
several home-made IDL-algorithms. The line of actions - i.e. pre-processing, semi-
automated detection of cell nuclei, mapping of measurements etc. - is subject of the 
results chapter. 

3   Results 

3.1    Data Import 

3D-measurements at the CLSM usually deliver sequences of tiff-images as export-
files. Every greyscale image can be regarded as a table of measurements sorted by 
columns and rows with entries between zero and 255 (8 bit). To get access to the 
entire data set of a 3D-measurement the respective image sequence was imported (via 
IDL software) into a single array-variable with three dimensions according to the x-, 
y- and z-axis of the measured tissue volume. The x- and y-index of the array mirrors 
the pixel-position in the original 2D-image, the z-index stands for the image number 
or its z-Position of the volume respectively. This allows to directly interrogate the 
measured value of the fluorescence signal of any point in the volume (voxel) specified 
by three index values. To get the correct proportions, every xy-plane was doubled 
(radial mechanical slices; z-spacing of optical sections 2x the pixel size) or trebled 
(tangentially oriented retina fragments; z-spacing 3x the pixel size). The last step can 
be omitted to save memory and to speed up calculations - for a correct display in 
perspectives (at any angle of view deviating from the z-axis) and for spatial measure-
ments, however, the elongate voxel-shape has to be taken into consideration. 

3.2    Display of Raw Data 

In almost every case displays of the raw data show the nuclear layers of the retina 
oriented obliquely in the kartesian coordinate-system (Fig. 1). It is true that the vibra-
tome sections were cut as close to the radial plane as possible under visual control, 
but a precisely radial orientation is not obtainable in practice, not least because of the 
hollow-sphere shape of the whole retina. Likewise in tangential view (whole mounts) 
the retina fragments always showed orientations tilted against the xy-plane. Never-
theless, as a simplification, a small retina fragment with 200 µm edges cut out of an 
eye with 8 mm diameter is regarded as not-curved in this study. 

3.3    Cell Layer Alignement 

To simplify the following measuring methods and to get the common depiction of the 
retina with horizontally aligned histological layers, the fluorescent stained nuclear 
horizons of the scanned retinal volumes are to be oriented as parallel to the xz-planes 
(radial sections) or the xy-planes (whole mounts) of the data volume as possible. This  
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Fig. 1. Cubic display of a 3D-stack of optical slices through a small fragment of the anchovy-
retina (radial vibratome slice) with coordinate system (X, Y, Z). The XY-view (207µm x 
207µm) is a brightest-point-projection of the entire stack. The XZ- an YZ-views are single 
planes. Note nuclear layers lying obliquely in the data volume. 

 

 

Fig. 2. Automated detection of rotation angle for the horizontal alignement of the nuclear 
layers. A) The XY-view of the data volume is convolved with a horizontal bar in vertical 
direction and then incrementally rotated. B) The resulting profiles build up a 2.5D-landscape 
with a peak (arrowhead) that indicates the wanted rotation angle. Inlay: contour plot of the 
“mountain” with “summit”-position. 

happened in two orthogonal directions either interactively (with auxiliary lines paral-
lel to the x-, y- or z-axis) or automatically. An appropriate digital imaging algorithm 
is demonstrated on a radial 3D-scan exemplarily (Fig. 2, 3): a brightest point pro-
jection (BPP) of the data volume in the xy-plane (i.e. z-axis shortened to zero) serves 
to determine the inclination angle of the nuclear layers to the x-axis. To do this, the 
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BPP is rotated around the z-axis in 1° increments and convolved with a bright 
horizontal bar shifted vertically over the image in every angle-position. The result of 
this double-loop operation is a 2D-data set with a maximum indicating the rotation-
angle that leads to horizontal alignement of the nuclear layers (Fig. 2). After rotation 
of the raw data stack around the z-axis by the determined angle (extension of the data 
volume on all sides helps to avoid clipping artefacts but increases memory demand 
and calculation time) the procedure is repeated with the yz-BPP and subsequent ro-
tation around the x-axis. As a rule a second iteration of these two steps leads to a very 
good alignement of the nuclear layers for radial scans parallel to the xz-planes of the 
kartesian coordinate system (Fig. 3). 

3.4    Simple Measurements 

Based on BPPs of the aligned data volume the thickness of retinal layers, e.g. outer 
nuclear layer (ONL), inner nuclear layer (INL), inner plexiform layer (IPL) and gan-
glion cell layer (GCL), can be determined easily manually or automatically (Fig. 3). For 
the semi-automated morphometric analysis of the nuclear layers the definition of 
“regions of interest” (ROIs) containing unclipped fluorescence signals is required. The 
ROIs are defined on BPPs of the three orthogonal main-planes (XY, YZ, XZ), this way 
enclosing a “volume of interest” (VOI) completely filled with 3D-images of cell nuclei. 

3.5    Detecting Nuclear Positions 

To get the number and reliable centre-of-gravity positions of the cell nuclei quickly, 
every manually defined VOI was convolved with an idealized image (kernel) of the 
wanted structure (cell nucleus). The cell nuclei of the anchovy retina have diameters 
of 5-6µm depending on the cell type, resulting in circular profiles of 12 to 15 pixels 
maximally using the image acquisition settings indicated above for radial optical 
sections. Due to the almost spherical shape of cell nuclei in the retina the convolution 
can be executed with 2D-kernels plane by plane instead of 3D-kernels (spheres) in 
space. To do this, a kernel-array (2D-variable equivalent to the image of a white circle 
with the approx. nuclear diameter on a black background) is centred over each XY-
pixel of the data volume subsequently. The overlapping pixel-values of the kernel and 
the image are multiplied and the result is stored at the corresponding centre-position 
in a new 3D-variable. The result of this convolution procedure is a data set containing 
“blurred light-clouds” with local maxima at the centre-positions of the wanted nuclei 
(Fig. 4). Starting with the brightest maximum of the entire volume, the 3D-coordi-
nates of the corresponding nucleus was written into a table. Then the nucleus around 
the local maximum was deleted in the VOI by multiplication with a black sphere of 
the approx. nuclear diameter and the convolution was repeated with the modified VOI 
and so on. Stop-criterion for this procedure was an estimated and pre-defined number 
of iterations combined with a test for erroneous measurements. Starting from the first 
coordinate the distances to all other detected points in the VOI were calculated. If a 
value lower than twice the expected nuclear radius occurred, the relevant coordinate 
was deleted. Such “misdetections” accumulated at iteration numbers equal or larger 
than the actual number of cell nuclei in the VOI.  
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Fig. 3. Nuclear layers of the retina aligned parallel to the XZ-planes. Vertical intensity-profiles 
(left) help to measure the thickness of the outer nuclear layer (ONL), vitreal part of the inner 
nuclear layer (INL with bipolar (B) and amacrine (A) cells) and inner plexiform layer (IPL). 
Horizontal cells (H) and ganglion cells (G) form separate layers. Note restricted infiltration 
depth in the ONL (YZ-view). 

 
 

Fig. 4. Convolution of measured signals from the ganglion cell layer (A) with a discoidal kernel 
leads to a blurred picture with local maxima at the centre-positions of the cell nuclei (+ in B, 2D 
aspect of a 3D-operation). The detected nucleus is deleted (+ in C) prior to iteration of the 
convolution. D) Data stack with deleted nuclear centres. 
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3.6    Evaluation of Position Data 

The corrected list of centre-coordinates allowed computation of the cell density of 
the VOI (converted to cells per 104µm2 of retinal area), compilation of a neighbour-
distances histogram for pattern-description (Fig. 5) and finally the correlation of 
measurements between the three neuron layers of a single retina fragment. After 
having analyzed several tissue fragments scattered over an entire retina 2D- or 3D-
mapping of simple or complex measured characters can be demonstrated (e.g. density 
map of one cell type, ratio map of two parameters, Fig. 5). Every calculation step 
described above was performed on a standard PC between a few seconds and several  
minutes. 

 

 

Fig. 5. Evaluation of position data. Top left: Table of nuclei detected in the INL with 3D-
coordinates and measured nuclear volume. Top right: Histogram of neighbour-distances in a 
small VOI of H-cells with peaks indicating a square pattern (x-axis in µm). Bottom left: density 
distribution of G-cells with a ventral maximum around 250 cells/104µm2. Bottom right: Ratio-
map of INL-thickness / ONL-thickness indicating an area of high computing potential (light-
grey) in the ventral retina. 
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4   Discussion 

This study outlines a method that gives access to complex morphological tissue-
characters arising from the spatial arrangement of cell nuclei (in the vertebrate retina 
as example) by the use of fluorescence staining, optical sectioning microscopy and 
digital image analysis algorithms tailored for special purposes. Additionally it is 
intended to demonstrate the usefulness of mass-data analysis in the field of histology 
and functional morphology and to encourage the ambitious life scientist to design his 
own application software. The study provides the following lessons and impulses: 

4.1    Optical Sectioning Depth 

Prior to any programming the image acquisition parameters have to be adapted or rather 
optimized to get data sets that are suitable for evaluation. To be able to excite and 
collect fluorescence light from a sufficient tissue volume a penetration depth of at least 
50 µm is desirable. Despite a relative high optical transparency, formalin-fixed retina 
tissue considerably scatters the visible light inversely proportional to its wave-length. To 
get deep optical sections with a satisfactory signal-to-noise-ratio a fluores-cent stain 
with excitation- and emission maxima in the “red part” of the electro-magnetic spectrum 
should be favoured (e.g. TO-PRO-3). The limiting factor in terms of penetration depth 
turned out to be the restricted infiltration of the ONL by different dyes even with 
infiltration times of more than 1h at 30° (see YZ-view in Fig. 3). As not much more 
than 25 µm of the tissue can be stained in z-direction the thickness of mechanical radial 
sections should not exceed 50 µm in this case.  

4.2    Field-of-View and Resolution 

The use of a red fluorescent dye happens somewhat at the expense of spatial 
resolution but doesn’t influence the conspicuousness of cell nuclei. In fact the field-
of-view of the microscope’s sensory device has to be adjusted to gather fluorescent 
light from all three nuclear layers of the retina at the same time (radial slices) to be 
able to correlate cell counts of radial staggered VOIs and to minimize the total data 
volume. In the examined material the distance between the vitreal border of the GCL 
and the scleral border of the ONL peaked at about 230 µm, fitting diagonally in the 
chosen field-of-view. The resulting nuclear diameters of around 15 pixels turn out to 
be an acceptable trade-off. Tangential optical sections of mechanically not-sectioned 
retina fragments were made to record VOIs of the GCL (radial scans with a z-size of 
≤ 50 µm were less suitable to image this nuclear monolayer). In this orientation the 
resolution was increased by the factor of 1.3, the field-of-view restricted respectively. 

4.3    3D-Arrays 

The import of image stacks into a single 3D-array in general and the use of IDL in 
particular allows comfortable access to every single voxel-value and to easily apply a 
series of powerful imaging-routines and other logical operations. Programming in a 
compiler language like IDL opens up the possibility to compute large data sets and 
frequent iterations even on standard PCs and notebooks relatively fast – ImageJ for 
example does the same job in a comparatively unacceptably long period of time. Of 
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course similar approaches were developed and conducted also by other investigators 
for their special research problems independently [3]. 

4.4    Functional Morphology 

From the zoological perspective the semi-automated analysis of nuclear patterns 
opens the door to the description and interpretation of tissue-characters (not only in 
the retina) that hitherto has been too time-consuming or even impossible with paper 
and pencil. This is especially true for an accurate counting of objects (e.g. cell nuclei) 
not only on single microscope-slides [4], but also in high-content data stacks, also for 
generating neighbour-distance histograms in 3D (to describe cellular sphere-packing 
patterns or developmental processes at the retinal margin) and for the display of 
standardised density- and ratio-maps. Some examples are given to illustrate the scope 
of the functional morphological discussion of complex retinal characters: The density 
distribution of photoreceptors in the retina gives an indication of the visual acuity in 
different sectors of the visual field. This is, however, only reliable if the density 
distribution of ganglion cells mirrors the first mentioned pattern. The ratio of 
photoreceptors to ganglion cells in a small area reveals the degree of radial signal 
convergence and thus an relative indicator of light sensitivity (cone- and rod-
pathways have to be analysed separately), the ratio of photoreceptors to secondary 
neurons, on the other hand, gives indications about the potential computing power or 
computing complexity of the examined retina fragment etc [5]. 

4.5   Outlook 

To continue with this subject it is planned to expand the image analysis applications 
to the automated recording of shape-parameters and the high-resolution distribution of 
the fluorescence signal within single nuclei for cell-classification (in combination 
with neuroanatomical techniques), to the mapping of nuclei in hemispheric coordinate 
systems (e.g. small eyes) and ultimately to the full-automated adaptive acquisition and 
analysis of fluorescence signals from entire retinae with motorized microscopes. 
High-content applications would be also the comparison of developmental stages or 
related species. 
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Abstract. The commonly used model of the heart for medical applications suf-
fers from some incompleteness when explaining different kinds of measured
forces in vivo studies by medical experts. In this paper, we make a statistical
analysis of the so-called angle of intrusion automatically. The basis of the pro-
posed method is a set of histological preparations showing heart fibre tissue. We
adapt a multi-scale midline extraction process to extract the myocyte strings out
of these images and measure the angles of intrusion. Furthermore, a statistical
model is derived and validated by the result of a novel parameter estimation
technique.

1 Introduction

In this work we present an approach to analysing the orientation of myocyte strings
automatically. For this, digitised images showing heart tissue (see Figure 1 for an ex-
ample) are processed. The dark, elongated structures represent the strings of myocyte
cells, which cause the contraction of the heart muscle. The top border of the image is
oriented parallel to the epicard (the outer border of the heart). Substantially, the my-
ocyte cells form strings, which are situated parallel to the epicard with slight variations.
For medical purpose, the distribution of the myocyte orientations, also denoted as angle
of intrusion, has a high impact. Using former models of the heart, where the myocyte
structures are essentially ignored, the forces observed by the physicians in vivo studies
[5] cannot be simulated or at least explained suitably. Lunkenheimer et al. [6] try to
enhance the existing model of the heart by investigating two different kinds of observed
forces. Their assumption is that there must be not only tangential directed myocyte
strings, as assumed so far. Furthermore, they expect a larger portion of transversal my-
ocyte strings. The first step to document this assumption is an appropriate analysis of
the angles of intrusion, which we present in this paper.

Some former work has been done to perform quantitative assessments of myocytes
by Karlon et al. [2]. They compare manual measurements with two automatic ap-
proaches. The first method is based on a Hough transform technique. Firstly, edges
are computed using four different gradient masks. The responses of these filters are
thresholded and a connected component analysis is performed. Afterwards, the image
is divided into smaller regions, and some constraints are checked to filter out false re-
gions. On all remaining regions a Hough transform is performed to compute one mean

P. Perner and O. Salvetti (Eds.): MDA 2006/2007, LNAI 4826, pp. 165–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



166 K. Rothaus and X. Jiang

Fig. 1. Sample image of heart tissue: Myocyte
strings are visible as dark elongated structures

Fig. 2. Grey-level transform and adaptive con-
trast enhancement of the slice in Figure 2

orientation of the structures in each. The mean orientations of all regions are collected
and constitute the observation set.

The second method described by Karlon et al. [2] is based on the intensity image
gradient directly. Once again, the image is divided into regions and a statistical analysis
is performed in each. As statistical model, the class of von Mises distributions with
parameter kappa (for statistical background see [1]) is used. Since the result of the
two methods are justified by a manual analysis, an automatic analysis of the angle of
intrusion is well founded [2].

In contrast to these two methods, our approach does not divide the images into re-
gions. Since we are not only interested in the mean angle of intrusion, but also want to
analyse the underlying distribution, we try to take as much information as possible into
consideration. For this, we locate the midlines of the myocyte strings in the images and
take the tangential vectors at sample points of the extracted midlines as observations.

The remainder of this paper is organised as follows. At first, we describe the image
analysis part (Section 2). This process results in the observation set consisting of local
measured angles of intrusion. In Section 3 we give the statistical analysis of the obser-
vation set. We will present two different distribution models, based on classes of von
Mises and Gaussian distributions, respectively. Afterwards, the results of our approach
are shown (Section 4). Finally, we end up by drawing some conclusions (Section 5).

2 Analysis of Heart Fibre Images

The histological preparations are cuts of pig hearts, which are dissected using pairs of
cylindrical knives with different diameters (see [6]). After pinning the slices flat, they
are fixed in formaldehyde, embedded in paraffin and sectioned. A treatment with several
substances is done to achieve a swelling of the preparations, so that the myocyte strings
are clearly visible. The colour images show these preparations 100 times magnified. All
slices are adjusted with the upper border parallel to the epicard and recorded on digital
camara.
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The image analysis part of our method consists of three steps: enhancement of the
myocyte strings (Section 2.1), midline extraction (Section 2.2) and measurements of
the tangential orientations of the midlines at equidistant sample points (Section 2.3).

2.1 Image Acquisition and Enhancement of the Myocyte Strings

At first, we transform the colour images to intensity images I(x, y) by a linear combi-
nation of the three RGB colour channels.

I(x, y) = 0.2626 · R(x, y) + 0.4116 · G(x, y) + 0.3258 · B(x, y) (1)

This linear combination scheme is computed once by analysing a subset of images by
a principal component analysis, to keep as much contrast in the images as possible.

Afterwards, we enhance the contrast of the image I(x, y) by an adaptation of the
method proposed by Yu et al. [9]. This method works by propagating the minimum
(lmin), average (lavg) and maximum (lmax) value towards different scan directions
by a conditional propagation scheme. The initialisation of the three arrays lmin, lavg
and lmax is the image, which should be processed. In contrast to the original approach
of Yu et al. [9] we use different conductivity factors for the minimum (Cmin = 0.95),
average (Cavg = 0.75) and maximum (Cmax = 0.55) values, to steer the propagation
behaviour of the enhancement algorithm. Thus, we use the conditional following prop-
agation schemes, to update the local image features at the actual scanned position:

lavg ← (1 − Cavg) · lavg + Cavg · lavg (2)

lmin ← (1 − Cmin) · lmin + Cmin · lmin iff lmin > lmin (3)

lmax ← (1 − Cmax) · lmax + Cmax · lmax iff lmax < lmax (4)

where the bar denotes the value at the previous scanned image position. Furthermore,
we choose two scan directions, namely from top to bottom and vice versa. This adap-
tation of the approach is motivated by our goal to keep the dark structures, but lighten
the bright structures to enhance the contrast. For each pixel p the three resulting values
lmin, lavg, lmax ∈ [0, 1] reflect the minimum, average and the maximum intensity in
a neighbourhood of p. The original intensity old at p can now be emphasised against
its neighbourhood. Therefore, we define the local intensity range as δ = lmax − lmin
and the local enhancement factor as ω =

√
δ · (2 − δ). The new intensity value at p is

then computed as (adaption of the transformation proposed by Yu et al. [9]).

lmax + lmin − ω

2
+

2 ω (old − lmin) (δ + ω (lavg − old) (old − lmax))
δ3 . (5)

The result of this grey level transform and enhancement step applied on the preparation
of Figure 1 is shown in Figure 2.

2.2 Midline Extraction

After the pre-processing procedure (Section 2.1), now the extraction of the midlines will
be explained. For this task we have developed a multi-scale extension [7] of López’s



168 K. Rothaus and X. Jiang

Fig. 3. Gradient image after multi-scale smooth-
ing of the gradient vector field

Fig. 4. Extracted midlines are laid over the in-
tensity image

Level-Set-Extrinsic-Curvature approach (LSEC) [3,4]. In the following, we give a brief
summary of this extension. The pixel array I of the enhanced intensity image (Figure 2)
is taken as input image, in which we want to localise the midlines of dark elongated
structures (myocyte strings).

(1) Computation of the intensity gradient vector field:
After a slight smoothing of I with a Gaussian kernel (σ = 0.75) we apply the Sobel
operator, which results in the partial deviation Ix and Iy . These deviations are used
to compute the edge magnitude array S and a local edge orientation array Θ. Since
at each pixel, the corresponding deviations Ix and Iy could be recomputed on S and
Θ, in the following we use the notation (Ix, Iy) or (S, Θ) for the gradient vector field
equivalently.

(2) Enhancement of edge magnitude:
Since the LSEC approach of López et al. [3,4] is valid on normalised gradient images
only, we boost the edge magnitudes S pixel-wise using the function

bt(S) = 1 − exp
(

− S2

2 · t2

)
(6)

with threshold t = 0.075. This optimistically choice is made to preserve even weak
edges, since they would be filtered out in the further process if there are no equally
orientated edges in the neighbourhood.

(3) Iterative smoothing process:
The goal of this step is to smooth the gradient vector field in the sense that the gradi-
ent vectors are propagated towards the interior of dark elongate structures. Firstly, the
structured tensor is computed for each pixel

ST (x, y) =
(

Ix(x, y)2 Ix(x, y) · Iy(x, y)
Ix(x, y) · Iy(x, y) Iy(x, y)2

)
, (7)

where (x, y) are the image coordinates. This tensor field is smoothed element-wise
with Gaussian kernels Gk of different scales σk = k · σ0 (σ0 = 0.75). For each pixel
(x, y) and each scale we compute the edge magnitude Sk(x, y) and the new edge ori-
entation Θk(x, y) based on the largest eigenvalue and corresponding eigenvector of the
smoothed structured tensor (for details see [7]).
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Fig. 5. Example image of López
et al.[3]

c

r

θ*(r,c)
v(r,c)

p=(r,c)

Fig. 6. Equidistant resampling of the midlines and computing of
the angle of intrusion

Finally, for the pixel (x, y) the vector with the highest edge magnitude value Sk(x, y)
of all considered scales k is chosen as the result vector of the iterative smoothing pro-
cess. In Figure 3 the result of the sample image (Figure 1) is shown. The magnitude S
of the vectors are visualised by the intensity (V) and the direction Θ by the colour (H)
in the HSV colour space.

(4) Computation of local creaseness in the intensity image: After a single addi-
tional smoothing, we apply the divergence operator on the smoothed gradient vector
field (Ix, Iy). The level set extrinsic curvature is a creaseness measure of an image
function I . The midlines we want to detect consist of pixels with maximum crease-
ness. Therefore, the level set extrinsic curvature is computed as the negative divergence
κ of the smoothed gradient at each pixel. López et al. [3,4] have proved, that this is
equivalent to the direct computation

κ(x, y) =
2Ix(x, y)Iy(x, y)Ixy(x, y) − I2

y (x, y)Ixx(x, y) − I2
x(x, y)Iyy(x, y)

(
I2
x(x, y) + I2

y (x, y)
)3/2 s (8)

of the LSEC in continuous domains under certain preconditions. In fact, the divergence
of gradients gives even better results in discrete domains than the direct computation.
This advantage is depicted in the example image of Figure 5. The divergence approach
leads to continuous segments, where as the direct computation leads to gaps [4].

(5) Grouping points of maximal creaseness to line segments: Pixels, which hold
a local maximum creaseness, value in direction of the local smoothed gradient vector
are taken as candidates for midline pixels. We link two neighboured candidates together
if the gradients and the creaseness at the corresponding pixel are similar. This can be
done by simple threshold rules. After this grouping process and an additional filtering
step (discard segments of less than three pixels), we get the midline segments, which
represent the myocyte strings. Result of this step are presented in the Figures 4 and 5,
where the extracted midline segments are overlaid on the grey-scale images.

2.3 Measurement of the Tangential Orientations

The midlines are represented as strings of neighboured midline pixels (see Figure 6).
With each midline pixel (dots) the smoothed gradient vector is stored (connected arrows).
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The drawback of this representation is that diagonal midlines are represented by pixels,
which form a stairway, but a straight pixel line represents horizontal midlines. Obvi-
ously, this representation does not regard the true length of the midline.

Since we want to make a statistical analysis of the myocyte orientation, we have to
resample the midlines at equidistant points. We decide to choose the width of one pixel
as distance, so that a midline of n pixel length should be represented by n + 1 midline
pixels. This resampling can be done by scanning over the midline and interpolating the
pixel coordinates as well as the assigned gradient vectors using the nearest two pixels
on the midline. Thereby, the tangential of the midline defines the scanning direction,
which is orthogonal on the smoothed gradient vector at the last considered midline
point. In Figure 6 the resulting pixel coordinates (crosses) are shown. In this figure the
computation of the tangential vector v at pixel p with coordinates (r, c) is drafted.

Naturally, the situation in Figure 6 is idealised, but in fact we are mainly interested in
the analysis of the tangential vectors. For the purpose of midline visualisation, we keep
the representation at pixel grid points, whereas for the statistical analysis we choose the
equidistant representation with sub-pixel accuracy.

3 Statistical Data Analysis

The tangential vectors at the equidistantly distributed sample points of the myocyte
string midline are taken as observation set. Obviously, these vectors are represented in
a cyclic domain with period of 180o or π, respectively. For this reason, we have to derive
a model for cyclic data spaces. Fisher [1] gives a general introduction in the statistical
analysis of such data spaces. In the following, we treat each observed angle as a point
on a circle. Since the period of the domain is 180o, an angle does not correspond to the
normal angle in the Euclidian manner. For the purpose of geometrical interpretations of
the observation set in the cyclic domain, all angles have to be multiplied by 2.0.

One can observe three common characteristics of the observed angles of intrusions:

1. Presence of equally distributed noise, introduced by falsely detected structures.
2. The angles are unimodal distributed (see Figure 7) with only a slight variation.
3. The distribution seems to be symmetrical.

Based on these observations, we have derived a suitable model for the underlying distri-
butions. Due to the first characteristic, the noise is regarded as an additive constant term
α/π, where α is the portion of noise. To model the signal (i.e. the angle of intrusion) a
symmetrical density function with one local maximum should be used. In Section 3.1
we present two models (Gaussian and von Mises, respectively). The parameter estima-
tion procedure is the same for both models. Since the equally distributed noise has no
impact to the calculation of the mean orientation, at first the mean orientation μ̂ is es-
timated. We have tested several estimators [8] and figured out that a least median error
approach works best (Section 3.2). Subsequently, the portion of noise is estimated by
inspecting the neighbourhood of the antipole of μ̂ (Section 3.3). At last we compute
the estimation of the shape parameter (Section 3.4), which are κ̂ (von Mises) and σ̂
(Gaussian), respectively.
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3.1 Distribution Models

Both distribution models, which we have taken into considerations, are explained by
three parameters: the portion of noise α ∈ [0, 1], the mean angle μ ∈ [−π/2, π/2), and
one shape parameter. In detail, the PDFs are given as:

pGauss
α,μ,σ(φ) =

α

π
+

(1 − α) · exp(− (2φ−2μ)2

2σ2 )
π σ

(9)

pvon Mises
α,μ,κ (φ) =

α

π
+

(1 − α) · exp(κ cos(2φ − 2μ))
π I0(κ)

(10)

where I0 is the modified Bessel function of order zero. The first summand of these
density functions represents the equally distributed portion of noise with fraction α and
the second summand (with fraction 1 − α) is an adaptation of the signal distribution to
the cyclic domain of φ ∈ [−π/2, π/2).

The Gaussian model cannot be applied directly to the observation set, due to the
cyclicity of the data space. For this, we have to cut the data space at the antipole of
the mean angle. Afterwards, the whole observation is mapped to R linearly, such that
the mean value is mapped to 0 and finally, a standard analysis on the line is performed
to estimate the standard deviation σ of the underlying Gaussian.

The use of a von Mises model offers the evidence that the shape parameter κ is di-
rectly deducible on the cyclic domain. Note that a reduction of κ leads to an enlargement
of the variance. The von Mises distribution is a kind of standard distribution on cyclic
domains (see [1]). Its importance is comparable with the role of the normal distribution
on a line. Unfortunately, things becomes more difficult on cyclic domains, so that not all
properties of the normal distribution are adaptable to von Mises distributions. The close
relationship becomes clear, by inspecting the density function of the von Mises model.
If the cosine in Equation (10) is approximated by its first ordered Taylor polynomial
the model is (beside normation and κ := σ−2) the same as the Gaussian (see Eq. (9)).
However, in all conducted experiments the von Mises distribution seems to model the
observation more precisely (Table 1).

For validating the goodness of our models and to compare different estimators, we
have used the following quality measure, denoted as match score (MS). The data space
is divided into finite intervals of equal length (we use 180 bins b1, . . . b180 of 1o width
as default). For this discretisation we construct the relative histogram h of the observed
angles of intrusion and compare for each bin bi the measured frequency h(i) with the
expected frequency f(i). Assuming a distribution with parameter vector p the match
score is computed as:

MS(p) = 1 − 0.5 ·
180∑

i=1

|f(i) − h(i)|. (11)

3.2 LME-Estimation of the Mean Orientation

For a fixed μ the median error to the observation set S = {φ1, . . . , φn} is computed as

mederr(μ, S) = mediani∈{1,...,n} { darc (μ, φi) } (12)
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where darc is the arc-length distance in our cyclic domain. Now, we minimise this error
function err(μ) to estimate μ

err(μ) = minμ∈[−π/2,+π/2] { mederr(μ, S) } , (13)

μ̂ = arg minμ∈[−π/2,+π/2] { mederr(μ, S) } . (14)

The statistical interpretation of this method is minimising the width of the 50%-
quantile interval centred at μ.

The computation of μ̂ can be done by a single scan through the sorted observation
set φ(1), . . . , φ(n). We use two cyclic indices iA and iΩ = iA +n/2, which represent the
beginning and the ending of a candidate error interval. For each error interval the corre-
sponding estimation for μ is given by (φ(iA) + φ(iΩ))/2. The estimation μ̂ is computed
as the centre of the shortest candidate error interval and can be found by one sweep.

3.3 Estimating the Portion of Noise

After estimating the mean direction μ̂, we utilise the characteristic that the variation of
the data is less in comparison to the domain. Therefore, we assume that all observed
angles in a small interval centred at the antipole μ̃ := μ̂ + π/2 of μ̂ are introduced
by noise. In our implementation, we choose an interval length of 0.2 · π, which gives
appropriate results. Since we assume equally distributed noise on the whole domain,
we can easily estimate the overall portion of noise: Let n be the size of the observation
set and c be the counted angles in the interval ]μ̃ − 0.1π, μ̃ + 0.1π] the portion of noise
could be estimated as α̂ = 5c/n.

3.4 Estimating the Shape Parameter

Finally, we estimate the shape parameter, which is κ in the von Mises case. This can
been done by inspecting the minimised error err := err(μ̂) (see Eq. (13)). We compute
κ̂ as the unique solution of the equation

0.5 =
∫ err

−err

pμ̂,κ̂,α̂(φ) dφ . (15)

Unfortunately, this equation has no analytical solution. We found κ by using the fact
that the right side of the objective functional is increasing in κ̂, so that we can guarantee
to find κ by a binary search algorithm. This estimation technique can be adapted to
other distributions, which have one shape parameter (e.g. the Gaussian model).

4 Results

Our image database consists of 45 images showing heart tissue. All slices are arranged
in the common coordinate system, such that the epicard is parallel to the upper border
of the image. We have estimated the parameter of the proposed model for all images and
compute the match score (see Table 1). Furthermore, the average of the single results
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Table 1. Results of the statistical analysis on the whole image data base

Preparation Size μ̂ κ̂ α̂ MS von Mises MS Gaussian

Slice 01 57728 -3.08 10.80 2.97% 91.24% 91.09%
Slice 02 54608 10.07 7.61 4.07% 91.05% 90.58%
Slice 03 61283 7.42 9.08 3.26% 92.40% 92.00%
Slice 04 69057 16.72 12.97 1.77% 91.62% 91.36%
Slice 05 60890 17.83 7.35 2.94% 93.29% 92.83%
Slice 06 58330 -3.44 5.86 7.02% 92.54% 91.88%
Slice 07 66060 3.69 8.66 3.84% 92.40% 91.96%
Slice 08 61291 -1.79 7.30 5.42% 92.33% 91.85%
Slice 09 55559 -11.93 4.98 7.50% 93.25% 92.56%
Slice 10 60250 0.15 7.53 6.43% 91.85% 91.39%
Slice 11 56364 -5.46 4.82 11.34% 92.09% 91.31%
Slice 12 60266 -1.22 4.70 12.05% 92.00% 91.20%
Slice 13 56292 4.78 4.74 6.47% 93.31% 92.45%
Slice 14 57900 -0.01 5.41 7.38% 90.84% 90.16%
Slice 15 54972 6.40 4.14 8.53% 92.58% 91.61%
Slice 16 64023 -3.82 7.45 5.40% 90.29% 89.80%
Slice 17 58538 -7.73 4.15 5.55% 93.72% 92.91%
Slice 18 60359 -0.43 5.79 6.20% 93.01% 92.39%
Slice 19 62503 2.18 8.38 3.18% 93.61% 93.22%
Slice 20 59616 0.09 5.21 4.34% 92.45% 91.76%
Slice 21 60453 -1.60 5.47 8.92% 91.74% 91.08%
Slice 22 60085 3.74 6.77 6.92% 91.59% 91.03%
Slice 23 61623 -5.41 3.76 10.73% 93.11% 92.10%
Slice 24 60643 -1.25 4.03 4.37% 93.34% 92.36%
Slice 25 61079 2.63 5.97 6.20% 92.62% 91.96%
Slice 26 63194 17.74 5.15 8.37% 92.85% 92.13%
Slice 27 58143 1.53 4.29 10.27% 92.62% 91.75%
Slice 28 59888 2.48 9.66 6.13% 91.29% 90.93%
Slice 29 60537 1.30 4.62 12.31% 90.92% 90.25%
Slice 30 57753 5.82 5.39 9.51% 89.81% 89.10%
Slice 31 56389 0.76 6.30 12.16% 91.54% 91.00%
Slice 32 54771 0.55 6.28 8.90% 90.59% 89.98%
Slice 33 64169 -2.17 6.50 5.71% 91.05% 90.51%
Slice 34 66315 -0.72 4.47 4.62% 92.04% 91.20%
Slice 35 54963 -11.74 5.44 8.15% 93.65% 93.00%
Slice 36 58668 -0.10 4.00 7.74% 92.70% 91.74%
Slice 37 63878 -8.31 6.11 6.46% 90.94% 90.39%
Slice 38 58285 -1.47 7.20 4.90% 92.07% 91.63%
Slice 39 56380 -0.88 4.53 7.05% 93.42% 92.63%
Slice 40 54885 -0.35 6.16 10.06% 92.53% 91.99%
Slice 41 60458 -12.58 5.44 7.05% 93.86% 93.20%
Slice 42 53136 1.31 3.29 12.62% 92.33% 91.17%
Slice 43 47940 4.96 8.58 6.39% 93.73% 93.34%
Slice 44 62925 17.67 10.12 2.33% 91.56% 91.21%
Slice 45 66382 8.60 13.71 2.33% 90.78% 90.51%

Average 59530 1.18 6.45 6.80% 92.19% 91.57%

Complete Set 2678831 1.17 4.27 6.75% 94.87% 93.98%
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Fig. 7. Angle of intrusion histogram for the ex-
ample in Figure 1
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Fig. 8. Angle of intrusion histogram collected in
45 slices

are plotted in the row ’Average’ and the analysis of the whole observation set, which
consists of the union of all observation sets are presented in the row ’Complete Set’.
This combination is valid because all slices are referenced to the same context.

The first observation is that in every case the von Mises model outperforms the Gaus-
sian model by mostly over 0.5 match score points. The average match score of the von
Mises model is with 92.19% reasonable high (98.24% in the case of simulated data)
and validates our model. In Figure 7 we have plotted the observation histogram against
the derived PDF (normalised to the same integration area) of the sample slice. The
approximation of the model with the observation is good, except near the mean orien-
tation. In some other slices, we obtain local marginal inaccuracies other where, but not
at a fixed position. This phenomenon could be explained with local differences in the
heart tissue, which exhibit different structures at different locations of the heart mus-
cle. Since the preparations in our test study are located all over the heart, combining
all results eliminate local phenomena. In Figure 8 the observation histogram of the ag-
gregated observations and the derived PDF are overlaid. The visible model-observation
coherency in this plot demonstrates the overall goodness of our model. This is also con-
firmed by the match score indicator of the complete evaluation of 94.87%. Here, the
match score 93.98% of the Gaussian estimation is clearly lower.

The estimations of μ and κ correspond to the expectancy of the medical experts and
in their opinion confirm the need of a more accurate model of the heart [6].

5 Conclusions and Further Work

In this paper, we have presented a completely automatic method for analysing the angle
of intrusion of myocyte strings in heart tissue slices. Firstly, we have described an al-
gorithm to extract the myocyte string and then given a method to measure the angle of
intrusion at a multitude of sample points. Furthermore, we have developed a statistical
model for the angle of intrusion distribution and validated this model experimentally.

Motivated by the results we want to advance the improvement of the heart model,
by extracting the structure of the myocyte strings, which are connected to each other.
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Moreover, we are discussing with other research groups if a simulation of a heartbeat
based on such image material could be possible.
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Abstract. We are going on to develop a novel method for the detection of 
hygiene-relevant parameters from grains of cereal crops based on intelligent 
image acquisition and interpretation methods as well as data mining methods. 
The work presented here is part of a larger project aiming to develop an 
automatic system to the determination of the quality of cereals in particular 
wheat. We present our first results that describe the data acquisition, the 
planned image analysis and interpretation method as well as the reasoning 
methods that can map the automatic acquired parameters of grain to the relevant 
hygiene parameters. The preliminary results show that with the new computer 
science methods it is possible to come up with new insights into the quality 
control of food stuff.  

1   Introduction 

Fungal contamination of cereals is a serious economic problem throughout the world. 
Several fungi cause a reduction of grain quality, especially changes in color and taste 
[Müller et al., 1997], [Herrman et al, 1998], and [Rodeman, 2003]. However the main 
riks of fungal damage arise from the production of toxic compounds, known as 
mycotoxins. Mycotoxins can cause serious adverse health effects. Toxigenic fungi 
that produce mycotoxins in grains of cereals or oil seeds belong to the genera 
Aspergillus, Alternaria, Fusarium and Penicillium. The control of this problem is 
therefore of particularly interest in food safety and quality control programs. 

The work presented here is part of a larger project aiming to develop an automatic 
system to the determination of the quality of cereals in particular wheat. The aim of 
the research is the development of an automatic system to the determination of the 
quality of cereals in particular wheat. A subtask of the system is the fast recognition 
of cereal grains damaged by fungi. Thereby should be developed a data acquisition 
unit that allows taking the coverage from the grain and allows placing it under a 
microscope for the acquisition of a digital image. This image should be used in order 
to automatically determine the number and the kind of fungi spores contained on the 
grain. For that we have to develop suitable intelligent image analysis and interpret-
tation methods. Based on the enumeration of fungal spore classes we have to develop 
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a method that can map this information to the hygiene-relevant parameters. The work 
we present here reports the results of our study. They show that the proposed methods 
based on intelligent image analysis and data mining are very suitable to capture the 
desired information and allow recognizing formerly unknown information that can be 
helpful to determine the quality of food stuff.  

In Section 2 we describe the material used for our study. The image acquisition and 
sample preparation is explained in Section 3. Section 4 describes the intelligent image 
analysis and interpretation. The results on the correlation of the recognized fungi 
spores to the hygiene-relevant parameters are given in Section 5. Finally we 
summarize our work in Section 6. 

2   Material  

For the study have been used different quality classes of wheat grains:  

1. visual optical perfect grains from a charge where no fungal grains were included,  
2. fungal damaged grains,  
3. gall-mosquito damaged grains, and  
4. visual optical perfect grains taken from a charge of fungal damaged grains.  
 

In total we had 10 samples from each class. Thirty single grains were taken from each 
sample for further evaluation.  

3   Image Data Acquisition 

The main problem was to make the coverage on the grains visible under the 
microscope and make it usable for further digital processing. Therefore we have 
developed a procedure for taking the coverage from grains and bring it onto a medium 
that can be placed under a microscope. From there can be acquired a digital image 
with the help of a digital camera connected with the microscope. 

The method of choice was a water-based extraction method. The grains were 
placed into a boil together with stones. This water-filled boil was shaken for 2 
minutes, then the water was filled into a centrifuge and the sediment was put on a 
slide. This slide was placed under the microscope and a digital image was taken. 
There are other methods for extracting the coverage from the grain possible but this 
should not be the main topic of this paper. The resulting digital images are shown in 
Figure 1a-4a. 

4   Intelligent Image Analysis and Interpretation  

4.1   Image Analysis  

The main aim of the image analysis was to recognize possible fungi spores and 
process them further for determination of the type of fungi spore. Here we used our 
novel case-based object recognition method [Perner et al., 2005] developed for 
recognizing biological objects with high variation. For the architecture of such a 
system see Figure 5. The case-based object recognition method uses cases that  
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Fig. 1a. Coverage of Grain with Cladosporium Fig. 1b. Segmented Image 

  
Fig. 2a. Coverage of Grain with Alternaria 
Alternata 

Fig. 2b. Segmented Image 

  
Fig. 3a. Coverage of Grain Fig. 3b. Segmented Image 

  
Fig. 4a. Coverage of Grain with Fusarium 
Spore 

Fig. 4b. Segmented Image 

 
generalize the original contour of the objects and matches these cases against the 
contour of the objects in the image. During the match a score is calculated that 
describes the goodness of the fit between the object and the case. Note the result of 
this process is not the information about what type of fungi spore is contained in the 
image. The resulting information tells us only if it is highly likely that the considered 
object is a fungi spore or not. Further evaluation is necessary to determine the kind of 
fungi spore. This demonstrates the result in the images, see Figure 1b-4b. One of the 
main problems of such a case-based object recognition method is to fill up the case 
base with a sufficient large enough number of cases. We used our procedure 
described in [Perner et al., 2004] for that. For the study we have 10 different cases, 
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which is not enough as we can see in the image but it allows us to demonstrate the 
applicability of the method. The method has to be adapted to the specific image 
quality to show better results as well as more cases have to be learnt by our case 
acquisition procedure. 

 

 

Fig. 5. Architecture of a Case-Based Object Recognition System 

4.2   Image Interpretation and Data Mining  

After the methods have recognized potential objects that are likely to be fungi spores 
we have to extract more features from the objects that distinguish the object from the 
background and different fungi spores. Of course one feature is already the shape 
information used in the matching process but that is not enough for more detailed 
recognition. The features that have to be calculated for this kind of objects are the 
inner structure, texture and gray level information. We haven’t done that for this kind 
of objects considered in this publication yet. But we know from our past research on 
airborne fungi that it is possible to find automatic extractable features to describe 
fungi spores and use them for classification into different kinds of fungi spores. It is 
left to future work to find the right features for the considered fungi spores in this 
application and to build the feature extraction procedure for them. Based on this 
feature set we can construct the classifier. We use decision tree induction based on 
our tool Decision Master [Perner, 2003]. This gives us a good classifier. 
As the result we will get the information about the kind of fungi spores contained in 
the image and the number of fungi spores versa the kind of fungi spores. 

5   Mapping of Image Information to Hygiene Relevant Parameter 
with Data Mining  

In this study the kind and the number of fungi spores was determined manually since 
it was a case study and we haven’t developed the fully automatic system yet. The aim 
of the study was to figure out if the proposed methods can bring out information about 
hygiene-relevant parameters and besides that new information that can be used to 
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control the quality of food stuff. From the 4x10 different samples a data base was 
created where the columns of each entry show the class, that is the optical visual 
inspection label, the number of Fusarium spores, the number of Alternaria/ 
Ulocladium, the number of Aspergillus/Penicillium, the number of Cladosporium, the 
number of fungi spores with unknown classification and the total number of fungi 
spores. In addition to the enumeration of fungal spores the concentration of a main 
mycotoxin of the genus Fusarium deoxynivalenol (DON) was determined by a 
commercial enzyme immunoassay screening (ELISA test).  

Table 1-4 shows that there is a significant difference in the number and the kind of 
fungi spores for the different charges. Figure 6 shows that DON value corresponds to 
the visually determined class labels. Grain with a low number of Fusarium spores 
have low DON values and grain charges with high number of Fusariam spores have 
high DON values. 

 

 

Decision tree induction with Decision Master [Perner, 2003] on an entropy-based 
criterion was performed in order to find out the relation between the coverage of fungi 
spores and the class label (mycotoxin value). The induction experiment shows that there 
is a relation between the number of Cladosporium spores and Fusarium spores 
respective the class, see Figure 7. It says that grain charges with a high number of 
Cladosporium spores will have a low number of Fusarium spores. That means these 
charges are either perfect charges or gall-mosquitoes damaged charges. Whereas 
charges with low Cladosporium spores can be either samples with a high number of 
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Fusarium spores or a low number of Fusarium spores. Note that charge “einwandfrei 2” 
(visual perfect grains) has been taken out from a sample with Fusarium damaged grains. 
It seems that the number of Cladosporium spores indicates this fact. The number of 
Alternaria and Aspergillus spores did not have a significant influence in this experiment. 

 

 
}}} 

Fig. 6. Don Value to Number of Fusarium Spores 

 

Fig. 7. Decision Tree for the Determination of Grain Quality based on Number and Type of 
Fusarium Spores 

6   Conclusions  

We have presented our first results for the detection of hygiene-relevant parameters 
from cereal grains based on intelligent image acquisition and interpretation methods 
as well as data mining method. The work is part of a larger project aiming to develop 
an automatic system to the determination of the quality of cereals in particular wheat. 
The methods developed so far are protected by industrial property rights [Perner, 
2004 and 2005]. 
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We have shown that data acquisition is an important task and that it has to do with 
more than data base construction as it is in many data mining experiments. The image 
acquisition method we have demonstrated in this paper works well and can be fully 
automated. It can also be constructed in such a way that the coverage from each single 
grain can be taken off and evaluated based on the intelligent image interpretation and 
data mining methods. The image analysis on case-based object recognition works 
well for this task but has to be tuned so that a better object recognition rate can be 
achieved. From each single object can be extracted image features and these features 
can be used for classification. It is preferable to construct the classifier based on 
decision tree induction methods. Once the type and number of fungi spores has been 
determined this information can be set into relation with the hygiene-relevant 
parameters. We have shown that the number of Fusarium spores correlates with the 
DON levels which is a value used for the determination of the mycotoxin 
concentration. However when considering this experiment as a data mining 
experiment and applying decision tree induction to the created data base some other 
important information can be extracted which are more or less hidden before. The aim 
is to come up with a new measurement method for the determination of hygiene-
relevant parameters on grains. Besides that we would like to discover formerly 
unknown relations or information based on the material in the coverage of the grain 
such as different types of fungi spores. 

Acknowledgement  

The work is part of the project “Development of Methods and Procedures for an 
Automatic System to the Determination of the Quality of Cereals” AUTOBONI. 

References 

[Müller et al., 1997] Müller, H.M., et al.: Fusarium toxins in wheat harvested during six years 
in an area of Southwest Germany. Natural Toxins 5, 25–30 (1997) 

[Herrman et al,, 1998] Hermann, W., Kübler, E., Aufhammer, W.: Ährenbefall mit Fusarien 
und Toxingehalt im Korngut bei verschiedenen Wintergetreidearten. Pflanzenwirtschaften 2, 
97–107 (1998) 

[Rodeman, 2003] Rodeman, B.: Auf resistente Sorten setzen. DLG Mitteilungen 3, 44–46 
(2003) 

[Perner et al., 2005] Perner, P., Jähnichen, S., Perner, H.: Case-Based Object Recognition for 
Airborne Fungi Recognition. Intern. Journal on Artificial Intelligence in Medicine (to 
appear, 2005) 

[Perner, 2003] Perner, P.: Data Mining on Multimedia Data. Springer, Heidelberg (2003) 
[Perner et al., 2004] Perner, P., Jähnichen, S.: Case Acquisition and Case Mining for Case-

Based Object Recognition. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS 
(LNAI), vol. 3155, pp. 616–629. Springer, Heidelberg (2004) 

[Perner, 2004] Perner, P.: Procedures and equipment to the automatic and quantitative capture 
of the portion of seeds or cereals of certain quality, DE 10, 063 769.5 (2004) 

[Perner, 2005] Perner, P.: Procedures and equipment to the recognition and classification of 
fungi spores in cereals, DE 10, 034 504.2 (2005) 



Author Index

Arnold, Walter 1, 80

Bedini, Luigi 146
Bengtsson, Ewert 104

Cheng, Da-Chuan 47
Colantonio, Sara 115
Coltelli, Primo 58, 128

Eils, Roland 37
Evangelista, Valtere 128
Evangelisti, Mauro 128

Frucci, Maria 94

Götze, Sandra 37
Gualtieri, Paolo 58, 128
Günther, Thomas 176
Gurevich, Igor 115

Heß, Martin 156
Henriksson, Sara 104

Jiang, Xiaoyi 47, 165

Karlsson, Patrick 104

Larsson, Chatarina 104
Little, Suzanne 69

Maier, Wilhelm F. 80
Mateos-Langerak, Julio 37
Moroni, Davide 136

Nilsson, Mats 104

Perner, Horst 1
Perner, Petra 1, 69, 136, 176
Pham, Tuan D. 15, 84

Rabe, Ute 80
Ramella, Giuliana 27
Rende, Daniela 80
Rieder, Hans 1
Rohr, Karl 37
Rothaus, Kai 165

Salvetti, Ovidio 69, 115, 136
Sanniti di Baja, Gabriella 27, 94
Schmidt-Trucksäss, Arno 47
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