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Preface


Scope and Purpose of the Book 

Motivated by the vision of being able to communicate from anywhere at any 
time with any type of information, a natural convergence of mobile and multi-
media is under way. This new area, called mobile multimedia communications, 
is expected to achieve unprecedented growth and worldwide commercial 
success. 

Current second-generation mobile communication systems support a number 
of basic multimedia communication services. However, many technologically 
demanding problems need to be solved before real-time mobile video com-
munications can be achieved. When such challenges are resolved, a wealth of 
advanced services and applications will be available to the mobile user. This 
book concentrates on three main challenges: 

1. Higher coding e"ciency 

2. Reduced computational complexity 

3. Improved error resilience 

Mobile video communications is an interdisciplinary subject. Complete sys-
tems are likely to draw together solutions from di(erent areas, such as video 
source coding, channel coding, network design, and semiconductor design, 
among others. This book concentrates on solutions based on video source 
coding. In this context, the book adopts a motion-based approach, where ad-
vanced motion estimation techniques, reduced-complexity motion estimation 
techniques, and motion-compensated error concealment techniques are used as 
possible solutions to the three challenges, respectively. 

The idea of this book originated in 1997, when the ,rst author was in 
the early stages of his Ph.D. studies. As a newcomer to the ,eld, he started 
consulting a number of books to introduce himself to the fundamentals and 
standards of video source coding. He realized, however, that, for a beginner, 
most of these books seemed too long and too theoretical, with no treatment of 
some important practical and implementation issues. As he progressed further 
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in his studies, the ,rst author also realized that the areas of coding e"ciency, 
computational complexity, and error resilience are usually treated separately. 
Thus, he always wished there was a book that provided a quick, easy, and 
practical introduction to the fundamentals and standards of video source coding 
and that brought together the areas of coding e"ciency, computational com-
plexity, and error resilience in a single volume. This is exactly the purpose of 
this book. 

Structure of the Book 

The book consists of 10 chapters. Chapter 1 gives a brief introduction to mo-
bile video communications. It starts by discussing the main motivations and 
applications of mobile video communications. It then brie2y introduces the 
challenges of higher coding e"ciency, reduced computational complexity, and 
error resilience. The chapter then discusses some possible motion-based solu-
tions. The remaining chapters of the book are organized into four parts. The 
,rst part introduces the reader to video coding, whereas the remaining three 
parts are devoted to the three challenges of coding e"ciency, computational 
complexity, and error resilience. 

Part I gives an introduction to video coding. It contains two chapters. Chap-
ter 2 introduces some of the fundamentals of video source coding. It starts by 
giving some basic de,nitions and then covers both analog, and digital video 
along with some basic video coding techniques. It also presents the perfor-
mance measures and the test sequences that will be used throughout the book. 
It then reviews both intraframe and interframe video coding methods. 

Chapter 3 provides a brief introduction to video coding standards. Partic-
ular emphasis is given to the most recent standards, such as H.263 (and its 
extensions H.263+ and H.263++) and MPEG-4. 

Part II concentrates on coding e"ciency. It contains three chapters. Chap-
ter 4 covers some basic motion estimation methods. It starts by introducing 
some of the fundamentals of motion estimation. It then reviews some ba-
sic motion estimation methods, with particular emphasis on the widely used 
block-matching methods. The chapter then presents the results of a compar-
ative study between the di(erent methods. The chapter also investigates the 
e"ciency of motion estimation at very low bit rates, typical of mobile video 
communications. The aim is to decide if the added complexity of this process 
is justi,able, in terms of an improved coding e"ciency, at such bit rates. 

Chapter 5 investigates the performance of the more advanced warping-based 
motion estimation methods. The chapter starts by describing a general warping-
based motion estimation method. It then considers some important parameters, 
such as the shape of the patches, the spatial transformation used, and the node 
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tracking algorithm. The chapter then assesses the suitability of warping-based 
methods for mobile video communications. In particular, the chapter compares 
the e"ciency and complexity of such methods to those of block-matching 
methods. 

Chapter 6 investigates the performance of another advanced motion-
estimation method, called multiple-reference motion-compensated prediction. 
The chapter starts by brie2y reviewing multiple-reference motion estimation 
methods. It then concentrates on the long-term memory motion-compensated 
prediction technique. The chapter investigates the prediction gains and the cod-
ing e"ciency of this technique at very low bit rates. The primary aim is to de-
cide if the added complexity, increased motion overhead, and increased mem-
ory requirements of this technique are justi,able at such bit rates. The chapter 
also investigates the properties of multiple-reference block-motion ,elds and 
compares them to those of single-reference ,elds. 

Part III of the book considers the challenge of reduced computational com-
plexity. It contains two chapters. Chapter 7 reviews reduced-complexity motion 
estimation techniques. The chapter uses implementation examples and pro,ling 
results to highlight the need for reduced-complexity motion estimation. It then 
reviews some of the main reduced-complexity block-matching motion estima-
tion techniques. The chapter then presents the results of a study comparing 
the di(erent techniques. 

Chapter 8 gives an example of the development of a novel reduced-
complexity motion estimation technique. The technique is called the simplex 
minimization search. The development process is described in detail, and the 
technique is then tested within an isolated test environment, a block-based 
H.263-like codec, and an object-based MPEG-4 codec. In an attempt to re-
duce the complexity of multiple-reference motion estimation (investigated in 
Chapter 6), the chapter extends the simplex minimization search technique to 
the multiple-reference case. The chapter presents three di(erent extensions (or 
algorithms) representing di(erent degrees of compromise between prediction 
quality and computational complexity. 

Part IV concentrates on error resilience. It contains two chapters. Chapter 9 
reviews error resilience video coding techniques. The chapter considers the 
types of errors that can a(ect a video bitstream and examines their impact on 
decoded video. It then describes a number of error detection and error control 
techniques. Particular emphasis is given to standard error-resilience techniques 
included in the recent H.263+, H.263++, and MPEG-4 standards. 

Chapter 10 gives examples of the development of error-resilience tech-
niques. The chapter presents two temporal error concealment techniques. The 
,rst technique is based on motion ,eld interpolation, whereas the second 
technique uses multihypothesis motion compensation to combine motion ,eld 
interpolation with a boundary-matching technique. The techniques are then 
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tested within both an isolated test environment and an H.263 codec. The chap-
ter also investigates the performance of di(erent temporal error concealment 
techniques when incorporated within a multiple-reference video codec. In par-
ticular, the chapter ,nds a combination of techniques that best recovers the 
spatial-temporal components of a damaged multiple-reference motion vector. 
In addition, the chapter develops a multihypothesis temporal concealment tech-
nique to be used with multiple-reference systems. 

Audience for the Book 

In recent years, mobile video communications has become an active and im-
portant research and development topic in both industry and academia. It is, 
therefore, hoped that this book will appeal to a broad audience, including 
students, instructors, researchers, engineers, and managers. 

Chapter 1 can serve as a quick introduction for managers. Chapters 2 and 
3 can be used in an introductory course on the fundamentals and the standards 
of video coding. The two chapters can also be used as a quick introduction for 
researchers and engineers working on video coding for the ,rst time. More 
advanced courses on video coding can also utilize Chapters 4, 7, and 9 to 
introduce the students to issues in coding e"ciency, computational complex-
ity, and error resilience. The three chapters can also be used by researchers 
and engineers as an introduction and a guide to the relevant literature in the 
respective areas. Researchers and engineers will also ,nd Chapters 5, 6, 8, 
and 10 useful as examples of the design, implementation, and testing of novel 
video coding techniques. 
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Chapter 1 

Introduction to Mobile

Video Communications


1.1 Motivations and Applications 

In recent years, two distinct technologies have experienced massive growth 
and commercial success: multimedia and mobile communications. With the 
increasing reliance on the availability of multimedia information and the in-
creasing mobility of individuals, there is a great need for providing multimedia 
information on the move. Motivated by this vision of being able to commu-
nicate from anywhere at any time with any type of information, a natural 
convergence of mobile and multimedia is under way. This new area is called 
mobile multimedia communications. 
Mobile multimedia communications is expected to achieve unprecedented 

growth and worldwide success. For example, in Western Europe alone, it is 
estimated that by the year 2005 about 32 million people will use mobile multi-
media services, representing a market segment worth 24 billion Euros per year 
and generating 3;800 million Mbytes of tra(c per month. This will corre-
spond, respectively, to 16% of all mobile users, 23% of the total revenues, and 
60% of the overall tra(c. Usage is expected to increase at even higher rates, 
with 35% of all mobile users having mobile multimedia services by the year 
2010 [1]. The estimates become even more impressive when put in the context 
of a worldwide mobile market that reached 331:5 million users by the end of 
June 2000 [2] and is expected to grow to 1:7 billion users by 2010 [1]. It is 
not surprising, therefore, that this area has become an active and important 
research and development topic for both industry and academia, with groups 
across the world working to develop future mobile multimedia systems. 
The de1nition of the term multimedia has always been a source of great 

debate and confusion. In this book, it refers to the presentation of information 
through multiple forms of media. This includes textual media (text, style, 

1 



2 Chapter 1. Introduction to Mobile Video Communications 

layout, etc.), numerical media (spreadsheets, databases, etc.), audio media 
(voice, music, etc.), visual media (images, graphics, video, etc.) and any other 
form of information representation. 
Current second-generation mobile communication systems, like the Global 

System for Mobile (GSM),1 already support a number of basic multimedia 
communication services. Examples are voice, basic fax=data, short message 
services, information-on-demand (e.g., sports results, news, weather), e-mail, 
still-image communication, and basic internet access. However, many techno-
logically demanding problems need to be solved before real-time mobile video 
communication can be achieved. When such challenges are resolved, a wealth 
of advanced services and applications will be available to the mobile user. 
Examples are: 

•	Video-on-demand. 

•	Distance learning and training. 

•	Interactive gaming. 

•	Remote shopping. 

•	Online media services, such as news reports. 

•	Videotelephony. 

•	Videoconferencing. 

•	Telemedicine for remote consultation and diagnosis. 

•	Telesurveillance. 

•	Remote consultation or scene-of-crime work. 

•	Collaborative working and telepresence. 

1.2 Main Challenges 

The primary focus of this book is mobile video communication. In particular, 
the book focuses on three main challenges: 

1.	Higher coding e�ciency. The radio spectrum is a very limited and 
scarce resource. This puts very stringent limits on the bandwidth avail-
able for a mobile channel. Given the enormous amount of data generated 

1Originally, GSM was an acronym for Group Sp�ecial Mobile. 
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by video, the use of e(cient coding techniques is vital. For example, 
real-time transmission of a CIF2 video at 15 frames=s over a 9:6 kbits=s 
GSM channel requires a compression ratio of about 1900:1. Although 
current coding techniques are capable of providing such compression 
ratios, there is a need for even higher coding e(ciency to improve 
the quality (i.e., larger formats, higher frame rates, and better visual 
quality) of video at such very low bit rates. This continues to be the 
case even with the introduction of enhancements to second-generation 
systems, like the General Packet Radio Service (GPRS) [3] and the 
Enhanced Data Rates for GSM Evolution (EDGE), and also with the 
deployment of future higher-capacity, third-generation systems, like the 
Universal Mobile Telecommunication System (UMTS) [4]. 

2.	Reduced computational complexity. In mobile terminals, processing 
power and battery life are very limited and scarce resources. Given the 
signi1cant amount of computational power required to process video, the 
use of reduced-complexity techniques is essential. For example, recent 
implementations of video codecs [5,6] indicate that even state-of-the-art 
digital signal processors (DSPs) cannot, yet, achieve real-time video en-
coding. Typical results quoted in Refs. 5 and 6 are 1–5 frames=s using 
small video formats like SQCIF and QCIF.3 

3.	Improved error resilience. The mobile channel is a hostile environment 
with high bit error rates caused by a number of loss mechanisms, like 
multipath fading, shadowing, and co-channel interference. In the case of 
video, the eBects of such errors are magni1ed due to the fact that the 
video bitstream is highly compressed to meet the stringent bandwidth 
limitations. In fact, the higher the compression is, the more sensitive 
the bitstream is to errors, since in this case each bit represents a larger 
amount of decoded video. The eBects of errors on video are also magni-
1ed by the use of predictive coding and variable-length coding (VLC). 
The use of such coding methods can lead to temporal and spatial error 
propagation. It is, therefore, not di(cult to realize that when transmitted 
over a mobile channel, compressed video can suBer severe degradation 
and the use of error-resilience techniques is vital. 

2CIF stands for Common Intermediate Format. It is a digital video format in which the 
luminance component is represented by 352 pels × 288 lines and the two chrominance components 
are each of dimensions 176 × 144, where each pel is usually represented by 8 bits. Digital video 
formats are discussed in more detail in Chapter 2. 

3Quarter-CIF (QCIF) has a luminance component of 176 × 144, whereas sub-QCIF (SQCIF) 
has a luminance component of 128 × 96. 
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It should be emphasized that those are not the only requirements of a mo-
bile video communication system. Requirements like low delay, interactivity, 
scalability, and security are equally important. 

1.3 Possible Solutions 

Mobile video communication is a truly interdisciplinary subject [7]. Complete 
systems are likely to draw together solutions from diBerent areas, like video 
source coding, channel coding, network design, semiconductor design, and oth-
ers. This book will concentrate on solutions based on the video source coding 
part of the area. Thus, before being able to present the adopted approach, a 
closer look at video source coding is in order. Figure 1.1 shows a typical 
video codec. Changes between consecutive frames of a video sequence are 
mainly due to the movement of objects. Thus, the motion estimation (ME) 
block uses a motion model to estimate the movement that occurred between 
the current frame and a reference frame (usually a previously decoded frame 
that was stored in a frame buBer). This motion information is then utilized by 
the motion compensation (MC) block to move the contents of the reference 
frame to provide a prediction of the current frame. This motion-compensated 
prediction (MCP) is also known as the displaced frame (DF). The prediction 
is then subtracted from the current frame to produce an error signal known as 

Motion
compensation

(MC)

Motion
estimation

(ME)

+
_ 

Transform
Encoder 

Transform
Decoder

Frame buffer
(delay)

Decoded
reference 

frame 

+ 

difference (DFD)

Decoded DFD

Decoded current frame

Decoder

Motion-compensated 
prediction (MCP) 

Encoded displaced-frame 
Input frame 

Motion information 

Figure 1.1: Typical video codec 
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the displaced-frame di*erence (DFD). Instead of encoding the current frame 
itself, this error signal is encoded, since it has a much reduced entropy. At 
the decoder, the same reference frame is used along with the received motion 
information to produce the same prediction. This prediction is then added to 
the received error signal to reconstruct the current frame. 
Careful examination of this codec (as will be detailed in subsequent chap-

ters) reveals that a motion-based approach can be adopted to provide suitable 
solutions for the three challenges of higher coding e(ciency, reduced com-
plexity, and error resilience. This motion-based approach can be summarized 
as follows: 

1.	Advanced motion estimation techniques. One way to achieve higher cod-
ing e(ciency is to improve the performance of the motion estimation 
and compensation processes. The aim is to produce a better motion-
compensated prediction and consequently reduce the entropy of the DFD 
signal. This should be achieved at the same or, preferably, a reduced 
motion overhead.4 

2.	Reduced-complexity motion estimation techniques. Motion estimation is 
the most computationally intensive process in a typical video codec. In 
fact, pro1ling results (as will be shown in Chapter 7) indicate that the 
computational complexity of this process is greater than that of all the 
remaining encoding steps combined. Thus, by reducing the complexity 
of this process, the overall complexity of the codec can be reduced. 

3.	Motion-compensated error concealment techniques. Apart from control 
and header data, the output of a typical video codec is one of two types: 
motion data or error (i.e., DFD) data.5 Among the two types, motion data 
carries, in general, most of the information about a frame. In fact, at 
very low bit rates (typical of mobile video communication), motion data 
consumes a very high percentage of the available bit budget [8]. Thus, 
in the case of errors, it is very important to recover lost or erroneously 
received motion information. A class of error-resilience techniques that 
achieves this is motion-compensated error concealment, also known as 
temporal error concealment. Such techniques are particularly suited for 
mobile video communication, since, unlike other error resilience tech-
niques, they do not increase the bit rate and they do not introduce any 
delay. 

4An increase in motion overhead can be tolerated provided that the overall rate-distortion 
performance is improved. 

5In the case of intracoded frames, the error signal is the same as the frame signal and no 
motion data is transmitted. 





Part I


Introduction to Video

Coding


This part gives an introduction to video coding. It contains two chapters. 
Chapter 2 introduces some of the fundamentals of video source coding. It 
starts by giving some basic de�nitions and then covers both analog and digital 
video along with some basic video coding techniques. It also presents the 
performance measures and the test sequences that will be used throughout the 
book. It then reviews both intraframe and interframe video coding methods. 
Chapter 3 gives a brief introduction to video coding standards. The chapter 

starts by highlighting the need for video coding standards. It then outlines the 
chronological development of video coding standards, highlighting their main 
techniques and targeted applications. The chapter then concentrates on H.263 
(and its recent extensions: H.263+ and H.263++) and MPEG-4 as examples 
of the state-of-the-art video coding standards. 





Chapter 2 

Video Coding: Fundamentals


2.1 Overview 

This chapter gives a brief introduction to some fundamentals of video coding. 
Many of the concepts introduced in this chapter will be referenced and used 
in subsequent chapters. Section 2.2 gives some de�nitions. Section 2.3 covers 
analog video, whereas Section 2.4 concentrates on digital video. Section 2.5 
introduces some of the basics of video coding. It also presents the perfor-
mance measures and the test sequences that will be used in this book. Section 
2.6 reviews intraframe video coding methods, whereas Section 2.7 reviews 
interframe coding methods. 

2.2 What Is Video? 

A still image is a spatial distribution of intensity1 that is constant with respect 
to time [10]. Video, on the other hand, is a spatial intensity pattern that changes 
with time. Another common term for video is image sequence, since video can 
be represented by a time sequence of still-images. 

2.3 Analog Video 

2.3.1 Analog Video Signal 
Video has traditionally been captured, stored, and transmitted in analog form. 
The term analog video signal refers to a one-dimensional (1-D) electrical 

1Intensity is a measure over some interval of the electromagnetic spectrum of the /ow of power 
that is radiated from, or incident on, a surface. It is usually measured in watts per square meter 
[9]. 

9 
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signal of time that is obtained by sampling the video intensity pattern in 
the vertical and temporal coordinates and converting intensity to electrical 
representation. This sampling process is known as scanning. 

Raster scanning begins at the top-left corner and progresses horizontally, 
with a slight slope vertically, across the image. When it reaches the right-
hand edge it snaps back to the left-hand edge (horizontal retrace) to start 
a new scan line. On reaching the bottom-right corner, a complete frame has 
been scanned and scanning snaps back to the top-left corner (vertical retrace) 
to begin a new frame. During retrace, blanking (black) and synchronization 
pulses are inserted. 

The most commonly used raster scanning methods are progressive and inter-
laced, as illustrated in Figure 2.1. In progressive (also known as noninterlaced 
or 1:1) scanning, a frame is formed by a single scanning pass. In interlaced 
(or 2:1) scanning, however, a frame is formed by two successive scanning 
passes. In the �rst pass, the odd lines are scanned to form the �rst �eld, then 
the even lines are scanned to form the second �eld. When interleaved, the 
lines of the two �elds form a single frame. 

The aspect ratio, vertical resolution, frame rate, and refresh rate are impor-
tant parameters of the video signal. The aspect ratio is the ratio of the width 
to the height of a frame. The vertical resolution is related to the number of 
scan lines per frame (including the blanking intervals). The frame rate is the 
number of frames scanned per second. The e6ect of smooth motion can be 
achieved using a frame rate of about 25–30 frames=s. However, at these frame 
rates the human eye picks up the /icker produced by refreshing the display 
between frames. To avoid this, the display refresh rate must be above 50 Hz. 

vertical retrace horizontal retrace field 1 field 2 

Progressive Interlaced 

Figure 2.1: Raster scanning methods 
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Di6erent industries employ di6erent combinations of video parameters. For 
example, the computer industry uses progressive scanning with a frame rate 
of 72 frames=s. To reduce bandwidth requirements, the television industry uses 
interlaced scanning. In this case, the �eld rate is set to 50 or 60 �elds=s to  
avoid refresh /icker,2 while the frame rate (which, in interlaced video, is half 
the �eld rate) is 25 or 30 frames=s to maintain smooth motion. Note that this 
saving in bandwidth is at the expense of vertical resolution. There are two 
main television scanning systems: 625=50 (625 scan lines and 50 �elds=s) and 
525=60. 

2.3.2 Color Representation 
The preceding discussion considered monochrome video. In practice, how-
ever, most videos are in color. According to the trichromatic theory of color 
vision [11], color is perceived via three classes of cone cells, or photoreceptors, 
in the eye. Consequently, a color video can be produced by the superposition 
of three video signals. Each signal represents one of the three primary colors: 
red, green, and blue (RGB).3 Practical television (TV) and video systems usu-
ally convert this RGB representation to a di6erent color space of luminance4 

(which is closely related to the perception of brightness5) and chrominance 
(which is related to the perception of color hue6 and saturation7). This repre-
sentation serves two purposes. First, luminance ensures backward compatibility 
with monochrome video. Second, this representation lends itself more easily 
to video compression. This can be explained as follows. The human visual 
system (HVS) has poor response to color (chrominance) spatial detail com-
pared to its response to luminance spatial detail [9]. Thus, the chrominance 
signals can be bandlimited or subsampled to achieve compression. 

There are three main analog color coding systems: Phase Alternation Line 
(PAL), SEquential Couleur Avec Memoire (SECAM) and National 
Television System Committee (NTSC). They di6er mainly in the way they 

2Originally, television refresh rates were chosen to match the local AC power line frequency. 
3The RGB is an additive color system. This means that when all the primaries are added 

in equal maximum quantities, the color white is perceived. In printing and painting, the cyan, 
magenta, and yellow (CMY) system is used. This is a subtractive color system since the total 
absorbtion of all three primaries produces the color white. 

4Luminance is proportional to the light energy emitted per unit area of the source, but this 
energy is weighted according to the spectral sensitivity of the eye [9]. 

5Brightness is the attribute of a visual sensation according to which an area appears to emit 
more or less light [9]. 

6Hue is the attribute of a visual sensation according to which an area appears to be similar to 
one of the perceived colors, red, yellow, green and blue, or a combination of two of them [9]. 

7Saturation is the colorfulness of an area judged in proportion to its brightness [9]. 
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calculate the luminance=chrominance components from the RGB components. 
For example, the PAL system calculates the luminance=chrominance compo-
nents as follows: 

Y ′ =+0:299R′ + 0:587G′ + 0:114B′; 

U ′ = −0:147R′ − 0:289G′ + 0:436B′ =0:493(B′ − Y ′); (2.1) 

V ′ =+0:615R′ − 0:515G′ − 0:100B′ =0:877(R′ − Y ′); 

where R′G′B′ are gamma-corrected 8 components in the range [0; 1]. Note that 
Y ′ is closely related to gamma-corrected luminance and is usually referred to 
as luma. The chrominance is calculated as two color-di)erence components 
U ′ and V ′ . Again, since they are gamma-corrected, they are referred to as 
chroma components. The NTSC and SECAM systems calculate luma in the 
same way but use di6erent coeGcients for obtaining the chroma components 
(I ′ and Q′ in NTSC, and D′ and D′ in SECAM). B R 

2.3.3 Analog Video Systems 
There are three main analog video systems. In most of Western Europe, a 
625=50 PAL system is used. In Russia, France, the Middle East, and Eastern 
Europe, a 625=50 SECAM system is used. In North America and Japan, a 
525=60 NTSC system is used. All three systems are interlaced with a 4:3 
aspect ratio. 

The three systems are composite. This means that the chroma components 
are �rst bandlimited and then combined (for example, by frequency inter-
leaving) with the luma component. The resulting composite video signal has 
the same bandwidth as the original luma signal. For example, in the 625=50 
PAL system, the luma signal has a bandwidth of 5:5 MHz. The chroma sig-
nals are bandlimited to about 1:5 MHz and then QAM (quadrature amplitude 
modulation) modulated with a color subcarrier at 4:43 MHz above the picture 
carrier. For a more detailed discussion of these systems the reader is referred 
to Ref. 13. There are also other analog video systems that use separate com-
ponents (component video) or a separate luma component and a composite 
chroma component (S-video) [10]. 

8In a video system, it is important to convey luminance in such a way that noise and quantiza-
tion have a perceptually similar e6ect across the entire scale from black to white. This is achieved 
by applying a nonlinear function to each of the linear RGB components. This process is known 
as gamma-correction [12]. 
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2.4 Digital Video 

2.4.1 Why Digital? 
For the past two decades or so, the world has been experiencing a digital 
revolution. Most industries have witnessed a change from analog to digital 
technology, and video was no exception. Digital video has the following ad-
vantages over analog video 

•	Ease of editing, enhancing, and creating special e6ects. 

•	Avoidance of artefacts typical of analog video, like, for example, those 
caused by repeated recording on tapes, and errors in color rendition due 
to inaccuracies in the separation of composite video signals. 

•	Easy software conversion from one standard to another. For analog video 
conversion, expensive transcoders are needed. 

•	Robustness to noise and ease of encryption. 

•	Ease of scalability (spatial, temporal, or signal-to-noise ratio (SNR)). 
This facilitates the provision of the same service over a wide range of 
networks and hardware platforms. 

•	Interactivity. 

•	Ease of indexing, search and retrieval. For analog video, this requires 
tedious visual scanning. 

These advantages allowed a number of new applications and services to 
be introduced. For example, the TV broadcasting industry is introducing new 
services like interactivity, search and retrieval, video-on-demand, and high-
de�nition television (HDTV). The telecommunication industry is providing 
videoconferencing and videophones over a wide range of wired and wireless 
networks. The computer industry is providing desktop video and videocon-
ferencing. Other applications include intelligent highway traGc control sys-
tems, medical imaging, surveillance, and /ight simulation, to mention 
a few. 

2.4.2 Digitization 
The process of digitizing video involves three basic operations: �ltering, sam-
pling, and quantization. If the frequency content of the input analog signal 
exceeds half the sampling frequency, aliasing artefacts will occur. Thus, the 
�ltering operation is used to bandlimit the input signal and condition it for the 
following sampling operation. 
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The amplitude of the �ltered analog signal is then sampled at speci�c time 
instants to generate a discrete-time signal. The minimum sampling rate is 
known as the Nyquist rate and is equal to twice the signal bandwidth. 

The resulting discrete-time samples have continuous amplitudes. Thus, it 
would require in�nite precision to represent them. The quantization operation 
is used to map such values onto a �nite set of discrete amplitudes that can be 
represented by a �nite number of bits. 

Each discrete-time, discrete-amplitude sample is called a picture element 
and is usually abbreviated to a pel or a pixel. The pels are arranged in a 
two-dimensional (2-D) array to form a digital still image or a digital frame. 
A digital video consists of a sequence of such digital frames. 

For color video, the foregoing operations are repeated for each component. 
Thus, a digital still image would normally be represented by three 2-D arrays. 
Almost all digital video systems use component representation. This avoids 
the artefacts that result from composite encoding.9 

As an example, consider the digitization of a 625=50 PAL analog signal. 
The luma and chroma components are �rst �ltered to 5:5 MHz and 1:5 MHz, 
respectively. During sampling, minimum sampling frequencies of 11 MHz and 
3MHz must be used to sample the luma and chroma components, respectively. 
The resulting discrete-time signals are then quantized to a given precision 
(usually 8 bits). 

2.4.3 Chroma Subsampling 
As already mentioned, the HVS has poor response to chrominance spatial 
detail compared to its response to luminance spatial detail. This property can 
be exploited to reduce bandwidth requirements by subsampling the chroma 
components. The most commonly used subsampling patterns are illustrated 
in Figure 2.2. In 4:2:2 subsampling, the chroma components are subsampled 
by a factor of 2 horizontally. This gives a reduction of about 33% in the 
overall raw data rate. In 4:1:1 subsampling, the chroma components are sub-
sampled by a factor of 4 horizontally, giving a reduction of 50%. In 4:2:0 
subsampling, the chroma components are subsampled by a factor of 2 both 
horizontally and vertically, giving a reduction of 50% in the overall raw 
data rate. Vertically subsampled chroma samples are always sited midway 
between luma samples. Horizontally subsampled chroma samples, however, 

9As already discussed, composite encoding is used in analog systems to save bandwidth. In 
digital systems, however, bandwidth is saved using digital video compression techniques, as will 
be described later. 
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(a) 4:2:2 (b) 4:1:1 (c) 4:2:0 co-sited (d) 4:2:0 mid-sited 

luma sample chroma sample 

Figure 2.2: Chroma subsampling patterns 

can be either midway between luma samples (Figure 2.2(d)) or co-sited with 
odd-numbered luma samples (Figure 2.2(c)).10 

2.4.4 Digital Video Formats 
Exchange of digital video between di6erent industries, applications, networks, 
and hardware platforms requires standard digital video formats. Following are 
the most commonly used formats. 

2.4.4.1 CCIR-601 

The International Consultative Committee for Radio (CCIR)11 Recommen-
dation 601 [14] de�nes a digital video format for the international exchange 
and broadcast of production-quality TV programs. As with analog standards, 
CCIR-601 de�nes two interlaced systems: 525=60 and 625=50. The main fam-
ily within the standard uses a chroma subsampling of 4:2:2. The luma sam-
pling frequency is 13:5 MHz, the chroma sampling frequency is 13:5 × 0:5=  
6:75 MHz, and the components are quantized to 8 bits. In the 525=60 system, 
the luma component of the frame has active dimensions of 720 pels × 480 lines 
and the chroma components have 360 pels × 480 lines. In the 625=50 system, 
the corresponding values are 720 × 576 for luma and 360 × 576 for chroma. 
Note that despite the di6erences between the two systems, they generate the 
same raw bit rate12 of 165:89 Mbits=s. The standard is based on component 

10In view of this lack of consistency, the authors adopt the terms mid-sited and co-sited to 
describe the two cases. 
11The CCIR is currently known as ITU-R (International Telecommunications Union—Radio 

Sector). 
12Bit rate=[(720 × 480) + 2(360 × 480)] × 30 × 8=[(720 × 576) + 2(360 × 576)] × 25 × 8=  

165888000 bits=s, where the 2 refers to the two chroma components, the 30 and the 25 are 
the frame rates of the two systems, and the 8 is the number of bits per sample. 
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video with one luma (Y ′) and two chroma (CR 
′ and C′ 

B) components calculated 
as follows: 

Y ′ = 219(+0:299R′ + 0:587G′ + 0:114B′) + 16; 

CB 
′ = 224(−0:169R′ − 0:331G′ + 0:500B′) + 128; (2.2) 

CR 
′ = 224(+0:500R′ − 0:419G′ − 0:081B′) + 128; 

where Y ′ has 220 levels in the range [16; 235]; with black at 16 and white at 
235, and C′ 

B and CR 
′ have 225 levels in the range [16; 240]; with zero di6erence 

at 128. Note that other levels within the 8-bit range [0; 255] are reserved for 
synchronization and signal processing head- and foot-rooms. 

2.4.4.2 SIF and QSIF 

CCIR-601 was de�ned mainly for broadcast-quality applications. For storage 
applications, a lower-resolution format called the Source Input Format (SIF) 
was de�ned. This is a progressive 4:2:0 mid-sited format with a luma com-
ponent that is half the CCIR-601 active luma component in both dimensions. 
The CCIR-601 format has 720 luminance pels=line, which means that an SIF 
format must have 720=2 = 360 luma pels=line. Since 360 is not divisible by 16 
(which is the main coding unit within standard video codecs), 8 pels (4 from 
each side) are usually discarded to reduce the number of luma pels per line 
to 352. Since there are two CCIR-601 systems, there are two SIF formats: the 
�rst has a luma component of 352 × 240, chroma components of 176 × 120; 
and a frame rate of 30 frames=s, whereas the second format has a luma of 
352 × 288, chromas of 176 × 144; and a frame rate of 25 frames=s. 

A lower-resolution version of SIF is the quarter-SIF (QSIF) format. It has 
half the dimensions of SIF in both directions. This means it has quarter the 
number of samples, hence the name. Again, two versions are available: the �rst 
has a luma of 176 × 120, chromas of 88 × 60; and a frame rate of 30 frames=s, 
whereas the second has a luma of 176 × 144, chromas of 88 × 72; and a frame 
rate of 25 frames=s. For methods of converting between CCIR-601, SIF and 
QSIF, refer to Ref. 15. 

2.4.4.3 CIF and Its Family 

In order for video codecs to cope with both 525=60 and 625=50 formats, 
a common format was de�ned. In this format, the luma component has a 
horizontal resolution that is half that of both CCIR-601 systems, a vertical 
resolution that is half that of the 625=50 system, and a temporal resolution 
that is half that of the 525=60 system. This intermediate choice of vertical 
resolution from one system and temporal resolution from the other leads to 
the name Common Intermediate Format (CIF). The CIF is progressive, with 
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Table 2.1: The CIF family 

Luma Chromas 

pels=line lines=frame pels=line lines=frame 

SQCIF 
QCIF 
CIF 
4CIF 
16CIF 

128 
176 
352 
704 

1408 

96 
144 
288 
576 

1152 

64 
88 

176 
352 
704 

48 
72 

144 
288 
576 

4:2:0 mid-sited chroma subsampling and a frame rate of 30 frames=s. There 
are a number of lower- and higher-resolution members in the CIF family. 
Those are de�ned in Table 2.1. 

2.4.4.4 Other Formats 

There are a number of other formats. For example, some HDTV systems13 use 
a 1440 × 1050 luma at 30 frames=s with progressive scanning and no chroma 
subsampling (i.e., 4:4:4). 

2.5 Video Coding Basics 

2.5.1 The Need for Video Coding 
Table 2.2 shows the raw data rates of a number of typical video formats, 
whereas Table 2.3 shows a number of typical video applications and the 
bandwidths available to them. It is immediately evident that video coding 
(or compression) is a key enabling technology for such applications. Consider 
a 2-hour CCIR-601 color movie. Without compression, a 5-Gbit compact disc 
(CD) can hold only 30 seconds of this movie. To store the entire movie on 
the same CD requires a compression ratio of about 240:1. Without compres-
sion, the same movie will take about 36 days to arrive at the other end of a 
384 kbits=s Integrated Services Digital Network (ISDN) channel. To achieve 
real-time transmission of the movie over the same channel, a compression ratio 
of about 432:1 is required. 

13A range of HDTV formats exist. 
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Table 2.2: Raw data rates of typical video formats 

Format Raw data rate 

HDTV 1:09 Gbits=s 
CCIR-601 165:89 Mbits=s 
CIF @ 15 f.p.s. 18:24 Mbits=s 
QCIF @ 10 f.p.s. 3:04 Mbits=s 

Table 2.3: Typical video applications 

Application Bandwidth 

HDTV (6-MHz channel) 20 Mbits=s 
Desktop video (CD-ROM) 1:5 Mbits=s 
Videoconferencing (ISDN) 384 kbits=s 
Videophone (PSTN) 56 kbits=s 
Videophone (GSM) 10 kbits=s 

2.5.2 Elements of a Video Coding System 
The aim of video coding is to reduce, or compress, the number of bits used to 
represent video. Video signals contain three types of redundancy: statistical, 
psychovisual, and coding redundancy. Statistical redundancy is present be-
cause certain data patterns are more likely than others. This is mainly due to 
the high spatial (intraframe) and temporal (interframe) correlations between 
neighboring pels. Psychovisual redundancy is due to the fact that the HVS is 
less sensitive to certain visual information than to other visual information. If 
video is coded in a way that uses more and=or longer code symbols than ab-
solutely necessary, it is said to contain coding redundancy. Video compression 
is achieved by reducing or eliminating these redundancies. 

Figure 2.3 shows the main elements of a video encoder. Each element is 
designed to reduce one of the three basic redundancies. 

The mapper (or transformer) transforms the input raw data into a represen-
tation that is designed to reduce statistical redundancy and make the data more 
amenable to compression in later stages. The transformation is a one-to-one 
mapping and is, therefore, reversible. 

Mapper Quantizer 
Symbol 
encoder 

Figure 2.3: Elements of a video encoder 
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The quantizer reduces the accuracy of the mapper’s output, according to 
some �delity criterion, in an attempt to reduce psychovisual redundancy. This 
is a many-to-one mapping and is, therefore, irreversible. 

The symbol encoder (or codeword assigner) assigns a codeword, a string 
of binary bits, to each symbol at the output of the quantizer. The code must 
be designed to reduce coding redundancy. This operation is reversible. 

In general, compression methods can be classi�ed into lossless methods 
and lossy methods. In lossless methods the reconstructed (compressed-
decompressed) data is identical to the original data. This means that such 
methods do not employ a quantizer. Lossless methods are also known as bit-
preserving or reversible methods. In lossy methods the reconstructed data is 
not identical to the original data; that is, there is loss of information due to the 
quantization process. Such methods are therefore irreversible, and they usually 
achieve higher compression than lossless methods. 

2.5.3 Elements of Information Theory 
A source S with an alphabet A can be de�ned as a discrete random pro-
cess S= S1; S2; : : : ;  where each random variable Si takes a value from the 
alphabet A. 

In a discrete memoryless source (DMS) the successive symbols of the 
source are statistically independent. Such a source can be completely 
de�ned by its alphabet A= {a1; a2; : : : ; aN} and the associated probabilities 
P = {p(a1); p(a2); : : : ; p(aN )}, where 

∑N
i=1 p(ai) = 1. According to informa-

tion theory, the information I contained in a symbol ai is given by 

1
I(ai) = log2 = − log2 p(ai) (bits); (2.3)

p(ai) 

and the average information per source symbol H (S), also known as the 
entropy of the source, is given by 

N N 

H (S)=  p(ai)I(ai)=  − p(ai) log2 p(ai) (bits=symbol): (2.4) 
i=1 i=1 

A more realistic approach is to model sources using Markov-K random 
processes. In this case the probability of occurrence of a symbol depends on 
the values of the K preceding symbols. Thus, a Markov-K source can be 
speci�ed by the conditional probabilities p(Sj = ai|Sj−1; : : : ; S j−K), for all j, 
ai ∈ A. In this case, the entropy is given by 

H (S)=  p(Sj−1; : : : ; S j−K)H (S|Sj−1; : : : ; S j−K); (2.5) 
SK 
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where SK denotes all possible realizations of Sj−1; : : : ; S j−K , and 

H (S|Sj−1; : : : ; S j−K) 

= − p(Sj = ai|Sj−1; : : : ; S j−K) log p(Sj = ai|Sj−1; : : : ; S j−K): 
ai∈A 

(2.6) 

The performance bound of a lossless coding system is given by the lossless 
coding theorem [16]: 

Lossless coding theorem: The minimum bit rate Rmin that can be 
achieved by lossless coding of a source S can be arbitrarily close, 
but not less than, the source entropy H (S). Thus Rmin = H (S) +  �, 
where � is a positive quantity that can be made arbitrarily close to zero. 

For a DMS, this lower bound can be approached by coding symbols inde-
pendently, whereas for a Markov-K source, blocks of K symbols should be 
encoded at a time. 

The performance bounds of lossy coding systems are addressed by a branch 
of information theory known as rate-distortion theory [16, 17, 18]. This the-
ory provides lower bounds on the obtainable average distortion for a given 
average bit rate, or vice versa. It also promises that codes exist that approach 
the theoretical bounds when the code dimension and delay become large. An 
important theorem in this branch is the source coding theorem [17]: 

Source coding theorem: There exists a mapping from source symbols 
to codewords such that for a given distortion D, R(D) bits=symbol are 
suGcient to achieve an average distortion that is arbitrarily close to D. 

The function R(D) is known as the rate-distortion function. It is a convex, 
continuous, and strictly decreasing function of D, as illustrated in Figure 2.4. 
This function is normally computed using numerical methods [18], although 
for simple source and distortion models it can be computed analytically. Al-
though rate-distortion theory does not give an explicit method for constructing 
practical optimum coding systems, it gives very important hints about the 
properties of such systems. 

2.5.4 Quantization 
As already discussed, quantization is a key element of a video coding system. 
Quantization can be viewed as a many-to-one mapping. It represents a set 
of continuous-valued samples with a �nite number of symbols. If each input 
sample is quantized independently, then the process is referred to as scalar 
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R(0) = H(S) 

Rate, R 

0 

R(D) 

0 Dmax 

Distortion, D 

Figure 2.4: Rate-distortion function 

quantization. If, however, the input samples are grouped into a set of vectors 
and this set is mapped to a �nite number of vectors, then the process is 
known as vector quantization. Vector quantization is discussed in more detail 
in Section 2.6.4. 

Assume that the quantizer input s varies between smin and smax and that this 
range is to be mapped to a �nite set of N symbols, then a set of N + 1  de-
cision levels di, 0  ≤ i ≤ N , are �rst de�ned, where d0 = smin and dN = smax. 
This divides the input range into N quantization intervals. At the output 
of the quantizer, each quantization interval is then represented by a recon-
struction level ri , 1  ≤ i ≤ N . Thus, a scalar quantizer Q(·) can be de�ned as 
follows: 

ṡ= Q(s)=  ri; if di−1¡s ≤ di; where 1 ≤ i ≤ N; (2.7) 

where ṡ is the quantized output. There are, in general, two types of op-
timum scalar quantizers: Lloyd-Max and entropy-constrained. Lloyd-Max 
[19, 20] quantizers are designed to minimize the mean squared error with a 
�xed number of levels. Entropy-constrained quantizers [21] are designed to 
minimize a distortion measure for a constant output entropy. 

The simplest form of scalar quantization is uniform quantization. In this 
case, the decision levels (and the reconstruction levels) are equally spaced, 
with a quantizer step size �. In addition, the reconstruction levels are set 
to the midpoints of the quantization intervals. Figure 2.5(a) shows an ex-
ample of a uniform quantizer, with N = 7 reconstruction levels. In this case, 
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the quantization process can be implemented at the encoder using 
s 

ŝ= NINT ; (2.8)
� 

where NINT[·] is the operation of rounding to the nearest integer and ŝ is 
called the quantization index. It is the quantization index that is encoded and 
sent to the decoder. The decoder can then dequantize this index to obtain the 
reconstructed output as follows: 

ṡ= � · ŝ: (2.9) 

This type of quantizer is also known as a threshold quantizer, because it 
quantizes to zero all those inputs whose magnitudes are below a threshold. 
As will be discussed later, this type of quantizer is usually used in transform 
coding to reduce the number of transform coeGcients that need to be encoded. 
Another example of uniform threshold quantizers is illustrated in Figure 2.5(b). 
In this case, the quantization interval around zero has been extended to form 
a dead zone. This causes more nonsigni�cant inputs to be quantized to zero 
and, thus, increases compression. The quantization equation for this quantizer 
is given by 

s 
ŝ= FIX ; (2.10)

� 
where FIX[·] is the operation of rounding to the nearest integer toward zero 
(i.e., truncation). The corresponding dequantization equation is given by 

�
ṡ = � · ŝ + SIGN(ŝ) · 

2 
; (2.11) 

  +1; a¿0;   
SIGN(a)=  0; a  =0; (2.12)    −1; a¡0: 

Scalar quantizers can also be nonuniform. In this case, more reconstruction 
levels are assigned to more signi�cant subintervals within the input range. This 
yields a higher overall accuracy. 

2.5.5 Symbol Encoding 
Another key element of video coding systems is the symbol encoder. This 
assigns a codeword to each symbol at the output of the quantizer. The symbol 
encoder must be designed to reduce the coding redundancy present in the set 
of symbols. Following are a number of commonly used techniques that can 
be applied individually or in combinations. 
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2.5.5.1 Run-Length Encoding 

The output of the quantization step may contain long runs of identical sym-
bols. One way to reduce this redundancy is to employ run-length encoding 
(RLE). There are di6erent forms of RLE. For example, if the quantizer output 
contains long runs of zeros, then RLE can represent such runs with interme-
diate symbols of the form (RUN, LEVEL). For example, a run of the form 
0; 0; 0; 0; 0; 9 can be represented by the intermediate symbol (5,9). 

2.5.5.2 Entropy Encoding 

The quantizer can be considered a DMS Q that can be completely speci-
�ed by its alphabet R = {r1; r2; : : : ; rN }, where ri are the reconstruction levels 
and the associated probabilities of occurrence P= {p(r1); p(r2); : : : ;  
p(rN )}. The information contained in a symbol I (ri ) is given by 
Equation (2.3), whereas the entropy of the source H (Q) is given by 
Equation (2.4). 

Now consider a symbol encoder that assigns a codeword ci of length l(ci) 
bits to symbol ri . Then the average word length LR of the code is given by 

N ∑ 
RL = p(ri)l(ci ) (bits); (2.13) 

i=1 

and the eGciency ( ) of the code is 
H (Q)

  = : (2.14)RL 
Thus, an optimal (  = 1) code must have an average word length that is 

equal to the entropy of the source; i.e., LR = H (Q). Clearly, this can be achieved 
if each codeword length is equal to the information content of the associated 
symbol, that is, l(ci)=  I (ri ). Since I (ri ) is inversely proportional to p(ri) 
(from Equation (2.3)), then an eGcient code must assign shorter codewords 
to more probable symbols, and vice versa. This is known as entropy encoding 
or variable-length coding (VLC) (as opposed to �xed-length coding (FLC)). 

The most commonly used VLC is Hu)man coding [22]. Given a �nite 
set of symbols and their probabilities, Hu6man coding yields the optimal14 

integer-length pre�x15 code. The basic principles of Hu6man coding can be 
illustrated using the example given in Figure 2.6. In each stage, the two least 
probable symbols are combined to form a new symbol with a probability equal 

14Hu6man is optimal in the sense that no other integer-length VLC can achieve a smaller average 
word length. 
15In a pre�x code, no codeword is a pre�x of another codeword. This makes the code uniquely 

decodable. 
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Figure 2.6: Hu6man coding example 

Table 2.4: Comparison between VLC (of Figure 2.6) and a 3-bit FLC 

ri p(ri ) I (ri ) VLC ci FLC ci 

a1 0.40 1.32 bits 0 (1 bit) 000 
a2 0.25 2.00 bits 10 (2 bits) 001 
a3 0.20 2.32 bits 111 (3 bits) 010 
a4 0.10 3.32 bits 1101 (4 bits) 011 
a5 0.05 4.32 bits 1100 (4 bits) 100 

H (R) ≈ 2:04 bits=symbol 
RLFLC = 3 bits=word RLVLC ≈ 2:1 bits=word 
 FLC ≈ 0:68  VLC ≈ 0:97 

to the sum of their probabilities. This new symbol creates a new node in 
the tree, with two branches connecting it to the original two nodes. A “0” is 
assigned to one branch and a “1” is assigned to the other. The original two 
nodes are then removed from the next stage. This process is continued until 
the new symbol has a probability of 1. Now, to �nd the codeword for a given 
symbol, start at the right-hand end of the tree and follow the branches that 
lead to the symbol of interest combining the “0”s and “1”s assigned to the 
branches. Table 2.4 shows the obtained VLC and compares it to an FLC of 
3 bits. Clearly, the Hu6man VLC is much more eGcient than the FLC. 

There are more eGcient implementations of Hu6man coding. For example, 
in many cases, most of the symbols of a large symbol set have very small 
probabilities. This leads to very long codewords and consequently to large 
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storage requirements and high decoding complexity. In the modi�ed Hu)man 
code [23] the less probable symbols (and their probabilities) are lumped into 
a single symbol like ESCAPE. A symbol in this new ESCAPE category is 
coded using the VLC codeword for ESCAPE followed by extra bits to identify 
the actual symbol. Standard video codecs also use 2-D and 3-D versions of 
the Hu6man code. For example, the H.263 standard (see Section 3.4) uses a 
3-D Hu6man code where three di6erent symbols (LAST, RUN, LEVEL) are 
lumped into a single symbol (EVENT) and then encoded using one VLC 
codeword. 

One disadvantage of the Hu6man code is that it can only assign integer-
length codewords. This usually leads to a suboptimal performance. For ex-
ample, in Table 2.4, the symbol a3 was represented with a 3-bit codeword, 
whereas its information content is only 2:32 bits. In fact, Hu6man code can 
be optimal only if all the probabilities are integer powers of 1=2. An en-
tropy code that can overcome this limitation and approach the entropy of the 
source is arithmetic coding [24]. In Hu6man coding there is a one-to-one 
correspondence between the symbols and the codewords. In arithmetic coding, 
however, a single variable-length codeword is assigned to a variable-length 
block of symbols. 

2.5.6 Performance Measures 
When evaluating the performance of a video coding system, a number of 
aspects need to be assessed and measured. One important aspect is the amount 
of compression (C) achieved by the system. This can be measured in a number 
of ways: 

C = 
number of bits in original video 

number of bits in compressed video 
(unitless); (2.15) 

C = 
number of bits in compressed video 
number of pels in original video 

(bits=pel); (2.16) 

C = 
number of bits in compressed video 
number of frames in original video 

× frame rate (bits=s): 

(2.17) 

Another important aspect is the reconstruction quality. This can be assessed 
using a number of subjective and objective measures. Subjective measures are 
normally evaluated by showing the reconstructed video to a group of subjects 
and asking for their views on the perceived quality. A number of subjective 
assessment methodologies have been developed over the years. Examples are 
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the double stimulus impairment scale (DSIS) and the double and single stim-
ulus continuous quality scales, (DSCQS) and (SSCQS), respectively. For a 
detailed description of such experiments the reader is referred to Ref. 25. 

Despite their reliability, subjective quality experiments are expensive and 
time consuming. Objective measures provide cheaper and faster alternatives. 
One commonly used objective measure is the mean squared error (MSE), 
which is de�ned as 

MSE = 
1 H ∑ V ∑ 

[ f(x; y) − f̂(x; y)]2; (2.18)
H × V 

x=1 y=1 

where H and V are the horizontal and vertical dimensions of the frame, re-
spectively, and f(x; y) and f̂(x; y) are the pel values at location (x; y) of  
the original and reconstructed frames, respectively. Care should be taken to 
include color components and to take into account any chroma subsampling. 
For example, the MSE of a reconstructed 4:2:0 color frame can be calculated 
as  

1 H V 

MSE4:2:0 =  [Y ′(x; y) − Ŷ ′(x; y)]2 
3 H × V2 x=1 y=1 

H=2 V=2 

+ [CR
′ (x; y) − Ĉ′ 

R(x; y)]
2 

(2.19)
x=1 y=1  
H=2 V=2 

C′ + [CB
′ (x; y) − ˆB(x; y)]

2 

x=1 y=1 
2= 3 (MSEY � + 1MSEC� + 1MSEC� ):4 R 4 B 

A more common form of the MSE measure is the peak signal-to-noise 
ratio (PSNR), which is de�ned as 

f2 
maxPSNR = 10 log10 (dB); (2.20)

MSE 

where fmax is the maximum possible pel value (for example, 255 for an 8-bit 
resolution component). Although this measure does not always correlate well 
with perceived video quality, its relative simplicity makes it a very popular 
choice in the video coding community. Thus, to facilitate comparisons with 
other algorithms reported in the literature, this book adopts the PSNR measure. 
If accuracy is a major concern, then more sophisticated objective measures 
based on perceptual models can be used [26]. 

When testing a video coding algorithm, it is very important to subject it to 
a range of input video sequences with di6erent characteristics and a reasonable 
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(a) FOREMAN (b) AKIYO (c) TABLE TENNIS 

Figure 2.7: Three test sequences 

spread of data properties. The Moving Picture Experts Group (MPEG) estab-
lished a library of CCIR-601 test sequences divided into �ve classes: class A 
(low spatial detail and low amount of motion), class B (medium spatial detail 
and low amount of motion or vice versa), class C (high spatial detail and 
medium amount of motion, or vice versa), class D (stereoscopic), and class E 
(hybrid of natural and synthetic content) [27]. The �rst three classes are more 
relevant to the work carried out in this book. Thus, the book uses three test 
sequences: AKIYO, FOREMAN, and TABLE TENNIS, where each sequence is a rep-
resentative of one of the three relevant classes, A, B, and C, respectively. The 
three sequences are at QSIF resolution and include 300 frames each. This res-
olution is typical of the sequences used in very-low-bit-rate applications. Both 
AKIYO and TABLE TENNIS have luma components of 176 × 120 and a frame rate 
of 30 frames=s, whereas FOREMAN has a luma component of 176 × 144 and a 
frame rate of 25 frames=s. Figure 2.7 shows the luma component of the �rst 
frame of each of the three test sequences. 

2.6 Intraframe Coding 

Intraframe coding refers to video coding techniques that achieve compression 
by exploiting (reducing) the high spatial correlation between neighboring pels 
within a video frame. Such techniques are also known as spatial redundancy 
reduction techniques or still-image coding techniques. 

2.6.1 Predictive Coding 
Predictive coding was originally proposed by Cutler in 1952 [28]. In this 
method, a number of previously coded pels are used to form a prediction of 
the current pel. The di)erence between the pel and its prediction forms the 
signal to be coded. Obviously, the better the prediction, the smaller the error 
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Figure 2.8: Block diagram of a predictive coding system 

signal and the more eGcient the coding system. At the decoder, the same 
prediction is produced using previously decoded pels, and the received error 
signal is added to reconstruct the current pel. A block diagram of a predic-
tive coding system is depicted in Figure 2.8. Predictive coding is commonly 
referred to as di)erential pulse code modulation (DPCM). A special case of 
this method is delta modulation (DM), which quantizes the error signal using 
two quantization levels only. 

Predictive coding can take many forms, depending on the design of the 
predictor and the quantizer blocks. The predictor can use a linear or a nonlinear 
function of the previously decoded pels, it can be 1-D (using pels from the 
same line) or 2-D (using pels from the same line and from previous lines), and 
it can be �xed or adaptive. The quantizer also can be uniform or nonuniform, 
and it can be �xed or adaptive. 

The minimal storage and processing requirements were partly responsible 
for the early popularity of this method, when storage and processing devices 
were scarce and expensive resources. The method, however, provides only 
a modest amount of compression. In addition, its performance is highly de-
pendent on the statistics of the input data, and it is very sensitive to errors 
(feedback through the prediction loop can cause error propagation). As pro-
cessing and storage devices became more available, more complex, more eG-
cient methods like transform coding have become more popular. Despite this, 
predictive coding is still used in video coding, as, for example, in the lossless 
coding of motion vectors. 

2.6.2 Transform Coding 
Transform coding, developed more than two decades ago, has proven to be 
a very e6ective video coding method. Today, it forms the basis of almost all 
video coding standards. Figure 2.9 shows a block diagram of a typical trans-
form coding system. The input frame is �rst segmented into N × N blocks. 
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Figure 2.9: Block diagram of a transform coding system 

A unitary16 space-frequency transform is applied to each block to produce an 
N × N block of transform (spectral) coeGcients that are then suitably quan-
tized and coded. At the decoder, an inverse transform is applied to reconstruct 
the frame. The main goal of the transform is to decorrelate the pels of the 
input block. This is achieved by redistributing the energy of the pels and con-
centrating most of it in a small set of transform coeGcients. This is known as 
energy compaction. The transform process can also be interpreted as a coor-
dinate rotation of the input or as a decomposition of the input into orthogonal 
basis functions weighted by the transform coeGcients [29]. Compression comes 
about from two main mechanisms. First, low-energy coeGcients can be dis-
carded with minimum impact on the reconstruction quality. Second, the HVS 
has di6ering sensitivity to di6erent frequencies. Thus, the retained coeGcients 
can be quantized according to their visual importance. 

When choosing a transform, three main properties are desired: good en-
ergy compaction, data-independent basis functions, and fast implementation. 
The Karhunen-LoVeve transform (KLT) is the optimal transform in an energy-
compaction sense. Unfortunately, this optimality is due to the fact that the 
KLT basis functions are dependent on the covariance matrix of the input 
block. Recomputing and transmitting the basis functions for each block is 
a nontrivial computational task. These disadvantages severely limit the use 
of the KLT in practical coding systems. The performance of many subopti-
mal transforms with data-independent basis functions have been studied [30]. 
Examples are the discrete Fourier transform (DFT), the discrete cosine trans-
form (DCT), the Walsh-Hadamard transform (WHT), and the Haar transform. 
It has been demonstrated that the DCT has the closest energy-compaction 
performance to that of the optimum KLT [30]. This has motivated the de-
velopment of a number of fast DCT algorithms, e.g., Ref. 31. Due to these 

16A unitary transform is a reversible linear transform with orthonormal basis functions [29]. 
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attractive features, i.e., near-optimum energy-compaction, data-independent ba-
sis functions and fast algorithms, the DCT has become the “workhorse” of 
most image and video coding standards. 

The DCT was developed by Ahmed et al. in 1974 [32]. There are four 
slightly di6erent versions of the DCT [33], but the one commonly used for 
video coding is denoted by DCT-II. The 2-D DCT-II of an N × N block of 
pels is given by 

N −1 N −1 ( ) ( ) 
F(u; v)=  C(u)C(v) 

∑ 

x=0 

∑ 

y=0 

f(x; y) cos 
(2x + 1)u' 

2N 
cos 

(2y + 1)v' 
2N 

; 

(2.21) 

where f(x; y) is the pel value at location (x; y) within the block, F(u; v) is  
the corresponding transform coeGcient, 0 ≤ u; v; x; y ≤ N − 1, and 

  1  N ; (  =0; 
C(()=  √ (2.22)   2 ; otherwise:N 

The transform coeGcient F (0; 0) at the top-left corner of the transformed block 
is called the DC coeGcient because it contains the lowest frequencies in both 
the horizontal and vertical dimensions. The corresponding inverse DCT trans-
form is given by 

N −1 N −1 ( ) ( ) ∑ ∑ (2x + 1)u' (2y + 1)v'
f(x; y)=  C(u)C(v)F(u; v) cos cos :

2N 2N 
u=0 v=0 

(2.23) 

It can be deduced from Equation (2.21) that the computational complexity 
of an N × N 2-D DCT is of the order O(N 4). However, one of the advantages 
of the DCT is that it is separable. This means that a 2-D DCT can be separated 
into a pair of 1-D DCTs. Thus, to obtain the 2-D DCT of an N × N block, a 
1-D DCT is performed �rst on each of the N rows of the block and then on 
each of the N columns of the resulting block (or vice versa). The same applies 
to the inverse DCT. This reduces the complexity to O(2N 3). Further reductions 
in complexity can be achieved using a number of fast DCT algorithms [31]. 

Beside transform selection, a signi�cant factor that a6ects transform coding 
performance and computational complexity is the block size. In general, the 
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Figure 2.10: Transform coeGcient bit allocation 

use of smaller block sizes reduces computational complexity.17 However, as 
will be discussed later, transform coding su6ers from blocking artefacts at very 
low bit rates. Such artefacts are more disturbing with smaller block sizes [15]. 
As a compromise between computational complexity and blocking artefacts, 
most transform coding systems employ a block size of 8 × 8 or 16  × 16. Note 
that both sizes are powers of 2, which simpli�es computations. 

Another important factor in transform coding is bit allocation. This refers 
to the process of determining which coeGcients should be retained for cod-
ing and how coarsely each retained coeGcient should be quantized. There are 
two main approaches: zonal coding and threshold coding. In zonal coding the 
retained coeGcients are selected on the basis of maximum variance. Thus, the 
locations of the retained coeGcients with the largest variances are indicated 
by a zonal mask that is the same for all blocks. Once the retained coeGcients 
are decided, a number of methods can be used to decide the number of bits 
allocated to each. One method is to choose the number of bits to be propor-
tional to the variance of the coeGcient. Figure 2.10(a) shows a zonal mask 
with the allocated bits. Once the number of bits allocated for each coeGcient 
is determined, a di6erent quantizer can be designed for each coeGcient. 

One disadvantage of zonal coding is that the locations of the retained co-
eGcients and the bits allocated to them are �xed for all blocks. In threshold 
coding, however, the locations and the bit allocation can be adapted to the 
characteristics of the block. For this reason, this method is employed by most 
video coding standards. In threshold coding, the retained coeGcients are se-
lected on the basis of maximum magnitude. Thus, only those coeGcients whose 

17For example, if a 256 × 256 frame was divided into 256 blocks, each of 16 × 16 pels, then a 
direct implementation of the 2-D DCT will require: blocks × N 4 =256  × 164 =16; 777; 216 mul-
tiplications. If, however, the same frame was divided into 4096 blocks, each of 4 × 4 pels, then 
4096 × 44 =1; 048; 576 multiplications will be required. 
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magnitudes are above a threshold are retained. In practice, the thresholding and 
the following quantization operations are combined in one operation using a 
uniform threshold quantizer as was described in Section 2.5.4 (see Figure 2.5 
and Equations (2.8) and (2.10)). In this case, a quantization matrix is used to 
de�ne the quantizer step size, �, for each coeGcient in the block. A typical 
quantization matrix is given in Figure 2.10(b). Note that low-frequency coeG-
cients (toward top-left corner) are more �nely quantized (i.e., quantized with a 
smaller step size) because of two reasons. First, the DCT tends to concentrate 
most of the energy in low frequencies. Second, the HVS is more sensitive 
to variations in low frequencies. Since in threshold coding the locations of 
the retained coeGcients vary from block to block, those locations need to be 
encoded. A commonly used strategy is to zigzag scan the transform coeG-
cients, as illustrated in Figure 2.10(c), in an attempt to produce long runs of 
zeros, and then RLE is used to encode the resulting array. 

Compared to predictive coding, transform coding provides higher compres-
sion with less sensitivity to errors and less dependence on the input data 
statistics. Its higher computational complexity and storage requirements have 
been o6set by advances in integrated circuit technology. One disadvantage, 
however, is that when compression factors are pushed to the limit, three 
types of artefacts start to occur: (i) “graininess” due to coarse quantization 
of some coeGcients, (ii) “blurring” due to the truncation of high-frequency 
coeGcients, and (iii) “blocking artefacts,” which refer to arti�cial disconti-
nuities appearing at the borders of neighboring blocks due to independent 
processing of each block. Since blocking artefacts are the most disturbing, a 
number of methods have been proposed to reduce them. Examples are over-
lapping blocks at the encoder [34], the use of the lapped orthogonal trans-
form (LOT) [35], and postprocessing using �ltering and image restoration 
techniques [36]. 

2.6.3 Subband Coding 
As already mentioned, rate-distortion theory can provide insights into the de-
sign of eGcient coders. For example, in Ref. 37 it is shown that the math-
ematical form of the rate-distortion function suggests that an eGcient coder 
splits the original signal into spectral components of in�nitesimal bandwidth 
and encodes these spectral components independently. This is the basic idea 
behind subband coding. Subband coding was �rst introduced by Crochiere 
et al. in 1976 in the context of speech coding [38] and was applied to image 
coding by Woods and O’Neil in 1986 [39]. In subband coding the input image 
is passed through a set of bandpass �lters to create a set of bandpass images, 
or subbands. Since a bandpass image has a reduced bandwidth compared to 
the original image, it can be downsampled (subsampled or decimated). This 
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Figure 2.11: A 1-D, two-band subband coding system 

process of �ltering and downsampling is called the analysis stage. The sub-
bands are then quantized and coded independently. At the decoder, the de-
coded subbands are upsampled (interpolated), �ltered, and added together to 
reconstruct the image. This is knows as the synthesis stage. Note that sub-
band decomposition does not lead to any compression in itself, since the total 
number of samples in the subbands is equal to the number of samples in 
the original image (this is known as critical decimation). The power of this 
method resides in the fact that each subband can be coded eGciently accord-
ing to its statistics and visual importance. A block diagram of a basic 1-D, 
two-band subband coding system is presented in Figure 2.11. 

Ideally, the frequency responses of the low-pass and high-pass �lters should 
be nonoverlapping but contiguous and have unity gain over their bandwidths. 
In practice, however, �lters are not ideal and their responses must be over-
lapped to avoid frequency gaps. The problem with overlapping is that aliasing 
is introduced when the subbands are downsampled. A family of �lters that cir-
cumvent this problem is the quadrature mirror �lter (QMF). In the QMF, the 
�lters are designed in such a way that the aliasing introduced by the analysis 
stage is exactly cancelled by the synthesis stage. 

The 1-D decomposition can easily be extended to 2-D using separable 
�lters. In this case, 1-D �lters can be applied �rst in one dimension and 
then in the other dimension. Using a 1-D two-band decomposition in each 
direction results in four subbands: horizontal low=vertical low (LL), horizon-
tal low=vertical high (LH), horizontal high=vertical low (HL), and horizon-
tal high=vertical high (HH), as illustrated in Figure 2.12(a). This four-band 
decomposition can be continued by repetitively splitting all subbands (uni-
form decomposition) or just the LL subband (nonuniform decomposition). A 
three-stage nonuniform decomposition is illustrated in Figure 2.12(b). 
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Figure 2.12: Two-dimensional subband decomposition 

Note that nonuniform decomposition results in a multiresolution pyrami-
dal representation of the image. A commonly used technique for nonuni-
form decomposition is the discrete wavelet transform (DWT). The DWT is a 
transform that has the ability to operate at various scales and resolution lev-
els. Having used the DWT for decomposition, various methods can be used 
to encode the resulting subbands. One of the most eGcient methods is the 
embedded zero-tree wavelet (EZW) algorithm proposed by Shapiro [40]. This 
algorithm assumes that if a coeGcient at a low-frequency band is zero, it is 
highly likely that all the coeGcients at the same spatial location at all higher 
frequencies will also be zero and, thus, can be discarded. The EZW algorithm 
encodes the most important information �rst and then progressively encodes 
less important re�nement information. This results in an embedded bitstream 
that can support a range of bit rates by simple truncation. Further re�nements 
to the EZW algorithm have been proposed by Said and Pearlman [41, 42]. In 
particular, the set partitioning in hierarchical trees (SPIHT) algorithm [42] has 
become the choice of most practical implementations. 

One advantage of subband coding systems is that, unlike transform systems, 
they do not su6er from blocking artefacts at very low bit rates. In addition, 
they �t naturally with progressive and multiresolution transmission. One disad-
vantage, however, is that at very low bit rates, ringing artefacts start to occur 
around high-contrast edges. This is due to the Gibbs phenomenon of linear 
�lters. To avoid this artefact, subband decomposition using nonlinear �lters 
has been proposed [43, 44]. 

2.6.4 Vector Quantization 
Vector quantization (VQ) is a block-based spatial-domain method that has 
become very popular since the early 1980s. In VQ, the input image data is 
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�rst decomposed into k-dimensional input vectors. Those input vectors can 
be generated in a number of di6erent ways; they can refer to the pel val-
ues themselves or to some appropriate transformation of them. For example, 
a k = M ×M block of pels can be ordered to form a k-dimensional input 
vector s = [s1; : : : ; sk ]T . In VQ, the k-dimensional space Rk is divided into 
N regions, or cells, Ri. Any input vector that falls into cell Ri is repre-
sented by a representative codevector ri = [r1; : : : ; rk ]T . The set of codevec-
tors C = {r1; : : : ; rN} is called the codebook. Thus, the function of the en-
coder is to search for the codevector ri that best matches the input vector 
s according to some distortion measure d(s; ri). The index i of this code-
vector is then transmitted to the decoder using at most I = log2 N bits. At 
the decoder, this index is used to lookup the codevector from an identical 
codebook. A block diagram of a vector quantization system is illustrated in 
Figure 2.13. 

Compression in VQ is achieved by using a codebook with relatively few 
codevectors compared to the number of possible input vectors. The resulting 
bit rate of a VQ is given by I=k bits=pel. In theory, as k→∞, the performance 
of VQ approaches the rate-distortion bound. However, large values of k make 
codebook storage and searching impractical. Values of k =4  × 4 and N = 1024 
are typical in practical systems. 

A very important problem in VQ is the codebook design. A commonly 
used approach for solving this problem is the Linde-Buzo-Gray (LBG) algo-
rithm [45], which is a generalization of the Lloyd-Max algorithm for scalar 
quantization. The LBG algorithm computes a codebook with a locally min-
imum average distortion for a given training set and given codebook size. 
Entropy-constrained vector quantization (ECVQ) [46] extends the LBG al-
gorithm for codebook design under an entropy constraint. Another 
important problem is the codebook search. A full search is usually imprac-
tical, and a number of fast-search algorithms have been proposed, 
e.g., Ref. 47. 
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There are many variants of VQ [29]. Examples include adaptive VQ, clas-
si�ed VQ, tree-structured VQ, product VQ (including gain=shape VQ, mean= 
residual VQ, and interpolative=residual VQ), pyramid VQ, and �nite-state VQ. 

Theoretically, VQ is more eGcient than scalar quantization for both cor-
related and uncorrelated data [48]. Thus, the scalar quantizer in predictive, 
transform, and subband coders can be replaced with a vector quantizer. 

Vector quantization has a performance that rivals that of transform 
coding. Although the decoder complexity is negligible (a lookup table), the 
high complexity of the encoder and the high storage requirements of the 
method still limit its use in practice. Like transform coding, VQ su6ers from 
blocking artefacts at very low bit rates. 

2.6.5 Second-Generation Coding 
The coding methods discussed so far are generally known as waveform coding 
methods. They operate on pels or blocks of pels based on statistical image 
models. This classical view of the image coding problem has three main dis-
advantages. First, it puts more emphasis on the codeword assignment (using 
information and coding theory) rather than on the extraction of representative 
messages. Because the encoded messages (pels or blocks) are poorly repre-
sentative in the �rst place, a saturation in compression is eventually reached 
no matter how good is the codeword assignment. Second, the encoded entities 
(pels or blocks) are consequences of the technical constraints in transforming 
scenes into digital data, rather than being real entities. Finally, it does not 
place enough emphasis on exploiting the properties of the HVS. E6orts to 
utilize models of the HVS and to use more representative coding entities (real 
objects) led to a new class of coding methods known as the second-generation 
coding methods [49]. 

Second-generation methods can be grouped into two classes: local-operator-
based techniques and contour=texture-oriented techniques. Local-operator-
based techniques include pyramidal coding and anisotropic nonstationary 
predictive coding, whereas the contour=texture-oriented techniques include 
directional decomposition coding and segmented coding. Two commonly used 
segmented coding methods are region-growing and split-and-merge. For a 
detailed discussion of second-generation methods, the reader is referred to 
Refs. 49, 50, 51. 

Second-generation methods provide higher compression than waveform cod-
ing methods at the same reconstruction quality. They also do not su6er from 
blocking and blurring artefacts at very low bit rates. However, the extraction 
of real objects is both diGcult and computationally complex. In addition, such 
methods su6er from unnatural contouring e6ects, which can make the details 
seem arti�cial. 
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2.6.6 Other Coding Methods 
There are many other intraframe coding techniques. Examples are block-
truncation coding, fractal coding, quad-tree and recursive coding, multireso-
lution coding, and neural-network-based coding. A detailed (or even a brief) 
discussion of such techniques is beyond the scope of this book, and the 
interested reader is referred to Ref. 52. 

2.7 Interframe Coding 
As already discussed, video is a time sequence of still images or frames. Thus, 
a naive approach to video coding would be to employ any of the still-image 
(or intraframe) coding methods discussed in Section 2.6 on a frame-by-frame 
basis. However, the compression that can be achieved by this approach is 
limited because it does not exploit the high temporal correlation between the 
frames of a video sequence. Interframe coding refers to video coding tech-
niques that achieve compression by reducing this temporal redundancy. For 
this reason, such methods are also known as temporal redundancy reduc-
tion techniques. Note that interframe coding may not be appropriate for some 
applications. For example, it would be necessary to decode the complete inter-
frame coded sequence before being able to randomly access individual frames. 
Thus, a combined approach is normally used in which a number of frames 
are intraframe coded (I-frames) at speci�c intervals within the sequence and 
the other frames are interframe coded (predicted or P-frames) with reference 
to those anchor frames. In fact, some systems switch between interframe and 
intraframe within the same frame. 

2.7.1 Three-Dimensional Coding 
The simplest way to extend intraframe image coding methods to interframe 
video coding is to consider 3-D waveform coding. For example, in 3-D trans-
form coding based on the DCT, the video is �rst divided into blocks of 
M × N × K pels (M; N; K denote the horizontal, vertical, and temporal dimen-
sions, respectively). A 3-D DCT is then applied to each block, followed by 
quantization and symbol encoding, as illustrated in Figure 2.14. A 3-D coding 
method has the advantage that it does not require the computationally intensive 
process of motion estimation (as will be discussed in Section 2.7.2). However, 
it requires K frame memories both at the encoder and decoder to bu6er the 
frames. In addition to this storage requirement, the bu6ering process limits the 
use of this method in real-time applications because encoding=decoding cannot 
begin until all of the next K frames are available. In practical systems, K is 
typically set to 2– 4 frames. 
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2.7.2 Motion-Compensated Coding 
One of the earliest approaches to interframe coding was conditional replenish-
ment (CR) [53]. In this method, the input frame is divided into “changed” and 
“unchanged” regions with respect to a previously decoded reference frame, and 
the addresses of this segmentation are coded. Unchanged regions need not be 
coded because they can simply be copied from the reference frame, whereas 
changed regions need to be coded. One way of coding them is to use one 
of the intraframe coding methods discussed in Section 2.6. However, a more 
eGcient approach is to predictively code them with respect to the correspond-
ing regions in the reference frame. In this case, the coded prediction error 
signal is called the frame di)erence (FD) and the process is known as frame 
di)erencing. 

An improved performance can be obtained by improving the prediction of 
changed regions. This can be achieved using motion estimation and compen-
sation. Changes between frames are mainly due to the movement of objects. 
Using a model of the motion of objects between frames, the encoder estimates 
the motion that occurred between the reference frame and the current frame. 
This process is called motion estimation (ME). The encoder then uses this 
motion model and information to move the contents of the reference frame 
to provide a better prediction of the current frame. This process is known 
as motion compensation (MC), and the prediction so produced is called the 
motion-compensated prediction (MCP) or the displaced-frame (DF). In this 
case, the coded prediction error signal is called the displaced-frame di)erence 
(DFD). A block diagram of a motion-compensated coding system is illustrated 
in Figure 2.15. This is the most commonly used interframe coding method. 

The reference frame employed for ME can occur temporally before or af-
ter the current frame. The two cases are known as forward prediction and 
backward prediction, respectively. In bidirectional prediction, however, two 
reference frames (one each for forward and backward prediction) are employed 
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and the two predictions are interpolated (the resulting predicted frame is called 
B-frame). The most commonly used ME method is the block-matching mo-
tion estimation (BMME) algorithm [54]. In this algorithm, the current frame 
is �rst divided into blocks. The motion of each block is then estimated by 
searching for the best-match block in the reference frame according to some 
distortion measure. This search is usually restricted to a search window cen-
tered around the corresponding block in the reference frame. The motion of 
the current block is then represented by a motion vector, which is the dis-
placement between the block and its best-match block in the reference frame. 
The process of BMME is illustrated in Figure 2.16. Note that this algorithm 
is based on a translational model of the motion of objects between frames. 
It also assumes that all pels within a block undergo the same translational 
movement. There are many other ME methods, but BMME is normally pre-
ferred due to its simplicity and good compromise between prediction quality 
and motion overhead [55]. A more detailed discussion of BMME and other 
ME methods is deferred to Chapter 4. 

As illustrated in Figure 2.15, the DFD signal can be coded using any of 
the intraframe coding methods discussed in Section 2.6. However, the most 
commonly used method is transform coding, in particular block-based DCT 
transform coding. This combination of block-matching motion-compensated 
prediction and block-based DCT coding of the prediction error has proved 
to be the most successful class of video coding methods. Today, most video 
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coding standards are based on this so-called hybrid MC-DPCM=DCT coding 
method. 

2.7.3 Model-Based Coding 
At very low bit rates (below 64 kbits=s), the quality produced by conventional 
motion-compensated coding methods may be unacceptable for some applica-
tions [10]. In particular, at such bit rates, decoded frames using MC-DPCM= 
DCT generally su6er from blocking artefacts. This is mainly due to the trans-
lational block-based motion model. This has initiated research e6orts into new 
motion-compensated methods based on more realistic structural motion mod-
els. Such methods are referred to as model-based coding methods. 

Model-based coding is also known as analysis-synthesis coding, because it 
is characterized by two main processes: analysis and synthesis. Both processes 
usually make extensive use of sophisticated computer vision and computer 
graphics tools. At the encoder, the image sequence is initially segmented into 
a number of objects. Each object is then analyzed to decide its location, shape, 
and texture. The encoder then uses this analysis data to deform a general model 
to synthesize an approximation of the object. The same analysis data is also 
transmitted to the decoder to synthesize a similar approximation. When the 
object starts moving, tracking techniques are used, at the encoder, to estimate 
the associated animation data, which is then transmitted to the decoder to 
animate the same object. While animation data is suGcient for low quality 
reproduction at low bit rates, residual data can also be transmitted to achieve 
higher quality reproduction, but at the expense of a higher bit rate. Thus, 
once the whole scene is synthesized, only a few animation parameters and 
possibly some texture information need to be encoded. Hence, model-based 
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coding o6ers a potential saving in bit rate, which makes it attractive for very-
low-bit-rate applications. 

Model-based coding methods can be broadly classi�ed as object-based or 
knowledge-based. Object-based coding methods deal with unknown (arbitrary) 
objects, whereas knowledge-based coding methods assume a priori knowledge 
of the objects being modeled (e.g., a 3-D wireframe face model is usually 
employed for head-and-shoulders sequences typical of videophone applica-
tions). Knowledge-based coding methods are generally successful in tracking 
the global motion of the object (e.g., rotation and translation of the head), 
but su6er from errors in estimating local motion (e.g., the movement of the 
eyes, lips, and so on). Semantic-based coding is a subset of knowledge-based 
coding methods that models local motion using a set of action units (e.g., a 
combination of facial action units can lead to a given facial expression). 

Despite their good performance at very low bit rates, model-based coding 
methods have their problems. For example, at lower bit rates, the analysis and 
modeling processes become more complex and the model needs to be more 
object speci�c. In addition, the analysis and tracking methods usually require 
some degree of human intervention or some a priori assumptions about the 
nature of tracked objects. Another problem is that, in some cases, severe or 
sustained failure of tracking or modeling may occur, leading to an increase in 
the bit rate or a deterioration in the video quality. However, continuous re-
search e6orts in this area are addressing such problems. For example, switched 
model-based coders, with a fallback mode to conventional coding, have been 
proposed to solve the problem of model or tracking failure [56]. For a good 
review of model-based coding, the reader is referred to Ref. 57. 



Chapter 3 

Video Coding: Standards 

3.1 Overview 
This chapter gives a brief introduction to video coding standards. Section 
3.2 highlights the need for video coding standards. Section 3.3 outlines the 
chronological development of video coding standards, highlighting their main 
techniques and targeted applications. The chapter then gives two examples of 
the state-of-the-art video coding standards: Section 3.4 concentrates on H.263 
(and its recent extensions: H.263+ and H.263++), whereas Section 3.5 de-
scribes MPEG-4. 

3.2 The Need for Video Coding Standards 

For the past 25 years or so, the e,cient coding of image and video sig-
nals has been the subject of considerable research. Over the years, the /eld 
has matured and has become a key enabling technology for a wide range of 
applications spanning a wide range of industries. This has moved the /eld 
from being a purely academic research area to become a highly commer-
cial business. This increased commercial interest has ignited the e1orts of 
international standardization of image and video coding. International stan-
dards enable image and video material from di1erent sources and industries 
to be processed on di1erent hardware platforms, to be stored on di1erent 
storage devices, and to be transmitted on di1erent communication networks. 
This interoperability opens a huge market for video equipment and at the 
same time gives consumers a wide range of services. International 
standards also allow for large scale production at considerably reduced 
costs. 

43 
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3.3 Chronological Development 

Video coding standardization activities started in the early 1980s. The activi-
ties were initiated by the International Telegraph and Telephone Consultative 
Committee (CCITT), which is currently known as the International Telecom-
munications Union — Telecommunication Standardization Sector (ITU-T). 
This was later followed by CCIR (currently ITU-R), the International 
Organization for Standardization (ISO), and the International Electrotechni-
cal Commission (IEC). This has resulted in a number of standards, some of 
which are discussed here. 

3.3.1 H.120 
The /rst video coding international standardization activity was carried out by 
Study Group (SG) XV of CCITT during its study period 1980 –1984. In 1984 
it issued Recommendation H.120 in its /rst version, and in 1988 it issued the 
second version [58]. The standard was targeted for videoconferencing appli-
cations at the digital primary rates of 1:544 Mbits=s and 2:048 Mbits=s. The 
standard had three parts: Part 1 for 625=50 regional use at 2 Mbits=s, Part 3 
for 525=60 regional use at 1:5 Mbits=s, and Part 2 for international use (both 
525=60 and 625=50 at 1:5Mbits=s). Parts 1 and 2 use CR with intra/eld DPCM 
for changed regions, whereas Part 3 uses intra/eld prediction, background pre-
diction,1 and motion compensated inter/eld prediction. This di1erence in cod-
ing techniques between the di1erent parts was one of the reasons why H.120 
never became a commercial success. 

3.3.2 H.261 
At the end of 1984, CCITT=SG XV agreed to de/ne a standard targeted 
for videophone and videoconferencing applications at ISDN subprimary rates 
(≤2 Mbits=s). Initially, it was thought that there would be two di1erent al-
gorithms e,cient at 64 kbits=s or higher and 384 kbits=s or higher, respec-
tively. It was found, however, that a single algorithm could cover all these 
rates. Thus, H.261 was drafted in 1989 to provide audiovisual services at 
p× 64 kbits=s (p=1  : : : 30). This draft became an international standard in 
1991 and was later revised in 1993 [59]. H.261 was the /rst widespread com-
mercial success. In fact, its adopted techniques of hybrid MC-DPCM=DCT 
(16 × 16 macroblocks for MC and 8 × 8 blocks for DCT), SKIP=INTER= 

1None of the later standards have included a background prediction mode, although sprite 
coding in MPEG-4 can be considered a form of background prediction. 
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INTRA mode switching on a macroblock level, zigzag scanning, RLE, scalar 
quantization, and VLC entropy coding have become key elements in most 
video coding standards. 

3.3.3 CCIR-721 
In parallel to the standardization activities of CCITT, CCIR started standardiza-
tion of video coding for contribution-quality TV signals. Recommendation 721 
[60] was issued in 1990. Its main target was the transmission of component 
coded digital TV signals for contribution-quality applications at bit rates near 
140 Mbits=s. The recommendation used a simple form of intra/eld DPCM to 
achieve a low implementation complexity and a high degree of random access 
(which is important for video postprocessing in studios). 

3.3.4 CCIR-723 
CCIR Recommendation 723 [61] was issued in 1992. Its main target was 
the coding of component digital TV signals for contribution-quality appli-
cations in the range 34–45 Mbits=s. The recommendation employs a hybrid 
MC-DPCM=DCT with one intra/eld mode and two inter/eld modes (with and 
without MC). Both the CCIR-721 and the CCIR-723 recommendations are not 
generic. In contrast to other standards, they fully specify both the encoder and 
the decoder. 

3.3.5 MPEG-1 
In 1988, the Moving Picture Experts Group (MPEG) was created under Sub-
committee (SC) 2 of ISO (ISO=SC2). The group is now Working Group (WG) 
11 of SC29 under the Joint Technical Committee (JTC) 1 of ISO=IEC. Thus, 
its o,cial denotation is ISO=IEC JTC1=SC29=WG11. The main aim of the 
group was to develop a video coding standard for digital media storage ap-
plications at up to 1:5 Mbits=s. In 1991 the group drafted its ISO=IEC 11172 
(MPEG-1) standard [62], which became an international standard in 1992. 
The MPEG-1 video algorithm is very similar to the H.261 algorithm but with 
some advanced techniques, like bidirectional prediction and half-pel MC2. The 
standard also provides for some speci/c storage requirements, like random ac-
cess and fast forward=reverse searches. Although the standard was developed 
mainly for storage applications, it was designed to be generic. Thus, it was 

2Half-pel MC was proposed during the development of the H.261 but was thought to be too 
complex at that time. 
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designed as a toolbox, where the user can decide which tools to use for the 
particular application. In addition, the standard de/nes only the decoder and 
the bitstream syntax. This allows a large degree of freedom for manufacturers 
to propose their own optimized encoders. This generic design and large degree 
of freedom have contributed to the success of MPEG-1. It has been used in 
a wide range of applications, from interactive systems on CD-ROM to the 
delivery of video over telecommunication networks. 

3.3.6 MPEG-2 
In 1990, ISO=IEC JTC1=SC29=WG11 started studies on a new standard for 
applications not covered by MPEG-1. In particular, the new standard was 
intended to provide video quality not lower than NTSC=PAL and up to CCIR-
601 quality at rates around 10 Mbits=s. This standardization activity was nick-
named MPEG-2 because it was seen as phase 2 of the work started in 
MPEG-1. In 1992, ITU-T=SG 15 joined this standardization e1ort to develop 
video coding for Asynchronous Transfer Mode (ATM) networks. In 1993, 
it was realized that the scope of MPEG-2 could be enlarged to suit cod-
ing of HDTV. This made an initially planned MPEG-3 for HDTV superJu-
ous. In 1994, the ISO=IEC 13818 (MPEG-2) standard (ITU-T Recommen-
dation H.262) was drafted [63], and later in the year it was accepted as an 
international standard. Like MPEG-1, the MPEG-2 standard is generic and 
Jexible. In fact, MPEG-2 can be thought of as a superset of, and as such 
was designed to be backward compatible with, MPEG-1. There are many 
additional features provided by MPEG-2 over MPEG-1, including the sup-
port for interlaced video and scalability. Since implementation of the full 
MPEG-2 syntax may not be practical for most applications, MPEG-2 has in-
troduced the concepts of “pro/les,” describing functionalities, and “levels,” 
describing resolutions, to provide subset conformance levels. MPEG-2 has 
had even more success than MPEG-1, with applications in the areas of ca-
ble TV, networked ATM services, and satellite and terrestrial TV broad-
casting. 

3.3.7 H.263 
The increasing demand for digital video communications over the public 
switched telephone network (PSTN) and mobile networks initiated a new 
standardization e1ort by ITU-T=SG 15. The aim was to develop a video cod-
ing standard for low-bit-rate applications below 64 kbits=s. The result of this 
e1ort was ITU-T Recommendation H.263 [64], which was completed in 1995 
and approved in 1996. Although H.263 was based on the coding structure 
of H.261, it provides a signi/cant improvement in performance. Side-by-side 
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comparisons indicate that H.263 provides the same subjective quality as H.261 
but with less than half the bit rate [65]. This performance improvement is due 
to optimized coding techniques as well as advanced optional coding modes. 
Some of the new features of H.263 compared to H.261 are the support for 
more picture formats, half-pel MC, a 3-D (LAST-RUN-LEVEL) RLE instead 
of 2-D (RUN-LEVEL), more optimized VLC tables, optional extra head-
ers to increase error resilience, advanced 2-D median predictor for motion 
vector coding, more optimized macroblock addressing and quantization adap-
tation, optional extended-range unrestricted motion vectors that can point out-
side frames, optional arithmetic coding, optional advanced prediction with 
overlapped motion compensation and four motion vectors per macroblock, 
and optional bidirectional prediction. H.263 is described in more detail in 
Section 3.4. 

3.3.8 H.263+ 

Technically, H.263+ is version 2 of the H.263 standard [66]. This version was 
developed by ITU-T=SG16=Q15 Advanced Video Experts Group (previously 
under ITU-T=SG15), with technical content completed in 1997 and approved 
in 1998. The H.263+ standard added 12 new optional features to H.263. These 
new features support custom picture size and clock frequency, improve com-
pression e,ciency, allow scalability, enhance error resilience over wireless 
and packet-based networks, provide supplemental display and external usage 
capabilities, and ensure backward compatibility. H.263+ is described in more 
detail in Section 3.4. 

3.3.9 MPEG-4 

In 1993, the ISO=IEC JTC1=SC29=WG11 MPEG group initiated a new stan-
dardization activity called MPEG-4. The target was the very-low-bit range and 
the aim was to achieve higher compression e,ciency than could be achieved 
by existing conventional techniques. In 1994, it was realized that too few 
improvements could be achieved over the H.263 and H.263+ compression 
results to justify a new standard. Thus, the group decided to broaden the ob-
jectives of the MPEG-4 e1ort and started an in-depth analysis of the trends 
within the audiovisual world. Particular attention was given to the convergence 
of the three traditionally separate industries of communications, computing, 
and TV=/lm=entertainment. This study concluded that MPEG-4 should sup-
port functionalities that would be useful in future applications but were not 
supported or not well supported by the available standards. Eight main new 
or improved functionalities were identi/ed and then clustered in three classes: 
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content-based interactivity (content-based multimedia data-access tools, 
content-based manipulation and bitstream editing, hybrid natural and synthetic 
data coding, improved temporal random access), compression (improved cod-
ing e,ciency, coding of multiple concurrent data streams), and universal 
access (robustness in error-prone environments, content-based scalability). Ver-
sion 1 of the MPEG-4 standard was approved in October 1998. A second 
version was approved in December 1999 to add new functionalities and im-
prove others. The MPEG-4 standard is o,cially known as ISO=IEC 14496 
and is titled “Generic coding of audiovisual objects” [67]. This title describes 
two important properties of the MPEG-4 standard. The /rst property is that 
it is a generic standard. It is designed to cover a wide range of bit rates 
(typically, 5 kbits=s to 10 Mbits=s), picture formats (progressive and inter-
laced), resolutions (SQCIF to beyond TV), frame rates (still images to high 
frame rates), communication networks (wired or wireless), input material (nat-
ural or synthesized), etc. The second property is that it uses an object-based 
representation model, where a scene is represented, coded, and manipulated 
as individual audiovisual objects. This particular property (i.e., being object-
based) sets MPEG-4 apart from earlier block-based standards. Thus, in addi-
tion to conventional block-based MC-DPCM=DCT techniques, MPEG-4 adopts 
more recent object-based techniques like second-generation coding techniques 
(Section 2.6.5) and model-based coding techniques (Section 2.7.3). MPEG-4 
is described in more detail in Section 3.5. 

3.3.10 H.263++ 

Technically, H.263++ is version 3 of the H.263 standard [68]. This version 
was developed by ITU-T=SG16=Q15, with technical content completed and 
approved late in the year 2000. The H.263++ standard added some more 
features to H.263 and H.263+. These new features improve coding e,ciency, 
enhance error resilience, provide additional supplemental display and external 
usage capabilities, and de/ne pro/les and levels. H.263++ is described in 
more detail in Section 3.4. 

3.3.11 H.26L 

This is a project of ITU-T=SG16=Q15. The H.26L project is planned to be a 
new-generation video coding standard with improved e,ciency, error 
resilience, and streaming support. It is scheduled for completion in 2002. 
In addition to the standard documents themselves, interested readers are 

referred to some excellent reviews and tutorials available in the literature 
[69, 70, 65, 71–75, 11, 13, 15]. 
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3.4 The H.263 Standard 

3.4.1 Introduction 
The H.263 recommendation speci/es a coded representation that can be used 
for compressing the moving picture component of audiovisual services at low 
bit rates. The recommendation fully speci/es the decoder and the bitstream 
syntax but does not explicitly specify the encoder. As already mentioned, this 
gives manufacturers a large degree of freedom to propose their own optimized 
encoders, as long as the output bitstream conforms to the standard decodable 
syntax. However, during the standardization process, a software-based codec 
(encoder-decoder) called the test model is developed to study the core ele-
ments of the standard. For example, version 5 of the test model near-term 
(TMN) is described in Ref. 76. 

3.4.2 Source Format 
The standard supports all /ve members of the CIF family described in 
Section 2.4.4 and Table 2.1. As a minimum requirement, all decoders shall be 
able to operate with SQCIF and QCIF. Encoders, on the other hand, shall be 
able to operate with either SQCIF or QCIF and are not obliged to be able to 
operate with both. 

3.4.3 Video Source Coding Algorithm 
The generalized form of the source coder is illustrated in Figure 3.1. 
It is a hybrid of interpicture prediction to utilize temporal redundancy and 
transform coding of the error signal to reduce spatial redundancy. 

3.4.3.1 Picture Coding Structure 

The input video consists of a sequence of pictures (or frames). Each picture 
is divided into groups of blocks (GOBs). A GOB consists of k × 16 lines, 
depending on the picture format (k = 1 for SQCIF, QCIF, and CIF, k = 2 for 
4CIF, and k = 4 for 16CIF). For example, there are 9 GOBs in a QCIF picture. 
Each GOB is divided into macroblocks (MBs). A macroblock consists of 
16 × 16 samples of Y

′ 
R
consists of 6 blocks: 4 luma blocks and the 2 spatially corresponding chroma 
blocks. Figure 3.2 illustrates the H.263 picture structure for a QCIF frame. 
As shown, GOBs are coded from top to bottom in increasing number. Within 
each GOB, the MBs are coded from left to right (and from top to bottom if 
the GOB contains more than one row of MBs) in increasing number. Within 

′ andB′ 
R

′ 
B

′ and the spatially corresponding 8 × 8 samples of C
. If we de/ne a block as 8 × 8 samples of Y ′; C , or  C , then a macroblock C
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Figure 3.1: H.263 video encoder 

each MB, the Y ′ blocks are /rst coded in the order shown (left to right and 
top to bottom), followed by the C′ block and then the C′ block.B R 

3.4.3.2 Coding Modes 

The coding mode in which interpicture prediction is applied is called the 
INTER mode. Prediction can optionally be augmented by motion compen-
sation. If no prediction is applied, then the coding mode is called INTRA. 
The coding mode (INTRA=INTER) can be signaled at the picture level (re-
sulting in I-pictures=P-pictures) or at the macroblock level in P-pictures. In 
PB-frames (discussed later) the B-pictures are always coded in INTER mode. 
The mode selection method is not de/ned by the standard. However, to control 
the accumulation of IDCT mismatch3 error, the standard requires an MB to 
be coded in INTRA mode at least once every 132 times when coe,cients are 
transmitted for this MB in P-pictures. In the INTER mode, a Jag is used to 
indicate whether an MB is transmitted or not (conditional replenishment). This 
is sometimes referred to as the SKIP mode. Again, the method of reaching a 

3The inverse discrete cosine transform (IDCT) is a common block between the encoder and the 
decoder. Di1erences in implementation between the encoder’s IDCT and the decoder’s IDCT cause 
mismatches between the reconstructed pictures at both ends. This is called the IDCT mismatch 
error. This mismatch accumulates due to interpicture prediction and can be stopped by forced 
INTRA updating. 
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Figure 3.2: H.263 picture structure for a QCIF frame 

decision to transmit an MB or not is not part of the standard. The di1erent 
Jags are encoded within the picture and MB headers. 

3.4.3.3 Motion Estimation and Compensation 

Without options, the encoder estimates one motion vector per MB. Both hori-
zontal and vertical components of the vector have integer or half-integer values 
and are restricted to the range [−16; +15:5]. A positive value of the horizon-
tal or vertical component means that the prediction is made from pels in 
the reference picture that are spatially to the right or below the pels being 
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predicted, respectively. Motion vectors are restricted such that all pels ref-
erenced by them are within the reference picture area. The standard does 
not explicitly specify an ME method. However, this MB-based structure im-
plicitly supports block-based approaches and in particular the BMME 
algorithm. 

3.4.3.4 Motion Vector Coding 

The estimated motion vector MV = (MVx; MVy) is predictively coded. This 
means that the motion vector di1erence MVD = MV − MVP is encoded 
instead of the motion vector itself. The motion vector predictor MVP is the 
median of three candidate predictors, which are the motion vectors of three 
surrounding macroblocks, as illustrated in Figure 3.3(a). The two components 
of the motion vector di1erence are then entropy coded using a standard VLC 
table. MVDx is encoded /rst, followed by MVDy. 

3.4.3.5 Forward Transform 

The forward DCT transform is applied either to the pel values, in the case 
of an INTRA MB, or to the DFD values, in the case of an INTER MB. In 
both cases, the DCT is applied on a block (8 × 8) basis. This results in six 
blocks of transform coe,cients for each MB. The standard does not specify 
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Figure 3.3: H.263 motion vector prediction 
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the method of implementing the forward DCT. Threshold coding, discussed in 
Section 2.6.2, is used to allocate bits to the transform coe,cients, as will be 
discussed next. 

3.4.3.6 Quantization 

The six DC coe,cients of an INTRA MB are quantized using a uniform 
scalar quantizer with a step size of 
= 8 and no dead zone (this corresponds 
to Figure 2.5(a) and Equation (2.8)). All other coe,cients are quantized using 
a uniform scalar quantizer with a step size of 
=2  × QP and a central dead 
zone around zero (this corresponds to Figure 2.5(b) and Equation (2.10)). 
There are 31 possible quantization parameters, QP = 1 : : : 31. However, the 
quantization parameter is kept /xed for all coe,cients within an MB. A high 
QP leads to higher compression but worse quality, whereas a low QP leads 
to better quality but less compression. The method to select a QP is not part 
of the standard. A change of QP to any of the 31 permissible values can 
be signaled in the picture or GOB headers. In the MB header, however, this 
change is limited to a maximum of ±2. Again, the method to decide this 
change is not de/ned in the standard. 

3.4.3.7 Quantized Coe5cients Coding 

A quantized INTRA DC coe,cient is encoded using a standard 8-bit FLC 
table. Other quantized coe,cients are /rst zigzag scanned, as described in 
Section 2.6.2 and Figure 2.10(c). The reordered coe,cients are then encoded 
using 3-D RLE. Thus, the reordered coe,cients are converted to an interme-
diate set of symbols or EVENTS of the form (LAST, RUN, LEVEL), where 
LAST is an indication of whether this is the last nonzero coe,cient in the 
block or not, RUN is the number of successive zeros preceding the coded co-
e,cient, and LEVEL is the nonzero value of the coded coe,cient. The most 
commonly occurring EVENTs are coded using a standard VLC table, whereas 
the remaining EVENTs are coded using a concatenation of four standard FLC 
codewords for ESCAPE, LAST, RUN and LEVEL. 

3.4.3.8 Coding Control 

The coding control block is responsible for varying several parameters to con-
trol the rate or the quality of the coded video. Examples are the INTER= 
INTRA mode decision at the picture or MB level, the update pattern of the 
forced INTRA refresh, the TRANSMIT=SKIP decision at the MB level, and 
the QP and its change at the picture, GOB, or MB level. Such functions are 
not de/ned in the standard. 
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3.4.4 Decoding Process 
3.4.4.1 Motion Vector Decoding 

For each TRANSMITTED INTER MB, the decoder calculates the same 
motion vector predictor MVP used at the encoder and adds it to the 
decoded motion vector di1erence MVD to obtain the decoded motion vec-
tor MV. The motion vector of a SKIPPED INTER MB is set to 0. 

3.4.4.2 Motion Compensation 

The decoded motion vector is used to compensate the four Y ′ blocks in the 
MB. Motion vectors for both C′ and C′ blocks are derived by dividing the R B 
component values of the decoded motion vector by 2. The resulting quarter-
pel resolution components are modi/ed toward the nearest half-pel resolution 
(both 0.25 and 0.75 are rounded to 0.5). If motion compensation requires 
accessing half-pel positions, then bilinear interpolation is used to calculate the 
pel values at those positions. 

3.4.4.3 Inverse Quantization 

As already discussed, quantization is achieved by dividing the transform coef-
/cient by a quantization step size and rounding the result (refer to Equations 
(2.8) and (2.10)). Inverse4 quantization is the process of reconstructing an ap-
proximation of the original coe,cient by multiplying the quantized coe,cient 
by the same step size (refer to Equations (2.9) and (2.11)). The reconstructed 
coe,cients are then clipped to the range [−2048; +2047] and inverse zigzag 
scanned to put them in an 8 × 8 block. 

3.4.4.4 Inverse Transform 

The reconstructed block of coe,cients is processed by a separable 2-D 8 × 8 
inverse DCT. The arithmetic procedures for computing the inverse DCT are 
not de/ned by the standard, but should meet a de/ned error tolerance. 

3.4.4.5 Reconstruction of Blocks 

For INTRA blocks, the reconstructed block is equal to the result of the inverse 
DCT. For INTER blocks, the reconstructed block is formed by summing the 
motion-compensated prediction and the result of the inverse DCT. The recon-
structed values are clipped to the range [0; 255]. 

4It should be emphasised that the term inverse here does not mean that quantization is a 
reversible process. Quantization is irreversible since rounding leads to loss of information. 
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3.4.5 Optional Coding Modes 
There are four optional coding modes that can be signaled at the picture level. 
These modes are de/ned in annexes to the standard and are brieJy described 
next. 

3.4.5.1 Unrestricted Motion Vector Mode (Annex D) 

In this mode, motion vectors are allowed to point outside the reference picture 
area. When a pel pointed to by a motion vector is outside the reference picture 
area, an edge pel is used instead. This edge pel is found by limiting the 
motion vector to the last full-pel position inside the reference picture area. 
Limitation of the motion vector is performed on a pel basis and separately for 
each component of the motion vector. In this mode also, the range for motion 
vector components is extended to [−31:5; +31:5], with the restriction that if the 
predictor is in the range [−15:5; +16], then only values that are within a range 
of [−16; +15:5] around the predictor can be reached. If, however, the predictor 
is outside [−15:5; +16]; then all values within the range [−31:5; +31:5] with 
the same sign as the predictor can be reached. Allowing motion vectors to point 
outside the reference picture area improves prediction along picture edges in 
the case of camera or background movement. This is particularly useful for 
small picture formats (where border MBs represent a high percentage of the 
picture area). The extended motion vector range allows better prediction for 
large picture formats and a high amount of movement. 

3.4.5.2 Syntax-Based Arithmetic Coding Mode (Annex E) 

In this mode, all VLC Hu1man coding=decoding operations of H.263 are 
replaced with arithmetic coding=decoding operations. As already discussed in 
Section 2.5.5, arithmetic coding removes the restriction of representing each 
symbol by an integral number of bits, achieving more coding e,ciency but at 
the expense of more computational complexity. 

3.4.5.3 Advanced Prediction Mode (Annex F) 

This optional mode includes two advanced prediction techniques: the use of 
four motion vectors per MB, and the use of overlapped motion compensation 
(OMC). In addition, this mode allows motion vectors to point outside the 
reference picture area. If this mode is used in combination with the unrestricted 
motion vector mode, then the motion vectors will also have an extended range. 
If the mode is used in combination with the PB-frames mode, then OMC is 
only used for P-pictures, not for B-pictures. 
In this mode, the encoder makes a decision (which is not de/ned by the 

standard) whether to transmit one motion vector or four motion vectors per 
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MB. If one motion vector is transmitted (as in normal mode), then the decoder 
replicates it to four motion vectors. If four motion vectors are to be transmitted, 
then the motion vector prediction process is modi/ed as illustrated in Figure 
3.3(b). Motion vectors for chroma blocks are derived by calculating the sum of 
the four luma vectors and then dividing by 8. The resulting values of 1=16-pel 
resolution are modi/ed toward the nearest 1=2-pel values (0; 1=16, and 2=16 
are modi/ed to 0; 14=16 and 15=16 are modi/ed to 1; and all other values 
are modi/ed to 1=2). This technique improves prediction if the MB contains 
di1erent moving objects. 
In OMC, each pel in an 8 × 8 luma prediction block is predicted as a 

weighted sum of three prediction values. To obtain the three prediction val-
ues, three motion vectors are used: the motion vector of the current luma 
block, and two out of four remote motion vectors. The four remote motion 
vectors are the motion vectors of the luma blocks to the left of, to the right 
of, above, and below the current luma block. The position of the pel within 
the block decides which two remote vectors to use. For example, all pels in 
the top-left quadrant of the block use the two remote vectors of the blocks 
above and to the left of the current luma block. The weight given to each 
of the three predictions also changes with pel position within the block. The 
weights are de/ned in three standard matrices. The weights for a remote pre-
diction are designed to increase as the pel position moves away from the center 
of the block toward the corresponding remote block. This ensures a smooth 
transition at the borders of the block, which results in a visible reduction of 
blocking artefacts. If a remote MB was not coded, then the corresponding 
vector is set to zero. If a remote MB does not exist (out of the picture) or 
was INTRA coded, then the corresponding vector is set to the vector of the 
current MB. In PB-frames mode, however, INTRA MBs have motion vectors, 
and those are used as remote vectors. For chroma blocks, no overlapping is 
performed. 

3.4.5.4 PB-Frames Mode (Annex G) 

In this mode, two pictures are encoded as one unit called a PB-frame. Thus, a 
PB-frame consists of one P-picture that is predicted from the previous decoded 
P-picture (forward prediction) and one B-picture that is predicted from both 
the previous decoded P-picture and the P-picture currently decoded in the 
same PB-frame (bidirectional prediction). In a PB-frame, an MB consists of 
12 blocks: the 6 blocks of the P-picture, followed by the 6 blocks of the 
B-picture. In this mode, an INTRA coding mode can also be used where 
P-blocks are INTRA coded and B-blocks are INTER coded with prediction 
as for an INTER block. In this case, motion vector data is included with the 
INTRA-coded P-blocks but are used for predicting B-blocks. 



57 Section 3.4. The H.263 Standard 

Figure 3.4: Prediction in PB-frames mode 

For prediction of a B-block, both forward, MVF, and backward, MVB, 
motion vectors are needed. Those are not transmitted but are derived at the 
decoder by scaling the corresponding P-block motion vector, MV, using the 
temporal resolutions of the P- and B-pictures with respect to the previous 
P-picture. The derived motion vectors can be optionally enhanced using a 
transmitted delta vector MVDB. The forward (or backward) motion vectors 
for chroma blocks are derived by summing the corresponding luma forward 
(or backward) motion vectors, dividing by 8, and then rounding to the nearest 
half-pel resolution. To be able to predict a B-macroblock, the correspond-
ing P-macroblock is /rst reconstructed. For pels of a B-block where MVB 
points outside the reconstructed P-macroblock, forward prediction using MVF 
and the previous decoded P-picture is used. However, for pels of the same 
B-block where MVB points inside the reconstructed P-macroblock, bidirec-
tional prediction is used. In this case, the prediction is the average (with 
truncation) of the forward prediction, using MVF and the previous decoded 
P-picture, and the backward prediction, using MVB and the reconstructed 
P-macroblock. This process is illustrated in Figure 3.4. With this mode, the 
frame rate can be increased without a signi/cant increase in bit rate. 

3.4.6 H.263, Version 2 (H.263+) 
Version 2 of the H.263 standard is informally known as H.263+. This version 
adds a number of optional feature enhancements to version 1. In the process 
of adding these new features, the precise de/nition and requirements of the 
original version 1 syntax and semantics were not changed. In fact, version 2 
is backward compatible with version 1. The additional optional feature set can 
be summarized in terms of the new types of pictures, a modi/ed unrestricted 
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motion vector mode, and 12 new optional modes (annexes I–T). This is brieJy 
described in what follows. 

3.4.6.1 New types of pictures 

Version 2 de/nes three new types of pictures: 

1.	Scalability pictures: Three types of scalability pictures were added, one 
that provides temporal scalability and two that provide SNR or spatial 
scalability: 

(a) B: a picture having two reference pictures, one of which temporally 
precedes the B picture and one of which is temporally subsequent 
to the B picture. 

(b) EI: a picture having a temporally simultaneous reference picture. 

(c) EP:	a picture having two reference pictures, one of which tem-
porally precedes the EP picture and one of which is temporally 
simultaneous. 

These pictures are described in more detail in Section 3.4.6.9 in the 
discussion of the new optional scalability mode (annex O). 

2.	Improved PB-frames: Recent investigations have indicated that the cur-
rent PB-frames utilized by version 1 are not su,ciently robust for 
continual use. Encoders implementing the PB-frames mode are lim-
ited to use only bidirectional prediction. In some situations, this results 
in a lack of usefulness of the PB-frames mode. An improved, more 
robust type of PB-frames has been added to enable heavier, higher-
performance use of the PB-frames mode. This is described in more de-
tail in Section 3.4.6.7 in the discussion of the new optional improved 
PB-frames mode (annex M). 

3.	Custom source formats: As already discussed, version 1 allows only 
/ve video source formats (CIF family) with de/ned picture size, picture 
shape, and picture clock frequency. Version 2, however, allows a wide 
range of optional custom source formats in order to make the standard 
apply to a much wider class of video scenes and applications, such as 
resizable computer window-based displays, high refresh rates, and wide-
format viewing screens. 

3.4.6.2 Modi>ed Unrestricted Motion Vector Mode (modi>ed Annex D) 

The optional unrestricted motion vector mode (annex D) of version 1 has been 
modi/ed in version 2. Version 2 de/nes a new data /eld called PLUSPTYPE. 
When using the unrestricted motion vector mode, if PLUSPTYPE is present 
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in the picture header, then the following modi/cations apply: 

1. The	motion vector range no longer depends on the motion vector

prediction value. There are two cases here:


(a) If the UUI data /eld in the picture header is set to “1,” the mo-
tion vector range depends on the picture format. For standard-
ized picture formats up to CIF the range is [−32; 31:5], for those 
up to 4CIF the range is [−64; 63:5], for those up to 16CIF the 
range is [−128; 127:5], and for even larger custom picture formats 
the range is [−256; 255:5]. In addition, the horizontal and vertical 
motion vector ranges may be di1erent for custom picture formats. 

(b) If, however, the UUI data /eld is set to “01,” the motion vectors	 Q1 
are not limited except by their distance to the coded area border, 
as explained by the following restriction rule: the motion vector 
values are restricted such that no element of the 16 × 16 (or 8 × 8) 
region that is selected shall have a horizontal or vertical distance 
more than 15 pels outside the coded picture area. 

2. A new VLC table is employed to encode the motion vector di1erences.

This table has the following properties:


(a) The codes are single-valued. In other words, each codeword corre-
sponds to a single motion vector di1erence value. This is in contrast 
to the double-valued VLC codes of version 1, where each code-
word can represent one of two possible motion vector di1erences. 
Double-valued codes were not popular due to their high implemen-
tation cost and the limitations on their extendibility. 

(b) The table employs reversible variable-length coding (RVLC) code-
words. Such codewords can be decoded in both the forward and 
backward directions. As discussed in Chapter 9, the use of RVLCs 
can increase the error resilience of video bitstreams. In addition, 
RVLCs are easier to implement because they can easily be gener-
ated and decoded using a simple state machine. 

3.4.6.3 Advanced INTRA Coding Mode (Annex I) 

This optional mode signi/cantly improves the compression performance when 
coding INTRA macroblocks. The mode is applied both to INTRA macroblocks 
within INTRA-pictures and to INTRA macroblocks within INTER-pictures. 
The improved compression performance of this mode is achieved as follows: 

1. INTRA blocks	are predicted from their neighboring INTRA blocks.

Block prediction always uses data from the same luma or chroma
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component. There are three options for prediction: 

(a) DC only: where the DC coe,cient is predicted as the average of 
the corresponding coe,cients from the block above and the block 
to the left. 

(b) Vertical DC and AC: where the DC coe,cient and the /rst row 
of AC coe,cients are vertically predicted from the corresponding 
coe,cients from the block above. 

(c) Horizontal DC and AC: where the DC coe,cient and the	/rst 
column of AC coe,cients are horizontally predicted from the 
corresponding coe,cients from the block to the left. 

Special cases are de/ned for situations in which the neighboring blocks 
are not INTRA coded or are not in the same video picture segment. 
The option that gives the best prediction for the whole macroblock is 
chosen. 

2. The quantization of INTRA coe,cients is modi/ed. INTRA DC coef-
/cients are quantized using a varying quantization step size, unlike the 
/xed quantization step size of 8 utilized when this mode is not in use. In 
addition, the quantization of all INTRA coe,cients is performed without 
a dead-zone. 

3. The scanning of DCT coe,cients is adapted to the prediction method of 
the INTRA macroblock. For macroblocks predicted using the DC-only 
option, the normal zigzag scanning is utilized; for macroblocks predicted 
using the vertical DC and AC option, a new alternate horizontal scanning 
pattern (Figure 3.5(a)) is utilized; whereas for macroblocks predicted 
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Figure 3.5: Alternate scans for the advanced INTRA mode of H.263+ 
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using the horizontal DC and AC option, a new alternate vertical scanning 
pattern (Figure 3.5(b)) is utilized. 

4. The quantized INTRA coe,cients are encoded using a new VLC table 
optimized for the global statistics of INTRA macroblocks. 

3.4.6.4 Deblocking Filter Mode (Annex J) 

In this optional mode, a /lter is applied, both at the encoder and at the de-
coder, across the boundaries of luma and chroma 8 × 8 blocks of reconstructed 
pictures before storing them in the picture memory. In other words, the /lter 
a1ects the picture that is used for the prediction of subsequent pictures and 
thus lies within the motion prediction loop. 
The deblocking /lter operates using a set of four pel values either on 

a horizontal or on a vertical line of the reconstructed picture. Two of the 
four pels belong to one block, whereas the other two belong to a neighboring 
block. The weights of the /lter’s coe,cients depend on the quantizer step size, 
where stronger coe,cients are used for a coarser quantizer, and vice versa. 
No /ltering is performed across a picture edge. Similarly, when the Inde-
pendent Segment Decoding (ISD) mode is in use, no /ltering is performed 
across slice edges (when the Slice Structured mode is in use) or across the top 
boundary of GOBs having GOB headers present (when the Slice Structured 
mode is not in use). When this mode is used together with the Improved PB-
frames mode, the backward prediction of the B-macroblock is based on the 
reconstructed P-macroblock before the deblocking edge /lter operations. The 
mode applies only for the P-, I-, EP-, or EI-pictures or the P-picture part of 
an Improved PB-frame. Possible /ltering of B-pictures or the B-picture part 
of an Improved PB-frame is not a matter for standardization. 
In addition to the /ltering operation, this mode allows the use of four 

motion vectors per macroblock and also the use of unrestricted motion vectors. 
This mode improves the prediction quality and signi/cantly reduces blocking 
artefacts. 

3.4.6.5 Slice Structured Mode (Annex K) 

In this optional mode, a slice layer is employed instead of the normal GOB 
layer. This mode is used to provide enhanced error resilience, to make the 
bitstream more amenable to use with packet-based networks, and to minimize 
video delay. A slice layer allows a Jexible partitioning of the picture into 
segments containing a variable number of macroblocks. It also allows more 
control over the shape of segments. In addition, a slice structure provides more 
Jexibility in the transmission order. This is in contrast with a GOB layer, 
which only allows partitioning into /xed-size, /xed-shape segments with /xed 
transmission order. 
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In order to facilitate optimal usage in a number of environments, this mode 
contains two submodes: 

1.	The Rectangular Slice (RS) submode: When RS is in use, the slice 
occupies a rectangular region of width speci/ed in units of macroblocks 
and contains a number of macroblocks in scanning order within the 
rectangular region. When RS is not in use, the slice contains a number 
of macroblocks in scanning order within the picture as a whole. 

2.	The Arbitrary Slice Ordering (ASO) submode: when ASO is in use, 
the slices may appear in any order within the bitstream. When ASO is 
not in use, the slices must be sent in scanning order. 

A slice video picture segment starts at a macroblock boundary in the picture 
and contains a number of macroblocks. Di1erent slices within the same picture 
shall not overlap with each other, and every macroblock shall belong to one 
and only one slice. 
A slice is de/ned as a slice header followed by consecutive macroblocks 

in scanning order. In order to allow slice header locations within the bitstream 
to act as resynchronization points for bit error and packet loss recovery and 
in order to allow out-of-order slice decoding within a picture, slice bound-
aries are treated di1erently than simple macroblock boundaries. Thus, no data 
dependencies can cross the slice boundaries within the current picture. An 
exception to this is the Deblocking Filter mode, which, when in use without 
the Independent Segment Decoding mode, /lters across the boundaries of the 
blocks in the picture. 

3.4.6.6 Supplemental Enhancement Information Mode (Annex L) 

In this mode, additional supplemental information can be included in the bit-
stream to signal an enhanced display capability or to provide information for 
external usage. The supplemental information may be present in the bitstream 
even though the decoder may not be capable of providing the enhanced capa-
bility to use it or even to properly interpret it. In this case, the decoder can 
simply discard the supplemental information. The mode can be used to signal 
the following capabilities: 

1.	Picture Freeze: The mode can be used to signal that the contents of the 
entire prior-displayed picture, or a speci/ed rectangular part of it, shall 
be kept unchanged. The mode can also be used to explicitly signal a 
picture freeze release. 

2.	Picture Freeze with Resizing: The mode can be used to signal that the 
contents of a speci/ed rectangular area of the prior-displayed picture 
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should be resized to /t into a smaller part of the displayed video picture, 
which should then be kept unchanged. 

3.	Picture Snapshot: The mode can be used to signal that the current 
picture, or a speci/ed rectangular part of it, is labeled for external use 
as a still-image snapshot of the video content. 

4.	Video Time Segment: The mode can be used to signal the beginning and 
the end of a speci/ed subsequence of video data to be used externally. 

5.	Progressive Re4nement Segment: The mode can be used to signal the 
beginning and the end of a speci/ed subsequence of video data. Rather 
than being a continually moving scene, this subsequence of video in-
cludes a start picture followed by a sequence of zero or more pictures 
to re/ne its quality. 

6.	Chroma-Keying Information: The mode can be used to indicate that 
the chroma-keying technique is used to represent transparent and semi-
transparent pels in the decoded video pictures. When being presented 
on the display, transparent pels are not displayed. Instead, a background 
picture is revealed that is either a prior reference picture or an exter-
nally controlled picture. Semitransparent pels are displayed by blending 
the pel value in the current picture with the corresponding value in the 
background picture. 

3.4.6.7 Improved PB-Frames Mode (Annex M) 

This mode represents an improvement compared to the original PB-frames 
optional mode (annex G). The main di1erence between the two modes is that 
the original PB-frames mode can utilize only bidirectional prediction to predict 
the B part in a PB-frame, whereas the improved PB-frames mode can utilize 
forward, backward, or bidirectional prediction. 
The bidirectional prediction method is the same as in the original PB-frames 

mode, except that in this case no delta vector is transmitted. In the forward-
prediction method, a B macroblock is predicted from the previously decoded 
P-picture and a forward motion vector is transmitted. In the backward-
prediction method, a B-macroblock is predicted from the corresponding 
P-macroblock currently decoded in the same PB-frame, and therefore no back-
ward motion vector needs to be transmitted. 
This mode signi/cantly improves coding e,ciency in situations in which 

downscaled P-vectors (utilized in the original PB-frames mode) are not good 
candidates for B-prediction. In particular, the backward prediction is useful 
when there is a scene cut between the previous P-frame and the current PB-
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frame. In general, it is advisable to use the Improved PB-frames mode instead 
of the original PB-frames mode. 

3.4.6.8 Reference Picture Selection Mode (Annex N) 

In normal operation, a picture is temporally predicted from the most recently 
decoded picture. The reference picture section (RPS) mode, however, allows 
temporal prediction from pictures other than the most recently decoded one. 
Thus, in this mode, both the encoder and the decoder use more than one 
picture memory. As discussed in Chapter 6, this method belongs to a class 
of motion estimation and compensation techniques called multiple-reference 
motion-compensated prediction. The information to signal which picture is 
selected for prediction is included by the encoder in the encoded bitstream. 
However, the strategy used by the encoder to select this picture is not subject 
for standardization. 
This mode can be used to improve the performance of video communication 

over error-prone channels. In normal operation, if part of the reference picture 
is lost due, for example, to a transmission error, then this error will propagate 
to and severely degrade the quality of future pictures. In this mode, however, 
the encoder may switch to another reference picture to suppress the temporal 
error propagation due to interframe coding. 
In order to utilize this mode, the encoder needs to have some knowledge 

about the conditions of the channel and the outcome of the decoding process 
(e.g., which parts of the reference picture have been decoded in error). One 
way to achieve this is to utilize a backward (feedback) channel. This mode 
has two back-channel mode switches that de/ne whether a backward channel 
is used and what kind of messages are returned on that backward channel from 
the decoder. Together, the two switches de/ne four basic methods of operation: 
NEITHER (no backward messages), ACK (acknowledgment messages only), 
NACK (negative acknowledgment messages only), and ACK+NACK (both 
acknowledgment and negative acknowledgment messages). There are also two 
methods of operation in terms of the channel for backward channel messages. 
The /rst method is the Separate Logical Channel mode, where back-channel 
data is delivered through a separate logical channel in the multiplex layer of 
the system, whereas the second method is the VideoMux mode, where back-
channel data for received video is delivered within the forward video data of 
a video stream of encoded data. 

3.4.6.9 Temporal, SNR, and Spatial Scalability Mode (Annex O) 

Scalability implies that a bitstream is composed of a base layer and one 
or more associated enhancement layers. The base layer is separately decod-
able. The enhancement layers can be decoded in conjunction with the base 
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layer to increase perceived quality by either increasing the picture rate (tem-
poral scalability), increasing the picture SNR quality (SNR scalability), or 
increasing the picture resolution (spatial scalability). This mode has support 
for three types of scalability: temporal, SNR, and spatial scalability, as de-
tailed next. This mode can be helpful when used over heterogenous networks 
with varying bandwidth capacity and also in conjunction with error correction 
schemes. 

a: Temporal scalability: Temporal scalability refers to enhancement infor-
mation used to increase the picture quality by increasing the picture display 
rate. Temporal scalability is achieved by employing bidirectionally predicted 
pictures, or B-pictures. B-pictures can be predicted from a previous and=or 
a subsequent reconstructed picture in the reference layer (the layer used for 
prediction). B-pictures in this mode di1er from the B-picture part of a PB- (or 
an Improved PB-) frame in that they are separate entities in the bitstream. In 
other words, they are not syntactically intermixed with a subsequent P-picture. 
It should be emphasised that B-pictures should not be used as reference pic-
tures for the prediction of any other picture. This is particularly important 
to allow for B-pictures to be discarded if necessary without adversely a1ect-
ing any subsequent pictures, thus providing temporal scalability. Figure 3.6(a) 
illustrates temporal scalability using B-pictures. It should be pointed out that 
the location of B-pictures in the bitstream is in a data-dependence order rather 
than in a temporal order. For example, in the case shown in Figure 3.6(a) 
the bitstream order of the encoded pictures is I1; P3; B2; P5; B4; : : : :  There 
is no limit to the number of B-pictures that may be inserted between pairs 
of reference pictures in the reference layer. In this mode, motion vectors are 
allowed to extend beyond the picture boundaries of B-pictures. 

b: SNR scalability: SNR scalability refers to enhancement information used 
to increase the picture quality without increasing picture resolution. The pro-
cess of compression usually introduces artefacts and distortions. As a result, 
the di1erence between a reconstructed picture and its original in the encoder is 
almost always a nonzero-valued picture. Normally, this coding error picture is 
lost at the encoder and never recovered. With SNR scalability, however, these 
coding-error pictures can be encoded and sent to the decoder. At the decoder, 
such coding-error pictures can be used to increase the signal-to-noise ratio of 
the decoded picture, and hence the term SNR scalability. Figure 3.6(b) illus-
trates SNR scalability. If the enhancement-layer picture is predicted only from 
a simultaneous lower-layer reference picture, then the enhancement-layer pic-
ture is referred to as an EI-picture. If, however, the enhancement-layer picture 
is bidirectionally predicted using both a prior enhancement-layer picture and a 
temporally simultaneous lower-layer reference picture, then the enhancement-
layer picture is referred to as an EP-picture. The picture in the reference 
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Figure 3.6: Temporal, SNR, and spatial scalability in H.263+ 
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layer that is used for upward prediction of an EI- or EP-picture may be an 
I-picture, a P-picture, or the P part of a PB- or Improved PB-frame. Thus, an 
EI-picture in an enhancement layer may have a P-picture as its lower-layer 
reference picture, and an EP-picture may have an I-picture as its lower-layer 
enhancement picture. For both EI- and EP-pictures, the prediction from the 
lower reference layer uses no motion vectors. However, EP-pictures use mo-
tion vectors for the prediction from their prior reference picture in the same 
layer. 

c: Spatial scalability: Spatial scalability refers to enhancement information 
used to increase the picture quality by increasing picture resolution either 
horizontally, vertically, or both. Spatial scalability is very similar to SNR 
scalability. The only di1erence is that before the picture in the reference layer 
is used to predict the picture in the enhancement layer, it is interpolated by 
a factor of 2 either horizontally or vertically (1-D spatial scalability) or both 
horizontally and vertically (2-D spatial scalability). The interpolation /lters for 
this operation are de/ned by the standard. Spatial scalability is illustrated in 
Figure 3.6(c). 

d: Multilayer scalability: It is possible not only for B-pictures to be tem-
porally inserted between pictures of types I, P, PB, and Improved PB, but 
also between pictures of types EI and EP (whether these consist of SNR 
or spatial-enhancement pictures). It is also possible to have more than one 
SNR or spatial-enhancement layers in conjunction with a base layer. Thus a 
multilayer scalable bitstream can be a combination of SNR layers, spatial lay-
ers, and B-pictures. 

3.4.6.10 Reference Picture Resampling Mode (Annex P) 

In this mode, a resampling operation can be applied to the previously decoded 
picture in order to generate a new warped picture for use as reference for 
predicting the currently encoded picture. For example, if the previous reference 
picture and the current picture are of di1erent source formats, then this mode 
can be used to resample the previous picture to match the source format of 
the current picture. Another example is to use this mode to warp the previous 
reference picture to compensate for global motion. Warping and warping-based 
motion estimation methods are discussed in Chapter 5. 

3.4.6.11 Reduced-Resolution Update Mode (Annex Q) 

This mode allows the encoder to send information encoded at a low resolution 
to update a higher-resolution reference picture and produce a /nal picture 
at the higher resolution. This mode is particularly useful when encoding a 
highly active scene, and allows an encoder to increase the picture rate at 
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which moving parts of a scene can be represented while maintaining a higher-
resolution representation in more static areas of the scene. 
The syntax of the bitstream in this mode is identical to the syntax for cod-

ing without the mode, but the semantics, or interpretation of the bitstream, 
is somewhat di1erent. In this mode, the portion of the picture covered by a 
macroblock is twice as wide and twice as high. Thus, there is approximately 
one-quarter the number of macroblocks as there would be without this mode. 
Motion vector data also refers to blocks of twice the normal height and width, 
or 32 × 32 and 16 ×16 instead of the normal 16 ×16 and 8 ×8. For example, 
the decoder receives and decodes a 16 ×16 DFD block at the reduced resolu-
tion. The decoder then upsamples this block to 32 × 32 at the higher resolution. 
The decoder then upsamples the received motion vector by a factor of 2 and 
uses it to produce a 32 × 32 prediction from the reference picture. The DFD 
block and the prediction block are then added to produce a 32 × 32 block at 
the higher resolution. 

3.4.6.12 Independent Segment Decoding Mode (Annex R) 

This mode allows a picture to be constructed without any data dependencies 
that cross video picture segments. Thus, this mode provides error robustness 
by preventing the propagation of erroneous data across the boundaries of video 
picture segments. 
In this mode, a video picture segment can be a slice, a GOB or multi-GOBs 

with nonempty GOB headers, or a complete picture. When this mode is in use, 
the video picture segment boundaries are treated as picture boundaries. In other 
words, each video picture segment is decoded with complete independence 
from all other video picture segments, and is also independent of all data 
outside the corresponding video picture segment in the reference picture(s). 
For example, motion vectors of blocks outside the current video picture 

segment cannot be used when calculating the current motion vector predictor. 
Similarly, motion vectors of blocks outside the current video picture segment 
cannot be used as remote motion vectors for overlapped block-motion compen-
sation when the Advanced Prediction mode is in use. In addition, no motion 
vectors are allowed to reference areas outside the corresponding video picture 
segment in the reference picture(s). 

3.4.6.13 Alternative INTER VLC Mode (Annex S) 

This mode improves the e,ciency of encoding some INTER macroblocks 
by allowing a VLC table originally designed for INTRA macroblocks to be 
used for some INTER macroblocks. The INTRA VLC table used in the ad-
vanced INTRA coding mode (annex I) is designed to e,ciently encode INTRA 
blocks. Thus, it is optimized for coding blocks with many large-valued coe,-
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cients and small runs of zeros. There are cases, however, where the statistics 
of INTER blocks can approximate the statistics of INTRA blocks. This is par-
ticularly possible when signi/cant changes are evident in the picture or when 
small quantizer step sizes are employed. In such cases, it can become more 
e,cient to encode INTER blocks using the INTRA VLC table. 
In this mode, the encoder would normally choose to use the INTRA VLC 

table for coding an INTER block only when the use of this table results in 
fewer bits than the use of the INTER VLC table. This use of the alterna-
tive INTRA VLC table, however, is subject to the condition that the decoder 
would be able to detect which of the two tables was used for encoding. Thus, 
the alternative INTRA VLC table can be used, subject to the condition that 
decoding using the INTER VLC table would result in runs of zeros so long 
as to indicate the presence of more than 64 coe,cients in the block. 

3.4.6.14 Modi>ed Quantization Mode (Annex T) 

In this mode, the quantizer operation is modi/ed. In particular, this mode 
includes the following four key features: 

1. In	normal mode, the change of the quantization parameter at the 
macroblock level is limited to a maximum of ±2. This mode, however, 
improves the bit-rate control ability by allowing the quantization param-
eter to be changed at the macroblock level to any of its 31 permissible 
values. 

2. In normal mode, the chroma quantizer step size is the same as that for 
luma. This mode, however, improves the /delity of chroma by specifying 
a smaller quantizer step size for chroma than that for luma. 

3. The true value of	a DCT coe,cient prior to quantization can be as 
high as 2040. Thus, when the quantization parameter is less than 8, 
the quantized DCT coe,cients can be outside the range [−127; +127] 
permissible in the normal mode. Such coe,cients are clipped to the 
permissible range before being encoded. This mode, however, extends 
the range of representable quantized DCT coe,cient values to allow 
the representation of any possible true coe,cient value to within the 
accuracy allowed by the quantizer step size. 

4. In	this mode certain restrictions are placed on the encoded DCT 
coe,cient values to improve the detectability of errors and to minimize 
decoding complexity. 

Kossentini et al. [71, 72] provide an excellent overview of H.263+ and 
evaluate the performance of the modes individually and in di1erent combina-
tions. 
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3.4.7 H.263, Version 3 (H.263++) 
Version 3 of the H.263 standard is informally known as H.263++. This 
version adds a number of optional feature enhancements to versions 1 
and 2. 

3.4.7.1 Enhanced Reference Picture Selection Mode (Annex U) 

The enhanced reference picture selection (ERPS) mode is an enhancement to 
the RPS mode (annex N) of H.263+. In addition to enhancing error resilience, 
this mode provides bene/ts in terms of coding e,ciency. 
As with the RPS mode, the ERPS mode extends the motion estimation and 

compensation processes to use more than one reference picture. In the ERPS 
mode, however, enhanced performance is achieved by allowing reference pic-
ture selection on the macroblock, rather than the picture, level. Thus, in this 
case, each motion vector is extended by a picture reference parameter that is 
used to address a macroblock or block prediction region in any of the multiple 
reference pictures. 
The ERPS mode also includes a submode for improving the coding 

e,ciency of B-pictures. In this submode, encoders can use more than one 
reference picture for both forward and backward prediction of B-pictures. 
Another submode of ERPS is provided to reduce memory requirements. 

In this submode, each reference picture is partitioned into smaller rectangular 
units called subpictures. The encoder can then indicate to the decoder that 
speci/c subpicture areas of speci/c reference pictures will not be used as a 
reference for the prediction of subsequent pictures. This allows the memory 
allocated in the decoder for storing these areas to be used to store data from 
other reference pictures. 

3.4.7.2 Data Partitioned Slice Mode (Annex V) 

In this mode, data is arranged in a video picture segment as de/ned in the 
independent segment decoding mode (annex R) of H.263+. The contents of 
this segment are rearranged such that the header information for all the MBs 
in the segment are encoded and transmitted together, followed by the motion 
vectors for all the MBs in the segment and then by the DCT coe,cients for all 
the MBs in the segment. The segment header uses the same syntax as the slice 
structured mode (annex K) of H.263+. The header, motion vectors, and DCT 
partitions are separated by markers. In addition to data partitioning, this mode 
uses RVLC tables for encoding header and motion information. As will be 
discussed later, data partitioning and RVLC provide robustness in error-prone 
environments. Another error-resilience enhancement in this mode is that the 
motion vector predictor is no longer formed from three neighboring motion 
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vectors. Instead, a new prediction method is used to allow independent motion 
vector decoding in both the forward and backward directions. 

3.4.7.3 Additional Supplemental Enhancement Information (Annex W) 

This annex describes additional supplemental enhancement information that 
adds to the functionality of the supplemental enhancement information mode 
(annex L) of H.263+. In particular, the following additional information can 
be added to the bitstream: 

1. Indication of the use of a speci/c /xed-point IDCT. 

2. Picture messages, including the message types of: 

(a) Arbitrary binary data. 

(b) Text (arbitrary, copyright, caption, video description,	or uniform 
resource identi/er). 

(c) Picture header repetition (current, previous, next with reliable tem-
poral reference, or next with unreliable temporal reference). 

(d) Interlaced /eld indications (top or bottom). 

(e) Picture number. 

(f ) Spare reference picture identi/cation. 

3.4.7.4 Pro>les and Levels De>nitions (Annex X) 

With the variety of optional modes available in H.263, it is crucial that sev-
eral preferred mode combinations for operation be de/ned so that di1erent 
terminals will have a high probability of connecting to each other. This an-
nex contains a list of preferred mode combinations, which are structured into 
“pro/les” of support. It also de/nes some groupings of maximum performance 
parameters as “levels” of support for these pro/les. 
The annex de/nes nine pro/les (pro/le 0 to pro/le 8). Each pro/le is 

de/ned in terms of a set of features supported by the decoder. For example, 
the Baseline Pro4le (pro/le 0) refers to the syntax of H.263 with no optional 
modes of operation. Another example is Version 2 Interactive and Streaming 
Wireless Pro4le (pro/le 3). This pro/le is de/ned to provide enhanced coding 
e,ciency performance and enhanced error resilience for delivery to wireless 
devices within the feature set available in H.263+. This pro/le of support is 
composed of the baseline design plus the following modes: advanced INTRA 
coding mode (Annex I), deblocking /lter mode (Annex J), slice structured 
mode (Annex K), and the modi/ed quantization mode (Annex T). 
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The annex also de/nes seven levels (level 10 to level 70) of performance 
capability for decoder implementation. For example, a decoder supporting the 
/rst level, level 10, must include support of QCIF and sub-QCIF resolution 
decoding, and must be capable of operation with a bit rate up to 64,000 bits per 
second with a picture decoding rate up to (15,000)=1001 pictures per second. 

3.5 The MPEG-4 Standard 

As already discussed, the formal title “Generic coding of audiovisual objects” 
given to MPEG-4 describes two important properties of the standard. The /rst 
property is that it is a generic standard. It de/nes tools and algorithms for 
the coding of natural, synthesis, and hybrid audiovisual objects with a wide 
range of bit rates, picture formats, transmission media, etc. It is, therefore, 
very di,cult to describe the full functionality of such a generic standard in a 
volume of this size.5 Thus, this section will concentrate on MPEG-4 natural 
video coding. In particular, the section will try to highlight the second property 
of MPEG-4, i.e., being object-based, which sets it apart from other standards. 

3.5.1 An Object-Based Representation 
MPEG-4 uses an object-based representation model. Thus, a scene is repre-
sented, coded, and manipulated as individual audiovisual objects (AVOs). This 
section concentrates on natural video objects. 
As illustrated in Figure 3.7, an MPEG-4 video session (VS) is a collection 

of one or more video objects (VOs). A VO is an entity that a user is allowed 
to access (e.g., seek and browse) and manipulate (e.g., cut and paste). It can 
be a simple rectangular frame or it can be an arbitrarily shaped object. A 
VO can consist of one or more video object layers (VOLs). As is discussed 
later, each VO can be encoded in either a scalable (multiple VOLs) or a 
nonscalable (single VOL) form. Each VOL consists of an ordered sequence 
of video object planes (VOPs). A VOP is an instance (or a snapshot) of 
the corresponding VO at a given time. A number of VOPs can, optionally, 
be grouped together in a group of video object planes (GOV). GOVs can 
provide points in the bitstream where VOPs are encoded independently from 
each other. This provides random access points within the bitstream. 
Figure 3.8 shows a general block diagram of an MPEG-4 codec. The input 

video is represented using a number of VOs. This object-based representa-
tion either already exists (e.g., generated with chroma-key technology) or is 

5To give an indication of how generic the MPEG-4 standard is, the MPEG-4 draft [67] that 
was used in writing the current section is more than 300 pages. 
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Figure 3.7: MPEG-4 video bitstream structure 
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Figure 3.8: An MPEG-4 codec 

generated using segmentation techniques. Each VO is encoded individually, 
and the resulting bitstreams are multiplexed to a single bitstream. At the de-
coder, the received bitstream is /rst demultiplexed to the individual bitstreams. 
Each bitstream is then decoded, and the decoded VOs are composited to 
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reconstruct the output video. As shown, at various points of this encoding-
decoding process, users are allowed to interact with (access and=or manipulate) 
the individual VOs. 
As an example, consider a sequence showing a hot-air balloon Jying in 

the sky. In this case, the sequence can be represented using two VOs: the 
balloon and the sky background. Figure 3.9(a) shows a single frame of this 
sequence. At this particular instance of time the two VOs are represented by 
the two VOPs shown in Figures 3.9(b) and 3.9(c). At the encoder, each VOP 
is encoded individually and the two bitstreams are multiplexed. At the decoder, 
the received bitstream is demultiplexed to the two individual bitstreams. Each 
bitstream is then decoded to reconstruct the corresponding VOP. The two 
VOPs are then put together to reconstruct the transmitted frame. The user can 
optionally manipulate the decoded VOPs. For example, in Figure 3.9(d) the 
balloon VOP has been enlarged, rotated, and translated as compared to the 
original frame. 
In addition to composition information (which indicates where and when 

the VOP is to be displayed), each VOP is encoded in terms of its shape, 

(a) Balloon in Sky (original) (b) Sky (background) VOP 

(c) Balloon VOP (d) Decoded and manipulated 

Figure 3.9: Object-based representation, coding, and interaction 
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Figure 3.10: An MPEG-4 VOP encoder 

motion, and texture. This is illustrated in Figure 3.10. As can be seen, an 
MPEG-4 VOP encoder has three main functionalities: shape encoding, mo-
tion encoding (along with motion estimation and compensation), and texture 
encoding. Note that the structure of this encoder is very similar to the MC-
DPCM structure utilized by H.263 and most other standards. In fact, for most 
cases, the texture encoder is DCT-based and the structure is very similar to 
the conventional hybrid MC-DPCM=DCT encoder. The di1erence here is that 
the encoded entities can have arbitrary shapes rather than the /xed rectangular 
frame shape, and therefore additional shape information needs to be encoded 
and transmitted. Note that this object-based representation can be thought of 
as a generic representation. When a frame is encoded using a single VOP, this 
generic representation degenerates into the special case of rectangular frames 
and an MPEG-4 encoder becomes almost identical to an H.263 encoder. In 
fact, the MPEG-4 standard provides measures to ensure some level of inter-
operability with MPEG-1=2 and H.263. 
A VOP is encoded on a macroblock (MB) basis. MPEG-4 supports a 4:2:0  

subsampling format with 4 –12 bits=sample. Thus, an MB consists of six 8 × 8 
blocks: four luma blocks and two corresponding chroma blocks. To achieve 
e,cient encoding, the arbitrary shaped VOP is /rst encapsulated within a 
bounding box. This bounding box is chosen such that it completely contains 
the VOP but uses the minimum number of macroblocks. This bounding box 
is illustrated for the Balloon VOP in Figure 3.11. Within this bounding box, 
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Frame box 
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shift 
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boundary MB 
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Figure 3.11: The bounding box of the Balloon VOP 

there are three types of MBs: internal MBs, boundary MBs, and exterior MBs. 
An internal MB lies completely inside the VOP, whereas a boundary MB lies 
on the contour of the VOP; i.e., parts of it are inside the VOP and the other 
parts are outside the VOP. An exterior MB, on the other hand, lies completely 
outside the VOP. Note that the shape, size, and location of this bounding box 
can change from one time instance to another. Thus, the absolute (frame) 
coordinate system is used to de/ne such bounding boxes. 
The following subsections brieJy describe the main building blocks of the 

MPEG-4 VOP encoder. 

3.5.2 Shape Coding 
In the context of MPEG-4, shape information is referred to as alpha planes. 
There are two types of alpha planes: binary and gray-scale. A binary alpha 
plane de/nes which pels within the bounding box belong to the video object 
at a given instant of time. A gray-scale alpha plane, on the other hand, is a 
more general form of alpha planes, for it includes transparency information. 

3.5.2.1 Binary Shape Coding 

A binary alpha plane is represented by a matrix the same size as the bounding 
box of the video object. Every element within this matrix can take one of two 
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possible values. If the corresponding pel belongs to the object, then the element 
is set to 255; otherwise it is set to 0. This matrix is sometimes referred to as 
a binary mask or as a bitmap. Figure 3.12 shows the binary alpha plane of 
the Balloon VOP. 
Before encoding, the binary alpha plane is partitioned into 16 ×16 blocks 

called binary alpha blocks (BABs). A BAB with all elements equal to 0 is 
called a transparent BAB, whereas a BAB with all elements equal to 255 
is called an opaque BAB. Each BAB is encoded separately. The main tools 
used for encoding BABs are context-based arithmetic encoding (CAE) and 
motion compensation. There are two variants of the CAE algorithm. One is 
used with motion compensation and is called InterCAE, whereas the other one 
is used without motion compensation and is called IntraCAE. There are seven 
possible modes for encoding a BAB: 

1. The BAB is Jagged transparent. In this case, no shape coding is neces-
sary. In addition, texture information is not coded for this BAB. 

Figure 3.12: The binary alpha plane of the Balloon VOP 
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2. The BAB is Jagged opaque. In this case, no shape coding is necessary, 
but texture information is coded. 

3. The BAB is coded without motion compensation using IntraCAE. 

4. The MVDs is zero (i.e., MVs = MVPs) and no block update is neces-
sary. 

5. The	MVDs is zero and the block needs to be updated. In this case, 
InterCAE is used for coding the block update. 

6. The MVDs is nonzero and no update is necessary. 

7. The MVDs is nonzero and the block needs to be updated. In this case, 
InterCAE is used for coding the block update. 

Modes 1 and 2 require no shape coding. For mode 3, shape is encoded using 
IntraCAE. For modes 4 –7, motion estimation and compensation are employed. 
The motion vector di1erence for shape (MVDs) is the di1erence between 
the shape motion vector (MVs) and its predictor (MVPs). This predictor is 
estimated from either neighboring shape motion vectors or co-located texture 
motion vectors. When the mode indicates that no update is required, then the 
MVs is simply used to copy a displaced 16 × 16 block from the reference 
binary alpha plane to the current BAB. If, however, the mode indicates that 
an update is required, then the update is coded using InterCAE. 
The CAE is a binary arithmetic coding algorithm where the probability of 

a symbol is determined from the context of the neighboring symbols. First, 
the arithmetic encoder is initialized. The binary pels (elements) of the BAB 
are then encoded in raster-scan order using the following steps: 

1. Compute a context number based on the templates shown in Figure 3.13. 
This context number is given by C = 

�N −1 ck 2k , where ck = 0 for a k=0 

pels of reference BAB pels of current BAB 

c0 

c1c2c3 

current pelc6 c5c7 

c8 

c4 

aligned using MVs 
c0c1 

c2c3c4c5c6 

c7c8c9 

current pel 

(a) IntraCAE (b) InterCAE 

Figure 3.13: CAE templates in MPEG-4 



79 Section 3.5. The MPEG-4 Standard 

transparent pel, ck = 1 for an opaque pel, N =10 pels for IntraCAE, and 
N = 9 pels for InterCAE. 

2. Determine the probability of the pel being transparent (or opaque) by 
using the context number to index a table of probabilities de/ned by 
the standard. 

3. Use the indexed probability to drive an arithmetic encoder for codeword 
assignment. 

When all pels in the BAB have been encoded, the arithmetic encoder is 
terminated. 

3.5.2.2 Gray-Scale Shape Coding 

A gray-scale alpha plane has a similar representation to the binary alpha plane, 
with the di1erence that elements within the plane can take on a range of 
values, usually 0 to 255 with 8-bit representation, designating the degree of 
transparency of the corresponding pel. Gray-scale shape information consists 
of two parts. The /rst part is the support information. This is obtained by 
thresholding the gray-scale alpha plane at 0 (i.e., any value that is not equal 
to 0 is set to 255). Support information is encoded using the binary shape 
coding methods described previously. The second part of gray-scale shape 
information contains the gray-scale values of the alpha plane. This is encoded 
using methods similar to the texture encoding methods described later in this 
chapter (Section 3.5.4). 

3.5.2.3 Scalable Shape Coding 

Besides changing the coding mode of BABs, additional mechanisms are em-
ployed for controlling the quality and bit rate of binary shape information. One 
method is by reducing the resolution of the BAB by a factor of 2 or 4. The 
resulting 8 × 8 or 4  × 4 BAB is encoded using any of the available modes. At 
the decoder, the reduced-resolution BAB is /rst decoded and then upsampled. 
Another method for reducing the binary shape bit rate is by changing the ori-
entation of the BAB. The e,ciency of the CAE algorithm can depend on the 
orientation of the BAB. In some cases, transposing the BAB before coding it 
can increase coding e,ciency. In this case, the decoder decodes the BAB and 
then transposes it back to its original orientation. 

3.5.3 Motion Estimation and Compensation 
Motion estimation and compensation methods in MPEG-4 are very similar 
to those employed by other standards. The main di1erence is that block-
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based motion estimation and compensation are adapted to the arbitrary-shape 
VOP structure of MPEG-4. The standard has three modes for encoding a 
given VOP: intra-VOP (I-VOP), predicted-VOP (P-VOP), and bidirectionally-
predicted-VOP (B-VOP). 
Since the shape, size, and location of a VOP can change from one instance 

to another, the absolute (frame) coordinate system is used for referencing 
every VOP. Thus, the motion vector for a particular feature inside a VOP 
refers to the displacement of the feature in absolute coordinates. During motion 
estimation and compensation, no alignment of VOP bounding boxes at di1erent 
time instances is performed. 
Motion is estimated only for those MBs within the bounding box of the 

current VOP. If the current MB is an internal MB, then motion is estimated 
using the usual block-matching method. If, however, the current MB is a 
boundary MB, then motion is estimated using a modi/ed block-matching 
method called polygon matching. In polygon matching, the distortion measure 
is calculated using only those pels in the current macroblock that belong to 
the VOP. 
The motion estimation and compensation processes may require accessing 

pels outside the reference VOP. Padding is used to de/ne the values of such 
pels. The luma component is padded per 16 × 16 samples, while the chroma 
components are padded per 8 × 8 samples. If the reference MB is a bound-
ary MB, then it is padded using repetitive padding. This process starts by 
horizontal repetitive padding, where each sample at the boundary of a refer-
ence VOP is replicated horizontally in the left and=or right direction in order 
to /ll the transparent region of the reference MB. If there are two boundary 
sample values for /lling a sample, the two boundary samples are averaged. 
The remaining un/lled transparent samples are padded by a similar process 
as the horizontal repetitive padding but in the vertical direction, i.e., vertical 
repetitive padding. The remaining MBs within the reference VOP are exterior 
MBs. Such MBs are /lled by extended padding. In this method, samples of 
an exterior MB are /lled by replicating the samples at the border of the neigh-
boring boundary MB. If an exterior MB is next to more than one boundary 
MB, then one of the boundary MBs is chosen according to a priority criterion 
de/ned by the standard. The remaining exterior MBs are /lled with 128 (for 
an 8-bit luma component). 
Motion vectors are estimated to half-pel accuracy. They are then predic-

tively VLC coded in a similar fashion to the H.263 standard. 
Similar to the H.263 standard, MPEG-4 has an advanced prediction mode 

(four motion vectors per MB and unrestricted motion vectors) and an over-
lapped motion compensation mode. 
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3.5.4 Texture Coding 
For I-VOPs, texture refers to the luma and chroma values (i.e., the video signal). 
For motion-compensated VOPs, texture refers to the luma and chroma residual 
errors remaining after motion compensation (i.e., the DFD signal). The process 
of texture coding involves the following steps: padding, DCT, quantization, 
INTRA coe,cient prediction, scanning, and variable-length encoding. 

3.5.4.1 Padding 

Like H.263 and most other video coding standards, MPEG-4 encodes texture 
information using a block-based 8 × 8 DCT. In this process, internal MBs are 
encoded directly, whereas boundary MBs must /rst be padded. The aim of this 
padding process is to remove abrupt transitions within the macroblock, thus 
reducing the number of signi/cant DCT coe,cients. Note that during texture 
coding, exterior MBs are not coded. 
For motion-compensated boundary MBs, pels outside the VOP are padded 

with zero. For INTRA boundary MBs, pels outside the VOP are padded using 
the following low-pass extrapolation (LPE) procedure: 

1. Calculate the	mean value of the macroblock pels that lie within the 
VOP. Use this value for padding the macroblock pels that lie outside 
the VOP. 

2. Starting at the top-left corner of the macroblock, proceed in scanning 
order to the bottom-right corner, replacing each pel f(x; y) that lies 
outside the VOP with the average value of its four neighbors; i.e., 
f(x; y)= (f(x− 1; y)+  f(x+1; y)+ (f(x; y− 1) + f(x; y+ 1))=4. The 
neighboring pels should lie within the VOP; otherwise they are not 
considered in the averaging process and the equation is modi/ed ac-
cordingly. 

3.5.4.2 DCT 

The internal MBs and the padded boundary MBs are then transformed using 
a 2-D 8 × 8 forward DCT. 

3.5.4.3 Quantization 

The resulting DCT coe,cients are quantized using one of two methods. The 
/rst method is very similar to H.263 quantization and uses a /xed quantization 
step size for the whole macroblock. The second method, however, uses one of 
two default quantization matrices (or scaled versions of them) to modify the 
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quantizer step size depending on the spatial frequency of the coe,cient. In 
MPEG-4, DC coe,cients can also be quantized using a nonlinear quantizer. 

3.5.4.4 Prediction of INTRA DCT Coe5cients 

To achieve more e,ciency, the quantized coe,cients of an INTRA block can 
be predicted from the colocated coe,cients in either the block immediately 
to the left of or the block immediately above the current block, as shown in 
Figure 3.14. The direction of prediction is adapted depending on the horizon-
tal and vertical DC gradients of neighboring blocks. Thus, if X is the current 
INTRA block, QFA(0; 0) is the quantized DC coe,cient of block A immedi-
ately to the left of the current block, QFB(0; 0) is the quantized DC coe,cient 
of block B above and to the left of X , and QFC (0; 0) is the quantized DC 
coe,cient of block C immediately above X , then the direction of prediction 
is chosen as follows: If |QFA(0; 0) − QFB(0; 0)| ¡ |QFB(0; 0) − QFC (0; 0)|, then 
predict from block C; otherwise predict from block A. 
Having decided the direction of prediction, there are two types of prediction: 
1.	DC prediction: Depending on the direction of prediction, the DC coef-
/cient of the current block X is predicted from the DC coe,cient of 
either block A or block C. For example, when the horizontal direction is 
chosen, the prediction is given by PQFX (0; 0)=QFX (0; 0) − QFA(0; 0). 

Top-left Top

neighbor, B
 neighbor, C 

Left Current

neighbor, A
 block, X 

DC Coefficient INTRA 
AC Coefficient macroblock 

Figure 3.14: DC and AC coe,cient adaptive prediction in MPEG-4 
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2.	AC prediction: Depending on the direction of prediction, the AC co-
e,cients of the /rst row of the current block X are predicted from 
the AC coe,cients of the /rst row of block C, or the AC coe,cients 
of the /rst column of the current block X are predicted from the AC 
coe,cients of the /rst column of block A. To compensate for di1er-
ences in the quantization parameters of adjacent blocks used in AC 
prediction, the prediction process is modi/ed so that the predictor is 
scaled by the ratio of the current quantization parameter, QPX , and the 
quantization parameter of the predictor block, QPA or QPC . For exam-
ple, when the horizontal direction is chosen, the prediction is given by 
PQFX (0; j)=QFX (0; j) − QFA(0; j)QPA . The use of AC prediction can be QPX 
enabled=disabled at the macroblock level. 

If any of the neighboring blocks are outside of the VOP boundary or the 
video packet boundary, or if they do not belong to an INTRA coded mac-
roblock, their DC values are assumed to take a value of 2bits=pel+2 and their 
AC values are assumed to take a value of 0. DC and AC predictions are 
performed similarly for the luma and each of the two chroma components. 

3.5.4.5 Scanning 

To prepare the coe,cients for variable-length encoding, a scanning process is 
used to convert the 2-D matrix of coe,cients into a 1-D vector. 
There are three possible scanning patterns: zigzag, alternate-vertical, and 

alternate-horizontal. All non-INTRA blocks use the conventional zigzag scan-
ning pattern. For INTRA blocks, however, the choice of the scanning pattern 
depends on the prediction process: 

1. If AC prediction is not employed, then the conventional zigzag scanning 
pattern is used for all blocks within the macroblock. 

2. If, however, AC prediction is employed, then the direction of the DC 
prediction is used to select a suitable scanning pattern on a block basis, 
as follows: 

(a) If the DC prediction employs the horizontal direction, then the 
alternate-vertical scanning pattern is used. 

(b) If, however, the DC prediction employs the vertical direction, then 
the alternate-horizontal scanning pattern is used. 

3.5.4.6 Variable-Length Coding 

The di1erential (predicted) DC coe,cients in INTRA macroblocks are en-
coded using a concatenation of a VLC codeword and a FLC codeword. The 
possible range of encoded di1erential DC coe,cients is divided into subranges 
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or categories. The VLC codeword indicates to which category the encoded 
di1erence belongs, whereas the FLC codeword, then, uniquely identi/es the 
di1erence within that category. Instead of this special treatment, the INTRA 
DC coe,cients can optionally be encoded using the same INTRA AC VLC 
table described next. To achieve compatibility with H.263, the INTRA DC 
coe,cients can also optionally be encoded without prediction using an 8-bit 
FLC codeword. 
All other coe,cients are encoded using a procedure similar to that of H.263. 

Thus, the scanned quantized coe,cients are converted into an intermediate 
set of EVENTS of the form (LAST, RUN, LEVEL). The most commonly 
occurring events are then encoded using standard VLC tables. There are two 
standard VLC tables: one for INTRA blocks and another for INTER blocks. 
To achieve compatibility with H.263, the VLC table for INTER blocks can 
optionally be used for both INTER and INTRA blocks. Less frequent EVENTS 
are encoded with the help of an ESCAPE codeword. 

3.5.5 Still-Texture Coding 
The MPEG-4 also supports coding of static textures (or still images). This 
mode uses subband coding based on the discrete wavelet transform (DWT). 
As discussed in Section 2.6.3, the DWT is used in subband coding to 

apply a nonuniform decomposition (refer to Figure 2.12(b)) to the texture 
information. This results in a decomposition tree of subbands. The lowest 
subband (horizontal low=vertical low (LL)) is known as the DC subband, 
whereas the remaining subbands are known as the AC subbands. 
In MPEG-4, the DWT can be either a Joating-point or an integer transform, 

as signaled by the encoder in the bitstream. The encoder can also choose to 
use a set of default /lters or to use its own /lters and de/ne them in the 
bitstream. 
The quantized coe,cients of the DC subband are encoded using DPCM 

followed by arithmetic coding. The choice of the predictor for a particular 
coe,cient depends on the magnitude of the horizontal and vertical gradients of 
neighboring coe,cients. If the horizontal gradient is smaller than the vertical 
gradient, then prediction is performed using the left neighboring coe,cient; 
otherwise the top neighboring coe,cient is employed. 
The quantized coe,cients of the AC subbands are encoded using a zero-tree 

algorithm followed by arithmetic coding. 

3.5.6 Sprite Coding 
An interesting mode supported by MPEG-4 is sprite coding. A sprite consists 
of those parts of an object that are present in the scene throughout a video 
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segment. For example, a background sprite (also referred to in the literature 
as a background mosaic) can be constructed by collecting all pels belong-
ing to the background throughout a video segment. Note that in the case of 
camera panning, for example, the background sprite can be larger than the 
actual frames of the sequence. This still, and possibly large, image needs to 
be transmitted only once before transmitting the corresponding video segment. 
For each frame of the video segment, there is no need to encode a back-
ground VOP. Instead, a small number of parameters needs to be transmitted 
to allow the decoder to warp=crop the sprite and generate an appropriate back-
ground VOP. Thus, in such cases, sprite coding can achieve very high coding 
e,ciency. 
Sprite coding can operate in three modes: basic sprite coding, low-latency 

sprite coding, and scalable sprite coding. In basic sprite coding the whole sprite 
is encoded and transmitted to the decoder before transmitting the corresponding 
video segment. In low-latency sprite coding only part of the sprite is encoded 
and transmitted. This part is su,cient to be used for the /rst few frames of 
the video segment. The remaining part of the sprite is transmitted, piecewise, 
when required or as the bandwidth allows. In scalable sprite coding the sprite 
is encoded and transmitted progressively. In other words, a low-quality version 
of the sprite is encoded and transmitted /rst. This is then re/ned gradually by 
encoding and transmitting residuals. 

3.5.7 Scalability 
MPEG-4 supports both temporal and spatial scalability using multiple VOLs. 
For example, in the case of two VOLs, one VOL provides the base layer 
whereas the other VOL provides the enhancement layer. 
MPEG4 uses a generalized scalability framework, as shown in Figure 3.15. 

In this framework the functionality of a block depends on the chosen type of 
scalability. 
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Figure 3.15: MPEG-4 generalized scalability 
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VOPs are input to the scalability preprocessor. If spatial scalability is to 
be performed, then this preprocessor downsamples the input VOPs to generate 
the base-layer VOPs forming the input to the base-layer encoder. The mid-
processor takes the reconstructed base-layer VOPs and upsamples them. The 
di1erence between the original VOPs and the output of the midprocessor forms 
the enhancement-layer VOPs. Those are encoded using the enhancement-layer 
encoder. The multiplexer is then used to multiplex the base- and enhancement-
layer bitstreams into a single bitstream. At the decoder, the demultiplexer 
is used to separate the incoming bitstream into base- and enhancement-layer 
bitstreams. The scalability postprocessor performs any necessary operations, 
such as upsampling the decoded base layer for display. 
If, however, temporal scalability is to be performed, then the scalability 

preprocessor separates the stream of input VOPs into two substreams. One 
substream forms the input to the base-layer encoder, while the other forms 
the input to the enhancement-layer encoder. In this case, the midprocessor 
does not perform any spatial resolution conversion and simply allows the 
reconstructed base-layer VOPs to pass through to be used for the temporal 
prediction of enhancement-layer VOPs. In this case also, the postprocessor 
simply outputs the reconstructed base-layer VOPs without any conversion. 
For spatial scalability, only rectangular VOPs are supported by MPEG-4. In 

the case of temporal scalability, however, both rectangular and arbitrary-shaped 
VOPs are supported. MPEG-4 provides two types of temporal scalability: 

•	Type I: The enhancement layer increases the temporal resolution of only 
a partial region of the base layer. 

•	Type II: The enhancement layer increases the temporal resolution of 
the entire region of the base layer. 

3.5.8 Error Resilience 
One of the main aims of MPEG-4 is to provide universal access through a wide 
range of environments, including error-prone environments. One of the impor-
tant requirements of video communication over error-prone environments, like 
mobile networks, is robustness against errors. MPEG-4 provides three main 
tools for error resilience: resynchronization, data partitioning, and reversible 
VLCs. 

3.5.8.1 Resynchronization 

As is discussed in Chapter 9, one of the disadvantages of VLC coding is 
that errors in the bitstream can cause a loss of synchronization between the 
encoder and the decoder. One way to reduce this e1ect is to insert unique 
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markers called resynchronization codewords in the bitstream. When an error is 
detected, the decoder skips the remaining bits until it /nds a resynchronization 
codeword. This reestablishes the synchronization with the encoder, and the 
decoder then proceeds to decode from that point on. 
Version 1 of H.263 adopts a GOB-based resynchronization approach. This 

means that a resynchronization codeword is inserted every time a /xed number 
of macroblocks (which is equal to the size of the GOB) has been encoded. 
Since the number of bits can vary between macroblocks, the resynchroniza-
tion codewords will most likely be unevenly spaced throughout the bitstream. 
Therefore, certain parts of the sequence, such as high-motion areas with high 
bit content, will be more susceptible to errors and will also be more di,cult 
to conceal. 
MPEG-4, however, adopts a more robust approach based on video pack-

ets, as illustrated in Figure 3.16(a). In this approach each packet contains 
approximately the same number of bits. This means that the resynchronization 
codewords are almost periodic in the bitstream. Note that the header of the 
packet contains the necessary information (e.g., the address of the /rst MB in 
the packet and the corresponding quantization parameter) to restart decoding 
after reestablishing synchronization. Following the packet header is the header 
extension code (HEC). When this bit is set to “1,” then additional information 
(e.g., timing information and VOP coding type) are included in the header. 
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Figure 3.16: MPEG-4 error resilience tools 
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Such information was originally included in the VOP header. Its inclusion in 
the packet header as well enables the decoder to decode the packet without 
reference to the packet containing the VOP header. Such information can 
also help error detection, since it is supposed to be the same in all packets 
belonging to the same VOP. 
Another problem with VLC coding is that errors can emulate the occur-

rence of start and resynchronization codewords. To reduce this e1ect, MPEG-4 
provides a second resynchronization approach called 4xed-interval synchro-
nization. In this approach, VOP start codes and packet resynchronization code-
words appear only at legal /xed-interval locations in the bitstream. Thus, only 
codewords at those legal locations will be used by the decoder to reestablish 
synchronization. 

3.5.8.2 Data Partitioning 

In some cases, an error occurs well before the point in the bitstream at which 
the error is detected. Therefore, when an error is detected, all bits between the 
resynchronization codeword prior to the error detection point and the resyn-
chronization codeword where synchronization is reestablished are typically 
discarded. If the decoder can localize the error more e1ectively, then the per-
formance of error concealment techniques (discussed in Chapter 9) can be 
improved. 
MPEG-4 uses data partitioning to further improve the ability of the decoder 

to localize errors. In this approach the bitstream between two resynchronization 
codewords is divided into smaller logical units. Each logical unit contains one 
type of information for all MBs belonging to the same packet. For example, in 
Figure 3.16(b) the motion information for all the MBs in the packet is encoded 
/rst, followed by a motion marker and then the texture information for all the 
MBs in the packet. In the non-data-partitioned case, if an error occurs in the 
texture information, then the header, motion, and texture information will all 
be discarded. In the data-partitioned case, however, if an error occurs in the 
texture information, then only the texture information will be discarded, and 
the motion marker will be used to locate and recover the header and motion 
information. Temporal concealment (described in Chapters 9 and 10) can then 
use this recovered information to conceal the corrupted MBs from the reference 
VOP. 

3.5.8.3 Reversible VLCs 

As already discussed, when an error is detected in the bitstream, the bits 
between the surrounding resynchronization codewords are discarded, and the 
decoder skips to the next resynchronization codeword and proceeds decod-
ing from there. In MPEG-4, however, texture information is encoded using 
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RVLCs, as illustrated in Figure 3.16(c). In this case, when the decoder jumps 
to the next resynchronization codeword, instead of discarding all preceding 
bits, the decoder can start decoding in the reverse direction to recover and 
utilize some of those bits. 

3.5.9 Pro>les and Levels 
As already discussed, pro/les and levels provide a means of de/ning subsets 
of the syntax and semantics of a standard. This in turn provides a means of 
de/ning the decoder capabilities required to decode a particular bitstream. Pro-
/les and levels are used to de/ne conformance points that facilitate bitstream 
interchange among di1erent applications. 
In MPEG-4, object types are used to de/ne pro/les. An object type de/nes 

a subset of MPEG-4 tools that provides a single or a group of functionalities. 
There are six natural video object types: simple, core, main, simple scalable, 
N -bit, and still scalable texture. For example, the main object type includes 
the following subset of tools: basic (I- and P-VOP, coe,cient prediction, 
4-MV, and unrestricted MV), error resilience, short header, B-VOP, Methods 
1 and 2 for quantization, P-VOP-based temporal scalability, binary shape, gray 
shape, interlace, and sprite. 
A pro4le is a de/ned subset of the entire bitstream syntax. MPEG-4 de-

/nes six natural video pro/les: simple, core, main, simple scalable, N -bit, and 
scalable texture. Each pro/le is de/ned in terms of video object types. For 
example, the main pro4le includes the following object types: simple, core, 
main, and scalable still texture. 
A level within a pro/le is a de/ned set of constraints imposed on parameters 

in the bitstream that relate to the tools of that pro/le. For example, level 1 
(L1) of the simple pro4le has a typical session size of QCIF, a maximum 
total number of objects of 4, and a maximum bitrate of 64 kbits=s. 





Part II

Coding E
ciency


The radio spectrum is a limited and scarce resource. This puts very stringent 
limits on the bandwidth available for a mobile channel. Given the enormous 
amount of data generated by video, the use of e�cient coding techniques is 
vital. 

One of the most important factors that decide the coding e�ciency of a 
video codec is the motion estimation and compensation technique. This part 
contains three chapters. Chapter 4 covers some basic motion estimation meth-
ods. It starts by introducing some of the fundamentals of motion estimation. 
It then reviews some basic motion estimation methods, with particular em-
phasis on the widely used block-matching methods. The chapter then presents 
the results of a comparative study between the di"erent methods. The chapter 
also investigates the e�ciency of block-matching motion estimation at very 
low bit rates, typical of mobile video communication. The aim is to decide if 
the added complexity of this process is justi%able, in terms of an improved 
coding e�ciency, at such bit rates. 

Chapter 5 investigates the performance of the more advanced warping-based 
motion estimation methods. The chapter starts by describing a general warping-
based motion estimation method. It then considers some important parameters, 
like the shape of the patches, the spatial transformation used, and the node-
tracking algorithm. The chapter then assesses the suitability of warping-based 
methods for mobile video communications. In particular, the chapter compares 
the coding e�ciency and the computational complexity of such methods to 
those of block-matching methods. 

Chapter 6 investigates the performance of another advanced motion estima-
tion method, called multiple-reference motion-compensated prediction (MR-
MCP). The chapter starts by brie-y reviewing multiple-reference motion esti-
mation methods. It then concentrates on the long-term memory motion-com-
pensated prediction (LTM-MCP) technique. The chapter investigates the 
prediction gains and the coding e�ciency of this technique at very low bit 
rates. The primary aim is to decide if the added complexity, increased motion 
overhead, and increased memory requirements of this technique are justi%able 
at such bit rates. The chapter also investigates the properties of multiple-
reference block motion %elds and compares them to those of single-reference 
%elds. 





Chapter 4 

Basic Motion Estimation Techniques


4.1 Overview 

Motion estimation is an important process in a wide range of disciplines and 
applications, such as image sequence analysis, computer vision, target track-
ing, and video coding. Di�erent disciplines and applications have di�erent 
requirements and may, therefore, use di�erent motion estimation techniques. 

This chapter reviews some basic motion estimation techniques developed 
speci�cally for video coding. It then carries out a comparative study between 
the di�erent techniques. The chapter also presents the results of an investiga-
tion into the e!ciency of block-matching motion estimation at very low bit 
rates. In particular, the investigation shows that the added complexity of this 
process is justi�able at such bit rates. 

Section 4.2 gives a brief introduction to the basics of motion estima-
tion. Sections 4.3– 4.6 brie*y review the di�erential, pel-recursive, frequency-
domain, and block-matching motion estimation methods. Section 4.7 presents 
the results of a comparative study of the reviewed techniques, whereas 
Section 4.8 investigates the e!ciency of motion estimation at very low bit 
rates. The chapter concludes with a discussion in Section 4.9. 

4.2 Motion Estimation 

As already discussed in Chapter 2 (Section 2.7.2), the most commonly used 
video coding method is motion-compensated coding. In the �rst stage of this 
method, called motion estimation (ME), the motion of objects between a 
reference frame and the current frame is estimated. This motion information 
is then used in the second stage, called motion compensation (MC), to move 
the objects of the reference frame to provide a prediction for the current 
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frame. The prediction error, called the displaced-frame di�erence (DFD), is 
encoded instead of the current frame itself. The estimated motion information 
also has to be transmitted, unless the decoder can estimate it from previously 
decoded information. This section introduces the basics of motion estimation. 
It de�nes and formulates the motion estimation problem and describes the 
main approaches and models used to solve this problem. Examples of such 
solutions will be discussed in subsequent sections. 

4.2.1 Projected Motion and Apparent Motion 
In video, the 3-D motion of objects in space is projected as 2-D motion onto 
the image plane. This 2-D motion, called projected motion, is illustrated in 
Figure 4.1. Thus, motion estimation may refer to the process of estimating 
image-plane 2-D motion or object-space 3-D motion. Note that the two are 
not equivalent. In fact, 2-D motion estimation is usually the �rst step toward 
3-D motion estimation. This chapter considers 2-D motion estimation only. 
For 3-D motion estimation, the reader is referred to Ref. 10. 

In video coding, motion is estimated by observing the spatiotemporal vari-
ation of intensity between frames. This is called the apparent motion. In the  
ideal case, apparent motion is equivalent to true projected motion. In practice, 
however, this is not always the case. For example, when a circle with uniform 
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intensity rotates about its center, it has a rotational projected motion but zero 
apparent motion. Another example is a still object with change of illumination 
between frames. Although the object has zero projected motion, the change in 
illumination will result in some apparent motion. Hereafter, unless otherwise 
stated, the term motion will be used to refer to apparent motion rather than 
true projected motion. 

Two-dimensional motion can be represented in terms of either 2-D displace-
ment vectors, d = [dx; dy ]T , or 2-D instantaneous velocity vectors, v = [vx; vy ]T 

= [  dx ; dy . A set of such vectors representing motion in a frame is called dt dt ]
T 

the motion �eld of the frame. The two representations are called the dis-
placement �eld and the velocity �eld in the case of projected motion, or the 
correspondence �eld and the optical "ow �eld in the case of apparent motion. 
However, in the video coding literature, it has become a convention to ignore 
this distinction and to use the terms displacement �eld and velocity �eld to 
refer to the apparent correspondence �eld and optical *ow �eld, respectively. 
Hereafter, this convention will be adopted. Furthermore, this book uses the 
displacement �eld representation rather than the velocity �eld representation. 
Thus, the term motion �eld will always refer to the apparent correspondence 
�eld and the term motion vector will always refer to a displacement vector 
within this �eld. 

4.2.2 Problem Formulation 
Two-dimensional apparent motion can be attributed to three main causes. The 
�rst cause is global, or camera, motion. Even when there is no object motion 
in the frame, the motion of the camera induces a global motion. The second 
cause is local motion. This is the intrinsic motion of the objects in the scene. 
The third cause is illumination changes. Even when there is no object motion 
in the scene, changes in lighting conditions in*uence apparent motion. 

All techniques considered in this chapter make no distinction between global 
and local motions, and they do not take into account illumination changes. 
Thus, they assume that global motion is taken into account through local 
motion and that the impact of illumination changes can be ignored. It should be 
pointed out, however, that some other techniques use a two-stage global=local 
motion estimation, e.g., Ref. 77, or estimate illumination changes, e.g., Ref. 78. 

The 2-D apparent motion estimation problem can be formulated as a for-
ward or a backward estimation problem depending on the temporal location 
of the reference frame with respect to the current frame. 

In backward motion estimation, a pel s = [x; y]T in the current frame at 
time t is related to a pel in a previous reference frame at time t − @t by 

ft (s) =  ft−@t (s − d(s)): (4.1) 
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In forward motion estimation, however, the same pel is related to a pel in 
a future reference frame at time t + @t by 

ft (s) =  ft+@t (s + d(s)):	 (4.2) 

The aim of motion estimation is to �nd the motion vector d(s) = [dx (s); 
dy(s)]T . Note that d(s) is not necessarily a full-pel accurate motion vector. 
Thus, a motion estimation technique may need to access intensity values at 
nonsampling locations in the reference frame. This is achieved using inter-
polation techniques like nearest-neighbor, bilinear, and cubic interpolation. In 
this book, bilinear interpolation is employed because of its good compromise 
between interpolation quality and computational complexity. It is de�ned as 

f(x; y) = (1  − xf )(1 − yf )f(xi; yi) +  xf(1 − yf)f(xi + 1; yi ) 

+ (1  − xf)yff(xi; yi + 1) +  xfyff(xi + 1; yi + 1); (4.3) 

where (xi; yi ) and (xf; yf ) are, respectively, the integer and fractional parts of 
the pel coordinates (x; y). 

Care should be taken when interpreting the terms forward and backward. 
The two terms can be used to refer to either the motion estimation process or 
the motion compensation process. A forward motion estimation process cor-
responds to a backward motion compensation process, and vice versa. Note 
that forward motion estimation is associated with a coding delay. Thus, most 
video coding standards employ backward estimation (i.e., forward compensa-
tion), although forward estimation is sometimes employed (e.g., in B-frames 
in MPEG1–2 and PB-frames in H.263). 

4.2.3 An Ill-Posed Problem 
The preceding formulation of the motion estimation problem indicates that it 
is an ill-posed problem.1 It su�ers from the following problems [10]: 

•	Existence of solution: For example, no motion can be estimated for 
covered=uncovered background pels. This is known as the occlusion 
problem. 

•	Uniqueness of solution: At each pel, s, the number of unknown inde-
pendent variables (dx and dy ) is twice the number of equations, (4.1) 
or (4.2). This is known as the aperture problem. 

1A problem is called ill-posed if a unique solution does not exist and=or the solution does not 
continuously depend on the data [79]. 
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•	Continuity of solution: The motion estimate is highly sensitive to the 
presence of noise. 

Because of this ill-posed nature of the problem, motion estimation algo-
rithms use additional assumptions about the structure of the motion �eld. Such 
assumptions are referred to as motion models. They can be deterministic or 
probabilistic, parametric or nonparametric, as will be discussed in the follow-
ing subsections. 

4.2.4 Deterministic and Probabilistic Models 
In a deterministic model, motion is seen as an unknown deterministic quantity. 
By maximizing the probability of the observed video sequence with respect 
to the unknown motion, this deterministic quantity can be estimated. The cor-
responding estimator is usually referred to as a maximum likelihood (ML) 
estimator. All motion estimation methods discussed in this chapter follow this 
deterministic approach. 

In a probabilistic (or Bayesian) model, motion is seen as a random variable. 
Thus, the ensemble of motion vectors forms a random �eld. This �eld is 
usually modeled using a Markov random �eld (MRF). Given this model, 
motion estimation can be formulated as a maximum a posteriori probability 
(MAP) estimation problem. This problem can be solved using optimization 
techniques like simulated annealing, iterated conditional modes, mean �eld 
annealing, and highest con�dence �rst. For a detailed description of Bayesian 
motion estimation methods, the reader is referred to Ref. 10. 

4.2.5 Parametric and Nonparametric Models 
In a parametric model, motion is represented by a set of motion parameters. 
Thus, the problem of motion estimation becomes a problem of estimating 
the motion parameters rather than the motion �eld itself. Since 2-D motion 
results from the projection of 3-D motion onto the image plane, a parametric 
2-D motion model is usually derived from models describing 3-D motion, 
3-D surfaces, and the projection geometry. For example, the assumptions of 
a planar 3-D surface moving in space according to a 3-D a!ne model and 
projected onto the image plane using an orthographic projection2 results in 
a 2-D 6-parameter a!ne model. Di�erent assumptions lead to di�erent 2-D 
models. The 2-D models can be as complex as a quadratic 12-parameter model 

2In an orthographic projection, it is assumed that all rays from a projected 3-D object to the 
image plane travel parallel to each other [10]. 
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or as simple as a translational 2-parameter model (which is used in block-
matching) [80]. Note that with parametric models, the constraint to regularize 
the ill-posed motion estimation problem is implicitly included in the motion 
model. 

In nonparametric models, however, an explicit constraint (e.g., the smooth-
ness of the motion �eld) is introduced to regularize the ill-posed problem of 
motion estimation. 

4.2.6 Region of Support 
An important parameter in motion estimation is the region of support. This is 
the set of pels to which the motion model applies. A region of support can 
be as large as a frame or as small as a single pel, it can be of �xed size or 
of variable size, and it can have a regular shape or an arbitrary shape. 

Large regions of support result in a small motion overhead but may su�er 
from the accuracy problem. This means that pels within the region belong 
to di�erent objects moving in di�erent directions. Thus, the estimated motion 
parameters will not be accurate for some or all of the pels within the region. 

The accuracy problem can be overcome by using small regions of support. 
This is, however, at the expense of an increase in motion overhead. Small 
support regions may also su�er from the ambiguity problem. This means that 
several patterns similar to the region may appear at multiple locations within 
the reference frame. This may lead to incorrect motion parameters. 

4.3 Di-erential Methods 

Di�erential methods are among the early approaches for estimating the motion 
of objects in video sequences. They are based on the relationship between the 
spatial and the temporal changes of intensity. 

Di�erential methods were �rst proposed by Limb and Murphy in 1975 [81]. 
In their method, they use the magnitude of the temporal frame di�erence, 
FD, over a moving area, A, to measure the speed of this area. To remove 
dependence on the area size, this measure is normalized by the horizontal, 
HD, or vertical, VD, spatial pel di�erences. Thus the estimated motion vector 
is given by 

 
s∈AFD(s)sign(HD(s)) 

 
d̂ = 

d̂x 
=  ∑ 

s∈A|HD(s)|    ; (4.4) d̂y  
s∈AFD(s)sign(VD(s)) 

|VD(s)|s∈A
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where 

|z
z 
| ; if |z |≥threshold; 

sign(z ) =  (4.5)
0; otherwise; 

FD(s) =  ft (s) − ft −@t (s); (4.6) 

1
HD(s) =  

2
[ft (x + 1; y  ) − ft (x − 1; y  )]; (4.7) 

and 
1

VD(s) =  
2
[ft (x; y + 1)  − ft (x; y − 1)]: (4.8) 

The theoretical basis of di�erential methods were established later by 
Ca�orio and Rocca in 1976 [82]. They start with the basic de�nition of the 
frame di�erence, Equation (4.6), and they rewrite it as 

FD(s) =  ft (s) − ft −@t (s) 

= ft (s) − ft (s + d): (4.9) 

For small values of d, the right-hand side of Equation (4.9) can be replaced 
by its Taylor series expansion about s, as follows: 

FD(s) =  −dT ∇sft (s) + higher-order terms; (4.10) 
@where ∇s = [  @ ; @y ]

T is the spatial gradient with respect to s. Ignoring the @x 
higher-order terms and assuming that motion is constant over an area A, 
linear regression can be used to obtain the minimum mean square estimate of 
d as [ ]−1 [ ] 

d̂ = − 
∑ ∑ 

∇sft (s)∇Tft (s) FD(s)∇sft (s) : (4.11)s 
s∈A s∈A 

Note that this equation is highly dependent on the spatial gradient, ∇s. For 
this reason, di�erential methods are also known as gradient methods. Using 
the approximation ∇sft (s) ≈ [HD(s); VD(s)]T , Equation (4.11) reduces to 

[ ∑ ∑ ]−1
HD2(s) s∈A HD(s) · VD(s)s∈A

d̂ = − 
s∈A HD(s) · VD(s) VD2(s)s∈A 

s∈A FD(s) · HD(s) 
× ∑ : (4.12) 

s∈A FD(s) · VD(s) 
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By ignoring the cross terms (i.e., s∈A HD(s)·VD(s) ≈ 0), it can be shown 
that the general analytical solution of Ca�orio and Rocca (Equation (4.12)) 
reduces to the simple heuristic solution of Limb and Murphy (Equation (4.4)). 

The main assumption in deriving the di�erential estimate of Equation (4.12) 
using Taylor series expansion is that the motion vector d is small. As d 
increases, the quality of the approximation becomes poor. Thus, the main 
drawback of di�erential methods is that they can only be used to measure 
small motion displacements (up to about ±3 pels). A number of methods 
have been proposed to overcome this problem, like, for example, the iterative 
method of Yamaguchi [83]. In this method, an initial motion vector is �rst 
estimated, using Equation (4.12), between a block in the current frame and a 
corresponding block in the same location in the reference frame. In the next 
iteration, the position of the matched block in the reference frame is shifted 
by the initial motion vector, and then the di�erential method is applied again 
to produce a second estimate. This second estimate acts as a correction term 
for the initial estimate. This process of shift and estimation continues until the 
correction term becomes adequately small. 

Another drawback of di�erential methods is that the spatial gradient oper-
ator, ∇s, is sensitive to data noise. This can be reduced by using a larger set 
of data in its calculation. 

There are also cases where di�erential methods can fail [84]. For example, 
in smooth areas the gradient is approximately equal to zero and the matrix in 
Equation (4.12) becomes singular. Also, when motion is parallel to edges in 
the image, i.e., dT∇s ≈ 0, the frame di�erence, Equation (4.10), becomes zero, 
giving a wrong displacement of zero. Such problems may be partially solved 
by increasing the data area, but this may give rise to the accuracy problem. 

4.4 Pel-Recursive Methods 

Given a function g(r) of several unknowns r = [r1; : : : ; rn]T , the most straight-
forward way to minimize it is to calculate its partial derivatives with respect 
to each unknown, set them equal to 0, and solve the resulting simultaneous 
equations. This is called gradient-based optimization and can be represented 
in vector form as 

∇rg(r) = 0: (4.13) 

In cases where the function g(r) cannot be represented in closed form and=or 
the set of simultaneous Equations (4.13) cannot be solved, numerical iterative 
methods are employed. 

One of the simplest numerical methods is the steepest-descent method. Since 
the gradient vector points in the direction of the maximum, this method updates 
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the present estimate, r̂i, of the location of the minimum in the direction of the 
negative gradient, to obtain a new improved estimate 

i+1 = ˆr̂ r i − �∇rg(r̂ i); (4.14) 

where �¿ 0 is an update step size and i is the iteration index. 
Pel-recursive methods are based on an iterative gradient-based minimization 

of the prediction error. They were �rst proposed by Netravali and Robbins in 
1979 [85]. In their algorithm, they use a steepest-descent approach to iteratively 
minimize the square of the displaced-frame di�erence, DFD(s; d), with respect 
to the displacement vector, d. Thus 

g(r) = DFD2(s; d); (4.15) 

where 

DFD(s; d) =  ft(s) − ft−@t(s − d): (4.16) 

Substituting Equation (4.15) into Equation (4.14) and setting �= 2 
� gives 

d̂i+1 = d̂i − 2 
�∇dDFD2(s; d̂i): (4.17) 

Now, 

∇dDFD2(s; d) = 2 DFD(s; d) ∇dDFD(s; d) 

= 2 DFD(s; d) ∇d[ft(s) − ft−@t(s − d)] 

= 2 DFD(s; d) ∇sft−@t(s − d): (4.18) 

Substituting Equation (4.18) into Equation (4.17) gives 

d̂i+1 = d̂i − �DFD(s; d̂i)∇sft−@t(s − d̂i); (4.19) 

where the spatial gradient ∇sft−@t(s − d̂i) can be approximated by Equations 
(4.7) and (4.8) but evaluated at a displaced location (s − NINT[d̂i]) in the 
reference frame. As in di�erential methods, this estimate is highly dependent 
on the spatial gradient. For this reason, pel-recursive methods are sometimes 
considered a subset of gradient or di�erential methods. 

The iterative approach of Equation (4.19) is normally applied on a pel-
by-pel basis, leading to a dense motion �eld, d̂(s). Iterations may proceed 
along a scanning line, from line to line, or from frame to frame. In order to 
smooth out the e�ect of noise, the update term can be evaluated over an area 
A= {s1; : : : ; sp} as follows: 

p 

d̂i − � 
∑ 

d̂i+1 = Wj DFD(sj; d̂i)∇sft−@t(sj − d̂i); (4.20) 
j=1 
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pwhere Wj ≥ 0 and j=1Wj = 1. Netravali and Robbins also proposed a simpli-
�ed expression for hardware implementation: 

d̂i+1 = d̂i − � sign[DFD(s; d̂i)] sign[∇sft−@t(s − d̂i)]: (4.21) 

The convergence of this method is highly dependent on the constant step 
size �. A high value of � leads to quick convergence but less accuracy, whereas 
a small value of � leads to slower convergence but more accurate estimates. 
Thus, a compromise between the two is desired. A number of algorithms have 
been reported to improve the performance of pel-recursive algorithms, e.g., 
Ref. 86. Most of them are based on the idea of substituting the constant step 
size � by a variable step size to achieve better adaptation to the local image 
statistics and, consequently, faster convergence and higher accuracy. A good 
review of such methods with comparative results can be found in Ref. 87. 

The dense motion �eld of pel-recursive methods can overcome the accuracy 
problem. This is, however, at the expense of a large motion overhead. To 
overcome this drawback, the update term from one iteration to the other can 
be based on previously transmitted data only. In this case, the decoder can 
estimate the same displacements generated at the encoder, and no motion 
information needs to be transmitted. A disadvantage of this causal approach, 
however, is that it constrains the method and reduces its prediction capability. 
In addition, it increases the complexity of the decoder. 

Another disadvantage of pel-recursive methods is that they can easily con-
verge to local minima within the error surface. In addition, smooth intensity 
regions, discontinuities within the motion �eld, and large displacements cannot 
be e!ciently handled [55]. 

4.5 Frequency-Domain Methods 

Frequency-domain motion estimation methods are based on the Fourier trans-
form (FT) property that a translational displacement in the spatial domain 
corresponds to a linear phase shift in the frequency domain. Thus, assuming 
that the image intensities of the current frame, ft , and the reference frame, 
ft−@t , di�er over a moving area, A, only due to a translational displacement, 
(dx; dy), then 

ft(x; y) =  ft−@t(x − dx; y  − dy); (x; y) ∈ A: (4.22) 

Taking the FT of both sides with respect to the spatial variables (x; y) gives 
the following frequency-domain equation in the frequency variables (wx; wy): 

Ft(wx; wy) =  Ft−@t(wx; wy)e j(−wxdx−wydy); (4.23) 
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where Ft and Ft−@t are the FTs of the current and reference frames, respec-
tively. In Ref. 88, Haskell noticed this relationship but did not propose an 
algorithm to recover the displacement from the phase shift. 

If we de�ne @�(wx; wy ) as the phase di�erence between the FT of the 
current frame and that of the reference frame, then 

e j@�(wx;wy ) = e j[�t (wx;wy )−�t−@t (wx;wy )] 

= e j�t (wx;wy ) −j�t−@t (wx;wy )· e
F∗Ft (wx; wy ) t−@t (wx; wy) 

= · (4.24)|Ft (wx; wy )| |F∗ 
t−@t (wx; wy)|

; 

where �t and �t−@t are the phase components of Ft and Ft−@t , respectively, 
and the superscript ∗ indicates the complex conjugate. If we de�ne ct; t−@t (x; y) 
as the inverse FT of e j@�(wx;wy ), then 

ct; t−@t (x; y) =  F−1{e j@�(wx;wy )} 

= F−1{e j�t (wx;wy ) · e−j�t−@t (wx;wy )} 

= F−1{e j�t (wx;wy )} ⊗F−1{e−j�t−@t (wx;wy )}; (4.25) 

where ⊗ is the 2-D convolution operation. In other words, ct; t−@t (x; y) is the  
cross-correlation of the inverse FTs of the phase components of Ft and Ft−@t . 
For this reason, ct; t−@t (x; y) is known as the phase correlation function. The 
importance of this function becomes apparent if it is rewritten in terms of the 
phase di�erence in Equation (4.23): 

ct; t−@t (x; y) =  F−1{e j@�(wx;wy )} 

= F−1{e j(−wxdx −wydy )} 

= �(x − dx; y  − dy ): (4.26) 

Thus, the phase correlation surface has a distinctive impulse at (dx; dy ). This 
observation is the basic idea behind the phase correlation motion estimation 
method. In this method, Equation (4.24) is used to calculate e j@�(wx;wy ), the 
inverse FT is then applied to obtain ct; t−@t (x; y), and the location of the 
impulse in this function is detected to estimate (dx; dy). 

In practice, the impulse in the phase correlation function degenerates into 
one or more peaks. This is due to many factors, like the use, in digital images, 
of the discrete Fourier transform (DFT) instead of the FT, the presence of more 
than one moving object within the considered area A, and the presence of 
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noise. In particular, the use of the 2-D DFT instead of the 2-D FT results in 
the following e�ects [10]: 

•	The boundary e�ect: In order to obtain a perfect impulse, the transla-
tional displacement must be cyclic. In other words, objects disappearing 
at one end of the moving area must reappear at the other end. In practice 
this does not happen, which leads to the degeneration of the impulse 
into peaks. Furthermore, the DFT assumes periodicity in both directions. 
In practice, however, discontinuities occur from left to right and from 
top to bottom, introducing spurious peaks. 

•	Spectral leakage: In order to obtain a perfect impulse, the translational 
displacement must correspond to an integer multiple of the fundamental 
frequency. In practice, noninteger motion vectors may not satisfy this 
condition, leading to the well-known spectral leakage phenomenon [89], 
which degenerates the impulse into peaks. 

•	Displacement wrapping: The 2-D DFT is periodic with the area size 
(Nx; Ny ). Negative estimates will be wrapped and will appear as positive 
displacements. To accommodate negative displacements, the estimated 
displacement needs to be unwrapped as follows [10]: 

  d̂i if |d̂i | ≤  Ni and Ni is even 	 2  
d̂i = or if |d̂i| ≤  Ni −1 and Ni is odd; (4.27)2    

d̂i − Ni; otherwise: 

NiThis means that the range of estimates is limited to [ −Ni + 1; 2 ] for Ni2 
even. 

The phase correlation motion estimation method was �rst reported by Kuglin 
and Hines in 1975 [90]. It was later extensively studied by Thomas [91]. In 
his study, Thomas analyzed the properties of the phase correlation function. 
He suggested using a weighting function to smooth the correlation surface and 
suppress spurious peaks. He also proposed a second stage to the method, in 
which smaller moving areas are used and more than one dominant peak from 
the �rst stage are considered and compared. Girod [92] augmented this by a 
third stage, in which the estimated integer-pel motion displacement is re�ned 
to subpel accuracy. 

The phase correlation method has a number of desirable properties. It has a 
small computational complexity, especially with the use of fast Fourier trans-
forms (FFTs). In addition, it is relatively insensitive to illumination changes 
because shifts in the mean value or multiplication by a constant do not a�ect 
the Fourier phase. Furthermore, the method can detect multiple moving objects, 
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because they appear as multiple peaks in the correlation surface. In addition 
to its use in video coding, the phase correlation method has been successfully 
incorporated into commercial standards conversion equipment [93]. 

There are few other frequency-domain motion estimation methods. For 
example, Chou and Hang [94] analyzed frequency-domain motion 
estimation in both noise-free and noisy situations. Their analysis is very similar 
to the noise analysis in phase or frequency modulation systems, and it 
provides insights into the performance limits of motion estimation. They 
formulated frequency-domain motion estimation as a set of simultaneous 
equations, which they solved using a modi�ed least-mean-square (LMS) algo-
rithm. The resulting algorithm is known as the frequency component method. 
It provides more reliable estimates than the phase correlation method, partic-
ularly for noisy sequences. Young and Kingsbury [95] proposed a frequency-
domain method based on the complex lapped transform. Koc and Liu [96] 
used the pseudophase hidden in the DCT transform to propose a DCT-based 
frequency-domain motion estimation method. The algorithm has a low compu-
tational complexity and was later extended to achieve interpolation-free subpel 
accuracy [97]. 

4.6 Block-Matching Methods 

Block-matching motion estimation (BMME) is the most widely used motion 
estimation method for video coding. Interest in this method was initiated by 
Jain and Jain in 1981 [54]. In their block-matching algorithm (BMA), the 
current frame, ft , is �rst divided into blocks of M × N pels. The algorithm 
then assumes that all pels within the block undergo the same translational 
movement. Thus, the same motion vector, d = [dx; dy ]T , is assigned to all pels 
within the block. This motion vector is estimated by searching for the best-
match block in a larger search window of (M + 2dmx ) × (N + 2dmy ) pels 
centered at the same location in a reference frame, ft−@t , where dmx and dmy 

are the maximum allowed motion displacements in the horizontal and vertical 
directions, respectively. This process is illustrated in Figure 4.2 and can be 
formulated as follows: 

(d̂x; d̂y) = arg min BDM(i; j); where |i|≤dmx and |j|≤dmy ; (4.28)
i; j 

and BDM(i; j) is a  block distortion measure that measures the quality of match 
between the block in the current frame and a corresponding candidate block in 
the reference frame shifted by a displacement (i; j). It is very common to use 
square blocks of N × N pels and a maximum motion displacement of ± dm 
in both directions. When Equation (4.28) is evaluated for all possible (i; j) 
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Figure 4.2: Block-matching motion estimation 

displacements (i.e., for all possible candidate blocks in the search window), 
the BMA is referred to as the full-search (FS) algorithm. 

Since its introduction, BMME has attracted considerable attention, and 
many re�nements to the basic BMA have been proposed. In the following 
subsections, di�erent parameters of the BMA are introduced and their impact 
on performance is evaluated. A number of re�nements to the basic BMA are 
also examined. 

4.6.1 Matching Function 
The matching function (or the BDM) can be any function that measures the 
distortion or the match between the block, B, in the current frame and the 
displaced candidate block in the reference frame. The choice of a suitable 
BDM is very important, for it impacts both the prediction quality and the 
computational complexity of the algorithm. 

One possible matching function is the normalized cross-correlation func-
tion3 (NCCF), de�ned as 

(x;y)∈B ft (x; y) · ft−@t (x − i; y − j)
NCCF(i; j) =  √ √ : (4.29) 

(x;y)∈B ft 
2(x; y) · (x;y)∈B ft

2 
−@t (x − i; y − j) 

3The NCCF is a measure of the correlation between two blocks rather than the distortion 
between them. Thus, when used in BMA, the minimization process in Equation (4.28) becomes 
a maximization process. 
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Since the motion estimation process aims at minimizing the DFD signal, a 
natural choice for the matching function is the mean squared error, which is 
often formulated as the sum of squared di�erences (SSD): 

SSD(i; j) =  (ft (x; y) − ft−@t (x − i; y − j))2: (4.30) 
(x;y)∈B 

A very similar matching function is the sum of absolute di�erences (SAD): 

SAD(i; j) =  |ft (x; y) − ft−@t (x − i; y − j)|: (4.31) 
(x;y)∈B 

To compare the performance of these matching functions, a full-pel full-
search BMA was implemented. The algorithm uses 16 × 16 blocks and a max-
imum allowed motion displacement of ±15 pels in both directions. In this 
algorithm, motion is estimated and compensated using original previous frames, 
and motion vectors are restricted so that they do not point outside the reference 
frame. Motion vectors are encoded using the median predictor and the VLC 
table of the H.263 standard. Unless otherwise stated, all subsequent results in 
this chapter use the same simulation conditions. Figure 4.3 compares the per-
formances of the algorithm with di�erent matching functions when applied to 
the �rst 10 frames of the FOREMAN sequence at a frame rate of 8:33 frames=s 
(i.e., a frame skip4 of 3). The quoted PSNR values are for the luma com-
ponent only. It can be seen from this �gure that the SSD measure achieves 
the best performance, followed very closely by the SAD measure. The NCCF 
measure, on the other hand, has the worst performance. While Figure 4.3 com-
pares the performance in terms of prediction quality, Table 4.1 compares the 
performances in terms of computational complexity. It can be seen that the 
SAD measure has the lowest computational complexity, because it involves 
no multiplications. Because of its good prediction quality and small computa-
tional complexity, SAD is preferred by most implementations. All subsequent 
results assume the use of SAD as the matching function. 

There are many other proposed matching functions. Most of them attempt 
to further reduce complexity, but this is often at the expense of a reduced 
prediction quality. A more detailed discussion of such functions is deferred to 
Chapter 7. 

4Throughout this book, the term frame skip will be used to quantify the amount of temporal 
subsampling with respect to the original frame rate. For example, a frame skip of 3 means 
that the original sequence is temporally subsampled by a factor of 3:1. Thus, if the original 
sequence has a frame rate of 30 frames=s, then the subsampled sequence will have a frame rate 
of 30=3 = 10 frames=s. 
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Figure 4.3: Reconstruction quality of SSD, SAD, and NCCF 

Table 4.1: Computational complexity of SSD, SAD, and NCCF for an 
N × N block 

SAD SSD NCCF 

| · |  N 2 – – 
− N 2 N 2 -
+ N 2 − 1 
× – 
÷ – 

N 2 − 1  3(N 2 − 1) 
N 2 3N 2 + 1  
– 1 √ – – 2 

4.6.2 Block Size 
Another important parameter of the BMA is the block size. Figure 4.4 shows 
the performance of the BMA with two di�erent sizes, 8 × 8 and 16 × 16. It can 
be seen in Figure 4.4(a) that a smaller block size achieves better prediction 
quality. This is due to a number of reasons. A smaller block size reduces 
the e�ect of the accuracy problem. In other words, with a smaller block size, 
there is less possibility that the block will contain di�erent objects moving in 
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Figure 4.4: Performance of the BMA with di�erent block sizes 

di�erent directions. In addition, a smaller block size provides a better piecewise 
translational approximation to nontranslational motion. Since a smaller block 
size means that there are more blocks (and consequently more motion vectors) 
per frame, this improved prediction quality comes at the expense of a larger 
motion overhead, as can be seen in Figure 4.4(b). Most video coding standards 
use a block size of 16 × 16 as a compromise between prediction quality and 
motion overhead. A number of variable-block-size motion estimation methods 
have also been proposed in the literature [98, 99]. As already discussed, the 
advanced prediction mode of the H.263 standard allows adaptive switching 
between block sizes of 16 × 16 and 8 × 8 on an MB basis. 

4.6.3 Search Range 
The maximum allowed motion displacement dm , also known as the search 
range, has a direct impact on both the computational complexity and the 
prediction quality of the BMA. A small dm results in poor compensation for 
fast-moving areas and consequently poor prediction quality. This is evident 
from Figure 4.5(a), which compares the performance of two ranges, ± 5 and 
± 15. A large dm, on the other hand, results in better prediction quality but 
leads to an increase in the computational complexity (since there are (2dm +1)2 

possible blocks to be matched in the search window). A larger dm can also 
result in longer motion vectors and consequently a slight increase in motion 
overhead,5 as can be seen from Figure 4.5(b). In general, a maximum allowed 

5As will be shown later, in block-motion �elds, larger displacements are, in general, less 
probable. Thus, most video codecs assign longer codewords for longer motion vectors. 
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Figure 4.5: Performance of the BMA with di�erent search ranges 

displacement of dm = ± 15 pels is su!cient for low-bit-rate applications. As 
already discussed, the H.263 standard uses a maximum displacement of about 
± 15 pels, although this range can optionally be doubled with the unrestricted 
motion vector mode. 

4.6.4 Search Accuracy 
Initially, the BMA was designed to estimate motion displacements with full-pel 
accuracy. Clearly, this limits the performance of the algorithm, since in reality 
the motion of objects is completely unrelated to the sampling grid. A number 
of workers in the �eld have proposed to extend the BMA to subpel accuracy. 
For example, Ericsson [100] demonstrated that a prediction gain of about 
2 dB can be obtained by moving from full-pel to 1=8-pel accuracy. Girod [92] 
presented an elegant theoretical analysis of motion-compensating prediction 
with subpel accuracy. He termed the resulting prediction gain the accuracy 
e�ect. He also showed that there is a “critical accuracy” beyond which the 
possibility of further improving prediction is very small. He concluded that 
with block sizes of 16 × 16, quarter-pel accuracy is desirable for broadcast 
TV signals, whereas half-pel accuracy appears to be su!cient for videophone 
signals. Today, most video coding standards adopt subpel accuracy in its half-
pel form. In fact, it has been shown [65] that most of the performance gain 
of H.263 over H.261 can be attributed to the move from full-pel to half-pel 
accuracy. 

It should be pointed out, however, that the improved prediction quality of 
subpel accuracy comes at the expense of a signi�cant increase in computational 
complexity. This increase is due to two reasons. First, the reference frame 
intensities have to be interpolated at subpel locations. Second, there are now 
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Figure 4.6: Performance of the BMA with subpel accuracy 

more possible candidate blocks within the search window. For example, when 
moving from full-pel to half-pel accuracy, the number of candidate blocks in 
the search window increases from (2dm + 1)2 to (4dm + 1)2. To alleviate this 
complexity, most video codecs implement subpel accuracy as a postprocessing 
stage, where �rst a full-pel motion vector is obtained, usually using full search, 
and then this vector is re�ned to subpel accuracy using a limited search. This 
provides a large saving in computational complexity and at the same time 
maintains the improved prediction quality, as can be seen in Figure 4.6. 

4.6.5 Unrestricted Motion Vectors 
In some cases (like, for example, in border blocks) part of the search window 
is outside the reference frame area. This means that some of the candidate 
blocks in the search window are either partially or completely out of the 
reference frame. There are two ways to handle such candidate blocks. In the 
restricted motion vectors method, such blocks are ignored and skipped during 
motion estimation. In the unrestricted motion vectors method, however, such 
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Figure 4.7: Performance of the BMA with restricted and unrestricted motion vectors 

blocks are included in the motion estimation and compensation process. In this 
case, a referenced pel outside the frame is usually approximated by the closest 
border pel. This unrestricted method can improve the prediction quality along 
frame borders, especially in cases of camera or background movement. This 
is particularly useful in small frame formats, where border blocks represent a 
high percentage of the frame area. Figure 4.7 illustrates this improvement for 
part of the FOREMAN sequence. The method is included in the H.263 optional 
unrestricted motion vector mode and also in the advanced prediction mode. 

4.6.6 Overlapped Motion Compensation 
As already discussed, the BMA assumes that each block of pels moves with 
a uniform translational motion. Because this assumption does not always hold 
true, the method is known to produce blocking artefacts in the reconstructed 
frames. One method that reduces this e�ect is overlapped motion compensation 
(OMC). The method was �rst proposed by Watanabe and Singhal in 1991 
[101]. In BMA, the estimated block motion vector is used to copy a displaced 

30 
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Figure 4.8: Overlapped motion compensation for the top-left quadrant of the current block 

N × N block from the reference frame to the current N × N block in the 
current frame. In OMC, however, the estimated block motion vector is used 
to copy a larger block (say, 2N × 2N ) from the reference frame to a position 
centered around the current N × N block. As illustrated in Figure 4.8, since 
they are larger than the compensated blocks, the copied blocks overlap, hence 
the name overlapped motion compensation. Each copied block is weighted 
by a smooth window, with higher weights at the center and lower weights 
toward the borders. This means that the estimated motion vector is given 
more in*uence in the center of the block, and this in*uence decays toward 
the borders, where neighboring motion vectors start taking over. This ensures 
a smooth transition between blocks and therefore reduces blocking artefacts. 
Overlapped motion estimation and compensation can also be implemented in 
the frequency domain, as proposed by Young and Kingsbury [95]. 

Another view of the OMC process is that each pel in the current N × N 
block is compensated using more than one motion vector. For example, in 
Figure 4.8, each pel is compensated using four motion vectors. The set of 
motion vectors is decided according to the spatial position of the pel within the 
block. A pel in the top-left quadrant of the current block will be compensated 
using the motion vector of the block itself, plus the motion vectors of the 
blocks to the left of, above, and above left of the current block. Each vector 
provides a prediction for the pel, and those four predictions are weighted 
according to the spatial position of the pel within the block. For example, as 
the spatial position of the pel gets closer to the left border of the block, a 
higher weight is given to the prediction provided by the motion vector of the 
block to the left. 
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Orchard et al. [102, 103] used this view to formulate OMC as a linear 
estimator of the form 

f̂t (s) =  
∑ 

wn(s) ft−@t (s − dn); (4.32) 
dn ∈N(s) 

where N(s) =  {dn(s)} is the set of motion vectors used to compensate the 
pel at location s and wn(s) is the weight given to the prediction provided 
by vector dn. Using this formulation, they solve two optimization problems: 
overlapped-motion compensation and overlapped-motion estimation. Given the 
set of motion vectors N(s) estimated by the encoder, they propose a method 
for designing optimal windows, wn(s), to be used at the decoder for motion 
compensation. Also, given a �xed window that will be used at the decoder, 
they propose a method for �nding the optimal set of motion vectors at the 
encoder. Note that the latter problem is much more complex than the BMA, 
since in this case the estimated motion vectors are interdependent. For this 
reason, their proposed method is based on an iterative procedure. A number 
of methods have been proposed to alleviate this complexity, e.g., Ref. 104. 

As a linear estimator of intensities, OMC belongs to a more general set of 
motion compensation methods called multihypothesis motion compensation. 
Another member in this set is bidirectional motion compensation. The theoret-
ical motivations for such methods were presented by Sullivan in 1993 [105]. 
Recently, Girod [106] analyzed the rate-distortion e!ciency of such meth-
ods and provided performance bounds and comparisons with single-hypothesis 
motion compensation (e.g., the BMA). 

Figure 4.9 compares the performance of OMC to that of the BMA when 
applied to the FOREMAN sequence. In the case of OMC, the same BMA motion 
vectors were used for compensation (i.e., the motion vectors were not opti-
mized for overlapped compensation). Each motion vector was used to copy 
a 32  × 32 block from the reference frame and center it around the current 
16 × 16 block in the current frame. Each copied block was weighted by a 
bilinear window function de�ned as [103] 

1 
2 ) for z = 0; : : : ;  15;16 (z +
1 

w(x; y) =  wx · wy; where wz = (4.33) 
w31−z for z = 16; : : : ;  31: 

Border blocks were handled by assuming “phantom” blocks outside the frame 
boundary with motion vectors equal to those of the border blocks. Despite the 
fact that the estimated vectors, the window shape, and the overlapping weights 
were not optimized for overlapped compensation, OMC provided better objec-
tive (Figure 4.9(a)) and subjective (Figures 4.9(b)–4.9(d)) quality compared 
to the BMA. In particular, the annoying blocking artefacts have clearly been 
reduced. 
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Figure 4.9: Comparison between OMC and BMA 

4.6.7 Properties of Block-Motion Fields and Error Surfaces 
This subsection presents some basic properties of the BMME algorithm when 
applied to typical video sequences. These properties will be utilized and ref-
erenced in subsequent chapters of the book. All illustrations in this subsec-
tion were generated using a full-pel full-search block-matching algorithm with 
16 × 16 blocks, ±15 pels maximum displacement, restricted motion vectors, 
SAD as the BDM, and original reference frames. 

Property 4.6.7.1 The distribution of the block motion �eld is center-biased. 
This means that smaller displacements are more probable and the motion vector 
(0; 0) has the highest probability of occurrence. In other words, most blocks 
are stationary or quasi-stationary. This property is illustrated in Figure 4.10(a) 
for AKIYO at 30 frames=s (frame skip of 1). The property also holds true for 
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sequences with higher motion content and at lower frame rates, as illustrated
in Figure 4.10(b) for TABLE TENNIS at 7:5 frames=s (frame skip of 4).

Property 4.6.7.2 The block motion �eld is smooth and varies slowly. In other
words, there is high correlation between the motion vectors of adjacent blocks.
Thus, it is very common to �nd neighboring blocks with identical or nearly
identical motion vectors. This is evident in Figure 4.11(a), which shows the
correlation coe!cients between the motion vector of a block and its eight
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Figure 4.12: Sample multimodal error surfaces

neighboring blocks in FOREMAN at 25 frames=s. This is also illustrated in
Figure 4.11(b), which shows the distribution of the di�erence between the
horizontal component of the current vector (Cdx) and that of its left neighbor
(Ldx). The bias of this distribution toward the zero di�erence clearly indicates
high correlation, and this holds true for both AKIYO at 30 frames=s and TABLE

TENNIS at 7:5 frames=s.

Property 4.6.7.3 The error surface is usually multimodal. In most cases,
the error surface will contain one or more local minima, as illustrated in
Figure 4.12. This can be due to a number of reasons, for example, the ambi-
guity problem, the accuracy problem, and the textured (periodical) local frame
content.

Property 4.6.7.4 The value of the global minimum of an error surface can
change according to many factors; such as the frame skip; the motion content;
and the block content. For example, Figure 4.12 shows the error surface of
two blocks from the same frame. The value of the global minimum of the
surface in Figure 4.12(a) is 614, whereas that of the surface in Figure 4.12(b)
is 3154.

4.7 A Comparative Study

This section presents the results of a comparative study of the motion esti-
mation methods discussed in Sections 4.3–4.6. The main aim of this study
is to answer the following question: What is the best motion estimation
algorithm for video coding? In this study, the following algorithms were
implemented:
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DFA This is an implementation of the di�erential method of Ca�orio and 
Rocca as given by Equation (4.12). In this case, the moving area, A, 
was set to a block of 16 × 16 pels. 

PRA This is an implementation of the pel-recursive algorithm of Netravali 
and Robbins as given by Equation (4.20). In this case, the motion vector 
of the previous pel in the line was taken as the initial motion estimate, d̂i , 
of the current pel, the update step size was set to � = 1=1024, the update 
term was calculated and averaged over an area of 3 × 3 pels centered 
around the current pel, and �ve iterations were performed per pel. 

PCA This is an implementation of the phase correlation method as given 
by Equations (4.24) and (4.25). In this case, a window of 32 × 32 pels 
centered around the current 16 × 16 block was used to generate the phase 
correlation surface. The three most dominant peaks in this surface were 
detected and the corresponding motion displacements were unwrapped 
using Equation (4.27). The three candidate displacements were then tested 
using the SAD between the current block and the candidate displaced 
block in the reference frame. The candidate displacement with the lowest 
SAD was chosen as the motion vector of the current block. 

BMA This is an implementation of a full-search block-matching algorithm. 
In this case, the block size was 16 × 16 pels and the matching criterion 
was the SAD. 

In each case, the maximum allowed motion displacement was set to 
± 15 pels in each direction and the motion vectors were allowed to point 
outside the reference frame (i.e., unrestricted motion vectors). To provide a 
fair comparison and to ease motion vector coding, all displacements were 
estimated with half-pel accuracy. In DFA and PRA this was achieved by 
rounding the subpel accurate motion estimates to the nearest half-pel accu-
rate motion vectors. In PCA and BMA this was achieved using a re�nement 
stage that examined the eight nearest half-pel estimates centered around the 
full-pel motion estimate. Bilinear interpolation was used to obtain intensity 
values at subpel locations of the reference frame. To mask the e�ect of the 
temporal propagation of prediction errors, motion was estimated and com-
pensated using original reference frames. For comparison purposes, motion 
vectors were coded using the median predictor and the VLC table of the 
H.263 standard. The DFD signal was also transform encoded according to 
the H.263 standard and a quantization parameter of QP =10. All quoted re-
sults refer to the luma components of sequences. No chroma encoding was 
performed. 

Care should be taken when interpreting the results of this study. Di�erent 
simulation parameters will lead to di�erent results. For example, at the expense 
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of a higher computational complexity, the performance of the PRA can be 
improved by increasing the number of iterations. This is also true when ex-
amining more peaks for the PCA. 

Figure 4.13 compares the prediction quality of the four algorithms when 
applied to the three test sequences AKIYO, FOREMAN, and TABLE TENNIS, at  
di�erent frame skips (and, consequently, di�erent frame rates). 

As expected, the DFA performs well for sequences with a low amount 
of movement (AKIYO) and at low frame skips (i.e., high frame rates). For 
sequences with a higher amount of movement (FOREMAN and TABLE TENNIS) 
and also at high frame skips, the motion vectors become longer, the quality 
of the Taylor series approximation becomes poor, and the performance of the 
DFA deteriorates. 

Due to its dense motion �eld, the PRA has a superior performance for 
AKIYO and a very competitive performance for FOREMAN and TABLE TENNIS. 
The relative drop in performance for high-motion sequences and at high frame 
skips may be due to a number of reasons. With longer motion vectors, there 
is more possibility that the algorithm will be trapped in a local minimum 
before reaching the global minimum. Also, the maximum number of iter-
ations may not be su!cient to reach the global minimum. However, in-
creasing the number of iterations will increase the complexity of the 
algorithm. 

In general, the performance of the PCA is somewhere in between that of the 
DFA and PRA. The poor performance for AKIYO may be due to the spurious 
peaks produced by the boundary and spectral leakage e�ects. Such e�ects may 
be reduced by applying a weighting function to smooth the phase correlation 
surface. 

The best overall performance is provided by the BMA. It performs well 
regardless of the sequence type and the frame skip. In fact, for sequences 
with a high amount of movement (FOREMAN and TABLE TENNIS), the BMA 
shows superior performance. 

It is interesting at this point to concentrate on the PRA and BMA, for 
two reasons. First, they achieved the best prediction quality performance in 
the comparison. Second, they represent two di�erent approaches to motion 
estimation (pel-based and block-based, respectively). Figure 4.14 compares 
the performance of the PRA and the BMA for the �rst 50 frames of the 
FOREMAN sequence at 25 frames=s. Two versions of the PRA are considered: 
PRA, which is the same algorithm described earlier, and PRA-C, which is an 
algorithm in which the update term is based on the causal part of an area of 
5 × 5 pels centered around the current pel. Since PRA-C is based on causal 
data, no motion overhead needs to be transmitted for this method. Due to the 
high amount of motion in FOREMAN, the maximum number of iterations for 
both pel-recursive algorithms was increased to 10. 
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Figure 4.13: Prediction quality of di�erent motion estimation algorithms 
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Figure 4.14: Comparison between BMA and PRA motion estimation algorithms 

The aim of motion estimation for video coding is to simultaneously min-
imize the bit rate corresponding both to the motion parameters (motion bits) 
and to the prediction error signal (DFD bits). As illustrated in Figure 4.14, the 
three algorithms represent three di�erent tradeo�s between prediction quality 
and motion overhead. Due to its dense motion �eld, the PRA has the best 
prediction quality and, consequently, the least DFD bits. This is, however, at 
the expense of a prohibitive motion overhead, which leads to a very high total 
bit rate. The causal implementation of the PRA, PRA-C, clearly restricts the 
method and signi�cantly reduces its prediction quality. Thus, PRA-C removes 
the motion overhead at the expense of an increase in DFD bits. In addition, 
this causal implementation increases the complexity of the decoder. The best 
tradeo� is achieved by the BMA. It uses a block-based approach to reduce 
the motion overhead while still maintaining a very good prediction quality. 
This explains the popularity of this approach and its inclusion in video coding 
standards. 
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4.8	 E5ciency of Block Matching at Very Low Bit 
Rates 

The incorporation of motion estimation and compensation into a video codec 
involves extra computational complexity. This extra complexity must, there-
fore, be justi�ed on the basis of an enhanced coding e!ciency. This is very 
important for very-low-bit-rate applications and, in particular, for applications 
like mobile video communication, where battery time and processing power 
are scarce resources. 

Very low bit rates are usually associated with high frame skips. As the 
frame skip increases, the temporal correlation between consecutive frames de-
creases. This will obviously decrease the e!ciency of motion estimation, as 
can be seen in Figure 4.13. This poses a very important question: Is the use 
of motion estimation at such bit rates justi�able? Or put in another way, Is the 
use of less complex coding methods, like frame di�erencing and intraframe 
coding, su!cient at those bit rates? 

This study investigates the e!ciency of block-matching motion estimation 
at very low bit rates. Three algorithms were implemented: 

BMA-H This is a half-pel full-search BMA with 16 × 16 blocks, ± 15 pels 
maximum displacement, restricted motion vectors, and SAD as the match-
ing criterion. Half-pel accuracy is achieved using a re�nement stage around 
the full-search full-pel motion vectors. Bilinear interpolation is used to 
obtain intensity values at subpel locations of the reference frame. 

FDIFF This is a frame di�erencing algorithm. This means that no motion 
estimation is performed and the motion vectors are always assumed to 
be (0; 0). Note that this algorithm has no motion overhead and the total 
frame bits are equal to the DFD bits. 

INTRA This is a DCT-based intraframe coding algorithm. 

In each algorithm, motion was estimated and compensated using recon-
structed reference frames. Motion vectors were coded using the median pre-
dictor and the VLC table of the H.263 standard. Both, the DFD signal (in 
the case of BMA-H and FDIFF) and the frame signal (in the case of 
INTRA) were transform encoded according to the H.263 standard. To simulate 
a very-low-bit-rate environment, the frame skip was set to 4 (this corresponds 
to 7:5 frames=s for AKIYO and TABLE TENNIS and to 6:25 frames=s for FOREMAN). 
To generate a range of bit rates, the quantization parameter QP was varied 
over the range 5–30 in steps of 5. This means that each algorithm was used to 
encode a given sequence six times. Each time, QP was held constant over the 
whole sequence (i.e., no rate control was used). The �rst frame of a sequence 
was always INTRA coded, regardless of the encoding algorithm, and the 
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resulting bits were included in the bit-rate calculations. All quoted results refer 
to the luma components of sequences. Figure 4.15 compares the performance 
of the three algorithms when applied to the three test sequences. 

In general, both interframe coding algorithms (FDIFF and BMA-H) out-
perform the intraframe coding algorithm (INTRA). Thus, even at very low 
bit rates, high frame skips, or low-motion sequences, the temporal correlation 
between video frames is still high enough to justify interframe coding. 

Comparing the two interframe coding algorithms, it is immediately evident 
that the BMA-H algorithm outperforms the FDIFF algorithm at all bit rates 
and for all sequences. Note, however, that at extremely low bit rates, and in 
particular for the low-motion AKIYO sequence, the e!ciency of the BMA-H 
algorithm starts to drop and approaches that of the simpler FDIFF algorithm. 
But even with this drop in performance, the use of BMA-H is still justi�able. 
For example, with AKIYO and at a bit rate as low as 3 kbits=s, the BMA-H 
algorithm still outperforms the FDIFF algorithm by about 1 dB. 

4.9 Discussion 

Motion estimation is an important process in a wide range of applications. 
Di�erent applications have di�erent requirements and may, therefore, employ 
di�erent motion estimation techniques. 

In video coding, the determination of the true motion is not the intrinsic 
goal. The aim is rather to simultaneously minimize the bit rate corresponding 
both to the motion parameters (motion bits) and to the prediction error signal 
(DFD bits). This is not an easy task, since the minimization of one quantity 
usually leads to maximizing the other. Thus, a suitable tradeo� is usually 
sought. In this chapter, four motion estimation methods were compared. The 
four methods are the di�erential, pel-recursive, phase-correlation, and block-
matching motion estimation methods. It was found that block-matching motion 
estimation provides the best tradeo�. It uses a block-based approach to reduce 
the motion overhead while still maintaining a very good prediction quality 
(and consequently a small number of DFD bits). This explains the popularity 
of this approach and its inclusion in video coding standards. 

The chapter also investigated the e!ciency of motion estimation at very low 
bit rates. It was found that the prediction quality of motion estimation starts 
to drop at very low bit rates, in particular, for low-motion sequences, and 
approaches that of simpler techniques, like frame di�erencing and intraframe 
coding. Despite this drop in prediction quality, it was found that the use of 
motion estimation is still justi�able at those bit rates. 



Chapter 5 

Warping-Based Motion

Estimation Techniques


5.1 Overview 

As already discussed, one way to achieve higher coding e�ciency is to 
improve the performance of the motion estimation and compensation processes. 
This can be done by using advanced motion estimation and compensation tech-
niques. This chapter concentrates on an advanced technique called warping-
based motion estimation. Since the early 1990s, this technique has attracted 
attention in the video coding community as an alternative to (or rather as a 
generalization of) conventional block-matching methods. 

Section 5.2 reviews warping-based motion estimation techniques. Various 
aspects of such techniques, like the shape of patches, the type of meshes, 
the spatial transformation, the continuity of the motion (eld, the direction of 
node tracking, the node-tracking algorithm, the motion compensation method, 
and the transmitted motion overhead, are considered and compared. Section 5.3 
compares the performance of warping-based methods to that of block-matching 
methods. In particular, the section investigates the e�ciency of warping-based 
methods at very low bit rates. The chapter concludes with a discussion in 
Section 5.4. 

5.2 Warping-Based Methods: A Review 

Motion estimation (ME) can be de(ned as a process that divides the current 
frame, fc , into regions and that estimates for each region a set of motion 
parameters, {ai }, according to a motion model. The motion compensation 
(MC) process then uses the estimated motion parameters and the motion model 
to synthesize a prediction, f̂ , of the current frame from a reference frame, fr .c 

125 
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This synthesis process can be formulated as follows: 

f̂c(x; y) =  fr (u; v); (5.1) 

where (x; y) are the spatial coordinates in the current frame (or its prediction) 
and (u; v) are the spatial coordinates in the reference frame. This equation 
indicates that the MC process applies a geometric transformation that maps 
one coordinate system onto another. This is de(ned by means of the spatial 
transformation functions gx and gy : 

u = gx (x; y); 
(5.2) 

v = gy (x; y): 

This spatial transformation is also referred to as texture mapping or image 
warping [107]. 

As already discussed, the BMA method relies on a uniform translational 
motion model. Thus, the transformation functions of this method are given 
by 

u = gx(x; y) =  x + a1 = x + dx; 
(5.3) 

v = gy (x; y) =  y + a2 = y + dy: 

In practice, however, a block can contain multiple moving objects, and the 
motion is usually more complex and can contain translation, rotation, shear, 
expansion, and other deformation components. In such cases, the simple uni-
form translational model will fail, and this will usually appear as artefacts, e.g., 
blockiness, in the motion-compensated prediction. Higher-order motion mod-
els can be used to overcome such problems. Examples of such models are 
the a�ne, bilinear, and perspective spatial transformations given by Equations 
(5.4), (5.5), and (5.6), respectively: 

A�ne: 

u = gx (x; y) =  a1x + a2y + a3; 
(5.4) 

v = gy(x; y) =  a4x + a5y + a6: 

Bilinear: 

u = gx (x; y) =  a1xy + a2x + a3y + a4; 
(5.5) 

v = gy(x; y) =  a5xy + a6x + a7y + a8: 
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Perspective: 

u = gx(x; y) =  
a1x + a2y + a3 ; 
a7x + a8y + 1  

(5.6) 

v = gy (x; y) =  
a4x + a5y + a6 : 
a7x + a8y + 1  

Motion estimation and compensation using higher-order models is usually 
performed using the following steps: 

1. A 2-D mesh is used to divide the current frame into nonoverlapping poly-
gonal patches (or elements). The points shared by the vertices of the 
patches are referred to as grid or node points. 

2. The motion of each node is estimated. This will map each node in the 
current frame to a corresponding node in the reference frame. In e>ect, 
this will map each patch in the current frame to a corresponding patch in 
the reference frame. 

3. For each patch in the current frame, the coordinates of its vertices and 
those of the matching patch in the reference frame are used to (nd the 
motion parameters {ai} of the underlying motion model. 

4. During motion compensation, the estimated motion parameters	{ai} are 
substituted in the appropriate spatial transformation, Equations (5.4)–(5.6), 
to warp the patch in the reference frame to provide a prediction for the 
corresponding patch in the current frame. 

An example of this process is illustrated in Figure 5.1. In this (gure the 
current frame is divided into square patches. This forms a uniform mesh. 
During motion estimation, node points A, B, C, and D in the current frame 
are mapped to node points A�, B�, C�, and D� in the reference frame. During 
motion compensation, the deformed patch A�B�C�D� is warped to provide a 
prediction for the square patch ABCD. 

It should be pointed out that there is a lack of consistency in the lit-
erature when referring to this type of motion estimation and compensation 
methods. Examples of the numerous names employed are control grid in-
terpolation [108, 109, 110], warping-based methods [111, 112, 113], spatial-
transformation-based methods [114, 115, 116, 117], geometric-transformation-
based methods [118], generalized motion estimation methods [119, 120], and 
mesh-based methods [121, 122, 123, 124, 125, 126, 127]. 

When designing a warping-based technique, several aspects of the 
method need to be considered and de(ned, as discussed in the following 
subsections. 
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Figure 5.1: Warping-based motion estimation and compensation 

5.2.1 Shape of Patches 
The most widely used shapes are triangles and quadrilaterals. Nakaya and 
Harashima [114] showed that equilateral triangles are optimal, in the prediction-
quality sense, when the a�ne transformation is used, whereas squares are 
optimal when the bilinear transformation is used. Square patches are some-
times preferred because they are compatible with current block-based video 
coding methods and standards. Triangular patches are more compatible with 
model-based coding methods, where wireframe models are usually de(ned in 
terms of triangles. 

5.2.2 Type of Mesh 
The mesh structure can be (xed or adaptive. A 'xed mesh is one that is 
built according to a predetermined pattern, e.g., a regular mesh with square 
patches. An adaptive mesh, on the other hand, is one that is adaptively built 
according to frame contents and motion. Adaptive meshes can be content-
based or motion-based. In content-based adaptive meshes, nodes are placed 
to (t important features like contours and edges [111, 121]. In motion-based 
adaptive meshes, more nodes are placed in moving areas. This is usually 
achieved using a hierarchical (usually, quad-tree) mesh structure [109, 120, 



129 Section 5.2. Warping-Based Methods: A Review 

115, 123]. Although adaptive meshes can improve prediction quality, they have 
the disadvantages of increased computational complexity (for the generation 
and adaptation processes) and increased overhead (to describe the structure of 
the mesh). The structure overhead can be removed by applying the adaptation 
process based on previous frames that are available at the decoder. 

5.2.3 Spatial Transformation 
As shown by Seferidis and Ghanbari [119], the perspective transform achieves 
the best prediction-quality performance. However, the high computational com-
plexity of this transformation limits its use in practice. The a�ne transforma-
tion is the least computationally complex, but it has the fewest degrees of 
freedom. The performance of the bilinear transformation is very close to that 
of the perspective transformation, with the advantage of reduced computational 
complexity. However, a study by Nakaya and Harashima [114] showed that the 
a�ne and bilinear transformations have almost the same performance when the 
patch shape is optimized (equilateral triangles and squares, respectively). In 
fact, the same study showed that the performance of the a�ne transformation 
can be superior as the number of nodes decreases. 

5.2.4 Continuous Versus Discontinuous Methods 
Adjacent patches in the current frame have common vertices between them. 
There are two main methods for estimating the motion of such common ver-
tices. If the motion of common vertices is estimated independent from each 
other (i.e., common vertices are assigned di>erent motion vectors), then this 
will result in a discontinuous motion (eld with discontinuities along the bound-
aries of the patches. This is known as the discontinuous method. The motion 
(eld in this case has similarities with that produced by the BMA. If, how-
ever, a restriction is applied such that common vertices have the same motion 
vector, then this will result in a continuous motion (eld and the method 
is known as the continuous method. The two methods are illustrated in 
Figure 5.2. 

As pointed out by Ghanbari et al. [115], the discontinuous method is more 
Dexible and can compensate for more general complex motion. However, as 
pointed out by Nakaya and Harashima [114], since discontinuities are allowed 
along the boundaries of patches, this method can su>er from blocking artefacts. 
Another disadvantage of the discontinuous method is that it generates more 
motion overhead (four motion vectors per patch) compared to the continuous 
method (about one motion vector per patch). 
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Reference Current Reference Current 
patches patches patches patches 

(a) Discontinuous method (b) Continuous method 

Figure 5.2: Continuous versus discontinuous warping-based methods 

5.2.5 Backward Versus Forward Node Tracking 
The process of estimating the motion of a grid or a node point is called 
node tracking. There are two types of node-tracking algorithms: backward 
and forward node tracking. 

In backward node tracking, nodes are (rst placed on the current frame 
and then they are matched to points in the reference frame. During motion 
compensation, a pel (x; y) in the current patch is copied from a corresponding 
pel (u; v) = (gx (x; y); gy (x; y)) in the reference patch. Note that in this case, 
(x; y) is a sampling spatial position, whereas (u; v) may be a nonsampling 
spatial position. Interpolation, e.g., bilinear, can be used to obtain pel values 
at nonsampling positions of the reference frame. This process is repeated for 
all pels within the current patch. Since backward tracking starts with a mesh 
on the current frame (which is not available at the decoder), this technique is 
usually used in combination with a (xed mesh. 

In forward node tracking, nodes are (rst placed on the reference frame 
and then matched to points in the current frame. During motion compen-
sation, a pel (u; v) in the reference patch is copied to a corresponding pel 
(x; y) = (gx(u; v); gy (u; v)) in the current patch. Since, in this case, (x; y) may 
be a nonsampling spatial position, the compensated current patch will nor-
mally contain holes (i.e., noncompensated pels at sampling spatial positions). 
Techniques that can be used to recover pel values at sampling spatial positions 
from values at nonsampling spatial positions are discussed and compared by 
Sharaf and Marvasti in Ref. 116. Due to the use of such techniques, forward 
node tracking and compensation is computationally more complex than back-
ward node tracking and compensation. Since forward node tracking starts with 
a mesh on the reference frame, this technique is usually used in combination 
with an adaptive mesh. Although the combination of forward tracking and 
adaptive meshes can provide some prediction-quality improvement over the 
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combination of backward tracking and (xed meshes, the use of the former is 
not justi(ed, due to the huge increase in computational complexity [116]. 

5.2.6 Node-Tracking Algorithm 
A simple method to estimate the motion of a node is to use a BMA-type 
algorithm which minimizes the translational prediction error in a block centered 
around the node. NiewFeg lowski et al. [111] use a modi(ed BMA with a large 
block (21 × 21) centered around the node and a distortion measure designed 
to give more weight to pels closer to the node. To reduce complexity, the 
block is subsampled by a factor of 2:1 in both directions. 

Although BMA-type algorithms are simple, they provide suboptimal per-
formance. First, they assume that the motion of a node is independent of the 
motion of other nodes, and second, they assume that minimizing the transla-
tional prediction error minimizes the true prediction error. In practice, however, 
both assumptions are not true. A node is a common vertex between more than 
one patch. Consequently, the displacement of a node will a>ect all patches 
connected to it. For example, with quadrilateral patches, the displacement of a 
node a>ects the prediction quality within four patches connected to it. It fol-
lows that the choice of the motion vector of one node will a>ect the choice of 
the motion vectors of other nodes. In addition, the true prediction error is the 
error between the current frame and its warped prediction from the reference 
frame. This is not equal to the translational prediction error. 

Brusewitz [128] uses a BMA-type algorithm to provide coarse approxi-
mations for nodal motion vectors. An iterative gradient-based approach that 
minimizes the true prediction error is then used to re(ne all nodal motion vec-
tors simultaneously. The computational complexity of the method is extremely 
high. For example, if there are 100 nodes in the frame, the method requires 
the inversion of a 200 × 200 matrix. 

To reduce complexity, Sullivan and Baker [108] estimate the motion of one 
node at a time. However, to take into account the interdependence between 
motion vectors, an iterative approach is employed. In each iteration, the nodes 
are processed sequentially. The motion vector of a node is estimated using 
a local search around the motion vector from the previous iteration while 
holding constant the motion vectors of its surrounding nodes. During the local 
search, the quality of a candidate motion vector is measured by calculating 
the distortion measure between all patches connected to the node and their 
warped predictions from the reference frame. The local search is applied to 
a node only if its motion vector, or the motion vector of at least one of its 
surrounding nodes, was changed in the previous iteration. 

Nakaya and Harashima [114] use a hexagonal matching algorithm (HMA). 
The name is due to the use of triangular patches for which each node is a 
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common vertex between six patches forming a hexagon. The algorithm is 
almost identical to that of Sullivan and Baker (described earlier). In this case, 
however, a BMA-type algorithm is (rst used to provide a coarse estimate 
of the motion (eld, and the iterative approach is then used to re(ne this 
estimate. In addition to the exhaustive local search, they also propose a faster 
but suboptimal gradient-based local search. Similar gradient-based approaches 
have also been used by Wang et al. [123, 126] and Dudon et al. [124]. 

Altunbasak and Tekalp [125] (rst estimate a dense (eld of motion displace-
ments. Then they use a least squares method to estimate the nodal motion 
vectors subject to the constraint of preserving the connectivity of the mesh. 
They show that the performance of this algorithm is comparable to that of 
HMA, with the advantage of reduced computational complexity. 

When estimating a nodal motion vector, it is very important to ensure 
that the estimate does not cause any patch connected to the node to become 
degenerate (i.e., with obtuse angles and=or Dipover nodes). To accomplish this, 
Wang et al. [123, 126] limit the search range to a diamond region de(ned 
by the four surrounding nodes, whereas Altunbasak and Tekalp [125] use a 
postprocessing stage where an invalid estimate is replaced by a valid estimate 
interpolated from surrounding nodal motion vectors. 

All the foregoing algorithms assume a continuous motion (eld. Ghanbari 
et al. [119, 120, 115, 117] use quadrilateral patches with a discontinuous 
motion (eld. In this case, the four vertices of each regular patch in the current 
frame are displaced combinatorially (i.e., perturbed) to (nd the best-match 
deformed patch in the reference frame. The computational complexity of this 
algorithm is extremely high since there are (2dm + 1)8 possible deformed 
patches in the reference frame. In addition, each possible patch must (rst be 
warped to calculate the distortion measure. To reduce complexity, they propose 
to use a fast-search algorithm, e.g. Ref. 129. 

5.2.7 Motion Compensation Method 
Having obtained nodal motion vectors, there are two methods of performing 
motion compensation. 

In the (rst method, for each patch in the current frame, the coordinates of 
its vertices and those of the matching patch in the reference frame are used 
to set up a number of simultaneous equations. This set is then solved for the 
motion parameters {ai} of the underlying motion model. For example, assume 
a mesh of quadrilateral patches and a bilinear motion model. If the spatial 
coordinates of the top-left, top-right, bottom-left, and bottom-right vertices of 
the patch in the current frame are (xA; yA), (xB; yB), (xC; yC ), and (xD; yD), 
respectively, and the corresponding estimated motion vectors are dA, dB, dC , 
and dD, respectively, then the spatial coordinates of the matching vertices in 
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the reference frame are (uA; vA), (uB; vB), (uC; vC ), and (uD; vD), respectively, 
where, e.g., (uA; vA) = (xA +dxA ; yA +dyA ). Using the bilinear model of Equation 
(5.5), the following set of simultaneous equations is obtained: 

  
xAyA xByB xCyC xDyD  xA uA uB uC uD a1 a2 a3 a4 xB xC xD   := ·  yA vA vB vC vD a5 a6 a7 a8 yB yC yD 

1 1 1 1 

(5.7) 

This set can easily be solved for the motion parameters a1; : : : ; a8. Having 
obtained the motion parameters of the current patch, each pel (x; y) in the  
patch is then compensated from a pel (u; v) in the reference patch, where 
(u; v) are obtained using Equation (5.5). 

In the second method of motion compensation (commonly known as control 
grid interpolation (CGI) [108]), the motion vectors at the vertices of the 
current patch are interpolated to produce a dense motion (eld within the patch. 
For the same example just given, the motion vector d(x; y) = (dx (x; y); dy (x; y)) 
at pel (x; y) of the current patch is obtained by bilinear interpolation of the 
four motion vectors at the vertices. Thus 

d(x; y) = (1  − xn)(1 − yn)dA + xn(1 − yn)dB + (1  − xn)yndC + xnyndD; 
(5.8) 

x − xA y − yAwhere xn = and yn = : (5.9)
xB − xA yC − yA 

Each pel (x; y) in the current patch can then be compensated from pel (u; v) in  
the reference patch, where (u; v) = (x + dx (x; y); y  + dy(x; y)). It can be shown 
[110] that the two methods are equivalent. 

5.2.8 Transmitted Motion Overhead 
Two types of motion overhead can be transmitted: the motion parameters ai 
of the patches and the motion vectors of the nodes. Motion vectors have a 
limited range and are usually evaluated to a (nite accuracy (e.g., full- or 
half-pel accuracy), whereas motion parameters are not limited and are usually 
continuous in value. Thus, motion vectors are usually preferred because they 
are easier to encode and result in a more compact representation. In addition, 
motion vectors ensure compatibility with current video coding standards. One 
disadvantage in this case, however, is that the decoder is more complex, since 
it must use the received motion vectors to calculate the motion parameters 
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or to interpolate the motion (eld (as described in Section 5.2.7) before being 
able to perform motion compensation. 

5.3	 E1ciency of Warping-Based Methods at Very 
Low Bit Rates 

This section investigates the performance of warping-based methods and com-
pares it to that of block-matching methods. The main aim is to answer the 
following question: Are there any gains for using higher-order motion models 
at very low bit rates? In other words, this section assesses the suitability of 
warping-based methods for applications like mobile video communication. 

Most results reported in the literature compare a warping-based algorithm 
to the basic block-matching algorithm. The authors feel that this is an unfair 
comparison for the following reasons: 

1. As shown in Section 5.2.7, in warping-based compensation the motion 
vector used to compensate a pel in a given patch is interpolated from 
the nodal motion vectors at the vertices of the patch. Although the nodal 
motion vectors may be at full-pel accuracy, the resulting interpolated 
motion vector is at subpel accuracy. It is unfair to compare this subpel 
compensation to the full-pel compensation of the basic block-matching 
algorithm. A more fair comparison would be with a subpel (at least 
half-pel) block-matching algorithm. 

2. Again, from Section 5.2.7,	a warping-based method calculates one 
motion vector per pel. Thus, each pel within a patch is compensated 
individually. It is unfair to compare this to the basic block-matching al-
gorithm, where the whole block is compensated using the same motion 
vector. A fairer comparison would be with overlapped motion compen-
sation, where each pel within the block is compensated individually, as 
evident from Equation (4:32). 

3. A warping-based method is much more computationally complex than 
the basic block-matching method (as is shown later). This increased 
complexity gives the warping-based method an unfair advantage over 
the basic block-matching method. To provide a fairer comparison, the 
basic block-matching method must be augmented by some advanced 
techniques (like subpel accuracy and overlapped compensation). 

Thus, in this study, the following algorithms were implemented: 

BMA	This is a full-search full-pel block-matching algorithm with 16 × 16 
blocks, restricted motion vectors, a maximum displacement of ± 15 pels, 
and SAD as the matching criterion. 
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BMA-HO This is the same as BMA but with half-pel accuracy and over-
lapped motion compensation. Half-pel accuracy was obtained using a re-
(nement stage around the full-pel motion vector. Overlapping windows of 
32 × 32 and a bilinear weighting function, Equation (4:33), were used for 
overlapped motion compensation. Border blocks were handled by assum-
ing “phantom” blocks outside the frame boundary, with motion vectors 
equal to those of the border blocks. 

WBA This is a warping-based algorithm. Node points were placed at the 
centers of 16 × 16 blocks in the current frame. This formed a regular 
(xed mesh with square patches. In order for the mesh to cover the whole 
frame area, node points were also placed on the borders. 

Backward node tracking was used to map the current node points to their 
matches in the reference frame. A continuous method was used to pro-
duce a continuous motion (eld. To ensure that the number of transmitted 
motion vectors is the same as that of the BMA, no motion vectors were 
transmitted for the border node points. Instead, each border node was 
assigned the motion vector of the closest inner node. However, to ensure 
that the borders of the current frame were mapped to the borders of the 
reference frame, border nodes at the corners of the frame were assigned 
zero motion vectors, the vertical component of a top or a bottom border 
nodal vector was set to zero, and the horizontal component of a left or a 
right border nodal vector was set to zero. The mesh geometry and nodal 
motion vectors are illustrated in Figure 5.3. 
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Figure 5.3: BMA blocks and WBA patches 
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At the start of the node-tracking algorithm, the BMA described earlier 
was used to provide initial estimates of the inner nodal motion vectors. 
Those initial estimates were then re(ned using the iterative procedure of 
Sullivan and Baker [108]. In each iteration of this procedure, the nodes 
are processed sequentially, where the motion vector of a node is re(ned 
using a local search around the motion vector from the previous itera-
tion while holding constant the motion vectors of its surrounding eight 
nodes. During this local search, the quality of a candidate motion vector is 
measured by calculating the distortion measure between all four patches 
connected to the node and their warped predictions from the reference 
frame. The local search is applied to a node only if its motion vector, or 
the motion vector of at least one of its surrounding nodes, was changed 
in the previous iteration. The local search used here examines the eight 
nearest candidate displacements centered around the displacement from 
the previous iteration. For each frame, 10 iterations were used to re(ne 
the nodal motion vectors. 

During motion estimation and compensation, the bilinear spatial transfor-
mation is employed. This is implemented in the CGI [108] form (de-
scribed in Section 5.2.7), where the motion vector used to compensate 
a pel within a patch is bilinearly interpolated, Equation (5.8), from the 
four nodal motion vectors at the vertices of the patch. 

In BMA-HO and WBA algorithms, bilinear interpolation was used to obtain 
intensity values at subpel locations of the reference frame. In each algorithm, 
motion was estimated and compensated using original reference frames. Motion 
vectors were coded using the median predictor and the VLC table of the H.263 
standard. The DFD signal was also transform encoded according to the H.263 
standard and a quantization parameter of QP = 10. All quoted results refer to 
the luma components of sequences. 

Table 5.1 compares the objective prediction quality of the preceding three 
algorithms when applied to the three test sequences with a frame skip of 3. 
The WBA outperforms the basic BMA by about 0.16 –1:57 dB, depending on 
the sequence. However, the WBA fails to outperform the advanced BMA-HO 

Table 5.1: Comparison between BMA and WBA in terms of objective prediction quality 

Average PSNR (dB) with a frame skip of 3 

AKIYO FOREMAN TABLE TENNIS 

BMA 39.88 27.81 29.06 
WBA 41.45 29.09 29.22 
BMA-HO 41.77 29.51 29.87 
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algorithm. In fact, the BMA-HO algorithm outperforms the WBA by about 
0.32– 0:65 dB. 

Figure 5.4 compares the subjective prediction quality of the 45th frame of 
the 8.33-frames=s FOREMAN sequence when compensated using the preceding 
three algorithms. This (gure shows that BMA-HO and WBA have approxi-
mately the same subjective quality and that both outperform the BMA. More 
importantly, this (gure clearly shows the type of artefacts associated with each 
algorithm. The BMA su>ers from the annoying blocking artefacts. Those arte-
facts are reduced by both the BMA-HO and the WBA algorithms. However, 
the BMA-HO algorithm has a low-pass (ltering e>ect that smoothes sharp 
edges. This is due to the averaging (weighting) process during overlapped 
motion compensation. This e>ect is very clear at the edges of the helmet. The 
WBA, on the other hand, can su>er from warping artefacts. This is very clear 
at the top of the helmet, where part of the helmet was stretched to compensate 

(a) Original 45th frame of FOREMAN at 8.33 f.p.s (b) Compensated using BMA (28.06 dB) 

(c) Compensated using BMA-HO (29.59 dB) (d) Compensated using WBA (29.01 dB) 

Figure 5.4: Comparison between BMA and WBA in terms of subjective prediction quality 



138 Chapter 5. Warping-Based Motion Estimation Techniques 

uncovered background. In fact, poor compensation of covered and uncovered 
objects is one of the main disadvantages of the continuous warping-based 
method. In particular, the method performs poorly whenever there are objects 
disappearing from the scene because it can deform objects but cannot easily 
remove them completely [111]. 

Another obvious disadvantage of the continuous warping-based method is 
the lack of motion (eld segmentation. A number of methods have been pro-
posed to overcome this problem. For example, NiewFeg lowski and Haavisto [110] 
use adaptive motion (eld interpolation to introduce discontinuities within the 
nodal motion (eld. Adaptivity is achieved by switching between bilinear inter-
polation and nearest-neighbor interpolation of the nodal vectors at the vertices 
of a patch. The latter interpolation method e>ectively splits the motion (eld 
within the patch into four quadrants. A similar e>ect can be achieved by using a 
hierarchical (e.g., quad-tree) motion-based adaptive mesh [109, 120, 115, 123]. 

It is interesting at this point to compare the computational complexity of the 
preceding three algorithms. Table 5.2 compares the complexity of the three 
algorithms in terms of encoding time per frame. The results were obtained 
using the pro(ler of the Visual C++ 5.0 compiler run on a PC with Pentium 
100-MHz processor, 64 MB of RAM, and a Windows 98 operating system. 
The results were averaged over 10 runs, where each run was used to encode 
the 8.33-frames=s FOREMAN sequence. Care should be taken when interpreting 
the results as they depend heavily on the implementation and the hardware 
platform. 

The BMA requires about 2.16 seconds=frame. Most of this time (about 
1.76 seconds) is consumed by the full-pel full-search block-matching motion 
estimation process. 

The BMA-HO algorithm requires about 3.56 seconds=frame. This increase 
of about 1.4 seconds over the BMA is due mainly to two reasons. The half-pel 
re(nement stage and the associated bilinear interpolation process increase the 
motion estimation time by about 0.98 seconds. In addition, the overlapping 
process increases the motion compensation time by about 0.42 seconds. 

Table 5.2: Comparison between BMA and WBA in terms of computational complexity 

CPU time (in seconds) per frame 
when encoding FOREMAN at 8.33 f.p.s 

BMA BMA-HO WBA 

BMA motion estimation 1.76 2.74 1.86 
WBA iterative re(nement 0.00 0.00 116.00 
Motion compensation 0.01 0.43 0.60 
Others 0.39 0.38 0.37 
Total 2.16 3.56 118.83 
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The WBA requires about 118.83 seconds=frame. This is a huge increase 
over both the BMA and the BMA-HO algorithms. This increase is due mainly 
to the iterative procedure used to re(ne the initial nodal vector estimates. 
Remember that in each iteration, for a single node to be re(ned, spatial trans-
formation and bilinear interpolation have to be used to compensate the four 
patches connected to the node. There are a number of methods that can be 
used to alleviate this complexity. Examples are the use of fewer iterations per 
frame, the use of a line-scanning1 technique to perform the spatial transfor-
mation, the use of a simpler interpolation method (e.g., nearest neighbor) or 
the use of a noniterative motion estimation algorithm, e.g. Ref. 130. Most of 
these methods, however, reduce the computational complexity at the expense 
of a reduced prediction quality. 

5.4 Discussion 

Block matching methods have always been criticized because of their sim-
ple uniform translational model. The argument against this model is that, in 
practice, a block can contain multiple moving objects and the motion is usu-
ally more complex than simple translation. The shortcomings of this model 
may appear as poor prediction quality for objects with nontranslational motion 
and also as blocking artefacts within motion-compensated frames. Warping-
based methods employing higher-order motion models have been proposed in 
the literature as alternatives to block-matching methods. This chapter inves-
tigated the performance of warping-based methods and compared it to that 
of block-matching methods. The results of this comparison have shown that 
despite their improvements over basic block-matching methods, the use of 
warping-based methods in applications like mobile video communication may 
not be justi(able, due to the huge increase in computational complexity. In 
fact, similar (if not better) improvements can be obtained, at a fraction of 
the complexity, by simply augmenting basic block-matching methods with ad-
vanced techniques like subpel accuracy and overlapped motion compensation. 
One can argue that warping-based methods can also bene(t from subpel accu-
racy and overlapped motion compensation, as shown in Refs. 113 and 117, but 
again this will further increase complexity. In addition to their high computa-
tional complexity, warping-based methods can su>er from warping artefacts, 

1Once the motion vector of a pel (x; y) within a patch is interpolated from the four nodal 
vectors at the vertices of the patch, it can be shown that the motion vectors of the next pel in 
the line (x + 1; y) and the next pel in the column (x; y + 1) can be obtained by adding a simple 
update term. This is known as line scanning [107]. 
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poor compensation of covered=uncovered background, and lack of motion (eld 
segmentation. Reducing the complexity of warping-based methods and includ-
ing them in a hybrid WBA=BMA video codec are two possible areas of further 
research. 



Chapter 6 

Multiple-Reference Motion 
Estimation Techniques 

6.1 Overview 

To achieve high coding e�ciency, Chapter 5 investigated an advanced mo-
tion estimation technique called warping-based motion estimation. This chapter 
considers another advanced technique, called multiple-reference motion esti-
mation. 
In multiple-reference motion-compensated prediction (MR-MCP), motion 

estimation and compensation are extended to utilize more than one reference 
frame. The reference frames are assembled in a multiframe memory (or bu&er) 
that is maintained simultaneously at encoder and decoder. In this case, in 
addition to the spatial displacements, a motion vector is extended to also 
include a temporal displacement. 
This chapter investigates the prediction gains achieved by MR-MCP. Par-

ticular emphasis is given to coding e�ciency at very low bit rates. More 
precisely, the chapter attempts to answer the following question: Is the use of 
additional bit rate to transmit the extra temporal displacement justi�able in 
terms of an improved rate-distortion performance? The chapter also examines 
the properties of the multiple-reference block-motion )eld and compares them 
to those of the single-reference case. 
The rest of the chapter is organized as follows. Section 6.2 brie-y re-

views multiple-reference motion estimation techniques. Section 6.3 concen-
trates on the long-term memory multiple-reference motion estimation tech-
nique. The section starts by examining the properties of multiple-reference 
block-motion )elds and compares them to those of single-reference )elds. It 
then investigates the prediction gains and the e�ciency of the long-term mem-
ory technique at very low bit rates. The chapter concludes with a discussion in 
Section 6.4. 

141 
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6.2 Multiple-Reference Motion Estimation: A Review 

In multiple-reference motion-compensated prediction (MR-MCP), motion es-
timation and compensation are extended to utilize more than one reference 
frame. The reference frames are assembled in a multi-frame memory (or 
bu&er) that is maintained simultaneously at encoder and decoder. In this case, 
in addition to the spatial displacements (dx; dy), a motion vector is extended to 
also include a temporal displacement dt . This is the index into the multiframe 
memory. The process of MR-MCP is illustrated in Figure 6.1. 
The main aim of MR-MCP is to improve coding e�ciency. Thus, the refer-

ence generation block in Figure 6.1(a) can utilize any technique that provides 
useful data for motion-compensated prediction. Examples of such techniques 
are reviewed in what follows. 
A number of MR-MCP techniques have been proposed for inclusion within 

MPEG-4. Examples are global motion compensation (GMC) [131, 132], 
dynamic sprites (DS) [132], and short-term frame memory=long-term frame 
memory (STFM/LTFM) prediction [133]. In these techniques, MCP is per-
formed using two reference frames. The )rst reference frame is always the 
past decoded frame, whereas the second reference frame is generated using 
di&erent methods. In GMC, the past decoded frame is warped to provide the 
second reference frame. The technique of DS is a more general case of GMC. 
In DS, past decoded frames are warped and blended into a sprite memory. This 
sprite memory is used to provide the second reference frame. In STFM/LTFM 
two frame memories are used. The STFM is used to store the past decoded 
frame, whereas the LTFM is used to store an earlier decoded frame. The 
LTFM is updated using a refresh rule based on scene-change detection. Both 
DS and STFM/LTFM can bene)t from another MR-MCP technique, which is 
background memory prediction [134]. 
Similar to the STFM/LTFM is the reference picture selection (RPS) mode 

included in annex N of H.263+ (refer to Chapter 3). In this mode, switching 
to a di&erent reference picture can be signaled at the picture level. It should be 
pointed out, however, that this option was designed for error resilience rather 
than for coding e�ciency. Its main function is to stop error propagation due 
to transmission errors. 
Probably the most signi)cant contributions to the )eld of MR-MCP are 

those made by Wiegand and Girod et al. [135–141]. They noted [135, 136] 
that long-term statistical dependencies in video sequences are not exploited by 
existing video standards. Thus, they proposed to extend motion estimation and 
compensation to utilize several past decoded frames. They called this tech-
nique long-term-memory motion-compensated prediction (LTM-MCP). They 
demonstrated that the use of this technique can lead to signi)cant improve-
ments in coding e�ciency. 



143 Section 6.2. Multiple-Reference Motion Estimation: A Review 

Frame 
Memory 0 

Frame 
Memory 1 

Frame 
Memory 2 

Frame 
Memory M-1 

Reference 
Generation 

and 
Memory 
Control 

Previous 
frame(s) Multiple-

Reference 
Motion 

Estimation 

Current frame 

Motion vector 
(dx,dy,dt) 

(a) Multiple-reference motion estimation

(d
x,

dy
) 

dt 

current 
block 

best 
match 

spatial 
displacements 

temporal displacement,

Reference Reference Reference Reference 
Current frame

frame M-1 frame 2 frame 1 frame 0


Reference frames in multiframe memory


(b) Multiple-reference motion compensation

Figure 6.1: Multiple-reference motion-compensated prediction 



144 Chapter 6. Multiple-Reference motion Estimation Techniques 

In Ref. 137 they proposed to use multiple global motion models to generate 
the reference frames. Thus, reference frames in this case are warped versions 
of the previously decoded frame using polynomial motion models. This can be 
seen as an extension to GMC, where, in addition to the most dominant global 
motion, less dominant motion is also captured by additional motion parameter 
sets. In order to determine the multiple models, a robust clustering method 
based on the iterative application of the least median of squares estimator 
is employed. This model estimation method is computationally expensive. In 
Ref. 138 they proposed an alternative method in which the past decoded frame 
is split into blocks of )xed size. Each block is then used to estimate one 
model using translational block matching followed by a gradient-based a�ne 
re)nement. In addition to reduced complexity, this method leads to higher 
prediction gains. 
In Ref. 139 they have demonstrated that combining the LTM-MCP method 

of Refs. 135 and 136 with the multiple GMC method of Ref. 138 can lead to 
further coding gains. 
Recently, MR-MCP has been included in the enhanced reference picture 

selection (ERPS) mode (annex U) of H.263++ (refer to Chapter 3). 

6.3 Long-Term Memory Motion-Compensated 
Prediction 

As already discussed, there are many MR-MCP techniques. The main 
di&erence between those techniques is in the way they generate the 
reference frames. The simplest and least computationally complex approach 
is the LTM-MCP technique, where past decoded frames are assembled in 
the multiframe memory. This chapter will therefore concentrate on the LTM-
MCP technique. More complex techniques, such as multiple GMC, may not 
be suitable for computationally constrained applications such as mobile video 
communication. 
There are many ways to control the multiframe memory in the LTM-MCP 

technique. The simplest approach is to use a sliding-window control method. 
Assuming that there are M frame memories: 0 : : : M−1, then the most recently 
decoded past frame is stored in frame memory 0, the frame that was decoded 
M time instants before is stored in frame memory M − 1, and so on. In the 
next time instant, the window is moved such that the oldest frame is dropped 
from memory, the contents of frame memories 0 : : : M − 2 are shifted to frame 
memories 1 : : : M  − 1, and the new past decoded frame is stored in frame 
memory 0. According to this arrangement the new motion vector component 
is in the range 0 ≤ dt ≤ M− 1, where dt = 0 refers to the most recent reference 
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frame in memory. This sliding-window technique will be adopted throughout 
this chapter. 

6.3.1 Properties of Long-Term Block-Motion Fields 
This subsection investigates the properties of long-term block-motion )elds 
and compares them to those of single-reference block-motion )elds. All il-
lustrations in this subsection were generated using a full-pel full-search long-
term memory block-matching algorithm applied to the luma component of the 
FOREMAN sequence with blocks of 16 × 16 pels, a maximum allowed displace-
ment of ±15 pels, SAD as the distortion measure, restricted motion vectors, 
and original reference frames. 

Property 6.3.1.1 The distribution of the long-term memory spatial displace-
ments (dx; dy ) is center-biased. This is evident from Figure 6.2, which shows 
the distribution of the relative frequency of occurrence of the spatial displace-
ments dx (Figure 6.2(a)) and dy (Figure 6.2(b)). Note that this is similar to 
the single-reference case (M =1; skip = 1), although in the case of multiple-
reference (M =50; skip = 1), the distribution is slightly more spread, which 
indicates that longer displacements are slightly more probable. This distribu-
tion is even more spread at higher frame skips, (M =50; skip = 4). 

Property 6.3.1.2 The distribution of the long-term memory temporal dis-
placement dt is zero-biased. This is evident from Figure 6.3, where the tem-
poral displacement dt = 0 (which refers to the most recent reference frame 

QSIF Foreman 

p(
d x

) 

M=1, Skip=1 
M=50, Skip=1 
M=50, Skip=4 

p(
d y

) 

QSIF Foreman 
0.6 

0.5 

0.4 

0.3 

0.3 

0.2 

0.2 

0.1 
0.1 

0 0
−15 −10 −5 0 5 10 15 −15 −10 −5 0 5 10 15 

d d 
x y 

(a) Distribution of relative frequency of (b) Distribution of relative frequency of 
occurrence of dx occurrence of dy 

Figure 6.2: Center-biased distribution of the long-term memory spatial displacements (dx; dy ) 

0.7 

0.6 

0.5 

0.4 

M
M

=1, Skip=1 
=50, Skip=1

M=50, Skip=4 



146 Chapter 6. Multiple-Reference motion Estimation Techniques 

QSIF Foreman 
p(

d
t)

 
0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

M=50, Skip=1 
M=50, Skip=4 

0 5 10 15 20 25 30 35 40 45 50 
d 

t 

Figure 6.3: Zero-biased distribution of the long-term memory temporal displacement dt 

in memory) has the highest frequency of occurrence; and as the temporal 
displacement increases, its frequency of occurrence decreases. Note that this 
distribution becomes more spread at higher frame skips, which indicates that 
the selection of older reference frames becomes slightly more probable. 

Property 6.3.1.3 The long-term memory block-motion �eld is smooth and 
varies slowly. In other words, there is high correlation between the motion 
vectors of adjacent blocks. This is evident from Figure 6.4, which shows the 
distribution of the di&erence between the current vector C and its left neighbor 
L. This is shown for the three components: dx (Figure 6.4(a)), dy (Figure 
6.4(b)), and dt (Figure 6.4(c)). All three distributions are biased toward a 
zero di&erence, which indicates high correlation. Note that this correlation is 
slightly less in the multiple-reference case (M =50; skip = 1), compared to the 
single-reference case (M =1; skip = 1). This correlation is further reduced at 
higher frame skips, (M =50; skip = 4). 

In general, it can be concluded that moving from a single-reference system 
to a multiple-reference system does not signi)cantly change the properties of 
the block-motion )eld. 
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Figure 6.4: Highly correlated long-term memory block-motion )eld 

6.3.2 Prediction Gain 
This subsection evaluates the prediction gain achieved by LTM-MCP. All re-
sults were generated using full-pel full-search long-term memory block match-
ing with blocks of 16 × 16 pels, a maximum allowed displacement of ± 15 
pels, SAD as the distortion measure, restricted motion vectors, and original ref-
erence frames. All quoted results refer to the luma components of sequences. 
Figure 6.5 shows the performance of LTM-MCP when applied to the three 

QSIF sequences AKIYO, FOREMAN, and TABLE TENNIS with di&erent memory 
sizes and di&erent frame skips. It is immediately evident from this )gure 
that signi)cant prediction gains are achieved when utilizing more than one 
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Figure 6.5: Prediction quality of LTM-MCP with di&erent memory sizes and frame skips 
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reference frame. For example, at a frame skip of 4, the prediction gain when 
using a multiframe memory of size M = 50 frames is 1:87 dB for AKIYO, 
2:17 dB for FOREMAN, and 1:25 dB for TABLE TENNIS, compared to single-
reference prediction (i.e., M = 1). Such prediction gains are mainly due to 
the long-term statistical dependencies of video sequences. Examples of such 
dependencies are the repetitions of sequence content due to uncovered objects 
or objects reappearing in the sequence. An interesting point to note here is 
that the prediction gains increase with increased frame skip. For example, for 
AKIYO when going from M =1  to  M = 50, the prediction gain is 0:62 dB at 
a frame skip of 1 and 1:87 dB at a frame skip of 4. This may be due to the 
fact that as the frame skip increases, successive frames get more decorrelated. 
This increases the chance that a frame other than the immediately preceding 
one will be chosen and, consequently, gives more chance to bene)t from long-
term memory prediction. In Ref. 136, the bene)ts of extending LTM-MCP to 
half-pel accuracy are discussed. It is shown that further prediction gains can 
be achieved by moving from full- to half-pel accuracy. This “accuracy gain” 
is comparable to that in the case of single-reference prediction. 
It should be emphasized that the improved prediction quality of LTM-MCP 

is achieved at the expense of: 

1. Increased memory requirements at both the encoder and the decoder. 

2. Additional bit rate to transmit the new extra components, dt , of motion 
vectors. 

3. Increased computational complexity at the encoder. 

Item 1 is not a major drawback due to the rapid drop in the price of memory 
chips, item 2 will be investigated further in Section 6.3.3, whereas a possible 
solution for item 3 will be proposed in Chapter 8. 

6.3.3 E*ciency at Very Low Bit Rates 
As already discussed in Section 6.1, LTM-MCP extends the motion vector 
of a block by a third component, dt . This is the temporal displacement or 
the index into the multiframe memory. Obviously, the transmission of this 
extra component incurs an additional bit rate compared to the single-reference 
case. This additional bit rate has to be justi)ed in terms of an improvement 
in the rate-distortion (R-D) performance. This subsection investigates the R-D 
performance of the LTM-MCP technique. Particular emphasis is given to the 
e�ciency of this technique at the very low bit rates typical of mobile video 
communication. Four H.263-like encoders were implemented: 

SR	This is a single-reference encoder. It uses full-pel full-search block match-
ing with macroblocks of 16 × 16 pels, a maximum allowed spatial 
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displacement of ±15 pels, SAD as the distortion measure, restricted mo-
tion vectors, and reconstructed reference frames. Motion vectors are coded 
using the median predictor and the VLC table of the H.263 standard. The 
frame signal (in case of INTRA) and the DFD signal (in case of INTER) 
are transform encoded according to the H.263 standard. The encoder does 
not employ rate-constrained motion estimation and mode decision. Thus, 
motion estimation simply chooses the motion vector that minimizes the 
SAD measure without any bit-rate considerations. The INTRA=INTER de-
cision is based on heuristic thresholds and is given by the following [142]: 

INTRA mode is chosen if A¡(SAD(d) − 500); (6.1) 

where 
A = 

� 

(x;y)∈B 

|fc(x; y) − PB| (6.2) 

and 

PB = 
�

(x;y)∈B fc(x; y) 
256 

; (6.3) 

where d =(dx; dy) is the motion vector of macroblock B in the current 
frame fc and SAD(d) is the SAD between the macroblock in the current 
frame and a corresponding macroblock in the reference frame shifted by d. 

SR-RC This is a single-reference rate-constrained encoder. It is the same as 
SR, but it uses rate-constrained motion estimation and mode decision as 
de)ned in the high-complexity mode of the H.263 test model, near-term, 
version 10 (TMN10) [142]. In this mode, motion estimation chooses the 
motion vector that minimizes the following Langrangian cost function: 

JMOTION = DMOTION + �MOTIONRMOTION ; (6.4) 

where DMOTION is the SAD between the macroblock in the current frame 
and the corresponding macroblock in the reference frame shifted by d, 
RMOTION is the number of bits used to encode the motion vector d, and 
�MOTION is a Lagrange multiplier related to the quantization parameter 
QP using 

�MOTION =0:92 × QP: (6.5) 

To decide the mode, two Langrangian cost functions, one for each mode, 
are calculated as follows: 

JINTRA = DINTRA + �MODERINTRA; (6.6) 

JINTER = DINTER + �MODERINTER ; (6.7) 
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where DINTRA is the SSD between the current macroblock and its INTRA 
encoded reconstruction and RINTRA is the number of bits used to INTRA 
encode the current macroblock. Similar de)nitions also apply for DINTER 
and RINTER, but they are calculated by INTER encoding the current mac-
roblock. In both equations, �MODE is a Lagrange multiplier related to the 
quantization parameter QP using 

�MODE =0:85 × QP2: (6.8) 

The mode with the minimum cost function is chosen as the mode of 
the current macroblock. Note that, in this case, a macroblock needs to 
be encoded twice before being able to decide its mode. This increases 
the complexity of the encoder. A more detailed description of this rate-
constrained motion estimation and mode decision method can be found 
in Ref. 143. 

MR This is a multiple-reference encoder with no rate constraints. Thus, it 
is the same as SR, but it uses long-term memory motion-compensated 
prediction. 

MR-RC This is a multiple-reference rate-constrained encoder. Thus, it is the 
same as SR-RC, but it uses long-term memory motion-compensated pre-
diction. 

The preceding encoders were tested using the three QSIF test sequences 
AKIYO, FOREMAN, and TABLE TENNIS. The frame skip parameter was set to 3 
to achieve low bit rates. To generate a range of bit rates, the quantization 
parameter QP was varied over the range 5–30 in steps of 5. This means that 
each encoder was used to encode a given sequence six times. Each time, QP 
was held constant over the whole sequence (i.e., no rate control was used). 
The )rst frame was always INTRA encoded. The INTRA bits of the )rst frame 
were included in the bit-rate calculations, and no header bits were generated. 
All quoted results refer to the luma components of sequences. For MR and 
MR-RC, sliding-window control was used to maintain a long-term memory of 
size M = 50 frames. The VLC codewords in Table 6.1 were used to encode1 

the temporal components dt of the long-term motion vectors. 
Figures 6.6, 6.7, and 6.8 show the R-D performance of the preceding 

encoders for the three test sequences. Note that both single-reference and 

1For example, since dt = 4 is in the range (3:6), then according to Table 6.1 it will be encoded 
using a 5-bit codeword. This codeword is derived as follows. With reference to the start of its 
range, dt = 4 is represented by dt − 3= 4  − 3 = 1. Thus, x1x0 = 01 and the codeword is given by 
0x11x00 = 00110. 
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Table 6.1: VLC codewords for encoding the temporal displacement dt . Reproduced from Ref. 140 

dt Bits Codeword 

0 1 1 
“x0” + 1 (1:2) 3 0x00 
“x1x0” + 3 (3:6) 5 0x11x00 

“x2x1x0” + 7 (7:14) 7 0x21x11x00 
“x3x2x1x0” + 15 (15:30) 9 0x31x21x11x00 
“x4 x3x2 x1x0” + 31 (31:62) 11 0x4 1x31x21x11x0 0 
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Figure 6.6: R-D performance of di&erent single- and multiple-reference (with M = 50) encoders 
when encoding QSIF AKIYO at 10 frames=s 

multiple-reference encoders bene)t from the use of rate-constrained motion es-
timation and mode decision. Those bene)ts are more evident in high-movement 
sequences, where the use of more bits to encode the longer motion vec-
tors has to be justi)ed and controlled. It should be pointed out, however, 
that such bene)ts are achieved at the expense of increased computational 
complexity. 
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Figure 6.7: R-D performance of di&erent single- and multiple-reference (with M = 50) encoders 
when encoding QSIF FOREMAN at 8.33 frames=s 

Due to the additional bit rate generated by the temporal components dt , 
the use of rate-constrained motion estimation and mode decision is essential 
in the case of multiple-reference encoders. A single-reference rate-constrained 
encoder (SR-RC) can outperform a multiple-reference encoder with no rate 
constraints (MR). This is evident at very low bit rates in Figures 6.6 and 6.7 
and at all bit rates in Figure 6.8. In fact, at very low bit rates, even a single-
reference encoder with no rate constraints (SR) can sometimes outperform the 
multiple-reference encoder (MR). 
The best overall performance is achieved by the multiple-reference rate-

constrained encoder (MR-RC). The bene)ts of this encoder become more ev-
ident as the bit rate increases. Note, however, that this improved performance 
is at the expense of a signi)cant increase in computational complexity. This 
increase is due to the use of more than one reference frame during motion 
estimation and also to the use of rate-constrained motion estimation and mode 
decision. Note, also, that at extremely low bit rates a similar performance can 
be achieved by the less complex (SR-RC) encoder. Thus, at such bit rates the 
use of LTM-MCP is not justi)able. 
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Figure 6.8: R-D performance of di&erent single- and multiple-reference (with M = 50) encoders 
when encoding QSIF TABLE TENNIS at 10 frames=s 

6.4 Discussion 

Higher coding e�ciency is one of the main requirements for mobile video 
communication. One way to achieve higher coding e�ciency is to use ad-
vanced motion estimation techniques. One of the promising advanced tech-
niques is multiple-reference motion-compensated prediction (MR-MCP). 
This chapter reviewed the main e&orts in the )eld of MR-MCP. It then in-

vestigated the performance of the long-term memory motion-compensated pre-
diction (LTM-MCP) technique. It was found that this technique provides sig-
ni)cant prediction gains compared to the single-reference case. It was 
realized, however, that such prediction gains are achieved at the expense of 
an additional bit rate to transmit one extra temporal component per motion 
vector. This additional bit rate has to be justi)ed in terms of an improved 
rate-distortion (R-D) performance. An investigation into the R-D performance 
of LTM-MCP codecs revealed that the use of rate-constrained motion esti-
mation and mode decision is important for the success of such techniques. 
Without rate constraints, the R-D performance of the LTM-MCP technique 
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can, at very low bit rates, drop below that of single-reference codecs. Com-
bined with rate constraints, the LTM-MCP technique provides a superior R-D 
performance, which becomes more evident as the bit rate increases. 
The chapter investigated the properties of long-term memory block-motion 

)elds. It was found that the distribution of the long-term memory spatial dis-
placements is center-biased. This distribution becomes more spread with in-
creased frame memory size and frame skip. It was also found that the distri-
bution of the long-term memory temporal displacement is zero-biased. Again, 
this distribution becomes more spread with increased frame memory size and 
frame skip. The investigation revealed also that the long-term memory block-
motion )eld is highly correlated. In general, it was concluded that moving from 
a single-reference system to a multiple-reference system does not signi)cantly 
change the properties of the block-motion )eld. 





Part III

Computational Complexity


In mobile terminals, processing power and battery life are very limited and 
scarce resources. Given the signi�cant amount of computational power required 
to process video, the use of reduced-complexity techniques is essential. 
Motion estimation is the most computationally intensive process in a typical 

video codec. In fact, the computational complexity of this process is greater 
than that of all the remaining encoding steps combined. Thus, by reducing 
the complexity of this process, the overall complexity of the codec can be 
reduced. 
This part contains two chapters. Chapter 7 reviews reduced-complexity mo-

tion estimation techniques. The chapter uses implementation examples and pro-
�ling results to highlight the need for reduced-complexity motion estimation. 
It then reviews some of the main reduced-complexity block-matching motion 
estimation techniques. The chapter then presents the results of a study com-
paring the di#erent techniques. 
Chapter 8 gives an example of the development of a novel reduced-compl-

exity motion estimation technique. The technique is called the simplex mini-
mization search (SMS). The development process is described in detail, and 
the SMS technique is then tested within an isolated test environment, a block-
based H.263-like codec, and an object-based MPEG-4 codec. In an attempt 
to reduce the complexity of multiple-reference motion estimation (investi-
gated in Chapter 6), the chapter then extends the SMS technique to the 
multiple-reference case. The chapter presents three di#erent extensions (or 
algorithms) representing di#erent degrees of compromise between prediction 
quality and computational complexity. 





Chapter 7 

Reduced-Complexity Motion 
Estimation Techniques 

7.1	Overview 

As already discussed, one of the main requirements for mobile video com-
munication is reduced-complexity. It is not di�cult to show that the high 
computational complexity of a typical video codec is due mainly to the mo-
tion estimation process. Thus, by reducing the complexity of this process, the 
overall complexity of the codec can be reduced. This chapter reviews reduced-
complexity motion estimation techniques. In particular, the chapter concen-
trates on reduced-complexity block-matching motion estimation (BMME) 
techniques. The chapter also presents the results of a study comparing dif-
ferent reduced-complexity BMME techniques. 

The rest of the chapter is organized as follows. Section 7.2 uses imple-
mentation examples and pro)ling results to highlight the need for reduced-
complexity motion estimation. Sections 7.3–7.7 review the main categories of 
reduced-complexity BMME algorithms. Section 7.8 presents the results of a 
study comparing the di-erent categories. The chapter concludes with a discus-
sion in Section 7.9. 

7.2	 The Need for Reduced-Complexity Motion 
Estimation 

Processing digital video requires a signi)cant amount of computational power. 
This represents one of the main challenges for real-time mobile video com-
munication, where processing power and battery life are scarce resources. For 
example, an MPEG-4 simple pro)le codec has recently been implemented 

159 
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on Texas Instruments’ TMS320C541 40-MHz processor [5].1 Pro)ling results 
show that this codec cannot achieve real-time processing even when using 
SQCIF sequences. It can encode only about 1 frame=s, and it can decode only 
about 20 frames=s. Another example is the implementation of the H.263 base-
line mode on the more powerful TMS320C62 200-MHz processor, as described 
in Ref. 6. Again, this implementation cannot achieve real-time processing, for 
it only can encode about 5 QCIF frames=s. 

Looking at the building blocks of a typical video codec, it is not di�cult 
to realize that this huge computational complexity is due mainly to the motion 
estimation process. As already discussed, most video codecs estimate motion 
using the block-matching motion estimation (BMME) algorithm. The most 
straightforward BMME algorithm is the full-search (FS) algorithm, sometimes 
referred to as the exhaustive search or the brute-force search. This algorithm 
is guaranteed to )nd the best-match block because it exhaustively searches 
over all possible blocks (search locations or candidate motion vectors) within 
the search window. The algorithm produces the best possible prediction qual-
ity. This is, however, at the expense of a huge computational complexity. 
For example, for a CIF video sequence encoded at 30 frames=s with 16 × 16 
blocks, maximum displacement of ± 15 pels, and SAD as the distortion mea-
sure, a direct implementation of a full-pel FS-BMME algorithm requires about 
6 × 109 integer additions and subtractions, 3 × 109 magnitude operations, and 
11 × 106 comparisons per second. In fact, the computational complexity of this 
motion estimation process is greater than that of all the remaining encoding 
steps combined. This is clear from Table 7.1, which shows pro)ling results2 

of the baseline mode of Telenor’s H.263 encoder [144] when used to encode 
the QCIF FOREMAN sequence at 64 kbits=s. In this case, the motion estimation 
process3 consumes about 70% of the overall encoding time. 

Because of this high computational complexity, motion estimation has be-
come a bottleneck problem in many applications, e.g., mobile video termi-
nals and software-based video codecs, especially if real-time video coding is 
required. This has motivated the development of a number of fast motion 
estimation algorithms since the early 1980s. In fact, recent advances in video 
coding not only highlight the importance of such algorithms, but even call for 
further research into the area of reduced-complexity motion estimation. For 
example, HDTV and multiple-reference motion estimation (discussed 

1According to Ref. 5, about half of all mobile phones currently use a ‘C54x processor. 
2The results were obtained using the pro)ler of the Visual C++ 5.0 compiler run on a PC 

with a Pentium 100-MHz processor, 64 MB of RAM, and a Windows 98 operating system. 
3The baseline mode of Telenor’s H.263 codec uses block matching with 16 × 16 blocks, SAD 

as the distortion measure, and ±15 pels maximum displacement. Full-pel accuracy is )rst obtained 
using full search. This is then re)ned to half-pel accuracy. 



161 Section 7.3. Techniques Based on a Reduced Set of Motion Vector Candidates 

Table 7.1: Pro)ling results of Telenor’s H.263 baseline mode when used to encode QCIF FOREMAN 

at 64 kbits= s 

Function CPU Time (ms) Percentage (%) 

Motion estimation 240,354 69.7 
Input= output 32,552 9.4 
DCT= IDCT 29,412 8.5 
Others 42,353 12.4 

Total 344,671 100.0 

in Chapter 6) have a computational complexity that is several orders of 
magnitude higher than that shown in the preceding examples. The former uses 
higher spatial resolutions and larger search windows, and the latter extends 
the search over several reference frames. 

The following sections of this chapter review the main categories of 
reduced-complexity BMME algorithms. Although each category can be used 
on its own, careful encoder design can utilize di-erent combinations to achieve 
higher speed-up ratios. 

7.3	 Techniques Based on a Reduced Set of Motion 
Vector Candidates 

Instead of searching over all possible blocks within the search window, this 
category restricts the search over a selected subset of the blocks. Most 
algorithms in this category are, implicitly or explicitly, based on the uni-
modal error surface assumption [54], which states that the block distortion 
measure (BDM) increases monotonically as the search location moves away 
from the best-match location. Therefore, the search starts by evaluating the 
BDM at locations coarsely spread over the search window according to some 
prede)ned uniform pattern. This is then repeated with )ner resolution (i.e., 
smaller spread) around the search location with the minimum BDM from the 
preceding step. 

The )rst algorithm reported in this category was the two-dimensional log-
arithmic (TDL) search proposed in 1981 by Jain and Jain [54]. Figure 7.1 
shows an example of the TDL search with a maximum displacement of dm =6  
pels. The search is initialized at the origin of the search window with a suit-
able step size (i.e., the spacing between the search locations). In each step of 
the TDL search, the BDM is evaluated at )ve search locations. In the given 
example, the search locations (0; 0), (+2; 0), (−2; 0), (0; +2), (0; −2) form 
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Figure 7.1: An example of the TDL search with dm = 6 pels 

the search pattern of the )rst step. At each step, the search pattern is centered 
around the minimum of the previous step. In the given example, the minimum 
in the )rst step is at (0; −2). Thus, the search pattern in the second step is 
centered around this minimum location. The step size is reduced by a factor 
of 2 if the minimum is in the center of the search pattern or at the boundary 
of the search window. In the fourth step of the given example, the mini-
mum is at (+2; −4), which is the center of the search pattern. Therefore, the 
spacing between the search locations is halved in the )fth step. Since halving 
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the distance between the search locations gives a step size of 1, this indicates 
that this is the )nal step in the search. In this )nal step, BDM is evaluated at 
the minimum from the previous step and also at its eight nearest neighbors. 
In the given example, the )nal motion vector is (+2; −3). 

Since the introduction of the TDL search, a large number of similar algo-
rithms have been proposed. Examples are the three-step search (TSS) [145], 
the one-at-a-time search (OTS) [146], the conjugate-directions search (CDS) 
[146], the cross-search algorithm (CSA) [147], the genetic motion search 
(GMS) [148], and the diamond search (DS) [149–151], to mention a few. 
The appendix gives a detailed description of some of these algorithms. 

Compared to other techniques, this category of techniques provides a rela-
tively high speed-up ratio and has, therefore, received most of the attention. 
However, as is shown later, the unimodal error surface assumption does not 
always hold true, and such algorithms can easily be trapped in local minima, 
resulting in a suboptimal prediction quality. 

7.4	 Techniques Based on a Reduced-Complexity 
Block Distortion Measure 

In this category, reduced-complexity is achieved by employing a reduced-
complexity BDM. As already discussed in Chapter 4 (Section 4.6.1), most 
implementations prefer the SAD measure, due to its reduced-complexity and 
good prediction quality. A number of other reduced-complexity BDMs have 
also been proposed in the literature. Examples are the pel di*erence classi-
+cation (PDC) [152], the minimized maximum (MiniMax) error [153], the 
reduced-bits mean absolute di*erence (RBMAD) [154], integral projections 
[155], and one-bit=pixel [156], to mention a few. Most of these measures were 
designed speci)cally for e�cient hardware and VLSI implementation, but their 
prediction quality is not as good as the SSD or the SAD measures. 

Another type of algorithms in this category reduces the complexity of the 
BDM by subsampling the matched blocks. Obviously, since only a fraction of 
the pels is used in the matching process, this category does not guarantee to 
)nd the best match, even when combined with full search. Koga et al. [145] 
subsample the matched blocks by a factor of 2 both horizontally and vertically 
(i.e. 4:1 subsampling), reducing the complexity of the BDM by a factor of 4. 

Instead of using a uniform subsampling pattern, Liu and Zaccarin [157] use 
alternating subsampling patterns. The patterns are alternated over the searched 
locations in such a way that e-ectively all pels of a block contribute to the 
matching process. This method is illustrated in Figure 7.2. Figure 7.2(a) shows 
an 8 × 8 block of pels. Four 4:1 subsampling patterns are de)ned in this block. 
For example, subsampling pattern A consists of all pels labeled a in the block. 
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(a) Four 4:1 subsampling patterns (b) Alternating schedule of four sub-
sampling patterns over the search window 

Figure 7.2: Reduced-complexity BDM using the alternating subsampling patterns of Liu and Za-
ccarin [157] 

Similarly, patterns B, C, and D consist of all the b, c, and d pels, respectively. 
Figure 7.2(b) shows part of the search window in the reference frame. Each 
circle in this )gure represents a search location (i.e., a candidate block) in 
the window. During motion estimation, search locations labeled A use the 
subsampling pattern A, and so on. For each of the four subsampling patterns, 
the motion vector with the minimum BDM over the locations where that 
pattern is used is selected. For each of the four selected motion vectors, the 
BDM is evaluated, but this time without subsampling. The vector that achieves 
the minimum BDM is selected as the motion vector of the block. Compared 
to the approach of Koga et al., this approach achieves approximately the same 
reduction in complexity, but with better prediction quality. 

Chan and Siu [158] vary the number of pels in the subsampling pattern 
according to block details. Thus, fewer pels are used for uniform blocks and 
more pels are used for high-activity blocks. In this algorithm, the reduction in 
complexity varies between blocks and the prediction quality is generally better 
than that of Liu and Zaccarin. 

7.5	 Techniques Based on a Subsampled 
Block-Motion Field 

This category is based on the fact that block-motion )elds of typical video 
sequences are usually smooth and vary slowly (as was shown in Section 4.6.7). 
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In other words, it is very common to )nd neighboring blocks with identical or 
nearly identical motion vectors. Thus, in this category, a subsampled block-
motion )eld is )rst obtained by estimating the motion vectors for a fraction 
of the blocks in the frame. This )eld is then appropriately interpolated to 
determine the motion vectors of the remaining blocks. 

Liu and Zaccarin [157] use a checkerboard subsampling pattern and estimate 
the motion vectors for half of the blocks (i.e., a 2:1 subsampled motion )eld) 
using full search. Then they estimate the motion vectors of the other half 
using a limited search that examines only four candidate motion vectors. Those 
candidates are the four surrounding motion vectors that were estimated using 
full search. For example, in Figure 7.3(a) the motion vectors of blocks B, C, 
D, and E are estimated using full search. Only those four vectors are then used 
as candidates when estimating the motion of block A. This algorithm reduces 
complexity by roughly a factor of 2, with only a slight loss in prediction 
quality. 

Another algorithm was also proposed by Liu and Zaccarin in Ref. 157. 
In this algorithm, each block is divided into four subblocks. Motion is )rst 
estimated, using full search, for one subblock in each block, say, the top-left 
subblock. The motion vectors of the remaining subblocks are then estimated 
using a limited search with candidates from the neighboring full-search motion 
vectors. For example, in Figure 7.3(b) the motion vectors of subblocks A, B, 
C, and D are estimated using full search. Only those four vectors are then 
used as candidates when estimating the motion vectors of subblocks a, b, 
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(a) Subsampling with blocks (b) Subsampling with subblocks 

Figure 7.3: Reduced-complexity using the subsampled motion )elds of Liu and Zaccarin [157] 
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and c. This algorithm reduces complexity by roughly a factor of 4. Since 
smaller blocks are employed, the algorithm provides better prediction quality 
than full-search with original size blocks. This is, however, at the expense of 
a larger motion overhead. 

7.6 Hierarchical Search Techniques 

This category uses a multiresolution representation of video. The basic idea 
is to perform motion estimation at each level successively, starting with the 
lowest resolution level. Thus, motion estimation is )rst performed at the lowest 
resolution level to obtain a rough estimate of the motion vector. This vector is 
then passed to the next-higher resolution level to serve as an initial estimate. 
Motion estimation at the higher resolution level is then used to re)ne this 
initial estimate. This process is repeated until the highest resolution level is 
reached. At lower resolution levels, smaller blocks are used for block matching. 
This reduces the complexity of calculating BDMs. At higher-resolution levels, 
smaller search ranges are used since motion estimation starts from a good 
initial estimate. This reduces the number of locations to be searched. Both 
factors (i.e., smaller blocks at low resolutions and smaller search ranges at 
high resolutions) contribute to reducing the overall complexity of the search. 
Note that when reducing the resolution of the searched frames, the motion 
speed is also reduced. This makes hierarchical techniques particularly useful 
for estimating, with reduced complexity, high motion content. Examples of 
hierarchical motion estimation algorithms are reported in Refs. 159 and 160. 

Figure 7.4 shows an example of a three-level hierarchical motion estimation 
technique applied to a QCIF sequence. In this case, the current frame is )rst 
used to generate three current frames with the resolutions: 44 × 36, 88 × 72, 
and 176 × 144. Each resolution level is a low-pass )ltered and subsampled ver-
sion of the next-higher resolution level. The resulting representation is called 
a mean pyramid. The same process is also applied to the reference frame 
(i.e., the previous frame). Motion estimation starts at the lowest resolution 
level with a block size of 4 × 4 pels and a search range of ± 3 pels. The es-
timated motion vector of a block in this resolution is scaled up by a factor of 
2 (i.e., the scaled vector will have a maximum range of 2 × (± 3) = ± 6 pels) 
and then be passed to the corresponding block in the next-higher resolution 
level. Motion estimation in the next-higher resolution level uses a block size 
of 8 × 8 pels and a search range of ± 1 pel around the propagated vector from 
the lower resolution level. This produces a motion vector with a maximum 
range of (± 6) + (± 1) = ± 7 pels, which is again scaled up by a factor of 2 
(to a maximum range of ± 14) and propagated to the next-higher resolution 
level. In this level, a block size of 16 × 16 pels is used with a search range 
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Figure 7.4: Hierarchical motion estimation using a mean pyramid of three levels applied to a 
QCIF frame 

of ± 1 pel around the propagated vector from the lower resolution level. This 
gives a )nal vector with a maximum range of ± 15 pels. 

There are many variants to hierarchical motion estimation. Some techniques 
use the same frame size in all levels of the hierarchy, with larger block sizes 
at lower levels. Other techniques use the same block size in all levels of the 
hierarchy, with subsampled frames at lower levels. In both cases, any level will 
have fewer blocks than the next higher level. Thus, a motion vector estimated 
at one level will be propagated to more than one block in the higher level. 

In addition to reduced-complexity and robust estimation of high-motion 
content, hierarchical motion estimation algorithms are also reported to provide 
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more homogeneous block-motion )elds and a better representation of the true 
motion in the frame [159]. The latter property is particularly important for 
motion-compensated interpolation. 

7.7 Fast Full-Search Techniques 

All the preceding categories reduce the computational complexity of the 
BMME process at the expense of a suboptimal prediction quality. This cate-
gory, however, reduces complexity without sacri)cing prediction quality. It is 
interesting to note that algorithms in this category are usually based on ideas 
borrowed from the )eld of fast codebook search for vector quantization (VQ). 

An example of the algorithms in this category is the partial distortion 
elimination (PDE) algorithm. Assume that during a full search, the minimum 
BDM calculated so far is BDM(im; jm) at search location (im; jm). Then the 
BDM calculation of any subsequent search location (i; j) is stopped as soon 
as the accumulated distortion exceeds BDM(im; jm). This idea is very simi-
lar to the fast-search VQ method reported in Ref. 161. Clearly, initializing the 
search at a location with the lowest possible BDM(im; jm), achieves the highest 
possible reduction in computational complexity. As already shown in Section 
4.6.7, the distribution of the best-match location is usually center-biased (i.e., 
the vector (0; 0) has the highest probability, and longer vectors are less proba-
ble). Thus, the PDE algorithm is usually combined with a spiral-ordered search 
starting at the origin of the search space and going outward in a spiral fashion. 
This combination is employed, for example, in Telenor’s H.263 codec [144]. 

Another algorithm in this category is the successive elimination algorithm 
(SEA) [162]. Again, this algorithm has similarities with the fast-search VQ 
algorithm reported in Ref. 163. The SEA algorithm is based on the triangular 
mathematical inequality given by 

� k � k 

� ai� ≤ |ai|; (7.1) 
i=1 i=1 

where ai are arbitrary real numbers. Extending this inequality to the SAD 
equation gives 

� |ft (x; y)| −  |ft−Mt (x − i; y − j)| �(x; y)∈B (x; y)∈B 

≤ |ft (x; y) − ft−Mt (x − i; y − j)|: (7.2) 
(x; y)∈B 



� 

� 

169 Section 7.7. Fast Full-Search Techniques 

The )rst summation in this inequality is the sum norm of block B in the 
current frame, and this sum is denoted SNt . The second summation, on the 
other hand, is the sum norm of a candidate block in the reference frame 
shifted by (i; j), and this sum is denoted SNt−Mt(i; j). The third summation is 
obviously the SAD(i; j). Thus, for simplicity, Inequality (7.2) can be rewritten 
as 

|SNt − SNt−Mt(i; j)| ≤SAD(i; j): (7.3) 

Now assume that during a full-search, the minimum SAD calculated so far is 
SAD(im; jm) at search location (im; jm). A subsequent search location (i; j) is  
said to achieve better match only if SAD(i; j) ≤SAD(im; jm). Put in another 
way, and based on Inequality (7.3), a subsequent search location (i; j) is said to 
achieve better match only if |SNt −SNt−Mt(i; j)| ≤SAD(im; jm). In other words, 
a subsequent location (i; j) can be immediately skipped from the search if 

|SNt − SNt−Mt(i; j)| ≥SAD(im; jm): (7.4) 

Note that calculating the sum norms in this inequality has a reduced-complexity 
compared to calculating the SAD(i; j) itself. For example, assume that B(x; y) 
is an N ×N block with its top-left cornet at (x; y) and that the next block 
B(x + 1; y) is the block obtained by moving one pel to the right. The two 
blocks are overlapping and they share N − 1 columns. Once the sum norm, 
SN(B(x; y)), of the )rst block is calculated, the sum norm, SN(B(x + 1; y)), 
of the next block in the line is obtained simply by substracting the sum norm 
of the )rst column of block B(x; y) and adding the sum norm of the last 
column in block B(x + 1; y). A similar procedure can be used for calculating 
the sum norm of the next block in the column (i.e., when moving one pel 
down). Based on these ideas, a very fast method of calculating the sum norms 
is presented in Ref. 162. 

A similar algorithm to the SEA has also been proposed in Ref. 164. Assume � � 
that B is partitioned into subsets Bn such that B= n Bn and Bn = ∅.n 
Then the triangular inequality becomes 

|SNt; n − SNt−Mt; n(i; j)| ≤SAD(i; j); (7.5) 
n 

where SNt−Mt; n(i; j) is the sum norm over subset Bn of the candidate block 
in the reference frame shifted by (i; j). It can be shown that 

|SNt; n − SNt−Mt; n(i; j)| ≥ |SNt − SNt−Mt(i; j)|: (7.6) 
n 

Thus, a tighter bound is achieved when the partitioned case is used in In-
equality (7.4) instead of the partitioned case. This tighter bound will result 
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in faster rejection of more candidates and consequently will achieve higher 
speed-up ratios. However, the partitions must be chosen carefully to minimize 
the overhead calculations. In Ref. 164 two partitions are proposed. For an 
N × N block, the )rst partition produces N subsets, each being one of the N 
rows of the block, whereas the second partition produces N subsets, each be-
ing one of the N columns of the block. Again, this algorithm has similarities 
with the fast-search VQ algorithm presented in Ref. 47. 

7.8 A Comparative Study 

This section presents the results of a study comparing the categories of reduced-
complexity motion estimation techniques discussed in Sections 7.3–7.7. The 
main aim of this study is to provide the reader with a feel of the relative 
performance of the discussed categories. Particular attention is given to the 
tradeo- between computational complexity and prediction quality. 

In this study, one representative of each category was chosen. All simulated 
algorithms use 16 × 16 blocks, SAD as the distortion measure, ± 15 maximum 
displacement, full-pel accuracy, restricted motion vectors, and original refer-
ence frames. The simulated algorithms are: 

FSA This is a full-search algorithm. 

TDL This is the two-dimensional logarithmic search of Jain and Jain [54]. 
The algorithm is discussed in Section 7.3 and described in detail in the 
appendix, Section A.2. 

SDM This algorithm uses a 4:1 subsampling of the matched blocks to reduce 
the complexity of calculating the distortion measure. The subsampling 
pattern used corresponds to pattern A described in Section 7.4. This pat-
tern consists of all pels labeled a in Figure 7.2(a). 

SMF This is the subsampled motion )eld algorithm of Liu and Zaccarin [157]. 
The algorithm is discussed in Section 7.5. 

HME This is a three-level hierarchical motion estimation algorithm. The 
algorithm is described in Section 7.6 and illustrated using Figure 7.4. 

PDE This is the partial distortion elimination algorithm described in Section 
7.7. In order to reduce the overhead of logical operations, the condition to 
reject a given candidate is tested after accumulating the BDM of each row 
of the block (rather than after each pel of the block). The algorithm is 
supported with a spiral-ordered search starting at (0; 0) and going outward 
toward longer motion vectors. 
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Tables 7.2–7.4 present the results of testing these algorithms using the three 
test sequences AKIYO, FOREMAN, and TABLE TENNIS, with a frame skip of 1 
(i.e., 30 frames=s for AKIYO and TABLE TENNIS and 25 frames=s for FOREMAN). 
All results are averages over sequences and refer to the luma components. 
Each table compares the algorithms in terms of prediction quality and com-
putational complexity. The prediction quality is presented in terms of aver-
age luma PSNR in decibels. The di-erence in PSNR between each algorithm 
and the FSA is also shown.4 The computational complexity is presented in 
terms of the average motion estimation time (in milliseconds) per frame.5 Care 

Table 7.2: Comparison between di-erent fast block-matching algorithms when applied to QSIF 
AKIYO at 30 frames=s 

Prediction quality Computational complexity 

PSNR MPSNR ME Time Speed-up 
(dB) (dB) (ms/frame) ratio 

FSA 45.93 0.00 1013.87 1.00 
PDE 45.93 0.00 48.49 20.91 
SDM 45.93 0.00 278.25 3.64 
SMF 45.93 0.00 511.51 1.98 
TDL 45.93 0.00 26.82 37.80 
HME 45.93 0.00 20.73 48.89 

Table 7.3: Comparison between di-erent fast block-matching algorithms when applied to QSIF 
FOREMAN at 25 frames=s 

Prediction quality Computational complexity 

PSNR MPSNR ME Time Speed-up 
(dB) (dB) (ms=frame) ratio 

FSA 32.20 0.00 1258.95 1.00 
PDE 32.20 0.00 149.80 8.40 
SDM 31.96 −0.24 346.72 3.63 
SMF 31.91 −0.29 634.08 1.99 
TDL 31.80 −0.40 34.76 36.22 
HME 31.88 −0.32 25.73 48.92 

4MPSNR = PSNR of fast algorithm − PSNR of FSA. 
5Motion estimation times were obtained using the pro)ler of the Visual C++ 6.0 compiler run 

on a PC with a Pentium-III 700-MHz processor, 128 MB of RAM, and a Windows 98 operating 
system. 
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Table 7.4: Comparison between di-erent fast block-matching algorithms when applied to QSIF 
TABLE TENNIS at 30 frames=s 

Prediction quality Computational complexity 

PSNR MPSNR ME time Speed-up 
(dB) (dB) (ms=frame) ratio 

FSA 32.17 0.00 1049.11 1.00 
PDE 32.17 0.00 125.02 8.39 
SDM 31.99 −0.18 287.73 3.65 
SMF 31.44 −0.73 529.00 1.98 
TDL 31.63 −0.54 28.66 36.61 
HME 31.85 −0.32 21.62 48.54 

should be taken when interpreting the results because the motion estimation 
time can vary with implementation and the underlying hardware platform. The 
speed-up ratio of each algorithm with reference to the FSA is also shown.6 

As expected the FSA provides the best prediction quality, but at the expense 
of a high computational complexity. 

The PDE algorithm provides an identical prediction quality to FSA, with 
a moderate speed-up ratio. Note that the computational complexity of PDE is 
highly dependent on the type of sequence and the motion content. For example, 
most blocks in the AKIYO sequence are stationary or quasi-stationary. Since 
PDE is initialized at (0; 0), this will lead to a very low starting minimum 
value BDM(im; jm). This will result in faster rejection of more candidates and, 
consequently, will lead to a relatively high speed-up ratio. 

The SDM provides the next-best prediction quality. However, its 4:1 sub-
sampling pattern limits its speed-up ratio to about 4. Similarly, the 2:1 )eld 
subsampling pattern of SMF limits its speed-up ratio to about 2. Note that the 
prediction quality of SMF is dependent on the amount of correlation between 
the motion vectors of neighboring blocks. This may explain the relatively high 
loss of prediction quality for the TABLE TENNIS sequence. 

The TDL and HME algorithms provide the highest speed-up ratios, with 
moderate losses in prediction quality. In general, however, the HME algo-
rithm outperforms the TDL algorithm in terms of both prediction quality and 
computational complexity. 

6Speed-up = 
ME time for FSA 

. 
ME time for fast algorithm 
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7.9 Discussion 

Processing digital video requires a signi)cant amount of computational power. 
This represents one of the main challenges for real-time mobile video com-
munication, where processing power and battery life are scarce resources. 

In this chapter, the computational complexity of a typical video codec was 
investigated. It was found that this complexity is due mainly to the motion 
estimation process. In fact, it was found that the computational complexity of 
this process is greater than that of all the remaining encoding steps combined. 
It was concluded, therefore, that reducing the complexity of this process is the 
best way to reduce the overall complexity of the codec. The chapter reviewed 
the main categories of reduced-complexity BMME techniques. The chapter 
then presented the results of a study comparing the di-erent categories. It 
was found that hierarchical techniques and techniques based on a reduced 
set of motion vector candidates, in general, provide the highest reduction in 
computational complexity. 





Chapter 8 

The Simplex Minimization Search


8.1 Overview 

As already discussed, one of the main requirements for mobile video com-
munication is reduced complexity. In Chapter 7, it was shown that reducing 
the complexity of the motion estimation process is the best way to reduce the 
overall complexity of a video codec. 
As detailed in Chapter 7 also, there are many techniques for reduced-

complexity BMME. The most widely used approach is to use a reduced set of 
motion vector candidates. Algorithms in this category are usually based on a 
unimodal error surface assumption. In most cases, however, this assumption 
does not hold true, and such algorithms can easily get trapped in local minima, 
giving a suboptimal prediction quality. This chapter describes the design of a 
novel reduced-complexity BMME technique. Although this technique is based 
on using a reduced set of motion vector candidates, it is designed to be more 
robust against the local minimum problem. 
BMME can be viewed as a two-dimensional constrained minimization 

problem. This problem can, therefore, be solved with reduced-complexity using 
a wealth of mature optimization techniques. This chapter solves the BMME 
optimization problem using the simplex minimization (SM) optimization 
method. The resulting solution is called the simplex minimization search 
(SMS). The initialization procedure, termination criterion, and constraints on 
the independent variables of the search are designed to take into account 
the basic properties of the BMME problem. This improves the prediction 
quality of the algorithm and, at the same time, increases its speed-
up ratio. 
In Chapter 6, it was concluded that one of the main drawbacks of multiple-

reference motion-compensated prediction (MR-MCP) is the huge increase in 
computational complexity. To reduce complexity, this chapter extends the SMS 
algorithm to the multiple-reference case. Three di+erent novel extensions (or 
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algorithms) are presented. They represent di+erent degrees of compromise 
between prediction quality and computational complexity. 
The rest of the chapter is organized as follows. Section 8.2 formulates 

BMME as a two-dimensional constrained optimization problem. The SM 
method and the reasons for choosing it to solve the BMME problem are 
described in Section 8.3. The design of the single-reference SMS algorithm is 
detailed in Section 8.4, and the results of testing it are presented in Section 
8.5. Section 8.6 extends the SMS algorithm to the multiple-reference case. The 
chapter concludes with a discussion in Section 8.7. 
Preliminary results of this chapter have appeared in Refs. 165, 166, 167, 

168, and 169. 

8.2 Block Matching: An Optimization Problem 

8.2.1 Problem Formulation 
As discussed in Chapter 4 (Section 4.6), in BMME the current frame, ft , is  
usually partitioned into nonoverlapping blocks of N ×N pels and the same 
motion vector is assigned to all pels within a block. The motion vector or 
displacement, d = [dx; dy ]T , of a block is estimated by searching for the best-
match block in a larger window of (N +2dm) × (N +2dm) pels centered at the 
same location in a reference frame, ft−7t , where dm is the maximum allowed 
motion displacement. This process can be formulated as follows: 

(dx; dy ) = arg min BDM(i; j); (8.1)
i; j 

where −dm ≤ i; j ≤ + dm and 

BDM(i; j)=  
N � 

=1x

N � 

=1y

g[ft (x; y) − ft−7t (x − i; y − j)]: (8.2) 

The BDM can be any positive function that measures the distortion between 
the block in the current frame and the candidate displaced block in the 
reference frame. Commonly used BDMs are the SSD, g[·] = (·)2, and the SAD, 
g[·] =  | · |. 
Equations (8.1) and (8.2) clearly indicate that BMME is a two-dimensional 

constrained optimization problem. The two dimensions are the horizontal, i, 
and vertical, j, motion displacements, the function to be optimized (minimized 
in this case) is the BDM, and the independent variables, (i; j), are constrained 
within a limited range, −dm ≤ i; j ≤+dm, and are usually evaluated to a certain 
accuracy, e.g., full- or half-pel accuracy. 
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An optimization problem can be thought of as a search process where the 
function surface is searched over a given search space to :nd its minimum 
(or maximum). This search is performed by examining the function value at 
a :nite number of search locations. In BMME, the search space is the search 
window in the reference frame. Each candidate block within this window rep-
resents a search location, (i; j). This is the displacement between the block in 
the current frame and the candidate block in the reference frame. With full-pel 
accuracy, there are (2dm +1)2 possible search locations in the search space. The 
corresponding BDM values form the function surface. Since BDM is a distor-
tion measure, this surface is also referred to as the error surface. The set of 
motion vectors assigned to the blocks of the frame form a block-motion !eld. 

8.2.2 A Possible Solution 
As shown in Section 8.2.1, BMME can be formulated as an optimization 
problem. This problem can, therefore, be solved, with reduced complexity, 
using a wealth of mature optimization methods. 
There are few fast BMME algorithms that are based on optimization 

methods. For example, the TDL search of Jain and Jain [54] is an extension 
of the 1-D binary logarithmic search [170], the OTS and CDS algorithms of 
Srinivasan and Rao [146] are based on the conjugate directions (CD) opti-
mization method [171], and the GMS algorithm of Chow and Liu [148] is 
based on the genetic algorithm (GA) optimization method [172]. 
In a similar fashion, this chapter solves the BMME optimization problem 

using the simplex minimization (SM) optimization method [173]. The resulting 
solution is called the simplex minimization search (SMS). 
Figure 8.1 shows the basic building blocks of any constrained optimization 

method. It can be seen that when trying to solve an optimization problem, 
there are two main design stages. The :rst, and probably the most important, 
stage is to choose a suitable optimization method. Section 8.3 describes the 
SM optimization method and outlines the reasons for choosing it to solve the 
BMME optimization problem. The second stage is to design a suitable initial-
ization procedure, a termination criterion, and constraints on the independent 
variables of the search. For the SMS, this stage is detailed in Section 8.4. 

8.3	 The Simplex Minimization (SM) Optimization 
Method 

8.3.1 Basic Algorithm 
Simplex minimization (SM) is a multidimensional unconstrained optimization 
method that was introduced by Nelder and Mead in 1965 [173]. A simplex is a 
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Figure 8.1: Basic building blocks of constrained optimization methods 

geometrical :gure that consists, in N dimensions, of N +1 vertices and all their 
interconnecting line segments, polygonal faces, etc. Thus, in two dimensions, 
a simplex is a triangle, whereas in three-dimensions it is a tetrahedron. A non-
degenerate simplex is one that encloses a :nite inner N -dimensional volume. 
To minimize a function of N independent variables, the SM method must be 

initialized with N +1 points (or search locations) de:ning an initial nondegen-
erate simplex. The method then takes a series of steps: re'ecting, expanding, 
or contracting the simplex from the point where the function value is largest, 
in an attempt to move it to a better point. Thus, the simplex is adapted to 
the local landscape of the function surface: expanded along inclined planes, 
reCected on encountering a valley at an angle, and contracted in the neigh-
borhood of a minimum. This process continues until a termination criterion is 
satis:ed. The SM method is described in more detail in Figure 8.2. 

8.3.2 Simplex Minimization for BMME: Why? 
The SM optimization method is an attractive choice for solving the BMME 
optimization problem for the following reasons: 

1. Most fast BMME algorithms	are based on a unimodal error surface 
assumption. As already shown (Property 4:6:7:3), this assumption does 
not hold true in most cases. For this reason, such algorithms are easily 
trapped in local minima, giving a suboptimal prediction quality. The SM 
method, however, is not based directly on this assumption. 

2. Most fast BMME algorithms and optimization methods work by fol-
lowing the direction of the minimum distortion. The SM method, 
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1.	The method is initialized with N + 1 points, p1; : : : ;  pN +1, de:ning an initial nondegenerate 
simplex where each point is in N dimensions, pi = (pi; 1; : : : ; pi; N ). The function to be 
minimized, f, is then evaluated at those initial vertices to produce the function values 
f1 = f(p1); : : : ; fN +1 = f(pN +1). 

2.	The highest, fh = maxi fi , second highest, fs = maxi �= h fi , and lowest, fl = mini fi , func-
tion values are determined and the corresponding vertices are marked as ph, ps, and pl, 
respectively. The centroid, pm, of the simplex with the highest point removed is then 
evaluated using 

1 
pm = 

N	

� 
pi : (8.3) 

i �= h 

3.	It would seem reasonable to move away from ph. Thus, the simplex is re'ected from its 
highest point about its centroid using 

pr = −�ph + (1 +  �)pm;	 (8.4) 

where pr is the reCected point and � ≥ 0 is the  re'ection coe(cient. The function is then 
evaluated at this new reCected point, giving fr = f(pr ). 

4.	IF (fr¡fl), then reCection has produced the lowest function value. Therefore, the direc-
tion from pm to pr seems to be a good one to move along. Thus, the simplex is expanded 
in this direction using 

pe = �pr + (1  − �)pm;	 (8.5) 

where pe is the expanded point and � ≥ 1 is the  expansion coe(cient. The function is 
then evaluated at this new expanded point, giving fe = f(pe ). There are now two possible 
cases: 

(a)	IF (fe¡fl), then the expansion step was in the right direction. Thus, ph is removed 
from the simplex and replaced by pe. The search then proceeds to step 8 to test for 
convergence. 

(b)	ELSE it seems that the expansion step moved too far in the direction from pm to pr . 
Thus, pe is abandoned. Since pr is already known to produce an improvement, ph 
is removed from the simplex and replaced by pr . The search then proceeds to step 
8 to test for convergence. 

5.	ELSE IF (fr¿fl AND fr¡fs ), then the reCected point is an improvement over the worst 
two points of the simplex. Thus, ph is removed from the simplex and replaced by pr . The 
search then proceeds to step 8 to test for convergence. 

6.	ELSE IF (fr¿fi , for all i �= h), then there are two possible cases: 

(a) IF (fr¿fh), then the search proceeds directly to the contraction step (step 7). 

(b)	ELSE ph is :rst removed from the simplex and replaced by pr and then the search 
proceeds to the contraction step (step 7). 

Figure 8.2: Simplex method for function minimization 
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7.	It seems that the reCection step moved too far in the direction from ph to pm. 
This is recti:ed by contracting the simplex from its highest point toward its centroid 
using 

pc = �ph + (1  − �)pm;	 (8.6) 

where pc is the contracted point and 0 ≤ � ≤ 1 is the  contraction coe(cient. The function 
is then evaluated at the new contracted point, giving fc = f(pc ). There are now two 
possible cases: 

(a)	IF (fc¡fh), then contraction has produced a better point. Thus, ph is removed 
from the simplex and replaced by pc. The search then proceeds to step 8 to test for 
convergence. 

(b)	ELSE it would appear that all the e+orts to move the highest point to a better location 
has failed. All the vertices are, therefore, pulled toward the lowest point using 

pi + pl pi = ; for all i	 (8.7)
2 

8.	Convergence is tested. IF the convergence criterion is satis:ed, then the search is stopped. 
ELSE the search goes back to step 2. 

Figure 8.2: Continued. 

however, works by moving the point where the function value is largest 
in di+erent directions using reCection, expansion, and contraction. 
Thus, it explores directions other than that of the minimum distortion. 
This makes the method more resilient to the local minimum pro-
blem. 

3. As shown in Figure 8.1, a very important process in any optimization 
method is the generation of a new set of search locations for the next 
iteration. The performance and complexity of any method is highly de-
pendent on this process. The simplest approach is to use a predetermined 
uniform distribution of search locations. This approach is adopted by 
most fast BMME algorithms (see the Appendix). There are, however, 
more complex approaches, like the use of crossover and mutation op-
erators in genetic algorithms or the use of gradients in gradient-descent 
algorithms. The SM method is a compromise between the two extremes. 
It uses very simple equations for reCection (8:4), expansion (8:5) and 
contraction (8:6), as shown in Figure 8.2. As will be shown later, a 
suitable choice of the coeDcients, (�; �; �), can further reduce the com-
plexity of such equations. 
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8.4 The Simplex Minimization Search (SMS) 

Having decided on the optimization method to be used (the SM optimization 
method in this case), the second stage is to design a suitable initialization 
procedure, a termination criterion, and constraints on the independent variables 
of the search. The performance of an optimization method can be greatly 
improved if this design stage exploits a priori knowledge of the problem 
at hand. For example, the basic properties of the BMME problem can be 
exploited to avoid local minima and initialize the search at a location close 
to the global minimum. This improves the prediction quality and at the same 
time increases the speed-up ratio. 
Although the TDL, OTS, CDS, and GMS algorithms are all based on good 

optimization methods, they do not take into account the basic properties of 
the BMME problem. As a result, such algorithms can either get trapped in 
local minima, resulting in suboptimal prediction quality, or lead to a relatively 
small speed-up ratio. In the simplex minimization search (SMS) algorithm, 
however, the initialization procedure, termination criterion, and constraints on 
the independent variables of the search are designed to exploit the basic prop-
erties of the BMME problem. This is described in more detail in the following 
subsections. 

8.4.1 Initialization Procedure 
Block-matching motion estimation is a two-dimensional problem. As already 
mentioned, a simplex, in two-dimensions, is a triangle. Thus, three points need 
to be chosen to de:ne the initial nondegenerate simplex. As is shown later, 
the performance of the SM method is highly dependent on the choice of these 
points. The following initialization procedure is used. 
According to Property 4:6:7:1, the vector (0; 0) has the highest probability 

of occurrence within the block-motion :eld. One of the initial three points is 
therefore set to (0; 0). In addition, Property 4:6:7:2 states that there is a high 
correlation between the motion vectors of adjacent blocks. In fact, most video 
coding standards take advantage of this property by predictively coding the 
motion vectors. To exploit this property, and to match the motion estimation 
process to the motion coding process, the other two points of the initial simplex 
are set to the motion vectors of the blocks above and to the left of the current 
block. If such neighboring vectors are not available, as in border blocks, they 
are set to (0; 0). 
Note that this procedure does not guarantee to produce a nondegenerate 

initial simplex. For example, if two points are identical, then the simplex is 
degenerate. In this case, a local search is applied to :nd other candidates. 
The BDM is :rst evaluated at the points chosen by the foregoing procedure. 
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Let pm =(mx; my) be the point that yields the smallest BDM, then the BDM 
is also evaluated at its eight nearest neighbors, (mx; my ± a), (mx ± a; my) and 
(mx ± a; my ± a), where a is the accuracy of the search, e.g., a = 1 for full-pel 
accuracy. At this stage, all points (including those from the initial procedure) 
are arranged in ascending order according to their BDMs and the :rst three 
are chosen to form the initial simplex. If this is still a degenerate one, then 
the appropriate point is dropped and replaced by the next one in the list. This 
is repeated until a nondegenerate simplex is formed. 
Once a nondegenerate initial simplex is formed, the search proceeds 

as shown in Figure 8.2, subject to the constraints outlined in Section 8.4.2, 
and is terminated when the criterion described in Section 8.4.3 is 
satis:ed. 

8.4.2 Constraints on the Independent Variables 
The SM method assumes continuous unconstrained independent variables. 
However, when applied to the constrained minimization problem of BMME, 
two constraints have to be imposed. Firstly, the vertices of the simplex must 
always be set to the required accuracy before any BDM evaluation can take 
place. For example, if full-pel accuracy is assumed, then any point produced 
by reCection, expansion, or contraction must be rounded to the nearest integer 
value. Secondly, the vertices of the simplex must always be kept within the 
search window. Any point produced by reCection, expansion, or contraction 
must be set to the closest point within the range −dm ≤ i; j ≤ + dm before any 
BDM evaluation can take place. This constraint is more eDcient than other 
possible constraints, like, for example, assigning a large function value to the 
vertex outside the search window. 

8.4.3 Termination Criterion 
There are many possible ways to terminate optimization methods. One of the 
most widely used approaches is to terminate the search if the current minimum 
function value is below some threshold. In the SM case, another approach is 
to terminate the search if the fractional range from the highest, in terms of 
function value, to the lowest vertices of the simplex is below some threshold 
[174]. 
According to Property 4:6:7:4, the function value at the global minimum 

is unpredictable. Thus, if the preceding termination criteria are used, then 
the threshold needs to be adjusted from one sequence to another, from one 
frame to another, and even from one block to another. This makes such criteria 
unsuitable for BMME. A more suitable criterion is as follows. Let ph =(hx; hy), 
ps =(sx; sy), and pl =(lx; ly ) be the vertices of the simplex where the BDM is 
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highest, second highest, and lowest, respectively. The search is terminated if 
the following condition is satis:ed: 

(|hx − lx | ≤ a) ∧ (|hy − ly | ≤ a) ∧ (|sx − lx | ≤ a) ∧ (|sy − ly | ≤ a); (8.8) 

where a is the search accuracy and ∧ is the logical AND operator. In other 
words, the search is terminated if the two highest (in terms of BDM value) 
vertices of the simplex become neighbors to the lowest vertex. This criterion 
was derived from the way the SM method works. As shown in Figure 8.2, 
when the method converges to a minimum, the contraction operation starts 
pulling all the vertices toward the minimum vertex. The main advantage of 
this criterion is that it does not depend on a threshold. 

8.4.4 Motion Vector Re1nement 
The main disadvantage of the preceding termination criterion is that it is not 
based directly on the function to be minimized, i.e., the BDM. As a result, 
the search may sometimes converge to a suboptimal point. Experimental re-
sults show that in most cases this suboptimal point is in the neighborhood 
of the global minimum. An extra step is therefore added to the search in 
which the motion vector produced by SM is re!ned by searching its eight 
nearest neighbors. Note that this does not signi:cantly increase the com-
plexity of the search, because most of those neighbors have already been 
searched. 

8.5 Simulation Results 

8.5.1 Results Within an Isolated Test Environment 
In this set of simulations, motion is estimated and compensated using original 
reference frames. In e+ect, this is equivalent to lossless DFD coding. This is 
particularly important for a fair comparison between di+erent algorithms on a 
frame-by-frame basis, since poor prediction of one frame does not propagate 
to, and a+ect the prediction of, the next frame. Hereafter, the term isolated 
test environment will be used to refer to this test condition. 
All results in this subsection were generated using blocks of 16 × 16 pels, 

a maximum allowed displacement of ±15 pels, SAD as the distortion mea-
sure, restricted motion vectors, and full-pel accuracy. Motion vectors were 
coded predictively using the prediction method and the VLC table of the 
H.263 standard. All quoted results refer to the luma components of 
sequences. 
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8.5.1.1 Choice of Coe3cients 

Before evaluating the performance of the SMS algorithm, suitable values for 
the reCection, �, contraction, �, and expansion, �, coeDcients need to be cho-
sen. Figures 8.3, 8.4, and 8.5 show the performance of the SMS algorithm 
with di+erent values of �; �, and �, respectively. The :gures indicate that 
the performance of the SMS algorithm is not very sensitive to the choice of 
these coeDcients. This may be due to the good performance of the initial-
ization procedure and termination criterion. In general, however, the values 

1� =1,  � = 2 , and � = 2 provide the best compromise between computational 
complexity and prediction quality. In addition, this particular set of coeDcients 
reduces the complexity of the SM transformation equations, Equations (8:4), 
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Figure 8.5: Performance of SMS with di+erent values of the expansion coeDcient � 

(8:5), and (8:6) in Figure 8.2, because multiplications and divisions in this 
case can be performed using shift operations. 

8.5.1.2 Initialization, Termination, and Re1nement Tests 

In order to justify di+erent parts of the SMS algorithm, the following tests 
were performed. 

1. Initialization Test: Two initialization procedures were tested: 

(a)	Random Initialization: Two of the vertices of the initial simplex 
are generated randomly within the search window, whereas the third 
vertex is always set to (0; 0). 

(b)	Proposed Initialization: This is the initialization procedure 
described in Section 8.4.1. 

2. Termination Test: Two termination criteria were tested. 

(a)	Threshold Termination: The search is terminated when the current 
minimum BDM value is below a threshold. The threshold was set to 
768, which corresponds to an average SAD=pel of 3 (16 × 16 × 3). 
As already discussed, a :xed threshold is not suitable for the 
BMME problem. Such a threshold does not guarantee convergence 
because the global minimum BDM value may in some cases be 
above the threshold. The threshold condition must therefore be sup-
ported by another condition to guarantee termination. In this test, 
the search is also terminated if the number of iterations exceeds 10. 

(b)	Proposed Termination: This is the termination criterion described 
in Section 8.4.3. 
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Table 8.1: Initialization, termination, and re:nement tests 

AKIYO FOREMAN TABLE TENNIS 

PSNR (dB) Locations PSNR (dB) Locations PSNR (dB) Locations 

Initialization test: 
Random 45.93 1,634 31.32 1,890 31.28 1,647 
Proposed 45.93 684 32.04 1,073 31.71 831 
Termination test: 
Threshold 45.93 904 32.06 1,396 31.73 1,082 
Proposed 45.93 684 32.04 1,073 31.71 831 
Re1nement test: 
No re:nement 45.93 683 31.97 999 31.53 794 
Proposed 45.93 684 32.04 1,073 31.71 831 

3. Re1nement Test: Two cases were tested. 

(a)	Proposed Re!nement: The motion vector produced by SM is 
re:ned by searching its eight nearest neighbors, as described in 
Section 8.4.4. 

(b) No Re!nement: No re:nement is performed. 

Table 8.1 summarizes the results of the preceding tests. The results are 
averaged over each sequence with a frame skip of 1. Prediction quality is 
given in terms of average luma PSNR (dB), and computational complexity 
is given in terms of average searched locations per frame. The results clearly 
justify the use of the proposed initialization procedure, termination criterion, 
and re:nement step. 

8.5.1.3 Performance Evaluation 

In addition to the SMS algorithm, :ve BMME algorithms were simulated: 
the full-search (FS) algorithm, the two-dimensional logarithmic search (TDL) 
[54], the cross-search algorithm (CSA) [147], the one-at-a-time search (OTS) 
[146], and the N -steps search (NSS), which is the general form1 of the three-
steps search (TSS) [145]. In this case the number of steps in the NSS search 
is set to N = 4 to give a maximum displacement of ± 15 pels. A detailed 
description of these fast BMME algorithms is given in the Appendix. 

1The three-steps search starts with ± 4 pels in the :rst step, then ± 2 pels in the second step, 
and ± 1 pel in the third step. This gives a maximum allowed displacement of ± 4 ± 2 ± 1=  ± 7 
pels. For larger search windows the number of steps must be increased. This is called the N -steps 
search. For example, when N = 4, the search has 4 steps and the :rst step starts with ± 8 pels, 
giving a maximum allowed displacement of ± 15 pels. 
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Table 8.2: Comparison between di+erent block-matching algorithms in terms of prediction quality 

AKIYO FOREMAN TABLE TENNIS 

PSNR 7PSNR % Global PSNR 7PSNR % Global PSNR 7PSNR % Global 

45.93 0.00 100.00 32.20 0.00 100.00 32.17 0.00 100.00 
45.93 0.00 100.00 32.04 −0:16 94.31 31.71 −0:46 95.80 
45.93 0.00 100.00 31.74 −0:46 87.25 31.50 −0:67 92.74 
45.93 0.00 100.00 31.81 −0:39 88.92 31.63 −0:54 93.39 
45.91 −0:02 99.86 30.95 −1:25 60.11 30.93 −1:24 81.23 
45.93 0.00 100.00 31.23 −0:97 76.35 31.23 −0:94 91.60 

FS 
SMS 
NSS 
TDL 
CSA 
OTS 

Table 8.3: Comparison between di+erent blockmatching algorithms in terms of computational 
complexity 

AKIYO FOREMAN TABLE TENNIS 

Locations Speed-up Locations Speed-up Locations Speed-up 

FS 
SMS 
NSS 
TDL 
CSA 
OTS 

65,621 
684 
2,464 
1,310 
115 
402 

– 
96 
27 
50 
571 
163 

77,439 
1,073 
2,823 
1,638 
920 
604 

– 
72 
27 
47 
84 
128 

65,621 
831 
2,473 
1,362 
461 
448 

– 
79 
27 
48 
142 
146 

Tables 8.2, 8.3, and 8.4 compare the performance of the simulated BMME 
algorithms. All results are averages over sequences with a frame skip of 1. 
Table 8.2 compares the prediction quality in terms of average luma PSNR in 
decibels. The di+erence in PSNR between each algorithm and the FS algorithm 
is also shown.2 The table also shows the average percentage of :nding the 
global minimum. Table 8.3, on the other hand, compares the computational 
complexity in terms of average searched locations per frame. It also shows the 
speed-up ratio3 of each algorithm with reference to the FS algorithm. Table 
8.4 shows the motion overhead generated by each algorithm and the di+erence 
between this overhead and that produced by the FS algorithm.4 
As expected, the FS algorithm provides the best prediction quality, but 

at the expense of a very high computational complexity. The fast BMME 
algorithms in this simulation can be split into three di+erence performance 
classes. In the :rst class, the CSA and the OTS algorithms provide the highest 

27PSNR = PSNR of fast algorithm − PSNR of FS algorithm.

3Speed-up = 

Searched locations for FS algorithm

. 

Searched locations for fast algorithm

47Bits = Motion bits of fast algorithm − Motion bits of FS algorithm.
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Table 8.4: Comparison between di+erent block-matching algorithms in terms of motion overhead 

AKIYO FOREMAN TABLE TENNIS 

Motion bits 7Bits Motion bits 7Bits Motion bits 7Bits 

FS 177 0 388 0 279 0 
SMS 177 0 358 −30 247 −32 
NSS 177 0 457 +69 290 +11 
TDL 177 0 394 +6 269 −10 
CSA 177 0 461 +73 281 +2 
OTS 177 0 388 0 246 −33 

speed-up ratios, but their prediction quality deteriorates for sequences with 
medium to high movement content. In the second class, the NSS and the 
TDL algorithms provide better prediction quality than CSA and OTS, but 
at the expense of a higher computational complexity. In the third class, the 
SMS algorithm provides the best compromise between prediction quality and 
computational complexity. Its prediction quality is the closest to that of FS 
and yet its computational complexity is between those of the other two classes. 
Note that the SMS algorithm achieves the highest percentage of :nding the 
global minimum. This clearly indicates that the SMS algorithm is the most 
resilient to the local minimum problem. Note also that the SMS algorithm 
adapts better to the movement content of sequences. Thus, for low-movement 
sequences it uses fewer locations and for high-movement sequences it uses 
more locations. In addition, because the motion estimation process is matched 
to the motion coding process (through the initialization procedure), the SMS 
algorithm has the lowest motion overhead. 
One of the disadvantages of fast BMME algorithms is that their prediction 

quality deteriorates for higher amounts of motion and larger search windows 
(as, for example, in HDTV applications). This is clear from Table 8.2 when 
moving from AKIYO to FOREMAN and TABLE TENNIS. To investigate this e+ect 
further, the FOREMAN sequence was temporally subsampled to 25; 12:5; 8:33, 
and 6:25 frames= s (this corresponds to frame skips of 1, 2, 3, and 4, respec-
tively). The corresponding maximum allowed displacements, dm , were set to 
± 7; ± 15; ± 31, and ± 63 pels, respectively. Figure 8.6 shows the results of 
this simulation. It is immediately evident that the SMS algorithm is the most 
robust fast algorithm to the above e+ect, and yet it has the second-lowest 
computational complexity. 

8.5.2 Results Within an H.263-like Codec 
The SMS algorithm along with the other :ve BMME algorithms have also 
been tested within a hybrid H.263-like codec. As in previous simulations, 
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Figure 8.6: Comparison between di+erent block-matching algorithms when applied to QSIF 
FOREMAN with maximum displacements of 7; 15; 31, and 63 and corresponding frame rates of 
25; 12:5; 8:33, and 6:25 frames=s, respectively 
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motion was estimated using macroblocks of 16 × 16 pels, a maximum allowed 
displacement of ± 15 pels, SAD as the distortion measure, restricted motion 
vectors, and full-pel accuracy. In this case, however, motion vectors were 
predictively encoded using the median prediction method and the VLC table 
of the H.263 standard. In addition, motion was estimated and compensated 
using reconstructed reference frames rather than original frames. Both, the 
frame signal (in case of INTRA) and the DFD signal (in case of INTER) 
were transform encoded according to the H.263 standard. To generate a range 
of bit rates, the quantization parameter QP was varied over the range 5–30 
in steps of 5. This means that each algorithm was used to encode a given 
sequence six times. Each time, QP was held constant over the whole sequence 
(i.e., no rate control was used). The :rst frame was always INTRA encoded, 
and all other frames were INTER encoded. No INTRA=INTER switching was 
allowed at the macroblock level. The INTRA bits were included in the bit-rate 
calculations, and no header bits were generated. All quoted results refer to the 
luma components of sequences. 
Figures 8.7 and 8.8 show examples of the rate-distortion (R-D) perfor-

mance of the SMS algorithm and compare it to that of the other :ve BMME 
algorithms. Figure 8.7 shows the results for the FOREMAN sequence with frame 
rates of 25 frames=s and 8:33 frames=s, whereas Figure 8.8 shows the results 
for the AKIYO and TABLE TENNIS sequences with frame rates of 10 frames=s and 
15 frames=s, respectively. Both :gures con:rm the superior R-D performance 
of the SMS algorithm compared to other fast BMME algorithms. 
The superior performance of the SMS algorithm is also shown on a frame-

by-frame basis in Figure 8.9. This :gure shows the performance for the 
FOREMAN sequence at 8:33 frames=s with a quantization parameter of QP = 10. 
For clarity, the :gure shows only the performance of the FS, SMS, NSS, and 
OTS algorithms. As can be seen, the SMS algorithm provides the closest pre-
diction quality (Figure 8.9(a)) to the FS algorithm. This results in the use of 
fewer bits for the DFD signal (Figure 8.9(c)). In addition, the initialization pro-
cedure results in less motion overhead (Figure 8.9(d)). The reduced number of 
DFD bits and motion bits results in a reduced overall bit rate (Figure 8.9(e)). 
This is all achieved at a reduced computational complexity (Figure 8.9(b)). 

8.5.3 Results Within an MPEG-4 Codec 
In a collaborative work, the SMS algorithm has also been tested within an MPEG-
4 codec. The results in this subsection are reproduced, as is, from Ref. 175.5 

5The authors would like to thank Mr. Oliver Sohm for incorporating SMS within MPEG-4 and 
providing the results. 
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They are provided here to show the performance of the SMS algorithm within 
an object-based video codec. 
Before proceeding to present the results, a description of object-based 

motion estimation in the MPEG-4 veri:cation model [176] is in order. To 
account for arbitrarily shaped objects, the standard block-matching algorithm 
is extended to polygon matching. Macroblock-based repetitive padding is used 
for the reference visual object plane (VOP). In other words, macroblocks that 
lie on the VOP boundary are padded so that pels from inside the VOP are 
extrapolated to the outside. For each 16 × 16 macroblock in the current VOP, 
full-pel full search is used to :nd the motion vector that minimizes the SAD. 
The SAD of the motion vector (0; 0) is reduced by a preset threshold to favor 
this vector. A reduced search of ± 2 pels centered around the 16 × 16 motion 
vector is used to :nd one motion vector for each of the four 8 × 8 blocks 
within the MB. A decision is then made whether to use one motion vector or 
four motion vectors per MB. A decision is also made whether to encode the 
MB in INTRA or INTER mode. If INTER mode is chosen, the 16 × 16 (or 
the four 8 × 8) vector(s) is=are re:ned to half-pel accuracy using a reduced 
± 1=2-pel search centered around the full-pel vector. Motion vectors are re-
stricted within the bounding box of the VOP unless the unrestricted mode is 
chosen. In this mode, the reference VOP is extended by repetitive padding in 
all directions by the number of pels which equals the search range. Overlapped 
motion compensation is similar to that of H.263. 
In this set of simulations, four algorithms were tested: FS, SMS, NSS, 

and diamond search (DS) [149, 150, 151] (which is adopted in the MPEG-
4 veri:cation model [176]). To ensure that the global minimum is found, 
the threshold that favors the (0; 0) vector in the FS algorithm was set to 
zero. The four algorithms were used only for the full-pel search. All other 
operations (e.g., 8 × 8 ME, half-pel re:nement) remained the same. Original 
reference VOPs were used instead of reconstructed VOPs. The unrestricted 
motion vector mode was switched on. Table 8.5 gives more details about the 
test conditions and the test sequences. 
Table 8.6 shows the prediction quality in terms of mean absolute error per 

pel (MAE=pel),6 whereas Table 8.7 shows the computational complexity in 
terms of average searched locations per macroblock (locations=MB). Again, 
the superior performance of the SMS algorithm is evident. Compared to NSS 
and DS, the SMS algorithm provides the closest MAE=pel to that of FS, and 
yet it has the least number of searched locations=MB. 

6The MAE=pel measure was calculated as follows. The minimum SADs over the whole VOP 
were summed and then divided by the number of opaque pels in the VOP. The minimum SADs 
in this case are those produced by the full-pel search. 



195 Section 8.5. Simulation Results 

Table 8.5: Test sequences and conditions for the MPEG-4 results. Reproduced from Ref. 175 

Sequence Format Class Objects Distance Displacement 

Bream	 CIF, 352 × 288, E VO0: Background 2 (15 f.p.s.) −16 : : : 15 
30 Hz; 300 frames VO1: Fish 

Coast Guard	 QCIF, 176 × 144, B VO0: Water 3 (10 f.p.s.) −16 : : : 15 
30 Hz; 270 frames	 VO1: Small boat 

VO2: Big boat 
VO3: River bank 

Container ship SIF, 352 × 240, A VO0: Water 4 (7.5 f.p.s.) −16 : : : 15 
30 Hz; 161 frames	 VO1: Ship 

VO2: Small boat 
VO3: Land (fg) 
VO4: Sky+Land (bg) 
VO5: Flag 

News	 QCIF, 176 × 144, B VO0: Background 3 (10 f.p.s.) −16 : : : 15 
30 Hz; 300 frames	 VO1: Dancers 

VO2: News readers 
VO3: Text 

Stefan	 CIF, 352 × 288, C VO0: Stefan 1 (30 f.p.s.) −16 : : : 15 
30 Hz; 300 frames 

Table 8.6: Prediction quality within MPEG-4 in terms of MAE=pel. Reproduced from Ref. 175 

Sequence Object FS SMS DS NSS 

Bream VO1: Fish 6.277 6.533 8.416 9.709 

Coast Guard VO0: Water 3.797 3.847 3.993 4.014 
VO1: Small boat 5.197 5.374 5.692 5.543 
VO2: Big boat 4.696 4.898 5.096 5.071 
VO3: River bank 4.591 4.636 4.885 6.523 

Container ship VO0: Water 2.287 2.288 2.357 2.358 
VO1: Ship 2.069 2.069 2.082 2.113 
VO2: Small boat 2.154 2.159 2.166 2.181 
VO3: Land (fg) 0.831 0.831 0.831 0.831 
VO4: Sky+Land (bg) 0.792 0.801 0.839 0.843 
VO5: Flag 15.828 16.066 16.105 16.131 

News VO0: Background 0.060 0.061 0.061 0.061 
VO1: Dancers 5.568 5.773 5.860 5.852 
VO2: News readers 1.153 1.154 1.159 1.158 
VO3: Text 0.092 0.092 0.092 0.092 

Stefan VO0: Stefan 8.200 8.662 9.346 9.430 

Average 3.975 4.078 4.311 4.494 
Relative to FS 100.0% 102.6% 108.5% 113.1% 
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Table 8.7: Computational complexity within MPEG-4 in terms of searched locations=MB. Repro-
duced from Ref. 175 

Sequence Object FS SMS DS NSS 

Bream VO1: Fish 1,017.2 16.7 21.4 33.0 

Coast Guard VO0: Water 1,021.8 16.4 18.0 33.0 
VO1: Small boat 1,004.7 16.8 17.5 32.9 
VO2: Big boat 1,010.0 17.7 19.1 33.0 
VO3: River bank 1,020.5 13.1 19.2 32.9 

Container ship VO0: Water 1,023.4 12.7 13.1 33.0 
VO1: Ship 1,023.7 11.4 13.5 33.0 
VO2: Small boat 1,014.2 14.7 15.9 32.9 
VO3: Land (fg) 1,024.0 9.4 13.0 33.0 
VO4: Sky+Land (bg) 1,024.0 13.9 13.1 33.0 
VO5: Flag 1,012.3 19.1 15.6 33.0 

News VO0: Background 1,024.0 9.3 13.0 33.0 
VO1: Dancers 1,024.0 15.4 16.3 33.0 
VO2: News readers 1,022.9 9.8 13.1 33.0 
VO3: Text 1,024.0 9.0 13.0 33.1 

Stefan VO0: Stefan 1,002.4 21.8 22.2 32.9 

Minimum 1,002.4 9.0 13.0 32.9 
Maximum 1,024.0 21.8 22.2 33.1 
Average 1,018.3 14.2 16.1 33.0 

8.6	 Simplex Minimization for Multiple-Reference 
Motion Estimation 

As already discussed, MR-MCP achieves signi:cant prediction gains, but at 
the expense of a signi:cant increase in computational complexity. This is 
illustrated in Figure 8.10 for the FOREMAN sequence at 8:33frames=s. This :gure 
was generated using the same simulation conditions described in Section 6.3.2. 
Figure 8.10(a) shows the prediction quality (in terms of PSNRY in decibels) 
as a function of multiframe memory size (in frames), whereas Figure 8.10(b) 
shows the computational complexity (in terms of searched locations=frame). 
It is clear that increasing the memory size M increases the prediction qual-
ity. This is, however, at the expense of a linear increase in computational 
complexity. The aim of this section is to design fast long-term memory block-
matching algorithms that can reduce computational complexity but at the same 
time maintain the prediction gain of multiple-reference motion estimation. 
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Figure 8.10: Performance of LTM-MCP as a function of memory size for QSIF FOREMAN at 
8:33 frames=s 

8.6.1 Multiple-Reference SMS Algorithms 
This section extends the SMS algorithm to the multiple-reference case. As 
detailed in Section 8.4, the design of the SMS algorithm was based on some 
important properties of the block-motion :elds of typical video sequences. In 
particular, the design was based on Properties 4:6:7:1 and 4:6:7:2 of the single-
reference block-motion :eld. The two properties are the center-biased distri-
bution of the :eld and the high correlation between adjacent motion vectors, 
respectively. The results of the investigation in Section 6.3.1 indicate that the 
two properties still hold true in the multiple-reference case (Properties 6:3:1:1 
and 6:3:1:3). Thus, the eDcient performance of the SMS algorithm can be 
extended to the multiple-reference case without the need for a major redesign. 
Three di+erent extensions (or algorithms) are described in what follows. 

MR-SMS This is a direct extension of SMS. For each block in the current 
frame, the single-reference SMS algorithm is used to individually search 
each frame in the multiframe memory and produce a best-match block 
from that frame. The overall best-match is then chosen from this set of 
M blocks. 

MR-FS=SMS This is the same as MR-SMS, but the most recent reference 
frame in memory (i.e., the frame for which dt = 0) is searched using full 
search instead of SMS. Giving more importance to searching this frame is 
motivated by Property 6:3:1:2, which states that the most recent reference 
frame has the highest probability of selection. 

MR-3DSM The single-reference SMS algorithm is based on a two-dimen-
sional version of the simplex minimization (SM) optimization method 
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(Section 8.3). Algorithm MR-3DSM, however, is based on a three-dimen-
sional version (N = 3 in Figure 8.2). A 3-D version of SM must be 
initialized with four locations de:ning an initial simplex in the search 
space. For the MR-3DSM algorithm, this is achieved as follows. For 
each block in the current frame, the initialization procedure described in 
Section 8.4.1 is applied individually to each frame in the multiframe mem-
ory. This will generate three initial vertices from each frame. The best 
four vertices, in terms of BDM value, are selected from this set of 3M 
vertices. A procedure similar to that described in Section 8.4.1 is used to 
ensure that the four vertices form a nondegenerate simplex. This simplex 
is used to initialize the 3-D version of SM, where the third dimension 
here is the temporal displacement. The same criterion described in Sec-
tion 8.4.3 is used to terminate the algorithm, with the added condition 
that the four vertices of the !nal simplex must have the same temporal 
displacement. 

8.6.2 Simulation Results 
The multiple-reference SMS algorithms were tested using the luma compo-
nents of the three QSIF sequences AKIYO, FOREMAN, and TABLE TENNIS with 
full-pel accuracy, blocks of 16 × 16 pels, a maximum allowed displacement of 
± 15 pels, SAD as the distortion measure, restricted motion vectors, and orig-
inal reference frames. In addition to the multiple-reference SMS algorithms, 
the single-reference full-search (SR-FS) and the multiple-reference full-search 
(MR-FS) algorithms were also simulated. For the multiple-reference algo-
rithms, sliding-window control was used to maintain a long-term memory of 
size M = 50 frames. 
Tables 8.8 and 8.9 compare the performance of the simulated algorithms. 

All results are averages over sequences with a frame skip of 1. Table 8.8 com-
pares the prediction quality in terms of average luma PSNR in decibels. The 
di+erence7 in PSNR between each algorithm and the MR-FS algorithm is also 
shown. Table 8.9, on the other hand, compares the computational complexity 
in terms of average searched locations per frame. It also shows the speed-up 
ratio8 of each algorithm with reference to the MR-FS algorithm. 
It is immediately evident that the multiple-reference SMS algorithms pro-

vide signi:cant reductions in computational complexity compared to the MR-
FS algorithm. The SMS algorithms represent di+erent degrees of compromise 
between prediction quality and computational complexity. At one extreme is 

77PSNR = PSNR of fast algorithm − PSNR of MR-FS algorithm.

8Speed-up = 

Searched locations for MR-FS algorithm

. 

Searched locations for fast algorithm 
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Table 8.8: Comparison between di+erent block-matching algorithms in terms of prediction quality 
(average PSNRY in dB) with a multiframe memory of M = 50 frames and a frame skip of 1 

AKIYO FOREMAN TABLE TENNIS 

PSNR 7PSNR PSNR 7PSNR PSNR 7PSNR 

SR-FS 45.93 −0:62 32.20 −1:77 32.17 −0:70 
MR-FS 46.55 0.00 33.97 0.00 32.87 0.00 
MR-FS=SMS 46.55 0.00 33.92 −0:05 32.80 −0:07 
MR-SMS 46.55 0.00 33.87 −0:10 32.67 −0:20 
MR-3DSM 46.55 0.00 33.51 −0:46 32.46 −0:41 

Table 8.9: Comparison between di+erent block-matching algorithms in terms of computational 
complexity (average searched locations=frame) with a multiframe memory of size M = 50 frames 
and a frame skip of 1 

AKIYO FOREMAN TABLE TENNIS 

Locations Speed-up Locations Speed-up Locations Speed-up 

SR-FS 65,621 45.90 77,439 45.90 65,621 45.90 
MR-FS 3,012,200 1.00 3,554,700 1.00 3,012,200 1.00 
MR-FS=SMS 103,820 29.01 183,240 19.40 134,270 22.43 
MR-SMS 38,880 77.47 106,830 33.27 69,443 43.38 
MR-3DSM 35,867 83.98 66,357 53.57 45,518 66.18 

the MR-3DSM algorithm. Compared to MR-FS, the MR-3DSM algorithm pro-
vides signi:cant reductions in computational complexity (a speed-up ratio of 
about 54 –84) at the expense of a moderate reduction in prediction quality 
(about 0.41– 0:46 dB loss9). At the other extreme is the MR-FS=SMS algo-
rithm. It uses full search on the most recent reference frame in memory to 
provide a prediction quality that is almost identical to that of MR-FS (about 
0.05– 0:07 dB loss) and still achieves moderate reductions in computational 
complexity (a speed-up ratio of about 22–29). Between the two extremes is 
the MR-SMS algorithm. Compared to MR-FS, it achieves reasonable reduc-
tions in computational complexity (a speed-up ratio of about 33–77) with only 
a slight loss in prediction quality (about 0.1– 0:2 dB loss). These observations 
are further emphasized using Figure 8.11, which compares the performance of 
the di+erent algorithms when applied to FOREMAN at di+erent frame skips. 
A very interesting point to note (from Tables 8.8 and 8.9 and also 

from Figure 8.11) is that the computational complexity of the multiple-
reference SMS algorithms is comparable to (and in some cases less than) that 

9This excludes the result for AKIYO where 7PSNR = 0. 
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(a) Original frame (b) Compensated using SR-FS (28.24 dB and 
77,439 locations) 

(c) Compensated using MR-FS with M =50 (d) Compensated using MR-3DSM with M =50 
(31.31 dB and 3,871,950 locations) (31.04 dB and 72,532 locations) 

Figure 8.12: Subjective quality of the motion-compensated 158th frame of QSIF FOREMAN at 
25 frames=s 

of single-reference full-search SR-FS, and yet they still maintain the improved 
prediction gain of multiple-reference motion estimation. This is also illustrated 
in Figure 8.12, which shows the subjective quality of the motion-compensated 
158th frame of FOREMAN. The uncovered background at the bottom-right corner 
of the frame is poorly compensated using the single-reference algorithm SR-
FS (Figure 8.12(b)). This uncovered background is compensated with higher 
quality using the multiple-reference algorithms (Figures 8.12(c) and 8.12(d)). 
While the MR-FS algorithm achieves this improved prediction quality at the 
expense of about 50 times increase in computational complexity, the MR-
3DSM algorithm provides a similar improvement at no increase in computa-
tional complexity. 
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8.7 Discussion 

There are many techniques for reduced-complexity BMME. The most widely 
used approach employs a reduced set of motion vector candidates. Algorithms 
in this category are usually based on a unimodal error surface assumption. In  
most cases, however, this assumption does not hold true, and such algorithms 
can easily get trapped in local minima, giving a suboptimal prediction quality. 
The main aim of this chapter was to develop a reduced-complexity BMME 
that adopts the same approach of reducing the set of motion vector candidates 
but, at the same time, avoids the local minimum problem. 
Thus, the chapter formulated block-matching motion estimation as a two-

dimensional constrained minimization problem. It was then proposed to solve 
this problem, with reduced complexity, using an optimization method called the 
simplex minimization (SM) optimization method. The resulting solution was 
called the simplex minimization search (SMS). The initialization procedure, 
termination criterion, and constraints on the independent variables of the search 
were designed to take into account the basic properties of the BMME problem. 
Simulation results within an isolated test environment showed that the SMS 

algorithm outperforms other reduced-complexity BMME algorithms, providing 
better prediction quality, smoother motion :eld, and higher speed-up ratio. In 
particular, the SMS algorithm is very resilient to the local minimum problem. 
This superior performance was also con:rmed within an H.263-like codec and 
an object-based MPEG-4 codec. 
It was also noted that the superior performance of the LTM-MCP (discussed 

in Chapter 6) is achieved at the expense of a signi:cant increase in computa-
tional complexity. To reduce complexity, the chapter extended the SMS algo-
rithm to the multiple-reference case. Three di+erent extensions (or algorithms) 
were presented, each representing a di+erent degree of compromise between 
prediction quality and computational complexity. Simulation results showed 
that the multiple-reference SMS algorithms provide signi:cant reductions in 
computational complexity compared to the multiple-reference full-search. With 
a multiframe memory of size M = 50, the computational complexity of the 
SMS algorithms is comparable to (and in some cases less than) that of single-
reference full-search, and yet they still maintain the improved prediction gain 
of multiple-reference motion estimation. 



Part IV

Error Resilience


When transmitted over a mobile channel, compressed video can su�er severe 
degradation. Thus, error resilience is one of the main requirements for mobile 
video communication. 

This part contains two chapters. Chapter 9 reviews error-resilience video 
coding techniques. The chapter considers the types of errors that can a�ect a 
video bitstream and examines their impact on decoded video. It then describes 
a number of error detection and error control techniques. Particular emphasis 
is given to standard error-resilience techniques included in the recent H.263+, 
H.263++, and MPEG-4 standards. 

Chapter 10 gives examples of the development of error-resilience tech-
niques. The chapter presents two temporal error concealment techniques. The 
-rst technique, MFI, is based on motion -eld interpolation, whereas the second 
technique, BM-MFI, uses multihypothesis motion compensation (MHMC) to 
combine MFI with a boundary matching (BM) technique. The techniques are 
then tested within both an isolated test environment and an H.263 codec. The 
chapter also investigates the performance of di�erent temporal error conceal-
ment techniques when incorporated within a multiple-reference video codec. 
In particular, the chapter -nds a combination of techniques, MFI-BM, that 
best recovers the spatial-temporal components of a damaged multiple-reference 
motion vector. In addition, the chapter develops a multihypothesis temporal 
concealment technique, called MFI-MH, to be used with multiple-reference 
systems. 





Chapter 9 

Error-Resilience Video 
Coding Techniques 

9.1 Overview 
As already discussed, one of the main requirements for mobile video com-
munication is error resilience. When transmitted over a mobile channel, video 
can be a�ected by a number of loss mechanisms, like multipath fading, shad-
owing, and co-channel interference. The e�ects of such errors are magni�ed 
due to the fact that the video bitstream is highly compressed to meet the 
stringent bandwidth limitations. The higher the compression, the more sensi-
tive the bitstream is to errors, since in this case each bit represents a larger 
amount of decoded video. The e�ects of errors are also magni�ed by the use 
of predictive and VLC coding, which can lead to temporal and spatial error 
propagation. It is therefore not di$cult to realize that when transmitted over a 
mobile channel, compressed video can su�er severe degradation, making the 
use of error-resilience techniques vital. This chapter reviews error-resilience 
video coding techniques. 
The rest of the chapter is organized as follows. Section 9.2 describes the 

main functional blocks of a typical video communication system. Section 9.3 
highlights the main types of errors that can a�ect a video bitstream. Section 
9.4 examines the impact of such errors on the decoded video. Section 9.5 
describes a number of error detection techniques. Sections 9.6–9.8 reviews 
three main categories of error-resilience video coding techniques. The chapter 
concludes with a discussion in Section 9.9. 

9.2 A Typical Video Communication System 
Figure 9.1 shows a typical video communication system. The encoder consists 
of a source encoder and a channel encoder. 
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Figure 9.1: Typical video communication system 

The function of the source encoder is to compress the input video. It 
consists of a waveform encoder and an entropy encoder. The function of 
the source encoder is described in detail in Chapter 2. With reference to 
Figure 2.3, the waveform encoder corresponds to the mapper and quantizer 
blocks, whereas the entropy encoder corresponds to the symbol encoder block. 
Thus, the waveform encoder works by removing, as much as possible, statis-
tical and psychovisual redundancies present in the input video, whereas the 
entropy encoder tries to remove coding redundancy. 
The channel encoder conditions the compressed bitstream at the output of 

the source encoder to be suitable for transmission over the channel. This can 
include, for example, packetization, error protection, modulation, and transport-
level control. 
At the decoder, the reverse operations are performed to obtain the out-

put video. Note that although this �gure shows a one-way communication 
between the encoder and the decoder, some video communication systems 
may also have data 5owing in the other direction to convey some feedback 
information. 

9.3 Types of Errors 

Errors a�ecting a digital video bitstream can be roughly classi�ed into two 
main categories: random bit errors and erasure errors. 
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9.3.1 Random Bit Errors 
Random bit errors can occur in the form of bit inversion, bit insertion, and=or 
bit deletion. They are usually quanti�ed using a parameter called the bit error 
rate (BER), which is the average probability that a bit is in error. Random 
bit errors are usually caused by physical e�ects like thermal noise. 

9.3.2 Erasure (or Burst) Errors 
Erasure errors occur in the form of a loss of (or damage to) contiguous seg-
ments of bits. They are usually quanti�ed using parameters like the number 
of bursts, the length of a burst, and the BER within a burst. Burst errors in a 
mobile channel can be caused by a number of mechanisms, such as short-term 
(multipath) fading, long-term (shadowing) fading, and co-channel interference. 
In a packet-based network, burst errors occur in the form of packet losses due 
to di�erent reasons, such as congestion, misrouting, and delivery with unac-
ceptably long delays. 
It should be pointed out, however, that this classi�cation does not take 

into account the impact of errors, which is highly dependent on the coding 
method. For example, it will be shown later that due to the use of predictive 
and VLC coding, random bit errors in a video bitstream can cause severe 
error propagation. Thus, random bit errors in a video bitstream are e�ectively 
equivalent to burst errors. In what follows, no distinction will be made between 
the two types of errors, and the generic term transmission errors will be used 
to refer to both types. 

9.4 E(ects of Errors 

Errors occurring in a video bitstream can cause isolated e"ects, spatial error 
propagation, and=or temporal error propagation. 

9.4.1 Isolated E(ects 
In this case the e�ect of an error is limited and does not propagate either 
spatially or temporally. An example is an error in a FLC codeword. An-
other example is an error that converts a VLC codeword into another valid 
codeword of the same length. Note, however, that for both cases to have an 
isolated e�ect, it is assumed that the damaged codeword is not a prediction for 
another codeword and that no temporal error propagation occurs due to motion-
compensated prediction. Clearly, such isolated e�ects are rare occurrences in 
video bitstreams, and when they do occur their damage is usually acceptable 
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and can be handled relatively easily. However, such errors can sometimes be 
catastrophic, as, for example, in the case of errors in vital header information 
(e.g., frame size, and quantizer step size). 

9.4.2 Spatial Error Propagation 
This is mainly due to two mechanisms: 

1.	Errors in VLC Coded Data: If an error converts a VLC codeword into 
an invalid codeword or into a valid codeword of a di�erent length, then 
this causes loss of bitstream synchronization. This can occur in two 
forms [177]: 

(a)	Loss of Codeword Synchronization: In this case an error causes the 
decoder to decode a codeword of the wrong length. As a result, the 
next codeword will be decoded in the wrong position and all fol-
lowing codewords may be a�ected. This e�ect is usually temporary, 
and the decoder eventually regains codeword synchronization [178]. 

(b)	Loss of Coe$cient Synchronization: The second form of loss of 
synchronization is the loss of coe$cient synchronization. Even 
when codeword synchronization is regained, the decoder will be 
decoding coe$cients that have no meaning without the previous, 
lost coe$cients. For example, in run-length encoding, if an incor-
rect run-length has been decoded, then all the following data will 
be misplaced even if it is decoded correctly. Since this form of loss 
of synchronization usually causes data to be misplaced, it is also 
referred to as loss of positional synchronization. 

2.	Errors in Predictively Coded Data: The second mechanism that causes 
spatial error propagation is the loss of predictively coded data. For 
example, a motion vector is usually predictively coded with reference 
to one or more previous motion vectors. If those previous vectors are 
in error, then the prediction will be wrong and the errors will propagate 
to the current motion vector, and so on. 

9.4.3 Temporal Error Propagation 
This is due mainly to the use of motion compensated prediction (or any other 
form of predictive coding in the temporal dimension). As already described, 
in motion-compensated prediction, parts of the current frame are copied (or 
motion compensated) from a reference frame. If the copied reference parts 
already contain errors, then those errors will also occur in (i.e., propagate to) 
the current frame. 
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(a) Spatial error propagation in the third frame (b) Temporal error propagation in the sixth 
frame 

Figure 9.2: Spatial and temporal error propagation due to a single-bit error in QSIF TABLE TENNIS 

H.263 encoded at 10 frames=s (46 kbits=s) 

Figure 9.2 shows an example of spatial and temporal error propagation in 
the QSIF TABLE TENNIS sequence H.263 encoded1 at a frame rate of 10 frames=s 
(about 46 kbits=s). Figure 9.2(a) shows the third frame of the sequence, where 
a single bit error hits the macroblock in the position shown. This error converts 
the VLC codeword representing the vertical vector di�erence to another valid 
codeword of the same length. This causes an error in the compensation of this 
particular macroblock. In addition, because of the predictive coding of motion 
vectors, this error propagates spatially to all macroblocks to the right and 
up to the border of the frame. Figure 9.2(b) shows how motion-compensated 
prediction caused the errors in the third frame to propagate temporally to the 
sixth frame. This example shows how serious even a single bit error can be 
and clearly highlights the need for error detection and control techniques. 

9.5 Error Detection 

Before being able to combat the e�ects of errors, it is �rst necessary to detect 
whether and where errors have occurred. Error detection can be performed by 
the channel decoder and=or the source decoder. 
One method for error detection is the use of header information. This can 

be used by both the channel decoder and the source decoder. For example, 
in a packet-based network like ATM, each packet contains a header with a 

1Telenor H.263 implementation was used. The luma component was zero padded to 128 lines 
to be a multiple of 16. The chroma components were also zero padded correspondingly. The 
optional mode to insert synchronization codewords at the start of each GOB was switched on. 
All other optional modes were switched o�. The initial quantization parameter was set to 10. 
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sequence number sub�eld. This sequence number can be used to detect packet 
losses at the channel decoder. Similarly, the group-number (GN) codeword in 
an H.263 GOB header can be used to detect errors at the source decoder. 
Another method that can be used by both the channel decoder and the 

source decoder is forward error correction (FEC). For example, Annex H of 
the H.263 standard provides an optional FEC mode. In this mode, 18 parity 
bits are used to provide error detection and correction for each 493 video bits. 
A commonly used method at the source decoder is the detection of syntax 

and semantic violations. Examples of such violations are: 

•	An illegal codeword is detected. 

•	An invalid number of units is decoded. For example, the number of de-
coded DCT coe$cients within a block is invalid, the number of decoded 
blocks within a MB is invalid, the number of decoded MBs within a 
GOB is invalid, or the number of decoded GOBs within a frame is 
invalid. 

•	A decoded motion vector points outside the permissible range. 

•	A decoded quantization parameter is out of range. 

Another method that can be used at the source decoder is the detection of 
violations to the general characteristics of natural video signals, for example, 
the detection of strong discontinuities at the borders of blocks, blocks with 
highly saturated colours (e.g., pink and green), or blocks where most pels 
need clipping. 
None of these methods guarantee �nding all errors within a video bitstream. 

In fact, the last method may sometimes detect an error-free block as an erro-
neous one. In practical systems, di�erent combinations of these methods are 
employed. 
Having detected the occurrence of errors and identi�ed their locations, 

a number of methods can be used to combat the e�ects of errors on the 
video bitstream. The following three sections describe three categories of 
error-resilience techniques: forward techniques, postprocessing techniques, and 
interactive techniques. The three sections follow closely the classi�cation used 
in the comprehensive reviews by Wang et al. [179, 180]. 

9.6 Forward Techniques 

In forward techniques, the encoder plays the primary role. Such techniques 
work by adding a controlled amount of redundancy to the video bitstream. 
This means that they sacri�ce some coding e$ciency to gain in terms of error 
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resilience. Some techniques are designed to minimize the e�ects of transmis-
sion errors, some are designed to make error handling at the decoder more 
e�ective, and others are designed to guarantee a basic level of quality while 
providing graceful degradation in the presence of transmission errors. Exam-
ples of forward techniques are brie5y described in the following subsections. 

9.6.1 Forward Error Correction (FEC) 
Forward error correction works by adding redundant bits to a bitstream to help 
the decoder detect and correct some transmission errors without the need for 
retransmission. The name forward stems from the fact that the 5ow of data 
is always in the forward direction (i.e., from encoder to decoder). 
For example, in block codes the transmitted bitstream is divided into blocks 

of k bits. Each block is then appended with r parity bits to form an n-bit 
codeword. This is called an (n; k) code. 
For example, Annex H of the H.263 standard provides an optional FEC 

mode. This mode uses a (511; 493) BCH (Bose-Chaudhuri-Hocquenghem) 
code. Blocks of k = 493 bits (consisting of 492 video bits and 1 �ll indicator 
bit) are appended with r =18 parity bits to form a codeword of n = 511 bits. 
Use of this mode allows the detection of double-bit errors and the correction 
of single-bit errors within each block. 

9.6.2 Robust Waveform Coding 
As already discussed, the waveform encoder in a typical video communication 
system works by removing statistical and psychovisual redundancies present 
in the input video. Robust waveform coding techniques, however, intentionally 
keep (or even add) some redundancy to achieve error resilience. Examples of 
such techniques are given next. 

9.6.2.1 Adding Redundant Information 

This technique adds auxiliary information or repeats some previously coded 
information to help error handling at the decoder. For example, as is shown in 
Section 9.7, a powerful technique for error concealment is temporal conceal-
ment. The performance of this technique is highly dependent on the availability 
of motion information for the damaged blocks. Thus, this technique is usually 
used for concealing INTER macroblocks. In MPEG-2, however, the encoder 
can optionally send auxiliary motion vectors for INTRA macroblocks. In the 
presence of errors, such vectors can be used to temporally conceal damaged 
macroblocks. 
Another example is the header extension code (HEC) included by MPEG-

4 in packet headers. If this bit is set to “1,” then some data, like timing 
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information and VOP coding type, is repeated from the VOP header. This 
helps error detection and resynchronization. A similar example is the picture 
header repetition allowed by the optional additional supplemental enhancement 
information mode (annex W) of H.263++. 

9.6.2.2 Using INTRA Refresh 

An e�ective way to stop temporal error propagation is to periodically encode 
pictures in INTRA mode. Given the large number of bits consumed by IN-
TRA pictures, this leads to a signi�cant increase in the total bit rate. A more 
suitable approach for applications like mobile video communication is to use 
INTRA refresh on the macroblock level. By controlling the number and spatial 
location of INTRA MBs, INTRA refresh can be a very e$cient and scalable 
error-resilience tool. 
Obviously, the required number of INTRA MBs is highly dependent on 

the channel quality and capacity. Such information is usually available to 
the encoder. For example, in mobile networks, antenna parameters can give 
an indication of the channel quality. In Ref. 181, Haskell and Messerschmitt 
discuss how to select a suitable number of INTRA MBs. 
There are many methods for selecting the spatial location of INTRA MBs 

within frames. One method is to choose the locations randomly [181, 182]. 
Another method is to follow a raster scanning order. In Ref. 183 the INTRA 
MBs are placed adaptively in regions with high activity. 
Recently, a very powerful technique for deciding both the number and 

spatial locations of INTRA MBs has been proposed by CôtKe et al. [182, 184]. 
In Ref. 182 they propose a rate-distortion optimized mode selection method for 
packet lossy networks. This method takes into account the channel conditions 
and the error concealment method used at the decoder. In Ref. 184 they apply 
the same method to bit-oriented networks. 
Obviously, if there is a feedback channel from the decoder, then information 

regarding the number and locations of damaged MBs can help the encoder to 
better decide the number and locations of INTRA MBs. 

9.6.2.3 Using Restricted Prediction 

In this technique, prediction is limited within nonoverlapping spatial 
and=or temporal regions. This clearly limits temporal and=or spatial error 
propagation. 
For example, in the independent segment decoding mode (annex R) of 

H.263+, video pictures are divided into segments. Each video picture segment 
is then encoded with complete independence from all other segments in the 
same picture, and also with complete independence from all data outside the 
corresponding segment in the reference picture(s). For example, motion vectors 



213 Section 9.6. Forward Techniques 

of blocks outside the current segment cannot be used when calculating the 
current motion vector predictor. Similarly, motion vectors of blocks outside the 
current segment cannot be used as remote motion vectors for overlapped block-
motion compensation when the advanced prediction mode is in use. In addition, 
no motion vectors are allowed to reference areas outside the corresponding 
segment in the reference picture. 

9.6.3 Robust Entropy Coding 
In this case, redundancy is added at the entropy encoder. Examples of robust 
entropy coding techniques are discussed next. 

9.6.3.1 Resynchronization Codewords 

As already discussed, one of the disadvantages of VLC coding is that errors 
in the bitstream can cause loss of synchronization between the encoder and 
the decoder, and this leads to spatial error propagation. One way to reduce 
this e�ect is to insert unique markers called resynchronization codewords in 
the bitstream. When an error is detected, the decoder skips the remaining bits 
until it �nds a resynchronization codeword. This reestablishes synchronization 
with the encoder, and the decoder then proceeds to decode from that point on. 
This is illustrated in Figure 9.3(a). 
Resynchronization codewords can be inserted at regular intervals in the spa-

tial domain, as illustrated in Figure 9.4(a). For example, version 1 of H.263 
adopts a GOB-based resynchronization approach. This means that a resynchro-
nization codeword is inserted every time a �xed number of macroblocks has 
been encoded. A disadvantage of this approach is that, since the number of 
bits can vary between macroblocks, the resynchronization codewords will most 
likely be unevenly spaced throughout the bitstream. Therefore, certain parts of 
the sequence, such as high-motion areas with high bit content, will be more 
susceptible to errors and will also be more di$cult to conceal. 
A more robust approach is to insert resynchronization codewords at regu-

lar intervals in the bit domain, as illustrated in Figure 9.4(b). For example, 
MPEG-4 adopts a packet-based resynchronization approach. In this approach 
each packet contains approximately the same number of bits. This means that 
the resynchronization codewords are almost periodic in the bitstream. A sim-
ilar approach has also been adopted in the slice structured mode (annex K) 
of H.263+. 
Another problem with VLC coding is that errors can emulate the occurrence 

of resynchronization codewords. To reduce this e�ect, MPEG-4 provides a 
second resynchronization approach called +xed-interval synchronization. In  
this approach, resynchronization codewords appear only at legal �xed-interval 
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(1) Forward decoding (2) Error detected, decoder 
searches for and skips to next 
resynchronization codeword 

(3) Resynchronization is 
reestablished, decoder 
resumes normal operation 

discarded bits 

resynchronization 
codewordbits decoded without 

detecting errors 

(a) Resynchronization with normal VLC coding 

resynchronization
bits recovered 

bits decoded without discarded using reverse codeword 

detecting errors bits decoding 

(3) Backward
decoding 

(1) Forward decoding (2) Error detected, decoder (4) Decoder resumes
searches for and skips to next normal operation 
resynchronization codeword 

(b) Resynchronization with reversible VLC (RVLC) coding 

Figure 9.3: Resynchronization using synchronization codewords 

locations in the bitstream. Thus, only codewords at those legal locations will 
be used by the decoder to reestablish synchronization. 
As described in Section 9.4, loss of synchronization appears in two forms: 

loss of codeword synchronization and loss of positional (or coe$cient) syn-
chronization. Inserting resynchronization codewords reduces the e�ect of loss 
of codeword synchronization. In order to reduce the e�ect of loss of posi-
tional synchronization, resynchronization codewords are usually followed by 
some positional information, like the address and the temporal reference of 
the macroblock immediately following the resynchronization codeword. This 
allows the decoder to resume its normal operation. 
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moving 
object in the 

frame 

resynchronization 
codeword 

spatial domain bit domain 

(a) Resynchronization codewords at regular intervals in the spatial-domain 

spatial domain bit domain 

(b) Resynchronization codewords at regular intervals in the bit-domain 

Figure 9.4: Resynchronisation codewords at regular intervals 

9.6.3.2 The Error-Resilience Entropy Code (EREC) 
An interesting alternative to inserting resynchronisation codewords is the error 
resilience entropy code (EREC) [177, 185]. The EREC takes variable-length 
blocks of data and rearranges them into �xed-length slots. For example, assume 
that there are N variable-length blocks with lengths bi; i=1  : : : N . The encoder 
�rst chooses a total data size T¿ 

� 
bi, which is su$cient to encode all the 

data. This total data size is split into N slots of �xed lengths si; i=1  : : : N . 
An N -stage algorithm is then used to place the data from the variable-length 
blocks into the �xed-length slots. At each stage n, a block i with data left 
unplaced searches slot j = i+ 
n (mod N ) for space to place some or all of the 
remaining data. Here, 
n is an o�set sequence that is usually pseudo-random. 
Figure 9.5 shows an example of the EREC algorithm. In this case, there are 

N = 6 variable-length blocks, with lengths 11, 9, 4, 3, 9, and 6 bits. The total 
data size is chosen as T = 42 and is divided into N = 6 slots, with a length 
of si = 7 bits each. The o�set sequence is 
n = {0; 1; 2; 3; 4; 5; 6}. In stage 1 of 
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Slot 1 

Slot 2 

Slot 3 

Slot 4 

Slot 5 

Slot 6 

7 bits 7 bits 7 bits 7 bits 

offset 1 offset 2 offset 3 

Stage 1 Stage 2 Stage 3 Stage 6 

Empty bit Block 1 bit Block 2 bit Block 3 bit Block 4 bit Block 5 bit Block 6 bit 

Figure 9.5: Example of the EREC algorithm 

the algorithm, blocks 3, 4, and 6 are completely placed into the corresponding 
slots, with some leftover space in those slots. Blocks 1, 2, and 5, however, 
are only partially placed in the corresponding slots and have some bits left 
to be placed in empty spaces in other slots. According to the o�set sequence, 
block 1 searches slot 2 for empty space, block 2 searches slot 3, and block 
5 searches slot 6. Both blocks 2 and 5 �nd empty spaces. Thus, in stage 2, 
all the remaining bits from block 2 are placed in slot 3, whereas some of 
the remaining bits of block 5 are placed in slot 6. Since block 1 did not �nd 
empty spaces in slot 2, then, according to the o�set sequence, it searches slot 
3, and so on. By the end of stage 6, all data bits are placed in the slots. The 
decoder operates in a similar manner. Thus bits in a slot are decoded and 
placed in a block until an end-of-block codeword is encountered. 
In the presence of errors, the resilience provided by the EREC algorithm 

is due to two factors. First, each block starts at a known position in the 
bitstream (i.e., the start of the corresponding slot). Thus, in the case of loss of 
synchronization, the decoder simply jumps to the start of the next slot without 
the need for resynchronization codewords. Second, subjectively less important 
data (e.g., high-frequency DCT coe$cients) are usually placed in later stages 
of the algorithm. With the EREC algorithm, most error propagation e�ects 
(due, for example, to missing or falsely detecting end-of-block codewords) hit 
data placed at later stages of the algorithm rather than the more important data 
at the start of the slots. 

9.6.3.3 Reversible Variable-Length Coding (RVLC) 

Reversible VLC codewords are designed to be decoded both in the forward 
and backward directions. As already described, when an error is detected in 



217 Section 9.6. Forward Techniques 

the bitstream, the decoder discards all bits until the next resynchronization 
codeword, where synchronization is reestablished and the decoder resumes its 
decoding process. The discarded bits may well be correctly received but cannot 
be decoded correctly due to loss of synchronization. In the case of RVLCs, 
when the decoder identi�es the next resynchronization codeword, instead of 
discarding all preceding bits, the decoder starts decoding in the reverse di-
rection to recover and utilize some of those bits. This is illustrated in Figure 
9.3(b). 
Reversible variable-length coding has been adopted in most recent stan-

dardization e�orts. For example, the modi�ed unrestricted motion vector mode 
(modi�ed annex D) of H.263+ uses RVLC to encode motion vector di�er-
ences, the data partitioned slice mode (annex V) of H.263++ uses RVLC to 
encode header and motion information, and MPEG-4 uses RVLC to encode 
texture information. 

9.6.4 Layered Coding with Prioritization 
In layered coding, video is encoded into a base layer and one or more enhance-
ment layers. The base layer is separately decodable and provides a basic level 
of perceived quality. The enhancement layers can be decoded to incrementally 
improve this quality. 
Layered coding can be useful when applied over heterogenous networks 

with varying bandwidth capacity. However, to be used as an error-resilience 
tool, layered coding must be combined with prioritized transmission or what 
is commonly known as unequal error protection. In this case, the base layer 
is transmitted with higher priority or a higher degree of error protection. For 
example, in Ref. 186 Ghanbari introduced the concept of layered coding with 
prioritized transmission to increase the robustness of video against cell loss 
in ATM networks. In this technique, the encoder generates two bitstreams. 
The base-layer bitstream contains the most vital video information, whereas 
the enhancement-layer bitstream contains residual information to improve the 
quality of the base layer. The base layer is then transmitted using high-priority 
ATM cells, whereas the enhancement layer is transmitted using low-priority 
cells. When tra$c congestion occurs, low-priority cells are discarded �rst. 
Another example is the power control method proposed in Ref. 187. In this 
method, when video is transmitted over a wireless network, more power is 
used to transmit the base layer, whereas less power is used to transmit the 
enhancement layers. 
There are many ways to encode video into more than one layer. For exam-

ple, the base layer can include a low-frame-rate version of video, whereas the 
enhancement layers can contain frames used to increase the frame rate. This is 
usually referred to as temporal scalability. Another method is when the base 



218 Chapter 9. Error-Resilience Video Coding Techniques 

layer contains a coarsely quantized version of video, whereas the enhancement 
layers carry the error between the original version and this coarsely quantized 
version. This is known as SNR scalability. Another form is spatial scalability. 
This is very similar to SNR scalability. The only di�erence is that pictures in 
the base layer are subsampled to a smaller size. Yet another form of layered 
coding is known as data partitioning. In this case, the base layer contains vital 
video information like headers, motion vectors, and low-frequency DCT coef-
�cients. Other information, like high-frequency DCT coe$cients, is included 
in the enhancement layers. 
Note that all these forms of layered coding are supported in recent standard-

ization e�orts. For example, MPEG-4 supports temporal and spatial scalability 
in addition to data partitioning. H.263+ supports temporal, SNR, and spatial 
scalability in annex O, and H.263++ supports data partitioning in annex V. 

9.6.5 Multiple Description Coding 
This technique assumes that there are multiple channels between the encoder 
and the decoder. These multiple channels can be physically distinct paths or 
they can be a single path divided into multiple virtual channels using, for 
example, time or frequency division. The technique further assumes that the 
error events of these multiple channels are independent. This means that the 
probability that all channels simultaneously experience errors is very small. 
Similar to layered coding, multiple description coding encodes video into 

multiple streams known as descriptions. In this case, however, the descriptions 
are correlated and have equal importance. The requirement that all descriptions 
have equal importance means that the descriptions must share some fundamen-
tal information about the input video. As a consequence of this information 
sharing, the descriptions are correlated. 
At the encoder, each description is transmitted on a di�erent channel. As 

already mentioned, the error events of the channels are independent. As a 
result, at least one description will be received at the decoder without errors. 
This description carries some fundamental information about the transmitted 
video and can, therefore, be used to provide a basic level of quality. Since 
the descriptions are correlated, missing descriptions can be estimated from 
correctly received descriptions and the quality can be improved. 
There are a number of methods to achieve the required decomposition into 

descriptions. For example, in Ref. 188, the input signal is decomposed and 
encoded into two streams. The two streams are obtained by transmitting two 
quantization indices for each quantized level. The index assignment is de-
signed such that when both indices are received, the reconstruction quality 
is equivalent to that of a �ne quantizer. When, however, only one index is 
received, the reconstruction quality is equivalent to that of a coarse quantizer. 
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Figure 9.6: Coding and transmission order with and without interleaving 

There are also other multiple description techniques, as detailed in Refs. 179 
and 180. 

9.6.6 Interleaved Coding 
In normal coding, the blocks of a given frame are encoded in raster scan 
order, as illustrated in Figure 9.6(a). In this case, when an error occurs in 
one block, spatial error propagation results in the loss of a contiguous set of 
blocks. In the example shown, an error in block 12 results in the loss of all 
blocks to its right.2 As is discussed later, the concealment of a damaged block 
depends heavily on the availability of its four neighboring blocks. In this case, 
a damaged block will have only its top and bottom neighbors intact. 
Interleaved coding attempts to separate the information of neighboring 

blocks as far as possible. As a result, an error in a block will propagate 
to nonadjacent blocks. Figure 9.6(b) shows the even=odd interleaving scheme 
adopted in Ref. 189. The numbers here indicate the encoding and transmis-
sion order. Thus, the �rst block in the �rst row (block 1) is encoded and 
transmitted �rst, followed by the second block in the second row (block 2), 
and so on. Note that in this case, when an error occurs in block 12, the lost 
set of blocks is not contiguous. Thus, a damaged block will have all its four 
neighbors intact and this will help the error concealment process considerably. 

9.7 Postprocessing (or Concealment) Techniques 

The second category of error-resilience techniques are postprocessing (or 
concealment) techniques. In postprocessing techniques, the decoder plays the 

2This example assumes that resynchronization codewords are inserted at the beginning of each 
row of blocks. 
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primary role. Thus, the decoder attempts to conceal the e�ects of errors by 
providing a subjectively acceptable approximation to the original data. This is 
achieved by exploiting the limitations of the human visual system and the high 
temporal and=or spatial correlation of video sequences. Error concealment is 
an ill-posed problem since it does not have a unique solution. Thus, error con-
cealment techniques exploit a priori knowledge of the characteristics of video 
signals to restrict the otherwise large number of possible solutions. Depending 
on the information used for concealment, postprocessing techniques can be 
divided into three main categories: spatial techniques, temporal techniques, 
and hybrid techniques. 

9.7.1 Spatial Error Concealment 
Spatial techniques exploit the high spatial correlation of video signals and 
conceal damaged pels in a frame using information from correctly received 
and=or previously concealed neighboring pels within the same frame. Such 
techniques apply primarily to intracoded blocks but may also be used to con-
ceal intercoded blocks with missing motion information or to recover the DFD 
signal. 
In Ref. 190 a damaged pel within a block is interpolated from the four 

corner pels outside the block, as illustrated in Figure 9.7(a). Interpolation 
from the four nearest pels outside the block boundaries, as illustrated in 
Figure 9.7(b), is proposed in Ref. 191. Interpolation in the frequency do-
main has also been used. For example, in Ref. 192 the DC coe$cient of 
a damaged block is recovered as the average or the median of the DC 
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coe$cients of the four or eight neighboring blocks. Another approach is to 
form a partial DC value at each boundary by taking the average of a one-, 
two-, or four-pels-wide neighborhood. The recovered DC coe$cient is then 
the average or the median of the four partial DC values. 
In Ref. 193 the lost DCT coe$cients of an intracoded block are recovered 

by minimizing the intersample variation within the block and across the block 
boundaries. This is based on the smoothness property of image and video 
sequences. In Ref. 189 the same method is extended by adding a temporal 
smoothness measure. 
Another property that is used in error concealment is edge continuity. Thus, 

if the direction of an edge in a neighboring block indicates that the edge 
passes through the damaged block, then the concealment process must con-
serve the continuity of this edge. For example, in Ref. 194 an edge classi�er is 
applied to the neighboring blocks to determine which directions characterize 
the strongest edges passing through the damaged block. For each of these clas-
si�ed directions, directional spatial interpolation along the respective direction 
is used to create a block from the neighboring pels. The blocks are then 
mixed together in such a way that all the strong edge features are preserved 
and combined in a single block used for concealment. 
Statistical correlation is another a priori assumption utilized in error 

concealment. For example, in Ref. 195 the pel values of a frame are 
modeled as a Markov random �eld (MRF). Maximum a posteriori proba-
bility (MAP) estimation is then used to spatially interpolate the damaged 
blocks. 

9.7.2 Temporal Error Concealment 
Temporal techniques exploit the high temporal correlation of video signals and 
conceal damaged pels in a frame using information from correctly received 
and=or previously concealed pels within a reference frame. Such techniques 
apply primarily to intercoded blocks. They may work for some intracoded 
blocks but will completely fail in cases like scene changes and uncovered 
background. 
As in motion-compensated prediction, the process of temporal concealment 

involves two stages: concealment displacement estimation and displacement 
compensation, as shown in Figure 9.8(a). For this reason, temporal conceal-
ment is sometimes referred to as motion-compensated concealment. 
Conventional temporal techniques estimate one concealment displacement 

for the whole damaged block and then use translational displacement com-
pensation to conceal the block, as shown in Figure 9.8(b). Such techniques 
perform very well when the original motion vector of the damaged block is 
available. In this case the �rst stage of the temporal concealment process, 
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Figure 9.8: Temporal error concealment 

i.e., displacement estimation, is bypassed and the concealment displacement is 
simply set to the original motion vector. 
In practice, however, the motion vector of a damaged block is usually lost 

or erroneously received. This is due mainly to spatial error propagation. For 
example, an erroneous codeword will usually lead to loss of synchronization at 
the decoder and all blocks, including their motion information, up to the next 
synchronization point will be undecodable and completely lost.3 In such cases, 
the displacement estimation stage at the decoder is extremely important. In 
fact, the only di�erence between the various conventional temporal techniques 
reported in the literature is in their displacement estimation algorithm. This 
stage is also known as motion information recovery, because it attempts to 
recover or provide an approximation to the original motion information. 
The simplest and most commonly used technique is to replace the dam-

aged motion vector with (0; 0) [179, 192]. This is based on the center-biased 
property of video block-motion �elds, which is also equivalent to the temporal 
smoothness property of video signals. The technique is usually referred to as 

3As already discussed, RVLCs and data partitioning into motion and texture data are some of 
the mechanisms that can be used to reduce this e�ect. 
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temporal replacement (TR) because it e�ectively replaces the damaged block 
by its corresponding block in the reference frame. This method works well 
for stationary and quasi-stationary areas, e.g., background, but will fail for 
fast-moving areas. 
Another technique is to exploit the high-correlation property of video block-

motion �elds and replace the damaged motion vector with the average (AV) 
[179, 190, 189, 191, 192] or the median [179, 192] of neighboring vectors. 
This technique works well for areas with smooth motion but will fail for areas 
with unsmooth motion, e.g., at the boundaries of objects moving in di�erent 
directions. 
A boundary matching (BM) technique has also been used to select a suitable 

replacement from a set of candidate motion vectors [196, 197, 198]. Assume 
that a set of M neighboring motion vectors V={v1; v2; : : : ; vM } is to be used 
for the concealment of a damaged block D of size N ×N with its top-left 
corner at (xo; yo). Each candidate vector vi =(vix; vi

y) in  V is used to conceal 
the damaged block D. The quality of this concealment is assessed using the 
continuity across the concealed block boundaries. This continuity is measured 
using the side-match distortion (SMD) measure, de�ned as 

SMDi = SMD L + SMD R + SMDT + SMD B; (9.1)i i i i 

where SMD i
L is the sum of absolute, or squared, di�erences across the left 

boundary of block D when concealed using candidate vector vi. Thus 

N−1 
xSMDi

L = g[ft(xo − 1; yo + k) − ft−Ot(xo + vi ; yo + vy + k)]; (9.2)i 
k=0 

where ft and ft−Ot are the current and reference frames, respectively, g=(·)2 

for the SSD, and g= | · |  for the SAD. Similarly, SMD R; SMDi
T and SMD i

B 
i 

are the side-match distortions across the right, top, and bottom boundaries, 
respectively. Based on the smoothness property of video signals, the candidate 
motion vector that achieves the minimum SMD is chosen as the recovered 
motion vector. Thus 

v̂= arg min SMDi : (9.3) 
vi∈V 

The main advantage of this method is that displacement estimation is based on 
a distortion measure. The method will fail for areas with unsmooth motion and 
also for areas with low spatial correlation, e.g., at the boundaries of objects. 
Similar to spatial concealment, Bayesian statistical approaches have also 

been used for motion vector recovery, e.g., Ref. 195. 
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9.7.3 Hybrid Error Concealment 
Hybrid techniques exploit both spatial and temporal correlations of video sig-
nals. A straightforward technique is to use spatial concealment for intracoded 
blocks and temporal concealment for intercoded blocks. More sophisticated 
combinations are also possible. For example, in Ref. 199 temporal conceal-
ment is �rst used to get an initial estimate of the damaged block. This initial 
estimate is then re�ned using spatial concealment. 

9.7.4 Coding-Mode Recovery 
As already discussed, each of the preceding concealment techniques applies 
to a particular type of macroblocks. More speci�cally, spatial concealment is 
more applicable to intracoded blocks, whereas temporal concealment is more 
suitable for intercoded blocks. Provided that the coding mode of a damaged 
block is known, the appropriate type of concealment is applied. In many cases, 
however, the coding-mode information of a damaged block is also damaged. 
Thus, coding-mode information needs to be recovered �rst before being able 
to choose the appropriate concealment method. 
In Ref. 189, when the coding mode is damaged it is simply set to INTRA 

and the corresponding block is concealed using spatial techniques. 
Usually, there is a high correlation between the coding modes of adjacent 

blocks. Thus, the coding mode of a damaged block can be estimated from 
the coding modes of neighboring blocks. In Ref. 200, the coding mode of a 
damaged MB in an MPEG-2 coded video is estimated from the coding modes 
of its top and bottom neighboring MBs. For example, the coding mode of 
a damaged MB in a P-frame is set to INTRA only if its top and bottom 
neighboring MBs are both INTRA coded; otherwise, a FORWARD INTER 
mode is assumed. 

9.8 Interactive Techniques 

The third type of error-resilience methods are interactive techniques. In this 
case, the encoder and decoder cooperate to minimize the e�ects of transmission 
errors. In such techniques, the decoder uses a feedback channel to inform the 
encoder about which parts of the transmitted video have been received in error. 
Based on this feedback information, the encoder adjusts its operation to combat 
the e�ects of such errors. The following subsections discuss some examples 
of interactive (or feedback-based) techniques. A more comprehensive review 
of such techniques can be found in Ref. 201. 
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9.8.1 Automatic Repeat Request (ARQ) 
In this technique, when an error is detected, the decoder automatically requests 
the encoder to retransmit the damaged data. When this ARQ is received, the 
encoder retransmits the requested data. Usually, this retransmission is repeated 
until either the requested data is correctly received or a predetermined number 
of retransmissions is exceeded. 
Typically, when a decoder sends an ARQ, it waits for the arrival of the 

requested data before resuming normal operation. This introduces delays that 
may not be acceptable in real-time applications like mobile video communi-
cation. To overcome such delays, Wang and Zhu [179] proposed a technique 
called retransmission without waiting. In this technique, instead of waiting 
for the arrival of the requested data, the damaged video part is concealed 
and normal decoding operation is then resumed. A trace of the a�ected pels 
and their associated coding information is recorded until the arrival of the 
requested data. This error trace, along with the received data, is then used to 
correct the a�ected pels. Another technique proposed in Ref. 179 is the mul-
ticopy retransmission. In this technique, multiple copies of the damaged data 
are sent in each single retransmission trial. This reduces the required number 
of retransmissions and, consequently, reduces delays. 

9.8.2 Error Tracking 
When feedback information is received, the encoder can reconstruct the error 
propagation process. In other words, the encoder can track the error prop-
agation from the original occurrence up to the current frame. A number of 
techniques can then be used to utilize this error trace, as discussed next. 

9.8.2.1 INTRA Refresh Based on Feedback 

Based on the error trace, areas in the current frame that would have been 
predicted from a�ected pels in the reference frame are INTRA encoded. This 
is illustrated in Figure 9.9. Figure 9.9(a) shows the spatial and temporal prop-
agation in a sequence of frames due to an error in frame n. In Figure 9.9(b) 
a feedback message arrives at the encoder before the time to encode frame 
n + d. The encoder tracks this error and the a�ected pels from frame n up 
to frame n + d − 1. During the encoding process of the current frame, n + d, 
blocks that would have been predicted from a�ected pels in the reference 
frame, n + d − 1, are encoded in INTRA mode to stop error propagation to 
the next frame, n + d + 1.  
There are two main drawbacks to this approach. First, a perfect reconstruc-

tion of error propagation is a computationally complex process. Second, in 
cases of high error rates, INTRA refresh can result in a signi�cant loss in 
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Figure 9.9: Error tracking techniques 

coding e$ciency. In Ref. 202 Steinbach et al. propose a reduced-complexity 
error-tracking algorithm that can provide a su$ciently accurate estimate of the 
true error propagation. In order to reduce the loss of coding e$ciency, they 
INTRA refresh only severely a�ected blocks. Thus, if the process of error 
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concealment is successful and the error of a given block is su$ciently small, 
then the encoder may decide against INTRA encoding. Note that this method 
requires the encoder to perform the same error concealment process that was 
used at the decoder. 

9.8.2.2 Restricted Prediction Based on Feedback 

Based on the error trace, prediction of the current frame is restricted to use 
only error-free areas in the reference frame. For example, in Figure 9.9(c) the 
a�ected pels in the reference frame, n + d − 1, are not used for predicting the 
current frame, n + d. This stops error propagation to the next frame, n + d +1.  
This restricted prediction based on feedback and error tracking was proposed 
by Wada in the selective recovery technique [203]. 
Again, this technique can also bene�t from the reduced-complexity error-

tracking algorithm of Steinbach et al. [202], and the coding e$ciency can 
also be improved by performing error concealment in the encoder so that both 
encoder and decoder use the same reference frames for prediction. 

9.8.3 Reference Picture Selection 
In reference picture selection (RPS), both the encoder and decoder store mul-
tiple previous frames to be used as reference frames. When the encoder learns, 
through feedback messages from the decoder, that the most recent reference 
frame contains errors, the encoder switches to use another older reference 
frame that is known to be error free. Provided the alternative reference frame 
is not too far away from the current frame, the loss in coding e$ciency is not 
signi�cant. In particular, this technique is more e$cient than the INTRA re-
fresh technique. The RPS technique has been adopted by H.263+ in annex N, 
and an enhanced version of the technique has been included in annex U of 
H.263++. 
Figure 9.10 shows the RPS technique with two types of feedback messages. 

In the negative acknowledgment mode, illustrated in Figure 9.10(a), the de-
coder sends a negative acknowledgment (NACK) message whenever errors 
are detected in a frame. In the example shown, the decoder detects an error 
in frame 3 and sends a NACK(3) message to the encoder. At the encoder, 
the encoding operation proceeds in the normal way (i.e., using the most re-
cent reference frame for prediction) until the NACK(3) message arrives before 
encoding frame 6. Based on this message, the encoder knows that errors oc-
curred in frame 3 and propagated up to the most recent reference frame 5. 
To stop this error propagation, the encoder uses the older error-free reference 
frame 2 instead of the most recent reference frame 5 to encode the current 
frame 6. 
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Figure 9.10: Reference picture selection based on feedback 

In the positive acknowledgment mode, illustrated in Figure 9.10(b), the de-
coder sends an acknowledgment (ACK) message whenever a frame is received 
error-free. At the encoder, only acknowledged frames are used as references. 
In the example shown, the encoder continues to use frame 1 for prediction 
until it receives the acknowledgment for frame 2. The encoder then starts 
using the acknowledged frame 2 for prediction until the acknowledgment of 
the next error-free reference frame is received. Note that since the erroneous 
frame 3 is not acknowledged, it is never used for prediction and its errors do 
not propagate to subsequent frames. 
Note that during error-free transmission, the NACK mode is more e$cient 

than the ACK mode since the most recent reference frame is used for pre-
diction. During erroneous transmission, however, the NACK mode results in 
longer periods of error propagation than the ACK mode. Thus, the NACK 
mode is more suitable if errors occur only rarely after long periods of error-
free transmission, whereas the ACK mode is preferred for highly error-prone 
transmissions. 
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9.9 Discussion 

When transmitted over a mobile channel, compressed video can su�er severe 
degradation. Thus, error resilience is one of the main requirements for mobile 
video communication. 
Due to the use of predictive and VLC coding, transmission (both random 

and erasure) errors cause temporal and spatial error propagation in compressed 
video. 
Before being able to combat these e�ects, it is �rst necessary to detect 

whether and where errors have occurred. Di�erent techniques can be used to 
achieve this error detection. 
Error control techniques can be broadly classi�ed into three categories: 

forward, postprocessing, and interactive techniques. In forward techniques, the 
encoder plays the primary role. Such techniques work by adding a controlled 
amount of redundancy to the video bitstream. In postprocessing techniques, 
the decoder plays the primary role. Thus, the decoder attempts to conceal the 
e�ects of errors by providing a subjectively acceptable approximation to the 
original data. This is achieved by exploiting the limitations of the human visual 
system and the high temporal and=or spatial correlation of video sequences. 
In interactive techniques, the encoder and decoder cooperate to minimize the 
e�ects of transmission errors. In such techniques, the decoder uses a feedback 
channel to inform the encoder about which parts of the transmitted video have 
been received in error. Based on this feedback information, the encoder adjusts 
its operation to combat the e�ects of such errors. 
It should be emphasized that the three categories of techniques are not 

mutually exclusive, and di�erent combinations can be employed in practical 
systems. 





Chapter 10 

Error Concealment Using Motion 
Field Interpolation 

10.1 Overview 

Chapter 9 discussed three categories of error-resilience techniques: forward, 
postprocessing (or concealment), and interactive techniques. Almost all for-
ward techniques increase the bit rate because they work by adding redun-
dancy to the data, e.g., FEC. Some of them may also require modi$cations 
to the encoder, e.g., layered coding, and others may not be suitable for some 
applications, e.g., multiple description coding assumes several parallel chan-
nels between transmitter and receiver. Most interactive techniques depend on 
a feedback channel between the encoder and decoder. Such a channel may 
not be available in some applications, e.g., multipoint broadcasting. Most in-
teractive techniques will also introduce some delay and may, therefore, be 
unsuitable for real-time applications like mobile video communication. On the 
other hand, concealment techniques do not increase the bit rate, do not require 
any modi$cations to the encoder, do not introduce any delay, and can be ap-
plied in almost any application. This makes them a very attractive choice for 
mobile video communication, where bit rate and delay are very critical issues. 

A very successful class of error concealment is temporal error conceal-
ment. Conventional temporal concealment techniques estimate one conceal-
ment displacement for the whole damaged block and then use translational 
displacement compensation to conceal the block from a reference frame. The 
main problem with such techniques is that incorrect estimation of the conceal-
ment displacement can lead to poor concealment of the whole or most of the 
block. 

This chapter describes the design of two novel temporal concealment tech-
niques. In the $rst technique, motion 
eld interpolation (MFI) is used to 
estimate one concealment displacement per pel of the damaged block. Each 

231 
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pel is then concealed individually. In this case, incorrect estimation of a con-
cealment displacement will a,ect only the corresponding pel. On a block level, 
this may a,ect few pels rather than the entire block. In the second technique, 
multihypothesis motion compensation (MHMC) is used to combine the $rst 
technique with a boundary matching (BM) temporal concealment technique 
to obtain a more robust performance. 

The chapter also investigates the performance of di,erent temporal error 
concealment techniques when incorporated within a multiple-reference video 
codec. In particular, the chapter $nds a combination of techniques that best 
recovers the spatial-temporal components of a damaged multiple-reference 
motion vector. In addition, the chapter describes the design of a novel 
multihypothesis temporal concealment technique that can be used with 
multiple-reference systems. 

The rest of the chapter is organized as follows. Section 10.2 describes 
the MFI temporal concealment technique, whereas Section 10.3 presents the 
combined BM-MFI technique. Section 10.4 presents some simulation results. 
Section 10.5 investigates the performance of temporal error concealment within 
multiple-reference video codecs. It also describes the multihypothesis multiple-
reference temporal concealment technique. The chapter concludes with a dis-
cussion in Section 10.6. 

Preliminary results of this chapter have appeared in Refs. 204, 205, 206, 
207, and 208. 

10.2	 Temporal Error Concealment Using Motion 
Field Interpolation (MFI) 

10.2.1	 Motivation 
As described earlier, conventional temporal concealment techniques estimate 
one concealment displacement for the whole damaged block and then use 
translational displacement compensation to conceal the block from a reference 
frame. As already discussed in Section 9.7.2, there are many cases where 
conventional temporal concealment techniques can fail and the concealment 
displacement can be incorrectly estimated. The main problem with such tech-
niques is that incorrect estimation of the concealment displacement can lead to 
poor concealment of the entire or most of the block. This section describes a 
new temporal error concealment technique. This technique estimates one con-
cealment displacement per pel of the damaged block and then conceals each 
pel individually. In this case, incorrect estimation of a concealment displace-
ment will a,ect only the corresponding pel. On a block level, this may a,ect 
few pels rather than the entire block. 
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The described technique uses motion 
eld interpolation (MFI) in its dis-
placement estimation stage. In MFI, motion information needs to be available 
only at a number of nodal or control points within the motion $eld. The 
motion vector at any other point within the $eld can be approximated by 
interpolating the motion vectors of the surrounding control points. Thus, mo-
tion information recovery is inherent in MFI. As discussed in Chapter 5, MFI 
is used in warping-based motion compensation. Its main advantage over con-
ventional translational compensation is that it provides a smoothly varying mo-
tion $eld that reduces blocking artefacts and compensates for more types of 
motion. These two features, i.e., inherent motion information recovery and 
better motion compensation, can improve both stages of the temporal con-
cealment process, i.e., estimation and compensation, respectively. This makes 
MFI a very attractive choice for temporal error concealment. 

10.2.2 Description of the Technique 
Let ft (x; y) be the value of the current frame at pel location (x; y) and ft−:t 
be a previously reconstructed and concealed frame. Further, let D= {ft (x; y) :  
x ∈ [xl; xh]; y  ∈ [yl; yh]} be a damaged block within the current frame and vL, 
vR, vT , and vB be the motion vectors of the blocks to the left of, to the 
right of, above, and below the damaged block, respectively. The concealment 
displacement, v̂(x; y)= (  ̂vx (x; y); v̂y(x; y)), at any pel (x; y) within the damaged 
block D can be estimated by interpolating the neighboring motion vectors as 
follows: 

h
(xn)vL + (1  − h
(xn))vR + h
(yn)vT + (1  − h
(yn))vB v̂(x; y)=  ; (10.1)
2 

y − yl x − xl yn = ; xn = ; (10.2)
yh − yl xh − xl 

where (xn; yn) are the normalized spatial coordinates of pel (x; y) within the 
damaged block, ranging from (0; 0) at the top-left corner to (1; 1) at the 
bottom-right corner, and h
(·) is a suitable interpolation kernel. 

Thus, the estimated displacement is a weighted sum of the neighboring 
motion vectors. The interpolation kernel, h
(·), is used to adjust the weights 
according to the spatial location of the pel within the damaged block. Intu-
itively, a pel on the left border should have a high contribution from the left 
vector, vL, and a low contribution from the right vector, vR, and so on. To 
achieve this, the following interpolation kernel [209] was used: 

k(
(2a − 1)) − k(
)
h
(a)=  ; 0 ≤ a ≤ 1 and 
 ≥ 1; (10.3)

k(−
) − k(
) 
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where 

1
k(b)=  :	 (10.4)

1 +  eb 

The parameter 
 in Equation (10.3) is used to control the smoothness of the 
interpolation kernel. As 
 varies from 1 to ∞, the interpolation kernel varies 
from an approximately linear shape to a brickwall shape, as illustrated in 
Figure 10.1. 

Once the concealment displacement is estimated, then the damaged pel is 
concealed as follows: 

f̂t (x; y)=  ft−:t (x + v̂x(x; y); y  + v̂y(x; y)): (10.5) 

In the case where the estimation process produces a subpel accurate displace-
ment, the compensation process will require accessing a pel at a nonsampling 
location within the reference frame. Interpolation (e.g., bilinear) of the pels at 
surrounding sampling locations can be employed to provide an approximation 
to the required pel. 
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Table 10.1: Computational complexity of the displacement estimation stage of di,erent temporal 
concealment techniques with a block of 16 × 16 pels 

Add=subtract Multiply=divide Magnitude 

TR — — — 
AV 6 2 — 
BM 496 — 256 
MFI 516 6 — 

10.2.3 Reduced-Complexity MFI 
One of the main disadvantages of MFI is its high computational complexity. 
In the case of a linear interpolation kernel, Equation (10.1) reduces to 

v̂(x; y)=  
(1 − xn)vL + xnvR + (1  − yn)vT + ynvB : (10.6)

2 
A direct implementation of Equations (10.6) and (10.2) requires 10N 2 

additions=subtractions and 12N 2 multiplications=divisions for an N × N block. 
This complexity can be reduced using a number of methods. One method is to 
calculate the weights o,-line and store them in a lookup table. This reduces the 
complexity to 6N 2 additions=subtractions and 8N 2 multiplications=divisions. 
Another method is to use a line-scanning technique. That is, once v̂(x; y) is  
calculated, the displacement of the next pel in the row and the next pel in the 
column can be calculated as follows: 

v̂(x + 1; y)=  ̂v(x; y) +  
vR − vL 

2N 
and v̂(x; y + 1)  =  ̂v(x; y) +  

vB − vT 

2N 
: (10.7) 

It is very simple to derive Equations (10.7) from Equation (10.6). Note that 
the second term in both of Equations (10.7) is a constant and needs to be 
calculated only once per block. This line-scanning technique further reduces 
the complexity to (2N 2 + 4) additions=subtractions and six multiplications= 
divisions. 

Table 10.1 compares the computational complexity of di,erent temporal 
concealment techniques for a 16 × 16 block. The $gures in the table refer to 
the complexity of the displacement estimation stage and do not include the 
complexity of the displacement compensation stage.1 The $gures for BM are 
based on four candidate motion vectors and SAD as the SMD measure. They 
do not include the complexity of sorting the SMDs and choosing the vector 
with the minimum SMD. Although the MFI technique has the highest num-
ber of multiplications=divisions, this increased complexity can be justi$ed by 

1For MFI, the displacement compensation stage is more complex, since it may involve inter-
polation. 
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improved concealment quality, as will be shown later. A point to note here 
is that MFI will be used only for damaged blocks. Thus, provided that the 
error rate is relatively low, this will not increase the complexity of the decoder 
considerably. 

10.3	 Temporal Error Concealment Using a 
Combined BM-MFI Technique 

10.3.1	 Motivation 
In this section, multihypothesis motion compensation (MHMC) [106] is used 
to further improve the second stage, i.e., compensation, of the temporal con-
cealment process. In MHMC, a block is compensated using a weighted average 
of several motion-compensated predictions (hypotheses). This is a general term 
that can be used to describe techniques like overlapped motion compensation, 
bidirectional motion compensation, and any other technique that compensates 
individual pels using more than one motion vector. When applied to temporal 
error concealment, this means that each pel of the damaged block will be 
concealed using more than one concealment displacement. In the described 
technique, two concealment displacements are used per pel: one is estimated 
using BM, as described in Section 9.7.2, and the other is estimated using 
MFI, as described in Section 10.2. The BM technique was chosen because it 
is one of the best conventional temporal error concealment techniques. A sim-
ilar combination between BM and overlapped motion compensation has also 
been reported in Ref. 198. 

In addition to improving the second stage of the temporal concealment pro-
cess, the combination of BM and MFI can provide a more robust performance. 
This can be explained as follows. There are many cases where the BM tech-
nique will fail but the MFI technique will not, and vice versa. In such cases, a 
combination may be more robust because it may average out the concealment 
distortion. 

10.3.2	 Description of the Technique 
ˆ mx (x; y); my(x; y)) be the displacement estimated using MFI Let m(x; y)= (  ̂ ˆ

to conceal pel (x; y) of the damaged block D, and let b̂=(b̂x; b̂y) be the  
displacement estimated using BM to conceal the whole block. Then pel (x; y) 
is concealed as follows: 

f̂t (x; y) =  w�(xn; yn)ft−:t (x + ˆ my(x; y))mx (x; y); y  + ˆ

+ (1  − w�(xn; yn))ft−:t (x + b̂x; y  + b̂y ): (10.8) 
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Thus, the concealed pel is a weighted sum of two predictions. The function 
w� (·; ·) is used to adjust the weights given to MFI and BM according to the 
spatial location of the pel within the damaged block. Knowledge of the way 
both BM and MFI work can provide some insights into designing a suitable 
w� (·; ·). For example, the SMD measure of the BM technique involves the 
border pels of the damaged block. It is expected, therefore, that BM will 
perform well at those pels. Therefore, BM must be given high weights at 
the borders of the block and low weights at the center. To achieve this, the 
following function was used: 

w� (xn; yn)=  
g� (xn)g�(yn) + 1  

;	 (10.9)
2 

where  
1 − k (�(4a−1))−k(�)  

k(−�)−k(�) ; 0 ≤ a ≤ 1 
2 

g�(a)= 	 (10.10) 	 1g�(1 − a); 2 ¡a  ≤ 1 

and k (·) is de$ned by Equation (10.4). The parameter � is used to control the 
smoothness of w� (·; ·), as illustrated in Figure 10.2. 

Before proceeding to present simulation results, it is valuable at this point 
to highlight the main di,erences between the two novel algorithms, MFI and 
BM-MFI, and conventional temporal error concealment techniques. These are 
summarized in Table 10.2. 

10.4 Simulation Results 

10.4.1 Results Within an Isolated Error Environment 
It is very important to evaluate the performance of the techniques in isolation 
from any external e,ects, like temporal and spatial error propagation and the 
choice of the error detection algorithm. This is particularly important for a fair 
comparison, since such error mechanisms and algorithm choices may randomly 
a,ect one technique more than another. Thus, in this set of simulations, the 
following assumptions were made 

1. There is	 no temporal error propagation. This was achieved by using 
original reference frames for the concealment process. 

2. There is no spatial error propagation. This is equivalent to using $xed-
length codes and no predictive coding. 

3. The concealment process is supported by an ideal error detection algo-
rithm that can identify all damaged blocks. 
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(a) BM weights, (1 −  ��), with � =1

(c) MFI weights, �� , with � = 5

(b) MFI weights, ��, with � =1

(d) MFI weights, ��, with � = 50
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Figure 10.2: Multihypothesis weights w�(·; ·) with di,erent values of the smoothness parameter �

Table 10.2: Comparison between conventional temporal concealment and the MFI and BM-MFI
techniques

Conventional temporal
concealment MFI BM-MFI

Displacement
estimation

One displacement per
block using AV,
TR, BM, etc.

One displacement per
pel using MFI
(weighted sum of
four neighboring
vectors)

Two displacements
per pel: one
produced by MFI
and another
produced by BM

Displacement
compensa-
tion

Translational, same
displacement for
the whole block.

Translational, but on a
pel-by-pel basis

Multihypothesis
motion
compensation
(each pel is a
weighted sum of
two concealments)
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Hereafter, the term isolated error environment will be used to refer to this set 
of test conditions. 

All results in this subsection were generated using a full-search block-
matching algorithm with blocks of 16 × 16 pels, a maximum allowed dis-
placement of ± 15 pels, SAD as the distortion measure, restricted motion 
vectors, and full-pel accuracy. Block losses were introduced randomly. Five 
temporal error concealment techniques were simulated: temporal replacement 
(TR), average vector (AV), boundary matching with side-match distortion 
(BM), motion $eld interpolation (MFI), and the combination of BM and 
MFI (BM-MFI). In each technique, the motion vectors of the four neigh-
boring blocks—left, right, above and below—were used in the concealment 
displacement estimation stage. Whenever a neighboring motion vector was not 
available, e.g., damaged or does not exist as in border blocks, it was set to 
(0; 0). For the BM technique, SAD was used in the side-match distortion cal-
culations. Again, to mask any external e,ects, all quoted PSNRs in this set of 
simulations were calculated for concealed blocks only and averaged over the 
whole sequence. All quoted results refer to the luma components of sequences. 

10.4.1.1 Choice of Parameters 

Before evaluating the performance of MFI and BM-MFI, suitable values for 
the smoothness parameters 
 and � need to be chosen. Figure 10.3 shows the 
e,ect of changing the smoothness parameter 
 on the performance of MFI 
when applied to FOREMAN at 25 frames=s with di,erent block loss rates. In 
general, the performance is not particularly sensitive to the choice of 
 (a 
change of about 0:3 dB). As 
 increases, the performance of MFI deteriorates 
slightly. The best performance is achieved with 
 =1. This is approximately a 
linear kernel. Thus, a linear interpolation kernel will be used in all subsequent 
simulations. Note that a linear kernel also facilitates the use of a line-scanning 
technique to reduce complexity, as was shown in Section 10.2.3. 

Figure 10.4 shows the e,ect of changing the smoothness parameter � on the 
performance of BM-MFI when applied to FOREMAN at 25 frames=s with di,er-
ent block loss rates. Again, the performance is not very sensitive to changes 
in �. As  � increases, the performance of BM-MFI slightly deteriorates. The 
best performance is achieved with � =1. The corresponding multihypothesis 
weights are those shown in Figures 10.2(a) and 10.2(b). In what follows, this 
value of � will be used. 

10.4.1.2 Performance Evaluation 

Figures 10.5, 10.6, and 10.7 compare the performance of the $ve techniques 
when applied to AKIYO, FOREMAN, and TABLE TENNIS, respectively. All results 
were generated with a frame skip of 1. 
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Figure 10.3: Performance of MFI when applied to QSIF FOREMAN at 25 frames=s with di,erent 
interpolation kernels. PSNRs are for damaged blocks only 
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Figure 10.4: Performance of BM-MFI when applied to QSIF FOREMAN at 25 frames=s with di,erent 
multihypothesis weights. PSNRs are for damaged blocks only 
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QSIF Akiyo @ 30 f.p.s. 
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Figure 10.5: Comparison between di,erent temporal concealment techniques when applied to 
QSIF AKIYO at 30 frames=s. PSNRs are for damaged blocks only 
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Figure 10.6: Comparison between di,erent temporal concealment techniques when applied to 
QSIF FOREMAN at 25 frames=s. PSNRs are for damaged blocks only 
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QSIF Table Tennis @ 30 f.p.s.
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Figure 10.7: Comparison between di,erent temporal concealment techniques when applied to 
QSIF TABLE TENNIS at 30 frames=s. PSNRs are for damaged blocks only 

In general, the best performance was achieved by BM-MFI, followed by 
MFI, then BM, AV, and TR. As expected, TR performs well for the low-
movement AKIYO sequence. The poor performance of BM for AKIYO may be 
due to an ambiguity problem where neighboring motion vectors give similar 
SMD measures. A very interesting point to note is that the performance of 
MFI starts to deteriorate for FOREMAN at high block loss rates. This may be 
due to the high dependency of MFI on the availability of the neighboring 
motion vectors. This can be improved using interleaving techniques, as was 
described in Chapter 9. In all cases, however, the BM-MFI technique main-
tained its superior performance. This is a clear indication of the robustness 
of the technique. Over the three sequences and the considered block loss rate 
range, MFI provides on average 0:3 dB, 0:9 dB, and 1:4 dB improvements over 
BM, AV, and TR, respectively, whereas BM-MFI provides a further 0:5 dB  
improvement over MFI. This corresponds to improvements of about 0:8 dB, 
1:4 dB, and 1:9 dB over BM, AV, and TR, respectively. 

Figure 10.8 shows the subjective quality of the 58th frame of TABLE TENNIS 

with a block loss rate of 30% when concealed using BM and BM-MFI. The 
superior performance of the BM-MFI technique is immediately evident from 
the good concealment of the left hand of the player. Note, however, that some 
parts of the shirt are less sharp with the BM-MFI technique. This may be due 
to the low-pass $ltering e,ect of the averaging (weighting) process. 
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(a) Original 58th frame (b) Damaged blocks, 30% 

(c) Concealed using BM (d) Concealed using BM-MFI 

Figure 10.8: Subjective quality of concealed 58th frame of QSIF TABLE TENNIS at 30 frames=s with 
a block loss rate of 30% 

10.4.2 Results Within an H.263 Decoder 
This set of simulations tests the performance of the techniques when incor-
porated within an H.263 decoder. In this case, the assumptions made in the 
previous set of simulations will be relaxed. In other words, previously re-
constructed, possibly damaged and concealed, frames will be used for both 
prediction and concealment. This will result in temporal error propagation. In 
addition, spatial error propagation will also occur, since H.263 uses VLC and 
predictive coding. 

The Telenor implementation [144] of H.263 was used in this simulation. 
The decoder was modi$ed to perform error detection by detecting syntax and 
semantic violations, as was described in Section 9.5. When an error is detected, 
the decoding process is stopped, the decoder searches for the next synchro-
nization codeword, and decoding is resumed. All macroblocks between the 
point where the error was detected and the synchronization point are marked 
as damaged macroblocks. In this simulation, the H.263 encoder option to in-
sert synchronization codewords at the start of each GOB was switched on. All 
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Table 10.3: Comparison between di,erent temporal concealment techniques when applied to three 
test sequences corrupted with a random bit error rate of 10−3. PSNRs are for whole frames 

Error 
free TR AV BM MFI BM-MFI 

AKIYO PSNRY � 35.15 30.01 29.93 28.19 30.21 30.35 
12 kbits=s PSNRC� 

R 
37.18 34.01 33.67 30.61 34.12 34.23 

PSNRC� 
B 

39.16 36.14 36.03 35.00 36.20 36.32 
PSNR 35.92 31.12 31.02 29.18 31.31 31.45 

FOREMAN PSNRY � 27.93 19.11 19.30 19.59 19.56 20.05 
24 kbits=s PSNRC� 

R 
35.02 30.49 29.01 28.92 30.64 30.67 

PSNRC� 
B 

34.54 29.93 29.37 29.23 30.34 30.40 
PSNR 29.26 20.71 20.84 21.11 21.15 21.62 

TABLE TENNIS PSNRY � 33.21 18.36 18.25 18.58 18.68 18.95 
48 kbits=s PSNRC� 

R 
38.21 23.86 22.50 22.40 23.91 23.93 

PSNRC� 
B 

36.79 21.79 21.32 21.42 22.22 22.34 
PSNR 34.22 19.39 19.16 19.43 19.70 19.94 

other optional modes were switched o,. No INTRA refresh was employed. 
Thus, only the $rst frame was INTRA coded. 

The H.263 encoder was used to encode the three sequences AKIYO, FOREMAN, 
and TABLE TENNIS2 at bit rates of 12 kbits=s, 24 kbits=s, and 48 kbits=s, respec-
tively. Note that the bit rates were chosen according to the amount of spatial 
detail and movement within each sequence. Note also that all bit rates were 
chosen within the very-low-bit-rate range, i.e., less than 64 kbits=s. 

The compressed bitstreams were corrupted with random bit errors gener-
ated according to the MPEG-4 error robustness test speci$cation [210]. The 
speci$cations provide an initial period of 1.5 s during which no errors are 
injected. This allows for the encoder to transmit an initial INTRA frame 
and for the codec operation to stabilize into a steady state before errors are 
introduced. 

Table 10.3 summarizes the performance of the $ve techniques when applied 
to the three test sequences with a frame skip of 1 and a bit error rate (BER) 
of 10−3. The quoted PSNRs are for whole frames and averaged over the 
sequence. The quantities PSNRY � , PSNRC� , and PSNRC� represent the PSNRs 

R B 
of the separate luma and two chroma components, respectively, whereas PSNR 

2The luma components of both AKIYO and TABLE TENNIS were zero-padded vertically to 128 lines 
because Telenor’s H.263 can work only with an integer multiple of 16. The corresponding chroma 
components were also appropriately padded. 
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Figure 10.9: Comparison between di,erent temporal concealment techniques when applied to 
QSIF FOREMAN. The sequence was H.263 encoded at 24 kbits=s and then corrupted with a range 
of bit error rates 

represents the PSNR of the three components together with a 4:2:0 subsam-
pling. Again, the best performance in each case was achieved by BM-MFI, 
followed by MFI. For example, for the TABLE TENNIS sequence, MFI provides 
improvements of 0:27 dB, 0:54 dB, and 0:31 dB over BM, AV, and TR, respec-
tively, whereas BM-MFI provides a further 0:24 dB improvement over MFI. 
This corresponds to improvements of about 0:51 dB, 0:78 dB, and 0:55 dB over 
BM, AV, and TR, respectively. 

Figure 10.9 shows the performance of the $ve techniques when used to 
conceal the 24 kbits=s QSIF FOREMAN sequence corrupted with BERs in the 
range 10−4 to 10−3. At low BERs the di,erences between the techniques are 
small. However, as the BER increases, the techniques split into three perfor-
mance levels. The lowest level includes TR and AV, the next level includes 
BM and MFI, and the highest level includes BM-MFI. 

Figure 10.10 shows a frame of the 24 kbits=s QSIF FOREMAN corrupted with 
a BER of 10−3 and then decoded and concealed using BM and BM-MFI. 
The superior performance of the BM-MFI technique is immediately evident, 
especially at the eyes and the edges of the face. 

It is worth noting here that at a BER of 10−3, the PSNRs of the con-
cealed sequences drop by about 5–9 dB compared to the error-free values, 
and the subjective quality may not be acceptable. A close inspection of the 
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(a) Error free (b) No concealment 

(c) Concealed using BM (d) Concealed using BM-MFI 

Figure 10.10: Subjective quality of decoded and concealed frame of QSIF FOREMAN. The sequence 
was H.263 encoded at 24 kbits=s and corrupted with a 10−3 bit error rate 

decoded and concealed sequences revealed that this poor performance is due 
mainly to the e,ects of spatial and temporal error propagation and also to 
the imperfections of the error detection approach. In addition, it was observed 
that temporal techniques do not perform well for intracoded blocks, scene 
changes, and uncovered backgrounds. Thus, despite their advantages, temporal 
error concealment techniques must be combined with spatial error conceal-
ment and, more importantly, must be supported by some error containment 
techniques, such as INTRA refresh. 

10.5	 Temporal Error Concealment for Multiple-
Reference Motion-Compensated Prediction 

As already discussed, temporal error concealment is an important tool to 
combat the e,ects of errors on transmitted video. A number of temporal error 
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concealment techniques have been proposed in the literature, and their per-
formances have been extensively studied within typical single-reference video 
codecs operating over various error-prone channels. There is, however, a need 
to characterize the performance of such techniques within multiple-reference 
video codecs. This is the main aim of this section. 

Temporal error concealment within a multiple-reference video codec can be 
split into two problems: spatial-components (dx; dy) recovery and temporal-
component dt recovery. Thus, a multiple-reference temporal error concealment 
method can be represented by a combination of the form S-T, where S is the 
technique used to recover the spatial components and T is the technique used 
to recover the temporal component. In this section, S and T can be chosen 
from the following list of techniques 

ZR	 The recovered motion component (either spatial or temporal) is set to 
zero. In Chapter 9 this was referred to as temporal replacement (TR). 

AV	 The recovered motion component is set to the average of the correspond-
ing components of a set of neighboring motion vectors. In this section, 
four neighboring vectors are used: top, bottom, left, and right. 

BM	 This is a boundary-matching method (refer to Section 9.7.2 for a detailed 
description). A set of candidate vectors is $rst chosen. Each candidate 
is then used to conceal the damaged block. The quality of this conceal-
ment is assessed using the side-match distortion (SMD) measure, which 
is de$ned as the sum of absolute (or squared) di,erences across the four 
boundaries of the block. The candidate with the minimum SMD is cho-
sen. In this section, the set of candidates includes the four neighboring 
vectors—top, bottom, left, and right—and the SMD is de$ned as the SAD 
across the boundaries. 

MFI This is the method described in this chapter. It uses motion $eld in-
terpolation to recover one vector per pel of the damaged block. In this 
section a linear interpolation kernel is employed. 

Since there are four techniques in the list, there are 16 possible combina-
tions of the form S-T. Each combination leads to a di,erent long-term temporal 
concealment method. For example, assume that l =(lx; ly; lt ), r =(rx; ry; rt ), 
t =(tx; ty; tt ), and b =(bx; by; bt ) are, respectively, the motion vectors of the 
blocks to the left of, to the right of, above, and below the damaged block. A 
combination of the form AV-BM means that the spatial components (dx; dy) 
are $rst recovered using the AV method: 

d̂x = 
lx + rx + tx + bx and d̂y = 

ly + ry + ty + by : (10.11)
4	 4 
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Then a set C = {d1; : : : ;  d4} of four candidates is formed from the recovered 
spatial components ( d̂x; d̂y) and the four temporal components of the neigh-
boring blocks. In other words: d1 = (d̂x; d̂y; lt ), d2 = (d̂x; d̂y; rt ), d3 = (d̂x; d̂y; tt ), 
and d4 = (d̂x; d̂y; bt ). The BM technique is then used to recover the temporal 
component by choosing from this set of candidates. Thus 

d̂= arg min SMD(di): (10.12)
di ∈C 

A multiple-reference rate-constrained H.263-like codec was used to generate 
the results of this section. This codec uses full-pel full-search block matching 
with macroblocks of 16 × 16 pels, a maximum allowed spatial displacement 
of ± 15 pels, SAD as the distortion measure, restricted motion vectors, and 
reconstructed reference frames. Motion vectors are coded using the median 
predictor and the VLC table of the H.263 standard. The frame signal (in case 
of INTRA) and the DFD signal (in case of INTER) are transform encoded 
according to the H.263 standard. The codec uses rate-constrained motion esti-
mation and mode decision as de$ned in the high-complexity mode of TMN10. 
The codec employs a sliding-window control to maintain a long-term memory 
of size M =10 frames. Only the $rst frame is INTRA coded, and no INTRA 
refresh is employed. A $xed quantization parameter of QP =10 is used. Errors 
were introduced randomly on a macroblock level. Thus, an error rate of 20% 
means that 20% of the macroblocks are damaged per frame. It is assumed that 
the decoder uses an ideal error detection mechanism. All quoted results refer 
to the luma components of sequences. 

10.5.1 Temporal-Component Recovery 
This set of experiments investigate the best technique for recovering the tem-
poral component dt of a damaged long-term motion vector. In this case, the 
spatial recovery technique S, in the combination S-T, was kept constant at ZR, 
whereas the temporal recovery technique T was varied over ZR, AV, BM, and 
MFI. In other words, four S-T combinations were considered: ZR-ZR, ZR-AV, 
ZR-BM, and ZR-MFI. 

Figures 10.11, 10.12, and 10.13 show the results for the QSIF sequences 
AKIYO, FOREMAN, and TABLE TENNIS, respectively. Part (a) of each $gure shows 
the performance with a frame skip of 3 over a range of macroblock error rates, 
whereas part (b) shows the performance with a macroblock error rate of 20% 
over a range of frame skips. 

In general, the best temporal-component recovery is achieved by ZR and 
BM (i.e., ZR-ZR and ZR-BM). The good performance of ZR is due to the 
zero-biased distribution of the temporal components (Property 6:3:1:2). In other 
words, the temporal component dt = 0 has the highest frequency of occurrence 
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Temporal-component recovery, Akiyo, M=10, QP=10, Skip=3 Temporal-component recovery, Akiyo, M=10, QP=10, Macroblock error rate=20% 
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Figure 10.11: Temporal-component recovery for QSIF AKIYO with M =10 and QP =10 

Temporal-component recovery, Foreman, M=10, QP=10, Skip=3 Temporal-component recovery, Foreman, M=10, QP=10, Macroblock error rate=20% 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

P
S

N
R

Y
 (

dB
) 

ZR-ZR 
ZR-AV 
ZR-BM 
ZR-MFI 

19 

19.2 

19.4 

19.6 

19.8 

20 

20.2 

20.4 

20.6 

20.8 

21 

P
S

N
R

Y
 (

dB
) 

ZR-ZR 
ZR-AV 
ZR-BM 
ZR-MFI 

10 20 30 40 50 1 2 3

Macroblock error rate (%) Frame skip
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Figure 10.12: Temporal-component recovery for QSIF FOREMAN with M =10 and QP =10 
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(a) Performance over a range of error rates (b) Performance over a range of frame skips 

Figure 10.13: Temporal-component recovery for QSIF TABLE TENNIS with M =10 and QP =10 
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within the long-term memory block-motion $eld. Note that at low frame skips, 
this simple ZR method is suNcient, whereas at high frame skips the more 
complex method of BM has to be employed. This may be due to the fact 
that at high frame skips, the zero-biased distribution becomes more spread 
(see Property 6:3:1:2 and Figure 6.3). In other words, dt = 0 becomes less 
probable, and longer temporal components start to appear more frequently in 
the motion $eld. Such components need to be recovered using BM. Both AV 
and MFI provide poor temporal-component recovery compared to BM and ZR. 

10.5.2 Spatial-Components Recovery 
This set of experiments investigates the best technique for recovering the spa-
tial components (dx; dy ) of a damaged long-term motion vector. In this case, 
the temporal recovery technique T, in the combination S-T, was kept con-
stant at ZR, whereas the spatial recovery technique S was varied over ZR, 
AV, BM, and MFI. In other words, four S-T combinations were considered: 
ZR-ZR, AV-ZR, BM-ZR, and MFI-ZR. 

Figures 10.14, 10.15, and 10.16 show the results for the QSIF sequences 
AKIYO, FOREMAN, and TABLE TENNIS, respectively. Part (a) of each $gure shows 
the performance with a frame skip of 3 over a range of macroblock error rates, 
whereas part (b) shows the performance with a macroblock error rate of 20% 
over a range of frame skips. 

In general, the best spatial-components recovery is achieved by MFI 
followed by BM. This is similar to the single-reference results reported in 
Section 10.4. Thus, moving from a single-reference system to a multiple-
reference system does not signi$cantly inOuence the spatial-components 

Spatial-components recovery, Akiyo, M=10, QP=10, Skip=3 Spatial-components recovery, Akiyo, M=10, QP=10, Macroblock error rate=20% 
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(a) Performance over a range of error rates (b) Performance over a range of frame skips 

Figure 10.14: Spatial-components recovery for QSIF AKIYO with M =10 and QP =10 

4 



251 Section 10.5. Temporal Error Concealment for Multiple-Reference 

Spatial-components recovery, Foreman, M=10, QP=10, Skip=3 Spatial-components recovery, Foreman, M=10, QP=10, Macroblock error rate=20% 
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(a) Performance over a range of error rates (b) Performance over a range of frame skips 

Figure 10.15: Spatial-components recovery for QSIF FOREMAN with M =10 and QP =10 
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Figure 10.16: Spatial-components recovery for QSIF TABLE TENNIS with M =10 and QP=10 

recovery process. A very interesting point to note is that the performance of 
MFI starts to deteriorate at high frame skips. This may be due to the fact that 
at high frame skips, the spatial components within the motion $eld become 
less correlated (see Property 6:3:1:3 and Figures 6.4(a) and 6.4(b)). Since MFI 
assumes a high correlation between the spatial components, its performance 
will deteriorate with decreased correlation. 

10.5.3 Spatial-Temporal-Components Recovery 
Comparing the results of Section 10.5.1 to those of Section 10.5.2 it can be 
concluded that spatial-components recovery is, in general, more important than 
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Table 10.4: Spatial-temporal recovery for QSIF AKIYO with M =10, QP =10, skip= 3, and a 
macroblock error rate of 30% 

Spatial-components recovery 

ZR AV BM MFI 

Temporal-	 TR 27.91 27.80 26.79 29.22 
component AV 27.23 27.49 27.07 
recovery	 BM 28.33 

MFI 27.42 

28.58 
28.10 27.38 29.48 
27.58 26.38 28.69 

Table 10.5: Spatial-temporal recovery for QSIF FOREMAN with M =10, QP =10, skip = 3, and a 
macroblock error rate of 30% 

Spatial-components recovery 

ZR AV BM MFI 

Temporal-
component 
recovery 

TR 
AV 
BM 
MFI 

18.57 
18.25 
18.59 
18.14 

19.68 
19.58 
20.13 
19.51 

20.32 
19.72 
20.80 
19.65 

20.71 
20.56 
21.18 
20.48 

temporal-component recovery. For example, in Figure 10.13(b), at a frame 
skip of 3, moving from the best technique, ZR-BM, to the worst technique, 
ZR-MFI, drops the quality by about 0:3 dB, whereas in Figure 10.16(b) mov-
ing from the best technique, MFI-ZR, to the worst technique, AV-ZR, drops 
the quality by about 1 dB. It can be concluded also that spatial-components re-
covery is, in general, more complex than temporal-component recovery. With 
temporal-component recovery, a simple technique like ZR can be suNcient, 
whereas with spatial-components recovery more complex techniques like MFI 
and BM are essential. Furthermore, the results of Sections 10.5.1 and 10.5.2 
indicate that the combination MFI-BM (i.e., spatial recovery using MFI and 
temporal recovery using BM) may provide the best spatial-temporal recovery. 
This is con$rmed in Tables 10.4, 10.5, and 10.6, which show the performance 
of all 16 possible combinations with a frame skip of 3 and a macroblock error 
rate of 30%. 

10.5.4 Multihypothesis Temporal Error Concealment 
It was demonstrated in Section 10.4 that a more robust performance can 
be achieved if the concealed block is a weighted average of a number of 
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Table 10.6: Spatial-temporal recovery for QSIF TABLE TENNIS with M =10, QP =10, skip = 3, and 
a macroblock error rate of 30% 

Spatial-components recovery 

ZR AV BM MFI 

Temporal-
component 
recovery 

TR 
AV 
BM 
MFI 

19.62 
19.54 
19.68 
19.55 

19.57 
19.57 
19.87 
19.74 

20.06 
20.02 
20.09 
20.00 

20.46 
20.40 
20.58 
20.40 

candidate concealments, where each candidate concealment is provided using 
a di,erent recovered motion vector. This is very similar to multihypothesis 
motion compensation [106]. Thus, it is termed multihypothesis temporal er-
ror concealment. 

In this subsection a multihypothesis temporal concealment technique to be 
used with long-term memory motion-compensated prediction is presented. In 
this case, the candidate concealments are taken from di,erent reference frames. 
The details of this technique are as follows. The spatial components are $rst 
recovered using MFI (as suggested in Section 10.5.2). However, instead of 
recovering a single temporal component, all four neighboring temporal com-
ponents are utilized. Combined with the recovered spatial components, each 
neighboring temporal component provides a candidate concealment from the 
corresponding reference frame. The four candidate concealments are then av-
eraged and used to conceal the damaged block in the current frame. In other 
words, a damaged pel (x; y) in the current frame fc is concealed as follows: 

4 
f̂c(x; y)=  

1 ∑ 
fr (x + d̂x (x; y); y  + d̂y (x; y); dti ); (10.13)

4 i=1 

where fr (·; ·; dt ) refers to reference frame dt in the multiframe memory, 
(d̂x(x; y); d̂y(x; y)) are the spatial components recovered at pel (x; y) using 
MFI, and dti , i =1; : : : ;  4 are the temporal components of the four neighboring 
vectors. In what follows, this approach is designated as MFI-MH. 

Figures 10.17, 10.18, and 10.19 compare the performance of the MFI-MH 
technique to that of MFI-BM (which is the best combination, as suggested in 
Section 10.5.3) and also to that of ZR-ZR (which is the simplest and most 
commonly used combination). The $gures con$rm the superior performance 
of the suggested combination, MFI-BM, compared to the most commonly used 
combination, ZR-ZR. In addition, the $gures show that further improvements 
can be achieved using the multihypothesis MFI-MH technique. 
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Akiyo, M=10, QP=10, Skip=3 Akiyo, M=10, QP=10, Macrblock error rate=20% 
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Figure 10.17: Multihypothesis temporal concealment for QSIF AKIYO with M =10 and QP =10 
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Figure 10.18: Multihypothesis temporal concealment for QSIF FOREMAN with M =10 and QP =10 

This is also con$rmed using Figure 10.20, which shows the subjective 
quality of the 102nd frame of QSIF FOREMAN encoded at 8.33 frames=s with 
M =10, QP =10, and corrupted with a random macroblock error rate of 20%. 
Figure 10.20(a) shows the error-free reconstructed frame, whereas 
Figure 10.20(b) shows the locations of the damaged macroblocks in addition 
to errors propagated from previous frames. Figures 10.20(c), 10.20(d), and 
10.20(e) show the same frame when concealed using ZR-ZR, MFI-BM, and 
MFI-MH, respectively. The $gures clearly show that the suggested MFI-BM 
combination and the multihypothesis MFI-MH technique both outperform the 
commonly used ZR-ZR technique. In addition, the $gures clearly show the 
superior subjective quality of the MFI-MH technique (Figure 10.20(e)), even 
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Table Tennis, M=10, QP=10, Skip=3 Table Tennis, M=10, QP=10, Macrblock error rate=20% 
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Figure 10.19: Multihypothesis temporal concealment for QSIF TABLE TENNIS with M =10 and 
QP =10 

over that of MFI-BM (Figure 10.20(d)). In particular note the left eye of 
Foreman (to the right of the viewer) and the diagonal lines in the walls. 

10.6 Discussion 

Because of their simplicity, no added redundancy, and minimum delay, error 
concealment techniques were identi$ed in this chapter as the most suitable 
techniques for mobile video applications. Thus, it was decided to concentrate 
on error concealment and in particular on temporal techniques. 

Conventional temporal concealment techniques estimate one concealment 
displacement for the whole damaged block and then use translational dis-
placement compensation to conceal the block from a reference frame. It was 
realized, therefore, that wrong estimation of the concealment displacement can 
lead to poor concealment of the entire or most of the block. To overcome 
this drawback, a novel temporal concealment technique was designed. In this 
technique, motion $eld interpolation (MFI) is used to estimate one conceal-
ment displacement per pel of the damaged block. Each pel is then concealed 
individually. In this case, incorrect estimation of a concealment displacement 
will a,ect only the corresponding pel rather than the entire block. The inherent 
motion information recovery and the good motion compensation performance 
of the MFI technique improve both stages of temporal concealment, i.e., esti-
mation and compensation. 

To achieve a more robust performance, a second novel temporal conceal-
ment technique was also designed. In this technique, multihypothesis mo-
tion compensation (MHMC) is used to combine the MFI technique with a 
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(a) Error free (32.26 dB) (b) Locations of errors (with propagation) 

(c) Concealed using ZR-ZR (20.62 dB) (d) Concealed using MFI-BM (22.91 dB) 

(e) Concealed using MFI-MH (25.05 dB)

Figure 10.20: Subjective quality of 102nd frame of QSIF FOREMAN encoded at 8.33 frames=s with 
M =10, QP=10, and corrupted with a macroblock error rate of 20% 
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boundary matching (BM) temporal technique. In e,ect, this improves the sec-
ond stage of temporal concealment, i.e., compensation. 

Simulation results, within both an isolated error environment and an H.263 
codec, showed the superior objective and subjective performances of the 
designed techniques. The MFI technique achieved reasonable improvements 
over conventional temporal concealment techniques, but it was found that 
its performance can slightly deteriorate at very high error rates. The com-
bined BM-MFI technique showed a more superior and robust performance at 
all error rates. 

It was also observed that factors like spatial and temporal error propagation, 
imperfections of the error detection algorithm, scene changes, and uncovered 
background can severely degrade the performance of temporal concealment 
techniques. Thus, despite their advantages, such techniques must be combined 
with spatial techniques and must also be supported by powerful error detection 
and error containment techniques. 

The chapter also investigated the performance of temporal error conceal-
ment techniques when incorporated within an LTM-MCP codec. It was found 
that the best techniques to recover the temporal component are zero replace-
ment (ZR) and boundary matching (BM). The former is suNcient at low frame 
skips, whereas the latter is preferred at high frame skips. It was also found that 
the best technique to recover the spatial components is the MFI technique. All 
these $ndings were explained in view of the properties of the long-term mem-
ory block-motion $eld. In general, it was concluded that spatial-components 
recovery is more complex and more important than temporal-component re-
covery. In addition, a combination of the form MFI-BM (i.e., spatial recovery 
using MFI and temporal recovery using BM) will provide the best spatial-
temporal recovery. In order to achieve a more robust performance, the chapter 
described the design of a multihypothesis multiple-reference temporal con-
cealment technique. In this technique, a damaged block is concealed using 
the average of four candidate concealments, probably from di,erent reference 
frames. Simulation results showed the superior performance of this technique. 





Appendix 

Fast Block-Matching Algorithms 

A.1 Notation and Assumptions 

•	 BDM: a block distortion measure, like the SSD or SAD. 

•	 dm: maximum allowed motion displacement. 

•	 N : total number of steps in the search. It is an integer number greater 
than 0. 

•	 s: current search step size. 

•	 (cx; cy ): current search center. 

•	 (mx; my ): current location of minimum distortion. 

•	 (dx; dy): #nal motion vector. 

•	 �·�: %oor operator. It rounds its argument to the nearest integer toward 
−∞. 

•	 �·�: ceil operator. It rounds its argument to the nearest integer toward 
+∞. 

•	 min: minimize operator. It returns the minimum of a given function. 

•	 max: maximize operator. It returns the maximum of a given function. 

•	 arg: argument operator. It returns the argument of a given function. 

•	 All algorithms presented in this appendix assume full-pel accuracy. Sub-
pel accuracy can easily be achieved using very minor modi#cations. 

•	 If the search procedure attempts to search a location outside the search 
window, the corresponding BDM is set to a maximum value. 

259 
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•	 It is assumed that the search procedure keeps a record of all locations 
searched so far and their BDM values. This avoids reevaluating the same 
BDMs in subsequent steps. 

A.2 The Two-Dimensional Logarithmic (TDL) Search 

The two-dimensional logarithmic (TDL) search was proposed by Jain and 
Jain in 1981 [54]. It uses a uniform search pattern of #ve locations (the 
center and endpoints of a + shape). At each step, the search pattern is 
centered at the minimum location from the previous step. The step size is 
halved if the center of the search is the same as that of the previous step. 
The search is stopped when the step size is 1. In this case, nine locations, 
rather than #ve, are searched (the center and endpoints of a ∗ shape) to #nd 
the #nal motion vector. The TDL algorithm is described in the following 
procedure. 

1.	 Initialize the search step size to 

2�log2 dm �−1):s = max(2; 

2.	 Initialize the center of search to the origin of the search window: 

(cx; cy )= (0; 0): 

3.	 Evaluate the BDM at the center of the search and its four vertical and horizontal neighbors 
at a step size of s. Out of this set of #ve locations, #nd the one that achieves the minimum 
BDM: 

(mx; my ) = arg min BDM(i; j); 
(i; j) ∈ P1 

where 

P1 = {(cx; cy ); (cx + s; cy ); (cx − s; cy ); (cx; cy + s); (cx; cy − s)}: 

4.	 IF the minimum is at the center of the search pattern, i.e., if (mx; my )= (cx; cy ), 
THEN 

(a) Halve the search step size: 
s 

s = : 
2 

(b) IF the search step size is 1, i.e., if s =1,  THEN 

i.	 Evaluate the BDM at the center of the search and its eight immediate neigh-
bors. Out of this set of nine locations, set the motion vector to the one that 
achieves the minimum BDM: 

(dx; dy ) = arg min BDM(i; j);
(i; j) ∈ P2 
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where 

P2 = {(cx; cy ); (cx + 1; cy ); (cx − 1; cy ); (cx; cy + 1); (cx; cy − 1); 

(cx − 1; cy − 1); (cx − 1; cy + 1); (cx + 1; cy − 1); (cx + 1; cy + 1)}: 

ii.	 STOP 

(c) ELSE (when the step size is not 1, i.e., s �=1)  GOTO step 3. 

5.	 ELSE (when the minimum is not in the center, i.e., (mx; my ) �= (cx; cy )) 

(a) Set the center of the search to the new minimum location: 

(cx; cy )= (mx; my ): 
(b) GOTO step 3. 

A.3 The N -Steps Search (NSS) 

This is the general form of the three-steps search (TSS) reported by Koga 
et al. in 1981 [145]. It uses a uniform search pattern of nine locations (the 
center and endpoints of a ∗ shape). At each step, the step size is halved 
and the search pattern is centered at the minimum location from the previous 
step. The search is stopped when the step size is 1. The TSS starts with 
a step size of ± 4 pels in the #rst step, then ± 2 pels in the second step 
and ± 1 pel in the third step. This gives a maximum allowed displacement of 
± 4± 2± 1=  ± 7 pels. For larger search windows the number of steps must be 
increased. This is called the N -steps search and is described in the following 
procedure. 

1.	 Find the required number of steps N such that 

2N −1≤dm≤2N : 

2.	 Initialize the search step size to 

s =2N −1: 

3.	 Initialize the center of search to the origin of the search window: 

(cx; cy )= (0; 0): 

4.	 Evaluate the BDM at the center of the search and its eight neighbors at a step size of s. 
Out of this set of nine locations, #nd the one that achieves the minimum BDM: 

(mx; my ) = arg min BDM(i; j); 
(i; j) ∈ P


where


P = {(cx; cy ); (cx + s; cy ); (cx − s; cy ); (cx; cy + s); (cx; cy − s); 

(cx − s; cy − s); (cx − s; cy + s); (cx + s; cy − s); (cx + s; cy + s)}: 
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5.	 IF the search step size is 1, i.e., if s =1,  THEN 

(a) Set the #nal motion vector to the minimum location found so far: 

(dx; dy )= (mx; my ): 
(b) STOP. 

6.	 ELSE (when the step size is not 1, i.e. s �=1)  

(a) Halve the step size: 
s 

s = : 
2 

(b) Set the center of the search to the minimum location: 

(cx; cy )= (mx; my ): 
(c) GOTO step 4. 

A.4 The One-at-a-Time Search (OTS) 

The one-at-a-time search (OTS) was proposed by Srinivasan and Rao in 1985 
[146]. It uses two #xed-size uniform patterns. The search starts using a hori-
zontal pattern of one center location and its immediate left and right neighbors. 
At each step, this search pattern is moved horizontally and centered at the min-
imum location from the previous step. This continues until the minimum is in 
the center of the pattern (i.e., the minimum is the same as that of the previous 
step). In this case, the search switches to the vertical direction using a pattern 
of one center location and its immediate top and bottom neighbors. This is 
explained in the following procedure. 

1.	 Initialize the center of search to the origin of the search window:

(cx; cy )= (0; 0):


2.	 Evaluate the BDM at the center of the search and its immediate left and right neighbors. 
Out of this set of three locations, #nd the one that achieves the minimum BDM: 

(mx; my ) = arg min BDM(i; j); 
(i; j) ∈ Ph 

where 
Ph = {(cx; cy ); (cx + 1; cy ); (cx − 1; cy )}: 

3.	 IF the minimum is at the center of the search pattern, i.e., (mx; my )= (cx; cy ), THEN GOTO 
step 5 (i.e., vertical direction). 

4.	 ELSE 

(a) Move the center of the search to the new minimum location: 

(cx; cy )= (mx; my ): 

(b) GOTO step 2 (i.e., continue in the horizontal direction). 
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5.	 Evaluate the BDM at the center of the search and its immediate top and bottom neighbors. 
Out of this set of three locations, #nd the one that achieves the minimum BDM: 

(mx; my ) = arg min BDM(i; j);
(i; j) ∈ Pv 

where 

Pv = {(cx; cy ); (cx; cy + 1); (cx; cy − 1)}: 

6. IF the minimum is at the center of the search pattern, i.e., (mx; my )= (cx; cy ), THEN 

(a) Set the #nal motion vector to the current minimum: 

(dx; dy )= (mx; my ) 

(b) STOP. 

7.	 ELSE 

(a) Move the center of the search to the new minimum location: 

(cx; cy )= (mx; my ): 

(b) GOTO step 5 (i.e., continue in the vertical direction). 

A.5 The Cross-Search Algorithm (CSA) 

The cross-search algorithm (CSA) was proposed by Ghanbari in 1990 [147]. 
The search includes an early-termination criterion where, in the #rst step, a 
threshold is used to detect if the block is stationary. The search starts with a 
uniform pattern of #ve locations (the center and endpoints of an × shape). At 
each step, the search step size is halved and the search pattern is centered at 
the minimum location from the previous step. The search is stopped when the 
step size is 1. In this case, the search switches to one of two uniform patterns: 
#ve locations using either an × shape or a + shape. This is explained in the 
following procedure. 

1.	 Evaluate BDM(0; 0). 

2.	 IF BDM(0; 0) ¡ Threshold, THEN STOP. 

3.	 Initialize the center of search to the origin of the search window: 

(cx; cy )= (0; 0): 

4.	 Initialize the search step size to half the maximum allowed displacement: 

dm s = : 
2 
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5.	 Evaluate the BDM at the center of the search and its four diagonal neighbors at a step 
size of s. Out of this set of #ve locations, #nd the one that achieves the minimum BDM: 

(mx; my ) = arg min BDM(i; j); 
(i; j) ∈ P1 

where 

P1 = {(cx; cy ); (cx − s; cy − s); (cx + s; cy − s); (cx − s; cy + s); (cx + s; cy + s)}: 
6.	 IF search step size is 1, i.e., if s =1,  THEN 

(a)	 IF the minimum (mx; my ) is one of the three locations (cx; cy ), (cx − 1; cy − 1), 
or (cx + 1; cy + 1), THEN 

i.	 Set the center of search to the minimum location: 

(cx; cy )= (mx; my ): 

ii.	 Evaluate the BDM at the center of the search and its four horizontal and 
vertical immediate neighbors. Out of this set of #ve locations, set the 
motion vector to the one that achieves the minimum BDM: 

(dx; dy ) = arg min BDM(i; j); 
(i; j) ∈ P2 

where 

P2 = {(cx; cy ); (cx − 1; cy ); (cx + 1; cy ); (cx; cy − 1); (cx; cy + 1)}: 
iii.	 STOP. 

(b)	 ELSE 

i.	 Set the center of search to the minimum location: 

(cx; cy )= (mx; my ): 

ii.	 Evaluate the BDM at the center of the search and its four diagonal imme-
diate neighbors. Out of this set of #ve locations, set the motion vector to 
the one that achieves the minimum BDM: 

(dx; dy ) = arg min BDM(i; j); 
(i; j) ∈ P3 

where 

P3 = {(cx; cy ); (cx − 1; cy − 1); (cx + 1; cy − 1); 

(cx − 1; cy + 1); (cx + 1; cy + 1)}: 
iii.	 STOP. 

7.	 ELSE (when step size is not 1, i.e., s �=1)  

(a)	 Halve the step size: s 
s = : 

2 
(b)	 Set the center of the search to the minimum location:


(cx; cy )= (mx; my ):


(c)	 GOTO step 5. 
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A.6 The Diamond Search (DS) 

The diamond search (DS) algorithm was proposed by Zhu and Ma in 1997 
[150,151]. An identical version of the algorithm has also been proposed by 
Tham et al. in 1998 [149]. The algorithm uses two #xed-search patterns. It 
starts with a pattern of nine locations forming a diamond with a step size of 
2. At each step, this search pattern is centered at the minimum location from 
the previous step. This process continues until the minimum is in the center 
of the pattern (i.e., the minimum is the same as that of the previous step). In 
this case, the algorithm switches to the second pattern. This consists of #ve 
locations forming a diamond with a step size of 1. This pattern is used only 
once and the search is then terminated. This is explained in the following 
procedure. 

1.	 Initialize the center of search to the origin of the search window: 

(cx; cy )= (0; 0): 

2.	 Evaluate the BDM at nine locations forming a diamond with a step size of 2 centered 
at the current center location (cx; cy ). Out of this set of nine locations, #nd the one that 
achieves the minimum BDM: 

(mx; my ) = arg min BDM(i; j);
(i; j) ∈ Pd1 

where 

Pd1 = {(cx; cy ); (cx + 2; cy ); (cx − 2; cy ); (cx; cy + 2); (cx; cy − 2) 

(cx − 1; cy − 1); (cx + 1; cy − 1); (cx − 1; cy + 1); (cx + 1; cy + 1)}: 

3.	 IF the minimum is at the center of the search pattern, i.e., (mx; my )= (cx; cy ), 
THEN 

(a)	 Evaluate the BDM at #ve locations forming a diamond with a step size of 1 
centered at the current center location (cx; cy ). Out of this set of #ve locations, 
set the motion vector to the one that achieves the minimum BDM: 

(dx; dy ) = arg min BDM(i; j); 
(i; j) ∈ Pd2 

where 

Pd2 = {(cx; cy ); (cx + 1; cy ); (cx − 1; cy ); (cx; cy + 1); (cx; cy − 1)}: 
(b)	 STOP. 

4.	 ELSE (when the minimum is not in the center, i.e., (mx; my ) �= (cx; cy )), 

(a)	 Set the center of the search to the new minimum location: 

(cx; cy )= (mx; my ): 

(b)	 GOTO step 2. 
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