

Video Coding for
Mobile Communications
E�ciency, Complexity, and Resilience

Mohammed Ebrahim Al-Mualla
Etisalat College of Engineering,

Emirates Telecommunications Corporation (ETISALAT), U.A.E.

C. Nishan Canagarajah and David R. Bull
Image Communications Group,

Center for Communications Research,

University of Bristol, U.K.

Amsterdam Boston London New York Oxford Paris San Diego
San Francisco Singapore Sydney Tokyo

This book is printed on acid-free paper. ∞

Copyright ? 2002, Elsevier Science (USA)
All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to: Permissions
Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887-6777.

Explicit permission from Academic Press in not required to reproduce a maximum of two 3gures
or tables from an Academic Press chapter in another scienti3c or research publication provided
that the material has not been credited to another source and that full credit to the Academic
Press chapter is given.

Academic Press
An Elsevier Science Imprint
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http:==www.academicpress.com

Academic Press
An Elsevier Science Imprint
Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK
http:==www.academicpress.com

Library of Congress Catalog Card Number: 2001098017

International Standard Book Number: 0-12-053079-1

PRINTED IN THE UNITED STATES OF AMERICA

02 03 04 05 06 EB 9 8 7 6 5 4 3 2 1

To my parents, brothers, and sisters
Mohammed E. Al-Mualla

To my family
C. Nishan Canagarajah

To Janice
David R. Bull

Preface................................
Scope and Purpose of the Book....................

Structure of the Bookce for the Book....................................

Acknowledgments...

About the Authors..

List of Acronyms..

1 Introduction to Mobile Video
Communications..

1.1 Motivations and Applications..................

1.2 Main Challenges..

1.3Possible Solutions.....................................

Part I Introduction to Video Coding..............
2 Video Coding: Fundamentals......................

Overview..
What Is Video?...
Analog Video..
Digital Video...
Video Coding Basics..
Intraframe Coding...
Interframe Coding...

3 Video Coding: Standards............................
Overview..
The Need for Video Coding Standards..............
Chronological Development...............................
The H.263 Standard...
The MPEG-4 Standard.......................................

Part II Coding Efficiency................................
4 Basic Motion Estimation Techniques.........

Overview..

Motion Estimation...
DifferentialMethods..
Pel-Recursive Methods......................................
Frequency-Domain Methods..............................
Block-Matching Methods....................................
Efficiency of Block Matching at Very Low Bit
Rates..
Discussion..

5 Warping-Based Motion Estimation
Techniques..

Overview..
Warping-Based Methods: A Review...................
Efficiency of Warping-Based Methods at
Very Low Bit Rates...
Discussion..

6 Multiple-Reference Motion Estimation
Techniques..

Overview..
Multiple-Reference Motion Estimation: A
Review..
Long-Term Memory Motion-Compensated
Prediction...
Discussion..

Part III Computational Complexity................
7 Reduced-Complexity Motion Estimation
Techniques..

Overview..
The Need for Reduced-Complexity Motion
Estimation...
Techniques Based on a Reduced Set of
Motion Vector Candidates..................................
Techniques Based on a Reduced-Complexity
Block Distortion Measure...................................
Techniques Based on a Subsampled
Block-Motion Field..
Hierarchical Search Techniques........................
Fast Full- Search Techniques............................
A Comparative Study...
Discussion..

8 The Simplex Minimization Search..............
Overview..
Block Matching: An Optimization Problem.........
The Simplex Minimization (SM) Optimization
Method...
The Simplex Minimization Search (SMS)...........
Simulation Results..
Simplex Minimization for Multiple-Reference
Motion Estimation...
Discussion..

Part IV Error Resilience..................................
9 Error-Resilience Video Coding
Techniques..

Overview..
A Typical Video Communication System...........
Types of Errors...
Effects of Errors..
Error Detection...
Forward Techniques...
Postprocessing or ConcealmentI Techniques....
Interactive Techniques.......................................
Discussion..

10 Error Concealment Using Motion Field
Interpolation...

Overview..
Temporal Error Concealment Using Motion
Field Interpolation (MFI).....................................
Temporal Error Concealment Using a
Combined BM-MFI Technique...........................
Simulation Results..
Temporal Error Concealment for
Multiple-Reference Motion-Compensated
Prediction...
Discussion..

Appendix Fast Block-Matching
Algorithms...

A.1 Notation and Assumptions......................

A.2 The Two-Dimensional Logarithmic
(TDL) Search..

A.3 The N -Steps Search (NSS)......................

A.4 The One-at-a-Time Search (OTS)............

A.5 The Cross-Search Algorithm (CSA)........

A.6 The Diamond Search (DS)........................

Bibliography..

Signal Processing and its Applications

SERIES EDITORS

Dr Richard Green
Department of Technology, Metropolitan Police Service, London, UK

Professor Truong Nguyen
Electrical and Computer Engineering Department,
University of Wisconsin, Wisconsin, USA

EDITORIAL BOARD

Professor Manrice G. Bellanger
CNAM, Paris, France

Professor David Bull
Department of Electrical and Electronic Engineering,
University of Bristol, UK

Professor Gerry D. Cain
School of Electronic and Manufacturing System Engineering,
University of Westminster, London, UK

Professor Culin Cowan
Department of Electronics and Electrical Engineering,
Queen’s University, Belfast, Northern Ireland

Professor Roy Davies
Machine Vision Group, Department of Physics,
Royal Holloway, University of London, Surrey, UK

Dr Paola Hobson
Motorola, Basingstoke, UK

Professor Mark Sandlar
Department of Electronics and Electrical Engineering,
King’s College London, University of London, UK

Dr Henry Stark
Electrical and Computer Engineering Department,
Illinois Institute of Technology, Chicago, USA

Dr Manecchl Trivedi
Horndean, Waterlooville, UK

Preface

Scope and Purpose of the Book

Motivated by the vision of being able to communicate from anywhere at any
time with any type of information, a natural convergence of mobile and multi-
media is under way. This new area, called mobile multimedia communications,
is expected to achieve unprecedented growth and worldwide commercial
success.

Current second-generation mobile communication systems support a number
of basic multimedia communication services. However, many technologically
demanding problems need to be solved before real-time mobile video com-
munications can be achieved. When such challenges are resolved, a wealth of
advanced services and applications will be available to the mobile user. This
book concentrates on three main challenges:

1. Higher coding e"ciency

2. Reduced computational complexity

3. Improved error resilience

Mobile video communications is an interdisciplinary subject. Complete sys-
tems are likely to draw together solutions from di(erent areas, such as video
source coding, channel coding, network design, and semiconductor design,
among others. This book concentrates on solutions based on video source
coding. In this context, the book adopts a motion-based approach, where ad-
vanced motion estimation techniques, reduced-complexity motion estimation
techniques, and motion-compensated error concealment techniques are used as
possible solutions to the three challenges, respectively.

The idea of this book originated in 1997, when the ,rst author was in
the early stages of his Ph.D. studies. As a newcomer to the ,eld, he started
consulting a number of books to introduce himself to the fundamentals and
standards of video source coding. He realized, however, that, for a beginner,
most of these books seemed too long and too theoretical, with no treatment of
some important practical and implementation issues. As he progressed further

xiii

xiv Preface

in his studies, the ,rst author also realized that the areas of coding e"ciency,
computational complexity, and error resilience are usually treated separately.
Thus, he always wished there was a book that provided a quick, easy, and
practical introduction to the fundamentals and standards of video source coding
and that brought together the areas of coding e"ciency, computational com-
plexity, and error resilience in a single volume. This is exactly the purpose of
this book.

Structure of the Book

The book consists of 10 chapters. Chapter 1 gives a brief introduction to mo-
bile video communications. It starts by discussing the main motivations and
applications of mobile video communications. It then brie2y introduces the
challenges of higher coding e"ciency, reduced computational complexity, and
error resilience. The chapter then discusses some possible motion-based solu-
tions. The remaining chapters of the book are organized into four parts. The
,rst part introduces the reader to video coding, whereas the remaining three
parts are devoted to the three challenges of coding e"ciency, computational
complexity, and error resilience.

Part I gives an introduction to video coding. It contains two chapters. Chap-
ter 2 introduces some of the fundamentals of video source coding. It starts by
giving some basic de,nitions and then covers both analog, and digital video
along with some basic video coding techniques. It also presents the perfor-
mance measures and the test sequences that will be used throughout the book.
It then reviews both intraframe and interframe video coding methods.

Chapter 3 provides a brief introduction to video coding standards. Partic-
ular emphasis is given to the most recent standards, such as H.263 (and its
extensions H.263+ and H.263++) and MPEG-4.

Part II concentrates on coding e"ciency. It contains three chapters. Chap-
ter 4 covers some basic motion estimation methods. It starts by introducing
some of the fundamentals of motion estimation. It then reviews some ba-
sic motion estimation methods, with particular emphasis on the widely used
block-matching methods. The chapter then presents the results of a compar-
ative study between the di(erent methods. The chapter also investigates the
e"ciency of motion estimation at very low bit rates, typical of mobile video
communications. The aim is to decide if the added complexity of this process
is justi,able, in terms of an improved coding e"ciency, at such bit rates.

Chapter 5 investigates the performance of the more advanced warping-based
motion estimation methods. The chapter starts by describing a general warping-
based motion estimation method. It then considers some important parameters,
such as the shape of the patches, the spatial transformation used, and the node

Preface xv

tracking algorithm. The chapter then assesses the suitability of warping-based
methods for mobile video communications. In particular, the chapter compares
the e"ciency and complexity of such methods to those of block-matching
methods.

Chapter 6 investigates the performance of another advanced motion-
estimation method, called multiple-reference motion-compensated prediction.
The chapter starts by brie2y reviewing multiple-reference motion estimation
methods. It then concentrates on the long-term memory motion-compensated
prediction technique. The chapter investigates the prediction gains and the cod-
ing e"ciency of this technique at very low bit rates. The primary aim is to de-
cide if the added complexity, increased motion overhead, and increased mem-
ory requirements of this technique are justi,able at such bit rates. The chapter
also investigates the properties of multiple-reference block-motion ,elds and
compares them to those of single-reference ,elds.

Part III of the book considers the challenge of reduced computational com-
plexity. It contains two chapters. Chapter 7 reviews reduced-complexity motion
estimation techniques. The chapter uses implementation examples and pro,ling
results to highlight the need for reduced-complexity motion estimation. It then
reviews some of the main reduced-complexity block-matching motion estima-
tion techniques. The chapter then presents the results of a study comparing
the di(erent techniques.

Chapter 8 gives an example of the development of a novel reduced-
complexity motion estimation technique. The technique is called the simplex
minimization search. The development process is described in detail, and the
technique is then tested within an isolated test environment, a block-based
H.263-like codec, and an object-based MPEG-4 codec. In an attempt to re-
duce the complexity of multiple-reference motion estimation (investigated in
Chapter 6), the chapter extends the simplex minimization search technique to
the multiple-reference case. The chapter presents three di(erent extensions (or
algorithms) representing di(erent degrees of compromise between prediction
quality and computational complexity.

Part IV concentrates on error resilience. It contains two chapters. Chapter 9
reviews error resilience video coding techniques. The chapter considers the
types of errors that can a(ect a video bitstream and examines their impact on
decoded video. It then describes a number of error detection and error control
techniques. Particular emphasis is given to standard error-resilience techniques
included in the recent H.263+, H.263++, and MPEG-4 standards.

Chapter 10 gives examples of the development of error-resilience tech-
niques. The chapter presents two temporal error concealment techniques. The
,rst technique is based on motion ,eld interpolation, whereas the second
technique uses multihypothesis motion compensation to combine motion ,eld
interpolation with a boundary-matching technique. The techniques are then

xvi Preface

tested within both an isolated test environment and an H.263 codec. The chap-
ter also investigates the performance of di(erent temporal error concealment
techniques when incorporated within a multiple-reference video codec. In par-
ticular, the chapter ,nds a combination of techniques that best recovers the
spatial-temporal components of a damaged multiple-reference motion vector.
In addition, the chapter develops a multihypothesis temporal concealment tech-
nique to be used with multiple-reference systems.

Audience for the Book

In recent years, mobile video communications has become an active and im-
portant research and development topic in both industry and academia. It is,
therefore, hoped that this book will appeal to a broad audience, including
students, instructors, researchers, engineers, and managers.

Chapter 1 can serve as a quick introduction for managers. Chapters 2 and
3 can be used in an introductory course on the fundamentals and the standards
of video coding. The two chapters can also be used as a quick introduction for
researchers and engineers working on video coding for the ,rst time. More
advanced courses on video coding can also utilize Chapters 4, 7, and 9 to
introduce the students to issues in coding e"ciency, computational complex-
ity, and error resilience. The three chapters can also be used by researchers
and engineers as an introduction and a guide to the relevant literature in the
respective areas. Researchers and engineers will also ,nd Chapters 5, 6, 8,
and 10 useful as examples of the design, implementation, and testing of novel
video coding techniques.

Acknowledgments

We are greatly indebted to past and present members of the Image Commu-
nications Group in the Center for Communications Research, University of
Bristol, for creating an environment from which a book such as this could
emerge. In particular, we would like to thank Dr. Przemys law Czerepi@nski for
his generous help in all aspects of video research, Dr. Greg Cain for interest-
ing discussions on implementation and complexity issues of motion estimation,
Mr. Chiew Tuan Kiang for fruitful discussions on the e"ciency of motion
estimation at very low bit rates, and Mr. Oliver Sohm for providing the MPEG-
4 results of Chapter 8.

We also owe a debt to Joel ClayPool and Angela Dooley from Academic
press who have shown a great deal of patience with us while we pulled this
project together.

Preface xvii

Mohammed Al-Mualla is deeply appreciative of the Emirates Telecommu-
nications Corporation (Etisalat), United Arab Emirates, for providing ,nancial
support. In particular, he would like to thank Mr. Ali Al-Owais, CEO and
President of Etisalat, and Mr. Salim Al-Owais, Manager of Etisalat College of
Engineering.

He would also like to give his special thanks to his friends: Saif Bin Haider,
Khalid Almidfa, Humaid Gharib, Abdul-Rahim Al-Maimani, Dr. Naim Dah-
noun, Dr. M. F. Tariq, and Doreen Castañeda.

He would also like to give his most heartfelt thanks to his family and
especially to his parents and his dear brother, Majid, for their unwavering
love, support, and encouragement.

Mohammed Ebrahim Al-Mualla
Umm Al-Quwain, U.A.E.

C. Nishan Canagarajah,
David R. Bull
Bristol, U.K.

About the Authors

Mohammed E. Al-Mualla received the B. Eng. (Honors) degree in communi-
cations from Etisalat College of Engineering, Sharjah, United Arab Emirates
(U.A.E.), in 1995, and the M.Sc. degree in communications and signal pro-
cessing from the University of Bristol, U.K., in 1997. In 2000, he received the
Ph.D. degree from the University of Bristol with a thesis titled “Video Cod-
ing for Mobile Communications: A Motion-Based Approach.” Dr. Al-Mualla
is currently an Assistant Professor at Etisalat College of Engineering. His re-
search is focused on mobile video communications, with a particular emphasis
on the problems of higher coding e2ciency, reduced computational complex-
ity, and improved error resilience.

C. Nishan Canagarajah received the B.A. (Honors) degree and the Ph.D. de-
gree in digital signal processing techniques for speech enhancement, both from
the University of Cambridge, Cambridge, U.K. He is currently a reader in
signal processing at the University of Bristol, Bristol, U.K. He is also a coed-
itor of the book Insights into Mobile Multimedia Communications in the
Signal Processing and Its Applications series from Academic Press. His re-
search interests include image and video coding, nonlinear 6ltering techniques,
and the application of signal processing to audio and medical electronics.
Dr. Canagarajah is a committee member of the IEE Professional Group E5,
and an Associate Editor of the IEE Electronics and Communication Journal.

David R. Bull is currently a professor of signal processing at the University
of Bristol, Bristol, U.K., where he is the head of the Electrical and Electron-
ics Engineering Department. He also leads the Image Communications Group
in the Center for Communications Research, University of Bristol. Professor
Bull has worked widely in the 6elds of 1- and 2-D signal processing. He
has published over 150 papers and is a coeditor of the book Insights into
Mobile Multimedia Communications in the Signal Processing and Its Appli-
cations series from Academic Press. Previously, he was an electronic systems
engineer at Rolls Royce and a lecturer at the University of Wales, Cardi;,
U.K. His recent research has focused on the problems of image and video
communications, in particular, error-resilient source coding, linear and non-
linear 6lterbanks, scalable methods, content-based coding, and architectural

xix

xx About the Authors

optimization. Professor Bull is a member of the EPSRC Communications
College and the Program Management Committee for the DTI=EPSRC LINK
program in broadcast technology. Additionally, he is a member of the U.K.
Foresight ITEC panel.

List of Acronyms

525=60 a television system with 525 vertical lines and a refresh rate
of 60 Hz

625=50 a television system with 625 vertical lines and a refresh rate
of 50 Hz

ACK acknowledgment

ARQ automatic repeat request

ASO arbitrary slice ordering

ATM asynchronous transfer mode

AV average motion vector

AVO audio visual object

BAB binary alpha block

BCH Bose-Chaudhuri-Hocquenghem

BDM block distortion measure

BER bit error rate

BM boundary matching

BMA block-matching algorithm

BMME block-matching motion estimation

CAE context-based arithmetic encoding

CCIR international consultative committee for radio

CCITT international telegraph and telephone consultative committee

CD compact disc; conjugate directions

xxi

xxii List of Acronyms

CDS conjugate-directions search

CGI control grid interpolation

CIF common intermediate format

CMY cyan, magenta, and yellow

CR conditional replenishment

CSA cross-search algorithm

DCT discrete cosine transform

DF displaced frame

DFA di4erential frame algorithm

DFD displaced-frame di4erence

DFT discrete Fourier transform

DM delta modulation

DMS discrete memoryless source

DPCM di4erential pulse code modulation

DS dynamic sprites; diamond search

DSCQS double stimulus continuous quality scale

DSIS double stimulus impairment scale

DSP digital signal processor

DWT discrete wavelet transform

ECVQ entropy-constrained vector quantization

EDGE enhanced data rates for GSM evolution

EREC error-resilience entropy code

ERPS enhanced reference picture selection

EZW embedded zero-tree wavelet

FD frame di4erence

FEC forward error correction

FFT fast Fourier transform

FLC 9xed-length coding

List of Acronyms xxiii

FS full search

FT Fourier transform

GA genetic algorithm

GMC global motion compensation

GMS genetic motion search

GOB group of blocks

GOV group of video object planes

GPRS general packet radio service

GSM group sp:ecial mobile or global system for mobile

HD horizontal di4erence

HDTV high-de9nition television

HEC header extension code

HMA hexagonal matching algorithm

HVS human visual system

IDCT inverse discrete cosine transform

IEC international electrotechnical commission

ISD independent segment decoding

ISDN integrated services digital network

ISO international organization for standardization

ITU-R international telecommunications union — radio sector

ITU-T international telecommunications union — telecommunica-
tion standardization sector

JTC joint technical committee

KLT Krahunen-Lo?eve transform

LBG Linde-Buzo-Gray

LMS least mean square

LOT lapped orthogonal transform

LPE low-pass extrapolation

LTM-MCP long-term memory motion-compensated prediction

xxiv List of Acronyms

MAE mean absolute error

MAP maximum a posteriori probability

MB macroblock

MC motion compensation

MCP motion-compensated prediction

ME motion estimation

MFI motion 9eld interpolation

MHMC multihypothesis motion compensation

MIPS million instructions per second

ML maximum likelihood

MPEG moving picture experts group

MRF Markov random 9eld

MR-MCP multiple-reference motion-compensated prediction

MSE mean squared error

NACK negative acknowledgment

NCCF normalized cross-correlation function

NSS n-steps search

NTSC national television system committee

OMC overlapped motion compensation

OTS one-at-a-time search

PAL phase alternation line

PCA phase correlation algorithm

PDC pel di4erence classi9cation

PDE partial distortion elimination

PRA pel-recursive algorithm

PSNR peak signal-to-noise ratio

PSTN public switched telephone network

List of Acronyms xxv

QAM quadrature amplitude modulation

QCIF quarter common intermediate format

QMF quadrature mirror 9lter

QP quantization parameter

QSIF quarter source input format

RBMAD reduced-bits mean absolute di4erence

R-D rate-distortion

RGB red, green, and blue

RLE run-length encoding

RPS reference picture selection

RS rectangular slice

RVLC reversible variable-length coding

SAD sum of absolute di4erences

SC subcommittee

SEA successive elimination algorithm

SECAM sequential couleur avec memoire

SG study group

SIF source input format

SM simplex minimization

SMD side-match distortion

SMS simplex minimization search

SNR signal-to-noise ratio

SPIHT set partitioning in hierarchical trees

SQCIF sub-QCIF

SSCQS single stimulus continuous quality scale

SSD sum of squared di4erences

STFM=LTFM short-term frame memory=long-term frame memory

xxvi List of Acronyms

TDL two-dimensional logarithmic

TMN test model near-term

TR temporal replacement

TSS three-steps search

TV television

UMTS universal mobile telecommunication system

VD vertical di4erence

VLC variable-length coding

VO video object

VOL video object layer

VOP video object plane; visual object plane

VQ vector quantization

VS video session

WBA warping-based algorithm

WG working group

WHT Walsh-Hadamard transform

Chapter 1

Introduction to Mobile

Video Communications

1.1 Motivations and Applications

In recent years, two distinct technologies have experienced massive growth
and commercial success: multimedia and mobile communications. With the
increasing reliance on the availability of multimedia information and the in-
creasing mobility of individuals, there is a great need for providing multimedia
information on the move. Motivated by this vision of being able to commu-
nicate from anywhere at any time with any type of information, a natural
convergence of mobile and multimedia is under way. This new area is called
mobile multimedia communications.
Mobile multimedia communications is expected to achieve unprecedented

growth and worldwide success. For example, in Western Europe alone, it is
estimated that by the year 2005 about 32 million people will use mobile multi-
media services, representing a market segment worth 24 billion Euros per year
and generating 3;800 million Mbytes of tra(c per month. This will corre-
spond, respectively, to 16% of all mobile users, 23% of the total revenues, and
60% of the overall tra(c. Usage is expected to increase at even higher rates,
with 35% of all mobile users having mobile multimedia services by the year
2010 [1]. The estimates become even more impressive when put in the context
of a worldwide mobile market that reached 331:5 million users by the end of
June 2000 [2] and is expected to grow to 1:7 billion users by 2010 [1]. It is
not surprising, therefore, that this area has become an active and important
research and development topic for both industry and academia, with groups
across the world working to develop future mobile multimedia systems.
The de1nition of the term multimedia has always been a source of great

debate and confusion. In this book, it refers to the presentation of information
through multiple forms of media. This includes textual media (text, style,

1

2 Chapter 1. Introduction to Mobile Video Communications

layout, etc.), numerical media (spreadsheets, databases, etc.), audio media
(voice, music, etc.), visual media (images, graphics, video, etc.) and any other
form of information representation.
Current second-generation mobile communication systems, like the Global

System for Mobile (GSM),1 already support a number of basic multimedia
communication services. Examples are voice, basic fax=data, short message
services, information-on-demand (e.g., sports results, news, weather), e-mail,
still-image communication, and basic internet access. However, many techno-
logically demanding problems need to be solved before real-time mobile video
communication can be achieved. When such challenges are resolved, a wealth
of advanced services and applications will be available to the mobile user.
Examples are:

•	Video-on-demand.

•	Distance learning and training.

•	Interactive gaming.

•	Remote shopping.

•	Online media services, such as news reports.

•	Videotelephony.

•	Videoconferencing.

•	Telemedicine for remote consultation and diagnosis.

•	Telesurveillance.

•	Remote consultation or scene-of-crime work.

•	Collaborative working and telepresence.

1.2 Main Challenges

The primary focus of this book is mobile video communication. In particular,
the book focuses on three main challenges:

1.	Higher coding e�ciency. The radio spectrum is a very limited and
scarce resource. This puts very stringent limits on the bandwidth avail-
able for a mobile channel. Given the enormous amount of data generated

1Originally, GSM was an acronym for Group Sp�ecial Mobile.

3 Section 1.2. Main Challenges

by video, the use of e(cient coding techniques is vital. For example,
real-time transmission of a CIF2 video at 15 frames=s over a 9:6 kbits=s
GSM channel requires a compression ratio of about 1900:1. Although
current coding techniques are capable of providing such compression
ratios, there is a need for even higher coding e(ciency to improve
the quality (i.e., larger formats, higher frame rates, and better visual
quality) of video at such very low bit rates. This continues to be the
case even with the introduction of enhancements to second-generation
systems, like the General Packet Radio Service (GPRS) [3] and the
Enhanced Data Rates for GSM Evolution (EDGE), and also with the
deployment of future higher-capacity, third-generation systems, like the
Universal Mobile Telecommunication System (UMTS) [4].

2.	Reduced computational complexity. In mobile terminals, processing
power and battery life are very limited and scarce resources. Given the
signi1cant amount of computational power required to process video, the
use of reduced-complexity techniques is essential. For example, recent
implementations of video codecs [5,6] indicate that even state-of-the-art
digital signal processors (DSPs) cannot, yet, achieve real-time video en-
coding. Typical results quoted in Refs. 5 and 6 are 1–5 frames=s using
small video formats like SQCIF and QCIF.3

3.	Improved error resilience. The mobile channel is a hostile environment
with high bit error rates caused by a number of loss mechanisms, like
multipath fading, shadowing, and co-channel interference. In the case of
video, the eBects of such errors are magni1ed due to the fact that the
video bitstream is highly compressed to meet the stringent bandwidth
limitations. In fact, the higher the compression is, the more sensitive
the bitstream is to errors, since in this case each bit represents a larger
amount of decoded video. The eBects of errors on video are also magni-
1ed by the use of predictive coding and variable-length coding (VLC).
The use of such coding methods can lead to temporal and spatial error
propagation. It is, therefore, not di(cult to realize that when transmitted
over a mobile channel, compressed video can suBer severe degradation
and the use of error-resilience techniques is vital.

2CIF stands for Common Intermediate Format. It is a digital video format in which the
luminance component is represented by 352 pels × 288 lines and the two chrominance components
are each of dimensions 176 × 144, where each pel is usually represented by 8 bits. Digital video
formats are discussed in more detail in Chapter 2.

3Quarter-CIF (QCIF) has a luminance component of 176 × 144, whereas sub-QCIF (SQCIF)
has a luminance component of 128 × 96.

4 Chapter 1. Introduction to Mobile Video Communications

It should be emphasized that those are not the only requirements of a mo-
bile video communication system. Requirements like low delay, interactivity,
scalability, and security are equally important.

1.3 Possible Solutions

Mobile video communication is a truly interdisciplinary subject [7]. Complete
systems are likely to draw together solutions from diBerent areas, like video
source coding, channel coding, network design, semiconductor design, and oth-
ers. This book will concentrate on solutions based on the video source coding
part of the area. Thus, before being able to present the adopted approach, a
closer look at video source coding is in order. Figure 1.1 shows a typical
video codec. Changes between consecutive frames of a video sequence are
mainly due to the movement of objects. Thus, the motion estimation (ME)
block uses a motion model to estimate the movement that occurred between
the current frame and a reference frame (usually a previously decoded frame
that was stored in a frame buBer). This motion information is then utilized by
the motion compensation (MC) block to move the contents of the reference
frame to provide a prediction of the current frame. This motion-compensated
prediction (MCP) is also known as the displaced frame (DF). The prediction
is then subtracted from the current frame to produce an error signal known as

Motion
compensation

(MC)

Motion
estimation

(ME)

+
_

Transform
Encoder

Transform
Decoder

Frame buffer
(delay)

Decoded
reference

frame

+

difference (DFD)

Decoded DFD

Decoded current frame

Decoder

Motion-compensated
prediction (MCP)

Encoded displaced-frame
Input frame

Motion information

Figure 1.1: Typical video codec

5 Section 1.3. Possible Solutions

the displaced-frame di*erence (DFD). Instead of encoding the current frame
itself, this error signal is encoded, since it has a much reduced entropy. At
the decoder, the same reference frame is used along with the received motion
information to produce the same prediction. This prediction is then added to
the received error signal to reconstruct the current frame.
Careful examination of this codec (as will be detailed in subsequent chap-

ters) reveals that a motion-based approach can be adopted to provide suitable
solutions for the three challenges of higher coding e(ciency, reduced com-
plexity, and error resilience. This motion-based approach can be summarized
as follows:

1.	Advanced motion estimation techniques. One way to achieve higher cod-
ing e(ciency is to improve the performance of the motion estimation
and compensation processes. The aim is to produce a better motion-
compensated prediction and consequently reduce the entropy of the DFD
signal. This should be achieved at the same or, preferably, a reduced
motion overhead.4

2.	Reduced-complexity motion estimation techniques. Motion estimation is
the most computationally intensive process in a typical video codec. In
fact, pro1ling results (as will be shown in Chapter 7) indicate that the
computational complexity of this process is greater than that of all the
remaining encoding steps combined. Thus, by reducing the complexity
of this process, the overall complexity of the codec can be reduced.

3.	Motion-compensated error concealment techniques. Apart from control
and header data, the output of a typical video codec is one of two types:
motion data or error (i.e., DFD) data.5 Among the two types, motion data
carries, in general, most of the information about a frame. In fact, at
very low bit rates (typical of mobile video communication), motion data
consumes a very high percentage of the available bit budget [8]. Thus,
in the case of errors, it is very important to recover lost or erroneously
received motion information. A class of error-resilience techniques that
achieves this is motion-compensated error concealment, also known as
temporal error concealment. Such techniques are particularly suited for
mobile video communication, since, unlike other error resilience tech-
niques, they do not increase the bit rate and they do not introduce any
delay.

4An increase in motion overhead can be tolerated provided that the overall rate-distortion
performance is improved.

5In the case of intracoded frames, the error signal is the same as the frame signal and no
motion data is transmitted.

Part I

Introduction to Video

Coding

This part gives an introduction to video coding. It contains two chapters.
Chapter 2 introduces some of the fundamentals of video source coding. It
starts by giving some basic de�nitions and then covers both analog and digital
video along with some basic video coding techniques. It also presents the
performance measures and the test sequences that will be used throughout the
book. It then reviews both intraframe and interframe video coding methods.
Chapter 3 gives a brief introduction to video coding standards. The chapter

starts by highlighting the need for video coding standards. It then outlines the
chronological development of video coding standards, highlighting their main
techniques and targeted applications. The chapter then concentrates on H.263
(and its recent extensions: H.263+ and H.263++) and MPEG-4 as examples
of the state-of-the-art video coding standards.

Chapter 2

Video Coding: Fundamentals

2.1 Overview

This chapter gives a brief introduction to some fundamentals of video coding.
Many of the concepts introduced in this chapter will be referenced and used
in subsequent chapters. Section 2.2 gives some de�nitions. Section 2.3 covers
analog video, whereas Section 2.4 concentrates on digital video. Section 2.5
introduces some of the basics of video coding. It also presents the perfor-
mance measures and the test sequences that will be used in this book. Section
2.6 reviews intraframe video coding methods, whereas Section 2.7 reviews
interframe coding methods.

2.2 What Is Video?

A still image is a spatial distribution of intensity1 that is constant with respect
to time [10]. Video, on the other hand, is a spatial intensity pattern that changes
with time. Another common term for video is image sequence, since video can
be represented by a time sequence of still-images.

2.3 Analog Video

2.3.1 Analog Video Signal
Video has traditionally been captured, stored, and transmitted in analog form.
The term analog video signal refers to a one-dimensional (1-D) electrical

1Intensity is a measure over some interval of the electromagnetic spectrum of the /ow of power
that is radiated from, or incident on, a surface. It is usually measured in watts per square meter
[9].

9

10 Chapter 2. Video Coding: Fundamentals

signal of time that is obtained by sampling the video intensity pattern in
the vertical and temporal coordinates and converting intensity to electrical
representation. This sampling process is known as scanning.

Raster scanning begins at the top-left corner and progresses horizontally,
with a slight slope vertically, across the image. When it reaches the right-
hand edge it snaps back to the left-hand edge (horizontal retrace) to start
a new scan line. On reaching the bottom-right corner, a complete frame has
been scanned and scanning snaps back to the top-left corner (vertical retrace)
to begin a new frame. During retrace, blanking (black) and synchronization
pulses are inserted.

The most commonly used raster scanning methods are progressive and inter-
laced, as illustrated in Figure 2.1. In progressive (also known as noninterlaced
or 1:1) scanning, a frame is formed by a single scanning pass. In interlaced
(or 2:1) scanning, however, a frame is formed by two successive scanning
passes. In the �rst pass, the odd lines are scanned to form the �rst �eld, then
the even lines are scanned to form the second �eld. When interleaved, the
lines of the two �elds form a single frame.

The aspect ratio, vertical resolution, frame rate, and refresh rate are impor-
tant parameters of the video signal. The aspect ratio is the ratio of the width
to the height of a frame. The vertical resolution is related to the number of
scan lines per frame (including the blanking intervals). The frame rate is the
number of frames scanned per second. The e6ect of smooth motion can be
achieved using a frame rate of about 25–30 frames=s. However, at these frame
rates the human eye picks up the /icker produced by refreshing the display
between frames. To avoid this, the display refresh rate must be above 50 Hz.

vertical retrace horizontal retrace field 1 field 2

Progressive Interlaced

Figure 2.1: Raster scanning methods

11 Section 2.3. Analog Video

Di6erent industries employ di6erent combinations of video parameters. For
example, the computer industry uses progressive scanning with a frame rate
of 72 frames=s. To reduce bandwidth requirements, the television industry uses
interlaced scanning. In this case, the �eld rate is set to 50 or 60 �elds=s to
avoid refresh /icker,2 while the frame rate (which, in interlaced video, is half
the �eld rate) is 25 or 30 frames=s to maintain smooth motion. Note that this
saving in bandwidth is at the expense of vertical resolution. There are two
main television scanning systems: 625=50 (625 scan lines and 50 �elds=s) and
525=60.

2.3.2 Color Representation
The preceding discussion considered monochrome video. In practice, how-
ever, most videos are in color. According to the trichromatic theory of color
vision [11], color is perceived via three classes of cone cells, or photoreceptors,
in the eye. Consequently, a color video can be produced by the superposition
of three video signals. Each signal represents one of the three primary colors:
red, green, and blue (RGB).3 Practical television (TV) and video systems usu-
ally convert this RGB representation to a di6erent color space of luminance4

(which is closely related to the perception of brightness5) and chrominance
(which is related to the perception of color hue6 and saturation7). This repre-
sentation serves two purposes. First, luminance ensures backward compatibility
with monochrome video. Second, this representation lends itself more easily
to video compression. This can be explained as follows. The human visual
system (HVS) has poor response to color (chrominance) spatial detail com-
pared to its response to luminance spatial detail [9]. Thus, the chrominance
signals can be bandlimited or subsampled to achieve compression.

There are three main analog color coding systems: Phase Alternation Line
(PAL), SEquential Couleur Avec Memoire (SECAM) and National
Television System Committee (NTSC). They di6er mainly in the way they

2Originally, television refresh rates were chosen to match the local AC power line frequency.
3The RGB is an additive color system. This means that when all the primaries are added

in equal maximum quantities, the color white is perceived. In printing and painting, the cyan,
magenta, and yellow (CMY) system is used. This is a subtractive color system since the total
absorbtion of all three primaries produces the color white.

4Luminance is proportional to the light energy emitted per unit area of the source, but this
energy is weighted according to the spectral sensitivity of the eye [9].

5Brightness is the attribute of a visual sensation according to which an area appears to emit
more or less light [9].

6Hue is the attribute of a visual sensation according to which an area appears to be similar to
one of the perceived colors, red, yellow, green and blue, or a combination of two of them [9].

7Saturation is the colorfulness of an area judged in proportion to its brightness [9].

12 Chapter 2. Video Coding: Fundamentals

calculate the luminance=chrominance components from the RGB components.
For example, the PAL system calculates the luminance=chrominance compo-
nents as follows:

Y ′ =+0:299R′ + 0:587G′ + 0:114B′;

U ′ = −0:147R′ − 0:289G′ + 0:436B′ =0:493(B′ − Y ′); (2.1)

V ′ =+0:615R′ − 0:515G′ − 0:100B′ =0:877(R′ − Y ′);

where R′G′B′ are gamma-corrected 8 components in the range [0; 1]. Note that
Y ′ is closely related to gamma-corrected luminance and is usually referred to
as luma. The chrominance is calculated as two color-di)erence components
U ′ and V ′ . Again, since they are gamma-corrected, they are referred to as
chroma components. The NTSC and SECAM systems calculate luma in the
same way but use di6erent coeGcients for obtaining the chroma components
(I ′ and Q′ in NTSC, and D′ and D′ in SECAM). B R

2.3.3 Analog Video Systems
There are three main analog video systems. In most of Western Europe, a
625=50 PAL system is used. In Russia, France, the Middle East, and Eastern
Europe, a 625=50 SECAM system is used. In North America and Japan, a
525=60 NTSC system is used. All three systems are interlaced with a 4:3
aspect ratio.

The three systems are composite. This means that the chroma components
are �rst bandlimited and then combined (for example, by frequency inter-
leaving) with the luma component. The resulting composite video signal has
the same bandwidth as the original luma signal. For example, in the 625=50
PAL system, the luma signal has a bandwidth of 5:5 MHz. The chroma sig-
nals are bandlimited to about 1:5 MHz and then QAM (quadrature amplitude
modulation) modulated with a color subcarrier at 4:43 MHz above the picture
carrier. For a more detailed discussion of these systems the reader is referred
to Ref. 13. There are also other analog video systems that use separate com-
ponents (component video) or a separate luma component and a composite
chroma component (S-video) [10].

8In a video system, it is important to convey luminance in such a way that noise and quantiza-
tion have a perceptually similar e6ect across the entire scale from black to white. This is achieved
by applying a nonlinear function to each of the linear RGB components. This process is known
as gamma-correction [12].

13 Section 2.4. Digital Video

2.4 Digital Video

2.4.1 Why Digital?
For the past two decades or so, the world has been experiencing a digital
revolution. Most industries have witnessed a change from analog to digital
technology, and video was no exception. Digital video has the following ad-
vantages over analog video

•	Ease of editing, enhancing, and creating special e6ects.

•	Avoidance of artefacts typical of analog video, like, for example, those
caused by repeated recording on tapes, and errors in color rendition due
to inaccuracies in the separation of composite video signals.

•	Easy software conversion from one standard to another. For analog video
conversion, expensive transcoders are needed.

•	Robustness to noise and ease of encryption.

•	Ease of scalability (spatial, temporal, or signal-to-noise ratio (SNR)).
This facilitates the provision of the same service over a wide range of
networks and hardware platforms.

•	Interactivity.

•	Ease of indexing, search and retrieval. For analog video, this requires
tedious visual scanning.

These advantages allowed a number of new applications and services to
be introduced. For example, the TV broadcasting industry is introducing new
services like interactivity, search and retrieval, video-on-demand, and high-
de�nition television (HDTV). The telecommunication industry is providing
videoconferencing and videophones over a wide range of wired and wireless
networks. The computer industry is providing desktop video and videocon-
ferencing. Other applications include intelligent highway traGc control sys-
tems, medical imaging, surveillance, and /ight simulation, to mention
a few.

2.4.2 Digitization
The process of digitizing video involves three basic operations: �ltering, sam-
pling, and quantization. If the frequency content of the input analog signal
exceeds half the sampling frequency, aliasing artefacts will occur. Thus, the
�ltering operation is used to bandlimit the input signal and condition it for the
following sampling operation.

14 Chapter 2. Video Coding: Fundamentals

The amplitude of the �ltered analog signal is then sampled at speci�c time
instants to generate a discrete-time signal. The minimum sampling rate is
known as the Nyquist rate and is equal to twice the signal bandwidth.

The resulting discrete-time samples have continuous amplitudes. Thus, it
would require in�nite precision to represent them. The quantization operation
is used to map such values onto a �nite set of discrete amplitudes that can be
represented by a �nite number of bits.

Each discrete-time, discrete-amplitude sample is called a picture element
and is usually abbreviated to a pel or a pixel. The pels are arranged in a
two-dimensional (2-D) array to form a digital still image or a digital frame.
A digital video consists of a sequence of such digital frames.

For color video, the foregoing operations are repeated for each component.
Thus, a digital still image would normally be represented by three 2-D arrays.
Almost all digital video systems use component representation. This avoids
the artefacts that result from composite encoding.9

As an example, consider the digitization of a 625=50 PAL analog signal.
The luma and chroma components are �rst �ltered to 5:5 MHz and 1:5 MHz,
respectively. During sampling, minimum sampling frequencies of 11 MHz and
3MHz must be used to sample the luma and chroma components, respectively.
The resulting discrete-time signals are then quantized to a given precision
(usually 8 bits).

2.4.3 Chroma Subsampling
As already mentioned, the HVS has poor response to chrominance spatial
detail compared to its response to luminance spatial detail. This property can
be exploited to reduce bandwidth requirements by subsampling the chroma
components. The most commonly used subsampling patterns are illustrated
in Figure 2.2. In 4:2:2 subsampling, the chroma components are subsampled
by a factor of 2 horizontally. This gives a reduction of about 33% in the
overall raw data rate. In 4:1:1 subsampling, the chroma components are sub-
sampled by a factor of 4 horizontally, giving a reduction of 50%. In 4:2:0
subsampling, the chroma components are subsampled by a factor of 2 both
horizontally and vertically, giving a reduction of 50% in the overall raw
data rate. Vertically subsampled chroma samples are always sited midway
between luma samples. Horizontally subsampled chroma samples, however,

9As already discussed, composite encoding is used in analog systems to save bandwidth. In
digital systems, however, bandwidth is saved using digital video compression techniques, as will
be described later.

15 Section 2.4. Digital Video

(a) 4:2:2 (b) 4:1:1 (c) 4:2:0 co-sited (d) 4:2:0 mid-sited

luma sample chroma sample

Figure 2.2: Chroma subsampling patterns

can be either midway between luma samples (Figure 2.2(d)) or co-sited with
odd-numbered luma samples (Figure 2.2(c)).10

2.4.4 Digital Video Formats
Exchange of digital video between di6erent industries, applications, networks,
and hardware platforms requires standard digital video formats. Following are
the most commonly used formats.

2.4.4.1 CCIR-601

The International Consultative Committee for Radio (CCIR)11 Recommen-
dation 601 [14] de�nes a digital video format for the international exchange
and broadcast of production-quality TV programs. As with analog standards,
CCIR-601 de�nes two interlaced systems: 525=60 and 625=50. The main fam-
ily within the standard uses a chroma subsampling of 4:2:2. The luma sam-
pling frequency is 13:5 MHz, the chroma sampling frequency is 13:5 × 0:5=
6:75 MHz, and the components are quantized to 8 bits. In the 525=60 system,
the luma component of the frame has active dimensions of 720 pels × 480 lines
and the chroma components have 360 pels × 480 lines. In the 625=50 system,
the corresponding values are 720 × 576 for luma and 360 × 576 for chroma.
Note that despite the di6erences between the two systems, they generate the
same raw bit rate12 of 165:89 Mbits=s. The standard is based on component

10In view of this lack of consistency, the authors adopt the terms mid-sited and co-sited to
describe the two cases.
11The CCIR is currently known as ITU-R (International Telecommunications Union—Radio

Sector).
12Bit rate=[(720 × 480) + 2(360 × 480)] × 30 × 8=[(720 × 576) + 2(360 × 576)] × 25 × 8=

165888000 bits=s, where the 2 refers to the two chroma components, the 30 and the 25 are
the frame rates of the two systems, and the 8 is the number of bits per sample.

16 Chapter 2. Video Coding: Fundamentals

video with one luma (Y ′) and two chroma (CR
′ and C′

B) components calculated
as follows:

Y ′ = 219(+0:299R′ + 0:587G′ + 0:114B′) + 16;

CB
′ = 224(−0:169R′ − 0:331G′ + 0:500B′) + 128; (2.2)

CR
′ = 224(+0:500R′ − 0:419G′ − 0:081B′) + 128;

where Y ′ has 220 levels in the range [16; 235]; with black at 16 and white at
235, and C′

B and CR
′ have 225 levels in the range [16; 240]; with zero di6erence

at 128. Note that other levels within the 8-bit range [0; 255] are reserved for
synchronization and signal processing head- and foot-rooms.

2.4.4.2 SIF and QSIF

CCIR-601 was de�ned mainly for broadcast-quality applications. For storage
applications, a lower-resolution format called the Source Input Format (SIF)
was de�ned. This is a progressive 4:2:0 mid-sited format with a luma com-
ponent that is half the CCIR-601 active luma component in both dimensions.
The CCIR-601 format has 720 luminance pels=line, which means that an SIF
format must have 720=2 = 360 luma pels=line. Since 360 is not divisible by 16
(which is the main coding unit within standard video codecs), 8 pels (4 from
each side) are usually discarded to reduce the number of luma pels per line
to 352. Since there are two CCIR-601 systems, there are two SIF formats: the
�rst has a luma component of 352 × 240, chroma components of 176 × 120;
and a frame rate of 30 frames=s, whereas the second format has a luma of
352 × 288, chromas of 176 × 144; and a frame rate of 25 frames=s.

A lower-resolution version of SIF is the quarter-SIF (QSIF) format. It has
half the dimensions of SIF in both directions. This means it has quarter the
number of samples, hence the name. Again, two versions are available: the �rst
has a luma of 176 × 120, chromas of 88 × 60; and a frame rate of 30 frames=s,
whereas the second has a luma of 176 × 144, chromas of 88 × 72; and a frame
rate of 25 frames=s. For methods of converting between CCIR-601, SIF and
QSIF, refer to Ref. 15.

2.4.4.3 CIF and Its Family

In order for video codecs to cope with both 525=60 and 625=50 formats,
a common format was de�ned. In this format, the luma component has a
horizontal resolution that is half that of both CCIR-601 systems, a vertical
resolution that is half that of the 625=50 system, and a temporal resolution
that is half that of the 525=60 system. This intermediate choice of vertical
resolution from one system and temporal resolution from the other leads to
the name Common Intermediate Format (CIF). The CIF is progressive, with

17 Section 2.5. Video Coding Basics

Table 2.1: The CIF family

Luma Chromas

pels=line lines=frame pels=line lines=frame

SQCIF
QCIF
CIF
4CIF
16CIF

128
176
352
704

1408

96
144
288
576

1152

64
88

176
352
704

48
72

144
288
576

4:2:0 mid-sited chroma subsampling and a frame rate of 30 frames=s. There
are a number of lower- and higher-resolution members in the CIF family.
Those are de�ned in Table 2.1.

2.4.4.4 Other Formats

There are a number of other formats. For example, some HDTV systems13 use
a 1440 × 1050 luma at 30 frames=s with progressive scanning and no chroma
subsampling (i.e., 4:4:4).

2.5 Video Coding Basics

2.5.1 The Need for Video Coding
Table 2.2 shows the raw data rates of a number of typical video formats,
whereas Table 2.3 shows a number of typical video applications and the
bandwidths available to them. It is immediately evident that video coding
(or compression) is a key enabling technology for such applications. Consider
a 2-hour CCIR-601 color movie. Without compression, a 5-Gbit compact disc
(CD) can hold only 30 seconds of this movie. To store the entire movie on
the same CD requires a compression ratio of about 240:1. Without compres-
sion, the same movie will take about 36 days to arrive at the other end of a
384 kbits=s Integrated Services Digital Network (ISDN) channel. To achieve
real-time transmission of the movie over the same channel, a compression ratio
of about 432:1 is required.

13A range of HDTV formats exist.

18 Chapter 2. Video Coding: Fundamentals

Table 2.2: Raw data rates of typical video formats

Format Raw data rate

HDTV 1:09 Gbits=s
CCIR-601 165:89 Mbits=s
CIF @ 15 f.p.s. 18:24 Mbits=s
QCIF @ 10 f.p.s. 3:04 Mbits=s

Table 2.3: Typical video applications

Application Bandwidth

HDTV (6-MHz channel) 20 Mbits=s
Desktop video (CD-ROM) 1:5 Mbits=s
Videoconferencing (ISDN) 384 kbits=s
Videophone (PSTN) 56 kbits=s
Videophone (GSM) 10 kbits=s

2.5.2 Elements of a Video Coding System
The aim of video coding is to reduce, or compress, the number of bits used to
represent video. Video signals contain three types of redundancy: statistical,
psychovisual, and coding redundancy. Statistical redundancy is present be-
cause certain data patterns are more likely than others. This is mainly due to
the high spatial (intraframe) and temporal (interframe) correlations between
neighboring pels. Psychovisual redundancy is due to the fact that the HVS is
less sensitive to certain visual information than to other visual information. If
video is coded in a way that uses more and=or longer code symbols than ab-
solutely necessary, it is said to contain coding redundancy. Video compression
is achieved by reducing or eliminating these redundancies.

Figure 2.3 shows the main elements of a video encoder. Each element is
designed to reduce one of the three basic redundancies.

The mapper (or transformer) transforms the input raw data into a represen-
tation that is designed to reduce statistical redundancy and make the data more
amenable to compression in later stages. The transformation is a one-to-one
mapping and is, therefore, reversible.

Mapper Quantizer
Symbol
encoder

Figure 2.3: Elements of a video encoder

∑ ∑

∑

19 Section 2.5. Video Coding Basics

The quantizer reduces the accuracy of the mapper’s output, according to
some �delity criterion, in an attempt to reduce psychovisual redundancy. This
is a many-to-one mapping and is, therefore, irreversible.

The symbol encoder (or codeword assigner) assigns a codeword, a string
of binary bits, to each symbol at the output of the quantizer. The code must
be designed to reduce coding redundancy. This operation is reversible.

In general, compression methods can be classi�ed into lossless methods
and lossy methods. In lossless methods the reconstructed (compressed-
decompressed) data is identical to the original data. This means that such
methods do not employ a quantizer. Lossless methods are also known as bit-
preserving or reversible methods. In lossy methods the reconstructed data is
not identical to the original data; that is, there is loss of information due to the
quantization process. Such methods are therefore irreversible, and they usually
achieve higher compression than lossless methods.

2.5.3 Elements of Information Theory
A source S with an alphabet A can be de�ned as a discrete random pro-
cess S= S1; S2; : : : ; where each random variable Si takes a value from the
alphabet A.

In a discrete memoryless source (DMS) the successive symbols of the
source are statistically independent. Such a source can be completely
de�ned by its alphabet A= {a1; a2; : : : ; aN} and the associated probabilities
P = {p(a1); p(a2); : : : ; p(aN)}, where

∑N
i=1 p(ai) = 1. According to informa-

tion theory, the information I contained in a symbol ai is given by

1
I(ai) = log2 = − log2 p(ai) (bits); (2.3)

p(ai)

and the average information per source symbol H (S), also known as the
entropy of the source, is given by

N N

H (S)= p(ai)I(ai)= − p(ai) log2 p(ai) (bits=symbol): (2.4)
i=1 i=1

A more realistic approach is to model sources using Markov-K random
processes. In this case the probability of occurrence of a symbol depends on
the values of the K preceding symbols. Thus, a Markov-K source can be
speci�ed by the conditional probabilities p(Sj = ai|Sj−1; : : : ; S j−K), for all j,
ai ∈ A. In this case, the entropy is given by

H (S)= p(Sj−1; : : : ; S j−K)H (S|Sj−1; : : : ; S j−K); (2.5)
SK

∑

20 Chapter 2. Video Coding: Fundamentals

where SK denotes all possible realizations of Sj−1; : : : ; S j−K , and

H (S|Sj−1; : : : ; S j−K)

= − p(Sj = ai|Sj−1; : : : ; S j−K) log p(Sj = ai|Sj−1; : : : ; S j−K):
ai∈A

(2.6)

The performance bound of a lossless coding system is given by the lossless
coding theorem [16]:

Lossless coding theorem: The minimum bit rate Rmin that can be
achieved by lossless coding of a source S can be arbitrarily close,
but not less than, the source entropy H (S). Thus Rmin = H (S) + �,
where � is a positive quantity that can be made arbitrarily close to zero.

For a DMS, this lower bound can be approached by coding symbols inde-
pendently, whereas for a Markov-K source, blocks of K symbols should be
encoded at a time.

The performance bounds of lossy coding systems are addressed by a branch
of information theory known as rate-distortion theory [16, 17, 18]. This the-
ory provides lower bounds on the obtainable average distortion for a given
average bit rate, or vice versa. It also promises that codes exist that approach
the theoretical bounds when the code dimension and delay become large. An
important theorem in this branch is the source coding theorem [17]:

Source coding theorem: There exists a mapping from source symbols
to codewords such that for a given distortion D, R(D) bits=symbol are
suGcient to achieve an average distortion that is arbitrarily close to D.

The function R(D) is known as the rate-distortion function. It is a convex,
continuous, and strictly decreasing function of D, as illustrated in Figure 2.4.
This function is normally computed using numerical methods [18], although
for simple source and distortion models it can be computed analytically. Al-
though rate-distortion theory does not give an explicit method for constructing
practical optimum coding systems, it gives very important hints about the
properties of such systems.

2.5.4 Quantization
As already discussed, quantization is a key element of a video coding system.
Quantization can be viewed as a many-to-one mapping. It represents a set
of continuous-valued samples with a �nite number of symbols. If each input
sample is quantized independently, then the process is referred to as scalar

21 Section 2.5. Video Coding Basics

R(0) = H(S)

Rate, R

0

R(D)

0 Dmax

Distortion, D

Figure 2.4: Rate-distortion function

quantization. If, however, the input samples are grouped into a set of vectors
and this set is mapped to a �nite number of vectors, then the process is
known as vector quantization. Vector quantization is discussed in more detail
in Section 2.6.4.

Assume that the quantizer input s varies between smin and smax and that this
range is to be mapped to a �nite set of N symbols, then a set of N + 1 de-
cision levels di, 0 ≤ i ≤ N , are �rst de�ned, where d0 = smin and dN = smax.
This divides the input range into N quantization intervals. At the output
of the quantizer, each quantization interval is then represented by a recon-
struction level ri , 1 ≤ i ≤ N . Thus, a scalar quantizer Q(·) can be de�ned as
follows:

ṡ= Q(s)= ri; if di−1¡s ≤ di; where 1 ≤ i ≤ N; (2.7)

where ṡ is the quantized output. There are, in general, two types of op-
timum scalar quantizers: Lloyd-Max and entropy-constrained. Lloyd-Max
[19, 20] quantizers are designed to minimize the mean squared error with a
�xed number of levels. Entropy-constrained quantizers [21] are designed to
minimize a distortion measure for a constant output entropy.

The simplest form of scalar quantization is uniform quantization. In this
case, the decision levels (and the reconstruction levels) are equally spaced,
with a quantizer step size �. In addition, the reconstruction levels are set
to the midpoints of the quantization intervals. Figure 2.5(a) shows an ex-
ample of a uniform quantizer, with N = 7 reconstruction levels. In this case,

22 Chapter 2. Video Coding: Fundamentals

input, s

output, s

2

θ
2

3θ
2

5θ
2

7θ
2

θ−
2

3θ−
2

5θ−
2

7θ−

θ

θ

θ 2

θ 3

θ−

θ 2−

θ 3−

0

reconstruction levels, ir

decision levels, id

step size,

maxsmins

:N number of output symbols

N

ss minmax − =θ

Niisd i ≤≤+= 0,min θ

Nidr ii ≤≤+= − 1,
21

θ

·

(a) Without dead zone

input, s

output, s

θ θ 2 θ 3 θ 4θ−θ 2−θ 3−θ 4−

2

3θ

2

5θ

2

7θ

2

3θ−

2

5θ−

2

7θ−

step size,θdead zone

.

(b) With dead zone

Figure 2.5: Uniform threshold quantizers

[]

[]

23 Section 2.5. Video Coding Basics

the quantization process can be implemented at the encoder using
s

ŝ= NINT ; (2.8)
�

where NINT[·] is the operation of rounding to the nearest integer and ŝ is
called the quantization index. It is the quantization index that is encoded and
sent to the decoder. The decoder can then dequantize this index to obtain the
reconstructed output as follows:

ṡ= � · ŝ: (2.9)

This type of quantizer is also known as a threshold quantizer, because it
quantizes to zero all those inputs whose magnitudes are below a threshold.
As will be discussed later, this type of quantizer is usually used in transform
coding to reduce the number of transform coeGcients that need to be encoded.
Another example of uniform threshold quantizers is illustrated in Figure 2.5(b).
In this case, the quantization interval around zero has been extended to form
a dead zone. This causes more nonsigni�cant inputs to be quantized to zero
and, thus, increases compression. The quantization equation for this quantizer
is given by

s
ŝ= FIX ; (2.10)

�
where FIX[·] is the operation of rounding to the nearest integer toward zero
(i.e., truncation). The corresponding dequantization equation is given by

�
ṡ = � · ŝ + SIGN(ŝ) ·

2
; (2.11)

  +1; a¿0;  
SIGN(a)= 0; a =0; (2.12)    −1; a¡0:

Scalar quantizers can also be nonuniform. In this case, more reconstruction
levels are assigned to more signi�cant subintervals within the input range. This
yields a higher overall accuracy.

2.5.5 Symbol Encoding
Another key element of video coding systems is the symbol encoder. This
assigns a codeword to each symbol at the output of the quantizer. The symbol
encoder must be designed to reduce the coding redundancy present in the set
of symbols. Following are a number of commonly used techniques that can
be applied individually or in combinations.

24 Chapter 2. Video Coding: Fundamentals

2.5.5.1 Run-Length Encoding

The output of the quantization step may contain long runs of identical sym-
bols. One way to reduce this redundancy is to employ run-length encoding
(RLE). There are di6erent forms of RLE. For example, if the quantizer output
contains long runs of zeros, then RLE can represent such runs with interme-
diate symbols of the form (RUN, LEVEL). For example, a run of the form
0; 0; 0; 0; 0; 9 can be represented by the intermediate symbol (5,9).

2.5.5.2 Entropy Encoding

The quantizer can be considered a DMS Q that can be completely speci-
�ed by its alphabet R = {r1; r2; : : : ; rN }, where ri are the reconstruction levels
and the associated probabilities of occurrence P= {p(r1); p(r2); : : : ;
p(rN)}. The information contained in a symbol I (ri) is given by
Equation (2.3), whereas the entropy of the source H (Q) is given by
Equation (2.4).

Now consider a symbol encoder that assigns a codeword ci of length l(ci)
bits to symbol ri . Then the average word length LR of the code is given by

N ∑
RL = p(ri)l(ci) (bits); (2.13)

i=1

and the eGciency () of the code is
H (Q)

 = : (2.14)RL
Thus, an optimal (= 1) code must have an average word length that is

equal to the entropy of the source; i.e., LR = H (Q). Clearly, this can be achieved
if each codeword length is equal to the information content of the associated
symbol, that is, l(ci)= I (ri). Since I (ri) is inversely proportional to p(ri)
(from Equation (2.3)), then an eGcient code must assign shorter codewords
to more probable symbols, and vice versa. This is known as entropy encoding
or variable-length coding (VLC) (as opposed to �xed-length coding (FLC)).

The most commonly used VLC is Hu)man coding [22]. Given a �nite
set of symbols and their probabilities, Hu6man coding yields the optimal14

integer-length pre�x15 code. The basic principles of Hu6man coding can be
illustrated using the example given in Figure 2.6. In each stage, the two least
probable symbols are combined to form a new symbol with a probability equal

14Hu6man is optimal in the sense that no other integer-length VLC can achieve a smaller average
word length.
15In a pre�x code, no codeword is a pre�x of another codeword. This makes the code uniquely

decodable.

25 Section 2.5. Video Coding Basics

1a
0.40

2a
0.25

3a
0.20

4a
0.10

5a
0.05

0

1

0

1

1

0

1

0

6a
0.15

7a
0.35

8a
0.60

9a
1.00

Original

alphabet

Figure 2.6: Hu6man coding example

Table 2.4: Comparison between VLC (of Figure 2.6) and a 3-bit FLC

ri p(ri) I (ri) VLC ci FLC ci

a1 0.40 1.32 bits 0 (1 bit) 000
a2 0.25 2.00 bits 10 (2 bits) 001
a3 0.20 2.32 bits 111 (3 bits) 010
a4 0.10 3.32 bits 1101 (4 bits) 011
a5 0.05 4.32 bits 1100 (4 bits) 100

H (R) ≈ 2:04 bits=symbol
RLFLC = 3 bits=word RLVLC ≈ 2:1 bits=word
 FLC ≈ 0:68 VLC ≈ 0:97

to the sum of their probabilities. This new symbol creates a new node in
the tree, with two branches connecting it to the original two nodes. A “0” is
assigned to one branch and a “1” is assigned to the other. The original two
nodes are then removed from the next stage. This process is continued until
the new symbol has a probability of 1. Now, to �nd the codeword for a given
symbol, start at the right-hand end of the tree and follow the branches that
lead to the symbol of interest combining the “0”s and “1”s assigned to the
branches. Table 2.4 shows the obtained VLC and compares it to an FLC of
3 bits. Clearly, the Hu6man VLC is much more eGcient than the FLC.

There are more eGcient implementations of Hu6man coding. For example,
in many cases, most of the symbols of a large symbol set have very small
probabilities. This leads to very long codewords and consequently to large

26 Chapter 2. Video Coding: Fundamentals

storage requirements and high decoding complexity. In the modi�ed Hu)man
code [23] the less probable symbols (and their probabilities) are lumped into
a single symbol like ESCAPE. A symbol in this new ESCAPE category is
coded using the VLC codeword for ESCAPE followed by extra bits to identify
the actual symbol. Standard video codecs also use 2-D and 3-D versions of
the Hu6man code. For example, the H.263 standard (see Section 3.4) uses a
3-D Hu6man code where three di6erent symbols (LAST, RUN, LEVEL) are
lumped into a single symbol (EVENT) and then encoded using one VLC
codeword.

One disadvantage of the Hu6man code is that it can only assign integer-
length codewords. This usually leads to a suboptimal performance. For ex-
ample, in Table 2.4, the symbol a3 was represented with a 3-bit codeword,
whereas its information content is only 2:32 bits. In fact, Hu6man code can
be optimal only if all the probabilities are integer powers of 1=2. An en-
tropy code that can overcome this limitation and approach the entropy of the
source is arithmetic coding [24]. In Hu6man coding there is a one-to-one
correspondence between the symbols and the codewords. In arithmetic coding,
however, a single variable-length codeword is assigned to a variable-length
block of symbols.

2.5.6 Performance Measures
When evaluating the performance of a video coding system, a number of
aspects need to be assessed and measured. One important aspect is the amount
of compression (C) achieved by the system. This can be measured in a number
of ways:

C =
number of bits in original video

number of bits in compressed video
(unitless); (2.15)

C =
number of bits in compressed video
number of pels in original video

(bits=pel); (2.16)

C =
number of bits in compressed video
number of frames in original video

× frame rate (bits=s):

(2.17)

Another important aspect is the reconstruction quality. This can be assessed
using a number of subjective and objective measures. Subjective measures are
normally evaluated by showing the reconstructed video to a group of subjects
and asking for their views on the perceived quality. A number of subjective
assessment methodologies have been developed over the years. Examples are

∑ ∑

∑ ∑

∑ ∑

()

27 Section 2.5. Video Coding Basics

the double stimulus impairment scale (DSIS) and the double and single stim-
ulus continuous quality scales, (DSCQS) and (SSCQS), respectively. For a
detailed description of such experiments the reader is referred to Ref. 25.

Despite their reliability, subjective quality experiments are expensive and
time consuming. Objective measures provide cheaper and faster alternatives.
One commonly used objective measure is the mean squared error (MSE),
which is de�ned as

MSE =
1 H ∑ V ∑

[f(x; y) − f̂(x; y)]2; (2.18)
H × V

x=1 y=1

where H and V are the horizontal and vertical dimensions of the frame, re-
spectively, and f(x; y) and f̂(x; y) are the pel values at location (x; y) of
the original and reconstructed frames, respectively. Care should be taken to
include color components and to take into account any chroma subsampling.
For example, the MSE of a reconstructed 4:2:0 color frame can be calculated
as 

1 H V

MSE4:2:0 =  [Y ′(x; y) − Ŷ ′(x; y)]2
3 H × V2 x=1 y=1

H=2 V=2

+ [CR
′ (x; y) − Ĉ′

R(x; y)]
2

(2.19)
x=1 y=1 
H=2 V=2

C′ + [CB
′ (x; y) − ˆB(x; y)]

2

x=1 y=1
2= 3 (MSEY � + 1MSEC� + 1MSEC�):4 R 4 B

A more common form of the MSE measure is the peak signal-to-noise
ratio (PSNR), which is de�ned as

f2
maxPSNR = 10 log10 (dB); (2.20)

MSE

where fmax is the maximum possible pel value (for example, 255 for an 8-bit
resolution component). Although this measure does not always correlate well
with perceived video quality, its relative simplicity makes it a very popular
choice in the video coding community. Thus, to facilitate comparisons with
other algorithms reported in the literature, this book adopts the PSNR measure.
If accuracy is a major concern, then more sophisticated objective measures
based on perceptual models can be used [26].

When testing a video coding algorithm, it is very important to subject it to
a range of input video sequences with di6erent characteristics and a reasonable

28 Chapter 2. Video Coding: Fundamentals

(a) FOREMAN (b) AKIYO (c) TABLE TENNIS

Figure 2.7: Three test sequences

spread of data properties. The Moving Picture Experts Group (MPEG) estab-
lished a library of CCIR-601 test sequences divided into �ve classes: class A
(low spatial detail and low amount of motion), class B (medium spatial detail
and low amount of motion or vice versa), class C (high spatial detail and
medium amount of motion, or vice versa), class D (stereoscopic), and class E
(hybrid of natural and synthetic content) [27]. The �rst three classes are more
relevant to the work carried out in this book. Thus, the book uses three test
sequences: AKIYO, FOREMAN, and TABLE TENNIS, where each sequence is a rep-
resentative of one of the three relevant classes, A, B, and C, respectively. The
three sequences are at QSIF resolution and include 300 frames each. This res-
olution is typical of the sequences used in very-low-bit-rate applications. Both
AKIYO and TABLE TENNIS have luma components of 176 × 120 and a frame rate
of 30 frames=s, whereas FOREMAN has a luma component of 176 × 144 and a
frame rate of 25 frames=s. Figure 2.7 shows the luma component of the �rst
frame of each of the three test sequences.

2.6 Intraframe Coding

Intraframe coding refers to video coding techniques that achieve compression
by exploiting (reducing) the high spatial correlation between neighboring pels
within a video frame. Such techniques are also known as spatial redundancy
reduction techniques or still-image coding techniques.

2.6.1 Predictive Coding
Predictive coding was originally proposed by Cutler in 1952 [28]. In this
method, a number of previously coded pels are used to form a prediction of
the current pel. The di)erence between the pel and its prediction forms the
signal to be coded. Obviously, the better the prediction, the smaller the error

29 Section 2.6. Intraframe Coding

Quantizer

Predictor
s ~

e Symbol
encoder

s

-

ŝ

Symbol
decoder

Predictor
s ~

ŝ

+

+
e · e ·

+

(a) Encoder (b) Decoder

Figure 2.8: Block diagram of a predictive coding system

signal and the more eGcient the coding system. At the decoder, the same
prediction is produced using previously decoded pels, and the received error
signal is added to reconstruct the current pel. A block diagram of a predic-
tive coding system is depicted in Figure 2.8. Predictive coding is commonly
referred to as di)erential pulse code modulation (DPCM). A special case of
this method is delta modulation (DM), which quantizes the error signal using
two quantization levels only.

Predictive coding can take many forms, depending on the design of the
predictor and the quantizer blocks. The predictor can use a linear or a nonlinear
function of the previously decoded pels, it can be 1-D (using pels from the
same line) or 2-D (using pels from the same line and from previous lines), and
it can be �xed or adaptive. The quantizer also can be uniform or nonuniform,
and it can be �xed or adaptive.

The minimal storage and processing requirements were partly responsible
for the early popularity of this method, when storage and processing devices
were scarce and expensive resources. The method, however, provides only
a modest amount of compression. In addition, its performance is highly de-
pendent on the statistics of the input data, and it is very sensitive to errors
(feedback through the prediction loop can cause error propagation). As pro-
cessing and storage devices became more available, more complex, more eG-
cient methods like transform coding have become more popular. Despite this,
predictive coding is still used in video coding, as, for example, in the lossless
coding of motion vectors.

2.6.2 Transform Coding
Transform coding, developed more than two decades ago, has proven to be
a very e6ective video coding method. Today, it forms the basis of almost all
video coding standards. Figure 2.9 shows a block diagram of a typical trans-
form coding system. The input frame is �rst segmented into N × N blocks.

30 Chapter 2. Video Coding: Fundamentals

Input ·
frame Segment

into N × N
blocks

), y x f (
Forward

transform

),v u F (
Quantizer

),v u F (
Symbol
encoder

(a) Encoder

Symbol
),v u F (·

Inverse
),ˆ (y x f

Combine

Reconstructed
frame

decoder transform N × N blocks

(b) Decoder

Figure 2.9: Block diagram of a transform coding system

A unitary16 space-frequency transform is applied to each block to produce an
N × N block of transform (spectral) coeGcients that are then suitably quan-
tized and coded. At the decoder, an inverse transform is applied to reconstruct
the frame. The main goal of the transform is to decorrelate the pels of the
input block. This is achieved by redistributing the energy of the pels and con-
centrating most of it in a small set of transform coeGcients. This is known as
energy compaction. The transform process can also be interpreted as a coor-
dinate rotation of the input or as a decomposition of the input into orthogonal
basis functions weighted by the transform coeGcients [29]. Compression comes
about from two main mechanisms. First, low-energy coeGcients can be dis-
carded with minimum impact on the reconstruction quality. Second, the HVS
has di6ering sensitivity to di6erent frequencies. Thus, the retained coeGcients
can be quantized according to their visual importance.

When choosing a transform, three main properties are desired: good en-
ergy compaction, data-independent basis functions, and fast implementation.
The Karhunen-LoVeve transform (KLT) is the optimal transform in an energy-
compaction sense. Unfortunately, this optimality is due to the fact that the
KLT basis functions are dependent on the covariance matrix of the input
block. Recomputing and transmitting the basis functions for each block is
a nontrivial computational task. These disadvantages severely limit the use
of the KLT in practical coding systems. The performance of many subopti-
mal transforms with data-independent basis functions have been studied [30].
Examples are the discrete Fourier transform (DFT), the discrete cosine trans-
form (DCT), the Walsh-Hadamard transform (WHT), and the Haar transform.
It has been demonstrated that the DCT has the closest energy-compaction
performance to that of the optimum KLT [30]. This has motivated the de-
velopment of a number of fast DCT algorithms, e.g., Ref. 31. Due to these

16A unitary transform is a reversible linear transform with orthonormal basis functions [29].

√

31 Section 2.6. Intraframe Coding

attractive features, i.e., near-optimum energy-compaction, data-independent ba-
sis functions and fast algorithms, the DCT has become the “workhorse” of
most image and video coding standards.

The DCT was developed by Ahmed et al. in 1974 [32]. There are four
slightly di6erent versions of the DCT [33], but the one commonly used for
video coding is denoted by DCT-II. The 2-D DCT-II of an N × N block of
pels is given by

N −1 N −1 () ()
F(u; v)= C(u)C(v)

∑

x=0

∑

y=0

f(x; y) cos
(2x + 1)u'

2N
cos

(2y + 1)v'
2N

;

(2.21)

where f(x; y) is the pel value at location (x; y) within the block, F(u; v) is
the corresponding transform coeGcient, 0 ≤ u; v; x; y ≤ N − 1, and

  1  N ; (=0;
C(()= √ (2.22)   2 ; otherwise:N

The transform coeGcient F (0; 0) at the top-left corner of the transformed block
is called the DC coeGcient because it contains the lowest frequencies in both
the horizontal and vertical dimensions. The corresponding inverse DCT trans-
form is given by

N −1 N −1 () () ∑ ∑ (2x + 1)u' (2y + 1)v'
f(x; y)= C(u)C(v)F(u; v) cos cos :

2N 2N
u=0 v=0

(2.23)

It can be deduced from Equation (2.21) that the computational complexity
of an N × N 2-D DCT is of the order O(N 4). However, one of the advantages
of the DCT is that it is separable. This means that a 2-D DCT can be separated
into a pair of 1-D DCTs. Thus, to obtain the 2-D DCT of an N × N block, a
1-D DCT is performed �rst on each of the N rows of the block and then on
each of the N columns of the resulting block (or vice versa). The same applies
to the inverse DCT. This reduces the complexity to O(2N 3). Further reductions
in complexity can be achieved using a number of fast DCT algorithms [31].

Beside transform selection, a signi�cant factor that a6ects transform coding
performance and computational complexity is the block size. In general, the

32 Chapter 2. Video Coding: Fundamentals

5

8 16 11 10 16 24 40 51 61

12

14

14

18

24

49

72

12 14 19 26 58 60 55

13 16 24 40 57 69 56

17 22 29 51 87 80 62

22 37 56 68 109 103 77

35 55 64 81 104 113 92

64 78 87 103 121 120 101

92 95 98 112 100 103 99

5 5

3

55

5 5

3 3

3 3

3 3 3

3 3 3

3 3 3

2 2 2

2 2

2

2 2

2 2

2222

22

2

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

(a) 	Zonal mask with bit (b) Quantization matrix (c) Zigzag scanning
allocation for threshold coding

Figure 2.10: Transform coeGcient bit allocation

use of smaller block sizes reduces computational complexity.17 However, as
will be discussed later, transform coding su6ers from blocking artefacts at very
low bit rates. Such artefacts are more disturbing with smaller block sizes [15].
As a compromise between computational complexity and blocking artefacts,
most transform coding systems employ a block size of 8 × 8 or 16 × 16. Note
that both sizes are powers of 2, which simpli�es computations.

Another important factor in transform coding is bit allocation. This refers
to the process of determining which coeGcients should be retained for cod-
ing and how coarsely each retained coeGcient should be quantized. There are
two main approaches: zonal coding and threshold coding. In zonal coding the
retained coeGcients are selected on the basis of maximum variance. Thus, the
locations of the retained coeGcients with the largest variances are indicated
by a zonal mask that is the same for all blocks. Once the retained coeGcients
are decided, a number of methods can be used to decide the number of bits
allocated to each. One method is to choose the number of bits to be propor-
tional to the variance of the coeGcient. Figure 2.10(a) shows a zonal mask
with the allocated bits. Once the number of bits allocated for each coeGcient
is determined, a di6erent quantizer can be designed for each coeGcient.

One disadvantage of zonal coding is that the locations of the retained co-
eGcients and the bits allocated to them are �xed for all blocks. In threshold
coding, however, the locations and the bit allocation can be adapted to the
characteristics of the block. For this reason, this method is employed by most
video coding standards. In threshold coding, the retained coeGcients are se-
lected on the basis of maximum magnitude. Thus, only those coeGcients whose

17For example, if a 256 × 256 frame was divided into 256 blocks, each of 16 × 16 pels, then a
direct implementation of the 2-D DCT will require: blocks × N 4 =256 × 164 =16; 777; 216 mul-
tiplications. If, however, the same frame was divided into 4096 blocks, each of 4 × 4 pels, then
4096 × 44 =1; 048; 576 multiplications will be required.

33 Section 2.6. Intraframe Coding

magnitudes are above a threshold are retained. In practice, the thresholding and
the following quantization operations are combined in one operation using a
uniform threshold quantizer as was described in Section 2.5.4 (see Figure 2.5
and Equations (2.8) and (2.10)). In this case, a quantization matrix is used to
de�ne the quantizer step size, �, for each coeGcient in the block. A typical
quantization matrix is given in Figure 2.10(b). Note that low-frequency coeG-
cients (toward top-left corner) are more �nely quantized (i.e., quantized with a
smaller step size) because of two reasons. First, the DCT tends to concentrate
most of the energy in low frequencies. Second, the HVS is more sensitive
to variations in low frequencies. Since in threshold coding the locations of
the retained coeGcients vary from block to block, those locations need to be
encoded. A commonly used strategy is to zigzag scan the transform coeG-
cients, as illustrated in Figure 2.10(c), in an attempt to produce long runs of
zeros, and then RLE is used to encode the resulting array.

Compared to predictive coding, transform coding provides higher compres-
sion with less sensitivity to errors and less dependence on the input data
statistics. Its higher computational complexity and storage requirements have
been o6set by advances in integrated circuit technology. One disadvantage,
however, is that when compression factors are pushed to the limit, three
types of artefacts start to occur: (i) “graininess” due to coarse quantization
of some coeGcients, (ii) “blurring” due to the truncation of high-frequency
coeGcients, and (iii) “blocking artefacts,” which refer to arti�cial disconti-
nuities appearing at the borders of neighboring blocks due to independent
processing of each block. Since blocking artefacts are the most disturbing, a
number of methods have been proposed to reduce them. Examples are over-
lapping blocks at the encoder [34], the use of the lapped orthogonal trans-
form (LOT) [35], and postprocessing using �ltering and image restoration
techniques [36].

2.6.3 Subband Coding
As already mentioned, rate-distortion theory can provide insights into the de-
sign of eGcient coders. For example, in Ref. 37 it is shown that the math-
ematical form of the rate-distortion function suggests that an eGcient coder
splits the original signal into spectral components of in�nitesimal bandwidth
and encodes these spectral components independently. This is the basic idea
behind subband coding. Subband coding was �rst introduced by Crochiere
et al. in 1976 in the context of speech coding [38] and was applied to image
coding by Woods and O’Neil in 1986 [39]. In subband coding the input image
is passed through a set of bandpass �lters to create a set of bandpass images,
or subbands. Since a bandpass image has a reduced bandwidth compared to
the original image, it can be downsampled (subsampled or decimated). This

34 Chapter 2. Video Coding: Fundamentals

Analysis
filters

Downsample Upsample
Synthesis

filters

1 nh

2 nh

2↓

2↓

2↑

2↑

1 ng

2 ng

+

ˆ

C
oding, C

hannel, D
ecoding

Analysis stage Synthesis stage

) (

) (

) (n x
) (

) (

) (n x

h), (g 1) (: low-pass filters), (g 2) (: high-pass filters1 n n h 2 n n

Figure 2.11: A 1-D, two-band subband coding system

process of �ltering and downsampling is called the analysis stage. The sub-
bands are then quantized and coded independently. At the decoder, the de-
coded subbands are upsampled (interpolated), �ltered, and added together to
reconstruct the image. This is knows as the synthesis stage. Note that sub-
band decomposition does not lead to any compression in itself, since the total
number of samples in the subbands is equal to the number of samples in
the original image (this is known as critical decimation). The power of this
method resides in the fact that each subband can be coded eGciently accord-
ing to its statistics and visual importance. A block diagram of a basic 1-D,
two-band subband coding system is presented in Figure 2.11.

Ideally, the frequency responses of the low-pass and high-pass �lters should
be nonoverlapping but contiguous and have unity gain over their bandwidths.
In practice, however, �lters are not ideal and their responses must be over-
lapped to avoid frequency gaps. The problem with overlapping is that aliasing
is introduced when the subbands are downsampled. A family of �lters that cir-
cumvent this problem is the quadrature mirror �lter (QMF). In the QMF, the
�lters are designed in such a way that the aliasing introduced by the analysis
stage is exactly cancelled by the synthesis stage.

The 1-D decomposition can easily be extended to 2-D using separable
�lters. In this case, 1-D �lters can be applied �rst in one dimension and
then in the other dimension. Using a 1-D two-band decomposition in each
direction results in four subbands: horizontal low=vertical low (LL), horizon-
tal low=vertical high (LH), horizontal high=vertical low (HL), and horizon-
tal high=vertical high (HH), as illustrated in Figure 2.12(a). This four-band
decomposition can be continued by repetitively splitting all subbands (uni-
form decomposition) or just the LL subband (nonuniform decomposition). A
three-stage nonuniform decomposition is illustrated in Figure 2.12(b).

35 Section 2.6. Intraframe Coding

ω	 ωx	 x

yω yω

LL HL

LH HH

(a) 	One-stage 2-D (b) Three-stage 2-D
decomposition nonuniform decomposition

Figure 2.12: Two-dimensional subband decomposition

Note that nonuniform decomposition results in a multiresolution pyrami-
dal representation of the image. A commonly used technique for nonuni-
form decomposition is the discrete wavelet transform (DWT). The DWT is a
transform that has the ability to operate at various scales and resolution lev-
els. Having used the DWT for decomposition, various methods can be used
to encode the resulting subbands. One of the most eGcient methods is the
embedded zero-tree wavelet (EZW) algorithm proposed by Shapiro [40]. This
algorithm assumes that if a coeGcient at a low-frequency band is zero, it is
highly likely that all the coeGcients at the same spatial location at all higher
frequencies will also be zero and, thus, can be discarded. The EZW algorithm
encodes the most important information �rst and then progressively encodes
less important re�nement information. This results in an embedded bitstream
that can support a range of bit rates by simple truncation. Further re�nements
to the EZW algorithm have been proposed by Said and Pearlman [41, 42]. In
particular, the set partitioning in hierarchical trees (SPIHT) algorithm [42] has
become the choice of most practical implementations.

One advantage of subband coding systems is that, unlike transform systems,
they do not su6er from blocking artefacts at very low bit rates. In addition,
they �t naturally with progressive and multiresolution transmission. One disad-
vantage, however, is that at very low bit rates, ringing artefacts start to occur
around high-contrast edges. This is due to the Gibbs phenomenon of linear
�lters. To avoid this artefact, subband decomposition using nonlinear �lters
has been proposed [43, 44].

2.6.4 Vector Quantization
Vector quantization (VQ) is a block-based spatial-domain method that has
become very popular since the early 1980s. In VQ, the input image data is

36 Chapter 2. Video Coding: Fundamentals

Input Reconstructed
ris i i

Form input
vectors

Search for
best match

Codebook
Nii ,, =r

Table
lookup

Codebook
Nii ,, =r

Merge
vectors

… …,1 ,1

ImageImage

(a) Encoder (b) Decoder

Figure 2.13: A vector quantization system

�rst decomposed into k-dimensional input vectors. Those input vectors can
be generated in a number of di6erent ways; they can refer to the pel val-
ues themselves or to some appropriate transformation of them. For example,
a k = M ×M block of pels can be ordered to form a k-dimensional input
vector s = [s1; : : : ; sk]T . In VQ, the k-dimensional space Rk is divided into
N regions, or cells, Ri. Any input vector that falls into cell Ri is repre-
sented by a representative codevector ri = [r1; : : : ; rk]T . The set of codevec-
tors C = {r1; : : : ; rN} is called the codebook. Thus, the function of the en-
coder is to search for the codevector ri that best matches the input vector
s according to some distortion measure d(s; ri). The index i of this code-
vector is then transmitted to the decoder using at most I = log2 N bits. At
the decoder, this index is used to lookup the codevector from an identical
codebook. A block diagram of a vector quantization system is illustrated in
Figure 2.13.

Compression in VQ is achieved by using a codebook with relatively few
codevectors compared to the number of possible input vectors. The resulting
bit rate of a VQ is given by I=k bits=pel. In theory, as k→∞, the performance
of VQ approaches the rate-distortion bound. However, large values of k make
codebook storage and searching impractical. Values of k =4 × 4 and N = 1024
are typical in practical systems.

A very important problem in VQ is the codebook design. A commonly
used approach for solving this problem is the Linde-Buzo-Gray (LBG) algo-
rithm [45], which is a generalization of the Lloyd-Max algorithm for scalar
quantization. The LBG algorithm computes a codebook with a locally min-
imum average distortion for a given training set and given codebook size.
Entropy-constrained vector quantization (ECVQ) [46] extends the LBG al-
gorithm for codebook design under an entropy constraint. Another
important problem is the codebook search. A full search is usually imprac-
tical, and a number of fast-search algorithms have been proposed,
e.g., Ref. 47.

37 Section 2.6. Intraframe Coding

There are many variants of VQ [29]. Examples include adaptive VQ, clas-
si�ed VQ, tree-structured VQ, product VQ (including gain=shape VQ, mean=
residual VQ, and interpolative=residual VQ), pyramid VQ, and �nite-state VQ.

Theoretically, VQ is more eGcient than scalar quantization for both cor-
related and uncorrelated data [48]. Thus, the scalar quantizer in predictive,
transform, and subband coders can be replaced with a vector quantizer.

Vector quantization has a performance that rivals that of transform
coding. Although the decoder complexity is negligible (a lookup table), the
high complexity of the encoder and the high storage requirements of the
method still limit its use in practice. Like transform coding, VQ su6ers from
blocking artefacts at very low bit rates.

2.6.5 Second-Generation Coding
The coding methods discussed so far are generally known as waveform coding
methods. They operate on pels or blocks of pels based on statistical image
models. This classical view of the image coding problem has three main dis-
advantages. First, it puts more emphasis on the codeword assignment (using
information and coding theory) rather than on the extraction of representative
messages. Because the encoded messages (pels or blocks) are poorly repre-
sentative in the �rst place, a saturation in compression is eventually reached
no matter how good is the codeword assignment. Second, the encoded entities
(pels or blocks) are consequences of the technical constraints in transforming
scenes into digital data, rather than being real entities. Finally, it does not
place enough emphasis on exploiting the properties of the HVS. E6orts to
utilize models of the HVS and to use more representative coding entities (real
objects) led to a new class of coding methods known as the second-generation
coding methods [49].

Second-generation methods can be grouped into two classes: local-operator-
based techniques and contour=texture-oriented techniques. Local-operator-
based techniques include pyramidal coding and anisotropic nonstationary
predictive coding, whereas the contour=texture-oriented techniques include
directional decomposition coding and segmented coding. Two commonly used
segmented coding methods are region-growing and split-and-merge. For a
detailed discussion of second-generation methods, the reader is referred to
Refs. 49, 50, 51.

Second-generation methods provide higher compression than waveform cod-
ing methods at the same reconstruction quality. They also do not su6er from
blocking and blurring artefacts at very low bit rates. However, the extraction
of real objects is both diGcult and computationally complex. In addition, such
methods su6er from unnatural contouring e6ects, which can make the details
seem arti�cial.

38 Chapter 2. Video Coding: Fundamentals

2.6.6 Other Coding Methods
There are many other intraframe coding techniques. Examples are block-
truncation coding, fractal coding, quad-tree and recursive coding, multireso-
lution coding, and neural-network-based coding. A detailed (or even a brief)
discussion of such techniques is beyond the scope of this book, and the
interested reader is referred to Ref. 52.

2.7 Interframe Coding
As already discussed, video is a time sequence of still images or frames. Thus,
a naive approach to video coding would be to employ any of the still-image
(or intraframe) coding methods discussed in Section 2.6 on a frame-by-frame
basis. However, the compression that can be achieved by this approach is
limited because it does not exploit the high temporal correlation between the
frames of a video sequence. Interframe coding refers to video coding tech-
niques that achieve compression by reducing this temporal redundancy. For
this reason, such methods are also known as temporal redundancy reduc-
tion techniques. Note that interframe coding may not be appropriate for some
applications. For example, it would be necessary to decode the complete inter-
frame coded sequence before being able to randomly access individual frames.
Thus, a combined approach is normally used in which a number of frames
are intraframe coded (I-frames) at speci�c intervals within the sequence and
the other frames are interframe coded (predicted or P-frames) with reference
to those anchor frames. In fact, some systems switch between interframe and
intraframe within the same frame.

2.7.1 Three-Dimensional Coding
The simplest way to extend intraframe image coding methods to interframe
video coding is to consider 3-D waveform coding. For example, in 3-D trans-
form coding based on the DCT, the video is �rst divided into blocks of
M × N × K pels (M; N; K denote the horizontal, vertical, and temporal dimen-
sions, respectively). A 3-D DCT is then applied to each block, followed by
quantization and symbol encoding, as illustrated in Figure 2.14. A 3-D coding
method has the advantage that it does not require the computationally intensive
process of motion estimation (as will be discussed in Section 2.7.2). However,
it requires K frame memories both at the encoder and decoder to bu6er the
frames. In addition to this storage requirement, the bu6ering process limits the
use of this method in real-time applications because encoding=decoding cannot
begin until all of the next K frames are available. In practical systems, K is
typically set to 2– 4 frames.

39 Section 2.7. Interframe Coding

x
y

t

M

N

K

3-D DCT Quantizer
Symbol
encoder

Figure 2.14: A 3-D transform coding system

2.7.2 Motion-Compensated Coding
One of the earliest approaches to interframe coding was conditional replenish-
ment (CR) [53]. In this method, the input frame is divided into “changed” and
“unchanged” regions with respect to a previously decoded reference frame, and
the addresses of this segmentation are coded. Unchanged regions need not be
coded because they can simply be copied from the reference frame, whereas
changed regions need to be coded. One way of coding them is to use one
of the intraframe coding methods discussed in Section 2.6. However, a more
eGcient approach is to predictively code them with respect to the correspond-
ing regions in the reference frame. In this case, the coded prediction error
signal is called the frame di)erence (FD) and the process is known as frame
di)erencing.

An improved performance can be obtained by improving the prediction of
changed regions. This can be achieved using motion estimation and compen-
sation. Changes between frames are mainly due to the movement of objects.
Using a model of the motion of objects between frames, the encoder estimates
the motion that occurred between the reference frame and the current frame.
This process is called motion estimation (ME). The encoder then uses this
motion model and information to move the contents of the reference frame
to provide a better prediction of the current frame. This process is known
as motion compensation (MC), and the prediction so produced is called the
motion-compensated prediction (MCP) or the displaced-frame (DF). In this
case, the coded prediction error signal is called the displaced-frame di)erence
(DFD). A block diagram of a motion-compensated coding system is illustrated
in Figure 2.15. This is the most commonly used interframe coding method.

The reference frame employed for ME can occur temporally before or af-
ter the current frame. The two cases are known as forward prediction and
backward prediction, respectively. In bidirectional prediction, however, two
reference frames (one each for forward and backward prediction) are employed

40 Chapter 2. Video Coding: Fundamentals

Motion
compensation

(MC)

Motion
estimation

(ME)

+
_

Input frame
Intraframe

encoder

Intraframe
decoder

Frame buffer
(delay)

Decoded
reference

frame

+

Encoded displaced-frame
difference (DFD)

Decoded DFD

Motion information

Decoded current frame

Decoder

Motion-compensated
prediction (MCP)

Figure 2.15: Motion-compensated coding system

and the two predictions are interpolated (the resulting predicted frame is called
B-frame). The most commonly used ME method is the block-matching mo-
tion estimation (BMME) algorithm [54]. In this algorithm, the current frame
is �rst divided into blocks. The motion of each block is then estimated by
searching for the best-match block in the reference frame according to some
distortion measure. This search is usually restricted to a search window cen-
tered around the corresponding block in the reference frame. The motion of
the current block is then represented by a motion vector, which is the dis-
placement between the block and its best-match block in the reference frame.
The process of BMME is illustrated in Figure 2.16. Note that this algorithm
is based on a translational model of the motion of objects between frames.
It also assumes that all pels within a block undergo the same translational
movement. There are many other ME methods, but BMME is normally pre-
ferred due to its simplicity and good compromise between prediction quality
and motion overhead [55]. A more detailed discussion of BMME and other
ME methods is deferred to Chapter 4.

As illustrated in Figure 2.15, the DFD signal can be coded using any of
the intraframe coding methods discussed in Section 2.6. However, the most
commonly used method is transform coding, in particular block-based DCT
transform coding. This combination of block-matching motion-compensated
prediction and block-based DCT coding of the prediction error has proved
to be the most successful class of video coding methods. Today, most video

41 Section 2.7. Interframe Coding

best match

motion
vector

search window

Reference frame Current frame

Figure 2.16: Block-matching motion estimation

coding standards are based on this so-called hybrid MC-DPCM=DCT coding
method.

2.7.3 Model-Based Coding
At very low bit rates (below 64 kbits=s), the quality produced by conventional
motion-compensated coding methods may be unacceptable for some applica-
tions [10]. In particular, at such bit rates, decoded frames using MC-DPCM=
DCT generally su6er from blocking artefacts. This is mainly due to the trans-
lational block-based motion model. This has initiated research e6orts into new
motion-compensated methods based on more realistic structural motion mod-
els. Such methods are referred to as model-based coding methods.

Model-based coding is also known as analysis-synthesis coding, because it
is characterized by two main processes: analysis and synthesis. Both processes
usually make extensive use of sophisticated computer vision and computer
graphics tools. At the encoder, the image sequence is initially segmented into
a number of objects. Each object is then analyzed to decide its location, shape,
and texture. The encoder then uses this analysis data to deform a general model
to synthesize an approximation of the object. The same analysis data is also
transmitted to the decoder to synthesize a similar approximation. When the
object starts moving, tracking techniques are used, at the encoder, to estimate
the associated animation data, which is then transmitted to the decoder to
animate the same object. While animation data is suGcient for low quality
reproduction at low bit rates, residual data can also be transmitted to achieve
higher quality reproduction, but at the expense of a higher bit rate. Thus,
once the whole scene is synthesized, only a few animation parameters and
possibly some texture information need to be encoded. Hence, model-based

42 Chapter 2. Video Coding: Fundamentals

coding o6ers a potential saving in bit rate, which makes it attractive for very-
low-bit-rate applications.

Model-based coding methods can be broadly classi�ed as object-based or
knowledge-based. Object-based coding methods deal with unknown (arbitrary)
objects, whereas knowledge-based coding methods assume a priori knowledge
of the objects being modeled (e.g., a 3-D wireframe face model is usually
employed for head-and-shoulders sequences typical of videophone applica-
tions). Knowledge-based coding methods are generally successful in tracking
the global motion of the object (e.g., rotation and translation of the head),
but su6er from errors in estimating local motion (e.g., the movement of the
eyes, lips, and so on). Semantic-based coding is a subset of knowledge-based
coding methods that models local motion using a set of action units (e.g., a
combination of facial action units can lead to a given facial expression).

Despite their good performance at very low bit rates, model-based coding
methods have their problems. For example, at lower bit rates, the analysis and
modeling processes become more complex and the model needs to be more
object speci�c. In addition, the analysis and tracking methods usually require
some degree of human intervention or some a priori assumptions about the
nature of tracked objects. Another problem is that, in some cases, severe or
sustained failure of tracking or modeling may occur, leading to an increase in
the bit rate or a deterioration in the video quality. However, continuous re-
search e6orts in this area are addressing such problems. For example, switched
model-based coders, with a fallback mode to conventional coding, have been
proposed to solve the problem of model or tracking failure [56]. For a good
review of model-based coding, the reader is referred to Ref. 57.

Chapter 3

Video Coding: Standards

3.1 Overview
This chapter gives a brief introduction to video coding standards. Section
3.2 highlights the need for video coding standards. Section 3.3 outlines the
chronological development of video coding standards, highlighting their main
techniques and targeted applications. The chapter then gives two examples of
the state-of-the-art video coding standards: Section 3.4 concentrates on H.263
(and its recent extensions: H.263+ and H.263++), whereas Section 3.5 de-
scribes MPEG-4.

3.2 The Need for Video Coding Standards

For the past 25 years or so, the e,cient coding of image and video sig-
nals has been the subject of considerable research. Over the years, the /eld
has matured and has become a key enabling technology for a wide range of
applications spanning a wide range of industries. This has moved the /eld
from being a purely academic research area to become a highly commer-
cial business. This increased commercial interest has ignited the e1orts of
international standardization of image and video coding. International stan-
dards enable image and video material from di1erent sources and industries
to be processed on di1erent hardware platforms, to be stored on di1erent
storage devices, and to be transmitted on di1erent communication networks.
This interoperability opens a huge market for video equipment and at the
same time gives consumers a wide range of services. International
standards also allow for large scale production at considerably reduced
costs.

43

44 Chapter 3. Video Coding: Standards

3.3 Chronological Development

Video coding standardization activities started in the early 1980s. The activi-
ties were initiated by the International Telegraph and Telephone Consultative
Committee (CCITT), which is currently known as the International Telecom-
munications Union — Telecommunication Standardization Sector (ITU-T).
This was later followed by CCIR (currently ITU-R), the International
Organization for Standardization (ISO), and the International Electrotechni-
cal Commission (IEC). This has resulted in a number of standards, some of
which are discussed here.

3.3.1 H.120
The /rst video coding international standardization activity was carried out by
Study Group (SG) XV of CCITT during its study period 1980 –1984. In 1984
it issued Recommendation H.120 in its /rst version, and in 1988 it issued the
second version [58]. The standard was targeted for videoconferencing appli-
cations at the digital primary rates of 1:544 Mbits=s and 2:048 Mbits=s. The
standard had three parts: Part 1 for 625=50 regional use at 2 Mbits=s, Part 3
for 525=60 regional use at 1:5 Mbits=s, and Part 2 for international use (both
525=60 and 625=50 at 1:5Mbits=s). Parts 1 and 2 use CR with intra/eld DPCM
for changed regions, whereas Part 3 uses intra/eld prediction, background pre-
diction,1 and motion compensated inter/eld prediction. This di1erence in cod-
ing techniques between the di1erent parts was one of the reasons why H.120
never became a commercial success.

3.3.2 H.261
At the end of 1984, CCITT=SG XV agreed to de/ne a standard targeted
for videophone and videoconferencing applications at ISDN subprimary rates
(≤2 Mbits=s). Initially, it was thought that there would be two di1erent al-
gorithms e,cient at 64 kbits=s or higher and 384 kbits=s or higher, respec-
tively. It was found, however, that a single algorithm could cover all these
rates. Thus, H.261 was drafted in 1989 to provide audiovisual services at
p× 64 kbits=s (p=1 : : : 30). This draft became an international standard in
1991 and was later revised in 1993 [59]. H.261 was the /rst widespread com-
mercial success. In fact, its adopted techniques of hybrid MC-DPCM=DCT
(16 × 16 macroblocks for MC and 8 × 8 blocks for DCT), SKIP=INTER=

1None of the later standards have included a background prediction mode, although sprite
coding in MPEG-4 can be considered a form of background prediction.

45 Section 3.3. Chronological Development

INTRA mode switching on a macroblock level, zigzag scanning, RLE, scalar
quantization, and VLC entropy coding have become key elements in most
video coding standards.

3.3.3 CCIR-721
In parallel to the standardization activities of CCITT, CCIR started standardiza-
tion of video coding for contribution-quality TV signals. Recommendation 721
[60] was issued in 1990. Its main target was the transmission of component
coded digital TV signals for contribution-quality applications at bit rates near
140 Mbits=s. The recommendation used a simple form of intra/eld DPCM to
achieve a low implementation complexity and a high degree of random access
(which is important for video postprocessing in studios).

3.3.4 CCIR-723
CCIR Recommendation 723 [61] was issued in 1992. Its main target was
the coding of component digital TV signals for contribution-quality appli-
cations in the range 34–45 Mbits=s. The recommendation employs a hybrid
MC-DPCM=DCT with one intra/eld mode and two inter/eld modes (with and
without MC). Both the CCIR-721 and the CCIR-723 recommendations are not
generic. In contrast to other standards, they fully specify both the encoder and
the decoder.

3.3.5 MPEG-1
In 1988, the Moving Picture Experts Group (MPEG) was created under Sub-
committee (SC) 2 of ISO (ISO=SC2). The group is now Working Group (WG)
11 of SC29 under the Joint Technical Committee (JTC) 1 of ISO=IEC. Thus,
its o,cial denotation is ISO=IEC JTC1=SC29=WG11. The main aim of the
group was to develop a video coding standard for digital media storage ap-
plications at up to 1:5 Mbits=s. In 1991 the group drafted its ISO=IEC 11172
(MPEG-1) standard [62], which became an international standard in 1992.
The MPEG-1 video algorithm is very similar to the H.261 algorithm but with
some advanced techniques, like bidirectional prediction and half-pel MC2. The
standard also provides for some speci/c storage requirements, like random ac-
cess and fast forward=reverse searches. Although the standard was developed
mainly for storage applications, it was designed to be generic. Thus, it was

2Half-pel MC was proposed during the development of the H.261 but was thought to be too
complex at that time.

46 Chapter 3. Video Coding: Standards

designed as a toolbox, where the user can decide which tools to use for the
particular application. In addition, the standard de/nes only the decoder and
the bitstream syntax. This allows a large degree of freedom for manufacturers
to propose their own optimized encoders. This generic design and large degree
of freedom have contributed to the success of MPEG-1. It has been used in
a wide range of applications, from interactive systems on CD-ROM to the
delivery of video over telecommunication networks.

3.3.6 MPEG-2
In 1990, ISO=IEC JTC1=SC29=WG11 started studies on a new standard for
applications not covered by MPEG-1. In particular, the new standard was
intended to provide video quality not lower than NTSC=PAL and up to CCIR-
601 quality at rates around 10 Mbits=s. This standardization activity was nick-
named MPEG-2 because it was seen as phase 2 of the work started in
MPEG-1. In 1992, ITU-T=SG 15 joined this standardization e1ort to develop
video coding for Asynchronous Transfer Mode (ATM) networks. In 1993,
it was realized that the scope of MPEG-2 could be enlarged to suit cod-
ing of HDTV. This made an initially planned MPEG-3 for HDTV superJu-
ous. In 1994, the ISO=IEC 13818 (MPEG-2) standard (ITU-T Recommen-
dation H.262) was drafted [63], and later in the year it was accepted as an
international standard. Like MPEG-1, the MPEG-2 standard is generic and
Jexible. In fact, MPEG-2 can be thought of as a superset of, and as such
was designed to be backward compatible with, MPEG-1. There are many
additional features provided by MPEG-2 over MPEG-1, including the sup-
port for interlaced video and scalability. Since implementation of the full
MPEG-2 syntax may not be practical for most applications, MPEG-2 has in-
troduced the concepts of “pro/les,” describing functionalities, and “levels,”
describing resolutions, to provide subset conformance levels. MPEG-2 has
had even more success than MPEG-1, with applications in the areas of ca-
ble TV, networked ATM services, and satellite and terrestrial TV broad-
casting.

3.3.7 H.263
The increasing demand for digital video communications over the public
switched telephone network (PSTN) and mobile networks initiated a new
standardization e1ort by ITU-T=SG 15. The aim was to develop a video cod-
ing standard for low-bit-rate applications below 64 kbits=s. The result of this
e1ort was ITU-T Recommendation H.263 [64], which was completed in 1995
and approved in 1996. Although H.263 was based on the coding structure
of H.261, it provides a signi/cant improvement in performance. Side-by-side

47 Section 3.3. Chronological Development

comparisons indicate that H.263 provides the same subjective quality as H.261
but with less than half the bit rate [65]. This performance improvement is due
to optimized coding techniques as well as advanced optional coding modes.
Some of the new features of H.263 compared to H.261 are the support for
more picture formats, half-pel MC, a 3-D (LAST-RUN-LEVEL) RLE instead
of 2-D (RUN-LEVEL), more optimized VLC tables, optional extra head-
ers to increase error resilience, advanced 2-D median predictor for motion
vector coding, more optimized macroblock addressing and quantization adap-
tation, optional extended-range unrestricted motion vectors that can point out-
side frames, optional arithmetic coding, optional advanced prediction with
overlapped motion compensation and four motion vectors per macroblock,
and optional bidirectional prediction. H.263 is described in more detail in
Section 3.4.

3.3.8 H.263+

Technically, H.263+ is version 2 of the H.263 standard [66]. This version was
developed by ITU-T=SG16=Q15 Advanced Video Experts Group (previously
under ITU-T=SG15), with technical content completed in 1997 and approved
in 1998. The H.263+ standard added 12 new optional features to H.263. These
new features support custom picture size and clock frequency, improve com-
pression e,ciency, allow scalability, enhance error resilience over wireless
and packet-based networks, provide supplemental display and external usage
capabilities, and ensure backward compatibility. H.263+ is described in more
detail in Section 3.4.

3.3.9 MPEG-4

In 1993, the ISO=IEC JTC1=SC29=WG11 MPEG group initiated a new stan-
dardization activity called MPEG-4. The target was the very-low-bit range and
the aim was to achieve higher compression e,ciency than could be achieved
by existing conventional techniques. In 1994, it was realized that too few
improvements could be achieved over the H.263 and H.263+ compression
results to justify a new standard. Thus, the group decided to broaden the ob-
jectives of the MPEG-4 e1ort and started an in-depth analysis of the trends
within the audiovisual world. Particular attention was given to the convergence
of the three traditionally separate industries of communications, computing,
and TV=/lm=entertainment. This study concluded that MPEG-4 should sup-
port functionalities that would be useful in future applications but were not
supported or not well supported by the available standards. Eight main new
or improved functionalities were identi/ed and then clustered in three classes:

48 Chapter 3. Video Coding: Standards

content-based interactivity (content-based multimedia data-access tools,
content-based manipulation and bitstream editing, hybrid natural and synthetic
data coding, improved temporal random access), compression (improved cod-
ing e,ciency, coding of multiple concurrent data streams), and universal
access (robustness in error-prone environments, content-based scalability). Ver-
sion 1 of the MPEG-4 standard was approved in October 1998. A second
version was approved in December 1999 to add new functionalities and im-
prove others. The MPEG-4 standard is o,cially known as ISO=IEC 14496
and is titled “Generic coding of audiovisual objects” [67]. This title describes
two important properties of the MPEG-4 standard. The /rst property is that
it is a generic standard. It is designed to cover a wide range of bit rates
(typically, 5 kbits=s to 10 Mbits=s), picture formats (progressive and inter-
laced), resolutions (SQCIF to beyond TV), frame rates (still images to high
frame rates), communication networks (wired or wireless), input material (nat-
ural or synthesized), etc. The second property is that it uses an object-based
representation model, where a scene is represented, coded, and manipulated
as individual audiovisual objects. This particular property (i.e., being object-
based) sets MPEG-4 apart from earlier block-based standards. Thus, in addi-
tion to conventional block-based MC-DPCM=DCT techniques, MPEG-4 adopts
more recent object-based techniques like second-generation coding techniques
(Section 2.6.5) and model-based coding techniques (Section 2.7.3). MPEG-4
is described in more detail in Section 3.5.

3.3.10 H.263++

Technically, H.263++ is version 3 of the H.263 standard [68]. This version
was developed by ITU-T=SG16=Q15, with technical content completed and
approved late in the year 2000. The H.263++ standard added some more
features to H.263 and H.263+. These new features improve coding e,ciency,
enhance error resilience, provide additional supplemental display and external
usage capabilities, and de/ne pro/les and levels. H.263++ is described in
more detail in Section 3.4.

3.3.11 H.26L

This is a project of ITU-T=SG16=Q15. The H.26L project is planned to be a
new-generation video coding standard with improved e,ciency, error
resilience, and streaming support. It is scheduled for completion in 2002.
In addition to the standard documents themselves, interested readers are

referred to some excellent reviews and tutorials available in the literature
[69, 70, 65, 71–75, 11, 13, 15].

49 Section 3.4. The H.263 Standard

3.4 The H.263 Standard

3.4.1 Introduction
The H.263 recommendation speci/es a coded representation that can be used
for compressing the moving picture component of audiovisual services at low
bit rates. The recommendation fully speci/es the decoder and the bitstream
syntax but does not explicitly specify the encoder. As already mentioned, this
gives manufacturers a large degree of freedom to propose their own optimized
encoders, as long as the output bitstream conforms to the standard decodable
syntax. However, during the standardization process, a software-based codec
(encoder-decoder) called the test model is developed to study the core ele-
ments of the standard. For example, version 5 of the test model near-term
(TMN) is described in Ref. 76.

3.4.2 Source Format
The standard supports all /ve members of the CIF family described in
Section 2.4.4 and Table 2.1. As a minimum requirement, all decoders shall be
able to operate with SQCIF and QCIF. Encoders, on the other hand, shall be
able to operate with either SQCIF or QCIF and are not obliged to be able to
operate with both.

3.4.3 Video Source Coding Algorithm
The generalized form of the source coder is illustrated in Figure 3.1.
It is a hybrid of interpicture prediction to utilize temporal redundancy and
transform coding of the error signal to reduce spatial redundancy.

3.4.3.1 Picture Coding Structure

The input video consists of a sequence of pictures (or frames). Each picture
is divided into groups of blocks (GOBs). A GOB consists of k × 16 lines,
depending on the picture format (k = 1 for SQCIF, QCIF, and CIF, k = 2 for
4CIF, and k = 4 for 16CIF). For example, there are 9 GOBs in a QCIF picture.
Each GOB is divided into macroblocks (MBs). A macroblock consists of
16 × 16 samples of Y

′
R
consists of 6 blocks: 4 luma blocks and the 2 spatially corresponding chroma
blocks. Figure 3.2 illustrates the H.263 picture structure for a QCIF frame.
As shown, GOBs are coded from top to bottom in increasing number. Within
each GOB, the MBs are coded from left to right (and from top to bottom if
the GOB contains more than one row of MBs) in increasing number. Within

′ andB′
R

′
B

′ and the spatially corresponding 8 × 8 samples of C
. If we de/ne a block as 8 × 8 samples of Y ′; C , or C , then a macroblock C

50 Chapter 3. Video Coding: Standards

- DCT Quantizer

Coding control

Inverse
quantizer

Inverse
DCT

+
Picture memory with
motion-compensated

variable delay

Video
in

Flag for INTRA/INTER

Flag for transmitted or not

Quantizer indication

Quantizing index for
transform coefficients

Motion vector

Figure 3.1: H.263 video encoder

each MB, the Y ′ blocks are /rst coded in the order shown (left to right and
top to bottom), followed by the C′ block and then the C′ block.B R

3.4.3.2 Coding Modes

The coding mode in which interpicture prediction is applied is called the
INTER mode. Prediction can optionally be augmented by motion compen-
sation. If no prediction is applied, then the coding mode is called INTRA.
The coding mode (INTRA=INTER) can be signaled at the picture level (re-
sulting in I-pictures=P-pictures) or at the macroblock level in P-pictures. In
PB-frames (discussed later) the B-pictures are always coded in INTER mode.
The mode selection method is not de/ned by the standard. However, to control
the accumulation of IDCT mismatch3 error, the standard requires an MB to
be coded in INTRA mode at least once every 132 times when coe,cients are
transmitted for this MB in P-pictures. In the INTER mode, a Jag is used to
indicate whether an MB is transmitted or not (conditional replenishment). This
is sometimes referred to as the SKIP mode. Again, the method of reaching a

3The inverse discrete cosine transform (IDCT) is a common block between the encoder and the
decoder. Di1erences in implementation between the encoder’s IDCT and the decoder’s IDCT cause
mismatches between the reconstructed pictures at both ends. This is called the IDCT mismatch
error. This mismatch accumulates due to interpicture prediction and can be stopped by forced
INTRA updating.

51 Section 3.4. The H.263 Standard

MB
7

MB
8

MB
9

MB
10

MB
11

5 6

21

3

Y ′

BC′ RC′

1 8

57 64

8 pels

8 lines

GOB 9

GOB 7

GOB 6

GOB 5

GOB 4

GOB 3

GOB 2

GOB 1

GOB 8

MB
6

4

176 luma pels (88 chroma)

144 luma
lines

(72 chroma)

16 lines

16 pels

8

8

QCIF picture frame

MB
1

MB
2

MB
3

MB
4

MB
5

Group of
blocks (GOB)

Macroblock (MB)

Block

Figure 3.2: H.263 picture structure for a QCIF frame

decision to transmit an MB or not is not part of the standard. The di1erent
Jags are encoded within the picture and MB headers.

3.4.3.3 Motion Estimation and Compensation

Without options, the encoder estimates one motion vector per MB. Both hori-
zontal and vertical components of the vector have integer or half-integer values
and are restricted to the range [−16; +15:5]. A positive value of the horizon-
tal or vertical component means that the prediction is made from pels in
the reference picture that are spatially to the right or below the pels being

52 Chapter 3. Video Coding: Standards

predicted, respectively. Motion vectors are restricted such that all pels ref-
erenced by them are within the reference picture area. The standard does
not explicitly specify an ME method. However, this MB-based structure im-
plicitly supports block-based approaches and in particular the BMME
algorithm.

3.4.3.4 Motion Vector Coding

The estimated motion vector MV = (MVx; MVy) is predictively coded. This
means that the motion vector di1erence MVD = MV − MVP is encoded
instead of the motion vector itself. The motion vector predictor MVP is the
median of three candidate predictors, which are the motion vectors of three
surrounding macroblocks, as illustrated in Figure 3.3(a). The two components
of the motion vector di1erence are then entropy coded using a standard VLC
table. MVDx is encoded /rst, followed by MVDy.

3.4.3.5 Forward Transform

The forward DCT transform is applied either to the pel values, in the case
of an INTRA MB, or to the DFD values, in the case of an INTER MB. In
both cases, the DCT is applied on a block (8 × 8) basis. This results in six
blocks of transform coe,cients for each MB. The standard does not specify

MVMV1

MV2 MV3

MV(0,0)

MV2 MV3

MVMV1

MV1 MV1

MVMV1

MV2 (0,0)

16

16

MV2

MV1

MV2

MV

MV3

MV1 MV

MV2 MV3

MVMV1

MV2 MV3

MV1 MV

MV3

16

16

(a) Normal mode (b) Advanced mode

: Picture or GOB border MV: Current motion vector MV1: Left motion vector

MV2: Above motion vector MV3: Above-right motion vector MVP = Median(MV1, MV2, MV3)

Figure 3.3: H.263 motion vector prediction

53 Section 3.4. The H.263 Standard

the method of implementing the forward DCT. Threshold coding, discussed in
Section 2.6.2, is used to allocate bits to the transform coe,cients, as will be
discussed next.

3.4.3.6 Quantization

The six DC coe,cients of an INTRA MB are quantized using a uniform
scalar quantizer with a step size of
= 8 and no dead zone (this corresponds
to Figure 2.5(a) and Equation (2.8)). All other coe,cients are quantized using
a uniform scalar quantizer with a step size of
=2 × QP and a central dead
zone around zero (this corresponds to Figure 2.5(b) and Equation (2.10)).
There are 31 possible quantization parameters, QP = 1 : : : 31. However, the
quantization parameter is kept /xed for all coe,cients within an MB. A high
QP leads to higher compression but worse quality, whereas a low QP leads
to better quality but less compression. The method to select a QP is not part
of the standard. A change of QP to any of the 31 permissible values can
be signaled in the picture or GOB headers. In the MB header, however, this
change is limited to a maximum of ±2. Again, the method to decide this
change is not de/ned in the standard.

3.4.3.7 Quantized Coe5cients Coding

A quantized INTRA DC coe,cient is encoded using a standard 8-bit FLC
table. Other quantized coe,cients are /rst zigzag scanned, as described in
Section 2.6.2 and Figure 2.10(c). The reordered coe,cients are then encoded
using 3-D RLE. Thus, the reordered coe,cients are converted to an interme-
diate set of symbols or EVENTS of the form (LAST, RUN, LEVEL), where
LAST is an indication of whether this is the last nonzero coe,cient in the
block or not, RUN is the number of successive zeros preceding the coded co-
e,cient, and LEVEL is the nonzero value of the coded coe,cient. The most
commonly occurring EVENTs are coded using a standard VLC table, whereas
the remaining EVENTs are coded using a concatenation of four standard FLC
codewords for ESCAPE, LAST, RUN and LEVEL.

3.4.3.8 Coding Control

The coding control block is responsible for varying several parameters to con-
trol the rate or the quality of the coded video. Examples are the INTER=
INTRA mode decision at the picture or MB level, the update pattern of the
forced INTRA refresh, the TRANSMIT=SKIP decision at the MB level, and
the QP and its change at the picture, GOB, or MB level. Such functions are
not de/ned in the standard.

54 Chapter 3. Video Coding: Standards

3.4.4 Decoding Process
3.4.4.1 Motion Vector Decoding

For each TRANSMITTED INTER MB, the decoder calculates the same
motion vector predictor MVP used at the encoder and adds it to the
decoded motion vector di1erence MVD to obtain the decoded motion vec-
tor MV. The motion vector of a SKIPPED INTER MB is set to 0.

3.4.4.2 Motion Compensation

The decoded motion vector is used to compensate the four Y ′ blocks in the
MB. Motion vectors for both C′ and C′ blocks are derived by dividing the R B
component values of the decoded motion vector by 2. The resulting quarter-
pel resolution components are modi/ed toward the nearest half-pel resolution
(both 0.25 and 0.75 are rounded to 0.5). If motion compensation requires
accessing half-pel positions, then bilinear interpolation is used to calculate the
pel values at those positions.

3.4.4.3 Inverse Quantization

As already discussed, quantization is achieved by dividing the transform coef-
/cient by a quantization step size and rounding the result (refer to Equations
(2.8) and (2.10)). Inverse4 quantization is the process of reconstructing an ap-
proximation of the original coe,cient by multiplying the quantized coe,cient
by the same step size (refer to Equations (2.9) and (2.11)). The reconstructed
coe,cients are then clipped to the range [−2048; +2047] and inverse zigzag
scanned to put them in an 8 × 8 block.

3.4.4.4 Inverse Transform

The reconstructed block of coe,cients is processed by a separable 2-D 8 × 8
inverse DCT. The arithmetic procedures for computing the inverse DCT are
not de/ned by the standard, but should meet a de/ned error tolerance.

3.4.4.5 Reconstruction of Blocks

For INTRA blocks, the reconstructed block is equal to the result of the inverse
DCT. For INTER blocks, the reconstructed block is formed by summing the
motion-compensated prediction and the result of the inverse DCT. The recon-
structed values are clipped to the range [0; 255].

4It should be emphasised that the term inverse here does not mean that quantization is a
reversible process. Quantization is irreversible since rounding leads to loss of information.

55 Section 3.4. The H.263 Standard

3.4.5 Optional Coding Modes
There are four optional coding modes that can be signaled at the picture level.
These modes are de/ned in annexes to the standard and are brieJy described
next.

3.4.5.1 Unrestricted Motion Vector Mode (Annex D)

In this mode, motion vectors are allowed to point outside the reference picture
area. When a pel pointed to by a motion vector is outside the reference picture
area, an edge pel is used instead. This edge pel is found by limiting the
motion vector to the last full-pel position inside the reference picture area.
Limitation of the motion vector is performed on a pel basis and separately for
each component of the motion vector. In this mode also, the range for motion
vector components is extended to [−31:5; +31:5], with the restriction that if the
predictor is in the range [−15:5; +16], then only values that are within a range
of [−16; +15:5] around the predictor can be reached. If, however, the predictor
is outside [−15:5; +16]; then all values within the range [−31:5; +31:5] with
the same sign as the predictor can be reached. Allowing motion vectors to point
outside the reference picture area improves prediction along picture edges in
the case of camera or background movement. This is particularly useful for
small picture formats (where border MBs represent a high percentage of the
picture area). The extended motion vector range allows better prediction for
large picture formats and a high amount of movement.

3.4.5.2 Syntax-Based Arithmetic Coding Mode (Annex E)

In this mode, all VLC Hu1man coding=decoding operations of H.263 are
replaced with arithmetic coding=decoding operations. As already discussed in
Section 2.5.5, arithmetic coding removes the restriction of representing each
symbol by an integral number of bits, achieving more coding e,ciency but at
the expense of more computational complexity.

3.4.5.3 Advanced Prediction Mode (Annex F)

This optional mode includes two advanced prediction techniques: the use of
four motion vectors per MB, and the use of overlapped motion compensation
(OMC). In addition, this mode allows motion vectors to point outside the
reference picture area. If this mode is used in combination with the unrestricted
motion vector mode, then the motion vectors will also have an extended range.
If the mode is used in combination with the PB-frames mode, then OMC is
only used for P-pictures, not for B-pictures.
In this mode, the encoder makes a decision (which is not de/ned by the

standard) whether to transmit one motion vector or four motion vectors per

56 Chapter 3. Video Coding: Standards

MB. If one motion vector is transmitted (as in normal mode), then the decoder
replicates it to four motion vectors. If four motion vectors are to be transmitted,
then the motion vector prediction process is modi/ed as illustrated in Figure
3.3(b). Motion vectors for chroma blocks are derived by calculating the sum of
the four luma vectors and then dividing by 8. The resulting values of 1=16-pel
resolution are modi/ed toward the nearest 1=2-pel values (0; 1=16, and 2=16
are modi/ed to 0; 14=16 and 15=16 are modi/ed to 1; and all other values
are modi/ed to 1=2). This technique improves prediction if the MB contains
di1erent moving objects.
In OMC, each pel in an 8 × 8 luma prediction block is predicted as a

weighted sum of three prediction values. To obtain the three prediction val-
ues, three motion vectors are used: the motion vector of the current luma
block, and two out of four remote motion vectors. The four remote motion
vectors are the motion vectors of the luma blocks to the left of, to the right
of, above, and below the current luma block. The position of the pel within
the block decides which two remote vectors to use. For example, all pels in
the top-left quadrant of the block use the two remote vectors of the blocks
above and to the left of the current luma block. The weight given to each
of the three predictions also changes with pel position within the block. The
weights are de/ned in three standard matrices. The weights for a remote pre-
diction are designed to increase as the pel position moves away from the center
of the block toward the corresponding remote block. This ensures a smooth
transition at the borders of the block, which results in a visible reduction of
blocking artefacts. If a remote MB was not coded, then the corresponding
vector is set to zero. If a remote MB does not exist (out of the picture) or
was INTRA coded, then the corresponding vector is set to the vector of the
current MB. In PB-frames mode, however, INTRA MBs have motion vectors,
and those are used as remote vectors. For chroma blocks, no overlapping is
performed.

3.4.5.4 PB-Frames Mode (Annex G)

In this mode, two pictures are encoded as one unit called a PB-frame. Thus, a
PB-frame consists of one P-picture that is predicted from the previous decoded
P-picture (forward prediction) and one B-picture that is predicted from both
the previous decoded P-picture and the P-picture currently decoded in the
same PB-frame (bidirectional prediction). In a PB-frame, an MB consists of
12 blocks: the 6 blocks of the P-picture, followed by the 6 blocks of the
B-picture. In this mode, an INTRA coding mode can also be used where
P-blocks are INTRA coded and B-blocks are INTER coded with prediction
as for an INTER block. In this case, motion vector data is included with the
INTRA-coded P-blocks but are used for predicting B-blocks.

57 Section 3.4. The H.263 Standard

Figure 3.4: Prediction in PB-frames mode

For prediction of a B-block, both forward, MVF, and backward, MVB,
motion vectors are needed. Those are not transmitted but are derived at the
decoder by scaling the corresponding P-block motion vector, MV, using the
temporal resolutions of the P- and B-pictures with respect to the previous
P-picture. The derived motion vectors can be optionally enhanced using a
transmitted delta vector MVDB. The forward (or backward) motion vectors
for chroma blocks are derived by summing the corresponding luma forward
(or backward) motion vectors, dividing by 8, and then rounding to the nearest
half-pel resolution. To be able to predict a B-macroblock, the correspond-
ing P-macroblock is /rst reconstructed. For pels of a B-block where MVB
points outside the reconstructed P-macroblock, forward prediction using MVF
and the previous decoded P-picture is used. However, for pels of the same
B-block where MVB points inside the reconstructed P-macroblock, bidirec-
tional prediction is used. In this case, the prediction is the average (with
truncation) of the forward prediction, using MVF and the previous decoded
P-picture, and the backward prediction, using MVB and the reconstructed
P-macroblock. This process is illustrated in Figure 3.4. With this mode, the
frame rate can be increased without a signi/cant increase in bit rate.

3.4.6 H.263, Version 2 (H.263+)
Version 2 of the H.263 standard is informally known as H.263+. This version
adds a number of optional feature enhancements to version 1. In the process
of adding these new features, the precise de/nition and requirements of the
original version 1 syntax and semantics were not changed. In fact, version 2
is backward compatible with version 1. The additional optional feature set can
be summarized in terms of the new types of pictures, a modi/ed unrestricted

58 Chapter 3. Video Coding: Standards

motion vector mode, and 12 new optional modes (annexes I–T). This is brieJy
described in what follows.

3.4.6.1 New types of pictures

Version 2 de/nes three new types of pictures:

1.	Scalability pictures: Three types of scalability pictures were added, one
that provides temporal scalability and two that provide SNR or spatial
scalability:

(a) B: a picture having two reference pictures, one of which temporally
precedes the B picture and one of which is temporally subsequent
to the B picture.

(b) EI: a picture having a temporally simultaneous reference picture.

(c) EP:	a picture having two reference pictures, one of which tem-
porally precedes the EP picture and one of which is temporally
simultaneous.

These pictures are described in more detail in Section 3.4.6.9 in the
discussion of the new optional scalability mode (annex O).

2.	Improved PB-frames: Recent investigations have indicated that the cur-
rent PB-frames utilized by version 1 are not su,ciently robust for
continual use. Encoders implementing the PB-frames mode are lim-
ited to use only bidirectional prediction. In some situations, this results
in a lack of usefulness of the PB-frames mode. An improved, more
robust type of PB-frames has been added to enable heavier, higher-
performance use of the PB-frames mode. This is described in more de-
tail in Section 3.4.6.7 in the discussion of the new optional improved
PB-frames mode (annex M).

3.	Custom source formats: As already discussed, version 1 allows only
/ve video source formats (CIF family) with de/ned picture size, picture
shape, and picture clock frequency. Version 2, however, allows a wide
range of optional custom source formats in order to make the standard
apply to a much wider class of video scenes and applications, such as
resizable computer window-based displays, high refresh rates, and wide-
format viewing screens.

3.4.6.2 Modi>ed Unrestricted Motion Vector Mode (modi>ed Annex D)

The optional unrestricted motion vector mode (annex D) of version 1 has been
modi/ed in version 2. Version 2 de/nes a new data /eld called PLUSPTYPE.
When using the unrestricted motion vector mode, if PLUSPTYPE is present

Section 3.4. The H.263 Standard 59

in the picture header, then the following modi/cations apply:

1. The	motion vector range no longer depends on the motion vector

prediction value. There are two cases here:

(a) If the UUI data /eld in the picture header is set to “1,” the mo-
tion vector range depends on the picture format. For standard-
ized picture formats up to CIF the range is [−32; 31:5], for those
up to 4CIF the range is [−64; 63:5], for those up to 16CIF the
range is [−128; 127:5], and for even larger custom picture formats
the range is [−256; 255:5]. In addition, the horizontal and vertical
motion vector ranges may be di1erent for custom picture formats.

(b) If, however, the UUI data /eld is set to “01,” the motion vectors	 Q1
are not limited except by their distance to the coded area border,
as explained by the following restriction rule: the motion vector
values are restricted such that no element of the 16 × 16 (or 8 × 8)
region that is selected shall have a horizontal or vertical distance
more than 15 pels outside the coded picture area.

2. A new VLC table is employed to encode the motion vector di1erences.

This table has the following properties:

(a) The codes are single-valued. In other words, each codeword corre-
sponds to a single motion vector di1erence value. This is in contrast
to the double-valued VLC codes of version 1, where each code-
word can represent one of two possible motion vector di1erences.
Double-valued codes were not popular due to their high implemen-
tation cost and the limitations on their extendibility.

(b) The table employs reversible variable-length coding (RVLC) code-
words. Such codewords can be decoded in both the forward and
backward directions. As discussed in Chapter 9, the use of RVLCs
can increase the error resilience of video bitstreams. In addition,
RVLCs are easier to implement because they can easily be gener-
ated and decoded using a simple state machine.

3.4.6.3 Advanced INTRA Coding Mode (Annex I)

This optional mode signi/cantly improves the compression performance when
coding INTRA macroblocks. The mode is applied both to INTRA macroblocks
within INTRA-pictures and to INTRA macroblocks within INTER-pictures.
The improved compression performance of this mode is achieved as follows:

1. INTRA blocks	are predicted from their neighboring INTRA blocks.

Block prediction always uses data from the same luma or chroma

60 Chapter 3. Video Coding: Standards

component. There are three options for prediction:

(a) DC only: where the DC coe,cient is predicted as the average of
the corresponding coe,cients from the block above and the block
to the left.

(b) Vertical DC and AC: where the DC coe,cient and the /rst row
of AC coe,cients are vertically predicted from the corresponding
coe,cients from the block above.

(c) Horizontal DC and AC: where the DC coe,cient and the	/rst
column of AC coe,cients are horizontally predicted from the
corresponding coe,cients from the block to the left.

Special cases are de/ned for situations in which the neighboring blocks
are not INTRA coded or are not in the same video picture segment.
The option that gives the best prediction for the whole macroblock is
chosen.

2. The quantization of INTRA coe,cients is modi/ed. INTRA DC coef-
/cients are quantized using a varying quantization step size, unlike the
/xed quantization step size of 8 utilized when this mode is not in use. In
addition, the quantization of all INTRA coe,cients is performed without
a dead-zone.

3. The scanning of DCT coe,cients is adapted to the prediction method of
the INTRA macroblock. For macroblocks predicted using the DC-only
option, the normal zigzag scanning is utilized; for macroblocks predicted
using the vertical DC and AC option, a new alternate horizontal scanning
pattern (Figure 3.5(a)) is utilized; whereas for macroblocks predicted

0 1 2 3 10 11 12 13

4 5 8 9 17 16 15 14

6 7 19 18 26 27 28 29

20 21 24 25 30 31 32 33

22 23 34 35 42 43 44 45

36 37 40 41 46 47 48 49

38 39 50 51 56 57 58 59

52 53 54 55 60 61 62 63

0 4 6 20 22 36 38 52

1 5 7 21 23 37 39 53

2 8 19 24 34 40 50 54

3 9 18 25 35 41 51 55

10 17 26 30 42 46 56 60

11 16 27 31 43 47 57 61

12 15 28 32 44 48 58 62

13 14 29 33 45 49 59 63

(a) Alternate horizontal scan (b) Alternate vertical scan

Figure 3.5: Alternate scans for the advanced INTRA mode of H.263+

61 Section 3.4. The H.263 Standard

using the horizontal DC and AC option, a new alternate vertical scanning
pattern (Figure 3.5(b)) is utilized.

4. The quantized INTRA coe,cients are encoded using a new VLC table
optimized for the global statistics of INTRA macroblocks.

3.4.6.4 Deblocking Filter Mode (Annex J)

In this optional mode, a /lter is applied, both at the encoder and at the de-
coder, across the boundaries of luma and chroma 8 × 8 blocks of reconstructed
pictures before storing them in the picture memory. In other words, the /lter
a1ects the picture that is used for the prediction of subsequent pictures and
thus lies within the motion prediction loop.
The deblocking /lter operates using a set of four pel values either on

a horizontal or on a vertical line of the reconstructed picture. Two of the
four pels belong to one block, whereas the other two belong to a neighboring
block. The weights of the /lter’s coe,cients depend on the quantizer step size,
where stronger coe,cients are used for a coarser quantizer, and vice versa.
No /ltering is performed across a picture edge. Similarly, when the Inde-
pendent Segment Decoding (ISD) mode is in use, no /ltering is performed
across slice edges (when the Slice Structured mode is in use) or across the top
boundary of GOBs having GOB headers present (when the Slice Structured
mode is not in use). When this mode is used together with the Improved PB-
frames mode, the backward prediction of the B-macroblock is based on the
reconstructed P-macroblock before the deblocking edge /lter operations. The
mode applies only for the P-, I-, EP-, or EI-pictures or the P-picture part of
an Improved PB-frame. Possible /ltering of B-pictures or the B-picture part
of an Improved PB-frame is not a matter for standardization.
In addition to the /ltering operation, this mode allows the use of four

motion vectors per macroblock and also the use of unrestricted motion vectors.
This mode improves the prediction quality and signi/cantly reduces blocking
artefacts.

3.4.6.5 Slice Structured Mode (Annex K)

In this optional mode, a slice layer is employed instead of the normal GOB
layer. This mode is used to provide enhanced error resilience, to make the
bitstream more amenable to use with packet-based networks, and to minimize
video delay. A slice layer allows a Jexible partitioning of the picture into
segments containing a variable number of macroblocks. It also allows more
control over the shape of segments. In addition, a slice structure provides more
Jexibility in the transmission order. This is in contrast with a GOB layer,
which only allows partitioning into /xed-size, /xed-shape segments with /xed
transmission order.

62 Chapter 3. Video Coding: Standards

In order to facilitate optimal usage in a number of environments, this mode
contains two submodes:

1.	The Rectangular Slice (RS) submode: When RS is in use, the slice
occupies a rectangular region of width speci/ed in units of macroblocks
and contains a number of macroblocks in scanning order within the
rectangular region. When RS is not in use, the slice contains a number
of macroblocks in scanning order within the picture as a whole.

2.	The Arbitrary Slice Ordering (ASO) submode: when ASO is in use,
the slices may appear in any order within the bitstream. When ASO is
not in use, the slices must be sent in scanning order.

A slice video picture segment starts at a macroblock boundary in the picture
and contains a number of macroblocks. Di1erent slices within the same picture
shall not overlap with each other, and every macroblock shall belong to one
and only one slice.
A slice is de/ned as a slice header followed by consecutive macroblocks

in scanning order. In order to allow slice header locations within the bitstream
to act as resynchronization points for bit error and packet loss recovery and
in order to allow out-of-order slice decoding within a picture, slice bound-
aries are treated di1erently than simple macroblock boundaries. Thus, no data
dependencies can cross the slice boundaries within the current picture. An
exception to this is the Deblocking Filter mode, which, when in use without
the Independent Segment Decoding mode, /lters across the boundaries of the
blocks in the picture.

3.4.6.6 Supplemental Enhancement Information Mode (Annex L)

In this mode, additional supplemental information can be included in the bit-
stream to signal an enhanced display capability or to provide information for
external usage. The supplemental information may be present in the bitstream
even though the decoder may not be capable of providing the enhanced capa-
bility to use it or even to properly interpret it. In this case, the decoder can
simply discard the supplemental information. The mode can be used to signal
the following capabilities:

1.	Picture Freeze: The mode can be used to signal that the contents of the
entire prior-displayed picture, or a speci/ed rectangular part of it, shall
be kept unchanged. The mode can also be used to explicitly signal a
picture freeze release.

2.	Picture Freeze with Resizing: The mode can be used to signal that the
contents of a speci/ed rectangular area of the prior-displayed picture

63 Section 3.4. The H.263 Standard

should be resized to /t into a smaller part of the displayed video picture,
which should then be kept unchanged.

3.	Picture Snapshot: The mode can be used to signal that the current
picture, or a speci/ed rectangular part of it, is labeled for external use
as a still-image snapshot of the video content.

4.	Video Time Segment: The mode can be used to signal the beginning and
the end of a speci/ed subsequence of video data to be used externally.

5.	Progressive Re4nement Segment: The mode can be used to signal the
beginning and the end of a speci/ed subsequence of video data. Rather
than being a continually moving scene, this subsequence of video in-
cludes a start picture followed by a sequence of zero or more pictures
to re/ne its quality.

6.	Chroma-Keying Information: The mode can be used to indicate that
the chroma-keying technique is used to represent transparent and semi-
transparent pels in the decoded video pictures. When being presented
on the display, transparent pels are not displayed. Instead, a background
picture is revealed that is either a prior reference picture or an exter-
nally controlled picture. Semitransparent pels are displayed by blending
the pel value in the current picture with the corresponding value in the
background picture.

3.4.6.7 Improved PB-Frames Mode (Annex M)

This mode represents an improvement compared to the original PB-frames
optional mode (annex G). The main di1erence between the two modes is that
the original PB-frames mode can utilize only bidirectional prediction to predict
the B part in a PB-frame, whereas the improved PB-frames mode can utilize
forward, backward, or bidirectional prediction.
The bidirectional prediction method is the same as in the original PB-frames

mode, except that in this case no delta vector is transmitted. In the forward-
prediction method, a B macroblock is predicted from the previously decoded
P-picture and a forward motion vector is transmitted. In the backward-
prediction method, a B-macroblock is predicted from the corresponding
P-macroblock currently decoded in the same PB-frame, and therefore no back-
ward motion vector needs to be transmitted.
This mode signi/cantly improves coding e,ciency in situations in which

downscaled P-vectors (utilized in the original PB-frames mode) are not good
candidates for B-prediction. In particular, the backward prediction is useful
when there is a scene cut between the previous P-frame and the current PB-

64 Chapter 3. Video Coding: Standards

frame. In general, it is advisable to use the Improved PB-frames mode instead
of the original PB-frames mode.

3.4.6.8 Reference Picture Selection Mode (Annex N)

In normal operation, a picture is temporally predicted from the most recently
decoded picture. The reference picture section (RPS) mode, however, allows
temporal prediction from pictures other than the most recently decoded one.
Thus, in this mode, both the encoder and the decoder use more than one
picture memory. As discussed in Chapter 6, this method belongs to a class
of motion estimation and compensation techniques called multiple-reference
motion-compensated prediction. The information to signal which picture is
selected for prediction is included by the encoder in the encoded bitstream.
However, the strategy used by the encoder to select this picture is not subject
for standardization.
This mode can be used to improve the performance of video communication

over error-prone channels. In normal operation, if part of the reference picture
is lost due, for example, to a transmission error, then this error will propagate
to and severely degrade the quality of future pictures. In this mode, however,
the encoder may switch to another reference picture to suppress the temporal
error propagation due to interframe coding.
In order to utilize this mode, the encoder needs to have some knowledge

about the conditions of the channel and the outcome of the decoding process
(e.g., which parts of the reference picture have been decoded in error). One
way to achieve this is to utilize a backward (feedback) channel. This mode
has two back-channel mode switches that de/ne whether a backward channel
is used and what kind of messages are returned on that backward channel from
the decoder. Together, the two switches de/ne four basic methods of operation:
NEITHER (no backward messages), ACK (acknowledgment messages only),
NACK (negative acknowledgment messages only), and ACK+NACK (both
acknowledgment and negative acknowledgment messages). There are also two
methods of operation in terms of the channel for backward channel messages.
The /rst method is the Separate Logical Channel mode, where back-channel
data is delivered through a separate logical channel in the multiplex layer of
the system, whereas the second method is the VideoMux mode, where back-
channel data for received video is delivered within the forward video data of
a video stream of encoded data.

3.4.6.9 Temporal, SNR, and Spatial Scalability Mode (Annex O)

Scalability implies that a bitstream is composed of a base layer and one
or more associated enhancement layers. The base layer is separately decod-
able. The enhancement layers can be decoded in conjunction with the base

65 Section 3.4. The H.263 Standard

layer to increase perceived quality by either increasing the picture rate (tem-
poral scalability), increasing the picture SNR quality (SNR scalability), or
increasing the picture resolution (spatial scalability). This mode has support
for three types of scalability: temporal, SNR, and spatial scalability, as de-
tailed next. This mode can be helpful when used over heterogenous networks
with varying bandwidth capacity and also in conjunction with error correction
schemes.

a: Temporal scalability: Temporal scalability refers to enhancement infor-
mation used to increase the picture quality by increasing the picture display
rate. Temporal scalability is achieved by employing bidirectionally predicted
pictures, or B-pictures. B-pictures can be predicted from a previous and=or
a subsequent reconstructed picture in the reference layer (the layer used for
prediction). B-pictures in this mode di1er from the B-picture part of a PB- (or
an Improved PB-) frame in that they are separate entities in the bitstream. In
other words, they are not syntactically intermixed with a subsequent P-picture.
It should be emphasised that B-pictures should not be used as reference pic-
tures for the prediction of any other picture. This is particularly important
to allow for B-pictures to be discarded if necessary without adversely a1ect-
ing any subsequent pictures, thus providing temporal scalability. Figure 3.6(a)
illustrates temporal scalability using B-pictures. It should be pointed out that
the location of B-pictures in the bitstream is in a data-dependence order rather
than in a temporal order. For example, in the case shown in Figure 3.6(a)
the bitstream order of the encoded pictures is I1; P3; B2; P5; B4; : : : : There
is no limit to the number of B-pictures that may be inserted between pairs
of reference pictures in the reference layer. In this mode, motion vectors are
allowed to extend beyond the picture boundaries of B-pictures.

b: SNR scalability: SNR scalability refers to enhancement information used
to increase the picture quality without increasing picture resolution. The pro-
cess of compression usually introduces artefacts and distortions. As a result,
the di1erence between a reconstructed picture and its original in the encoder is
almost always a nonzero-valued picture. Normally, this coding error picture is
lost at the encoder and never recovered. With SNR scalability, however, these
coding-error pictures can be encoded and sent to the decoder. At the decoder,
such coding-error pictures can be used to increase the signal-to-noise ratio of
the decoded picture, and hence the term SNR scalability. Figure 3.6(b) illus-
trates SNR scalability. If the enhancement-layer picture is predicted only from
a simultaneous lower-layer reference picture, then the enhancement-layer pic-
ture is referred to as an EI-picture. If, however, the enhancement-layer picture
is bidirectionally predicted using both a prior enhancement-layer picture and a
temporally simultaneous lower-layer reference picture, then the enhancement-
layer picture is referred to as an EP-picture. The picture in the reference

66 Chapter 3. Video Coding: Standards

I1 B2 P3 B4 P5

(a) Temporal scalability

Enhancement
Layer

Base
Layer

I PP

EI EP EP

(b) SNR scalability

Enhancement
Layer

Base
Layer

I PP

EI EP EP

(c) spatial scalability

Figure 3.6: Temporal, SNR, and spatial scalability in H.263+

67 Section 3.4. The H.263 Standard

layer that is used for upward prediction of an EI- or EP-picture may be an
I-picture, a P-picture, or the P part of a PB- or Improved PB-frame. Thus, an
EI-picture in an enhancement layer may have a P-picture as its lower-layer
reference picture, and an EP-picture may have an I-picture as its lower-layer
enhancement picture. For both EI- and EP-pictures, the prediction from the
lower reference layer uses no motion vectors. However, EP-pictures use mo-
tion vectors for the prediction from their prior reference picture in the same
layer.

c: Spatial scalability: Spatial scalability refers to enhancement information
used to increase the picture quality by increasing picture resolution either
horizontally, vertically, or both. Spatial scalability is very similar to SNR
scalability. The only di1erence is that before the picture in the reference layer
is used to predict the picture in the enhancement layer, it is interpolated by
a factor of 2 either horizontally or vertically (1-D spatial scalability) or both
horizontally and vertically (2-D spatial scalability). The interpolation /lters for
this operation are de/ned by the standard. Spatial scalability is illustrated in
Figure 3.6(c).

d: Multilayer scalability: It is possible not only for B-pictures to be tem-
porally inserted between pictures of types I, P, PB, and Improved PB, but
also between pictures of types EI and EP (whether these consist of SNR
or spatial-enhancement pictures). It is also possible to have more than one
SNR or spatial-enhancement layers in conjunction with a base layer. Thus a
multilayer scalable bitstream can be a combination of SNR layers, spatial lay-
ers, and B-pictures.

3.4.6.10 Reference Picture Resampling Mode (Annex P)

In this mode, a resampling operation can be applied to the previously decoded
picture in order to generate a new warped picture for use as reference for
predicting the currently encoded picture. For example, if the previous reference
picture and the current picture are of di1erent source formats, then this mode
can be used to resample the previous picture to match the source format of
the current picture. Another example is to use this mode to warp the previous
reference picture to compensate for global motion. Warping and warping-based
motion estimation methods are discussed in Chapter 5.

3.4.6.11 Reduced-Resolution Update Mode (Annex Q)

This mode allows the encoder to send information encoded at a low resolution
to update a higher-resolution reference picture and produce a /nal picture
at the higher resolution. This mode is particularly useful when encoding a
highly active scene, and allows an encoder to increase the picture rate at

68 Chapter 3. Video Coding: Standards

which moving parts of a scene can be represented while maintaining a higher-
resolution representation in more static areas of the scene.
The syntax of the bitstream in this mode is identical to the syntax for cod-

ing without the mode, but the semantics, or interpretation of the bitstream,
is somewhat di1erent. In this mode, the portion of the picture covered by a
macroblock is twice as wide and twice as high. Thus, there is approximately
one-quarter the number of macroblocks as there would be without this mode.
Motion vector data also refers to blocks of twice the normal height and width,
or 32 × 32 and 16 ×16 instead of the normal 16 ×16 and 8 ×8. For example,
the decoder receives and decodes a 16 ×16 DFD block at the reduced resolu-
tion. The decoder then upsamples this block to 32 × 32 at the higher resolution.
The decoder then upsamples the received motion vector by a factor of 2 and
uses it to produce a 32 × 32 prediction from the reference picture. The DFD
block and the prediction block are then added to produce a 32 × 32 block at
the higher resolution.

3.4.6.12 Independent Segment Decoding Mode (Annex R)

This mode allows a picture to be constructed without any data dependencies
that cross video picture segments. Thus, this mode provides error robustness
by preventing the propagation of erroneous data across the boundaries of video
picture segments.
In this mode, a video picture segment can be a slice, a GOB or multi-GOBs

with nonempty GOB headers, or a complete picture. When this mode is in use,
the video picture segment boundaries are treated as picture boundaries. In other
words, each video picture segment is decoded with complete independence
from all other video picture segments, and is also independent of all data
outside the corresponding video picture segment in the reference picture(s).
For example, motion vectors of blocks outside the current video picture

segment cannot be used when calculating the current motion vector predictor.
Similarly, motion vectors of blocks outside the current video picture segment
cannot be used as remote motion vectors for overlapped block-motion compen-
sation when the Advanced Prediction mode is in use. In addition, no motion
vectors are allowed to reference areas outside the corresponding video picture
segment in the reference picture(s).

3.4.6.13 Alternative INTER VLC Mode (Annex S)

This mode improves the e,ciency of encoding some INTER macroblocks
by allowing a VLC table originally designed for INTRA macroblocks to be
used for some INTER macroblocks. The INTRA VLC table used in the ad-
vanced INTRA coding mode (annex I) is designed to e,ciently encode INTRA
blocks. Thus, it is optimized for coding blocks with many large-valued coe,-

69 Section 3.4. The H.263 Standard

cients and small runs of zeros. There are cases, however, where the statistics
of INTER blocks can approximate the statistics of INTRA blocks. This is par-
ticularly possible when signi/cant changes are evident in the picture or when
small quantizer step sizes are employed. In such cases, it can become more
e,cient to encode INTER blocks using the INTRA VLC table.
In this mode, the encoder would normally choose to use the INTRA VLC

table for coding an INTER block only when the use of this table results in
fewer bits than the use of the INTER VLC table. This use of the alterna-
tive INTRA VLC table, however, is subject to the condition that the decoder
would be able to detect which of the two tables was used for encoding. Thus,
the alternative INTRA VLC table can be used, subject to the condition that
decoding using the INTER VLC table would result in runs of zeros so long
as to indicate the presence of more than 64 coe,cients in the block.

3.4.6.14 Modi>ed Quantization Mode (Annex T)

In this mode, the quantizer operation is modi/ed. In particular, this mode
includes the following four key features:

1. In	normal mode, the change of the quantization parameter at the
macroblock level is limited to a maximum of ±2. This mode, however,
improves the bit-rate control ability by allowing the quantization param-
eter to be changed at the macroblock level to any of its 31 permissible
values.

2. In normal mode, the chroma quantizer step size is the same as that for
luma. This mode, however, improves the /delity of chroma by specifying
a smaller quantizer step size for chroma than that for luma.

3. The true value of	a DCT coe,cient prior to quantization can be as
high as 2040. Thus, when the quantization parameter is less than 8,
the quantized DCT coe,cients can be outside the range [−127; +127]
permissible in the normal mode. Such coe,cients are clipped to the
permissible range before being encoded. This mode, however, extends
the range of representable quantized DCT coe,cient values to allow
the representation of any possible true coe,cient value to within the
accuracy allowed by the quantizer step size.

4. In	this mode certain restrictions are placed on the encoded DCT
coe,cient values to improve the detectability of errors and to minimize
decoding complexity.

Kossentini et al. [71, 72] provide an excellent overview of H.263+ and
evaluate the performance of the modes individually and in di1erent combina-
tions.

70 Chapter 3. Video Coding: Standards

3.4.7 H.263, Version 3 (H.263++)
Version 3 of the H.263 standard is informally known as H.263++. This
version adds a number of optional feature enhancements to versions 1
and 2.

3.4.7.1 Enhanced Reference Picture Selection Mode (Annex U)

The enhanced reference picture selection (ERPS) mode is an enhancement to
the RPS mode (annex N) of H.263+. In addition to enhancing error resilience,
this mode provides bene/ts in terms of coding e,ciency.
As with the RPS mode, the ERPS mode extends the motion estimation and

compensation processes to use more than one reference picture. In the ERPS
mode, however, enhanced performance is achieved by allowing reference pic-
ture selection on the macroblock, rather than the picture, level. Thus, in this
case, each motion vector is extended by a picture reference parameter that is
used to address a macroblock or block prediction region in any of the multiple
reference pictures.
The ERPS mode also includes a submode for improving the coding

e,ciency of B-pictures. In this submode, encoders can use more than one
reference picture for both forward and backward prediction of B-pictures.
Another submode of ERPS is provided to reduce memory requirements.

In this submode, each reference picture is partitioned into smaller rectangular
units called subpictures. The encoder can then indicate to the decoder that
speci/c subpicture areas of speci/c reference pictures will not be used as a
reference for the prediction of subsequent pictures. This allows the memory
allocated in the decoder for storing these areas to be used to store data from
other reference pictures.

3.4.7.2 Data Partitioned Slice Mode (Annex V)

In this mode, data is arranged in a video picture segment as de/ned in the
independent segment decoding mode (annex R) of H.263+. The contents of
this segment are rearranged such that the header information for all the MBs
in the segment are encoded and transmitted together, followed by the motion
vectors for all the MBs in the segment and then by the DCT coe,cients for all
the MBs in the segment. The segment header uses the same syntax as the slice
structured mode (annex K) of H.263+. The header, motion vectors, and DCT
partitions are separated by markers. In addition to data partitioning, this mode
uses RVLC tables for encoding header and motion information. As will be
discussed later, data partitioning and RVLC provide robustness in error-prone
environments. Another error-resilience enhancement in this mode is that the
motion vector predictor is no longer formed from three neighboring motion

71 Section 3.4. The H.263 Standard

vectors. Instead, a new prediction method is used to allow independent motion
vector decoding in both the forward and backward directions.

3.4.7.3 Additional Supplemental Enhancement Information (Annex W)

This annex describes additional supplemental enhancement information that
adds to the functionality of the supplemental enhancement information mode
(annex L) of H.263+. In particular, the following additional information can
be added to the bitstream:

1. Indication of the use of a speci/c /xed-point IDCT.

2. Picture messages, including the message types of:

(a) Arbitrary binary data.

(b) Text (arbitrary, copyright, caption, video description,	or uniform
resource identi/er).

(c) Picture header repetition (current, previous, next with reliable tem-
poral reference, or next with unreliable temporal reference).

(d) Interlaced /eld indications (top or bottom).

(e) Picture number.

(f) Spare reference picture identi/cation.

3.4.7.4 Pro>les and Levels De>nitions (Annex X)

With the variety of optional modes available in H.263, it is crucial that sev-
eral preferred mode combinations for operation be de/ned so that di1erent
terminals will have a high probability of connecting to each other. This an-
nex contains a list of preferred mode combinations, which are structured into
“pro/les” of support. It also de/nes some groupings of maximum performance
parameters as “levels” of support for these pro/les.
The annex de/nes nine pro/les (pro/le 0 to pro/le 8). Each pro/le is

de/ned in terms of a set of features supported by the decoder. For example,
the Baseline Pro4le (pro/le 0) refers to the syntax of H.263 with no optional
modes of operation. Another example is Version 2 Interactive and Streaming
Wireless Pro4le (pro/le 3). This pro/le is de/ned to provide enhanced coding
e,ciency performance and enhanced error resilience for delivery to wireless
devices within the feature set available in H.263+. This pro/le of support is
composed of the baseline design plus the following modes: advanced INTRA
coding mode (Annex I), deblocking /lter mode (Annex J), slice structured
mode (Annex K), and the modi/ed quantization mode (Annex T).

72 Chapter 3. Video Coding: Standards

The annex also de/nes seven levels (level 10 to level 70) of performance
capability for decoder implementation. For example, a decoder supporting the
/rst level, level 10, must include support of QCIF and sub-QCIF resolution
decoding, and must be capable of operation with a bit rate up to 64,000 bits per
second with a picture decoding rate up to (15,000)=1001 pictures per second.

3.5 The MPEG-4 Standard

As already discussed, the formal title “Generic coding of audiovisual objects”
given to MPEG-4 describes two important properties of the standard. The /rst
property is that it is a generic standard. It de/nes tools and algorithms for
the coding of natural, synthesis, and hybrid audiovisual objects with a wide
range of bit rates, picture formats, transmission media, etc. It is, therefore,
very di,cult to describe the full functionality of such a generic standard in a
volume of this size.5 Thus, this section will concentrate on MPEG-4 natural
video coding. In particular, the section will try to highlight the second property
of MPEG-4, i.e., being object-based, which sets it apart from other standards.

3.5.1 An Object-Based Representation
MPEG-4 uses an object-based representation model. Thus, a scene is repre-
sented, coded, and manipulated as individual audiovisual objects (AVOs). This
section concentrates on natural video objects.
As illustrated in Figure 3.7, an MPEG-4 video session (VS) is a collection

of one or more video objects (VOs). A VO is an entity that a user is allowed
to access (e.g., seek and browse) and manipulate (e.g., cut and paste). It can
be a simple rectangular frame or it can be an arbitrarily shaped object. A
VO can consist of one or more video object layers (VOLs). As is discussed
later, each VO can be encoded in either a scalable (multiple VOLs) or a
nonscalable (single VOL) form. Each VOL consists of an ordered sequence
of video object planes (VOPs). A VOP is an instance (or a snapshot) of
the corresponding VO at a given time. A number of VOPs can, optionally,
be grouped together in a group of video object planes (GOV). GOVs can
provide points in the bitstream where VOPs are encoded independently from
each other. This provides random access points within the bitstream.
Figure 3.8 shows a general block diagram of an MPEG-4 codec. The input

video is represented using a number of VOs. This object-based representa-
tion either already exists (e.g., generated with chroma-key technology) or is

5To give an indication of how generic the MPEG-4 standard is, the MPEG-4 draft [67] that
was used in writing the current section is more than 300 pages.

73 Section 3.5. The MPEG-4 Standard

VS0 VS1
Video Session
(VS)

VO0 VO1

VOL0 VOL1

GOV0

VOP0 VOPk VOP0 VOP1

GOV1

Video Object
(VO)

Video Object Layer

Group of VOPs
(GOV)

Video
Object Plane
(VOP)

(VOL)

Layer 0 Layer 1

Figure 3.7: MPEG-4 video bitstream structure

VO0
Coding

VO1
Coding

VON
Coding

VO
Formation

Video
Input

M
U

L
T

IPL
E

X

VO0

VO1

VON

VO
Composition

Video
Output

D
E

M
U

L
T

IPL
E

X

Bitstream

Decoding

Decoding

Decoding

User interaction

Figure 3.8: An MPEG-4 codec

generated using segmentation techniques. Each VO is encoded individually,
and the resulting bitstreams are multiplexed to a single bitstream. At the de-
coder, the received bitstream is /rst demultiplexed to the individual bitstreams.
Each bitstream is then decoded, and the decoded VOs are composited to

74 Chapter 3. Video Coding: Standards

reconstruct the output video. As shown, at various points of this encoding-
decoding process, users are allowed to interact with (access and=or manipulate)
the individual VOs.
As an example, consider a sequence showing a hot-air balloon Jying in

the sky. In this case, the sequence can be represented using two VOs: the
balloon and the sky background. Figure 3.9(a) shows a single frame of this
sequence. At this particular instance of time the two VOs are represented by
the two VOPs shown in Figures 3.9(b) and 3.9(c). At the encoder, each VOP
is encoded individually and the two bitstreams are multiplexed. At the decoder,
the received bitstream is demultiplexed to the two individual bitstreams. Each
bitstream is then decoded to reconstruct the corresponding VOP. The two
VOPs are then put together to reconstruct the transmitted frame. The user can
optionally manipulate the decoded VOPs. For example, in Figure 3.9(d) the
balloon VOP has been enlarged, rotated, and translated as compared to the
original frame.
In addition to composition information (which indicates where and when

the VOP is to be displayed), each VOP is encoded in terms of its shape,

(a) Balloon in Sky (original) (b) Sky (background) VOP

(c) Balloon VOP (d) Decoded and manipulated

Figure 3.9: Object-based representation, coding, and interaction

75 Section 3.5. The MPEG-4 Standard

Motion
compensation

(MC)

Motion
estimation

(ME)

+
_

Input VOP
Texture

encoding

Texture
decoding

VOP memory

Decoded
reference

VOP

+

Texture information

Decoded
texture

Motion information

Decoded
current VOP

Motion-compensated
VOP

Motion
encoding

Shape encoding
Shape information

M
ultiplex

Bitstream

Figure 3.10: An MPEG-4 VOP encoder

motion, and texture. This is illustrated in Figure 3.10. As can be seen, an
MPEG-4 VOP encoder has three main functionalities: shape encoding, mo-
tion encoding (along with motion estimation and compensation), and texture
encoding. Note that the structure of this encoder is very similar to the MC-
DPCM structure utilized by H.263 and most other standards. In fact, for most
cases, the texture encoder is DCT-based and the structure is very similar to
the conventional hybrid MC-DPCM=DCT encoder. The di1erence here is that
the encoded entities can have arbitrary shapes rather than the /xed rectangular
frame shape, and therefore additional shape information needs to be encoded
and transmitted. Note that this object-based representation can be thought of
as a generic representation. When a frame is encoded using a single VOP, this
generic representation degenerates into the special case of rectangular frames
and an MPEG-4 encoder becomes almost identical to an H.263 encoder. In
fact, the MPEG-4 standard provides measures to ensure some level of inter-
operability with MPEG-1=2 and H.263.
A VOP is encoded on a macroblock (MB) basis. MPEG-4 supports a 4:2:0

subsampling format with 4 –12 bits=sample. Thus, an MB consists of six 8 × 8
blocks: four luma blocks and two corresponding chroma blocks. To achieve
e,cient encoding, the arbitrary shaped VOP is /rst encapsulated within a
bounding box. This bounding box is chosen such that it completely contains
the VOP but uses the minimum number of macroblocks. This bounding box
is illustrated for the Balloon VOP in Figure 3.11. Within this bounding box,

76 Chapter 3. Video Coding: Standards

Frame box

VOP
bounding box

shift

internal MB

boundary MB

exterior MB

Figure 3.11: The bounding box of the Balloon VOP

there are three types of MBs: internal MBs, boundary MBs, and exterior MBs.
An internal MB lies completely inside the VOP, whereas a boundary MB lies
on the contour of the VOP; i.e., parts of it are inside the VOP and the other
parts are outside the VOP. An exterior MB, on the other hand, lies completely
outside the VOP. Note that the shape, size, and location of this bounding box
can change from one time instance to another. Thus, the absolute (frame)
coordinate system is used to de/ne such bounding boxes.
The following subsections brieJy describe the main building blocks of the

MPEG-4 VOP encoder.

3.5.2 Shape Coding
In the context of MPEG-4, shape information is referred to as alpha planes.
There are two types of alpha planes: binary and gray-scale. A binary alpha
plane de/nes which pels within the bounding box belong to the video object
at a given instant of time. A gray-scale alpha plane, on the other hand, is a
more general form of alpha planes, for it includes transparency information.

3.5.2.1 Binary Shape Coding

A binary alpha plane is represented by a matrix the same size as the bounding
box of the video object. Every element within this matrix can take one of two

77 Section 3.5. The MPEG-4 Standard

possible values. If the corresponding pel belongs to the object, then the element
is set to 255; otherwise it is set to 0. This matrix is sometimes referred to as
a binary mask or as a bitmap. Figure 3.12 shows the binary alpha plane of
the Balloon VOP.
Before encoding, the binary alpha plane is partitioned into 16 ×16 blocks

called binary alpha blocks (BABs). A BAB with all elements equal to 0 is
called a transparent BAB, whereas a BAB with all elements equal to 255
is called an opaque BAB. Each BAB is encoded separately. The main tools
used for encoding BABs are context-based arithmetic encoding (CAE) and
motion compensation. There are two variants of the CAE algorithm. One is
used with motion compensation and is called InterCAE, whereas the other one
is used without motion compensation and is called IntraCAE. There are seven
possible modes for encoding a BAB:

1. The BAB is Jagged transparent. In this case, no shape coding is neces-
sary. In addition, texture information is not coded for this BAB.

Figure 3.12: The binary alpha plane of the Balloon VOP

78 Chapter 3. Video Coding: Standards

2. The BAB is Jagged opaque. In this case, no shape coding is necessary,
but texture information is coded.

3. The BAB is coded without motion compensation using IntraCAE.

4. The MVDs is zero (i.e., MVs = MVPs) and no block update is neces-
sary.

5. The	MVDs is zero and the block needs to be updated. In this case,
InterCAE is used for coding the block update.

6. The MVDs is nonzero and no update is necessary.

7. The MVDs is nonzero and the block needs to be updated. In this case,
InterCAE is used for coding the block update.

Modes 1 and 2 require no shape coding. For mode 3, shape is encoded using
IntraCAE. For modes 4 –7, motion estimation and compensation are employed.
The motion vector di1erence for shape (MVDs) is the di1erence between
the shape motion vector (MVs) and its predictor (MVPs). This predictor is
estimated from either neighboring shape motion vectors or co-located texture
motion vectors. When the mode indicates that no update is required, then the
MVs is simply used to copy a displaced 16 × 16 block from the reference
binary alpha plane to the current BAB. If, however, the mode indicates that
an update is required, then the update is coded using InterCAE.
The CAE is a binary arithmetic coding algorithm where the probability of

a symbol is determined from the context of the neighboring symbols. First,
the arithmetic encoder is initialized. The binary pels (elements) of the BAB
are then encoded in raster-scan order using the following steps:

1. Compute a context number based on the templates shown in Figure 3.13.
This context number is given by C =

�N −1 ck 2k , where ck = 0 for a k=0

pels of reference BAB pels of current BAB

c0

c1c2c3

current pelc6 c5c7

c8

c4

aligned using MVs
c0c1

c2c3c4c5c6

c7c8c9

current pel

(a) IntraCAE (b) InterCAE

Figure 3.13: CAE templates in MPEG-4

79 Section 3.5. The MPEG-4 Standard

transparent pel, ck = 1 for an opaque pel, N =10 pels for IntraCAE, and
N = 9 pels for InterCAE.

2. Determine the probability of the pel being transparent (or opaque) by
using the context number to index a table of probabilities de/ned by
the standard.

3. Use the indexed probability to drive an arithmetic encoder for codeword
assignment.

When all pels in the BAB have been encoded, the arithmetic encoder is
terminated.

3.5.2.2 Gray-Scale Shape Coding

A gray-scale alpha plane has a similar representation to the binary alpha plane,
with the di1erence that elements within the plane can take on a range of
values, usually 0 to 255 with 8-bit representation, designating the degree of
transparency of the corresponding pel. Gray-scale shape information consists
of two parts. The /rst part is the support information. This is obtained by
thresholding the gray-scale alpha plane at 0 (i.e., any value that is not equal
to 0 is set to 255). Support information is encoded using the binary shape
coding methods described previously. The second part of gray-scale shape
information contains the gray-scale values of the alpha plane. This is encoded
using methods similar to the texture encoding methods described later in this
chapter (Section 3.5.4).

3.5.2.3 Scalable Shape Coding

Besides changing the coding mode of BABs, additional mechanisms are em-
ployed for controlling the quality and bit rate of binary shape information. One
method is by reducing the resolution of the BAB by a factor of 2 or 4. The
resulting 8 × 8 or 4 × 4 BAB is encoded using any of the available modes. At
the decoder, the reduced-resolution BAB is /rst decoded and then upsampled.
Another method for reducing the binary shape bit rate is by changing the ori-
entation of the BAB. The e,ciency of the CAE algorithm can depend on the
orientation of the BAB. In some cases, transposing the BAB before coding it
can increase coding e,ciency. In this case, the decoder decodes the BAB and
then transposes it back to its original orientation.

3.5.3 Motion Estimation and Compensation
Motion estimation and compensation methods in MPEG-4 are very similar
to those employed by other standards. The main di1erence is that block-

80 Chapter 3. Video Coding: Standards

based motion estimation and compensation are adapted to the arbitrary-shape
VOP structure of MPEG-4. The standard has three modes for encoding a
given VOP: intra-VOP (I-VOP), predicted-VOP (P-VOP), and bidirectionally-
predicted-VOP (B-VOP).
Since the shape, size, and location of a VOP can change from one instance

to another, the absolute (frame) coordinate system is used for referencing
every VOP. Thus, the motion vector for a particular feature inside a VOP
refers to the displacement of the feature in absolute coordinates. During motion
estimation and compensation, no alignment of VOP bounding boxes at di1erent
time instances is performed.
Motion is estimated only for those MBs within the bounding box of the

current VOP. If the current MB is an internal MB, then motion is estimated
using the usual block-matching method. If, however, the current MB is a
boundary MB, then motion is estimated using a modi/ed block-matching
method called polygon matching. In polygon matching, the distortion measure
is calculated using only those pels in the current macroblock that belong to
the VOP.
The motion estimation and compensation processes may require accessing

pels outside the reference VOP. Padding is used to de/ne the values of such
pels. The luma component is padded per 16 × 16 samples, while the chroma
components are padded per 8 × 8 samples. If the reference MB is a bound-
ary MB, then it is padded using repetitive padding. This process starts by
horizontal repetitive padding, where each sample at the boundary of a refer-
ence VOP is replicated horizontally in the left and=or right direction in order
to /ll the transparent region of the reference MB. If there are two boundary
sample values for /lling a sample, the two boundary samples are averaged.
The remaining un/lled transparent samples are padded by a similar process
as the horizontal repetitive padding but in the vertical direction, i.e., vertical
repetitive padding. The remaining MBs within the reference VOP are exterior
MBs. Such MBs are /lled by extended padding. In this method, samples of
an exterior MB are /lled by replicating the samples at the border of the neigh-
boring boundary MB. If an exterior MB is next to more than one boundary
MB, then one of the boundary MBs is chosen according to a priority criterion
de/ned by the standard. The remaining exterior MBs are /lled with 128 (for
an 8-bit luma component).
Motion vectors are estimated to half-pel accuracy. They are then predic-

tively VLC coded in a similar fashion to the H.263 standard.
Similar to the H.263 standard, MPEG-4 has an advanced prediction mode

(four motion vectors per MB and unrestricted motion vectors) and an over-
lapped motion compensation mode.

81 Section 3.5. The MPEG-4 Standard

3.5.4 Texture Coding
For I-VOPs, texture refers to the luma and chroma values (i.e., the video signal).
For motion-compensated VOPs, texture refers to the luma and chroma residual
errors remaining after motion compensation (i.e., the DFD signal). The process
of texture coding involves the following steps: padding, DCT, quantization,
INTRA coe,cient prediction, scanning, and variable-length encoding.

3.5.4.1 Padding

Like H.263 and most other video coding standards, MPEG-4 encodes texture
information using a block-based 8 × 8 DCT. In this process, internal MBs are
encoded directly, whereas boundary MBs must /rst be padded. The aim of this
padding process is to remove abrupt transitions within the macroblock, thus
reducing the number of signi/cant DCT coe,cients. Note that during texture
coding, exterior MBs are not coded.
For motion-compensated boundary MBs, pels outside the VOP are padded

with zero. For INTRA boundary MBs, pels outside the VOP are padded using
the following low-pass extrapolation (LPE) procedure:

1. Calculate the	mean value of the macroblock pels that lie within the
VOP. Use this value for padding the macroblock pels that lie outside
the VOP.

2. Starting at the top-left corner of the macroblock, proceed in scanning
order to the bottom-right corner, replacing each pel f(x; y) that lies
outside the VOP with the average value of its four neighbors; i.e.,
f(x; y)= (f(x− 1; y)+ f(x+1; y)+ (f(x; y− 1) + f(x; y+ 1))=4. The
neighboring pels should lie within the VOP; otherwise they are not
considered in the averaging process and the equation is modi/ed ac-
cordingly.

3.5.4.2 DCT

The internal MBs and the padded boundary MBs are then transformed using
a 2-D 8 × 8 forward DCT.

3.5.4.3 Quantization

The resulting DCT coe,cients are quantized using one of two methods. The
/rst method is very similar to H.263 quantization and uses a /xed quantization
step size for the whole macroblock. The second method, however, uses one of
two default quantization matrices (or scaled versions of them) to modify the

82 Chapter 3. Video Coding: Standards

quantizer step size depending on the spatial frequency of the coe,cient. In
MPEG-4, DC coe,cients can also be quantized using a nonlinear quantizer.

3.5.4.4 Prediction of INTRA DCT Coe5cients

To achieve more e,ciency, the quantized coe,cients of an INTRA block can
be predicted from the colocated coe,cients in either the block immediately
to the left of or the block immediately above the current block, as shown in
Figure 3.14. The direction of prediction is adapted depending on the horizon-
tal and vertical DC gradients of neighboring blocks. Thus, if X is the current
INTRA block, QFA(0; 0) is the quantized DC coe,cient of block A immedi-
ately to the left of the current block, QFB(0; 0) is the quantized DC coe,cient
of block B above and to the left of X , and QFC (0; 0) is the quantized DC
coe,cient of block C immediately above X , then the direction of prediction
is chosen as follows: If |QFA(0; 0) − QFB(0; 0)| ¡ |QFB(0; 0) − QFC (0; 0)|, then
predict from block C; otherwise predict from block A.
Having decided the direction of prediction, there are two types of prediction:
1.	DC prediction: Depending on the direction of prediction, the DC coef-
/cient of the current block X is predicted from the DC coe,cient of
either block A or block C. For example, when the horizontal direction is
chosen, the prediction is given by PQFX (0; 0)=QFX (0; 0) − QFA(0; 0).

Top-left Top

neighbor, B
 neighbor, C

Left Current

neighbor, A
 block, X

DC Coefficient INTRA
AC Coefficient macroblock

Figure 3.14: DC and AC coe,cient adaptive prediction in MPEG-4

83 Section 3.5. The MPEG-4 Standard

2.	AC prediction: Depending on the direction of prediction, the AC co-
e,cients of the /rst row of the current block X are predicted from
the AC coe,cients of the /rst row of block C, or the AC coe,cients
of the /rst column of the current block X are predicted from the AC
coe,cients of the /rst column of block A. To compensate for di1er-
ences in the quantization parameters of adjacent blocks used in AC
prediction, the prediction process is modi/ed so that the predictor is
scaled by the ratio of the current quantization parameter, QPX , and the
quantization parameter of the predictor block, QPA or QPC . For exam-
ple, when the horizontal direction is chosen, the prediction is given by
PQFX (0; j)=QFX (0; j) − QFA(0; j)QPA . The use of AC prediction can be QPX
enabled=disabled at the macroblock level.

If any of the neighboring blocks are outside of the VOP boundary or the
video packet boundary, or if they do not belong to an INTRA coded mac-
roblock, their DC values are assumed to take a value of 2bits=pel+2 and their
AC values are assumed to take a value of 0. DC and AC predictions are
performed similarly for the luma and each of the two chroma components.

3.5.4.5 Scanning

To prepare the coe,cients for variable-length encoding, a scanning process is
used to convert the 2-D matrix of coe,cients into a 1-D vector.
There are three possible scanning patterns: zigzag, alternate-vertical, and

alternate-horizontal. All non-INTRA blocks use the conventional zigzag scan-
ning pattern. For INTRA blocks, however, the choice of the scanning pattern
depends on the prediction process:

1. If AC prediction is not employed, then the conventional zigzag scanning
pattern is used for all blocks within the macroblock.

2. If, however, AC prediction is employed, then the direction of the DC
prediction is used to select a suitable scanning pattern on a block basis,
as follows:

(a) If the DC prediction employs the horizontal direction, then the
alternate-vertical scanning pattern is used.

(b) If, however, the DC prediction employs the vertical direction, then
the alternate-horizontal scanning pattern is used.

3.5.4.6 Variable-Length Coding

The di1erential (predicted) DC coe,cients in INTRA macroblocks are en-
coded using a concatenation of a VLC codeword and a FLC codeword. The
possible range of encoded di1erential DC coe,cients is divided into subranges

84 Chapter 3. Video Coding: Standards

or categories. The VLC codeword indicates to which category the encoded
di1erence belongs, whereas the FLC codeword, then, uniquely identi/es the
di1erence within that category. Instead of this special treatment, the INTRA
DC coe,cients can optionally be encoded using the same INTRA AC VLC
table described next. To achieve compatibility with H.263, the INTRA DC
coe,cients can also optionally be encoded without prediction using an 8-bit
FLC codeword.
All other coe,cients are encoded using a procedure similar to that of H.263.

Thus, the scanned quantized coe,cients are converted into an intermediate
set of EVENTS of the form (LAST, RUN, LEVEL). The most commonly
occurring events are then encoded using standard VLC tables. There are two
standard VLC tables: one for INTRA blocks and another for INTER blocks.
To achieve compatibility with H.263, the VLC table for INTER blocks can
optionally be used for both INTER and INTRA blocks. Less frequent EVENTS
are encoded with the help of an ESCAPE codeword.

3.5.5 Still-Texture Coding
The MPEG-4 also supports coding of static textures (or still images). This
mode uses subband coding based on the discrete wavelet transform (DWT).
As discussed in Section 2.6.3, the DWT is used in subband coding to

apply a nonuniform decomposition (refer to Figure 2.12(b)) to the texture
information. This results in a decomposition tree of subbands. The lowest
subband (horizontal low=vertical low (LL)) is known as the DC subband,
whereas the remaining subbands are known as the AC subbands.
In MPEG-4, the DWT can be either a Joating-point or an integer transform,

as signaled by the encoder in the bitstream. The encoder can also choose to
use a set of default /lters or to use its own /lters and de/ne them in the
bitstream.
The quantized coe,cients of the DC subband are encoded using DPCM

followed by arithmetic coding. The choice of the predictor for a particular
coe,cient depends on the magnitude of the horizontal and vertical gradients of
neighboring coe,cients. If the horizontal gradient is smaller than the vertical
gradient, then prediction is performed using the left neighboring coe,cient;
otherwise the top neighboring coe,cient is employed.
The quantized coe,cients of the AC subbands are encoded using a zero-tree

algorithm followed by arithmetic coding.

3.5.6 Sprite Coding
An interesting mode supported by MPEG-4 is sprite coding. A sprite consists
of those parts of an object that are present in the scene throughout a video

85 Section 3.5. The MPEG-4 Standard

segment. For example, a background sprite (also referred to in the literature
as a background mosaic) can be constructed by collecting all pels belong-
ing to the background throughout a video segment. Note that in the case of
camera panning, for example, the background sprite can be larger than the
actual frames of the sequence. This still, and possibly large, image needs to
be transmitted only once before transmitting the corresponding video segment.
For each frame of the video segment, there is no need to encode a back-
ground VOP. Instead, a small number of parameters needs to be transmitted
to allow the decoder to warp=crop the sprite and generate an appropriate back-
ground VOP. Thus, in such cases, sprite coding can achieve very high coding
e,ciency.
Sprite coding can operate in three modes: basic sprite coding, low-latency

sprite coding, and scalable sprite coding. In basic sprite coding the whole sprite
is encoded and transmitted to the decoder before transmitting the corresponding
video segment. In low-latency sprite coding only part of the sprite is encoded
and transmitted. This part is su,cient to be used for the /rst few frames of
the video segment. The remaining part of the sprite is transmitted, piecewise,
when required or as the bandwidth allows. In scalable sprite coding the sprite
is encoded and transmitted progressively. In other words, a low-quality version
of the sprite is encoded and transmitted /rst. This is then re/ned gradually by
encoding and transmitting residuals.

3.5.7 Scalability
MPEG-4 supports both temporal and spatial scalability using multiple VOLs.
For example, in the case of two VOLs, one VOL provides the base layer
whereas the other VOL provides the enhancement layer.
MPEG4 uses a generalized scalability framework, as shown in Figure 3.15.

In this framework the functionality of a block depends on the chosen type of
scalability.

Scalability
Preprocessor

Midprocessor

Enhancement-
Layer Encoder

Base-Layer
Encoder

M
ultiplexer

D
em

ul
tip

le
xe

r

Midprocessor

Enhancement-
Layer Decoder

Base-Layer
Decoder

Scalability
Postprocessor

I0

I1

In

O1

O0

1

0

Out

Out

Figure 3.15: MPEG-4 generalized scalability

86 Chapter 3. Video Coding: Standards

VOPs are input to the scalability preprocessor. If spatial scalability is to
be performed, then this preprocessor downsamples the input VOPs to generate
the base-layer VOPs forming the input to the base-layer encoder. The mid-
processor takes the reconstructed base-layer VOPs and upsamples them. The
di1erence between the original VOPs and the output of the midprocessor forms
the enhancement-layer VOPs. Those are encoded using the enhancement-layer
encoder. The multiplexer is then used to multiplex the base- and enhancement-
layer bitstreams into a single bitstream. At the decoder, the demultiplexer
is used to separate the incoming bitstream into base- and enhancement-layer
bitstreams. The scalability postprocessor performs any necessary operations,
such as upsampling the decoded base layer for display.
If, however, temporal scalability is to be performed, then the scalability

preprocessor separates the stream of input VOPs into two substreams. One
substream forms the input to the base-layer encoder, while the other forms
the input to the enhancement-layer encoder. In this case, the midprocessor
does not perform any spatial resolution conversion and simply allows the
reconstructed base-layer VOPs to pass through to be used for the temporal
prediction of enhancement-layer VOPs. In this case also, the postprocessor
simply outputs the reconstructed base-layer VOPs without any conversion.
For spatial scalability, only rectangular VOPs are supported by MPEG-4. In

the case of temporal scalability, however, both rectangular and arbitrary-shaped
VOPs are supported. MPEG-4 provides two types of temporal scalability:

•	Type I: The enhancement layer increases the temporal resolution of only
a partial region of the base layer.

•	Type II: The enhancement layer increases the temporal resolution of
the entire region of the base layer.

3.5.8 Error Resilience
One of the main aims of MPEG-4 is to provide universal access through a wide
range of environments, including error-prone environments. One of the impor-
tant requirements of video communication over error-prone environments, like
mobile networks, is robustness against errors. MPEG-4 provides three main
tools for error resilience: resynchronization, data partitioning, and reversible
VLCs.

3.5.8.1 Resynchronization

As is discussed in Chapter 9, one of the disadvantages of VLC coding is
that errors in the bitstream can cause a loss of synchronization between the
encoder and the decoder. One way to reduce this e1ect is to insert unique

87 Section 3.5. The MPEG-4 Standard

markers called resynchronization codewords in the bitstream. When an error is
detected, the decoder skips the remaining bits until it /nds a resynchronization
codeword. This reestablishes the synchronization with the encoder, and the
decoder then proceeds to decode from that point on.
Version 1 of H.263 adopts a GOB-based resynchronization approach. This

means that a resynchronization codeword is inserted every time a /xed number
of macroblocks (which is equal to the size of the GOB) has been encoded.
Since the number of bits can vary between macroblocks, the resynchroniza-
tion codewords will most likely be unevenly spaced throughout the bitstream.
Therefore, certain parts of the sequence, such as high-motion areas with high
bit content, will be more susceptible to errors and will also be more di,cult
to conceal.
MPEG-4, however, adopts a more robust approach based on video pack-

ets, as illustrated in Figure 3.16(a). In this approach each packet contains
approximately the same number of bits. This means that the resynchronization
codewords are almost periodic in the bitstream. Note that the header of the
packet contains the necessary information (e.g., the address of the /rst MB in
the packet and the corresponding quantization parameter) to restart decoding
after reestablishing synchronization. Following the packet header is the header
extension code (HEC). When this bit is set to “1,” then additional information
(e.g., timing information and VOP coding type) are included in the header.

Video Packet

Resync.
Marker

MB
Address

Quant.
Scale

Header
Extension

Code
MBs Data

Resync.
Marker (a) Resynchronization

Motion
Information

Motion
Marker

Texture
Information

RVLC
Texture Data

RVLC Texture
Data

Error
Burst

(b) Data Partitioning

(c) RVLC

Forward Backward
Decoding Decoding

Figure 3.16: MPEG-4 error resilience tools

88 Chapter 3. Video Coding: Standards

Such information was originally included in the VOP header. Its inclusion in
the packet header as well enables the decoder to decode the packet without
reference to the packet containing the VOP header. Such information can
also help error detection, since it is supposed to be the same in all packets
belonging to the same VOP.
Another problem with VLC coding is that errors can emulate the occur-

rence of start and resynchronization codewords. To reduce this e1ect, MPEG-4
provides a second resynchronization approach called 4xed-interval synchro-
nization. In this approach, VOP start codes and packet resynchronization code-
words appear only at legal /xed-interval locations in the bitstream. Thus, only
codewords at those legal locations will be used by the decoder to reestablish
synchronization.

3.5.8.2 Data Partitioning

In some cases, an error occurs well before the point in the bitstream at which
the error is detected. Therefore, when an error is detected, all bits between the
resynchronization codeword prior to the error detection point and the resyn-
chronization codeword where synchronization is reestablished are typically
discarded. If the decoder can localize the error more e1ectively, then the per-
formance of error concealment techniques (discussed in Chapter 9) can be
improved.
MPEG-4 uses data partitioning to further improve the ability of the decoder

to localize errors. In this approach the bitstream between two resynchronization
codewords is divided into smaller logical units. Each logical unit contains one
type of information for all MBs belonging to the same packet. For example, in
Figure 3.16(b) the motion information for all the MBs in the packet is encoded
/rst, followed by a motion marker and then the texture information for all the
MBs in the packet. In the non-data-partitioned case, if an error occurs in the
texture information, then the header, motion, and texture information will all
be discarded. In the data-partitioned case, however, if an error occurs in the
texture information, then only the texture information will be discarded, and
the motion marker will be used to locate and recover the header and motion
information. Temporal concealment (described in Chapters 9 and 10) can then
use this recovered information to conceal the corrupted MBs from the reference
VOP.

3.5.8.3 Reversible VLCs

As already discussed, when an error is detected in the bitstream, the bits
between the surrounding resynchronization codewords are discarded, and the
decoder skips to the next resynchronization codeword and proceeds decod-
ing from there. In MPEG-4, however, texture information is encoded using

89 Section 3.5. The MPEG-4 Standard

RVLCs, as illustrated in Figure 3.16(c). In this case, when the decoder jumps
to the next resynchronization codeword, instead of discarding all preceding
bits, the decoder can start decoding in the reverse direction to recover and
utilize some of those bits.

3.5.9 Pro>les and Levels
As already discussed, pro/les and levels provide a means of de/ning subsets
of the syntax and semantics of a standard. This in turn provides a means of
de/ning the decoder capabilities required to decode a particular bitstream. Pro-
/les and levels are used to de/ne conformance points that facilitate bitstream
interchange among di1erent applications.
In MPEG-4, object types are used to de/ne pro/les. An object type de/nes

a subset of MPEG-4 tools that provides a single or a group of functionalities.
There are six natural video object types: simple, core, main, simple scalable,
N -bit, and still scalable texture. For example, the main object type includes
the following subset of tools: basic (I- and P-VOP, coe,cient prediction,
4-MV, and unrestricted MV), error resilience, short header, B-VOP, Methods
1 and 2 for quantization, P-VOP-based temporal scalability, binary shape, gray
shape, interlace, and sprite.
A pro4le is a de/ned subset of the entire bitstream syntax. MPEG-4 de-

/nes six natural video pro/les: simple, core, main, simple scalable, N -bit, and
scalable texture. Each pro/le is de/ned in terms of video object types. For
example, the main pro4le includes the following object types: simple, core,
main, and scalable still texture.
A level within a pro/le is a de/ned set of constraints imposed on parameters

in the bitstream that relate to the tools of that pro/le. For example, level 1
(L1) of the simple pro4le has a typical session size of QCIF, a maximum
total number of objects of 4, and a maximum bitrate of 64 kbits=s.

Part II

Coding E
ciency

The radio spectrum is a limited and scarce resource. This puts very stringent
limits on the bandwidth available for a mobile channel. Given the enormous
amount of data generated by video, the use of e�cient coding techniques is
vital.

One of the most important factors that decide the coding e�ciency of a
video codec is the motion estimation and compensation technique. This part
contains three chapters. Chapter 4 covers some basic motion estimation meth-
ods. It starts by introducing some of the fundamentals of motion estimation.
It then reviews some basic motion estimation methods, with particular em-
phasis on the widely used block-matching methods. The chapter then presents
the results of a comparative study between the di"erent methods. The chapter
also investigates the e�ciency of block-matching motion estimation at very
low bit rates, typical of mobile video communication. The aim is to decide if
the added complexity of this process is justi%able, in terms of an improved
coding e�ciency, at such bit rates.

Chapter 5 investigates the performance of the more advanced warping-based
motion estimation methods. The chapter starts by describing a general warping-
based motion estimation method. It then considers some important parameters,
like the shape of the patches, the spatial transformation used, and the node-
tracking algorithm. The chapter then assesses the suitability of warping-based
methods for mobile video communications. In particular, the chapter compares
the coding e�ciency and the computational complexity of such methods to
those of block-matching methods.

Chapter 6 investigates the performance of another advanced motion estima-
tion method, called multiple-reference motion-compensated prediction (MR-
MCP). The chapter starts by brie-y reviewing multiple-reference motion esti-
mation methods. It then concentrates on the long-term memory motion-com-
pensated prediction (LTM-MCP) technique. The chapter investigates the
prediction gains and the coding e�ciency of this technique at very low bit
rates. The primary aim is to decide if the added complexity, increased motion
overhead, and increased memory requirements of this technique are justi%able
at such bit rates. The chapter also investigates the properties of multiple-
reference block motion %elds and compares them to those of single-reference
%elds.

Chapter 4

Basic Motion Estimation Techniques

4.1 Overview

Motion estimation is an important process in a wide range of disciplines and
applications, such as image sequence analysis, computer vision, target track-
ing, and video coding. Di�erent disciplines and applications have di�erent
requirements and may, therefore, use di�erent motion estimation techniques.

This chapter reviews some basic motion estimation techniques developed
speci�cally for video coding. It then carries out a comparative study between
the di�erent techniques. The chapter also presents the results of an investiga-
tion into the e!ciency of block-matching motion estimation at very low bit
rates. In particular, the investigation shows that the added complexity of this
process is justi�able at such bit rates.

Section 4.2 gives a brief introduction to the basics of motion estima-
tion. Sections 4.3– 4.6 brie*y review the di�erential, pel-recursive, frequency-
domain, and block-matching motion estimation methods. Section 4.7 presents
the results of a comparative study of the reviewed techniques, whereas
Section 4.8 investigates the e!ciency of motion estimation at very low bit
rates. The chapter concludes with a discussion in Section 4.9.

4.2 Motion Estimation

As already discussed in Chapter 2 (Section 2.7.2), the most commonly used
video coding method is motion-compensated coding. In the �rst stage of this
method, called motion estimation (ME), the motion of objects between a
reference frame and the current frame is estimated. This motion information
is then used in the second stage, called motion compensation (MC), to move
the objects of the reference frame to provide a prediction for the current

93

94 Chapter 4. Basic Motion Estimation Techniques

frame. The prediction error, called the displaced-frame di�erence (DFD), is
encoded instead of the current frame itself. The estimated motion information
also has to be transmitted, unless the decoder can estimate it from previously
decoded information. This section introduces the basics of motion estimation.
It de�nes and formulates the motion estimation problem and describes the
main approaches and models used to solve this problem. Examples of such
solutions will be discussed in subsequent sections.

4.2.1 Projected Motion and Apparent Motion
In video, the 3-D motion of objects in space is projected as 2-D motion onto
the image plane. This 2-D motion, called projected motion, is illustrated in
Figure 4.1. Thus, motion estimation may refer to the process of estimating
image-plane 2-D motion or object-space 3-D motion. Note that the two are
not equivalent. In fact, 2-D motion estimation is usually the �rst step toward
3-D motion estimation. This chapter considers 2-D motion estimation only.
For 3-D motion estimation, the reader is referred to Ref. 10.

In video coding, motion is estimated by observing the spatiotemporal vari-
ation of intensity between frames. This is called the apparent motion. In the
ideal case, apparent motion is equivalent to true projected motion. In practice,
however, this is not always the case. For example, when a circle with uniform

Y

X

Z

O

center of
prejection

x

y

object space

image plane

P

P'

p

p'

2-D projected
motion

3-D
motion

Figure 4.1: Projected motion

95 Section 4.2. Motion Estimation

intensity rotates about its center, it has a rotational projected motion but zero
apparent motion. Another example is a still object with change of illumination
between frames. Although the object has zero projected motion, the change in
illumination will result in some apparent motion. Hereafter, unless otherwise
stated, the term motion will be used to refer to apparent motion rather than
true projected motion.

Two-dimensional motion can be represented in terms of either 2-D displace-
ment vectors, d = [dx; dy]T , or 2-D instantaneous velocity vectors, v = [vx; vy]T

= [dx ; dy . A set of such vectors representing motion in a frame is called dt dt]
T

the motion �eld of the frame. The two representations are called the dis-
placement �eld and the velocity �eld in the case of projected motion, or the
correspondence �eld and the optical "ow �eld in the case of apparent motion.
However, in the video coding literature, it has become a convention to ignore
this distinction and to use the terms displacement �eld and velocity �eld to
refer to the apparent correspondence �eld and optical *ow �eld, respectively.
Hereafter, this convention will be adopted. Furthermore, this book uses the
displacement �eld representation rather than the velocity �eld representation.
Thus, the term motion �eld will always refer to the apparent correspondence
�eld and the term motion vector will always refer to a displacement vector
within this �eld.

4.2.2 Problem Formulation
Two-dimensional apparent motion can be attributed to three main causes. The
�rst cause is global, or camera, motion. Even when there is no object motion
in the frame, the motion of the camera induces a global motion. The second
cause is local motion. This is the intrinsic motion of the objects in the scene.
The third cause is illumination changes. Even when there is no object motion
in the scene, changes in lighting conditions in*uence apparent motion.

All techniques considered in this chapter make no distinction between global
and local motions, and they do not take into account illumination changes.
Thus, they assume that global motion is taken into account through local
motion and that the impact of illumination changes can be ignored. It should be
pointed out, however, that some other techniques use a two-stage global=local
motion estimation, e.g., Ref. 77, or estimate illumination changes, e.g., Ref. 78.

The 2-D apparent motion estimation problem can be formulated as a for-
ward or a backward estimation problem depending on the temporal location
of the reference frame with respect to the current frame.

In backward motion estimation, a pel s = [x; y]T in the current frame at
time t is related to a pel in a previous reference frame at time t − @t by

ft (s) = ft−@t (s − d(s)): (4.1)

96 Chapter 4. Basic Motion Estimation Techniques

In forward motion estimation, however, the same pel is related to a pel in
a future reference frame at time t + @t by

ft (s) = ft+@t (s + d(s)):	 (4.2)

The aim of motion estimation is to �nd the motion vector d(s) = [dx (s);
dy(s)]T . Note that d(s) is not necessarily a full-pel accurate motion vector.
Thus, a motion estimation technique may need to access intensity values at
nonsampling locations in the reference frame. This is achieved using inter-
polation techniques like nearest-neighbor, bilinear, and cubic interpolation. In
this book, bilinear interpolation is employed because of its good compromise
between interpolation quality and computational complexity. It is de�ned as

f(x; y) = (1 − xf)(1 − yf)f(xi; yi) + xf(1 − yf)f(xi + 1; yi)

+ (1 − xf)yff(xi; yi + 1) + xfyff(xi + 1; yi + 1); (4.3)

where (xi; yi) and (xf; yf) are, respectively, the integer and fractional parts of
the pel coordinates (x; y).

Care should be taken when interpreting the terms forward and backward.
The two terms can be used to refer to either the motion estimation process or
the motion compensation process. A forward motion estimation process cor-
responds to a backward motion compensation process, and vice versa. Note
that forward motion estimation is associated with a coding delay. Thus, most
video coding standards employ backward estimation (i.e., forward compensa-
tion), although forward estimation is sometimes employed (e.g., in B-frames
in MPEG1–2 and PB-frames in H.263).

4.2.3 An Ill-Posed Problem
The preceding formulation of the motion estimation problem indicates that it
is an ill-posed problem.1 It su�ers from the following problems [10]:

•	Existence of solution: For example, no motion can be estimated for
covered=uncovered background pels. This is known as the occlusion
problem.

•	Uniqueness of solution: At each pel, s, the number of unknown inde-
pendent variables (dx and dy) is twice the number of equations, (4.1)
or (4.2). This is known as the aperture problem.

1A problem is called ill-posed if a unique solution does not exist and=or the solution does not
continuously depend on the data [79].

97 Section 4.2. Motion Estimation

•	Continuity of solution: The motion estimate is highly sensitive to the
presence of noise.

Because of this ill-posed nature of the problem, motion estimation algo-
rithms use additional assumptions about the structure of the motion �eld. Such
assumptions are referred to as motion models. They can be deterministic or
probabilistic, parametric or nonparametric, as will be discussed in the follow-
ing subsections.

4.2.4 Deterministic and Probabilistic Models
In a deterministic model, motion is seen as an unknown deterministic quantity.
By maximizing the probability of the observed video sequence with respect
to the unknown motion, this deterministic quantity can be estimated. The cor-
responding estimator is usually referred to as a maximum likelihood (ML)
estimator. All motion estimation methods discussed in this chapter follow this
deterministic approach.

In a probabilistic (or Bayesian) model, motion is seen as a random variable.
Thus, the ensemble of motion vectors forms a random �eld. This �eld is
usually modeled using a Markov random �eld (MRF). Given this model,
motion estimation can be formulated as a maximum a posteriori probability
(MAP) estimation problem. This problem can be solved using optimization
techniques like simulated annealing, iterated conditional modes, mean �eld
annealing, and highest con�dence �rst. For a detailed description of Bayesian
motion estimation methods, the reader is referred to Ref. 10.

4.2.5 Parametric and Nonparametric Models
In a parametric model, motion is represented by a set of motion parameters.
Thus, the problem of motion estimation becomes a problem of estimating
the motion parameters rather than the motion �eld itself. Since 2-D motion
results from the projection of 3-D motion onto the image plane, a parametric
2-D motion model is usually derived from models describing 3-D motion,
3-D surfaces, and the projection geometry. For example, the assumptions of
a planar 3-D surface moving in space according to a 3-D a!ne model and
projected onto the image plane using an orthographic projection2 results in
a 2-D 6-parameter a!ne model. Di�erent assumptions lead to di�erent 2-D
models. The 2-D models can be as complex as a quadratic 12-parameter model

2In an orthographic projection, it is assumed that all rays from a projected 3-D object to the
image plane travel parallel to each other [10].

[]
∑

∑

∑

98 Chapter 4. Basic Motion Estimation Techniques

or as simple as a translational 2-parameter model (which is used in block-
matching) [80]. Note that with parametric models, the constraint to regularize
the ill-posed motion estimation problem is implicitly included in the motion
model.

In nonparametric models, however, an explicit constraint (e.g., the smooth-
ness of the motion �eld) is introduced to regularize the ill-posed problem of
motion estimation.

4.2.6 Region of Support
An important parameter in motion estimation is the region of support. This is
the set of pels to which the motion model applies. A region of support can
be as large as a frame or as small as a single pel, it can be of �xed size or
of variable size, and it can have a regular shape or an arbitrary shape.

Large regions of support result in a small motion overhead but may su�er
from the accuracy problem. This means that pels within the region belong
to di�erent objects moving in di�erent directions. Thus, the estimated motion
parameters will not be accurate for some or all of the pels within the region.

The accuracy problem can be overcome by using small regions of support.
This is, however, at the expense of an increase in motion overhead. Small
support regions may also su�er from the ambiguity problem. This means that
several patterns similar to the region may appear at multiple locations within
the reference frame. This may lead to incorrect motion parameters.

4.3 Di-erential Methods

Di�erential methods are among the early approaches for estimating the motion
of objects in video sequences. They are based on the relationship between the
spatial and the temporal changes of intensity.

Di�erential methods were �rst proposed by Limb and Murphy in 1975 [81].
In their method, they use the magnitude of the temporal frame di�erence,
FD, over a moving area, A, to measure the speed of this area. To remove
dependence on the area size, this measure is normalized by the horizontal,
HD, or vertical, VD, spatial pel di�erences. Thus the estimated motion vector
is given by


s∈AFD(s)sign(HD(s))


d̂ =

d̂x
=  ∑

s∈A|HD(s)|    ; (4.4) d̂y 
s∈AFD(s)sign(VD(s))

|VD(s)|s∈A

{

∑ ∑

[] ∑

99 Section 4.3. Di�erential Methods

where

|z
z
| ; if |z |≥threshold;

sign(z) = (4.5)
0; otherwise;

FD(s) = ft (s) − ft −@t (s); (4.6)

1
HD(s) =

2
[ft (x + 1; y) − ft (x − 1; y)]; (4.7)

and
1

VD(s) =
2
[ft (x; y + 1) − ft (x; y − 1)]: (4.8)

The theoretical basis of di�erential methods were established later by
Ca�orio and Rocca in 1976 [82]. They start with the basic de�nition of the
frame di�erence, Equation (4.6), and they rewrite it as

FD(s) = ft (s) − ft −@t (s)

= ft (s) − ft (s + d): (4.9)

For small values of d, the right-hand side of Equation (4.9) can be replaced
by its Taylor series expansion about s, as follows:

FD(s) = −dT ∇sft (s) + higher-order terms; (4.10)
@where ∇s = [@ ; @y]

T is the spatial gradient with respect to s. Ignoring the @x
higher-order terms and assuming that motion is constant over an area A,
linear regression can be used to obtain the minimum mean square estimate of
d as []−1 []

d̂ = −
∑ ∑

∇sft (s)∇Tft (s) FD(s)∇sft (s) : (4.11)s
s∈A s∈A

Note that this equation is highly dependent on the spatial gradient, ∇s. For
this reason, di�erential methods are also known as gradient methods. Using
the approximation ∇sft (s) ≈ [HD(s); VD(s)]T , Equation (4.11) reduces to

[∑ ∑]−1
HD2(s) s∈A HD(s) · VD(s)s∈A

d̂ = −
s∈A HD(s) · VD(s) VD2(s)s∈A

s∈A FD(s) · HD(s)
× ∑ : (4.12)

s∈A FD(s) · VD(s)

∑

100 Chapter 4. Basic Motion Estimation Techniques

By ignoring the cross terms (i.e., s∈A HD(s)·VD(s) ≈ 0), it can be shown
that the general analytical solution of Ca�orio and Rocca (Equation (4.12))
reduces to the simple heuristic solution of Limb and Murphy (Equation (4.4)).

The main assumption in deriving the di�erential estimate of Equation (4.12)
using Taylor series expansion is that the motion vector d is small. As d
increases, the quality of the approximation becomes poor. Thus, the main
drawback of di�erential methods is that they can only be used to measure
small motion displacements (up to about ±3 pels). A number of methods
have been proposed to overcome this problem, like, for example, the iterative
method of Yamaguchi [83]. In this method, an initial motion vector is �rst
estimated, using Equation (4.12), between a block in the current frame and a
corresponding block in the same location in the reference frame. In the next
iteration, the position of the matched block in the reference frame is shifted
by the initial motion vector, and then the di�erential method is applied again
to produce a second estimate. This second estimate acts as a correction term
for the initial estimate. This process of shift and estimation continues until the
correction term becomes adequately small.

Another drawback of di�erential methods is that the spatial gradient oper-
ator, ∇s, is sensitive to data noise. This can be reduced by using a larger set
of data in its calculation.

There are also cases where di�erential methods can fail [84]. For example,
in smooth areas the gradient is approximately equal to zero and the matrix in
Equation (4.12) becomes singular. Also, when motion is parallel to edges in
the image, i.e., dT∇s ≈ 0, the frame di�erence, Equation (4.10), becomes zero,
giving a wrong displacement of zero. Such problems may be partially solved
by increasing the data area, but this may give rise to the accuracy problem.

4.4 Pel-Recursive Methods

Given a function g(r) of several unknowns r = [r1; : : : ; rn]T , the most straight-
forward way to minimize it is to calculate its partial derivatives with respect
to each unknown, set them equal to 0, and solve the resulting simultaneous
equations. This is called gradient-based optimization and can be represented
in vector form as

∇rg(r) = 0: (4.13)

In cases where the function g(r) cannot be represented in closed form and=or
the set of simultaneous Equations (4.13) cannot be solved, numerical iterative
methods are employed.

One of the simplest numerical methods is the steepest-descent method. Since
the gradient vector points in the direction of the maximum, this method updates

101 Section 4.4. Pel-Recursive Methods

the present estimate, r̂i, of the location of the minimum in the direction of the
negative gradient, to obtain a new improved estimate

i+1 = ˆr̂ r i − �∇rg(r̂ i); (4.14)

where �¿ 0 is an update step size and i is the iteration index.
Pel-recursive methods are based on an iterative gradient-based minimization

of the prediction error. They were �rst proposed by Netravali and Robbins in
1979 [85]. In their algorithm, they use a steepest-descent approach to iteratively
minimize the square of the displaced-frame di�erence, DFD(s; d), with respect
to the displacement vector, d. Thus

g(r) = DFD2(s; d); (4.15)

where

DFD(s; d) = ft(s) − ft−@t(s − d): (4.16)

Substituting Equation (4.15) into Equation (4.14) and setting �= 2
� gives

d̂i+1 = d̂i − 2
�∇dDFD2(s; d̂i): (4.17)

Now,

∇dDFD2(s; d) = 2 DFD(s; d) ∇dDFD(s; d)

= 2 DFD(s; d) ∇d[ft(s) − ft−@t(s − d)]

= 2 DFD(s; d) ∇sft−@t(s − d): (4.18)

Substituting Equation (4.18) into Equation (4.17) gives

d̂i+1 = d̂i − �DFD(s; d̂i)∇sft−@t(s − d̂i); (4.19)

where the spatial gradient ∇sft−@t(s − d̂i) can be approximated by Equations
(4.7) and (4.8) but evaluated at a displaced location (s − NINT[d̂i]) in the
reference frame. As in di�erential methods, this estimate is highly dependent
on the spatial gradient. For this reason, pel-recursive methods are sometimes
considered a subset of gradient or di�erential methods.

The iterative approach of Equation (4.19) is normally applied on a pel-
by-pel basis, leading to a dense motion �eld, d̂(s). Iterations may proceed
along a scanning line, from line to line, or from frame to frame. In order to
smooth out the e�ect of noise, the update term can be evaluated over an area
A= {s1; : : : ; sp} as follows:

p

d̂i − �
∑

d̂i+1 = Wj DFD(sj; d̂i)∇sft−@t(sj − d̂i); (4.20)
j=1

∑
102 Chapter 4. Basic Motion Estimation Techniques

pwhere Wj ≥ 0 and j=1Wj = 1. Netravali and Robbins also proposed a simpli-
�ed expression for hardware implementation:

d̂i+1 = d̂i − � sign[DFD(s; d̂i)] sign[∇sft−@t(s − d̂i)]: (4.21)

The convergence of this method is highly dependent on the constant step
size �. A high value of � leads to quick convergence but less accuracy, whereas
a small value of � leads to slower convergence but more accurate estimates.
Thus, a compromise between the two is desired. A number of algorithms have
been reported to improve the performance of pel-recursive algorithms, e.g.,
Ref. 86. Most of them are based on the idea of substituting the constant step
size � by a variable step size to achieve better adaptation to the local image
statistics and, consequently, faster convergence and higher accuracy. A good
review of such methods with comparative results can be found in Ref. 87.

The dense motion �eld of pel-recursive methods can overcome the accuracy
problem. This is, however, at the expense of a large motion overhead. To
overcome this drawback, the update term from one iteration to the other can
be based on previously transmitted data only. In this case, the decoder can
estimate the same displacements generated at the encoder, and no motion
information needs to be transmitted. A disadvantage of this causal approach,
however, is that it constrains the method and reduces its prediction capability.
In addition, it increases the complexity of the decoder.

Another disadvantage of pel-recursive methods is that they can easily con-
verge to local minima within the error surface. In addition, smooth intensity
regions, discontinuities within the motion �eld, and large displacements cannot
be e!ciently handled [55].

4.5 Frequency-Domain Methods

Frequency-domain motion estimation methods are based on the Fourier trans-
form (FT) property that a translational displacement in the spatial domain
corresponds to a linear phase shift in the frequency domain. Thus, assuming
that the image intensities of the current frame, ft , and the reference frame,
ft−@t , di�er over a moving area, A, only due to a translational displacement,
(dx; dy), then

ft(x; y) = ft−@t(x − dx; y − dy); (x; y) ∈ A: (4.22)

Taking the FT of both sides with respect to the spatial variables (x; y) gives
the following frequency-domain equation in the frequency variables (wx; wy):

Ft(wx; wy) = Ft−@t(wx; wy)e j(−wxdx−wydy); (4.23)

103 Section 4.5. Frequency-Domain Methods

where Ft and Ft−@t are the FTs of the current and reference frames, respec-
tively. In Ref. 88, Haskell noticed this relationship but did not propose an
algorithm to recover the displacement from the phase shift.

If we de�ne @�(wx; wy) as the phase di�erence between the FT of the
current frame and that of the reference frame, then

e j@�(wx;wy) = e j[�t (wx;wy)−�t−@t (wx;wy)]

= e j�t (wx;wy) −j�t−@t (wx;wy)· e
F∗Ft (wx; wy) t−@t (wx; wy)

= · (4.24)|Ft (wx; wy)| |F∗
t−@t (wx; wy)|

;

where �t and �t−@t are the phase components of Ft and Ft−@t , respectively,
and the superscript ∗ indicates the complex conjugate. If we de�ne ct; t−@t (x; y)
as the inverse FT of e j@�(wx;wy), then

ct; t−@t (x; y) = F−1{e j@�(wx;wy)}

= F−1{e j�t (wx;wy) · e−j�t−@t (wx;wy)}

= F−1{e j�t (wx;wy)} ⊗F−1{e−j�t−@t (wx;wy)}; (4.25)

where ⊗ is the 2-D convolution operation. In other words, ct; t−@t (x; y) is the
cross-correlation of the inverse FTs of the phase components of Ft and Ft−@t .
For this reason, ct; t−@t (x; y) is known as the phase correlation function. The
importance of this function becomes apparent if it is rewritten in terms of the
phase di�erence in Equation (4.23):

ct; t−@t (x; y) = F−1{e j@�(wx;wy)}

= F−1{e j(−wxdx −wydy)}

= �(x − dx; y − dy): (4.26)

Thus, the phase correlation surface has a distinctive impulse at (dx; dy). This
observation is the basic idea behind the phase correlation motion estimation
method. In this method, Equation (4.24) is used to calculate e j@�(wx;wy), the
inverse FT is then applied to obtain ct; t−@t (x; y), and the location of the
impulse in this function is detected to estimate (dx; dy).

In practice, the impulse in the phase correlation function degenerates into
one or more peaks. This is due to many factors, like the use, in digital images,
of the discrete Fourier transform (DFT) instead of the FT, the presence of more
than one moving object within the considered area A, and the presence of

104 Chapter 4. Basic Motion Estimation Techniques

noise. In particular, the use of the 2-D DFT instead of the 2-D FT results in
the following e�ects [10]:

•	The boundary e�ect: In order to obtain a perfect impulse, the transla-
tional displacement must be cyclic. In other words, objects disappearing
at one end of the moving area must reappear at the other end. In practice
this does not happen, which leads to the degeneration of the impulse
into peaks. Furthermore, the DFT assumes periodicity in both directions.
In practice, however, discontinuities occur from left to right and from
top to bottom, introducing spurious peaks.

•	Spectral leakage: In order to obtain a perfect impulse, the translational
displacement must correspond to an integer multiple of the fundamental
frequency. In practice, noninteger motion vectors may not satisfy this
condition, leading to the well-known spectral leakage phenomenon [89],
which degenerates the impulse into peaks.

•	Displacement wrapping: The 2-D DFT is periodic with the area size
(Nx; Ny). Negative estimates will be wrapped and will appear as positive
displacements. To accommodate negative displacements, the estimated
displacement needs to be unwrapped as follows [10]:

  d̂i if |d̂i | ≤ Ni and Ni is even 	 2 
d̂i = or if |d̂i| ≤ Ni −1 and Ni is odd; (4.27)2   

d̂i − Ni; otherwise:

NiThis means that the range of estimates is limited to [−Ni + 1; 2] for Ni2
even.

The phase correlation motion estimation method was �rst reported by Kuglin
and Hines in 1975 [90]. It was later extensively studied by Thomas [91]. In
his study, Thomas analyzed the properties of the phase correlation function.
He suggested using a weighting function to smooth the correlation surface and
suppress spurious peaks. He also proposed a second stage to the method, in
which smaller moving areas are used and more than one dominant peak from
the �rst stage are considered and compared. Girod [92] augmented this by a
third stage, in which the estimated integer-pel motion displacement is re�ned
to subpel accuracy.

The phase correlation method has a number of desirable properties. It has a
small computational complexity, especially with the use of fast Fourier trans-
forms (FFTs). In addition, it is relatively insensitive to illumination changes
because shifts in the mean value or multiplication by a constant do not a�ect
the Fourier phase. Furthermore, the method can detect multiple moving objects,

105 Section 4.6. Block-Matching Methods

because they appear as multiple peaks in the correlation surface. In addition
to its use in video coding, the phase correlation method has been successfully
incorporated into commercial standards conversion equipment [93].

There are few other frequency-domain motion estimation methods. For
example, Chou and Hang [94] analyzed frequency-domain motion
estimation in both noise-free and noisy situations. Their analysis is very similar
to the noise analysis in phase or frequency modulation systems, and it
provides insights into the performance limits of motion estimation. They
formulated frequency-domain motion estimation as a set of simultaneous
equations, which they solved using a modi�ed least-mean-square (LMS) algo-
rithm. The resulting algorithm is known as the frequency component method.
It provides more reliable estimates than the phase correlation method, partic-
ularly for noisy sequences. Young and Kingsbury [95] proposed a frequency-
domain method based on the complex lapped transform. Koc and Liu [96]
used the pseudophase hidden in the DCT transform to propose a DCT-based
frequency-domain motion estimation method. The algorithm has a low compu-
tational complexity and was later extended to achieve interpolation-free subpel
accuracy [97].

4.6 Block-Matching Methods

Block-matching motion estimation (BMME) is the most widely used motion
estimation method for video coding. Interest in this method was initiated by
Jain and Jain in 1981 [54]. In their block-matching algorithm (BMA), the
current frame, ft , is �rst divided into blocks of M × N pels. The algorithm
then assumes that all pels within the block undergo the same translational
movement. Thus, the same motion vector, d = [dx; dy]T , is assigned to all pels
within the block. This motion vector is estimated by searching for the best-
match block in a larger search window of (M + 2dmx) × (N + 2dmy) pels
centered at the same location in a reference frame, ft−@t , where dmx and dmy

are the maximum allowed motion displacements in the horizontal and vertical
directions, respectively. This process is illustrated in Figure 4.2 and can be
formulated as follows:

(d̂x; d̂y) = arg min BDM(i; j); where |i|≤dmx and |j|≤dmy ; (4.28)
i; j

and BDM(i; j) is a block distortion measure that measures the quality of match
between the block in the current frame and a corresponding candidate block in
the reference frame shifted by a displacement (i; j). It is very common to use
square blocks of N × N pels and a maximum motion displacement of ± dm
in both directions. When Equation (4.28) is evaluated for all possible (i; j)

∑

∑ ∑

106 Chapter 4. Basic Motion Estimation Techniques

reference frame

M

N

mxd

myd

mxdM 2+

mydN 2+

),(yx dd

best match
block

search window current frame

current block

Figure 4.2: Block-matching motion estimation

displacements (i.e., for all possible candidate blocks in the search window),
the BMA is referred to as the full-search (FS) algorithm.

Since its introduction, BMME has attracted considerable attention, and
many re�nements to the basic BMA have been proposed. In the following
subsections, di�erent parameters of the BMA are introduced and their impact
on performance is evaluated. A number of re�nements to the basic BMA are
also examined.

4.6.1 Matching Function
The matching function (or the BDM) can be any function that measures the
distortion or the match between the block, B, in the current frame and the
displaced candidate block in the reference frame. The choice of a suitable
BDM is very important, for it impacts both the prediction quality and the
computational complexity of the algorithm.

One possible matching function is the normalized cross-correlation func-
tion3 (NCCF), de�ned as

(x;y)∈B ft (x; y) · ft−@t (x − i; y − j)
NCCF(i; j) = √ √ : (4.29)

(x;y)∈B ft
2(x; y) · (x;y)∈B ft

2
−@t (x − i; y − j)

3The NCCF is a measure of the correlation between two blocks rather than the distortion
between them. Thus, when used in BMA, the minimization process in Equation (4.28) becomes
a maximization process.

∑

∑

107 Section 4.6. Block-Matching Methods

Since the motion estimation process aims at minimizing the DFD signal, a
natural choice for the matching function is the mean squared error, which is
often formulated as the sum of squared di�erences (SSD):

SSD(i; j) = (ft (x; y) − ft−@t (x − i; y − j))2: (4.30)
(x;y)∈B

A very similar matching function is the sum of absolute di�erences (SAD):

SAD(i; j) = |ft (x; y) − ft−@t (x − i; y − j)|: (4.31)
(x;y)∈B

To compare the performance of these matching functions, a full-pel full-
search BMA was implemented. The algorithm uses 16 × 16 blocks and a max-
imum allowed motion displacement of ±15 pels in both directions. In this
algorithm, motion is estimated and compensated using original previous frames,
and motion vectors are restricted so that they do not point outside the reference
frame. Motion vectors are encoded using the median predictor and the VLC
table of the H.263 standard. Unless otherwise stated, all subsequent results in
this chapter use the same simulation conditions. Figure 4.3 compares the per-
formances of the algorithm with di�erent matching functions when applied to
the �rst 10 frames of the FOREMAN sequence at a frame rate of 8:33 frames=s
(i.e., a frame skip4 of 3). The quoted PSNR values are for the luma com-
ponent only. It can be seen from this �gure that the SSD measure achieves
the best performance, followed very closely by the SAD measure. The NCCF
measure, on the other hand, has the worst performance. While Figure 4.3 com-
pares the performance in terms of prediction quality, Table 4.1 compares the
performances in terms of computational complexity. It can be seen that the
SAD measure has the lowest computational complexity, because it involves
no multiplications. Because of its good prediction quality and small computa-
tional complexity, SAD is preferred by most implementations. All subsequent
results assume the use of SAD as the matching function.

There are many other proposed matching functions. Most of them attempt
to further reduce complexity, but this is often at the expense of a reduced
prediction quality. A more detailed discussion of such functions is deferred to
Chapter 7.

4Throughout this book, the term frame skip will be used to quantify the amount of temporal
subsampling with respect to the original frame rate. For example, a frame skip of 3 means
that the original sequence is temporally subsampled by a factor of 3:1. Thus, if the original
sequence has a frame rate of 30 frames=s, then the subsampled sequence will have a frame rate
of 30=3 = 10 frames=s.

108 Chapter 4. Basic Motion Estimation Techniques

P
S

N
R

Y
 (

dB
)

Foreman @ 8.33 f.p.s.

33

32

31

30

29

28

27

26

25

SSD
SAD
NCCF

1 2 3 4 5 6 7 8 9 10
Frame

Figure 4.3: Reconstruction quality of SSD, SAD, and NCCF

Table 4.1: Computational complexity of SSD, SAD, and NCCF for an
N × N block

SAD SSD NCCF

| · | N 2 – –
− N 2 N 2 -
+ N 2 − 1
× –
÷ –

N 2 − 1 3(N 2 − 1)
N 2 3N 2 + 1
– 1 √ – – 2

4.6.2 Block Size
Another important parameter of the BMA is the block size. Figure 4.4 shows
the performance of the BMA with two di�erent sizes, 8 × 8 and 16 × 16. It can
be seen in Figure 4.4(a) that a smaller block size achieves better prediction
quality. This is due to a number of reasons. A smaller block size reduces
the e�ect of the accuracy problem. In other words, with a smaller block size,
there is less possibility that the block will contain di�erent objects moving in

109 Section 4.6. Block-Matching Methods

Foreman @ 8.33 f.p.s. Foreman @ 8.33 f.p.s.

20

22

24

26

28

30

32

34

36

38

P
S

N
R

Y
 (d

B
)

8x8
16x16

8x8
16x16

0

1000

2000

3000

4000

5000

6000

7000

M
ot

io
n

ov
er

he
ad

 (
bi

ts
)

1 10 20 30 40 50 60 70 80 90 99 1 10 20 30 40 50 60 70 80 90 99
Frame Frame

(a) Prediction quality (b) Motion overhead

Figure 4.4: Performance of the BMA with di�erent block sizes

di�erent directions. In addition, a smaller block size provides a better piecewise
translational approximation to nontranslational motion. Since a smaller block
size means that there are more blocks (and consequently more motion vectors)
per frame, this improved prediction quality comes at the expense of a larger
motion overhead, as can be seen in Figure 4.4(b). Most video coding standards
use a block size of 16 × 16 as a compromise between prediction quality and
motion overhead. A number of variable-block-size motion estimation methods
have also been proposed in the literature [98, 99]. As already discussed, the
advanced prediction mode of the H.263 standard allows adaptive switching
between block sizes of 16 × 16 and 8 × 8 on an MB basis.

4.6.3 Search Range
The maximum allowed motion displacement dm , also known as the search
range, has a direct impact on both the computational complexity and the
prediction quality of the BMA. A small dm results in poor compensation for
fast-moving areas and consequently poor prediction quality. This is evident
from Figure 4.5(a), which compares the performance of two ranges, ± 5 and
± 15. A large dm, on the other hand, results in better prediction quality but
leads to an increase in the computational complexity (since there are (2dm +1)2

possible blocks to be matched in the search window). A larger dm can also
result in longer motion vectors and consequently a slight increase in motion
overhead,5 as can be seen from Figure 4.5(b). In general, a maximum allowed

5As will be shown later, in block-motion �elds, larger displacements are, in general, less
probable. Thus, most video codecs assign longer codewords for longer motion vectors.

110 Chapter 4. Basic Motion Estimation Techniques

Foreman @ 8.33 f.p.s. Foreman @ 8.33 f.p.s.

16

18

20

22

24

26

28

30

32

34

36

P
S

N
R

Y
 (

dB
)

+/15
+/5

+/15
+/5

200

400

600

800

1000

1200

1400

1600

1800

M
ot

io
n

ov
er

he
ad

 (
bi

ts
)

1 10 20 30 40 50 60 70 80 90 99 1 10 20 30 40 50 60 70 80 90 99
Frame Frame

(a) Prediction quality (b) Motion overhead

Figure 4.5: Performance of the BMA with di�erent search ranges

displacement of dm = ± 15 pels is su!cient for low-bit-rate applications. As
already discussed, the H.263 standard uses a maximum displacement of about
± 15 pels, although this range can optionally be doubled with the unrestricted
motion vector mode.

4.6.4 Search Accuracy
Initially, the BMA was designed to estimate motion displacements with full-pel
accuracy. Clearly, this limits the performance of the algorithm, since in reality
the motion of objects is completely unrelated to the sampling grid. A number
of workers in the �eld have proposed to extend the BMA to subpel accuracy.
For example, Ericsson [100] demonstrated that a prediction gain of about
2 dB can be obtained by moving from full-pel to 1=8-pel accuracy. Girod [92]
presented an elegant theoretical analysis of motion-compensating prediction
with subpel accuracy. He termed the resulting prediction gain the accuracy
e�ect. He also showed that there is a “critical accuracy” beyond which the
possibility of further improving prediction is very small. He concluded that
with block sizes of 16 × 16, quarter-pel accuracy is desirable for broadcast
TV signals, whereas half-pel accuracy appears to be su!cient for videophone
signals. Today, most video coding standards adopt subpel accuracy in its half-
pel form. In fact, it has been shown [65] that most of the performance gain
of H.263 over H.261 can be attributed to the move from full-pel to half-pel
accuracy.

It should be pointed out, however, that the improved prediction quality of
subpel accuracy comes at the expense of a signi�cant increase in computational
complexity. This increase is due to two reasons. First, the reference frame
intensities have to be interpolated at subpel locations. Second, there are now

111 Section 4.6. Block-Matching Methods

P
S

N
R

Y
 (

dB
)

Foreman @ 8.33 f.p.s.

33

32

31

30

29

28

27

1/2-pel, full search
1/2-pel, refinement
full-pel, full search

26
1 2 3 4 5 6 7 8 9 10

Frame

Figure 4.6: Performance of the BMA with subpel accuracy

more possible candidate blocks within the search window. For example, when
moving from full-pel to half-pel accuracy, the number of candidate blocks in
the search window increases from (2dm + 1)2 to (4dm + 1)2. To alleviate this
complexity, most video codecs implement subpel accuracy as a postprocessing
stage, where �rst a full-pel motion vector is obtained, usually using full search,
and then this vector is re�ned to subpel accuracy using a limited search. This
provides a large saving in computational complexity and at the same time
maintains the improved prediction quality, as can be seen in Figure 4.6.

4.6.5 Unrestricted Motion Vectors
In some cases (like, for example, in border blocks) part of the search window
is outside the reference frame area. This means that some of the candidate
blocks in the search window are either partially or completely out of the
reference frame. There are two ways to handle such candidate blocks. In the
restricted motion vectors method, such blocks are ignored and skipped during
motion estimation. In the unrestricted motion vectors method, however, such

112 Chapter 4. Basic Motion Estimation Techniques

P
S

N
R

Y
 (

dB
)

Foreman @ 8.33 f.p.s.

32

31

30

29

28

27

26

Unrestricted
Restricted

25
1 5 10 15 20 25

Frame

Figure 4.7: Performance of the BMA with restricted and unrestricted motion vectors

blocks are included in the motion estimation and compensation process. In this
case, a referenced pel outside the frame is usually approximated by the closest
border pel. This unrestricted method can improve the prediction quality along
frame borders, especially in cases of camera or background movement. This
is particularly useful in small frame formats, where border blocks represent a
high percentage of the frame area. Figure 4.7 illustrates this improvement for
part of the FOREMAN sequence. The method is included in the H.263 optional
unrestricted motion vector mode and also in the advanced prediction mode.

4.6.6 Overlapped Motion Compensation
As already discussed, the BMA assumes that each block of pels moves with
a uniform translational motion. Because this assumption does not always hold
true, the method is known to produce blocking artefacts in the reconstructed
frames. One method that reduces this e�ect is overlapped motion compensation
(OMC). The method was �rst proposed by Watanabe and Singhal in 1991
[101]. In BMA, the estimated block motion vector is used to copy a displaced

30

113 Section 4.6. Block-Matching Methods

:

2N × 2N windows centered around current

N × N block and its left, above, and above-

left neighboring blocks, respectively.

wcurrent, wleft, wabove, wabove-left wabove-left wabove

d , d l , d , d a-l :c a

motion vectors of the current block and

its left, above, and above-left

neighboring blocks, respectively.

current block.

this part of the current block

is predicted using the 4

vectors shown.

neighboring block.
wleft wcurrent

2N

a-ld ad

ld
cd

N

Figure 4.8: Overlapped motion compensation for the top-left quadrant of the current block

N × N block from the reference frame to the current N × N block in the
current frame. In OMC, however, the estimated block motion vector is used
to copy a larger block (say, 2N × 2N) from the reference frame to a position
centered around the current N × N block. As illustrated in Figure 4.8, since
they are larger than the compensated blocks, the copied blocks overlap, hence
the name overlapped motion compensation. Each copied block is weighted
by a smooth window, with higher weights at the center and lower weights
toward the borders. This means that the estimated motion vector is given
more in*uence in the center of the block, and this in*uence decays toward
the borders, where neighboring motion vectors start taking over. This ensures
a smooth transition between blocks and therefore reduces blocking artefacts.
Overlapped motion estimation and compensation can also be implemented in
the frequency domain, as proposed by Young and Kingsbury [95].

Another view of the OMC process is that each pel in the current N × N
block is compensated using more than one motion vector. For example, in
Figure 4.8, each pel is compensated using four motion vectors. The set of
motion vectors is decided according to the spatial position of the pel within the
block. A pel in the top-left quadrant of the current block will be compensated
using the motion vector of the block itself, plus the motion vectors of the
blocks to the left of, above, and above left of the current block. Each vector
provides a prediction for the pel, and those four predictions are weighted
according to the spatial position of the pel within the block. For example, as
the spatial position of the pel gets closer to the left border of the block, a
higher weight is given to the prediction provided by the motion vector of the
block to the left.

{

114 Chapter 4. Basic Motion Estimation Techniques

Orchard et al. [102, 103] used this view to formulate OMC as a linear
estimator of the form

f̂t (s) =
∑

wn(s) ft−@t (s − dn); (4.32)
dn ∈N(s)

where N(s) = {dn(s)} is the set of motion vectors used to compensate the
pel at location s and wn(s) is the weight given to the prediction provided
by vector dn. Using this formulation, they solve two optimization problems:
overlapped-motion compensation and overlapped-motion estimation. Given the
set of motion vectors N(s) estimated by the encoder, they propose a method
for designing optimal windows, wn(s), to be used at the decoder for motion
compensation. Also, given a �xed window that will be used at the decoder,
they propose a method for �nding the optimal set of motion vectors at the
encoder. Note that the latter problem is much more complex than the BMA,
since in this case the estimated motion vectors are interdependent. For this
reason, their proposed method is based on an iterative procedure. A number
of methods have been proposed to alleviate this complexity, e.g., Ref. 104.

As a linear estimator of intensities, OMC belongs to a more general set of
motion compensation methods called multihypothesis motion compensation.
Another member in this set is bidirectional motion compensation. The theoret-
ical motivations for such methods were presented by Sullivan in 1993 [105].
Recently, Girod [106] analyzed the rate-distortion e!ciency of such meth-
ods and provided performance bounds and comparisons with single-hypothesis
motion compensation (e.g., the BMA).

Figure 4.9 compares the performance of OMC to that of the BMA when
applied to the FOREMAN sequence. In the case of OMC, the same BMA motion
vectors were used for compensation (i.e., the motion vectors were not opti-
mized for overlapped compensation). Each motion vector was used to copy
a 32 × 32 block from the reference frame and center it around the current
16 × 16 block in the current frame. Each copied block was weighted by a
bilinear window function de�ned as [103]

1
2) for z = 0; : : : ; 15;16 (z +
1

w(x; y) = wx · wy; where wz = (4.33)
w31−z for z = 16; : : : ; 31:

Border blocks were handled by assuming “phantom” blocks outside the frame
boundary with motion vectors equal to those of the border blocks. Despite the
fact that the estimated vectors, the window shape, and the overlapping weights
were not optimized for overlapped compensation, OMC provided better objec-
tive (Figure 4.9(a)) and subjective (Figures 4.9(b)–4.9(d)) quality compared
to the BMA. In particular, the annoying blocking artefacts have clearly been
reduced.

115 Section 4.6. Block-Matching Methods

P
S

N
R

Y
 (

dB
)

Foreman @ 8.33 f.p.s.
36

34

32

30

28

26

24

With overlapping

No overlapping

1 5 10 15 20 25 30 35 40 45 50

Frame

(a) Prediction quality (b) Original 15th frame at 8.33 f.p.s

(c) Compensated using BMA (29.35 dB) (d) Compensated using OMC (30.93 dB)

Figure 4.9: Comparison between OMC and BMA

4.6.7 Properties of Block-Motion Fields and Error Surfaces
This subsection presents some basic properties of the BMME algorithm when
applied to typical video sequences. These properties will be utilized and ref-
erenced in subsequent chapters of the book. All illustrations in this subsec-
tion were generated using a full-pel full-search block-matching algorithm with
16 × 16 blocks, ±15 pels maximum displacement, restricted motion vectors,
SAD as the BDM, and original reference frames.

Property 4.6.7.1 The distribution of the block motion �eld is center-biased.
This means that smaller displacements are more probable and the motion vector
(0; 0) has the highest probability of occurrence. In other words, most blocks
are stationary or quasi-stationary. This property is illustrated in Figure 4.10(a)
for AKIYO at 30 frames=s (frame skip of 1). The property also holds true for

116 Chapter 4. Basic Motion Estimation Techniques

0
5

10
15

−15 −15
−10 −10

−5 −5

0
5

10
15
0

0.2

0.4

0.6

0.8

1

Akiyo @ 30 f.p.s. (skip=1)

dy dx dy dx

P
(d

x,
d y

)

P
(d

x,
d y

)

−15 −10
−5

0
5

10
15

−15
−10

−5
0

5
10

15
0

0.2

0.4

0.6

0.8

Table Tennis @ 7.5 f.p.s. (skip=4)

(a) AKIYO at 30 frames/s (skip=1) (b) TABLE TENNIS at 7.5 frames/s (skip = 4)

Figure 4.10: Center-biased distribution of block-motion �eld

69.0=xρ
49.0=yρ

56.0=xρ
33.0=yρ

66.0=xρ
48.0=yρ

64.0=xρ
43.0=yρ

64.0=xρ
46.0=yρ

72.0=xρ
63.0=yρ

76.0=xρ
61.0=yρ

68.0=xρ
56.0=yρ

current
block

Foreman at 25 frames/s

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(C

dx
−L

dx
)

Akiyo, skip=1

Table Tennis, skip=4

(a) Correlation coefficients
betwee the motion vector
of a block and its eight neigh-
boring blocks

(b) Distribution of the diffference between
the horizontal component of the current vec-
tor and that of its left neighbor

Cdx Ldx

Figure 4.11: Highly correlated block-motion �elds

sequences with higher motion content and at lower frame rates, as illustrated
in Figure 4.10(b) for TABLE TENNIS at 7:5 frames=s (frame skip of 4).

Property 4.6.7.2 The block motion �eld is smooth and varies slowly. In other
words, there is high correlation between the motion vectors of adjacent blocks.
Thus, it is very common to �nd neighboring blocks with identical or nearly
identical motion vectors. This is evident in Figure 4.11(a), which shows the
correlation coe!cients between the motion vector of a block and its eight

Section 4.7. A Comparative Study 117

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
0

2000

4000

6000

8000

dx

Foreman @ 25 f.p.s.

dy

S
A

D

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
2000

4000

6000

8000

10000

Foreman @ 25 f.p.s.

S
A

D

(a) (b)

dxdy

Figure 4.12: Sample multimodal error surfaces

neighboring blocks in FOREMAN at 25 frames=s. This is also illustrated in
Figure 4.11(b), which shows the distribution of the di�erence between the
horizontal component of the current vector (Cdx) and that of its left neighbor
(Ldx). The bias of this distribution toward the zero di�erence clearly indicates
high correlation, and this holds true for both AKIYO at 30 frames=s and TABLE

TENNIS at 7:5 frames=s.

Property 4.6.7.3 The error surface is usually multimodal. In most cases,
the error surface will contain one or more local minima, as illustrated in
Figure 4.12. This can be due to a number of reasons, for example, the ambi-
guity problem, the accuracy problem, and the textured (periodical) local frame
content.

Property 4.6.7.4 The value of the global minimum of an error surface can
change according to many factors; such as the frame skip; the motion content;
and the block content. For example, Figure 4.12 shows the error surface of
two blocks from the same frame. The value of the global minimum of the
surface in Figure 4.12(a) is 614, whereas that of the surface in Figure 4.12(b)
is 3154.

4.7 A Comparative Study

This section presents the results of a comparative study of the motion esti-
mation methods discussed in Sections 4.3–4.6. The main aim of this study
is to answer the following question: What is the best motion estimation
algorithm for video coding? In this study, the following algorithms were
implemented:

118 Chapter 4. Basic Motion Estimation Techniques

DFA This is an implementation of the di�erential method of Ca�orio and
Rocca as given by Equation (4.12). In this case, the moving area, A,
was set to a block of 16 × 16 pels.

PRA This is an implementation of the pel-recursive algorithm of Netravali
and Robbins as given by Equation (4.20). In this case, the motion vector
of the previous pel in the line was taken as the initial motion estimate, d̂i ,
of the current pel, the update step size was set to � = 1=1024, the update
term was calculated and averaged over an area of 3 × 3 pels centered
around the current pel, and �ve iterations were performed per pel.

PCA This is an implementation of the phase correlation method as given
by Equations (4.24) and (4.25). In this case, a window of 32 × 32 pels
centered around the current 16 × 16 block was used to generate the phase
correlation surface. The three most dominant peaks in this surface were
detected and the corresponding motion displacements were unwrapped
using Equation (4.27). The three candidate displacements were then tested
using the SAD between the current block and the candidate displaced
block in the reference frame. The candidate displacement with the lowest
SAD was chosen as the motion vector of the current block.

BMA This is an implementation of a full-search block-matching algorithm.
In this case, the block size was 16 × 16 pels and the matching criterion
was the SAD.

In each case, the maximum allowed motion displacement was set to
± 15 pels in each direction and the motion vectors were allowed to point
outside the reference frame (i.e., unrestricted motion vectors). To provide a
fair comparison and to ease motion vector coding, all displacements were
estimated with half-pel accuracy. In DFA and PRA this was achieved by
rounding the subpel accurate motion estimates to the nearest half-pel accu-
rate motion vectors. In PCA and BMA this was achieved using a re�nement
stage that examined the eight nearest half-pel estimates centered around the
full-pel motion estimate. Bilinear interpolation was used to obtain intensity
values at subpel locations of the reference frame. To mask the e�ect of the
temporal propagation of prediction errors, motion was estimated and com-
pensated using original reference frames. For comparison purposes, motion
vectors were coded using the median predictor and the VLC table of the
H.263 standard. The DFD signal was also transform encoded according to
the H.263 standard and a quantization parameter of QP =10. All quoted re-
sults refer to the luma components of sequences. No chroma encoding was
performed.

Care should be taken when interpreting the results of this study. Di�erent
simulation parameters will lead to di�erent results. For example, at the expense

119 Section 4.7. A Comparative Study

of a higher computational complexity, the performance of the PRA can be
improved by increasing the number of iterations. This is also true when ex-
amining more peaks for the PCA.

Figure 4.13 compares the prediction quality of the four algorithms when
applied to the three test sequences AKIYO, FOREMAN, and TABLE TENNIS, at
di�erent frame skips (and, consequently, di�erent frame rates).

As expected, the DFA performs well for sequences with a low amount
of movement (AKIYO) and at low frame skips (i.e., high frame rates). For
sequences with a higher amount of movement (FOREMAN and TABLE TENNIS)
and also at high frame skips, the motion vectors become longer, the quality
of the Taylor series approximation becomes poor, and the performance of the
DFA deteriorates.

Due to its dense motion �eld, the PRA has a superior performance for
AKIYO and a very competitive performance for FOREMAN and TABLE TENNIS.
The relative drop in performance for high-motion sequences and at high frame
skips may be due to a number of reasons. With longer motion vectors, there
is more possibility that the algorithm will be trapped in a local minimum
before reaching the global minimum. Also, the maximum number of iter-
ations may not be su!cient to reach the global minimum. However, in-
creasing the number of iterations will increase the complexity of the
algorithm.

In general, the performance of the PCA is somewhere in between that of the
DFA and PRA. The poor performance for AKIYO may be due to the spurious
peaks produced by the boundary and spectral leakage e�ects. Such e�ects may
be reduced by applying a weighting function to smooth the phase correlation
surface.

The best overall performance is provided by the BMA. It performs well
regardless of the sequence type and the frame skip. In fact, for sequences
with a high amount of movement (FOREMAN and TABLE TENNIS), the BMA
shows superior performance.

It is interesting at this point to concentrate on the PRA and BMA, for
two reasons. First, they achieved the best prediction quality performance in
the comparison. Second, they represent two di�erent approaches to motion
estimation (pel-based and block-based, respectively). Figure 4.14 compares
the performance of the PRA and the BMA for the �rst 50 frames of the
FOREMAN sequence at 25 frames=s. Two versions of the PRA are considered:
PRA, which is the same algorithm described earlier, and PRA-C, which is an
algorithm in which the update term is based on the causal part of an area of
5 × 5 pels centered around the current pel. Since PRA-C is based on causal
data, no motion overhead needs to be transmitted for this method. Due to the
high amount of motion in FOREMAN, the maximum number of iterations for
both pel-recursive algorithms was increased to 10.

120 Chapter 4. Basic Motion Estimation Techniques

Akiyo

50

48

46

44

42

40

38

36

P
S

N
R

Y
 (

dB
)

P
S

N
R

Y
 (

dB
)

P
S

N
R

Y
 (

dB
)

DFA
PRA
PCA
BMA

1 2 3 4

Frame skip

(a) AKIYO

Foreman
34

32

30

28

26

24

22

DFA
PRA
PCA
BMA

1 2 3 4

Frame skip

(b) FOREMAN

Table Tennis
36

34

32

30

28

26

24

DFA
PRA
PCA
BMA

1 2 3 4

Frame skip

(c) TABLE TENNIS

Figure 4.13: Prediction quality of di�erent motion estimation algorithms

121 Section 4.7. A Comparative Study

Foreman @ 25 f.p.s. 5
Foreman @ 25 f.p.s.

26

28

30

32

34

36

38

40

42

P
S

N
R

Y
 (

dB
)

BMA
PRA
PRAC

1 5 10 15 20 25 30 35 40 45 50
10

2

10
3

10
4

10

M
ot

io
n

bi
ts

BMA
PRA

1 5 10 15 20 25 30 35 40 45 50
Frame Frame

(a) Reconstruction quality (b) Motion bits

Foreman @ 25 f.p.s. Foreman @ 25 f.p.s.4 5

10
2

10
3

10
4

10
T

ot
al

 b
its

BMA
PRA
PRAC

10
1

10
2

10
3

10

D
F

D
 b

its

BMA
PRA
PRAC

1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
Frame Frame

(c) DFD bits (d) Total bits = motion + DFD

Figure 4.14: Comparison between BMA and PRA motion estimation algorithms

The aim of motion estimation for video coding is to simultaneously min-
imize the bit rate corresponding both to the motion parameters (motion bits)
and to the prediction error signal (DFD bits). As illustrated in Figure 4.14, the
three algorithms represent three di�erent tradeo�s between prediction quality
and motion overhead. Due to its dense motion �eld, the PRA has the best
prediction quality and, consequently, the least DFD bits. This is, however, at
the expense of a prohibitive motion overhead, which leads to a very high total
bit rate. The causal implementation of the PRA, PRA-C, clearly restricts the
method and signi�cantly reduces its prediction quality. Thus, PRA-C removes
the motion overhead at the expense of an increase in DFD bits. In addition,
this causal implementation increases the complexity of the decoder. The best
tradeo� is achieved by the BMA. It uses a block-based approach to reduce
the motion overhead while still maintaining a very good prediction quality.
This explains the popularity of this approach and its inclusion in video coding
standards.

122 Chapter 4. Basic Motion Estimation Techniques

4.8	 E5ciency of Block Matching at Very Low Bit
Rates

The incorporation of motion estimation and compensation into a video codec
involves extra computational complexity. This extra complexity must, there-
fore, be justi�ed on the basis of an enhanced coding e!ciency. This is very
important for very-low-bit-rate applications and, in particular, for applications
like mobile video communication, where battery time and processing power
are scarce resources.

Very low bit rates are usually associated with high frame skips. As the
frame skip increases, the temporal correlation between consecutive frames de-
creases. This will obviously decrease the e!ciency of motion estimation, as
can be seen in Figure 4.13. This poses a very important question: Is the use
of motion estimation at such bit rates justi�able? Or put in another way, Is the
use of less complex coding methods, like frame di�erencing and intraframe
coding, su!cient at those bit rates?

This study investigates the e!ciency of block-matching motion estimation
at very low bit rates. Three algorithms were implemented:

BMA-H This is a half-pel full-search BMA with 16 × 16 blocks, ± 15 pels
maximum displacement, restricted motion vectors, and SAD as the match-
ing criterion. Half-pel accuracy is achieved using a re�nement stage around
the full-search full-pel motion vectors. Bilinear interpolation is used to
obtain intensity values at subpel locations of the reference frame.

FDIFF This is a frame di�erencing algorithm. This means that no motion
estimation is performed and the motion vectors are always assumed to
be (0; 0). Note that this algorithm has no motion overhead and the total
frame bits are equal to the DFD bits.

INTRA This is a DCT-based intraframe coding algorithm.

In each algorithm, motion was estimated and compensated using recon-
structed reference frames. Motion vectors were coded using the median pre-
dictor and the VLC table of the H.263 standard. Both, the DFD signal (in
the case of BMA-H and FDIFF) and the frame signal (in the case of
INTRA) were transform encoded according to the H.263 standard. To simulate
a very-low-bit-rate environment, the frame skip was set to 4 (this corresponds
to 7:5 frames=s for AKIYO and TABLE TENNIS and to 6:25 frames=s for FOREMAN).
To generate a range of bit rates, the quantization parameter QP was varied
over the range 5–30 in steps of 5. This means that each algorithm was used to
encode a given sequence six times. Each time, QP was held constant over the
whole sequence (i.e., no rate control was used). The �rst frame of a sequence
was always INTRA coded, regardless of the encoding algorithm, and the

123 Section 4.8. E4ciency of Block Matching at Very Low Bit Rates

Akiyo @ 7.5 f.p.s., QP = 5, 10, 15, 20, 25, 30
40

38

36

P
S

N
R

Y
 (

dB
)

P
S

N
R

Y
 (

dB
)

P
S

N
R

Y
 (

dB
)

34

32

30

28

INTRA
FDIFF
BMAH

0 20 40 60 80 100 120 140 160
Bit rate (kbits/s)

(a) AKIYO

Foreman @ 6.25 f.p.s., QP = 5, 10, 15, 20, 25, 30
38

36

34

32

30

28

26

24

INTRA
FDIFF
BMAH

0 50 100 150 200 250
Bit rate (kbits/s)

(b) FOREMAN

Table Tennis @ 7.5 f.p.s., QP = 5, 10, 15, 20, 25, 30
38

36

34

32

30

28

26

24

INTRA
FDIFF
BMAH

0 50 100 150 200 250
Bit rate (kbits/s)

(c) TABLE TENNIS

Figure 4.15: E!ciency of block-matching motion estimation at very low bit rates

124 Chapter 4. Basic Motion Estimation Techniques

resulting bits were included in the bit-rate calculations. All quoted results refer
to the luma components of sequences. Figure 4.15 compares the performance
of the three algorithms when applied to the three test sequences.

In general, both interframe coding algorithms (FDIFF and BMA-H) out-
perform the intraframe coding algorithm (INTRA). Thus, even at very low
bit rates, high frame skips, or low-motion sequences, the temporal correlation
between video frames is still high enough to justify interframe coding.

Comparing the two interframe coding algorithms, it is immediately evident
that the BMA-H algorithm outperforms the FDIFF algorithm at all bit rates
and for all sequences. Note, however, that at extremely low bit rates, and in
particular for the low-motion AKIYO sequence, the e!ciency of the BMA-H
algorithm starts to drop and approaches that of the simpler FDIFF algorithm.
But even with this drop in performance, the use of BMA-H is still justi�able.
For example, with AKIYO and at a bit rate as low as 3 kbits=s, the BMA-H
algorithm still outperforms the FDIFF algorithm by about 1 dB.

4.9 Discussion

Motion estimation is an important process in a wide range of applications.
Di�erent applications have di�erent requirements and may, therefore, employ
di�erent motion estimation techniques.

In video coding, the determination of the true motion is not the intrinsic
goal. The aim is rather to simultaneously minimize the bit rate corresponding
both to the motion parameters (motion bits) and to the prediction error signal
(DFD bits). This is not an easy task, since the minimization of one quantity
usually leads to maximizing the other. Thus, a suitable tradeo� is usually
sought. In this chapter, four motion estimation methods were compared. The
four methods are the di�erential, pel-recursive, phase-correlation, and block-
matching motion estimation methods. It was found that block-matching motion
estimation provides the best tradeo�. It uses a block-based approach to reduce
the motion overhead while still maintaining a very good prediction quality
(and consequently a small number of DFD bits). This explains the popularity
of this approach and its inclusion in video coding standards.

The chapter also investigated the e!ciency of motion estimation at very low
bit rates. It was found that the prediction quality of motion estimation starts
to drop at very low bit rates, in particular, for low-motion sequences, and
approaches that of simpler techniques, like frame di�erencing and intraframe
coding. Despite this drop in prediction quality, it was found that the use of
motion estimation is still justi�able at those bit rates.

Chapter 5

Warping-Based Motion

Estimation Techniques

5.1 Overview

As already discussed, one way to achieve higher coding e�ciency is to
improve the performance of the motion estimation and compensation processes.
This can be done by using advanced motion estimation and compensation tech-
niques. This chapter concentrates on an advanced technique called warping-
based motion estimation. Since the early 1990s, this technique has attracted
attention in the video coding community as an alternative to (or rather as a
generalization of) conventional block-matching methods.

Section 5.2 reviews warping-based motion estimation techniques. Various
aspects of such techniques, like the shape of patches, the type of meshes,
the spatial transformation, the continuity of the motion (eld, the direction of
node tracking, the node-tracking algorithm, the motion compensation method,
and the transmitted motion overhead, are considered and compared. Section 5.3
compares the performance of warping-based methods to that of block-matching
methods. In particular, the section investigates the e�ciency of warping-based
methods at very low bit rates. The chapter concludes with a discussion in
Section 5.4.

5.2 Warping-Based Methods: A Review

Motion estimation (ME) can be de(ned as a process that divides the current
frame, fc , into regions and that estimates for each region a set of motion
parameters, {ai }, according to a motion model. The motion compensation
(MC) process then uses the estimated motion parameters and the motion model
to synthesize a prediction, f̂ , of the current frame from a reference frame, fr .c

125

126 Chapter 5. Warping-Based Motion Estimation Techniques

This synthesis process can be formulated as follows:

f̂c(x; y) = fr (u; v); (5.1)

where (x; y) are the spatial coordinates in the current frame (or its prediction)
and (u; v) are the spatial coordinates in the reference frame. This equation
indicates that the MC process applies a geometric transformation that maps
one coordinate system onto another. This is de(ned by means of the spatial
transformation functions gx and gy :

u = gx (x; y);
(5.2)

v = gy (x; y):

This spatial transformation is also referred to as texture mapping or image
warping [107].

As already discussed, the BMA method relies on a uniform translational
motion model. Thus, the transformation functions of this method are given
by

u = gx(x; y) = x + a1 = x + dx;
(5.3)

v = gy (x; y) = y + a2 = y + dy:

In practice, however, a block can contain multiple moving objects, and the
motion is usually more complex and can contain translation, rotation, shear,
expansion, and other deformation components. In such cases, the simple uni-
form translational model will fail, and this will usually appear as artefacts, e.g.,
blockiness, in the motion-compensated prediction. Higher-order motion mod-
els can be used to overcome such problems. Examples of such models are
the a�ne, bilinear, and perspective spatial transformations given by Equations
(5.4), (5.5), and (5.6), respectively:

A�ne:

u = gx (x; y) = a1x + a2y + a3;
(5.4)

v = gy(x; y) = a4x + a5y + a6:

Bilinear:

u = gx (x; y) = a1xy + a2x + a3y + a4;
(5.5)

v = gy(x; y) = a5xy + a6x + a7y + a8:

127 Section 5.2. Warping-Based Methods: A Review

Perspective:

u = gx(x; y) =
a1x + a2y + a3 ;
a7x + a8y + 1

(5.6)

v = gy (x; y) =
a4x + a5y + a6 :
a7x + a8y + 1

Motion estimation and compensation using higher-order models is usually
performed using the following steps:

1. A 2-D mesh is used to divide the current frame into nonoverlapping poly-
gonal patches (or elements). The points shared by the vertices of the
patches are referred to as grid or node points.

2. The motion of each node is estimated. This will map each node in the
current frame to a corresponding node in the reference frame. In e>ect,
this will map each patch in the current frame to a corresponding patch in
the reference frame.

3. For each patch in the current frame, the coordinates of its vertices and
those of the matching patch in the reference frame are used to (nd the
motion parameters {ai} of the underlying motion model.

4. During motion compensation, the estimated motion parameters	{ai} are
substituted in the appropriate spatial transformation, Equations (5.4)–(5.6),
to warp the patch in the reference frame to provide a prediction for the
corresponding patch in the current frame.

An example of this process is illustrated in Figure 5.1. In this (gure the
current frame is divided into square patches. This forms a uniform mesh.
During motion estimation, node points A, B, C, and D in the current frame
are mapped to node points A�, B�, C�, and D� in the reference frame. During
motion compensation, the deformed patch A�B�C�D� is warped to provide a
prediction for the square patch ABCD.

It should be pointed out that there is a lack of consistency in the lit-
erature when referring to this type of motion estimation and compensation
methods. Examples of the numerous names employed are control grid in-
terpolation [108, 109, 110], warping-based methods [111, 112, 113], spatial-
transformation-based methods [114, 115, 116, 117], geometric-transformation-
based methods [118], generalized motion estimation methods [119, 120], and
mesh-based methods [121, 122, 123, 124, 125, 126, 127].

When designing a warping-based technique, several aspects of the
method need to be considered and de(ned, as discussed in the following
subsections.

128 Chapter 5. Warping-Based Motion Estimation Techniques

A B

C D

grid (nodal)
points

x

y

u

v

A' B'

C' D'

reference frame current frame

A' B' A B

C' D' warping C D
(spatial transformation)

Figure 5.1: Warping-based motion estimation and compensation

5.2.1 Shape of Patches
The most widely used shapes are triangles and quadrilaterals. Nakaya and
Harashima [114] showed that equilateral triangles are optimal, in the prediction-
quality sense, when the a�ne transformation is used, whereas squares are
optimal when the bilinear transformation is used. Square patches are some-
times preferred because they are compatible with current block-based video
coding methods and standards. Triangular patches are more compatible with
model-based coding methods, where wireframe models are usually de(ned in
terms of triangles.

5.2.2 Type of Mesh
The mesh structure can be (xed or adaptive. A 'xed mesh is one that is
built according to a predetermined pattern, e.g., a regular mesh with square
patches. An adaptive mesh, on the other hand, is one that is adaptively built
according to frame contents and motion. Adaptive meshes can be content-
based or motion-based. In content-based adaptive meshes, nodes are placed
to (t important features like contours and edges [111, 121]. In motion-based
adaptive meshes, more nodes are placed in moving areas. This is usually
achieved using a hierarchical (usually, quad-tree) mesh structure [109, 120,

129 Section 5.2. Warping-Based Methods: A Review

115, 123]. Although adaptive meshes can improve prediction quality, they have
the disadvantages of increased computational complexity (for the generation
and adaptation processes) and increased overhead (to describe the structure of
the mesh). The structure overhead can be removed by applying the adaptation
process based on previous frames that are available at the decoder.

5.2.3 Spatial Transformation
As shown by Seferidis and Ghanbari [119], the perspective transform achieves
the best prediction-quality performance. However, the high computational com-
plexity of this transformation limits its use in practice. The a�ne transforma-
tion is the least computationally complex, but it has the fewest degrees of
freedom. The performance of the bilinear transformation is very close to that
of the perspective transformation, with the advantage of reduced computational
complexity. However, a study by Nakaya and Harashima [114] showed that the
a�ne and bilinear transformations have almost the same performance when the
patch shape is optimized (equilateral triangles and squares, respectively). In
fact, the same study showed that the performance of the a�ne transformation
can be superior as the number of nodes decreases.

5.2.4 Continuous Versus Discontinuous Methods
Adjacent patches in the current frame have common vertices between them.
There are two main methods for estimating the motion of such common ver-
tices. If the motion of common vertices is estimated independent from each
other (i.e., common vertices are assigned di>erent motion vectors), then this
will result in a discontinuous motion (eld with discontinuities along the bound-
aries of the patches. This is known as the discontinuous method. The motion
(eld in this case has similarities with that produced by the BMA. If, how-
ever, a restriction is applied such that common vertices have the same motion
vector, then this will result in a continuous motion (eld and the method
is known as the continuous method. The two methods are illustrated in
Figure 5.2.

As pointed out by Ghanbari et al. [115], the discontinuous method is more
Dexible and can compensate for more general complex motion. However, as
pointed out by Nakaya and Harashima [114], since discontinuities are allowed
along the boundaries of patches, this method can su>er from blocking artefacts.
Another disadvantage of the discontinuous method is that it generates more
motion overhead (four motion vectors per patch) compared to the continuous
method (about one motion vector per patch).

130 Chapter 5. Warping-Based Motion Estimation Techniques

Reference Current Reference Current
patches patches patches patches

(a) Discontinuous method (b) Continuous method

Figure 5.2: Continuous versus discontinuous warping-based methods

5.2.5 Backward Versus Forward Node Tracking
The process of estimating the motion of a grid or a node point is called
node tracking. There are two types of node-tracking algorithms: backward
and forward node tracking.

In backward node tracking, nodes are (rst placed on the current frame
and then they are matched to points in the reference frame. During motion
compensation, a pel (x; y) in the current patch is copied from a corresponding
pel (u; v) = (gx (x; y); gy (x; y)) in the reference patch. Note that in this case,
(x; y) is a sampling spatial position, whereas (u; v) may be a nonsampling
spatial position. Interpolation, e.g., bilinear, can be used to obtain pel values
at nonsampling positions of the reference frame. This process is repeated for
all pels within the current patch. Since backward tracking starts with a mesh
on the current frame (which is not available at the decoder), this technique is
usually used in combination with a (xed mesh.

In forward node tracking, nodes are (rst placed on the reference frame
and then matched to points in the current frame. During motion compen-
sation, a pel (u; v) in the reference patch is copied to a corresponding pel
(x; y) = (gx(u; v); gy (u; v)) in the current patch. Since, in this case, (x; y) may
be a nonsampling spatial position, the compensated current patch will nor-
mally contain holes (i.e., noncompensated pels at sampling spatial positions).
Techniques that can be used to recover pel values at sampling spatial positions
from values at nonsampling spatial positions are discussed and compared by
Sharaf and Marvasti in Ref. 116. Due to the use of such techniques, forward
node tracking and compensation is computationally more complex than back-
ward node tracking and compensation. Since forward node tracking starts with
a mesh on the reference frame, this technique is usually used in combination
with an adaptive mesh. Although the combination of forward tracking and
adaptive meshes can provide some prediction-quality improvement over the

131 Section 5.2. Warping-Based Methods: A Review

combination of backward tracking and (xed meshes, the use of the former is
not justi(ed, due to the huge increase in computational complexity [116].

5.2.6 Node-Tracking Algorithm
A simple method to estimate the motion of a node is to use a BMA-type
algorithm which minimizes the translational prediction error in a block centered
around the node. NiewFeg lowski et al. [111] use a modi(ed BMA with a large
block (21 × 21) centered around the node and a distortion measure designed
to give more weight to pels closer to the node. To reduce complexity, the
block is subsampled by a factor of 2:1 in both directions.

Although BMA-type algorithms are simple, they provide suboptimal per-
formance. First, they assume that the motion of a node is independent of the
motion of other nodes, and second, they assume that minimizing the transla-
tional prediction error minimizes the true prediction error. In practice, however,
both assumptions are not true. A node is a common vertex between more than
one patch. Consequently, the displacement of a node will a>ect all patches
connected to it. For example, with quadrilateral patches, the displacement of a
node a>ects the prediction quality within four patches connected to it. It fol-
lows that the choice of the motion vector of one node will a>ect the choice of
the motion vectors of other nodes. In addition, the true prediction error is the
error between the current frame and its warped prediction from the reference
frame. This is not equal to the translational prediction error.

Brusewitz [128] uses a BMA-type algorithm to provide coarse approxi-
mations for nodal motion vectors. An iterative gradient-based approach that
minimizes the true prediction error is then used to re(ne all nodal motion vec-
tors simultaneously. The computational complexity of the method is extremely
high. For example, if there are 100 nodes in the frame, the method requires
the inversion of a 200 × 200 matrix.

To reduce complexity, Sullivan and Baker [108] estimate the motion of one
node at a time. However, to take into account the interdependence between
motion vectors, an iterative approach is employed. In each iteration, the nodes
are processed sequentially. The motion vector of a node is estimated using
a local search around the motion vector from the previous iteration while
holding constant the motion vectors of its surrounding nodes. During the local
search, the quality of a candidate motion vector is measured by calculating
the distortion measure between all patches connected to the node and their
warped predictions from the reference frame. The local search is applied to
a node only if its motion vector, or the motion vector of at least one of its
surrounding nodes, was changed in the previous iteration.

Nakaya and Harashima [114] use a hexagonal matching algorithm (HMA).
The name is due to the use of triangular patches for which each node is a

132 Chapter 5. Warping-Based Motion Estimation Techniques

common vertex between six patches forming a hexagon. The algorithm is
almost identical to that of Sullivan and Baker (described earlier). In this case,
however, a BMA-type algorithm is (rst used to provide a coarse estimate
of the motion (eld, and the iterative approach is then used to re(ne this
estimate. In addition to the exhaustive local search, they also propose a faster
but suboptimal gradient-based local search. Similar gradient-based approaches
have also been used by Wang et al. [123, 126] and Dudon et al. [124].

Altunbasak and Tekalp [125] (rst estimate a dense (eld of motion displace-
ments. Then they use a least squares method to estimate the nodal motion
vectors subject to the constraint of preserving the connectivity of the mesh.
They show that the performance of this algorithm is comparable to that of
HMA, with the advantage of reduced computational complexity.

When estimating a nodal motion vector, it is very important to ensure
that the estimate does not cause any patch connected to the node to become
degenerate (i.e., with obtuse angles and=or Dipover nodes). To accomplish this,
Wang et al. [123, 126] limit the search range to a diamond region de(ned
by the four surrounding nodes, whereas Altunbasak and Tekalp [125] use a
postprocessing stage where an invalid estimate is replaced by a valid estimate
interpolated from surrounding nodal motion vectors.

All the foregoing algorithms assume a continuous motion (eld. Ghanbari
et al. [119, 120, 115, 117] use quadrilateral patches with a discontinuous
motion (eld. In this case, the four vertices of each regular patch in the current
frame are displaced combinatorially (i.e., perturbed) to (nd the best-match
deformed patch in the reference frame. The computational complexity of this
algorithm is extremely high since there are (2dm + 1)8 possible deformed
patches in the reference frame. In addition, each possible patch must (rst be
warped to calculate the distortion measure. To reduce complexity, they propose
to use a fast-search algorithm, e.g. Ref. 129.

5.2.7 Motion Compensation Method
Having obtained nodal motion vectors, there are two methods of performing
motion compensation.

In the (rst method, for each patch in the current frame, the coordinates of
its vertices and those of the matching patch in the reference frame are used
to set up a number of simultaneous equations. This set is then solved for the
motion parameters {ai} of the underlying motion model. For example, assume
a mesh of quadrilateral patches and a bilinear motion model. If the spatial
coordinates of the top-left, top-right, bottom-left, and bottom-right vertices of
the patch in the current frame are (xA; yA), (xB; yB), (xC; yC), and (xD; yD),
respectively, and the corresponding estimated motion vectors are dA, dB, dC ,
and dD, respectively, then the spatial coordinates of the matching vertices in

[] []

133 Section 5.2. Warping-Based Methods: A Review

the reference frame are (uA; vA), (uB; vB), (uC; vC), and (uD; vD), respectively,
where, e.g., (uA; vA) = (xA +dxA ; yA +dyA). Using the bilinear model of Equation
(5.5), the following set of simultaneous equations is obtained:

 
xAyA xByB xCyC xDyD  xA uA uB uC uD a1 a2 a3 a4 xB xC xD   := ·  yA vA vB vC vD a5 a6 a7 a8 yB yC yD

1 1 1 1

(5.7)

This set can easily be solved for the motion parameters a1; : : : ; a8. Having
obtained the motion parameters of the current patch, each pel (x; y) in the
patch is then compensated from a pel (u; v) in the reference patch, where
(u; v) are obtained using Equation (5.5).

In the second method of motion compensation (commonly known as control
grid interpolation (CGI) [108]), the motion vectors at the vertices of the
current patch are interpolated to produce a dense motion (eld within the patch.
For the same example just given, the motion vector d(x; y) = (dx (x; y); dy (x; y))
at pel (x; y) of the current patch is obtained by bilinear interpolation of the
four motion vectors at the vertices. Thus

d(x; y) = (1 − xn)(1 − yn)dA + xn(1 − yn)dB + (1 − xn)yndC + xnyndD;
(5.8)

x − xA y − yAwhere xn = and yn = : (5.9)
xB − xA yC − yA

Each pel (x; y) in the current patch can then be compensated from pel (u; v) in
the reference patch, where (u; v) = (x + dx (x; y); y + dy(x; y)). It can be shown
[110] that the two methods are equivalent.

5.2.8 Transmitted Motion Overhead
Two types of motion overhead can be transmitted: the motion parameters ai
of the patches and the motion vectors of the nodes. Motion vectors have a
limited range and are usually evaluated to a (nite accuracy (e.g., full- or
half-pel accuracy), whereas motion parameters are not limited and are usually
continuous in value. Thus, motion vectors are usually preferred because they
are easier to encode and result in a more compact representation. In addition,
motion vectors ensure compatibility with current video coding standards. One
disadvantage in this case, however, is that the decoder is more complex, since
it must use the received motion vectors to calculate the motion parameters

134 Chapter 5. Warping-Based Motion Estimation Techniques

or to interpolate the motion (eld (as described in Section 5.2.7) before being
able to perform motion compensation.

5.3	 E1ciency of Warping-Based Methods at Very
Low Bit Rates

This section investigates the performance of warping-based methods and com-
pares it to that of block-matching methods. The main aim is to answer the
following question: Are there any gains for using higher-order motion models
at very low bit rates? In other words, this section assesses the suitability of
warping-based methods for applications like mobile video communication.

Most results reported in the literature compare a warping-based algorithm
to the basic block-matching algorithm. The authors feel that this is an unfair
comparison for the following reasons:

1. As shown in Section 5.2.7, in warping-based compensation the motion
vector used to compensate a pel in a given patch is interpolated from
the nodal motion vectors at the vertices of the patch. Although the nodal
motion vectors may be at full-pel accuracy, the resulting interpolated
motion vector is at subpel accuracy. It is unfair to compare this subpel
compensation to the full-pel compensation of the basic block-matching
algorithm. A more fair comparison would be with a subpel (at least
half-pel) block-matching algorithm.

2. Again, from Section 5.2.7,	a warping-based method calculates one
motion vector per pel. Thus, each pel within a patch is compensated
individually. It is unfair to compare this to the basic block-matching al-
gorithm, where the whole block is compensated using the same motion
vector. A fairer comparison would be with overlapped motion compen-
sation, where each pel within the block is compensated individually, as
evident from Equation (4:32).

3. A warping-based method is much more computationally complex than
the basic block-matching method (as is shown later). This increased
complexity gives the warping-based method an unfair advantage over
the basic block-matching method. To provide a fairer comparison, the
basic block-matching method must be augmented by some advanced
techniques (like subpel accuracy and overlapped compensation).

Thus, in this study, the following algorithms were implemented:

BMA	This is a full-search full-pel block-matching algorithm with 16 × 16
blocks, restricted motion vectors, a maximum displacement of ± 15 pels,
and SAD as the matching criterion.

135 Section 5.3. E+ciency of Warping-Based Methods at Very Low Bit Rates

BMA-HO This is the same as BMA but with half-pel accuracy and over-
lapped motion compensation. Half-pel accuracy was obtained using a re-
(nement stage around the full-pel motion vector. Overlapping windows of
32 × 32 and a bilinear weighting function, Equation (4:33), were used for
overlapped motion compensation. Border blocks were handled by assum-
ing “phantom” blocks outside the frame boundary, with motion vectors
equal to those of the border blocks.

WBA This is a warping-based algorithm. Node points were placed at the
centers of 16 × 16 blocks in the current frame. This formed a regular
(xed mesh with square patches. In order for the mesh to cover the whole
frame area, node points were also placed on the borders.

Backward node tracking was used to map the current node points to their
matches in the reference frame. A continuous method was used to pro-
duce a continuous motion (eld. To ensure that the number of transmitted
motion vectors is the same as that of the BMA, no motion vectors were
transmitted for the border node points. Instead, each border node was
assigned the motion vector of the closest inner node. However, to ensure
that the borders of the current frame were mapped to the borders of the
reference frame, border nodes at the corners of the frame were assigned
zero motion vectors, the vertical component of a top or a bottom border
nodal vector was set to zero, and the horizontal component of a left or a
right border nodal vector was set to zero. The mesh geometry and nodal
motion vectors are illustrated in Figure 5.3.

),(I
y

I
x dd

I

O(I
x d

outer
node

inner
node

4 patches affected

A

corner nodes have
zero vectors vertical component is zero

horizontal component is
equal to inner vector

inner nodes are at the
block-motion

vector

)0,)0,0(

centers of BMA blocks by node A

(a) BMA blocks (b) WBA patches

Figure 5.3: BMA blocks and WBA patches

136 Chapter 5. Warping-Based Motion Estimation Techniques

At the start of the node-tracking algorithm, the BMA described earlier
was used to provide initial estimates of the inner nodal motion vectors.
Those initial estimates were then re(ned using the iterative procedure of
Sullivan and Baker [108]. In each iteration of this procedure, the nodes
are processed sequentially, where the motion vector of a node is re(ned
using a local search around the motion vector from the previous itera-
tion while holding constant the motion vectors of its surrounding eight
nodes. During this local search, the quality of a candidate motion vector is
measured by calculating the distortion measure between all four patches
connected to the node and their warped predictions from the reference
frame. The local search is applied to a node only if its motion vector, or
the motion vector of at least one of its surrounding nodes, was changed
in the previous iteration. The local search used here examines the eight
nearest candidate displacements centered around the displacement from
the previous iteration. For each frame, 10 iterations were used to re(ne
the nodal motion vectors.

During motion estimation and compensation, the bilinear spatial transfor-
mation is employed. This is implemented in the CGI [108] form (de-
scribed in Section 5.2.7), where the motion vector used to compensate
a pel within a patch is bilinearly interpolated, Equation (5.8), from the
four nodal motion vectors at the vertices of the patch.

In BMA-HO and WBA algorithms, bilinear interpolation was used to obtain
intensity values at subpel locations of the reference frame. In each algorithm,
motion was estimated and compensated using original reference frames. Motion
vectors were coded using the median predictor and the VLC table of the H.263
standard. The DFD signal was also transform encoded according to the H.263
standard and a quantization parameter of QP = 10. All quoted results refer to
the luma components of sequences.

Table 5.1 compares the objective prediction quality of the preceding three
algorithms when applied to the three test sequences with a frame skip of 3.
The WBA outperforms the basic BMA by about 0.16 –1:57 dB, depending on
the sequence. However, the WBA fails to outperform the advanced BMA-HO

Table 5.1: Comparison between BMA and WBA in terms of objective prediction quality

Average PSNR (dB) with a frame skip of 3

AKIYO FOREMAN TABLE TENNIS

BMA 39.88 27.81 29.06
WBA 41.45 29.09 29.22
BMA-HO 41.77 29.51 29.87

137 Section 5.3. E+ciency of Warping-Based Methods at Very Low Bit Rates

algorithm. In fact, the BMA-HO algorithm outperforms the WBA by about
0.32– 0:65 dB.

Figure 5.4 compares the subjective prediction quality of the 45th frame of
the 8.33-frames=s FOREMAN sequence when compensated using the preceding
three algorithms. This (gure shows that BMA-HO and WBA have approxi-
mately the same subjective quality and that both outperform the BMA. More
importantly, this (gure clearly shows the type of artefacts associated with each
algorithm. The BMA su>ers from the annoying blocking artefacts. Those arte-
facts are reduced by both the BMA-HO and the WBA algorithms. However,
the BMA-HO algorithm has a low-pass (ltering e>ect that smoothes sharp
edges. This is due to the averaging (weighting) process during overlapped
motion compensation. This e>ect is very clear at the edges of the helmet. The
WBA, on the other hand, can su>er from warping artefacts. This is very clear
at the top of the helmet, where part of the helmet was stretched to compensate

(a) Original 45th frame of FOREMAN at 8.33 f.p.s (b) Compensated using BMA (28.06 dB)

(c) Compensated using BMA-HO (29.59 dB) (d) Compensated using WBA (29.01 dB)

Figure 5.4: Comparison between BMA and WBA in terms of subjective prediction quality

138 Chapter 5. Warping-Based Motion Estimation Techniques

uncovered background. In fact, poor compensation of covered and uncovered
objects is one of the main disadvantages of the continuous warping-based
method. In particular, the method performs poorly whenever there are objects
disappearing from the scene because it can deform objects but cannot easily
remove them completely [111].

Another obvious disadvantage of the continuous warping-based method is
the lack of motion (eld segmentation. A number of methods have been pro-
posed to overcome this problem. For example, NiewFeg lowski and Haavisto [110]
use adaptive motion (eld interpolation to introduce discontinuities within the
nodal motion (eld. Adaptivity is achieved by switching between bilinear inter-
polation and nearest-neighbor interpolation of the nodal vectors at the vertices
of a patch. The latter interpolation method e>ectively splits the motion (eld
within the patch into four quadrants. A similar e>ect can be achieved by using a
hierarchical (e.g., quad-tree) motion-based adaptive mesh [109, 120, 115, 123].

It is interesting at this point to compare the computational complexity of the
preceding three algorithms. Table 5.2 compares the complexity of the three
algorithms in terms of encoding time per frame. The results were obtained
using the pro(ler of the Visual C++ 5.0 compiler run on a PC with Pentium
100-MHz processor, 64 MB of RAM, and a Windows 98 operating system.
The results were averaged over 10 runs, where each run was used to encode
the 8.33-frames=s FOREMAN sequence. Care should be taken when interpreting
the results as they depend heavily on the implementation and the hardware
platform.

The BMA requires about 2.16 seconds=frame. Most of this time (about
1.76 seconds) is consumed by the full-pel full-search block-matching motion
estimation process.

The BMA-HO algorithm requires about 3.56 seconds=frame. This increase
of about 1.4 seconds over the BMA is due mainly to two reasons. The half-pel
re(nement stage and the associated bilinear interpolation process increase the
motion estimation time by about 0.98 seconds. In addition, the overlapping
process increases the motion compensation time by about 0.42 seconds.

Table 5.2: Comparison between BMA and WBA in terms of computational complexity

CPU time (in seconds) per frame
when encoding FOREMAN at 8.33 f.p.s

BMA BMA-HO WBA

BMA motion estimation 1.76 2.74 1.86
WBA iterative re(nement 0.00 0.00 116.00
Motion compensation 0.01 0.43 0.60
Others 0.39 0.38 0.37
Total 2.16 3.56 118.83

139 Section 5.4. Discussion

The WBA requires about 118.83 seconds=frame. This is a huge increase
over both the BMA and the BMA-HO algorithms. This increase is due mainly
to the iterative procedure used to re(ne the initial nodal vector estimates.
Remember that in each iteration, for a single node to be re(ned, spatial trans-
formation and bilinear interpolation have to be used to compensate the four
patches connected to the node. There are a number of methods that can be
used to alleviate this complexity. Examples are the use of fewer iterations per
frame, the use of a line-scanning1 technique to perform the spatial transfor-
mation, the use of a simpler interpolation method (e.g., nearest neighbor) or
the use of a noniterative motion estimation algorithm, e.g. Ref. 130. Most of
these methods, however, reduce the computational complexity at the expense
of a reduced prediction quality.

5.4 Discussion

Block matching methods have always been criticized because of their sim-
ple uniform translational model. The argument against this model is that, in
practice, a block can contain multiple moving objects and the motion is usu-
ally more complex than simple translation. The shortcomings of this model
may appear as poor prediction quality for objects with nontranslational motion
and also as blocking artefacts within motion-compensated frames. Warping-
based methods employing higher-order motion models have been proposed in
the literature as alternatives to block-matching methods. This chapter inves-
tigated the performance of warping-based methods and compared it to that
of block-matching methods. The results of this comparison have shown that
despite their improvements over basic block-matching methods, the use of
warping-based methods in applications like mobile video communication may
not be justi(able, due to the huge increase in computational complexity. In
fact, similar (if not better) improvements can be obtained, at a fraction of
the complexity, by simply augmenting basic block-matching methods with ad-
vanced techniques like subpel accuracy and overlapped motion compensation.
One can argue that warping-based methods can also bene(t from subpel accu-
racy and overlapped motion compensation, as shown in Refs. 113 and 117, but
again this will further increase complexity. In addition to their high computa-
tional complexity, warping-based methods can su>er from warping artefacts,

1Once the motion vector of a pel (x; y) within a patch is interpolated from the four nodal
vectors at the vertices of the patch, it can be shown that the motion vectors of the next pel in
the line (x + 1; y) and the next pel in the column (x; y + 1) can be obtained by adding a simple
update term. This is known as line scanning [107].

140 Chapter 5. Warping-Based Motion Estimation Techniques

poor compensation of covered=uncovered background, and lack of motion (eld
segmentation. Reducing the complexity of warping-based methods and includ-
ing them in a hybrid WBA=BMA video codec are two possible areas of further
research.

Chapter 6

Multiple-Reference Motion
Estimation Techniques

6.1 Overview

To achieve high coding e�ciency, Chapter 5 investigated an advanced mo-
tion estimation technique called warping-based motion estimation. This chapter
considers another advanced technique, called multiple-reference motion esti-
mation.
In multiple-reference motion-compensated prediction (MR-MCP), motion

estimation and compensation are extended to utilize more than one reference
frame. The reference frames are assembled in a multiframe memory (or bu&er)
that is maintained simultaneously at encoder and decoder. In this case, in
addition to the spatial displacements, a motion vector is extended to also
include a temporal displacement.
This chapter investigates the prediction gains achieved by MR-MCP. Par-

ticular emphasis is given to coding e�ciency at very low bit rates. More
precisely, the chapter attempts to answer the following question: Is the use of
additional bit rate to transmit the extra temporal displacement justi�able in
terms of an improved rate-distortion performance? The chapter also examines
the properties of the multiple-reference block-motion)eld and compares them
to those of the single-reference case.
The rest of the chapter is organized as follows. Section 6.2 brie-y re-

views multiple-reference motion estimation techniques. Section 6.3 concen-
trates on the long-term memory multiple-reference motion estimation tech-
nique. The section starts by examining the properties of multiple-reference
block-motion)elds and compares them to those of single-reference)elds. It
then investigates the prediction gains and the e�ciency of the long-term mem-
ory technique at very low bit rates. The chapter concludes with a discussion in
Section 6.4.

141

142 Chapter 6. Multiple-Reference motion Estimation Techniques

6.2 Multiple-Reference Motion Estimation: A Review

In multiple-reference motion-compensated prediction (MR-MCP), motion es-
timation and compensation are extended to utilize more than one reference
frame. The reference frames are assembled in a multi-frame memory (or
bu&er) that is maintained simultaneously at encoder and decoder. In this case,
in addition to the spatial displacements (dx; dy), a motion vector is extended to
also include a temporal displacement dt . This is the index into the multiframe
memory. The process of MR-MCP is illustrated in Figure 6.1.
The main aim of MR-MCP is to improve coding e�ciency. Thus, the refer-

ence generation block in Figure 6.1(a) can utilize any technique that provides
useful data for motion-compensated prediction. Examples of such techniques
are reviewed in what follows.
A number of MR-MCP techniques have been proposed for inclusion within

MPEG-4. Examples are global motion compensation (GMC) [131, 132],
dynamic sprites (DS) [132], and short-term frame memory=long-term frame
memory (STFM/LTFM) prediction [133]. In these techniques, MCP is per-
formed using two reference frames. The)rst reference frame is always the
past decoded frame, whereas the second reference frame is generated using
di&erent methods. In GMC, the past decoded frame is warped to provide the
second reference frame. The technique of DS is a more general case of GMC.
In DS, past decoded frames are warped and blended into a sprite memory. This
sprite memory is used to provide the second reference frame. In STFM/LTFM
two frame memories are used. The STFM is used to store the past decoded
frame, whereas the LTFM is used to store an earlier decoded frame. The
LTFM is updated using a refresh rule based on scene-change detection. Both
DS and STFM/LTFM can bene)t from another MR-MCP technique, which is
background memory prediction [134].
Similar to the STFM/LTFM is the reference picture selection (RPS) mode

included in annex N of H.263+ (refer to Chapter 3). In this mode, switching
to a di&erent reference picture can be signaled at the picture level. It should be
pointed out, however, that this option was designed for error resilience rather
than for coding e�ciency. Its main function is to stop error propagation due
to transmission errors.
Probably the most signi)cant contributions to the)eld of MR-MCP are

those made by Wiegand and Girod et al. [135–141]. They noted [135, 136]
that long-term statistical dependencies in video sequences are not exploited by
existing video standards. Thus, they proposed to extend motion estimation and
compensation to utilize several past decoded frames. They called this tech-
nique long-term-memory motion-compensated prediction (LTM-MCP). They
demonstrated that the use of this technique can lead to signi)cant improve-
ments in coding e�ciency.

143 Section 6.2. Multiple-Reference Motion Estimation: A Review

Frame
Memory 0

Frame
Memory 1

Frame
Memory 2

Frame
Memory M-1

Reference
Generation

and
Memory
Control

Previous
frame(s) Multiple-

Reference
Motion

Estimation

Current frame

Motion vector
(dx,dy,dt)

(a) Multiple-reference motion estimation

(d
x,

dy
)

dt

current
block

best
match

spatial
displacements

temporal displacement,

Reference Reference Reference Reference
Current frame

frame M-1 frame 2 frame 1 frame 0

Reference frames in multiframe memory

(b) Multiple-reference motion compensation

Figure 6.1: Multiple-reference motion-compensated prediction

144 Chapter 6. Multiple-Reference motion Estimation Techniques

In Ref. 137 they proposed to use multiple global motion models to generate
the reference frames. Thus, reference frames in this case are warped versions
of the previously decoded frame using polynomial motion models. This can be
seen as an extension to GMC, where, in addition to the most dominant global
motion, less dominant motion is also captured by additional motion parameter
sets. In order to determine the multiple models, a robust clustering method
based on the iterative application of the least median of squares estimator
is employed. This model estimation method is computationally expensive. In
Ref. 138 they proposed an alternative method in which the past decoded frame
is split into blocks of)xed size. Each block is then used to estimate one
model using translational block matching followed by a gradient-based a�ne
re)nement. In addition to reduced complexity, this method leads to higher
prediction gains.
In Ref. 139 they have demonstrated that combining the LTM-MCP method

of Refs. 135 and 136 with the multiple GMC method of Ref. 138 can lead to
further coding gains.
Recently, MR-MCP has been included in the enhanced reference picture

selection (ERPS) mode (annex U) of H.263++ (refer to Chapter 3).

6.3 Long-Term Memory Motion-Compensated
Prediction

As already discussed, there are many MR-MCP techniques. The main
di&erence between those techniques is in the way they generate the
reference frames. The simplest and least computationally complex approach
is the LTM-MCP technique, where past decoded frames are assembled in
the multiframe memory. This chapter will therefore concentrate on the LTM-
MCP technique. More complex techniques, such as multiple GMC, may not
be suitable for computationally constrained applications such as mobile video
communication.
There are many ways to control the multiframe memory in the LTM-MCP

technique. The simplest approach is to use a sliding-window control method.
Assuming that there are M frame memories: 0 : : : M−1, then the most recently
decoded past frame is stored in frame memory 0, the frame that was decoded
M time instants before is stored in frame memory M − 1, and so on. In the
next time instant, the window is moved such that the oldest frame is dropped
from memory, the contents of frame memories 0 : : : M − 2 are shifted to frame
memories 1 : : : M − 1, and the new past decoded frame is stored in frame
memory 0. According to this arrangement the new motion vector component
is in the range 0 ≤ dt ≤ M− 1, where dt = 0 refers to the most recent reference

145 Section 6.3. Long-Term Memory Motion-Compensated Prediction

frame in memory. This sliding-window technique will be adopted throughout
this chapter.

6.3.1 Properties of Long-Term Block-Motion Fields
This subsection investigates the properties of long-term block-motion)elds
and compares them to those of single-reference block-motion)elds. All il-
lustrations in this subsection were generated using a full-pel full-search long-
term memory block-matching algorithm applied to the luma component of the
FOREMAN sequence with blocks of 16 × 16 pels, a maximum allowed displace-
ment of ±15 pels, SAD as the distortion measure, restricted motion vectors,
and original reference frames.

Property 6.3.1.1 The distribution of the long-term memory spatial displace-
ments (dx; dy) is center-biased. This is evident from Figure 6.2, which shows
the distribution of the relative frequency of occurrence of the spatial displace-
ments dx (Figure 6.2(a)) and dy (Figure 6.2(b)). Note that this is similar to
the single-reference case (M =1; skip = 1), although in the case of multiple-
reference (M =50; skip = 1), the distribution is slightly more spread, which
indicates that longer displacements are slightly more probable. This distribu-
tion is even more spread at higher frame skips, (M =50; skip = 4).

Property 6.3.1.2 The distribution of the long-term memory temporal dis-
placement dt is zero-biased. This is evident from Figure 6.3, where the tem-
poral displacement dt = 0 (which refers to the most recent reference frame

QSIF Foreman

p(
d x

)

M=1, Skip=1
M=50, Skip=1
M=50, Skip=4

p(
d y

)

QSIF Foreman
0.6

0.5

0.4

0.3

0.3

0.2

0.2

0.1
0.1

0 0
−15 −10 −5 0 5 10 15 −15 −10 −5 0 5 10 15

d d
x y

(a) Distribution of relative frequency of (b) Distribution of relative frequency of
occurrence of dx occurrence of dy

Figure 6.2: Center-biased distribution of the long-term memory spatial displacements (dx; dy)

0.7

0.6

0.5

0.4

M
M

=1, Skip=1
=50, Skip=1

M=50, Skip=4

146 Chapter 6. Multiple-Reference motion Estimation Techniques

QSIF Foreman
p(

d
t)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

M=50, Skip=1
M=50, Skip=4

0 5 10 15 20 25 30 35 40 45 50
d

t

Figure 6.3: Zero-biased distribution of the long-term memory temporal displacement dt

in memory) has the highest frequency of occurrence; and as the temporal
displacement increases, its frequency of occurrence decreases. Note that this
distribution becomes more spread at higher frame skips, which indicates that
the selection of older reference frames becomes slightly more probable.

Property 6.3.1.3 The long-term memory block-motion �eld is smooth and
varies slowly. In other words, there is high correlation between the motion
vectors of adjacent blocks. This is evident from Figure 6.4, which shows the
distribution of the di&erence between the current vector C and its left neighbor
L. This is shown for the three components: dx (Figure 6.4(a)), dy (Figure
6.4(b)), and dt (Figure 6.4(c)). All three distributions are biased toward a
zero di&erence, which indicates high correlation. Note that this correlation is
slightly less in the multiple-reference case (M =50; skip = 1), compared to the
single-reference case (M =1; skip = 1). This correlation is further reduced at
higher frame skips, (M =50; skip = 4).

In general, it can be concluded that moving from a single-reference system
to a multiple-reference system does not signi)cantly change the properties of
the block-motion)eld.

147 Section 6.3. Long-Term Memory Motion-Compensated Prediction

QSIF Foreman QSIF Foreman

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p(
C

dx
 −L

 dx
)

M=1, Skip=1
M=50, Skip=1
M=50, Skip=4

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M=1, Skip=1
M=50, Skip=1
M=50, Skip=4

p(
C

dy
 −L

 dy
)

Cdx−Ldx Cdy−Ldy

(a) Distribution of the difference between (b) Distribution of the difference between
the horizontal component, dx, of the current the vertical component, dy, of the current
vector and its left neighbor vector and its left neighbor

QSIF Foreman

0

0.1

0.2

0.3

0.4

0.5

0.6
M=50, Skip=1
M=50, Skip=4

p(
C

dt
 −L

 dt
)

−50 −40 −30 −20 −10 0 10 20 30 40 50
Cdt−Ldt

(c) Distribution of the difference between
the temporal component, dt, of the current
vector and its left neighbor

Figure 6.4: Highly correlated long-term memory block-motion)eld

6.3.2 Prediction Gain
This subsection evaluates the prediction gain achieved by LTM-MCP. All re-
sults were generated using full-pel full-search long-term memory block match-
ing with blocks of 16 × 16 pels, a maximum allowed displacement of ± 15
pels, SAD as the distortion measure, restricted motion vectors, and original ref-
erence frames. All quoted results refer to the luma components of sequences.
Figure 6.5 shows the performance of LTM-MCP when applied to the three

QSIF sequences AKIYO, FOREMAN, and TABLE TENNIS with di&erent memory
sizes and di&erent frame skips. It is immediately evident from this)gure
that signi)cant prediction gains are achieved when utilizing more than one

148 Chapter 6. Multiple-Reference motion Estimation Techniques

QSIF Akiyo

38

39

40

41

42

43

44

45

46

47

P
S

N
R

Y
 (

dB
)

M=1
M=2
M=5
M=10
M=50

1 2 3 4
Frame skip

(a) AKIYO

QSIF Foreman

26

27

28

29

30

31

32

33

34

P
S

N
R

Y
 (d

B
)

M=1
M=2
M=5
M=10
M=50

1 2 3 4
Frame skip

(b) FOREMAN

QSIF Table Tennis

28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

33

P
S

N
R

Y
 (

dB
)

M=1
M=2
M=5
M=10
M=50

1 2 3 4
Frame skip

(c) TABLE TENNIS

Figure 6.5: Prediction quality of LTM-MCP with di&erent memory sizes and frame skips

149 Section 6.3. Long-Term Memory Motion-Compensated Prediction

reference frame. For example, at a frame skip of 4, the prediction gain when
using a multiframe memory of size M = 50 frames is 1:87 dB for AKIYO,
2:17 dB for FOREMAN, and 1:25 dB for TABLE TENNIS, compared to single-
reference prediction (i.e., M = 1). Such prediction gains are mainly due to
the long-term statistical dependencies of video sequences. Examples of such
dependencies are the repetitions of sequence content due to uncovered objects
or objects reappearing in the sequence. An interesting point to note here is
that the prediction gains increase with increased frame skip. For example, for
AKIYO when going from M =1 to M = 50, the prediction gain is 0:62 dB at
a frame skip of 1 and 1:87 dB at a frame skip of 4. This may be due to the
fact that as the frame skip increases, successive frames get more decorrelated.
This increases the chance that a frame other than the immediately preceding
one will be chosen and, consequently, gives more chance to bene)t from long-
term memory prediction. In Ref. 136, the bene)ts of extending LTM-MCP to
half-pel accuracy are discussed. It is shown that further prediction gains can
be achieved by moving from full- to half-pel accuracy. This “accuracy gain”
is comparable to that in the case of single-reference prediction.
It should be emphasized that the improved prediction quality of LTM-MCP

is achieved at the expense of:

1. Increased memory requirements at both the encoder and the decoder.

2. Additional bit rate to transmit the new extra components, dt , of motion
vectors.

3. Increased computational complexity at the encoder.

Item 1 is not a major drawback due to the rapid drop in the price of memory
chips, item 2 will be investigated further in Section 6.3.3, whereas a possible
solution for item 3 will be proposed in Chapter 8.

6.3.3 E*ciency at Very Low Bit Rates
As already discussed in Section 6.1, LTM-MCP extends the motion vector
of a block by a third component, dt . This is the temporal displacement or
the index into the multiframe memory. Obviously, the transmission of this
extra component incurs an additional bit rate compared to the single-reference
case. This additional bit rate has to be justi)ed in terms of an improvement
in the rate-distortion (R-D) performance. This subsection investigates the R-D
performance of the LTM-MCP technique. Particular emphasis is given to the
e�ciency of this technique at the very low bit rates typical of mobile video
communication. Four H.263-like encoders were implemented:

SR	This is a single-reference encoder. It uses full-pel full-search block match-
ing with macroblocks of 16 × 16 pels, a maximum allowed spatial

150 Chapter 6. Multiple-Reference motion Estimation Techniques

displacement of ±15 pels, SAD as the distortion measure, restricted mo-
tion vectors, and reconstructed reference frames. Motion vectors are coded
using the median predictor and the VLC table of the H.263 standard. The
frame signal (in case of INTRA) and the DFD signal (in case of INTER)
are transform encoded according to the H.263 standard. The encoder does
not employ rate-constrained motion estimation and mode decision. Thus,
motion estimation simply chooses the motion vector that minimizes the
SAD measure without any bit-rate considerations. The INTRA=INTER de-
cision is based on heuristic thresholds and is given by the following [142]:

INTRA mode is chosen if A¡(SAD(d) − 500); (6.1)

where
A =

�

(x;y)∈B

|fc(x; y) − PB| (6.2)

and

PB =
�

(x;y)∈B fc(x; y)
256

; (6.3)

where d =(dx; dy) is the motion vector of macroblock B in the current
frame fc and SAD(d) is the SAD between the macroblock in the current
frame and a corresponding macroblock in the reference frame shifted by d.

SR-RC This is a single-reference rate-constrained encoder. It is the same as
SR, but it uses rate-constrained motion estimation and mode decision as
de)ned in the high-complexity mode of the H.263 test model, near-term,
version 10 (TMN10) [142]. In this mode, motion estimation chooses the
motion vector that minimizes the following Langrangian cost function:

JMOTION = DMOTION + �MOTIONRMOTION ; (6.4)

where DMOTION is the SAD between the macroblock in the current frame
and the corresponding macroblock in the reference frame shifted by d,
RMOTION is the number of bits used to encode the motion vector d, and
�MOTION is a Lagrange multiplier related to the quantization parameter
QP using

�MOTION =0:92 × QP: (6.5)

To decide the mode, two Langrangian cost functions, one for each mode,
are calculated as follows:

JINTRA = DINTRA + �MODERINTRA; (6.6)

JINTER = DINTER + �MODERINTER ; (6.7)

151 Section 6.3. Long-Term Memory Motion-Compensated Prediction

where DINTRA is the SSD between the current macroblock and its INTRA
encoded reconstruction and RINTRA is the number of bits used to INTRA
encode the current macroblock. Similar de)nitions also apply for DINTER
and RINTER, but they are calculated by INTER encoding the current mac-
roblock. In both equations, �MODE is a Lagrange multiplier related to the
quantization parameter QP using

�MODE =0:85 × QP2: (6.8)

The mode with the minimum cost function is chosen as the mode of
the current macroblock. Note that, in this case, a macroblock needs to
be encoded twice before being able to decide its mode. This increases
the complexity of the encoder. A more detailed description of this rate-
constrained motion estimation and mode decision method can be found
in Ref. 143.

MR This is a multiple-reference encoder with no rate constraints. Thus, it
is the same as SR, but it uses long-term memory motion-compensated
prediction.

MR-RC This is a multiple-reference rate-constrained encoder. Thus, it is the
same as SR-RC, but it uses long-term memory motion-compensated pre-
diction.

The preceding encoders were tested using the three QSIF test sequences
AKIYO, FOREMAN, and TABLE TENNIS. The frame skip parameter was set to 3
to achieve low bit rates. To generate a range of bit rates, the quantization
parameter QP was varied over the range 5–30 in steps of 5. This means that
each encoder was used to encode a given sequence six times. Each time, QP
was held constant over the whole sequence (i.e., no rate control was used).
The)rst frame was always INTRA encoded. The INTRA bits of the)rst frame
were included in the bit-rate calculations, and no header bits were generated.
All quoted results refer to the luma components of sequences. For MR and
MR-RC, sliding-window control was used to maintain a long-term memory of
size M = 50 frames. The VLC codewords in Table 6.1 were used to encode1

the temporal components dt of the long-term motion vectors.
Figures 6.6, 6.7, and 6.8 show the R-D performance of the preceding

encoders for the three test sequences. Note that both single-reference and

1For example, since dt = 4 is in the range (3:6), then according to Table 6.1 it will be encoded
using a 5-bit codeword. This codeword is derived as follows. With reference to the start of its
range, dt = 4 is represented by dt − 3= 4 − 3 = 1. Thus, x1x0 = 01 and the codeword is given by
0x11x00 = 00110.

152 Chapter 6. Multiple-Reference motion Estimation Techniques

Table 6.1: VLC codewords for encoding the temporal displacement dt . Reproduced from Ref. 140

dt Bits Codeword

0 1 1
“x0” + 1 (1:2) 3 0x00
“x1x0” + 3 (3:6) 5 0x11x00

“x2x1x0” + 7 (7:14) 7 0x21x11x00
“x3x2x1x0” + 15 (15:30) 9 0x31x21x11x00
“x4 x3x2 x1x0” + 31 (31:62) 11 0x4 1x31x21x11x0 0

QSIF Akiyo @ 10 f.p.s., QP = 5, 10, 15, 20, 25, 30
40

30

32

34

36

38

P
S

N
R

Y
 (

dB
)

SR
SR-RC
MR
MR-RC

28
0 5 10 15 20 25 30

Bit rate (kbits/s)

Figure 6.6: R-D performance of di&erent single- and multiple-reference (with M = 50) encoders
when encoding QSIF AKIYO at 10 frames=s

multiple-reference encoders bene)t from the use of rate-constrained motion es-
timation and mode decision. Those bene)ts are more evident in high-movement
sequences, where the use of more bits to encode the longer motion vec-
tors has to be justi)ed and controlled. It should be pointed out, however,
that such bene)ts are achieved at the expense of increased computational
complexity.

153 Section 6.4. Discussion

QSIF Foreman @ 8.33 f.p.s., QP = 5, 10, 15, 20, 25, 30
38

26

28

30

32

34

36

P
S

N
R

Y
 (

dB
)

SR
SR-RC
MR
MR-RC

24
0 25 50 75 100 125 150

Bit rate (kbits/s)

Figure 6.7: R-D performance of di&erent single- and multiple-reference (with M = 50) encoders
when encoding QSIF FOREMAN at 8.33 frames=s

Due to the additional bit rate generated by the temporal components dt ,
the use of rate-constrained motion estimation and mode decision is essential
in the case of multiple-reference encoders. A single-reference rate-constrained
encoder (SR-RC) can outperform a multiple-reference encoder with no rate
constraints (MR). This is evident at very low bit rates in Figures 6.6 and 6.7
and at all bit rates in Figure 6.8. In fact, at very low bit rates, even a single-
reference encoder with no rate constraints (SR) can sometimes outperform the
multiple-reference encoder (MR).
The best overall performance is achieved by the multiple-reference rate-

constrained encoder (MR-RC). The bene)ts of this encoder become more ev-
ident as the bit rate increases. Note, however, that this improved performance
is at the expense of a signi)cant increase in computational complexity. This
increase is due to the use of more than one reference frame during motion
estimation and also to the use of rate-constrained motion estimation and mode
decision. Note, also, that at extremely low bit rates a similar performance can
be achieved by the less complex (SR-RC) encoder. Thus, at such bit rates the
use of LTM-MCP is not justi)able.

154 Chapter 6. Multiple-Reference motion Estimation Techniques

QSIF Table Tennis @ 10 f.p.s., QP = 5, 10, 15, 20, 25, 30
38

10 20 30 40 50 60 70 80 90 100
26

28

30

32

34

36

P
S

N
R

Y
 (

dB
)

SR
SR-RC
MR
MR-RC

Bit rate (kbits/s)

Figure 6.8: R-D performance of di&erent single- and multiple-reference (with M = 50) encoders
when encoding QSIF TABLE TENNIS at 10 frames=s

6.4 Discussion

Higher coding e�ciency is one of the main requirements for mobile video
communication. One way to achieve higher coding e�ciency is to use ad-
vanced motion estimation techniques. One of the promising advanced tech-
niques is multiple-reference motion-compensated prediction (MR-MCP).
This chapter reviewed the main e&orts in the)eld of MR-MCP. It then in-

vestigated the performance of the long-term memory motion-compensated pre-
diction (LTM-MCP) technique. It was found that this technique provides sig-
ni)cant prediction gains compared to the single-reference case. It was
realized, however, that such prediction gains are achieved at the expense of
an additional bit rate to transmit one extra temporal component per motion
vector. This additional bit rate has to be justi)ed in terms of an improved
rate-distortion (R-D) performance. An investigation into the R-D performance
of LTM-MCP codecs revealed that the use of rate-constrained motion esti-
mation and mode decision is important for the success of such techniques.
Without rate constraints, the R-D performance of the LTM-MCP technique

155 Section 6.4. Discussion

can, at very low bit rates, drop below that of single-reference codecs. Com-
bined with rate constraints, the LTM-MCP technique provides a superior R-D
performance, which becomes more evident as the bit rate increases.
The chapter investigated the properties of long-term memory block-motion

)elds. It was found that the distribution of the long-term memory spatial dis-
placements is center-biased. This distribution becomes more spread with in-
creased frame memory size and frame skip. It was also found that the distri-
bution of the long-term memory temporal displacement is zero-biased. Again,
this distribution becomes more spread with increased frame memory size and
frame skip. The investigation revealed also that the long-term memory block-
motion)eld is highly correlated. In general, it was concluded that moving from
a single-reference system to a multiple-reference system does not signi)cantly
change the properties of the block-motion)eld.

Part III

Computational Complexity

In mobile terminals, processing power and battery life are very limited and
scarce resources. Given the signi�cant amount of computational power required
to process video, the use of reduced-complexity techniques is essential.
Motion estimation is the most computationally intensive process in a typical

video codec. In fact, the computational complexity of this process is greater
than that of all the remaining encoding steps combined. Thus, by reducing
the complexity of this process, the overall complexity of the codec can be
reduced.
This part contains two chapters. Chapter 7 reviews reduced-complexity mo-

tion estimation techniques. The chapter uses implementation examples and pro-
�ling results to highlight the need for reduced-complexity motion estimation.
It then reviews some of the main reduced-complexity block-matching motion
estimation techniques. The chapter then presents the results of a study com-
paring the di#erent techniques.
Chapter 8 gives an example of the development of a novel reduced-compl-

exity motion estimation technique. The technique is called the simplex mini-
mization search (SMS). The development process is described in detail, and
the SMS technique is then tested within an isolated test environment, a block-
based H.263-like codec, and an object-based MPEG-4 codec. In an attempt
to reduce the complexity of multiple-reference motion estimation (investi-
gated in Chapter 6), the chapter then extends the SMS technique to the
multiple-reference case. The chapter presents three di#erent extensions (or
algorithms) representing di#erent degrees of compromise between prediction
quality and computational complexity.

Chapter 7

Reduced-Complexity Motion
Estimation Techniques

7.1	Overview

As already discussed, one of the main requirements for mobile video com-
munication is reduced-complexity. It is not di�cult to show that the high
computational complexity of a typical video codec is due mainly to the mo-
tion estimation process. Thus, by reducing the complexity of this process, the
overall complexity of the codec can be reduced. This chapter reviews reduced-
complexity motion estimation techniques. In particular, the chapter concen-
trates on reduced-complexity block-matching motion estimation (BMME)
techniques. The chapter also presents the results of a study comparing dif-
ferent reduced-complexity BMME techniques.

The rest of the chapter is organized as follows. Section 7.2 uses imple-
mentation examples and pro)ling results to highlight the need for reduced-
complexity motion estimation. Sections 7.3–7.7 review the main categories of
reduced-complexity BMME algorithms. Section 7.8 presents the results of a
study comparing the di-erent categories. The chapter concludes with a discus-
sion in Section 7.9.

7.2	 The Need for Reduced-Complexity Motion
Estimation

Processing digital video requires a signi)cant amount of computational power.
This represents one of the main challenges for real-time mobile video com-
munication, where processing power and battery life are scarce resources. For
example, an MPEG-4 simple pro)le codec has recently been implemented

159

160 Chapter 7. Reduced-Complexity Motion Estimation Techniques

on Texas Instruments’ TMS320C541 40-MHz processor [5].1 Pro)ling results
show that this codec cannot achieve real-time processing even when using
SQCIF sequences. It can encode only about 1 frame=s, and it can decode only
about 20 frames=s. Another example is the implementation of the H.263 base-
line mode on the more powerful TMS320C62 200-MHz processor, as described
in Ref. 6. Again, this implementation cannot achieve real-time processing, for
it only can encode about 5 QCIF frames=s.

Looking at the building blocks of a typical video codec, it is not di�cult
to realize that this huge computational complexity is due mainly to the motion
estimation process. As already discussed, most video codecs estimate motion
using the block-matching motion estimation (BMME) algorithm. The most
straightforward BMME algorithm is the full-search (FS) algorithm, sometimes
referred to as the exhaustive search or the brute-force search. This algorithm
is guaranteed to)nd the best-match block because it exhaustively searches
over all possible blocks (search locations or candidate motion vectors) within
the search window. The algorithm produces the best possible prediction qual-
ity. This is, however, at the expense of a huge computational complexity.
For example, for a CIF video sequence encoded at 30 frames=s with 16 × 16
blocks, maximum displacement of ± 15 pels, and SAD as the distortion mea-
sure, a direct implementation of a full-pel FS-BMME algorithm requires about
6 × 109 integer additions and subtractions, 3 × 109 magnitude operations, and
11 × 106 comparisons per second. In fact, the computational complexity of this
motion estimation process is greater than that of all the remaining encoding
steps combined. This is clear from Table 7.1, which shows pro)ling results2

of the baseline mode of Telenor’s H.263 encoder [144] when used to encode
the QCIF FOREMAN sequence at 64 kbits=s. In this case, the motion estimation
process3 consumes about 70% of the overall encoding time.

Because of this high computational complexity, motion estimation has be-
come a bottleneck problem in many applications, e.g., mobile video termi-
nals and software-based video codecs, especially if real-time video coding is
required. This has motivated the development of a number of fast motion
estimation algorithms since the early 1980s. In fact, recent advances in video
coding not only highlight the importance of such algorithms, but even call for
further research into the area of reduced-complexity motion estimation. For
example, HDTV and multiple-reference motion estimation (discussed

1According to Ref. 5, about half of all mobile phones currently use a ‘C54x processor.
2The results were obtained using the pro)ler of the Visual C++ 5.0 compiler run on a PC

with a Pentium 100-MHz processor, 64 MB of RAM, and a Windows 98 operating system.
3The baseline mode of Telenor’s H.263 codec uses block matching with 16 × 16 blocks, SAD

as the distortion measure, and ±15 pels maximum displacement. Full-pel accuracy is)rst obtained
using full search. This is then re)ned to half-pel accuracy.

161 Section 7.3. Techniques Based on a Reduced Set of Motion Vector Candidates

Table 7.1: Pro)ling results of Telenor’s H.263 baseline mode when used to encode QCIF FOREMAN

at 64 kbits= s

Function CPU Time (ms) Percentage (%)

Motion estimation 240,354 69.7
Input= output 32,552 9.4
DCT= IDCT 29,412 8.5
Others 42,353 12.4

Total 344,671 100.0

in Chapter 6) have a computational complexity that is several orders of
magnitude higher than that shown in the preceding examples. The former uses
higher spatial resolutions and larger search windows, and the latter extends
the search over several reference frames.

The following sections of this chapter review the main categories of
reduced-complexity BMME algorithms. Although each category can be used
on its own, careful encoder design can utilize di-erent combinations to achieve
higher speed-up ratios.

7.3	 Techniques Based on a Reduced Set of Motion
Vector Candidates

Instead of searching over all possible blocks within the search window, this
category restricts the search over a selected subset of the blocks. Most
algorithms in this category are, implicitly or explicitly, based on the uni-
modal error surface assumption [54], which states that the block distortion
measure (BDM) increases monotonically as the search location moves away
from the best-match location. Therefore, the search starts by evaluating the
BDM at locations coarsely spread over the search window according to some
prede)ned uniform pattern. This is then repeated with)ner resolution (i.e.,
smaller spread) around the search location with the minimum BDM from the
preceding step.

The)rst algorithm reported in this category was the two-dimensional log-
arithmic (TDL) search proposed in 1981 by Jain and Jain [54]. Figure 7.1
shows an example of the TDL search with a maximum displacement of dm =6
pels. The search is initialized at the origin of the search window with a suit-
able step size (i.e., the spacing between the search locations). In each step of
the TDL search, the BDM is evaluated at)ve search locations. In the given
example, the search locations (0; 0), (+2; 0), (−2; 0), (0; +2), (0; −2) form

162 Chapter 7. Reduced-Complexity Motion Estimation Techniques

Horizontal displacement, dx

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

V
er

tic
al

 d
is

pl
ac

em
en

t,
d y

-6

-5

-4

-3

-2

-1

0

+1

+2

+3

+4

+5

+6

3 4

5 5 5

3 2 5 3 5 4

5 5 5

2 1 2

1 1 1

1

searched location minimum at a given step

final motion vector
a given step
direction of minimum at

Figure 7.1: An example of the TDL search with dm = 6 pels

the search pattern of the)rst step. At each step, the search pattern is centered
around the minimum of the previous step. In the given example, the minimum
in the)rst step is at (0; −2). Thus, the search pattern in the second step is
centered around this minimum location. The step size is reduced by a factor
of 2 if the minimum is in the center of the search pattern or at the boundary
of the search window. In the fourth step of the given example, the mini-
mum is at (+2; −4), which is the center of the search pattern. Therefore, the
spacing between the search locations is halved in the)fth step. Since halving

Section 7.4. Techniques Based on a Reduced-Complexity Block Distortion Measure 163

the distance between the search locations gives a step size of 1, this indicates
that this is the)nal step in the search. In this)nal step, BDM is evaluated at
the minimum from the previous step and also at its eight nearest neighbors.
In the given example, the)nal motion vector is (+2; −3).

Since the introduction of the TDL search, a large number of similar algo-
rithms have been proposed. Examples are the three-step search (TSS) [145],
the one-at-a-time search (OTS) [146], the conjugate-directions search (CDS)
[146], the cross-search algorithm (CSA) [147], the genetic motion search
(GMS) [148], and the diamond search (DS) [149–151], to mention a few.
The appendix gives a detailed description of some of these algorithms.

Compared to other techniques, this category of techniques provides a rela-
tively high speed-up ratio and has, therefore, received most of the attention.
However, as is shown later, the unimodal error surface assumption does not
always hold true, and such algorithms can easily be trapped in local minima,
resulting in a suboptimal prediction quality.

7.4	 Techniques Based on a Reduced-Complexity
Block Distortion Measure

In this category, reduced-complexity is achieved by employing a reduced-
complexity BDM. As already discussed in Chapter 4 (Section 4.6.1), most
implementations prefer the SAD measure, due to its reduced-complexity and
good prediction quality. A number of other reduced-complexity BDMs have
also been proposed in the literature. Examples are the pel di*erence classi-
+cation (PDC) [152], the minimized maximum (MiniMax) error [153], the
reduced-bits mean absolute di*erence (RBMAD) [154], integral projections
[155], and one-bit=pixel [156], to mention a few. Most of these measures were
designed speci)cally for e�cient hardware and VLSI implementation, but their
prediction quality is not as good as the SSD or the SAD measures.

Another type of algorithms in this category reduces the complexity of the
BDM by subsampling the matched blocks. Obviously, since only a fraction of
the pels is used in the matching process, this category does not guarantee to
)nd the best match, even when combined with full search. Koga et al. [145]
subsample the matched blocks by a factor of 2 both horizontally and vertically
(i.e. 4:1 subsampling), reducing the complexity of the BDM by a factor of 4.

Instead of using a uniform subsampling pattern, Liu and Zaccarin [157] use
alternating subsampling patterns. The patterns are alternated over the searched
locations in such a way that e-ectively all pels of a block contribute to the
matching process. This method is illustrated in Figure 7.2. Figure 7.2(a) shows
an 8 × 8 block of pels. Four 4:1 subsampling patterns are de)ned in this block.
For example, subsampling pattern A consists of all pels labeled a in the block.

164 Chapter 7. Reduced-Complexity Motion Estimation Techniques

a b a b a b a b

c d c d c d c d

a b a b a b a b

c d c d c d c d

a b a b a b a b

c d c d c d c d

a b a b a b a b

c d c d c d c d

C B C B

D

C

D

A D A

B C B

A D A

(a) Four 4:1 subsampling patterns (b) Alternating schedule of four sub-
sampling patterns over the search window

Figure 7.2: Reduced-complexity BDM using the alternating subsampling patterns of Liu and Za-
ccarin [157]

Similarly, patterns B, C, and D consist of all the b, c, and d pels, respectively.
Figure 7.2(b) shows part of the search window in the reference frame. Each
circle in this)gure represents a search location (i.e., a candidate block) in
the window. During motion estimation, search locations labeled A use the
subsampling pattern A, and so on. For each of the four subsampling patterns,
the motion vector with the minimum BDM over the locations where that
pattern is used is selected. For each of the four selected motion vectors, the
BDM is evaluated, but this time without subsampling. The vector that achieves
the minimum BDM is selected as the motion vector of the block. Compared
to the approach of Koga et al., this approach achieves approximately the same
reduction in complexity, but with better prediction quality.

Chan and Siu [158] vary the number of pels in the subsampling pattern
according to block details. Thus, fewer pels are used for uniform blocks and
more pels are used for high-activity blocks. In this algorithm, the reduction in
complexity varies between blocks and the prediction quality is generally better
than that of Liu and Zaccarin.

7.5	 Techniques Based on a Subsampled
Block-Motion Field

This category is based on the fact that block-motion)elds of typical video
sequences are usually smooth and vary slowly (as was shown in Section 4.6.7).

165 Section 7.5. Techniques Based on a Subsampled Block-Motion Field

In other words, it is very common to)nd neighboring blocks with identical or
nearly identical motion vectors. Thus, in this category, a subsampled block-
motion)eld is)rst obtained by estimating the motion vectors for a fraction
of the blocks in the frame. This)eld is then appropriately interpolated to
determine the motion vectors of the remaining blocks.

Liu and Zaccarin [157] use a checkerboard subsampling pattern and estimate
the motion vectors for half of the blocks (i.e., a 2:1 subsampled motion)eld)
using full search. Then they estimate the motion vectors of the other half
using a limited search that examines only four candidate motion vectors. Those
candidates are the four surrounding motion vectors that were estimated using
full search. For example, in Figure 7.3(a) the motion vectors of blocks B, C,
D, and E are estimated using full search. Only those four vectors are then used
as candidates when estimating the motion of block A. This algorithm reduces
complexity by roughly a factor of 2, with only a slight loss in prediction
quality.

Another algorithm was also proposed by Liu and Zaccarin in Ref. 157.
In this algorithm, each block is divided into four subblocks. Motion is)rst
estimated, using full search, for one subblock in each block, say, the top-left
subblock. The motion vectors of the remaining subblocks are then estimated
using a limited search with candidates from the neighboring full-search motion
vectors. For example, in Figure 7.3(b) the motion vectors of subblocks A, B,
C, and D are estimated using full search. Only those four vectors are then
used as candidates when estimating the motion vectors of subblocks a, b,

N

A

B

E C

D

N

A B

C D

a

b c

N/2

N/2

N

N

(a) Subsampling with blocks (b) Subsampling with subblocks

Figure 7.3: Reduced-complexity using the subsampled motion)elds of Liu and Zaccarin [157]

166 Chapter 7. Reduced-Complexity Motion Estimation Techniques

and c. This algorithm reduces complexity by roughly a factor of 4. Since
smaller blocks are employed, the algorithm provides better prediction quality
than full-search with original size blocks. This is, however, at the expense of
a larger motion overhead.

7.6 Hierarchical Search Techniques

This category uses a multiresolution representation of video. The basic idea
is to perform motion estimation at each level successively, starting with the
lowest resolution level. Thus, motion estimation is)rst performed at the lowest
resolution level to obtain a rough estimate of the motion vector. This vector is
then passed to the next-higher resolution level to serve as an initial estimate.
Motion estimation at the higher resolution level is then used to re)ne this
initial estimate. This process is repeated until the highest resolution level is
reached. At lower resolution levels, smaller blocks are used for block matching.
This reduces the complexity of calculating BDMs. At higher-resolution levels,
smaller search ranges are used since motion estimation starts from a good
initial estimate. This reduces the number of locations to be searched. Both
factors (i.e., smaller blocks at low resolutions and smaller search ranges at
high resolutions) contribute to reducing the overall complexity of the search.
Note that when reducing the resolution of the searched frames, the motion
speed is also reduced. This makes hierarchical techniques particularly useful
for estimating, with reduced complexity, high motion content. Examples of
hierarchical motion estimation algorithms are reported in Refs. 159 and 160.

Figure 7.4 shows an example of a three-level hierarchical motion estimation
technique applied to a QCIF sequence. In this case, the current frame is)rst
used to generate three current frames with the resolutions: 44 × 36, 88 × 72,
and 176 × 144. Each resolution level is a low-pass)ltered and subsampled ver-
sion of the next-higher resolution level. The resulting representation is called
a mean pyramid. The same process is also applied to the reference frame
(i.e., the previous frame). Motion estimation starts at the lowest resolution
level with a block size of 4 × 4 pels and a search range of ± 3 pels. The es-
timated motion vector of a block in this resolution is scaled up by a factor of
2 (i.e., the scaled vector will have a maximum range of 2 × (± 3) = ± 6 pels)
and then be passed to the corresponding block in the next-higher resolution
level. Motion estimation in the next-higher resolution level uses a block size
of 8 × 8 pels and a search range of ± 1 pel around the propagated vector from
the lower resolution level. This produces a motion vector with a maximum
range of (± 6) + (± 1) = ± 7 pels, which is again scaled up by a factor of 2
(to a maximum range of ± 14) and propagated to the next-higher resolution
level. In this level, a block size of 16 × 16 pels is used with a search range

167 Section 7.6. Hierarchical Search Techniques

44

36

88

72

176

14
4

V1

2V1

V2

d2

2V2

V3

d3

4

8

16

Figure 7.4: Hierarchical motion estimation using a mean pyramid of three levels applied to a
QCIF frame

of ± 1 pel around the propagated vector from the lower resolution level. This
gives a)nal vector with a maximum range of ± 15 pels.

There are many variants to hierarchical motion estimation. Some techniques
use the same frame size in all levels of the hierarchy, with larger block sizes
at lower levels. Other techniques use the same block size in all levels of the
hierarchy, with subsampled frames at lower levels. In both cases, any level will
have fewer blocks than the next higher level. Thus, a motion vector estimated
at one level will be propagated to more than one block in the higher level.

In addition to reduced-complexity and robust estimation of high-motion
content, hierarchical motion estimation algorithms are also reported to provide

� � � � � �
� �

� � � � � � � � � � � �
�

168 Chapter 7. Reduced-Complexity Motion Estimation Techniques

more homogeneous block-motion)elds and a better representation of the true
motion in the frame [159]. The latter property is particularly important for
motion-compensated interpolation.

7.7 Fast Full-Search Techniques

All the preceding categories reduce the computational complexity of the
BMME process at the expense of a suboptimal prediction quality. This cate-
gory, however, reduces complexity without sacri)cing prediction quality. It is
interesting to note that algorithms in this category are usually based on ideas
borrowed from the)eld of fast codebook search for vector quantization (VQ).

An example of the algorithms in this category is the partial distortion
elimination (PDE) algorithm. Assume that during a full search, the minimum
BDM calculated so far is BDM(im; jm) at search location (im; jm). Then the
BDM calculation of any subsequent search location (i; j) is stopped as soon
as the accumulated distortion exceeds BDM(im; jm). This idea is very simi-
lar to the fast-search VQ method reported in Ref. 161. Clearly, initializing the
search at a location with the lowest possible BDM(im; jm), achieves the highest
possible reduction in computational complexity. As already shown in Section
4.6.7, the distribution of the best-match location is usually center-biased (i.e.,
the vector (0; 0) has the highest probability, and longer vectors are less proba-
ble). Thus, the PDE algorithm is usually combined with a spiral-ordered search
starting at the origin of the search space and going outward in a spiral fashion.
This combination is employed, for example, in Telenor’s H.263 codec [144].

Another algorithm in this category is the successive elimination algorithm
(SEA) [162]. Again, this algorithm has similarities with the fast-search VQ
algorithm reported in Ref. 163. The SEA algorithm is based on the triangular
mathematical inequality given by

� k � k

� ai� ≤ |ai|; (7.1)
i=1 i=1

where ai are arbitrary real numbers. Extending this inequality to the SAD
equation gives

� |ft (x; y)| − |ft−Mt (x − i; y − j)| �(x; y)∈B (x; y)∈B

≤ |ft (x; y) − ft−Mt (x − i; y − j)|: (7.2)
(x; y)∈B

�

�

169 Section 7.7. Fast Full-Search Techniques

The)rst summation in this inequality is the sum norm of block B in the
current frame, and this sum is denoted SNt . The second summation, on the
other hand, is the sum norm of a candidate block in the reference frame
shifted by (i; j), and this sum is denoted SNt−Mt(i; j). The third summation is
obviously the SAD(i; j). Thus, for simplicity, Inequality (7.2) can be rewritten
as

|SNt − SNt−Mt(i; j)| ≤SAD(i; j): (7.3)

Now assume that during a full-search, the minimum SAD calculated so far is
SAD(im; jm) at search location (im; jm). A subsequent search location (i; j) is
said to achieve better match only if SAD(i; j) ≤SAD(im; jm). Put in another
way, and based on Inequality (7.3), a subsequent search location (i; j) is said to
achieve better match only if |SNt −SNt−Mt(i; j)| ≤SAD(im; jm). In other words,
a subsequent location (i; j) can be immediately skipped from the search if

|SNt − SNt−Mt(i; j)| ≥SAD(im; jm): (7.4)

Note that calculating the sum norms in this inequality has a reduced-complexity
compared to calculating the SAD(i; j) itself. For example, assume that B(x; y)
is an N ×N block with its top-left cornet at (x; y) and that the next block
B(x + 1; y) is the block obtained by moving one pel to the right. The two
blocks are overlapping and they share N − 1 columns. Once the sum norm,
SN(B(x; y)), of the)rst block is calculated, the sum norm, SN(B(x + 1; y)),
of the next block in the line is obtained simply by substracting the sum norm
of the)rst column of block B(x; y) and adding the sum norm of the last
column in block B(x + 1; y). A similar procedure can be used for calculating
the sum norm of the next block in the column (i.e., when moving one pel
down). Based on these ideas, a very fast method of calculating the sum norms
is presented in Ref. 162.

A similar algorithm to the SEA has also been proposed in Ref. 164. Assume � �
that B is partitioned into subsets Bn such that B= n Bn and Bn = ∅.n
Then the triangular inequality becomes

|SNt; n − SNt−Mt; n(i; j)| ≤SAD(i; j); (7.5)
n

where SNt−Mt; n(i; j) is the sum norm over subset Bn of the candidate block
in the reference frame shifted by (i; j). It can be shown that

|SNt; n − SNt−Mt; n(i; j)| ≥ |SNt − SNt−Mt(i; j)|: (7.6)
n

Thus, a tighter bound is achieved when the partitioned case is used in In-
equality (7.4) instead of the partitioned case. This tighter bound will result

170 Chapter 7. Reduced-Complexity Motion Estimation Techniques

in faster rejection of more candidates and consequently will achieve higher
speed-up ratios. However, the partitions must be chosen carefully to minimize
the overhead calculations. In Ref. 164 two partitions are proposed. For an
N × N block, the)rst partition produces N subsets, each being one of the N
rows of the block, whereas the second partition produces N subsets, each be-
ing one of the N columns of the block. Again, this algorithm has similarities
with the fast-search VQ algorithm presented in Ref. 47.

7.8 A Comparative Study

This section presents the results of a study comparing the categories of reduced-
complexity motion estimation techniques discussed in Sections 7.3–7.7. The
main aim of this study is to provide the reader with a feel of the relative
performance of the discussed categories. Particular attention is given to the
tradeo- between computational complexity and prediction quality.

In this study, one representative of each category was chosen. All simulated
algorithms use 16 × 16 blocks, SAD as the distortion measure, ± 15 maximum
displacement, full-pel accuracy, restricted motion vectors, and original refer-
ence frames. The simulated algorithms are:

FSA This is a full-search algorithm.

TDL This is the two-dimensional logarithmic search of Jain and Jain [54].
The algorithm is discussed in Section 7.3 and described in detail in the
appendix, Section A.2.

SDM This algorithm uses a 4:1 subsampling of the matched blocks to reduce
the complexity of calculating the distortion measure. The subsampling
pattern used corresponds to pattern A described in Section 7.4. This pat-
tern consists of all pels labeled a in Figure 7.2(a).

SMF This is the subsampled motion)eld algorithm of Liu and Zaccarin [157].
The algorithm is discussed in Section 7.5.

HME This is a three-level hierarchical motion estimation algorithm. The
algorithm is described in Section 7.6 and illustrated using Figure 7.4.

PDE This is the partial distortion elimination algorithm described in Section
7.7. In order to reduce the overhead of logical operations, the condition to
reject a given candidate is tested after accumulating the BDM of each row
of the block (rather than after each pel of the block). The algorithm is
supported with a spiral-ordered search starting at (0; 0) and going outward
toward longer motion vectors.

171 Section 7.8. A Comparative Study

Tables 7.2–7.4 present the results of testing these algorithms using the three
test sequences AKIYO, FOREMAN, and TABLE TENNIS, with a frame skip of 1
(i.e., 30 frames=s for AKIYO and TABLE TENNIS and 25 frames=s for FOREMAN).
All results are averages over sequences and refer to the luma components.
Each table compares the algorithms in terms of prediction quality and com-
putational complexity. The prediction quality is presented in terms of aver-
age luma PSNR in decibels. The di-erence in PSNR between each algorithm
and the FSA is also shown.4 The computational complexity is presented in
terms of the average motion estimation time (in milliseconds) per frame.5 Care

Table 7.2: Comparison between di-erent fast block-matching algorithms when applied to QSIF
AKIYO at 30 frames=s

Prediction quality Computational complexity

PSNR MPSNR ME Time Speed-up
(dB) (dB) (ms/frame) ratio

FSA 45.93 0.00 1013.87 1.00
PDE 45.93 0.00 48.49 20.91
SDM 45.93 0.00 278.25 3.64
SMF 45.93 0.00 511.51 1.98
TDL 45.93 0.00 26.82 37.80
HME 45.93 0.00 20.73 48.89

Table 7.3: Comparison between di-erent fast block-matching algorithms when applied to QSIF
FOREMAN at 25 frames=s

Prediction quality Computational complexity

PSNR MPSNR ME Time Speed-up
(dB) (dB) (ms=frame) ratio

FSA 32.20 0.00 1258.95 1.00
PDE 32.20 0.00 149.80 8.40
SDM 31.96 −0.24 346.72 3.63
SMF 31.91 −0.29 634.08 1.99
TDL 31.80 −0.40 34.76 36.22
HME 31.88 −0.32 25.73 48.92

4MPSNR = PSNR of fast algorithm − PSNR of FSA.
5Motion estimation times were obtained using the pro)ler of the Visual C++ 6.0 compiler run

on a PC with a Pentium-III 700-MHz processor, 128 MB of RAM, and a Windows 98 operating
system.

172 Chapter 7. Reduced-Complexity Motion Estimation Techniques

Table 7.4: Comparison between di-erent fast block-matching algorithms when applied to QSIF
TABLE TENNIS at 30 frames=s

Prediction quality Computational complexity

PSNR MPSNR ME time Speed-up
(dB) (dB) (ms=frame) ratio

FSA 32.17 0.00 1049.11 1.00
PDE 32.17 0.00 125.02 8.39
SDM 31.99 −0.18 287.73 3.65
SMF 31.44 −0.73 529.00 1.98
TDL 31.63 −0.54 28.66 36.61
HME 31.85 −0.32 21.62 48.54

should be taken when interpreting the results because the motion estimation
time can vary with implementation and the underlying hardware platform. The
speed-up ratio of each algorithm with reference to the FSA is also shown.6

As expected the FSA provides the best prediction quality, but at the expense
of a high computational complexity.

The PDE algorithm provides an identical prediction quality to FSA, with
a moderate speed-up ratio. Note that the computational complexity of PDE is
highly dependent on the type of sequence and the motion content. For example,
most blocks in the AKIYO sequence are stationary or quasi-stationary. Since
PDE is initialized at (0; 0), this will lead to a very low starting minimum
value BDM(im; jm). This will result in faster rejection of more candidates and,
consequently, will lead to a relatively high speed-up ratio.

The SDM provides the next-best prediction quality. However, its 4:1 sub-
sampling pattern limits its speed-up ratio to about 4. Similarly, the 2:1)eld
subsampling pattern of SMF limits its speed-up ratio to about 2. Note that the
prediction quality of SMF is dependent on the amount of correlation between
the motion vectors of neighboring blocks. This may explain the relatively high
loss of prediction quality for the TABLE TENNIS sequence.

The TDL and HME algorithms provide the highest speed-up ratios, with
moderate losses in prediction quality. In general, however, the HME algo-
rithm outperforms the TDL algorithm in terms of both prediction quality and
computational complexity.

6Speed-up =
ME time for FSA

.
ME time for fast algorithm

173 Section 7.9. Discussion

7.9 Discussion

Processing digital video requires a signi)cant amount of computational power.
This represents one of the main challenges for real-time mobile video com-
munication, where processing power and battery life are scarce resources.

In this chapter, the computational complexity of a typical video codec was
investigated. It was found that this complexity is due mainly to the motion
estimation process. In fact, it was found that the computational complexity of
this process is greater than that of all the remaining encoding steps combined.
It was concluded, therefore, that reducing the complexity of this process is the
best way to reduce the overall complexity of the codec. The chapter reviewed
the main categories of reduced-complexity BMME techniques. The chapter
then presented the results of a study comparing the di-erent categories. It
was found that hierarchical techniques and techniques based on a reduced
set of motion vector candidates, in general, provide the highest reduction in
computational complexity.

Chapter 8

The Simplex Minimization Search

8.1 Overview

As already discussed, one of the main requirements for mobile video com-
munication is reduced complexity. In Chapter 7, it was shown that reducing
the complexity of the motion estimation process is the best way to reduce the
overall complexity of a video codec.
As detailed in Chapter 7 also, there are many techniques for reduced-

complexity BMME. The most widely used approach is to use a reduced set of
motion vector candidates. Algorithms in this category are usually based on a
unimodal error surface assumption. In most cases, however, this assumption
does not hold true, and such algorithms can easily get trapped in local minima,
giving a suboptimal prediction quality. This chapter describes the design of a
novel reduced-complexity BMME technique. Although this technique is based
on using a reduced set of motion vector candidates, it is designed to be more
robust against the local minimum problem.
BMME can be viewed as a two-dimensional constrained minimization

problem. This problem can, therefore, be solved with reduced-complexity using
a wealth of mature optimization techniques. This chapter solves the BMME
optimization problem using the simplex minimization (SM) optimization
method. The resulting solution is called the simplex minimization search
(SMS). The initialization procedure, termination criterion, and constraints on
the independent variables of the search are designed to take into account
the basic properties of the BMME problem. This improves the prediction
quality of the algorithm and, at the same time, increases its speed-
up ratio.
In Chapter 6, it was concluded that one of the main drawbacks of multiple-

reference motion-compensated prediction (MR-MCP) is the huge increase in
computational complexity. To reduce complexity, this chapter extends the SMS
algorithm to the multiple-reference case. Three di+erent novel extensions (or

175

176 Chapter 8. The Simplex Minimization Search

algorithms) are presented. They represent di+erent degrees of compromise
between prediction quality and computational complexity.
The rest of the chapter is organized as follows. Section 8.2 formulates

BMME as a two-dimensional constrained optimization problem. The SM
method and the reasons for choosing it to solve the BMME problem are
described in Section 8.3. The design of the single-reference SMS algorithm is
detailed in Section 8.4, and the results of testing it are presented in Section
8.5. Section 8.6 extends the SMS algorithm to the multiple-reference case. The
chapter concludes with a discussion in Section 8.7.
Preliminary results of this chapter have appeared in Refs. 165, 166, 167,

168, and 169.

8.2 Block Matching: An Optimization Problem

8.2.1 Problem Formulation
As discussed in Chapter 4 (Section 4.6), in BMME the current frame, ft , is
usually partitioned into nonoverlapping blocks of N ×N pels and the same
motion vector is assigned to all pels within a block. The motion vector or
displacement, d = [dx; dy]T , of a block is estimated by searching for the best-
match block in a larger window of (N +2dm) × (N +2dm) pels centered at the
same location in a reference frame, ft−7t , where dm is the maximum allowed
motion displacement. This process can be formulated as follows:

(dx; dy) = arg min BDM(i; j); (8.1)
i; j

where −dm ≤ i; j ≤ + dm and

BDM(i; j)=
N �

=1x

N �

=1y

g[ft (x; y) − ft−7t (x − i; y − j)]: (8.2)

The BDM can be any positive function that measures the distortion between
the block in the current frame and the candidate displaced block in the
reference frame. Commonly used BDMs are the SSD, g[·] = (·)2, and the SAD,
g[·] = | · |.
Equations (8.1) and (8.2) clearly indicate that BMME is a two-dimensional

constrained optimization problem. The two dimensions are the horizontal, i,
and vertical, j, motion displacements, the function to be optimized (minimized
in this case) is the BDM, and the independent variables, (i; j), are constrained
within a limited range, −dm ≤ i; j ≤+dm, and are usually evaluated to a certain
accuracy, e.g., full- or half-pel accuracy.

177 Section 8.3. The Simplex Minimization (SM) Optimization Method

An optimization problem can be thought of as a search process where the
function surface is searched over a given search space to :nd its minimum
(or maximum). This search is performed by examining the function value at
a :nite number of search locations. In BMME, the search space is the search
window in the reference frame. Each candidate block within this window rep-
resents a search location, (i; j). This is the displacement between the block in
the current frame and the candidate block in the reference frame. With full-pel
accuracy, there are (2dm +1)2 possible search locations in the search space. The
corresponding BDM values form the function surface. Since BDM is a distor-
tion measure, this surface is also referred to as the error surface. The set of
motion vectors assigned to the blocks of the frame form a block-motion !eld.

8.2.2 A Possible Solution
As shown in Section 8.2.1, BMME can be formulated as an optimization
problem. This problem can, therefore, be solved, with reduced complexity,
using a wealth of mature optimization methods.
There are few fast BMME algorithms that are based on optimization

methods. For example, the TDL search of Jain and Jain [54] is an extension
of the 1-D binary logarithmic search [170], the OTS and CDS algorithms of
Srinivasan and Rao [146] are based on the conjugate directions (CD) opti-
mization method [171], and the GMS algorithm of Chow and Liu [148] is
based on the genetic algorithm (GA) optimization method [172].
In a similar fashion, this chapter solves the BMME optimization problem

using the simplex minimization (SM) optimization method [173]. The resulting
solution is called the simplex minimization search (SMS).
Figure 8.1 shows the basic building blocks of any constrained optimization

method. It can be seen that when trying to solve an optimization problem,
there are two main design stages. The :rst, and probably the most important,
stage is to choose a suitable optimization method. Section 8.3 describes the
SM optimization method and outlines the reasons for choosing it to solve the
BMME optimization problem. The second stage is to design a suitable initial-
ization procedure, a termination criterion, and constraints on the independent
variables of the search. For the SMS, this stage is detailed in Section 8.4.

8.3	 The Simplex Minimization (SM) Optimization
Method

8.3.1 Basic Algorithm
Simplex minimization (SM) is a multidimensional unconstrained optimization
method that was introduced by Nelder and Mead in 1965 [173]. A simplex is a

178 Chapter 8. The Simplex Minimization Search

Start
Initialization

procedure
Evaluate
function

Termination
Criterion

Constraints
Generate new
set of search

locations

Stop

Not
Satisfied

SatisfiedBasic search algorithm

Figure 8.1: Basic building blocks of constrained optimization methods

geometrical :gure that consists, in N dimensions, of N +1 vertices and all their
interconnecting line segments, polygonal faces, etc. Thus, in two dimensions,
a simplex is a triangle, whereas in three-dimensions it is a tetrahedron. A non-
degenerate simplex is one that encloses a :nite inner N -dimensional volume.
To minimize a function of N independent variables, the SM method must be

initialized with N +1 points (or search locations) de:ning an initial nondegen-
erate simplex. The method then takes a series of steps: re'ecting, expanding,
or contracting the simplex from the point where the function value is largest,
in an attempt to move it to a better point. Thus, the simplex is adapted to
the local landscape of the function surface: expanded along inclined planes,
reCected on encountering a valley at an angle, and contracted in the neigh-
borhood of a minimum. This process continues until a termination criterion is
satis:ed. The SM method is described in more detail in Figure 8.2.

8.3.2 Simplex Minimization for BMME: Why?
The SM optimization method is an attractive choice for solving the BMME
optimization problem for the following reasons:

1. Most fast BMME algorithms	are based on a unimodal error surface
assumption. As already shown (Property 4:6:7:3), this assumption does
not hold true in most cases. For this reason, such algorithms are easily
trapped in local minima, giving a suboptimal prediction quality. The SM
method, however, is not based directly on this assumption.

2. Most fast BMME algorithms and optimization methods work by fol-
lowing the direction of the minimum distortion. The SM method,

179 Section 8.3. The Simplex Minimization (SM) Optimization Method

1.	The method is initialized with N + 1 points, p1; : : : ; pN +1, de:ning an initial nondegenerate
simplex where each point is in N dimensions, pi = (pi; 1; : : : ; pi; N). The function to be
minimized, f, is then evaluated at those initial vertices to produce the function values
f1 = f(p1); : : : ; fN +1 = f(pN +1).

2.	The highest, fh = maxi fi , second highest, fs = maxi �= h fi , and lowest, fl = mini fi , func-
tion values are determined and the corresponding vertices are marked as ph, ps, and pl,
respectively. The centroid, pm, of the simplex with the highest point removed is then
evaluated using

1
pm =

N	

�
pi : (8.3)

i �= h

3.	It would seem reasonable to move away from ph. Thus, the simplex is re'ected from its
highest point about its centroid using

pr = −�ph + (1 + �)pm;	 (8.4)

where pr is the reCected point and � ≥ 0 is the re'ection coe(cient. The function is then
evaluated at this new reCected point, giving fr = f(pr).

4.	IF (fr¡fl), then reCection has produced the lowest function value. Therefore, the direc-
tion from pm to pr seems to be a good one to move along. Thus, the simplex is expanded
in this direction using

pe = �pr + (1 − �)pm;	 (8.5)

where pe is the expanded point and � ≥ 1 is the expansion coe(cient. The function is
then evaluated at this new expanded point, giving fe = f(pe). There are now two possible
cases:

(a)	IF (fe¡fl), then the expansion step was in the right direction. Thus, ph is removed
from the simplex and replaced by pe. The search then proceeds to step 8 to test for
convergence.

(b)	ELSE it seems that the expansion step moved too far in the direction from pm to pr .
Thus, pe is abandoned. Since pr is already known to produce an improvement, ph
is removed from the simplex and replaced by pr . The search then proceeds to step
8 to test for convergence.

5.	ELSE IF (fr¿fl AND fr¡fs), then the reCected point is an improvement over the worst
two points of the simplex. Thus, ph is removed from the simplex and replaced by pr . The
search then proceeds to step 8 to test for convergence.

6.	ELSE IF (fr¿fi , for all i �= h), then there are two possible cases:

(a) IF (fr¿fh), then the search proceeds directly to the contraction step (step 7).

(b)	ELSE ph is :rst removed from the simplex and replaced by pr and then the search
proceeds to the contraction step (step 7).

Figure 8.2: Simplex method for function minimization

180 Chapter 8. The Simplex Minimization Search

7.	It seems that the reCection step moved too far in the direction from ph to pm.
This is recti:ed by contracting the simplex from its highest point toward its centroid
using

pc = �ph + (1 − �)pm;	 (8.6)

where pc is the contracted point and 0 ≤ � ≤ 1 is the contraction coe(cient. The function
is then evaluated at the new contracted point, giving fc = f(pc). There are now two
possible cases:

(a)	IF (fc¡fh), then contraction has produced a better point. Thus, ph is removed
from the simplex and replaced by pc. The search then proceeds to step 8 to test for
convergence.

(b)	ELSE it would appear that all the e+orts to move the highest point to a better location
has failed. All the vertices are, therefore, pulled toward the lowest point using

pi + pl pi = ; for all i	 (8.7)
2

8.	Convergence is tested. IF the convergence criterion is satis:ed, then the search is stopped.
ELSE the search goes back to step 2.

Figure 8.2: Continued.

however, works by moving the point where the function value is largest
in di+erent directions using reCection, expansion, and contraction.
Thus, it explores directions other than that of the minimum distortion.
This makes the method more resilient to the local minimum pro-
blem.

3. As shown in Figure 8.1, a very important process in any optimization
method is the generation of a new set of search locations for the next
iteration. The performance and complexity of any method is highly de-
pendent on this process. The simplest approach is to use a predetermined
uniform distribution of search locations. This approach is adopted by
most fast BMME algorithms (see the Appendix). There are, however,
more complex approaches, like the use of crossover and mutation op-
erators in genetic algorithms or the use of gradients in gradient-descent
algorithms. The SM method is a compromise between the two extremes.
It uses very simple equations for reCection (8:4), expansion (8:5) and
contraction (8:6), as shown in Figure 8.2. As will be shown later, a
suitable choice of the coeDcients, (�; �; �), can further reduce the com-
plexity of such equations.

181 Section 8.4. The Simplex Minimization Search (SMS)

8.4 The Simplex Minimization Search (SMS)

Having decided on the optimization method to be used (the SM optimization
method in this case), the second stage is to design a suitable initialization
procedure, a termination criterion, and constraints on the independent variables
of the search. The performance of an optimization method can be greatly
improved if this design stage exploits a priori knowledge of the problem
at hand. For example, the basic properties of the BMME problem can be
exploited to avoid local minima and initialize the search at a location close
to the global minimum. This improves the prediction quality and at the same
time increases the speed-up ratio.
Although the TDL, OTS, CDS, and GMS algorithms are all based on good

optimization methods, they do not take into account the basic properties of
the BMME problem. As a result, such algorithms can either get trapped in
local minima, resulting in suboptimal prediction quality, or lead to a relatively
small speed-up ratio. In the simplex minimization search (SMS) algorithm,
however, the initialization procedure, termination criterion, and constraints on
the independent variables of the search are designed to exploit the basic prop-
erties of the BMME problem. This is described in more detail in the following
subsections.

8.4.1 Initialization Procedure
Block-matching motion estimation is a two-dimensional problem. As already
mentioned, a simplex, in two-dimensions, is a triangle. Thus, three points need
to be chosen to de:ne the initial nondegenerate simplex. As is shown later,
the performance of the SM method is highly dependent on the choice of these
points. The following initialization procedure is used.
According to Property 4:6:7:1, the vector (0; 0) has the highest probability

of occurrence within the block-motion :eld. One of the initial three points is
therefore set to (0; 0). In addition, Property 4:6:7:2 states that there is a high
correlation between the motion vectors of adjacent blocks. In fact, most video
coding standards take advantage of this property by predictively coding the
motion vectors. To exploit this property, and to match the motion estimation
process to the motion coding process, the other two points of the initial simplex
are set to the motion vectors of the blocks above and to the left of the current
block. If such neighboring vectors are not available, as in border blocks, they
are set to (0; 0).
Note that this procedure does not guarantee to produce a nondegenerate

initial simplex. For example, if two points are identical, then the simplex is
degenerate. In this case, a local search is applied to :nd other candidates.
The BDM is :rst evaluated at the points chosen by the foregoing procedure.

182 Chapter 8. The Simplex Minimization Search

Let pm =(mx; my) be the point that yields the smallest BDM, then the BDM
is also evaluated at its eight nearest neighbors, (mx; my ± a), (mx ± a; my) and
(mx ± a; my ± a), where a is the accuracy of the search, e.g., a = 1 for full-pel
accuracy. At this stage, all points (including those from the initial procedure)
are arranged in ascending order according to their BDMs and the :rst three
are chosen to form the initial simplex. If this is still a degenerate one, then
the appropriate point is dropped and replaced by the next one in the list. This
is repeated until a nondegenerate simplex is formed.
Once a nondegenerate initial simplex is formed, the search proceeds

as shown in Figure 8.2, subject to the constraints outlined in Section 8.4.2,
and is terminated when the criterion described in Section 8.4.3 is
satis:ed.

8.4.2 Constraints on the Independent Variables
The SM method assumes continuous unconstrained independent variables.
However, when applied to the constrained minimization problem of BMME,
two constraints have to be imposed. Firstly, the vertices of the simplex must
always be set to the required accuracy before any BDM evaluation can take
place. For example, if full-pel accuracy is assumed, then any point produced
by reCection, expansion, or contraction must be rounded to the nearest integer
value. Secondly, the vertices of the simplex must always be kept within the
search window. Any point produced by reCection, expansion, or contraction
must be set to the closest point within the range −dm ≤ i; j ≤ + dm before any
BDM evaluation can take place. This constraint is more eDcient than other
possible constraints, like, for example, assigning a large function value to the
vertex outside the search window.

8.4.3 Termination Criterion
There are many possible ways to terminate optimization methods. One of the
most widely used approaches is to terminate the search if the current minimum
function value is below some threshold. In the SM case, another approach is
to terminate the search if the fractional range from the highest, in terms of
function value, to the lowest vertices of the simplex is below some threshold
[174].
According to Property 4:6:7:4, the function value at the global minimum

is unpredictable. Thus, if the preceding termination criteria are used, then
the threshold needs to be adjusted from one sequence to another, from one
frame to another, and even from one block to another. This makes such criteria
unsuitable for BMME. A more suitable criterion is as follows. Let ph =(hx; hy),
ps =(sx; sy), and pl =(lx; ly) be the vertices of the simplex where the BDM is

183 Section 8.5. Simulation Results

highest, second highest, and lowest, respectively. The search is terminated if
the following condition is satis:ed:

(|hx − lx | ≤ a) ∧ (|hy − ly | ≤ a) ∧ (|sx − lx | ≤ a) ∧ (|sy − ly | ≤ a); (8.8)

where a is the search accuracy and ∧ is the logical AND operator. In other
words, the search is terminated if the two highest (in terms of BDM value)
vertices of the simplex become neighbors to the lowest vertex. This criterion
was derived from the way the SM method works. As shown in Figure 8.2,
when the method converges to a minimum, the contraction operation starts
pulling all the vertices toward the minimum vertex. The main advantage of
this criterion is that it does not depend on a threshold.

8.4.4 Motion Vector Re1nement
The main disadvantage of the preceding termination criterion is that it is not
based directly on the function to be minimized, i.e., the BDM. As a result,
the search may sometimes converge to a suboptimal point. Experimental re-
sults show that in most cases this suboptimal point is in the neighborhood
of the global minimum. An extra step is therefore added to the search in
which the motion vector produced by SM is re!ned by searching its eight
nearest neighbors. Note that this does not signi:cantly increase the com-
plexity of the search, because most of those neighbors have already been
searched.

8.5 Simulation Results

8.5.1 Results Within an Isolated Test Environment
In this set of simulations, motion is estimated and compensated using original
reference frames. In e+ect, this is equivalent to lossless DFD coding. This is
particularly important for a fair comparison between di+erent algorithms on a
frame-by-frame basis, since poor prediction of one frame does not propagate
to, and a+ect the prediction of, the next frame. Hereafter, the term isolated
test environment will be used to refer to this test condition.
All results in this subsection were generated using blocks of 16 × 16 pels,

a maximum allowed displacement of ±15 pels, SAD as the distortion mea-
sure, restricted motion vectors, and full-pel accuracy. Motion vectors were
coded predictively using the prediction method and the VLC table of the
H.263 standard. All quoted results refer to the luma components of
sequences.

184 Chapter 8. The Simplex Minimization Search

8.5.1.1 Choice of Coe3cients

Before evaluating the performance of the SMS algorithm, suitable values for
the reCection, �, contraction, �, and expansion, �, coeDcients need to be cho-
sen. Figures 8.3, 8.4, and 8.5 show the performance of the SMS algorithm
with di+erent values of �; �, and �, respectively. The :gures indicate that
the performance of the SMS algorithm is not very sensitive to the choice of
these coeDcients. This may be due to the good performance of the initial-
ization procedure and termination criterion. In general, however, the values

1� =1, � = 2 , and � = 2 provide the best compromise between computational
complexity and prediction quality. In addition, this particular set of coeDcients
reduces the complexity of the SM transformation equations, Equations (8:4),

QSIF Foreman @ 25 f.p.s., Expansion=2.0, Contraction=0.5 QSIF Foreman @ 25 f.p.s., Expansion=2.0, Contraction=0.5

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

S
ea

rc
he

d
lo

ca
tio

ns
/fr

am
e

31.85

31.9

31.95

32

32.05

32.1

P
S

N
R

Y
 (

dB
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Reflection coefficient, α Reflection coefficient, α

(a) Prediction quality (b) Computational complexity

Figure 8.3: Performance of SMS with di+erent values of the reCection coeDcient �

QSIF Foreman @ 25 f.p.s., Reflection=1.0, Expansion=2.0 QSIF Foreman @ 25 f.p.s., Reflection=1.0, Expansion=2.0

31.99

1050

31.98
1040

31.97 1030
0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Contraction coefficient, β Contraction coefficient, β

(a) Prediction quality (b) Computational complexity

S
ea

rc
he

d
lo

ca
tio

ns
/fr

am
e

32.04 1120

1110
32.03

1100

32.02
1090

P
S

N
R

 (
dB

)
Y

32.01

32

1080

1070

1060

Figure 8.4: Performance of SMS with di+erent values of the contraction coeDcient �

1

185 Section 8.5. Simulation Results

32.02

32.025

32.03

32.035

32.04

32.045

P
S

N
R

Y
 (

dB
)

QSIF Foreman @ 25 f.p.s., Reflection=1.0, Contraction=0.5

1067

1068

1069

1070

1071

1072

1073

1074

S
ea

rc
he

d
lo

ca
tio

ns
/fr

am
e

QSIF Foreman @ 25 f.p.s., Reflection=1.0, Contraction=0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Expansion coefficient, γ Expansion coefficient, γ

(a) Prediction quality (b) Computational complexity

Figure 8.5: Performance of SMS with di+erent values of the expansion coeDcient �

(8:5), and (8:6) in Figure 8.2, because multiplications and divisions in this
case can be performed using shift operations.

8.5.1.2 Initialization, Termination, and Re1nement Tests

In order to justify di+erent parts of the SMS algorithm, the following tests
were performed.

1. Initialization Test: Two initialization procedures were tested:

(a)	Random Initialization: Two of the vertices of the initial simplex
are generated randomly within the search window, whereas the third
vertex is always set to (0; 0).

(b)	Proposed Initialization: This is the initialization procedure
described in Section 8.4.1.

2. Termination Test: Two termination criteria were tested.

(a)	Threshold Termination: The search is terminated when the current
minimum BDM value is below a threshold. The threshold was set to
768, which corresponds to an average SAD=pel of 3 (16 × 16 × 3).
As already discussed, a :xed threshold is not suitable for the
BMME problem. Such a threshold does not guarantee convergence
because the global minimum BDM value may in some cases be
above the threshold. The threshold condition must therefore be sup-
ported by another condition to guarantee termination. In this test,
the search is also terminated if the number of iterations exceeds 10.

(b)	Proposed Termination: This is the termination criterion described
in Section 8.4.3.

186 Chapter 8. The Simplex Minimization Search

Table 8.1: Initialization, termination, and re:nement tests

AKIYO FOREMAN TABLE TENNIS

PSNR (dB) Locations PSNR (dB) Locations PSNR (dB) Locations

Initialization test:
Random 45.93 1,634 31.32 1,890 31.28 1,647
Proposed 45.93 684 32.04 1,073 31.71 831
Termination test:
Threshold 45.93 904 32.06 1,396 31.73 1,082
Proposed 45.93 684 32.04 1,073 31.71 831
Re1nement test:
No re:nement 45.93 683 31.97 999 31.53 794
Proposed 45.93 684 32.04 1,073 31.71 831

3. Re1nement Test: Two cases were tested.

(a)	Proposed Re!nement: The motion vector produced by SM is
re:ned by searching its eight nearest neighbors, as described in
Section 8.4.4.

(b) No Re!nement: No re:nement is performed.

Table 8.1 summarizes the results of the preceding tests. The results are
averaged over each sequence with a frame skip of 1. Prediction quality is
given in terms of average luma PSNR (dB), and computational complexity
is given in terms of average searched locations per frame. The results clearly
justify the use of the proposed initialization procedure, termination criterion,
and re:nement step.

8.5.1.3 Performance Evaluation

In addition to the SMS algorithm, :ve BMME algorithms were simulated:
the full-search (FS) algorithm, the two-dimensional logarithmic search (TDL)
[54], the cross-search algorithm (CSA) [147], the one-at-a-time search (OTS)
[146], and the N -steps search (NSS), which is the general form1 of the three-
steps search (TSS) [145]. In this case the number of steps in the NSS search
is set to N = 4 to give a maximum displacement of ± 15 pels. A detailed
description of these fast BMME algorithms is given in the Appendix.

1The three-steps search starts with ± 4 pels in the :rst step, then ± 2 pels in the second step,
and ± 1 pel in the third step. This gives a maximum allowed displacement of ± 4 ± 2 ± 1= ± 7
pels. For larger search windows the number of steps must be increased. This is called the N -steps
search. For example, when N = 4, the search has 4 steps and the :rst step starts with ± 8 pels,
giving a maximum allowed displacement of ± 15 pels.

187 Section 8.5. Simulation Results

Table 8.2: Comparison between di+erent block-matching algorithms in terms of prediction quality

AKIYO FOREMAN TABLE TENNIS

PSNR 7PSNR % Global PSNR 7PSNR % Global PSNR 7PSNR % Global

45.93 0.00 100.00 32.20 0.00 100.00 32.17 0.00 100.00
45.93 0.00 100.00 32.04 −0:16 94.31 31.71 −0:46 95.80
45.93 0.00 100.00 31.74 −0:46 87.25 31.50 −0:67 92.74
45.93 0.00 100.00 31.81 −0:39 88.92 31.63 −0:54 93.39
45.91 −0:02 99.86 30.95 −1:25 60.11 30.93 −1:24 81.23
45.93 0.00 100.00 31.23 −0:97 76.35 31.23 −0:94 91.60

FS
SMS
NSS
TDL
CSA
OTS

Table 8.3: Comparison between di+erent blockmatching algorithms in terms of computational
complexity

AKIYO FOREMAN TABLE TENNIS

Locations Speed-up Locations Speed-up Locations Speed-up

FS
SMS
NSS
TDL
CSA
OTS

65,621
684
2,464
1,310
115
402

–
96
27
50
571
163

77,439
1,073
2,823
1,638
920
604

–
72
27
47
84
128

65,621
831
2,473
1,362
461
448

–
79
27
48
142
146

Tables 8.2, 8.3, and 8.4 compare the performance of the simulated BMME
algorithms. All results are averages over sequences with a frame skip of 1.
Table 8.2 compares the prediction quality in terms of average luma PSNR in
decibels. The di+erence in PSNR between each algorithm and the FS algorithm
is also shown.2 The table also shows the average percentage of :nding the
global minimum. Table 8.3, on the other hand, compares the computational
complexity in terms of average searched locations per frame. It also shows the
speed-up ratio3 of each algorithm with reference to the FS algorithm. Table
8.4 shows the motion overhead generated by each algorithm and the di+erence
between this overhead and that produced by the FS algorithm.4
As expected, the FS algorithm provides the best prediction quality, but

at the expense of a very high computational complexity. The fast BMME
algorithms in this simulation can be split into three di+erence performance
classes. In the :rst class, the CSA and the OTS algorithms provide the highest

27PSNR = PSNR of fast algorithm − PSNR of FS algorithm.

3Speed-up =

Searched locations for FS algorithm

.

Searched locations for fast algorithm

47Bits = Motion bits of fast algorithm − Motion bits of FS algorithm.

188 Chapter 8. The Simplex Minimization Search

Table 8.4: Comparison between di+erent block-matching algorithms in terms of motion overhead

AKIYO FOREMAN TABLE TENNIS

Motion bits 7Bits Motion bits 7Bits Motion bits 7Bits

FS 177 0 388 0 279 0
SMS 177 0 358 −30 247 −32
NSS 177 0 457 +69 290 +11
TDL 177 0 394 +6 269 −10
CSA 177 0 461 +73 281 +2
OTS 177 0 388 0 246 −33

speed-up ratios, but their prediction quality deteriorates for sequences with
medium to high movement content. In the second class, the NSS and the
TDL algorithms provide better prediction quality than CSA and OTS, but
at the expense of a higher computational complexity. In the third class, the
SMS algorithm provides the best compromise between prediction quality and
computational complexity. Its prediction quality is the closest to that of FS
and yet its computational complexity is between those of the other two classes.
Note that the SMS algorithm achieves the highest percentage of :nding the
global minimum. This clearly indicates that the SMS algorithm is the most
resilient to the local minimum problem. Note also that the SMS algorithm
adapts better to the movement content of sequences. Thus, for low-movement
sequences it uses fewer locations and for high-movement sequences it uses
more locations. In addition, because the motion estimation process is matched
to the motion coding process (through the initialization procedure), the SMS
algorithm has the lowest motion overhead.
One of the disadvantages of fast BMME algorithms is that their prediction

quality deteriorates for higher amounts of motion and larger search windows
(as, for example, in HDTV applications). This is clear from Table 8.2 when
moving from AKIYO to FOREMAN and TABLE TENNIS. To investigate this e+ect
further, the FOREMAN sequence was temporally subsampled to 25; 12:5; 8:33,
and 6:25 frames= s (this corresponds to frame skips of 1, 2, 3, and 4, respec-
tively). The corresponding maximum allowed displacements, dm , were set to
± 7; ± 15; ± 31, and ± 63 pels, respectively. Figure 8.6 shows the results of
this simulation. It is immediately evident that the SMS algorithm is the most
robust fast algorithm to the above e+ect, and yet it has the second-lowest
computational complexity.

8.5.2 Results Within an H.263-like Codec
The SMS algorithm along with the other :ve BMME algorithms have also
been tested within a hybrid H.263-like codec. As in previous simulations,

189 Section 8.5. Simulation Results

25

26

27

28

29

30

31

32

33

P
S

N
R

Y
 (

dB
)

FS
SMS
TDL
NSS
OTS
CSA

24
7 15 31 63

Maximum displacement, d
m

(a) Prediction quality

1000

1500

2000

2500

3000

3500

4000

4500

S
ea

rc
he

d
lo

ca
tio

ns
/fr

am
e

SMS
TDL
NSS
OTS
CSA

500
7 15 31 63

Maximum displacement, d
m

(b) Computational complexity

Figure 8.6: Comparison between di+erent block-matching algorithms when applied to QSIF
FOREMAN with maximum displacements of 7; 15; 31, and 63 and corresponding frame rates of
25; 12:5; 8:33, and 6:25 frames=s, respectively

190 Chapter 8. The Simplex Minimization Search

motion was estimated using macroblocks of 16 × 16 pels, a maximum allowed
displacement of ± 15 pels, SAD as the distortion measure, restricted motion
vectors, and full-pel accuracy. In this case, however, motion vectors were
predictively encoded using the median prediction method and the VLC table
of the H.263 standard. In addition, motion was estimated and compensated
using reconstructed reference frames rather than original frames. Both, the
frame signal (in case of INTRA) and the DFD signal (in case of INTER)
were transform encoded according to the H.263 standard. To generate a range
of bit rates, the quantization parameter QP was varied over the range 5–30
in steps of 5. This means that each algorithm was used to encode a given
sequence six times. Each time, QP was held constant over the whole sequence
(i.e., no rate control was used). The :rst frame was always INTRA encoded,
and all other frames were INTER encoded. No INTRA=INTER switching was
allowed at the macroblock level. The INTRA bits were included in the bit-rate
calculations, and no header bits were generated. All quoted results refer to the
luma components of sequences.
Figures 8.7 and 8.8 show examples of the rate-distortion (R-D) perfor-

mance of the SMS algorithm and compare it to that of the other :ve BMME
algorithms. Figure 8.7 shows the results for the FOREMAN sequence with frame
rates of 25 frames=s and 8:33 frames=s, whereas Figure 8.8 shows the results
for the AKIYO and TABLE TENNIS sequences with frame rates of 10 frames=s and
15 frames=s, respectively. Both :gures con:rm the superior R-D performance
of the SMS algorithm compared to other fast BMME algorithms.
The superior performance of the SMS algorithm is also shown on a frame-

by-frame basis in Figure 8.9. This :gure shows the performance for the
FOREMAN sequence at 8:33 frames=s with a quantization parameter of QP = 10.
For clarity, the :gure shows only the performance of the FS, SMS, NSS, and
OTS algorithms. As can be seen, the SMS algorithm provides the closest pre-
diction quality (Figure 8.9(a)) to the FS algorithm. This results in the use of
fewer bits for the DFD signal (Figure 8.9(c)). In addition, the initialization pro-
cedure results in less motion overhead (Figure 8.9(d)). The reduced number of
DFD bits and motion bits results in a reduced overall bit rate (Figure 8.9(e)).
This is all achieved at a reduced computational complexity (Figure 8.9(b)).

8.5.3 Results Within an MPEG-4 Codec
In a collaborative work, the SMS algorithm has also been tested within an MPEG-
4 codec. The results in this subsection are reproduced, as is, from Ref. 175.5

5The authors would like to thank Mr. Oliver Sohm for incorporating SMS within MPEG-4 and
providing the results.

191 Section 8.5. Simulation Results

QSIF Foreman @ 25 f.p.s., QP = 5, 10, 15, 20, 25, 30
36

34

32

30

Y
 (

dB
)

FS
SMS
TDL
NSS
OTS
CSA

P
S

N
R

28

26

24

22
0 50 100 150 200 250 300 350 400

Bit Rate (kbits/s)

(a) FOREMAN at 25 frames/s (skip =1)

QSIF Foreman @ 8.3333 f.p.s., QP = 5, 10, 15, 20, 25, 30

36

34

32

30

Y
 (

dB
)

FS
SMS
TDL
NSS
OTS
CSA

P
S

N
R

28

26

24

22
0 20 40 60 80 100 120 140 160 180 200

Bit Rate (kbits/s)

(b) FOREMAN at 8.3 frames/s (skip = 3)

Figure 8.7: R-D performance of di+erent block-matching algorithms when applied to QSIF
FOREMAN

192 Chapter 8. The Simplex Minimization Search

QSIF Akiyo @ 10 f.p.s., QP = 5, 10, 15, 20, 25, 30
40

30

32

34

36

38

P
S

N
R

Y
 (

dB
)

FS
SMS
TDL
NSS
OTS
CSA

28
0 5 10 15 20 25 30

Bit Rate (kbits/s)

(a) AKIYO at 10 frames/s (skip = 3)

QSIF Table Tennis @ 15 f.p.s., QP = 5, 10, 15, 20, 25, 30
36

26

28

30

32

34

P
S

N
R

Y
 (

dB
)

FS
SMS
TDL
NSS
OTS
CSA

24
0 20 40 60 80 100 120 140 160 180

Bit Rate (kbits/s)

(b) TABLE TENNIS at 15 frames/s (skip = 2)

Figure 8.8: R-D performance of di+erent block-matching algorithms when applied to QSIF AKIYO

and QSIF TABLE TENNIS

Section 8.5. Simulation Results 193

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Frame

D
F

D
 b

its

QSIF Foreman @ 8.3333 f.p.s., QP = 10

FS
SMS
NSS
OTS

0 10 20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

10
5

Frame

S
ea

rc
he

d
lo

ca
tio

ns

QSIF Foreman @ 8.3333 f.p.s., QP = 10

FS
SMS
NSS
OTS

0 10 20 30 40 50 60 70 80 90 100
200

400

600

800

1000

1200

1400

1600

1800

Frame

M
ot

io
n

bi
ts

QSIF Foreman @ 8.3333 f.p.s., QP = 10

FS
SMS
NSS
OTS

0 10 20 30 40 50 60 70 80 90 100
28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

Frame

P
S

N
R

Y
 (

dB
)

QSIF Foreman @ 8.3333 f.p.s., QP = 10

FS
SMS
NSS
OTS

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Frame

T
ot

al
 b

its

QSIF Foreman @ 8.3333 f.p.s., QP = 10

FS
SMS
NSS
OTS

(a) Prediction quality

(c) DFD bits (d) Motion bits

(e) Total bits

(b) Computational complexity

Figure 8.9: Comparison between di+erent block-matching algorithms when applied to QSIF
FOREMAN at 8:33 frames=s and QP= 10

194 Chapter 8. The Simplex Minimization Search

They are provided here to show the performance of the SMS algorithm within
an object-based video codec.
Before proceeding to present the results, a description of object-based

motion estimation in the MPEG-4 veri:cation model [176] is in order. To
account for arbitrarily shaped objects, the standard block-matching algorithm
is extended to polygon matching. Macroblock-based repetitive padding is used
for the reference visual object plane (VOP). In other words, macroblocks that
lie on the VOP boundary are padded so that pels from inside the VOP are
extrapolated to the outside. For each 16 × 16 macroblock in the current VOP,
full-pel full search is used to :nd the motion vector that minimizes the SAD.
The SAD of the motion vector (0; 0) is reduced by a preset threshold to favor
this vector. A reduced search of ± 2 pels centered around the 16 × 16 motion
vector is used to :nd one motion vector for each of the four 8 × 8 blocks
within the MB. A decision is then made whether to use one motion vector or
four motion vectors per MB. A decision is also made whether to encode the
MB in INTRA or INTER mode. If INTER mode is chosen, the 16 × 16 (or
the four 8 × 8) vector(s) is=are re:ned to half-pel accuracy using a reduced
± 1=2-pel search centered around the full-pel vector. Motion vectors are re-
stricted within the bounding box of the VOP unless the unrestricted mode is
chosen. In this mode, the reference VOP is extended by repetitive padding in
all directions by the number of pels which equals the search range. Overlapped
motion compensation is similar to that of H.263.
In this set of simulations, four algorithms were tested: FS, SMS, NSS,

and diamond search (DS) [149, 150, 151] (which is adopted in the MPEG-
4 veri:cation model [176]). To ensure that the global minimum is found,
the threshold that favors the (0; 0) vector in the FS algorithm was set to
zero. The four algorithms were used only for the full-pel search. All other
operations (e.g., 8 × 8 ME, half-pel re:nement) remained the same. Original
reference VOPs were used instead of reconstructed VOPs. The unrestricted
motion vector mode was switched on. Table 8.5 gives more details about the
test conditions and the test sequences.
Table 8.6 shows the prediction quality in terms of mean absolute error per

pel (MAE=pel),6 whereas Table 8.7 shows the computational complexity in
terms of average searched locations per macroblock (locations=MB). Again,
the superior performance of the SMS algorithm is evident. Compared to NSS
and DS, the SMS algorithm provides the closest MAE=pel to that of FS, and
yet it has the least number of searched locations=MB.

6The MAE=pel measure was calculated as follows. The minimum SADs over the whole VOP
were summed and then divided by the number of opaque pels in the VOP. The minimum SADs
in this case are those produced by the full-pel search.

195 Section 8.5. Simulation Results

Table 8.5: Test sequences and conditions for the MPEG-4 results. Reproduced from Ref. 175

Sequence Format Class Objects Distance Displacement

Bream	 CIF, 352 × 288, E VO0: Background 2 (15 f.p.s.) −16 : : : 15
30 Hz; 300 frames VO1: Fish

Coast Guard	 QCIF, 176 × 144, B VO0: Water 3 (10 f.p.s.) −16 : : : 15
30 Hz; 270 frames	 VO1: Small boat

VO2: Big boat
VO3: River bank

Container ship SIF, 352 × 240, A VO0: Water 4 (7.5 f.p.s.) −16 : : : 15
30 Hz; 161 frames	 VO1: Ship

VO2: Small boat
VO3: Land (fg)
VO4: Sky+Land (bg)
VO5: Flag

News	 QCIF, 176 × 144, B VO0: Background 3 (10 f.p.s.) −16 : : : 15
30 Hz; 300 frames	 VO1: Dancers

VO2: News readers
VO3: Text

Stefan	 CIF, 352 × 288, C VO0: Stefan 1 (30 f.p.s.) −16 : : : 15
30 Hz; 300 frames

Table 8.6: Prediction quality within MPEG-4 in terms of MAE=pel. Reproduced from Ref. 175

Sequence Object FS SMS DS NSS

Bream VO1: Fish 6.277 6.533 8.416 9.709

Coast Guard VO0: Water 3.797 3.847 3.993 4.014
VO1: Small boat 5.197 5.374 5.692 5.543
VO2: Big boat 4.696 4.898 5.096 5.071
VO3: River bank 4.591 4.636 4.885 6.523

Container ship VO0: Water 2.287 2.288 2.357 2.358
VO1: Ship 2.069 2.069 2.082 2.113
VO2: Small boat 2.154 2.159 2.166 2.181
VO3: Land (fg) 0.831 0.831 0.831 0.831
VO4: Sky+Land (bg) 0.792 0.801 0.839 0.843
VO5: Flag 15.828 16.066 16.105 16.131

News VO0: Background 0.060 0.061 0.061 0.061
VO1: Dancers 5.568 5.773 5.860 5.852
VO2: News readers 1.153 1.154 1.159 1.158
VO3: Text 0.092 0.092 0.092 0.092

Stefan VO0: Stefan 8.200 8.662 9.346 9.430

Average 3.975 4.078 4.311 4.494
Relative to FS 100.0% 102.6% 108.5% 113.1%

196 Chapter 8. The Simplex Minimization Search

Table 8.7: Computational complexity within MPEG-4 in terms of searched locations=MB. Repro-
duced from Ref. 175

Sequence Object FS SMS DS NSS

Bream VO1: Fish 1,017.2 16.7 21.4 33.0

Coast Guard VO0: Water 1,021.8 16.4 18.0 33.0
VO1: Small boat 1,004.7 16.8 17.5 32.9
VO2: Big boat 1,010.0 17.7 19.1 33.0
VO3: River bank 1,020.5 13.1 19.2 32.9

Container ship VO0: Water 1,023.4 12.7 13.1 33.0
VO1: Ship 1,023.7 11.4 13.5 33.0
VO2: Small boat 1,014.2 14.7 15.9 32.9
VO3: Land (fg) 1,024.0 9.4 13.0 33.0
VO4: Sky+Land (bg) 1,024.0 13.9 13.1 33.0
VO5: Flag 1,012.3 19.1 15.6 33.0

News VO0: Background 1,024.0 9.3 13.0 33.0
VO1: Dancers 1,024.0 15.4 16.3 33.0
VO2: News readers 1,022.9 9.8 13.1 33.0
VO3: Text 1,024.0 9.0 13.0 33.1

Stefan VO0: Stefan 1,002.4 21.8 22.2 32.9

Minimum 1,002.4 9.0 13.0 32.9
Maximum 1,024.0 21.8 22.2 33.1
Average 1,018.3 14.2 16.1 33.0

8.6	 Simplex Minimization for Multiple-Reference
Motion Estimation

As already discussed, MR-MCP achieves signi:cant prediction gains, but at
the expense of a signi:cant increase in computational complexity. This is
illustrated in Figure 8.10 for the FOREMAN sequence at 8:33frames=s. This :gure
was generated using the same simulation conditions described in Section 6.3.2.
Figure 8.10(a) shows the prediction quality (in terms of PSNRY in decibels)
as a function of multiframe memory size (in frames), whereas Figure 8.10(b)
shows the computational complexity (in terms of searched locations=frame).
It is clear that increasing the memory size M increases the prediction qual-
ity. This is, however, at the expense of a linear increase in computational
complexity. The aim of this section is to design fast long-term memory block-
matching algorithms that can reduce computational complexity but at the same
time maintain the prediction gain of multiple-reference motion estimation.

197 Section 8.6. Simplex Minimization for Multiple-Reference Motion Estimation

104

105

106

107

S
ea

rc
he

d
lo

ca
tio

ns
/fr

am
e

QSIF Foreman @ 8.33 f.p.s.

M=1

M=2

M=5

M=10

M=50

27.5

28

28.5

29

29.5

30

30.5

P
S

N
R

Y
 (

dB
)

QSIF Foreman @ 8.33 f.p.s.

M=1

M=2

M=5

M=10

M=50

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Memory size (frames) Memory size (frames)

(a) Prediction quality (b) Computational complexity

Figure 8.10: Performance of LTM-MCP as a function of memory size for QSIF FOREMAN at
8:33 frames=s

8.6.1 Multiple-Reference SMS Algorithms
This section extends the SMS algorithm to the multiple-reference case. As
detailed in Section 8.4, the design of the SMS algorithm was based on some
important properties of the block-motion :elds of typical video sequences. In
particular, the design was based on Properties 4:6:7:1 and 4:6:7:2 of the single-
reference block-motion :eld. The two properties are the center-biased distri-
bution of the :eld and the high correlation between adjacent motion vectors,
respectively. The results of the investigation in Section 6.3.1 indicate that the
two properties still hold true in the multiple-reference case (Properties 6:3:1:1
and 6:3:1:3). Thus, the eDcient performance of the SMS algorithm can be
extended to the multiple-reference case without the need for a major redesign.
Three di+erent extensions (or algorithms) are described in what follows.

MR-SMS This is a direct extension of SMS. For each block in the current
frame, the single-reference SMS algorithm is used to individually search
each frame in the multiframe memory and produce a best-match block
from that frame. The overall best-match is then chosen from this set of
M blocks.

MR-FS=SMS This is the same as MR-SMS, but the most recent reference
frame in memory (i.e., the frame for which dt = 0) is searched using full
search instead of SMS. Giving more importance to searching this frame is
motivated by Property 6:3:1:2, which states that the most recent reference
frame has the highest probability of selection.

MR-3DSM The single-reference SMS algorithm is based on a two-dimen-
sional version of the simplex minimization (SM) optimization method

198 Chapter 8. The Simplex Minimization Search

(Section 8.3). Algorithm MR-3DSM, however, is based on a three-dimen-
sional version (N = 3 in Figure 8.2). A 3-D version of SM must be
initialized with four locations de:ning an initial simplex in the search
space. For the MR-3DSM algorithm, this is achieved as follows. For
each block in the current frame, the initialization procedure described in
Section 8.4.1 is applied individually to each frame in the multiframe mem-
ory. This will generate three initial vertices from each frame. The best
four vertices, in terms of BDM value, are selected from this set of 3M
vertices. A procedure similar to that described in Section 8.4.1 is used to
ensure that the four vertices form a nondegenerate simplex. This simplex
is used to initialize the 3-D version of SM, where the third dimension
here is the temporal displacement. The same criterion described in Sec-
tion 8.4.3 is used to terminate the algorithm, with the added condition
that the four vertices of the !nal simplex must have the same temporal
displacement.

8.6.2 Simulation Results
The multiple-reference SMS algorithms were tested using the luma compo-
nents of the three QSIF sequences AKIYO, FOREMAN, and TABLE TENNIS with
full-pel accuracy, blocks of 16 × 16 pels, a maximum allowed displacement of
± 15 pels, SAD as the distortion measure, restricted motion vectors, and orig-
inal reference frames. In addition to the multiple-reference SMS algorithms,
the single-reference full-search (SR-FS) and the multiple-reference full-search
(MR-FS) algorithms were also simulated. For the multiple-reference algo-
rithms, sliding-window control was used to maintain a long-term memory of
size M = 50 frames.
Tables 8.8 and 8.9 compare the performance of the simulated algorithms.

All results are averages over sequences with a frame skip of 1. Table 8.8 com-
pares the prediction quality in terms of average luma PSNR in decibels. The
di+erence7 in PSNR between each algorithm and the MR-FS algorithm is also
shown. Table 8.9, on the other hand, compares the computational complexity
in terms of average searched locations per frame. It also shows the speed-up
ratio8 of each algorithm with reference to the MR-FS algorithm.
It is immediately evident that the multiple-reference SMS algorithms pro-

vide signi:cant reductions in computational complexity compared to the MR-
FS algorithm. The SMS algorithms represent di+erent degrees of compromise
between prediction quality and computational complexity. At one extreme is

77PSNR = PSNR of fast algorithm − PSNR of MR-FS algorithm.

8Speed-up =

Searched locations for MR-FS algorithm

.

Searched locations for fast algorithm

199 Section 8.6. Simplex Minimization for Multiple-Reference Motion Estimation

Table 8.8: Comparison between di+erent block-matching algorithms in terms of prediction quality
(average PSNRY in dB) with a multiframe memory of M = 50 frames and a frame skip of 1

AKIYO FOREMAN TABLE TENNIS

PSNR 7PSNR PSNR 7PSNR PSNR 7PSNR

SR-FS 45.93 −0:62 32.20 −1:77 32.17 −0:70
MR-FS 46.55 0.00 33.97 0.00 32.87 0.00
MR-FS=SMS 46.55 0.00 33.92 −0:05 32.80 −0:07
MR-SMS 46.55 0.00 33.87 −0:10 32.67 −0:20
MR-3DSM 46.55 0.00 33.51 −0:46 32.46 −0:41

Table 8.9: Comparison between di+erent block-matching algorithms in terms of computational
complexity (average searched locations=frame) with a multiframe memory of size M = 50 frames
and a frame skip of 1

AKIYO FOREMAN TABLE TENNIS

Locations Speed-up Locations Speed-up Locations Speed-up

SR-FS 65,621 45.90 77,439 45.90 65,621 45.90
MR-FS 3,012,200 1.00 3,554,700 1.00 3,012,200 1.00
MR-FS=SMS 103,820 29.01 183,240 19.40 134,270 22.43
MR-SMS 38,880 77.47 106,830 33.27 69,443 43.38
MR-3DSM 35,867 83.98 66,357 53.57 45,518 66.18

the MR-3DSM algorithm. Compared to MR-FS, the MR-3DSM algorithm pro-
vides signi:cant reductions in computational complexity (a speed-up ratio of
about 54 –84) at the expense of a moderate reduction in prediction quality
(about 0.41– 0:46 dB loss9). At the other extreme is the MR-FS=SMS algo-
rithm. It uses full search on the most recent reference frame in memory to
provide a prediction quality that is almost identical to that of MR-FS (about
0.05– 0:07 dB loss) and still achieves moderate reductions in computational
complexity (a speed-up ratio of about 22–29). Between the two extremes is
the MR-SMS algorithm. Compared to MR-FS, it achieves reasonable reduc-
tions in computational complexity (a speed-up ratio of about 33–77) with only
a slight loss in prediction quality (about 0.1– 0:2 dB loss). These observations
are further emphasized using Figure 8.11, which compares the performance of
the di+erent algorithms when applied to FOREMAN at di+erent frame skips.
A very interesting point to note (from Tables 8.8 and 8.9 and also

from Figure 8.11) is that the computational complexity of the multiple-
reference SMS algorithms is comparable to (and in some cases less than) that

9This excludes the result for AKIYO where 7PSNR = 0.

200 Chapter 8. The Simplex Minimization Search

QSIF Foreman

34

S
ea

rc
he

d
lo

ca
tio

ns
/fr

am
e

P
S

N
R

Y
 (

dB
)

33

32

31

30

29

28

27

26

MR-FS

MR-SMS
MR-3DSM
SR-FS

MR-FS/SM S

1 2 3 4

Frame skip

(a) Prediction quality

QSIF Foreman
7

10

6

10

5

10

4

10

MR-FS
MR-FS/SMS
MR-SMS
MR-3DSM
SR-FS

1 2 3 4

Frame skip

(b) Computational complexity

Figure 8.11: Comparison between di+erent block-matching algorithms when applied to QSIF
FOREMAN with a multiframe memory of M = 50 frames

201 Section 8.6. Simplex Minimization for Multiple-Reference Motion Estimation

(a) Original frame (b) Compensated using SR-FS (28.24 dB and
77,439 locations)

(c) Compensated using MR-FS with M =50 (d) Compensated using MR-3DSM with M =50
(31.31 dB and 3,871,950 locations) (31.04 dB and 72,532 locations)

Figure 8.12: Subjective quality of the motion-compensated 158th frame of QSIF FOREMAN at
25 frames=s

of single-reference full-search SR-FS, and yet they still maintain the improved
prediction gain of multiple-reference motion estimation. This is also illustrated
in Figure 8.12, which shows the subjective quality of the motion-compensated
158th frame of FOREMAN. The uncovered background at the bottom-right corner
of the frame is poorly compensated using the single-reference algorithm SR-
FS (Figure 8.12(b)). This uncovered background is compensated with higher
quality using the multiple-reference algorithms (Figures 8.12(c) and 8.12(d)).
While the MR-FS algorithm achieves this improved prediction quality at the
expense of about 50 times increase in computational complexity, the MR-
3DSM algorithm provides a similar improvement at no increase in computa-
tional complexity.

202 Chapter 8. The Simplex Minimization Search

8.7 Discussion

There are many techniques for reduced-complexity BMME. The most widely
used approach employs a reduced set of motion vector candidates. Algorithms
in this category are usually based on a unimodal error surface assumption. In
most cases, however, this assumption does not hold true, and such algorithms
can easily get trapped in local minima, giving a suboptimal prediction quality.
The main aim of this chapter was to develop a reduced-complexity BMME
that adopts the same approach of reducing the set of motion vector candidates
but, at the same time, avoids the local minimum problem.
Thus, the chapter formulated block-matching motion estimation as a two-

dimensional constrained minimization problem. It was then proposed to solve
this problem, with reduced complexity, using an optimization method called the
simplex minimization (SM) optimization method. The resulting solution was
called the simplex minimization search (SMS). The initialization procedure,
termination criterion, and constraints on the independent variables of the search
were designed to take into account the basic properties of the BMME problem.
Simulation results within an isolated test environment showed that the SMS

algorithm outperforms other reduced-complexity BMME algorithms, providing
better prediction quality, smoother motion :eld, and higher speed-up ratio. In
particular, the SMS algorithm is very resilient to the local minimum problem.
This superior performance was also con:rmed within an H.263-like codec and
an object-based MPEG-4 codec.
It was also noted that the superior performance of the LTM-MCP (discussed

in Chapter 6) is achieved at the expense of a signi:cant increase in computa-
tional complexity. To reduce complexity, the chapter extended the SMS algo-
rithm to the multiple-reference case. Three di+erent extensions (or algorithms)
were presented, each representing a di+erent degree of compromise between
prediction quality and computational complexity. Simulation results showed
that the multiple-reference SMS algorithms provide signi:cant reductions in
computational complexity compared to the multiple-reference full-search. With
a multiframe memory of size M = 50, the computational complexity of the
SMS algorithms is comparable to (and in some cases less than) that of single-
reference full-search, and yet they still maintain the improved prediction gain
of multiple-reference motion estimation.

Part IV

Error Resilience

When transmitted over a mobile channel, compressed video can su�er severe
degradation. Thus, error resilience is one of the main requirements for mobile
video communication.

This part contains two chapters. Chapter 9 reviews error-resilience video
coding techniques. The chapter considers the types of errors that can a�ect a
video bitstream and examines their impact on decoded video. It then describes
a number of error detection and error control techniques. Particular emphasis
is given to standard error-resilience techniques included in the recent H.263+,
H.263++, and MPEG-4 standards.

Chapter 10 gives examples of the development of error-resilience tech-
niques. The chapter presents two temporal error concealment techniques. The
-rst technique, MFI, is based on motion -eld interpolation, whereas the second
technique, BM-MFI, uses multihypothesis motion compensation (MHMC) to
combine MFI with a boundary matching (BM) technique. The techniques are
then tested within both an isolated test environment and an H.263 codec. The
chapter also investigates the performance of di�erent temporal error conceal-
ment techniques when incorporated within a multiple-reference video codec.
In particular, the chapter -nds a combination of techniques, MFI-BM, that
best recovers the spatial-temporal components of a damaged multiple-reference
motion vector. In addition, the chapter develops a multihypothesis temporal
concealment technique, called MFI-MH, to be used with multiple-reference
systems.

Chapter 9

Error-Resilience Video
Coding Techniques

9.1 Overview
As already discussed, one of the main requirements for mobile video com-
munication is error resilience. When transmitted over a mobile channel, video
can be a�ected by a number of loss mechanisms, like multipath fading, shad-
owing, and co-channel interference. The e�ects of such errors are magni�ed
due to the fact that the video bitstream is highly compressed to meet the
stringent bandwidth limitations. The higher the compression, the more sensi-
tive the bitstream is to errors, since in this case each bit represents a larger
amount of decoded video. The e�ects of errors are also magni�ed by the use
of predictive and VLC coding, which can lead to temporal and spatial error
propagation. It is therefore not di$cult to realize that when transmitted over a
mobile channel, compressed video can su�er severe degradation, making the
use of error-resilience techniques vital. This chapter reviews error-resilience
video coding techniques.
The rest of the chapter is organized as follows. Section 9.2 describes the

main functional blocks of a typical video communication system. Section 9.3
highlights the main types of errors that can a�ect a video bitstream. Section
9.4 examines the impact of such errors on the decoded video. Section 9.5
describes a number of error detection techniques. Sections 9.6–9.8 reviews
three main categories of error-resilience video coding techniques. The chapter
concludes with a discussion in Section 9.9.

9.2 A Typical Video Communication System
Figure 9.1 shows a typical video communication system. The encoder consists
of a source encoder and a channel encoder.

205

206 Chapter 9. Error-Resilience Video Coding Techniques

Waveform
encoder

Entropy
encoder

Channel encoder

Source encoder

Video
in

Channel

Channel decoder
Waveform

decoder
Entropy
decoder

Source decoder

Video
out

ENCODER

DECODER

Figure 9.1: Typical video communication system

The function of the source encoder is to compress the input video. It
consists of a waveform encoder and an entropy encoder. The function of
the source encoder is described in detail in Chapter 2. With reference to
Figure 2.3, the waveform encoder corresponds to the mapper and quantizer
blocks, whereas the entropy encoder corresponds to the symbol encoder block.
Thus, the waveform encoder works by removing, as much as possible, statis-
tical and psychovisual redundancies present in the input video, whereas the
entropy encoder tries to remove coding redundancy.
The channel encoder conditions the compressed bitstream at the output of

the source encoder to be suitable for transmission over the channel. This can
include, for example, packetization, error protection, modulation, and transport-
level control.
At the decoder, the reverse operations are performed to obtain the out-

put video. Note that although this �gure shows a one-way communication
between the encoder and the decoder, some video communication systems
may also have data 5owing in the other direction to convey some feedback
information.

9.3 Types of Errors

Errors a�ecting a digital video bitstream can be roughly classi�ed into two
main categories: random bit errors and erasure errors.

207 Section 9.4. E"ects of Errors

9.3.1 Random Bit Errors
Random bit errors can occur in the form of bit inversion, bit insertion, and=or
bit deletion. They are usually quanti�ed using a parameter called the bit error
rate (BER), which is the average probability that a bit is in error. Random
bit errors are usually caused by physical e�ects like thermal noise.

9.3.2 Erasure (or Burst) Errors
Erasure errors occur in the form of a loss of (or damage to) contiguous seg-
ments of bits. They are usually quanti�ed using parameters like the number
of bursts, the length of a burst, and the BER within a burst. Burst errors in a
mobile channel can be caused by a number of mechanisms, such as short-term
(multipath) fading, long-term (shadowing) fading, and co-channel interference.
In a packet-based network, burst errors occur in the form of packet losses due
to di�erent reasons, such as congestion, misrouting, and delivery with unac-
ceptably long delays.
It should be pointed out, however, that this classi�cation does not take

into account the impact of errors, which is highly dependent on the coding
method. For example, it will be shown later that due to the use of predictive
and VLC coding, random bit errors in a video bitstream can cause severe
error propagation. Thus, random bit errors in a video bitstream are e�ectively
equivalent to burst errors. In what follows, no distinction will be made between
the two types of errors, and the generic term transmission errors will be used
to refer to both types.

9.4 E(ects of Errors

Errors occurring in a video bitstream can cause isolated e"ects, spatial error
propagation, and=or temporal error propagation.

9.4.1 Isolated E(ects
In this case the e�ect of an error is limited and does not propagate either
spatially or temporally. An example is an error in a FLC codeword. An-
other example is an error that converts a VLC codeword into another valid
codeword of the same length. Note, however, that for both cases to have an
isolated e�ect, it is assumed that the damaged codeword is not a prediction for
another codeword and that no temporal error propagation occurs due to motion-
compensated prediction. Clearly, such isolated e�ects are rare occurrences in
video bitstreams, and when they do occur their damage is usually acceptable

208 Chapter 9. Error-Resilience Video Coding Techniques

and can be handled relatively easily. However, such errors can sometimes be
catastrophic, as, for example, in the case of errors in vital header information
(e.g., frame size, and quantizer step size).

9.4.2 Spatial Error Propagation
This is mainly due to two mechanisms:

1.	Errors in VLC Coded Data: If an error converts a VLC codeword into
an invalid codeword or into a valid codeword of a di�erent length, then
this causes loss of bitstream synchronization. This can occur in two
forms [177]:

(a)	Loss of Codeword Synchronization: In this case an error causes the
decoder to decode a codeword of the wrong length. As a result, the
next codeword will be decoded in the wrong position and all fol-
lowing codewords may be a�ected. This e�ect is usually temporary,
and the decoder eventually regains codeword synchronization [178].

(b)	Loss of Coe$cient Synchronization: The second form of loss of
synchronization is the loss of coe$cient synchronization. Even
when codeword synchronization is regained, the decoder will be
decoding coe$cients that have no meaning without the previous,
lost coe$cients. For example, in run-length encoding, if an incor-
rect run-length has been decoded, then all the following data will
be misplaced even if it is decoded correctly. Since this form of loss
of synchronization usually causes data to be misplaced, it is also
referred to as loss of positional synchronization.

2.	Errors in Predictively Coded Data: The second mechanism that causes
spatial error propagation is the loss of predictively coded data. For
example, a motion vector is usually predictively coded with reference
to one or more previous motion vectors. If those previous vectors are
in error, then the prediction will be wrong and the errors will propagate
to the current motion vector, and so on.

9.4.3 Temporal Error Propagation
This is due mainly to the use of motion compensated prediction (or any other
form of predictive coding in the temporal dimension). As already described,
in motion-compensated prediction, parts of the current frame are copied (or
motion compensated) from a reference frame. If the copied reference parts
already contain errors, then those errors will also occur in (i.e., propagate to)
the current frame.

209 Section 9.5. Error Detection

(a) Spatial error propagation in the third frame (b) Temporal error propagation in the sixth
frame

Figure 9.2: Spatial and temporal error propagation due to a single-bit error in QSIF TABLE TENNIS

H.263 encoded at 10 frames=s (46 kbits=s)

Figure 9.2 shows an example of spatial and temporal error propagation in
the QSIF TABLE TENNIS sequence H.263 encoded1 at a frame rate of 10 frames=s
(about 46 kbits=s). Figure 9.2(a) shows the third frame of the sequence, where
a single bit error hits the macroblock in the position shown. This error converts
the VLC codeword representing the vertical vector di�erence to another valid
codeword of the same length. This causes an error in the compensation of this
particular macroblock. In addition, because of the predictive coding of motion
vectors, this error propagates spatially to all macroblocks to the right and
up to the border of the frame. Figure 9.2(b) shows how motion-compensated
prediction caused the errors in the third frame to propagate temporally to the
sixth frame. This example shows how serious even a single bit error can be
and clearly highlights the need for error detection and control techniques.

9.5 Error Detection

Before being able to combat the e�ects of errors, it is �rst necessary to detect
whether and where errors have occurred. Error detection can be performed by
the channel decoder and=or the source decoder.
One method for error detection is the use of header information. This can

be used by both the channel decoder and the source decoder. For example,
in a packet-based network like ATM, each packet contains a header with a

1Telenor H.263 implementation was used. The luma component was zero padded to 128 lines
to be a multiple of 16. The chroma components were also zero padded correspondingly. The
optional mode to insert synchronization codewords at the start of each GOB was switched on.
All other optional modes were switched o�. The initial quantization parameter was set to 10.

210 Chapter 9. Error-Resilience Video Coding Techniques

sequence number sub�eld. This sequence number can be used to detect packet
losses at the channel decoder. Similarly, the group-number (GN) codeword in
an H.263 GOB header can be used to detect errors at the source decoder.
Another method that can be used by both the channel decoder and the

source decoder is forward error correction (FEC). For example, Annex H of
the H.263 standard provides an optional FEC mode. In this mode, 18 parity
bits are used to provide error detection and correction for each 493 video bits.
A commonly used method at the source decoder is the detection of syntax

and semantic violations. Examples of such violations are:

•	An illegal codeword is detected.

•	An invalid number of units is decoded. For example, the number of de-
coded DCT coe$cients within a block is invalid, the number of decoded
blocks within a MB is invalid, the number of decoded MBs within a
GOB is invalid, or the number of decoded GOBs within a frame is
invalid.

•	A decoded motion vector points outside the permissible range.

•	A decoded quantization parameter is out of range.

Another method that can be used at the source decoder is the detection of
violations to the general characteristics of natural video signals, for example,
the detection of strong discontinuities at the borders of blocks, blocks with
highly saturated colours (e.g., pink and green), or blocks where most pels
need clipping.
None of these methods guarantee �nding all errors within a video bitstream.

In fact, the last method may sometimes detect an error-free block as an erro-
neous one. In practical systems, di�erent combinations of these methods are
employed.
Having detected the occurrence of errors and identi�ed their locations,

a number of methods can be used to combat the e�ects of errors on the
video bitstream. The following three sections describe three categories of
error-resilience techniques: forward techniques, postprocessing techniques, and
interactive techniques. The three sections follow closely the classi�cation used
in the comprehensive reviews by Wang et al. [179, 180].

9.6 Forward Techniques

In forward techniques, the encoder plays the primary role. Such techniques
work by adding a controlled amount of redundancy to the video bitstream.
This means that they sacri�ce some coding e$ciency to gain in terms of error

211 Section 9.6. Forward Techniques

resilience. Some techniques are designed to minimize the e�ects of transmis-
sion errors, some are designed to make error handling at the decoder more
e�ective, and others are designed to guarantee a basic level of quality while
providing graceful degradation in the presence of transmission errors. Exam-
ples of forward techniques are brie5y described in the following subsections.

9.6.1 Forward Error Correction (FEC)
Forward error correction works by adding redundant bits to a bitstream to help
the decoder detect and correct some transmission errors without the need for
retransmission. The name forward stems from the fact that the 5ow of data
is always in the forward direction (i.e., from encoder to decoder).
For example, in block codes the transmitted bitstream is divided into blocks

of k bits. Each block is then appended with r parity bits to form an n-bit
codeword. This is called an (n; k) code.
For example, Annex H of the H.263 standard provides an optional FEC

mode. This mode uses a (511; 493) BCH (Bose-Chaudhuri-Hocquenghem)
code. Blocks of k = 493 bits (consisting of 492 video bits and 1 �ll indicator
bit) are appended with r =18 parity bits to form a codeword of n = 511 bits.
Use of this mode allows the detection of double-bit errors and the correction
of single-bit errors within each block.

9.6.2 Robust Waveform Coding
As already discussed, the waveform encoder in a typical video communication
system works by removing statistical and psychovisual redundancies present
in the input video. Robust waveform coding techniques, however, intentionally
keep (or even add) some redundancy to achieve error resilience. Examples of
such techniques are given next.

9.6.2.1 Adding Redundant Information

This technique adds auxiliary information or repeats some previously coded
information to help error handling at the decoder. For example, as is shown in
Section 9.7, a powerful technique for error concealment is temporal conceal-
ment. The performance of this technique is highly dependent on the availability
of motion information for the damaged blocks. Thus, this technique is usually
used for concealing INTER macroblocks. In MPEG-2, however, the encoder
can optionally send auxiliary motion vectors for INTRA macroblocks. In the
presence of errors, such vectors can be used to temporally conceal damaged
macroblocks.
Another example is the header extension code (HEC) included by MPEG-

4 in packet headers. If this bit is set to “1,” then some data, like timing

212 Chapter 9. Error-Resilience Video Coding Techniques

information and VOP coding type, is repeated from the VOP header. This
helps error detection and resynchronization. A similar example is the picture
header repetition allowed by the optional additional supplemental enhancement
information mode (annex W) of H.263++.

9.6.2.2 Using INTRA Refresh

An e�ective way to stop temporal error propagation is to periodically encode
pictures in INTRA mode. Given the large number of bits consumed by IN-
TRA pictures, this leads to a signi�cant increase in the total bit rate. A more
suitable approach for applications like mobile video communication is to use
INTRA refresh on the macroblock level. By controlling the number and spatial
location of INTRA MBs, INTRA refresh can be a very e$cient and scalable
error-resilience tool.
Obviously, the required number of INTRA MBs is highly dependent on

the channel quality and capacity. Such information is usually available to
the encoder. For example, in mobile networks, antenna parameters can give
an indication of the channel quality. In Ref. 181, Haskell and Messerschmitt
discuss how to select a suitable number of INTRA MBs.
There are many methods for selecting the spatial location of INTRA MBs

within frames. One method is to choose the locations randomly [181, 182].
Another method is to follow a raster scanning order. In Ref. 183 the INTRA
MBs are placed adaptively in regions with high activity.
Recently, a very powerful technique for deciding both the number and

spatial locations of INTRA MBs has been proposed by CôtKe et al. [182, 184].
In Ref. 182 they propose a rate-distortion optimized mode selection method for
packet lossy networks. This method takes into account the channel conditions
and the error concealment method used at the decoder. In Ref. 184 they apply
the same method to bit-oriented networks.
Obviously, if there is a feedback channel from the decoder, then information

regarding the number and locations of damaged MBs can help the encoder to
better decide the number and locations of INTRA MBs.

9.6.2.3 Using Restricted Prediction

In this technique, prediction is limited within nonoverlapping spatial
and=or temporal regions. This clearly limits temporal and=or spatial error
propagation.
For example, in the independent segment decoding mode (annex R) of

H.263+, video pictures are divided into segments. Each video picture segment
is then encoded with complete independence from all other segments in the
same picture, and also with complete independence from all data outside the
corresponding segment in the reference picture(s). For example, motion vectors

213 Section 9.6. Forward Techniques

of blocks outside the current segment cannot be used when calculating the
current motion vector predictor. Similarly, motion vectors of blocks outside the
current segment cannot be used as remote motion vectors for overlapped block-
motion compensation when the advanced prediction mode is in use. In addition,
no motion vectors are allowed to reference areas outside the corresponding
segment in the reference picture.

9.6.3 Robust Entropy Coding
In this case, redundancy is added at the entropy encoder. Examples of robust
entropy coding techniques are discussed next.

9.6.3.1 Resynchronization Codewords

As already discussed, one of the disadvantages of VLC coding is that errors
in the bitstream can cause loss of synchronization between the encoder and
the decoder, and this leads to spatial error propagation. One way to reduce
this e�ect is to insert unique markers called resynchronization codewords in
the bitstream. When an error is detected, the decoder skips the remaining bits
until it �nds a resynchronization codeword. This reestablishes synchronization
with the encoder, and the decoder then proceeds to decode from that point on.
This is illustrated in Figure 9.3(a).
Resynchronization codewords can be inserted at regular intervals in the spa-

tial domain, as illustrated in Figure 9.4(a). For example, version 1 of H.263
adopts a GOB-based resynchronization approach. This means that a resynchro-
nization codeword is inserted every time a �xed number of macroblocks has
been encoded. A disadvantage of this approach is that, since the number of
bits can vary between macroblocks, the resynchronization codewords will most
likely be unevenly spaced throughout the bitstream. Therefore, certain parts of
the sequence, such as high-motion areas with high bit content, will be more
susceptible to errors and will also be more di$cult to conceal.
A more robust approach is to insert resynchronization codewords at regu-

lar intervals in the bit domain, as illustrated in Figure 9.4(b). For example,
MPEG-4 adopts a packet-based resynchronization approach. In this approach
each packet contains approximately the same number of bits. This means that
the resynchronization codewords are almost periodic in the bitstream. A sim-
ilar approach has also been adopted in the slice structured mode (annex K)
of H.263+.
Another problem with VLC coding is that errors can emulate the occurrence

of resynchronization codewords. To reduce this e�ect, MPEG-4 provides a
second resynchronization approach called +xed-interval synchronization. In
this approach, resynchronization codewords appear only at legal �xed-interval

214 Chapter 9. Error-Resilience Video Coding Techniques

(1) Forward decoding (2) Error detected, decoder
searches for and skips to next
resynchronization codeword

(3) Resynchronization is
reestablished, decoder
resumes normal operation

discarded bits

resynchronization
codewordbits decoded without

detecting errors

(a) Resynchronization with normal VLC coding

resynchronization
bits recovered

bits decoded without discarded using reverse codeword

detecting errors bits decoding

(3) Backward
decoding

(1) Forward decoding (2) Error detected, decoder (4) Decoder resumes
searches for and skips to next normal operation
resynchronization codeword

(b) Resynchronization with reversible VLC (RVLC) coding

Figure 9.3: Resynchronization using synchronization codewords

locations in the bitstream. Thus, only codewords at those legal locations will
be used by the decoder to reestablish synchronization.
As described in Section 9.4, loss of synchronization appears in two forms:

loss of codeword synchronization and loss of positional (or coe$cient) syn-
chronization. Inserting resynchronization codewords reduces the e�ect of loss
of codeword synchronization. In order to reduce the e�ect of loss of posi-
tional synchronization, resynchronization codewords are usually followed by
some positional information, like the address and the temporal reference of
the macroblock immediately following the resynchronization codeword. This
allows the decoder to resume its normal operation.

215 Section 9.6. Forward Techniques

moving
object in the

frame

resynchronization
codeword

spatial domain bit domain

(a) Resynchronization codewords at regular intervals in the spatial-domain

spatial domain bit domain

(b) Resynchronization codewords at regular intervals in the bit-domain

Figure 9.4: Resynchronisation codewords at regular intervals

9.6.3.2 The Error-Resilience Entropy Code (EREC)
An interesting alternative to inserting resynchronisation codewords is the error
resilience entropy code (EREC) [177, 185]. The EREC takes variable-length
blocks of data and rearranges them into �xed-length slots. For example, assume
that there are N variable-length blocks with lengths bi; i=1 : : : N . The encoder
�rst chooses a total data size T¿

�
bi, which is su$cient to encode all the

data. This total data size is split into N slots of �xed lengths si; i=1 : : : N .
An N -stage algorithm is then used to place the data from the variable-length
blocks into the �xed-length slots. At each stage n, a block i with data left
unplaced searches slot j = i+
n (mod N) for space to place some or all of the
remaining data. Here,
n is an o�set sequence that is usually pseudo-random.
Figure 9.5 shows an example of the EREC algorithm. In this case, there are

N = 6 variable-length blocks, with lengths 11, 9, 4, 3, 9, and 6 bits. The total
data size is chosen as T = 42 and is divided into N = 6 slots, with a length
of si = 7 bits each. The o�set sequence is
n = {0; 1; 2; 3; 4; 5; 6}. In stage 1 of

216 Chapter 9. Error-Resilience Video Coding Techniques

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

7 bits 7 bits 7 bits 7 bits

offset 1 offset 2 offset 3

Stage 1 Stage 2 Stage 3 Stage 6

Empty bit Block 1 bit Block 2 bit Block 3 bit Block 4 bit Block 5 bit Block 6 bit

Figure 9.5: Example of the EREC algorithm

the algorithm, blocks 3, 4, and 6 are completely placed into the corresponding
slots, with some leftover space in those slots. Blocks 1, 2, and 5, however,
are only partially placed in the corresponding slots and have some bits left
to be placed in empty spaces in other slots. According to the o�set sequence,
block 1 searches slot 2 for empty space, block 2 searches slot 3, and block
5 searches slot 6. Both blocks 2 and 5 �nd empty spaces. Thus, in stage 2,
all the remaining bits from block 2 are placed in slot 3, whereas some of
the remaining bits of block 5 are placed in slot 6. Since block 1 did not �nd
empty spaces in slot 2, then, according to the o�set sequence, it searches slot
3, and so on. By the end of stage 6, all data bits are placed in the slots. The
decoder operates in a similar manner. Thus bits in a slot are decoded and
placed in a block until an end-of-block codeword is encountered.
In the presence of errors, the resilience provided by the EREC algorithm

is due to two factors. First, each block starts at a known position in the
bitstream (i.e., the start of the corresponding slot). Thus, in the case of loss of
synchronization, the decoder simply jumps to the start of the next slot without
the need for resynchronization codewords. Second, subjectively less important
data (e.g., high-frequency DCT coe$cients) are usually placed in later stages
of the algorithm. With the EREC algorithm, most error propagation e�ects
(due, for example, to missing or falsely detecting end-of-block codewords) hit
data placed at later stages of the algorithm rather than the more important data
at the start of the slots.

9.6.3.3 Reversible Variable-Length Coding (RVLC)

Reversible VLC codewords are designed to be decoded both in the forward
and backward directions. As already described, when an error is detected in

217 Section 9.6. Forward Techniques

the bitstream, the decoder discards all bits until the next resynchronization
codeword, where synchronization is reestablished and the decoder resumes its
decoding process. The discarded bits may well be correctly received but cannot
be decoded correctly due to loss of synchronization. In the case of RVLCs,
when the decoder identi�es the next resynchronization codeword, instead of
discarding all preceding bits, the decoder starts decoding in the reverse di-
rection to recover and utilize some of those bits. This is illustrated in Figure
9.3(b).
Reversible variable-length coding has been adopted in most recent stan-

dardization e�orts. For example, the modi�ed unrestricted motion vector mode
(modi�ed annex D) of H.263+ uses RVLC to encode motion vector di�er-
ences, the data partitioned slice mode (annex V) of H.263++ uses RVLC to
encode header and motion information, and MPEG-4 uses RVLC to encode
texture information.

9.6.4 Layered Coding with Prioritization
In layered coding, video is encoded into a base layer and one or more enhance-
ment layers. The base layer is separately decodable and provides a basic level
of perceived quality. The enhancement layers can be decoded to incrementally
improve this quality.
Layered coding can be useful when applied over heterogenous networks

with varying bandwidth capacity. However, to be used as an error-resilience
tool, layered coding must be combined with prioritized transmission or what
is commonly known as unequal error protection. In this case, the base layer
is transmitted with higher priority or a higher degree of error protection. For
example, in Ref. 186 Ghanbari introduced the concept of layered coding with
prioritized transmission to increase the robustness of video against cell loss
in ATM networks. In this technique, the encoder generates two bitstreams.
The base-layer bitstream contains the most vital video information, whereas
the enhancement-layer bitstream contains residual information to improve the
quality of the base layer. The base layer is then transmitted using high-priority
ATM cells, whereas the enhancement layer is transmitted using low-priority
cells. When tra$c congestion occurs, low-priority cells are discarded �rst.
Another example is the power control method proposed in Ref. 187. In this
method, when video is transmitted over a wireless network, more power is
used to transmit the base layer, whereas less power is used to transmit the
enhancement layers.
There are many ways to encode video into more than one layer. For exam-

ple, the base layer can include a low-frame-rate version of video, whereas the
enhancement layers can contain frames used to increase the frame rate. This is
usually referred to as temporal scalability. Another method is when the base

218 Chapter 9. Error-Resilience Video Coding Techniques

layer contains a coarsely quantized version of video, whereas the enhancement
layers carry the error between the original version and this coarsely quantized
version. This is known as SNR scalability. Another form is spatial scalability.
This is very similar to SNR scalability. The only di�erence is that pictures in
the base layer are subsampled to a smaller size. Yet another form of layered
coding is known as data partitioning. In this case, the base layer contains vital
video information like headers, motion vectors, and low-frequency DCT coef-
�cients. Other information, like high-frequency DCT coe$cients, is included
in the enhancement layers.
Note that all these forms of layered coding are supported in recent standard-

ization e�orts. For example, MPEG-4 supports temporal and spatial scalability
in addition to data partitioning. H.263+ supports temporal, SNR, and spatial
scalability in annex O, and H.263++ supports data partitioning in annex V.

9.6.5 Multiple Description Coding
This technique assumes that there are multiple channels between the encoder
and the decoder. These multiple channels can be physically distinct paths or
they can be a single path divided into multiple virtual channels using, for
example, time or frequency division. The technique further assumes that the
error events of these multiple channels are independent. This means that the
probability that all channels simultaneously experience errors is very small.
Similar to layered coding, multiple description coding encodes video into

multiple streams known as descriptions. In this case, however, the descriptions
are correlated and have equal importance. The requirement that all descriptions
have equal importance means that the descriptions must share some fundamen-
tal information about the input video. As a consequence of this information
sharing, the descriptions are correlated.
At the encoder, each description is transmitted on a di�erent channel. As

already mentioned, the error events of the channels are independent. As a
result, at least one description will be received at the decoder without errors.
This description carries some fundamental information about the transmitted
video and can, therefore, be used to provide a basic level of quality. Since
the descriptions are correlated, missing descriptions can be estimated from
correctly received descriptions and the quality can be improved.
There are a number of methods to achieve the required decomposition into

descriptions. For example, in Ref. 188, the input signal is decomposed and
encoded into two streams. The two streams are obtained by transmitting two
quantization indices for each quantized level. The index assignment is de-
signed such that when both indices are received, the reconstruction quality
is equivalent to that of a �ne quantizer. When, however, only one index is
received, the reconstruction quality is equivalent to that of a coarse quantizer.

219 Section 9.7. Postprocessing (or Concealment) Techniques

damaged
blocks

1 2 3 4 5 6 7 8 9

2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3

3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4

1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 21 2

1 0 1 1 1 1 3 3 1 5 5 1 7 7 1 9 9 2 1 1 1

1 2 2 1 4 4 1 6 6 1 8 8 2 0 1 0 2 2

2 3 3 5 2 5 3 7 2 7 3 9 2 9 4 1 3 1 4 3 3 3

3 4 2 4 3 6 2 6 3 8 2 8 4 0 3 0 4 2 3 2 4 4

(a) without interleaving (b) with interleaving

Figure 9.6: Coding and transmission order with and without interleaving

There are also other multiple description techniques, as detailed in Refs. 179
and 180.

9.6.6 Interleaved Coding
In normal coding, the blocks of a given frame are encoded in raster scan
order, as illustrated in Figure 9.6(a). In this case, when an error occurs in
one block, spatial error propagation results in the loss of a contiguous set of
blocks. In the example shown, an error in block 12 results in the loss of all
blocks to its right.2 As is discussed later, the concealment of a damaged block
depends heavily on the availability of its four neighboring blocks. In this case,
a damaged block will have only its top and bottom neighbors intact.
Interleaved coding attempts to separate the information of neighboring

blocks as far as possible. As a result, an error in a block will propagate
to nonadjacent blocks. Figure 9.6(b) shows the even=odd interleaving scheme
adopted in Ref. 189. The numbers here indicate the encoding and transmis-
sion order. Thus, the �rst block in the �rst row (block 1) is encoded and
transmitted �rst, followed by the second block in the second row (block 2),
and so on. Note that in this case, when an error occurs in block 12, the lost
set of blocks is not contiguous. Thus, a damaged block will have all its four
neighbors intact and this will help the error concealment process considerably.

9.7 Postprocessing (or Concealment) Techniques

The second category of error-resilience techniques are postprocessing (or
concealment) techniques. In postprocessing techniques, the decoder plays the

2This example assumes that resynchronization codewords are inserted at the beginning of each
row of blocks.

220 Chapter 9. Error-Resilience Video Coding Techniques

primary role. Thus, the decoder attempts to conceal the e�ects of errors by
providing a subjectively acceptable approximation to the original data. This is
achieved by exploiting the limitations of the human visual system and the high
temporal and=or spatial correlation of video sequences. Error concealment is
an ill-posed problem since it does not have a unique solution. Thus, error con-
cealment techniques exploit a priori knowledge of the characteristics of video
signals to restrict the otherwise large number of possible solutions. Depending
on the information used for concealment, postprocessing techniques can be
divided into three main categories: spatial techniques, temporal techniques,
and hybrid techniques.

9.7.1 Spatial Error Concealment
Spatial techniques exploit the high spatial correlation of video signals and
conceal damaged pels in a frame using information from correctly received
and=or previously concealed neighboring pels within the same frame. Such
techniques apply primarily to intracoded blocks but may also be used to con-
ceal intercoded blocks with missing motion information or to recover the DFD
signal.
In Ref. 190 a damaged pel within a block is interpolated from the four

corner pels outside the block, as illustrated in Figure 9.7(a). Interpolation
from the four nearest pels outside the block boundaries, as illustrated in
Figure 9.7(b), is proposed in Ref. 191. Interpolation in the frequency do-
main has also been used. For example, in Ref. 192 the DC coe$cient of
a damaged block is recovered as the average or the median of the DC

f (x , y1) fb (x , y1) fT (x, y1)a 1 2

f),(y x

f (y x),

f L (x1 ,)y dL dR

d T

d B

f R (x , y)2

),(21 yxf c),(22 yxf d),(y x 2f B

),(),()1(

),()1(),()1)(1(),(

2221

1211

yxfyxyxfyx

yxfyxyxfyxyxf

dnncnn

bnnann

+−+
−+−−= 1

),(
dddd

yxf
BTRL +++

=

×[dL f R (x , y) + d R f L (x , y) + dT f B (x, y) + d B fT (y x 1)]2 1 2 ,
1where x =

x

x

2

−
−

x

x
1

1

, y =
y − y

n n y − y2 1

(a) using corner pels (b) using nearest neighboring pels

Figure 9.7: Error concealment using spatial interpolation

221 Section 9.7. Postprocessing (or Concealment) Techniques

coe$cients of the four or eight neighboring blocks. Another approach is to
form a partial DC value at each boundary by taking the average of a one-,
two-, or four-pels-wide neighborhood. The recovered DC coe$cient is then
the average or the median of the four partial DC values.
In Ref. 193 the lost DCT coe$cients of an intracoded block are recovered

by minimizing the intersample variation within the block and across the block
boundaries. This is based on the smoothness property of image and video
sequences. In Ref. 189 the same method is extended by adding a temporal
smoothness measure.
Another property that is used in error concealment is edge continuity. Thus,

if the direction of an edge in a neighboring block indicates that the edge
passes through the damaged block, then the concealment process must con-
serve the continuity of this edge. For example, in Ref. 194 an edge classi�er is
applied to the neighboring blocks to determine which directions characterize
the strongest edges passing through the damaged block. For each of these clas-
si�ed directions, directional spatial interpolation along the respective direction
is used to create a block from the neighboring pels. The blocks are then
mixed together in such a way that all the strong edge features are preserved
and combined in a single block used for concealment.
Statistical correlation is another a priori assumption utilized in error

concealment. For example, in Ref. 195 the pel values of a frame are
modeled as a Markov random �eld (MRF). Maximum a posteriori proba-
bility (MAP) estimation is then used to spatially interpolate the damaged
blocks.

9.7.2 Temporal Error Concealment
Temporal techniques exploit the high temporal correlation of video signals and
conceal damaged pels in a frame using information from correctly received
and=or previously concealed pels within a reference frame. Such techniques
apply primarily to intercoded blocks. They may work for some intracoded
blocks but will completely fail in cases like scene changes and uncovered
background.
As in motion-compensated prediction, the process of temporal concealment

involves two stages: concealment displacement estimation and displacement
compensation, as shown in Figure 9.8(a). For this reason, temporal conceal-
ment is sometimes referred to as motion-compensated concealment.
Conventional temporal techniques estimate one concealment displacement

for the whole damaged block and then use translational displacement com-
pensation to conceal the block, as shown in Figure 9.8(b). Such techniques
perform very well when the original motion vector of the damaged block is
available. In this case the �rst stage of the temporal concealment process,

222 Chapter 9. Error-Resilience Video Coding Techniques

Concealment
Displacement

Estimation

Displacement
Compensation

(a) Stages of temporal concealment

displacement compensation

di
sp

la
ce

m
en

t

damaged
block

reference frame current frame

(b) Conventional temporal concealment

Figure 9.8: Temporal error concealment

i.e., displacement estimation, is bypassed and the concealment displacement is
simply set to the original motion vector.
In practice, however, the motion vector of a damaged block is usually lost

or erroneously received. This is due mainly to spatial error propagation. For
example, an erroneous codeword will usually lead to loss of synchronization at
the decoder and all blocks, including their motion information, up to the next
synchronization point will be undecodable and completely lost.3 In such cases,
the displacement estimation stage at the decoder is extremely important. In
fact, the only di�erence between the various conventional temporal techniques
reported in the literature is in their displacement estimation algorithm. This
stage is also known as motion information recovery, because it attempts to
recover or provide an approximation to the original motion information.
The simplest and most commonly used technique is to replace the dam-

aged motion vector with (0; 0) [179, 192]. This is based on the center-biased
property of video block-motion �elds, which is also equivalent to the temporal
smoothness property of video signals. The technique is usually referred to as

3As already discussed, RVLCs and data partitioning into motion and texture data are some of
the mechanisms that can be used to reduce this e�ect.

�

223 Section 9.7. Postprocessing (or Concealment) Techniques

temporal replacement (TR) because it e�ectively replaces the damaged block
by its corresponding block in the reference frame. This method works well
for stationary and quasi-stationary areas, e.g., background, but will fail for
fast-moving areas.
Another technique is to exploit the high-correlation property of video block-

motion �elds and replace the damaged motion vector with the average (AV)
[179, 190, 189, 191, 192] or the median [179, 192] of neighboring vectors.
This technique works well for areas with smooth motion but will fail for areas
with unsmooth motion, e.g., at the boundaries of objects moving in di�erent
directions.
A boundary matching (BM) technique has also been used to select a suitable

replacement from a set of candidate motion vectors [196, 197, 198]. Assume
that a set of M neighboring motion vectors V={v1; v2; : : : ; vM } is to be used
for the concealment of a damaged block D of size N ×N with its top-left
corner at (xo; yo). Each candidate vector vi =(vix; vi

y) in V is used to conceal
the damaged block D. The quality of this concealment is assessed using the
continuity across the concealed block boundaries. This continuity is measured
using the side-match distortion (SMD) measure, de�ned as

SMDi = SMD L + SMD R + SMDT + SMD B; (9.1)i i i i

where SMD i
L is the sum of absolute, or squared, di�erences across the left

boundary of block D when concealed using candidate vector vi. Thus

N−1
xSMDi

L = g[ft(xo − 1; yo + k) − ft−Ot(xo + vi ; yo + vy + k)]; (9.2)i
k=0

where ft and ft−Ot are the current and reference frames, respectively, g=(·)2

for the SSD, and g= | · | for the SAD. Similarly, SMD R; SMDi
T and SMD i

B
i

are the side-match distortions across the right, top, and bottom boundaries,
respectively. Based on the smoothness property of video signals, the candidate
motion vector that achieves the minimum SMD is chosen as the recovered
motion vector. Thus

v̂= arg min SMDi : (9.3)
vi∈V

The main advantage of this method is that displacement estimation is based on
a distortion measure. The method will fail for areas with unsmooth motion and
also for areas with low spatial correlation, e.g., at the boundaries of objects.
Similar to spatial concealment, Bayesian statistical approaches have also

been used for motion vector recovery, e.g., Ref. 195.

224 Chapter 9. Error-Resilience Video Coding Techniques

9.7.3 Hybrid Error Concealment
Hybrid techniques exploit both spatial and temporal correlations of video sig-
nals. A straightforward technique is to use spatial concealment for intracoded
blocks and temporal concealment for intercoded blocks. More sophisticated
combinations are also possible. For example, in Ref. 199 temporal conceal-
ment is �rst used to get an initial estimate of the damaged block. This initial
estimate is then re�ned using spatial concealment.

9.7.4 Coding-Mode Recovery
As already discussed, each of the preceding concealment techniques applies
to a particular type of macroblocks. More speci�cally, spatial concealment is
more applicable to intracoded blocks, whereas temporal concealment is more
suitable for intercoded blocks. Provided that the coding mode of a damaged
block is known, the appropriate type of concealment is applied. In many cases,
however, the coding-mode information of a damaged block is also damaged.
Thus, coding-mode information needs to be recovered �rst before being able
to choose the appropriate concealment method.
In Ref. 189, when the coding mode is damaged it is simply set to INTRA

and the corresponding block is concealed using spatial techniques.
Usually, there is a high correlation between the coding modes of adjacent

blocks. Thus, the coding mode of a damaged block can be estimated from
the coding modes of neighboring blocks. In Ref. 200, the coding mode of a
damaged MB in an MPEG-2 coded video is estimated from the coding modes
of its top and bottom neighboring MBs. For example, the coding mode of
a damaged MB in a P-frame is set to INTRA only if its top and bottom
neighboring MBs are both INTRA coded; otherwise, a FORWARD INTER
mode is assumed.

9.8 Interactive Techniques

The third type of error-resilience methods are interactive techniques. In this
case, the encoder and decoder cooperate to minimize the e�ects of transmission
errors. In such techniques, the decoder uses a feedback channel to inform the
encoder about which parts of the transmitted video have been received in error.
Based on this feedback information, the encoder adjusts its operation to combat
the e�ects of such errors. The following subsections discuss some examples
of interactive (or feedback-based) techniques. A more comprehensive review
of such techniques can be found in Ref. 201.

225 Section 9.8. Interactive Techniques

9.8.1 Automatic Repeat Request (ARQ)
In this technique, when an error is detected, the decoder automatically requests
the encoder to retransmit the damaged data. When this ARQ is received, the
encoder retransmits the requested data. Usually, this retransmission is repeated
until either the requested data is correctly received or a predetermined number
of retransmissions is exceeded.
Typically, when a decoder sends an ARQ, it waits for the arrival of the

requested data before resuming normal operation. This introduces delays that
may not be acceptable in real-time applications like mobile video communi-
cation. To overcome such delays, Wang and Zhu [179] proposed a technique
called retransmission without waiting. In this technique, instead of waiting
for the arrival of the requested data, the damaged video part is concealed
and normal decoding operation is then resumed. A trace of the a�ected pels
and their associated coding information is recorded until the arrival of the
requested data. This error trace, along with the received data, is then used to
correct the a�ected pels. Another technique proposed in Ref. 179 is the mul-
ticopy retransmission. In this technique, multiple copies of the damaged data
are sent in each single retransmission trial. This reduces the required number
of retransmissions and, consequently, reduces delays.

9.8.2 Error Tracking
When feedback information is received, the encoder can reconstruct the error
propagation process. In other words, the encoder can track the error prop-
agation from the original occurrence up to the current frame. A number of
techniques can then be used to utilize this error trace, as discussed next.

9.8.2.1 INTRA Refresh Based on Feedback

Based on the error trace, areas in the current frame that would have been
predicted from a�ected pels in the reference frame are INTRA encoded. This
is illustrated in Figure 9.9. Figure 9.9(a) shows the spatial and temporal prop-
agation in a sequence of frames due to an error in frame n. In Figure 9.9(b)
a feedback message arrives at the encoder before the time to encode frame
n + d. The encoder tracks this error and the a�ected pels from frame n up
to frame n + d − 1. During the encoding process of the current frame, n + d,
blocks that would have been predicted from a�ected pels in the reference
frame, n + d − 1, are encoded in INTRA mode to stop error propagation to
the next frame, n + d + 1.
There are two main drawbacks to this approach. First, a perfect reconstruc-

tion of error propagation is a computationally complex process. Second, in
cases of high error rates, INTRA refresh can result in a signi�cant loss in

226 Chapter 9. Error-Resilience Video Coding Techniques

n 1+n 1−+ dn dn + 1++ dn

damaged
area

prediction

(a) Error propagation in a sequence of frames

n n + 1 n + d − 1 n + d n + d + 1

ref
ere

nce
fra

me

cu
rre

nt fr
am

e
tracked
errors

INTRA
coded
blocks

NACK(n)

(b) INTRA refresh based on error tracking and feedback information

n 1+n 1−+ dn dn + 1++ dn

ref
ere

nce
fra

me

cu
rre

nt fr
am

e

tracked
errors

prediction

NACK(n)	 blocks predicted from
erro-free areas in reference

(c) Restricted prediction based on error tracking and feedback information

Figure 9.9: Error tracking techniques

coding e$ciency. In Ref. 202 Steinbach et al. propose a reduced-complexity
error-tracking algorithm that can provide a su$ciently accurate estimate of the
true error propagation. In order to reduce the loss of coding e$ciency, they
INTRA refresh only severely a�ected blocks. Thus, if the process of error

227 Section 9.8. Interactive Techniques

concealment is successful and the error of a given block is su$ciently small,
then the encoder may decide against INTRA encoding. Note that this method
requires the encoder to perform the same error concealment process that was
used at the decoder.

9.8.2.2 Restricted Prediction Based on Feedback

Based on the error trace, prediction of the current frame is restricted to use
only error-free areas in the reference frame. For example, in Figure 9.9(c) the
a�ected pels in the reference frame, n + d − 1, are not used for predicting the
current frame, n + d. This stops error propagation to the next frame, n + d +1.
This restricted prediction based on feedback and error tracking was proposed
by Wada in the selective recovery technique [203].
Again, this technique can also bene�t from the reduced-complexity error-

tracking algorithm of Steinbach et al. [202], and the coding e$ciency can
also be improved by performing error concealment in the encoder so that both
encoder and decoder use the same reference frames for prediction.

9.8.3 Reference Picture Selection
In reference picture selection (RPS), both the encoder and decoder store mul-
tiple previous frames to be used as reference frames. When the encoder learns,
through feedback messages from the decoder, that the most recent reference
frame contains errors, the encoder switches to use another older reference
frame that is known to be error free. Provided the alternative reference frame
is not too far away from the current frame, the loss in coding e$ciency is not
signi�cant. In particular, this technique is more e$cient than the INTRA re-
fresh technique. The RPS technique has been adopted by H.263+ in annex N,
and an enhanced version of the technique has been included in annex U of
H.263++.
Figure 9.10 shows the RPS technique with two types of feedback messages.

In the negative acknowledgment mode, illustrated in Figure 9.10(a), the de-
coder sends a negative acknowledgment (NACK) message whenever errors
are detected in a frame. In the example shown, the decoder detects an error
in frame 3 and sends a NACK(3) message to the encoder. At the encoder,
the encoding operation proceeds in the normal way (i.e., using the most re-
cent reference frame for prediction) until the NACK(3) message arrives before
encoding frame 6. Based on this message, the encoder knows that errors oc-
curred in frame 3 and propagated up to the most recent reference frame 5.
To stop this error propagation, the encoder uses the older error-free reference
frame 2 instead of the most recent reference frame 5 to encode the current
frame 6.

228 Chapter 9. Error-Resilience Video Coding Techniques

1 2 3 4 5 6 7

NACK(3)

(a) Reference picture selection with negative acknowledgment messages

1 2 3 4 5 6 7

ACK(1) ACK(2) ACK(4)

(b) Reference picture selection with positive acknowledgment messages

Figure 9.10: Reference picture selection based on feedback

In the positive acknowledgment mode, illustrated in Figure 9.10(b), the de-
coder sends an acknowledgment (ACK) message whenever a frame is received
error-free. At the encoder, only acknowledged frames are used as references.
In the example shown, the encoder continues to use frame 1 for prediction
until it receives the acknowledgment for frame 2. The encoder then starts
using the acknowledged frame 2 for prediction until the acknowledgment of
the next error-free reference frame is received. Note that since the erroneous
frame 3 is not acknowledged, it is never used for prediction and its errors do
not propagate to subsequent frames.
Note that during error-free transmission, the NACK mode is more e$cient

than the ACK mode since the most recent reference frame is used for pre-
diction. During erroneous transmission, however, the NACK mode results in
longer periods of error propagation than the ACK mode. Thus, the NACK
mode is more suitable if errors occur only rarely after long periods of error-
free transmission, whereas the ACK mode is preferred for highly error-prone
transmissions.

229 Section 9.9. Discussion

9.9 Discussion

When transmitted over a mobile channel, compressed video can su�er severe
degradation. Thus, error resilience is one of the main requirements for mobile
video communication.
Due to the use of predictive and VLC coding, transmission (both random

and erasure) errors cause temporal and spatial error propagation in compressed
video.
Before being able to combat these e�ects, it is �rst necessary to detect

whether and where errors have occurred. Di�erent techniques can be used to
achieve this error detection.
Error control techniques can be broadly classi�ed into three categories:

forward, postprocessing, and interactive techniques. In forward techniques, the
encoder plays the primary role. Such techniques work by adding a controlled
amount of redundancy to the video bitstream. In postprocessing techniques,
the decoder plays the primary role. Thus, the decoder attempts to conceal the
e�ects of errors by providing a subjectively acceptable approximation to the
original data. This is achieved by exploiting the limitations of the human visual
system and the high temporal and=or spatial correlation of video sequences.
In interactive techniques, the encoder and decoder cooperate to minimize the
e�ects of transmission errors. In such techniques, the decoder uses a feedback
channel to inform the encoder about which parts of the transmitted video have
been received in error. Based on this feedback information, the encoder adjusts
its operation to combat the e�ects of such errors.
It should be emphasized that the three categories of techniques are not

mutually exclusive, and di�erent combinations can be employed in practical
systems.

Chapter 10

Error Concealment Using Motion
Field Interpolation

10.1 Overview

Chapter 9 discussed three categories of error-resilience techniques: forward,
postprocessing (or concealment), and interactive techniques. Almost all for-
ward techniques increase the bit rate because they work by adding redun-
dancy to the data, e.g., FEC. Some of them may also require modi$cations
to the encoder, e.g., layered coding, and others may not be suitable for some
applications, e.g., multiple description coding assumes several parallel chan-
nels between transmitter and receiver. Most interactive techniques depend on
a feedback channel between the encoder and decoder. Such a channel may
not be available in some applications, e.g., multipoint broadcasting. Most in-
teractive techniques will also introduce some delay and may, therefore, be
unsuitable for real-time applications like mobile video communication. On the
other hand, concealment techniques do not increase the bit rate, do not require
any modi$cations to the encoder, do not introduce any delay, and can be ap-
plied in almost any application. This makes them a very attractive choice for
mobile video communication, where bit rate and delay are very critical issues.

A very successful class of error concealment is temporal error conceal-
ment. Conventional temporal concealment techniques estimate one conceal-
ment displacement for the whole damaged block and then use translational
displacement compensation to conceal the block from a reference frame. The
main problem with such techniques is that incorrect estimation of the conceal-
ment displacement can lead to poor concealment of the whole or most of the
block.

This chapter describes the design of two novel temporal concealment tech-
niques. In the $rst technique, motion
eld interpolation (MFI) is used to
estimate one concealment displacement per pel of the damaged block. Each

231

232 Chapter 10. Error Concealment Using Motion Field Interpolation

pel is then concealed individually. In this case, incorrect estimation of a con-
cealment displacement will a,ect only the corresponding pel. On a block level,
this may a,ect few pels rather than the entire block. In the second technique,
multihypothesis motion compensation (MHMC) is used to combine the $rst
technique with a boundary matching (BM) temporal concealment technique
to obtain a more robust performance.

The chapter also investigates the performance of di,erent temporal error
concealment techniques when incorporated within a multiple-reference video
codec. In particular, the chapter $nds a combination of techniques that best
recovers the spatial-temporal components of a damaged multiple-reference
motion vector. In addition, the chapter describes the design of a novel
multihypothesis temporal concealment technique that can be used with
multiple-reference systems.

The rest of the chapter is organized as follows. Section 10.2 describes
the MFI temporal concealment technique, whereas Section 10.3 presents the
combined BM-MFI technique. Section 10.4 presents some simulation results.
Section 10.5 investigates the performance of temporal error concealment within
multiple-reference video codecs. It also describes the multihypothesis multiple-
reference temporal concealment technique. The chapter concludes with a dis-
cussion in Section 10.6.

Preliminary results of this chapter have appeared in Refs. 204, 205, 206,
207, and 208.

10.2	 Temporal Error Concealment Using Motion
Field Interpolation (MFI)

10.2.1	 Motivation
As described earlier, conventional temporal concealment techniques estimate
one concealment displacement for the whole damaged block and then use
translational displacement compensation to conceal the block from a reference
frame. As already discussed in Section 9.7.2, there are many cases where
conventional temporal concealment techniques can fail and the concealment
displacement can be incorrectly estimated. The main problem with such tech-
niques is that incorrect estimation of the concealment displacement can lead to
poor concealment of the entire or most of the block. This section describes a
new temporal error concealment technique. This technique estimates one con-
cealment displacement per pel of the damaged block and then conceals each
pel individually. In this case, incorrect estimation of a concealment displace-
ment will a,ect only the corresponding pel. On a block level, this may a,ect
few pels rather than the entire block.

Section 10.2. Temporal Error Concealment Using Motion Field Interpolation (MFI) 233

The described technique uses motion
eld interpolation (MFI) in its dis-
placement estimation stage. In MFI, motion information needs to be available
only at a number of nodal or control points within the motion $eld. The
motion vector at any other point within the $eld can be approximated by
interpolating the motion vectors of the surrounding control points. Thus, mo-
tion information recovery is inherent in MFI. As discussed in Chapter 5, MFI
is used in warping-based motion compensation. Its main advantage over con-
ventional translational compensation is that it provides a smoothly varying mo-
tion $eld that reduces blocking artefacts and compensates for more types of
motion. These two features, i.e., inherent motion information recovery and
better motion compensation, can improve both stages of the temporal con-
cealment process, i.e., estimation and compensation, respectively. This makes
MFI a very attractive choice for temporal error concealment.

10.2.2 Description of the Technique
Let ft (x; y) be the value of the current frame at pel location (x; y) and ft−:t
be a previously reconstructed and concealed frame. Further, let D= {ft (x; y) :
x ∈ [xl; xh]; y ∈ [yl; yh]} be a damaged block within the current frame and vL,
vR, vT , and vB be the motion vectors of the blocks to the left of, to the
right of, above, and below the damaged block, respectively. The concealment
displacement, v̂(x; y)= (̂vx (x; y); v̂y(x; y)), at any pel (x; y) within the damaged
block D can be estimated by interpolating the neighboring motion vectors as
follows:

h
(xn)vL + (1 − h
(xn))vR + h
(yn)vT + (1 − h
(yn))vB v̂(x; y)= ; (10.1)
2

y − yl x − xl yn = ; xn = ; (10.2)
yh − yl xh − xl

where (xn; yn) are the normalized spatial coordinates of pel (x; y) within the
damaged block, ranging from (0; 0) at the top-left corner to (1; 1) at the
bottom-right corner, and h
(·) is a suitable interpolation kernel.

Thus, the estimated displacement is a weighted sum of the neighboring
motion vectors. The interpolation kernel, h
(·), is used to adjust the weights
according to the spatial location of the pel within the damaged block. Intu-
itively, a pel on the left border should have a high contribution from the left
vector, vL, and a low contribution from the right vector, vR, and so on. To
achieve this, the following interpolation kernel [209] was used:

k(
(2a − 1)) − k(
)
h
(a)= ; 0 ≤ a ≤ 1 and
 ≥ 1; (10.3)

k(−
) − k(
)

234 Chapter 10. Error Concealment Using Motion Field Interpolation

where

1
k(b)= :	 (10.4)

1 + eb

The parameter
 in Equation (10.3) is used to control the smoothness of the
interpolation kernel. As
 varies from 1 to ∞, the interpolation kernel varies
from an approximately linear shape to a brickwall shape, as illustrated in
Figure 10.1.

Once the concealment displacement is estimated, then the damaged pel is
concealed as follows:

f̂t (x; y)= ft−:t (x + v̂x(x; y); y + v̂y(x; y)): (10.5)

In the case where the estimation process produces a subpel accurate displace-
ment, the compensation process will require accessing a pel at a nonsampling
location within the reference frame. Interpolation (e.g., bilinear) of the pels at
surrounding sampling locations can be employed to provide an approximation
to the required pel.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h γ
 (a

)

γ=1
γ=5
γ=10
γ=50

0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a

Figure 10.1: Interpolation kernel h
(·) with di,erent values of the smoothness parameter

Section 10.2. Temporal Error Concealment Using Motion Field Interpolation (MFI) 235

Table 10.1: Computational complexity of the displacement estimation stage of di,erent temporal
concealment techniques with a block of 16 × 16 pels

Add=subtract Multiply=divide Magnitude

TR — — —
AV 6 2 —
BM 496 — 256
MFI 516 6 —

10.2.3 Reduced-Complexity MFI
One of the main disadvantages of MFI is its high computational complexity.
In the case of a linear interpolation kernel, Equation (10.1) reduces to

v̂(x; y)=
(1 − xn)vL + xnvR + (1 − yn)vT + ynvB : (10.6)

2
A direct implementation of Equations (10.6) and (10.2) requires 10N 2

additions=subtractions and 12N 2 multiplications=divisions for an N × N block.
This complexity can be reduced using a number of methods. One method is to
calculate the weights o,-line and store them in a lookup table. This reduces the
complexity to 6N 2 additions=subtractions and 8N 2 multiplications=divisions.
Another method is to use a line-scanning technique. That is, once v̂(x; y) is
calculated, the displacement of the next pel in the row and the next pel in the
column can be calculated as follows:

v̂(x + 1; y)= ̂v(x; y) +
vR − vL

2N
and v̂(x; y + 1) = ̂v(x; y) +

vB − vT

2N
: (10.7)

It is very simple to derive Equations (10.7) from Equation (10.6). Note that
the second term in both of Equations (10.7) is a constant and needs to be
calculated only once per block. This line-scanning technique further reduces
the complexity to (2N 2 + 4) additions=subtractions and six multiplications=
divisions.

Table 10.1 compares the computational complexity of di,erent temporal
concealment techniques for a 16 × 16 block. The $gures in the table refer to
the complexity of the displacement estimation stage and do not include the
complexity of the displacement compensation stage.1 The $gures for BM are
based on four candidate motion vectors and SAD as the SMD measure. They
do not include the complexity of sorting the SMDs and choosing the vector
with the minimum SMD. Although the MFI technique has the highest num-
ber of multiplications=divisions, this increased complexity can be justi$ed by

1For MFI, the displacement compensation stage is more complex, since it may involve inter-
polation.

236 Chapter 10. Error Concealment Using Motion Field Interpolation

improved concealment quality, as will be shown later. A point to note here
is that MFI will be used only for damaged blocks. Thus, provided that the
error rate is relatively low, this will not increase the complexity of the decoder
considerably.

10.3	 Temporal Error Concealment Using a
Combined BM-MFI Technique

10.3.1	 Motivation
In this section, multihypothesis motion compensation (MHMC) [106] is used
to further improve the second stage, i.e., compensation, of the temporal con-
cealment process. In MHMC, a block is compensated using a weighted average
of several motion-compensated predictions (hypotheses). This is a general term
that can be used to describe techniques like overlapped motion compensation,
bidirectional motion compensation, and any other technique that compensates
individual pels using more than one motion vector. When applied to temporal
error concealment, this means that each pel of the damaged block will be
concealed using more than one concealment displacement. In the described
technique, two concealment displacements are used per pel: one is estimated
using BM, as described in Section 9.7.2, and the other is estimated using
MFI, as described in Section 10.2. The BM technique was chosen because it
is one of the best conventional temporal error concealment techniques. A sim-
ilar combination between BM and overlapped motion compensation has also
been reported in Ref. 198.

In addition to improving the second stage of the temporal concealment pro-
cess, the combination of BM and MFI can provide a more robust performance.
This can be explained as follows. There are many cases where the BM tech-
nique will fail but the MFI technique will not, and vice versa. In such cases, a
combination may be more robust because it may average out the concealment
distortion.

10.3.2	 Description of the Technique
ˆ mx (x; y); my(x; y)) be the displacement estimated using MFI Let m(x; y)= (̂ ˆ

to conceal pel (x; y) of the damaged block D, and let b̂=(b̂x; b̂y) be the
displacement estimated using BM to conceal the whole block. Then pel (x; y)
is concealed as follows:

f̂t (x; y) = w�(xn; yn)ft−:t (x + ˆ my(x; y))mx (x; y); y + ˆ

+ (1 − w�(xn; yn))ft−:t (x + b̂x; y + b̂y): (10.8)

237 Section 10.4. Simulation Results

Thus, the concealed pel is a weighted sum of two predictions. The function
w� (·; ·) is used to adjust the weights given to MFI and BM according to the
spatial location of the pel within the damaged block. Knowledge of the way
both BM and MFI work can provide some insights into designing a suitable
w� (·; ·). For example, the SMD measure of the BM technique involves the
border pels of the damaged block. It is expected, therefore, that BM will
perform well at those pels. Therefore, BM must be given high weights at
the borders of the block and low weights at the center. To achieve this, the
following function was used:

w� (xn; yn)=
g� (xn)g�(yn) + 1

;	 (10.9)
2

where 
1 − k (�(4a−1))−k(�) 

k(−�)−k(�) ; 0 ≤ a ≤ 1
2

g�(a)= 	 (10.10) 	 1g�(1 − a); 2 ¡a ≤ 1

and k (·) is de$ned by Equation (10.4). The parameter � is used to control the
smoothness of w� (·; ·), as illustrated in Figure 10.2.

Before proceeding to present simulation results, it is valuable at this point
to highlight the main di,erences between the two novel algorithms, MFI and
BM-MFI, and conventional temporal error concealment techniques. These are
summarized in Table 10.2.

10.4 Simulation Results

10.4.1 Results Within an Isolated Error Environment
It is very important to evaluate the performance of the techniques in isolation
from any external e,ects, like temporal and spatial error propagation and the
choice of the error detection algorithm. This is particularly important for a fair
comparison, since such error mechanisms and algorithm choices may randomly
a,ect one technique more than another. Thus, in this set of simulations, the
following assumptions were made

1. There is	 no temporal error propagation. This was achieved by using
original reference frames for the concealment process.

2. There is no spatial error propagation. This is equivalent to using $xed-
length codes and no predictive coding.

3. The concealment process is supported by an ideal error detection algo-
rithm that can identify all damaged blocks.

238 Chapter 10. Error Concealment Using Motion Field Interpolation

(a) BM weights, (1 − ��), with � =1

(c) MFI weights, �� , with � = 5

(b) MFI weights, ��, with � =1

(d) MFI weights, ��, with � = 50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

1−
w

(x
n,

y n
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
0.5

0.6

0.7

0.8

0.9

1
w

(x
n,

y n
)

yn

xn

yn

xn

yn

xn

yn

xn

w
(x

n,
y n

)

w
(x

n,
y n

)

Figure 10.2: Multihypothesis weights w�(·; ·) with di,erent values of the smoothness parameter �

Table 10.2: Comparison between conventional temporal concealment and the MFI and BM-MFI
techniques

Conventional temporal
concealment MFI BM-MFI

Displacement
estimation

One displacement per
block using AV,
TR, BM, etc.

One displacement per
pel using MFI
(weighted sum of
four neighboring
vectors)

Two displacements
per pel: one
produced by MFI
and another
produced by BM

Displacement
compensa-
tion

Translational, same
displacement for
the whole block.

Translational, but on a
pel-by-pel basis

Multihypothesis
motion
compensation
(each pel is a
weighted sum of
two concealments)

239 Section 10.4. Simulation Results

Hereafter, the term isolated error environment will be used to refer to this set
of test conditions.

All results in this subsection were generated using a full-search block-
matching algorithm with blocks of 16 × 16 pels, a maximum allowed dis-
placement of ± 15 pels, SAD as the distortion measure, restricted motion
vectors, and full-pel accuracy. Block losses were introduced randomly. Five
temporal error concealment techniques were simulated: temporal replacement
(TR), average vector (AV), boundary matching with side-match distortion
(BM), motion $eld interpolation (MFI), and the combination of BM and
MFI (BM-MFI). In each technique, the motion vectors of the four neigh-
boring blocks—left, right, above and below—were used in the concealment
displacement estimation stage. Whenever a neighboring motion vector was not
available, e.g., damaged or does not exist as in border blocks, it was set to
(0; 0). For the BM technique, SAD was used in the side-match distortion cal-
culations. Again, to mask any external e,ects, all quoted PSNRs in this set of
simulations were calculated for concealed blocks only and averaged over the
whole sequence. All quoted results refer to the luma components of sequences.

10.4.1.1 Choice of Parameters

Before evaluating the performance of MFI and BM-MFI, suitable values for
the smoothness parameters
 and � need to be chosen. Figure 10.3 shows the
e,ect of changing the smoothness parameter
 on the performance of MFI
when applied to FOREMAN at 25 frames=s with di,erent block loss rates. In
general, the performance is not particularly sensitive to the choice of
 (a
change of about 0:3 dB). As
 increases, the performance of MFI deteriorates
slightly. The best performance is achieved with
 =1. This is approximately a
linear kernel. Thus, a linear interpolation kernel will be used in all subsequent
simulations. Note that a linear kernel also facilitates the use of a line-scanning
technique to reduce complexity, as was shown in Section 10.2.3.

Figure 10.4 shows the e,ect of changing the smoothness parameter � on the
performance of BM-MFI when applied to FOREMAN at 25 frames=s with di,er-
ent block loss rates. Again, the performance is not very sensitive to changes
in �. As � increases, the performance of BM-MFI slightly deteriorates. The
best performance is achieved with � =1. The corresponding multihypothesis
weights are those shown in Figures 10.2(a) and 10.2(b). In what follows, this
value of � will be used.

10.4.1.2 Performance Evaluation

Figures 10.5, 10.6, and 10.7 compare the performance of the $ve techniques
when applied to AKIYO, FOREMAN, and TABLE TENNIS, respectively. All results
were generated with a frame skip of 1.

240 Chapter 10. Error Concealment Using Motion Field Interpolation

Foreman @ 25 f.p.s.
32.5

31

30.5

30

31.5

Y
 (

dB
)

γ=1
γ=5
γ=10
γ=50

10 20 30 40 50

Block loss rate (%)

32

P
S

N
R

Figure 10.3: Performance of MFI when applied to QSIF FOREMAN at 25 frames=s with di,erent
interpolation kernels. PSNRs are for damaged blocks only

Foreman @ 25 f.p.s.

31

31.5

32

32.5

P
S

N
R

Y
 (

dB
)

δ=1
δ=5
δ=10
δ=50

10 20 30 40 50

Block loss rate (%)

Figure 10.4: Performance of BM-MFI when applied to QSIF FOREMAN at 25 frames=s with di,erent
multihypothesis weights. PSNRs are for damaged blocks only

241 Section 10.4. Simulation Results

QSIF Akiyo @ 30 f.p.s.

45

45.5

46

46.5

47

47.5

48

P
S

N
R

Y
 (

dB
)

TR
AV
BM
MFI
BM-MFI

10 20 30 40 50

Block loss rate (%)

Figure 10.5: Comparison between di,erent temporal concealment techniques when applied to
QSIF AKIYO at 30 frames=s. PSNRs are for damaged blocks only

QSIF Foreman @ 25 f.p.s.

28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

P
S

N
R

Y
 (

dB
)

TR
AV
BM
MFI
BM-MFI

10 20 30 40 50

Block loss rate (%)

Figure 10.6: Comparison between di,erent temporal concealment techniques when applied to
QSIF FOREMAN at 25 frames=s. PSNRs are for damaged blocks only

242 Chapter 10. Error Concealment Using Motion Field Interpolation

QSIF Table Tennis @ 30 f.p.s.

34

P
S

N
R

Y
 (

dB
)

33

32

31

30

29

28

27

TR
AV
BM
MFI
BM-MFI

10 20 30 40 50
Block loss rate (%)

Figure 10.7: Comparison between di,erent temporal concealment techniques when applied to
QSIF TABLE TENNIS at 30 frames=s. PSNRs are for damaged blocks only

In general, the best performance was achieved by BM-MFI, followed by
MFI, then BM, AV, and TR. As expected, TR performs well for the low-
movement AKIYO sequence. The poor performance of BM for AKIYO may be
due to an ambiguity problem where neighboring motion vectors give similar
SMD measures. A very interesting point to note is that the performance of
MFI starts to deteriorate for FOREMAN at high block loss rates. This may be
due to the high dependency of MFI on the availability of the neighboring
motion vectors. This can be improved using interleaving techniques, as was
described in Chapter 9. In all cases, however, the BM-MFI technique main-
tained its superior performance. This is a clear indication of the robustness
of the technique. Over the three sequences and the considered block loss rate
range, MFI provides on average 0:3 dB, 0:9 dB, and 1:4 dB improvements over
BM, AV, and TR, respectively, whereas BM-MFI provides a further 0:5 dB
improvement over MFI. This corresponds to improvements of about 0:8 dB,
1:4 dB, and 1:9 dB over BM, AV, and TR, respectively.

Figure 10.8 shows the subjective quality of the 58th frame of TABLE TENNIS

with a block loss rate of 30% when concealed using BM and BM-MFI. The
superior performance of the BM-MFI technique is immediately evident from
the good concealment of the left hand of the player. Note, however, that some
parts of the shirt are less sharp with the BM-MFI technique. This may be due
to the low-pass $ltering e,ect of the averaging (weighting) process.

243 Section 10.4. Simulation Results

(a) Original 58th frame (b) Damaged blocks, 30%

(c) Concealed using BM (d) Concealed using BM-MFI

Figure 10.8: Subjective quality of concealed 58th frame of QSIF TABLE TENNIS at 30 frames=s with
a block loss rate of 30%

10.4.2 Results Within an H.263 Decoder
This set of simulations tests the performance of the techniques when incor-
porated within an H.263 decoder. In this case, the assumptions made in the
previous set of simulations will be relaxed. In other words, previously re-
constructed, possibly damaged and concealed, frames will be used for both
prediction and concealment. This will result in temporal error propagation. In
addition, spatial error propagation will also occur, since H.263 uses VLC and
predictive coding.

The Telenor implementation [144] of H.263 was used in this simulation.
The decoder was modi$ed to perform error detection by detecting syntax and
semantic violations, as was described in Section 9.5. When an error is detected,
the decoding process is stopped, the decoder searches for the next synchro-
nization codeword, and decoding is resumed. All macroblocks between the
point where the error was detected and the synchronization point are marked
as damaged macroblocks. In this simulation, the H.263 encoder option to in-
sert synchronization codewords at the start of each GOB was switched on. All

244 Chapter 10. Error Concealment Using Motion Field Interpolation

Table 10.3: Comparison between di,erent temporal concealment techniques when applied to three
test sequences corrupted with a random bit error rate of 10−3. PSNRs are for whole frames

Error
free TR AV BM MFI BM-MFI

AKIYO PSNRY � 35.15 30.01 29.93 28.19 30.21 30.35
12 kbits=s PSNRC�

R
37.18 34.01 33.67 30.61 34.12 34.23

PSNRC�
B

39.16 36.14 36.03 35.00 36.20 36.32
PSNR 35.92 31.12 31.02 29.18 31.31 31.45

FOREMAN PSNRY � 27.93 19.11 19.30 19.59 19.56 20.05
24 kbits=s PSNRC�

R
35.02 30.49 29.01 28.92 30.64 30.67

PSNRC�
B

34.54 29.93 29.37 29.23 30.34 30.40
PSNR 29.26 20.71 20.84 21.11 21.15 21.62

TABLE TENNIS PSNRY � 33.21 18.36 18.25 18.58 18.68 18.95
48 kbits=s PSNRC�

R
38.21 23.86 22.50 22.40 23.91 23.93

PSNRC�
B

36.79 21.79 21.32 21.42 22.22 22.34
PSNR 34.22 19.39 19.16 19.43 19.70 19.94

other optional modes were switched o,. No INTRA refresh was employed.
Thus, only the $rst frame was INTRA coded.

The H.263 encoder was used to encode the three sequences AKIYO, FOREMAN,
and TABLE TENNIS2 at bit rates of 12 kbits=s, 24 kbits=s, and 48 kbits=s, respec-
tively. Note that the bit rates were chosen according to the amount of spatial
detail and movement within each sequence. Note also that all bit rates were
chosen within the very-low-bit-rate range, i.e., less than 64 kbits=s.

The compressed bitstreams were corrupted with random bit errors gener-
ated according to the MPEG-4 error robustness test speci$cation [210]. The
speci$cations provide an initial period of 1.5 s during which no errors are
injected. This allows for the encoder to transmit an initial INTRA frame
and for the codec operation to stabilize into a steady state before errors are
introduced.

Table 10.3 summarizes the performance of the $ve techniques when applied
to the three test sequences with a frame skip of 1 and a bit error rate (BER)
of 10−3. The quoted PSNRs are for whole frames and averaged over the
sequence. The quantities PSNRY � , PSNRC� , and PSNRC� represent the PSNRs

R B
of the separate luma and two chroma components, respectively, whereas PSNR

2The luma components of both AKIYO and TABLE TENNIS were zero-padded vertically to 128 lines
because Telenor’s H.263 can work only with an integer multiple of 16. The corresponding chroma
components were also appropriately padded.

245 Section 10.4. Simulation Results

10
–4

10
–3

20

21

22

23

24

25

26

27

28

P
S

N
R

 (
dB

)

QSIF Foreman at 24 kbits/s

TR
AV
BM
MFI
BM-MFI

BER

Figure 10.9: Comparison between di,erent temporal concealment techniques when applied to
QSIF FOREMAN. The sequence was H.263 encoded at 24 kbits=s and then corrupted with a range
of bit error rates

represents the PSNR of the three components together with a 4:2:0 subsam-
pling. Again, the best performance in each case was achieved by BM-MFI,
followed by MFI. For example, for the TABLE TENNIS sequence, MFI provides
improvements of 0:27 dB, 0:54 dB, and 0:31 dB over BM, AV, and TR, respec-
tively, whereas BM-MFI provides a further 0:24 dB improvement over MFI.
This corresponds to improvements of about 0:51 dB, 0:78 dB, and 0:55 dB over
BM, AV, and TR, respectively.

Figure 10.9 shows the performance of the $ve techniques when used to
conceal the 24 kbits=s QSIF FOREMAN sequence corrupted with BERs in the
range 10−4 to 10−3. At low BERs the di,erences between the techniques are
small. However, as the BER increases, the techniques split into three perfor-
mance levels. The lowest level includes TR and AV, the next level includes
BM and MFI, and the highest level includes BM-MFI.

Figure 10.10 shows a frame of the 24 kbits=s QSIF FOREMAN corrupted with
a BER of 10−3 and then decoded and concealed using BM and BM-MFI.
The superior performance of the BM-MFI technique is immediately evident,
especially at the eyes and the edges of the face.

It is worth noting here that at a BER of 10−3, the PSNRs of the con-
cealed sequences drop by about 5–9 dB compared to the error-free values,
and the subjective quality may not be acceptable. A close inspection of the

246 Chapter 10. Error Concealment Using Motion Field Interpolation

(a) Error free (b) No concealment

(c) Concealed using BM (d) Concealed using BM-MFI

Figure 10.10: Subjective quality of decoded and concealed frame of QSIF FOREMAN. The sequence
was H.263 encoded at 24 kbits=s and corrupted with a 10−3 bit error rate

decoded and concealed sequences revealed that this poor performance is due
mainly to the e,ects of spatial and temporal error propagation and also to
the imperfections of the error detection approach. In addition, it was observed
that temporal techniques do not perform well for intracoded blocks, scene
changes, and uncovered backgrounds. Thus, despite their advantages, temporal
error concealment techniques must be combined with spatial error conceal-
ment and, more importantly, must be supported by some error containment
techniques, such as INTRA refresh.

10.5	 Temporal Error Concealment for Multiple-
Reference Motion-Compensated Prediction

As already discussed, temporal error concealment is an important tool to
combat the e,ects of errors on transmitted video. A number of temporal error

247 Section 10.5. Temporal Error Concealment for Multiple-Reference

concealment techniques have been proposed in the literature, and their per-
formances have been extensively studied within typical single-reference video
codecs operating over various error-prone channels. There is, however, a need
to characterize the performance of such techniques within multiple-reference
video codecs. This is the main aim of this section.

Temporal error concealment within a multiple-reference video codec can be
split into two problems: spatial-components (dx; dy) recovery and temporal-
component dt recovery. Thus, a multiple-reference temporal error concealment
method can be represented by a combination of the form S-T, where S is the
technique used to recover the spatial components and T is the technique used
to recover the temporal component. In this section, S and T can be chosen
from the following list of techniques

ZR	 The recovered motion component (either spatial or temporal) is set to
zero. In Chapter 9 this was referred to as temporal replacement (TR).

AV	 The recovered motion component is set to the average of the correspond-
ing components of a set of neighboring motion vectors. In this section,
four neighboring vectors are used: top, bottom, left, and right.

BM	 This is a boundary-matching method (refer to Section 9.7.2 for a detailed
description). A set of candidate vectors is $rst chosen. Each candidate
is then used to conceal the damaged block. The quality of this conceal-
ment is assessed using the side-match distortion (SMD) measure, which
is de$ned as the sum of absolute (or squared) di,erences across the four
boundaries of the block. The candidate with the minimum SMD is cho-
sen. In this section, the set of candidates includes the four neighboring
vectors—top, bottom, left, and right—and the SMD is de$ned as the SAD
across the boundaries.

MFI This is the method described in this chapter. It uses motion $eld in-
terpolation to recover one vector per pel of the damaged block. In this
section a linear interpolation kernel is employed.

Since there are four techniques in the list, there are 16 possible combina-
tions of the form S-T. Each combination leads to a di,erent long-term temporal
concealment method. For example, assume that l =(lx; ly; lt), r =(rx; ry; rt),
t =(tx; ty; tt), and b =(bx; by; bt) are, respectively, the motion vectors of the
blocks to the left of, to the right of, above, and below the damaged block. A
combination of the form AV-BM means that the spatial components (dx; dy)
are $rst recovered using the AV method:

d̂x =
lx + rx + tx + bx and d̂y =

ly + ry + ty + by : (10.11)
4	 4

248 Chapter 10. Error Concealment Using Motion Field Interpolation

Then a set C = {d1; : : : ; d4} of four candidates is formed from the recovered
spatial components (d̂x; d̂y) and the four temporal components of the neigh-
boring blocks. In other words: d1 = (d̂x; d̂y; lt), d2 = (d̂x; d̂y; rt), d3 = (d̂x; d̂y; tt),
and d4 = (d̂x; d̂y; bt). The BM technique is then used to recover the temporal
component by choosing from this set of candidates. Thus

d̂= arg min SMD(di): (10.12)
di ∈C

A multiple-reference rate-constrained H.263-like codec was used to generate
the results of this section. This codec uses full-pel full-search block matching
with macroblocks of 16 × 16 pels, a maximum allowed spatial displacement
of ± 15 pels, SAD as the distortion measure, restricted motion vectors, and
reconstructed reference frames. Motion vectors are coded using the median
predictor and the VLC table of the H.263 standard. The frame signal (in case
of INTRA) and the DFD signal (in case of INTER) are transform encoded
according to the H.263 standard. The codec uses rate-constrained motion esti-
mation and mode decision as de$ned in the high-complexity mode of TMN10.
The codec employs a sliding-window control to maintain a long-term memory
of size M =10 frames. Only the $rst frame is INTRA coded, and no INTRA
refresh is employed. A $xed quantization parameter of QP =10 is used. Errors
were introduced randomly on a macroblock level. Thus, an error rate of 20%
means that 20% of the macroblocks are damaged per frame. It is assumed that
the decoder uses an ideal error detection mechanism. All quoted results refer
to the luma components of sequences.

10.5.1 Temporal-Component Recovery
This set of experiments investigate the best technique for recovering the tem-
poral component dt of a damaged long-term motion vector. In this case, the
spatial recovery technique S, in the combination S-T, was kept constant at ZR,
whereas the temporal recovery technique T was varied over ZR, AV, BM, and
MFI. In other words, four S-T combinations were considered: ZR-ZR, ZR-AV,
ZR-BM, and ZR-MFI.

Figures 10.11, 10.12, and 10.13 show the results for the QSIF sequences
AKIYO, FOREMAN, and TABLE TENNIS, respectively. Part (a) of each $gure shows
the performance with a frame skip of 3 over a range of macroblock error rates,
whereas part (b) shows the performance with a macroblock error rate of 20%
over a range of frame skips.

In general, the best temporal-component recovery is achieved by ZR and
BM (i.e., ZR-ZR and ZR-BM). The good performance of ZR is due to the
zero-biased distribution of the temporal components (Property 6:3:1:2). In other
words, the temporal component dt = 0 has the highest frequency of occurrence

249 Section 10.5. Temporal Error Concealment for Multiple-Reference

Temporal-component recovery, Akiyo, M=10, QP=10, Skip=3 Temporal-component recovery, Akiyo, M=10, QP=10, Macroblock error rate=20%

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

P
S

N
R

Y
 (

dB
)

ZR-ZR
ZR-AV
ZR-BM
ZR-MFI

28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

30

P
S

N
R

Y
 (

dB
)

ZR-ZR
ZR-AV
ZR-BM
ZR-MFI

10 20 30 40 50 1 2 3 4
Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.11: Temporal-component recovery for QSIF AKIYO with M =10 and QP =10

Temporal-component recovery, Foreman, M=10, QP=10, Skip=3 Temporal-component recovery, Foreman, M=10, QP=10, Macroblock error rate=20%

15

16

17

18

19

20

21

22

23

24

P
S

N
R

Y
 (

dB
)

ZR-ZR
ZR-AV
ZR-BM
ZR-MFI

19

19.2

19.4

19.6

19.8

20

20.2

20.4

20.6

20.8

21

P
S

N
R

Y
 (

dB
)

ZR-ZR
ZR-AV
ZR-BM
ZR-MFI

10 20 30 40 50 1 2 3

Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.12: Temporal-component recovery for QSIF FOREMAN with M =10 and QP =10

Temporal-component recovery, Table Tennis, M=10, QP=10, Skip=3 Temporal-component recovery, Table Tennis, M=10, QP=10, Macroblock error rate=20%

20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

P
S

N
R

Y
 (

dB
)

ZR-ZR
ZR-AV
ZR-BM
ZR-MFI

17

18

19

20

21

22

23

24

25

P
S

N
R

Y
 (

dB
)

ZR-ZR
ZR-AV
ZR-BM
ZR-MFI

10 20 30 40 50 1 2 3

Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.13: Temporal-component recovery for QSIF TABLE TENNIS with M =10 and QP =10

4

4

250 Chapter 10. Error Concealment Using Motion Field Interpolation

within the long-term memory block-motion $eld. Note that at low frame skips,
this simple ZR method is suNcient, whereas at high frame skips the more
complex method of BM has to be employed. This may be due to the fact
that at high frame skips, the zero-biased distribution becomes more spread
(see Property 6:3:1:2 and Figure 6.3). In other words, dt = 0 becomes less
probable, and longer temporal components start to appear more frequently in
the motion $eld. Such components need to be recovered using BM. Both AV
and MFI provide poor temporal-component recovery compared to BM and ZR.

10.5.2 Spatial-Components Recovery
This set of experiments investigates the best technique for recovering the spa-
tial components (dx; dy) of a damaged long-term motion vector. In this case,
the temporal recovery technique T, in the combination S-T, was kept con-
stant at ZR, whereas the spatial recovery technique S was varied over ZR,
AV, BM, and MFI. In other words, four S-T combinations were considered:
ZR-ZR, AV-ZR, BM-ZR, and MFI-ZR.

Figures 10.14, 10.15, and 10.16 show the results for the QSIF sequences
AKIYO, FOREMAN, and TABLE TENNIS, respectively. Part (a) of each $gure shows
the performance with a frame skip of 3 over a range of macroblock error rates,
whereas part (b) shows the performance with a macroblock error rate of 20%
over a range of frame skips.

In general, the best spatial-components recovery is achieved by MFI
followed by BM. This is similar to the single-reference results reported in
Section 10.4. Thus, moving from a single-reference system to a multiple-
reference system does not signi$cantly inOuence the spatial-components

Spatial-components recovery, Akiyo, M=10, QP=10, Skip=3 Spatial-components recovery, Akiyo, M=10, QP=10, Macroblock error rate=20%

24

25

26

27

28

29

30

31

P
S

N
R

Y
 (

dB
)

ZR-ZR
AV-ZR
BM-ZR
MFI-ZR

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

P
S

N
R

Y
 (

dB
)

ZR-ZR
AV-ZR
BM-ZR
MFI-ZR

10 20 30 40 50 1 2 3

Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.14: Spatial-components recovery for QSIF AKIYO with M =10 and QP =10

4

251 Section 10.5. Temporal Error Concealment for Multiple-Reference

Spatial-components recovery, Foreman, M=10, QP=10, Skip=3 Spatial-components recovery, Foreman, M=10, QP=10, Macroblock error rate=20%

16

17

18

19

20

21

22

23

24

25

P
S

N
R

Y
 (

dB
)

ZR-ZR
AV-ZR
BM-ZR
MFI-ZR

20

20.5

21

21.5

22

22.5

23

23.5

24

P
S

N
R

Y
 (

dB
)

ZR-ZR
AV-ZR
BM-ZR
MFI-ZR

10 20 30 40 50 1 2 3

Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.15: Spatial-components recovery for QSIF FOREMAN with M =10 and QP =10

Spatial-components recovery, Table Tennis, M=10, QP=10, Skip=3 Spatial-components recovery, Table Tennis, M=10, QP=10, Macroblock error rate=20%

20.5

21

21.5

22

22.5

23

23.5

P
S

N
R

Y
 (

dB
)

ZR-ZR
AV-ZR
BM-ZR
MFI-ZR

17

18

19

20

21

22

23

24

25

P
S

N
R

Y
 (

dB
)

ZR-ZR
AV-ZR
BM-ZR
MFI-ZR

10 20 30 40 50 1 2 3 4
Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.16: Spatial-components recovery for QSIF TABLE TENNIS with M =10 and QP=10

recovery process. A very interesting point to note is that the performance of
MFI starts to deteriorate at high frame skips. This may be due to the fact that
at high frame skips, the spatial components within the motion $eld become
less correlated (see Property 6:3:1:3 and Figures 6.4(a) and 6.4(b)). Since MFI
assumes a high correlation between the spatial components, its performance
will deteriorate with decreased correlation.

10.5.3 Spatial-Temporal-Components Recovery
Comparing the results of Section 10.5.1 to those of Section 10.5.2 it can be
concluded that spatial-components recovery is, in general, more important than

4

252 Chapter 10. Error Concealment Using Motion Field Interpolation

Table 10.4: Spatial-temporal recovery for QSIF AKIYO with M =10, QP =10, skip= 3, and a
macroblock error rate of 30%

Spatial-components recovery

ZR AV BM MFI

Temporal-	 TR 27.91 27.80 26.79 29.22
component AV 27.23 27.49 27.07
recovery	 BM 28.33

MFI 27.42

28.58
28.10 27.38 29.48
27.58 26.38 28.69

Table 10.5: Spatial-temporal recovery for QSIF FOREMAN with M =10, QP =10, skip = 3, and a
macroblock error rate of 30%

Spatial-components recovery

ZR AV BM MFI

Temporal-
component
recovery

TR
AV
BM
MFI

18.57
18.25
18.59
18.14

19.68
19.58
20.13
19.51

20.32
19.72
20.80
19.65

20.71
20.56
21.18
20.48

temporal-component recovery. For example, in Figure 10.13(b), at a frame
skip of 3, moving from the best technique, ZR-BM, to the worst technique,
ZR-MFI, drops the quality by about 0:3 dB, whereas in Figure 10.16(b) mov-
ing from the best technique, MFI-ZR, to the worst technique, AV-ZR, drops
the quality by about 1 dB. It can be concluded also that spatial-components re-
covery is, in general, more complex than temporal-component recovery. With
temporal-component recovery, a simple technique like ZR can be suNcient,
whereas with spatial-components recovery more complex techniques like MFI
and BM are essential. Furthermore, the results of Sections 10.5.1 and 10.5.2
indicate that the combination MFI-BM (i.e., spatial recovery using MFI and
temporal recovery using BM) may provide the best spatial-temporal recovery.
This is con$rmed in Tables 10.4, 10.5, and 10.6, which show the performance
of all 16 possible combinations with a frame skip of 3 and a macroblock error
rate of 30%.

10.5.4 Multihypothesis Temporal Error Concealment
It was demonstrated in Section 10.4 that a more robust performance can
be achieved if the concealed block is a weighted average of a number of

253 Section 10.5. Temporal Error Concealment for Multiple-Reference

Table 10.6: Spatial-temporal recovery for QSIF TABLE TENNIS with M =10, QP =10, skip = 3, and
a macroblock error rate of 30%

Spatial-components recovery

ZR AV BM MFI

Temporal-
component
recovery

TR
AV
BM
MFI

19.62
19.54
19.68
19.55

19.57
19.57
19.87
19.74

20.06
20.02
20.09
20.00

20.46
20.40
20.58
20.40

candidate concealments, where each candidate concealment is provided using
a di,erent recovered motion vector. This is very similar to multihypothesis
motion compensation [106]. Thus, it is termed multihypothesis temporal er-
ror concealment.

In this subsection a multihypothesis temporal concealment technique to be
used with long-term memory motion-compensated prediction is presented. In
this case, the candidate concealments are taken from di,erent reference frames.
The details of this technique are as follows. The spatial components are $rst
recovered using MFI (as suggested in Section 10.5.2). However, instead of
recovering a single temporal component, all four neighboring temporal com-
ponents are utilized. Combined with the recovered spatial components, each
neighboring temporal component provides a candidate concealment from the
corresponding reference frame. The four candidate concealments are then av-
eraged and used to conceal the damaged block in the current frame. In other
words, a damaged pel (x; y) in the current frame fc is concealed as follows:

4
f̂c(x; y)=

1 ∑
fr (x + d̂x (x; y); y + d̂y (x; y); dti); (10.13)

4 i=1

where fr (·; ·; dt) refers to reference frame dt in the multiframe memory,
(d̂x(x; y); d̂y(x; y)) are the spatial components recovered at pel (x; y) using
MFI, and dti , i =1; : : : ; 4 are the temporal components of the four neighboring
vectors. In what follows, this approach is designated as MFI-MH.

Figures 10.17, 10.18, and 10.19 compare the performance of the MFI-MH
technique to that of MFI-BM (which is the best combination, as suggested in
Section 10.5.3) and also to that of ZR-ZR (which is the simplest and most
commonly used combination). The $gures con$rm the superior performance
of the suggested combination, MFI-BM, compared to the most commonly used
combination, ZR-ZR. In addition, the $gures show that further improvements
can be achieved using the multihypothesis MFI-MH technique.

254 Chapter 10. Error Concealment Using Motion Field Interpolation

Akiyo, M=10, QP=10, Skip=3 Akiyo, M=10, QP=10, Macrblock error rate=20%

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

P
S

N
R

Y
 (

dB
)

ZR-ZR
MFI-BM
MFI-MH

28.5

29

29.5

30

30.5

31

P
S

N
R

Y
 (

dB
)

ZR-ZR
MFI-BM
MFI-MH

10 20 30 40 50 1 2 3
Macroblock error rate (%) Frame skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.17: Multihypothesis temporal concealment for QSIF AKIYO with M =10 and QP =10

10 20 30 40 50
16

17

18

19

20

21

22

23

24

25

26

Macroblock error rate (%)

P
S

N
R

Y
 (

dB
)

Foreman, M=10, QP=10, Skip=3

ZR-ZR
MFI-BM
MFI-MH

1 2 3 4
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

Frame skip

P
S

N
R

Y
 (

dB
)

Foreman, M=10, QP=10, Macrblock error rate=20%

ZR-ZR
MFI-BM
MFI-MH

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.18: Multihypothesis temporal concealment for QSIF FOREMAN with M =10 and QP =10

This is also con$rmed using Figure 10.20, which shows the subjective
quality of the 102nd frame of QSIF FOREMAN encoded at 8.33 frames=s with
M =10, QP =10, and corrupted with a random macroblock error rate of 20%.
Figure 10.20(a) shows the error-free reconstructed frame, whereas
Figure 10.20(b) shows the locations of the damaged macroblocks in addition
to errors propagated from previous frames. Figures 10.20(c), 10.20(d), and
10.20(e) show the same frame when concealed using ZR-ZR, MFI-BM, and
MFI-MH, respectively. The $gures clearly show that the suggested MFI-BM
combination and the multihypothesis MFI-MH technique both outperform the
commonly used ZR-ZR technique. In addition, the $gures clearly show the
superior subjective quality of the MFI-MH technique (Figure 10.20(e)), even

4

255 Section 10.6. Discussion

Table Tennis, M=10, QP=10, Skip=3 Table Tennis, M=10, QP=10, Macrblock error rate=20%

20.5

21

21.5

22

22.5

23

23.5
ZR-ZR
MFI-BM
MFI-MH

17

18

19

20

21

22

23

24

25

26

P
S

N
R

Y
 (

dB
)

ZR-ZR
MFI-BM
MFI-MH

P
S

N
R

Y
 (

dB
)

10 20 30 40 50 1 2 3

Macroblock error rate (%) Skip

(a) Performance over a range of error rates (b) Performance over a range of frame skips

Figure 10.19: Multihypothesis temporal concealment for QSIF TABLE TENNIS with M =10 and
QP =10

over that of MFI-BM (Figure 10.20(d)). In particular note the left eye of
Foreman (to the right of the viewer) and the diagonal lines in the walls.

10.6 Discussion

Because of their simplicity, no added redundancy, and minimum delay, error
concealment techniques were identi$ed in this chapter as the most suitable
techniques for mobile video applications. Thus, it was decided to concentrate
on error concealment and in particular on temporal techniques.

Conventional temporal concealment techniques estimate one concealment
displacement for the whole damaged block and then use translational dis-
placement compensation to conceal the block from a reference frame. It was
realized, therefore, that wrong estimation of the concealment displacement can
lead to poor concealment of the entire or most of the block. To overcome
this drawback, a novel temporal concealment technique was designed. In this
technique, motion $eld interpolation (MFI) is used to estimate one conceal-
ment displacement per pel of the damaged block. Each pel is then concealed
individually. In this case, incorrect estimation of a concealment displacement
will a,ect only the corresponding pel rather than the entire block. The inherent
motion information recovery and the good motion compensation performance
of the MFI technique improve both stages of temporal concealment, i.e., esti-
mation and compensation.

To achieve a more robust performance, a second novel temporal conceal-
ment technique was also designed. In this technique, multihypothesis mo-
tion compensation (MHMC) is used to combine the MFI technique with a

4

256 Chapter 10. Error Concealment Using Motion Field Interpolation

(a) Error free (32.26 dB) (b) Locations of errors (with propagation)

(c) Concealed using ZR-ZR (20.62 dB) (d) Concealed using MFI-BM (22.91 dB)

(e) Concealed using MFI-MH (25.05 dB)

Figure 10.20: Subjective quality of 102nd frame of QSIF FOREMAN encoded at 8.33 frames=s with
M =10, QP=10, and corrupted with a macroblock error rate of 20%

257 Section 10.6. Discussion

boundary matching (BM) temporal technique. In e,ect, this improves the sec-
ond stage of temporal concealment, i.e., compensation.

Simulation results, within both an isolated error environment and an H.263
codec, showed the superior objective and subjective performances of the
designed techniques. The MFI technique achieved reasonable improvements
over conventional temporal concealment techniques, but it was found that
its performance can slightly deteriorate at very high error rates. The com-
bined BM-MFI technique showed a more superior and robust performance at
all error rates.

It was also observed that factors like spatial and temporal error propagation,
imperfections of the error detection algorithm, scene changes, and uncovered
background can severely degrade the performance of temporal concealment
techniques. Thus, despite their advantages, such techniques must be combined
with spatial techniques and must also be supported by powerful error detection
and error containment techniques.

The chapter also investigated the performance of temporal error conceal-
ment techniques when incorporated within an LTM-MCP codec. It was found
that the best techniques to recover the temporal component are zero replace-
ment (ZR) and boundary matching (BM). The former is suNcient at low frame
skips, whereas the latter is preferred at high frame skips. It was also found that
the best technique to recover the spatial components is the MFI technique. All
these $ndings were explained in view of the properties of the long-term mem-
ory block-motion $eld. In general, it was concluded that spatial-components
recovery is more complex and more important than temporal-component re-
covery. In addition, a combination of the form MFI-BM (i.e., spatial recovery
using MFI and temporal recovery using BM) will provide the best spatial-
temporal recovery. In order to achieve a more robust performance, the chapter
described the design of a multihypothesis multiple-reference temporal con-
cealment technique. In this technique, a damaged block is concealed using
the average of four candidate concealments, probably from di,erent reference
frames. Simulation results showed the superior performance of this technique.

Appendix

Fast Block-Matching Algorithms

A.1 Notation and Assumptions

•	 BDM: a block distortion measure, like the SSD or SAD.

•	 dm: maximum allowed motion displacement.

•	 N : total number of steps in the search. It is an integer number greater
than 0.

•	 s: current search step size.

•	 (cx; cy): current search center.

•	 (mx; my): current location of minimum distortion.

•	 (dx; dy): #nal motion vector.

•	 �·�: %oor operator. It rounds its argument to the nearest integer toward
−∞.

•	 �·�: ceil operator. It rounds its argument to the nearest integer toward
+∞.

•	 min: minimize operator. It returns the minimum of a given function.

•	 max: maximize operator. It returns the maximum of a given function.

•	 arg: argument operator. It returns the argument of a given function.

•	 All algorithms presented in this appendix assume full-pel accuracy. Sub-
pel accuracy can easily be achieved using very minor modi#cations.

•	 If the search procedure attempts to search a location outside the search
window, the corresponding BDM is set to a maximum value.

259

260 Appendix. Fast Block-Matching Algorithms

•	 It is assumed that the search procedure keeps a record of all locations
searched so far and their BDM values. This avoids reevaluating the same
BDMs in subsequent steps.

A.2 The Two-Dimensional Logarithmic (TDL) Search

The two-dimensional logarithmic (TDL) search was proposed by Jain and
Jain in 1981 [54]. It uses a uniform search pattern of #ve locations (the
center and endpoints of a + shape). At each step, the search pattern is
centered at the minimum location from the previous step. The step size is
halved if the center of the search is the same as that of the previous step.
The search is stopped when the step size is 1. In this case, nine locations,
rather than #ve, are searched (the center and endpoints of a ∗ shape) to #nd
the #nal motion vector. The TDL algorithm is described in the following
procedure.

1.	 Initialize the search step size to

2�log2 dm �−1):s = max(2;

2.	 Initialize the center of search to the origin of the search window:

(cx; cy)= (0; 0):

3.	 Evaluate the BDM at the center of the search and its four vertical and horizontal neighbors
at a step size of s. Out of this set of #ve locations, #nd the one that achieves the minimum
BDM:

(mx; my) = arg min BDM(i; j);
(i; j) ∈ P1

where

P1 = {(cx; cy); (cx + s; cy); (cx − s; cy); (cx; cy + s); (cx; cy − s)}:

4.	 IF the minimum is at the center of the search pattern, i.e., if (mx; my)= (cx; cy),
THEN

(a) Halve the search step size:
s

s = :
2

(b) IF the search step size is 1, i.e., if s =1, THEN

i.	 Evaluate the BDM at the center of the search and its eight immediate neigh-
bors. Out of this set of nine locations, set the motion vector to the one that
achieves the minimum BDM:

(dx; dy) = arg min BDM(i; j);
(i; j) ∈ P2

261 Section A.3. The N -Steps Search (NSS)

where

P2 = {(cx; cy); (cx + 1; cy); (cx − 1; cy); (cx; cy + 1); (cx; cy − 1);

(cx − 1; cy − 1); (cx − 1; cy + 1); (cx + 1; cy − 1); (cx + 1; cy + 1)}:

ii.	 STOP

(c) ELSE (when the step size is not 1, i.e., s �=1) GOTO step 3.

5.	 ELSE (when the minimum is not in the center, i.e., (mx; my) �= (cx; cy))

(a) Set the center of the search to the new minimum location:

(cx; cy)= (mx; my):
(b) GOTO step 3.

A.3 The N -Steps Search (NSS)

This is the general form of the three-steps search (TSS) reported by Koga
et al. in 1981 [145]. It uses a uniform search pattern of nine locations (the
center and endpoints of a ∗ shape). At each step, the step size is halved
and the search pattern is centered at the minimum location from the previous
step. The search is stopped when the step size is 1. The TSS starts with
a step size of ± 4 pels in the #rst step, then ± 2 pels in the second step
and ± 1 pel in the third step. This gives a maximum allowed displacement of
± 4± 2± 1= ± 7 pels. For larger search windows the number of steps must be
increased. This is called the N -steps search and is described in the following
procedure.

1.	 Find the required number of steps N such that

2N −1≤dm≤2N :

2.	 Initialize the search step size to

s =2N −1:

3.	 Initialize the center of search to the origin of the search window:

(cx; cy)= (0; 0):

4.	 Evaluate the BDM at the center of the search and its eight neighbors at a step size of s.
Out of this set of nine locations, #nd the one that achieves the minimum BDM:

(mx; my) = arg min BDM(i; j);
(i; j) ∈ P

where

P = {(cx; cy); (cx + s; cy); (cx − s; cy); (cx; cy + s); (cx; cy − s);

(cx − s; cy − s); (cx − s; cy + s); (cx + s; cy − s); (cx + s; cy + s)}:

262 Appendix. Fast Block-Matching Algorithms

5.	 IF the search step size is 1, i.e., if s =1, THEN

(a) Set the #nal motion vector to the minimum location found so far:

(dx; dy)= (mx; my):
(b) STOP.

6.	 ELSE (when the step size is not 1, i.e. s �=1)

(a) Halve the step size:
s

s = :
2

(b) Set the center of the search to the minimum location:

(cx; cy)= (mx; my):
(c) GOTO step 4.

A.4 The One-at-a-Time Search (OTS)

The one-at-a-time search (OTS) was proposed by Srinivasan and Rao in 1985
[146]. It uses two #xed-size uniform patterns. The search starts using a hori-
zontal pattern of one center location and its immediate left and right neighbors.
At each step, this search pattern is moved horizontally and centered at the min-
imum location from the previous step. This continues until the minimum is in
the center of the pattern (i.e., the minimum is the same as that of the previous
step). In this case, the search switches to the vertical direction using a pattern
of one center location and its immediate top and bottom neighbors. This is
explained in the following procedure.

1.	 Initialize the center of search to the origin of the search window:

(cx; cy)= (0; 0):

2.	 Evaluate the BDM at the center of the search and its immediate left and right neighbors.
Out of this set of three locations, #nd the one that achieves the minimum BDM:

(mx; my) = arg min BDM(i; j);
(i; j) ∈ Ph

where
Ph = {(cx; cy); (cx + 1; cy); (cx − 1; cy)}:

3.	 IF the minimum is at the center of the search pattern, i.e., (mx; my)= (cx; cy), THEN GOTO
step 5 (i.e., vertical direction).

4.	 ELSE

(a) Move the center of the search to the new minimum location:

(cx; cy)= (mx; my):

(b) GOTO step 2 (i.e., continue in the horizontal direction).

� �

263 Section A.5. The Cross-Search Algorithm (CSA)

5.	 Evaluate the BDM at the center of the search and its immediate top and bottom neighbors.
Out of this set of three locations, #nd the one that achieves the minimum BDM:

(mx; my) = arg min BDM(i; j);
(i; j) ∈ Pv

where

Pv = {(cx; cy); (cx; cy + 1); (cx; cy − 1)}:

6. IF the minimum is at the center of the search pattern, i.e., (mx; my)= (cx; cy), THEN

(a) Set the #nal motion vector to the current minimum:

(dx; dy)= (mx; my)

(b) STOP.

7.	 ELSE

(a) Move the center of the search to the new minimum location:

(cx; cy)= (mx; my):

(b) GOTO step 5 (i.e., continue in the vertical direction).

A.5 The Cross-Search Algorithm (CSA)

The cross-search algorithm (CSA) was proposed by Ghanbari in 1990 [147].
The search includes an early-termination criterion where, in the #rst step, a
threshold is used to detect if the block is stationary. The search starts with a
uniform pattern of #ve locations (the center and endpoints of an × shape). At
each step, the search step size is halved and the search pattern is centered at
the minimum location from the previous step. The search is stopped when the
step size is 1. In this case, the search switches to one of two uniform patterns:
#ve locations using either an × shape or a + shape. This is explained in the
following procedure.

1.	 Evaluate BDM(0; 0).

2.	 IF BDM(0; 0) ¡ Threshold, THEN STOP.

3.	 Initialize the center of search to the origin of the search window:

(cx; cy)= (0; 0):

4.	 Initialize the search step size to half the maximum allowed displacement:

dm s = :
2

�	 �

264 Appendix. Fast Block-Matching Algorithms

5.	 Evaluate the BDM at the center of the search and its four diagonal neighbors at a step
size of s. Out of this set of #ve locations, #nd the one that achieves the minimum BDM:

(mx; my) = arg min BDM(i; j);
(i; j) ∈ P1

where

P1 = {(cx; cy); (cx − s; cy − s); (cx + s; cy − s); (cx − s; cy + s); (cx + s; cy + s)}:
6.	 IF search step size is 1, i.e., if s =1, THEN

(a)	 IF the minimum (mx; my) is one of the three locations (cx; cy), (cx − 1; cy − 1),
or (cx + 1; cy + 1), THEN

i.	 Set the center of search to the minimum location:

(cx; cy)= (mx; my):

ii.	 Evaluate the BDM at the center of the search and its four horizontal and
vertical immediate neighbors. Out of this set of #ve locations, set the
motion vector to the one that achieves the minimum BDM:

(dx; dy) = arg min BDM(i; j);
(i; j) ∈ P2

where

P2 = {(cx; cy); (cx − 1; cy); (cx + 1; cy); (cx; cy − 1); (cx; cy + 1)}:
iii.	 STOP.

(b)	 ELSE

i.	 Set the center of search to the minimum location:

(cx; cy)= (mx; my):

ii.	 Evaluate the BDM at the center of the search and its four diagonal imme-
diate neighbors. Out of this set of #ve locations, set the motion vector to
the one that achieves the minimum BDM:

(dx; dy) = arg min BDM(i; j);
(i; j) ∈ P3

where

P3 = {(cx; cy); (cx − 1; cy − 1); (cx + 1; cy − 1);

(cx − 1; cy + 1); (cx + 1; cy + 1)}:
iii.	 STOP.

7.	 ELSE (when step size is not 1, i.e., s �=1)

(a)	 Halve the step size: s
s = :

2
(b)	 Set the center of the search to the minimum location:

(cx; cy)= (mx; my):

(c)	 GOTO step 5.

265 Section A.6. The Diamond Search (DS)

A.6 The Diamond Search (DS)

The diamond search (DS) algorithm was proposed by Zhu and Ma in 1997
[150,151]. An identical version of the algorithm has also been proposed by
Tham et al. in 1998 [149]. The algorithm uses two #xed-search patterns. It
starts with a pattern of nine locations forming a diamond with a step size of
2. At each step, this search pattern is centered at the minimum location from
the previous step. This process continues until the minimum is in the center
of the pattern (i.e., the minimum is the same as that of the previous step). In
this case, the algorithm switches to the second pattern. This consists of #ve
locations forming a diamond with a step size of 1. This pattern is used only
once and the search is then terminated. This is explained in the following
procedure.

1.	 Initialize the center of search to the origin of the search window:

(cx; cy)= (0; 0):

2.	 Evaluate the BDM at nine locations forming a diamond with a step size of 2 centered
at the current center location (cx; cy). Out of this set of nine locations, #nd the one that
achieves the minimum BDM:

(mx; my) = arg min BDM(i; j);
(i; j) ∈ Pd1

where

Pd1 = {(cx; cy); (cx + 2; cy); (cx − 2; cy); (cx; cy + 2); (cx; cy − 2)

(cx − 1; cy − 1); (cx + 1; cy − 1); (cx − 1; cy + 1); (cx + 1; cy + 1)}:

3.	 IF the minimum is at the center of the search pattern, i.e., (mx; my)= (cx; cy),
THEN

(a)	 Evaluate the BDM at #ve locations forming a diamond with a step size of 1
centered at the current center location (cx; cy). Out of this set of #ve locations,
set the motion vector to the one that achieves the minimum BDM:

(dx; dy) = arg min BDM(i; j);
(i; j) ∈ Pd2

where

Pd2 = {(cx; cy); (cx + 1; cy); (cx − 1; cy); (cx; cy + 1); (cx; cy − 1)}:
(b)	 STOP.

4.	 ELSE (when the minimum is not in the center, i.e., (mx; my) �= (cx; cy)),

(a)	 Set the center of the search to the new minimum location:

(cx; cy)= (mx; my):

(b)	 GOTO step 2.

Bibliography

[1]	 UMTS Forum. The future mobile market: Global trends and develop-
ments with a focus on Western Europe. Report 8, UMTS Forum, March
1999. Download from http://www.umts-forum.org/reports.html.

[2]	 The GSM Association. http://www.gsmworld.com.
[3]	 Mobile GPRS. http://www.mobileGPRS.com.
[4]	 The Electronics & Communications Division of the IEE. Special

issue on the universal mobile telecommunications system. IEE
Electronics & Communication Engineering Journal, 12(3):89–152,
June 2000.

[5]	 M. Budagavi, W. R. Heinzelman, J. Webb, and R. Talluri. Wireless
MPEG-4 video communication on DSP chips. IEEE Signal Processing
Magazine, 17(1):36 –53, January 2000.

[6]	 A. Launiainen, A. Jore, E. Ryytty, T. H>am>al>ainen, and J. Saarinen.
Evaluation of TMS320C62 performance in low-bit-rate video encoding.
In Proceedings of the IEEE Third Annual Multimedia and
Applications Conference (MTAC), pages 364 –368, Anaheim, CA,
15 –17 September 1998.

[7]	 D. R. Bull, C. N. Canagarajah, and A. R. Nix, editors. Insights
into Mobile Multimedia Communications. Signal Processing and Its
Applications. Academic Press, London, 1999.

[8]	 D. T. Hoang, P. M. Long, and J. S. Vitter. ECcient cost measures for
motion estimation at low bit rates. IEEE Transactions on Circuits and
Systems for Video Technology, 8(4):488–500, August 1998.

[9]	 C. A. Poynton. Frequently asked questions about color. http://home.
inforamp.net/~poynton/ColorFAQ.html.

[10]	 A. Murat Tekalp. Digital Video Processing. Prentice Hall Signal
Processing Series. Prentice Hall, Englewood CliEs, NJ, 1995.

[11]	 J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall.
MPEG Video Compression Standard. Digital Multimedia Standards
Series. Chapman & Hall, New York, 1996.

[12]	 C. A. Poynton. Frequently asked questions about gamma. http://
home.inforamp.net/~poynton/GammaFAQ.html.

267

268	 Bibliography

[13]	 A. N. Netravali and B. G. Haskell. Digital Pictures: Representation,
Compression and Standards, 2nd edition. Applications of
Communications Theory Series. Plenium Press, New York, 1995.

[14]	 CCIR. Recommendation 601-2: Encoding parameters of digital
television for studios. In Digital Methods of Transmitting Television
Information, pages 95 –104. CCIR (currently ITU-R), 1990.

[15]	 M. Ghanbari. Video Coding—an Introduction to Standard Codecs.
Volume 42 of IEE Telecommunications Series. The Institution of
Electrical Engineers IEE, London, 1999.

[16]	 C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27(3):379– 423, 1948.

[17]	 C. E. Shannon. Coding theorems for a discrete source with a Gdelity
criterion. Part 4, IRE National Convention Record, 1959.

[18]	 T. Berger. Rate Distortion Theory. Prentice-Hall, Englewood CliEs,
NJ, 1971.

[19]	 J. Max. Quantizing for minimum distortion. IRE Transactions on
Information Theory, 6:7–12, March 1960.

[20]	 S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions
on Information Theory, 28:129–137, March 1982.

[21]	 R. C. Wood. On optimum quantization. IEEE Transactions on
Information Theory, 15(2):248–252, 1969.

[22]	 D. A. HuEman. A method for the construction of minimum redundancy
codes. Proceedings of the IRE, 40:1098–1101, 1952.

[23]	 M. Hankamer. A modiGed huEman procedure with reduced memory
requirements. IEEE Transactions on Communication, 27(6):930 –932,
1979.

[24]	 G. G. Langdon. An introduction to arithmetic coding. IBM Journal,
Research and Development, 28(2):135 –149, 1984.

[25]	 ITU-R. Methodology for the subjective assessment of the quality of
television pictures. Recommendation BT.500-6, ITU-R, 1994.

[26]	 K. T. Tan, M. Ghanbari, and D. E. Pearson. An objective measurement
tool for MPEG video quality. Signal Processing, 7:279–294, 1998.

[27]	 T. Alpert, V. Baroncini, D. Choi, L. Contin, R. Koenen, F. Pereira, and
H. Peterson. Subjective evaluation of MPEG-4 video codec proposals:
Methodological approach and test procedures. Signal Processing:
Image Communication, 9(4):305 –325, May 1997.

[28]	 C. C. Cutler. DiEerential quantization of communication signals. U.S.
Patent No. 2605361, 29 July 1952.

[29]	 M. Rabbani and P. W. Jones. Digital Image Compression Techniques.
Volume TT7 of SPIE Tutorial Texts in Optical Engineering. SPIE–The
International Society for Optical Engineering, Washington, DC, 1991.

Bibliography	 269

[30]	 R. J. Clarke. Transform Coding of Images. Microelectronics and Signal
Processing. Academic Press, London, 1985.

[31]	 E. Feig and S. Winograd. Fast algorithms for the discrete cosine
transform. IEEE Transactions on Signal Processing, 40(9):2174 –2193,
September 1992.

[32]	 N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform.
IEEE Transactions on Computers, C-23:90 –93, January 1974.

[33]	 K. R. Rao and P. Yip. Discrete Cosine Transform—Algorithms,
Advantages, Applications. Academic Press, San Diego, CA, 1990.

[34]	 D. E. Pearson and M. W. Whybray. Transform coding of images using
interleaved blocks. IEE Proceedings, Part F, 131:466–472, August
1984.

[35]	 H. S. Malvar and D. H. Staelin. The LOT: Transform coding without
blocking eEects. IEEE Transactions on Acoustics, Speech and Signal
Processing, 37(4):553–559, April 1989.

[36]	 S. Minami and A. Zakhor. An optimization approach for removing
blocking eEects in transform coding. IEEE Transactions on Circuits
and Systems for Video Technology, 5(2):74 –82, April 1995.

[37]	 S. Nanda and W. A. Pearlman. Tree coding of image subbands. IEEE
Transactions on Image Processing, 1(2):133–147, 1992.

[38]	 R. E. Crochiere, S. A. Webber, and F. L. Flanagan. Digital coding of
speech in subbands. Bell Systems Technical Journal, 55(8):1069–1085,
1976.

[39]	 J. Woods and S. O’Neil. Subband coding of images. IEEE
Transactions on Acoustics, Speech and Signal Processing, ASSP-
34:1278–1288, October 1986.

[40]	 J. M. Shapiro. Embedded image coding using zerotrees of wavelet
coeCcients. IEEE Transactions on Signal Processing, 41:3445 –3462,
1993.

[41]	 A. Said and W. A. Pearlman. Image compression using the spatial-
orientation tree. In Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), pages 279–282, Chicago, May
1993.

[42]	 A. Said and W. A. Pearlman. A new fast and eCcient image codec
based on set partitioning in hierarchical trees. IEEE Transactions on
Circuits and Systems for Video Technology, 6:243–250, June 1996.

[43]	 O. Egger, W. Li, and M. Kunt. High compression image coding using
an adaptive morphological subband decomposition. Proceedings of the
IEEE, 83:272–287, February 1995.

[44]	 D. W. Redmill and D. R. Bull. Non-linear perfect reconstruction Glter
banks for image coding. In Proceedings of the IEEE International

270	 Bibliography

Conference on Image Processing (ICIP), pages 593–596, Lausanne,
Switzerland, 16 –19 September 1996.

[45]	 Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer
design. IEEE Transactions on Communications, COM-28(1):84 –95,
1980.

[46]	 P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained
vector quantization. IEEE Transactions on Acoustics, Speech and
Signal Processing, 37(1):31– 42, January 1989.

[47]	 Chang-Hsing Lee and Ling-Hwei Chen. A fast search algorithm
for vector quantization using mean pyramids of codewords. IEEE
Transactions on Communications, 43:1697–1702, 1995.

[48]	 T. D. Lookabaugh and R. M. Gray. High-resolution quantization theory
and the vector quantizer advantage. IEEE Transactions on Information
Theory, IT-35:1020 –1033, 1989.

[49]	 M. Kunt, A. Ikonomopoulos, and M. Kocher. Second-generation image-
coding techniques. Proceedings of the IEEE, 73(4):549–574, April
1985.

[50]	 M. Kunt, M. Bernard, and R. Leonardi. Recent results in high-
compression image coding. IEEE Transactions on Circuits and
Systems, CAS-34(11):1306 –1336, November 1987.

[51]	 M. E. Al-Mualla. Second-generation image coding techniques. Master’s
thesis, University of Bristol, Faculty of Engineering, Department of
Electrical and Electronics Engineering, October 1996.

[52]	 R. J. Clarke. Digital Compression of Still Images and Video. Signal
Processing and Its Applications. Academic Press, London, 1995.

[53]	 B. G. Haskell, F. W. Mounts, and J. C. Candy. Interframe coding of
videotelephone pictures. Proceedings of the IEEE, 60:792–800, July
1972.

[54]	 J. R. Jain and A. K. Jain. Displacement measurement and its application
in interframe image coding. IEEE Transactions on Communications,
COM-29(12):1799–1808, December 1981.

[55]	 F. Dufaux and F. Moscheni. Motion estimation techniques for digital
TV: A review and a new contribution. Proceedings of the IEEE, 83(6):
858–875, June 1995.

[56]	 M. F. Chowdhury, A. F. Clark, A. C. Downton, and D. E. Pearson. A
switched model-based coder for video signals. IEEE Transactions on
Circuits and Systems for Video Technology, 4:216 –217, June 1994.

[57]	 D. E. Pearson. Developments in model-based video coding. Proceed-
ings of the IEEE, 83(6):892–906, June 1995.

[58]	 CCITT=SG XV. Codecs for videoconferencing using primary digital
group transmission. Recommendation H.120, CCITT (currently
ITU-T), Geneva, 1989.

Bibliography	 271

[59]	 CCITT=SG XV. Video codec for audiovisual services at p × 64 kbit=s.
Recommendation H.261, CCITT (currently ITU- T), Geneva, 1993.

[60]	 CCIR. Transmission of component-coded digital television signals
for contribution-quality applications at bit rates near 140 Mbit=s.
Recommendation 721, CCIR (currently ITU-R), Geneva, 1990.

[61]	 CCIR. Digital coding of component television signals for contribution-
quality applications in the range 34–45 Mbit=s. Recommendation 723,
CCIR (currently ITU-R), Geneva, 1992.

[62]	 ISO=IEC JTC1=SC29=WG11. Information technology—Coding of
moving pictures and associated audio for digital storage media at up to
about 1:5 Mbits=s. Part 2: Video. Draft ISO/IEC 11172-2 (MPEG-1),
ISO=IEC, Geneva, 1991.

[63]	 ISO=IEC JTC1=SC29=WG11 and ITU-T=SG15. Information technol-
ogy—Generic coding of moving pictures and associated audio. Part 2:
Video. Draft ISO=IEC 13818-2 (MPEG-2) and ITU-T Recommendation
H.262, ISO=IEC and ITU-T, Geneva, 1994.

[64]	 ITU-T=SG15. Video coding for low bitrate communication. ITU-T
Recommendation H.263, Version 1, ITU-T, Geneva, 1996.

[65]	 B. Girod, E. Steinbach, and N. F>arber. Performance of the H.263 video
compression standard. Journal of VLSI Signal Processing: Systems
for Signal, Image, and Video Technology, 17:101–111, 1997.

[66]	 ITU-T=SG16=Q15. Video coding for low bitrate communication. ITU-T
Recommendation H.263, Version 2 (H.263+), ITU-T, Geneva, 1998.

[67]	 ISO=IEC JTC1=SC29=WG11. Information technology—Generic coding
of audio-visual objects. Part 2: Visual. Draft ISO=IEC 14496-2
(MPEG-4), Version 1, ISO=IEC, Geneva, 1998.

[68]	 ITU-T=SG16=Q15. Draft for “H.263++” annexes U, V, and W to
recommendation H.263. Draft, ITU-T, Geneva, 2000.

[69]	 R. Sch>afer and T. Sikora. Digital video coding standards and their role
in video communications. Proceedings of the IEEE, 83(6):907–924,
June 1995.

[70]	 T. Ebrahimi and M. Kunt. Visual data compression for multimedia
applications. Proceedings of the IEEE, 86(6):1109–1125, June 1998.

[71]	 G. CôtTe, B. Erol, M. Gallant, and F. Kossentini. H.263+: Video coding
at low bit rates. IEEE Transactions on Circuits and Systems for Video
Technology, 8(7):849–866, November 1998.

[72]	 S. Wenger, G. Knorr, J. Ott, and F. Kossentini. Error resilience support
in H.263+. IEEE Transactions on Circuits and Systems for Video
Technology, 8(7):867–877, November 1998.

[73]	 T. Sikora. MPEG digital video-coding standards. IEEE Signal
Processing Magazine, pages 82–100, September 1997.

272	 Bibliography

[74]	 F. Pereira, K. O’Connell, R. Koenen, and M. Etoh. Special issue
on MPEG-4, part 1: Invited papers. Signal Processing: Image
Communication, 9(4):291– 477, May 1997.

[75]	 F. Pereira. Tutorial issue on the MPEG-4 standard. Signal Processing:
Image Communication, 15(4 –5):269– 478, January 2000.

[76]	 Telenor Research. Video codec test model. TMN5, ITU-T=SG15=WP
15=1 Expert’s Group on Very Low Bitrate Visual Telephony, Geneva,
1995.

[77]	 Y. T. Tse and R. L. Baker. Global zoom=pan estimation and
compensation for video compression. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 4, pages 2725 –2728, Toronto, May 1991.

[78]	 C. R. Moloney and E. Dubois. Estimation of motion Gelds from image
sequences with illumination variation. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 4, pages 2425 –2428, Toronto, May 1991.

[79]	 M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in early
vision. Proceedings of the IEEE, 76(8):869–889, August 1988.

[80]	 C. Stiller and J. Konrad. Estimating motion in image sequences. IEEE
Signal Processing Magazine, 16(4):70 –91, July 1999.

[81]	 J. O. Limb and J. A. Murphy. Measuring the speed of moving
objects from television signals. IEEE Transactions on Communication,
COM-23(4):474–478, April 1975.

[82]	 C. CaEorio and F. Rocca. Methods for measuring small displacements
of television images. IEEE Transactions on Information Theory,
IT-22(5):573–579, September 1976.

[83]	 H. Yamaguchi. Iterative method of movement estimation for television
signals. IEEE Transactions on Communications, 37(12):1350 –1358,
December 1989.

[84]	 H. M. Ming, Y. M. Chou, and S. C. Cheng. Motion estimation for
video coding standards. Journal of VLSI Signal Processing: Systems
for Signal, Image, and Video Technology, 17:113–136, 1997.

[85]	 A. N. Netravali and J. D. Robbins. Motion compensated television co-
ding: Part I. Bell System Technical Journal, 58:631– 670, March 1979.

[86]	 D. R. Walker and K. R. Rao. Improved pel-recursive motion compen-
sation. IEEE Transactions on Communications, COM-32(10):1128–
1134, October 1984.

[87]	 H. G. Musmann, P. Pirsch, and H. J. Grallert. Advances in picture
coding. Proceedings of the IEEE, 73(4):523–548, April 1985.

[88]	 B. G. Haskell. Frame-to-frame coding of television pictures using two-
dimensional Fourier transforms. IEEE Transactions on Information
Theory, 20:119–120, January 1974.

Bibliography	 273

[89]	 P. A. Lynn and W. Fuerst. Introductory Digital Signal Processing with
Computer Applications, revised edition, Wiley, London, 1994.

[90]	 C. D. Kuglin and D. C. Hines. The phase correlation image alignment
method. In Proceedings of the IEEE International Conference on
Cybernetics and Society, pages 163–165, San Francisco, 1975.

[91]	 G. A. Thomas. Television motion measurement for DATV and
other applications. Technical Report 1987=11, British Broadcasting
Corporation (BBC) Research Department, 1987.

[92]	 B. Girod. Motion-compensating prediction with fractional-pel accuracy.
IEEE Transactions on Communications, 41(4):604–612, April 1993.

[93]	 Snell & Wilcox Ltd. Alchemist Ph.C D: a phase correlation 10-bit
motion compensated standards converter for digital I=O. http://www.
snellwilcox.com/productguide/linker1/alc2index.html.

[94]	 Y. M. Chou and H. M. Hang. A new motion estimation method using
frequency components. Journal of Visual Communication and Image
Representation, 8(1):83–96, March 1997.

[95]	 R. W. Young and N. G. Kingsbury. Frequency-domain motion
estimation using a complex lapped transform. IEEE Transactions on
Image Processing, 2:2–17, January 1993.

[96]	 U. V. Koc and K. J. R. Liu. DCT-based motion estimation. IEEE
Transactions on Image Processing, 7(7):948–965, July 1998.

[97]	 U. V. Koc and K. J. R. Liu. Interpolation-free subpixel motion
estimation techniques in DCT domain. IEEE Transactions on Circuits
and Systems for Video Technology, 8(4):460–487, August 1998.

[98]	 M. H. Chan, Y. B. Yu, and A. G. Constantinides. Variable size block
matching motion compensation with applications to video coding. IEE
Proceedings, Part 1, 137(4):205 –212, August 1990.

[99]	 G. J. Sullivan and R. L. Baker. ECcient quadtree coding of images
and video. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages
2661–2664, Toronto, May 1991.

[100]	 S. Ericsson. Fixed and adaptive predictors for hybrid predictive=
transform coding. IEEE Transactions on Communications, COM-
33(12):1291–1302, December 1985.

[101]	 H. Watanabe and S. Singhal. Windowed motion compensation. In
Proceedings of the SPIE Conference on Visual Communications and
Image Processing (VCIP), volume 1605, pages 582–589, November
1991.

[102]	 C. Auyeung, J. Kosmach, M. Orchard, and T. Kalafatis. Overlapped
block motion compensation. In Proceedings of the SPIE Conference
on Visual Communications and Image Processing (VCIP), volume
1818, pages 561–572, November 1992.

274	 Bibliography

[103]	 M. T. Orchard and G. J. Sullivan. Overlapped block motion
compensation: An estimation-theoretic approach. IEEE Transactions
on Image Processing, 3(5):693–699, September 1994.

[104]	 T. Y. Kuo and C. C. J. Kuo. Fast overlapped block motion
compensation with checkerboard block partitioning. IEEE Transactions
on Circuits and Systems for Video Technology, 8(6):705 –712, October
1998.

[105]	 G. J. Sullivan. Multi-hypothesis motion compensation for low-bit-rate
video coding. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), volume 5,
pages 437– 440, Minneapolis, April 1993.

[106]	 B. Girod. ECciency analysis of multihypothesis motion-compensated
prediction for video coding. IEEE Transactions on Image Processing,
9(2):173–183, February 2000.

[107]	 G. Wolberg. Digital Image Warping. IEEE Computer Society Press,
Los Alamitos, CA, 1990.

[108]	 G. J. Sullivan and R. L. Baker. Motion compensation for video com-
pression using control grid interpolation. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 4, pages 2713–2716, Toronto, May 1991.

[109]	 C. L. Huang and C. Y. Hsu. A new motion compensation method
for image sequence coding using hierarchical grid interpolation. IEEE
Transactions on Circuits and Systems for Video Technology, 4(1):
42–51, February 1994.

[110]	 J. NiewUeg lowski and P. Haavisto. Temporal image sequence prediction
using motion Geld interpolation. Signal Processing: Image Communi-
cation, 7:333–353, 1995.

[111]	 J. NiewUeg lowski, T. G. Campbell, and P. Haavisto. A novel video
coding scheme based on temporal prediction using digital image
warping. IEEE Transactions on Consumer Electronics, 39(3):141–150,
August 1993.

[112]	 A. Neri and S. Colonnese. On the computation of warping-based motion
compensation in video sequence coding. Signal Processing: Image
Communication, 13:155 –160, 1998.

[113]	 A. Nosratinia and M. T. Orchard. Optimal uniGed approach to
warping and overlapped block motion estimation in video coding. In
Proceedings of the SPIE Conference on Visual Communications and
Image Processing (VCIP), volume 2727, pages 634–644, Orlando,
FL, March 1996.

[114]	 Y. Nakaya and H. Harashima. Motion compensation based on spatial
transformations. IEEE Transactions on Circuits and Systems for
Video Technology, 4(3):339–356, June 1994.

Bibliography	 275

[115]	 M. Ghanbari, S. de Faria, I. N. Goh, and K. T. Tan. Motion
compensation for very low-bit-rate video. Signal Processing: Image
Communication, 7:567–580, 1995.

[116]	 A. Sharaf and F. Marvasti. Motion compensation using spatial
transformations with forward mapping. Signal Processing: Image
Communication, 14:209–227, 1999.

[117]	 F. J. P. Lopes and M. Ghanbari. Analysis of spatial transform
motion estimation with overlapped compensation and fractional-pixel
accuracy. IEE Proceedings on Vision, Image and Signal Processing,
146(6):339–344, December 1999.

[118]	 C. A. Papadopoulos and T. G. Clarkson. Motion compensation using
second-order geometric transformations. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 5(4):319–331, August 1995.

[119]	 V. Seferidis and M. Ghanbari. General approach to block-matching
motion estimation. Optical Engineering, 32(7):1464 –1474, July 1993.

[120]	 V. Seferidis and M. Ghanbari. Generalised block-matching motion
estimation using quad-tree structured spatial decomposition. IEE
Proceedings on Vision, Image and Signal Processing, 141(6):446–
452, December 1994.

[121]	 Y. Wang and O. Lee. Active mesh—a feature seeking and tracking
image sequence representation scheme. IEEE Transactions on Image
Processing, 3(5):610–624, September 1994.

[122]	 Y. Wang and O. Lee. Use of two-dimensional deformable mesh
structures for video coding. Part I—the synthesis problem: Mesh-based
function approximation and mapping. IEEE Transactions on Circuits
and Systems for Video Technology, 6(6):637– 646, December 1996.

[123]	 Y. Wang, O. Lee, and A. Vetro. Use of two-dimensional deformable
mesh structures for video coding. Part II—the analysis problem
and a region-based coder employing an active mesh representation.
IEEE Transactions on Circuits and Systems for Video Technology,
6(6):647– 659, December 1996.

[124]	 M. Dudon, O. Avaro, and C. Roux. Triangular active mesh for motion
estimation. Signal Processing: Image Communication, 10:21– 41, 1997.

[125]	 Y. Altunbasak and A. M. Tekalp. Closed-form connectivity-preserving
solutions for motion compensation using 2-D meshes. IEEE
Transactions on Image Processing, 6(9):1255 –1269, September 1997.

[126]	 Y. Wang and J. Osterman. Evaluation of mesh-based motion estimation
in H.263-like coders. IEEE Transactions on Circuits and Systems for
Video Technology, 8(3):243–252, June 1998.

[127] A. M. Tekalp, P. V. Beek, C. Toklu, and B. G>unsel. Two-dimensional
mesh-based visual-object representation for interactive synthetic=natural
digital video. Proceedings of the IEEE, 86(6):1029–1051, June 1998.

276	 Bibliography

[128]	 H. Brusewitz. Motion compensation with triangles. In Proceedings of
the 3rd International Workshop on 64 kbits/s Coding of Moving
Video, Free session, Rotterdam, September 1990.

[129]	 K. T. Tan, I. N. Goh, and M. Ghanbari. Fast motion estimation with
spatial transformation. IEE Electronics Letters, 30:847–849, 1994.

[130]	 D. B. Bradshaw and N. G. Kingsbury. A fast, two-stage translational
and warping motion compensation scheme. In Proceedings of the
IX European Signal Processing Conference (EUSIPCO), volume II,
pages 905 –908, Island of Rhodes, Greece, 1998.

[131]	 ISO=IEC JTC1=SC29=WG11. Core experiment on global motion
compensation (P1). In Description of Core Experiments on Coding
E:ciency in MPEG-4 Video, No. N1385, September 1996.

[132]	 ISO=IEC JTC1=SC29=WG11. Core experiment N3: Dynamic sprites and
global motion compensation. In Description of Core Experiments on
Coding E:ciency in MPEG-4 Video, No. N1875, October 1997.

[133]	 ISO=IEC JTC1=SC29=WG11. Core experiments on STFM=LTFM for
motion prediction (P3). In Description of Core Experiments on Coding
E:ciency in MPEG-4 Video, No. N1385, September 1996.

[134]	 N. Mukawa and H. Kuroda. Uncovered background prediction in
interframe coding. IEEE Transactions on Communications, COM-
33(11):1227–1231, November 1985.

[135]	 T. Wiegand, X. Zhang, and B. Girod. Motion-compensating long-
term memory prediction. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), volume 2, pages 53–56,
Santa Barbara, CA, 26 –29 October 1997.

[136]	 T. Wiegand, X. Zhang, and B. Girod. Long-term memory motion-
compensated prediction. IEEE Transactions on Circuits and Systems
for Video Technology, 9(1):70 –84, February 1999.

[137]	 T. Wiegand, E. Steinbach, A. Stensrud, and B. Girod. Multiple-
reference picture video coding using polynomial motion models. In
Proceedings of the SPIE Conference on Visual Communications and
Image Processing (VCIP), volume 3309, pages 134 –145, San Jose,
CA, February 1998.

[138]	 E. Steinbach, T. Wiegand, and B. Girod. Using multiple global models
for improved block-based video coding. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), volume 2,
pages 56–60, Kobe, Japan, October 1999.

[139]	 T. Wiegand, E. Steinbach, and B. Girod. Long-term memory prediction
using aCne motion compensation. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), volume 1,
pages 51–55, Kobe, Japan, October 1999.

Bibliography	 277

[140]	 T. Wiegand, N. F>arber, B. Girod, and B. Andrews. Proposed draft for
annex on enhanced reference picture selection. Document Q15-F-32r1,
ITU-T=SG16=Q.15, Seoul, Korea, November 1998. Downlond from
http://www-nt.etechnik.uni-erlangen.de/~wiegand/publica-
tions.html.

[141]	 T. Wiegand, B. Lincoln, and B. Girod. Fast search for long-term
memory motion-compensated prediction. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), volume 3,
pages 619– 622, Chicago, 4–7 October 1998.

[142]	 T. R. Gardos, editor. Video codec test model, near-term, version
10 (TMN10) draft 1. Document Q15-D-65d1, ITU-T=SG16=Q.15,
Tampere, Finland, April 1998. Download from ftp://standard.
pictel.com/video-site/h263plus/tmn10.doc.

[143]	 G. J. Sullivan and T. Wiegand. Rate-distortion optimization for
video compression. IEEE Signal Processing Magazine, 15(6):74 –90,
November 1998.

[144]	 Telenor Research and Development. H.263 TMN-software codec,
version 2.0. ftp://bonde.nta.no/pub/tmn/software.

[145]	 T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro. Motion-
compensated interframe coding for video conferencing. In Proceedings
of the National Telecommunications Conference (NTC), pages
G5.3.1– G5.3.5, New Orleans, November 29–December 3 1981.

[146]	 R. Srinivasan and K. R. Rao. Predictive coding based on eCcient
motion estimation. IEEE Transactions on Communications, COM-
33(8):888–896, August 1985.

[147]	 M. Ghanbari. The cross-search algorithm. IEEE Transactions on
Communications, 38(7):950 –953, July 1990.

[148]	 K. H. K. Chow and M. L. Liou. Genetic motion search algorithm for
video compression. IEEE Transactions on Circuits and Systems for
Video Technology, 3(6):440–445, December 1993.

[149]	 J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim. A novel
unrestricted center-biased diamond search algorithm for block motion
estimation. IEEE Transactions on Circuits and Systems for Video
Technology, 8(4):369–377, August 1998.

[150]	 S. Zhu and K. K. Ma. A new diamond search algorithm for fast
block matching motion estimation. In Proceedings of the International
Conference on Information, Communication and Signal Processing
(ICICS), pages 292–296, 9–12 September 1997.

[151]	 S. Zhu and K. K. Ma. A new diamond search algorithm for fast block-
matching motion estimation. IEEE Transactions on Image Processing,
9(2):287–290, February 2000.

278	 Bibliography

[152]	 H. Ghavari and M. Mills. Blockmatching motion estimation—New
results. IEEE Transactions on Circuits and Systems, 37(5):649–651,
May 1990.

[153]	 M. J. Chen, L. G. Chen, T. D. Chiueh, and Y. P. Lee. A new
block-matching criterion for motion estimation and its implementation.
IEEE Transactions on Circuits and Systems for Video Technology,
5(3):231–236, June 1995.

[154]	 Y. Baek, H. S. Oh, and H. K. Lee. An eCcient block-matching criterion
for motion estimation and its VLSI implementation. IEEE Transactions
on Consumer Electronics, 42(4):885 –892, November 1996.

[155]	 K. Sauer and B. Schwartz. ECcient block motion estimation using
integral projections. IEEE Transactions on Circuits and Systems for
Video Technology, 6(5):513–518, October 1996.

[156]	 B. Natarajan, V. Bhaskaran, and K. Konstantinides. Low-complexity
block-based motion estimation via one-bit transforms. IEEE Trans-
actions on Circuits and Systems for Video Technology, 7(4):702–706,
August 1997.

[157]	 B. Liu and A. Zaccarin. New fast algorithms for the estimation of block
motion vectors. IEEE Transactions on Circuits and Systems for Video
Technology, 3(2):148–157, April 1993.

[158]	 Y. L. Chan and W. C. Siu. New adaptive pixel decimation for block
motion vector estimation. IEEE Transactions on Circuits and Systems
for Video Technology, 6(1):113–118, February 1996.

[159]	 M. Bierling. Displacement estimation by hierarchical blockmatching.
In Proceedings of the SPIE Visual Communications and Image
Processing (VCIP), volume 1001, pages 942–951, 1988.

[160]	 K. M. Nam, J. S. Kim, R. H. Park, and Y. S. Shim. A fast
hierarchical motion vector estimation algorithm using mean pyramid.
IEEE Transactions on Circuits and Systems for Video Technology,
5(4):344 –351, August 1995.

[161]	 C. D. Bei and R. M. Gray. An improvement of the minimum distortion
encoding algorithm for vector quantization. IEEE Transactions on
Communications, COM-33(10):1132–1133, October 1985.

[162]	 W. Li and E. Salari. Successive elimination algorithm for motion
estimation. IEEE Transactions on Image Processing, 4(1):105 –107,
January 1995.

[163]	 S. H. Huang and S. H. Chen. Fast encoding algorithm for VQ-
based image coding. IEE Electronics Letters, 26(19):1618–1619, 13
September 1990.

[164]	 Y. C. Lin and S. C. Tai. Fast full-search block-matching algorithm
for motion-compensated video compression. IEEE Transactions on
Communications, 45(5):527–531, May 1997.

Bibliography	 279

[165]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. A fast block
matching motion estimation algorithm based on simplex minimisation.
In Proceedings of the IX European Signal Processing Conference
(EUSIPCO), volume III, pages 1565 –1568, Island of Rhodes, Greece,
8–11 September 1998.

[166]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Simplex
minimisation for fast block matching motion estimation. IEE
Electronics Letters, 34(4):351–352, 19 February 1998.

[167]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Simplex
minimisation for multiple-reference motion estimation. In Proceedings
of the IEEE International Symposium on Circuits and Systems
(ISCAS), volume IV, pages 733–736, Geneva, 28–31 May 2000.

[168]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Simplex
minimization for fast long-term memory motion estimation. IEE
Electronics Letters, 37(5):290 –292, 1 March 2001.

[169]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Simplex
minimization for single- and multiple-reference motion estimation.
IEEE Transactions on Circuits and Systems for Video Technology,
11(12):1209–1220, December 2001.

[170]	 D. E. Knuth. Searching and sorting. In The Art of Computer
Programming, volume 3. Addison-Wesley, Reading, MA, 1973.

[171]	 M. R. Hestenes. Conjugate Direction Methods in Optimization.
Springer-Verlag, New York, 1980.

[172]	 D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA, 1989.

[173]	 J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7:308–313, 1965.

[174]	 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scienti=c Computing, 2nd ed.
Cambridge University Press, New York, 1992.

[175]	 O. Sohm. Fast block motion estimation algorithm for MPEG-4. Progress
Report for the Project: MPEG-4 Video Coding Using the TMS320C62x,
Image Communications Group, Center for Communications Research,
University of Bristol, U.K., March 2000.

[176]	 ISO=IEC JTC1=SC29=WG11. MPEG-4 video veriGcation model,
version 14.0. Document N2932, ISO=IEC, October 1999.

[177]	 D. W. Redmill. Image and Video Coding for Noisy Channels. PhD
thesis, University of Cambridge, Department of Engineering, Signal
Processing and Communications Laboratory, November 1994.

[178]	 T. J. Ferguson and J. H. Rabinowitz. Self-synchronizing HuEman codes.
IEEE Transactions on Information Theory, 30:687– 693, 1984.

280	 Bibliography

[179]	 Y. Wang and Q. F. Zhu. Error control and concealment for video
communication: A review. Proceedings of the IEEE, 86(5):974 –997,
May 1998.

[180]	 Y. Wang, S. Wenger, J. Wen, and A. K. Kastaggelos. Error
resilient video coding techniques. IEEE Signal Processing Magazine,
17(4):61–82, July 2000.

[181]	 P. Haskell and D. Messerschmitt. Resynchronization of motion
compensated video aEected by ATM cell loss. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), volume III, pages 545 –548, San Francisco,
March 1992.

[182]	 G. CôtTe and F. Kossentini. Optimal intracoding of blocks for robust
video communication over the internet. Signal Processing: Image
Communication, 15(1–2):25 –34, September 1999.

[183]	 J. Y. Liao and J. D. Villasenor. Adaptive intra update for video
coding over noisy channels. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), volume III, pages 763–766,
Lausanne, Switzerland, 16 –19 September 1996.

[184]	 G. CôtTe, S. Shirani, and F. Kossentini. Optimal mode selection and
synchronization for robust video communications over error-prone
networks. IEEE Journal on Selected Areas in Communications,
18(6):952–965, June 2000.

[185]	 D. W. Redmill and N. G. Kingsbury. The EREC: An error-resilient
technique for coding variable-length blocks of data. IEEE Transactions
on Image Processing, 5(4):565 –574, April 1996.

[186]	 M. Ghanbari. Two-layer coding of video signals for VBR networks.
IEEE Journal on Selected Areas in Communications, 7(5):771–781,
June 1989.

[187]	 M. Khansari and M. Vetterli. Layered transmission of signals over
power-constrained wireless channels. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), volume III,
pages 380 –383, Washington, DC, October 1995.

[188]	 V. A. Vaishampayan. Design of multiple description scalar quantizers.
IEEE Transactions on Information Theory, 39(3):821–834, May 1993.

[189]	 Q. F. Zhu, Y. Wang, and L. Shaw. Coding and cell-loss recovery in
DCT-based packet video. IEEE Transactions on Circuits and Systems
for Video Technology, 3(3):248–258, June 1993.

[190]	 M. Ghanbari and V. Seferidis. Cell-loss concealment in ATM video
codecs. IEEE Transactions on Circuits and Systems for Video
Technology, 3(3):238–247, June 1993.

[191]	 P. Salama, N. B. ShroE, E. J. Coyle, and E. J. Delp. Error concealment
techniques for encoded video streams. In Proceedings of the IEEE

Bibliography	 281

International Conference on Image Processing (ICIP), volume I,
pages 9–12, Washington, DC, 23–26 October 1995.

[192]	 A. Narula and J. Lim. Error concealment techniques for an all-
digital high-deGnition television system. In Proceedings of the
SPIE Conference on Visual Communications and Image Processing
(VCIP), volume 2094, pages 304 –315, 1993.

[193]	 Y. W. Wang, Q. F. Zhu, and L. Shaw. Maximally smooth image
recovery in transform coding. IEEE Transactions on Communications,
41(10):1544 –1551, October 1993.

[194]	 W. Kwok and H. Sun. Multi-directional interpolation for spatial error
concealment. IEEE Transactions on Consumer Electronics, 39(3):
455–460, August 1993.

[195]	 P. Salama, N. B. ShroE, and E. J. Delp. A Bayesian approach to error
concealment in encoded video streams. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), volume II,
pages 49–51, Lausanne, Switzerland, 16 –19 September 1996.

[196]	 W. M. Lam, A. R. Reibman, and B. Liu. Recovery of lost or
erroneously received motion vectors. In Proceedings of the IEEE
International Conference on Acoustic, Speech and Signal Processing
ICASSP, volume V, pages 417– 420, Minnesota, U.S.A., April 1993.

[197]	 K. W. Kang, S. H. Lee, and T. Kim. Recovery of coded video
sequences from channel errors. In Proceedings of the SPIE Conference
on Visual Communications and Image Processing (VCIP), volume
2501, pages 19–27, 1995.

[198]	 M. J. Chen, L. G. Chen, and R. M. Weng. Error concealment
of lost motion vectors with overlapped motion compensation. IEEE
Transactions on Circuits and Systems for Video Technology, 7(3):560
–563, June 1997.

[199]	 S. Shirani, F. Kossentini, and R. Ward. A concealment method
for video communications in an error-prone environment. IEEE
Transactions on Selected Areas in Communications, 18(6):1122–1128,
June 2000.

[200]	 H. Sun, K. Challapali, and J. Zdepski. Error concealment in digital
simulcast AD-HDTV decoder. IEEE Transactions on Consumer
Electronics, 38(3):108–117, August 1992.

[201]	 B. Girod and N. F>arber. Feedback-based error control for mobile video
transmission. Proceedings of the IEEE, 87(10):1707–1723, October
1999.

[202]	 E. Steinbach, N. F>arber, and N. Girod. Standard compatible extension
of H.263 for robust video transmission in mobile environments.
IEEE Transactions on Circuits and Systems for Video Technology,
7(6):872–881, December 1997.

282	 Bibliography

[203]	 M. Wada. Selective recovery of video packet loss using error
concealment. IEEE Journal on Selected Areas in Communications,
7(5):807–814, June 1989.

[204]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Error
concealment using motion Geld interpolation. In Proceedings of the
IEEE International Conference on Image Processing (ICIP), volume
II, pages 512–516, Chicago, 4–7 October 1998.

[205]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Temporal error
concealment using motion Geld interpolation. IEE Electronics Letters,
35(3):215 –217, 4 February 1999.

[206]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. On the
performance of temporal error concealment for long-term motion-
compensated prediction. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), volume III, pages 376 –379,
Vancouver, 10 –13 September 2000.

[207]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Motion Geld
interpolation for temporal error concealment. IEE-Proceedings, Vision,
Image and Signal Processing, 147(5):445–453, October 2000.

[208]	 M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull. Multiple-reference
temporal error concealment. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), volume V, pages 149–
152, Sydney, 6–9 May 2001.

[209]	 A. Nosratinia. New kernels for fast mesh-based motion estimation.
IEEE Transactions on Circuits and Systems for Video Technology,
11(1):40 –51, January 2001.

[210]	 F. Pereira and T. Alpert. MPEG-4 video subjective test procedures
and results. IEEE Transactions on Circuits and Systems for Video
Technology, 7(1):32–51, February 1997.

Index

A

Accuracy effect, 110
Accuracy problem, 98
AC prediction, 83
Additional supplemental enhancement

information, H.263++ standard, 71
Additive color system, 11
Advanced INTRA coding mode, H.263+

Backward motion estimation, 95
Backward node tracking, 130–131
Backward prediction, 39
Bandpass image, 33
Base layer, 64
Base-layer encoder, 86
Baseline profile, 71
Basic sprite coding, 85
BCH code, 211

standard, 59–61 BDM. See Block distortion measure
Advanced prediction mode, H.263 standard, Best-match block, 40, 105

55–56
Alpha planes, 76
Alternative INTER VLC mode, H.263+

Bidirectionally-predicted-VOP (B-VOP), 80
Bidirectional prediction, 39–40
Binary alpha blocks (BABs), 77

standard, 68–69 Binary alpha plane, 76
Ambiguity problem, 98 Binary mask, 77
Analog video, 9–12
Analog video signal, 9–11
Analysis stage, 34, 41
Analysis-synthesis coding, 41
Anisotropic nonstationary predictive coding, 37

Binary shape coding, 76–79
Bit allocation, 32
Bitmap, 77
Bit-preserving methods, 19
Block distortion measure (BDM), 105, 161

Aperture problem, 96 Block matching, as optimization problem,
Apparent motion, 94
Arbitrary slice ordering (ASO) mode, 62
Arithmetic coding, 26
ARQ. See Automatic repeat request
Aspect ratio, 10
Asynchronous transfer mode (ATM) networks,

176–177
Block-matching algorithm (BMA), 105,

114–115, 118, 134
Block-matching methods, 105–117

critique of, 139
efficiency at very low bit rates, 122–124

46
Audiovisual objects (AVOs), 72
Automatic repeat request (ARQ), 225
AVOs. See Audiovisual objects

Block-matching motion estimation (BMME),
40, 41, 105

block size, 108–109
matching function, 106–108
overlapped motion compensation,

112–115

B reduced complexity, 175, 202
search accuracy, 110–111

BABs. See Binary alpha blocks search range, 109–110
Background mosaic, 85 simplex minimization optimization for,
Background sprite, 85 178–180

283

C

284 Index

as two-dimensional constrained optimization
problem, 176–177

unrestricted motion vectors, 111–112
Block-motion fields

long-term, 145–147
properties, 115–117
subsampled, 164–166

Blocks, 49

image warping, 126

reconstruction, 54

Block size, 108–109

Block-truncation coding, 38

BMA. See Block-matching algorithm

BMA-H algorithm, 122

BMA-HO algorithm, 135–139

BMME. See Block-matching motion estimation

Bose-Chaudhuri-Hocquenghem code. See BCH

code

Boundary effect, 104

Brightness, 11

Brute-force search, 160

Burst errors, 207

B-VOP. See Bidirectionally-predicted-VOP

CAE. See Context-based arithmetic encoding

CCIR-601, 15–16, 18, 28

CCIR-721, 45

CCIR-723, 45

CCITT, 44

CD optimization. See Conjugate directions

(CD) optimization method

CDS. See Conjugate-directions search

CGI. See Control grid interpolation

Channel encoder, 205, 206

Chroma components, 12

Chroma-keying, 63

Chroma subsampling, 14–15

Chrominance, 11, 12

CIF, 3, 16–17, 18

CMY system, 11

Codebook, 36

Codeword assigner, 19

Coding control block, 53

Coding efficiency, 2–3, 91

motion estimation, 91, 93–125
multiple-reference motion estimation, 141–155
warping-based motion estimation, 125–140

Coding-mode recovery, 224

Coding modes, H.263 standard, 50

Coding redundancy, 18

Color, chroma subsampling, 14–15

Color-difference components, 12

Color representation, analog video, 11–12

Common Intermediate Format. See CIF

Compensation, MPEG-4, 79–80

Compression, 17, 19, 48

performance measures of, 26

in vector quantization, 36

Computational complexity, 3, 157

reduced-complexity MFI, 235–236

reduced-complexity motion estimation, 157,

159–173, 175

simplex minimization search (SMS), 157,

175–202

Concealment displacement estimation, 221

Conditional replenishment (CR), 39

Conjugate directions (CD) optimization

method, 177

Conjugate-directions search (CDS), 163

Content-based interactivity, 48

Context-based arithmetic encoding (CAE), 7

Continuous methods, warping-based motion

estimation, 129

Contour/texture-oriented techniques, 37

Control grid interpolation (CGI), 133

Correspondence field, 95

CR. See Conditional replenishment

Critical decimation, 34

Cross-search algorithm (CSA), 163, 263–264

CSA. See Cross-search algorithm

Custom source formats, 58

D

Data partitioned slice mode, H.263++ standard,
70–71

Data partitioning, MPEG-4, 88, 218

DC prediction, 82–83

DCT. See Discrete cosine transform

Deblocking filter mode, H.263+, 61, 71

Decoder, 206, 219–220

Delta modulation (DM), 29

Dense motion field, 101, 102

Descriptions, 218

DF. See Displaced frame

DFA algorithm, 118

Index 285

DFD. See Displaced-frame difference

Diamond search (DS), 163, 265

Differential methods, motion estimation (ME),

98–100

Differential pulse code modulation (DPCM), 29

Digital signal processors (DSPs), 3

Digital video, 13–17

advantage over analog video, 13

chroma subsampling, 14–15

digitization, 13–14

formats, 15–17

quantization, 20–23

Digital video formats, 15–17

Digitization, 13–14

Directional decomposition coding, 37

Discontinuous methods, warping-based motion

estimation, 129

Discrete cosine transform (DCT), 30–31, 40, 81

Discrete memoryless source (DMS), 19

Discrete wavelet transform (DWT), 35, 84

Displaced frame (DF), 4, 39

Displaced-frame difference (DFD), 5, 39, 40,

94

Displacement compensation, 221

Displacement field, 95

Displacement wrapping, 104

DM. See Delta modulation

DMS. See Discrete memoryless source

DPCM. See Differential pulse code modulation

DS. See Diamond search

DSPs. See Digital signal processors

DWT. See Discrete wavelet transform

Dynamic sprites, 142

E

ECVQ. See Entropy-constrained vector
quantization

EDGE system. See Enhanced data rates for
GSM evolution

Embedded zero-tree wavelet (EZW), 35

Encoder, 205

Energy compaction, 30

Enhanced data rates for GSM evolution

(EDGE), 3

Enhanced reference picture selection (ERPS)

mode, H.263++ standard, 70

Enhancement-layer encoder, 86

Enhancement layers, 64

Entropy, 19

Entropy-constrained quantizers, 21

Entropy-constrained vector quantization

(ECVQ), 36

Entropy encoder, 24–26, 206, 213

Erasure errors, 207

EREC. See Error-resilience entropy code

ERPS mode. See Enhanced reference picture

selection (ERPS) mode
Error concealment, 219–220

coding-mode recovery, 224

hybrid error concealment, 224

motion-compensated concealment, 221

with motion field interpolation (MFI),

231–257

spatial error concealment, 220–221

temporal error concealment, 221–223,

231–232

Error detection, 209–210

Error resilience, 2, 5, 203, 205

forward techniques, 210–219, 229, 231

interactive techniques, 224–228, 229

MPEG-4, 86–89

postprocessing (concealment) techniques,

219–224, 229

Error-resilience entropy code (EREC), 215–216

Errors. See also Error concealment; Error

resilience

detection of, 209–210

effects of, 207–209

spatial error propagation, 208

temperal error propagation, 208–209

types of, 206–207

Error surface, 17, 117

Exhaustive search, 160

Extended padding, 80

EZW. See Embedded zero-tree wavelet

F

Fast block-matching algorithms, 259–265

Fast Fourier transforms (FFTs), 104

Fast full-search techniques, reduced-complexity

motion estimation, 168–170

FD. See Frame difference

FDIFF algorithm, 122

FEC. See Forward error correction

FFTs. See Fast Fourier transforms

Filtering, 13

Fixed-interval synchronization, 88, 213–214

Fixed-length coding (FLC), 24

286 Index

Forward DCT transform, H.263 standard,

52–53

Forward error correction (FEC),

210, 211

Forward error-resilience techniques, 210–219,

229, 231

Forward motion estimation, 96

Forward node tracking, 130–131

Forward prediction, 39

Fourier transform (FT), 102

Fractal coding, 38

Frame difference (FD), 39

Frame differencing, 39

Frame rate, 10

Frame skip, 107

Frequency component method, 105

Frequency-domain methods, motion estimation

(ME), 102–105

FS algorithm. See Full-search (FS) algorithm

FT. See Fourier transform

Full-search (FS) algorithm, 106, 160, 170–172,

187

Function surface, 177

G

Gamma-corrected components, 12

GA optimization. See Genetic algorithm (GA)

optimization method

Generalized scalability, 85

General Packet Radio Service (GPRS), 3

Genetic algorithm (GA) optimization method,

17

Genetic motion search (GMS), 163

Global motion compensation (GMC), 142

Global System for Mobile (GSM), 2

GMC. See Global motion compensation

GMS. See Genetic motion search

GOBs. See Groups of blocks

GOV. See Group of video object planes

GPRS. See General Packet Radio Service

Gradient-based optimization, 100

Gradient methods, 99

Gray-scale alpha plane, 76, 79

Gray-scale shape coding, 79

Grid, 127

Group of video object planes (GOV), 72

Groups of blocks (GOBs), 49

GSM. See Global System for Mobile

H

H.26L standard, 48

H.120 standard, 44

H.261 standard, 44–45

H.263 decoder, temporal error concealment

using MFI, 243–246
H.263 standard, 46–47, 49–57

Annex D, 55

Annex E, 55

Annex F, 55–56

Annex G, 56–57

Annex H, 211

H.263+ standard, 47, 57–69

Annex I, 59–61, 71

Annex J, 61, 71

Annex K, 61–62, 71

Annex L, 62–63

Annex M, 63–64

Annex N, 64, 142

Annex O, 64–67

Annex P, 67

Annex Q, 67–68

Annex R, 212

Annex S, 68–69

Annex T, 69, 71

modified Annex D, 58–59

scalability, 218

H.263++ standard, 48, 70–72, 218

Annex U, 70

Annex V, 70–71

Annex W, 71

Annex X, 71–72

H.263-like codec, simplex minimization search
(SMS) simulation results in, 188–190

HDTV systems, 17, 18, 160

Header extension code (HEC), 87, 211

HEC. See Header extension code

Hexagonal matching algorithm (HMA), 131–132

Hierarchical search techniques, reduced-complexity

motion estimation, 166–168, 170–172

Hierarchical trees algorithm, 35

HMA algorithm. See Hexagonal matching algo­

rithm

HME algorithm, 170–172

Horizontal retrace, 10

Hue, 11

Huffman coding, 24

Hybrid error concealment, 224

Hybrid MC-DPCM/DCT coding, 41

I

Index 287

IDCT. See Inverse discrete cosine transform

IDCT mismatch error, 50

Image sequence, 9

Image warping, 126

Improved PB-frames mode, H.263+ standard,

63–64

Independent segment decoding (ISD) mode, 61

Independent segment decoding mode, H.263+

standard, 68, 212

Information theory, 19–20

Integral projections, 163

Interactive error-resilience techniques, 224–228,

229

Interframe coding, 38–42

Interlaced scanning, 10

Interleaved coding, 219

INTER macroblocks, 68

INTER mode, 50, 56

International Telecommunications Union. See ITU

Interpolation kernel, 233

INTRA algorithm, 122

INTRA block, 82

INTRA coding mode, 71

Intraframe coding, 28–37

predictive coding, 28–29

second-generation coding, 37

subband coding, 33–35

transform coding, 29–33

vector quantization (VQ), 21, 35–37

INTRA macroblocks, 59, 212

INTRA mode, 50, 56

INTRA refresh, 212, 225–227

Intra-VOP (I-VOP), 80

Inverse discrete cosine transform (IDCT),

50, 54

Inverse quantization, H.263 standard, 54

Irreversible methods, 19

ISD mode. See Independent segment decoding

(ISD) mode

Isolated test environment, 183–188

ITU-R, 15, 44

ITU-T, 44

I-VOP. See Intra-VOP

K

Karhunen-Loève transform (KLT), 30

Knowledge-based coding, 42

L

Lapped orthogonal transform (LOT), 33

Layered coding with prioritization, 217–218

LBG algorithm. See Linde-Buzo-Gray (LBG)

algorithm

Least-mean-square (LMS) algorithm, 105

Levels

H.263++, 71

MPEG-4, 89

Linde-Buzo-Gray (LBG) algorithm, 36

Line-scanning technique, 235

Lloyd-Max quantizers, 21, 36

LMS algorithm. See Least-mean-square (LMS)

algorithm

Local-operator-based techniques, 37

Long-term block-motion fields, 145–147

Long-term memory motion-compensated

prediction (LTM-MCP), 142, 144–145,
202

Lossless methods, 19, 20

Lossy methods, 19

LOT. See Lapped orthogonal transform

Low-latency sprite coding, 85

Low-pass extrapolation (LPE), 81

LPE. See Low-pass extrapolation

LTM-MCP. See Long-term memory motion-

compensated prediction

Luminance, 11, 12

M

Macroblocks (MBs), 49, 75

Main object type, 89

Main profile, 89

Mapper, 18, 206

MAP problem. See Maximum a posteriori

probability (MAP) estimation problem

Markov-K random processes, 19

Markov random field (MRF), 97

Matching function, 106–108

Maximum a posteriori probability (MAP)

estimation, 97, 221

Maximum likelihood (ML) estimator, 97

MBs. See Macroblocks

MC. See Motion compensation

MCP. See Motion-compensated prediction

ME. See Motion estimation

Mean pyramid, 166

Mean squared error (MSE), 27

288 Index

Mesh, 127, 128–129
MFI. See Motion field interpolation
MHMC. See Multihypothesis motion

compensation

Midprocessor, 86

Minimized maximum (MiniMax) error, 163

Mobile video communication, 9–21

coding efficiency. See Coding efficiency
computational complexity. See

Computational complexity
error resilience. See Error resilience

Model-based coding, 41–42

Modified Huffman code, 26

Modified quantization mode, H.263+ standard,

69, 71

Modified unrestricted vector mode, H.263+

standard, 58–59

Motion-based approach, 5

Motion-compensated coding, 39–41

Motion-compensated concealment, 221

Motion-compensated prediction (MCP), 4, 39

Motion compensation (MC), 4, 39, 93–94, 125

H.263 standard, 54

multihypothesis motion compensation, 114,

232, 252–255

multiple-reference motion compensation,

142, 143

overlapped motion compensation (OMC),

112–115

warping-based motion estimation, 132–133

Motion encoding, 75

Motion estimation (ME), 5, 39. See also

Block-matching motion estimation
(BMME)

backward motion estimation, 95

Bayesian model, 97

coding efficiency, 91, 93–125

comparative study of algorithms, 117–121

defined, 125

deterministic model, 97

differential methods, 98–100

forward motion estimation, 96

frequency-domain methods, 102–105

H.263 standard, 51–52

ill-posed problem, 96–97

maximum a posteriori probability (MAP)

estimation problem, 97

motion compensation (MC), 4, 39, 54,

93–94, 112–114, 125

motion models, 4, 97–98

MPEG-4, 79–80

multiple-reference motion estimation,

141–155, 160

nonparametric model, 98

numerical methods, 100–101

overlapped motion compensation, 112–115

parametric model, 97–98

pel-recursive methods, 100–102

probabilistic model, 97

reduced-complexity motion estimation,

159–173

region of support, 98

steepest-descent methods, 100–101

two-dimensional motion estimation, 94

warping-based motion estimation, 125–140

Motion field, 95

Motion field interpolation (MFI), 233

MFI-MH, 253

reduced-complexity MFI, 235–236

temporal error concealment using combined

BM-MFI, 236–237

Motion information recovery, 222

Motion models, 4, 97–98

Motion overhead, warping-based motion

estimation, 133–134

Motion parameters, 97

Motion vector, 40, 78

Motion vector coding/decoding, H.263

standard, 52, 54

Motion vector difference (MVD), 78

MPEG-1, 45–46

MPEG-2, 46, 211

MPEG-4, 47–48, 72–89

compensation, 79–80

data partitioning, 88, 218

error resilience, 86–89

fixed-interval synchronization, 213–214

levels, 89

motion estimation (ME), 79–80

MR-MCP techniques, 142

object-based representation, 72–76

padding, 80, 81, 194

profiles, 89

quantization, 81–82

scalability, 85–86, 218

scanning, 83

shape coding, 76–79

sprite coding, 84–85

still-texture coding, 84

texture coding, 75, 81–84

Index 289

variable-length coding, 83–84
MPEG-4 codec, simplex minimization search

(SMS) simulation results in, 190–196

MR-3DSM algorithm, 197–198

MR-FS/SMS algorithm, 197

MR-MCP. See Multiple-reference

motion-compensated prediction

MR-SMS algorithm, 197

MSE. See Mean squared error

Multicopy retransmission, 225

Multiframe memory, 141, 142

Multihypothesis motion compensation

(MHMC), 114, 232, 252–255

Multilayer scalability, 67

Multiple description coding, 218–219

Multiple-reference encoder, 151

Multiple-reference motion-compensated

prediction (MR-MCP), 64, 141, 142, 175

Multiple-reference motion estimation, 141–155,

160

efficiency at very low bit rates, 149–154

long-term memory motion-compensated

prediction (LTM-MCP), 142, 144–145,
202

prediction gain, 147–149

properties of long-term block-motion fields,

145–147
simplex minimization search (SMS) for,

196–201
Multiple-reference rate-constrained encoder,

151, 153

Multiplexer, 86

Multiresolution coding, 38

MVD. See Motion vector difference

N

NACK message. See Negative acknowledgment
(NACK) message

National Television System Committee. See
NTSC

Natural video objects, 72

NCCF. See Normalized cross-correlation

function
Negative acknowledgment (NACK) message,

227

Neural-network-based coding, 38

Node points, 127

Node tracking, 130–131

Node-tracking algorithm, 131–132

Nondegenerate simplex, 178

Noninterlaced scanning, 10

Nonparametric model, motion estimation (ME),

98

Normalized cross-correlation function (NCCF),

106

N quantization intervals, 21

N-steps search (NSS), 261–262

NTSC, 11, 12

Numerical methods, motion estimation (ME),

100–101

Nyquist rate, 14

O

Object-based coding, 42

Object-based representation, MPEG-4 standard,

72–76

Occlusion problem, 96

OMC. See Overlapped motion compensation

One-at-a-time search (OTS), 163, 262–263

One-bit/pixel, 163

One-dimensional binary logarithmic search, 17

Opaque BAB, 77

Optical flow field, 95

Optimization methods, BMME algorithms

based on, 17

OTS. See One-at-a-time search

Overlapped motion compensation (OMC),

55–56, 112–115

P

Padding, MPEG-4, 80, 81, 194

PAL, 11, 12

Parametric model, motion estimation (ME),

97–98
Partial distortion elimination (PDE) algorithm,

168, 170–172

Patches, 128

PB-frames, 58

PB-frames mode, H.263 standard, 56–57

PCA algorithm, 118

PDC. See Pel difference classification

PDE algorithm. See Partial distortion

elimination (PDE) algorithm

Peak signal-to-noise ratio (PSNR), 27

Pel, 14

290 Index

Pel difference classification (PDC), 163

Pel-recursive methods, motion estimation (ME),

100–102, 118–121

Phase Alternation Line. See PAL

Picture element, 14

Picture freeze mode, 62

Picture freeze with resizing mode,

62–63

Picture snapshot mode, 63

Pixel, 14

PLUSPTYPE, 58–59

Polygon matching, 80, 194

Postprocessing error-resilience techniques,

219–224, 229

Postprocessor, 86

PRA algorithm, 118–121

PRA-C algorithm, 119

Predicted-VOP (P-VOP), 80

Prediction gain, LTM-MCP, 147–149

Predictive coding, 28–29, 37

Profiles

H.263++, 71

MPEG-4, 89

Progressive refinement segment mode,

63

Progressive scanning, 10

Projected motion, 94

PSNR. See Peak signal-to-noise ratio

Psychovisual redundancy, 18

P-VOP. See Predicted-VOP

Pyramidal coding, 37

Q

QCIF, 3, 18

QMF. See Quadrature mirror filter

QSIF, 16

Quadrature mirror filter (QMF), 34

Quadrilateral patches, 128

Quad-tree coding, 38

Quantization, 20–23

entropy-constrained vector quantization
(ECVQ), 36

H.263 standard, 53

MPEG-4, 81–82

scalar quantization, 20–21

uniform quantization, 21–23

vector quantization (VQ), 21, 35–37

Quantizer, 19, 206

Quantizer step size, 21

R

Random bit errors, 207

Raster scanning, 10

Ratd-distortion function, 20

Rate-distortion theory, 20

RBMAD. See Reduced-bits mean absolute

difference

Reconstruction level, 21

Rectangular (RS) submode, 62

Recursive coding, 38

Reduced-bits mean absolute difference

(RBMAD), 163

Reduced complexity block-matching motion

estimation (BMME), 175

Reduced-complexity MFI, 235–236

Reduced-complexity motion estimation,

159–173, 175, 202

fast full-search techniques, 168–170

hierarchical search techniques, 166–168,

170–172
need for, 159–161
subsampled block-motion field, 163, 164–166
two-dimensional logarithmic (TDL) search,

161–163
Reduced-resolution update mode, H.263+

standard, 67–68

Redundancy, 18, 24

Reference picture resampling mode, H.263+

standard, 67

Reference picture selection (RPS), 64, 142,

227–228

Refresh rate, 10–11

Region-growing, 37

Region of support, motion estimation (ME), 98

Repetitive padding, 80, 194

Restricted motion vectors, 111

Resynchronization, MPEG-4, 86–87

Resynchronization codewords, 87, 213–214, 291

Retrace, 10

Retransmission without waiting, 225

Reversible methods, 19

Reversible variable-length coding (RVLC), 59,

216–217

RGB system, 11

Robust entropy coding, 213–217

Robust waveform coding, 211–213

RPS. See Reference picture selection

Run-length encoding, 24

RVLC. See Reversible variable-length coding

Index 291

S

Saturation, 11

Scalability, 64–67, 85–86, 218

Scalability pictures, 58

Scalability pre-/postprocessor, 86

Scalable shape coding, 79

Scalable sprite coding, 85

Scalar quantization, 20–21

Scanning, 10, 83

SDM algorithm, 170–172

SEA. See Successive elimination algorithm

Search range, 109–110

Search window, 40

SECAM, 11, 12

Second-generation coding, 37

Segmented coding, 37

Segmented decoding mode, 212

Selective recovery technique, 227

Semantic-based coding, 42

Sequential Coleur Avec Memoire. See SECAM

Shape coding, MPEG-4, 76–79

Shape encoding, 75

Short-term frame memory/long-term frame

memory (STFM/LTFM), 142

Side-match distortion (SMD), 223

SIF. See Source Input Format

Simple profile, 89

Simplex, 177–178, 181

Simplex minimization (SM) algorithm, 177–178

Simplex minimization (SM) optimization, 177–180

Simplex minimization search (SMS), 157,

175–202

constraints on independent variable, 182

in H.263-like codec, 188–190

initialization procedure, 181–182

in isolated test environment, 183–188

in MPEG-4 codec, 190–196

motion vector refinement, 183

for multiple-reference motion estimation,

196–201
simplex minimization optimization,

177–180
termination criterion, 182–183

Simplex minimization search (SMS) algorithm,
181

Single-reference encoder, 149, 150

Single-reference rate-constrained encoder,

150–151

Slice, 62

Sliced structured mode, H.263+ standard,
61–62, 71

Sliding-window control method, 144

SM algorithm. See Simplex minimization

algorithm
SMD. See Side match distortion
SMF algorithm, 170–172
SMS. See Simplex minimization search
SMS algorithm. See Simplex minimization

search (SMS) algorithm

SNR scalability, 65–67, 218

Source coding theorem, 20

Source encoder, 205

Source Input Format (SIF), 16

Spatial displacement, long-term memory,

145

Spatial error concealment, 220–221

Spatial error propagation, 208

Spatial redundancy reduction, 28

Spatial scalability, 66, 67, 218

Spatial transformation, 129

Spatial transformation functions, 126

Spectral leakage, 104

SPIHT algorithm. See Hierarchical trees

algorithm

Split-and-merge, 37

Sprite, 84–85

Sprite coding, MPEG-4, 84–85, 142

SQCIF. See Sub-QCIF

SSD. See Sum of squared differences

Statistical redundancy, 18

Steepest-descent methods, 100–101

STFM/LTFM. See Short-term frame

memory/long-term frame memory

Still image, 9

Still-image coding, 28

Still-texture coding, 84

Subband coding, 33–35

Subpictures, 70

Sub-QCIF (SQCIF), 3

Subsampling, 14, 164–166

Subtractive color system, 11

Successive elimination algorithm (SEA),

168–169

Sum of squared differences (SSD),

107

Supplemental enhancement information mode,

H.263+ standard, 62–63

Symbol encoder, 19, 206

Symbol encoding, 23–26

292 Index

Syntax-based arithmetic coding mode, H.263

standard, 55

Synthesis stage, 34, 41, 125–126

T

TDL search. See Two-dimensional logarithmic
(TDL) search

Telenor H.263, 209

Television, 10, 11, 15

Temporal displacement, 142, 145–146

Temporal error concealment, 5, 221–223,

231–232

with combined BM-MFI, 236–237

within multiple-reference video codec,

247–255

Temporal redundancy reduction, 38

Temporal replacement (TR), 223, 247

Temporal scalability, 65, 66, 217

Texture coding, MPEG-4, 75, 81–84

Texture mapping, 126

Three-dimensional coding, 38

Three-step search (TSS), 163, 261

Threshold coding, 32–33

TR. See Temporal replacement

Transform coding, 29–33

Transformer, 18

Translational model, 40

Transparent BAB, 77

Triangular patches, 128

Trichromatic theory of color, 11

TSS. See Three-step search

Two-dimensional constrained minimization

problem, 175

Two-dimensional logarithmic (TDL) search,

161–163, 170–172, 269–270

Two-dimensional motion estimation, 94

U

UMTS. See Universal Mobile
Telecommunication System

Unequal error protection, 217

Uniform quantization, 21–23

Unimodal error surface assumption, 161, 175,

202

Unitary transform, 30

Universal access, 48

Universal Mobile Telecommunication System

(UMTS), 3

Unrestricted motion vector mode, H.263

standard, 55

Unrestricted motion vectors, 111–112

V

Variable-length coding (VLC), 24–26
MPEG-4, 83–84, 88–89

Vector quantization (VQ), 21, 35–37

Velocity field, 95

Version 2 Interactive and Streaming Wireless

Profile, 71

Vertical resolution, 10

Vertical retrace, 10

Video. See also Video coding; Video coding

standards

color representation, 11–12

defined, 9

Video coding, 9–21. See also Video coding
standards

analog video, 9–12

analysis-synthesis coding, 41

anisotropic nonstationary predictive coding,

37

arithmetic coding, 26

basics of, 17–21

block-truncation coding, 38

digital video, 13–17

directional decomposition coding, 37

entropy encoding, 24–26

fractal coding, 38

Huffman coding, 24

hybrid MC-DPCM/DCT coding, 41

interframe coding, 38–42

interleaved coding, 219

intraframe coding, 28–37

knowledge-based coding, 42

model-based coding, 41–42

motion-compensated coding, 39–41

multiple description coding, 218–219

multiresolution coding, 38

neural-network-based coding, 38

object-based coding, 42

performance measures, 26–28

predictive coding, 28–29

pyramidal coding, 37

quad-tree coding, 38

quantization, 20–23

Index 293

recursive coding, 38

redundancy, 18

reversible variable-length coding (RVLC), 59

run-length encoding, 24

second-generation coding, 37

segmented coding, 37

semantic-based coding, 42

subband coding, 33–35

symbol encoding, 23–26

three-dimensional coding, 38

threshold coding, 32–33

transform coding, 29–33

variable-length coding (VLC), 24–26

vector quantization (VQ), 21, 35–37

waveform coding, 37

zonal coding, 32

Video coding standards, 43–89

CCIR-721, 45

CCIR-723, 45

H.26L, 48

H.120, 44

H.261, 44–45

H.263, 46–47, 49–57

H.263+, 47, 57–69

H.263++, 48, 70–72

MPEG-1, 45–46

MPEG-2, 46

MPEG-4, 47–48, 72–89

Video communication system, components,
205–206

Video object layers (VOLs), 72

Video object planes (VOPs), 72–75, 86

Video objects (VOs), 72

Video time segment mode, 63

VLC. See Variable-length coding

VOLs. See Video object layers

VOPs. See Video object planes

VOs. See Video objects

VQ. See Vector quantization

W

Warp, 127

Warping-based algorithm, 135

Warping-based motion estimation, 125–140

backward vs. forward node tracking, 130

continuous vs. discontinuous methods, 129

efficiency at very low bit rates, 134–139

motion compensation method, 132–133

node-tracking algorithm, 131–132

spatial transformation, 126, 129

transmitted motion overhead, 133–134

Waveform coding, 37

Waveform encoder, 206, 211

WBA algorithm, 135–137

Z

Zonal coding, 32

	Preface
	Scope and Purpose of the Book
	Structure of the Book
	Audience for the Book
	Acknowledgments

	About the Authors
	List of Acronyms
	1 Introduction to Mobile Video Communications
	1.1 Motivations and Applications
	1.2 Main Challenges
	1.3Possible Solutions

	Part I Introduction to Video Coding
	2 Video Coding: Fundamentals
	What Is Video?
	Analog Video
	Digital Video
	Video Coding Basics
	Intraframe Coding
	Interframe Coding

	3 Video Coding: Standards
	The Need for Video Coding Standards
	Chronological Development
	The H.263 Standard
	The MPEG-4 Standard

	Part II Coding Efficiency
	4 Basic Motion Estimation Techniques
	Motion Estimation
	DifferentialMethods
	Pel-Recursive Methods
	Frequency-Domain Methods
	Block-Matching Methods
	Efficiency of Block Matching at Very Low Bit Rates

	5 Warping-Based Motion Estimation Techniques
	Warping-Based Methods: A Review
	Efficiency of Warping-Based Methods at Very Low Bit Rates

	6 Multiple-Reference Motion Estimation Techniques
	Multiple-Reference Motion Estimation: A Review
	Long-Term Memory Motion-Compensated Prediction

	Part III Computational Complexity
	7 Reduced-Complexity Motion Estimation Techniques
	The Need for Reduced-Complexity Motion Estimation
	Techniques Based on a Reduced Set of Motion Vector Candidates
	Techniques Based on a Reduced-Complexity Block Distortion Measure
	Techniques Based on a Subsampled Block-Motion Field
	Hierarchical Search Techniques
	Fast Full- Search Techniques
	A Comparative Study

	8 The Simplex Minimization Search
	Block Matching: An Optimization Problem
	The Simplex Minimization (SM) Optimization Method
	The Simplex Minimization Search (SMS)
	Simulation Results
	Simplex Minimization for Multiple-Reference Motion Estimation

	Part IV Error Resilience
	9 Error-Resilience Video Coding Techniques
	A Typical Video Communication System
	Types of Errors
	Effects of Errors
	Error Detection
	Forward Techniques
	Postprocessing or ConcealmentI Techniques
	Interactive Techniques

	10 Error Concealment Using Motion Field Interpolation
	Temporal Error Concealment Using Motion Field Interpolation (MFI)
	Temporal Error Concealment Using a Combined BM-MFI Technique
	Simulation Results
	Temporal Error Concealment for Multiple-Reference Motion-Compensated Prediction

	Appendix Fast Block-Matching Algorithms
	A.1 Notation and Assumptions
	A.2 The Two-Dimensional Logarithmic (TDL) Search
	A.3 The N -Steps Search (NSS)
	A.4 The One-at-a-Time Search (OTS)
	A.5 The Cross-Search Algorithm (CSA)
	A.6 The Diamond Search (DS)

	Bibliography

