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Preface

One of the more puzzling paradoxes that will face those who come to review the
development of geography will be why, at the end of the twentieth century, much of
geography turned its back on quantitative spatial data analysis just as many other
disciplines came to recognize its importance. At a time when geography should
have been meeting the rapidly growing demand for spatial data analysts, the
majority of its graduates were, at best, non-quantitative and, in quite a few cases,
were actively anti-quantitative.

A commonly expressed reason for the negative attitude by many geographers
towards one of the discipline’s basic elements is a disillusionment on their part with
the positivist philosophical underpinnings of much of the early work in quantitative
geography. Another, less frequently stated reason, is that spatial data analysis and
spatial modelling are perceived to be relatively difficult, not only by students, but
also by many academic geographers who typically have non-quantitative back-
grounds. Unfortunately, this perception has deterred many researchers from appre-
ciating the nature of the debates which have emerged and which will continue to
emerge within modern quantitative geography. This becomes clear in continuing
criticisms of quantitative geography which pertain to methodologies that have been
surpassed by developments within the field.

This book attempts to redress the rather antiquated view of quantitative geogra-
phy held by many of those outside the area. Despite what is sometimes perceived
from the outside as a relatively static research area, there have in fact been a large
number of major intellectual changes within the past decade in quantitative
geography. These are often not simply the development of new techniques, which
is inevitably happening, but reflect philosophical changes in the way quantitative
geography is approached. It is fair to say that some debate has accompanied these
changes; one purpose of this book is to describe these developments and to review
some of the concomitant issues. In this way, the book portrays quantitative
geography as a vibrant and intellectually exciting part of the discipline in which
many new developments are taking place and many more await discovery.

This text is, therefore, not intended as a recipe book of quantitative techniques;
nor is it meant to be a comprehensive review of all of quantitative geography.
Rather, it is our aim to provide a statement on the vitality of modern quantitative
geography. As such, it provides examples of how quantitative geography, as
currently applied, differs from that of twenty, and even ten, years ago. Perhaps the
most important role of this book is to provide examples of recent research in
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quantitative geography where the emphasis has been on the development of
techniques explicitly for spatial data analysis. What makes the methods of modern
quantitative geography different from many of their predecessors is that they have
been developed with the recognition that spatial data have unique properties and
that these properties make the use of methods borrowed from aspatial disciplines
highly questionable. As such, this book acknowledges what the authors see as a
turning point in the development of quantitative geography. It is written at a period
when quantitative geography has reached a stage of maturity in which its practi-
tioners are no longer primarily importers of other disciplines’ techniques but are
mainly exporters of novel ideas about the analysis of spatial data.

We hope that by advertising some of the recent developments in spatial analysis
and modelling we might foster a greater interest in, and appreciation for, modern
quantitative geography. This is particularly the case, for example, when considering
developments in visualization, exploratory data analysis, spatial statistical inference
and GIS-based forms of spatial analysis.

Inevitably, this book will find its main audience among established quantitative
geographers who wish to keep abreast of the rapid developments in the field.
However, we hope that it also finds a broader readership, particularly among
researchers in related fields who increasingly recognize the need for specialized
techniques in spatial data analysis. It should also be useful to non-quantitative
geographers who would like to understand some of the current issues and debates
in quantitative geography. Perhaps rather ambitiously, we also hope that the book
will be read by those geography students who would like to have a better under-
standing of what quantitative geography can offer as a contribution to making
informed decisions related to career paths.

Given the diversity of our intended audience, we recognise that it will be
impossible to satisfy every level of readership on every page. Those who are not
quantitatively trained are advised to skim some of the more mathematical treatises
while those who are quantitatively trained are asked to be tolerant through some of
the more descriptive sections.

Finally, the authors would like to express their gratitude to Ann Rooke for her
help with some of the figures and to Robert Rojek at Sage Publications for his
enthusiasm, encouragement and patience. We are also extremely grateful for the
comments of Dave Unwin and Mike Goodchild on earlier drafts of the book. Any
remaining errors are, of course, the sole responsibility of the authors.



1 Establishing the Boundaries

1.1 Setting the scene

For many reasons, it is often difficult to write anything definitive about academic
trends. Some trends are so short lived that they have relatively little impact; some
are cyclical so that their impact at the time of writing is different from that at the
time of reading; and some trends exhibit marked variations across countries in both
their intensity and their timing so that any comments have limited spatial applica-
tion. These caveats aside, it is fair to say that quantitative geography generally
experienced a ‘downturn’ in its popularity between the early 1980s and the mid-
1990s (Johnston, 1997; Graham, 1997). The reasons for this are difficult to separate
and probably include a mix of the following:

1 A disillusionment with the positivist philosophical underpinnings of much of
the original research in quantitative geography and the concomitant growth of
many new paradigms in human geography, such as Marxism, post-modernism,
structuralism and humanism, which have attracted adherents united often in
their anti-quantitative sentiments. This disillusionment is very much a phenom-
enon of human geography: there appears to be no equivalent in physical
geography where quantitative methods are generally viewed as an essential
component of research. The demise of quantitative human geography has
therefore inevitably led to an unfortunate widening of the gap between human
and physical geographers because of the lack of any common language or
philosophy. As Graf (1998, p. 2) notes:

While their human geographer colleagues have been engaged in an ongoing debate
driven first by Marxism, and then more recently by post-structuralism, post-modernism,
and a host of other isms, physical geographers are perplexed, and not sure what all the
fuss is about. . .. They do not perceive a need to develop a post-modern climatology, for
example, and they suspect . .. that some isms are fundamentally anti-scientific.

2 The seemingly never-ending desire for some new paradigm or, in less polite
terms, ‘bandwagon’ to act as a cornerstone of geographical research. The
methodology of quantitative geography, had, for some, run its course by 1980
and it was time to try something new. While it is a strength of geography that
the discipline quickly absorbs new trends and research paradigms, it is also a
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considerable weakness. The observations of de Leeuw (1994) on social
sciences in general are apposite here. In adding to Newton’s famous phrase
concerning the cumulative nature of research that we stand ‘on the shoulders of
giants’, de Leeuw (p. 13) comments:

It also means . .. that we stand on top of a lot of miscellaneous stuff put together by
thousands of midgets. ... This is one of the peculiar things about the social sciences.
They do not seem to accumulate knowledge, there are very few giants, and every once
in a while the midgets destroy the heaps.

3 A line of research that appears to be better accepted in human geography than
in some related disciplines is one that is critical of existing paradigms. As
quantitative geography was a well-established paradigm, it became, inevitably,
a focal point for criticism. Unfortunately, much of this criticism originated
from individuals who had little or no understanding of quantitative geography.
As Gould (1984, p. 26) notes:

few of those who reacted against the later mathematical methodologies knew what they
were really dealing with, if for no other reason than they had little or no mathematics as
a linguistic key to gain entry to a different framework, and no thoughtful experience
into the actual employment of such techniques to judge in an informed and reasoned
way. Furthermore, by associating mathematics with the devil incarnate, they evinced
little desire to comprehend. As a result, they constantly appeared to be against
something, but could seldom articulate their reasons except in distressingly emotional
terms.

4 As part of the broader ‘information revolution’ which has taken place in
society, the growth of geographical information systems (GIS), or what is
becoming known as geographical information science (GISc), from the mid-
1980s onwards has had some negative impacts on quantitative studies within
geography. Interestingly, these negative impacts appear to have resulted from
two quite different perceptions of GISc. To some, GISc is seen either as the
equivalent of quantitative geography, which it most certainly is not, or as the
academic equivalent of a Trojan horse with which quantitative geographers are
attempting to reimpose their ideas into the geography curriculum (Johnston,
1997; Taylor and Johnston, 1995). To others, particularly in the USA where
geography has long been under threat as an academic discipline, GISc has
tended to displace quantitative geography as the paramount area in which
students are provided with all-important job-related skills (Miyares and
McGlade, 1994; Gober et al., 1995).!

5 Quantitative geography is relatively ‘difficult’ or, perhaps more importantly, is
perceived to be relatively difficult both by many academic geographers, who
typically have limited quantitative and scientific backgrounds, and by many
students. This affects the popularity of quantitative geography in several ways.
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It is perceived by many students to be easier to study other types of geography
and their exposure to quantitative methodology often extends little beyond a
mandatory introductory course. It deters established non-quantitative research-
ers from understanding the nature of the debates that have emerged and which
will continue to emerge within quantitative geography. It also makes it
tempting to dismiss the whole field of quantitative geography summarily
through criticisms that have limited validity rather than trying to understand it.
As Robinson (1998, p. 9) states:

It can be argued that much of the antipathy towards quantitative methods still rests upon
criticisms based on consideration of quantitative work carried out in the 1950s and
1960s rather than upon attempts to examine the more complete range of quantitative
work performed during the last two decades.

The relative difficulty of the subject matter might also have encouraged some
researchers to ‘jump ship’ from quantitative geography (for some interesting
anecdotes along these lines, see Billinge et al., 1984) as they struggled to keep
up with the development of an increasingly wide array of techniques and
methods. As Hepple (1998) notes:

I am inclined to the view that some geographers lost interest in quantitative work when
it became too mathematically demanding, and the ‘hunter-gatherer’ phase of locating
the latest option in SPSS or some other package dried up.

This book is written in response to several of the issues raised in the above
discussion. Despite being perceived from the outside as a relatively static research
area, quantitative geography has witnessed a number of profound changes in the way
it is approached. One purpose of this book is to describe not only some of these
developments but also the debates surrounding them. In this way, we hope to present
a view of quantitative geography as a vibrant, intellectually exciting, area in which
many new developments are taking place, and in which many more await discovery.

A second reason for writing the book is that we hope to demonstrate that because
of the changes taking place and that have taken place within the subject, several of
the well-oiled criticisms traditionally levelled at quantitative geography no longer
apply. For instance, the overly simplistic depictions of many that quantitative
geographers search for global laws, and that individuals’ actions can be modelled
without understanding their cognitive and behavioural processes, have rather
limited applicability. For those who insist on ‘pigeon-holing’ everything, modern
quantitative geography, with its emphasis on issues such as local relationships,
exploratory analysis and individuals’ spatial cognitive processes, must be a difficult
area to classify.

A third reason is the hope that some of the changes taking place in quantitative
geography might make it more appealing to students and by advertising the
existence of these developments, we might foster a greater interest in and apprecia-
tion for what modern quantitative geography has to offer. This is particularly the
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case, for example, in the subsequent discussions on topics such as visualization,
exploratory data analysis, local forms of analysis, experimental significance testing
and GIS-based forms of spatial analysis.

Ultimately, we hope that this book finds readership not just amongst established
quantitative geographers who wish to keep abreast of the rapid developments in the
field. It should also be useful to quantitative researchers in related disciplines who
are increasingly recognizing the need for specialized techniques for handling
spatial data. We hope it might also be of some use to non-quantitative geographers
who would like to understand some of the current issues and debates in quantitative
geography. Finally, it may be of assistance to students who would like to have a
better understanding of what quantitative geography can offer, prior to making
informed, rather than prejudicial, decisions related to career paths. Given the
diversity of our intended audience, we recognize that it will be impossible to satisfy
every level of readership on every page. Those who are not quantitatively trained
are advised to skim some of the more mathematical sections whilst those who are
quantitatively trained are asked to be tolerant through some of the more descriptive
sections.

1.2 What is quantitative geography?

Quantitative geography consists of one or more of the following activities: the
analysis of numerical spatial data; the development of spatial theory; and the
construction and testing of mathematical models of spatial processes. The goal of
all these activities is to add to our understanding of spatial processes. This can be
done directly, as in the case of spatial choice modelling (Chapter 9) where
mathematical models are derived based on theories of how individuals make
choices from a set of spatial alternatives. Or, it can be done indirectly, as in the
analysis of spatial point patterns (Chapter 6), from which a spatial process might be
inferred.

It would perhaps be difficult to claim that the field of quantitative geography is
sustained by any deep-rooted philosophical stance or any political agenda. For most
of its practitioners, the use of quantitative techniques stems from a simple belief
that in many situations, numerical data analysis or quantitative theoretical reason-
ing provides an efficient and generally reliable means of obtaining knowledge
about spatial processes. Whilst it is recognized that various criticisms can be
levelled at this approach (and quantitative researchers are often their own sternest
critics), it is also recognized that no alternative approach is free of criticism and
none comes close to providing the level of information on spatial processes
obtained from the quantitative analysis of spatial data. The objective of most
studies in quantitative geography is therefore not to produce a flawless piece of
research (since in most cases, especially when dealing with social science data, this
is impossible), but rather it is to maximize knowledge on spatial processes with the
minimum of error. The appropriate question to ask of quantitative research there-
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fore is ‘“How useful is it?” and not ‘Is it completely free of error?’. This does not
mean that error is to be ignored. Indeed, the ability to assess error is an important
part of many quantitative studies and is obviously a necessary component in
determining the utility of an analysis. It does imply, however, that studies can be
useful even though they might be subject to criticism.

It might be tempting to label all quantitative geographers as positivists or
naturalists (Graham, 1997) but this disguises some important differences in philo-
sophy across the protagonists of quantitative geography. For example, just as some
quantitative geographers believe in a ‘geography is physics’ approach (naturalism)
which involves a search for global ‘laws’ and global relationships, others recognize
that there are possibly no such entities. They concentrate on examining variations
in relationships over space through what are known as ‘local’ forms of analysis
(Fotheringham, 1998; Fotheringham and Brunsdon, 1999; see also Chapters 5 and
6). This division of belief is perhaps quite strongly correlated with subject matter.
Quantitative physical geographers, because their investigations are more likely to
involve predictable processes, tend to adopt a naturalist viewpoint more frequently
than their human geography counterparts. In human geography, where the subject
matter is typically clouded by human idiosyncrasies, measurement problems and
uncertainty, the search is not generally for hard evidence that global ‘laws’ of
human behaviour exist. Rather, the emphasis of quantitative analysis in human
geography is to accrue sufficient evidence which makes the adoption of a particular
line of thought compelling. As Bradley and Schaefer (1998, p. 71) note in
discussing differences between social and natural scientists:

the social scientist is more like Sherlock Holmes, carefully gathering data to investigate
unique events over which he had no control. Visions of a positive social science and a
‘social physics’ are unattainable, because so many social phenomena do not satisfy the
assumptions of empirical science. This does not mean that scientific techniques, such as
careful observation, measurement, and inference ought to be rejected in the social
sciences. Rather, the social scientist must be constantly vigilant about whether the
situation being studied can be modeled to fit the assumptions of science without grossly
misrepresenting it. ... Thus, the standard of persuasiveness in the social sciences is
different from that of the natural sciences. The standard is the compelling explanation
that takes all of the data into account and explicitly involves interpretation rather than
controlled experiment. The goals of investigation are also different — the creation of
such compelling explanations rather than the formation of nomothetic laws.

As well as being less concerned with the search for global laws than some might
imagine, quantitative geography is not as sterile as some would argue in terms of
understanding and modelling human feelings and psychological processes (Gra-
ham, 1997). Current research, for example, in spatial interaction modelling
emphasizes the psychological and cognitive processes underlying spatial choice
and how we think about space (see Chapter 9). Other research provides information
on issues such as the effects of race on shopping patterns (Fotheringham and Trew,
1993) and gender on migration (Atkins and Fotheringham, 1999). There appears to
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be a strong undercurrent of thought amongst those who are not fully aware of the
nuances of current quantitative geography that it is deficient in its treatment of
human influences on spatial behaviour and spatial processes. While there is some
validity in this view, quantitative geographers increasingly recognize that spatial
patterns resulting from human decisions need to account for aspects of human
decision-making processes. This is exemplified by the current interest in spatial
information processing strategies and the linking of spatial cognition with spatial
choice (see Chapter 9). It should also be borne in mind that the actions of humans
in aggregate often result from two types of determinants which mitigate against the
need to consider every aspect of human behaviour. There are those, such as the
deterrence of distance in spatial movement, which can be quantified and applied to
groups of similar individuals; and those, such as shopping at a store because of
knowing someone who works there, which are highly idiosyncratic and very
difficult to quantify. One of the strengths of a quantitative approach is that it
enables the measurement of the determinants that can be measured (and in many
cases these provide very useful and very practical information for real-world
decision making) whilst recognizing that for various reasons, these measurements
might be subject to some uncertainty. This recognition of the role of uncertainty is
often more important in the applications of quantitative techniques to human
geography than to physical geography and makes the former in some ways more
challenging and at the same time more receptive to innovative ideas about how to
handle this uncertainty.

To some extent the above comments can be made about the use of quantitative
methods in other disciplines. What distinguishes quantitative geography from, say,
econometrics or quantitative sociology, or, for that matter, physics, engineering or
operations research, is its predominant focus on spatial data. Spatial data are those
which combine attribute information with locational information (see Chapter 2).
For example, a list of soil chemistry properties or unemployment figures is aspatial
unless the locations for which the data apply are also given. As described in
Chapter 2, spatial data often have special properties and need to be analysed in
different ways from aspatial data. Indeed, the focus of this book centres on this very
point. Until relatively recently, the complexities of spatial data were often ignored
and spatial data were analysed with techniques derived for aspatial data, a classic
case of this being regression analysis (see Chapters 5 and 7). What we concentrate
on in this book are those areas where techniques and methodologies are being
developed explicitly for spatial data. Hence, topics such as log—linear modelling
and various categorical data approaches, which have been applied to spatial data
but which have not been developed with spatial data explicitly in mind, are not
covered in this text. The increasing recognition that ‘spatial is special’ reflects the
maturing of quantitative geography from being predominantly a user of other
disciplines’ techniques to being an exporter of ideas about the analysis of spatial
data.

The definition of quantitative geography at the beginning of this section
encompasses a great variety of approaches to the subject. Some of these approaches
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conflict with one another and, where they do, debates arise. We will try to give a
flavour of some of these debates in subsequent chapters but the debates have not
been particularly acrimonious and generally a laissez-faire attitude prevails in
which different approaches are more often seen as complementary rather than as
contradictory. For example, quantitative geography encompasses both empirical
and theoretical research. Advances in theory are typically very difficult to accom-
plish but are clearly essential for the progression of the subject matter. Obviously,
any theoretical development needs to be subject to intense empirical examination,
particularly in the social sciences where the general acceptance of theoretical ideas
usually takes hold slowly. Typically in geography, as in other disciplines, empirical
research has depended on theoretical ideas for its guidance and the dependency is
still very much in this direction. However, with the advent of new ideas and
techniques in exploratory spatial data analysis (see Chapter 4), empirical research
is increasingly being used to guide theoretical development to form a more equal
symbiosis. The last decade has probably seen a gradual decline in purely theoretical
research in quantitative geography and more of an emphasis on empirical research.
To a large part, this change has been brought about by the enormous advances in
computational power available to most researchers which has certainly boosted
empirical investigations, often computationally very intensive, of large spatial data
sets (Fotheringham, 1998; 1999a). However, while computationally intensive meth-
ods are revolutionizing some areas of quantitative geography and have made the
calibration of theoretical models easier, it has also been argued that in some cases
computational power is being relied upon too heavily (Fotheringham, 1998). The
‘solutions’ to geographical problems found in this way may have limited applic-
ability and may be obtained at the expense of the deeper understanding that comes
from theoretical reasoning.

Another division within quantitative geographical research is that between
research which is centred on the statistical analysis of spatial data and research
focused on mathematical modelling. However, the distinction between what
constitutes statistical as opposed to mathematical research can sometimes be
blurred and it is perhaps not a particularly important one to make here. A model
might, for example, be developed from mathematical principles and then be
calibrated by statistical methods. Typically, areas such as the analysis of point
patterns (Chapter 6), spatial regression concepts (Chapters 5 and 7) and various
descriptive measures of spatial data such as spatial autocorrelation (Chapter 8) are
thought of as ‘statistical’ whereas topics such as spatial interaction modelling
(Chapter 9) and location—allocation modelling (Ghosh and Rushton, 1987; Fother-
ingham et al., 1995) are thought of as ‘mathematical’. Statistical methods have
come to dominate quantitative geography, particularly in the social sciences,
because of the need to account for errors and uncertainty in both data collection
and model formulation. Indeed the term ‘spatial analysis’ is sometimes used as a
synonym for quantitative geography although to some the term implies only
stochastic forms of analysis rather than deterministic forms of spatial modelling. It
is worth noting that a different usage of the term ‘spatial analysis’ appears to have
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become commonplace in the GIS field where software systems are advertised as
having a suite of data manipulation routines for ‘spatial analysis’. However, these
routines typically perform geometrical operations such as buffering, point-in-
polygon, overlaying and cookie-cutting which form an extremely minor part of
what is typically thought of as ‘spatial analysis’ by quantitative geographers (see
Chapter 3).

1.3 Applications of quantitative geography

A major goal of geographical research, whether it be quantitative or qualitative,
empirical or theoretical, humanistic or positivist, is to generate knowledge about
the processes influencing the spatial patterns, both human and physical, that we
observe on the earth’s surface. Typically, and particularly so in human geography,
acceptance of such knowledge does not come quickly; rather it emerges after a long
series of tests to which an idea or a hypothesis is subjected. The advantages of
quantitative analysis in this framework are fourfold.

First, quantitative methods allow the reduction of large data sets to a smaller
amount of more meaningful information. This is important in analysing the
increasingly large spatial data sets obtained from a variety of sources such as
satellite imagery, census counts, local government, market research firms and
various land surveys. Many spatial data sets can now be obtained very easily over
the World Wide Web (e.g. see the plethora of sites supplying spatial data given at
http://www.clark.net/pub/Ischank/web/census.html and in particular the sites of the
US Census, Attp://www.census.gov, the US National Imagery and Mapping Agency,
http://www.nima.mil, and the US Geological Survey, http://www.usgs.gov). Sum-
mary statistics and a wider body of data reduction techniques (see Chapter 4 for
some examples of the latter) are often needed to make sense of these very large,
multidimensional data sets.

Secondly, an increasing role for quantitative analysis is in exploratory data
analysis which consists of a set of techniques to explore data (and also model
outputs) in order to suggest hypotheses or to examine the presence of outliers (see
Chapter 4). Increasingly we recognize the need to visualize data and trends prior to
performing some type of formal analysis. It could be, for example, that there are
some errors in the data which only become clear once the data are displayed in
some way. It could also be that visualizing the data allows us to check assumptions
and to suggest ways in which relationships should be modelled in subsequent stages
of the analysis.

Thirdly, quantitative analysis allows us to examine the role of randomness in
generating observed spatial patterns of data and to test hypotheses about such
patterns. In spatial analysis we typically, although not always, deal with a sample of
observations from a larger population and we wish to make some inference about
the population from the sample. Statistical analysis will allow such an inference to
be made (see also Chapter 8). For instance, suppose we want to investigate the
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possible linkage between the location of a nuclear power station and nearby
incidences of childhood leukaemia. We could use statistical techniques to inform
us of the probability that such a spatial cluster of the disease could have arisen by
chance. Clearly, if the probability is extremely low then our suspicions of a causal
linkage to the nuclear power station are increased. The statistical test would not
provide us with a definite answer — we would just have a better basis on which to
judge the reliability of our conclusion. Arguably, the use of such techniques
provides us with information on spatial patterns and trends in a less tendentious
manner than other techniques. For example, leaving inferences to the discretion of
an individual after he or she has been presented with rather nebulous evidence is
clearly open to a great deal of subjectivity. How the evidence is viewed is likely to
vary across individuals. Similarly, the results from quantitative analyses are likely
to be more robust than, for example, studies that elicit large amounts of non-
quantitative information from a very small number of individuals.

Fourthly, the mathematical modelling of spatial processes is useful in a number
of ways. The calibration of spatial models provides information on the determinants
of those processes through the estimates of the models’ parameters (see Chapters 5
and 9 for examples). They also provide a framework in which predictions can be
made of the spatial impacts of various actions such as the building of a new
shopping development on traffic patterns or the building of a seawall on coastal
erosion. Finally, models can be used normatively to generate expected values under
different scenarios against which reality can be compared.

In summary, the quantitative analysis of spatial data provides a robust testing
ground for ideas about spatial processes. Particularly in the social sciences, ideas
become accepted only very gradually and have to be subject to fairly rigorous
critical examination. Quantitative spatial analysis provides the means for strong
evidence to be provided either in support of or against these ideas. This is as true in
many other disciplines as it is in geography because it is increasingly recognized
that most data are spatial in that they refer to attributes in specific locations.
Consequently, the special problems and challenges that spatial data pose for
quantitative analysis (see Chapters 2 and 10) are increasingly seen as relevant in a
variety of subject areas beyond geography (Grunsky and Agterberg, 1992; Goo-
vaerts, 1992; 1999; Cressie, 1993; Krugman, 1996; Anselin and Rey, 1997).
Examples include economics, which is increasingly recognizing that many of its
applications are spatial; archaeology, where settlement data or the location of
artefacts clearly have spatial properties; epidemiology, where space plays an
important role in the study of morbidity and mortality rates; political science, where
voting patterns often exhibit strong spatial patterns; geology and soil science, where
inferences need to be made about data values that lie between sampled points; health
care services, where patients’ residential locations are important in understanding
hospital rationalization decisions; and marketing, where knowledge of the locations
of potential customers is vital to understanding store location. For these reasons,
quantitative geographers have skills which are much in demand in the real world and
are much sought after to provide inputs into informed decision making.
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1.4 Recent developments in quantitative geography

The basic reason for writing this book is that quantitative geography has undergone
many changes in the last 20 years and particularly in the last decade. These changes
have, in some cases, involved fundamental shifts in the way quantitative geo-
graphers view the world. However, few outside the area appear to be aware of these
changes. Instead they tend to view and to criticize the field for what it was rather
than for what it is. While the subsequent chapters will give a much greater feel for
the recent changes that have taken place in quantitative geography, this section
gives a flavour of some of these discussions.

The development and maturation of GIS has had an effect on quantitative
geography, not always in a positive way as noted above and as also commented on
by Fotheringham (1999b). In terms of the development of quantitative methods for
spatial data, however, the ability to apply such methods within GIS, or at least link
the outcome of such methods with GIS, leads to an increase in the potential for
gaining new insights (see Chapter 3). As Fotheringham (1999b, p. 23) notes:

I would argue that it is not necessary to use a GIS to undertake spatial modelling and
integrating the two will not necessarily lead to any greater insights into the problem at
hand. However, for certain aspects of the modelling procedure, integration will have a
reasonably high probability of producing insights that would otherwise be missed if the
spatial models were not integrated within the GIS.

It is argued that these ‘certain aspects of the modelling procedure’ for which
integration within GIS will be especially beneficial are exploratory techniques (see
Chapter 4). Exploratory techniques are used to examine data for accuracy and
robustness and to suggest hypotheses which may be tested in a later confirmatory
stage. This typical usage can be classified as pre-modelling exploration. However,
exploratory techniques are not confined to data issues and another use, termed
post-modelling exploration, is to examine model accuracy and robustness. One
relatively simple example of post-modelling exploration with which many readers
will already be familiar is the mapping of the residuals from a model in order to
provide improved understanding of why the model fails to replicate the data
exactly. Clearly, this is a situation where an interactive mapping system would be
useful: not only could the map of residuals be viewed but also it could be
interrogated. Zones containing interesting residuals could be highlighted to show
various attributes of the zone which might be relevant in understanding the
performance of the model. Similarly, an aspatial distribution of residuals in one
window could be brushed and the brushed values highlighted on a map in a linked
window to explore spatial aspects of model performance. Xia and Fotheringham
(1993) provide a demonstration of the exploratory use of linked windows in Arc/
Info. Further examples of the power of interactive visualization for spatial data are
provided in Chapter 4 and by Anselin (1998), Brunsdon and Charlton (1996) and
Haslett et al. (1990; 1991).
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Current research on visualization in spatial data sets is focused on the need for
visualization tools for higher-dimensional spatial data sets (Fotheringham, 1999c).
Most visualization techniques have been developed for simple univariate or
bivariate data sets (extensions of some of these techniques can be made to visualize
trivariate data). However, most spatial data sets have many attributes and hence
these relatively simple visualization techniques are inadequate to examine the
complexities within such data sets. Relatively few techniques have been developed
for more realistic and more frequently encountered hypervariate (having more than
three dimensions) data sets (Cleveland, 1993) and the development of such
techniques is therefore becoming of greater concern to quantitative geographers.
Some examples of visualization techniques for higher-dimensional spatial data sets
are provided in Chapter 4.

Another recent and potentially powerful movement within quantitative geo-
graphy is that in which the focus of attention is on identifying and understanding
differences across space rather than similarities. The movement encompasses the
dissection of global statistics into their local constituents; the concentration on
local exceptions rather than the search for global regularities; and the production of
local or mappable statistics rather than on ‘whole-map’ values. This trend is
important not only because it brings issues of space to the fore in analytical
methods, but also because it refutes the rather naive criticism that quantitative
geography is unduly concerned with the search for global generalities and ‘laws’.
Quantitative geographers are increasingly concerned with the development of
techniques aimed at the local rather than the global (Anselin, 1995; Unwin, 1996;
Fotheringham, 1997a). This shift in emphasis also reflects the increasing availabil-
ity of large and complex spatial data sets in which local variations in relationships
are likely to be more prevalent.

The development of local statistics in geography is based on the idea that when
analysing spatial data, it might be incorrect to assume that the results obtained from
the whole data set represent the situation in all parts of the study area. Interesting
insights might be obtained from investigating spatial variations in the results.
Simply reporting one ‘average’ set of results and ignoring any possible spatial
variations in those results is equivalent to reporting a mean value of a spatial
distribution without seeing a map of the data. It is therefore surprising that local
statistics have not been the subject of much investigation until recently. The
importance of the emphasis on ‘local’ instead of ‘global’ is presented in Chapter 5
which also includes a detailed description of several examples of locally based
spatial analysis. The chapter concentrates on geographically weighted regression,
an explicitly spatial technique derived for producing local estimates of regression
parameters, which can be used to produce parameter maps from which a ‘geo-
graphy of spatial relationships’ can be examined (Brunsdon et al., 1996; 1998a;
Fotheringham et al., 1996; 1997a; 1997b; Fotheringham et al., 1998).

Another development in quantitative geography that explicitly recognizes the
special problems inherent in spatial data analysis is that of spatial regres-
sion models (Ord, 1975; Anselin, 1988). The fact that spatial data typically are
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positively spatially autocorrelated, that is high values cluster near other high values
and low values cluster near other low values, violates an assumption of the classical
regression model that the data consist of independent observations. This creates a
problem in assessing statistical significance and model calibration: in essence, the
errors in the regression model can no longer be assumed to have zero covariance
with each other. To counter this problem, Anselin (1988) has suggested two
alternative models, a spatial lag model in which the dependent variable exhibits
positive spatial autocorrelation and a spatial error model in which the errors in the
regression are spatially autocorrelated. These models are described in Chapter 7.

The term ‘geocomputation’ has been coined to describe techniques, primarily
quantitative, within geography that have been developed to take advantage of the
recent massive increases in computer power and data (Openshaw and Openshaw,
1997; Openshaw and Abrahart, 1996; Openshaw et al., 1999; Fotheringham, 1998;
1999a; Longley et al., 1998). The term ‘computation’ carries two definitions. In the
broader sense it refers to the use of a computer and therefore any type of analysis,
be it quantitative or otherwise, could be described as ‘computational’ if it were
undertaken on a computer. In the narrower and perhaps more prevalent use,
computation refers to the act of counting, calculating, reckoning or estimating — all
terms that invoke quantitative analysis. The term ‘geocomputation’ therefore refers
to the computer-assisted quantitative analysis of spatial data in which the computer
plays a pivotal role (Fotheringham, 1998). This definition is meant to exclude fairly
routine analyses of spatial data with standard statistical packages (for instance,
running a regression program in SAS or SPSS). Under this definition of geocompu-
tational analysis, the use of the computer drives the form of analysis undertaken
rather than being a convenient vehicle for the application of techniques developed
independently of computers. Geocomputational techniques are therefore those that
have been developed with the computer in mind and which exploit the large
increases in computer power that have been, and still are being, achieved.

A simple example, which is developed in Chapter 8 in a discussion of statistical
inference, serves to distinguish the two types of computer usage. Consider a spatial
autocorrelation coefficient, Moran’s /, being calculated for a variable x distributed
across n spatial units. Essentially, spatial autocorrelation describes how an attribute
is distributed over space — to what extent the value of the attribute in one zone
depends on the values of the attribute in neighbouring zones (Cliff and Ord, 1973;
1981; Odland, 1988; Goodchild, 1986). To assess the significance of the autocorre-
lation coefficient one could apply the standard formula for a #-statistic calculating
the standard error of Moran’s / from one of two possible theoretical formulae (see
Cliff and Ord, 1981; Odland, 1988; Goodchild, 1986; or Chapter 8 for these
formulae and examples of their application). Such a procedure is not geocomputa-
tional because the computer is simply used to speed up the calculation of a standard
error from a theoretical equation. An alternative, geocomputational, technique
would be to derive an estimate of the standard error of the autocorrelation
coefficient by experimental methods. One such method would be to permute
randomly the x variable across the spatial zones and to calculate an autocorrelation
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coefficient for each permutation. With a sufficiently large number of such auto-
correlation coefficients (there is no reason why millions could not be computed but
thousands or even hundreds are generally sufficient), an experimental distribution
can be produced which allows statistical inferences to be made on the observed
autocorrelation coefficient. An example of this type of geocomputational applica-
tion is given in Chapter 8.

The use of computational power to replace an assumed theoretical distribution
has the advantage of avoiding the assumptions underlying the theoretical distribu-
tion which may not be met, particularly with spatial data. Consequently, the use of
experimental significance testing procedures neutralizes the criticism that hypo-
thesis testing in quantitative geography is overly reliant on questionable assump-
tions about theoretical distributions. Another criticism of quantitative geography,
addressed in Chapter 9, is the assumption that spatial behaviour results from
individuals behaving in a rational manner and armed with total knowledge. Perhaps
the classic case of this kind of assumption is in spatial interaction modelling where
the early forms of what are known as ‘gravity models’ were taken from a physical
analogy to gravitational attraction between two planetary bodies. In Chapter 9 we
attempt to show how far we have come since this analogy was made over 100 years
ago (although quantitative geography is still criticized for it!). Newer forms of
spatial interaction models, based on sub-optimal choices, limited information,
spatial cognition and more realistic types of spatial decision-making processes, are
described.

1.5 Summary

There are at least two constraints to undertaking quantitative empirical research
within geography. One is our limited ability to think about how spatial processes
operate and to produce insights that lead to improved forms of spatial models. The
other is the restricted set of tools we have to test and refine these models. These
tools might be used for data collection (e.g. GPS receivers, weather stations, stream
gauges) or for data display and analysis (GIS, computers). In the early stages of
computer use, it was relatively easy to derive models that could not be implemented
because of the lack of computer power. This was an era when the second constraint
was more binding than the first: the level of technology lagged behind our ability to
think spatially. We are now no longer in this era. We are now in a situation where
the critical constraint is more likely to be our ability to derive new ways of
modelling spatial processes and analysing spatial data. The increases in computer
power within the last 20 years have been so enormous that the technological
constraint is much less binding than it once was. The challenge is now to make full
use of the technology to improve our understanding of spatial processes. In many
instances the change is so profound that it can alter our whole way of thinking
about issues: the development of experimental significance testing procedures and
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the subsequent decline in the reliance on theoretical distributions is a case in point.
The movement from global modelling to local modelling is another.

This book provides a statement on the vitality of modern quantitative geography.
It does not, however, attempt to cover all the facets of the subject area. Instead, it
concentrates on examples of how quantitative geography differs from the possibly
widespread perceptions of it outside the field. In doing so, it provides examples of
the research frontier across a broad spectrum of applications where techniques have
been developed explicitly with spatial data in mind. The book acknowledges a
turning point in the development of quantitative geography: it is written at a period
when quantitative geographers have matured from being primarily importers of
other disciplines’ techniques to being primarily exporters of novel ideas and
insights about the analysis of spatial data.

Notes

1. The diffusion of both quantitative geography and GISc has been less extensive within the
UK where, mainly because of the traditionally more selective nature of university
education, geography students have enjoyed relatively good prospects of employment
without necessarily having many specific skills. However, this situation is changing very
rapidly.



2 Spatial Data

2.1 Introduction

A glance at the shelves of almost any university library will reveal a plethora of
books concerned with geographical information systems (e.g. Burrough, 1986;
Huxhold, 1991; Laurini and Thompson, 1992; Rhind et al., 1991; Haines-Young et
al., 1993; Bonham-Carter, 1994; Martin, 1996; DeMers, 1997; Chrisman, 1997;
Heywood et al., 1998)."! Fundamental to the operation of GIS are spatial data.
Although geographers have been using (and abusing) spatial data long before the
mid-1980s, there has been a marked diffusion of interest in spatial data handling
since then, and an increasing appreciation of the opportunities offered by, and the
problems associated with, such data. Given that spatial data are so pervasive, we
need to be aware of the nature of spatial data and their interaction with quantitative
geography. Indeed, a number of articles in the magazine GIS Europe (Gould, 1996)
explored briefly the notion that ‘spatial is special’. Others also have begun to
realize that there are special problems in analysing spatial data (Berry, 1998). This
chapter explores some of the issues.

Spatial data comprise observations of some phenomenon that possesses a spatial
reference. The spatial reference may be explicit, as in an address or a grid
reference, or it may by implicit, as in a pixel in the middle of a satellite image. One
form of spatial reference known to almost everyone in the developed world is the
address of one’s home although few individuals will be able to quote a map
reference of their home. However, we normally convert the former into the latter to
carry out any processing of such data. This chapter concerns itself first with the
nature of spatial data, then with an examination of the opportunities that arise in
the analysis of spatial data, and then with a consideration of the problems that
confront the would-be spatial data analyst.

Spatial data are not new. Ptolemy was experimenting with spatial data in second-
century Egypt when he was attempting to map his world. The early astronomers
who were attempting to map the heavens were using spatial data. Attempts at global
exploration by various civilizations required knowledge of locations and the means
of getting from one place to another. However, the computational facilities at their
disposal were rather primitive compared with the desktop computer and the
proliferation of software in the last 20 years. The so-called ‘GIS Revolution’ has
led to a more explicit interest in the handling and analysis of spatial data, an
interest that has diffused widely outside geography. Geographers may lay first claim
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to an interest in spatial data, but they have been joined by mathematicians,
physicists, geomaticists, biologists, botanists, archaeologists and architects, to name
but a few.

Spatial data may mean different things to different users. John Snow’s attempt to
postulate a particular water pump in Soho (Gilbert, 1958) as the source of
contaminated water leading to a cholera outbreak was an early attempt at spatial
analysis. He integrated three spatial data sets in a single map: the locations of the
streets in Soho, the locations of cholera cases, and the locations of water pumps. It
is not known whether he thought of his exercise as ‘spatial data analysis’, or
‘spatial data handling’. Almost every airline’s in-flight magazine contains a map of
the airline’s routes — again, this displays spatial data. Readers of this book will at
some time in their life ask another person for an address; here is a different form of
spatial data — the address relates to some location on the earth’s surface. The UK
Post Office postcode system (Raper et al., 1992), originally developed for the
automated handling of mail, is another form of spatial data; most people in the UK
know their postcode. In the USA, the zip code is used by the US Postal Service in a
similar manner. Clearly, spatial data are more common than we might realize yet
not all users of spatial data think of their objects of interest as inherently spatial.
Anyone who has stepped into a taxi will find in the driver someone who has had to
demonstrate a wide familiarity with spatial data (in knowing the locations of streets
and landmarks), and a high degree of proficiency in spatial data manipulation (the
ability to work out the best route), perhaps far in advance of the capability of any
current GIS.

2.2 Spatial data capture

Spatial data arise when we attempt to sample information from the real world. The
nature of the sampling is such that we are interested in not only the variation of
some phenomenon, but also the location of that variation. We need therefore to
sample not just the nature of the phenomenon of interest, but also its location.
There is a wide variety of techniques, both manual and automatic, for doing this.
Digitizing is a process that involves the transfer of locational information about
features on paper maps into some computer-processable form. This involves a
device known as a digitizer, or digitizing tablet. The map is fixed to the surface of
the digitizer, and a cursor is moved across the map by hand. The cursor has a pair
of cross-hairs in a transparent window which aids precise positioning, and one or
more buttons to transfer locational information to a computer. The cross-hairs are
positioned above the point whose position is to be digitized, and one of the buttons
pressed to send some measurements describing its location on the surface of the
digitizer to a computer. Lines are digitized by digitizing points a short distance
apart; curves are approximated by a linked series of short line segments. Where a
line changes direction, the operator must digitize sufficient points for the changes
to be captured with the desired degree of accuracy. Deciding what is ‘sufficient’ is
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largely a result of experience. Digitizing is a tedious process if carried out for any
length of time. To assist with data capture in this way, many software systems
permit subsequent editing of the sampled data to remove errors which may have
resulted from the digitizing process. As well as maps, aerial photographs may also
be considered as source material for digitizing.

To speed up the data capture process, maps may be scanned, and information
from the scanned images obtained using software that will identify points or lines
from the map. Whilst small scanners are comparatively inexpensive, scanners for
larger maps are costly devices. However, a scanned map or aerial photograph may
be used as a backdrop for the display of some other spatial data.

Locational information may also be collected by some method of surveying.
Traditionally this involves the use of a theodolite to measure the bearing of one
point from another. Modern theodolites permit the storage of data sampled in this
way in a small computer attached to the theodolite, from which data can be
uploaded into some suitable processing software at the end of the survey. A more
recent development has been the global positioning system (GPS), a network of
satellites around the earth. A GPS receiver can be used to obtain the location of the
point at which the operator is standing by taking bearings from several satellites.
Relatively inexpensive GPS receivers tend to be of low accuracy (around 100 m)
which may be too poor for the task in hand. However, GPS readings from an
accurate receiver can be obtained conveniently and rapidly, and the measurements
uploaded to another computer at the end of the survey for further processing.

Another source of spatial data is from ‘remotely sensed’ imagery. This may be
from one of a series of satellites (e.g. LANDSAT, SPOT, AVHRR), or from
scanners flown in aircraft. The data are measurements of reflectance of an area on
the earth’s surface of light of a given wavelength. The area varies in size from a few
metres to over a kilometre, depending on the satellite. The resulting images are
characterized by large volumes of data (often several tens of megabytes). Remotely
sensed imagery usually requires additional processing before it can be conveniently
used for analysis. Consideration of the techniques for this is beyond the scope of
this volume, and the reader is referred to texts on remote sensing, such as Lillesand
and Kiefer (1994), for further information.

If we are interested in the variation of some phenomenon, then we are faced with
the problem of how to sample. We usually find that we are sampling either discrete
entities (houses, roads, administrative units) or some phenomenon that varies
continuously (air pressure, elevation, population density). Conceptually we some-
times refer to the former as objects, and the latter as continuous fields.

2.3 Spatial objects
Simple spatial objects are of three basic types: points, lines or areas. All three are

characterized by the existence of some spatial reference describing the location of
the entity measured. As well as the spatial reference, there are measurements of the
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characteristics of the entity being sampled. The decision to use a spatial object of a
particular type depends on the nature of what is being observed. If we are interested
in modelling the variation in school attainment for some examination at the level of
the school, then we may decide to use points as our sampling unit and think of each
school as being a point object in our database. Similarly, we may decide to use
point objects as the representations of human beings in a database concerned with
individual susceptibility to some disease. Line objects may be useful for represent-
ing roads or rivers in a spatial database. Sampling the underlying geology of an
area may require the use of area objects, where each area represents the spatial
extent of some particular geological type.

Measuring a field is a little more difficult. While it is quite easy to identify an
individual dwelling or a person, it is less easy to measure population density or air
pressure because the variation is spatially continuous. For some simple field data, it
may be possible to define a mathematical function that describes the nature of the
variation, but in most cases this is either not possible or impracticable. Conse-
quently, fields are often measured in some discretized form such as a set of
observations taken at regular intervals on a grid or lattice. Fields may also be
measured at irregularly spaced locations.

2.4 Location on the globe; location on a plane

Many of the statistical techniques described in this book require the calculation of
distances between objects. This suggests that we should have some consistent
means of describing locations on the surface of the earth so that distances can be
computed between these locations. We may need other geometrical calculations to
provide us with angles or areas.

The conventional means of describing the location of a point on the earth’s surface
is in terms of the latitude and longitude of the point. Latitude is measured north from
the equator towards the North Pole, and equivalently southward. Locations that share
the same latitude are said to lie on the same parallel of latitude. Longitude is
measured east or west of a line running from the North Pole to the South Pole that
passes through Greenwich, England. Locations that share the same longitude are
said to lie on the same meridian. The meridian that passes through Greenwich (0°) is
known as the prime meridian. The units of measurement of latitude and longitude are
degrees, minutes and seconds. The computation of distances between places using
latitude and longitude is somewhat cumbersome, and spherical trigonometry is
required. The distance, s;, between any two locations on the surface of a sphere is
calculated along a great circle using the following formula:

s; = R.arccos[cos(90° — ¢;) cos(90° — ¢ )

(2.1)
+ s5in(90° — ;) 8in(90° — ¢ ;) cos(4; — 1,)]
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where R is the radius of the earth, and the latitude and longitude of location i are
(¢, A;). The great circle distance is also a geodesic, the shortest distance between
pairs of points on a sphere.

It is often more convenient, when analysing spatial data from small parts of the
earth’s surface, to ignore the curvature of the earth and to consider the data to be
lying on a flat plane.? Using a Cartesian coordinate system, the distance between
two locations may be calculated using Pythagoras’ theorem (see Equation (2.4)
later), or may be measured manually with a ruler. To convert between a spherical
coordinate system and a planar system requires the projection of the coordinates
from the sphere onto the plane. There are dozens of different projections, with
varying properties and modes of construction (Bugayevskiy and Snyder, 1995;
Maling, 1993). Two major classes of projection are conformal and equal area. In a
conformal projection, angles between locations are preserved; they are therefore
useful for navigation. As the name suggests, the ratios between areas of regions in
an equal-area projection are preserved in the spherical and planar representations.
This makes them useful for the depiction of political or socio-economic informa-
tion. Some projections are useful for displaying the globe, others are more useful
for displaying a small part of the globe.

Conversion between geographical (latitude/longitude) and planar coordinates in
some projection is usually available in GIS software. The conversions for two well-
known projections are given below.

1. Mercator (a cylindrical conformal projection):

x = RA
(2.2)
y = Rln[tan(t/4 + ¢ /2)]

where R is the radius of the earth, In is the logarithm to the base e, ¢ is the
latitude of the location, and 4 is its longitude.
2. Lambert (a cylindrical equal-area projection):

X = RA
(2.3)
y = Rsing

As a convention, latitudes south of the equator and longitudes west of the Green-
wich meridian are considered to be negative when calculating projections.

Readers in the UK will be familiar with the maps produced by the Ordnance
Survey, the UK’s national mapping organization. The projection used for OS maps
is a transverse Mercator projection with the central meridian 2° west of the
Greenwich meridian, and distances calculated relative to the intersection of the 49°
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parallel with the central meridian (the projection’s origin). The origin lies off the
Brittany/Normandy coast. For convenience, since distances west of the central
meridian would be negative, 400 km is added to the x coordinates (which the OS
refers to as ‘eastings’) and 100 km is subtracted from the y coordinates (the
‘northings”) (Harley, 1975, p. 24). This action gives a false origin for the projection,
40°46'N 7°33'W, a location south-west of the Scilly Isles. The US State Plane
Coordinate System is also a transverse Mercator projection; similarly, the US Army
Map Service has used a projection known as the Universal Transverse Mercator
(UTM) projection for its global mapping. Both projections are based on the
Gauss—Kriiger projection (Bugayevskiy and Snyder, 1995, p. 163).

There are other ways of projecting the earth’s surface. Tobler (1963; 1967)
proposed a form of projection known as a cartogram where the criterion is to show
features in locations such that the underlying population density is uniform. This
has the effect of increasing the extent of areas with high population density relative
to those areas with low population density. Dorling (1995) has used cartograms to
depict the spatial variation of a wide variety of indicators from the UK 1991 Census
of Population. Despite claims that such displays ‘show the people’, they can be
hard to interpret without additional information to help the user locate towns and
cities.

2.5 Distance

As mentioned above, a commonly used measure of the distance between two points
on a plane is the Euclidean or straight-line distance. If we have two locations whose
coordinates are (x;, y;), and (x,, »»), the Euclidean distance between them is

d, = \/(xl -0+ = »)r 2.4

Following the notation of Gatrell (1983, p. 25), we can rewrite the coordinates of
our two locations as (x;, X12), (X21, X2), such that the first subscript refers to the
location and the second subscript refers to the coordinate. The Euclidean distance
between two locations i and j with coordinates (x;, x;) and (x;;, x») can now be
written as

2 1/2
de(i, j) = [Z(x,-k - x,-k)Z] (2.5)

In fact, the Euclidean distance can be generalized to m dimensions:
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m 1/2
dy(i, j) = [Z(xik - x,kf] (26)
k=1

However, the Euclidean distance may not always be the most ‘meaningful’
measure of spatial separation. To a pedestrian in a city trying to work out the
distance between two locations, it fails to take into account the buildings and other
obstacles that lie in the path between the two points. To overcome such problems, a
family of distance measures exists known as the Minkowski metrics, with the
following definition:

m 1/p
d,(i, j) = [z |xix — x/k|p] (2.7)

where p is a constant that can have any value from unity to infinity. When p = 2,
we have the familiar Euclidean distance formula. When p = 1 the distance is
referred to as the Manhattan, city-block, or taxicab distance. Alternatively, the
value of p can easily be estimated from a sample of known road distances. Gatrell
(1983, p. 29) presents a table comparing the Euclidean distance, the city-block
distance, and the actual route distance for various pairs of French towns. The
Euclidean distance is always shorter than the route distance; the city-block distance
is greater than the Euclidean distance, but is not always less than the route distance.
In this book, distances are Euclidean in two dimensions unless otherwise described.

2.6 Representing spatial data

Data for spatial analysis have two components: one that describes the location of
the object of interest, and one that describes the characteristics of the object. We
shall refer to these as the spatial component and the attribute component.

A point may be described by an ordered pair of coordinates {x, y} defining its
location, and an associated vector of attributes A. A line may be defined as an
ordered set of n points defining its location, (xi, Y15 X2, Va3 X35 V35 « - s Xus Va)s
together with an associated vector of attributes A. An area may be defined by a line
which describes the location of its boundary, together with a vector of attributes, A,
of the area itself. Generally, the first and last points of the boundary are
coterminous (i.e. X; = X, Y1 = V,).

A field may be defined by a mathematical function indicating the intensity of the
phenomenon of interest at any particular location (a, b); thus z = f(a, b). Fields
are used in spatial analysis, for example, in the computation of a spatial kernel
(Chapters 3 and 5). However, for observations from the ‘real world’, we usually do
not know the form of the mathematical function. A field may be approximated by



22 QUANTITATIVE GEOGRAPHY

providing a series of measurements of the phenomenon at regularly spaced intervals
(a lattice or grid), or at irregularly spaced intervals. The value of the field at
locations where observations have not been made can be obtained by interpolation
using techniques commonly referred to as geostatistics (Chapter 7).

2.7 Models for spatial data

There are two commonly encountered models for representing spatial data in a
computer, the vector model and the raster model. We now briefly consider both
models.

2.7.1 The vector model

In the vector model, the physical representation of points, lines and areas closely
matches the conceptual representation outlined in the previous section. A single
point with attributes is represented by an ordered coordinate pair and a vector of
attributes. Usually the x coordinate precedes the y coordinate. In some GIS, the
geographical coordinates and their associated attributes are kept in separate files,
with a unique identifier for each object present in both files to act as a linking
mechanism. A line is represented by an ordered set of point coordinates, the first
and last of which are sometimes referred to as nodes. In some GIS, lines are
referred to as arcs. There will be a vector of attributes for each line. Again, the
geographical coordinates and their associated attributes may be in separate files,
linked via a unique identifier. Some systems will automatically provide attributes
calculated from the geographical data, such as the length of the line, and identifiers
for the start and end nodes of the line. An area is an ordered set of point coordinates
representing its boundary, with the first and last being identical. As well as the
geographical data, there will be an associated set of attributes, some of which may
be calculated by GIS (e.g. the area and perimeter of the polygon). There are several
different ways of storing area data physically. The simplest is to store the closed
polygons, and the associated attribute data, in separate files. This means that the
boundaries between adjacent polygons are stored twice. It also means that the
determination of adjacency becomes a cumbersome process. A commonly encoun-
tered solution is to store internal boundaries only once, with an extra file containing
entries that indicate which boundaries should be put together to represent any given
polygon in the study area. A by-product of this mode of storage is that determining
polygon adjacency is easy (this is required for some of the techniques described in
this book).

A variant of line data is network data. A network is a connected set of lines that
represents some connected objects such as a river network, or road network, or a
rail network. With a river network, the attributes for each line in the network might
include the flow along the particular part of the river that it represents, or its
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Strahler order number (Strahler, 1952). With the representation of a road network,
the attributes might include the class of the road (expressway, highway, lane), the
permitted road speed, the time required to travel along that section of road (or two
times, representing travel speed in either direction). The first and last vertices in the
line would then represent junctions in the road network — we may be interested in
whether turning is restricted at a junction. Typical operations on network data
include finding the shortest or quickest path between two locations on the network,
determining the area within which one may travel from a central point within a
given time or distance, or modelling the distribution of goods from a central
facility. A common problem, known as the ‘travelling salesperson problem’, is one
in which a route is desired between a series of locations which minimizes either the
time or distance to be travelled.

2.7.2 The raster model

An alternative way of storing spatial data is provided by the raster model. Only the
data values are stored, ordered either by column within row, or by row within
column. This is usually referred to as a lattice or grid. There will be some
additional items of data required, in particular the numbers of rows and columns,
the coordinates of the origin of the lattice, and the distance between the mesh
points. With this information, data from the grid can be related back to the earth’s
surface. For any given point location, the position of the grid cell containing that
point location can be easily calculated, and the information extracted from the grid.
No locational information concerning the position of individual grid cells is stored
in the raster model.

Representing points, lines and areas in a grid suffers from the constraints of the
grid model. First, the accuracy of location is dependent on the size of grid cells.
Secondly, only a single attribute can be stored in the grid. With points, the grid cell
corresponding to the location of the point is set to the value of the attribute that is
required to be stored. If two points hash to the same grid cell, but have different
attributes, a rule will be required to decide which one is stored. The grid cells
corresponding to the points defining a line can receive the value of the attribute to
be stored. Intermediate grid cells between these can be identified using an algorithm
such as Bresenham’s algorithm (Bresenham, 1965) and filled. Again, where lines
with different values for the attribute meet in the same grid cell, a rule will be
required to determine which value is placed in the grid cell. Grid cells entirely
contained within the boundary of an area can receive the attribute of that area. Grid
cells through which the boundary between two or more polygons passes will require
a rule to decide from which polygon the attribute is allocated to the cell.

Which is the most appropriate model to use: raster or vector? To some extent,
the answer to this question depends on the nature of the data that are at your
disposal. If the data are already in lattice form, for example from a satellite image
or a digital elevation model, then the raster representation is perhaps to be
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preferred. If positional accuracy is an overriding concern, vector representation
may be preferred. Many GIS provide routines for conversion between raster and
vector modes of representation. There is usually some loss of positional accuracy
in raster to vector conversion because of the quantization in the raster model. Lines
that should be straight will follow the implicit boundaries between adjacent rasters.

2.8 Programming with spatial data

It has been established that spatial data have special properties. As will be demon-
strated, these special properties often lead to traditional methods of analysis being
inappropriate. This, in turn, often means that specialized software for handling
spatial data has to be developed by the user. The analyst is often forced to write a
program in a suitable language (FORTRAN, PASCAL, or C, for example), or use
one of the recently developed interactive computing environments such as XLisp-
Stat (Tierney, 1990), S-Plus (Venables and Ripley, 1997), or R (Ihaka and Gentle-
man, 1996). Although this is not a text on programming, the following two sections
are provided to give a feel for the special issues involved in programming with
spatial data (a much more extensive treatment is provided by O’Rourke, 1998).

2.8.1 Point-in-polygon operations

Suppose that we wish to identify whether any points lie within some simple region,
such as a square or circle, or a more complex polygonal region. If the simple region
is a square or rectangle whose lower left corner is {Xyin, Vmin}» and the upper right
corner is {Xmaxs Vmax }» the test is whether any point in it satisfies the constraints

Xmin sSx s Xmax and ymin = y = ymax (28)

If the simple region is a circle, centred on {Xen, Veen}, and with radius d, the
constraint is

(x - xcen)z + (y - ycen)2 = dz (29)

With a more complex region, defined by a closed polygon, a routine to determine
whether a point lies in a plane region is required (sometimes referred to as a point-
in-polygon algorithm). Baxter (1976) has some rather terse FORTRAN code to
accomplish this; Sedgwick (1990) presents some rather more elegant code. To
speed things up, one might test to determine first whether the point lies inside the
rectangle which wholly encloses the arbitrary polygon before applying the test.
O’Rourke (1998) is another useful source of spatial data processing algorithms, in
this case written in the language C.
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2.8.2 The use of complex numbers to represent spatial data
Implementing spatial data analysis routines can be cumbersome. For example, to

determine the Euclidean distance between two points whose coordinates are stored
at locations 7 and j in the arrays x and y, we might code this thus:

real x(...), v(...)

dx =x(i)-x(3)
dy =y (i)-y(3)
dsqg = dx*dx + dy*dy
dist = sgrt (dsq)
This can be rather more conveniently coded using the complex type thus:

complex p(...)

dist = abs(p(i)-p(3))

If the language or environment that is being used for spatial data supports complex
numbers then the implementation of many geometrical techniques is simplified.
Brunsdon and Charlton (1996) describe both the representation of spatial data using
complex numbers and the implementation of a range of geographical data handling
functions in the context of exploratory spatial analysis.

2.9 Problems and opportunities

Spatial data provide us with a number of special challenges. One of the lessons
learned from 30 years of experimentation by geographers and others is that care
and thought are needed in analysing spatial data. The plethora of recent texts with
titles such as Interactive Spatial Data Analysis (Bailey and Gatrell, 1995), Spatial
Analysis and GIS (Fotheringham and Rogerson, 1994), Recent Developments in
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Spatial Analysis (Fischer and Getis, 1997) or Spatial Analysis: Modelling in a GIS
Environment (Longley and Batty, 1996) suggests that geographers are rethinking
their approaches to the analysis of spatial data. Furthermore, geographers’ interests
in spatial data and associated problems have been paralleled by developments in
other disciplines, notably statistics and computer science (Cressie, 1993).

The rapid diffusion of GIS during the 1980s has also fostered an interest by non-
geographers in geographical problems. For example, were it not for the curiosity of
some paediatric oncologists in northern England, then it is debatable whether
Openshaw’s geographical analysis machine (GAM) would have appeared, or
whether Besag and Newell’s complementary approach to the same problem would
have been developed (Openshaw et al., 1987, 1988; Besag and Newell, 1991;
Fotheringham and Zhan, 1996).

However, the analysis of spatial data is not without its problems. Long gone are
the days when the aspiring geographical data analyst would pick up a copy of a text
with a beguiling title such as Multivariate Procedures for the Behavioural Sciences
(Cooley and Lohnes, 1962), punch up the FORTRAN codes, and run his or her data
through the computer, unaware of the geographical solecisms which were being
committed. There has been a recognition that there are problems peculiar to spatial
data analysis, such as spatial autocorrelation, identifying spatial outliers, edge
effects, the modifiable areal unit problem, and lack of spatial independence, which
require special care.

A fundamental assumption with classical statistical inference, for example, is that
of independence: in other words, that the observations under scrutiny are unrelated
to each other. However, it has been observed that ‘everything is related to everything
else, but near things are more related than distant things’ (Tobler, 1970). As a result,
the assumption of independence of the observations is questionable with spatial data.
Suddenly, classical tests pose problems. Cressie (1993, p. 25) quotes a remarkable
observation made by Stephan over 60 years ago (Stephan, 1934):

Data of geographic units are tied together, like bunches of grapes, not separate, like
balls in a urn. Of course, mere contiguity in time and space does not of itself indicate
independence between units in a relevant variable or attribute, but in dealing with social
data, we know that by very virtue of their social character, persons, groups, and their
characteristics are interrelated and not independent. Sampling error formulas may yet
be developed which are applicable to these data, but until then, the older formulas must
be used with great caution. Likewise, other statistical measures must be carefully
scrutinized when applied to these data.

This contrasts markedly with a piece of advice that appeared in a geographical
text just over 40 years later!

grab some census data for your town, a factor analysis program and a large computer
and then run the data through the program ten, twenty, maybe thirty times, trying all the
options.

(Goddard and Kirby, 1976)



SPATIAL DATA 27

Cressie (1993, pp. 14—15) demonstrates the problems of ignoring autocorrela-
tion. If we have a sample of n independent observations drawn from a normal
distribution of known variance o2, then the unbiased estimator of the unknown
population mean is

Xzzn:xi/n (2.10)

and the 95% confidence interval for the unknown population mean is given by
X+ (1.96)0/\/n (2.11)

However, if we have a set of data exhibiting spatial autocorrelation p, a simple
model for the covariance between any pair of observations x; and x; might be

cov(x, X)) = 0>.p (2.12)

The variance of the estimator of the mean is given by

var(x) = (ii cov(x;, xj)> /n2 (2.13)

=1 j=1

Cressie shows that, on substituting (2.12), this becomes

() (5] e

Cressie notes that if n =10 and p = 0.26, then var(x) = (67 /n)[1.608], which
gives a 95% confidence interval of

var(xX) = (0°/n)

X+ (1.96 X V1.608)0 /v/n (2.15)

Thus, if we ignore the positive autocorrelation, the calculated confidence interval
using the usual formula in (2.11) will be too narrow. If the data exhibit negative
autocorrelation, and we ignore it, then the calculated confidence interval from
(2.11) will be too wide.

With positively autocorrelated spatial data the sum of the covariances will be
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positive; conversely, if the data are negatively spatially autocorrelated (neighbour-
ing observations tend to differ), then the sum of the covariances will be negative. If
we assume that our observations are independent then we assume zero spatial
autocorrelation. If our data are positively spatially autocorrelated, then the standard
error of the mean will be greater than if we had assumed independence. Conversely,
if our data exhibit negative spatial autocorrelation, the standard error of the mean
will be less than if we assume independence.

The table below shows the variation in the bracketed value in (2.15) for different
levels of spatial autocorrelation using a sample size of 100. It would appear that
even with relatively low positive spatial autocorrelation, the calculated confidence
interval using the usual formula will be too narrow.

p 0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
100 1960 2.059 2276 2550 2.813 3.165 3.609 4.207 5.096 6.669

This has some important consequences for any interpretation we may decide to
make with spatial data. For example, if we want to compare means for two groups,
we may test whether there is a sufficient difference between the sample means for
us to be confident about asserting that there is a difference in the unknown
population means. If the data in both groups are positively spatially autocorrelated,
then using the variance formula in (2.14) we may decide that the two sample means
are not sufficiently different for us to be confident that there is a difference in
population means. However, If we ignore the autocorrelation, then we run an
increased risk of making the wrong decision — concluding that the population
means are different whereas in fact there is not sufficient evidence to support that
decision. If the data exhibit negative spatial autocorrelation, and we ignore that
autocorrelation, we may conclude incorrectly that there is no difference between
the two population means. The measurement of spatial autocorrelation has been
espoused as a theme by a number of geographers and statisticians (Cliff and Ord,
1973; 1981; Griffith, 1987). It is also part of the subject matter of Chapter 6.

Another problem arises when we ignore the special nature of spatial data and use
data that have been collected from individuals but are aggregated to some system
of zones. This problem, now often referred to as the modifiable areal unit problem,
was also noticed by sociologists in the late 1940s (Robinson, 1950; Menzel, 1950).
Robinson demonstrated that different conclusions could be drawn if one created a
correlation based on aggregated spatial data compared with a correlation based on
the data for the individuals. Robinson termed this an ‘ecological fallacy’. Many
spatial data sets are available only in aggregate form (e.g. most of the output from
the censuses in the UK, and the USA®). We therefore need to be aware that the
results of any spatial analysis might vary if the data are aggregated in some other
way. This sensitivity has been demonstrated in simple bivariate analysis (Openshaw
and Taylor, 1979), in multivariate spatial analysis (Fotheringham and Wong, 1991)
and in spatial modelling (Fotheringham et al., 1995). The ability of some GIS to
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reaggregate data from one set of areal units to another makes the modifiable areal
unit problem even more important.

2.10 Summary

The way in which the special properties associated with spatial data have been
viewed marks a watershed in the maturity of quantitative geography. Until fairly
recently properties such as the modifiable areal unit problem or spatial non-
stationarity have been perceived as rather embarrassing problems that have
weakened quantitative research using spatial data. However, it is now increasingly
recognized that not only do the special properties of spatial data impinge on most,
if not all, types of analysis, they also represent great opportunities. Spatial data
analysis and spatial modelling cannot simply be the application of techniques and
models developed in aspatial contexts to spatial problems. The task of spatial
analysts is to develop new sets of techniques designed specifically with the proper-
ties of spatial data in mind. This is where great opportunities arise for significant
new developments and it is a sign of the increasing maturity of quantitative
geography that we now recognize this and view spatial data in a positive light. The
remainder of this book provides a sampling of the opportunities provided by spatial
data and of the techniques under development to take advantage of these opportu-
nities.

Notes

1. Definitions of geographical information systems (GIS) are legion. DeMers (1997, p. 7)
suggests that they are ‘tools that allow for the processing of spatial data into information,
generally information tied explicitly to, and used to make decisions about some portion of
the earth’. We examine the role of GIS for spatial data analysis in Chapter 3.

2. Flat sheets of paper can be bound into reports and atlases, and the flat display of a
computer screen provides an analogue to the sheet of paper for ephemeral displays of
geographical data.

3. The Public Use Microdata Samples (PUMS) are a welcome step forward in permitting the
nature of the aggregation problem to be examined. In the UK, the Office of National
Statistics has produced an equivalent, the Sample of Anonymised Records (SAR).



3 TheRole of Geographical
Information Systems

3.1 Introduction

This chapter is concerned with the role of GIS in the analysis of spatial data. It is
not, however, a primer on GIS; rather it deals with the way we use GIS for the
advancement of quantitative spatial analysis. Some knowledge of GIS is assumed
and the reader is referred to current texts such as DeMers (1997), Burrough and
McDonnell (1998), Martin (1996) or Heywood et al. (1998), for further details of
the principles underlying GIS. A useful guide to some of the computing issues
germane to GIS is provided by Worboys (1995).

The following section illustrates some simple types of spatial analysis using data
for an area in North-East England; such manipulations are common in GIS. The
third section considers the use of GIS as a data integration and manipulation tool in
a modelling framework. The fourth section examines some problems that can arise
from the naive use of GIS in spatial analysis. The fifth section considers some
alternative approaches to linking other analytical software with GIS, and the
chapter finishes with a brief consideration of the future role of GIS in the analysis
of spatial data.

In this chapter we shall make reference to the Arc/Info GIS." This is not an
endorsement of Arc/Info as a GIS package, neither is it a critique of Arc/Info; it
merely reflects the authors’ familiarity with this package, and its availability in
many universities in the UK and the USA. However, many of the GIS operations to
be described in this chapter are available in one form or another in other GIS
systems; thus the comments that follow are intended to be general, rather than
particular to one software system.

The term ‘geographical information systems’ can be confusing. At one extreme,
it is often used to describe a piece of software, such as Arc/Info, or SPANS. Such
software is intended to be general purpose by providing a means of storing,
querying, integrating, retrieving, displaying and modelling spatial data. They are
characterized by a command language or menu system of some complexity and
considerable skill is usually required to operate them. In one sense, such packages
are the GIS analogue of statistical packages, such as SAS or SPSS, which are
collections of statistical routines that can be applied to a wide variety of data. With
GIS, as with statistical packages, it is up to the user to decide which are the
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appropriate operations for data management and analysis in any given situation.
Merely because some technique is provided in a package, does not imply that it is
of universal applicability. At the other extreme, GIS might be a specifically tailored,
turnkey system for aiding such activities as traffic management, automated
mapping or facilities management, as is often found within the offices of public
agencies. A predetermined subset of operations (perhaps prepackaged behind a
graphical user interface) will be available for operators. There will be a well-
defined means of data entry and the operations will be highly specific to the task
for which the software has been designed.

What is the role of GIS in the quantitative analysis of spatial data? The latest
thinking and ideas on GIS are contained within the academic literature in journals
such as the International Journal of Geographic Information Science and Transac-
tions in GIS. Inevitably, there will be a lag between the description of a new
method, or data structure, in the scientific literature and its appearance (if at all) in
a particular software vendor’s product. Software vendors are not in the business of
selling experimental software to customers; you are more likely to find some tried
and tested techniques in commercial software, rather than the latest methods for,
say, pattern analysis. Indeed, it is not unknown for academics, frustrated with what
is available commercially, to make experimental software available. A notable
example here is SPLANCS (Rowlingson and Diggle, 1993), a collection of S-Plus
routines for the analysis of spatial data produced by researchers at Lancaster
University, England.

What can be achieved with the operations programmed into the system by the
manufacturer, and what can be done when some other technique is required? Vendors
often claim their system has ‘advanced spatial analysis functionality’; what do they
mean by ‘spatial analysis’, and does this accord with our own view of spatial
analysis? Johnston (1994) defines spatial analysis as the ‘quantitative procedures
employed in locational analysis’; for Johnston, the focus of locational analysis is ‘the
spatial arrangement of phenomena’ (1994). Indeed Unwin’s text Introductory Spatial
Analysis (1981) is largely concerned with the arrangement of points, lines and areas
in space. Johnston suggests that practitioners of spatial analysis have either concen-
trated on applying linear models to their data, or sought new methods of dealing with
the problems brought about by attempting to analyse spatial data (see e.g. Haining,
1990; Bailey and Gatrell, 1995). For DeMers (1997), spatial analysis encompasses a
wide variety of operations and concepts including simple measurement, classifica-
tion, surfaces, arrangement, geometrical overlay and cartographic modelling. Mar-
tin’s (1996, p. 59) view of ‘fundamental operations of GIS’ includes reclassification,
overlay, distance and connectivity measurement, and neighbourhood characteriza-
tion. Clarke (1997, p. 184) identifies a number of ‘geographic properties’ of
phenomena, including size, distribution, pattern, contiguity, neighbourhood, shape,
scale, or orientation, and asks the question: how can variations in these properties be
described and analysed? If some of these points of view represent ideals, what are we
likely to find? When GIS software first became widely available, many academics
were surprised to find that the term ‘spatial analysis’ had been borrowed by GIS
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vendors to describe what were essentially a series of geometrical operations. Little of
the stochastic framework that had characterized much of the spatial analysis
approach was present in GIS. What do we then find, loosely characterized as spatial
analysis, in a typical software product?

3.2 Simple GIS-based spatial analysis

One characteristic perhaps differentiates GIS from other software that is intended
merely to map layers from a spatial database. This is the ability of the former to
calculate and store spatial relationships between different features in the database,
either within the same layer, or between layers. An early example was in the
development of an algorithm which would determine whether a point lay inside a
polygon or not. The underlying problem is one of computational geometry and a
number of solutions have been proposed. One commonly used solution is to
construct a line from the point in one direction. If this line crosses the digitized
boundary of a polygon an odd number of times, then it lies inside the polygon, and
if it crosses an even number of times, the point lies outside the polygon. One has to
make some decisions in special cases, for example when the point in question lies
on the boundary. Sedgwick (1990, p. 353) provides code in C for this algorithm,
and Baxter (1976, p. 170) provides a FORTRAN IV example.

In order to illustrate some of the GIS functionality claimed as ‘spatial analysis’,
we shall use some digital data for a small part of North-East England. The data are
extracted from a much larger database created by Bartholomew (Bartholomew, nd)
sourced from 1:625 000 material. As well as the Bartholomew data, we shall take
some data from the 1981 UK Census of Population at ward level.

3.2.1 Feature selection by attribute

One of the layers in the Bartholomew data is the boundaries of the administrative
counties of England and Wales, and the administrative regions of Scotland. These
boundaries are statutorily defined, and refer to the administrative geography of the
UK on 1 April 1974. The features in this layer are polygons, and one of the
attributes of each polygon contains the name of the county which that polygon
represents. To demonstrate a simple GIS-based spatial operation, we can create a
new coverage based on one or more attributes of the original coverage. Here, for
example, we create a new coverage by selecting one polygon from the UK
database, that of County Durham (see Figure 3.1). Many GIS have a function which
permits the selection by features on the basis of attribute value. The input here is
the UK county polygon coverage, and the output is a polygon coverage containing
a single polygon representing the boundary of the administrative county of
Durham. The county is about 70 km from east to west, and about 50 km from north
to south. Its area is about 2400 square kilometres.
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Figure 3.1 Feature selection by attribute
3.2.2 Feature selection by geometric intersection
Among the layers in the Bartholomew data are those representing the positions of

the railway lines, and those representing the extents of the urban areas. The railway
coverage is a line coverage, and the urban area coverage is a polygon coverage. To
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extract those features which lie within the boundary of Durham county requires a
different approach to that in the last section. Neither coverage has an attribute that
contains the name of the county in which each feature lies. Most GIS will supply a
function to allow clipping or ‘cookie-cutting’. One coverage is designated as input,
and the boundaries of another are taken as a clipping coverage. The output is a
coverage whose features lie within the extent of clipping coverage. Figure 3.2(a)
shows the county boundary with the urban areas from the complete Great Britain
coverage, and Figure 3.2(b) shows both the urban areas and railway lines after the
clipping operation.

3.2.3 Buffering features

A commonly encountered facility in GIS is the ability to create a buffer. This
involves the creation of a circular region around a point, or a corridor around a line
feature. The radius of the circle, or the width of the corridor, is defined by the
analyst. Some systems permit flexibility in specifying variable buffer widths (to
reflect varying properties of the features). Figure 3.3 shows a 1 km buffer for the
railway lines in Durham. This might be used to reflect notions of accessibility, or
perhaps local susceptibility to noise from rail transport operations. The output from
a buffer is always a polygon coverage.

Figure 3.2(a) County boundary with unclipped urban area boundaries
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Figure 3.3 A 1 km buffer around railway lines

3.2.4 Geometric intersection: union

If we wish to calculate the proportion of urban area within the rail buffer, then we
shall need to create another coverage containing both the rail buffer and the urban
areas’ extents. The appropriate operation here is a union of the two spatial data
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sets. Where a polygon is crossed by the boundary of the buffer, two new polygons
will be formed, one outside the buffer and one inside the buffer. To display the parts
of the buffer in the area, we will need to inform the software that only those
polygons which were both (a) originally part of the urban cover and (b) within the
buffer polygon are to be selected for shading. Figure 3.4(a) shows the combined

Figure 3.4(b) Urban areas within the rail buffer
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polygons created from the union of the urban area boundaries and the rail buffer.
The shaded polygons in Figure 3.4(b) are those which satisfy the criterion above.
Additionally we can then calculate the area of urban land within and without the
buffer: in this example, of the 360 square kilometres of urban land, about 40 square
kilometres lie within 1 km of a railway line.

3.2.5 Geometric intersection: intersection

If we wish to create a new coverage of only those areas which are both urban and in
the rail buffer, an intersection operation will be required. This is a slightly different
operation to the selection of areas for display from the union operation in the
previous section (which was based on selection by attribute value). Intersection is
an operation that may be carried out on polygon, line or point data, the output
coverage being of the same type as the input coverage. Figure 3.4(b) shows the
urban area polygons that lie in the rail buffer as shaded areas.

In Figure 3.5(a) the railway lines that lie in the intersection of the railways with
the urban areas have been omitted from the display. Figure 3.5(b) shows the output
of an intersection of the ward centroids with the urban area buffer (allowing us to
calculate the number of residents living within the urban areas). Ward centroids
lying within an urban area extent are shown as black squares, and those outside are
shown with lighter symbols.

Figure 3.5(a) Railway lines outside urban areas
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Figure 3.5(b) Ward centroids in urban areas

3.2.6 Proximity

A related operation is the computation of the proximity of objects in one layer to
objects in another. Typically, one layer will be point data, and the other layer will
be point or line or polygon data. The output from such an operation is the addition
of at least two new attributes to the attribute table for the input layer (attributes in
the vector model are outlined in Chapter 2). The first will be the ID of the nearest
object in the other layer (nearest point, or nearest line segment perpendicularly)
and the second will be the distance in whatever units are being used. This operation
can be time consuming if inefficiently programmed; if there are n objects in the
first layer, and m in the second, nm distance calculations may be required. This
operation may appear to be of limited utility. However, with a point layer repre-
senting the locations of settlements and a line layer representing roads, populations
can be assigned to road segments (perhaps inversely weighted by distance) for
network modelling applications.

A related operation in several GIS packages is the creation of Thiessen polygons
from irregularly spaced point data. The boundaries of Thiessen polygons are
created such that any location inside a polygon is closer to that polygon’s centroid
than to any other polygon centroid. Thiessen polygons have a characteristic convex
shape. As with buffering, the output from this operation is a polygon coverage.
However, there will be as many polygons in the output layer as there are points in
the input layer (this may not be the case with a buffer operation on point data). For
points on the edge of the study area, the boundaries of Thiessen polygons tend to
form exaggerated areas (usually they are far too large). A possible solution is to
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clip the layer with a digitized boundary to remove the worst of the problem
polygons. Thiessen polygons can be useful for producing choropleth maps from
point data. In reality many boundaries tend to exhibit both local convexities and
concavities; as an example, a boundary which follows the path of a meandering
river will be alternately convex and concave. The boundary between the adminis-
trative districts of Newcastle and Gateshead, which follows the path of the River
Tyne, is such a boundary, as is the boundary between the states of Ohio and West
Virginia, which follows the Ohio River.

Figure 3.6(a) shows the Thiessen polygons created by the Arc/Info software for
the ward centroids. Notice that the boundaries of the polygons extend beyond the
county boundary. In Figure 3.6(b) the Thiessen polygons have been clipped with
the county boundary. In the absence of a set of digitized boundaries, Thiessen
polygons are often used as pseudo-boundaries; Figure 3.7 shows a map of popu-
lation density created from the Thiessen polygons. The data are classed into
six groups, such that there are approximately the same number of wards in each
group. The map is shown with the boundaries drawn (Figure 3.7(a)) and without
(Figure 3.7(b)). A larger number of grey shades have been used in the lather to give
an indication of shading without the imposition of classes. The contrast in density
between the rural areas in the west of the county and the more urbanized areas in
the east is noticeable in these two maps.

Figure 3.6(a) Thiessen polygon boundaries for Durham wards
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Figure 3.6(b) Thiessen polygons clipped into the county boundary
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Figure 3.7(a) Classed population density by ward
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Figure 3.7(b) Population density by ward - continuous shading

3.2.7 Contiguity

A by-product of the creation of a topologically correct polygon layer can be a table
showing, for each arc in the layer, the IDs of the polygons on either side of the arc.
Such a table can be useful in the dissolve operation. Dissolving involves removing
boundaries from a layer which border two polygons possessing the same values for
one or more attributes. The output is a new polygon layer with the same number or
fewer polygons than the input layer. This operation is useful with administrative
data in which there is a spatial hierarchy. If one has data for the lowest level in the
hierarchy, layers for the other levels can be built, if the hierarchy is represented in
one or more of the attributes in the data.

In the spatial hierarchy used by the UK Office of National Statistics, the lowest
levels at which the decennial population census data are reported are called
enumeration districts. These nest into larger units known as wards, which in turn
nest into administrative districts, which nest in turn into administrative counties.
Each enumeration district is given an eight-character code; the first two characters
identify the county; the next two identify a district; the third to sixth inclusive
identify a ward; and the third to eighth identify an enumeration district. Given a
layer of digitized enumeration district boundaries, it is possible, using a series of
dissolve operations, to recover the digital representations of the other areas in the
hierarchy. As an example, county 06 is the code for the county of Tyne and Wear;
06ClJ is the coding for the administrative district of Newcastle upon Tyne; 06CJFA
refers to the ward known as Jesmond (a suburb of Newcastle); and 06FDFAO01 is
one of the enumeration districts in this ward. Jesmond is one of 26 wards in
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Newecastle upon Tyne, and there are five administrative districts within Tyne and
Wear.

In the USA, the FIPS (Federal Information Processing Standard) assigns codes
for both states and counties. For example, the FIPS code for New York State is 36,
and the Code for Erie County is 029 (one of the 62 counties in New York State).
The five-digit code 36029 combines both state and county levels and provides a
unique identifier for Erie County. As with the UK example, the spatial hierarchy is
mirrored in the county code.

Both the above are examples of fixed length codes. For the county FIPS code,
the number is padded on the left with zeroes to give 3 digits. Not all codes which
are hierarchical are fixed length. An example is provided by the UK postcode
system. The postcode for Newcastle University is NE1 7RU; the part of the code
up to the space is known as the ‘outward’ part, and the last three characters form in
‘inward’ part. The ‘inward’ part is always digit—character—character. However, the
outward part specifies, first, the post town (characters), and then a postal district
within this area (digits). Not all post towns are identified by two letters (NE is
‘Newcastle’ but Sheffield is ‘S’ and Glasgow is ‘G’). There may be more than nine
postal districts within a postal area, but those with codes 0 ... 9 are not padded
with a zero to give two characters. This may cause problems when parts of a code
are being extracted for a dissolve operation.

The dissolve operation can be used with some success following the creation of
Thiessen polygons for some small spatial units to generate boundaries for areal
units that are part of the same hierarchy. Although the atomic units will be convex,
those higher-level units may exhibit reasonably plausible concavities, although they
are no substitute for the actual boundaries, and may even contain contiguities which
would not exist in reality.

3.2.8 Interpolation and fields

A mathematical model for representing the variation of some phenomenon over a
continuous expanse of geographical space is sometimes referred to as a field. An
example of a field is the spatial distribution of soil pH values. As computers cannot
handle continuous functions directly, some form of discrete approximation must be
used. Given a spatial framework, for example a partition of the area of interest into
tessellating squares, a field can be modelled as a computable function from the
spatial framework to an attribute domain. Usually the spatial field gives the z values
at locations on a horizonatal x—y plane (Worboys, 1995, pp. 152—3). One means of
visualizing the field is as a surface, either as a set of isolines (e.g. contours), or in
pseudo-3D. Field-based models are usually implemented in raster GIS. In Arc/Info
the GRID module is available for handling field-based data, although there are
standalone packages, notably IDRISI. We shall use the terms grid and surface
interchangeably below to refer to layers in a field-based model.

Some systems permit the creation of a surface (see Chapter 2) from irregularly
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spaced point data (or line data). This requires a set of points each of which has an
associated z value from which the surface will be interpolated. There are a number
of alternative techniques for creating grids, including inverse distance weighting,
splines (see Chapter 4) and kriging (see Chapter 7). However, the user needs to take
some care in surface interpolation from such data, since most techniques require
that some parameters are set to control surface generation. Injudicious choice of
parameter values may give rise to a surface that is very different from that which
was intended. A common use of such interpolation techniques is the creation of a
digital elevation model from digitized contours and spot heights. However, the z
value that one uses in interpolation need not be elevation, it might be some other
attribute which varies spatially, such as population, or unemployment rate, or the
parameters from the calibration of a localized model (see Chapter 5). Figure 3.8(a)
shows the variation in elevation in the landscape of Durham — upland areas are
shaded a lighter grey than lowland areas. It is instructive to compare this map with
the population density maps in Figure 3.7. The more urbanized, densely populated,
areas are in the lowlands on the east side of the county. Figure 3.8(b) shows an
attempt to visualize the surface in pseudo-3D. A mesh, or wire frame, is ‘draped’
across a representation of the surface, such that valleys and hills can be clearly
seen. In order to enhance the impression of elevation change, the heights have been
multiplied by 9. The choice of vertical exaggeration is largely a matter of experi-
ment.

An alternative perspective on the creation of surfaces is provided by Tobler’s
smooth pycnophylactic interpolation (Tobler, 1979). Here the goals are to create a
smooth surface and to preserve the total value of the attribute being interpolated

Figure 3.8(a) Shaded digital elevation model
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Figure 3.8(b) Surface represented as a wire frame

within each source zone. This method starts with a rasterized version of a zonal
partition of the study area, with zones z; to z,. If the ith zone contains # rasters,
then each raster in that zone is initially allocated 1/nth of the value of the attribute
being interpolated. The surface is then smoothed, using a low-pass filter.” The
resulting smoothed values for the ith zone are summed, and their values adjusted
uniformly such that their sum is the same as the original attribute total for that
zone. All zones have their values adjusted accordingly. The smoothing, summation
and adjustment process is repeated until there is no change between successive
iterations.

The ability to represent data as a surface has some advantages from the
modelling point of view. Tomlin (1990) coined the term ‘cartographic modelling’
for analysis using grids. Some of Tomlin’s ideas are included in the modelling
language used in the GRID module of Arc/Info. Analysis takes place by creating
grids, or by combining or modifying other grids. Grids may be added, subtracted,
multiplied and divided; they may be compared and logical operations (such as
AND and OR mentioned above) may be carried out. All these operations are done
on a cell-by-cell basis. Grids can also be modified by using functions; in the GRID
module, functions may be ‘local’ (working on a cell-by-cell basis), ‘focal’ (includ-
ing neighbouring cells), ‘zonal’ (neighbourhoods are defined by another ‘zone
grid’), or global (relating to the whole grid). As examples, the local function sqrt
returns an output grid in which the cell contains the square root of the correspond-
ing cell in the input grid. The focal function focalmean returns an output grid in
which each cell contains the mean of a spatial filter whose shape is under some user
control. The global function costdistance returns an output grid in which each cell
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contains the cumulative cost—distance to some location; the user also supplies a
‘cost’ grid which contains the unit ‘cost’ of travel through each cell. Other
commands permit the conversion between vector representations and the grid
representation; conversion from grid back to vector is also possible.

3.2.9 Density functions

Some GIS allow the estimation of a density surface from irregularly spaced point
data. Given an input layer representing the locations of a discrete set of events, one
can create an output grid in which each cell contains an estimate of the spatial
density of those events. Among the usual methods available for density estimation
is one employing a spatial kernel (see also Chapters 4, 5 and 6 and Silverman,
1986).

One variety of density estimate for a distribution is provided by a histogram.
Given an origin and bin width (in the units of the data we are graphing), we can
construct a histogram quite easily. The height of the bar for any one bin gives an
indication of the density of observations in that bin relative to the other bins in the
histogram. With spatial data, we can create a simple density estimate if we extend
the histogram into two dimensions; in other words, its base becomes a grid with
known origin and bin (or cell) size. Such a histogram can be visualized in many
software packages, for example in pseudo-3D, or by using a greyscale to indicate
variations in density. In both cases, larger bins will in general produce ‘smoother’
histograms than smaller bins. However, it is not always clear what bin size to
choose. Also, the histogram imposes an arbitrary quantization on the original data
if they are continuous.

The technique of density estimation allows us to place a kernel (or hump) over
each observation. The kernel can be thought of as a generalized bin. Summing the
individual kernels gives us the density estimate for the distribution. An estimate of
the relative density of a distribution in two-dimensional space around a location
(x, y) can be obtained from the following:

N 1 &
S ) =5 K(di/h) 3D

where f(x, y) is the density estimate at the location (x, y); n is the number of
observations; 4 is the window width (sometimes referred to as the smoothing
parameter or bandwidth); K is a kernel function; and d; is the distance between the
location (x, y) and the location of the ith observation.

The kernel function K defines the shape of the humps to be placed over the
individual observations, and the bandwidth controls their widths. The resulting
density estimate is smooth, and is a probability density. The aggregate effect of
placing humps over each observed point is to create a continuous distribution
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reflecting the smoothed variations in the density of the point data set. Note that we
may obtain an estimate of the density anywhere in the study area and not
necessarily at the locations where the observed data have been sampled. Typically
we may wish to compute f(x, y) at the mesh points of a rectangular grid.

The analyst has several choices to make. The first is to decide on the appropriate
kernel shape. Silverman (1986, p. 43) provides formulae for some common kernels
but points out that there is little to choose between different kernels on the basis of
their ability to replicate the shape of the distribution. The shapes of some common
kernels are shown in Figure 3.9.

The selection of the bandwidth % controls the amount of smoothing of the data:
larger bandwidths will tend to highlight regional patterns, and smaller bandwidths
will emphasize local patterns. Density estimates generated in this fashion are
preferable to those generated by aggregating data to a grid as the arbitrary
quantization imposed by the grid is removed from the observed pattern.

Figure 3.10 shows the output from the pointdensity function in GRID using the
residential population at each ward centroid as input data. This is somewhat similar
to the population surfaces of Bracken and Martin (1989). In Figure 3.10(a) a
bandwidth of 2 km is used, whereas in Figure 3.10(b) a bandwidth of 5 km is used.
Notice the difference in the variation in apparent population density that occurs.
With the larger bandwidth, the greater is the smoothing of the data. It is instructive
to compare this map with that in Figure 3.7(a), in which an artificial set of
boundaries has been imposed on the spatial distribution. The latter erroneously
encourages the impression that population density is not a continuously varying
phenomenon.

The incorporation of these more advanced data manipulation techniques in GIS
is welcome, as it permits some interesting analyses (Kelsall and Diggle, 1995). One
might, for example, have two sets of irregularly spaced data, the first representing
the locations of individuals with some disease, and the second representing the
locations of an at-risk population for the disease. If the disease is not spatially
clustered, then we would expect the incidence of the disease to be uniform in the
population. Two density grids may be created, one for the individuals with the
disease, and one for the at-risk population. If the diseased population density grid
is divided by the at-risk population grid, we obtain a new grid showing the disease
incidence (per capita incidence). This can be mapped to examine variations from
the overall disease incidence (the total number of disease cases divided by the total
at-risk population). Further tests can be undertaken to determine whether or not
local variation is outwith some confidence limits for the data.

3.2.10 Analysis on networks
A frequently encountered group of functions provides the ability to model paths

through networks. Typically such networks are road networks and the analyst is
concerned with finding a path from one location to another which is ‘optimal’ in
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Figure 3.9 Kernel shapes in three dimensions
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Figure 3.10(a) Population density using 2 km bandwidth

Figure 3.10(b) Population density using 5 km bandwidth

some sense. The algorithms for carrying this out are usually based on Dijkstra’s
shortest-path algorithm (Dijkstra, 1959). The user will have to supply the attribute
to be used for finding the shortest path; if arc length is used, the resulting route will
be the shortest. If times can be supplied for passage along each arc in the network,
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the resulting path will be the quickest; if passage costs are available, the resulting
path will be the cheapest. Variations on this include being able to model the
shortest route between a variety of locations, either in a specified order, or in an
order to be determined by the network analysis function. Some systems permit
other functions, such as allocation, in which arcs are identified as being reachable
in some specified distance or time from a given location.

The creation of optimal routes has spurred a spate of software from suppliers not
traditionally associated with GIS. Perhaps the best known of these is Microsoft’s
AutoRoute Express product; this provides a user-friendly interface to the shortest-
route problem. Once the user has specified a series of places to be visited,
AutoRoute Express calculates the shortest route and displays the results on a map,
as well as providing directions in printed form for a driver.

3.2.11 Query

Perhaps one of the most basic of all GIS-based spatial analytical tasks is the ability
to query a coverage interactively. This is usually achieved by pointing to a location
on the on-screen map display, and pressing a button on the mouse to request the
retrieval and display of the attributes associated with the feature which has been
selected. In some systems, the user may use one map to guide where the query
takes place, and be able to query another layer or layers simultaneously. As an
example of the latter, we might be interested in the variation of population density
relative to variation in topography. Figure 3.11 illustrates querying the population
density surface in the vicinity of the centre of Darlington — the user sees and is
guided by the map of urban area extents and the location of the railway line, but
queries an unseen surface.

Query is also possible by attribute, allowing the user to perform such tasks as
selecting and displaying all zones with a population density greater than 2.5
persons per hectare. This may be followed by a spatial query, with the analyst
querying either the values of the attributes in the zones highlighted, or another layer
in the database.

3.3 Advanced GIS-based spatial analysis

GIS can be considered to have three basic roles: as a data manipulator; as a data
integrator; and as a data explorer. We have considered the role of GIS as a data
manipulator in the above section that covers the basic spatial data operations
available in most GIS. Here we consider the role of GIS in more advanced forms of
GIS-based spatial analysis that tend to involve data integration and data exploration.

Fotheringham (1999b) considers the position of GIS and spatial analysis from
two viewpoints. The incorporation of simplified versions of established modelling
frameworks, such as location—allocation models or spatial interaction models, can
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be regarded as a retrograde step. The experience which GIS have engendered is that
spatial problems are far from easy, and the inexperienced user is likely to be misled
by the apparent simplicity with which a solution to, say, a p-median problem can
be produced. On the other hand, the use of GIS with spatial models, where GIS
have acted as a catalyst to a new modelling form, can be regarded as progress. In
the mid-1980s the widespread diffusion of GIS caused a resurgence of interest in
spatial problems amongst geographers, and, perhaps more importantly, researchers
in other disciplines. Part of this catalysis was provided by the functionality of the
software itself but an important part has been provided by institutional support for
GIS, particularly in universities. The establishment of the National Center for
Geographic Information and Analysis in the USA, and the Regional Research
Laboratories initiative in the UK, were notable in this regard.

Fotheringham (1999b) identifies three examples where the linkage of spatial
modelling and GIS can be regarded as a step forward. One area has been interest in
modelling local variation, either in attributes or as a result of modelling (see
Chapter 5). A second area is concerned with examining the sensitivity of results of
a location—allocation modelling exercise with respect to changes in the aggregation
of the data used in the model (see Chapter 10 and Fotheringham et al., 1995). The
third area is concerned with computer-intensive point pattern analysis, an approach
pioneered by Openshaw et al. (1987). In each case, GIS play a role as a data
integrator in the pre-modelling phases and as an evaluation tool in the post-
modelling phase. In no case can GIS be regarded as central, but they are extremely
useful as a facilitator. Indeed, in Openshaw et al.’s work, the ‘GIS’ amounted to
hand-coded routines for the fast retrieval of spatially referenced data and some
separate routines to send the results to a pen plotter.

3.3.1 Data-integration and management

Perhaps one of the most useful benefits that GIS packages offer is that of data
integration and management. Data for a modelling application may come from a
variety of sources. Powe et al. (1997) report the use of GIS in assisting with the
assemblage of data for an exercise designed to assess the effects of proximity to
woodland on house prices in the New Forest area of southern England. Their
modelling methodology was based on the hedonic model, in which variation in
individual house prices is related to the attributes of the properties under study.
Typically the attributes may include:

e Structural characteristics

e Socio-economic characteristics of the neighbourhood

o Aesthetic and environmental characteristics of the neighbourhood
e Geographical characteristics

e Property rights
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Data for such modelling can come from a wide variety of sources. The structural
characteristics can be taken from building society mortgage records (some are
available in the UK; Clarke and Herrin (1997) used a data set from TRW REDI-
Property). Socio-economic information concerning the neighbourhood of the
property can be obtained from Census of Population data. Aesthetic and environ-
mental characteristics, for example proximity to watercourses, or woodland, may
have to be captured from existing printed maps or aerial photographs and some
GIS processing is likely to be required. The geographical characteristics of the
property, such as accessibility to urban facilities, may have to be determined
through some GIS processing. In some countries, a property cadastre may be a
valuable source of information on property rights.

Powe et al. (1997) specified a price function of the following form:

P, = f(AM,, ENV,. S, SE,, ¥)) (3-2)

where P, is the price at which the house was sold; AM; is a vector of accessibility
and locational variables; ENV,; is a vector of environmental variables; S; is a
vector of structural characteristics of the ith property; SE, is a vector of socio-
economic variables for the surrounding ward; and Y; is the year in which the ith
property was purchased. The particular variables chosen for the model are listed
in Table 3.1.

Each property in the building society’s database was given a grid reference and
one layer of the structural characteristics of each property was constructed using
Arc/Info. It should be remembered that building societies do not generally store
their data in GIS, so some extra processing was required to extract from the
mortgage records only those variables that were of interest to the study. Some
sources of data which come the way of the spatial analyst may have some form of
geo-reference already attached (e.g. a postcode or zip code). If this is the case, a
suitable lookup table may be used.

In order to obtain the woodland variables, the identification of woodland (with a
car park or picnic area) from maps and the digitizing of the woodland boundaries
was necessary. For each property the distance to the nearest woodland and the
distance to the New Forest Park were obtained using the near command in Arc/
Info. A dummy variable was also created to indicate whether a property was within
500 m of a woodland boundary. Properties were also intersected with the New
Forest Park boundaries and those inside the New Forest Park allocated a dummy
value to indicate this location.

It is not surprising that Powe et al. (1997) found significant correlations between
the various woodland variables created using GIS. In order to have a single variable
that would act as a proxy for woodland characteristics, they created the following
index for each property:
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Table 3.1 Variables used in Powe et al.’s (1997) hedonic modelling study

Type of variable Description

1 Woodland variables

Digitized data Distance to nearest woodland
Distance to New Forest Park
Dummy: location within 500 m of woodland
Dummy: location in New Forest Park
Woodland index

2 Other amenity characteristics
Digitized data Distance to sea
Dummy: location within 500 m of sea
Dummy: location within 200 m of a river
Distance to nearest large urban area
Dummy: location in large urban area
Dummy: location within 500 m of an oil refinery
Dummy: location within 100 m of a railway line
Dummy: location within 100 m of a main road or motorway

3 Structural characteristics

Building society data Floor area
Number of bathrooms
Number of bedrooms
Dummy: detached building
Dummy: semi-detached building
Dummy: terraced building
Dummy: garage
Dummy: full central heating
Age of property

4 Socio-economic data
1991 Census of Population Proportion of residents aged below 18
Proportion of families with no car
Cars per person
Proportion of employees in professional occupations
Proportion of employees in unskilled occupations
Proportion of retired employees
Male unemployment rate
Unemployment rate

Forest access index, = X,(area;/ distancelz.j) (3.3)

in which area represents the area of the jth woodland and distance is defined as the
distance to the nearest point on the boundary of that woodland.

The creation of the other amenity variables again required digitization of the
coastline, rivers, large urban area boundaries, oil refineries, main roads and motor-
ways. Further processing within GIS was necessary to create the relevant distance
and dummy variables in the same manner as described for the woodland variables
above.

Data from the 1991 UK Census of Population is available at a number of spatial
scales. While the concept of ‘neighbourhood’ is not well defined, Powe et al.
(1997) extracted data at the enumeration district level. The average population of
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an enumeration district is about 440 residents, which represents some 175 house-
holds. The UK census data at Manchester University (http://www.midas.ac.uk) are
not stored in GIS. Powe et al. (1997) do not state how they manage to link the
census data for the enumeration districts in their study area with the properties.
There are a number of options. Digital boundaries are available (Ordnance Survey,
nd) for enumeration districts — the property records may be intersected with these
and each property record tagged with the socio-economic characteristics of the
enumeration district in which it lies. If no digitized boundaries were available, then
another option would be to use the ‘centroid’ which appears in the census records
to calculate, as with the woodland and amenity layers, the closest centroid to each
property; then the socio-economic data would be aligned to the property records. A
third option would be to use the ONS Postcode-to-Enumeration District lookup
table (Dale and Marsh, 1993) to link the property and census data.
Why did Powe et al. use GIS? They comment:

GIS provides clear advantages. ... Once the spatial data is in a usable format, it is a
simple task for the GIS package to derive a spatial dataset for each house. ...
Furthermore, the speed and accuracy with which the variables can be generated using
GIS, permits a greater variety of spatial variables to be generated.

(Powe et al., 1997)

Later on, they comment:

The major benefit of using a GIS in this context was that it permitted the location of
existing or proposed areas of woodland, in relation to centres of population, to be fully
taken into account.

(Powe et al., 1997)

It should be noted that, although Powe and his colleagues used GIS for the
integration of a variety of disparate data sources, they did not carry out their model
estimation in GIS. The data had to be written to a file, and read into some other
statistical software in order to carry out the model calibration. This is typical of the
current application of GIS to spatial analysis and spatial models — we have not yet
reached the stage where all the required operations can be found in one piece of
software.

3.3.2 Exploration

GIS do provide, as well as data integration and data manipulation facilities, a
means for exploring the spatial aspects of data. However, few GIS packages provide
the type of highly interactive exploration environment which is provided by
statistical computing systems such as S-Plus (Venables and Ripley, 1997), R (Thaka
and Gentleman, 1996) or XlispStat (Tierney, 1990). Most GIS packages will allow
the user to calculate some simple summary statistics for attributes; these may be
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used as the basis for exploring attributes singly in the search for values which might
be thought “unusual’. We need to be careful that the confidence limits for positively
autocorrelated data will be narrower than if we assumed independence, so any
search should proceed with that rider. If the search for outliers reveals the same
location or locations repeatedly, this will inform any interpretation we can place on
the analysis (see also Chapter 4). Mapping data will also reveal any obvious spatial
trends. The user needs to take care in mapping, however, since some of the
automatic classing schemes offered by GIS packages may hide spatial trends, so a
number of classification schemes should be tried.

3.3.3 Post-modelling visualization

As well as having a role in data exploration in a pre-modelling phase, GIS have a
useful role in allowing the exploration of the results after modelling. The output
from a single run of geographically weighted regression (GWR) (see Chapter 5),
for example, may include for each input observation a set of parameter estimates
and a set of standard errors. One means of examining the spatial variation in the
parameter estimates is to map them. For point data, one mapping technique is to
interpolate a surface and then display the surface, either shaded as a greyscale in
planimetric form, or in pseudo-3D from a variety of viewing positions. Experience
with GWR surfaces suggests that a linear contrast stretch provides a useful means
of displaying surfaces as a greyscale. With pseudo-3D mapping GIS provide a
variety of possibilities. The standard error surface can be draped over the surface
representing the variation in the parameter’s values. The parameter surface may be
draped over a surface representing the variation in the input data for which the
parameter has been estimated. Examples of these may be found in Fotheringham et
al. (1996) and Charlton et al. (1996). With area data, an obvious output for a set of
geo-coded results is a choropleth map. The choice of class interval for a choropleth
map is a problem; if the software allows something akin to a continuous scale over
the range of values, this is preferable to using five or six fixed class intervals.
Injudicious choice of class interval can mislead as well as illuminate.

Figures 3.12 and 3.13 show one attempt to evaluate the results of a modelling
exercise. The results are from GWR (Brunsdon et al., 1998b; Fotheringham et al.,
1998), and the figures show various methods of displaying the spatial variation in the
parameter estimates. The modelling exercise attempted to link variation in the
incidence of limiting long-term illness to unemployment and housing density. Figure
3.12(a) depicts the spatial variation in the values of the unemployment parameter as
a greyscale, in planimetric view. Figure 3.12(b) illustrates the same surface displayed
as a pseudo-3D wire mesh model, viewed from 30° altitude and an azimuth of 215°
from North. The marked differences in the parameter values are clear from this
display, as is the relative lack of variation elsewhere in the county. Figure 3.13(a)
shows a greyscale surface representing variation in the original variable draped over
the parameter surface; the instability is in areas of very low unemployment. Finally,
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Figure 3.13(a) Unemployment greyscale draped over the parameter surface

Figure 3.13(b) Variation in limiting long-term iliness shown as a greyscale

The spatial query possibilities of GIS allow further exploration of the spatial
variation in the parameter estimates. One possibility is to display a map of the
parameter values and carry out a spatial query on the data layer displaying the
values of the dependent and independent variable at various ‘interesting’ locations,
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or to query the parameter and data layers simultaneously. It might not be possible
to accomplish this with a single command; however, if the GIS software has a
macro language, a small macro could be written to accomplish the query after the
typing of a single command. If one is accessing the system on which the GIS
software is running with a GUI, then the command to run the macro together with
its carriage return can be stored on the clipboard for further simplicity of operation.

3.4 Problems

The user needs to be aware that there are several potential problems with GIS-
based spatial analysis. The ease with which some operations can be carried out may
mislead the user into imagining that the results of such operations are in some
sense ‘correct’. The following are issues that need to be borne in mind.

3.4.1 Error modelling

Most data used in GIS are sampled. The sampling of coordinates to represent a line
depends not only on the decisions made by the cartographer drawing the original
line on the map, but also on the decisions made by the digitizer on where to sample
the coordinates. The same operator is unlikely to digitize the line in the same way
on two separate occasions — anyone who has accidentally digitized a line twice will
be aware of this. Similarly, different operators will make different decisions
concerning the locations of the coordinates to be sampled. In some polygon overlay
operations, representations of the same boundary will appear in different layers. If
each layer has been digitized from a different source, sliver polygons are likely to
result (typically these are long and thin, and of small area compared with other
polygons in the overlay). Burrough and McDonnell (1998, p. 223) identify seven
factors affecting the quality of spatial data: currency, completeness, consistency,
accessibility, accuracy sources of error in data, and sources of error in derived data
and results. In considering accuracy as a factor, Burrough and McDonnell draw
attention to the sampling density of the coordinates, positional accuracy of the
coordinates, attribute accuracy, topological accuracy, and data lineage. Currently,
very few major GIS packages allow the user to view data as being anything other
than ‘accurate’. However, some researchers are examining whether fuzzy set theory
may help in the representation of uncertainty within GIS (e.g. Burrough, 1996).

The point-in-polygon routines in many GIS categorize a point as being either
wholly inside or outside the polygon boundary. This ignores any uncertainty that
might be present in the digitized representation of the boundary. One possibility is
to postulate an error band around the digitized line (Blakemore, 1984). With such
an error band there are five states which might describe the relationship between
the point and the polygon: (a) wholly inside, (b) probably inside, (c) on the
boundary, (d) probably outside and (e) wholly outside.
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Much research has been undertaken into the problems of uncertainty in the
representation of data in GIS, and the effects of error propagation in multilayered
spatial data sets. Openshaw et al. (1991b) describe a procedure based on Monte
Carlo simulation to assess the effects of the propagation of data error through a
series of polygon overlays. The result is a series of raster representations showing
rasters which are present in 95% of the simulations, or 99% of the simulations.
Carver and Brunsdon (1994) examine the problem of vector—raster conversion,
and its relationship with feature complexity. Using simulated data of known
complexity, they found that there is a relationship between line complexity and
misclassification error in the rasterization process. Heuvelink et al. (1989) con-
sider the problem of error propagation in modelling with raster data. A useful
collection of papers dealing extensively with geographical features which are not
conveniently represented as either objects or fields is to be found in Burrough and
Frank (1996).

3.4.2 Cross-area aggregation

A temptation with GIS is to use the embedded geometric procedures to estimate
data for one set of areal units with data for a different set of areal units. As a
general activity this has been referred to as cross-area aggregation. The original
data might be observations taken at a series of points (e.g. fire alarm calls, or
incidences of particular types of crime or disease), or they might be data provided
by a third party aggregated to a particular set of zones. Alternatively, the original
data might be zonal data from another source. If our first set of data is zonally
based, then a problem arises when the second set of data is recorded for zones with
different boundaries. How can we interpolate data from the first set to the second
set? A commonly used procedure is to use area weighting, or some third variable if
this is available for both sets of zones. Aggregation becomes a simple process of
either using weighted averaging, or, if counts are involved, using techniques such
as Poisson regression (Flowerdew, 1988).

More recently, Flowerdew and Green (1991) have considered the problem using
a technique based around Dempster et al.’s (1977) EM algorithm; one application
has been the interpolation of population data between administrative counties and
parliamentary constituencies in the UK. The method assumes that there exists a
contingency table in which each cell represents an intersection between a source
zone and target zone. We know the area of the zone which is represented by any
cell, and we know the totals of the rows. However, we do not know the values of
the attribute in the individual cells (i.e. they are missing data). The EM algorithm
can be used to calculate the values in each cell, and by adding up the columns, the
target zone values can be found. There are two steps to the algorithm:

E: compute the conditional expectations of the missing data, given a model and the
observed data
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M: fit the model by maximum likelihood to the dataset calculated in the E-step treating
the imputed values as ‘real” observations
(Flowerdew and Green, 1991, p. 46)

For example, suppose we start with a set of source zones s with values y, and a set
of target zones ¢ with ancillary information x,. We define the value to be calculated
in the intersection of any one source zone and any one target zone to be yy, the area
of the intersection being A. The model for y is

Vs ~ Poisson( u,) (3.4)

Ust = ,u(ﬁs Xty Ast) (35)

where [ represents a set of unknown parameters to be estimated.
In the E-step the conditional expectation of y is calculated, which is (if the y
are Poisson)

Y= Zﬂk!y” (3.6)

The summation in the denominator indicates that the x are summed over all the
zones in the study area.

In the M-step [ is estimated in the model uy = u(f, x, 4¢) by maximum
likelihood. The values of 8 from the M-step are then used as input to another
iteration of the E-step. This process is repeated until convergence. The y, values
can be summed over s to give the desired y; values (Flowerdew and Green, 1991,
pp. 46—7).

One advantage of this approach is that it allows a range of extra variables to be
included in the interpolation process to improve the accuracy of the result. A GLIM
macro, together with code for interchanging data with Arc/Info, has been created
(Kehris, 1989). Care is required, however, to ensure that unrealistic assumptions are
not being made about the internal spatial homogeneity of the data being aggregated
within the source zones. It is not always possible to assume that population is
evenly located within a source zone.

Tobler (1991) has pointed out that pycnophylactic interpolation can be used in
cross-area aggregation. The process involves interpolating a surface based on the
source set of areal units, using the procedure described earlier. The interpolated
values for the rasters can then be aggregated to a target set of areal units, as long as
it is known which raster belongs to which new areal unit.



THE ROLE OF GEOGRAPHICAL INFORMATION SYSTEMS 61
3.5 Linking higher-order types of spatial analysis to GIS

It is unlikely that new approaches to spatial analysis will appear in GIS software
soon after their publication in the academic literature. For example, Parzen’s paper
on estimating a probability density function appeared in 1962 (Parzen, 1962) and
Silverman’s survey of density estimation techniques appeared in 1986 (Silverman,
1986). Yet it was not until the late 1990s that density estimation appeared in one of
the mainstream GIS packages. Consequently, in order to link new approaches to
spatial analysis and spatial modelling with GIS, it is often necessary to effect such
links oneself. There are several ways of doing this:

1 Write the data to a file from GIS, and read it into another program.

2 Transfer the data using operating system calls from GIS into some statistical
software.

3 Incorporate new spatial analysis commands into the GIS software.

Option 1 is crude although it is frequently used. The information from the GIS
package is written to a file and used as input to the experimental software, and then
the results are coerced into some form in which they can be read back into GIS.
This can be cumbersome and error prone, particularly if several manipulations need
to be carried out so that the data are suitable for the input routines in whatever
software is being used. There is also the question of whether the operating
environment being used allows painless transfer of data between software pack-
ages. For example, if you are working in a Windows environment, and you are
using Microsoft Excel 97 as a staging post, you need to be aware that it will hold a
maximum of 65 536 rows from a data matrix.

A slightly less crude version of option 1 is to create some add-in macros or menu
elements to permit the user to write the data from the GIS software to another
program. The spatial analysis can be carried out in the other software. Further
macros or menu calls can then be made available to read the data back in, and
perhaps display the results from the spatial analysis using the facilities of the GIS
package. A good example of this is Anselin’s SpaceStat extension for ArcView
(Anselin and Bao, 1997). SpaceStat is a standalone program for carrying out
various spatial analysis procedures (Anselin, 1988; 1992). The various modules in
SpaceStat permit data input and manipulation, creation and manipulation of spatial
weights, descriptive spatial statistics, and spatial regression analysis. The ArcView
extension permits the transfer of spatial and attribute data to SpaceStat so that the
user can carry out analyses not available in ArcView. The results are then trans-
ferred back to ArcView and displayed using a customized menu added to those
already available in that package.

An example of option 2 is provided by the linkage of ArcView with the
interactive exploratory graphics environment Xgobi (Cook et al., 1996; 1997).
Xgobi is a software package that runs under Unix and allows the interactive
exploratory visualization of multivariate data. Data may be displayed in a variety of
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ways, including linked scatter- and line plots, parallel coordinate plots (Inselberg,
1988), grand tour and projection pursuit. Moreover, plots may be linked and
subjected to interactive brushing (see Chapter 4 for details of these and other
visualization techniques). A facility in Unix known as a remote procedure call
(RPC) allows separate programs (or processes) to communicate; it is this facility
which Symanzik and his colleagues have exploited to allow ArcView and Xgobi to
exchange data. As with the SpaceStat extension, an extra menu item appears on the
ArcView menu bar to permit various manners of data exchange to take place (these
are known as flavours). These include: (a) simple transfer of the attribute data for
each spatial location to Xgobi for analysis; (b) a link to display the cumulative
distribution function for an attribute; (c) a link to calculate and display variogram
cloud plots; (d) a link to display dynamic lagged scatterplots; and (e) a link to
create and display multivariate variogram clouds (see Chapter 4). The disadvantage
for the PC user is that the software is designed for Unix, and not Windows.

The manufacturers of S-Plus, Mathsoft International, provide a link between S-
Plus and ArcView in a Windows environment. This permits the analyst to move
spatial data from ArcView to S-Plus for analysis, and then to import the results of
any analysis back into ArcView. Additionally, Mathsoft International’s S-Plus for
ArcView GIS software permits the ArcView user to access a wide range of spatial
analysis methods. It is interesting to observe that this is perhaps the first institution-
alization of spatial analysis methods with GIS (Mathsoft International have a web
page at http://www.mathsoft.com).

At the beginning of the 1980s, there was a realization that the available GIS
software was woefully deficient in the area of ‘spatial analysis’. Some researchers
proposed the creation of ‘toolkits’ of supplementary commands that would provide
some of the missing spatial analysis functionality. Two examples are provided by
Openshaw et al. (1991a) and Ding and Fotheringham (1992). Both based their
toolkits around Arc/Info as a platform. Openshaw et al.’s proposals were for a set of
compiled FORTRAN routines to carry out the spatial analyses, together with a set
of macros for moving data and computed results between the software and Arc/
Info. Ding and Fotheringham’s add-on for Arc/Info, the Spatial Analysis Module
(SAM), permits the user to access externally written spatial analysis functions, but
from within a menu-based interface to the Arc/Info software. Whilst such a module
provides extra spatial analysis functionality, the user is constrained to those
functions which are supplied, and exploration of alternatives requires programming
experience and a suitable high-level-language compiler. As with the other software
referred to in this section, it is available on a limited range of machines. The
diffusion of add-ons appears to be limited, particularly for systems designed to run
on Unix machines, because separate compilations are required for the different
manufacturers’ systems.

More recently, however, Haining et al. (1998) have made available a set of
tools which are designed to work in conjunction with Arc/Info, called SAGE
(Spatial Analysis in a GIS Environment). SAGE is more comprehensive than
earlier attempts, and provides a variety of tools for data management and
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creation, data visualization (including linked windows), query, classification and
spatial statistical modelling. Amongst the statistical models are relative risk
models for disease data, and regression models with spatial error terms. These
considerably extend the functionality of Arc/Info for spatial data exploration and
modelling.

MacEachren et al. (1998) describe the implementation of exploratory methods
in ArcView, with the goal of exploring multivariate health data. The software,
written in Avenue (the scripting language provided with ArcView), allows the
creation of scalable and linkable scatterplots, linked brushing, highlighting
outliers, dynamic classification (class breaks for a distribution) and bivariate
mapping. Again, these techniques considerably extend the spatial analysis
functionality of ArcView and, being written in ArcView’s own scripting language,
should function similarly in either a PC-based Windows environment or a Unix
implementation.

Option 3 entails adding new spatial analysis and modelling commands to the
existing GIS software. This means waiting for manufacturers to include spatial
analysis techniques in their software. It is not uncommon, for example, to find an
option to determine the shortest path between two nodes on a network, or a
solution to the travelling salesperson problem. Different arc attributes may be
specified so that the problem can be formulated to find the shortest path, or,
perhaps, the quickest path. Options may exist to plot the resulting paths on a map,
or to print out the directions for a driver. Simple spatial interaction models are
often available (see Chapter 9). However, calibration facilities are crude, and
modelling flows along a single row or column in the flow matrix may be difficult
if not impossible. A location—allocation modelling option may also be present in
the software. The problem with such approaches is that it is sometimes difficult to
be flexible, and the user has to rely on the manner in which the software vendors
have implemented the techniques in their software. Additionally, the user faces
the problem of knowing little of the details of the algorithms that have been
chosen. Different algorithms to accomplish the same task may be included in
successive versions of the software, perhaps giving different results with the same
data.

Another possibility is to ignore GIS altogether, and look to some more specialist
software. Bailey and Gatrell (1995) provide a floppy diskette with their text
containing the code for INFO-MAP. INFO-MAP is their own software for spatial
analysis and modelling. It is not a fully functioning GIS package in the sense of
providing a wide variety of spatial data manipulation options. It does, however,
possess a wide variety of spatial data analysis options, controlled through a simple
command line interface. Some simple mapping facilities are provided both for the
exploration of data and for the display of the results of any analysis where this is
appropriate. The analysis options available mirror those described in Bailey and
Gatrell’s book, and each chapter is provided with some exercises to illustrate the
use of the spatial analysis techniques in practice, and to familiarize the user with
the software.
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3.6 Arole for GIS?

Most commercial GIS software is poorly resourced with advanced spatial analysis
functionality of the type described in this book. You either have to write your own
software, or use someone else’s. As has already been observed in this chapter, there
is a time lag between an innovation in spatial data analysis taking place and its
inclusion in commercial software. To find that one’s GIS software does not contain
a means of calculating K functions, or that the kernel density estimation functions
have no means for choosing a bandwidth, or that the spatial interaction models are
oversimplified, is frustrating at best and misleading at worst. For such analyses one
is forced to turn to other software. Such software may be something that the analyst
codes in a high-level language such as FORTRAN or C. It may be a standalone
package of spatial analysis functions, such as SpaceStat. It may be an interactive,
statistical/graphic environment such as LispStat, or R.

However, GIS do have a role to play in spatial analysis and spatial modelling.
The availability of GIS stimulates interest in spatial problems, which in turn
stimulates interest in spatial analysis. Often the route to spatial analysis begins with
using GIS software to integrate a series of different spatial data sets. This is a task
which they do rather well, and it would be foolish to reinvent wheels. Once the
analyst has carried out the requisite exploratory and/or confirmatory tasks, GIS
become invaluable in the display of the results. The problem for the analyst is to
find a linkage between the data handling and manipulation functions in a GIS
package, and the desired analytical software. Another route is to code one’s own
functions to achieve the trick — this may take the form of a macro to write the
required data to files that can be read by the external software. A filter is also
required to read the data back into the GIS software in order to display the results.
There is no reason why this should not be a parallel rather than a sequential
process. From one’s desktop PC or workstation, the GIS software can be run in one
window and the analysis takes place in another window, possibly even on another
computer. The developments that are taking place to enable advanced exploration
and modelling with spatial data, and which take account of the capabilities of
computer hardware, are both exciting and stimulating.

Notes
1. Arc/Info is a registered trademark of Environmental Systems Research Institute, Inc.,

Redlands, CA, USA.
2. The value in the output raster is the average of the eight neighbouring rasters.



4 Exploring Spatial Data Visually

4.1 Introduction

It is generally helpful to look at a data set before any models are fitted or
hypotheses formally tested. This is something that has become much easier over
the last decade. Previously, computer graphics were the preserve of a privileged
minority of researchers who had access to specialized equipment. However, the
advent of window- and mouse-based computer interfaces, coupled with the increas-
ing speed and decreasing cost of computers and the development of appropriate,
easy-to-use software, has meant that the production of graphics is now within the
reach of virtually all researchers. Interactive graphical displays are the norm on
current computing equipment, and most personal computers have sufficient proces-
sing power to handle the preprocessing required for many techniques. All of this
encourages an exploratory approach to spatial data analysis.

There are a number of reasons for initially ‘looking at the data’, which can be
linked to some basic questions: Are there any variables having unusually high or
low values? What distributions do the variables follow? Do observations fall into a
number of distinct groups? What associations exist between variables? These
questions are informal in nature, and in attempting to answer them, one begins to
get a ‘feel’ for the data.

Initial examination of a data set, by either graphical methods or descriptive
statistics, can be a powerful way of moving towards answers to the above questions.
In this chapter, a set of useful visual techniques will be outlined. These techniques
and this approach in general are often referred to as exploratory data analysis
(EDA) (Tukey, 1977), and sometimes as exploratory spatial data analysis (ESDA)
(Unwin and Unwin, 1998) when spatial data are being considered. The ESDA
techniques covered in this chapter can be broadly grouped as in Table 4.1. Note that

Table 4.1 Classification of techniques covered in
this chapter

Univariate Multivariate

Boxplot Scatterplot matrix
Histogram Linked plots

Density estimates RADVIZ

Maps Parallel coordinate plots

Projection pursuit
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there is a distinction between univariate and multivariate techniques. This is
important, as one explores the linkages between variables in different ways to the
distribution of individual variables. In particular, some of the multivariate tech-
niques are important for hypervariate situations, where there are more than three
variables under investigation, and some kind of ‘projection’ of hyperdimensional
space to two- or three-dimensional space is neccessary to identify patterns in the
data. All of the visualization methods covered here may also be thought of as EDA
methods, but clearly not a/l EDA methods involve visualization. Ehrenberg (1982)
and Tukey (1977) provide some excellent examples of non-visual EDA.

However, non-visual EDA is not very helpful for identifying spatial patterns —
the techniques should be considered in a spatial context. Although many of these
methods are applicable to non-spatial data, considering the spatial dimension is
essential when the data are geographical. Indeed, to the geographer any analysis
without a spatial element will be of little value. For example, when a multivariate
exploratory method identifies an observation which is unusual in some way, the
location of the observation will be of interest. If several observations are identified
as unusual in some way, are all of these observations in the same geographical
region? It is suggested here that issues of this sort are tackled by the use of linked
graphics — see Section 4.8. Spatial aspects of EDA are also considered in Chapter
5, for examples where observations are locally unusual. In this case, spatial
arrangement itself plays a role in defining the notion of ‘unusual’.

Some other forms of visual data exploration are considered elsewhere in this
book. For example, Chapter 6, which discusses the analysis of point patterns,
contains a selection of useful visual techniques for summarizing and exploring
point data. These include some useful ways of summarizing the location and scale
of spatial point distributions, such as the mean centre, and the standard distance.
Although these are not intrinsically visual, they provide useful input to some
visualization techniques.

4.2 Stem and leaf plots

Table 4.2 shows the percentage rates of heads of households in occupations classed
as professional or managerial, by counties in the UK. This will be referred to
informally as the PROFMAN index. Surrey has the highest PROFMAN index, and
it exceeds the other counties by quite a large amount. However, at the other end of
the scale, counties are much more ‘bunched together’, with three counties more or
less tying for bottom place. It is particularly helpful in this case that the table has
been listed as two pairs of columns — the values of PROFMAN at the bottom of the
first column pair and the top of the second column pair give a good idea of the
median of PROFMAN (around 180 households per 1000). Note that when several
counties have the same PROFMAN index to three significant digits, the order in
which they are tabulated depends on the ordering of their exact PROFMAN indices.
A stem and leaf plot displays all of the numerical information of Table 4.2 in a
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Table 4.2 Percentage of professional or managerial heads of households by

county

County PROFMAN County PROFMAN
Surrey 31.4 Shropshire 18.0
Buckinghamshire 27.5 Devon 17.9
Hertfordshire 26.8 Leicestershire 17.8
Berkshire 25.2 Suffolk 17.8
West Sussex 24.2 Norfolk 17.7
Oxfordshire 22.0 Cornwall 17.6
Essex 21.5 Northamptonshire 17.4
Hereford and Worcs. 21.3 Lincolnshire 171
Warwickshire 20.8 Northumberland 17.0
Gloucestershire 20.7 Staffordshire 16.5
North Yorkshire 20.6 Lancashire 15.8
Cheshire 20.5 Cumbria 15.7
East Sussex 20.1 Derbyshire 15.3
Dorset 20.1 West Yorkshire 15.2
Cambridgeshire 20.1 Nottinghamshire 15.0
Bedfordshire 19.9 Humberside 14.9
Hampshire 19.8 Greater Manchester 14.7
Kent 19.6 Merseyside 13.6
Somerset 19.1 West Midlands 13.5
Avon 19.0 South Yorkshire 12.1
Isle of Wight 18.2 Tyne and Wear 12.0
Greater London 18.2 Durham 12.0
Wiltshire 18.1 Cleveland 12.0

Source: 1981 UK Census of Population

more compact manner. Information is represented to three significant digits. Here
the data values are arranged in rows, according to most significant digits (the first
fully spanned digit and any partly spanned digit preceding this — this is referred to
as the ‘stem”). The value of the most significant digits are then used to label the
rows. The data in the rows are abbreviated to the third significant digit — ‘the
leaves’. This is best understood by example. In Table 4.3 (left hand side), the data
in Table 4.2 are shown in stem and leaf format.

Note that the leaves are usually shown without spaces between them, so that the
row labelled 21 represents the values 21.3 and 21.5. Stem and leaf plots are best
shown in a fixed width font, such as Courier, as the length of the leaf display will
then be proportional to the number of data items in that row. In this way, a stem and
leaf plot gives a near-graphical representation of data distribution while still
containing information about each data value within the accuracy of the two digits
spanned rule.

A stem and leaf display can be made more compact by combining rows. In the
right hand side of Table 4.3 the same information is given, but with only the even-
numbered stems. Data relating to odd-numbered stems are shown in italics. The
result has removed some of the rough character of the left hand stem and leaf plot.
The shape of the distribution, with a large mass of observations between 12% and
20% and a positive tail, becomes apparent.
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Table 4.3 Stem and leaf plot of PROFMAN: left hand is standard form, right hand is
compact form

31 | 4
30
29
28
27 | 5
26 | 8 30 | 4

28

2 | % | 8
23 24 | 22
2|0 2| o0
21 | 35 20 | 111567835
20 | 1115678 18 | 012201689
19 | 01689 16 | 501467889
18 | 0122 14 | 7902378
17 | 01467889 12 | 000156
16 | 5
15 | 02378
14 | 79
13 | 56
12 | 0001

4.3 Boxplots

A useful set of descriptive statistics is the five-number summary. This uses order-
based statistics, the median, quartiles and extreme values. The median of a variable
is simply the middle value if the variable is tabulated in ascending order and » is
odd. If n is even it is the midpoint of the two middle values. Thus, it is effectively
the ‘half-way point” of the distribution. Again, this represents a ‘typical value’ of
the variable. The quartiles are defined similarly, being the points one-quarter and
three-quarters along the sorted list of a variable. A useful measure of spread is the
interquartile range, the difference between the first and third quartiles. The extreme
values are just the largest and smallest values of the variable in the data set. The
five-number summary is the list (minimum value, first quartile, median, third
quartile, maximum). Listing these numbers gives a good impression of the location,
spread and extreme values of a data set. The values for PROFMAN are listed in
Table 4.4. Again, it is possible to see the skewness of the distribution, by noting the
position of the median value in relation to the range.

Order-based statistics are less likely to be affected by outliers than the mean or
standard deviation. An outlier is defined to be an observation with an unusually
large or small value of some variable. The midpoint (in order terms) of a set of

Table 4.4 Five-number summary for PROFMAN

Minimum First quartile Median Third quartile Maximum
12.0 15.8 18.1 20.3 31.4
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numbers will not be affected by the values of points at the extremes, and neither
will the first or third quartiles. It is sometimes interesting to compare the mean and
the median; in general the mean is ‘pulled’ towards the longest tail of the
distribution if there is some degree of skewness. For example, the mean of
PROFMAN is 18.5%, but the median is 18.1%.

The boxplot (or box and whisker plot) is the graphical equivalent of the five-
number summary. In its crudest form, a box and whisker plot is set out as in Figure
4.1. The two whiskers extend to the minimum and maximum values of the sample,
and the box extends from the lower to the upper quartile. A vertical stripe on the
box indicates the location of the median. The skewness of the distribution is readily
apparent.

A more refined approach to boxplots attempts to show individual outlying values.
In this case, the whiskers do not always extend to the extreme values. For example,
the left hand whisker could extend to max(xy,, Q> — 1.5(0; — Q,)) and the right
hand whisker could extend to min(x., @» — 1.5(Q) — 0s)), where O, is the first
quartile, Q, is the median and Q; is the third quartile. If the distribution is fairly
compact, the whiskers will in fact be the extreme values. However, if there are
values of the variable differing from the median by more than the interquartile
range times one and a half in either direction, the whiskers will not extend as far as
these values. In this case, the values should be marked individually. For the
PROFMAN variable, this is shown in Figure 4.2. The underlying message here is
that the distribution is skewed, but that much of the skewness is due to four outlying
observations in the higher end of the distribution.

One very useful property of box and whisker plots is that they are relatively flat,
so that several may be stacked vertically. This is helpful as a way of comparing the
distributions of several different variables measured on the same scale — or several
variables which have been standardized to have zero mean and unit variance.

— [ |

0% 10% 20% 30%

Figure 4.1 Crude box and whisker plot for PROFMAN

0% 10% 20% 30%

Figure 4.2 Outlier showing box and whisker plot for PROFMAN
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4.4 Histograms

Histograms are an alternative way of representing the distribution of a variable. The
sample range of a variable is divided into several intervals (referred to as bins) and
the number of variables in each bin is counted. Usually, each bin has the same
width. Then a bar graph is drawn, with the height of each bar being proportional to
the number of values of the variable occurring in each bin. A histogram of the
PROFMAN variable discussed above is shown in Figure 4.3.

A variation on a histogram is a frequency polygon, shown in Figure 4.4 for the
PROFMAN variable. Here, the midpoints of the bars are joined together with lines.
Both the histogram and the frequency polygon may be thought of as (scaled)
approximations to the probability density function of x. The histogram approx-
imates by assuming the probability density is constant within each bin, whilst the
frequency polygon uses a piecewise linear approximation.

An important issue with histograms (and frequency polygons) is the bin width.
Very large bin widths tend to obscure detail, while very small bin widths tend to
produce graphs which are too rough. For examples of the effects of this (with the
PROFMAN data) see Brunsdon (1995a). One reasonable ‘automatic’! choice of bin
width is the conservative approach of Terrell and Scott (1985). This approach finds
a maximal smoothing histogram. If one considers an ‘optimal’ sample histogram in
the sense that it gives the best mean squared error of the true distribution, then an
optimal bin width can be found. The maximal smoothing bin width is the largest
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Figure 4.3 Histogram of PROFMAN
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Figure 4.4 Frequency polygon of PROFMAN

bin width one could obtain for any possible distribution function. Terrell and Scott
show that this requires about /21 bins, where 7 is the number of observations. The
approach is conservative in the sense that it is probably oversmoothing (unless the
true probability is actually the maximal optimal smoothing case), so that any modes
of the observed histogram are likely to correspond to real modes, and not likely to
be artefacts of random sampling. It is therefore a reasonably ‘foolproof” choice. In
the same paper, a similar rule is given for frequency polygons. In this case maximal
smoothing occurs with about v/73.5x bins. The numbers of bins in Figures 4.3 and
4.4 were chosen using these formulae.

4.5 Density estimates

The frequency polygon considered in the last section may be thought of as a way of
estimating the probability density function for a variable x. A slightly more
sophisticated approach is the kernel density estimate (Silverman, 1986; Brunsdon,
1995b). This approach attempts to provide a smooth estimate of probability density.
To achieve this, a small hump (the kernel) is centred on each x;. These kernels are
then averaged to obtain an estimate of the probability density function of x. The
kernel is itself a probability distribution function, typically unimodal and symme-
trical, often taking the form
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K(x) :%g<x;x’> (4.1)

where g is a probability distribution function with mean zero and variance one.
Thus, the density estimate of f(x), say f(x), is given by

. "] —x
f(x)Z%gC hx) (4.2)

i=1

The term /4 (called the bandwidth) controls the spread of K: very large % gives a
virtually flat kernel, and % close to zero gives a sharp spike centred on x;. Thus, &
plays much the same role as the bin width in a histogram: too large a value smooths
out detail, and too small a value causes a spikey estimate. Terrell (1990) gives a
maximal smoothing rule for choosing / similar in nature to the rules for choosing
histogram bin widths discussed in the last section. This is given by

43 2 dx
B~ sq/& (4.3)
35n

where /., is the maximal smoothing bandwidth, and s is the sample standard
deviation. Note that this will depend on the choice of g(x). For a normal g, we have

1.144
P N~ (4.4)
/n

Using a normal kernel, the density estimate for PROFMAN is shown in Figure 4.5.
Kernel density estimates for spatial data are considered in Chapter 6, where point
pattern analysis is considered.

4.6 Maps

In exploratory spatial data analysis the map has an important role to play. An
important factor when creating univariate maps is the avoidance of spurious detail.
For example, consider a standard choropleth map, such as the one in Figure 4.6.
This shows crime rates (per 10000 households) for zones in a study area. The
boundaries of the zones are indicated to a great deal of precision, but the levels of
crime rates — which it is claimed are the subject matter of the map — are crudely
classed into five discrete categories! Worse still, the outlining of ward boundaries
with black curves draws even more attention to the shapes of wards, and away from
spatial patterns in crime rates.
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Figure 4.5 Kernel density estimate for PROFMAN

This type of map appears quite frequently, for a number of possible reasons. One
is that they are relatively easy to produce using ‘standard’ desktop mapping and
GIS software packages. Another is that people have become used to them. How-
ever, there are a number of alternative ways to produce maps from the same
geographical information as that used in Figure 4.6. First, the ward boundaries need
not be included in the map. One could simply draw the map by shading the ward
polygons, excluding the boundaries, as exemplified in Chapter 3. This is a
particularly helpful suggestion when there is a great deal of variation in the size of
wards, since in this case very small wards can have a maximum width not much
larger than the width of the black ward boundary lines in Figure 4.6 — and the
inclusion of these lines can then tend to obscure spatial pattern.

This still leaves the problem of crude classification. One way of overcoming this
is to use wunclassed choropleth maps. Here the intensity of shading of zonal
polygons varies continuously with the variable of interest. Support for this
approach may be found in Tobler (1973a, p. 263):

The main argument in favour of class intervals is that their use enhances readability.
This at least is the assertion ... if the assertion is in fact valid why then is a group of
greys into classes not also (e.g. in addition to spatial filtering) used to enhance areal
photographs, or television?
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Figure 4.6 Typical choropleth map

Thus, an alternative choropleth representation of crime rates is given in Figure 4.7,
which uses no shade classes and adds no solid ward boundaries.

Despite the above changes in format, the map in Figure 4.7 still highlights ward
boundaries to some extent. The only way to avoid this is to use some kind of map
format that illustrates ward-based data without actually drawing ward polygons.
One such possibility is the random dot map. Here, for each ward, a number of dots
proportional to the variable to be mapped are placed at random points within the
ward. If the ward boundaries themselves are not drawn then a map of varying dot
intensity is produced, with the dot intensity varying in proportion to the variable of
interest. This is illustrated in Figure 4.8.

One could argue that the last approach is somewhat dishonest, as it tries to hide
the fact that the map was produced using aggregated data. It could be said that
making ward boundaries evident in some reasonably unobtrusive way on the map
provides a warning sign. The modifiable areal unit problem (Openshaw, 1984;
Fotheringham and Wong, 1991), discussed in Chapter 10, implies that spatially
aggregated data contain a higher degree of uncertainty than the individual compo-
nents undergoing aggregation, and that some observed patterns could well be
artefacts of the aggregation process. Thus, some indication that aggregated data are
being displayed does at least suggest that some of these problems may be present.



EXPLORING SPATIAL DATA VISUALLY 75

Crime rate

:§< 1067.00

f]

< 231.00

Figure 4.7 Unclassed choropleth map representation of Figure 4.6

This would suggest that a map of the type of Figure 4.7 might be the most suitable,
or that if a map of the kind in Figure 4.8 is used, then at some place on the map it
should be clearly labelled that aggregate data are being used, and the level of
aggregation stated.

Finally, when considering maps in human geography, the concept of the
cartogram may be helpful. Essentially, a cartogram can be thought of as a map
projection, such that the areal density of some attribute is uniform across the map.
Often the attribute used to define the cartogram is population distribution. This
allows map patterns in and around city centres (where population is usually
highest) to be seen more clearly. Any of the kinds of map discussed above can be
displayed in cartogram format — one simply applies the cartogram transformation
to all of the data being mapped. Two useful texts on cartograms are Dorling (1991)
and Tobler (1973b).

4.7 The scatterplot matrix

The previous techniques have all considered exploration of an individual variable.
However, in most studies it is as important to consider relationships between
variables. The remaining material in this section addresses this objective. In order
to decide how useful a graphical representation is, one needs to consider the kind
of feature in data that one wishes to detect. Three common possibilities are clusters,
outliers and trends. Clusters are distinct groupings in the data points, usually
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Figure 4.8 Random dot map. Each dot represents 10 burglaries per 10 000 households

corresponding to multimodality in the underlying probability distribution for the
data. Outliers are one-off cases that have unusual combinations of observed values,
when compared with the remainder of the sample. Geographical trends are fairly
self-explanatory. To some extent, each of the following techniques could be used to
identify any of these kinds of feature.

When investigating the relationship between a pair of variables, a scatterplot is a
useful tool. This simply plots each observation as a two-dimensional point on a
graph whose axes are the two variables of interest. This is a useful way of
identifying trends, clusters or outliers, as long as they are not so subtle as to be
undetectable in two dimensions. This is an improvement on using univariate
methods. For example, it is possible to find a two-dimensional outlier which does
not take unusual values in either of its one-dimensional components — see Figure
4.9.

A scatterplot matrix simply takes all of the possible pairs of variables in a data
set of m variables, and arranges the corresponding scatterplots into a rectangular
array of plots. Each scatterplot in a row has the y variable in common, and each
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® 2D outlier ° o

Figure 4.9 A two-dimensional outlier

scatterplot in a column has the x variable in common. This allows all two-way
patterns in a data set to be seen simultaneously. Typically a scatterplot matrix gives
less detail on the axes than a single scatterplot. This avoids clutter if m is relatively
large. A typical scatterplot display for the limiting long-term illness data described
in Chapter 5 is shown in Figure 4.10. This data set consists of the variables
described in Table 4.5 for census wards in northern England. The scatterplot matrix
was created using the XLispStat package (Tierney, 1990). Inspecting this matrix
identifies a number of outlying points — for example, there is one observation with
a particularly unusual combination of the LLTI and SPF variables, represented by a
point on the far left of the SPF vs. LLTI panel in the matrix. Certain trends also
become apparent — for example, a positive connection between LLTI and UNEMP
can be seen. It should be noted, however, that when scatterplot matrices are used to
depict highly multivariate data (say seven or more dimensions) it is debatable how
much detail can be seen. Another limitation is that they are only capable of
showing pairwise relationships between variables. The following sections discuss
techniques which address this limitation.

4.8 Linked plots

Looking at scatterplot matrices, one can check for outliers (or clusters) in various
pairs of variables. Suppose we have four variables, say x; ... x;, and we see one
outlier in the plot for x, against x,, and another in the plot for x; against x,. Here, it
would be useful to discover whether the pair of outliers seen in these two plots
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Figure 4.10 A scatterplot matrix

Table 4.5 Variables in the LLTI data set

VARIABLE

DESCRIPTION

LLTI

CROWD

DENSITY

UNEMP

sC1

SPF

The percentage of persons in households in each ward where a member of the
household has some limiting long-term illness. This is the response variable. Note
that to control for different age profiles in areas, this is only computed for 45-65
year olds — an age category that is perhaps most likely to suffer LLTI as a result of
working in the extractive industries.

This is the proportion of households in each census ward having an average of more
than one person per room. This is an attempt to measure the level of cramped
housing conditions in each ward.

This is the housing density of each ward, measured in millions per square kilometre.
This is intended to measure ‘rurality’ of areas. Note the differences between this and
the previous variable — a remote village with poor housing conditions may well score
low in this variable, but high in the previous one.

The proportion of male unemployment in an area. This is generally regarded as a
measure of economic well-being for an area.

The proportion of heads of households whose jobs are classed in social class | in the
Census. These are professional and managerial occupations. Whilst the previous
variable measures general well-being, this measures affluence.

The proportion of single-parent families in an area. This is an attempt to measure
the nature of household composition in areas.
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correspond to the same case. This allows one to distinguish between the following
two situations: one single case which is a four-dimensional outlier, or two cases
each of which is a two-dimensional outlier. Linking the plots in a scatterplot matrix
allows this to be investigated. When a point is selected on one plot (by pointing and
clicking with the mouse on a computer) this causes the point to be highlighted, by
an enlargement or a change of colour or both. At the same time, all points
corresponding to the same case on the other plots are also highlighted. Thus, it is
possible to check whether the outlying point on one of the scatterplots mentioned
in the example corresponds to the other.

Linked plots as described above allow one to investigate higher levels of
interaction between groups of variables. These plots may also be used to check
relationships between trends or clusters. For example, by highlighting every point
in a cluster appearing on one plot it is possible to see whether this corresponds to
clusters in any other plots.

A similar approach can be used to link scatterplots (or scatterplot matrices) to
maps. Here, if each case in a data set corresponds to a geographical zone, line or
point, then selecting a point in a scatterplot could highlight the corresponding
geographical entity on a map. For example, it would be possible to identify the
geographical locations of the outliers discussed in Section 4.7 using this approach.
Similarly, selecting the geographical entity on the map would cause the correspond-
ing point to be highlighted on the plot. An example of this is illustrated in Figure
4.11. Here, the points in the upper right hand part of the scatterplot in the left hand
window are selected with the mouse. The corresponding zones are highlighted on
the map (lighter shading) in the right hand window, showing a ‘c’-shaped forma-
tion, with one geographically isolated zone to the south-west of the map. Equiva-
lently, we could select the outlying points in the scatterplot and identify their
geographical locations on the linked map.
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Figure 4.11 A linked map and scatterplot
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4.9 Parallel coordinate plots

One shortcoming of scatterplot matrices is that they only show interactions be-
tween pairs of variables. If there are m variables, one may wish to consider
anything up to m-way interactions between variables. In this section an approach
allowing this is described. Suppose, as before, that there are m variables in a data
set. In the parallel coordinates approach, a point in m-dimensional space is
represented as a series of m — 1 line segments (Inselberg, 1985) in two-dimensional
space. Thus, if the original data observation is written as (x;, X, ..., X,,) then, its
parallel coordinate representation is the m — 1 line segments connecting the points
(1, x), (2, x3) ... (m, x,). Each set of line segments could be thought of as a
‘profile’ of a given case. The shape of the segments conveys information about the
levels of the m variables. Typically, continuous variables will be standardized
before a parallel coordinate plot is drawn.

To view an entire m-dimensional data set one simply plots all such profiles on
the same graph. This is illustrated in Figure 4.12, in which the limiting long-term
illness data set is plotted. For large data sets, the appearance of such a plot appears
confusing, but can be used to highlight outliers. However, the real strength of the
technique can be seen when subsets of the data are selected — usually on the basis
of one particular variable. To see this, consider Figure 4.13. Here, the subset of the
data in the lowest decile of the variable LLTI is shown in black, and the remainder
of the data set in grey. Looking at the relative locations of the black and grey lines
shows the distribution of the data values in the subset in relation to the entire data
set. Obviously, all of the black lines pass through the lowest section of the LLTI

CF{dWD DENSITY LLTI SC1 SPF UNEMP

Figure 4.12 A parallel coordinates plot
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CROWD DENSITY LLTI SC1 SPF UNEMP

Figure 4.13 Parallel coordinates plot, lowest decile of LLTI highlighted

axis. However, looking at the locations of the black lines on the other axes shows
whether the low values of this variable tend to be accompanied by any notable
distributional patterns in the other variables. From the plot, it may be seen that
often there are also low values of DENSITY and UNEMP.

Parallel plots may also be used to detect outliers in two dimensions. Again
looking at Figure 4.13, there are a few cases in the subset where DENSITY is
unusually high, given the low value of LLTI. It is also apparent that this pheno-
menon does not occur with the variable UNEMP. This technique can also be used,
at least sometimes, to detect three-dimensional outliers. For example, the line
joining a high(ish) value of SC1 to a similar value of SPF is unusual, first in a two-
dimensional sense because it appears that the two variables both have high values,
and secondly in three dimensions — we can also see that this line associated with
the lowest decile of LLTI.

As with scatterplot matrices, and the methods of RADVIZ and projection pursuit
discussed below, parallel coordinates plots may also be used to investigate spatial
pattern. A powerful and interactive way to achieve this is to use the ‘linking’
approach discussed in Section 4.8. Highlighted parallel lines (as seen in Figure
4.13) are linked to zones (or points) on a map, so that the locations of highlighted
cases can be investigated. As before, it is also possible to consider a linkage in the
opposite direction. That is, by selecting an observation region in the study area one
can see the corresponding parallel coordinates highlighted. This allows the explora-
tion of the distribution of several variables associated with a geographical subset of
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the data to be considered in relation to the distribution of the same variables for the
whole study.

Outliers detected in terms of the lines connecting pairs of axes in the parallel
system pose an interesting problem. Although the method provides a striking image
of outliers between two variables, it only works if the two variables have neighbour-
ing parallel axes. For m variables, there are only (m — 1) such neighbours possible,
but there are m(m — 1)/2 possible variable pairs. Thus, (m — 1)(m — 2)/2 pairs
cannot be displayed. The problem is similar to the ordering problem in RADVIZ
discussed in Section 4.10 — the patterns that parallel coordinates plots yield depend
on the ordering of the axes. For a parallel coordinates plot, there are m! possible
orderings, although if we assume that reversing the order of the axes generates
equivalent patterns, this leaves m!/2 possibilities. A number of ways of automati-
cally choosing an ordering could be used, usually based on maximizing some
criterion measuring the ‘strength of pattern’ displayed. Alternatively, ordering could
be controlled interactively by the analyst. This second approach is perhaps more in
the spirit of exploratory data analysis.

4.10 RADVIZ

Like the previous approach, the RADVIZ method (Hoffman et al., 1997; Ankerst et
al., 1996) maps a set of m-dimensional points onto two-dimensional space. To
explain the approach, it is helpful to imagine a physical situation. Suppose m points
are arranged to be equally spaced around the circumference of the unit circle. Call
these points S; to S,,. Now suppose a set of m springs is fixed at one end to each of
these points, and that all of the springs are attached to the other end to a puck, as in
Figure 4.14. Finally, assume the stiffness constant (in terms of Hooke’s law) of the
Jjth string is x; for one of the data points i. If the puck is released and allowed to
reach an equilibrium position, the coordinates of this position, (u;, v;)” say, are the
projection in two-dimensional space of the point (x;, ..., X;,)” in m-dimensional
space. Thus, if (u;, v;)" is computed for i = 1 ... n, and these points are plotted, a
visualization of the m-dimensional data set in two dimensions is achieved.

To discover more about the projection from R™ to R?, consider the forces acting
on the puck. For a given spring, the force acting on the puck is the product of the
vector spring extension and the scalar stiffness constant. The resultant force acting
on the puck for all m springs will be the sum of these individual forces. When the
puck is in equilibrium there are no resultant forces acting on it and this sum will be
zero. Denoting the position vectors of S} to S, by S; to S,, and putting
u; = (u;, v;)7, we have

D (S —u)x; =0 (4.5)

Jj=1Lm
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Figure 4.14 The physical system basis for RADVIZ

which may be solved for u; by

u, = Z WUSI (46)

j=lm

where

Wi = (Z x,~]-> 7 Xij 4.7)

J=lm

Thus, for each case i, u; is simply a weighted mean of the S; whose weights are the
m variables for case i normalized to sum to one. Note that this normalization
operation makes the mapping from R" to R* non-linear.

Viewing the projection in this explicit form allows several of its properties to be
deduced. First, assuming that the x; values are all non-negative, each u; lies within
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the convex hull of the points S; to S,,. Owing to the regular spacing of these points,
this convex hull will be an m-sided regular polygon. Note that if some of the x;
values are negative, this property need not hold, but that often each variable is
rescaled to avoid negative values. Two typical methods of doing this are the local
metric (L-metric) rescaling, in which the minimum and maximum values of x;; for
each j are respectively mapped onto zero and one respectively,

O X; — min ;(x;)
7 max;(x;) — min;(x;)

(4.8)

and the global metric (G-metric), in which the rescaling is applied to the data set as
a whole, rather than on a variable-by-variable basis:

G X —ming(xy)

i 4.9

In each case, the rescaled x; values will all lie in the interval [0, 1].

The weighted centroid interpretation of the projection also allows some other
properties to become apparent. If, for a given i, the values of x; are constant, u;
will be the zero vector. This is a rather strange property, since it implies that
observations in which all variables take on a very high constant value (once
rescaled) will be projected onto the same point as observations in which all
variables take on a very low constant value. More generally, any point plotted on
the RADVIZ circle does not correspond to a unigue set of x variables.

For general data sets this property could lead to difficulties in interpreting the
plots, but it is particularly useful when considering compositional geographical
data. Suppose the population of a geographical region is classified into m cate-
gories, for example those aged under 18, those aged 18 to 65 and those aged over
65. Another example would be voting data for an electoral ward — here the
categories are the parties for which each constituent voted. A compositional data
set is one in which each of the variables represents the proportion (or percentage)
of each category for each area. Numerically, the most notable property of such data
is that for each case the variables sum to 1 (or 100 if percentages are used). This
constraint suggests that the only way that all m variables can be equal is when they
all take the value 1/m. Note, however, that even in this case, the fact that u, =0
does not imply that all proportions are equal. For example, if a pair of variables are
represented by diametrically opposite points on the circle, and the proportions are
0.5 in each of these, then this will also give u; = 0. Another aid to interpretation
for compositional data is that if an area consists entirely of one category then the
corresponding variable will take the value 1, while the others will take the value
zero. This implies that u; will lie on the vertex of the regular m-sided polygon
corresponding to that category.
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In the case m = 3 for compositional data the RADVIZ procedure produces the
compositional triangular plot or tripartite plot used for various purposes — notably
by Dorling (1991) to illustrate voting patterns in the UK in a three-party system. If
we were to extend the analysis to look at more than three parties then RADVIZ
provides a natural extension of this concept. The main difficulty when moving
beyond m = 3 for compositional data is that points on a RADVIZ plot no longer
correspond uniguely to (x; ... x;) for a given case — more than one composition
can project onto the same u;, as discussed above.

A RADVIZ projection for the limiting long-term illness data is shown in Figure
4.15. The result shows a circular cluster of points and identifies outliers around this.
In particular, three points lie to the right of the main cluster, towards the CROWD
and UNEMP fixed points. This suggests that there are three places with particularly
large values of these two variables, in relation to the other variables.

A further pattern in Figure 4.15 is that a lower-density ‘cloud’ of points lies to
the left of a central cluster. This seems to be biased towards the direction of SC1 on
the RADVIZ frame suggesting that the areas associated with this cloud tend to have
relatively high levels of ‘social class I’ inhabitants. Further insight can be obtained
by linking the RADVIZ plot to a map as in the screenshot in Figure 4.16. This is
achieved by linking the plot to a map of the study region and highlighting the
points in the cloud of the RADVIZ plot. The geographical locations are then
highlighted in the map window. From this it may be seen that the cloud links mostly
to the more rural areas in the study region.

It is also interesting to note that for a given set of variables, there are several
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SCA CROWD

SPF UNEMP

Figure 4.15 A RADVIZ projection of the census data
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Figure 4.16 Linking RADVIZ to a map

possible RADVIZ projections, since the initial m variables could be assigned to
S; ... S, in m! different ways. If we are mostly interested in identifying clusters
and outliers, a number of possible projections will be essentially equivalent, since
they will be identical up to a rotation or a mirror image. To see how many non-
trivially different permutations there are, we need first to note that any permutation
can be rotated m ways (i.e. rotation through 360°/m by 2(360°/m) and so on up to
(m — 1)(360°/m), and of course the identity rotation through zero degrees), and so
we need to divide the m! by m. We then note that any permutation can be reflected
in two ways (i.e. mirror imaged or left alone) so the figure of (m — 1)! must be
halved. Thus, if m is the number of variables, there are effectively (m — 1)!/2
possible RADVIZ projections.

One way of deciding which of these should be used is to use an index, in a
similar manner to projection pursuit in the previous section. In fact, the same
indices could be used — for example, maximizing the variance of the u;. In this
case, the optimization is a discrete search over a finite number of possibilities,
rather than a continuous multivariate optimization problem as in projection pursuit.
It should be noted that the number of options to be searched increases very rapidly
with m — worse than m? — and this has implications for computation, namely a
similar situation to the axis ordering in the parallel coordinates approach. Once
again, some interactive control of the projection may be a practical alternative.

4.11 Projection pursuit

Suppose as before that for a set of cases m variables are recorded. Then each case
can be thought of as a point in m-dimensional space. Unfortunately, unless m < 3
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it is not possible to view these points directly. However, it is possible to project an
m-dimensional set of points onto a two-dimensional plane, or a three-dimensional
volume. Here we will restrict the problem to projections onto two-dimensional
planes. To visualize the concept of projection, Figures 4.17 and 4.18 should be
considered. In both figures a rectangular ‘screen’ is shown, either above or to the
right of a set of three-dimensional data. Imagine a very bright light on the other
side of the data points. The shadows thrown on the screen from the data points are
the projection. The dotted lines in the diagram link the data points to their projected
images.

In Figure 4.17 the data points are projected onto a plane to the right. Here the
projected image shows two distinct clusters of points. In Figure 4.18 the same data
points are projected onto a plane above. Here the projected image shows only a
single cluster of points. Obviously in this case the projection is from R> to R?, but
similar (and sometimes more complex) phenomena occur when the projection is
from R” dimensions and m > 3.

The above example demonstrates that different projections of the same data set
can reveal different aspects of the data structure — indeed some projections can fail
to reveal any structure. There are in fact an infinite number of possible projections
to choose from, so which one should be used? This problem was initially posed by
Kruskal (1969), and the term projection pursuit, coined by Friedman and Tukey
(1974), refers to resolving this kind of problem.

The initial problem is to decide what kind of feature one wishes to detect. When
this decision is made, one attempts to measure the degree to which this feature is
exhibited in a given projection. For example, Jones and Sibson (1987) and Huber
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Figure 4.17 Example of point projection (1)
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0.8

Figure 4.18 Example of point projection (2)

(1985) consider departures from a Gaussian distribution shape for the projected
points to be of interest. This viewpoint can be justified by considering the findings
of Diaconis and Freedman (1984), which suggest that randomly chosen projections
of sets of points from high-dimensional spaces to two or three dimensions tend to
give sets of projected points that appear to follow a Gaussian distribution. Finding
any projection that is an exception to this can be regarded as finding an interesting
projection. Another approach suggested by Cook et al. (1993) finds projections that
emphasize central ‘holes’ in the distribution of projected points, and also projec-
tions that emphasize skewness. In each case, a characteristic is associated with the
‘interestingness’ of any projection, and the specific projection optimizing this
characteristic is sought.

To illustrate this idea an example is now given. Suppose one equates ‘interesting-
ness’ with clusters in the projected data. A common test statistic for clustering in
two-dimensional data is the mean nearest-neighbour distance (MNND). Lower
values of this statistic indicate greater clustering. In this case, the MNND is the
measure of clustering. The ‘best’ projection choice problem can be thought of as an
optimization problem in which the projection must be chosen to optimize this
measure.

In Figure 4.19 the result of applying this technique to the limiting long-term
illness data is shown. Owing to the nature of the index function, the rotation of the
point pattern obtained is arbitrary, so there is no clear interpretation of the
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Figure 4.19 Minimized MNND projection of census data

individual axes in the plot. No obvious clusters exist in the plot, suggesting perhaps
that the data are not multimodal in any way detectable by projecting onto a two-
dimensional plane. However, some features are very clear, most notably a ‘spur’ in
the lower part of the plot. By linking this plot to a map in the manner suggested in
Sections 4.8 and 4.10 one can check to see whether this spur is a regional effect, or
is spatially diverse in nature. For example, one can check whether the spur in the
minimizing MNND projection pursuit corresponds to any particular geographical
pattern, as in the screenshot in Figure 4.20. Here, as with the RADVIZ example,
the points identified as unusual in the projection plot correspond to areas in rural
parts of the southern region of the study area.

Another useful interactive approach is slicing as described in Tierney (1990). In
this case, points in a scatterplot are selected according to the value of an auxiliary
variable. This value is controlled by a slider button, as in the second screenshot,
Figure 4.21. The value shown in the slider is the central point of a decile ‘slice’ of
the data, based on the values of the variable LLTI — clearly any other variable could
also be used. Moving the slider causes the highlighted points in the scatterplot to
change, so one can see which regions of the projection correspond to high and low
values of the slicing variable. This method helps to interpret the patterns seen in
projection-based methods such as those considered in this section.

An important concept related to projection pursuit is the grand tour (Asimov,
1985). One shortcoming of the former technique is that it is necessary to define
‘interestingness’ before viewing the data. If the data happen to have some pro-
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jections which are interesting in some other way than this formal definition, it is
possible that these projections will not be discovered. The grand tour addresses this
by attempting to display all projections of the data in one or two dimensions. To do
this, an animated display of the projected points is used. As the plane (or line) of
projection moves continuously in the m-dimensional space of the data, the
locations of the projected data points on the plane (or line) also move continuously.
When the path of motion for the plane of projection eventually traces through all
possible planes, then the animated point display will have shown all possible
projected sets of points. Grand tour software exists in a number of packages, for
example XGobi (Swayne et al., 1991) and Lisp-Stat (Tierney, 1990) both of which
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are in the public domain. In a sense, the grand tour complements projection pursuit:
projection pursuit shows a snapshot of a single ‘interesting’ projection, whilst the
grand tour shows a movie of all possible projections. The drawback with the latter
option is that one could sit through a very long movie of uninteresting projections
before an interesting one is seen!

To address this problem, the notion of guided grand tours is useful. Rather than
considering every possible projection, a path concentrating on interesting projec-
tions is used. Cook et al. (1995) combine this idea with the index of ‘interesting-
ness’ used in projection pursuit. Typically, the projection pursuit index is optimized
using an iterative procedure, so that a series of successively more and more
interesting projections is produced, terminating at a local optimum of ‘interesting-
ness’. If a movie is created using this sequence of projections, then a guided grand
tour is created. Noting that the optima found in this way are not always global, once
an optimum has been achieved a random projection is selected and the iterative
process restarted. With this method it has been found that interesting non-optimal
projections can be discovered, and that the dynamic can provide context between
different projections (Cook et al., 1995). For example, the path of a point which is
outlying in one projection can be observed to see whether the same point is an
outlier in another projection.

Finally, it has also been noted that in contrast to either of these automatic
approaches to finding projections, there are occasions when manual control of the
projection can be very useful (Cook and Buja, 1997). Here, one uses a set of
controls to move the plane of projection, and detects interesting point arrangements
by eye. Note that this facility, as well as the guided grand tour, are available in
XGobi. A strong geographical application of these techniques is provided by Cook
et al. (1998) who link XGobi to the C2 virtual reality environment® in order to
explore patterns in a number of environmental variables recorded on 501 samples
of streams in several mid-Atlantic states in the USA.

4.12 Summary

The most important tool in the visualization of spatial data is the map. Clearly
maps enable the visualization of a simple, univariate spatial pattern, as is evidenced
by their abundant use throughout several of the chapters in this book. However,
current spatial data exploration techniques offer more than static maps. In parti-
cular, linked maps offer greater opportunities to investigate the spatial aspects of
relationships between large numbers of variables when used in conjunction with
multivariate data visualization tools such as RADVIZ, projection pursuit or parallel
coordinates plots. Such linkages offer not only the ability to investigate outliers and
trends in multidimensional data, but also the ability to consider this in a spatial
context. Questions such as ‘where are the outliers located?’, and ‘does a multi-
dimensional cluster of variable values correspond to a geographical cluster?’, may
be answered in an informal framework using the techniques outlined in this chapter.
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Exploratory spatial data analysis may also be used to examine, for ‘spatial outliers’
— that is for observations that are very different from others in their locality
although not necessarily outstanding in the data set as a whole. This concept is
discussed further in Chapter 5.

Notes

1. ‘Automatic’ is not necessarily optimal!
2. They also link XGobi to ArcView with less striking results.



5 Local Analysis

5.1 Introduction

Traditionally, spatial models and methods of spatial analysis have been applied at a
‘global’ level, meaning that one set of results is generated from the analysis and
these results, representing one set of relationships, are assumed to apply equally
across the study region. Essentially, what is being undertaken in a global analysis,
but is rarely acknowledged, is the generation of an ‘average’ set of results from the
data. If the relationships being examined vary across the study region, the global
results will have limited application to any particular part of that region and may
not, in fact, represent the actual situation in any part of it. In a global analysis, we
typically have no information on whether there is any substantial spatial variation
in the relationships being examined — any such information is lost in the analysis.
The situation is akin to being given the information that ‘the average temperature
in the USA on March 1, 1999 was 15 degrees Celsius’. This is a ‘global’ statistic in
that it provides information about the study area in general but not necessarily
about any specific part of it. As such, it is of limited use and disguises the fact that
there were substantial temperature variations across the USA on this date. The
question spatial analysts need to address is: ‘Are there similar spatial variations in
analytical results which are being hidden by global statistics?” Until recently,
spatial analysts have generally reported globally averaged statistics, such as a single
regression parameter estimated from a whole data set, and have ignored any
potential spatial non-stationarity in relationships.

In this chapter, we explore the recent and potentially powerful movement within
spatial analysis, termed ‘local analysis’ or ‘local modelling’, where the focus of
attention is on testing for the presence of differences across space rather than on
assuming that such differences do not exist. The movement encompasses the
dissection of global statistics into their local constituents; the concentration on
local exceptions rather than the search for global regularities; and the production of
local or mappable statistics rather than on global or ‘whole-map’ values (Openshaw
et al., 1987). As Jones and Hanham (1995) recognize, this trend is important not
only because it brings issues of space to the fore in spatial data analysis and spatial
modelling, but also because it refutes the rather naive criticism that quantitative
geography is unduly concerned with the search for global generalities and ‘laws’.
Quantitative geographers are increasingly concerned with the development of
statistical techniques aimed at the local rather than the global. This shift in
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emphasis also reflects the increasing availability of large and complex spatial data
sets in which spatial variations in relationships are likely to be more apparent.

Understandably, local methods of analysis are important to GIS because they
produce values of a statistic for each location and these values can be displayed
using the mapping capabilities of GIS (see Chapter 3). It could even be claimed
that some of the impetus for the development of local forms of analysis has
stemmed from the growing interest in integrating advanced forms of spatial analy-
sis and GIS (Fotheringham and Charlton, 1994; Fotheringham, 1994; Fotheringham
and Rogerson, 1993). However, the shifting emphasis from global to local spatial
analysis is much broader than that in the GIS literature and involves primarily
quantitative geographers and spatial statisticians (infer alia, Casetti, 1972; Open-
shaw et al., 1987; Sampson and Guttorp, 1992; Anselin, 1995; Ord and Getis,
1995). A comparison of the properties of local and global statistics is provided in
Table 5.1.

5.2 The nature of local variations in relationships

Consider a frequently encountered aim of data analysis: that of understanding the
nature of the distribution of one variable in terms of the distributions of other
variables. By far the most popular statistical technique for this purpose is that of
regression analysis (Draper and Smith, 1981; Berry and Feldman, 1985; Graybill
and Iyer, 1994). In spatial data analysis, the data about which relationships are to
be examined are related to spatial units and are used to estimate a single, or
‘global’, regression equation so that the relationships being examined are assumed
to be stationary over space. That is, for each relationship a single parameter
estimate is implicitly assumed to depict the nature of that relationship for all points
within the entire study area. Clearly, any relationship which is not stationary over
space, and which is said to exhibit spatial non-stationarity, will not be modelled
particularly well by a single parameter estimate and indeed this global estimate
may be locally very misleading.

There are at least three reasons to suspect that relationships will vary over space.

Table 5.1 Characteristics of global and local statistics

Global Local

Usually single valued Multivalued

Assumed invariant over space Varies over space

Emphasize similarities over space Emphasize differences across space

Non-mappable Mappable

('GIS-unfriendly’) ('GIS-friendly’)

Used to search for regularities Used to search for exceptions or local
'hotspots’

Aspatial or spatially limited Spatial
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The first and simplest is that there will inevitably be spatial variations in observed
relationships caused by random sampling variations. The contribution of this source
of spatial non-stationarity is not usually of great interest in itself but it does need to
be recognized and accounted for if we are to identify other, more interesting,
sources of spatial non-stationarity. That is, we are only interested in relatively large
variations in parameter estimates that are unlikely to be due to sampling variation
alone.

The second reason is that the relationships might be intrinsically different across
space. Perhaps, for example, there are spatial variations in people’s attitudes or
preferences or there are different administrative, political or other contextual issues
that produce different responses to the same stimuli over space. It is difficult to
conjecture an example of this cause of spatial non-stationarity in physical geo-
graphy where the relationships being measured tend to be governed by laws of
nature. The idea that human behaviour can vary intrinsically over space is
consistent with post-modernist beliefs on the importance of place and locality as
frames for understanding such behaviour. Those who hold such a view sometimes
criticize quantitative analysis in geography as having little relevance to ‘real-world’
situations where relationships are very complex and possibly highly contextual.
Local statistical indicators address this criticism by recognizing such complexity
and attempting to describe it.

The third reason why relationships might exhibit spatial non-stationarity is that
the model from which the relationships are measured is a gross misspecification of
reality and that one or more relevant variables are either omitted from the model or
represented by an incorrect functional form. This view, more in line with the
positivist school of thought, assumes a global statement of behaviour can be made
(and hence is applicable to relationships in physical as well as human geography)
but that the structure of our model is not sufficiently well formed to allow us to
make it. In a nutshell, can all contextual effects be removed by a better specification
of individual-level effects (Hauser, 1970)? If model misspecification is the cause of
parametric instability, the calculation and subsequent mapping of local statistics is
useful in order to understand the nature of the misspecification more clearly.

Given the potential importance of local statistics and local models to the
understanding of spatial processes, and given the development of what are known
as variable parameter models (VPMs) in aspatial contexts (Maddala, 1977; Casetti,
1997), it is surprising that local forms of spatial analysis are not more frequently
encountered. As Jones (1991b, p. 8) states, the global modelling approach ‘denies
geography and history; everywhere and anytime is basically the same! ... [it] is an
impoverished representation of reality, and it is amazing that geographers have
been so interested in it.” However, there has been a recent flurry of academic work
on local spatial analysis reflecting the calls of Fotheringham (1992), Fotheringham
and Rogerson (1993) and Openshaw (1993) for greater attention to be given to this
topic. These developments can be divided into those that are focused on local
statistics for univariate spatial data, which includes the analysis of point patterns,
and those that are focused on multivariate data. We now consider both types of
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application. A brief mention is also made of local forms of spatial interaction
models although a fuller discussion of these is left to Chapter 9.

5.3 Measuring local relationships in univariate data
5.3.1 Local point pattern analysis

The analysis of spatial point patterns has long been an important concern in
geographical enquiry and a good overview is contained in Boots and Getis (1988);
it is also the subject matter of Chapter 6. There has been interest in the topic in
several disciplines (inter alia, Stone, 1988; Doll, 1989; Gardner, 1989; Besag and
Newall, 1991) and particularly in the study of spatial patterns of disease (Marshall,
1991). Until relatively recently, however, most applications of spatial point pattern
analysis involved the calculation of some global statistic that described the whole
point pattern and from which a conclusion was reached related to the clustered,
dispersed or random nature of the whole pattern. Clearly, such analyses are flawed
in that any spatial variations in the point pattern are subsumed in the calculation of
the average or global statistic. In many instances, particularly in the study of
disease, such an approach would appear to be contrary to the purpose of the study,
namely to identify any local anomalies.

One of the first developments for the local analysis of point patterns was the
geographical analysis machine (GAM) developed by Openshaw et al. (1987) and
described in Chapter 6. The technique of the GAM has been criticized by Besag
and Newall (1991) and refined by Fotheringham and Zhan (1996) but the basic
components remain the same and have great practical application. These are:

1 amethod for defining sub-regions of the data;

2 ameans of describing the point pattern within each of these sub-regions;
3 aprocedure for identifying sub-regions with anomalous point patterns;
4 adevice for displaying the sub-regions with anomalous point patterns.

The basic idea suggested by Fotheringham and Zhan (1996) is very simple and
serves to demonstrate the interest in the local quite well. Within the study region
containing a spatial point pattern, randomly select a location and then randomly
select a radius of a circle to be centred at that location. Within this random circle
count the number of points and compare this observed value with an expected value
based on an assumption about the process generating the point pattern (usually that
it is random). Ideally, the population at risk should be used as a basis for generating
the expected value, as shown in Fotheringham and Zhan (1996) who use a Poisson
probability model with the observed mean and the population at risk within each
circle. Once the observed and expected values have been compared, the circle is
drawn on a map of the region if it contains an anomalous number of points. The
process is repeated many times until a map is produced containing a set of circles
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centred on parts of the region where interesting clusters of points appear to be
located. An example of this type of analysis is given in Openshaw et al. (1987) to
examine spatial anomalies in cancer incidence.

The use of automated cluster detection techniques as described above allows for
the possibility that different processes are operating in different parts of the region
and that these different processes yield different densities of points even when the
underlying at-risk population distribution is taken into account. This is quite
different from classical approaches such as various neighbour statistics and quadrat
analyses that produce ‘whole-map’ statistics (Dacey, 1960; King, 1961; Greig-
Smith, 1964; Robinson et al., 1971; Tinkler, 1971; Boots and Getis, 1988). The
‘GAM style’ of analysis concentrates on spatial variations and spatial differences
in the location of points and hence produces ‘local’ rather than ‘global’ information
on spatial point patterns. As with all local statistics, GAM-generated statistics are
enhanced by the ability to map the results so that variations over space can be
easily visualized.

5.3.2 Other local measures of univariate spatial relationships

Despite the existence of one or two early papers which emphasized the importance
of local or regional variations in relationships (Chorley et al., 1966; Moellering and
Tobler, 1972), most of the work in this area is relatively recent. It can be divided
into graphical approaches to local data analysis and the more formal development
of local univariate statistics.

The bulk of the research undertaken in exploratory graphical analysis (infer alia,
Haslett et al., 1991; see also Chapter 4) is essentially concerned with identifying
local exceptions to general trends in either data or relationships. Hence, techniques
such as linked windows and brushing allow data to be examined interactively so
that points appearing as outliers in various statistical displays can be located on a
map automatically. Usually this type of graphical interrogation takes place with
univariate distributions so that histograms form the basis of the graphics although
scatterplots can also be linked to a map display and even 3D spin plots can be used
(see Figures 4.11, 4.16, 4.20 and 4.21 for examples). No matter which exploratory
technique is used, however, the aim of the analysis is generally to identify unusual
data points and the focus is on the exceptions rather than the general trend.

More complex graphical techniques for depicting local relationships in univari-
ate data sets include the spatially lagged scatterplot (Cressie, 1984), the variogram
cloud plot (Haslett et al., 1991) and the Moran scatterplot (Anselin, 1996).
Examples of the latter two are provided in Figures 5.2 and 5.3 respectively for the
spatial distribution depicted in Figure 5.1 (which is the data also used in the
assessment of statistical inferential tests for spatial autocorrelation in Chapter 8).
The data represent unemployment rates distributed across 26 spatial units. The
variogram cloud plot in Figure 5.2 depicts the squared difference in the unemploy-
ment rates in zones i and j plotted against the distance between zones 7 and j. The
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Figure 5.3 Moran’s I-plot for the unemployment data

plot shows that generally zones closer together have more similar values than those
further apart and the strength of this relationship indicates the degree of positive
spatial autocorrelation in the data. The development of spatial regression models in
Chapter 6 describes one of the consequences of spatial autocorrelation for spatial
analysis.

The Moran scatterplot or spatial dependency plot in Figure 5.3 depicts the mean
unemployment rate in zones neighbouring zone i plotted against the unemployment
rate in zone i. Different definitions of ‘neighbouring’ can be used in the construc-
tion of a Moran scatterplot; here, two zones are classified as neighbours if they
share a common boundary. Again, the plot depicts a general trend where neigh-
bouring values are similar, indicating positive spatial autocorrelation. The Moran
scatterplot can also be used to depict spatial outliers, defined as zones having very
different values of an attribute from their neighbours.

More formally, local versions of global univariate statistics have recently been
developed by Getis and Ord (1992), Ord and Getis (1995) and by Anselin (1995;
1998). Getis and Ord (1992) develop a global measure of spatial association
inherent within a data set that measures the way in which values of an attribute are
clustered in space. A local variant of this global statistic is then formulated to
depict trends in the data around each spatial unit. In fact there are two variants of
this localized statistic depending on whether or not the unit i around which the
clustering is measured is included in the calculation. Unfortunately there is no
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theory to guide the use of which statistic to use in any particular situation although
the difference between the two will typically be very small in most situations where
there are large numbers of spatial units.

For the situation where i is not included in the calculation

Gi:ZWi/xf/ZX/ JFi CHY

where G; is the measure of local clustering of attribute x around 7, x; is the value of
x at j, and w;; represents the strength of the spatial relationship between units i and
j which can be measured as either a binary contiguity variable or a continuous
distance-decay measure (the latter generally being preferred although the choice of
spatial weighting function is generally subjective). If high values of x tend to be
clustered around i, G; will be high; if low values of x tend to cluster around i then
G; will be low; and no distinct clustering of high or low values of x around i will
produce intermediate values of G;. The expected value of G; is

E(G)=w,/(n—1) (5.2)
where
wi=Y wy A (5.3)
and the variance is
var(G) = wi(n—1—w,)s’/(n— 1)*(n — 2)x; (5.4)

where X; represents the mean of the x values excluding the value at i and s? is the
sample estimate of the variance of x, again excluding the value at i. A standard
variate can then be defined as

Z(G) = [G; — E(G)]/[var(G)]'"* (5:5)

For the situation when i is included in the calculation, then the above formulae
simplify to
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G =) wyx / > % forallj (5.6)
J J

where w; must not equal zero,

E(G])=w]/n (5.7)
where
wi=> w;, forall; (5.8)
J
and
var(GF) = wi(n — w)s? /(n)’(n — DR (5.9)

and where the mean and sample estimate of the variance are taken over the entire
set of x values and so no longer vary with i.

The G; and G:k statistics have been implemented in a GIS environment by Ding
and Fotheringham (1992) which has the advantage of a readily available mapping
system for the local statistics. The local spatial association statistic allows that
different trends in the distribution of one variable might exist over space. In some
parts of the study area, for example, high values might be clustered; in other parts
there might be a mix of high and low values. Such differences would not be
apparent in the calculation of a single global statistic. In their empirical example,
Getis and Ord (1992) find several statistically significant local clusters of sudden
infant death syndrome in North Carolina although the global statistic fails to
identify any significant clustering.

In a similar manner to that of Getis and Ord (1992), Anselin (1995) has recently
developed a local variant of Moran’s /, a measure of spatial autocorrelation (see
Chapter 8 for more detail). Spatial autocorrelation is traditionally measured
globally so that the statistic describes an average trend in the way a variable is
distributed over space. Where spatial data are distributed so that high values are
generally located near to other high values and low values are generally located
near to other low values, the data are said to exhibit positive spatial autocorrelation.
Where the data are distributed such that high and low values are generally located
near each other, the data are said to exhibit negative spatial autocorrelation. Clearly
these descriptions are global ones and may not adequately describe the relation-
ships in all parts of the study area. Anselin’s development of a localized version of
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spatial autocorrelation allows spatial variations in the arrangement of a variable to
be examined. The localized version of Moran’s / is

I, = (6 — x™) 35wy — x¥) (5.10)

Do —x*)?/n

* is the mean of x, n is the

number of observations and w;; represents the strength of the linkage between i and

where x; is the observed value of x at location i, x

J, usually measured by spatial proximity. The expected value and variance of /; are
given by

E(I) = —w,/(n— 1) (5.11)
and
var(l,)) = wV (5.12)

respectively, where V is the calculation of the variance of / under randomization
with w; replaced throughout by w; (the formula for the variance of 7 is given in
Chapter 8 in Equations (8.17) to (8.20) and is not repeated here). Again, the local
Moran’s [ statistics can be mapped to display any local variations in spatial
autocorrelation. Anselin (1995) presents an application of the localized Moran’s /
statistic to the spatial distribution of conflict in Africa and Sokal et al. (1998)
demonstrate its use on a set of simulated data sets. Other studies of local Moran’s /
statistic include those of Bao and Henry (1996), Tiefelsdorf and Boots (1997),
Tiefelsdorf (1998) and Tiefelsdorf et al. (1998).

5.4 Measuring local relationships in multivariate data

The increasing availability of large and complex spatial data sets has led to a
greater awareness that the univariate statistical methods described in Section 5.3
have limited application. There is a need to understand local variations in more
complex relationships (see e.g. the attempts of Ver Hoef and Cressie (1993) and
Majure and Cressie (1997) to extend the local visual techniques for autocorrelation
described above to the multivariate case). In response to this, several attempts have
been made to produce localized versions of traditionally global multivariate
techniques. For instance, it was recognized quite early in the spatial interaction
modelling literature that localized distance-decay parameters would yield more
useful information on spatially varying rates of decay than simply estimating a
global interaction model (see Fotheringham (1981) for a review and also Chapter
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9). From an accumulation of empirical examples of origin-specific parameter
estimates, it has proven possible to map trends in parameter estimates that have led
to the identification of a severe misspecification bias in the general spatial inter-
action modelling formula (Fotheringham, 1984; 1986). It is worth stressing that
such misspecification only came to light through an investigation of spatial vari-
ations in localized parameters that would be completely missed in the calibration of
a global model. This topic forms part of the subject matter of Chapter 9 and more
detailed discussion is left to this point.

Perhaps the most pressing challenge, given its widespread use, has been to
produce local versions of regression analysis. Examples include spatial adaptive
filtering (Foster and Gorr, 1986; Gorr and Olligschlaeger, 1994) which incorporates
spatial relationships in an ad hoc manner and produces parameter estimates which
are difficult to test statistically; random coefficients modelling (Aitkin, 1996); and
multilevel modelling (Goldstein, 1987; Westert and Verhoeff, 1997). In the latter
two techniques, it is possible to obtain local parameter estimates through Bayes’
theorem. However, the application of both frameworks to the analysis of spatial
data is questionable because no assumption is made about any spatial dependency
in the relationships being examined which would seem unrealistic of most spatial
processes. Brunsdon et al. (1999b) provide an example of the application of random
coefficient models to spatial data and Jones (1991a; 1991b) provides examples of
multilevel modelling with spatial data. The latter relies heavily on a predefined set
of hierarchically arranged spatial units in which the continuous nature of spatial
processes, both within and between levels, is essentially ignored. The only notion
of spatial arrangement is one of ‘containment’, where the coefficients for smaller
areal units are ‘nested’ inside those for larger ones.

Two further examples of local regression techniques which would seem to have
greater potential application to spatial data are a spatial variant of the expansion
method (Casetti, 1972; Brown and Jones, 1985; Jones and Casetti, 1992) and
geographically weighted regression (Brunsdon et al., 1996; 1998a; 1998b; Fother-
ingham et al., 1996; 1997a; 1997b; 1998). Following a brief discussion of multi-
level modelling, these latter two techniques are described and applications of both
to spatial data analysis are then presented.

5.4.1 Multilevel modelling

The typical application of multilevel modelling attempts to separate the effects of
personal characteristics and place characteristics (contextual effects) on behaviour,
a problem which arises in many different situations (inter alia, Hauser, 1970; Meyer
and Eagle, 1982; Brown and Kodras, 1987; Brown and Goetz, 1987). Modelling
spatial behaviour purely at the individual level is prone to the atomistic fallacy,
missing the context in which individual behaviour occurs (Alker, 1969), whereas
modelling behaviour at the aggregate level is prone to the ecological fallacy that
the results might not apply to individual behaviour (Robinson, 1950). Multilevel
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modelling tries to avoid both these problems by combining an individual-level
model representing disaggregate behaviour with a macro-level model representing
contextual variations in behaviour.

To see how multilevel modelling accomplishes this, consider modelling the
behaviour of individual 7 in place j. At the individual level,

yi=a+px +e (5.13)

where y, represents some facet of the behaviour of individual 7; x; is an attribute of
individual i that affects this behaviour; a and (8 are parameters to be estimated and
€ is a normally distributed random term representing variation in response around a
mean estimated from a + fSx;. Alternatively, at the place or aggregate level,

where y; represents some facet of the behaviour of a group of individuals at place
J; x; is an attribute of place j; y and O are parameters to be estimated; and ¢;
represents the level of the random term at the place level.

In multilevel modelling, these two equations are combined to produce a model
of the form

Vi = a;+ Bx; + ey (5.15)

in which y; represents the behaviour of individual 7 living in place j; a; and §; are
place-specific parameters where

;= 0+ Ujg (5.16)

and

B =B+ up; (-17)

and e; represents the random error associated with individual i in place j.

Each place-specific parameter is therefore viewed as consisting of an average
value plus a random component. It is clear from these expressions that multilevel
modelling is a more sophisticated version of the use of dummy variables in
regression to obtain place-specific parameters (see Johnston et al., 1988, p. 179, for
an example of this technique used to obtain region-specific parameters). Substitut-
ing (5.16) and (5.17) into (5.15) yields the multilevel model
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vi = o+ PBx; + (e; + Wjo + UipXy) (5.18)

which, because it contains three random components, cannot be calibrated by OLS
regression unless x4, and u; are zero, and specialized software is needed such as
Min (Rasbash and Woodhouse, 1995). Place-specific parameter estimates can be
obtained by estimating separate variance effects and substituting into Equations
(5.16) and (5.17).

Refinements to the basic multilevel model described above can be made. For
instance, place attributes can be included in the specifications for a; and f3; so that,
for example, if one place attribute, z;, affects a; and 3, then

a;=a+ ¢z + U, (5.19)

and

By =B+ Az +uy (5.20)

Substituting (5.19) and (5.20) into (5.15) yields

Vi = 0+ Bxy + Azixy + ¢z + (e + Wja + ipXy) (5.21)

Other refinements include extending the number of levels in the hierarchy beyond
two so that threefold and n-fold hierarchies can be modelled (Jones et al., 1996)
and the development of cross-classified multilevel models where each lower unit
can nest into more than one higher-order unit (Goldstein, 1994).

There are several examples of multilevel modelling applied to spatial data and
overviews are given by Jones (1991a; 1991b). Applications include those of Jones
(1997) on voting behaviour; Verheij (1997) and Duncan et al. (1996) on geographical
variations in the utilization of health services and health-related behaviour; Jones
and Bullen (1993) on spatial variations in house prices; Smit (1997) on commuting
patterns; and Duncan (1997) on spatial patterns of smoking behaviour. However,
each of these studies relies on an a priori definition of a discrete set of spatial units at
each level of the hierarchy. While this may not be a problem in many aspatial
applications, such as the definition of what constitutes the sets of public and private
transportation options, or what constitutes the sets of brands of decaffeinated and
regular coffees, it can pose a problem in many spatial contexts. The definition of
discrete spatial entities in which spatial behaviour is modified by attributes of those
entities obviously depends on such entities being identified by the modeller and this
is not always possible with spatial processes. It also implies that the nature of
whatever spatial process is being modelled is discontinuous. That is, it is assumed
that the process is modified in exactly the same way throughout a particular spatial
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unit but it is modified in a different way as soon as the boundary of that spatial unit is
crossed. Most spatial processes do not operate in this way because the effects of
space are continuous. Hence, imposing a discrete set of boundaries on most spatial
processes is unrealistic.! There are exceptions to this, however, such as where
administrative boundaries enclose regions in which a policy that affects the
behaviour of individuals is applied evenly throughout the region and where such
policies vary from region to region. Examples of spatial units where this type of
behaviour modification might occur are the states in the USA, education and health
districts in the UK, and the individual countries of the European Union.

5.4.2 The spatial expansion method

The expansion method (Casetti, 1972; 1997; Jones and Casetti, 1992) attempts to
measure parameter ‘drift’. In this framework, parameters of a global model can be
made functions of other attributes, including location, so that frends in parameter
estimates over space can be measured (Brown and Jones, 1985; Brown and Kodras,
1987; Brown and Goetz, 1987; Fotheringham and Pitts, 1995; Eldridge and Jones,
1991). Initially, a global model is proposed such as

yi=da + ﬂxil + -+ TXim + & (522)

where y represents a dependent variable; the x are independent variables, of which
there are m; a, B, ..., T represent parameters to be estimated; ¢ represents an error
term; and 7 represents a point in space at which observations on the y and x are
recorded. This global model can be expanded by allowing each of the parameters
to be functions of other variables. Whilst most applications of the expansion
method (see Jones and Casetti, 1992) have undertaken aspatial expansions, it is
relatively straightforward to allow the parameters to vary over geographical space
so that, for example,

a; = 0y + o u; + a,0; (5.23)

Bi = Bo + Bru; + Bov; (5.24)
and

T, = Ty + T1u; + TLU; (5.25)

where u; and v; represent the spatial coordinates of location i. Equations (5.23)—
(5.25) represent very simple linear expansions of the global parameters over space,
but more complex, non-linear, expansions such as
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;= ao + 0 + 0,0, + 0 + AU + asub; (5.26)

can easily be accommodated although the interpretation of individual parameter
estimates is then usually less obvious.

Once a suitable form for the expansion has been chosen, the original parameters
in the basic model are replaced with their expansions. For instance, if it is assumed
that parameter variation over space can be captured by the simple linear expansions
in Equations (5.23)—(5.25), the expanded model would be

Vi = O + g + 00; + Boxa + Bruixy + Brvixy

+ o FToXn + TiliXin + T2UiXg + € (527)

Equation (5.27) can then be calibrated by OLS regression (or maximum likelihood
estimation if the model is a Poisson or logit regression or if it contains spatial
autoregressive terms) to produce estimates of the parameters which are then fed
back into Equations (5.23)—(5.25) to obtain spatially varying parameter estimates.
These estimates, being specific to location i, can then be mapped to display spatial
variations in the relationships represented by the parameters.

The expansion method, despite its importance in highlighting the concept that
relationships might vary over space and that, consequently, the parameters of
regression models applied to spatial data might exhibit spatial non-stationarity, has
several limitations. One is that the technique is restricted to displaying trends in
relationships over space with the complexity of the measured trends being
dependent upon the complexity of the expansion equations. Clearly the spatially
varying parameter estimates obtained through the expansion method might obscure
important local variations to the broad trends represented by the expansion equa-
tions. A second is that the form of the expansion equations needs to be assumed a
priori although more flexible functional forms than those shown above could be
used. A third is that the expansion equations must be deterministic to remove
problems of estimation in the terminal model. All three problems are overcome in
the second method of producing local estimates of regression parameters, namely
geographically weighted regression.

5.4.3 Geographically weighted regression

Consider a global regression model given by

V= ay+ Z ax; + & (5.28)
k
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In the calibration of this model, one parameter is estimated for the relationship
between each independent variable and the dependent variable and this relationship
is assumed to be constant across the study region. The estimator for (5.28) is

a=(X"X)"'X"y (5.29)

where a represents the vector of global parameters to be estimated, X is a matrix of
independent variables with the elements of the first column set to 1, and y
represents a vector of observations on the dependent variable. Geographically
weighted regression (GWR) is a relatively simple technique that extends the
traditional regression framework of Equation (5.28) by allowing local rather than
global parameters to be estimated so that the model is rewritten as

i = ao(u;, v;) + Z ai(u;, U)Xy + & (5.30)
T

where (u;, v;) denotes the coordinates of the ith point in space and a,(u;, v;) is a
realization of the continuous function a;(u, v) at point i (Brunsdon et al., 1996;
1998a; 1998b; Fotheringham et al., 1996; 1997a; 1997b; 1998; 1999). That is, we
allow there to be a continuous surface of parameter values and measurements of
this surface are taken at certain points to denote the spatial variability of the
surface. Note that the global model in Equation (5.28) is a special case of the GWR
model represented by Equation (5.30) in which the parameter surface is assumed to
be constant over space. Thus the GWR Equation (5.30) recognizes that spatial
variations in relationships might exist and provides a way in which they can be
measured.

In the calibration of the GWR model it is assumed that observed data near to
point i have more of an influence in the estimation of the a;(u;, v;) than do data
located farther from i. In essence, the equation measures the relationships inherent
in the model around each point i. Hence weighted least squares estimation provides
a basis for understanding how GWR operates. In GWR an observation is weighted
in accordance with its proximity to point i so that the weighting of an observation
is no longer constant in the calibration but varies with i. Data from observations
close to i are weighted more than data from observations farther away. This is
shown in Figure 5.4 where a spatial kernel is placed over each calibration point and
the data around that point are weighted according to the distance-decay curve
displayed by the kernel (examples of spatial kernels are shown in Chapter 2).

Algebraically, the GWR estimator is

a(u;, v;) = (XTW(”i, Ui)X)ileW(ui; v,y (5.31)
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Figure 5.4 Example of a spatial kernel in GWR

where W(u;, v;) is an n by n matrix whose off-diagonal elements are zero and
whose diagonal elements denote the geographical weighting of observed data for
point i. That is,

wa 00 ... 0
0 wo 0 ... 0

Wu,v)=| 0 0 ws ... 0 (5.32)
0 0 0 Wi

where w;, denotes the weight of the data at point # on the calibration of the model
around point i. Clearly, these weights will vary with i which distinguishes GWR
from traditional weighted least squares where the weighting matrix is constant.
Below we describe how these weights can be defined.?

There are parallels between GWR, kernel regression and drift analysis of
regression parameters (DARP) (Cleveland, 1979; Cleveland and Devlin, 1988;
Casetti, 1982). In kernel regression and DARP, y is modelled as a non-linear
function of X by weighting data in attribute space rather than geographical space.
That is, data points more similar to x; are weighted more heavily than data points
that are less similar and the output is a set of localized parameter estimates in x
space. However, Casetti and Jones (1983) do provide a limited spatial application
of DARP that is very similar in intent to GWR although it lacks a formal
calibration mechanism and significance testing framework and so is treated by the
authors as a rather limited heuristic method.

It should be noted that as well as producing localized parameter estimates, the
GWR technique described above will produce localized versions of all standard
regression diagnostics including goodness-of-fit measures such as 7. The latter can
be particularly informative in understanding the application of the model being
calibrated and for exploring the possibility of adding further explanatory variables
to the model. It is also useful to note that the points for which parameters are
locally estimated in GWR need not be the points at which data are collected:
estimates of parameters can be obtained for any location. Hence, in systems with
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very large numbers of data points, GWR estimation of local parameters can take
place at predefined intervals such as at the intersections of a grid placed over the
study region. Not only does this reduce computing time but it can also be beneficial
for mapping the results.

Until this point, it has merely been stated in GWR that W(u;, v;) is a weighting
scheme based on the proximity of i to the sampling locations around i without an
explicit relationship being stated. The choice of such a relationship is now consid-
ered. First, consider the implicit weighting scheme of the OLS framework in
Equation (5.28). In this case

1 0 0
01 0 0

W, v)=10 0 1 0 (5.33)
00 0 1

That is, the global model is equivalent to a local model in which each observation
has a weight of unity so that there is no spatial variation in the estimated
parameters. An initial step towards weighting based on locality might be to exclude
from the calibration of the model at location i observations that are further than
some distance d from i. Suppose i represents a calibration point and j represents a
data point. Then, the weights could be defined as

wy=1 if d;<d

w; =0 otherwise (5.34)

so that the diagonal elements of (5.32) would be 0 or 1 depending on the whether
or not the criterion in (5.34) is met. The use of (5.34) to define the diagonal
elements of (5.32) would simplify the calibration procedure since for every point
for which coefficients are to be computed only a subset of the sample points needs
to be included in the regression model. Examples of the use of a discrete weighting
function in GWR are provided in Fotheringham et al. (1996) and Charlton et al.
(1996).

However, the spatial weighting function in (5.34) does not reflect actual geo-
graphical processes very well because it suffers from the problem of discontinuity.
As i varies around the study area, the regression coefficients could change
drastically as one sample point moves into or out of the circular buffer around i
which defines the data to be included in the calibration for location i. Although
sudden changes in the parameters over space might genuinely occur, in this case
changes in their estimates would be artefacts of the arrangement of sample points,
rather than any underlying process in the phenomena under investigation. One way
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to combat this is to specify w; as a continuous function of dj;, the distance between
i and j. One obvious choice is to define the diagonal elements of (5.32) by

wy = exp(—d;/I?) (5.35)

where £ is referred to as the bandwidth. If i and j coincide (i.e. i also happens to be
a point in space at which data are observed), the weighting of data at that point will
be unity. The weighting of other data will decrease according to a Gaussian curve
as the distance between i and j increases. In the latter case the inclusion of data in
the calibration procedure becomes ‘fractional’. For example, in the calibration of a
model for point i, if w; = 0.5 then data at point j contribute only half the weight in
the calibration procedure as data at point i itself. For data a long way from i the
weighting will fall virtually to zero, effectively excluding these observations from
the estimation of parameters for location i.

To this point, it is assumed that the spatial weighting function in (5.35) is applied
equally at each calibration point. In effect, this is a global statement of the weight—
distance relationship and as such it suffers from the potential problem that in some
parts of the region, where data are sparse, the local regressions might be based on
relatively few data points. To offset this potential problem, spatially adaptive
weighting functions can be incorporated into GWR. These would have relatively
small bandwidths in areas where the data points are densely distributed and
relatively large bandwidths where the data points are sparsely distributed. An
example of how such a spatially adaptive kernel would operate is shown in Figure
5.5.

The following three weighting functions which each define the diagonal elements
of (5.32) produce spatially adaptive kernels. The first is based on nearest neigh-
bours:

0 —dy/hyP ifdy<h
"= { 0 otherwise (5.36)

Point I isina relatively dense cluster of data
and the kernel is steep

Poimj is in a relatively sparse cluster of data
and the kernel is gentle

Figure 5.5 Example of an adaptive spatial kernel in GWR
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where 4, is the Nth nearest-neighbour distance from i. The second is based on
ranked distances:

wy = exp(—ORy) (5.37)

where R; is the rank of the distance data point j is from calibration point i. The
third constrains the sum of the weights for any calibration point to be a constant:

> wy=4k  foralli (5.38)
J

All three functions will automatically ensure that the weighting kernels will expand
in areas where the data are scarce and contract in areas that are data rich.

Whatever the specific weighting function employed, the essential idea of GWR
is that for each point i sampled observations near to i have more influence in the
estimation of the parameters for point i than do sampled observations farther away.
Obviously, whichever weighting function is selected, the estimated parameter
surfaces will be, in part, functions of the definition of that weighting function. In
(5.34), for example, the larger is d, the more data points will have full weight in the
local regression and the closer will be the local model solution to that of the global
one. Obviously, if a value of d is chosen such that no value of d; exceeds this
value, then all data points will have full weight in all the local regressions and the
local and global models will produce the same results. Equivalently, in (5.35) as &
tends to infinity (no distance decay), the weights tend to one for all pairs of points
so that the estimated parameters become uniform and GWR becomes equivalent to
OLS. Conversely, as the bandwidth becomes smaller, the parameter estimates will
increasingly depend on observations in close proximity to i and hence will have
increased variance. The problem is therefore how to select an appropriate kernel
and an appropriate bandwidth for that kernel. Actually, the choice of kernel is
relatively unimportant as long as it is a continuous function in which the weights
decrease as distance increases; the selection of an appropriate bandwidth is much
more important (Brunsdon et al., 1996; Fotheringham et al., 1997b; 1999).

To demonstrate a technique for the estimation of the bandwidth, consider the
selection of 4 in (5.35). One possibility is to choose / on a ‘least-squares’ criterion;
that is, to minimize the quantity z

z=) = y®F (5.39)

i=l,n

where y,(%) is the fitted value of y; using a bandwidth of 4. In order to find the
fitted value of y; it is necessary to estimate the a.(u;, v;) at each of the sample
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points and then combine these with the x values at these points. However, when
minimizing the sum of squared errors suggested above, a problem is encountered.
Suppose /4 is made very small so that the weighting of all points except for i itself
becomes negligible. Then the fitted values at the sampled points will tend to the
actual values, so that the value of (5.39) becomes zero. This suggests that under
such an optimizing criterion the value of % tends to zero, but clearly this degenerate
case is not helpful. First, the parameters of such a model are not defined in this
limiting case and, secondly, the estimates will fluctuate wildly throughout space in
order to give locally good fitted values at each location.

A solution to this problem is a cross-validation (CV) approach suggested for
local regression by Cleveland (1979) and for kernel density estimation by Bowman
(1984). Here, a score of the form

z2=> = yu)l (5.40)

i=l,n

is used where y.;(%) is the fitted value of y;, with the observations for point i
omitted from the calibration process. This approach has the desirable property of
countering the ‘wrap-around’ effect since, when 4 becomes very small, the model
is calibrated only on samples near to i and not at i itself. Plotting the CV score
against the required parameter of whatever weighting function is selected will
therefore provide guidance on selecting an appropriate value of that parameter. The
process can be automated by maximizing the CV score using an optimization
technique such as a golden section search, assuming the cross-validation function
is reasonably well behaved (Greig, 1980).

Once a weighting function has been selected and calibrated, the output from
GWR will be a set of local parameter estimates for each relationship in the model.
Because these local estimates are all associated with specific locations, each set
can be mapped to show the spatial variation in the measured relationship. Similarly,
local measures of standard errors and goodness-of-fit statistics are obtained. Given
that, as we identified earlier, there might be different causes of spatial non-
stationarity, one of which is random sampling variation, it is useful to ask the
question: ‘Does the set of local parameter estimates exhibit significant spatial
variation?’ Here we describe an experimental procedure to answer this question
although the reader is also referred to the theoretical tests described by Brunsdon et
al. (1999a).?

The variability of the local estimates can be used to examine the plausibility of
the stationarity assumption held in traditional regression. In general terms, this
could be thought of as a variance measure. For a given k, suppose a;(u;, ;) is the
GWR estimate of a,(u, v). Suppose we take n values of this parameter estimate
(one for each point i within the region); then an estimate of variability in the
parameter is given by the standard deviation of the n parameter estimates. This
statistic will be referred to as s;. The next stage is to determine the sampling
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distribution of s, under the null hypothesis that the global model in Equation (5.28)
holds. Under the null hypothesis, any permutation of (u;, v;) pairs amongst the
geographical sampling points 7 are equally likely to occur. Thus, the observed value
of s, could be compared with the values obtained from randomly rearranging the
data in space and repeating the GWR procedure. The comparison between the
observed s, value and those obtained from a large number (99 in this case) of
randomization distributions forms the basis of the significance test. Making use of
the Monte Carlo approach, it is also the case that selecting a subset of random
permutations of (u;, v;) pairs amongst the i and computing s, will also give a
significance test when compared with the observed statistics.

More details on GWR can be found in Brunsdon et al. (1996; 1998a; 1998b;
1999a) and in Fotheringham et al. (1996; 1997a; 1997b; 1998). More specifically,
further information on theoretical significance tests for GWR models can be found
in Brunsdon et al. (1999a); on calibration issues and variance—bias trade-off in
GWR parameter estimates in Fotheringham et al. (1998); the use of GWR as an
alternative method of producing local spatial autocorrelation measures in Brunsdon
et al. (1998a); and on GWR and scale issues in Fotheringham et al. (1999). Copies
of the programs and sample data sets to run GWR can be obtained at the following
web site: Attp://www.ncl.ac.uk/geography/GWR

5.5 An empirical comparison of the spatial expansion method and GWR
5.5.1 The data

An example of the application of both the spatial expansion method and GWR is
now described using data on the 1991 spatial distribution of limiting long-term
illness (LLTI) which is a self-reported variable asked in the UK Census of
Population. It encompasses a variety of severe illnesses such as respiratory diseases,
multiple sclerosis, heart disease, severe arthritis as well as physical disabilities that
prevent people from being in the labour market. The study area encompasses 605
spatial units (census wards) in four administrative counties in North-East England:
Tyne and Wear, Durham, Cleveland and North Yorkshire. Tyne and Wear is a
heavily populated service and industrial conurbation in the northern part of the
study area and is centred on the city of Newcastle. To the south, Durham has been
heavily dependent on coal mining in the eastern half of the county with the western
half being predominantly rural. Cleveland, to the south-east, is a largely urban,
industrial area with heavy petrochemical and engineering works clustered around
the Tees estuary and centred on Middlesbrough. North Yorkshire, to the south, is a
predominantly rural and fairly wealthy county with few urban areas. The distribu-
tion of urban areas throughout the region is shown in Figure 5.6.

The spatial distribution of a standardized measure of LLTI (defined as the
percentage of individuals aged 45—65 living in a household where LLTI is
reported) throughout the study region is shown in Figure 5.7. As one might expect,
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Figure 5.6 Urban areas in the study region

the LLTI variable tends to be higher in the industrial regions of Tyne and Wear, east
Durham and Cleveland and lower in the rural areas of west Durham and North
Yorkshire.

5.5.2 Global regression model results

To model the spatial distribution of LLTI in this region, the following global
regression model was constructed:

LLTI, = d + alUNEM,' + dzCROWi + a3SPF,- + a4SC1,' + a5DENS,~ (541)

where LLTI is the age-standardized measure of LLTI described above; UNEM is
the proportion of economically active males and females who are unemployed
(the denominator in this variable does not include those with LLTI who are not
classed as being economically active); CROW is the proportion of households
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Figure 5.7 Variable: limiting long-term iliness

whose inhabitants are living at a density of over one person per room; SPF is
the proportion of households with single parents and children under 5; SC1 is
the proportion of residents living in households with the head of household in
social class 1 (employed in professional, non-managerial occupations); and
DENS is the density of population in millions per square kilometre. This last
variable discriminates particularly well between urban and rural areas. The
model is guided by the findings of Rees (1995) in his examination of LLTI at a
much coarser spatial resolution (English and Welsh counties and Scottish
regions). The data are extracted from the 1991 UK Census of Population Local
Base Statistics. The areal units used are census wards that contain on average
approximately 200 households per ward. Using these data, the calibrated form of
the global model is
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LLTI, = 3.8 + 92.6UNEM, + 31.1CROW, — 3.5SPF, — 22.5SC1, — 5.6DENS,
(13) (3.4) (3.9) (2.3) (4.1) (2.5)

(5.42)

where the numbers in brackets represent f-statistics and the * value associated
with the regression is 0.76. The results suggest that across the study region LLTI is
positively related to unemployment levels and crowding. The former relationship
reflects perhaps that the incidence of LLTTI is related to both social and employment
conditions in that the areas of higher unemployment tend to be the wards with
lower incomes and higher proportions of declining heavy industries. The latter
relationship suggests a link between LLTI and social conditions with levels of LLTI
being higher in areas with high levels of overcrowding. LLTI is negatively related
to the proportion of professionally employed people in a ward and to population
density. The negative relationship between LLTI and SC1 supports the hypothesis
that LLTI is more prevalent in poorer areas that have fewer people in professional
occupations. It also reflects the fact that industrial hazards, which are a factor in the
incidence of LLTI, are less likely to be faced by people in professional occupations.
The negative relationship between LLTI and DENS is somewhat counter-intuitive
in that it suggests that LLTI is greater in less densely populated areas, ceteris
paribus. The nature of this latter relationship is explored in greater detail below in
the discussion of the GWR results. Only the single-parent family variable is not
significant (at 95%) in the global model.

To this point, the empirical results and their interpretations are typical of those
found in standard regression applications; parameter estimates are obtained which
are assumed to describe relationships that are invariant across the study region. We
now describe how the spatial expansion method and GWR can be used to examine
the validity of this assumption and explore in greater detail spatial variations in the
relationships described above.

5.5.3 Spatial expansion method results

Each of the six parameters in the global model given in Equation (5.41) was
expanded in terms of linear functions of space as depicted in Equations (5.23)—
(5.25) (the results of more complicated quadratic expansions are given in Fother-
ingham et al., 1998). The results are shown in Table 5.2 along with the parameter
estimates from the global model.

The results suggest that significant spatial variation in three parameters exists:
the unemployment parameter, the social class parameter and the density parameter
all appear to decrease significantly moving from west to east across the region (the
unemployment becomes less positive and the social class and density parameters
become more negative). The other parameters apparently exhibit no significant
spatial variation. To see this more clearly, values of the x, y coordinates for each
spatial unit (the 605 census wards) are input into the calibrated expansion equations
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Table 5.2 Linear expansion method results

Variable Global Linear EM
Constant 3.8* 5.2
Constant. u; 0.000064
Constant. v; —0.000067
Unem 93* 430*
Unem. u; —0.00048*
Unem. v; —0.00023
Crow 31% —220

Crow. u; 0.00017
Crow. v; 0.00034
SC1 —23* 210

SC1. u; —0.00028*
SC1. v; —0.0002
Dens —5.6* 140

Dens. u; —0.00016*
Dens. v; —0.00013
SPF -35 55

SPF. u; —0.000038
SPF. v; —0.000083
r? 0.76 0.80

DoF 589 577

*Indicates that the parameter estimate is signifi-
cantly different from zero at the 95% level.

for each parameter and the resulting locally varying parameter estimates are
mapped. These spatial distributions are shown below for the three parameters
discussed above plus the intercept term.

The spatially varying intercept is shown in Figure 5.8. The spatial distribution
indicates a trend in which higher values of the intercept are found in the northern
part of the region. This suggests that, accounting for spatial variations in the five
variables in the model, standardized rates of LLTTI still appear to be higher in the
northern part of the region than in the south. The linear trend in the unemployment
parameter estimate is shown in Figure 5.9 in which it can be seen that the estimate
is larger in the south than in the north, suggesting that LLTI rates are more sensitive
to unemployment variations in the south, which is predominantly rural. The linear
trends in both the social class parameter in Figure 5.10 and the density parameter
in Figure 5.11 suggest that the relationships between LLTI and social class and
between LLTI and housing density both become more negative towards the more
urbanized coast. Of course, these very simple trends might be disguising some
interesting spatial variation that needs exploring in more detail. In order to do this,
it is necessary to consider the GWR results.

5.5.4 GWR results

For the calibration of the GWR model, the spatial weighting function in Equation
(5.35) was calibrated by the cross-validation technique described in Equation
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Figure 5.8 Linear: intercept

(5.40). The estimated bandwidth was approximately 12 km which resulted in a
weighting function that is virtually zero at a distance of approximately 19 km.* A
plot of the CV scores against bandwidth is shown in Figure 5.12.

Local parameter estimates were then obtained by weighting the data according to
this function around each point and using the estimator in Equation (5.31). The
spatial distributions of the localized estimates of the intercept, unemployment,
social class and density parameters are shown in Figures 5.13—5.16, respectively.
The interpretation of each of the spatial estimates depicted in these figures is that it
reflects a particular relationship, ceferis paribus, in the vicinity of that point in
space.

Figure 5.13 shows the spatial variation in the estimated intercept obtained from
GWR and it clearly exhibits much greater detail than the equivalent map derived
from the spatial expansion method. The estimates in Figure 5.13 show the extent of
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Figure 5.9 Linear: unemployment parameter

LLTI after the spatial variations in the explanatory variables have been taken into
account. The high values that occur primarily in the industrial areas of Cleveland
and east Durham suggest a raised incidence of LLTI even when the relatively high
levels of unemployment and low levels of employment in professional occupations
in these areas are taken into account. The Monte Carlo test of significance for the
spatial variation in these estimates described above indicates that the spatial
variation is significant. Presumably there are other attributes that might be added to
the model that would reduce the spatial variation in the intercept. The spatial
distribution in Figure 5.13 acts as a useful guide as to what these attributes should
be. The model apparently still does not adequately account for the raised incidence
of LLTI in the mainly industrial areas of the north-east and perhaps other employ-
ment or social factors would account for this.

The spatial variation in the unemployment parameter shown in Figure 5.14
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Figure 5.10 Linear: social class parameter

depicts the differing effects of unemployment on LLTI across the study area. All
the parameters are significantly positive but are smaller in magnitude in the
urbanized wards centred on Cleveland and Tyne and Wear. Again, the spatial
variation in these parameter estimates is significant. The results suggest a possible
link to environmental causes of LLTI with levels of LLTI being high regardless of
employment status in Cleveland which has large concentrations of chemical
processing plants and, until recently, steelworks. Another possibility is that levels
of LLTI are high regardless of employment status in these areas because employ-
ment is concentrated in declining heavy industries and a large proportion of the
unemployed were probably formerly employed in such industries which are
associated with high levels of LLTI.

The global estimate of the social class 1 variable is significantly negative and all
the spatial estimates, shown in Figure 5.15, are negative and exhibit significant
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Figure 5.11 Linear: density parameter
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Figure 5.12 Cross-validation scores as a function of kernel bandwidth
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Figure 5.13 GWR: intercept

spatial variation. The more negative estimates are concentrated along the industrial
parts of Cleveland, east Durham and Tyne and Wear indicating that levels of LLTI
are more sensitive to variations in social class in urban areas than in rural areas.
Within urban areas LLTI is perhaps linked to manual occupations, whilst in rural
areas the incidence of LLTI is more evenly distributed across types of employment.

Perhaps the best example of the improvement in understanding provided by
GWR is found in the spatial pattern of the estimates for the density variable given
in Figure 5.16. The global estimate for population density is significantly negative,
which is somewhat counter-intuitive; we might expect that LLTT would be higher in
more densely populated urban wards than in sparsely populated rural wards, ceferis
paribus. The spatial variation of this parameter estimate indicates that the most
negative parameter estimates are those for wards centred on the coalfields of east
Durham. The likely explanation for this is that LLTI is closely linked to employ-
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Figure 5.14 GWR: unemployment

ment in coal mining (pneumoconiosis, emphysema and other respiratory diseases
being particularly prevalent in miners) but that population density is low on the
coalfields. The typical settlement pattern is that of scattered villages located around
the coal mines. However, population density rises rapidly in the urbanized areas
both immediately south and north of the coalfields where employment is less prone
to LLTI. Hence, within the locality of east Durham it is clear that the relationship
between LLTI and density is significantly negative. In the more rural parts of the
study area, particularly in west Durham and North Yorkshire, the relationship is
positive with 7 values in excess of 2 in many places.” Hence the more intuitive
relationship, where LLTI increases in more densely populated areas, does exist in
much of the study region but this information is completely hidden in the global
estimation of the model and is only seen through GWR. The different relationships
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Figure 5.15 GWR: social class 1

between LLTI and population density that exist across the region and which are
depicted in Figure 5.16 highlight the value of GWR as an analytical tool.

One further result from the GWR analysis is that of the spatially varying
goodness-of-fit statistic, 7?, shown in Figure 5.17. These values informally depict
the accuracy with which the model replicates the observed values of LLTI in the
vicinity of the point for which the model is calibrated. It can be seen that there are
large variations in the performance of the model across space ranging from a low of
0.23 to a high of 0.99. In particular, the model explains observed values of LLTI
well in a large group of wards near the boundary between south Cleveland and the
northern extremity of North Yorkshire, and also in a group of wards in the southern
and westerly extremes of the study region. The model appears to replicate the
observed values of LLTI less well in parts of West Yorkshire and Durham. The
distribution of #* values in Figure 5.17 can also be used to develop the model
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Figure 5.16 GWR: housing density

framework if the areas of poorer replication suggest the addition of a variable that
is well represented in such areas and less well represented in areas where the model
already works well. For instance, there is evidently a coalfield effect missing from
the model and the low values of 7? in West Yorkshire suggest the model still fails to
account adequately for rural variations in LLTI.

Finally, it is possible to comment on the spatial variability of each parameter
estimate using the results from the Monte Carlo procedure. Here, 99 random
mixings of the data were undertaken and the GWR procedure was run for each data
set. Thus, for each parameter, there are 100 estimates: one from the actual spatial
arrangement of the data and 99 from the random arrangements of data. The
variability of each set of parameter estimates is shown in the ‘box and whisker’
plots of Figure 5.18. The number in brackets for each parameter is the ranking of
the spatial variability of each parameter estimate within the 100 sets of estimates
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Figure 5.18 Monte Carlo simulation results in boxplot form
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with a ranking of 1 indicating the greatest amount of spatial variability and a
ranking of 100 the least amount of spatial variability. The parameter estimates
obtained from the actual spatial arrangement of the data are shown as dots on the
plots. It can be seen that those sets of parameter estimates that exhibit large
amounts of spatial variability from the original data are those for the intercept,
social class 1 and unemployment with that for density being of marginal signifi-
cance. The parameter estimates for crowding and single-parent families do not
exhibit any significant spatial variation.

5.6 Measuring local relationships in spatial interaction models

A substantial discussion of spatial interaction models is left until Chapter 9 where
there is also an example of the application of a local model. However, it is useful to
mention in this chapter that local forms of spatial interaction models have a long
history and perhaps predate all other local models. It has long been recognized that
global calibrations of spatial interaction models potentially hide large amounts of
spatial information on interaction behaviour and that localized parameters yield
much more useful information (Linneman, 1966; Greenwood and Sweetland, 1972;
Gould, 1975). This was patently clear when distance-decay parameters were
estimated separately for each origin in a system instead of a single global estimate
being provided (see Chapter 9 for an example and further discussion).
Consider, for example, a simple global spatial interaction model of the form

pu = Sidl /S S5 (5.43)

where p; is the probability that a person at i selects spatial alternative k; S; is a
measure of the size of alternative k; d; is the distance between i and k; and a and
p are global parameters to be estimated. This model can be calibrated locally to
provide separate estimates of the parameters for each origin or for each destination
in the system. Often, it makes more sense to calibrate the former because the
behavioural characteristics depicted by the parameter estimates tend to be a product
of the origin rather than the destination. Examples include applications to the study
of migration flows and store choice where we are interested in how individuals in
different origins make choices. However, destination-specific models would be
appropriate to investigate spatial interactions such as the choice of universities by
students where the interest is on the university and how well it attracts students
from a wide range of origins.
The origin-specific form of the global model in Equation (5.43) is

pu =Sy 50,870 d (5.44)
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where the parameters are now estimated separately for each origin in the system.
These origin-specific parameters can be mapped to provide visual evidence of
spatial variations and spatial patterns in their values (see Chapter 9 for further
discussion of this issue).

5.7 Summary

The recent interest in the ‘local’ rather than the ‘global’ in quantitative geography
is notable for several reasons. It belies the criticism that those adopting a
quantitative approach in geography are only concerned with the search for broad
generalizations and have little interest in identifying local exceptions. It links
quantitative geography with the powerful visual display environments of various
GIS and statistical graphics packages since the end product of local analysis is
typically a spatial distribution of results which may be mapped for maximal effect.
It allows spatial relationships to be explored in different ways as a catalyst to a
better understanding of spatial processes and, finally, it provides an exciting frame-
work in which to develop new statistical approaches to spatial data analysis. As
Jones and Hanham (1995) suggest, local forms of spatial analysis can act as a
bridge between realists and positivists.

Notes

1. Interestingly, this is what GIS generally do (see Chapter 3) and de Jong and Ottens (1977)
comment on the suitability of GIS as a database for multilevel modelling.

2. Although here the spatial weighting scheme is applied to a regression model, there is no
reason why such a weighting cannot be applied to many other statistics to produce local
versions of them. For instance, a local, spatially varying correlation coefficient would be
produced by the following weighted formula:

. (1/m)32 (x5 — x*)(; — »¥)
LI/ ) wy( — X PIAIA m)3 0 w(yy — yF)PTR

where r; describes the correlation of the variables x and y around point i and w; measures
the weight of point j at point i.

3. Experimental significance testing procedures are also discussed in Chapter 8.

4. For a Gaussian kernel, data at a distance of greater than /2 times the bandwidth, which
in this case is approximately 12 km, are virtually zero weighted.

5. We use ¢ values in excess of 2 here purely as an indicator of where potentially interesting
relationships might occur, rather than as a test of statistical significance.



6 PointPattern Analysis

6.1 Introduction

Spatial analysis often relies on data aggregated over a set of zones, but the patterns
observed can change with the choice of zone boundaries (Openshaw, 1984).
Without a clear rationale for choosing any particular set of boundaries there is no
way of deciding whether observed spatial patterns are in any way meaningful.
However, even if one takes this criticism of aggregated data analysis at face value'
it should be noted that in most cases, aggregated data arise from a set of individual
cases. The aggregation rarely takes place as an aid to spatial analysis, a much more
common reason being administrative convenience. In fact it is quite possible to
analyse spatial patterns of the disaggregated individual data. Usually this is done
by regarding each individual case to be associated with a single point in space, and
then considering the spatial distribution of these points.

Methods of these sorts are well established in a number of fields — data are
available in this disaggregate form for a wide range of subjects. Point pattern
analysis is particularly popular in the fields of biology (Diggle, 1983), epidemiol-
ogy (Diggle et al., 1990; Bithell and Stone, 1989) and the analysis of crime patterns
(Bailey and Gatrell, 1995). All of the references quoted above provide examples of
the use of point pattern analysis techniques related to those described in this
chapter. As with many other methods outlined in this book, several of these
techniques have been developed in the last two decades, and therefore post-date the
original ‘quantitative revolution’ in geography. It is perhaps for this reason that
their existence is rarely acknowledged in critiques of quantitative approaches to
geography.

As suggested above, this chapter is concerned with the analysis of point data —
or at least those geographical phenomena that may be reasonably modelled as point
data. This is largely a question of scale. For example, police workers will often
consider household burglaries occurring in a particular city over a period of time as
point data. The unit of analysis here is the household and each one is represented
by a point. However, on a more local scale, two neighbouring householders in
dispute over some piece of land will certainly not regard their properties as two
points. Similarly, in a regional economical study a set of neighbouring towns may
be viewed as zonal data but it may be more reasonable to represent all towns in the
UK as points in a national study.

In terms of geographical data models, point data perhaps represent the most
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elementary. Each individual case in the data set is represented by a single point in
space. If we analyse these data, we are essentially looking for patterns in the points;
hence such activity is often termed point pattern analysis. As with most forms of
spatial analysis, it is hoped that the patterns observed will tell us something about
the underlying process that generated the points. One may wish to ask whether
burglars tend to select several houses in the same neighbourhood for a ‘burst’ of
activity, or whether they choose randomly over a wider area. Analysis of point
patterns of burglaries may shed some light on this question. Alternatively, one
might be interested in the locations of birds’ nests. In this case, a possible
hypothesis might be that some territorial birds may build nests at a distance from
other nest sites — or repel other birds from building nests too near to their own. In
this case, one might test for a ‘dispersion’ effect in a set of point data, and if this is
found it may then be possible to gain some idea of the distance below which nest
pairs do not occur. Again, analysis of the point patterns of nest location gives us
some insight into the underlying process. These two examples demonstrate the two
main phenomena that one tries to detect in point pattern analysis: namely cluster-
ing, where points tend to group together more than they would at random, and
dispersion, where points tend to be spaced further apart than one would expect
under a random hypothesis.

In any point pattern analysis there should be a study area. This is the area from
which all points in the data set are drawn. Often, the data consist of all points in
a study area, but alternatively they could be from a sample from a larger
population. The latter case is discussed more fully later in the chapter. In some
cases, the study area is a geometrically simple shape, such as a square or a
rectangle. In other cases, however, it may take a much more complex form. In
human geographical studies, for example, the study area may be contained within
a set of administrative boundaries, which in many cases leads to an area having a
complex and irregular shape. The choice of study area may be quite an important
component of a point pattern analysis. In some cases such an area is defined
intuitively — in a study of plant locations on an island, the boundary of the island
itself provides an obvious study area perimeter. Likewise, if one is studying crime
on a particular housing estate, then the estate boundaries should also bound the
study area. In other cases there are not such obvious definitions of study area. In a
biogeographic study, one may wish to look at plant locations in a 10 metre square
of woodland. There is no ‘natural’ reason for this choice — it is perhaps the case
that it is too expensive or time consuming to look at the entire woodland area,
and it is hoped that this 10 metre square is in some way representative of the
woodland as a whole. Another reason for the choice of a geometrically regular
study region is that it may be easier to calibrate and analyse mathematical models
in this framework.

Another important aspect of point pattern analysis is that of comparison. Several
forms of point pattern analyses attempt to compare one set of point patterns with
another. In some cases this is done between two distinct study areas — to see
whether similar patterns occur in both places. On other occasions we may be
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looking at two or more fypes of points in the same study area. Does the presence of
one species of bird’s nest discourage another from building its own nest nearby? Do
car thefts tend to occur in nearby places to household burglaries? These types of
problem can be considered either as the analysis of several sets of point data, or as
the analysis of a single set of points, with an attribute data item, as defined in
Chapter 3. In the former case, then, we would have a database of all birds’ nests in
the study area, but for each nest the species of bird would be recorded, if possible.
This information would be stored as a categorical attribute variable?. It is also
worth noting that even when considering only a single set of points (without
attributes), often there is still a comparative framework. Typically, here one is
investigating whether the set of points comes from a ‘reference’ distribution. For
example, in looking at disease incidence, it is often important to investigate
whether cases are geographically distributed according to population density. If
they are more spatially grouped than this, then one may have evidence for
‘clustering’ around certain places. In this case, the reference distribution is
population density (or population-at-risk density) in the study area. Note that here
it is not helpful to compare the disease incidence patterns with a uniform random
distribution in the study area — one would expect a certain degree of grouping even
without ‘disease clusters’, due to settlement patterns. In human geographical
problems it is almost always the case that the uniform distribution is an inappropri-
ate reference distribution.

In this chapter, methods of analysing point patterns are discussed. In the first
section, exploratory approaches are considered. These are mostly graphical techni-
ques. In the second section, different models of spatial processes are considered. It
is by comparing observed patterns with these models that some insight into
underlying processes may be gained. More specific methods of comparison are
considered in the following sections, together with methods for comparing two or
more sets of points.

6.2 Initial exploration
6.2.1 Scatterplots

Graphical approaches for all kinds of geographical data are dealt with as subjects
in their own right elsewhere in this text. However, a chapter on point pattern
analysis would be incomplete without some reference to this subject. Given a set of
point data, it would be folly not to inspect a scatterplot of the point locations of
those data. An initial visual exploration of the data should give some important
hints for further data analysis. In particular, one could choose whether models
based on cluster or dispersion are most appropriate. Also, inspection of a scatterplot
is a rapid way of identifying any spatial outliers — that is, individual points that are
located a long way apart from the main groupings. Identifying points like these can
provide important insights into the outcome of an analysis — for example, do a
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handful of remote points exert an unreasonable amount of leverage on a statistic
measuring dispersion?

A particularly important role played by graphical representations of point data is
that of model specification, or analytical strategy. In certain cases, theory may
suggest that certain types of point pattern models should be used as a basis for data
analysis, but often this may not be the case, and some inspection of the point
patterns themselves is needed to suggest which approaches may be helpful.

For example, consider the point pattern shown in Figure 6.1. Clearly, it would be
pointless to test whether the data seen in this figure could have been generated by a
random point pattern model — the regular grid arrangement of groups of points
gives strong qualitative evidence against this. In fact the pattern here is so strange
that one may suspect that it has occurred owing to some type of error in the
recording of the data — or perhaps that some attempt at data cleaning or conversion
from one file format to another has caused the pattern to occur. If this is suspected,
careful consideration of the data management and data recording processes is
necessary. Whether this is the case or not, this apocryphal example illustrates the
importance of an initial graphical examination of the data. No amount of computer
printout or tables of numbers would highlight this unusual spatial data pattern as
directly as a scatterplot.

.
.
.
P I B R
O I I
.
.
.

Figure 6.1 Scatterplot of a strange point process
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6.2.2 Other exploratory plots

There are some occasions when simple scatterplots can be misleading. Consider
the following example. A set of reported household burglaries is recorded by a
police force over a three-month period. One particularly useful piece of information
(from a spatial analyst’s viewpoint) is the location of the house where the burglary
occurred. It is possible to treat the location of each burgled house as an item of
point data. Using a sufficiently small-scale map, or computer software to match
addresses to grid references, it is possible to represent each recorded burglary as an
(x, y) coordinate pair. However, in some cases, a house may be burgled several
times in the three-month period. This will generate several identical (x, y) co-
ordinate pairs in the data set. In a quantitative analysis this may present no
difficulties, but in terms of scatterplots an obvious problem occurs. If, say, a house
was burgled three times in the study period, this is represented by three points
plotted in exactly the same place — which looks identical to a single point plotted in
that place. Thus, in the scatterplot, multiple incidents in the same place cannot be
identified, causing an understatement in the concentration of burglaries in places
where repeat victimization occurs.

There are several strategies to overcome this problem. First, if the data are stored
in some form of spreadsheet or database, it is possible to sort the data by the x
coordinate, and within that by the y coordinate (or the other way round), and check
for coincident points. If none occur, a simple scatterplot can be inspected with
confidence. If there are repeat occurrences, see how often this happens, and how
many data items ‘collide’ in each case where it does. If the maximum number of
collisions is fairly small (say three or four), one can simply use different symbols
on the scatterplot to indicate how many data items occur at each point.

This is illustrated in Figure 6.2. Here, household locations were recorded to
100 m grid references. This is rather imprecise for exact locations, and it is not
uncommon for two houses having the same 100 m grid reference to be burgled in a
three-month period. In fact, when treating the grid references as point data, at least
one coordinate pair occurs six times in the data. Having six different symbols is
rather confusing in a multiple-symbol scatterplot, and it is particularly difficult to
convey ordinality in the choice of symbols. Thus, a compromise is reached here,
where two different symbols are used to convey fewer than three occurrences, and
three or more occurrences at a given point. From this, an area to the south-west of
the study area where there is a high concentration of burglaries is apparent. The
rounding to the nearest 100 m is also evident in the figure. A similar result can be
seen using a proportional symbol or bubble plot — Figure 6.3. Here the size of the
symbol reflects the number of cases occurring at a given point. Again, the area to
the south-west of the study seems to have a high incidence of burglaries.

Finally, scatterplots and other forms of mapping can be enhanced by contextual
information. For example, to explain why there is an area without any household
burglaries in the central south area of Figures 6.2 and 6.3, it is helpful to know that
this area is parkland, and so there are no houses to burgle! This kind of information
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Figure 6.2 Scatterplot of household burglary incidence

o o
H
o
o
s e o
)
o o
H
o 0’ o
° R
° o o
oo o g000
33500 oo
0500 Y0 o
° o o
o
00 000
s oo
s 0 o000
00920%5 o 000 o o o
000°°3 o o ooo
s 928 o3 2o Pr °
N H 4 %% e
S eo s00
. B B H
o s %00 o
. o " %
o e
o o o
0000 0o 5 °
030 o0
20"
208 o PR o
3 -
Foo 0°%° o 0
30 °
d%e
H o o ooo
oe 50 s
1 30000000
2°50s050
33°°%
o B

Figure 6.3 Bubble plot of household burglary incidence
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could be marked on any of the figures shown so far in this chapter — and would
again contribute in an informal way to an explanation of the process producing the
point patterns observed.

6.2.3 Non-graphical approaches to point pattern exploration

In some cases, as well as plotting point patterns for an initial data examination,
descriptive statistics can also give a feel for the scale and distribution of the point
data. In particular, if one is comparing two or more sets of points, descriptive
statistics can be used to summarize contrasts between these sets. A very basic
descriptive statistic is the mean centre. This is the two-dimensional mean of all of
the (x, y) points in a data set. If each point represented a uniform mass point in
two-dimensional space, the mean centre would be the location of their centre of
gravity. The formula for the mean centre is therefore given by

(ﬂxa /:‘v) =\ =
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(6.1)

where (fi,, ft,) is the mean centre and (x;, y;) are the data points. Clearly, if the
points form some kind of single ‘cloud’ then the mean centre is a useful way of
summarizing location. However, to gain some understanding of the size of this
‘cloud’, a second measure known as the standard distance, d;, is useful. This is
defined by

S 06— i + O — i)
d == (6.2)

s n

and is the root mean square distance of each point in the data set from the mean
centre. These two statistics can be seen as two-dimensional parallels to the
univariate mean and standard deviation statistics. The mean centre summarizes
location, whilst the standard distance measures dispersion. However, these statistics
must be treated with some caution if a point data set consists of more than one
cloud, or cluster of points. For example, in the burglary data, the mean centre falls
in a place where there are virtually no household burglaries (Figure 6.4). This once
again illustrates the dangers of using summary statistics without graphical back-up.

Some other extremely basic statistics that also give an idea of scale and location
are the minimum and maximum values of the x and y coordinates. Differences
between the minimum and maximum values give some idea of the scale (or
dispersion) of the process, whilst the values themselves give an impression of



POINT PATTERN ANALYSIS 137

Figure 6.4 Mean centre and standard distance for burglary incidence

location. The main disadvantage of using these values to measure dispersion is the
fact that they are easily affected by outlying data points. For example, the enclosing
rectangle for the data in Figure 6.4 is made notably taller in order to accommodate
a small cluster of points in the far north of the sample.

Finally in this section, as well as summarizing location and dispersion, it is also
useful to summarize the degree of clustering in a set of points. The measure
proposed here for this is the mean nearest-neighbour distance, d,,. This is simply
the mean value, over all points, of the distance from one point to the closest point
to it in the data set. Note that this provides additional information to measures of
dispersion or location. To see this, Figure 6.5 shows two sets of points having
identical mean centres and standard distances, but the points in the right hand panel
have roughly double the mean nearest-neighbour distance to those on the left. As
one might expect, larger mean nearest-neighbour distances suggest more regularity,
whilst smaller values suggest more clustering.

Figure 6.5 Two very different point patterns
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It may also be useful to look at the entire distribution of nearest-neighbour
distances. That is, compute the nearest-neighbour distance for each point in a data
set, and consider this as a new data set. Instead of just looking at the mean of the
distribution, it can be helpful to examine the entire distribution. One useful method
here is to consider a five-number summary of the distribution. This — perhaps not
surprisingly — is a list of five numbers which give a reasonable impression of the
shape of the distribution. These numbers are the minimum, first quartile, median,
third quartile and maximum of the distribution. For the burglary data, the five-
number summary is given in Table 6.1.

The fact that the minimum nearest-neighbour distance is zero, as is the first
quartile, shows that there is a large quantity of coincident points. The fact also that
the median and third quartile are both 100 m suggests that in many other cases, the
nearest neighbour is the closest 100 m grid reference to the point in question.
Generally this suggests that quite a lot of clustering of points is occurring.
However, the fact that in the most extreme case there is a nearest-neighbour
distance of over 1500 m suggests that some outlying points are also present. This
can be further investigated with a box and whisker plot (Figure 6.6).

In this case it can be seen that a small number of outlying points with
uncharacteristically large nearest-neighbour distances exist. Attention should be
paid to these, particularly when carrying out modelling or confirmatory analysis
such as will be described in the following sections.

6.3 Modelling point patterns

In the following sections, some mathematical models for point patterns will be
considered. For this, some formal definitions are required. These definitions are
perhaps rather abstract in parts, and to help comprehension the linkage between the
mathematical concepts and typical ‘real-world’ interpretations are given in Table
6.2. A point pattern is a data set X consisting of a series of two-dimensional points
{Xi, X, ...}, where each x; is a two-dimensional vector (x;, x;,)”. These points are

Table 6.1 Five number summary for nearest-
neighbour distance of burglary data (in metres)

Min Qu1 Med Qu3 Max
0 0 100 100 1526
om 800 m 1600 m

Figure 6.6 Box and whisker plot (nearest-neighbour distances)
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Table 6.2 Mathematical concepts in point pattern analysis with some typical

practical interpretations

Possible meaning in burglary

Symbol Generic meaning example

R Study area Area covered by a police station

X Event set Locations of household burglaries in
a one-month period

X; Single event i Location of the ith burglary in a
one-month period

A Subset of study area The extent of particular housing
estate

N(A, X) Number of events in A Number of crimes on the housing
estate in a one-month period

E(A, X) Expected number of events Expected number of crimes on the

in A housing estate in a one-month

period

C(x, r) A circle of radius r around A circle of some radius around a

E(N(C(x, r), X))

point x

The expected number
of events in C(x, r)

public house (bar) on the estate

The expected number of crimes
within a given radius of the public

house (bar) on the estate in a one-
month period

E(N(C(x, r), X))
o 2 2

A(x) = lim,_, 5
r

The intensity of events
around point x

The average burglary rate (in
burglaries per unit area) measured
in a small region centred on a point
x in the study area

all contained within a study area R. In the manner of Bailey and Gatrell (1995),
each of these points will be referred to as events, to distinguish these from other
points in R which we may be interested in. For example, each x; might be the
location of a household burglary, and R the region in Figure 6.4. Typically, we will
be concerned with counting the number of events in a region, A say, which is a
subset of R. In the burglary example, A could be a housing estate in the study area,
or a circle of given radius centred on some point of interest. Denote this number of
events as N(A, X).

Often in a random process we will be interested in the expected number of events
in a given area A — for example, the number of household burglaries occurring in
one month on a housing estate. This can be denoted by E(N(A, X)). Clearly, this
quantity will depend on the size and shape of A. A more useful quantity is the
intensity of the process at a given point — in the burglary example, this might be the
number of burglaries per square kilometre. The mean intensity M T of a process
over zone A measures this. M} is defined by

e N&)

=—" 6.3
= (6.3)
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where |A| denotes the area of zone A. In the burglary example, this is just the
number of burglaries occurring in the housing estate divided by the area in square
kilometres (or some other unit) of that estate.

Now suppose x is a point in R, and that C(x, r) is a circular sub-region of R
centred on x with radius . If we fix x but allow 7 to vary, we can divide this by the
area of C(x, r) (which is just 77?) giving an expected rate or ‘count per unit area’
measure. If we let the circle shrink to a point, this expected count per unit area will
tend to a limit, which is the intensity of the process at the point x, denoted by A(x).
Since this could be done for amy point in R, intensity can be thought of as a
function or a surface defined over R. In more formal terms,

EN(C(x, 1), X))

ar?

A(x) = lim (6.4)

Strictly, this limit does not have to be defined in terms of circles but could be
considered as a limit of M T for a general area shrinking to a point.

Note that the intensity contains information about the absolute rates of events
occurring. One could have two processes with intensity functions A(x) and 2A(x),
and although in relative terms the spatial patterns of intensity would be the same,
the second process would on average generate twice as many events as the first. For
example, assaults might occur less frequently than vandalism, but the same areas in
a neighbourhood may be ‘black spots’ for both of these crimes. A way to measure
relative intensity would be to normalize A(x) by dividing by the expected number
of events in the whole of R. This gives the probability density function of the
process, denoted by f(x). Formally, we have

Ax)

N )

(6.5)

It is important to distinguish between probability density functions and intensity
functions. On some occasions it is useful to test whether two processes have the
same probability density functions, even though it may be clear that they have
different intensities. For example, although assault events are rarer than vandalism,
it may be interesting to test whether they have the same relative spatial distribution.
This could be done by comparing the probability density functions of the two data
sets. However, if one wished to test whether one crime was more prevalent than
another in some area, it is intensity functions which should be compared.

The above ideas are concerned with first-order properties of point processes —
that is, expected values associated with individual points (or areas) in R. However,
it may also be useful — particularly in terms of investigating clustering, to examine
second-order properties of point processes. These examine the correlations or
covariances between events occurring in two distinct points or regions in R. For
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example, if a large number of household burglaries occur in one place, might this
suggest that a large number of burglaries will also occur in another nearby place?
Consider two areas in R, say A; and A,. If these two areas were close to each other,
then one would expect a clustered process to produce a positive correlation between
the number of points in these two areas, if their closeness was at a similar scale to
the spatial dimensions of the clustering process. To investigate these processes, we
could consider the quantity cov(N(A;, X), N(A,, X)). As with the expected counts,
this quantity depends heavily on the size and shape of the areas A, and A,. Once
again, this problem can be overcome by allowing the areas to shrink to points and
taking limits of the rates. A related second-order measure of intensity is

M, = E(N(A;, X)N(A;, X)) (6.6)

This is just the expected value of the number of points in A; multiplied by the
number of events in A,. Going back to the burglary example, suppose now we
consider two housing estates in the police beat area. The above quantity is just the
average value of the number of burglaries in the first estate multiplied by the
number of burglaries in the second. It is important to note the order in which this is
defined — the average is taken after the multiplication takes place. In other words
we consider the average of the product of the counts, not the product of the
averages of the counts. The latter quantity can be expressed as

My = E(N(Ay, X)) E(N(A;, X)) (6.7)

It can be shown (see, e.g. Lee, 1997) that expressions M, and M, are equivalent
only when the number of events in A; and A, are statistically independent. In other
words, M, = M, if there is no second-order interaction between counts for the
respective zones A; and A,. One problem with M, as a measure of second-order
interaction is that it depends on the areas of the regions A; and A, — the larger
these regions are, the greater the expected event counts and consequently the larger
the value of M,. It appears that bigger regions have greater interaction than small
ones, regardless of the spatial process taking place! This difficulty can be overcome
by normalizing for the areas of zones A, and A,. Define a new measure M ;k by

M,
M =
A A

(6.8)

Recall that |A,| denotes the area of a region A. Note that when the numbers of
events in A, and A, are independent, a little algebraic manipulation gives the result
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* _ N(A)) % N(Ay)

6.9
T (6.9)

That is, M. ;k is simply the product of the first-order mean intensities (as defined in
Equation (6.3)) for zones A, and A, when no second-order interaction occurs.

The above result can be used to assess the correlation between the counts for A,
and A,. When M;k exceeds the product of the first-order intensities, this suggests
positive correlation, but when M ;k is less than this product, negative correlation is
implied. When the two expressions are approximately equal, no correlation is
implied.

As an illustration, Table 6.3 shows the monthly burglary rates for two adjoining
housing estates over a one-year period. The final column of this table gives the
product of the counts for each month. Directly below the monthly counts, averages
are taken, estimating the expected number of monthly counts for each housing
estate. Below this the areas in square kilometres of each estate are shown; dividing
the average monthly burglary counts by these areas gives the mean intensity, M T,
for each estate. M j is computed by dividing the average product of crime counts
(948.08) by the product of the areas (38.13), giving 24.86. The ‘bottom line’ is the
comparison between M;k and the product of the two M ;k As can be seen, this
product is equal to 17.77, which is less than the estimate for M. This suggests that
the burglary counts for the two estates are positively correlated. Since the two
estates are adjacent, this suggests that there is some degree of spatial clustering in
the household burglaries.

Suppose now we need to consider the interaction between a pair of points in the

Table 6.3 Measuring second-order interaction for burglaries
in two housing estates over a one-year period

Burglaries

Month Estate 1 Estate 2 Product
January 19 40 760
February 17 19 323
March 19 37 703
April 8 22 176
May 21 45 945
June 23 43 989
July 32 55 1760
August 36 54 1944
September 28 46 1288
October 15 24 360
November 18 23 414
December 35 49 1715
Average 22.58 30.08 948.08
Area (km?) 4.1 9.3 38.13
M 5.50 3.23

Product M3

Comparison 17.77 24.86
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study area, not a pair of zones. Call these points x; and x,. In the same way as the
intensity, Ax, was defined, and using the C-notation as before, we define the
second-order intensity function as

v x) = lim  ZNCEL 1), INCR, 72), X))

r—0,r—0 ]‘[2(7'1 7"2)2

(6.10)

In plainer terms, it may be verified that y(x;, X,) is the limit of Mj measured
between two circular regions centred on x; and X,, as the radii of the two circles
shrink to zero. Thus, we may use y(X;, X,) to measure the statistical dependency
between the two points. However, this is a rather abstract measure of second-order
spatial dependency, and in practice the K function approach discussed later in this
chapter is more frequently used.

When modelling second-order processes, certain assumptions are sometimes
made. These can be seen generally as constraints on the functional form of
y(X;, X;). Sometimes, it is only the displacement between x; and x, that is
important. In this case, y is only dependent on the vector difference of x; and x,,
and we may write the secondary intensity function in the form y(x; — x,). A good
example of this might be the locations of trees in a forest. If trees grow from seeds
of older trees nearby, then the distance between pairs of trees may influence
second-order correlations — and if there are dominant wind directions throughout
the forest, then the direction of the line joining pairs of trees may also be important.
However, within the forest, the absolute location of the tree pairs is not important.
In this case, a second-order intensity function of the form y(x; — x,) would be
appropriate. A process which has a second-order intensity function of this form is
referred to as a stationary process, or is said to exhibit stationarity.

Thus, clustering and dispersion may be modelled in many ways — either as
variation in the first-order intensity, or as a consequence of the second-order
intensity. It is possible for a process to have a constant first-order intensity function
but form clusters due to second-order effects, and conversely it is also possible to
have a process where events are independent but form clusters due to first-order
effects. It is also possible that a process can be a mixture of these two: non-
independent and also of non-constant first-order intensity. One of the main
difficulties of point pattern analysis is the fact that for a single set of events it is not
possible to distinguish between first- and second-order clustering processes.

However, this is not always a problem. Generally, a method based on second-
order effects can detect clustering when it is really caused by first-order effects, and
vice versa — remember, it is impossible to distinguish between the two types of
process when looking at a single set of events. Thus, both kinds of test are capable
of detecting clustering in general, even if they are not able to determine the #ype of
clustering. The final choice of method is perhaps best guided by theoretical ideas
about the underlying spatial mechanisms giving rise to the data. In this way, at least
the output of the analysis may be interpreted in the context of underlying theory. In
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the remainder of this chapter, statistical methods for both first- and second-order
clustering methods will be discussed, followed by some consideration of broader
issues of point pattern analysis.

6.4 First-order intensity analysis

Perhaps the most obvious way of estimating a first-order intensity function is to
divide the study area into grid squares, count the number of events in each square,
and then divide these counts by the areas of the squares. One data set which can be
studied in this way is the Redwood data (Diggle, 1983), shown in Figure 6.7.

Essentially, the point events here are the locations of redwood trees in a
10 X 10 m square of Canadian forest. Arguably, the pattern seen here could have
been produced from either a first- or a second-order process — the model of seed
propagation discussed in the previous section could be applicable here, but
intensity might also be governed by soil fertility, suggesting a first-order process.
Here, the data will therefore be examined in both frameworks.

Applying the point-counting method here, using a 2 m grid square, we obtain the
pattern in Table 6.4. To compute the estimated intensity function A(x), one simply
finds which grid square x lies in, and then uses the value of density computed for
that square. Clearly, this method is very sensitive to the size of the grid squares
being used.

Figure 6.7 Redwood locations
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Table 6.4 2 m grid counts for Redwood sapling

data
2 2 2 0 6
1 0 0 8 3
3 6 3 0 4
5 2 5 0 1
1 1 6 1 0

Having computed an estimate of the intensity function, the next problem is
perhaps to test for clustering. One way of doing this is to consider departures from
an ‘unclustered’ model. In this case, an appropriate reference point might be a
model of complete spatial randomness or CSR. A CSR process is characterized by
a constant first-order density function over the study area, and by independence
events. In mathematical terms, we have A(x) = 4 and cov(N(x, A)), N(x, A;)) =0
providing A, and A, are non-overlapping regions. In this section, the first-order
property A(x) = 4 is of most importance.

If we had CSR here, what event counts would we expect to see in the grid
squares? More specifically, if G = {g;, g, ...} is the set of counts in each of the
grid squares, what could we say about their probability distribution? First, under
CSR, since no grid square overlaps another, the second condition allows us to
assume that the counts are independently distributed. Secondly, since the intensity
is constant throughout the study area, we can also assume that the counts are
identically distributed. Finally, and requiring a little more mathematics, it can be
shown that each grid count is Poisson distributed, with a mean equal to 1|4,| where
|4, is the area of a grid square. The core of this argument is that a point appearing
in a particular grid square may be treated as a ‘rare event’. A simple way to assess
whether we have CSR, therefore, is to see whether the point counts G appear to
follow a Poisson distribution. This can be done using a y* goodness-of-fit test. Note
that, in effect, an infinite number of tests could be performed, as one could choose
any size for the grid squares. However, certain practical issues would constrain this
choice.

Another, perhaps more informative, approach is based on an interesting property
of the Poisson distribution: for any Poisson distribution, the mean is equal to the
variance. Thus, the ratio of the mean to the variance should be approximately one,
if the null hypothesis of CSR holds. This leads to the test statistic

I=> (&—2/(n=13g (6.11)

which is based on the ratio of the sample variance to the mean. Here, n is the total
number of grid squares covering the study region. This index is called the index of
dispersion. In the case of CSR, both the sample variance and the sample mean are
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estimates of the same quantity, and the expected value of / is 1. In fact, under CSR
we have that (n — 1)1 is approximately distributed as x> _,. This approximation
holds well provided n > 6 and 1|4,| > 1. Note that values of / very much less than
1 suggest dispersion, or regularity in point patterns (as they suggest the variability
in grid counts is much less than under CSR), and values much larger than 1 suggest
clustering.

As an example, consider the Redwood sapling data. Dividing the study area into
2 m grid squares, there are then 25 observed counts in all. These are set out, in
spatial order, in Table 6.4. The mean of these counts, which is an estimate of 1|4/,
is 2.48. This exceeds 1, and #n is 25, so the y? test is valid. In this case I = 2.22,
which should be multiplied by 24 and compared against the y3, distribution to test
CSR as a null hypothesis. Since 24 X 2.22 is 53.28, and the 99% point of the 2,
distribution is 42.98, we may reject a null hypothesis of CSR at the 1% level. Since
this is an upper tail test, we reject the null hypothesis in the direction of clustering.
It would seem that Redwood saplings group together.

It is worth noting that the size of grid squares used in this technique is an
arbitrary choice, provided it satisfies the conditions set out earlier. This could be
regarded as a disadvantage of the method — it is possible that one choice of grid
square may fail to detect a deviation from CSR when another may not. To see how
this effect may vary, consider the result when the index of dispersion is computed
using several different grid sizes for the Redwood data (Table 6.5).

Clearly, not all of these combinations would be valid for significance testing, and
there would be obvious problems with using a table like this to “hunt’ for significant
results. However, some idea of the scales which seem best for picking up clustering
can be seen from this table. It is also worth noting that at all scales, / > 1, so we
can be fairly confident in the diagnosis that some form of clustering is present.

6.4.1 Kernel density estimates

The grid square point count approach has two obvious disadvantages. First, as
outlined above, the choice of grid size can be arbitrary. In the very worst cases, one
might deliberately ‘hunt’ for a grid size that gives the desired result of a
significance test for CSR. The second disadvantage is the discrete nature of the
estimate for A(x). Each grid square has its own estimate, based on the number of
points observed in itself, but this estimate undergoes a ‘quantum leap’ each time a
grid square boundary is crossed. In this section, continuous estimates of A(x) will

Table 6.5 Index of dispersion (/) for different grid sizes (Redwood data)

Grid size 5.00 3.33 2.50 2.00 1.67 1.43 1.25 111 1.0
! 1.65 2.84 2.40 2.22 1.88 2.23 2.34 1.77 1.95
n 4 9 16 25 36 49 64 81 100

AAq] 15.5 6.89 3.87 2.48 1.72 1.27 0.97 0.77 0.62
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be considered. Essentially, these are spatial extensions of the methods discussed in
Section 4.5.

One basic way of estimating the value of A(x) at a given point x would be to draw
a circle around x of a given radius, and then count the number of points in it.
Dividing this point count by the area of the circle would then give an estimate of
the intensity. This approach is sometimes called the naive estimator, defined as

N(C(x, 1)

A(x) = ar?

(6.12)

It has the advantage over the grid count method that there is no directional bias,
and it is focused on the point x that is of interest. However, some major problems
are not addressed. The first of these is that the search radius, r, is arbitrary, in much
the same way as the size of grid squares in the previous approach. Secondly, the
method also exhibits some degree of discontinuity. As x moves around the study
area, events will move in and out of the search circle. As they do so, the estimate of
A(x) will make discontinuous jumps.

One way of looking at this is to note that events are either inside the circle or
outside it. There is no ‘partial’ or ‘weighted’ counting, where an event might
contribute a fractional component to the numerator of Equation (6.12). However, if
one down-weighted the contribution of more distant event points when estimating
the intensity at point x, the discontinuity problem might be avoided. This can be
achieved by centring a small hump over each event point. The height of this hump
at x represents the contribution towards the point count estimate used to estimate
A(x). For event points a long way from x, this contribution is very small, but for
event points close to x it is much larger. Mathematically, the hump may be
described as a two-dimensional probability density function. Suppose we have a
general distribution k(x), with a single mode at x = 0; then if x,, is an event point
the related probability distribution 1/A*k(x — x,/h) represents the hump. Here, the
shape of the function k(x) determines the shape of the hump — for some examples
see Chapter 3. Also, the parameter 4 (the bandwidth) controls the spread of the
hump — it is very similar to » in the naive estimator. Large values of % give very
widely spread humps. Since these humps are actually probability density functions,
they are already intensity measures, with a total intensity of one over the entire
study area. Thus, if each of these hump functions is summed at a given point, this
will give an estimate of A(x). If we refer to this estimate, the kernel intensity
estimate of A(x), as ik(x), then more formally we can say

i=n

ik(x):. %k(x;x") (6.13)

Note that as long as k(x), the kernel function is continuous, so is i(x)k. Note also
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that dividing the kernel intensity estimate by # yields the kernel probability density
estimate.

A kernel-based intensity estimate of the Redwood distribution is shown in Figure
6.8, with & = 1 m. The darker areas correspond to larger values of intensity. Here,
h is chosen intuitively. However, as suggested earlier, choice of % is quite a
complicated matter. Typically, too large /4 values tend to smooth out interesting
effects (such as local maxima in the distribution), whilst too small /4 values tend to
produce ‘spikey’ intensity functions, with spikes centred on the observed data
points. Some form of ‘optimal’ choice for ~# would be useful. Intuitively, one would
expect this choice to lie somewhere between oversmoothing and ‘spikiness’. A
number of possible methods have been suggested. Many of these are chosen on the
basis of the MISE (Mean Integrated Squared Error), a measure of discrepancy
between the kernel probability density estimate ( f , say) and true probability
density estimate f:

MISE = E{J[f(x) — f®)P dx} (6.14)

This quantity is approximately optimized by Bowman and Azzelini (1997) as

{[(k(z))* dz}* v
hopt = ln[var(k)]z f(vz f(Z))2 dz] (6.15)

Intensity
High

' Low

Figure 6.8 Intensity plot for Redwood data



POINT PATTERN ANALYSIS 149

for bivariate kernels which are the product of two univariate kernels. Unfortunately,
this rather complex expression requires f to be known — which is rather unhelpful
as one is attempting to estimate f! However, one can start by considering the
situation when f is a normal distribution, in which case we have (for a two-
dimensional smoother)

2 1/4
Rope = [3"] o (6.16)
where o, the standard deviation of f, could be estimated from the sample. For
example, a standard distance (as defined earlier in this chapter) could be used. This
tends to oversmooth, as a normal distribution is one of the smoothest possible
distributions. However, there are arguments in favour of this conservative approach:
any maxima observed in estimated intensity or density curves are more likely to be
genuine rather than an artefact of undersmoothing. Terrell (1990) took this
approach a stage further, by choosing % to be the largest possible smoothing
parameter for any distribution with variance o2.

Other forms of selection are possible — see for example Brunsdon (1995a) or
Scott (1992). Alternative approaches allow for local h values, so that the intensity
estimate becomes

Jx) = i% k(" hx) (6.17)

i=1

This is useful when sample points vary greatly in density — for example, locations
of households in a study area covering both urban and rural regions. In the more
dense areas, a smaller /4 could identify local patterns in reasonable detail, but in the
sparser areas using this same bandwidth might result in a series of spikes around
the sample points. Variable % techniques are discussed in detail in Silverman
(1986) and Brunsdon (1995a).

6.5 Second-order intensity analysis

In this section, the calibration of second-order processes will be considered. Recall
that these processes can be characterized by a second-order intensity function
y(X1, X2), a measure of the dependency between the two points x; and x,. Also, for
an isotropic, stationary process the second-order intensity function depends solely
on the distance between the two points. In this case, an alternative (and perhaps
more tangible) way of characterizing the second-order properties of the process is
the use of K functions (Ripley, 1981). A K function of a distance d is defined by
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EN(C(x, d))

K(d) = 7

(6.18)

where C is the ‘circular region’ operator, N is the ‘point-counting’ operator, and 4
is the ‘average intensity’ of the process — that is, the mean number of events per
unit area. In plain terms, the K function for a distance d is the average number of
events found in a circle of radius d around an event, divided by the mean intensity
of the process. The mean intensity of the process, 2, is simply the number of events
divided by the study area. It is important to note that the term ‘event’ is used twice
in this definition — the numerator here is not the average number of events found in
a circle of radius d anywhere in the study area, only in circles centred on other
events. In the burglaries example it is the average number of burglaries found in a
circle of radius d centred on another burglary. Clearly, this is a second-order
property, counting distance relationships between pairs of events. Like y, it is a
way of measuring the likelihood of further events occurring near to an initial event.
The numerator in Equation (6.18) may be interpreted as a standardization for
sample size, n. Clearly, if there are more points in the sample one expects to find
more events in circles drawn around event points, but here we wish to consider a
characteristic of the underlying spatial process which is independent of #.

The advantage of the K function is that it may be easily estimated. The average
intensity is just the number of events in a sample, n, divided by the area of the
study region, |4|. For a given distance d, one can count the number of pairs of
events that are less than d apart, and divide this by #, to obtain a sample mean
estimate of N(C(x, d)). For example, in Figure 6.9 the locations of Redwood
saplings are shown, together with rings of radius 0.4 m around each of them.
Counting the number of points falling into a ring gives the number of saplings lying
within 0.4 m of the corresponding sapling. Averaging this number for all of the
rings gives an estimate of E[N(C(x, d))] for d = 0.4 m. Dividing this by the
average intensity gives a basic estimate for K(d), where d = 0.4 m. In Table 6.6,
the counts, the counts of saplings within 0.4 m for each of the 62 saplings are
shown. The average value for these counts is 0.935, so that the average number of
saplings within 0.4 m of another sapling is just under one. The average intensity
here is 62 saplings divided by the area of the sample region, which is 10 m X 10 m,
or 100 m?. This gives 0.62 saplings per square metre. Dividing the previous result
by this figure gives

0.935
— =1
0.62 508

which is an estimate for K(0.4), when distances are measured in metres. That is,
the average number of saplings one expects to find within 0.4 m of another sapling,
estimated earlier as 0.935, can be expressed as 1.508 times the average intensity of
0.62 saplings per square metre. Similar estimates can be made for other d values,
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Figure 6.9 Estimating the K function ford =0.4 n

Table 6.6 Counts of other saplings within 0.4 m for each sapling
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by using different circles of different radii in Figure 6.9. If we call an estimate of
this kind K(d) then we have

i=n

. A
K(d) = % Z N(C(x,, d)) (6.19)

If it is known that the study area does not contain the entire spatial process under
study, it is also important to consider edge effects. For events close to the edge of
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the study area, there is a chance that other events just outside the study area will
not be represented in K(d), causing an underestimate of K(d). There are two
relatively simple ways to overcome this difficulty. First, if d is relatively small
compared with the study area, one could exclude observed events lying closer than
d to the boundary of the study area from the summation in Equation (6.19).
However, these points are still counted in the expression N(C(x;, d)), so there is no
under-representation of point counts. However, if sample sizes are small, or d
values of interest are relatively large, the above method may discard an unaccep-
table amount of data. In this case, an alternative strategy is to adjust the counts of
events centred around events less than a distance d from the boundary. Essentially,
the adjustment is made on the basis that, since not all of C(x;, d) lies inside the
study area, the count process could miss out certain events, resulting in an
undercount. If we assume fairly constant intensity throughout C(x;, d), and assume
that n; events fall within C(x;, d), including those outside the study region, then if
a; is the proportion of C(x;, d) lying in the study region, one would expect to see
a;n; of these events in the sample. Since 0 < « < 1 this is an underestimate as one
would expect. However, a reasonable estimate of the ‘true’ number of events could
be obtained by dividing the observed number by a; In this case, we modify our
definition of K as below:

k@ ZN(C(xl, ) (6:20)

Note that here N denotes a count of events appearing in the sample, and that if x; is
further than a distance d from the boundary, then a; = 1.

One useful application of this technique is in testing for clustering. This is done
by comparing the estimated K function for the sample data with the theoretical K
function for a process with uniform intensity. If a process has uniform intensity of,
say, A, then one would expect to find Ard* events within a distance d of an event —
this is just the intensity multiplied by the area of the study region within a distance
d of A. Since the average intensity of the process is just A, the theoretical K
function is then sd?. Thus, comparing K(d) with 7d® gives a useful check for
clustering or dispersion. Generally, if K(d) is greater than 7d> then events tend to
have more other events near them than one would expect at random — suggesting
clustering — whilst if K(d) is less than 7d> then events tend to have fewer events
near to them than one would expect at random — suggesting dispersion.

For example, using the Redwood sapling data, we have already estimated that
K(0.4) = 1.508. Hypothesizing that the Redwoods were uniformly distributed over
the study area, we would expect the theoretical K function value to be 7d?, or
approximately 3.1415 X 0.4 X 0.4 = 0.503. Thus, the observed K function value is
about three times that expected under a hypothesis of uniformity. This suggests that
some degree of clustering is occurring at this spatial scale.
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The comparison can be made easier if one plots the difference between K(d) and

std?, or some other expression that is zero when the two functions are equal, and
whose sign indicates which of the two functions is greatest. Examples include

L(d) = V@‘ d (6.21)

I(d) = % log (Kf)) — log(d) (6.22)
A(d) = K(d) — nd? (6.23)

For the Redwood data, a K(d) is computed using formula (6.20), giving the left
hand graph in Figure 6.10. This is compared with a reference K function for a
uniform distribution. At first glance, the two curves appear very similar, but close
inspection shows that K is generally larger than the reference curve. The difference
does not show up clearly since the scale of the graph has to be large enough to
accommodate high values of the K functions, but the major differences are at the
lower values. In situations like this, the other comparison functions produce more
illuminating graphs. On the right of Figure 6.10, the comparison function ?(d)
defined in Equation (6.22) is plotted. From this, the higher values of the K function
below a distance of about 3 m become apparent. This suggests that Redwood
saplings tend to cluster in the sense that there are more pairs of saplings within 3 m
of each other than one might expect if the saplings were randomly distributed.

However, it should be noted that 7(01) is a sample function, and therefore subject
to random error. It would be useful to obtain some kind of confidence interval
around 7(d) for each d. One possible approach to this is to use bootstrap or Monte
Carlo methods (Efron, 1982) — see also Chapter 8. To model the sampling of 7(d)
theoretically, one would need to know the true spatial distribution of the point
pattern. However, this sampling distribution can be approximately simulated by
sampling n points with replacement from the data set. Repeating this exercise a
large number of times for a given d, and finding the mean and upper and lower 5%
quantiles for the repeated estimates of 7(d), gives a set of estimates for I(d), with
approximate upper and lower 5% confidence limits. This is shown in Figure 6.11
for 1000 simulations. This figure seems to bear out the conclusions reached earlier.
Note that the confidence bands are pointwise, so that there are some curves falling
within the confidence bands which might not fall within a ‘confidence set of
curves’® for I(d).
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Figure 6.10 Graphs of K(d) (left) and I(d) (right). The left hand graph also shows
the reference curve xd? (dotted)

6.6 Comparing distributions

The final important task in point pattern analysis to be considered is the comparison
of point patterns. Given a pair of point patterns, are they likely to have come from
the same distribution? This is a particularly important question in epidemiology,
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when one frequently wishes to test whether the spatial distribution of a particular
disease is different from the spatial distribution of the population at risk. One
approach here is a case-control study. A set of matched ‘controls’ — people who
have not contracted an illness under investigation — are chosen from the population,
and their distribution is compared with that of the ‘cases’ — people who have
contracted the illness. A similar approach could be applied to crime data — for
example, to compare the distributions of burgled households with those that have
not been burgled over a given time period. There are also many applications in
physical geography — for example, to compare the spatial distributions of different
species of plants or sinkholes in a karst region.

As before, it is possible to approach the problem of distribution comparison in
terms of either first- or second-order properties. Taking two sets of events, both in
the same study area, one can compare kernel density estimates (first order) or
estimated K functions (second-order). First, the approach for the kernel density
estimate will be considered.

6.6.1 Comparing kernel densities

Clearly, if there are two sets of point events, then two kernel density estimates can
be computed. Call these f (x) and g(x). It is intended to determine whether these
are both sample estimates of the same distribution, and, if not, then what the
geographical patterns are in the difference. For example, it is much more helpful to
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know where the distributions for cases and controls differ (and whether cases are
more prevalent than controls or less so) than simply to know that the distributions
differ. An intuitive comparison technique would be to plot the function
F - 2(x).

Since both of these estimates are subject to sampling error, it seems reasonable
to compute confidence intervals (or at least standard errors) for f (x) and g(x), and
consequently for the difference between them. It can be shown (see Bowman and
Azzelini, 1997) that the variance of f (x) is approximately

1 2]
Ol [CRR (624)

where k is the kernel function (assumed to be the product of two univariate
kernels). This allows us to compute the standard error of f (x) (and similarly g(x)),
but requires that the true f (or g) is known. Clearly, this is not particularly helpful.
However, a more useful related result is found by taking the square root of the
density estimate:

Var{ \/ f(x)} ~ inihz U(k(x))2 dx] (6.25)

This no longer depends on the true f or g. Thus, it seems more appropriate to
consider the difference between V f(x) and /2(x). Note that provided f and g are
both estimated using the same kernel bandwidth, the expression

Vi - /a0 (6.26)

will have mean zero, if f and g are identical. We already know that this expression
has constant variance with respect to x, providing the samples for f and g are
independent. Dividing expression (6.26) by the square root of this variance we
obtain a quantity which, if /" and g are identical, has zero mean and unit variance
for all x in the study area. Thus, let us define the function d(x) by

S(x) = \/% _ @ (6.27)

VI k0P dxP /120n" + n D)

where n, and n, are the respective sample sizes for the two groups. A plot of d(x)
is a useful tool for comparing f and g. Drawing contours around J(x) = 2 and
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O0(x) = —2 is a useful method of identifying areas where f and g are ‘notably’
different.

Although this provides a useful method for comparing distributions, this should
not be considered as a significance test. First, one is carrying out an infinite number
of tests (i.e. one for every value of x in the study region); secondly, d(x) values for
the x close to each other will not be independent; thirdly, see the critique of
significance tests in general in Chapter §.

As an example, the burglary data discussed earlier in the chapter are revisited.
As well as the location of each burglary, the method of entry used by the burglar
was also recorded. In particular, it was recorded whether or not ‘lock drilling™* was
used. Thus, there are two event sets, for ‘drillers’ and ‘non-drillers’. It is useful to
know whether there is any difference in the spatial distribution of the two sets.

By estimating f (for drillers) and g (for non-drillers) with a Gaussian kernel
with a bandwidth of 1.5 km, a contour plot of 6(x) = %2 is produced (Figure 6.12).
From this, two main areas are identified — one to the west of the study region
(where 0(x) > 2) corresponding to a dominance of drillers, and another to the east
of the study area (where d(x) < —2) where non-drillers dominate. A small area to
the north of the map where drillers dominate is also present. Given the small size
of this latter area, it is possible that this may be a spurious result, particularly since
the area is also close to the edge of the study region where relatively few
observations exist. For the two larger areas, it is interesting to note that the area to
the west is a socially disadvantaged area, and the area to the east is relatively
affluent — perhaps there is a greater presence of ‘drillable’ locks in the former area.

6.6.2 Comparing K functions

Second-order properties may also be considered when comparing distributions of
spatial point patterns. In particular, one could use the techniques outlined in Section
6.5 to estimate K functions for a pair of event sets, and compare these. This
approach is very similar to the simple test of clustering using K functions. Here,
instead of comparing an estimated K function with a theoretical K function, two
estimated K functions are compared. Indeed, the comparison functions suggested
by Equations (6.22) and (6.23) can be modified to compare two estimated K
functions:

I(d) = log(K(d)) — log(K(d)) (6.28)
A(d) = K\(d) - Ky(d) (6.29)

Although either of these functions may be useful, we would need to know the
expected sampling distributions of /(d) or A(d) when the two true K functions
were identical in order to interpret them meaningfully. Unfortunately, it is not
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Figure 6.12 Comparing spatial distributions. Light squares represent burglaries
where locks were not drilled, dark squares represent burglaries where locks were
drilled. Contours for 6(x) = +2 are shown as lines

possible to derive these distributions analytically. However, a simulation-based
approach may be adopted. Consider the two point data sets as a single, merged data
set with a binary labelling variable. Assuming there is no difference between the
two spatial distributions, any permutation of labelling amongst the event points is
equally likely. By drawing several random permutations of labels and computing
7(d) or A(d), the distributions of the two functions can be approximated. Another
simulation-based approach is to compute approximate confidence limits for /(d) or

A(d) using the bootstrap method described in Chapter 8.

Shown in Figure 6.13 are bootstrap estimates (including confidence limits) for
I(d) for the burglary data split into drillers and non-drillers. These suggest that
there are no strong differences in the second-order properties of the two processes.
Although the distributions are clustered in different places, the geographical scale

of clustering is similar.
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Figure 6.13 Comparing spatial distributions via /(d). Error bars are the upper and
lower 95% Cls

Other kinds of analyses are also possible. An interesting possibility is the cross-
K function, K ,(d), defined as the expected number of group 2 events within a
radius d of group 1, divided by A,, the mean intensity of group 1. Clearly, K,, is
defined symmetrically. Note that these functions measure the tendency of one type
of event to cluster around, or be repelled from, clusters of another type of event. In
the burglary example, ‘repulsion’ could be observed if one group of burglars (the
drillers) tended to operate in different neighbourhoods to the other group (the non-
drillers). It can be argued (Bailey and Gatrell, 1995) that if both groups are
generated by the same spatial process, one would expect the cross-K function to be
7td?. It is possible to estimate the cross-K function in exactly the same way as it is
to estimate an ordinary K function. One can then estimate the differences between
the estimated cross-K function and 7zd? using a comparison function such as ?(d),
L(d) or A(d).

6.6.3 Comparing a point pattern with a ‘population at risk’

In addition to the methods of comparing point patterns suggested above, a number
of other techniques have been proposed. One very specific problem is that of
comparing a pattern of disease incidence with the distribution of an underlying
population at risk. A well-known technique for this is the so-called Geographical
Analysis Machine (Openshaw et al., 1987). Essentially, this operates by generating
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a regular grid of points over some study area, and comparing levels of rare disease
incidence in circular regions centred on these points with a reference Poisson
distribution based on the population at risk in these circles. Whenever an exces-
sively high count of cases occurs (usually defined in terms of a local significance
test), the offending circle is tagged on a map. In this way, tentative local clusters
can be identified.

Although originally presented in a formal inferential framework, the method is
now more widely regarded as an exploratory technique — see for example
Fotheringham and Zhan (1996) — mainly due to the problems of interpreting a
large number of non-independent significance tests.” Attempts have also been made
to provide a more rigorous formal adaptation of the approach (Besag and Newell,
1991).

Another methodology is to use a case-control study, so that a set of members of a
population at risk without the rare disease are compared with a set of members
having the disease (Diggle et al., 1990). Here, an attempt is made to identify any
differences between the spatial distribution of the two samples. Comparisons of this
kind could be made using the methods set out in Section 6.6.1.

6.7 Conclusions

In this chapter, a number of possible probabilistic models for geographical
point processes have been discussed. An obvious way of grouping these models
is in terms of first- or second-order characteristics. The first type of model
assumes independence of individual events, but non-uniform intensity. The
second assumes uniform intensity but non-independence. Deciding which kind
of model to apply depends strongly on the context of the study, since for a
single data set it is not possible to distinguish between the two types of
process on the basis of that data alone. However, if one is simply testing for
‘clustering’, often first- and second-order-based approaches will tend to give
similar conclusions.

The situation is more complex if one is comparing distributions. As the burglary
example has shown, two distributions with different first-order properties can have
similar second-order properties. Again, it is difficult to tell whether the two
burglary groups (the drillers and non-drillers) are both taken from the same second-
order process, or from two distinct first-order processes by just looking at the data.
As before, one needs to consider the model in the context of the study to decide
which explanation is most plausible.

Finally, it is worth noting that, in all cases, visualization and spatial data
exploration play an important role. Whether one is estimating K functions,
estimating kernel density surfaces, or just looking at the ‘raw’ point pattern, the
output is essentially graphical. Indeed, one way of viewing point pattern analysis is
as a means of visually enhancing raw data points so that spatial patterns may
become more apparent.
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Notes

1. There are good reasons not to: some spatial patterns can show through a wide range of
different areal units, particularly if the scale of the pattern is much larger than the scale of
the individual zones.

2. Note that, traditionally, point pattern analysis does not include the analysis of continuous
attribute variables — this is covered in other subject areas, such as kriging or geographi-
cally weighted regression.

3. That is, a set of curves produced from a random sample having a 95% probability of
containing the true curve.

4. Drilling inferior lock barrels with a battery drill often causes the lock to disintegrate, so
entry can be gained to a house without forcing any doors or windows.

5. See for example Chapter 8 for a discussion of this.



7 Spatial Regression and
Geostatistical Models

7.1 Introduction

One of the core techniques of the so-called quantitative revolution in geography
was that of linear regression. Indeed, its use pre-dates the revolution — in physical
applications by some three decades (Rose, 1936), and in human geography by at
least one decade (McCarty, 1956). However, this was often rightly criticized for
being an essentially aspatial method, and therefore inadequate for modelling
geographical processes. Gould (1970) states:

there may be occasions when conventional inferential statistics can serve as research
aids. These cases will probably be simple, non-spatial situations in which some
educated guesses are capable of being investigated in inferential terms. Such occasions
are likely to be rare.

Why was conventional regression seen as an inadequate tool for geographers?
Some further insight can be gained by considering Hepple (1974):

A glance at any set of maps of geographical phenomena will give a strong disposition
against a classical urn-model generation of the pattern (and on which classical statistical
inference is predicated).

Some of the earliest attempts to provide more genuinely geographical approaches
to data analysis were responses to these and similar criticisms. Examples include
Ord (1975), CIliff and Ord (1973) and Hordijk (1974). These approaches may
generally be described as spatial regression models. Although these are now
relatively old ideas, they may be regarded as a turning point towards the modern
view of spatial data analysis, and are therefore worthy of discussion here. Tech-
niques of this sort have been applied to a wide range of study areas — for example,
the spatial distribution of radon gas (Vincent and Gatrell, 1991), hydrology (Bras
and Rodriguez-Iturbe, 1985), epidemiology (Cook and Pocock, 1983), geographical
patterns in unemployment (Molho, 1995) and international trade (Aten, 1997). The
range of dates for the preceding list of studies suggests that this kind of model
continues to influence a broad span of disciplines.

To understand the shortcomings of ordinary linear regression and the theoretical
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contribution made by spatial regression models, consider the following practical
example. Figure 7.1 shows the percentage of households that are owner occupied in
wards in the county of Tyne and Wear, taken from the 1991 UK Census of
Population. From this, it is clear that owner occupation tends to have higher rates
on the periphery of the county, with the lowest rates being observed in the central
area.

From the same source, a map of ward-based male unemployment rates in the
same area is given in Figure 7.2. Note a general reversal of the pattern here — the
highest rates of unemployment are in the centre. Suppose we went to investigate the
linkage between unemployment and owner occupation. In particular, we would like
to investigate whether male unemployment is a good predictor of owner occupa-
tion.

After some investigation of variable transforms, a scatterplot of the square root
of male unemployment against owner occupation (Figure 7.3) suggests that, at least
within the ranges in which the two variables commonly occur, a linear relationship
exists between the two quantities. That is, after a square root transformation of the
unemployment variable, one could model the relationship between the two quan-
tities using linear regression. Therefore, a model of the form

Owner occupation (%)

Aéi< 94.67

<6.32

Figure 7.1 Owner occupation in Tyne and Wear
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Male unemployment (%)

<5.61

Figure 7.2 Male unemployment in Tyne and Wear

Owner occupation ~ N( 3, + f3;1/male unemployment, o) (independently)
(7.1)

is proposed. The values of 5, and 3, can be estimated using ordinary least squares
regression. This gives the results shown in Table 7.1. Note that although it may
seem strange that B, > 100 for the range of the explanatory variables encountered
in the data set, the predicted levels of owner occupation lie within zero and 100% —
the linear approximation seems reasonable within the range of the data. After
fitting this model, the residuals are mapped. Residuals here are defined as the true
value of owner occupation minus the fitted value. The resultant map is shown in
Figure 7.4.

So what is wrong with proceeding in this way? The main problem is made
apparent by the residual map. Note that the values of the residuals do not appear to
vary randomly over space — high-valued residuals (darker areas on the map) seem
to occur near to each other, as do low-valued residuals, and there are some quite
sudden changes from the highest to the lowest values. This is at variance with the
assumption in (7.1) that each observation is independent of the others, and in
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Figure 7.3 The square root of male unemployment vs. owner occupation in Tyne
and Wear

Table 7.1 Results of standard regression model
for owner occupation data

Parameter Po P
Estimate 131.60 —18.80
Standard error 3.34 0.768

concordance with the comments of Gould (1970) and Hepple (1974) cited earlier in
this section. If the independence assumption was true the error terms in the
regression model could be modelled as uncorrelated random Gaussian variables,
but here it seems that nearby terms tend to take the same sign. If one cannot assume
independence in the error terms, then the least-squares calibration of 3, and 3, is
no longer justified. The remainder of this chapter is concerned with the methods of
addressing this. These fall into three broad categories, as shown in Table 7.2. The
term usual data type is used here as it is possible to apply point-based techniques to
area data, for example by replacing each zone by its centroid, and also to apply
area-based techniques to point data, for example by computing Voronoi tessella-
tions to a set of points. Note also that non-independent error terms may be
modelled either by considering the correlation between error terms, or by model-
ling a spatial trend in the error terms, rather than assuming the expected value of
the error is everywhere zero.
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Residual value
<25.40

< -20.31

Figure 7.4 Map of residuals for regression model (7.1)

Table 7.2 Techniques considered in this chapter

Method type Usual data type Model form
Autoregressive models Area based Correlated error terms
Kriging Point data Correlated error terms
Smoothing Point data Spatial trend

7.2 Autoregressive models

In more general terms, the model (7.1) can be stated in terms of 7 observations of a
dependent variable, contained in the vector y, and » observations of m dependent
variables contained in the » by m matrix X. In this case, the ordinary regression
model can be expressed in the form

y=Xf+e¢ (7.2)
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where 8 is a vector of regression coefficients, and ¢ is a vector of random errors.
Here, the elements of € are independently distributed about a mean of zero. Thus,
for the ordinary model one may state

€ ~ MVN(0, 0°T) (7.3)

where 1 is the identity matrix and 0 is the zero vector, and MVN(M, S) denotes a
multivariate normal distribution with mean vector M and variance—covariance
matrix S. The problem with this model is the assumption that the variance of € is
0*I. A more general approach would allow for a broader class of variance—
covariance matrices, which would allow for non-independence in the residuals.
Most general in this sense would be to assume a model of the form

€ ~ MVN(0, C) (7.4

where C is any valid variance—covariance matrix. This would resolve the general
problem of the assumption of independence, but creates two new problems. First,
Figure 7.4 implies that there is a spatial pattern in the dependence of residuals. The
general covariance matrix C does not specifically reflect this. Secondly, although it
is easy to calibrate § if C is known, i? = (X'CX) 'X'Cy (Mardia et al., 1979),
normally this is not the case and so both C and f must be calibrated from the
sample data.

7.2.1 Spatially autoregressive models

The problem of reflecting spatial dependency in the model will be considered first.
One way to think of this is to postulate that for zone-based data, the random
components of the model in adjacent zones are likely to be linked. For example, if
considering house owner occupation rates, it is quite likely that the rate in a zone
will mimic to some extent the rates of surrounding zones — especially if the zones
are fairly geographically compact — say, one or two neighbourhood blocks. One
way to account for this in a regression model would be to use, as an extra
explanatory variable, the mean of the dependent variable for adjacent zones. Thus,
in the house ownership example, for each zone we would compute the mean of the
rates for adjacent zones and use this as an explanatory variable. Returning to the
algebraic notation, if y is the dependent variable, we need to transform this into a
vector of adjacent means. This is a linear operation, and can be written as Wy,
where w; = 0 if zones i and j are not adjacent, and w; = 1/a, if i and j are
adjacent, and q; is the number of zones adjacent to zone i. In fact W is just the
adjacency matrix for the zones, with rows rescaled to sum to one. Zones are not
assumed to be adjacent to themselves, so w; = 0 for all i. If the adjacent-mean
variable is added to the regression model, the modified model becomes
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y=Xp+pWy+e (7.5)

where p is the regression coefficient for the adjacent-mean variable. For obvious
reasons, this is often called an autoregressive model. Subtracting pWy from both
sides of (7.5) gives

y—pWy=Xpf+¢ (7.6)
Factoring the left hand side gives
T-—pWyy=Xpf+e¢ (7.7

and, assuming (I — pW) is invertible, pre-multiplying both sides by this expression
gives

y=>0-pW) ' X+ A - pW) 'c (7.8)

Thus, after transforming the X matrix, the model is of a similar form to (7.2), but
with an error term that is a linear transformation of the original, independent vector
€. In fact the new error term has variance—covariance matrix

C=0’[I-pW) ' Td—pW)! (7.9)

If C is defined as a function of p as above, then it will reflect a spatial structure
in error dependencies. Thus, once p is known, C can be computed and f§ can be
estimated. The problem is now one of estimating p from the sample data.

This problem can be divided into two parts — first finding a valid range for p and
secondly, finding an optimum p in terms of a maximum likelihood criterion. The
first part is important because the variance—covariance matrix C must be valid —
not all » by n matrices of real numbers meet this condition. The validity condition
may be stated as below:

Y aaje; =0 (7.10)
J

i

where the a, and a; are arbitrary real numbers. This is basically a condition that all
linear combinations of the elements of y have a positive (or zero) variance. It can
be shown (see for example Griffith, 1988) that for the autoregressive model this
condition is satisfied if and only if |p| < 1.
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The second part of the problem can be approached by considering the expression
for the likelihood of y given values of § and p. This is monotonically equivalent to

Z(l PZWUYJZﬂ_/xt_'/) (7.1

i

Finding f and p to minimize this expression is equivalent to finding maximum
likelihood estimates. The optimization process can be broken down into two parts:

1 Find the optimum p.
2 Estimate § by substituting the estimate of p into the standard equation.

A number of calculation ‘tricks’ may be applied to make the first stage more
computationally efficient; see Ord (1975) for a discussion of this. An alternative,
but sometimes much less reliable, approach is to estimate f and p using least
squares, although this is not the true maximum likelihood in this case. The
consequence of this is that the least-squares estimates are often biased.

Applying the maximum likelihood methods to the owner occupation data gives
the results of Table 7.3. Note that there are a few changes from the results for the
standard regression. First, the value for f3, is a little lower and the value for g3, is a
little higher, suggesting a smaller negative slope on the linear regression. The
estimated value for p suggests that some small degree of autocorrelation occurs,
implying that neighbouring rates of owner occupation have some effect on the
observed rate for a given zone. Finally, note that the standard errors for the
estimates are a little larger than in the simple model. This is quite typical behaviour
when extra parameters are introduced into models. In this case, the single
parameter p has been introduced.

Table 7.3 Results of autoregressive model for owner
occupation data

Parameter Po b1 p
Estimate 123.31 —18.11 0.10
Standard error 6.85 0.96 0.07

7.2.2 Spatial moving average models

A variation on the autoregressive model is the moving average model. In this
model, it is not the dependent variable that is considered as autoregressive, but the
error term. The regression model is thus
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y=Xp+u

where u = pWu+¢ (7.12)

The inspiration for this model comes from time series analysis, where both
autoregressive and moving average models may be used to model the behaviour of
a variable observed at regular time intervals — see for example Kendall and Ord
(1973). In many practical cases it is difficult to see whether this or an autoregres-
sive approach gives a more accurate reflection of the spatial process under
examination. One theoretical difference between the two models is that whereas in
the autoregressive model it is typical that all error terms are correlated (albeit in a
manner which reduces as zones become further apart), in the moving average
model error terms are only correlated to their immediate neighbours, as specified in
W. In more formal terms, for moving average processes, C is a sparse matrix if W
is based on contiguities between zones.

Calibrating moving average models is somewhat harder than calibrating autore-
gressive models. The simplest approach is to note that Equation (7.12) may be
rearranged (in a similar manner to Equations (7.5)—(7.8)) to give

T-—pW)y=(0—-pW)Xf + ¢ (7.13)

Thus, if p were known, f could be estimated by an ordinary least-squares
regression of a linear transform of the y variables against the same transform of the
X variables. Of course, p is unknown. However, an estimate of p could be obtained
by calibrating an autoregressive model on the residuals of the ordinary least-
squares model, that is finding the value of p minimizing €'e in Equation (7.12).
Once this is done, and a new f estimate is obtained, one can re-estimate the
residuals, and then iterate the entire process. Repeating this can be shown to lead to
a converging sequence of # and p estimates. Thus, the entire procedure may be set
out as below:

1  Obtain an initial estimate of f using ordinary least squares:

B=(XX)"Xy

2 Use the result from step 1 to estimate a set of residuals. Obtain an initial
estimate of p from these, using the autoregressive model calibration technique.
Call this p.

3 Use the current estimate of p to update the B estimate, given (I — pW)y
=0-pW)X +e.

4 Use the updated f estimate to obtain an updated set of residual estimates, and
then an updated p estimate. Return to step 3 and iterate until p and ﬁ converge.
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Applying this procedure to the owner occupation data gives the results set out in
Table 7.4. Here, the value of p is much larger than before, suggesting a strong
degree of autocorrelation in the error term. Also, although the standard errors are
still larger than those in the standard model (Table 7.1) they are considerably
smaller than those seen in Table 7.3. It seems there is a stronger case for a spatial
effect in the error term than there is for an autoregressive effect. Typically, this
suggests that deviations from a global model take place at a very local scale — a
suggestion which is also supported by the residual map.

7.3 Kriging
7.3.1 The statistical technique

The above section deals with approaches to spatial modelling for zone-based data,
where proximity is represented by W, the adjacency matrix. However, with point-
based data, the concept of adjacency is not so implicitly defined. A more natural
approach here might be to consider D, a matrix of distances between the points, so
that d; is the distance between points i and j. This methodology plays a core role in
the field of geostatistics. Suppose there is a set of »n points with a distance matrix
as defined above, also with a vector of attached dependent variables y and a set of
attached independent variables, X. As before, it is intended to calibrate a regression
model y = X + ¢, where the vector € has distribution MVN(0, C), and it is
required that the elements of C, the variance—covariance matrix of the error terms,
reflect the spatial structure of the data.

A possible way of achieving this is to let c; be some function of d;, say
c; = f(d;). This would mean that the covariance of a pair of error terms would
depend on the distance between them. Typically, one would expect f to be a
decreasing function, so that the linkage between error terms decreased as the
distance between them increased. For this, the positive definiteness condition on
the matrix C discussed earlier becomes important once again. Recall that this
required

E E a;oc; =0
i

Table 7.4 Results of moving average model for owner
occupation data

Parameter Po A o

Estimate 137.2 —20.08 0.65
Standard error 3.94 0.79 0.10
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for all a; and a;. In the current situation, this requires that
Z Z a0, f(dy) =0
i

Unfortunately, this means that one cannot choose an arbitrary function f* as most
do not satisfy the condition. There are, however, some functional forms which do
meet this requirement. A number of possible candidates include the exponential
form

c; = o’exp(—d;/h) (7.14)
or the power form
cy = 0 exp(—d;/hy (7.15)
or the spherical form
ey = 02<1—3Z"+f§) if d;<h (7.16)
0 ifd;=h

In each case, /# acts in a similar manner to the bandwidth in kernel density
estimation (see Chapters 4 and 6), and determines the distance around a given
observation over which other observations are likely to be dependent: the parameter
h is usually expressed in the same distance units as the distances between the
points, d;. In each of the above equations there are two unknown parameters, o
and A. In simple terms o describes how variable the error term is, and s describes
how spatially influential it is. Note also that by dividing any of (7.14)—(7.16) by o2
an expression for the correlation between ¢; and ¢; is obtained. For example, for
Equation (7.14) we have

corr(c;, ¢;) = exp(—d;/ ) (7.17)

The three different functional forms for the relationship between correlation and
distance are shown in Figure 7.5. For each curve, # = 1. Note that although in
general wider bandwidths imply increasing radii of non-trivial correlation, the same
value of bandwidth for different functions does not imply exactly the same radius
of influence for both functions. Note that in all of these functions, as d;j
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Figure 7.5 Graphs of correlation functions: the light dotted line is for model (7.14)
the heavier dotted line is for (7.15) and the solid line is for (7.16); in each case h = 1

approaches zero, the covariance approaches o?. However, in some cases this may
be inappropriate — there will be some ‘extra’ variability at the point of observation
perhaps due to measurement or sampling error. Here the limiting covariance as d;
approaches zero is some quantity 72, say, which is not equal to ¢'2. In this case, the
covariance function undergoes a jump of size o> — 7 at the point d; = 0. This is
sometimes referred to as the nugget effect. For example, Equation (7.14) can be
extended to the form below:

2exp(—d.j/h) if d;>0
ij_{az p(—d.j/h) g (7.18)

= if dy=0

Graphically, this relationship would appear much the same as the curve for
Equation (7.14) shown in Figure 7.5, but with a single discontinuity at d; = 0.

The technique of kriging (Krige, 1966) involves finding estimates for the
regression coefficients § as well as for o, 7 and A. This problem is not as simple as
for ordinary least-squares regression, since one needs to know o, T and # in order
to estimate f, but also one needs to know B in order to estimate o, T and A! A
compromise is to start with a guess at B, use this to estimate o, 7 and % and then to
re-estimate f in the light of this. A plausible initial guess for f would be the
ordinary least-squares estimate.

From this starting point, one can obtain a set of residuals from the observed y;
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variables. Call these e;. These may be used as estimates for the true residuals ¢;.
From these, we need to estimate the parameters o, T and A, by considering the
spatial relationship between the residual pairs e; and e; for points i and j, and the
distance between the points d;. A useful way of measuring the difference between
e; and e; is to consider the squared difference (e; — e;)*. Consider the expected
value of this expression, E[(e; — ¢;)*]. Expanding, we have

El(e; — ))’] = E(e}) — 2E(ese)) + E(e)) (7.19)

but, given that e, and e; have expected values of zero, we can state that
E(e}) = E(e}) = 0? and E(e;e)) = cov(e;, ;) = ¢y, so that

E[(e; — e;] = 207 — 2¢; (7.20)

Thus, the expected value of (e; — e;)* is very simply related to the covariance
function, and can be expressed as a function of d;:

El(e; — e;)’1 =20° — 2f(dy) = g(dy) (7.21)

and g(d,j) can therefore be expressed as a function with parameters o, T and say,
h. For example, if the covariance model (7.14) is adopted, then g(d;) =
0°[2 — 2 exp(—d,j/h)]. Adding a nugget effect, we have

gldy) =

{ 57022 —T)2 = [2exp(—d;j/ W]+ 7 if d;>0 (7.22)

Thus, by fitting a non-linear curve to (e; — e;)* as a function of d;, it is possible to
estimate 4, o and 7. Sometimes the function g is divided by 2, since this results in
the right hand side of the above equation losing an ‘untidy’ factor of 2. Noting that
E[(e; — e;)*] = var(e; — e;), this halved version of g is sometimes called the semi-
variance, and a graph of g is called a semi-variogram. This is a particularly useful
technique if the nugget effect is present, since o2 can be more readily estimated as
the asymptotic value of the semi-variogram as d; tends to infinity.

Calibrating the semi-variogram is itself a complex task. Even in a situation
where the ¢; are independent, the e; are not (Dobson, 1990), and so one cannot
expect the (e; — e;)* to be. However, in general kriging practice this problem is
ignored, and % and o are usually estimated using non-linear least-squares ap-
proaches — that is, finding # and o to minimize
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> le;— e, — g(dylh, 0, DF (7.23)

ij

where g(d;|h, o, T) denotes the dependence of g on the three parameters. Having
found reasonable approximations for 4 and o, one can then obtain estimates for the
c;, and proceed to recalibrate the model for B. If, as before, we denote the entire
covariance matrix by C, we then have

B =(X'Cx)"'X'Cy (7.24)

as discussed in earlier sections when estimating f in situations where there is
correlation between error terms. This rather lengthy procedure can be summarized
as follows:

Estimate f# using ordinary least squares.

Estimate residuals from this f# estimate.

Calibrate the semi-variogram from the residuals.

Use the calibration of the semi-variogram to estimate C.
Re-estimate § using (X’ CX)~'X'Cy.

DN AW N =

7.3.2 A worked example

The technique of kriging is best illustrated with a worked example. Here the data
described earlier will be used. Although this is zone rather than point data, one can
attribute the data to ward centroids. In this way it is possible to compare the results
of this analysis with those of previous sections in this chapter. As with previous
analyses, the explanatory variable here will be the square root of unemployment, as
this appears to have a linear relationship with owner occupation.

To recap, the ordinary least-squares estimates for the elements of f were
Bo = 131.6 and 5, = —18.8. From this, residuals were computed, as shown earlier
in Figure 7.1. This supplies us with a set of residuals which may be used to estimate
h and o. In this case, there are 120 wards, and therefore 120 centroids. Thus, there
are 7140 d; values to consider, together with the same number of values of
(e; — e,)*. For a non-linear regression problem this may be computationally intense.
Therefore, another common computational shortcut used in kriging is to ‘bin’ the
d; categories into a series of distance intervals, and consider the average (e, — e;)
values for each category as a function of the central distance values for that
category. In some cases, the bin categories might overlap (Bailey and Gatrell,
1995). Here bins of width 2 km centred on the d;; values 1 km, 2 km, ..., 16 km
were used, and a semi-variogram curve of the form (7.22) was fitted to the observed
average (e; — e;)* values. The results of this exercise are shown in Figure 7.6. Here,
the fitted parameter values are & = 5.6 km, 0% = 160.8 and 7°> = 46.75. From
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Figure 7.6 Results of fitting a theoretical semi-variogram of the form in model
(7.22)

these, we can construct the C matrix, and re-estimate 3, and 3;. The re-estimates
are shown in Table 7.5. This gives a very similar value of 3, and /3, to the spatial
moving average model.

7.3.3 Trend surfaces from kriging residuals

One very useful product of the kriging approach to regression is that it is possible
to predict the value of residuals at points other than those at which the observations
are taken. Suppose a new point is added to the data set, at a location (u, v). Without
any other information, the mean value of the error term expected at this point is
zero. However, if there is spatial autocorrelation amongst the error terms, and the
values of some errors near to the new point are known, then this situation changes.
For example, if many nearby error terms are positive, one might reasonably expect
the error at (u, v) to be positive also. Essentially, we are now considering the
conditional probability distribution of the error at (u, v) given the errors at the

Table 7.5 Results of kriging model for owner
occupation data

Parameter Po A
Estimate 138.2 —20.06
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other locations. Using this distribution, it is possible to predict the likely error term
at (u, v) and therefore apply a correction to the ordinary least-squares predictor of
y at (u, v) given the predictor variables.

In practice we do not know the error terms at each point, but we do know the
residuals from fitting the regression model after kriging. The latter may be used as
an approximation for the former. Next we must consider how one can predict the
error at (u, v) given a vector of n errors {¢}, or residuals {e;}. One way of
addressing this is to consider the expected mean square error in predicting the error
term. If we denote the true value of the error term at (u, v) by ¢(u, v), and the
estimated value of this by €(u, v), then we are attempting to minimize

E{[e(u, v) — &(u, 0)]*} (7.25)

In particular, suppose we consider estimates that are linear combinations of the e;,
so that

du,0) =Y yie; (7.26)

Then, it can be shown (Bailey and Gatrell, 1995), that if y is the vector of the y; in
the above expression then (7.25) is minimized when

y=Cc(u, v) (7.27)

where C is the n by n covariance matrix between the errors at the n observed
points, and ¢(u, v) is the n by 1 vector of covariances between the error at (u, v)
and the error at the n observed points. Recall that in the kriging procedure we
calibrated a functional relationship between the covariance of a pair of error terms
and the distance between the points at which the error terms occurred. This not
only allows an estimate of C to be made as before, but also allows an estimate of
c(u, v) to be made, based on the distances between (u, v) and the »n observed point
locations. Thus, if e is a vector of the residuals {e;}, then we have

&(u, v) = (C'e(u, v))'e (7.28)

Thus, it is possible to predict the error term (or at least compute its conditional
mean value) at any point (#, v) in the study area. Thus, it is possible to consider
spatial trends in the error term, and by mapping é(u, v) identify regions where the
kriging regression model is likely to over- or underpredict. For the home ownership
application discussed above, a map of ¢(u, v) is shown in Figure 7.7. One notable
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Figure 7.7 Map of é¢(u, v) for owner occupation example in Section 7.3.2

feature here is a region of positive predicted residuals in the south-eastern part of
the map. This region roughly corresponds to the city of Sunderland. A number of
other prominent features can also be identified, for example around the coastal
community of South Shields, just to the south of the mouth of the River Tyne.

7.4 Semi-parametric smoothing approaches

A final method which models spatial deviations from a simple regression model is
the semi-parametric model (Hastie and Tibshirani, 1990). This differs from the
other models in that it does not assume that the error terms are correlated. Here the
model takes the form

yi=flun v)+ Y B+ (7.29)

The model is termed semi-parametric since one makes no assumptions about the
functional form of f. In fact f is used to model spatial deviations from the simple,
non-spatial regression model. A plot of f(u, v) as a surface in the study area serves
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a similar purpose to that of Figure 7.6, in that it indicates spatial trends in over- or
underprediction of the simple regression model.

To calibrate a model of this kind, a very different approach is required. First,
suppose that the error terms {¢;} were known. One could estimate f by applying a
spatial smoothing to these quantities. This is achieved at point (#, v) by computing
a weighted average of the ¢;, where the greatest weight is assigned to observations
closest to (u, v). For example, the Gaussian weighting scheme could be defined by

wi(u, v) = kexp[—d-(u, v)/h’] (7.30)

where w;(u, v) is the weight applied to the ith residual to estimate f(u, v), and
di(u, v) is the distance between the ith observation and the point (u, v), & is a
bandwidth controlling the degree of smoothing as discussed in Chapters 2, 4, 5 and
6, and k is a normalizing constant to ensure that > ,w;(u, v) = 1. Using these
weights, we can estimate f at («, v) using

J,0) =" wiu, v)e, (731)

It is worth noting the similarity between this approach and the geographically
weighted regression (GWR) technique described in Chapter 5 (Brunsdon et al.,
1996). As with kriging, we do not have observed values of ¢;. However, if § were
known we could use the residual terms {e;} as estimates, giving a revised estimate

fu,0) =" wiu, v)e, (7.32)

The problem here is that we do not know . However, rearranging (7.29) and
replacing f by its estimate f we have

— flunv) =B+ (7.33)

Thus, f could be estimated by regressing Vi — f(u,, v;) on the explanatory
variables. Obviously, this estimate, say ﬁ could then be used in Equation (7.32). In
matrix form, the relationship between f and ﬁ can be expressed by the simultan-
eous equations
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f =Wy -Xp) (7.34)
B=X'X)"'X'(y-1)

where W is the matrix whose ijth element is w;(u;, v;) and f is a column vector
whose ith element is f (u;, v;). After a lengthy sequence of algebraic manipulation
it is possible to solve explicitly for ﬁ and f:

B=XT-WX)'X'I-W)y (7.35)
and
f=Wy-Xp) (7.36)

so that it is possible to calibrate the entire model using explicit formulae. It is also
worth noting the similarity between Equation (7.35) for the semi-parametric
approach and Equation (7.24) for kriging. The smoothing approach and the kriging
approach can give very similar estimates for f. In fact if  — W = C then the two
approaches give identical estimates.

One final issue to be addressed is the choice of 4, the smoothing bandwidth.
When £/ is very small, the spatial smoothing applied to the residuals will be
extremely ‘spikey’ and will follow the random variations in the error terms too
closely. However, when # is very large then oversmoothing may occur, so that
genuine features in f(u, v) may be ‘smoothed out’ and not detected in j’(u, V).
Also, selection of / is not akin to estimating a model parameter. The parameters
one is trying to estimate are the function f and the vector . The most appropriate
h for one particular data set will not be the same for another — factors such as the
density of the observation points as well as the shape of the unobserved function f
will all affect the choice of 4. One approach to choosing /4 is to consider the
expected mean square error for the prediction of y, as was done when predicting
residuals in kriging. In the semi-parametric case, there is no simple algebraic
solution giving 4 which minimizes this quantity. Instead, one has to rely on
estimating this quantity from the data, and find 2 which minimizes this. There are a
number of ways of estimating the expected mean square error from the data — one
of these is to compute the generalized cross-validation score or GCV score (Hastie
and Tibshirani, 1990). This is defined to be

1 Yi— Vi ?
GCV = ;Z{il = tr(s)/n} (7.37)

where J; is the fitted value for y;, tr(X) denotes the sum of the leading diagonal (or
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trace) of the matrix X, and S is a matrix such that y = Sy, where y is a column
vector of predicted y values. For the semi-parametric model seen here, it can be
shown that

S=XX'T-WX)"'XI-W)+1-W (7.38)

As h changes, then in turn S and GCV alter. To choose %, one has to plot its value
against the associated GCV estimate, and find the minimum point on this graph.
Note that with a large number of observations, computation of S becomes a
problem, since it consists of »n® elements. Typically, sparse matrix manipulation
algorithms are called for here.

As an example, consider the home ownership data once again. In this case, the
model fitted takes the form

Owner occupation = f3,+/unemployment + f(u, v) + ¢ (7.39)

Note that there is no f3, here, since f(u, v) takes an arbitrary form, and so could
contain an additive constant such as f3,. For these data, 4 is plotted against GCV in
Figure 7.8. This graph shows that the lowest prediction mean square error occurs
when # is around 0.75 km, although the curve is quite flat around this region, and
values in the range 0.75—1.0 km will give more or less similar results in terms of
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Figure 7.8 Plot of GCV vs. h for the home ownership model
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predicting the y values. When the optimal value of % is used we obtain an estimate
for 5, of —18.26. The corresponding estimate for f(u, v) is shown in Figure 7.9. It
is worth noting the similarity between this map and that of Figure 7.6. Also of
interest is the fact that this model could be further extended, by allowing a// of the
coefficients to vary over space. In doing this we would arrive at the GWR approach.
Finally, it is possible to extend this model even further by allowing for autocorrela-
tion effects in the model as well as spatial variation — and furthermore to allow the
value of p to vary geographically (Brunsdon et al., 1998a)!

7.5 Conclusions

In this chapter, a number of ways of approaching regression which allow for spatial
dependency amongst the observed points are discussed. The first two, the auto-
regressive and moving average approaches, are essentially zone based. The covari-
ance between error terms is defined in terms of the adjacencies between zones, or
the distances between zone centroids. Clearly, this depends very heavily on the
choice of areal units. In instances where such information is available, it may be
helpful to apply autoregressive or moving average models to the same data
aggregated in more than one way. This may give some idea of how sensitive the
models are to the areal units used. In fact it is possible to obtain a range of results

Local term

é <17.32

<—11.43

Figure 7.9 Map of f(u, v) for home ownership model
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with a single data set, by defining adjacency between zones in different ways. This
is illustrated in Table 7.6, where the owner occupation moving average model is
calibrated first with the adjacency matrix used earlier in the chapter, and secondly
with adjacency being defined as a first- or second-order neighbour. This could
perhaps be regarded as a new manifestation of the modifiable areal unit problem
(Openshaw, 1984), where not only the scale and location of zones but also the
topology can influence the results of a statistical analysis. It is worth noting that
although it is possible to compute confidence intervals for the model parameters in
these models, these do not allow for any uncertainty in the definition of adjacency.
In real terms, these confidence intervals are almost certain to be too small.

One way in which kriging differs from the latter techniques is that some attempt
is made to calibrate the extent of the error term correlation from the observed data.
Rather than assuming that dependencies are in terms of immediate zonal neigh-
bours, a correlation function is calibrated based on the distance between points.
Once this has been done the regression model is then calibrated using this model of
error term correlation. However, as before, this calibration assumes the correlation
function to be known exactly, rather than being an estimated curve from residual
data. This results in a similar problem to that with autoregressive and moving
average models: although confidence intervals can be computed for the regression
coefficients, these will most likely be too optimistic since in actuality there is some
uncertainty about the correlation function. This is addressed in Diggle et al. (1998),
however, using a Bayesian framework (Besag and Green, 1993).

It is interesting to note the similarity between the semi-parametric model and the
kriging model. Although these two approaches assume that different processes
generated the observed data, they give quite similar predictions. Indeed, by an
appropriate choice of correlation function for kriging, and smoothing function for
the semi-parametric approach, one can obtain identical predictions. This demon-
strates a common problem with spatial regression: it can sometimes be very
difficult to infer which underlying process generated the data. However, one
positive point is that even if one chooses the wrong process to model, the
consequences in terms of prediction error will not be great. In such situations it is
perhaps reasonable to adopt the computationally simplest approach, which in this
case is perhaps the semi-parametric approach. However, despite the difficulties
involved in any of these methods, to the geographer all of these approaches offer an
improvement on the simple regression technique, since they all take into account
the spatial nature of the process being analysed.

Table 7.6 Variability of a spatial moving average model as the
definition of adjacency is altered

Adjacency type Po P

First-order neighbour only 137.2 —20.08
First- or second-order neighbour 125.2 —18.52




8 statistical Inference for Spatial Data

8.1 Introduction

The title of this chapter may be daunting to some readers. Statistical inference may
appear to be a complex subject — and indeed sometimes it is. However, it is
important for quantitative geographers to be aware of the underlying issues for a
number of reasons. First, inference plays a key role in any quantitative study. In any
study, data are collected in order to infer something about an underlying process or
situation. Even exploratory studies which do not set out to test predefined
hypotheses will require some ideas to be inferred from empirical evidence.
Secondly, attitudes to inference are changing within the world of statistics. Ap-
proaches which would have been used only very rarely a few decades ago are now
commonplace — and there is much more debate about the relevance and utility of
some established viewpoints. Clearly, the subject matter of such debate will apply
to the work of any quantitative geographer using inferential methods.

Thus, this chapter is intended to introduce the quantitative geographer to a
number of issues relating to statistical inference, and to provide a background and
introduction to some of the debates currently taking place. Approaches to statistical
inference can be categorized in a number of ways. The approach in this chapter is
to classify approaches to inference as illustrated in Table 8.1. Although this does
not provide an exhaustive coverage of approaches it is felt that it does address all
current major issues.

The broadest division is perhaps between formal and informal approaches.
Formal approaches are generally used to test hypotheses that have been suggested
by theory before the data have been collected. Such hypotheses are stated in
mathematical form. When using a formal approach one attempts to quantify the
plausibility that the observed data lend to the hypotheses.

Table 8.1 Categories of inference addressed in this book

Inference

Informal Formal

EDA Visualization Data mining Bayesian Classical (theoretical and
experimental)
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As one might expect, approaches classed here as ‘informal’ are less rigorous.
With these, the aim is to use graphical techniques, or to represent structure in some
other way so that patterns in the data become apparent. On discovering such
patterns, the analyst then considers theoretical implications in a more subjective
way. As before, prescribed hypotheses could be considered, but informal ap-
proaches are also very useful as generators of hypotheses. Identifying patterns in
the observed data can often suggest new research questions.

Table 8.1 may be used as a map of this chapter. First informal inferential
techniques will be considered, and then formal techniques. Within each of these
broad divisions, the specific approaches enumerated on the lowest row of Table 8.1
will be considered in turn. Following this, there will be some discussion comparing
the two formal approaches covered here, particularly in the context of model choice
and model calibration. Some discussion of experimental significance testing then
follows. Although this fits into the general classical framework, use is made of
Monte Carlo simulation to handle analytically intractable problems. This final part
of the chapter is intended to give a flavour of some of the debates within the
statistical community mentioned earlier.

8.2 Informal inference

One thing that all of the approaches in this section have in common is their
dependence on computing power. For example, visualization makes use of the
interactive graphical features found on almost all computers at the time of writing
this book. In a recent text, Brunsdon (1995a) argues that the availability of
microcomputers puts graphical techniques within the capabilities of most research-
ers, and advocates their use for the analysis of 1991 UK Census data. This situation
is then contrasted with that of the previous census in 1981 when personal
computers were available, but few had sufficient graphical capabilities to carry out
serious visualization tasks. Similarly, more heavily computational approaches —
such as data mining — can take advantage of the speed of current computer
hardware.

8.2.1 Exploratory data analysis (EDA) and visualization

The first two approaches here are considered only briefly, since they have an entire
chapter devoted to them elsewhere in this book. They are considered together as
there is some degree of overlap between them. Certainly, visualizing data through
scatterplots and histograms may be thought of as a data exploration method.
However, in addition to techniques of this kind, descriptive statistics are also useful
for data exploration. For example, the five-number summary described in Chapter 4
provides a useful ‘at-a-glance’ indicator of shape for univariate distributions. In
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general, careful thought about tabulation is also an important part of exploratory
data analysis.

Of particular importance to geographers is the use of cartographic techniques.
For any spatial data set, it is important to identify geographical patterns. Typical
questions that analysts might wish to ask are as follows:

e Are a set of geographical points clustered?

e Are a set of points dispersed? (That is, are they further apart than a random
pattern?)

e Does a set of areal data exhibit autocorrelation?

e  Are there any spatial outliers?

e  Are there any spatial trends?

The first two questions relate to point patterns. The second phenomenon occurs
when some kind of ‘repulsion’ is present. For example, some animals exhibit
territorial behaviour, and will not breed too close to other animals of the same
species. In some cases, the first two questions have to be addressed in the presence
of a base level of clustering. For example, one might wish to answer questions such
as ‘Do household burglaries cluster in space above and beyond the clustering of
observed household locations?” Questions of the last kind can be addressed using
cartograms (Tobler, 1973a; Dorling, 1991).

The third phenomenon relates to areal or zonal data. Positive autocorrelation
occurs if neighbouring zones tend to take on similar data values. For example,
average house prices for census wards might tend to follow this pattern. More
rarely occurring is negative autocorrelation. This term is used to describe a
situation in which data for neighbouring zones tend to be more different than one
might expect to occur at random. A rather abstract example of this is to consider
the squares on a chessboard as a set of zones, with a zero attached to the white
squares and a one attached to the black squares. Note that the point patterns in the
first two types of question can be translated to areal data by counting points in
zones and converting to rates per unit area. However, care must be taken here, as
clustered point patterns can aggregate to either positively or negatively autocorre-
lated areal patterns — see Figure 8.1. This is an example of the modifiable areal
unit problem (Openshaw, 1984; Fotheringham and Wong, 1991). This problem can
have consequences for visualization as well as the more commonly considered
effects in formal analysis.

The fourth type of question is often an important part of analysis. In social
science (and occasionally in physical science) outlying observations can occur.
These can arise for a number of reasons, which may be divided into two broad
categories — those due to recording error and those due to genuinely unusual
observations. Unfortunately data analysis alone cannot suggest which cause is most
likely for any given example, and one needs to look more carefully at the original
data and their collection process. However, exploratory data analysis and visualiza-
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Figure 8.1 Aggregation effects in clustering. On the left hand side, point data
aggregated to the zones shown result in a positively autocorrelated data set. On
the right, a negatively correlated aggregate data set results. Both point patterns
exhibit clustering

tion carry out the important task of identifying cases where such consideration may
be necessary.

Finally, EDA and visualization may be used to identify trends in data. In a
geographical sense, trends could be on an international, national, regional or more
local scale. For example, are house prices in the UK generally lower towards the
north of the country? Are household burglaries more common (on a per-household
basis) in a city centre than in its hinterlands? Trends of this sort can be investigated
by mapping data directly, or by using cartographic techniques linked with smooth-
ing techniques, such as GWR (Brunsdon et al., 1996) or probability density
estimation (Brunsdon, 1995a).

In summary, using EDA or visualization in any of the above ways can be seen as
an inferential process. In each case, one uses an appropriate technique to infer an
answer to one of the five questions listed above. Clearly, as proposed in Table 8.1
this is an informal approach. In some instances, formal methods may be used to
provide more rigorous mechanisms to answer these questions, but these will require
a degree of formal model specification before testing can take place. In this case,
an initial exploratory examination may suggest model specification strategies. In
addition to this, there are other EDA/visualization activities, such as those as-
sociated with outlier identification, which are not well replicated by formal meth-
ods, but which are nonetheless an important aspect of spatial data analysis.

8.2.2 Data mining

Most visualization and spatial data analysis is applied to a small number of
variables at a time. However, in many cases data sets can contain a very large
number of variables. If a data set has m variables (or dimensions), then there are
m(m — 1)/2 possible two-way interactions between variables, m(m — 1)(m — 2)/6
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three-way interactions, and more generally m!/k!(m — k)! k-way interactions.
Although some visualization techniques (such as the scatterplot matrix) do attempt
to show two-way interactions, generally other methods are needed to explore the
higher-level interactions. One set of approaches, discussed elsewhere in this book,
is based on ‘projecting’ m-dimensional space onto two- or three-dimensional space.
Having done this, standard visualization techniques may be applied. Tracing results
back to the m-dimensional space will then hopefully identify patterns in the
original data.

However, an alternative approach is to use computer algorithms to search for
pattern and structure within the data. This approach is sometimes referred to as
data mining. The data-mining approach encompasses a number of techniques,
which make use of a wide variety of underlying ideas. One common characteristic
of these approaches is that they require a large degree of computation in compari-
son with EDA or standard visualization techniques. Another is that despite this
computational overhead, data-mining techniques do not provide formal statistical
models for the processes under investigation. Two possible techniques will now be
considered. The first of these, cluster analysis, will be covered in most detail, since
it is relatively easily understood, but many of the observations about inference
applied to this method are also pertinent to most other forms of data mining. These
examples are not intended to be exhaustive, but should provide an idea of the
variety of different approaches.

8.2.2.1 Cluster analysis This is perhaps one of the oldest methods which may be
classed as data mining. In this approach, a data set is classed into a number of
groups of observations, according to some algorithm. As is typical in data-mining
applications, there are usually a large number of variables and a large number of
observations. Clustering is generally approached in one of two ways: the hierarch-
ical approach or the optimization approach, although some modern approaches do
not fit neatly into either category. Hierarchical methods start off by having each
observation in its own group and then repeatedly fuse groups according to some
criterion of similarity. For example, in the single linkage method the algorithm
below is applied:

1 Start off with n groups, with one observation in each group.

2 Find the two groups containing the pair of observations which are closest
together and not in the same group. If there are m variables, closeness is
generally defined in terms of Euclidean distance in m-dimensional space — but
other definitions could be used.

3 Merge the two groups identified in step 2 into one larger group.

4  If there is more than one group remaining, go to step 2.

If this algorithm is carried out to completion, only one group will remain.
However, it is often informative to look at the group formation history, and at the
sizes of the nearest-neighbour distances associated with the formation of each
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group. Alternatively, one can modify the stopping rule in step 4 above. For
example, the algorithm could terminate when the number of groups remaining fell
to some quantity greater than one, or when the nearest-neighbour distance referred
to in step 2 exceeded some limit.

The single linkage method is not the only approach to hierarchical clustering.
Other approaches can be obtained by modifying step 2 in a number of ways. For
example, the nearest-neighbour criterion for choosing a pair of groups to merge
could be replaced by an average distance between group members. Clearly, each
hierarchical method will produce a set of groups having different properties — and
indeed even the same method with different stopping rules will produce a different
end result.

The second commonly used method of clustering is the optimization approach.
In this approach, the data are partitioned into a number of groups as before, but this
is not achieved by the sequential fusion approach adopted in hierarchical clustering.
Here, the number of groups is specified in advance, and individual observations are
assigned to groups in such a way as to optimize some criterion. This criterion is
typically a measure of ‘tightness’ of the clusters. For example, the k-means method
attempts to minimize the within-group sum of squares in the grouped data set. This
is defined in terms of each group’s centroid in m-dimensional space, and the
squared distance of each group member from this centroid.

This optimization problem is sometimes quite difficult. For example, if one has a
data set with 100 observations, and one wishes to attempt a k-means clustering
with four groups, then there are 4'® ~ 1.6 X 10% possible groupings. An exhaus-
tive search of all groupings would not be reasonable, so typically some search
heuristic must be adopted. Usually such heuristics work by starting with an initial
assignment of observations to groups and then attempting to move observations
from one group to another in order to improve the optimization criterion, until no
further improvement is possible. Unfortunately, such approaches cannot guarantee
that a global optimum will be reached, and the final groupings can depend heavily
on the initial groupings. Thus, the output from an optimization clustering algorithm
can depend on the initial cluster assignments, the optimization criterion, and the
number of clusters specified.

Thus, both hierarchical and optimization-based clustering algorithms rely on a
number of arbitrary parameters. As mentioned above, there are also a number of
other approaches, but these also suffer from the same problem. This creates
problems when one is attempting to draw inferences from the output of a cluster
analysis. To cope with a multiplicity of possible approaches and associated
parameters, often in a situation without theoretical guidance, one is compelled to
follow the suggestions of Bailey and Gatrell (1995, p. 294):

Faced with the range of different clustering methods that are available, it is usually a
good idea to use several methods in any particular application. If these different
methods tend to agree broadly on group membership for a particular choice of the
number of groups, then this is probably an indication that this grouping is reasonably
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‘robust’ and not just an artifact of the particular method being used. Clustering methods
will always produce groups; it is the responsibility of the analyst to determine whether
these have any substantive meaning.

In fact this valuable advice could be extrapolated to data-mining methods in
general. Data mining is essentially a search for patterns in data, but it can be very
difficult to tell whether any output relates to genuine patterns in the data, or to some
artefact of the data-mining technique being used. Unfortunately, the ‘black box’
nature of some approaches, where the internal workings of the method are
intentionally hidden from the analyst, is hardly helpful in this situation. In our
opinion, black box techniques are generally best avoided. If it is decided that data
mining is appropriate in some situation, then some awareness of the internal
workings of the methods used is essential when inferring whether the patterns
detected are genuine. The remaining data-mining techniques discussed should be
considered (and applied) in this context.

8.2.2.2 Neural networks A more recent advance in data mining is the use of
neural networks (McCulloch and Pitts, 1943). The mechanisms behind neural
networks are discussed in detail in many texts, for example Hertz et al. (1991) and
Gurney (1995). Essentially, these are based on a ‘machine learning’ paradigm, and
are loosely modelled on the ‘real’ neurons found in the brain. Briefly an (artificial)
neuron can be described as a communications device whose input signals are
combined to produce an output signal. In a basic network, when the weighted sum
of the inputs exceeds some threshold level the output jumps from zero to one. This
crude model can be extrapolated in a number of ways. For example, instead of a
binary step function suggested above, a continuous logistic function could be
substituted. In a neural network, a number of these neurons are connected together,
typically in a number of layers as in Figure 8.2.

Presenting a network with a number of inputs will cause the first layer to produce
a set of outputs (in this case there are five outputs from the first layer). These
outputs will depend on the weights used in combining the inputs. These outputs are
then fed as inputs to the next layer, which produces a new set of outputs which feed
into the next layer, and so on until a final set of outputs (in this case two) are
produced. If the weights are chosen well, each neuron will act as a ‘feature
detector’, providing a high output when the inputs follow some particular pattern.!
Thus, a five-neuron layer could respond to five distinct features. Having multiple
layers allows one to detect ‘features of features’: for example, a second-layer
neuron could detect when a particular pair of first-layer features are both present —
a logical AND operation. If there are m inputs to the network, each input can be set
to one variable in a data set, and the network can provide a ‘response’ to individual
observations by reading values from the final output layer.

In typical neural computing applications, there are a lot of neurons, a lot of data
and a lot of features to detect. In this sense, the approach can be thought of as a
data-mining exercise. One wishes to use the layers in the network to detect
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Input Hidden Output

layer layer layer

Input 2 Output 1
Input 3
Input Output 2

Figure 8.2 A layered neural network. Neurons are solid circles; lines show
connections linking outputs to inputs; outputs always flow to the right. The above
network has five inputs and two outputs

‘features’ (or patterns) in the data. The difficulty here is in choosing the weighting
scheme and the threshold for each of the neurons. Each one of these can be thought
of as a parameter in the network, and for a given data set one has to find suitable
values to provide ‘good’ responses. One common approach, described as super-
vised learning, is to provide a training data set with a set of desired responses for
each observation. Finding suitable weights and thresholds is then an optimization
problem; weights must be found to make the network provide outputs which match
the desired outputs as closely as possible. This optimization task is often referred to
as network training. This is qualitatively similar to a statistical regression or
discriminant analysis problem.

Unfortunately, the optimization task is often very difficult. For example, assum-
ing each neuron has one weight per input, and one threshold, the network in Figure
8.2 has 56 parameters, and this network is much smaller than those generally used
in practice. There are several possible approaches to the optimization task, but they
are all computationally expensive. Several variations on this approach also exist —
for example, some algorithms alter the configuration of the network, dynamically
adding or removing neurons during the training process (Reed, 1993). Others
replace the logistic or threshold response neurons with other having a different
functionality — for example, the use of radial basis functions (Broomhead and
Lowe, 1988).

An alternative approach to choosing weights is the notion of unsupervised
learning. If supervised learning can be likened to discriminant analysis or regres-
sion, unsupervised learning parallels cluster analysis. When training an unsuper-
vised network no set of desired responses is required. The network is left to find
features in the data without the optimization-based guidance used in supervised
networks. One approach is through competitive learning methods in which neurons
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providing the ‘strongest’ response (in terms of the highest output) to a particular
input are encouraged to respond even more positively to this and similar inputs by
adjusting weights appropriately. An example of this is found in adaptive resonance
theory or ART (Carpenter and Grossberg, 1988). This, when stripped of its neural
computing terminology, bears remarkable resemblance to k-means clustering as
described in the previous section. Note that in unsupervised learning, the configura-
tion of neurons often deviates from the layered formation usually found in
supervised learning. For example, Kohonen (1989) arranges neurons in a lattice,
and applies ART-like competitive training not only to the strongest responding
neuron, but also to its topological neighbours within the lattice. As with supervised
networks, typically networks are very large, and training them is a lengthy task.
Feature identification is a key concept here, again justifying the concept of neural
networks as a data-mining tool.

Inferentially, neural networks provide an interesting set of problems. First,
supervised and unsupervised networks do slightly different jobs, and so inferences
have to be drawn in different ways for the two methods. Supervised learning is
essentially a predictive tool. Having trained a network to reproduce a desired set of
outputs in training data, one then feeds in new data in the hope that the outputs
produced will predict some (unobserved) real-life response to the data. Again, this
is one way in which regression or discriminant analysis might be used. To make
predictive inferences, however, one must consider the plausibility of the prediction
mechanism as well as the prediction that the mechanism produces. This can cause
problems. Some features detected in data might be genuine, and likely to provide
useful information for prediction, but others might be spurious, coincidental
phenomena not occurring in future data sets. These spurious features might be
misleading, and could lead to erroneous predictions. In a neural network one needs
to add enough neurons to detect ‘genuine’ features, but not so many as to detect the
spurious features. Also one cannot be sure that the number of neurons does equal
the number of genuine features and that each neuron will succesfully detect a
genuine feature. This problem has parallels with the problem of model specification
in conventional statistics. A network with too many neurons is similar to a
regression model with too many variables. In the latter case, the inclusion of
spurious variables tends to have an adverse effect on the prediction of response
variables. Unfortunately, there is considerably less theoretical guidance for this
kind of problem in the neural case than the statistical case.

Despite these theoretical difficulties, one claim made for neural networks is that
their predictive performance exceeds that of ‘statistical models’. This could
perhaps be interpreted as providing an extra degree of confidence in the context of
informal predictive inferences. However, this claim is not unchallenged:

There is a paper by White at UCLA (sic) who tried using neural networks to forecast
the closing price of IBM’s stock. His paper, and a few others I have, all tend to conclude
that using neural networks for such activities is no more accurate than using well
traditional statistical techniques.



STATISTICAL INFERENCE FOR SPATIAL DATA 193

(G. Aharonian, taken from the newsgroup comp.ai.neural-nets, first reproduced in
Barndorff-Nielsen et al. (1997). Here it is suggested that the ‘White’ referred to is
probably Halbert White at UCSD — see White, 1988.

It is also suggested that many of the extravagant claims made on the performance
of supervised neural networks are not usually made by their inventors (Watt, 1991).

Inferentially, the outlook for unsupervised neural networks is perhaps more
positive. These are not used in a predictive context. As stated earlier, they are used
in the manner of cluster analysis techniques. Indeed, one could consider using such
techniques alongside conventional cluster analysis methods when considering a
particular data set, and any statements about informal inference from cluster
analysis could equally apply here. One added advantage that the Kohonen approach
offers is the ability to visualize the organization of the neural network in a spatial
way. To see this in detail, see either Kohonen (1989) or Gurney (1995).

8.3 Formal inference

Here probability must be mentioned for the first time. The inferential problem
could be regarded as attempting to make a statement about unobservable informa-
tion on the basis of linked observable information. For instance, one may wish to
know whether an observed set of points are generated from a uniform (unclustered)
distribution. The unobservable information here is whether the generating distribu-
tion is uniform or not, and the observable information is the list of point
coordinates. In the last section, inferences relating to the unobservable information
were made on an informal basis. However, in many instances it is helpful to provide
some quantitative measure of the reliability of any statements relating to the
unobservable information. This is typically dealt with using probabilities. Two
common ways of providing probabilistic statements about unobservable informa-
tion discussed here are Bayesian inference and classical inference. Both will be
discussed here.

8.3.1 Bayesian inference

Bayesian inference is based on Bayes’ theorem (Bayes, 1763), which relates
conditional probabilities. Suppose p(X) denotes the probability that statement X is
true, and that p(A4|B) denotes the probability that statement A4 is true given that
statement B is true. Then Bayes’ theorem in its simplest form may be stated as

p(A|B)p(B)

A) =
P8l =52

(8.1)

This can be quite simply derived; see Gelman et al. (1995), for example. In simple
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terms, Bayes’ theorem relates the probability of 4 given B to the probability of B
given A. This is extremely useful from an inferential viewpoint. Suppose A4 is the
observable phenomenon and B the unobservable phenomenon. If one is able to say
how likely an observed A4 is given B, one can use Bayes’ theorem to make
probabilistic statements about the unobservable B. To do this, the other quantities
p(A4) and p(B) should be considered. These are the marginal probabilities of A and
B. p(A4) is the probability that A4 is true regardless of whether B is true or not;
obviously p(B) can be regarded in the same way with respect to 4. p(A4) can be
viewed in terms of the probability that 4 occurs if B is true and the probability that
A occurs if B is not true:

p(4) = p(A|B)p(B) + p(A|B)[1 — p(B)] (8.2)
giving an alternative form of Bayes’ theorem:

p(A\B)p({f)
p(A|B)p(B) + p(A|B)[1 — p(B)]

p(Bl4) = (8.3)

which is sometimes helpful. In the notation used here X denotes the logical
inversion of statement X — that is, ‘not X’. The information one now requires to
evaluate p(B|A4) is the probability of the observed data if B is true, the probability
of the observed data if B is untrue, and p(B). This last quantity is the marginal
probability that the unobservable B is true regardless of whether 4 is true. In the
Bayesian paradigm, this is regarded as the probability that B is true prior to
observing A4. This is perhaps best illustrated by a worked example.

Suppose you work in a store, and that all of the customers from this store come
from either village X or village Y. In village X there are 100 residents, 30 of which
own red cars, and 70 of which own non-red cars. In village Y there are 80 residents,
20 of which own red cars, and 60 own non-red cars. A red car draws up outside
your store, but you cannot see the driver. What is the probability that the driver
comes from village X, given the car colour?

Here, the unobservable information is whether the customer comes from village
X or village Y, and the observed, linked information is that the customer has a red
car. Thus, define statements 4 and B as follows:

e  A4: The customer has a red car.
e  B: The customer lives in village X.

One can then determine the probabilities required for Bayes’ theorem. p(4|B) is
the probability that the customer has a red car given he or she comes from village
X. This is 30/100, or . Similarly, P(A|B) is the probability that the customer has a
red car given he or she does not come from village X. Since all customers come
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from either village X or village Y, this is the same as the probability of a customer
owning a red car given he or she comes from village Y. This is 20/80, or }. Finally,
p(B) is the probability that the customer comes from village X, regardless of the
colour of the car. This is 100/(80 + 100) or . One is then ready to compute
p(B|A), which was asked for in the initial question:

6

P(BlA) = 10

P(4]B)p(B) W
P(AIB)p(B) + p(A|B)1 - p(B)] 7 %3

Bl=[oln

X
+

Thus, after observing the colour of the customer’s car, the probability that he or she
comes from village X is %, or 0.6. Note that this computation could have been
approached in a slightly different way, by evaluating p(A) directly. p(A4) is just the
probability that the customer has a red car regardless of the home village. Since
there are 180 villagers in all, and the total number having red cars is 20 + 30 = 50,

then this probability is 3> or . Then, from the first form of Bayes’ theorem,

_pAIBP(B) X5 6
p(B|4) = IR

Obviously, the result is the same as before.

This is a somewhat contrived example, but it contains all the ingredients of a
Bayesian analysis. The probability that the customer comes from village X, p(B),
can be regarded as a prior probability for statement B. Before a car has arrived, this
is the probability that the driver will come from village X. The probability that the
driver comes from village X after having seen the red car is modified to p(B|A).
This conditional probability is usually referred to as the posterior probability of
statement 5.

In a more realistic Bayesian analysis, 4 is not a single observation but a
collection of observations — in other words, an entire data set. Also, the unobser-
vable information, B, is not usually a simple binary hypothesis. For example,
instead of just two villages in the last example, there could have been m villages. If
one calls these villages 1, 2, ..., m, then let the events that the customer comes
from each village be By, B,, ..., B,. In this case, Bayes’ theorem takes the form

P(A|Bk)P(Bk)
P(A|B)p(B)) + p(A|By)p(By) + ... + p(A4|B,)p(B,)

Pp(Bi]A) = (8.4)

where k& could be any village. This could be regarded as an attempt to make
inferences about an unobservable parameter k on the basis of observed car colour.
Since Bayesianism provides a formal approach, such inferences take the form of a
probability distribution.
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A further extension of the method allows inferences to be made regarding
continuous parameters. In this case, alter the notation by replacing B with an
unobserved vector of parameters, 6, and replacing 4 with an observed vector of
observations x. This relates to more usual statistical problems. For example, in a
regression model x would represent observed data, and 6 would represent unob-
served regression coefficients. In this situation, the summation in the discrete
equation (8.4) is replaced by an integral:

p(0) p(x]0)

T p(®)p(x]6) d6 ®:5)

pOx) =

The above is perhaps the most common form of Bayesian inference. For example,
6 might be the mean and standard deviation of a normal distribution, say (u, o),
and x a set of observations. Then p(x|0) would just be the multivariate normal
probability density function, with each element of x having mean u, and the
variance—covariance matrix being o ’I. Thus

1 i=n
p(u, o|x) = WH exp[—(x; — u)*/20°] (8.6)

Here, p(u, o) is harder to consider. In the simple example, the prior probabilities
could be calculated from empirical knowledge. However, there is no clear guidance
here as to the prior probability function. This is addressed in a Bayesian framework
by asserting that p(0) represents the analyst’s prior beliefs about 6. If the analyst
has no prior beliefs about 8, one may represent this by setting p(6) to be a uniform
distribution. When this is done, p(0) is referred to as a non-informative prior.

Unfortunately, this will run into problems when 6 can take on an infinite range.
In the normal distribution example, 4 could range from —oo to oo. A non-
informative prior in this case is not a proper probability distribution, since a
constant value does not have a well-defined integral between —oo and co. However,
this need not be a problem, provided the posterior distribution is still well defined.
Again, in the above example, if one does adopt a non-informative prior for u, say
p(u) =1, and assume o is known, then the posterior distribution is just

(7o) "2 T} expl—(x — u*/207]
(@) [7 TT expl—(x — w2 /20] du

plulx) = (8.7)

It can be verified that p(u|x) is itself a normal distribution with mean X, the sample

mean of x, and variance ¢2/n. Typically, ¢ would not be known, and one would

need to consider the joint posterior distribution of y and o (Gelman et al., 1995).
Bayesian methods may also be applied to more complex spatial models. For
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example, Diggle et al. (1998) consider a Bayesian analysis of kriging (Isaaks and
Srivastava, 1988), a spatial regression technique considered elsewhere in this book.
In this case, the observed data are a set of (x, y, z) points, and the unknown
parameters are the kriging coefficients together with the regression coefficients.
This is a good example of ‘real-world’ Bayesian analysis, and highlights several
practical difficulties. One of the most notable problems is the fact that the integral
in the denominator in Bayes’ theorem is often analytically intractable. In more
realistic terms, Bayes’ theorem has to be stated as

p(0]x) < p(0) p(x|6) (8.8)

where the constant of proportionality is generally unknown. All that is known is
that it causes the right hand side of (8.8) to integrate to unity. How can one
understand the properties of a posterior distribution if one cannot derive the
distribution analytically? One approach to this is through simulation. If it is
possible to simulate 6 values drawn from p(6|x) then one can produce large
samples of such values, and investigate the posterior distributional properties of 6
through these samples. Furthermore, using the Metropolis algorithm (Metropolis
and Ulam, 1949; Metropolis et al., 1949) it is possible to simulate p(6|x) without
knowing the proportionality constant. These two facts, together with an abundance
of personal computers that are powerful enough to generate such simulations
reasonably quickly, have led to a widespread adoption of Bayesian methods in
recent years.

Thus, Bayesian inference allows us to make statements about unobserved
parameters in terms of probability distributions. It is also possible, in some cases,
to compare models. One way of doing this is to consider Bayes factors. Suppose
H, and H, are two competing models. For example, H; might be an ordinary
regression model, and H, might be the same regression problem with spatially
correlated errors. The ratio of the posterior likelihoods can be expressed as

p(Hl‘X) _ p(H,)
p(HL|x)  p(H))

X Bayes factor (H,, H)) (8.9)

Thus, starting off with prior odds of H, to H, and then multiplying by the Bayes
factor gives the posterior odds of H, to H,. Thus, the Bayes factor is an odds ratio
showing how the odds of one model against another are altered in the light of the
data x. Thus, after a typical analysis one might draw a conclusion such as: ‘having
collected data it seems that the odds spatial regression model:ordinary regression
model are now four times greater’. Note that the equations above refer to models,
not parameters. It is usual that the models contain many parameters in common,
but not essential. For example, the same approach could be used to compare a
spatial regression model with a Bayesian GWR model.
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However, this methodology is not without controversy. Bayesian inference
requires a set of observations, a probabilistic model linking the unobserved
parameters to the observations, and a prior distribution for the unobserved
parameters. The last item required is the source of some debate. As identified
earlier, a state of no knowledge is represented by a non-informative prior. However,
some Bayesians argue that in many cases, this is an unrealistic representation of
prior knowledge. For example, there may have been previous studies attempting to
estimate 6. In this case, if a previous study was subjected to Bayesian analysis, its
posterior distribution could be used as a prior for the new study. Others take a
stronger viewpoint: one can have subjective prior opinions about the value of 6,
possibly due to qualitative knowledge.

For example, in a study to estimate 6, the average distance that people travel to
work in the UK, it could be argued that a non-informative improper prior for 6 in
the range 0 to oo should be used. However, this is stating that 8 is equally likely to
be 10 miles or 10 million miles. Subjectively, this seems nonsensical. A more
reasonable approach might be to use a proper uniform prior in the range 0 to 200
miles, or perhaps a non-uniform prior distribution where the higher values of 0 are
less likely, but not impossible. Here an exponential distribution might be ap-
propriate.

There are others who find arguments of the kind given above to be unpalatable.
Essentially, this approach requires probabilities to be used in a subjective sense,
which some argue to be meaningless. It could be argued that informative priors, if
used without constraint, could lead analysts to draw any conclusion they wish from
experimental data. It is difficult to answer the above objection, but it can be argued
(see next section) that classical approaches to statistical inference suffer from
similar problems, although they are more subtly hidden. On a more optimistic note,
it can be demonstrated that, provided the prior distribution follows some mild
regularity conditions, the posterior distribution becomes more and more concen-
trated around the true value of 0 as the sample size for x (i.e. n) tends to co — see
for example Gelman et al. (1995). That is, regardless of our choice of prior,? as
more and more data arrive, the posterior distribution will get closer and closer to a
single mass point at the true value of 6 — with enough data even very poor priors
do not affect the outcome too much.

8.3.2 C(lassical inference

Classical inference is probably the most familiar kind of statistical reasoning for
geographers. This is the inferential system which encompasses significance tests
and confidence intervals — much of spatial statistical analysis makes use of these
concepts. Despite this, it is often argued that classical inference is misunderstood
by many students (Berry, 1997). In this section, it is intended to outline the basic
principles and compare them with the Bayesian concepts introduced in Section
8.3.1.
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Perhaps surprisingly, Berry (1997) states that many students who are taught only
classical inference misunderstand it in a way which coincides with the definition of
Bayesian inference! However, in the context of hypothesis testing, the difference
between the Bayesian and the classical approach is very clear. Regardless of
whether probabilities are subjective or objective, a Bayesian draws conclusions of
the form ‘the probability that hypothesis X is true is y’. In classical inference,
hypothesis X (the null hypothesis) is not regarded in probabilistic terms. It is
assumed to be a state of nature which is either true or false. Here, only the data are
regarded as probabilistic. Classical inference then goes on to consider questions of
the form ‘how likely is it to obtain this particular data set given a particular
hypothesis’. To determine the truth or falsehood of the null hypothesis, a numerical
function (often called the test statistic) is applied to the data. This is itself a random
function, and the classical test then reduces to the question ‘how likely is it to
obtain a test statistic at least as extreme as that observed given a particular
hypothesis?’. Testing whether this statistic exceeds a particular value provides an
answer of true or false to this question — but of course it could be wrong. One can
then go on to consider the probability that the answer is wrong. There are
essentially four possible outcomes as shown in Table 8.2.

The two probabilities of interest are then a, the probability that the test is wrong
when the null hypothesis is true, and 1 — 3, the probability that the test is wrong
when the null hypothesis is false. a is referred to as the significance level of the
test, 5 as the power of the test. Thus, the probabilities in classical inference do not
refer to the truth of the null hypothesis, but to the success of the testing process.
They are operating characteristics of the test. The significance level of the test is
fairly easy to specify, provided one can specify the probability of the test outcome
in terms of the null hypothesis. There are a vast number of examples of tests of this
kind in many standard statistical texts — typical are tests of whether a particular
model parameter is equal to zero.

The power is generally harder to specify. Typically, the null hypothesis is a
simple mathematical statement — such as a particular regression coefficient being
zero. However, there are an infinite number of alternatives to this: that is, any value
of the previous regression coefficient except zero. Clearly, the power of the test will

Table 8.2 Probabilities used in classical inference: « is the
probability that the result of the hypothesis test is ‘false’
when the null hypothesis is true. § is the probability that
the result of the hypothesis test is ‘false’ given the null
hypothesis is false

Test result
True False
Null hypothesis True 1-a a

False 1-8 B
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depend on how different from zero the regression coefficient is. Thus, investiga-
tions into the power of a test often involve plotting a function of the true value of
the coefficient against the power. However, this could be argued to be too narrow a
viewpoint. A hypothesis could be wrong owing to a completely misspecified model,
not simply a model of almost identical form in which one coefficient deviates from
Zero.

This classical approach can also be applied to parameter estimation. In this case,
a numerical hypothesis test is replaced by two functions applied to the observed
data x, giving an upper and lower bound for some parameter 6, called a confidence
interval. In this case, one is concerned with a, the probability that 8 will be
contained within the confidence interval. Again, « is an operating characteristic of
the estimation process, not the probability that 6 lies within the confidence interval.
0 is assumed to have a fixed value, and inference is made in terms of the chance of
the confidence interval containing 6. A typical example of this is found in the p%
confidence interval for the mean of a normal distribution, given a sample vector x:

_ s
Xty p00 —= (8.10)

NG

where 7 is the sample size, X is the sample mean, s is the sample standard deviation,
and 7, /100 is the bth percentile of the #-distribution with a degrees of freedom.
Maximum likelihood estimators also play an important role in classical inference.
The likelihood of x given 6 is p(x|0). Then, considering x as fixed, the likelihood is
a function of 60, say /(0). Then, the maximum likelihood estimate of 6, usually
written 6, is the value of 0 maximizing /(0). Furthermore, it can be shown that if
L(0) = log (1(0)), then as the sample size tends to infinity, the sampling distribution
of 6 tends to a normal distribution with mean 6 and variance —1 /L"(6) (DeGroot,
1988). As with the Bayesian proof of asymptotic consistency, mild regularity
conditions are required for /(0). Again, if n is reasonably large then 0 is a good
approximation for 6, and an approximate confidence interval for 6 is

o N
6 Ljég’; (8.11)

where N,00 denotes the ath percentile of the normal distribution. This can be
extended to multidimensional 0 values.

Thus, the classical approach provides a formal inferential framework for both
hypothesis testing and parameter estimation. However, there are some objections to
this methodology. Most of these target hypothesis testing. The main problem here
is that most null hypotheses can be expressed in the form 6 = 0 for some parameter
0 in a model. Suppose, however, that in reality 6 was not actually zero, but some
small number very close to zero, say 0.00001. If n were sufficiently large, a
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classical hypothesis test would reject the null hypothesis of 6 = 0. However,
although this would be a significant result in classical terms, would it be of any real
interest? The problem arises because the null hypothesis states that 6 is a point of
zero measure on the real line. Any infinitesimal deviation from this contradicts the
hypothesis, and given enough data, the null hypothesis is likely to be rejected. As
early as 1957, this problem was identified:

Null hypotheses of no difference’ are usually known to be false before the data are

collected ... when [the data are] collected their rejection or acceptance simply reflects

the size of the sample and the power of the test, and is not a contribution to science.
(Savage, 1957)

Nearly four decades later, strong objections are still being raised:

Continued association with hypothesis testing is not in our own best interest. I believe
that statisticians would be unwise to seek the limelight in any forthcoming 75th
anniversary, centennial or tricentennial celebrations of hypothesis testing.

(Nester, 1996)

The problem seems to be that it is not sensible to ask ‘is 6 exactly zero?’. A more
sensible question might be ‘is 6 sufficiently different from zero to matter?’. The
last question has to be answered in context. For example, in a regression model, say
E(y) = a + bx, b might not be exactly zero, but one could consider whether it is
large enough to cause substantial variation in E(y) over a range along which x
might be reasonably expected to vary. Nester (1996) argues that the problem can be
avoided by switching the emphasis of classical inference away from hypothesis
tests, and concentrating solely on parameter estimation via confidence intervals.
There appears to be some justification in this. Instead of testing whether a
parameter has a specific value, one attempts to obtain an interval estimate of the
parameter. The size of the interval gives some idea of the certainty of the statement
about the parameter value, and looking at the magnitudes of the upper and lower
interval bounds, one can gain some impression of whether the parameter is
sufficiently large to be of consequence.

8.3.3 Experimental and computational inference

8.3.3.1 Classical statistical inference and spatial autocorrelation Classical sta-
tistical inference operates as follows. A null hypothesis is stated, such as ‘the
population from which this sample was drawn has a parameter value of zero’, and a
statistic, such as a #-statistic or a z-score, is calculated from the sampled data set
and then compared with a theoretical distribution with known probability properties
(e.g. a normal distribution). On the basis of this comparison we can reject or accept
the null hypothesis according to some a priori and arbitrary cut-off point and we
can state the probability that if we accept the null hypothesis that our conclusion is
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incorrect. Alternatively, and often preferably, we can derive a confidence interval
for the parameter which consists of a range of values within which the unknown
population value of the parameter lies with a stated degree of confidence. Which-
ever approach we take to making inferences using this classical approach, it is
necessary to be able to assume some form of theoretical distribution for the test
statistic. For some statistics, such as the sample mean and OLS parameter
estimates, the theoretical distributions are well-known and can, in most circum-
stances, be used with confidence that the assumptions concerning the distributions
are met. However, for some statistics, either there is no known theoretical distribu-
tion against which to compare the observed value, or, where the distribution is
known, the assumptions underlying the use of that particular distribution are
unlikely to be met. Both of these circumstances are common in the analysis of
spatial data and here the construction of experimental distributions becomes
especially useful (Diaconis and Efron, 1983; Mooney and Duvall, 1993; Efron and
Gong, 1983; Efron and Tibshirani, 1986).

The central idea in the use of experimental distributions for statistical inference
is that the sampled data can yield a better estimate of the underlying distribution of
the calculated statistic than making perhaps unrealistic assumptions about the
population. The sampled data are resampled in some way to create a set of samples,
each of which yields an estimate of a particular statistic. If this is done many times,
the frequency distribution of the statistic forms the experimental distribution
against which the value from the original sample can be compared. Consequently,
experimental distributions can be constructed for any statistic, even if the theor-
etical distribution is unknown — as is the case, for example, with statistics such as
the mean nearest-neighbour distance for an irregularly shaped study area.

As an example of the construction of experimental distributions for spatial data,
consider the calculation of the spatial autocorrelation coefficient, Moran’s I,
described in Chapter 1, the formula for which is

= n Yoo Wil — )% — X)
I = (ZiZjW,-,) < Si(x — X)? > (8.12)

where i and j index the spatial units of which there are #, X is the mean of x and w;;
is the weight (degree of connection) between zones i and j. The weights are usually
determined either by continuous inverse distance measurements or by binary
definitions of whether or not the two zones are contiguous. In the discussion and
examples which follow, we will assume that weights are defined by the more
realistic inverse distance measure. The expected value of Moran’s / (i.e. the value
that would be obtained if there were no spatial pattern to the data) is

1
E() =—-— (8.13)
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with values of [ larger than this indicating positive spatial autocorrelation (similar
values cluster together) and values below this indicating negative spatial autocorre-
lation (similar values are dispersed).

As mentioned in Chapter 1, there are two theoretical formulae which can be used
to calculate the variance of I assuming that the weights are defined as continuous
variables. One of the formulae assumes that each observed value of the attribute x
is drawn independently from a normal distribution, in which case the variance of /
is given by

n*Sy + nS, + 300> wy)

var(l) = —gess (8.14)
where

S, = Zij(M;ij + wji)? (8.15)
and

i

&Z(Zmﬁzwﬁ) (8.16)

The other results from the assumption that the process producing the observed data
pattern is random and the observed pattern is just one out of the many possible
permutations of » data values distributed in # spatial units. Under this assumption,
the variance of / is given by

o I’lS4 — S3S5
Y = T = 20— P &1
where
s, n'y i —x)° (8.18)

and
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2
S, = (n* —3n+3)S, nSz+3<ZZW,-j> (8.19)
i

and finally

2
Ss =S, —2nS, + 6 (Z > wy.) (8.20)
J

i

The distribution of 7 is asymptotically normal under either assumption (normality
or randomization); in other words, as long as » is ‘large’, the following standar-
dized statistic can be calculated,

I-E()
2= (8.21)

and reference made to normal probability tables. The questions raised by this
procedure are ‘how large does » have to be?’ and ‘how well does the assumption of
asymptotic normality hold even if »n is large?’. Here we compare the conclusions
reached from this classical use of statistical inference with those obtained from
using an experimental distribution for /.

8.3.3.2 Experimental distributions and spatial autocorrelation Suppose we have
n values of an attribute distributed across n spatial units and that we have
calculated Moran’s [ for this distribution with a given definition of spatial weights.
In terms of statistical inference, the basic question we need to answer is: ‘What is
the probability that a spatial pattern as extreme as the one observed could have
arisen by chance?’. This can be answered experimentally by permuting the n
attribute values across the 7 spatial units many times and each time calculating the
value of Moran’s / until an experimental distribution for / is constructed. The
specific steps are as follows:

Calculate I for the observed distribution of the attribute x and call this /™.
Randomly reassign the » data values across the » spatial units.

Calculate 7 for the new spatial distribution of the attribute x and store.
Repeat steps 2 and 3 many times (at least 99 times and preferably 999 times).

AW N —

This will produce an experimental distribution for 7 against which the value of ™
can be assessed. The proportion of values in the experimental distribution which
equal or exceed /™ yields an estimate of the probability that a value of Moran’s [ as
high as I™ could have arisen by chance.
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The experimental distribution can also be used to create a confidence interval for
I around 7. In the usual manner, an a-level confidence interval for I is defined as
the range of values that will include the true value of 7 with probability (1 — ).
Usually this is centred around the estimated value of 7 for the observed data, I™. To
obtain this interval it is clearly necessary to assume something about the variability
of the distribution being examined. For instance, in classical statistical inference, it
is common to assume that the distribution is normal and then the a% level
confidence interval for 7 would be

I* = 2,00, <I<I" 42,0, (8.22)

where z,,, represents the value of z in a normal probability table corresponding to a
probability of making a Type I error of a. The value of o; is estimated from either
Equation (8.14) or (8.17). The experimental distribution can also, of course, yield
an estimate of o, although there are several ways in which this can be achieved
(Mooney and Duvall, 1993). Here we discuss two of them.

One is very similar to the above with the estimate of o; derived from the
experimental distribution by

— L\ 12
6, = (M) (8.23)

m— 1

where k indexes the calculated value of 7 for a particular random assignment of the
data to the # spatial units, 7 represents the mean of these values and m indicates the
number of times 7, is calculated. This estimate of o is inserted into (8.22) along
with the points of the z-distribution associated with probabilities /2 and 1 — a/2.

The confidence interval specified in Equation (8.22) assumes the distribution of
I is normal and centred on ™ whereas in fact it will be centred around the expected
value of I, as given in Equation (8.13). An alternative therefore is that provided by
Bickel and Freedman (1981) and Efron (1981) and referred to as the percentile-¢
method. In this, each value in the experimental distribution, /,, is transformed into
a standardized variable, #:

I, —1
oF

(8.24)

tk:

where o; can be estimated either analytically using (8.14) or (8.17) or from the
experimental distribution using (8.23). The standard error is a constant for all
calculations of 7 since the value depends solely on the spatial arrangements of the
zones for which the data are reported (see Equations (8.14) and (8.17)). This
conveniently removes the need for a further set of empirical distributions to be
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constructed to estimate individual standard errors as suggested on page 41 of
Mooney and Duvall (1993).

Application of Equation (8.24) to each experimental value of 7 results in an
experimental distribution for ¢, from which the a/2 and 1 — a./2 percentile values
can be obtained to develop a confidence interval for I around I as

prob[l — t,,0, <I<I+t, ,pl=1-a (8.25)

There is evidence to suggest that the percentile-# method is the more accurate
(Hall, 1988; Hinckley, 1988; Loh and Wu, 1987) but ultimately the choice of
method is up to the analyst and might not be critical in many situations. Below, we
compare both experimental methods of computing a confidence interval for / with
the classical procedure using both Equations (8.14) and (8.17) to compute the
standard error.

8.3.3.3 An empirical comparison of classical and experimental inference To
consider the role of both classical and experimental inference techniques in
quantitative geography, an example based on Moran’s /-statistic will now be given.
For this example, a study region (corresponding to an inner city and some of its
immediate suburbs) of 26 spatial units was chosen, and for each of these, the
number of economically active people (i.e. those capable of working) and the
number of people seeking work were obtained. By expressing the latter as a
percentage of the former, a rate of unemployment was computed for each area.
These are mapped in Figure 8.3.

Moran’s I coefficient of spatial autocorrelation for these data gives an indication
of the degree to which areas of high and low unemployment tend to cluster together.
To compute this coefficient, we need to define a spatial association matrix, W. In
this case, this is a 26 by 26 square matrix describing the proximity of each pair of
the areas. Here, we use w; = exp(—d;), where d;; is the distance between the
centroids of area i and area j, in kilometres. Using Equation (8.12), Moran’s [
coefficient can be computed for the unemployment rates defined above. Here, we
obtain / = 0.266. This is positive, suggesting that areas of similar unemployment
levels do tend to cluster together to some extent.*

However, two questions arise from this computation:

1 Is this value of I notably different from the E(/) for a sample from a process
with no spatial autocorrelation?
2 How reliable is this estimate of /?

Computing confidence intervals for / would help to answer both of these questions.
First, one can check whether both the upper and lower a confidence bounds for 7
are greater than zero — this is equivalent to an a-level significance test of the
hypothesis that / = 0. Secondly, inspecting the width of the a-level confidence
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Figure 8.3 Spatial distribution of unemployment rates

interval, one gains a practical idea of the accuracy of the estimate for /. Given
some of the objections to significance tests documented elsewhere in this chapter,
the latter exercise would be regarded by some to be the more valuable.

Here, we will compute 5% confidence intervals for / using four alternative
methods, two based on the classical approach and two making use of computer
simulation. The classical approaches estimate the sample variance of / under the
null hypotheses of an independently normally distributed unemployment rate
(Equation (8.14)), and a randomization hypothesis (Equation (8.17)). The difficulty
here is that in each case a set of assumptions is made about the distribution of the
unemployment rate and about the asymptotic properties of the estimator for /. We
cannot be certain that the distributional assumptions hold, and it is also doubtful
whether asymptotic distributional properties can reasonably be invoked when
analysing a data set with only 26 observations. For these reasons we will also
analyse the data using experimental techniques, which substitute computer simula-
tions of the exact distributions for the classical approximations.

The two experimental techniques both consider the randomization distribution of
I, that is the distribution of / obtained when unemployment rates are randomly
‘shuffled’ between areas. The null hypothesis here is the assumption that owing to
a lack of spatial pattern, any matching of the 26 unemployment rates to the 26 areas
is equally probable. Here, an experimental sampling distribution of / is obtained by
carrying out 9999 random ‘shuffles’ and computing / for each one. From this, two
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experimental confidence intervals can be computed, the first assuming that the
sampling distribution of [ is still normal® but computing the sample variance from
the experimental distribution (Equation (8.22)). The second approach directly
computes the interval from percentile points of the standardized experimental
distribution — the so-called percentile-#-approach.

The results of the four methods of constructing confidence intervals are set out
in Table 8.3. From these it can be seen that in general, intervals are wider for the
classical methods than for experimental ones. The classical assumptions appear to
have provided somewhat larger standard errors for / than those obtained from
simulation. In this case, the experimental approach has provided us with a tighter
set of 95% confidence intervals than classical techniques, although this does not
always happen.

Using probability density estimation techniques such as those described in
Chapter 4, it is possible to draw the sampling distribution probability density curve
for / based on the experimental distribution. This is done in Figure 8.4. From this
figure it is clear than the distribution is slightly skewed to the right, suggesting that
the approximation of asymptotic normality is not appropriate here. This suggests
that the most appropriate confidence interval here is the experimental percentile-z-
based method. Note that this estimate has a notably higher value for the lower 95%
confidence bound than the other three.

It is worth noting that although all four sets of confidence limits exclude zero,
giving strong evidence that there is some autocorrelation in the spatial patterns of
unemployment rates, the confidence intervals are really quite wide. This can be
interpreted as noting that with just 26 observations, it is difficult to obtain a very
reliable measure of Moran’s /. In short, although we can be fairly certain that /
exceeds zero, we do not have a clear picture of its exact value.

This exercise has shown how some extra insight into the sampling distribution of
certain statistics can be gained by experimental approaches. It is also useful to
consider how many simulations are necessary to obtain a reliable estimate of the
sampling distribution for /. Here 9999 simulations were used to obtain the
distribution estimate used in the computations above and seen in Figure 8.4.
However, in Figure 8.5, distribution estimates for 19, 99, 499 and 999 experiments
are also shown.

Table 8.3 Classical and experimental 5% confidence intervals for /. Note that /o5
and I, ;5 denote the 2.5th and 97.5th percentiles for I respectively

l E(I) SE(I) I0.025 I0.975

Theoretical Normal 0.266 —-0.038 0.118 0.034 0.497
Randomized 0.266 —0.038 0.121 0.028 0.504

Experimental Normal 0.266 —0.036 0.095 0.079 0.453

Percentile-t 0.266 —0.036 0.095 0.107 0.483
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From these it may be seen that for » = 19 and n = 99 simulations, the sampling
distributions are quite erratic; by the time 499 simulations have been carried out,
the result is very similar to that for 9999 simulations. This suggests that, in this

case, 499 simulations would have been sufficient.



210 QUANTITATIVE GEOGRAPHY
8.3.4 Model building and model testing

In both Bayesian and classical approaches to formal inference, an important goal is
that of model specification. Essentially, one is using observed data to decide which
theoretical model is most appropriate. The two formal approaches here offer quite
different approaches to this. A very typical approach in classical inference is to
consider a number of parameters and apply significance tests to each one in turn.
This is particularly relevant in the case of, say, multiple regression, where a number
of regression coefficients are tested to see whether they differ from zero. A number
of problems have to be addressed here. Putting aside the objections to hypothesis
testing raised in the last section, some new problems arise when more than one
hypothesis is tested at a time. This is particularly true if a very large number of
tests are taking place. Suppose 40 tests of the & = 0 type on regression coefficients
are carried out with a significance level of 5%. On average, one would expect two
of them to give a false rejection of the hypothesis even if the coefficients were all
zero in actuality — assuming all of the tests are independent. Suppose, however,
that tests said that four coefficients were non-zero. How easy would it be to decide
which, if any, of the four tests were linked to genuinely non-zero coefficients?

The problem is compounded if one can no longer assume independence between
the tests. Indeed, much statistical literature is concerned with the problem of
collinearity in regression models; a phenomenon in which several of the indepen-
dent variables are correlated. This results in non-independent coefficient tests. The
problem here is that a spurious false rejection of the null hypothesis on one
coefficient is likely to be accompanied by false rejections of null hypotheses
associated with correlated coefficients. Another associated problem is that omitting
a variable from a model (or adding one to it) can change the outcome of a test for
another coefficient. All of this can make multiple significance tests in large models
extremely difficult to interpret.

A number of ways of addressing this problem have been considered. A useful
summary is given by O’Neill and Wetherill (1971), although others have argued
that such techniques are the product of misplaced ideals:

Multiple comparison methods have no place at all in the interpretation of data.
(Nelder, 1971)

One of the most plausible approaches is to consider all of the parameters of interest
simultaneously. Suppose there are m parameters. Then, instead of considering
confidence intervals for each individual parameter one considers a confidence
region in m-dimensional space. As before, the probability of this region containing
the true value of the m-dimensional point is . For example, in two dimensions one
might have a confidence circle, or a confidence ellipse. This approach is helpful: by
specifying multidimensional regions one can express the interdependence of the
parameter estimates. A similar approach is possible in Bayesian inference, using
multivariate posterior distributions. In this case, the probability that the estimates
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lie in a given region is computed. Interestingly, this method of resolving the
problem moves away from hypothesis testing and towards parameter estimation, in
accordance with some of the arguments of the previous section. Some of these
ideas can also be applied to more general models, where it is not coefficients but
arbitrary functions that are being modelled (Hastie and Tibshirani, 1990). This
latter approach then becomes very similar in functionality to neural networks, but
with a formal inferential framework.

It is worth noting that in both Bayesian and classical inference there are a
number of other approaches to model checking and model specification, most of
which are the subject of some debate. For some examples see Mallows (1973) for a
classical perspective, or Gelman et al. (1995) for a Bayesian viewpoint.

8.4 Conclusions

The purpose of this chapter has been twofold. First, it was intended to showcase a
number of different approaches to inference based on collected data. Secondly, it
was intended to show that there is a great deal of current debate on the merits or
otherwise of some of these techniques. At first glance this may seem to be a matter
solely for statisticians, and of little concern to geographers. However, the debate
relates to research methods often used by geographers. Perhaps a geographer using a
significance test at some stage in his or her research would do well to consider that
this is not a technique that is universally accepted as a justifiable approach — not just
by the detractors of quantitative methods but also by some of their practitioners.

So what lessons should be learned from this? First, there is no such thing as ‘the
statistical approach’. For every data set and every research hypothesis there are
always several possible quantitative approaches to choose from. ‘Statistics’ and
‘statistical inference’ are really umbrella terms for an ever increasing collection of
distinct methodologies and the debates surrounding them. A practical question is
then ‘which techniques should one adopt?’. The advice here is not to be dogmatic.
Each of the inferential systems described here is a model for reasoning in the
presence of empirical data, and depending on context certain models may work
better than others. For example, when one has a very clearly stated hypothesis arising
from theory, then one of the more formal approaches is best, possibly using the
experimental methodology if the underlying theory is mathematically complex.
However, without such clear questions an exploratory approach may be more useful.
A practical standpoint is to adopt the most suitable approach for a given problem, but
at the same time not to be blind to any debate surrounding that approach.

Notes

1. If the neurons use weighted sums of inputs, it is only linear features (such as a two-
dimensional input lying above a line in the plane) which may be detected.
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2. Almost! Remember the ‘mild regularity conditions’.

3. Essentially these are the same as null hypotheses of 8 = 0 if 6 is a difference between
parameters.

4. The largest possible value of Moran’s [ is 1.

5. Doubtful unless n =26 is a sufficiently large sample for approximately asymptotic
properties to hold.



9 Spatial Modelling and the Evolution
of Spatial Theory

9.1 Introduction

A theme introduced in Chapter 1 is that quantitative geography has recently
reached a stage of maturation whereby it is no longer a net importer of ideas and
techniques from other disciplines but, rather, it is a net exporter, particularly in the
areas of spatial statistics and geographical information science. The importation of
ideas from other disciplines is not in itself to be discouraged and there is clearly a
great deal to be gained by such cross-fertilization. However, since the beginnings
of quantitative geography in the late 1950s and early 1960s and lasting until quite
recently, there has been an unhealthy reliance on the use of statistical techniques
and mathematical models developed in predominantly aspatial disciplines such as
economics and physics. For instance, quantitative geographers have flirted with
topics such as entropy (and appeals to the second law of thermodynamics!),
portfolio analysis, Fourier analysis, neurocomputing, and new urban economics, all
of which could be argued to have rather limited applicability to spatial processes
concerning human decision making.

Concomitant with this overreliance on techniques developed in other disciplines,
there has been a relative dearth in the development of statistical techniques and
mathematical models aimed at understanding purely spatial processes. Conse-
quently, a great deal of criticism, much of it reasonable, some of it not, has been
levelled at modelling techniques which have been applied to human spatial
behaviour but which make assumptions such as homogeneity of individuals, spatial
non-stationarity, omniscience, rationality, equilibrium and optimal behaviour. Such
criticism has at times been very powerful and influential (Sayer, 1976; 1992) with
the result that there has been a decline of research into spatial modelling. Even the
frameworks provided by classic spatial models such as central place theory
(Christaller, 1933) and Weber’s location theory (Weber, 1909) have been discarded
by many geographers because of the unreasonableness of some of the assumptions
embedded in them.

The criticism of certain areas of quantitative geography is not necessarily a bad
thing. Some areas of research will undoubtedly, with hindsight, be seen as
evolutionary dead-ends and the discarding of certain methodologies or topics is an
inevitable part of the evolution and maturity of a discipline or subdiscipline. Who
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knows what parts of geographical enquiry, currently popular, will be seen as the
academic equivalent of the dinosaurs in 20, or even 10, years’ time? However, there
are times when the criticism of spatial modelling has had an unwarranted negative
effect. For instance, some frameworks, such as spatial interaction modelling, still
get criticized for what they once were rather than for what they now are. Sometimes
the initial criticisms, albeit reasonable, have led to calls for the complete termina-
tion of research into a particular modelling topic rather than for more research to
correct what have turned out to be fairly easily correctable flaws.

Unfortunately, this course of action appears to have been particularly prevalent
in human geography. The dominant philosophy appears to be that most types of
spatial modelling efforts are fatally flawed because they fail to account for the
complex attitudes, preferences and tastes of individuals. These latter attributes are
influenced not only by personal circumstances and characteristics, but also by the
cultural, social and political milieu in which individuals make spatial decisions. A
classic target of such criticism is the mathematical modelling of movements over
space, more formally known as spatial interaction modelling or spatial choice
modelling (Fotheringham and O’Kelly, 1989; Fotheringham 1991a; Sen and Smith,
1995). This is despite the fact that spatial interaction modelling is one of the most
applied geographical techniques (see, for instance, the range of applications and
references in Fotheringham and O’Kelly, 1989). It is used in studies of retail
location, in impact assessment, in forecasting the demand of housing, in regional
population projections, in forecasting travel demand within urban areas, and in a
host of other applied areas. Consequently in the remainder of this chapter, we
describe the evolution of spatial interaction models and their theoretical basis to
demonstrate three issues:

1  That spatial modellers are aware of the need to make models more realistic in
terms of human behaviour and spatial interaction models provide a classic
example of this type of evolution.

2 The research frontier in spatial interaction modelling has progressed well
beyond that perceived by those who still view spatial interaction models as
‘gravity models’ using outdated ideas from social physics. Spatial interaction/
spatial choice models provide a salutary lesson to those who would have us
discard such approaches in human geography on how one type of spatial
modelling can evolve in terms of its theoretical basis to provide fascinating
insights into human spatial behaviour.

3 How the research frontier in this area has been dynamic with profound shifts in
the theoretical bases used to justify the modelling approach. Spatial interaction
modelling provides a good example of the evolution of quantitative geography
from the stage of being fuelled primarily by the importation of ideas from
other disciplines to a stage in which it is the seedbed for new spatial theories.

Four distinct phases of spatial interaction modelling can be identified, each of
which has provided a quantum leap in our understanding of spatial movements over
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the previous era. In chronological order, these phases are: (a) spatial interaction as
social physics; (b) spatial interaction as statistical mechanics; (c) spatial interaction
as aspatial information processing; and (d) spatial interaction as spatial informa-
tion processing. The approximate periods in which each of these theoretical bases
dominated our understanding of spatial interaction are shown in Figure 9.1.

The major criticisms levelled at spatial interaction modelling stem from the first
three phases when geography borrowed heavily from concepts developed in other
disciplines. Indeed, there was a lingering suspicion, based on empirical evidence on
the spatial pattern of local parameter estimates, that the basic formulation for
spatial interaction models was a gross misspecification of reality. It is only with
recent developments in understanding the basis of spatial interaction models from
the perspective of spatial information processing that we have been able to identify
and correct this misspecification. The identification of the misspecification bias in
traditional spatial interaction models thus provides a strong link to the types of
research described in Chapter 5 on local analysis. It was only through the calibra-
tion of local forms of spatial interaction models that the symptoms of model
misspecification became evident: they were completely hidden in the output of the
global models. We describe the nature of the evidence from local spatial interaction
models in Section 9.5, but for a fuller discussion, the reader is referred to
Fotheringham (1981; 1983b; 1984; 1991b).

9.2 Spatial interaction as social physics (1860-1970)

Attempts at understanding regularities in patterns of spatial flows began as early as
the mid-nineteenth century with Carey’s (1858) observations, followed by Raven-
stein’s (1885), that the movement of people between cities was analogous to the
gravitational attraction between solid bodies. That is, greater numbers of migrants

Theoretical Spatial information
base processing

Aspatial information
processing

Greater
understanding . )
of spatial Statistical mechanics
process -
Social physics
WA
T 'A% T T T
1860 1970 1980 1990

Time period of dominance

Figure 9.1 The changing theoretical basis of spatial interaction models
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were observed to move between larger cities than smaller ones, ceteris paribus, and
between cities which were closer together than being farther apart, ceteris paribus.
This led to the proposal of a simple mathematical model to predict migration flows
between origins and destinations based on the Newtonian gravity model. This
model has the following form:

9.1)

where T} represents the number of trips between origin i and destination j, P; and
P, represent the sizes of origin i and destination j, respectively (as measured, for
example, by their populations), d; represents the distance between i and j, and & is
a scaling parameter relating the magnitude of T to the ratio P,P;/d;. The units of
k would be miles/person, for example, if distance were measured in miles and trips
by the number of people going between i and ;.

Subsequently, it was recognized that the relationships embedded in the simple
spatial interaction model shown in (9.1) might vary according to the type of
movement being investigated as well as to the economic and social milieu in which
the movement was taking place. For example, the deterrence of distance in trip-
making behaviour is likely to be greater in less developed economies with relatively
poor transportation facilities than in more advanced economies with relatively good
transportation. Similarly, individuals are generally more deterred by distance when
shopping for basic goods such as bread and potatoes than when shopping for luxury
items such as jewellery or antiques. Hence the basic formulation in (9.1) was
modified to allow for these variations in behaviour:

pup’
¢ J

T, =k
: B
dj

(9.2)

where a, A and 8 are parameters to be estimated empirically and reflect the nature
of the relationship between spatial flows and each of the explanatory variables.

A further refinement of the basic gravity model formula resulted from the
recognition that many origin and destination attributes, rather than simply the two
size variables, are likely to influence flow patterns so that the model could be
written as

al a2 af 7741 1742 g

T. —k Vil Vi2 T Vif le ij T ng
v d?
ij

(9.3)

where there are f origin attributes, V;, affecting the magnitude of the flows leaving
i and g destination attributes, V;, affecting the magnitude of flows entering j (see
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Haynes and Fotheringham (1984) for more details). The models in (9.2) and (9.3)
can easily be made linear by taking logarithms of both sides of the equations which
allows calibration by OLS regression with the caveats described by Fotheringham
and O’Kelly (1989).

Whichever formula, (9.1), (9.2) or (9.3), is used to analyse a set of spatial flows,
the underlying model framework is basically the same and has its origins as a social
science analogy to a physical model of gravitational attraction, the so-called ‘social
physics’ approach to model building. As such, it has been justifiably criticized for
its lack of any theoretical grounding in the way individuals behave. However, even
though this derivation of the model is theoretically empty, the model itself produces
reasonably accurate estimates of spatial flows. Therefore, a great deal of effort has
been expended on trying to develop an acceptable theoretical framework for the
gravity model.!

9.3 Spatial interaction as statistical mechanics (1970-80)

While various frameworks were espoused in attempts to justify the mathematical
form of the gravity model (see for instance those of Dodd, 1950; Zipf, 1949; Huff,
1959; 1963; Nierdercorn and Bechdolt, 1969), the next major advance in providing
a theoretical base came with the work of Wilson (1967; 1975). Wilson’s pioneering
work, from his background in physics, produced what has become known as a
‘family of spatial interaction models’, each member of which can be derived from
the principles of statistical mechanics (for further details, see Fotheringham and
O’Kelly, 1989, Chapter 2).

Wilson considered a flow matrix, denoting the numbers of individuals moving
between each origin—destination pair to be a ‘macrostate’ of the system. This
macrostate results from the combination of many individual ‘microstates’ where a
microstate in this context is defined as a description of the individuals moving
between origins and destination. For instance, a macrostate description might be
that five individuals moved from A to B and two moved from A to C; a microstate
description would name the individuals. Clearly, there are many different micro-
states that could produce the same macrostate. If there are N individuals to be
assigned to a set of categories and the number of individuals in category i is N,,
then the number of microstates associated with any given macrostate is

R=N!/]] ™! (9.4)

For example, in the above situation where we assign five individuals from A to B
and two individuals from A to C, there are 7!/(5! X 2!) = 21 possible ways of
doing this. Different macrostates can have different numbers of microstates
associated with them. For instance, if we assigned all seven individuals from A to
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B and none from A to C, the number of microstates is only 1. If we assign six
individuals from A to B and one from A to C, the number of microstates yielding
this macrostate is 7, and if we assign four individuals from A to B and three from A
to C, the number of microstates is 35. A full description of the possibilities is
shown in Table 9.1.

Wilson formulated the problem of deriving a mathematical model of spatial
flows in terms of choosing the particular macrostate which can be constructed from
the largest number of microstates. This would be most likely to occur in the
absence of any other information. In the above problem, this would be either four
individuals going from A to B and three going from A to C or three going from A
to B and four going from A to C. In a spatial flow context, the problem is then to
select the set of T; values which maximizes R in Equation (9.4). Equivalently, one
can maximize the natural logarithm of R divided by 7, the total number of trips in
the system (this will not alter the optimization result but is mathematically more
tractable). This can be written as

Find the set of T}; values which maximizes

HEUUMM&%UD<mﬂ—§:mQO 9.5)

where In represents a natural logarithm. If all the T}; values are large, use can be of
Stirling’s approximation that

InT!=TInT—T (9.6)

and

Table 9.1 An example of microstates and
macrostates: allocate seven individuals
between two flows (A — B; A — Q)

Macrostate Number of
A—B A—C microstates

7 0 1

6 1 7

5 2 21

4 3 35

3 4 35

2 5 21

1 6 7

0 7 1
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to obtain

y

H:(l/T)(TlnT—T—Zﬂjlnﬂj—i—T) (9.8)

On rearranging, this can be written as

H == (T;/T)In(T;/T) (9.9)

i

or, equivalently, defining p;, the proportion of all trips that originate at i and
terminate at j, as T;;/ 7T,

H= _Zpiilnpi/ (©.10)
-

which is the formula for the entropy of a distribution (Shannon, 1948; Jaynes,
1957; Georgescu-Roegen, 1971) and which can be interpreted as a measure of the
uncertainty about which microstate actually produces the observed macrostate.

However, it is perhaps obvious from the results in Table 9.1 that finding the set
of trips which maximizes the entropy measure in Equation (9.9) or (9.10) is actually
a trivial matter — /A will be at a maximum when the 7); values are all equal (or as
near to equal as is possible). Wilson’s further contribution to the theoretical
derivation of spatial interaction models was to add constraints to this maximization
procedure. The constraints that have been imposed on the system are

> T;InP =P 9.11)
-

where T ;k represents the model prediction of T;; and P, is the population of origin i;

Y Tinp=r 9.12)
-

> Tylnd;=D 9.13)
-
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where D is the total distance travelled in the system;
Y ri=K 9.14)
7

where K is the known total interaction;

Y ri=0, foralli 9.15)
J

where O, is the known total flow from each origin; and

Y ri=Dp, forall (9.16)

where D; is the known total inflow into each destination.

Imposing different combinations of these constraints on the maximization of
Equation (9.9) produces different types of spatial interaction models — the so-
called ‘family’ of spatial interaction models (Wilson, 1974; Fotheringham and
O’Kelly, 1989). For instance, maximizing (9.9) subject to the constraints in (9.11)
to (9.14) produces the gravity model formulation in Equation (9.2). Maximizing
(9.9) subject to (9.12), (9.13) and (9.15) produces what is known as a production-
constrained spatial interaction model:

= ord; | Y pid, ©.17)
J

Maximizing (9.9) subject to (9.11), (9.13) and (9.16) produces what is known as an
attraction-constrained model:

TU:D_,.P‘;dg_/ZP?d/; (9.18)

and maximizing (9.9) subject to (9.13), (9.15) and (9.16) produces a production—
attraction-constrained or doubly constrained model:

T; = A,0,BD;d" (9.19)
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where
4, = (BDdl)™ (9.20)
J
and
B = Z(A,-O,-d{j.)’l (9.21)

Examples of the applicaton of these models and details on how to calibrate them
are given in Fotheringham and O’Kelly (1989). Using a framework first recognized
by Alonso (1978), Fotheringham and Dignan (1984) show how each of these four
spatial interaction models can be considered as the extremal points on a continuum
of models defined in terms of how strictly the various constraint equations are
enforced.

The importance of Wilson’s entropy-maximizing derivation of a family of spatial
interaction models was that it provided a theoretical justification for what had been
until that time only an empirical observation. However, there are several criticisms
which can be levelled at the derivation. First, it simply replaces one physical
analogy — that of gravitational attraction — with another — that of statistical
mechanics. The derivation is still sterile in terms of the processes by which
individuals make spatial decisions. Secondly, while some of the constraint equa-
tions have a behavioural interpretation, others, such as those on the populations, are
more difficult to justify except that they lead to a particular model form. Thirdly,
the use of Stirling’s approximation to derive the entropy formulation is highly
suspect in most situations because of its assumption that all the 7; values are large.
When the T}; values are small, the approximation is rather poor.

The latter criticism has been addressed within this framework by Webber (1975;
1977), Tribus (1969) and Dowson and Wragg (1973), amongst others, who elimi-
nate the need to derive the entropy formulation from a discussion of microstates
and macrostates. They argue that the entropy formulation satisfies certain reason-
able requirements of a measure of statistical uncertainty and therefore they simply
state this as a starting point for the derivation of mathematical models, the
argument being that we should maximize our uncertainty about any outcome
subject to constraints. To do otherwise would be adding bias into the model-
building procedure. Despite this argument, however, there are still considerable
difficulties with entropy maximization as a framework for the development of
models of human spatial behaviour. Consequently, despite stimulating large
amounts of research into spatial interaction modelling, the Wilson framework has
been largely discarded in favour of more behavioural approaches.
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9.4 Spatial interaction as aspatial information processing (1980-90)

The major advance in giving spatial interaction models a theoretical foundation
that was based on human behaviour and information processing was the recognition
that models such as those in (9.17) and (9.18) are ‘share’ models and have a logit
formulation. The model in (9.17), for example, which is the most widespread form
of spatial interaction model in use today, allocates shares of the number of people
leaving an origin, O;, amongst the destinations according to the attributes of these
destinations. The derivation of this model could then be based on the derivation of
the discrete choice model by McFadden (1974; 1978; 1980).

Consider an individual at origin i about to make a choice of a single destination j
from a set of possible destinations. Suppose the individual evaluates every
alternative and then selects the one yielding him or her maximum benefit or utility.
The utility accruing from a person at i selecting alternative j, Uy, can be thought of
as being composed of two parts, a measurable component, V;, and an unmeasurable
component, 4;. That is,

Uj= Vi + (9.22)

If we knew the values of Uj; for every alternative we could say with certainty which
destination an individual would choose. That is,

Dy = { 1if Upy>U; (forall je N, j#k) 9.23)

0 otherwise

where £ is a specific alternative from the set of N alternatives. However, given that
each alternative has an unknown component to its utility, we cannot say for certain
which alternative an individual will choose. We can only evaluate each alternative
based on the measurable component and then state a probability that a destination
will be selected based on a comparison of the observable components of the utility
functions. That is,

P = prob[Uy > U, (for all j € N, j # k)] (9.24)
which, on substituting (9.22) and rearranging, can be written as
Pix = problu; < Vi — Vi + py (for all j € N, j # k)] (9-25)

Recognizing that the u; and the u; terms are random elements drawn from a
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continuous distribution ranging from —oo to 400, Equation (9.25) can be written
as

Vike—Vij+x

p=| st [ ewmpwe 02

oo Ak ) y=—00

where g() represents some probability density function. McFadden (1974) demon-
strated that if the u terms are distributed according to a Type I extreme value
distribution (Fisher and Tippett, 1928), the model which results is

i =exp(V)/ 3 exp(Vy) (9:27)

and which has a behaviourally intuitive logistic response rate between the prob-
ability of choosing a particular alternative and its observed utility (see Fothering-
ham and O’Kelly (1989, p. 74) for a demonstration of this).

The expression in (9.27) has the same basic form as the spatial interaction
models in (9.17) and (9.18). To see this more clearly, the relationship can be made
more explicit by defining the observable utility associated with each destination as
a function of its attributes. For example, consider the case of retail choice in which
an individual selects a supermarket from a set of supermarkets in an urban area.
The individual is likely to gain more benefit from selecting a large store as opposed
to a small store in terms of having a greater variety of produce to choose from and
also possibly cheaper prices. Similarly, the individual will gain more benefit, in
terms of cost and time savings, from selecting a store in close proximity rather than
far away. Obviously, there are many other attributes that can be added to an
individual’s utility function but these two will serve our purpose in demonstrating
the behavioural relationships embedded in the model derivation at this stage.

Consider first the relationship between V;, and S, the size of the store. Two
possibilities are shown in Figure 9.2: a linear relationship and a logarithmic
relationship. The linear relationship might at first seem the more reasonable but on
reflection the behaviour it represents is rather implausible. It implies that an
additional 1000 square metres of retail space to an existing store would generate
the same added utility regardless of the original size of the store. That is, the
additional utility from the extension is predicated to be the same whether the
original store is 2000 square metres or 10000 square metres. An alternative and
more plausible behavioural relationship is that provided by the logarithmic function
which implies that the addition to the size of the store generates less benefit to the
consumer when the store is already very large than when the store is small.
Consumers are unlikely to reap much benefit from an addition when the store is
already very large. Hence, the relationship between V; and S, can be expressed as
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Linear
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Figure 9.2 The relationship between observed utility and size

I/,'k x aln Sk (928)

where a represents the particular shape of the logarithmic relationship.

For a similar behavioural reason, the relationship between V; and dj, the
distance to alternative k£ for an individual at i, is also likely to be logarithmic as
depicted in Figure 9.3. The addition of 10 kilometres to a journey which is already
500 kilometres is likely to affect one’s assessment of the journey less than the
addition of 10 kilometres to a journey which is only 5 kilometres. Hence, the
appropriate relationship is given by

I/,'k 0.8 ﬂ In d,'k (929)

Logarithmic

Linear

Figure 9.3 The relationship between observed utility and distance
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where f is a distance-decay parameter to be estimated. Substituting the relation-
ships described by Equations (9.28) and (9.29) into (9.27) yields

pu = Sidl / > sidf) (9.30)
J

which is the form of production-constrained spatial interaction model given in
(9.17).

It should be noted that this form of model has two well-known properties which,
in the context of spatial choice, are undesirable. The first is termed the indepen-
dence from irrelevant alternatives (IIA) property and stated simply is that the ratio
of the probabilities of an individual selecting two alternatives is unaffected by the
addition of a third alternative. This is easy to see: in Equation (9.30) consider two
alternatives, j and k. As the denominator in (9.30) is a constant, the ratio of the
probabilities of choosing k over j is

P/ py = Sidly/S5d) (9.31)

J

which is indeed independent of any other alternative. In a spatial choice context
this property implies that the model’s predicted flow to any destination is unaffected
by the location of the other alternatives. That is, the ratio of the probabilities of
choosing two stores is unaffected by the fact that one store might be surrounded by
competitors and the other store is in relative isolation. This seems unrealistic in
terms of most spatial choice contexts where the location of an alternative with
regard to its competitors would seem to be important (Fotheringham, 1989).

The other undesirable property of the model in (9.30) is what Huber et al. (1982)
term ‘regularity’. That is, it is impossible for the model to predict an increase in the
flow to any existing alternative due to the addition of a new alternative. Again, in
many spatial choice situations, this is unnecessarily restrictive and unrealistic.
Consider, for example, clothing stores where agglomeration effects are present
(one of the reasons why shopping malls exist). The location of a new store can
increase the sales at nearby stores.

More recent developments in the theoretical derivation of spatial interaction
models have used spatial choice principles, which avoid both of the above
problems. These developments and the resulting models are now discussed.

9.5 Spatial interaction as spatial information processing (1990 onwards)
The derivation of spatial interaction models described above in the framework of

discrete choice represents an advance over the previous physical analogies to
gravitational attraction and entropy. However, it is a framework which has also
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been ‘borrowed’ from economics, another predominantly aspatial discipline. The
discrete choice framework was developed for aspatial contexts such as brand choice
and choice of transportation mode. As such, it contains an assumption that, while
tenable in the context of most aspatial choice, is untenable when applied to most
spatial choice problems. In Equation (9.24), and subsequently, the assumption is
made that an individual is able to evaluate all alternatives. That is, alternative & is
compared with all the alternatives in the full choice set N. In essence, the
individual is assumed to be omniscient and able to process vast amounts of
information. In simple choice situations where N, the number of alternatives, is
small, such as in most brand choice and mode choice situations, it is reasonable to
assume that individuals can process information on all the alternatives. However, it
is generally recognized that individuals have a limited capacity for processing
information (inter alia, Simon, 1969; Lindsay and Norman, 1972; Newell and
Simon, 1972; Norman and Bobrow, 1975) and indeed this limit might be reached
very quickly. Bettman (1979), for example, argues that our limit to information
processing might be reached with as few as six or seven alternatives. Consequently,
in most spatial choice situations the number of alternatives is far too large to
assume individuals can evaluate all possible alternatives. Consider, for example,
buying a place to live in a large metropolitan area where there might be thousands
of properties for sale, or a migrant choosing between cities within a country, or
even a consumer selecting a store within an urban area. In such situations the
number of alternatives is generally very large, far too large in fact for us to be able
to retain the assumption that individuals evaluate every alternative.

The manifestation of this untenable assumption and the subsequent misspecifica-
tion of the traditional spatial interaction model formulation only comes to light
when local forms of spatial interaction model are calibrated (see Chapter 5).
Typically, local spatial interaction models are calibrated separately for each origin
in the system (although they can also be calibrated separately for each destination).
In so doing, a set of parameters, one for each origin, describes the relationship
between spatial movement and an attribute of the destinations. These sets of origin-
specific parameter estimates replace the single parameter estimates obtained in the
calibration of a global model. An indication of a problem with the classical spatial
interaction model formulation was uncovered when origin-specific estimates of the
distance-decay parameter were mapped. The maps showed a consistent and puz-
zling spatial pattern in which peripheral origins generally had more negative
distance-decay parameter estimates than more central ones (see Fotheringham
(1981) for examples of this pattern and a summary of the discussions, sometimes
intense, that such patterns evoked).

An example of the trend in origin-specific distance-decay parameter estimates
commonly found is shown in Figure 9.4. This describes the relationship between
origin-specific distance-decay parameter estimates and a measure of the centrality
of each origin. The parameters are derived from a production-constrained model
(such as that shown in Equation (9.17)) applied to 1970—80 migration flows
between the 48 contiguous states of the USA. The destination attributes in the
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Figure 9.4 Plot of estimated distance-decay against origin centrality: results
contain a misspecification bias

model are: population size; distance from each origin; mean personal income;
average temperature; unemployment rate; and median house price. The pattern is
quite striking in that it appears to indicate that distance-decay rates are less negative
for centrally located states than for peripherally located states.> Behavioural
explanations for the types of pattern exhibited in Figure 9.4, such as people in more
central origins being more spatially mobile, have not been convincing (see
Fotheringham, 1981) and the search turned to a theoretical explanation to this
puzzle. The answer came in understanding the type of information processing
which is likely to take place in spatial choice, which we now describe.

The generic spatial choice problem can be stated as: ‘How does an individual at
location i make a selection from a set of N spatial alternatives?’ This type of
spatial choice must precede most types of spatial interaction, whether it be
shopping, migration, house selection which determines commuting patterns, vaca-
tioning, or any other of a myriad types of movement over space. The spatial choice
process as shown in Figure 9.5 has three characteristics (Haynes and Fotheringham,
1990):

1 Itis a discrete, rather than a continuous, process. That is, either a destination is
selected or it is not and there is a finite number of alternatives.

The number of alternatives is generally large, and in some cases, very large.

3 The alternatives have fixed spatial locations, which limits the degree to which
alternatives are substitutes for one another. It also means that, unless the spatial
distribution of alternatives is perfectly regular, each alternative faces a unique
spatial distribution of competing alternatives.
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Figure 9.5 The spatial choice problem

The first property suggests that the discrete choice framework introduced from
aspatial choice, and described above in Section 9.4, provides a basis for under-
standing spatial choice. The second and third properties suggest the framework will
need some modification as these two properties are not usually found in aspatial
choice.

With the spatial choice framework in mind, and the realization that there are
limits to individuals’ abilities to process information, Fotheringham (1983a; 1983b;
1984; 1986; 1991b) develops a new form of spatial interaction model, termed a
competing destinations model. This model results from the starting point of how
individuals process spatial information and its derivation does not depend on the
assumption that individuals are able to evaluate every alternative.

The derivation of the competing destinations model closely follows that of the
logit discrete choice model described above with the added flexibility of allowing
individuals to make choices from restricted choice sets rather than from the
complete set of alternatives. This is achieved by replacing Equation (9.24) with

pix = prob[Uy > U; +Inp(j € M) (for all j € N, j # k)] pi(k € M)  (9.32)

where M is the restricted choice set in which an individual at i evaluates all the
alternatives and N is the full set of alternatives. Alternatives that are not within M
are not evaluated and therefore cannot be chosen by the individual. For example,
suppose an individual looking for a house within a city only looks at housing in the
south-east quadrant of the city. Houses in other parts of the city are never consid-
ered and so are not evaluated and therefore will not be chosen, even if they have all
the attributes the individual seeks. To see how Equation (9.32) represents this type
of behaviour, consider two situations. First, if the alternative k is not in the
restricted choice set M, p;(k € M) will be zero and hence p; = 0, no matter how
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large Uy is. Secondly, if j is not in the restricted choice set, p,(j € M) =0 and
Inp(j€ M)=—oo so that U;+Inp(j€ M)=—oo and hence k will be
selected in preference to j despite j’s attributes. Thus, Equation (9.31) allows sub-
optimal choices to be made: individuals sometimes select alternatives which do not
yield maximum utility because they cannot evaluate every alternative.

Substituting Equation (9.32) for (9.24) into the framework described in Section
9.4 yields the following general spatial choice model:

\|~V,1f Vi+x—In pi(jEM)

+00 n
pi = pilk € M)J gl =[]
= JU#k)

g(uy = y)dydx (9.33)

y=-00

(Fotheringham, 1988). Under the assumption that the x4 terms are independently
and identically distributed with a Type I extreme value distribution, the resulting
spatial choice model is

Pu = exp(V) X pi(k € M) / S e X pGieM)  (9.34)

Essentially this is a logit model where each alternative’s observable utility is
weighted by the probability of the alternative being evaluated. Three specific
models can be derived from this general form depending on the definition of

pi(j € M):

1 If p(j € M) =1 for all j, then Equation (9.34) is equivalent to (9.27). That is,
if all the alternatives are evaluated by individuals, then the model in (9.34)
degenerates to the classic logit model.

2 If p(je M)=1 for all j € M and 0 otherwise, the model is equivalent to a
logit model applied to only those alternatives in the restricted choice set.
Obviously to operationalize such a model it would be necessary to know in
advance what the restricted choice set was for each individual. Generally such
information is not known a priori. Also, the situation is complicated by the
likelihood that individuals in different locations have different mental images
of space and different cognitive constructions of clusters of spatial alternatives
(Gould and White, 1974).

3 If p(j€ M) is a function of the location of j with respect to the other
alternatives, then the model in (9.34) holds and the task is to determine how to
define p,(j € M). We now pursue this line of enquiry in order to derive the
competing destinations spatial interaction model (Fotheringham, 1983b; 1986).

By defining a likelihood as a probability divided by a constant, the model in (9.34)
can be rewritten as
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pi = exp(Vi)) X Li(k € M) / Y exp(Vy) X Ii(j € M) 9.35)

where [;(j € M) represents the likelihood that alternative j is in the restricted
choice of alternatives which are evaluated by an individual at location i. A great
deal of research has been undertaken into how to define this likelihood function, or
its equivalent (inter alia, Meyer, 1979; Batsell, 1981; Meyer and Eagle, 1982;
Fotheringham, 1983b; 1991b; Fik and Mulligan, 1990; Lo, 1991; Fik et al., 1992;
Thill, 1992).

It can be argued that there are two distinct processes represented in Equation
(9.35): one is how individuals evaluate an alternative and the other is whether it is

evaluated (see Figure 9.6). Associated with these two processes are three types of
attributes:

1 The attributes of an alternative that affect zow individuals evaluate it. These
are already incorporated in the model through the expression exp(V};), the
exponential of the observable utility component.

2 The attributes of an alternative that affect both Aow individuals evaluate it and

whether they evaluate it. Again, such attributes are already included in the
spatial choice framework through the expression exp(V).

3 The attributes of an alternative that affect only whether an alternative is
evaluated. It is these attributes which need to be incorporated into the
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Figure 9.6 The spatial choice process
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modelling framework through the definition of the likelihood of an alternative
being evaluated, /,( j € M). The definition of these attributes will lead to new
and improved forms of spatial choice/spatial interaction models. We now
describe the rationale behind the definition of one of these attributes which
describes the location of an alternative vis-a-vis all other alternatives and
which leads to a model known as the competing destinations model (Fothering-
ham, 1983b; 1986).

Assume that, because of limits on our ability to process information, individuals
do not evaluate all the alternatives available in a typical spatial choice context.
Instead, they process spatial information and make spatial choices in such a way
that they first evaluate clusters of alternatives and only evaluate particular alter-
natives from within a selected cluster. For instance, a migrant might first select a
region in which he or she would like to live and then evaluate alternatives only
within that region. Equivalently, an individual looking at housing in a city might
have strong opinions about which parts of the city he or she would like to live in
and which parts are to be avoided. Support for the hypothesis of hierarchical
information processing is given by, inter alia, McNamara (1986; 1992), Walker and
Calzonetti (1989), Hirtle and Jonides (1985), Stevens and Coupe (1978), Curtis and
Fotheringham (1995) and Fotheringham and Curtis (1992; 1999).

Unfortunately for the modeller it is very difficult, if not impossible, to know how
people mentally cluster alternatives in space. Individuals themselves might not be
able to tell you how they process spatial information and the mental clusters they
form might well be fuzzy (Zadeh, 1965; Pipkin, 1978) rather than discrete.
Certainly, there is evidence to suggest that such clusters will vary according to
one’s location in space (Gould and White, 1974; Downs and Stea, 1977; Curtis and
Fotheringham, 1995; Fotheringham and Curtis, 1999). However, Fotheringham
(1991b) and Pellegrini and Fotheringham (1999) argue that it is not necessary to
define the clusters of alternatives that individuals evaluate. It is only necessary to
assume that some form of hierarchical spatial information processing takes place
whereby clusters of alternatives are first evaluated and then only alternatives within
a selected cluster are evaluated. The task then becomes one of identifying any
destination attributes associated with the hierarchical processing of spatial informa-
tion that affect the likelihood of an alternative being evaluated.

One such variable, identified by Fotheringham (1983b; 1986), is the proximity of
an alternative to all other possible alternatives. There are many ways such a
variable could be measured, but a common measurement is the accessibility of an
alternative k to all other alternatives, A4,, as defined by

A=Y P/, (9.36)
J#k

where P, represents the population of alternative j and d is the distance between
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alternatives j and k. This formulation measures the ‘competition’ faced by
alternative k from all the other alternatives: when an alternative is centrally located
near many other alternatives, A, will be large; when it is relatively isolated, 4, will
be small. In practice, the values of a and f5 are often set to 1 and —1, respectively,
although they could be estimated either in the model calibration procedure or
externally.

The justification for the inclusion of this competition variable is based on ‘the
psychophysical law’ that individuals tend mentally to underestimate the size of
large objects (Stevens, 1957; 1975). Consider an individual evaluating spatial
clusters of alternatives, such as cities within a country. One of the factors in the
evaluation of each cluster is likely to be its size, reflecting the number of
opportunities for employment etc. However, the psychophysical law suggests that
the cognized size of a large cluster is likely to be smaller than its objective size and
that the magnitude of this mental underrepresentation will increase with the size of
cluster, resulting in the logarithmic relationship depicted in Figure 9.7. The linear
relationship between the cognized and objective size of clusters would only occur if
individuals did not underrepresent large clusters mentally. The probability of an
individual selecting a large cluster of alternatives, and consequently evaluating the
individual alternatives within that cluster, will obviously be less if the relationship
is logarithmic than if it were linear. Hence, the likelihood of a spatial alternative
being evaluated is a function of the location of an alternative with respect to all the
other alternatives; alternatives in large clusters are less likely to be evaluated than
those in small clusters, ceferis paribus. Rather than having to identify the exact
nature of the clusters cognized by individuals, all we therefore need to define
I,(j € M) is the measure of destination competition given in Equation (9.36). That
is,

I(jeM)= 4] (9.37)

Cognized size
of spatial cluster Linear

Logarithmic

Objective size
of spatial cluster

Figure 9.7 Relationships between cognized and objective cluster sizes
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where 0 is a parameter to be estimated. If & = 0, all destinations are equally likely
to be evaluated (the aspatial logit assumption). Given the above theoretical reason-
ing, we would expect that 0 will be negative in most spatial choice situations; the
more centrally located is an alternative, the more likely it is to be in a large cluster
cognized by an individual and the less likely it is to be evaluated, ceteris paribus.
However, for certain types of spatial choice, such as non-grocery shopping, there
could well be substantive agglomeration effects so that individuals are attracted to
large clusters of alternatives in order to minimize the costs of comparison shopping.
In such instances, 6 will be positive.
Substituting (9.37) into (9.35) yields the spatial choice model,

pix = exp(Vy) X A3 / > exp(Vy) X A2 (9.38)
J

which Fotheringham (1983; 1986) calls the ‘competing destinations model’. A
large number of empirical studies have demonstrated the superiority of this model
over the aspatial logit formulation in modelling spatial choice (inter alia, Fother-
ingham 1984; 1986; Fotheringham and O’Kelly, 1989; Boyle et al., 1998; Atkins
and Fotheringham, 1999; Pellegrini and Fotheringham, 1999). Typically, it produces
demonstrably less biased parameter estimates and significant improvements in
goodness of fit.

As an example, consider the pattern of origin-specific distance-decay parameters
described above in Figure 9.4. This pattern was described as evidence of a mis-
specification problem with the model because there appears to be a regular change
over space in the effect of distance on spatial interaction which is difficult to account
for in behavioural terms. When a model having the form of (9.38) is calibrated with
exactly the same destination attributes as those used to generate the results in Figure
9.4, the spatial pattern of the origin-specific distance-decay parameters disappears as
shown in Figure 9.8, drawn to the same scale. This suggests strongly that the
distance-decay parameters generated by standard logit forms of spatial interaction
models contain a severe misspecification bias and that this bias is eliminated in the
calibration of the competing destinations model. Fotheringham (1986) demonstrates
theoretically the nature of the misspecification bias in the parameter estimates
obtained from the aspatial logit model when the relationship in (9.38) holds.

By incorporating the appropriate spatial weight on each observable utility func-
tion, both of the undesirable properties identified with the aspatial logit model in
the previous section, the ITA property and regularity, are also removed in the
competing destinations model. The removal of the former can be seen by taking the
ratio of the probabilities of selecting two alternatives, j and &, from the model in
(9.38), which is

i/ Py = exp(Vie) X Ay [exp(Vy) X A 9-39)
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Figure 9.8 Plot of estimated distance-decay against origin centrality: results with-
out a misspecification bias

and which is unlikely to be constant under the addition of a new alternative to the
system. The addition of a new spatial alternative will have differential effects on
the measurement of 4, and 4; depending on the location of the new alternative vis-
a-vis the locations of k and j. Similarly, the regularity property is removed because
within the competing destinations framework, it is possible that the addition of a
new spatial alternative will result in an increase in the probability of selecting an
existing alternative. This would happen, for instance, in a shopping context in
which & were strongly positive; then, the addition of a new store in close proximity
to an existing one could result in an increase in the predicted patronage of the
existing store.

9.6 Summary

The development of spatial interaction models highlights the progress made over
the last few decades in this area of quantitative geography. We have witnessed the
progression from models whose only justification was an empirical regularity and
an analogy to gravitational attraction; to models derived from either non-behaviour-
al or aspatial theories imported from other disciplines; and finally to models based
on principles of spatial information processing, sub-optimality, hierarchical deci-
sion making and spatial cognition. Current research lies in consolidating and
improving this latest framework.

However, despite the progress in making spatial interaction models more
behaviourally based, it is probably the case that many geographers still associate
spatial interaction modelling with its early social physics background (as demon-
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strated by the lingering usage of the term ‘gravity model’). This is unfortunate for
two reasons. The first is that, despite its very widespread application to many facets
of the real world, these geographers ignore or even dismiss spatial interaction
modelling, not because of what it is but because of what it was 20 or 30 years ago.
The second, and more important, is that spatial interaction modelling provides a
very fertile area for understanding spatial behaviour and for developing theories
which are explicitly spatial. It is an area that is quintessentially geographical; it is
an area where geographers should be leading the way by exporting their ideas to
other disciplines.

Notes

1. Additionally, efforts in obtaining data for trip models have led to other spinoffs. For
example, in the UK the first file linking postcodes to grid references arose out of
government-sponsored trip modelling efforts (Raper et al., 1992, p. 43).

2. Centrality here is measured with respect to overall population so that in this US example,
the states with the highest centrality index are those in the north-east and the states with
the lowest centrality index are those in the west.



10 Challenges in Spatial Data Analysis

10.1 Retrospect

In 1963 Burton described the transformation of the ‘spirit and purpose’ of
geography during the 1950s as ‘the “quantitative revolution”’, and commented that
by the time he was writing ‘the revolution itself is now over’. Later in the same
paper Burton comments: ‘An intellectual revolution is over when accepted ideas
have been overthrown or have been modified to include new ideas’. However,
others have identified the ‘end’ of the revolution as the starting point for moving
away from quantification. This final chapter begins by examining the concerns of
spatial analysts in the years following the ‘revolution’. We shall consider whether
or not those problems which were of major concern have been set aside as not
worth expending effort on, whether they have been ‘solved’ with the solutions in
common use, or whether they remain problems.

If the methodologies and techniques of the quantitative revolution were in place
by Burton’s 1963 paper, then a glance at some of the texts emerging in the late
1960s gives a flavour of matters of concern that had arisen even at this early
stage. For example, King (1969) provides a helpful summary of ‘statistical
analysis’ as practised in geography by the late 1960s. We find a conglomerate of
simple descriptive statistics, a consideration of theoretical distributions, point
pattern analysis using nearest-neighbour and quadrat methods, correlation, regres-
sion, residual mapping, trend surface analysis, principal components analysis,
factor analysis, classification, and discriminant analysis. However, recognizing
that this battery of statistical methods might still not be sufficient, King draws
attention to a number of problems: (a) modifiable areal units, (b) spatial
autocorrelation, (c) model identification, and (d) the use of dummy variables to
represent regional effects. Thirty years on, these remain areas that pose some
interesting challenges. Although we have made considerable progress in some of
these areas, and we now know a great deal more about spatial data and spatial
data analysis, this text has exposed how complex some of these issues are. We
now briefly review some of the topics in which we see major challenges and
opportunities in spatial analysis.
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10.2 Current challenges
10.2.1 The modifiable areal unit problem

One problem that has long been identified in the analysis of spatially aggregated
data is that for some analyses the results depend on the definition of the areal units
for which data are reported (Gehlke and Biehl, 1934). This has become known as
the modifiable areal unit problem (Openshaw, 1984). The data sets which are
available for the solution of particular problems have often been aggregated to
some system of zones by the agency responsible for collecting them. Notable
examples here are the Census of Population data available in both the USA and the
UK (although samples of microdata are available, they have limited applicability,
particularly to spatial problems). Gehlke and Biehl (1934) noted that aggregation
from census tracts to larger areal units increased the value of a correlation
coefficient, and posed the question as to whether the correlation coefficient was an
appropriate statistic for use with aggregate spatial data. Yule and Kendall (1950, pp.
310-314) observed the same phenomenon in an analysis of wheat and potato yields
among the counties of England. In the same year Robinson (1950) discovered
similar behaviour in comparing correlations based on individual measurements and
those aggregated to counties in states. Robinson (1956) suggested that areal
weighting would ameliorate the problems in calculating correlation coefficients for
areal units of different sizes. Blalock (1964) observed that regrouping county data
for 150 southern US counties into larger areal units increased the correlation
coefficient. However, Thomas and Anderson (1965) re-examined the findings of
Gehlke and Biehl, and Yule and Kendall, concluding that the differences in the
values of the correlation coefficients in both studies were due to random variation.

Openshaw and Taylor (1979) discovered that they could obtain almost any value
of the correlation between voting behaviour and age in lowa merely by aggregating
counties in different ways. More recently, Fotheringham and Wong (1991) demon-
strated how the stability or instability of parameter estimates obtained from a
multivariate model under different levels of aggregation could be visualized. They
demonstrated that some relationships can be relatively stable to data aggregation,
while others appear to be very sensitive. Fotheringham et al. (1995) describe the
same problem in the context of location—allocation modelling where sensitive
locational decisions are shown to be affected by the definition of the zones for
which data are reported. Both these latter two studies also demonstrate the two
components of the modifiable areal unit problem:

1 The scale effect: different results can be obtained from the same statistical
analysis at different levels of spatial resolution.

2 The zoning effect: different results can be obtained owing to the regrouping of
zones at a given scale.

However, despite the fact that the modifiable areal unit problem has been observed
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for decades, we appear to be little closer in dealing with the problem effectively. Of
course, one solution is to use spatially disaggregated data, although, as mentioned
above, such data are rarely available. Another is to report the results of the spatial
analysis at the most spatially disaggregated level possible and then to demonstrate
visually the sensitivity of the results to both the scale and zoning effects. In this
way, if some results can be shown to be relatively stable over a wide range of
zoning systems, this can induce greater confidence that the results at the most
disaggregated level have some meaning and are not simply artefacts of the way the
data are arranged.

For Openshaw and Rao (1995), the answer lies in the construction of zoning
systems that are in some sense ‘optimal’. It is not always clear whether this
construction is intended to influence those releasing the data. It might be regarded
as somewhat eccentric to create a zoning system for which the fit of a particular
spatial model is ‘optimal’ if this zoning system is to be used for some completely
different purpose. Equally, if the reaggregation is to take place after the data are
released we know that we are stuck with the areal units that we have, and that if we
reaggregate them to some other units, we are essentially creating arbitrary results.
If we create one zoning system for one regression model, then include another
variable and rezone to get the ‘best fit’, then it is not immediately clear how we
compare one model with another, apart from in the rather trivial sense that the 1>
has changed.

One methodology that shows some promise is by Steel and Holt (1996), Holt
et al. (1996) and Tranmer and Steel (1998). They propose a model structure to deal
with the problems of modifiable areal units in which there is an extra set of
grouping variables included. These grouping variables, z, can be measured at the
individual level and are in some way related to the processes being measured at the
aggregate level. They are used to adjust the aggregate-level variance—covariance
matrix for the model so that it more closely approximates the unknown, individual-
level variance—covariance matrix. Data on each of the following are assumed to be
available:

1 A population of N individuals, i =1 ... N, distributed over M regions,
j=1... M.

2 A vector of variables of interest for each individual, y;,, which has been
aggregated to M zones. The aggregated data are represented as ;.

3 A matrix x indicating to which of the regions each individual belongs. This
matrix has typical element x;.

4 The number of individuals in the jth region, N;.

5 Avector of variables z; measured at the level of the individuals and defined as
the grouping variables.

At the aggregate level, the variance—covariance matrix of the variables is S, and it
is this that is of interest, since from it we can estimate a correlation matrix,
regression coefficients and principal components of y. However, if we can estimate
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an individual-level variance—covariance matrix for the grouping variables, a better
estimator of the aggregate-level variance—covariance matrix is given by

Eyy - Syy + BT (Zzz - SZZ)B

vz vz

(10.1)

where 2, is the new estimate of the aggregate-level variance—covariance matrix of
the y variables; S, is the original estimate of the aggregate-level variance—
covariance matrix of the y variables from the aggregated data; B,, is a matrix of
aggregate-level regression coefficients of y on z, the grouping variable; X_. is the
individual-level variance—covariance matrix for the z variables; and S.. is the
aggregate-level variance—covariance matrix for the z variables.

The problem, of course, is to find an estimate of the individual-level covariance
matrix for suitable z variables. In some circumstances it may be possible to obtain
individual-level data; Holt et al. (1996), for example, use data from the 1991 UK
Census of Population for 371 enumeration districts in the administrative district of
Reigate, Banstead and Tandridge (in South London) and they make use of the
‘Sample of Anonymised Records’ (Dale and Marsh, 1993) to provide individual-
level records for a 2% sample of the district’s population to estimate the X_, matrix.
The technique could be applied to US census data using the PUMS to estimate the
individual-level variance—covariance matrix. The technique obviously does depend
on the availability of individual-level data although Holt et al. (1996) point out that
these need not be for the same area. If suitable individual-level data are not
available, the technique is of little use. It should also be noted that the measurement
of both the 2., and the B, matrices depends on some definition of the areal extent
of the individual-level variables and must therefore also be prone to the modifiable
areal unit problem. It is also assumed that the relationships between the grouping
variables and the aggregate variables are constant over space.

A not too dissimilar approach has been taken by King (1997) who provides one
interesting ‘solution’ to the ecological fallacy problem in a voting context. Here,
data are available at different spatial scales (voting precincts and districts) and
King’s solution involves local forms of regression (see Section 10.2.2) and using
constraints peculiar to voting data. The use of local forms of analysis in general
might well provide a new way of thinking about the modifiable areal unit problem.
Geographically weighted regression, for example, provides fuzzy zones around
each calibration point and presents a surface of parameters which is independent of
any predefined zoning system. Of course, GWR still suffers from its own form of
scale problem in that the results are dependent on the bandwidth used which is a
measure of spatial scale. However, at least this can be calibrated within a regression
framework.

Despite the promise shown by the above studies, and also possibly by the use of
local forms of analysis in general, there is still much work to be done in exploring
the sensitivity of the results of spatial analysis to the definition of spatial units for
which data are defined. Until a general solution is found, the modifiable areal unit
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problem will continue to create uncertainty in the widespread applicability of
spatial analytical results.

10.2.2 Spatial non-stationarity

The exploration of spatial variations in relationships has perhaps been one of the
most fruitful areas of research in quantitative geography over recent years. The
spatial weighting framework of GWR, in particular, seems to hold much promise
(see Chapter 5). Although currently utilized as a tool for investigating spatial non-
stationarity within a regression framework, the technique can be applied quite
easily to other types of analysis.

For instance, the calculation of a simple mean produces a single whole-map
statistic which summarizes the central tendency of a distribution, but which ignores
any spatial effects. Suppose we allow the mean to vary across the map, and we
explore the data by examining local variation in the mean. One possibility for a
locally weighted mean might be something of the form

Z?:l Wi(Z)xi

)= > wil2)

(10.2)

where X(z) is the locally weighted mean calculated at the location whose coordi-
nates are given by the vector z. The w;(z) are weights for each observation
calculated in the manner used in geographically weighted regression (see Chapter
5). Do local means have an intuitive interpretation, and what are the problems in
using such statistics? To take housing cost as an example, some areas are
colloquially described as ‘expensive’ compared with other areas. The houses in an
‘expensive’ area might be so because they are larger and have more amenities than
other houses, but equally, there may well be a greater local demand for such
properties thus increasing the unit cost of floorspace. A map showing the variation
in the local mean price might provide some insight here that aggregating the data to
a set of zones and calculating a mean or median might hide. One problem with a
spatial mean is that of choosing a parameter (the bandwidth) for the spatial
weighting function. The calibration methods of Chapter 5 based on cross-validation
are not appropriate here as it is unclear what objective function is to be minimized.
However, a map with an associated slider bar allowing a range of bandwidths to be
chosen by the analyst might provide some insight into the spatial scale at which an
area is considered ‘expensive’ or otherwise. Instead of imposing an arbitrary
zoning system onto the data for analysis, we allow the data to suggest one instead.
No analysis involving a mean should ignore local variation in the spread of a
spatial distribution. The influence of unusually high or low values in the locality
may move the position of the mean if there were a few unusually expensive
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properties among others of relatively low cost. One possibility for a locally
weighted variance might be

> W@ — X(2)P
Z:l:] Wi(Z)

0%(z) = (10.3)

The deviances calculated in the numerator are relative to the local mean calculated
by Equation (10.2). Examining variation in the local variance will give some
indication of differences in the local spread of the distribution across the map.
Again, a map of this statistic may be examined in conjunction with a map of local
means. By extension, formulae for the local skewness, local covariance and local
Pearson product moment correlation coefficient may also be derived.

Another extension of the GWR concept is to the range of multivariate statistical
techniques other than regression which have frequently been employed by geogra-
phers. This includes principal components analysis (and, by extension, factor
analysis) and discriminant analysis. The assumption made in their use is that the
model coefficients are spatially invariant, and that any spatial variation can be
safely confined to the error term. However, if spatial variation is important, treating
it as an error is perhaps rather perverse.

Any of these methods for which continuous observation weighting is possible
may be subjected to geographical weighting in the manner of GWR. However, the
analyst doing so is presented with a daunting array of results. With geographically
weighted principal components, there will be a set of component loadings and
component scores for every location in the study area for which components are
extracted. This does present a problem with interpretation, since the component
which accounts for the greatest amount of local variance in one part of the study
may not be directly comparable with the component which accounts for the greatest
amount of local variance elsewhere. Certainly one may map the coefficients, but
interpretation of the components becomes something of a daunting prospect. How
does the analyst deal with spatially varying eigenvalues for example? Principal
components analysis represents a transformation from one space in which the axes
may not be orthogonal to one in which the axes are orthogonal. What geometrical
interpretation may be attached to geographically weighted principal components?
Can we use the component scores to help understand geographical processes? How
do we decide the ‘best’ value for the bandwidth?

With geographically weighted discriminant analysis, the picture becomes more
complex. Typically the output from a discriminant analysis comprises the coeffi-
cients for the discriminant functions, predictions of the group membership based
on those functions, and a confusion matrix indicating the difference between prior
and posterior group membership. If we apply geographical weighting techniques
here, then we are presented with all this for every location at which the functions
are extracted. Can the coefficients be meaningfully mapped? Can the functions be
compared? It may be helpful to be able to explore where a particular variable is
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important in influencing group membership and where it is not. How does the
analyst interpret the confusion matrices? Perhaps a frequency analysis of how many
times group membership of an observation is correctly predicted will reveal those
for which prediction is less influenced by spatial non-stationarity, and those for
which the opposite is the case. What does this tell us about the characteristics of
individual obervations?

10.2.3 Alternative inferential frameworks (Bayes, MCMC)

Generations of geography students have been taught to carry out classical statistical
inference tests where a hypothesis is stated, a significance level is expressed, a test
statistic calculated and compared with some value which relates to the desired
significance level, and a decision is made to accept or reject the hypothesis. It is
not always clear where the hypothesis comes from, nor how the significance level is
arrived at. We end up testing ‘pinhead’ hypotheses: is it helpful to know that the
regression parameter is not significantly different from zero at the 5% significance
level? The problem is that we do not consider the question ‘How different from
zero is the regression parameter?’ In the large spatial data sets increasingly
available, even minute differences from zero (say 0.001) would be ‘significantly’
different from zero.

A notable trend in statistics over recent years has been the rise in the use of
Bayesian inference (see Chapter 8). There are a number of reasons why this may
have occurred. Among statisticians there has been a growing current of dissatisfac-
tion with the classical ‘significance testing’ approach to statistical inference. Also,
the development of Monte Carlo Markov chain (MCMC) techniques has made the
Bayesian approach viable in many situations where it would otherwise not be (see
for example Gelman et al., 1995). Essentially, MCMC techniques enable the
properties of multivariate probability distributions to be investigated by simulation,
in situations when analytical approaches are not practical. The number of simula-
tions needed is sometimes very large (in excess of a million in some situations), but
at the time of writing this does not present a challenge to even fairly standard
computing equipment. Analysts are far less constrained by the mathematical
properties of the statistical models they may apply within the MCMC framework,
since it is no longer necessary to specify models that are ‘mathematically
convenient’. Thus models that are in some sense more realistic may be specified
and results of greater utility may be obtained.

This is of particular importance to quantitative geographers, since there is
growing interest in Bayesian MCMC approaches to spatial statistical problems
(Besag and Green, 1993). Spatial statistics are notorious for generating analytically
intractable problems and so MCMC techniques could prove to be a very useful
innovation for this subject matter.
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10.2.4 Geometry

It is perhaps the historical prevalence of paper maps which has led us to assume
that calculations relating to the surface of the earth should take place using a
Cartesian coordinate system on a plane. While this is acceptable for small-scale
processes, increasingly we are interested in global processes and global models of
such processes where the spherical nature of the earth needs to be considered. Does
thinking about the earth as a sphere provide any opportunities? We suggested in
Chapter 2 that calculations using spherical coordinates are rather cumbersome.
However, the situation is less of a problem than might be imagined (Brannan et al.,
1999). A point on the surface of the earth can be thought of as being in three-
dimensional Euclidean space with coordinates (x, y, z). The centre of the earth is
taken to the point (0,0,0). If we assume the radius of the earth to be unity, then the
positive x axis meets the surface where the Greenwich meridian crosses the equator
at (1,0,0). The positive y axis meets the surface where the 90°E meridian crosses
the equator at (0,1,0), and the z axis meets the surface at (0,0,1). The point (0,0,1)
is the North Pole, and (0,0,—1) is the South Pole. If a plane cuts the surface of the
earth and passes through the origin, the circle formed by the intersection of the
plane and the earth’s surface is known as a great circle. Great circles that pass
through the North Pole are known as meridians; that passing through (1,0,0) is
known as the Greenwich meridian. The equator is a great circle, but other lines of
latitude are not.

If we know the latitude 6 and longitude A of a point, the spherical coordinates
are given by (cosA sin(sr/2 — 6), sindsin(ir/2 — 6), cos(t/2 — 0)). If the coordi-
nates of two locations are known, say (a;, a,, a3) and (b,, b,, bs), the distance
between the two points is given by

dlZ = R X arc COS(albl + (lzbz + a3b3) (104)

where R is the radius of the earth. Pythagoras’ theorem has a spherical analogue. If
ABC are the vertices of a triangle on the surface of the earth, with the right angle at
C, then the relationship between the lengths is

AB = arc cos(cos BC + cos CA) (10.5)

where AB is the length of the side between the vertices A and B calculated from
Equation (10.5). For any triangle on the sphere, where the angle at the vertex C is
y, the cosine rule can be used:

AB = arc cos(cos BC cos CA + sin BC sin CA cos y) (10.6)
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We have become used to thinking of spatial data processing as largely two
dimensional and Euclidean. Yet, for continental applications, or global applications,
this presents some difficulties. We can invert our normal practice, store our data
with spherical coordinates, and carry out the geometrical operations using spherical
methods. We can then project the results onto a plane when we require some sort of
display in two dimensions; in this way, we may then start to understand more about
the spatial processes operating at a global scale on the earth’s surface. An
interesting example is provided by Schettino (1999) who considers methods for
polygon intersection in spherical topology. He uses these to model the historical
movement of tectonic plates on the earth’s surface.

Other applications where non-Euclidean geometries would seem to be appro-
priate concern individuals’ perceptions of distances between places. It is highly
unlikely that perceived or cognized distances follow basic Euclidean rules of
geometry yet such distances are likely to play a major role in affecting people’s
spatial behaviour.

10.2.5 Basic spatial concepts: proximity and accessibility

Several techniques in spatial analysis, such as the classical measures of spatial
autocorrelation, rely upon a matrix of proximity measures between zones where
each proximity measure represents the degree of influence of one zone upon
another. We suspect that with some spatial proceses there is a ‘contagion’ effect
and hence the value of an attribute in one zone can have an effect on the values of
that attribute in neighbouring zones. The problem arises in that there is no one
acceptable definition of what constitutes a ‘neighbouring’ zone. Proximity is
sometimes defined in a discrete manner so that the degree of connection between
two zones is one if the two zones share a common boundary and zero otherwise.
Sometimes, it is measured in a continuous manner, perhaps as a function of the
length of the common boundary or the inverse distance between the centroids of
the zones or some other, more complex, function (Bavaud, 1998). However, various
problems can still arise. Suppose the common boundary between two zones is a
river, and there is little interaction between the two zones (due to lack of bridging
points, perhaps). How does this change our view of contiguity? If there are no links,
is there no contiguity? If there is one link in a 100 km border, is there different
contiguity from 50 links in a border of the same length? If two zones meet at a
point, can they be said to be contiguous?

Clearly all these ways of measuring spatial proximity have some validity and
there appears to be no one commonly accepted measure. The problem arises in the
spatial analytical techniques that incorporate such a measure — a change in the
definition of spatial proximity can have a dramatic effect on the resulting analysis.
It therefore makes the calculation of statistics such as spatial autocorrelation highly
subjective. The paradox is that we berate those who do not use techniques such as
spatial regression models, which involve a measure of spatial autocorrelation,
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because of the possibility of producing incorrect standard errors of the parameter
estimates, yet the solution we offer depends on a highly subjective definition of
spatial proximity. As noted in Chapter 7, the subjectivity of the definition of spatial
proximity in such techniques must add to the uncertainty we have about the true
nature of the parameter estimates but this uncertainty is not recognized in any
statistical way.

A similar problem arises in the definition of another basic spatial concept — that
of accessibility. We are generally aware of what we mean when we say ‘this house
is accessible to the shops’, but how do we measure such a concept consistently? For
example, one commonly used measure of accessibility is the potential measure
attributed to Hansen (1959):

4, =3%,84d) (10.7)

where 4; is the accessibility of place i for some activity such as shopping, S; is a
measure of the number of opportunities, such as the square footage of shopping at
J» and d; represents the distance between i and j. The parameters a and 3 reflect
the importance of size and distance, respectively, on the determination of accessi-
bility. The problem is that often there is no way to determine what these parameters
are and variations in them can have significant effects on the accessibility surfaces
produced. For example, the more negative is [, the more ‘spiky’ the accessibility
surface becomes. Quite often, in the use of this measure of accessibility, a is
assumed to be 1 and f is assumed to be —1, but there is usually no justification for
using these particular values other than they produce ‘reasonable looking’ surfaces
which are neither too smooth nor too spiky. Despite the attention of researchers
such as Weibull (1976; 1980), Pooler (1987) and Miller (1999) to this problem, it
probably warrants further investigation.

10.2.6 Merging space and time

A traditional adage has it that ‘geographers study space and economists study
time’. However, it is increasingly recognized that for some processes, a study of
space and time is important: examples include the modelling of epidemics
(Seimiatycki et al., 1980) and the analysis of patterns of household burglaries
(Brunsdon, 1989). Typical analytical approaches test the hypothesis of ‘space—
time’ interaction; that is, they examine whether the locations of events and the
points in time at which they occur are independent or not. For example, space—time
interaction in household burglaries might imply that certain streets are targeted at
certain times. Note that space—time interaction implies more than just spatial
clustering (some places experience more burglaries than others regardless of time)
or just temporal clustering (the overall risk of burglary varies by season). In
epidemiology, testing for space—time interaction is particularly important because
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the presence of such interaction implies that some degree of contagion is involved
in the occurrence of a disease.

The earliest, and perhaps simplest, test for space—time interaction was suggested
by Knox (1964) and elaborated on by Mantel (1967). However, both tests suffer the
problem that an arbitrary definition of ‘closeness’ in space and time has to be made.
In the Knox test, this is in terms of binary indicators of closeness in space and time;
in the Mantel test, it is in terms of coefficients in continuous measures of closeness.
More recently, a K function approach (see Chapter 6) to the detection of space—
time interaction has been proposed by Diggle et al. (1993) and Bailey and Gatrell
(1995).

As with purely spatial patterns, the opportunity to explore and model patterns in
both space and time has greatly increased with the advent of powerful desktop
computers and this area holds much potential for further developments. For example,
MCMC-based methods can be used to consider stochastic space—time processes
(Knorrheld and Besag, 1998) or to carry out bootstrap estimations of space—time K
functions. Another promising area for space—time data is that of visualization, and
again, with the advent of ever more powerful computing environments with strong
graphics capabilities, techniques such as movie making allow the direct visualization
of space—time processes (Dorling and Openshaw, 1992).

10.3 Training people to think spatially
10.3.1 Teaching quantitative geography

Many university degree courses in geography provide a ‘quantitative methods’
module introducing descriptive statistics, ‘simple’ statistical analysis, and an intro-
duction to classical (Neyman—Pearson) statistical tests. Many students find the
nature of conducting a statistical test confusing and problematic. Such courses
usually begin with elementary descriptive measures, proceed through elementary
probability theory and inference, and through a range of classical methods,
including correlation and simple linear regression, perhaps with a dash of non-
parametric statistics thrown in for good measure. There may be a follow-on course
that includes a selection from further regression topics, principal components and
factor analysis, discriminant analysis, analysis of variance, and cluster analysis.
Ecologists may be keen to include methods based on correspondence analysis. In
all of this, we run the risk of losing sight of the many special aspects of spatial data.
Courses dealing explicitly with spatial modelling and spatial statistics are relatively
rare. Is there a need for us to rethink the way in which we approach the teaching of
quantitative techniques in geography? Should we introduce the role of space very
early into quantitative courses and concentrate more heavily on the types of spatial
techniques described in this book?

A similar set of questions relate to how we persuade colleagues, whose academic
familiarity with quantitative techniques is either negligible or harks back to a



CHALLENGES IN SPATIAL DATA ANALYSIS 247

distant era and is now out of date, that modern quantitative geography has
something very useful to offer both themselves and their students. As Wilson
(1984, p. 212) notes:

much of the criticism of ‘quantitative geography’ ... is directed at the work of the
1950s and 1960s (a lot of this style of work is still taught and still appears in the
journals); many of the critics do not have a picture of the steady, indeed often dramatic,
progress which has been made since the 1950s.

There is no doubt that many of the new methods require an understanding of the
language of mathematics, but not necessarily at advanced level. Experience sug-
gests that undergraduates can understand the nature and utility of GWR, for
example, and that they appreciate the essential role that space plays in both the
determination of the statistics and their interpretation.

10.3.2 Software

Most academic computer centres provide a standard range of statistical software
for data analysis. Few of these have any appreciable facilities for the analysis of
spatial data at the time of writing. In order to popularize the use of purely spatial
statistics such as those described here, it would be useful to have a module of SAS
or SPSS devoted to spatial analysis. Performing routines such as GWR would then
become commonplace and we could forget about teaching inappropriate techniques
simply because they are the only ones readily available in a statistics package. With
the increasing availability of spatial data and the increasing recognition that spatial
data have different properties from aspatial data, there will be an increasing
demand for statistical packages which can handle spatial data analysis.

The role of GIS could be crucial here. It is not always clear that integrating
prepackaged spatial analysis methods inside GIS software constitutes an ideal way
forward (Fotheringham, 1999b). A large proportion of current spatial analysis
routines are not fully implemented with GIS, reflecting the fact that the purpose of
most commercial GIS is focused on data handling and management, rather than on
data analysis. Dynamic linkages between software may well be a more promising
route. However, there is no denying that the power and proliferation of GIS has led
to a dramatic increase in the recognition that spatial data demand specialized
techniques. It may well be that GIS do become the equivalent of a word processor
for spatial data and that within a decade, advanced spatial analysis routines will be
standard features of such systems.

10.4 Summary

The message of this book is hopefully a fairly clear one: spatial data have special
properties that create a need for specialized techniques for both spatial data
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analysis and spatial modelling. The increasing recognition of this fact has led to a
reduced reliance on techniques developed in aspatial disciplines and which have
been transplanted to subjects such as geography and applied to spatial data. It has
promoted an increased awareness of the importance of developing specifically
spatial techniques that can handle the unique properties of the subject matter. It has
also brought forth a renewed interest in the role that space plays in various
processes and, in particular, the role that quantitative analysis can play in under-
standing these processes.

In a sense, quantitative geography is undergoing an internal revolution as we
increasingly recognize the importance of space in providing a unique milieu for
analysis and increasingly have the confidence to develop explicitly spatial theory.
As Morrill (1984, p. 68) notes, writing 17 years ago:

I assert that for a few people (going in many and varied directions), we have made
considerable progress, both theoretically and practically, for so ridiculously short a time
(20 years). We have barely started the process of construction and testing of geographic
theory.

The thesis of this book is that we are now at the beginning of an era of renewed
interest in quantitative spatial analysis with the development of explicitly spatial
techniques. It is an era when advances are being made, not so much by borrowing
from other disciplines, but by developing spatial theory based on knowledge of
spatial processes. It is an era when the constraints are not so much to do with
knowledge of mathematics or statistics but to do with one’s imagination. The
challenge is to think about space and spatial processes in new and exciting ways. It
is an interesting time to be a quantitative geographer.
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