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Preface to the Second Edition

It is with great pleasure that we are presenting to the community the second edition
of this extraordinary Handbook. It has been over 15 years since the publication of
the first edition and there have been great changes in the landscape of philosophical
logic since then.

The first edition has proved invaluable to generations of students and researchers
in formal philosophy and language, as well as to consumers of logic in many applied
areas. The main logic article in the Encyclopaedia Britannica 1999 has described
the first edition as ‘the best starting point for exploring any of the topics in logic’.
We are confident that the second edition will prove to be just as good!

The first edition was the second Handbook published for the logic community.
It followed the North Holland one-volume Handbook of Mathematical Logic,
published in 1977, edited by the late Jon Barwise. The four-volume Handbook of
Philosophical Logic, published in 1983–1989, came at a fortunate temporal junction
at the evolution of logic. This was the time when logic was gaining ground in
computer science and artificial intelligence circles.

These areas were under increasing commercial pressure to provide devices which
help and/or replace the human in his daily activity. This pressure required the use
of logic in the modelling of human activity and organisation on the one hand and
to provide the theoretical basis for the computer program constructs on the other.
The result was that the Handbook of Philosophical Logic, which covered most of
the areas needed from logic for these active communities, became their bible.

The increased demand for philosophical logic from computer science and
artificial intelligence and computational linguistics accelerated the development of
the subject directly and indirectly. It directly pushed research forward, stimulated
by the needs of applications. New logic areas became established and old areas
were enriched and expanded. At the same time, it socially provided employment
for generations of logicians residing in computer science, linguistics and electrical
engineering departments which of course helped keep the logic community thriving.
In addition to that, it so happens (perhaps not by accident) that many of the
Handbook contributors became active in these application areas and took their place

v



vi Preface to the Second Edition

as time passed on, among the most famous leading figures of applied philosophical
logic of our times. Today we have a Handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic and its
relation to computer science and formal language and artificial intelligence. It shows
that the first edition is very close to the mark of what was needed. Two topics were
not included in the first edition, even though they were extensively discussed by all
authors in a 3-day Handbook meeting. These are:

• A chapter on non-monotonic logic
• A chapter on combinatory logic and λ -calculus

We felt at the time (1979) that non-monotonic logic was not ready for a chapter yet
and that combinatory logic and λ -calculus was too far removed.1 Non-monotonic
logic is now a very major area of philosophical logic, alongside default logics,
labelled deductive systems, fibring logics, and multi-dimensional, multimodal and
substructural logics. Intensive re-examinations of fragments of classical logic have
produced fresh insights, including at times decision procedures and equivalence
with non-classical systems.

Perhaps the most impressive achievement of philosophical logic as arising in the
past decade has been the effective negotiation of research partnerships with fallacy
theory, informal logic and argumentation theory, attested to by the Amsterdam
Conference in Logic and Argumentation in 1995, and the two Bonn Conferences
in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and intelligent
and reactive databases.

Finally, 15 years after the start of the Handbook project, I would like to
take this opportunity to put forward my current views about logic in computer
science, computational linguistics and artificial intelligence. In the early 1980s,
the perception of the role of logic in computer science was that of a specification
and reasoning tool and that of a basis for possibly neat computer languages. The
computer scientist was manipulating data structures and the use of logic was one of
his options.

My own view at the time was that there was an opportunity for logic to play a
key role in computer science and to exchange benefits with this rich and important
application area and thus enhance its own evolution. The relationship between
logic and computer science was perceived as very much like the relationship of
applied mathematics to physics and engineering. Applied mathematics evolves
through its use as an essential tool, and so we hoped for logic. Today my view
has changed. As computer science and artificial intelligence deal more and more

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter. I wonder
how the subject would have developed, if the AI research community had had a theoretical model,
in the form of a chapter, to look at. Perhaps the area would have developed in a more streamlined
way!
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with distributed and interactive systems, processes, concurrency, agents, causes,
transitions, communication and control (to name a few), the researcher in this area
is having more and more in common with the traditional philosopher who has
been analysing such questions for centuries (unrestricted by the capabilities of any
hardware).

The principles governing the interaction of several processes, for example,
are abstract and similar to principles governing the cooperation of two large
organisations. A detailed rule based effective but rigid bureaucracy is very much
similar to a complex computer program handling and manipulating data. My guess
is that the principles underlying one are very much the same as those underlying the
other.

I believe the day is not far away in the future when the computer scientist will
wake up one morning with the realisation that he is actually a kind of formal
philosopher!

The projected number of volumes for this Handbook is about 18. The subject has
evolved and its areas have become interrelated to such an extent that it no longer
makes sense to dedicate volumes to topics. However, the volumes do follow some
natural groupings of chapters.

I would like to thank our authors and readers for their contributions and their
commitment in making this Handbook a success. Thanks also to our publication
administrator Mrs J. Spurr for her usual dedication and excellence and to Kluwer
Academic Publishers for their continuing support for the Handbook.

King’s College London, and Dov M. Gabbay
Bar Ilan University, Israel, and
University of Luxembourg
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Chapter 1
Hybrid Logic

Torben Braüner

The starting point of this chapter1 is the remarkable fact that proof procedures for
wide classes of hybrid logics can be given in a uniform way, and moreover, this
encompasses proof procedures like natural deduction and tableau systems which
are suitable for actual2 reasoning. A focus of the chapter is such proof procedures.
Axiom systems, which are not meant for actual reasoning, are only mentioned in
passing. We present a relatively small selection of procedures rather than trying
to be encyclopedic. This allows us to give a reasonably detailed treatment of the
selected procedures. Another focus of the chapter is the origin of hybrid logic in
Arthur Prior’s philosophical work.

In the first section of the chapter, Sect. 1.1, we give the basics of hybrid logic.
In Sect. 1.2 we discuss the work of Arthur Prior and describe how hybrid logic has
its origin in his work. In Sect. 1.3 we outline the development of hybrid logic since
Prior. In Sect. 1.4 we introduce a natural deduction system for hybrid logic and in
Sect. 1.5 we introduce tableau systems and tableau-based decision procedures for
hybrid logic. In Sect. 1.6 we try to give an answer to the following question: Why
does the proof-theory of hybrid logic behave so well compared to the proof-theory
of ordinary modal logic?

1The chapter is composed of material adapted from the author’s book (Braüner 2011). The author
wishes to acknowledge the financial support received from The Danish Natural Science Research
Council as funding for the projects HyLoMOL (2004–2008) and HYLOCORE (2009–2013).
2The word “actual” has here a broad meaning, not restricted to actual human reasoning. The logic
does not care whether it is a human that carries out the reasoning, or the reasoning takes place in a
computer, or in some other medium.

T. Braüner (�)
Programming, Logic and Intelligent Systems Research Group, Roskilde University,
DK-4000 Roskilde, Denmark
e-mail: torben@ruc.dk

D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic: Volume 17,
Handbook of Philosophical Logic 17, DOI 10.1007/978-94-007-6600-6 1,
© Springer Science+Business Media Dordrecht 2014
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2 T. Braüner

1.1 The Basics of Hybrid Logic

In this section we give the basics of hybrid logic. We first give an informal
motivation of hybrid logic. We then give the formal syntax and semantics and we
give translations forwards and backwards between hybrid logic and first-order logic.

1.1.1 Informal Motivation

The term “hybrid logic” covers a number of logics obtained by adding further
expressive power to ordinary modal logic.3 The history of what now is known as
hybrid logic goes back to Arthur Prior’s work in the 1960s, which we shall come
back to in Sect. 1.2. The term “hybrid logic” was coined in Patrick Blackburn and
Jerry Seligman’s paper published in 1995. The most basic hybrid logic is obtained
by adding nominals, which are propositional symbols of a new sort interpreted in a
restricted way that enables reference to individual points in a Kripke model. In what
follows we shall give a more detailed explanation.

In the standard Kripke semantics for modal logic, the truth-value of a formula
is relative to points in a set, that is, a formula is evaluated “locally” at a point.
Usually, the points are taken to represent possible worlds, times, locations, epistemic
states, states in a computer, or something else. Thus, in the Kripke semantics,
a propositional symbol might have different truth-values at different points. This
allows us to formalize natural language statements whose truth-values are relative
to, for example times, like the statement

it is raining

which has clearly different truth-values at different times. Such statements can be
formalized in ordinary modal logic using ordinary propositional symbols. Now,
certain natural language statements are true at exactly one time, possible world,
or something else. An example is the statement

it is 5 o’clock 10 May 2007

which is true at the time 5 o’clock 10 May 2007, but false at all other times. While
the first kind of statement can be formalized in ordinary modal logic, the second
kind of statement cannot, the reason being that there is only one sort of propositional
symbol available, namely ordinary propositional symbols, which are not restricted
to being true at exactly one point in the Kripke semantics.

A major motivation for hybrid logic is to add further expressive power to ordinary
modal logic with the aim of being able to formalize the second kind of statement.
This is obtained by adding to ordinary modal logic a second sort of propositional

3This should not be confused with the term “hybrid systems” which in the computer science
community is used for systems that combine discrete and continuous features.



1 Hybrid Logic 3

symbol called a nominal such that in the Kripke semantics each nominal is true
at exactly one point. In other words, a nominal is interpreted with the restriction
that the set of points at which it is true is a singleton set, not an arbitrary set.
A natural language statement of the second kind (like the example statement with
the time 5 o’clock 10 May 2007) is then formalized using a nominal, not an ordinary
propositional symbol (which is used to formalize the example statement with rainy
weather). The fact that a nominal is true at exactly one point implies that a nominal
can be considered a term referring to a point, for example, if a is a nominal that
stands for “it is 5 o’clock 10 May 2007”, then the nominal a can be considered a
term referring to the time 5 o’clock 10 May 2007.4 Thus, in hybrid logic a term is
a specific sort of propositional symbol whereas in first-order logic it is an argument
to a predicate.

Most hybrid logics involve further additional machinery than nominals. There is
a number of options for adding further machinery; here we shall consider a kind
of operator called satisfaction operators. The motivation for adding satisfaction
operators is to be able to formalize a statement being true at a particular time,
possible world, or something else. For example, we want to be able to formalize
that the statement “it is raining” is true at the time 5 o’clock 10 May 2007,
that is, that

at 5 o’clock 10 May 2007, it is raining.

4Considering a nominal as a symbol that refers to something is not the only way to view nominals.
Two different views on nominals can be identified in the works of Arthur Prior, as is clear from
the quotation below where Prior discusses the addition of nominals to a temporal version of modal
logic called tense logic.

We might . . . equate the instant a with a conjunction of all those propositions which would
ordinarily be said to be true at that instant, or we might equate it with some proposition
which would ordinarily be said to be true at that instant only, and so could serve as an index
of it (Hasle et al. 2003, p. 124).

In the second half of the sentence, the nominal a is viewed as a proposition that can serve as an
index of an instant, which is clearly in line with considering a nominal as a symbol that refers to an
instant. On the other hand, in the first half of the sentence, the nominal a is viewed as a description
of the content of an instant. The alternative view on nominals expressed in the first half of the
sentence quoted above can also be found in a number of other places in Prior’s works, for example
the following.

The essential trick is to treat the instant variables as a special sort of propositional variables,
by identifying an ‘instant’ with the totality of what would ordinarily be said to be true at
that instant, . . . (Hasle et al. 2003, p. 141).

See the discussion of Prior’s work in Sect. 1.2 of the present handbook chapter, in particular
Footnote 8 of that section. Moreover, see the discussion in Patrick Blackburn’s paper (2006), the
last paragraph of page 353, including Footnote 7, and the first complete paragraph of page 362,
in particular Footnote 11. Incidentally, note that the description of the content of an instant as the
conjunction of all propositions true at that instant is similar to a maximal consistent set of formulas.
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This is formalized by the formula @a p where the nominal a stands for “it is
5 o’clock 10 May 2007” as above and where p is an ordinary propositional
symbol that stands for “it is raining”. It is the part @a of the formula @a p
that is called a satisfaction operator. In general, if a is a nominal and φ is
an arbitrary formula, then a new formula @aφ can be built (in some literature
the notation a : φ is used instead of @aφ ). A formula of the form @aφ is
called a satisfaction statement. The satisfaction statement @aφ expresses that the
formula φ is true at one particular point, namely the point to which the nominal
a refers.

To sum up, we have now added further expressive power to ordinary modal logic
in the form of nominals and satisfaction operators. Informally, the nominal a has the
truth-condition

a is true relative to a point w
if and only if
the reference of a is identical to w

and the satisfaction statement @aφ has the truth-condition

@aφ is true relative to a point w
if and only if
φ is true relative to the reference of a

Observe that actually the point w does not matter in the truth-condition for @aφ
since the satisfaction operator @a moves the point of evaluation to the reference
of a whatever the identity of w. Note that the addition of nominals and satisfaction
operators does not disturb the local character of the Kripke semantics: The truth-
value of a formula is still relative to points in a set and the added machinery only
involves reference to particular points, not all points in the set.

It is worth noting that nominals together with satisfaction operators allow us to
express that two points are identical: If the nominals a and b refer to the points u
and v, then the formula @ab expresses that u and v are identical. The following line
of reasoning shows why.

@ab is true relative to a point w
if and only if
b is true relative to the reference of a
if and only if
b is true relative to u
if and only if
the reference of b is identical to u
if and only if
v is identical to u

The identity relation on a set has the well-known properties reflexivity, symmetry,
and transitivity, which is reflected in the fact that the formulas

@aa
@ab→@ba
(@ab∧@bc)→@ac



1 Hybrid Logic 5

are valid formulas of hybrid logic. To see that these hybrid-logical formulas
correspond to the properties reflexivity, symmetry, and transitivity, read @ab as
a = b etc. Also the formula

(@ab∧@aφ)→@bφ

is valid. This hybrid-logical formula corresponds to the rule of replacement.
Beside nominals and satisfaction operators, in what follows we shall consider the

binders ∀ and ↓, which allow us to build formulas ∀aφ and ↓ aφ . The binders bind
nominals to points in two different ways: The ∀ binder quantifies over all points
analogous to the standard first-order universal quantifier, that is, ∀aφ is true relative
to w if and only if whatever point the nominal a refers to, φ is true relative to w. The
↓ binder binds a nominal to the point of evaluation, that is, ↓ aφ is true relative to w
if and only if φ is true relative to w when a refers to w. It turns out that the ↓ binder
is definable in terms of ∀.

Above we noted that nominals and satisfaction operators do not disturb the local
character of the Kripke semantics. Also the ↓ binder leaves the local character of
the semantics undisturbed since this binder just binds a nominal to the point of
evaluation. Things are more complicated with the ∀ binder. This binder has a non-
local character in the sense that it involves reference to all points in the Kripke
semantics. Moreover, together with nominals and satisfaction operators, the ∀ binder
gives rise to non-local expressivity in the form of full first-order expressive power
(which we shall show in Sect. 1.1.3). However, the ∀ binder does not give rise to full
first-order expressive power just together with nominals, that is, in the absence of
satisfaction operators (or some similar machinery). Thus, it is really the interaction
between the ∀ binder and satisfaction operators that gives rise to full first-order
expressive power, and hence, non-local expressivity.5

To conclude, extending ordinary modal logic with hybrid-logical machinery
(disregarding the extreme case involving both ∀ and satisfaction operators), gives
us a more expressive logic without sacrificing the local character of the Kripke
semantics.6

5In fact, the paper (Blackburn and Seligman 1995) gives a result (Proposition 4.5 on p. 264)
indicating that the ∀ binder has a surprisingly local character when it is not accompanied by
satisfaction operators or some similar machinery. Informally, this result says that the ∀ binder
is then insensitive to the information at points outside the submodel generated by the point of
evaluation, that is, it cannot detect the truth-values of formulas at such points.
6Further discussion of this point can be found in a number of places, notably the paper
Blackburn (2006). This paper also discusses hybrid-logical versions of bisimulations, which give
a mathematical way to illustrate the local character of the Kripke semantics. See also the paper
Simons (2006) which discusses a number of logics of location involving what we here call
satisfaction operators.
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1.1.2 Formal Syntax and Semantics

In what follows we give the formal syntax and semantics of hybrid logic. In many
cases we will adopt the terminology of Blackburn et al. (2001) and Areces et al.
(2001a). The hybrid logic we consider is obtained by adding a second sort of
propositional symbol, called nominals, to ordinary modal logic, that is, propositional
logic extended with a modal operator �.7 It is assumed that a set of ordinary
propositional symbols and a countably infinite set of nominals are given. The sets
are assumed to be disjoint. The metavariables p, q, r, . . . range over ordinary
propositional symbols and a, b, c, . . . range over nominals. Besides nominals, an
operator @a called a satisfaction operator is added for each nominal a. Sometimes
the operator @a is called an at operator. Moreover, we shall consider the binders ∀
and ↓. The formulas of hybrid modal logic are defined by the grammar

S ::= p | a | S∧S | S→ S | ⊥ | �S | @aS | ∀aS | ↓aS

where p ranges over ordinary propositional symbols and a ranges over nominals.
In what follows, the metavariables φ , ψ , θ , . . . range over formulas. Formulas
of the form @aφ are called satisfaction statements (cf. Blackburn 2000a). The
notions of free and bound occurrences of nominals are defined as in first-order
logic with the addition that the free nominal occurrences in @aφ are the free
nominal occurrences in φ together with the occurrence of a, and moreover, the
free nominal occurrences in ↓aφ are the free nominal occurrences in φ except for
occurrences of a. Also, if a is a list of pairwise distinct nominals and c is a list of
nominals of the same length as a, then ψ[c/a] is the formula ψ where the nominals
c have been simultaneously substituted for all free occurrences of the nominals
a. If a nominal ai in a occurs free in ψ within the scope of ∀ci or ↓ ci, then the
nominal ci in ψ is renamed as appropriate (this can be done since there are infinitely
many nominals). The connectives negation, nullary conjunction, disjunction, and bi-
implication are defined by the conventions that ¬φ is an abbreviation for φ →⊥, �
is an abbreviation for ¬⊥, φ ∨ψ is an abbreviation for ¬(¬φ ∧¬ψ), and φ ↔ ψ is
an abbreviation for (φ →ψ)∧(ψ→ φ). Similarly, ♦φ is an abbreviation for ¬�¬φ
and ∃aφ is an abbreviation for ¬∀a¬φ .

We now define models and frames.

Definition 1.1. A model for hybrid logic is a tuple (W,R,{Vw}w∈W ) where

1. W is a non-empty set;
2. R is a binary relation on W ; and
3. for each w, Vw is a function that to each ordinary propositional symbol assigns

an element of {0,1}.

7All results in the present handbook chapter can be generalized to cover an arbitrary, finite number
of modal operators, but in the interest of simplicity, we shall stick to one modal operator unless
otherwise is specified.
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The pair (W,R) is called a frame and the model is said to be based on this frame.
The elements of W are called worlds and the relation R is called the accessibility
relation. A propositional symbol p is said to be true at w if Vw(p) = 1 and it is said
to be false at w if Vw(p) = 0.

Note that a model for hybrid logic is the same as a model for ordinary modal
logic. To give an extremely simple example of a model, we let W = {w,v} and
R = {(w,v)}, and moreover, we let Vw(p) = 0 and Vv(p) = 1. All other propositional
symbols than p are ignored. This model can be depicted as

w v
p�

where circles represent worlds and an arrow indicates that two worlds are related by
the accessibility relation. A propositional symbol in a circle means that the symbol
is true and the absence of a propositional symbol means that it is false.

Given a model M= (W,R,{Vw}w∈W ), an assignment is a function g that to each
nominal assigns an element of W . Given assignments g′ and g, g′

a∼ g means that g′

agrees with g on all nominals save possibly a. The relation M,g,w |= φ is defined
by induction, where g is an assignment, w is an element of W , and φ is a formula.

M,g,w |= p iff Vw(p) = 1
M,g,w |= a iff w = g(a)

M,g,w |= φ ∧ψ iff M,g,w |= φ and M,g,w |= ψ
M,g,w |= φ → ψ iff M,g,w |= φ implies M,g,w |= ψ

M,g,w |=⊥ iff falsum
M,g,w |=�φ iff for any v ∈W such that wRv, M,g,v |= φ

M,g,w |= @aφ iff M,g,g(a) |= φ
M,g,w |= ∀aφ iff for any g′

a∼ g, M,g′,w |= φ
M,g,w |=↓aφ iff M,g′,w |= φ where g′

a∼ g and g′(a) = w

A formula φ is said to be true at w if M,g,w |= φ ; otherwise it is said to be false
at w. By convention M,g |= φ means M,g,w |= φ for every element w of W and
M |= φ means M,g |= φ for every assignment g. A formula φ is valid in a frame
if and only if M |= φ for any model M that is based on the frame. A formula φ is
valid in a class of frames if and only if φ is valid in any frame in the class of frames
in question. A formula φ is valid if and only if φ is valid in the class of all frames.

Now, letO⊆ {↓,∀}. In what followsH(O) denotes the fragment of hybrid logic
in which the only binders are the binders in the set O. If O = /0, then we simply
write H, and if O = {↓}, then we write H(↓), etc. It is assumed that the set O of
binders is fixed.

Note that ↓ is definable in terms of ∀ since the formula ↓ aφ ↔ ∀a(a → φ)
is valid. The fact that hybridizing ordinary modal logic actually does give more
expressive power can for example be seen by considering the formula ↓c�¬c. It is
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straightforward to check that this formula is valid in a frame if and only if the frame
is irreflexive. Thus, irreflexivity can be expressed by a hybrid-logical formula, but it
is well known that it cannot be expressed by any formula of ordinary modal logic.
Irreflexivity can actually be expressed just by adding nominals to ordinary modal
logic, namely by the formula c→ �¬c. It is clear that if a frame is irreflexive,
then c→ �¬c is valid in the frame. On the other hand, if c→ �¬c is valid in
a frame, then the frame is irreflexive: Let (W,R) be a frame in which c→ �¬c
is valid and let w be an element of W , then M,g,w |= c→ �¬c where M is an
arbitrarily chosen model based on (W,R) and g is an arbitrarily chosen assignment
such that g(c) = w, and from this it follows that wRw is false. Hence, the formula
c→�¬c expresses irreflexivity. Other examples of properties expressible in hybrid
logic, but not in ordinary modal logic, are asymmetry (expressed by c→ �¬♦c),
antisymmetry (expressed by c→�(♦c→ c)), and universality (expressed by ♦c).

1.1.3 Translation into First-Order Logic

Hybrid logic can be translated into first-order logic with equality and (a fragment
of) first-order logic with equality can be translated back into (a fragment of) hybrid
logic. The translation from hybrid logic into first-order logic we consider in this
subsection is an extension of the well-known standard translation from modal logic
into first-order logic (see Areces et al. 2001a and van Benthem 1983).

The first-order language under consideration has a 1-place predicate symbol
corresponding to each ordinary propositional symbol of modal logic, a 2-place
predicate symbol corresponding to the modality, and a 2-place predicate symbol
corresponding to equality. The language does not have constant or function symbols.
It is assumed that a countably infinite set of first-order variables is given. The
metavariables a, b, c, . . . range over first-order variables. There are no function
symbols or constants. So the formulas of the first-order language we consider are
defined by the grammar

S ::= p∗(a) | R(a,b) | a = b | S∧S | S→ S | ⊥ | ∀aS

where p ranges over ordinary propositional symbols of hybrid logic, and a and b
range over first-order variables. Note that according to the grammar above, for each
ordinary propositional symbol p of the modal language there is a corresponding
1-place predicate symbol p∗ in the first-order language. The predicate symbol p∗

will be interpreted such that it relativises the interpretation of the corresponding
modal propositional symbol p to worlds. In the grammar above, R is a designated
predicate symbol which will be interpreted using the accessibility relation (with the
same name). In what follows, we shall identify first-order variables with nominals
of hybrid logic. Note in this connection that the set of metavariables ranging over
first-order variables is identical to the set of metavariables ranging over nominals.
Free and bound occurrences of variables are defined as usual for first-order logic.
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Also, ψ[c/a] is the formula ψ where the variable c has been substituted for all free
occurrences of the variable a. As usual, if the variable a occurs free in ψ within the
scope of ∀c, then the variable c in ψ is renamed as appropriate. It is assumed that a
does not occur free in ψ within the scope of ∀c. The connectives ¬, �, ∨,↔, and ∃
are defined in one of the usual ways.

We first translate the hybrid logic H(↓,∀) into first-order logic with equality. It
is assumed that two nominals a and b are given which do not occur in the formulas
to be translated. The translations STa and STb are defined by mutual induction. We
just give the translation STa.

STa(p) = p∗(a)
STa(c) = a = c

STa(φ ∧ψ) = STa(φ)∧STa(ψ)

STa(φ → ψ) = STa(φ)→ STa(ψ)

STa(⊥) = ⊥
STa(�φ) = ∀b(R(a,b)→ STb(φ))

STa(@cφ) = STa(φ)[c/a]
STa(∀cφ) = ∀cSTa(φ)
STa(↓cφ) = STa(φ)[a/c]

The definition of STb is obtained by exchanging a and b. As an example, we
demonstrate step by step how the hybrid-logical formula ↓c�¬c is translated into a
first-order formula:

STa(↓c�¬c) = STa(�¬c)[a/c]
= ∀b(R(a,b)→ STb(¬c))[a/c]
= ∀b(R(a,b)→¬STb(c))[a/c]
= ∀b(R(a,b)→¬b = c)[a/c]
= ∀b(R(a,b)→¬b = a)

The resulting first-order formula is equivalent to ¬R(a,a) which shows that ↓
c�¬c indeed does correspond to the accessibility relation being irreflexive, cf.
above. What has been done in the translation is that the semantics of hybrid logic
has been formalised in terms of first-order logic; note how each clause in the
translation formalizes a clause in the definition of the semantics, that is, the relation
M,g,w |= φ .

The translation STa is truth-preserving. To state this formally, we make use of the
well-known observation that a model for hybrid logic can be considered as a model
for first-order logic and vice versa.

Definition 1.2. Given a model M = (W,R,{Vw}w∈W ) for hybrid logic, a model
M∗ = (W,V ∗) for first-order logic is defined by letting

• V ∗(p∗) = {w |Vw(p) = 1} and
• V ∗(R) = R.
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It is straightforward to see that the map (·)∗ which maps M to M∗ is bijective.
Moreover, an assignment in the sense of classical hybrid logic can be considered as
an assignment in the sense of classical first-order logic and vice versa.

Given a model M for first-order logic, the relation M,g |= φ is defined by
induction in the standard way, where g is an assignment and φ is a first-order
formula.

M,g |= p∗(a) iff g(a) ∈V (p∗)
M,g |= R(a,b) iff g(a)V (R)g(b)
M,g |= a = b iff g(a) = g(b)
M,g |= φ ∧ψ iff M,g |= φ and M,g |= ψ

M,g |= φ → ψ iff M,g |= φ implies M,g |= ψ
M,g |=⊥ iff falsum

M,g |= ∀aφ iff for any g′
a∼ g, M,g′ |= φ

The formula φ is said to be true if M,g |= φ ; otherwise it is said to be false. By
convention M |= φ means M,g |= φ for every assignment g. We shall later make
use of the first-order semantics in connection with the interpretation of geometric
theories.

It can now be stated formally that the translation is truth-preserving.

Proposition 1.3. Let M be a model for hybrid logic and let φ be a hybrid-logical
formula in which the nominals a and b do not occur. For any assignment g, it is the
case that M,g,g(a) |= φ if and only if M∗,g |= STa(φ) (and the same for STb).

Proof. Induction on the structure of φ . �
Thus, hybrid logic, considered as a language for talking about models, has the same
expressive power as the fragment of first-order logic obtained by taking the image
of hybrid logic under the translation STa.

First-order logic with equality can be translated into the hybrid logic H(∀) by
the translation HT given below.

HT(p∗(a)) = @a p
HT(R(a,c)) = @a♦c

HT(a = c) = @ac
HT(φ ∧ψ) = HT(φ)∧HT(ψ)

HT(φ → ψ) = HT(φ)→ HT(ψ)

HT(⊥) = ⊥
HT(∀aφ) = ∀aHT(φ)

The translation HT is truth-preserving.

Proposition 1.4. Let M be a model for hybrid logic. For any first-order formula φ
and any assignment g, it is the case that M∗,g |= φ if and only if M,g |= HT(φ).

Proof. Induction on the structure of φ . �
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Thus, in the sense above the hybrid logic H(∀) has the same expressive power as
first-order logic with equality. It is implicit in the proposition above that the first-
order formula φ is a formula of the first-order language defined by the grammar
given earlier in the previous subsection. The history of the above observations goes
back to the work of Arthur Prior, which we shall come back to in the next section.

In a way similar to the above translation, a fragment of first-order logic with
equality which is called the bounded fragment can be translated into the hybrid
logicH(↓). This was pointed out in Areces et al. (2001a). The bounded fragment is
obtained from the above grammar for first-order logic by replacing the clause ∀aS
by the new clause ∀c(R(a,c)→ S where it is required that the variables a and c are
distinct. In Areces et al. (2001a) a number of independent semantic characterizations
of the bounded fragment are given. A translation from the bounded fragment to the
hybrid logicH(↓) can be obtained by replacing the last clause in the translation HT
above by the following.

HT(∀c(R(a,c)→ φ)) = @a� ↓cHT(φ)

It is straightforward to check that Proposition 1.4 still holds, hence, the hybrid
logic H(↓) has the same expressive power as the bounded fragment of first-order
logic (note that for any formula φ of H(↓), the formula STa(φ) is in the bounded
fragment).

1.2 The Origin of Hybrid Logic in Prior’s Work

In this section we discuss the work of Arthur Prior, and we describe how hybrid logic
has its origin in his work. The precise origin of hybrid logic is Prior’s hybrid tense
logic, which is a hybridized version of ordinary tense logic. Arthur Prior (1914–
1969) is usually considered the founding father of modern temporal logic, his main
contribution being the formal logic of tenses. In his memorial paper on Prior (Kenny
1970), A.J.P. Kenny summed up Prior’s life and work as follows.

Prior’s greatest scholarly achievement was undoubtedly the creation and development of
tense-logic. But his research and reflection on this topic led him to elaborate, piece by
piece, a whole metaphysical system of an individual and characteristic stamp. He had many
different interests at different periods of his life, but from different angles he constantly
returned to the same central and unchanging themes. Throughout his life, for instance, he
worked away at the knot of problems surrounding determinism: first as a predestinarian
theologian, then as a moral philosopher, finally as a metaphysician and logician (Kenny
1970, p. 348).

Prior’s reflections on determinism and other issues related to the philosophy of
time were a major motivation for his formulation of tense logic. With the aim
of discussing tense logic and hybrid tense logic further, we shall give a formal
definition of hybrid tense logic: The language of hybrid tense logic is simply the
language of hybrid logic defined above except that there are two modal operators,
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namely G and H, instead of the single modal operator �. The two new modal
operators are called tense operators. The semantics of hybrid tense logic is the
semantics of hybrid logic, cf. earlier, with the clause for � replaced by clauses for
the tense operators G and H.

M,g,w |= Gφ iff for any v ∈W such that wRv, M,g,v |= φ
M,g,w |= Hφ iff for any v ∈W such that vRw, M,g,v |= φ

Thus, there are now two modal operators, namely one that “looks forwards” along
the accessibility relation R and one that “looks backwards”. In tense logic the
elements of the set W are called moments or instants and the accessibility relation R
is now also called the earlier-later relation.

It is straightforward to modify the translations STa and HT in the previous section
such that translations are obtained between a tense-logical version ofH(∀) and first-
order logic with equality. The first-order logic under consideration is what Prior
called first-order earlier-later logic. Given the translations, it follows that Prior’s
first-order earlier-later logic has the same expressive power as the tense-logical
version ofH(∀), that is, hybrid tense-logic.

Now, Prior introduced hybrid tense logic in connection with what he called four
grades of tense-logical involvement. The four grades were presented in the book
Prior (1968), Chapter XI (also Chapter XI in the new edition (Hasle et al. 2003)).
Moreover, see the book Prior (1967), Chapter V.6 and Appendix B.3–4. For a more
general discussion of the four grades, see the posthumously published book Fine
and Prior (1977). The stages progress from pure first-order earlier-later logic to what
can be regarded as a pure tense logic, where the second grade is a “neutral” logic
encompassing first-order earlier-later logic and tense logic on the same footing. The
motivation for Prior’s four grades of tense-logical involvement was philosophical.
Prior considered instants to be “artificial” entities which due to their abstractness
should not be taken as primitive concepts.

. . . my desire to sweep ‘instants’ under the metaphysical table is not prompted by any
worries about their punctual or dimensionless character but purely by their abstractness.
. . . ‘instants’ as literal objects, or as cross-sections of a literal object, go along with a picture
of ‘time’ as a literal object, a sort of snake which either eats its tail or doesn’t, either has
ends or doesn’t, either is made of separate segments or isn’t; and this picture I think we
must drop (Prior 1967, p. 189).

Given the explicit reference to instants in first-order earlier-later logic, Prior found
that first-order earlier-later logic gives rise to undesired ontological import. Instead
of first-order earlier-later logic, he preferred tense logic.

Some of us at least would prefer to see ‘instants’, and the ‘time-series’ which they are
supposed to constitute, as mere logical constructions out of tensed facts (Hasle et al. 2003,
p. 120).

This is why Prior’s goal was to extend tense logic such that it could be considered
as encompassing first-order earlier-later logic. Technically, the goal was to extend
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tense logic such that first-order earlier-later logic could be translated into it. It was
with this goal in mind Prior introduced what he called instant-propositions.

What I shall call the third grade of tense-logical involvement consists in treating the instant-
variables a, b, c, etc. as also representing propositions (Hasle et al. 2003, p. 124).

In the context of modal logic, Prior called such propositions possible-world-
propositions. Of course, this is what we here call nominals. Prior also introduced the
binder ∀ and what we here call satisfaction operators (he used the notation T(a,φ)
instead of @aφ for satisfaction operators). The extended tense-logic thus obtained
is the logic he called third grade tense logic, hence, the third grade tense logic is
identical to the tense-logical version of H(∀), hybrid tense logic, which has the
same expressive power as first-order earlier-later logic, as remarked above.

Prior gave an alternative, but equivalent, formulation of the third grade tense
logic in which the satisfaction operator is replaced by a modal operator A called
the universal modality (some authors call it the global modality). The universal
modality has a fixed interpretation: The truth-condition is that a formula Aφ is
true (at any world) if and only if the formula φ is true at all worlds. Thus, the
universal modality is interpreted using the universal binary relation. Formally, the
clause for the satisfaction operator in the semantics is replaced by a clause for the
modal operator A.

M,g,w |= Aφ iff for any v ∈W , M,g,v |= φ .

Thus, besides the tense operators G and H, the language under consideration
here also contains the modal operator A. The two formulations of the third
degree are equivalent since the satisfaction operator and the universal modality are
interdefinable in the presence of nominals and the ∀ binder, this being the case as
the formulas Aφ ↔∀a(@aφ) and @aφ ↔ A(a→ φ) are valid.

Prior’s fourth grade tense logic is obtained from the third grade tense logic
by replacing the satisfaction operator (or the universal modality in the alternative
formulation of the third grade) by a defined modal operator L such that

M,g,w |= Lφ iff for any v ∈W such that wR∗v, M,g,v |= φ

where the binary relation R∗ is the reflective, symmetric, and transitive closure of the
earlier-later relation R. Prior considered two ways to define the operator L in what
he took to be purely tense-logical terms. In the first case he allowed what amounts to
infinite conjunctions of formulas. If infinite conjunctions are allowed, the operator
L can be defined by the conventions that

Lφ = L0φ ∧L1φ ∧ . . .

and
L0φ = φ

Ln+1φ = GLnφ ∧HLnφ
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Note that for any given natural number k, Lkφ is a formula in the object language
(which does not involve natural numbers). For example, if k = 1 and φ = p, then
L1φ = Gp∧H p. In the second case Prior assumed time to have a structure making
Lφ equivalent to

L0φ ∧L1φ ∧ . . . ∧Lkφ

for some fixed natural number k whereby infinite conjunctions are avoided. If for
example time is linear, that is, transitive, backwards linear, and forwards linear, then
k = 1 will do. If time is branching, that is, transitive and backwards linear, then k = 2
will do. In whichever way the operator L is defined, the fourth grade tense logic has
the same expressive power as first-order earlier-later logic if it is assumed that the
time-series is unique, that is, if it is assumed that any two instants are connected
by some number of steps in either direction along the earlier-later relation R. For
Prior it was natural to assume that the time-series is unique, as is witnessed by the
following quotation.

For is not the question as to whether ‘our’ time-series (whatever its structure) is unique,
a genuine one? I would urge the following consideration against saying that it is, or at
all events against saying it too hurriedly: It is only if we have a more-or-less ‘Platonistic’
conception of what a time-series is, that we can raise this question. If, as I would contend, it
is only by tensed statements that we can give the cash-value of assertions which purport to
be about ‘time’, the question as to whether there are or could be unconnected time-series is
a senseless one. We think we can give it a sense because it is as easy to draw unconnected
lines and networks as it is to draw connected ones; but these diagrams cannot represent time,
as they cannot be translated into the basic non-figurative temporal language (Prior 1967, pp.
198–199).

The reason why the fourth grade tense logic has first-order expressive power when
the time-series is unique, is that the fourth-grade modality L then has the same effect
as the universal modality A which is used in (the alternative formulation of) the
third-grade logic, and the third-grade logic has first-order expressive power, as we
argued above. This is discussed in more detail in the paper Braüner (2002b).

To sum up, Prior obtained tense logics having the same expressive power as
first-order earlier-later logic, namely the third and fourth grade tense logics, by
adding to ordinary tense logic further expressive power in the form of hybrid-logical
machinery (and in the case of the fourth grade tense logic by making appropriate
assumptions about the structure of time, including an assumption that the time-
series is unique). So Prior clearly reached his technical goal. Prior also found that
he reached his philosophical goal, namely that of avoiding an ontology including
instants.

The ‘entities’ which we ‘countenance’ in our ‘ontology’ . . . depend on what variables we
take seriously as individual variables in a first-order theory, i.e. as subjects of predicates
rather than as assertibilia which may be qualified by modalities. If we prefer to handle
instant-variables, for example, or person-variables, as subjects of predicates, then we may
be taken to believe in the existence of instants, or of persons. If, on the other hand, we prefer
to treat either of these as propositional variables, i.e. as arguments of truth-functions and
of modal functions, then we may be taken as not believing in the existence of instants, etc.
(they don’t exist; rather, they are or are not the case) (Hasle et al. 2003, p. 220).
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However, it has been debated whether or not Prior managed to avoid an instant
ontology. We shall return to this later in Sect. 1.2.1 (where we also return to the
person-variables mentioned in the quotation above).

The discussion on Prior’s third grade tense logic and first-order earlier-later
logic is closely related to the discussion on two different conceptions of time,
namely the A-series and B-series conceptions, a terminology introduced in 1908
by the philosopher McTaggart (cf. McTaggart 1908). According to the A-series
conception, also called the dynamic view, the past, present, and future tenses are
primitive concepts from which other temporal concepts, in particular instants and
the earlier-later relation, are to be derived. On the other hand, according to the B-
series conception, also called the static view, instants and the earlier-later relation
are primitive. The A-series conception embodies the local way in which human
beings experience the flow of time whereas the B-series conception embodies a
Gods-eye-view of time, where time is a sequence of objectively and tenselessly
existing instants. It is notable that representations of both the A-series and B-series
conceptions can be found in natural language (the A-series conception of course in
the form of tense inflection of verbs and the B-series conception in particular in the
form of nominal constructions like “5 o’clock 10 May 2007”). Of course, first-order
earlier-later logic is associated with the B-series conception and Prior’s third grade
tense logic is associated with the A-series conception, which was Prior’s own view,
as succinctly expressed in the following quotation.

So far, then, as I have anything that you could call a philosophical creed, its first article is
this: I believe in the reality of the distinction between past, present, and future. I believe that
what we see as a progress of events is a progress of events, a coming to pass of one thing
after another, and not just a timeless tapestry with everything stuck there for good and all
(Prior 1996, p. 47).

The discussion of A-series and B-series is reflected in discussions of time in
Artificial Intelligence, see the paper Galton (2006). The paper by Patrick Blackburn
(2006) discusses all the above issues as well as a number of other issues in hybrid
logic and their origin in Prior’s work. The above issues are also discussed in many
papers of the collection (Copeland 1996), in particular in Richard Sylvan’s paper
(1996). See the paper Øhrstrøm and Hasle (1993), the book Øhrstrøm and Hasle
(1995), and the handbook chapters Øhrstrøm and Hasle (2005b) and Øhrstrøm and
Hasle (2005a) for general accounts of Prior’s work. See also the encyclopedia article
Copeland (2007). A recent assessment of Prior’s philosophical and logical views can
be found in Müller (2007).

1.2.1 Did Prior Reach His Philosophical Goal?

It has been debated whether Prior reached his philosophical goal with the third and
fourth grade logics, namely that of avoiding an ontology including instants.
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According to one criticism, the ontological import of the third and fourth grade
logics is the same as the ontological import of first-order earlier-later logic since
the third and fourth grade logics involve what are considered direct analogies to
first-order primitives, in particular, nominals are considered a direct analogy to first-
order variables and the ∀ binder is considered a direct analogy to the first-order
∀ quantifier.8 Such a criticism can be found in Sylvan’s paper (1996).9 Note that
this is a philosophical, not a technical, discussion. The technical, to be precise,
mathematical, result that first-order earlier-later logic and the third grade logic (as
well as the fourth grade logic in the light of appropriate assumptions on the structure
of time) have the same expressive power, in the sense that there are truth-preserving
translations in both directions between the logics, does not itself give an answer
to the philosophical question as to whether the logics have the same ontological
import.

Clearly, Prior’s view on logic differs in a number of ways from the views held by
most contemporary logicians, in particular logicians inclined towards model-theory.
A criticism from the perspective of contemporary model-theory has been raised by
Blackburn in the paper (2006).

If the fundamental unit of logical modeling is a formal language together with a set-
theoretical interpretation, then it makes little sense to claim, for example, that first-order
logic automatically brings greater ontological commitment than (say) propositional modal
logic. Under the model-theoretic conception, both make use of the same set-theoretic
structures, so their ontological commitments are at least prima facie identical. Perhaps
arguments could be mounted (based, perhaps, on the fact that modal logic is decidable and
has the finite model property) that modal logic commits us to less. But such arguments

8It appears that this criticism presupposes a view on nominals according to which a nominal is
a symbol that refers to something, like a first-order variable does. As remarked in Footnote 4 in
Sect. 1.1.1, there is an alternative view on nominals according to which a nominal is viewed as a
description of the content of an instant. It is not clear whether the criticism applies if this alternative
view on nominals is adopted.
9Sylvan actually argues that it is not necessary to reduce first-order earlier-later logic (the B-series
conception of time) to tense logic (the A-series conception), or vice versa. Sylvan points out that
Prior regarded tense-logical postulates as being capable of giving the meaning of statements like
‘time is continuous’ and ‘time is infinite both ways’ (cf. Prior 1967, p. 74). To this Sylvan responds
as follows.

Time is an item, a theoretical object, which bears both the tensed and the temporally ordered
properties which the item in question genuinely has. . . .

Part of the elegance of such a simple characterization of Time is that it neatly decouples
the stable sense of ‘time’ . . . from various vexed issues as to exactly which properties the
item genuinely has (and so from what Time is ‘really’ like). Whichever it should have,
under evolving or under alternative theories, the item can remain abstractly one and the
same. Naturally, tight coupling remains between the item and its properties; but it is not a
meaning connection, it is a theory-dependent linkage (Sylvan 1996, p. 114).

Sylvan sees Prior’s goal to reduce the B-series talk to A-series talk as part of a more general,
and in Sylvan’s view overdeveloped, reductionist inclination of analytic philosophers, which also
encompasses philosophers having the converse reduction as a goal, that is, having the goal of
reducing A-series to B-series (cf. Sylvan 1996, p. 112).
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would have to be carefully constructed. In the light of modern correspondence theory,
simple knockdown arguments based on the presence or absence of explicit quantifiers in
the object language are unconvincing (Blackburn 2006, pp. 358–359).

Another criticism raised by Blackburn in the paper (Blackburn 2006) has to do
with a logic Prior called egocentric logic. We now briefly describe this logic.
Egocentric logic is technically the same as the third grade tense logic, but the points
in the Kripke semantics are now taken to represent persons, not instants, and the
accessibility relation relates two persons if and only if the second person is taller
than the first one. Of course, just as the third grade tense logic is a modal-logical
counterpart to first-order earlier-later logic, egocentric logic is a modal-logical
counterpart to a first-order logic which technically is the same as first-order earlier-
later logic, but where the points in a model are taken to represent persons. What was
observed by Prior is that egocentric logic is just an instance of a general relationship:
Any first-order logic has a modal-logical counterpart, whatever signature the first-
order logic has and whatever the points in a model are taken to represent. Thus,
in this sense there is nothing special about tense logic. But Prior considered tense
logic to have a privileged status that distinguishes it from other logics, in particular
egocentric logic.

Tense logic is for me, if I may use the phrase, metaphysically fundamental, and not just an
artificially torn-off fragment of the first-order theory of the earlier-later relation. Egocentric
logic is a different matter; I find it hard to believe that individuals really are just propositions
of a certain sort, or just ‘points of view’, or that the real world of individuals is just a logical
construction out of such points of view (Hasle et al. 2003, p. 232).

Thus, as the quotation indicates, Prior considered tense logic to have a special
philosophical status, but in the sense described above, there is nothing special about
tense logic. This calls for an explanation. Prior concluded the following.

So far as I can see, there is nothing philosophically disreputable in saying that (i) persons
just are genuine individuals, so that their figuring as individual variables in a first-order
theory needs no explaining (this first-order theory being, on the contrary, the only way of
giving sense to its ‘modal’ counterpart), whereas (ii) instants are not genuine individuals, so
that their figuring as values of individual variables does need explaining, and it is the related
‘modal’ logic (tense logic) which gives the first-order theory what sense it has (Hasle et al.
2003, pp. 219–220).

However, Prior’s conclusion is criticized in Blackburn’s paper for being unsatis-
factorily justified, which is in line with the other criticism expressed in the above
quotation from Blackburn’s paper.

1.3 The Development of Hybrid Logic Since Prior

In this section we outline the development of hybrid logic since Prior. We shall
present a selection of works rather than trying to be encyclopedic. See also the
handbook chapter Areces and ten Cate (2007).
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The first completely rigorous definition of hybrid logic was given in Robert
Bull’s paper (1970) which in 1970 appeared in a special issue of the journal
Theoria in memory of Prior. Bull introduces a third sort of propositional sym-
bols where a propositional symbol is assumed to be true exactly at one branch
(“course of events”) in a branching time model. This idea of sorting proposi-
tional symbols according to restrictions on their interpretations has later been
developed further by a number of authors, see Section 5 of the paper Blackburn
and Tzakova (1999) as well as Section 9 of the paper Blackburn (2000a) for
discussions. The idea of sorting is also discussed in the unpublished manuscript
(Goranko 2000).

The hybrid logical machinery originally invented by Prior in the late 1960s was
reinvented in the 1980s by Solomon Passy and Tinko Tinchev from Bulgaria, see
the paper Passy and Tinchev (1985) as well as Passy and Tinchev (1991). Rather
than ordinary modal logic, this work took place in connection with the much more
expressive Propositional Dynamic Logic.

A major contribution in the 1990s was the introduction of the ↓ binder by Valentin
Goranko, see the papers Goranko (1994, 1996).10 Since then, hybrid logic with
the ↓ binder has been extensively studied by a number of people, notably Patrick
Blackburn and his co-authors, for example, in the paper Blackburn and Seligman
(1995) it is shown that this logic does not have the finite model property and that
the logic is undecidable.11 Also, various expressivity results are given in Blackburn
and Seligman (1995). See the paper Areces et al. (2001a) for a number of model-
theoretic aspects. A very comprehensive study of the model-theory of hybrid logic
is the PhD thesis of Balder ten Cate (2004).

Also the weaker hybrid logic obtained by omitting both of the binders ↓ and
∀ has been the subject of extensive exploration. An early work on the binder-
free hybrid logic (but including the strong universal modality) is the paper by
Gargov and Goranko (1993). It turns out that the binder-free logic and a number
of variants of it are decidable. In the paper Areces et al. (1999), a number of
complexity results are given for hybrid modal and tense logics over various classes
of frames, for example arbitrary, transitive, linear, and branching. It is remarkable
that the satisfiability problem of the binder-free hybrid logic over arbitrary frames
is decidable in Polynomial Space (PSPACE), which is the same as the complexity
of deciding satisfiability in ordinary modal logic. Thus, hybridizing ordinary modal
logic gives more expressive power, but the complexity stays the same.

10A variation of the ↓ binder (called the “freeze” quantifier) was actually introduced already in
1989 in connection with real-time logics, see the paper by Alur and Henzinger (1989). See also
the survey Alur and Henzinger (1992). The ↓ binder and the freeze quantifier were discovered
independently of each other.
11To prove these results, the paper Blackburn and Seligman (1995) introduces a proof technique
called the spy-point technique, which later has been used in many other connections.
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It is remarkable that first-order hybrid logic offers precisely the features needed
to prove interpolation theorems.12 While interpolation fails in a number of well-
known first-order modal logics, their hybridized counterparts have this property, see
the paper Areces et al. (2003) as well as Blackburn and Marx (2003). The first paper
gives a model-theoretic proof of interpolation whereas the second paper gives an
algorithm for calculating interpolants based on a tableau system.13

A number of papers have dealt with axioms for hybrid logic (for example
Blackburn (1993), Blackburn and Tzakova (1999), Blackburn and ten Cate (2006)).
The paper Blackburn and Tzakova (1999) gives an axiom system for hybrid logic
and shows the remarkable result that if the axiom system is extended with a set of
additional axioms which are pure formulas (that is, formulas where all propositional
symbols are nominals), then the extended axiom system is complete with respect to
the class of frames validating the axioms in question.14 Pure formulas correspond
to first-order conditions on the accessibility relation (cf. the translation STa in
Sect. 1.1.3), so axiom systems for new hybrid logics with first-order conditions on
the accessibility relation can be obtained in a uniform way simply by adding axioms
as appropriate. So, if for example the formula ↓ c�¬c is added as an axiom, then
the resulting system is complete with respect to irreflexive frames, cf. Sect. 1.1.2.
The paper Blackburn and ten Cate (2006) investigates orthodox proof-rules (which
are proof-rules without side-conditions) in axiom systems, and it is shown that if
one requires extended completeness using pure formulas, then unorthodox proof-
rules are indispensable in axiom systems for binder-free hybrid logic. However, an
axiom system can be given only involving orthodox proof-rules for the stronger
hybrid logic including the ↓ binder. Another axiom system for hybrid logic is given
in the paper (Braüner 2006) by the present author and an axiom system for first-
order hybrid logic is given in the paper Braüner (2005) also by the present author. In
the paper Gabbay and Malod (2002) an axiom system is given for a logic similar to
hybrid logic, obtained by extending ordinary modal logic with first-order machinery
for naming worlds.

Besides giving an axiom system for standard classical hybrid logic, the paper
Braüner (2006) also gives axiom systems for intuitionistic and paraconsistent hybrid
logic. The paper ten Cate and Litak (2007) gives hybrid-logical axiom systems that
are sound and complete with respect to topological semantics, that is, generalisa-
tions of the standard Kripke semantics where the modal operator is interpreted in
terms of a topology on the set of possible worlds. Strictly speaking, the topological

12The interpolation theorem for propositional logic says that for any valid formula φ → ψ there
exists a formula θ containing only the common propositional symbols of φ and ψ such that the
formulas φ → θ and θ → ψ are valid. Interpolation theorems for other logics are formulated in an
analogous fashion.
13An unexplored line of work is to find out whether interpolation can be proved in other ways, for
example using proof systems like the linear reasoning systems which in Fitting (1984) are used to
prove interpolation for some particular propositional and first-order modal logics.
14See ten Cate (2004) for semantic characterizations of frame classes definable by pure hybrid-
logical formulas.
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semantics only generalise Kripke semantics where the frames are reflexive and tran-
sitive, but the paper ten Cate and Litak (2007) also considers an even more general
kind of semantics called neighbourhood semantics which generalises all Kripke
semantics. Topological semantics is interesting for a number of reasons, one being
that it is applicable for spatial reasoning (topological spaces are abstractions from
metric spaces which in turn are abstractions from Euclidean space). A major reason
for the interest in neighbourhood semantics is that it does not validate the formula
�(φ → ψ)→ (�φ →�ψ) and nor does it validate the standard modal-logical rule
called necessitation, that is, from φ derive �φ (the Kripke semantics validates both,
but for some applications this is undesirable, for example, if the modal operator
represents an agent’s knowledge, then these two validities together imply that the
agent is logical omniscient, that is, the agent’s knowledge is closed under logical
consequence, which at least for human agents is implausible). Further work on
topological semantics for hybrid logic can be found in the paper Sustretov (2009).

Work in resolution calculi and model-checking for hybrid logic is in the early
phases, see the papers Areces et al. (2001b) and Areces and Heguiabehere (2002)
for resolution calculi and see the paper Franceschet and de Rijke (2006) and Lange
(2009) for results on model-checking.

Tableau, Gentzen, and natural deduction style proof-theory for hybrid logic
work very well compared to ordinary modal logic. Usually, when a modal tableau,
Gentzen, or natural deduction system is given, it is for one particular modal logic
and it has turned out to be problematic to formulate such systems for modal logics in
a uniform way without introducing metalinguistic machinery. This can be remedied
by hybridization, that is, hybridization of modal logics enables the formulation of
uniform tableau, Gentzen, and natural deduction systems for wide classes of logics.
Blackburn’s paper (2000a) introduces a tableau system for hybrid logic that has
this desirable feature: Analogous to the axiom systems of Blackburn and Tzakova
(1999) and Blackburn and ten Cate (2006), completeness is preserved if the tableau
system is extended with a set of pure axioms, that is, a set of pure formulas that are
allowed to be added to a tableau during the tableau construction. See Hansen (2007)
for another tableau system for hybrid logic.

The tableau system of Blackburn (2000a) is the basis for a decision procedure
for the binder-free fragment of hybrid logic given in the paper by the present author
together with Thomas Bolander (2006). The tableau-based decision procedures of
Bolander and Braüner (2006) have been further developed in the papers by Bolander
and Blackburn (2007, 2009). The paper Mayer and Cerrito (2010) presents another
tableau-based decision procedure for hybrid logic. Other decision procedures for
hybrid logics, which also are based on proof-theory, are given in the papers
Kaminski and Smolka (2007, 2009. The procedures of these two papers are based on
the higher-order formulation of hybrid logic (involving the simply typed λ -calculus)
given in Hardt and Smolka (2007).

The paper by Hansen et al. (2008) gives a tableau-based decision procedure for
many-valued hybrid logic, that is, hybrid logic where the two-valued classical logic
basis has been generalized to a many-valued logic basis involving a truth-value
space having the structure of a finite Heyting algebra (this many-valued hybrid
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logic can also be seen as a hybridized version of the many-valued modal logic
given in the papers Fitting (1992a), Fitting (1992b), and Fitting (1995)). The paper
Hansen (2010) gives a tableau-based decision procedure for a hybridized version of
a dynamic epistemic logic called public announcement logic.

Natural deduction style proof-theory of propositional and first-order hybrid logic
has been explored in the papers by the present author Braüner (2004a, 2005) (see
Sect. 1.4 for the propositional natural deduction system). The paper Braüner (2004a)
also gives a Gentzen system for hybrid logic. These natural deduction and Gentzen
systems can be extended with additional proof-rules corresponding to first-order
conditions on the accessibility relations expressed by geometric theories; this is
analogous to extending tableau and axiom systems with pure axioms.15 The paper
(Braüner and de Paiva 2006) by the present author together with Valeria de Paiva
gives a natural deduction system for intuitionistic hybrid logic. In the context of
situation theory, Gentzen and natural deduction systems for logics similar to hybrid
logics were explored in the early 1990s by Jerry Seligman, see the overview in
Seligman (2001). In the paper (Braüner 2004b) by the present author, a natural
deduction system given in Seligman’s paper (1997) is compared to the system
of Braüner (2004a).

The fact that hybridization of modal logics enables the formulation of uniform
tableau, Gentzen, and natural deduction systems for wide classes of logics is
discussed in detail in the paper (Braüner 2007) by the present author (see Sect. 1.6).

The development of hybrid logic is only outlined above, in particular, we have
only outlined hybrid-logical proof-theory. The proof-theory of hybrid logic will be
the main issue in what follows.

1.4 Natural Deduction for Hybrid Logic

In this section we shall give a sound and complete natural deduction system
for hybrid logic. Moreover, we shall show how to extend the natural deduction
system with additional derivation rules corresponding to first-order conditions on
the accessibility relation. The conditions we consider are expressed by geometric
theories. Different geometric theories give rise to different hybrid logics, so natural
deduction systems for new hybrid logics can be obtained in a uniform way simply
by adding derivation rules as appropriate. Furthermore, we prove a normalisation
theorem which says that any derivation can be rewritten to a normal derivation by
repeated applications of reduction steps. Normal derivations satisfy a version of the
subformula property called the quasi-subformula property. The natural deduction
system given in the present section was originally published in the paper Braüner
(2004a). Only central theorems and proofs are included in the present section, more
details can be found in that paper as well as the book Braüner (2011).

15Like frame classes definable by pure formulas, frame classes definable by geometric theories can
be given a semantic characterization, see the remark at the end of Sect. 1.4.3.
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1.4.1 The Basics of Natural Deduction Systems

Before giving our hybrid-logical natural deduction system, we shall sketch the
basics of natural deduction and fix terminology.

Natural deduction style derivation rules for ordinary classical first-order logic
were originally introduced by Gerhard Gentzen in 1969 and later on developed much
further by Dag Prawitz in 1965; 1971. See Troelstra and Schwichtenberg (1996) for
a general introduction to natural deduction systems. With reference to Gentzen’s
work, Prawitz made the following remarks on the significance of natural deduction.

. . . the essential logical content of intuitive logical operations that can be formulated in the
languages considered can be understood as composed of the atomic inferences isolated by
Gentzen. It is in this sense that we may understand the terminology natural deduction.

Nevertheless, Gentzen’s systems are also natural in the more superficial sense of
corresponding rather well to informal practices; in other words, the structure of informal
proofs are often preserved rather well when formalised within the systems of natural
deduction (Prawitz 1971, p. 245).

The method of reasoning in natural deduction systems is called “forwards” reason-
ing: When you want to find a derivation of a certain formula you start with the rules
and try to build a derivation of the formula you have in mind. This is contrary to
tableau systems which are backward reasoning systems since you explicitly start
with a particular formula and try to build a proof of it using tableau rules, cf.
Sect. 1.5.1.

A natural deduction derivation has the form of a finite tree where the nodes are
labelled with formulas such that for any formula occurrence φ in the derivation,
either φ is a leaf of the derivation or the immediate successors of φ in the derivation
are the premises of a rule-instance which has φ as the conclusion. In what follows,
the metavariables π , τ , . . . range over derivations. A formula occurrence that is
a leaf but is not the conclusion of a rule-instance with zero premises, is called an
assumption of the derivation. The root of a derivation is called the end-formula of
the derivation. All assumptions are annotated with numbers. An assumption is either
undischarged or discharged. If an assumption is discharged, then it is discharged at
one particular rule-instance and this is indicated by annotating the assumption and
the rule-instance with identical numbers. We shall often omit this information when
no confusion can occur. A rule-instance annotated with some number discharges
all undischarged assumptions that are above it and are annotated with the number
in question, and moreover, are occurrences of a formula determined by the rule-
instance.

Two assumptions in a derivation belong to the same parcel if they are annotated
with the same number and are occurrences of the same formula, and moreover,
either are both undischarged or have both been discharged at the same rule-instance.
Thus, in this terminology rules discharge parcels. We shall make use of the standard
notations
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[φ r]
··· πψ

··· τ
φ
··· πψ

which mean a derivation π where ψ is the end-formula and [φ r] is the parcel
consisting of all undischarged assumptions that have the form φ r, and moreover,
a derivation π where ψ is the end-formula and a derivation τ with end-formula φ
has been substituted for each of the undischarged assumptions indicated by [φ r].

We shall make use of the following conventions. The metavariables Γ, Δ, . . .
range over sets of formulas. A derivation π is called a derivation of φ if the end-
formula of π is an occurrence of φ , and moreover, π is called a derivation from
Γ if each undischarged assumption in π is an occurrence of a formula in Γ (note
that numbers annotating undischarged assumptions are ignored). If there exists a
derivation of φ from the empty set /0, then we shall simply say that φ is derivable.

A characteristic feature of natural deduction is that there are two different kinds
of rules for each connective; there are rules called introduction rules which introduce
a connective (that is, the connective occurs in the conclusion of the rule, but not
in the premises) and there are rules called elimination rules which eliminate a
connective (the connective occurs in a premiss of the rule, but not in the conclusion).
Introduction rules traditionally have names in the form (. . . I . . .), and similarly,
elimination rules traditionally have names in the form (. . .E . . .).

The introduction and elimination rules for a connective are expected to satisfy
Dag Prawitz’ inversion principle.

. . . a proof of the conclusion of an elimination is already “contained” in the proofs of the
premises when the major premise is inferred by introduction (Prawitz 1971, pp. 246–247).

(The major premise of an elimination rule is the premise that exhibits the connective
being eliminated.) The history of the inversion principle goes back to Prawitz
(1965). In the above formulation of the inversion principle it is not made explicit
what is meant by requiring that some derivations (called proofs by Prawitz)
“contain” a derivation of a certain formula, but it means that a derivation of the
formula in question can be obtained by composition of derivations, that is, by
substitution of derivations for undischarged assumptions. In the case of first-order
logic, not only substitution of derivations for undischarged assumptions is allowed,
but also substitution of variables for variables in derivations.

The inversion principle refers to a particular kind of formula occurrence in a
derivation, namely a formula occurrence which is both introduced by an introduction
rule and eliminated by an elimination rule. Such a formula occurrence is called a
maximum formula. According to the inversion principle, a maximum formula can
be considered a “detour” in the derivation, and it follows from the principle that
the maximum formula can be removed by rewriting the derivation. This rewrite
process is formalized in a kind of rewrite rules that are called proper reduction rules.
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Some natural deduction systems also involve other kinds of reduction rules than
proper reduction rules. A derivation is called normal if no reduction rules can be
applied to it, and for most natural deduction systems a normalisation theorem can
be proved which says that any derivation can be rewritten to such a normal derivation
by repeated applications of reductions. In most natural deduction systems, normal
derivations satisfy the subformula property which says that any formula in a
derivation, save possibly some exceptions, is a subformula of the end-formula or
one of the undischarged assumptions.

As is clear from the above, the inversion principle can be seen as a prerequisite
for formulating a normalisation theorem since such a theorem is relative to a set of
reduction rules. See in Sect. 1.6 for further discussion of the inversion principle.

1.4.2 Natural Deduction Rules for Hybrid Logic

In this subsection we give the natural deduction system for the hybrid logic H(O),
whereO is any subset of the set of binders {∀,↓}. The derivation rules for the system
are given in Figs. 1.1 and 1.2. All formulas in the rules are satisfaction statements.
Note that the rules (⊥1) and (⊥2) are neither introduction rules nor elimination
rules (recall that ¬φ is an abbreviation for φ →⊥). Our natural deduction system
for H(O) is obtained from the rules given in Figs. 1.1 and 1.2 by leaving out the
rules for the binders that are not in the set O. The system thus obtained will be
denoted NH(O). So, for example, the system NH(∀) is obtained by leaving out the
rules (↓ I) and (↓ E). We shall discuss the side-condition on the rules (⊥1) and
(Nom1) in Sect. 1.4.4. Below we give an example of a derivation in the system NH.
The end-formula of the example derivation is the standard modal axiom K prefixed
by a satisfaction operator (it is assumed that the nominal b in the derivation is new).

@a�(φ → ψ)3 @a♦b1

(�E)
@b(φ → ψ)

@a�φ 2 @a♦b1

(�E)
@bφ

(→ E)
@bψ

(�I)1

@a�ψ
(→ I)2

@a(�φ →�ψ)
(→ I)3

@a(�(φ → ψ)→ (�φ →�ψ))

The natural deduction system NH(O) corresponds to the class of all frames, that is,
the class of frames where no conditions are imposed on the accessibility conditions
(this is formalized in the soundness and completeness result, Theorem 1.12). Hence,
it is a hybrid version of the standard modal logic K.
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@aφ @aψ
(∧I)

@a(φ ∧ψ)

@a(φ ∧ψ)
(∧E1)

@aφ

@a(φ ∧ψ)
(∧E2)

@aψ

[@aφ ]···
@aψ

(→ I)
@a(φ → ψ)

@a(φ → ψ) @aφ
(→ E)

@aψ

[@a¬φ ]···
@a⊥

(⊥1)a

@aφ

@a⊥
(⊥2)

@c⊥

@aφ
(@I)

@c@aφ

@c@aφ
(@E)

@aφ

[@a♦c]
···

@cφ
(�I)b

@a�φ

@a�φ @a♦e
(�E)

@eφ

@aφ [c/b]
(∀I)c

@a∀bφ

@a∀bφ
(∀E)

@aφ [e/b]

[@ac]
···

@cφ [c/b]
(↓ I)d

@a ↓bφ

@a ↓bφ @ae
(↓E)

@eφ [e/b]

a φ is a propositional symbol (ordinary or a nominal)
b c does not occur free in @a�φ or in any undischarged assumptions other than the specified
occurrences of @a♦c
c c does not occur free in @a∀bφ or in any undischarged assumptions
d c does not occur free in @a ↓bφ or in any undischarged assumptions other than the specified
occurrences of @ac

Fig. 1.1 Natural deduction rules for connectives

(Ref )
@aa

@ac @aφ
(Nom1)a

@cφ

@ac @a♦b
(Nom2)

@c♦b

a φ is a propositional symbol (ordinary or a nominal)

Fig. 1.2 Natural deduction rules for nominals
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1. Symmetry ∀a∀c(R(a,c)→ R(c,a))

2. Antisymmetry ∀a∀c((R(a,c)∧R(c,a))→ a = c)

3. Irreflexivity ∀a(R(a,a)→⊥)

4. Directedness ∀a∀b∀c((R(a,b)∧R(a,c))→∃d(R(b,d)∧R(c,d)))

Fig. 1.3 A sample of conditions on the accessibility relation

1.4.3 Conditions on the Accessibility Relation

In what follows we shall consider natural deduction systems obtained by extending
NH(O) with additional derivation rules corresponding to first-order conditions on
the accessibility relations. The conditions we consider are expressed by geometric
theories. A first-order formula is geometric if it is built out of atomic formulas of
the forms R(a,c) and a = c using only the connectives ⊥, ∧, ∨, and ∃. See Vickers
(1988) for an introduction to geometric logic.

In what follows, the metavariables Sk and S jk range over atomic first-order
formulas of the forms R(a,c) and a = c. Using the translation HT given in
Sect. 1.1.3, atomic formulas of the mentioned forms are translated into hybrid logic
as follows.

HT(R(a,c)) = @a♦c
HT(a = c) = @ac

A geometric theory is a finite set of closed first-order formulas, each having the
form ∀a(φ → ψ), where the formulas φ and ψ are geometric, a is a list a1, . . . ,al

of variables, and ∀a is an abbreviation for ∀a1 . . .∀al . It can be proved, cf. Simpson
(1994), that any geometric theory is equivalent to a basic geometric theory which is
a geometric theory in which each formula has the form

(∗) ∀a((S1∧ . . .∧Sn)→∃c
m∨

j=1

(S j1∧ . . .∧S jn j))

where n,m ≥ 0 and n1, . . . ,nm ≥ 1. For simplicity, we assume that the variables in
the list a are pairwise distinct, that the variables in c are pairwise distinct, and that
no variable occurs in both c and a. A sample of formulas of the form (∗) displayed
above is given in Fig. 1.3. Note that such a formula is a Horn clause if c is empty,
m = 1, and nm = 1. Thus, the first two formulas in Fig. 1.3 are Horn clauses. Also,
note that the third formula in Fig. 1.3 is identical to ∀a¬R(a,a).

In what follows, the metavariables sk and s jk range over hybrid-logical formulas
of the forms @a♦c and @ac. It turns out that basic geometric theories correspond
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s1 . . . sn

[s11] . . . [s1n1 ]···
φ . . .

[sm1] . . . [smnm ]···
φ
(Rθ )

a

φ
a None of the nominals in c occur free in φ or in any of the undischarged assumptions other than
the specified occurrences of s jk. (Recall that nominals are identified with first-order variables and
that c are the first-order variables existentially quantified over in the formula θ )

Fig. 1.4 Natural deduction rules for geometric theories

@a♦c

[@c♦a]
···
φ
(Rθ1 )

φ

@a♦c @c♦a

[@ac]
···
φ
(Rθ2 )

φ

@a♦a
(Rθ3 )

φ @a♦b @a♦c

[@b♦d][@c♦d]
···
φ
(Rθ4 )

a

φ

a d does not occur free in φ or in any undischarged assumptions other than the specified
occurrences of @c♦d and @b♦d

Fig. 1.5 Rules corresponding to conditions on the accessibility relation

to straightforward natural deduction rules for hybrid logic: With a formula θ of
the form displayed above, we associate the natural deduction rule (Rθ ) given in
Fig. 1.4, where sk is of the form HT(Sk) and s jk is of the form HT(S jk). If θ1, . . . ,
θ4 are formulas of the forms given in Fig1.3, then the associated natural deduction
rules (Rθ1), . . . , (Rθ4) are the rules in Fig. 1.5. Note that the rule (Rθ3) has zero
non-relational premises. Now, let T be any basic geometric theory. The natural
deduction system obtained by extending NH(O) with the set of rules {(Rθ ) | θ ∈ T}
will be denoted NH(O) +T. We shall assume that we are working with a fixed basic
geometric theory T unless otherwise specified.

It is straightforward to check that if a formula θ of the form displayed above is a
Horn clause, then the rule (Rθ ) given in Fig. 1.4 can be replaced by the simpler rule
below (which we have called (Rθ ) too).

s1 . . . sn
(Rθ )

s11

Natural deduction rules corresponding to Horn clauses were discussed already in
Prawitz (1971).
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Remark: A semantic characterisation of frame classes definable by geometric
theories can be found in the book Chang and Keisler (1990, p. 322, Exercise
5.2.24).16 We briefly summarize this exercise. A homomorphism from a frame
(W,R) to a frame (W ′,R′) is a function f from W to W ′ such that for any w,v∈W , if
wRv then f (w)R′ f (v). A direct system is a sequence of frames F1, F2, . . . together
with a sequence of functions f1, f2, . . . such that each fi is a homomorphism from
Fi to Fi+1. There is a natural way to define a limit frame, called a direct limit, for
a direct system, the exact definition can be found in the above exercise. It can be
shown that there exists a direct limit for any direct system and that this direct limit
is unique up to isomorphism. Now, according to the exercise, a closed first-order
formula φ is equivalent to the conjunction of the formulas in a geometric theory if
and only if φ is preserved under direct limits, that is, whenever each of the frames
F1, F2, . . . in a direct system validates φ , the direct limit also validates φ . It follows
that a class of frames definable by a closed first-order formula is definable by a
geometric theory if and only if the class in question is closed under direct limits.

1.4.4 Some Admissible Rules

Below we shall prove a small proposition regarding some admissible rules. A rule
is admissible in a natural deduction system if, for every derivation of a formula φ
from a set of formulas Γ involving the rule in question, there exists a derivation of φ
from Γ not involving the rule. We first need a convention: The degree of a formula
is the number of occurrences of non-nullary connectives in it.

Proposition 1.5. The rules

[@a¬φ ]···
@a⊥

(⊥)
@aφ

@ac @aφ
(Nom)

@cφ

are admissible in NH(O) +T.

Proof. The proof that (⊥) is admissible is along the lines of a similar proof for
ordinary classical first-order logic given in Prawitz (1965). The proof that (Nom) is
admissible is analogous. �
Note in the proposition above that φ can be any formula; not just a propositional
symbol. Thus, the rule (⊥) generalises the rule (⊥1) whereas (Nom) generalises
(Nom1) (and the rule (Nom2) as well). The side-conditions on the rules (⊥1) and
(Nom1) enable us to prove a normalisation theorem such that normal derivations

16This was pointed out to the author by Balder ten Cate (personal communication).
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satisfy a version of the subformula property called the quasi-subformula property
(Theorem 1.15). In the case with (⊥1), it is well-known from the literature that
the subformula property does not hold without the side-condition (cf. Prawitz 1965,
1971). We shall return to the subformula property later.

1.4.5 Soundness and Completeness

The aim of this subsection is to prove soundness and completeness of the natural
deduction system for hybrid logic. Recall that we are working with a fixed basic
geometric theory T. A model M for hybrid logic is called a T-model if and
only if M∗ |= θ for every formula θ ∈ T (recall that M∗ is the first-order model
corresponding to the hybrid-logical model M). Remark: Being a T-model is really
a property of the frame on which the model is based, the reason being that the
formulas in T do not contain predicate symbols besides R and =.

The completeness proof we give is similar to the completeness proof in Black-
burn (2000a). However, we use maximal consistent sets instead of Hintikka sets.
Also, our proof is in some ways similar to the completeness proof in Basin et al.
(1997).

Definition 1.6. A set of satisfaction statements Γ in H(O) is NH(O) + T-
inconsistent if and only if @a⊥ is derivable from Γ in NH(O) +T for some nominal
a and Γ is NH(O) +T-consistent if and only if Γ is not NH(O) +T-inconsistent.
Moreover, Γ is maximal NH(O) + T-consistent if and only if Γ is NH(O) + T-
consistent and any set of satisfaction statements in H(O) that properly extends Γ is
NH(O) +T-inconsistent.

We shall frequently omit the reference toH(O) and NH(O) +T where no confusion
can occur. The definition above leads us to the lemma below.

Lemma 1.7. If a set of satisfaction statements Γ is consistent, then for every
satisfaction statement @aφ , either Γ ∪ {@aφ} is consistent or Γ ∪ {@a¬φ} is
consistent.

Proof. Straightforward. �
The Lindenbaum lemma below is similar to the Lindenbaum lemma in Basin et al.
(1997).

Lemma 1.8 (Lindenbaum lemma). Let H(O) be the hybrid logic obtained by
extending the set of nominals inH(O) with a countably infinite set of new nominals.
Let φ1, φ2, φ3, . . . be an enumeration of all satisfaction statements in H(O). For
every NH(O) +T-consistent set of satisfaction statements Γ, a maximal NH(O) +T-

consistent set of satisfaction statements Γ∗ ⊇ Γ is defined as follows. Firstly, Γ0 is
defined to be Γ. Secondly, Γn+1 is defined by induction. If Γn∪{φn+1} is NH(O)+T-

inconsistent, then Γn+1 is defined to be Γn. Otherwise Γn+1 is defined to be



30 T. Braüner

1. Γn∪{φn+1,@bψ,@a♦b} if φn+1 is of the form @a♦ψ;
2. Γn∪{φn+1,@bψ[b/c],@ab} if φn+1 is of the form @a ↓cψ;
3. Γn∪{φn+1,@aψ[b/c]} if φn+1 is of the form @a∃cψ;
4. Γn ∪{φn+1,@e ∨m

j=1 (s j1 ∧ . . .∧ s jn j)[d,b/a,c]} if there exists a formula in T of
the form ∀a((S1 ∧ . . .∧ Sn)→ ∃c∨m

j=1 (S j1 ∧ . . .∧ S jn j)) such that m ≥ 1 and

φn+1 = @e(s1∧ . . .∧ sn)[d/a] for some nominals d and e; and
5. Γn∪{φn+1} if none of the clauses above apply.

In clause 1, 2, and 3, b is a new nominal that does not occur in Γn or φn+1, and
similarly, in clause 4, b is a list of new nominals such that none of the nominals in b
occur in Γn or φn+1. Finally, Γ∗ is defined to be ∪n≥0Γn.

Proof. Firstly, Γ0 is NH(O) +T-consistent by definition and hence also NH(O) +T-
consistent. Secondly, to check that the consistency of Γn implies the consistency
of Γn+1, we need to check the first four clauses in the definition of Γn+1. We only
consider the first clause.

Assume conversely @ f⊥ is derivable from Γn ∪ {φn+1,@bψ,@a♦b}. Then
@b¬ψ is derivable from Γn ∪{φn+1,@a♦b} wherefore @a�¬ψ is derivable from
Γn ∪{φn+1} by the rule (�I). But then @a⊥ is derivable from the set of formulas
Γn∪{φn+1} as φn+1 = @a¬�¬ψ .

It follows from each Γn being consistent that Γ∗ is consistent. We now just
need to prove that Γ∗ is maximal consistent. Assume conversely that there exists
a satisfaction statement @aφ such that @aφ /∈ Γ∗ as well as @a¬φ /∈ Γ∗, cf.
Lemma 1.7. Then φp /∈ Γp and φq /∈ Γq where φp = @aφ and φq = @a¬φ . So
Γp−1 ∪ {φp} is inconsistent and so is Γq−1 ∪ {φq}. If p < q, then Γp−1 ⊆ Γq−1

wherefore Γq−1 ∪{φp} is inconsistent. Thus, Γq−1 is inconsistent by Lemma 1.7.
The argument is analogous if q < p. �
Below we shall define a canonical model. First a small lemma.

Lemma 1.9. Let Δ be a maximal NH(O) +T-consistent set of satisfaction state-

ments. Let ∼Δ be the binary relation on the set of nominals of H(O) defined by
the convention that a ∼Δ a′ if and only if @aa′ ∈ Δ. Then the relation ∼Δ is an
equivalence relation with the following properties.

1. If a∼Δ a′, c∼Δ c′, and @a♦c ∈ Δ, then @a′♦c′ ∈ Δ.
2. If a∼Δ a′ and @a p ∈ Δ, then @a′ p ∈ Δ.

Proof. It follows straightforwardly from Lemma 1.7 and the rules (Ref ) and
(Nom1) that∼Δ is reflexive, symmetric, and transitive. The first mentioned property
follows from Lemma 1.7, the rule (Nom2), and the observation that @a′♦c′ is
derivable from {@a′♦c,@cc′}. The second property follows from Lemma 1.7 and
the rule (Nom1). �
Given a nominal a, we let [a] denote the equivalence class of a with respect to ∼Δ.
We now define a canonical model.

Definition 1.10 (Canonical model). Let Δ be a maximal NH(O) +T-consistent set
of satisfaction statements. Below we define a model
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MΔ = (WΔ,RΔ
1 , . . . ,R

Δ
m,{VΔ

w }w∈WΔ)

and an assignment gΔ for MΔ.

• WΔ = {[a] | a is a nominal ofH(O)}.
• RΔ = {([a], [c]) |@a♦c ∈ Δ}.

• VΔ
[a](p) =

{
1 if @a p ∈ Δ.
0 otherwise.

• gΔ(a) = [a].

Note that the first property of ∼Δ mentioned in Lemma 1.9 implies that RΔ is well-
defined, and similarly, the second property implies that VΔ

w is well-defined. Now a
truth lemma.

Lemma 1.11 (Truth lemma). Let Γ be a NH(O) +T-consistent set of satisfaction
statements. Then for any satisfaction statement @aφ , @aφ ∈ Γ∗ if and only if
MΓ∗ ,gΓ∗ , [a] |= φ .

Proof. Induction on the degree of φ . We only consider the case where φ is of the
form �θ .

Assume that @a�θ ∈ Γ∗. We then have to prove that MΓ∗ ,gΓ∗ , [c] |= θ for any
nominal c such that [a]RΓ∗ [c], that is, such that @a♦c ∈ Γ∗. But @a♦c ∈ Γ∗ implies
@cθ ∈ Γ∗ by the rule (�E) and this implies MΓ∗ ,gΓ∗ , [c] |= θ by induction.

Assume that MΓ∗ ,gΓ∗ , [a] |=�θ , that is, MΓ∗ ,gΓ∗ , [c] |= θ for any nominal c such
that @a♦c ∈ Γ∗. Now, if @a¬�θ ∈ Γ∗, then also @a♦¬θ ∈ Γ∗ as @a(¬�θ →
♦¬θ) is derivable. Therefore by definition of Γ∗, there exists a nominal b such
that @b¬θ ∈ Γ∗ and @a♦b ∈ Γ∗. But then MΓ∗ ,gΓ∗ , [b] |= θ by assumption and
hence @bθ ∈ Γ∗ by induction. Thus, we conclude that @a¬�θ /∈ Γ∗ and hence
@a�θ ∈ Γ∗ by Lemma 1.7. �
Now soundness and completeness.

Theorem 1.12. Let ψ be a satisfaction statement and let Γ be a set of satisfaction
statements. The first statement below implies the second statement (soundness) and
vice versa (completeness).

1. ψ is derivable from Γ in NH(O) +T.
2. For any T-model M and any assignment g, if, for any formula θ ∈ Γ, M,g |= θ ,

then M,g |= ψ .

Proof. Soundness is proved by induction on the structure of the derivation of ψ .
Completeness is proved as follows. We are done if Γ is inconsistent, cf.

Proposition 1.5. So assume that Γ is consistent. Now, assume that ψ is not derivable
from Γ and let ψ = @aφ . Then Γ∪{@a¬φ} is consistent. Let Δ= (Γ∪{@a¬φ})∗,
cf. Lemma 1.8, and consider the model MΔ and the assignment gΔ. By Lemma 1.11,
MΔ,gΔ |= θ for any formula θ ∈ Γ, and also MΔ,gΔ |= @a¬φ . But it can be
proved that MΔ is a T-model, hence, the second statement in the theorem is
contradicted. �
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1.4.6 Normalisation

In this subsection we give reduction rules for the natural deduction system NH(O) +
T and we prove a normalisation theorem. First some conventions. If a premise of a
rule has the form @ac or @a♦c, then it is called a relational premise, and similarly,
if the conclusion of a rule has the form @ac or @a♦c, then it is called a relational
conclusion. Moreover, if an assumption discharged by a rule has the form @ac or
@a♦c, then it is called a relationally discharged assumption. The premise of the
form @aφ in the rule (→ E) is called minor. A premise of an elimination rule that
is neither minor nor relational is called major. Note that the notion of a relational
premise is defined in terms of rules; not rule-instances. A similar remark applies
to the other notions above. Thus, a formula occurrence in a derivation might be of
the form @a♦c and also be the major premise of an instance of (→ E). Note that
the premises s1, . . . , sn in a (Rθ ) rule are relational and that all the assumptions
discharged by such a rule are relationally discharged.

A maximum formula in a derivation is a formula occurrence that is both the
conclusion of an introduction rule and the major premise of an elimination rule.
Maximum formulas can be removed by applying proper reductions. The rules for
proper reductions are given below. We consider each case in turn. In what follows,
we let π[c/a] be the derivation π where each formula occurrence ψ has been
replaced by ψ[c/a].

(∧I) followed by (∧E1) (analogously in the case involving (∧E2))

··· π1

@aφ

··· π2

@aψ

@a(φ ∧ψ)

@aφ

�
··· π1

@aφ

(→ I) followed by (→ E)

[@aφ ]··· π1

@aψ

@a(φ → ψ)

··· π2

@aφ

@aψ

�

··· π2

@aφ··· π1

@aψ

(@I) followed by (@E)

··· π
@aφ

@c@aφ

@aφ

�
··· π

@aφ



1 Hybrid Logic 33

(�I) followed by (�E)

[@a♦c]
··· π1

@cφ

@a�φ

··· π2

@a♦e

@eφ

�

··· π2

@a♦e
··· π1[e/c]

@eφ

(↓ I) followed by (↓E)

[@ac]
··· π1

@cφ [c/b]

@a ↓ bφ

··· π2

@ae

@eφ [e/b]

�

··· π2

@ae
··· π1[e/c]

@eφ [e/b]

(∀I) followed by (∀E)
··· π

@aφ [c/b]

@a∀bφ
@aφ [e/b]

�
··· π[e/c]

@aφ [e/b]

We also need reduction rules in connection with the (Rθ ) derivation rules corre-
sponding to geometric theories. A permutable formula in a derivation is a formula
occurrence that is both the conclusion of a (Rθ ) rule and the major premise of an
elimination rule. Permutable formulas in a derivation can be removed by applying
permutative reductions. The rule for permutative reductions is as follows in the case
where the elimination rule has two premises.

··· τ1
s1 . . .

··· τn
sn

[s11] . . . [s1n1 ]··· π1

φ . . .

[sm1] . . . [smnm ]··· πm

φ

φ

··· π
θ

ψ

�

··· τ1
s1 . . .

··· τn
sn

[s11[b/c]] . . . [s1n1 [b/c]]
··· π1[b/c]
φ

··· π
θ

ψ . . .

[sm1[b/c]] . . . [smnm [b/c]]
··· πm[b/c]
φ

··· π
θ

ψ

ψ
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The nominals in the list b are pairwise distinct and new. Note that according to the
side-condition on the rules (Rθ ), cf. Fig. 1.4, none of the nominals in c occur free
in φ , hence, it is ensured that the formula φ [b/c] is identical to φ . This remark also
applies to the undischarged assumptions in the derivations of φ . The case where the
elimination rule has only one premise is obtained by deleting all instances of the
derivation π from the reduction rule above.

A derivation is normal if it contains no maximum or permutable formula. The
natural deduction system satisfies a normalisation theorem.

Theorem 1.13 (Normalisation). Any derivation in NH(O) +T can be rewritten to
a normal derivation by repeated applications of proper and permutative reductions.

Proof. The proof is somewhat technically involved and will not be given here. We
only make a few brief remarks, see the book Braüner (2011) for a detailed proof.

In the case of ordinary classical first-order logic, it is always possible to select
reductions such that applying a reduction to a maximum formula only generates new
maximum formulas having a lower degree than the original one. The technique used
in the standard normalisation proof for first-order logic (originally given in Prawitz
(1965)) is based on this property. The natural deduction system considered here does
not have this property since the reduction rule for � might generate new maximum
formulas of the form @a♦e, that is, maximum formulas that do not necessarily
have a lower degree than the original one (here we ignore permutable formulas).
Essentially, this is a consequence of the fact that the hybrid-logical introduction rule
for � not only exhibits � in the conclusion, but also in the discharged assumptions,
namely in the formula @a♦c displayed in the introduction rule (recall that @a♦c
is an abbreviation for the formula @a¬�¬c).17 See Fig. 1.1 of Sect. 1.4.2. Thus,
the standard technique for proving normalisation does not work directly here. In
the paper Braüner (2004a) and the book Braüner (2011) this problem is solved by
using what we have called the �-graph of a derivation to systematically control the
application of reductions to new maximum formulas like those of the form @a♦e
mentioned above.18 �

17According to Prawitz’ terminology (Prawitz 1978), a natural deduction introduction rule for
a connective is explicit if the connective in question is exhibited exactly once, namely in the
conclusion of the rule. Thus, according to this terminology, the hybrid-logical introduction rule
for the modal operator is not explicit.
18This is actually a generally occurring problem (with a generally applicable solution) since the
same problem crops up (and is solved in the same way) in connection with normalisation for
intuitionistic hybrid logic, cf. Braüner and de Paiva (2006), and normalisation for first-order hybrid
logic, cf. Braüner (2005). See also Braüner (2011). In the first case the reduction rule for the
modal operator ♦, which in intuitionistic hybrid logic is primitive, not defined, might generate new
maximum formulas on the form @a♦e, and in the second case, the reduction rule for the quantifier
∀ might generate new maximum formulas on the form @aE(t) where E(t), called the existence
predicate, is an abbreviation for ∃y(y = t) which in turn is an abbreviation for ¬∀y¬(y = t).
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Note that our notion of normalisation involves permutative reductions which is
unusual for a classical natural deduction system. Intuitionistic systems, on the other
hand, generally involve permutative reductions in connection with derivation rules
for the connectives ⊥, ∨, and ∃.

1.4.7 The Form of Normal Derivations

Below we shall adapt an important definition from Prawitz (1965) to hybrid logic.

Definition 1.14. A branch in a derivation π is a non-empty list φ1, . . . ,φn of formula
occurrences in π with the following properties.

1. For each i < n, φi stands immediately above φi+1.
2. φ1 is an assumption, or a relational conclusion, or the conclusion of a (Rθ ) rule

with zero non-relational premises.
3. φn is either the end-formula of π or a minor or relational premise.
4. For each i < n, φi is not a minor or relational premise.

In the theorem below we make use of the convention that a formula @aφ is a quasi-
subformula of a formula @cψ if and only if φ is a subformula of ψ in the standard
sense. Now comes the theorem which says that normal derivations satisfy a version
of the subformula property.

Theorem 1.15 (Quasi-subformula property). Let Γ be a set of satisfaction state-
ments and let π be a normal derivation of φ from Γ in NH(O) +T. Moreover, let θ
be a formula occurrence in π such that

1. θ is not an assumption discharged by an instance of the rule (⊥1) where the
discharged assumption is the major premise of an instance of (→ E);

2. θ is not an occurrence of @a⊥ in a branch whose first formula is an assumption
discharged by an instance of the rule (⊥1) where the discharged assumption is
the major premise of an instance of (→ E); and

3. θ is not an occurrence of @a⊥ in a branch whose first formula is the conclusion
of a (Rθ ) rule with zero non-relational premises.

Then θ is a quasi-subformula of φ , or of some formula in Γ, or of some relational
premise, or of some relational conclusion, or of some relationally discharged
assumption.

Proof. The proof is along the lines of a similar proof for ordinary classical first-
order logic given in Prawitz (1965). The proof will not be given here, we only make
a couple of brief remarks, see the book Braüner (2011) for a detailed proof.

The proof is by induction on the order of a branch in π which is the number
of formula occurrences in π which stand below the last formula occurrence of the
branch. The proof makes use of a lemma which says that a branch in a normal
derivation can be split into three parts: An analytical part in which formulas are
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broken down into their components by successive applications of the elimination
rules, a minimum part in which an instance of the rule (⊥1) may occur, and a
synthetical part in which formulas are put together by successive applications of
the introduction rules. It follows from the lemma that any formula occurrence in
a branch φ1, . . . ,φn is a quasi-subformula of either φ1 or φn. The lemma is more
technically involved than the corresponding result in Prawitz (1965), the reason
being the disturbing effect of (Nom1), (⊥2), and the (Rθ ) rules. �
The first two exceptions in the theorem above are inherited from the standard natural
deduction system for classical logic, see Prawitz (1965), whereas the third is related
to the possibility of having a (Rθ ) rule with zero non-relational premises. Remark:
If the formula occurrence θ is not covered by one of the three exceptions, then it is a
quasi-subformula of φ , or of some formula in Γ, or of a formula of the form @ac or
@a♦c (since relational premises, relational conclusions, and relationally discharged
assumptions are of the form @ac or @a♦c). Note that the formulation of the theorem
involves the notion of a branch in what appears to be an indispensable way.

1.4.8 Discussion

The natural deduction systems given in the present section share several features
with the tableau systems given in the next section, for example the feature that
all formulas in derivations are satisfaction statements. This feature is also shared
by the hybrid-logical tableau and Gentzen systems given by Patrick Blackburn in
(2000a). A difference between the natural deduction systems of the present section
and the systems of Blackburn (2000a) is that we consider additional derivation rules
corresponding to first-order conditions expressed by geometric theories whereas
Blackburn (2000a) considers tableau systems extended with axioms being pure
hybrid-logical formulas, that is, formulas that contain no ordinary propositional
symbols (thus, the only propositional symbols in such formulas are nominals).

The use of geometric theories in the context of proof-theory traces back to
Alex Simpson’s PhD thesis (1994) where it was pointed out that formulas in basic
geometric theories correspond to simple natural deduction rules for intuitionistic
modal logic. First-order conditions expressed by geometric theories cover a very
wide class of logics. This is for example witnessed by the fact that any Geach axiom
schema, that is, modal-logical axiom schema of the form

♦k�mφ →�l♦nφ

where � j (respectively ♦ j) is an abbreviation for a sequence of j occurrences of �
(respectively ♦), corresponds to a formula of the form required in a basic geometric
theory. To be precise, such a Geach axiom schema corresponds to the first-order
formula

∀a∀b∀c((Rk(a,b)∧Rl(a,c))→∃d(Rm(b,d)∧Rn(c,d)))
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where R0(a,b) means a = b and R j+1(a,b) means ∃e(R(a,e) ∧ R j(e,b)). The
displayed formula is then equivalent to a formula of the form required in a
basic geometric theory, cf. Simpson (1994); Basin et al. (1997). An example
of a Geach axiom schema is the axiom schema obtained by taking each of the
numbers k, m, l, and n to be one. The corresponding first-order condition is called
directedness (or Church-Rosser), see Sect. 1.4.3 for the natural deduction rule
corresponding to this condition. It is notable that this property is not definable
in terms of pure formulas involving just nominals and satisfaction operators (cf.
Areces and ten Cate 2007, p. 843).

In the natural deduction system considered in Simpson (1994), a distinction is
made between the language of ordinary modal logic and a meta-language involving
atomic first-order formulas of the form R(a,c) together with formulas of the form
@aφ , where φ is a formula of ordinary modal logic. A natural deduction system
for classical modal logic which is similar to the system of Simpson (1994) has been
given in Basin et al. (1997), see Sect. 1.6.

The feature of our natural deduction and Gentzen systems that all formulas
in derivations are satisfaction statements is at a general level in line with the
fundamental idea of Melvin Fitting’s prefixed tableau systems (Fitting 1983)
and Dov Gabbay’s labelled deductive systems (Gabbay 1996) which is to prefix
formulas in derivations by meta-linguistic indexes, or labels, with the aim of
regulating the proof process. The fundamental idea of Gabbay’s labelled deductive
systems is to prefix formulas in derivations by labels with the aim of regulating the
proof process. In fact, labelled deductive systems are proposed as a systematic way
of giving proof systems to many different logics. Note that the work of Simpson
(1994) fits naturally into this framework. It should also be mentioned that labelled
deductive systems are the basis for the natural deduction systems for substructural
logics given in Broda et al. (1999). The crucial difference between the work of
Fitting (1983), Gabbay (1996), Simpson (1994), Broda et al. (1999) and our work
is that the indexes, or labels, used in the mentioned work belong to a meta-language
whereas in our systems they are part of the object language, namely the language of
hybrid logic.19 Thus, in the terminology of Blackburn (2000a), the meta-language
has been internalized in the object language. We shall return to this issue in more
detail in Sect. 1.6.

19Labelled systems have the labelling machinery at the metalevel, whereas hybrid-logical systems
have machinery with similar effect at the object level. A third option is chosen in Fitting’s paper
(1972b) where a curious modal-logical axiom system is given in which labelling machinery is
incorporated directly into the object language itself. In that system sequences of formulas of
ordinary modal logic, delimited by a distinguished symbol ∗, are used as names for possible worlds.
To be more specific, a sequence ∗♦φ1, . . . ,♦φn,♦φn+1∗ is used as the name of a world accessible
from the world named by ∗♦φ1, . . . ,♦φn∗ and in which the formula φn+1 is true, if there is one.
It is allowed to form object language formulas by prefixing ordinary modal-logical formulas with
such sequences. Intuitively, a prefixed formula ∗♦φ1, . . . ,♦φn ∗ψ says that the formula ψ is true at
the world named by the prefix. Prefixed formulas can be combined using the usual connectives of
classical logic.
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Jerry Seligman’s paper (1997) should also be mentioned here: This paper gives a
natural deduction system for a logic of situations similar to hybrid logic; the system
in question is, however, quite different from ours, for a comparison see the paper
Braüner (2004b) or the book Braüner (2011).

1.5 Tableaus and Decision Procedures for Hybrid Logic

Based on tableau systems, we in this section give a decision procedure for a
strong hybrid logic including the universal modality. This decision procedure was
originally published in the paper Bolander and Braüner (2006). Moreover, we
show how the decision procedure can be modified such that simpler tableau-based
decision procedures (that is, without loop-checks) are obtained for a weaker hybrid
logic where the universal modality is not included. This is inspired by a tableau-
based decision procedure given in the paper by Thomas Bolander and Patrick
Blackburn (2007). More details can be found in the book Braüner (2011).

1.5.1 The Basics of Tableau Systems

Before giving our hybrid-logical tableau systems, we shall sketch the basics of
tableau systems.

A number of persons have played a role in the invention of tableau systems,
a leading figure being Jaako Hintikka (see Hintikka 1955). A milestone in the
later development of tableau systems is Fitting’s book (1983). See the handbook
D’Agostino et al. (1999) for further details. Hintikka made the following remarks
on the idea behind tableau systems, namely to mimic the recursive truth-conditions
in the semantics, whereby a formula is broken down into its components.

. . . the typical situation is one in which we are confronted by a complex formula (or
sentence) the truth or falsity of which we are trying to establish by inquiring into its
components. Here the rules of truth operate from the complex to the simple: they serve
to tell us what, under the supposition that a given complex formula or sentence is true, can
be said about the truth-values of its components (Hintikka 1955, p. 20).

The method of reasoning in tableau systems is called “backwards” reasoning:
Starting with a particular formula whose validity you want to prove, a tableau is built
step by step using the rules, whereby more and more information about counter-
models for the formula is obtained, and if at some stage it can be concluded that
there cannot be such models, it has been proved that the formula in question is
valid. This is contrary to natural deduction systems which are forward reasoning
systems since you start with natural deduction rules and try to build a derivation of
the formula you have in mind, cf. Sect. 1.4.1.
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A tableau is a well-founded tree in which each node is labelled with a formula,
and the edges represent applications of tableau rules. Where it is appropriate, we
shall blur the distinction between a formula and an occurrence of the formula in a
tableau. By applying rules to a tableau, the tableau is expanded, that is, new edges
and formulas are added to the leaves. A tableau is displayed such that it grows
downwards. Technically, premises and conclusions of tableau rules are finite sets of
formulas, and a tableau rule has one premise, and one or more conclusions. Most
often the premise contains zero, one, or two formulas whereas a conclusion most
often contains one or two formulas. A requirement for applying a rule to a branch
in a tableau is that all the formulas in the premise are present at the branch, and
the result of applying the rule is that for each conclusion of the rule, the end of the
branch is extended with a path containing a node for each of the formulas in the
conclusion in question. Thus, if for example the rule has two conclusions, then the
result of applying the rule is that the end of the branch is extended with two paths,
one path for each conclusion. If the rule only has one conclusion, no splitting takes
place. A branch in a tableau is called open if for no formula χ occurring on the
branch, it is the case that ¬χ also occurs on the branch. A branch is called closed if
it is not open. A tableau is called closed if all branches are closed.

Tableau rules are read from top to bottom, and given an appropriate notion of
a model, the intuition behind tableau rules is that the rules step by step attempt to
define a model for the root formula of a tableau. This intuition presupposes that
tableau rules are sound in the sense that the rules preserve the existence of models,
to be more precise, if the premise of a rule has a model (all formulas in the premise
are true), then this model is a model for at least one conclusion of the rule (all
formulas in the conclusion in question are true). It follows that if the root formula
of a tableau has a model, then there is at least one branch in the tableau such that the
model for the root formula is a model for all the formulas on the branch, and hence,
information about the model for the root formula can be read off from the branch.
On the other hand, such a branch obviously has to be open since no formulas χ and
¬χ can both be true in the same model, so if the tableau does not have any open
branches, that is, all its branches are closed, then it can be concluded that the root
formula does not have a model. Thus, if a tableau with only closed branches can be
constructed having a formula ¬φ as the root formula, then it has been proved that
the formula φ is valid.

1.5.2 A Tableau System Including the Universal Modality

A central issue throughout this section is the very expressive hybrid logic obtained
by extending the hybrid logicH in Sect. 1.1.2 with the universal modality E (which
is dual to the modality A considered in Sect. 1.2). Formally, the notion of a model is
kept as it is in Sect. 1.1.2, but the definition of the relation M,g,w |= φ is extended
with the clause

M,g,w |= Eφ iff for some v ∈W , M,g,v |= φ
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@a¬φ
(¬)

¬@aφ

¬@a¬φ
(¬¬)

@aφ

@a(φ ∧ψ)
(∧)

@aφ ,@aψ

¬@a(φ ∧ψ)
(¬∧)

¬@aφ | ¬@aψ

@c@aφ
(@)

@aφ

¬@c@aφ
(¬@)

¬@aφ

@a♦φ
(♦)a,b

@cφ ,@a♦c

¬@a♦φ ,@a♦e
(¬♦)

¬@eφ

@aEφ
(E)a

@cφ

¬@aEφ
(¬E)c

¬@eφ
a The nominal c is new
b The formula φ is not a nominal
c The nominal e is on the branch

Fig. 1.6 Tableau rules for connectives

(Ref )a

@aa

@ac,@aφ
(Nom1)b

@cφ

@ac,@a♦b
(Nom2)

@c♦b
a The nominal a is on the branch
b The formula φ is a propositional symbol (ordinary or a nominal)

Fig. 1.7 Tableau rules for nominals

where M= (W,R,{Vw}w∈W ) is a model, g is an assignment, and w is an element of
W . The hybrid logicH extended with the universal modality will be denotedH(E).
In the present section we define the dual operator A of E by the convention that Aφ
is an abbreviation for ¬E¬φ , thus, E is primitive and A is defined (note that it is
opposite in Sect. 1.2). Moreover, in this section we take the connectives ¬ and ♦ to
be primitive and→, ⊥, and � to be defined. It is well-known that the hybrid logic
H(E) is decidable, see Areces et al. (2001a), but decision procedures for this logic
are usually not based on tableau or Gentzen systems. In what follows, we shall give
a decision procedure for H(E) based on a tableau system. An essential feature of
our decision procedure is that it makes use of a technique called loop-checks.

The rules for the hybrid-logical tableau system are given in Figs. 1.6 and 1.7.
The tableau system will be denoted TH(E). All formulas in the rules are satisfaction
statements or negated satisfaction statements, hence, each node in a tableau is
labelled with a satisfaction statement or the negation of a satisfaction statement.
Note that since we have taken the connectives →, ⊥, �, and A to be defined, not
primitive, they do not need separate rules. It is straightforward to check that the rules
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of TH(E) are sound in the sense that if the premise of a rule has a model (strictly
speaking together with an assignment), then this model, possibly with modified
references to new nominals, is a model for at least one conclusion of the rule.

We shall make use of the following conventions about the tableau rules. The rules
(¬), (¬¬), (∧), (¬∧), (@), (¬@), (♦), and (E) will be called destructive rules
and the remaining rules will be called non-destructive. The reason why we call the
mentioned rules destructive is that in the systematic tableau construction algorithm
we define later in this section, application of destructive rules is restricted such that
a destructive rule is applied at most once to a formula (a destructive rule has exactly
one formula in the premise).20 The destructive rules (♦) and (E) will also be called
existential since they introduce new nominals. Note that non-destructive rules are
only applicable to formulas in the forms @a p, @ac, @a♦c, ¬@a♦φ , and ¬@aEφ ,
and conversely, destructive rules are only applicable to formulas not in these forms
(in fact, exactly one destructive rule is applicable to any formula which is not in
one of these forms). So, the classification of rules as destructive and non-destructive
corresponds to a classification of formulas according to their form.

In what follows we shall give a decision procedureH(E) which works as follows:
Given a formula @aφ whose validity we have to decide, a systematic tableau
construction algorithm constructs a finite tableau having the formula ¬@aφ as the
root formula. If the tableau has an open branch, then a model for ¬@aφ can be
defined.21 Thus, in this case the formula @aφ is not valid. On the other hand, in the
case where there are no open branches in the tableau, it follows from soundness of
the tableau rules that ¬@aφ does not have a model, hence @aφ is valid.

20This terminology is used in a somewhat different sense than is common: Our destructive rules
preserve information in the sense that if a conclusion of a destructive rule has a model, then this
model is a model for the premise of the rule as well, that is, no models are included (note that this
is opposite of soundness which says that no models are excluded). In the usual sense destructive
rules are rules that do not preserve information (see Fitting 1972a).
21An occurrence of a satisfaction statement @aφ or the negation of a satisfaction statement ¬@aφ
in a tableau can be seen as a formula φ together with a pair consisting of the representation of
a possible world (the nominal a) and the representation of a truth-value (depending on whether
the satisfaction statement is negated or not). Note in this connection that in the possible worlds
semantics, the semantic value assigned to a formula is a function from possible worlds to truth-
values, and set-theoretically, such a function is a set of pairs of possible worlds and truth-values
(called the graph of the function). Hence, the pairs of nominals and representations of truth-values
associated with formulas in the tableau system can be considered representations of elements of
functions constituting semantic values. Thus, the tableau rules step by step build up semantic values
of the formulas involved, similar to the way in which the accessibility relation step by step is built
up (there is a difference however; the accessibility relation can be any relation, but the semantic
value of a formula has to be a function, that is, a relation where no element of the domain is related
to more than one element of the codomain, and this is exactly what is required of an open branch
in a tableau, namely that no satisfaction statement is related to more than one truth-value).
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1.5.3 Some Properties of the Tableau System

In this subsection we shall prove some properties of the tableau system TH(E). Only
Theorem 1.16 and Proposition 1.24 are used later in connection with TH(E), but we
find that the other results of the subsection are of independent interest. Later we
give a decision procedure based on a tableau system for the weaker hybrid logic H
that does not include the universal modality, and in this connection we shall make
crucial use of Corollary 1.20 and a strengthened version of Theorem 1.22 (as well
as Theorem 1.16 and Proposition 1.24 again).

The tableau system TH(E) satisfies the following variant of the quasi-subformula
property.

Theorem 1.16 (Quasi-subformula property). If a formula @aφ occurs in a
tableau where φ is not a nominal and φ is not of the form ♦b, then φ is a subformula
of the root formula. If a formula ¬@aφ occurs in a tableau, then φ is a subformula
of the root formula.

Proof. A simultaneous induction where each rule is checked. �
Below we shall give some further results which shows some interesting features of
the tableau system. First two definitions.

Definition 1.17. Let Θ be a branch of a tableau and let NΘ be the set of nominals
occurring in the formulas of Θ. Define a binary relation ∼Θ on NΘ by a ∼Θ b if
and only if the formula @ab occurs on Θ. Let ∼∗Θ be the reflexive, symmetric, and
transitive closure of ∼Θ.

Definition 1.18. An occurrence of a nominal in a formula is equational if the
occurrence is a formula (that is, if the occurrence is not part of a satisfaction
operator).

For example, the occurrence of the nominal c in the formula φ ∧ c is equational
but the occurrence of c in ψ ∧@cχ is not. The justification for this terminology
is that a nominal in the first-order correspondence language (and thereby also
in the semantics) gives rise to an equality statement if and only if the nominal
occurrence in question occurs equationally. Note that a nominal occurs equationally
in a formula if and only if the nominal is a subformula of the formula.

Theorem 1.19. Let @ab be a formula occurrence on a branch Θ of a tableau. If the
nominals a and b are different, then each of the nominals is identical to, or related
by ∼Θ to, a nominal with an equational occurrence in the root formula.

Proof. Check each rule. Theorem 1.16 is needed in a number of the cases. In the
case with the rule (♦), we make use of the restriction that the rule cannot be applied
to formulas of the form @a♦φ where φ is a nominal. �
Corollary 1.20. Let Θ be a branch of a tableau. Any non-singleton equivalence
class with respect to the equivalence relation ∼∗Θ contains a nominal with a
equational occurrence in the root formula.
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Proof. Follows directly from Theorem 1.19. �
The corollary above says that non-trivial equational reasoning, that is, reasoning
involving non-singleton equivalence classes, only takes place in connection with
certain nominals in the root formula, namely those that occur equationally. Note
that this implies that pure modal input to the tableau only gives rise to reasoning
involving singleton equivalence classes.

Definition 1.21. A formula occurrence in a tableau is an accessibility formula
occurrence if it is an occurrence of the formula @a♦c generated by the rule (♦).

Note that if the rule (♦) is applied to a formula occurrence @a♦♦b, resulting in
the branch being extended with @a♦c and @c♦b, then the occurrence of @a♦c is
an accessibility formula occurrence, but the occurrence of @c♦b is not.

Theorem 1.22. Let @a♦b be a formula occurrence on a branch Θ of a tableau.
Either there is an accessibility formula occurrence @a′♦b on Θ such that a ∼∗Θ a′

or the formula ♦b is a subformula of the root formula.

Proof. Check each rule. Theorem 1.16 is needed in some of the cases. �
The only way new nominals can be introduced to a tableau is by using one of the
rules (♦) or (E) which we called existential rules. This motivates the following
definition.

Definition 1.23. Let Θ be a branch of a tableau. If a new nominal c is introduced by
applying an existential rule to a satisfaction statement @aφ , then we write a <Θ c.

The definition above gives us a binary relation <Θ on the set NΘ.

Proposition 1.24. Let Θ be a branch of a tableau. Assume that if an existential rule
is applied to a formula occurrence on Θ, then the existential rule is not applied to
any other formula occurrence at Θ having the same form. The graph (NΘ,<Θ) is
the disjoint union of a finite set of well-founded and finitely branching trees.

Proof. That the graph is well-founded follows from the observation that if a <Θ c,
then the first occurrence of a on the branch is before the first occurrence of c. That
the graph is the disjoint union of a set of trees follows from well-foundedness
together with the observation that if a <Θ c and b <Θ c, then the nominals a
and b are identical. That the set of trees is finite follows from the observation
that for any nominal c that occurs in the branch, but does not occur in the root
formula, there is a nominal a such that a <Θ c, thus, the nominal c cannot be the
root of a tree.

The following argument shows that the trees are finitely branching. Assume
conversely that there exists an infinite sequence a <Θ c1, a <Θ c2, . . . of pairwise
distinct edges. For each i, the edge a <Θ ci is generated by applying an existential
rule to some formula occurrence χi. Consider the sequence χ1, χ2, . . . of formula
occurrences. These rule applications are distinct since the nominals c1, c2, . . . are
distinct, and by assumption, if an existential rule is applied to a formula occurrence,
then the existential rule is not applied to any other formula occurrence having the
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same form, so the formula occurrences in the sequence χ1, χ2, . . . are occurrences
of infinitely many different formulas. Now, if the edge a <Θ ci is generated by
applying the existential rule (♦) to χi, then χi is of the form @a♦φi where φi is
not a nominal, and hence, ♦φi is a subformula of the root formula by Theorem 1.16,
and if a <Θ ci is generated by applying the other existential rule (E) to χi, then
χi is of the form @aEφi, and hence, Eφi is a subformula of the root formula,
again by Theorem 1.16. But there are only finitely many subformulas of the root
formula, which contradicts that infinitely many different formulas occur in the
sequence χ1, χ2, . . . . �
Note that in the above results we have not made any assumptions on which rules are
applied on the branch Θ, but if we assume that Θ is closed under the rules (Ref ) and
(Nom1), then ∼∗Θ coincides with ∼Θ.

1.5.4 Systematic Tableau Construction

In this subsection we give a systematic tableau construction algorithm for TH(E).
Before giving the algorithm, we need an important definition.

Definition 1.25. Let b and a be nominals occurring on a branch Θ of a tableau. The
nominal a is included in the nominal b with respect to Θ if the following is the case:
For any subformula φ of the root formula, if the formula @aφ occurs on Θ, then
@bφ also occurs on Θ, and similarly, if ¬@aφ occurs on Θ, then ¬@bφ also occurs
on Θ. If a is included in b with respect to Θ, and the first occurrence of b on Θ is
before the first occurrence of a, then we write a⊆Θ b.

We are now ready to give the systematic tableau construction algorithm.

Definition 1.26 (Tableau construction algorithm). Given a formula @aφ of
H(E) whose validity has to be decided, we define by induction a sequence T0, T1,
T2, . . . of finite tableaus in TH(E), each of which is embedded in its successor. Let
T0 be the finite tableau constituted by the single formula ¬@aφ . If possible, apply
an arbitrary rule to Tn with the following three restrictions:

1. If a formula to be added to a branch by applying a rule already occurs on the
branch, then the addition of the formula is simply omitted.

2. After the application of a destructive rule to a formula occurrence φ on a branch,
it is recorded that the rule was applied to φ with respect to the branch and the
rule will not again be applied to φ with respect to the branch or any extension
of it.

3. The existential rule (♦) is not applied to a formula occurrence @a♦φ on a branch
Θ if there exists a nominal b such that a⊆Θ b (and analogously for the existential
rule (E)).

Let Tn+1 be the resulting tableau.
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Note that due to the first restriction, a formula cannot occur more than once on
a branch. Also note that no information is recorded about applications of non-
destructive rules. The conditions on applications of the existential rules (♦) and
(E) in the third restriction are the loop-check conditions. The intuition behind loop-
checks is that an existential rule is not applied in a world if the information in that
world can be found already in an ancestor world. Hence, the introduction of a new
world by the existential rule is blocked.

Theorem 1.27. The systematic tableau construction algorithm for TH(E) termi-
nates in the sense that there exists an n such that Tn = Tn+1.

Proof. Assume conversely that the algorithm does not terminate. Then the resulting
tableau is infinite, and hence, has an infinite branch Θ. The graph (NΘ,<Θ) is the
disjoint union of a finite set of finitely branching trees cf. Proposition 1.24, so it has
an infinite branch a1 <Θ a2 <Θ a3, . . . (otherwiseNΘ would be finite, and hence, by
Theorem 1.16 there would only be finitely many formulas occurring on the branch
Θ, contradicting that it is infinite). Now, for each i, let Θi be the initial segment
of Θ up to, but not including, the first formula containing an occurrence of the
nominal ai+1. Thus, an existential rule was applied to a formula occurrence on the
branch Θi resulting in the generation of ai+1. Let Γi be the set of formulas which
contains any subformula φ of the root formula such that @aiφ occurs on the branch
Θi, and similarly, let Δi be the set of formulas which contains any subformula φ
of the root formula such that ¬@aiφ occurs on the branch Θi. Since there are only
finitely many sets of subformulas of the root formula, there exists j and k such
that j < k and Γ j = Γk as well as Δ j = Δk. Clearly, the first occurrence of a j on
Θk is before the first occurrence of ak. Moreover, for any subformula φ of the root
formula, if @akφ occurs on Θk, then φ ∈ Γk, and hence, φ ∈ Γ j, but then @a jφ
occurs on Θ j which is an initial segment of Θk. A similar argument shows that
if ¬@akφ occurs on Θk, then ¬@a jφ also occurs on Θk. Hence, ak is included in
a j with respect to Θk. We conclude that ak ⊆Θk a j. But this contradicts that an
existential rule was applied to a formula occurrence on the branch Θk resulting in
the addition of the first formula containing an occurrence of the nominal ak+1. Thus,
the algorithm terminates. �
We have thus given a systematic tableau construction algorithm which step by
step builds up a tableau and which terminates with a tableau having the property
that no rules are applicable to it except for applications of rules blocked by the
three restrictions in Definition 1.26. It is important to note that except for these
three restrictions, the tableau construction algorithm does not make any restrictions
on the order in which rules are applied. In this sense the algorithm is non-
deterministic.
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1.5.5 The Model Existence Theorem and Decidability

In this subsection we give a model existence theorem and we give the decision
procedure. The model existence theorem implies that the tableau system TH(E) is
complete. Throughout the subsection, we shall assume that Θ is a given branch of a
tableau generated by the systematic tableau construction algorithm, Definition 1.26.
Where no confusion can occur, we shall often omit reference to the branch Θ. First
some machinery.

Definition 1.28. Let W be the subset of NΘ containing any nominal a having the
property that there is no nominal b such that a⊆Θ b. Let ≈ be the restriction of ∼Θ
to W .

Note that W contains all nominals of the root formula since the root formula is the
first formula of the branch Θ. Observe that Θ is closed under the rules (Ref ) and
(Nom1), so the relation ∼Θ and hence also the relation ≈ are equivalence relations.
Given a nominal a in W , we let [a]≈ denote the equivalence class of a with respect
to ≈ and we let W/≈ denote the set of equivalence classes.

Definition 1.29. Let R be the binary relation on W defined by aRc if and only
if there exists a nominal c′ ≈ c such that one of the following two conditions is
satisfied.

1. The formula @a♦c′ occurs on Θ.
2. There exists a nominal d in NΘ such that the formula @a♦d occurs on Θ and

d ⊆Θ c′.

Note that the nominal d referred to in the second item in the definition is not an
element of W . It follows from Θ being closed under the rule (Nom2) that R is
compatible with ≈ in the first argument and it is trivial that R is compatible with
≈ in the second argument. We let R be the binary relation on W/≈ defined by
[a]≈R[c]≈ if and only if aRc.

Definition 1.30. For any element a of W , let Va be the function that to each ordinary
propositional symbol assigns an element of {0,1} such that Va(p) = 1 if @a p occurs
on Θ and Va(p) = 0 otherwise.

It follows from Θ being closed under the rule (Nom1) that Va is compatible with ≈
in the index a, so we let V [a]≈ be defined by V [a]≈(p) =Va(p). We are now ready to
define a model.

Definition 1.31. Let M be the model (W/≈,R,{V [a]≈}[a]≈∈W/≈) and let the
assignment g for M be defined by g(a) = [a]≈.

The model above is in some respects similar to the model defined in Blackburn
(2000a). One crucial difference, however, is that the model above is necessarily
finite since the tableau branch Θ is finite.
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Theorem 1.32 (Model existence). Assume that the branch Θ is open. For any
satisfaction statement @aφ which only contains nominals from W, the following
two statements hold.

• If @aφ occurs on Θ, then it is the case that M,g, [a]≈ |= φ .
• If ¬@aφ occurs on Θ, then it is not the case that M,g, [a]≈ |= φ .

Proof. Induction on the structure of φ . We only consider the most interesting case,
namely where φ is of the form ♦ψ , the remaining cases can be found in the book
Braüner (2011).

Assume that @a♦ψ occurs on the branch Θ. We then have to prove that
M,g, [a]≈ |= ♦ψ , that is, for some equivalence class [c]≈ such that [a]≈R[c]≈, it is
the case that M,g, [c]≈ |= ψ . We have two cases, according to whether the formula
ψ is a nominal or not. We first consider the case where ψ is a nominal, say b. So
we just have to prove that [a]≈R[b]≈ which trivially follows from the definition of
the relation R. We now consider the case where ψ is not a nominal. By the rule (♦)
some formulas @a♦c and @cψ also occur on Θ where the nominal c is new (note
that a ∈W , so the application of the rule is not blocked by a loop-check condition).
If c ∈W , then clearly [a]≈R[c]≈ and M,g, [c]≈ |= ψ by induction. If c /∈W , then by
definition of W there exists a nominal d such that c⊆Θ d. Without loss of generality
we assume that there does not exist a nominal e such that d ⊆Θ e. But this implies
that d ∈W . Moreover, by Theorem 1.16, the formula ψ is a subformula of the root
formula, so @dψ occurs on Θ. By induction, M,g, [d]≈ |=ψ , and clearly, [a]≈R[d]≈.

Assume that ¬@a♦ψ occurs on the branch Θ. We then have to prove that
M,g, [a]≈ |= ♦ψ does not hold, that is, for any equivalence class [c]≈ such that
[a]≈R[c]≈, it is not the case that M,g, [c]≈ |= ψ . From [a]≈R[c]≈ it follows that
there exists a nominal c′ ≈ c satisfying one of the two conditions in the definition
of the relation R. In the first condition in this definition, the formula @a♦c′ occurs
on Θ. Thus, by the rule (¬♦) the formula ¬@c′ψ occurs on Θ. By induction we
conclude that M,g, [c′]≈ |=ψ does not hold and trivially, [c′]≈ = [c]≈. In the second
condition in the definition there exists a nominal d in NΘ such that the formula
@a♦d occurs on Θ and d ⊆Θ c′. By the rule (¬♦) the formula ¬@dψ occurs on
Θ. But by Theorem 1.16, the formula ψ is a subformula of the root formula, and
d ⊆Θ c′, so ¬@c′ψ occurs on Θ. By induction we conclude that M,g, [c′]≈ |= ψ
does not hold and trivially, [c′]≈ = [c]≈. �
We are now finally able to give the decision procedure.

Definition 1.33 (Decision procedure). Given a formula @aφ of H(E) whose
validity we have to decide, let Tn be a terminal tableau generated by the tableau
construction algorithm, Definition 1.26. If there are no open branches in the tableau
Tn, then the root formula ¬@aφ of Tn does not have a model since the tableau rules
are sound, hence, the formula @aφ is valid. If the tableau Tn has an open branch,
then it follows from the model existence theorem, Theorem 1.32, that the formula
@aφ is not valid.

As a spin-off from the decision procedure we get the finite model property.
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Theorem 1.34 (Finite model property). If a formula of H(E) is satisfiable, then
it is satisfiable by a finite model.

Proof. A straightforward application of the decision procedure, Definition 1.33,
together with observation that the model defined in Theorem 1.31 is finite. �
We shall finish this subsection by making some remarks on complexity issues.
Consider a branch Θ of a tableau with root formula ψ . If there are n distinct
subformulas of ψ , then there are 2n distinct sets of subformulas of ψ . It follows from
inspection of the termination proof, Theorem 1.27, that the height of a tree in the
graph (NΘ,<Θ), cf. Proposition 1.24, is O(2n). By inspection of Proposition 1.24,
the outdegrees of nodes in the graph (NΘ,<Θ) are bounded by n (to be more precise,
the outdegrees are bounded by the number of distinct subformulas of ψ having the
form ♦φ or Eφ ). It follows that the size of NΘ is O(22n

). Combining this with the
quasi-subformula property, Theorem 1.16, we can calculate that the length of the
branch Θ is O(22n

).
It follows that our algorithm solves the satisfiability problem for H(E) formulas

in nondeterministic double exponential time (2-NEXPTIME) in the size of for-
mulas. However, the satisfiability problem for H(E) formulas is in fact solvable
in exponential time (EXPTIME), cf. Areces et al. (2001a), so the algorithm is
not optimal from a complexity theoretic point of view. Our aim has been to give
a simple and straightforward algorithm, but we believe that by sacrificing some
of the simplicity, the algorithm can be optimized by applying the techniques
which in the paper Donini and Massacci (2000) are applied to give an optimal
EXPTIME tableau-based algorithm for a description logic variant of the modal
logic K extended with background theories. The techniques of the paper involve
caching of unsatisfiability results for already explored tableau branches. However,
according to the handbook chapter (Horrocks et al. 2007, p. 220), the optimal
EXPTIME algorithm for K with background theories given in the paper Donini
and Massacci (2000) has never been implemented, whereas the handbook chapter
describes a simple 2-NEXPTIME tableau-based algorithm for the same logic
which, again according to the handbook chapter, has proven to work surprisingly
well in practice.

1.5.6 Tableau Examples

As a first example, consider the formula @a¬♦(a∧¬♦a) which is valid (this is
straightforward to see by considering the equivalent formula @a�(a→♦a)). Given
this formula as input, a possible tableau generated by the tableau construction
algorithm is the tableau below (recall that the algorithm is non-deterministic).
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¬@a¬♦(a∧¬♦a) 1.
@a♦(a∧¬♦a) 2. by (¬¬) rule on 1
@c(a∧¬♦a) 3. by (♦) rule on 2

@a♦c 4. by (♦) rule on 2
@ca 5. by (∧) rule on 3

@c¬♦a 6. by (∧) rule on 3
¬@c♦a 7. by (¬) rule on 6

@cc 8. by (Ref ) rule
@ac 9. by (Nom1) rule on 5 and 8
@aa 10. by (Ref ) rule

@c♦c 11. by (Nom2) rule on 9 and 4
¬@ca 12. by (¬♦) rule on 7 and 11

The enumeration of the formulas and the notation in the right-hand-side column
is not a formal part of the tableau, but has been added to describe how the tableau
was constructed. The tableau above only has one branch and that branch is closed
since it contains the formula @ca as well as ¬@ca (in lines 5 and 12). It follows
from the tableau rules being sound that the formula @a¬♦(a∧¬♦a) is valid.

As a second example, consider the formula @a¬♦(a∧ r) which is not valid.
Given this formula as input, a possible tableau generated by the tableau construction
algorithm is the tableau below.

¬@a¬♦(a∧ r) 1.
@a♦(a∧ r) 2. by (¬¬) rule on 1
@c(a∧ r) 3. by (♦) rule on 2

@a♦c 4. by (♦) rule on 2
@ca 5. by (∧) rule on 3
@cr 6. by (∧) rule on 3
@ar 7. by (Nom1) rule on 5 and 6
@cc 8. by (Ref ) rule
@ac 9. by (Nom1) rule on 5 and 8

@c♦c 10. by (Nom2) rule on 9 and 4
@aa 11. by (Ref ) rule

Note that the tableau above only has one branch and that branch is open. It follows
from the model existence theorem, Theorem 1.32, that the formula @a¬♦(a ∧ r)
is not valid, and Definition 1.31 gives a counter-model, namely a model hav-
ing one world, the set {a,c}, which is an equivalence class as the formulas
@ca,@cc,@ac,@aa are on the branch. The propositional symbol r is true at the
world as the formulas @cr,@ar are on the branch and the world is related to itself
by the accessibility relation as @a♦c,@c♦c are on the branch.

Now, loop-checks were not needed to ensure termination in the two tableau
examples above. Below we shall consider a third and a fourth tableau example
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where loop-checks are actually needed, namely an example involving the universal
modal operator E and an example involving the standard modal operator ♦. In the
example involving E there is no non-trivial equational reasoning, that is, there is no
reasoning with formulas like @ac where the nominals a and c are distinct, however,
the example involving ♦ does make use of such reasoning, which makes it the most
complicated of the two examples.

In the third example (the example involving E) we consider the formula @b¬(r∧
¬E¬Er) which is not valid. A possible tableau generated by the tableau construction
algorithm is the tableau below.

¬@b¬(r∧¬E¬Er) 1.
@b(r∧¬E¬Er) 2. by (¬¬) rule on 1

@br 3. by (∧) rule on 2
@b¬E¬Er 4. by (∧) rule on 2
¬@bE¬Er 5. by (¬) rule on 4

@bb 6. by (Ref ) rule
¬@b¬Er 7. by (¬E) rule on 5

@bEr 8. by (¬¬) rule on 7
@ar 9. by (E) rule on 8
@aa 10. by (Ref ) rule
¬@a¬Er 11. by (¬E) rule on 5

@aEr 12. by (¬¬) rule on 11

The counter-model to @b¬(r∧¬E¬Er) given by Definition 1.31 has two worlds,
the equivalence classes {b} and {a}, where the propositional symbol r is true at
both. In the tableau above, note that the nominal a is included in the nominal
b with respect the branch, cf. Definition 1.25, the reason being that the two
sets of subformulas of the root formula which are respectively prefixed by @a

and ¬@a, are the sets {r,Er} and {¬Er}, whereas the two sets of subformulas
of the root formula which are respectively prefixed by @b and ¬@b, are the
sets {r ∧¬E¬Er,r,¬E¬Er,Er} and {¬(r∧¬E¬Er),E¬Er,¬Er}. Of course, the
important observations are that

{r,Er} ⊆ {r∧¬E¬Er,r,¬E¬Er,Er}

and
{¬Er} ⊆ {¬(r∧¬E¬Er),E¬Er,¬Er}.

Thus, application of the rule (E) to the occurrence of @aEr in line 12 is blocked
by the loop-check condition in the tableau construction algorithm, that is, the third
restriction in Definition 1.26. If the loop-check condition is removed, the tableau
construction algorithm can continue in “cycles” as follows.
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−−−−−−−−−−−−−−−
@cr 11. (E) rule on 10

¬@c¬Er 12. (¬E) rule on 5
@cEr 13. (¬¬) rule on 12
−−−−−−−−−−−−−−−

@dr 14. (E) rule on 12
¬@d¬Er 15. (¬E) rule on 5

@dEr 16. (¬¬) rule on 15
−−−−−−−−−−−−−−−

...

Of course, the dashed lines that separate the cycles are not a formal part of the
tableau. Note that the second cycle, lines 14–16, is identical to the first cycle, lines
11–13, except that the nominal d occurs in the second cycle where the nominal
c occurs in the first cycle. What happens is that when a new nominal has been
generated, say the nominal c above, the formula ¬@bE¬Er in line 5 produces a
formula ¬@c¬Er, which in turn produces @cEr, and this formula generates yet
another new nominal, and so on.

In the fourth example (the example involving ♦) we consider the formula
@b¬((b∧r)∧(♦b∧¬♦¬♦(b∧r))) which is not valid. A possible tableau generated
by the tableau construction algorithm is the tableau below.

¬@b¬((b∧ r)∧ (♦b∧¬♦¬♦(b∧ r))) 1.
@b((b∧ r)∧ (♦b∧¬♦¬♦(b∧ r))) 2. by (¬¬) rule on 1

@b(b∧ r) 3. by (∧) rule on 2
@b(♦b∧¬♦¬♦(b∧ r)) 4. by (∧) rule on 2

@bb 5. by (∧) rule on 3
@br 6. by (∧) rule on 3

@b♦b 7. by (∧) rule on 4
@b¬♦¬♦(b∧ r) 8. by (∧) rule on 4
¬@b♦¬♦(b∧ r) 9. by (¬) rule on 8
¬@b¬♦(b∧ r) 10. by (¬♦) rule on 9 and 7

@b♦(b∧ r) 11. by (¬¬) rule on 10
@a(b∧ r) 12. by (♦) rule on 11

@b♦a 13. by (♦) rule on 11
@ab 14. by (∧) rule on 12
@ar 15. by (∧) rule on 12
@aa 16. by (Ref ) rule
@ba 17. by (Nom1) rule on 14 and 16

¬@a¬♦(b∧ r) 18. by (¬♦) rule on 9 and 13
@a♦(b∧ r) 19. by (¬¬) rule on 18
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The counter-model given by Definition 1.31 has one world, the equivalence
class {b,a}, such that the propositional symbol r is true at the world and such
that the world is related to itself by the accessibility relation. In the tableau
above, note that the nominal a is included in the nominal b with respect the
branch, hence, application of the rule (♦) to the occurrence of @a♦(b ∧ r) in
line 19 is blocked by the loop-check condition. Like in the previous example,
if the loop-check condition is removed, the tableau construction algorithm can
continue in cycles.

−−−−−−−−−−−−−−−−−−−−−−−
@c(b∧ r) 20. by (♦) rule on 19

@a♦c 21. by (♦) rule on 19
@cb 22. by (∧) rule on 20
@cr 23. by (∧) rule on 20

@b♦c 24. by (Nom2) rule on 14 and 21
¬@c¬♦(b∧ r) 25. by (¬♦) rule on 9 and 24

@c♦(b∧ r) 26. by (¬¬) rule on 25
−−−−−−−−−−−−−−−−−−−−−−−

@d(b∧ r) 27. by (♦) rule on 26
@c♦d 28. by (♦) rule on 26
@db 29. by (∧) rule on 27
@dr 30. by (∧) rule on 27

@b♦d 31. by (Nom2) rule on 22 and 26
¬@d¬♦(b∧ r) 32. by (¬♦) rule on 9 and 31

@d♦(b∧ r) 33. by (¬¬) rule on 32
−−−−−−−−−−−−−−−−−−−−−−−

...

Here the second cycle, lines 27–33, is identical to the first cycle, lines 20–26, except
that the nominals d and c occur in the second cycle where the nominals c and a
occur in the first cycle.

Note the use of the rule (Nom2) in the tableau example above. Without this
rule loop-checks are not needed to ensure termination of the tableau example.
This is actually the case for any input to the tableau construction algorithm which
only involves the standard modal operator ♦. This is a consequence of a result
in the following section, namely Theorem 1.37, which concerns a tableau system
without the rule (Nom2). It is in this connection an interesting observation that the
rule (Nom2) can only be used in the presence of non-trivial equational reasoning,
the reason being that an application of (Nom2) can only generate a new formula
if the nominals a and c in the premise @ac are distinct (see Fig. 1.7). This
implies that any tableau example where loop-checks are actually needed to ensure
termination, and where only the modal operator ♦ is involved, must make use of
non-trivial equational reasoning. This in turn implies that in any tableau example
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where loop-checks are actually needed to ensure termination, and where only the
modal operator ♦ is involved, the root formula must contain equationally occurring
nominals, cf. Corollary 1.20, like the nominal b in the example above.

If we only consider formulas involving the standard modal operator ♦, not the
universal modal operator E, then it is tempting to ask whether we cannot simply
omit the rule (Nom2) and thereby obtain a tableau system that does not require
loop-checks. The answer is that the tableau system will not be complete without this
rule, that is, without this rule there are valid formulas which do not result in closed
tableaus when given as input to the algorithm. This can be seen by considering
the first tableau example of this subsection. In that example the valid formula
@a¬♦(a ∧ ¬♦a) is given as input, but without the rule (Nom2), the algorithm
will terminate already at line 10, resulting in a tableau that is not closed, and by
inspecting the example, is straightforward to see that any other tableau having the
same root formula will not be closed either, unless (Nom2) is used. Thus, if (Nom2)
is omitted, something else must be added to regain completeness, and this will be
the topic of the following section.

1.5.7 A Tableau System Not Including the Universal Modality

If the universal modality is omitted in the decision procedure for H(E) given
above then of course a decision procedure for the weaker hybrid logic H is
obtained. However, it turns out that if the universal modality is omitted, then it
is possible to give a tableau system such that loop-checks are not needed to ensure
termination of the decision procedure. The first tableau-based decision procedure
for H, that does not involve loop-checks, was a tableau system given in Bolander
and Blackburn’s paper (2007). In the present subsection we shall consider a similar
tableau system not involving loop-checks. The system in the present subsection is
obtained by directly modifying the tableau system, and the associated definitions
and results, already introduced in the present section. One crucial modification is
the replacement of the rule (Nom2) by two new rules which are variants of a rule
in Bolander and Blackburn (2007), however, most of the definitions and results
already introduced can be reused. A difference between the system in Bolander
and Blackburn (2007) and the systems under consideration here is that the present
systems make use of unrestricted equational reasoning, which is not the case with
the system in Bolander and Blackburn (2007).

Now, recall that the rules for the tableau system TH(E) were given in Figs. 1.6
and 1.7. The rules for the tableau system for H not involving loop-checks are
obtained from the rules of Figs. 1.6 and 1.7 by omitting the rules (E) and (¬E)
for the universal modality and by replacing the rule (Nom2) by the two rules given
in Fig. 1.8. The system thus obtained will be denoted TH. Earlier in the present
section we introduced some conventions for the rules of Figs. 1.6 and 1.7: Some
rules were called destructive, some were called non-destructive, and some were
called existential. These conventions are unchanged, but we add the convention that
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@ac,@aφ
(Id)a

@cφ

@ac,¬@aφ
(¬Id)a

¬@cφ
a The nominal c and the formula φ are subformulas of the root formula

Fig. 1.8 New rules for the tableau system without the universal modality

the rule (Id) and (¬Id) are non-destructive (as destructive rules we only want rules
with exactly one formula in the premise).

It is straightforward to check that all results for TH(E) in Sect. 1.5.3 also hold for
the tableau system TH, however, we shall need the following strengthened version
of Theorem 1.22.

Theorem 1.35. Let @a♦b be a formula occurrence on a branch Θ of a tableau.
Either @a♦b is an accessibility formula occurrence on Θ or the formula ♦b is a
subformula of the root formula.

Proof. Check each rule. Theorem 1.16 is needed in some of the cases. �
The systematic tableau construction algorithm for TH is defined as follows. Note
that the definition below is identical to Definition 1.26, the tableau construction
algorithm for TH(E), except that the third restriction (the loop-check) of Defini-
tion 1.26 is omitted.

Definition 1.36 (Tableau construction algorithm). Given a formula @aφ of H
whose validity has to be decided, we define by induction a sequence T0, T1, T2, . . . of
finite tableaus in TH, each of which is embedded in its successor. Let T0 be the finite
tableau constituted by the single formula ¬@aφ . If possible, apply an arbitrary rule
to Tn with the following two restrictions:

1. If a formula to be added to a branch by applying a rule already occurs on the
branch, then the addition of the formula is simply omitted.

2. After the application of a destructive rule to a formula occurrence φ on a branch,
it is recorded that the rule was applied to φ with respect to the branch and the rule
will not again be applied to φ with respect to the branch or any extension of it.

Let Tn+1 be the resulting tableau.

In the proof of the theorem below we make use of the convention from Sect. 1.4.4
that the degree of a formula is the number of occurrences of non-nullary connectives
in it.

Theorem 1.37. The tableau construction algorithm for TH terminates in the sense
that there exists an n such that Tn = Tn+1.

Proof. Assume conversely that the algorithm does not terminate. Then the resulting
tableau is infinite, and hence, has an infinite branch Θ. Analogous to the proof of
Theorem 1.27, it follows from Proposition 1.24 and Theorem 1.16 that the graph
(NΘ,<Θ) has an infinite branch a1 <Θ a2 <Θ a3, . . . . Now, for any i, consider the
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set of formula occurrences on Θ either having the form @aiφ where φ is not of
the form ♦b or having the form ¬@aiφ . Let di be the maximal degree of such
formula occurrences and let di be 0 if there are no such formula occurrences (by
Theorem 1.16 the degrees of such formula occurrences are bounded by the degree
of the root formula plus two). By inspection of the rules, it is straightforward to
see that di > di+1 for any i such that di+1 > 0, where in the case with the rule
(¬♦) we use Theorem 1.35 and in the cases with the rules (@) and (¬@) we use
Theorem 1.16. Hence, there exists a j such that any formula @a jφ occurring on Θ
has the property that φ is of the form ♦b or φ has degree 0, and any formula ¬@a jφ
occurring on Θ has the property that φ has degree 0. This contradicts a j <Θ a j+1

being the case. Thus, the algorithm terminates. �
Informally, the proof above is based on the observation that formulas @aφ and
¬@aφ in the branch Θ get smaller when the path from the nominal a to a root in
the graph (NΘ,<Θ) gets longer (except for formulas of the form @a♦b). A similar
observation is also the basis of the standard termination proof for prefixed tableau
systems for the modal logic K, cf. the book Fitting (1983).

In what follows, we shall assume that Θ is a given branch of a tableau generated
by the systematic tableau construction algorithm Definition 1.36. Before we come
to the model existence theorem, we introduce some important machinery. Given a
nominal a in NΘ, we let [a]∼ denote the equivalence class of a with respect to the
binary relation∼ and we let NΘ/∼ denote the set of equivalence classes. Note that it
follows from Corollary 1.20 that any non-singleton equivalence class [a]∼ contains
a nominal with an equational occurrence in the root formula.

Definition 1.38. Given some fixed total order on NΘ, we define a function u from
NΘ to NΘ as follows: If [a]∼ is non-singleton, then we let u(a) be the smallest
nominal in [a]∼ with an equational occurrence in the root formula, and if [a]∼ is
singleton, then we let u(a) be a. The nominal u(a) is called the urfather of a.

The idea of letting a function pick out an equivalent nominal occurring equationally
in the root formula, if such a nominal exists, stems from the paper Bolander and
Blackburn (2007) where a similar function is defined. The definition above leads to
the following proposition.

Proposition 1.39 (Urfather closure property). Assume that the branch Θ is open.
Let φ be a subformula of the root formula. If @aφ occurs on Θ, then also @u(a)φ
occurs at Θ, and similarly, if ¬@aφ occurs on Θ, then also ¬@u(a)φ occurs on Θ.

Proof. Follows straightforwardly from applications of the rules (Id) and (¬Id). �
The urfather closure property is a basic idea behind the tableau system given in
Bolander and Blackburn (2007). Intuitively, the urfather closure property allows
information to be moved freely from any world to identical worlds referred to in the
root formula.

Definition 1.40. Let R be the binary relation on NΘ defined by aRc if and only if
there exists a nominal c′ ∼ c such that @u(a)♦c′ occurs on Θ.
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We let R be the binary relation on NΘ/∼ defined by [a]∼R[c]∼ if and only if aRc.

Definition 1.41. For any element a of NΘ, let Va be the function that to each
ordinary propositional symbol assigns an element of {0,1} such that Va(p) = 1 if
@a p occurs on Θ and Va(p) = 0 otherwise.

We let V [a]∼ be defined by V [a]∼(p) =Va(p). We are now ready to define a model.

Definition 1.42. Let M be the model (NΘ/∼,R,{V [a]∼}[a]∼∈NΘ/∼) and let the
assignment g for M be defined by g(a) = [a]∼.

Theorem 1.43 (Model existence). Assume that the branch Θ is open. For any
satisfaction statement @aφ where φ is a subformula of the root formula, the
following two statements hold.

• If @aφ occurs on Θ, then it is the case that M,g, [a]∼ |= φ .
• If ¬@aφ occurs on Θ, then it is not the case that M,g, [a]∼ |= φ .

Proof. induction on the structure of φ . We only cover the case where φ is of the
form ♦ψ , all the other cases are exactly as in the full proof of Theorem 1.32, which
can be found in the book Braüner (2011).

Assume that @a♦ψ occurs on the branch Θ. We then have to prove that
M,g, [a]∼ |= ♦ψ , that is, for some equivalence class [c]∼ such that [a]∼R[c]∼, it
is the case that M,g, [c]∼ |= ψ . If ψ is a nominal, say b, we just have to prove that
[a]∼R[b]∼, which trivially follows from the definition of the relation R together with
the observation that if @a♦b occurs on Θ, then by Proposition 1.39 also @u(a)♦b
occurs on Θ. If ψ is not a nominal, by Proposition 1.39 and the rule (♦) also some
formulas @u(a)♦c and @cψ occur on Θ. Clearly, [a]∼R[c]∼ and M,g, [c]∼ |= ψ by
induction.

Assume that ¬@a♦ψ occurs on the branch Θ. We then have to prove that
M,g, [a]∼ |= ♦ψ does not hold, that is, for any equivalence class [c]∼ such that
[a]∼R[c]∼, it is not the case that M,g, [c]∼ |= ψ . From [a]∼R[c]∼ it follows that
there exists a nominal c′ ∼ c such that @u(a)♦c′ occurs on Θ. By Proposition 1.39,
¬@u(a)♦ψ occurs on Θ. Thus, by the rule (¬♦) the formula ¬@c′ψ occurs on
Θ. By induction we conclude that M,g, [c′]∼ |= ψ does not hold and trivially,
[c′]∼ = [c]∼. �
Given the machinery introduced above, the decision procedure is defined exactly as
in Definition 1.33.

It should be mentioned that the rules (Id) and (¬Id) can be restricted to the case
where φ is of the form ♦ψ without affecting the results for TH we consider in this
subsection, except Proposition 1.39, the urfather closure property, which is restricted
in the same way.

As an example, consider the formula @a¬♦(a∧¬♦a) which also was considered
in the first tableau example for TH(E) given in Sect. 1.5.6. Given this formula as
input, a possible tableau generated by the tableau construction algorithm for TH,
Definition 1.36, is the tableau below where we have imposed the restriction on the
rules (Id) and (¬Id) mentioned in the previous paragraph.
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¬@a¬♦(a∧¬♦a) 1.
@a♦(a∧¬♦a) 2. by (¬¬) rule on 1
@c(a∧¬♦a) 3. by (♦) rule on 2

@a♦c 4. by (♦) rule on 2
@ca 5. by (∧) rule on 3

@c¬♦a 6. by (∧) rule on 3
¬@c♦a 7. by (¬) rule on 6

@cc 8. by (Ref ) rule
@ac 9. by (Nom1) rule on 5 and 8
@aa 10. by (Ref ) rule
¬@a♦a 11. by (¬Id) rule on 5 and 7
¬@ca 12. by (¬♦) rule on 11 and 4

Note that lines 1–10 in the tableau above are identical to lines 1–10 in the tableau
example for @a¬♦(a∧¬♦a) given in Sect. 1.5.6, thus, it is only in the last two lines
that the difference between TH and TH(E) crops up. Note that the branch is closed
since it contains the formula @ca as well as ¬@ca.

1.5.8 A Hybrid-Logical Version of Analytic Cuts

In this subsection we shall consider an alternative version of the tableau system
without loop-checks, TH, which was considered above. Now, at the end of
Sect. 1.5.6 we concluded that if the rule (Nom2) is omitted from TH(E), something
else must be added to regain completeness, and in the version of TH considered
above, the rules (Id) and (¬Id) in Fig. 1.8 were added. In the alternative version of
TH we consider in this subsection, we shall investigate how much standard proof-
theoretic machinery in the form of cuts is needed to replace the (Nom2) rule (with
the implicit requirement that loop-checks are avoided).

To explicate the goal of this investigation, we shall make some general remarks
about cuts. The following rule is the standard cut rule.

(Cut)
φ | ¬φ

The formula φ is called the cut-formula. As mentioned in the beginning of
Sect. 1.5.1, the idea behind tableau systems is to mimic the recursive truth-
conditions in the semantics, whereby a formula is broken down into its components.
The cut rule does not follow this idea since no formula is broken down into its
components. If a tableau system includes the cut rule, then the cut rule can most
often be proved to be redundant, that is, the cut rule is admissible in the system
obtained by leaving out the cut rule. However, in some cases the cut rule is not
completely redundant, but a restricted version is needed where the cut-formula is a
subformula of the root formula. A cut rule with this restriction is called an analytic



58 T. Braüner

(Quasi-analytic cut)a,b

@aφ | ¬@aφ
a The nominal a and the formula φ are subformulas of the root formula
b None of the formulas @aφ and ¬@aφ are on the branch

Fig. 1.9 A hybrid-logical version of the analytic cut rule

cut rule. In most tableau systems not including the cut rule, tableaus satisfy the
subformula property which says that any formula in a tableau is a subformula of
root formula. Clearly, this property does not hold if the cut rule is allowed (but note
that the property is not violated by analytic cuts).

The alternative version of TH is obtained by replacing the rules in Fig. 1.8 by
the rule in Fig. 1.9, and moreover, by changing the definition of an open branch in
a tableau such that a branch is called open if for no satisfaction statements @aχ
and @ab occurring on the branch, it is the case that ¬@bχ also occurs on the
branch. To avoid excessive proliferation of terminology, we use the notation TH
also for the alternative system. As in the case of the rules (Id) and (¬Id), the rule
(Quasi-analytic cut) is classified as non-destructive. Note that in the alternative
version of TH, the rules (Id) and (¬Id) are derivable.22 Of course, the rule
(Quasi-analytic cut) is a hybrid-logical version of the standard analytic cut rule,
cf. the previous paragraph.

Note that in one branch of a tableau, there can only be finitely many applications
of the rule (Quasi-analytic cut) if the cut-formulas are different, the reason being
that there are only finitely many subformulas of the root formula. It is straight-
forward to check that all the results for the first version of TH also hold for the
alternative version considered in this subsection. A difference between the two
versions of TH is that in the first version, the urfather closure property is essentially
built-in as two derivation rules, namely (Id) and (¬Id), whereas in the alternative
version, the urfather closure property follows from the presence of other rules, in
particular (Quasi-analytic cut), together with a more general closure condition on
branches. At a more intuitive level, a difference between the two versions of TH
is that the rules (Id) and (¬Id) have a semantical motivation (the intuition being
that they allow information to be moved freely from any world to identical worlds
referred to in the root formula) whereas the rule (Quasi-analytic cut) has a proof-
theoretical motivation (it is a hybrid-logical version of standard proof-theoretic
machinery, namely the analytic cut rule).

A couple of more general remarks should be made in connection with analytic
cut rules. A defence of analytic cuts can be found in the paper D’Agostino and
Mondadori (1994) where it is pointed out that ordinary cut-free tableau and Gentzen
systems have a number of anomalies that can be avoided in proof systems allowing
analytic cuts. According to that paper, cut-free systems are anomalous from three
different points of view.

22This was pointed out to the author by Jens Ulrik Hansen.
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1. From a proof-theoretical point of view, it is an anomaly that cut-free systems
cannot represent lemmas in proofs.

2. From a semantical point of view, it is an anomaly that cut-free systems cannot
express the bivalence of classical logic.

3. From a computational point of view, it is an anomaly that for some classes
of propositional formulas, decision procedures based on cut-free systems are
incomparably slower than the truth-table method (in the more precise technical
sense that there is no polynomial time computable function that maps truth-table
proofs of such formulas to proofs of the same formulas in cut-free tableau or
Gentzen systems).

In relation to the computational anomaly, see also the paper Boolos (1984) where
examples of first-order formulas are given whose derivations in cut-free systems are
much larger than their derivations in natural deduction systems, which implicitly
allow unrestricted cuts (in one case more than 1038 characters compared to less than
3280 characters). However, at present it is not clear to which extent the discussion
outlined above is directly relevant to the proof-theory of hybrid logic.

Above it was mentioned that the rules (Id) and (¬Id) of Fig. 1.8 can be
restricted to the case where φ is of the form ♦ψ . This also applies to the rule
(Quasi-analytic cut) in the alternative version of TH considered in this subsection,
however, in the light of the remarks in the previous paragraph, it is not clear whether
this restriction on (Quasi-analytic cut) is desirable.

As an example we consider the formula @a¬♦(a ∧ ¬♦a) which was also
considered in connection with the first version of TH (and in connection with TH(E)
in Sect. 1.5.6). A possible tableau generated by the tableau construction algorithm
for the alternative version of TH is the tableau below where we have imposed the
restriction on (Quasi-analytic cut) mentioned in the previous paragraph.

¬@a¬♦(a∧¬♦a) 1.
@a♦(a∧¬♦a) 2. by (¬¬) rule on 1
@c(a∧¬♦a) 3. by (♦) rule on 2

@a♦c 4. by (♦) rule on 2
@ca 5. by (∧) rule on 3

@c¬♦a 6. by (∧) rule on 3
¬@c♦a 7. by (¬) rule on 6

@cc 8. by (Ref ) rule
@ac 9. by (Nom1) rule on 5 and 8
@aa 10. by (Ref ) rule

11. @a♦a ¬@a♦a 12. by (Quasi-analyticcut) rule
¬@ca 13. by (¬♦) rule on 12 and 4
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Note that lines 1–10 in the tableau above are identical to lines 1–10 in the tableau in
connection with the first version of TH (and the tableau in connection with TH(E) in
Sect. 1.5.6). Also, note that both branches are closed, and in the case of the left-hand-
side branch, we make use of the more general closure condition for the alternative
version of TH (the branch contains @a♦a and @ac as well as ¬@c♦a).

Remark: Let @aφ be a formula whose validity has to be decided. Thus, according
to the decision procedure, a tableau is constructed with ¬@aφ as the root formula.
Clearly, ¬@aφ is equivalent to the formula

¬@aφ ∧
n∧

i=1

m∧

j=1

(@ciψ j ∨¬@ciψ j)

where c1, . . . ,cn and ψ1, . . . ,ψm are respectively the nominals and the formulas
that are subformulas of ¬@aφ . If the tableau having ¬@aφ as the root is closed,
then a closed tableau having the displayed formula (strictly speaking prefixed by
a “dummy” satisfaction operator to fit the format of the tableau system) as root
can be constructed without applying the rule (Quasi-analytic cut). Conversely, if
the tableau having ¬@aφ as the root has an open branch Θ, then a tableau having
the displayed formula (again, strictly speaking prefixed by a dummy satisfaction
operator) as root can be constructed without applying (Quasi-analytic cut) such
that the tableau has an open branch containing all the formulas of Θ. Thus,
applications of (Quasi-analytic cut) are dispensable in the sense that they can be
simulated by preprocessing the input formula to the tableau construction algorithm,
where in the preprocessing a conjunct is added for each possible application of
(Quasi-analytic cut).23

1.5.9 Discussion

The tableau system TH(E) given in Sect. 1.5.2 is a slightly simplified version of a
system given in the paper Bolander and Braüner (2006), that is, the system given in
Bolander and Braüner (2006) includes the rule

@c♦a,@ab
(Bridge)

@c♦b

which has turned out to be superfluous. A tableau system similar to that of Bolander
and Braüner (2006) was considered in Blackburn (2000a). The tableau-based
decision procedure given in Bolander and Braüner (2006) was published already
in Bolander and Braüner (2005). We are only aware of one tableau-based decision

23This was pointed out to the author by Thomas Bolander.
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procedure for hybrid logic published before the publication of Bolander and Braüner
(2005), namely the prefixed tableau system given in Miroslava Tzakova’s paper
Tzakova (1999). However, it turns out that Tzakova’s termination proof is flawed.

Loop-checks are applicable in connection with a spectrum of different proof
systems. This is corroborated by the fact that in the paper Bolander and Braüner
(2006) loop-checks are applied in connection with yet another three kinds of proof
systems for the hybrid logicH(E), namely a prefixed tableau system along the lines
of the system given in Tzakova (1999), a tableau system involving a rule for nominal
substitution, and a Gentzen system. The Gentzen system is described in details in
the book Braüner (2011).

In ordinary modal logic, loop-checks are used in connection with standard
Fitting-style prefixed tableau systems for transitive logics such as K4 (see Goré
1999; Massacci 2000). The loop-check technique can be tracked to Fitting (1983),
although a similar idea was involved in a graphical formalism for deciding validity
of modal-logical formulas in the earlier book Hughes and Cresswell (1968). Now, a
simple prefixed tableau system can be formulated for the modal logic K such that a
systematic tableau construction always terminates (cf. Fitting 1983). The systematic
tableau construction algorithm for K does not involve loop-checks. However, if
the tableau system for K is extended with the standard prefixed tableau rule for
transitivity

(a,�φ),R(a,b)

(b,�φ)

(the notation should be self-explanatory) whereby a tableau system for K4 is
obtained, then a systematic tableau construction may not terminate. Intuitively, the
problem is that the rule allows information to be moved forward from a world to any
accessible world. The standard way to fix this problem is to incorporate loop-check
conditions on the applications of existential rules. The intuitive reason why this
technique works in the context of hybrid logic, is that the problem here is also that
information can be moved between worlds, namely in connection with applications
of the rules (Nom1) and (Nom2) in the tableau system described in Sect. 1.5.2.
Intuitively, these rules allow atomic information to be moved freely between worlds
that are identical.

There is a close connection between the hybrid logic H(E) and description
logics, which are a family of logics used for knowledge representation in Artificial
Intelligence, see the paper Blackburn and Tzakova (1998) and Carlos Areces’ PhD
thesis Areces (2000). The hybrid logic H(E) is the mono-modal hybrid logic H
extended with the universal modality, but all the results in the present section also
hold if a multi-modal version of the hybrid logic H is extended with the universal
modality, that is, if the single modal operator ♦ in the hybrid logic is replaced by
an arbitrary, finite number of modal operators ♦1, . . . , ♦m. Such a multi-modal
hybrid logic with the universal modality can be seen as a natural generalisation
of a description logic. Now, the description logic called ALC is a notational variant
of ordinary multi-modal logic, that is, propositional logic extended with a finite
number of modal operators ♦1, . . . , ♦m. The concept expressions of ALC simply
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correspond to formulas of multi-modal logic and vice versa. Given a description
logic, for example ALC, a knowledge base is a set of metalinguistic statements
expressing relationships between concepts and individuals. There are two kinds
of metalinguistic statements; they are called TBox-statements and ABox-statements
respectively. A TBox-statement φ � ψ expresses that the concept φ is subsumed
by the concept ψ , that is, that any individual that belongs to the extension of φ
also belongs to the extension of ψ . An ABox-statement φ(a) expresses that the
individual a belongs to the extension of the concept φ and an ABox-statement
Ri(a,c) expresses that the individual a is Ri-related to the individual c. This can all
be expressed in terms of the multi-modal hybrid logic with the universal modality:
The TBox-statement above is expressed by the formula A(φ → ψ), where A is the
universal modality, and the ABox-statements are expressed by the formulas @aφ
and @a♦ic. Note that no binders are needed. Of course, a nominal is here considered
a name of an individual. Thus, the hybrid logic here can be seen as a generalised
version of this description logic where no distinction between an object language
and a metalanguage is made.

Nominals are often used in description logics, and certain tableau-based decision
procedures for such logics also make use of loop-checks. An example is the decision
procedure given in Horrocks and Sattler (2005) which is based on a prefixed tableau
system that uses metalinguistic prefixes and accessibility formulas.

1.6 Why Does the Proof-Theory of Behave So Well?

The material in this section is primarily of a conceptual nature, the goal of the
section being to put into perspective hybrid logic and the proof-theory of hybrid
logic. In the section we shall try to give an answer to the following question: Why
does the proof-theory of hybrid logic behave so well compared to the proof-theory
of ordinary modal logic?

We start by explaining what we mean when we say that the proof-theory of hybrid
logic behaves well. That is, we shall describe our success criteria. We state our
success criteria in terms of natural deduction systems (but similar criteria can be
given for Gentzen systems).

1. The introduction and elimination rules associated with each connective satisfy
Prawitz’ inversion principle.

2. The system satisfies normalisation such that normal derivations satisfy a version
of the subformula property.

3. Conditions on the accessibility relation can be incorporated into the system in a
uniform way, that is, by just adding appropriate rules.
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We find that these three criteria are absolutely central.24 As we explained in
Sect. 1.4.1, it follows from Prawitz’ inversion principle that by rewriting a deriva-
tion, it is possible to remove a formula occurrence that is both introduced by an
introduction rule and eliminated by an elimination rule, that is, a maximum formula.
This rewrite process is formalized in proper reduction rules, hence, the inversion
principle can be seen as a prerequisite for formulating a normalisation theorem since
such a theorem is relative to a set of reduction rules.

Now, roughly, there are two different kinds of natural deduction, Gentzen,
and tableau systems for ordinary modal logic. The first kind of systems are
called labelled systems where formulas involved in the rules are metalinguistic
formulas obtained by attaching labels to ordinary modal-logical formulas. The
labels of labelled systems represent possible worlds of the Kripke semantics.
Labelled systems often also involve an explicit representation of the accessibility
relation of the Kripke semantics. Thus, rules in labelled systems are rules for
reasoning directly about the Kripke models. The second kind of systems are systems
where formulas involved in the rules are formulas of the object language, that is,
ordinary modal-logical formulas. Systems of the second kind will be called standard
systems.25

In what follows we discuss standard and labelled systems and we then try to
give an answer to the initial question of why the proof-theory of hybrid logic
behave so well compared to the proof-theory of ordinary modal logic. At the end
of this section we make some concluding philosophical remarks. The material in
the section stems from the paper Braüner (2007) and has been further developed in
the book Braüner (2011).

24Also other criteria could be considered, one important example being interpolation, that is, the
criterion that a proof system should lend itself to the calculation of interpolants, perhaps after being
enhanced with further machinery, like the tableau system for first-order hybrid logic which in the
paper Blackburn and Marx (2003) is used as the basis of an algorithm that calculates interpolants.
See the remarks on interpolation in Sect. 1.3. Note that there are two steps: The first step is the
requirement of a logic (which here is a formal language together with a semantics) that it satisfies
interpolation. This might be proved semantically, independent of any proof systems. If the logic
does satisfy interpolation, then the second step is the requirement of a proof system for the logic
that the proof system in question can be used as the basis for calculating interpolants.
25It should be mentioned that there are a number of natural deduction and Gentzen style
formulations for modal logic that do not fit this categorisation well. Notable here are formulations
in terms of Nuel Belnap’s display logic and Kosta Dŏsen’s higher-level sequents. However, these
formulations differ considerably from Gentzen’s original natural deduction and sequent systems
and they are more complicated from a technical point of view. (Although it has to be acknowledged
that display sequents as well as higher-level sequents were introduced as natural generalisations
of Gentzen’s notion of a sequent, intended to allow a uniform sequent-style formulation of
many different logics.) An overview can be found in Wansing (1994). Also notable are modal
hypersequent systems, see Avron (1996) as well as the handbook chapter Fitting (2007).
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1.6.1 Standard Systems for Modal Logic

No known standard natural deduction systems for modal logic satisfy all three
success criteria given above. The first two criteria are satisfied by a number of
systems, but when a standard modal-logical natural deduction, Gentzen, or tableau
system is given, it is usually for one particular modal logic. This is for example
the case with the natural deduction systems for the modal logics S4 and S5 given
in Prawitz’ book Prawitz (1965).26 With reference to Prawitz’s systems for S4 and
S5, Robert Bull and Krister Segerberg note the following in their survey paper on
modal logic in Handbook of Philosophical Logic.

However, it has proved difficult to extend this sort of analysis to the great multitude of
other systems of modal logic. It seems fair to say that a deductive treatment congenial to
modal logic is yet to be found, for Hilbert systems are not suited for the purpose of actual
deduction, . . . (Bull and Segerberg 2001, p. 25).

Bull and Segerberg continue.

. . . only exceptional systems . . . seem to be characterizable in terms of reasonably simple
rules (Bull and Segerberg 2001, p. 27).

In the paper (Wansing 1994) Heinrich Wansing gives a summary of the status of
modal-logical proof-theory in which he comments on the above passage from Bull
and Segerberg (2001) as follows.

Compared with the multitude of not only existing but also interesting axiomatically
presentable normal modal propositional logics, the number of systems for which sequent
calculus presentations (of some sort) are known is disappointingly small. In contrast to the
axiomatic approach, the standard sequent-style proof theory for normal modal logics fails to
be ‘modular’, and the very mechanism behind the small range of known possible variations
is not very clear. One might be inclined to agree with Segerberg’s . . . remark (in connection
with natural deduction systems for modal logics) that ‘only exceptional systems . . . seem to
be characterizable in terms of reasonably simple rules’ (Wansing 1994, p. 128).

We find that the lack of uniformity described above is a major deficiency of standard
modal-logical proof-theory.

1.6.2 A Labelled system for Modal Logic

Contrary to standard natural deduction systems for modal logic, labelled systems
usually satisfy all three criteria given initially in this section. Thus, rules for
reasoning directly about the Kripke models are proof-theoretically well-behaved.

26In fact, Prawitz’ systems for S4 and S5 deviate from most standard systems since his
introduction rules for�make use of “non-local” side-conditions, that is, side-conditions that do not
just refer to the premises of the rules and to undischarged assumptions, but to the whole derivations
of the premises.
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This is for example the case with a natural deduction system for classical modal
logic given by Luca Viganò et al. in the paper Basin et al. (1997). See also
Viganò’s book (Viganò 2000). Viganò’s system can be seen as a classical version
of a natural deduction system for intuitionistic modal logic given by Alex Simpson
in 1994.

Viganò and Simpson’s systems both involve metalinguistic formulas of two sorts,
namely atomic first-order formulas of the form R(a,c) and labelled formulas of the
form (a,φ) where φ is a modal-logical formula. The first sort is used for relational
reasoning and the second sort is used for propositional reasoning, relative to worlds.
This metalinguistic machinery enables the formulation of the following introduction
and elimination rules for the modal operator.

[R(a,c)]
···

(c,φ)
(�I)

(a,�φ)

(a,�φ) R(a,c)
(�E)

(c,φ)

The introduction rule, that is, the rule (�I), is equipped with the side-condition that
the label c does not occur in (a,�φ) or in any undischarged assumptions other than
the specified occurrences of R(a,c). Compare these introduction and elimination
rules to the truth-condition for the modal operator in the Kripke semantics.

�φ is true at a iff for any c such that aRc, φ is true at c

Clearly, the introduction rule for the modal operator can be read off from the
right-to-left direction of the truth-condition and the elimination rule can be read
off from the left-to-right direction. Thus, the rules can be read off from the
modal operator’s truth-condition in the Kripke semantics. We shall come back
to this in Sect. 1.6.6. Beside the above introduction and elimination rules for
the modal operator, the metalinguistic machinery enables the formulation of rules
for first-order conditions on the accessibility relation, in Viganò’s case conditions
expressed by Horn clause theories, and in Simpson’s case, conditions expressed by
geometric theories.

The derivation rules of a slightly modified version of Viganò’s labelled system
for modal logic is given in Fig. 1.10. All formulas in the rules are metalinguistic
formulas of the forms R(a,c) and (a,φ). It is assumed that a countably infinite set
a, b, c, . . . of labels is given. The system is sound and complete in the appropriate
sense (see Basin et al. 1997). It is instructive to compare the rules for the labelled
system given in Fig. 1.10 with the rules for the system NH which are given in Figs.
1.1 and 1.2 of Sect. 1.4.2 (the rules for binders are disregarded). First note that
contrary to the labelled system, all formulas in the rules for NH are formulas of the
object language, thus, in this sense the system NH is internalized.
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(a,φ) (a,ψ)
(∧I)

(a,φ ∧ψ)

(a,φ ∧ψ)
(∧E1)

(a,φ)

(a,φ ∧ψ)
(∧E2)

(a,ψ)

[(a,φ)]
···

(a,ψ)
(→ I)

(a,φ → ψ)

(a,φ → ψ) (a,φ)
(→ E)

(a,ψ)

[(a,¬φ)]
···

(a,⊥)
(⊥1)a

(a,φ)

(a,⊥)
(⊥2)

(c,⊥)

[R(a,c)]
···

(c,φ)
(�I)b

(a,�φ)

(a,�φ) R(a,e)
(�E)

(e,φ)

a φ is a propositional symbol
b c does not occur in (a,�φ) or in any undischarged assumptions other than the specified
occurrences of R(a,c)

Fig. 1.10 Labelled natural deduction rules for modal logic

1.6.3 The Internalisation Translation

It is straightforward to translate formulas and derivations of the labelled system for
modal logic given in Fig. 1.10 into the internalized system NH for hybrid logic
given in Sect. 1.4.2. We shall call this translation the internalisation translation and
denote it I. A metalinguistic formula φ of the first system is translated to a hybrid-
logical satisfaction statement I(φ) by letting I((a,φ)) = @aφ and I(R(a,c)) =
@a♦c. Obviously, the internalisation translation preserves the semantics, where the
modal-logical semantics is defined in an appropriate way, taking the metalinguistic
machinery into account (details are left to the reader).

Having translated formulas, we translate derivations. In the next subsection we
show that the translation preserves reductions and this involves a small lemma
saying that the translation commutes with substitution of derivations for parcels
of undischarged assumptions, and since a derivation is substituted for each undis-
charged assumption in a specified parcel, we need to be able to keep track of
the identity of parcels when translating a derivation. To this end we introduce
a few further conventions: A set of annotated formulas will be called a con-
text and the metavariables Φ, Ψ, Ω, . . . will range over contexts. Moreover, a
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derivation π is a derivation from a context Φ if each undischarged assumption
in π is an occurrence of an annotated formula in Φ. Note that in Sect. 1.4 we
considered derivations as being derivations from sets of formulas, that is, we
ignored numbers annotating undischarged assumptions. Keeping the numbers as
we do in the present section enables us to keep track of the identity of parcels
of undischarged assumptions when translating a derivation. The above translation
of metalinguistic formulas is extended to contexts in the obvious way, namely by
letting I(Φ) = {(I(θ))r | θ r ∈Φ}.
Definition 1.44. A derivation π of φ from Φ in the modal-logical natural deduction
system is translated to a derivation I(π) of I(φ) from I(Φ) in the hybrid-logical
natural deduction system NH by replacing each formula occurrence ψ in π by I(ψ).

Note that the hybrid-logical introduction and elimination rules for the connec-
tives ∧,→, and � can be seen as obtained by taking the image under the translation
I of the labelled modal-logical rules for these connectives.

1.6.4 Reductions

In this subsection we show that the internalisation translation preserves reductions.
Before doing so, we need to fix reduction rules for the natural deduction systems
under consideration. We have already given reduction rules for NH in Sect. 1.4.6,
so we just need to give reduction rules for the modal-logical natural deduction
system. First some conventions in connection with the modal-logical derivation
rules. The premise of the form R(a,e) in the rule (�E) is called the relational
premise and the premise of the form (a,φ) in the rule (→ E) is called the minor
premise. A premise of an elimination rule that is neither minor nor relational is
called major. Of course, these conventions are analogous to the conventions for NH
given in Sect. 1.4.6.

As usual for natural deduction systems, a maximum formula in a derivation
is a formula occurrence that is both the conclusion of an introduction rule and
the major premise of an elimination rule. Maximum formulas can be removed by
applying reduction rules. The rules for reductions of the modal-logical system are
as follows.

(∧I) followed by (∧E1) (analogously in the case of (∧E2))

··· π1

(a,φ)

··· π2

(a,ψ)

(a,φ ∧ψ)

(a,φ)

�
··· π1

(a,φ)
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(→ I) followed by (→ E)

[(a,φ)]
··· π1

(a,ψ)

(a,φ → ψ)

··· π2

(a,φ)

(a,ψ)

�

··· π2

(a,φ)
··· π1

(a,ψ)

(�I) followed by (�E)

[R(a,c)]
··· π1

(c,φ)

(a,�φ)

··· π2

R(a,e)

(e,φ)

�

··· π2

R(a,e)
··· π1[e/c]

(e,φ)

Note that the reduction rules for NH given in Sect. 1.4.6 can be seen as obtained
by applying the internalisation translation to all formulas displayed in the modal-
logical reduction rules above, and adding a reduction rule for satisfaction operators.
The reduction rules above can also be found in Basin et al. (1997) and Simpson
(1994).

As usual for natural deduction systems, a derivation is normal if it contains no
maximum formula. Using a variation of a standard technique for ordinary classical
first-order logic (originally given in Prawitz (1965)), in Basin et al. (1997) it is
proved that the modal-logical system satisfies a normalisation theorem, that is,
any derivation can be rewritten to a normal derivation by repeated applications of
reductions. The standard technique used in this normalisation proof is the technique
mentioned in Theorem 1.13 of Sect. 1.4.6 which does not work directly for the
hybrid-logical natural deduction system. Besides normalisation, in Basin et al.
(1997) it is proved that every normal derivation satisfies a version of the subformula
property.

Before proving that the internalisation translation preserves reductions, we give
a small lemma which says that the internalisation translation commutes with
substitution of derivations for undischarged assumptions in derivations.

Lemma 1.45. Let τ and π be modal-logical derivations such that τ is a derivation
of φ from Φ and π is a derivation from {φ r}∪Φ∪Ψ where φ r /∈Φ∪Ψ and Φ∩Ψ=
/0. Moreover, let κ be the derivation obtained by substituting I(τ) for (I(φ))r in I(π)
and let λ be the derivation obtained by substituting τ for φ r in π . Then κ = I(λ ).

Proof. Induction on the structure of the derivation of π . �
We can now give the theorem which says that the internalisation translation
preserves reductions.
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Theorem 1.46. Let π be a modal-logical derivation. If π � τ , then also I(π)�
I(τ).

Proof. By induction on the structure of the derivation of π . If the end-formula of
π is the conclusion of an elimination rule that is involved in a reduction, then in
the cases → and � we use Lemma 1.45, and in the latter case we furthermore
use the observation that the translation commutes with substitution of nominals for
nominals. �
Preservation of reductions is a desirable property since the application of a reduction
rule to a derivation is supposed to leave the identity of the proof represented by the
derivation unchanged. Rather, the application of a reduction rule just removes a
“detour” in the derivation. See the discussion in Prawitz (1971, p. 257).

From the above we conclude that formulas and derivations of the labelled
modal-logical natural deduction system correspond in a natural way to formulas
and derivations of the hybrid-logical natural deduction system via the internali-
sation translation, and moreover, reductions of the labelled modal-logical system
correspond naturally to reductions of the hybrid-logical system, as was shown in
Theorem 1.46.

1.6.5 Why the Proof-Theory Behaves So Well

To sum up, standard natural deduction systems for modal logic do not satisfy all
three criteria given initially in this section, whereas labelled systems usually do
satisfy the criteria, but at the expense of making use of metalinguistic machinery. As
has been demonstrated in Sect. 1.4, with the hybrid-logical natural deduction system
NH, this deficiency can be remedied by hybridisation, that is, hybridisation of modal
logic enables the formulation of a natural deduction system such that the criteria
all are satisfied without involving metalinguistic machinery, in particular, rules can
be added to the system corresponding to first-order conditions on the accessibility
relation expressed by geometric theories.27

Which features of hybrid logic have enabled us to formulate natural deduction
systems satisfying the three criteria without involving metalinguistic machinery? In
technical terms, the answer is that hybrid-logic has the following two features.28

27See Braüner and de Paiva (2006) and Braüner (2005) for the cases of intuitionistic and first-order
hybrid logic. In the latter case the accessibility relation as well as the quantifier domains are subject
to first-order conditions expressed by geometric theories. See also Braüner (2011).
28This can actually be generalized: These two features also enable the formulation of natural
deduction systems for intuitionistic hybrid logics satisfying the criterias, cf. Braüner and de Paiva
(2006) and Braüner (2011), but in that case the features are interpreted intuitionistically, that is,
they are interpreted as statements in intuitionistic first-order logic and intuitionistic hybrid logic.
See also Braüner (2006). In the case of first-order hybrid logic, cf. Braüner (2005) and Braüner
(2011), we can furthermore express that an individual t exists at a world a, that is, the formula
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• We can express that a formula φ is true at a world a, that is, the formula @aφ is
true.

• We can express that a world a is R-related to a world c, that is, the formula @a♦c
is true.

In Sect. 1.6.3 these features enabled us to define the internalisation translation
I which translates metalinguistic formulas (a,φ) and R(a,c) into hybrid-logical
formulas by letting I((a,φ)) = @aφ and I(R(a,c)) = @a♦c. Furthermore, by
applying the translation I to all formulas in a derivation, the translation was extended
such that it translates a derivation of the labelled modal-logical natural deduction
system to a derivation of the hybrid-logical natural deduction system NH. By
considering this translation, we can see why we can formulate a hybrid-logical
natural deduction system, namely NH, that satisfies the three criteria. We consider
each of the criteria in turn.

As pointed out in Sect. 1.6.3, the hybrid-logical introduction and elimination
rules for the connectives ∧,→, and � can be seen as obtained by taking the image
under the translation I of the labelled modal-logical rules for these connectives, that
is, rules for reasoning directly about the Kripke models. In the case of the modal
operator, this results in the following introduction and elimination rules (cf. Fig. 1.1
of Sect. 1.4.2).

[@a♦c]
···

@cφ
(�I)

@a�φ

@a�φ @a♦c
(�E)

@cφ

The introduction rule is equipped with the side-condition that the nominal c does
not occur in @a�φ or in any undischarged assumptions other than the specified
occurrences of @a♦c. For each of the connectives ∧,→, and �, the hybrid-logical
rules satisfy the inversion principle as the labelled rules satisfy it. Besides these
connectives, it is straightforward to give introduction and elimination rules for
satisfaction operators which satisfy the inversion principle.

The inversion principle gives rise to hybrid-logical reduction rules such that
normalisation is satisfied and such that normal derivations satisfy a version of
the subformula property, see Sects. 1.4.6 and 1.4.7. Reductions in the labelled
modal-logical system correspond to reductions in the hybrid-logical system, as the
translation I preserves reductions, cf. Sect. 1.6.4, but there are reduction sequences
in the hybrid-logical system involving � that do not correspond to any reduction
sequences in the labelled modal-logical system, which is a consequence of the
fact that the introduction rule for � not only exhibits � in the conclusion, but

@aE(t) is true, which enables the formulation of natural deduction systems for first-order hybrid
logics satisfying the criteria (here E(t) is the existence predicate which is defined as an abbreviation
for ∃y(y = t)).
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also in the discharged assumptions. The proof of the hybrid-logical normalisation
theorem, Theorem 1.13 of Sect. 1.4.6, involves controlling such reduction sequences
in a systematic way. See the brief remarks in Theorem 1.13 and see the detailed
treatment in the book Braüner (2011).

Conditions on the accessibility relation can be incorporated into the system
by adding hybrid-logical rules obtained by taking the image under the translation
I of labelled modal-logical natural deduction rules given by Simpson in 1994
(strictly speaking, extended with atomic first-order formulas of the form a = c
which are translated to @ac). The conditions on the accessibility relation are first-
order conditions expressed by geometric theories. This actually requires the addition
of further reduction rules with the aim of removing permutable formulas in a
derivation, see Sect. 1.4.6 for more on such permutative reductions.

In conclusion, what has happened is that the metalinguistic formulas and rules
of the labelled modal-logical natural deduction system have been internalized as
hybrid-logical formulas and rules via the translation I, which has enabled the
formulation of an internalized hybrid-logical natural deduction system involving
only object language formulas such that the three criteria are satisfied.29 In other
words, we have provided a proof-theoretic analysis demonstrating that the good
proof-theoretic behaviour of the labelled rules for reasoning directly about models
is preserved by internalisation. We are now in position to give an answer to
the initial question of this section: Why does the proof-theory of hybrid logic
behave so well? The answer is that internalisation of metalinguistic model-theoretic
machinery in the object language enables us to give well-behaved proof-theory for
hybrid logic.

The issue of internalizing a metalanguage in a hybrid-logical object language
is also discussed in a range of papers by Patrick Blackburn, notably Blackburn
(2000a,b). See also the discussion in Sect. 1.4.8.

Moreover, internalizing a metalanguage in an object language is the subject of
the paper Seligman (2001). The approach in that paper is, however, different from
the approach taken here: In the paper Seligman (2001) a Gentzen system for hybrid
logic is developed from a Gentzen system for first-order predicate logic by a series
of transformations which step by step internalizes the (first-order) semantic theory
of hybrid logic.

29In the paper (Brünnler 2006) Kai Brünnler compares labelled and unlabelled Gentzen systems
for modal logic. A system of the latter kind is a system that does not use labels, which he makes
more precise by calling a Gentzen system pure if each sequent has an equivalent object language
formula. Clearly, what we here call standard proof systems for modal logic are pure: In natural
deduction terminology, a derivation of a modal-logical formula φ from a set of modal-logical
formulas Γ is equivalent to the modal-logical formula

∧
Γ→ φ . On the other hand, labelled natural

deduction systems for modal logic are clearly not pure, but it is remarkable that hybrid-logical
natural deduction systems actually are pure in Brünnler’s sense.
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1.6.6 Some Concluding Philosophical Remarks

Recall that in Sect. 1.6.2 we pointed out that the labelled introduction and
elimination rules for the modal operator can be read off from the modal operator’s
truth-condition in the Kripke semantics. This also applies to the hybrid-logical,
internalized introduction and elimination rules for the modal operator discussed in
Sect. 1.6.5. Thus, we have justified the derivation rules for the modal operator by
an antecedent understanding of the modal operator’s meaning, namely by its truth-
condition in the Kripke semantics. Some remarks should be made in this connection.

First note that our justification of the derivation rules for the modal operator is in
terms of model-theoretic semantics, namely in terms of the Kripke semantics. This
is related to a distinction Jaako Hintikka draws between two different traditions
in viewing the relation of logic to reality, namely “language as the universal
medium” (or “the universalist tradition”) and “language as calculus” (or “the model-
theoretical tradition”), see the paper Hintikka (1988). According to the first tradition,
one cannot step outside the language and one cannot theorize about changes in the
interpretation of the language. Contrary to this, the second tradition includes meta-
logical considerations and the tradition takes as a cornerstone the relation between
formulas and models defined by Tarski-style truth-conditions. Clearly, our justifi-
cation of the introduction and elimination rules for the modal operator presupposes
the second view since the justification is in terms of a model-theoretic semantics.

An alternative to justifying derivation rules for logical connectives in terms of
model-theoretic semantics, is to explain the meaning of the connectives in terms
of the roles the connectives play in derivations, independently of model-theoretic
notions. It is arguable that both kinds of explanation are legitimate, cf. the following
long quotation by Nuel D. Belnap (1962).

It seems plain that throughout the whole texture of philosophy one can distinguish between
two modes of explanation: the analytic mode, which tends to explain wholes in terms of
parts, and the synthetic mode, which explains parts in terms of the wholes or contexts
in which they occur. In logic, the analytic mode would be represented by Aristotle, who
commences with terms as the ultimate atoms, explains propositions or judgements by
means of these, syllogisms by means of the propositions which go to make them up, and
finally ends with the notion of science as a tissue of syllogisms. The analytic mode is
also represented by the contemporary logician who first explains the meaning of complex
sentences, by means of truth-tables, as a function of their parts, and then proceeds to give an
account of correct inference in terms of the sentences occurring therein. . . . Among formal
logicians, use of the synthetic mode in logic is illustrated by Kneale and Popper . . . , as well
as by Jaskowski, Gentzen, Fitch and Curry, all of these treating the meaning of connectives
as arising from the role they play in the context of formal inference. It is equally well
illustrated, I think, by aspects of Wittgenstein and those who learned from him to treat the
meanings of words as arising from the role they play in the context of discourse. It seems
to me nearly self-evident that employment of both modes of explanation is important and
useful (Belnap 1962, pp. 130–131)30.

30Belnap’s paper (1962) is a response to Prior’s paper (1960) in which Prior raises doubt as to
whether the meaning of logical connectives can be explained in terms of derivation rules along the
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The programme of explaining the meaning of logical connectives in terms of the
roles they play in derivations has developed into a separate branch of logic called
proof-theoretic semantics. To be more precise, proof-theoretic semantics is based
on the idea of explaining the meaning of a logical connective in terms of a set of
derivation rules.31 In certain respects, proof-theoretic semantics is in line with the
first tradition identified by Hintikka. We shall not go into further details of proof-
theoretic semantics. See the paper Wansing (2000) for a presentation of a number
of different semantic paradigms.
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Braüner, T. 2002b. Modal logic, truth, and the master modality. Journal of Philosophical Logic 31:

359–386.
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Chapter 2
Nominal Terms and Nominal Logics:
From Foundations to Meta-mathematics

Murdoch J. Gabbay

2.1 Introduction

Nominal sets for meta-mathematics Suppose we want to axiomatise the λ -
calculus or first-order logic. Then we need to express properties like this:

• If y �∈ fv(t) then ∀x.t =α ∀y.(t[y/x]).
• If x �∈ fv(u) then (λx.t)[u/y] = λx.(t[u/y]).
• If x �∈ fv(t) then λx.(tx) =η t.

x, y, t, and u here are what we would call names. A linguist might call them referents,
a mathematician might call them variables. But the words ‘referent’ and ‘variable’
carry connotations (a referent should refer to something, a variable should vary), so
we prefer the more neutral term ‘name’. So for us, a name is just an atomic symbol,
to which we may then associate further properties, at our discretion, using additional
axioms.

The axioms above are typical of a certain kind of specification. Mathematical
specification is nothing new. First-order logic can specify, to choose a classic trio of
examples, groups, rings, and fields. But the λ -calculus, first-order logic itself, the
π-calculus, and a very great many other examples, are different. They have names.

By adding names to first-order logic in the correct way, we can axiomatise
the specifications above, cleanly and in a manner very close to the informal
specification. How should we do this? Using a recent application of mathematical
foundations originating in computer science: nominal sets Gabbay and Pitts (2001),
Gabbay (2011b), to which we will use nominal terms Urban et al. (2003, 2004) as
a corresponding formal syntax. To survey and update the state of the art of logics
based on nominal terms and taking semantics in nominal sets, is our goal here.
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In nominal terms, term-formers can bind names and freshening renamings like
the [y/x] or [u/y] above are taken as primitive.

Here are the informal statements above, rewritten in permissive-nominal
algebra—an algebraic logic based on nominal terms with a sound and complete
semantics in nominal sets:

• If b �∈ supp(X) then ∀([a]X) = ∀([b](b a)·X).
• If a �∈ supp(Y ) then λ ([a]X)[b�→Y ] = λ ([a](X [b�→Y ])).
• If a �∈ supp(X) then λ ([a](Xa)) = X .

In this chapter we will briefly consider nominal sets, then survey nominal
terms, unification, rewriting, algebra, and permissive-nominal logic. We cover the
nominal unification algorithm, confluence proofs for nominal rewriting, soundness
and completeness results for nominal algebra and permissive-nominal logic, an HSP
theorem, and a finite axiomatisation of first-order logic.

By doing this we aim to give an overview of the applications of nominal sets
to meta-mathematical syntax. We cannot be exhaustive, but we can try to be
representative of what can be achieved.

As we shall see, nominal syntax is more expressive than first-order syntax (for
instance we can give a finite first-order axiomatisation of arithmetic), because term-
formers that can explicitly manipulate names. Yet, it remains first-order in flavour,
preserving theoretical and computational properties like completeness and most
general unifiers.

A few words on atoms What nominal sets add to ‘ordinary’ structures is an
assumption of a distinguished class of symmetric atomic elements called atoms:
these are also called urelemente or names. We will use these terms more-or-less
synonymously.

Indeed, nominal sets are a special case Zermelo-Fraenkel sets with atoms, and are
instances of the structures considered by Fraenkel and Mostowski in their celebrated
independence proof of the Axiom of Choice from the other axioms of set theory with
atoms. For detailed references see (Gabbay 2011b, Remark 2.22). So this chapter
really does describe a journey from mathematical foundations to meta-mathematics,
and that is representative of how the maths we describe here was arrived at.

We can view the underlying philosophy of nominal techniques is as the following
informal inequality, where ‘smaller’ means ‘greater generality’:

atoms = urelemente = names≤ referents≤ variables

Discovering to what extent these intuitions can be made precise, concrete, and
useful, is the topic of much ongoing research, some of which is reported on here.

Names induce automorphisms generated by permuting them. We shall see that if
we model variables as a special case of atoms, then α-renaming becomes a special
case of a much more general fact that nominal sets are symmetric under permuting
atoms. This generalisation turns out to have powerful consequences, including the
atoms-abstraction and N-quantifier introduced by the author with Pitts in Gabbay
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and Pitts (2001). So the point of view described above has led to and continues to
lead to new reasoning principles.

If we identify a thing with the properties of that thing, then the ‘nominal’ model
suggests that names are equal to the following set of three properties:

names = {atomic,symmetric,generative}

The reader familiar with nominal techniques can identify these three properties with
the use of: atomic symbols a (an atom, name, or urelement, with a distinct existence
in the denotation), permutations π (symmetries under permutation of names), and
the N-quantifier (‘choose a fresh name’). These three properties will appear directly
in this chapter as atoms, permutations, and permission sets.1 Full definitions appear
below.

This material in the literature This paper surveys existing literature on logics
based on nominal terms, and adds a few new results. Very broadly, Sect. 2.2.1 is
based on Gabbay and Pitts (1999, 2001) (nominal sets; they were called equivariant
FM sets there); Sects. 2.2.2 and 2.3.1 are based on Urban et al. (2003, 2004), Dowek
et al. (2009, 2010), Gabbay (2012a) (nominal terms and unification); Sects. 2.3.2
and 2.3.3 are based on Fernández et al. (2004), Fernández and Gabbay (2007),
Gabbay (2012a) (rewriting and closed terms); Sect. 2.3.4 is based on Gabbay (2005),
Gabbay and Mathijssen (2006a, 2007, 2009) (nominal algebra); Sects. 2.4.1, 2.4.2,
and 2.4.3 are based on Dowek and Gabbay (2010, 2012a) (permissive-nominal
logic).

Definitions and proofs may have changed from the original presentations. In
particular:

• The semantics is permissive-nominal, meaning that it is based on possibly
infinitely supported nominal sets with co-infinite support. In Gabbay and Pitts
(2001) a nominal semantics based on finite and co-infinite support was used.

• Unlike Urban et al. (2004) and Dowek et al. (2010) we use nominal abstract
syntax to build our nominal terms. That is, in this paper nominal terms atoms-
abstraction is directly equal to Gabbay-Pitts atoms-abstraction. Thus, nominal
terms here are an instance of nominal abstract syntax and come quotiented by
α-equivalence by construction.

• Permutation may be stronger than usual, and we parameterise over the group of
permutations.

We consider (as usual) finite permutations (generated by swappings,
also called transpositions) as standard, but in particular we also find shift-
permutations δ useful, which shift infinitely many atoms. The shift-permutation
δ corresponds to a de Bruijn shift function ↑ and presheaf reindexing map up,
though δ is not equal to them since it is a permutation and so invertible.

1In other papers, such as Urban et al. (2004), permission sets are presented instead as syntactic
freshness assumptions.
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• Syntax includes non-equivariant constant symbols. In Urban et al. (2004)
all term-formers/function-symbols (including 0-ary ones, i.e. constants) were
equivariant. This does not matter for finite support but it does make a difference
with infinite support.

• Nominal unknowns are modelled as arbitrary elements of a strongly-supported
nominal set. This means that the X and Y in this paper correspond to moderated
unknowns from Urban et al. (2004): see Example 2.45.

• Because unknowns have support, there are no freshness contexts and
substitutions are characterised as equivariant functions (the freshness
conditions normally attached to substitutions follow from equivariance: see
Proposition 2.64). The theories of nominal unification, rewriting, and algebra are
reformulated to reflect this.

• The simplification rules for unification problems (Fig. 2.2) are new and the
treatments of closed terms and closed nominal rewriting (Sect. 2.3.3) are entirely
revised with respect to Fernández and Gabbay (2007).

2.2 Nominal Sets and Nominal Terms

2.2.1 Nominal Sets

We open with a brief presentation of nominal sets, which are the semantic basis for
this work: this is the universe that the logics we define will describe, and be sound
(and complete) for.

Nominal sets were developed with Pitts and introduced in the author’s thesis
Gabbay (2001), a conference paper Gabbay and Pitts (1999), and journal paper
Gabbay and Pitts (2001). The nominal sets here are more general than in Gabbay
and Pitts (2001): following Dowek et al. (2010) we are permissive, meaning that
we split the set of atoms into two infinite halves and consider infinite support.
This specific idea was developed jointly with Dowek,2 but shades of it appear
also in Cheney’s paper Cheney (2006) and in the author’s study of infinite atoms-
abstraction Gabbay (2007b).

In addition we parameterise over a group of permutations which need not just be
finitely-supported permutations. This is new.

2.2.1.1 Atoms, Permutations, Permission Sets

In Definition 2.2 we need several sets of atoms. This is to model the several sorts of
names that will appear in our syntax later on.

2The development here is a little different from that in Dowek et al. (2010) because we take
permission sets to be sets of the form π·A< instead of sets of the form (A< \A)∪B.
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Following Dowek et al. (2010) our development will be permissive-nominal. A
permission set S splits a set of atoms into two halves A< and A> . One intuition for
A< is ‘the atoms that have been generated so far’, and for A> is ‘the atoms that might
be generated later’.

Definition 2.1. Write N = {0,1,2,3, . . .} for the natural numbers and Z =
{0, -1,1, -2,2, . . .} for the integers.

Definition 2.2. For each i ∈N fix a pair of disjoint countably infinite sets of atoms
A
<

i and A
>

i .
Write

Ai = A< �A> A< =
⋃

A
<

i A> =
⋃

A
>

i A=
⋃

Ai

a,b,c, . . . will range over distinct atoms: we call this the permutative convention.

Remark 2.3 (Comments on splitting the set of atoms). The different sets of atoms
Ai are different ‘types’ of atoms. Thus, later on in Definitions 2.39 and 2.49 we can
give each name sort its own distinct population of atoms.

The reasons for splitting the set of atoms into A< and A> will become clear as the
maths develops. It might help to think of A< as ‘atoms that can be captured’ and of
A> as ‘atoms that cannot be captured’, or as ‘atoms that might have been generated
in the past’ and ‘atoms that may be generated in the future’—but with reservations.
In Definition 2.10 we see that this is only true up to permuting atoms.

The real purpose of Definition 2.2 is to ensure that we have plenty—countably
infinitely many—of ‘capturable’ and ‘non-capturable’ atoms. Permutations (below)
can and will move atoms between these worlds, but no permutation can move them
all at once. So the interest of A< is not just for the set itself but for its orbit under per-
mutations; this is a property of the set as a whole, and not of its individual elements.

Remark 2.4 (Comments on the permutative convention). While visiting Tel-Aviv
University in 2006 I gave talks on nominal techniques and Arnon Avron asked: “Do
a and b refer to specific atoms (e.g. in the axioms in the Introduction), or to any two
atoms?”. In other words, are a and b constants or variables?

In response I started using a permutative convention that a and b are variables, but
they range over distinct atoms so that variables with distinct names refer to distinct
objects (the first uses were in Gabbay and Mathijssen (2006c,a); the convention was
explicitly named in Gabbay and Mathijssen (2008c)).

For a while this was resisted by some anonymous referees. Yet, we typically
apply the permutative convention informally; e.g. we silently assume that λx.λy.xy
is never the same term as λx.λx.xx. I would claim that the permutative convention
expresses something about the foundational origins of the nominal view of names
as urelemente—constants that are distinguishable yet symmetric—in an underlying
set theory.

Perhaps this is why the referees did not like it: the permutative convention
may seem unnatural if we are committed to standard (nameless) Zermelo-Fraenkel
foundations, since names are then just some set, and like any set should be varied
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over non-permutatively by variables. Thus the fact that we accept that λx.λy.xy and
λx.λx.xx always signify distinct λ -terms to us, can be taken as a sign that we inhabit
a nameful foundation, so that the permutative convention is a signpost on the way
to something more extensive.

A formal reflection of the permutative convention appears explicitly in the formal
logics of this paper: it lives in the π of the π·X in Definition 2.125.

Definition 2.5. Given a,b ∈ Ai for some i ∈ N write (a b) for the swapping
bijection on atoms mapping a to b, b to a, and any other c ∈ A\{a,b} to c.

Another standard name for a swapping is a transposition.
By convention (a a) will denote the identity function on atoms id.
If π is a bijection on atoms define

nontriv(π) = {a | π(a) �= a}.

Definition 2.6. A nominal permutation group is any set of bijections P of A such
that:

1. If a ∈ Ai and b ∈ Ai then (a b) ∈ P.
2. If π ∈ P then a ∈ Ai if and only if π(a) ∈ Ai.
3. There exists some infinite S⊆A such that nontriv(π)∩S is finite for every π ∈ P.

Call a bijection on atoms π a finite permutation when it is in the subgroup
generated by swappings. (π is finite when π(a) ∈ Ai if and only if a ∈ Ai and
nontriv(π) is finite.)

Write π ◦π ′ for the composition of π and π ′ (so (π ◦π ′)(a) = π(π ′(a))). Write
id for the identity permutation (so id(a) = a always).

The purpose of conditions 1–3 of Definition 2.6 are as follows:

1. Swappings make sure we can always rename a to b (and b to a).
2. Condition 2 is a standard typing condition, that we do not try to turn an atom of

one sort, into an atom of another sort.
3. This condition guarantees that we can still always choose a fresh atom for any

finite set of permutations (see for instance Lemma 2.57).

Example 2.7. 1. The set of all finite permutations is a nominal permutation group.
2. For each i fix a bijection fi between Ai and the integers Z, such that { f (i) | i ≤

0} = A
<

i and (consequently) { f (i) | i > 0} = A
>

i . We can do this because we
assumed atoms are countable.

Write δi for the permutation mapping

• fi( j) to fi( j−1) for j ≤ 0,
• fi(2 j) to fi(2( j−1)) and fi(2 j−1) to fi(2 j−1) for j ≥ 1, and
• any other c ∈ A\Ai to c.

This is an example of a shift-permutation, considered in more generality
in Definition 2.79 and throughout Sect. 2.2.2.6. We illustrate fragments of the
actions of a swapping ( f (0) f (1)) and a δi:



2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 85

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (3) f (4) f (5) f (6)

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (3) f (4) f (5) f (6)

The atoms corresponding to positive odd integers are taken to be fixed points
of δi in order to satisfy condition 3 of Definition 2.6, so that these atoms can be
taken fresh for δi if we need to.

The set of permutations generated by swappings and δi, is a nominal
permutation group.

Remark 2.8. The nominal permutation group P determines the symmetries of our
nominal syntax and semantics. We consider permutations designed to guarantee
(in Definition 2.14) symmetry up to equality/inequality of atoms. We will get sets
with atoms that are atomic, symmetric (up to equality and inequality of names),
and generative—the main further design choice we care about is whether or not to
include a shift (Example 2.7), which goes strictly beyond what can be achieved with
finite permutations as considered e.g. in Gabbay and Pitts (2001).

Other notions of permutation may lead to other symmetries, so an interesting
topic of future research is to weaken the conditions in Definition 2.6.

For instance, if we only allow permutations generated by f (i) �→ f (i + 1)
and f (i) �→ f (-i) then we preserve a notion of ‘distance’ between atoms.3 In a
similar vein, we can identify atoms with points in a plane and consider Euclidian
transformations. It is not known how much of ‘nominal techniques’ would hold of
such examples.

More generally of course, presheaves are a forum within which sets with
symmetry structure can be expressed. Indeed, nominal sets can be viewed as a
category of presheaves Gabbay and Pitts (1999) and a similar presheaf category was
considered at the same time Fiore et al. (1999) (see also the later related nominal
renaming sets Gabbay and Hofmann (2008), which are in some sense half-way in
between those two systems).

There is no shortage of research into this kind of structure Mac Lane and
Moerdijk (1992). It remains, however, to understand what are the abstract properties
that make a set with a group action, or a presheaf, into something ‘nominal’.

Definition 2.9. If A⊆ A define the pointwise action by

π·A = {π(a) | a ∈ A}.

Definition 2.10. A permission set S is a set of the form π·A< .
S,T will range over permission sets.

3This example modified from an example by Bartek Klin; private communication from Alexander
Kurz.
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Remark 2.11. Some preliminary comments on permission sets:

• The notion of permission set used in some previous work, for instance in (Dowek
et al. 2010, Definition 2.2), was slightly different: a permission set was taken to
be a set of the form (S \A)∪B for finite A⊆ A< and B⊆ A> . In the presence of
shift-permutations we can do this using a permutation, and any (S\A)∪B can be
written as π·S for suitable π (cf. Remark 2.80 and δX-a·X in (IF) of Fig. 2.2).

Given that the designs are equivalent for the cases we will care about, we
chose Definition 2.10 because it is somewhat simpler to do mathematics with.

• In the semantics, permission sets are used in the definition of support Defini-
tion 2.14; if permutations specify symmetry, permission sets specify capturability
and generativity (Remark 2.15).

• In the syntax, permission sets are used to control capture (see Remark 2.70);
atoms in S are intuitively ‘capturable’ and atoms not in S are intuitively ‘not
capturable’.

This is reminiscent of some treatments of syntax where a formal distinction
is made between ‘names that exist to be bound’ and ‘names that exist to be
free’. See for instance the freie and gebundene Gegenstansvariable of Gentzen
(1935, Section 1), and the individual variables and parameters of Prawitz (1965,
Section 1), or Smullyan (1968, [Chapter IV, Section 1]).

However, note that here, for any a ∈ S and b �∈ S, also a �∈ (b a)·S and
b ∈ (b a)·S. That is, for any given atom there is no fixed sense in which it is
capturable or not capturable. Each individual permission sets defines its own
world of capturable/non-capturable atoms, which differs by a permutation π from
what is really a fixed but entirely arbitrary representative A< .

2.2.1.2 Permissive-Nominal Sets

Definition 2.12. A set with a (P-)permutation action X is a pair (|X|, ·) of

• a carrier set |X| and
• a group action (P×|X|)→ |X|, written infix as π·x.

So, id·x = x and π·(π ′·x) = (π ◦π ′)·x for every π , π ′, and x ∈ |X|.

Definition 2.13. Given a set with a P-permutation action X say that A⊆A supports
x ∈ |X| when for all permutations π ∈ P, if π(a) = a for all a ∈ A then π·x = x.

Also, call A⊆ A small when A⊆ S for some permission set S.

Definition 2.14. A permissive-nominal set is a set with a permutation action
such that every element has a unique least small supporting set supp(x). We call
this the support of x.
X, Y will range over permissive-nominal sets.

Note in Definition 2.14 that supp(x) must be small, that is, included in some
permission set. For instance, a ∈ A—with A having the natural permutation action
given by π·x = π(x) for x ∈ A—is supported by {a} and A\{a}, but the former is
small while the latter is not.
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Remark 2.15. The difference between a set with a permutation action and a
‘nominal’ set is that nominal sets guarantee for any element, infinitely many atoms
fresh for that element.

A mild generalisation of Definition 2.14 is possible, where we insist there is a
supporting set but do not insist on the existence of a unique least such set. It is
possible to do a surprising amount just with that; see for instance Fiore, Plotkin and
Turi’s paper Fiore et al. (1999) based on presheaves, and the ‘nominal’ study of
infinite permutations and infinite atoms-abstraction in Gabbay (2007b).4

Example 2.16.

• First-order syntax with variable symbols (modelled as atoms) is a permissive-
nominal set, where the permutation action permutes variable symbols directly in
syntax so that e.g. π·λa.t = λπ(a).π·t.

A term t is supported by the variable symbols it contains. In this and the
following examples the precise nature of the permutation group is not important.

• First-order syntax up to α-equivalence is a permissive-nominal set. The α-
equivalence class of t is supported by the free variable symbols of t. A full proof
is in (Gabbay 2011b, Theorem 5.18).

• Traces of π-calculus processes with channel names (atoms) taken from some
permission set S, form a permissive-nominal set. A trace is supported by the set
of channel names it mentions (which may be infinite in number).

• Given a permissive-nominal nominal set X the set of subsets U ⊆ |X| with the
pointwise action π·U = {π·u | u ∈ U} is a set with a permutation action (this
generalises Definition 2.9).

The subset of this consisting of those subsets U ⊆ |X| that have a supporting
permission set under this action, forms a permissive-nominal set pow(X).5

Lemma 2.17. Suppose X is a permissive-nominal set and x ∈ |X|. Then
supp(π·x) = π·supp(x).

Proof. By a routine calculation using the group action. �
We conclude with a useful condition for checking whether a ∈ supp(x):

4 If all permutations in P are finite then we have as a Technical Lemma that the existence of some
supporting set implies the existence of a unique least small supporting set.

In the more general case where infinite permutations are allowed, it is possible to construct a
set with a permutation action X and x ∈ |X| such that x has a supporting set but does not have a
unique least small supporting set. See (Gabbay 2007b, Lemma 21) for an example.

An intermediate state is to admit infinite permutations but restrict the notion of support to
consider only the finite ones. We do this in Definitions 3.1 and 3.2 and Remark 3.3 of Dowek and
Gabbay (2012a).

For this paper, none of this will matter directly.
5Using possibly repeated powersets, arbitrarily complex structures may be constructed. Thus this
example guarantees an inexhaustible supply of arbitrarily large and complex structures with which
to model . . . almost anything we can imagine. The survey Gabbay (2011b) explores this in detail.
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Corollary 2.18. Suppose X is a permissive-nominal set and x ∈ |X|. Suppose b �∈
supp(x). Then (b a)·x = x if and only if a �∈ supp(x).

Proof. Suppose b �∈ supp(x). The right-to-left implication is by the definition of
support. For the left-to-right implication, we prove the contrapositive. Suppose
a ∈ supp(x). By Lemma 2.17 supp((b a)·x) = (b a)·supp(x). By our suppositions,
(b a)·supp(x) �= supp(x). It follows that (b a)·x �= x. �

2.2.1.3 Equivariance

Definition 2.19. Suppose X and Y are permissive-nominal sets.
Call x ∈ |X| equivariant when supp(x) = ∅. (So x is equivariant when π·x = x

for all π .)
Call F ∈ |X| → |Y| equivariant when

∀π ∈ P.∀x ∈ |X|.π·(F(x)) = F(π·x).

F will range over equivariant functions between pairs of permissive-nominal sets.

Remark 2.20. The second notion of equivariance in Definition 2.19 is a special case
of the first. For details, see e.g. Definition 9.3 and Lemma 9.4 of Gabbay (2011b).

Lemma 2.21. If F from |X| to |Y| is equivariant then supp(F(x))⊆ supp(x) for all
x ∈ |X|.
Proof. Suppose π ∈ fix(supp(x)). By assumption π·F(x) = F(π·x), and π·x = x. �
Definition 2.22. Write PmsPrm for the category with objects permissive-nominal
sets and arrows equivariant functions between them.

So X, Y range over objects in PmsPrm (Definition 2.14).

2.2.1.4 Examples of Permissive-Nominal Sets

Throughout the rest of this document we will need the following examples of
permissive-nominal sets: atoms, booleans, lists, product, equivariant elements,
permutation orbits, and atoms-abstraction. We consider each in turn now.

Atoms, Booleans, infinite lists

Definition 2.23 (Atoms). A the set of all atoms can be considered a permissive-
nominal set with a natural permutation action π·a = π(a). So can each Aν .
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Definition 2.24. If X is a permissive-nominal set say the permutation action is
trivial when π·x = x for all x ∈ |X| and all π ∈ P.

So X is trivial if and only if all its elements are equivariant.

Definition 2.25. Any ‘ordinary’ set can be made into a permissive-nominal set by
giving it the trivial permutation action such that π·x = x always.

In particular, the set B= {0,1} can be considered a permissive-nominal set with
the trivial permutation action; so can N and Z from Definition 2.1.

In the cases of A and {0,1} only, we will be lax about the distinction between
the set, and the permissive-nominal set with its natural permutation action.

Definition 2.26 (Infinite lists). Define a permissive-nominal set L by:

• |L| is the set of infinite sequences of distinct atoms L = [a1,a2,a3, . . . ] such that
atms(L) = {a1,a2,a3, . . .} is a permission set.

• π·L = [π(a1),π(a2),π(a3), . . . ].

Product

Definition 2.27. Suppose I is an indexing set.6 If Xi are permissive-nominal sets
for i ∈ I then define ΠiXi by:

• |ΠiXi| is the set of I-tuples (xi)i such that ∀i.xi ∈ |Xi| and there exists a permission
set S such that ∀i.supp(xi)⊆ S.

• π·(xi)i = (π·xi)i (the elementwise or pointwise action).

Permutation orbits

Permutation orbits will serve us later in Definition 2.59 (free unknowns of a term).
If X is a nominal set then orb(X) is ‘X quotiented by the permutation action’.

Definition 2.28. If X is a permissive-nominal set define orb(X) by:

• If x ∈ X then define its permutation orbit by orb(x) = {π·x | π ∈ P}.
• |orb(X)|= {orb(x) | x ∈ X}.
• π·orb(x) = orb(x).

Lemma 2.29.

• supp(orb(x)) =∅. That is, orb(x) is equivariant (Definition 2.19).
• orb(x) = orb(y) if and only if y = π·x for some π .

6For clarity, note that we intend this set to not have a permutation action. Or, we can take this to
be a nominal set with the trivial action (Definition 2.24). We have in mind N.
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Atoms-abstraction

Definition 2.30. Suppose X is a permissive-nominal set and Ai is a set of atoms.
Define atoms-abstraction [Ai]X by:

[a]x = {(a,x)}∪{(b,(b a)·x | b ∈ Ai\supp(x)}
|[Ai]X|= |[Ai]X|= {[a]x | a ∈ Ai, x ∈ |X|}
π·[a]x = [π(a)]π·x

Lemma 2.31.

1. [Ai]X is a permissive-nominal set.
2. [a]x=[a]x′ if and only if x=x′, for a∈Ai and x∈|X|.
3. [a]x=[a′]x′ if and only if a′ �∈supp(x) and (a′ a)·x=x′, for a,a′∈Ai and x,x′∈|X|.
Lemma 2.32. Suppose a function F from |A×X| to |Y| is equivariant and suppose
∀a,x.a �∈ supp(F(a,x)). Then there is a unique equivariant function F̂ from |[A]X|
to |Y| such that ∀a,x.F̂([a]x) = F(a,x).

Proof. It suffices to show that if b �∈ supp(x) ∪ supp(F(a,x)) then
F(b,(b a)·x)=F(a,x). By assumption a �∈ supp(F(a,x)), so (b a)·F(a,x)=F(a,x).
The result follows by equivariance. �

Here are some basic properties of support:

Lemma 2.33.

• supp(a) = {a}.
• supp([a]x) = supp(x)\{a}.
• supp((x1, . . . ,xn)) =

⋃{supp(xi) | 1≤ i≤ n}.
Proof. Proofs are as in Gabbay and Pitts (2001) or Gabbay (2011b). �

The fine design of PmsPrm

Studying PmsPrm (Definition 2.22) is not the point of this paper, but for the benefit
of the interested reader we will discuss a few aspects of its behaviour.

• If P consists of finite permutations then PmsPrm is a Boolean topos, directly
generalising the category of nominal sets (equivariant FM sets) from Gabbay and
Pitts (2001), Gabbay (2011b). The proof proceeds much as in (Gabbay 2011b,
Corollary 9.11).

• If P contains infinite permutations then PmsPrm is cartesian (has products) but
is not necessarily cartesian closed (may not have exponentials). This is the fuzzy
support observed in Gabbay (2007b); see (Gabbay 2007b, Lemma 21) for the
concrete construction. This is reasonable, and it happens because it is possible
to construct a function f on ω +ω which satisfies f (0) = 0 and f (i+1) = f (i)
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yet which is not a constant function (it returns 0 on finite cardinals and 1 on
infinite ones).

• If P contains infinite permutations but we follow Dowek et al. (2010) and take
the notions of support in Definition 2.13 and equivariance to consider only finite
permutations, then the category we obtain is a Boolean topos but we only have
supp(x)∩nontriv(π) =∅ implies π·x = x for finite π . In other words, an element
can be fixed by all finite permutations and have empty support, but be shifted by
some infinite permutation.

Again, this is reasonable; it is no surprise that infinite permutations can
‘observe’ more than finite ones.

• If P contains infinite permutations and we work with presheaves (in essence, we
lose the ‘unique least supporting set’ assumption in Definition 2.14), then we get
a topos, though it is not Boolean.

In this paper we do not attempt to reason inside PmsPrm so we do not care whether
it is a topos; and we do want the possibility of infinite permutations because these
let us write nice algorithms and they give our logics some useful extra expressive
power (see e.g. rule (IF) of Fig. 2.2, Sect. 2.2.2.6, and Remark 2.239).

So we admit the possibility of infinite permutations in Definition 2.6, we
let Definition 2.13 consider all π ∈ P (even infinite ones), and we insist in
Definition 2.14 that every x have a unique least small supporting set.

In another paper, another set of design decisions might be appropriate.
The reader who does not care about these considerations need not worry; they

are all swept under the carpet henceforth.

2.2.1.5 Strong Support

Strong support exists in nominal terms, though this is implicit. Consider in Urban
et al. (2004) the ≈-suspension rule in Figure 2, and Lemma 2.8. We call this strong
support, following (Tzevelekos 2007, Definition 1).

A possibly useful intuition is that an element x ∈ X has strong support when the
atoms in its support occur in order (a dedicated theoretical study of this is in Gabbay
(2007b)). Formally, the notion of strong support enters into the mathematics in this
paper via Proposition 2.38, Lemma 2.67, and Lemma 2.186.

Definition 2.34. Suppose X is a permissive-nominal set. Say A ⊆ A strongly
supports x ∈ |X| when π·x = x if and only if ∀a∈A.π(a) = a.

If x has some strongly supporting set, call x strongly supported.
If every x ∈ |X| is strongly supported then call X strongly supported.

Lemma 2.35. x ∈ X is strongly supported if and only if

∀π,π ′.
(
π·x = π ′·x⇔ (∀a ∈ supp(x).π(a) = π ′(a))

)
.
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Proof. From Definition 2.34 by considering π -1 ◦π ′. �
Example 2.36.

• The pair (a,b) ∈ A×A is strongly supported by {a,b}.
• The unordered pair {a,b} ⊆ A with the pointwise permutation action (Defini-

tion 2.9) is not strongly supported, because (a b)·{a,b}= {a,b}.
• The infinite sequences [a1,a2,a3, . . . ] in L from Definition 2.26 are strongly

supported.

Definition 2.37. Suppose X and Y are permissive-nominal sets and X is strongly-
supported. Suppose we are given the following data:

• For each x ∈ |orb(X)| a fixed but arbitrary choice of representative Xx ∈ x.
• For each x ∈ |orb(X)| a choice of yx ∈ |Y| such that supp(yx)⊆ supp(Xx).

Define the equivariant extension F of this data, which is a function from |X| to
|Y|, by:

F(π·Xx) = π·yx

Proposition 2.38. 1. The equivariant extension is well-defined and is an equivari-
ant function from |X| to |Y|.

2. Every equivariant f is an equivariant extension.

Proof. For the first part, by properties of orbits every x ∈ |X| has the form π·Xx

for some π and for precisely one Xx. This is equivariant by construction, if it is
well-defined. So suppose π·Xx = π ′·Xx. By assumption Xx is strongly supported
so π(a) = π ′(a) for every a ∈ supp(Xx). By assumption supp(yx) ⊆ supp(Xx). The
result follows by the definition of support.

The second part is easy, noting that supp(F(x))⊆ supp(x) by Lemma 2.21. �

2.2.2 The Syntax of Nominal Terms

Nominal terms were introduced in Urban et al. (2004). The development here is
permissive, following Dowek et al. (2010), but with some additional ingredients: We
allow non-equivariant constant symbols and we parameterise over a set of unknowns
which is a strongly-supported Tzevelekos (2007).

Some example permissive-nominal terms are given in Example 2.52. See also
how nominal terms are used in rewrite theories (Example 2.124), algebra (Exam-
ple 2.170), and first-order logic (Sect. 2.4.2.1).
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2.2.2.1 Signatures

Definition 2.39. A sort-signature is a tuple (A,B) of name and base sorts A⊆N

and B.
ν will range over name sorts; τ will range over base sorts.
A sort language is defined by

α ::= ν | τ | (α, . . . ,α) | [ν ]α.

Example 2.40. Example base sorts are: ‘λ -terms’, ‘formulae’, ‘π-calculus pro-
cesses’, and ‘program environments’, ‘functions’, ‘truth-values’,
‘behaviours’, and ‘valuations’.

Base sorts τ are arbitrary; later on when we build denotations they will be
populated by elements of arbitrary permissive-nominal sets, see Definition 2.176.

Examples of name sorts are ‘variable symbols’, ‘channel names’, ‘thread iden-
tifiers’, or ‘memory locations’. Name sorts ν are populated by the atoms we fixed
in Definition 2.2 and which we used to build permutations and permissive-nominal
sets.

Remark 2.41. (α, . . . ,α) is a product sort and behaves as expected.
[ν ]α is an atoms-abstraction sort; this is different. The behaviour of a term of

sort [ν ]α corresponds to ‘α-abstract a name of sort ν in a term of sort α’. This
is binding without functions: we will use atoms-abstractions (Definition 2.30) to
populate atoms-abstraction sorts.

Remark 2.42. In Definition 2.39 we insist that a name sort ν is a natural number;
this is not necessary but it makes it easier for us to identify name sorts with sets of
atoms from Definition 2.2, which are also indexed by numbers.

Definition 2.43. A (nominal) term-signature over a sort-signature (A,B) is a
tuple (C,X ,F ,ar) where:

• C is a permissive-nominal set of constants.
• X is a strongly supported (Definition 2.34) permissive-nominal set of un-

knowns.
• F is a set of equivariant term-formers.
• ar assigns

– to each constant C ∈ C a base sort τ which may we write sort(C),
– to each unknown X ∈ X a sort α which we may write sort(X), and
– to each f ∈ F a term-former arity (α)τ , where

α and τ are in the sort-language determined by (A,B).
A (nominal terms) signature Σ is then a tuple (A,B,C,X ,F ,ar).
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The support supp(X) of an unknown X ∈ X is intuitively the atoms that may
occur free in a term we substitute for that unknown, and A \ supp(X) is the atoms
which may not occur free. See Proposition 2.64.

Notation 2.44. We may write ((α1, . . . ,αn))τ just as (α1, . . . ,αn)τ .
We write f : (α)τ for ar(f) = (α)τ and similarly we write P : α for ar(P) = α .

Example 2.45. Here are some examples of suitable X .

1. For each sort α and permission set S choose a disjoint countably infinite set of
unknown symbols XS

α , YSα , . . . Define π·XSα = {(π ′,XSα) | ∀a∈S.π(a) = π ′(a)}.
Let X = {π·XS

α | all XS
α ,π} with permutation action π·(π ′·XS

α) = (π ◦ π ′)·XS
α .

Define ar(π·XS
α) = α .

Essentially this X was used in Dowek et al. (2010).
2. For each sort α choose a disjoint countably infinite set of unknown symbols

Xα , Yα , . . . Define π·Xα = {(π ′,Xα) | ∀a∈A< .π(a) = π ′(a)}. Let X = {π·Xα |
all Xα ,π} with permutation action π·(π ′·Xα) = (π ◦π ′)·Xα . Define ar(π·Xα) =
α .

3. Take X = (α,(a0,a1,a2, . . .)) where {ai | i ∈ N} is a permission set and let X
be the set of all possible X . Give this the pointwise permutation action π·X =
(α,(π(a0),π(a1), . . .)) and define ar(X) = α .

This X is mathematically simple, eliminating the need to take quotients over
π .

4. Take X = {0,1,2, . . .} with the trivial action π·x = x, so every x ∈ X has
supp(x) = ∅. This example illustrates that our framework is general enough to
include the possibility of unknowns ranging over closed elements (a possibility
also mooted in (Fernández and Gabbay 2007, Section 9.2)). By adding further
structure to X , further possibilities can be explored. See also Gabbay (2011c)
and Gabbay (2012a).

In all cases it can be verified that X is strongly supported.

Remark 2.46. In the case that X the set of unknowns is as described in parts 1
or 2 of Example 2.45, orb(X) (Definition 2.28) may be identified with XS

α or Xα
respectively.

The X of part 1 above may be equivalent to that of X of part 2, if there exists π ∈
P bijecting S with S \{a} for a ∈ S. This is a shift-permutation; see Definition 2.79
and subsequent discussion.

For the benefit of the reader familiar with ‘vanilla’ nominal terms as used e.g. in
Urban et al. (2004), Fernández and Gabbay (2007), Gabbay and Mathijssen (2009),
Fig. 2.1 gives a cheat sheet suggesting how concepts in those papers map to the
‘permissive’ context.

Example 2.47. A nominal terms signature for the λ -calculus would have one name
sort ν , one base sort τ , and term-formers lam : ([ν ]τ)τ , app : (τ ,τ)τ , and var : (ν)τ .
The set of constants is empty, and for unknowns we can consider Example 2.45.
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Vanilla Permissive

X Unknown with permission set A<

a#X a �∈ supp(X)

a#r a �∈ fa(r)

∇ � r→ s or Δ � r = s r→ s or r = s

Extend freshness context shift-permutation (approx)

Finite support Small support

Fig. 2.1 Cheat sheet relating ‘vanilla’ nominal terms concepts with ‘permissive’ ones

Usually we assume ‘plenty’ of variable symbols. Definition 2.48 makes that
formal:

Definition 2.48. Say that a signature Σ = (A,B,C,X ,F ,ar) has enough un-
knowns when for every sort α in (A,B) and every permission set S, the set
{orb(X) | X ∈ X , sort(X) = α, supp(X) = S} is infinite.

All the examples in Example 2.45 have enough unknowns.

2.2.2.2 Terms

Definition 2.49. For each signature Σ= (A,B,C,X ,F ,ar) (Definition 2.43) define
(permissive-nominal) terms over Σ by:

(a∈Aν , ν∈A)
a : ν

(sort(C) = τ)

C : τ

(sort(X) = α)

X : α

r : α (ar(f) = (α)τ)

f(r) : τ

r1 : α1 . . . rn : αn

(r1, . . . ,rn) : (α1, . . . ,αn)

r : α (a∈Aν , ν∈A)
[a]r : [ν ]α

Notation 2.50. We may write f((r1, . . . ,rn)) as f(r1, . . . ,rn).

Remark 2.51. Definition 2.49 is nominal abstract syntax: terms come pre-
quotiented by α-equivalence by construction by virtue of our use of atoms-
abstraction [a]r. That is, if a ∈ Aν and r : α then [a]r is not a pair (a,r), it is a
set {(a,r)}∪{(b,(b a)·r) | b ∈ Aν \ supp(r)} (Definition 2.30).

Example 2.52. Recall the signature for the λ -calculus from Example 2.47. In that
signature we can form terms as illustrated in the following table, where a : ν and
X : τ:
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a : ν This is not a λ -term.

var(a) : τ If we want an atom to behave like a λ -term
variable, we use var to ‘inject’ it into τ . This
corresponds to ‘x’.

[a]a : [ν ]ν An atoms-abstraction. This is not a λ -term.

[a]var(a) : [ν ]τ An atoms-abstraction of a λ -term. This is not a
λ -term.

lam([a]var(a)) : τ This corresponds to ‘λx.x’.

lam([a]app(X ,var(a))) : τ An open nominal term. This corresponds to
‘λx.tx, for some t’. Depending on whether a �∈
supp(X), we may add a side-condition ‘where x
is not free in t’.

Lemma 2.53. Support and the permutation action are characterised on terms r as
follows:

supp(a) = {a} supp(f(r)) = supp(r)
supp(C) = supp(C) supp((r1, . . . ,rn)) =

⋃
1≤i≤n supp(ri)

supp(X) = supp(X) supp([a]r) = supp(r)\{a}

π·a = π(a) π·f(r) = f(π·r)
π·C = π·C π·(r1, . . . ,rn) = (π·r1, . . . ,π·rn)

π·X = π·X π·[a]r = [π(a)]π·r

Proof. By facts of the permutation action and Lemma 2.33. �
Remark 2.54. Lemma 2.53 is important because it verifies that ‘support of r’
coincides with the usual definition of ‘free variables (atoms) of r’. This is false
of nominal terms; for instance the support of the structure [a]X as constructed in
Urban et al. (2004) is {a}, and that of (a b)·X is {a,b}.

What makes Lemma 2.53 work is the very specific way in which we constructed
our permissive-nominal terms syntax, so that it coincides with the nominal abstract
syntax of Gabbay and Pitts (2001). In this sense, what Lemma 2.53 expresses is a
unification (no pun intended) of the mathematics of Gabbay and Pitts (2001) and
Urban et al. (2004).

In Lemma 2.53 the clauses for C and X are uninformative, of course. This is
because support and the permutation action are determined by the choice of C and
X . If we assume further internal structure of C ∈ C or X ∈ X then we can be more
specific: for instance in the case of part 1 of Example 2.45, fa(π·XS) = {π(a) |
a ∈ S}.
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Because of Lemma 2.53, we are entitled to use the following notation:

Notation 2.55. In the case of syntax r, we may write fa(r) for supp(r) and call
this the free atoms of r.

Lemma 2.56. fa(π·r) = π·fa(r).
Proof. By a routine induction on r. �
Lemma 2.57. If π(a) = π ′(a) for all a ∈ fa(r) then π·r = π ′·r. The reverse impli-
cation also holds, provided that all constant symbols in r are strongly supported.

Proof. The first part is immediate from Notation 2.55 and the definition of support
in Definition 2.13.

The reverse implication is by a nominal abstract syntax induction on r. For the
case of r = [a]r′ we α-convert a to be fresh so that a �∈ nontriv(π)∪nontriv(π ′); by
assumption 3 in Definition 2.6 we can do this. We then use part 2 of Lemma 2.31.
The case of r = X ∈ X uses the assumption of strong support in Definition 2.43.7 �

2.2.2.3 Free Unknowns of a Term

Remark 2.58. Defining a notion of ‘the free unknowns of r’ is not entirely evident.
Consider for example [a]X where a ∈ supp(X). If ‘X appears in [a]X’ is true then

so is ‘(b a)·X appears in [a]X’ for any b �∈ supp(X), since [a]X = [b](b a)·X . We
deal with this in Definition 2.59 using permutation orbits from Definition 2.28; we
simply quotient out all permutations. We take a more refined look at this later in
Remark 2.93.

Definition 2.59. Define (free) unknowns fU(r) by:

fU(a) = ∅ fU(f(r)) = fU(r)
fU(C) = ∅ fU((r1, . . . ,rn)) =

⋃
i fU(ri)

fU(X) = {orb(X)} fU([a]r) = fU(r)

By abuse of notation we write X ∈ fU(r) for orb(X) ∈ fU(r) and X �∈ fU(r) for
orb(X) �∈ fU(r), and so forth.

7Details of how induction on nominal abstract syntax allows us to α-convert and make freshness
assumptions, are the topic of Gabbay (2011b). A less fancy proof of both implications by a standard
induction—so not this new-fangled nominal nonsense—on terms not quotiented by α-equivalence,
is in Appendix A of Dowek et al. (2010), proof of Lemma 4.15 on page 50. We leave it to the reader
to judge which is the nicer proof.
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Lemma 2.60. fU(r) is well-defined.

Proof. Using Lemmas 2.29 and 2.32. �
Notation 2.61. Call a term r ground when fU(r) =∅. Otherwise, call r open.

2.2.2.4 Substitutions

Remark 2.62. Substitutions are of course how unknowns ‘stand for’ terms. Some-
what later we will develop a denotational theory for nominal terms, and so
valuations for unknowns will appear, in Definition 2.178. Between now and then,
substitutions are king.

The permissive-nominal framework we work with allows us an elegant
definition:

Definition 2.63. Suppose Σ is a signature. A substitution θ in Σ is an equivariant
function from X to terms in Σ such that sort(θ(X)) = sort(X) always.
θ will range over substitutions.
Write id for the identity substitution mapping X to X always. It will always be
clear whether id means the identity substitution or permutation.

The reader familiar with nominal terms will expect a ‘freshness’ condition
on substitutions corresponding to ‘∇′ � ∇θ ’, as in for example Equation (11) or
Lemma 2.14 of Urban et al. (2004), or ‘fa(θ(X))⊆ supp(X)’ as in Definition 3.1 of
Dowek et al. (2010). This follows immediately from equivariance:

Proposition 2.64. If θ is a substitution then ∀X∈X .fa(θ(X))⊆ supp(X).

Proof. Direct from Lemma 2.21. �
Putting Propositions 2.64 and 2.38 together with a concreteX recovers the notion

of substitution used in Dowek et al. (2010):

Lemma 2.65. If X is equal to example 1 of Example 2.45 then the construction
in Definition 2.37 describes a 1–1 correspondence between substitutions and maps
from unknowns XS

α to terms t : α such that fa(t)⊆ S.

Definition 2.66. Suppose fa(t) ⊆ supp(X) and sort(t) = sort(X). Write [X :=t] for
the atomic substitution equivariantly extending the assignment X �→ t, so that

[X :=t](π·X) = π·t and
[X :=t](Y ) = Y for all other Y.

By Proposition 2.38 we have:

Lemma 2.67. Definition 2.66 is well-defined. That is, if π·X = π ′·X then π·t = π ′·t.
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Remark 2.68. The ‘moderated unknown’ π·X in Definition 2.66 is an artefact of
our writing [X :=t] instead of a mathematically equal [π·X :=π·t] for some other π .

Since θ is equivariant its behaviour on π·X is already determined by its behaviour
on X and so we could unambiguously specify [X :=t] succinctly as [X :=t](X) = t and
[X :=t](Y ) = Y .

Definition 2.69. Define a substitution action on terms by:

aθ = a f(r)θ = f(rθ)
Cθ = C (r1, . . . ,rn)θ = (r1θ , . . . ,rnθ)
Xθ = θ(X) ([a]r)θ = [a](rθ)

Note that Xθ refers to θ acting on X as a term whereas θ(X) refers the value of the
function θ at X . The substitution action is well-defined by Lemmas 2.32 and 2.33.

Remark 2.70. Famously, the nominal terms substitution is capturing (Urban et al.
2004, Definition 2.13). We spell out how this works in our permissive-nominal
context: Suppose supp(X) is equal to a permission set S and a ∈ S and b �∈ S (where
we assume appropriate sorts). Then:

• ([a]X)[X :=a] = [a]a. The a in the substitution [X :=a] has been captured by the
[a]X .

• ([b]X)[X :=a] = [b]a.
• It is impossible to even ask what ([b]X)[X :=b] is equal to because [X :=b] is not

even a substitution, since b �∈ S. So b �∈ S cannot be captured by a substitution
[X :=b], because that substitution does not exist. This is no ad hoc restriction: by
Proposition 2.64 it cannot exist.

• Also, [b](b a)·X = [a]X . By construction in Definition 2.66

([b](b a)·X)[X :=a] = [b](b a)·a = [b]b = [a]a.

Also [X :=a] = [(b a)·X :=b] and ([b](b a)·X)[(b a)·X :=b] = [b]b.
That is, the choice of representative of [a]X and [X :=a] does not matter for

capture to occur.

It is interesting to note that in our setting, [X :=a] is equivariant and that a �∈
supp([a]X). If a is fresh for both [X :=a] and [a]X , how can it be captured?

What allows a to get captured is the strong support property of X . Because X is
strongly supported, we can think of it as ‘containing’ a list of its supporting atoms
in some order, so that the a in [X :=a] is bound by supp(X) but in being bound it
points to a ‘position’ in X .

Viewed from this interesting perspective, the nominal substitution action is
not capturing at all: it is simply a compact way to present an ‘infinite raising’
(terminology from higher-order logic), or a de Bruijn index.



100 M.J. Gabbay

Lemma 2.71. π·(rθ)=(π·r)θ .

Proof. By a routine induction on r using equivariance. �
Lemma 2.72. fa(rθ)⊆ fa(r).

Proof. From Lemmas 2.21 and 2.71. �
Lemma 2.73. rθ = rθ ′ if and only if ∀X∈fU(r).θ(X) = θ ′(X).

Proof. By a routine induction on r. We consider two cases:

• The case [a]r. Suppose θ(X) = θ ′(X) for every X ∈ fU([a]r). fU([a]r) = fU(r)
so by inductive hypothesis rθ = rθ ′. The result follows from the definitions.

The reverse implication is similar.
• The case X. Suppose θ(π·X) = θ ′(π·X) for all π . Then taking π = id we have

Xθ = θ(X) = θ ′(X) = Xθ ′.
Conversely if Xθ = Xθ ′ then using equivariance (Definition 2.63) θ(π·X) =

θ ′(π·X) for all π . �
Remark 2.74. Recall from Definition 2.59 that we write X ∈ fU(r) for orb(X) ∈
fU(r). It might seem that the condition ∀X∈fU(r).θ(X) = θ ′(X) in Lemma 2.73
would require checking θ(X) = θ ′(X) for infinitely many X provided that fU(r) �=
∅. In fact, this is not the case: by equivariance of θ , we only need to check equality
for one representative X of each permutation orbit: X ∈ orb(X) ∈ fU(r).

2.2.2.5 Composition and Invertibility of Substitutions

Definition 2.75. Define composition of substitutions θ1 ◦θ2 by

(θ1 ◦θ2)(X) = (θ1(X))θ2.

Lemma 2.76. (rθ)θ ′ = r(θ ◦θ ′).

Proof. By induction on r. �
Definition 2.77. Call θ invertible when there exists θ -1 such that θ ◦θ -1 =
θ -1 ◦θ = id.

Lemma 2.78. θ is invertible if and only if θ is a bijection on X the set of all
unknowns. Furthermore, if θ is invertible then supp(θ(X)) = supp(X) always.

Proof. Substitution cannot make syntax smaller, or (by Lemma 2.72) make free
atoms larger. �
So an invertible θ must biject unknowns of a particular sort and permission set
with other unknowns of that same sort and permission set. So, like atoms, we can
rename unknowns to ‘be fresh’ (provided we have given ourselves enough of them).
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Invertible substitutions will be useful later, and they are also one manifestation of a
more general framework of two-level nominal sets Gabbay (2011c).

2.2.2.6 Shift-Permutations

The reader may be familiar with nominal freshness conditions a#X from Urban et al.
(2004). In that paper, a#X indicated that X should be substituted only for terms for
which a is fresh.

In Urban et al. (2004), Fernández and Gabbay (2007), we might have to extend
a freshness context in order to give ourselves more fresh atoms. This is what rules
like (Fr) from (Gabbay and Mathijssen 2008c, Figure 2) or (fr) from (Gabbay and
Mathijssen 2009, Figure 2) do; see also Fernández and Gabbay (2010) where the
issue of extending nominal freshness contexts is made very explicit.

In principle, permission sets guarantee an infinite supply of fresh atoms, so the
problem of extending a freshness context should not arise. But this may rely on
oracular knowledge of what the permission set should be, which we might prefer
not to assume. The choice of nominal permutation group P gives us the power to
implicitly parameterise over this decision.

Suppose we have some X such that a ∈ supp(X) and we perhaps we are solving
a unification problem and the information that a should be fresh for X has just been
revealed by an algorithm; so we want to remove a from the permission set of X .
This arises in the unification algorithm of Sect. 2.3.1.

Suppose alternatively we would like to make the permission set larger, e.g. if we
know ∀X .φ and want to deduce φ [X :=t] where fa(t) �⊆ supp(X), or we have a rewrite
rule X→X and want to deduce t→ t where again fa(t) �⊆ supp(X). This arises in the
nominal rewriting, algebra and permissive-nominal logic which we construct later.

This is where shift-permutations can help.

Definition 2.79. Call a permutation δ ∈P a shift-permutation when there exists
a permission set S and atom a ∈ S such that S\{a}= δ ·S.
Say that a nominal permutation group P has shift-permutations when for every
permission set S and atom a∈A there exists a permutation π ∈ P such that π·S =
S\{a}.

Remark 2.80. Another way to read Definition 2.79 is that P has shift-permutations
when, if S is a permission set and A is finite, then S\A and S∪A are permission sets.
Stronger versions allowing infinite A are certainly imaginable.

Example 2.81. The nominal permutation group in part 2 of Example 2.7 has shift-
permutations.

δi bijects A
<

i with A
<

i \ { f (0)}. Using swappings we can now generate a π to
biject any permission set S with S\{a} for a∈ S. We give the concrete constructions
below, culminating with Lemma 2.88.
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For the rest of this section we work concretely with the nominal permutation
group from part 2 of Example 2.7; the reader only interested in the high-level
picture can skip this. Recall the bijections fi from integers to atoms from part 2 of
Example 2.7. For simplicity drop the subscript i and consider just one set of atoms.

Notation 2.82. By abuse of notation write 0 for the atom f (0).

Definition 2.83. 1. If a ∈ A< then define δ -a by:

δ -a = (a0)◦δ ◦ (a0)

2. If b ∈ A> then for some fixed but arbitrary choice of c ∈ A> such that δ (c) = c
(and so also c �∈ A< ), define δ +b by:

δ+b = (b0)◦ (cb)◦δ -1 ◦ (cb)◦ (b0)

Example 2.84. We illustrate δ -a and δ +b where a = f (-2) and b = f (3) and where
we take c = b:

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (5) f (4) f (5) f (6)

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (3) f (4) f (5) f (6)

We also consider the slightly more complex example of δ +d where d = f (4), and
again we take c = f (3). We do this in three steps, where we illustrate δ -1, then
(c d)◦δ -1 ◦ (c d), and finally δ +d :

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (3) f (4) f (5) f (6)

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (3) f (4) f (5) f (6)

f (-6) f (-5) f (-4) f (-3) f (-2) f (-1) f (0) f (1) f (2) f (3) f (4) f (5) f (6)

Lemma 2.85. 1. If a ∈ A< then δ -a bijects A< with A< \{a}.
2. If b ∈ A> then δ+b bijects A< with A< ∪{b}.
Proof. For the first part, suppose a∈A< . Then A< =(a0)·A< . We reason as follows:

δ -a·((a0)·A< ) = ((a0)◦δ ◦ (a0)◦ (a0))·A<

= ((a0)◦δ )·A< = (a0)·(A<\{0}) = A<\{a}

Now suppose b ∈ A> . It is easier to work with (δ +b)-1, to keep the parallel with
the previous case. So A< ∪{b}= ((b0)·A< )∪{0}. We reason as follows:
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(δ +b)-1·(((b0)·A< )∪{0}) = ((b0)◦ (cb)◦δ ◦ (cb)◦ (b0))·(((b0)·A< )∪{0})
Def. 2.83

=
(
((b0)◦ (cb)◦δ ◦ (cb)◦ (b0))·((b0)·A< )

)
∪{0}

δ (c)=c

=
(
((b0)◦ (cb)◦δ ◦ (cb))·A<

)
∪{0}

Fact

=
(
((b0)◦ (cb)◦δ )·A<

)
∪{0}

b,c �∈ A<

=
(
((b0)◦ (cb))·(A<\{0})

)
∪{0}

δ ·A<=A<\{0}
= (A<\{0})∪{0}

b,c �∈ A<\{0}
= A< �

Recall from Definition 2.10 that each permission set S has the form π·A< for
some permutation π .

Definition 2.86. For each S make some choice of permutation πS such that S =
π -1

S ·A< .8

Definition 2.87. Suppose S is a permission set and a∈ S and b �∈ S. Then we define:

δS-a = π -1
S ◦δ

-πS(a) ◦πS δS+b = π -1
S ◦δ

+πS(b) ◦πS

The concrete details of the construction are only interesting insofar as they give
us Lemma 2.88. Other permutations are possible, but we only need that one exists.

Lemma 2.88.

1. δS-a bijects S with S\{a}.
2. δS+b bijects S with S∪{b}.
Proof. From Lemma 2.85. �
Definition 2.89. Suppose S is a permission set and supp(X) = S. Suppose D is
a finite list of atoms d1, . . . ,dn and E is a finite list of atoms e1, . . . ,en. Suppose
{d1, . . . ,dn} ⊆ S and {e1, . . . ,en}∩S =∅. Then define δS-D and δS+E , and X-D and
X+E by:

8Taking the inverse here saves writing -1 quite so many times in Definition 2.87, and is harmless
since permutations are invertible.
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δS-[] = id
δS-[d] = δS-d

δS-d,D = δ(S\{d})-D ◦δS-d

X-D = δsupp(X)-D·X

δS+[] = id
δS+[e] = δS+e

δS+e,E = δ(S∪{e})+E ◦δS+e

X+E = δsupp(X)+E ·X

Lemma 2.90. Suppose S is a permission set. Suppose D and E are finite lists of
atoms d1, . . . ,dn and e1, . . . ,en. Suppose {d1, . . . ,dn} ⊆ S and {e1, . . . ,en}∩S =∅.

Then δS-D bijects S with S\{d1, . . . ,dn} and δS+E bijects S with S∪{e1, . . . ,en}.
Proof. Using Lemma 2.88. �
Corollary 2.91. S is a permission set if and only if S = (A<\A)∪B for some finite
A⊆ A< and B⊆ A> .

Proof. If S is a permission set then by Definition 2.10 S = π·A< for some π and the
result follows by a routine induction on the generators of π (swapping and δ ; see
part 2 of Example 2.7).

Conversely consider S = (A<\A)∪B. Let D be the atoms in A in some order, and
E be the atoms in B in some order. Then we apply δS-D and then δ(S\A)+E and use
Lemma 2.90. �
Remark 2.92. The reader may be familiar with the de Bruijn shift function ↑ (Abadi
et al. 1991, Section 2.2). This maps N to N\{0} by mapping j ∈ N to j + 1 ∈ N,
and in doing so it ‘creates a fresh number’ 0. The reader familiar with presheaf
techniques may know of a functor δ and arrow up, which work the same way, as
exemplified in (Fiore et al. 1999, Section 1).

δi from part 2 of Example 2.7 is in the same spirit. It shifts ‘down’ instead of
‘up’, but δ -1

i shifts ‘up’.
Note that δ is invertible (↑ and up are not). This is consistent with the general

preference of nominal techniques for using permutations where possible.

2.2.2.7 Occurrences

Remark 2.93. As discussed in Remark 2.58 we have to be careful if we wish to say
‘X appears in r’; this might not quite mean what we think it does.

For example if ‘X appears in [a]X’ where a∈ supp(X) then also ‘(b a)·X appears
in [a]X’ for any b �∈ supp(X). We dealt with this in Definition 2.59 by quotienting
out all permutations.

But this is a little drastic. For instance, ‘(b a)·X appears in [a]X’ is not true for
b ∈ supp(X); it is not the case that if ‘X appears in r’ then ‘π·X appears in r’ for
any π .

We did not need to quotient out all permutations—only some of them—and so
returning orb(X) in Definition 2.59 throws out more information than necessary.

Definitions 2.94 and 2.95 develop a more refined notion of occurrence, based on
an intuition of ‘X appears in r under a list of abstractions D’. This will be useful later.
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Definition 2.94. D will range over finite lists of distinct atoms. A (level 2)
occurrence is a term of the form [D]X where []X is X and [a,D]X is [a][D]X .

Definition 2.95. Define the occurrences in r inductively by:

occ(a) = ∅ occ(f(r)) = occ(r)
occ(C) = ∅ occ((r1, . . . ,rn)) =

⋃
occ(ri)

occ(X) = X occ([a]r) = {[a]x | x∈occ(r)}

Example 2.96.

• X occurs in X .
• [a]X occurs in [a]X and also in [a](X ,Y ); so does [a]Y . X does not occur in [a]X

or [a](X ,Y ).
• [a][b]X and [a][a]X occur in [a]([b]X , [a]X).

We write occurrences as [D]X for D a finite list of distinct atoms. Note that [a][a]X
is an occurrence since it is equal to [a][b](b a)·X where b �∈ supp(X). This is an
equality, not an equivalence imposed on terms after they are constructed, because of
our use of atoms-abstraction (Definition 2.30) in syntax (Definition 2.49).

2.3 Rewrites, Equations, and Algebras

2.3.1 Unification

We want to write rewrite rules and equality axioms using nominal terms. In order to
do this, we have to unify nominal terms (answer the question: “given r and s what
substitutions θ make them equal?”). Unification makes unknowns ‘come alive’ and
represent unknown terms.

Therefore, we now create a nominal unification algorithm. One notable property
of nominal unification is that it has most general (principal) unifiers Theorem 2.118.
Contrast this with higher-order unification, which does not (Dowek 2001, Sec-
tion 4). This is one reason we say that the nominal approach to names and binding
has a ‘first-order’ flavour.

The algorithm we use follows the spirit of Urban et al. (2004) but the de-
sign is different. In Urban et al. (2004) a solution to [a]X ?= [b]Y would be
(b#X, [Y:=(b a)·X]); that is, the unification algorithm returns a pair of some freshness
side-conditions and some equalities.9

9We write typewriter font to avoid confusion between the symbols used in Urban et al. (2004)
(which have no support) and the elements X ∈ X used in this paper (which do have support). To
see how to travel between these two worlds see part 2 of Example 2.45, or Dowek et al. (2010).
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Here, solutions are equalities only, without freshness conditions. The extra power
resides in the notion of an shift-permutation (Definition 2.79).

A solution to [a]X = [b]Y where b ∈ supp(X) = supp(Y ) would be

[X :=δ ′·X , Y :=((b a)◦δ ′)·X ]

where δ ′ bijects supp(X) with supp(X) \ {b} (and by this bijection ‘internally
freshens’ X with respect to b).

In another design (Dowek et al. 2010, Section 5) we use permission sets
and fresh unknowns; a solution to [a]X = [b]Y where b ∈ supp(X) = supp(Y ) is
[X :=Z, Y :=(b a)·Z] where supp(Z) = supp(X)\{b}. Generating Z fresh requires us
to solve problems in a context of ‘known unknowns’ V . This introduces a notion
of state and sequentiality into the algorithm of Dowek et al. (2010) which we
avoid here.

Nothing forces us to feed the unification algorithm syntax with shift-
permutations, even if the solutions it returns might mention them; similarly in
Urban et al. (2004) we may obtain a solution with freshness side-conditions
to a unification problem with only equalities. So use of shift-permutation in
Definition 2.97 should not be read as a commitment to using them everywhere
(though we do note empirically that shift seems to be useful elsewhere too).

The main definition of this section is Definition 2.104. The main result is
Theorem 2.118.

Definition 2.97. Throughout this Section we fix some signature Σ and we work
with syntax over Σ. We assume a nominal permutation group P with shift-
permutations and a set of unknowns X such that every unknown is supported by
a permission set (see e.g. part 2 of Example 2.45).

2.3.1.1 The Unification Algorithm

Definition 2.98. A (unification) equality is a unordered pair r ?= s (so r ?= s is
identical to s ?= r) such that:

1. sort(r) = sort(s).
2. If [D]X and [D′]π·X are both in occ(r)∪occ(s) then π is finite.

So we exclude an equality like X ?= δ ·X , where δ is a shift permutation and
nontriv(δ )∩ supp(X) is not finite.

A (unification) freshness is an ordered pair a#?r.
Let ef range over equalities or freshnesses and define efθ by:

• (r ?= s)θ = (rθ ?= sθ).
• (a#?r)θ = (a#?(rθ)).
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( ?=a) a ?= a, Pr =⇒ Pr
( ?=C) C ?=C, Pr =⇒ Pr
( ?=f) f(r) ?= f(s), Pr =⇒ r ?= s, Pr
( ?=()) (r1, . . . ,rn)

?= (s1, . . . ,sn), Pr=⇒ r1
?= s1, . . . ,rn

?= sn,Pr
( ?=[]) [a]r ?= [a]s, Pr =⇒ r ?= s, Pr
( ?=X) X ?= π·X , Pr =⇒ a1#?X , . . . ,an#?X ,Pr

({a1, . . . ,an}= nontriv(π)∩ supp(X))

(F) r ?= X , Pr =⇒ a#?r, r ?=X , Pr
(a ∈ fa(r)\supp(X))

(F#) a#?r, Pr =⇒ Pr (a �∈ fa(r))
(Ff) a#?f(r), Pr =⇒ a#?r,Pr
(F()) a#?(r1, . . . ,rn), Pr =⇒ a#?r1, . . . ,a#?rn,Pr
(F[]) a#?[b]r,Pr =⇒ a#?r, Pr

(IE) r ?= X , Pr
[X :=r]
=⇒ Pr[X :=r]

(X �∈fU(r), fa(r)⊆supp(X))

(IF) a#?X ,Pr
[X :=δX-a·X ]

=⇒ Pr[X :=δX-a·X ]

Fig. 2.2 Simplification rules for problems

A nominal unification problem Pr is a finite list ef1, . . . ,efn.
We (ab)use standard sets notation and write ef ∈ Pr as shorthand for ‘ef appears

in the list Pr’.

Remark 2.99. Condition 2 in Definition 2.98 protects ( ?=X) in Fig. 2.2 from an
‘infinite freshness explosion’, if nontriv(π)∩ supp(X) is not finite. This condition
exists implicitly in Urban et al. (2004), in the sense that all permutations there are
finite. However, condition 2 is not only computationally motivated. Given constants
C and D with supp(C) = ∅ = supp(D), X ?= δ ·X may have solutions C and D but
have no principal solution. We discuss the implications of this condition to nominal
rewriting, at the end of Sect. 2.3.3.

Definition 2.100. If Pr = ef1, . . . ,efn is a problem then define Prθ by:

Prθ = ef1θ , . . . ,efnθ

Say θ solves Pr and call θ a solution to Pr when

rθ = sθ for every r ?= s ∈ Pr, and
a �∈ fa(rθ) for every a#?r ∈ Pr.

Write Sol(Pr) for the set of solutions to Pr and call Pr solvable when Sol(Pr) is
non-empty.
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Recall the definition of θ ◦θ ′ from Definition 2.75.

Lemma 2.101. θ ◦θ ′ ∈ Sol(Pr) if and only if θ ′ ∈ Sol(Prθ).

Proof. By unpacking Definition 2.100 and using Lemma 2.76. �
Definition 2.102. Define a simplification rewrite relation Pr =⇒Pr′ on unification
problems by the rules in Fig. 2.2.

We call rules (IF) and (IE) instantiating rules. We call all the other rules non-
instantiating rules.

In (IF) δX-a is some permutation bijecting supp(X) with supp(X)\{a}. We can
do this because we assumed shift-permutations in Definition 2.97.10

Write =⇒∗ for the transitive and reflexive closure of =⇒.

Remark 2.103. Compare Fig. 2.2 with Figure 3 of Urban et al. (2004). Note of
( ?=[]) that we do not consider the case [a]r ?= [b]s. This is because α-equivalence is
handled automatically by nominal abstract syntax, specifically by Definition 2.30.
So α-renaming is pushed into the background (just as is usually the case for first-
order syntax) and these rules are somewhat higher-level than those of Urban et al.
(2004).

We also do not require a rule a#?[a]r, Pr =⇒ Pr because the abstracted atom
in [a]r is α-convertible; more formally, [a]r = [b](b a)·r for some/any fresh b (so
b �∈ fa(r)).

Finally, in ( ?=X) we do not need to write π·X ?= π ′·X (though we could) because
unknowns are just a strongly-supported nominal set. We know that nontriv(π)∩
supp(X) is finite by a routine argument based on condition 2 of Definition 2.98. It
is not hard to check that the instantiating rules (IF) and (IE) do indeed preserve
these conditions—(IF) involves a shift permutation, but in a manner that is applied
uniformly to the whole problem.

Definition 2.104. If Pr is a problem, define a unification algorithm by:

1. Rewrite Pr using the rules of Definition 2.102 where possible, with top-down
precedence (so apply ( ?=a) before ( ?=f), and so on).

2. If we reduce to ∅ then we succeed and return θ where θ is the composition
of all the substitutions labelling rewrites (we take θ = id if there are none).
Otherwise, we fail.

10The specific choice does not matter. Intuitively this is because permutations are invertible so any
one choice and be undone and redone at will. A more formal statement of this is Theorem 2.112.
For an example of a shift-permutation concretely constructed, see Definition 2.87.

This algorithm generates shifts just like in Urban et al. (2004) we generated freshness
conditions, and for the same reason.
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Remark 2.105. Note in Definition 2.104 that we apply each rule to the head of the
list Pr. This is to prevent ‘unfair’ looping, e.g. repeatedly applying (F) to some
equality r ?= X wherever it appears in Pr.

Note also that the rule (F#) is equivalent—in the presence of the other rules—to
three rules as follows:

(Fa) a#?b, Pr =⇒ Pr
(FC) a#?C, Pr =⇒ Pr (a �∈ supp(C))

(FX) a#?X ,Pr =⇒ Pr (a �∈ supp(X))

Proposition 2.106. The algorithm of Definition 2.104 always terminates.

Proof. It is not hard to generate an inductive quantity which is reduced by the
reductions in Fig. 2.2. �

2.3.1.2 Examples of the Algorithm

We assume the permutation group from part 2 of Example 2.7 and we recall the
definition of X-D from Definition 2.87.

Example one (succeeds).

Suppose a,c ∈ A< and d �∈ A< . Take supp(X) = A< and suppose a term-former g.
We apply the algorithm to {g([a]X , [a]a) ?= g([d]c, [d]d)}:

g([a]X , [a]a) ?= g([d]c, [d]d) =⇒ ( ?=g),( ?=())

[a]X ?= [d]c , [a]a ?= [d]d =⇒ ( ?=[]), [a]X = [d](d a)·X

(d a)·X ?= c , [a]a ?= [d]d
[X :=c]
=⇒ (IE)

[a]a ?= [d]d =⇒ ( ?=[]), [a]a = [d]d

d ?= d =⇒ ( ?=a)

∅ Success, with [X :=c]

Example two (succeeds).

Suppose a,c∈A< and b,d �∈A< . Take supp(X) =A< ∪{b,d}, supp(Y ) =A< ∪{ f},
and supp(Z) = A< . Suppose a term-former f.
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We apply the algorithm to {f([a]b,Z,X) ?= f([d]b, [a]a,Y )}:

f([a]b,Z,X) ?= f([d]b, [a]a,Y ) =⇒ ( ?=f),( ?=())

[a]b ?= [d]b , Z ?= [a]a, X ?= Y =⇒ ( ?=[]), [a]b = [d]b

b ?= b , Z ?= [a]a, X ?= Y =⇒ ( ?=a)

Z ?= [a]a , X ?= Y
[Z:=[a]a]
=⇒ (IE)

X ?= Y =⇒ (F)

b#?X , X ?= Y
[X :=X-b]
=⇒ (IF)

X-b ?= Y =⇒ (F)

d#?X-b , X-b ?= Y
[X-b:=X-b,d]

=⇒ (IF)

X-b,d ?= Y =⇒ (F)

f #?Y , X-b,d ?= Y
[Y :=Y - f ]
=⇒ (IF)

X-b,d ?= Y - f
[Y - f :=X-b,d]

=⇒ (IE)

∅ Success, with [X :=X-b,d, Y :=X-b,d, Z:=[a]a]

Example three (fails).

Take supp(X) = A< . We run the algorithm on {[a][b]X ?= [a]X}:

[a][b]X ?= [a]X =⇒ ( ?=[])

[b]X ?= X Failure

The algorithm fails because the precondition of rule (IE), X �∈ fU([b]X) is not
satisfied.

Example four (succeeds).

Take supp(X) = A< and take a,b ∈ A< . We run the algorithm on {X ?= (a b)·X}:

X ?= (a b)·X =⇒ ( ?=X)

a#?X , b#?X
[X :=X-a]
=⇒ (IF)

b#?X-a
[X-a:=(X-a)-b]

=⇒
∅ Success, with [X :=(X-a)-b]

Later we will prove Theorem 2.118, which tells us that failure here implies that
no solution to the unification problem exists.



2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 111

2.3.1.3 Preservation of Solutions

. . . under non-instantiating rules

Lemma 2.107. If Pr =⇒ Pr′ by a non-instantiating rule (Definition 2.102) then
Sol(Pr) = Sol(Pr′).

Proof. The empty set cannot be simplified, so suppose Pr = r ?=s,Pr′ where the
simplification rule acts on r ?= s. We consider two cases:

• The case ( ?=[]). Suppose Pr = [a]r ?= [a]s,Pr′ and [a]r ?= [a]s,Pr′ =⇒ r ?= s,Pr′

by ( ?=[]). By Definition 2.69 and properties of equality, [a](rθ) = [a](sθ) if and
only if rθ = sθ .

• The case (F()). Suppose Pr = a#?(r1, . . . ,rn),Pr′ and suppose that
a#?(r1, . . . ,rn),Pr′ =⇒ a#?r1, . . . ,a#?rn,Pr′ by (F()). By Definition 2.69 and
Lemma 2.53, a �∈ fa((r1, . . . ,rn)θ) if and only if a �∈ fa(r1θ), . . . , a �∈ fa(rnθ). �

Lemma 2.108. Suppose θ(X) = θ ′(X) for all X ∈ fU(Pr). Then θ ∈ Sol(Pr) if and
only if θ ′ ∈ Sol(Pr).

Proof. From Definition 2.100 it suffices to show that rθ = sθ if and only if rθ ′ =
sθ ′, for every (r ?= s) ∈ Pr, and a �∈ fa(rθ) if and only if a �∈ fa(rθ ′), for every
(a#?r) ∈ Pr. This is immediate using Lemma 2.73. �

. . . under (IE)

Recall from Remark 2.68 the discussion of why we write π·X when we have
chosen a representative element X of an equivalence class of unknowns under
permutations.

Definition 2.109. Write θ−X for the substitution such that

(θ−X)(π·X)= π·X
(θ−X)(Y )= θ(Y ) for all other Y .

In the right circumstances, a substitution θ can be factored as ‘a part of θ that
does not touch X’ and ‘a single substitution for X’:

Theorem 2.110. If Xθ=sθ and X �∈ fU(s) then

θ = [X :=s]◦(θ−X).
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That is:
θ(X)= X([X :=s]◦(θ−X)) and
θ(Y )= Y ([X :=s]◦(θ−X)).

Proof. We reason as follows:

(π·X)([X :=s]◦(θ−X)) = (π·s)(θ−X) Definition 2.69, Lemma 2.76
= (π·s)θ X �∈ fU(s), Lemma 2.73
= (π·X)θ Assumption

Y ([X :=s]◦(θ−X)) = Y (θ−X) Definition 2.69, Lemma 2.76
= Yθ Definition 2.109

�

. . . under (IF)

Definition 2.111. Suppose θ is a substitution. Suppose a ∈ supp(X) and a �∈
fa(θ(X)). Let δX-a be a shift permutation bijecting supp(X) with supp(X)\{a}.

Define a substitution θ[X-a:=X ](X) by:

• (θ[X-a:=X ])(π·X) = (π ◦δ -1
X-a)·θ(X).

• (θ[X-a:=X ])(Y ) = θ(Y ) for all other Y .

It is routine to verify that Definition 2.111 is well-defined and a substitution.

Theorem 2.112. Suppose a ∈ supp(X) and a �∈ fa(θ(X)). Then

θ=[X :=X-a]◦(θ[X-a:=X ]).

That is:
θ(π·X)= ([X :=X-a]◦θ[X-a:=X ])(π·X) and

θ(Y )= ([X :=X-a]◦θ[X-a:=X ])(Y ).

Proof. We unpack definitions:

([X :=X-a]◦(θ[X-a:=X ]))(π·X) = (π·(X-a))θ[X-a:=X ] Definition 2.75
= ((π ◦δX-a)·X)θ[X-a:=X ] Def. X-a
= (π ◦δX-a ◦δ -1

X-a)·X Definition 2.111
= π·X Group action

The result follows. �
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2.3.1.4 Simplification Rewrites Calculate Principal Solutions

Definition 2.113. Write θ1 ≤ θ2 when there exists some θ ′ such that Xθ2=X(θ1 ◦
θ ′) always. Call ≤ the instantiation ordering.

Definition 2.114. A principal (or most general) solution to a problem Pr is a
solution θ ∈ Sol(Pr) such that θ ≤ θ ′ for all other θ ′ ∈ Sol(Pr).

Our main result is Theorem 2.117: the unification algorithm from Defini-
tion 2.104 calculates a principal solution.

Lemma 2.115. If θ1 ≤ θ2 then θ ◦θ1 ≤ θ ◦θ2.

Proof. By Definition 2.113, θ ′ exists such that Xθ2=X(θ1 ◦θ ′) always. Then:

X(θ ◦θ2) = (Xθ)θ2 Lemma 2.76
= (Xθ)(θ1 ◦θ ′) Lemma 2.73
= X((θ ◦θ1)◦θ ′) Lemma 2.76

�
Lemma 2.116.

1. Suppose fa(s)⊆supp(X) and X �∈ fU(s). Write χ=[X :=s]. If Pr
χ

=⇒ Pr′ with (IE)
then θ ∈ Sol(Pr) implies θ−X ∈ Sol(Pr′).

2. Suppose a ∈ supp(X). Write ρ=[X :=X-a]. If Pr
ρ

=⇒ Pr′ with (IF) then θ ∈
Sol(Pr) implies θ[X-a:=X ] ∈ Sol(Pr′).

Proof.

1. Suppose Pr = X ?= s, Pr′′ so that X ?= s, Pr′′
χ

=⇒ Pr′′χ . Now suppose θ ∈
Sol(Pr). By Theorem 2.110 χ ◦(θ−X) ∈ Sol(Pr). By Lemma 2.101, θ−X ∈
Sol(Prχ). It follows that θ−X ∈ Sol(Pr′′χ) as required.

2. Suppose Pr = a#?X , Pr′′ and a∈ supp(X) so that Pr
ρ

=⇒ Prρ . Now suppose θ ∈
Sol(Pr). By Theorem 2.112 ρ ◦θ[X-a:=X ] ∈ Sol(Pr). By Lemma 2.101, θ[X-a:=X ] ∈
Sol(Prρ) as required.

�
Theorem 2.117. If Pr

θ
=⇒∗ ∅ then θ is a principal solution to Pr (Definition 2.114).

Proof. By induction on the path of Pr
θ

=⇒∗ ∅.

• The empty path. So Pr =∅ and θ = id. By Definition 2.113, id ≤ θ ′.
• The non-instantiating case. Suppose

Pr =⇒ Pr′
θ

=⇒∗ ∅
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where Pr =⇒ Pr′ by a non-instantiating rule. By inductive hypothesis θ is a
principal solution of Pr′. It follows from Lemma 2.107 that θ is also a principal
solution of Pr.

• The case (IE). Suppose fa(r) ⊆ supp(X) and X �∈ fU(r). Write χ = [X :=r].
Suppose Pr = r ?=X ,Pr′′ so that

r ?=X , Pr′′
χ

=⇒ Pr′′χ θ ′′
=⇒∗ ∅.

Further, consider any other θ ′ ∈ Sol(Pr).
By Lemma 2.116 (θ ′−X) ∈ Sol(Pr′′χ) and by inductive hypothesis θ ′′ ∈

Sol(Pr′′χ) and θ ′′ ≤ θ ′−X . By Lemma 2.115, χ ◦θ ′′ ≤ χ ◦(θ ′−X). By Theo-
rem 2.110 χ ◦(θ ′−X) = θ ′.

• The case (IF). Suppose a ∈ supp(X). Write ρ = [X :=X-a], so that

Pr
ρ

=⇒ Prρ θ ′′
=⇒∗ ∅,

Further, consider any other θ ′ ∈ Sol(Pr).
By Lemma 2.116, θ ′[X-a:=X ] ∈ Sol(Prρ) and by inductive hypothesis θ ′′ ∈

Sol(Prρ) and θ ′′ ≤ θ ′[X-a:=X ]. By Lemma 2.115, ρ ◦θ ′′ ≤ ρ ◦θ ′[X-a:=X ]. By The-

orem 2.112 ρ ◦θ ′[X-a:=X ] = θ ′.

�
Theorem 2.118 (Correctness of algorithm). Given a problem Pr, if the algorithm
of Definition 2.104 succeeds then it returns a principal solution; if it fails then there
is no solution.

Proof. If the algorithm succeeds we use Theorem 2.117. Otherwise, the algorithm
generates an element of the form f(r) ?= g(s), a ?= b, a#?a, a#?C where a ∈ supp(C),
or X ?= s where X ∈ fU(s) and s is not of the form π·X . By arguments on syntax and
size of syntax, no solution to the reduced problem exists. It follows by Lemma 2.116
that no solution to Pr exists. �
Definition 2.119. Fix terms r and s.

• Call nominal unification the problem of finding a θ to make rθ = sθ .
• Call nominal matching the problem of finding a θ to make rθ = s.

Corollary 2.120. Providing that equality of C (constants), X (unknowns), and
P (permutations) are decidable, nominal unification and nominal matching over
signatures using them are also decidable.

Proof. An algorithm for unification is sketched in Definition 2.104; furthermore by
Theorem 2.118 it calculates a most general θ which represents all other solutions.

For matching, we substitute unknowns in s with fresh (non-equivariant) constants
of the same sorts and permission sets—we extend the signature if we need
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to—and run the unification algorithm. We then replace the constants by the original
unknowns.11 It is not hard to see that this calculates a most general matching
solution. �
Remark 2.121. The matching and unification algorithms might generate solutions
with shift-permutations. If we prefer to eliminate them then—provided that X has
enough unknowns (Definition 2.48)—we may do so by appending an invertible
substitution (Definition 2.77) mapping each shifted δ ·X in the solution to a fresh
unknown Y such that supp(Y ) = δ ·supp(X).

2.3.2 Rewriting

Nominal rewriting was the first logical system designed to study theories (sets of
axioms, i.e. rewrite rules) over nominal terms. It was introduced by Fernández and
the author in Fernández et al. (2004), Fernández and Gabbay (2007). Nominal terms
allow us to express rewrite rules involving binding, like substitution and the λ -
calculus (see Example 2.124).

The presentation of nominal rewriting here differs from that in Fernández and
Gabbay (2007), and is more concise. Partly this is optimisation, but this is also due
to the permissive-nominal approach. We compare and contrast nominal rewriting
from Fernández and Gabbay (2007) with nominal rewriting here, in Sect. 2.3.2.6.

2.3.2.1 Rewrite Rules

Definition 2.122. A rewrite rule in a signature Σ = (A,B,C,F ,ar) is a pair of
terms l→ m in Σ such that sort(l) = sort(m) ∈ B and fU(m)⊆ fU(l).
R will range over rewrite rules.
A rewrite theory R= (Σ,Rew) is a pair of a signature Σ (Definition 2.43) and a
(possibly infinite) set of rewrite rules Rew in Σ.

Notation 2.123. Write (l→ m) ∈ R to mean ‘l and m are terms in Σ and (l→ m) ∈
Rew’.

The notion of rewrite rule and rewrite theory in Definition 2.122 is much like the
first-order case, but because of the ‘nominal’ aspects of our syntax we can handle
names and binding.

11We do not make this formal, but since constants are structurally just like unknowns the definitions
can easily be constructed by proceeding exactly as we did when we defined substitution for
unknowns.
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Example 2.124. Here are some example rewrite theories:

• nrSUB expresses the usual capture-avoiding substitution action on λ -calculus
terms.

Let Σ have a base sort τ and the following term-formers:

sub : ([ν ]τ ,τ)τ lam : ([ν ]τ)τ app : (τ ,τ)τ var : (ν)τ

Rewrite rules are as follows:

(var→) var(a)[a�→X ] → X
(var→′) var(b)[a�→X ] → var(b)
(lam→) lam([a]X)[b�→Y ] → lam([a](X [b�→Y ])) (a�∈supp(Y ))
(app→) app(X ,X ′)[b�→Y ] → app(X [b�→Y ],X ′[b�→Y ])

Here and in the next example we sugar sub([a]r, t) to r[a�→t]. Every permission
set contains b and every permission set contains a except for supp(Y ), as
indicated above.

• nrLAM extends the previous theory with two more rewrites:

(β→) (λ [a]Z)X → Z[a�→X ]

(η→) λ [a](Ya) → Y (a�∈supp(Y ))

Sugar lam(r) to λ r, app(r,s) to rs, and var(a) to a. We anticipate Sect. 2.3.2.2 and
sketch how one might rewrite (λ [b](λ [a]ab))a to λ [a′]a′a:

(λ [b](λ [a]ab))a→ (λ [a]ab)[b�→a]
= (λ [a′]a′b)[b�→a]
→ λ [a′]((a′b)[b�→a])
→∗ λ [a′]a′a

2.3.2.2 Rewrite Steps

Definition 2.125. Define the terms s in which X occurs only once by:

s ::= π·X | [a]s | f(r1, . . . ,ri−1,s,ri+1, . . . ,rn)

(X �∈ fU(r1), . . . , fU(ri−1), fU(ri+1), . . . , fU(rn))
A position P is a pair (s,X) of a nominal term and an unknown X which occurs
only once in s.

Our notion of position is also sometimes called a context; the idea goes back to at
least Felleisen and Hieb (1992).

In Definition 2.125, π·X denotes an unknown in the same permutation orbit as X .

Notation 2.126. If P = (s,X) is a position write supp(P) for supp(X) and sort(P)
for sort(X).
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If sort(r) = sort(P) and fa(r) ⊆ supp(P) (so that [X :=r] is a substitution) write
P[r] for s[X :=r].

Definition 2.127. The one-step rewrite relation r
R−→ s is the least relation such

that for every (l→ m) ∈ R, position P, and substitution θ , if sort(r) = sort(P) and
fa(lθ)∪ fa(mθ)⊆ supp(P) (so that P[lθ ] and P[mθ ] are well-defined) then

P[lθ ] R−→ P[mθ ].

The multi-step rewrite relation r
R−→∗ s is the reflexive transitive closure of the

one-step rewrite relation.

We consider decidability and complexity of the rewrite relation in Sect. 2.3.3.

Example 2.128. Let T have one name sort ν , one base sort τ , one term-former triv
and one axiom triv(a)→ triv(b).

Then triv(a)→ triv(b) but also (using positions (π·X ,X) for any π) triv(b)→
triv(a) and triv(a′)→ triv(b′) for any pair of distinct atoms a′ and b′.

Thus atoms in rewrite rules range over ‘any atom’ analogously to how unknowns
in rewrite rules range over ‘any term’.

Example 2.129. Recall the rule (η→) = (λ [a](Ya)→ Y ) where a �∈ supp(Y ) from
Example 2.124. Suppose also b �∈ supp(Y ).

1. To deduce λ [a](ba)→ b we take P = ((b c)·Y,Y ) for some c ∈ supp(Y ) and we
take θ = [Y :=c].

2. To deduce λ [a′](ba′)→ b for any other a′ we also take P = ((b c)·Y,Y ) and θ =
[Y :=c]. This is because λ [a′](ba′) and λ [a](ba) are the same term (Lemma 2.31).

3. To deduce λ [a](Ya)→ Y we take P = (Y,Y ) and θ = id.
4. Suppose supp(Y ′) = supp(Y )∪{a}.

Suppose we have shift-permutations so there exists a permutation, write it
δY ′-a, bijecting supp(Y ′) with supp(Y ). To deduce λ [a](Y ′a)→ Y ′ we take P =
((δY ′-a)

-1·Y,Y ) and θ = [Y :=δY ′-a·Y ′].
Without shift we cannot deduce λ [a](Y ′a) → Y ′; we can still deduce

λ [a](Ya)→ Y .
5. We cannot deduce λ [a](aa)→ a, because [Y :=a] is not a substitution: no function

mapping Y to a can be equivariant, since (b a)·Y = Y but (b a)·a = b �= a (also
a �∈ supp(Y ): see Proposition 2.64).

6. A rewrite X → X only entails rewrites for t with fa(t) ⊆ π·supp(X) for some π .
With shift, the effect of this may be that we can deduce t→ t from X→ X for any
t. We make no claim to there being a ‘right’ or ‘wrong’ answer here: the issue
is purely a design question of how much expressivity we want permutations to
have. Our results are parameterised over this choice.
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Definition 2.130.

• Call R locally confluent when r
R−→ s1 and r

R−→ s2 implies there exists some s′

such that s1
R−→∗ s′ and s2

R−→∗ s′.

• Call R confluent when r
R−→∗ s1 and r

R−→∗ s2 implies there exists some s′ such

that s1
R−→∗ s′ and s2

R−→∗ s′.

2.3.2.3 Peaks, Critical Pairs, Joinability

We now begin to investigate criteria for deducing confluence of nominal rewrite
systems. Our first observation is that things are not quite as simple as in first-order
rewriting (Baader and Nipkow 1998, Section 6.2): by Lemma 2.135, trivial critical
pairs are not always joinable.

Definition 2.131. Write r→ s1,s2 when r→ s1 and r→ s2 and call this a peak.
Call this peak joinable when there exists a t such that s1→∗ t and s2→∗ t.

So R is locally confluent when every peak is joinable.

Definition 2.132. Consider two rewrite rules R1 = (l1→ m1) and R2 = (l2→ m2).
Call R1 a copy of R2 when there exists an invertible substitution θ such that (l2θ →
m2θ) = R1.

Clearly, if R1 is a copy of R2 then R2 is also a copy of R1. Furthermore:

Lemma 2.133. If R1 and R2 are copies of the same rule then l
R1−→ m if and only if

l
R2−→ m.

Proof. Unpacking Definition 2.127 and exploiting the existence of an inverse θ -1.
�
Definition 2.134. Suppose that Ri =(li→mi) for i= 1,2 and fU(R1)∩ fU(R2)=∅.
Suppose l1 = P[l′1] for some l′1, and suppose l′1

?= l2 has a principal solution θ . Call
the pair (m1θ ,P[m2]θ) a critical pair.

Call (m1θ ,P[m2]θ) trivial when at least one of the following hold:

1. P = (π·X ,X) and R1 and R2 are copies of the same rule.
2. l′1 = X for some unknown X .

Lemma 2.135. Peaks that are instances of trivial critical pairs, are not always
joinable.

Proof. It suffices to provide a counterexample. Fix term-formers 0 and f and take
R1 = (0→ a) and R2 = (X → f(a)) where a �∈ supp(X).

There is a critical pair (a, f(a)) between R1 and R2.

Also, 0
R1−→ a and 0

R2−→ f(a) and it is a fact that this peak cannot be joined—we
‘want’ to close this peak by rewriting a to f(a) using R2, but the fact that a �∈ supp(X)
blocks this. �
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2.3.2.4 Uniform Rewriting

The proof of Lemma 2.135 suggests a simple cure:

Definition 2.136. Call a rule R = (l→ m) uniform when

fa(m)⊆ fa(l).

Call a rewrite theory R uniform when every R ∈ R is uniform.

Definition 2.136 mirrors the condition in Definition 2.122 that fU(m)⊆ fU(l), but
for atoms instead of unknowns. This condition is sufficient to obtain Theorem 2.142,
which is a nominal rewriting version of the well-known critical pair lemma from
first-order rewriting (Baader and Nipkow 1998, Theorem 6.2.4).

Example 2.137. Let R have one name sort ν , one base sort τ , two term-formers
triv : (ν)τ and abs : ([ν ]τ)τ , and rewrite rules

triv(a)→ triv(a) triv(a)→ triv(b) abs([a]X)→ X .

fa(triv(a)) ⊆ fa(triv(a)) and fa(triv(b)) �⊆ fa(triv(a)). Also fa(X) �⊆
fa(abs([a]X)) if and only if a �∈ supp(X).

So the first rule is uniform, the second is not, and the third is uniform if and only
if a �∈ supp(X).

The rewrite rules of nrSUB and nrLAM in Example 2.124 are uniform.12

Lemma 2.138. If fa(m)⊆ fa(l) then fa(P[m])⊆ fa(P[l]).

Proof. Routine induction using Lemmas 2.56 and 2.53. �

Corollary 2.139. R = (l → m) is uniform if and only if ∀r,s.
(
r

R−→ s⇒ fa(s) ⊆
fa(r)

)
.

Proof. From Lemmas 2.56 and 2.72. �
Lemma 2.140. Suppose R = (l→ m) is uniform and X �∈ fU(R). Suppose θ(X) =
lθ . Specify θ ′ by θ ′(π·X) = π·(mθ) and θ ′(Y ) = θ(Y ). Then rθ →∗ rθ ′ for any r.

Proof. θ ′ is a substitution by Lemmas 2.72 and 2.56. The result follows by a routine
induction on r. �

Because of Lemma 2.133, we can be relaxed about the particular (orbits of)
unknowns that are used in a rewrite rule, if we only care about the rewrites that
they generate. We do this in Theorems 2.141 and 2.142. This can always be made
formal by inserting invertible ‘freshening’ substitutions as appropriate.

12There is a deeper reason for this: they are also closed. See Example 2.164 and Theorem 2.165.
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Theorem 2.141. If a rewrite theory R (Definition 2.122) is uniform then peaks that
are instances of trivial critical pairs, are joinable.

Proof. Consider two rules Ri = (li→mi)∈R for i= 1,2. Taking copies if necessary,
suppose fU(R1)∩ fU(R2). Suppose they have a critical pair (m1θ ,P[m2]θ). That is,
there exists l′1 such that l1 = P[l′1] and θ is a principal solution to l′1

?= l2.
There are two cases:

• The case P = (π·X ,X) and R1 and R2 are copies of the same rule l→ m. The
peak we want to join is l1θ = π·l2θ →m1θ , π·m2θ , where the rules l1→m1 and
l2→m2 are identical aside from their free unknowns which are renamed disjoint.
We use Lemma 2.73 and the assumption in Definition 2.122 that fU(m)⊆ fU(l).

• The case of (m1θ ,P[m2]θ) where l1 = P[X ] and θ(X) = l2. Specify θ ′ by
θ ′(π·X) = π·m2 and θ ′(Y ) = θ(Y ) for all other Y ; note that θ ′ is a substitution
since fa(m2)⊆ fa(l2) by uniformity and fa(l2)⊆ supp(X) by our assumption that
θ is a substitution.

By Lemma 2.140 m1θ →∗ m1θ ′. By definition P[m2]θ = l1θ ′
R1−→m1θ ′, so we

have joined the peak.

�
Theorem 2.142. Suppose all non-trivial critical pairs of R are joinable and
suppose R is uniform. Then R is locally confluent.

Proof. Suppose r
R1−→ s1 and r

R2−→ s2. Write P1 and P2 for the positions at which
the two rewrites occur. Taking copies if necessary, suppose fU(R1)∩ fU(R2) =∅.

If P1 and P2 identify distinct subterms of r then local confluence holds by a
standard diagrammatic argument (see for instance Baader and Nipkow (1998)).

Otherwise it must be that P2 = (P1[P],X) for some position P; that is, P2 identifies
a point in r beneath the point identified by P1 (or the symmetric case that P1 =
(P2[P],X), which is similar and we elide). There are now three possibilities:

1. X in P2 replaces an unknown in r. This is an instance of a trivial critical pair; we
use Theorem 2.141.

2. P = (π·X ,X) and R1 and R2 are copies of the same rule. Then again this is an
instance of a trivial critical pair and we use Theorem 2.141.

3. Otherwise, this is an instance of a non-trivial critical pair at it may be joined
using our assumption that non-trivial critical pairs are joinable.

�
Definition 2.143. Call a rewrite system R terminating when all rewrite sequences
are finite. Call a term r a normal form (with respect to a rewrite system R) when

∀s.¬(r R−→ s), that is, when r does not R-rewrite to anything.

Example 2.144. It can be proved that nrSUB in Example 2.124 is terminating.
nrLAM (famously) is not terminating, because of (β �→).
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Corollary 2.145. Suppose R is terminating, uniform, and suppose non-trivial
critical pairs in R are joinable. Then:

1. R is confluent.
2. If r→∗ s and r→∗ s′ and s and s′ are normal forms, then s = s′.

2.3.2.5 Orthogonal Rewrite Systems

We now treat another standard criterion in rewriting: orthogonality Dershowitz
and Jouannaud (1989), Baader and Nipkow (1998). By Theorem 2.152 orthogo-
nality implies not only local confluence, but the stronger property of confluence
(Definition 2.130). The proof is not direct: it turns out that it is easier to consider an
auxilliary parallel reduction relation⇒ (Definition 2.149). The reflexive transitive
closure of ⇒ is equal to that of → (Lemma 2.150), but ⇒ allows (intuitively)
multiple reductions provided that they do not occur ‘one after the other, in the same
position’. This is the kind of multiple reduction generated in the second case of the
proof of Theorem 2.141, when we rewrite m1θ to m1θ ′.

Definition 2.146. Call R = (l→ m) left-linear when each unknown occurring in l
occurs only once (Definition 2.125).

For example f(X)→ g(X ,X) is left-linear but g(X ,X)→ f(X) and g(π·X ,x)→
f(X) are not. Note that (a,a)→ a is left-linear.

Definition 2.147. Call R orthogonal when every R ∈ R is uniform and left-
linear, and all critical pairs are trivial.

(Note that we insist that R is uniform, as well as the standard condition that it be
left-linear.)

Definition 2.148. Suppose R = (l→m). Write r
R→ε s when r

R−→ s and the rewrite
occurs at a position P = (π·X ,X). We say that the rewrite with R occurs at root
position.

Expanding Definition 2.148, r
R→ε s when there exists θ and π such that r =

π·(lθ) and s = π·(mθ). For example: if R = (a→ a) then a
R→ε a but not [a]a

R→ε
[a]a.

Definition 2.149. We define a parallel reduction relation ⇒ by the rules in
Fig. 2.3.

Lemma 2.150. r→∗ s if and only if r⇒∗ s.

Proof. By routine inductions. �
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r1⇒ s1 · · · rn⇒ sn
(⇒f)

f(r1, . . . ,rn)⇒ f(s1, . . . ,sn)

r1⇒ s1 · · · rn⇒ sn f(s1, . . . ,sn)
R→ε s′

(⇒f ′)
f(r1, . . . ,rn)⇒ s′

s⇒ t
(⇒abs)

[a]s⇒ [a]t

r⇒ s [a]s
R→ε s′

(⇒abs′)
[a]r⇒ s′

(refl)
r⇒ r

a
R→ε s′

(⇒a′)
a⇒ s′

X
R→ε s′

(⇒X′)
X ⇒ s′

Fig. 2.3 Parallel reduction relation

Lemma 2.151. If R is orthogonal then⇒ is confluent.

Proof. We prove by induction on the derivation of r⇒ s that a stronger property
holds, often called the diamond property: for all s′ if r⇒ s′ then there exists some
s′′ such that s⇒ s′′ and s′ ⇒ s′′. From this, confluence easily follows by a standard
diagrammatic argument.

We consider a selection of cases:

• The derivations of r⇒ s and r⇒ s′ both end in (⇒f). We use the inductive
hypotheses and (⇒f).

• The derivation of r ⇒ s ends in (⇒f) and that of r ⇒ s′ ends in (⇒f ′). So

ri⇒ si and ri⇒ s′i for 1≤ i≤ n, and f(s′1, . . . ,s
′
n) = π·(lθ) R→ε π·(mθ) for some

π and R = (l→ m) ∈ R. By inductive hypothesis there exist s′′i such that si⇒ s′′i
and s′i⇒ s′′i . We now proceed as illustrated and explained below:

f(r1, . . . ,rn) f(s′1, . . . ,s
′
n) = π·(lθ)

Rε
π·(mθ)

f(s1, . . . ,sn) f(s′′1 , . . . ,s
′′
n) = π·(lθ ′)

Rε
π·(mθ ′)

Either l is an unknown X or the rewrite f(s′1, . . . ,s
′
n)⇒ f(s′′1 , . . . ,s

′′
n) takes place

in the substitution θ .
If l is an unknown then by uniformity we may rewrite f (s′′1 , . . . ,s

′′
n) using R

and close the diagram by rewriting corresponding instances of θ(X) in π·(mθ).
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Otherwise, by uniformity there is a substitution θ ′ such that θ(X)⇒ θ ′(X) for
every X and f(s′′1 , . . . ,s

′′
n) = π·(lθ ′). Rules are also left-linear so R still applies to

π·(lθ): f(s′′1 , . . . ,s′′n)
R→ε π·(mθ ′) and therefore f(s1, . . . ,sn)⇒ sθ ′ by (⇒f ′) for R.

The other cases are no harder. �
Theorem 2.152. If a theory R is orthogonal (Definition 2.147) then R is confluent
(Definition 2.130).

Proof. If the uniform rewrite system has only left-linear rules and only trivial
critical pairs, then⇒ is confluent by Lemma 2.151. It follows that⇒∗ is confluent.
By Lemma 2.150 the result follows. �

2.3.2.6 Nominal Rewriting with Freshness Contexts Versus
Permissive-Nominal Rewriting

As mentioned in the introduction to this Section, the presentation of this paper
differs from that of Fernández and Gabbay (2007) in being permissive-nominal.

For clarity, let us call the nominal rewrite framework from Fernández and Gabbay
(2007) ‘System ∇’ and the nominal rewrite framework here ‘System S’.

In system ∇ a rewrite rule takes the form ∇ � t → u where ∇ is a set of
assumptions a#X called a freshness context. X is an unknown. This is not typed by a
permission set; freshness information is given by ∇.

Here are (λ→) from Example 2.124, and how it would look in System ∇:

System S lam([a]X)[b�→Y ] → lam([a](X [b�→Y ])) (a�∈supp(Y ))
System ∇ a#Y� lam([a]X)[b�→Y] → lam([a](X[b�→Y]))

a �∈ supp(Y ) is a fact (we must choose Y so that this is true). It does not matter which
permission set we give Y because using δ and swappings we can build a π to map
supp(Y ) to every other permission set π·supp(Y )—which will contain π(a).

Conversely a#Y is a freshness condition. It directly controls the terms to which
we may instantiate Y; they must not contain a free. Here we attain this effect using
Proposition 2.64.

Freshness conditions are elementary: they mean what they say and what they
mean be quickly understood. Permission sets are still finitely representable, but
somewhat harder to understand. So from the point of view of keeping a gentle
learning curve, System ∇ may be preferable to System S.

However, System S rewards us with some advantages: we can use nominal
abstract syntax and the freshness conditions which must be explicitly stated
(repeatedly) in Fernández and Gabbay (2007) are handled in the background by
equivariance of substitutions (as Proposition 2.64 makes formal).

This also has some effects on mathematical properties. In System ∇ from
Fernández and Gabbay (2007) it was not in general the case that if ∇ � r ≈α r′

and ∇ � r
R−→ s then ∇ � r′

R−→ s (see the end of Section 5.2 in Fernández and



124 M.J. Gabbay

Gabbay (2007)). It was also not in general the case that nominal rewriting coincides
with nominal algebra (Sect. 2.3.4), essentially because any fixed freshness contexts
might not be ‘big enough’. Fernández and the author wrote a paper on how to adjust
for this Fernández and Gabbay (2010). In a permissive-nominal context, these issues
do not arise in the first place.

This author’s feeling is that nominal-terms-with-freshness-contexts and
permissive-nominal terms can be considered as essentially the same thing. However,
if our goal is to prove theorems then we get closer to what is ‘really going on’ via
the permissive-nominal presentation.

2.3.3 Closed Terms

Equivariant unification—the problem of finding θ and π such that π·(rθ) = sθ—is
NP complete Cheney (2004, 2010). The same applies to corresponding matching
problems. This matters to us because the rewrite relation in Definition 2.127 is
equivariant; to determine whether r rewrites with a rule (l → r), we must solve
an equivariant matching problem.

Fernández and the author introduced a notion of closed term such that for
closed terms, equivariant matching/unification coincides with ‘ordinary’ match-
ing/unification Fernández and Gabbay (2007). That is, for closed terms we can
throw away the π .

We now develop corresponding definitions and results. The definitions and
proofs in this paper are significantly different from those in Fernández and Gabbay
(2007).13

2.3.3.1 The Definition

Definition 2.153. Define explicit atoms ea(r) inductively by:

ea(a) = {a} ea(C) = supp(C) ea(X) = ∅

ea(f(r)) = ea(r) ea((r1, . . . ,rn)) =
⋃

ea(ri) ea([a]r) = ea(r)\{a}

Remark 2.154. Intuitions for ea(r) versus fa(r) are as follows:

13The interested reader can begin by comparing our notion of closed terms in Definition 2.159,
based on two simpler inductive definitions, with that used in (Fernández and Gabbay 2007,
Definition 68), based on a renamed variant of a term and an equality derivable in an extended
freshness context. See also an inductive characterisation of closed terms in unpublished notes
Clouston (2007).
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• The explicit atoms of r are the atoms that actually appear in r (unbound). That is,
we can read ‘a ∈ ea(r)’ as ‘a appears in r’.

• The free atoms of r are the atoms that can appear in rθ for some θ .

For instance, ea(X) =∅ �= supp(X) = fa(X).
This is an intuition, not a fact. fa(r) =

⋃
θ ea(rθ) is not true in general (but see

Lemma 2.157). For instance in a signature with one base sort τ and no term formers,
terms containing atoms simply do not populate the sort τ .

Recall the notion of occurrences occ(r) from Definition 2.95.

Notation 2.155. Write π·occ(r) = {π·x | x ∈ occ(r)}. Also if D = [d1, . . . ,dn] and S
is a permission set define S\D = S\{d1, . . . ,dn}.
Lemma 2.156. ea(π·r) = π·ea(r) and occ(π·r) = π·occ(r). In addition, ea(r) ⊆
ea(rθ).

Proof. By routine inductions on r. �
Lemma 2.157. fa(r) = ea(r)∪⋃{supp(x) | x ∈ occ(r)}.

As an easy corollary using Lemma 2.53, fa(r) = ea(r)∪⋃{supp(X)\D | [D]X ∈
occ(r)}.
Proof. By a routine induction on r. We consider one case:

• The case [a]r. Suppose fa(r) = ea(r)∪⋃{supp(x) | x ∈ occ(r)}. By definition
fa([a]r) = fa(r) \ {a}, and ea([a]r) = ea(r) \ {a} and occ([a]r) = {[a]x | x ∈
occ(r)}. The result follows by an easy sets calculation.

�
Definition 2.158. Call r fa-functional when if [D1]X ∈ occ(r) and [D2]X ∈ occ(r)
then fa([D1]X) = fa([D2]X) (equivalently, when D1 and D2 contain the same atoms
but not necessarily in the same order).

Definition 2.159. Call r closed when r is fa-functional and ea(r) =∅.

Example 2.160. • a is not closed (ea is non-empty).
• X is closed, so note that ‘closed’ does not mean ‘fU(r) =∅’. Our terminology is

consistent with Fernández and Gabbay (2007) and the subsequent literature.
• ([a]X ,X) is not closed (occ is not fa-functional).
• [a](X ,a) is closed.

Lemma 2.161. Suppose ea(r)=∅. Then π·(rθ)= rθ ′ if and only if π·(([D]X)θ)=
([D]X)θ ′ for every [D]X ∈ occ(r).

Proof. By a routine induction on r. �
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Theorem 2.162. r is closed if and only if

∃S.fa(r)⊆ S∧∀π,θ .π·fa(rθ)⊆ S⇒∃θ ′.π·(rθ) = rθ ′.

Proof. Suppose there is a permission set S ⊇ fa(r) such that if π·fa(rθ) ⊆ S then
there exists θ ′ such that π·(rθ) = rθ ′. There are two things to prove:

• ea(r) is empty. Suppose there exists a ∈ ea(r). Pick b ∈ S \ ea(r). By assump-
tion taking θ = id there exists θ ′ such that (b a)·(rθ) = rθ ′. By Lemma 2.156
ea((b a)·r) = (b a)·ea(r) �� a and a ∈ ea(r)⊆ ea(rθ ′), a contradiction.

• occ(r) is fa-functional. Consider [D1]X and [D2]X in occ(r); choose Di such
that Di ∩ fa(r) = ∅ for i = 1,2. Suppose there exists a ∈ fa([D2]X) \ fa([D1]X),
and choose any b ∈ fa([D1]X) (since supp(X) is infinite and D1 is finite, such a b
exists).

By Lemma 2.157 a,b ∈ fa(r) so by assumption taking θ = id there exists θ ′
such that (b a)·r = rθ ′. We proved above that ea(r) = ∅, so by Lemma 2.161
(b a)·[D1]X = ([D1]X)θ . By Lemma 2.56 a is free in the left-hand side, and by
Lemma 2.72 a is not free in the right-hand side; a contradiction.

Suppose occ(r) is fa-functional and ea(r) = ∅ and choose some permutation π
and substitution θ .

If occ(r) = ∅ then by Lemma 2.157 fa(r) = ∅ so by Lemmas 2.57 and 2.73
π·(rθ) = r and rθ ′ = r, so there is nothing to prove.

Otherwise take S = fa(r). For every element of in occ(r) make a fixed but
arbitrary choice of representation as [D]X where the atoms in D are disjoint
from the atoms in nontriv(π). We take θ ′ to equivariantly extend this choice
(Definition 2.37), so we map π ′·X to (π ′ ◦ π)·θ(X) for the choice of representing
X above, and otherwise to map Y to Y . Using Proposition 2.38 this is a substitution
and π·(([D]X)θ) = ([D]X)θ ′ for every [D]X ∈ occ(r). We use Lemma 2.161. �

2.3.3.2 Closed Rewrite Rules

Definition 2.163. Call a rewrite rule l→ m closed when (l,m) is closed.

Example 2.164. Let R have one name sort ν , one base sort τ , two term-formers
triv : (ν)τ and abs : ([ν ]τ)τ , and rewrite rules

triv(a)→ triv(a) triv(a)→ triv(b) abs([a]X)→ X .

The terms triv(a) and triv(b) are not closed; the terms abs([a]X) and X are
closed. The terms (triv(a), triv(a)) and (triv(a), triv(b)) are not closed. The term
(abs([a]X),X) is closed if and only if a �∈ supp(X). So the first two rules are not
closed and the third is closed if and only if a �∈ supp(X).

The rewrite rules of nrSUB and nrLAM in Example 2.124 are closed.
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Recall that uniform rules have good properties like Theorems 2.142 and 2.152.
Closed rules inherit these good properties, because:

Theorem 2.165. If R = (l→ m) is closed then it is uniform.

Proof. By assumption fU(m) ⊆ fU(l). Also (l,m) is fa-functional; it follows that
occ(m)⊆ occ(l). The result follows from Lemma 2.157. �
Lemma 2.166. Suppose r and l are terms and l is closed. Then

1. ∃π,θ .r = π·(lθ) implies
2. ∀π.fa(r)⊆ π·fa(l)⇒∃θ .r = π·(lθ)
Proof. Suppose fa(r)⊆ π·fa(l) and fa(r)⊆ π ′·fa(l) and r = π·(lθ).

We need a θ ′ such that r = π ′·(lθ ′). It follows from the above that
(π ′-1 ◦ π)·fa(lθ)⊆ fa(l). We use Theorem 2.162. �

Theorem 2.167. If R is closed then
R−→ can be checked as follows, where for

simplicity we suppose R= {(l→ m)}:
1. We try to match r against π·l for some π such that fa(r) ⊆ π·fa(l), if such a π

exists.
2. If we fail then by Lemma 2.166 we must fail for instantiating for any π·l. We

descend into subterms of r and repeat the previous step.

Whether step 1 of the algorithm above is decidable depends on the decidability of
P, X , and C; obviously, if equality of the syntax is undecidable then matching will
also be undecidable. So assuming that we have not been silly, closed rules are useful
because we only need to compute one π and consider matching, rather than consider
an equivariant matching problem.

To use the matching algorithm of Sect. 2.3.1, we need terms to satisfy condition 2
of Definition 2.98. So, we could forbid shift permutations altogether. The algorithm
might reintroduce them but as noted in Remark 2.121, shift can be eliminated
once a solution is found. Thus, if we care about decidability and not so much
about infinite permutations—which was the case e.g. in Fernández et al. (2004),
Fernández and Gabbay (2007)—then shift can be viewed as an internal mechanism
of our unification/matching algorithm. However we have designed the mathematics
to allow the possibility of exploring other, more liberal (and perhaps still decidable)
choices, if we wish. More on this in Gabbay (2012a).

2.3.4 Equality: (Permissive-)Nominal Algebra

Permissive-nominal algebra has one judgement form: an equality r = s. This is
just an unoriented nominal rewriting rule, so what makes algebra different from
rewriting is not so much the judgement form as the properties we care about:
instead of confluence and decidability, we primarily care about soundness and
completeness. These are Theorems 2.188 and Corollary 2.200.
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This different emphasis affects the axioms we write. The rewrites in
Example 2.124 are designed to work on λ -terms without unknowns (since we expect
to ‘evaluate’ closed terms using rewrites). The analogous axioms in Example 2.170
are designed to work also on open terms (since we expect to reason about arbitrary
denotations).

Permissive-nominal algebra simplifies and streamlines the nominal algebra logic
of Gabbay and Mathijssen (2009) (which was based on nominal terms). Essentially,
these two logics do the same thing, but there are significant differences which we
discuss in Sect. 2.3.4.7. Nominal Algebra (NA) was presented in Gabbay (2005);
Gabbay and Mathijssen (2006b); see also Gabbay and Mathijssen (2007, 2009). It
was first used to axiomatise substitution, first-order logic, and the λ -calculus Gab-
bay and Mathijssen (2006a,c, 2008a,c,b, 2010). The interest of these papers was not
merely to write down the axioms—which all take advantage of atoms-abstraction to
axiomatise various binding operators—but also to prove these axioms sound and
complete. These proofs are not included here; see the presentations in Gabbay
and Mathijssen (2008a,c, 2010). Or, to see a much more sophisticated instance
of the same general idea, the reader can examine the permissive-nominal logic
axiomatisation of arithmetic which is proved correct in the case study of Sect. 2.4.2.

2.3.4.1 Judgement Form, Axioms, Theories

Definition 2.168. A (nominal algebra) equality judgement is a pair r = s.

Definition 2.169. A theory T= (Σ,Ax) is a pair of a signature Σ and a possibly
infinite set of equality judgements Ax in that signature; we call them the axioms.

Example 2.170. Here are some example nominal algebra theories:

• naSUB axiomatises capture-avoiding substitution (on the λ -calculus).
Let Σ have a base sort τ and the following term-formers:

sub : ([ν ]τ ,τ)τ lam : ([ν ]τ)τ app : (τ ,τ)τ var : (ν)τ

Axioms are as follows:
(var�→) var(a)[a�→X ] =X
(#�→) Y [a�→X ] =Y (a�∈supp(Y ))
(f �→) f(Y )[a�→X ] = f(Y [a�→X ]) (f∈{lam,app,var,sub})
(tup�→) (X1, . . . ,Xn)[a�→X ] = (X1[a�→X ], . . . ,Xn[a�→X ])

(abs �→) ([b]Y )[a�→X ] = [b](Y [a�→X ]) (a�∈supp(Y ))
(id�→) Y [b�→var(b)] =Y
(η �→) [a]sub(Y,var(a)) =Y (a�∈supp(Y ))

Here and in the next example we sugar sub([a]r, t) to r[a�→t]. Every permission
set contains b and every permission set contains a except for supp(Y ), as
indicated above. Sorts are filled in as appropriate.
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naSUB is based on the nominal algebra axioms of Gabbay and Mathijssen
(2006a, 2008a) (which were parameterised over the signature Σ).

There, we proved the axioms sound and complete for a specific syntactic
model in which Z[a:=X ] really is interpreted as capture-avoiding substitution.
The completeness result from Corollary 2.200 remains valid but is weaker
because it holds not for the specific syntactic model, but the class of all nominal
algebra models of the axioms.

• naLAM extends the previous theory with two more axioms:

(β ) (λ [a]Y )X =Y [a�→X ]

(η) λ [a](Xa) =X (a�∈supp(X))

This theory is studied in Gabbay and Mathijssen (2008b, 2010). Analogously
to naSUB, we prove the axioms sound and complete for a syntactic model where
substitution is substitution and β - and η-conversion are β - and η-conversion.

Remark 2.171. Compare and contrast Example 2.170 with Example 2.124. Clearly,
one is an equality theory and another a rewrite theory, but we obtain a nominal
algebra theory from Example 2.124 by replacing → by =, and conversely we can
replace = with→ in Example 2.170.

So why are they different? They demonstrate different design priorities.
The rewrites in Example 2.124 are designed to operate on ground terms

(fU(r) = ∅), following an intuition that rewriting is about ‘executing programs’.
The equalities in Example 2.170 are designed to operate on possibly open terms,
following an intuition that algebra is about models, not all of whose elements need
be referenced by ground terms.

What we gain in deductive power we lose in computational properties. For
instance, nrSUB is terminating whereas (an oriented version of) naSUB is not
terminating, because explicit substitutions can ‘churn’ by distributing repeatedly
over one another (this is essentially the idea behind Melliès’s counterexample in
Melliès (1995)). On the other hand while the effect of (#�→) from naSUB can be
obtained on ground terms using the rules in nrSUB, by pushing the substitution
down to the atoms, the rules of nrSUB are not deductively powerful enough to do
this for open terms (or arbitrary models). More on this in Gabbay and Mathijssen
(2008a, 2010).

2.3.4.2 Derivable Equality

Definition 2.172. Suppose T is a theory. Derivable equality T � r = s is the least
transitive reflexive symmetric relation such that for every (r = s) ∈ T, position P,
and substitution θ , if sort(r) = sort(P) and fa(rθ)∪ fa(sθ)⊆ supp(P) (so that P[lθ ]
and P[sθ ] are well-defined) then

T � P[rθ ] = P[sθ ].
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(Refl)
r = r

r = s s = t
(Trans)

r = t

r = s
(Symm)

s = r

r1 = r′1 . . . rn = r′n
(Cong1)

(r1, . . . ,rn) = (r′1, . . . ,r
′
n)

r = r′
(Cong2)

f(r) = f(r′)

r = r′
(Cong3)

[a]r = [a]r′

((r=s)∈T)
(Axr=s)

π·(rθ) = π·(sθ)

Fig. 2.4 Derivable entailment in Permissive-Nominal Algebra (PNA)

Remark 2.173. Definition 2.172 is rather compact; it might be useful to expand it a
little. This is Fig. 2.4, given in natural deduction style.

The reader familiar with nominal terms (see for instance Figure 2 of Urban et al.
(2004)) should note of (Cong3) that we do not need to consider the case [a]r = [b]s,
because α-equivalence is handled automatically for us by nominal abstract syntax. It
is built in by Definition 2.30. In other words, thanks to how we set up our permissive-
nominal terms syntax, we can always rename abstracted atoms so that they are equal.
We noted an analogous point earlier on, in Remark 2.103.

Lemma 2.174. Suppose T= (Σ,Ax) is a theory. Then:

• T � a = b is impossible.
• T � [a]r = [b]s if and only if b �∈ fa(r) and (b a)·r = s.
• T � (r1, . . . ,rn) = (s1, . . . ,sn) if and only if T � ri = si for 1≤ i≤ n.

Proof. In axiom (r = s) ∈ Ax, r and s must have base sort τ; thus it is not possible
to assert equalities between atoms, abstractions, or tuples (unless wrapped in a
term-former and so injected into a base sort). The second part additionally uses
Lemma 2.31. �
Lemma 2.175. Suppose T � r = s. Then:

1. T � π·r = π·s.
2. T � rθ = sθ .

Proof. Both parts are by a routine argument on derivations. We consider one case:

• The case (r′ = s′) ∈ T and r = P[r′θ ′] and s = P[s′θ ′] and P = (t,X). For the
first part we use a position (π·t,X).

For the second part we consider a position P′ = (t(θ−X),X) and consider
P′[r′θ ′θ ] and S′[r′θ ′θ ] (θ−X defined in Definition 2.109). It is not hard to check
that P′[r′θ ′θ ] = P[r′θ ′]θ and P′[s′θ ′θ ] = P[s′θ ′]θ , and the result follows.

�
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2.3.4.3 Interpretation of Signatures and Terms

Definition 2.176. Suppose (A,B) is a sort-signature (Definition 2.39).
An interpretation I for (A,B) consists of an assignment of a nonempty

permissive-nominal set �α�I to each sort α in (A,B), along with equivariant
maps

• for each ν ∈ A an equivariant and injective map Aν → �ν�I which we write aI ,
• for each ν ∈ A and α an equivariant and injective map [Aν ]�α�I → �[ν ]α�I

which we write [a]I x, and
• for each αi for 1 ≤ i ≤ n an equivariant and injective map Πi�αi�

I →
�(α1, . . . ,αn)�

I which we write (x1, . . . ,xn)
I .

Definition 2.177. Suppose Σ= (A,B,C,F ,ar) is a signature (Definition 2.43).
An interpretation I for Σ, or Σ-algebra, consists of the following data:

• An interpretation for the sort-signature (A,B) (Definition 2.176).
• For every f ∈F with ar(f) = (α)τ an equivariant function fI from �α�I to �τ�I .
• An equivariant assignment from C ∈ C to CI ∈ �sort(C)�I . (That is, (π·C)I =

π·(CI ).)

Definition 2.178. Suppose I is a Σ-algebra. A valuation ς to I is an equivariant
function on unknowns X such that for each unknown X , ς(X) ∈ �sort(X)�I .

ς will range over valuations.

Definition 2.179. Suppose I is a Σ-algebra. Suppose ς is a valuation to I .
Extend I to an interpretation on terms �r�I

ς (where of course r is a term in the
signature Σ) by:

�a�I
ς = aI �f(r)�I

ς = fI (�r�I
ς )

�C�I
ς = CI �(r1, . . . ,rn)�

I
ς = (�r1�

I
ς , . . . ,�rn�

I
ς )

I

�X�I
ς = ς(X) �[a]r�I

ς = [a]I �r�I
ς

Lemma 2.180 is a basic sanity check and an important soundness result:

Lemma 2.180. If r : α then �r�I
ς ∈ �α�I .

Proof. By a routine induction on r. �
Lemma 2.181. π·�r�I

ς = �π·r�I
ς .

Proof. By a routine induction on r. We consider one case:

• The case X. By Definition 2.179 �X�I
ς = ς(X). Therefore π·�X�I

ς = π·ς(X).
By assumption π·ς(X) = ς(π·X) = �π·X�I

ς .

�
Lemma 2.182. supp(�r�I

ς )⊆ fa(r).

Proof. From Lemmas 2.21 and 2.181. �
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2.3.4.4 Models and Soundness

Definition 2.183. For a theory T= (Σ,Ax) and interpretation I of T call (r = s)
valid in I when �r�I

ς = �s�I
ς for every valuation ς to I .

Call I a model of T when every axiom (r = s) ∈ Ax is valid in I .
Write T |= r = s when (r = s) is valid in every model of T.

Lemma 2.184. If ς(X) = ς ′(X) for all X ∈ fU(r) then �r�I
ς = �r�I

ς ′ .

Proof. By a routine induction on r. �
Definition 2.185. Suppose ς is a valuation to I . Suppose X is an unknown and
x ∈ �sort(X)�I is such that supp(x)⊆ supp(X). Define a function ς [X :=x] by

(ς [X :=x])(π·X) = π·x and (ς [X :=x])(Y ) = ς(Y ) all other Y

Lemma 2.186. ς [X :=x] in Definition 2.185 is well-defined and a valuation to I .

Proof. As that of Proposition 2.38. �
Lemma 2.187. �r�I

ς [X :=�t�I
ς ]
= �r[X :=t]�I

ς . As corollaries we have:

1. If �r�I
ς = �s�I

ς then �P[r]�I
ς = �P[s]�I

ς .
2. If �r�I

ς = �s�I
ς then �rθ�I

ς = �sθ�I
ς .

Proof. By a routine induction on the definition of �r�I
ς . We consider one case:

• The case of �π·X�I
ς [X :=t]. We reason as follows:

�π·X�I
ς [X :=�t�I

ς ]
= π·�t�I

ς Definition 2.179
= �π·t�I

ς Lemma 2.181
= �(π·X)[X :=t]�I

ς Definition 2.69.

For the two corollaries we reason as follows:

1. By definition where P = (t,X), P[r] = t[X :=r] and P[s] = t[X :=s]. Using the
assumptions,

�t[X :=r]�I
ς = �t�I

ς [X :=�r�I
ς ]
= �t�I

ς [X :=�s�I
ς ]
= �t[X :=s]�I

ς .

2. It is a fact of syntax that fU(r) and fU(s) are finite. Using Lemma 2.73 we
may represent the effect of θ on r and s as a sequence of atomic substitutions
(Definition 2.66). The result follows.

�
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Theorem 2.188 (Soundness). For any T= (Σ,Ax) if T � r = s then T |= r = s.

Proof. Let I be a model of T and ς be a valuation to I .
Identity in the denotation is reflexive, transitive, and symmetric so it suffices to

check the theorem for axioms. That is, suppose (r = s) ∈ Ax and assume a position
P and substitution θ such that sort(r) = sort(P) and fa(rθ)∪ fa(sθ)⊆ supp(P). We
must show that �P[rθ ]�I

ς = �P[sθ ]�I
ς .

I is a model so �r�I
ς = �s�I

ς . We use parts 1 and 2 of Lemma 2.187. �

2.3.4.5 Free Term Models and Completeness

In this section fix a signature Σ and a theory T= (Σ,Ax).
The proof of completeness follows a standard method: we construct a model out

of syntax in which by construction two terms denote equal elements if and only if
they are derivably equal.

The subtlety occurs in Lemma 2.197. We want to eliminate ς in
�r�F (T)

ς by converting it into a substitution θ . This ‘should’ be easy, since for
each X , ς(X) is a provably equivalent class of terms. We need only choose some
representative term in ς(X) for each X and set θ(X) to be that representative.

If we are naive in our construction then this could be impossible, as outlined in
Example 2.198: there might be ‘too many atoms’ in the available representatives.
We enrich our syntax with ‘enough’ extra constant symbols, to guarantee ‘enough’
representatives of every element of the model. Nominal algebra without the constant
symbols is complete for the same semantics, but the proof would be more complex.

Definition 2.189. For each sort α in Σ define [r]T and F (T)α by

[r]T = {r′ : α | T � r = r′} (r : α)
F (T)α = {[r]T | r : α}.

Make each F (T)α into a permissive-nominal set by giving it a permutation action

π·[r]T = [π·r]T.

F (T) stands for ‘F ree terms in the signature of T, up to derivable equality in T’.
Lemmas 2.190 and 2.191 relate permutation and support to the natural notions from
nominal sets:

Lemma 2.190. The permutation action on [r]T is pointwise on [r]T as a set: that is,
π·[r]T = {π·r′ | r′ ∈ [r]T}.
Proof. From Definition 2.189 and Lemma 2.175. �
Lemma 2.191. supp([r]T)⊆ fa(r).

Proof. From Definition 2.189 and Lemma 2.21. �
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Definition 2.192. We construct the free term interpretation F (T) of T as
follows:

• Take F (T)α as in Definition 2.189.
• aF(T) = [a]T, [a]F(T)[r]T = [[a]r]T, and ([r1]T, . . . , [rn]T)

F(T) = [(r1, . . . ,rn)]T.
• fF(T)([r]T) = [f(r)]T for each term-former f : (α)τ in Σ and each r : α .
• CF(T) = [C]T for each constant in Σ.

Lemma 2.193. Definition 2.192 is well-defined and is an interpretation. That is:

• The choice of representative of [r]T does not matter in any of the clauses.
• The choice of abstracted atom in the clause for [a]F(T)[r]T does not matter.
• The maps aF(T), [a]F(T)[r]T, and ([r1]T, . . . , [rn]T)

F(T) are injective.

Proof. The first part follows by congruence properties of derivable equality.
The second part additionally uses Lemmas 2.32 and 2.33. The third part uses
Lemma 2.174. �

Definition 2.194. Define a theory T+ = (Σ+,Ax+) to be equal to T except that
we adjoin

⋃
τ F (T)τ to the set of constants in Σ, and we add axioms equating r

with [r]T in Ax.

That is, for every r : τ there is a constant Cr = [r]T ∈ Σ+, and an axiom (Cr = r) ∈
F (T)+.

Lemma 2.195. F (T) extends to an interpretation F (T)+ of T+, where for each

r : τ we take CF(T)+

r = [r]T. Furthermore, F (T)+ is a model of T+.

Definition 2.196. Write ςid for the valuation to F (T) mapping each X to CX =
[X ]T.

Lemma 2.197. For every valuation ς to F (T) there exists a substitution θ in T+

such that �r�F (T)
ς = �rθ�F (T)+

ςid .

Proof. For each orbit x ∈ |orb(X )| choose a representative X ∈ x. Define θ by
θ(π·X) = π·CX . Recall that CX = [X ]T and by Lemma 2.191 supp([X ]T)⊆ supp(X).
By Proposition 2.38 θ is well-defined and is a substitution

It is not hard to check by induction on r that �r�F (T)
ς = �rθ�F (T)+

ςid . �
Example 2.198. To see why Lemma 2.197 is non-trivial and how T+ helps, suppose
T has one name sort ν , two base sorts τ and τ ′, one term-former abs : (ν ,τ)τ ′, and
one axiom abs(b,(b a)·X) = abs(a,X) where a ∈ supp(X) and b �∈ supp(X).

Then it is a fact that there is no r ∈ [abs(a,X)]T such that
fa(r) ⊆ supp([abs(a,X)]T) and it follows that there is no θ such that
�X ′�F (T)

[X ′:=[abs(a,X)]T]
= �X ′θ�F (T)+

ςid (recall that substitutions must be equivariant).

Theorem 2.199. F (T) is a model of T.

Proof. We must show that F (T) validates the axioms.
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Suppose (r = s) ∈ Ax. Suppose ς is a valuation to F (T). We must show that
�r�F (T)

ς = �s�F (T)
ς .

By Lemma 2.197 there exists θ to T+ such that �r�F (T)
ς = �rθ�F (T)+

ςid and �s�F (T)
ς =

�sθ�F (T)+

ςid .
By assumption T+ � rθ = sθ . By Lemma 2.195, �rθ�F (T)+

ςid = �sθ�F (T)+

ςid . The
result follows. �
Corollary 2.200 (Completeness). If T |= r = s then T � r = s.

Proof. Suppose T |= r = s. By Theorem 2.199 �r�F (T)
ςid = �s�F (T)

ςid (ςid is defined in
Definition 2.196).

It is not hard to prove by induction that �r�F (T)
ςid = [r]T and �s�F (T)

ςid = [s]T. It follows
that T � r = s as required. �

2.3.4.6 Freshness

Nominal terms freshness conditions a#X and a#r from Urban et al. (2004) corre-
spond in this paper to ‘free atoms of’ a �∈ supp(X) and a �∈ fa(r). See Notation 2.55
and Lemma 2.53. Call this syntactic freshness.

Nominal sets freshness a �∈ supp(�r�) is a distinct notion which can be expressed
using equality; call this semantic freshness. The two are not identical, but they are
connected in various ways which we briefly explore.

Proposition 2.201 corresponds to Theorem 5.5 from Gabbay and Mathijssen
(2007) and Lemma 4.51 from Gabbay and Mathijssen (2009):

Proposition 2.201. Suppose b �∈ fa(r).
Then T � (b a)·r = r if and only if for every model I of T and valuation ς to I ,

a �∈ supp(�r�I
ς ).

Proof. By Theorem 2.188 and Corollary 2.200 T � (b a)·r = r if and only if
T |= (b a)·r = r, which unpacking definitions means that for every I and ς ,
�(b a)·r�I

ς = �r�I
ς . By Lemma 2.181 �(b a)·r�I

ς = (b a)·�r�I
ς , and by Lemma 2.182

b �∈ supp(�r�I
ς ). The result follows by Corollary 2.18. �

Lemmas 2.191 (and also Lemma 2.182) express that syntactic freshness implies
semantic freshness. A partial converse is Proposition 2.203, which is based on a
technical property of nominal sets:

Lemma 2.202. Suppose X is a nominal set and U ⊆ |X| is finitely-supported (so
U ∈ |pow(X)| from Example 2.16) and nonempty.

Then if a#U then there exists some x ∈U with a#x.

Proof. U is nonempty so choose any x′ ∈ U . Choose fresh b (so b �∈ supp(U)∪
supp(x′)) and set x = (b a)·x′. By the definition of support (b a)·U = U . By the
pointwise action (Example 2.16) x ∈U . By Lemma 2.17 a �∈ supp(x). �
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Proposition 2.203. a#[r]T implies there exists some r′ such that T � r = r′ and
a �∈ fa(r′).

Proof. By Lemmas 2.190 and Lemma 2.202. �

2.3.4.7 Design of Nominal Algebra

We designed nominal algebra originally to axiomatise substitution, first-order logic,
and the λ -calculus Gabbay and Mathijssen (2006a,c, 2008a,c, 2009).

We encountered two design decisions: whether to include freshness axioms, and
whether to include atoms-abstraction as primitive.

We disallowed freshness axioms because they are a definitional extension of
the system without them, and we chose to include atoms-abstraction as primitive
because—even though they too are a definitional extension (see next paragraph)—
they make for more compact derivations and proofs and we knew that the reader
would expect to see them in a ‘nominal’ paper. These decisions do not matter for
expressivity because of the following two equalities from Gabbay and Pitts (2001),
here written in the language of FM sets:

(Freshness) a#x⇔ Nb.(b a)·x = x

(Abstraction) Nb.([b](b a)·x = [a]x)

In Sect. 2.4.3.1 we express the equalities above in PNL. In Gabbay (2012b),
we do the same in nominal algebra, showing how to compile nominal algebra
with semantic freshness judgements and atoms-abstraction down to the core logic
without it.

Nabove is the new-quantifier meaning ‘for some/any fresh atom’ Gabbay and
Pitts (2001), Gabbay (2011b).14 Ndoes not care which fresh atom we choose
(the some/any property (Gabbay 2011b, Theorem 6.5)). So, we do not have to
be exact about supp(x) when we choose fresh b; any will do, and for instance
Proposition 2.201 is an ‘if and only if’ even though we chose b �∈ fa(r) (syntactic
freshness) instead of b �∈ supp(�r�) (semantic freshness), and it may be that
supp(�r�)� fa(r). More on this Sect. 2.4.3.1.

Note that including atoms-abstraction is orthogonal to the rest of the logic in the
sense that it is isolated by the sort system: if we provide no term-formers injecting
atoms-abstraction into base sorts, then it cannot interact with the rest of the logic.

The permissive-nominal algebra of this paper differs from the nominal algebra
of Gabbay and Mathijssen (2009) in the following respects:

• The system here is sorted, the system in Gabbay and Mathijssen (2009) is not.

14In words: ‘a is fresh for x if for some/any fresh b, (b a)·x = x’ and ‘for some/any fresh b,
[b](b a)·x = [a]x’.
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• We use permissive-nominal terms and semantics here, and ‘vanilla’ nominal
terms and nominal sets in Gabbay and Mathijssen (2009). That is, the logic here
is permissive-nominal algebra. Freshness conditions a#X and a#r translate to
a �∈ supp(X) and a �∈ fa(r) here.

• Axioms are exactly equalities, with no freshness contexts: permission sets play
this role instead.

• The syntax here admits non-equivariant constant symbols, that of Gabbay and
Mathijssen (2009) does not. That does not matter if we are using finitely-
supported models (as is the case in Gabbay and Mathijssen (2009)) because finite
non-equivariance can be emulated using term-formers applied to finitely many
atoms. Here, elements can have infinite support, which cannot be emulated using
(finite) equivariant term-formers.

• The syntax here admits the possibility of unknowns with empty support ranging
over closed elements (so it includes the •t freshness constraint of (Fernández
and Gabbay 2007, Section 9.2)), unknowns with finite support ranging over
finitely-supported elements, unknowns with support equal to a permission set,
and whatever else we can imagine in-between.

• The development is parameterised over the set of unknowns X and also the
group of permutations P. In particular we admit (but do not insist on) the
possibility of infinite permutations, including the shift-permutations considered
in Sect. 2.2.2.6.

• Substitutions and valuations are—rather elegantly—treated as equivariant func-
tions on X the set of unknowns.

In spite of these many differences, the spirit of the proofs remains the same.
The details become simpler, and in particular the non-equivariant constants make
construction of the free term model easier.15

2.3.5 The Nominal HSP Theorem

The HSP theorem states that a class of Σ-algebras is equational if and only if it is
closed under Homomorphism, Subobject, and Product. Definitions follow below,
and the main result is Theorem 2.228.

The result was first proved for the case of ‘ordinary’ algebra (using first-order
terms and not over nominal sets) by Birkhoff (1935). It is also called Birkhoff’s
theorem (Burris and Sankappanavar 1981, Theorem 11.12). We prefer ‘HSP’ since
this is more descriptive and Birkhoff’s name is attached to several other results.

The result was first proved for nominal algebra by the author Gabbay (2009),
and an alternative proof was provided by Kurz and Petrişan (2010). The new proof
presented here is also rather short.

15In Gabbay and Mathijssen (2009) to build the free term model we enriched syntax with n-ary
term-formers applied to atoms. This idea goes back to a completeness proof in Gabbay (2007a).
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HSP was interesting for two reasons: first, it is not obvious that nominal algebra
is a true logic of equality, because of the freshness side-conditions which give
the nominal algebra as presented e.g. in Gabbay and Mathijssen (2009) or in
Mathijssen’s thesis (2007) a prima facie flavour of conditional equalities. The HSP
result holding for nominal algebra was a way of making formal that this is a logic
of equality.

The use of permission sets to phrase the logic entirely in terms of equality
(freshness migrates to the types, as permission sets) is a step forward from this point
of view: the nominal algebra of this paper is more visibly an equational logic. Still,
HSP along with soundness and completeness (Theorem 2.188 and Corollary 2.200)
form a triumvirate of results of interest for an algebraic reasoning framework.

The proofs here are much shorter and clearer than those of Gabbay (2009)—and
the final result is strictly stronger than Gabbay (2009), Kurz and Petrişan (2010),
which actually proved an HSPA theorem that a class of Σ-algebras is equational
if and only if it is closed under Homomorphism, Subobject, Product, and Atoms-
abstraction.

That is, we have dropped the ‘atoms-abstraction’ from the closure conditions.
How can this be? The use of permission sets gives us finer control over the
support of valuations; we needed atoms-abstraction in the proof of (Gabbay 2009,
Theorem 9.8) to eliminate ‘extra’ atoms introduced by a valuation ς—‘extra’
relative to the freshness information in a freshness context Δ. Here, because
freshness contexts/permission sets are fixed, this cannot happen.

2.3.5.1 Algebra Homomorphisms

Definition 2.204. Suppose Σ = (A,B,C,X ,F ,ar) is a signature and suppose X
and Y are interpretations of Σ. A Σ-homomorphism Θ from X to Y is a family
of equivariant functions Θα from �α�X to �α�Y for each sort α in the sort-signature
(A,B) such that:

• Θν(aX ) = aY .
• Θ(α1,...,αn)(x1, . . . ,xn)

X = (Θα1(x1), . . . ,Θαn(xn))
Y .

• Θ[ν ]α([a]
X x) = [a]Y Θα(x).

• Θτ(f
X (x)) = fY (Θα(x)) where f : (α)τ is in F .

Definition 2.205. Call Y a homomorphic image of X when there is a Σ-
homomorphism Θ from X to Y such that Θα is surjective for every sort α in
(A,B).

Call Θ injective when Θα is injective for every sort α in (A,B).
Lemma 2.206. Suppose Σ is a signature and X and Y are Σ-algebras. Suppose
Θ is a Σ-algebra homomorphism from X to Y .

Suppose that ς is a valuation to X . Define Θ(ς) a valuation to Y by Θ(ς)(X) =
Θsort(X)(ς(X)) for every X ∈ X .
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Then for every r : α , Θα(�r�X
ς ) = �r�Y

Θ(ς).

Proof. By an easy induction on r. �
Lemma 2.207. Suppose Σ is a signature and T = (Σ,Ax) is a theory. Suppose X
and Y are Σ-algebras and Y is a homomorphic image of X under Θ.

Then if X is a model of T, then so is Y .

Proof. Choose (r = s) ∈ Ax and a valuation ς to Y . It suffices to show that �r�Y
ς =

�s�Y
ς .
We construct a valuation ς ′ to X as an equivariant extension (Definition 2.37) of

the following data. For each unknown X : α let XX = {x∈ |Xα | |Θ(x) = ς(X)}. We
construct a valuation ς ′ to X by for each orbit and representative X ∈ orb(X) ∈ X
setting ς ′(X) = x for some choice of x ∈ XX .

By construction Θς ′ = ς . By assumption �r�X
ς ′ = �s�X

ς ′ . We apply Θ to both sides
and use Lemma 2.206. �

2.3.5.2 Subalgebras

Definition 2.208. For Σ-algebras X and Y , call X a subalgebra of Y when:

• |τX | ⊆ |τY | for every τ ∈ B.
• The subset inclusion maps form a Σ-algebra homomorphism (Definition 2.204).16

Lemma 2.209. For Σ-algebras X , Y and a theory T= (Σ,Ax), if Y is a model of
T and X is a subalgebra of Y then X is a model of T.

2.3.5.3 Products

Definition 2.210. Let I be a (possibly countably infinite) indexing set and (Xi)i∈I

be an I-indexed collection of Σ-algebras. The product algebra Πi∈IXi is the Σ-
algebra such that:

• For each α in Σ, αΠi∈IXi =Πi∈IαXi as defined in Definition 2.27.
• The ith projection map to Xi is a Σ-algebra homomorphism for every i ∈ I.

Lemma 2.211. For any I-indexed collection of Σ-algebras (Xi)i∈I , if Xi is a model
of T= (Σ,Ax) for every i ∈ I then so is Πi∈IXi.

16That is:

– aX = aY for every atom a.
– (x1, . . . ,xn)

X = (x1, . . . ,xn)
Y for every x1 ∈ |�α1�

X |, . . . , xn ∈ |�αn�
Y |.

– [a]X x = [a]Y x for every x ∈ |�α�X |.
– For every term-former f in F , fX (x) = fY (x) for every x ∈ |�α�X | where ar(f) = (α)τ .
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Proof. Suppose (r = s) ∈ Ax. Suppose ς is a valuation to Πi∈IXi. For each i ∈ I
we obtain a valuation ςi to Xi by projecting to the ith component. It follows that
�r�Xi

ςi = �s�Xi
ςi , and thus �r�Πi∈IXi

ς = �s�Πi∈IYi
ς . �

2.3.5.4 Ground Term Models and Extending a Signature

Definition 2.212. Call r ground when fU(r) =∅.

Definition 2.213 exactly follows Definition 2.189 (cf. Remark 2.217):

Definition 2.213. Suppose T= (Σ,Ax) is a theory. For each sort α in Σ define [r]gnd
T

and G (T)α by

[r]gnd
T = {r′ : α | T � r = r′} (r : α,r ground)

G (T)α = {[r]gnd
T | r : α, r ground}.

Make each G (T)α into a permissive-nominal set by giving it a permutation action

π·[r]gnd
T = [π·r]gnd

T .

Lemma 2.214. supp([r]gnd
T )⊆ fa(r).

Proof. From Definition 2.189 and Lemma 2.21. �
Definition 2.215. We construct the ground free term interpretation G (T) of T as
follows:

We take G (T)α as in Definition 2.213. We define:

aG (T) = [a]gnd
T

[a]G (T)[r]gnd
T = [[a]r]gnd

T

([r1]
gnd
T , . . . , [rn]

gnd
T )G (T) = [(r1, . . . ,rn)]

gnd
T

fG (T)([r]gnd
T ) = [f(r)]gnd

T

CG (T) = [C]gnd
T

Above, f ranges over each term-former f : (α)τ in Σ and C ranges over each constant
in Σ.

Lemma 2.216. Definition 2.215 is well-defined and is an interpretation.

Proof. As the proof of Lemma 2.193. �
Remark 2.217. Definition 2.189 is a special case of Definition 2.189. We obtain
F (T) as G (T′) where T′ is obtained from T by extending its signature with a copy
of X as constants (the construction is made formal in Definition 2.219 below).
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Doing this in Definition 2.189 would have complicated the presentation for no
immediate gain, so it seemed kinder on the reader to build the special case first by
hand.

Note that we need to use ground terms now, for the proof of Theorem 2.220 to
work. The reason is that F (T) has elements in each sort given by the elements [X ]T,
whereas G (T) lacks these elements.

2.3.5.5 Surjective Maps onto Algebras

Fix a signature Σ and any collection of Σ-algebras V .

Definition 2.218. Suppose T= (Σ,Ax) and suppose X and Yi for i ∈ I are models
of T. Suppose θi ∈X → Yi is a family of homomorphisms.

Write Πiθi for the natural map from X to ΠiYi, mapping x ∈ |Xα | to (θi(x))i ∈
|ΠiYi|.
It is easy to verify that Πiθi is a Σ-algebra homomorphism.

Definition 2.219. Suppose Σ and Σ′ are signatures. Say Σ′ extends Σ with fresh
constants when Σ = (A,B,C,X ,F ,ar′) and Σ′ = (A,B,C ∪D,X ,F ,ar′) where
D∩C =∅ and ar′(C) = ar(C) for every C ∈ C.

Theorem 2.220. Suppose T= (Σ,Ax) is a theory and V is a model of T. Then there
exists a theory T′ = (Σ′,Ax) where Σ′ extends Σ with some fresh constants D such
that V is a homomorphic image of G (T′).

Proof. We take D =
⋃

α |Vα | and construct a homomorphism based on mapping
x ∈ Vα (as a constant in D) to itself (as an element of |Vα |). �

2.3.5.6 Injections Out of Free Algebras

Definition 2.221. Suppose Σ is a signature and V is a set of Σ-algebras. Let T =
(Σ,Ax) where Ax is the collection of judgements valid in all V ∈ V for all valuations.
Call T the (Σ-)theory generated by V .

Remark 2.222. So (r = s) ∈ Ax in Definition 2.221 when for every V ∈ V and
every valuation ς to V , it is the case that �r�V

ς = �s�V
ς .

Definition 2.223. Define the constants of a term consts(r) just as Definition 2.59
except that we take consts(C) = {orb(C)} and consts(X) =∅.

Lemma 2.224. Suppose Σ is a signature and Σ′ extends Σ with some fresh constants
D. Suppose Σ has enough unknowns (Definition 2.48).

If g is a ground term in Σ′ then there exists a term g-1 in Σ and substitution θ
such that g-1θ = g.
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Proof. For each orbit in consts(r) choose a representative C ∈ orb(C) ∈ consts(r),
and some distinct unknown XC with sort(XC) = sort(C) and supp(C)⊆ supp(XC)—
we can do this because we have assumed enough unknowns and it is a fact that
consts(r) is finite. Define θ to be the equivariant extension of this choice, so
θ(π·XC) = π·C and (for all the other unknowns) θ(Y ) = Y . This is well-defined
by Proposition 2.38.

It is now easy to generate g-1 by replacing each C in g with XC (modulo some
permutations). �
Theorem 2.225. Suppose V is a collection of Σ-algebras and Σ has enough
unknowns. Let T = (Σ,Ax) be the Σ-theory generated by V . Suppose Σ′ extends
Σ with some fresh constants D and write T′ = (Σ′,Ax).

Then there exists some indexing set I, set of algebras {Vi ∈ V | i ∈ I}, and an
injective Σ-algebra homomorphism Θ from G (Σ′) to Πi∈IVi.

Proof. Take I to be the set of all pairs (g,h) of ground terms in Σ′ such that
T′ �� g = h.

Consider some i = (g,h) ∈ I. By Lemma 2.224 there exist g-1, h-1, and θi such
that g-1θi = g and h-1θi = h. We assumed that T′ �� g = h and it follows using
Lemma 2.175 that T �� g-1 = h-1. Since T is the theory generated by V there
exists a model Vi ∈ V and a valuation ς such that �g-1�Vi

ς �= �h-1�Vi
ς . We define a Σ-

homomorphism Θi from G (T′) to Vi as an equivariant extension of mapping C ∈ D
to ς(XC), where C and XC are as chosen in the proof of Lemma 2.224.

It follows by the choice of Vi that Πi∈Iθi from G (T′) to Πi∈IVi is injective as a
map on underlying sets. �

2.3.5.7 Proof of the HSP Theorem

We can now prove Theorem 2.228; a similar result for nominal algebra is proved in
Gabbay (2009).

Definition 2.226. Suppose Σ is a signature. Suppose V is a collection of Σ-algebras.
Then:

• Call V a (Σ-)variety when it is closed under Homomorphic image
(Definition 2.204), Subalgebra (Definition 2.208), and countable Product
(Definition 2.210).

• Call V (Σ-)equational when it is the collection of Σ-algebras that are models of
T= (Σ,Ax) for some set of axioms Ax.

Lemma 2.227. Suppose Σ is a signature with enough unknowns. Suppose V is a
Σ-variety and let T= (Σ,Ax) be the Σ-theory generated by V . Suppose Σ′ extends Σ
with some fresh constants D and write T′ = (Σ′,Ax). Then G (T′) ∈ V .

Proof. By Theorem 2.225 there is some indexing set I, set of Σ-algebras {Vi ∈ V |
i ∈ I}, and injective Σ-algebra homomorphism Θ from G (T′) to Πi∈IVi. V is closed
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under products so Πi∈IVi ∈ V . The image of |G (T′)| is a subalgebra of Πi∈IVi, and
is a homomorphic image of that subalgebra (by inverting Θ). V is closed under
subalgebras and homomorphic images, so the result follows. �
Theorem 2.228. Suppose Σ is a signature with enough unknowns. A collection of
Σ-algebras V is equational if and only if it is a variety

Proof. Suppose V is equational. By Lemma 2.211 V is closed under products. By
Lemma 2.207 V is closed under homomorphic images. By Lemma 2.209 V is closed
under subalgebras. Therefore V is a variety.

Conversely, suppose V is a variety. Let T be the theory on Σ generated by V
as described in Definition 2.221. Let V be any model of T. By Theorem 2.220
there exists a signature Σ′ extending Σ with some fresh constants D such that V is
a homomorphic image of G (T′). By Lemma 2.227 G (T′) ∈ V . Since V is closed
under homomorphisms, V ∈ V as required. Therefore V is equational. �

2.4 Permissive-Nominal Logic: ∀X

2.4.1 Permissive-Nominal Logic

We now add quantification over unknowns—that is, ∀X—to permissive-nominal
terms. Permissive nominal techniques makes the theory of α-equivalence easy here:
if we used ‘vanilla’ nominal terms, then the development below might not be
impossible, but we believe that it would be harder. We obtain a first-order logic
which we call permissive-nominal logic.

Permissive-nominal logic (PNL) is just first-order logic, enriched with nominal-
style names. Thus, the derivation rules in Fig. 2.5 are (virtually) identical to those
of first-order logic. Only the term language is really changed.

(Ax)
Φ, φ � π·φ ,Ψ

(⊥L)
Φ,⊥ �Ψ

Φ � φ ,Ψ Φ, ψ �Ψ
(⇒L)

Φ, φ ⇒ ψ �Ψ

Φ, φ � ψ,Ψ
(⇒R)

Φ � φ ⇒ ψ,Ψ

Φ, φ [X :=r] �Ψ
(fa(r)⊆supp(X), r:sort(X))

(∀L)
Φ, ∀X .φ �Ψ

Φ � φ ,Ψ (X �∈ fU(Φ,Ψ))
(∀R)

Φ � ∀X .φ ,Ψ

Φ � φ ,Ψ Φ, φ �Ψ
(Cut)

Φ �Ψ

Fig. 2.5 Sequent derivation rules of Permissive-Nominal Logic
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In this section we set up PNL as a sequent derivation system (Fig. 2.5),
interpret it in permissive-nominal sets (Definition 2.241), and prove soundness and
completeness (Theorems 2.245 and 2.261).

In Sect. 2.4.2 we undertake as an extended case study a sound and complete finite
axiomatisation of arithmetic inside PNL.

2.4.1.1 Syntax

The notions of sort-signature (A,B) and sort language are as in Definition 2.39. An
interpretation I for (A,B) consists of an assignment of a permissive-nominal set
τI to each τ ∈ B, and we extend I to sorts as in Definition 2.176.

Definition 2.229. For this section it is convenient to take X to be specifically
example 2 of Example 2.45.

Remark 2.230. So an unknown X takes the form

π·Xα = {(π ′,Xα) | ∀a∈A< .π(a) = π ′(a)}.

In this case, in the light of Remark 2.46, we may take fU(r) to be equal to the set of
Xα occurring in r.

It is now easy to define binding of unknowns (level 2 variables) in terms. A more
abstract account of level 2 binding is also available Gabbay (2011c).

Definition 2.231. A PNL signature over a sort-signature (A,B) is a tuple
(C,F ,P,ar) where:

• C is a permissive-nominal set of constants.
• F is a set of equivariant term-formers.
• P is a set of equivariant predicate-formers.
• ar assigns

– to each constant C ∈ C an arity τ ,
– to each f ∈ F a term-former arity (α)τ , and
– to each P ∈ P a proposition-former arity α , where

α and τ are in the sort-language determined by (A,B).
A (PNL) signature S is then a tuple (A,B,C,F ,P,ar).

Definition 2.232. Suppose S = (A,B,C,F ,P,ar) is a PNL signature.
Terms are defined as in Definition 2.49 for the signature (A,B,C,X ,F ,ar).17

17The reader who would answer ‘Can you pass the salt?’ with ‘Yes.’ should note that we have to
adjust ar to remove P and add X mapping X to α where (π,Xα ) ∈ X .
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Propositions are defined as follows:

⊥ proposition

φ proposition ψ proposition

φ ⇒ ψ proposition

r : α (ar(P) = α)

P(r) proposition

φ proposition

∀Xα .φ proposition

Here ∀Xα binds Xα in φ . We can use nominal abstract syntax to do this.

Notation 2.233. Write ∀X .φ as shorthand for ∀Xα .φ where X = {(π ′,Xα) |
∀a∈A< .π ′(a) = π(a)} for some π .

Lemma 2.234. Support and the permutation action as characterised for terms on
Lemma 2.53 extend to propositions as follows:

supp(⊥) = ∅ supp(P(r)) = supp(r)
supp(φ ⇒ ψ) = supp(φ)∪ supp(ψ) supp(∀X .φ) = supp(φ)

π·⊥= ⊥ π·P(r) = P(π·r)
π·(φ ⇒ ψ) = (π·φ)⇒ π·ψ π·∀X .φ = ∀X .π·φ

Notation 2.235. We may write fa(φ) for supp(φ).

2.4.1.2 Derivability

Definition 2.236. Φ and Ψ will range over sets of propositions. We may write φ ,Φ
and Φ,φ as shorthand for {φ}∪Φ. We may write Φ,Ψ as shorthand for Φ∪Ψ.

Write fU(Φ) =
⋃{fU(φ) | φ ∈Φ}.

A sequent is a pair Φ �Ψ.

Definition 2.237 (Derivable sequents). The derivable sequents are defined in
Fig. 2.5.

Remark 2.238. As standard, the intuition of Φ �Ψ being derivable is “the conjunc-
tion (logical and) of the propositions in Φ entails the disjunction (logical or) of the
propositions in Ψ”. So for instance, intuitively the axiom rule (Ax) expresses that φ
if and only if π·φ .

The permutation π in (Ax) is deliberate and represents equivariance (preserva-
tion of truth under permuting atoms) within permissive-nominal logic. Because of
this permutation π , free atoms can behave like variables ranging over distinct atoms.

Thus in PNL we can express a theory of atoms-inequality as follows: Suppose
a name sort Atm and a proposition-former neq : (Atm,Atm), along with a single
proposition neq(a,b) for two distinct atoms in Atm—and, if we wish, another
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proposition neq(a,a)⇒⊥. The permutation π in (Ax) ensures that a and b represent
any two distinct atoms.

Remark 2.239. The condition fa(r) ⊆ supp(X) in (∀L) might suggest that ∀X .φ
means “φ [X :=r] for every r such that fa(r)⊆ supp(X)”. This is so, but the π in (Ax)
means that what supp(X) in ∀X .φ really restricts is capture, as we now discuss.

• Suppose a name sort Atm and suppose X : Atm and P : Atm. Suppose b ∈
pmss(X). By considering the swapping (b a) and (Ax), and (∀L), ∀X .P(X) �
P(b) for all a, even if a �∈ supp(X), as follows:

(Ax) π = (b a)
P(b) � P(a)

(∀L) [X :=b]
∀X .P(X) � P(a)

So we can derive P(a) from ∀X .P(X), even if a is not permitted in X .
• This may not work if we have to ‘shift’ infinitely many atoms; e.g. there is no

finite π such that fa(π·(X ,a)) ⊆ supp(X) where a �∈ supp(X). If P has shift-
permutations (Definition 2.79), then we can use them.

Consider any sort α and suppose X : α and supp(X) = S. Suppose Q : α .
Consider any other Y : α with supp(Y ) = S∪{a} where a �∈ S. We will show that
given shift-permutations, ∀X .Q(X) � Q(Y ) is derivable.

Suppose S∪{a}= π·S. We derive as follows:

(Ax)
Q(π·Y ) � Q(Y )

(∀L) [X :=π·Y ]
∀X .Q(X) � Q(Y )

• Nevertheless, ∀X .φ does not mean “φ [X :=r] for every r”. This is because
permutations are bijective. For example, suppose X : Atm, a �∈ supp(X), and
P : ([Atm]Atm). Then ∀X .P([a]X) � P([a]r) for all r such that a �∈ fa(r), and
also ∀X .P([b]X) � P([b]r) for all r and all b such that b �∈ fa(r). However,

∀X .P([a]X) �� P([a]a), and for all b, ∀X .P([a]X) �� P([b]b).

The fact that a �∈ supp(X) forbids capture by an instantiation, in a suitable sense.

2.4.1.3 Interpretation and Soundness

Definition 2.240. Suppose S = (A,B,C,F ,P,ar) is a signature.
A (PNL) interpretation I for S consists of the following data:

• An interpretation for the sort-signature (A,B) (Definition 2.176).
• For every f ∈ F with ar(f) = (α ′)α an equivariant function fI from �α ′�I to

�α�I (Definition 2.19).
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• For every P ∈ P with ar(P) = α an equivariant function PI from
�α�I to {0,1} (Definition 2.23).

Definition 2.241. Suppose that I is an interpretation. Define an interpretation of
propositions by:

�P(r)�I
ς = PI (�r�I

ς )

�⊥�I
ς = 0

�φ ⇒ ψ�I
ς = max{1−�φ�I

ς ,�ψ�I
ς }

�∀X .φ�I
ς = min{�φ�I

ς [X :=x] | x∈�sort(X)�I , supp(x)⊆supp(X)}

Lemma 2.242. �φ�I
ς = �π·φ�I

ς always.

Proof. By induction on φ . We consider two cases:

• The case ∀X .φ . Suppose �∀X .φ�I
ς = 1. This means that �φ�I

ς [X :=x] = 1 for all
x ∈ �α�I such that supp(x) ⊆ supp(X). By inductive hypothesis �π·φ�I

ς [X :=x] = 1
for all x ∈ �α�I such that supp(x) ⊆ supp(X). Therefore �∀X .π·φ�I

ς = 1. The
result follows, since π·(∀X .φ)=∀X .π·φ .

• The case P(r). We have �P(r)�I
ς = PI (�r�I

ς ). As PI is equivariant, we get
�P(r)�I

ς = PI (π·�r�I
ς ). By Lemma 2.181 π·�r�Iς = �π·r�I

ς . Thus �P(r)�I
ς =

PI (�π·r�I
ς ) = �π·P(r)�I

ς .

�
Lemma 2.243. �φ�I

ς [X :=�t�I
ς ]
= �φ [X :=t]�I

ς .

Proof. By a routine induction on the definition of �φ�I
ς in Definition 2.241. We

consider one case:

• The case of �P(r)�I
ς [X :=t]. We reason as follows:

�P(r)�I
ς [X :=�t�I

ς ]
= PI (�r�I

ς [X :=�t�I
ς ]
) Definition 2.241

= PI (�r[X :=t]�I
ς ) Lemma 2.187

= �P(r)[X :=t]�I
ς Definition 2.241.

�

Validity and soundness

Definition 2.244 (Validity). Call the proposition φ valid in I when �φ�I
ς = 1 for

all ς .
Call the sequent φ1, . . . ,φn �ψ1, . . . ,ψp valid in I when (φ1∧·· ·∧φn)⇒ (ψ1∨

·· ·∨ψp) is valid.

Theorem 2.245 (Soundness). If Φ � Ψ is derivable, then it is valid in all
interpretations.
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Proof. By induction on derivations (Fig. 2.5). The case of (Ax) uses Lemma 2.242.
The case of (∀L) uses Lemma 2.243. The case of (∀R) uses Lemma 2.184. Other
rules are routine by unpacking definitions. �

2.4.1.4 Completeness

In this section we prove Theorem 2.261: a converse to Theorem 2.245, that if φ is
valid in all interpretations, then φ it is derivable.

For this section fix the following data:

• A signature S = (A,B,C,F ,P,ar).
• A formula φ such that �� φ .

We will construct an interpretation I and a valuation ς (Definition 2.176) such that
�φ�I

ς = 0. This suffices to prove the result.

Maximally consistent set of propositions

Definition 2.246. Make a fixed but arbitrary order on propositions ξ1, ξ2, ξ3, . . .
Define Φ1 = {¬φ} (where φ was fixed above). For each i≥ 1 we define Φi+1 as

follows:

• If Φi � ξi then write ξ = ξi.
• If Φi � ¬ξi then write ξ = ¬ξi.
• If Φi �� ξi and Φi �� ¬ξi then write ξ = ξi.

There are now two cases:

• If ξ has the form ¬∀X .ξ ′ then we define Φi+1 =Φi∪{ξ ,¬ξ ′[X :=Z]} where Z is
some fixed but arbitrary choice of unknown that is not free in any proposition in
Φi and is such that supp(Z) = supp(X) and sort(Z) = sort(X).

• Otherwise, we define Φi+1 =Φi∪{ξ}.
Finally, we define Φω by Φω =

⋃
i Φi.

Lemma 2.247. For every i, Φi �� ⊥.

Proof. By induction on i:

• By definition Φ1 = {¬φ}. As �� φ , we have ¬φ �� ⊥
• Suppose Φi �� ⊥.

Either Φi+1 =Φi∪{¬ξ} or Φi+1 =Φi∪{¬ξ ,¬ξ ′[X :=Z]}—we consider the first,
simpler case; the second case is similar. Suppose Φi,ξ � ⊥. It follows that Φi �
¬ξ . So we are not in the third case of Definition 2.246 and we are either in the
first or the second. So Φi � ξ and thus Φi � ⊥; a contradiction.

�
Lemma 2.248. Φω �� ⊥.
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Proof. Assume Φω � ⊥. So there exists a finite subset Γ of Φω such that Γ � ⊥. As
Γ is finite it is included in some Φi, and Φi � ⊥, contradicting Proposition 2.247. �
Remark 2.249. It is well-known that in nominal sets, least upper bounds can
sometimes not exist if there are ‘too many’ atoms; so sometimes we have to be
careful to not make too many arbitrary choices.18

The reader familiar with nominal techniques will be alert to the possibility
that Φω might fail to have a supporting permission set, and that this could cause
problems. In fact, in this particular case this is a non-issue: (Ax) from Fig. 2.5
ensures that Φω is not only supported, but in fact equivariant.

Lemma 2.250. For every ξ , at least one of ξ ∈Φω and ¬ξ ∈Φω holds.

Proof. We check of Definition 2.246 that for every i, either ξi ∈Φi+1 or ¬ξi ∈Φi+1.
The result follows. �
Lemma 2.251. For every ξ , if ¬∀X .ξ ∈ Φω then there exists a Z such that
¬ξ [X :=Z] ∈Φω .

Proof. There exists an i such that ξi = ¬∀X .ξ . Since Φω � ξi and Φω �� ⊥, we have
that Φω �� ¬ξi, and so Φi �� ¬ξi. Thus Φi+1 =Φi∪{¬∀X .ξ , ¬ξ [X :=Z]}. The result
follows. �
Lemma 2.252. If Φω � φ then φ ∈Φω .

Proof. As, by Lemma 2.248, Φω �� ⊥, if Φω � φ then ¬φ �∈ Φω . Thus by
Lemma 2.250, φ ∈Φω . �
Corollary 2.253.

1. (φ ⇒ ψ) ∈Φω if and only if (φ �∈Φω or ψ ∈Φω ).
2. ∀X .φ ∈Φω if and only if

(for every r such that r : sort(X) and fa(r)⊆ supp(X), φ [X :=r] ∈Φω ).

Proof.

1. Suppose (φ ⇒ ψ) ∈ Φω and φ ∈ Φω . Then Φω � ψ and so by Lemma 2.252
ψ ∈Φω .

Suppose φ �∈ Φω . By Lemma 2.250 ¬φ ∈ Φω . So Φω � ¬φ and therefore
Φω � φ ⇒ ψ . By Lemma 2.252 (φ ⇒ ψ) ∈Φω .

Suppose ψ ∈ Φω . Then Φω � ψ and so Φω � φ ⇒ ψ . By Lemma 2.252
(φ ⇒ ψ) ∈Φω .

2. Suppose ∀X .φ ∈ Φω . By Lemma 2.252, if r : sort(X) and fa(r) ⊆ supp(X) then
φ [X :=r] ∈Φω .

18For instance, in permissive-nominal sets it is possible represent a well-order of each permission
set, but not to represent a well-ordering of the set of all atoms (which is a limit of permission
sets). This is also the feature which Fraenkel and Mostowksi used to prove the independence of the
axiom of choice from the other axioms of set theory.
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Conversely, suppose φ [X :=r]∈Φω for every r such that r : sort(X) and fa(r)⊆
supp(X). We proceed by contradiction: suppose ∀X .φ �∈ Φω . By Lemma 2.250
¬∀X .φ ∈ Φω and by Lemma 2.251, there exists a Z such that ¬φ [X :=Z] ∈ Φω .
So Φω � ¬φ [X :=Z], and so Φω � φ [X :=Z], and so Φω � ⊥, contradicting
Lemma 2.248.

�

The term interpretation

Definition 2.254. Define the term interpretation I by:

• �α�I = {r | r : α}.
• fI maps r to f(r).
• PI maps r1, . . . ,rn to 1 if P(r1, . . . ,rn) ∈Φω and to 0 otherwise.

Define ς by ς(X) = X for all X ∈ X and endow �α�I with a permutation action
given by the action on terms.

Remark 2.255. In Definition 2.192 we built an interpretation to prove completeness
of nominal algebra (Corollary 2.200). There, we built our interpretation out of terms
quotiented by derivable equality; here we just use terms. Why the difference?

In nominal algebra the judgement-form of the logic is equality—so it makes
sense to build an interpretation such that equality maps to denotational identity.

Lemma 2.256.

1. If ar(f) = (α)τ then fI is well-defined, equivariant, and maps �α�I to �τ�I .
2. If ar(P) = α then PI is well-defined, equivariant, and maps �α�I to {0,1}.
Proposition 2.257. I is an interpretation of the signature S = (A,B,F ,
P,ar) which we fixed at the beginning of this section. In addition, ς is a valuation
to I .

Proof. By Lemma 2.256 for each f : (α ′)α ∈ F , fI is an equivariant map from
�α ′�I to �α�I and for each P : α ∈ P , PI is an equivariant function from �α�I to
{0,1}.

By construction ς(X) ∈ �sort(X)�I always. Equivariance is easy. �
Lemma 2.258. �r�I

ς = r.

Lemma 2.259. �ξ �I
ς = 1 if and only if ξ ∈Φω .

Proof. By induction on the definition of �ξ �I
ς (Definition 2.241):

• The case of �P(r)�I
ς . We reason as follows:

�P(r)�I
ς =1 ⇔ PI (�r�I

ς ) = 1 Definition 2.241

⇔ PI (r) = 1 Lemma 2.258

⇔ P(r) ∈Φω Definition 2.254
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• The case of �⊥�I
ς . By definition �⊥�I

ς = 0. By part 1 of Corollary 2.253, ⊥ �∈
Φω .

• The case of �φ ⇒ ψ�I
ς . We reason as follows:

�φ ⇒ ψ�I
ς =1⇔ �φ�I

ς = 0 or �ψ�I
ς =1 Definition 2.241

⇔ φ �∈Φω or ψ ∈Φω ind. hyp.
⇔ φ ⇒ ψ ∈Φω Cor. 2.253, part 2

• The case of �∀X .φ�I
ς , where α = sort(X) and S = supp(X).

�∀X .φ�I
ς =1 ⇔ ∀t∈�α�I .supp(t)⊆S⇒ �φ�I

ς [X :=t]=1 Definition 2.241

⇔ ∀t∈�α�I .supp(t)⊆S⇒ �φ [X :=t]�I
ς = 1 Lems. 2.184, 2.258

⇔ �φ [X :=t]�I
ς = 1 every t:α s.t. fa(t)⊆S supp(t) = fa(t)

⇔ φ [X :=t]∈Φω every t:α s.t. fa(t)⊆S ind. hyp.

⇔ ∀X .φ∈Φω Cor. 2.253, part 4

�
Lemma 2.260. If �� φ , then there exists an interpretation I and a valuation ς such
that �φ�I

ς = 0.

Proof. As ¬φ∈Φ0⊆Φω and Φω ��⊥, we have φ �∈Φω . By Lemma 2.259, we get
�φ�I

ς = 0. �
As a corollary we get Theorem 2.261:

Theorem 2.261 (Completeness). If φ is valid in all interpretations, then φ is
derivable.

2.4.2 Case Study: Arithmetic in Permissive-Nominal Logic

Because term-formers in PNL can bind, we can axiomatise first-order logic. Thus
assume a sort o whose terms reflect formulas of first-order logic. Then PNL
quantification ∀Z where Z : o has the quality of an axiom schema, and we can use
those terms to axiomatise arithmetic (a theory which in first-order logic famously
involves an axiom schema).

So, we should be able to use PNL to give a finite, first-order axiomatisation
of arithmetic. Writing down some plausible-looking axioms is one thing—proving
they do what we expect them to do, is another. In this section, as a case study of an
application of PNL, we do just that.
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We assume one atomic sort ν and two base sorts ι and o.
We assume term-formers and proposition-formers as follows:

.
0 : ι .

succ : (ι)ι
.
+: (ι , ι)ι .∗: (ι , ι)ι.

⊥ : o .⇒: (o,o)o
.
∀ : ([ν ]o)o .≈: (ι , ι)o

var : (ν)ι subι : ([ν ]ι , ι)ι subo : ([ν ]o, ι)o

≈ι : (ι , ι) ≈o: (o,o) ε : (o)

Fig. 2.6 Signature
.L suitable for a PNL specification of arithmetic

(≈2) ∀X ′,X ,Y ′,Y.(X ′≈X∧Y ′≈Y )⇒
(

X ′
.
+ Y ′ ≈ X

.
+ Y ∧

X ′
.∗ Y ′ ≈ X

.∗ Y ∧
X ′ .⇒ Y ′ ≈ X .⇒ Y ∧
X ′

.≈ Y ′ ≈ X
.≈ Y

)

(≈1) ∀X ′,X . X ′≈X ⇒ .
succ(X ′)≈ .

succ(X)

(≈0) ∀X . X ≈ X
(≈

.
∀) ∀Z′,Z. Z′≈Z ⇒

.
∀([a]Z′)≈

.
∀([a]Z)

(≈sub) ∀X ′,X ,Y ′,Y.(X ′≈X∧Y ′≈Y )⇒
(
subι([a]X ′,Y ′)≈ subι([a]X ,Y ) ∧
subo([a]X ′,Y ′)≈ subo([a]X ,Y )

)

(≈o) ∀Z′,Z. Z′≈Z ⇒ (ε(Z′)⇔ ε(Z))
(≈ι) ∀X ′,X . X ′≈X ⇒ ε(X ′ .≈ X)

We fill in sorts as appropriate. Thus,
.
⊥ ≈o

.
⊥ whereas 0 ≈ι 0, and so on. The

permission sets of all unknowns are equal to A< , and a ∈ A< .

Fig. 2.7 EQU: axioms for equality as a PNL theory

We proceed as follows, starting with the following PNL definitions:

• Figure 2.6 gives
.
L a signature for a shallow embedding of terms and formulas of

first-order logic as PNL terms of sort ι and o respectively.
• Figure 2.7 gives equality axioms, as a transitive reflexive symmetric congruence

for the term-formers in
.
L.

• Figure 2.8 axiomatises substitution. We can have some confidence in this
axiomatisation because it was already considered for nominal algebra in Gabbay
and Mathijssen (2008a) and proven correct.

• Figure 2.9 gives axioms for first-order logic.
• Finally, Fig. 2.10 gives axioms for arithmetic. As discussed above, the induction

axiom schema is captured using a universal quantification (the ∀Z in (PInd)).

Sect. 2.4.2.4 briefly recalls the syntax and derivability relation of ‘real’ first-order
logic. Then Sect. 2.4.2.5 maps this into the PNL theory we just constructed.
Section 2.4.2.6 briefly recalls Peano arithmetic in the ‘real’ first-order logic.



2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 153

(subvar) ∀X . var(a)[a�→X ] ≈ X
(sub#) ∀X ,Z. Z[a�→X ] ≈ Z
(sub .

succ) ∀X ′,X .
.

succ(X ′)[a�→X ] ≈ .
succ(X ′[a�→X ])

(sub
.
+) ∀X ′′,X ′,X . (X ′′

.
+ X ′)[a�→X ] ≈ (X ′′[a�→X ]

.
+ X ′[a�→X ])

(sub
.∗) ∀X ′′,X ′,X . (X ′′

.∗ X ′)[a�→X ] ≈ (X ′′[a�→X ]
.∗ X ′[a�→X ])

(sub .⇒) ∀X ′′,X ′,X . (X ′′ .⇒ X ′)[a�→X ] ≈ (X ′′[a�→X ] .⇒ X ′[a�→X ])

(sub
.≈) ∀X ′′,X ′,X . (X ′′

.≈ X ′)[a�→X ] ≈ (X ′′[a�→X ]
.≈ X ′[a�→X ])

(sub
.
∀) ∀X ,Z. (

.
∀([b]Z))[a�→X ] ≈

.
∀([b](Z[a�→X ]))

(subid) ∀X . X [a�→var(a)] ≈ X

a ∈ A< and b �∈ A< . The permission set of X ′′, X ′, and X is equal to A< .
The permission set of Z is equal to (b a)·A< .

Fig. 2.8 SUB: axioms for substitution as a PNL theory

( .⇒) ∀Z′,Z. ε(Z′ .⇒ Z) ⇔ (ε(Z′)⇒ ε(Z))
(

.
∀) ∀Z.

(
ε(

.
∀([a]Z))⇔ ∀X .ε(Z[a�→X ])

)

(
.
⊥) ε(

.
⊥) ⇒⊥

Here Z′ and Z have sort o, permission set A< , and a ∈ A< .

Fig. 2.9 FOL: axioms for first-order formulas as a PNL theory

(PS0) ∀X .
.

succ(X) ≈
.
0⇒⊥

(PSS) ∀X ′,X .
.

succ(X ′) ≈ .
succ(X)⇒ X ′ ≈ X

(P+0) ∀X . X
.
+

.
0 ≈ X

(P+succ) ∀X ′,X .X ′
.
+

.
succ(X) ≈ .

succ(X ′)
.
+X

(P∗0) ∀X . X
.∗
.
0 ≈

.
0

(P∗succ) ∀X ′,X . X ′
.∗ .
succ(X) ≈ (X ′

.∗X)
.
+X

(PInd) ∀Z.ε(Z[a�→
.
0])⇒(

∀X .(ε(Z[a�→X ])⇒ ε(Z[a�→ .
succ(X)]))

)
⇒

∀X .ε(Z[a�→X ])

The permission set of X , X ′, and Z is A< , and a ∈ A< .

Fig. 2.10 ARITH: axioms for arithmetic as a PNL theory

Finally, in Sect. 2.4.2.7 by arguments on models we show our main result of this
section: Theorem 2.286. A formula is derivable in ‘real’ Peano arithmetic if and
only if its translation in PNL is derivable in the PNL theory for arithmetic.

The permissive-nominal terms, PNL, permission-sets, and permissive-nominal
sets semantics, all work together, and at the end of it all we really can embed a
non-trivial theory with binding in PNL, and know it is correct.
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2.4.2.1 The Signature
.
L and the Axioms

Definition 2.262. A signature
.
L suitable for writing out a PNL theory of first-order

logic is given in Fig. 2.6.

Notation 2.263. We introduce the following syntactic sugar:

• We may write subo([a]r, t) as r[a�→t].
• We may write subι([a]r, t) as r[a�→t].
• We may write both ≈ι and ≈o just as ≈.

Examples of this in use, follow immediately below.

2.4.2.2 The Axioms: Equality, Substitution, First-Order Logic,
and Arithmetic

Equality

Axioms for equality ≈: (ι , ι) and equality ≈: (o,o) are given in Fig. 2.7.

Substitution

Axioms for substitution subι and subo are given in Fig. 2.8.
We arguably abuse notation in Fig. 2.8 when we use unknowns of sort ι and o as

appropriate not necessarily giving them distinct names (e.g. in (sub∗) X has sort ι ,
whereas in (sub .⇒) we use another unknown also written X with sort o).

First-order logic

Axioms for (a shallow reflection of) first-order formulas as terms in PNL (the
.
⊥,

.⇒, and
.
∀) are given in Fig. 2.9.

Arithmetic

Given EQU, SUB, and FOL, it is not hard to write axioms for arithmetic in
PNL. This is in Fig. 2.10. Later on in Theorem 2.286 we prove that this is an
axiomatisation of arithmetic in PNL.

2.4.2.3 Comments on the Axioms

Remark 2.264. SUB is a PNL rendering of the nominal algebra theory naSUB from
Example 2.170; the universal quantifiers which are implicit in the nominal algebraic
judgement-form are made explicit here. This is essentially the same axiomatisation
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as studied in Gabbay and Mathijssen (2006a, 2008a). Soundness and completeness
are proved, so providing some formal sense in which the axioms of SUB are ‘right’.

In Gabbay and Mathijssen (2008c) first-order logic is equationally axiomatised
using nominal algebra (so the axioms involve only equality). Because PNL is
already a first-order logic, we can use ⊥,⇒, and ∀ directly to capture the behaviour
of

.
⊥, .⇒, and

.
∀. So note that FOL here is not the axiomatisation of Gabbay and

Mathijssen (2008c); there we had to work a little harder because the ambient logic,
nominal algebra, was purely equational.

Remark 2.265. Instead of the axioms for equality EQU, we could directly extend
PNL by adding derivation rules Fig. 2.5 as follows:

Φ, r ≈ s, φ [X :=r], φ [X :=s] �Ψ (fa(r)∪fa(s)⊆ supp(X))
(≈S)

Φ, r ≈ s, φ [X :=r] �Ψ

Φ, r ≈ r �Ψ
(≈R)

Φ �Ψ

Remark 2.266. Every unknown has a sort, and a permission set.
Different choices of permission set may yield logically equivalent results. For

example, in (sublam) it is not vital that supp(Z) is exactly (b a)·A< . The important
point is that a �∈ supp(Z).

Similarly, in (subapp) it is not vital that supp(X ′′) = supp(X ′); when we use
the axiom we can instantiate X ′′ and X ′ to r′′ and r′ such that fa(r′′) �= fa(r′), and
conversely if we take supp(X ′′) �= supp(X ′) then we can still instantiate X ′′ and X ′

to r′′ and r′ such that fa(r′′) = fa(r′)⊆ supp(X ′′)∩ supp(X ′).

2.4.2.4 First-Order Logic L

We will use the atoms Aν from
.
L in Sect. 2.4.2 as variables of our first-order logic

(this is not necessary, but it is convenient). So for this section, a,b,c, . . . will range
over distinct atoms in Aν .

Definition 2.267. Define terms and formulas of L by:

t ::= a | 0 | succ(t) | t + t | t ∗ t
ξ ::= t ≈ t | ⊥ | ξ ⇒ ξ | ∀a.ξ

Substitution t ′[a:=t] and ξ [a:=t] is as usual for first-order logic. We write sequents
Ξ � χ where Ξ and χ are sets of formulas. Derivability is as usual for first-order
logic.
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Definition 2.268. Define a mapping (-). from terms and formulas of L to terms of.
L (Sect. 2.4.2.1) by:

(a). = a (0). =
.
0

(succ(t)). = .
succ((t).) (t ′+ t). = (t ′).

.
+ (t).

(t ′ ∗ t). = (t ′).
.∗ (t).

(t ′ ≈ t). = (t ′).
.≈ (t). (⊥). =

.
⊥

(ξ ′ ⇒ ξ ). = (ξ ′). .⇒ (ξ ). (∀a.ξ ). =
.
∀[a](ξ ).

Definition 2.269. Extend (-). to first-order logic sequents Ξ � χ as follows:

(Ξ � χ)
.
= ε(

.
∀[a1] . . .

.
∀[an]((ξ1∧ . . .∧ξk)⇒ (χ1∨ . . .∨ χl))

.
)

Here, Ξ = {ξ1, . . . ,ξk}, χ = {χ1, . . . ,χl}, and the free variables of Ξ and χ are
{a1, . . . ,an} (in some order).

Notation 2.270. Write S for EQU∪SUB∪FOL.

Lemma 2.271. S � (t ′[a:=t]). ≈ (t ′).[a�→(t).] and
S � (ξ [a:=t]). ≈ (ξ ).[a�→(t).].

Proof. By routine inductions on t and ξ . �
Theorem 2.272 (Correctness). If Ξ � χ is derivable in first-order logic then S �
(Ξ � χ)

. is derivable in PNL.

Proof. By a long but routine inspection we can check that EQU, SUB, and FOL
allow us to model the behaviour of ‘real’ first-order logic. We use Lemma 2.271. �

2.4.2.5 Interpretation of First-Order Logic

We recall the usual definition of interpretations in first-order logic:

Definition 2.273. A nominal (first-order logic) interpretation M is a carrier
set M, and elements:

0M ∈ M, succM ∈ M→M,

+M ∈ (M×M)→M, and ∗M ∈ (M×M)→M.

It is convenient to fix some M from here until Theorem 2.286.

Definition 2.274. Define ValuAν (M) by:

ValuAν (M) = {ε ∈ Aν →M | ∃A⊆ Aν .A finite ∧ ∀a,b �∈ A.ε(a) = ε(b)}

Call elements of ValuAν (M)Aν -valuations (to M). ε will range over Aν -valuations.
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If x ∈M write ε[a:=x] for the valuation mapping b to ε(b) and mapping a to x:

ε [a:=x](a) = x
ε [a:=x](b) = ε(b)

Give ε ∈ ValuAν (M) and X ⊆ ValuAν (M) a pointwise permutation action:

(π ·ε)(a) = ε(π -1(a)).
π ·X = {π ·ε | ε ∈ X}.

U,V will range over finitely-supported subsets of ValuAν (M)—so there exists some
finite A⊆ Aν such that for all π , if π(a) = a for all a ∈ A then π ·U =U .

Remark 2.275. ValuAν (M) would normally just be called ‘the set of valuations’.
We are more specific since we separately also have valuations on unknowns X
(Definition 2.178).

PNL atoms are serving as variable symbols of L. To conveniently apply nominal
techniques, it is useful to restrict to valuations that are finite in the sense given in
Definition 2.274. In any case, any term or formula will only contain finitely many
atoms.

Definition 2.276. We extend the interpretation to first-order logic syntax as
follows:

�a�M
ε = ε(a)

�0�M
ε = 0M

�succ(t)�M
ε = succM (�t�M

ε )

�t ′+ t�M
ε = +M (�t ′�M

ε ,�t�M
ε )

�t ′ ∗ t�M
ε = ∗M (�t ′�M

ε ,�t�M
ε )

�⊥�M
ε = 0

�ξ ′ ⇒ ξ �M
ε = max{1−�ξ ′�M

ε ,�ξ �M
ε }

�∀a.ξ �M
ε = min{�ξ �M

ε[a:=x] | x ∈M}
�t ′ ≈ t�M

ε = 1 if �t ′�M
ε = �t�M

ε and 0 otherwise

Definition 2.277. Call the formula ξ valid in M when �ξ �M
ε = 1 for all ε .

Call ξ1, . . . ,ξk 
 χ1, . . . ,χl valid in M when (ξ1 ∧ . . .∧ ξk)⇒ (χ1 ∨ . . .∨ χl) is
valid.

2.4.2.6 A Theory of Arithmetic in L

Definition 2.278. Define a first-order theory of arithmetic by the axioms in
Fig. 2.11.
An interpretation M is a model of arithmetic when �ξ �M = 1 for ξ each of (ps0),
(pss), (p+0), (p+succ), (p∗0), (p∗succ), and every instance of (pind).
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(ps0) ∀a. succ(a)≈ 0⇒⊥
(pss) ∀a′,a. succ(a)≈ succ(a′)⇒ a≈ a′

(p+0) ∀a. a+0≈ a
(p+succ) ∀a′,a. a′+succ(a)≈ succ(a′)+a
(p∗0) ∀a. a∗0≈ 0
(p∗succ) ∀a′,a. a′∗succ(a)≈ (a′∗a)+a

(pind) ξ [a:=0]⇒
(
∀a.(ξ ⇒ ξ [a:=succ(a)])

)
⇒∀a.ξ

(every ξ , every a)

Fig. 2.11 arithmetic: axioms for arithmetic in first-order logic

Remark 2.279. (pind) the induction axiom-scheme is of course of particular
interest. We therefore unpack what its validity

�ξ [a:=0]⇒∀a.(ξ ⇒ ξ [a:=succ(a)])⇒∀a.ξ �M = 1 (every ξ , every a)

means, in a little more detail. For every a and ξ :

• If �ξ [a:=0]�M
ε = 1, and

• if for every x ∈M, �ξ �M
ε[a:=x] = 1 implies that �ξ [a:=succ(a)]�M

ε[a:=x] = 1,
• then for every x ∈M, �ξ �M

ε[a:=x] = 1.

In (pind) we take ‘every a’, and in (PInd) we do not. This is because in (PInd), a
is α-convertible,

2.4.2.7 Building an Interpretation for
.
L from One for L

Recall the PNL signature
.
L from Sect. 2.4.2.1. Suppose M is a model of arithmetic.

We use it to build an interpretation N of
.
L.

Definition 2.280. Extend L to L+M where we add all elements of M as constants,
and extend the interpretation to interpret these constants as themselves in M. (So if
x ∈M then x is a constant symbol in L+M and �x�M

ε = x.)
Define an Aν -valuation ε0 ∈ ValuAν (M) by

ε0(a) = 0M always.

If t is a term, we write �t�M for the function λ ε.�t�M
ε . If ξ is a formula, we write

�ξ �M for the function λ ε.�ξ �M
ε .

We now define an interpretation N for
.
L. We give a denotation to the base sorts

ι and o of
.
L, as follows:

ιN = {�t�M | t a term of L+M}
oN = {�ξ �M | ξ a formula of L+M}
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We give a denotation to the term-formers and proposition-formers of
.
L, as follows:

varN aε =ε(a).
0N ε =0M

.
succN uε =succM (uε)

.
+N (u,v)ε =+M (uε,vε)
.∗N (u,v)ε =∗M (uε,vε)

subN
ι ([a]u,v)ε =u(ε[a:=vε]).

⊥N ε =0

subN
o ([a]u,v)ε=u(ε[a:=vε])
.⇒N (U,V )ε =max{1−U(ε),V (ε)}.
∀N [a]U ε=min{U(ε[a:=x]) | x ∈M}
.≈N (u,v)ε=≈M (uε,vε)
≈N

ι (u,v)=1 if u=v and 0 otherwise
≈N

o (U,V )=1 if U=V and 0 otherwise
εN U =U(ε0)

Here, u and v range over ιN and U and V range over oN .

Lemma 2.281. 1. �t ′[a:=t]�M
ε = �t ′�M

ε[a:=�t�M
ε ].

2. �ξ [a:=t]�M
ε = 1 if and only if �ξ �M

ε[a:=�t�M
ε ] = 1.

Lemma 2.282. The following equalities all hold:

varN (a) = �a�M

.
0N = �0�M

.
succN (�t�M ) = �succ(t)�M

.
+N (�t ′�M ,�t�M ) = �t ′+ t�M

.∗N (�t ′�M ,�t�M ) = �t ′ ∗ t�M

subN
ι ([a]�t ′�M ,�t�M ) = �t ′[a:=t]�M

subN
o ([a]�ξ �M ,�s�M ) = �ξ [a:=s]�M

.
⊥N = �⊥�M

.⇒N (�ξ ′�M ,�ξ �M ) = �ξ ′ ⇒ ξ �M

.
∀N ([a]�ξ �M ) = �∀a.ξ �M

.≈N (�r�M ,�s�M ) = �r ≈ s�M

Proof. We compare Definitions 2.280 and 2.276. Most cases are immediate; we
consider only the slightly less trivial ones:

varN (a) = (λ a.λ ε.ε(a))a Definition 2.280
= (λ a.�a�M )a Definition 2.276
= �a�M fact

subN
ι ([a]�t ′�M ,�t�M ) = λ ε.�t ′�M (ε[a:=�t�M ε]) Definition 2.280

= λ ε.�t ′[a:=t]�M Lemma 2.281

Other cases are no harder. �
Lemma 2.283. N (Definition 2.280) is a PNL interpretation.

Proof. We must check that:

• ιN and oN are permissive-nominal sets.
By routine calculations. (In fact, ιN and oN are nominal sets; that is, their

elements all have finite support.)
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• The functions defined in Definition 2.280 map elements of ιN , oN , [A]ιN , and
[A]oN correctly to the appropriate sets.

By Lemma 2.282.
• εN is equivariant from oN to {0,1}.

By routine calculations using the fact that (a b)·ε0 = ε0.

�
Lemma 2.284. If (Ξ 
 χ)

. is valid in N , then Ξ 
 χ is valid in M .

Proof. We calculate that if (Ξ 
 χ)
. is valid in N , then

�(ξ1∧ . . .∧ξk)⇒ (χ1∨ . . .∨ χl)�
M
ε0 = 1

But the proposition written out above is closed, so for all valuations ε , �(ξ1 ∧ . . .
∧ξk)⇒ (χ1∨ . . .∨ χl)�

M
ε = 1. �

Recall from Notation 2.270 that we write S for EQU∪SUB∪FOL.

Proposition 2.285. The axioms of S∪ARITH are valid in N .

Proof. By a routine verification. We consider the axiom (
.
∀) from Fig. 2.9. We

unpack definitions and see that we must prove that for every ξ in L+M,

• ∀x∈M.ε0[a:=x] ∈ (ξ ). if and only if
• ε0[a:=(t).] ∈ (ξ ). for every t a term of L+M.

This follows, because L+M has a constant symbol for every x ∈M. Validity of the
other axioms is no harder. �

Theorem 2.286. arithmetic,Ξ 
 χ in first-order logic if and only if
S∪ARITH 
 (Ξ 
 χ)

. in PNL.

Proof. We prove two implications. The top-to-bottom implication follows using
Theorem 2.272.

For the bottom-to-top implication, we reason as follows: Suppose S∪ARITH 

(Ξ 
 χ)

. in PNL. Choose an arbitrary interpretation M of first-order logic that
is a model of arithmetic, with carrier set M. By Soundness (Theorem 2.245) and
Proposition 2.285, (Ξ 
 χ)

. is valid in N . By Lemma 2.284 Ξ 
 χ is valid in M .
M was arbitrary, so by completeness of first-order logic (Shoenfield 1967, §4.2) it
follows that Ξ 
 χ is derivable. �
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2.4.3 Further Properties of PNL

2.4.3.1 More PNL Theories

We briefly mention on how to express some familiar ‘nominal’ constructs in PNL.

Inductive types

Permissive-nominal logic can express the principles of nominal abstract syntax
developed in Gabbay and Pitts (2001).

Suppose a base sort ι , a name sort ν , and term-formers

var : (ν)ι, app : (ι, ι)ι, and lam : ([ν]ι)ι.

Fix an unknown U : ι and for brevity write φ [U :=r] as φ(r) for every φ . Suppose an
axiom-scheme, for every φ :

φ(var(a))⇒
∀X .(φ(X)⇒ φ(lam([a]X)))⇒
∀X ,Y.(φ(X)⇒ φ(Y )⇒ app(X ,Y ))⇒

∀X .(φ(X))

Here X and Y have sort ι and we make a fixed but arbitrary choice of atom a ∈
supp(X).

We can also express this finitely, if we axiomatise a sort for predicates (as we did
for arithmetic). Here is the axiom-scheme above made finite by using the theories
EQU, SUB, and FOL from Sect. 2.4.2:

∀Z.ε(Z[a �→var(a)])⇒
∀X .(ε(Z[a �→X ])⇒ ε(Z[a �→lam([a]X)))⇒
∀X ,Y.(ε(Z[a �→X ])⇒ ε(Z[a �→Y ])⇒ ε(Z[a �→app(X ,Y )]))⇒

∀X .ε(Z[a �→X ])

The Nquantifier

Nominal sets support the N-quantifier Gabbay and Pitts (2001). PNL also includes
the N-quantifier; the way in which it does this is quite interesting, as we shall see in
a moment.
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Nhas some distinctive properties which are reflected in nominal logic (NL) and
the logic of FM sets (FM):

∀x.(P(x)⇒ Na.Q(a,x))
=================
∀x. Na.(P(x)⇒ Q(a,x))

∀x. Na. Nb.(ba)·x≈x
==========================
Na. Nb.∀x.(a#x⇒ b#x⇒ (ba)·x≈x)

Here and below we write a double horizontal line for ‘is provably equivalent to’.
Nappears absent from Permissive-Nominal Logic (PNL). It is ‘hiding’ in the

permission sets. Corresponding propositions are, where a,b �∈ supp(X)

∀X .(P(X)⇒ Q(a,X))
================
∀X .(P(X)⇒ Q(a,X))

∀X .(b a)·X ≈ X
============
∀X .(b a)·X ≈ X

We see from these examples that two things are happening: first, freshness con-
ditions are hard-coded into the syntax by permission sets—and second, so is the
N-quantifier.
It is interesting to consider another example. In NL/FM:

Na.P(a)∧ Na.Q(b)
===============
Na. Nb.(P(a)∧Q(b))

Na.P(a)∧ Na.Q(b)
==============

Na.(P(a)∧Q(a))

Correspondingly in PNL we have:

P(a)∧Q(b)
=========
P(a)∧Q(b)

P(a)∧Q(b)
=========
P(a)∧Q(a)

It is easy to use the rule (Ax) from Fig. 2.5 to construct a derivation proving that
P(a)∧Q(b) and P(a)∧Q(a) are indeed logically equivalent in Permissive-Nominal
Logic.

The π in (Ax) expresses that truth is preserved by permutative renaming, or in
symbols: � φ ⇔ π·φ always.

A permission set S can be viewed in two ways: as giving permission to instantiate
using free atoms in S—but also as a form of Nfor the atoms not in S.

Semantic freshness

To express in permissive-nominal algebra that a is fresh for the denotation of s
it suffices to assert (b a)·s = s where b �∈ supp(s). Thus the theory of a semantic
freshness predicate Fresh has one axiom Fresh(a,X)⇔ (b a)·X = X where a ∈
supp(X) and b �∈ supp(X) (and we fill in sorts as appropriate). In PNL with equality,
the axiom is ∀X . Fresh(a,X)⇔ (b a)·X = X .

Atoms-abstraction

Atoms-abstraction can also be expressed as a theory in permissive-nominal algebra.
For a base sort τ and name sort ν assume a base sort [ν ]τ and a term-former



2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 163

abs : (ν ,τ)([ν ]τ), along with a single axiom abs(a,X) = abs(b,(b a)·X) where
a ∈ supp(X) and b �∈ supp(X). In PNL with equality, the axiom is ∀X .abs(a,X) =
abs(b,(b a)·X).

2.4.3.2 Admissibility of Cut

We indicate how (Cut) is admissible in the presence of the other rules in Fig. 2.5.

Definition 2.287. Suppose fa(r)⊆ supp(X) and r : sort(X). Define Φ[X :=r] by

Φ[X :=r] = {φ [X :=r] | φ ∈Φ}.

Lemma 2.288 is proved by routine arguments like those in Dowek et al. (2010),
Urban et al. (2004):

Lemma 2.288. Suppose Y �∈ fV(t). Then

r[Y :=u][X :=t]=r[X :=t][Y :=u[X :=t]].

Lemma 2.289. Suppose fa(r)⊆ supp(X) and r : sort(X). Then

Φ �Ψ implies Φ[X :=r] �Ψ[X :=r].

Proof. By a routine induction on derivations. The case of (Ax) uses Lemmas 2.71
and 2.288. The case of (∀L) uses Lemma 2.288. �
Lemma 2.290.

1. If there exists a derivation Δ of Φ � ψ,Ψ then there exists a derivation of Φ �
π·ψ,Ψ.

2. If there exists a derivation Δ of Φ, φ �Ψ then there exists a derivation of Φ, π·φ �
Ψ.

Proof. By a simultaneous induction on Δ. The case of (∀L) uses Lemma 2.71.
(We need the simultaneous induction for (⇒L) and (⇒R), since parts of the
proposition move between left and right.) �
Notation 2.291. An instance of (Cut) rests on two sub-derivations. It is convenient
to call them the left branch and right branch as illustrated:

··· Left branch
Φ, φ �Ψ

··· Right branch
Φ � φ ,Ψ

(Cut)
Φ �Ψ
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Theorem 2.292 (Cut-elimination). If Φ � Ψ is derivable with a derivation that
uses (Cut), then it is derivable with a derivation that does not use (Cut).

Proof. The proof is as for first-order logic. The only differences are a π in (Ax) and
a side-condition fa(r)⊆ supp(X) in (∀L). These affect terms and have no effect on
the structure of derivations; for the purposes of this proof they are irrelevant.

We commute instances of (Cut) upwards, as usual, following the method of
(Dummett 1977, pages 139–145) or Gabbay (2011a). At each step, the following
measure based on the depth of subderivations and the size of the cut formula,
decreases:

• The size of the cut formula, and
• the longest path up the derivation the cut, that the formula persists,

lexicographically ordered.

• The commutation cases between rules for⇒ and ∀ are as standard for first-order
logic.

• The essential case for⇒ is as standard.
• For the essential case for ∀, suppose the subderivation has the following form:

Φ, φ [X :=r] �Ψ
(∀L)

Φ, ∀X .φ �Ψ

··· Δ
Φ � φ , Ψ

(∀R)
Φ � ∀X .φ , Ψ

(Cut)
Φ �Ψ

By Lemma 2.289 there is a derivation Δ[X :=r] of Φ � φ [X :=r], Ψ. We eliminate
the essential case as follows:

Φ, φ [X :=r] �Ψ

··· Δ[X :=r]

Φ � φ [X :=r], Ψ
(Cut)

Φ �Ψ

• Suppose the subderivation has the following form:

(Ax)
Φ, φ � π·φ ,Ψ

··· Δ
Φ, π·φ �Ψ

(Cut)
Φ, φ �Ψ

We use Lemma 2.290 to obtain a derivation Δ′ of Φ, φ �Ψ (the transformations
involved in the proof of Lemma 2.290 do not increase the inductive measure).

�
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2.4.3.3 Exhausting the Available Atoms

We conclude with a brief discussion on a subtle point in the PNL design. Suppose a
name sort ν , a base sort τ , and a proposition former # : (ν ,τ). Suppose an atom a and
an unknown X : τ with supp(X) = A< . Suppose an unknown Y : ν with supp(Y ) =
A< . Consider an interpretation in which #(a,X) is interpreted as a �∈ supp(ς(X)) and
τ is interpreted as L (Definition 2.26).

That is, # is interpreted as freshness and τ is interpreted as well-orderings of
permission-sets.

In the PNL of this paper, the interpretation of the proposition φ = ∀X .∃Y.#(Y,X)
is false: we take ς(X) to well-order A< and there is no a ∈ supp(Y ) such that a �∈
supp(ς(X)).

Suppose we decide that we want a version of PNL in which φ is true. In this
case, we can consider denotations such that every element has support of the form
π·A where A is infinite and A ⊆A< and A< \A is also infinite. In this way, an
unknown X cannot ‘exhaust’ A< .

The lesson we draw from this small example is that nominal semantics offer a
host of interesting and inspiring design options. In this paper, we have cut one path
through this design space which is expressive enough to get the results we want.
Other paths are possible.

2.4.4 Conclusions

This paper reflects a research arc by the author in collaboration with others,
roughly from 2005 to 2012. Thanks to improvements in presentation and the use of
permissive-nominal techniques, definitions and proofs are simpler than in previous
literature, and new properties emerge.

We have constructed permissive-nominal sets. We gave a nominal syntax for
them and explored their computational properties in nominal unification and
rewriting. We considered nominal algebra and proved soundness, completeness,
and HSP over permissive-nominal sets. We gave nominal terms a ∀-quantifier
over unknowns and used this to build a first-order logic permissive-nominal logic.
Finally, in an extended case study we gave finite axiomatisations of first-order logic
and arithmetic and proved correctness.

Mathematical foundations influence language, and (famously) language influ-
ences thought. Nominal sets are a foundation with a model of names which is
different from what has been considered before, so the question is: what new
languages, and new thoughts, can emerge? This chapter attempts to address that
question by illustrating the broad sweeps of what a ‘nominal’ meta-mathematics
might look like.
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We are not and cannot be encyclopaedic or exhaustive. For other work we should
mention αProlog, which allows Horn clauses Cheney and Urban (2008) (this pre-
ceded PNL, and could be viewed as a subset of it). The author in collaboration has
proved correctness for several non-trivial theories in nominal syntaxes, including
equational treatments of substitution Gabbay and Mathijssen (2006a, 2008a), λ -
calculus Gabbay and Mathijssen (2008b, 2010), and first-order logic Gabbay and
Mathijssen (2006c, 2008c), as well as the finite first-order nominal axiomatisation
of arithmetic Dowek and Gabbay (2010, 2012a) which we considered in Sect. 2.4.2.
There are translations from nominal terms to λ -terms by Levy and Villaret and by
Dowek, the author, and Mulligan Levy and Villaret (2008), Dowek et al. (2010),
including a translation of algebraic reasoning (so, not just unification) Gabbay and
Mulligan (2009); and there is a translation of permissive-nominal logic to higher-
order logic in Dowek and Gabbay (2012b) which illustrates the differences and
similarities of the two logics, and exploits some unusual model-theoretic ideas.

We also mention a translation of nominal terms to many-sorted first-order syntax
by Kurz and Petrişan (2010), and a categorical treatment of nominal Lawvere
theories in Clouston (2009). It may also prove useful to consider nominal languages
over nominal structures other than sets, for instance over nominal domains Turner
(2009).

See also the ‘atlas of nominal languages’ in Appendix A.
This research is developing a topic which this author believes could become an

immense field; the informal meta-level having been relatively unformalised until
now for want of a denotation with names, which is what nominal sets provide.

It is important to realise that this story is not just about nominal sets, nor is
it just about semantics; there is also the issue of finding appropriate syntaxes for
our semantics. The logic of FM sets, nominal logic, and the Nominal Isabelle
package Gabbay and Pitts (2001), Pitts (2003), Urban (2008) are all first-order
axiomatisations of nominal sets.19 In all these cases, the syntax is that of ‘ordinary’
first- or higher-logic.20 These are denotations for syntax-with-binding.

Nominal terms and permissive-nominal terms, and the syntaxes based on them
such as nominal rewriting, algebra, and permissive-nominal logic, do not follow
automatically from nominal sets. They are syntaxes for meta-mathematics of inde-
pendent interest. Thus, this chapter has surveyed the author’s attempts, via methods
which are both syntactic and also semantic, to outline what meta-mathematics could

19Essentially, Gabbay and Pitts (2001) is the first third of the author’s thesis; Pitts (2003) is the
same but minus the cumulative sets hierarchy; and Urban (2008) is an extensive implementation in
higher-order logic, with a library of powerful macros. One reason this is non-trivial has to do with
automatically deriving the equivariance properties described e.g. in (Gabbay, 2011b, Section 4.2).
20Sometimes, authors write ‘nominal logic’ for that logic obtained by adding for each atom a
constant symbol to the syntax of first-order logic, and adding infinitely many axioms reflecting
nominal sets (equalities of swapping atoms, fresh atoms, and so on). This is nominal sets wearing
a ‘syntactic disguise’: consider by analogy a theory of arithmetic with a constant symbol for each
number and an axiom for every arithmetic equality.
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look like if it were based on nominal foundations. The fact that—for instance—we
were able to finitely axiomatise arithmetic in the nominal first-order that is PNL in
Sect. 2.4.2.2, is one demonstration that this meta-mathematics is a new and different
place from what the reader may be used to.

In a sense this paper is a sequel to the survey of Gabbay (2011b) (written in
2008 and submitted in early 2009). But whereas Gabbay (2011b) concentrated on
applications of nominal sets to syntax with binding, this paper considers nominal
sets as a basis for meta-mathematics. Hints of this appeared in nominal rewriting
Fernández et al. (2004), Fernández and Gabbay (2007), which allowed arbitrary
oriented equality theories over nominal terms. Perhaps unwisely, we shall succumb
to a wordplay: Gabbay (2011b), Gabbay and Pitts (2001) explore denotation of
specification with binding; whereas here we explore specification of denotation with
binding.

Thus, in this document we have explored the consequences of taking FM-sets
style names seriously in meta-mathematics. But even that does not exhaust the
potential applications of nominal techniques. Mathematics and computer science are
evolving in ways which increase the importance of names, and nominal techniques
have arisen from this; we can expect that evolution to continue.

This motivates us to revisit certain foundational design decisions; whether to
admit atoms—to sound more mathematical, we say urelemente and to sound less
mathematical, we say names—and what properties these should have. Linguists
might well call these referents, and have been studying them for a long time.

Whatever we call them, they exist and we use them all the time. So we will
conclude with two slogans:

• Names are data.
• Names with additional properties are ubiquitous.

This chapter has studied formal languages with which to specify some of the
possible additional properties of names, such as ‘having a substitution action’ or
‘being universally quantifiable’. But more generally, by this combination of a new
point of view and a rigorous mathematics, nominal techniques have the potential
to simplify, factor out common properties, and help control some of a modern
mathematics of logic and computation.

Names are not just a technical issue, to be ignored or circumvented with ‘tricks’.
Names are a philosophical, foundational, linguistic, and computational issue. The
mathematics of names is the mathematics of mathematics.

Dov Gabbay wrote in his preface to the second edition that

the researcher . . . is having more and more in common with the traditional philosopher
who has been analysing such questions for centuries (unrestricted by the capabilities of any
hardware). . . . I believe the day is not far away in the future when the computer scientist will
wake up one morning with the realisation that he is actually a kind of formal philosopher!

We would add “and philosophers, linguists—and some artists too—may wake up
one morning with the realisation that they are actually a kind of abstract computer
scientist”. Amen.
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Appendix

A An Atlas of Nominal Languages

The reader coming to the nominal literature could be forgiven for finding it
perplexing. What are ‘Fraenkel-mostowski sets’, ‘nominal sets’, ‘nominal terms’,
‘nominal logic’, ‘nominal rewriting and algebra’, ‘αProlog’, ‘nominal equational
logic’, ‘permissive-nominal algebra’, ‘permissive-nominal logic’ (with/without
shift-permutations)? In this Appendix we will give a brief annotated bibliography
covering, loosely, the relevant publications. This list is not meant to be exhaustive.

Traditionally, nominal sets are understood as a tool for the mathematical analysis
of syntax, as described for instance in the author’s previous survey/research paper
Gabbay (2011b), or in slides of an excellent course of lectures by Pitts (2011). This
author takes a view of nominal sets not just as a foundation for syntax with binding,
but as a foundation for mathematics itself—names and binding, after all, appear
everywhere. The atlas below surveys relevant publications.

For each item in the list below, we reference where the idea was introduced to
the ‘nominal’ literature, and any other relevant conference and journal papers.

A.1 FM Set Theory (Gabbay and Pitts 1999, 2001)

Fraenkel-Mostowski set theory (FM) and nominal sets (called ‘equivariant FM sets’
in that paper) are the foundational semantics for nominal techniques.

Fraenkel-Mostowski sets were already known and had been used for other
purposes; see (Gabbay, 2011b, Remark 2.22) for more detailed historical comments.
Nominal sets were familiar as e.g. the Schanuel topos. So both semantics were
known.

What was new to Gabbay and Pitts (2001) was the observation by the author and
Pitts of the notions of support, atoms-abstraction, the self-dual behaviour of the N
quantifier, and the application to what is now called nominal abstract syntax.21

21At the same time, Fiore Plotkin and Turi developed an approach to abstract syntax which was
really exactly the same thing Fiore et al. (1999). The key difference turned out to be that nominal
sets admit a relatively elementary sets-based interpretation of the presheaves. As argued in Gabbay
and Hofmann (2008) there are ‘fewer presheaves’ in the nominal semantics, we feel that an
elementary presentation of the mathematics—where this is possible—is a powerful advantage not
just for the reader but also for the practicing theorist.

Fiore has continued this line of research in collaboration and produced logics which in some
sense which has never been made formal, parallel the development here. For an example of this
see Fiore and Hur (2010).
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A.2 Nominal Logic (Pitts 2001, 2003)

The constructions of Gabbay and Pitts (2001) are repeated, but in a first-order
axiomatisation of nominal sets rather than one of the FM cumulative hierarchy. Pitts
also coined the catchy label ‘nominal’.

Sometimes authors identify the nominal logic of Pitts (2003) with nominal
techniques in general. This is limiting, and it gets the mathematical development
the wrong way round. Nominal logic is a Hilbert-style axiomatisation in first-order
logic. These axioms have meaning because of the underlying nominal sets models,
and not the other way around; nor does the axiomatisation per se contribute to new
syntax or proof-theory with which to study names.

In order to make progress, we needed new syntax that more explicitly represents
atoms and their properties.

Thus for instance the nominal logic programming developed by Cheney and
Urban (2008) (also referenced below) is called logic-programming in nominal logic,
but we also see from Figures 6, 7, and 8 of Cheney and Urban (2008) that the syntax
and axioms used are a variant of nominal terms.

A.3 Proof-Theories for the N-quantifier (Gabbay 2007a;
Gabbay and Cheney 2004; Cheney 2005b)

Some attempts have been made to give the distinctive N-quantifier of nominal
techniques, a proof-theory. In arguably increasing order of elegance these are
Gabbay (2007a) (this was received by the journal in 2003 but took 4 years to get
printed), Gabbay and Cheney (2004) (written with Cheney to develop on Gabbay
(2007a)), and Cheney (2005b).

The permissive-nominal logic (PNL) of this survey is another item on that list,
and perhaps it is one of the nicest; certainly the PNL treatment of Nis very different
from what has come before, see Sect. 2.4.3.1.

Complete semantics for this family of logics are in Gabbay (2007a), Cheney
(2006), and in Dowek and Gabbay (2012a). See also Sect. 2.4.1.4 of this survey.

A.4 Nominal Terms (Urban et al. 2003, 2004)

This new syntax introduced the distinctive freshness side-conditions and the
nominal terms syntax, with its separation of atoms a and unknowns X into two
syntactic classes. Urban et al. (2004) is where the syntactic ideas of this survey were
born, if not the specific ‘permissive’ implementation, which came later (permissive-
nominal terms below).
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There is now quite a substantial body of work devoted to computing efficiently
on nominal terms; notably Calvès (2010), Levy and Villaret (2010). There is also
a body of work devoted to translating between nominal terms and higher-order
patterns Miller et al. (1989). We are far from exhaustive, but good places to start
reading are Cheney (2005a), Levy and Villaret (2008, 2012), Gabbay and Mulligan
(2009), and Dowek et al. (2010).

A.5 Nominal Rewriting (Fernández et al. 2004; Fernández and
Gabbay 2007) and αProlog (Cheney and Urban 2003,
2008)

These were the first logical languages using nominal terms as a general-purpose
assertion language; nominal rewriting was designed explicitly to allow us to assert
(directed) equalities between terms such as β or η-equivalence. αProlog was
intended by its designers for reasoning on nominal abstract syntax, and explicitly
presented as such—but in retrospect it can also be viewed as a general-purpose
‘nominal’ reasoning system in the same family as nominal rewriting and later
work.22

A.6 Nominal Algebra (Gabbay 2005; Gabbay and Mathijssen
2006a, 2007, 2009)

Nominal algebra is simply the undirected version of nominal rewriting.23 What
makes nominal algebra interesting above and beyond nominal rewriting is the
different theorems we prove about equality instead of rewriting; for instance the
HSPA theorem of Gabbay (2009) (much simplified here in Sect. 2.3.5), and various
correctness results for axiomatisations of e.g. substitution, λ -calculus, and first-
order logic Gabbay and Mathijssen (2006a,c, 2008a,b,c, 2010).

The paper Gabbay and Mathijssen (2006a) is where the permutative convention
of Definition 2.2 was introduced, used by the author consistently since then. This
comes from the author’s work formalising nominal reasoning in Isabelle in Gabbay
(2001) and spares us from having to explicitly enumerate all inequalities between

22James Cheney, private communication.
23Actually, this is a simplification. There is a significant difference, which is described in
Fernández and Gabbay (2010): nominal rewriting does not have an explicit rule to generate fresh
atoms, whereas nominal algebra does. To the level of detail we wish to go into here, this does not
matter. The permissive-nominal syntax of this survey makes the issue obsolete because fresh atoms
are a structural fact of the permission sets.
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atoms. Thus, if pressed to be entirely formal, ‘a and b’ refers to two meta-variables
ranging over distinct atoms.

Kurz and Petrişan proved an HSP theorem for nominal algebra by treating
nominal algebra as a kind of many-sorted first-order logic Kurz and Petrişan
(2010)—the sorts are finite sets of atoms and come from the categorical view of
nominal sets as presheaves. The effect of nominal theories can thus be attained
in many-sorted first-order syntax. That syntax is just standard first-order syntax is
potentially a big advantage, for instance if one wants to transfer results directly from
universal algebra. This offers alternative and effective methods of semantic proof;
e.g. Kurz and Petrişan (2010) significantly simplifies the proofs of Gabbay (2009).
We pay for this convenience with infinities; e.g. even the simplest theory is infinite
since equalities are replicated at every sort. Of course, the theory may still be finitely
presentable. Section 2.3.5 of the current paper contains another, further simplified,
HSP proof.

A.7 Nominal Equational Logic (Clouston and Pitts 2007;
Clouston 2011)

Call the judgement ‘a is fresh for the syntax s’ syntactic freshness and ‘a is fresh for
the denotation of s’ semantic freshness. Nominal Equational Logic (NEL) closely
resembles NA, but whereas both have a semantic equality judgement (s = t), NEL
adds a semantic freshness judgement.

In Clouston and Pitts (2007) Clouston and Pitts claimed that NEL was signifi-
cantly more complete than NA because of this, but they had missed that semantic
freshness is expressible using equality and syntactic freshness (see for instance
(Gabbay and Mathijssen 2007, Theorem 5.5) and (Gabbay and Mathijssen 2009,
Lemma 4.51)).24

Note that two distinct logics have been called NEL: one in Clouston and Pitts
(2007), and one in Clouston (2011) which restricts semantic freshness to the left
of the turnstile; compare Figure 5 of Clouston and Pitts (2007) with Figure 1 of
Clouston (2011). Both have syntactic freshness: see the side-condition a#(ā, t, t ′)
in the ATM-INTRO and ATM-ELIM rules of Figure 5, and similar side-conditions in
Figure 1. Thus, when Clouston writes in Clouston (2011) that “[syntactic] freshness
in NA is sound, but not complete, for freshness in the underlying nominal sets
interpretation [semantic freshness]”, echoing similar comments in Clouston and
Pitts (2007), this omits mention that NEL also has a syntactic freshness.

It is in any case a red herring. If we can choose fresh atoms and compare
elements for semantic equality, then semantic freshness makes the logic ‘do equality
twice’ and just adds complexity Gabbay (2012b)—without equality, the story can

24Syntactic freshness appears in this paper as a �∈ fa(r). We considered semantic freshness in
Sect. 2.4.3. See also Proposition 2.201.
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be different; this was encountered in the first attempt at a nominal functional
programming language, in which we included freshness information in the types
Gabbay (2001).

A.8 Permissive-Nominal Terms (Gabbay and Mulligan 2009;
Dowek et al. 2009, 2010)

These simplify and improve classical nominal terms in two ways: we give explicitly
the (countably infinite) atoms that may be free/are guaranteed to be fresh in every
unknown, and since freshness information is stored directly we eliminate the need
for freshness contexts. Thus good properties emerge: permissive-nominal terms can
be constructed as nominal abstract syntax, we can directly choose a name fresh for
a term (which is not possible in nominal terms without expanding the freshness
context), and properties and proofs can then be expressed for terms alone, rather
than for terms-in-freshness-context.

For instance, in classical nominal terms a solution of a nominal unification
problem is a pair of a substitution and a freshness context; a nominal rewrite rule
is a left and a right-hand side term and a freshness context; the proof-theory of
nominal algebra requires an explicit freshness rule to generate fresh atoms, and so
on. In fact, manipulating nominal terms almost always requires us to manipulate an
external structure representing freshness constraints.

In contrast permissive terms are ‘self-sufficient’, like ordinary syntax. Proofs
and algorithms have more of the look and feel of ordinary syntax. We have seen
how, in the body of this survey. A detailed treatment of permissive-nominal syntax,
including a simple translation from the nominal terms of Urban et al. (2004) into
permissive-nominal terms, is also in Dowek et al. (2010).

A.9 Permissive-Nominal Algebra (Gabbay and Mulligan 2009,
and Sect. 2.3.4)

The permissive-nominal algebra of Sect. 2.3.4 uses permissive-nominal terms and
has a significantly different proof-theory.

The notable differences are, aside from being permissive-nominal, the inclusion
(if we want them) of infinitely-supported constant symbols and of infinitely-
supported permutations. So previous work is a special case of the general framework
of this survey, but what we do here goes strictly beyond what was possible in
previous work, also in some significant mathematical properties such as satisfying
an HSP instead of an HSPA result; see the discussion opening Sect. 2.3.5.
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A.10 Permissive-Nominal Logic (Dowek and Gabbay 2010,
2012a and Sect. 2.4.1)

As we discuss in this survey, permissive-nominal logic (PNL) adds universal
quantification over unknowns X . This is non-evident for nominal terms because of
their freshness contexts; in nominal terms X behaves like an element with cofinite
support so we lose α-equivalence whereas in permissive-nominal terms X has
coinfinite support and we can always α-rename bound atoms. We get a proof-theory
which is pleasingly close to that of first-order logic, a sound and complete semantics,
and we can axiomatise and prove correct a non-trivial and mathematically relevant
theory, such as arithmetic.
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Chapter 3
Introduction to Labelled Deductive Systems

Dov M. Gabbay

3.1 Labelled Deductive Systems in Context

In the past 40 years logic has undergone a serious evolutionary development. The
meteoric rise of the applied areas of computer science and artificial intelligence
put pressure on traditional logic to evolve. There was the urgent need to develop
new logics in order to provide better models of human behaviour and actions. Such
models are used to help design products which aid/replace the human in his daily
activity. As a result, a rich variety of new logics have been developed and there
was the need for a new unifying methodology for the chaotic landscape of the new
logics.1

Such a methodology is Labelled Deductive Systems (LDS), introduced in the
1990 and unified many discrete logical systems and later evolved to network logics,
2009–2011, unifying logic and network reasoning.

The purpose of this chapter is to first introduce Labelled Deductive Systems and
show that many logical systems, new and old, monotonic and non-monotonic all
fall within this new framework. The most recent answer to the question of what is a
logical system, which integrates both logic and network reasoning can be found in
our very recent papers (Gabbay 2011, 2012).

We begin with the traditional view of what is a logical system.
Traditionally, to present a logic L, we need to first present the set of well-

formed formulas of that logic. This is the language of the logic. We specify the sets
of atomic formulas, connectives, quantifiers and the set of well-formed formulas.

1See the editorial for this volume.
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Secondly, we mathematically define the notion of consequence, that is, for sets of
formulas Δ and formulas Q, we define the consequence relation Δ �L Q, which is
read “Q follows from Δ in the logic L”.

The consequence relation is required to satisfy the following intuitive properties:
(Δ,Δ′ abbreviates Δ∪Δ′).

Reflexivity

Δ � Q if Q ∈ Δ

Monotonicity
Δ � Q

Δ,Δ′ � Q

Transitivity
Δ � A;Δ, A � Q

Δ � Q

If you think of Δ as a database and Q as a query, then reflexivity means that
the answer “yes” is given for any Q which is already listed in the database Δ.
Monotonicity reflects the accumulation of data, and transitivity is nothing but lemma
generation, namely, if Δ � A, then A can be used as a lemma to derive B from Δ.

These three properties have appeared to constitute a set of minimal and most
natural requirements for a logical system, given that the main applications of logic
were in mathematics and philosophy.

The above notions were essentially put forward by Tarski in (1936) and is
referred to as Tarski consequence. Scott (1974), inspired by constructions in Gabbay
(1991a), generalised the notion to allow Q to be a set of formulas Γ. The basic
relation is then of the form Δ � Γ, satisfying:2

Reflexivity

Δ � Γ if Δ∩Γ �=∅

Monotonicity
Δ � Γ

Δ,Δ′ � Γ

Cut
Δ,A � Γ;Δ′ � A,Γ′

Δ,Δ′ � Γ,Γ′

2The similarity with Gentzen sequents is obvious. A sequent Δ � Γ is a relation between Δ and Γ.
Such a relation can either be defined axiomatically (as a consequence relation) or be generated via
closure conditions like A � A (initial) and other generating rules. The generating rules correspond
to Gentzen rules. In many logics we have Δ � Γ iff ∅ � ∧

Δ → ∨
Γ, which gives an intuitive

meaning to �.
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Scott further showed that for any Tarski consequence relation � there exist two
Scott consequence relations (a maximal one and a minimal one) that agree with it,
namely, that Δ � A (Tarski) iff Δ � {A} (Scott) (see Gabbay 1981).

The above notions are monotonic. However, the increasing use of logic in
computer science and artificial intelligence has given rise to logical systems which
are not monotonic, i.e., to systems in which the axiom of monotonicity is not
satisfied. There are many such systems, satisfying a variety of conditions and
presented in a variety of ways. Furthermore, some are characterized in a proof
theoretical and some in a model theoretical manner. All these different presentations
give rise to some notion of consequence Δ � Q, but they only seem to all agree on
reflexivity.3 The essential difference between these logics (commonly called non-
monotonic logics) and the more traditional logics (now referred to as monotonic
logics) is the fact that Δ � A holds in the monotonic case because of some ΔA ⊆ Δ,
while in the non-monotonic case the entire set Δ is somehow used to derive A. Thus
if Δ is increased to Δ′, there is no change in the monotonic case, while there may be
a change in the non-monotonic case.

The above describes the situation current in the early 1980’s. We have had a
multitude of systems generally accepted as “logics” without a unifying underlying
theory and many had semantics without proof theory or vice-versa, though almost all
of them were based on some sound intuitions of one form or another. Clearly there
was the need for a general unifying framework. An early attempt at classifying non-
monotonic systems was Gabbay (1985). It was put forward that basic axioms for
a Tarski type consequence relation should be reflexivity, transitivity and restricted
monotonicity, namely:

Restricted Monotonicity (Cumulativity)

Δ � A;Δ � B
Δ,A � B

A variety of systems seem to satisfy this axiom. See a survey in Makinson (1994)
and Gabbay (1996).

Although some sort of classification was obtained and semantical results were
proved, the approach does not seem to be strong enough. Many systems do not
satisfy restricted monotonicity. Other systems such as relevance logic, do not even
satisfy reflexivity. Others have a richness of their own which is lost in a simple
presentation as an axiomatic consequence relation. Obviously a different approach is
needed, one which would be more sensitive to the variety of features of the systems
in the field. Fortunately, developments in a neighbouring area, that of automated de-
duction, seem to be of help. New automated deduction methods were developed for
non classical logics, and resolution was generalised and modified to be applicable to
these logics. In general, because of the value of these logics in theoretical computer
science and artificial intelligence, a greater awareness of the computational aspects

3With the exception of the highly successful input output logics which were put forward by
Makinson–Torre which do not satisfy reflexivity (Makinson and van der Torre 2001).



182 D.M. Gabbay

of logical systems was developing and more attention was being devoted to
proof-theoretical presentations. It became apparent to us that a key feature in the
proof-theoretic study of these logics is that a slight natural variation in an automated
or proof-theoretic system of one logic (say L1), can yield another logic (say L2).

Although L1 and L2 may be conceptually far apart (in their philosophical
motivation, and mathematical definitions) when it comes to automated techniques
and proof theoretical presentation, they turn out to be brother and sister. This
kind of relationship is not isolated and seems to be widespread. Furthermore, non
monotonic systems seem to be obtainable from monotonic ones through variations
on some of their monotonic proof-theoretical formulation, thus giving us a handle
on classifying non-monotonic systems.

This phenomena has prompted Gabbay (Gabbay 1992a; Gabbay and Olivetti
2000) to put forward the view that a logical system L is not just the traditional
consequence relation � (monotonic or non monotonic) but a pair (�,S�), where �
is a mathematically defined consequence relation (i.e. the set of pairs (Δ,Q) such
that Δ � Q) satisfying whatever minimal conditions on a consequence relation one
happens to agree on, and S� is an algorithmic system for generating all those pairs.
Thus according to this definition, classical logic � perceived as a set of tautologies
together with a Gentzen system S�, is not the same as classical logic together
with the two-valued truth table decision procedure T� for it. In our conceptual
framework,( �,S�) is not the same logic as (�,T�).

To illustrate and motivate our way of thinking, observe that it is very easy to
move from T� for classical logic to a truth table system Tn

� for Łukasiewicz n-
valued logic. It is not so easy to move to an algorithmic system for intuitionistic
logic. In comparison, for a Gentzen system presentation, exactly the opposite is
true. Intuitionistic and classical logics are neighbours, while Łukasiewicz logics
seem completely different.4 In fact, some of the examples of this chapter show
proof theoretic similarities between Łukasiewicz’s infinite valued logic and Girard’s
Linear Logic, which in turn is proof theoretically similar to intuitionistic logic.

There are many more such examples among temporal logics, modal logics,
defeasible logics and others. Obviously, there is a need for a more unifying
framework. The question is then whether we can adopt a concept of a logic where
the passage from one system to another is natural, and along predefined acceptable
modes of variation? Can we put forward a framework where the computational
aspects of a logic also play a role? Is it possible to find a common home for a variety
of seemingly different techniques introduced for different purposes in seemingly
different intellectual logical traditions?

To find an answer, let us ask ourselves what makes one logic different from
another? How is a new logic presented and described and compared to another?

4This example was put forward in the mid-1980s. Since then work on Gentzen formulations of
many valued logics has progressed, with contributions by many authors. See for example our book
Metcalfe et al. (2008). I still think however, that the Gentzen connection between classical logic
and intuitionistic logic is much more straight forward then the connection with fuzzy logics.
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The answer is obvious. These considerations are usually dealt with on the meta-
level. Most logics are based on modus ponens and the quantifier rules are formally
the same anyway and the differences between them are meta-level considerations
on the proof theory or semantics. If we can find a mode of presentation of logical
systems where metalevel features and semantic features can reside side by side with
object level features then we can hope for a general framework. We must be careful
here. In the logical community the notions of object-level vs meta-level are not so
clear. Most people think of naming and proof predicates in this connection. This is
not what we mean by meta-level here. We need a more refined understanding of the
concept. There is a similar need in computer science. In Gabbay (1996) we devote
a chapter to these considerations. See also Gabbay (1992c).

We found that the best framework to put forward is that of a Labelled Deductive
System, LDS. Our notion of what constitutes a logic will be that of a pair (�,S�)
where � is a set-theoretic (possibly non-monotonic) consequence relation on a
language L and S� is an LDS, and where � is essentially required to satisfy no more
than Identity (i.e. {A} � A) and Surgical Cut (see below and Gabbay 1991b, 1993b).
This is a refinement of our concept of a logical system mentioned above and first
presented in Gabbay (1992a). We now not only say that a logical system is a pair
(�,S�), but we are adding that S� itself has a special presentation, that of an LDS.

An LDS system is a triple (L,Γ, M), where L is a logical language (connectives
and wffs) and Γ is an algebra (with some operations) of labels and M is a discipline
of labelling formulas of the logic (from the algebra of labels Γ), together with
deduction rules and with agreed ways of propagating the labels via the application
of the deduction rules. The way the rules are used is more or less uniform to all
systems. In the general case we allow Γ, the algebra of labels, to be an LDS system
itself! Furthermore, if our view of a logical system is that the declarative unit is a
pair, a formula and a label, then we can also label the pair itself and get multiple
labelling.

The perceptive reader may feel resistance to this idea at this stage. First be
assured that you are not asked to give up your favourite logic or proof theory nor is
there any hint of a claim that your activity is now obsolete. In mathematics a good
concept can rarely be seen or studied from one point of view only and it is a sign
of strength to have several views connecting different concepts. So the traditional
logical views are as valid as ever and add strength to the new point of view. In fact,
a closer examination of the material in my book (Gabbay, 1996) would reveal that
manifestations of our LDS approach already exist in the literature in various forms
(see Anderson and Belnap 1975 and Fitting 1983; Gabbay 1996 and the references
there), however, they were locally regarded as convenient tools and there was not the
realisation that there is a general framework to be studied and developed. None of
us is working in a vacuum and we build on each others work. Further, the existence
of a general framework in which any particular case can be represented does not
necessarily mean that the best way to treat that particular case is within the general
framework. Thus if some modal logics can be formulated in LDS, this does not mean
that in practice we should replace existing ways of treating the logics by their LDS
formulation. The latter may not be the most efficient for those particular logics. It is
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sufficient to show how the LDS principles specialise and manifest themselves in the
given known practical formulation of the logic.

The reader may further have doubts about the use of labels from the computa-
tional point of view. What do we mean by a unifying framework? Surely a Turing
machine can simulate any logic, is that a unifying framework? The use of labels
is powerful, as we know from computer science, are we using labels to play the
role of a Turing machine? The answer to the question is twofold. First that we
are not operating at the metalevel, but at the object level. Second, there are severe
restrictions on the way we use LDS. Here is a preview:

1. The only rules of inference allowed are the traditional ones, modus ponens and
some form of deduction theorem for implication, for example.

2. Allowable modes of label propagation are fixed for all logics. They can be
adjusted in agreed ways to obtain variations but in general the format is the same.
For example, it has the following form for implications:
(A→ B) gets label t iff ∀x ∈ Γ1 [If A is labelled x then B can be proved with
labels t + x], where Γ1 is a set of labels characterising the implication in that
particular logic. For example Γ1 may be all atomic labels or related labels to t,
or variations. The freedom that different logics have is in the choice of Γ1 and
the properties of “+”. For example we can restrict the use of modus ponens by a
wise propagation of labels.

3. The quantifier rules are the same for all logics.
4. Metalevel features are implemented via the labelling mechanism, which is object

language.
5. The labels can be a reflection of the intended semantics for the logic (e.g. time

stamps for temporal logic).

The reader who prefers to remain within the traditional point of view of:

assumptions (data) proving a conclusion

can view the labelled formulas as another form of data.
There are many occasions when it is most intuitive to present an item of data in

the form t : A, where t is a label and A is a formula. The common underlying reason
for the use of the label t is that t represents information which is needed to modify A
or to supplement (the information in) A which is not of the same type or nature
as (the information represented by) A itself. A is a logical formula representing
information declaratively, and the additional information of t can certainly be added
declaratively to A to form A′, however, we may find it convenient to put forward the
additional information through the label t as part of a pair t : A.

Take for example a source of information which is not reliable. A natural way of
representing an item of information from that source is t : A, where A is a declarative
presentation of the information itself and t is a number representing its reliability.
Such expert systems exist (e.g. Mycin) with rules which manipulate both t and A as
one unit, propagating the reliability values ti through applications of modus ponens.
We may also use a label naming the source of information and this would give us a
qualitative idea of its reliability.
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Another area where it is natural to use labels is in reasoning from data and rules.
If we want to keep track, for reasons of maintaining consistency and/or integrity
constraints, where and how a formula was deduced, we use a label t. In this case,
the label t in t : A can be the part of the data which was used to get A. Formally in
this case t is a formula, the conjunction of the data used. We thus get pairs of the
form Δi : Ai, where Ai are formulas and Δi are the parts of the database from which
Ai was derived.

A third example where it is natural to use labels is time stamping of data. Where
data is constantly revised and updated, it is important to time stamp the data items.
Thus the data items would look like ti : Ai, where ti are time stamps. Ai itself may be
a temporal formula. Thus there are two times involved, the logical time si in Ai(si)
and the time stamping ti of Ai. For reasons of clarity, we may wish to regard ti as a
label rather than incorporate it into the logic (by writing for example A∗(ti,si)).

To summarise then, we replace the traditional notion of consequence between
formulas of the form A1, . . . ,An � B by the notion of consequence between labelled
formulas

t1 : A1, t2 : A2, . . . tn : An � s : B

Depending on the logical system involved, the intuitive meaning of the labels varies.
In querying databases, we may be interested in labelling the assumptions so that
when we get an answer to a query, we can record, via the label of the answer, from
which part of the database the answer was obtained. Another area where labelling
is used is temporal logic. We can time stamp assumptions as to when they are true
and query, given those assumptions, whether a certain conclusion will be true at a
certain time. Thus the consequence notion for labelled deduction is essentially the
same as that of any logic:

given assumptions we ask does a conclusion follow?

Whereas in the traditional logical system the consequence is defined using proof
rules on the formulas, in the LDS methodology the consequence is defined by
using rules on both formulas and their labels. Formally we have formal rules for
manipulating labels and this allows for more scope in decomposing the various
features of the consequence relation. The meta features can be reflected in the
algebra or logic of the labels and the object features can be reflected in the rules
of the formulas.

The notion of a database or of a “set of assumptions” also has to be
changed. A database is a configuration of labelled formulas. The configuration
depends on the labelling discipline. For example, it can be a linearly ordered set
{a1 :A1, . . . ,an :An}, a1 < a2 < .. . < an. The proof discipline for the logic will
specify how the assumptions are to be used. We need to develop the notions of the
Cut Rule and the Deduction Theorem in such an environment. This we do in the
monograph Gabbay (1996).
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The next two sections will give many examples of LDS disciplines featuring
many known monotonic and non-monotonic logics. It is of value for now to
summarise our view listing the key points involved:

• The unit of declarative data is a labelled formula of the form t : A, where A is a
wff of a language L and t is a label. The labels come from an algebra (set) of
labels.

• A database is a set of labelled formulas. The database has structure arising from
the algebraic relationships of the labels.

• An LDS discipline is a system (algorithmic) for manipulating both formulas and
their labels. Using this discipline the statement Δ � Γ is well defined for the two
databases Δ and Γ. Especially Δ � t : A is well defined.

• � must satisfy the minimal conditions, namely

Identity

{t : A} � t : A

Surgical Cut

Δ � t : A,Γ[t : A] � s : B

Γ[Δ] � s : B

where Γ[t : A] means that t : A is contained/occurs somewhere in the structure
Γ and Γ[Δ] means that Δ replaces A in the structure. The notion of how this
substitution/replacement is to be done is also part of the LDS logic.

• A logical system is a pair (�,S�), where � is a consequence relation and S� is an
LDS for it.

3.2 Examples from Monotonic Logics

To motivate our approach we study several known examples in this section.
We start with Example 3.1, a practical insurance example, which will illustrate

the usefullness of labels.
Example 3.2 shows a standard deduction from Relevance Logic. The purpose

of the example is to illustrate our point of view. There are many such examples in
Anderson and Belnap (1975). Example 3.8 considers a derivation in modal logic.
There we use labels to denote essentially possible worlds. The objective of the
example is to show the formal similarities to the relevance logic case in Example 3.2.
Example 3.9 can reap the benefits of the formal similarities of the first two examples
and introduce, in the most natural way, a system of relevant modal logic. The
objective of Example 3.9 is to show that the labels in Examples 3.2 and 3.8 can
be read as determining the metalanguage features of the logic and can therefore be
combined “declaratively” to form the new system of Example 3.9. Example 3.10
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1 Jan 2010 start insurance

x renewal payment received

15 Jan 2010 accident

31 Dec 2010 renewal date

Fig. 3.1

considers strict implication. This example shows that for strict S4 implication
one can read the labels either as relevance labels or as possible world labels.
Example 3.11 shows how labels can interact with quantifiers in modal logic. We
continue with examples of relevance reasoning, many-valued logics, formulas as
types, realisability and conclude with a formal definition of an algebraic LDS for→
and ¬.

Example 3.1 (Insurance example). Consider any insurance policy covering car
accidents. The policy can be simply formalised in logic as an implication

car accident→ pay damages.

The policy has a starting date, say s = 1 January 2010 and is valid for a calendar
year, which, for the purpose of calculation we use 365 days. If an accident occurs at
date t, we need to check that the policy was in force at the time. If yes, then payment
is within 30 days. Formally we have

1. s : accident→ pay
2. t : accident
3. s≤ t ≤ s+365
4. t +30 : pay

Let’s look further into this example. Many people renew their policies every year.
The insurance companies allow customers one month to pay the renewal fee. So we
may have the following situation, see Fig. 3.1.

When a claim is made, the insurance company will check whether the date of the
renewal payment is before 1 February 2011. If yes, then the accident on 15 January
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2011 is covered. Formally the modus ponens has the following form for renewal
policies:

1. s : accident ∧ renewal→ pay
2. x : policy renewal
3. t : accident
4. s+365+31 > x and

s+365+365 > t
4. t +30 : pay

The above has the following pattern

1. s : A→ B
2. t : A
3. ϕ(s, t) holds
4. f(s, t) : B

ϕ(s, t) is to check whether the labels match for the purpose of allowing the modus
ponens to go through and f(s, t) is the new label of the result of executing the modus
ponens.

Let us continue the story. Suppose we do have an accident at time t and the
car is a total loss. The car owner goes to a dealer with a letter from the insurance
company that they will pay so much. The owner wants to get a car immediately
from the dealer and let the dealer settle with the insurance company. The dealer
checks whether this insurance company is listed as one of the companies he has an
arrangement with. If yes, the deal can go forward. So we have (d is the dealer, n is
the insurance company):

5. d : credit OK→ deliver new car
6. n : credit
7. ϕ(d,n) holds
8. f(d,n) : deliver new car

To code the entire story we need to add the name of the insurance company n to the
insurance labels. We get:

1. (n,s): Accident ∧ renewal→ pay
2. (n,x): policy renewed
3. t : accident
4. d: credit OK→ deliver new car
5. (n, t +30) : pay→ (n, t +15) : credit

The above is the data, and we want to derive

6. (n,d, t +15) : new car.
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Here is the proof

7. Confirm that s+365+31 > x and s+365+365 > t holds.
8. (n, t +30) : pay, from (1), (2), (3), (6), and (7)
9. (n, t +15) : credit, from (8) and (5)

10. Confirm that n and d work together
11. (n,d, t +15) : new car, from (1), (4), and (10).

Example 3.2 (Relevance and Linear Logic). Consider a propositional language
with implication “→” only. The forward elimination rule is modus ponens. From
the theorem proving view, modus ponens is an object language consideration. Thus
a proof of � (B→ A)→ ((A→ B)→ (A→ B)) can proceed as follows:

Assume a1 : B→A and show (A→B)→ (A→B). Further assume a2 : A→B and
show A→ B. Further assume a3 : A and show B. We thus end up with the following
problem:

Assumptions

1. a1 : B→ A
2. a2 : A→ B
3. a3 : A

Derivation

4. a2a3 : B by modus ponens from lines (2) and (3).
5. a1a2a3 : A from (4) and (1).
6. a2a1a2a3 : B from (5) and (2).
7. a2a1a2 : A→ B from (3) and (6) and→ Introduction rule.

We delete the label of (3)
from the label of (6) and

get the label of (7).

8. a2a1 : (A→ B)→ (A→ B) from (2) and (7) and→ Introduction rule.

We delete the label of (2)
from the label of (7) and

get the label of (8).

9. a2 : (B→ A)→((A→ B)→ (A→ B)) from (1) and (8) and→ Introduction rule.

We delete the label of (1)
from the label of (8) and

get the label of (9).

The meta aspect of this proof is the annotation of the assumptions and the keeping
track of what was used in the deduction. A metaleval condition would determine the
logic involved. For example item 2, which has label a2 was used twice in the proof.
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This explains why one copy of the label a2 remained in line 9. A metalevel condition
might say we do not accept such proofs.

A formal definition of the labelling discipline for this class of logics is given
in Gabbay (1996). For this example it is sufficient to note the following three
conventions:

1. Each assumption is labelled by a new atomic label.
An ordering on the labels can be imposed, namely a1 < a2 < a3. This is to
reflect the fact that the assumptions arose from our attempt to prove (B→ A)→
((A → B) → (A → B)) and not for example from (A → B) → ((B → A) →
(A→ B)) in which case the ordering would be a2 < a1 < a3. The ordering can
affect the proofs in certain logics.

2. If in the proof, A is labelled by the multiset α and A→ B is labelled by β then B
can be derived with a label α ∪β where “∪” denotes multiset union.

3. If B was derived using A as evidenced by the fact that the label α of A is a
submultiset of the label β of B(α ⊆ β ) then we can derive A→ B with the label
β −α (“-” is multiset subtraction).

The derivation can be represented in a more graphical way.
To show (B→ A)→ ((A→ B)→ (A→ B)) see Fig. 3.2.
The above is the metabox way of representing the deduction. Note that in line 8,

multiset subtraction was used and only one copy of the label a2 was taken out.
The other copy of a2 remains and cannot be cancelled. Thus this formula is not
a theorem of linear logic, because the outer box does not exit with label ∅. In
relevance logic, the discipline uses sets and not multisets. Thus the label of line 8
in this case would be a1 and that of line 9 would be ∅. The above deduction can be
made even more explicit as follows:

(B→ A)→ ((A→ B)→ (A→ B)) follows with a label from Box a1.
Box a1

a1 : B→ A assumption
a2a1 : (A→ B)→ (A→ B) from Box a2

Box a2

a2 : A→ B assumption
a2a1a2 : A→ B from Box a3
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(9) exit a2 : (B→ A)→ ((A→ B)→ (A→ B)

(8) exit a2a1 : (A→ B)→ (A→ B)

(7) exit a2a1a2 : A→ B

(6) a2a1a2a3 : B

(5) a1a2a3 : A

(4) a2a3 : B

(3) a3 : A show B

Box a3

(2) a2 : A→ B show A→ B

Box a2

show (A→ B)→ (A→ B)(1) a1 : B→ A

Box a1

Fig. 3.2

Box a3

a3 : A assumption

a2 : A→ B reiteration from box a2

a2a3 : B by modus ponens

a1 : B→ A reiteration from box a1

a1a2a3 : A modus ponens from the two preceding lines

a2 : A→ B repetition of an earlier line

a2a1a2a3 : B modus ponens from the two preceding lines
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The following meta-rule was used:

• We have a systems of partially ordered metaboxes a1 < a2 < a3. Any assumption
in a box a can be reiterated in any box b provided a < b.

Remark 3.3. a. The above presentation of the boxes makes them look more like
possible worlds. The labels are the worlds and formulas can be exported from
one world to another according to some rules. Example 3.8 describes modal logic
in just this way.

b. Note that different meta-conditions on labels and metaboxes correspond to
different logics.

The following table gives intuitively some correspondence between metacon-
ditions and logics.

Meta-condition: Logic

Ignore the labels Intuitionistic logic

Accept only the derivations which use all the assumptions Relevance logic
Accept derivations which use all assumptions exactly once Linear logic

The meta-conditions can be translated into object conditions in terms of
axioms and rules. If we consider a Hilbert system with modus ponens and
substitution then the additional axioms involved are given below:

Linear Logic
A→ A
(A→ (B→C))→ (B→ (A→C))
(C→ A)→ ((B→C)→ (B→ A))
(C→ A)→ ((A→ B)→ (C→ B))

Relevance Logic
Add the schema below to linear logic
(A→ (B→C))→ ((A→ B)→ (A→C))

Intuitionistic Logic
Add the schema below to relevance logic:
A→ (B→ A)
The reader can note that the following axiom (Peirce Rule) yields classical logic.
Further note that for example, we can define “Linear Classical Logic” by adding
Peirce Rule to linear logic. A new logic is obtained.

Classical Logic
Add the schema below to intuitionistic logic:
((A→ B)→ A)→ A.

Remark 3.4 (Full implicational LDS). This remark will show how to formulate
an algebraic labelled deductive system for a language with → only. All relevant
parameters will be used. We need the following components.
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1. The logic language is propositional. It has atoms {p,q,r . . .} and implication→.
2. We need an algebra (A,∗), where ∗ is a binary operation on A. For example,
∗ may be an associative semigroup operation. Another possibility is to take
the algebra A as all finite sequence of some set off atomic labels and ∗ to be
concatenation.

3. We need to assume further properties on A. Consider an algebraic expression
g(x,a1, . . . ,ak) built up from the variable x and the elements a1, . . . ,ak ∈ A.
Consider the function

x �→ g(x,a1, . . . ,ak).

We can write this function using λ abstraction as

λxg(x,a1, . . . ,ak).

We need to assume that the algebra A is such that there exists a function
exit(λxg(x,ai)) that satisfies the following for all b.

exit(λxg(x,a1, . . . ,ak))∗b = g(b,a1, . . . ,ak).

For example, if A is a Boolean algebra of sets and ∗ is union, then for any
g(x,a1, . . . ,ak) we have

g(x,a1, . . . ,ak) = x∪a1∪ . . .∪ak

exit(λxg(x,ai)) = a1∪ . . .∪ak

Hence

b∪ exit(λxg(x,ai)) = b∪a1∪ . . .∪ak = g(b,a1, . . . ,ak).

In practice the function exit may not always be definable. So we can allow
exit to be partial and say that we cannot exit, when exit is not defined.

We can now give the→ Introduction and→ elimination rules.

→ E rule

α : A
β : A→ B
ϕ(β ,α)
β ∗α : B

→ Introduction rule

Show y : A→ B from box.
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1. x : A Assumption,x new atomic label variable
...
k : γ(x) : B
get to γ(x) : B using allowed proof rules→ E,→ I.
If exit(λxγ(x))is defined, then
exit with y = exit(λxγ(x)) : A→ B

Note that we can do the following continuation of the proof after we exit:

exit(λxγ(x)) : A→ B
α : A
ϕ(β ,exit(λxγ(x)))
exit(λxγ(x))∗α

By our assumptions on exit, we get

exit(λxγ(x))∗α = γ(α).

Remark 3.5 (Comparison of LDS with tableaux). The perceptive reader might
ask how does LDS compare with tableaux? Let us look at the database of
Example 3.2.The databse Δ is:

a1 : B→ A
a2 : A→ B
a3 : A

We want to derive B. Consider now E:

E = [(B→ A)→ ((A→ B)→ (A→ B))].

Let us now do tableaux for the formula E. We write ⊥ in front of a wff to say we
want it false and � to say we want it true.

Let us do it by steps. We use the tableaux rule

⊥ : X → Y
� : X ;⊥ : Y

.

1. ⊥ : [(B→ A)→ ((A→ B)→ (A→ B))]
2. � : (B→ A)
⊥ : (A→ B)→ (A→ B)

3. � : B→ A
� : A→ B
⊥ : A→ B
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4. � : B→ A
� : A→ B
� : A
⊥ : B

We see that the tableaux at item 4 is almost the same as the database, except that in
the tableaux we have⊥ : B and in the database we have “we wish o prove B”.This is
a stylistic difference. More fundamental is the possibility of labeling and imposing
metalevel restrictions on the tableaux, we get

4′. � : a1 : B→ A
� : a2 : A→ B
� : a3 : A
⊥ : a4 : B

To appreciate the difference between Tableaux and LDS, let us ask: How can we
read from 4′ whether A→ B is “used” twice? Such considerations make sense only
in proof systems while tableaux is a labelled semantic system. They are different.

3.2.1 Labelled Modal Logics

An ordinary traditional Kripke model has the form m = (S,R,a,h), where S is the
set of possible worlds, R⊆ S×S is the binary accessibility relation and a ∈ S is the
actual world. h is the assignment of truth values to the atoms of the language; for
each atomic q,h(q)⊆ S.

Since we are going to adopt a new labelled view on satisfaction, let us write down
the traditional definition in detail:

Note that (S,R,a) is mathematically just a directed graph with a distinguished
point a on the graph. In the possible world approach we choose to view the points of
the graph as worlds and the relation R as accessibility relation. In the labelled point
of view we maintain the view of (S,R) as directed graph.

Definition 3.6 (Traditional satisfaction in a Kripke model). Let m = (S,R,a,h)
be a Kripke model. We define the notion of

t �m A

by induction on A:

• t �m q if t ∈ h(q), for q atomic
• t �m A∧B iff t �m A and t �m B
• t �m ¬A iff t ��m A
• t �m ♦A iff for some s, tRs ands �m A.
• m � A iff a �m A
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The above clauses allow for non-normal modal logics, since satisfaction in the
model is defined as satisfaction in the actual world.

The traditional point of view allows for correspondence between modal axioms
and properties of R. For example the above semantics is complete for modal logic
K. The axiom corresponding to R reflexive is A→ ♦A (in the presence of the rule of
necessitation) and the axiom corresponding to R transitive is ♦♦A→ ♦A (again in
the presence of the rule of necessitation). It is relevant to mention that since validity
is defined using the actual world, then the axiom corresponding to aRa (reflexivity
only in the actual world and not in general for R) is A→ ♦A, but it must be added
to a formulation of K without the rule of necessitation.

We now expand our point of view a bit more. A traditional modal theory Δ is a
set of modal sentences, e.g. Δ = {q,♦q}. Δ is satisfied in a model m = (S,R,a,h),
iff for all A ∈ Δ we have a �m A. We write m � Δ.

This point of view was generalised in Gabbay (1998, 1996) to that of a labelled
theory. To form a labelled theory we add names for worlds say {ā, b̄, . . .} to the
syntax and allow for a labelled theory to use these names and have the form say, for
example

Δ= {ā : A, b̄ : B, āR̄b̄, ā �= b̄, ā actual}
where R̄ names R in the syntax.

Here we are bringing some of the semantics into the syntax using labels. This is
a big step, where we expand the formal language in the direction of some specific
semantical interpretation of the language. In our case we want a model m with actual
world ā = a and another possible world b̄ = b with b �= a such that aRb holds and
a � A and b � B. The view of Δ is that we are more demanding of the model and we
want also that certain worlds relate to each other in certain ways and satisfy certain
formulas as specified.5

Such theories Δ can be described as graphs. See Fig. 3.3. To show that this is a
figure of a theory and not a model, we enclose it in a triangle. Models we enclose in
big circles or elliptical closed curves.

The correlation x̄ �→ x indicates that the syntactical name x̄ in the theory Δ is
mapped onto the element x in the model. Note that the model in Fig. 3.4 may contain
more elements. In comparison, the theory Δ of Fig. 3.3 shows all the syntactical
elements.

Consider now another ordinary traditional theory Θ= {A∧♦B}. In our notation,
this is a one element graph {ā : A∧♦B}. Figures 3.5 and 3.6 show two possible
models for Θ. All we ask is that a � A∧♦B. So Fig. 3.5 does not show a model for
Δ (of Fig. 3.3), while Fig. 3.6 could be a model for Δ if a �= b.

Remark 3.7. Formally a theory Δ contains labelled formulas ti : Ai, relations ±tiR̄t j

between labels and inequalities ti �= t j between labels and a possible indication
which label is the actual world.

5When we put x̄ : A in a theory Δ we mean that we demand that A holds in the world named by x̄,
i.e. x � A.
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Structured Theory

Figure ā �= b̄

ā : A

b̄ : B

Fig. 3.3 Dec08

Model

Figure: a �= b;a � A;b � B

b

a

Fig. 3.4 Dec09

A model for Δ is a Kripke model (S,R,a,h,g) where (S,R,a,h) is a model and g
is a function on the labels t of Δ, such that g(t) ∈ S and the following holds:

1. If Δ says t is the actual world then g(t) = a.
2. If Δ says t1R̄t2 then g(t1)R g(t2).
3. If Δ says t1 �= t2 then g(t1) �= g(t2).
4. If t : A is in Δ then in the model (S,R,a,h) we have g(t) � A.

Figure 3.7 gives an example of a theory and its model. We have

g(t1) = a1,g(t2) = a2,g(t3) = a3.

The theory says
t1R̄t2∧ t2 �= t3∧ t3R̄t1
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Model 1

Ordinary Theory

A∧♦B

Figure: a � A∧B

a

Fig. 3.5 Dec10

Ordinary Theory

A∧♦B

Model 2

Figure: a � A and b � B

We can have a = b

a

b

Fig. 3.6 Dec11
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t1 : A1

t2 : A2

t3 : A3 a3 � A3

a2 � A3

a1 � A1

• t1Rt2 �= t3Rt1 implies ai related to each other, in the same way.

Fig. 3.7 Dec12

In the model, g(ti) are R and = related in the same way.
Thus it makes sense sometimes to give an ‘almost’ model to a theory and indicate

how to deal with demands which are irrelevant to the evaluation.
Another possibility is the following theory:

Δ= {(ā : A and āR̄x̄)
or (ā : ¬A and ¬āR̄x̄)}.

= {āR̄x̄ iff ā : A}.

We now have the notion of a structured labelled theory Δ for traditional Kripke
semantics and we understand what it means for such a theory Δ to hold in a model
m = (S,R,a,h). It means that there exists a function g from the labels of Δ into S,
which does all that Δ says, as illustrated in Fig. 3.7, and Remark 3.7.

We now give some examples.

Example 3.8. This example shows the meta level–object level division in the case
of modal logic. Modal logic has to do with possible worlds. We thus think of our
basic database (or assumptions) as a finite set of information about possible worlds.
This consists of two parts. The configuration part, the finite

configuration of possible worlds for the database, and the assumptions part which
tells us what formulas hold in each world. The following is an example of a database:

Assumptions Configuration
(1) t :��B t < s
(2) s : ♦(B→C)
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The conclusion to show (or query) is:

t : ♦♦C.

The derivation is as follows:

3. From (2) create a new point r with s < r and get r : B→C.

We thus have

Assumptions Configuration
(1), (2), (3) t < s < r

4. From (1), since t < s we get s :�B.
5. From (4) since s < r we get r : B.
6. From (5) and (3) we get r : C.
7. From (6) since s < r we get s : ♦C.
8. From (7) using t < s we get t : ♦♦C.

Discussion:
The object rules involved are:

�E Rule:

t < s; t :�A
s : A

♦I Rule:

t < s,s : B
t : ♦B

♦E Rule:

t : ♦A
create a new point s with t < s and deduce s : A

Note that the above rules are not complete. We do not have rules for deriving, for
example, �A. Also, the rules are all for intuitionistic modal logic.

The meta level consideration may be properties of <,
e.g. transitivity t < s∧ s < r→ t < r or
e.g. linearity: t < s∨ t = s∨ s < t etc.

Example 3.9. The reader can already see the benefit of separating the metalevel (the
handling of possible worlds i.e. labels) and the object-level (i.e. formulas) features.
We can combine both the metalevel features of Examples 3.2 and 3.8 to create for
example a modal relevance logic in a natural way. Each assumption has a relevance
label as well as world label. Thus the proof of the previous example becomes the
following:
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Assumptions Configuration
(1) (a1, t) :��B t < s
(2) (a2,s) : ♦(B→C)

We proceed to create a new label r using ♦E rule. The relevance label is carried
over. We have t < s < r.

3. (a2,r) : B→C

Using �E rule with relevance label carried over, we have:

4. (a1,s) :�B
5. (a1,r) : B

Using modus ponens with relevance label updated

6. (a1,a2,r) : C

Using ♦I rule:

7. (a1,a2,s) : ♦C
8. (a1,a2, t) : ♦♦C

(8) means that we got t : ♦♦C using both assumptions a1 and a2.
There are two serious problems in modal and temporal theorem proving. One is

that of Skolem functions for ∃x♦A(x) and ♦∃xA(x) are not logically the same. If we
skolemise we get ♦A(c). Unfortunately it is not clear where c exists, in the current
world ((∃x = c)♦A(x)) or the possible world (♦(∃x = c)A(x)).

If we use labelled assumptions then, t : ∃x♦A(x) becomes t : ♦A(c) and it is clear
that c is introduced at t. In fact we shall write it as ct .

On the other hand, the assumption t : ♦∃xA(x) will be used by the ♦E rule to
introduce a new point s, t < s and conclude s : ∃xA(x). We can further skolemise at s
and get s : A(c), with c introduced at s and write it as cs. We thus need the mechanism
of remembering or labelling constants as well, to indicate where they were first
introduced, and we need rules to govern them. This is illustrated in Example 3.11.

Labelling systems for modal and temporal logics is studied in Gabbay (1991c,
1992b) and Gabbay (1996). See also references Basin et al. (2000), Gabbay (1993a),
and Vigano (1999).

Example 3.10. The following example describes the logic of modal S4 strict
implication. In this logic the labels can be read either as relevance labels or as
possible worlds. S4 strict implication A → B can be understood as a temporal
connective, as follows:

“A→ B is true at world t iff for all future worlds s to t and for t itself we have that
if A is true at s then B is true at s”. Thus A→ B reads “From now on, if A then B”.6

Suppose we want to prove that A→ B and A→ (B→C) imply A→C. To show
this we reason semantically and assume that at time t, the two assumptions are true.
We want to show that A→C is also true at t. To prove that we take any future time s,

6Compare this with our insurance Example 3.1.
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assume that A is true at s and show that C is also true at s. We thus have the following
situation:

1. t : A→ B
2. t : A→ (B→C)
3. show t : A→C

from box

3.1 Assume s : A Show s : C
Since s is in the future of t, we get that at s,
(1) and (2) are also true.

3.2 s : A→ B from (1)
3.3 s : A→ (B→C) from (2)

We now use modus ponens, because X → Y means
“from now on, if X then Y ”

3.4 s : B from (3.1) and (3.2)
3.5 s : B→C from (3.2) and (3.3)
3.6 s : C modus ponens from (3.4) and (3.5)

exit t : A→C
Notice that any t : D can be brought into (reiterated) the box as s : D, provided

it has an implicational form, D = D1→ D2. We can thus regard the labels above as
simply naming assumptions (not as possible worlds) and the logic has the reiteration
rule which says that only implications can be reiterated.

Let us add a further note to sharpen our understanding. Suppose→ is read as a
K4 implication (i.e. transitivity without reflexivity). Then the above proof should
fail. Indeed the corresponding restriction on modus ponens is that we do perform
X ,X → Y � Y in a box, provided X → Y is a reiteration into the box and was not
itself derived in that same box. This will block line (3.6).

Example 3.11. Another example has to do with the Barcan formula
This is a case of quantified modal logic. We need to organise how to deal with

quantifiers in LDSṪhe idea is that whenever we introduce a variable or a constant
under a label we must label the variable/constant as well. Thus we have the rule:

t : ∃xA(x)

t : A(ct)

t : ∀xA(x)

t : A(xt)

we also have t : xt and t : ct holding, where t : y means that y ressides at t. A rule of
the form

t : y

s : y

is called a visa rule, allowing for a term y residing at t also to reside at s. Thus we
have the ∃ introduction rule as
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t : A(y); t : y

t : ∃yA(y)
.

and the universal generalisation rule:

t : A(x); t : x,x universal variable

t : ∀xA(x)

To get the Barcan formula we need a visa rule

t : y; t < s

s : y

We can now prove this formula.

Assumption Configuration
(1) t : ∀x�A(x) t < s

We show
s : ∀xA(x)

We proceed intuitively

1. t :�A(x) (stripping ∀x, remembering x is arbitrary), and t : x.
2. Since the configuration contains s, t < s we get

s : A(x)

3. Since x is arbitrary we get by visa rule and � rule:

s : ∀xA(x);s : x

The rule
t :�A(x), t < s

s : A(x)

is allowed because of the visa rule.
To have the above rule for arbitrary x is equivalent to adopting the Barcan formula

axiom:
∀x�A(x)→�∀xA(x)

To show �∀xA(x)→∀x�A(x), we need the visa rule:

t : y;s < t

s : y
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exit a1 : B→ (A→C)

exit a1a2 : A→C

a1a3a2 : C

a1a3 : B→C

a3 : A

C

show A→Ca2 : B

Fig. 3.8

The above are just a few examples for the scope we get using labels. The exact
details and correspondences are worked out in our monograph (Gabbay 1996).

It is worth while to expand more on labelled modal logic, since modal logic is
central to may applications in computer science, Language, Artificial Intelligence
and Analytic Philosophy. So we have more in Appendix B.

3.2.2 Other Labelled Systems

The next batch of examples covers a variety of different labelled deductive systems.

Example 3.12 (Relevance Reasoning). The indices are α,β , and γ = (β −α). The
reasoning structure is:
Assume α : A
Show β : B
If β ⊇ α then exit with (β −α) : A→ B.

To show A→ (B→C) � B→ (A→C)

Assume
a1 : A→ (B→C)

we use the metabox to show B→ (A→C). See Fig. 3.8.
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exit t : A→ B

t + x : B

...

...

assumptionx : A

Fig. 3.9

Example 3.13 (Łukasiewicz many-valued logics). Consider Łukasiewicz infinite-
valued logic, where the values are all real numbers or rationals in [0,1]. We designate
0 as truth and the truth table for implication is

x→ y = max(0,y− x)

Here the language contains atoms and implication only, assignments h give values
to atoms in [0,1], h(q) ∈ [0,1] and h is extended to arbitrary formulas via the table
for→ above. Define the relation

A1, . . . ,An � B

to mean that for all h,h(A1)+ . . .+h(An)� h(B), where + is numerical addition.
This logic can be regarded as a labelled deductive system, where the labels are

values t ∈ [0,1]. t : A means that h(A) = t, for a given background assignment h.
The interesting part is that to show t : A→ B (i.e. that A→ B has value t) we assume
x : A (i.e. that A has value x) and then have to show that B has value t + x, i.e. show
t + x : B.

This is according to the table of→.
Thus Fig. 3.9 shows the deduction in box form.
This has the same structure as the case of relevance logic, where + was

understood as concatenation.
A full study of many valued logics from the LDS point of view is given in Gabbay

(1996).

Example 3.14 (Formulas as Types). Another instance of the natural use of labels is
the Curry-Howard interpretation of formulas as types. This interpretation conforms



206 D.M. Gabbay

exactly to our framework. In fact, our framework gives the incentive to extend the
formulas as types interpretation in a natural way to other logics, such as linear
and relevance logics and surprisingly, also many valued logics, modal logics, and
intermediate logics. A formula is considered as a type and its label is a definable
λ -term of the same type. Given a system for defining λ -terms, the theorems of the
logic are all those types which can be shown to be non-empty.

The basic propagation mechanism corresponding to modus ponens is:

tA : A
tA→B : A→ B

tA→B(tA) : B

It is satisfied by application.
Thus if we read the + in tA→B + tA as application, we get the exact parallel to

the general schema of propagation. Compare with relevance logic where + was
concatenation, and with many valued logics where + was numerical addition!

To show t : A→ B we assume x : A, with x arbitrary, i.e. start with a term x
of type A, use the proof rules to get B. As we saw, applications of modus ponens
generate more terms which contain x in them via application. If we accept that
proofs generate functionals, then we get B with a label y = t(x). Thus t = λxt(x).
This again conforms with our general schema for→.

In our paper (Gabbay and Queiroz 1992) and recently in our book (Quieroz et al.
2011) on the Curry-Howard interpretation we exploit this idea systematically. There
are two mechanisms which allow us to restrict or expand our ability to define terms
of any type. We can restrict λ -abstraction, (e.g. allow λxt(x) only if x actually occurs
in t), this will give us logics weaker than intuitionistic logic, or we can increase our
world of terms by requiring diagrams to be closed e.g., for any ϕ of classical logic
such that

� (A→ B)→ [ϕ(A)→ ϕ(B)]

in classical logic, we want the following diagram to be complete, i.e. for any term t
there must exist a term t ′ (see Fig. 3.10).

Take for example the formula A→ (B→ A) as type. We want to show a definable
term of this type, we can try and use the standard proof (see Fig. 3.11), however, with
the restriction on λ -abstraction which requires the abstracted variable to actually
occur in the formula, we cannot exit the inner box. For details see Gabbay and
Queiroz (1992).

Example 3.15 (Realisability Interpretation). The well known realisability interpre-
tation for intuitionistic implication is another example of a functional interpretation
for→ which has the same universal LDS form. A notation for a recursive function
{e} realises an implication A→ B iff for any n which realises A,{e}(n) realises B.
Thus

e : A→ B iff ∀n[n : A⇒{e}(n) : B]
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t

t ′

ϕ(A)

A B

ϕ(B)

� �

�

�

Fig. 3.10

xA : A

...

...

yB : B

exit λxA.λyB.xA

exit: λyb.xA

xA : A

Fig. 3.11

It is an open problem to find an axiomatic description of the set of all wffs which
are realisable.

Definition 3.16 (An algebraic LDS for implication and negation). Let L be a
propositional language with →,¬ and atoms. Let A be an algebra of labels with
relations x < y for priority among labels, ϕ(x,y) of compatibility among labels and
functions, f(x,y) for propagating labels and � for aggregating labels.

Given two labelled formulas t : A and s : A→ B,ϕ(s, t) must hold in order to
licence the modus ponens. If it does not hold, we cannot get B. If it does hold, we
can get B but we must know what is the label of B. This is the job of the function
f(s, t). The aggregation function tells us how different proofs of the same B with
different labels can reinforce one another. Thus if we have t : B and s : B we can
aggregate and get t � s : B. See Example 3.20 for a very famous aggregation rule.
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1. A declarative unit is a pair t : A, where A is a formula and t a term on the algebra
of labels (built up from atomic labels and the functions f and �).

2. A database is a set containing declarative units and formulae of the form ti < si

and ϕ(ti,si) for some labels t1, . . . ,si, . . . .
3. The→ elimination rule, modus ponens, has the form

t : A;s : A→ B;ϕ(s, t)

f(s, t) : B

4. The⇒ introduction rule has the form

• To introduce t : A→ B
Assume x : A, for x arbitrary in the set {y | ϕ(t,y)}, and show f(t,x) : B.

5. Negation rules have the form
t : B;s : ¬B

r : C

We are not writing any specific rules because there are so many options for
negation.

6. A family of flattening rules Flat of the form

t1 : A, . . . , tk : A;s1 : ¬A, . . . ,sm : ¬A;yi < y j, i = 1,2, . . . , j = 1,2, . . .

γ = Flat({t1, . . . , tk,s1, . . . ,sm})

where γ is either 0 or 1 and is the result of applying the function Flat on the set
containing ti,s j and where y j,yi range over {t1, . . . , tk,s1, . . . ,sm}.7

The meaning of γ is as follows. Since obviously we can prove both A and ¬A
with different labels, we need a flat decision on whether we take A,(γ = 1) or
¬A,(γ = 0).

7. Aggregation rule

t : A;s : A

t � s : A

8. � is associative, commutative and f is distributive over �.
9. A proof is a sequence of expressions which are of the form t < s, ϕ(t,s) or t : A

such that each element of the sequence is either an assumption or is obtained from
previous elements in the sequence by an elimination rule or is introduced by a
subcomputation via the→ introduction rule. Flattening rules are to be used last.

7Flat is a function defined on any set of labels and giving as value a new label. To understand this,
recall another function on numbers which we may call Sum. It adds any set of numbers to give a
new number: their sum!
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3.3 Examples from Non-monotonic Logics

The examples in the previous section are from the area of monotonic reasoning.
This section will give examples from non-monotonic reasoning. As we have already
mentioned, we hope that the idea of LDS will unify these two areas.

Example 3.17 (Ordered Logic). An ordered logic database is a partially ordered set
of local databases, each local database being a set of clauses. The following diagram
(Fig. 3.12) describes an ordered logic database:

The local databases are labelled t1, t2, t3,s1,s2 and ∅ and are partially ordered as
in the figure.

To motivate such databases, consider an ordinary logic program C1 = {p←¬q}.
The computation of a logic program assumes that, since q is not a head of any
clause, ¬q is part of the data, (this is the closed world assumption). Suppose we
relinquish this principle and adopt the principle of asking an advisor what to do
with ¬q. The advisor might say that ¬q succeeds or might say that ¬q fails. The
advisor might have his own program to consult. If his program is C2, he might run
the goal q (or ¬q), look at what he gets and then advise. To make the situation
symmetrical and general we must allow for Horn programs to have rules with both
q and ¬q (i.e. literals) in heads and bodies and have any number of negotiating
advisors. Thus we can have C2 = {¬q},C1 = {q← ¬q} and C1 depends on C2.
Ordered logic develops and studies various aspects of such an advisor system which
is modelled as a partially ordered set of theories. Such a logic is useful, e.g. for
multi-expert systems where we want to represent the knowledge of several experts
in a single system. Experts may then be ordered according to an “advisory” or a
relative preference relation.

a←¬b

b←¬a

c←¬d

d←¬c

¬q

q

¬p←¬q

p

¬d

¬c

¬b

¬a

∅

t3t2t1

s2s1

� �
�

��

Fig. 3.12
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A problem to consider is what happens when we have several advisors that are in
conflict. For example, C1 depends on C2 and C1 depends on C3. The two advisers, C2

and C3, may be in conflict. One may advise ¬q, the other q. How to decide? There
are several options:

1. We can accept q if all advisors say “yes” to q.
2. We can accept q if at least one advisor says “yes” to q.
3. We can apply some non-monotonic or probabilistic mechanism to decide.

If we choose options (1) or (2) we are essentially in modal logic. To have a
node t and to have ?q refer to advisors t1, . . . , tn with t < ti, i = 1, . . . ,n is like
considering ?�q at t in modal logic with t1, . . . , tn possible worlds in option 1 and
like considering ♦q at t in option (2). Option (3) is more general, and here an LDS
approach is most useful. We see from this advisors examples an application area
where the labels arise naturally and usefully. The area of ordered logic is surveyed
in Vermeir and Laenens (1990).

Example 3.18 (Defeasible Logic). This important approach to non-monotonic rea-
soning was introduced by Nute (1994). The idea is that rules can prove either an
atom q or its negation ¬q. If two rules are in conflict, one proving q and one proving
¬q, the deduction that is stronger is from a rule whose antecedent is logically more
specific. Thus the database:

t1 : Bird (x)→ Fly (x)
t2 : Big (x)∧ Bird (x)→¬ Fly (x)
t3 : Big (a)
t4 : Bird (a)

t1 < t2
t3
t4

can prove:
t2t3t4 : ¬Fly(a)

t1t4 : Fly(a)

The database will entail ¬ Fly (a) because the second rule is more specific.
As an LDS system the labelling of rules in a database Δ is very simple. We

label a rule by its antecedent. The ordering of the labels is done by logical strength
relative to some background theory Θ (which can be a subtheory of Δ of some form).
Deduction pays attention to strength of labels.

Example 3.19 (Fallacies). The reader should note that our point of view and the
use of labels is genuinely more general and is capable of yielding more. We describe
an unexpected application of our view. There is a serious, well-motivated and well-
organised community, the informal logic and argumentation community, studying
the nature of human reasoning and argumentation in general and attempting to
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foundationally explain the role of the fallacies in human arguments. Fallacies are
argument structures which appear to be correct and convincing, but are actually
wrong. Many of them can be effectively used in some situations, but not in others.
Any account of real life human practical reasoning must give account of the
fallacies. In Hamblin Words (Hamblin 1970), a fallacy is an argument that ‘seems
to be valid but is not so’.

The handling of the fallacies in the traditional literature is divergent between two
extremes.

There are those who reject the fallacies as not having any logical value (see
Lambert and Ulrich 1980) and there are those who try to see some logic in them.
Among the latter are John Woods and Douglas Walton. They believe that the
traditional fallacies can be explained within the framework of other logics, such as
inductive logics, non-classical logics, logics of plausible reasoning, relevance logics
and more. The Woods–Walton approach, see Woods and Walton (1989), Woods
(1988), Walton (1990), is successful in many cases in showing and explaining how
some fallacies are really not fallacies. However the Woods–Walton approach was in
principle criticised by F. H. Van Emerson and R. Grootendorst (1992), who point
out that this approach, although successful in many cases, creates new and serious
problems. Van Emeren and Grootendorst, justly point out that every fallacy, in this
approach needs, so to speak, its own logic. In van Eemeren and Grootendorst (1992,
p. 103) they say

‘For practical purposes this approach is not very realistic. In order to be able to carry out
the analyses, a considerable amount of logical knowledge is required. There are also some
theoretical disadvantages inherent in this approach. By relying on so many logical systems,
one only gets fragmentary description of the various fallacies, and no overall picture of the
domain of the fallacies as a whole. Ideally, one unified theory that is capable of dealing with
all the different phenomena, is to be preferred.’

We agree with both Van Emeren–Grootendorst and with Woods–Walton. There
is indeed a possible candidate for a unifying logic in which suitable theories for
practical reasoning and the fallacies can be formulated.

It is the framework of Labelled Deductive Systems.
This example is a preliminary study at classifying and explaining some of the

fallacies in LDS.
Here we quote Douglas Walton’s words (Walton 1990, p. 353)

‘. . . until we have a clearer definition of theoretical reasoning, it is not possible to refute
the argument that there is one underlying kind of reasoning that has two uses—practical
problem solving and theoretical problem solving . . . ’

Well known among the fallacies is the fallacy Ad Hominem, the fallacy of
attacking not the argument but the person presenting it. This kind of reasoning is
sometimes acceptable and sometimes not. It is generally considered non-logical,
although admittedly extensively used by the human practical reasoner. In our
framework, this fallacy has a natural place.

Consider the notion of a database Δ. This is a structure of declarative units of the
form t : A, where t is the label and A the formula. The label t annotates A. Suppose
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the annotation indicates the priority of the formula A and that in an external ordering
< gives the relative strength of the priorities. Thus a priority database can be for
example

{t : A,s : B, t < s}
t and s can be numbers of algebraic terms and t < s indicates that B has a higher
priority than A. This priority can be used in derivation. For example, in the presence
of A→¬C,B→C of equal priority, C will be derived.

The data items A and B are formulas of the logic L1, which is applied to some
application area. In many areas it is quite reasonable to have the labels themselves be
formulas α,β of another language and logic L2, describing the origin and nature of
the data items, A,B. Some reasoning in L2 may be available to determine the priority
(if any) of α and β . A formula Ψ(α,β ) and a base theory Θ (possibly dependent on
Δ) of L2 may be used for this purpose, i.e. we have:

α ≤ β iff Θ �2 Ψ(α,β ).

The simplest condition (in case L2 has some form of implication) is

α ≤ β iff Θ �2 β → α.

Note that our labels are wffs α of L2 labelling wffs A of L1 and the base theory
Θ determines the priorities of labels. We now explain the logical force of the fallacy
by an example. Suppose we are faced with the following deduction.

α : A→¬C
β : B→C
γ : A
γ : B
Θ �2 β → α

We must conclude C, because β has higher priority than α . To counter this
argument, we may either prove ¬C from additional data or we may attack the source
of information, i.e. add Θ0 to Θ or try and show that Θ∪Θ0 ��2 β → α?, (Note
that L2 reasoning is also non-monotonic!). This move appears to us as attacking,
not the argument, but its source. However, in the correct context (priority logic)
it is a correct move. Other fallacies which are explainable in this framework are
Ad Verecundiam, appeal to unsuitable authority, where the labelling is incorrect
and fallacies of irrelevance. A systematic study of the fallacies in our context will
(hopefully) be done elsewhere.

To make the above database more concrete consider the following scenario.
A man is imprisoned for fraud for a long period of time. During that period, medical
evidence emerges that the prisoner has terminal cancer. The question is whether to
release him from jail. One legal argument supports an early release. The problem
seems to be that the prisoner made some threats during the trial and a social and
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psycological report cannot exclude the possibility that the prisoner might use his
remaining free days for revenge. Our database now reads

m : B medical file m supporting the statement that the prisoner
has cancer

p : A social workers report supporting the statement that the
prisoner is seeking revenge

α : A→¬C legal precedents α supporting the rule
that in case of possible revenge the prisoner should
not be released

β : B→C legal reasoning β supporting that in
case of cancer the prisoner should be released

p < m medical files are stronger than ‘psychological’ files’

From the above data we can conclude

β ∗m : C

and
α ∗ p : ¬C

Since both β and m have higher priority, C will follow by the flattening process.
If we want to change the conclusion (to get ¬C), we must either attack the

medical file m, discrediting the medical evidence or boost up the credibility of the
psychological report.

Example 3.20 (Dempster–Shafer rule). The present example presents a very well
known rule of aggregation, the Dempster–Shafer rule. Our exposition relies on Ng
and Subrahmanian (1994).

The algebraAwe are dealing with is the set of all subintervals of the unit interval
[0,1]. The Dempster–Shafer addition on these intervals is defined by

[a,b]⊕ [c,d] =

[
a ·d +b · c−a · c

,
1− k

b ·d
1− k

]

where k = a · (1− d) + c · (1− b), where ‘·’, ‘+’, ‘−’ are the usual arithmetical
operations. The compatibility condition required on a,b,c,d is

F([a,b], [c,d])≡ k �= 1.

The operation ⊕ is commutative and associative. Let e = [0,1].
The following also holds:

• [a,b]⊕ e = [a,b]
• For [a,b] �= [1,1] we have [a,b]⊕ [0,0] = [0,0]
• For [a,b] �= [0,0] we have [a,b]⊕ [1,1] = [1,1]
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• [a,b]⊕ [c,d] = ∅ iff either [a,b] = [0,0] and [c,d] = [1,1] or [a,b] = [1,1] and
[c,d] = [0,0].

In this algebra, we understand the declarative unit [a,b] : A as saying that the
probability of the event represented by A lies in the interval [a,b]. We have, of course

[a,b] : A→ B; [c,d] : A
,

[a,b]⊕ [c,d] : B

provided F([a,b], [c,d]) holds.
It is also possible to move to a higher language and write clauses of the form

t : (t1 : A1)→ ((t2 : A2)→ (t3 : A3))

which is more like the way clauses are used in traditional Dempster–Shafer
applications.

3.4 Conclusion and Further Reading

We started this chapter by mentioning the need, arising from applications, for a
general unifying theory of “what is a logical system”. The theory of LDS arose as a
partial answer to this question. The perceptive reader would surely like to know in
concluding this chapter the answer to the following two questions:

1. What is our current (2011) view of “what is a logical system”?
2. Can we give some sample diverse applications of LDS in some interesting “hot”

areas?

The remainder of this section answers question 1 and the appendices answer
question 2.

Logic is widely applied in computer science and artificial intelligence, in
philosophy, linguistics, argumentation, psychology, decision theory, theology and
Law. The reader can see the discussion in the editorial for this Handbook. The needs
of the application areas in computing are different from those in mathematics
and philosophy. In response to urgent needs of many application areas, intensive
research has been directed in the area of non- classical and non-monotonic logic.
New logics have been developed and studied. Certain logical features, which have
not received extensive attention in the pure logic community, are repeatedly being
called upon in computational applications. The following list identifies some of the
changes

The traditional notions of logic rely on the following building blocks.

A1. a. Formulas are built up from atoms using connectives, variables and
quantifiers.
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b. Atoms have no internal structure.
c. Our view is that atoms can be complex objects such as networks of nodes

with relations and structure among them and that the logical connectives
correspond to operations on networks to get new networks. The notion
of substitution of a formula A for an atom q in B(q) to form B(q/A)
corresponds to the notion of fibring of networks. See references (Gabbay
and Williamson 2004; Gabbay and d’Avila Garcez 2004; Gabbay 2009;
Carnielli et al. 2007).

A2. Traditionally a logic is recognised by its theorems (of the form � B) or
perhaps by its consequence relation (of the form A � B).

Our view is that an essential part of a logic may also include other
mechanisms and the manner in which they interact.

A3. A semantic interpretation is traditionally desirable (provided in set theory)
and a completeness theorem is expected. There is a clear distinction between
syntax (theorems) and semantics.

We allow for the semantics to be brought into the syntax via labelling
and look at the notion of interpretation and translation as ‘semantics’.
Furthermore, we allow the semantics to be reactive and change during the
process of the semantic evaluation in response to the evaluation steps.

A4. To the extent that proof theory is provided it is considered as a syntactical/
algorithmic means of presenting the consequence relation. So, for example,
classical logic presented via tableaux is generally considered to be the same
logic as when presented using resolution. We propose that we consider them
as two different logics.

A5. The traditional data structure of theories of the logic are usually sets of
formulas, maybe lists of formulas and maybe lists of lists. This is as far
as they go. Certainly not a general structure of any kind, with an entire
mathematical algebraic procedure for manipulating it.

Not only do we accept general structures for data but also algorithms for
fetching more data are considered also as part of the data. The new aspect of
allowing algorithms to be data items in the database is that the algorithm may
give different results depending on when in the proof process it is invoked!
See also A10.

A6. In traditional logics any data item (formula) can be put into the database.
There is no elaborate procedure for deciding whether to allow a data item A
to be input into a database Δ. A data item may be rejected if it is inconsistent
with existing data. However, there is nothing like the considerations of
admissibility of evidence into the database that we have, for example, in law.

A7. The entire presentation of the logic is supposed to be in the object level.
Some meta-level considerations are studied, mainly in connection with self-
reference. There is no elaborate meta-level hierarchy and a variety of levels
available as an essential part of the logic and certainly no serious body of
rules is considered for moving between levels.

A8. In traditional logic, time does not enter into the picture at all. The logic is
static. It does not depend on actions, or evolve or change. There is no notion
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of input and output. Logic is not a process but a fixed consequence relation
to be studied by various means. Our concept of a logic involves action and
change. The most simple model interprets Δ � A as having a sequence of
actions which modify Δ to Δ′ and Δ′ � A.

A9. Traditionally, a formula can either be a theorem of the logic or not. Even in
many valued logics the body of theorems is defined using the values but the
logic is viewed as defined by the body of its theorems. There is no systematic
notion of several categories of strong/weak theorems and how to move from
one category to another.

A10. Various mechanisms such as abduction, revision, etc, are considered meta-
level to traditional logic and not part of the logic itself.

For example, items of data are not restricted to just formulas but can also
be mechanisms which can be activated to get more data.

A11. There is no recognition for methodologies for allowing logics to interact with
one another as part of the general notion of a logic. There is no realisation
that it may be the case that a certain logic can be presented only as part of a
larger family of interacting logics.

A12. There is no recognition that the process of substitution is an important
proof theoretical step (similar to e.g. modus ponens) and that all variables
should come annotated with a range of allowable and forbidden substitutions.
Changing such a range is a legitimate and important proof step. This is
important in modelling language.

A13. Two features in logic seem to be of crucial importance to the needs of
computer science and stand in need of further study. These are:

1. The metalevel features of logical systems
2. The “logic” of Skolem functions and unification

The meta-language properties of logical systems are usually hidden in the
object language. Either in the proof theory or via some higher-order or many-
sorted devices. The logic of Skolem functions is non-existent.

A14. There is a need to integrate logic with network reasoning. The problem is
discussed in Gabbay (2009) and Gabbay (2010). A solution can be found in
Gabbay (2011, 2012) and Gabbay (2011c).

To conclude, the traditional presentation of classical and non-classical logics
is not conducive to bringing out and developing the features needed for human
oriented applications. The very concept of what is a logical system seems to be
in need of revision and clarification. A closer examination of classical and non-
classical logics reveals the possibility of introducing a new approach to logic; the
discipline of Labelled Deductive Systems (LDS) which, I believe, will not only be
ideal for computer science applications but will also serve, I hope, as a new unifying
logical framework of value to logic itself. What seem to be isolated local features
of some known logics turn out to be, in my view, manifestations of more general
logical phenomena of interest to the future development of logic itself.
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Semantics for LDS logics is presented in my book on Fibring Logics (Gabbay
1998).

LDS is part of a more general view of logic. This view is discussed elsewhere
(Gabbay 1996, 1991b, 1993b), however in brief, we claim the following. The
new concept of a logical system is that of a network of LDS systems which has
mechanisms for communication (through the labels, which code meta information)
and evolution or change.

Evaluation is a general concept which can embrace updating, abduction, consis-
tency maintenance, action and planning. The above statement of position is vague
but it does imply that we believe that notions like abduction and updating are
logical notions of equal standing to those of provability. See Gabbay and Woods
(2003/2005).

Appendices

Appendix A. Case Study Application of LDS to Law: Hearsay
Case, Myers v DPP

To show you the power of LDS we quote, model and analyse a famous legal
case from thee UK, concerning the Theory of Evidence. It is concerned with the
admissibility of evidence. In logical terms it means the following.

Given a structured labelled database Δ, we want to input into it another item of
data A. We need to say with what label the item goes into the database and where
in the structure of the database it is to reside. We might even reject the item if it
seems to be problematic. The Theory of Evidence in Law deals extensively with
such items. When to accept them, how to use them, etc., etc. One such example is if
the item A to be admitted comes from Hearsay.

This case appears in every legal textbook on Evidence. We begin by quoting from
Allen (2001, p. 133).

A good statement of the hearsay rule was given originally in Cross on Evidence,
Cross (1999).

An assertion other than one made by a person while giving oral evidence in the proceedings
is inadmissible as evidence of any fact asserted.

Allen continued on page 135:

Hearsay law has been described as ‘exceptionally complex and difficult to interpret’ (RCCJ
1993). What we need is a method of approach to the subject which will enable us to
understand why some cases were decided as they were and why others are open to criticism.
Above all, we need a technique [our comment: i.e. logic] for thinking about hearsay, . . . .

We now examine a key case, which seems to be quoted in every textbook on
Evidence (and hearsay). This is a case of written statements, which may fall under
hearsay law.
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We quote two descriptions of this case, one from Keane (2000) and one from
Uglow (1997), and then we model the arguments as quoted in Uglow (1997).

We begin with Keane (2000, pp. 250–252)

(b) Written statements
The leading case on written hearsay is Myers v DPP ([1965] AC 1001). The appellant was
convicted of offences relating to the theft of motor cars. He would buy a wrecked car, steal
a car resembling it, disguise the stolen car so that it corresponded with the particulars of
the wrecked car as noted in its log book, and then sell the stolen car with the log book
of the wrecked one. The prosecution case involved proving that the disguised cars were
stolen by reference to the cylinder-block numbers indelibly stamped on their engines. In
the case of some cars, therefore, they sought to adduce evidence derived from records
kept by a motor manufacturer. An officer in charge of these records was called to produce
microfilms which were prepared from cards filled in by workmen on the assembly line
and which contained the cylinder-block numbers of the cars manufactured. The Court
of Criminal Appeal held that the trial judge had properly allowed the evidence to be
admitted because of the circumstances in which the record was maintained and the inherent
probability that it was correct rather than incorrect. The House of Lords held that the records
constituted inadmissible hearsay evidence. The entries on the cards and contained in the
microfilms were out-of-court assertions by unidentifiable workmen that certain cars bore
certain cylinder-block numbers. The officer called could not prove that the records were
correct and that the numbers they contained were in fact the numbers on the cars in question.
Their Lordships, however, were divided as to whether the evidence should be admitted
by the creation of a new exception to the hearsay rule.8 Lords Pearce and Donovan were
in favour of such a course, but the majority, comprising Lords Reid, Morris and Hodson,
declined to do so, being of the opinion that it was for the legislature and not the judiciary to
add to the classes of admissible hearsay.9 It was argued before the House that the trial judge
has a discretion to admit a record in a particular case if satisfied that it is trustworthy and
that justice requires its admission. Lord Reid, while acknowledging that the hearsay rule
was ‘absurdly technical’, held that ‘no matter how cogent particular evidence may seem to
be, unless it comes within a class which is admissible, it is excluded . . . ’

The actual decision in Myers v DPP was reversed by the Criminal Evidence Act 1965,
which provided for the admissibility of certain hearsay statements contained in trade or
business records. Although the 1965 Act was repealed by the Police and Criminal Evidence
Act 1984, ss 23 and 24 of the Criminal Justice Act 1988 are wider in scope than the
provisions of the 1965 Act and provide for the admissibility of first-hand hearsay statements
in documents generally as well as hearsay statements contained in documents created
or received by a person in the course of, inter alia, a trade or business. The principles
enunciated in Myers v DPP, however, remain of importance in relation to hearsay statements
falling outside the statutory exceptions. Over 25 years later, another majority of the House
of Lords, in R v Kearley,10 although of the opinion that there may be a case for a general
relaxation of the hearsay rule, affirmed the majority view in Myers v DPP that the only
satisfactory solution is legislation following on a wide survey of the whole field.

8The Lords were unanimous in dismissing the appeal on the grounds that the other evidence of
guilt being overwhelming, there had been no substantial miscarriage of justice.
9The minority view, that it was within the provenance of the judiciary to restate the exceptions to
the hearsay rule, was adopted by the Supreme Court of Canada in Ares v Venner [1970] SCR 608.
See also per Lord Griffiths in R v Kearley [1992] 2 All ER 345, HL at 348.
10[1992] 2 All ER 345, HL, per Lords Bridge, Ackner and Oliver at 360–361, 366 and 382–383
respectively.
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Patel v Comptroller of Customs11 also illustrates the application of the hearsay rule to
written statements. The appellant was convicted of making a false declaration in an import
entry form concerning certain bags of seed. Evidence was admitted that the bags of seed
bore the words ‘Produce of Morocco’. The Privy Council held that the evidence was
inadmissible hearsay and advised that the conviction be quashed. The decision may be
usefully compared with that in R v Lydon.12 The appellant, Sean Lydon, was convicted
of robbery. His defence was one of alibi. About one mile from the scene of the robbery, on
the verge of the road which the getaway car had followed, were found a gun and, nearby,
two pieces of rolled paper on which someone had written ‘Sean rules’ and ‘Sean rules 85’.
Ink of similar appearance and composition to that on the paper was found on the gun barrel.
The Court of Appeal held that evidence relating to the pieces of paper had been properly
admitted as circumstantial evidence: if the jury were satisfied that the gun was used in the
robbery and that the pieces of paper were linked to the gun, the references to Sean could be
a fact which would fit in with the appellant having committed the offence. The references
were not hearsay because they involved no assertion as to the truth of the contents of the
pieces of paper: they were not tendered to show that Sean ruled anything.13

If we go 480 pages into Steven Uglow’s book (Uglow 1997), we find his account
of the same case.

written statements: the classic case here is Myers v DPP ([1964] 2 All E.R. 877) where
the defendant bought wrecked cars for their registration certificates. He would then steal a
similar car and alter it to fit the details in the document. He would sell the disguised stolen
car along with the genuine log book of the wrecked car. The prosecution sought to show
that the cars and registration documents did not match up by reference to the engine block
numbers and introduced microfilm evidence kept by the manufacturer, showing that this
block number did not belong in a car of this registration date. The microfilm was prepared
from cards which were themselves prepared by workers on the assembly line. Lord Reid in
the House of Lords held that the microfilm was inadmissible since it contained the out-of-
court assertions by unidentified workers.

The labelled structure of the above is as follows.

Let

• t : C The numbers assigned to the cars by the manufacturers are x1,x2, . . .
• t ′ : C′ The numbers in the cars’ logbook are y1,y2, . . ..

11[1966] AC 356, PC. See also R v Sealby [1965] 1 All ER 701 and R v Brown [1991] Crim LR835,
CA (evidence of a name on an appliance inadmissible to establish its ownership); and cf R v Rice
[1963] 1 QB 857, below.
12[1987] Crim LR 407, CA.
13See also R v McIntosh [1992] Crim LR 651, CA (calculations as to the purchase and sale prices
of 12 oz of an unnamed commodity, not in M’s handwriting but found concealed in the chimney
of a house where he had been living, admissible as circumstantial evidence tending to connect him
with drug-related offences); and cf R v Horne [1992] Crim LR 304, CA (documents of unknown
authorship, referring to H, containing calculations possibly relating to the cost of importing drugs,
and found in the flat of a co-accused to which H was supposed to deliver the drugs, inadmissible
against H). R v McIntosh was applied in Roberts v DP [1994] Crim LR 926, DC: documents
found at R’s offices and home, including repair and gas bills and other accounts relating to certain
premises, were admissible as circumstantial evidence linking R with those premises, on charges of
assisting in the management of a brothel and running a massage parlour without a licence.



220 D.M. Gabbay

If xi �= yi, then we get:

• t + t ′ : C′′ = the numbers on the cars and numbers on the registration documents
do not match

where

• t = description of how the microfilm supporting C was obtained and compiled.
• t ′ = the cars’ logbooks.

The candidate item of data for admissibility is

• t : C.

The following passage is Lord Reid’s argument that t : C should be inadmissible,
i.e. Lord Reid wants to argue that t should also contain the phrase “do not use me”.

This is done in the logic of the labels. In other words, Lord Reid’s argument has
to do with the data inside t.

Here is Lord Reid’s argument (technically it is part of t). It also quotes the
arguments given in favour of admitting t : C.

Myers v DPP [1964] 2 All E.R. 877 at 886b–887h, per Lord Reid

It is not disputed before your Lordships that to admit these records is to admit hearsay. They
only tend to prove that a particular car bore a particular number when it was assembled if
the jury were entitled to infer that the entries were accurate, at least in the main; and the
entries on the cards were assertions by the unidentifiable men who made them that they had
entered numbers which they had seen on the cars. Counsel for the respondents were unable
to adduce any reported case or any textbook as direct authority for their submission. Only
four reasons for their submission were put forward. It was said that evidence of this kind is
in practice admitted at least at the Central Criminal Court. Then it was argued that a judge
has a discretion to admit such evidence. Then the reasons given in the Court of Criminal
Appeal were relied on. And lastly it was said with truth that common sense rebels against
the rejection of this evidence.

At the trial counsel for the prosecution sought to support the existing practice of
admitting such records, if produced by the persons in charge of them, by arguing that they
were not adduced to prove the truth of the recorded particulars but only to prove that they
were records kept in the normal course of business. Counsel for the accused then asked
the very pertinent question — if they were not intended to prove the truth of the entries,
what were they intended to prove? I ask what the jury would infer from them: obviously
that they were probably true records. If they were not capable of supporting an inference that
they were probably true records, then I do not see what probative value they could have, and
their admission was bound to mislead the jury.

The first reason given by the Court of Criminal Appeal for sustaining the admission of
the records was that, although the records might not be evidence standing by themselves,
they could be used to corroborate the evidence of other witnesses.14 I regret to say that I
have great difficulty in understanding that . . . Unless the jury were entitled to regard them, I

14This is our footnote. “corroborate evidence of other witnesses” means in our LDS language “help
with the flattening process”.
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can see no reason why they should only become admissible evidence after some witnesses
have identified the cars for different reasons . . . 15

At the end of their judgement, the Court of Criminal Appeal gave a different reason.
‘In our view the admission of such evidence does not infringe the hearsay rule because its
probative value does not depend upon the credit of an unidentified person but rather on the
circumstances in which the record is maintained and the inherent probability that it will be
correct rather than incorrect.’ That, if I may say so, is undeniable as a matter of common
sense. But can it be reconciled with the existing law? I need not discuss the question on
general lines because I think that this ground is quite inconsistent with the established rule
regarding public records. Public records are prima facie evidence of the fact which they
contain but it is quite clear that a record is not a public record within the scope of that rule
unless it is open to inspection by at least a section of the public. Unless we are to alter
that rule how can we possibly say that a private record not open to public inspection can be
prima facie evidence of the truth of its contents? I would agree that it is quite unreasonable to
refuse to accept as prima facie evidence a record obviously well kept by public officers and
proved never to have been discovered to contain a wrong entry though frequently consulted
by officials, merely because it is not open to inspection. But that is settled law. This seems to
me to be a good example of the wide repercussions which would follow if we accepted the
judgement of the Court of Criminal Appeal. I must therefore regretfully decline to accept
this reason as correct in law.

In argument, the Solicitor-General maintained that, although the general rule may be
against the admission of private records to prove the truth of entries in them, the trial judge
has a discretion to admit a record in a particular case if satisfied that it is trustworthy and that
justice requires its admission. That appears to me to be contrary to the whole framework of
the existing law. It is true that a judge has a discretion to exclude legally admissible evidence
if justice so requires, but it is a very different thing to say that he has a discretion to admit
legally inadmissible evidence. The whole development of the exceptions to the hearsay rule
is based on the determination of certain classes of evidence as admissible or inadmissible
and not on the apparent credibility of particular evidence tendered. No matter how cogent
particular evidence may seem to be, unless it comes within a class which is admissible, it
is excluded. Half a dozen witnesses may offer to prove that they heard two men of high
character who cannot now be found discuss in detail the fact now in issue and agree on a
credible account of it, but that evidence would not be admitted although it might be by far
the best evidence available.

It was admitted in argument before your Lordships that not every private record would
be admissible. If challenged it would be necessary to prove in some way that it had proved
to be reliable, before the judge would allow it to be put before the jury. And I think that
some such limitation must be implicit in the last reason given by the Court of Criminal
Appeal. I see no objection to a judge having a discretion of this kind though it might be
awkward in a civil case; but it appears to me to be an innovation on the existing law which
decides inadmissibility by categories and not by apparent trustworthiness . . .

Structure of Lord Reid’s Argument

Δ1 : N = number on car A is a, (when assembled), and Δ1 is the support of this
claim.

Δ1 = description of procedures of entering numbers during assembly.

15Our footnote: i.e. u1 : X is admissible only if some other u2 : X is already admissible. See
objection s3,2 below. LDS allows formally for putting item u1 : X in the database in such a way
that it can be used only in the flattening process to support other items but not in deduction.
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We also have a common sense metalevel persistence principle: numbers on cars
persist (don’t fade away or change).

N→ Always N.

Thus, according to Lord Reid, t is equal to:

t = {Δ1 : N,N→ Always N}.

He wants to block the use of t by attacking the admissibility of Δ1.
Four reasons were quoted for the admissibility of Δ1 and three reasons for non-

admissibility:

r1: Evidence of this kind is admitted in Central Criminal Court.
r2: Judge has discretion to admit such evidence.
r3: This is a list of reasons given in Court of Criminal Appeal, namely:

r3,1: The records were produced to show that the records were kept
in the normal course of business (but not to prove the truth of
the recorded particulars).

r3,2: Although the record may not be evidence by themselves, they
may be used to corroborate other evidence.

r3,3: We do not have dependency on the credit of an unidentified
person but rather on a probably reliable process of record
maintenance, and can therefore admit them.

r4: Common sense rebels against rejection of such evidence.
s0: No reported case or any textbook as direct authority for admission.

It seems at this point that r1–r4 are stronger than s0.16 So Lord Reid is trying to
weaken the force of r3 and r2 by attacking them logically with s3 and s2:

s2: Judges do not have the discretion to admit legally inadmissible evidence.
s3: Counter argument to r3 comprising of:

s3,1: If the records are not intended to prove the truth of their entries,
what are they intended to prove? (I.e. they are irrelevant!)

s3,2: Either the records are admissible or not. There is no sense
in which they can become admissible only after some other
evidence to the same conclusion becomes admissible (see
footnote 15).

s3,3: Such records are not public records which are admissible for
reasons that they are open to the public for inspection and
correction. The current law therefore does not support their
admissibility.

16In other words, it seems that a reasonable flattening process, weighing {r1,r2,r3,r4} against {s0}
will decide in favour of the former and thus admit the records. Note that no rules are given at this
stage of how the decision is made. In some logics, where labels are confidence numbers, we can
give a rule; e.g. admit iff r1 + r2 + r3 + r4 > s0, but not here.
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t = •N→ Always N

: Nr1 : E

r2 : E

r3 =

r4 : E

s0 : ¬E

s2 : ¬E

r3,1

r3,2

r3,3

: E

•Δ1 =

s3 =

: ¬E

s3,1

s3,2

s3,3

Fig. 3.13

Figure 3.13 shows the form of t, where E = admit evidence or ‘use me’.
To strengthen his case (i.e. strengthen the overall labels for ¬E, Lord Reid is

attacking the label r3 by putting forward s3,1,s3,2 and s3,3. Note that the reasoning
in the different boxes can be of different kinds!

Note that one of the points Lord Reid is making is s2, namely that trial judges do
not have discretion to ‘admit legally inadmissible evidence’.17

So the force of the argument is to influence the flattening process: we have
r1–r4 : E and s0,s2,s3 : ¬E, which one wins?

In this case the evidence was not admitted.18

17A customer calls the bank wanting to transfer money. The bank needs to identify him. The clerk
has authority to deny the customer service if he feels the identification is not complete or if the
customer sounds suspicious. What the clerk cannot do is to say to the customer: you failed to
identify yourself but you sound honest, so I will transfer the money for you.
18This decision was made by vote as described in the quote from Keane (2000) on our page 218.
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Uglow continues:

The House of Lords recognized the absurdity of their position but felt strongly that it was
for the legislature to reform the law and create new exceptions. Parliament dealt with the
problem of documentary hearsay with the Criminal Evidence Act 1965 which created an
exception for trade and business records This was later extended by section 68 of the Police
and Criminal Evidence Act 1984 and now by sections 23 and 24 of the Criminal Justice Act
1988. Such records have all been admissible in civil proceedings since the Civil Evidence
Act 1968.

Myers has been regularly followed in such cases as Patel v Comptroller of Customs
([1965] 3 All E.R. 593) where the appellant was convicted of making a false declaration
to customs, having stated that the bags of seed were originally from India. The prosecution
sought to prove that the seed originated in Morocco and adduced evidence that the bags were
stamped with ‘Produce of Morocco’. The Privy Council, following Myers held that these
words were hearsay and inadmissible. Unlike Myers, there was no evidence that the writing
was at all reliable, there being no testimony as to how or by whom the bags were marked.

The reader should note that the main thrust of the argument and logic of the Lord
Reid example is in weakening and strengthening labels. Put schematically we have a
master argument, say E which can prove a conclusion on D. E is a labelled argument
containing various labels within labels. Among this maze of labels there is a label
t containing another argument, say Δ. To attack E we can attack Δ. Our argument
attacking Δ can itself be attacked by attacking some label s in it and so on. This is
reminiscent of systems of abstract argumentation theory. We can give actual proof
rules and labelling disciplines so that questions like export from one label to another
can also be considered. For example:

“If you weaken t then D will not follow from E, and that would be a bad
precedent.”

One cannot argue in this way unless a specific labelled model is available. We
think that we have seen enough to be convinced that labelling logics can play a
central role here, though we would understand if the cautious reader would prefer
to reserve judgement until more case studies are presented. See our paper Gabbay
and Woods (2003).

Appendix B. Case Study: Modal Logic

Modal and temporal logic is a good motivating example for labels. In essence modal
logic deals with information (i.e. formulas) related to different worlds or times and
with patterns among these worlds. It is therefore very natural to name and explicitly
refer to these worlds and the way they are related. We also have a distinguished
world and time which is where we are. Thus an LDS approach, where we use labels
to name worlds and a labelling language A to describe patterns of worlds comes
very naturally indeed.

The LDS system for modal logic can be easily motivated from the traditional
Kripke semantics for modal logic. A traditional Kripke structure has the form
(S,R,a,V,h), where S is the set of possible worlds, R is the accessibility relation,
a ∈ S is the actual world and V is a function giving for t ∈ S the domain Vt of
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s : ♦Bt :�A

�

Fig. 3.14

world t. h is the assignment function giving for each t and each atomic predicate
its extension in Vt . When we write a formula of modal logic, say B = ¬A∧♦A, it
is interpreted as saying ‘I hold in the actual world a’. So the syntax of the modal
language cannot directly say much about the nature of the Kripke model at worlds
other than a. There is some indirect capability, through evaluating at a. For example,
for B to hold at a we must have a point t ∈ S,a < t,a �= t such that a � ¬A and t � A.
We can state that explicitly by writing

ΔB = {a : ¬A,a′ : A,a < a′,a �= a′}.

ΔB is satisfied in a Kripke structure if a,a′ can be instantiated (with a being the
actual world), with the indicated R and �= relations validated and the corresponding
wffs hold at the respective points.

The above, however, is the notation of an LDS for modal logic.
Thus we can adopt the view that LDS for modal logic arises from our desire

to be more explicit in the syntax about relationships between possible worlds and
formulas holding in them. We want explicit names for worlds beyond the implicit
actual world which is traditionally available. Thus a theory or a database becomes
a configuration of labelled wffs, see Definition 3.24.

Once we take this step, we can develop proof theory on such configuration, and
study traditional concepts and machinery for this presentation. Let us look at some
examples:

Example 3.21 (Some modal rules). We begin with the simple configuration of
Fig. 3.21.

The modal axioms and the meaning of � dictate to us that in the constellation
displayed in Fig. 3.21, A must hold at s. Further, the meaning of ♦ tells us that there
should exist a point r with s < r such that r : B.

We can thus state two rules for manipulating modal databases.

(∗1)
t :�A; t < s

s : A

and

(∗2)
s : ♦B

.
Create r,s < r and r : B

Using the first rule we manipulate the constellation displayed in Fig. 3.21 into
the one of Fig. 3.15 and using the second rule we further manipulate it into that
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s : A

s : ♦Bt :�A

�

Fig. 3.15 AAA

r : B

�

s : A

s : ♦Bt :�A

�

Fig. 3.16 BBB

r : B∧�¬Bs : A∧♦B

�

t :�A

�

Fig. 3.17 CCC

displayed in Fig. 3.16. In the predicate case r depends on the free variables of B.
The second rule is good for modal logics like K, S4, etc.

The axiom of Löb:
�(�A→ A)→�A

corresponds to the modification rule

(∗3)
s : ♦B

Create r;s < r and r : B∧�¬B

thus in the logic with the Löb axiom we get from the configuration of Fig. 3.21 to
the configuration in Fig. 3.17.

It is clear now how the rules work. They allow us to move from one configuration
to another and the consequence relation is between configurations. For example, we
have Fig. 3.21 � Fig. 3.16, in modal K and with Löb’s axiom we have Fig. 3.21 �
Fig. 3.17.

The above rules are elimination rules. We still need introduction rules

(∗4)
s : A; t < s

.
t : ♦A
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Table 3.1

Axioms LDS Features

K axioms The notion of basic constellation
�(A→ B)→ (�A→�B) or a diagram, as in Sect. 3.2.1
� A⇒⇒⇒��A Note that in the modal case the relation R
♦A = def¬�¬A in the diagram is binary. The LDS

formulation contains also some simple
rules for � and ♦ some of which were
shown in the figure above, rules (*1), (*2)

�A→��A Transitivity of R in the constellation

�(�A→ A)→�A In modal semantics the axiom has no
first order condition. It corresponds
to the finiteness of the frame. In LDS
it corresponds to the modification rule (*3).

♦A∧♦B→ Corresponds to the linearity
♦(A∧B)∨♦(A∧♦B) of the relation R. This affects the
∨♦(B∧♦A) basic rule (*2) as explained in Remark xxx

(∗5)

Create an arbitrary s; t < s
and Show s : A

.

t :�A

Example for � introduction:

Given t :�(A→ B)∧�A
Create s, t > s
Show s : B
Deduce t :�B.

The picture however is not as simple as it seems. In the usual formulations of
modal logics, axioms correspond to conditions on the possible world relation.

In our presentation, axioms correspond to any one of a variety of features.
Table 3.1 offers a selection.

We see here how a second order axiom, i.e. the axiom of Löb, which corresponds
to a second order semantical condition, can become a simple movement in LDS.
When LDS is translated into two sorted classical logic, the function symbols
generating the labels may allow us to reduce the second order condition into first
order, as is the case with McKinsey axiom ♦�q→�♦q, when added to K without
transitivity.

Remark 3.22 (Linear frame modal logic). Suppose we deal with the modal logic
for linear frames. What does it mean proof theoretically? It means that not all
configurations are acceptable; only the linearly ordered ones.



228 D.M. Gabbay

t :�B

r : Bs : Bt : ♦A

� �

Fig. 3.18 DDD

u : A

�

s : Br : B

t :�B

t : ♦A

� �

Fig. 3.19 EEE

Let ∂ be the formula (axiom of linearity)

∂ = ∀xy(x≤ y∨ y≤ x)

then a configuration is acceptable iff it validates ∂ . Consider the configuration in
Fig. 3.18. It is an acceptable one and can be expanded in three ways.

By rule (*2) we can create a point u : A, with t < u. In a non linear modal logic
such as K, S4, etc. this would lead us to the configuration of Fig. 3.19.

One more step would allow us to have u : A∧B and hence by ♦ introduction we
get t : ♦(A∧B).

However in the case of linear modal logic, Fig. 3.19 is not allowed. We need to
consider five possibilities.

1. t < u < r < s
2. t < u = r < s
3. t < r < u < s
4. t < r < u = s
5. t < r < s < u

If, as a result of each of these possibilities, we end up with t : ♦(A∧B) then we
can conclude t : ♦(A∧B).

We have to do that because our databases are linear and the above five configu-
rations are all the minimal possible extensions in which u can be accommodated.
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s : ∃xB(x)t : ∃x♦A(x,y)

�

Fig. 3.20 FFF

We thus have to modify all the rules with ‘Create’ in them to mean:

Given initial configuration

Split proof into n branches according to all
minimal allowed extensions in which the created u

can be accommodated.

(*3) becomes (**3)

(∗∗3)

t : ♦A in a configuration

create u, consider all allowed minimal
extensions of D with u in them. Put
u : A in and branch the proof. The ultimate
goal of the overall proof must succeed in
all branches.

The above is computationally very expensive. In the example previously given,
we need to go to five configurations in order to make the simple move

(∗6)
t :�A∧♦B

t : ♦(A∧B)

However our LDS proof discipline does not stop us from adopting (*6) as a
rule. Recall that the LDS discipline tries to enjoy both worlds—the classical world
through the labels and the special non-classical world through the language of the
formulas in the labels. For each application, desired balance can be sought.

We now come to quantifier rules. We have already assumed that different labels
will have different sets of elements in them. To appreciate what this means, we take
our clue from modal logic. Consider Fig. 3.20.

At the label t, an x exists such that t : ♦A(x,y) holds. This x depends on t and
on y. We therefore need a Skolem function ct(y). The index t is read to mean that
ct was created at t. We thus get t : ♦A(ct(y),y). Hence we can create a node s :
A(ct(y),y). We also must indicate whether ct(y) ‘exists’ at the node s. If it does
exist at s (probably because of some rules) then we write s : ct(y). The difference
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comes out in existential introduction. Suppose we have s : E(ct(y)), can we infer
s : ∃xE(x)? The answer depends whether ct(y) exists at s or not. Here are some
rules:

(∗7)
s : c;s : E(c)

.
s : ∃xE(x)

(∗8)
t : ∃xA(x,y1, . . . ,yn)

.
t : A(ct(y1, . . . ,yn),y1, . . . ,yn); t : ct(y1, . . . ,yn)

(∗9)
t : ∀xA(x)

ut is a universal constant.
t : A(ut); t : ut ,

(∗10)
s : ut ;s : A(ut);s : cr

.
s : A(cr)

ut is a new universal constant, r is arbitrary.

(∗11)
t : cr;s : A(ut)

ut a universal constant.
s : A(cr)

(∗12)
s : us;s : A(us)

ut a universal constant.
s : ∀xA(x)

Rule (*9) is analogous to the classical logic rule which allows us to replace
∀xA(x) by A(u), where u is a universal constant, i.e. u is arbitrary. At any stage later
in a classical logic proof, we can pass from B(u) to ∀uB(u) provided we discharged
all additional assumptions. We can certainly pass from B(u) to B(c), c any constant.
The same considerations apply to the labelled case except that we have to watch for
the added complication that elements created in one label (world) (e.g. cr,ut) may
not exist in another label (world). Imagine we have t : ∀xA(x), this means A holds
for all elements existing at t. We use rule (*9) and represent t : ∀xA(x) by a universal
constant ut , i.e. we have now t : ut and t : A(ut). Suppose for some proof theoretical
reason, s : A(ut) is obtained. Thus we really have that A holds at s for an arbitrary
element existing at t. Suppose now that we know that the element cr created at r,
exists at t. This is written as t : cr. Then we can deduce s : A(cr). This is rule (*11).

We now explain rule (*10). Start with t : ∀xA(x), this by rules (*9) and (*12) is
equivalent to having t : ut and t : A(ut). Suppose that by some proof manipulation
we end up with s : ut and s : A(ut). This means that the universal constant ut is in
label s and so is s : A(ut). We understand that as a proof of s : ∀xA(x) from t : ∀xA(x)
and so we allow ourselves to deduce s : ∀xA(x). Therefore for any cr, which exists at
s displayed as s : cr, we get A(cr) at s, i.e. s : A(cr). This entire chain is summarized
as rule (*10).
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So far these rules assume that somehow an element ct created at t ends up
available at label s, i.e. s : ct holds. How do elements move around? We need special
rules for that and they differ from system to system. In other words the logic must
tell us how elements skolemized in one label can be transported to another label.
These are called visa rules. Here are two sample rules corresponding to the Barcan
and converse Barcan formulas:

(b1)
t : xr, t < s

x either a constant c or a universal constant u.
s : xr

(b2)
t : xr,s < t

x either constant c or a universal constant u.
s : xr

Example 3.23 (Barcan formula revisited). Use (b2) to show that

t : ∀x�A(x) � t :�∀xA(x)

1. Start t : ∀x�A(x).
2. ∀-Elimination at t yields t :�A(ut), t : ut .
3. Create an arbitrary s, t < s, and let us be arbitrary with s : us.
4. t : us by visa rule (b2).
5. From (2) and (4) and rule (*10) we get t :�A(us)
6. From (5) we get s : A(us).
7. s : ∀xA(x), by (*12).
8. t :�∀xA(x), since s was arbitrary.

To present modal logic as an LDS we take the usual language of modal logic
with � and ♦ as our L and take sets D with a binary relation ≤ as our labels. It is
convenient to think of (D,<) as a configuration.

Definition 3.24.

1. A declarative unit is a pair t : A where t is a label and A is a formula of the
modal language. A labelled term has the form t : cs, where t,s are labels and c
is a constant or variable of the modal language. The double indices for terms are
needed because c can be created at label s and be used or be present at label t.
We write t : cs to denote that.

2. A configuration has the form (D, f,<,d,U), where (D,<,d) is a finite ordered
set, with d ∈ D and f a function, f : D �→ wff and U a function to terms such that
f(t) = a set Ut of formulas and a set of labelled terms.
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f(t) and Ut together can be represented as

{A1,A2, . . . ,c
s1 ,cs2 , . . . ,}.

Note that the terms are labelled arbitrarily.
3. Queries have the form s : A.
4. Let Δ be a configuration and let (S,R,a,V,h) be a Kripke structure, with an

assignment h to the variables and constants of the language. We say the structure
satisfies Δ iff there is a mapping g : D→ S such that the following holds

a. g(d) = a
b. ∂ ,D � x < y implies g(s)Rg(y)

∂ ,D � ¬(x < y) implies ¬g(x)Rg(y)
∂ ,D � x �= y implies g(x) �= g(y)

c. h(ct) ∈Vg(t)
d. t : cs ∈ D implies h(cs) ∈Vg(t)
e. t : A ∈ D implies g(t) �h A.

Note that this clause makes a configuration inconsistent if one of the nodes (e.g. t)
has an inconsistent f(t) set of formulas.

Definition 3.25. A modal LDS system is determined by the following compo-
nents

1. A classK of ordered sets (D,<,d) to be used in the configurations of the system,
which can possibly but not necessarily be characterised by a formula ∂ .

2. Inference rules. The inference rules manipulate configurations. These include
creation and elimination of points t ∈ D and the introduction and elimination of
wffs. The rules are divided into the following categories.

2.1. Introduction and elimination rules for connectives specialised for modal
logic.

2.2. Quantifier rules, including Skolemization, as intuitively defined in the
discussion above.

2.3. Individual elements visa permits (mobility of elements from one node to
another). These have the general form

(D, f,<,d,U)

(D, f′,<,d,U ′)

where U ′ is like U except that for some cs and t ∈ D, U ′t =Ut ∪{cs}.
We write

t : A; t : cs; t < r

to represent the information that in the configuration (D, f,<,d) which we are
dealing with (i.e. re-writing), we have t,s,r ∈ D, t < r, and f(t) contains A and cs.
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The notation ‘Δ(t,s); t < s;s : B;s : cr;s a new point’ means that we are given a
configuration Δ = (D, f,<,d,U), with t ∈ D. We add a new point s to D to form
D′ = D∪ {s} and extend < by stipulating t < s and let f′ be like f and U on D
and let f′(s) = {B} and Us = {cr}. Then ‘Δ(t,s), t < s,s : B,s : cr’ denotes Δ′ =
(D′, f′,≤,d,U ′).

A rule of the form
t : A

Create s, t < s;s : B;s : cr

should be understood as an abbreviation for the rule below:

Δ

Δ(t,s); t < s;s : B;s : cr

where t : A appears in Δ and is the declarative unit triggering the rule, as explained
above.

Example 3.26. Show �(�A→ A) ��A.

1. Assume t :�(�A→ A) and show t :�A.
2. Use an introduction rule. Create an s, t < s and show s : A.

2.1. Use � elimination rule.

s :�A→ A,�(�A→ A)

t

2.2. Use classical logic to rewrite the entry at s.

s : ♦¬A∨A

2.3. Split into two cases

s : ♦¬As : A

21

Case 1 is a success because we needed to show s : A.
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We proceed with case 2 and show it leads to a contradiction:
Create a new point r:

r : ¬A∧�As
.

Bring �A→ A from s.
r :�A→ A

Use classical logic and get:
r : A

A contradiction, because we also have r : ¬A.

3. Since we showed (2) successfully, we conclude t :�A.

Example 3.27. Test whether ♦∃xA(x) � ∃x♦Ax

1. t : ♦∃xA(x)
2. Create s, with t < s;s : ∃xA(x)
3. Skolemise and get s : A(cs).
4. t : ♦A(cs)
5. t : ∃x♦A(x), to be derived only if there is a visa for cs to be at t.

Example 3.28. Test whether ∃x♦Ax � ♦∃Ax

1. t : ∃x♦A(x)
2. t : ♦A(ct)
3. Create s, with t < s;s : A(ct)
4. s : ∃xA(x), to be derived only if there is a visa for ct to be at s.
5. t : ♦∃xA(x)

Example 3.29. Our modal rules can be label dependent rules, for example ♦ can
change meaning from world to world:

t : ♦tA

Create t < s1 < .. . < sn(t),sn(t) : A

The semantic condition for this modality is:

‖♦A‖t = 1 iff ‖A‖t+n(t) = 1.

Different truth tables in different worlds.

Let us give a quick proof that

t :�A; t : ♦B � t : ♦(A∧B)

We tacitly assume that conjunction introduction is available (or indeed that classical
logic can be used locally at node t).
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1. Initial configuration
t :�A,♦B

2. Create an s, t < s with s : B we get the configuration

t :�A,♦B;s : B; t < s.

3. Move A to s : A, using the rule:

t :�A t < s

s : A

we get the configuration

t :�A,♦B;s : B,A; t < s.

4. Add t : ♦(A∧B), using the rule

s : A, t < s

t : ♦A

we get the configuration

t :�A,♦B,♦(A∧B);s : B,A; t < s.

We have thus proved that�A,♦B �♦(A∧B) because we started with the configura-
tion in (1) with t :�A,♦B and we step by step manipulated it into the configuration
in (4) which contained t : ♦(A∧B).

Example 3.30. To show that the logic depends on the class K of orders, assume we
want (D,<,d) to be linearly ordered. We now try and prove

t : ♦A∧♦B � t : ♦(A∧B)∨♦(A∧♦B)∨♦(B∧♦A)

To show that assume

1. t : ♦A,♦B
2. Create s, t < s with

s : A

3. Create r, t < r with
r : B

However, since only linear orders are allowed our options are

t < r < s, t < r = s, t < s < r.

In each of these options, the conclusion can be proved. The lesson to be learnt is
that the class of allowed configurations can influence the proof theory.



236 D.M. Gabbay

Example 3.31. We show that

t :�A; t : ♦B � t : ♦(A∧B)

1. Initial configuration
t :�A,♦B

2. Create an s, t < s with s : B we get the configuration

t :�A,♦B;s : B; t < s.

3. Move A to s : A, using the rule:

t :�A t < s

s : A

we get the configuration

t :�A,♦B;s : B,A; t < s.

4. Add t : ♦(A∧B), using the rule

s : A, t < s

t : ♦A

we get the configuration

t :�A,♦B,♦(A∧B);s : B,A; t < s.

We have thus proved that�A,♦B �♦(A∧B) because we started with the configura-
tion in (1) with t :�A,♦B and we step by step manipulated it into the configuration
in (4) which contained t : ♦(A∧B).

Example 3.32 (Inconsistency in modal LDS). Let us see how a configuration can
be inconsistent. This will clarify the notion of inconsistency for us.

1. Consider the configuration
{t : A;s :⊥}.

⊥ is the symbol for falsity. This configuration is not necessarily inconsistent,
unless we have the rule

s :⊥
s′ :⊥

According to the notion of satisfaction in item (4) of Definition 3.24, this rule
is valid. However, if we change the notion of satisfaction in (4e) of the above
definition and required only that
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(e’) for some t ∈ D, we have that g(t) �h A for all A ∈ f(t), then the rule

t :⊥
s :⊥

would no longer be valid. That is, inconsistency in one world does not
necessarily allow us to prove anything in any other world.

2. Let ∂ = ∀xyz(x = y∨ y = z∨ x = z). This says that the configuration can have
at most two different points. Consider the configuration

Δ= {d : A∧¬B;s : A∧B∧♦¬A,d < s}

This is not consistent since there is no way we can create a third point for the
item s : ♦¬A. In other words, we cannot consistently apply the ♦-elimination
rule.

We can formally apply the LDS rules and get the syntactical configuration

Δ′ = {d : A∧¬B,s : A∧B∧♦¬A,r : ¬A,d < s,s < r}.

This will not have a model (as defined in item 4 of Definition 3.24).
The question is how do we detect inconsistency syntactically? Certainly the

diagram D of Δ′ together with ∂ prove ⊥ in the theory of the order <. If we add
the formal rule

⊥
t : A

for arbitrary t and A, we will have that Δ can prove in LDS any t : A. We can define
proof theoretic inconsistency as the ability to prove everything.

This is reminiscent of the semantic tableaux method where inconsistency means
not being able to successfully continue the tableaux construction along any path.
However, the LDS proof theory is not model construction. Consider the database
{d : ♦A}. The proof theory will turn it into {d : ♦A;d < s;s : A}. No need to apply
any more rules. This is not a model yet. It is only a sort of stable database, where
rule applications do not add anything to it.

Let us check how the inconsistency of the above Δ manifests itself in the
traditional formulation. Δ can be expressed only through what holds at the actual
world. So Δ would be the wff C = A∧¬B∧♦(A∧B∧♦¬A). The condition ∂ on
possible worlds will have to be formulated as a proof theoretical condition in the
system.

A suitable Hilbert axiom or rule needs to be found. Say in this case the family of
axioms:

A∧♦¬A∧♦nB→ B∨�(¬A→ B)

The inconsistency will arise from proving a contradiction using C and the suitable
axioms.

In the LDS framework the notion of inconsistency must be defined using the LDS
proof rules.
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Example 3.33. The following are examples for making �t label dependent.

1. The basic meaning for �A is ‘always A’. It is not label dependent. The
corresponding LDS rule is:

s :�A,s < r
r : A

2. The basic meaning for �tA is ‘always A up to t’.
The corresponding rule is:

s :�tA,s < r < t
r : A

3. The basic meaning of �tA is ‘always A except at t’
The corresponding rule is:

s :�tA, t < s,s �= t
s : A

4. The basic meaning of s : ♦tA is ‘A is true at t and s < t’. The corresponding rules
are:

s : ♦tA
s� t

and
s : ♦tA
t : A

Discussion
Advantages of the LDS proof discipline for modal logics:

• No conceptual problem in Skolemising and theorem proving, which is a major
problem for modal logic.

• The principles involved are more general, good for any LDS.
• We can handle systems which have semantics which is higher order (Löb’s

system is higher order because it has to be characterised by a higher order
condition on the Kripke frame, namely it being a finite irreflexive partial
ordering). This is due to the fact that we can bring the semantics into the syntax.

• The modal logic can locally change from world to world, all we have to do is to
make our rules label dependent (i.e. containing labels as parameters).

Appendix C. Actions, Labels and Proofs

This appendix shows how the labels can be sequences of actions, and how we can
do labelled proof theory with them.
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C.1 Insurance Example

We begin with a modified insurance example. The example shows that we must deal
with data that have the capability of changing because of actions we can take. So the
effective database is the actual data together with the sequences of actions available
to us.

Our friend John is a drifter. He lives in a van and gets the odd job from time to
time. He is a fairly responsible, honest and rational person but he does not seem to
settle down and is always short of money. Unlike other drifters, he does try to take
care of his van, and more importantly, does maintain an insurance policy with the
local insurance company. Because of his lifestyle, the premium is relatively high
and the terms of the insurance are that John has to pay all the premium for any year
by the 31st January of that year. Our story is set in January 15th of this year. John
has not yet paid the insurance premium for the year. He does not have the money
to pay, but he hopes to raise it by the 31st. It is common practice among insurance
companies that coverage during January is valid provided the premium is indeed
paid by January 31st. Thus if John has an accident on January 15th, he is covered
provided he pays the premium by January 31st, otherwise he is not covered.

Our story begins when John, in bad visibility and heavy rain, happens to bump
into Mr Rich’s expensive car, causing extensive damage. The circumstances of the
accident are not clear cut and there are arguments both ways about whose fault
it is. It would help Mr Rich to collect damages for his car, however, if John co-
operates in not emphatically insisting that it was Mr Rich’s fault. Mr Rich cannot
claim damages from John personally, because John has no money. However, if John
pays his premium by January 31st, and clearly admits fault, then Mr Rich can claim
the full value from John’s insurance company. Mr Rich does not want to claim from
his own insurance company because he would lose his 65% no-claims bonus. Mr
Rich wants to persuade John to formally admit fault. Indeed, Mr Rich can make it
worthwhile for John to do so. However, John is a straight person and would need to
be persuaded that at least it is possible (though not necessary) to look at the accident
as his fault.

Let us describe now the realities of the situation semiformally:

• we can assume that John’s premium is $ 500.
• The damage to Mr Rich’s car is $8000.
• Mr Rich’s loss of the no-claims bonus is worth $3000 (spread over several years).
• The damage to John’s van is assumed to be negligible.
• John’s extra insurance premium, should he admit technical fault, is also negligi-

ble. His insurance company will continue the policy since he had never had an
accident before. The change in premium will not be much, since his lifestyle did
not support a serious premium reduction anyway.

It is obvious that it is worth Mr Rich’s while to help John pay his premium, and
persuade him to admit fault. If John does not pay his premium and Mr Rich tries
to claim from him, the inconvenience to John cannot be easily quantified, as he is a
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drifter and his views of his future are not so clear, and he can deny fault and may be
assigned a free lawyer by the court. In fact, Mr Rich’s insurance company is very
likely to decide not to go to court under the circumstances.

We need some notation to formally describe the practical reasoning situation at
the time of the accident:

1. Let Δa be the database containing the facts of the accident. We assume Δa is a
non-monotonic labelled database, capable of proving with the appropriate label
that John could reasonably accept fault19

2. Consider the following dictionary:

• q = John is at fault
• q1 = John formally accepts fault
• c = John is covered by insurance
• r = John’s insurance pays damages to Mr Rich.
• p = John’s van causes damage to Mr Rich’s car.

The complete set of data, Δw, at the time of the accident is as follows (w = January
15th).

1. Δa

2. p∧q1∧ c→ r
3. p.

Mr Rich wants to make r true.20 To achieve this he needs to make q1 and c true.
Since John has no money, Mr Rich will have to pay John’s insurance premium.
Making q1 true is more difficult. John will not do that unless there is a reasonable
case for showing q from Δa. Of course there may be an equally reasonable case for
showing ¬q from Δa. To give John an incentive to admit to q1, Mr Rich offers him
additional money, ostensibly for the ‘shock’ he suffered during the incident. This
would be a private arrangement in the form of cash. The following matrix, Table 3.2
seems reasonable to Mr Rich:

The matrix shows that such an arrangement is rational, provided John, who is
relatively honest, can bring himself to make q1 true. This would depend on the
strength of the argument from Δa in favour of q.

Let us further formalise the actions involved. We represent actions by bold
letters m,a,b,c, etc. and adopt the artificial intelligence view that actions x have

19Such databases are generally inconsistent and for many statements A they can prove both A and
¬A with appropriate labels. See Gabbay and Hunter (1991, 1993). We do not have to assume that
John and Mr Rich agree on the database. A labelled database can code both John’s and Mr Rich’s
versions and arguments. So we can have Δ � t : A and Δ � s :¬A, where t is a label representing one
way of reasoning from some version of the data and s represents another way. Thus all we want to
assume is that there is a label (a way) of showing that Δa proves that it is John’s fault.
20Notice that we use the phrase ‘make r true’. We shall argue in a later section that taking actions
is part of the reasoning and proof process. See Sect. C.4 for oscillating non-monotonic proofs with
actions.
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Table 3.2

deal no deal

John Receives $1500 from No money to receive.
Mr Rich May incur possible cost if

Mr Rich’s insurance
tries to claim damages.

Mr Rich Retrieves $6500 Retrieves $5000 ($8000, from
($8000 claim own insurance less $3000
less $1500 given - no claim bonus lost
to John.

preconditions, denoted by αx and postconditions denoted by βx. The preconditions
need to hold in order for the action to be taken and once taken the postconditions
are guaranteed to hold.21

We therefore have the following actions:

1. Mutual action m
John and Mr Rich agree to the scenario of the proposed deal.
Precondition αm is a reasonable proof of q from Δ, delivered by Mr Rich in a
subtle way. The postcondition is an agreed action scenario, first action a then
actions b and c.

2. Action a
Mr Rich gives $1500 to John.
The preconditions are that John and Mr Rich agree to have a deal.
The postconditions are that John pays the premium before January 31st and that
he formally admits fault, (i.e. John has to do actions b and c below).

3. Action b
John pays the premium before January 31st.
The preconditions are that John gets $1500. The postconditions are c (that John
is covered at the time of the accident).

4. Action c
John formally admits fault.
The precondition is action a.
The postcondition is q1.

The following tree (Fig. 3.21) contains some (but not all of the) possible scenarios
for John and Mr Rich.

At time w, John can choose not to make an agreement. In this case Mr Rich’s
insurance company will sue John and John will either win or lose the case.

21Our model will allow for actions to be taken anyway, even if the preconditions are not satisfied.
This often happens in real practical reasoning situations, where the penalty of ignoring the
preconditions is less than the reward of the postconditions. We can improve our model by allocating
a counteraction to any action, where the counteraction is enabled if the action was performed
without its preconditions holding.
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t4

s3 s′e t3

s2 t2 t ′2

s1 t1

w
January 15th

c taken

b taken

a taken a not taken

m taken

John loses John wins

John is sued

m not taken

Fig. 3.21

An alternative time t1 there is agreement, and so part of the database Δt1 at time
t1 is the agreed scenario (t1, . . . , t4). Of course Mr Rich may change his mind and
branch off to scenario (t ′2, . . .), which may be similar to scenario (s1, . . .).

The above discussion formalised the example intuitively. The formalisation is not
completely precise but is good enough to show us what kind of features are at play.
Let us highlight them.

1. The dynamic aspect
A practical reasoning situation is not just two people arguing in some logic. Such
situations are static. In a more realistic situation the people want to execute or to
block actions. Actions have preconditions and postconditions, so the reasoning
is stretched over a period of real time and is intimately involved with the actions.

2. Agreed action scenarios and a projected future is also part of the data.22

3. The whole model must be procedural and effective. The past must be clearly
and algorithmically displayed as to how it was generated by actions. The future
is branching by the kind of actions available, together with a planned partial
future.23

4. The model does not involve possible worlds, only theories Δ and a process of
revision.

5. Actions need to be formally recognised and named. Time ticks because actions
are taken.24 Alternative actions generate alternative histories.

6. Sequences of actions can be preconditions and postconditions to other actions.

22This is an important point, enabling our model to handle contrary-to-duty obligations. See
Gabbay (2008a).
23Here non-monotonic logic can interface with decision theory. We can use utility and decision
theory considerations to decide on our actions. For example John can estimate his chances of
winning a legal claim before deciding whether to make a deal with Mr Rich.
24We shall use Gabbay’s executable temporal logic model, Barringer et al. (1994).



3 Introduction to Labelled Deductive Systems 243

C.2 The PhD Example

John is registered as a PhD student at the local university. The university used to be
a community college and has become a university through some political changes
which upgraded all community colleges into universities. They can now award PhD
degrees in certain areas. However, the rules and regulations as well as the general
feel of the place are still very much like a local community school.

John’s advisor is the departmental bigshot Mr Grossman. He is a very conserva-
tive person who treats his students like a grammar school master. To get a PhD in
Mr Grossman’s department one needs to satisfy three conditions:

1. Take three masters courses (without exams but with proper attendance and
coursework)

2. Submit a thesis
3. Defend the thesis in an oral exam (viva).

The last two conditions are standard in all major universities. The first condition
is to make sure the students continue with their training and appear knowledgeable
when released into the world.

John is a hard working and clever student. He is always neat and clean, but is
not generally well dressed and does not always show up to Mr Grossman’s course.
When he does attend the course, he asks questions that Mr Grossman sometimes
cannot answer. Mr Grossman is not upset by this; indeed he values John as a good
student and tries to help him. In due course, John submitted a thesis and defended it
successfully in his oral exam. The college, however, refused to award the degree of
a PhD to John on the grounds that John did not fulfil all the requirements. College
administration claimed that John did not attend three courses; his attendance of
Mr Grossman’s course was too low to count as a third course.25

The following is a formalisation of the story so far:

Dictionary
Ci = John attends course i, i = 1,2,3
T = John completes a thesis
V = John passes oral examination
P = John gets awarded PhD

The university rule B states that:

B =C1∧C2∧C3∧T → (V → P).

The very literally minded administration said that P cannot be deduced because
C3 was not made true.

25Some colleges do not allow for the oral exam to take place unless the following holds:

1. the courses were attended;
2. fees were paid;
3. all books were returned to the library.
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Our practical reasoning situation has to do with arguments trying to establish that
John can be deemed as having attended the course.

The course had 22 contact hours delivered during evening time as 11 lectures of
two hours each. Being still a community college in practice, students’ attendance is
logged in and their homework submission properly recorded.

John has not attended the first seven lectures, but did submit the homework. He
did attend lectures 8 and 9. During lecture 10 he was ill and he came only briefly
to lecture 11 during which he asked Mr Grossman some penetrating questions and
forced him to stop the lecture and try to correct his mistakes.

The course material is cumulative (like mathematics) in the sense that one cannot
understand lecture 11 without mastering the material of the previous lectures.

On the basis of the above story Mr Grossman was arguing that John should be
deemed as having attended the course.

The formulas involved in this story are postconditions of actions. C3 is the
postcondition of the action attending the courses, where the preconditions are
probably anchored in some regulations. For example, we may have x attends a
course iff x shows up at seven lectures out of eleven and submits all homework
with a possibility of missing two more lectures (i.e. attends only five) for reasons of
health.

Mr Grossman’s argument is probably to bypass the regulations on the grounds
that John knows the course material very well, even better than Mr Grossman
himself.

I think the proper way of formalising the situation is to use fuzzy logic, giving
the predicate ‘attend’ a fuzzy meaning. The details are not important for us now;
the important point to accept is that we have a dynamic action context here and the
whole argument is to enable an action to take place, namely making C3 true, to get
the PhD awarded.

The reasoning involved in deriving C3 from the particular circumstances is non-
monotonic. If the College approach is very formal then we cannot accept that John
attended the course. If we are allowed a little bit of common-sense reasoning, we
can say that John can be deemed to have attended the course since he obviously
knows the material and it is the last remaining requirement for his PhD. At this point
our reasoning can be non-monotonic and can depend on how much information we
have. Recall that the class was an evening class. We might be reluctant to credit
John with the course if we have the additional information that he missed the first
seven lectures because he spent his evenings in the pub. We may change our minds
yet again if we get the further information that John was actually doing community
service in the pub (on behalf of the sheriff) making sure that underage teenagers are
not served alcoholic drinks.

In general, if we are prepared not to follow the rules formally and mercilessly
we will use our common-sense and consider all the data about John and make a
decision. If Δ is the data about John and the course, we will use our common-sense
to decide whether Δ|∼C3 or not.

We now conclude the PhD example. We shall look at it again later in the action
proof theory section.
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Fig. 3.22 Traditional proof theory for→

C.3 Simple Non-monotonic Oscillating Proof Theory

Equipped with an effective expectation non-monotonic consequence |∼ and with an
effective natural deduction monotonic system, we can formulate an effective non-
monotonic proof theory. We need one more component for our proof theory. We
need a list of actions, with their preconditions and postconditions. These actions
will be intimately involved in the proof process.

The intuitive idea is that proofs stretch over time and the deductive steps also
involve taking actions that generate postconditions that can be used to continue
the proof. All of this is done against a stream of incoming data which may non-
monotonically discredit the assumptions. We call this kind of phenomena oscillating
proof theory. We shall explain our proof theory in stages, using progressively more
complex examples.26

Our starting point is a language with→ alone and we assume we have the natural
deduction→ Elimination (→E) and→ Introduction (→I) rules for→.

The traditional use of these rules can be summarised in Fig. 3.22.
It is helpful for our examples of this section to think of→ as intuitionistic impli-

cations. There are two reasons for that. The first is that the rules of Fig. 3.22 actually
define the intuitionistic→. This, however, is not our main reason. The intuitionistic
→ has, as one of its interpretations, the open future temporal interpretation, where
we have a branching future time and we reads X → Y as ‘whenever in the future
X becomes true we must also have that Y is true’. This is the S4 reading of → as
�(X ⊃ Y ), where ⊃ is material implication.

26Think of the last G. W. Bush – Al Gore election controversy over Florida. It stretches over
time, many players take actions and it involves a lot of legal as well as practical common-sense
reasoning.
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This view suits us very well as we are going to read X → Y as ‘for any sequence
of future actions if X becomes available then Y can be deduced’.27

The idea of the non-monotonic proof procedure (without actions) is to allow, in
the middle of the monotonic steps, also some non-monotonic ones. To do these non-
monotonic steps correctly, we need to know exactly at each stage of the proof what
is the official database at that stage so that we know what non-monotonic deductions
are available.

This idea is best illustrated in an example.

C.3.1 Non-monotonic Proofs Without Actions

We choose a variation of our thesis example of Sect. C.1.
We begin with a dictionary and some monotonic and non-monotonic data.

Dictionary:
T = complete thesis
V = pass oral examination
P = get awarded PhD
A = get assistant’s job
I = get instructor’s job
W = be well dressed

Data:
β = university regulation T → (V → P)
N1 = β ∧T |∼A
N2 = β ∧T ∧V |∼I
N3 = β ∧T |∼¬I
N4 = β ∧T |∼W
To prove:
α = T → (A∧ (V → P∧ I))

Figure 3.23 shows how α can be proved non-monotonically.
Line 2.2 derives A non-monotonically from the official database containing {T}

alone. When we add assumption 2.5.1, the official database is {T,V}. A is no longer
non-monotonically derivable. At stage 2.5.1 when V is about to be added to the data
available at stage 2.4, the database is as follows:

Δ2.4 = {T,A,¬I,W}.

T is official data. A,¬I and W are derived non-monotonically. When we add V as
input we need to revise Δ2.4. We may adopt a sceptical policy and have Δ2.5.1 be just
{T,V} i.e. drop out all the non-monotonic consequences or we can adopt a more

27Our use of words here is not precise. See Gabbay (2001) and Agenda Relevance, in Gabbay and
Woods (2003/2005).
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show α = T → (A∧ (V → (P∧ I))) from box

1 T → (V → P) data
2 show T → (A∧ (V → (P∧ I))) from box

2.1 T assumption
2.2 A from (1), (2.1) and N1

2.3 ¬I from (1), (2.1) and N3

2.4 W from (1), (2.1) and N4

2.5 show V → P∧ I from box

2.5.1 V assumption
2.5.2 I from (1), (2.1), (2.5.1) and N2,

(2.3) and (2.4) are ignored
2.5.3 V → P from (2.1) and (1)
2.5.4 P from (2.5.1) and (2.5.3)
2.5.5 P∧ I from (2.5.2) and (2.5.4)

2.6 A∧ (V → (P∧ I)) from (2.2) and (2.5)

Fig. 3.23

tolerant, compromise policy, and keep the non-monotonic data as a low priority
defeasible data, to be thrown out only if they contradict any newly derived data (in
the 2.5 box).

According to this policy Δ2.5.1 has the form {T,V hard data; A,¬I,W , defeasible
data}.

Δ2.5.2 will be {T,V , hard data, I defeasible high priority; A,W defeasible low
priority}.

In Δ2.5.2 we threw out ¬I because it contradicts the non-monotonically derived I
at 2.5.2.

Obviously we need a notion of a structured database and an operation of revision
of such databases relative to incoming input. Both the data and the input need to
be labelled, the label indicating how they are proved and what their priority is. This
will enable us to calculate at each line (x1, . . . ,xn) in the proof what is the database
Δ(x1,...,xn).

C.4 Oscillating (Action) Proofs

Let us now turn our attention to what we shall call oscillating proof theory,
where actions are also involved and the assumptions available keep on changing.
Imagine that at state (time) w0 we have a database Δ0 with various data and non-
monotonically derived conclusions including the following

t1 : A
t2 : B→ (A→C).

We need to get B in order to derive C.



248 D.M. Gabbay

The labels t1 and t2 give us information about the status of A and of B→ (A→C)
in the database.

Imagine now that among the actions available to me there is an action a, whose
precondition is D and postcondition is B.28 If I can prove D from Δ0, I can execute
action a, get the postcondition B and assuming the ‘update’ B does not discredit
(revise out) the assumptions A and B→ (A→ C) then I shall be able to derive C.
Our oscillating (action) proof shall then be the following:

Data

1. Δ0

2. t1 : A
3. t2 : B→ (A→C)
4. Action a with αa = D and βa = B.

To prove: x : C (C with some label x).

Proof.
Steps 1 . . .k: Show D
Step k+1: Execute action a
Step k+2: Update current theory with βa = B.
Step k + 3,k + 4, . . .: Assuming our two data items A,B→ (A→ C) survive the
update of step k+2 we can deduce C.

Note that we are assuming that the proofs take real time (as in a legal process)
and that during that time actions can be executed, yielding their postconditions as
data. The new data may revise out some existing assumptions. So if we are unlucky,
some other ‘agency’ may execute an action between steps k+1 and k+2 which will
revise A out and we will not be able to get C.

Thus we should prove our conclusions ‘quickly’ before our assumptions ‘disap-
pear’. Also notice that we listed the actions as part of the data; available actions are
data since when executed they can bring in their postconditions.29

Note that after revision our theories remain � consistent. Thus the revision is
carried out in the � logic (or a labelled version of this logic). When we use labels
we can allow our theories to be inconsistent and thus have the option of not revising,
but living with inconsistency. See Gabbay and Hunter (1991, 1993).

Let us now turn to a more complex example.
Consider the vocabulary of Sect. C.3.1, and let us assume that in order to take the

oral examination (V ) the student needs to take the course C. C is a precondition for
the action of taking the exam. Our analysis of the situation will be a simplified one,
as we only want to illustrate for now the kind of action proof theory needed.

The full development of our model will be done later.

28Our version here is still a simplified one. In general the pre- and postconditions for actions must
be labelled and may contain other actions.
29In my paper on abduction (Gabbay 1991a) and in my LDS book (Gabbay 1996), I have stressed
that one can put in databases as ‘data’ not only pure data but also mechanisms for obtaining data
such as abduction processes or (in our case) actions.
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The actions involved are c (take the course), v (take the exam), and t (submit
a thesis).

There are no preconditions for c and the postconditions can be C but not
necessarily so. Actually the postcondition is t : C, where t is a label showing among
other things, that the university administration accepts C into the databases. There
are no preconditions for t (submitting a thesis) and the postcondition can be T
(completed thesis) if it is approved, but there is no guarantee of that.

The precondition for v is t : C and a possible postcondition is t ′ : V , where t ′ is
a label containing the relevant information. Again, there is no assurance that we get
V , i.e. that the student will pass the exam.

Note that these actions are non-deterministic in their postconditions. The post-
condition Y may not obtain and we may get ¬Y . This is a new twist to what we had
before in earlier sections but it is more realistic.

We are now ready to do our proof theory. Our starting state (time) is w0. At this
time we have available as data the following:
Θw0 : Data at time w0.

1. Action data: t, c, v.
2. Proof theoretic data: β ,N1–N4, as in the beginning of Sect. C.3.1.

At time w0 we are able to construct the derivation of Fig. 3.23 and have available

α = T → (A∧ (V → (P∧ I))).

The meaning of → is temporal. X → Y means that whenever X is in the database
(is available) then Y is available. This makes → like intuitionistic implication, but
not exactly so. The database is non-monotonic and so may have things thrown out
of it, when X is put into it. Moreover, the ‘whenever’ is not semantic but syntactic.
X becomes available as a postcondition of some action and not as part of some
semantic evaluation in a Kripke model.

John (our student) is interested in making P true, so he needs to have T . He
executes action t and moves to state w0t and hopefully T becomes true. Non-
monotonically it follows that A and ¬I become true (if no other actions are taken
simultaneously by other ‘agents’). Now John wants to make V true. He needs to
have the precondition C for the action v to non-monotonically hold so that he can
perform v and get its postcondition V to (hopefully) become true. So he will perform
action c and if successful, will perform v. Thus at state (time w0tcv we will have V
holding as well, and we can deduce P∧ I.

Note that we assume that the update with V does not throw out T .

C.5 Proofs with Evolving Non-montonicity

The above considerations and proof theory assume that the non-monotonic rules
are fixed and do not change. This is not realistic. Since the proof process stretches
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over time and involves actions, it is quite possible that by the time we get to the
end of the proof, the rules themselves change. Going back to the PhD example, it
may be the case that by the time our student John submits his thesis, the required
number of courses to take has been reduced (or increased) from three to two (resp.
from three to four). John will argue in case of an increase that he should be exempt
from having to take a fourth course because such a course was not required when he
started his PhD. This sounds reasonable but not necessarily because of any principle
involved. Think what happens in the opposite case. No one can credibly argue, in
case the number of courses has been reduced, that John should nevertheless take
three courses!

It seems that what is to be done depends on the application at hand. For this
reason our proof system and model need to be able to handle changes in non-
monotonic rules occurring during the proof process with a built in flexibility for
adopting different policies. Once we start thinking along these lines, we realise that
really this happens a lot in practice. We remember governments trying to change tax
laws to plug loopholes and people rushing to do their bit before the law changes.
We can also remember changes in immigration rules and refugees rushing into the
country ahead of some deadline. There are many such examples and our system
must accommodate such phenomena.

It seems that the most realistic way to handle rule changes in our current
model is to allow for actions of the form n = (N1,i,N2, j), i = 1, . . . ,k; j = 1, . . . ,m.
The action n replaces the non-monotonic rules N1,1, . . . ,N1,k by the rules
N2,1, . . . ,N2,m. The action n = (∅,N2, j) simply adds the rules N2, j, j = 1, . . . ,m
and n = (N1,i,∅) simply deletes N1,i, i = 1, . . . ,k.

These actions can also have preconditions αn and postconditions βn.
Let us consider the proof of Fig. 3.23 with the added complication that he action

n = (N3;N6)

is available where

N6 = β ∧T |∼I.

The rule N6 says that it is possible to make a student, who submitted a thesis, an
instructor and not just an assistant contrary to what rule N1 says. For reasons of
consistency N3 must be deleted. The action n has the precondition that the thesis is
outstanding (denoted by E). Thus αn = E. There are no postconditions.

Let us now consider what can happen if action n is taken in the middle of the
proof described in Fig. 3.23. Line 2.1 of this proof can be assumed to be the result
of action t = get thesis. If immediately after line 2.1 action n is taken, i.e. rule N3

is deleted and rule N6 is added, it is up to us whether we still allow A and ¬I to be
deduced or forbid any deduction from N3 and use only N6.

It seems reasonable to leave both options open in the formal proof theory model.
It also seems reasonable that if action n is taken before t, then rule N3 is definitely
cancelled.
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•
Register for PhD or Masters

Get PhD

Take viva

Get MastersSubmit thesis

Submit transfer report

Take courses

Fig. 3.24

Let us consider therefore the following principle.

• Let N be a rule of the form A1 ∧ ·· · ∧ Ak|∼B. Then N can be deleted by an
action whenever the official database is not {A1, . . . ,Ak}. If the official database
is {A1, . . . ,Ak} and an action deleting N is taken then it is optional (up to the
application area) whether N can still be used or not.

This principle does not completely solve the problem of changing rules. Let us
reconsider the PhD example. A student registers for a PhD when the rules require 3
courses, i.e. the rule is (see Sect. C.2);

B =C1∧C2∧C3∧T → (V → P).

After registration, say when the student has already done C1,C2 and was ready to
submit his thesis (T ) the rules change. The student certainly has not completed the
sequence of actions required for a PhD. He can still reasonably and forcibly claim
he should be treated according to the old rule, which was valid when he started!

This kind of argument will not hold for a non-monotonic understanding. If the
understanding when he started his PhD was to give an assistantship when a student
achieves a thesis, this defeasible non-monotonic understanding can change at any
time before the student submitted his thesis (e.g. on lack of budget grounds). The
student would have reasons for sympathy if the rule is cancelled after he submitted
his thesis, and we may or may not still invoke the rule, depending on circumstances.

The above considerations lead us to consider as action units not single actions
but sequences or trees of actions and consider them committed at the start of the
sequence. Figure 3.24 is an example of action tree. (Each point has a branch leading
to failure which we ignore).
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If M denotes Get masters and Tr denotes Submits transfer report, we can write
the rule as

M

C1∧C2∧C3∧Tr

(T → (V → P))

or if we use a special choice disjunction symbol ∪� , we can write

C1∧C2∧C3∧Tr→ (M∪� (T → (V → P)).

These options will be explored later in our work.

Remark 3.34. The action/proof point of view gives us a way of explaining away
a conceptual contamination in Prolog. Prolog is not a purely logical language. To
function as a proper programming language it needs to contain imperatives. So one
can write clauses of the form

Famous if Thesis ∧ Print-Thesis.
To ask the goal ?Famous one must ask whether ?Thesis and then go ahead and

print the thesis. This is not a Horn logic clause. However, we can write in our system
the database with the following data at the initial state w0.

1. Thesis
2. Action print with precondition Thesis and postcondition Printed-Thesis
3. Thesis→ (Printed-Thesis→ Famous)

We reason as follows at w0

4. Printed-Thesis→ famous from (1) and (3)
5. Perform action print and so at w0print we get Printed-Thesis
6. At w0print get Famous from (4) and (5).

Thus our Prolog deduction is really the above (1)–(6) done in a goal-directed way.

C.6 Example: Dialogue Logic

Sections C.3.1 and C.4 introduced into the proof theory of monotonic intuitionistic
implication, two additional components:

1. the non-monotonic deduction, and
2. the action as a logical move.

To show the plausibility and naturalness of such additions, we recall the well known
dialogue semantics or game semantics for intuitionistic logic, see Felscher (1985).
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We illustrate this approach via a simple example. To show that a∧ b→ a∧ b is
a theorem of intuitionistic logic, we need two players, the proponent (say J) and
the opponent, (say T). The proponent puts forward a∧b→ a∧b and the opponent
attacks and the game continues according to rules. The proponent has a winning
strategy exactly for those formulas which are theorems of the logic.

Here is the game for this case as presented in Felscher (1985, p. 345), using my
notation.

0. a∧b→ a∧b, (J)
1. a∧b, attack of T
2. a, counterattack by J on first conjunct of 1.
3. a, defence by T against 2.
4. b, counterattack by J on second conjunct of 1.
5. b, defence by T against 4.
6. a∧b, defence against 1 by J.

.

. .

7. a, T attacks 7. b, T attacks
first conjunct of 6 second conjunct of 6

8. a, J defends against 7 8. b, J defends against 7
in view of 3. in view of 5.

The moves of J and T are regulated. It is very easy and natural to allow additional
actions in the database and allow additional moves, for example a player x activates
action d(x) and adds postcondition A(x), etc.

It is clear that the new system of Sects. C.3 and C.4, when represented in the
dialogue approach, can be viewed as just another dialogue logic with a twist, namely
more moves for the players..

One point to clarify. In the dialogue interaction, the ‘time’ involved is the
sequence of moves. In the examples of Sects. C.3 and C.4, the time involved
is ‘real’ time. Does this make a difference? No, it does not. We all know that
intuitionistic logic is complete for the Kripke future-time semantics, where at any
time t, t � A→ B means ‘whenever A becomes true, so does B’. Dialogue moves
correspond to semantic tableaux moves against Kripke time model and so can be
interpreted as real time.

So in our new kind of logic, modus ponens can take real time and actions can be
involved.
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C.7 Summary

The following summarises what we need.
Non-monotonic theories can be viewed as comprising of two parts:

1. The hard core official monotonic part ΔH which is a body of hard (verified,
confirmed and non-defeasible) data.

2. The additional defeasible or hypothetical part, which can be added to the hard
core part using various conventions and non-monotonic mechanisms which we
symbolise by M.

Thus we can represent this situation by writing:

Δ= ΔH+M

The non-monotonic principles involved in M can vary from one application to
another. M can contain a variety of rules such as emergency regulations, abductive
mechanisms which add explanation data to the hard data of ΔH or belief revision
rules (which change ΔH by adding a hypothetical additional assumption A and
change ΔH to maintain consistency). It is for this reason that we formally presented
Δ as ΔH+M, where M represents the mechanisms involved and + represents the
application of M to ΔH .

To develop a proper proof theory in such a context we need the following
machinery:

1. We need a clear concept of a logical system, able to accommodate monotonic
and non-monotonic mechanisms and backed by solid intuitions.

2. We need a good theory of non-monotonicity, which is compatible with the notion
of logical system.

3. We need an executable imperative logical action theory.
4. We need a suitable notion of a logical database (comparable to what is tradition-

ally known as logic theory) which may be different from the traditional notion
(of a theory as a set of formulas) and which is more suitable for our proof theory.
We shall see that we need to take our databases as labelled sets of wffs or as
sequences of formulas at the least, or in general any structure imposed by an
application. The database must contain actions available to be executed if the
preconditions hold and that will generate the postconditions.

5. We need various algorithms for belief revision for modelling the conditional. The
belief revision part deals with adding the antecedent of the conditional into the
database.

6. We need defeasible reasoning principles to deal with conflicting evidence and
proofs.

7. We need a suitable monotonic proof methodology which can be easily and
naturally modified to accommodate (1)–(6) to form our final proposed non-
monotonic and conditional proof system.
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8. In addition to the above we need to start with an initial simplified intuitive vision
(image/picture) in our mind of how the non-monotonic and conditional reasoning
is taking place in real practical situations.

Appendix D. Labelled Revision and Actions

D.1 Compromise Revision

We saw in previous sections that an algorithmic revision process is needed to be
applied whenever we add something to the database. This revision process needs to
be tightly controlled and the labelled theory of compromise revision presented in
this appendix does exactly that, see Gabbay (1999) and Gabbay et al. (2010).

We begin with an example to show what is needed.

Example 3.35. Let us consider the data in Box 2.1 in the proof of Fig. 3.23. We
label the data according to how they were derived as follows:

(1) h0 : T → (V → P) (hard assumption)
(2.1) h1 : T (hard assumption)
(2.2) N1h0h1 : A (obtained from h0,h1 using rule N1)
(2.3) N3h0h1 : ¬I
(2.4) N4h0h1 : W

When we add to the hard assumption(input)

(2.5.1) h2 : V

we get an inconsistent database, because we can derive

(2.5.2) N2h0h1h2 : I

This contradicts (2.3). So some database revision is required.30 In Fig. 3.23 we
intuitively said that (2.1) and (2.4) are ignored since they were non-monotonically
derived from the smaller hard database {h0,h1} and we now have a new database
{h0,h1,h2}. This is a sceptical view. A more compromising view may wish to retain
as much as possible from the database, thus retaining (2.4) but rejecting (2.3).

The story can be further complicated if we had the following additional non-
monotonic rule

N5 β ∧T ∧V ∧W |∼R

30We can allow the database to remain inconsistent as long as we know what actions to take in
response to the inconsistency. Database revision is only one option.
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where R is:

R get radio interview.

In other words, a well dressed student with a PhD gets a radio interview.
Formally, W is not a hard fact and is not derivable from the hard facts of the new

database. Having agreed to adopt the compromise view and accept that W still holds
in the new database, can we now deduce

(2.5.6) N5h0h1h2(N4h0h1): R

Suppose we agree and say yes, we accept R. What if we have another hard input

h3 : ¬R.

Do we now, to maintain consistency, just block the derivation of (2.5.6) or do we
throw out (2.4) (i.e. not allow W to persist) because it leads to inconsistency?

Obviously in the general case we need to linearly order the data according
to some priority, dependent on the labels, and have an algorithm of what to do
(throw out).31

Let us arrange the data according to decreasing strength from top to bottom
with later input being stronger than earlier input. The more specific non-monotonic
deduction having higher priority than the specific ones. We get the following:

h3 : ¬R
h2 : V
h1 : T
h0 : T → (V → P)
h0h1 : V → P
h0h1h2 : P
N2h0h1h2 : I
N5h0h1h2(N4h0h1) : R
N1h0h1 : A
N3h0h1 : ¬I
N4h0h1 : W

We need not, at this stage, specify an exact algorithm for strictly linearly ordering
all the assumptions. It is sufficient to say that any formula provable from atoms by
the rules gets a label and these can be linearly ordered.32

31Note that we never actually throw things out, we only mark them as not active. In the next round
of inputs it may be possible to activate them again as the original reason for inconsistency may
itself disappear.
32The official data (hard facts) can be linearly ordered with the latest incoming data item having
higher priority. The non-monotonic rules can be linearly ordered according to the nature of the
application at hand. Given this all deduced formulas are resource derivation labelled using the
label propagation rules, e.g.
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If ϕ1, . . . ,ϕk is the ordered database in increasing strength then we can define a
consistent revision of it by induction as follows.

Δk = {ϕk} if classically consistent,33 otherwise Δk =∅.
Assume Δ j is defined, let Δ j−1 = Δ j ∪ {ϕ j−1} if classically consistent and

Δ j−1 = Δ j otherwise.
The above process is valuable and fruitful also in ordinary classical belief

revision for monotonic systems. Consider the labelled database Δ below

Δ=

⎧
⎨

⎩

ti = A→C
t j : ¬A→ B
s : A

and let the input be
x = r : ¬A.

The new database is inconsistent in classical logic and can prove everything. The
labels keep control of the proof process and we know that

Δ+ x �
{

tis : C
t jr : B

We can linearly order the formulas we get and apply our revision algorithm. This
will throw out A, but compromise on keeping C.

D.2 Actions and the Flow of Time

The discussion in Sect. C.4 clearly indicates that we should view time as progressing
forward by virtue of the actions being taken. If w denotes now then the next
moments will have the form wa1, . . . ,an, where ai, i = 1, . . . ,n are some actions
taken simultaneously. Our view is similar in spirit to that of Ray Reiter (2002).

Recall the actions c, v and t of Sect. C.4 and let a1,a2 be some arbitrary actions
which may take place simultaneously with the above three actions. Then Fig. 3.25
illustrates one possibility of how our future could be at w.

α : A;β : A→ B

βα : B

We can compare labels using the following principles:

1. Formulas proved from a bigger set of hard assumption have higher preferences (being more
specific).

2. For the same hard facts specificity we can look at more non-monotonic rule specificity,
3. If all is equal we can order lexicographically on the labels.
4. Same labels mean same proof, i.e. same formula, so our ordering is complete.

33We can use any other notion of consistency here, as long as it is decidable.
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c = take a course
preconditions: none
postconditions: C

t = get thesis
pre-condition: none
postcondition: T

v = take exam
pre-condition: C
postcondition: V

ai: other actions i

Time is determined by actions

wcta2v

wcta2

wc

wct wtv

wt

w = now

•

•

•

•

•

•

•

A theory is indexed by world.

Fig. 3.25

Let Δx be the theory associated with state (moment) x. Then if action a is taken
at state x and βa are the postconditions of a, we have that Δxa = Δx +βa, where ‘+’
denotes our compromise revision process.

Here are some examples:

Δw = T → (V → P)
Δwt = T → (V → P),T,¬I,W

Δwctv = T → (V → P),T,V, I, (maybe) W,C.

In general, Δxa = Δx+ postconditions of a.
Thus the flow of time is discrete, branching into the future and linear into the

past. Time moves forward by actions being taken, and thus we have:

• t < s iff for some n and some sequence of actions a1, . . . ,an we have s =
ta1, . . . ,an.

Since in real applications people make agreements about sequences of actions in
the future, we must allow, at each time (state) point t for a planned and agreed future
path Ht . Ht is part of the state description (data). Thus a time flow around w = now
may look like Fig. 3.26.

Note that theory at time w, Δw contains data on planned and agreed future. This
is important because part of everyday practical reasoning now takes into account
agreed commitments for the future of now.

From the point of view of w = now, the past is linear; it is what has actually
happened. See Fig. 3.28. The two figures, Figs. 3.26 and 3.28 can be combined
together.
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•
w = now

wa1

wa1ba2

planned

future Hw

wb2

a1, . . . ,ak
actions not

under my control

b1, . . . ,bm

actions under
my control

Fig. 3.26 Future Options

A more realistic action/time model must allow the actions’ precondition to
query the past and allow the action’s postconditions to be non-deterministic and
include both formulas and further actions to be executed. To query the past (for the
preconditions) we need a temporal language, say using Since, Yesterday and names
of moments of time w1,w2,w3, . . . ,wn (wn means ‘the time now is wn’), etc. The
temporal truth table for Since(A,B) also written S(A,B), is

• t � S(A,B) iff for some s < t,s � A and ∀y(s < y < t→ y � B).
• t � YA iff predecessor of t � A.
• t � wn iff t = wn.

Given an action a, its precondition αa is a Boolean combination of formulas
built up from the language of the theories involved using connectives and temporal
operators. At moment t, t � αa enables the action a. The postcondition βa of
the action is a non-deterministic outcome being a set βa of pairs of the form
βa = {Ai,{bi

1, . . . ,b
i
k}), where Ai is a wff to be added as an update input into the

theory Δt and {bi
1, . . . ,b

i
ki
} is a set of actions committed to be performed, if the

outcome of the action is the ith non-deterministic possibility.
To have such a model we must assume that at each moment of time t, we have not

only a theory Δt but also a set At of actions committed to be performed at t. We also
assume that the passage from moment t to the next moment ta is done by performing
an action a = (αa,βa) such that Δt |∼αa and such that (Ai,{bi

1, . . . ,b
i
ki
}) ∈ βa and

Δta = Δt +A and Ata = (At −{a})∪{bi
1, . . . ,b

i
ki
}.

The choice of which action a ∈ At to execute can be made either arbitrarily or
using some decision theory considerations as discussed in Sect. D.3.

We note of course that the future can be unpredictable and non-deterministic.
This can be generated in our model by the following devices.

• Actions can be assumed to have non-deterministic outcomes.
• We assume several agents working together or in opposition taking independent

actions.
• Attribute random actions to the underlying model itself (nature).
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• s = tc1 . . .cn

• t = wb1 . . .bk

•
w

· · ·

· · ·

Fig. 3.27

The aspect of this unpredictability we want to focus on is the way the future
changes.

Figure 3.27 describes a future of w = now determined by all possible sequences
of actions. If all is deterministic, then when we take action t and move to node
wt, the future as seen from wt is the same as the future of w t as seen from w =
now. If, however, the future is unpredictable and non-deterministic, then when we
perform action t, and move from w to w t, we find that our options for the future
have changed and the future as seen from wt (after having moved there by taking
action t) is no longer the same as what we have expected before taking action t (i.e.
when we were at w).

For example, action v may not be available, and thus the node wtv is no longer
accessible to node wt.

The above discussion is an example of what we call reactive semantics. When
we move from world w to world wt, the existing connection between wt and wtv get
cut off. So the model changes from under us as we move along it.

This idea turned out to be very fruitful in many application areas, including
contrary to duties, modal logic, automata theory and more, see Crochemore and
Gabbay (2011), Gabbay (2008a), and Gabbay (2008b).

D.3 Decision Theory

We saw in Fig. 3.26 that we face a branching future, depending on which actions we
choose to execute. The actions we take do not have a deterministic outcome but we
can estimate intuitively how likely they are to give us the desired outcome. At this
point we can import a decision theory model into our system to help us choose the
actions we want to execute. For reference, see Jeffrey (1983).

We start by giving some definitions to fix our notation.

Definition 3.36 (Non-deterministic dynamical systems). A dynamic system s has
the formD= (S,A,M,U, f) where S is a (possibly infinite) non-empty set of states,
A is a (possibly infinite) non-empty set of action names (or words), M is a transition
function, associating with each pair (s,a)∈ S×A a subset M(s,a)⊆ S. U is a utility
function associating with each triple (s,a,s′) in S×A× S a real valued number
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U(s,a)(s
′) and f is a family of probability density functions associating for each (s,a)

in S×A the density f(s,a) on M(s,a), i.e. for each t ∈ M(s,a), f(s,a)(t) is a real
number between 0 and 1.

We require that

∑
t∈M(s,a)

f(s,a)(t) = 1.

There are two ways of looking at our system:

1. As a non-deterministic automaton operating on states S and alphabet A and
outputting the functions U(s,a) and f(s,a).

2. As a context dependent decision system under risk and uncertainty, with states S,
actions A, and context dependent utility and probability functions.

The reader should note that there are differences between our use of the Decision
Theory model and the traditional use of it. The traditional use gives you a choice
of actions a1, . . . ,ak and some attributes against which to measure the utility of the
outcomes of the actions with a view of making a choice. There is no other context.
In our case we have a rich practical reasoning context with the actions serving as
means of introducing postconditions and influencing the proof process. It is a much
more complex environment and it may turn out that the notion of maximising utility
is not central in our set up, and that the predominant feature in choosing a sequence
of action may be rooted in the proof process.

D.4 Case Study: The Conditional

Our model can now give formal semantics for the conditional. For the purpose of this
section, let us distinguish between conditionals involving time and straightforward
timeless conditionals. For the timeless conditionals, the proof theory and the
revision mechanism already developed above can already provide a reasonable
model. We can safely use the Ramsey Test for the conditional symbol >. The
language of previous section contain the implication→ not the corner >. We have
two options. One is to add the > to the language or we can use→ as our conditional.

In the first option we simply adopt the Ramsey Test (RT) below:

(RT) Δ|∼A > B iff Δ+A|∼B

Gärdenfors’ triviality result is not applicable to our case because our theories are
non-monotonic, and we do not expect the Gärdenfors postulate below (K∗4) to hold.

(K∗4) If A is consistent with Δ then Δ∪{A} ⊆ Δ+A.

See Gärdenfors’ book (1988, Chapter 7).
If we wish to use→ itself as a conditional, we need to investigate its properties.

We need not worry about any triviality result even if we impose (RT), because of
non-monotonicity. Furthermore, the proof theory as presented in Sect. 3.1 does not
satisfy (RT) anyway.
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• w = w′a1 . . .am

• w′a1 . . .ai

•
w′

. . .

...

Fig. 3.28

Consider the following database:

Δ= {B→ (¬A→C),A,A→ B}.

Clearly Δ � ¬A→C.
However Δ+¬A may not prove C unless we have compromise revision which

allows for B to remain in the revised database.
Thus although by definition our proof process satisfies

• Δ+A|∼B implies Δ|∼A→ B

the converse may not hold. We may have Δ|∼A→ B but Δ+A |�∼ B.
The proper general setting for the conditional must involve time. We address this

case next.
In the literature, there is a distinction between two main types of conditionals,

the indicative and the subjunctive. The indicative has the form

• If A then B

which we understand as follows (where w = now).

• If A will be true at point t (in the future of w) then B will be true at point s (in the
future of t or at t itself).

The subjunctive conditional has the form

• If A had been true then B would be [would have been] true,

which we understand to mean in our model as follows:

• If A were true at w′ (in the past of w) then B would be [would have been true] at
w [at t in the future of w].

We must remember that all points of our model are results of actions. Thus in the
analysis of the indicative conditional we have a situation as in Fig. 3.27, where n
may be 0, i.e. s = t or k = 0, i.e. w = t or both.

In the case of the subjunctive conditional we may have the case of Fig. 3.28.



3 Introduction to Labelled Deductive Systems 263

u = w′ea2 . . .am w = w′a1 . . .am

• •

w′e • • w′a1

•
w′

. . .

...

Fig. 3.29

To check whether the conditional

‘if A were true at w′, then B would have been true at w’

holds at w, we look at Δ′w′ = Δw′ +A and check whether (Δ′w′)a1, . . . ,am|∼B.
Similarly to credibly say at w:
If A at t then B at s

we must have a vision of a sequence of actions that can credibly lead from t to s and
Δs|∼B if Δt |∼A.

We are not saying that the above are the only type of conditionals, we just wanted
to show the reader what kind of semantics our model can give the conditional. The
appropriate chapter in the book will study the conditional in more detail.

For example our action model allows us to give semantics to

• If A were true at w′ I would not have done a1 but would have done e instead, and
I would have had B now.

The above suggests an alternative history as in Fig. 3.29, where u is an alternative
point to now (same distance from w′).

Figure 3.29 does not show the whole story. In the alternative history, the theory
at w′ is Δw′ +A and hence Δu is the result of applying the action sequence ea2 . . .am

to (Δw′ +A).
The revision involved in such considerations and set up is more complex than the

traditional one. We are revising entire histories; namely several theories together.
First we do a traditional single theory revision, moving from Δw′ to Δw′ +A. Then
we want to apply action e. This is not so simple. What if the preconditions α e of
e do not hold? Are we expected to further revise Δw′ +A by α e to enable action e,
or are we supposed to apply the action e anyway?, and just further revise Δw′ +A
by β e. What if α e is inconsistent with A? What do we do when upon revising by
A some postconditions of previous actions disappear?, do we propagate the effects
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backwards into the past? All these questions and more will have to be addressed in
future work.34

We will just give one example here.
Consider a configuration of states as in Fig. 3.18 and assume further that w′ =

w′′d, where action d has as postcondition¬A. If we revise and replace Δw′ by Δw′+A
then do we further revise the history and pretend that (Δw′ +A) was obtained from
Δw′′ by some other action whose postcondition yields upon revising Δw′′ the theory
Δw′ +A?

How far do we propagate our ‘conditional input’?
Obviously the problem arises because we have here multiply connected nodes

and we need guidelines on how far to propagate the interference. There is a way
around the difficulties using the method of revision through translation, see Gabbay
et al. (2010). We can translate our entire model into a suitable theory τ in classical
logic, (which describes all the details of our model). If we let ∗ denote the translation
and Δ∗ ◦C denote a suitable belief revision operator in classical logic, then we can
endow a belief revision operation + in our model through the following definition:

• Δ+A = (def){B | Δ∗ ◦(A∗ ∧ τ) � B∗}.
In other words we do the revision in the classical logic translation and bring back
the result.
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