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Preface

To my wife, Nélida, who was always a source of love and inspiration. In memory
“Science is an evolution of ideas and approximations,” José A. Fornés, 1998.
The importance of estimating fluctuations in physics is because they contain a

lot of information: Electromagnetic fluctuations are the origin of London (van der
Waals) forces (1937) between molecules and Lifchitz forces (1956) between macro-
objects. Protonic fluctuations are the origin of Kirkwood and Schumaker forces
(1952) between molecules and pH fluctuations (Fornés et al. 1999). Also protonic
fluctuations could be the cause of the dielectric increment of proteins in solution.
Local electrical fluctuations can influence chemical reactions. Polyelectrolytes are
present in almost all the biological systems. In order to understand how these
systems work, it is important to know the size of their electrical fluctuations. The
present book represents the work the author has performed on this subject while
he was professor at the Institute of Physics of Goiás University. I am grateful to
my many friends and colleagues. I would like especially to acknowledge the help
I received from Amando S. Ito, Joaquim Procopio, and José Nicodemos T. Rabelo,
who influenced very much my scientific career, and also the help I received from
Salviano de Araújo Leão, who was always ready to help me with computational
softwares. Also I want to acknowledge the help I received from Daniel Leite in
the design of the figures. Also, I would like to thank to Luis Furtado, Springer’s
editor in Brazil, whose perfect orientation and cordial treatment made this book
reality. It has been a considerable pleasure to work with him. Finally, I want to
express my gratitude to Susan Westendorf, my book project coordinator, Springer
Nature, in New York, who always was ready to give a hearty assistance, related to the
book production. March 2016, José Antonio Fornés Instituto de Física UFG, Brazil.
I want to express my recognition to Sarumathi Hemachandirane, Project Manager
Publishing SPi Global in India and her Team, for such a careful and perfect job in
the production of the book.

Goiânia, Goiás, Brazil José Antonio Fornés
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Chapter 1
The Electrical Capacitance, the Link
to the Electrical Fluctuations

Abstract In this chapter, we develop a method in order to estimate the electrical
fluctuations in small systems. The method consists in knowing the electrical
capacitance that emerges as a consequence of the processes or the system’s
interfaces. We use results given by the fluctuation-dissipation theorem in the
classical limit. Estimating the electrical capacitance is important because it is the
link to the knowledge of the fluctuation of several physical quantities, voltage and
field fluctuations, dipole moment, pH, and charge, and also to knowledge of the
polarizability and the dielectric dispersion of colloidal and polyelectrolytes systems.

Keywords Charge fluctuation capacitance • Small systems • Electrical
fluctuations

1.1 Electrical Fluctuations

The importance of local field fluctuations in biological systems was raised by several
authors: Weaver and Astumian [21] have presented a calculation of the effects of
weak fields upon cells. Procopio and Fornés [16], using the fluctuation-dissipation
theorem (FDT), have presented a calculation of the voltage fluctuations across cell
membranes. Protonic fluctuations could be the cause of the dielectric increment
of proteins in solution [11, 20]. For fluctuations of ion distribution in colloid and
polyelectrolyte solutions, see, for instance, [4, 13, 14], see also the next chapters.
Also local fluctuations can influence chemical reactions, see [1]. Oosawa [15] has
also calculated the magnitude of fluctuating voltage and field across different points
of an electrolyte solution constituted of point ions using the method of the mode
expansion [1, 3–6, 13–15, 18, 19]. Also Brownian motors are small physical micro-
or even nano-machines that operate far from thermal equilibrium by extracting the
energy from both thermal and non-equilibrium fluctuations in order to generate work

Part reprinted from [José A. Fornés, J. Colloid Interface Sci. 226, 172, (2000)] Copyright (2000),
with permission from Elsevier.

© Springer International Publishing Switzerland 2017
J.A. Fornés, Electrical Fluctuations in Polyelectrolytes, SpringerBriefs
in Molecular Science, DOI 10.1007/978-3-319-33840-8_1
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2 1 The Electrical Capacitance, the Link to the Electrical Fluctuations

against external loads. They present the physical analogue of bio-molecular motors
that also work out of equilibrium to direct intracellular transport and to control
motion in cells, Fornés [9].

In this chapter, we develop a method in order to estimate the electrical fluctua-
tions in small systems. The method consists in knowing the electrical capacitance
that emerges as a consequence of the processes or by the proper interfaces in
the systems [7], e.g.: Protonation–deprotonation equilibrium at interfaces and in
the bulk, the fluctuation of the ionic atmosphere surrounding a charged surface
or macroion in an electrolyte solution, also the cell and the inner mitochondrial
membranes and the ionic channels, can be well represented by combinations of
resistances and capacitances, etc. The electrical capacitance is the link to the
knowledge of the fluctuation of several physical quantities: voltage and field
fluctuations [4–6, 16, 17, 21], dipole moment [5, 6, 8], pH and charge [10]. Also
to the knowledge of the polarizability and the dielectric dispersion of molecular
systems [5, 8].

1.2 The Fluctuation-Dissipation Theorem

One way of formulating the FDT is by formally regarding the spontaneous
fluctuations of a quantity x as due to the action of some random force f , meaning that
the environment senses the system through the generalized susceptibility, ˛.!/, and
respond with a fluctuating force. The Fourier components x! and f! are related by:

x! D ˛.!/f! (1.1)

The relation between the generalized impedance Z.!/ and ˛.!/ is

Z.!/ D � 1

i!˛.!/
(1.2)

with i being the imaginary unit. As x! D x0!e�i!t we can write

f! D Z.!/
dx!
dt

(1.3)

The spectral densities of the fluctuation are given by

.x2/! Dj ˛.!/ j2 .f 2/! (1.4)

The results of the FDT are

.x2/! D „˛00.!/coth
„!
2kT

(1.5)
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Correspondingly:

.f 2/! D „˛00.!/
j ˛.!/ j2 coth

„!
2kT

(1.6)

The mean square of the fluctuating quantity is

< x2 >D 1

�

Z 1

0

.x2/!d! D „
�

Z 1

0

˛00.!/coth
„!
2kT

d! (1.7)

These formulae constitute the FDT, established by Callen and Welton [2]. They
relate the fluctuations of physical quantities to the dissipative properties of the
system. At energies kT � „! (classical limit) we have coth.„!=2kT/ � 2kT=„!
and j ˛.!/ j2 � j ˛0.0/ j2. Then Eq. 1.7 becomes

< x2 >D 2kT

�

Z 1

0

˛00.!/
!

d! (1.8)

Using the Kramers and Kronig’s relations this integral can be written as [12]:

< x2 >D kT j ˛0.0/ j (1.9)

Averaging Eq. 1.4 in frequency in the classic region, we have

< x2 >D< .x2/! >D<j ˛.!/ j2 .f 2/! > (1.10)

and in order for Eqs. 1.9 and 1.10 to be compatible, we obtain

< f 2 >D kT

j ˛0.0/ j (1.11)

From Eqs. 1.9 and 1.11 we obtain

< x2 >< f 2 >D .kT/2 (1.12)

This is the classical analogy of the Heisenberg uncertainty principle.

1.2.1 Electrical Circuit

In an electric circuit the relation between the Fourier components of the spontaneous
fluctuational current I! and voltage, V! is given by:

V! D Z.!/I!; (1.13)
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Equation 1.13 can be written as

q! D ˛.!/V! (1.14)

where q! is the Fourier component of the fluctuational charge.
In case of an RC circuit in series, we have

Z.!/ D R C 1

i!C
(1.15)

Correspondingly from Eq. 1.2, ˛.!/ is given by:

˛.!/ D �C

1C .�!/2
C i

�!C

1C .�!/2
(1.16)

Then

˛0.!/ D �C

1C .�!/2
; ˛00.!/ D �!C

1C .�!/2
(1.17)

From Eqs. 1.5 and 1.17 and considering the classical limit, we obtain1

.q2/! D 2kT�C

1C .�!/2
(1.18)

and

.V2/! D 2kT�

C.1C .�!/2/
(1.19)

Then from Eq. 1.19:

< q2 >D 1

�

Z 1

0

.q2/!d! D kTC (1.20)

Correspondingly the mean quadratic fluctuation of the voltage, < V2 >D< q2 >
C�2, will be

< V2 >D kT

C
(1.21)

1In this limit, whether the circuit is in series or parallel is irrelevant concerning fluctuating
magnitudes [16].
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1.3 The Electrical Capacitance

The time scale of the mentioned processes is in the �s-ns range, hence we can make
use of the FDT in the classical limit (kT � „! or ! � kT„�1 D 4�1013 s�1) [5],2

[7], namely

˝
.�x/2

˛1=2 ˝
.�f /2

˛1=2 D kT (1.22)

where
˝
.�x/2

˛1=2
is the square root of the mean square of the spontaneous fluc-

tuations of a quantity x, as due to the action of some random force f senses
by the environment, whose corresponding square root of the mean square of the

fluctuations is
˝
.�f /2

˛1=2
.

In order to simplify the notation we rewrite Eq. 1.22 as

ıx:ıf D kT (1.23)

This equation shows a constant equilibrium between the system and the environ-
ment, when ıf increases in the ambient, the system reacts in such a way to inhibit
the fluctuation of the corresponding physical quantity x and vice versa in order to
maintain the product constant equal to kT. We also observe that the product x � f
has dimension of energy.

Examples of Eqs. 1.23 and 1.22 are the following relations:

ıq:ı D kT

ıp:ıE D kT

ıV:ıP D kT

ıA:ı… D kT (1.24)

In the first relation of the former equations, ıq can be the statistical fluctuation of
charge produced in a capacitor as due to the action of some random potential  
sensed by the environment whose statistical fluctuation is ı : In the second relation
p is the dipole moment and E is the electric field, in the third one V is the volume
and P is the pressure and in the fourth relation A is the area per molecule and … is
the surface pressure (N.m�1) in a Langmuir–Adam surface balance.

2In this reference we used the notation x for �x
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1.3.1 Capacitance Definition

As an example of Eq. 1.23 we can consider in a capacitor the relation between the
statistical fluctuation of charge, ıq, and the corresponding fluctuation of potential,
ı , sensed by the environment,

ıq:ı D kT (1.25)

We can define the capacitance as:

C D ıq

ı 
) ıq D C:ı (1.26)

From Eqs. 1.25 and 1.26 we obtain the following relations:

C D .ıq/2

kT
; ı D

�
kT

C

�1=2
; ıq D .kT:C/1=2 (1.27)

These relations have already been used by several authors in various situations,
see [1, 3–11, 13–21].

The SI system of units is employed throughout the whole book, namely: "o is the
permittivity of vacuum ("o D 8:85 � 10�12 C2N�1m�2), " is the dielectric constant
of the medium (" D 80/, eo is the proton charge (eo D 1:602 � 10�19 C/; k is
Boltzmann constant (k D 1:381 � 10�23 J=K/ and T is the absolute temperature.

In Table 1.1 are shown numerically the relations of Eq. 1.27. From the third and
fourth column we can observe the increase of potential and field fluctuations with the
decrease of the capacitor value and size. The fifth column shows the diminution of
charge fluctuations (number of elementary charges) with the corresponding decrease
of the capacitor value and size. The minimum capacitance value at room temperature

supporting one elementary charge fluctuation is .eo/
2

kT D 6:2 aF, which corresponds
to a cubic capacitor in water of side d D 87Å. Inside vesicular biological systems
in water with sizes approximately lower than this, charge fluctuations are fractions
of one elementary charge (see discussion on this subject in [10]). Biological
polyelectrolyte systems have the property of storing great amount of charge in
a small volume (great electrical capacitance), as a consequence the electrical
fluctuations are smaller than the example of the cubic capacitor. For example [5],
a DNA molecule of 7800 Å (4627 charged groups) has an electrical capacitance of
133 pF (ıE D 1687V m-1).
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Table 1.1 Potential, electric
field and charge fluctuations
as related to given values and
sizes of the capacitors,
from [7]

C d D C
""o

ı ıE D ı 

d
ıq
eo

1 pF 1.4 mm 64�V 46 mV
m 402

1 fF 1.4�m 2 mV 1.4 kV
m 13

100 aF 1400 Å 6 mV 43 kV
m 4

10 aF 140 Å 20 mV 1.4 MV
m 1.3

.eo/
2

kT D 6:2 aF 87 Å 26 mV 9.6 MV
m 1

1 aF 14 Å 64 mV 46 MV
m 0.4

Cubic capacitor: C D .A=d/""o;A D d2,
" D 80; aF � attoF D 10�18 F
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Chapter 2
Electrical Fluctuations in Colloid
and Ionic Solutions

Abstract A method is developed in order to determine the natural electrical thermal
fluctuations and its spectral distribution across two points of a solution of ions or
spherical charged particles immersed in an ionic solution. The electrical equivalent
between two points of a solution is considered as a capacitor and a resistor in
parallel. The method is applied within the Debye–Hückel approximation (linearized
Poisson–Boltzmann equation), although it is valid in general. Among the results is
the diminution of electrical fluctuations as particle sizes increase, as a consequence
large particles produce electrical stabilization in their neighbourhood. Also can be
observed that fluctuations are not quite sensitive to ionic concentrations for large
particles. When the size of the particles becomes negligible we obtain similar results
with the already obtained using the method of the mode expansion.

Keywords Electrical fluctuations • Colloid fluctuations • Ionic fluctuations

2.1 Electrical Fluctuations in Solutions

We use the method developed in the former chapter to determine the natural
electrical thermal fluctuations and its spectral distribution across two points of a
solution of ions or electrical charged particles immersed in an ionic solution. We
consider the solution path as a capacitor and a resistor in parallel.

The equations derived in the present work are valid for the following two cases:

a) A solution of spherical charged particles1 of radii a immersed in a symmetrical
electrolyte solution of pointlike ions, Fig. 2.1a.

b) A symmetrical electrolyte solution which ions have a mean radius a, Fig. 2.1b.

Reprinted from [José A. Fornés, J. Colloid Interface Sci. 186, 90, (1997)] Copyright (1997), with
permission from Elsevier.
1It can also be polyelectrolytes.

© Springer International Publishing Switzerland 2017
J.A. Fornés, Electrical Fluctuations in Polyelectrolytes, SpringerBriefs
in Molecular Science, DOI 10.1007/978-3-319-33840-8_2
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Fig. 2.1 (a) Spherical
charged particles of radii a
immersed in a symmetrical
electrolyte solution of
pointlike ions.
(b) Symmetrical electrolyte
solution of ions having a
mean radius a

In both cases are estimated the electrical fluctuations and their spectral
distributions.

The Debye–Hückel theory [2] for a symmetrical electrolyte of valence z with
n ions per m3 gives for the potential,  .r/ surrounding a spherical ion of charge
Q D ze0:
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Fig. 2.2 Representation of a,
the distance of closest
approach

 .r/ D Q

4���0

e�a

1C �a

e��r

r
(2.1)

The SI system of units was employed throughout, in Eq. 2.1 �0 is the permittivity of
vacuum (�0 D 8:85�10�12 C2N�1m�2/; � is the dielectric constant of the medium,
e0 the electron charge (e0 D 1:602� 10�19 C), a is the distance of closest approach
equal to the sum of the radii of oppositely charged ions in contact (see Fig. 2.2) and
�, called the

Debye–Hückel reciprocal length parameter, is given by:

�2 D e20
��0kT

X
�i0z

2
i D 2000e20NA

��0kT

�
1

2

X
ciz

2
i

�
(2.2)

The quantity I D 1
2

P
ciz2i quantifies the charge in an electrolyte solution and is

called the ionic strength after Lewis and Randall [8]. In case of a solution of a
symmetrical .z � z/ electrolyte we have

�2 D 2.e0z/2

�0�kT
n D 2.e0z/2

�0�kT
NAc103 (2.3)

where k is Boltzmann constant (k D 1:381 � 10�23 J/K), T is the absolute tempera-
ture, NA is Avogadro constant and c the solution concentration in moles=liter.
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Fig. 2.3 (a), (b) �, ��1 for
mono and bivalent
symmetrical electrolyte
solution

a

b

In Fig. 2.3a and b are shown � and ��1 versus c in mM for z D 1 and z D 2.
In case we have an spherical particle immersed in a solution of pointlike ions

Eq. 2.1 remains the same, being Q the charge on the particle and a its radius (see,
for instance, [20]).
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Equation 2.1 is limited to solutions in which the ratio of the electrical to the
thermal energy of the ions is very small, namely2:

ze0 .r/

kT
� 1 (2.4)

As the potential decreases quite fast from the surface of the particle and in order the
former Eq. 2.3 be valid in the neighbourhood of it we can consider the inequality on
the particle surface, namely:

ze0 .a/

kT
D ze0Q

4���0kT.1C �a/a
� 1 (2.5)

A good approximation is to consider the former equation equal to 10�1 and obtain an
upper limit to the charge on the particle, Qup, for a given value of a and �. This value
of Qup will satisfy the condition given by Eq. 2.4 in the neighbourhood solution
surrounding the particle, namely:

Qup D 10�1.ze0/
�14���0kT.1C �a/a (2.6)

Of course the actual charge on the particle has to fulfil the condition:

ze0 � Q � Qup (2.7)

In Fig. 2.4 is represented Eq. 2.6 for some particle sizes and electrolyte valence.
In this way the following formulas are only valid preventing the validity of the

inequality Eq. 2.5 or Eqs. 2.6 and 2.7.
At the distance of closest approach, r D a, then

 .a/ D Q

4���0a

1

1C �a
D Q

4���0a
� Q

4���0

�

1C �a
(2.8)

The first term on the right-hand side of Eq. 2.8 is the potential  i at the surface of
the ion due solely to the charge on the ion itself. The second term is the portion  a

of the total potential that is due to the arrangement of the surrounding ions in the
neighbourhood of the central ion and is called potential of the ionic atmosphere.
The contribution of the cloud to the potential at the site of the central ion or particle
can be written as

 a.r/ D Q

4���0r

�
e�.a�r/

1C �a
� 1

�
D �Q

4���0x
(2.9)

2This condition comes to approximate sinh.ze0 .r/=kT/ � ze0 .r/=kT in the Poisson–
Boltzmann equation.
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Fig. 2.4 Representation of
Eq. 2.6: (a), (b) for mono and
bivalent symmetrical
electrolyte solution

a

b

with x given by:

x D r.1C �a/

1C �a � e�.a�r/
(2.10)

Because of the spherical symmetry we have transformed the ionic atmosphere into
a thin spherical shell with a charge �Q placed at a distance x from the site of the
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Fig. 2.5 Transformation of the central ion together with its ionic atmosphere into a capacitor

central ion, in this way the central particle or ion and the shell constitute a capacitor,
see Fig. 2.5.

For calculating the capacitance we need to compute the difference of potential
of the ionic atmosphere between the surface of the particle or ion, x.a/ and x.r/,
namely:

 a.a/�  a.r/ D �Q

4���0r

��1C �.r � a/C e�.a�r/

1C �a

�
(2.11)

The corresponding capacitance will be

C.r/ D �Q

 a.a/�  a.r/
D 4���0r.1C �a/

�1C �.r � a/C e�.a�r/
(2.12)

2.2 Calculation of the Electrical Mean Squares Fluctuations

In order to calculate the voltage thermal fluctuations, < . a.r/ �  a.a//2 >, and
its spectral distribution across two points of the solution, Œ. a.r/ �  a.a//2	! , we
resemble the solution path between the two points as an R.r/C.r/ circuit in parallel
(R.r/ is the solution electrical resistance at the distance r from the site of the central
ion and C.r/ is the corresponding capacitance). The spectral density of the mean
square of the fluctuational potential is: (see [16])

Œ. a.r/�  a.a//
2	! D 2R.r/kT

1C Œ!R.r/C.r/	2
(2.13)

and the corresponding mean square of the fluctuating potential will be

< . a.r/�  a.a//
2 >D 1

�

Z 1

0

Œ. a.r/ �  a.a//
2	!d! D kT

C.r/
(2.14)
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For! � 2�
�

, with � D RC, the spectral density is practically independent of!; thus,
for relatively low frequencies, we have a ‘white’ spectrum and Eq. 2.13 transforms:

Œ. a.r/ �  a.a//
2	! D 2R.r/kT (2.15)

Consequently:

< . a.r/ �  a.a//
2 >D 1

�

Z wC�!

w
2R.r/kTd! D 2

�
R.r/kT�! D 4R.r/kT�f

(2.16)
Where ! D 2�f , with f the frequency and the region corresponds to the ‘white’
noise. Equation 2.16 constitutes the so-called Nyquist theorem, [15].

Applying Eqs. 2.12 and 2.14 we get for the mean square of the fluctuating
potential difference:

< . a.r/ �  a.a//
2 >D kTŒ�1C �.r � a/C e�.a�r/	

4���0r.1C �a/
(2.17)

The mean square of the field averaged over the distance r,< .Er.r//2 >D< . a.r/�
 a.a//2 > r�2, (see [20] Eqs. (22) and (23)), namely:

< .Er.r//
2 >D< . Err .r//

2 >D kTŒ�1C �.r � a/C e�.a�r/	

4���0r3.1C �a/
(2.18)

For long distances Eqs. 2.17 and 2.18 transform:

< . a.r/ �  a.a//
2 > D kT�

4���0.1C �a/
(2.19)

< .Er.r//
2 >D< . Err .r//

2 > D kT�

4���0r2.1C �a/
(2.20)

For a solution of negligible ions size, we can consider a D 0 in the former Eqs. 2.17
and 2.18 giving:

< . a.r/�  a.0//
2 >D kT.�1C �r C e��r/

4���0r
(2.21)

< .Er.r//
2 >D< . Err .r//

2 >D kT.�1C �r C e��r/

4���0r3
(2.22)

Equations 2.21 and 2.22 differ by a factor of 2 from those already given by
Oosawa [11].
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In case we have small potentials and a flat double layer Eq. 2.1 transforms into,
see [20]:

 .r/ D  0e
��x (2.23)

It is well known from electrostatics:


 D ���0 @ .r/
@x

jxD0 (2.24)

From Eqs. 2.23 and 2.24 we get

 .x/ D Q

��0�S
e��x (2.25)

The potential profile due solely to the charge on the surface is

 s.x/ D � Q

��0S
x (2.26)

Then the potential of the ionic atmosphere will be

 a.x/ D  .x/ �  s.x/ D Q

��0S

�
e��x

�
C x

�
(2.27)

Correspondingly the capacitance formed by the surface and ionic atmosphere will be

C.x/ D �Q

 a.0/�  a.x/
D ��0S

x
�
1 � 1

�x .1� e��x/
� (2.28)

Then from Eq. 2.14 we get for the mean square of the fluctuating potential:

< . a.x/ �  0.a//2 >D kT

��0S
x

�
1 � 1

�x
.1 � e��x/

�
(2.29)

And for the mean square of the field averaged over the distance x, we have

< .Ex.x//
2 >D< . Erx .x//

2 >D kT

��0S

1

x

�
1 � 1

�x
.1 � e��x/

�
(2.30)

Equations 2.29 and 2.30 coincide with those given by Oosawa [11].
For long distances we can consider the value of the bracket in Eqs. 2.29 and 2.30

equal to the unit.
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2.3 Calculation of the Spectral Density Fluctuations

In order to calculate the spectral density of the mean square of the fluctuational
potential difference using Eq. 2.13 we need to know the electrical resistance, R.r/,
between the surface of the particle or ion and a point r inside the solution. Its relation
with the capacitance of the equivalent electrostatic problem is (see, for instance,
Reitz and Milford [17]):

R.r/ D ��0�

C.r/
(2.31)

with � being the solution electrical resistivity.
In Fig. 2.6 is represented C.d/ and R.d/, (d D r �a), from Eqs. 2.12 and 2.31 for

a 100 mM KCl solution.
Correspondingly the relaxation time, � , of the electrical fluctuations will be

given by:

� D ��0� (2.32)

Fig. 2.6 Representation of
Eqs. 2.12 and 2.33 for the
resistance and capacitance of
the solution as a function of
the distance from the particle
surface. �KCl D 0:8�m was
calculated from Eq. A2.7 (see
parameters on the figure)

50
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Fig. 2.7 Relaxation time of the fluctuations, � , as a function of the concentration for a KCl
solution, it was calculated using Eqs. 2.32 and A2.7

In Fig. 2.7 is represented � as a function of concentration for a KCl solution,
using Eq. A2.7 for �. We can observe a diminution of the relaxation time with
concentration because to the corresponding diminution of the electrical resistivity.

From Eqs. 2.12 and 2.31 we get

R.r/ D �
�1C �.r � a/C e�.a�r/

4�r.1C �a/
(2.33)

In case we have a flat double layer from (2.28) and (2.31) we have

R.x/ D �

S
x

�
1 � 1

�x
.1 � e��x/

�
(2.34)

In case of lack of experimental data on � we can calculate it from Eq. A2.1 together
with Eqs. A2.7 and A2.8, see Appendix.

From Eqs. 2.13, 2.31 and 2.33; we get for the spectral density of the mean square
of the fluctuational potential:



20 2 Electrical Fluctuations in Colloid and Ionic Solutions

Œ. a.r/ �  a.a//
2	! D 2kT�

1C .4���0!�/2
�1C �.r � a/C e�.a�r/

r.1C �a/
(2.35)

Correspondingly the spectral density of the mean square of the fluctuational electric
field will be given by:

Œ.Er.r//
2	! D 2kT�

1C .4���0!�/2
�1C �.r � a/C e�.a�r/

r3.1C �a/
(2.36)

In Fig. 2.8a is shown the spectral density of the mean square of the fluctuational
potential versus the radial frequency of the fluctuations for a KCl solution for given
values of concentrations. We can observe a substantial diminution and broaden of
the spectrum with increasing concentration with the corresponding diminution of
the relaxation time of the fluctuations.

In Fig. 2.8b is shown the spectral density of the mean square of the fluctuational
potential as a function of the particle size, we can observe an effect of electrical
stabilization, diminution of the amplitude of the fluctuations, with increasing
particle size.

2.4 Calculation of the Mean Squares Temporal Averages

We can characterize the time correlation of a physical quantity, x.t/, by the mean
value of the product < x.0/x.t/ > which is related to the spectral resolution,
.x2/! , by:

< x.0/x.t/ >D 1

2�

Z 1

�1
.x2/!e�i!td! (2.37)

In particular,< x.0/2 > is the mean square of the fluctuating quantity:

< x.0/2 >D 1

2�

Z 1

�1
.x2/!d! (2.38)

In order to compare the fluctuating quantity with the corresponding to a physical
event elapsed in a time�t it is necessary to know the mean square of the fluctuating
quantity averaged in this time interval�t, namely:

t

< x.0/x.t/ >D 1

�t

Z �t

0

< x.0/x.t/ > dt (2.39)

In our case x �  a.r/ �  a.a/ and from Eq. 2.13 < x.0/2 >D kT
C.r/ and from

Eqs. 2.13 and 2.31:
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Fig. 2.8 (a) Spectral density
of the mean square of the
fluctuational potential as a
function of the fluctuational
frequency ! for a pure KCl
solution (see parameters on
the figure). (b) Ditto as a
function of particle size

a

b
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Œ. a.r/�  a.a//
2	! D kT

C.r/

2

�.! � i
�
/.! C i

�
/

(2.40)

Then from Eqs. 2.35 and 2.38 and adapting the notation to our case, <
x.0/x.t/ >D< . a.r/ �  a.a//2 > (to condense notation), we have

< . a.r/�  a.a//
2 >D kT

C.r/��

Z 1

�1
e�i!td!

.! � i
�
/.! C i

�
/

D kT

C.r/
e� t
� (2.41)

Applying Eq. 2.37 to our case we have

t

< . a.r/ �  a.a//2 >D 1

�t

Z �t

0

<. a.r/ �  a.a//
2>dtD kT

C.r/

h �
�t

i �
1�e��t

�

�

(2.42)

Analogously for the field fluctuations:

t

< .Er.r//2 >D kT

r2C.r/

h �
�t

i �
1 � e��t

�

�
(2.43)

In Fig. 2.9a–d are shown voltage and field fluctuations as a function of the Debye–
Hückel reciprocal length, ��1, for given values of particle sizes at a distance d D
100Å from the particle surface. These figures have to be observed together with
Fig. 2.3a and b which give ��1 vs. c for mono and bivalent electrolytes.

Exam of Fig. 2.9 indicates that the fluctuations diminish as particle sizes
increase, as a consequence large particles produce electrical stabilization in their
neighbourhood.

Also can be observed that fluctuations are not quite sensitive to ionic concentra-
tions for large particles.

Voltage fluctuations, for our range of ��1, (this range covers most of the current
biological and physical chemistry systems) run from tenth of an mV to about 20 mV,
with the corresponding field fluctuations spanning a range of �VÅ�1–mVÅ�1.

In Fig. 2.9e–h are also shown voltage and field fluctuations as a function of the
distance d from the particle surface for different values of ��1 and particle sizes. It
can be observed the existence of substantial increase in voltage fluctuations with
increasing d, specially for small particles, and up to a limiting value given by
Eq. 2.19. Also, for these small particles it can be observed a maximum in the field
fluctuations at a distance of the order of ��1. Also, here, the effect of electrical
stabilization with increasing of particle size becomes apparent.

In Fig. 2.10a–d are plotted voltage and field fluctuations for the two extreme
cases: (1) an ionic solution of punctual or small ions (Fig. 2.10a, b) and (2) two
plates of area S D 1 cm2 and separation x immersed in an ionic solution of punctual
ions (Fig. 2.10c and d). In case (1) voltage fluctuations remain between 1 and
20 mV converging to the limiting value given by Eq. 2.19 for long distances; the
corresponding field fluctuations stay in the range of a few mVÅ�1 decreasing with
distance.
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a b

dc

e f

hg

Fig. 2.9 Voltage and field fluctuations as a function of ��1 and the distance d from the particle
surface
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a b

dc

Fig. 2.10 Voltage and field fluctuations: (a), (b) Ionic solution of pointlike ions. (c), (d) Two plates
of area S D 1 cm2 and separation x immersed in an ionic solution of pointlike ions

In case (2) voltage fluctuations increase with distance and are in the two digits
nV range. Corresponding electric field fluctuations decrease with distance are in the
tenth of nVÅ�1 range.

We have developed a simple method to estimate the electrical fluctuations in
colloids and ionic solutions. The steps to perform in order to determine these
fluctuations can be summarized as follows:

1. Identification of the molecular–ionic capacitor of the system. The capacitance is
given by:

C.r/ D
ˇ̌
ˇ̌ Q

 a.r/ �  a.a/

ˇ̌
ˇ̌ ; (i)

with Q the charge on the particle or molecule and  a.r/ the potential of the
ionic atmosphere, a the distance from the centre to the surface of the particle
or molecule and r the distance from the centre to a point inside the surrounding
solution.

2. Estimation of the resistance R.r/ or the electrical resistivity � of the path
associated with the capacitance (electrical path), then the relaxation time, � , is
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� D R.r/C.r/ D ��0�; (ii)

3. The voltage and field mean square fluctuations are given by:

< . a.r/�  a.a//
2 >D kT

C.r/
;

< .Er.r//
2 >D < . a.r/ �  a.a//2 >

r2
; (iii)

4. The spectral density of the mean square of the fluctuational potential and field is
given by:

Œ. a.r/ �  a.a//
2	! D 2R.r/kT

1C Œ!�	2
;

Œ.Er.r//
2	! D Œ. a.r/ �  a.a//2	!

r2
; (iv)

5. The mean square of the fluctuational potential and field averaged in a time, �t,
is given by:

t

< . a.r/�  a.a//2 >D kT

C.r/

h �
�t

i �
1 � e��t

�

�
;

t

< .Er.r//2 >D
t

< . a.r/ �  a.a//2 >

r2
; (v)

Voltage fluctuations at a molecular scale cannot be measured due both to
unavailability of microscopic probes and to response limitation of measuring
electronics. Measurement of these fluctuating voltages is also inherently elusive
due to the thermal noise of electronic apparatuses. Molecular systems, on the
other hand, are sufficiently small and fast as to both sense and respond to local
fluctuating electrical fields (Lauger [7], Hille [6]) or for an efficient processing
of information in the form of fast conformational changes [3]. In order to explain
any possible mechanism at molecular level, which involves an electric process,
this fluctuations have to be considered.

The above described fluctuations are one of the factors that cause the dielectric
increment �� of polyelectrolyte solutions; Oosawa [12] related the field fluctu-
ations to �� having obtained a good agreement with the experimental data of
Takashima [19].

Fluctuations with very long relaxation times appear in or around particles. The
lowest relaxation time of fluctuations in counterion density around a long rod-
like polyelectrolyte was found to be in the range of 10�3–10�4 s (Oosawa [13],
Takashima [19], Mandel [9]).
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We suggest the application of the present formalism to the determination of the
field fluctuations in long rod-like polyelectrolyte solutions in order to estimate the
dielectric increment, ��, and compare with the existent experimental data on this
kind of systems.

Appendix:Theoretical Calculation of the Electrical Resistivity

When we have highly charged particles or polyelectrolytes immersed in a symmetri-
cal electrolyte solution, another path of electric conduction can be open through this
particles or polyelectrolytes and the electrical conductivity 
 D ��1 of the solution
can be written as:

��1 D �i
�1 C �p

�1 (A2.1)

where �i and �p are the contributions to the total electrical resistivity of the ions
and particles, respectively. The relation between the electrical resistivity, �i, and the
equivalent conductanceƒ is given by:

�i D NA

nzƒ
(A2.2)

According to Debye and Hückel [2] and Onsager [10] interionic attractions and
repulsions lead to two effects both of which result in the lowering of the equivalent
conductance with increasing ion concentrations, correspondingly it can be decom-
posed into three terms (see [1] for a good treatise on this subject):

ƒ D ƒ0 �ƒe �ƒ� (A2.3)

whereƒ0 is the equivalent conductance at infinite dilution, and is given by:

ƒ0 D ze02NA

kT
.D0

C C D0
�/ (A2.4)

where D0
˙ are the diffusion constants.

ƒe is the contribution of the electrophoretic effect and tends to diminish ƒ0, is
given by:

ƒe D 2ze02�NA

6��.1C �ai/
(A2.5)

where � is the viscosity of the solution and ai is the mean ions radius.
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ƒ� is called the time of relaxation effect and is the other mechanism tending to
decrease the equivalent conductance, namely:

ƒ� D .e0z/2�

24���0kT

p
2

1C p
2
ƒ0 (A2.6)

From Eqs. A2.2–A2.6, we get for the ions electrical resistivity:

�i D 1

n.ze0/2
hh
1 � .ze0/2�

24���0kT

p
2

1Cp
2

i
.D0CCD0�/

kT � �
3��.1C�ai/

i (A2.7)

In Fig. 2.11 is represented Eq. A2.7 for a KCl solution as a function of concen-
tration.

The electrical resistivity corresponding to the particles, �p, is given by:

�p D 6��ap.1C �ap/

npQ2.1C Ks�i
ap
/f .�ap/

(A2.8)

where np is the number of particles per m3, Q is the net charge on the particle, ap

the radius of the particle and f .�ap/ is called Henry’s function [4]; it varies between

Fig. 2.11 Representation of
Eq. A2.7 for �i as a function
of concentration for a KCl
solution (Eq. 2.3 for � was
also used)
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1.0 and 1.5 as �ap goes from zero to infinity and Ks is the surface conductance of
the particle.

In deriving Eq. A2.8 we have used the relation between the current density J
(A/m2) and the external applied field E, namely:

J D npQv D 1

�p
E (A2.9)

where v is the velocity of the particles and is given by Henry’s equation , Henry [4]:

v D 
4���0

6��
f .�ap/E (A2.10)

where the 
 potential is given by:


 D Q

4���0ap

1

1C �ap
(A2.11)

Henry [5] introduced a correction for the surface conductance, Ks, considering that
the mobility of the particle would be reduced on account of the distortion of the
spherical symmetry of the electrical double layer, relaxation effect. Also, the applied
field would be modified in the vicinity of the particle by the electrical conductivity
of the double layer.


corr D 
.1C Ks�i

ap
/ (A2.12)

The surface conductance of the particle can be evaluated using equations due to
Street [18]. The relaxation effect may be neglected when (a) the values for 

potential are far below 25 mV and (b) values for �ap are small (less than 1) or when
�ap � 1 (Overbeek [14]).
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Chapter 3
Electrical Fluctuations Around a Charged
Colloidal Cylinder in an Electrolyte

Abstract In Chap. 2 we developed a method to determine the natural electrical
thermal fluctuations and their spectral distribution across two points in the neigh-
bourhood of a spherical electrically charged particles immersed in an ionic solution.
The essence of the method is to consider the charged sphere with its surrounding
ionic atmosphere as a capacitor and a resistor in parallel.

In this chapter we apply this method to estimate the electrical fluctuations (field
and potential) around rod-like rigid polyelectrolyte bearing a uniform surface charge
distribution dispersed in an aqueous salt solution of pointlike ions. We performed
computer simulations to solve the Poisson–Boltzmann (P-B) equation and also
developed formulas to calculate the fluctuations in the case of a low potential,
Debye–Hückel approximation (linearized P-B equation). We apply the formalism
to a DNA solution which is a well-known model for a biopolymer. They are shown
plots of the potential and electric field fluctuations as a function of the Debye–
Hückel length, ��1, and distance, d, from the polyelectrolyte surface for several
molecular sizes.

Keywords Electrical fluctuations • Cylindrical polyelectrolytes

3.1 Electrical Fluctuations Perpendicular
to the Polyelectrolyte Axis

We consider a rigid rod-like molecule or particle of radius a, (see Fig. 3.1) (for
an excellent bibliography on this subject, see [5]), length L � a, so that end
effects may be neglected, with a charge Q distributed uniformly over the surface
with an electrical surface potential  0 immersed in a solution of pointlike ions of a
symmetrical electrolyte of valence z with n ions per m3.

Part of this chapter was reprinted with permission from [José A. Fornés, Phys. Rev. E 57,2, 2104,
(1998)] Copyright (1998) by the American Physical Society.

© Springer International Publishing Switzerland 2017
J.A. Fornés, Electrical Fluctuations in Polyelectrolytes, SpringerBriefs
in Molecular Science, DOI 10.1007/978-3-319-33840-8_3
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Fig. 3.1 Representation of a
rigid rod-like polyelectrolyte

The law governing the potential profile and consequently the ionic distribution
(‘diffuse’ layer) from the surface of the particle is given by the PB equation1

4  D 2ze0n

��0
sinh

�
ze0 

kT

�
(3.1)

where 4 is, in our case of cylinder symmetry, the radial part of the Laplace operator.
Equation 3.1 can be written, following Stigter [4], as:

1

x

d

dx

�
x

dy

dx

�
D sinh.y/ (3.2)

where y D ze0 =kT and x D �r are the dimensionless potential and distance,
respectively, r being the distance from the cylinder axis, perpendicular to the
surface. At the surface of the cylinder x D x0 D �a and y D y0 D ze0 0=kT.

1The origin of this equation is the Poisson equation: 4 D � �

��0
with � D ze0.nC

� n
�

/ D
nze0.exp.� ze0 

kT / � exp. ze0 
kT // D �2nze0 sinh. ze0 

kT / , with n
C

and n
�

being the average
concentration of the ions.
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In case the ratio of the electrical to the thermal energy of the ions is very small,
namely2:

ze0 .r/

kT
� 1; y � 1 (3.3)

Equation 3.2 transforms, sinh.y/ D y, into the modified Bessel equation of zeroth
order, with the boundary conditions .x; y/ D .1; 0/ and

�
dy

dx

�
x0

D �
�



��0

� � ze0
kT�

	
D � Qze0

2�x0L��0kT
(3.4)

This last condition comes from Gauss’s electric flux theorem with the surface charge
density 
 D Q=.2�aL/. The analytic solution (Debye–Hückel approximation)
satisfying the former boundary conditions is

y D y.DH/ D
� ze0

kT

	 Q

2�L��0x0K1.x0/
K0.x/ (3.5)

The corresponding derivative function is

dy.DH/

dx
D �

� ze0
kT

	 Q

2�L��0x0K1.x0/
K1.x/ (3.6)

In the former equations K0.x/ and K1.x/ are the modified Bessel functions of zeroth
and first order, respectively. For y ! 0, Eq. 3.5 is an exact solution of Eq. 3.2.

It is necessary to formulate a few definitions in order to put the equations into the
current nomenclature of polyelectrolyte science, namely:

� D Q

L
D e0

b
D

�
e0
lB

�

0 (3.7)

where � is the linear charge density, b D L=N is the linear charge spacing and N
is the number of charged polymer groups. The Bjerrum length lB is the distance at
which the coulombic energy is equal to kT (lB D 7:13Å at 25 ıC in water) (for an
excellent english reference on this subject, see [1]), namely:

lB D e02

4���0kT
D 
0b (3.8)

The dimensionless ratio, 
0, which is a reduced linear charge density is particularly
useful (a DNA molecule, for instance, has two phosphate charges each at a helical

2This condition comes to approximate sinh.ze0 .r/=kT/ � ze0 .r/=kT in the Poisson–
Boltzmann equation.
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Fig. 3.2 Representation of B-DNA molecule

spacing of 3.37 Å, then 
0 D lB=b D 7:13 � .2=3:37/ D 4:23) (see Fig 3.2). As a
consequence the surface charge density can be written as:


 D �

2�a
D

�
e0

2�alB

�

0 (3.9)

For B-DNA, a D 12:5Å, Eq. 3.11 gives 
 D 7:55 � 1017 electric charges m�2,
which is 28 times less than that for a bidimensional array of Cu atoms. Also the
Debye–Hückel reciprocal length parameter, �, (cf, Eq. 2.2, Chap. 2) can be
written as:

�2 D 8�z2lBn D 8�z2lBNAc103 (3.10)

Applying the former definitions Eqs. 3.4–3.6 transform in:

�
dy

dx

�
x0

D �2z
0
x0

(3.11)
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y D y.DH/ D 2z
0
x0K1.x0/

K0.x/ (3.12)

dy.DH/

dx
D � 2z
0

x0K1.x0/
K1.x/ D �y.DH/K1.x/

K0.x/
(3.13)

As the potential decreases quite fast from the surface of the particle and in order for
the former Eq. 3.3 be valid in the neighbourhood of it we can consider the inequality
on the particle surface, namely:

y.x0/ D 2z
0
x0K1.x0/

K0.x0/ � 1 (3.14)

In general in a polyelectrolyte the real charge is lessened by a factor ˛ because of the
presence of counterions within the defining surface of the cylinder, correspondingly
in the former equations 
0 has to be replaced by 
 D ˛ � 
0. Setting the former
equation equal to 10�1 upper limits for 
 and �, 
up and �up, for given values of a
and �, can be derived. The values 
up and �up will satisfy the condition given by
Eq. 3.3 in the neighbourhood solution surrounding the particle, namely:


up D 10�1 x0K1.x0/

2zK0.x0/
(3.15)

And the condition for the linear charge density, �, on the particle surface:

�up D
�

e0
lB

�

up (3.16)

Figure 3.3 shows 
up and �up as a function of the Debye length for z D 1 and
z D 2 and different particle sizes.

Numerical integration of Eq. 3.2 is obtained by Runge–Kutta method in which
Eq. 3.2 is transformed in a system of coupled first order ordinary differential
equations, namely:

dy1
dx

D y2;

dy2
dx

D sinh.y1/ � y2
x

(3.17)

with y1 D y.
Stigter [3, 4] gives the solution of Eq. 3.2 in terms of a correction factor of an

analytical expression derived with the help of the Debye–Hückel approximation.
As the set of Eq. 3.17 represents a second order nonlinear differential equation

we used an adaptive stepsize control subroutine, odeint, from Numerical Recipes,
[2], joining the main program with subroutines: derivs, odeint, rkqs, rkck, bessi0,
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Fig. 3.3 Representation of
Eqs. 3.15 and 3.16 for mono
and bivalent symmetrical
electrolyte solution

bessi1, bessk0, bessk1. We start the integration at low potentials, where Eqs. 3.12
and 3.13 are valid, then the initial conditions for the set of Eqs. 3.17 are

.y1; y2/ D
�

yDH.x1/;�yDH.x1/
K1.x1/

K0.x1/

�
(3.18)

We integrate, as usual, backward, x1 ! x0.
In Fig. 3.4 is shown an application of this procedure to obtain the potential profile

of DNA immersed in a 100 mM solution of a symmetrical monovalent electrolyte.
The steps of the procedure to calculate the electrical fluctuations in molecular or

colloid solutions see (cf. Eqs. To i–v, Chap. 2).
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Fig. 3.4 Potential profile
(Runge–Kutta solution) for
DNA (
0 D 4:24, ˛ D 0:5,
a D 12:5Å, x0 D 1:298,
y0 D 2:693) immersed in
100 mM (1-1) electrolyte. d is
the distance from the DNA
surface
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The potential of the ionic atmosphere,  a.r/, is the contribution of the cloud to
the potential at the site of the central ion or particle. It can be written as:

 a.r/ D  .r/ �  bare.r/ (3.19)

where  bare.r/ is the potential of the polyion or particle due solely to the charge on
the particle itself (without the solution).

Correspondingly for the dimensionless potential, we have

ya.x/ D y.x/ � ybare.x/ (3.20)

In our case of a rod-like polyelectrolyte  bare.r/ is given by:

 bare.r/ D  bare.a/C 1

2���0

Q

L
ln

�a

r

	

D  bare.a/C 2kT

e0

 ln

�a

r

	
(3.21)

correspondingly

ybare.x/ D ybare.x0/C 2z
 ln
�x0

x

	
(3.22)
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In case of using the Debye–Hückel approximation, from Eqs. 3.12, 3.20 and 3.22
we obtain

y.DH/
a .x/ D 2z


�
K0.x/

x0K1.x0/
� ybare.x0/� ln

�x0
x

	�
(3.23)

From Eqs. 4.4 and 3.23, the capacitance of the ionic–molecular capacitor will be
given by:

C.x/ D 2�L��0

�
K0.x/� K0.x0/

x0K1.x0/
C ln

�
x

x0

���1
(3.24)

The corresponding fluctuating magnitudes can be calculated substituting this
expression for C.x/ in the corresponding Eqs. (cf. Eqs. i–v, Chap. 2)

In case the Debye Hückel approximation is not valid, we can consider the
following equation obtained from Eqs. 3.4, 3.11, 4.4, 3.20 and 3.22, ready for
computational calculation:

C.x/ D 2�L��0

�
y.x0/� y.x/

2z

C ln

�
x

x0

���1
(3.25)

In Figs. 3.5 and 3.6 are represented Eqs. iii and iv from Chap. 2, respectively, for
DNA immersed in 100 mM NaCl solution.

Fig. 3.5 Voltage and field
fluctuations (Runge–Kutta
solution) for DNA
(
0 D 4:24, ˛ D 0:5,
L D 103 Å, a D 12:5Å)
immersed in 100 mM (1-1)
electrolyte. d is the distance
from the DNA surface
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Fig. 3.6 Spectral density
(Runge–Kutta solution) of the
mean square of the
fluctuational potential and
field as a function of the
fluctuational frequency ! for
DNA: L D 103 Å,
a D 12:5Å, c D 100mM
NaCl, �NaCl D 1:0�m,
� D 7:1� 10�10 s,
r D ��1 D 9:73Å,
C.��1/ D 3:45 � 10�15 F

In Fig. 3.7 is represented the resistance and capacitance (from Eqs. 4.6 and 3.25
in the neighbourhood of a DNA molecule in the same solution.

Figure 3.8a and b shows the voltage and field fluctuations as a function of the
Debye–Hückel length, ��1, for given values of particle sizes at a distance d D 25Å
from the polyelectrolyte surface. It is interesting to observe these figures together
with Fig. 2.3a and b of Chap. 2, which gives ��1 vs. the concentration for mono and
bivalent electrolytes.

Examination of Fig. 3.8 indicates that the fluctuations diminish as particle sizes
increase, as a consequence large particles produce electrical stabilization in their
neighbourhood.

It can also be observed that fluctuations are not quite sensitive to ionic concentra-
tions for large particles. Voltage fluctuations, for our range of ��1, (this range covers
most of the current biological and physical chemistry systems) run from 1 to 12 mV,
with the corresponding field fluctuations spanning a range of 10–400�VÅ�1.

Figure 3.8c–e furthermore shows voltage and field fluctuations as a function
of the distance d from the particle surface for a given value of ��1 (10 Å) and
particle sizes. It can be observed that voltage fluctuations increase substantially with
increasing d, especially for small particles. A maximum of the field fluctuations
occurs at a distance of the order of ��1. The effect of electrical stabilization with
increasing of particle size also becomes apparent here. Figure 3.5 also shows a
maximum of the field fluctuations.
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Fig. 3.7 Resistance and
capacitance of the solution as
a function of the distance d
from the DNA surface
(Runge–Kutta solution):
L D 103 Å, a D 12:5Å,
c D 100mM NaCl; �NaCl D
1:0 �m, � D 7:1 � 10�10 s,
r D ��1 D 9:73Å
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a b

c d

Fig. 3.8 Voltage and field fluctuations as a function of ��1 and the distance d from the
polyelectrolyte surface, Debye–Hückel approximation



Chapter 4
Dielectric Relaxation Around a Charged
Colloidal Cylinder in an Electrolyte

Abstract The polarizability and the corresponding dielectric relaxation of the
Debye–Hückel (DH) atmosphere surrounding a charged rod-like polyelectrolyte
immersed in an ionic solution of a symmetrical electrolyte is determined following
the method developed in the former chapter.

Several formulas are given to estimate the DH atmosphere parameters, namely:
the polarizability at zero frequency, ˛.0/; the relaxation time, �; the cloud capac-
itance, C

¯
,the average displacement of the ionic cloud, ı, the square root dipole

moment quadratic fluctuation, < p2 >1=2, and the thermal fluctuating field, <
E2 >1=2 : The Poisson–Boltzmann equation is solved numerically in order to apply
the theory to a highly charged polyelectrolyte as DNA in solution, although also
are given formulas valid for the DH approximation. It is predicted a dispersion in
the polarizability and correspondingly in the dielectric constant of these solutions in
the microwave region. For instance, considering the DNA length of 1000 Å, with its
reduced linear charge density 
0 D 4:25, and ionization factor � D 0:5, immersed
in a NaCl solution (40 mM) we predict a polarizability of the DH atmosphere
at zero frequency ˛.0/ D 1 � 10�33 Fm2 (' 6:1 � 106 times greater than the
mean value of the polarizability of water) and the corresponding fluctuating dipole
moment p D 2:1 � 10�27 cm (' 600 times greater than the permanent dipole
moment of water molecule). The relaxation time and the average displacement of
the ionic cloud is � D 1:6 ns and ı D 14Å, respectively. This displacement is
produced by the thermal fluctuating field, which, in this case, at room temperature
is < E2 >1=2D 2 � 106 V/m.

Keywords Ionic dielectric relaxation • Ionic polarization • Cylindrical
polyelectrolytes

Reprinted from [José A. Fornés, J. Colloid Interface Sci. 222, 97, (2000)] Copyright (2000), with
permission from Elsevier.
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4.1 Method

We consider a rigid rod-like molecule or particle of radius a , length L � a, so that
end effects may be neglected, with charge Q distributed uniformly over the surface
with an electrical surface potential  0 immersed in a solution of punctual ions of
a symmetrical electrolyte of valence z with n ions per m3. The law governing the
potential profile and consequently the ionic distribution (“diffuse” layer) from the
surface of the particle is given by the Poisson–Boltzmann (PB) equation:

4  D 2ze0n

""0
sinh

�
ze0 

kT

�
(4.1)

where 4 is, in our case of cylinder symmetry, the radial part of the Laplace operator.
Equation 4.1 can be written as:

1

x

d

dx

�
x

dy

dx

�
D sinh.y/ (4.2)

where y D ze0 =kT and x D �r are the dimensionless potential and distance,
respectively, r being the distance from the cylinder axis perpendicular to the surface.
At the surface of the cylinder x D x0 D �a and y D y0 D ze0 0=kT.

The contribution of the ionic cloud to the electrostatic potential at the rod surface
will be [1, 4]:

ycloud.x0/ D y.x0/C 2z
 ln.x0/ (4.3)

We can then define the ionic cloud capacitance as:

C
¯

D Q

 cloud.x0/
D 4�L"0"


y.x0/C 2z
 ln.x0/
(4.4)

where 
 is the reduced linear charge density over the rod surface (see next). In
case the ratio of the electrical to the thermal energy of the ions is very small, DH
approximation, ( ze0 .r/

kT � 1, or y � 1), Eq. 4.3 can be written as:

C
¯ DH D 2�L""0

�
K0.x0/

x0K1.x0/
C ln.x0/

��1
(4.5)

where K0.x0/ and K1.x0/ are the modified Bessel functions of zeroth and first order.
In our range of concentrations we approximate the relaxation time of the DH

atmosphere, by that given in [3]:

� D R
¯
.r/C

¯
.r/ D ""0� (4.6)
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where R
¯
.r/ is the resistance of the electrical path associated with the capacitance

and � is the electrical resistivity, calculated by (see [3]):

� D 1

n.ze0/2
hh
1 � .ze0/2�

24�""0kT

p
2

1Cp
2

i
.D0CCD0�/

kT � �
3��.1C�ai/

i (4.7)

where D0
˙ are the ionic diffusion constants, � is the viscosity of the solution and ai

is the mean ions radius. Also experimental values for � can be used.
In the former chapter we obtained for the longitudinal polarizability ˛.0/ D

C
¯
ı2, where C

¯
is the total polyelectrolyte-ionic capacitance and ı the average

displacement of the ‘bound’ ions under the influence of the thermal fluctuating field.
Any of the theories which predict ˛.0/, ı, and the relaxation time � , can be used to
estimate R

¯
and C

¯
, on the other hand, R

¯
, C

¯
and ı can be obtained independently by

modeling the system. Among the results is that the complex polarizability ˛.!/:

˛.!/ D C
¯
ı2

1C .�!/2
C i

��!C
¯
ı2

1C .�!/2
(4.8)

where C
¯

is the total polyelectrolyte-ionic capacitance and ı the average displace-
ment of the ‘bound’ ions under the influence of the thermal fluctuating field. � being
the relaxation time of the fluctuation given by Eq. 4.6, and ˛.0/ is given by:

˛.0/ D C
¯
ı2 (4.9)

Correspondingly the real and imaginary components of the polarizability are

˛0.!/ D ˛.0/

1C .�!/2
; ˛00.!/ D ��!˛.0/

1C .�!/2
(4.10)

Also obtained were the following expressions for the dipole moment quadratic
fluctuation,< p2 >, and field, < E2 >:

< p2 >D ˛.0/kT (4.11)

with

< E2 >D kT

˛.0/
D kT

C
¯
ı2

(4.12)

Both satisfying the classical analogy of Heisenberg uncertainty principle:

< p2 >< E2 >D .kT/2 (4.13)
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4.2 Polarizability of the Debye–Hückel Atmosphere

We apply these previous results to estimate the DH atmosphere polarizability
˛.0/ D C

¯
ı2. We know that with the application of an electric field the centre of

charge of the central polyion is displaced from the centre of charge of its cloud,
this is analogous what happen with a spherical ion giving rise to the egg-shaped
ionic cloud, see, for instance, [1], the implication is that the ionic cloud is no longer
symmetrical around the moving polyion; as a consequence a dipole is formed.

The central polyion practically looses its cloud if it diffuses to a distance ı during
the relaxation time � of the fluctuation. In this way ı is given by:

ı D �vpolyion D ��polyion < E2 >1=2 (4.14)

where vpolyion and �polyion are the velocity and mobility of the polyelectrolyte in the
solution. From Eqs. 4.9, 4.12 and 4.14 we get

˛.0/ D ��polyionŒkTC
¯
	1=2 (4.15)

The mobility of a polyion of charge Q is given by (also can be used formulas given
by Ohshima [9–11]):

�polyion D Q

f
D Q

�
Dpolyion

kT

�
(4.16)

where f (kg:s�1 units) is the frictional coefficient of the polyion and Dpolyion its
diffusion coefficient (m2 s�1).

For a long rod the frictional coefficient is given by, see [13]:

f D 3��Ł

2ln.L=a/� 0:11
(4.17)

Substituting �polyion given by Eq. 4.18 in Eq. 4.17, we get for ˛.0/:

˛.0/ D �QDpolyion

�
C
¯

kT

�1=2
(4.18)

It is necessary to formulate a few definitions in order to put the equations into the
current nomenclature of polyelectrolyte science, namely:

� D Q

L
D e0

b
D

�
e0
lB

�

0 (4.19)

where � is the linear charge density, b D L=N is the linear charge spacing and N
is the number of charged polymer groups. The Bjerrum length lB is the distance at
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which the coulombic energy is equal to kT, (lB D 7:13Å at 25 ıC in water), for an
excellent English reference on this subject, see [1], namely:

lB D e02

4�""0kT
D 
0b (4.20)

The dimensionless ratio, 
0, which is a reduced linear charge density is particularly
useful (a DNA molecule, for instance, has two phosphate charges each at a helical
spacing of 3.37 Å, then 
0 D lB=b D 7:13 � .2=3:37/ D 4:23). As a consequence
the surface charge density can be written as:


 D �

2�a
D

�
e0

2�alB

�

0 (4.21)

For DNA, a D 12:5Å, Eq. 4.21 gives 
 D 7:55 � 1017 electric charges m�2, which
is 28 times less than that for a bidimensional array of Cu atoms.

Then, substituting Q D L .e0=lB/ 
0 given by Eq. 4.19 into Eq. 4.18, we get
for ˛.0/ W

˛.0/ D �L

�
e0
lB

�

0Dpolyion

�
C
¯

kT

�1=2
(4.22)

In general in a polyelectrolyte the real charge is lessened by a factor �
because of the presence of counterions within the defining surface of the cylinder,
correspondingly in the former equations 
0 has to be replaced by 
 D �
0.

In the range of validity of the DH approximation, it can be used Eq. 4.5 to
evaluate C

¯ DH, on the contrary the numerical solution of the Poisson–Boltzmann
equation, through Eq. 4.4, has to be used.

To link microscopic parameters such as ˛.!/ with macroscopic mensurable
ones we make use of the results of the theory of electric polarization (see, for
instance, [5]):

"0".!/E.!/ D "0"H2OE.!/C P.!/ (4.23)

where E.!/ is the applied macroscopic field, and P.!/ is the polarization which is
given by:

P.!/ D
�

NA

VM

�
˛.!/F.!/ (4.24)

where F.!/ is the ‘inner field’ which is the actual field experienced by the molecule
and VM is the molar volume.

From Eqs. 4.23 and 4.24 we obtain the relative increment of the dielectric
constant:
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".!/� "H2O

"H2O
D B

�
NA

VM

�
1

"0"H2O
˛.!/ (4.25)

With B.!/ given by:

B.!/ D F.!/

E.!/
(4.26)

where E.!/ is the applied field, B is usually a little larger than unity for a polar
solvent [12].

Using the relations

".!/ D "0.!/ � i"00.!/

˛.!/ D ˛0.!/C i˛00.!/ (4.27)

then for the real and imaginary part of the dielectric constant we have

"0.!/� "H2O

"H2O
D B

�
NA

VM

�
1

"0"H2O

�
˛.0/

Œ1C .�!/2	

�
(4.28)

"00.!/
"H2O

D �B

�
NA

VM

�
!

"0"H2O

�
�˛.0/

Œ1C .�!/2	

�
(4.29)

with ˛.0/, and � given by Eqs. 4.22 and 4.6, respectively. In a more general actual
experimental situation of a solution of volume V with N macroions, each one
occupying an average volume v, we have to reemplace in Eqs. (4.28 and 4.29) the
factor NA=VM by �=v D N=V , with � being the volume fraction.

Figure 4.2 is a representation of Eqs. 4.28 and 4.29 for a DNA solution at room
temperature in water.

In Fig. 4.1a–f are plotted the results shown in Table 4.1. Figure 4.1a is a
representation of Eq. 4.4. The capacitance formed by the charged polyelectrolyte
surface and the ionic atmosphere surrounding it. Figure 4.1b shows the plot of the
polarizability ˛.0/ versus concentration (Eq. 4.22), we can observe that the decrease
of the relaxation time with concentration domains the polarizability behaviour.
This is also manifested on the plot of the fluctuational dipole moment, p=pH2O,
Fig. 4.1e, Eq. 4.11. In Fig. 4.1c is shown the fluctuational displacement, ı, of the
cloud with respect to the central polyion, we can also observe a decrease of ı
with concentration because the corresponding decrease of the relaxation time with
concentration, Eq. 4.14. In Fig. 4.1d is shown the plot of ı versus � , showing the
linear relation. From Fig. 4.1f we can observe the plot p=pH2O versus the relaxation
time � . The values of the relaxation time are in accordance with those reported by
Yoshida and Kikuchi [16], in their Metropolis Monte Carlo Brownian dynamics
simulation of the ion atmosphere polarization around a rod-like polyion. Washizu
and Kikuchi [14] and Washizu [15] performing computer simulation determined
the electric polarizability of DNA, not only in salt-free solution but also in salt
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a b

c d

e f

Fig. 4.1 Representation of the Debye–Hückel atmosphere parameters, in accordance with the
values of Table 4.1, for DNA immersed in c mM NaCl solution in water
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Table 4.1 Debye–Hückel atmosphere parameters by numerical solution of
PB equation for DNA immersed in c mM NaCl solution in watera

c C
¯

˛.0/ ı �

xo (mM) y(xo) (10�16 F) (10�33 Fm2) (Å) (ns) (p/pH2O)b

0.50 15.0 8.90 3.10 1.98 25 4.0 860

0.58 20.0 6.52 4.40 1.79 20. 3.0 818

0.65 25.0 5.55 4.99 1.54 18. 2.4 759

0.71 30.0 4.96 5.27 1.33 16 2.1 705

0.77 35.0 4.55 5.40 1.17 15 1.8 660

0.82 40.0 4.23 5.46 1.04 14 1.6 621

0.87 45.0 3.98 5.46 0.93 13 1.4 588

0.92 50.0 3.77 5.43 0.84 12 1.3 559

1.00 60.0 3.45 5.33 0.70 11 1.1 511

1.08 70.0 3.20 5.21 0.60 11 0.9 473

1.16 80.0 3.01 5.08 0.52 10. 0.8 443

1.23 90.0 2.84 4.97 0.47 10. 0.7 417

1.30 100.0 2.71 4.85 0.42 9 0.7 395

aL D 1000Å, 
0 D 4:25, � D 0:5, a D 12:5Å
bFluctuational dipole moment, p, in units of the dipole moment of water,
pH2O

solution. In both cases they found that the diffuse ion atmospheres play more
important role in determining the dependence of the polarizability on salt or polymer
concentration than condensed counterions. Contribution from the latter to the radial
components of the polarizability tensor is very small, while that from the former
is very large. Katsumoto et al. [7] performed dielectric spectroscopy measurements
for aqueous solutions of short single-stranded DNA with 30 to 120 bases of thymine
over a frequency range of 105–108 Hz. Dielectric dispersion was found to include
two relaxation processes in the ranges from 105 to 106 and from 106 to 108 Hz,
respectively. Also Fischer and Netz [2] using Brownian dynamics simulations of a
salt-free polyelectrolyte solution including hydrodynamic interactions they show
that the low-frequency dielectric relaxation process for a single polyelectrolyte
chain is due to diffuse (uncondensed) counter ions, while the high- frequency
dielectric relaxation mode is due to condensed counter ions. In Fig. 4.2a–c are
shown the plots related to the dielectric dispersion due to the relaxation of the DH
cloud of a DNA solution. For a DNA electrolyte solution: DNA length 1000 Å,
DNA concentration 10�2 mol/m3, electrolyte concentration 15 mM NaCl in water;
it is predicted a small increase in the dielectric constant at low frequencies with a
relaxation time of 4 ns, this increase can be higher at lower concentrations. We want
to emphasize that this relaxation is different of the one caused by the bound ions
which is of the order of ms and produces a polarizability parallel to the cylinder
axis, ˛.0/ ' 10�27 Fm2; described in the former chapter. The DH atmosphere
relaxation is in the microwave region of the spectrum and could be measured by
the conventional techniques as microwave bridges or microwave resonant cavities,
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Fig. 4.2 (a) Representation
of "0.!/ from Eq. 4.23,
(b) Ditto "00.!/ from
Eq. 4.24, (c) Cole–Cole plot,
for a DNA solution at room
temperature in water:
B D 1; L D 1000Å; 
0 D
4:25; � D 0:5, molecular
weight Mw D 106, DNA
concentration 10�2 mol/m3

DNA in 15 mM NaCl
solution, ˛.0/ D
1:98�10�33 Fm2; � D 4:0 ns

a

b

c
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[6, 8]. As far our knowledge, the DH atmosphere parameters and their influence
on the dielectric relaxation for DNA solutions in this range of concentrations have
not been treated by other authors. We hope that these results will stimulate new
experiments.
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Chapter 5
The Polarizability of Rod-Like Polyelectrolytes:
An Electric Circuit View

Abstract In this chapter we use the fluctuation-dissipation theorem (FDT) to
estimate the polarizability or dielectric constant as a function of the frequency
for low electric field of a polyelectrolyte immersed in an ionic solution; the
idea is to consider each charged group within the polyelectrolyte framework and
its neighbourhood as a resistor and a capacitor in series. We obtained for the
longitudinal polarizability ˛k.0/ D Cı2, where C is the total polyelectrolyte-ionic
capacitance and ı the average displacement of the ‘bound’ ions under the influence
of the thermal fluctuating field. Any of the theories which predict ˛k.0/, ı, and the
relaxation time � , can be used to estimate R and C, on the other hand, R, C and ı
can be obtained independently by modeling the system. Using Mandel’s results we
obtain for the total polyelectrolyte-ionic longitudinal capacitance C D n2C0 where
n is the number of condensed but mobile counterions of valence z, and C0 is the
elementary capacitance, C0 D .ze0/2=kT. We obtain results that are consistent with
the experimental data of Takashima for the dielectric dispersion of DNA solutions.

Keywords Polarizability • Electrical fluctuations • Ionic dielectric relaxation
• Cylindrical polyelectrolytes

5.1 Longitudinal Electrical Fluctuations
and the Polarizability of Rod-like Polyelectrolytes

Since the pioneer works of Schwarz [15, 16], and Mandel [6] on the polarization
of rod-like polyelectrolytes, a lot of work has been performed on this subject,
basically because most of the biological macromolecules under physiological
conditions are polyelectrolytes in solution and their biological activity depends on
their physicochemical properties. Manning [9] used his counterion condensation
formalism to generalize the Mandel’s model for polarization. Mohanty and Zhao
[10] generalized the Mandel–Manning theories even further to include low and high
electric field. This paper also contains an excellent biography on this subject.

Part of this chapter was reprinted with permission from [José A. Fornés, Phys. Rev. E 57,2, 2110,
(1998)] Copyright (1998) by the American Physical Society.

© Springer International Publishing Switzerland 2017
J.A. Fornés, Electrical Fluctuations in Polyelectrolytes, SpringerBriefs
in Molecular Science, DOI 10.1007/978-3-319-33840-8_5
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With respect to the dielectric dispersion of polyelectrolyte solutions a lot of work
has also been performed since the pioneer works of Oncley and O’Konski on the
dielectric behaviour of protein solutions: Oncley [11] has attributed the dielectric
properties to orientational relaxation of permanent dipoles, and O’Konski [14] to
phenomena due to surface conductivity.

The dielectric dispersion of DNA solutions was first measured by Allgen [1] and
Jungner et al. [4] followed by Jerrard and Simmons [3] and Takashima [17, 18]
and [19]. Oosawa [12, 13] using the method of the mode expansion explained the
experimental results of Takashima. Mandel and Jenard [7, 8] studied the dielectric
behaviour of aqueous polyelectrolyte solutions and proposed a model which is based
upon the assumption that the polyelectrolyte solution behaves as a suspension of
spheroids exhibiting longitudinal polarization which is due to ‘bound’ ions. This
model was improved by Takashima [19] explaining the decrease of the relaxation
time with increasing salt concentration.

The main objective of the present work is to show the potential of the FDT in
deriving physical properties as well as to give another view of the polarizability of
a polyelectrolyte immersed in an ionic solution.

5.2 The Longitudinal Polarizability

The fluctuations we are considering are produced by the ions which according to a
Boltzmann distribution are more or less trapped on the surface of the polyelectrolyte
and form the fraction of the ‘bound’ ions. Although they are radially fixed, they still
have a certain freedom to move in the longitudinal direction of the molecule. As
a consequence of this mobility Schwarz [15, 16], Mandel [6] and Oosawa [12, 13]
have predicted a large polarizability ˛.!/ for this kind of molecules. In order to
determine this polarizability we consider any fixed charge and the ‘bound’ ions in
its neighbourhood as a capacitor and a resistor in series (see Fig. 5.1).

In accordance the total molecular complex generalized impedance Z.!/ as a
function of the radial frequency ! will be

Z.!/ D
X

i

niZi.!/ (5.1)

where Zi is the impedance associated with each chemical group of class i 1 and
ni is the number of ‘bound’ ions. In case of only one class of groups Eq. 5.22
transforms in:

Z.!/ D nZ.!/ D R C 1

i!C
(5.2)

1A class is defined as a set of chemical groups with the same charge.
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Fig. 5.1 The model: the
potential V of the mobile ions
is periodic on the x axis,
exhibiting a minimum near
each charged site, due to the
strong , electric attraction of
the mobile ion by the fixed
charge. We consider any fixed
charge and the ‘bound’ ions
in its neighbourhood as a
capacitor and a resistor in
series

where R D nR and C D C=n are the total resistance and capacitance associated with
the groups-bound ion system, R and C are the individual resistance and capacitance
of each group-bound ions system. The relation between the Fourier components of
the spontaneous fluctuational current I! and voltage V! is given by:

V! D Z.!/I!; (5.3)

The complex generalized susceptibility is given by:

˛.!/ D � 1

Œi!Z.!/	
(5.4)

Equation 1.14 can also be written as

p! D Œ�˛.!/ı2	E! (5.5)



56 5 The Polarizability of Rod-Like Polyelectrolytes: An Electric Circuit View

where ı is the average displacement of the ‘bound’ ions under the influence of the
thermal fluctuating field E! and p! the corresponding Fourier component of the
fluctuating dipole moment.

Then the corresponding polarizability parallel to the molecular axis will be

˛k.!/ D �˛.!/ı2 (5.6)

From Eqs. 1.16, 3.2 and 3.6 we obtain for the complex polarizability ˛k.!/:

˛k.!/ D Cı2

1C .�!/2
C i

��!Cı2

1C .�!/2
(5.7)

� being the relaxation time of the fluctuation given by:

� D RC (5.8)

and

˛k.0/ D Cı2 (5.9)

Correspondingly the real and imaginary components of the polarizability are

˛0
k.!/ D ˛k.0/

1C .�!/2
; ˛00

k .!/ D ��!˛k.0/
1C .�!/2

(5.10)

Mandel [6], among others, has estimated ˛k.0/, ı and � for rod-like, charged
macromolecules, we will use his results in order to estimate our electrical molecular
parameters. Mandel derived the following three formulae:

.i/ ˛k.0/ D n
.ze0/2

kT

L2

12
D �ze20L

3

12kTb
(5.11)

where � D zn=N is the degree of association of the counterions, z the valence of
the ‘bound’ ions, b D L=N is the linear charge spacing, N is the total number of
charged polymer sites and L is the length of the rod-like molecule.

.ii/ ı2 D .ze0/2L4

.12kT/2
E2 (5.12)
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where E is the applied electric field.

.iii/ � D ze0L2

12� kT
(5.13)

with � being the mean mobility of the ions along the polymer framework.
From Eqs. 3.5 and 3.6 we obtain

p! D ˛k.!/E! (5.14)

Applying to Eq. 3.14 the results of the fluctuation-dissipation theorem (FDT),
Eq. 1.9, in the region of classical fluctuations kT � „! or ! � kT„�1 D
4 � 1013 s�1 at room temperature2:

< p2 >D ˛k.0/kT (5.15)

with

< E2 >D kT

˛k.0/
D kT

Cı2
(5.16)

where we have used, in accordance with Eq. 1.12, the relation:

< p2 >< E2 >D .kT/2 (5.17)

As in our definition ı is produced by the electric thermal fluctuating field, we can
consider the applied field in Eq. 3.12 E2 D< E2 > Then from Eqs. 3.11, 3.12
and 3.16, we obtain

ı2 D L2

12n
D zLb

12�
(5.18)

The corresponding molecular capacitance C D ˛k.0/=ı2 will be

C D n2
.ze0/2

kT
D

�
�L

b

�2 e02

kT
(5.19)

From Eqs. 3.8 and 3.13 we can estimate the resistance R , namely:

R D b2z

12�e0�2
(5.20)

2Equation 3.15 was already derived by Oosawa [13] following an averaging procedure.
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In order to link microscopic parameters as ˛k.!/ with macroscopic measurable ones
we make use of the results of the theory of electric polarization, see, for instance,
[2, 12]:

�0�.!/E.!/ D �0�s C P.!/ (5.21)

where E.!/ is the applied macroscopic field, and P.!/ is the polarization which is
given by:

P.!/ D
�

NA

V

�
˛k.!/F.!/ (5.22)

where F.!/ is the ‘inner field’ which is the actual field experienced by the molecule
and V is the molar volume.

From Eqs. 3.21 and 3.22 we obtain the relative increment of the dielectric
constant:

�.!/ � �s

�s
D B

�
NA

V

�
1

�0�s
˛k.!/ (5.23)

With B given by:

B.!/ D F.!/

E.!/
(5.24)

B is usually a little larger than unity for a polar solvent [12].
Using the relations:

�.!/ D �0.!/ � i�00.!/

˛k.!/ D ˛0
k.!/C i˛00

k .!/ (5.25)

Then for the real and imaginary part of the dielectric constant we have

�0.!/ � �s

�s
D B

�
NA

V

�
1

�0�s

˛k.0/
Œ1C .�!/2	

(5.26)

�00.!/
�s

D B

�
NA

V

�
1

�0�s

!�!˛k.0/
Œ1C .�!/2	

(5.27)

˛k.0/ and � are given by Eqs. 3.11 and 3.13, respectively.
Polyelectrolytes such as linear polyacids or DNA show broad dispersion curves

of the dielectric constant at low frequencies which cannot be explained by a single
relaxation time [12, 13] in order to get a good fit with the experimental curve we
have to generalize Eqs. (5.26) and (5.27), namely:
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�0.!/ � �s

�s
D B

�
NA

V

�
1

�0�s

X
k

˛kk.0/

Œ1C .�k!/2	
(5.28)

�00.!/
�s

D B

�
NA

V

�
1

�0�s

X
k

!�k˛kk.0/

Œ1C .�k!/2	
(5.29)

The objectives raised in the introduction section have been achieved: We derived
an expression for the longitudinal polarizability and dielectric constant, ˛k.!/ and
�.!/, which as derived from the FDT have the real and imaginary parts satisfying
the Kramers and Kronig’s dispersion relations.

In this method is defined a local capacitance and resistance surrounding each
group in a polyelectrolyte-ionic solution. This can be useful in modeling complex
systems for obtaining more realistic approximations, indeed the author envisions
science as an evolution of ideas and approximations.

We have used the simple expression for ˛k.0/ of Mandel’s model [6], which
doesn’t consider interionic interaction and only one relaxation time. We can see
from Fig. 3.1. that the profiles for �0.!/ and �00.!/ are quite in good agreement with
the experimental ones of Takashima [17], in spite of the uncertainty in the factor B
[5], in the degree of counterions’ association � and also in the molecular weight of
the DNA sample, not reported in the cited paper by Takashima but inferred by us
through the reported DNA length of 7800 Å to be approximately 7� 106. The DNA
molecule has two phosphate charges per unit, each with a helical spacing of 3.37 Å,
then b D 3:37Å=2 D 1:68Å, consequently N D L=b D 4627, we considered
� D 1 (Fig. 5.2).

From Eq. 3.13 and from the experimental value for � D 10�3 s we estimate the
mobility � of the ‘bound’ ions as � D 1:96 � 10�9 m2 s�1V�1, which is 26 times
smaller than the mobility of Na ions in water, �NaC

D 5:19 � 10�8 m2 s�1 V�1,
showing that these ions are more or less trapped.

From Eq. 3.19 we estimate the total polyelectrolyte-ionic capacitance C D
133 pF and, consequently, the local capacitance will be C D nC D 0:61�F. These
values are substantially greater than the double layer capacitance surrounding a
spherical and rod-like particle in solution which is of the order of fF, see former
and next chapters. From the already known values of C and � and from Eq. 3.2
we estimate the total ‘bound’ ions resistance as R D 7:5M�, meaning that
the resistance per group is R D 1621�. From Eq. 3.18 we obtain the value of
the average displacement of the ‘bound’ ions under the influence of the thermal
fluctuating field, giving for our DNA sample ı D 33Å.

Equation 3.11 gives the value for the static polarizability ˛k.0/ D 1:459 �
10�27 Fm2 which is 9:09 � 1012 greater than the mean polarizability of water
molecule ˛H2O D 1:6 � 10�40 F m2 [7].

Finally, from the knowledge of ˛k.0/ and with the help of Eq. 3.15 we estimate
the mean thermal fluctuating dipole moment at room temperature, Np D< p2 >1=2D
2:454 � 10�24 C m D 7:37 � 105D, which is 4 � 105 greater than the permanent
dipole moment of a water molecule (1.84D). This dipole moment was produced
by the thermal fluctuating field given by Eq. 3.16 which, in this case, is NE D<
E2 >1=2D 1687V m�1.
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Fig. 5.2 (a) Representation
of Eqs. 5.26 and 5.27 for a
DNA solution at room
temperature in water:
L D 7400Å, Molecular
weight M! D 7� 106 , DNA
concentration by weight
0.01 %, � D 1ms, � D 1.,
b D 1:68Å, B D 1. (b) Ditto,
Cole–Cole plot

a

b
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Chapter 6
pH Fluctuations in Unilamellar Vesicles

Abstract In this chapter pH fluctuations in small unilamellar vesicles (SUV) are
theoretically estimated. We determine that these fluctuations are dependent on
macroscopic variables as pH, pKa, buffer groups concentration and surface electrical
potential. Basing on a previously reported definition of buffer electrical capacitance
(Procopio & Fornés 1995) it is derived an equation which relates the pH fluctuation,
the buffering power and the SUV size.

From our results it is inferred that measurement of pH in small systems has to be
performed near the pK of the buffer groups in order that the fluctuational errors be
minimized. We show that pH fluctuations diminish with increasing the size of the
SUV and the predicted pH fluctuations decrease as the surface potential becomes
less negative as a consequence of decreasing density of charged groups in the inner
vesicular surface.

It is predicted that measurable effects will appear on the fluorescence detection
due to protonic fluctuations close to the pH sensing region of the probes.

Keywords pH fluctuations • Buffer capacity • Shift in the fluorescence spectrum

6.1 Introduction

Artificial unilamellar vesicles (UV) constitute models in which many transport prob-
lems have been studied in recent years [7]. The so-called small unilamellar vesicles
(SUV) and large unilamellar vesicles (LUV) have been extensively employed to
obtain information concerning the passage of different compounds through the
cell membrane such as fatty acids (FA) and to serve as vehicles for transport of
pharmaceutically relevant substances and, more recently, for genetic materials.

José A. Fornés et al. Phys. Chem. Chem. Phys. 1, 5133, (1999)—Reproduced by permission of the
PCCP Owner Societies.
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One of the recent problems studied with the help of vesicular systems is the
translocation of fatty acids across the bilayer matrix. Fluorescent probes (FL) have
been trapped inside SUV and LUV and served as indicators of pH changes related
to FA translocation across the vesicular wall. Half-times of vesicular acidification
as low as 25 ms have been measured [11], indicating a fast passage of FA across
the bilayer vesicular wall. On the other hand, natural vesicular or vacuolar systems
found in the cytoplasm resemble both in size and constitution the artificial vesicles
and have important functions in metabolism what permits to extend conclusions
obtained in artificial vesicular systems to biology [7]. Many studies using pH
sensitive FL have detected intravesicular changes of pH due to FA entry [10].

Vesicles in the range of 25–100 nm, which are produced artificially or found
naturally in the cell, are sufficiently small to provide a microscopic enclosure of near
molecular dimensions. In such systems the time averaged concentrations of some
chemical species and the corresponding intravesicular absolute numbers of ions
or molecules may be exceedingly small, in effect often below 1 unit per vesicle.
We explore, in this study, the consequences and implications of this for the proton
behaviour as well as the meaning of pH in enclosures of near molecular dimensions.

We take, as an example, an SUV of 25 nm diameter and exclude the significant
volume contribution of the bilayer (5 nm thickness) proper, what gives a fluid
volume of 883 nm3. Using the classical definition of pH, at pHD 7:4, we obtain an
average of about 5�10�5 free protons inside the vesicular sac, what means that in a
time average a vesicle contains a free proton only 1/20,000 of the time. Equivalently,
in an ensemble of 20,000 vesicles only one has a free proton at a given instant. The
laws of statistical mechanics establish the equivalence of the two descriptions. In this
context the fluctuational means in this work are estimated in the frequency space in
accordance to the fluctuation-dissipation theorem. A very schematic rendering of
the system being discussed is given in Fig. 6.1, drawn in approximate scale.

In this way it is more appropriate to define the probability that a given SUV
contains 1 or 2 free protons at a given instant rather than simply defining an
intravesicular pH.

Even inside natural vesicles having larger diameters such as 50 or 100 nm we
still find that the calculated number of free protons defined by a physiological
value of pH is well under unity. Interestingly enough many such natural systems
have transporters in their membranes, such as proton pumps, which are necessarily
exposed to a coarse grained proton concentration.

A poorly known issue is the typical proton residence time in either free or
bound states. This certainly depends on the particular characteristics of the proton
donator/acceptor as well as on the buffering properties of the medium. What makes
this problem the more interesting is the fact that the interchange between free and
bound proton states in a microscopic enclosure can supposedly be identified and
measured by molecular machines utilizing or producing proton gradients across
the vesicular membrane [5, 7–11]. Such transporters are, in principle, capable of
sensing the intense electrical field associated with the proton vicinity and to react
appropriately. Also, the transporter itself might change substantially the proton
‘concentration’ in its vicinity. pH sensitive fluorescent probes are also sufficiently
fast so as to detect these pH fluctuational changes.
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Reasoning from a purely physicochemical standpoint the addition to or removal
from one proton in a 25 nm diameter vesicle should, respectively, decrease or
increase the pH by 4.3 units with respect to an average 7.4 value. Therefore, in such
small system, each protonation/deprotonation event should implicate in a profound
change in the physicochemical properties of the vesicular microambient.

6.2 pH Sensitivity of the Fluorescence Response

The proton translocation time across a distance equivalent to a vesicular radius is
given by Einstein’s well-known diffusion equation:

t D < x2 >

2D
(6.1)

where x is the travel distance and D the diffusion coefficient. Making x D 8 nm and
D D 9:31 � 10�9 m2 s�1 in Eq. 6.1 we obtain that the average proton translocation
time is t D 3:44�10�9 s. This time is fast relative to the mean free proton dwell time
what suggests that the proton can access essentially all the vesicular fluid during its
‘free’ existence.

According to Gutman and Nachliel [6] the average lifetime of a free proton is
given by

� D 1

ka � ŒA�	
(6.2)

where ka D .1-3/1010 M�1 s�1 is the rate of association with the acceptor, A�: In
a solution containing 1 mM buffer we obtain � D 30 ns, which is comparable with
the proton translocation time calculated from Eq. 6.1.

This establishes the radius of action of a pH sensitive probe as the whole vesicular
sac and has the meaning that one fluorescent probe can react to the proton activity of
the whole content of an SUV, during its response time. It is then apparent that there
is a close matching between proton travel time and response time, what allows us to
describe the internal vesicular surface and intravesicular fluid as a proton exchange
system, governed by its own characteristics and isolated from external medium by
the vesicular membrane, during the brief response time of the FL.

In order to sense a fluctuation of pH in a microscopic enclosure, a pH probe must
be both small and fast enough.

Biological ion channels, enzymatic molecules, pumps and other molecular
machines constitute systems which are, in principle, capable of sensing such
fluctuations. pH sensitive FL constitutes, on the other hand, ideal sensors of pH
fluctuations, since their response time to pH changes is measured in the nanosecond
time frame.
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6.3 General Model

The model we consider consists of one pH sensitive FL, fixed at the internal surface
of an SUV (Fig. 6.1). Phospholipid (PL) charged headgroups lining the inner bilayer
leaflet are considered to be the sole source and sink of protons to the microambient
sensed by the fluorophore. The vesicular sap is considered, in a first approach, to
have a negligible buffering power, so that only the exchange of protons between the
FL molecule and the charged PL groups is considered and the only buffering power
is that provided by the PL headgroups. This setting is experimentally achievable,
provided the vesicles are formed with no added buffers.

For calculating the buffer concentration [Buffer group], we use data from
Kraayenhof et al. [12], Fig. 6.2, where the surface potential,  s; is plotted as a func-
tion of the fraction, f, of PL headgroups which are dissociable. The corresponding
buffer concentration will be

ŒBuffer group	 D NPL

NAVV
(6.3)

where VV is the vesicular volume, NA is Avogadro constant and NPL is the total
number of PL headgroups in the internal vesicular leaflet given by:

NPL D A

APL
f (6.4)

Fig. 6.1 Schematic depiction of the system, consisting of an SUV and one membrane bound
probe, drawn in approximate scale
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Fig. 6.2 Surface potential,
 s; versus the fraction, f ;of
PL headgroups which are
dissociable (data from
Kraayenhof et al. [12])

where A is the internal vesicular area and APL is the phospholipid headgroup area
(' 70Å2/ [1].

6.4 Electrical Properties of the System

6.4.1 Ionizable Groups

The vesicular surface is assumed to contain acidic ionizable groups at a density 1=S,
where S is the surface area per acidic group. A fraction ˛ (the degree of dissociation)
of these groups will be dissociated so that the surface charge density is


 D �eo˛

S
(6.5)

and which will depend on the dissociation constant, Ka, for the surface ionizable
groups of the lipid corresponding to the reaction:

AH � A� C HC (6.6)
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whose equilibrium constant is given by:

Ka D [HC]s[A
�]

[AH]
D [HC]s

˛

1 � ˛ (6.7)

where [HC]s is the hydrogen ion concentration at the surface of the lipid. This
concentration is related to the one in the bulk solution, [HC], through the Boltzmann
equilibrium condition [1],

[HC]s D [HC]e�ys D 10�pHe�ys (6.8)

or

pHs D pH C 0:434ys (6.9)

where we have used pH D �log10[H
C] and ys D eo

kT s is the uniform reduced
surface potential. The SI system of units was employed throughout, eo is the
electron charge ( eo D 1:602 � 10�19 C), k is the Boltzmann’s constant (k D
1:281 � 10�23 J/K) and T is the absolute temperature. Substitution of Eq. 6.8 into
Eq. 6.7 yields

Ka D 10�pH e�ys
˛

1 � ˛
(6.10)

or, in terms of pKa D � log10Ka

pKa D pH C 0:434ys � log10
˛

1 � ˛ (6.11)

which is a well-known equation used in protein titration (see, e.g., Tanford [21])

6.4.2 Electrical and Polarization Shift
in the Fluorescence Spectrum

The electrical potential at the surface of a charged membrane or interface can be
measured by a fluorescent probe sufficiently small as to be close to the surface.
The interfacial ionization equilibria have been analysed in detail by Fernández and
Fromherz [2], followed by Kraayenhof [12], Thelen [23] and Miyazaki [15] and
others. The pKa of any protonable probe group at a membrane interface, pKint

a , will
generally differ from the intrinsic value, pKo

a , in bulk water due to thermodynamic
differences in the ionization equilibria at the two locations. In general, the interfacial
pKint

a is given by Miyazaki [15] and Kraayenhof [12]:
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pH � pHs D pKint
a � pKo

a D �pKel
a ˙ ˇ̌

�pKpol
a

ˇ̌
(6.12)

where �pKel
a is the electrostatic shift which is a function of the surface potential

and is given by:

�pKel
a D �ys= ln 10 (6.13)

and �pKpol
a is the polarity-induced shift which has been attributed to the hydration

of the amphiphilic probe at the interface [1], and takes the positive sign for
dissociation of a molecular acid (HA•HCCA�) and the negative sign for the
dissociation of a cationic acid (HBC •HCCB).

6.4.3 Buffer Capacity

The buffering power, ˇ, of a solution is [14, 18]:

ˇ D dB

dpH
(6.14)

where dB is the amount of base added to the solution, and dpH is the change in
pH of the solution due to that base addition. The addition of acid to the solution is
equivalent to a negative addition of base, -dB: The units of ˇ are mM/pH unit. In
a closed system the total buffer concentration remains constant and the buffering
power of a weak acid is given by Putnam [18]:

ˇ D 2:303 ŒAT 	 Ka aH

.Ka C aH/2
(6.15)

where [AT 	 is the total concentration of weak acid and aH is the proton activity.
Substituting in Eq. 6.15, aH D ŒHC	s, ˛ D ŒA�	

ŒAT 	
, Ka D ŒHC	s ˛

1�˛ , we obtain

ˇ D 2:3 ŒA�	 .1 � ˛/ D 2:3 ŒAT 	 ˛ .1 � ˛/ (6.16)

Neglecting, in a first approach, the contribution of free buffers and considering
only the PL headgroups buffers, we have that ŒAT 	 D Œbuffer group	, where [buffer
group] stands for the concentration of protonable phospholipid headgroups, namely:

ˇ D 2:3 Œbuffer group	 ˛.1 � ˛/ (6.17)

From Eq. 6.11 we obtain

˛ D �
1C e�ys10.pKa� pH/

��1
(6.18)
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Substituting in Eq. 6.15, we obtain

ˇ D 2:303
Œbuffer group	

2C eys10.pH � pKa/ C e�ys10.pKa� pH/
(6.19)

or

ˇ D 2:3
Œbuffer group	

2C eys Ka

ŒHC	
C e�ys ŒH

C	

Ka

(6.20)

In general, for a number > 1 of buffer groups, we will have

ˇ D 2:3
X

i

Œbuffer group	i
2C eys10.pH � pKai/ C e�ys10.pKai� pH/

(6.21)

or

ˇ D 2:3
X

i

Œbuffer group	i

2C eys Kai

ŒHC	
C e�ys ŒH

C	

Kai

(6.22)

The total number of bound protons, �, summed over all types of groups i is

� D
X

i

�i.1 � ˛i/ (6.23)

where �i is the number of groups of type i in the lipid.

�i D NA VV Œbuffer group	i (6.24)

We can write Eq. 6.23 as:

� D
X

i

�i

1C eys 10.pH � pKai/
(6.25)

or

� D
X

i

�i

1C eys Kai

ŒHC	

(6.26)

Any one of Eqs. 6.25 and 6.26 describes the titration curve of the phospholipid
headgroups with all nonelectrostatic effects on the dissociation described by Kai.

In order to calculate the charge fluctuation associated with the proton we use the
electrical equivalent of the buffer capacitance as defined by Procopio and Fornés
[17], namely:
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Cbuffer D ˇVV

ln 10

F2

RT
(6.27)

The magnitude of the proton related mean square charge thermal fluctuation is
given by Procopio [16] and Fornés [3]:

< .�q/2 > D kTCbuffer (6.28)

After substituting Eq. 6.27 in Eq. 6.28 using Eqs. 6.21 and 6.22, we obtain

< .�q/2 >D e2o
X

i

�i

2C eys10.pH � pKai/ C e�ys10.pKai� pH/
(6.29)

or

< .�q/2 >D e2o
X

i

�i

2C eys Kai

ŒHC	
C e�ys ŒH

C	

Kai

(6.30)

Equation 6.30 with ys D 0 coincides with that given by Kirkwood and Shumaker
[13], obtained independently using mechanical statistical methods, when calculating
the forces between protein molecules in solution arising from fluctuations in proton
charge and configuration.

From Eqs. 6.20, 6.30 and 6.24, we obtain a relation between the mean square of
the proton charge fluctuation, < .�q/2 >; and the buffering power ˇ, namely:

ˇ D 2:3

e2oNA VV
< .�q/2 > (6.31)

Figure 6.3 depicts the average theoretically estimated protonic charge fluctu-
ations, inside a hypothetical 8 nm internal radius SUV bearing phosphatidic acid
groups on its internal surface for two surface potentials.

From Eqs. 6.27 and 6.31, we obtain the relation between Cbuffer and the mean
square of the proton charge fluctuation, < .�q/2 >; namely:

Cbuffer D < .�q/2 >

kT
(6.32)

Differentiation of Eq. 6.25 with respect to pH gives

@�

@pH
D �2:303

e2o
< .�q/2 > (6.33)

i.e. the slope of the titration curve, Fig. 6.4, at any pH gives the charge fluctuation
at that pH. Equation 6.33 was also obtained by Timasheff [22] for the titration of
proteins.
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Fig. 6.3 Average
theoretically estimated
protonic charge fluctuations,
inside a hypothetical 8 nm
internal radius SUV bearing
phosphatidic acid groups on
its internal surface for two
surface potentials

6.5 pH Fluctuations

The mean square of the fluctuating voltage will be [3, 16]:

< .ıV/2 >D kT

Cbuffer
(6.34)

Correspondingly, the fluctuation in pH is given by Procopio [17]:

< .ıpH/2 >1=2D � e0
2:3kT

< .ıV/2 >1=2D e0
2:3.kTCbuffer/1=2

(6.35)

or

< .ıpH/2 >1=2D e0
2:3 < .�q/2 >1=2

(6.36)

or

< .ıpH/2 >1=2D ˇ�1=2.2:3NAVV/
�1=2 (6.37)
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Fig. 6.4 Titration curve,
representation of Eq. 6.23

A consequence of Eq. 6.37 is that the relation between the pH fluctuations for
two small systems with identical volumes and different buffering powers, ˇ1and ˇ2;
is given by:

< .ıpH1/
2 >1=2

< .ıpH2/
2 >1=2

D
s
ˇ2

ˇ1
(6.38)

In case that the only source of buffer groups is on the surface, as is our case,
Eq. 6.36 gives the pH fluctuations on the surface of the buffering system produced
by the protonic fluctuations. In order to relate surface pH fluctuations with those in
the bulk phase we make use of Eqs. 6.9 and 6.35, namely:

ıpHs D ıpH C 0:434
eo

kT
ı s (6.39)

as, in this case, the variation of surface potential is caused by variation in pH, we
obtain

ı s D �2:3kT

eo
ıpHs (6.40)
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Fig. 6.5 Average pH
fluctuations, as a function of
the pH, inside a hypothetical
8 nm internal radius SUV
with buffer groups having
pKa D 4

From Eqs. 6.39 and 6.40 and considering the statistical mean of the fluctuations, we
obtain

< .ıpH/2 >1=2 =2 < .ıpHs/
2 >1=2D 2

e0
2:3.kTCbuffer/1=2

(6.41)

This has the meaning that the mean pH fluctuation in the bulk is twice that on the
surface.

Figure 6.5 depicts the average pH fluctuations, as a function of the pH, inside a
hypothetical 8 nm internal radius SUV with buffer groups having a single pKa D 4

and Fig. 6.6 for an SUV containing groups of phosphatidic acid with pKa D 4

and pKa D 9:5 [1]. Different surface potentials were studied as determined by
the fraction of protonable groups to total PL headgroups according to [12] and
considering an average area of 70 Å2 per headgroup [1].

In Fig. 6.7 is shown the variation of pH fluctuations with vesicular size, for a
given pKa D 4, it is observed that they are almost negligible for vesicules with
1000 Å radius.

The study of fluctuations in small systems is important not only from an
experimental point of view in knowing measurement intervals but also because they
provide a deep insight into the occurring mechanisms and processes. Throughout



6.5 pH Fluctuations 75

Fig. 6.6 Ditto containing
groups of phosphatidic acid
pKa D 4 and pKa D 9:5; [1]

this paper we observe that macroscopic defined variables such as buffering power
and capacitance and titration curve can be expressed as functions of protonic charge
fluctuations.

The validity of our approach through the electrical equivalent of the buffering
capacity is reinforced by the coincidence of the results of Eq. 6.30 with the one
obtained independently by Kirkwood and Schumaker [13] when calculating the
forces between protein molecules, due to proton fluctuations.

From the preceding derivations we infer that these fluctuations are dependent
on macroscopic variables such as pH, pKa and buffer concentration. Equation 6.38
gives the relation between the pH fluctuations for two solutions and the correspond-
ing buffering powers and permits verifying our theoretical predictions of pH noise
measurement using a fluorescent probe.

In Fig. 6.3 it is shown the charge fluctuation profile for the same vesicular system.
We can observe also here that the maximum in fluctuation is shifted in relation to
the corresponding pKs, due to the presence of a surface potential. The number of
fluctuating protons increases with the surface potential due to the increase in the
number of buffering molecules. The charge fluctuation, as depicted in this figure, is
proportional to the derivative of the titration curve Fig. 6.4, see Eq. 6.33.

In Fig. 6.5 is plotted the pH fluctuation, < .ıpH/2 >1=2, versus pH for given
values of the surface potential and number of buffer groups for a lipid with pKa D 4
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Fig. 6.7 Variation of PH
fluctuations with vesicular
size

(first pK of PA as reported in [1]) as obtained from Eq. 6.41. We can observe that
pH fluctuations for pH values centred about 7.4 (6.4–8.4) are no larger than 1.5 pH
units for surface potentials lower than �50mV.

In Fig. 6.6 we have the same plot of Fig. 6.5 including the second pKa of PA (also
data from [1]) where we have considered the same number of molecules for each
pKa: It can be observed that there occurs a maximum in the pH fluctuation between
the two pKa: In the interval [pKa1;pKa2] the pH fluctuation can reach several units of
pH except for pH surrounding the corresponding pKs. The shift with respect to the
pKs observed in the minima of the curves is due to the surface potential. Also, from
Fig. 6.6, we can infer that the measurement of pH in small systems has to be done
near the pK of the buffer groups in order that measurement errors using fluorescent
probes be minimized.

Comparing Figs. 6.3 and 6.6, we can observe that the charge fluctuation has
a maximum where pH fluctuations are at a minimum. This is a result of the
fluctuation-dissipation theorem [3], where the pH fluctuations can be be viewed as
a response of the medium to the protonic charge fluctuations of the system and vice
versa, namely:

< .�q/2 >< .ıV/2 >D .kT/2 (6.42)
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or

< .�q/2 >< .ıpH/2 >D
� e0
2:3

	2
(6.43)

We can also observe from Figs. 6.5 and 6.6 that the pH fluctuations diminish with
decreasing surface negativity due to decreasing the number of buffer molecules on
the inner vesicular surface.

In Fig. 6.7 can be observed that pH fluctuations diminish with increasing the size
of the SUVs, this being an expected result in accordance with [17].

From the above results we can predict that there will be measurable effects on the
fluorescence detection due to protonic fluctuations close to the pH sensing region of
the probes.

Many probes used as pH indicators show a shift in absorption and emission
spectra between protonated and deprotonated forms, allowing the spectroscopic
measurement of the acid dissociation constant Ka in the ground state. The proto-
nation and deprotonation reactions can also be examined in the excited states of
the probe, under the assumption that the acid–base equilibrium may be established
during the lifetime of the first singlet excited state, typically in the range of ns. As a
consequence, the acid dissociation constants in the excited state can be determined
using fluorometric techniques [4, 24]. As pointed by Rettig and Lapouyade [19],
the knowledge of prototropic reactions of chromophores in the ground and excited
states results in probes which can monitor the pH of its microscopic surroundings.
As a rule, absorption and emission spectra are largely dependent on pH over circa
2 pH units around its pKa and, since probes with a wide range of pKa values are
available, detailed monitoring of pH from 0 to 10 is possible. In particular, probes
like hydroxycoumarin, pyranine, fluoresceine, seminaphtofluorescein (SNAFLs)
and seminaphtorhodafluors (SNARFs) are employed as physiological pH indicators.
Szmacinski and Lakowicz [20] indicated that the fluorescence sensors assays are
based mainly on intensity measurements, following the intensity changes resulting
from the different electronic properties and interactions with the surroundings
presented by the protonated and deprotonated forms of the probes. It is suggested
by these authors, however, that lifetime-based sensing methods would be developed
to be applied mainly to overcome difficulties with intensity measurements as, for
example, in the case of turbid samples, imprecise or dirty optical surfaces or varia-
tions in optical alignment of different samples. Use could be made from the fact that
many probes display changes in fluorescence lifetime on protonated/deprotonated
states. For example, the SNAFL-1 probe has a lifetime of 1.19 ns in the acid form
and 3.74 ns in the basic form [20]. It would be expected then an heterogeneous
decay of fluorescence in time-resolved experiments performed in a sample in which
there is a mixture of two populations of the probe having different lifetimes. With
the instrumentation presently available, it is possible the measurement of lifetimes
with precision in the picosecond range and also the discrimination of the different
contributions to a heterogeneous fluorescence decay. Thus, in the context of the
present work, and with adequate choice of the probes, it would be possible to detect
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pH fluctuations within the small internal volumes of vesicles, using fluorometric
techniques. As natural candidates to such probes we have lipophilic derivatives
of hydroxycoumarins and fluorescein. Using probes as described by Fernandez
and Fromherz [2], and Kraayenhof et al. [12], that monitor precise positions in
the neighbourhood of the membrane surface, one could follow pH fluctuations in
nanometer space range and picosecond time range.
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Chapter 7
Electrical Fluctuations on the Surfaces
of Proteins from Hydrodynamic Data

Abstract We calculate the electrical capacitance on the surface of protein
molecules from hydrodynamic data of the proteins. Then, we estimate the electrical
fluctuations (charge, voltage) through the fluctuation-dissipation theorem which
links the electrical capacitance of the system with these fluctuations. From the
intrinsic viscosity of the proteins we estimate the polarizability which leads to the
knowledge of the field and dipole fluctuations. From the fitting of the capacitance,
polarizability and electrical fluctuations as a function of the molecular weight of
the proteins we report numerical equations which allow to estimate these physical
magnitudes for a given protein knowing the molecular weight. Charge fluctuations
are in the fraction of unit charge range, voltage fluctuations are in the three mV digit
range, field fluctuations are in the two digit mV/nm (106 V/m) range and the dipole
moment fluctuations range from the two to three digit times the dipole moment of
water molecule. These surface properties of proteins have not been reported before.

Keywords Proteins electrical fluctuations • Proteins dipole fluctuations • Pro-
teins field fluctuations • Proteins voltage fluctuations

7.1 Electrical Fluctuations on the Surface of Proteins
from Hydrodynamic Data

In this chapter we estimate the electrical capacitance, from hydrodynamic data, of
several proteins in order to estimate the electrical fluctuations on their surfaces.
It has long been inferred from a variety of experimental studies that substantial
structural fluctuations occur in proteins, and that these fluctuations are essential
to protein function (Edsall [7]; Careri et al. [4]; Weber [23]). Charged groups are

Part reprinted from [José A. Fornés, J. Colloid Interface Sci. 323, 255, (2008)] Copyright (2008),
with permission from Elsevier.

© Springer International Publishing Switzerland 2017
J.A. Fornés, Electrical Fluctuations in Polyelectrolytes, SpringerBriefs
in Molecular Science, DOI 10.1007/978-3-319-33840-8_7
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82 7 Electrical Fluctuations on the Surfaces of Proteins from Hydrodynamic Data

extruded from the protein interior towards the higher dielectric solvent, the protein
surface is often highly charged, and the dielectric properties of this interfacial
region are quite different from the protein bulk. Simonson and Perahia [19] studied
the polar fluctuations of yeast cytochrome c using nanosecond molecular-dynamic
simulations in a spherical droplet of water, they found an important component of
dipole moment fluctuations consisting of diffusive, mutually independent, motions
of the charged side chains at the protein surface.

7.2 Relation Between Friction Coefficient and Capacitance

Hubbard and Douglas [14] performed a simple and accurate method of estimating
the translational hydrodynamic friction on Brownian particles of arbitrary shape.
The Brownian friction coefficient f takes the form

f D 6��C (7.1)

where C is the equivalent to the electrostatic capacitance of the particle in units
where the capacity of a sphere equals its radius and � is the fluid viscosity. They
arrived to this result by angular averaging of the Oseen tensor [5, 6, 15, 22]. The
connection between hydrodynamic and electrostatic properties was also recognized
by Zhou [24–26], from the fact that the Oseen Tensor, i.e. the Green function
for the Navier–Stokes equation, when orientationally averaged is proportion to
the Green function for the Laplace equation. In this way Zhou obtained the same
Eq. 7.1. In order to calculate the charge and voltage fluctuations we make use of the
hydrodynamic data for proteins reported in [20]. In Table 7.1 f0 was calculated using
the equation given also in [20], namely

f0 D 6��r0 D 6��

�
3Mv

4�NA

�1=3
(7.2)

where r0 is the radius of an anhydrous spherical particle having the same mass
and partial specific volume, v, as the protein under consideration, NA is Avogadro’s
number and M is the molecular weight. Knowing f0 we can calculate f from
Table 7.1 and from Eq. 7.1 we determine C, see Table 7.2. With the knowledge
of C, using Eqs. 1.27 we determine the voltage, ıV , and charge fluctuations, ıq.

7.3 Relation Between Polarizability and Intrinsic Viscosity

For determining the polarizability ˛, we use the equation given by Zhou in [24],
namely,

˛ D 1

3
.4 Œ�	 � Vh/ (7.3)
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Vh is the hydrated volume of a molecule and is given by

Vh D
�

M

NA

� �
v C 1

�h
H

�
(7.4)

�h is the density of hydration water in units of g/cm3, it has been found to have a
somewhat higher density than bulk water, with a value of �h D 1:104 g/cm3 (Bull
and Breece [2]) and Œ�	 is the intrinsic viscosity, which measures the contribution of
the molecule to the viscosity of the solution in which it is dissolved [24, 25]. Also
represents the space occupied by a gram of solute at infinite dilution. In volume
units the intrinsic viscosity is given by Cantor and Schimmel [3],

Œ�	 D �Vh (7.5)

In units of (volume=g) is given by,

Œ�	 D NA

M
�Vh (7.6)

In the former equations � is the Simha factor [18].

7.4 Relations of the Polarizability to Electric Field
and Dipole Moment Fluctuations

In [11] we also gave a relation between the polarizability and electric field and
dipole moment fluctuations, namely

ıp D p
˛kT (7.7)

and

ıE D
r

kT

˛
(7.8)

The values of ıp and ıE are also reported in Table 7.2.
In Fig. 7.1a is plotted the capacitance as a function of the molecular weight, M,

of the proteins. We can fit the curve by a second order polynomial. We observe
very low values of the capacitance of the proteins, C, in the range [0.18–0.5]aF,
with a corresponding increase of the capacitance with the size of the molecule.
In Fig. 7.1b we observe a linear fitting relation between the polarizability and
M, the polarizability, ˛ varies in the range [50–1100]nm3. Correspondingly to
the low values of the capacitance, C, the fluctuations of charge are negligible,
in units of the elementary charge the range is [0.17–0.28]ıq=e0, this could be
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Fig. 7.1 Electrical parameters of proteins

interpreted as the probability of producing a unit charge variation in the protein. In
Fig. 7.2a we observe an exponential growth with M for these charge fluctuations.
In Fig. 7.2b we observe the voltage fluctuations as a function of the molecular
weight, these fluctuations are in the [90–150] mV range, decreasing with the size
of the protein molecule. This effect was already predicted for colloidal particles
and polyelectrolytes in [9, 10]. We observe a good fitting of data with a first
order exponential decay curve. In Fig. 7.2c is plotted the field fluctuations ıE
versus M showing a first order exponential decay. These high field fluctuations
are in the [5–30] mV/nm range. Finally in Fig. 7.2d is plotted the dipole moment
fluctuations in units of the water molecule dipole moment versus M, we observe
a second order polynomial fitting in the range [25–115]ıp=pH2O. In conclusion
using phenomenological equations (FDT) we predict high electrical fluctuations
on the protein surfaces. We developed numerical equations which allow us to
estimate these fluctuations for a given protein knowing the molecular weight. It
is possible that these fluctuations are important for explaining some biological
phenomena.
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A
Absorption spectra, 77

B
Bjerrum length, 33–34, 46–47

C
Capacitance

Brownian motors, 1–2
definition, 6–7
FDT

electric circuit, 3–4
fluctuating quantity, 3
generalized impedance, 2
generalized susceptibility, 2
Kramers and Kronig’s relations, 3

ionic fluctuations, 15
protonic fluctuations, 1
small systems, 2
time scale, 5

Colloid fluctuations, 24–26
Cylindrical polyelectrolytes

Bjerrum length, 33–34
Debye–Hückel reciprocal length, 34–36
Gauss’s electric flux theorem, 33
ionic–molecular capacitor, 38
Laplace operator, 32
linear charge density, 35
modified Bessel equation, 33
NaCl solution, 38–40
PB equation, 32
potential profile, 37
resistance and capacitance, 38, 41

rigid rod-like molecule/particle, 31–32,
37–38

Runge–Kutta method, 35
voltage and field fluctuations, 38–39, 42

D
Debye–Hückel (DH) atmosphere

Bjerrum length, 46–47
central polyion, 46
dielectric constant, 47–48
DNA solution

Brownian dynamics, 50
dielectric dispersion, 50–52
diffuse ion atmospheres, 50
NaCl solution, 48–50

frictional coefficient, 46
polarization, 47
reciprocal length, 34–36
velocity and mobility, 46

Dielectric relaxation
average displacement, 45
Bessel functions, 44
DH atmosphere (see Debye-Hückel (DH)

atmosphere)
dipole moment quadratic fluctuation, 45
electrical resistivity, 45
ionic cloud capacitance, 44
Laplace operator, 44
PB equation, 44
real and imaginary components, 45

E
Emission spectra, 77
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F
Fluctuation-dissipation theorem (FDT). See

also Rod-like polyelectrolytes
electric circuit, 3–4
fluctuating quantity, 3
generalized impedance, 2
generalized susceptibility, 2
Kramers and Kronig’s relations, 3
pH fluctuations, 76

Fluorescent probes (FL), 64

G
Gauss’s electric flux theorem, 33
Group-bound ions system, 55

H
Henry’s function, 27–28

I
Ionic fluctuations

capacitance, 15
central ion, transformation, 15
Debye–Hückel theory, 10–11
electrical resistivity, 26–28
equations, 9–10
inequality, 13
ionic strength, 11
mean square

electrostatics, 17
field averaged distance, 16–17
Nyquist theorem, 16
potential profile, 15–17
temporal averages (see Temporal

average)
mono and bivalent solution, 12, 14
potential of the ionic atmosphere, 13–16
spectral density

electrical resistance, 18
fluctuational potential vs. radial

frequency, 19–21
KCl solution, 18
relaxation time, 18–19

thermal energy, 13

M
Mandel’s model, 53, 56, 57

N
Nyquist theorem, 16

P
pH fluctuations

absorption and emission spectra, 77
average, 74
buffer capacity

bound protons, 70
buffering power, 69, 71
capacitance, 70–71
mechanical statistical methods, 71
proton activity, 69
proton charge fluctuation, 71, 72
titration curve, 71, 73

buffer concentration, 66, 67
bulk phase, 73
charge fluctuation profile, 75
fatty acids, 63–64
fluctuation-dissipation theorem, 76
fluorescence response, 65–66
fluorescence spectrum, 68–69
fluorescent probe, 64, 75
fluorometric techniques, 77
hydroxycoumarins and fluorescein,

77–78
identical volumes, 73
ionizable groups, 67–68
macroscopic variables, 75
mean square, 72
phosphatidic acid, 74, 75
phospholipid, 66
pKa, 76
proton behavior, 64
proton donator/acceptor, 64
SUV, 64, 66
validity, 75
variation, 73–74, 76
vesicular volume, 66

Phospholipid (PL), 66
Poisson–Boltzmann (PB) equation, 32, 44
Proteins

dipole moment fluctuations, 81, 84, 85
electrical fluctuations, 79–80
electric field, 81, 84, 85
friction coefficient and capacitance, 80, 82,

83
polarizability and intrinsic viscosity, 80–81

Protonation–deprotonation equilibrium, 2

R
Relaxation effect, 27–28
Rod-like polyelectrolytes

dielectric dispersion, 54
longitudinal polarizability

Boltzmann distribution, 54
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capacitance, 57, 59
complex polarizability, 56
dielectric constant, 58
dipole moment, 59
DNA solution, 60
electric polarization, 58
electric thermal fluctuating field, 57
experimental value, 59
FDT, 57
Fourier components, 55, 56
group-bound ions system, 54, 55
polar solvent, 58
polyelectrolytes, 58–59
polymer framework, 57
radial frequency, 54
real and imaginary components,

56
relaxation time, 56
resistance, 57
static polarizability, 59

Mandel’s mode, 53, 56–57
Runge–Kutta method, 35

S
Spectral density

electrical resistance, 18
fluctuational potential vs. radial frequency,

19–21
KCl solution, 18
relaxation time, 18–19

T
Temporal average

field fluctuations, 22–24
fluctuating quantity, 20, 22
mean square, 26
molecular–ionic capacitor, 24–25
polyelectrolyte solutions, 25–26
spectral resolution, 20
voltage fluctuations, 22–24

U
Unilamellar vesicles (UV). See pH fluctuations
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