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Preface

Inverse modeling has many applications in oceanography and meteorology. Charts or
“analyses” of temperature, pressure, currents, winds and the like are needed for oper-
ations and research. The analyses should be based on all our knowledge of the ocean
or atmosphere, including both timely observations and the general principles of geo-
physical fluid dynamics. Analyses may be needed for flow fields that have not been
observed, but which are dynamically coupled to observed fields. The data must there-
fore contribute not only to the analyses of observed fields, but also to the inference
of corrections to the dynamical inhomogeneities which determine the coupled fields.
These inhomogeneities or inputs are: the forcing, initial values and boundary values,
all of which are themselves the products of imperfect interpolations. In addition to
input errors, the dynamics will inevitably contain errors owing to misrepresentations
of phenomena that cannot be resolved computationally; the data are therefore also
required to improve the dynamics by adjusting the empirical coefficients in the param-
eterizations of the unresolved phenomena. Conversely, the model dynamics must have
some credibility, and should be allowed to influence assessments of the effectiveness
of observing systems. Finally, and perhaps most compelling of all, geophysical fluid
dynamical models need to be formulated and tested as formal scientific hypotheses, so
that the development of increasingly realistic models may proceed in an orderly and
objective fashion. All of these needs can be met by inverse modeling. The purpose of
this book is to introduce recent developments in inverse modeling to oceanographers
and meteorologists, and to anyone else who needs to combine data and dynamics.

What, then, is inverse modeling and why is it so named? A conventional modeler
formulates and manipulates a set of mathematical elements. For an ocean model, the
set includes at least the following:

xiii
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(i) a domain in four-dimensional space, representing an ocean region and a time
interval of interest;

(ii) a system of inhomogeneous partial differential equations expressing the
phenomenological dynamics of the circulation (there will be inhomogeneities
owing to internal fields which force the dynamics beneath the ocean surface,
and the equations will include empirical parameters representing unresolved
phenomena);

(iii) initial conditions for the equations, representing the ocean circulation or state at
some time; and

(iv) boundary conditions which may be inhomogeneous owing either to forcing of
the ocean at the ocean surface, or to fields of flow and thermodynamic
conditions imposed at lateral open boundaries.

There will be subtle yet profoundly important differences for, say, atmospheric models;
consider the character of boundary conditions, for example. However, ocean models
will be invoked henceforth as the default choice for concise discussion.

From a mathematical perspective, the partial differential operators, initial operators
and boundary operators can all be seen as acting in combination upon the solution for
the ocean circulation, and producing the inhomogeneities or inputs which are, again,
the subsurface forcing, initial values, surface forcing and any values at open boundaries.
The combined operator is nonsingular if there exists a unique and analytically satisfac-
tory – say, continuously differentiable – solution for each set of analytically satisfactory
inputs. If the operator is nonsingular, then there is a well-defined and unique inverse
operator. From the mathematical perspective, the solution is the action of the inverse
operator on the inputs. Computing this action is, in the infinite wisdom of convention,
“forward ocean modeling”.

Characterizing our knowledge of ocean circulation as solutions of well-posed, mixed
initial-value boundary-value problems does not correspond to our real experience of
the ocean. Ship surveys, moored instruments, buoys drifting freely on the ocean surface
or floating freely below the surface, and earth satellites orbiting above cannot observe
continuous fields throughout an ocean region, even for one instant. Yet these data, after
control for quality, are in general far more reliable than either the parameterizations
of turbulence in the dynamics or the crudely interpolated forcing fields, initial values
and boundary values. The quality-controlled data belong to any rational concept of a
model, and the set of mathematical elements that defines a model is readily extended
to include them. Specifically, functionals corresponding to methods of measurement,
and numbers corresponding to measurements of quantities in the real ocean (such as
velocity components, temperature, density and the like), may be added to the set. Each
functional maps a circulation field into a single number. For example, monthly-mean
sea level at a coastal station defines a kernel or integrand which selects sea level from
the many circulation variables, which has a rectangular time window of one month and
which is sharply peaked at the coastal station. Note that the new mathematical elements
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include both additional operators (the measurement functionals), and additional input
(the data).

It is always assumed, but almost never proved, that the operator for the original model
is nonsingular. It can always be assumed that applying the measurement functionals
to the unique solution of the original forced, initial-boundary value problem does not
produce numbers equal to the real data. The extended operator can therefore have no
inverse, and so must be singular. It seems natural, even a compulsion (Reid, 1968),
to determine the ocean circulation as some uniquely-defined best-fit to the extended
inputs (forcing, initial, boundary and observed). The singular extended operator then
has a generalized inverse operator, and the best-fit ocean circulation is the action of
the generalized inverse on the extended inputs. This book outlines the theoretical and
practical computation of the action, for best-fits in the sense of weighted least-squares.
The practical computations will be only numerical approximations, so the theme of the
book should therefore be expressed as “inverting numerical models and observations
of the ocean and atmosphere in a generalized sense”. Abandoning precision for brevity,
the theme is “inverse modeling the ocean and atmosphere”.

How, then, does inverse modeling meet the needs of oceanographers and meteorolo-
gists? The best-fit circulation is clearly an analysis, an optimal dynamical interpolation
in fact, of the observations. All the fields coupled by the dynamics are analyzed, even
if only some of them are observed. The least-squares fit to all the information, ob-
servational and dynamical, yields residuals in the equations of motion as well as in
the data, and these residuals may be interpreted as inferred corrections to the dynam-
ics or to the inputs. There are emerging techniques that can in principle distinguish
between additive errors in dynamics and internal forcing, but these techniques are so
new and unproven that it would be premature, even by the standards of this infant
discipline, to include them here. Empirical parameters may also be tuned to improve
the analysis. (The tuning game, sometimes described as a “fiddler’s paradise” [Ljung
and Söderström, 1987], is outlined here.) The conditioning or sensitivity of the fit to
the inputs, as revealed during the construction of the generalized inverse, quantifies the
effectiveness of the observing system. The natural choices for the weights in the best
fit are inverses of the covariances of the errors in all the operators and inputs. These
covariances must be stipulated by the inverse modeler. They accordingly constitute,
along with stipulated means, a formal hypothesis about the errors in the model and
observations. The minimized value of the fitting criterion or penalty functional yields a
significance test of that hypothesis. For linear least-squares, the minimal value is the χ2

variable with as many degrees of freedom as there are data, provided the hypothesized
means and covariances are correct. A failed significance test does discredit the analyzed
circulation and also any concomitant assessment of the observing system, but does not
end the investigation: detailed examination of the residuals in the equations, initial
conditions, boundary conditions and data can identify defects in the model or in the
observing system. Thus model development can proceed in an orderly and objective
fashion. This is not to deny the crucial roles of astute and inspired insight in oceanic and
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atmospheric model development as in all of science; it is rather to advocate a minimal
level of organization especially when inspiration is failing us, as seems to be the case
at present.

In spite of an explicit emphasis here on time dependence, the spirit of this approach
is close to geophysical inverse theory (see for example Parker, 1994), specifically the
estimation of permanent strata in the solid earth using seismic data. The retrieval of
instantaneous vertical profiles of atmospheric temperature and moisture using multi-
channel microwave soundings from satellites (see for example Rodgers, 2000) bears a
striking resemblance to the seismic problem, and is indeed both named and practised
as inverse theory. Yet the context here – time-dependent oceanic and atmospheric
circulation – is so different that to call it inverse theory seems almost misleading.

Inverse modeling is but one formulation of the vaguely defined activity known as
“data assimilation”. The most widely practised form of oceanic or atmospheric data
assimilation involves interpolating fields at one time, for subsequent use as initial data
in a model integration which may even be a genuine forecast. Once nature has caught
up with the forecast, the latter serves as a first-guess or “background” field for the
next synoptic analysis. As might be imagined, this cycle of synoptic analysis and fore-
casting is a major enterprise at operational centers, and is very extensively developed
for meteorological applications. Characterization of operational systems for observing
the weather, in particular studying the statistics of observational errors, has been and
remains the subject of vast investigation. Comprehensive references may be found at
appropriate places in the following chapters, but that description of operational detail
will not be repeated here. Nor will the intricate, “diagnostically-constrained” multivari-
ate forms of synoptic interpolation be discussed in detail. Geostrophy, for example, is
an approximate diagnostic constraint on synoptic fields of velocity and pressure. The
emphasis instead will be on elaborating the new data assimilation schemes that could
be consistently described as nonsynoptic, “prognostically-constrained” interpolation.
The unapproximated law of conservation of momentum, for example, is a prognos-
tic constraint. Again, the nature of this latter activity is so different in technique and
broader in scope, in comparison with the conventional cycle of synoptic analysis and
forecasting, that to call these new schemes “data assimilation” seems to be misleading
yet again. The name “inverse modeling” is chosen, for better or worse.

What else has been left out here? Monte Carlo methods are immensely appealing
in any application, and data assimilation is no exception. Sample estimates of means
and covariances of circulation fields may be generated from repeated forward integra-
tions of a model driven by suitably constructed pseudo-random inputs. The sample
moments of the solutions are then used for conventional synoptic interpolation. The
calculus of variations is not required. These assimilation methods, especially “ensem-
ble Kalman filtering”, are highly competitive with variational inverse methods in terms
of development effort and computational efficiency, but are even more immature and so
are mentioned only briefly. The very basics of statistical simulation and Monte Carlo
methods in general are outlined in these chapters.
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The reader should not be discouraged by the technical definition of inverse mod-
eling given in previous paragraphs. The calculus of several variables, a rudimentary
knowledge of partial differential equations and the same numerical analysis used to
solve the forward model are enough mathematics for the computation of generalized
inverses. Abstraction is restricted to the one place in this book where an elegant expres-
sion of generality is of real benefit. The Hilbert Space analysis sketched in Chapter 2
exposes the geometrical structure of the generalized inverse, and explains the efficiency
of the concrete algorithms developed in Chapter 1. The geometrical interpretation is
a straightforward adaptation of the theory of Laplacian spline interpolation. A beau-
tiful treatment of L-splines may be found in an applied meteorology journal (Wahba
and Wendelberger, 1980), to the eternal credit of the authors, reviewers and editors.
Any temptation to make use of the Hilbert Space machinery for abstract definitions
of adjoint operators is easily resisted, as such abstraction offers no real insight into
the problem of interest. The adjoint operators arise naturally when the elementary
calculus of variations is used to derive the classic Euler–Lagrange conditions for the
weighted, least-squares best-fit. Unlike the Hilbert Space definition of an adjoint oper-
ator, the variational calculus need not be preceded by a linearization of the dynamics
and measurement functionals. This flexibility leads to critically important alternatives
for iterative solution techniques that are linear.

It is essential to distinguish the formulative and interpretive aspects of inverse model-
ing from its mathematical aspects. Least-squares may be used to estimate any quantity,
but it is the estimator of maximum likelihood for Gaussian or normal random vari-
ables. Such variability can reasonably be expected in the ocean and atmosphere, on
the synoptic scale and larger, away from transient and semi-permanent fronts, and in
variables not subject to phase changes. Least-squares is especially attractive from a
mathematical perspective, since it leads to linear conditions for the best fit when the
constraints are also linear. The linearity of the extremal conditions permits powerful
analyses which yield efficient solution methods. There are many least-squares algo-
rithms, such as optimal interpolation, Kalman filtering, fixed-interval smoothing, and
representers. The relationships between these statistical, control-theoretic and geomet-
rical approaches are explained in this book. Aside from unifying the mathematics,
recognizing the mathematical relationships facilitates the identification of scientific
assumptions.

For example, if the data were collected in much less time than the natural scales
of evolution of the dynamics and the internal forcing, then there would be little to
gain by assuming that there are errors in the dynamics or internal forcing. It would
suffice to admit errors only in the initial conditions, surface forcings, open boundary
values and data. This assumption massively reduces the finite dimension of the “state
space” for the numerical model, by eliminating those variable fields or “controls”
defined both throughout the ocean region and throughout the time interval of interest.
Boundary values, initial values and empirical parameters would be retained as controls.
The reduced state or “control” space may be sufficiently small that a conventional
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gradient search for a minimum in the state space is feasible. The condition of the
fit in state space determines the efficiency of the search. It is, however, becoming
increasingly necessary to consider time intervals during which the dynamical errors
are bound to become significant. That is, the initial conditions would be ineffective
as controls for guiding the model solution towards the later data. Using distributed
controls, that is, admitting errors in the dynamics throughout space and time, leads to
huge numbers of computational degrees of freedom. (There are in general far fewer
statistically independent degrees of freedom, but these are not readily identified. Indeed,
the methods developed here serve to identify them.) Hence there could be no prospect
of a well-conditioned search in the control space or in the equivalent state space. The
power of the methods described in these chapters is that they identify a huge subspace of
controls (known as the null space) having exactly no influence on guiding the solution
towards the data. The methods restrict the search for optimal controls to those lying
entirely in the comparatively tiny, orthogonal complement of the null space (known
as the data subspace). Again, as in the choice of a least-squares estimator, there is an
interplay between scientific formulation and mathematical technique. The two should
nonetheless always be carefully distinguished.

As a final example of the distinction and interplay between scientific formulation and
mathematical manipulation, consider errors in models of small-scale flows. As already
implied, these errors are likely to be highly intermittent or nonGaussian. Thus, inver-
sions of observations collected in mixing fronts and jets, or in free convection, or during
phase changes, will require estimators other than least squares. Only brute-force mini-
mization techniques, such as simulated annealing or Monte Carlo methods in general,
appear to be available for most estimators. On the other hand, multi-processor com-
puter architecture may favor brute-force inversion. These brute-force techniques will be
mentioned here, but only briefly, since by their nature regrettably little is known about
them.

The content of this book closely follows an upper-level graduate course for physical
oceanography students at Oregon State University. Their preparation includes

� graduate courses in fluid dynamics, geophysical fluid dynamics and ocean
circulation theory;

� a graduate course in numerical modeling of ocean circulation;
� a graduate course in time series analysis including Gauss–Markov smoothing or

“objective analysis”;
� graduate courses in ordinary and partial differential equations, computational

linear algebra and numerical methods in general;
� FORTRAN and basic UNIX skills;
� or an equivalent preparation in atmospheric science.

The curriculum does not require great depth or fresh familiarity with all of the above
material. The following would suffice.
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1. Some minimal exposure to hydrodynamics, preferably in a rotating reference
frame, including approximations such as hydrostatic balance, the shallow-water
equations and geostrophic balance. The well-known texts by Batchelor (1973),
Pedlosky (1987), Gill (1982), Holton (1992) and Kundu (1990) may be
consulted. Graduate students in physics or mechanical or civil engineering
would have no problem with the curriculum, although some jargon may cause
them to glance at a text in oceanography or meteorology.

2. The knowledge that oceanic and atmospheric circulation models are expressed
as partial differential equations (pdes) that may be numerically integrated, most
simply using finite differences. The text by Haltiner and Williams (1980) on
numerical weather prediction is very useful.

3. Access to Stakgold’s classic (1979) text on boundary value problems. The
theoretical notions most useful here are (i) odes and pdes can only have
well-behaved solutions if precisely the right number of initial and boundary
value conditions are provided and (ii) the solution of such well-posed problems
for linear odes and pdes can be expressed using a Green’s function or influence
function. As for computational linear algebra and numerical methods in
general, the synopses in Press et al. (1986) are very useful.

4. Comfort with the very basics of probability and statistics, including random
variables, means, covariances and minimum-variance estimation. Again, the
synopses in Press et al. (1986) make a good first reading.

5. As much FORTRAN as can be learned in a weekend.

The content of the Preamble, and of each of the six chapters and the two appendices,
is outlined on their first pages. The Preamble attempts to communicate the nature of
variational ocean data assimilation, or any other assimilation methodology, through
a commonplace application of basic scientific method to marine biology. The exam-
ple might seem out of context, and indeed it is, but that underscores the universality
and long history of the approach advocated here. Its arrival in the context of oceanic
and atmospheric circulation has of course been delayed by the fantastic mathemat-
ical and computational complexity of circulation models. The Preamble includes a
“data assimilation checklist”, which the student or researcher is encouraged to con-
sult regularly. Chapter 1 is the irreducible introduction to variational assimilation with
dynamical models; a “toy” model consisting of a single linear wave equation with
one space dimension serves as an illustration. Chapter 2 complements the control-
theoretic development of Chapter 1 with geometrical and statistical interpretations;
analytical considerations essential to the physical realism of the inverse solutions are
introduced. Chapter 3 addresses efficient construction of the inverse and its error statis-
tics, and introduces iterative techniques for coping with nonlinearity. Chapter 4 surveys
alternative algorithms for linear least-squares assimilation, and for assimilation with
nonlinear or nonsmooth models or with nonlinear measurement functionals. Difficul-
ties to be expected with nonlinear techniques are outlined – proven remedies are still
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lacking. Chapter 5 reviews large-scale geophysical fluid dynamics, discusses several
real oceanic and atmospheric inverse models in detail, and concludes with notes on
a selection of contemporary efforts, both research and operational. Chapter 6 applies
inverse methods to forward models based on singular operators.

The material in this book can be presented in thirty one-hour lectures. An overhead
projector is a great help: minimal-text, math-only, large-font overhead transparen-
cies allow the audience to listen, rather than transcribe incorrectly. The overheads
are available as TEX source files via an anonymous ftp site (ftp.oce.orst.edu,
dist/bennett/class/overheads). Students should be able to begin the computing
exercises in Appendix A after studying the first four sections of Chapter 1. The inverse
tidal model of §5.2 in Chapter 5 is accessible after studying Chapters 1 and 2. The
nonlinear inverse models of tropical cyclones and ENSO in §5.3–5.5, and the acceler-
ated algorithms used in their construction, require a study of Chapter 3. The complete
variational equations for the tropical cyclone inversion may be found in Appendix B.
A first reading of Chapter 4 is assumed in §5.6, the survey of contemporary applications
of advanced assimilation with oceanic and atmospheric data.

The research monograph by Bennett (1992) contains almost all of the theoretical
development found here, but none of the guidelines for implementation and few case
studies with real data or real arrays. Certain advanced theoretical considerations, such as
Kalman filter pathology in the equilibrium limit and continuous families of representers
for excess boundary data, are only briefly mentioned here if at all, but may be found in
the earlier monograph. There has been a rapid growth in the literature of nonsynoptic
data assimilation during the last decade. A full literature survey would be impractical
and of doubtful value as so much work has been highly application-specific. Shorter
but very useful survey articles include Courtier et al. (1993); Anderson, Sheinbaum
and Haines (1996) and Fukumori (2001); for collections of expository papers and
applications see Malanotte-Rizzoli (1996), Ghil et al. (1997) and Kasibhatla et al.
(2000). The last-mentioned is noteworthy for its interdisciplinary range, and also for a
set of exercises on various assimilation techniques. The major text by Wunsch (1996)
principally develops in great detail the time-independent inverse theory for steady ocean
circulation, using a finite-dimensional formulation which certainly complements the
analytical development here and which may be the more accessible for being finite-
dimensional. On the other hand the essential mathematical condition of the inverse
problem is established at the analytical or continuum level, and the “look and feel” of
geophysical fluid dynamics is retained by an analytical formulation.

Inverse modeling suffers not so much from the lack of good data, credible models
and adequate computing resources, as from a lack of experience. This book is intended
to be of assistance to the generation of investigators who, it is hoped, will acquire that
experience.

Monterey, June 2001
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Preamble

An ocean data assimilation system in miniature

The pages of this book are filled with the mathematics of oceanic and atmospheric
circulationmodels, observing systemsand variational calculus. Itwould only be natural
to ask: What is going on here, and is it really new? The answers are “regression” and
hence “no”: almost every issue of any marine biology journal contains a variational
ocean data assimilation system in miniature.

P.1 Linear regression in marine biology

The article “Repression of fecundity in the neritic copepod Acartia clausi ex-
posed to the toxic dinoflagellate Alexandrium lusitanicum: relationship between
feeding and egg production”, by Jörg Dutz, appeared in Marine Ecology Progress
Series in 1998. Dinoflagellates are a species of phytoplankton, or small plant-like
creatures. The genusAlexandrium (www.units.it/~mabiolab/set previous.htm,

click on ‘Toxic microalgae’) produces toxins which rise through the food web
to produce paralytic shellfish poisoning in a variety of hydrographical regions,
ranging from temperate to tropical. Zooplankton, or small animal-like creatures
(www.ios.bc.ca/ios/plankton/ios tour/zoop lab/copepod.htm), graze on
these dinoflagellates. The effect of the toxins on the grazers naturally arises.
Dutz (1998) fed toxin-bearing Alexandrium lusitanicum and toxin-free Rhodomonas
baltica (bioloc.coas.oregonstate.edu/baltica.jpg) to females of the copepod
Acartia clausi in controlled amounts, and measured the fecundity or gross growth

1
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Figure P.1.1 Gross growth
efficiency of Acartia clausi
versus food supply. Solid
circles: nontoxic
Rhodomonas baltica; open
circles: toxic Alexandrium
lusitanicum (after Dutz,
1998).

efficiency in terms of total carbon production. He found that the grazers were not
killed, and they continued to lay eggs. However, their fecundity was affected: see
Fig. P.1.1. Note the controlled food concentration (abscissa x) with five values: 200,
400, 800, 1200, and 1600 µg C l−1. Fecundity is not influenced by the supply of
nontoxic Rhodomonas (solid circles), but is clearly reduced as the supply of toxic
Alexandrium (open circles) increases. The gross growth efficiencies (ordinate y) in
the latter case are respectively: 0.23, 0.21, 0.18, 0.14, 0.10 (Dutz, 1998; Table 2). The
error bars indicate Dutz’ maximum and minimum estimates. A straight line clearly fits
the Alexandrium data well. The regression parameters are: a = 0.25, b = 9.2× 10−5,
r2 = 0.997, F1, 3 = 355, P < 0.0005.

A brief review of linear regression is in order. The data are M ordered pairs:
(xm, ym), 1 ≤ m ≤ M . The model is

ym = α + βxm + εm, (P.1.1)

where α and β are unknown constants, while εm is a random variable with mean and
covariance

Eεm = 0, E(εm εn) = σ 2δnm =
{

σ 2, n = m
0, n �= m.

(P.1.2)

The error εm is an admission of measurement error, and of the unrepresentativeness of
a linear relationship. Note that the model consists of an explicit functional form (here, a
linear relationship), together with probabilistic statements (here, mean and covariance)
about the error in the form. We seek an estimate (here, a regression line):

ŷ = a + bx, (P.1.3)

where a and b are to be chosen. As an estimator, let us choose a uniformly weighted
sum of squared errors:

WSSE = σ−2
M∑
m=1

(ym − a − bxm)2. (P.1.4)
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A value for σ may be inferred from the error bars in Fig. P.1.1. It is easily shown that
WSSE is minimal if a and b satisfy the normal equations:(

1 x
x x2

) (
a
b

)
=
(

y
xy

)
, (P.1.5)

where the overbar denotes the arithmetic mean, for example x = M−1∑M
m=1 xm . Note

that (P.1.5) is independent of the uniform weight σ−2. These equations are of course
trivially solved for a and b. The following statements may be made about the first and
second moments of the solution:

Ea = α, Eb = β,

E(a − α)2 = x2σ 2

M(x2 − (x)2)
, E(b − β)2 = σ 2

M(x2 − (x)2)
. (P.1.6)

Moreover, a, b and ŷm are normally distributed around α, β and ym respectively. Note
that the error variances in (P.1.6) areO(M−1). In addition to the posterior error estimates
(P.1.6), there are significance test statistics such as the variance-ratio or F test:

F1,M−2 =

M∑
m=1

(ym − y)2

M∑
m=1

(ym − ŷm)

, (P.1.7)

where ŷm ≡ axm + b. The numerator is the total variance of the data; the denominator
is the total variance of the residuals for the regression line (P.1.3). Note that (P.1.7)
is independent of σ 2. The subscripts 1 and M − 2 indicate the number of degrees
of freedom in the denominator and the numerator, respectively. The value of F here
is 355; accordingly the probability P of the null hypothesis (α = β = 0) being true
is less than 0.05%. In other words it is highly credible that grazing on Alexandrium
lusitanicum does repress the fecundity of Acartia clausi.

Exercise P.1.1
An alternative test statistic is provided by the weighted denominator in (P.1.7):

resW SSE = σ−2
M∑
m=1

(ym − ŷm)2

∼ χ2
M , as M →∞. (P.1.8)

Verify that Eχ2
M = M , varχ2

M = 2M . Calculate (P.1.8) using Dutz’ data, and draw
conclusions. �

If the data had suggested it, Dutz could have considered quadratic regression:

ym = α + βxm + γ x2
m + εm,

Eεm = 0, E(εnεm) = σ 2δnm . (P.1.9)
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Figure P.1.2 On the left: the parabola of least-squares best fit to four data points,
which are shown as solid circles. The abscissa values for the data (see the tick marks
on the abscissa in the zoom on the right) are ill-chosen. As a result, the least-squares
best fit is clearly ill-conditioned. The abscissa itself would be a more sensible fit to
the data.

The estimate would be

ŷ = a + bx + cx2. (P.1.10)

The estimator would again be (P.1.4), for which the normal equations are
 1 x x2

x x2 x3

x2 x3 x4




a
b
c


 =


 y

xy
x2y


. (P.1.11)

Suppose for simplicity that x = x3 = 0 (these are at our disposal). Then the system
(P.1.11) is ill-conditioned; that is, the solution (a, b, c) is highly sensitive to the inhom-
ogenity on the right-hand side if x4/(x2)2 
 1. This ratio is also at our disposal. Just
such a situation is sketched in Fig. P.1.2. The best fit to the four data points is a deep
parabola, yet the most sensible fit would be the abscissa itself (y = 0). In conclusion,
the stability of the estimate (P.1.10) is controlled by the choice of abscissa values xm ,
1 ≤ m ≤ M .

P.2 Data assimilation checklist

The preceeding elementary application of linear regression in marine biology has every
aspect of an “ocean data assimilation system”: see the following checklist.

Data assimilation checklist

INPUTS
(i) There is an observing system, consisting of measurements of gross growth

efficiency at selected food concentration levels.
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(ii) There are dynamics, expressed here as (P.1.1), the explicit general solution of
the differential equation

d2y

dx2
= 0, (P.2.1)

plus measurement errors εm , 1 ≤ m ≤ M . The values α, β indicated in (P.1.1)
for the regression constants a, b are the “true” values.

(iii) There is an hypothesis (P.1.2) about the distribution of errors εm around the
true regression line.

(iv) There is an estimator, here the uniformly weighted sum of squared errors
(P.1.4).

(v) There is an optimization algorithm, here the normal equations (P.1.5) which
would, in the general case of N th-order polynomial regression, be robustly
solved using the singular value decomposition.

OUTPUTS
(vi) There is an estimate of the state, here the regression line (P.1.3) with values

of a and b obtained from the normal equations (P.1.5).
(vii) There are estimates of data residuals and dynamical residuals. Here the two

types of residual are indistinguishable; both are in fact given by ym − ŷm .
(viii) There are posterior error statistics, here the means and variances (P.1.6) for

a − α and b − β.
(ix) There is an assessment of the array or observing system. Here it is the

conditioning of the normal matrix, and is determined by the choices of food
concentrations xm , 1 ≤ m ≤ M .

(x) There are test statistics, here the F-variable (P.1.7) and χ2-variable (P.1.8).
These indicate the credibility of the hypothetical model, and thus the credibility
of the derived posterior error statistics.

(xi) There are indications for model improvement. Here, however, the indication
is that the linear model is so credible that a quadratic model (P.1.10) is
unnecessary.

Variational assimilation of El Niño data from the tropical Pacific, into a coupled
intermediate model of the ocean and atmosphere, is described in §5.5. The checklist
reads as follows.

INPUTS
(i) The observations are monthly-mean and five-day mean values of Sea Surface

Temperature (SST, or T (1)), the depth of the 20◦ isotherm (Z20) and surface
winds (ua , va), at the TOGA–TAO moorings, from April 1994 to May 1998.

(ii) The dynamics are those of an intermediate coupled model after Zebiak and
Cane (1987); the thermodynamics of the upper oceanic layer and the coupling
through the wind stress are nonlinear. Otherwise the oceanic and atmospheric
dynamics are those of linearized shallow-water waves.
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(iii) The hypothesis consists of means and autocovariances of errors in the
dynamics, in the initial conditions and in the data.

(iv) The estimator is the combined, space-integrated and time-integrated weighted
squared error.

(v) The optimization algorithm is the iterated, indirect representer algorithm for
solving the nonlinear Euler–Lagrange equations.

OUTPUTS
(vi) There are estimates of space-time fields of surface temperature, currents,

thermocline depths and surface winds.
(vii) There are corresponding space–time fields of minimal residuals in the

dynamics, initial conditions and data.
(viii) There are space–time covariances of errors in the optimal estimates of the

coupled circulation.
(ix) These are assessments of the efficiency of the monthly-mean TOGA–TAO

system for observing the “weak” dynamics of the coupled model, that is,
observing the intermediate dynamics subject to the hypothesized error statistics.

(x) The reduced estimator is a χ2-variable for testing the hypothesized error
moments (they were found to lack credibility).

(xi) The dominance of the minimal residual in the upper-ocean thermodynamic
balance indicates that it would serve no purpose to hypothesize increased
variances for the dynamical errors: the low-resolution intermediate dynamics
should be abandoned in favor of a fully-stratified, high-resolution, Primitive
Equation model.

Variational data assimilation, or generalized inversion of dynamical models and obser-
vations, is really no more than regression analysis. The novelty lies in the mathematical
and physical subtlety of realistic dynamics, in the complexity of the hypotheses about
the multivariate random error fields, and in the sheer size of modern data sets. The
novelty also lies in the emergence of powerful and efficient optimization algorithms,
which allow us to test our models in the same way that all other scientists test theirs.



Chapter 1

Variational assimilation

Chapter 1 is a minimal course on assimilating data into models using the calculus of
variations. The theory is introduced with a “toy” model in the form of a single linear
partial differential equation of first order. The independent variables are a spatial
coordinate, and time. The well-posedness of the mixed initial-boundary value problem
or “forward model” is established, and the solution is expressed explicitly with the
Green’s function. The introduction of additional data renders the problem ill-posed.
This difficulty is resolved by seeking a weighted least-squares best fit to all the infor-
mation. The fitting criterion is a penalty functional that is quadratic in all the misfits to
the various pieces of information, integrated over space and time as appropriate. The
best-fit or “generalized inverse” is expressed explicitly with the representers for the
penalty functional, and with the Green’s function for the forward model. The behavior
of the generalized inverse is examined for various limiting choices of weights. The
smoothness of the inverse is seen to depend upon the nature of the weights, which
will be subsequently identified as kernel inverses of error covariances. After reading
Chapter 1, it is possible to carry out the first four computing exercises in Appendix A.

1.1 Forward models

1.1.1 Well-posed problems

Mechanics is captured mathematically by “well-posed problems”. The mechanical laws
for particles, rigid bodies and fields are with few exceptions expressed as ordinary or
partial differential equations; data about the state of the mechanical system are provided

7
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in initial conditions or boundary conditions or both. The collection of general equations
and ancillary conditions constitute a “well-posed problem” if, according to Hadamard
(1952; Book I) or Courant and Hilbert (1962; Ch. III, §6):

(i) a solution exists,

which

(ii) is uniquely determined by the inputs (forcing, initial conditions, boundary
conditions),

and which

(iii) depends continuously upon the inputs.

Classical particles and bodies move smoothly, while classical fields vary smoothly
so only differentiable functions qualify as solutions. The repeatability of classical
mechanics argues for determinism. The classical perception of only finite changes in a
finite time argues for continuous dependence.

Ill-posed problems fail to satisfy at least one of conditions (i)–(iii). They cannot be
solved satisfactorily but can be resolved by generalized inversion, which is the subject
of this chapter. Inevitably, well-posed problems are also known as “forward models”:
given the dynamics (the mechanical laws) and the inputs (any initial values, boundary
values or sources), find the state of the system. In this first chapter, an example of a
forward model is given; the uniqueness of solutions is proved, and an explicit solution
is constructed using the Green’s function. That is, the well-posedness of the forward
model is established.

1.1.2 A “toy” example

The following “toy” example involves an unknown “ocean circulation” u = u(x, t),
where x, t and u are real variables. The “ocean basin” is the interval 0 ≤ x ≤ L , while
the time of interest is 0 ≤ t ≤ T : see Fig. 1.1.1.

The “ocean dynamics” are expressed as a linear, first-order partial differential
equation:

∂u

∂t
+ c

∂u

∂x
= F (1.1.1)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T , where c is a known, constant, positive phase speed. The
inhomogeneity F = F(x, t) is a specified forcing field; later it will become known as
the prior estimate of the forcing. An initial condition is

u(x, 0) = I (x) (1.1.2)

for 0 ≤ x ≤ L , where I is specified. A boundary condition is

u(0, t) = B(t) (1.1.3)

for 0 ≤ t ≤ T , where B is specified.
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Figure 1.1.1 Toy ocean
basin.

1.1.3 Uniqueness of solutions

To determine the uniqueness of solutions (Courant and Hilbert, 1962) for (1.1.1), (1.1.2)
and (1.1.3), let u1 and u2 be two solutions for the same choices of F, I and B. Define
the difference

v ≡ u1 − u2. (1.1.4)

Then

∂v

∂t
+ c

∂v

∂x
= 0 (1.1.5)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T ;

v(x, 0) = 0 (1.1.6)

for 0 ≤ x ≤ L , and

v(0, t) = 0 (1.1.7)

for 0 ≤ t ≤ T .
Multiplying (1.1.5) by v and integrating over all x yields

d

dt

1

2

L∫
0

v2 dx = −c
[

1

2
v2

]x=L
x=0

= − c
2
v(L , t)2, (1.1.8)

using the boundary condition (1.1.7). Integrating (1.1.8) over time from 0 to t yields

1

2

L∫
0

v2(x, t) dx = 1

2

L∫
0

v2(x, 0) dx − c

2

t∫
0

v2(L , s) ds. (1.1.9)

The right-hand side (rhs) of (1.1.9) is nonpositive, as a consequence of the initial
condition (1.1.6). Hence

v(x, t) = 0, (1.1.10)
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that is,

u1(x, t) = u2(x, t) (1.1.11)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T . So we have established that (1.1.1), (1.1.2) and (1.1.3)
have a unique solution for each choice of F , I and B.

1.1.4 Explicit solutions: Green’s functions

We may construct the solution explicitly, using the Green’s function (Courant and
Hilbert, 1953) or fundamental solution γ for (1.1.1)–(1.1.3).

Let γ = γ (x, t, ξ, τ ) satisfy

−∂γ

∂t
− c

∂γ

∂x
= δ(x − ξ )δ(t − τ ), (1.1.12)

where the δs are Dirac delta functions, and 0 ≤ ξ ≤ L , 0 ≤ τ ≤ T . Also,

γ (L , t, ξ, τ ) = 0 (1.1.13)

for 0 ≤ t ≤ T , and

γ (x, T, ξ, τ ) = 0 (1.1.14)

for 0 ≤ x ≤ L .

Exercise 1.1.1
(a) Verify that

γ (x, t, ξ, τ ) = δ(x − ξ − c(t − τ ))H (τ − t) (1.1.15)

for 0 ≤ x < L , 0 ≤ t ≤ T , where H is the Heaviside unit step function.
(b) Show that

u(ξ, τ ) = uF (ξ, τ ) ≡
T∫

0

dt

L∫
0

dx γ (x, t, ξ, τ )F(x, t)

+
L∫

0

dx γ (x, 0, ξ, τ )I (x)+ c

T∫
0

dt γ (0, t, ξ, τ )B(t). (1.1.16)

�

Relabeling (1.1.16) yields

uF (x, t) =
T∫

0

dτ

L∫
0

dξγ (ξ, τ, x, t)F(ξ, τ )

+
L∫

0

dξγ (ξ, 0, x, t)I (ξ )+ c

T∫
0

dτγ (0, τ, x, t)B(τ ), (1.1.17)
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which is an explicit solution for the “forward model”. It is also the prior estimate or
“first-guess” or “background” for u.

Note 1. By inspection, uF depends continuously upon changes to F , I and B; if these
change by O(ε), so does uF .

Note 2. We actually require I (0) = B(0), or else uF is discontinuous across the phase
line x = ct , for all t .

We conclude that the forward model (1.1.1)–(1.1.3) is well-posed. Any additional
information would overdetermine the system, and a smooth solution would not exist.

Exercise 1.1.2
Code the finite-difference equation

uk+1
n = ukn − c(�t/�x)

(
ukn − ukn−1

)+�t Fk
n , (1.1.18)

where ukn = u(n�x, k�t), etc. Perform some numerical integrations. Derive and
verify experimentally the Courant–Friedrichs–Lewy stability criterion (Haltiner and
Williams, 1980). �

Exercise 1.1.3
Slow, one-dimensional viscous flow u = u(x, t) is approximately governed by

∂u

∂t
= ν

∂2u

∂x2
− ρ−1 ∂p

∂x
, (1.1.19)

where ν is the uniform kinematic viscosity, ρ is the uniform density and p = p(x, t) is
the externally imposed pressure gradient. Consider an infinite domain:−∞ < x <∞,
and a finite time interval: 0 < t < T . A suitable initial condition is

u(x, 0) = I (x). (1.1.20)

Assume that both ∂p/∂x and I vanish as |x | → ∞.

(a) Derive the following energy integral when both ∂p/∂x and I vanish
everywhere:

d

dt

1

2

∞∫
−∞

u2 dx = −ν

∞∫
−∞

(
∂u

∂x

)2

dx . (1.1.21)

Hence prove that there is at most one solution for each choice of p and I .
(b) Show that the solution of (1.1.19), (1.1.20) is

u(x, t) = −ρ−1

T∫
0

dτ

∞∫
−∞

dξ φ(ξ, τ, x, t)
∂p

∂x
(ξ, τ )

+
∞∫

−∞
dξ φ(ξ, 0, x, t)I (ξ ), (1.1.22)
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where the Green’s function or fundamental solution φ(x, t, ξ, τ ) satisfies

−∂φ

∂t
= ν

∂2φ

∂x2
+ δ(x − ξ )δ(t − τ ), (1.1.23)

subject to

φ(x, T, ξ, τ ) = 0 (1.1.24)

for −∞ < x <∞, and

φ(x, t, ξ, τ ) → 0 (1.1.25)

as |x | → ∞.
(c) Verify that

φ(x, t, ξ, τ ) = H (τ − t)e
−(x−ξ )2

2ν(τ−t)
√

2πν(τ − t)
. (1.1.26)

Notice that the effective range of integration with respect to time in (1.1.22)
is 0 < τ < t . �

Exercise 1.1.4
(1) Is quantum mechanics captured mathematically as well-posed problems?

See, for example, Schiff (1949, p. 48).
(2) Can well-posed problems have chaotic solutions? �

1.2 Inverse models

1.2.1 Overdetermined problems

We shall spoil the well-posedness of the forward model examined in §1.1, by introducing
additional information about the toy “ocean circulation” field u(x, t). This information
will consist of imperfect observations of u at isolated points in space and time, for the
sake of simplicity. The forward model becomes overdetermined; it cannot be solved
with smooth functions and must be regarded as ill-posed. We shall resolve the ill-posed
problem by constructing a weighted, least-squares best-fit to all the information. It will
be shown that this best-fit or “generalized inverse” of the ill-posed problem obeys the
Euler–Lagrange equations.

1.2.2 Toy ocean data

Let us assume that a finite number M of measurements (observations, data, . . .) of u
were collected in the bounded “ocean basin” 0 ≤ x ≤ L , during the “cruise” 0 ≤ t ≤ T .
The data were collected at the points (xm, tm), where 1 ≤ m ≤ M : see Fig. 1.2.1. The
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T

L0

t

x

(xM, tM)

(xm, tm)

(x4, t4)

(x1, t1)

(x3, t3)

(x2, t2)

Figure 1.2.1 Toy ocean
data.

data are related to the “true” ocean circulation field u(x, t) by

dm = u(xm, tm)+ εm, (1.2.1)

1 ≤ m ≤ M , where dm is the datum or recorded value, and u(xm, tm) is the true value
of the circulation. The measurement error εm may arise from an imperfect measuring
system, or else from mistakenly identifying streamfunction and pressure, for example.
On the other hand, if our ocean model were quasigeostrophic and the data included
internal waves, then there would also be cause to admit errors in the dynamics.

1.2.3 Failure of the forward solution

Let us now consider how these data relate to the forward problem. If uF = uF (x, t) is
the forward solution:

∂uF
∂t

+ c
∂uF
∂x

= F (1.2.2)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T , with

uF (x, 0) = I (x) (1.2.3)

for 0 ≤ x ≤ L , and

uF (0, t) = B(t) (1.2.4)

for 0 ≤ t ≤ T , then we may expect that

uF (xm, tm) �= dm (1.2.5)

for at least somem: 1 ≤ m ≤ M . We therefore assume that there are errors in our prior
estimates for F, I and B. So the true circulation u must satisfy

∂u

∂t
+ c

∂u

∂x
= F + f (1.2.6)
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for 0 ≤ x ≤ L and 0 ≤ t ≤ T ,

u(x, 0) = I (x)+ i(x) (1.2.7)

for 0 ≤ x ≤ L and

u(0, t) = B(t)+ b(t) (1.2.8)

for 0 ≤ t ≤ T . Note that what is implied to be a forcing error f = f (x, t) on the rhs
of (1.2.6) may actually be an error in the dynamics expressed on the left-hand side
(lhs) of (1.2.6).

1.2.4 Least-squares fitting: the penalty functional

We have established that for any choice of F + f , I + i and B + b, there is a unique
solution for u. However, we have only the M data values dm to guide us and so the
error fields f , i and b are undetermined, while the data errors εm are unknown. We
shall seek the field û = û(x, t) that corresponds to the smallest values for f , i , b and
εm in a weighted, least-squares sense. Specifically, we shall seek the minimum of the
quadratic penalty functional or cost functional J :

J = J [u] ≡ W f

T∫
0

dt

L∫
0

dx f (x, t)2 +Wi

L∫
0

dx i(x)2 +Wb

T∫
0

dt b(t)2 + w

M∑
m=1

ε2
m,

(1.2.9)

whereW f ,Wi ,Wb andw are positive weights that we are free to choose. There are more
general quadratic forms, but (1.2.9) will suffice for now. The lhs of (1.2.9) expresses
the dependence of J upon u, while the rhs only involves f , i , b and εm . It is to be
understood that the latter are the values that would be obtained, were u substituted into
(1.2.1) and (1.2.6)–(1.2.8). These definitions could be appended to J using Lagrange
multipliers, but it is simpler just to remember them ourselves. Finally, note that while
u is a field of values for 0 ≤ x ≤ L and 0 ≤ t ≤ T , the penalty functional J [u] is a
single number for each choice of the entire field u.

Rewriting (1.2.9), with f , i , b and εm replaced by their definitions, yields

J [u] = W f

T∫
0

dt

L∫
0

dx

{
∂u

∂t
+ c

∂u

∂x
− F

}2

+Wi

L∫
0

dx {u(x, 0)− I (x)}2

+Wb

T∫
0

dt {u(0, t)− B(t)}2 + w

M∑
m=1

{u(xm, tm)− dm}2 . (1.2.10)

The dependence upon u (and upon F, I, B and dm) is now explicit.
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1.2.5 The calculus of variations: the Euler–Lagrange
equations

We shall use the calculus of variations (Courant and Hilbert, 1953; Lanczos, 1966) to
find a local extremum of J . Since J is quadratic in u and clearly nonnegative, the
local extremum must be the global minimum. To begin, let û = û(x, t) be the local
extremum. That is,

J [û + δu] = J [û]+ O(δu)2 (1.2.11)

for some small change δu = δu(x, t). This statement can be made more precise but we
shall proceed informally:

δJ ≡ J [û + δu]− J [û]

= 2W f

T∫
0

dt

L∫
0

dx

{
∂ û

∂t
+ c

∂ û

∂x
− F

}{
∂δu

∂t
+ c

∂δu

∂x

}

+ 2Wi

L∫
0

dx {û(x, 0)− I (x)} δu(x, 0)+ 2Wb

T∫
0

dt {û(0, t)− B(t)}δu(0, t)

+ 2w
M∑
m=1

{û(xm, tm)− dm}δu(xm, tm)+ O(δu)2 . (1.2.12)

Note 1. F , I , B and dm have not been allowed to vary; only û has been varied.
Note 2. We have assumed that

δ
∂u

∂t
(x, t) = ∂δu

∂t
(x, t), etc. (1.2.13)

The lhs of (1.2.13) is a variation of (∂u/∂t); the rhs is the time derivative of the
variation of u.

For convenience let us introduce the field λ = λ(x, t):

λ ≡ W f

(
∂ û

∂t
+ c

∂ û

∂x
− F

)
. (1.2.14)

Then the first term in δJ is

2

T∫
0

dt

L∫
0

dx λ

{
∂δu

∂t
+ c

∂δu

∂x

}

= 2


 L∫

0

dx λδu



t=T

t=0

+ 2


 T∫

0

dt λcδu



x=L

x=0

+ 2

T∫
0

dt

L∫
0

dx

{
−∂λ

∂t
− c

∂λ

∂x

}
δu(x, t). (1.2.15)



16 1. Variational assimilation

Notice that the last explicit term in δJ may be written as

2

T∫
0

dt

L∫
0

dx w

M∑
m=1

{û(xm, tm)− dm}δu(x, t)δ(x − xm)δ(t − tm), (1.2.16)

where the second and third δs denote Dirac delta functions. We have now expressed
δJ entirely in terms of δu(x, t). None of δut , δux and δu(xm, tm) still appear.

We now argue that

δJ = O(δu)2, (1.2.17)

implying that û is an extremum ofJ , provided that the coefficients of δu(x, t), δu(L , t),
δu(0, t), δu(0, x) and δu(T, x) all vanish. Examination of (1.2.12), (1.2.15) and (1.2.16)
shows that these conditions are, respectively,

− ∂λ

∂t
− c

∂λ

∂x
+ w

M∑
m=1

{ûm − dm}δ(x − xm)δ(t − tm) = 0, (1.2.18)

λ(L , t) = 0, (1.2.19)

−cλ(0, t)+Wb{û(0, t)− B(t)} = 0, (1.2.20)

−λ(x, 0)+Wi {û(x, 0)− I (x)} = 0, (1.2.21)

λ(x, T ) = 0, (1.2.22)

where ûm ≡ û(xm, tm). Recall the definition of λ:

λ ≡ W f

{
∂ û

∂t
+ c

∂ û

∂x
− F

}
. (1.2.23)

These conditions (1.2.18)–(1.2.23) constitute the Euler–Lagrange equations for local
extrema of the penalty functional J defined in (1.2.10). How shall we untangle them,
to find our best-fit estimate û of the ocean circulation u?

Note 1. Substituting (1.2.23) into (1.2.18) yields “the” Euler–Lagrange equation
familiar to physicists.

Note 2. Students sometimes derive (1.2.12) from (1.2.10) by expanding the squares
in the integrand, evaluating at û + δu and at û, and then subtracting. It is less
tedious to calculate as follows:

δJ [u]
∣∣∣
u=û

= δW f

T∫
0

dt

L∫
0

dx

{
∂u

∂t
+ c

∂u

∂x
− F

}2

+ · · ·

= W f

T∫
0

dt

L∫
0

dx δ

({
∂u

∂t
+ c

∂u

∂x
− F

}2
)
+ · · ·
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= W f

T∫
0

dt

L∫
0

dx 2

{
∂ û

∂t
+ c

∂ û

∂x
− F

}
δ

{
∂u

∂t
+ c

∂u

∂x
− F

}
+ · · ·

= 2W f

T∫
0

dt

L∫
0

dx

{
∂ û

∂t
+ c

∂ û

∂x
− F

}{
∂δu

∂t
+ c

∂δu

∂x

}
+ · · · ,

(1.2.24)

as in (1.2.12).

Exercise 1.2.1 (requires care)
Consider the integral

I =
T∫

0

dt

L∫
0

dxλ2 . (1.2.25)

Substitute for one of the factors of λ in (1.2.25), using (1.2.23). Integrate by parts,
and use (1.2.18)–(1.2.22). Conclude that if W f , Wb, Wi and w > 0, then the Euler–
Lagrange equations (1.2.18)–(1.2.23) have a unique solution. Discuss the case Wi = 0;
it occurs widely in the published literature (Bennett and Miller, 1991). �

Exercise 1.2.2
Consider slow, viscous flow driven by an externally imposed pressure gradient, as in
Exercise 1.1.3. Assume measurements of u are available, as §1.2.2. Resolve this ill-
posed problem by defining a generalized inverse in terms of a weighted, least-squares
best fit to all the information. Derive the Euler–Lagrange equations, and prove that they
have at most one solution. �

Exercise 1.2.3
Introduce a forcing error �t f kn into the finite-difference model (1.1.18). By analogy to
(1.2.9), a simple penalty function is

J [u] = W f

∑
k

∑
n

(
f kn
)2
�x�t + · · · , (1.2.26)

where the ellipsis indicates initial penalties, etc., that will be considered below in stages,
as will the ranges of the summations in (1.2.26).

(i) Show that the Euler–Lagrange equation for extrema of J with respect to
variations of ukn is

λk−1
n − λkn − c(�t/�x)

(
λkn − λkn+1

) = · · · , (1.2.27)

where the ellipses indicate contributions from variations of data penalties
in (1.2.26).
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(ii) The range of summation over the time index k in (1.2.26) is 0 ≤ k ≤ K − 1,
where K�t = T . By analogy to (1.2.9), a simple initial penalty is

J [u] = · · · +Wi

∑
n

(
u0
n − In

)2 + · · · . (1.2.28)

Show that, for extrema with respect to u0
n and uKn ,

−λ0
n +Wi

{
û0
n − In

} = 0 (1.2.29)

and

λK−1
n = 0, (1.2.30)

respectively. Compare these with (1.2.21) and (1.2.22).
(iii) Choose a range of summation over the space index n in (1.2.26), and

prescribe a simple boundary penalty analogous to that in (1.2.9). Derive
extremal conditions analogous to (1.2.19) and (1.2.20).

(iv) Assume that there are M measurements of ukn , that is, measured values of
u(x, t) at grid points in space and time. Prescribe a simple data penalty as
in (1.2.9) and derive the contributions to (1.2.27) from variations of this data
penalty.
Hint: Replace the Dirac delta functions δ(xn − xm) and δ(tk − t j ) with
(�x)−1δnm and (�t)−1δk j respectively, where δnm is the Kronecker delta:

δnm =
{

1 n = m
0 n �= m.

(1.2.31)

�

1.3 Solving the Euler–Lagrange equations
using representers

1.3.1 Least-squares fitting by explicit solution
of extremal conditions

The mixed initial-boundary value problem (1.1.1)–(1.1.3) for the first-order wave equa-
tion, together with the data (1.2.1) and the simple least-squares penalty functional
(1.2.10), have led us to the awkward system of Euler–Lagrange equations (1.2.18)–
(1.2.23). The solution is the best-fit ocean circulation û. It may be obtained explicitly, by
an intricate construction involving “representer functions”. The effort is rewarded not
only with structural insight, but also with enormous gains in computational efficiency
compared to conventional minimization of (1.2.10) using gradient information.
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1.3.2 The Euler–Lagrange equations are a two-point
boundary value problem in time

After a little reordering, the Euler–Lagrange equations for local extrema û of the penalty
functional J [u] are:

(B)



−∂λ

∂t − c ∂λ
∂x = −w

M∑
m=1
{ûm − dm}δ(x − xm)δ(t − tm)

λ(x, T ) = 0

λ(L , t) = 0,

(1.3.1)

(1.3.2)

(1.3.3)

(F)




∂ û
∂t + c ∂ û

∂x = F +W−1
f λ

û(x, 0) = I (x)+W−1
i λ(x, 0)

û(0, t) = B(t)+ cW−1
b λ(0, t).

(1.3.4)

(1.3.5)

(1.3.6)

Note 1. Our best estimates for f, i and b are

f̂ (x, t) ≡ W−1
f λ(x, t), ı̂(x) ≡ W−1

i λ(x, 0), b̂(t) ≡ cW−1
b λ(0, t).

(1.3.7)
Note 2. Eq. (1.3.1) is known as the “backward” or “adjoint” equation.
Note 3. At first glance, it would seem that we could proceed by integrating the

system (B) “backwards in time and to the left” (see Fig. 1.2.1), yielding λ̂(x, t),
λ̂(0, t) and λ̂(x, 0). Then we could integrate the system (F) “forwards and to the
right” (see Fig. 1.2.1), yielding the ocean circulation estimate û = û(x, t).
However, after reexamining (1.3.1), we see that it is necessary to know
û(xm, tm) in order to integrate (B). The Euler–Lagrange equations do not
consist of two initial-value problems; they constitute a single, two-point
boundary value problem in the time interval 0 ≤ t ≤ T .

1.3.3 Representer functions: the explicit solution
and the reproducing kernel

Let us introduce the representer functions. There are M of them, denoted by rm(x, t),
1 ≤ m ≤ M. Each has an “adjoint” αm(x, t), satisfying

(Bm)



−∂αm

∂t − c ∂αm
∂x = δ(x − xm)δ(t − tm)

αm(x, T ) = 0
αm(L , t) = 0.

(1.3.8)

(1.3.9)

(1.3.10)

As a consequence of the single impulse on the rhs of (1.3.8) being “bare”, we may
integrate (Bm) “backwards and to the left”, yielding αm(x, t). We may then solve for



20 1. Variational assimilation

rm by integrating (Fm) “forward and to the right”:

(Fm)




∂rm
∂t + c ∂rm

∂x = W−1
f αm

rm(x, 0) = W−1
i αm(x, 0)

rm(0, t) = cW−1
b αm(0, t).

(1.3.11)

(1.3.12)

(1.3.13)

Next, we seek a solution of (1.3.1)–(1.3.6) in the form

û(x, t) = uF (x, t)+
M∑
m=1

βmrm(x, t), (1.3.14)

where uF is the prior estimate (the solution of the forward model (1.2.2)–(1.2.4)), and
the βm are unknown constants. If we substitute (1.3.14) into (1.3.4), and derive

Dû = DuF +
M∑
m=1

βmDrm (1.3.15)

= F +W−1
f

M∑
m=1

βmαm, (1.3.16)

where D = ∂
∂t + c ∂

∂x , we find that

λ ≡ W f {Dû − F} =
M∑
m=1

βmαm . (1.3.17)

Furthermore,

−Dλ = −
M∑
m=1

βmDαm

=
M∑
m=1

βmδ(x − xm)δ(t − tm) (1.3.18)

= −w

M∑
m=1

{ûm − dm}δ(x − xm)δ(t − tm), (1.3.19)

by virtue of (1.3.1). Equating coefficients of the impulses, we obtain the optimal choices
β̂m for the representer coefficients βm :

βm = β̂m ≡ −w{ûm − dm} (1.3.20)

for 1 ≤ m ≤ M . Substituting again for ûm yields

β̂m = −w

{
uFm +

M∑
l=1

β̂lrlm − dm

}
, (1.3.21)

where uFm ≡ uF (xm, tm) and rlm ≡ rl(xm, tm).
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Hence

M∑
l=1

(rlm + w−1δlm)β̂l = hm ≡ dm − uFm , (1.3.22)

where δlm is the Kronecker delta. In matrix notation, the M equations (1.3.22) for the
M representer coefficients β̂m become

(R+ w−1I)β̂ = h ≡ d− uF . (1.3.23)

Note 1. The rhs h is known; it is the data vector minus the vector of measured values
of the prior estimate.

Note 2. The diagonal weight matrix wI is readily generalized to symmetric positive
definite matrices w.

Note 3. The l th column of the M × M “representer matrix” R consists of the M
measured values of the l th representer function rl(x, t).

Note 4. It will be shown (see (1.3.32)) that R is symmetric: R=RT.
Note 5. The generalized inverse problem of finding the field û = û(x, t), where

0 ≤ x ≤ L and 0 ≤ t ≤ T , has been exactly reduced to the problem of inverting
an M × M matrix, in order to find the M representer coefficients β̂.

Finally, we have an explicit solution for û:

û(x, t) = uF (x, t)+ (d− uF )T(R+w−1)−1r(x, t). (1.3.24)

It was established in §1.1 that the forward model (1.1.1)–(1.1.3) has a unique
solution for each choice of the inputs. Accordingly, the partial differential operator in
(1.1.1), the initial operator in (1.1.2) and the boundary operator in (1.1.3) constitute
a nonsingular operator. It may be inverted; the inverse operator is expressed explicitly
in (1.1.17) with the Green’s function γ . Introducing the measurement operators as
in (1.2.1) yields a problem with no solution, thus the operator comprising those in
(1.1.1)–(1.1.3) and (1.2.1) is singular; it is not invertible in the regular sense. However,
a generalized inverse has been defined in the weighted least-squares sense of (1.2.10),
and is explicitly expressed in (1.3.24) with the representers for the penalty functional
(1.2.10), and with the Green’s function for the nonsingular operator. Recall that uF is
given by (1.1.17), although it will in practice be computed by numerical integration
of (1.2.2)–(1.2.4). In an abuse of language, we shall refer to the best-fit û given by
(1.3.24) as the generalized inverse estimate, or simply the inverse.

Exercise 1.3.1
Verify that the initial condition (1.3.5) and boundary conditions (1.3.6) are satisfied.

�



22 1. Variational assimilation

In summary, the steps for solving the Euler–Lagrange equations are:

(1) calculate uF (x, t) and hence uF ;
(2) calculate r(x, t) and hence R;
(3) invert P ≡ R+w−1;
(4) assemble (1.3.24).

Note 1. uF (x, t) depends upon the “dynamics”, the initial operator, the boundary
operator and the choices for F, I and B.

Note 2. uF depends upon uF and the “observing network” {(xm, tm)}Mm=1.
Note 3. r depends upon the dynamics, the initial operator, the boundary operator, the

observing network and the inverted weights W−1
f , W−1

i , W−1
b .

Note 4. β̂ depends upon R, the inverse of the data weight w, and the prior data misfit
h ≡ d− uF .

Note 5. See Fig. 3.1.1 for a “time chart” implementing the representer solution.

Exercise 1.3.2
Express λ, f̂ , ı̂ and b̂ using representer functions and their adjoints. �

Exercise 1.3.3 (trivial)
Show that

JF ≡ J [uF ] = hTwh. (1.3.25)

�

Exercise 1.3.4 (nontrivial)
Show that

(i) Ĵ ≡ J [û] = hTP−1h, (1.3.26)
(ii) Ĵdata ≡ (d− û)Tw(d− û) = hTP−1w−1P−1h, (1.3.27)

and

(iii) Ĵmod ≡ Ĵ − Ĵdata = hTP−1RP−1h. (1.3.28)

Note that Ĵmod is the sum of dynamical, initial and boundary penalties. �

Let us now prove that the representer matrix is symmetric: R = RT.
First, recall that the adjoint representer αm(x, t) for a point measurement at (xm, tm)

is just the Green’s function γ (x, t, xm, tm), where γ (x, t, y, s) satisfies

−∂γ

∂t
− c

∂γ

∂x
= δ(x − y)δ(t − s), (1.3.29)
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subject to γ = 0 at t = T , γ = 0 at x = L . Now let �(x, t, y, s) satisfy

∂

∂t
� + c

∂

∂x
� = W−1

f γ, (1.3.30)

subject to � = W−1
i γ at t = 0, and � = cW−1

b γ at x = 0. Thus rm(x, t) =
�(x, t, xm, tm).

Exercise 1.3.5 (Bennett, 1992)
Show that

�(x, t, y, s) = W−1
f

∫
dz
∫
dr γ (z, r, x, t)γ (z, r, y, s)

+W−1
i

∫
dz γ (z, 0, x, t)γ (z, 0, y, s)

+ c2W−1
b

∫
dr γ (0, r, x, t)γ (0, r, y, s). (1.3.31)

Hence representers are not Green’s functions; rather they are “squares” of Green’s
functions. Note that � is symmetric, but γ is not symmetric. �

Finally we deduce that

rlm ≡ rl(xm, tm) = �(xm, tm, xl , tl)

= �(xl , tl , xm, tm)

= rm(xl , tl)

≡ rml . (1.3.32)

That is, R = RT. Note that � is known as a “reproducing kernel” or “rk”, for reasons
given in §2.1.

1.4 Some limiting choices of weights: “weak”
and “strong” constraints

1.4.1 Diagonal data weight matrices, for simplicity

The parade of formulae in the previous sections should become more meaningful as
we explore some limiting choices for the weights. We shall assume that the data weight
matrix is diagonal:

w = wI, (1.4.1)

in order to avoid technicalities such as the norm of a matrix. Note that (1.4.1) implies

w−1 = w−1I. (1.4.2)
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1.4.2 Perfect data

If we believe that the data are perfectly accurate, then we should give infinite weight
to them. In this case we hope that the inverse estimates agree exactly with the data, at
the measurement sites. Let us therefore consider the limit: w →∞.

Hence

P ≡ R+ w−1I → R, (1.4.3)

β̂ → R−1h, (1.4.4)

and

û(x, t) → uF (x, t)+ r(x, t)TR−1h. (1.4.5)

Measuring both sides of (1.4.5) yields

û→ uF + RTR−1h, (1.4.6)

= uF + h (1.4.7)

= uF + (d− uF ) (1.4.8)

= d, (1.4.9)

as required. Note that we have used the symmetry of the representer matrix: RT = R.
In this limit, the inverse estimate interpolates the data.

1.4.3 Worthless data

Now suppose that we believe the data are worthless, that is, we have no information
about the magnitude of the data errors. In practice we always have some idea: the errors
in altimetry data do not exceed the height of the orbit of the satellite, but that is infinite
by any hydrographic standard. We should therefore consider the limit: w → 0. Then

P−1 = (R+ w−1I)−1 → 0, (1.4.10)

hence

û(x, t) → uF (x, t). (1.4.11)

That is, the data have no influence on the inverse estimate, as would be desirable.

1.4.4 Rescaling the penalty functional

The Euler–Lagrange equations for local extrema ofJ [u] are also those for local extrema
of 2J [u]. This is true even if the dynamics and observing systems are nonlinear, or
if J is not quadratic. Thus the limiting cases: w →∞, w → 0 really refer to w/W f ,
w/Wi , w/Wb all→∞, or all→ 0. That is, they refer to the relative weighting of the
various information. However, the prior and posterior functional values JF ≡ J [uF ],
and Ĵ ≡ J [û] do depend upon the absolute values of the weights. This will be crucial
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later, when we interpret these numbers as test statistics for the model as a formal
hypothesis about the ocean.

1.4.5 Perfect dynamics: Lagrange multipliers
for strong constraints

The admission of the error field f = f (x, t) in (1.2.6), and the inclusion of
W f
∫ L

0 dx
∫ T

0 dt f 2 in the penalty functional (1.2.9), leads to the model being described
as a “weak constraint” upon the inversion process (Sasaki, 1970). The model may al-
ternatively be imposed as a “strong constraint”. In that case, the penalty functional is

K[u] = Wi

L∫
0

dx i(x)2 +Wb

∫
dt b(t)2 + w

M∑
m=1

ε2
m . (1.4.12)

Compare (1.4.12) and (1.2.9): i , b and εm are defined as before by (1.2.7), (1.2.8) and
(1.2.1) respectively, but now we require that u = u(x, t) satisfy (1.1.1) exactly. This
requirement may be met in the search for the minimum of K, by appending the strong
constraint (1.1.1) to K using a Lagrange multiplier field ψ = ψ(x, t):

L[u, ψ] = K[u]+ 2

L∫
0

dx

T∫
0

dt ψ(x, t)

{
∂u

∂t
(x, t)+ c

∂u

∂x
(x, t)− F(x, t)

}
.

(1.4.13)

The factor of two will be seen to be convenient. Note that the augmented penalty func-
tional L depends on u and ψ , which may vary independently. The total variation in L is

δL = δK + 2

L∫
0

dx

T∫
0

dt δψ

(
∂u

∂t
+ c

∂u

∂x
− F

)

+ 2

L∫
0

dx

T∫
0

dt ψ

(
δ
∂u

∂t
+ cδ

∂u

∂x

)
+ O(δ2). (1.4.14)

If the pair of fields ψ̂ = ψ̂(x, t) and û = û(x, t) extremize L for arbitrary variations
δψ and δu, then

−∂ψ

∂t
− c

∂ψ

∂x
= −w

M∑
m=1

{ûm − dm} δ(x − xm)δ(t − tm) (1.4.15)

ψ(x, T ) = 0 (1.4.16)

ψ(L , t) = 0 (1.4.17)
∂ û

∂t
+ c

∂ û

∂x
= F (1.4.18)

û(x, 0) = I (x)+W−1
i ψ(x, 0) (1.4.19)

û(0, t) = B(t)+ cW−1
b ψ(0, t). (1.4.20)
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The strong constraint (1.4.18) is immediately recovered from (1.4.14), if δL = 0
and δψ is arbitrary. The other Euler–Lagrange conditions are recovered as in §1.2.
Comparing (1.4.15)–(1.4.20) with (1.3.1)–(1.3.6) establishes that

ψ(x, t) = lim
W f→∞

λ(x, t) . (1.4.21)

It would seem from (1.3.1)–(1.3.3) that λ is independent of W f , but there is an implicit
dependence through ûm, 1 ≤ m ≤ M, in (1.3.1). Thus, we may recover the “strong
constraint” inverse from the “weak constraint” inverse in the limit as W f →∞.

1.5 Regularity of the inverse estimate

1.5.1 Physical realizability

Thus far our construction has been formal: we paid no attention to the physical realiz-
ability of the inverse estimate û. We shall now see that û is in fact unrealistic, unless
we make more interesting choices for the weights W f , Wi and Wb.

1.5.2 Regularity of the Green’s functions
and the adjoint representer functions

Consider “the” Euler–Lagrange equation:

−∂λ

∂t
− c

∂λ

∂x
= w

M∑
m=1

(dm − ûm)δ(x − xm)δ(t − tm). (1.5.1)

In fact, just consider the equation for an adjoint representer function:

−∂αm

∂t
− c

∂αm

∂x
= δ(x − xm)δ(t − tm), (1.5.2)

subject to

αm(x, T ) = 0, αm(L , t) = 0 . (1.5.3)

The solution is the Green’s function:

αm(x, t) = γ (x, t, xm, tm)

= δ(x − xm − c(t − tm))H (tm − t), (1.5.4)

and λ(x, t) = βTα(x, t). Clearly the αm and hence λ are singular, and not just at the
data points (xm, tm): see Fig. 1.5.1.

Now û obeys

∂ û

∂t
+ c

∂ û

∂x
= F + f̂ = F +W−1

f λ, (1.5.5)
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T

L0

t

x

(xm, tm)

tm-c -1xm

Figure 1.5.1 Support of
αm(x, t). The arrows (the
delta functions) are normal
to the page.

T

L0

t

x

(xM, tM)

(xm, tm)

(x1, t1)

(x3, t3)

(x2, t2)

(x4, t4)

Figure 1.5.2 Support of
singularities in û(x, t).

subject to the initial and boundary conditions

û = I + ı̂ = I +W−1
i λ, û = B + b̂ = B + cW−1

b λ . (1.5.6)

So our estimates of f̂ , ı̂ and b̂ are singular. There is neither dispersion nor diffusion
in our “toy” ocean dynamics, so û is also singular: see Fig. 1.5.2. This is hardly a
satisfactory combination of dynamics and data!

Exercise 1.5.1
Express rm and û using the Green’s function γ . �

1.5.3 Nondiagonal weighting: kernel inverses of weights

We want the data to influence the circulation at remote places and times, so we should
give weight to products of residuals at remote places and times. We therefore generalize
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the penalty functional (1.2.9) to

J [u] =
T∫

0

dt

T∫
0

ds

L∫
0

dx

L∫
0

dy f (x, t)W f (x, t, y, s) f (y, s)

+
L∫

0

dx

L∫
0

dy i(x)Wi (x, y)i(y)+
T∫

0

dt

T∫
0

ds b(t)Wb(t, s)b(s)

+
M∑
l=1

M∑
m=1

εlwlmεm . (1.5.7)

Thus our previous, trivial choices were

W f (x, t, y, s) = W f · δ(x − y)δ(t − s), etc. (1.5.8)

The notations

• ≡
T∫

0

dt

L∫
0

dx, ◦ ≡
L∫

0

dx, ∗ ≡
T∫

0

dt

allow us to write J more compactly as

J [u] = f •W f • f + i ◦Wi ◦ i + b ∗Wb ∗ b + εTwε. (1.5.9)

Exercise 1.5.2
Define the weighted residual or adjoint variable λ(x, t) by

λ ≡ W f •
{

∂ û

∂t
+ c

∂ û

∂x
− F

}
. (1.5.10)

Then show that the Euler–Lagrange equations for minima of (1.5.9) are just as
before. �

Exercise 1.5.3
Define C f , the inverse of W f , by

C f •W f ≡
T∫

0

dr

L∫
0

dz C f (x, t, z, r )W f (z, r, y, s) (1.5.11)

= δ(x − y)δ(t − s) . (1.5.12)

Define Ci and Cb analogously, and define Cε by

wCε = I . (1.5.13)
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Each entity in (1.5.13) is an M × M matrix. Now, write out the representer solution
of the Euler–Lagrange equations. Verify that the solution only requires C f , Ci , Cb and
Cε ; that is, it does not require their inverses, the weights W f , Wi , Wb and w. �

1.5.4 The inverse weights smooth the residuals

The inverse estimate û obeys

∂ û

∂t
(x, t)+ c

∂ û

∂x
(x, t) = F(x, t)+ (C f • λ)(x, t)

= F(x, t)+
T∫

0

ds

L∫
0

dy C f (x, t, y, s)λ(y, s), (1.5.14)

subject to

û(x, 0) = I (x)+ (Ci ◦ λ)(x, 0), (1.5.15)

and

û(0, t) = B(t)+ c(Cb ∗ λ)(0, t) . (1.5.16)

The supposition is that C f , Ci and Cb smooth the singular behavior of λ, yielding
regular estimates for f̂ ≡ C f • λ, ı̂ ≡ Ci ◦ λ and b̂ = cCb ∗ λ, leading in turn to a
regular estimate û for the ocean circulation.

In summary, we should avoid “diagonal” weighting.

Note 1. The adjoint variables α and λ remain singular, but r and u should become
regular.

Note 2. Evaluation of the convolutions in (1.5.14), (1.5.15) and (1.5.16) at each
position and time is potentially very expensive: consider three space
dimensions and time.

Note 3. Functional analysis sheds much light on smoothness: see §2.6.

Exercise 1.5.4
Consider slow, viscous flow as discussed in Exercises 1.1.3 and 1.2.2. Construct both
the adjoint representers α and the representers r, using the Green’s function φ given in
(1.1.26). How smooth are α and r? Is nondiagonal weighting of either the dynamical
penalty or the initial penalty necessary? �

Exercise 1.5.5
Generalize the definition of the rk � given in (1.3.30) et seq. Prove that
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(i) rm(x, t) = �(x, t, xm, tm), (1.5.17)
for 1 ≤ m ≤ M ;

(ii) � = γ • C f • γ + γ ◦ Ci ◦ γ + c2γ ∗ Cb ∗ γ. (1.5.18)

�

Note:
The adjoint equations (1.3.1)–(1.3.3) and forward equations (1.5.14)–(1.5.16),
which constitute the most general form of the Euler–Lagrange equations devel-
oped in §1.2 and §1.5, are restated for convenience in §4.2 as (4.2.1)–(4.2.6).



Chapter 2

Interpretation

The calculus of variations uses Green’s functions and representers to express the best
fit to a linear model and data. Mathematical construction of the representers is devious,
and themeaning of the representer solution to the “control problem” of Chapter 1 is not
obvious. There is a geometrical interpretation, in terms of observable and unobservable
degrees of freedom.Unobservability defines an orthogonality, and the representers span
a finite-dimensional subspace of the space of all model solutions or “circulations”.
The representers are in fact the observable degrees of freedom.
A statistical interpretation is also available: if the unknown errors in the model

are regarded as random fields having prescribed means and covariances, then the
representers are related, via the measurement processes, to the covariances of the
circulations. Thus the representer solution to the variational problem is also the optimal
linear interpolation, in time and space, of data from multivariate, inhomogeneous and
nonstationary random fields. The minimal value of the penalty functional that defines
the generalized inverse or control problem is a random number. It is the χ2 variable, if
the prescribed error means or covariances are correct, and has one degree of freedom
per datum. Measurements need not be pointwise values of the circulation; representers
along with their geometrical and statistical interpretations may be constructed for all
bounded linear measurement functionals.
Analysis of the conditioning of the determination of the representer amplitudes

reveals those degrees of freedom which are the most stable with respect to the observa-
tions. This characterization also indicates the efficiency of the observing system – the
fewer unstable degrees of freedom, the better.
Interpreting the variational formulation is completed by demonstrating the relation-

ship between weights, covariances and roughness penalties.

31
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2.1 Geometrical interpretation

2.1.1 Alternatives to the calculus of variations

After formulating the penalty functional that defines the best fit to our model and our
data, we found a local extremum using the theory of the calculus of the first variation.
Specifically, we derived the Euler–Lagrange equations, and explicitly expressed their
solution with representers. These functions were defined as special and directly cal-
culable solutions of Euler–Lagrange-like equations. We shall now construct the same
extremum for the penalty functional using Hilbert Space theory (Yoshida, 1980). This
geometrical construction reveals the efficiency of minimization algorithms based on
the Euler–Lagrange equations.

Exercise 2.1.1
How do we know that we shall find the same extremum? �

2.1.2 Inner products

We begin by defining an inner product for two “ocean circulations” u = u(x, t) and
v = v(x, t):

〈u, v〉 ≡
T∫

0

dt

T∫
0

ds

L∫
0

dx

L∫
0

dy

{(
∂

∂t
+ c

∂

∂x

)
u(x, t)

}

×W f (x, t, y, s)

{(
∂

∂s
+ c

∂

∂y

)
v(y, s)

}

+
L∫

0

dx

L∫
0

dy u(x, 0)Wi (x, y)v(y, 0)

+
T∫

0

dt

T∫
0

ds u(0, t)Wb(t, s)v(0, s)

= fu •W f • fv + u ◦Wi ◦ v + u ∗Wb ∗ v, (2.1.1)

where fu is the residual for u (Bennett, 1992).

Exercise 2.1.2
Verify that 〈 , 〉 is an inner product, that is:

(i) 〈u, v〉 = 〈v, u〉 (assume the W are symmetric),
(ii) 〈cu + dw, v〉 = c〈u, v〉 + d〈w, v〉 for all real numbers c and d,

(iii) 〈u, u〉 ≥ 0,
(iv) 〈u, u〉 = 0 ⇔ u ≡ 0 (nontrivial).
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In terms of the inner product, our penalty functional is

J [u] = 〈u − uF , u − uF 〉 + (d− u)Tw(d− u). (2.1.2)

�

2.1.3 Linear functionals and their
representers; unobservables

Consider the linear mapping

u → u(ξ, τ ), (2.1.3)

where the lhs is a field, while the rhs is a particular value of the field. This mapping is
a linear functional: it linearly maps a function to a single number.

Theorem 2.1.1
If the vector space of admissible fields u, with the inner product 〈 , 〉, is complete (that
is, if it is a Hilbert Space), then there is a function ρ(x, t, ξ, τ ) such that

〈ρ, u〉 = u(ξ, τ ). (2.1.4)

So ρ “represents” the measurement process. This is the Riesz representation
theorem. Given ρ, we may express J entirely in terms of inner products (Wahba and
Wendelberger, 1980):

J [u] = 〈u − uF , u − uF 〉 + (d− 〈ρ, u〉)Tw(d− 〈ρ, u〉), (2.1.5)

where ρm = ρ(x, t, xm, tm), 1 ≤ m ≤ M.
Now, any field u = u(x, t) may be expressed as

u(x, t) = uF (x, t)+
M∑
m=1

νmρ(x, t, xm, tm)+ g(x, t), (2.1.6)

where uF is again the solution of (1.2.2)–(1.2.4), and where the νm are any coefficients,
since we may always choose

g ≡ u − uF − νTρ. (2.1.7)

Let us now impose the condition that g is “unobservable”:

〈ρm, g〉 = g(xm, tm) = 0 (2.1.8)

for 1 ≤ m ≤ M . That is, g is orthogonal to each ρm . For a given u and a given uF , we
may use (2.1.8) to derive M equations for the νm ; then g is uniquely defined by (2.1.7).
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2.1.4 Geometric minimization with representers

But we’re not given u; we’re only given uF . Thus ν and g are arbitrary. We wish to
find the u that minimizes J [u]. Let us evaluate J using (2.1.5) and (2.1.6):

J [u] = 〈νTρ+ g,νTρ+ g〉
+ (d− 〈ρ, uF + ρTν + g〉)Tw(d− 〈ρ, uF + ρTν + g〉)

= νT〈ρ,ρT〉ν + νT〈ρ, g〉 + 〈g,ρT〉ν + 〈g, g〉
+ (d− 〈ρ, uF 〉 − 〈ρ,ρT〉ν − 〈ρ, g〉)Tw(d− 〈ρ, uF 〉 − 〈ρ,ρT〉ν − 〈ρ, g〉).

(2.1.9)

Next impose the M orthogonality conditions (2.1.8), and use the representing property
of ρ to obtain

J [u] = J [ν, g] = νT〈ρ,ρT〉ν + 〈g, g〉
+ (d− uF − 〈ρ,ρT〉ν)Tw(d− uF − 〈ρ,ρT〉ν). (2.1.10)

The penalty functional J is now expressed explicitly in terms of ν and g. Note that g
only appears once on the rhs of (2.1.10). Clearly J is least with respect to the choice
of g if 〈g, g〉 = 0, that is

g = ĝ ≡ 0. (2.1.11)

We discard the field g orthogonal to all the representers. It remains to select the νm ,
1 ≤ m ≤ M . But first note that

σlm ≡ 〈ρ,ρT〉lm = 〈ρl , ρm〉 = 〈ρm, ρl〉
= ρm(xl , tl) = ρl(xm, tm)

= σml , (2.1.12)

so σ = σT and J , which now only depends upon ν, may be expressed as

J [u] = J [ν] = νTσν + (h− σν)Tw(h− σν), (2.1.13)

where h ≡ d− uF . Completing the square,

J [ν] = (ν − ν̂)TS(ν − ν̂)+ hTwh− ν̂TSν̂, (2.1.14)

where S = σ + σwσ and Sν̂ = σwh, both of which are given. We finally minimizeJ
by choosing ν = ν̂, and then Ĵ ≡ J [ν̂] = hTwh− ν̂TSν̂. Providedσ is nonsingular,
we may untangle these results to find

(σ +w−1)ν̂ = h, (2.1.15)

which looks familiar.
Recall that our minimizer is

û = uF + ν̂Tρ+ ĝ, (2.1.16)

where ĝ satisfies (2.1.11), and ν̂ satisfies (2.1.15).
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2.1.5 Equivalence of variational and geometric
minimization: the data space

Surely the representers ρ defined by the representing property (2.1.4) are the same as
the representer functions r that satisfy the Euler–Lagrange-like system (1.3.8)–(1.3.13),
in which case

σ = R, ν̂ = β̂ ? (2.1.17)

Exercise 2.1.3
Show that

ρm(x, t) = rm(x, t) (2.1.18)

for 0 ≤ x ≤ L , 0 ≤ t ≤ T , and 1 ≤ m ≤ M .

Hint
Consider (2.1.4):

u(xm, tm) ≡ 〈ρm, u〉

≡
T∫

0

dt

T∫
0

ds

L∫
0

dx

L∫
0

dy

{(
∂

∂t
+ c

∂

∂x

)
ρm(x, t)

}

×W f (x, t, y, s)

{(
∂

∂s
+ c

∂

∂y

)}
u(y, s)

+
L∫

0

dx

L∫
0

dy ρm(x, 0)Wi (x, y)u(y, 0)

+
T∫

0

dt

T∫
0

ds ρm(0, t)Wb(t, s)u(0, s). (2.1.19)

Integrate the first integral by parts, and then compare (2.1.19) to

u(xm, tm) =
T∫

0

dt

L∫
0

dx u(x, t)δ(x − xm)δ(t − tm). (2.1.20)

Since the partially-integrated (2.1.19) must agree with (2.1.20) for all fields u(x, t)
having initial values u(x, 0) and boundary values u(0, t), we may equate their respective
coefficients, arriving at (1.3.8)–(1.3.13). We have proved that for any field u,

〈r, u〉 = u. (2.1.21)

�
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Note 1. We have established that

û(x, t)− uF (x, t) = β̂
T
r(x, t). (2.1.22)

That is, the difference between the inverse estimate û and the prior estimate uF
is a linear combination of the M representers r1, . . . , rM . The difference lies in
the observable space, that is, we reject any additional difference g that is
unobservable: 〈r, g〉 = 0. We began with a search for the optimal or best-fit
field û(x, t), where 0 ≤ x ≤ L and 0 ≤ t ≤ T . This would be a search amongst
an infinite number of degrees of freedom (the “state space”). We have exactly
reduced the task to a search for the M optimal representer coefficients
β̂1, . . . , β̂M : see Fig. 2.1.1. These are the observable degrees of freedom (the
“data space”).

u

Data

State

State

Nul
l

Figure 2.1.1 The plane represents the state space. It has an
axis u(x, t) for each (x, t) in the intervals 0 ≤ x ≤ L ,
0 ≤ t ≤ T . In principle this is an infinite dimensional space.
In practice, when we replace continuous intervals and partial
differential equations with grids and partial difference
equations, the state space usually has a very large but finite
dimension. The contour is defined by a constant value for the
penalty functional J [u], and has principal axes
R

Data (for βTr(x, t)) and R
Null (for g(x, t)). Note that the

representers r1(x, t), . . . , rM (x, t) are known, and span the
data space, so only the unknown β1, . . . , βM vary in the data
space. The unobservable field g(x, t) is unknown and variable
for 0 ≤ x ≤ L , 0 ≤ t ≤ T . Realizing that ĝ is zero greatly
reduces the size of the search for û, as we need only search in
the data space.



2.2 Statistical interpretation 37

Note 2. Recall from §1.3.3 the definition of � as the representer for point
measurements. Hence for any field u,

〈�, u〉 = u, (2.1.23)

and consequently � is known as a “reproducing kernel.”

2.2 Statistical interpretation: the relationship
to “optimal interpolation”

2.2.1 Random errors

Viewed as a generalized inverse or as a control problem, the ocean circulation u is
estimated by adjusting the forcing f , initial value i , and boundary value b in order to
obtain a better fit to the data, given that there are weights or “costs” W f , Wi , Wb and w
for these control variables and for the data misfit. Alternatively, the fields f , b and i for
0 ≤ x ≤ L and 0 ≤ t ≤ T , and the data error vector ε, may be viewed as members of
an ensemble of such quantities. That is, they are random. We shall attempt to estimate
which f , i , b and ε were present in the “ocean” in 0 ≤ x ≤ L during our “cruise”
for 0 ≤ t ≤ T . We shall recover an interpretation of the “variational assimilation”
of §1.2 in terms of the “optimal interpolation” routinely used in meteorology and
oceanography.

2.2.2 Null hypotheses

In order to make these estimates, we shall have to make some assumptions about the
ensemble. These assumptions compose a null hypothesisH0:

E f (x, t) = Ei(x) = Eb(t) = Eεm = 0 (2.2.1)

for 0 ≤ x ≤ L , 0 ≤ t ≤ T and 1 ≤ m ≤ M , where E( ) denotes the ensemble average
or mean;

E( f (x, t) f (y, s)) = C f (x, t, y, s),

E(i(x)i(y)) = Ci (x, y),

E(b(t)b(s)) = Cb(t, s), (2.2.2)

and

E(εεT) = Cε,

while

E( f i) = E( f b) = E( f εm) = E(ib) = E(iεm) = E(bεm) = 0. (2.2.3)
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Note 1. The covariances C f , Ci , Cb and Cε are explicit functional or tabular forms.
Note 2. Only first and second moments are given in H0 = {(2.2.1), (2.2.2), (2.2.3)};

if the random variables f , i , b and ε are Gaussian, these moments determine the
probability distribution function (pdf).

Note 3. The alternative hypothesis is that either (2.2.1), (2.2.2), or (2.2.3) is not true.

2.2.3 The reproducing kernel is a covariance

Let us now define v = v(x, t) by

u(x, t) = uF (x, t)+ v(x, t). (2.2.4)

That is, v is the random error in our prior estimate or forward solution uF . The latter
corresponds to our prior estimates F , I and B for the forcing, etc. These estimates are
made prior to knowing the data d. Clearly

∂v

∂t
+ c

∂v

∂x
= f, (2.2.5)

subject to v = i at t = 0, and v = b at x = 0. We may use the Green’s function γ to
write

v = γ • f + γ ◦ i + cγ ∗ b. (2.2.6)

Hence

Ev = 0. (2.2.7)

Exercise 2.2.1
Derive in detail the covariance for v:

Cv ≡ E(vv) = γ • E( f f ) • γ + γ ◦ E(i i) ◦ γ + c2γ ∗ E(bb) ∗ γ

= γ • C f • γ + γ ◦ Ci ◦ γ + c2γ ∗ Cb ∗ γ (2.2.8)

= �. (2.2.9)

That is, the covariance of the errors in the prior estimate is just the reproducing kernel
(Weinert, 1982; Bennett, 1992). �

2.2.4 “Optimal Interpolation”, or best linear unbiased
estimation; equivalence of generalized
inversion and OI

We shall now outline the method of “optimal interpolation” (OI) for estimating a field
u, given a first-guess uF and data d (Bretherton et al., 1976; Daley, 1991; Thiébaux
and Pedder, 1987). The first guess need not be a model solution.
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Suppose the true field is

u(x, t) = uF (x, t)+ q(x, t), (2.2.10)

and suppose as before that

d = u+ ε, (2.2.11)

where

Eq(x, t) = Eεm = 0 (2.2.12)

for 0 ≤ x ≤ L , 0 ≤ t ≤ T and 1 ≤ m ≤ M ; and suppose that

E(q(x, t)q(y, s)) = Cq (x, t, y, s),
E(εεT) = Cε,

and
E(q(x, t)ε) = 0




(2.2.13)

for 0 ≤ x , y ≤ L , 0 ≤ t , s ≤ T .

Note 1. E( ) denotes an ensemble average, given the prior estimate uF .
Note 2. Eu = EuF + Eq = uF + 0 = uF .
Note 3. Ed = Eu+ Eε = EuF + Eq+ Eε = uF + 0+ 0 = uF .

We seek the best linear unbiased estimate of u, that is

uL (x, t) = uF (x, t)+ (d− uF )Ts(x, t), (2.2.14)

where s1(x, t), . . . , sM (x, t) are M as yet unchosen non-random interpolants.

Note 1. uL is linear in uF and d.
Note 2. uL is unbiased: EuL = uF = Eu.
Note 3. uL is best if

Ee2
L (x, t) ≡ E{u(x, t)− uL (x, t)}2 (2.2.15)

is least for each (x, t).

Now

Ee2
L = E{uF + q − uF − (uF + q+ ε− uF )Ts}2 (2.2.16)

= E{q − (q+ ε)Ts}2
= Eq2 − E{q(q+ ε)T} s− sT E{(q+ ε)q}
+ sT E{(q+ ε)(q+ ε)T}s (2.2.17)

for each (x, t). We want

∂Ee2
L

∂sm
= 0 (2.2.18)
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for 1 ≤ m ≤ M , at each (x, t). That is,

−E{(q+ ε)q} + E{(q+ ε)(q+ ε)T} s = 0,

or

−E(qq)+ {E(qqT)+ E(εεT)} s = 0 (2.2.19)

since E(qε) = 0 by assumption. In detail, (2.2.19) is

−Cq (x, t, xn, tn)+
M∑
m=1

{
Cq (xn, tn, xm, tm)+ Cεn,m

}
sm(x, t) = 0 (2.2.20)

for 0 ≤ x ≤ L , 0 ≤ t ≤ T and 1 ≤ n ≤ M . Solving (2.2.20) for sn yields

sn(x, t) =
M∑
m=1

{Cq + Cε}−1
n,mCq (x, t, xm, tm), (2.2.21)

where the superscript “−1” indicates a matrix inverse, and {Cq}n,m =
Cq (xn, tn, xm, tm). These s(x, t) are the optimal interpolants. They do not depend upon
uF or d, but do depend upon the prior covariances Cq and Cε . In conclusion our best
linear unbiased estimate or BLUE is

uL (x, t) = uF (x, t)+ (d− uF )T{Cq + Cε}−1Cq (x, t). (2.2.22)

Now compare (2.2.22) with (1.3.24), and recall the first line in (1.3.32).
We have proved:

Generalized inversion (the minimization of the integral penalty functional
J [u]) is the same as optimal interpolation (the minimization of the local error
variance Ee2

L (x, t)) when the solution of the forward model uF is the mean
field, when the data weight matrix w is the inverse of the data error covariance
matrix Cε , and when the reproducing kernel � is the covariance Cq . In
particular (see (2.2.8), (2.2.9)),

rm(x, t) = �(x, t, xm, tm) = Cv(x, t, xm, tm) = Cq (x, t, xm, tm),

Rnm = �(xn, tn, xm, tm) = Cv(xn, tn, xm, tm) = Cq (xn, tn, xm, tm).

Generalized Inversion is Optimal Interpolation

Note 1. Our model is linear, and the data are pointwise.
Note 2. OI is widely used in meteorology and oceanography, for the “analysis” or

“mapping” of scalar data when the statistical properties of the fields are
plausibly independent of coordinate origins or orientations, both in space and
time. That is, when

Cq (x, t, y, s) = Cq (|x − y|, |t − s|), (2.2.23)



2.3 The reduced penalty functional 41

for example. Such covariances need only involve a few parameters, which
should be reliably estimable from reasonably large sets of data. However, we are
increasingly obliged to admit that different fields are dependent, on dynamical
or chemical or biological grounds, so we should use multivariate or vector
forms of OI. Moreover, planetary-scale and coastal circulation are obviously
statistically inhomogeneous, while the endless emergence of trends suggests
statistical nonstationarity. That is, (2.2.23) is false. OI may be generalized to the
multivariate, inhomogeneous and nonstationary case provided that there are
credible prior estimates for all the parameters in the covariances of the fields
being mapped. We hope that our dynamical models are getting so faithful to the
larger scales that model errors like f must be limited to the smaller scales at
which (2.2.23) may be plausible. Thus, we should only need to estimate
C f (x, t, y, s) = C f (|x − y|, |t − s|). We may then use generalized inversion to
generate, in effect, the inhomogeneous and nonstationary multivariate
equivalents of Cv = Cv(x, t, y, s) and then perform, in effect, an OI of the data.

A serious caution must now be offered. It is misleadingly easy to declare that
the dynamical error f , initial error i , etc., are random variables belonging to some
ensemble, and to manipulate their ensemble moments E f , Ei , E( f f ), E( f i), etc. It is
much harder to devise a credible method for estimating these moments. The fields must
clearly be statistically homogeneous at least in one spatial direction or in time, but the
presence of spatial or climatological trends makes such homogeneity far from clear.
Worse, our dynamical models have already been Reynolds-averaged or subgridscale-
averaged, so f in particular is already an average of a certain kind. The statistical
interpretation of variational assimilation requires, therefore, a second randomization.
This difficult issue will be discussed in greater detail in §5.3.7.

2.3 The reduced penalty functional

2.3.1 Inversion as hypothesis testing

Inverse methods enable us to smooth data using a dynamical model as a constraint.
Equally, the methods enable us to test the model using the data. The concept of a
model is extended here to include not only equations of motion, initial conditions and
boundary conditions, but also an hypothesis concerning the errors in each such piece
of information. If the model fails the test for a given data set, then the interpolated data
or “analysis field” is suspect. If the test is failed repeatedly for many data sets, then the
hypothesis is suspect. This would be an unsatisfactory state of affairs from the point
of view of the ocean analyst or ocean forecaster, but should please the ocean mod-
eler: something new would have been learned about the ocean, namely, that the errors
in the dynamics, initial conditions or boundary conditions had been underestimated.
Lagrange multipliers make it possible (exercise!) to distinguish between forcing errors
and additive components of parameterization errors.
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The hypothesis test is based on the statistical interpretation developed in the previous
section. The derivation of the test is very short, but the realization that inverse methods
enable model testing is so important that a separate section is warranted.

2.3.2 Explicit expression for the reduced penalty functional

First, recall from (1.3.26) and §2.2.3 that the minimum value of the penalty functional
J is

Ĵ ≡ J [û] = hTP−1h

= (d− uF )T(R+ Cε)−1(d− uF ), (2.3.1)

where the actual or true “ocean circulation” is

u = uF + v, (2.3.2)

where v is the model response to the random inputs f , i and b, and the data are

d = u+ ε, (2.3.3)

where ε is random measurement error.
Hence

h ≡ d− uF = u+ ε− (u− v) = ε+ v, (2.3.4)

Eh = Eε+ Ev = 0, (2.3.5)

E(hhT) = E((ε+ v)(ε+ v)T)

= E(εεT)+ E(εvT)+ E(vεT)+ (vvT)

= Cε + 0+ 0+ R = P+ E(vvT), (2.3.6)

which statements are parts of, or consequences of, our null hypothesis H0 defined by
(2.2.1)–(2.2.3).

Now define P
1
2 , which is meaningful since P is positive-definite and symmetric, and

hence define

k ≡ P−
1
2 h. (2.3.7)

Then

Ek = P−
1
2 Eh = 0, (2.3.8)

E(kkT) = P−
1
2 E(hhT) P−

1
2

= P−
1
2 PP−

1
2

= I. (2.3.9)

That is,

E(knkm) = δnm . (2.3.10)



2.3 The reduced penalty functional 43

2.3.3 Statistics of the reduced penalty: χ2 testing

The scaled, prior data misfits k1, . . . , kM are zero-mean, uncorrelated, unit-variance
random variables and

Ĵ = hTP−1h = kTP
1
2 P−1P

1
2 k

= kTk

= k2
1 + · · · + k2

M . (2.3.11)

Therefore Ĵ = χ2
M , the chi-squared random variable with M degrees of freedom. Or

is it? To be precise,

χ2
M = x2

1 + · · · + · · · + x2
M , (2.3.12)

where the pdf for xm is

p(xm) = (2π )−
1
2 exp

(−x2
m/2
)
, (2.3.13)

1 ≤ m ≤ M . That is, each xm is a Gaussian random variable having zero mean and unit
variance: xm ∼ N (0, 1) (Press et al., 1986). If we had included in H0 the assumption
that f , i , b and εwere Gaussian, then by linearityh and hencekwould also be Gaussian.
If we do not make that assumption, we may invoke the central limit theorem when M
is large, to infer that

kn =
M∑
m=1

(P−
1
2 )nmhm ∼ N (0, 1) (2.3.14)

as M →∞.
But roughly, if H0 is true then

Ĵ = χ2
M . (2.3.15)

So we have a chi-squared test for our null hypothesis. Now

E
(
χ2
M

) = M, var
(
χ2
M

) ≡ E
((

χ2
M

)2)− (E(χ2
M

))2 = 2M. (2.3.16)

If we perform the inversion a number of times with different data, and find that our
sample distribution has significantly bigger first or second moments than those of χ2

M ,
then we should reject H0. We would have learned something about the ocean, from
the data. Specifically, we would have learned that the ocean differs from the model,
by more than we had hypothesized. Recall that J is inversely proportional to C f ,
etc.

Exercise 2.3.1
Show that

(i) JF ≡ J [uF ] = hTC−1
ε h, (2.3.17)
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(ii) Ĵ mod ≡ 〈û − uF , û − uF 〉 = β̂
T
R β̂, (2.3.18)

(iii) Ĵ data ≡ (û− d)TC−1
ε (û− d) = β̂

T
Cεβ̂, (2.3.19)

where Pβ̂ = h.

Note 1. J F is “only data misfit”.
Note 2. In general, Ĵ mod �= Ĵ data. �

Exercise 2.3.2
Show that

(i) EJF = Tr
(
C− 1

2
ε RC− 1

2
ε

)+ M, (2.3.20)

(ii) EĴmod = Tr
(
R

1
2 P−1R

1
2
)
, (2.3.21)

(iii) EĴdata = Tr
(
C

1
2
ε P−1C

1
2
ε

)
. (2.3.22)

Note 1. Usually EJF � EĴ = M.

Note 2. In general, EĴmod �= EĴdata.

Note 3. In order to devise a rigorous and objective test for an ocean model, we have
extended the definition of a model to include an hypothesis about the statistics
of the errors in the dynamics, in the initial conditions and in the boundary
conditions as well as in the data. �

Exercise 2.3.3
Give meanings to the left-hand sides of (2.3.17)–(2.3.22). �

Exercise 2.3.4 (Bennett et al., 2000)
Show that

(i) var (J F ) ∼ 2 Tr (C−1
ε P2C−1

ε ), (2.3.23)

(ii) var (Ĵ data) ∼ 2 Tr (CεP−2Cε), (2.3.24)

(iii) var (Ĵ mod) ∼ 2 Tr [(I− P−
1
2 CεP−

1
2 )2] (2.3.25)

as M →∞. �

Remark
It is difficult to develop a credible null hypothesis H0. In particular it is difficult to
develop the covariances C f , etc. It follows that û, the resulting inverse estimate or
analysis of the circulation, also lacks credibility. It is a misconception, however, to
view inversion as “garbage in, garbage out”. Rather, inversion puts the hypothesis to
the test. Forward modeling is no less exposed to the charge of “garbage in, garbage
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out”: it tests the nullest of null hypotheses, namely, that the dynamical errors, initial
errors and boundary errors are all zero, which is the rankest of garbage.

2.4 General measurement

2.4.1 Point measurements

Our data thus far have been direct measurements of the circulation field u at isolated
points in space and time:

dm = u(xm, tm)+ εm (2.4.1)

for 1 ≤ m ≤ M , where dm is the datum and εm the measurement error. We shall now
consider more general measurements (Bennett, 1985, 1990).

2.4.2 Measurement functionals

First note that a map sending a field u into a single real number u(z, w) is an example
of a functional

u → L[u] = u(z, w). (2.4.2)

In general u may be a vector field of velocity components, pressure, temperature etc.,
but a measurement of u produces a single number. If the field is a streamfunction ψ,
and the datum is the meridional component of velocity collected from a current meter,
then the appropriate functional is

ψ → ∂ψ

∂x
(z, w); (2.4.3)

if the field is sea-level elevation h, and the datum is the vertical acceleration of a
wave-rider buoy, then

h → ∂2h

∂t2
(z, w); (2.4.4)

if the field is fluid velocity u along a zonal acoustic path, and the datum derives from
reciprocal-shooting tomography, then

u →
z2∫

z1

u(x, w) dx ; (2.4.5)

if the field is sea-level elevation, and the datum is collected by a radar beam, then

h →
T∫

0

dt

L∫
0

dx K (x, t)h(x, t); (2.4.6)
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finally, if the field is stratospheric temperature θ and the datum is a radiative energy
flux, then by Stefan’s law,

θ → θ4(z, w). (2.4.7)

Note 1. Examples (2.4.2)–(2.4.6) are linear:

L[au + bv] = aL[u]+ bL[v] (2.4.8)

for any fields u, v and real numbers a, b.
Note 2. Example (2.4.7) is nonlinear.
Note 3. Each of (2.4.2)–(2.4.5) can be expressed as (2.4.6):

K (x, t) = δ(x − z)δ(t − w) for (2.4.2),

K (x, t) = −δ′(x − z)δ(t − w) for (2.4.3),

K (x, t) = δ(x − z)δ′′(t − w) for (2.4.4).

Exercise 2.4.1
Find K for (2.4.5). �

2.4.3 Representers for linear measurement functionals

The penalty functional may be now expressed as

J [u] = 〈u − uF , u − uF 〉 + (d− LL[u])TC−1
ε (d− LL[u]), (2.4.9)

where LLT = (L1, . . . ,LM ) indicates M linear measurement functionals. Note that in
earlier sections,

Lm[u] ≡ u(xm, tm). (2.4.10)

Furthermore, the Riesz representation theorem establishes that if u → Lm[u] is a
bounded (sup |Lm[u] |/ || u || <∞) linear functional acting on a Hilbert space, then
there is an element (a field) rm in the space such that

〈u, rm〉 = Lm[u] (2.4.11)

for any field u.

Exercise 2.4.2
Verify that

rm(x, t) = Lm(y,s) [�(x, t, y, s)], (2.4.12)
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where � is the reproducing kernel, and the subscripts (y, s) indicate that Lm acts on �

as a field over (y, s), for each (x, t). Recall that � is the representer for evaluation of
u at (y, s). In fact, show that rm satisfies

∂rm
∂t

+ c
∂rm
∂x

= C f • αm, (2.4.13)

subject to rm = Ci ◦ αm at t = 0, and rm = cCb ∗ αm at x = 0, where

−∂αm

∂t
− c

∂αm

∂x
= Lm(y,s) [δ(x − y)δ(t − s)], (2.4.14)

subject to αm = 0 at t = T , and αm = 0 at x = L . �

We may now write

J [u] = 〈u − uF , u − uF 〉 + (d− 〈u, r〉)TC−1
ε (d− 〈u, r〉) (2.4.15)

and, as before, the minimizer is

û = uF + hTP−1r, (2.4.16)

where

h ≡ d− LL[uF ] (2.4.17)

and P = R+ Cε , where

R = 〈r, rT〉 = LL[rT] = “LL[�]LLT”. (2.4.18)

From now on we shall assume that r, with its adjoint field α, represents a general
linear measurement functional. We shall reserve the notation and nomenclature of the
rk � = �(x, t, z, w), with its adjoint field the Green’s function γ = γ (x, t, z, w), for
the evaluation functional (2.4.2).

Exercise 2.4.3
Derive the Euler–Lagrange equations for extrema of (2.4.9). In particular, show that
the generalization of (1.3.1) is

−∂λ

∂t
− c

∂λ

∂x
= LLT[δδ]C−1

ε (d− LL[û]) . (2.4.19)

�
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2.5 Array modes

2.5.1 Stable combinations of representers

We have seen that, amongst all free and forced solutions of the forward model, the
observing system or “array” only detects the representers. We now ask: are some
combinations of representers more stably detected than others?

2.5.2 Spectral decomposition, rotated representers

Assume general linear measurement functionals LL= (L1, . . . ,LM )T :u→LL[u] ∈ R
M .

That is, LL maps the field u linearly into the M real numbers LL[u]. The data d are of
the form d = LL[u]+ ε, where ε is the vector of measurement errors. The representer
matrix is

Rnm = Ln(x,t)Lm(y,s) [�(x, t, y, s)] (2.5.1)

for 1 ≤ n,m ≤ M, where Ln(x,t) acts on �(x, t, , ), etc. In vector notation,

R = LL�LLT. (2.5.2)

Recall again that the reproducing kernel � is also the covariance Cv: see §2.2,
Exercise 2.2.1. The minimization of the penalty functional J , defined by (1.5.7), re-
duces to the solution of the M-dimensional linear system

Pβ̂ ≡ (R+ Cε)β̂ = h ≡ d− LL[uF ], (2.5.3)

where uF is the solution of the forward model. The representer matrix R depends upon
the dynamics, the prior covariances C f , Ci and Cb for dynamical, initial and boundary
residuals, and upon the array LL, while Cε is the covariance of measurement errors.
Thus P encapsulates all of our prior knowledge of the ocean in general but does not
depend upon the prior estimates of forcing, initial and boundary values F, B and I ,
provided the dynamics and measurement functionals are linear. The symmetry and
positive definiteness of P implies the spectral decomposition

P = ZΦZT, (2.5.4)

where Z is orthogonal: ZZT = ZTZ = I, and Φ is diagonal: Φ = diag (φ1, . . . , φM ),
where φ1 ≥ · · · ≥ φM > 0.

Let LL′ be a rotated vector of measurement functionals:

LL′ ≡ ZTLL, (2.5.5)

and define the rotated representers r′ = r′(x, t) by

r′ ≡ ZTr = ZTLL[�]. (2.5.6)
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These are the array modes (Bennett, 1985, 1992). In particular,

R′ = LL′�LL′T = ZTLL�LLTZ

= ZTRZ, (2.5.7)

while

C′
ε = ZTCεZ. (2.5.8)

Hence

P′ = R′ + C′
ε = ZTPZ = Φ, (2.5.9)

which is diagonal. The rotated representer coefficients β̂
′
then obey

P′β̂
′ = h′, (2.5.10)

where

h′ = ZTh. (2.5.11)

2.5.3 Statistical stability, clipping the spectrum

The solution for β̂
′
is trivial, since P′ = Φ is diagonal:

β̂
′
m =

h′m
φm

(2.5.12)

for 1 ≤ m ≤ M . We may deduce from (2.3.5) and (2.3.6) that

Eh′ = 0, E(h′h
′T) = P′ = Φ, (2.5.13)

so

E β̂ ′m = 0, E((β̂ ′m)2) = E((h′m)2)

φ2
m

= φm

φ2
m

= φ−1
m . (2.5.14)

That is, the estimated array mode coefficients β̂ ′m have greater variance if the cor-
responding eigenvalue φm is smaller; (2.5.12) shows the inverse to be unstable if the
prior data misfit h projects significantly onto eigenvectors of P having very small eigen-
values. Such projections should be discarded for m > mc, where mc is some cut-off.
The exact inverse is

û = uF + rTβ̂ = uF + rTZZTβ̂ = uF + r′Tβ̂′ = uF + r′TΦ−1h′, (2.5.15)

or

û(x, t) = uF (x, t)+
M∑
m=1

r ′m(x, t)φ−1
m h′m, (2.5.16)
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and so the stabilized approximation is

û(x, t) ∼= uF (x, t)+
mc∑
m=1

r ′m(x, t)φ−1
m h′m . (2.5.17)

Array modes r ′mc+1, . . . , r
′
M have been made redundant.

Note 1. The components of the vector of rotated measurement functionals need not
correspond to individual elements in the array. They correspond to linear
combinations of the elements.

Note 2. If we arbitrarily make P more diagonally dominant:

P → P+ σ 2I, (2.5.18)

where σ 2 is additional, independent measurement error variance, then the
eigenvalues of P become φ1 + σ 2, . . . , φM + σ 2, which all exceed σ 2. Thus
(2.5.18) would seem to stabilize the inverse. Spectral decomposition (2.5.4),
rotation (2.5.6) or clipping (2.5.17) would not be required. However, P and
P+ σ 2I have the same eigenvectors, so the array modes are unaffected by
(2.5.18). The modes r ′mc+1(x, t), . . . , r ′M (x, t) usually have very fine structure,
and retaining them at almost any level yields a “noisy” inverse û(x, t). It is
better to clip the spectrum of P than to make P more diagonally dominant.

Note 3. The construction of array modes is essentially an analysis of the condition or
stability of the generalized inverse of the model plus array, that is, the stability
of the minimization of the penalty functional denoted by (1.5.7), (1.5.9) or
(2.1.2). There are two major steps in constructing the inverse. The first is the
discard (2.1.11) of all the unobservable fields (2.1.8); it is effected by admitting
only solutions of the Euler–Lagrange equations. The second step is the solution
of the finite-dimensional linear system denoted as (2.1.15) or (2.5.3). Once this
system is solved, the coupling in the Euler–Lagrange equations is resolved and
the generalized inverse is finally obtained by the explicit assembly of (1.3.24),
or equivalently by a backward integration followed by a forward integration
(see §3.1.2). The dimension of the algebraic system is M , the total number of
data. The condition of the system is determined by the M eigenvalues of the
coefficient matrix P = R+ Cε . The essential point is that the condition of
the inverse is determined without first making a numerical approximation to the
model using, say, finite differences; the condition is determined at the
continuum level. That is, the condition is set by the partial differential
equations, initial conditions, and boundary conditions of the model, by the
measurement functionals for the observing system or array, and by the form and
weighting of the penalty functional (the actual inputs to the model: internal
forcing, initial values, boundary values and data values, have no influence; the
stability of the inverse is its sensitivity to them as a class). The inevitable
numerical approximation will indeed modify the null space of unobservable
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fields somewhat, and will also alter the eigenvalues, especially the smallest, but
these effects are spurious and are suppressed in practice by physical diffusion in
the dynamics, by convolution with the covariances in the Euler–Lagrange
equations, and by the measurement error variance which has a stabilizing
influence in general. Nevertheless, the continuum and discrete analyses of
condition make for an interesting comparison. They may be found in Bennett
(1985) and Courtier et al. (1993), respectively.

To end with a caution, it is imperative to realize that the array modes and assessment
of conditioning depend not only upon the dynamics of the ocean model and the structure
of the observing system or array, but also upon the hypothesized or prior covariances of
the errors in the model and observing system. If subsequent testing of the hypothesis,
using data collected by the array, leads to a rejection of the hypothesis, then the array
assessment must also be rejected. Model testing and array assessment are inextricably
intertwined. Examples will be presented in Chapter 5. For another approach to array
design, see Hackert et al. (1998).

2.6 Smoothing norms, covariances and convolutions

2.6.1 Interpolation theory

The mathematical theory of interpolation is very old. It attracted the attention of the
founders of analysis, including Newton, Lagrange and Gauss. The subject was in an
advanced state of development by 1940; it then experienced a major reinvigoration with
the advent of electronic computers. See Press et al. (1986; Section 2) for a neat outline of
common methods, and Daley (1991; Chapter 2) for an authoritative account of methods
widely used in meteorology and oceanography. What follows here is a brief outline of
the theory attributed to E. Parzen, linking analytical and statistical interpolation. Aside
from offering deeper insight into penalty functionals, the theory enables us to design and
“tune” roughness penalties essentially equivalent to prescribed covariances (and vice
versa). This is of critical importance if one intends, either out of taste or necessity, to
minimize a penalty functional by searching in the control subspace rather than in the
data subspace. The former search requires roughness penalties or weighting operators;
the latter search exploits the Euler–Lagrange equations which incorporate covariances.

It has been argued in §2.1 that the data-subspace search is in principle highly efficient,
but this efficiency will be wasted if the convolution-like integrals of the covariances
and adjoint variables appearing in the Euler–Lagrange equations cannot be computed
quickly. Fast convolution methods for standard covariances are given here; the methods
are critical to the feasibility of data-subspace searches and hence generalized inversion
itself. The section ends with some technical notes on rigorous inferences from penalty
functionals, and on compounding covariances.
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2.6.2 Least-squares smoothing of data; penalties for
roughness

Let us set aside dynamics for now. Just consider interpolating some simple data
d1, . . . , dM , which are erroneous measurements of the scalar field u = u(x) at the
points x1, . . . , xM . For simplicity, assume that x is planar: x = (x, y). We may define
a quadratic penalty functional by

J0 = J0[u] = W0

∫ ∫
D

u2dx+ w|u− d |2, (2.6.1)

where D is some planar domain, W0 and w are positive weights, and u = (u(x1), . . . ,
u(xM ))T. If û = û(x) is an extremum of J , then the calculus of variations implies that

W0û(x) = −wδT(û− d), (2.6.2)

where δT = δT(x) = (δ(x − x1)δ(y − y1), . . . , δ(x − xM )δ(y − yM )). So the “small-
est” field that “nearly” fits the data is a crop of delta-functions. This is hardly useful.
We would prefer a smoother field, so we should penalize the roughness of u, using

J1[u] = W1

∫
D

∫
|∇u |2 dx+ w|u− d |2. (2.6.3)

Extrema of J1 satisfy

W1∇2û = wδT(û− d). (2.6.4)

So the field of least gradient which nearly fits the data is a crop of logarithms: recall
that∇2 ln |x| = −(2π )−1δ(x)δ(y). What’s more, the solution of (2.6.4) is undefined up
to harmonic functions (∇2v = 0) such as bilinear functions, which may or may not be
fixed by boundary conditions. Logarithmic singularities are most likely undesirable, so
we are led to consider

J2[u] =
∫ ∫ [

W0u
2 +W1|∇u|2 +W2

{(
∂2u

∂x2

)2

+ 2

(
∂2u

∂x∂y

)2

+
(
∂2u

∂y2

)2
}]

dx,

+w |u− d |2, (2.6.5)

which has extrema satisfying

W2∇4û −W1∇2û +W0û = −wδT(û− d). (2.6.6)

Solutions of (2.6.6) behave like | x− xm |2 ln | x− xm | for x near xm . This is usually
acceptable. Evidently, any desired degree of smoothness may be achieved by impos-
ing a sufficiently severe penalty for roughness. Note that the homogeneous equation
corresponding to (2.6.6), subject to suitable boundary conditions, has only the trivial
solution: û ≡ 0.



2.6 Smoothing norms, covariances and convolutions 53

2.6.3 Equivalent covariances

Now consider v, the Fourier transform of u:

v(k) =
∫∫

u(x)eik·x dx, (2.6.7a)

where the range of integration is the entire plane and k = (k, l). The inverse transform
is

u(x) = (2π )−2
∫∫

v(k)e−ik·x dk. (2.6.7b)

The penalty functional (2.6.5) is equivalent to

J2[u] = (2π )−2
∫∫

(W0 +W1 |k |2 +W2 |k |4) | v |2 dk+ w |u− d |2, (2.6.8)

provided we assume that the domain D is the entire plane. Let the inverse transform of
the reciprocal of the roughness weight in (2.6.8) be

C(x) = (2π )−2
∫∫

(W0 +W1|k|2 +W2|k|4)−1e−ik·x dk. (2.6.9)

After some calculus, it may be seen that (2.6.8) becomes

J2[u] =
∫∫∫∫

u(x)W (x− x′)u(x′) dx dx′ + w |u− d |2, (2.6.10)

where ∫∫
W (x− x′)C(x′ − x′′) dx′ = δ(x− x′′). (2.6.11)

Thus there is close relationship between roughness penalties as in (2.6.5), and
“nondiagonal sums” such as in (2.6.10). The latter penalty is in turn related to stat-
istical estimation of a field having zero mean, and covariance

u(x)u(x′) = C(x− x′). (2.6.12)

Exercise 2.6.1
Verify all the calculus sketched above, and show that C as defined in (2.6.9) only
depends upon |x|. That is, the random field u is isotropic. �

Exercise 2.6.2
If D is bounded, what boundary conditions must û satisfy, in order to be an extremum
of (2.6.5)? �

Exercise 2.6.3 (Wahba and Wendelberger, 1980)
Express û in terms of representers. What is the associated inner product? �
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k1/2 = l-1 k

P(k)

W0
-1

(2W0)
-1

Figure 2.6.1 Power
spectrum.

How should we choose W0, W1, and W2? The inverse transform (2.6.9) yields, in
particular, the hypothetical variance of u(x):

u(x)2 = C(0) = (2π )−2
∫∫

(W0 +W1 |k |2 +W2 |k |4)−1 dk, (2.6.13)

henceW0 may be chosen to set the variance onceW1/W0 andW2/W0 have been chosen.
For example, let us assume that

W1/W0 = 0, W2/W0 = l4 (2.6.14)

for some length scale l. Then the hypothetical power spectrum of u(x) is

P(k) = W−1
0 (1+ k4l4)−1, (2.6.15)

where k = |k|. Defining the half-power point k 1
2

by

P(k 1
2
)/P(0) = 1

2
(2.6.16)

(see Fig. 2.6.1), we find that

k 1
2
= l−1. (2.6.17)

The functional (2.6.5), with parameters obeying (2.6.14), penalizes scales shorter
than l (k � k 1

2
= l−1) and fits the data more closely if W0 
 w.

Exercise 2.6.4
The “bell-shaped” covariance

C(x) = exp(−| x |2l−2) (2.6.18)

is commonly used in optimal interpolation. Is there a corresponding smoothing norm,
of the kind in (2.6.5)? �

In summary, there are at least two ways of implementing least-squares smoothing:
with covariances or with smoothing norms. These can be precisely or imprecisely
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matched, by choice of functional forms and parameters. It will be seen that the choice
of implementation can be a matter of major convenience.

2.6.4 Embedding theorems

(The following two sections may be omitted from a first reading.) We began §2.6 with
a discussion of quadratic penalty functionals used in the smoothing of data. It was seen
that the smoothing field û(x) could have unacceptably singular behavior near the data
points if the “smoothing norm” in the penalty functional were not chosen appropriately,
that is, if the functional did not penalize derivatives of u(x) of sufficiently high order.
This was demonstrated by examining the solution of the Euler–Lagrange equation for
û, close to the data points. The examination was feasible since the functionals were
quadratic in u and hence the Euler–Lagrange equations were linear, but we need not
restrict ourselves in principle to quadratic functionals. There are powerful, theoretical
guides that relate the mathematical smoothness of the estimate û to the differential
order and algebraic power of the “smoothing norm” in the penalty functional. What
follows is the crudest sketch of these so-called “embedding theorems” (Adams, 1975).

Let us suppose that the function u = u(x) behaves algebraically near the point x0:

|u(x)| ∼ Krα (2.6.19)

for small r , where r = |x− x0|, K is a positive constant and α is a positive or negative
constant. The point x is in n-dimensional space: x ε Rn . We unrigorously infer that any
mth-order partial derivative of u is also algebraic near x0, with∣∣D(m)u(x)

∣∣ ∼ K ′rα−m, (2.6.20)

where K ′ is another positive constant. Hence if we raise D(m)u to the power p and
integrate over a bounded domain D that includes x0, then

∫
. . .

∫
D

∣∣D(m)u(x)
∣∣pdx ∼ K

′′
R∫

0

r (α−m)p+n−1 dr, (2.6.21)

where R is the radius of D. The integral on the rhs of (2.6.21) is finite, provided

(α − m)p + n − 1 > −1. (2.6.22)

That is, if the integral on the lhs of (2.6.21) is finite, then

|u(x)| ∼ Krα < Krm−n/p (2.6.23)

for small r . Provided mp > n > (m − 1) p, a rigorous treatment (Adams, 1975, p. 98)
would replace the conclusion (2.6.23) with the more conservative inequality

| u(x)− u(x0) | < K
′′′ |x− x0 |λ, (2.6.24)
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where

0 < λ ≤ m − n/p. (2.6.25)

If we were to include a term like the lhs of (2.6.21) in our smoothing norm, and were to
find the û that minimizes the penalty functional, then we could conclude that the lhs of
(2.6.21) would be finite, and hence (2.6.24) must hold. The positivity of λ in (2.6.25)
ensures that u is at least continuous at x0. If λ exceeds unity, then we can be sure that
u is differentiable at x0, and so on: λ > k implies D(k)u is continuous at x0.

For example, suppose n = 2 (we are in the plane: x = (x, y)); suppose m = 2 (we
include second derivatives) and suppose p = 2 (we have a quadratic smoothing norm
as in (2.6.5)); then

mp = 4 > n = 2 �> (m − 1)p = 2, (2.6.26)

and so we cannot even be sure that u is continuous. Nevertheless, we learned from the
Euler–Lagrange equation (2.6.6) that u ∼ Kr2 ln r , which is actually differentiable.
Thus, the “embedding theorem” estimate of smoothness given in (2.6.25) is very con-
servative. The theorem would have us choose p = 1.9,

mp = 3.8 > n = 2 > (m − 1)p = 1.9. (2.6.27)

Such a fractional power would make the calculus of variations very awkward, but the
penalty functional would be well defined and would have a minimum û with guaranteed
continuity.

2.6.5 Combining hypotheses: harmonic
means of covariances

We have been considering penalty functionals, schematically of the form

J [u] = (Mu) ◦ C−1
f ◦ (Mu)+ · · · , (2.6.28)

where C f is the hypothesized covariance of Mu, M being some linear differential
operator or linear model operator in general. We might also hypothesize that Bu is the
covariance of u, in which case we could form the penalty functional

J [u] = (Mu) ◦ C−1
f ◦ (Mu)+ u ◦ B−1

f ◦ u + · · · . (2.6.29)

What now is the effectively hypothesized covariance for u? Manipulations like inte-
grations by parts yield

(Mu) ◦ C−1
f ◦ (Mu) = u ◦ MC−1

f M ◦ u (2.6.30)

= u ◦ C−1
u ◦ u, (2.6.31)

where

Cu = M−1C f M
−1. (2.6.32)
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Think of Cu as the covariance of solutions of the model Mu = f , where f has covari-
ance C f . We can now identify the effectively hypothesized covariance:

J [u] = u ◦ C−1
u ◦ u + u ◦ B−1

u ◦ u + · · · (2.6.33)

= u ◦ A−1
u ◦ u, (2.6.34)

where

Au =
(
C−1
u + B−1

u

)−1
(2.6.35)

is the harmonic mean of the two covariances Cu and Bu .



Chapter 3

Implementation

It is a long road from deriving the formulae for the generalized inverse of a model
and data to seeing results. First experiments (McIntosh and Bennett, 1984) involved
a linear barotropic model separated in time, simple coarsely-resolved numerical ap-
proximations, a handful of pointwise measurements of sea level and a serial computer.
Contemporary models of oceanic and atmospheric circulation involve nonlinear dy-
namics and parameterizations, advanced high-resolution numerical approximations,
vast quantities of data often of a complex nature, and parallel computers. Chapter 3
introduces some general principles for travelling this long road of implementation.
The first principle is accelerating the representer algorithm by task decomposition,

that is, by simultaneous computation of representers on parallel processors. The ob-
jective may be either the full representer matrix as required by the direct algorithm,
or a partial matrix for preconditioning the indirect algorithm. The calculation of an
individual representer, or indeed any backward or forward integration, may itself be
accelerated by domain decomposition, but this is a common challenge in modern nu-
merical computation (Chandra et al., 2001; Pacheco, 1996) and will not be addressed
here. Even without considering the coarse grain of task decomposition or the fine grain
of domain decomposition, the direct and indirect representer algorithms for linear in-
verses are highly intricate. Schematics are provided here in the form of “time charts”.
Dynamical errors and input errors may be correlated in space or in time or in both.

Error covariances must be convolved with adjoint variables. This is a massive task if
four dimensions are involved and the numerical resolution is fine. Fast convolutions
are critical to the scientific purpose of least-squares inversion, which is the testing of
hypotheses about model errors. Posterior error statistics are equally essential, and are
also massively expensive to compute and store in full detail. These statistics need not

58
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be computed with the same precision as the inverse itself, as they are only used for
rough assessment of the likely accuracy of the inverse. Storage-efficient Monte Carlo
algorithms permit computations of selected statistics with adequate reliability, on the
same grid as the forward model if so desired.
Nonlinearity can only be overcome by iteration, but there is no unique way to

iterate. This is a blessing in disguise, as certain choices for functional iterations can
lead to linear, unbounded instability. No functional linearization yields statistical lin-
earization, so significance tests and posterior error covariances that assume statistical
linearity must be used with caution. Finally, crude parameterizations of unresolved
natural processes may not be functionally smooth, thereby precluding variational as-
similation. This obstacle should in principle be overcome by fiddling with the unnatural
parameterization. Experience with trivial models suggests that we have much to learn.

3.1 Accelerating the representer calculation

3.1.1 So many representers . . .

The representer algorithm provides an explicit solution of linear Euler–Lagrange equa-
tions, and hence least-squares generalized inverses of overdetermined linear forward
problems. There is one representer for each excess datum, and two model integrations
are required (one backward, one forward) in order to construct each representer. (Note
that we may regard the initial values and boundary values for the forward problem as
data having exactly the same status as the finite set of measurements that overdetermine
the forward problem; indeed, we may in principle envisage measurements obtained con-
tinuously along a track, and we shall in Chapter 6 consider specifying boundary values
of too many components of a vector field.) It is impractical to compute every repre-
senter if their number is very large. There are rational approaches to reducing their
number, as will be indicated in Chapter 5, but such approximations may not be neces-
sary. It is possible to compute the representer solution for the inverse without reducing
the number of representers, and without significant numerical approximation beyond
that already implied by the numerical model. This technical advance has allowed the
inversion of large data sets, with complex models imposed as weak constraints.

3.1.2 Open-loop maneuvering: a time chart

Recall again from §1.3.3 the representer solution for the inverse:

û(x, t) = uF (x, t)+
M∑
m=1

β̂mrm(x, t), (3.1.1)

where

(R+ Cε)β̂ = h ≡ d−L[uF ]. (3.1.2)
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Thus our tasks are:

(1) integrate the forward model for uF . . . one integration;
(2) integrate the backward model for α . . . M integrations;
(3) integrate the forward model for r . . . M integrations;

for a total of . . . I = 2M + 1 integrations.

The backward and forward parts of the Euler–Lagrange equations are coupled by
M numbers û1, . . . , ûM . The vector coefficient of the impulses in the adjoint equation
(2.4.19), or coupling vector, is actually

C−1
ε (d−L[û]) = C−1

ε {d−L[uF ]− RTβ̂} (3.1.3)

= C−1
ε {h− RT(R+ Cε)−1h}

. . . = (R+ Cε)−1h

= β̂. (3.1.4)

That is, the coupling vector is the vector of representer coefficients. So we need not
store the representer vector field r (x, t). We must compute r (x, t), measure it to obtain
the representer matrix R = L[rT], solve (3.1.2) for β̂, integrate the adjoint or backward
EL equation (2.4.19) for λ̂(x, t) and then integrate the forward equation (1.5.14) for
û(x, t). Now the integration count is I = 2M + 3. See Fig. 3.1.1 for a “time chart”
implementing this so-called “open loop” version of the representer algorithm.

t=0 t=T

(1.2.3)

(1.3.9)

(1.3.2)

(1.3.5)

(1.3.12)

(1.2.2) & (1.2.4) uF

(1.3.4) & (1.3.6) û

(1.3.1) & (1.3.3) λ

(1.3.8) & (1.3.10) αm,1≤m≤M

(1.3.11) & (1.3.13) rm,1≤m≤M

(3.1.2) R , β^

Figure 3.1.1 Time chart for implementing the representer
algorithm with direct calculation of the representer
coefficient β̂, that is, by explicit or direct construction of the
representer matrix R. The heavy vertical arrow on the right
indicates the order of execution, which starts at the top. Note
that (3.1.1) need not be summed explicitly; once β̂ is
known, (3.1.4) resolves the coupling in (1.3.1)–(1.3.6). So in
this “open loop” version, λ and hence û may be calculated
with one backward integration and one forward integration.
The representers rm , 1 ≤ m ≤ M , need not be stored. If the
inverse weights W−1

f , W−1
i and w−1

b are nondiagonal, then
(1.3.11)–(1.3.13) and (1.3.4)–(1.3.6) require convolutions as
in (1.5.14)–(1.5.16). See also (4.2.1)–(4.2.6) for a statement
of the Euler–Lagrange equations for nondiagonal weighting.



3.1 Accelerating the representer calculation 61

Table 3.1.1 Processor work sheet.

�1 · · · �m · · · �M

uF uF uF
α1 αm αM

r1 rm rM

L[r1] L[rm] L[rM ]
(all processors get the other M−1 columns of R)

(all processors solve for β̂ = (R+ Cε)−1(d−L[uF ]))
λ λ λ

û û û

I = 5 I = 5 I = 5

3.1.3 Task decomposition in parallel

The above task is ideally suited to parallel processing (Bennett and Baugh, 1992). Sup-
pose we have M processors�1, . . . ,�M . The work sheet is as follows (see Table 3.1.1).
The m th processor �m calculates the fields uF , αm and rm , takes all M measurements
L1, . . . ,LM of rm to obtain the m th column of R, broadcasts this column to all of
the other M − 1 processors, receives the other M − 1 columns in return, assembles R,
solves for the vector β̂, then solves the Euler–Lagrange equations by calculating the
field λ and the field û.

So I is reduced from 2M + 3 to 5 with an M-processor system. There is minimal
exchange of data: each processor broadcasts one column of the representer matrix, and
receives M − 1 columns in return. Each processor�m must have sufficient memory and
speed for the computation and storage of u(x, t), for 0 ≤ x ≤ L and 0 ≤ t ≤ T . Note
that the calculations of uF , λ and û are M-fold redundant. This permits the programmer
to release M − 1 processors during these steps; more importantly it permits a reduction
of the number of broadcast messages by a factor of M − 1.

3.1.4 Indirect representer algorithm; an iterative time chart

Generalized inversion reduces exactly to solving the finite-dimensional system

(R+ Cε)β̂ = (d−L[uF ]), (3.1.5)

or simply

Pβ̂ = h. (3.1.6)

A direct solution requires that P and hence R be explicitly known. However, the solution
may be obtained iteratively, provided Pψ can be evaluated for any vector ψ. Then a
standard iterative solver can convert a first-guess β̂0 into a solution β̂ = P−1h.
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Let us now examine how we could compute Pψ, given any vector ψ. We have

Pψ = Rψ + Cεψ. (3.1.7)

The data error covariance matrix Cε is explicitly known, so the nontrivial problem is
the evaluation of Rψ. The following procedure (Egbert et al., 1994; Amodei, 1995;
Courtier, 1997) does thatwithout calculating the representers. First, solve the backward
model, with coupling vector ψ:

−∂φ

∂t
− c

∂φ

∂x
= ψTLL[δδ], (3.1.8)

subject to

φ = 0 (3.1.9)

at t = T , and

φ = 0 (3.1.10)

at x = L . Second, solve the forward model, with adjoint field φ(x, t):

∂θ

∂t
+ c

∂θ

∂x
= C f • φ, (3.1.11)

subject to

θ = Ci ◦ φ (3.1.12)

at t = 0, and

θ = cCb ∗ φ (3.1.13)

at x = 0. Comparison of (3.1.8)–(3.1.13), with the equations (2.4.14), (2.4.13) for α
and r respectively, shows that

φ(x, t) = ψTα(x, t), θ (x, t) = ψTr(x, t) = r(x, t)Tψ. (3.1.14)

Hence

L[θ ] = L[rT]ψ = Rψ, (3.1.15)

which is just what is needed, at a cost of two integrations; see Fig. 3.1.2.

3.1.5 Preconditioners

If P is the unit matrix, then iterative solution of (3.1.6) should converge to h in one
step. Hence iteration on (3.1.6) should in general be accelerated by premultiplying both
sides of (3.1.6) with the inverse of a symmetric, positive-definite approximation to P.
That is, solve

P−1
A Pβ̂ = P−1

A h, (3.1.16)
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t=0 t=T

(1.2.3)

(3.1.9)

(1.3.2)

(1.3.5)

(3.1.12)

(1.2.2) & (1.2.4)

(1.3.4) & (1.3.6)

(1.3.1) & (1.3.3)

(3.1.8) & (3.1.10)

(3.1.11) & (3.1.13)

(3.1.15) & (3.1.7)

Figure 3.1.2 Time chart for implementing the indirect
representer algorithm. The representer coefficients β̂ are
approximated by iterative solution of (3.1.2). Given a previous
approximation ψ for β̂, the “inner iteration” calculates
Pψ = Rψ + Cεψ with one backward integration and one
forward integration (the representer matrix R is not explicitly
constructed). This information is then used to find a better
approximation ψ′ for β̂. Once β̂ has been approximated with
sufficient accuracy, λ and hence û are calculated as in the direct
“open loop” algorithm. That is, the sum (3.1.1) is evaluated
implicitly by one backward integration and one forward
integration.

where PA
∼= P. Then (3.1.16) may be solved iteratively since, if we can evaluate Pψ

for any ψ, then we can also evaluate P−1
A Pψ. There are various choices for the pre-

conditioner PA.

(i) (Bennett et al., 1996) We could calculate all the representers quickly and
cheaply on a coarse grid. Note that we would still be in effect solving (3.1.6) for
the coefficients of the representers on the fine grid, so there would be no loss of
resolution in û(x, t). However, the grid vertices may not coincide very closely
with observing sites; the measurement functionals must involve interpolation
formulae and these degrade appreciably as the grid gets coarser. That is, PA

may be a poor approximation to P and so convergence may not be greatly
accelerated.

(ii) (Egbert and Bennett, 1996; Egbert, 1997) We could calculate some of the
representers on the fine grid. Let RC be the M × K matrix consisting of the first
K columns of R. That is, R = (RC,RNC), where the non-calculated matrix RNC

is of dimension M × (M − K ). Now RC may be partitioned into an upper
K × K block denoted by R11, and a lower (M − K )× K block R21, etc.
That is,

R =
(

R11 R12

R21 R22

)
= (RC, RNC). (3.1.17)
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The representer matrix is symmetric, therefore R12 is actually known at this
point: R12 = RT

21. An estimate for R22 is R21 R−1
11 RT

21, thus

RA =
(

R11 RT
21

R21 R21 R−1
11 RT

21

)
. (3.1.18)

Then PA = RA + Cε . Note that the ranks of RA and PA are K and M
respectively. The effectiveness of this preconditioner depends upon a judicious
choice for the K calculated representers, and upon the independence of the
measurement errors.

(iii) Recall from (2.2.9) and (2.4.18) that the representer matrix is a covariance:

R = LCvLT (3.1.19)

= E{(L[u]−L[uF ])(L[u]−L[uF ])T}. (3.1.20)

Thus we may estimate R by Monte Carlo methods. That is, we make
pseudo-random samples of L[u− uF ] and then evaluate sample covariances.
The issue is: how many samples suffice?

Further details on implementation, including a flowchart, may be found in Chapter 5.
The issue of sample size will be illustrated in §5.5.

3.1.6 Fast convolutions

We have seen the need to assume “nondiagonal” covariances for dynamical errors;
that is,

C f (x, t, x′, t ′) �= δ(x− x′)δ(t − t ′). (3.1.21)

The covariance appears in the “forward” equation for the inverse estimate, for example
(1.5.14):

∂ û

∂t
(x, t)+ c

∂ û

∂x
(x, t) = F(x, t)+ (C f • λ)(x, t), (3.1.22)

where

(C f • λ)(x, t) =
T∫

0

ds

L∫
0

dy C f (x, t, y, s)λ(y, s). (3.1.23)

Direct evaluation of this integral for each (x, t) would be prohibitively expensive in only
one space dimension and time, and even more so in several space dimensions and time.
Thus, a crucial requirement for smooth and hence physically acceptable inversions is
an efficient algorithm for the evaluation of integrals such as (3.1.23). We shall refer to
these loosely as “convolutions”.

The following shortcut is very efficient (Derber and Rosati, 1989; Egbert et al.,
1994). Assume that the covariance is purely spatial, and is “bell-shaped”:

C(x, x′) = C0 exp(−|x− x′|2/L2), (3.1.24)
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where C0 is a constant. Assume that we wish to evaluate

b(x) =
∞∫

−∞

∞∫
−∞

C(x, x′)a(x′) dx′. (3.1.25)

Solve the following pseudo-heat equation for θ = θ (x, s):

∂θ

∂s
= ∇2θ, (3.1.26)

by time-stepping, subject to

θ (x, 0) = a(x). (3.1.27)

In two space dimensions, the solution is

θ (x, s) = (4πs)−1

∞∫
−∞

∞∫
−∞

exp(−|x− x′|2/(4s))a(x′) dx′. (3.1.28)

So let

s = L2/4, (3.1.29)

then

b(x) = πL2C0θ (x, L2/4). (3.1.30)

Exercise 3.1.1
Compare the operation counts for numerical integration of (3.1.26), and numerical
evaluation of (3.1.25), for one, two and three space dimensions. �

Exercise 3.1.2
How might you proceed when the spatial domain is finite? �

If the covariance is inhomogeneous, for example

C(x, x′) = V (x)
1
2 V (x′)

1
2 exp(−|x− x′|2/L2), (3.1.31)

where V (x) = C(x, x) is the variance, then proceed as above except that the initial
condition becomes

θ (x, 0) = V (x)
1
2 a(x), (3.1.32)

and the required result is

b(x) = V (x)
1
2 πL2θ(x, L2/4). (3.1.33)

Now consider temporal convolution, involving the simple form

C(t, t ′) = exp(−|t − t ′|/τ ).
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That is, we wish to evaluate

b(t) =
T∫

0

C(t, t ′)a(t ′) dt ′. (3.1.34)

This is the solution of

btt − τ−2b = −2τ−1a (3.1.35)

for 0 ≤ t ≤ T , subject to

bt − τ−1b = 0 (3.1.36)

at t = 0, and

bt + τ−1b = 0 (3.1.37)

at t = T . The two point boundary-value problem (3.1.35)–(3.1.37) is easily solved as
two initial-value problems. First, solve

ht + τ−1h = −2τ−1a (3.1.38)

for 0 ≤ t ≤ T , subject to

h = 0 (3.1.39)

at t = 0. Then solve

bt − τ−1b = h (3.1.40)

for 0 ≤ t ≤ T , subject to

b = −(τ/2)h (3.1.41)

at t = T .

Exercise 3.1.3
Show that the order of the two integrations in Exercise 3.1.2 may be reversed, with a
modification to the terminal conditions. �

3.2 Posterior errors

3.2.1 Strategy

How good is the generalized inverse û? If u is the true circulation, and if we adopt the
statistical interpretation of the inverse, then the error u − û has zero mean. There is a
closed expression for the covariance of this error, or posterior error covariance. The
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expression involves the covariance of u − uF prescribed a priori in H0, and all of the
representers. An efficient strategy for evaluating this formidable expression is essential.

The direct, serial representer algorithm requires the computation of M representers,
one per datum. Each computation requires one backward and one forward integration;
these may be executed in parallel if resources permit (see §3.1). It has been shown in §2.2
and §2.4 that themth representer rm(x, t) is in fact the covariance of themth measurement
Lm[v] and the field v(x, t) itself, where v is the response of the model to random forcing
consistent with the hypothesis H0. The M representers having been computed, and
stored, they may be used to construct error covariances for the inverse estimates f̂ , ı̂ , b̂
and L[û] of the forcing, initial values, boundary values and measurements respectively
(Bennett, 1992, §5.6). Computation of û using representers indirectly, as in §3.1.4, does
not yield these posterior error covariances. The indirect approach typically requires
about 10% of the effort of the direct approach; such efficiency is sometimes achieved
by preliminary computation of the representers, either in part on the actual model grid
or in the total on a coarser grid. This incomplete covariance information may suffice
as an indication of the reliability of û.

Regardless of the implementation of the representer algorithm, that is, either direct
or indirect solution of the Euler–Lagrange equations for û, it is possible to make “Monte
Carlo” estimates of just as much covariance information as is required. The level of
accuracy may be below that used to compute û, but it is satisfactory as an indicator
of the reliability of û. The version of the Monte Carlo algorithm given in §3.2.5 is
complicated, but it is highly memory-efficient.

3.2.2 Restatement of the “toy” inverse problem

For convenience, let us restate the “toy” problem here. The true ocean circulation u
satisfies

∂u

∂t
(x, t)+ c

∂u

∂x
(x, t) = F(x, t)+ f (x, t), (3.2.1)

u(x, 0) = I (x)+ i(x), (3.2.2)

u(0, t) = B(t)+ b(t), (3.2.3)

where F , I and B are respectively the prior estimates of the forcing, initial values
and boundary values (prior to assimilating data), while f , i and b are respectively the
unknown errors in those priors. The prior estimate of u is uF , which satisfies

∂uF
∂t

(x, t)+ c
∂uF
∂x

(x, t) = F(x, t), (3.2.4)

uF (x, 0) = I (x, t), (3.2.5)

uF (0, t) = B(t). (3.2.6)

The data comprise an M-dimensional vector d:

d = L[u]+ ε, (3.2.7)
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where L is a vector of linear measurement functionals and ε is the vector of the
measurement errors. In order to improve upon uF , we make an hypothesis H0 about
the unknown errors f , i , b and ε:

E f (x, t) = Ei(x) = Eb(t) = 0, Eε = 0; (3.2.8)

E( f (x, t) f (x ′, t ′)) = C f (x, t, x ′, t ′),

E(i(x)i(x ′)) = Ci (x, x ′),

E(b(t)b(t ′)) = Cb(t, t ′),

E(εεT) = Cε,




(3.2.9)

E( f b′) = E( f i ′) = E(ib′) = 0, E( f ε) = E(iε) = E(bε) = 0. (3.2.10)

That is, we assume that the errors f , i , b and ε have vanishing means (F , I , B and d
are unbiased) and have specified covariances C f , Ci , Cb and Cε . Then the posterior
estimate û minimizes the estimator

J [u] ≡ f • C−1
f • f + i ◦ C−1

i ◦ i + b ∗ C−1
b ∗ b + εTC−1

ε ε, (3.2.11)

where f , i , b and ε are related to u via (3.2.1)–(3.2.3) and (3.2.7). The symbols •, ◦
and ∗ are defined by

f • g ≡
L∫
0
dx

T∫
0
dt f (x, t)g(x, t),

i ◦ j ≡
L∫
0
dx i(x) j(x),

a ∗ b ≡
T∫
0
dt a(t)b(t).




(3.2.12)

The inverse covariances C−1
f , C−1

i and C−1
b are defined in terms of (3.2.12):

L∫
0
dx ′

T∫
0
dt ′ C−1

f (x, t, x ′, t ′)C f (x ′, t ′, x ′′, t ′′) = δ(x − x ′′)δ(t − t ′′),

L∫
0
dx ′ C−1

i (x, x ′)Ci (x ′, x ′′) = δ(x − x ′′),

T∫
0
dt ′ C−1

b (t, t ′)Cb(t ′, t ′′) = δ(t − t ′′).




(3.2.13)

The inverse of Cε is the standard matrix inverse C−1
ε :

C−1
ε Cε = I, (3.2.14)

where I is the M × M unit matrix.
The minimizer of J and optimal estimate of u is

û(x, t) = uF (x, t)+ β̂Tr(x, t), (3.2.15)
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where the representer fields r = r(x, t) and adjoint variables α = α(x, t) satisfy

−∂α

∂t
− c

∂α

∂x
= LL[δδ], (3.2.16)

α = 0 at t = T, (3.2.17)

α = 0 at x = L , (3.2.18)

∂r
∂t
+ c

∂r
∂x

= C f •α, (3.2.19)

r = Ci ◦α at t = 0, (3.2.20)

r = cCb ∗α at x = 0. (3.2.21)

In (3.2.16), δδ = δ(x − y)δ(t − s) and LL acts upon the (y, s) dependence. The repre-
senter coefficients β̂ satisfy the linear system

Pβ̂ ≡ (R+ Cε)β̂ = d−L[uF ] ≡ h, (3.2.22)

where

R = L[rT] = L[�]LT,

� = �(x, t, y, s) being the reproducing kernel (‘rk’), or representer for a point mea-
surement at (y, s).

3.2.3 Representers and posterior covariances

The error in the state estimate û is defined to be u(x, t)− û(x, t), and we would like
to know its mean and covariance. First, let us note that the error in the prior estimate
of the state has zero mean:

E(u(x, t)− uF (x, t)) = 0, (3.2.23)

and its covariance is

Cu(x, t, x ′, t ′) ≡ E((u(x, t)− uF (x, t))(u(x ′, t ′)− uF (x ′, t ′))), (3.2.24)

which is also, as was established in §2.2.3, the rk �(x, t, x ′, t ′). The latter is, again, the
representer for point measurement at (x ′, t ′). Indeed (Exercise 2.2.1),

� = γ • C f • γ + γ ◦ Ci ◦ γ + c2γ ∗ Cb ∗ γ, (3.2.25)

where γ (x, t, x ′, t ′) is the influence function or Green’s function for the “toy” model.
(The symbolCv in §2.2.3 has the same definition asCu here in §3.2.3; it seems helpful to
use different symbols in the two sections.) Notice that�, and henceCu , is determined by
the model, and by the prior covariancesC f ,Ci andCb. These are, again, the covariances
of the errors f , i and b in the prior estimates F , I and B of the forcing, initial and
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boundary values, respectively. Recall also that

P ≡ R+ Cε = E(hhT), (3.2.26)

where h is the prior data misfit:

h = d−L[uF ]. (3.2.27)

Our main result is a tedious consequence of the above.

Exercise 3.2.1 (Bennett, 1992, §5.6; Xu and Daley, 2000)
Show that the state estimate is unbiased:

E(u(x, t)− û(x, t)) = 0, (3.2.28)

and has as its covariance

Cû(x, t, x ′, t ′) ≡ E((u(x, t)− û(x, t))(u(x ′, t ′)− û(x ′, t ′)))

= Cu(x, t, x ′, t ′)− rT(x, t)P−1r(x ′, t ′). (3.2.29)
�

Recall that the optimal estimates of f , i , b and ε are

f̂ (x, t) = (C f • λ)(x, t), (3.2.30)

ı̂(x) = (Ci ◦ λ)(x, 0), (3.2.31)

b̂(t) = c(Cb ∗ λ)(0, t) (3.2.32)

and

ε̂ = d− LL[û], (3.2.33)

where λ(x, t) is the weighted residual, or variable adjoint to û(x, t):

λ = C−1
f •

(
∂ û

∂t
+ c

∂ û

∂x
− F

)
. (3.2.34)

It is readily shown that these all have zero mean:

E f̂ = Eı̂ = Eb̂ = 0, E ε̂ = 0. (3.2.35)

The posterior error covariances for f , i , b and ε follow easily from (3.2.29):

C f̂ (x, t, x
′, t ′) ≡ E(( f (x, t)− f̂ (x, t))( f (x ′, t ′)− f̂ (x ′, t ′)))

= C f (x, t, x
′, t ′)− sT(x, t)P−1s(x ′, t ′), (3.2.36)

where s is the representer residual vector:

s ≡ ∂r
∂t
+ c

∂r
∂x

; (3.2.37)
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Cı̂ (x, x
′) ≡ E((i(x)− ı̂(x))(i(x ′)− ı̂(x ′)))

= Ci (x, x
′)− rT(x, 0)P−1r(x ′, 0); (3.2.38)

Cb̂(t, t
′) ≡ E((b(t)− b̂(t))(b(t ′)− b̂(t ′)))

= Cb(t, t
′)− rT(0, t)P−1r(0, t ′), (3.2.39)

and

Cε̂ ≡ E((ε− ε̂)(ε− ε̂)T)

= R− R P−1R (3.2.40)

= Cε − Cε P−1Cε . (3.2.41)

Examination of (3.2.29)–(3.2.41) shows that, since C f , Ci , Cb and Cε are prescribed,
calculating the M representers r(x, t) yieldsC f̂ ,Cı̂ ,Cb̂ and Cε̂ . OnlyCû is not so avail-
able, since that requiresCu = �. We do knowCû at data sites: see (3.2.40). Thus the M
representers give us the estimates û, f̂ , ı̂ , b̂ and ε̂, and all the posterior error covariances
except Cû . The difference Cu − Cû , or the “explained” covariance, may be expressed
in terms of r. In principle, we could calculate Cu(x, t, x ′, t ′) as the rk �(x, t, x ′, t ′),
that is, by calculating the representer for every point (x ′, t ′), but that is impractical.
If the data were sufficiently dense, we could interpolate Cε to find Cû between data
sites, but that is useful only if L involves just point measurement, and involves point
measurement of every component when the state is multivariate (u, v, w, p, etc.).

3.2.4 Sample estimation

We may approximate the prior error covarianceCu using sample averages. Let the prior
error be denoted by

v(x, t) ≡ u(x, t)− uF (x, t). (3.2.42)

Then

∂v

∂t
+ c

∂v

∂x
= f, (3.2.43)

v = i at t = 0, (3.2.44)

v = b at x = 0. (3.2.45)

Use pseudo-random number generators to create pseudo-random fields f (x, t), i(x) and
b(t) consistent with the null hypothesis H0. For example, construct a “white-noise”
field w(x) satisfying

Ew(x) = 0, E(w(x)w(x ′)) = δ(x − x ′), (3.2.46)
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then “color” w to obtain a realization or sample for the initial error field i :

i(x) = (C 1
2
i ◦ w

)
(x) =

L∫
0

C
1
2
i (x, x ′)w(x ′) dx ′, (3.2.47)

where

C
1
2
i ◦ C

1
2
i = Ci . (3.2.48)

Then

Ei(x) = 0, E(i(x)i(x ′)) = Ci (x, x
′) (3.2.49)

as in H0. Samples of f (x, t) and b(t) may similarly be constructed.
In computational practice, the real variable x is replaced with a grid xn = n�x for

some uniform step �x . Fast subroutines generate random numbers r independently
and uniformly distributed in the interval 0< r < 1. Let s = 2

√
3(r − 1

2 ); then Es= 0
and E(s2)= 1. Let sn be such a number; and let wn = sn/

√
�x . Hence Ewn = 0, and

E(wnwm) = δnm/�x ∼= δ(xn − xm). Then take in =
∑

m C
1
2
inmwm . Generate K such

samples of in : i1
n , i

2
n , . . . , i

K
n , and similarly generate f knl , b

k
l , where l is a time index.

Approximate (3.2.43)–(3.2.45) on the (n, l) finite-difference grid. Integrate numeri-
cally to obtain samples vknl for k = 1, . . . , K . Then the sample prior error covariance is

Cu(xn, tl , xp, tq ) ∼= K−1
K∑
k=1

vknl v
k
pq . (3.2.50)

It is advisable to remove first any spurious sample mean of vknl . Armed with this
approximation to Cu = �, we may evaluate the representers r = L[�] and hence all
the posterior error covariances (3.2.29), (3.2.36)–(3.2.41).

Note 1. The prior data error covariance Cε influences the posteriors Cû, . . . ,Cε̂ , but
the actual data d do not.

Note 2. The posteriors Cû , Cı̂ , Cb̂, and Cε̂ given in (3.2.29), (3.2.38), (3.2.39) and
(3.2.41) need not be related to a model; Cû is the posterior for the best linear
unbiased estimate of u based on a prior uF and data d having errors with zero
means and covariances Cu and Cε , respectively. Recall that r = L[Cu]. The
measurement functionals L must be linear. The posterior (3.2.36) is valid only
if f is related to u via a linear model.

Note 3. The posterior state estimate û may be expressed in terms of representers
calculated as r = L[Cu], where Cu is a sample covariance. However, a great
many samples are needed for this approach to agree accurately with solutions of
the representer equations (3.2.16)–(3.2.21) (Bennett et al., 1998). The latter
approach also requires many integrations, but the number of sample
integrations should actually be compared to the cost of computing a
preconditioner for an indirect representer solution as in §3.1.5.
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Storage becomes a serious problem if Cu must be retained in full. It may suffice, for
the purposes of indicating error levels, to compute Cu on a much coarser space–time
grid than that used to calculate the state estimate û.

3.2.5 Memory-efficient sampling algorithm

The following algorithm for sample estimates of Cû is memory-efficient but
complicated:

(i) generate samples of f k , i k and bk , k = 1, . . . , K ;
(ii) integrate to find samples for vk , k = 1, . . . , K ;

(iii) make a sample estimate of the representer matrix:

R ∼= RK = K−1
K∑
k=1

L[vk]L[vk]T, (3.2.51)

(note that it is not necessary to store all the K samples in order to evaluate
(3.2.51), and note also that the rank of RK is K );

(iv) regenerate samples f k , i k and bk , k = 1, . . . , K , identical to those in (i);
(v) recompute vk , k = 1, . . . , K ;

(vi) generate samples of measurement error εk , k = 1, . . . , K ;
(vii) derive sample data misfits:

hk = L[vk]+ εk (3.2.52)

for k = 1, . . . , K ;
(viii) solve for the sample representer coefficients β̂k :

(R+ Cε)β̂k = hk (3.2.53)

for k = 1, . . . , K (use the indirect method of §3.1.4 and precondition with
(RK + Cε));

(ix) solve the Euler–Lagrange equations for the sample posterior state estimate

ûk = uF + (β̂k)Tr (3.2.54)

for k = 1, . . . , K ;
(x) evaluate the sample mean posterior error covariance:

Cû(x, t, x ′, t ′) ∼= K−1
K∑
k=1

(uk(x, t)− ûk(x, t))(uk(x ′, t ′)− ûk(x ′, t ′))

(3.2.55)

(note that uk = uF + vk).
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This two-stage statistical simulation is intricate and requires many more model in-
tegrations than does single-stage simulation (3.2.50, etc.), but uses minimal memory
without resorting to coarser grids.

Note 1. It is not necessary to evaluate (3.2.55) for all (x, t, x ′, t ′); it may be evaluated
as much as is needed, in order to indicate the reliability of û.

Note 2. The posterior error means and covariances derive from the prior error
moments assumed in H0 (see (3.2.8)–(3.2.10)). Rejection of H0 implies
rejection of the posterior moments.

Exercise 3.2.2
Compare the computational requirements and storage requirements of the Monte Carlo
algorithms given in §3.2.4 and in §3.2.5. �

3.3 Nonlinear and nonsmooth estimation

3.3.1 Double, double, toil and trouble

Linear least-squares estimation problems may be solved efficiently by exploiting their
linearity. The null subspace may be suppressed. Its complement, the data subspace,
may be spanned with a finite basis – the representers. Their coefficients may be sought
iteratively, and their sum may be formed without constructing each representer. Alas,
nonlinearity is intrinsic to geophysical fluid dynamics, while many parameterizations
involve functional nonsmoothness that precludes variational analysis. The general
approach to smooth nonlinearity is to iterate yet again, leading to sequences of linear
least-squares problems with solutions converging to that of the nonlinear least-squares
problem. Several such “outer” iteration schemes are described here. The most orderly
of them – the tangent linearization scheme – has the potential for grossly unphysi-
cal behavior. All linearization schemes are potentially unstable, drawing energy from
the reference field and lacking amplitude modulation of that unstable growth. Practi-
cal experience of iterating on nonlinear Euler–Lagrange equations is not so bad: see
Chapter 5. It seems that more data lead to faster convergence, while moderate smooth-
ing of sources of linear instability in the adjoint equations can ensure stability at the
price of slight suboptimality.

Nonlinearity in the dynamics vitiates the statistical analyses of §2.2 and §3.2.
Dynamical linearization does not lead to statistical linearization, so the significance
tests and recipes for posterior error covariances are suspect. In particular, bias can
emerge in the inverse estimate of circulation even when none is present in the prior
estimate of forcing.

Finally, nonsmoothness of the dynamics or the penalty functional precludes vari-
ational analysis. However, nonsmoothness is unnatural; it is an admission of poor
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resolution. Any mathematical “fudge” that removes it is entirely justified, since the
nonsmoothness is itself a fudge.

What is really needed is not more theory, but more experience with realistic models
and copious data. Nevertheless, here are some introductory analyses.

3.3.2 Nonlinear, smooth dynamics; least-squares

Consider a nonlinear wave equation:

∂u

∂t
+ ∂

∂x
{U (u)u} = F + f, (3.3.1)

subject to an initial condition

u(x, 0) = I (x)+ i(x) (3.3.2)

at t = 0, and subject to the boundary condition

u(0, t) = B(t)+ b(t) (3.3.3)

at x = 0. As usual, F , I and B are priors, while f , i and b are unknown errors in
the priors. The phase speed U is now a known function of the “ocean circulation” u.
The form (3.3.1) is not the most general nonlinear wave equation, but it represents
nondivergent advection in ocean models.

A simple penalty functional is

J [u] = W f

L∫
0

dx

T∫
0

dt f 2 +Wi

L∫
0

dx i2 +Wb

T∫
0

dt b2 + · · · , (3.3.4)

where the ellipsis denotes data penalties.

Exercise 3.3.1
Derive the following Euler–Lagrange equations for extrema of (3.3.4):

−∂λ

∂t
− Û

∂λ

∂x
= û

dÛ

du

∂λ

∂x
+ (· · ·), (3.3.5)

λ = 0 (3.3.6)

at t = T , [
Û + dÛ

du
û

]
λ = 0 (3.3.7)

at x = L ,

∂ û

∂t
+ ∂

∂x
{Û û} = F +W−1

f λ, (3.3.8)

û = I +W−1
i λ (3.3.9)
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at t = 0, and

û = B +W−1
b

[
Û + dÛ

du
û

]
λ (3.3.10)

at x = 0; Û ≡ U (û). Note the “smoothness” assumption: U is differentiable with
respect to u. In (3.3.5), (· · ·) denotes data impulses. �

3.3.3 Iteration schemes

The system (3.3.5)–(3.3.10) is nonlinear, and so representers are of no immediate use.
All kinds of iteration schemes suggest themselves, but the following two schemes have
met with success:

Scheme A

−∂λn

∂t
− Û n−1

∂λn

∂x
= ûn−1

(
dÛ

du

)
n−1

∂λn−1

∂x
+ (· · ·)n, (3.3.11)

λn = 0 (3.3.12)

at t = T , [
Û n−1 + ûn−1

(
dÛ

du

)
n−1

]
λn = 0 (3.3.13)

at x = L ,

∂ ûn
∂t

+ ∂

∂x

{
Û n−1ûn

} = F +W−1
f λn, (3.3.14)

ûn = I +W−1
i λn (3.3.15)

at t = 0, and

ûn = B +W−1
b

[
Û n−1+ ûn−1

(
dÛ

du

)
n−1

]
λn (3.3.16)

at x = 0. The system (3.3.11)–(3.3.16) is linear in ûn and λn; it constitutes the Euler–
Lagrange equations for a linear least-squares problem, and may be solved either with
representers (Bennett and Thorburn, 1992) or with the sweep algorithm of §4.2.

Proving convergence of the sequence {ûn, λn}∞n=1 to a solution of (3.3.5)–(3.3.10)
is most difficult in general, and has almost never been accomplished. Nevertheless,
the sequence often seems to converge in practice, although the “source term” on the
right-hand side of (3.3.11) may need spatial smoothing. If it is smoothed, û doesn’t
quite minimize J . However, the approximate û suffices if Ĵ is less than the expected
value M , which is the number of data. The right-hand sides of (3.3.5) and (3.3.10) can
cause difficulties because the calculus of the first variation involves a linearization of
the dynamics, much as in a linear stability analysis. Specifically, the adjoint dynamics
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of (3.3.5) and its iterate (3.3.11) involve advective coupling, respectively, of λ and
{λn}∞n=1 to the reference flow, respectively Û and {Û n−1}∞n=1, thus the adjoint dynamics
can be destabilized. Note that (3.3.5) and (3.3.11) lack the potential for amplitude
modulation that is present in the nonlinear forward dynamics (3.3.1).

Scheme B

−∂λn

∂t
−
[
Û n−1 + ûn−1

(
dÛ

du

)
n−1

]
∂λn

∂x
= (· · ·)n, (3.3.17)

λn = 0 (3.3.18)

at t = T , [
Û n−1 + ûn−1

(
dÛ

du

)
n−1

]
λn = 0 (3.3.19)

at x = L ,

∂ ûn
∂t

+ ∂

∂x

{
Û n−1ûn + dÛn−1

du
(ûn − ûn−1)ûn−1

}
= F +W−1

f λn, (3.3.20)

ûn = I +W−1
i λn (3.3.21)

at t = 0,

ûn = B +W−1
b

[
Û n−1 + ûn−1

(
dÛ

du

)
n−1

]
λn (3.3.22)

at x = 0. This scheme, due to H.-E. Ngodock, employs the tangent linearization
of (3.3.1) (Lions, 1971; Le Dimet and Talagrand, 1986). The linearized momen-
tum equation (3.3.20) yields the Euler–Lagrange equation (3.3.17). The latter has no
inhomogeneity on the rhs other than the usual impulses proportional to the data misfits
of ûn . The inhomogeneous term that appears on the rhs of (3.3.11) is now on the lhs
of (3.3.17). That is, the term has become part of the adjoint operator. Furthermore,
Scheme B would seem additionally risky, as it may introduce further linear instability
into the forward dynamics (3.3.20). Scheme B obviates the need to compute and store
a “first-guess” adjoint field λFn that is the response to the “source term” in (3.3.11).

Note 1. There are many heuristic iteration schemes such as A. There is only one
tangent linearization scheme B; it follows from the series expansion of the
nonlinear flux in (3.3.1):

U (un)un = U (un−1)un−1 +
{
dU

du
(un−1)

}
(un − un−1)un−1

+U (un−1)(un − un−1)+ · · · (3.3.23)

=
{
dU

du

}
n−1

(un − un−1)un−1 +Un−1un + · · · (3.3.24)

as appears in (3.3.20).
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Note 2. If sequences of equations (3.3.11)–(3.3.16) or (3.3.17)–(3.3.22) are solved
using representers directly, then the latter must be recomputed for each iterate
(value of n). Alternatively, the iterative, indirect construction of the representer
solution must be repeated, for each such “linearizing” or “outer” iterate (value
of n). In principle, the indirect approach would require a recalculation of the
preconditioner for each outer iterate, but in practice such effort does not seem
necessary for n > 2.

Note 3. Since U is a smooth function of u, we can calculate the gradient of J with
respect to u(x, t); for example,

δJ
δu(x, t)

= −2

{
∂λ

∂t
+
(
dU

du
u +U

)
∂λ

∂x

}
, (3.3.25)

where

λ ≡ W f

(
∂u

∂t
+ ∂

∂x
{Uu} − F

)
, (3.3.26)

if 0 < x < L , 0 < t < T and (x, t) is not a data point. (Readers unfamiliar with
functional differentiation as in (3.3.25) may prefer to revisit this section after
studying the discrete analog in §4.1.) Thus, given the field u = u(x, t) we can
evaluate λ(x, t) and hence the gradient of J , enabling a gradient search for the
field û = û(x, t) that satisfies

δJ
δu

[û] = 0. (3.3.27)

Only one level of iteration is needed for this “state space” search: there is no
need for two levels as in the doubly iterated representer approach or “data space
search”. However, preconditioning is still essential for a state space search; in
effect the inverse of the Hessian form

H ≡ δ2J
δu(x, t)δu(y, s)

(3.3.28)

is required. Calculating H in full is usually prohibitive, as is inverting H . Some
approximations, such as replacing H with its diagonal, do seem useful. See also
§4.1.5.

3.3.4 Real dynamics: pitfalls of iterating

The idealized nonlinear wave dynamics of (3.3.1) provide a conveniently simple setting
for the introduction of iterative solution schemes. The linear dynamics of Scheme A,
as displayed in (3.3.14), retain the character of those in (3.3.1). However, the linear
dynamics of Scheme B as shown in (3.3.20) are, as already indicated, of a different
character. This can have radical consequences for real dynamics.
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(i) Continuity
Consider first an equation for conservation of volume, as appears in
shallow-water models, layered models (Bleck and Smith, 1990) or indeed any
reduced-gravity Primitive Equation model (e.g., Gent and Cane, 1989):

∂h

∂t
+ u ·∇h + h∇ · u = 0, (3.3.29)

where x = (x, y), ∇ = ( ∂
∂x ,

∂
∂y ), u = (u, v), h = h(x, t) and u = u(x, t).

Defining X(a|t) to be the position at time t of a fluid particle that was initially at
position a, that is,

dX
dt

(a|t) = u(X, t), (3.3.30)

subject to

X(a|0) = a, (3.3.31)

and defining h(a|t) and u(a|t) by

h(a|t) ≡ h(X(a|t), t), u(a|t) ≡ u(X(a|t), t) (3.3.32)

allows us to express (3.3.29) as

Dh

Dt
(a|t)+ h(a|t)(∇ · u)(a|t) = 0, (3.3.33)

where the Lagrangian derivative is

Dh

Dt
(a|t) ≡

{
∂h

∂t
(x, t)+ u(x, t) ·∇h(x, t)

}
x=X(a|t)

. (3.3.34)

The formal solution of (3.3.33) is

h(a|t) = h(a|0) exp


−

t∫
0

(∇ · u)(a|s) ds

, (3.3.35)

which, so long as ∇ · u remains integrable in time, cannot change sign. The
ocean cannot “dry out”, nor can ocean layers “outcrop” in a finite time. With
small-amplitude gravity waves in mind, it is tempting to apply Scheme A to
(3.3.29) as follows:

∂hn
∂t

+ un−1 ·∇hn = −hn−1∇ · un. (3.3.36)

Together with a matching linearization of the momentum equations, (3.3.36)
would capture such waves. However, the relegation of the divergence to a
source term, as far as (3.3.36) alone is concerned, may cause hn to change sign
just as though it were the perturbation amplitude of a small wave. Alternatively,
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applying Scheme A as follows:

∂hn
∂t

+ un−1 ·∇hn + hn∇ · un−1 = 0, (3.3.37)

preserves the positivity of hn . Scheme B leads uniquely to

∂hn
∂t

+ un−1 ·∇hn + hn∇ · un−1

= −(un − un−1) ·∇hn−1 − hn−1∇ · (un − un−1), (3.3.38)

which does not ensure positivity of hn .
(ii) Thermodynamics

Consider the turbulent transfer of heat, modeled simply by

∂T

∂t
= ∂

∂z

(
K

∂T

∂z

)
, (3.3.39)

where the positive eddy conductivity K is a function of the temperature
gradient:

K = K

(
∂T

∂z

)
> 0. (3.3.40)

It is commonly assumed that K is a function of the gradient Richardson number
(see, for example, Pacanowski and Philander, 1981), but it suffices for this
discussion to consider just (3.3.40). Linearizing (3.3.39) with Scheme A leads
naturally to

∂Tn
∂t

= ∂

∂z

(
Kn−1

∂Tn
∂z

)
, (3.3.41)

where Kn−1 ≡ K (∂Tn−1/∂z) > 0. Both (3.3.39) and (3.3.41) yield well-posed
initial-value problems for t > 0. Scheme B leads uniquely to

∂Tn
∂t

= ∂

∂z

{(
Kn−1 + K ′

n−1
∂Tn−1

∂z

)
∂Tn
∂z

}
− K ′

n−1

(
∂Tn−1

∂z

)2

, (3.3.42)

where K ′(θ ) = dK (θ )/dθ , which is commonly assumed to be negative, for
θ > 0. Indeed, it is possible for (Kn−1 + K ′

n−1∂Tn−1/∂z) to change sign in the
tropical Pacific Ocean, rendering (3.3.42) ill-posed for forward integration. The
associated Euler–Lagrange equation would therefore be ill-posed for backward
integration.

The preceding examples show that while tangent linearization (“Scheme B”) has the
merits of unique definition and efficient implementation, it can in principle lead to un-
realistic dynamics. If variational assimilation with a realistic model leads to difficulties,
it is advisable to experiment with the linearization scheme.



3.3 Nonlinear and nonsmooth estimation 81

3.3.5 Dynamical linearization is not statistical linearization

Consider again the nonlinear wave equation (3.3.1), subject to some initial and boundary
conditions that need not be considered here explicitly. The prior solution uF obeys

∂uF
∂t

+ ∂

∂x
{U (uF )uF } = F. (3.3.43)

Regarding the solution u of (3.3.1) as the true circulation, the error in uF is v = u − uF .
It follows that

∂v

∂t
+ ∂

∂x
{U (uF + v)(uF + v)−U (uF )uF } = f. (3.3.44)

It has been assumed in the analyses of preceding chapters that E f = 0, that is, F
is an unbiased estimate of the true forcing F + f . (We may always assume that the
hypothetical field E f vanishes, as a nonvanishing field may be absorbed into F . The
hypothesized mean, vanishing or nonvanishing, may of course be wrong.) If U were
constant, then (3.3.44) would become

∂v

∂t
+U

∂v

∂x
= f. (3.3.45)

Hence, as the expectation E is a linear operator:

∂(Ev)

∂t
+U

∂(Ev)

∂x
= 0, (3.3.46)

for which the solution is Ev = 0, subject to suitable (linear, unbiased) initial and
boundary conditions. In the general case U depends upon u, and f is not identically
zero, thus it cannot be concluded that Ev = 0. The statistical variability of the forcing
f can induce a bias in the circulation u, even though the prior estimate of forcing
is unbiased. Moreover, closed forms such as (2.2.8) are no longer available for the
covariance of u.

Now consider a simple iteration of (3.3.1) about the iterate ûn−1 for an inverse
estimate û:

∂u

∂t
+ ∂

∂x
{U (ûn−1)u} = F + f. (3.3.47)

The prior solution uFn satisfies

∂uFn
∂t

+ ∂

∂x
{U (ûn−1)uFn } = F, (3.3.48)

hence the prior error vn = u − uFn satisfies

∂vn

∂t
+ ∂

∂x
{U (ûn−1)vn} = f. (3.3.49)

The operator in (3.3.49) is dynamically linear. A linear superposition of forcing yields
a linear superposition of solutions. That is the case, as long as the dependence of
U (ûn−1) upon the actual forcing error f is ignored. In fact ûn−1 is a linear combination
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of representers with coefficients proportional to the prior data misfit. The latter is of
the form

d− LL[uFn−1 ], (3.3.50)

where d is the data. Of course, uFn−1 is dependent on f via ûn−2, and so on, but it
suffices here to note just that

d = LL[u]+ ε, (3.3.51)

where u satisfies (3.3.1) and ε is the vector of measurement errors. The forcing error
f that appears in the nonlinear model (3.3.1) is the same as the forcing error f that
appears in the iterated error model (3.3.49). In particular,

E {U (ûn−1)vn} �= U (ûn−1)Evn, (3.3.52)

and so we cannot conclude that Evn vanishes identically when E f does. The dynam-
ically linear model (3.3.49) is statistically nonlinear. Significance tests and posterior
error covariances for inverses of (3.3.47), without regard to its statistical nonlinearity,
are at best guides rather than rigorous results. A strong warning from these guides, to
the effect that the hypothesized prior means and covariances for f and for the initial
and boundary inputs are unreliable, should nevertheless be taken seriously.

3.3.6 Linear, smooth dynamics; non-least-squares

Suppose that the model is our original linear wave equation (1.2.6) and ancillary in-
formation (1.2.7)–(1.2.8), but suppose that our estimator or penalty functional is, for
whatever reason, quartic in the residuals:

Q[u] = K f

T∫
0

dt

L∫
0

dx f 4 + Kb

T∫
0

dt b4 + Ki

L∫
0

dx i4 + k
M∑
m=1

ε4
m . (3.3.53)

The gradient of Q with respect to u(x, t) is still well-defined; for example,

δQ

δu(x, t)
= −4

{
∂µ

∂t
+ c

∂µ

∂x

}
, (3.3.54)

where

µ = K f

(
∂u

∂t
+ c

∂u

∂x
− F

)3

, (3.3.55)

if 0 < x < L , 0 < t < T and (x, t) is not a data point. Of course, we could ex-
press (3.3.54) in terms of µ

1
3 . A gradient-search in state space is in principle indifferent

to the nonlinearity of (3.3.53) and (3.3.54), but the nonlinearity of the Euler–Lagrange
equations for nonquadratic penalties precludes the use of representers without a lin-
earizing iteration. Attempts to do so have not been reported in a meteorological or
oceanographic context.
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Exercise 3.3.2
Derive the Euler–Lagrange equations for extrema of Q defined by (3.3.53). �

3.3.7 Nonsmooth dynamics, smooth estimator

Suppose that the phase velocity in our first-order wave equation is a nonsmooth function
of the circulation, for example

∂u

∂t
+ ∂

∂x
{U (u)u} = F + f, (3.3.56)

where

U (u) =
{
u u > 0

0 u < 0.
(3.3.57)

This type of continuous but nondifferentiable parameterization of convection is es-
pecially common in mixed-layer models, and in models of convective adjustment. See
for example Zebiak and Cane (1987) and Cox and Bryan (1984), respectively. The
circulation variable u is usually temperature, while the “mixing-function” U depends
upon the vertical velocity, which is related to temperature via the dynamics.

The difficulty is that the first variation of f with respect to u is not defined at u = 0.
The situation may be handled using engineering “optimal control theory”, but that seems
misguided in this context. There really are nonsmooth dependencies in engineering,
but in geophysical fluid dynamics we are merely making a crude parameterization
of unresolved processes. Consider a finite-difference approximation to (3.3.56). The
values of u at grid points are representatives of values within intervals. Yet, in reality,
there will be a range of values within an interval, and convection will not start every-
where simultaneously. It therefore seems more sensible to replace a nonsmooth depen-
dence as in (3.3.57) with a smooth dependence such as

U (u) = ε ln (1+ eu/ε), (3.3.58)

where ε is small. Clearly,

U ∼ u as u →∞,

U = ε ln 2 at u = 0,
and
U ∼ εeu/ε ∼ 0 as u →−∞.




(3.3.59)

Then

dU

du
= eu/ε

1+ eu/ε
, (3.3.60)
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so

dU
du ∼ 1 as u →∞,

dU
du = 1

2 at u = 0,

and
dU
du ∼ eu/ε ∼ 0 as u →−∞.




(3.3.61)

In particular, dU
du < 1 for all u. Had there been a discontinuity in U at u = 0, say

U =
{
c u > 0

0 u < 0,
(3.3.62)

then, while it would be possible to smooth over the discontinuity in some small interval
around u = 0, the derivative dU

du would be very large in that interval. In any case (3.3.62)
would seem an implausible parameterization of a gfd process.

Even the mildest departure from nonsmoothness can greatly complicate an otherwise
simple variational problem. For a lengthy investigation, see Xu and Gao (1999) and
the references therein. Miller, Zaron, and Bennett (1994) consider varying the times of
onset and end of convective mixing in a trivial linear model. The resulting variational
problem is highly nonlinear, and the solution is not unique unless there are penalties
for errors in prior estimates of the timing of convection. More recently, Zhang et al.
(2000) find that imposing smoothness on even a trivial model by “fiddling” may do
more computational harm than good. They also explore the concept of subgradients of
nonsmooth functionals, and examine the resulting generalizations of gradient searches
in state space.

3.3.8 Nonsmooth estimator

Now suppose that the estimator for (3.3.56) is not smooth, such as:

J [u] =
T∫

0

dt

L∫
0

dx | f | + · · · , (3.3.63)

or

J [u] =
T∫

0

dt

L∫
0

dx sgn{ f0 − | f |}, (3.3.64)

where

sgn(x) =
{

1 x > 0

−1 x < 0.
(3.3.65)
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Neither of these functionals has uniformly well-defined first variations with respect to
u. Consequently there is no gradient information that can guide a search, and Euler–
Lagrange conditions cannot be formulated, unless we are sure of special information
such as the sign of f̂ .

Only brute-force minimization is available in the absence of gradient information,
but brute force can be applied thoughtfully: see the method of simulated annealing
in §4.4.



Chapter 4

The varieties of linear and nonlinear estimation

A data space search is the most efficient way to solve a linear, least-squares smooth-
ing problem defined over a fixed time interval. The method exploits linearity, and so
is unavailable for nonlinear dynamics, or for penalties other than least-squares. As
discussed in Chapter 3, a data space search may be conducted on linear iterates of the
nonlinear Euler–Lagrange equations. The existence of the nonlinear equations implies
that the penalty is a smooth functional of the state, in which case a state space search
may always be initiated. The nature of state space searches is intuitively clear, and
their use is widespread. Conditioning degrades as the size of the state space gets very
large. Collapsing the size of the state space by assuming “perfect” dynamics is the
basis of “the” variational adjoint method: only initial values, boundary values and
parameter values are varied. Preconditioning may in principle be effected by use of
second-order variational equations, but even iterative construction of the state space
preconditioner is unfeasible for highly realistic problems. Technique for numerical in-
tegration of variational equations is not a paramount consideration, but deserving of
attention since it can be consuming of human time.
Operational forecasting is inherently sequential; data are constantly arriving and

forecasts must be issued regularly. In such an environment, it is more natural to filter a
model and data sequentially than to smooth themover a fixed interval. TheKalman filter
is available for linear dynamics; it forecasts the covariance of the error in the forecast of
the state, and uses the covariance to make a least-squares spatial interpolation of newly
arrivingdata. If the dynamics are nonlinear, theKalmanfiltermaybeapplied iteratively.
It is computationally expensive, even in the linear case, and various economies are
practised.

86
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Least-squares is the estimator of maximum likelihood for Gaussian or normal ran-
dom quantities. It may be applied to the estimation of any quantity, but the reliability
of the estimate would be in doubt. Maximum likelihood estimators are defined for any
random variable, yet are subtle or even ambiguous for even the simplest of non-normal
distributions. Monte Carlo methods for simulating random quantities have great ap-
peal, owing to their conceptual simplicity. Ingenious algorithms exist for generating
random variables of any distribution. The same algorithms lead to equally ingenious
optimization methods for arbitrary penalties.

4.1 State space searches

4.1.1 Gradients

The representer algorithm described in the previous chapters is an arcane and intricate
method for minimizing quadratic penalty functionals such as J in (1.2.9). It would
be much simpler to evaluate the gradient of J with respect to changes in the errors
f, i and b, and then use the gradient information in a search for the minimum of J .
Naı̈ve evaluation of the gradient would be prohibitively expensive, but an economical
alternative exists.

We may avoid the abstraction of a gradient in function space, by referring to nu-
merical models. Then the gradient becomes a finite-dimensional vector with as many
components as there are independently variable quantities, or “controls”. These may
be as numerous as the entire set of gridded variables, in which case the search would
be hopelessly ill-conditioned. Imposing the dynamics as a strong constraint reduces
the set of controls to the initial conditions, boundary conditions and dynamical par-
ameters such as diffusivities. Even so, these may be numerous and convergence may
be slow. Crude preconditioners are unreliable, while full preconditioning remains
unfeasible.

The section concludes with some hints on deriving gradients.

4.1.2 Discrete penalty functional for a finite
difference model; the gradient

For simplicity, the following discussion is based on an “ocean model” of maximal
simplicity. It is the ordinary differential equation

du

dt
(t) = F(t)+ f (t), (4.1.1)

where 0 ≤ t ≤ T , subject to

u(0) = I + i. (4.1.2)
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In (4.1.1) and (4.1.2), F and I denote prior estimates of forcing and initial values, while
f and i denote errors in those estimates. It suffices to consider a single datum:

u(td ) = U + ε, (4.1.3)

where U is the datum at time td , and ε is the measurement error. A least-squares
estimator for f , i , ε and hence u is

J [u] = W f

T∫
0

dt f 2 +Wii
2 + wε2 (4.1.4)

= W f

T∫
0

dt

(
du

dt
− F

)2

+Wi (u(0)− I )2 + w(u(td )−U )2. (4.1.5)

We may avoid functional analysis by replacing the integrals and derivatives in (4.1.5)
with sums and differences. To this end, define

tn = n�t (4.1.6)

for 0 ≤ n ≤ N , where

�t = T/N ; (4.1.7)

hence

t0 = 0 , tN = T . (4.1.8)

Assume

td = nd�t (4.1.9)

for some integer nd :

0 < nd < N . (4.1.10)

Define

un ≡ u(tn) (4.1.11)

for 0 ≤ n ≤ N , and approximate derivatives with forward differences:(
du

dt

)
n

� un+1 − un
�t

. (4.1.12)

Replacing the integral with a sum, (4.1.5) becomes

JN = W f (�t)
−1

N−1∑
n=0

(un+1 − un −�t Fn)2+Wi (u0 − I )2 + w(ud −U )2, (4.1.13)

where

Fn ≡ F(tn) and ud ≡ u(td ) = und . (4.1.14)



4.1 State space searches 89

Thus the N -point approximation to J [u] is

JN = JN (u0, u1, . . . , uN )

= JN (u), (4.1.15)

where

u = (u0, . . . , uN ) ε RRRR
N . (4.1.16)

There are very sophisticated ways (Press et al., 1986) to use the information in
∇JN in order to minimize JN , but we only need consider the most elementary for
now. Suppose we have made k estimates of the minimizer û, and the latest is uk . If
J kN ≡ JN (uk) is not satisfactorily small, we may naı̈vely improve on uk as follows:

uk+1 = uk − θ∇J kN (4.1.17)

for some small positive number θ . Then of course

J k+1
N ≡ JN (uk+1) = JN

(
uk − θ∇J kN

)
(4.1.18)

∼= JN (uk)− θ
∣∣∇J kN

∣∣2 (4.1.19)

< JN (uk). (4.1.20)

Now (∇J kN
)
n ≡

∂ JN
∂un

(uk)

∼= JN
(
uk0, u

k
1, . . . , u

k
n +�un, . . . , ukN

)− JN (uk)

�un
, (4.1.21)

where �un is a small increment in un , and so we may evaluate (4.1.21) by direct
substitution into (4.1.13).

4.1.3 The gradient from the adjoint operator

Evaluation of ∇JN via (4.1.21) requires N evaluations of JN , for each of N increments
�un , 1 ≤ n ≤ N . As an alternative, we may evaluate the gradient more efficiently by
first doing some elementary calculus. It follows easily from (4.1.13) that

∂ JN
∂u0

= −2W f

(
u1 − u0

�t
− F0

)
+ 2Wi (u0 − I ), (4.1.22)

∂ JN
∂un

= 2W f

(
un − un−1

�t
− Fn−1 − un+1 − un

�t
+ Fn

)
+ 2wδnnd (ud −U ) (4.1.23)

for 0 < n < N , and

∂ JN
∂uN

= 2W f

(
uN − uN−1

�t
− FN−1

)
. (4.1.24)
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Hence ∇JN may be evaluated at roughly the same cost as one evaluation of JN . Now
define the weighted dynamical residual:

λn ≡ W f

(
un+1 − un

�t
− Fn

)
(4.1.25)

for 0 ≤ n ≤ N − 1. Then (4.1.22)–(4.1.24) become

1
2
∂ JN
∂u0

= −λ0 +Wi (u0 − I ) , (4.1.26)

(2�t)−1 ∂ JN
∂un

= −λn − λn−1

�t
+ w

δnnd

�t
(ud −U ) (4.1.27)

for 0 < n < N − 1, and

1
2
∂ JN
∂uN

= λN−1. (4.1.28)

Exercise 4.1.1
Derive the Euler–Lagrange equations for the penalty functional (4.1.5). Discretize as
in (4.1.6)–(4.1.12). Compare with (4.1.25)–(4.1.28). �

The discrete Euler–Lagrange equations are simply

∇JN = 0. (4.1.29)

In the continuous limit, we might write this as

δ J [u]

δu(x, t)
= 0. (4.1.30)

So our procedure is now:

(i) estimate uk ;
(ii) evaluate λk by substitution of uk into (4.1.25);

(iii) evaluate ∇J kN by substitution of λk into (4.1.26)–(4.1.28); and then
(iv) estimate uk+1 using the gradient information, as in (4.1.17) for example.

4.1.4 “The” variational adjoint method
for strong dynamics

There is a special case that has been very widely used (“THE variational adjoint
method”, e.g., Lewis and Derber, 1985; LeDimet and Talagrand, 1986; Thacker and
Long, 1988; Greiner and Perigaud, 1994a,b; Kleeman et al., 1995). Assume that the
dynamics are perfect; that is, let

W f /Wi ,W f /w →∞. (4.1.31)
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Set

∂ J kN
∂un

= 0 for 0 < n < N − 1, (4.1.32)

and set

∂ J kN
∂uN

= 0. (4.1.33)

Then λkn may be determined for 0 ≤ n ≤ N − 1, by solving (4.1.32) and (4.1.33), that
is, by stepping

λkn−1 − λkn

�t
= −w

δnnd

�t

(
ukd −U

)
(4.1.34)

backwards from

λkN−1 = 0. (4.1.35)

This leads to a value for λk0, and hence for ∂ J kN
∂u0

via (4.1.26). Then uk+1
0 may be estimated

using this remaining amount of nonvanishing gradient information:

uk+1
0 = uk0 − θ

∂ J kN
∂u0

. (4.1.36)

The rest of uk+1 is evaluated using (4.1.25):

uk+1
n+1 − uk+1

n

�t
= Fn +W−1

f λkn, (4.1.37)

for 0 ≤ n < N − 1. But λn is O(Wi , w), and so W−1
f λn → 0 in the limit as W f /Wi →

∞, W f /w →∞. In other words, each estimate of uk obeys the exact or “strong”
dynamical constraint

ukn+1 − ukn
�t

= Fn (4.1.38)

for 0 ≤ n ≤ N − 1. Notice that only the initial value uk0 is varied independently. The
values of uk1, . . . , u

k
N also vary, but they are determined by the value of uk0 and by

(4.1.38). That is, a forward integration is required. A backward integration is also
required in order to determine λk .

In practice we deal with partial differential equations, and the initial value uk0 is a
field: uk0 = uk0(x). If the spatial grid is fine, then the initial field uk0 becomes a long
vector, while the time-dependent solution or “state” (uk1(x), . . . , ukN (x)) becomes such
a long vector that convergence of descent algorithms is typically very slow. Thus
the “weak-constraint” minimization described in §4.1.2 is quite unfeasible, while the
“strong-constraint” minimization would seem feasible. Note the imposition of a major
physical constraint (exact or “strong” dynamics), in order to deal with a computational
difficulty. We may well be able to fit the data fairly closely with an exact solution of a
model, but this is of dubious value when, as usual, we have more confidence in the data
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than in the model. We should instead make estimates of the dynamical error variances
and hence the dynamical weight W f , and then use a minimization technique that is
adequate to the task. Furthermore, a reasonable hypothesis is then being tested.

4.1.5 Preconditioning: the Hessian

Convergence towards the minimum of J N may be accelerated by the use of second-
order information. The Taylor expansion of JN (u) about the minimum û is

JN (u) ∼= JN (û)+ (u− û)T∇JN (û)+ 1

2
(u− û)TĤ(u− û)+ · · · , (4.1.39)

where the components of the Hessian matrix Ĥ are

Ĥnm = ∂2 JN
∂un∂um

(û), (4.1.40)

for 1 ≤ n, m ≤ N . Since û is an extremum of JN ,

∇JN (û) = 0, (4.1.41)

hence

JN (u) ∼= JN (û)+ 1

2
(u− û)TĤ(u− û). (4.1.42)

So, near û, the gradient of JN is approximately given by

∇JN (u) ∼= Ĥ(u− û). (4.1.43)

Assuming that Ĥ is invertible,

Ĥ
−1∇JN (u) ∼= u− û. (4.1.44)

If we step in the direction of (4.1.44), then

uk+1 = uk − θ (Hk)−1∇J kN ∼= uk − θ (uk − û). (4.1.45)

The advantage of this approach is clear once we examine Fig. 2.1.1. If the Hessian
is poorly conditioned, that is, if its eigenvalues have a large range, then contours of
constant JN will be highly eccentric ellipsoids. A step from uk down the gradient ∇J kN
will not be a step towards the minimum at û. However, a step from uk in the direction
(Ĥ

k
)−1∇J kN will be a step approximately towards û, and so convergence towards û

should be more rapid.
It would seem that such “preconditioning” would be unfeasible if N is very large,

since it would be so expensive to compute and invert the N × N matrix H at each
step. However (Le Dimet et al., 1997), H−1∇J may be evaluated iteratively without
first computing H, just as P−1h may be evaluated iteratively without first computing
P (see §3.1.4). A final caution is that H is N × N , where N is the number of state
variables, while P is M × M , where M is the number of data.
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Note. Inspecting (2.1.14) and (2.1.17) shows that

S ≡ R+ RC−1
ε R = PC−1

ε P − P, (4.1.46)

where

Si j = ∂2J
∂βi∂β j

. (4.1.47)

Thus R and P are closely related to S, the Hessian of the penalty functional
J [u] with respect to the observable degrees of freedom.

For a review of the use of “adjoint models” see Errico (1997).

4.1.6 Continuous adjoints or discrete adjoints?

The derivation of gradients and Euler–Lagrange equations for penalty functions was
illustrated in §4.1.2 with a trivial example. (Note that JN defined by (4.1.13) is a real-
valued function of the N -dimensional vector u = (u1, . . . , uN )T, whereas J defined
by (4.1.5) is a real-valued functional of the function u = u(t).) Derivation of “discrete
adjoints” becomes exacting and tedious as the complexity of the forward numerical
model increases. Is it worth the trouble? After all, one could with comparative ease
derive the adjoint operators analytically and then approximate numerically as in the
forward model. In general, proceeding in that order “breaks” adjoint symmetry; the
“discrete adjoint equation” is not the “adjoint discrete equation”. The broken symmetry
manifests itself directly as a spurious, asymmetric part in the representer matrix. So
long as the asymmetric part is relatively small, it could be discarded. The resulting
inverse solution would be slightly suboptimal. In the indirect representer algorithm of
§3.1.4, the representer matrix is not being explicitly constructed, hence its asymmetry
cannot be suppressed. A preconditioned biconjugate-gradient solver must be used in
the iterative search for the representer coefficients. It seems cleaner to work with the
“adjoint discrete equation”; then asymmetry of the representer matrix becomes a very
useful indicator of coding errors.

Again, deriving the adjoint discrete equation is an exacting task. Experience and
technique are important. Recognition of pattern can greatly reduce the burden. As a rule,
centered finite-difference operators are self-adjoint. Most difficulties occur at bound-
aries, where operators are typically one-sided and so not self-adjoint. The introduction
of virtual state variables outside the domain of the forward model can simplify the re-
sulting adjoint discrete equation (J. Muccino, personal communication). For example,
consider the simple conduction problem

∂T

∂t
= θ

∂2T

∂x2
(4.1.48)

for constant θ > 0, for 0 ≤ x ≤ xmax and 0 ≤ t ≤ tmax, subject to the initial condition

T (x, 0) = I (x) (4.1.49)
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for 0 ≤ x ≤ xmax, and the heat-reservoir boundary conditions

T (0, t) = L(t), T (xmax, t) = R(t) (4.1.50)

for 0 ≤ t ≤ tmax. A simple, explicit time-stepping scheme is provided by

T k+1
m − T k

m = (θ�t/�x2)
(
T k
m+1 + T k

m−1 − 2T k
m

)
, (4.1.51)

where

T k
m = T (m�x, k�t), 0 ≤ m≤ M, 0 ≤ k≤ K , �x = xmax/M, �t = tmax/K .

(4.1.52)

It is straightforward to devise a penalty function for generalized inversion of the
well-posed discrete forward problem corresponding to (4.1.48)–(4.1.50) plus an over-
determining set of temperature data. Inspection of (4.1.51) indicates that the spatial
summation of weighted squares of residuals in (4.1.51) should range from m = 1
to m = M − 1. The resulting Euler–Lagrange equations are inelegant, but improve
with the introduction of bogus weighted residuals λk0 and λkM that are identically zero.
Alternatively, virtual temperatures T k

−1 and T k
M+1 may be introduced. Residuals λk0

and λkM are now automatically defined, and the spatial summations of squared re-
siduals should be extended to 0 ≤ m ≤ M . The Euler–Lagrange equations are then far
tidier. In particular, variation with respect to T k

−1 and T k
M+1 implies that λk0 and λkM

vanish.
Practitioners of spectral methods or finite element methods are free from all these

vexed considerations. Derivatives are transferred to the basis functions or to the
elements by partial integration, and are then evaluated analytically.

4.2 The sweep algorithm, sequential estimation
and the Kalman filter

4.2.1 More trickery from control theory

The Euler–Lagrange equations are a two-point boundary-value problem in the time
interval of interest. We used representers in order to untangle this problem, that is, in
order to express it in terms of initial value problems. The Gelfand and Fomin sweep
algorithm provides a remarkable alternative (Gelfand and Fomin, 1963; Meditch, 1970).
Partial implementation of the algorithm yields an appealing “sequential estimation”
scheme for assimilating data. This control-theoretic derivation of the Kalman filter
follows logically from preceding chapters, but the reader may prefer to start with the
statistical derivation of the Kalman filter in §4.3. That is, §4.2 may be omitted from a
first reading.
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4.2.2 The sweep algorithm yields the Kalman filter

Let us gather up all the parts of the Euler–Lagrange system for our simple model
(1.2.6)–(1.2.8) and for the penalty functional (1.5.7), in the most general form that we
have used:

−∂λ

∂t
(x, t)− c

∂λ

∂x
(x, t) = (d− û)TC−1

ε δ, (4.2.1) = (1.3.1)

λ(x, T ) = 0, (4.2.2) = (1.3.2)

λ(L , t) = 0, (4.2.3) = (1.3.3)

∂ û

∂t
(x, t)+ c

∂ û

∂x
(x, t) = F(x, t)+ (C f • λ)(x, t), (4.2.4) = (1.5.14)

û(x, 0) = I (x)+ (Ci ◦ λ)(x), (4.2.5) = (1.5.15)

û(0, t) = B(t)+ c(Cb ∗ λ)(t). (4.2.6) = (1.5.16)

Recall that the covariances C f , Ci , Cb and Cε are the inverses of the weights W f , Wi ,
Wb and w: see §1.5. The impulse vector δ has, as itsmth component, the scalar impulse
δ(x − xm)δ(t − tm).

First, assume that the dynamical residual f is uncorrelated in time:

C f (x, y, t, s) = Q f (x, y)δ(t − s), (4.2.7)

and so the “forward” Euler–Lagrange equation (4.2.4) becomes

∂ û

∂t
(x, t)+ c

∂ û

∂x
(x, t) = F(x, t)+

L∫
0

dyQ f (x, y)λ(y, t). (4.2.8)

Next, assume that the inverse estimate û is linearly related to the weighted residual or
adjoint variable λ:

û(x, t) =
L∫

0

dyP(x, y, t)λ(y, t)+ v(x, t), (4.2.9)

for some “slope” P and “intercept” v. With the substitution of (4.2.9), the left-hand
side of (4.2.8) becomes

L∫
0

dy

{
∂P

∂t
(x, y, t)λ(y, t)+ P(x, y, t)

∂λ

∂t
(y, t)+ c

∂P

∂x
(x, y, t)λ(y, t)

}

+ ∂v

∂t
(x, t)+ c

∂v

∂x
(x, t). (4.2.10)

Now assume that the measurement errors ε are uncorrelated, if at different times:

εnεm = 0 if tn �= tm (4.2.11)

for 1 ≤ n, m ≤ M , in which case the M × M measurement error covariance matrix
consists of K blocks on the diagonal, where each block is an N × N matrix; K is the
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number of measurement times, N is the number of measurement sites, and M = NK .
That is,Cε = diag (C1

ε, . . . ,C
K
ε ). Then “the” Euler–Lagrange equation (4.2.1) becomes

−∂λ

∂t
(x, t)− c

∂λ

∂x
(x, t) =

K∑
k=1

(dk − ûk)T
(
Ck

ε

)−1
δk, (4.2.12)

where (dk)n is the datum at site xn at time tk , while

(δk)n = δ(x − xn)δ(t − tk) (4.2.13)

and, according to the substitution (4.2.9),

(ûk)n ≡ û(xn, tk) =
L∫

0

dy P(xn, y, tk)λ(y, tk)+ v(xn, tk). (4.2.14)

Exercise 4.2.1
Now substitute (4.2.14) into the rhs of (4.2.12), and then (4.2.12) into (4.2.10), which
is the lhs of (4.2.8). At times t �= tk , 1 ≤ k ≤ K , integrate over y by parts and equate
coefficients of λ(y, t), yielding

∂P

∂t
(x, y, t) + c

∂P

∂x
(x, y, t)+ c

∂P

∂y
(x, y, t)

+ cP(x, 0, t)δ(y) =Q f (x, y), (4.2.15)

and leaving

∂v

∂t
(x, t)+ c

∂v

∂x
(x, t) = F(x, t). (4.2.16)

�

From the initial condition (4.2.5), we may analogously obtain

P(x, y, 0) = Ci (x, y) (4.2.17)

and

v(x, 0) = I (x). (4.2.18)

If we assume that the errors in the boundary data are uncorrelated in time:

Cb(t, s) ≡ b(t)b(s) = Qbδ(t − s), (4.2.19)

then (4.2.6) becomes

û(0, t) = B(t)+ cQbλ(0, t). (4.2.20)

We recover

P(0, y, t) = cQbδ(y) (4.2.21)

and

v(0, t) = B(t). (4.2.22)
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The system (4.2.15), (4.2.17), (4.2.21) and the system (4.2.16), (4.2.18), (4.2.22) may
be integrated forward in time until t = t1−. Note that the initial value and forcing
for P(x, y, t), respectively Ci (x, y) and Q f (x, y), are symmetric. If we assume that
P(x, y, t) is symmetric, then by (4.2.21)

P(x, 0, t) = P(0, x, t) = cQbδ(x), (4.2.23)

and hence the seemingly symmetry-breaking fourth term on the lhs of (4.2.15) is

cP(x, 0, t)δ(y) = c2Qbδ(x)δ(y), (4.2.24)

which is symmetric. In other words, assuming symmetry leads to no contradiction.
It remains to determine the jumps in P and v as t passes through tk . First, we learn

from (4.2.12) that λ is discontinuous in tk , with

−λ(x, tk+)+ λ(x, tk−) = (dk − ûk)T
(
Ck

ε

)−1
δ, (4.2.25)

where (δ)n = δ(x − xn). We infer from (4.2.4) that û is continuous at tk . Hence (4.2.9)
implies that 

 L∫
0

dyP(x, y, t)λ(y, t)+ v(x, t)



tk+

tk−

= 0 . (4.2.26)

Substitute (4.2.14) into (4.2.25) and then substitute (4.2.25) into (4.2.26). Equating
terms proportional to λ(x, y, tk−) yields, after a little algebra,

P(x, y, tk+)− P(x, y, tk−)

= − Pk−(x)T
(
Pk− + Ck

ε

)−1
Pk−(y) (4.2.27)

and

v(x, tk+)− v(x, tk−) = KkT
(dk − vk−), (4.2.28)

where

Pk−
n (x) ≡ P(xn, x, tk−) (4.2.29)

Pk−
nm ≡ P(xn, xm, tk−) (4.2.30)

Kk ≡ (Ck
ε

)−1
Pk+ (4.2.31)

and

(vk−)n = v(xn, tk−). (4.2.32)

We now have an explicit algorithm for P and v, for all t ≥ 0. To complete the formula
(4.2.9) for û, we need λ. Now λ obeys (4.2.1)–(4.2.3), but (4.2.1) involves û. We may
eliminate û using (4.2.14), yielding an equation for P , v and λ. We can determine P
and v, so λ may be found by backwards integration, and the Gelfand and Fomin sweep
is complete.
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Exercise 4.2.2
Derive the equation for λ, free of û. �

Note 1. The above procedure has a major drawback: it would be necessary to
compute and store P(x, y, t) and v(x, t) for 0 < x , y < L , and for 0 < t < T .
This would be prohibitive in practice.

Note 2. It is only necessary to store P(x, y, tk+) and v(x, tk+) in order to evaluate
ûk , for 1 ≤ k ≤ K , and hence λ (see(4.2.12)). Having solved for λ, we could
then find û by integrating (4.2.4)–(4.2.6).

Note 3. There are other such “control theory” algorithms such as that of Rauch, Tung
and Streibel (e.g., Gelb, 1974), but these require even more computation and
storage. These algorithms are impractical for the generalized inversion of
oceanic or atmospheric models.

Note 4. The adjoint variable λ vanishes after assimilating the last data: λ = 0 for
tK < t < T , hence the generalized inverse û agrees with the “intercept” v at
the end of the smoothing interval:

û(x, t) = v(x, t) (4.2.33)

for tK < t < T , where T is somewhat arbitrary. So, if we only want to know
the influence of the K th (the latest) data dK upon the circulation estimate û at
time tK (the present), then we need not do more than solve for v (which requires
solving for P: see (4.2.28)–(4.2.32)). The previous data: d1, . . . ,dK−1 also
influence v at time tK , but dK has no influence on v for t < tK . Thus v is a
“sequential” estimate of u, using data as they arrive.

4.3 The Kalman filter: statistical theory

4.3.1 Linear regression

The Kalman filter has just been derived as a first step in solving linear Euler–Lagrange
problems. It is a sequential algorithm, that is, it calculates the generalized inverse at
times later than all the data: v(x, t) = û(x, t) for all t > tK . Recall that û minimizes a
quadratic penalty functional over 0 ≤ t ≤ T , where tK < T . The Kalman filter will now
be derived using linear regression.

4.3.2 Random errors: first and second moments

Our ocean model is

∂u

∂t
+ c

∂u

∂x
= F + f, (4.3.1)
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for 0 ≤ x ≤ L and 0 ≤ t ≤ T , subject to the boundary condition

u(0, t) = B(t)+ b(t) (4.3.2)

and the initial condition

u(x, 0) = I (x)+ i(x). (4.3.3)

We have assumed that F , B and I are unbiased estimates of the forcing, boundary and
initial values:

E f = Eb = Ei = 0, (4.3.4)

and we prescribed the autocovariances of f , b and i :

E( f (x, t) f (y, s)) = Q f (x, y)δ(t − s), (4.3.5)

E(b(t)b(s)) = Qbδ(t − s), (4.3.6)

E(i(x)i(y)) = Ci (x, y). (4.3.7)

We assumed that their cross-covariances all vanish: E( f b) = E( f i) = E(bi) = 0.
There are data at N points x1, . . . , xN , at discrete times t = t1, . . . , tK :

dkn = u(xn, tk)+ εkn (4.3.8)

for 1 ≤ n ≤ N , where εkn are the measurement errors, for which

Eεk = E( f εk) = E(bεk) = E(iεk) = 0, (4.3.9)

E(εkεlT) = δklC
k
ε . (4.3.10)

That is, f , b and εk are uncorrelated in time. The vectors in (4.3.9), (4.3.10) have
N components. Note that the points x1, . . . , xN do not necessarily coincide with a
spatial grid for numerical integration of (4.3.1)–(4.3.3); they are merely a set of N
measurement sites.

4.3.3 Best linear unbiased estimate: before data arrive

We shall now construct w(x, t), the best linear unbiased estimate of u(x, t), given data
prior to t . Assuming t1 > 0, at time t = 0 we can do no better than

w(x, 0) = I (x), (4.3.11)

for which the error variance is Ci : see (4.3.7). For 0 ≤ t ≤ t1−, let

∂w

∂t
+ c

∂w

∂x
= F, (4.3.12)

w(0, t) = B(t). (4.3.13)
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The error e ≡ u − w obeys

∂e

∂t
(x, t)+ c

∂e

∂x
(x, t) = f (x, t), (4.3.14)

e(x, 0) = i(x), (4.3.15)

e(0, t) = b(t), (4.3.16)
the solution of which is

e(x, t) =
t∫

0

L∫
0

ds dξ γ (ξ, s, x, t) f (ξ, s) + c

t∫
0

ds γ (0, s, x, t)b(s)

+
L∫

0

dξ γ (ξ, 0, x, t)i(ξ ), (4.3.17)

where γ is the Green’s function (see §1.1.4). Hence E(e(x, t) f (y, t)) = 1
2Q f (x, y),

since γ (x, t, y, t) = δ(x − y), and
∫ t
t− δ(s) ds = 1

2 . Also

E(e(x, t)b(t)) = cQbδ(x). (4.3.18)

Now define the spatial error covariance at time t by

P(x, y, t) ≡ E(e(x, t)e(y, t)) = P(y, x, t). (4.3.19)

Multiplying (4.3.14) by e(y, t) and averaging yields

∂P

∂t
(x, y, t)+ c

∂P

∂x
(x, y, t)+ c

∂P

∂y
(x, y, t) = Q f (x, y); (4.3.20)

multiplying (4.3.16) by e(y, t) and averaging yields

P(0, y, t) = cQbδ(y), (4.3.21)

P(x, 0, t) = cQbδ(x). (4.3.22)

Initially,

P(x, y, 0) = Ci (x, y). (4.3.23)

4.3.4 Best linear unbiased estimate: after data have arrived

The situation at time t1− is that we have an estimate w1
−(x) ≡ w(x, t1−), equal to the

mean of u(x, t1), and we have its error covariance P1
−(x, y) ≡ P(x, y, t1−). The new

information are the data d1. These too contain random errors, but by (4.3.8) we are
assuming that

Ed1 = Eu1. (4.3.24)

Let us seek a new estimate w1
+(x) for u(x, t1) which is linear in w1

−(x) and associated
data misfits:

w1
+(x) = αw1

−(x)+ s(x)T(d1 − w1
−), (4.3.25)
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where

(w1
−)n = w1

−(xn) ≡ w(xn, t1−). (4.3.26)

The constant α and the interpolant s(x) have yet to be chosen. Consider the error

e1
+(x) = u(x, t1)− w1

+(x). (4.3.27)

Now

u(x, t1) = w1
−(x)+ e1

−(x), (4.3.28)

where e1
−(x) = e(x, t1−). Hence

e1
+(x) = (1− α)w1

−(x)+ e1
−(x)− s(x)T(d1 − w1

−). (4.3.29)

But Ee1
− = 0. So if we choose α = 1, then

Ee1
+(x) = 0 (4.3.30)

and (4.3.25) is an unbiased estimate. The error variance is

P1
+(x, x) = E

(
e1
+(x)2

)
. (4.3.31)

Exercise 4.3.1
Show that the error variance (4.3.31) is least if the optimal interpolant is

s(x) = K1(x), (4.3.32)

where the “Kalman gain” vector field K1(x) in (4.3.32) is

K1(x) = [P1
− + C1

ε

]−1
P1
−(x). (4.3.33)

The vector P1
−(x) and matrix P1

− have components

P1
n−(x) = P1

−(xn, x),

P1
nm− = P1

−(xn, xm). (4.3.34)
�

Exercise 4.3.2
Show that the posterior error covariance at time t1 is

P1
+(x, y) ≡ E

(
e1
+(x)e1

+(y)
)

= P1
−(x, y)− P1

−(x)T
[
P1
− + C1

ε

]−1
P1
−(y). (4.3.35)

�

Clearly, we may repeat this construction at t2, t3, . . . . See Fig. 4.3.1.
Gathering up all the results, the Kalman filter estimate w satisfies

∂w

∂t
+ c

∂w

∂x
= F (4.3.36)
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Figure 4.3.1 Time line for
the Kalman filter.

for 0 ≤ x ≤ L , tk < t < tk+1, subject to

w(x, 0) = I (x) (4.3.37)

and

w(0, t) = B(t). (4.3.38)

The change in w at time tk is

w(x, tk+)− w(x, tk−) = Kk(x)T(dk − wk
−), (4.3.39)

where the Kalman gain is

Kk(x) = [Pk
− + Ck

ε

]−1
Pk−(x). (4.3.40)

The error covariance satisfies

∂P

∂t
+ c

∂P

∂x
+ c

∂P

∂y
= Q f (4.3.41)

for 0 ≤ x , y ≤ L , tk < t < tk+1, subject to

P(0, y, t) = cQbδ(y), (4.3.42)

P(x, 0, t) = cQbδ(x) (4.3.43)

and

P(x, y, 0) = Ci (x, y). (4.3.44)

The change in P at tk is

P(x, y, tk+)− P(x, y, tk−)=− Pk−(x)TKk(y). (4.3.45)

The new data always reduce the error variance at data sites. Note carefully the assump-
tions that the dynamical and boundary errors f , b and the data εk are uncorrelated in
time, and that the different types of errors are not cross-correlated. Note also that the
optimal choices for α and s(x) in (4.3.25) are not random. They depend not upon the
random inputs w1

−(x), d1 but upon the covariances of the errors in the inputs.

4.3.5 Strange asymptotics

It is usually assumed that the data errors are statistically stationary, that is,Ck
ε is indepen-

dent of k. It is often the case that the temporal sampling interval tk+1 − tk also is indepen-
dent of k. Consequently, the Kalman filter error covariance P approaches an equilibrium
state, in which P(x, y, tk−) = P(x, y, tk+1−) and P(x, y, tk+) = P(x, y, tk+1+). The
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covariance does still evolve in time from tk+ to tk+1−, but Q f and Qb are independent
of t and so the evolution is the same in every data interval. In general we are interested
in more complicated dynamics than are expressed in (4.3.1); so long as the dynamics
are linear, they may be expressed as

∂u

∂t
+ Lxu = F + f, (4.3.46)

where Lx is a linear partial differential operator with respect to x . Of course, Primitive
Equation models involve many dependent variables, but we shall retain just one here,
namely u, for clarity. The error covariance now satisfies

∂P

∂t
(x, y, t)+ Lx P(x, y, t)+ Ly P(x, y, t) = Q f (x, y). (4.3.47)

To simplify the discussion further, let us assume that the data interval �t = tk+1 − tk
is much smaller than the evolution time scale for (4.3.47), so that (see Fig. 4.3.1)

P− = P+ −�t(Lx P− + Ly P−)+�t Q f + O(�t2), (4.3.48)

where P− = P(x, y, tk+1−) and P+ = P(x, y, tk+). Recall that both P+ and P− are
independent of k at equilibrium, hence (4.3.40) and (4.3.45) yield

P+ = P− − PT
−(P− + Cε)−1P−. (4.3.49)

Combining (4.3.48) and (4.3.49) we have

�t(Lx P− + Ly P−)+ PT
−(P− + Cε)−1P− = �t Q f + O(�t2). (4.3.50)

Notice the nonlinearity of the impact of data sites upon P . It is possible for P to strike
a balance between the two terms on the left-hand side of (4.3.50) (dynamics and data-
impact). This balance can take the form of a boundary layer around data sites. The
Kalman gainK and the Kalman filter estimate w will have this structure, which is quite
unphysical (Bennett, 1992). It arises from the adoption of a “cycling” algorithm, as in
(4.3.45).

Exercise 4.3.3
Show that there is no such nonlinearity in the non-sequential representer algorithm,
for one fixed smoothing interval [0, T ] that may include many measurement times:
0 < t1 < · · · < tn < · · · < tN < T . �

Exercise 4.3.4
Consider smoothing a sequence of such intervals: KT < t < (K + 1)T , K = 0, 1,
2, . . . , using the inverse estimate at the end of the K th interval as the first-guess initial
field at the start of the (K + 1)th : I K+1(x) = ûK (x, (K + 1)T ), and using the error
covariance for the inverse estimate as the error covariance for the first-guess initial
field: CK+1

i (x, y) = CK
û (x, y, (K + 1)T ). Show that the equilibrium error covariance

for this “cycling” inverse obeys a nonlinear equation like (4.3.50). Hint: for simplicity,
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assume that the domain is infinite: −∞ < x <∞, assume that the first-guess forcing
field FK is perfect: CK

f = 0, and integrate (3.2.43) as crudely as (4.3.48). �

4.3.6 “Colored noise”: the augmented Kalman filter

We may relax the assumption (4.3.5) of “white system noise”. The simplest “colored
system noise” has covariance

E( f (x, t) f (y, s)) = Q f (x, y)e−
|t−s|
τ (4.3.51)

for some decorrelation time scale τ > 0. Note that the Q f s appearing in (4.3.5) and
(4.3.51) have different units of measurement. It may be shown that (4.3.51) is satisfied
by solutions of the ordinary differential equation

d f

dt
(x, t)− τ−1 f (x, t) = q(x, t), (4.3.52)

provided

E(q(x, t)q(y, s)) = (τ/2)−1Q f (x, y)δ(t − s), (4.3.53)

E( f (x, 0) f (y, 0)) = Q f (x, y), (4.3.54)

and

E( f (x, 0)q(y, s)) = 0. (4.3.55)

This suggests augmenting the state variable (Gelb, 1974):

u(x, t) →
(
u(x, t)

f (x, t)

)
. (4.3.56)

The dynamical model is now (4.3.46), (4.3.52). Note that the “colored” random process
f (x, t) is now part of the state to be estimated. The augmented system is driven by the
“white noise” q(x, t). The augmented error covariance now includes cross-covariances
of errors in the Kalman filter estimates of u and f .

4.3.7 Economies

The Kalman filter is a very popular data assimilation technique, owing to its being se-
quential (e.g., Fukumori and Malanotte-Rizzoli, 1995; Fu and Fukumori, 1996; Chan
et al., 1996). Also, the “analysis” step (4.3.39) is identical to synoptic or spatial optimal
interpolation, as widely practiced already in meteorology and oceanography (Miller,
1996; Malanotte-Rizzoli et al., 1996; Hoang et al., 1997a; Cohn, 1997). The Kalman
filter algorithm evolves the error covariance P in time, via (4.3.41), and (4.3.45).
Nevertheless, evolving P is a massive task for realistically large systems so many
compromises are made. For example, the covariance P(x, y, t) is evolved on a compu-
tational grid much coarser than the one used for the state estimate w(x, t), or P(x, y, t)
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is integrated to an equilibrium covariance P∞(x, y) which is then used at all times
t1, . . . , tK (Fukumori and Malanotte-Rizzoli, 1995), or the number of degrees of free-
dom in w(x, t) is reduced by an expansion in spatial modes (Hoang et al., 1997b). A
covariance such as P may also be approximated by statistical simulation, as discussed
in §3.2.

4.4 Maximum likelihood, Bayesian estimation,
importance sampling and simulated annealing

4.4.1 NonGaussian variability

Least-squares is the simplest of all estimators. It has so many merits. Gradients and
Euler–Lagrange equations are available, so long as the dynamics are smooth. Structural
analyses in terms of null spaces, data spaces, representers and sweep algorithms are
available, as are statistical closures such as the Kalman filter, when the dynamics are
linear or linearizable. Why, then, choose other estimators? Consider ocean temperatures
near the Gulf Stream front. As the latter meanders back and forth across the mooring,
the temperature switches rapidly between the higher value for the warm Sargasso Sea
water and the lower value for the cool slope water. Thus the frequency distribution of
temperature would be bimodal, with peaks at the two values. A least-squares analysis of
temperature would yield the average temperature, which is in fact realized only briefly
while the front is passing through the mooring. What would be a more suitable estima-
tor? Can samples of the non-normal population be generated? How can its estimator
be minimized?

4.4.2 Maximum likelihood

Let us review some introductory statistics. Suppose the continuous random variable
u has the probability distribution function p(u; θ ), where θ is some parameter. Let
u1, . . . , un be independent samples of u. Then the joint pdf of the samples is the
likelihood function:

L(θ ) = p(u1, . . . , un; θ ) =
n∏
i=1

p(ui ; θ ). (4.4.1)

That is, L
n∏
i=1

dui is the probability that the n samples are in the respective intervals

(ui , ui + dui ), 1 ≤ i ≤ n. The maximum likelihood estimate of θ is that value of θ for
which L(θ ) assumes its maximum value.

As an illustration, suppose that u is normally distributed with mean µ and
variance σ 2:

p(u;µ, σ ) = (2πσ 2)−
1
2 exp[−(2σ 2)−1(u − µ)2]. (4.4.2)
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Note that there are two parameters here: µ and σ . Given n samples of u, what are the
maximum likelihood estimates of µ and σ 2? The likelihood function is

L(µ, σ ) ≡
n∏
i=1

p(ui ;µ, σ ) (4.4.3)

= (2πσ 2)−n/2 exp

[
−(2σ 2)−1

n∑
i=1

(ui − µ)2

]
. (4.4.4)

We may as well seek the maximum of

l = log L = −n
2

log(2πσ 2)− (2σ 2)−1
n∑
i=1

(ui − µ)2. (4.4.5)

Extremal conditions are

∂l

∂µ
= −2(2σ 2)−1

n∑
i=1

(ui − µ) = 0, (4.4.6)

∂l

∂(σ 2)
= −n

2
σ−2 + 1

2
σ−4

n∑
i=1

(ui − µ)2 = 0. (4.4.7)

The first condition yields

µL = n−1
n∑
i=1

ui , (4.4.8)

the second yields

σ 2
L = n−1

n∑
i=1

(ui − µL )2. (4.4.9)

So µL , the maximum likelihood estimate for µ, is just the arithmetic mean, while σ 2
L

is just the sample variance.
Now suppose that the pdf for u is exponential, centered at µ and with scale σ :

p(u;µ, σ ) = (2σ )−1 exp[−σ−1| u − µ |]. (4.4.10)

Then

L(µ, σ ) = (2σ )−n exp

[
−σ−1

n∑
i=1

|ui − µ|
]
, (4.4.11)

l(µ, σ ) = −n log(2σ )− σ−1
n∑
i=1

|ui − µ|. (4.4.12)

Hence

∂l

∂µ
= −σ−1

(∑
µ> ui

1−
∑
µ< ui

1

)
= 0, (4.4.13)
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provided ui �= µ for any i , while

∂l

∂σ
= − n

σ
+ σ−2

n∑
i=1

|ui − µ| = 0. (4.4.14)

So

σL = n−1
n∑
i=1

|ui − µL |, (4.4.15)

but µL is not so easily determined. If n is even, then µL should be greater than n/2
samples and less than n/2+ 1. Let’s assume that the samples are ordered:

u1 ≤ u2 ≤ · · · ≤ u n
2
< u n

2+1 ≤ · · · ≤ un. (4.4.16)

Then we should choose µL such that

u n
2
< µL < u n

2+1; (4.4.17)

hence

−
n∑
i=1

|ui − µL | =
n
2∑

i=1

(ui − µL )−
n∑

i= n
2+1

(ui − µL ) (4.4.18)

=
n
2∑

i=1

ui −
n∑

i= n
2+1

ui , (4.4.19)

which is independent of µL ! Had we chosen, say

u n
2−1 < µL < u n

2
, (4.4.20)

then

−
n∑
i=1

|ui − µL | =
n
2−1∑
i=1

(ui − µL )−
n∑

i= n
2

(ui − µL )

=
n
2−1∑
i=1

ui −
n∑

i= n
2

ui + 2µL

=
n
2∑

i=1

ui −
n∑

i= n
2+1

ui − 2(u n
2
− µL ). (4.4.21)

But the rhs of (4.4.21) is less than the rhs of (4.4.19) by 2(un/2 − µL ), which is pos-
itive by virtue of (4.4.20). So the choice (4.4.17) is maximal. Note that µL is only
determined within the interval un/2 < µL < un/2+1, and that σL is insensitive to the
choice. Maximum likelihood estimation is trivial for normal distributions, but less so
for others.

Returning to the normal case, notice that we chose µ to maximize l, as in (4.4.5),
that is, to minimize

N∑
i=1

(ui − µ)2 (4.4.22)
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with respect to µ. The maximum likelihood estimate of µ is the least-squares estimate.
Now let’s change the perspective slightly. Suppose that u1, . . . , un are n measurements
of a quantity u, and each measurement involves an error εi ≡ ui − u that is independent
of the other errors, and distributed as

p(ε; ν, θ ) = (2πθ2)−1/2 exp[−(2θ2)−1(ε − ν)2], (4.4.23)

where the mean ν and variance θ2 are known. That is,

p(ui ; ν + u, θ ) = (2πθ2)−1/2 exp[−(2θ2)−1(ui − u − ν)2]. (4.4.24)

Exercise 4.4.1
Show that uL , the maximum likelihood estimate of u, is

uL = n−1
n∑
i=1

(ui − ν). (4.4.25)

Remove the instrument bias, and take the arithmetic mean! Note that

EuL = n−1
n∑
i=1

Eui − ν

= n−1
n∑
i=1

Eεi + u − ν

= ν + u − ν

= u, (4.4.26)

where

Eεi ≡
∞∫

−∞
p(εi , ν, θ)εi dεi . (4.4.27)

The result (4.4.26) tells us that uL is an unbiased estimate of u. �

Exercise 4.4.2
Show that

E((uL − u)2) = θ2. (4.4.28)

That is, the variance of the error in the maximum likelihood estimate uL for u is equal
to the variance of the measurement errors. �

Now let’s consider randomly erroneous measurements of a random quantity:

v = u + ε, (4.4.29)
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where u is a random variable and ε a random measurement error. We shall denote their
pdfs as p(u) and p(ε). (This is a poor notation; pu(x) and pε(x) would be better, where
pu(x)dx is the probability that x < u < x + dx and pε(x)dx is the probability that
x < ε < x + dx , but let’s try to keep notation simple if imprecise.) The joint pdf for
both u AND ε is p(u, ε). Then the marginal pdfs are

p(u) =
∫

p(u, ε) dε, p(ε) =
∫

p(u, ε) du. (4.4.30)

We may also consider the conditional distributions p(u|ε) and p(ε|u). The former is the
probability distribution of u, given a value for ε; the latter is the probability distribution
of ε, given a value of u. Hence,

p(u, ε) = p(u|ε)p(ε) = p(ε|u)p(u). (4.4.31)

If u and ε are independent, then

p(u|ε) = p(u), p(ε|u) = p(ε), (4.4.32)

and (4.4.31) reduces to the product rule:

p(u, ε) = p(u)p(ε). (4.4.33)

In the general case, where u and ε may be dependent, (4.4.31) becomes Bayes’ Rule
(Cox and Hinkley, 1974):

p(u|ε) = p(ε|u)
p(u)

p(ε)
. (4.4.34)

Combining (4.4.30) and (4.4.31) yields

p(u) =
∫

p(u|ε)p(ε) dε, p(ε) =
∫

p(ε|u)p(u) du. (4.4.35)

Combining (4.4.34) and (4.4.35) yields

p(u) =
∫

p(ε|u)p(u) dε, p(ε) =
∫

p(u|ε)p(ε) du, (4.4.36)

that is, ∫
p(ε|u) dε =

∫
p(u|ε) du = 1. (4.4.37)

Exercise 4.4.3
Examine “Egbert’s Table” (see next page) of values for p(u, ε) for a simple case in
which u = 1 or 2, while ε = −1, 0 or 1. The upper number in each of the six boxes is
p(u, ε).
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ε

−1 0 1 p(u)

0.09 0.72 0.09
1

0.1u
0.05 0.0 0.05

2

p(ε)

(i) Calculate p(u) for each u, and p(ε) for each ε. Verify that these distributions
are normalized.

(ii) Use (4.4.31) to calculate p(ε|u). Enter the values in the six boxes (a check
value is provided in the first box).

(iii) Show that

var (ε = 0.28),

var (ε|u = 2) = 1.0.

That is, an “observation” of the random variable u may increase the variance of an
unknown but dependent random variable ε! �

Now suppose that we have n independent data v1, . . . , vn . We wish to form the

likelihood function L =
n∏
i=1

p(vi ). We can determine p(v), if we know p(v|u) and

p(u). But p(v|u) is the pdf for recording the value v when the true value is u. That is,
p(v|u) is the pdf for ε, when ε = v − u. At this point our sloppy notation fails us, and
we must write

p(v|u) = pε(v − u). (4.4.38)

Then

p(v) =
∫

pε(v − u)p(u) du. (4.4.39)

The distributions in the integrand have parameters Eε, σ 2
ε , Eu, σ 2

u , . . . which we would
like to estimate, using the data v1, . . . , vn . We may do so, by solving the maximum
likelihood conditions

∂ ln L

∂Eε
= 0, etc. (4.4.40)

Thus we arrive at maximum likelihood estimators, given conditional and marginal
distributions.

Exercise 4.4.4
Assume that pε and pu are normal. Derive the maximum likelihood estimates of the
four parameters, given independent data v1, . . . , vn , where v = u + ε. �
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4.4.3 Bayesian estimation

Let us now apply these ideas to optimal interpolation (Lorenc, 1997). The gridded mul-
tivariate field can be ordered as a vector of N components: u = (u1, . . . , uN ) ∈ R

N .
Assume that we have a prior or “background” estimate ub, which is usually a model
solution. The prior conditional distribution is p(u|ub). Let there again be M measure-
ments (v1, . . . , vM ) ∈ R

M related to the true field by v = H(u)+ ε, where the inde-
pendent error is ε = (ε1, . . . , εM ) ∈ R

M and has the pdf pε(ε; Eε,Cεε, . . .). Thus H
maps R

N into R
M . If it is linear, then we may writeH(u) = Hu, where H is an M × N

matrix. We want the distribution for u, given the background ub and data v. Bayes’ Rule
becomes

p(u|v,ub) = p(v|u,ub)p(u|ub)
p(v|ub) . (4.4.41)

Notice that ub is being regarded as a fixed parameter here; only u and v are being
interchanged. Moreover, the measurement process is unrelated to the model, so

p(u|v,ub) = p(v|u)p(u|ub)
p(v)

(4.4.42)

∝ pε(v−H(u); Eε,Cεε, . . .)p(u|ub). (4.4.43)

We may ignore the denominator, as it is independent of u. Given (4.4.43), we take as
our “analysis” estimate of u the mean value:

ua =
∫
up(u|v,ub) du∫
p(u|v,ub) du . (4.4.44)

Exercise 4.4.5
Suppose that both distributions in (4.4.44) are normal; that is,

pε(ε; . . .) = N (ε; Eε,Cεε), (4.4.45)

p(u|ub) = N (u;ub,Cuu). (4.4.46)

Derive the standard least-squares optimal interpolation formulae from (4.4.44). �

In summary, if we can choose credible distributions for the data error and the back-
ground error, be they normal or otherwise, we can use Bayes’ Rule to construct a pdf
for the field. Its first moment is a credible estimate of the field.

Exercise 4.4.6
Or is it? �
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4.4.4 Importance sampling

Not all oceanic and atmospheric processes are normally distributed. Not all dynamics
and penalty functionals are smooth. There is a need for estimators other than least-
squares, and for optimization methods other than the calculus of variations. But first
we need a method for synthesizing samples from any probability distribution P . More
precisely, we require an algorithm for generating a sequence of real numbers x1, x2, . . . ,

xn, . . . such that the number of values in the interval (x, x + dx) is proportional to
P(x) dx . That is, we wish to perform “importance sampling”. It is usually the case that
P is in fact a normalized probability distribution function, that is,

P(x) = K−1Q(x), (4.4.47)

where

K =
b∫

a

Q(x) dx (4.4.48)

for some interval a ≤ x ≤ b. We often only know Q(x) and would like to avoid evalua-
tion of K , especially for higher dimensional problems in which (4.4.48) is a multiple
integral.

Consider a Markov chain x1, x2, . . . , xn, . . . , for which the value of xn+1 lies in
the interval a ≤ x ≤ b, depends only upon the value of xn and the dependence is
random. Let Pn(x)dx be the probability that x < xn < x + dx , and let T (x, y)dx dy
be the probability that x < xn+1 < x + dx given that y < xn < y + dy. Thus, T is a
transition probability density, and

Pn+1(x) dx = Pn(x) dx +
y=b∫

y=a
{T (x, y)Pn(y)− T (y, x)Pn(x)} dy dx . (4.4.49)

The first term in the integrand accounts for transitions to x from all possible y; the
second accounts for transitions from x to all possible y. Note that the integral is over y.
The chain is in equilibrium if Pn+1(x) = Pn(x), which implies that the integral in
(4.4.49) vanishes. That is the condition of balance. Note the assumption that T is
independent of n. The condition of detailed balance:

T (x, y)P(y)− T (y, x)P(x) = 0 (4.4.50)

is sufficient but not necessary for equilibrium. Then the Markov chain x1, x2, . . . is in
equilibrium, with distribution P(x). A simple algorithm for generating a chain from a
given pdf P is as follows (Metropolis et al., 1953).

(1) Pick a number z at random in [a,b].
(2) Calculate

r = P(z)

P(xn)
. (4.4.51)
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(3) Pick a number η at random in [0,1].
(4) Choose

xn+1 =
{
z, if η < r ;

xn, if η > r.
(4.4.52)

In effect the choice is

xn+1 =
{
z, with probability r ;

xn, with probability 1− r.
(4.4.53)

Hence if r < 1 then r is the probability of transition from xn to z:

T (z, xn) = r = P(z)

P(xn)
, (4.4.54)

while if r > 1, then

T (z, xn) = 1. (4.4.55)

The condition of detailed balance follows immediately. For example, if r < 1:

T (z, xn)P(xn) = P(z)

P(xn)
P(xn) = P(z) = T (xn, z)P(z). (4.4.56)

Note that the algorithm depends on P only via the ratio (4.4.51). In fact

r = Q(z)

Q(xn)
. (4.4.57)

It is not necessary to know the normalizing constant (4.4.48).

4.4.5 Substituting algorithms

Suppose that u is the solution of an equation such as

D(u) = f, (4.4.58)

where D is some nonlinear function, while f is a random variable with pdf A = A( f ).
That is, the probability of g < f < g + dg is A(g)dg. What is the corresponding pdf
B = B(u)? This is a nontrivial analytical problem if D is nontrivial. However, we
can construct a Markov chain u1, u2, . . . distributed according to B. Use importance
sampling, based on the non-normalized pdf Q(u) = A(D(u)). For a given un , pick z at
random, calculate r = Q(z)/Q(un), and proceed as in (4.4.52). We would then have
properly distributed samples for u, and could form a histogram estimate of its pdf
B. These samples are now being loosely described as “ensembles” in the literature.
The ensemble is the totality. Note especially that we do not have to invert the opera-
tor D. We merely have to evaluate it for each un , by direct substitution of un into D.
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Exercise 4.4.7
Estimate the pdf of u, given that

loge u = f (4.4.59)

and that f is Gaussian. �

This approach may be invaluable when f is a random field and D represents the
dynamics of an ocean model. Steady models can be particularly difficult to solve,
especially if they are nonlinear. Some time-dependent intermediate models include
diagnostic equations that are unwieldy. An obvious example is the stratified quasi-
geostrophic model. In particular, diagnosing (solving) the three-dimensional elliptic
equation ∇2ψ = ξ for the streamfunction ψ in a realistic ocean basin is nontrivial:
assembling sparse matrices requires great care. In comparison, it is relatively trivial to
substitute the streamfunction into the elliptic equation, and then substitute the vorticity
ξ into the first-order wave equation:

∂ξ

∂t
+ J (ψ, ξ + βy) = q, (4.4.60)

where β is the local meridional gradient of the Coriolis parameter, and where q is some
random source of vorticity.

4.4.6 Multivariate importance sampling

Thus far, u has been a single, real random variable. We are interested in random
multivariate fields: u = u(x, y, z, t), v = v(· · ·), w = w(· · ·), p = p(· · ·), etc. In com-
putational practice, these fields are defined on grids, thus we have arrays ui jkl =
u(xi , y j , zk, tl), vi jkl = v(· · ·), wi jkl = w(· · ·), pi jkl = p(· · ·), etc. For clarity, let us
condense all these into a single vector u = (u1, . . . , um, . . . , uM ). A Markov chain of
these vectors will be denoted by un = (un1, u

n
2, . . . , u

n
M ), for n = 1, 2, 3, . . . . Notice

that the upper index n is not the time index; the latter is included in the lower index.
Suppose that the multivariate probability distribution for u is factorable:

Q(u) = Q1(u1)Q2(u2) . . . QM (uM ), (4.4.61)

in which case the components of u are independent. Consider, for example:

Q(u) = exp
[− u2

1 − u2
2 − · · · − u2

M

]
. (4.4.62)

Then we may apply importance sampling to each component independently. The
decision to accept a new value zm for un+1

m would be based on the ratio

rm = Qm(zm)

Qm
(
unm
) . (4.4.63)
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These M decisions could be made in series or in parallel. Now suppose that components
of u depend only upon two nearest neighbors:

Q(u) = Q2(u1, u2, u3)Q3(u2, u3, u4)Q4(u3, u4, u5) . . . QM−1(uM−2, uM−1, uM ).
(4.4.64)

Consider, for example:

Q(u) = exp[−(u1 + u3 − 2u2)2 − (u2 + u4 − 2u3)2

− · · · − (uM−2 + uM − 2uM−1)2]. (4.4.65)

Then importance sampling may be performed in three “sweeps”. Assume that M is
divisible by three.

Sweep 1. Choose trial values z1, z4, z7, . . . , zM−2 for un+1
1 , un+1

4 , un+1
7 , . . . , un+1

M−2

respectively; each decision to accept a trial value is independent of the others.
For example, the ratio for sampling un+1

1 is

r1 =
Q2
(
z1, u

n
2, u

n
3

)
Q2
(
un1, u

n
2, u

n
3

) , (4.4.66)

while for un+1
4 it is

r4 =
Q3
(
un2, u

n
3, z4

)
Q4
(
un3, z4, un5

)
Q5
(
z4, un5, u

n
6

)
Q3
(
un2, u

n
3, u

n
4

)
Q4
(
un3, u

n
4, u

n
5

)
Q5
(
un4, u

n
5, u

n
6

) (4.4.67)

and so on, for r7, . . . , rM−2. All these decisions can be made in parallel.
Sweep 2. Generate un+1

2 , un+1
5 , . . . , un+1

M−1 by importance sampling, in parallel.
Sweep 3. Generate un+1

3 , un+1
6 , . . . , un+1

M by importance sampling, in parallel.

This procedure, known as “checkerboarding”, is complicated when the actual compu-
tational grid involves more than one dimension.

4.4.7 Simulated annealing

Consider for simplicity a scalar variable u, for which there is a penalty function J (u).
Assume only that J is bounded below:

J (u) > B (4.4.68)

for all u. We wish to find the value of u for which J is least. Let un be an estimate, for
which Jn ≡ J (un) is unacceptably large. Make a small perturbation to un:

z = un +�un. (4.4.69)

The “downhill strategy” is:

un+1 =
{
z, if J (z) < Jn

un, if J (z) > Jn.
(4.4.70)
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However, this strategy could terminate at a local minimum of J . It would be better
to allow a few uphill searches at first, in order to avoid such an outcome. So, use
importance sampling:

un+1 =



z, if J (z) < Jn

z, if J (z) > Jn, with probability r

un, if J (z) > Jn, with probability 1− r,

where

r = e−J (z)/θ

e−Jn/θ
= e−(J (z)−Jn )/θ < 1 (4.4.71)

for some positive “annealing temperature” θ . Simply pick a random variable η in [0,1].
If η < r , accept z. If r < η, keep un . Now r → 0 as θ → 0, so fewer uphill steps
are allowed as θ decreases. The “annealing strategy”, or rate of decrease of θ , is a
“black art” (Azencott, 1992). Note that no gradient information for J is used. The
penalty function need not even be continuous in u. This approach should be ideal
for data assimilation with “small” nonlinear biological models that have “switches”.
These models typically describe the temporal evolution of a biological system, at one
point. The models include constraints such as lower bounds on biomass, together with
discontinuous representations of very rapidly adjusting processes. Barth and Wunsch
(1990) used simulated annealing to optimize the locations of acoustic transceivers
in an idealized model “ocean”. Kruger (1993) used simulated annealing to minimize
the penalty functionals associated with the inversion of two ocean models. The first
was a two-box model of ocean stratification that included a nonsmooth representation
of convective adjustment. The second involved a single-level quasigeostrophic model
much like (4.4.60), at one time. There were about 4000 computational degrees of
freedom in Kruger’s second application.

Importance sampling is used extensively in theoretical physics, especially for the
evaluation of path integrals. The number of dimensions is extremely large, so the ef-
ficient generation of independent trial values is of crucial importance. Ingenious tech-
niques such as “Hybrid Monte Carlo” or HMC, have been devised, but these typically
assume that the integrand depends smoothly upon the state variables. See Chapter 6
for an application of these techniques to the resolution of an ill-posed problem.



Chapter 5

The ocean and the atmosphere

Seawater and air are viscous, conducting, compressible fluids. Yet large-scale oceanic
and atmospheric circulations have such high Reynolds’ numbers and such low aspect
ratios that viscous stresses, heat conduction and nonhydrostatic accelerations may all
be neglected. (The Mach number of ocean circulation is so low that the compressibility
of seawatermay also be neglected, but will be retained here in the interest of generality.)
Subject to these approximations, the Navier–Stokes equations simplify to the so-called
“Primitive Equations”. It is often convenient to express these equations in a coordinate
system that substitutes pressure for height above or below a reference level. The Primi-
tive Equations were for many years too complex for operational forecasting. They were
further reduced by assuming low Rossby number flow, leading to a single equation
for the propagation of the vertical component of vorticity – the “quasigeostrophic”
equation. Now obsolete as a forecasting tool, this relatively simple equation retains
great pedagogical value. To its credit, it is still competitive at predicting the tracks of
tropical cyclones, if not their intensity.
The astronomical force that drives the ocean tides is essentially independent of

depth, and so its effectsmaybemodeledbyunstratifiedPrimitiveEquations: theLaplace
Tidal Equations. The external Froude number for the tides is so low that the “LTEs”
are essentially linear. Combining the linear LTEs with the vast records of sea level
elevation collected by satellite altimeters makes an ideal first test for inverse ocean
modeling. The interaction of harmonic analysis of the tides and bias-free strategies for
measurement leads to novel measurement functionals. The great separation of scales
clarifies the prior analysis of errors in the dynamics and in coastlines.
Initializing a quasigeostrophic model for hurricane track prediction is ideal as a

first application of inverse ocean modeling to nonlinear dynamics. Errors arise in the
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dynamics owing to the neglect of resolvable processes. The statistics of these processes
may be estimated from archived data. The relatively simple “QG”dynamics also clarify
discussion of the conceptual issue of even defining statistics for errors arising from
parameterization of unresolvable processes.
High-altitude winds inferred from tracks of cloud images collected by satellites

cannot reasonably be assimilated into a “QG” model; a Primitive Equation model is
called for. This provides an extreme exercise in deriving and solving Euler–Lagrange
equations for a variational principle that is based on a complex model and on an
unstructured data set.
The trans-Pacific array of instrumented ocean moorings known as TAO is so regu-

larly structured, and of such continuity and duration, that rigorous testing of models
becomes feasible. An intermediate model of the seasonal-to-interannual variability of
the coupled ocean–atmosphere is TAO’s first victim.
The chapter closes with notes on a selection of contemporary variational and stat-

istical assimilations, variously involving components of the entire hydrosphere.

5.1 The Primitive Equations and
the quasigeostrophic equations

5.1.1 Geophysical fluid dynamics is nonlinear

Our development of inverse theory has involved linear models and linear measurement
functionals. Tides provide a splendid example of a linear model, but there are no others.
In general, geophysical fluid dynamics is nonlinear. The Primitive Equations and the
quasigeostrophic equations of motion (Haltiner and Williams, 1980; Gill, 1982) will
be briefly reviewed in this section.

5.1.2 Isobaric coordinates

Let us replace space–time coordinates (X, Y, Z , T ) with space–pressure–time coordi-
nates (x, y, p, t), where

x = X, y= Y, p= p(X, Y, Z , T ) and t = T . (5.1.1)

Note 1. We could instead be using, say, spherical coordinates (longitude and latitude)
on horizontal surfaces (constant Z ), or on isobaric surfaces (constant p) as in
(5.1.1).

Note 2. The coordinate transformation (5.1.1) depends upon the state of the ocean or
the atmosphere, through the instantaneous pressure field p.
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5.1.3 Hydrostatic balance, conservation of mass

In space–time coordinates, the hydrostatic approximation is

∂p

∂Z
= −ρg, (5.1.2)

where ρ is the fluid density, and g the local gravitational acceleration. We may use
(5.1.1) and (5.1.2) to obtain the volume element:

dx dy dp = ρg dX dY dZ . (5.1.3)

Now consider a parcel of fluid, occupying a region V = V(t) that moves and distorts
in time. The total mass of the parcel does not change, so

d

dT

∫ ∫
V

∫
ρ dX dY dZ = 0, (5.1.4)

or, as a consequence of (5.1.1) and (5.1.3),

d

dt

∫ ∫
V

∫
dx dy dp = 0. (5.1.5)

Comparing the volume integral at times t and t + dt leads easily to the conclusion that∫ ∫
S

v · n̂ da = 0, (5.1.6)

where S is the surface of the parcel, n̂ is an outward unit normal on S, da is an element
of area in (x, y, p) coordinates, and v = (u, v, ω), where

u ≡ Dx

Dt
, v ≡ Dy

Dt
, ω ≡ Dp

Dt
. (5.1.7)

The divergence theorem in (x, y, p) coordinates yields

∫ ∫
V

∫ (
∂u

∂x
+ ∂v

∂y
+ ∂ω

∂p

)
dx dy dp = 0. (5.1.8)

The parcel V is arbitrary, hence the flow is volume-conserving in (x, y, p) coordinates:

∂u

∂x
+ ∂v

∂y
+ ∂ω

∂p
= 0 (5.1.9)
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5.1.4 Pressure gradients

The pressure gradient per unit mass is

ρ−1 ∂p

∂X
= −g

(
∂p

∂Z

)−1
∂p

∂X
, (5.1.10)

by virtue of the hydrostatic approximation (5.1.2). The chain rule applied to
Z = Z (x, y, p, t) yields

1 = ∂Z

∂Z
= ∂Z

∂x

∂x

∂Z
+ ∂Z

∂y

∂y

∂Z
+ ∂Z

∂p

∂p

∂Z
+ ∂Z

∂t

∂t

∂Z
. (5.1.11)

But x = X , y = Y and t = T are orthogonal to Z , hence

∂x

∂Z
= ∂y

∂Z
= ∂t

∂Z
= 0, (5.1.12)

and so (
∂p

∂Z

)−1

=
(
∂Z

∂p

)
. (5.1.13)

Note that (5.1.13) is not a general property of transformations; it is only true for our
special transformation (5.1.1). The hydrostatic approximation then becomes

∂φ

∂p
= −ρ−1 (5.1.14)

where we have defined the geopotential φ = φ(x, y, p, t):

φ ≡ gZ . (5.1.15)

Combining (5.1.10) and (5.1.13) yields

ρ−1 ∂p

∂X
= −g ∂Z

∂p

∂p

∂X
. (5.1.16)

Next we use the chain rule on Z = Z (x, y, p, t) to obtain

0 = ∂Z

∂X
= ∂Z

∂x

∂x

∂X
+ ∂Z

∂y

∂y

∂X
+ ∂Z

∂p

∂p

∂X
+ ∂Z

∂t

∂t

∂X
. (5.1.17)

But ∂x
∂X = 1, ∂y

∂X = 0 and ∂t
∂X = 0, so (5.1.10) becomes

ρ−1 ∂p

∂X
= g

∂Z

∂x
= ∂φ

∂x
. (5.1.18)
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Similarly,

ρ−1 ∂p

∂Y
= ∂φ

∂y
. (5.1.19)

Exercise 5.1.1
Draw a sketch that explains (5.1.18) and (5.1.19). �

5.1.5 Conservation of momentum

Now x = X and t = T , so

U ≡ DX
DT

= Dx
Dt

≡ u, DU
DT

= D2X
DT 2

= D2x
Dt2

= Du
Dt

, (5.1.20)

where u = (u, v). Thus the horizontal momentum equation

DU∼
DT

+ f k̂× U = −ρ−1∇X p, (5.1.21)

where ∇X =
(

∂
∂X ,

∂
∂Y

)
and f = f (Y ) is the (known) Coriolis parameter, becomes the

isobaric momentum equation

Du
Dt

+ f k̂× u = −∇xφ (5.1.22)

where

D

Dt
= ∂

∂t
+ u ·∇x + ω

∂

∂p
, (5.1.23)

and ∇x =
(

∂
∂x ,

∂
∂y

)
.

5.1.6 Conservation of scalars

For any conserved tracer τ such as entropy η, salinity S or relative humidity q,

Dτ

DT
= 0.

But T = t , so

Dτ

Dt
= 0 (5.1.24)

We have now derived the Primitive Equation in pressure coordinates: (5.1.9), (5.1.14),
(5.1.22) and (5.1.24). Note that only the hydrostatic approximation has been made;
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incompressibility has not been assumed. The appearance of (5.1.9) is deceptive! The
Primitive Equations must be supplemented with an equation of state such as

ρ = ρ(p, η, S) (5.1.25)

or

ρ = ρ(p, η, q) (5.1.26)

where the rhs of (5.1.25), (5.1.26) indicates a prescribed functional form.

Exercise 5.1.2
Consider hydrostatic motion of a fluid of constant density, between a rigid flat surface
at φ = 0 and a material free surface at φ = gh, where h = h(x, y, t). Assume that the
pressure at the free surface vanishes: p = 0. Derive the “shallow water equations”:

Du
Dt

+ f k̂× u = −g∇h, (5.1.27)

Dh

Dt
+ h∇ · u = 0. (5.1.28)

Note: It is dynamically consistent to assume that ∂u/∂p = 0. �

5.1.7 Quasigeostrophy

The Eulerian form of (5.1.22) is

∂u
∂t
+ (u ·∇)u+ ω

∂u
∂p
+ f k̂× u = −∇φ, (5.1.29)

where it is now understood that ∇ is ∇x . For mesoscale motions and larger, it is
reasonable to assume that∣∣∣∣ ∂ω∂p

∣∣∣∣

∣∣∣∣∇ · u

∣∣∣∣,
∣∣∣∣ω∂u

∂p

∣∣∣∣

∣∣∣∣ u ·∇u

∣∣∣∣, (5.1.30)

hence the Primitive Equations (5.1.9) and (5.1.22) are approximately

∇ · u = 0, (5.1.31)

∂u
∂t
+ (u ·∇)u+ f k̂× u = −∇φ, (5.1.32)

which is the same as the dynamics of planar incompressible flow. Note that ∇ is
a gradient at constant pressure, and that (5.1.31) and (5.1.32) form a closed sys-
tem, to the extent that they determine u and φ without reference to the equation of
state, or to the hydrostatic approximation or to the conservation of entropy. As is well
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known, in simply-connected domains (5.1.31) implies the existence of a streamfunction
ψ = ψ(x, p, t) such that

u = k̂×∇ψ =
(
−∂ψ

∂y
,
∂ψ

∂x

)
. (5.1.33)

If we define the vertical component of relative vorticity by

ξ ≡ k̂ ·∇× u = ∂v

∂x
− ∂u

∂y
= ∇2ψ, (5.1.34)

and if we apply k̂ ·∇× to (5.1.32) and use (5.1.31), we obtain the vorticity equation

∂ξ

∂t
+ u ·∇ξ + d f

dy
v = 0, (5.1.35)

or

∂ζ

∂t
+ u ·∇ζ = 0 (5.1.36)

where

ζ = ξ + f (5.1.37)

is the total vorticity. The conservation law (5.1.36) may be expressed entirely in terms
of the streamfunction:

∂

∂t
∇2ψ + ∂(ψ,∇2ψ + f )

∂(x, y)
= 0 (5.1.38)

The nonlinearity of this “filtered” vorticity equation is significant for large Rossby
number:

Roβ ≡ U

βl2
� 1, (5.1.39)

where β ≡ d f
dy , while U and l are the scales of variation of u and x respectively. Note

that (5.1.39) may still hold even though

Ro f ≡ U

f0l

 1, βl 
 f0, (5.1.40)

where f0 is a local value of f . Under these conditions, (5.1.29) yields the “geostrophic”
balance:

f0k̂× u ∼= −∇φ, (5.1.41)
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in which case (5.1.31) again holds approximately, and (5.1.35), (5.1.36) may be
derived from (5.1.29) at O(Ro f ). As a consequence, (5.1.36) is also known as the
“quasigeostrophic” vorticity equation (Gill, 1982).

5.2 Ocean tides

5.2.1 Altimetry

Barotropic ocean tides are global-scale motions that are accurately modeled with lin-
ear dynamics. The TOPEX/POSEIDON altimetric satellite, launched in August 1992
and still in operation (June, 2001), is providing highly accurate global sea-level data
(Chelton et al., 2001). There could hardly be a more elegant exercise in data assim-
ilation. Indeed, altimetry provided a first test of an advanced method using a large
amount of data. Let us pause in our development of inverse methods, and explore the
real problem of global ocean tides.

5.2.2 Lunar tides

Let us briefly review lunar tides. They are driven by the gravitational attraction of the
moon: see Fig. 5.2.1. At the earth’s center of mass E , there is exact equality between the
gravitational attraction towards the center of mass of the moon at C and the centripetal
acceleration of E towards C, as E moves tangentially on its orbit around C. (More
precisely, C and E orbit around the common center of mass.) Let the points A and
B make orbits of the same radius as that of E, and so have the same centripetal
acceleration as E. However, A is closer to C than is E (while B is further away), and so
A experiences a stronger gravitational acceleration towards C (while B experiences a

M

N

B
L

E

A
C

Figure 5.2.1 Tidal
potentials.
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weaker gravitational acceleration). Hence there are net accelerations or “tidal bulges”
at A and B, respectively towards and away from C. Meanwhile the earth spins around
its polar axis once a day, by definition of the polar axis and the day. So each point on
the ocean surface should have two high tides (A and B) and two low tides (L and M )
each day. In fact, the ocean has free barotropic motions with many periods of the order
of a day, hence its response to the tide-generating force is very complicated. Solar tides
add to the complexity. For a marvelous account of tides in the ocean, see Cartwright
(1999).

The tide-generating force (tgf) is conservative, and so there is a tide-generating
potential (tgp) per unit mass which we shall express as a sea-surface elevation h.
The tgf is ∇h. In mid-ocean, |h| is about 30 cm. The tgf has a complicated time
dependence, dominated by the relative motions of the earth, the moon and the sun.
Certain periodicities are obvious, and up to 400 others have been calculated using
celestial mechanics, by G. Darwin, Doodson and others. That is,

h(x, t) ∼= Re
K∑
k=1

hk(x)eiωk t , (5.2.1)

where x denotes a position on the earth’s surface. The frequencies ω1, . . . , ωK

define tidal constituents. For example ω1 ≡ ‘M2’, the “principal lunar semidiurnal
constituent”, corresponds to a period of 12h 25m 42s approx., while ω2 ≡ ‘S2’, the
“principal solar semidiurnal constituent”, corresponds to a period of 12h exactly.
Table 5.2.1 is extracted from Doodson and Warburg (1941). The “speed number” is
the frequency ωk expressed in degrees per hour (and is equal to exactly 30 for S2),
while the “relative coefficient” is the relative amplitude of hk . The dominant diur-
nal and semidiurnal constituents are, in order, M2, K1, S2, O1, P1, N2, K2 and Q1.
The lunar fortnightly, monthly and solar semiannual tides M f , Mm and Ssa are also
significant.

Constructive and destructive interference between semidiurnal and diurnal tides
causes a diurnal inequality, that is, one of the two daily high tides exceeds the other.
Interference between semidiurnal tides, especially between M2 and S2, causes beating
or “neap” and “spring” tides.

Exercise 5.2.1
What is the period of beats between M2 and S2? �

5.2.3 Laplace Tidal Equations

Having briefly reviewed the tide-generating force, let us now review ocean hydrodyn-
amics. It suffices to consider the linear, shallow-water equations on a rotating planet
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Table 5.2.1 List of harmonic constituents of the equilibrium tide
on the Greenwich Meridian

Speed Relative
Symbol Argument number coefficient

Sa h 0.0411 0.012
Ssa 2h 0.0821 0.073
Mm s − p 0.5444 0.083
MS f 2s − 2h 1.0159 0.014
M f 2s 1.0980 0.156

K1 15◦t + h + 90◦ 15.0411 0.531
O1 15◦t + h − 2s − 90◦ 13.9430 0.377
P1 15◦t − h − 90◦ 14.9589 0.176
Q1 15◦t + h − 3s + p − 90◦ 13.3987 0.072
M̃1 15◦t + h − s + 90◦ 14.4921 0.040
J1 15◦t + h + s − p + 90◦ 15.5854 0.030
M2 30◦t + 2h − 2s 28.9841 0.908
S2 30◦t 30.0000 0.423
N2 30◦t + 2h − 3s + p 28.4397 0.174
K2 30◦t + 2h 30.0821 0.115
ν2 30◦t + 4h − 3s − p 28.5126 0.033
µ2 30◦t + 4h − 4s 27.9682 0.028
L2 30◦t + 2h − s − p + 180◦ 29.5285 0.026
T2 30◦t − h + p′ 29.9589 0.025
2N2 30◦t + 2h − 4s + 2p 27.8954 0.023

(the Laplace Tidal Equations or LTEs). In the f -plane approximation (Gill, 1982),
these are

∂u
∂t
+ f k̂× u = −g∇(h − h)− ru/H, (5.2.2)

∂h

∂t
+∇ · (Hu) = 0, (5.2.3)

where f is the local value of the Coriolis parameter, k̂ is the unit vector in the local
vertically-upward direction, u = u(x, t) is the barotropic current, h = h(x, t) is the
sea-level disturbance, H = H (x) is the mean depth of the ocean, r is a bottom drag
coefficient and h = h(x, t) is the tgp: see Fig. 5.2.2.

Note 1. A quadratic drag law −k|u|u is more reliable.
Note 2. If h ≡ h, then the ocean is in hydrostatic balance with the tgf: this is the

“equilibrium” tide of Newton. For long-period tides such as M f , Mm and Ssa,
it is an excellent approximation.
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H

h
h

Figure 5.2.2 Shallow-
water theory.

Note 3. Many more effects can be included, yielding real gains in forecast accuracy.
These include

(i) load tide: as sea level rises and falls, the ocean floor subsides and rebounds
elastically;

(ii) earth tides: the tgf directly drives motions in the elastic earth;
(iii) self tide: as sea levels rises, the local accumulation of mass deflects the local

vertical;
(iv) geoid corrections: the earth tides change the shape of the earth and hence that

of the earth’s geopotentials or “horizontals”;
(v) atmospheric tides: the tgf and solar heating drive motions in the atmosphere

which perturb sea-level pressure.

The LTEs require boundary conditions, such as

u · n̂ = 0 (5.2.4)

at coasts, or

h = hB (5.2.5)

at an open boundary. These are unsatisfactory: is the boundary at the shore line or
the shelf break? Can hB be measured economically? How shall we avoid spurious
oscillations in an open region, when the LTEs are subjected to (5.2.5)?

5.2.4 Tidal data

Tides are the best measured of all ocean phenomena. The data include:

(i) century-long high-quality time series of sea level at about one hundred coastal
stations, measured with floats in “stilling wells” and strip-chart recorders;

(ii) year-long high-quality time series of bottom pressure in about twenty deep
ocean locations, measured with the piezoelectric effect and digital recorders;

(iii) year-long good-quality time series of ocean current at selected depths at about a
thousand deep locations;
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shooting tomography.
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Figure 5.2.4 Satellite radar
altimetry.

(iv) year-long good-quality time series of reciprocal-shooting acoustic tomography
at about a dozen deep ocean locations: see Fig. 5.2.3.

(v) satellite altimetry: see Fig. 5.2.4.

Altimetric missions include GEOSAT, ERS-1 and TOPEX/POSEIDON. The last
(T/P) has a ten-day repeat-track orbit from 70◦S to 70◦N approx.: see Fig. 5.2.5.
Again, TOPEX/POSEIDON has been flying and operating successfully since August
1992.

Temporal variability in the orbit of T/P is known with remarkable precision:
±2 cm. However, the shape of the gravitational equipotential (the “geoid”) is not known
so accurately. This bias can be eliminated from the data by considering “cross-over”
differences: see Fig. 5.2.6. The datum becomes

d = h(X, TD)− h(X, TA)+ ε.

Note that TA and TD need not be the times of consecutive passes over X. The values
of |TA − TD| for consecutive passes can be as large as five days, thus semi-diurnal tides
are severely aliased. In fact, the aliased tides resemble Rossby waves with periods of
about 60 days. We shall use the dynamics of the LTE to identify and hence reject the
aliased tides, which have great spatial coherence.
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Figure 5.2.6 Orbit
cross-overs.

5.2.5 The state vector, the cross-over measurement
functional and the penalty functional

Let us work with tidal volume transports Uk(x) ≡ H (x)uk(x) and elevations hk(x) at
frequency ωk, for 1 ≤ k ≤ K . Then the state vector field is

U = U(x) =




U1

h1

U2

h2
...
...
UK

hK




∈ CCCC
3K . (5.2.6)

Recall that Uk and hk are complex-valued. The dynamics become

iωkUk + f k̂× Uk + gH∇(hk − hk)+ rUk/H = ρk, (5.2.7)

iωkhk +∇ · Uk = σk, (5.2.8)

where ρk and σk are dynamical misfits or residuals. Note that the bathymetry H only
appears in the momentum equation, so the continuity equation should be very accurate.
The boundary conditions are

Uk · n̂ ∼= 0 at coasts, hk ∼= hBk at open boundaries. (5.2.9)

We refrain from introducing symbols for the boundary residuals; instead we shall
express (5.2.7)–(5.2.9) compactly as

SU = F+ τ , (5.2.10)

where S comprises the linear dynamical operators and linear boundary operators, F
includes the tgf and boundary forcing, while τ includes the dynamical and boundary
residuals.
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The cross-over data involve the linear measurement functional

Lm[U] = h
(
Xm, T

(2)
m

)− h
(
Xm, T

(1)
m

)
, (5.2.11)

where Xm is a cross-over location, while T (1)
m and T (2)

m are the times of distinct passes.
Note that Lm selects only the elevation h, and evaluates it at certain times. In terms of
complex harmonic amplitudes, the functional becomes

Lm[U] =  e
K∑
k=1

hk(Xm)
{
eiωk T

(2)
m − eiωk T

(1)
m
}
, (5.2.12)

for 1 ≤ m ≤ M . In compact form, the data are

d = L[U]+ ε. (5.2.13)

Note that the field U has values in CCCC
3K , while d belongs to RRRR

M .

Exercise 5.2.2
Devise the measurement functionals for data types (i)–(iv) in §5.2.3. Explain why
representers for altimetric cross-over data can be constructed using representers for
tide gauge data. �

Finally, the penalty functional for inversion of the LTE and T/P data is (Egbert
et al., 1994; Egbert and Bennett, 1996)

J [U] = τ ∗ ◦Wτ ◦ τ + ε∗wε, (5.2.14)

where ∗ denotes the transposed complex conjugate vector. Note that we should choose
Wτ = C−1

τ , where Cτ is the covariance of residuals at different places and at different
frequencies, and we should choose w = C−1

ε where Cε is the covariance of measure-
ment errors.

5.2.6 Choosing weights: scale analysis of dynamical errors

Before proceeding with the mathematical task of minimizing the penalty functional J ,
let us take a first look at the choice of weights in J . As these will be the inverses of
error covariances, consider first some scale estimates of dynamical errors.

(i) The dynamics are linearized. Also, we have analyzed the fields harmonically,
thus ∂h

∂t = iωh at frequency ω. Let us assume that ∂h
∂x ∼ κδh, where κ is some

wavenumber and δh is the rough magnitude of h. The balance between local
accelerations and pressure gradients (5.2.7) may be expressed as

ωδu ∼ gκδh. (5.2.15)
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The balance between the local rate of change of sea level and the convergence
of volume flux in (5.2.8) is

ωδh ∼ κHδu. (5.2.16)

Hence

ω2 ∼ gHκ2, κ ∼ ω

c
, (5.2.17)

where c = (gH )
1
2 , and

δu ∼ ωδh

κH
∼
( g
H

) 1
2
δh = c

δh

H
. (5.2.18)

Now compare the local acceleration and momentum advection in (5.2.7):

ωδu : κ(δu)2. (5.2.19)

These are in the ratio

1 :
κδu

ω
, or 1 :

δu

c
, or 1 :

δh

H
. (5.2.20)

The linearization error in the continuity equation (5.2.8) is also (δh/H ). In deep
water H ∼ 5000 m and δh ∼ 0.2 m, so linearization is highly accurate. Note
that c = (gH )

1
2 ∼ 200 m s−1, so δu ∼ 0.008 m s−1.

(ii) The pressure gradients in (5.2.7) are derived from the hydrostatic balance (not
shown). Using the three-dimensional incompressibility condition (not shown),
we may deduce that the scale of the vertical velocity is δw ∼ κHδu, hence the
comparison of local vertical accelerations to the gravitational acceleration is

ωδw : g, or ωκHδu : g, (5.2.21)

or

cκ2Hδu : g, or κ2H 2(δu/c) : 1. (5.2.22)

So the hydrostatic balance is extremely accurate for small-amplitude
(δh 
 H ), long waves (κH 
 1) in deep water. The dynamics are “shallow” in
the sense that κH 
 1.

(iii) A crude estimate of numerical accuracy is made by comparing the horizontal
grid spacing �x to the length scale κ−1 = cω−1. For solar semidiurnal tides,

ω = 2π

(
1

2
d

)−1

= (2π/43 200) s−1 ∼= 1.4× 10−4 s−1,

so κ−1 ∼ 200 m s−1/(1.4× 10−4 s−1) ∼= 1.4× 106 m = 1400 km. Thus, if
�x = 0.5◦ ∼= 50 km, and the numerics are second-order accurate, then
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truncation errors are entirely negligible. Tidal diffraction at peninsulae reduces
the length scale significantly. It is also common practice to reduce grid spacing
in shallow water according to the rule �x ∝ H

1
2 .

Exercise 5.2.3
Justify the shallow-water grid rule given above. �

(iv) The mean depth H (x) is commonly taken from the US Navy’s ETOP95
bathymetry, which is available at NCAR. These data are very doubtful at high
latitudes. In the deep North Pacific we can only guess that the error is about
100 m in 5000 m, or 2%. There are known to be far greater errors in, for
example, the Weddell Sea.

(v) We have adopted the crude drag law: iωu · · · = · · · − ru/H, where
r = 0.03 m s−1. It is common practice to replace r/H with r/max[H, 200 m],
in order to avoid excessive drag over the continental shelves. These drag
formulae are usually tuned so that the tidal solutions are in reasonable
agreement with data. Nevertheless, such drag laws are crude parameterizations,
so it is prudent to assume that they are 100% in error. However, the drag is a
very small part of the momentum balance in deep water.

(vi) The rigid boundary condition is simply

Hu · n̂ = 0, (5.2.23)

where n̂ is normal to the boundary. The question arises: where is the boundary?
In a numerical model the precision of location is no smaller than �x , so the
error in (5.2.23) is of the order of

�x
∂

∂n
(Hu · n̂) ∼ �xκHδu · n̂. (5.2.24)

The relative error in (5.2.23) is therefore ∼�xκ . If we assume that
κ ∼ ω(gH )−

1
2 , H ∼ 100 m, g ∼ 10 m s−2 and ω = S2 � 1.4× 10−4 s−1, then

κ ∼= 0.5× 10−5 m−1. So if �x = 0.5◦ ∼= 50 km, then

�xκ ∼= 0.25. (5.2.25)

The relative error in (5.2.23) is 25%! The depth would have to increase to
10 km in order for �xκ to be as small as 2.5% (given �x = 0.5◦). So rigid
boundary conditions are significant sources of error in numerical tidal models.
The solution in mid-ocean may not be sensitive to this error source, as the basin
resonances are very broad. That is, the coastal irregularity itself ensures a fine
spectrum of seiche modes. Finally, the high-resolution Finite Element Model
(FEM) for global tides developed at the Institute for Mechanics in Grenoble,
France is the best forward model yet developed (Le Provost et al., 1994).
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In summary, linearization and truncation errors in the continuity equation are negli-
gible. Bathymetric errors and drag errors in the momentum-transport equations should
be admitted, while rigid boundary conditions are significantly in error.

5.2.7 The formalities of minimization

Let us set aside our preliminary discussion of model errors, and make some notes on
the formalities of minimization. The penalty functional (5.2.14) is

J [U] = τ ∗ ◦ C−1
τ ◦ τ + ε∗C−1

ε ε (5.2.26)

≡ (SU− F)∗ ◦ C−1
τ ◦ (SU− F)+ (d−L[U])∗C−1

ε (d−L[U]). (5.2.27)

Setting the first variation of J to zero yields

0 = 1

2
δĴ = (SδU)∗◦ C−1

τ ◦ (SÛ− F)−L[δU]∗C−1
ε (d−L[Û]). (5.2.28)

The vanishing of the coefficient of δU∗ yields

S†Λ = L[δ]∗C−1
ε (d−L[Û]), (5.2.29)

where

SÛ = F+ Cτ ◦Λ. (5.2.30)

Note that S and the adjoint operator S† include the dynamics and the boundary
conditions.

Exercise 5.2.4
Derive (5.2.29), (5.2.30) in detail. �

Let us now examine L for TOPEX/POSEIDON cross-over data (T/P XO data):

Lm[U] = h
(
Xi , T

(2)
j

)− h
(
Xi , T

(1)
j

)
, (5.2.31)

where 1 ≤ m = m(i, j) ≤ M . The Xi for 1 ≤ i ≤ I are the XO locations; the T (1,2)
j

for 1 ≤ j ≤ J are the XO times. In terms of tidal constituents we have, from (5.2.12):

Lm[U] =  e
K∑
k=1

hk(Xi )
{
eiωk T

(2)
j − eiωk T

(1)
j
}
. (5.2.32)

So it suffices to calculate representers for hk(Xi ) for 1 ≤ i ≤ I and 1 ≤ k ≤ K . Then
we can synthesize the representers for the (Xi , T

(1,2)
j ) XO difference. This is very

useful. There are only 1× 104 XO points but by 9/99 there had been approximately
258 ten-day repeat-track orbit cycles, or about 1.8× 106 XO data. According to the
above harmonic analysis, we need only compute K × 104 representers (K is usually 4
or 8). How else might we reduce the computations? Inspection of reasonably accurate
solutions of forward tidal models indicates that the XO coverage is unnecessarily dense,
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for observing tides. In the open ocean, adequate coverage is obtained with every third
XO in each direction. Thus we may reduce the number of representers by nearly a factor
of ten. Finally, a cheap preliminary calculation of all the remaining representers, using
a coarse numerical grid, permits an array mode analysis (see §2.5). The analysis shows
that a further reduction by a factor of about four is appropriate. In conclusion, about
4000 real representers are needed. They may be fitted to the 1.8× 106 data values,
however.

5.2.8 Constituent dependencies

It might be inferred from the preceding discussion that the representers at different
tidal frequencies may be calculated independently. In general, this is not the case. The
representer adjoint variables obey

S†
kαk = δ(x− ξ)ê3 (5.2.33)

for 1 ≤ k ≤ K , where ê3 = (0, 0, 1, 0)T, and so may be calculated separately. However
the representers obey

Skrk =
K∑
l=1

Cτkl ◦αl (5.2.34)

for 1 ≤ k ≤ K , and in general the LTE error covariance is not diagonal with respect to k
and l. Nevertheless, we may reasonably assume that errors for semidiurnal constituents
are independent of those for diurnal constituents. The tidal inverse problem involves
immense detail, because so much is known about the structure of the tide-generating
force.

5.2.9 Global tidal estimates

Estimating global ocean tides using hydrodynamic models and satellite altimetry is
formulated as an inverse problem in Egbert et al. (1994). The altimetric data are
being inverted in order to find errors in the drag law and bathymetry, especially in
the deep ocean. Linear dynamics and linear measurement functionals suffice. The time
dependence involves few degrees of freedom and those are highly regular, pure har-
monic in fact. The number of cross-over data and hence the number of representers is
very large (and still growing, after eight years), yet their number can be reduced by
obvious and reasonable subsampling strategies (for example, every third cross-over in
each direction), and by a priori array assessment based on economical computation of
representers on a coarser numerical grid. The eventual set of decimated and rotated
representers may still be fitted closely to the entire data set, however.

Best of all, the challenge of a real, large and important problem led (Egbert, personal
communication) to the indirect representer method, outlined in §3.1.3 and applied to real
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data in Egbert et al. (1994; hereafter referenced as EBF). This tidal solution and others
have been extensively reviewed (Andersen et al., 1995; Le Provost, 2001; Le Provost
et al., 1995; Shum et al., 1997). The solutions were tested with independent tide gauge
data. All agreed to within a few centimeters, but the EBF inverse solution (“TPX0.2”)
did not perform as well as empirical fits to the altimetry (Schrama and Ray, 1994), nor as
well as a finite-element forward solution of the Laplace Tidal Equations obtained by a
team in Grenoble (Le Provost et al., 1994). The inverse solution was in effect an empir-
ical fit to the altimetry using a few thousand representers, whereas the other empirical
fits used around one hundred thousand degrees of freedom. Schrama and Ray (1994)
chose the high-resolution Grenoble finite-element solution as the prior, or first-guess
for their empirical fit. The prior for the EBF inverse was a finite-difference solution
of the Laplace Tidal Equations on a relatively coarse grid. A striking and confidence-
enhancing aspect of the inverse solution was its relative smoothness, which it owed
to its parsimony or few degrees of freedom. The Grenoble finite-element solution had
very fine resolution in shallow seas, where it excelled. The EBF inverse solution was
based on representers for cross-overs in deep water only. Driven by the tide-generating
force and tidal data at few basin boundaries, the finite-element model is almost a
pure mechanical theory and so its success is all the more impressive. More recent
implementations (Le Provost, personal communication) have no basin boundaries, that
is, the domain is the global ocean and so no tidal data are needed to close the solution.
Nevertheless, the tidal solutions are quite accurate. This is a remarkable technical and
scientific achievement, surely the most successful theory in geophysics and one of
the most successful in all of physics. The finite-element model is limited principally
by inaccurate bathymetry and by incomplete parameterizations of drag. It has recently
been reformulated as an inverse model, and solved with representers computed by
finite-element methods (Lyard, 1999). The latest tidal solutions of various type, now
based on eight or more years of altimetry and refined orbit theories, are believed to
agree to well within observational errors (e.g., Egbert, 1997). A new independent trial
is underway at the time of writing (October 2001). The most recent finite-difference
inverse solution (TPX0.4) uses approximately 4× 104 real valued representers, includ-
ing many in shallower seas (Egbert and Ray, 2000). A global plot of coamplitude and
cophase lines may be found at www.oce.orst.edu/po/research/tide/global.html.

A unique feature of the inverse tidal solutions is the availability of maps of residuals
in the equations of motion – the Laplace Tidal Equations. A global plot of the average,
per tidal cycle, of the rate of working by the dynamical residuals for the principal
lunar semidiurnal constituent M2 of TPX0.4, is shown in Fig. 5.2.7. Negative values
indicate that the tides are losing energy. The largest losses do not occur in regions
of the strong boundary currents of the general circulation, such as the Gulf Stream,
but instead along the ridges and other steep topography. These errors may be due to
the somewhat simplified parameterizations of earth tide and load tide, to unresolved
topographic waves or to internal tides. The net loss is a delicate balance involving work
done by residuals, by a model bottom drag and by the moon.
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Figure 5.2.7 Per-cycle average rate of working of the M2 dynamical residuals in
TPX0.4 on the M2 tide, in units of W m−2. Negative values indicate that the M2 tide
is losing energy (after Egbert, 1997).
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Figure 5.2.8 Flux of total mechanical energy for the linear semidiurnal tidal
constituent M2, based on the inverse model TPX0.4. Note especially the convergence
into regions of significant tidal dissipation: for example, the North West Australian
shelf, Micronesia/Melanesia and the European shelf (Egbert and Ray, 2001:
Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data,
J. Geophys. Res., in press. c© 2001 American Geophysical Union, reproduced by
permission of American Geophysical Union).

The various highly accurate tidal solutions are leading to refined estimates of the
dissipation of the energy input to the ocean by the tide-generating force (Lyard and
Le Provost, 1997; Le Provost and Lyard, 1997; Egbert and Ray, 2000, 2001). These
estimates show that tidal dissipation can provide about 50% of the 2TW of power
believed to sustain the meridional overturning circulation, the other 50% being provided
by the wind (Wunsch, 1998). A map of energy flux vectors for the tides is shown in
Fig. 5.2.8. Some of this power is being produced by the dynamical residuals. Note
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that there are strong convergences and divergences in deep water, as well as fluxes
towards the marginal seas. These deepwater convergences and divergences almost
exactly balance the work done by the moon.

5.3 Tropical cyclones (1). Quasigeostrophy;
track predictions

5.3.1 Generalized inversion of a quasigeostrophic model

The linear “toy” ocean model of §1.1 and the linear Laplace Tidal Equations of §5.2 are
not representative of ocean circulation, which has nonlinear dynamics and thermo-
dynamics. The generalized inverse of a nonlinear quasigeostrophic model is now
defined and the Euler–Lagrange equations are derived. The latter equations are also
nonlinear, so the linear representer algorithm can only be applied iteratively. Two
iteration schemes are introduced; a more extensive analysis is provided in §3.3.3. The
formulation of an hypothesis for the dynamical errors, which difficult subject was
broached §5.2, is considered further here. Finally, implementation of the representer
algorithm is discussed in some detail.

5.3.2 Weak vorticity equation, a penalty functional,
the Euler–Lagrange equations

Let us formulate weak quasigeostrophic dynamics entirely in terms of the stream-
function ψ :

∂

∂t
∇2ψ + ∂(ψ,∇2ψ + f )

∂(x, y)
= τ, (5.3.1)

where τ is the residual in the quasigeostrophic vorticity equation. We shall also specify
a weak initial condition for ψ :

ψ(x, 0) = ψI (x)+ i(x), (5.3.2)

where i is the initial residual. A weak condition for ψ on the boundary B of the
simply-connected domain D is

ψ(x, t) = ψB(x, t)+ b(x, t), (5.3.3)

where x lies on B, and b is the boundary streamfunction residual. We shall weakly
specify the relative vorticity all around B:

∇2ψ(x, t) = ξB(x, t)+ z(x, t), (5.3.4)

where x lies on B and z is the boundary vorticity residual. See Fig. 5.3.1.
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Figure 5.3.1 Planar domain
D with open boundary B.
Streamlines cross B at least
twice, or not at all. What can
be said about particle paths?

Now (5.3.1) is equivalent to

Dζ

Dt
= ∂ζ

∂t
+ u ·∇ζ = τ, (5.3.5)

where ζ ≡ ∇2ψ + f . It follows that if τ is prescribed, then ζ is determined by inte-
grating (5.3.5) along a particle path from an initial position either inside D or on the
boundary B. If any particle path exits D in the time interval of interest, then (5.3.4)
overdetermines ζ . However we shall “adjust” the residuals τ , i , b and z, so that a con-
tinuous solution is obtained for ζ , and hence for ψ . More precisely, we shall seek ψ

yielding a smooth weighted-least-squares best-fit to (5.3.1)–(5.3.4). A suitable penalty
functional is (Bennett and Thorburn, 1992):

J [ψ] = τ • C−1
τ • τ + i ◦ C−1

i ◦ i + b ∗ C−1
b ∗ b + z ∗ C−1

z ∗ z + Jd , (5.3.6)

where Jd is a penalty for misfits to data within D. Note that

• ≡
T∫

0

∫ ∫
D

dt da, ◦ =
∫ ∫

D

da, ∗ =
T∫

0

∫
B

dt ds, (5.3.7)

and all integrations are on a surface of constant pressure p. If ψ̂ is a local extremum
of J , then

1

2
δJ [ψ̂] = δτ • C−1

τ • τ̂ + δψ ◦ C−1
i ◦ î

+ δψ ∗ C−1
b ∗ b̂ + δξ ∗ C−1

z ∗ ẑ + 1

2
δJd = 0. (5.3.8)

We shall manipulate the first two terms in detail, leaving the boundaries as an exercise.
Define λ̂ ≡ C−1

τ • τ̂ . Then

δτ • λ̂ =
T∫

0

∫ ∫
D

dt da

{
δ
∂

∂t
∇2ψ + δ

∂(ψ,∇2ψ + f )

∂(x, y)

}
λ̂(x, t). (5.3.9)
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The first term in (5.3.9) is easily manipulated:(
δ
∂

∂t
∇2ψ

)
λ̂ =

(
∂

∂t
∇2δψ

)
λ̂

= ∂

∂t
( λ̂∇2δψ)−

(
∂

∂t
λ̂

)
∇2δψ. (5.3.10)

Integrating the first term in (5.3.10) over time yields

[ λ̂∇2δψ]Tt=0. (5.3.11)

Now

λ̂∇2δψ = ∇ · ( λ̂∇δψ − δψ∇ λ̂)+ δψ∇2 λ̂. (5.3.12)

If the area integral of terms proportional to δψ(x, T ) vanishes, for arbitrary values of
the latter, then

∇2 λ̂ = 0 at t = T . (5.3.13)

Similarly, we infer that

−∇2 λ̂+ C−1
i ◦ (ψ̂ − ψI ) = 0 at t = 0. (5.3.14)

The second term in (5.3.10) is

−
(

∂

∂t
λ̂

)
∇2δψ = −∇ ·

(
∂ λ̂

∂t
∇δψ − δψ∇∂ λ̂

∂t

)
− δψ∇2 ∂ λ̂

∂t
. (5.3.15)

The second term in (5.3.15) will be used shortly. Consider now the variation of the
Jacobian in (5.3.9):

λ̂δ
∂(ψ,∇2ψ + f )

∂(x, y)
= λ̂

∂(δψ,∇2ψ̂ + f )

∂(x, y)
+ λ̂

∂(ψ̂, δ∇2ψ)

∂(x, y)
+O( λ̂(δψ)2) (5.3.16)

. . . = − δψ

{
∂( λ̂,∇2ψ̂ + f )

∂(x, y)
+ ∇2 ∂( λ̂, ψ̂)

∂(x, y)

}

+ divergence terms. (5.3.17)

So, by requiring the coefficient of δψ(x, t) to vanish, we recover from (5.3.8), (5.3.15)
and (5.3.17) the Euler–Lagrange equation

− ∂

∂t
∇2 λ̂− ∇2 ∂(ψ̂, λ̂)

∂(x, y)
= ∂( λ̂,∇2ψ̂ + f )

∂(x, y)
− 1

2

δJd

δψ
, (5.3.18)

where the last term is a linear combination of measurement kernels. Equation (5.3.18)
may be formally rewritten as

−∂ λ̂

∂t
−∇ · (û λ̂) = ∇−2µ̂ ·∇ζ̂ − 1

2
∇−2

(
δJd

δψ

)
, (5.3.19)
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where û = (− ∂ψ̂

∂y ,
∂ψ̂

∂x

)
and µ̂ ≡ (− ∂ λ̂

∂y ,
∂ λ̂
∂x

)
. Note that ∇ · û = ∇ · µ̂ = 0. The form

(5.3.19) looks like the “adjoint” of the total vorticity conservation law

∂ζ

∂t
+ u ·∇ζ = τ, (5.3.20)

but for the emergence of a new term on the rhs of (5.3.19) arising from the variation of
the advecting velocity u:

δτ = ∂

∂t
δζ + u ·∇δζ + (δu) ·∇ζ. (5.3.21)

No such term arose in our “toy” model ∂u
∂t + c ∂u

∂x = τ , since the phase velocity c was
fixed. In particular c did not depend upon the state u.

Exercise 5.3.1
Derive the boundary conditions that accompany the variational equation (5.3.18)
or (5.3.19). Which boundary condition goes with which equation? �

5.3.3 Iteration schemes; linear Euler–Lagrange equations

The Euler–Lagrange system (5.3.1) and (5.3.18), with attendant initial and boundary
conditions, is nonlinear. The system is coupled through the data term (δJd/δψ) in
(5.3.18), through advection on the lhs of (5.3.18) and through the other term on the
rhs of (5.3.18). It is also coupled through the boundary conditions. A simple iteration
scheme breaks the coupling completely: calculate a sequence {ψ̂n, λn}∞n=1 such that

∂

∂t
∇2ψ̂n + ∂(ψ̂n,∇2ψ̂n + f )

∂(x, y)
= Cτ • λn, (5.3.22)

− ∂

∂t
∇2λn − ∇2 ∂(ψ̂n−1, λn)

∂(x, y)
= ∂(λn−1, ∇2ψ̂n−1 + f )

∂(x, y)
− 1

2

δJ n−1
d

δψ
. (5.3.23)

These equations may be solved by integrating (5.3.23) backwards, and (5.3.22) for-
wards. Note that (5.3.22) is nonlinear in ψ̂n , but the broken coupling eliminates the
need for representers! However, such a sequence always seems to diverge.

An alternative iteration scheme is:

∂

∂t
∇2ψ̂n + ∂(ψ̂n−1, ∇2ψ̂n + f )

∂(x, y)
= Cτ • λn, (5.3.24)

− ∂

∂t
∇2λn − ∇2 ∂(ψ̂n−1, λn)

∂(x, y)
= ∂(λn−1, ∇2ψ̂n−1 + f )

∂(x, y)
− 1

2

δJ n
d

δψ
. (5.3.25)

This system is linear, but coupled: note that the data term in (5.3.25) is evaluated with
ψ̂n . It is the Euler–Lagrange system for a linear dynamical model, advected by ûn−1.
There is a first-guess forcing Cτ • λnF , where λnF is the response of the lhs of (5.3.25) to
the first term on the rhs. The system may be solved using representers. The sequence
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converges in practice if the Rossby number is moderate. There are some theorems
about convergence in doubly-periodic domains: the sequence is bounded and so must
have points of accumulation or cluster points, but not necessarily unique limits. There
is numerical evidence of the sequence cycling, presumably between cluster points. A
third iteration scheme is described in §3.3.3.

5.3.4 What we can learn from formulating
a quasigeostrophic inverse problem

A quasigeostrophic inverse model offers some especially clear problems in error esti-
mation. Also, there are special opportunities for reliable estimation of these errors. To
the extent that the situation is not representative of Primitive Equation inverse models,
one might regard quasigeostrophic inversion as a curiosity but, like the uniquely elegant
tidal inverse problem, the quasigeostrophic inverse problem offers valuable experience.

5.3.5 Geopotential and velocity as streamfunction data:
errors of interpretation

There are errors of interpretation in certain streamfunction data. Consider geopotentials
φ and horizontal velocities u measured by radar-tracking of high altitude balloons, or
by sonar-tracking of deeply submerged floats. The quasigeostrophic state variable is the
streamfunction field ψ . We must relate φ and u to ψ . The geostrophic approximation is

f k̂× u ∼= −∇φ, (5.3.26)

where the Coriolis parameter is a function of latitude: f = f (y). We have assumed
that ∇ · u ∼= 0 and that there is a streamfunction for ψ , so (5.3.26) becomes

− f∇ψ ∼= −∇φ. (5.3.27)

Ignoring variations in f leads to the “poor man’s balance equation”

f0ψ = φ, (5.3.28)

where f0 = f (y0) for some latitude y0. Hence geopotential data may be used as
approximations to streamfunction data. Also, velocity data may be used as approxi-
mations to streamfunction-gradient data:

∇ψ = −k̂× u. (5.3.29)

Let us begin to estimate the errors in (5.3.28) and (5.3.29). If L is a horizontal length
scale andU is a velocity scale, then the local acceleration neglected in (5.3.26) has the
scale U 2L−1. The Coriolis acceleration retained in (5.3.26) has the scale f0U , so the
relative errors in (5.3.26) scale as the Rossby number Ro ≡ U

f0L
. We shall assume for
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simplicity that variations in f are smaller than Rof0. Then (5.3.26) is

k̂× u = − f −1
0 ∇φ + O(URo), (5.3.30)

hence

∇ · u = O

(
Ro

U

L

)
. (5.3.31)

In general, for any u there is a streamfunction ψ and a velocity potential χ such that

u = k̂×∇ψ +∇χ ≡ uψ + uχ , (5.3.32)

thus

ξ ≡ k̂ ·∇× u = ∇2ψ, δ ≡ ∇ · u = ∇2χ. (5.3.33)

We conclude from (5.3.31) that χ is O(RoUL) and hence (5.3.29) is accurate to
O(RoU ), while (5.3.28) is accurate to O(Ro f0UL). In summary, the “theoretical”
relative errors in the data are O(Ro), where Ro ≡ U/( f0L). For Gulf Stream meanders
in the ocean, U = 1 m s−1 (= 2 knots), L = 105 m and f0 = 10−4 s−1, so Ro = 0.1.
For middle-level synoptic-scale weather systems in the atmosphere,U = 30 m s−1 and
L = 106 m, so Ro = 0.3.

In the preceding analysis, the estimates of neglected local accelerations were based
on the values L and U representative of the synoptic-scale circulation of interest.
For consistency, all fields should be low-pass filtered prior to sampling, in order to
suppress smaller-scale motions such as internal waves. If, as is often unavoidable,
the smoothing is inadequate, then the data will be contaminated with aliased signals.
This contamination can be substantial, exceeding for example the estimate O(RoU )
for errors in (5.3.29). (I am grateful to Dr Ichiro Fukumori for a discussion of this
point. AFB)

5.3.6 Errors in quasigeostrophic dynamics: divergent flow

Estimating the dynamical errors in a quasigeostrophic model is particularly instruc-
tive, as we have closed analytical forms for many sources of error. Recall again the
momentum balance for the Primitive Equations:

∂u
∂t
+ (u ·∇)u+ ω

∂

∂p
u+ f k̂× u = −∇φ. (5.3.34)

Taking the curl at constant pressure yields

∂ξ

∂t
+ (u ·∇)ξ + ω

∂ξ

∂p
+ k̂ ·∇ω × ∂u

∂p
+ ( f + ξ )δ + βv = 0, (5.3.35)
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where ξ = k̂ ·∇× u, δ = ∇ · u and β ≡ d f/dy. Splitting u into a solenoidal part uψ
and an irrotational part uχ (see (5.3.31)) leads to a split for (5.3.35):

∂ξ

∂t
+ (uψ ·∇)ξ +βvψ = −(uχ ·∇)ξ − ( f + ξ )δ−βvχ−ω

∂ξ

∂p
− k̂ ·∇ ω× ∂u

∂p
≡ τ.

(5.3.36)

That is,

∂

∂t
∇2ψ + ∂(ψ,∇2ψ + f )

∂(x, y)
= τ, (5.3.37)

where we have an explicit form for τ in terms of resolvable fields. That is, given archives
of gridded fields of u(x, p, t), we may evaluate τ on the grid, and hence estimate its
mean Eτ and covariance Cτ . The most difficult part is calculating ω reliably. We could
use the conservation of mass:

∂ω

∂p
= −∇ · u, (5.3.38)

subject to ω → 0 as p→ 0, or we could use the conservation of entropy:

ω =
{
Q̇

T
− ∂η

∂t
− u ·∇η

}(
∂η

∂p

)−1

, (5.3.39)

where Q̇ is the heat source per unit mass and T is the absolute temperature. Note that in
order to calculate η and T via the equation of state, we need the other thermodynamic
state variables such as (p, ρ, q) in the atmosphere, or (p, ρ, S) in the ocean. We may
dispense with ρ if T has been measured or is otherwise available on the grid.

There are opportunities to make similar direct estimates of dynamical errors in other
“reduced” models, such as balanced models, and the Cane–Zebiak coupled model
(Zebiak and Cane, 1987). However, there are additional dynamical errors in all these
reduced models, owing to unresolved stresses. The additional errors may exceed the
resolvable errors.

5.3.7 Errors in quasigeostrophic dynamics:
subgridscale flow, second randomization

We shall consider the unresolved stresses, in the context of the quasigeostrophic vor-
ticity equation

∂ξ

∂t
+ u ·∇ξ + βv = 0, (5.3.40)

where ξ = ∇2ψ and u = k̂×∇ψ . Note that the subscript “ψ” on u is now dropped. In
practice we can only calculate with (5.3.40) on a grid having some finite resolution in
space and time. Yet we know from observations and from instability theory that (5.3.40)
possesses solutions that have infinitesimally fine structure of significant amplitude.
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We try to separate the coarse and fine structures using the abstraction of an ensemble
of flows having a mean (with only the coarse scales), and variability (with only the fine
scales). That is, ξ = ξ + ξ ′, where ξ = ξ and ξ ′ = 0. In practice we can only approxi-
mate the ensemble average (denoted by ( ) here) using a space or time average ˜( ), but
then (˜̃ξ ) �= ξ̃ . We shall ignore this very important issue here (see Ferziger, 1996 for
an excellent discussion) and assume that ( ) may be estimated with adequate accuracy.
Only the mean field being of interest, it would be desirable to replace the “detailed”
vorticity equation (5.3.40) with an equation for ξ,u and ψ . Averaging (5.3.40) yields

∂

∂t
ξ + u ·∇ξ + βv = 0. (5.3.41)

Now for any a and b,

ab = (a + a′)(b + b′)

= (ab + ab′ + a′b + a′b′)

= a b + a b′ + a′ b + a′b′ (!)

= ab + a0+ 0b + a′b′

= ab + a′b′. (5.3.42)

Thus

u ·∇ξ = u ·∇ξ + u′ ·∇ξ ′ (5.3.43)

and (5.3.41) becomes

∂ξ

∂t
+ u ·∇ξ + βv = τ ≡ −∇ · (u′ξ ′), (5.3.44)

where we have used ∇ · u′ = 0. So there is another candidate for the residual τ in the
mean dynamics: the divergence of the mean “eddy-flux” of relative vorticity. Finding
a formula for such fluxes in terms of first moments (that is, in terms of ξ , u or ψ) is the
turbulence problem. It remains unresolved. However, we may use (5.3.44) to constrain
the circulation, provided we can put bounds on τ . At this point the fast talk begins.
Realizing that even the smoothed fields fluctuate considerably, we may regard τ as a
random field with a prior mean and variance (prior to assimilating data). Generally we
neglect the new mean Eτ for τ (or else model it with a diffusion law, for example),
and struggle to make scale estimates for the variability in τ . For example, if for the
eddies |u| ∼ U and |x| ∼ l, we might be tempted to assume τ ∼ U 2l−2. This is usually
excessive; the length scale L of the (smoothed) eddy-flux u′ξ ′ is much greater than the
length scale l of the eddies themselves. That is, τ ∼ cU 2L−1l−1, where c
 1 is the
magnitude of the correlation coefficient between u′ and ξ ′. The decorrelation length
scale D for τ presumably lies in the interval l <D< L , while the decorrelation time T
lies in the range (l/U )< T < (L/U ). In the jet stream or ocean boundary currents, on
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the other hand, l ∼ L . For the weakly homogeneous case (l 
 L), however, we might
hypothesize that

E(τ (x, t)τ (y, s)) = Cτ (x, t, y, s) = c2U 4

L2l2
exp

{
−|x− y|

2

D2
− |t − s|2

T 2

}
. (5.3.45)

One might reasonably feel uncomfortable at this point, attempting to constrain a circu-
lation estimate with such a speculative hypothesis. Indeed, the “second randomization”
of τ is a naı̈ve abstraction of the hoped-for scale separations in the fluctuations in τ .
One should recall that the conventional forward model is merely a circulation estimate
based on the hypothesis that τ ≡ 0. This is the one hypothesis that we know immedi-
ately to be wrong. We could abandon the concept of an ensemble of mean vorticity
fluxes, and just manipulate τ as a control that guides the state towards the data. The
Euler–Lagrange equations of the calculus of variations enable the manipulations, once
a penalty functional has been prescribed. The difficulty lies in the choice of weights.
Probabilistic choices (inverses of covariances) are conceptually shaky. Yet the prospect
of an ocean model as a testable hypothesis is so appealing.

It was established in §2.2 that generalized inversion is equivalent to optimal interp-
olation in space and time. The former requires the dynamical error covariance Cτ ;
the latter requires the circulation or state covariance such as Cψ . Which is the easier
to specify a priori? We anticipate that ψ is nonstationary, anisotropic and significantly
inhomogeneous. The components of multivariate circulation fields will be jointly co-
varying. On the other hand, it is plausible that the dynamical residuals in unreduced
models are the result of small-scale processes that are locally stationary, isotropic and
univariate. Then the generalized inverse constructs highly structured state covariances
guided by the model dynamics, and by the morphology of the domain: the orography,
or the bathymetry and coastline.

5.3.8 Implementation; flow charts

The linear representer method is complicated. Its iterative application to a nonlinear
quasigeostrophic model makes it even more complicated. Some general suggestions
on implementation are in order.

(i) Start with a simple, linear problem first, such as the one described in §1.1–§1.3.
The computing exercises at the end of this book provide numerical details.
FORTRAN code is available from an anonymous ftp site:
ftp.oce.orst.edu, cd/dist/bennett/class.

(ii) A flow chart for the “quasigeostrophic inverse” is given in Figs. 5.3.2 and 5.3.3.
The latter figure shows in detail the hatched section in the former. These
computations are manageable using a workstation. Your code should consist of
a main program that calls many subroutines. These should include a single
“backward integration” and a single “forward integration”. Preconditioned
conjugate gradient solvers are widely available in subroutine libraries.
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(iii) The representer matrix should be tested for symmetry. The optimal values β̂ for
the representer coefficients, found by the gradient solver, should be compared
to the values available a posteriori by measuring the inverse û(x, t):

β̂ = −w̃(L[û]− d). (5.3.46)

(iv) Very large problems, such as those described in the following section, require
very powerful computers having massive memory and disk. It is difficult to
offer further suggestions about implementations as each manufacturer provides
a unique software development environment. The results presented in this
chapter were obtained using Connection Machines.

(v) For pseudocode, code on ftp sites and extensive details for implementation see
Chua and Bennett (2001).

5.3.9 Track prediction

The intensity of tropical cyclones1 is controlled by the thermodynamics of the atmos-
phere and ocean together. Predicting the intensity requires a fully stratified coupled
model. These are highly sensitive to the parameterization of heat exchange (Emanuel,
1999). Predicting the track of a typhoon, however, appears to be far simpler. The track
is largely determined by “steering” winds, taken to be either an average over the fields
in mid-troposphere, or else the fields at 500 mb. In either case, the evolution of these
winds can be represented for a short time (say, one-third of a synoptic time scale, or
about a day) by single-level, quasigeostrophic dynamics. These simplified dynamics
are nonetheless nonlinear, and so provide a relatively simple yet real and motivated first
test for time-dependent variational assimilation in a nonlinear model. The formulation
has been discussed in some depth already, so only data need be discussed here. Further
details may be found in the ensuing references.

The state variable for the quasigeostrophic model (5.1.38) is the streamfunction
ψ = ψ(x, y, p, t); isobaric velocity u and vorticity ξ may be derived from it: see
(5.1.33), (5.1.34). Observations through the entire depth of atmosphere were col-
lected during a typhoon season by an international effort, the Tropical Cyclone ’90 or
TCM-90 experiment (Elsberry, 1990). These data were interpolated onto regular grids
by the Australian Bureau of Meteorology Research Centre (Davidson and McAvaney,
1981). The BMRC tropical analysis scheme uses a three-dimensional univariate stat-
istical interpolation method. Vortex centers were inserted manually and synthetic pro-
files were used to generate “observations” for the statistical analyses (Holland, 1980).
The gridded velocities were then partitioned into a rotational field uχ satisfy-
ing k̂ ·∇× uχ = 0, and a solenoidal field uψ satisfying ∇ · uψ = 0. The gridded
streamfunction ψ for the latter field became the data for the quasigeostrophic assim-
ilation. These streamfunction “data” were far from being direct measurements of the

1 Or typhoons, as they are known in the Pacific (“hurricanes” in the Atlantic).
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Figure 5.3.4 Time line for generalized
inversion of the tropical cyclone model.
Initial data are available at t = −24 in the
form of TCM-90 analyses. Boundary data
are available for −24 ≤ t ≤ 0, also from
TCM-90 analyses. For 0 ≤ t ≤ 48, the
boundary data are provided by a global
forecast of relatively coarse resolution. The
inverse takes advantage of additional
TCM-90 data, at t = −12 hours and at
t = 0 hours (as indicated by arrows). The
dates refer to TC “Abe”.

atmosphere. They were further modified by a projection onto the leading ten empirical
orthogonal functions (EOFs), which captured 94% of the variance. The time line for
these derived data, and for the assimilation-forecast episode is shown in Fig. 5.3.4. The
gridded streamfunction data at t = −24 hours constitute the prior initial condition, ten
EOF amplitudes were admitted at t = −12 and also at t = 0, and the smoothing or
inversion interval was −24 ≤ t ≤ 0. The gridded inverse streamfunction at time zero,
that is, ψ̂(x, 0), became the initial condition for a forward integration or “forecast”
out to t = +48. The forecast was honest: boundary data for 0 ≤ t ≤ 48 were obtained
from a global forecast model also starting at t = 0, rather than from archived analyses.
Ten cases were considered; some involved the same typhoon in different stages of its
life. Detailed results may be found in Bennett et al. (1993).

From a scientific perspective the most interesting result is that the values of the
reduced penalty functional Ĵ were broadly in the range 20± 6, as expected for χ2

20.
Thus the hypothesized error covariances were consistent with the data. A diagnosis
showed that the dynamical residuals and boundary vorticity residuals were negligible,
so it was the hypothesized error covariances for the initial conditions and data that were
consistent with the data.

From a control-theoretic perspective the most interesting result is that there were
sufficiently many degrees of freedom in the initial residuals at t = −24 to “aim” the
model at the few data, without additional “guidance” from dynamical residuals for
−24 ≤ t ≤ 0.

From a forecasting perspective the most interesting result was the skill enhance-
ment relative to other track prediction methods: see Fig. 5.3.5. Forty-eight-hour track
predictions based on variational assimilation over the preceding 24 hours were always
superior to those based on either a carefully tuned “nudging” scheme and/or a purely
statistical scheme (Bennett, Hagelberg and Leslie, 1992).
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Figure 5.3.5 Tropical cyclone track
predictions. Percentage improvement in
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hours ahead, relative to climatology plus
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5.4 Tropical cyclones (2). Primitive Equations, intensity
prediction, array assessment

The evolution of a tropical cyclone is a thermodynamic process. Quasigeostrophic
dynamics assume that the stratification remains close to the mean, and such is not the
case in a tropical cyclone. The Primitive Equations (see §5.1) include laws for:

(i) conservation of mass in a fully compressible gas, (5.1.9);
(ii) conservation of relative humidity q , (5.1.24);

(iii) conservation of entropy η, (5.1.24); and
(iv) an equation of state, (5.1.26), relating density ρ to η, to q and to the pressure p.

The state variable η may be replaced with the temperature T defined by the com-
bined first and second laws of thermodynamics:

(
∂η

∂T

)
p = Cp/T ,

(
∂η

∂T

)
v
= Cv/T ,(

∂η

∂v

)
T
= p/T , where v = ρ−1 is the specific volume, while Cp and Cv are respec-

tively the specific heats at constant pressure and volume. For a dry, calorifically perfect
(Cp, Cv constant) ideal (η = Cv ln(pρ−Cp/Cv )) gas,2 T = T0

(
ρ

ρ0

)γ+1
eη/Cv . Empirical

corrections may be made for moisture: see, e.g., Wallace and Hobbs (1977).

2 Boltzmann’s equation leads directly to this definition of an ideal gas in terms of its entropy
dependence, rather than in terms of the gas law p = RρT . The latter merely defines
temperature. See, e.g., Chapman and Cowling (1970).
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The full Primitive Equations may be found in Haltiner and Williams (1980, p. 17)
or in the appendix to Bennett, Chua and Leslie (1996, hereafter BCL1; the associated
Euler–Lagrange equations are also here in Appendix B). The vertical coordinate is
not simply the pressure p as in §5.1, but Phillip’s sigma-coordinate: σ = p/p∗ where
p∗ is the pressure at the earth’s surface. The lower boundary for the atmosphere is
conveniently located at σ = 1.

A quadratic penalty functional for reconciling dynamics, initial conditions and data
is also given in BCL1, along with

(i) the nonlinear Euler–Lagrange equations;
(ii) the linearized Primitive Equations and Euler–Lagrange equations;

(iii) the representer equations and
(iv) the adjoint representer equations.

The linearized equations (ii)–(iv) enable an iterative solution of the nonlinear equa-
tions (i); each linear iterate may itself be solved by the indirect, iterative representer
method described in §3.1. The “inner” or “data space” search was preconditioned in
BCL1 using all representers calculated on a relatively coarse 128× 64× 9 global grid
with two-minute time steps, see Bennett, Chua and Leslie (1997, hereafter BCL2).
The smallness of the time steps is due to the polar convergence of the meridians. The
inverse was calculated on a relatively fine 256× 128× 9 global grid with one-minute
time steps. There were 4.4× 108 grid points in a twenty-four-hour smoothing interval,
for about 2.6× 109 gridded values of u, v, σ̇ , T , q , ln p∗, etc.

The coarse-grid preconditioner was only moderately effective owing to errors of
interpolation from the coarse grid to the data sites. The latter were reprocessed cloud
track wind observations (RCTWO) inferred from consecutive satellite images of middle
and upper-level clouds (Velden et al., 1992). Some of these observations are shown
in Fig. 5.4.1. The observation period included tropical cyclone “Ed” near (113◦E,
15◦N) and Supertyphoon3 “Flo” near (130◦E, 23◦N). The RCTWO were available
at t = −24, −18, −12 and 0 hours, and at 850 hPa, 300 hPa and 200 hPa for a total
of M = 2436 vector components. The measurement errors for each component were
assumed to be 3 m s−1, 4 m s−1 and 4 m s−1 at the respective levels, uncorrelated from
the other component of the same vector and from all other vectors elsewhere and at
different times. The single inversion reported in BCL1 reduced the penalty functional
from a prior value of 6432 to a posterior value of 4066. It may be concluded that the
forward model and initial conditions (an ECMWF analysis) were very good, that the
RCTWO only had moderate impact, and that the prior root mean square error should
have been 30% larger. Given the difficulty in estimating the dynamical errors, such a
conclusion is incontestable. Assimilation of the RCTWO did however have a useful
impact on subsequent forecasts of meridional wind fields near “Flo”: see BCL1. Of
greater interest here are the representers, for the Primitive Equation dynamics linearized

3 According to the Japanese Meteorological Agency.
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Figure 5.4.2 Zonal velocity
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Figure 5.4.3 As for Fig. 5.4.2; close-ups over the S. China Sea (after Bennett, Chua
and Leslie, 1997).

about the fifth and final “outer” iterate of the inverse estimate. Upper level zonal winds
for two representers are shown in Fig. 5.4.2, and in close-up in Fig. 5.4.3. Their striking
anisotropy is a consequence of shearing by supertyphoon winds. The eigenvalues of
the M × M representer matrix R and its stabilized form P = R+ Cε , where Cε is
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Figure 5.4.4a The first orthonormalized eigenvector z1 of the symmetric
positive-definite matrix P = R+ Cε .

the data error covariance matrix, may be seen in BCL1. Recall that R was calculated
on the relatively coarse grid as a preconditioner for indirect inversion on the fine grid.
Given the assumed levels of data error, there are only about 200 effective degrees of
freedom in the observations. Thus only about 200 iterations would be needed in order
to solve (3.1.6). The coarse grid precondition reduced the number to below 15.

The first and fourth leading normalized eigenvectors of P are shown in Fig. 5.4.4.
They are associated with the first and fourth largest eigenvalue of P: see §2.5 and
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Figure 5.4.4b The fourth eigenvector z4.

especially (2.5.4). These are the first and fourth most stably observed wind patterns.
There is cross-correlation between wind components u and v; there is autocorrelation in
time and there is autocorrelation in height. The amplitudes of the winds are asymmetric
with respect to the centers of the tropical cyclones, evidently as a consequence of
strongly asymmetrical advection. The two eigenvectors display markedly different
flow topologies. Variational methods are capable of extracting non-intuitive covariance
structure from dynamics, even if the use of such methods for actual assimilation or
analysis cannot be afforded in real time. The real-time imperative is most demanding
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in numerical weather prediction, but is far less demanding in seasonal-to-interannual
climate prediction.

5.5 ENSO: testing intermediate coupled models

The Tropical Atmosphere–Ocean array developed for the Tropical Ocean–Global
Atmosphere experiment, or TOGA-TAO array, is providing an unprecedented in situ
data stream for real-time monitoring of tropical Pacific winds, sea surface temper-
ature, thermocline depths and upper ocean currents. For a tour of the project, and
for data display and distribution, see www.pmel.noaa.gov/tao/home.html. The
data are of sufficient accuracy and resolution to allow for a coherent description of
the basin scale evolution of these key oceanographic variables. They are critical for
improved detection, understanding and prediction of seasonal to interannual climate
variations originating in the Tropics, most notably those related to the El Niño Southern
Oscillation (ENSO) (McPhaden, 1993, 1999a,b). The freely-distributed TAO display
software provides gridded SST and 20◦ isotherm depth (Z20) using an objective analy-
sis procedure. The first-guess fields are those of Reynolds and Smith (1995) for SST;
a combination of Kessler (1990) expendable bathythermograph (XBT) analyses and
Kessler and McCreary (1993) conductivity, temperature, and depth analyses for Z20,
and Comprehensive Ocean–Atmosphere Data Set analyses (Woodruff et al., 1987) for
surface winds. The procedure is univariate and involves bilinear interpolation followed
by smoothing with a gappy running mean filter (Soreide et al., 1996).

Given this splendid and growing data set (see the TOGA-TAO website), the question
arises: can it be better analyzed by generalized inverse methods? That is, can it be
better interpolated, or more generally smoothed using a dynamical model as a guide?
The question is addressed by Kleeman et al. (1995) who vary the initial conditions
and parameters of an “intermediate” coupled model. Miller et al. (1995) apply the
Kalman filter to a linear intermediate ocean model expanded in its natural Rossby
wave modes; dynamical errors or “system noise” are admitted and these are assumed
to be uncorrelated in time or “white”.

Bennett et al. (1998, 2000, hereafter BI, BII) seek upper ocean fields and lower
atmosphere fields that provide weighted, least-squares best-fits to 12 and 18 month
segments of monthly mean TAO data, and to a nonlinear intermediate coupled model
after that of Zebiak and Cane (1987). The model structure is indicated schematically
in Fig. 5.5.1; the equations of motion may be found in the references. The dynami-
cal variables are anomalies of current, wind temperature and layer thickness, relative
to their respective annual cycles. The oceanic and atmospheric dynamics are linear,
save for the presence of anomalous advection of anomalous heat in the oceanic upper
layer, for the quadratic dependence of anomalous surface stress upon anomalous wind,
and for the parameterization of turbulent vertical mixing in the ocean in terms of a
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Figure 5.5.1 A reduced
gravity, two-and-one-half
layer ocean model coupled
to a reduced gravity,
one-and-one-half layer
atmospheric model (after
Bennett et al., 1998).

piecewise differentiable switching function. The ocean model domain is a rectangle
on the equatorial beta plane: (123.7◦E, 84.5◦W) × (29◦S, 29◦N). The atmospheric
model domain is an entire equatorial zone (29◦S, 29◦N). The inclusion of local ac-
celerations in all the momentum equations permits the satisfaction of rigid meridional
boundary conditions in the ocean, and the satisfaction of rigid zonal boundary con-
ditions in both the ocean and atmosphere. The inclusion of pseudoviscous stresses
permits the satisfaction of no slip and free slip at meridional and zonal boundaries
respectively.

The generalized inverse of this intermediate coupled model and the TAO data is,
again, the weighted least-squares best fit to the dynamics, the initial conditions and
the data. The weights are, as usual, the operator-inverses of the covariances of the dy-
namical, initial and observational errors. The three error types are assumed mutually
uncorrelated. The root mean square data errors are: 0.3◦ for Sea Surface Temperature
(SST), 3 m for the 20◦ isotherm depth (Z20) and 0.5 m s−1 for each wind component
(ua, va). The initial errors are assigned the covariance parameters of the ENSO anoma-
lies themselves (see Kessler et al., 1996), and are assumed mutually uncorrelated. Most
difficult of all is the prescription of dynamical error covariances. There will inevitably
be errors in the parameterizations of turbulent mixing and exchange processes. In the
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case of intermediate models, there are also errors arising from the neglect of numeri-
cally resolvable pseudolaminar processes, such as anomalous advection of anomalous
momentum and anomalous layer thickness. The prior dynamical covariances in BI
and BII are based solely on the latter type of error, which are readily assessable since
these would have the scales of the ENSO anomalies themselves. The scales are taken
from Kessler et al. (1996). The functional forms of the covariances are chosen, in the
absence of real knowledge, for maximal simplicity and computational efficiency. The
variances are stationary, zonally uniform and concentrated in the equatorial waveguide.
The spatial correlations are bell-shaped but anisotropic, while the temporal correlations
are Markovian (see §3.1.6).

The TAO data are selected from three episodes: April 1994–March 1995 (“Year 1”)
covering an anomalously warm (+2.5◦C) western/central Pacific; April 1995–March
1996 (“Year 2”) covering a mild (−1◦C) La Niña event, and December 1996–May
1998 (“Year 3”), covering one of the major El Niño events of modern times with an
anomalously warm (+5◦C) eastern Pacific. The inverse solutions fit all the TAO data
to within about one standard error. The worst fits occur during the mild La Niña event
of Year 2; the best occur during the major El Niño event of Year 3: see Fig. 5.5.2. The
inverse circulation fields are discussed in detail in BI and BII; only the residuals and
diagnostics will be reviewed here.

Consider for example the dynamical residual rT for the SST equation, shown in
Fig. 5.5.3 for September 30, 1994. The quantity plotted is the equivalent surface heat
flux ρ1 Cp H rT , where ρ1 is the density of sea water, Cp its heat capacity, and H
the thickness of the ocean surface layer. The contour interval is 20 W m−2. The prior
estimate of 50 W m−2 is very significantly exceeded over large regions, mostly on the
equator. The zonal scale of 30◦ is that of the corresponding covariance. This field of
residuals is one day’s distribution of heat sources and sinks that must be admitted in
the model if the local rate of change of SST is to be consistent with the TAO data.
There are two candidates for rT : the unresolved advective heat fluxes (both horizontal
and vertical), and the missing heat exchange between the model ocean and the model
atmosphere. The atmospheric component of the coupled model exchanges heat with the
oceanic component at the rate Q̇S , but not vice versa. Radiative feedback from clouds
is thereby excluded. The atmospheric budget for geopotential anomaly φ is of the
form

∂φ

∂t
· · · = −Q̇S = −KT, (5.5.1)

where T is the SST anomaly and K is a positive constant. Thus a positive SST anomaly
(and therefore atmospheric heating) leads to a decrease in geopotential anomaly. The
region of significant and positive rT on Sept. 30, 1994 coincides with a positive anomaly
T (see BI, Fig. 5). Hence both the model ocean and atmosphere gain heat locally on
that day. It must be concluded that rT represents mostly an unresolved convergence
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of oceanic heat flux, rather than a neglected exchange with the atmosphere. On
“Feb. 30” 1995, the region of significantly negative rT (see BI, Fig. 12) coincides with
a negative anomaly T , yielding the same conclusion. On Nov. 30, 1994 negative rT
coincides with positive T , possibly representing a loss from the ocean to the atmos-
phere rather than an oceanic heat flux divergence. No clear evidence of loss from the
atmosphere to the ocean is seen in Year 1. In principle, both candidates for rT should be
accepted. However, scale analysis shows that an oceanic temperature source of strength
(c2
a/gH )ρaK T (ρ1Cp)−1, ca being the atmospheric phase speed, g being gravity and

ρa the air density, is an order of magnitude smaller than the prior standard deviation for
the residual rT . Thus, only oceanic heat flux convergence is a credible candidate for rT .
The convergence may be vertical or horizontal. The model’s simple parameterization of
heat flux using a simple mixing function is almost certainly significantly in error. The
linear momentum equations in the model ocean and atmosphere do not support eddies
or instabilities such as tropical instability waves that could produce horizontal eddy
heat fluxes. It should, however, be pointed out that such waves tend to be weakest during
El Niño events (and 1994–1995 is no exception), and that they tend to be strongest
east of 150◦W. Yet Fig. 5.5.3 shows that the maximum SST dynamical residuals rT are
near 160◦W. Nevertheless, the oceanic momentum equations should include horizontal
advection, in addition to well-resolved vertical advection and better-parameterized
vertical mixing.

It is simple to recompute the inverse with the dynamics imposed as strong constraints:
the dynamical error variances are set to zero and the iterated indirect representer algor-
ithm is rerun. There are sufficiently many degrees of freedom in the initial residuals to
enable the inverse to fit the data at some moorings for three months, but nowhere for
longer times: see Fig. 5.5.4 (Year 1).

Monte Carlo methods may be used to approximate the posterior error covariances:
see §3.2. These are relatively smooth and need not be computed on as fine a grid as is
used for the inverse itself. A small number of samples should be adequate for such low
moments of error, if not for Monte Carlo approximation of the inverse itself. Recall that
the representers are themselves covariances (see §2.2.3), and so may be approximated
by Monte Carlo methods. Comparisons with representers and inverses calculated with
the Euler–Lagrange equations demonstrate the accuracy of sampling methods. Shown
in Fig. 5.5.5 are four calculations of SST for Nov. 1994. Daily values are calculated
as described below, and then averaged for 30 days. The first panel shows the solution
of the Euler–Lagrange equations. This is a true ensemble estimate since it is a solution
to what are, in effect, the moment equations for the randomly forced coupled model.
The second, third and fourth panels are Monte Carlo estimates based on respectively
100, 500 and 1500 samples. It is disturbing that the +2◦ warm pool on the Dateline,
characterizing the moderate El Niño of Year 1, is only clearly expressed with 1500
samples. These calculations, variational and Monte Carlo, are all made on the same
spatial grid and at the same temporal resolution.
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Figure 5.5.4 TAO 30-day averaged data (centered symbols) and time series
of SST, Z20, ua and va at selected moorings. Solid lines: weak constraint
inversion; dashed lines: strong constraint inversion (Year 1, after Bennett
et al., 1998).

Monte Carlo approximation of the error covariances indicates a more relaxed state of
affairs. Shown in Fig. 5.5.6 are the prior and posterior variances of initial SST errors as
functions of longitude and latitude. The great difference between the prior and posterior
(or “explained”) variances, with 140 samples, greatly exceeds the sampling error in
the prior variance. The small posterior variance implies that the initial SST estimate is
reliable. Similar implications hold for the inverse estimates of SST throughout Year 1:
see BI, Figs. 17 and 18 for prior and posterior variances for that variable and other
coupled model variables. There is, however, a caveat. All these priors and posteriors
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Figure 5.5.5 Inverse estimate of daily SST averaged for month 8, Year 1
(Nov. 1994); (a) as a solution of the Euler–Lagrange equations, (b) as a
statistical simulation with 100 samples, (c) 500 samples, (d) 1500 samples.



5.5 ENSO: testing intermediate coupled models 163

140E 180 140W 100W
0

1

2

3

4

5

(K
2 )

(a)
Prior (Hyp.)
Prior (2025)
Prior (140)
Posterior (140)

30S 15S 0 15N 30N
0

1

2

3

4

(K
2 )

(b)

Prior (2025)
Prior (140)
Posterior (140)

Figure 5.5.6 Statistical
simulations of (a) equatorial
and (b) meridional profiles
of prior and posterior error
variances for initial SST.
The level broken line in (a)
is the hypothesized initial
equatorial error variance of
4K2. In (b), the hypothesis
is indistinguishable from
the solid line. The numbers
in parentheses indicate the
number of samples (after
Bennett et al., 1998).

are based on the null hypothesis for the prior errors in the initial conditions, data and
dynamics. Thus the posteriors derived from the hypothesized priors cannot be trusted
until the null hypothesis has survived significance tests.

The prior and posterior values of the penalty functional are test statistics for the null
hypothesis: see §2.3.3. Their values for the three El Niño–La Niña episodes are shown
in Table 5.5.1, which is taken from BII. They are calculated using, where needed, a
Monte Carlo estimate of the full representer matrix R. Note that the prior JF and
posterior Ĵ need only the prior data misfit vector h, the specified measurement error
covariance matrix Cε , and the representer coefficient vector β̂ which may be obtained
without explicit construction of R: see §3.1.4. With the exception of Ĵ , the expectations
and variances of these statistics all do depend explicitly upon R. That the actual values
of JF in all three “Years” are significantly less than their expected values, suggests
that the forward model is far more accurate than hypothesized. Inversion would seem
unnecessary. Yet, the actual values of Ĵ for the three years exceed their expected
values by 15, 16 and 49 standard deviations, respectively. On the other hand, rescaling
the standard deviations of the errors in the null hypothesis by 1.40, 1.44 and 2.08,
respectively, would yield values of Ĵ equal in each case to the expected value M
given by the number of data. Such rescalings could hardly be contested, in light of
the uncertainties involved in developing the null hypothesis. A fourth year of data, for
another El Niño event, is needed in order to obtain at least one independent test of the
last upward rescaling. It would serve little purpose, as the dynamical residuals already
dominate the term balances: see Fig. 5.5.7. A rescaling of the priors might well yield a
statistically self-consistent analysis of TAO data using an intermediate coupled model,
but the model constraint would be so “slack” that it would provide no dynamical insight
into ENSO. Fully stratified models are needed, with fine vertical resolution and good
estimates of moments of errors in the turbulence parameterizations.

The calculations described above involve about 4× 107 control variables or residu-
als; there are about 2500 monthly-mean data in the 12-month episodes (Years 1 and 2)
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Table 5.5.1 (a) Expected and actual values of components of the reduced penalty
functional for the intermediate coupled model (those values in parentheses are
numbers of data rather than expected values of data penalties); (b) standard
deviations (after Bennett et al., 2000).

(a) Expected and actual values
Year 1 Year 2 Year 3

M = 2624,
√

2M = 72 M = 2644,
√

2M = 73 M = 4008,
√

2M = 89

Expected Actual Expected Actual Expected Actual
JF 16 0000 35 708 15 6000 32 028 246 132 132 140
Ĵmod 1015 1614 1022 1650 1458 3680
ĴSST (689) 419 (700) 717 (1088) 995
Ĵua (624) 453 (628) 383 (931) 1546
Ĵva (624) 396 (628) 380 (931) 940
ĴZ20 (687) 820 (680) 678 (1058) 1129
Ĵdata 1609 2088 1622 2160 2550 4614
Ĵ 2624 3702 2644 3810 4008 8322

(b) Standard deviations
Year 1 Year 2 Year 3

JF 136 000 131 000 146 057
Ĵmod 38 38 72
Ĵdata 60 59 45
Ĵ 72 73 89
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Figure 5.5.7 Time series of
Year 3 term balances for the
intermediate coupled model
for (a) the anomalous SST
equation in W m−2 at
(135.85◦W, 3.5◦S) and
(b) for the anomalous
lower-layer thickness
equation in 10−6 m s−1 at
(156.38◦W, 0.5◦S). All are
daily values, spaced thirty
days apart and joined by
line segments for clarity.
The standard error σ in
(a) is 54 W m−2; in (b) it is
8× 10−6 m s−1 (after
Bennett et al., 2000).
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and 4000 in the 18-month episode (“Year” 3). The inversion for Year 1 has been re-
peated, using five-day averaged data in place of 30-day averages. There are accordingly
about 15 000 of the former. A time series of the inverse SST is shown in Fig. 5.5.8. The
inverse is unable to fit the data to within the 0.3◦ standard error of measurement, not
because the data are of lower quality but because the time scales of the null hypothesis
and intermediate-model dynamics are too long. The figure emphasizes that the inverse
is indeed a “fixed interval smoother”, and that the number M of data is not a serious
restriction on the indirect representer method. Contemporary matrix manipulation tech-
niques are not severely strained at M = 105 (see e.g., Egbert, 1997, §2.3; Daley and
Barker, 2000).

5.6 Sampler of oceanic and atmospheric
data assimilation

5.6.1 3DVAR for NWP and ocean climate models

Operational Numerical Weather Prediction relies upon timely, robust and accurate esti-
mates of initial conditions. For example, the US Navy’s Fleet Numerical Meteorology
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and Oceanography Center (www.fnmoc.navy.mil) produces a global six-day fore-
cast every 12 hours using the global spectral model NOGAPS (Hogan and Rosmond,
1991), and many regional three-day forecasts every 12 hours using the regional finite-
difference model COAMPS (Hodur, 1997). The initial fields or “analyses” are created
by interpolating vast quantities of atmospheric data collected by the US Navy, and
also by civilian meteorological agencies around the world. An elementary introduction
to “Optimal Interpolation” may be found in §2.2.4. The operational “OI” scheme at
FNMOC involves multiple random fields; the priors or first guesses or “backgrounds”
for these fields are previous predictions for that time, while data are admitted through
a time window of minus and plus three hours (implying that the analysis time is at least
three hours in the past). For comprehensive details of FNMOC’s MultiVariate Optimal
Interpolation analysis (“MVOI”), see Goerss and Phoebus (1993). Most importantly, the
prior covariances for the velocity and geopotential fields assume geostrophy (5.1.39).
However, the resulting analysis is nongeostrophic since the background field is a pre-
diction made by a Primitive Equation model.

The essential computational task in an OI scheme is solving the linear system

{Cq + Cε}β = d− uF (5.6.1)

for the coefficients β of the covariances Cq (x, t) in (2.2.22). Recall that d is the vector
of data, while uF is the vector of “measured” values of the background uF (x, t). Note
that MVOI replaces the single spatial coordinate x in (2.2.22) with three spatial co-
ordinates, one of which may be pressure as in (5.1.1). The dimension of the system is the
number of data, which can be in excess of 105 in a global analysis. MVOI reduces the di-
mension by analyzing the data in regions. The coefficient matrix in (5.6.1) is symmetric
and positive definite, so MVOI solves the system by Cholesky factorization (Press et al.,
1986, §2.9). Should small negative eigenvalues be encountered, MVOI arbitrarily
increases the diagonal of Cε , that is, it increases the variances of the measurement
errors until positivity is restored.

The solution of (5.6.1) also mimizes the penalty function

J [β] = 1

2
βT{Cq + Cε}β − βT(d− uF ). (5.6.2)

Preconditioned conjugate gradient searches (Press et al., 1986, §10.6) for the unique
minimum of J may be efficiently implemented on multiprocessor computers. System
dimensions of 105 or larger can be managed, and so regionalization is not necessary.
This algorithm for implementing OI has become known as “3DVAR”, and is being
introduced at many NWP centers such as FNMOC (Daley and Baker, 2000), at the
United Kingdom Meteorological Office (Lorenc et al., 2000) and at the NASA Global
Modeling and Assimilation Office (www.polar.gsfc.nasa.gov). Oceanographers
can learn much from these operational NWP centers, concerning the real-time quality-
control of vast data sets and the devising of prior multivariate covariances.

A fast algorithm for the spatial “convolution” (3.1.25), essential to efficient im-
plementation of physically realizable inverse models, is also required for 3DVAR.



5.6 Sampler of oceanic and atmospheric data assimilation 167

Passi et al. (1996) propose a product-polynomial algorithm for convolving with the
“bell-shaped” covariance (3.1.24), as an alternative to solving the pseudo-heat equa-
tion (3.1.26) subject to (3.1.27).

The need to initialize and validate climate models is stimulating major applica-
tions of “OI” to the global upper ocean. Carton et al. (2000a, 2000b) apply 3DOI to
45 years of upper-ocean data. Their backgrounds for the fields of temperature, salin-
ity and current are the predictions of the standard Primitive Equation model MOM2
from the NOAA Geophysical Fluid Dynamics Laboratory (www.gfdl.gov/~smg/
MOM/MOM.html). Carton et al. pay careful attention to the mean background errors
or “biases” following Dee and da Silva (1998), and also hypothesize a detailed but
structurally simple multivariate covariance for the background errors.

5.6.2 4DVAR for NWP and ocean climate models

Inverse modeling often involves compromises. A common assumption is that the equa-
tions of motion are exactly correct, and that only the initial conditions and some dynam-
ical parameters should be perturbed in order to fit the data. This would seem entirely
reasonable if the smoothing or assimilation interval of interest is rather less than the
evolution time scale of the dynamics: say, rather less than three days on synoptic scales
in the mid-latitude troposphere, and rather less than three months on planetary scales in
the tropical Pacific Ocean. There are two major variational inverse models of this
kind, which are “strong constraint” assimilations in the terminology of Sasaki
(1970).

The first is the “4DVAR” program in support of operational Numerical Weather
Prediction at the European Centre for Medium-range Weather Forecasting (ECMWF).
The project is described in a major series of papers: Rabier et al. (2000), Mahfouf
and Rabier (2000) and Klinker et al. (2000). The model is a spectral representation
of the global atmosphere, with about 107 spatial variables per time step. Variational
assimilation is performed in six-hour intervals, from t − 3 hours to t + 3 hours, with
vast amounts of tropospheric data being smoothed throughout the interval. There are
O(105) surface data alone. The perturbed state at time t = 0 hours becomes the initial
condition for a forecast out to t = 168 hours, and the skill of the forecast is the basis
for assessing the utility of the variational assimilation.

The second project is the “Estimation of the Circulation and Climate of the
Ocean” (ECCO) Consortium (Stammer et al., 2000). The estimation is based on the
MIT nonhydrostatic General Circulation Model (Marshall et al., 1997a,b). The tangent–
linear and corresponding adjoint operators are constructed with a symbolic algorithm
(Giering and Kaminsky, 1997), as described in Marotske et al. (1999). Ocean circu-
lation is sustained by surface fluxes, both in reality and in models. These fluxes are
poorly known, and so it is desirable that they should be perturbed along with the initial
conditions in the search for a better fit to data. With 1

4
◦

resolution globally, there are
about 2× 108 initial variables, and about 107 surface fluxes per time step. The latter
need not be perturbed independently at every time step. Even so, the computational
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challenge is clearly enormous, yet impressive progress is being made with 1◦ grids and
years of data (Stammer et al., 2000).

5.6.3 Correlated errors

The penalty functional (1.5.7) for controlling the toy model (1.2.6)–(1.2.8) does not
contain products of b(t) and f (x, t), for example. The statistical interpretation (2.2.3) is
the hypothesis that these boundary errors and forcing errors are uncorrelated. Bogden
(2001) argues that boundary flow errors can be correlated to wind errors inside an
ocean region, since both can be correlated to wind errors outside the region. Thus the
hypothesis should include a nonvanishing cross-covariance:

C f b(x, t, s) = E( f (x, t)b(s)). (5.6.3)

For consistency, we should change the notation for autocovariances, from (2.2.2) to

C f f (x, t, y, s) = E( f (x, t) f (y, s)), (5.6.4)

for example. The estimator of maximum likelihood for such multivariate normal fields
is

J [u] = ( f •, b ∗ )

[
C f f C f b

Cbf Cbb

]−1(• f
∗ b

)
+ · · · . (5.6.5)

The matrix inverse is defined as a matrix-valued kernel: see (1.5.11) and (1.5.12).

Exercise 5.6.1
Assume the other errors are uncorrelated with f or b or with each other, that is, assume
the rest of the estimator (1.5.9) is unaltered. Derive the Euler–Lagrange equations for the
penalty functional (5.6.5). Show that the weighted residual still obeys (1.3.1)–(1.3.3),
but the inverse estimates for the dynamical and boundary residuals are, respectively:

f̂ = C f f • λ+ C f b ∗ λ, (5.6.6)

b̂ = Cbf • λ+ Cbb ∗ λ, (5.6.7)

where the blob products are evaluated inside the region, while the star products are
evaluated on the boundary. �

5.6.4 Parameter estimation

The constant phase speed c in the toy model (1.1.1) has been kept fixed up to now.
Yet the fit to data may be improved by varying c. To this end, the penalty functional
J [u, c] in (1.5.9) may be augmented (Bennett, 1992, §10.2):

K[u, c] = σ−2
f (c − c0)2 + J [u, c], (5.6.8)



5.6 Sampler of oceanic and atmospheric data assimilation 169

where c0 is a prior for c, and σ 2
c is the hypothesized variance of the prior error. Varying

K with respect to c and u(x, t) yields the extremal condition

ĉ = c0 + σ 2
c

∂ û

∂x
• λ (5.6.9)

and the Euler–Lagrange equations for J as before. Note that û and λ depend upon ĉ,
so (5.6.9) is highly nonlinear even though the dynamics of the toy model are linear.
However, iteration schemes for solving (5.6.9) are readily devised (Eknes and Evensen,
1997, who consider linear Ekman layer dynamics with an unknown eddy viscosity),
and interlaced with iterated representer algorithms in the case of nonlinear dynamics
(Muccino and Bennett, 2002, who consider the Korteveg–DeVries equation with un-
known parameters for phase speed, amplitude and dispersion). Convergence of these
schemes is in no way assured.

5.6.5 Monte Carlo smoothing and filtering

Consider the toy nonlinear model (3.3.1)–(3.3.3), where the random inputs f , i and b
have covariancesC f ,Ci andCb respectively. The methods of §3.2.4 may be used to gen-
erate pseudo-random samples of the inputs consistent with their respective covariances.
A pseudo-random sample of the state u(x, t) is then obtained by integrating (3.3.1)–
(3.3.3). Sample estimates of the expectation Eu(x, t) and covariance Cu(x, t, y, s)
follow from repeated generation and integration.

The sample moments of u may then be used for space–time optimal interpolation of
data collected in some time interval 0 < t < T , as outlined in §2.2.4. The prior for the OI
or best linear unbiased estimate (2.2.22) would not be uF (x, t), but rather the sample
estimate of Eu(x, t), while the covariance Cq (x, t, y, s) would be the sample estimate
of Cu(x, t, y, s). As a consequence of the nonlinearity of (3.3.1), the OI estimate is not
an extremum of the penalty functional (1.5.9), even if W f were related to C f through
(1.5.11), (1.5.12), etc. That is, the OI estimate is not the solution of an inverse model.
Nevertheless the attraction of such “Monte Carlo smoothing” is obvious: there is no
need to linearize the dynamics, nor is it necessary to derive the adjoint dynamics.

Storing Cu(x, t, xm, tm), where (xm, tm) is a data point, may not be feasible for
all x, t and for 1 < m < M , but it may be feasible to store Cu(x, tm, y, tm), for all
x , y and for one time tm . Data collected at the time tm may thus be optimally in-
terpolated in space, provided it is assumed that the data errors are uncorrelated in
time. This Monte Carlo filtering method has become known as the “Ensemble Kalman
Filter” or EnKF (Evensen, 1994). For its application to operational forecasting of the
North Atlantic Ocean, see http://diadem.nersc.no/project; for application to
seasonal-to-interannual forecasting of the Tropical Pacific Ocean, see Keppenne (2000).
For a careful comparison of the computational efficiency of the EnKF with that of the
indirect iterated representer algorithm, in the context of an hydrological model and
satellite observations of soil moisture, see Reichle et al. (2001, 2002).
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Exercise 5.6.2
Why is it necessary in the EnKF to assume that the errors in data collected at different
times are uncorrelated? �

5.6.6 Documentation

The most important but most neglected aspect of ocean modeling is documentation.
It is no exaggeration to state that if a model has not been documented, it does not exist.
Documentation is, of course, a tedious chore and the scarce resources for academic re-
search rarely support anything so pedestrian. One outstanding exception is the Modular
Ocean Model version 3, or “MOM3” (www.gfdl.gov/~smg/MOM/MOM.html). Inverse
models are vastly more complex (see for example Figs. 3.1.1 and 3.1.2), so their doc-
umentation is even more important and even more neglected.

Ide et al. (1997) have made the following reasonable proposal of a standard notation
for data assimilation. All models are eventually subject to numerical approximation
of one form or another, so in computational practice the state x is a vector of finite
dimension I :

x = (x1, x2, . . . , xI ). (5.6.10)

The value of I is the product of the number of fluid variables (velocity components,
temperature, pressure, etc.) and the number of computational degrees of freedom in
space (the number of grid points, in a finite-difference model). The model evolution in
a single time step is

xb
n =Mn

[
xb
n−1

]
, (5.6.11)

where Mn is in general a nonlinear operator, and the initial vector is xb
0. The subscript

n in (5.6.11) indicates the state vector or nonlinear operator at time tn . The superscript
b indicates that the vector will be the background for an optimal estimate of the state.
Thus xb

n , (0 ≤ n ≤ N ) lumps the field uF (x, t), (0 < x < L , 0 ≤ t ≤ T ) of §1.1.1.
Observations are taken at selected times tn j ; at any such time, these data comprise a
vector of dimension K :

yo
j =

(
yo
j1, y

o
j2, . . . , y

o
j K

)
. (5.6.12)

The measurement functional Hk is in general nonlinear;

yb
j ≡ H j

[
xb
n j

]
, (5.6.13)

for example, is the measured value of the background at time tn j . The stage is now
set for defining an inverse model in terms of a weighted least-squares penalty function
(Uboldi and Kamachi, 2000), analogous to (1.5.9).

The standard notation proposed by Ide et al. (1997) is becoming widely accepted.
This aids high-level dialogue, at the expense of insight into dynamical detail. For
example, it is not obvious from the abstract finite-dimensional equation (5.6.11) that
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the tangent linearization of the evolution operator Mn may be unphysical: see §3.3.4.
Nor is it obvious that spatial and temporal irregularity arising from unsuitable weighting
(see §2.6), or from ill-posedness of the forward model (see Chapter 6), are fundamental
issues.

Documentation will remain a crucial challenge, even with the advent of standard
notations such as that of Ide et al. (1997). Preliminary documentation exists (Chua
and Bennett, 2001) for IOM (Inverse Ocean Model), a modular code for the iterated,
indirect representer algorithm of Fig 3.1.2. The software engineering for such modular
systems must accommodate a wide range of models and modeling practices, and yet
retain high computational performance. An elegant graphical representation for the
Project d’Assimilation par Logiciel Multi-méthodes (“PALM”), a universal coupler
of models and data, has been devised by Lagarde et al. (2001) as an aid to software
development.



Chapter 6

Ill-posed forecasting problems

The “toy” forward model introduced in Chapter 1 defines a well-posed mixed initial
value–boundary value problem. The associated operator (wave operator plus initial
operator plus boundary operator) is invertible, or nonsingular. Specifying additional
data in the interior of the model domain renders the problem overdetermined. The op-
erator becomes uninvertible, or singular. The difficulty may be resolved by constructing
the generalized inverse of the operator, in a weighted least-squares sense.
An important class of regional models of the ocean or atmosphere defines an

ill-posed initial-boundary value problem, regardless of the choice of open boundary
conditions. All flow variables may as well be specified on the open boundaries. The
excess of information may be regarded as data on a bounding curve, rather than at
an interior point. The difficulty may again be resolved by constructing the general-
ized inverse in the weighted least-squares sense. The Euler–Lagrange equations form
a well-posed boundary value problem in space–time. Solving them by forward and
backward integrations is precluded, since no partitioning of the variational boundary
conditions yields well-posed integrations. The penalty functional must be minimized
directly.
Things are different if the open region is moving with the flow.

6.1 The theory of Oliger and Sundström

We have been assuming that our forward model constitutes a well-posed problem. That
is, just sufficient information is given about the forcing F(x, t), the boundary values
B(t) and initial values I (x) in order to ensure the existence of a solution that is unique

172
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for each choice of F , B and I , and which depends continuously upon smooth changes
to F , B and I . For linear models, the proof of uniqueness also implies continuous
dependence, and even implies existence (Courant and Hilbert, 1962, Ch. VI, §10).
Sometimes we are able to establish existence (and the other requirements) by displaying
the general solution explicitly. If the explicit solution has been obtained after making an
assumption about the solution, such as the variables being separable, then uniqueness
must be established first. Uniqueness and continuous dependence can be established for
some nonlinear models, such as the shallow-water equations (Oliger and Sundström,
1978), but existence is usually an open question. Existence has been established for
inviscid and viscous incompressible flow in the plane (Ladyzhenskaya, 1969). These
results have been extended to certain quasigeostrophic flows (Bennett and Kloeden,
1981).

In this section we shall briefly review the uniqueness of solutions of some simple
linear models, and then use these ideas to determine the number of boundary conditions
needed at open boundaries. Following Oliger and Sundström (1978), it will be shown
that there is a difficulty with the Primitive Equations, but it will be argued that the
ill-posedness can be resolved by generalized inversion of the open-ocean Primitive
Equation model. In subsequent sections we shall address the special methods for finding
the generalized inverse, given that the forward model is ill-posed.

6.2 Open boundary conditions for the linear
shallow-water equations

In §1.1.2 we verified that the initial-boundary value problem for the one-dimensional
linear wave equation of §1.1.1 has a unique solution. Now consider a linear shallow-
water model:

∂u
∂t
= −g∇h, (6.2.1)

∂h

∂t
= −H∇ · u, (6.2.2)

whereu = u(x, t) is a planar velocity field, x is a point in the plane, t is time, h = h(x, t)
is the sea-level disturbance, g is the gravitational acceleration, H is the mean depth,
and ∇ = ( ∂

∂x ,
∂
∂y ). Suitable initial conditions are

u(x, 0) = 0, (6.2.3)

h(x, 0) = 0. (6.2.4)

We need not include forcing in (6.2.l) or (6.2.2), nor nonzero initial values in (6.2.3)
and (6.2.4), since we are interested in the difference between two solutions having the
same forcing, initial values and boundary values.
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It follows from (6.2.1) and (6.2.2) that

d

dt

∫∫
D

(
1

2
H |u |2 + 1

2
gh2

)
da = −gH

∫
B

hu · n̂ ds, (6.2.5)

whereD is the spatial domain,B is its boundary, da is an area element inD, ds is an arc
element on B, and n̂ is an outward normal on B. It is clear from (6.2.3) and (6.2.4) that
the area integral on the lhs of (6.2.5) vanishes at t = 0, so if the rhs is nonpositive for all
t ≥ 0, then the area integral vanishes for all t ≥ 0; hence u(x, t) = 0 and h(x, t) = 0.
Uniqueness would then be established. That is,

hu · n̂ ≥ 0 (6.2.6)

on B, for all t ≥ 0, would ensure uniqueness. For example:

(i) specify u · n̂ = 0 on B

or

(ii) specify h = 0 on B

or

(iii) specify u · n̂ = α
√

g
H h on B,

where α is a positive constant.

Notice that one of (i), (ii) or (iii) would suffice for uniqueness; there is no need to
specify both the normal velocity and the sea-level elevation. That would overdetermine
the solution.

Exercise 6.2.1
Consider the difference between two solutions of the linear shallow-water equations,
corresponding to two different sets of forcing, initial and boundary values. Show that
the total energy of the difference is controlled by the differences in the inputs.
Hint: let

||F ||(t) ≡

∫∫

D

|F(x, t) |2 da



1
2

;

it may be shown that ∣∣∣∣∣∣
∫∫
D

F · v da
∣∣∣∣∣∣ ≤ ||F || · || v || .

�
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6.3 Advection: subcritical and supercritical,
inflow and outflow

In a small step towards nonlinearity, let us now include a constant advecting velocity
U in the linear shallow-water equations:

∂u
∂t
+ U ·∇u = −g∇h, (6.3.1)

∂h

∂t
+ U ·∇h = −H∇ · u . (6.3.2)

Hence

dE

dt
≡ d

dt

∫∫
D

1

2
(H |u|2 + gh2) da

= −
∫
B

{
1

2
(H |u|2 + gh2)U · n̂+ gHhu · n̂

}
ds. (6.3.3)

In order to establish uniqueness, we must arrange for the rhs of (6.3.3) to be nonpositive.
The integrand in (6.3.3) is a quadratic form:

{ } = 1

2
H (uT, σh)

(
I cn̂

cn̂T U

)(
u

σh

)
, (6.3.4)

where σ = (g/H )
1
2 , U = U · n̂, I is the 2× 2 unit matrix and c = (gH )

1
2 . We must

determine if the 3× 3 matrix in (6.3.4) is definite or indefinite. Its eigenvalues λ satisfy∣∣∣∣∣∣
U − λ 0 cn̂1

0 U − λ cn̂2

cn̂1 cn̂2 U − λ

∣∣∣∣∣∣ = 0, (6.3.5)

that is,

(U − λ){(U − λ)2 − c2} = 0.

Hence the three eigenvalues are

λ0 = U, λ± = U ± c.

Note that these are defined at each point on the boundary, and that U ≡ U · n̂ is the
local value.

There are several cases to consider:

I. OUTFLOW: U > 0
(a) SUPERCRITICAL: U > c > 0

All three eigenvalues are positive. So, regardless of the boundary values,
dE
dt ≤ 0 and uniqueness follows with

NO BOUNDARY CONDITIONS.



176 6. Ill-posed forecasting problems

(b) SUBCRITICAL: 0 < U < c
Then λ0 = U > 0, λ+ = U + c > 0, λ− = U − c < 0. Hence dE

dt ≤ 0
provided (uT, σh) is orthogonal to the eigenvector µ− associated with λ−.
This may be assured with

ONE BOUNDARY CONDITION.

In this case U − λ− = U − (U − c) = c, so µ− = (µ, ν, ξ )T satisfies


 c 0 cn̂1

0 c cn̂2

cn̂1 cn̂2 c




µ

ν

ξ


 = 0. (6.3.6)

A non-normalized choice is
µ

ν

ξ


=


−n̂1

−n̂2

1


, (6.3.7)

hence we require

(u, v, σh)


−n̂1

−n̂2

1


 = 0, (6.3.8)

or

u · n̂ = σh (6.3.9)

II. INFLOW: U < 0
(a) SUPERCRITICAL: 0 < c < |U |

All three eigenvalues are negative so we need

THREE BOUNDARY CONDITIONS:

u = 0, (6.3.10)

h = 0. (6.3.11)

(b) SUBCRITICAL: 0 < |U | < c
Hence λ0 = U < 0, λ+ = U + c > 0, λ− = U − c < 0: two eigenvalues
are negative, so we need

TWO BOUNDARY CONDITIONS.

Exercise 6.3.1
Find µ0, µ−. �
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The above results may be summarized:

INFLOW (U< 0) OUTFLOW (U> 0)
SUBCRITICAL (|U | < c) 2 1
SUPERCRITICAL (c < |U |) 3 0

Again, the situation will in general vary around the boundary.

Exercise 6.3.2
Consider the cases U = 0, |U | = c. �

We conclude that it is possible to determine the correct number of boundary condi-
tions for a linearized shallow-water model. That is, we may determine the number that
ensures the uniqueness of solutions, and hence continuous dependence upon the inputs.

6.4 The linearized Primitive Equations in isopycnal
coordinates: expansion into internal modes;
ill-posed forward models with open boundaries

The Primitive Equations were presented in §5.1 in isobaric or “pressure” coordinates.
Let’s denote these coordinates by (x ′, y′, p, t ′). Now consider isopycnal or “density”
coordinates (x , y, α, t), where α is the specific volume or inverse density: α ≡ ρ−1.
Define the Montgomery potential m by

m = αp + φ,

where φ = gz is the geopotential.

Exercise 6.4.1
Show that

∂u
∂t
+ u ·∇u = −∇m, (6.4.1)

∂m

∂α
= p, (6.4.2)

∂2 p

∂t∂α
+∇ ·

(
u
∂p

∂α

)
= 0 . (6.4.3)

Explain the meaning of the partial derivatives. Note that there is no “diapycnal” advec-
tion in (6.4.1) and (6.4.3). This is a consequence of

(1) the combined first and second laws of thermodynamics:

Tdη = de + pdα, (6.4.4)

where T is temperature, η is entropy, and e is internal energy;
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(2) the assumption of isentropic motion;
(3) the assumption that the internal energy of the fluid is constant.

The isopycnal form of the Primitive Equations need not be so restrictive, but this
form suffices for our immediate purpose. Linearize about a uniform horizontal velocity
U, a static-state Montgomery potential m=M(α), and a pressure p = P(α), where
P = dM

dα :

∂u
∂t
+ U ·∇u = −∇m, (6.4.5)

∂m

∂α
= p, (6.4.6)

∂2 p

∂t∂α
+ U ·∇ ∂p

∂α
+ dP

dα
∇ · u = 0. (6.4.7)

The fields u, m and p are now perturbations about U, M and P . Separate variables
according to

u(x, α, t) = u′(x, t)A(α), (6.4.8)

m(x, α, t) = m ′(x, t)A(α), (6.4.9)

p(x, α, t) = p′(x, t)
d A

dα
(α). (6.4.10)

Derive the separated equations

∂u′

∂t
+ U ·∇u′ = −∇m ′, (6.4.11)

∂m ′

∂t
+ U ·∇m ′ + c2∇ · u′ = 0, (6.4.12)

and

d2A

dα2
− c−2

(
dP

dα

)
A = 0, (6.4.13)

where the separation constant c2 has the dimensions of (speed)2. �

The unseparated ocean boundary conditions are:

p
(
x, α(a), t

) = p(a)(x, t), (6.4.14)

where α(a) is an isopycnal surface in contact with the atmosphere, which is at pressure
p(a);

m(b)(x, t) ≡ m
(
x, α(b), t

) = α(b) p(b) + φ(b), (6.4.15)

assuming that the ocean bottom at

z = z(b)(x) = φ(b)
/
g (6.4.16)
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is the isopycnal surface α = α(b). Hence the separated boundary conditions for pertur-
bations are:

d A

dα
= 0 (6.4.17)

at α = α(a);

A = α
d A

dα
(6.4.18)

at α = α(b).
The system (6.4.11), (6.4.12) is the linearized shallow water equations with phase

speed c. The system (6.4.13), (6.4.17), and (6.4.18) comprises a regular Sturm–
Liouville problem (Stakgold, 1979), with eigenvalues c0 > c1 > · · · > cn > · · · > 0
and eigenmodes A0(α), A1(α), . . . , An(α), . . . .

Exercise 6.4.2
Show that

A(b)2 = α(b)

b∫
a

{(
d A

dα

)2

+ c−2 dP

dα
A2

}
dα, (6.4.19)

where A(b)= A(α(b)). Note that dP
dα <0. Hence the external mode, for which A is

approximately independent of α, has phase speed c0 satisfying

c2
0
∼= α(b)

(
P (b) − P (a)

)
. (6.4.20)

�

The internal modes have lower phase speeds:

c2
n
∼= c2

0

(
α(α) − α(b)

)
1
2

(
α(a) + α(b)

) J−2
n , (6.4.21)

where Jn = 0(n) as n→∞. For the Southern Ocean,

c0
∼= 220 m s−1, c1 = 1 m s−1, c2 = 0.5 m s−1, c3

∼= 0.3 m s−1, c4 = 0.2 m s−1 .

(6.4.22)

In the Antarctic Circumpolar Current,

|u| � 0.6 m s−1 . (6.4.23)

Hence

c0 > c1 > |u| > c2 > c3 . . . . (6.4.24)
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Consider the two lowest modes: n = 0, 1. The amplitudes un(x, t)′,mn(x, t)′ satisfy the
linearized shallow water equations (6.4.11), (6.4.12). The flow is everywhere subcritical
so two boundary conditions are needed at inflow, and one at outflow.

For all other modes (n = 2, 3, . . .), the flow is in general supercritical (wherever
|U · n̂| > c2), so three boundary conditions are needed at inflow, while none is needed
at outflow. The problem is that we don’t usually integrate the Primitive Equations mode
by mode; we usually specify boundary conditions at each level, or each value of α.
Suppose we choose two BCs at inflow and one BC at outflow. Then modes 2, 3, . . . are
underspecified at inflow and overspecified at outflow. Underspecification is often incor-
rectly eliminated by the imposition of what we intended to be computational boundary
conditions; in these circumstances they acquire a dynamical role. Overspecification
leads to computational noise that is usually suppressed by smoothing the fields. The
ill-posedness of the open boundary problem for the Primitive Equations cannot be
solved, but it can be resolved by generalized inversion.

6.5 Resolving the ill-posedness by generalized inversion

To demonstrate the approach, it suffices to consider the shallow-water equations
(Bennett, 1992; Bennett & Chua, 1994). Prescribe three boundary conditions on the
open boundary. This overdetermines the problem, so do not seek an exact solution
of the equations of motion. Rather, seek a weighted, least-squares best-fit to all the
information. The dynamics are thus

∂u
∂t
+ U ·∇u = −c∇q + µ, (6.5.1)

∂q

∂t
+ U ·∇q = −c∇ · u+ χ, (6.5.2)

where q = m/c, while µ and χ are misfits or residuals. A simple penalty functional is

J [u, q] = WD

∫∫
D

da

T∫
0

dt (|µ|2 + χ2)

+WB

∫
B

ds

T∫
0

dt {|u− uB|2 + (q − qB)2}

+WI

∫∫
D

da {|u− uI|2 + (q − qI)
2} (6.5.3)

+ (data penalties),

whereD is the domain,B is the entirely open boundary, (uB,qB) are the boundary values,
and (uI, qI) are the initial values. The weighting is simple in the extreme, but clarity is
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the issue here. A more realistic “nondiagonal” weighting should be used in practice.
Note that no boundary conditions are needed at a supercritical outflow boundary, so
the boundary values there are like data prescribed continuously on curves.

Exercise 6.5.1
Show that the Euler–Lagrange equations for local extrema of J are:

−∂µ

∂t
− U ·∇µ− c∇χ + · · · = 0, (6.5.4)

−∂χ

∂t
− U ·∇χ − c∇ · µ+ · · · = 0, (6.5.5)

µ = 0, χ = 0 (6.5.6)

at t = T ,

−WDµ+WI(u− uI) = 0, (6.5.7)

−WDχ +WI(q − qI) = 0, (6.5.8)

both at t = 0, and

WDU · n̂µ+WB(u− uB)+WBcn̂χ = 0, (6.5.9)

WDU · n̂χ +WB(q − qB)+WBcn̂ · µ = 0, (6.5.10)

both on B. The ellipsis (· · ·) in (6.5.4) and (6.5.5) denotes data terms. The system
(6.5.1), (6.5.2), (6.5.4)–(6.5.10) is a boundary value problem in the space–time domain
D × [0, T ]. �

Exercise 6.5.2
Show that if (u, q) and (µ, χ) satisfy the Euler–Lagrange equations (6.5.4)–(6.5.10),
then

WD

∫∫
D

da

T∫
0

dt (|µ|2 + χ2)+WB

∫
B

ds

T∫
0

dt (|u|2 + q2)

+WI

∫∫
D

da (|u|2 + q2)t=0 + (· · ·)2 = 0, (6.5.11)

where (· · ·)2 denotes a nonnegative contribution from the data sites.
It follows immediately from (6.5.11) that

µ ≡ 0, χ ≡ 0 (6.5.12)

in D × [0, T ],

u = 0, q = 0 (6.5.13)
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in B × [0, T ], and

u = 0, q = 0 (6.5.14)

in D × {0}. The “forward problem” for (u, q) is (6.5.1), (6.5.2), which together with
(6.5.12)–(6.5.14) is overdetermined, but the solution is without question

u ≡ 0, q = 0 . (6.5.15)

It may be concluded that the Euler–Lagrange equations form a well-posed boundary
problem in D × [0, T ], even though the original forward model is ill-posed. The chal-
lenge is to find a solution algorithm for the inverse, when the forward model is ill-posed.
Backward and forward integrations must be avoided. �

Exercise 6.5.3
It may be difficult to accept that generalized inversion can be well-posed, even though
the forward model is ill-posed. Consider a simple example, defined by an ordinary
differential equation:

dx

dt
= 1 (6.5.16)

for 0 ≤ t ≤ 1, subject to

x(0) = 0, x(1) = 2. (6.5.17)

This overdetermined problem does not have a continuous solution. Now seek a least-
squares best-fit to (6.5.16) and (6.5.17), with a penalty functional

J [x] =
1∫

0

(
dx

dt
− 1

)2

dt + x(0)2 + (x(1)− 2)2 . (6.5.18)

Derive the Euler–Lagrange equations for the best fit, and verify that they have the
unique, continuous solution

x̂(t) = 1+ 4t

3
. (6.5.19)

�

6.6 State space optimization

Bennett and Chua (1994) used simulated annealing and HMC to resolve the ill-
posedness of an idealized, regional shallow-water model. The ill-posedness arose from
specifying too much data at the open boundaries, thereby mimicking the situation that is
inevitable for regional Primitive Equation models. As argued in §6.5, the ill-posedness
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is resolved by reformulation as a generalized inverse problem, since the associated
Euler–Lagrange (EL) equations form a well-posed boundary value problem.

The EL equations are efficiently solved using representer methods, but these require
backward and forward integrations. When the dynamics are shallow-water, it is always
possible to partition the EL boundary conditions so that both the backward integra-
tion and the forward integration are well-posed. Such a partitioning is not possible for
Primitive Equation dynamics. So, in the interest of developing generalized inversion
techniques alternative to solving the EL equations, Bennett and Chua (1994) minimized
the nonlinear shallow-water penalty functional by direct attack with simulated anneal-
ing and HMC. Numerical experiments with synthetic data supported the argument that
the inverse is well-posed. It was also shown that assimilation of “accurate” synthetic
interior data compensated for “inaccurate” synthetic boundary data. The time depen-
dent calculations involved about 740 000 computational variables on a space–time
grid. The annealing process was computed using a CM-200 Connection Machine, and
animated with a frame buffer. Local extrema in the penalty functional were seen to be
associated with jagged “annealing flaws” in the circulation fields. A careful annealing
strategy led eventually to the global minimum and the correct, smooth circulation. The
annealing samples in the final stages yielded crude posterior error statistics. An HMC
approach led directly to the global minimum but provided no error statistics. Those
could be obtained, albeit crudely, by importance-sampling near the minimum. HMC
and other gradient methods become impractical for the estimation of smooth fields in-
volving more than 106 gridded variables. In comparison, iterated representer methods
have been successfully applied to the estimation of as many as 109 gridded variables
modeling moderately nonlinear flows, such as global weather, and climatic variability
of the ocean–atmosphere: see Chapter 5. We do not, however, have efficient data
assimilation techniques for highly turbulent flows marked by sharp fronts, outcrops
or other near-discontinuities.

Exercise 6.6.1
Construct a quartic polynomial J = J (u) having a graph like a “lopsided letter w”.
Minimize J by simulated annealing. �

6.7 Well-posedness in comoving domains

Oliger and Sundström (1978) established the uniqueness of solutions of the nonlinear
shallow-water equations:

∂u
∂t
+ u ·∇u = −g∇h + F, (6.7.1)

∂h

∂t
+ u ·∇h + h∇ · u = 0, (6.7.2)
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subject to the initial conditions

u(x, 0) = uI(x), h(x, 0) = hI(x) . (6.7.3)

Let u(1), h(1) and u(2), h(2) be two solutions for the same forcing F and initial values
uI, hI; let u′ = u(1) − u(2) and h′ = h(1) − h(2) be the difference fields, and let

m = 1

2
h(1)u′ · u′ + 1

2
g(h′)2 (6.7.4)

be the total mechanical energy in the difference fields. Oliger and Sundström (1978)
showed that

∂m

∂t
+ ∇ · [u(1)m + gh(1)h′u′

]
= gh′u′ ·∇h(1) − gh′u′ ·∇h(2) − g(h′)2∇ · u(2)

+ 1

2
g(h′)2∇ · u(1) − h(1)u′ · (u′ ·∇)u(2) . (6.7.5)

It follows that

dE

dt
+ A ≤ BE, (6.7.6)

where

E = E(t) =
∫∫
D

mdx, (6.7.7)

A = A(t) =
∫
B

{
u(1) · n̂m + gh(1)h′u′ · n̂} ds, (6.7.8)

B =
(

11

2

)
max
i,x,t

{∣∣∇ · u(1)
∣∣, (g/h(i)

) 1
2
∣∣∇h(i)

∣∣} (6.7.9)

and n̂ is the outward unit normal on the boundary B of the fixed domain D. Integrating
(6.7.6) yields

E(t) ≤ E(0)−
t∫

0

eB(t−r )A(r ) dr. (6.7.10)

Note that the inverse timescale B is a constant. Now E(0) = 0 since the two solutions
satisfy the same initial conditions. It has been shown in §3.3.4 that h(1) > 0, provided
hI > 0. It is therefore clear that any boundary conditions ensuring A ≥ 0 also ensure
E(t) ≡ 0, that is, the mixed-initial-boundary value problem has a unique solution.

Exercise 6.7.1
It was shown in §6.2 that certain boundary conditions ensure uniqueness of solutions of
the linear shallow-water equations. Verify that these same boundary conditions suffice
for the nonlinear equations. �
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Exercise 6.7.2 (Bennett & Chua, 1999)
Now suppose that the domain D consists of the same fluid particles for all time t > 0,
that is, the boundary B moves with the flow, or is “comoving”. Prove that

dE

dt
+ C ≤ BE, (6.7.11)

where E and B are defined as in (6.7.7) and (6.7.9), while

C = C(t) ≡
∫
B

gh(1)h′u′ · n̂ ds. (6.7.12)

Prove that uniqueness follows from any one boundary condition ensuring C ≥ 0, such
as

(i) h′ = 0
(ii) u′ · n̂ = 0
or

(iii) u′ · n̂ = k
(
g/h(1)

) 1
2 h′




. (6.7.13)

The criticality of the flow at the boundary is not an issue. Indeed, the local Froude
number u(1) · n̂(gh(1))−

1
2 is effectively zero in the reference frame of the comoving

boundary. �

Exercise 6.7.3
How many conditions are needed in order to determine the motion of the boundary B?

�
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AppendixA

Computing exercises

These computational exercises complement the analytical development of vari-
ational data assimilation in the text, and also serve to develop the confidence
needed for more ambitious calculations. All code for these exercises is available
at an anonymous ftp site. The linear, one-dimensional “toy” model of §1.1 is up-
graded here to a linear, two-dimensional shallow-water model in both continuous
and finite-difference form. Continuous and discrete penalty functionals are devel-
oped, and the respective Euler–Langrange equations are derived. Representers are
calculated directly, so the generalized inverse may then be calculated directly or
indirectly.

A.1 Forward model

A.1.1 Preamble

The exercise is to construct and run a simple forward model using standard num-
erical methods. You may obtain the source code from our anonymous ftp site
(ftp ftp.oce.orst.edu, then cd /dist/bennett/class), along with some
plotting utilities. It is assumed that your computer environment is UNIX, with the
Fortran compilation command ‘f77’.
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Y

y

X x
0

0

v    0

v    0

u,v,q
periodic
in x

u,v,q
periodic
in x

Figure A.1.1 Periodic
channel with rigid walls,
rotating at the rate f

2 about
an axis normal to the
xy-plane.

A.1.2 Model

We consider a linear shallow-water model

∂u

∂t
− f v + g

∂q

∂x
+ ruu = Fu,

∂v

∂t
+ f u + g

∂q

∂y
+ rvv = Fv,

∂q

∂t
+ H

(
∂u

∂x
+ ∂v

∂y

)
+ rqq = 0,

on the domain 0 ≤ x ≤ X and 0 ≤ y ≤ Y (see Fig. A.1.1).

A.1.3 Initial conditions

The initial values are

u(x, y, 0) = I u(x, y) = 0,

v(x, y, 0) = I v(x, y) = 0,

and

q(x, y, 0) = I q (x, y) = 0.

A.1.4 Boundary conditions

The north and south walls are rigid:

v(x, 0, t) = v(x, Y, t) = 0,

while all fields are periodic in the x-direction:

u(x ± X, y, t) = u(x, y, t),

v(x ± X, y, t) = v(x, y, t),

and

q(x ± X, y, t) = q(x, y, t).
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A.1.5 Model forcings

The model forcings are

Fu = −Cdρaua
2/(Hρw),

and

Fv = 0.

A.1.6 Model parameters

The following parameters are suggested:

zonal period, X = 2000 km
meridional width, Y = 1000 km
mean depth, H = 5000 m
time interval, T = 1.8× 104 s
gravitational acceleration, g = 9.806 m s−2

Coriolis parameter, f = 1.0× 10−4 s−1

damping coefficient, ru = (1.8× 104 s)−1

damping coefficient, rv = (1.8× 104 s)−1

damping coefficient, rq = (1.8× 104 s)−1

drag coefficient, Cd = 1.6× 10−3

air density, ρa = 1.275 kg m−3

water density, ρw = 1.0× 103 kg m−3

zonal wind, ua = 5 m s−1.

A.1.7 Numerical model

The differential equations are discretized on the Arakawa C-grid (see Fig. A.1.2) with
a forward–backward scheme for time-stepping (Mesinger & Arakawa, 1976) given as
follows:

qk+1
i, j − qki, j

�t
+ H

(
uki+1, j − uki, j

�x
+ vki, j+1 − vki, j

�y

)
+ rqq

k
i, j = 0,

uk+1
i, j − uki, j

�t
− f

(
vki, j+1 + vki, j + vki−1, j+1 + vki−1, j

4

)

+ g

(
qk+1
i, j − qk+1

i−1, j

�x

)
+ ruu

k
i, j = Fuki, j ,

vk+1
i, j − vki, j

�t
+ f

(
uki+1, j + uki, j + uki+1, j−1 + uki, j−1

4

)

+ g

(
qk+1
i, j − qk+1

i, j−1

�y

)
+ rvv

k
i, j = Fvki, j

,
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U0 U1 Uk-1 UNK-1 UNKUk

qi,j+1

qi,j-1ui,j-1 ui+1,j-1

qi,jui,j

vi,j

vi,j+1vi-1,j+1

ui+1,j
qi-1,j qi+1,j

vi-1,j

∆y

∆x

∆t

j

i

Spatial:

Temporal:

λ1

λu
λv

λq

λk λNK

U =  v
u

q
λ =  

k

Figure A.1.2 Arakawa C-grid for space differences; staggering of
forward and adjoint variables for time differences.

where

qki, j : i = 1, NI ; j = 1, NJ − 1; k = 0, NK − 1,

uki, j : i = 1, NI ; j = 1, NJ − 1; k = 0, NK − 1,

and

vki, j : i = 1, NI ; j = 2, NJ − 1; k = 0, NK − 1.

Rigid boundary conditions

vki,1 = 0,

and

vki,N J = 0.

Periodic boundary conditions

uk0, j = ukN I, j ,

ukN I+1, j = uk1, j ,

vk0, j = vkN I, j ,

vkN I+1, j = vk1, j ,

qk0, j = qkN I, j ,



A.2 Variational data assimilation 199

and

qkN I+1, j = qk1, j .

A.1.8 Numerical model parameters

The following parameters are suggested:

number of grid points in x-direction, N I = 20
number of grid points in y-direction, N J = 11
number of time steps, NK = 100
grid spacing (x-direction), �x = 100 km
grid spacing (y-direction), �y = 100 km
time step, �t = 180 s.

A.1.9 Numerical code and output

Source code: fwd.f

To compile the source code: f77-O3 fwd.f -o fwd
Output file: ufwd.dat, vfwd.dat and qfwd.dat

A.1.10 To generate a plot

(i) Postprocessing
Source code: postprocess.f
To compile the source code: f77 postprocess.f -o postprocess

Input file: ufwd.dat, vfwd.dat and qfwd.dat
Output file: u.dat, v.dat, q.dat, uy.dat, vy.dat, qy.dat

(ii) Line plot
gnuplot line.gnu (input file: qy.dat; output file: qy.ps)

(iii) Contour plot
gnuplot contour.gnu (input file: q.dat; output file: q.ps)

A.2 Variational data assimilation

A.2.1 Preamble

The exercise is to reformulate the forward model of Exercise A.1 as an inverse model,
to define a penalty functional, to derive the associated system of Euler–Lagrange (EL)
equations and to express its solution using representers.
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A.2.2 Penalty functional

Formulate the penalty functional J for the following problem (see §1.2, Inverse
models):

Equations of motion

∂u

∂t
− f v + g

∂q

∂x
+ ruu = Fu + f u,

∂v

∂t
+ f u + g

∂q

∂y
+ rvv = Fv + f v,

∂q

∂t
+ H

(
∂u

∂x
+ ∂v

∂y

)
+ rqq = f q .

Initial conditions

u(x, y, 0) = I u(x, y)+ i u(x, y),

v(x, y, 0) = I v(x, y)+ iv(x, y),

q(x, y, 0) = I q (x, y)+ iq (x, y).

Rigid boundary conditions

v(x, 0, t) = b0 (x, t),

v(x, Y, t) = bY (x, t).

Periodic boundary conditions

u(x ± X, y, t) = u(x, y, t),

v(x ± X, y, t) = v(x, y, t),

q(x ± X, y, t) = q(x, y, t).

Data

dm = q(xm, ym, tm)+ εm, 1 ≤ m ≤ M.

A.2.3 Euler–Lagrange equations

Derive EL equations for the extremum of the penalty functional J .

A.2.4 Representer solution

Solve the EL equations using representers (see §1.3: Solving the Euler–Lagrange equa-
tions using representers).
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A.2.5 Solutions for A.2.2–A.2.4

Penalty functional, in terms of residuals:

J = J [u, v, q]

= Wu
f

T∫
0

dt

X∫
0

dx

Y∫
0

dy( f u(x, y, t))2 +W v
f

T∫
0

dt

X∫
0

dx

Y∫
0

dy( f v(x, y, t))2

+Wq
f

T∫
0

dt

X∫
0

dx

Y∫
0

dy( f q (x, y, t))2 +Wu
i

X∫
0

dx

Y∫
0

dy(i u(x, y))2

+W v
i

X∫
0

dx

Y∫
0

dy(iv(x, y))2 +Wq
i

X∫
0

dx

Y∫
0

dy(iq (x, y))2

+W v
b

T∫
0

dt

X∫
0

dx(b0 (x, t))2 +W v
b

T∫
0

dt

X∫
0

dx(bY (x, t))2 + w

M∑
m=1

(εm)2.

Penalty functional, in terms of state variables:

J = J [u, v, q]

= Wu
f

T∫
0

dt

X∫
0

dx

Y∫
0

dy

{
∂u

∂t
− f v + g

∂q

∂x
+ ruu − Fu

}2

+W v
f

T∫
0

dt

X∫
0

dx

Y∫
0

dy

{
∂v

∂t
+ f u + g

∂q

∂y
+ rvv − Fv

}2

+Wq
f

T∫
0

dt

X∫
0

dx

Y∫
0

dy

{
∂q

∂t
+ H

(
∂u

∂x
+ ∂v

∂y

)
+ rqq

}2

+Wu
i

X∫
0

dx

Y∫
0

dy{u(x, y, 0)− I u(x, y)}2

+W v
i

X∫
0

dx

Y∫
0

dy{v(x, y, 0)− I v(x, y)}2

+Wq
i

X∫
0

dx

Y∫
0

dy {q(x, y, 0)− I q (x, y)}2
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+W v
b

T∫
0

dt

X∫
0

dx{v(x, 0, t)}2

+W v
b

T∫
0

dt

X∫
0

dx{v(x, Y, t)}2

+w

M∑
m=1

{q(xm, ym, tm)− dm}2.

Weighted residuals

λu ≡ Wu
f

(
∂ û

∂t
− f v̂ + g

∂q̂

∂x
+ ruû − Fu

)
,

λv ≡ W v
f

(
∂v̂

∂t
+ f û + g

∂ q̂

∂y
+ rvv̂ − Fv

)
,

λq ≡ Wq
f

(
∂ q̂

∂t
+ H

(
∂ û

∂x
+ ∂v̂

∂y

)
+ rq q̂

)
.

Euler–Lagrange equations

−∂λu

∂t
+ f λv − H

∂λq

∂x
+ ruλ

u = 0,

−∂λv

∂t
− f λu − H

∂λq

∂y
+ rvλ

v = 0,

−∂λq

∂t
− g

(
∂λu

∂x
+ ∂λv

∂y

)
+ rqλ

q

= −w

M∑
m=1

(q̂(xm, ym, tm)− dm) δ(x − xm)δ(y − ym)δ(t − tm).

λu(x, y, T ) = 0,

λv(x, y, T ) = 0,

λq (x, y, T ) = 0.

λv(x, 0, t) = 0,

λv(x, Y, t) = 0.

λu(x ± X, y, t) = λu(x, y, t),

λv(x ± X, y, t) = λv(x, y, t),

λq (x ± X, y, t) = λq (x, y, t).
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∂ û

∂t
− f v̂ + g

∂ q̂

∂x
+ ruû = Fu +

[
Wu

f

]−1
λu,

∂v̂

∂t
+ f û + g

∂ q̂

∂y
+ rvv̂ = Fv +

[
W v

f

]−1
λv,

∂q̂

∂t
+ H

(
∂ û

∂x
+ ∂v̂

∂y

)
+ rq q̂ =

[
Wq

f

]−1
λq .

û(x, y, 0) = I u(x, y)+ [Wu
i

]−1
λu(x, y, 0),

v̂(x, y, 0) = I v(x, y)+ [W v
i

]−1
λv(x, y, 0),

q̂(x, y, 0) = I q (x, y)+ [Wq
i

]−1
λq (x, y, 0).

v̂(x, 0, t) = H
[
W v
b

]−1
λq (x, 0, t),

v̂(x, Y, t) = −H [W v
b

]−1
λq (x, Y, t).

û(x ± X, y, t) = û(x, y, t),

v̂(x ± X, y, t) = v̂(x, y, t),

q̂(x ± X, y, t) = q̂(x, y, t).

First-guess

∂uF
∂t

− f vF + g
∂qF
∂x

+ ruuF = Fu,

∂vF

∂t
+ f uF + g

∂qF
∂y

+ rvvF = Fv,

∂qF
∂t

+ H

(
∂uF
∂x

+ ∂vF

∂y

)
+ rqqF = 0.

uF (x, y, 0) = I u(x, y),

vF (x, y, 0) = I v(x, y),

qF (x, y, 0) = I q (x, y).

vF (x, 0, t) = 0,

vF (x, Y, t) = 0.

uF (x ± X, y, t) = uF (x, y, t),

vF (x ± X, y, t) = vF (x, y, t),

qF (x ± X, y, t) = qF (x, y, t).
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Representer adjoint equations

−∂αum

∂t
+ f αv

m − H
∂αqm

∂x
+ ruα

u
m = 0,

−∂αv
m

∂t
− f αum − H

∂αqm

∂y
+ rvα

v
m = 0,

−∂αqm

∂t
− g

(
∂αum

∂x
+ ∂αv

m

∂y

)
+ rqα

q
m = δ(x − xm)δ(y − ym)δ(t − tm).

αum(x, y, T ) = 0,

αv
m(x, y, T ) = 0,

αqm(x, y, T ) = 0.

αv
m(x, 0, t) = 0,

αv
m(x, Y, t) = 0.

αum(x ± X, y, t) = αum(x, y, t),

αv
m(x ± X, y, t) = αv

m(x, y, t),

αqm(x ± X, y, t) = αqm(x, y, t).

Representer equations

∂rum
∂t

− f rvm + g
∂rqm
∂x

+ rur
u
m =

[
Wu

f

]−1
αum,

∂rvm
∂t

+ f rum + g
∂rqm
∂y

+ rvr
v
m =

[
W v

f

]−1
αv
m,

∂rqm
∂t

+ H

(
∂rum
∂x

+ ∂rvm
∂y

)
+ rqr

q
m =

[
Wq

f

]−1
αqm .

rum(x, y, 0) = [Wu
i

]−1
αum(x, y, 0),

rvm(x, y, 0) = [W v
i

]−1
αv
m(x, y, 0),

rqm(x, y, 0) = [Wq
i

]−1
αqm(x, y, 0).

rvm(x, 0, t) = H
[
W v
b

]−1
αqm(x, 0, t),

rvm(x, Y, t) = −H [W v
b

]−1
αqm(x, Y, t).

rum(x ± X, y, t) = rum(x, y, t),

rvm(x ± X, y, t) = rvm(x, y, t),

rqm(x ± X, y, t) = rqm(x, y, t).
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Extremum of J

û(x, y, t) = uF (x, y, t)+
M∑
m=1

β̂mr
u
m(x, y, t),

v̂(x, y, t) = vF (x, y, t)+
M∑
m=1

β̂mr
v
m(x, y, t),

q̂(x, y, t) = qF (x, y, t)+
M∑
m=1

β̂mr
q
m(x, y, t),

M∑
l=1

(
rqlm + w−1δlm

)
β̂l = hm (m = 1,M),

where

rlm = rl(xm, ym, tm),

and

hm = dm − qF (xm, ym, tm).

A.3 Discrete formulation

A.3.1 Preamble

Verify the discrete formulation given here in detail. Derive the corresponding equations
for the representers and their adjoints. Compare with the source code rep.f.

A.3.2 Penalty functional

J = J [u, v, q] = Wu
f

NK−1∑
k=0

N J−1∑
j=1

N I∑
i=1

(
( f u)k+1

i, j

)2
�x�y�t

+W v
f

N K−1∑
k=0

N J−1∑
j=2

N I∑
i=1

(
( f v)k+1

i, j

)2
�x�y�t

+Wq
f

NK−1∑
k=0

N J−1∑
j=1

N I∑
i=1

(
( f q )k+1

i, j

)2
�x�y�t

+Wu
i

N J−1∑
j=1

N I∑
i=1

((i u)i, j )
2�x�y

+W v
i

N J∑
j=1

N I∑
i=1

((iv)i, j )
2�x�y
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+Wq
i

N J−1∑
j=1

N I∑
i=1

((iq )i, j )
2�x�y

+W v
b

NK∑
k=1

N I∑
i=1

(
(b0)ki

)2
�x�t

+W v
b

NK∑
k=1

N I∑
i=1

(
(bY )ki

)2
�x�t

+w

M∑
m=1

(εm)2,

where

( f u)k+1
i, j = uk+1

i, j − uki, j
�t

− f

(
vki, j+1 + vki, j + vki−1, j+1 + vki−1, j

4

)

+ g

(
qk+1
i, j − qk+1

i−1, j

�x

)
+ ruu

k
i, j − (Fu)ki, j ,

( f v)k+1
i, j = vk+1

i, j − vki, j

�t
+ f

(
uki+1, j + uki, j + uki+1, j−1 + uki, j−1

4

)

+ g

(
qk+1
i, j − qk+1

i, j−1

�y

)
+ rvv

k
i, j − (Fv)ki, j ,

( f q )k+1
i, j = qk+1

i, j − qki, j
�t

+ H

(
uki+1, j − uki, j

�x
+ vki, j+1 − vki, j

�y

)
+ rqq

k
i, j ,

(i u)i, j = u0
i, j − (I u)i, j ,

(iv)i, j = v0
i, j − (I v)i, j ,

(iq )i, j = q0
i, j − (I q )i, j ,

(b0)ki = vki,1,

(bY )ki = vki,N J ,

εm = qkmim , jm − dm .

A.3.3 Weighted residuals

(λu)k+1
i, j ≡ Wu

f

{
ûk+1
i, j − ûki, j

�t
− f

(
v̂ki, j+1 + v̂ki, j + v̂ki−1, j+1 + v̂ki−1, j

4

)

+ g

(
q̂k+1
i, j − q̂k+1

i−1, j

�x

)
+ ruû

k
i, j − (Fu)ki, j

}
,
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(λv)k+1
i, j ≡ W v

f

{
v̂k+1
i, j − v̂ki, j

�t
+ f

(
ûki+1, j + ûki, j + ûki+1, j−1 + ûki, j−1

4

)

+ g

(
q̂k+1
i, j − q̂k+1

i, j−1

�y

)
+ rvv̂

k
i, j − (Fv)ki, j

}
,

(λq )k+1
i, j ≡ Wq

f

{
q̂k+1
i, j − q̂ki, j

�t
+ H

(
ûki+1, j − ûki, j

�x
+ v̂ki, j+1 − v̂ki, j

�y

)
+ rq q̂

k
i, j

}
.

Euler–Lagrange equations

− (λu)k+1
i, j − (λu)ki, j

�t
+ f

(
(λv)k+1

i, j+1 + (λv)k+1
i, j + (λv)k+1

i−1, j+1 + (λv)k+1
i−1, j

4

)

− H

(
(λq )k+1

i, j − (λq )k+1
i−1, j

�x

)
+ ru(λu)k+1

i, j = 0,

− (λv)k+1
i, j − (λv)ki, j

�t
− f

(
(λu)k+1

i+1, j + (λu)k+1
i, j + (λu)k+1

i+1, j−1 + (λu)k+1
i, j−1

4

)

− H

(
(λq )k+1

i, j − (λq )k+1
i, j−1

�y

)
+ rv(λv)k+1

i, j = 0,

− (λq )k+1
i, j − (λq )ki, j

�t
− g

(
(λu)ki+1, j − (λu)ki, j

�x
+ (λv)ki, j+1 − (λv)ki, j

�y

)

+ rq (λq )k+1
i, j = −w

M∑
m=1

δi,im δ j, jm δk,km

�x�y�t

(
q̂kim , jm − dm

)
,

where k = 1, NK − 1.

(λu)NKi, j

�t
= 0,

(λv)NKi, j

�t
= 0,

(λq )NKi, j

�t
− g

(
(λu)NKi+1, j − (λu)NKi, j

�x
+ (λv)NKi, j+1 − (λv)NKi, j

�y

)

= −w

M∑
m=1

δi,im δ j, jm δNK ,km

�x�y�t

(
q̂ N Kim , jm − dm

)
.

(λv)ki,1 = 0,

(λv)ki,N J = 0 (computational boundary conditions).
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(λu)k0, j = (λu)kN I, j ,

(λu)kN I+1, j = (λu)k1, j ,

(λv)k0, j = (λv)kN I, j ,

(λv)kN I+1, j = (λv)k1, j ,

(λq )k0, j = (λq )kN I, j ,

(λq )kN I+1, j = (λq )k1, j .

ûk+1
i, j − ûki, j

�t
− f

(
v̂ki, j+1 + v̂ki, j + v̂ki−1, j+1 + v̂ki−1, j

4

)
+ g

(
q̂k+1
i, j − q̂k+1

i−1, j

�x

)

+ ruûki, j = (Fu)ki, j +
[
Wu

f

]−1
(λu)k+1

i, j ,

v̂k+1
i, j − v̂ki, j

�t
+ f

(
ûki+1, j + ûki, j + ûki+1, j−1 + ûki, j−1

4

)
+ g

(
q̂k+1
i, j − q̂k+1

i, j−1

�y

)

+ rvv̂ki, j = (Fv)ki, j +
[
W v

f

]−1
(λv)k+1

i, j ,

q̂k+1
i, j − q̂ki, j

�t
+ H

(
ûki+1, j − ûki, j

�x
+ v̂ki, j+1 − v̂ki, j

�y

)
+ rq q̂

k
i, j =

[
Wq

f

]−1
(λq )k+1

i, j .

Wu
i

(
û0
i, j − (I u)i, j

�t

)
= (λu)1

i, j

�t
− f

(
(λv)1

i, j+1 + (λv)1
i, j + (λv)1

i−1, j+1 + (λv)1
i−1, j

4

)

+ H

(
(λq )1

i, j − (λq )1
i−1, j

�x

)
,

W v
i

(
v̂0
i, j − (I v)i, j

�t

)
= (λv)1

i, j

�t
+ f

(
(λu)1

i+1, j + (λu)1
i, j + (λu)1

i+1, j−1 + (λu)1
i, j−1

4

)

+ H

(
(λq )1

i, j − (λq )1
i, j−1

�y

)
− rv(λv)1

i, j ,

Wq
i

(
q̂0
i, j − (I q )i, j

�t

)
= (λq )1

i, j

�t
− rq (λq )1

i, j .

v̂ki,1 =
[
W v
b

]−1
�y

{
f

(
(λu)ki,1 + (λu)ki+1,1

4

)
+ H

(λq )k+1
i,1

�y

}
,

v̂ki,N J =
[
W v
b

]−1
�y

{
f

(
(λu)ki,N J−1 + (λu)ki+1,N J−1

4

)
− H

(λq )k+1
i,N J−1

�y

}
.

ûk0, j = ûkN I, j ,

ûkN I+1, j = ûk1, j ,
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v̂k0, j = v̂kN I, j ,

v̂kN I+1, j = v̂k1, j ,

q̂k0, j = q̂kN I, j ,

q̂kN I+1, j = q̂k1, j .

A.4 Representer calculation

A.4.1 Preamble

The first part of the exercise is to calculate some representers, assemble the representer
matrix and verify its algebraic properties. The second part is to find the extremum of a
penalty functional by solving the EL equations.

A.4.2 Representer vector

Calculate the representer vector r(x, y, t).
Source code: rep.f
To compile the source code: f77-O3 rep.f -o rep

A.4.3 Representer matrix

Construct the representer matrix R.
Check: Is R symmetric and positive-definite?

A.4.4 Extremum

Find the extremum of the penalty functional J .

Note: Avoid storing r(x, y, t) when assembling (3.24).
Instead, substitute for the coupling, integrate the backward EL equations and
then integrate the forward equations (see §3.1: Accelerating the representer
calculation).
Check: Is β̂m = −w [q̂(xm, ym, tm)− dm]?

A.4.5 Weights

The following values are suggested:

Dynamical weight (u)

Wu
f�x�y�t = (0.25|Fu |)−2 s4m−2.
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Dynamical weight (v)

W v
f�x�y�t = (0.25|Fu |)−2 s4m−2.

Dynamical weight (q)

Wq
f �x�y�t = ∞.

Initial weight (u)

Wu
i �x�y = ∞.

Initial weight (v)

W v
i �x�y = ∞.

Initial weight (q)

Wq
i �x�y = ∞.

Boundary weight (v)

W v
b�x�t = ∞.

Data weight (q)

w = [0.1 max(qF )]−2 m−2.

A.5 More representer calculations

A.5.1 Pseudocode, preconditioned conjugate gradient solver

Find the local extremum of the penalty functional J iteratively (see §3.1, Accelerating
the representer calculation). Below is the “pseudocode” of a preconditioned conjugate
gradient method (Golub & Van Loan, 1989) for solving

U−1/2(R+ w−1I)U−1/2U1/2β̂ = U−1/2h,

where U is a preconditioner.
l = 0; β̂0 = 0; e0 = h; ω0 = ‖ e0 ‖2/‖ h ‖2

while ωl < ωsc

solve zl = U−1el
l = l + 1
if l = 1
p1 = z 0

else
γl = eT

l−1zl−1/eT
l−2z l−2

pl = zl−1 + γlpl−1

endif
αl = eT

l−1zl−1/pT
l(R+ w−1I)pl

β̂l = β̂l−1 + αlpl
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el = el−1 − αl(R+ w−1I)pl
ωl = ‖ el ‖2/‖ h ‖2

endwhile
β̂ = β̂l

Source code: cgm.f (conjugate gradient solver).

A.5.2 Convolutions for covarying errors

Use “non-diagonal” covariances for initial and dynamical errors (see §2.6, Smoothing
norms, covariances and convolutions).



AppendixB

Euler–Lagrange equations for a numerical
weather prediction model

The dynamics are those of the standard σ -coordinate, Primitive-Equation model of
a moist atmosphere on the sphere (Haltiner and Williams, 1980, p. 17). A penalty
functional and the associated Euler–Lagrange equations are given in continuous form;
CMFortran code for finite-difference forms is available at an anonymous ftp site.
Details of the measurement functionals for reprocessed cloud-track wind observations
(see §5.4), and the associated impulses in the adjoint equations, have been suppressed
here. The details may be found in the code.

B.1 Symbols

a0, " earth’s radius, rotation rate
λ, φ, σ, t longitude, latitude, sigma, time
u, v, σ̇ zonal, meridional, vertical velocity components
f ≡ 2" sinφ Coriolis parameter
#, T, Tv, p, p∗ = p/σ geopotential, temperature, virtual temperature, pressure,

surface pressure
q, ρ specific humidity, density
l ≡ lnp∗ log surface pressure
Rd,Cpd gas constant, specific heat at constant pressure

(both for dry air)
Rv,Cpv gas constant, specific heat at constant pressure

(both for water vapor)
ε = Rv/Rd, δ = Cpv/Cpd

212
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Su, Sv, ST , Sq , Sl prior estimates of sources of zonal momentum,
meridional momentum, heat, humidity, mass

〈u〉 ≡
1∫

0
udσ, u′ ≡ u − 〈u〉 vertical average, fluctuation

ρu, ρv, ρT , ρq , ρl , ρσ dynamical residuals, or errors in prior estimates
of sources

Wu,WT ,Wq ,W#,Wl ,Wσ weights for residuals (inverses of prior estimates
of covariances of dynamical residuals)

Qu, QT , Qq , Q#, Ql , Qσ prior estimates of covariances of dynamical
residuals

µ, θ, κ, χ, ξ, ω weighted residuals, or adjoint variables
J = J [u, σ̇ , #, T, q, l] penalty functional, or estimator for residuals
F ≡ ∂T/∂Tv = 1+ (ε−1 − 1)q moisture factor

D ≡ 1

a0 cos θ
uλ + (v cos θ )θ

a0 cos θ
+ ∂σ̇

∂σ
− σ̇

σ

divergence
[δu], [δv], [δ#], [δT ], Euler–Lagrange equations for arbitrary variations
[δσ̇ ], [δl], [δq] of u, v,#, T, σ̇ , l, q
uI, TI, qI, lI prior estimates of initial values for u, T, q, l
Vu, VT , Vq , Vl weights for residuals or errors in prior estimates of

initial values (inverses of initial error covariances)
Ou, OT , Oq , Ol prior estimates of initial error covariances for

u, T, q, l
#∗, V∗, O∗ orography, weight, error covariance
•, ◦ four-dimensional and three-dimensional inner

products
rnu , r

n
v , r

n
T , r

n
#, r

n
q , r

n
l , r

n
σ̇ representers for nth iterate of Euler–Lagrange

equations
anu , a

n
v , a

n
T , a

n
φ, a

n
q , a

n
l , a

n
σ̇ adjoint representers

B.2 Primitive Equations and penalty functional

ut + u

a0 cosφ
uλ + v

a0
uφ + σ̇uσ −

(
f + u

a0
tanφ

)
v

+ 1

a0 cosφ
(#λ + RdTvlλ)− Su ≡ ρu (B.2.1)

vt + u

a0 cosφ
vλ + v

a0
vφ + σ̇ vσ +

(
f + u

a0
tanφ

)
u

+ 1

a0
(#φ + RdTvlφ)− Sv ≡ ρv (B.2.2)
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Tt + u

a0 cosφ
Tλ + v

a0
Tφ + σ̇Tσ

+ RdTv

CpdB

[
1

a0 cosφ
uλ + (v cosφ)φ

a0 cosφ
+σ

(
σ̇

σ

)
σ

]
− ST ≡ ρT (B.2.3)

qt + u

a0 cosφ
qλ + v

a0
qφ + σ̇qσ − Sq ≡ ρq

∂#

∂lnσ
+ RdTv ≡ ρ# (B.2.4)

lt + 〈u〉
a0 cosφ

lλ + 〈v〉
a0
lφ +

[
1

a0 cosφ
〈u〉λ + (〈v〉 cosφ)φ

a0 cosφ

]
−〈Sl〉 ≡ ρl (B.2.5)

u′

a0 cosφ
lλ + v′

a0
lφ +

[
1

a0 cosφ
u′λ +

(v′ cosφ)φ
a0 cosφ

]
+ σ̇σ − S′l ≡ ρσ (B.2.6)

Tv ≡ T [1+ (ε−1 − 1)q], p = ρRdTv, B ≡ 1+ (δ − 1)q. (B.2.7)

Weighted residuals

µ ≡ Wu • ρu, θ ≡ WT • ρT , κ ≡ Wq • ρq , (B.2.8)

χ = W# • ρ#, ξ = Wl • ρl , ω = Wσ • ρσ . (B.2.9)

Penalty functional

J = J [u, σ̇ , #, T, q, l] = ρ∗u •Wu • ρu + ρT •WT • ρT + ρq •Wq • ρq

+ ρ# •W# • ρ# + ρl •Wl • ρl + ρσ •Wσ • ρσ

+ (boundary penalties @ σ = 0, 1)+ (initial penalties for u, T, q,& l)
+ (data penalties). (B.2.10)

B.3 Euler–Lagrange equations

Note: The symbols [δu], etc., indicate that the following equation is the extremal
condition for the penalty functional J , with respect to variations of δu, etc.

[δu]

−µt + uλµ

a0 cosφ
− (uµ)λ
a0 cosφ

− (vµ cosφ)φ
a0 cosφ

− (σ̇µ)σ − tanφ

a0
vµ+ vλν

a0 cosφ

+
(
f + u tanφ

a0

)
ν + tanφ

a0
uν

+ Tλθ

a0 cosφ
− Rd

Cpd

(
Tvθ

B

)
λ

1

a0 cosφ
+ qλκ

a0 cosφ
+ lλξ

a0 cosφ
− ξλ

a0 cosφ

+ lλ(ω − 〈ω〉)
a0 cosφ

− (ωλ − 〈ω〉λ)

a0 cosφ
− (impulses) = 0 (B.3.1)
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[δv]

−νt + uφµ

a0
−
(
f + u tanφ

a0

)
µ− (uν)λ

a0 cosφ
+ vφν

a0
− (vν cosφ)φ

a0 cosφ
− (σ̇ ν)σ

+ Tφθ

a0
− Rd

Cpd

(
Tvθ

B

)
φ

1

a0
+ qφκ

a0
+ lφξ

a0
− ξφ

a0
+ lφ(ω − 〈ω〉)

a0

− (ωφ − 〈ω〉φ)

a0
− (impulses) = 0 (B.3.2)

[δ#]

− µλ

a0 cosφ
− (ν cosφ)φ

a0 cosφ
− (σχ )σ − (impulses) = 0 (B.3.3)

[δT ]

−θt + RdFlλµ

a0 cosφ
+ RdFlφν

a0
− (uθ )λ
a0 cosφ

− (vθ cosφ)φ
a0 cosφ

− (σ̇ θ )σ + RdFDθ

CpdB

+ RdFχ − (impulses) = 0 (B.3.4)

[δσ̇ ]

uσµ+ vσ ν + Tσ θ − Rd

Cpd

(
Tvθ

B

)
σ

− Rd

Cpd

Tvθ

Bσ
+ qσ κ−ωσ − (impulses) = 0

(B.3.5)

[δl]

−ξt − Rd〈(Tvµ)λ〉
a0 cosφ

− Rd〈(Tvν cosφ)φ〉
a0 cosφ

− (〈u〉ξ )λ
a0 cosφ

− (〈v〉ξ cosφ)φ
a0 cosφ

− 〈u′ω〉λ
a0 cosφ

− 〈v′ω cosφ〉φ
a0 cosφ

− (impulses) = 0 (B.3.6)

[δq]

−κt + RdTFqlλµ

a0 cosφ
+ RdTFqlφν

a0
+ RdT

Cpd
Fq

Dθ

B
− Rd

Cpd

Dθ (δ − 1)Tv
B2

− (uκ)λ
a0 cosφ

− (vκ cosφ)φ
a0 cosφ

+ RdFqχ−(σ̇ κ)σ−(impulses) = 0 (B.3.7)

Note: (B.3.5) is a first-order, ordinary differential equation for ω as a function of σ .
Solutions are indeterminate, since there is no boundary condition for ω at
σ = 0, nor at σ = 1. However, the other Euler–Lagrange equations only
involve ω′ or 〈u′ω〉, where ω′ ≡ ω − 〈ω〉, etc., thus the indeterminacy has no
effect upon them. The residual ρσ in (B.2.6) must satisfy 〈ρσ 〉 = 0; thus its
covariance Qσ must have vanishing integrals with respect to both vertical
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arguments, and any hypothesis for Qσ must conform to this requirement. Hence
the optimal estimate ρσ ≡ Qσ • ω is also unaffected by the indeterminacy, and
the vertical integral of the estimate vanishes.

Initial conditions

@ t = 0: u ∼= uI , T ∼= TI , q ∼= qI , l ∼= lI. (B.3.8)

Contribution to penalty functional

JI = (u− uI)
∗ ◦ Vu ◦ (u− uI)+ (T − TI) ◦ VT ◦ (T − TI)

+ (q − qI) ◦ Vq ◦ (q − qI)+ (l − lI) ◦ Vl ◦ (l − lI). (B.3.9)

Hence

@ t = T : µ = 0 , θ = 0 , κ = 0 , ξ = 0 (B.3.10)

@t = 0: −µ+ Vu ◦ (u− uI) = 0 , −θ + VT ◦ (T − TI) = 0,

−κ + Vq ◦ (q − qI) = 0, −ξ + Vl ◦ (l − lI) = 0, (B.3.11)

i.e., u = uI +Ou ◦ µ, T = TI + OT ◦ θ, q = qI + Oq ◦ κ, l = lI + Ol ◦ ξ,

where Ou(12) ◦ Vu(23) = δ(x1 − x3)I, etc. (B.3.12)

Boundary conditions

@ σ = 0, 1: σ̇ = 0 (B.3.13)

@ σ = 1: # ∼= #∗. (B.3.14)

Contribution to penalty functional

J∗ = (#−#∗) ◦ V∗ ◦ (#−#∗). (B.3.15)

Hence

@ σ = 0: χ = 0, (B.3.16)

@ σ = 1: # = #∗ − O∗ ◦ χ. (B.3.17)

B.4 Linearized Primitive Equations

Note: The labels (LPE1) etc. refer to lines of the CMFortran code for the
finite-difference equations; the code is available at an anonymous ftp site
(ftp.oce.orst.edu, /dist/chua/IOM/IOSU).

unt +
un−1unλ
a0 cosφ

+ vn−1unφ
a0

+ σ̇ n−1unσ −
(
f + un−1 tanφ

a0

)
vn

+ 1

a0 cosφ

(
#n

λ + RdT
n−1
v lnλ

)− Snu ≡ ρnu . (LPE1) (B.4.1)
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vnt +
un−1vnλ

a0 cosφ
+ vn−1vnφ

a0
+ σ̇ n−1vnσ +

(
f + un−1 tanφ

a0

)
un

+ 1

a0

(
#n

φ + RdT
n−1
v lnφ

)− Snv ≡ ρnv . (LPE2) (B.4.2)

T n
t +

un−1T n
λ

a0 cosφ
+ vn−1T n

φ

a0
+ σ̇ n T n−1

σ

+ RdT n−1
v

CpdBn−1

[
unλ

a0 cosφ
+
(
vnφ cosφ

)
φ

a0 cosφ
+ ∂σ̇ n

∂σ
− σ̇ n

σ

]
− SnT ≡ ρnT .

(LPE3) (B.4.3)

qnt +
un−1qnλ
a0 cosφ

+ vn−1qnφ
a0

+ σ̇ n−1qnσ − Snq ≡ ρnq . (LPE4) (B.4.4)

∂#n

∂lnσ
+ RdT

nFn−1 ≡ ρn#. (LPE5) (B.4.5)

lnt +
〈un−1〉lnλ
a0 cosφ

+ 〈vn−1〉lnφ
a0

+
[

1

a0 cosφ
〈un〉λ + (〈vn〉 cosφ)φ

a0 cosφ

]
− 〈Snl 〉 ≡ ρnl .

(LPE6) (B.4.6)

u′n−1lnλ
a0 cosφ

+ v′n−1lnφ
a0

+
[

1

a0 cosφ
u′nλ +

(v′n cosφ)φ
a0 cosφ

]
+ ∂σ̇ n

∂σ
− S′n−1

l ≡ ρnσ̇ .

(LPE7) (B.4.7)
T n
v = T n[1+ (ε−1 − 1)qn]. (B.4.8)

B.5 Linearized Euler–Lagrange equations

[δun]

− µn
t −

(un−1µn)λ
a0 cosφ

− (vn−1µn cosφ)φ
a0 cosφ

− (σ̇ n−1µn)σ +
(
f + un−1 tanφ

a0

)
νn

− Rd

Cpd

1

a0 cosφ

(
T n−1
v θn

Bn−1

)
λ

− ξ nλ

a0 cosφ
−
(
ωn

λ − 〈ωn〉λ
)

a0 cosφ

= − un−1
λ µn−1

a0 cosφ
+ vn−1 tanφ

a0
µn−1 − vn−1

λ νn−1

a0 cosφ
− tanφ

a0
un−1νn−1

− T n−1
λ θn−1

a0 cosφ
− qn−1

λ κn−1

a0 cosφ
− ln−1

λ ξ n−1

a0 cosφ

− ln−1
λ

(ωn−1 − 〈ωn−1〉)
a0 cosφ

+ (impulses)n. (LELE1) (B.5.1)
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[δvn]

− νnt −
(un−1νn)λ
a0 cosφ

− (vn−1νn cosφ)φ
a0 cosφ

− (σ̇ n−1νn)σ −
(
f + un−1 tanφ

a0

)
µn

− Rd

Cpd

(
T n−1
v θn

Bn−1

)
φ

1

a0
− ξ nφ

a0
−
(
ωn

φ −
〈
ωn

φ

〉)
a0

= −u
n−1
φ µn−1

a0
− vn−1

φ νn−1

a0 cosφ
− T n−1

φ θn−1

a0
− qn−1

φ κn−1

a0
− ln−1

φ ξ n−1

a0

− l
n−1
φ

a0
(ωn−1 − 〈ωn−1〉)+ (impulses)n. (LELE2) (B.5.2)

[δ#n]
−µn

λ

a0 cosφ
− (νn cosφ)λ

a0 cosφ
− (σχ )nσ = (impulses)n. (LELE3) (B.5.3)

[δT n]

−θ tn −
(un−1θn)λ
a0 cosφ

− (vn−1θn cosφ)φ
a0 cosφ

+ RdF
n−1χn

= − RdFn−1ln−1
λ µn−1

a0 cosφ
− RdFn−1ln−1

φ νn−1

a0
− RdFn−1Dn−1θn−1

cpdBn−1

+ (σ̇ n−1θn−1
)
σ
+ (impulses)n. (LELE4) (B.5.4)

[δσ̇ n]

T n−1
σ θn − Rd

Cpd

(
T n−1
v θn

Bn−1

)
σ

− Rd

Cpd

T n−1
v θn

Bn−1σ
− ωn

σ

= −un−1
σ µn−1 − vn−1

σ νn−1 − qn−1
σ κn−1 + (impulses)n. (LELE5) (B.5.5)

[δln]

−ξ nt −
Rd
〈(
T n−1
v µn

)
λ

〉
a0 cosφ

−
Rd
〈(
T n−1
v νn cosφ

)
φ

〉
a0 cosφ

− (〈un−1〉ξ n)λ
a0 cosφ

− (〈vn−1〉ξ n cosφ)φ
a0 cosφ

− 〈(u′n−1ωn)λ〉
a0 cosφ

− 〈(v′n−1ωn cosφ)φ〉
a0 cosφ

= (impulses)n. (LELE6) (B.5.6)

[δqn]

−κnt −
(un−1κn)λ
a0 cosφ

− (vn−1κn cosφ)φ
a0 cosφ

− (σ̇ n−1κn)σ
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= − RdT n−1Fn−1
q ln−1

λ µn−1

a0 cosφ
− RdT n−1Fn−1

q ln−1
φ νn−1

a0
− RdT n−1Fn−1

q Dn−1θn−1

CpdBn−1

+ RdT n−1
v Dn−1θn−1(δ − 1)

CpdB2
− RdF

n−1
q χn−1 + (impulses)n. (LELE7) (B.5.7)

B.6 Representer equations

[u]

rnut +
un−1rnuλ
a0 cosφ

+
vn−1rnuφ
a0

+ σ̇ n−1rnuσ −
(
f + un−1 tanφ

a0

)
rnv

+ 1

a0 cosφ

(
rn#λ

+ RdT
n−1
v rnlλ

) = (Qu • anu
)
u
. (RE1) (B.6.1)

[v]

rnvt +
un−1rnvλ
a0 cosφ

+
vn−1rnvφ
a0

+ σ̇ n−1rnvσ +
(
f + un−1 tanφ

a0

)
rnu

+ 1

a0

(
rn#φ

+ RdT
n−1
v rnlφ

) = (Qu • anu
)
v
. (RE2) (B.6.2)

[T ]

rnTt +
un−1rnTλ
a0 cosφ

+
vn−1rnTφ
a0

+ rnσ̇T
n−1
σ + RdT n−1

v

CpdBn−1

[ rnuλ
a0 cosφ

+
(
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B.7 Representer adjoint equations
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jet, xviii
jet stream, 145



230 Subject index

Kalman filter, 156
as linear regression, 98
augmented, 104
continuity of, 97
control-theory, 94
ensemble, xvi, 169
equilibrium of error covariance, 102
estimate, 101
evolution time scale, 103
gain, 101–103
jumps in P , 97
pathology (strange asymptotics), xx, 102, 103
posterior error covariance, 101
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kernel, measurement, K , xiv, 46, 140

La Niña, 158
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Lagrangian derivative, 79
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dynamical, 74, 76
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statistical, 74
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multiplier, Lagrange, 14, 25, 41
multivariate state, 71
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National Center for Atmospheric Research
(NCAR), 133
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measurement, 21, 45
nonlinear, 170
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Primitive Equations, 6, 103, 121, 143, 214
Primitive Equations, reduced-gravity, 79
prior

covariance of error, 51
data error covariance, 72
data misfit, 22, 49, 70, 82
data misfit, scaled, 43
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probability, xix
probability, transition, 112, 113
probability distribution function (pdf), 38, 105

conditional, 109
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Gaussian (normal), 114
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normalized, 112
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pseudo-random
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input, xvi
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sample, 64, 169
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quantum mechanics, 12
quasigeostrophy, 13, 114, 116, 122, 124, 138,

148, 173
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radiative flux, 46
random

error, 37
forcing, 67
input, 42
measurement error, 42
variable, 37, 41, 43, 109
chi-squared, 43
Gaussian, 43
observation increases variance, 110

randomization, second, 41, 146
rank, 73

realizability, physical, 26, 64, 166
reciprocal-shooting tomography, 45
reference flow, tangent linearization, 77
regression

analysis, 6
line, 2
linear, 1, 98
parameters, 2
polynomial, 5
quadratic, 3

regular estimate, 29
reliability, indicator, 67
repeat-track orbit, 134
representer, xvii, 18, 19, 21, 22, 29, 34–36, 53, 131

adjoint, 26, 29, 135
adjoint equation, 19, 69, 204
anisotropy, 153
at different tidal frequencies, 135
coarse grid, 63
cross-over difference, 134
family of, xx
fine grid, 63
finite basis, 74
point measurements, 37, 47
residual vector, 70
rotated, 48
vector field, 60

representer algorithm, 59, 67, 103
indirect, 61, 63, 72, 78, 135, 146
iterated indirect, 6, 146, 160, 169, 183, 216–220
open loop, 59, 60, 63

representer coefficient, 20, 21, 36, 63, 69, 148
rotated, 49
samples of, 73

representer equation, 20, 69, 72, 204
representer matrix, 21, 24, 48, 60, 63

approximation, 62
eigenvalues, 48–51, 153
eigenvectors, 48–51, 154
first K columns, 63, 64
Monte Carlo estimate, 163
m th column of, 61
rank K estimate, 64
spurious asymmetric part, 93
symmetry of, 64, 148

representing property, 34, 35
reprocessed cloud track wind observations

(RCTWO), 151
reproducing kernel (rk), 23, 37, 38, 40, 47, 48, 69
residual, xv, 32

bogus, 94
boundary, 130
candidate for, 158
dynamical, 130, 136
minimal, 6
product, 27
weighted, 70

resolution, loss of, 63
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resolvable field, 144
Richardson number, 80
Rhodomonas baltica, 1
Rossby number, 123, 142

sample
average, 71
covariance, 64
distribution, 43
estimate, 73
independent, 105
number of, 72, 160
statistics, 183
variance, 106, 108

sample mean, spurious, 72
satellite

altimetry, 128
image, 151
orbit, 24, 128

scale
analysis, 160
coarse, 145
decorrelation length, 145
decorrelation time, 145
estimate, 145
length, 54, 142
natural, xvii
planetary, 167
shallow, 132
synoptic, 143, 148, 167
velocity, 132, 142

sea level, positivity of, 45, 80
Sea Surface Temperature (SST), 5, 156–165
search without gradient information, 85, 115
second randomization, 41, 146
separation of variables, 173, 178
sequential estimation, 94
sigma coordinate, 151, 212
simulated annealing, xviii, 85, 115, 116, 182, 183
singular value decomposition, 5
singularity, 26, 29, 55
skill of forecast, 149, 167
slack constraint, 163
smoothing interval, 98, 103
smoothing norm, 54–56
smoothness, 76
solution

continuous dependence, 173
energy, 174
existence, 173
explicit, 21
indeterminate, 215
overdetermined, 174
uniqueness, 9, 84, 172

Southern Ocean, 179

space
control, xvii, xviii
data, 35
null, xviii
observable, 36
state, xvii, xviii

spline interpolation, Laplacian, xvii
SST, see Sea Surface Temperature
stability, see conditioning
stability, linear, 76
stability criterion, Courant–Friedrich–Lewy, 11
stability of inverse, 49, 50
state variable

augmented, 104
multivariate, 71, 130
thermodynamic, 144
virtual, 93

statistical
bias, 81
inhomogeneity, 41
interpretation, 42, 66, 168
nonstationarity, 41
prediction scheme, 149
simulation, xvi, 74
stationarity, 102

statistically nonlinear model, 82
Stefan’s law, 46
storage, 61, 73, 74, 98
streamfunction, 13, 45, 123, 138, 142
stress, unresolved, 144
stress, wind, 5
strong constraint, 25, 26, 91, 160, 167
Sturm–Liouville problem, 179
subcritical, 176
suboptimality, 74, 93
supercritical, 175, 176
surface

heat flux, 158
stress, 156
temperature, see SST
wind, 5, 156–165

survey articles, xx
sweep, 115
sweep algorithm, 76, 94
switch, 116, 157
synoptic analysis, xvi

tangent linearization, 74, 77, 80
temperature

gradient, 80
sea surface, see SST
stratospheric, 46
virtual, 94

test
independent, 163
model, 6
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significance, xv, 3, 43, 74, 163
statistic, 5, 25

theorem
central limit, 43
convergence, 142
divergence, 119
embedding, 55
Riesz representation, 33, 46

thermocline, 6, 156–165
thermodynamics, 5, 6, 80, 148, 150, 177
Three Dimensional Variational Assimilation

(3DVAR), 166
tide, 124–138
time

chart, 22, 60
decorrelation scale, 104
index, 114
line, 149

time scale, 165
evolution, 167
synoptic, 148

time series analysis, xviii
time window, 166
time-independent inverse theory, xx
time-stepping, 65, 94
tomography, reciprocal-shooting, 45
TOPEX/POSEIDON, 124
topology, 155
tracking, radar, 142
tracking, sonar, 142
transition probability, 112, 113
trend, spatial or climatological, 41
trivial solution, 9, 52, 181
Tropical Atmosphere–Ocean (TAO) array, 156–165
Tropical Cyclone 90, experiment, 148
tropical cyclones, xx, 148
Tropical Ocean–Global Atmosphere (TOGA)

experiment, 156–165
truncation error, 132, 133
turbulence

mixing, 156
problem, 145
weakly homogeneous, 146

unique limit, 142
unique solution, 8, 9, 17, 84, 173–177
United Kingdom Meteorological Office, 166
UNIX, xviii, 195
unobservable, 33, 50, 51
uphill search, 116
UTC (Coordinated Universal Time), 152

variance
explained, 161
sample, 106
spatial, 65

variance-ratio test, 3
variational adjoint method, “THE”, 90
variations, calculus of, xvi, 15, 52, 56, 83, 85, 134
velocity

component, 45
irrotational, 144
potential, 143
scale, 134, 142
solenoidal, 144, 148

virtual state variable, 93
vorticity, 114, 123, 138

equation, 123, 124

wave
internal, 13, 143
Rossby, 128, 156
topographic, 136
tropical instability, 160

waveguide, equatorial, 158
wave-rider buoy, 45
wavenumber, 131
weak constraint, 6, 25, 26
weight

absolute value, 24
limiting choice, 23
nondiagonal, 29, 53, 60, 181
operator, 51
positive, 52
relative, 24

weighted sum of squared errors (WSSE), 3
well-posed problem, 7, 8, 80, 172
work sheet, 61
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