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Preface

ISPP2009, the 13th International Symposium on Phototrophic Prokaryotes, was
held in Montreal, Canada, from August 9 to August 14. This was only the second
time that the ISPP series was in North America. ISPP2009 was well attended with
about 280 registered participants from over 30 countries. A stimulating and infor-
mative program showcased the recent developments in this ever-evolving field. This
is always one of my favourite conference series to attend because not only does it
inform my specific research passions, it broadly educates me in ways that improve
my teaching and increase my breadth of understanding in a variety of outside areas.
Indeed, the ISPP series brings together a broad spectrum of interests, techniques,
and disciplines. Both established researchers and newcomers to this field gave oral
presentations in a large number (80) of plenary and parallel symposia sessions which
proved to have active audience participation and lively discussions. A large number
of excellent poster presentations supplemented the oral program. I think that the
high quality of the scientific presentations, as well as the enjoyable social events,
was widely appreciated. Things ran very smoothly, from the original registration to
the closing ceremony, thanks to Isabel Stengler and her team at IS Event Solutions.

This volume is based on ISPP2009 and presents selected invited works, reviews,
and research articles covering the spectrum of the diverse subject matter covered by
this symposium series. Here the authors have greatly expanded on what was pre-
sented in Montreal to ensure complete coverage of each topic, covering the gamut
from ecology, physiology, proteins and genomics, signal transduction to applied
aspects. These articles not only are timely, presenting up-to-date published and
unpublished results, but, since they are extensively referenced, should serve as valu-
able source material for some time to come. I hope that you enjoy and find this
volume useful, covering the range of topics in which these organisms play an impor-
tant role, one that is ever relevant to our understanding of the natural world around
us, the biogeochemical cycles that shape our environment, and the impact of the
microbial world on climate change.

Best wishes, I hope to see you at a future ISPP conference which will without a
doubt be as interesting, exciting, and illuminating as ISPP2009.

Montréal, QC, Canada Patrick C. Hallenbeck
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Part I
Diversity and Ecology



Chapter 1
A New Extreme Environment for Aerobic
Anoxygenic Phototrophs: Biological Soil Crusts

Julius T. Csotonyi, Jolantha Swiderski, Erko Stackebrandt,
and Vladimir Yurkov

Abstract Biological soil crusts improve the health of arid or semiarid soils by
enhancing water content, nutrient relations and mechanical stability, facilitated
largely by phototrophic microorganisms. Until recently, only oxygenic phototrophs
were known from soil crusts. A recent study has demonstrated the presence of aero-
bic representatives of Earth’s second major photosynthetic clade, the evolutionarily
basal anoxygenic phototrophs. Three Canadian soil crust communities yielded pink
and orange aerobic anoxygenic phototrophic strains possessing the light-harvesting
pigment bacteriochlorophyll a. At relative abundances of 0.1–5.9% of the cultivable
bacterial community, they were comparable in density to aerobic phototrophs in
other documented habitats. 16S rDNA sequence analysis revealed the isolates to be
related to Methylobacterium, Belnapia, Muricoccus and Sphingomonas. This result
adds a new type of harsh habitat, dry soil environments, to the environments known
to support aerobic anoxygenic phototrophs.

1.1 Introduction

Arid soils worldwide are threatened by erosion because their hydrologically stressed
environment makes soil-binding plant roots relatively scarcer than in mesic habitats,
a problem compounded by mechanical disturbances such as trampling by live-
stock. Global climate change may expand such fragile habitats in North America
(Schlesinger et al. 1990; Belnap et al. 2004), triggering ancillary problems such as
contamination of groundwater by erosion-mobilized nitrate from subsurface reser-
voirs (Walvoord et al. 2003). Biological soil crusts (BSC) are drought-tolerant
communities composed primarily of microorganisms that form a cohesive, erosion-
resistant organic veneer on the surface of arid soils (Belnap et al. 2001). They
colonize large tracts of otherwise bare ground between vascular plants (Belnap et al.
2001; Reddy and Garcia-Pichel 2007) (Fig. 1.1), making the importance of their pro-
tective role obvious. Microorganisms, especially phototrophs, are the primary BSC

V. Yurkov (B)
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
e-mail: vyurkov@cc.umanitoba.ca
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4 J.T. Csotonyi et al.

Fig. 1.1 Biological soil crust environment and characteristics of isolated phototrophs. (a) Source
of samples S1, S2, S3: sand dune near Brandon, Manitoba. (b) Profile of BSC (sample R4). (c) and
(d) Phase-contrast micrographs of ovoid to short rod-shaped strain JO5 and pleomorphic strain
P194, respectively. Scale bars: 10 μm. (e) In vivo absorbance spectra of strains JO5 (red trace)
and P194 (blue trace), highlighting BChl a incorporated into LH complexes I absorbing at 873 and
870 nm, respectively. Peaks at 400–550 nm and the small 800 nm peak are due to carotenoids and
to BChl a integrated into the reaction centre, respectively

components that enhance soil moisture, nutrient content, structural development
(via, e.g., adhesive polysaccharide production) and biogeochemical cycling of ele-
ments (Belnap et al. 2001). Consequently, understanding BSC microbial distribution
and function will aid in the development of strategies to preserve soils that are
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crucial to agriculture and ranching. Several elegant and groundbreaking reports on
BSC microbiological communities have been published recently (Nagy et al. 2005;
Gundlapally and Garcia-Pichel 2006). Their application of genotypic analysis indi-
cates that BSC contain a large reservoir of unfamiliar microbial taxa distantly related
to known species (Nagy et al. 2005; Gundlapally and Garcia-Pichel 2006). However,
these studies have only scratched the surface of a vast field of knowledge, and the
subject remains poorly understood.

Phototrophic microorganisms are crucial to carbon cycling in BSC, because some
transduce light to chemical energy and fix inorganic carbon, whereas others can
accelerate its conversion to different forms. Oxygen-producing cyanobacteria are
the most visible and hence best studied phototrophs in many crusts (Belnap et al.
2001; Nagy et al. 2005). By contrast, Earth’s second major branch of photosyn-
thetic organisms, the evolutionarily basal anoxygenic phototrophs, which generate
no oxygen as a byproduct of photosynthesis, were unreported from BSC prior to
the work of Csotonyi et al. (2010). Usually requiring anoxic conditions to harvest
light, these “living fossils” are relicts of a 2 billion-year-old chemically reduc-
ing Earth. Therefore, most species are not expected to thrive in the aerobic BSC
habitat. The obligately aerobic anoxygenic phototrophs (AAP), a recently discov-
ered subgroup (Yurkov and Csotonyi 2003; Yurkov 2006; Yurkov and Csotonyi
2009), are exceptional in this regard, for they are well suited to the oxygen- and
light-rich BSC. Although the AAP are primarily chemoheterotrophic, they nev-
ertheless produce a functional photosynthetic reaction centre (RC) and one or
more peripheral light-harvesting (LH) complexes with which they can amend het-
erotrophic energy generation by up to 20% (Yurkov and Van Gemerden 1993;
Kolber et al. 2001). Five determinative traits distinguish AAP from classical anoxy-
genic phototrophs: (1) a requirement of O2 for photosynthesis, freeing them from
the need for restrictive anaerobic illuminated habitats; (2) the inhibition of bacte-
riochlorophyll (BChl) synthesis by light, which minimizes the formation of toxic
triplet BChl in illuminated aerobic environments; (3) a low number of photo-
synthetic units (PSU) per cell; but (4) a great abundance of carotenoids; and
(5) the absence of the Calvin cycle and inability to subsist on inorganic car-
bon (Yurkov and Csotonyi 2003; Rathgeber et al. 2004; Yurkov and Csotonyi
2009).

Unknown prior to 30 years ago (Shiba et al. 1979), research increasingly demon-
strates the global importance of AAP (Yurkov and Csotonyi 2009). They are
abundant, comprising up to about 20% of the photic marine microbial commu-
nity (Yurkov and Csotonyi 2009), and the distribution of AAP even reaches into
the deep ocean (Rathgeber et al. 2008). Their biogeochemical potential is also
high: because AAP can rely on sunlight for 15–20% of their cellular energy,
they accelerate rates of nutrient cycling over that of strict heterotrophs (Yurkov
and Van Gemerden 1993; Kolber et al. 2001). Marine members of the abundant
Roseobacter clade may even play a part in global climate change: by participating
in the regulation of volatile cloud-seeding sulphur compounds (Wagner-Döbler and
Biebl 2006), they may contribute to changes in Earth’s albedo (Yurkov and Csotonyi
2009).
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Biological soil crusts may be considered as a type of extreme environment, espe-
cially for microorganisms, which cannot easily escape physically from extreme soil
microenvironments. The unsheltered exposure, and low heat and water capacity,
of sandy BSC microhabitats results in a soil–atmosphere interface that intermit-
tently reaches high temperature (alternating with extremely low winter temperature
at high latitude), high ultraviolet radiation exposure, considerable desiccation by
both sun and wind and oxidizing O2-rich conditions. However, AAP are expected
to survive such conditions because most species are exceptionally extremotolerant
(Yurkov and Csotonyi 2003, 2009), constituting 30–36% of cultivable bacteria in
some extreme environments (Yurkov and Beatty 1998b; Csotonyi et al. 2008). The
first non-marine thermotolerant species were isolated from Russian thermal springs
in 1990 (Yurkov and Beatty 1998a). Hypersaline environments and acidic coal mine
tailings have also yielded numerous halotolerant and acidotolerant AAP (Yurkov
and Csotonyi 2003). Perhaps the presence of an alternative mode of energy gen-
eration, namely phototrophy, has driven many AAP to evolve extremotolerance or
extremophily as a selective advantage in competition with other species, for it would
enhance their fitness when extreme conditions most severely compromise the vigour
of cohabitants. Halotolerance is especially frequently observed in AAP, and a host
of species inhabit meromictic lakes (Yurkova et al. 2002; Karr et al. 2003), salt
flats (Yurkov and Csotonyi 2003) and hypersaline springs (Csotonyi et al. 2008).
Yurkov and Csotonyi (2003) comprehensively reviewed the ubiquity of AAP in
extreme environments. However, aside from enumerating and characterizing novel
AAP, microbial ecologists have barely scratched the surface of the biology of AAP
in extreme environments, and new types of environments are constantly found to
yield novel AAP. For example, cultivation of anoxygenic phototrophs from hydro-
logically stressful environments implies possession of survival strategies against
drought, an important trait not demonstrated for AAP prior to their isolation from
BSC (Csotonyi and Yurkov unpublished).

As microbiologists converge on a better understanding of marine AAP ecology,
attention is turning to environments in which AAP are more likely to interact with
humans: soil, freshwater lakes and rivers. Interest is both academic and conserva-
tionist. First, the only known betaproteobacterial AAP representative (Roseateles) is
riverine, and two AAP genera (Craurococcus and Paracraurococcus) were isolated
from mesic urban soils, implying a large store of diversity (Yurkov and Csotonyi
2003). Second, enumeration of AAP in ecologically sensitive habitats would be
a valuable contribution to catalogues of biodiversity in these regions of increas-
ing human-induced environmental damage. An unsuccessful attempt to detect their
diagnostic BChl pigment via HPLC suggested the absence of anoxygenic pho-
totrophs from Sonoran BSC samples (Nagy et al. 2005), but this result may be
attributed to characteristically low aerobic pigment production of AAP (Yurkov
and Csotonyi 2009). Until recently, no other reports on assays of BSC habitats for
anoxygenic phototrophs have been published.

These facts spurred a cultivation-based spectrophotometrically intensive search
for anoxygenic phototrophs in three Canadian sites harbouring BSC communi-
ties. The basis of the research was the detection of absorbance of light in the
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800–1,000 nm region in vivo and 768 nm region in acetone/methanol [7:2] extract,
followed by 16S rRNA gene sequencing of BChl a-positive isolates. A sand
dune (Fig. 1.1a) covered intermittently by drought-tolerant taxa of cyanobacteria
(Nostoc), mosses (Tortula) and lichens was sampled near Brandon, Manitoba. Sandy
soil near Marchand, Manitoba, capped by either a thin veneer of microorganisms
at an early successional stage following logging or a well-developed BSC com-
munity about 0.5 cm thick, dominated by lichens (mainly Cladonia) and mosses
(Fig. 1.1b), formed a second set of samples. A third set came from an established
sand dune inhabited by cyanobacteria (Nostoc), mosses (Ceratodon) and lichens
near the shores of Jasper Lake, Alberta.

1.2 Enumeration of AAP in Biological Soil Crusts

AAP were initially enumerated by culturing on rich organic media (Yurkov and
Beatty 1998a). This technique effectively assesses the abundance of a physiological
subset of the community and offers the benefit that all enumerated organisms can
subsequently be examined in detail phenotypically and phylogenetically. However,
the miniscule proportion of microorganisms that is amenable to cultivation spurs
a growing interest in census techniques that circumvent the need to culture organ-
isms. Regrettably, most culture-independent methods possess significant shortfalls,
and measuring the abundance of AAP in nature is no trivial task. Based on the
strategy employed, AAP candidates may be confused with either purple nonsul-
phur bacteria or closely related non-phototrophs (Yurkov and Csotonyi 2009).
Thus far, three preferable techniques exist: (1) infrared fast repetition rate fluo-
rometry, which unfortunately requires state-of-the-art instruments, but can measure
and distinguish between aerobic and anaerobic photosynthetic electron transport;
(2) quantitative polymerase chain reaction of pufLM (and of genes that can be
used to discriminate between aerobic and anaerobic photosynthesis); and (3) cul-
tivation, followed by 16S rDNA genetic analysis of cultured organisms. The
recent Canadian BSC study successfully utilized the third strategy (Csotonyi et al.
2010).

Nine out of 12 samples (Table 1.1) yielded many carotenoid-rich bright pink
and orange strains that possessed BChl a absorbing light at 870 or 873 nm in vivo
(Fig. 1.1e) and at 770 nm in an acetone/methanol (7:2 v/v) extract. BChl a was
found in strains from all three locations sampled, at rates of 13.9% (Marchand
locality), 13.6% (Brandon sites) and 4.3% (Alberta location) of pigmented strains.
Anoxygenic phototrophs constituted 0.1–5.9% of the total cultivable bacterial com-
munity (Table 1.1), comparable to the range of relative AAP abundance determined
by several methods for other systems (Yurkov and Csotonyi 2009). Even so, the den-
sities of AAP measured in the Marchand and Brandon sites (∼ 105–107 CFU/cm3;
Table 1.1) are likely only lower limits of annual population sizes, since sampling
was performed during a dry period. Indeed, isolation of sand dune strains O47, P85
and P110 from sample dilutions of 108–1010 implies heterogeneous distribution and
possibly extraordinarily high densities.
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Table 1.1 Abundance of anoxygenic phototrophs in BSC

Anoxygenic phototrophs

Samplea
Medium of
isolation

CFU/cm3 of
sample

Percent of all
colonies Strainsb

C1 B 2.00 × 106 0.47 P4, P8
C2 B 3.57 × 106 2.28 P12, P13, P16, P18,

P194
R1 B 1.00 × 107 1.03 P198
R3 A 8.33 × 104 0.16 O11
R4 B 1.11 × 106 5.88 P233
S1 B 4.76 × 105 0.0034 P40

B 4.76 × 107 0.34 P73
C 4.76 × 107 4 P67

S2 B 3.47 × 109 0.74 O47
B 6.94 × 1011 1.65 P110, P112
B 3.47 × 106 0.0056 P44
A 3.47 × 1010 1.69 P85

S3 B 6.25 × 105 0.66 P132
N A 2.50 × 106 0.63 JO1

A 2.50 × 105 0.12 JO5

aC1–C2 and R1–R4, Marchand, Manitoba; S1–S3, Brandon, Manitoba; N, Jasper Lake, Alberta
bStrain name font face denotes proteobacterial subclass of phylogenetic affiliation: bold, alpha-1;
underscored, alpha-2; italic, alpha-4; plain, not sequenced

1.3 Phylogenetic Analysis of Biological Soil Crust AAP

16S rDNA is currently actively used for identification of purified species and nat-
ural samples. This genetic standard is therefore a worthwhile basis on which to
determine the relatedness of newly found organisms to characterized species. For
natural environments, phylogenetic analysis provides us with an appreciation of the
diversity and approximate number of novel species expected to be described.

Therefore, 16S rDNA analysis was chosen to analyse the collection of novel
phototrophic BSC strains from Alberta and Manitoba (Csotonyi et al. 2010).
Phylogenetic 16S rDNA sequencing of 16 representative strains (Table 1.1, Fig. 1.2)
provided the first insight into the genotypic composition of anoxygenic pho-
totrophic BSC communities. Interestingly, the nearest relative of each strain was
non-phototrophic. This reflects the frequently encountered wide phylogenetic dis-
tribution of AAP (Yurkov and Csotonyi 2009). The aerobic phototrophic bacteria
are closely allied with the purple nonsulphur bacteria, according to 5S and 16S
rDNA analyses, DNA–DNA hybridization and 16S–23S internal-transcribed spacer
sequence analysis (Yurkov and Csotonyi 2003). Also similar to purple nonsulphur
bacteria, the AAP are not a homogeneous group, but instead are phylogenetically
interspersed with phototrophic and heterotrophic proteobacteria (Yurkov and Beatty
1998a; Yurkov and Csotonyi 2009).
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Fig. 1.2 Neighbour-joining phylogenetic tree showing relatedness of 16 BSC isolates based on
16S rDNA sequences more than 1,400 nucleotides long. The tree is rooted in Agrobacterium tume-
fasciens (AM181758). Accession numbers follow strain names. Bootstrap values are indicated at
branch points

About half of the strains (P4, P8, P13, P18, P44, P110, P132, P194,
P233) were pleomorphic anoxygenic phototrophs related to species of the order
Rhizobiales, specifically the genus Methylobacterium (98.8–99.5% sequence sim-
ilarity) (Fig. 1.2). The isolation of strains P44 and P110 from moss-rich BSC is
consistent with species of the Rhizobiales often associating closely with plants
(Fleischman and Kramer 1998). Five coccoidal alpha-1-proteobacterial strains
(JO1, O47, P12, P40, P73) were recovered from all three locations, suggesting
a widespread group of BSC anoxygenic phototrophs. Three of these (JO1, P40,
P73) originated from Nostoc-dominated crusts, implying a cyanobacterial associ-
ation (Table 1.1). Strain O47 was marginally related (94.4% similarity; Fig. 1.2)
to the non-phototrophic Muricoccus roseus (Kämpfer et al. 2003), which sug-
gests a new genus affiliation. The remaining strains were most closely affiliated
(97.4–98.8% sequence similarity; Fig. 1.2) with Belnapia moabensis, the first het-
erotrophic bacterium described from BSC. This non-phototroph is related to the
AAP Craurococcus and Paracraurococcus, described from mesic soils (Reddy
et al. 2006). The Marchand and Jasper Lake sites also yielded rod-shaped alpha-
4-proteobacteria (JO5, O11) related to non-phototrophic species of Sphingomonas
(96.6–98.5% similarity) (Fig. 1.2).

Although no phototrophs were recovered from Colorado Plateau BSC, 4.8%
of all PCR-amplified sequences from DGGE fingerprints of those samples were
alphaproteobacterial (Gundlapally and Garcia-Pichel 2006). The Canadian pho-
totrophic isolates were all alphaproteobacterial. Of course, further investigation and
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more extensive sampling will be required to determine whether BSC phototrophs
are restricted to the Alphaproteobacteria or if they are members of other classes as
well.

1.4 Photosynthetic Pigments of Newly Isolated AAP

Thus far, all AAP are known to produce BChl a, but not BChl b, found in some
purple nonsulphur bacteria. All known AAP incorporate BChl into a reaction cen-
tre (RC) (absorbing light primarily of 800 nm) and at least one light-harvesting
(LH) complex, typically absorbing at about 870 nm, although some interesting
exceptions exist, as reviewed by Yurkov and Csotonyi (2009). Some AAP also pro-
duce a second LH complex, such as the B832-type complex of Erythromicrobium
and Porphyrobacter species (named for its peak absorbance at 832 nm; Yurkov
and Csotonyi 2009) or the B806 found in Roseobacter (Shimada et al. 1985) and
Roseicyclus (Rathgeber et al. 2005).

The photosynthetic pigment analysis of BSC AAP did not produce any surprises
or novelties and confirmed that they all produce BChl a. Absorbance of light by
cells at 870 and 873 nm implied incorporation of BChl a into a single LH complex
I, whereas a peak at 800 nm indicated the presence of a functional photosynthetic
RC (Fig. 1.1e). Typically, AAP synthesize about 0.05–2 nmol of BChl per mg dry
weight (Yurkov and Csotonyi 2003). All isolated BSC strains synthesized BChl a
in quantities at the low end of this range. Strains JO1, JO5, O47, P40, P110 and
P194 produced only 0.07, 0.19, 0.07, 0.06, 0.16 and 0.19 nmol/mg dry weight,
respectively.

Low BChl a levels in pure cultures might underestimate the pigment’s rel-
ative importance in nature. Biosynthesis of BChl in AAP is sometimes finely
tuned to physico-chemical environmental cues that may be lacking in the labora-
tory (Biebl and Wagner-Döbler 2006; Yurkov and Csotonyi 2009). For example,
whereas marine Erythrobacter relative NAP1 grows optimally at 32.5◦C, BChl pro-
duction is maximal at 22.5◦C and halted at temperatures above 30◦C (Koblížek
et al. 2003). Pigment expression in Thalassobacter stenotrophicus, Hoeflea pho-
totrophica and Citromicrobium bathyomarinum is salt sensitive, despite the marine
habitat of each species; T. stenotrophicus is unpigmented at 7% salinity (Macián
et al. 2005), H. phototrophicum produces most BChl at 0.6% salinity but no BChl
at 3.5% salinity (Biebl et al. 2006) and C. bathyomarinum generates the most BChl
in the absence of NaCl (Rathgeber et al. 2004). Studies have demonstrated that
AAP tend to upregulate pigment synthesis under suboptimal nutrient conditions,
implying that photosynthesis proves especially advantageous under oligotrophic
conditions (Yurkov and Csotonyi 2009). Sometimes, other stressful conditions can
enhance BChl production as well. For instance, thermophilic R. flocculens synthe-
sizes BChl at 30◦C, but not at its preferred growth temperature of 50◦C (Alarico
et al. 2002). Indeed, AAP may produce much more BChl under very specific con-
ditions of native habitats, and competitive superiority may depend on a very small
energetic advantage.
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Low BChl content in actively growing cultures may also be explained by alter-
native roles of BChl in AAP, in addition to classic photosynthetic light-assimilating
function. For instance, light-induced cyclic electron flow in Roseateles depolymer-
ans was hypothesized to help maintain the electrochemical proton gradient of the
plasma membrane during starvation conditions rather than contribute to biomass
production (Suyama et al. 2002). BChl may thus contribute to survival under stress-
ful conditions. Similar strategies could help explain the peculiar abundance of AAP
in extreme or harsh environments (Yurkov and Csotonyi 2009), including BSC.

In contrast to their low cellular levels of BChl, BSC anoxygenic phototrophs
produced copious pink and orange carotenoids, absorbing in the 400–550 nm range.
Profuse synthesis of carotenoids is a determinative trait of AAP, conferring on them
a diverse range of intense colours, including red, brown, orange, yellow, pink, purple
and intermediates (Yurkov 2006; Yurkov and Csotonyi 2009). Interestingly, con-
trary to the light-harvesting function of carotenoids in anaerobic purple phototrophs,
the majority of AAP carotenoids are not incorporated into an energy transduction
pathway, but are distributed evenly throughout the cytoplasmic membrane, cyto-
plasm and cell wall (Yurkov and Beatty 1998a; Koblížek et al. 2003). Although
the primary purpose of this photosynthetically disengaged pool of carotenoids is
uncertain, a leading suggestion is preventative or remediative amelioration of pho-
totoxicity (Fraser et al. 2001; Beatty 2002), which is an especially great risk in the
ultraviolet-rich aerobic environment of BSC.

1.5 Conclusions and Prospective Research

Oxygenic phototrophs such as cyanobacteria, algae and mosses have been well
known from BSC since this type of biological community was studied from a
soil management perspective nearly a century ago. Although the second of the two
branches of phototrophs on Earth, anoxygenic phototrophs, has been known to sci-
ence for a relatively long time, their occurrence in BSC has only now been demon-
strated (Csotonyi et al. 2010). The presence of APP implies a higher efficiency of
light harvesting by soil crust organisms than previously realized. Their utilization of
the near-IR radiation not used by oxygenic phototrophs facilitates light-accelerated
turnover of soil organic carbon content by these unusual heterotrophs.

An area requiring further study is the enhancement of soil physical structure
by anoxygenic phototrophs, which may be important because of the aggregative
growth habit of some species. Several strains of AAP from meromictic lakes and salt
springs produce holdfast structures or copious extracellular adhesive materials that
facilitate intense flocculation (Yurkov and Csotonyi 2009). Production of adhesive
substances for anchorage would also be advantageous for survival on loose windy
sand dunes as it would increase soil tensile strength and facilitate establishment
of BSC, promoting soil structural development following mechanical disturbance.
Erosion-reducing capacity is especially important because it would circumvent the
loss of a recently discovered large subsurface nitrate pool that exists beneath arid
soils, and its consequent contamination of groundwater (Walvoord et al. 2003).
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AAP species are also particularly resistant to numerous toxic metal oxides and
are therefore potentially key players in the biogeochemical cycling of these ele-
ments (Yurkov and Csotonyi 2003, 2009). AAP can resist and chemically reduce
very high concentrations of metal or metalloid oxyanions such as tellurite, selen-
ite, vanadate and arsenate (Yurkov and Csotonyi 2003), even when their immediate
habitat is known to lack significant concentrations of these elements (Csotonyi et al.
2008). For example, they can reduce tellurite to elemental Te at concentrations up
to 2,700 μg/ml (Yurkov et al. 1996). On soils contaminated by tailings from metal
(e.g. gold) mines, soil crusts may be critical to the structural integrity of soils that
are relatively depleted in vascular plants. The AAP component in BSC may there-
fore fill an important role in detoxifying hazardous pollutant elements mobilized
through soils by erosion or evaporation.

Yet another burgeoning industrial application of AAP from BSC is the environ-
mentally sustainable manufacture of biodegradable plastics, the subject of much on-
going research (Nath et al. 2008). The pleomorphic cells of pink Methylobacterium
relatives from Canadian BSC possessed very large quantities of intracellular poly-
hydroxyalkanoate inclusions (Fig. 1.1d), the raw materials for bioplastic production
(Nath et al. 2008).

Biogeographically, AAP are very widely distributed and have been found in
many types of environments, from ocean depths to high-altitude lakes, saline springs
and acidic mine drainage (Csotonyi et al. 2008; Jiang et al. 2009; Yurkov and
Csotonyi 2009). Therefore, it will also be interesting to determine by cultivation and
genotypic studies whether the presence of anoxygenic phototrophs is a cosmopoli-
tan feature of BSC or whether they are characteristic only of high-latitude locations
such as the Canadian sites from 50 to 53◦N. The frequently demonstrated extremo-
tolerance of AAP suggests that at least this particular component of the anoxygenic
BSC community may increase in proportion with decreasing latitude and escalating
physical stress. The role and distribution of anoxygenic phototrophs such as AAP
in the pivotally important BSC biological communities is certain to be the centre of
extensive research in the near future.
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Chapter 2
The Phototrophic Consortium
“Chlorochromatium aggregatum” – A Model
for Bacterial Heterologous Multicellularity

Jörg Overmann

Abstract Phototrophic consortia currently represent the most highly developed
interspecific association between prokaryotes and consist of green sulfur bacterial
epibionts which surround a central, motile, chemotrophic bacterium. Several inde-
pendent experimental findings indicate that a rapid signal transfer occurs between
the epibionts and the central bacterium. First, the cell division of the partner
bacteria occurs in a highly coordinated fashion. Second, consortia accumulate sco-
tophobotactically in the light, whereby the central bacterium confers motility to the
consortium and the epibionts act as light sensors. Third, the organic carbon uptake
of the central bacterium seems to be controlled by the epibiont. A decade ago, a
laboratory culture of the phototrophic consortium “Chlorochromatium aggregatum”
could be established and maintained. Using “C. aggregatum,” recent genomic, tran-
scriptomic, and proteomic studies have started to unravel the molecular basis of
prokaryotic heterologous multicellularity in this model system.

2.1 Introduction

Consortia are close associations of bacteria maintaining a permanent cell-to-cell
contact and an organized arrangement of cells (Schink 1991, 2002). To date,
19 different morphological types of bacterial consortia have been recognized,
including, among others, the “corn-cob” bacterial formations in the human oral
cavity, the anaerobic methane-oxidizing consortia in deep sea sediments, and the
consortia of methanogenic archaea surrounding endospore-forming bacteria in the
termite hindgut (Overmann 2001). Monospecific cell–cell interactions have also
been documented between cells of a single Deltaproteobacterium species which
constitute highly structured magnetotactic multicellular prokaryotes (Wenter et al.
2009). Microbial consortia are not only relevant for maintaining biogeochemical
cycles in different environments but also of medical (e.g., in dental plaque;
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Whittaker et al. 1996) and technological significance (e.g., in wastewater treatment;
De Bok et al. 2004). Still, previous research on symbiotic interactions involving
prokaryotes has largely focused on their associations with higher eukaryotes. It is
likely that purely bacterial interactions like those in consortia preceded pathogenic
or symbiotic relationships with eukaryotes. Therefore, a better understanding of
the molecular mechanisms of bacterial heterologous multicellularity will have
implications for the elucidation of the evolution and mechanistic basis of human or
plant pathogens.

Phototrophic consortia are tightly packed cell aggregates formed by colorless
bacterial cells and green sulfur bacteria (Chlorobiaceae). The spatial arrangement
of the cells is not at random but rather always occurs in a highly ordered fashion.
In the natural environment, the most frequently observed morphological type of
phototrophic consortia is barrel shaped and motile (Overmann 2006). This type was
already discovered more than a century ago (Lauterborn 1906) and consists of up
to 69 green sulfur bacterial epibionts which surround a spindle-shaped, motile, and
colorless bacterium in the center (Overmann 2001, 2006). In “Chlorochromatium
aggregatum,” the colorless bacterium is surrounded by green-colored, rod-shaped
bacteria, while brown epibionts are found in “Pelochromatium roseum.” These
smaller consortia are spindle shaped and typically harbor up to 20 epibiont cells.
Significantly larger are “Chlorochromatium magnum,” “Pelochromatium latum,”
and “Pelochromatium roseo-viride,” which display a globular shape and contain
≥40 epibionts. The epibionts of “C. magnum” are green colored, whereas those
in “P. latum” are brown. Interestingly, “P. roseo-viride” contains an inner layer of
brown-colored and an outer layer of green-colored epibionts. The green epibionts
in “Chlorochromatium glebulum” contain gas vesicles. Crescent-shaped green or
brown epibionts are found in “Chlorochromatium lunatum” and “Pelochromatium
selenoides,” respectively. Phototrophic consortia of the type “C. glebulum”
are bent and contain green epibionts. Finally, two non-motile morphotypes of
phototrophic consortia are known which exhibit a different arrangement of the
two associated bacteria. In “Chloroplana vacuolata,” long slender colorless and
gas-vacuolated rods alternate with chains of rod-shaped and gas-vacuolated green
cells, thereby forming a sheath-like structure with up to 400 cells of green bacteria.
“Cylindrogloea bacterifera” consists of green-colored bacteria surrounding a
central chain of colorless bacteria with thick capsules. Among the known consortia,
these phototrophic consortia probably represent the most highly specialized type
of association and have reached the highest degree of mutual interdependence
between non-related bacteria.

Phototrophic consortia have been found in the chemocline of many freshwater
lakes worldwide (Caldwell and Tiedje 1975; Croome and Tyler 1984; Gorlenko
1988; Overmann and Tilzer 1989; Eichler and Pfennig 1990; Gasol et al. 1995;
Glaeser and Overmann 2004). Consortia with brown-colored epibionts are usu-
ally found at greater water depths than their green-colored counterparts. Similar to
free-living green sulfur bacteria, the phototrophic consortia carrying brown-colored
epibionts thus seem to have a selective advantage at greater depths due to their
increased absorption in the blue-green or green portion of the wavelength spectrum
which typically reaches these deeper layers (Overmann et al. 1998). In certain lakes,
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the biomass of phototrophic consortia amounts to two-thirds of the total bacterial
biomass which is present in the chemocline (Gasol et al. 1995), suggesting a sig-
nificance of these associations for the biogeochemical cycles in these ecosystems.
Under certain conditions, up to 88% of all green sulfur bacteria occur as epibionts
in phototrophic consortia rather than as free-living cells (Glaeser and Overmann
2003a). This, together with the large diversity of phototrophic consortia main-
tained in nature, indicates that an association with the colorless bacterium provides
the green sulfur bacterial epibiont with a selective advantage over an independent
lifestyle.

Based on the stable and highly ordered structure, the two non-related bacte-
rial partners in phototrophic consortia must have developed specific recognition
mechanism, specific means of intercellular communication, and a high degree of
mutual physiological interdependence. Elucidating these processes in phototrophic
consortia thus would contribute toward a general understanding of interorganismic
interactions among prokaryotes.

Over 90 years after the discovery of the phototrophic consortia, the first enrich-
ment culture of “C. aggregatum” could be established employing an anoxic mineral
medium supplemented with 2-oxoglutarate (Fröstl and Overmann 1998). This
culture represents the first laboratory model system allowing detailed studies of
the physiological interactions and the molecular basis of bacterial heterologous
multicellularity.

2.2 Identification of the Partner Bacteria in Phototrophic
Consortia

2.2.1 The Epibiont

Based on their color and the presence of chlorosomes as documented by electron
microscopy, it had been concluded that the epibionts of phototrophic consortia
belong to the green sulfur bacteria (Caldwell and Tiedje 1975). In fact, fluores-
cent in situ hybridization with an oligonucleotide probe specific for green sulfur
bacteria (Chlorobiaceae) confirmed the phylogenetic affiliation of the epibiont cells
(Tuschak et al. 1999). However, epibionts of different phototrophic consortia repre-
sent novel and unique 16S rRNA gene sequence types within the radiation of green
sulfur bacteria (Fröstl and Overmann 2000; Glaeser and Overmann 2004).

A subsequent worldwide investigation of the 16S rRNA gene sequences of
epibionts from natural populations of phototrophic consortia in 14 different lakes
revealed that all epibionts in a particular type of phototrophic consortium taken from
the same lake invariably belonged to one single sequence type. Each sequence type
represented a distinct and novel branch within the radiation of green sulfur bacte-
ria (Glaeser and Overmann 2004). Interestingly, morphologically indistinguishable
phototrophic consortia, when collected from different lakes, were found to harbor
genetically different epibionts. As an example, “C. aggregatum” consortia sam-
pled from European and North American lakes contained seven different epibiont
phylotypes. It is to be concluded that the epibionts of phototrophic consortia are
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significantly more diverse than judged just from the consortia morphotypes as rec-
ognized by light microscopy (see Section 2.1). Based on these 16S rRNA gene
sequence analyses, the current estimate amounts to 19 different sequence types of
epibionts.

Phylogenetic analyses also provide some insights into the specificity and evolu-
tion of the bacterial interaction in phototrophic consortia. If phototrophic consortia
would form randomly from bacterial cells which encounter each other just by
chance, morphologically identical consortia from the same lake would be expected
to harbor different sequence types of green sulfur bacteria, and the same sequence
types should also be detectable as free-living cells in the environment. Moreover,
even one single phototrophic consortium could contain different sequence types of
green sulfur bacteria. However, none of the above three predictions could be ver-
ified. Rather, all phototrophic consortia with the same morphology that share the
same habitat contain only a single type of epibiont and none of the 16S rRNA
gene sequences of epibionts could be detected in free-living green sulfur bacte-
ria. In addition, epibiont sequences do not form a monophyletic group within the
Chlorobiaceae (Glaeser and Overmann 2004). These phylogenetic analyses sug-
gest (1) that the epibionts always occur associated with the central bacterium under
natural conditions and (2) that the ability to form symbiotic associations either arose
independently from different ancestors or was present in a common ancestor prior
to the radiation of green sulfur bacteria and the transition to the free-living state in
independent lineages. The possibility of multiple origins of phototrophic consortia
then raises a question as to the mechanism by which different lineages of green
sulfur bacteria could independently acquire the genetic determinants for heterolo-
gous multicellularity (compare Section 2.5).

Recently, one type of epibiont from the phototrophic consortium “C. aggre-
gatum” could be isolated in pure culture using anoxic media supplemented with
dithionite and fermented rumen extract (Vogl et al. 2006). Similar to other green
sulfur bacteria, the isolate Chlorobium chlorochromatii CaD is non-motile, obli-
gately anaerobic, and photolithoautotrophic with sulfide as electron donor in the
free-living state. Exhaustive physiological testing of this strain Chl. chlorochromatii
CaD did not reveal any unusual capabilities as compared to known Chlorobiaceae.
Acetate and peptone are photoassimilated in the presence of sulfide and bicarbonate.
Furthermore, in situ measurements of light-dependent H14CO3

– fixation in a natural
population of phototrophic consortia and determination of the stable carbon isotope
ratios (δ13C) of their bacteriochlorophyll molecules indicated that photoautotrophic
growth of the epibionts also occurs in the associated state, under natural conditions,
and employing the reverse tricarboxylic acid cycle (Glaeser and Overmann 2003a).
The capability of the isolate Chl. chlorochromatii strain CaD to grow in pure culture
indicates that it is not an obligately symbiotic bacterium.

2.2.2 The Central Bacterium

The central bacterium of the barrel-shaped phototrophic consortia typically is a rod-
shaped bacterium with tapered ends that typically exhibits only low phase contrast
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(Overmann et al. 1998). Electron microscopy revealed that the central bacterium is
monopolarly monotrichously flagellated (Glaeser and Overmann 2003b). While the
central bacterium is assumed to grow chemoheterotrophically, no firm conclusions
can be drawn with respect to its physiology since this bacterium cannot so far be
cultured separately from its epibionts.

It had been suggested earlier that the central bacterium might be a sulfur-
or sulfate-reducing bacterium (see Section 2.4). Since sulfur- or sulfate-reducing
bacteria typically belong to either the Deltaproteobacteria or the Firmicutes, it
came as a surprise when the colorless central bacteria in “C. aggregatum” as well
as “C. magnum” obtained from two lakes in Eastern Germany and the United
States, respectively, was identified as a member of the Betaproteobacteria based
on fluorescent in situ hybridization (Fröstl and Overmann 2000).

Chemotactic enrichment of “C. magnum” and sequencing of the 16S rRNA gene
revealed that the central bacterium of this consortium represents a so far isolated
phylogenetic lineage distantly related to Rhodoferax spp., Polaromonas vacuolata,
and Variovorax paradoxus within the family Comamonadaceae (Kanzler et al.
2005). The majority of the relatives of this lineage are not yet cultured and are found
in low-temperature aquatic environments and/or aquatic environments containing
xenobiotics or hydrocarbons.

Subsequent molecular analyses of purified genomic DNA from the central bac-
terium of “C. aggregatum” demonstrated the presence of two rrn operons which are
arranged in a tandem fashion and separated by an unusually short intergenic region
of only 195 base pairs. When this gene order was exploited to screen natural com-
munities by PCR, a previously unknown and diverse subgroup of Betaproteobacteria
was detected in the chemocline of stratified freshwater lakes. This group was
absent in soil microbial communities or other aquatic ecosystems. Using fluores-
cent in situ hybridization with oligonucleotide probes specific for this subgroup,
some of the sequences obtained can be attributed to the central bacteria of differ-
ent consortia. Most notably, phylogenetic analyses reveal that the central bacteria
of other populations of phototrophic consortia are only distantly related to the
colorless bacterium in “C. magnum” (Pfannes et al. 2007). This indicates that
the chemotrophic symbionts in phototrophic consortia have a polyphyletic origin
similar to the epibionts.

2.3 Evidence for a Direct Interaction Between the Two Partners
in Phototrophic Consortia

2.3.1 Aggregate Structure and Cell Division

In natural populations as well as laboratory cultures of the motile, barrel-shaped
phototrophic consortia, the number of epibiont cells per central bacterium shows a
nonrandom frequency distribution. Depending on the type and origin of the photo-
trophic consortium, the most frequent number of epibionts determined per consor-
tium was 11 (“C. aggregatum” from Lake Cisó; Gasol et al. 1995), 13 (“C. aggre-
gatum” from Lake Grünenplan; Overmann et al. 1998), 20 (“P. roseum” from Lake
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Dagow; Overmann et al. 1998), or 36 (“C. glebulum” from Lake Dagow; Overmann
et al. 1998). The nonrandom number of epibiont cells which is consistently observed
in each population of phototrophic consortia strongly suggests that the number of
epibiont cells is tightly controlled during the growth and division of individual con-
sortia. The more numerous epibionts in the consortia “C. glebulum,” “C. magnum,”
and “P. roseo-viride” form two consecutive layers, with cells of the outer layer being
not directly attached to their heterotrophic partner bacterium. This fact clearly shows
that the number of epibiont cells is not simply controlled by the area provided by
the cell surface of the central bacterium for attachment of epibionts.

When consortia were partially disaggregated, either during the preparation of
samples for electron microscopy or in squash preparations of wet mounts on agar-
coated slides for light microscopy, the central bacterium was often found to exhibit a
pronounced invagination and hence to be in a stage of cell division (Overmann et al.
1998; Fig. 2.1). This observation, together with the nonrandom frequency distribu-
tion of epibionts in phototrophic consortia, strongly suggests that the cell division of
all epibionts of the same consortium proceeds in a highly coordinated fashion and
parallel to that of the central bacterium.

(a)

(b)

Fig. 2.1 Two different stages in the life cycle of the phototrophic consortium “P. roseum”
from Lake Dagow. (a) Typical morphology of a consortium with rod-shaped epibiont cells.
(b) Consortium shortly after synchronous cell division of all epibionts, which display an almost
coccoid shape. Dashed line indicates the plane of division during the subsequent separation of the
two daughter consortia
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Intact “C. aggregatum” consortia can be disaggregated by the addition of EGTA
or pyrophosphate but stay intact in the presence of various reducing agents, ionic
or non-ionic detergents, denaturing agents, lectin-binding sugars, or proteolytic
enzymes (Vogl et al. 2008). Apparently, Ca2+ ions are involved in the specific
aggregate formation of phototrophic consortia.

2.3.2 Ultrastructure

Comparative electron microscopy studies of epibiont cells in pure culture and
in “C. aggregatum” yielded further insights into the subcellular processes which
are involved in maintaining the heterologous multicellularity. Epibionts are inter-
connected and also (to a lesser extent) connected to the central bacterium by
means of electron-dense, hair-like filaments. Furthermore, a connection between
the partners is established by numerous periplasmic tubules which extend from
the outer membrane of the central bacterium and form direct contact with the
outer membrane of the epibiont cells. Based on detailed ultrastructural studies
combining high-resolution analytical scanning electron microscopy and transmis-
sion electron microscopy with three-dimensional reconstruction and image analysis
of the topology of the periplasmic tubules, it has been suggested that the cen-
tral bacterium and the epibionts share a common periplasmic space (Wanner et al.
2008).

In cells from pure cultures, chlorosomes are equally distributed along the inner
face of the cytoplasmic membrane. In contrast, the distribution of the chlorosomes
in symbiotic epibiont cells is uneven, with chlorosomes being entirely absent at
the site of attachment to the central bacterium. Instead, a conspicuous additional
17-nm-thick layered structure was found at the attachment site of the symbiotic
epibiont cells (Vogl et al. 2006; Wanner et al. 2008). The asymmetric distribution of
chlorosomes and the altered architecture of the adhesion site are a specific feature
of the symbiotic state and were previously unknown for any of the other, free-
living, green sulfur bacteria. This intracellular sorting and differentiation processes
of the epibionts thus provide interesting targets for future studies of reciprocal signal
exchange in phototrophic consortia.

2.3.3 Scotophobic Response

Another line of evidence for a close signal exchange between the partners in
phototrophic consortia stems from the behavior of intact consortia toward light.
Motile “C. aggregatum” in enrichment cultures exhibit a scotophobic accumula-
tion in dim (≤ 1.5 μmol quanta·m–2·s–1) light (Buder 1914; Fröstl and Overmann
1998). Unlike the phototaxis of, e.g., unicellular algae, the scotophobic reac-
tion of bacteria is solely controlled by changes in light intensity but not by the
direction of light. Consortia incubated in microcuvettes on a microscope stage
and exposed to a microspectrum accumulated at a wavelength of 740 nm (Fröstl
and Overmann 1998). Since this wavelength corresponds to the position of the
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absorption maximum of bacteriochlorophyll c, the photosynthetic pigments of the
epibiont most likely act as the photoreceptor of the scotophobic response. Yet, only
the central bacterium carries a flagellum. Therefore, it has been concluded that
the partner bacteria maintain an efficient interspecific communication within the
consortia.

2.4 Physiology and Possible Selective Advantage
of the Interaction

2.4.1 Motility Acquired by the Epibiont

Typically, phototrophic consortia are found in freshwater lakes at depths which
receive low light intensities (<5 μmol quanta·m–2·s–1) and that contain low con-
centrations of sulfide. In addition, low concentrations of dissolved oxygen have
often been detected in these layers (Overmann et al. 1998). The buoyant den-
sity of consortia (1,046.8 kg·m–3 determined for “P. roseum” in Lake Dagow) can
significantly surpass the density of the ambient chemocline water (995.8 kg·m–3)
(Overmann et al. 1998). If they were non-motile, the resulting sedimentation rate
(up to 3 cm·s–1) thus would lead to a rapid sedimentation of phototrophic con-
sortia into the dark deeper water layers where the obligately (see Section 2.2.1)
phototrophic epibionts would ultimately die. Clearly, the association of the immotile
epibionts with a motile central bacterium could counteract sedimentation, provided
phototrophic consortia as a whole could orient themselves properly in light and sul-
fide gradients. It is likely that the scotophobic response toward dim light described
in the previous section could serve this purpose under natural conditions.

In addition to the scotophobic response, phototrophic consortia have been shown
to exhibit a pronounced chemotactic response, both in laboratory enrichments
(Fröstl and Overmann 1998) and in situ (Glaeser and Overmann 2003b). Sulfide
proved to consistently act as a strong attractant and would lead to a rapid accu-
mulation of intact consortia at hot spots of sulfate reduction (e.g., sinking organic
particles) in the chemocline. Actually, enrichments of phototrophic consortia were
only successful at low sulfide concentrations of ≤300 μM, whereas other, free-
living green sulfur bacteria outcompeted the phototrophic consortia at higher sulfide
concentrations. Obviously, a strong limitation of external sulfide is of competitive
advantage for intact consortia. In pure culture, the epibiont Chl. chlorochromatii
CaD isolated from “C. aggregatum” is strictly dependent on sulfide as electron
donor and sulfur source. Future research will show whether sensing of sulfide occurs
in the green sulfur bacterial epibiont and the signal is then communicated to the
central bacterium or whether the central bacterium is capable of sensing sulfide
itself.

Due to the rapid orientation toward light and electron-donating substrates, the
motility acquired in association provides the epibionts with a selective advantage
over its non-motile green sulfur bacterial relatives competing for sulfide as electron
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donor. Some green sulfur bacteria form gas vesicles, which decrease the buoy-
ant density of the cells. Typically, such changes in buoyant density occur over a
time period of several days (Overmann et al. 1991) and thus are much slower than
the diurnal fluctuations in light intensities and sulfide concentrations. By compari-
son, the vertical migration of phototrophic consortia, mediated by flagellar motility,
is orders of magnitude faster and hence is expected to lead to increased sulfide
utilization and light utilization efficiency by the epibionts in phototrophic consortia.

2.4.2 Reciprocal Control of the Metabolism of the Two Partner
Bacteria

Interestingly, 2-oxoglutarate also serves as a chemoattractant in situ as well as
in laboratory cultures. Like all free-living green sulfur bacteria, the epibiont
Chl. chlorochromatii CaD does not utilize 2-oxoglutarate for growth, suggest-
ing that 2-oxoglutarate is taken up and utilized by the central bacterium.
Microautoradiography was used to investigate whether intact consortia could
assimilate 2-[14C(U)]-oxoglutarate. The major fraction of a natural population
of consortia incorporated this carbon compound, but exclusively in the presence
of light and sulfide (Glaeser and Overmann 2003b). These results indicate that
the incorporation of 2-oxoglutarate by the central bacterium is regulated by the
physiological state of the green sulfur bacterial epibiont.

2.4.3 Physiological Interactions

Little is known so far of the putative physiological coupling between the two
partners in phototrophic consortia. In analogy to the syntrophic growth of green sul-
fur bacteria in coculture with sulfur- and sulfate-reducing bacteria, it had initially
been speculated that a sulfur cycle also occurs in phototrophic consortia, in which
the colorless central bacterium rereduced the elemental sulfur or sulfate formed dur-
ing anoxygenic photosynthesis of the green sulfur bacterial partner (Pfennig 1980.
Based on its phylogenetic affiliation, the central bacterium does not represent a
typical sulfur- or sulfate-reducing bacterium, however.

In green sulfur bacteria, the cell yield increases significantly in the presence of
assimilable organic carbon substrates (Overmann and Pfennig 1989). Therefore it
would appear possible that epibionts grow mixotrophically using organic carbon
compounds excreted by the central chemotrophic bacterium. However, the stable
carbon isotope discrimination values determined for epibionts in natural populations
of phototrophic consortia clearly indicate that the epibionts grow photoautotrophi-
cally in situ rather than incorporating organic substrates (Glaeser and Overmann
2003a).

While the association with a motile partner represents a clear advantage for the
immotile epibiont (see Section 2.4.1), the selective advantage of the partnership for
the central bacterium has remained rather unclear. Green sulfur bacteria are known
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to excrete considerable amounts of photosynthetically fixed carbon (Czeczuga and
Gradski 1972), which has also been confirmed for the epibiont (Pfannes 2007).
It had been suggested that the epibiont supplies the central bacterium with such
organic carbon excretion products (Glaeser and Overmann 2003b). A recent series
of experiments in fact provide evidence for a rapid transfer of photosynthetically
fixed carbon from the epibiont to the central bacterium (Johannes Müller and Jörg
Overmann, unpublished observations).

Theoretically, the tight arrangement of the cells in phototrophic consortia
(Fig. 2.1) could result in a diffusion limitation and hence a physiological isolation
of the central bacterium. However, transmission electron studies of cryofixed
and cryosubstituted preparations show that considerable intercellular space exists
between the cells and that the central bacterium only occupies 25% of the vol-
ume available (Wanner et al. 2008). Since gaps are also left by the epibiont cells
forming the cortex of phototrophic consortia, this extracellular space probably pre-
vents diffusion limitation of the central bacterium in phototrophic consortia. This
conclusion is supported by experiments with fluorogenic substrate analogs of intra-
cellular esterases which lead to a rapid accumulation of fluorescent signal in the
central bacterium within less than 2 min and before the surrounding epibionts (Bayer
2007).

2.5 The Molecular Basis for Microbial Symbiosis
in Phototrophic Consortia

Possibly the most fascinating – and so far unique – aspect of the biology of
phototrophic consortia is the specificity of the interorganismic interaction which
manifests itself in a coadaptation as well as in particular mechanisms of mutual
recognition and signal exchange of the partner organisms. Based on the unique
lifestyle and considerable phylogenetic distance of Chl. chlorochromatii CaD to
other green sulfur bacteria, niche-specific genes were expected to occur in the
genome of the epibiont. Recent efforts have yielded first insights into the molec-
ular mechanisms underlying the interaction between the epibionts and the central
bacterium in phototrophic consortia by unraveling a series of unique genes and an
unusual regulation of central metabolic functions in the epibiont.

2.5.1 Several Candidate Symbiosis Genes in the Epibiont
of “C. aggregatum” Resemble Bacterial Virulence Factors

The isolation of Chl. chlorochromatii CaD in pure culture enabled the sequencing of
its genome (http://genome.jgi-psf.org/finished_microbes/chlag/chlag.home.html).
In parallel, the genome sequence of 11 strains of free-living green sulfur
bacteria became publicly available (http://img.jgi.doe.gov/cgi-bin/geba/main.cgi?
section=TaxonList&page=taxonListPhylo&pidt=14955.1250667420). This infor-
mation provided the opportunity to identify niche-specific genes in the epibiont
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genome. In two recent studies, suppression subtractive hybridization and dot blot
hybridization of genomic DNA were combined with comparative bioinformatic
approaches to identify candidate symbiosis genes which are unique to the epibiont
genome (Vogl et al. 2008; Wenter et al. 2010).

Initially, four candidate symbiosis genes were recovered (Vogl et al. 2008). The
two hemagglutinin-like open reading frames (ORFs) Cag0614 and Cag0616 are
exceptionally large and code for 36,805 and 20,646 amino acid-long gene products,
respectively. Therewith they represent the largest ORFs known to date and are only
surpassed by the human titin gene. Three sequence regions were almost identical
between both genes and both contain repetitive regions of high-sequence similarity,
suggesting that the two ORFs arose through a gene duplication event. Furthermore,
Cag0614 and Cag0616 encode RGD tripeptides known from filamentous hemagglu-
tinin which in bacterial pathogens participate in binding to the mammalian cells. In
addition, Cag0616 harbors two βγ-crystalline Greek key motifs containing all estab-
lished elements of this motif, like the conserved sequence (Y/F/W)X6GX28–34S,
two Ca2+-binding sites, and three to four beta strands. Bacterial proteins contain-
ing this motif typically participate in the response to stress conditions. The third
gene Cag1920 encodes a 3,834 amino acid-long putative hemolysin, whereas the
gene product of Cag1919 is a 1,526 amino acid-long putative RTX-like protein. All
four genes are transcribed constitutively and do not occur in any of the 16 free-
living green sulfur bacterial relatives of the epibiont tested so far. In light of the fact
that epibionts seem to be specifically adapted to life in association with the central
bacterium and so far have not been detected in a free-living state in nature, it has
been hypothesized that a regulatory mechanism for the expression of the potential
symbiosis genes may be dispensable.

The RTX-toxin-like gene product of Cag1919 was studied in more detail. A
100 amino acid-long region of its C-terminus comprises six repetitions of the con-
sensus motif GGXGXD and, based on its high similarity with the corresponding
region in the alkaline protease of Pseudomonas aeruginosa, is predicted to form a
Ca2+-binding beta roll. In this beta roll structure, Ca2+ ions are coordinated at the
turns between the two strands by the aspartic acid residues of the repeat sequence.
In contrast to the RTX toxins known from pathogenic Proteobacteria, however,
the gene product of Cag1919 could not be detected by 45Ca2+ autoradiography
and therefore occurs only at a low abundance in epibiont cells. Furthermore, no
secretion signal typical for RTX toxins could be identified. The RTX-type terminus
coded by Cag1919 exhibited a significant sequence similarity to the RTX modules
found in virulence factors of pathogenic Proteobacteria like Erwinia carotovora,
Pseudomonas fluorescens, Ralstonia solanacearum, or Vibrio vulnificus. This puta-
tive symbiosis gene Cag1919 thus may have been acquired via horizontal gene
transfer from a proteobacterium. In the Gram-negative bacterial pathogens, the RTX
module is necessary for binding to the target cell. In a similar fashion, the Gag1919
gene product may be involved in the cell–cell binding within the phototrophic
consortium “C. aggregatum.”

Subsequent bioinformatic analyses yielded 186 ORFs that were unique to the
epibiont genome as compared to the 11 genomes of free-living relatives (Wenter
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et al. 2010). The fact that the main fraction (99) of these ORFs code for hypo-
thetical proteins with unknown function indicates that the cell–cell interactions in
phototrophic consortia involve numerous novel modules. In contrast to this lim-
ited number of unique ORFs, genome comparisons among closely related bacteria
have demonstrated that a much higher fraction, up to 1,387 genes, of the bacterial
genome may encode niche-specific functions. Low numbers of niche-specific genes
comparable to those in the epibiont have only been reported for pathogenic bacteria
which evolved from ancestors already adapted to interactions with animal cells, e.g.,
Salmonella enterica and Bacillus anthracis. As a consequence, additional genes
which are not unique to the epibiont genome may still be involved in the cell–cell
interaction of phototrophic consortia.

In order to search for the presence of such non-unique ORFs with potential rele-
vance to the symbiosis, recent bioinformatic and transcriptomic analyses targeted
ORFs with similarity to known bacterial virulence factors (Wenter et al. 2010).
Several additional genes were detected, among them an outer membrane efflux pro-
tein that contains a conserved TolC-like domain and typically is part of bacterial
type I secretion systems (Cag0615); Cag1408 which is related to the Escherichia
coli membrane fusion protein HlyD, mediating the transport of hemolysin across
the periplasm as part of the type I secretion system; and Cag1570 that is related to
VapD, a putative toxin of a toxin–antitoxin pair found in many pathogenic bacteria.
Furthermore, four different VCBS (Vibrio, Colwellia, Bradyrhizobium, Shewanella)
domain proteins (Cag0738, 1239, 1242, 1560), three additional hemagglutinin-like
proteins (Cag1053, 1055, 1512), and two hemolysin activation/secretion proteins
(Cag1054, 1056) were documented.

Thus, a total of eight unique epibiont genes and eight non-unique genes match-
ing known bacterial virulence factors have been detected. Hence, the low overall
number of epibiont-specific ORFs and the significant fraction of non-unique genes
with homologues in free-living green sulfur bacteria support the above hypothesis
that the ancestor of the epibiont was preadapted to a symbiotic lifestyle in a manner
comparable to that seen in the evolution of human pathogens.

2.5.2 Regulation Involves Central Metabolic Pathways
Rather than Symbiosis Genes

As a second approach toward the elucidation of the genetic basis of the symbi-
otic interaction in phototrophic consortia, a recent study employed proteomics,
cDNA suppression subtractive hybridization, and transcriptomics to compare the
expression in free-living (pure culture of Chl. chlorochromatiiCaD) and symbiotic
(“C. aggregatum”) epibiont cells (Wenter et al. 2010).

Two-dimensional differential gel electrophoresis of the cytoplasmic proteome
covered 78% of all expected gene proteins of the epibiont. Fifty-four of the
proteins were detected exclusively in consortia but not in pure epibiont cul-
tures. Among them, the proteins identified as a nitrogen regulatory protein P-II,
a 2-isopropylmalate synthase, and a glutamate synthase are likely to be involved
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in central amino acid metabolism. Two proteins involved in sugar metabolism
(glyceraldehyde-3-phosphate dehydrogenase, phosphotransferase protein IIA), as
well as a porphobilinogen deaminase and an UDP-3-O-[3-hydroxymyristoyl]
glucosamine N-acyltransferase were identified. Subsequent RT-qPCR analyses
showed that the greatest change occurred for the gene encoding nitrogen regula-
tory protein P-II, for which a pronounced 189-fold increase in transcript abundance
was found.

Analyses of the membrane proteins indicated that a branched chain amino acid
ABC transporter binding protein is only expressed in the symbiotic state of the
epibiont, and cross-linking experiments indicated that this membrane protein is
possibly located at the cell contact site to the central bacterium. Whereas supple-
mentation of pure epibiont cultures with peptone or branched chain amino acids
(leucine, valine, or isoleucine in non-inhibitory concentrations of 0.1 or 1 mM) did
not affect the pattern of membrane proteins, cultivation of the epibiont with consor-
tia culture supernatant stimulated the expression of the ABC transporter binding
protein. Furthermore, analyses of chlorosomal proteins revealed that an unchar-
acterized 97 amino acid-long, 11-kDa epibiont protein (encoded by Cag1285) is
only expressed during symbiosis. This protein was distantly related to putative
uncharacterized proteins of four green sulfur bacteria Chlorobium phaeovibrioides
DSM 265,. Chlorobium luteolumDSM273T, Chlorobium phaeobacteroidesBS1,
and Prosthecochloris aestuarii DSM271T as well as to proteins of human and phy-
topathogenic Betaproteobacteria belonging to the genera Ralstonia, Burkholderia,
and Neisseria. Since its differential expression correlates with the distinct changes
in the intracellular distribution of chlorosomes in the epibiont, Cag1285 may be
involved in the intracellular sorting of chlorosomes (Wenter et al. 2010).

Finally, a comparison of the transcriptomes of symbiotic and free-living epibionts
indicated that 328 genes were differentially transcribed. In this context, and in agree-
ment with earlier results, mRNAs of the four putative symbiosis genes Cag0614,
0616, 1919, and 1920 (see Section 2.5.1) were found to be present both in the
“C. aggregatum” consortium and in the free-living Chl. chlorochromatii.

Similar to other green sulfur bacteria (Eisen et al. 2002), the genome of
the epibiont encodes only a few (56) proteins for environmental sensing and
regulatory responses. Taken together, the results of the above three molecular
approaches were largely complementary and yielded a first inventory of 352
genes which were differentially expressed in the symbiotic and free-living state
and hence likely to be involved in the bacterial interactions in “C. aggregatum.”
Extrapolating the results of the transcriptome analysis toward the entire genome,
on the order of 700 (35%) of the protein coding genes would be expected to be
differentially regulated. This high fraction of regulated genes is comparable to
that observed during a heat-shock response of the sulfate-reducing Desulfovibrio
vulgaris, but higher than the fraction found in many other bacteria, like S. enter-
ica, during a switch between the extracellular and the intravacuolar environment
(20.6%), Listeria monocytogenes during temperature shock (maximum 25%),
or Thermotoga maritima switching between biofilm and planktonic populations
(6%).
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Most of the regulated genes encoded components of central metabolic pathways
whereas only very few (7.5%) of the unique “symbiosis genes” turned out to be reg-
ulated under the experimental conditions tested. While the comparison between a
symbiotic and a free-living state was chosen in order to study the most pronounced
response, such a switch under natural conditions is unlikely. Yet, even this most
pronounced change in environmental conditions did not elicit a regulation of most
of the unique symbiosis genes. Hence, such a regulation seems to be dispensable
for symbiotic interaction, or the symbiotic association has been stable in nature for
a sufficient time that regulation of the potential symbiosis genes no longer con-
fers any selective advantage. Rather, the regulatory response pertains to the central
metabolic pathways. Since a switch between non-symbiotic and symbiotic lifestyle
is unlikely, the observed regulation may serve the purpose of fine-tuning the physio-
logical coupling between the epibiont and the central bacterium if the phototrophic
consortium as a whole experiences changes in environmental conditions.
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Chapter 3
The Ecology of Nitrogen Fixation
in Cyanobacterial Mats

Lucas J. Stal, Ina Severin, and H. Bolhuis

Abstract All cyanobacterial mats that have been investigated have been proven
to be diazotrophic, i.e., use atmospheric dinitrogen (N2) as the source of nitro-
gen. Many cyanobacteria possess the capacity to fix N2 and different species have
evolved various ways to cope with the sensitivity of nitrogenase toward oxygen
which is produced by these oxygenic phototrophs. These different strategies give
rise to complex patterns of nitrogenase activity in microbial mats. Nitrogenase
activity may exhibit complex variations over a day–night cycle but different types
of microbial mats may also have their own characteristic patterns. Besides the
cyanobacteria, numerous other members of the Bacteria as well as some Archaea
are known to be diazotrophic. The complexity of the microbial community and
of the observed patterns of nitrogenase activity makes it difficult to understand
how the different groups of organisms contribute to N2 fixation in microbial mats.
Cyanobacteria have ample access to energy (sunlight) and reducing equivalents
(water) and therefore easily satisfy the demands of nitrogenase. As well, since
they also fix CO2, they are able to synthesize the acceptor molecules for the fixed
nitrogen. However, it is also feasible that other diazotrophs in a joint venture with
cyanobacteria are responsible for the bulk of the fixed nitrogen. In this review we
discuss the importance of cyanobacteria as diazotrophs in microbial mats, their
interactions with other potential N2-fixing microorganisms, and the factors that
control their activities.

3.1 Introduction

Microbial mats are vertically stratified benthic communities of microorganisms,
frequently with cyanobacteria as the main component and as the pioneers (Stal
1995). These small-scale microbial ecosystems often form a tough and coherent
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structure as the result of entangled filamentous organisms and of the extracellu-
lar polymeric substances (EPS) that the microbial community exudes. The EPS
forms the matrix in which the microorganisms are embedded. The typical coherent
structure of this microbial ecosystem, which sometimes can be lifted off from the
sediment substrate on which it thrives, is the reason for typifying it as a ‘mat’ (like
a ‘doormat’).

Microbial mats have been considered as analogues to the most ancient ecosys-
tems on Earth known to us. Lithified microbial mats, or stromatolites, are known
from the fossil record dating back almost 3.5 billion years (Schopf 2000). However,
non-lithifying microbial mats have also been detected in the fossil record, known
as microbially induced sediment structures (MISS), as early as the Precambrian
(Noffke et al. 2006).

Modern microbial mats develop in environments characterized by extreme con-
ditions that largely exclude grazing organisms (Fenchel 1998). Only in the absence
of grazing pressure are the mat-forming microorganisms capable of accumulating
and forming the macroscopic structure of a microbial mat. In the vast majority of
cases the pioneering organisms are cyanobacteria. Cyanobacteria are oxygenic pho-
totrophic Bacteria that use light, water, and inorganic carbon (CO2) as ubiquitous
sources of energy, electrons, and carbon, respectively. Moreover, many species are
capable of fixing atmospheric dinitrogen (N2), making them the organisms with
minimum growth requirements (Stewart 1980). For that reason cyanobacteria are
capable of colonizing low-nutrient environments. Cyanobacteria are further char-
acterized by a wide range of tolerances toward salt, temperature (low and high),
and drought (Seckbach 2007). Cyanobacteria are metabolically versatile and react
quickly to changing conditions. As far as is known, all cyanobacterial mats are char-
acterized by N2 fixation (Severin and Stal 2010). However, it is unclear whether
cyanobacteria are the only organisms contributing to N2 fixation in microbial
mats.

3.2 The Physiological Ecology of Microbial Mats

Cyanobacteria enrich the sediment with organic carbon and nutrients (particularly
nitrogen, but also with phosphate and other micronutrients) through their photosyn-
thetic fixation of carbon and nitrogen. This organic matter is released by a variety
of processes including exudation of EPS, low-molecular fermentation products,
glycolate produced during photorespiration, and death and cell lysis (Stal 1995).
All these components can serve as substrates for a range of other microorganisms,
which mostly degrade these under anaerobic conditions. While during the day the
top layer of the mat is enriched with oxygen by cyanobacterial photosynthesis,
this is respired within minutes once it is dark (Jørgensen et al. 1983). Below
the zone of oxygenic photosynthesis the mat is permanently anoxic. Hence,
anaerobic processes form an important component of the physiology of microbial
mats.



3 The Ecology of Nitrogen Fixation in Cyanobacterial Mats 33

Sulfate-reducing bacteria (SRB) are an important functional group in marine
microbial mats, mainly because of the high concentration of sulfate in seawater
(28 mM) (Baumgartner et al. 2006). SRB are Bacteria that anaerobically mineralize
organic matter by using sulfate (SO4

2–) as the terminal electron donor, reducing it
to sulfide (S2–). SRB use predominantly low-molecular organic matter (e.g., acetate,
ethanol, lactate) but some species have been shown to also degrade more complex
organic matter including EPS. When iron is available, the sulfide produced by SRB
reacts with it to form the black precipitate FeS. This FeS can react further with ele-
mental sulfur to form the more stable mineral pyrite (FeS2). Sulfide also reacts with
elemental sulfur to form polysulfides (Visscher et al. 1990). Sulfide is only stable
under anaerobic conditions since it reacts chemically with oxygen. However, color-
less sulfur bacteria (CSB) will use the sulfide as electron donor and respire it with
(low concentrations of) oxygen (and, if available, with nitrate). These autotrophic
(CO2-fixing) Bacteria are very efficient and overrule chemical oxidation (Visscher
et al. 1992). The second functional group of microorganisms that are involved in the
oxidation of sulfide are the anaerobic anoxygenic phototrophic bacteria, notably the
purple sulfur bacteria and to a lesser extent the green sulfur bacteria (Visscher et al.
1992). These Bacteria use sulfide as electron donor in photosynthesis. The color-
less and photosynthetic sulfur bacteria eventually oxidize the sulfide back to sulfate,
whether or not with elemental sulfur as an intermediate.

The daily cycle results in steep and contrasting millimeter scale gradients of
oxygen and sulfide in the microbial mat (Revsbech et al. 1983). These physicochem-
ical gradients cause the formation of vertically stratified communities of functional
groups of microorganisms (Stal 2000). In the green top layer cyanobacteria are
present. Sometimes this layer is mixed or overlaid by epipelic diatoms or by a
thin layer of sand. Diatoms belong to the domain Eukarya and are oxygenic pho-
totrophic microalgae with a siliceous cell wall. Also, the top layer may consist of
dead cyanobacteria of which the remaining pigmented polysaccharide sheaths serve
as protection of the underlying viable cyanobacteria from excessive radiation (‘sun-
glasses’). Underneath the green layer of cyanobacteria, a purple layer of purple
sulfur bacteria may be present. Below the layer of purple sulfur bacteria, usually
a deep horizon of black FeS is found, which is permanently anoxic. This is often
confused as the layer of the SRB. However, SRB occur throughout the mat and take
advantage of the organic matter produced directly or indirectly by photosynthetic
activity (Canfield and DesMarais 1991). Some SRB are remarkably tolerant toward
oxygen and in exceptional cases they can even use it to some extent as electron
acceptor.

Sometimes the layers of the cyanobacteria and the purple sulfur bacteria are sep-
arated by a layer of oxidized iron (Stal 2001). It is possible that this layer indicates
the presence of anoxygenic phototrophic Bacteria that utilize ferrous iron as elec-
tron donor (Widdel et al. 1993). This layer may also protect the anaerobic Bacteria
from oxygen diffusion from the top layer by reacting with ferrous iron or preventing
the toxic sulfide from diffusing upward into the cyanobacterial layer by react-
ing with ferric iron. However, these hypotheses await scientific investigation and
proof.
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3.3 N2 Fixation and N2-Fixing Organisms

All of the above-mentioned functional groups of organisms have representatives
that are capable of fixing N2. Biological N2 fixation is confined to Bacteria and to
some Archaea. No member of the Eukarya possesses the capacity to fix atmospheric
N2 except in symbiotic associations with Bacteria. Diazotrophic (growth at the
expense of dinitrogen as sole source of nitrogen) organisms have the genetic poten-
tial to synthesize nitrogenase, a complex consisting of two enzymes: dinitrogenase
reductase and dinitrogenase (Zehr et al. 2003). The former reduces the latter using
low-potential electrons (reduced ferredoxin) while hydrolyzing 4 ATP per 2 elec-
trons transported. The fixation of N2 to 2NH3 is accompanied with the evolution of
one molecule of H2. Hence, N2 fixation costs 16 ATP and 8 low-potential electrons,
which makes it energetically expensive. Another characteristic of nitrogenase is its
extreme sensitivity toward O2 (Gallon 1992). Hence, diazotrophic organisms need
to provide nitrogenase with an anaerobic environment. Many diazotrophic microor-
ganisms are in fact anaerobes. It is not always clear whether anaerobic diazotrophs
actually utilize N2 because it would draw considerably on their energy supplies
and in many cases such organisms may live under energy-limiting conditions, while
anaerobic environments are often not depleted in nitrogen.

3.4 N2-Fixing Cyanobacteria

Many cyanobacteria possess the capacity to synthesize nitrogenase and fix N2
(Bergman et al. 1997). Using sunlight, these organisms may meet the energy
demand of nitrogenase. However, this is paradoxical since cyanobacteria not only
usually thrive in oxygenated environments, they also evolve O2 through their photo-
synthetic metabolism. Cyanobacteria have evolved various means to accommodate
N2 fixation in an oxygen-rich environment, although except for the heterocystous
cyanobacteria, this has not been extensively investigated in all cyanobacteria that
possess the genetic capacity for N2 fixation (Stal and Zehr 2008). Many species of
cyanobacteria accomplish the strict separation of nitrogenase from oxygen by avoid-
ing O2 through temporally living anaerobically, either in the light by anoxygenic
photosynthesis or by fermentative metabolism in the dark.

Cyanobacteria of sections IV and V comprise filamentous species that differen-
tiate specialized cells, heterocysts, which are the site of N2 fixation (Adams 2000).
Heterocysts have lost the oxygenic photosystem II but retain the anoxygenic photo-
system I and are therefore capable of harvesting light energy but do not evolve O2
and cannot fix CO2. Therefore, heterocysts depend upon the neighboring vegetative
cells for reducing equivalents that are imported as carbohydrate, probably as sucrose
(Curatti et al. 2002). Heterocysts also possess a thick glycolipid cell wall that serves
as a gas diffusion barrier. This cell wall limits the flux of O2 into the heterocyst and,
as well, of N2 (Walsby 2007). Hence, there must be a trade-off between minimizing
the inward diffusion of O2 while permitting the entry of sufficient N2 into the hete-
rocyst. The O2 that enters the heterocyst is consumed by a high-affinity respiratory
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system that maintains the interior of the heterocyst virtually anoxic, a prerequisite
for nitrogenase activity. Thus, heterocystous cyanobacteria are capable of simulta-
neous oxygenic photosynthesis and N2 fixation, which are spatially separated into
two different cell types.

Another group of diazotrophic cyanobacteria is composed of unicellular and fil-
amentous non-heterocystous types. Their strategy is to separate N2 fixation and
oxygenic photosynthesis temporally (Bergman et al. 1997). Basically, cyanobacteria
belonging to this group fix N2 during the night and obviously confine photosynthe-
sis to the daytime. Dark nitrogenase activity in these cyanobacteria is supported by
aerobic respiration which should also be sufficiently fast in order to maintain anaero-
bicity in the N2-fixing cells. If these cyanobacteria are confronted with anoxic condi-
tions at night, nitrogenase activity is supported by ATP generated by substrate-level
phosphorylation in fermentative pathways (Stal and Moezelaar 1997). However, the
fact that many potentially diazotrophic cyanobacteria are unable to express nitroge-
nase aerobically when exposed to alternating light–dark cycles means that species
that fix N2 through temporal separation of N2 fixation and photosynthesis must have
additional mechanisms to render the diazotrophic cells anoxic, mechanisms that
are not available to the ‘anaerobic N2-fixing’ cyanobacteria. This may be associ-
ated with the characteristics of their respiratory systems and/or with the properties
of gas diffusion into the diazotrophic cell, but thus far this aspect has not been
studied.

It should be noted that several (and perhaps all) of the aerobic N2-fixing
cyanobacteria with the ‘temporal separation’ strategy seem, in fact, to be not really
‘aerobic N2 fixing.’ Using an online, real-time setup for acetylene reduction assay
(ARA) to monitor nitrogenase activity, with precisely controlled O2 concentrations,
it was discovered that several strains, previously reported to be ‘aerobic’ N2-fixing
cyanobacteria, did in fact not show any nitrogenase activity at atmospheric levels of
O2. For instance, the filamentous non-heterocystous mat-forming cyanobacterium
Lyngbya aestuarii did not show nitrogenase activity above 5% O2, even though the
organism could be grown in aerobic batch cultures (Ferreira et al. 2009). The uni-
cellular Gloeothece sp. and Crocosphaera watsonii did not fix N2 above 10% O2,
although both strains grow well in aerobic cultures and it is known that C. wat-
sonii thrives as plankton in the ocean (Compaoré and Stal 2009). We suspect that
the same applies to the unicellular Cyanothece. Cyanobacteria such as L. aestuarii
and Gloeothece also grow in continuous light and they still seem to maintain the
separation of oxygenic photosynthesis and N2 fixation. This may be different in
C. watsonii. We were unable to grow this strain diazotrophically under conditions
of continuous light. When grown in continuous culture Gloeothece was even shown
to confine nitrogenase activity largely to the light period (Ortega-Calvo and Stal
1991). It was argued that this was necessary in order to fix sufficient N2 to maintain
a growth rate equal to the dilution rate of the culture. However, the mechanism was
not elucidated.

The type of N2 fixation observed with continuous cultures of Gloeothece
resembles to some extent that of the oceanic, tropical filamentous diazotroph
Trichodesmium. This cyanobacterium fixes N2 exclusively during the day (Capone
et al. 1990), thus resembling the pattern by heterocystous cyanobacteria. However,
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while the latter also fix N2 during the dark, albeit usually at a lower rate,
Trichodesmium is unable to fix N2 in the dark. Using the online ARA setup it
was shown that Trichodesmium is a real aerobic diazotroph (Staal et al. 2006) and
was capable of maintaining nitrogenase activity at up to 25% O2. The strategy by
which Trichodesmium fixes N2 in the light is most likely a combination of spa-
tial and temporal separation from oxygenic photosynthesis (Berman-Frank et al.
2001). In some strains nitrogenase seems to be confined to special cells, in the
literature sometimes termed ‘diazocytes’ (Fredriksson and Bergman 1997). In other
cases, nitrogenase was present in all cells (Ohki 2008), but activity may have been
limited to selected cells, which presumably have then switched off oxygenic photo-
synthesis. There is even evidence that cells may switch quickly between oxygenic
photosynthesis and N2 fixation (Küpper et al. 2004). There is little doubt that both
processes are incompatible and can therefore not take place simultaneously. Since
Trichodesmium thrives in the tropical and subtropical oceans at temperatures well
above 25◦C it has been proposed that a gas diffusion barrier such as glycolipid cell
wall of the heterocyst is not required because O2 solubility at full salinity seawater
is 30% less than in freshwater and metabolic processes such as respiration are fast
at elevated temperature (Staal et al. 2003; Stal 2009). A cell wall acting as a gas
diffusion barrier would in fact represent a disadvantage because it would also limit
the flux of N2. Trichodesmium is unable to maintain active nitrogenase during the
dark. Obviously, light is required to provide sufficient reducing equivalents to scav-
enge O2, and light-dependent processes such as the Mehler reaction may be needed
to render the diazotrophic cell anoxic (Kana 1993).

Other filamentous, non-heterocystous diazotrophic cyanobacteria that may
resemble Trichodesmium with respect to the daily pattern of N2 fixation are
Symploca and Lyngbya. Symploca PCC8002 was originally isolated from tidal sedi-
ment and assigned as Microcoleus chthonoplastes. Fredriksson et al. (1998) reported
that nitrogenase activity in this organism was confined to the light and showed that
nitrogenase was present in a subset of the cells similar to the supposed diazocytes
of Trichodesmium. However, this pattern may not be a general characteristic of
this genus (Kumazawa et al. 2001). Also a tropical benthic marine Lyngbya sp.
was reported to fix N2 during the light (Jones 1992). Trichodesmium, Lyngbya, and
Symploca are closely related organisms and it is possible they have adopted a similar
strategy for aerobic N2 fixation.

Another group of putative unicellular diazotrophic cyanobacteria seems to be
important in the plankton of the oceans. These organisms, of which no cultivated
representatives exist, are known as ‘Group A’ unicellular diazotrophic cyanobacte-
ria. This group is remarkable because it expresses nifH during the day and there is
also evidence that it actually fixes N2 during the day. Flow cytometric sorting and
subsequent metagenomic sequencing of this organism has revealed that it apparently
lacks the genes for the oxygenic photosystem II and it therefore resembles a hetero-
cyst (Zehr et al. 2008). Such an organism would be dependent on externally supplied
organic matter and might actually live symbiotically. This would also explain N2 fix-
ation in this picoplanktonic cell that, due to its small size, would be impossible to
render anoxic when free-living as single cells suspended in oxygenated seawater.
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3.5 Heterocystous Cyanobacteria in Microbial Mats

Although heterocystous cyanobacteria seem to be best adapted for diazotrophic oxy-
genic photosynthetic growth, they are absent from full salinity seawater, at least
as free-living planktonic organisms. For the tropical waters this can be explained
because the glycolipid cell wall of the heterocyst is superfluous and even disadvan-
tageous (see previous paragraph). However, it is unknown why such organisms are
absent from the temperate and cold seas and oceans, while they are abundant in
freshwater lakes and brackish water basins such as the Baltic Sea. Heterocystous
cyanobacteria are also rare in marine microbial mats.

Comparing mats composed of heterocystous cyanobacteria with those dominated
by non-heterocystous forms in the same area shed some light on this question.
The heterocystous cyanobacterium Calothrix grew in Laguna Ojo de Liebre, Baja
California, Mexico, on the higher parts of the intertidal flat and formed porous mats
that were rarely inundated (Stal 1995). Nitrogenase activity was confined to the
daytime, typical for heterocystous cyanobacteria. Depth profiles of oxygen in these
mats revealed little dynamics, i.e., the mats were more or less air saturated with O2
during the day and night, except when the mat was inundated. The mat was also
oxygen saturated below the cyanobacterial mat and consequently no sulfide was
present. In contrast, the non-heterocystous Lyngbya developed mats in the lower
reaches of the intertidal flat that were inundated at every high tide. These mats were
dense and showed dynamic oxygen depth profiles with oxygen supersaturation
during the day (up to pure O2) and anoxic conditions at night. Below the cyanobac-
terial layer the mat was permanently anoxic and consequently sulfide was present.
N2 fixation was confined to the night as might be expected, although it must have
been supported by fermentative energy generation since aerobic respiration was
impossible due to the absence of O2. It was also concluded that the conditions
in this mat type were apparently inadequate for heterocystous cyanobacteria.
This might be attributed to the inability of heterocystous cyanobacteria (or of
the heterocysts) of anaerobic dark metabolism (fermentation) or their sensitivity
to sulfide, or both. O2 supersaturation during the light might also discriminate
against heterocystous cyanobacteria, although this seems less likely because some
strains may still fix some N2 in 100% O2. Lyngbya may have been incapable of
coping with air saturation levels of O2 when fixing N2 at night. However, other
species might have tolerated atmospheric levels of O2 or their respiratory activity
might have sufficiently decreased the O2 concentration. Non-heterocystous dia-
zotrophic cyanobacteria therefore might not be able to compete with heterocystous
types.

Sulfide may select against heterocystous cyanobacteria as has been shown in
culture and also in microbial mats in the Bay of Arcachon in France (Villbrandt
and Stal 1996). The sediments and waters in this system contained high levels
of iron which scavenged any sulfide by precipitating it as FeS and pyrite. These
mats contained heterocystous cyanobacteria, while mats in another lagoon where
the sediments contained high levels of free sulfide exclusively non-heterocystous
diazotrophic cyanobacteria were observed.
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Heterocystous cyanobacteria are also encountered in microbial mats that are
exposed to lower salinity, e.g., when they receive upwelling freshwater or rain. It
is unlikely that it is the sea salt concentration that impairs growth of heterocystous
cyanobacteria. It has been suggested that the high sulfate concentration in seawater
(28 mM) could interfere with N2 fixation in heterocysts (Stal et al. 1999). Sulfate is
a structural analogue of molybdate, a co-factor for the classical Fe–Mo nitrogenase.
The uptake of molybdate might be restricted in the presence of high concentrations
of sulfate, although there is no conclusive evidence for this mechanism. In microbial
mats the sulfate concentration in the pore water may be lowered through the activity
of sulfate-reducing bacteria.

The heterocystous Cyanobacterium Rivularia forms stromatolitic microbial mats
in freshwater streams (Sabater et al. 2000). Its occurrence has been associated with
nitrogen-depleted environments and high rates of N2 fixation, although not much
research has focused on this aspect. Non-calcifying Rivularia colonies have also
been found in the rocky shores in the supralittoral of intertidal marine bays (Khoja
et al. 1984). Rivularia is related to Calothrix which is known from marine and brack-
ish environments. N2 fixation in these cyanobacteria is impaired at full seawater
salinity (Reed and Stewart 1983).

Hot springs are another type of environment in which heterocystous cyanobacte-
ria thrive and form microbial mats (Finsinger et al. 2008). Hot spring heterocystous
cyanobacteria belong to section V comprising species that exhibit true branching
and have been assigned to in the literature as Mastigocladus, Chlorogloeopsis,
and Fischerella. They grow and fix N2 up to temperatures of ∼60◦C. However,
growth and N2 fixation appeared to be highly sensitive to sulfide and where sulfide
occurred in higher concentrations Oscillatoria became dominant and presumably
thrived by anoxygenic photosynthesis (Castenholz 1976). It is not known whether
this cyanobacterium fixes N2.

Mats that contain heterocystous cyanobacteria may exhibit more complex daily
patterns of N2 fixation. These organisms show highest nitrogenase activities during
the day, although they may have varying levels of dark activity. The latter depends,
however, on aerobic respiration and when oxygen is unavailable, no N2 is fixed by
the heterocystous cyanobacteria. The daily pattern of nitrogenase activity may be
further complicated by the presence of not only other diazotrophs, including non-
heterocystous filamentous and unicellular cyanobacteria, but also other Bacteria and
Archaea (Severin and Stal 2008).

3.6 Other Diazotrophs in Microbial Mats

Sulfate-reducing bacteria and anoxygenic phototrophic bacteria are two functional
groups of Bacteria that play important roles in microbial mats and that have rep-
resentatives capable of diazotrophic growth. Their nif genes have been found in
microbial mats as well as their transcripts (Olson et al. 1999; Steppe and Paerl 2002;
Severin et al. 2010). This has led to a different view on the microbial ecology of N2
fixation. Considering the supposed difficulties of N2 fixation in non-heterocystous
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cyanobacteria, a model was proposed that featured chemotrophic Bacteria in the
mat as the actual N2-fixing organisms (Steppe et al. 1996). They would live in close
proximity to the cyanobacteria which would supply the chemotrophic Bacteria with
organic substrate, while the latter provide fixed nitrogen, CO2, and other growth
factors. This model was supported by the detection of nitrogenase gene transcripts
putatively assigned to chemotrophic Bacteria and the inability of detecting any of
such genes attributable to cyanobacteria. However, the latter finding may be the
result of a bias introduced by the nucleic acid extraction methods that were used as
many benthic cyanobacteria are not easily extracted due to their rigid extracellular
polysaccharide sheaths.

3.7 Microcoleus chthonoplastes: A Diazotroph?

Many cyanobacterial mats are formed by the cosmopolitan filamentous non-
heterocystous cyanobacterium M. chthonoplastes. This species form bundles of
trichomes enclosed by a common sheath, although this property is often lost upon
cultivation in the laboratory. Originally, it was thought that M. chthonoplastes
was the N2-fixing organisms in the mats in which it was the dominant cyanobac-
terium. It was assumed that the bundle formation of M. chthonoplastes facilitated
N2 fixation by providing micro-zones with low oxygen. However, N2-fixing strains
that were subsequently isolated from microbial mats and assigned to M. chthono-
plastes appear to have been misidentified. For instance, the aerobically N2-fixing
M. chthonoplastes isolated by Pearson (Pearson et al. 1979; Malin and Pearson
1988) was later identified as Symploca sp. (Janson et al. 1998) and the anaerobic
N2-fixing M. chthonoplastes ‘strain 11’ is related to Geitlerinema (Siegesmund et al.
2008), a genus which also includes the famous anoxygenic phototrophic and anaer-
obic N2-fixing Solar Lake strain ‘Oscillatoria limnetica.’ Dubinin et al. (1992) and
Sroga (1997) also reported on N2-fixing Microcoleus but their correct assignments
have not been confirmed.

Using strictly anaerobic conditions, Rippka et al. (1979) were unable to detect
nitrogenase activity in the type strain of M. chthonoplastes PCC7420 and Villbrandt
and Stal (unpublished results) were unable to induce nitrogenase activity in the col-
lection of the ‘true’ M. chthonoplastes of Garcia-Pichel et al. (1996). Moreover,
Steppe et al. (1996) were unable to detect cyanobacterial nifH in four strains of
M. chthonoplastes, including the type strain PCC7420. However, they did amplify
from these cultures nifH belonging to γ-proteobacteria and these sequences were
also found in microbial mats dominated by M. chthonoplastes. These authors con-
cluded subsequently that the cultures were contaminated and that diazotrophic
heterotrophic Bacteria live in a consortium with M. chthonoplastes in the micro-
bial mat. However, if this model is correct they should have been able to grow this
consortium with N2, but that was not the case.

Also Zehr et al. (1995) did not find cyanobacterial nifH genes in mats dom-
inated by M. chthonoplastes. The nifH sequences retrieved in the M. chthono-
plastes mats belonged to anaerobic heterotrophic Bacteria most closely related to
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γ-proteobacteria. Olson et al. (1999) studied three distant mats of M. chthonoplastes
and found only heterotrophic nifH sequences which were all closely related notwith-
standing their large geographic distances. They concluded that cyanobacteria were
not important for N2 fixation and that the same type of γ-proteobacteria was the dia-
zotroph in these mats. Similarly, Steppe and Paerl (2002) found that sulfate-reducing
bacteria were potentially important dinitrogen fixers and that most of the nifH
genes expressed clustered with the δ-proteobacteria and other anaerobic Bacteria.
Omoregie et al. (2004a) investigated a mat showing high rates of nitrogenase activ-
ity during the night but they did not find any nifH sequences related to filamentous
cyanobacteria. The nifH sequences they found belonged to the γ-proteobacteria and
other novel sequences, and therefore the authors concluded that cyanobacteria were
not involved in N2 fixation in this mat. Nevertheless, in a follow-up study Omoregie
et al. (2004b) found the expression of nifH belonging to unicellular cyanobacteria
that were not found in the clone libraries of this gene. But still many expressed
sequences belonged to anaerobic Bacteria.

Within the sheath of M. chthonoplastes, a new gliding filamentous purple sul-
fur phototrophic bacterium has been found (D’Amelio et al. 1987). It is not known
whether this organism could be responsible for N2 fixation. D’Amelio et al. (1987)
proposed that in M. chthonoplastes, when thriving in the zone below maximum oxy-
genic photosynthesis, the associated bacterium could carry out sulfide-dependent
anoxygenic photosynthesis or grow photoheterotrophically using organic matter
excreted by the cyanobacterium. Moreover, M. chthonoplastes may be capable
of anoxygenic photosynthesis oxidizing sulfide to elemental sulfur (Garlick et al.
1977). The purple sulfur bacterium could then oxidize the elemental sulfur further
to sulfate.

Recently, the genome of M. chthonoplastes PCC7420 was sequenced.
Remarkably, a complete nitrogenase operon was found to be present in this genome
and the same nifgenes were detected in a collection of other axenic M. chthono-
plastes strains (Bolhuis et al. 2009). Phylogenetic analysis of nifHDK revealed that
they cluster with the δ-proteobacteria and that they are closely related to sulfate-
reducing bacteria Desulfovibrio and it was proposed that this cluster was obtained
by the cyanobacterium through lateral gene transfer. This of course sheds a totally
new light on the previous reports of the inability of M. chthonoplastes to fix N2
and the fact that the nif genes were incorrectly not attributed to M. chthonoplastes.
It has hitherto proven impossible to induce nitrogenase activity in M. chthonoplas-
tes or even express the nif genes. It is not clear whether this is due to inadequate
conditions or whether the gene cluster is in fact inactive although this is unlikely
as it is otherwise difficult to explain why this cluster is maintained in M. chthono-
plastes strains found all over the world. Moreover, the expression of this typical
nifHDK cluster was seen in samples of M. chthonoplastes mats. This suggests
that the expression of the nif genes and the induction of an active nitrogenase in
M. chthonoplastes depend on the appropriate conditions. After all, the hypothesis
of a consortium of M. chthonoplastes with an N2-fixing chemotroph may have been
proven wrong now, since we know that this cyanobacterium is most likely capable
of fixing its own N2.
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3.8 Day–Night Variations of Nitrogenase Activity

The day–night variations in nitrogenase activity in microbial mats are the result of
the combined action of the microorganisms that contribute to N2 fixation and the
conditions that control N2 fixation (Severin and Stal 2008). Among the latter the
actual environmental concentration of O2 is important. However, it should be noted
that O2 is not only a negative factor. Admittedly, it will prevent nitrogenase activity
in anaerobic organisms or in facultative anaerobes that lack the possibility to fur-
nish nitrogenase with anaerobic conditions in an otherwise aerobic environment.
However, O2 might be essential for nitrogenase activity in the dark since aero-
bic respiration may be the only process that supplies nitrogenase with energy. For
instance, this is the case in heterocystous cyanobacteria. This group of cyanobacteria
is, however, not homogenous with respect to the light–dark variations of nitroge-
nase activity they exhibit. Some species confine virtually all nitrogenase activity
to the light period, while others have varying levels of nitrogenase activity in the
dark, including some where this activity is basically not different from the levels
of activity in the light (Evans et al. 2000). These differences may be species spe-
cific or dependent on the light history of the organism. Dark nitrogenase activity in
heterocystous cyanobacteria not only depends on respiratory activity, and therefore
on diffusion of O2 into the heterocyst, but also depends on the import of reduc-
ing equivalents from the neighboring vegetative cells which are influenced by the
light history of the organism. When the O2 diffusion exceeds the import of reduc-
ing equivalents it will eventually lead to the inactivation of nitrogenase. Also, in
the light the diffusion of O2 will draw upon the availability of reducing equivalents,
even though heterocystous cyanobacteria may cope with 100% O2, the fixation of
N2 will be lower due to the fact that a substantial amount of the electrons are used
for respiration. All this will lead to complex daily variations of nitrogenase activity
that are difficult to interpret.

Non-heterocystous diazotrophic cyanobacteria in microbial mats are mostly of
the type that separates nitrogenase activity temporally from photosynthesis and thus
confine it to the dark period. Hence, the cessation of oxygenic photosynthesis may
be the trigger for the induction of nitrogenase. Dark nitrogenase activity depends
on aerobic respiration as a source of energy, but because many microbial mats turn
anoxic in the dark, fermentation and substrate-level phosphorylation may be the
only way for these cyanobacteria to generate energy for N2 fixation. This presumes
that these cyanobacteria are capable of fermentation, but, in fact, this is likely since
they are living in such environments. However, the low ATP yield of fermentative
energy generation will support only a limited amount of N2 fixation. In some micro-
bial mats this leads to a peculiar daily pattern of nitrogenase activity (Villbrandt
et al. 1990). At sunset, when the light intensity is low and photosynthesis ceases,
nitrogenase is induced, taking advantage of the low rate of photosynthesis and the
low levels of O2, while some light is available. This activity decreases to very low
levels after the sun has set and the mat has turned anoxic. Nitrogenase then becomes
fully expressed, unhindered by the presence of O2, and at sunrise a huge peak of
nitrogenase activity is supported by the first light, while the mat is still anoxic. This
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activity subsequently rapidly disappears when photosynthesis starts and oxygenates
the mat.

Much less is known about the contribution of diazotrophic Bacteria other than
cyanobacteria. It is anticipated that such organisms should also exhibit daily varia-
tions of nitrogenase activity. For instance, sulfate-reducing bacteria are dependent
for their substrate mainly on the cyanobacteria. However, their stimulation may be
both during the daytime, when cyanobacteria may provide photosynthate (glycolate,
EPS), or during the night, when they release low-molecular fermentation products.
It is also feasible that different species are involved in the decomposition of different
substrates and these different species may or may not be diazotrophs. Not much is
known about their contribution. The sulfide produced by the sulfate-reducing bac-
teria is used by anoxygenic phototrophic bacteria. It is probable that diazotrophic
anoxygenic phototrophic bacteria depend on light for fixing N2. However, also in
this case, no information is available on the contribution of this group of Bacteria to
N2 fixation in microbial mats.

The daily patterns of nitrogenase activity in microbial mats are complex and
poorly understood. The analyses of specific nitrogenase gene expression patterns
are poorly correlated to measured nitrogenase activity. More detailed knowledge is
required on the different functional groups of diazotrophs in microbial mats and the
factors that control their (diazotrophic) activity.
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Chapter 4
Nitrogen and Molybdenum Control of Nitrogen
Fixation in the Phototrophic Bacterium
Rhodobacter capsulatus

Bernd Masepohl and Patrick C. Hallenbeck

Abstract The vast majority of the purple nonsulfur photosynthetic bacteria are
diazotrophs, but the details of the complex regulation of the nitrogen fixation pro-
cess are well understood only for a few species. Here we review what is known
of the well-studied Rhodobacter capsulatus, which contains two different nitro-
genases, a standard Mo-nitrogenase and an alternative Fe-nitrogenase, and which
has overlapping transcriptional control mechanisms with regard to the presence
of fixed nitrogen, oxygen, and molybdenum as well as the capability for the
post-translational control of both nitrogenases in response to ammonium. R. cap-
sulatus has two PII proteins, GlnB and GlnK, which play key roles in nitrogenase
regulation at each of three different levels: activation of transcription of the nif-
specific activator NifA, the post-translational control of NifA activity, and the
regulation of nitrogenase activity through either ADP-ribosylation of NifH or an
ADP-ribosylation-independent pathway. We also review recent work that has led
to a detailed characterization of the molybdenum transport and regulatory system
in R. capsulatus that ensures activity of the Mo-nitrogenase and repression of the
Fe-nitrogenase, down to extremely low levels of molybdenum.

4.1 Nitrogen Fixation in Purple Nonsulfur Bacteria

4.1.1 Biological Nitrogen Fixation

Ammonium is the preferred inorganic nitrogen source in bacteria, as it can directly
be incorporated into organic compounds. The deprotonated form, ammonia (NH3),
diffuses through biological membranes, while the protonated form, ammonium
(NH4

+), does not (Andrade and Einsle 2007). Thus, at least at neutral pHs and
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moderate external ammonium concentrations, the concentration of ammonia may
be sufficiently high to supply cells with nitrogen. At low external concentra-
tions, ammonium is actively taken up by high-affinity transporters like AmtB (see
below).

Most bacteria grow with ammonium as nitrogen source, while exclusively dia-
zotrophic species are able to use atmospheric dinitrogen (N2). All diazotrophs
synthesize nitrogenase, a highly conserved enzyme which catalyzes the reduction
of N2 to NH3 (4.1). Since nitrogen fixation is a highly energy-demanding process,
synthesis of nitrogenase is inhibited as long as ammonium is available (see below):

N2 + ≥ 16 ATP + 8 e− + 8 H+ → 2 NH3 + H2 + ≥ 16ADP + ≥ 16 Pi (4.1)

Nitrogen fixation (nif) genes were originally defined for the diazotrophic model
bacterium Klebsiella pneumoniae (Dixon and Kahn 2004). The structural genes
of nitrogenase (nifHDK) encode dinitrogenase reductase (Fe protein, NifH2) and
dinitrogenase (MoFe protein, NifD2–NifK2). Dinitrogenase contains a unique iron–
molybdenum cofactor FeMoco, which is the site of N2 reduction (Seefeldt et al.
2009). FeMoco biosynthesis requires the products of several genes including nifU,
nifS, nifB, nifQ, nifV, nifE, and nifN (Hu et al. 2008). While nifHDK and most of
the above-mentioned FeMoco biosynthesis genes are present in all diazotrophs, the
central regulatory gene nifA is restricted to proteobacteria.

In addition to molybdenum-dependent nitrogenase (Mo-nitrogenase) contain-
ing FeMoco, some diazotrophs synthesize one or two alternative (in the sense of
Mo-independent) nitrogenases (Glazer and Kechris 2009). Vanadium-dependent
nitrogenase (V-nitrogenase) contains an iron–vanadium cofactor (FeVco), while
iron-only nitrogenase contains a heterometal-free cofactor (FeFeco). V-nitrogenase
and Fe-nitrogenase are encoded by distinct sets of genes, namely the vnf (vanadium-
dependent nitrogen fixation) and the anf (alternative nitrogen fixation) genes.
Alternative nitrogenases are advantageous when molybdenum becomes limiting
(Maynard et al. 1994). On the other hand, V- and Fe-nitrogenases exhibit lower
specific activities than Mo-nitrogenase, and thus, Mo-nitrogenase is the preferred
enzyme as long as molybdenum is available (Schneider et al. 1994). To provide
Mo-nitrogenase with molybdenum at low external concentrations, many diazotrophs
synthesize ABC-type, high-affinity molybdate uptake systems (ModABC) (Self
et al. 2001).

4.1.2 Diazotrophic Purple Nonsulfur Bacteria

N2-fixing species are found in most bacterial families and in methanogenic
archaea, but not in eukaryotes. Besides diazotrophic species, these families include
non-diazotrophic species, the latter being generally in the majority. Remarkably,
the ability to fix dinitrogen is almost universal among members of the purple
nonsulfur bacterial family (Madigan et al. 1984). Diazotrophic growth has been
reported for numerous strains belonging to the genera Rhodobacter, Rhodocyclus,
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Rhodomicrobium, Rhodopseudomonas, and Rhodospirillum. However, to date about
95% of all publications concerning nitrogen fixation in purple nonsulfur bacteria
deal with only four model organisms, namely Rhodobacter capsulatus, Rhodobacter
sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum. These
strains differ considerably regarding generation times under N2-fixing conditions
with the shortest doubling times (about 3 h) being observed for R. capsulatus
(Madigan et al. 1984).

This review will focus on the regulation of nitrogen fixation in R. capsula-
tus. First, ammonium control of synthesis and activity of Mo- and Fe-nitrogenase
will be briefly depicted (Masepohl and Forchhammer 2007; Masepohl and Kranz
2009). Here, emphasis will be on the roles of PII-type signal transduction pro-
teins, GlnB and GlnK, and the ammonium transporter, AmtB (Drepper et al. 2003;
Pawlowski et al. 2003; Tremblay and Hallenbeck 2008; Tremblay and Hallenbeck
2009; Tremblay et al. 2007). Second, molybdenum control of anfA (encoding the
activator of Fe-nitrogenase genes), modABC (encoding the high-affinity Mo trans-
porter), and mop (encoding a molbindin-like protein) will be described in more
detail (Kutsche et al. 1996; Wiethaus et al. 2006; Wiethaus et al. 2009). Finally,
selected aspects of nitrogen fixation in R. sphaeroides, R. palustris, and R. rubrum
will be addressed.

4.2 Nitrogen Fixation in R. capsulatus

4.2.1 Organization of Nitrogen Fixation Genes

Rhodobacter capsulatus harbors more than 50 nitrogen fixation-related genes, most
of which are clustered in four unlinked regions of the chromosome designated nif
region A, B, C, and D (Masepohl and Klipp 1996, www.ergo-light.com). Among
the nitrogen fixation genes are the homologues of the “classical” K. pneumoniae
nif genes mentioned above. Region A contains genes involved in electron sup-
ply to nitrogenase (rnfABCDGEH, rnfF, and fdxN), FeMoco biosynthesis (nifEN,
nifQ, nifSV, and nifB1), and nitrogen regulation (nifA1). The rnf genes originally
defined as Rhodobacter-specific nitrogen fixation genes (Schmehl et al. 1993)
have meanwhile been detected in several other diazotrophs as well as a variety
of other bacteria where they perform metabolic functions unrelated to nitrogen
fixation. Region B contains the structural genes of Mo-nitrogenase, nifHDK, the
nitrogen regulatory genes rpoN and nifA2, the FeMoco biosynthesis gene nifB2,
genes involved in molybdenum uptake (modABC), and two molybdenum regu-
latory genes (mopA, mopB). Region C contains the ntrBC genes coding for a
two-component regulatory system, which acts on top of the nitrogen regulatory
cascade (see below). Region D contains the nitrogen regulatory anfA gene and the
structural genes of Fe-nitrogenase, anfHDGK. Genes coding for PII signal trans-
duction proteins (glnB, glnK), a high-affinity ammonium transporter (amtB), and
proteins involved in post-translational regulation of nitrogenase (draTG) are located



52 B. Masepohl and P.C. Hallenbeck

elsewhere in the chromosome (Drepper et al. 2003; Masepohl et al. 1993; Yakunin
and Hallenbeck 2002).

Several R. capsulatus nitrogen fixation genes exist in duplicate. Among these
are the FeMoco biosynthesis genes nifB1/nifB2, the regulatory genes nifA1/nifA2,
and mopA/mopB (Masepohl et al. 1988; Wang et al. 1993). Like most bacteria,
R. capsulatus harbors two PII genes, glnB and glnK (Drepper et al. 2003). The
products of the respective gene pairs can (at least partially) substitute for each other,
and thus, clear phenotypes require analysis of double mutants.

Several nif genes are not only essential for activity of Mo-nitrogenase but are, in
addition, required for activity of Fe-nitrogenase (Schüddekopf et al. 1993). These
are the rnf genes involved in electron supply, as well as the FeMoco biosynthesis
genes nifV and nifB. The requirement of NifV (homocitrate synthase) and NifB
(catalyzing synthesis of NifBco, a Mo-free precursor of FeMoco) together with
other findings suggests that FeFeco is structurally similar to FeMoco except for
the “substitution” of molybdenum by iron.

4.2.2 Activation of Nitrogen Fixation Genes Under
Nitrogen Limitation

Under nitrogen-limiting conditions, the sensor kinase NtrB autophosphorylates and,
in turn, serves as phosphodonor for its cognate response regulator, NtrC (Cullen
et al. 1996). In its phosphorylated form, NtrC binds to its target promoters and acti-
vates transcription of its target genes including nifA1 and nifA2 (Fig. 4.1; Cullen
et al. 1996; Masepohl et al. 2001). In contrast to NtrC proteins from other dia-
zotrophs, which activate transcription in concert with the nitrogen-specific sigma
factor RpoN, R. capsulatus NtrC acts together with the housekeeping sigma factor
RpoD (Bowman and Kranz 1998; Foster-Hartnett and Kranz 1992; Foster-Hartnett
et al. 1994).

NifA1 and NifA2 exhibit 97% identity to each other and differ only in their
extreme N-terminal amino acid sequences (Masepohl et al. 1988). The two NifA
proteins functionally substitute for each other, and either of them is sufficient to
activate transcription of the structural genes of Mo-nitrogenase, nifHDK, and all
the other nif genes (Fig. 4.1; Masepohl et al. 1988). Like NifA proteins from other
bacteria, NifA1 and NifA2 activate transcription of their target genes in concert with
RpoN. Expression of the R. capsulatus rpoN gene itself depends on NifA and RpoN
(Cullen et al. 1994; Hübner et al. 1993; Preker et al. 1992). Finally, apo-nitrogenase
proteins are synthesized and assembled, prior to insertion of FeMoco.

In addition to nifA1 and nifA2, NtrC activates transcription of anfA (Fig. 4.1;
Cullen et al. 1998; Kutsche et al. 1996). As outlined below in more detail, anfA
transcription is repressed by molybdenum (Wang et al. 1993; Wiethaus et al.
2006). Thus, anfA expression occurs exclusively in the absence of both ammonium
and molybdenum. In turn, AnfA activates transcription of the structural genes of
Fe-nitrogenase, anfHDGK, a prerequisite for synthesis of active Fe-nitrogenase.
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Fig. 4.1 Nitrogen control of nitrogen fixation by GlnB and GlnK in R. capsulatus. The regula-
tory cascade leading to synthesis of Mo and Fe nitrogenase is highlighted in grey. Upon nitrogen
depletion, NtrC is phosphorylated, and thus activated. NtrC-P activates transcription starting at
the RpoD-dependent nifA1, nifA2, and anfA promoters (filled circles). For molybdenum repression
of anfA, see Fig. 4.3. NifA1, NifA2, and AnfA activate transcription starting at RpoN-dependent
nif and anf promoters (filled diamonds). Ammonium addition to a nitrogen-fixing culture affects
three regulatory levels. First, GlnB interacts with NtrB, and NtrB–GlnB promotes dephosphory-
lation of NtrC. Second, GlnB and GlnK interact with NifA1 and NifA2, which in turn are no
longer able to activate nif gene expression. Ammonium addition also inactivates AnfA, but the
putative interaction partner of AnfA has not been identified to date. Third, DraT is transiently acti-
vated by interaction with GlnB or GlnK, and in turn, DraT modifies nitrogenase reductases by
ADP-ribosylation

4.2.3 Nitrogen Control of nifA Expression by the Ntr System

As in other free-living diazotrophs, ammonium prevents synthesis of nitrogenase
in R. capsulatus. In contrast to ammonium, other sources of fixed nitrogen like
amino acids and urea do not inhibit nitrogen fixation (Masepohl et al. 2001) sug-
gesting that it is exclusively ammonium availability in the medium that determines
whether growth conditions are recognized as nitrogen replete or nitrogen lim-
ited. There is growing evidence that the high-affinity transporter AmtB acts as a
sensor of extracellular ammonium and, in response, controls nitrogen fixation by
reversible membrane sequestration of PII proteins (Tremblay and Hallenbeck 2008;
see below).

Sensing of the intracellular nitrogen status involves the Ntr system, which
is well-characterized for Escherichia coli (Jiang et al. 1998a, b, c). As in E.
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coli, the R. capsulatus Ntr system consists of the bifunctional enzyme GlnD
(uridylyltransferase/UMP-removing enzyme), two PII-like signal transduction pro-
teins, GlnB and GlnK, and the two-component regulatory system NtrB–NtrC. In
contrast to membrane-bound AmtB, the cytoplasmic Ntr system does not sense
ammonium but responds to the ammonium assimilation product glutamine (Gln),
the carbon skeleton 2-oxoglutarate, and the energy source ATP. These metabo-
lites bind synergistically to GlnD, GlnB, and GlnK, thus modifying the ability of
these proteins to interact with and control the activity of different target proteins.
Among these target proteins are NtrB, NifA1, NifA2, and DraT (Fig. 4.1; see below;
Pawlowski et al. 2003).

At low intracellular Gln concentrations (corresponding to nitrogen-limiting con-
ditions), GlnD uridylylates GlnB at a conserved tyrosine residue within the T-loop
(Forchhammer 2008). Upon modification, GlnB no longer interacts with the sen-
sor kinase NtrB, which can now autophosphorylate. As described above, transfer of
the phosphoryl group from NtrB to NtrC activates the response regulator, and thus
starts the regulatory cascade leading to nifA activation, expression of all the other
nif genes, and finally, synthesis of nitrogenase.

At high intracellular Gln concentrations (representing nitrogen-replete condi-
tions), GlnD removes the UMP moiety from GlnB, which in its unmodified form
interacts with NtrB, preventing autophosphorylation. Furthermore, the NtrB–GlnB
complex mediates rapid dephosphorylation of NtrC (Fig. 4.1; Pioszak and Ninfa
2004). The dephosphorylated form of NtrC is no longer able to activate nifA tran-
scription, and consequently, expression of the nitrogen fixation machinery fails to
occur.

As outlined below, GlnB and GlnK substitute for each other in post-translational
control of NifA and nitrogenase activities (Drepper et al. 2003). However, two lines
of evidence suggest that GlnK cannot replace GlnB regarding control of NtrB activ-
ity. First, in contrast to GlnB, GlnK failed to interact with NtrB in yeast two-hybrid
studies (Pawlowski et al. 2003). Second, deletion of the glnB gene is sufficient to
abolish ammonium inhibition of nifA1 and nifA2 transcription (Drepper et al. 2003).

4.2.4 Post-translational Control of NifA Activity

NifA proteins function as transcriptional activators of nif genes in proteobacteria
(Fischer 1994; Martinez-Argudo et al. 2004). They bind to conserved enhancer-
binding sites upstream of nif promoters and activate nif gene transcription in concert
with RNA polymerase (RNAP) containing the nitrogen-specific sigma factor RpoN.
Activity of NifA proteins is controlled by the nitrogen status and by oxygen, but the
mechanisms underlying sensing of nitrogen and oxygen differ between species.

NifA proteins, including R. capsulatus NifA1 and NifA2, typically consist of
three domains. The N-terminal GAF domain is involved in the nitrogen control
of NifA activity (Paschen et al. 2001). The central AAA domain is required for
ATP hydrolysis, and for interaction with RNAP–RpoN holoenzyme. The C-terminal
helix-turn-helix domain binds to enhancer-binding sites of the form TGT-N10-ACA.
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Rhodobacter capsulatus NifA1 and NifA2 belong to the oxygen-sensitive “rhi-
zobial” class of NifA proteins, which is characterized by a cysteine-rich linker
between the central and the C-terminal domains (Fischer et al. 1988; Fischer 1994).
This interdomain linker is thought to respond to changes in the redox status, thus
preventing nif gene expression under conditions unfavorable for the extremely
oxygen-sensitive nitrogenase enzyme.

Either GlnB or GlnK is sufficient to inhibit NifA1 and NifA2 activity upon
ammonium addition to a nitrogen-fixing culture (Drepper et al. 2003). Both PII
proteins interact directly with NifA1 and NifA2 (Pawlowski et al. 2003). Since
ammonium addition typically leads to deuridylylation of PII proteins, it seems
likely that the unmodified forms of GlnB and GlnK interact with NifA1 and NifA2.
Concurrent deletion of both PII genes relieves ammonium inhibition of NifA1 and
NifA2, suggesting that neither GlnB nor GlnK alone is essential for NifA1 or NifA2
activity (Drepper et al. 2003).

4.2.5 Post-translational Control of Mo-nitrogenase Activity

Given the relatively high energy demands of nitrogenase it is remarkable that rela-
tively few diazotrophs are capable of modulating its activity in response to sudden
environmental changes. However, many purple nonsulfur photosynthetic bacteria,
including R. capsulatus, as well as a number of other proteobacteria, possess a nitro-
genase Fe protein (NifH) modification/demodification system, DraT (dinitrogenase
reductase ADP-ribosyltransferase) and DraG (dinitrogenase reductase glycohydro-
lase), that reversibly inhibits its interaction with the nitrogenase MoFe protein
through the addition of an ADP-ribose group to Arg101 of one of the two sub-
units of the homodimer. In fact, DraT is capable of modifying both NifH and AnfH
(Masepohl et al. 1993). A simple view is that modification controls nitrogenase
activity. Modification is triggered by the perception of environmental signals, either
an increase in fixed nitrogen or the sudden absence of light (which presumably leads
to energy deprivation). Subsequent reversal of the signal brings about demodifica-
tion. However, analysis shows that rather than being an all or nothing phenomenon,
cells growing under some nitrogen regimes (partial nitrogen limitation) contain a
fraction of their NifH in its ADP-ribosylated form (Yakunin and Hallenbeck 1999).
As well, the nitrogen status of the cells, which obviously can be affected by particu-
lar growth conditions, affects the manner in which the modification reaction occurs
(Yakunin and Hallenbeck 1998). Highly nitrogen-limited cultures show classical
switch-off, with almost immediate and complete cessation of nitrogenase activity
upon ammonium addition followed by complete recovery after consummation of the
added ammonium. On the other hand, moderately nitrogen-limited cultures show a
different kinetic response which has been termed the magnitude response. Similar
effects can be seen with photoheterotrophically grown cells that are assayed in the
dark in the presence of small amounts of oxygen (Yakunin and Hallenbeck 2000).

However, the situation appears to be more complex in R. capsulatus which pos-
sesses a second system capable of the post-translational control of nitrogenase
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activity. This can be readily demonstrated with mutant strains that lack DraT/DraG
activity (Yakunin and Hallenbeck 1998) or in strains carrying mutant NiFH alle-
les that are unmodifiable due to alteration of Arg101 (Pierrard et al. 1993). How
this second system, independent of ADP-ribosylation, functions is unclear, but
it shares common regulatory elements with the better characterized DraT/DraG
system, including the PII proteins GlnB/GlnK and AmtB (see below).

There is a growing consensus that PII proteins play a direct role in regulat-
ing DraT/DraG activity based on detailed studies with R. capsulatus, R. rubrum
(see later), and Azospirillum brasilense. Mo-nitrogenase is synthesized in a glnB–
glnK double mutant and, moreover, it is active and unmodified (in the presence of
ammonia), indicating that one or both of the PII proteins are absolutely required
for DraT/DraG regulation (Drepper et al. 2003). In addition, yeast two-hybrid stud-
ies have shown that GlnB and GlnK interact with DraT (Pawlowski et al. 2003).
This might lead one to think that one PII protein could substitute for the other and
that therefore single mutants would show normal nitrogenase regulation. However,
this is not the case as shown by a recent study in which individual GlnB and GlnK
knockout mutants were generated and studied (Tremblay et al. 2007). For reasons
that are not completely clear both GlnB and GlnK appear necessary to properly
regulate nitrogenase. GlnB and GlnK are themselves subject to covalent modifica-
tion, addition/removal of an UMP group by GlnD, and their modification status is
responsive to the nitrogen status of the cell as well as regulating their activity in
controlling nitrogen metabolism. Thus, absence of one of the two PII proteins could
lead to aberrant levels of nitrogen metabolites thereby affecting the activity of the
PII protein that is present and indirectly abrogating nitrogenase regulation. Indirect
evidence for this is the fact that the modification state of the PII protein present in
mutant cells is different than that found with wild-type cells under the same condi-
tions (Tremblay et al. 2007). Future analysis of intracellular metabolite levels could
be used to directly verify this hypothesis. Possible roles of the PII proteins are shown
in Fig. 4.2 and further discussed below.

�

Fig. 4.2 (continued) modification with UMP, which itself is sensitive to changes in these metabo-
lite pools. Under limiting nitrogen conditions, the 2-OG/Gln ratio is high and both enzymes
are largely inactive. Upon addition of ammonium, DraT becomes active, modifying the Fe pro-
tein (NifH) of nitrogenase with an ADP-ribose and inactivating it. At the same time, GlnK
is sequestered by the membrane-bound AmtB and probably forms a ternary complex with the
nitrogenase–demodifying enzyme DraG. Membrane-bound DraG is thought to be inactive. GlnK
binding to AmtB is thought to inactivate ammonium transport. AmtB must bind NH3, or perhaps
even partially transport it, for the complex to be productive. A possible mechanism for switch-off
independent of ADP-ribosylation is shown in (b). Studies have shown that DraT and DraG are
dispensable for this process but that both GlnB and GlnK, as well as AmtB, are required. Here
the hypothesis is that nitrogenase activity is controlled via effects on the Rnf complex, a specific
membrane-bound complex essential for electron transport to nitrogenase under photoheterotrophic
conditions. Changes in metabolite pools caused by ammonium addition would again cause mem-
brane sequestration of GlnK by AmtB. In this case, it is suggested that the GlnK–AmtB complex
could recruit one or more components of the Rnf complex, thereby inactivating its ability to supply
the necessary electrons for nitrogenase activity. Experimental evidence in support of this has not
yet been obtained
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Fig. 4.2 Post-translational control of nitrogenase activity and membrane sequestration of PII pro-
teins in R. capsulatus. GlnB, GlnK, and AmtB have all been implicated in both mechanisms of
the post-translational control of nitrogenase activity, often called nitrogenase switch-off: the ADP-
ribosylation process (a) and an ADP-ribosylation-independent process (b). However, not all the
molecular details of these processes are known. Here we present hypotheses as to how these may
function based on analogy with other systems or speculation, given some of the factors that are spe-
cific to R. capsulatus. Switch-off with ADP-ribosylation is shown in (a). The PII proteins, GlnB
and GlnK, control the activity of the two modifying enzymes DraT and DraG, most likely through
direct protein–protein interactions, as shown for DraT. Association can be driven either directly
by changes in metabolite pools, 2-oxoglutarate (2-OG) and glutamine (Gln), or ATP/ADP, or by
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4.2.6 Nitrogen Control of the Alternative Fe-nitrogenase

Expression of anfA (coding for the central activator of Fe-nitrogenase genes) is
under dual control. First, as described above for nifA1 and nifA2, NtrC is strictly
required for activation of anfA transcription upon depletion of fixed nitrogen
(Kutsche et al. 1996). Second, transcription of anfA is repressed by molybdenum
(see below; Kutsche et al. 1996; Wiethaus et al. 2006). Thus, anfA is exclusively
expressed upon dual limitation for fixed nitrogen and molybdenum. In turn, AnfA
activates transcription of the structural genes of Fe-nitrogenase, anfHDGK, and its
other target genes in concert with RNAP–RpoN (Schüddekopf et al. 1993).

Similar to NifA1 and NifA2, AnfA activity does not depend on GlnB or GlnK
(Drepper et al. 2003). As is the case for the NifA proteins, AnfA activity is inhibited
by ammonium (Drepper et al. 2003). However, the mechanisms underlying ammo-
nium inhibition of the NifA proteins and AnfA differ. While ammonium inhibition
of NifA1 and NifA2 is mediated by direct interaction with GlnB or GlnK, ammo-
nium inhibition of AnfA does not depend on the PII proteins. Like Mo-nitrogenase,
Fe-nitrogenase is post-translationally controlled by the DraT/DraG system (Drepper
et al. 2003; Masepohl et al. 1993).

4.3 Nitrogen Control of Nitrogen Fixation by AmtB

4.3.1 Transport and Sensing of Ammonium by Bacterial
AmtB Proteins

Members of the Amt/Rh family of transporters are found almost ubiquitously in
all forms of life. For a long time it was thought that their primary function was to
transport ammonium (NH4

+), but recent studies have shown that some members of
this family may function as sensors, regulating cellular metabolism in response to
changes in external ammonium concentrations (Tremblay and Hallenbeck 2009).
Indeed, since biological membranes are permeable to ammonia (NH3), which exists
in equilibrium with ammonium, under most cases there is little need for a dedi-
cated ammonium transporter. However, Amt is necessary for the optimal growth
of some microorganisms at acidic pH when the extracellular concentration of
NH3 is quite low (Marini et al. 1997; Soupene et al. 1998). Another important
transport-related activity of Amt is the cyclic retention of NH3 lost from the cell
by diffusion, particularly relevant in the case of diazotrophs, such as R. capsulatus,
where AmtB recovers NH3 molecules produced by nitrogenase at high energetic
cost (Yakunin and Hallenbeck 2002). Bacterial AmtB, although acting on NH4

+,
appears to actually transport the uncharged species, NH3. NH4

+ is deprotonated at
the AmtB periplasmic interface and reprotonated at the cytoplasmic interface with
a net transfer (co-transport) of a proton (Fong et al. 2007; Ludewig et al. 2007).

Recent evidence indicates that Amt proteins can also serve as important sen-
sor functions, at least in some organisms (Tremblay and Hallenbeck 2009). In a
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variety of fungi Amt senses the extracellular NH4
+ concentration leading to diploid

pseudohyphal growth or haploid invasive growth (Marini et al. 2006; Rutherford
et al. 2008). In Saccharomyces cerevisiae, NH4

+ transport appears to be necessary
but not sufficient to trigger cell differentiation (Boeckstaens et al. 2008; Rutherford
et al. 2008). The first evidence that prokaryotic Amt proteins (AmtB) can func-
tion as a sensor was obtained in R. capsulatus when it was found that an AmtB
null mutant was totally defective in the post-translational regulation of nitroge-
nase with both the ADP-ribosylation-dependent and ADP-ribosylation-independent
pathways being affected (Yakunin and Hallenbeck 2002). This signaling mecha-
nism, also being studied in R. rubrum (Wang et al. 2005; Wolfe et al. 2007) and
A. brasilense (Huergo et al. 2007), acts through the PII proteins (Tremblay et al.
2007; see also below). Moreover, recent evidence has been presented that trans-
port by AmtB is essential for its sensing function and the consequent regulation
(Tremblay and Hallenbeck 2008).

4.3.2 Membrane Sequestration of PII Proteins by AmtB

Amt proteins are often encoded by glnK–amtB or amtB–glnK operons, strongly sug-
gesting a possible physical interaction between the glnK-encoded PII proteins and
AmtB of potential regulatory significance (Javelle and Merrick 2005). Indeed, a
number of studies have shown that ammonium treatment induces AmtB-dependent
membrane sequestration of PII proteins, and this has been shown to be the case
for R. capsulatus (Tremblay et al. 2007). Rhodobacter capsulatus possesses two
PII proteins, GlnB and GlnK, and two potential Amt proteins, AmtB and AmtY.
The function of AmtY, which should probably be renamed AmtB2, is unclear since,
even though it is differentially expressed under nitrogen-limiting conditions, it does
not transport ammonium nor does it seem to be involved in nitrogenase regulation.
AmtB (AmtB1) is capable of binding both GlnB and GlnK but appears to prefer-
entially bind GlnK in response to an ammonium addition (Tremblay et al. 2007),
potentially allowing for differential regulation of the different targets of the two
PII proteins. As mentioned before, binding of GlnK by AmtB in response to an
ammonium shock is a prerequisite for nitrogenase regulation. Under the culture
conditions used, nitrogenase regulation in response to energy deprivation, i.e., in
response to darkness, appears to be independent of the sequestration of GlnK by
AmtB (Tremblay et al. 2007; Yakunin and Hallenbeck 2002).

Understanding the details of nitrogenase regulation in response to ammonium
therefore requires knowledge of the factors that drive the GlnK–AmtB associa-
tion. X-ray analysis of an E. coli AmtB–GlnK complex suggests that only the
deuridylylated form of GlnK could bind as modification of the GlnK T-loop should
sterically prevent its interaction with AmtB. However, several lines of evidence sug-
gest that the modification status of R. capsulatus GlnK is not the factor driving
the interaction (Tremblay et al. 2007). First, the sequestration of an unmodifiable
(Y51F) GlnK variant is nevertheless appropriately regulated by the absence and
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the presence of ammonium. Second, wild-type GlnK is apparently largely unmodi-
fied, even under nitrogen-limiting conditions, in a GlnB-deficient strain and in this
case too, sequestration proceeds normally. Therefore, membrane association must
be responding to changes in small metabolite pools, probably 2-oxoglutarate and/or
ATP–ADP, effectors known to bind to PII proteins and alter their properties. In fact,
a recent study in the archaeon Methanococcus jannaschii showed that complex for-
mation is specifically prevented by changes in the structure of GlnK induced by
the effector molecules Mg-ATP and 2-oxoglutarate (Yildiz et al. 2007). Finally, it
should be noted that even though binding of GlnK by AmtB is required for nitro-
genase activity regulation, by itself complex formation is not sufficient (Tremblay
and Hallenbeck 2008). AmtB transport function also appears to be required since
some transport-incompetent AmtB variants, i.e., F131A, H193A, and H342A, form
ammonium-induced complexes with GlnK but fail to properly regulate nitrogenase.
Ultimately, the function of an effective membrane complex of GlnK and AmtB is
probably to sequester DraG, as has been shown in A. brasilense and R. rubrum
(see below), thus physically separating it from its substrate, NifH, and allowing
the inactive ADP-ribose modified form to accumulate. Formation of a ternary com-
plex involving DraG has yet to be experimentally demonstrated in R. capsulatus.
A model summarizing these results and hypotheses is shown in Fig. 4.2.

4.4 Molybdenum Control of Nitrogen Fixation

4.4.1 Molybdenum Regulation of Mo Uptake and Fe-Nitrogenase
Expression

In general, Mo-nitrogenases exhibit higher N2 reduction rates than do Mo-free
nitrogenases, and therefore, bacteria preferentially synthesize Mo-nitrogenase as
long as sufficient amounts of molybdenum are available (Masepohl et al. 2002).
Naturally, when molybdenum becomes limiting under nitrogen-limiting conditions,
synthesis of Mo-free nitrogenases becomes essential for nitrogen fixation-dependent
growth.

Like many bacteria, R. capsulatus synthesizes a high-affinity molybdenum
uptake system, ModABC (Wang et al. 1993). This ABC-type transporter consists
of a periplasmic molybdate-binding protein (ModA), a membrane-spanning protein
(ModB), and a cytoplasmic ATP-binding protein (ModC). The ModABC uptake
system enables R. capsulatus to fix N2 by Mo-nitrogenase down to nanomolar con-
centrations of molybdenum in the medium (Wang et al. 1993; Wiethaus et al. 2006).
Mutants defective for the transporter require about 500 times higher molybdenum
concentrations than the wild type to reach comparable Mo-nitrogenase activity.
Accordingly, modABC mutants express Fe-nitrogenase at molybdenum concentra-
tions of up to 1 μM, while the wild type represses Fe-nitrogenase at much lower
concentrations (see below; Wang, Angermüller and Klipp 1993).
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The R. capsulatus ModABC transporter genes form part of the mopA–modABC
operon (Wang et al. 1993). Transcription starting at the mopA promoter is under dual
control (Kutsche et al. 1996). First, NtrC activates mopA transcription upon nitrogen
depletion. Second, MopA and MopB repress mopA transcription in the presence of
molybdenum. Thus, MopA negatively autoregulates its own expression (Fig. 4.3a).
The monocistronic mopB gene is located upstream of mopA but reads in the opposite
direction. In contrast to mopA, expression of mopB is not controlled by fixed nitro-
gen or molybdenum (Wiethaus et al. 2006). Consequently, the MopA/MopB ratio
is thought to vary significantly in response to the availability of fixed nitrogen and
molybdenum, thus providing a mechanism for fine-tuning of target gene expression
(see below; Wiethaus et al. 2009). In the end, repression of the mopA–modABC
operon by MopA and MopB limits the amount of the molybdenum uptake system
at high molybdenum concentrations. Uptake of molybdenum from the medium at
concentrations in the micromolar range and above does not depend on ModABC
but involves an as yet uncharacterized transport system (Wang et al. 1993; Wiethaus
et al. 2006).

MopA

MopB

anfAmopA-modABCmopB

MopA

MopB

mop

MopA

H  T  H MOP MOPB

A

C

Fig. 4.3 Gene regulation by MopA and MopB in R. capsulatus. (a) Either MopA or MopB is
sufficient to repress transcription of the mopA–modABC operon and the anfA gene at high molyb-
denum concentrations. Exclusively MopA is able to activate mop transcription. (b) MopA and
MopB consist of an N-terminal DNA-binding domain (encompassing a helix-turn-helix motif)
and a C-terminal molybdate-binding bi-MOP domain. (c) MopA and MopB bind to conserved
palindromic sequences (Mo-boxes) of their respective target genes. Conserved nucleotides are
highlighted in grey. Transcription start sites are marked by folded arrows below the nucleotide
sequences. Distances of the Mo-boxes to the translation start sites (ATG) are indicated
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Like the mopA–modABC operon, the anfA gene is repressed by MopA and MopB
in response to increasing molybdenum concentrations (Fig. 4.3a; Kutsche et al.
1996; Wiethaus et al. 2006). AnfA is essential for activation of Fe-nitrogenase genes
and consequently, anfA repression prevents expression of Fe-nitrogenase genes. In
vivo activity of Fe-nitrogenase is maximal at molybdenum concentrations below
1 nM (Wang et al. 1993). At concentrations above 100 nM, Fe-nitrogenase activity
is no longer detectable. At molybdenum concentrations around 10 nM both Fe- and
Mo-nitrogenases exhibit half-maximal activities.

4.4.2 Gene Regulation by the Molybdenum-Responsive Regulators
MopA and MopB

The molybdenum-binding regulators MopA and MopB of R. capsulatus encompass
265 and 261 amino acid residues, respectively. Both exhibit clear similarity to their
E. coli counterpart, ModE, over the entire length of the proteins. ModE-like regula-
tors consist of an N-terminal DNA-binding domain with a helix-turn-helix motif and
a C-terminal molybdate-binding domain (Fig. 4.3b; Hall et al. 1999; Schüttelkopf
et al. 2003). The latter domain consists of two MOP domains each encompassing
about 70 amino acid residues. MOP domains typically include a SARN motif and
other highly conserved amino acids involved in molybdate coordination (Pau 2004;
Wiethaus et al. 2009). Binding of molybdate to the bi-MOP domain leads to con-
formational changes which increase the affinity of the regulators for their target
promoters. These target promoters contain highly conserved palindromic sequences
(Mo-boxes), which are recognized and bound by the regulators (Fig. 4.3c; Kutsche
et al. 1996; Wiethaus et al. 2006).

MopA and MopB form homodimers as apo-proteins and in the molybdate-bound
state (Wiethaus et al. 2009). Both the DNA-binding and the molybdate-binding
domains contribute to dimer formation. MopA and MopB bind four molybdate
oxyanions per dimer, while ModE binds only two molybdate oxyanions per dimer
(Gourley et al. 2001). This difference might be explained by a low conservation of
the molybdate-coordinating amino acids in the second MOP domain of ModE. In
addition to homodimers, MopA and MopB form heteromers thought to be involved
in fine-tuning of target gene expression (Wiethaus et al. 2009).

MopA or MopB exhibits overlapping functions as either of these regulators is
sufficient to repress transcription of the mopA–modABC operon and the anfA gene in
response to increasing molybdenum concentrations (Fig. 4.3a; Kutsche et al. 1996;
Wiethaus et al. 2006). In addition to its role as a repressor, MopA acts as an activator
of mop gene transcription (Wiethaus et al. 2006). This role of MopA is specific,
since MopB cannot substitute for MopA regarding mop activation (Fig. 4.3a).

The mop gene codes for a small molbindin-like protein consisting of a sin-
gle MOP domain (Wiethaus et al. 2006). Molbindins have been hypothesized to
play roles in molybdenum homeostasis and storage, but to date, experimental evi-
dence for this assumption is lacking (Grunden and Shanmugam 1997; Pau 2004).
The R. capsulatus Mop protein forms hexamers binding six molybdate oxyanions
(Wiethaus et al. 2009). Mop specifically interacts with MopB (but not with MopA)
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suggesting that Mop might serve as a specific molybdenum buffer for MopB. It is
worth noting, however, that R. capsulatus strains lacking Mop are not impaired in
diazotrophic growth via Mo-nitrogenase or in molybdenum repression of anfA.

MopA and MopB bind to the promoters of the anfA gene and the mopA–modABC
operon (Wiethaus et al. 2006). The anfA–Mo-box is both essential and sufficient for
binding of both regulators and anfA repression (Kutsche et al. 1996; Müller and
Masepohl, unpublished results). As typical repressor binding sites, the anfA–Mo-
box and the mopA–Mo-box overlap the respective transcription start sites (Fig. 4.3c;
Kutsche et al. 1996). Thus, binding of MopA or MopB prevents binding of RNA
polymerase, and consequently, transcription is not initiated.

MopA (but not MopB) binds to the mop promoter region (Wiethaus et al. 1996).
The mop–Mo-box is essential for MopA binding and mop gene activation (Müller
and Masepohl, unpublished results). As a typical activator-binding site, the mop–
Mo-box does not overlap the transcription start site but instead precedes the putative
promoter (Fig. 4.3c; Wiethaus et al. 2006). Close proximity of the mop–Mo-box and
the putative promoter suggests that MopA and RNA polymerase directly interact
without the necessity of DNA bending.

4.5 Nitrogen Fixation in Other Purple Nonsulfur Bacteria

4.5.1 Nitrogen Fixation in R. sphaeroides

Rhodobacter sphaeroides synthesizes a molybdenum-dependent nitrogenase. Most
studies on nitrogen fixation in this species were done with strain 2.4.1,
which does not synthesize an alternative nitrogenase. In contrast, the halophilic
R. sphaeroides strain KD131 possibly synthesizes Fe-nitrogenase as predicted from
genome sequence analysis (Lim et al. 2009).

As is the case for R. capsulatus and other free-living diazotrophs, expression
of R. sphaeroides nif genes is inhibited by ammonium (Zinchenko et al. 1997).
However, strains defective for carbon dioxide fixation accumulate mutations, lead-
ing to synthesis of active Mo-nitrogenase even in the presence of ammonium
(Joshi and Tabita 1996). In these mutants, Mo-nitrogenase is thought to substi-
tute for ribulose bisphosphate carboxylase as an electron sink. At least some of
the “gain-of-function” mutations involved appear to be in nifA (R. Tabita, personal
communication). Rhodobacter sphaeroides is devoid of a DraT/DraG system con-
trolling the activity of nitrogenase reductase (Yakunin et al. 2001). Transfer of the
R. capsulatus draTG genes into R. sphaeroides, however, enables this strain to
reversibly modify nitrogenase reductase upon ammonium addition.

4.5.2 Nitrogen Fixation in R. palustris

Rhodopseudomonas palustris is one of the only few diazotrophs able to synthe-
size three nitrogenases: Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase (Oda
et al. 2005). As described above for R. capsulatus, Mo-nitrogenase is the preferred
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enzyme in R. palustris, but regulation of alternative nitrogenases clearly differs
between the two species. In the presence of molybdenum, synthesis of R. capsulatus
Fe-nitrogenase is inhibited via anfA repression by the ModE-like regulators MopA
and MopB (Kutsche et al. 1996; Wiethaus et al. 2006). Rhodopseudomonas palustris
harbors a modE-like gene (RPA0147), suggesting that this bacterium in principle
regulates gene expression in response to molybdenum. In contrast to R. capsula-
tus, however, expression of vnf and anf genes is not repressed by molybdenum in
R. palustris (Oda et al. 2005). Rhodopseudomonas palustris mutants defective for
Mo-nitrogenase synthesize functional V- and Fe-nitrogenases even at high molyb-
denum or vanadium concentrations. Thus, R. palustris might control expression
of both alternative nitrogenases primarily in response to the fixed nitrogen status
indirectly reflecting molybdenum availability by Mo-nitrogenase activity.

Rhodopseudomonas palustris mutants constitutively producing molecular hydro-
gen have been isolated which synthesize NifA variants carrying substitutions
between the N-terminal regulatory GAF domain and the central AAA domain (Rey,
Heiniger and Harwood 2007). These NifA variants are sufficient to activate nif gene
expression even in the presence of ammonium. Interestingly, during growth in the
presence of ammonium, Mo-nitrogenase is not significantly inactivated by DraT,
which is constitutively expressed in R. palustris.

4.5.3 Nitrogen Fixation in R. rubrum

In contrast to R. capsulatus, expression of the R. rubrum nifA gene is independent
of NtrC and occurs even in the presence of ammonium (Zhang et al. 1995; Zhang
et al. 2000). In the presence of ammonium, NifA exists in an inactive form which
does not promote nif gene transcription. Upon nitrogen limitation, NifA is converted
into its active form. NifA activation requires interaction with the uridylylated form
of GlnB (Zhang et al. 2005). Several GlnB variants showing improved interaction
with NifA were identified, which activate NifA in the presence of ammonium as
well as in a glnD mutant background (Zhu et al. 2006). GlnD is required for GlnB
uridylylation suggesting that these GlnB variants mimic the uridylylated form of the
signal transduction protein.

Conversion of R. rubrum NifA from its inactive into its active form involves a
conformational change. Several NifA variants with substitutions in the N-terminal
GAF domain were identified which no longer require GlnB for activation (Zou
et al. 2008). These substitutions most likely keep these NifA variants in an active
conformation.

In comparison with the R. capsulatus system for the post-translational regulation
of nitrogenase, the R. rubrum system presents some interesting differences and com-
plexities. For one thing, R. rubrum possesses three PII proteins: GlnB, two GlnK
homologues, GlnK and GlnJ, with GlnB being absolutely required for activation of
nif gene transcription, and either GlnB or GlnJ required for post-translational reg-
ulation of nitrogenase (Zhang et al. 2001). Uridylylation of either GlnB or GlnJ is
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necessary to activate DraG since glnD (uridylyl transferase) mutants fail to reacti-
vate nitrogenase after darkness-induced nitrogenase switch-off (Zhang et al. 2005).

Rhodospirillum rubrum possesses two AmtB homologues, AmtB1 and AmtB2,
but unlike R. capsulatus where the second homologue, AmtY, is not associated with
a PII protein, both homologues are in operons with PII proteins: glnJ–amtB1 and
glnK–amtB2 (Zhang et al. 2006). As well, it appears that only AmtB1, in concert
with either GlnB or GlnJ, is effective in carrying out nitrogenase regulation. The
possible cellular function of AmtB2 remains unknown.

In contrast to what has been observed with R. capsulatus (Yakunin and
Hallenbeck 2002), R. rubrum cultures in minimal medium without fixed nitro-
gen show a dependence on AmtB1 for darkness-induced nitrogenase regulation.
As might be expected, nitrogenase regulation depends upon the formation of an
AmtB1–GlnJ membrane complex (Wang et al. 2005; Zhang et al. 2006). As sug-
gested above for R. capsulatus, in vitro studies have shown that AmtB–PII complex
formation is disrupted by high levels of 2-oxoglutarate in the absence of ATP or low
levels of 2-oxoglutarate in the presence of ATP (Wolfe et al. 2007). A role for PII as
an energy sensor responding to the ratio of ATP to ADP is suggested by the fact that
ADP inhibits the destabilization of the GlnJ–AmtB1 complex in the presence of ATP
and 2-oxoglutarate. The importance of complex formation in nitrogenase regulation
has been directly shown by demonstrating the association of DraG with AmtB1 in
response to an ammonium shock (Wang et al. 2005). Thus, the major steps in the
ammonium-induced post-translational regulation of nitrogenase are similar between
R. rubrum, A. brasilense (Huergo et al. 2007), and R. capsulatus.

Like R. capsulatus, R. rubrum synthesizes an alternative Fe-nitrogenase (Lehman
and Roberts 1991). As described above for the alternative nitrogenases of R. palus-
tris, synthesis of R. rubrum Fe-nitrogenase is not inhibited by molybdenum, but
instead Fe-nitrogenase is expressed in strains lacking active Mo-nitrogenase.

4.6 Conclusions

The control of nitrogen fixation appears to employ similar principles in many
different diazotrophic bacteria. For example, nitrogen fixation is almost univer-
sally inhibited by ammonium, and Mo-nitrogenases are preferentially made over
alternative nitrogenases as long as molybdenum is available. However, “the devil
is in the details”; there is great variety in the underlying mechanisms by which
these principles are put into practice even among relatively closely related bacteria.
In many proteobacteria, including R. capsulatus, nifA transcription is activated by
NtrC upon nitrogen limitation, while nifA expression in some other species, like the
related R. rubrum, does not depend on NtrC. Only relatively few diazotrophs control
nitrogenase activity by a switch-off/on mechanism, while most other species “rely”
upon control of nifA transcription and/or control of NifA activity for regulation of
nitrogenase activity over a longer timescale. R. capsulatus controls expression of Fe
nitrogenase via Mo repression of anfA. In contrast, expression of alternative nitroge-
nases is not repressed by molybdenum in R. palustris and R. rubrum. This diversity
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is also seen by the fact that although different bacteria use similar modules to con-
trol nitrogen fixation, the mechanisms of these modules differ in various aspects
between different species. For example, in R. rubrum, NifA requires GlnB in order
to be active, while in R. capsulatus, NifA is fully active in the absence of PII pro-
teins, which, on the contrary, are capable of the negative modulation of NifA activity
in response to fixed nitrogen.

It is also interesting to note that several regulatory proteins controlling nitrogen
fixation are duplicated in R. capsulatus (GlnB/GlnK, NifA1/NifA2, MopA/MopB).
In some cases, deletion of individual genes does not produce a clear phenotype,
at least under the growth conditions as tested in the laboratory, suggesting that the
respective proteins (at least partially) substitute for each other. However, recent find-
ings clearly show that deletion of either glnB or glnK clearly affects the remaining
PII protein. Furthermore, the possible formation of heteromeric forms (GlnB–GlnK
and MopA–MopB) makes the interdependence of homologous proteins even more
difficult to clarify. Such heteromeric forms may indeed play a role in the fine-tuning
of nitrogen control, but, if so, this largely remains to be elucidated.

Finally, laboratory investigations often compare extreme environments, e.g.,
nitrogen-replete versus nitrogen-sufficient conditions or very low versus relatively
high concentrations of molybdenum. While this provides conditions suitable for
the clear-cut demonstration of underlying mechanisms, these situations, for exam-
ple, the addition of large amounts of ammonium to a nitrogen-fixing culture, are
unlikely to occur in nature. More often, an intermediate state is more likely to
pertain, and thus a graded response probably occurs. For example, the magnitude
response described for post-translational control of nitrogenase activity might more
accurately reflect the natural situation.
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Chapter 5
The Network of PII Signalling Protein
Interactions in Unicellular Cyanobacteria

Karl Forchhammer

Abstract PII signalling proteins constitute a large superfamily of signal perception
and transduction proteins, which is represented in all domains of life and whose
members play central roles in coordinating nitrogen assimilation. Generally, PII pro-
teins act as sensors of the cellular adenylylate energy charge and 2-oxoglutarate
level, and in response to these signals, they regulate central nitrogen assimilatory
processes at various levels of control (from nutrient transport to gene expression)
through protein–protein interactions with PII receptor proteins. An examination
of the phylogeny of cyanobacteria reveals that specific functions of PII signalling
evolved in this microbial lineage, which are not found in other prokaryotes. At
least one of these functions, regulation of arginine biosynthesis by controlling
the key enzyme N-acetyl-L-glutamate kinase (NAGK), was transmitted by the
ancestral cyanobacterium, which gave rise to chloroplasts, into the eukaryotic
domain and was conserved during the evolution of planta. We have investigated
in some detail the PII signalling protein, its signal perception and its interac-
tions with receptors in the unicellular cyanobacteria Synechococcus elongatus PCC
7942 and Synechocystis PCC 6803 and have performed comparative analysis with
Arabidopsis thaliana PII–NAGK interaction. This chapter will summarize these
studies and will describe the emerging picture of a complex network of PII protein
interactions in the unicellular cyanobacteria.

5.1 Introduction to the PII Signalling System

5.1.1 General Purpose and Evolution of PII Signalling

PII signalling proteins constitute a large superfamily of signal perception and trans-
duction proteins, which is represented in all domains of life (Sant’ Anna et al.
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2009). In all cases studied so far, the PII signalling proteins are central in regulating
processes related to nitrogen assimilation (Ninfa and Jiang 2005; Leigh and
Dodsworth 2007; Forchhammer 2008). An examination of the various phylogenetic
lineages of bacteria and archaea reveals a multitude of PII-dependent processes and
mechanisms of PII signalling. To our knowledge, PII signalling in eukaryotes is
limited to chloroplast-bearing organisms, where it is localized in the plastids and
descends from cyanobacterial PII signalling (Moorhead et al. 2007; Osanai and
Tanaka 2007). In spite of the general variability of regulatory roles played by PII,
there appears to be a common mode of function: PII proteins act as sensors of the
cellular adenylylate energy charge (by binding to the same ATP and ADP sites) and
of the 2-oxoglutarate level. These metabolites are sensed by PII through binding to
interdependent binding sites, on the one hand three sites for ATP or ADP (binding
competitively to the same sites) and on the other hand three sites for 2-oxoglutarate.
The occupation of these sites appears to result in various PII conformations, leading
to signal output by differential binding of PII to its receptors, which may be signal
transduction proteins, metabolic enzymes or transporters (Forchhammer 2008).

The wide phylogenetic distribution of PII with its high degree of structural con-
servation on one side, but functional variability on the other side, suggests that it
represents an ancient regulatory module, which was used in the course of evo-
lution to regulate a large variety of nitrogen-controlled processes, making use of
the unique signal perception mode of PII (Arcondeguy et al. 2001; Ninfa and
Jiang 2005; Forchhammer 2008). The phylogeny of cyanobacteria reveals that
specific functions of the PII signal transduction pathway evolved which are not
found in other prokaryotes (Forchhammer 2004, 2008; Osanai and Tanaka 2007).
At least one of these functions, the regulation of arginine biosynthesis by con-
trol of the key enzyme N-acetyl-L-glutamate kinase (NAGK), was transmitted by
the ancestral cyanobacterium, which gave rise to chloroplasts, into the eukaryotic
domain and was conserved during the evolution of planta. Other functions, such as
the modulation of nitrogen-dependent gene expression through interaction with a
transcriptional co-activator, seem to be restricted to cyanobacteria.

5.1.2 Nomenclature and Phylogenetic Distribution of PII
Signalling Proteins

With a few exceptions, PII proteins are encoded by genes termed glnB, glnK or nifI
(Leigh and Dodsworth 2007). Since PII proteins per se have no own enzymatic func-
tion, but are functionally versatile interacting proteins, there are no simple functional
criteria defining PII proteins. I propose that the term PII protein should be used for
proteins which display the structural and functional hallmarks of the hitherto char-
acterized PII proteins, namely the typical trimeric architecture and 3D structure,
with surface-exposed T-loops and effector molecule binding sites in the intersub-
unit clefts (see Fig. 5.1). Historically, the term PII designated an activity from an
Escherichia coli extract, regulating glutamine synthetase activity, that was found in
peak 2 of a gel filtration eluate (hence PII) (Stadtman 1990; Arcondeguy et al. 2001).
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Fig. 5.1 Structure of the non-liganded PII protein from S. elongatus PCC 7942. In this structure
(Xu et al. 2003; pdb 1qy7), the T-loops are in an extended conformation. Other T-loop conforma-
tions may appear upon ligand or receptor binding (see Forchhammer 2008 for review). The three
subunits are represented in magenta, blue and brown. (a) Side view of the trimeric PII protein. The
T-, B- and C-loops of two subunits are indicated; sulphur ions, occupying the adenylylate bind-
ing sites in the crystal, are shown. (b) View on the PII trimer from the bottom orientation of part
(a). The three adenylylate binding sites are indicated as ovals and are highlighted by the arrows;
residue 49, the site of phosphorylation, is indicated as black dot

After the corresponding protein was identified, the term PII was maintained and the
gene encoding this protein was termed glnB, since it was regulating the product of
the glnA gene, glutamine synthetase.

In proteobacteria, several PII paralogues with almost identical 3D structure and
high sequence conservation were subsequently discovered (Xu et al. 1998, 2001;
Benelli et al. 2002; for review, see Forchhammer 2008), and very often, the gene
for one or two of these paralogues is co-localized with an amtB gene encoding
an ammonium transporter (reviewed in Leigh and Dodsworth 2007). Those PII
encoding genes are now termed, with a few exceptions, glnK (Arcondeguy et al.
2001; Sant’ Anna et al. 2009). The co-localization of glnK and amtB reflects their
tight functional interaction as a GlnK–AmtB complex, whose structure has been
resolved (Gruswith et al. 2007; Conroy et al. 2007). Molecular genetic analysis and
genome sequencing have revealed the presence of numerous other PII homologues:
In nitrogen-fixing archaea and in some anaerobic bacteria, PII-like proteins, termed
NifI, have been found that are genetically linked to nitrogenase genes and are
phylogenetically related to each other (Leigh and Dodsworth 2007; Sant’ Anna
et al. 2009).

A recent bioinformatics analysis suggested on the basis of sequence similarity
and by improving the PROSITE signature of PII a novel group of PII-like proteins.
These are genetically linked to heavy metal resistance transporters (Sant’ Anna et al.
2009). Members of this novel group of potential PII proteins, which was termed PII-
NG (new group), have not been functionally characterized so far, and it remains to
be shown if these proteins really display PII features as defined above.
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PII proteins from cyanobacteria and plants are likely to be homophyletic (Osanai
and Tanaka 2007; Sant’ Anna et al. 2009). At the time of the first discovery of
a cyanobacterial PII-encoding gene, PII paralogues were not yet known and thus,
the gene was named according to the only known PII gene at that time, glnB
(Tsinoremas et al. 1991). In most cases, cyanobacterial glnB genes are mono-
cistronic, and in most cyanobacteria only one clearly evident PII paralogue is
present. However, recent genome sequences have revealed cyanobacterial species
which encode unusual PII paralogues, such as Gloeobacter sp., Acaryochloris
marina or the picocyanobacterium Synechococcus WH5701 (Scanlan et al. 2009).
These gene products have unusual non-conserved residues in the T-loop region and,
so far, they have not been functionally investigated. The PII proteins from the uni-
cellular freshwater strains S. elongatus PCC 7942 and Synechocystis PCC 6803 are
the model PII proteins for cyanobacteria (reviewed in Forchhammer 2004) and they
will be presented in the following.

5.2 Properties of the PII Proteins from S. elongatus
and Synechocystis PCC 6803

5.2.1 Structure and Metabolite Binding Properties

The structures of the PII proteins from S. elongatus and Synechocystis PCC 6803
have been elucidated (Xu et al. 2003). As typical PII proteins, they are homotrimeric
proteins composed of subunits of 112 amino acids (12.3 kDa) with a highly con-
served 3D structure (Fig. 5.1). The body of the PII trimer resembles a flat barrel,
from which three prominent loops (T-loop; one per subunit) protrude like legs into
the solvent. The T-loops are flexible in solution; upon crystal packing they may
adopt different conformations, depending on whether PII ligands are present or not
(Llacer et al. 2007; Forchhammer 2008); T-loops of all PII proteins investigated so
far are of paramount importance for protein–protein interactions (see below).

The binding sites for ATP/ADP are located in the three intersubunit clefts, involv-
ing residues from the bases of the T-loop, the B-loop and the juxtaposed C-loop
from the opposing subunit. The three ATP binding sites exhibit negative cooperativ-
ity and they can be occupied by ADP in a competitive manner. The affinity towards
ATP is enhanced in the presence of 2-oxoglutarate (Forchhammer and Hedler 1997),
whereas this is apparently not the case for the response towards ADP (Ruppert
et al. 2002). 2-Oxoglutarate binds to cyanobacterial PII protein only in the pres-
ence of ATP (Forchhammer and Hedler 1997). The 2-oxoglutarate binding sites
have not been clearly resolved until now. The fact that ATP is required to bind
2-oxoglutarate, whereas ADP is not sufficient, indicates an important contribution
of the γ-phosphate of ATP for 2-oxoglutarate binding, resulting in a tight coupling
of 2-oxoglutarate and adenylylate charge measurement.
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5.2.2 Phosphorylation of PII Proteins in Cyanobacteria

In addition to binding and responding to the low molecular effector molecules, there
is a second signal perception mode of PII, which is not universally conserved. In
S. elongatus, it was shown that the seryl residue 49 at the apex of the T-loop is phos-
phorylated in an ATP-dependent reaction (Forchhammer and Tandeau de Marsac
1995b). The same type of phosphorylation occurs in Synechocystis PCC 6803 (Kloft
et al. 2005) and some other unicellular cyanobacteria. However, it appears to be
absent in Prochlorococcus (Palinska et al. 2002) or in Anabaena PCC 7120 (Zhang
et al. 2007). In the latter strain, an unusual type of modification at the T-loop was
reported, nitration of tyrosyl residue 51, whose physiological relevance remains
unclear. Intriguingly, the homologous position is the site of PII uridylylation found
in proteobacteria.

The in vivo phosphorylation state of the PII protein in S. elongatus depends on
growth conditions: The more the cells are starved for combined nitrogen sources,
the more the PII protein is found in phosphorylated states (Forchhammer and
Tandeau de Marsac 1994; Forchhammer 1999). Each subunit of the trimeric PII
protein can be phosphorylated individually at the S49 residue, resulting in three
different phosphorylated states, with one, two or three phosphorylated subunits (des-
ignated P1

II, P2
II and P3

II), and one non-modified form (designated P0
II) (see Fig. 5.2).

When grown in the presence of nitrate, intermediate phosphorylation states of PII

Fig. 5.2 Phosphorylation state and cellular localization of PII from Synechocystis PCC 6803 wild-
type cells (WT) and the PphA-deficient mutant MPphA. Extracts were prepared from nitrate-grown
cells (left part) and after 15 min following the addition of 5 mM ammonium chloride (right part).
The crude extracts (c) were fractionated by ultracentrifugation (120,000×g for 1 h) in an upper
and lower part of the supernatant (S1 and S2) and the first sediment (P1). The P1 fraction was
washed and centrifuged again at 120,000×g to yield supernatants S3 and S4, as well as the washed
pellet (P2), representing the final membrane-associated fraction. The proteins were separated by
non-denaturing PAGE to resolve the different phosphorylated forms of PII, which display dif-
ferent electrophoretic mobilities (Forchhammer and Tandeau de Marsac 1994). P0

II, P1
II, P2

II and P3
II

designate the trimeric PII protein with zero, one, two and three phosphorylated subunits
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are present, with the level of PII phosphorylation increasing with higher inorganic
C-supply (Forchhammer 1999). In the presence of ammonium, PII is almost com-
pletely dephosphorylated. The kinase, which phosphorylates PII, requires ATP and
high 2-oxoglutarate concentrations (Forchhammer and Tandeau de Marsac 1995).

This suggests that PII has to have all three 2-oxoglutarate sites occupied in
order to react with the kinase, since the dissociation constant of the first two
2-oxoglutarate binding sites is too low, and only the third binding site needs concen-
trations near the millimolar range, which resembles the high 2-oxoglutarate needed
for the phosphorylation reaction (Forchhammer and Hedler 1997; Forchhammer and
Fokina unpublished results). Despite several attempts to identify the PII kinase, this
enzyme is still enigmatic. The activity is highly unstable and disappears upon purifi-
cation. Nevertheless, two activity peaks are seen during gel filtration, a smaller
peak eluting in the range of approx. 30–40 kDa proteins and a larger peak co-
migrating with the high molecular mass exclusion volume (Irmler et al. 1997).
Attempts to identify the PII kinase by genetic means, by analysing knockout mutants
of presumptive protein kinase genes, have also failed, since all mutants analysed
so far possess PII kinase activity (unpublished results). In contrast, the search
for the PII phosphatase by analysing mutants of predicted protein phosphatases
in Synechocystis PCC 6803 led to the identification of the PII phosphatase PphA
(Irmler and Forchammer 2001).

5.2.3 PII Interaction with Protein Phosphatase PphA

5.2.3.1 PII-P Phosphatase PphA from Synechocystis PCC 6803

The phospho-PII (PII-P) phosphatase PphA was discovered in Synechocystis PCC
6803 by systematically inactivating genes encoding potential protein phosphatases.
Mutation of the open reading frame sll1771 yielded a mutant that was unable to
dephosphorylate PII-P, and the phosphorylation status of PII was markedly increased
compared to the wild type under all growth conditions (Irmler and Forchhammer
2001). All other mutants were not impaired in dephosphorylating PII-P. Moreover,
whereas phospho-PII (PII-P) was readily dephosphorylated with Synechocystis wild-
type extract, almost no dephosphorylation occurred with extracts of the sll1771
mutant in spite of the fact that the encoded phosphatase is only one out of nine
potential protein phosphatase homologues (Kloft et al. 2005). This strong phe-
notype implied that the sll1771 gene, which was designated pphA, encodes the
only specific PII-P phosphatase in Synechocystis. PphA belongs to the PPM fam-
ily of protein phosphatases, which is defined by 11 conserved sequence motifs
comprising the residues of the catalytic core. Since human protein phosphatase 2C
(PP2C) is the defining enzyme of this family, the PPM members are also referred as
PP2C-like phosphatases (Barford et al. 1998). Although these enzymes have long
been regarded as typical eukaryotic-like phosphatases, genomic sequences reveal
that PPM family members are particularly widespread in bacteria (Zhang and Shi
2004).
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PphA has a molecular mass of 28.4 kDa and consists of 254 amino acids,
which corresponds to the catalytic core of PP2C enzymes. With this property it
belongs to a group of bacterial PP2C homologues, which are characterized by
their small size, corresponding only to the PPM catalytic core and lacking puta-
tive regulatory domains (Irmler and Forchhammer 2001). This raises questions
regarding the specificity of PphA towards PII-P and the regulation of its activ-
ity. The biochemical properties of purified PphA are typical for PP2C enzymes
with respect to Mn2+/Mg2+-dependent activity and sensitivity towards protein
phosphatase inhibitors (Ruppert et al. 2002).

Depending on the assay conditions, PphA dephosphorylates a wide range of
phosphorylated substrates, among them artificial substrates such as p-nitrophenyl
phosphate or synthetic peptides containing phosphoseryl, phosphothreonyl or phos-
photyrosyl residues, albeit with a catalytic activity that is orders of magnitude
lower than that towards serine/threonine-phosphorylated proteins. The reactivity
towards these low molecular weight substrates is stimulated by Mn2+ ions and
alkaline pH. At physiological pH and in the presence of Mg2+ ions, PphA readily
reacts only with serine/threonine-phosphorylated proteins such as phosphocasein
or phosphohistones and with its physiological substrate, PII-P. In the absence of
effector molecules, the reactivity towards the non-physiological phosphoproteins
was estimated to be similar to that towards PII-P. In the presence of the PII effector
molecules, notably ADP or ATP and 2-oxoglutarate, the reactivity of PphA towards
PII-P was strongly inhibited, whereas the reactivity towards phosphocasein was
unaffected.

In agreement with the lack of regulatory domains in PphA and with the bio-
chemical properties of S. elongatus PII, this suggests that the effector molecules
specifically affect the molecular recognition between PphA and PII-P, presum-
ably by causing conformational changes of the T-loop of PII, impairing its
recognition by PphA. In the presence of physiological concentrations of ATP
(1–2.5 mM), PII-P dephosphorylation was very sensitive to low 2-oxoglutarate con-
centrations: 10 μM of this metabolite already caused significant inhibition and at
100 μM, PII-P dephosphorylation was almost completely inhibited. In addition
to 2-oxoglutarate, oxaloacetate is also able to inhibit PII-P dephosphorylation in
synergy with ATP, although 20-fold higher concentrations are required to yield
similar effects. Other glycolytic and Krebs cycle intermediates, as well as vari-
ous amino acids, did not affect PphA-catalysed PII-P dephosphorylation (Ruppert
et al. 2002). At 2-oxoglutarate concentrations in the low micromolar range, inhi-
bition of PII-P dephosphorylation in vitro could be enhanced by raising the ATP
concentration.

This suggests that under physiological conditions of low cellular 2-oxoglutarate
levels, PII-P dephosphorylation may be sensitive to the cellular concentration of
ATP. However, at various ATP:ADP ratios in the presence of 10 μM 2-oxoglutarate,
keeping the total concentration of ATP plus ADP at constant 3 mM, the level
of PII-P dephosphorylation did not markedly respond to various ATP:ADP ratios
(Forchhammer et al. 2004). Therefore, these in vitro results suggest that in vivo
PII-P dephosphorylation is activated by a drop in cellular 2-oxoglutarate levels.
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5.2.3.2 Structure of the PphA Homologue from Thermosynechococcus
elongatus

In order to address the question of substrate recognition and turnover by PphA, the
X-ray structure of the homologous enzyme tPphA from the thermophilic unicellu-
lar cyanobacterium T. elongatus was resolved (see Fig. 5.3, Schlicker et al. 2008).
The structures of the PPM members resolved so far display a highly conserved cat-
alytic core. An invariant binuclear metal centre, occupied by Mg2+ or Mn2+ ions,
co-ordinates a catalytically active nucleophilic water molecule. In agreement with
the structures of three other bacterial PPM members, tPphA binds a third metal ion
(M3) in the active site. M3 has not been observed in human PP2C, the defining
member of this class of enzymes (Das et al. 1996). The function of the third metal
in catalysis is debated. In general, the protein structure of tPphA is highly similar
to the catalytic core of other PPM phosphatases, with the exception of a segment of
the protein termed the flap subdomain, which is located near the catalytic cleft (see
Fig. 5.3). The flap subdomain of tPphA has been shown to be flexible and may adopt
various conformations during catalysis, and the flap of tPphA has been proposed to
control access to the catalytic site (Schlicker et al. 2008). In order to further identify
amino acids involved in the substrate specificity of tPphA, a targeted mutagenesis
study was performed and the resulting mutants were characterized with respect to
catalytic activity towards various substrates and with respect to the binding of the
physiological substrate, phosphorylated PII protein (Su Jiyong and Forchhammer
unpublished). In addition to flap domain residues, a histidine residue near the entry
to the catalytic cleft was shown to greatly modulate substrate specificity. Further,
mutations affecting the M3 binding site cause a loss in catalytic activity, and catal-
ysis is inhibited by elevated Ca2+ concentrations, which were shown to bind to
the M3 site. In the presence of Ca2+, reaction intermediates between PII-P and
tPphA could be isolated following stabilization of the interaction complex with

Fig. 5.3 Structure of the PphA homologue from T. elongatus, tPphA. The catalytic centre
with a trinuclear metal centre is embedded in a highly conserved core structure, from which a
non-conserved and flexible flap subdomain protrudes (Schlicker et al. 2008; pdb 2J86). In the
asymmetric unit of the crystal, two states of tPphA could be resolved (molecule A and molecule B),
which are shown as an overlay. From the overlay the flexibility of the flap subdomain is visible,
and due to this flexibility part of the apex of the flap is not resolved
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glutaraldehyde. The fact that 2-oxoglutarate and ATP as well as ADP impair this
in vitro PII-P–tPphA interaction emphasizes that this complex represents the phys-
iologically relevant reaction intermediate. We propose that the effector molecules
bound to PII control the entry of the phopshorylated T-loop into the catalytic cavity
of the phosphatase.

5.2.3.3 The Physiological Significance of PII Dephosphorylation

Physiological analysis of a PphA-deficient Synechocystis mutant revealed a close
relation between the PII phosphorylation state and the regulation of nitrate utiliza-
tion. PphA-deficient mutants were overgrown by wild-type cells only when nitrate
was used as nitrogen source, but not with ammonia or urea. When PphA mutant
cells are grown with nitrate as nitrogen source, they excrete nitrite into the medium,
especially at low photon flux densities, whereas increasing photon fluence densi-
ties override this effect (Kloft and Forchhammer 2005). A similar phenotype was
found in the PII-deficient mutant MP2. PphA and MP2 have in common that they
do not contain non-phosphorylated PII. By analysing the activities of nitrate and
nitrite reductases and nitrate/nitrite uptake, we concluded that nitrite excretion was
caused by uncontrolled nitrate uptake and reduction, overloading the capacity of
nitrite reductase. The dephosphorylated form of PII (P0

II), which is generated by
PphA activity, appears to be responsible for adjusting nitrate uptake to the capacity
of nitrite reductase. This fine-tuning of nitrate utilization, which requires PphA, may
be related to an effect of nitrite on the cellular accumulation of PphA: Kloft et al.
(2005) showed that the cellular PphA level increases significantly in the presence of
nitrite and the elevated PphA levels may thus enhance PII-P dephosphorylation. This
could result in a regulatory feedback loop for nitrate utilization such that limiting
reductant from photosynthesis causes a limitation of nitrite reductase capacity, cre-
ating a transient accumulation of nitrite. This increases PphA levels and favours PII
dephopshorylation, which in turn will tune down nitrate uptake, until excess nitrite
is completely reduced.

In contrast to the fine-tuning of nitrate utilization, regulation of nitrate uptake in
response to ammonium treatment was still functional in the PphA mutant, but was
defective in a PII-deficient mutant (Kloft and Forchhammer 2005). This indicates
that the PII protein, but not its dephosphorylation, is required to inhibit NRT (nitrate
transport system) in response to ammonium. A possible explanation could be that
ammonium strongly depletes the cellular 2-oxoglutarate levels, which may promote
a direct, modification-independent PII response that is only based on the effector
molecule-dependent PII conformation.

5.3 Receptor Interactions of PII Proteins in S. elongatus
and Synechocystis PCC 6803

To identify regulatory targets of PII signalling, two major strategies were employed:
analysis of the phenotype of PII-deficient mutants from S. elongatus (Forchhammer
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and Tandeau de Marsac 1995a; Lee et al. 2000; Aldehni et al. 2003) and the straight-
forward screening for PII interaction partners by the yeast two-hybrid method
using glnB genes from S. elongatus or Synechocystis PCC 6803 as bait (Burillo
et al. 2004; Heinrich et al. 2004, Osanai et al. 2005a). Whereas the first approach
revealed several PII-regulated functions without identifying PII interaction partners,
the second approach led to the discovery of the three presently known down-
stream signalling receptors of PII, namely N-acetyl-L-glutamate kinase (NAGK),
a key enzyme of arginine synthesis, PipX, a co-factor of transcription factor NtcA,
and PamA, a membrane protein of unknown activity. In the following section, the
various interactions of PII with these target proteins will be described.

5.3.1 PII Interaction with N-acetyl-L-glutamate Kinase

5.3.1.1 Enzymatic Activation of NAGK by PII Complex Formation

N-acetyl-L-glutamate kinase is the controlling enzyme of the cyclic pathway of
arginine biosynthesis. Glutamate enters the pathway by reaction with a path-
way intermediate N-acetyl-L-ornithine to yield ornithine and N-acetyl-L-glutamate
(NAG). The next step, phosphorylation of NAG to NAG phosphate by N-acetyl-
L-glutamate kinase (NAGK), is the rate-limiting step in arginine synthesis, and
this enzyme is strictly feedback regulated by the pathway end-product arginine
(Llacer and Rubio 2009). In the search for PII receptors, yeast two-hybrid screen-
ings using the S. elongatus glnB gene as bait retrieved the argB gene (encoding
NAGK) as a potential PII interaction partner (Burillo et al. 2004; Heinrich et al.
2004). Biochemical investigation showed that this interaction was specific and was
highly susceptible towards modifications at the seryl 49 residue, the site of PII phos-
phorylation, with only the non-modified form of PII able to bind NAGK (Heinrich
et al. 2004).

Binding of PII to NAGK dramatically alters the catalytic properties of the
enzyme; catalytic efficiency was originally estimated to increase by a factor of 40
upon PII binding (Maheswaran et al. 2004). Using an optimized enzyme assay, an
increase of catalytic efficiency of eightfold was recently determined (Beez et al.
2009) due to the fact that the previously used assay underestimated the activity of
free NAGK. It is unequivocally clear from all assays that the sensitivity of NAGK
to feedback inhibition by arginine is relieved upon binding of PII by approximately
10-fold (Maheswaran et al. 2004; Beez et al. 2009).

Biochemical studies such as surface plasmon resonance (SPR) spectroscopy and
enzyme assays demonstrated that complex formation between PII and NAGK is
highly sensitive to the ligand binding status of PII: S. elongatus PII binds readily
to NAGK in the absence of effector molecules and in the presence of Mg-ATP.
However, PII bound with 2-oxoglutarate/ATP is unable to bind NAGK. SPR anal-
ysis also revealed that ADP is a highly potent inhibitor of PII–NAGK interaction.
For example, addition of 1 mM ADP to a PII–NAGK complex causes an almost
immediate dissociation of the complex (Maheswaran et al. 2004).
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5.3.1.2 The Structure of the PII–NAGK Complex

Recently, the crystal structure of the NAGK–PII complex from the cyanobacterium
S. elongatus has been resolved at 2.75 Å resolution (Llacer et al. 2007). The com-
plex consists of two PII trimers sandwiching a hexameric NAGK toroid. The NAGK
toroid is a trimer of dimers, arranged in such a manner that the toroid has threefold
symmetry and two identical faces on top and bottom. In the complex, the threefold
axes of PII and NAGK are aligned, such that each PII subunit contacts one oppos-
ing NAGK subunit. The contacts map in the inner circuit of the NAGK toroid, in
which two regions of the PII protein protrude. One region is on the part of the PII
body which consists of the B-loop and nearby residues (the β1-α1connection). The
second part is the distal region of the T-loop. The T-loop undergoes a large con-
formational change when the PII protein binds to NAGK. In the complex it adopts
a compact conformation, resembling a tightly flexed leg, whereas it is extended in
the absence of NAGK. T-loop residues R45, E50 and S49 are of particular impor-
tance in complex formation by forming an ion pair and hydrogen-bonding network.
Interestingly, these residues are signature residues for cyanobacterial PII proteins
and are also present in most PII proteins from plants and green and red algae. The
observed alteration of NAGK enzymatic properties can be explained by structural
consequences upon complex formation: A widening of the arginine inhibition site
on NAGK by PII binding leads to decreased affinity towards this allosteric inhibitor,
and the ion-pair network involving the T-loop of PII tightens the catalytic centre of
NAGK, leading to increased enzyme activity.

5.3.1.3 The Physiological Consequences of PII–NAGK Interaction

The ultimate rationale for the sophisticated control of NAGK by PII appears to be
the need to tightly control arginine synthesis in response to the central metabolic
state of the cells, since the synthesis of arginine demands high energy and combined
nitrogen supply. In addition to its role as an essential amino acid for protein syn-
thesis and as a precursor for polyamine synthesis, arginine plays an important role
as a combined nitrogen buffer and for the synthesis of nitrogen storage compounds
(Llacer and Rubio 2009). Figure 5.4 depicts schematically the control of NAGK by
PII. Association between PII and NAGK is favoured by high ATP concentrations and
excess nitrogen (low 2-oxogutarate) supply. Under these conditions, the PII protein
is in the non-phosphorylated state, which is a prerequisite for complex formation.
Furthermore, the cellular level of the antagonistic metabolites 2-oxoglutarate and
ADP is low under these conditions. Complexed with PII, NAGK is in a state of high
activity and decreased sensitivity towards arginine. Consequently, the flux into the
arginine pathway will increase.

This hypothesis was verified experimentally (Maheswaran et al. 2006). When
nitrogen-starved Synechocystis cells were suddenly exposed to excess ammonia,
cells of the wild-type strain rapidly increased levels of arginine, which was used
for the synthesis of the nitrogen reserve polymer cyanophycin (multi-L-arginyl-
poly-L-aspartic acid). In contrast, a PII-deficient mutant was unable to accumulate
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Fig. 5.4 Schematic representation of the control of arginine synthesis by PII–NAGK complex
formation. Left side: under conditions of low adenylylate charge (high ADP/ATP ratio) or high
cellular 2-oxoglutarate levels, no complex between PII and NAGK is formed. NAGK is in a state
of low activity and is highly feedback inhibited by arginine. Right side: under ATP-replete and
low 2-oxoglutarate conditions, PII complexes NAGK, resulting in kinetic activation and alleviation
from arginine inhibition. The increased levels of arginine enable the synthesis of nitrogen storage
compounds (for details see text)

cyanophycin and to increase arginine levels due to a permanently low activity of
NAGK, since it lacked PII activation. When the nitrogen source becomes exhausted,
the cellular level of 2-oxoglutarate increases (Muro-Pastor et al. 2001), promoting
PII–NAGK dissociation. NAGK now returns to its highly sensitive state of argi-
nine feedback inhibition, which limits arginine synthesis to that needed for protein
biosynthesis. When such conditions of elevated 2-oxoglutarate levels are sustained
for prolonged periods, the PII protein will become phosphorylated (see above),
which robustly impairs any complex formation with NAGK. In agreement, we
found that a PphA-deficient Synechocystis mutant is unable to accumulate arginine
and cyanophycin, because it retains PII in the phosphorylated state (Maheswaran
et al. 2006). In the wild type, NAGK can be activated again after prolonged
N-limitation only under conditions of sustained nitrogen excess where PII becomes
dephosphorylated.

In this regard, PII phosphorylation seems to be a mechanism to sustain the
signal of nitrogen-limiting conditions, protecting NAGK from transient activation
in response to short-term fluctuations of cellular metabolite levels. A second pos-
sible in vivo scenario that should be considered is a rapid decrease in cellular ATP
levels in nitrogen-sufficient cells, e.g., in response to sudden light–dark transitions.
Under such conditions, the ADP levels will suddenly increase, leading to immediate
dissociation of NAGK–PII complexes irrespective of the 2-oxoglutarate levels. The
activity of NAGK and thus arginine biosynthesis will immediately respond to the
low-energy signal, a reasonable response considering the high-energy demand for
arginine synthesis.
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5.3.1.4 NAGK–PII Interaction Is Conserved in Cyanobacteria and Plants

The initial indication of a conserved interaction between PII and NAGK in chloro-
plasts of higher plants came from yeast two-hybrid interaction assays, using the
corresponding genes from Arabidopsis thalina (Burillo et al. 2004). Subsequently,
the specificity of this interaction and its localization in the chloroplasts were
reported (Sugiyama et al. 2004). Biochemical and structural analyses revealed a high
degree of similarity to the NAGK–PII interaction in the cyanobacterium S. elongatus
(Chen et al. 2006; Mizuno et al. 2007; Beez et al. 2009). In particular, NAGK sensi-
tivity towards arginine inhibition is consistently alleviated upon complex formation.
Initial experiments suggested that the A. thaliana complex was not antagonized by
2-oxoglutarate. However, the use of an optimized enzyme assay demonstrated that
the PII-dependent protection of NAGK activity from arginine inhibition is indeed
antagonized by 2-oxoglutarate (Beez et al. 2009).

A striking difference between cyanobacterial and plant PII–NAGK is the degree
of arginine sensitivity, being by an order of magnitude higher in S. elongatus.
Deletion of the non-conserved C-terminal 11 amino acids of S. elongatus NAGK led
to a marked reduction in arginine sensitivity, with the C-terminal-truncated mutant
having similar properties to the A. thalina enzyme. Strikingly, the PII protein from
A. thaliana was fully able to regulate the cyanobacterial NAGK enzyme, at least in
vitro, whereas the S. elongatus PII protein could only partially replace the higher
plant PII protein in NAGK activation, indicating that PII in Arabidopsis has con-
served all the requirements for the regulation of the cyanobacterial NAGK enzyme
and furthermore has acquired additional features not represented in Synechococcus
PII, which contribute to the fully functional PII–NAGK complex. This high degree of
functional conservation, matched by conservation of key residues in PII and NAGK,
indicates that PII is pivotal for the regulation of arginine synthesis in plants and in
cyanobacteria.

5.3.2 PII–PipX Interaction

5.3.2.1 In Vitro Properties of the PII–PipX Complex

A second target of PII was also identified by yeast two-hybrid screening using
S. elongatus glnB as bait (Burillo et al. 2004). The protein, a small basic peptide
of 89 amino acids, with a predicted pI of 8.97, displayed no homology to hith-
erto characterized proteins and was thus termed PipX (PII interaction protein X)
(Espinosa et al. 2006). However, genes encoding PipX homologues are found in
all cyanobacteria, but not in other bacteria or in plants, indicating a conserved role
in cyanobacteria (Espinosa et al. 2009). Further yeast two-hybrid screening using
PipX as bait retrieved the transcription factor NtcA as a second interaction partner
of PipX. Subsequent biochemical analysis showed that the interaction of PipX with
PII and NtcA was indeed specific and responded to the metabolite 2-oxoglutarate.
In the absence of the effector molecule 2-oxoglutarate, PipX associates with PII, but
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not with NtcA. The presence of 2-oxoglutarate allows PipX binding to NtcA, with
2-oxoglutarate concentrations in the millimolar range being required for optimal
interaction. This requirement is probably caused by an effect of 2-oxoglutarate on
NtcA, since it has already been shown by in vitro transcription and gel-shift anal-
ysis that 2-oxoglutarate alters the properties of NtcA with respect to DNA binding
and transcriptional activation (Tanigawa et al. 2002; Paz-Yepez et al. 2003). With
respect to PII interactions, 2-oxoglutarate in concert with ATP leads to a decreased
affinity of PipX–PII interaction (Espinosa et al. 2006). Thus PipX provides a mech-
anistic link between transcriptional control by NtcA and PII signal transduction,
which had been previously suggested based on physiological studies (Aldehni et al.
2003; Paz-Yepes et al. 2003).

5.3.2.2 PipX Is a Co-activator of NtcA-Dependent Gene Expression

The physiological role of PipX was revealed by pipX mutant analysis, which showed
a clear defect in the ability of PipX deletion mutants to induce NtcA-activated pro-
moters. However, PII-controlled functions such as ammonium inhibition of nitrate
uptake or NAGK activation were not affected in the PipX mutant (Espinosa et al.
2007). Conversely, overexpression of pipX in a S. elongatus wild-type background
caused a latent enhancement of NtcA-dependent gene expression. These results
indicate that PipX is required for activation of NtcA-dependent gene expression,
but not for modulation of other PII functions. PipX–NtcA complexes bind to DNA,
but PipX does not modify the promoter specificity of NtcA, nor does it change the
affinity of NtcA towards its binding sites (Espinosa et al. 2008; Rasch, Espinosa and
Forchhammer, unpublished results). Thus, we suggest that PipX somehow affects
the interaction of NtcA with the initiation complex of RNA polymerase, leading to
an enhancement of transcriptional initiation.

The postulated roles of PII and PipX in modulating NtcA-dependent gene
expression are schematically depicted in Fig. 5.5. Under conditions of intermedi-
ate 2-oxoglutarate levels, especially when the ATP levels decrease, PII and NtcA
compete for binding of PipX. Given the role of PipX as a co-activator of NtcA, it
follows that PII should decrease the activation of NtcA-dependent gene expression
by sequestering PipX. The interaction of PII with PipX would be required to release
PipX from NtcA and tune down gene expression under conditions of dropping
2-oxoglutarate or ATP levels (corresponding to nitrogen excess or energy limita-
tion). Indeed, this conclusion agrees with a reported phenotype of a PII deletion
mutant of S. elongatus: Using luxAB reporter fusion analysis on various glnA and
glnN promoter constructs, it could be shown that the PII-deficient strain over-
expressed these constructs under non-inducing conditions (Aldehni et al. 2003;
Aldehni and Forchhammer 2006).

However, this analysis and previous studies also showed that PII-deficient S. elon-
gatus strains were unable to fully turn on the expression of NtcA-dependent genes
under inducing conditions (nitrogen deprivation). This phenotype was in apparent
conflict with the idea of PII acting as an antagonist of NtcA co-activation. This con-
tradiction could recently be resolved by re-investigation of the genetic background
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Fig. 5.5 Suggested model of the PII–PipX–NtcA interaction network leading to NtcA activation.
Under low 2-oxoglutarate or low ATP to ADP conditions, PII is predicted to bind PipX, whereas
NtcA is in an inactive state (top). Increasing 2-oxoglutarate levels under ATP-replete conditions
would lead to partner swapping of PipX from PII to NtcA. PipX enables NtcA to fully activate the
transcription of NtcA-dependent genes, perhaps by promoting a productive interaction with RNA
polymerase (bottom)

of PII-deficient strains. Espinosa et al. (2009) demonstrated that the reported PII-null
mutants had secondary mutations in pipX alleles, leading either to reduced expres-
sion or to a complete loss of PipX function. From this and similar findings, such as
that PII can be easily mutated in a pipX-deficient background but not in the wild type,
the authors postulated that a PII-null mutation is toxic in the presence of wild-type
levels of PipX. Therefore, PII may be necessary to sequester PipX under normal
growth conditions. If not sequestered by PII under nitrogen-rich conditions, PipX
may be lethal because of inappropriate activation of NtcA or by causing some other
critical interactions which would normally not occur in the PII-bound state.

5.3.3 PamA, an Enigmatic PII Target

Yeast two-hybrid screening with a library of Synechocystis PCC 6803 genomic DNA
as prey identified a potential membrane protein as a further PII receptor. The pro-
tein, encoded by the sll0985 open reading frame, was termed PamA (PII-associated
membrane protein A) and is predicted to contain seven membrane-spanning helices
(Osanai et al. 2005a). The three C-terminal membrane-spanning regions of PamA
are homologous to transmembrane channel proteins of the MscS family. In vitro
experiments confirmed the interaction of PII with PamA and showed that PII bind-
ing to PamA is antagonized by 2-oxoglutarate/ATP, whereas the phosphorylation
state of PII did not seem to affect the interaction. It was suggested that binding of
PII to PamA may regulate the transport activity of this potential membrane chan-
nel. However, the physiological substrate transported by PamA has not so far been



86 K. Forchhammer

elucidated. A pamA defect mutant showed reduced expression levels of a subset of
nitrogen-controlled genes, such as genes of the nrt operon, nblA and sigE (Osanai
et al. 2005b). SigE is an alternative sigma factor whose expression is normally
increased under nitrogen-poor conditions. It positively regulates the expression of
sugar catabolic genes (Osanai and Tanaka 2007). Consistent with this, a pamA
mutant exhibits reduced expression of sugar catabolic genes and is unable to grow in
glucose-containing medium. From these results it can be concluded that PamA indi-
rectly regulates sugar catabolic genes through modulating sigE expression levels.
However, how the binding of PII contributes to this function of PamA remains
elusive to date.

5.3.4 Membrane Binding of Non-phosphorylated PII Protein

Previous work in the author’s lab showed that the PII protein in Synechocystis binds
to the membrane fraction in a phosphorylation-dependent manner, as shown in
Fig. 5.2 (Kloft and Forchhammer, unpublished data). When the cells were grown
in presence of nitrate as combined nitrogen source, approximately 50% of the
detectable PII protein, the majority of the non-phosphorylated form of PII, sedi-
mented with the membrane fraction, whereas the phosphorylated forms remained
soluble. Following treatment with 5 mM ammonium chloride, PII became com-
pletely dephosphorylated, as expected. Half of the dephosphorylated PII protein
remained soluble, the remainder was again associated with the membrane. By
contrast, in the PphA-deficient mutant MPphA, the PII protein was highly phos-
phorylated and was never associated with the membrane fraction, apparently due to
lack of non-phosphorylated PII. This suggests that there might be a specific recep-
tor protein in the membrane for non-phosphorylated PII protein. This receptor is
unlikely to be PamA, since PamA association was reported to be independent of
PII phosphorylation (see earlier). Given the phenotype of the PphA-deficient and
PII-deficient mutants, both of which excrete nitrite when utilizing nitrate and both
of which lack the non-phopshorylated PII protein, a component of the nitrate utiliza-
tion system may be a candidate for such an interaction. However, attempts to reveal
any binding of PII to components of the NRT system have so far failed.

5.4 Concluding Remarks

We are just beginning to unveil a highly complicated network of PII interactions,
with PII placed in the middle of a complex signalling node (Fig. 5.6). On the one
hand, PII integrates energy and C/N signals by forming a complex array of different
signal-input states, based on composite occupation of interdependent ligand binding
sites. On the other hand, PII binds to various receptors with affinities which depend
on these signal-input states, and it can be anticipated that the various receptors will
compete for PII binding. Further investigations are required to reveal additional PII
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Fig. 5.6 Network of the known interactions of the PII signalling protein. Under ATP-replete con-
ditions, PII cycles between a phosphorylated and a non-phosphorylated state, which is driven by
fluctuations in cellular 2-oxoglutarate (2OG) levels and the activity of PII kinase and phosphatase.
Depending on the phosphorylation state and 2-oxoglutarate binding, PII interacts with NAGK,
PipX or PamA. Under low ATP/ADP conditions, PII is non-phosphorylated and does not bind
2-oxoglutarate. However, PipX is able to bind to this form of PII. Whether PamA interacts with
this state of PII remains to be elucidated

receptors and to understand the dynamics of PII signalling in a living cell, with
respect to the mutual interplay between these receptors, their competition for PII
binding and the subcellular targeting and sequestering of PII.
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Chapter 6
Pathway and Importance of Photorespiratory
2-Phosphoglycolate Metabolism
in Cyanobacteria

Martin Hagemann, Marion Eisenhut, Claudia Hackenberg,
and Hermann Bauwe

Abstract Cyanobacteria invented oxygenic photosynthesis about 3.5 billion years
ago. The by-product molecular oxygen initiated the oxygenase reaction of RubisCO,
the main carboxylating enzyme in photosynthetic organisms. During oxygenase
reaction, the toxic side product 2-phosphoglycolate (2-PG) is produced and must be
quickly metabolized. Photorespiratory 2-PG metabolism is used for this purpose by
higher plants. The existence of an active 2-PG metabolism in cyanobacteria has been
the subject of controversy since these organisms have evolved an efficient carbon-
concentrating mechanism (CCM), which should considerably reduce the oxygenase
activity of RubisCO. Based on emerging cyanobacterial genomic information, we
have found clear indications for the existence of many genes possibly involved in
the photorespiratory 2-PG metabolism. Using a genetic approach with the model
Synechocystis sp. strain PCC 6803, we generated and characterized defined mutants
in these genes to verify their function. Our results show that cyanobacteria per-
form an active photorespiratory 2-PG metabolism, which employs three routes in
Synechocystis: a plant-like cycle, a bacterial-like glycerate pathway, and a com-
plete decarboxylation branch. In addition to the detoxification of 2-PG, this essential
metabolism helps cyanobacterial cells acclimate to high light conditions.

6.1 Introduction

6.1.1 Cyanobacterial Photosynthesis
and the Carbon-Concentrating Mechanism

Cyanobacteria invented oxygenic photosynthesis about 3.5 billion years ago. This
capability was later, about 1.2 billion years ago, transferred via endosymbio-
sis into eukaryotes leading to the emergence of eukaryotic algae and plants

M. Hagemann (B)
University of Rostock, Institute of Biological Sciences and Plant Physiology, Albert-Einstein-
Strasse 3, D-18051, Rostock, Germany
e-mail: martin.hagemann@biologie.uni-rostock.de

91P.C. Hallenbeck (ed.), Recent Advances in Phototrophic Prokaryotes, Advances in
Experimental Medicine and Biology 675, DOI 10.1007/978-1-4419-1528-3_6,
C© Springer Science+Business Media, LLC 2010



92 M. Hagemann et al.

(Mereschkowsky 1905; Margulis 1970; Deusch et al. 2008). Over the long term,
the activity of these photosynthetic organisms generated the present-day oxygen-
containing atmosphere. In parallel, the amount of CO2 was considerably diminished,
which resulted in a situation in which today CO2 is a limiting factor for photosyn-
thetic organisms. Cyanobacteria, like algae and plants, fix most of the inorganic
carbon (Ci) via the Calvin–Benson cycle with ribulose 1,5-bisphosphate carboxy-
lase/oxygenase (RubisCO) as the carboxylating enzyme. However, cyanobacterial
RubisCO has a rather low affinity for CO2 (e.g., the Km for CO2 is about
300 μM for the RubisCO of Anabaena variabilis, Badger 1980), which is theo-
retically not sufficient to efficiently fix CO2 at the low concentrations prevailing in
aquatic environments.

The challenge of fixing CO2 at low environmental concentrations was solved
by the evolution of an efficient inorganic carbon-concentrating mechanism (CCM)
among cyanobacteria (for reviews, see Kaplan and Reinhold 1999; Badger et al.
2006). CCM activity allows them to cope with low Ci concentrations especially
in the presence of oxygen. Compared to the CCM existing in eukaryotic algae,
the molecular biology and functionality of the cyanobacterial CCM is much better
understood (Giordano et al. 2005). It comprises two principal mechanisms: active
uptake systems for Ci and the compartmentalization of RubisCO in the prokaryotic
carboxysome organelle.

In the model strain Synechocystis sp. PCC 6803 (henceforth Synechocystis) and
the related strain Synechococcus sp. PCC 7002, three transport systems for bicar-
bonate, the predominate Ci source in alkaline waters such as oceans, have been
identified. First, an ATP-dependent ABC-type transport system for bicarbonate
(called Cmp) was identified, which has a very high affinity for bicarbonate and
becomes induced when cyanobacteria are shifted to low Ci. Later, two symport sys-
tems (called SbtA and BicA) for bicarbonate and H+ or Na+, respectively, were
discovered. SbtA system is a high-affinity transporter that is induced at low Ci,
while BicA is a constitutively expressed low-affinity system (reviewed in Badger
et al. 2006). Moreover, CO2 is actively taken up by cyanobacteria. Initially the gas
diffuses into the cells and is subsequently converted to bicarbonate at specialized
NDH1 complexes (Zhang et al. 2004), which keeps the CO2 concentration gradi-
ent steep enough to favor further import. There is one constitutive system of rather
low affinity and a second inducible NDH1 subcomplex showing much higher CO2
affinity. The joint action of all transporters allows an about 1,000-fold accumulation
of Ci in the form of bicarbonate inside the cyanobacterial cell. Only the inactivation
of all five transporters results in a high Ci-requiring (HCR) phenotype of the cor-
responding mutants, while defects of single transporters are compensated for (Xu
et al. 2008).

The accumulated bicarbonate diffuses into the carboxysome, a prokaryotic
organelle in which RubisCO and carbonic anhydrase are enclosed by a protein
shell (Kerfeld et al. 2005; Yeates et al. 2008). Inside the carboxysome the bicar-
bonate is transformed into CO2 by the action of carbonic anhydrase leading to high
CO2 concentrations in the vicinity of RubisCO. Recently, it has been shown that
RubisCO, carbonic anhydrase, and shell proteins form a defined complex inside the
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carboxysome to facilitate CO2 release near the active center of RubisCO and to
avoid leakage of CO2 into the cytoplasm (Cot et al. 2008). As a consequence of the
important function of the carboxysome, mutations affecting its structural integrity
also result in a HCR phenotype (Kaplan and Reinhold 1999). It is believed that
carboxysomes evolved among cyanobacteria about 700 million years ago (after the
primary endosymbiotic event leading to chloroplasts), probably by two independent
lateral gene transfer events (Badger et al. 2006).

In addition to having a low affinity for CO2, in the presence of atmospheric
oxygen RubisCO also exhibits oxygenase activity, a side reaction in which molec-
ular oxygen instead of CO2 is bound to the acceptor ribulose 1,5-bisphosphate.
Oxygenase activity further diminishes the carboxylating activity of RubisCO and
results in the appearance of the toxic by-product 2-phosphoglycolate (2-PG), which
inhibits Calvin–Benson cycle enzyme activities. In higher plants, 2-PG is rapidly
metabolized by the photorespiratory 2-PG metabolism. For the conversion of 2-PG
and other toxic compounds into the Calvin–Benson cycle intermediate glycerate
3-phosphate, plants require at least 10 different enzymes (Ogren 1984; Tolbert
1997; Bauwe and Kolukisaoglu 2003). In higher plants, this pathway is an essen-
tial partner of oxygenic photosynthesis, since photorespiratory mutants have a HCR
phenotype (Bauwe and Kolukisaoglu 2003). In contrast, because they have CCM,
it was believed that oxygenase function of RubisCO is rather low or absent inside
cyanobacterial cells. Therefore, the existence of an active 2-PG metabolism in these
organisms was neglected.

6.1.2 Previous Attempts to Identify Photorespiratory 2-PG
Metabolism in Cyanobacteria

Historically, the oxygenase function of RubisCO and photorespiratory 2-PG
metabolism in plants were described earlier than CCM in cyanobacteria. Because
of the close evolutionary relation between photosynthetic mechanisms in cyanobac-
teria and plants, many efforts were initially undertaken to provide evidence for
a functional 2-PG metabolism in cyanobacteria. It was shown that the cyanobac-
terial RubisCO has oxygenase activity and glycolate can be detected among the
early carbon fixation products (Fig. 6.1). In the pre-genomic era basically two
types of experiments were used: on the one hand detection of enzyme activi-
ties involved in the 2-PG metabolism known from plants and on the other hand
glycolate release from cyanobacteria grown under conditions known to promote
2-PG production. In order to show that a 2-PG metabolic pathway similar to that
described for plants exists, the activities of some enzymes characteristic of this path-
way were measured in crude extracts from cyanobacterial cells. These experiments
indicated the presence of 2-PG phosphatase, glycolate oxidase (or rather glyco-
late dehydrogenase), glutamate-glyoxylate aminotransferase, and hydroxypyruvate
reductase (Norman and Colman 1988; Renström and Bergman 1989). In contrast,
serine hydroxymethyltransferase activity was not observed. These results suggested
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Fig. 6.1 14C-labeling pattern
of Synechocystis sp. strain
PCC 6803. The cells were
incubated with NaH14CO3 in
the light for 5 min. Low
molecular mass substances
were isolated with hot 80%
ethanol and separated by
two-dimensional thin layer
chromatography. The labeled
spots were identified by
co-chromatography with
non-labeled reference
substances

that the glycolate pathway is incomplete and that an alternative pathway must
exist to metabolize the glycolate formed (Norman and Colman 1988). A likely
candidate was the bacterial glycerate pathway, which is known from E. coli and
other heterotrophic bacteria to convert glycolate into glycerate as C-source. It was
indeed shown that extracts of Anabaena cylindrica catalyzed the decarboxylation of
glyoxylate to tartronic semialdehyde, by glyoxylate carboligase followed by the sub-
sequent reduction of tartronic semialdehyde to glycerate by tartronic semialdehyde
reductase (Codd and Stewart 1973).

Moreover, glycolate excretion could be detected with some cyanobacterial
strains, e.g., Plectonema boryanum, A. cylindrica, A. variabilis or Nostoc sp. 73102,
but not with other strains. It should be mentioned that the glycolate amounts were
usually rather low, but could be significantly enhanced when cells were either trans-
ferred from high CO2 to air, exposed to elevated oxygen concentrations up to 100%,
or treated with inhibitors for enzymes involved in 2-PG metabolism (Renström
and Bergman 1989). At the same time, glycolate excretion was also found among
green algae such as Chlamydomonas (Kaplan and Berry 1981; Moroney et al.
1986). These findings gave rise to the still popular hypothesis that both algae and
cyanobacteria do not perform a 2-PG metabolism since the toxic photorespiratory
intermediate is simply excreted into the liquid medium.

In summary, it was not possible with the experimental attempts of the pre-
genomic era to elucidate the fate of intermediates of the 2-PG pathway in cyanobac-
teria. The discovery of the efficient CCM during the same time led to the widely
accepted view that cyanobacteria do not carry out a complete photorespiratory
2-PG metabolism despite some strain-specific differences (Colman 1989). Recently,
we have reanalyzed the mode of 2-PG metabolism and its possible diverse function
with the cyanobacterial model strain Synechocystis based on emerging genomic
information (Kaneko et al. 1996) and the well-developed genetic tools for this
cyanobacterial strain. In the following sections we review and summarize the results
of this work.
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6.2 New Results Verify the Essential Function
of 2-PG Metabolism for Cyanobacteria

6.2.1 Searching of Cyanobacterial Genomes for Enzymes
of 2-PG Metabolism

During the last 13 years, about 40 genomes of different cyanobacterial strains have
been completely sequenced and deposited in public databases such as CyanoBase.
This data set represents a blueprint of the capacity of cyanobacteria to perform
specific metabolic pathways including photorespiratory 2-PG metabolism. In our
bioinformatic analyses, we used the available information from the model plant
Arabidopsis to search for corresponding genes in the genome of Synechocystis using
the Blast algorithm (Altschul et al. 1997). For this purpose, protein sequences from
functionally characterized enzymes of the photorespiratory cycle from Arabidopsis
thaliana were extracted from the TAIR database (http://www.arabidopsis.org/) and
compared with predicted proteins from the Synechocystis sp. PCC 6803 genome
at CyanoBase (http://genome.kazusa.or.jp/cyanobase/) as described by Hagemann
et al. (2005). With the exception of three enzymes, 2-PG phosphatase, glyco-
late oxidase, and glycerate kinase, it was possible to identify candidate genes
in the Synechocystis genome for each protein involved in the 2-PG metabolism
in Arabidopsis, which showed rather high degrees of similarities on the pro-
tein sequence level including a homolog to serine hydroxymethyltransferases
(Hagemann et al. 2005). In some cases, e.g., for hydroxypyruvate reductase,
not only one but several candidate proteins seem to exist in Synechocystis
(Table 6.1).

The existence of the majority of enzymes for a 2-PG cycle similar to that in
Arabidopsis made it very likely that the gaps could be closed by enzymes of corre-
sponding activities but not homologous to those from Arabidopsis. Indeed, using
proteins from E. coli and other heterotrophic bacteria in Blast searches, candi-
date genes were identified for the 2-PG phosphatase and the glycerate kinase,
while, instead of glycolate oxidase, a glycolate dehydrogenase seemed to exist in
Synechocystis (Eisenhut et al. 2006). Moreover, when we included proteins known
to be involved in additional routes for glycolate metabolism from heterotrophic
bacteria, it became obvious that the Synechocystis genome also harbors putative
glyoxylate carboligase and tartronic semialdehyde reductase genes for the direct
conversion of glyoxylate to glycerate (Eisenhut et al. 2006). These genome analyses
clearly indicated that Synechocystis most probably has the capacity for active 2-PG
metabolism, which possibly employs two different routes: the plant-like glycolate
cycle and the bacterial-like glycerate pathway (Fig. 6.2).

The extension of such searches to other cyanobacterial genomes revealed strain-
specific differences. For example, in the larger genome of the filamentous Anabaena
(Nostoc) sp. PCC 7120, candidate proteins were detected for a plant-like glycerate
kinase (Boldt et al. 2005) and a plant-like glycolate oxidase (Eisenhut et al. 2008a).
Therefore, this and many other cyanobacterial strains seem to harbor a plant-like
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Fig. 6.2 Schematic drawing of the complete photorespiratory 2-PG metabolism in cells of
Synechocystis sp. strain PCC 6803. 2-PG metabolism is branched into three routes: plant-like gly-
colate cycle, bacterial-like glycerate pathway, and complete decarboxylation branch (PGP – 2-PG
phosphatase, GLD – glycolate dehydrogenase, GGT – glycine/glutamate aminotransferase, GDC –
glycine decarboxylase, SHM – serine hydroxymethyltransferase, AGT1 – alanine/glyoxylate
aminotransferase, HPR1 – hydroxypyruvate reductase, GLYK – glycerate kinase, GCL – glyoxy-
late carboligase, TSR – tartronic semi-aldehyde reductase, GXO – glyoxylate oxidase, ODC –
oxalate decarboxylase, FDH – formate dehydrogenase)

2-PG cycle that is more similar to Arabidopsis than the predicted pathway in our
model strain Synechocystis. However, none of the cyanobacterial genomes har-
bored a plant-like 2-PG phosphatase. Among the cyanobacterial genomes, those
from the picoplanktonic Prochlorococcus and Synechococcus strains are of special
interest, since their genomes are much smaller than those from model freshwater
cyanobacteria. Their genome reduction is believed to represent an adaptation to
the nutrient-poor and constant oceanic environment, in which non-essential genes
were successively deleted. Systematic searches in 16 genomes from picoplanktonic
Prochlorococcus and Synechococcus strains indicated that their reduced genomes
also retained the capacity to possess a plant-like 2-PG cycle and a bacterial-like
glycerate pathway (Scanlan et al. 2009). These genome searches made it very
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likely that all present-day cyanobacteria should be able to perform an active 2-PG
metabolism. Similar searches have been carried out for the recently published
genomes of two diatom species, which indicate that a 2-PG metabolism exists in
these eukaryotic algae but shows considerable differences compared to that of higher
plants (Kroth et al. 2008).

6.2.2 Systematic Mutation of Candidate Genes
for 2-PG Metabolism

In order to test whether or not these candidate genes really code for proteins active
in 2-PG metabolism, basically two strategies were used. First, for almost all of
the candidate genes, specific mutants were generated, and second, selected genes
were over-expressed in E. coli to prove the enzymatic activity of purified recom-
binant proteins (Table 6.1). Single mutants defective in almost all candidate genes
for 2-PG metabolism of Synechocystis were obtained by interposon mutagenesis.
Briefly, the coding sequences of selected genes were amplified by PCR, and drug-
resistant cartridges were introduced at selected restriction sites. These constructs
were transferred into Synechocystis for homologous recombination of the wild-type
(WT) gene by the inactivated gene. Drug-resistant clones were isolated and ana-
lyzed by PCR in order to determine whether the WT gene copy was completely
absent (completely segregated mutants) or if WT as well as mutated gene copies
coexisted (non-segregated mutants). WT and mutated cells of Synechocystis were
cultivated in BG11 medium (Rippka et al. 1979) buffered to pH 8 in a CO2-enriched
atmosphere (5% CO2 in air defined as high CO2 conditions – HC) or at ambient air
(about 0.035% CO2 in air defined as low CO2 conditions – LC). In most cases, the
mutants contained a completely segregated genome, i.e., the WT gene copy could be
completely inactivated. This was the first indication that these genes are not essen-
tial for the viability of Synechocystis under standard growth conditions at LC. There
were only four exceptions: glyoxylate/serine aminotransferase, L-protein subunit of
glycine decarboxylase complex, serine hydroxymethyltransferase, and one of the
two possible glyoxylate carboligases, where the mutant genotype was found not to
be segregated, i.e., the WT copy was retained in addition to the mutated gene copy
(Table 6.1). Incomplete segregation of a Synechocystis mutant can be taken as an
indication that the corresponding protein is essential for the viability of the cell.
Since it was possible to knock out the majority of putative 2-PG metabolism genes
completely, these four essential proteins are probably also involved in other vital
processes.

For the L-protein subunit of the glycine decarboxylase complex, the essen-
tial nature of the gene has been shown before and is due to the involvement
of L-protein in another enzyme complex, the pyruvate decarboxylase com-
plex (Engels and Pistorius 1997), which is essential in contrast to the glycine
decarboxylase (Hagemann et al. 2005). The serine hydroxymethyltransferase is
known to produce activated C1 subunits for many biosynthetic processes during
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serine/glycine conversion, which explains its essential character (Bauwe and
Kolukisaoglu 2003). The putative glyoxylate carboligase Slr2088 has been shown
to be involved in de novo amino acid biosynthesis. A corresponding mutant could
be only obtained when the cells were grown on media supplemented with amino
acids (Kouhen and Joset 2002). Probably, the essential aminotransferase Sll1559
is also involved in the basic amino acid metabolism, thus preventing its complete
knockout.

The successful generation and complete segregation of many mutants under
ambient conditions indicated that these genes are not required for the normal growth
of Synechocystis. This assumption was mostly supported by growth measurements,
in which all analyzed mutants, with the exception of �glcD1 mutant, grew at HC
like WT (Hagemann et al. 2005; Eisenhut et al. 2006). The GlcD1 represents a
glycolate dehydrogenase, which catalyzes the step just before the splitting into the
plant-like 2-PG cycle and the bacterial-like glycerate pathway. During analyses of
cellular metabolites, we observed an accumulation of low levels of glycolate in
the mutant �glcD1, which might be the reason for its slower growth. This find-
ing also supports the assumption that the gene glcD1 (sll0404) indeed codes for a
glycolate dehydrogenase (Table 6.1). Finally and more importantly, glycolate accu-
mulation in this mutant indicates that oxygenase reaction of RubisCO also occurs
in Synechocystis under HC despite the existence of an intact CCM (Eisenhut et al.
2006).

The absence of marked growth differences between most single mutants and WT
cells of Synechocystis could be explained by the existence of two different routes
for 2-PG metabolism and the existence of more than one candidate protein for cer-
tain steps, compensating for the knockout mutations. To examine this possibility, a
series of double mutants were generated. The enzyme 2-PG phosphatase catalyzes
the initial reaction of 2-PG metabolism. Its mutation led to a clear HCR phenotype in
Arabidopsis (Schwarte and Bauwe 2007). In Synechocystis, at least two genes code
for possible 2-PG phosphatases. A double mutant initially showed a HCR pheno-
type, but revertants quickly appeared making a clear conclusion difficult (Eisenhut
et al. 2006). Another double mutant, �gcvT/�tsr (defective in T-protein subunit
of glycine decarboxylase and tartronic semialdehyde reductase, see Fig. 6.2), was
generated in order to simultaneously block both the plant-like glycolate cycle and
the bacterial-like glycerate pathway. This completely segregated double mutants
and selected single mutants were compared with regard to their growth rates under
LC, which should favor the oxygenase reaction of RubisCO. These experiments
revealed that the �glcD1 and �gcvT mutants showed slower growth rates than
WT at LC, while the �tsr mutant grew like WT. Interestingly, the double mutant
�gcvT/�tsr, defective in the two possible routes for 2-PG metabolism, showed the
largest growth reduction of all investigated mutants at LC (Eisenhut et al. 2006).
The changed phenotype of mutants defective in enzymes of the 2-PG metabolism
at LC indicates that (1) this metabolic process occurs in Synechocystis, (2) the
plant-like 2-PG cycle seems to be of greater importance for 2-PG recycling than
the bacterial-like glycerate pathway, and (3) the two routes cooperate in 2-PG
metabolism.
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6.2.3 DNA Microarray Analysis to Search for New Routes
in 2-PG Metabolism

The above-mentioned results demonstrate that 2-PG metabolism is active in
Synechocystis; however, its inactivation did not lead to the HCR phenotype that
is characteristic of photorespiratory plant mutants. This result could indicate that
either CCM is sufficient to compensate for the absence of the 2-PG metabolism
or additional routes exist for 2-PG detoxification. It should be mentioned here that
we made repeated attempts to show glycolate release or uptake from Synechocystis
WT or the mutant cells, because glycolate export could easily explain the non-
essential character of 2-PG metabolism. However, in contrast to previous reports
dealing with other cyanobacterial strains (Renström and Bergman 1989), we were
unable to detect any glycolate release into the medium or any significant glyco-
late uptake activity. Therefore, we examined the global gene expression pattern of
Synechocystis WT and mutant cells shifted from HC to LC using DNA microarray
technology. These experiments gave a complete picture of the transcriptional regula-
tion of HC/LC acclimation and also helped to identify possible additional pathways
for 2-PG metabolism (Eisenhut et al. 2007). We found that about 200 genes were up-
regulated during HC/LC shifts, as previously reported (Wang et al. 2004). Among
them, genes for the bicarbonate transporters Cmp and SbtA showed the highest
induction ratios, while genes for carboxysomes were only slightly affected. Those
genes that were identified as necessary for 2-PG metabolism via the plant-like cycle
and the bacterial-like glycerate pathway did not show any significant alterations in
their transcript levels. However, among the many LC-induced genes encoding for
hypothetical proteins, we found promising candidates for enzymes possibly form-
ing a third route for 2-PG breakdown: the complete decarboxylation of glycolate via
oxalate and formate to CO2 (Eisenhut et al. 2007). The existence of such an addi-
tional decarboxylating branch (Fig. 6.2, Table 6.1) could explain the missing HCR
phenotype of our previous double mutant, �gcvT/�tsr.

Using the same strategy as before, the function of the complete decarboxylation
branch was proven by an additional round of mutagenesis. By inactivating oxalate
decarboxylase, the single mutant �odc was generated, which is blocked only in
this branch. This single mutant did not show any differences in growth compared
to WT cells at HC as well as LC. The double mutant, �odc/�gcvT, grew like WT
at HC, but slower at LC. Finally, we generated a triple mutant �odc/�gcvT/�tsr,
which could be obtained under HC and was found to be completely segregated in all
three mutated genes. This triple mutant was able to grow at HC, but bleached after
transfer to LC. Therefore, a complete block in all three postulated routes resulted
in the HCR phenotype known from photorespiratory plant mutants (Eisenhut et al.
2008a). It should be mentioned, however, that the triple mutant was unstable, but
the HCR phenotype was nevertheless reproducibly observed with freshly generated
triple mutant clones.

However, the HCR phenotype of the triple mutant did not correspond with
the finding that the mutant �glcD1 could grow at LC, albeit with lower rates
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(Eisenhut et al. 2006). This indicated the presence of an additional bypass, because,
in the absence of such a bypass, the mutation in �glcD1 should block all three
branching routes for 2-PG metabolism and should result in the phenotype of the
triple mutant. Searches for another candidate protein able to convert glycolate
into glyoxylate indeed pointed to the presence of a second glycolate dehydro-
genase in Synechocystis, GlcD2 (Table 6.1). The completely segregated double
mutant �glcD1/�glcD2, now fully defective in oxidation of glycolate to glyoxylate,
showed the expected HCR phenotype (Fig. 6.3), which further supported the conclu-
sion that an active 2-PG metabolism is essential for Synechocystis and possibly other
cyanobacteria as well (Eisenhut et al. 2008a). The HCR phenotype was previously
only found with cyanobacterial mutants defective in CCM. In order to rule out that
secondary mutations in our mutants affected CCM, we compared the Ci affinity of
the double mutant �glcD1/�glcD2 with WT cells. These experiments verified that
the mutant showed almost the same Ci affinity as WT cells (Eisenhut et al. 2008a),
revealing that the absence of an active photorespiratory 2-PG metabolism resulted
in a HCR phenotype despite an intact CCM in Synechocystis.

Fig. 6.3 Growth of several
clones of the double mutant
�glcD1/�glcD2 of
Synechocystis sp. strain PCC
6803 on plates incubated
under CO2-enriched air (5%
CO2, high carbon dioxide –
HC) or ambient air (0.035%
CO2, low carbon
dioxide – LC)

6.2.4 Function of Photorespiratory 2-PG Metabolism
in Cyanobacteria

The function of photorespiratory 2-PG metabolism for higher plants is still a matter
of discussion. Its main function is related to scavenging of organic carbon. Here,
two molecules of 2-PG are converted to one molecule of glycerate 3-phosphate,
which is necessary to refill the Calvin–Benson cycle. Moreover, the cycle detox-
ifies critical intermediates such as 2-PG and synthesizes valuable metabolites for
biosynthetic processes, e.g., activated C1 units. Last but not least, it has been hypoth-
esized to play an important role during stress acclimation, since high amounts of
energy and reducing equivalents are used during the re-fixation of released CO2
and NH3. This helps to regenerate acceptors of the photosynthetic electron chain
(Kozaki and Takeba 1996; Wingler et al. 2000; Bauwe and Kolukisaoglu 2003),



6 Pathway and Importance of Photorespiratory 2-Phosphoglycolate Metabolism 103

thus preventing acceptor limitation and subsequent photoinhibition. Our studies on
cyanobacterial 2-PG metabolism clearly suggest an essential function for this path-
way in cyanobacteria. Most probably, the cell lysis observed with double- and triple
mutants under LC is based on the accumulation of intermediates, which become
toxic above a certain threshold concentration. This has been shown for the accu-
mulation of glycine, e.g., in the mutant �gcvT. Glycine toxicity was caused by a
depletion of Mg2+ inside Synechocystis cells due to the complexation of Mg2+ by
glycine. Correspondingly, the toxic glycine effects could be compensated for by
supplementation of the corresponding mutants with Mg2+ (Eisenhut et al. 2007).
The regeneration of Calvin–Benson intermediates seems to be less important in
the cyanobacterium Synechocystis, since the double mutant �gcvT/�tsr was still
able to grow at LC, albeit with slower rates (Eisenhut et al. 2006). In this mutant,
only the decarboxylation branch (see Fig. 6.2) remained active leading to the com-
plete conversion of glyoxylate to CO2 without regeneration of Calvin–Benson cycle
intermediates.

In higher plants, photorespiratory metabolism also contributes to high light accli-
mation and diminishes photoinhibition (Kozaki and Takeba 1996; Takahashi et al.
2007). Cyanobacteria have evolved many strategies to cope with high light condi-
tions. Over-reduction of the electron chain is initially avoided by the dissipation
of excess light energy absorbed by chlorophyll, mainly via carotenoids, and other
non-photochemical quenching mechanisms (Havaux et al. 2005; Kirilovsky 2007).
In addition, a substantial part of electrons can be transferred from photosystem I
to molecular oxygen, which results in photoreduction of O2 via superoxide anion to
H2O2 in plant chloroplasts, i.e., the Mehler reaction (Mehler 1951; Asada 1999). For
the model cyanobacterium Synechocystis, it was shown that O2 is reduced directly
to water in a single reaction mediated by flavodiiron proteins (Vicente et al. 2002).
Thereby, the photoreduction of O2 acts as electron sink under stress conditions, e.g.,
high light or low Ci, which helps to prevent photodamage to photosystem II and is
regarded as an important protection system in all photosynthetic organisms (Asada
1999; Badger et al. 2000; Helman et al. 2003). In order to evaluate the importance
of photorespiratory 2-PG metabolism for high light acclimation of Synechocystis,
we generated combined mutations in gcvT (T-protein subunit of glycine decarboxy-
lase blocking the main branch) and genes for the flavodiiron proteins Flv1 (Sll1521)
and Flv3 (Sll0550), which are apparently involved in light-dependent O2 reduction
activity (Helman et al. 2003). The analyses of the mutant genotypes revealed that a
combination of mutations in gcvT and flv3 resulted in non-segregated mutants, while
the single mutants and a double mutant �gcvT/�flv1 were completely segregated
(Hackenberg et al. 2009). This finding by itself indicates that photorespiratory 2-PG
metabolism and photoreduction of O2 performed by Flv3 somehow cooperate in
an essential function. Subsequently, single- and double mutants were characterized
regarding their photosynthetic parameters and high light acclimation. These exper-
iments revealed changed performance of photosynthesis and growth at high and
changing light conditions for the single mutant �flv3 and to a significantly greater
extent for the non-segregated double mutant �gcvT/�flv3 (Hackenberg et al. 2009).
In summary, these results clearly indicate that, similar to plants, photorespiratory
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2-PG metabolism supports the resistance of cyanobacteria to over-reducing con-
ditions such as high light or low Ci despite the presence of additional protection
mechanisms.

Another possible function of 2-PG metabolism may be related to signaling of LC.
The transfer of cyanobacterial cells from HC into LC induces a complex acclimation
process, which includes mainly up-regulation of CCM activity. DNA-microarray
experiments reveal that several hundred genes are differentially regulated to achieve
this goal. Some transcriptional factors, such as CmpR or NdhR, are known to bind
to promoters, e.g., that of the cmp gene operon. Their inactivation consequently
abolished the up-regulation of the corresponding genes for Ci transporters (Wang
et al. 2004). Recently, another transcriptional factor, named AbrB (Sll0822), was
identified, which seems to represent a master repressor for induction of CCM
at LC. A completely segregated �abrB mutant of Synechocystis expresses LC-
inducible genes at high levels even under HC and, correspondingly, �abrB cells
display an enhanced Ci affinity at HC, which is normally characteristic of LC-grown
WT cells (Lieman-Hurwitz et al. 2009). It is still unknown by which mechanism
these transcriptional factors are regulated to either repress or activate Ci-regulated
genes. One attractive hypothesis includes intermediates of the photorespiratory 2-
PG metabolism as potential metabolic signals to sense the internal Ci status of a
cyanobacterial cell, since shifts to LC should be accompanied by at least a transient
accumulation of corresponding intermediates (Kaplan and Reinhold 1999).

This hypothesis was recently supported by the finding that the DNA-binding
capacity of the transcriptional factor CmpR is influenced by the 2-PG concentration
(Nishimura et al. 2008). Our attempts to identify the pathway of 2-PG metabolism
in Synechocystis also provide some indirect support for this hypothesis. Cells of the
�glcD1 mutant, which accumulate glycolate even under HC (Eisenhut et al. 2006),
contained similarly high amounts of carboxysome at HC as found in WT cells only
after a shift to LC (Eisenhut et al. 2007). Moreover, our recent metabolomic analyses
of Synechocystis WT and mutant cells revealed marked changes in the metabolite
pattern, when we compared HC- and LC-grown cells. Again, in cells of the �glcD1
mutant some of the metabolic changes characteristic for LC-treated WT cells were
already observed under HC (Eisenhut et al. 2008b). Therefore, the existence of an
active photorespiratory 2-PG metabolism among cyanobacteria not only is essential
for viability at LC but could be also involved directly or indirectly in their Ci sensing
mechanism.

6.2.5 Evolution of Photorespiratory 2-PG Metabolism

A complete block of 2-PG metabolism results in a HCR phenotype not only in C3
plants but also in cyanobacteria. Recently, it was shown that 2-PG metabolism is
also necessary for maize, a C4 plant (Zelitch et al. 2009). From all these results,
it appears that 2-PG metabolism is essential for all organisms performing oxy-
genic photosynthesis in an oxygen-containing atmosphere. Hence, it is likely that
an ancient 2-PG metabolism evolved in parallel with the invention of oxygenic
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photosynthesis. Even in the ancient, oxygen-free atmosphere, increasing amounts
of molecular oxygen might have accumulated inside the cyanobacterial cell with
consequent stimulation of the oxygenase reaction of RubisCO, which, at that time,
was not yet sequestered inside the carboxysome. Moreover, the cyanobacterial mode
of 2-PG metabolism includes one route (see Fig. 6.2) that is very similar to that
occurring in higher plants of the C3 type. This suggests that ancient cyanobacte-
ria possessed an early photorespiratory 2-PG metabolism which was conveyed to
plants by endosymbiosis (Eisenhut et al. 2008a). This hypothesis is supported by
phylogenetic comparisons of enzymes involved in cyanobacterial and plant 2-PG
metabolism. In many cases, these comparisons reveal a close clustering of cyanobac-
terial and plant proteins, e.g., for glycerate kinase (Fig. 6.4), which implies a close
phylogenetic relation. Such systematic comparisons predict that the plant enzymes
glycolate oxidase, P- and T-proteins of glycine decarboxylase, glycerate kinase,
and possibly hydroxypyruvate reductase as well as serine hydroxymethyltransferase
evolved from cyanobacterial proteins acquired during endosymbiosis (Table 6.1,
Eisenhut et al. 2008a).

Fig. 6.4 Phylogenetic un-rooted maximum likelihood (ML) tree of glycerate kinases from
cyanobacteria and plants. The plant glycerate kinase cluster is flanked with glycerate kinases of
α- and β-cyanobacteria. The bacterial-type glycerate kinase from Synechocystis sp. PCC 6803
(Slr1840) served as out-group. For the analysis, amino acid sequences obtained from CyanoBase
or NCBI were aligned by ClustalX. ML phylogenetic trees were inferred using phyml (Guindon
and Gascuel 2003), with a Whelan and Goldman (WAG) evolutionary model. Numbers at nodes
indicate bootstrap values for 1,000 replicates of the original data set

Interestingly, the two additional pathways for 2-PG breakdown, the bacterial-
type glycerate pathway and the decarboxylation branch, seem to be missing in
plants. The glycerate pathway is encoded in all cyanobacterial genomes and hence
probably evolved early in cyanobacterial history. It can be speculated that this
branch was also present in the primary endosymbiont, but was lost during the evo-
lution of higher plants, or is now used for other purposes. It would be interesting
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to investigate whether or not the re-introduction of the cyanobacterial glycerate
pathway into higher plants would have an effect on their photorespiratory 2-PG
metabolism. In contrast, the decarboxylation branch is also missing in most of
the more recent cyanobacterial genomes; probably it was acquired later during the
evolution by only certain cyanobacterial strains such as Synechocystis.

6.3 Conclusions

We have shown that cyanobacteria perform an active photorespiratory metabolism
despite the activity of the CCM. 2-PG metabolism uses three different routes in
Synechocystis, while in the majority of cyanobacteria only the plant-like cycle and
the glycerate pathway seem to exist. A complete block of 2-PG metabolism resulted
in an HCR phenotype, which shows that this metabolism is essential for all organ-
isms performing oxygenic photosynthesis in the present-day atmosphere. The main
function of 2-PG metabolism in cyanobacteria is directed to the detoxification of
critical intermediates. However, it is also involved in acclimation to high light con-
ditions. These findings gave rise to the hypothesis that an early photorespiratory
2-PG metabolism was already present in ancient cyanobacteria and was conveyed
endosymbiotically to plants.
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Chapter 7
Beyond the Genome: Functional Studies
of Phototrophic Sulfur Oxidation

Thomas E. Hanson, Rachael M. Morgan-Kiss, Leong-Keat Chan,
and Jennifer Hiras

Abstract The increasing availability of complete genomic sequences for cultured
phototrophic bacteria and assembled metagenomes from environments dominated
by phototrophs has reinforced the need for a “post-genomic” analytical effort to test
models of cellular structure and function proposed from genomic data. Comparative
genomics has produced a testable model for pathways of sulfur compound oxida-
tion in the phototrophic bacteria. In the case of sulfide, two enzymes are predicted
to oxidize sulfide: sulfide:quinone oxidoreductase and flavocytochrome c sulfide
dehydrogenase. However, these models do not predict which enzyme is important
under what conditions. In Chlorobaculum tepidum, a model green sulfur bacterium,
a combination of genetics and physiological analysis of mutant strains has led to the
realization that this organism contains at least two active sulfide:quinone oxidore-
ductases and that there is significant interaction between sulfide oxidation and light
harvesting. In the case of elemental sulfur, an organothiol intermediate of unknown
structure has been proposed to activate elemental sulfur for transport into the cyto-
plasm where it can be oxidized or assimilated, and recent approaches using classical
metabolite analysis have begun to shed light on this issue both in C. tepidum and the
purple sulfur bacterium Allochromatium vinosum.

7.1 Introduction

The cycling of inorganic sulfur compounds in the environment is driven to a sig-
nificant extent by microbial action (Overmann et al. 1996; Canfield and Raiswell,
1999; Turchyn and Schrag 2006). Biologically mediated oxidation of sulfide and
intermediate oxidation state sulfur compounds (S2O3

2– and S0) provides energy
and reducing power for chemo- and photolithotrophic microorganisms (Friedrich
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et al. 2005). In some ecosystems, sulfide oxidation supports the bulk of primary
production forming the base of food webs in sulfidic caves (Macalady et al. 2008),
hot springs (Elshahed et al. 2007), marine hydrothermal vents (Goffredi et al. 2004),
and marine cold seeps (Orphan et al. 2004; Omoregie et al. 2008). Sulfide oxida-
tion also forms the basis for symbiotic associations, most notably the association
between the Vestimentiferan tubeworm Riftia pachyptila with its sulfide-oxidizing
gammaproteobacterial community found in the trophosome, a specialized organ
(Arndt et al. 2001). Many other thiotrophic symbioses between eukaryotes, includ-
ing metazoans, and prokaryotes are known (Bernhard et al. 2000, 2003, 2006; Arndt
et al. 2001; Goffredi et al. 2004) as well as strictly microbial symbioses between
sulfide-oxidizing non-motile phototrophic bacteria and motile heterotrophic bac-
teria (Overmann, 2006; Pfannes et al. 2007). In these ecosystems and symbioses,
sulfide oxidation provides the reductant and energy for carbon dioxide fixation
in the sulfide oxidizer that is then either shared with a symbiotic partner or con-
sumed in higher trophic levels of a food web. Microbial sulfate reduction produces
sulfide, and tightly coupled closed sulfur cycles where sulfur reduction and oxida-
tion co-occur have been observed in marine sediments (Madrid et al. 2006), lakes
and anoxic ocean basins (Overmann et al. 1996; Holmer and Storkholm, 2001),
microbial mats (Baumgartner et al. 2006), and biofilms (Celis-Garcia et al. 2008).

This chapter will detail recent advances in functional (i.e., genetic, biochemical,
and metabolite profiling) studies of sulfur oxidation in phototrophic bacteria that are
refining metabolic models based exclusively on genome data.

7.2 Sulfide and Microbial Sulfur Cycling

Sulfide (H2S(g), HS–
(aq)) is the most reduced form of the element sulfur and is a

strong reductant whose oxidation proceeds in the environment by both chemical
and biological pathways (Preisler et al. 2007). Sulfide metabolism is thought to be
an ancient process that has been maintained in a wide range of lineages through-
out evolution (Martin et al. 2003; Theissen et al. 2003). Sulfide has recently been
recognized as a gaseous signaling molecule in humans (Lefer 2007), acting as a
vasorelaxant that can prevent ischemic reperfusion injury to myocardial cells (Elrod
et al. 2007; Yang et al. 2008), and has been characterized as the “first inorganic
substrate” for human cells (Goubern et al. 2007). Mitochondrial sulfide:quinone
oxidoreductase (SQR) activity is a major pathway for the elimination of sulfide
as a signal/substrate and also helps to prevent toxicity from sulfide generated by
the metabolism of the human gut microbiome (Goubern et al. 2007). Microbial
sulfide oxidation in part controls sulfide fluxes across anaerobic to aerobic transi-
tions in diverse ecosystems including freshwater (Kamp et al. 2006), groundwater
(Macalady et al. 2008), estuaries (Weston et al. 2006), coastal ecosystems and sedi-
ments (Bruchert et al. 2003), deep ocean sediments (Wang et al. 2008), sewers (Yang
et al. 2005), and engineered systems that remove sulfide from industrial supply feeds
and effluents (Arnirfakhri et al. 2006; Janssen et al. 2009).
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7.2.1 Enzymatic Routes of Sulfide Oxidation

In sulfide-oxidizing organisms including the phototrophic sulfur bacteria, one of the
two enzymes catalyzes the oxidation: sulfide:quinone oxidoreductase (SQR, E.C.
1.8.5.) (Shahak et al. 1999; Theissen et al. 2003) or flavocytochrome c (FCC, also
known as flavocytochrome c sulfide dehydrogenase) (Chen et al. 1994; Reinartz
et al. 1998). Many phototrophic bacteria contain genes that encode both enzymes,
and the most recent models of sulfur oxidation in both the green sulfur and purple
sulfur bacteria indicate that these enzymes are alternate routes that result in the
production of either polysulfide (green sulfur) or protein-encapsulated elemental
sulfur globules (purple sulfur) in the periplasm (Dahl, 2008; Frigaard and Bryant,
2008a, 2008b).

Electrons liberated from sulfide are passed into the electron transport chain at
different levels depending on whether SQR or FCC catalyzes the oxidation. SQR
donates electrons from sulfide to the electron transport chain at the level of the
quinone pool, upstream of the cytochrome b/c1 complex (menaquinol:cytochrome
c oxidoreductase), while FCC donates electrons at the level of cytochrome c down-
stream of the b/c1 complex (Oh-oka and Blankenship, 2004). Theoretically, the
energy yield should be greater for organisms utilizing SQR compared to those uti-
lizing FCC, as proton motive force is generated when electrons are passed through
the b/c1 complex en route either to the reaction center in phototrophic bacteria (Oh-
oka and Blankenship, 2004) or to terminal electron-accepting complexes that reduce
oxygen (Celis-Garcia et al. 2008; Shahak, 2008), nitrate (Zopfi et al. 2008), or arse-
nate (Hollibaugh et al. 2006) in chemotrophic sulfide oxidizers. Furthermore, while
reverse electron transport to NAD+ will be required regardless of whether SQR or
FCC is utilized (Klamt et al. 2008), the difference in redox potential between quinol
(+40 mV relative to the standard hydrogen electrode) and NAD+ (–320 mV) is sig-
nificantly smaller than between reduced cytochrome c (+240 mV) and NAD+. Thus,
about 19 kJ less energy per mole of electrons should be required for NADH gen-
eration via reverse electron transport in an organism utilizing SQR relative to an
organism dependent on FCC.

Beyond thermodynamics, additional evidence suggests that SQR is more impor-
tant than FCC for chemo- and phototrophic sulfide oxidation in bacteria. First,
sequence analyses indicate that homologs of FCC seem to be confined to autotrophs
that can utilize thiosulfate in addition to sulfide as an energy source (Theissen et al.
2003; Frigaard and Bryant, 2008b). The oxidation of sulfur/polysulfides produced
by sulfide oxidation in purple sulfur phototrophic bacteria (PSB) requires the action
of gene products encoded by the dissimilatory sulfite oxidoreductase (Dsr) gene
cluster (Dahl et al. 1999, 2005; Chan et al. 2008). In the Chlorobiaceae, the Dsr
system is also likely involved in elemental sulfur oxidation, but this has not been
experimentally demonstrated as yet (Frigaard and Bryant, 2008a, 2008b).

In contrast, homologs of SQR are widely distributed in bacteria and similar
proteins have been identified in the archaea (Theissen et al. 2003; Frigaard and
Bryant, 2008b) and eukaryotes (Shahak, 2008). Second, mutation of the fccAB
genes in the PSB A. vinosum did not inhibit its ability to oxidize sulfide and grow
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photolithoautotrophically, although the specific growth rates and biomass yields
were not reported (Reinartz et al. 1998). A. vinosum also contains SQR and the Dsr
and Sox systems. Third, in the chemolithotrophic sulfur oxidizer Acidithiobacillus
ferrooxidans NASF-1, sqr transcripts were 3-fold more abundant in sulfide- than
iron-grown cells (Wakai et al. 2004). Finally, sulfide oxidation activities directly
linked to energy production or detoxification have been demonstrated with the puri-
fied SQR proteins from the proteobacterium Rhodobacter capsulatus (Schutz et al.
1997) and the cyanobacteria Oscillatoria limnetica and Aphanothece halophytica
(Arieli et al. 1994; Bronstein et al. 2000). R. capsulatus contains neither Dsr nor
Sox sulfur oxidation systems and while genomic information is not available for
O. limnetica and A. halophytica, other cyanobacterial genome sequences (Kaneko
and Tabata, 1997; Meeks et al. 2001; Nakamura et al. 2002, 2003) do not contain
the Dsr or Sox systems.

7.2.2 SQR in the Chlorobiaceae (Green Sulfur Bacteria)

While the function of SQR in sulfide oxidation has been demonstrated in the facul-
tative anoxygenic cyanobacterium O. limnetica (Arieli et al. 1994; Bronstein et al.
2000) and the purple nonsulfur bacterium R. capsulatus (Schutz et al. 1997), in
the Chlorobiaceae SQR function has only been examined to a limited extent in
Chlorobium limicola (Shahak et al. 1992). The Chlorobiaceae are phototrophs that
are commonly found in freshwaters and estuaries where reduced sulfur compounds
and light coexist. With the exception of Chlorobium ferrooxidans, all characterized
GSB, including C. tepidum, can utilize sulfide as an electron donor to support pho-
totrophic growth. Biochemically, it was shown that the membrane of C. limicola
forma thiosulfatophilum catalyzes electron transfer from sulfide to plastoquinone in
the dark (Shahak et al. 1992). All sequenced GSB strains contain orthologs for FCC,
SQR, or both; some strains like C. tepidum can have more than one gene encoding
distinct forms of SQR and FCC in their genomes, complicating functional predic-
tion from sequence alone. SQR-encoding genes can even be found in organisms like
C. ferrooxidans that cannot grow on sulfide, where it may confer resistance to sul-
fidic environments (Heising et al. 1999). The genome of C. ferroxidans lacks many
other proposed sulfur oxidation genes (such as those encoding the Dsr system),
which correlates with its ability to oxidize Fe2+ and H2 but not sulfur.

Three SQR homologs, CT0117, CT0876, and CT1087, have been identified
in the genome of C. tepidum (Fig. 7.2) (Chan et al. 2009). As with many
other homologs within and between bacterial strains, amino acid sequences of
C. tepidum’s three SQRs are highly divergent, with pairwise sequence identity aver-
aging in the 20% range. However, the N termini of proteins CT0117, CT0876 and
CT1087 are highly homologous to other SQRs found in eubacteria. On the basis
of sequence comparisons, CT0117 has been proposed to be the bona fide SQR
in C. tepidum while CT0876 and CT1087 have been labeled SQR-like proteins
(SQRLPs) (Frigaard and Bryant, 2008b). The role of these three homologs has now
been examined in more detail by our group.
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Both mutation of the CT1087 gene in C. tepidum and its expression in E. coli
suggest that its protein product is indeed an active SQR in vitro and in vivo, while
the case of CT0876 is not yet resolved (Chan et al. 2009). While strains lacking
CT0117, CT1087, or both exhibit clear defects in sulfide-dependent growth at high
sulfide concentrations, sulfide still appears to be oxidized by these strains, including
in the double mutant (data not shown). However, it is currently unclear whether or
not CT0876 is required for this oxidation activity, or whether this can be attributed
to FCC. Furthermore, the growth properties of the existing strains have only been
characterized under a limited set of permissive conditions. To fully understand
the functions of the multiple SQR homologs, mutant growth and sulfide oxida-
tion properties must be examined under a full range of light intensities and sulfide
concentrations.

SQR assays conducted in the single mutant C. tepidum strains lacking either
CT0117 or CT1087 suggest that there may be kinetic differences between these
two SQR homologs (Table 7.1). Strain CT1087::TnOGm, which contains CT0117
and CT0876, displays an extremely low apparent Km and low Vmax. Strain
CT0117::TnOGm, which contains CT1087 and CT0876, displays a dramatic
increase in Km and Vmax. Results obtained with strain CT0876::TnOGm are some-
what inconsistent. CT0876 is not active judged from the lack of detectable SQR
activity in strain CT0117::TnOGm, CT1087::TnEm and the fact that SQR specific
activity is statistically indistinguishable in strain CT0876::TnOGm from the wild
type at the two sulfide concentrations shown. However, the kinetic parameters are
quite different from the wild type. This reflects the preliminary nature of the kinetic
data and the fact that they were determined in membrane fractions rather than using
purified proteins and therefore were not controlled to contain equal concentrations
of SQR-active sites in the assays. Current efforts are focused on illuminating the
kinetic differences between SQRs hinted at here and to understand the mechanism
of sulfide oxidation in C. tepidum at various levels of organization from purified
enzymes to intact cells by a combination of microbial genetics, biochemistry, and
analytical electrochemistry.

Table 7.1 SQR activity in C. tepidum wild-type and mutant strains

Specific activity
(nmol dUQred mg protein–1 min–1)

Strain 1.0 mM Na2S 0.5 mM Na2S ∗∗Km(mM) ∗∗Vmax

Wild type 87.0 ± 6.9 63.0 ± 4.5 0.2 102
CT0117::TnOGm 31.5 ± 4.5∗ 7.5 ± 2.6∗ 5.0 200
CT0876::TnOGm 82.5 ± 2.6 60.0 ± 6.9 1.4 238
CT1087::TnOGm 52.5 ± 5.2∗ 45.0 ± 9.0∗ 0.1 75
CT0117::TnOGm N.D.a N.D.a N.D.a N.D.a

CT1087::TnEm N.D.a N.D.a N.D.a N.D.a

∗P < 0.05 (n ≥ 3) compared to the wild type assayed under the same conditions ∗∗Apparent
Km and Vmax were estimated from the SQR activity obtained in the membrane fraction of each
strain, not from purified protein aNo SQR activity could be detected
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7.2.3 Interactions Between Sulfide Oxidation and Light Harvesting

C. tepidum was originally characterized as having an upper growth limit of 4 mM
for sulfide. However, with improved culturing practices, C. tepidum growth yield in
batch cultures increases linearly at a rate of 9 g protein/mol sulfide in the range of
2–8 mM sulfide, but C. tepidum does not grow well with 10 mM sulfide as the sole
electron donor (Chan et al. 2009). This wide range of sulfide tolerance coupled with
the already observed regulation of the CT1087 SQR suggested that sulfide may be
an important regulator of cellular processes in C. tepidum and this was investigated
by characterizing the properties of cultures grown at various sulfide concentrations.
This led to the observation of at least two global responses to sulfide concentration.

First, the color of the cultures is notably altered when they are grown at differ-
ent sulfide concentrations, and this corresponds to a shift in the Bchl c Qy peak
observed in intact cells (Fig. 7.1a), which is determined by the alkylation state of
Bchl c in the chlorosome. Works by the PI’s group (Morgan-Kiss et al. 2009) and
others (Borrego and Garcia-Gil, 1994; Saga et al. 2005; Chew et al. 2007) have
demonstrated that these Qy shifts are accompanied by changes in whole cell fluores-
cence and chlorosome volume fraction that correspond to altered excitation energy
flow between the chlorosome and reaction center, apparently in response to sul-
fide. Increasing sulfide concentration imparts a more negative redox potential to the
medium and suggests the hypothesis that C. tepidum tunes its light-harvesting capa-
bilities to redox potential. It is currently unknown how rapidly C. tepidum can adjust
the alkylation state of Bchl c within chlorosomes. This is not a trivial considera-
tion as Bchl c exists primarily in a non-protein bound, paracrystalline state inside
the chlorosome isolated from most biosynthetic enzymes by a unilamellar mem-
brane (Hohmann-Marriott and Blankenship, 2007; Sorensen et al. 2008). Details of
Bchl transport into the chlorosome are still lacking, but this adaptive response may
provide additional insights into this process.

Second, a suite of at least six polypeptide bands < 30 kDa displayed altered stain-
ing intensity in varied sulfide concentrations or when compared to a control extract
from cells growing on thiosulfate by SDS-PAGE (Fig. 7.1b). These polypeptides
may arise from a number of processes including degradation of damaged proteins,
increased expression of proteins required for resistance to increased sulfide, or pro-
teins involved in adjusting chlorosome structure and function. Current efforts are
directed at discriminating between these distinct possibilities.

7.3 Low Molecular Weight Thiols and Phototrophic Sulfur
Oxidation

All cellular organisms are dependent on thiols, compounds containing reduced
sulfhydryl (R–SH) groups, as catalysts and carbon carriers in central metabolism
(i.e., lipoic acid, coenzyme A) and to maintain redox balance and regulation.
Glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) is perhaps the best-known
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Fig. 7.1 Properties of C. tepidum grown with varying concentrations of sulfide. (a) Wavelength
maximum of the Bchl c absorption peak in vivo. (b) One-dimensional SDS-PAGE protein gels of
whole cell extracts of cultures from selected sulfide concentrations. Polypeptide bands enhanced
in high sulfide cultures are noted with arrows as are the expected position of SQR polypeptides

low molecular weight (LMW) thiol found in a variety of bacteria and higher eukary-
otes, including humans. GSH protects cells against oxidative stresses by mediating
cellular redox balance via cycling between reduced thiol (GSH) and oxidized disul-
fide (GSSG) forms (Fahey, 2001). LMW thiols are kept in their reduced form by
specific disulfide reductases with GSSG reductase (GSR) as the relevant enzyme
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Table 7.2 Distribution of redox-balancing LMW thiols

LMW thiol Phylogenetic distribution

Glutathione Many eukaryotes, proteobacteria, and all cyanobacteria
Glutathione amide C. gracile, A. vinosum?
Mycothiol Actinomycetes
Ergothioneine Fungi and actinomycetes
Trypanothione Pathogenic protozoa: Trypanosoma and Leishmania
Coenzyme A Staphylococcus aureus, Pyrococcus horikoshii

in glutathione-containing organisms. Organisms that employ alternative thiols pro-
duce an enzyme equivalent to GSR whose preferred substrate is the disulfide of
the predominant thiol in the cell. Redox-balancing thiols and their cognate disul-
fide oxidoreductases vary among organisms (Table 7.2). Bartsch and co-workers
proposed that a form of GSH metabolism may have been present in photosynthetic
anaerobes prior to the evolution of oxygenic photosynthesis (Bartsch et al. 1996),
and it seems clear that eukaryotes obtained GSH metabolism via endosymbio-
sis as both proteobacteria (pre-mitochondria) and cyanobacteria (pre-chloroplasts)
contain GSH as the major LMW thiol. LMW thiols have been proposed as an
active player in the oxidation of elemental sulfur in phototrophic bacteria, whether
it is stored in the periplasm (Chromatiaceae) or extracellularly (Chlorobiaceae,
Ectothiorhodospiraceae).

In purple sulfur bacteria, specifically the Chromatiaceae, glutathione amide
(GASH) is produced at millimolar levels by the purple photosynthetic anaerobe
A. vinosum and is maintained in the reduced state by a disulfide reductase utiliz-
ing reduced nicotinamide adenine dinucleotide (NADH), previously thought to be
GSH reductase (Fahey 2001). The Chromatium gracile glutathione amide reductase
enzyme exhibited a 70-fold lower Km for the disulfide of GASH than for GSSG and
a 150-fold preference for NADH over NADPH. GASH has also been found only in
anaerobic Chromatium species (Vergauwen et al. 2001) and was observed in both
the thiol and the perthiol (GASSH) forms when C. gracile was grown on sulfide
(Bartsch et al. 1996). This observation suggested that GASSH could be involved in
sulfur globule formation and/or degradation (Bartsch et al. 1996). However, very
recent work failed to detect GASH in A. vinosum cells during elemental sulfur oxi-
dation (Franz et al. 2009). Instead, the cultures appeared to contain significant pools
of polysulfide terminated with sulfone groups both internally and in the surround-
ing medium. These contradictory results clearly reveal a need for more functional
studies to resolve the importance of GASH in the purple sulfur bacteria. In partic-
ular, the sulfur oxidation phenotype of GASH-less A. vinosum mutants needs to be
determined.

In the green sulfur bacteria, prior work has demonstrated that the Chlorobiaceae
contain LMW thiols whose structure is currently unknown. The existence of a novel
thiol, named U11, was found during a study of microbial LMW thiol diversity that
included C. limicola (Fahey et al. 1987). C. limicola also lacked detectable amounts
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of glutathione and all other common LMW thiols. Consistent with these data, when
Chlorobiaceae genomes have been analyzed, no biosynthetic pathways for redox-
balancing LMW thiols (Table 7.1), no cognate disulfide oxidoreductases, and no
glutathione-dependent enzymes have been found. Given that the genomic sequences
have proven to be uninformative, our group has applied classical bimane labeling
methods for LMW thiol detection to C. tepdium and a single LMW thiol has been
detected (Fig. 7.2). This thiol exhibits a unique retention time relative to a selection
of known thiols and the previously described U11 from C. limicola. During growth
with both polysulfide and thiosulfate in batch culture, the peak area of the C. tepidum
LMW thiol increases (Fig. 7.2). Indeed, after normalization for biomass, it appears
that the pool size of this thiol metabolite increases as the cells grow into stationary
phase (J. Hiras and T. E. Hanson, in preparation). Our current efforts are focused on
the structural characterization of this metabolite and its distribution throughout the
Chlorobiaceae. We believe that this is the previously reported U11 thiol as shorter
retention times for most thiols are observed in our hands relative to those previously
reported (Fahey et al. 1987).

Fig. 7.2 HPLC detection of a
bimane derivatized LMW
thiol extracted from
C. tepidum. A portion of a
full chromatogram is shown
focusing on the 7.1 min peak
as extracted from cultures
growing with both thiosulfate
and sulfide as electron donors
at the indicated times after
inoculation

7.4 Concluding Remarks

As metabolic models arise from increasing amounts of genomic sequence data,
particularly for pathways like sulfur oxidation that display great diversity in the
microbial realm, concerted efforts that rely on classical biochemistry, physiology,
genetics, and metabolite analysis need to be increasingly applied to test and vali-
date these models. This will require significant efforts to develop genetic methods
for previously genetically inaccessible organisms for which genome sequences are
available and their cultivation under rigorously defined conditions for biochemical
and metabolic analyses. In a sense, this means the field needs to come full circle and



118 T.E. Hanson et al.

what was once old has to become new again to tease apart and truly appreciate the
biological meaning lurking in the current morass of genomic data.
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Chapter 8
Multicellularity in a Heterocyst-Forming
Cyanobacterium: Pathways for Intercellular
Communication

Vicente Mariscal and Enrique Flores

Abstract The filamentous, heterocyst-forming cyanobacteria are among the
simplest multicellular prokaryotes, and Anabaena sp. strain PCC 7120 is being
used as a model for studying multicellularity in these organisms. In the absence
of combined nitrogen two interdependent cell types are present in an Anabaena
filament: vegetative cells and heterocysts. Vegetative cells perform oxygenic photo-
synthesis and supply carbon compounds to the heterocysts, which are specialized in
the assimilation of atmospheric N2 and supply nitrogenous compounds to the veg-
etative cells. In this chapter, we discuss two possible pathways for the exchange
of metabolites and regulatory signals between vegetative cells and heterocysts:
the continuous periplasm that surrounds the cells in the filament and some septal
proteinaceous complexes that could allow the direct intercellular transfer of small
molecules.

8.1 Introduction

Bacteria are generally viewed as unicellular organisms. However, some unicellu-
lar bacteria communicate through signals that make them behave as a multicellular
organism (Hooshangi and Bentley 2008), and other bacteria are, as discussed later,
truly multicellular. Evolution to multicellularity implies several features, includ-
ing the fact that cells must stick together, which may involve specific adhesion
molecules, and the acquisition of a barrier that isolates the organism as a whole
from the external medium. In contrast to colonial organisms, true multicellular
organisms exhibit a division of labor: different cells within the organism special-
ize in different functions. This requires cell signaling, in which signal molecules
and regulatory metabolites are exchanged between cells, and signal transduction
mechanisms, which translate the signals into different patterns of gene activity.
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The filamentous, heterocyst-forming cyanobacteria are true multicellular organ-
isms. They have been described as reproducing by random trichome breakage,
implying that their unit of growth is the filament (Rippka et al. 1978). Anabaena sp.
strain PCC 7120, hereafter referred to as Anabaena, is a filamentous heterocyst-
forming cyanobacterium that is used as a model for studying multicellularity. It
consists of strings of cells joined together and surrounded by a continuous Gram-
negative type of outer membrane (Rippka et al. 1978; Flores et al. 2006). Under
nitrogen deprivation some vegetative cells in the filament differentiate into het-
erocysts, which are specialized for N2 fixation and exchange nutrients with the
vegetative cells of the filament.

8.2 Morphology of Heterocyst-Forming Cyanobacteria

Historically, the cyanobacteria were thought to be green algae because of their
chlorophyll a-dependent photosynthesis. However, electron microscopy studies
have shown that they are prokaryotes carrying walls that bear close structural
resemblance to the walls of Gram-negative bacteria (Wolk 1973; Stanier and Cohen-
Bazire 1977). Filamentous cyanobacteria consist of filaments that can be hundreds
of cells long. The general organization of the cells is very similar to that of uni-
cellular cyanobacteria: the nuclear material, ribosomes, glycogen granules, and
carboxysomes are centrally located, and the thylakoid membranes are generally
located in the periphery of the cell. All these materials are enclosed by the cyto-
plasmic membrane, which surrounds each cell in the filament. External to the
cytoplasmic membrane is a medium electron-dense layer of peptidoglycan (murein),
which can vary in thickness among species and which enters into the septum
between cells. The filament is surrounded by an outer membrane, which exhibits
special features when compared with some other well-characterized Gram-negative
bacteria such as the presence of carotenoids and specific porins (Ris and Singh 1961;
Moslavac et al. 2005; Flores et al. 2006). Some cyanobacterial strains also possess
an S-layer (a surface layer made of proteins attached to the outermost portion of the
cell wall), similar to many other bacteria (Hoiczyk and Hansel 2000).

Cell division in filamentous cyanobacteria resembles the septal division found in
most unicellular bacteria, which divide by forming a septum derived from the inner-
most wall layer (cytoplasmic membrane and peptidoglycan). However, whereas in
unicellular Gram-negative bacteria the completion of this septum is followed by the
invagination of the outer membrane and the separation of the daughter cells, in fil-
amentous cyanobacteria the outer membrane does not invaginate (at least between
most of the cells in the filament) and the daughter cells remain enclosed by the
continuous outer membrane (Ris and Singh 1961; Hoiczyk and Baumeister 1995).
Thus, the septum that separates the cells in the filamentous cyanobacteria contains
the medium electron-dense layer of peptidoglycan lying between the cytoplasmic
membranes of the daughter cells.

In the septum between cells, some structures, termed microplasmodesmata, are
present in the form of thin strings perpendicular to the cytoplasmic membranes
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(Pankratz and Bowen 1963). In freeze-fracture electron microscopy, they have
been identified as pits and protrusions seen in the different leaflets of the cyto-
plasmic membranes of adjacent cells (Giddings and Staeheling 1978). However,
the term “microplasmodesmata” may not be appropriate for describing such struc-
tures, since plasmodesmata refer to “cytoplasmic bridges delimited by cytoplasmic
membranes,” whereas in this case, no cytoplasmic membrane continuity between
adjacent cells appears to exist (Flores et al. 2006). At the connection of a hete-
rocyst with a vegetative cell, the septum is also traversed by the interconnecting
structures found between vegetative cells, although the number of such structures is
less (Giddings and Staeheling 1978). In spite of the narrowing at the heterocyst cell
poles, the outer membrane is still continuous, delimiting a continuous periplasmic
space (Lang and Fay 1971; Sherman et al. 2000; Flores et al. 2006).

8.3 Heterocyst Differentiation in Anabaena

When combined nitrogen is withdrawn from the external medium, 8–10% of the
vegetative cells in a filament of Anabaena differentiate into heterocysts, which are
distributed in a semiregular pattern along the filaments (Golden and Yoon 2003).
Heterocysts are terminally differentiated cells which contain the oxygen-sensitive
enzyme complex nitrogenase that carries out nitrogen fixation. The metabolic and
morphological changes associated with heterocyst differentiation underline the need
for a microoxic environment for nitrogenase expression and function. Metabolic
changes include (i) the loss of photosystem II activity, thus avoiding photosynthetic
oxygen production, (ii) an increased respiration rate for eliminating free oxygen,
(iii) the loss of photosynthetic CO2 fixation, and (iv) the expression of the N2-fixing
system (Golden and Yoon 2003; Herrero et al. 2004). Heterocysts contain glutamine
synthetase, but lack glutamate synthase, implying that, for production of glutamine
with the ammonium resulting from N2 fixation, glutamate has to be transferred from
the vegetative cells to the heterocysts (Thomas et al. 1977; Martín-Figueroa et al.
2000).

Several characteristic morphological changes can be observed in heterocysts,
such as (i) the loss of cellular inclusions (carboxysomes and glycogen granules), (ii)
a marked rearrangement of thylakoids to the cell poles, where they develop a heavily
contorted form (Lang and Fay 1971), and (iii) the deposition of supplemental glycol-
ipid and polysaccharide layers in the cell envelope to hamper the influx of gases. The
heterocyst special envelope, formed externally to the outer membrane of the pre-
existing cell wall, is composed of two distinct layers: an outermost homogeneous
polysaccharide layer and an innermost laminated glycolipid layer. The outermost
layer is loosely organized and of irregular thickness, and it is expanded toward the
heterocyst poles to resemble a bottleneck. The innermost laminated layer is thinner
and is attached to the outer membrane (Lang and Fay 1971). At the point of connec-
tion with the vegetative cell, the heterocyst acquires a shallow cup-like structure.
Inside these constrictions an electron opaque material called cyanophycin can be
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found. Cyanophycin is a polymer of arginine and aspartate that represents a nitrogen
reserve material in many cyanobacteria (Lang and Fay 1971; Picossi et al. 2004).

The differentiation of heterocysts in the Anabaena filament results from a tightly
controlled developmental program that involves positive and negative regulatory
signals, in which NtcA and HetR act as master positive regulators (Buikema and
Haselkorn 1991; Frías et al. 1994; Wei et al. 1994). NtcA is a transcriptional reg-
ulator that operates global nitrogen control (Herrero et al. 2004), and HetR has
been reported to have protease and DNA-binding activity (Zhou et al. 1998; Huang
et al. 2004). The ntcA gene is induced several fold during the early steps of het-
erocyst differentiation in a HetR-dependent and autoregulated manner, and hetR
induction during heterocyst differentiation is NtcA dependent (Muro-Pastor et al.
2002; Olmedo-Verd et al. 2008).

Some genes that negatively affect heterocyst differentiation have also been iden-
tified. The patS gene governs de novo pattern formation when filaments are placed
in the absence of combined nitrogen (Yoon and Golden 1998). Expression of patS
increases after nitrogen step-down, in a patterned way, in cells that will become
heterocysts, but after differentiation is complete, expression of patS returns to pre-
induction levels. Thus, patS is mainly expressed in proheterocysts. The patS gene
encodes a short peptide that inhibits heterocyst differentiation in an unknown man-
ner (Yoon and Golden 1998). A patS null mutant exhibits a phenotype of multiple
contiguous heterocysts (Mch) and shortened vegetative cell intervals. It has been
proposed that the PatS peptide diffuses away from differentiating proheterocysts to
create a gradient of an inhibitory signal along the filament (Yoon and Golden 1998;
Wu et al. 2004).

PatS and fixed nitrogen produced by the heterocysts have been proposed as the
major diffusible signals regulating the frequency and spacing of heterocysts (Yoon
and Golden 2001). Heterocysts rely on vegetative cells as sources of fixed carbon
compounds; in return, they supply the surrounding vegetative cells with fixed nitro-
gen compounds (Wolk 1968; Wolk et al. 1974, 1976; Thomas et al. 1977; Curatti
et al. 2002). Glutamine is an N-containing metabolite that can be exported out of the
heterocysts and made available to the vegetative cells, but the possibility that other
amino acids are also transferred should be considered (Wolk et al. 1976; Thomas
et al. 1977; Picossi et al. 2005; Pernil et al. 2008). This cellular interdependence
implies the existence of communication mechanisms through which metabolites
and regulatory signals move along the filament (Flores et al. 2006). In the remain-
der of this chapter we discuss possible pathways and mechanisms of intercellular
molecular transfer in Anabaena.

8.4 Periplasmic Molecular Transfer

Although the mechanism of intercellular transfer of compounds in the Anabaena
filament is unknown, two different conduits have been suggested: a continuous
periplasm (Flores et al. 2006; Mariscal et al. 2007) and some cell-to-cell joining
structures (Mullineaux et al. 2008).
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8.4.1 GFP Diffusion Through the Periplasm

To provide a conduit for the movement of molecules between different types of cells
in the N2-fixing filament of Anabaena, the periplasm should be not only physically
continuous but also functionally continuous between vegetative cells and between
vegetative cells and heterocysts. We have experimentally addressed this question
taking advantage of the cell specificity of the expression of patS (Yoon and Golden
1998, 2001) and using the patS promoter to drive the expression of engineered
versions of the gfp gene in proheterocysts of Anabaena (Mariscal et al. 2007).

An Anabaena strain (CSVM18) that expresses a green fluorescent protein (GFP)
with a signal peptide for translocation through the twin-arginine translocation (TAT)
system and cleavage by signal peptidase I has been constructed (Mariscal et al.
2007). The TAT system is known to translocate folded proteins across the cyto-
plasmic membrane (Robinson and Bolhuis 2004). When this strain is subjected to
nitrogen deprivation, GFP is produced in proheterocysts, targeted by the TAT sys-
tem, and released into the periplasm, where it diffuses away from the producing
cell (Mariscal et al. 2007). Figure 8.1 (a) shows the GFP fluorescence of a colony of
strain CSVM18 grown for several days on solid medium in the absence of combined
nitrogen. The GFP fluorescence is observed in the periphery of the cells along the
entire filament.

Substitution of the TAT signal peptide containing a cleavage site for signal pep-
tidase I (as in strain CSVM18) by a TAT signal peptide containing a cleavage site
for signal peptidase II (as in strain CSVM19) results in the anchoring of the GFP
to the cytoplasmic membrane (Mariscal et al. 2007). For this, we have used the sig-
nal peptide from Anabaena Alr0608, a periplasmic nitrate-binding protein (NrtA,
also known as the 48-kDa protein) that in Synechococcus sp. PCC 7942 (Maeda
and Omata 1997) and Synechocystis sp. PCC 6803 (Huang et al. 2006) is bound
to the cytoplasmic membrane. In strain CSVM19, GFP accumulates in the periph-
ery of the proheterocysts, presumably at the cytoplasmic membrane, and does not
pass to the adjacent vegetative cells (Mariscal et al. 2007). Figure 8.1(b) shows a
colony of strain CSVM19 grown on solid media in the absence of combined nitro-
gen. The GFP fluorescence is observed only in the periphery of the producing cells.
Comparison of the results obtained with Anabaena strains CSVM18 (periplasmic
soluble GFP) and CSVM19 (cytoplasmic membrane-anchored GFP) indicates that
the soluble GFP moves in the periplasm from proheterocysts to vegetative cells in
the diazotrophic cyanobacterial filament.

Because the anchored GFP can rapidly diffuse within the cytoplasmic membrane
(Mariscal et al. 2007), lack of passage to the neighboring vegetative cells suggests
that there is no cytoplasmic membrane continuity between vegetative cells and het-
erocysts. This is consistent with the notion that plant-like plasmodesmata are not
present in filamentous cyanobacteria (Flores et al. 2006).

Recently Zhang et al. (2008) have used a similar approach to conclude that the
GFP does not traverse the septa between cells because of the existence of periplas-
mic barriers that impede GFP diffusion. They observed GFP fluorescence in the
periphery of the producing cells, but were unable to detect a GFP signal spreading
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Fig. 8.1 Movement of periplasmic GFP. In the Anabaena strains shown, the gfp gene is expressed
from the promoter of the patS gene, which is mostly active in proheterocysts (for details, see
Mariscal et al. 2007). (a) In strain CSVM18, the GFP is produced as a soluble periplasmic protein.
(b) In strain CSVM19, the GFP is located in the periplasmic face, anchored to the cytoplasmic
membrane. Small blocks of agar (BG110 medium containing no source of combined nitrogen)
carrying the filaments were cut and placed in a sample holder with a glass cover slip on top. Cells
were imaged using a Leica HCX PLAN-APO 63X 1.4 NA oil immersion objective attached to a
Leica TCS SP2 confocal laser-scanning microscope. GFP was excited at 488 nm using an argon
ion laser. Fluorescent emission was monitored by collection across windows of 500–530 nm (GFP
imaging) and 650–700 nm (cyanobacterial autofluorescence). The images are overlays of the green
GFP fluorescence and the red cyanobacterial autofluorescence. Heterocysts have a reduced or no
autofluorescence

to the neighboring vegetative cells. These results are similar to our results with strain
CSVM19, in which the GFP is anchored to the plasma membrane. Zhang et al. fused
the GFP to the signal peptide of the Escherichia coli TorA protein (Zhang et al.
2008). The utilization of a heterologous TAT signal peptide, which might not be
efficiently processed in Anabaena, and the utilization of a promoter weaker than the
one used in our work could be reasons for the reported discrepancy. The presence of
periplasmic barriers that slow diffusion of the GFP along the filament has, however,
also been considered by us (Mariscal et al. 2007).
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We conclude that the periplasm of Anabaena is not only common to all the
cells in the filament but also functionally continuous, thus representing a putative
pathway for intercellular molecular transfer.

8.4.2 Amino Acid Transporters in Anabaena and Their Role in
Diazotrophy

The model for the transfer of metabolites through the periplasm in the diazotrophic
cyanobacterial filament calls for the existence of permeases that mediate the differ-
ential export and uptake of transferred metabolites in the different cell types of the
filament (Flores et al. 2006). For amino acids exported from the heterocyst, specific
amino acid uptake permeases are expected to be present in vegetative cells. Initial
attempts to identify amino acid permeases in Anabaena relied on the isolation of
mutants resistant to toxic amino acid analogs and the measurement of the activity
of uptake of 14C-labeled amino acids. The amino acid transport activities identified
were interpreted to correspond to at least five transporters: active transporters N-I
and N-II with overlapping, but not identical, specificities for neutral amino acids;
one high-affinity, active transporter for basic amino acids; one low-affinity, passive
system for basic amino acids; and a transporter for acidic amino acids (Herrero and
Flores 1990; Montesinos et al. 1995).

More recently, the identification of genes encoding amino acid permeases was
achieved through the inactivation of ORFs selected from the Anabaena genomic
sequence by homology with heterologous permeases (Picossi et al. 2005; Pernil
et al. 2008). The three amino acid transporters that have thus been identified on a
molecular level in Anabaena belong to the ABC superfamily. ABC transporters con-
stitute one of the largest and most ancient superfamilies of transporters and utilize
the energy of ATP hydrolysis to fuel transport of substrates across cellular mem-
branes. Five proteins or domains generally compose ABC uptake transporters: a
periplasmic-binding protein, two transmembrane polypeptides, and two cytoplasmic
ATPase subunits (Rees et al. 2009).

The N-I transporter is the product of the natA, natB, natC, natD, and natE genes
encoding ATPase subunits (NatA and NatE), transmembrane polypeptides (NatC
and NatD), and a periplasmic substrate-binding protein (NatB), respectively (Picossi
et al. 2005). It mainly transports Pro and hydrophobic amino acids, but can also
transport some neutral polar amino acids including Gln. The genes encoding this
transporter are expressed in vegetative cells but not in heterocysts (Picossi et al.
2005).

The N-II transporter is the product of the natF, natG, natH, and bgtA genes
encoding an ATPase subunit (BgtA), transmembrane polypeptides (NatG and
NatH), and a periplasmic substrate-binding protein (NatF), respectively (Pernil et al.
2008). It mainly transports Asp and Glu, but can also transport some neutral polar
amino acids including Gln. The N-II system is present in both vegetative cells and
heterocysts; in the latter, it is the only system identified so far responsible for the
uptake of Glu (Pernil et al. 2008).



130 V. Mariscal and E. Flores

The basic amino acid transport system Bgt is the product of the bgtB and bgtA
genes. The BgtB protein consists of a periplasmic domain fused to a transmembrane
domain, and BgtA is an ATPase subunit that is shared with the N-II system. Bgt
mainly transports Arg and Lys, but can also transport His and Gln. This transporter
is present in both vegetative cells and heterocysts (Pernil et al. 2008).

Inactivation of each of the three amino acid transporters has a different effect
on the diazotrophic growth of Anabaena. Mutants of N-I, and to lesser extent of
N-II, are specifically impaired in diazotrophic growth (Picossi et al. 2005; Pernil
et al. 2008). However, inactivation of Bgt does not result in any noticeable effect on
growth under standard laboratory conditions (Pernil et al. 2008). Therefore, amino
acid transporters N-I and N-II could have a role in the vegetative cell uptake of
some amino acids produced by the N2-fixing heterocysts (Pernil et al. 2008). Gln is
a recognized candidate vehicle for the transfer of N from heterocysts to vegetative
cells (Wolk et al. 1976; Thomas et al. 1977), and Ala has also been proposed to have
a role in N transfer (Picossi et al. 2005).

8.5 Direct Communication Between Cells

Intercellular molecular exchange could also involve the intercellular joining struc-
tures that seem to connect the cells in the Anabaena filament. These structures might
allow molecules to be exchanged from cytoplasm to cytoplasm without passing
through the periplasm (Lang and Fay 1971; Giddings and Staeheling 1978).

8.5.1 Rapid Diffusion of Calcein Between Cells

The fluorescein derivative calcein is available as a non-fluorescent acetoxymethyl
ester (AM) that is sufficiently hydrophobic to traverse cell membranes, so that it
can be loaded into the cells. In the cytoplasm, the ester groups are hydrolyzed by
esterases to produce a fluorescent, hydrophilic, and negatively charged product of
623 Da, which can no longer traverse the cytoplasmic membrane (Mullineaux et al.
2008).

Intercellular exchange of calcein has been observed and quantified in Anabaena
filaments by fluorescence recovery after photobleaching (FRAP) experiments,
which permit exchange coefficients to be derived. Mechanistically, calcein appears
to be exchanged by free diffusion, and although diffusion can be detected between
vegetative cells and heterocysts as well as between vegetative cells, it is slower in
the former case. Moreover, the transfer is nitrogen regulated so that the exchange
coefficient increases about 10-fold in filaments grown under diazotrophic condi-
tions compared to those grown with nitrate (Mullineaux et al. 2008). Calcein transfer
seems to be restricted to the filamentous, heterocyst-forming cyanobacteria, since no
exchange has been detected in Oscillatoria, which is a filamentous, non-heterocyst-
forming cyanobacterium. Transfer of calcein may also give an indication of the
specificity, in terms of charge and size discrimination, of the channels that are
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putatively involved in the process. Thus, whereas the negatively charged calcein is
exchanged, transfer of the larger GFP (27 kDa) between the cytoplasms of adjacent
cells has not been observed (Yoon and Golden 1998; Mariscal et al. 2007).

8.5.2 SepJ and Its Role in Calcein Transfer

The SepJ protein (also known as FraG) is the product of open reading frame alr2338
that is located upstream of the hetR gene in the genome of Anabaena (Flores et al.
2007; Nayar et al. 2007). SepJ is a 751-amino-acid protein that comprises a 200-
residue N-terminal coiled-coil region; an internal 211-amino-acid sequence that is
rich in Pro and Ser and shows similarity to plant extensins and human titin protein,
which is an elastic protein also known as connectin (Means 1998); and a 340-residue
C-terminal region that is homologous to proteins in the drug/metabolite exporter
(DME) family of bacteria and Archaea (Jack et al. 2001). Protein topology and
subcellular localization predictions suggest that SepJ bears a large extra-cytoplasmic
domain which could be involved in bridging the gap between adjacent cells in the
filament and that the C-terminal region is a cytoplasmic membrane domain.

GFP tagging of SepJ shows that it is located at the cell poles in the intercel-
lular septa (Flores et al. 2007). We have named this gene sepJ according to the
particular localization of its protein product (Sep for septal protein; Flores et al.
2007). Figure 8.2(a) shows the very focalized location of the SepJ–GFP fusion in
the middle of the septum. Figure 8.2(b) shows SepJ–GFP immunolocalization in an
Anabaena filament. The preparation of samples for immunolocalization involves the
fixation of samples to a slide and a step of dehydration; thus, cells remain in the orig-
inal place on the slide but because of shrinking, they become smaller. SepJ–GFP is
clearly observed at the cell poles indicating the presence of SepJ in the cytoplasmic
membranes of the two adjacent cells in a septum, but the SepJ–GFP proteins from
the two cells are so close together that they are seen as a single fluorescence spot in
the intercellular septa of the native filaments (Fig. 8.2a). Additionally, SepJ–GFP is
seen to position at a ring, similar to a Z ring, in the middle of the cells where cell
division starts (Fig. 8.2b; see also Flores et al. 2007).

Although substantial levels of SepJ–GFP are observed in cells grown with com-
bined nitrogen, sepJ expression increases during acclimation to diazotrophic growth
(Flores et al. 2007). A sepJ null mutant shows extensive fragmentation of the fila-
ment and is incapable of diazotrophic growth (Flores et al. 2007; Nayar et al. 2007).
Filament fragmentation of the sepJ mutant increases when it is incubated in the
absence of combined nitrogen, resulting in very short filaments with two to three
cells per filament, and heterocyst differentiation in these filaments aborts at an early
stage.

The sepJ mutant is also hampered in intercellular calcein transfer (Mullineaux
et al. 2008). Because of its particular location in the septa and its implication in
calcein transfer, SepJ has been proposed to be a component of a septum protein
complex that permits intercellular transfer of calcein (Mullineaux et al. 2008). Other
fragmentation mutants of Anabaena that form short filaments and that therefore
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Fig. 8.2 Subcellular location of SepJ–GFP. (a) Anabaena strain CSAM137 (sepJ–gfp) grown on
BG11 solid medium (with nitrate as nitrogen source). Small blocks of agar carrying the filaments
were cut and placed in a sample holder with a glass cover slip on top. Cells were imaged using a
Leica DM6000B fluorescence microscope and an ORCA-ER camera (Hamamatsu) and convolved
with the Leica Application Suite Advanced Fluorescence software. The image is an overlay of the
green GFP fluorescence and the red cyanobacterial autofluorescence. (b) Visualization of SepJ–
GFP by immunofluorescence. BG11-grown filaments were collected and fixed to a poly-L-lysine-
coated slide. Samples were immersed in methanol during 10 min at −20ºC and dried at room
temperature. Slides were then immersed in PBS buffer (pH 7.4) at room temperature for 10 min
and incubated for 2 h with a 1:500 dilution of anti-GFP antibody, AlexaFluor 488-conjugate (Santa
Cruz Biotechnology). Samples were washed three times for 10 min with PBS buffer and mounted
with a cover slip. Cells were imaged using a Leica HCX PLAN-APO 63X 1.4 NA oil immersion
objective attached to a Leica TCS SP2 confocal laser-scanning microscope. GFP was excited at
488 nm using an argon ion laser. The panels show the fluorescent emission monitored by collection
across a window of 500–530 nm (top) and a bright field micrograph of the same field (bottom)

might lack additional proteins essential for the integrity of the filament have been
identified (Bauer et al. 1995). It would be interesting to know whether the septal
machinery that permits calcein transfer between Anabaena cells is a multiprotein
complex of SepJ and some Fra proteins.
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8.6 Concluding Remarks

Although it is well known that in Anabaena heterocysts and vegetative cells are
mutually dependent and that its ability to survive and thrive under diazotrophic
conditions strictly depends on an exchange of nutrients and regulatory compounds
between these two cell types, the mechanisms of intercellular molecular transfer are
not fully understood. The study of the fine structure of Anabaena led to the iden-
tification of two possible transfer pathways: the continuous periplasmic space and
the septal tiny structures that connect adjacent cells. Recent studies have addressed
the functionality of these structures in Anabaena. Engineered GFP proteins that are
transported into the periplasm and whose expression is cell specific have demon-
strated the existence of a functionally continuous periplasm. On the other hand, a
direct and nitrogen-regulated transfer of small compounds which are dependent on
SepJ has been shown using calcein as a probe. Due to the particular location of SepJ
at the septum between cells, this protein might be a component of a multiprotein
cell–cell joining complex at the septa. However, the nature of the compounds trans-
ferred by each pathway, the periplasm and the cell–cell joining complexes, and their
relevance in the diazotrophic physiology of Anabaena remain unknown.
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Chapter 9
The Photoactive Orange Carotenoid Protein
and Photoprotection in Cyanobacteria

Diana Kirilovsky

Abstract Photoprotective mechanisms have been evolved by photosynthetic organ-
isms to cope with fluctuating high light conditions. One of these mechanisms
downregulates photosynthesis by increasing thermal dissipation of the energy
absorbed by the photosystem II antenna. While this process has been well studied in
plants, the equivalent process in cyanobacteria was only recently discovered. In this
chapter we describe the results leading to its discovery and the more recent advances
in the elucidation of this mechanism. The light activation of a soluble carotenoid
protein, the orange carotenoid protein (OCP), binding hydroxyechinenone, is the
key inducer of this photoprotective mechanism. Light causes structural changes
within both the carotenoid and the protein, leading to the conversion of an orange
inactive form into a red active form. The activated red form induces an increase
of energy dissipation leading to a decrease in the fluorescence of the phycobili-
somes, the cyanobacterial antenna, and thus of the energy arriving to the reaction
centers. The OCP, which senses light and triggers photoprotection, is a unique
example of a photoactive protein containing a carotenoid as the photoresponsive
chromophore.

9.1 Introduction

By harvesting solar energy and converting it into chemical energy, plants, algae,
and cyanobacteria provide organic carbon molecules and oxygen that are essen-
tial for life on earth. However, excess light can be lethal because harmful reactive
oxygen species are generated when the photochemical reaction centers cannot
use the incoming energy fast enough. Cyanobacteria, like plants, have developed
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physiological mechanisms allowing acclimation and survival in a wide range of
environmental conditions, especially under high light. High light intensities induce
irreversible inactivation of photosystem II (PS II) due to damage and degradation
of the D1 protein, an essential constituent of the PS II (for reviews, see Prasil et al.
1992; Aro et al. 1993).

It has long been assumed that cyanobacteria do not use a mechanism dissipating
the excess energy as heat at the level of antennae to decrease the energy arriving to
the reaction centers to protect themselves from high light intensities (Campbell et al.
1998). Several recent experiments refute this view. Mechanisms mediated by the
phycobilisomes (PBs), the soluble antenna of cyanobacteria (El Bissati et al. 2000;
Rakhimberdieva et al. 2004; Scott et al. 2006; Wilson et al. 2006), or by empty
(not attached to PS I) complexes of the chlorophyll–protein IsiA (iron-starvation-
inducible protein) (Yeremenko et al. 2004; Ihalainen et al. 2005), or by HLIPs
(high-light-inducible proteins) (Funk and Vermaas 1999; He et al. 2001; Havaux
et al. 2003) were recently described. Each of these mechanisms appears to be a
photoprotective process.

This mini-review will focus on the characteristics of the phycobilisome-related
light-induced photoprotective mechanism. This mechanism decreases the energy
arriving at the photosystem II (PS II) reaction center, thus reducing the generation
of reactive oxygen species and the probability of PS II damage (Horton et al. 1996;
Niyogi 1999). In plants, an equivalent mechanism involving energy dissipation as
heat in the antenna (resulting in a detectable quenching of the chlorophyll fluores-
cence) is induced by the low luminal pH generated during photosynthesis under high
irradiance. In cyanobacteria, this process is not triggered by a lowering of the lumi-
nal pH or a change in the redox state of the plastoquinone pool (Rakhimberdieva
et al. 2004; Scott et al. 2006; Wilson et al. 2006). Instead, the decrease of energy
reaching the reaction centers and the quenching of the antenna fluorescence is
induced by the light activation of the orange carotenoid protein (OCP) (Wilson
et al. 2006), a soluble 35 kDa protein containing a single non-covalently bound
carotenoid (Holt and Krogmann 1981; Wu and Krogmann 1997; Kerfeld 2004a, b).
This chapter will focus on the function and characteristics of the OCP. Additional
information and more details about the blue light-induced photoprotective mecha-
nism are described in Karapetyan (2007), Kirilovsky (2007), Bailey and Grossman
(2008), and Kerfeld et al. (2009).

9.2 The Light-Induced Phycobilisome-Related Protective
Mechanism in Cyanobacteria: qEcya

To harvest light, most cyanobacteria use a particular type of photosynthetic antenna,
the phycobilisome (PB), a large membrane extrinsic complex composed of several
types of chromophorylated phycobiliproteins and of linker peptides needed for the
structural organization and functioning of the PBs (for reviews, see Glazer 1984;
Grossman et al. 1993; MacColl 1998; Tandeau de Marsac 2003; Adir 2005). These
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complexes, which are attached to the outer surface of the thylakoid membranes
(Gantt and Conti 1966a, b), are composed of a core from which rods radiate. In
most of the freshwater cyanobacteria the rods contain only phycocyanin (PC) while
in many marine cyanobacteria phycoerythrin (PE) or phycoerythrocyanin (PEC) are
found in the distal end of the rods. The major core phycobiliprotein is allophyco-
cyanin (APC). Three other chromophorylated proteins ApcD, ApcF, and Lcm serve
as terminal energy acceptors which transfer the harvest energy to the chlorophylls
of photosystems (Gindt et al. 1994; Ashby and Mullineaux 1999; Dong et al. 2009).
In addition the Lcm links the PB to the thylakoids.

Results revealing the existence of a blue-green light-induced photoprotective
mechanism proposed to be associated with the phycobilisomes were first described
in 2000 (El Bissati et al. 2000). Subsequently, spectral and kinetics data were pre-
sented confirming the existence of this mechanism and suggesting that it is induced
by blue light-activated carotenoids (Rakhimberdieva et al. 2004). In 2000, pho-
toinhibition and state 2 transition were the only two non-photochemical processes
known to decrease fluorescence levels (non-photochemical quenching, NPQ). Under
high light conditions (photoinhibition), the decrease of fluorescence is associated
with the inactivation of PS II and damage to the D1 protein (for review, see Prasil
et al. 1992; Aro et al. 1993; Vass and Aro 2007; Tyystjärvi 2008). Recovery of PS
II activity and fluorescence requires the replacement of the damaged D1 and it does
not occur in the presence of inhibitors of protein synthesis. In state transitions, the
decrease of fluorescence (state 2 transition) is induced by the reduction of the PQ
pool caused by a preferential illumination of PS II by orange light (or green when
PE is present) principally absorbed by the phycobilisomes (for review, see Williams
and Allen 1987; van Thor et al. 1998; Wollman 2001).

In contrast, blue-green light, principally absorbed by photosystem I (PS I),
induces the oxidation of the PQ pool and an increase of fluorescence associated with
state 1 transition. El Bissati et al. (2000) observed that exposure of Synechocystis
PCC 6803 (hereafter called Synechocystis) cells to strong intensities of blue-green
light induced PS II fluorescence quenching under conditions in which the plas-
toquinone (PQ) pool was largely oxidized and the oxygen evolving activity was
not saturated. Moreover, the presence of DCMU, an inhibitor of electron trans-
port between the QA and QB quinones, which prevents PQ pool reduction, did
not inhibit the blue-green light-induced fluorescence quenching. In addition, flu-
orescence recovery occurs in the presence of inhibitors of translation (El Bissati
et al. 2000) (Fig. 9.1). These results demonstrated that the blue-green light-induced
quenching was not related to photoinhibition or state transitions. Since the induction
of the fluorescence quenching was less affected by the lowering of the temperature
or by the rigidity of the membranes than state transitions, the authors proposed that
high light intensities induce phycobilisome fluorescence quenching accompanied
by a decrease of the energy transfer from the phycobilisome to the photosystems.
This proposition was later demonstrated. Rakhimberdieva et al. (2004) first showed
that in a Synechocystis mutant lacking reaction center II and the Chl antennae CP43
and CP47, blue light induced a reversible quenching of the phycobilisome emission.
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Fig. 9.1 The qEcya mechanism followed by changes in fluorescence levels using a PAM fluoro-
meter. When Synechocystis cells are illuminated with strong blue-green light a decrease of maxi-
mal fluorescence of PS II is observed. When the “quenched” cells are then illuminated with dim
blue-green light fluorescence, they recover in the absence of protein synthesis. Synechocystis cells
(3 μg Chl/ml) adapted to low intensities of blue-green light (400–550 nm, 80 μmol photons/m2/s)
were illuminated with high-intensity blue-green light (740 μmol photons/m2/s), and then again
with dim blue-green light. Saturating pulses were applied to measure maximal fluorescence levels
(Fm’). Chloramphenicol (6 μg/ml) was present throughout the experiment

These results were confirmed by two other laboratories (Scott et al. 2006; Wilson
et al. 2006).

In contrast, blue-green light was unable to induce fluorescence quenching in a
phycobilisome-deficient mutant or in a mutant containing only the phycocyanin
rods of the phycobilisome while the presence of only the core of the phycobilisome
is sufficient to induce the quenching (Wilson et al. 2006). In WT Synechocystis
cells, a specific decrease of the phycobilisome-related fluorescence was observed
while there were no changes in the chlorophyll-related fluorescence emission (Scott
et al. 2006; Wilson et al. 2006). Phycobilisomes are thus the essential components
of the blue light-induced NPQ mechanism. Picosecond time-resolved fluorescence
decay data were consistent with a fluorescence quenching at the phycobilisome
core (Scott et al. 2006). It has also been proposed recently that in conditions in
which all the PS II centers are closed, in the presence of DCMU + light, for
example, chlorophyll excitation could also be quenched via the phycobilisome-
quenching mechanism. In these conditions, excited chlorophyll molecules could be
sufficiently long lived to allow the exciton to be transferred from PS II chloro-
phyll to the core of the phycobilisome and quenched (Rakhimberdieva et al.
2007a).
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Fig. 9.2 Blue-green light-induced fluorescence quenching in iron-replete and iron-depleted
Synechocystis cells. Blue-green light-induced decrease of the maximum fluorescence level (Fm’)
measured by saturating flashes with a PAM fluorometer in iron-containing (+Fe) and 10-day iron-
starved (–Fe) Synechocystis cells. Insert: OCP immunoblot of MP fractions from these cells (each
lane contained 1 μg of Chl)

Under stress conditions such as iron starvation (Cadoret et al. 2004; Joshua et al.
2005; Wilson et al. 2007; Rakhimberdieva et al. 2007a), but also in the absence of
PS I (Kirilovsky, unpublished results), blue-green light induces a very large fluores-
cence quenching much larger than under complete medium conditions (Fig. 9.2). It
was demonstrated that this light-induced fluorescence quenching is also associated
with the phycobilisome-related photoprotective mechanism that becomes predomi-
nant under stress conditions (Cadoret et al. 2004; Joshua et al. 2005; Wilson et al.
2007; Rakhimberdieva et al. 2007a).

In plants and algae the equivalent mechanism converts the LHC, the chlorophyll
membrane antenna of PS II, a very efficient collector of energy (under low-light con-
ditions) into a very efficient dissipator of energy (Horton et al. 1996; Niyogi 1999;
Pascal et al. 2005; Ruban et al. 2007). This energy dissipation is accompanied by a
diminution of PS II-related fluorescence emission, known as non-photochemical-
quenching fast (NPQf) or qE. This NPQ process is rapidly reversible (within
seconds) in the dark in the absence of protein synthesis. In cyanobacteria the flu-
orescence changes associated with energy dissipation in the antenna are not faster
than those associated with state transitions: both occur on a timescale of minutes.
Thus, the name NPQfast is inappropriate for the cyanobacterial mechanism. qE is
more appropriate since the fluorescence quenching is also associated with energy
dissipation in cyanobacteria. However, the cyanobacteria and the plant qE are com-
pletely different mechanisms. To differentiate both mechanisms we will designate
the cyanobacteria mechanism qEcya.
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9.3 The Orange Carotenoid Protein Is the Inducer
of the qEcya Mechanism

In higher plants, the antenna-associated qE or NPQf is induced by the �pH that is
built up across the thylakoid membrane during electron transport. The drop of the
lumen pH induces the conversion of LHC carotenoids by the xanthophyll cycle (vio-
laxanthin to zeaxanthin) and the protonation of a PS II subunit (PsbS), a member of
the LHC superfamily. Conformational changes in the LHCII, which are also induced
by the acidification of the lumen, are crucial for this mechanism. These changes
modify the interaction between chlorophylls and carotenoids and allow thermal dis-
sipation (Horton, Ruban and Walters 1996; Niyogi 1999; Pascal et al. 2005; Ruban
et al. 2007).

In contrast, the phycobilisome-associated qEcya is not dependent on the pres-
ence of a trans-thylakoid �pH (Wilson et al. 2006). Moreover the xanthophyll
cycle and the PsbS protein are absent from cyanobacteria cells. The induction of
quenching also appears to be independent of excitation pressure on PS II or of
changes in the redox state of the plastoquinone pool (El Bissati et al. 2000; Wilson
et al. 2006). A specific characteristic of the qEcya mechanism is that its induction
depends on the quality of light; only blue-green light is able to induce it. The action
spectrum for phycobilisome emission quenching in the PS II-deficient mutants of
Synechocystis PCC 6803, showing peaks at 496, 470, and 430 nm, suggested that a
carotenoid molecule could be involved in this process (Rakhimberdieva et al. 2004).
Wilson et al. (2006) then demonstrated that indeed a carotenoid protein, the orange
carotenoid protein (OCP), is specifically involved in the qEcya mechanism. In the
absence of OCP (in a �OCP Synechocystis mutant or in cyanobacteria strains lack-
ing the OCP gene), fluorescence quenching induced by strong blue-green light in
Synechocystis cells is completely inhibited and the cells are more sensitive to high
light intensities; this is manifested as a faster decrease in PS II activity (Wilson et al.
2006; Boulay et al. 2008).

Under stress conditions (such as iron starvation), the larger fluorescence quench-
ing observed correlates to a higher OCP concentration (relative to chlorophyll and
phycobiliproteins) (Wilson et al. 2007; Boulay et al. 2008) showing the essential role
of OCP in the acclimation of cyanobacteria to environmental changes (Fig. 9.2). The
relationship between the concentration of the OCP and energy excitation energy dis-
sipation was later confirmed using an overexpressing OCP Synechocystis mutant, in
which large quantities of OCP were present and a very large fluorescence quenching
was observed (Wilson et al. 2008).

OCP is specifically involved in the light-induced phycobilisome-associated qEcya
mechanism and not in other mechanisms affecting the levels of fluorescence-like
state transitions. The absence of OCP does not affect the reorganization of the pho-
tosynthetic apparatus induced by changes in the redox state of the PQ pool: �OCP
mutant cells were in state 2 (low fluorescence) in the dark and under orange light
conditions (reduced PQ pool) and in state 1 (high fluorescence) under blue light
conditions (oxidized PQ pool) (Wilson et al. 2006, 2007; Boulay et al. 2008).
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The role of OCP suggested that it must interact with the phycobilisomes and/or
the thylakoids. Indeed, studies using immunogold labeling and analysis by electron
microscopy showed that OCP is present in the inter-thylakoid cytoplasmic region,
on the phycobilisome side of the membrane (Wilson et al. 2006). The existence
of an interaction between OCP and phycobilisomes and thylakoids was supported
by the co-isolation of OCP with the phycobilisome-associated membrane fraction
(MP) (Wilson et al. 2006, 2007; Boulay et al. 2008). The interaction of OCP with
thylakoids is relatively strong. When the MP fraction was resuspended in a low-
phosphate buffer to dissociate phycobilisomes from the membrane, most of the OCP
remained attached. Moreover when Synechocystis cells were broken in MES buffer
(40 mM, pH 6.8) the phycobiliproteins were completely dissociated from the mem-
branes but OCP remained mostly linked (Wilson et al. 2006). In order to obtain OCP
in the soluble fraction, the Synechocystis cells must be broken in a Tris–HCl buffer
(100 mM, pH 8). In contrast, the interaction between OCP and the phycobilisomes is
weak, at least in darkness or low light: OCP did not co-isolate with phycobilisomes
when a high concentration of phosphate and Triton was used for phycobilisome
isolation (Boulay et al. 2008). However, when isolated phycobilisomes were incu-
bated with OCP or were reconstituted in its presence, it was possible to isolate a
phycobilisome–OCP complex by co-migration in a sucrose gradient (Boulay et al.
2008).

9.4 The OCP Gene Is Present in Almost All
Phycobilisome-Containing Cyanobacteria: The Few
OCP-Lacking Strains Are More Sensitive to High
Light and React Differently to Stress Conditions

In Synechocystis, OCP is encoded by the slr1963 gene (Wu and Krogmann 1997)
and it is constitutively expressed. It is present even in Synechocystis mutants lacking
phycobilisomes (Wilson et al. 2007). Screening of the currently available cyanobac-
terial genomic databases showed that genes encoding homologs of Synechocystis
OCP are present in most phycobilisome-containing cyanobacteria (Table 9.1).
From the 39 already sequenced cyanobacterial genomes, 26 contain genes encod-
ing homologs of OCP. Their sequence is highly conserved. The identity of OCP
homologs relative to Synechocystis OCP varies between 50% (Gloeobacter vio-
laceus) and 82% (Arthrospira maxima). OCP sequences from freshwater cyanobac-
teria present a higher similarity to Synechocystis OCP (66–82%) than those present
in marine cyanobacteria (62–64%). The marine Synechococcus OCP sequences are
very similar to each other, with identities ranging from 77 to 95%. The expression
of full-length OCP was confirmed in seven strains where OCP was constitutively
present (Boulay et al. 2008). All of these strains were able to perform blue-
green light-induced fluorescence quenching substantiating the proposition that the
OCP-related photoprotective mechanism is widespread in cyanobacteria and plays
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an important role in the physiology of these organisms (Boulay et al. 2008).
Furthermore, in A. maxima, as in Synechocystis, iron starvation induces an increase
in OCP concentration and a larger fluorescence quenching (Boulay et al. 2008) con-
sistent with previous results (Hihara et al. 2001; Fulda et al. 2006; Wilson et al.
2007). The presence of a larger qEcya protects the cells from “dangerous” function-
ally disconnected phycobilisomes under iron starvation conditions. The transfer of
excess absorbed energy from phycobilisomes to thylakoids could induce oxidative
damage (e.g., lipid peroxidation) if it is not thermally dissipated at the level of the
phycobilisomes.

Synechocystis, Microcystis aeruginosa, A. maxima, Synechococcus 7002, and
all marine Synechococcus strains contain only one copy of the OCP gene. Other
cyanobacteria (mostly nitrogen fixing species) including Lyngbya sp. PCC 8106;
Cyanothece PCC 7424, CCY0110, and ATCC51142; Nostoc sp. PCC 7120; Nostoc
azollae 0708; Anabaena variabilis; Nostoc punctiforme PCC 73102; Nodularia
spumigena CCY9414; and G. violaceus PCC 7421 have in addition multiple gene
copies encoding the N-terminal domain located in disparate parts of the genome and
a single copy of the gene coding for the C-terminal domain (Table 9.1). This gene
is generally present near one of the N-terminal OCP-encoding genes. In N. punc-
tiforme several of the N-terminal paralogs are known to be expressed (Anderson,
Campbell and Meeks 2006). In Cyanothece ATCC51142, the C-terminal gene and
one of the N-terminal genes are both expressed under light conditions but not in
darkness (Stockel et al. 2008). The function of these fragments is unknown and
their origin seems to be an ancient gene duplication.

Among PB-containing cyanobacteria, only a few strains (12 from 39) do not
have an OCP gene homologue, including the freshwater Synechococcus elonga-
tus PCC 7942 and PCC 6301; the thermophile Thermosynechococcus elongatus,
Synechococcus sp. A, and Synechococcus sp. B′; the nitrogen fixing strains
Cyanothece sp. PCC 7822, PCC 8801, and PCC 8802, and Nostoc sp. PCC
7425; and the marine Synechococcus sp. CC9605, Cyanobium PCC 7001, and
Crocosphaera watsonii WH8501. However, T. elongatus, Cyanothece sp. PCC
7822, PCC 8801, and PCC 8802, and Nostoc sp. PCC 7425 contain separate but
adjacent genes coding for the N- and C-terminal parts of the OCP (Table 9.1). In
C. watsonii WH8501, they are in different parts of the genome. In the S. elonga-
tus PCC 7942 and T. elongatus strains, which lack OCP, the qEcya mechanism was
absent confirming the correlation between the blue-green light-induced qEcya and
the presence of OCP-like genes (Boulay et al. 2008). The proteins encoded by the
genes for the N- and C-terminal parts of OCP, if expressed, did not allow the induc-
tion of the qEcya mechanism in T. elongatus. Strains which lack OCP are more
sensitive to episodes of high light irradiance like the �OCP Synechocystis mutant
(Boulay et al. 2008). Interestingly, S. elongatus PCC 7942 and T. elongatus, which
lack the qEcya mechanism, protect themselves by quickly decreasing the cellular
content of phycobiliproteins to avoid the accumulation of potentially harmful func-
tionally disconnected phycobilisomes under iron starvation conditions (Boulay et al.
2008).
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9.5 OCP Is a Photoactive Protein: The Red Form Is the Active
Form

OCPs isolated from A. maxima (Kerfeld et al. 2003) and Synechocystis (Kerfeld
in preparation) consist of two domains: an all α-helical N-terminal domain
and a mixed α/β sheet C-terminal one. The protein-embedded ketocarotenoid,
3′-hydroxyechinenone (hECN), which is composed of a conjugated chain of 11
carbon–carbon double bonds, is in an all-trans-configuration. The carotenoid spans
both protein domains with its keto terminus in the hydrophobic pocket of the
C-terminal domain. The hydroxyl terminus of the 3′-hydroxyechinenone is located
in the N-terminal part. Tyr 44 and Trp110 which are strictly conserved make
hydrophobic contacts with the hydroxy terminal end of the carotenoid whereas two
other strictly conserved residues, Tyr203 and Trp290, form hydrogen bonds to the
carbonyl moiety at the keto terminus of the pigment (more details in Kerfeld et al.
2003; Kerfeld et al. 2009).

Synechocystis OCP was isolated using Ni chromatography followed by an ion-
exchange column from C-terminal His-tagged OCP mutants. In these mutants the
slr1963 gene containing the His-tag was expressed using its own promoter (His-
tagged OCP mutant) or the psbA2 promoter (overexpressing the His-tagged mutant)
as the promoter (Wilson et al. 2008; Punginelli et al. 2009). In the latter case, large
quantities of the OCP were present five to eight times more than in the wild-type
(WT)] and a very large fluorescence quenching was observed. WT His-tagged OCP
contained mostly hydroxyechinenone with only traces of echinenone (Wilson et al.
2008), while the overexpressed His-tagged OCP contained large quantities of echi-
nenone (Fig. 9.3). In this strain, depending on the preparations, the echinenone

O

OH

3'-OH-Echinenone

O
Echinenone

O

OH

HO
Zeaxanthin

Fig. 9.3 Carotenoids in OCP. WT-OCP binds 3′-hydroxyechinenone (hECN) but it can also bind
echinenone and zeaxanthin when hECN or echinenone are absent, or are not present in sufficient
quantity
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content varied from 53 to 82% of total carotenoid, while the hydroxyechinenone
content varied from 11 to 35%. Zeaxanthin was also present in OCP preparations
from an overexpressing OCP strain with a content varying from 6 to 14%. This
is due to the fact that in Synechocystis cells there is only a limited quantity of
hydroxyechinenone and this seems to be insufficient to bind to the large amount
of OCP. OCP was also isolated from a double-mutant-overexpressing His-tagged
OCP in the absence of the β-carotene monoketolase CrtO (Punginelli et al. 2009).
In this mutant, echinenone and hECN are lacking and OCP binds mostly zeax-
anthin (Fig. 9.3). However, the stability of the binding seems to be lower since
less OCP protein was present in the �CrtO strains. The three carotenoids that
were found bound to the OCP contain a central chain of 11 conjugated double
bonds and differ in the oxygenated groups of their rings. Echinenone and hydrox-
yechinenone have a carbonyl group (site 2). In addition, hydroxyechinenone has a
3′-hydroxyl group. Zeaxanthin has two hydroxyl groups, one in each ring (sites 3
and 3′).

In darkness or dim light, the OCP isolated from the His-tagged OCP and the
overexpressing His-tagged OCP strains appeared orange and their absorption spec-
tra were similar (Punginelli et al. 2009). The OCP spectra of both strains presented
a typical carotenoid shape with the 0–0 vibrational peak located at 496 nm (Kerfeld
et al. 2003; Polivka et al. 2005; Wilson et al. 2008) (Fig. 9.4). In agreement with
the crystallographic structure (Kerfeld et al. 2003), the spectrum corresponds to that
of hECN (or echinenone) locked into an all-trans conformation by the surround-
ing protein (Polivka et al. 2005). The Raman spectra of the OCP from A. maxima
and Synechocystis PCC 6803 also showed that the hECN is in an all-trans confor-
mation (Wilson et al. 2008). OCP isolated from the mutant lacking CrtO is yellow
(Punginelli et al. 2009). The resolution of the vibrational peaks was higher in the
OCP isolated from this mutant and a blueshift (2–3 nm) of the maximum of the
three vibrational bands was visible (Fig. 9.4).

Upon illumination with blue-green light (at 10◦C), orange WT His-tagged OCP
is completely photoconverted to a red form (Wilson et al. 2008) (Fig. 9.4a). The
redshifted spectrum of the light-induced form with a maximum at 510 nm losses the
resolution of the vibrational bands. The initial rate of light photoconversion strongly
depended on the light intensity, reminiscent of the light dependency of the blue light-
induced qEcya in whole cells (Wilson et al. 2006). Light conversion occurs with a
very low quantum yield (about 0.03); this can be explained by the fact that OCP
is involved in a photoprotective mechanism that must be induced only under high
irradiance (Wilson et al. 2008). In darkness, the red OCP spontaneously reverts to
the orange form (Wilson et al. 2008). This step, which is not accelerated by illumi-
nation, shows marked temperature dependence. In vivo, the recovery qEcya kinetics
also showed a large temperature dependence; however, the kinetics were slower (El
Bissati et al. 2000; Wilson et al. 2006; Rakhimberdieva et al. 2007b) than the red to
orange dark conversion (Wilson et al. 2008), suggesting that the red OCP form is
more stable in vivo than in vitro or that the fluorescence quenching remains longer
than with the red form.
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Fig. 9.4 Photoactivity of isolated OCP. The red form is the active form. Zeaxanthin cannot replace
hECN (a–c): Absorbance spectra of the dark (dotted line) and light (solid line) forms of the
OCP isolated from the His-tagged OCP strain (a), the overexpressing His-tagged OCP strain
(b), and the �CrtO-overexpressing His-tagged OCP strain (c). To obtain the spectrum of the
light form, the isolated OCP was illuminated with 1200 μmol photons/m2/s, at 12◦C, for 5 min.
(d) Decrease of maximal fluorescence (Fm’) induced by strong blue-green light in the overex-
pressing His-tagged OCP strain (closed circles), the His-tagged OCP strain (open circles), and the
�CrtO-overexpressing His-tagged OCP strain

Illumination of OCP isolated from the �CrtO mutant did not change its color or
the spectrum of the protein (Fig. 9.4c). Moreover, in strains containing zeaxanthin–
OCP, light was unable to induce any fluorescence quenching although zeaxanthin–
OCP absorbs blue-green light very well (Punginelli et al. 2009). His-tagged OCP
isolated from the overexpressing strain was almost completely converted to the red
form and the final spectrum was dependent on the zeaxanthin content but not on
the different ratios of echinenone to hydroxyechinenone found in the OCP prepa-
rations (Fig. 9.4b). Furthermore, the kinetics of orange to red photoconversion at
different light intensities, as well as red to orange dark conversion at different
temperatures, were similar in WT-OCP and overexpressed OCP. Thus, echinenone
can replace 3′-hydroxyechinenone in its function in the photoprotective mechanism
since echinenone–OCP is photoactive and able to induce fluorescence quenching. In
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contrast, zeaxanthin–OCP is not photoactive, or at least it does not have a relatively
stable light form, and it is unable to induce fluorescence quenching (Fig. 9.4d).
Therefore, the presence of the carbonyl in echinenone and hECN is essential for
the stabilization of the red form and the induction of fluorescence quenching. In
contrast, the hydroxyl group is not required for the activity of OCP since echi-
nenone behaves like hydroxyechinenone, and both can generate the red OCP form
and induce fluorescence quenching (Punginelli et al. 2009).

These results also strongly suggested that the red OCP form is the active form.
This was confirmed by the study of qEcya in an overexpressing C-terminal His-
tagged W110S OCP mutant. OCP carrying this point mutation is orange and
contains mostly hECN. Although large quantities of OCP were present in this strain,
almost no fluorescence quenching was induced by blue-green light and only a very
small portion of this OCP variant was converted to the red form even after extended
illumination with strong blue-green light at 10◦C (Wilson et al. 2008; Punginelli
et al. 2009). Therefore, the stabilization of the red form is essential for the induc-
tion of the fluorescence quenching. This was confirmed by the construction of other
mutants that are unable to stabilize or to form the red OCP in which blue-green
light does not induce the qEcya mechanism (Wilson, Punginelli and Kirilovsky, in
preparation). Moreover, absorbance spectra of Synechocystis cells overexpressing
OCP measured before and after illumination with strong blue light strongly sug-
gested that the red OCP form is accumulated in vivo under conditions which induce
energy dissipation and fluorescence quenching (strong blue-green light) (Wilson
et al. 2008).

9.6 Blue-Green Light Induces Changes in Both the Carotenoid
and the Protein

Resonance Raman spectroscopy and light-induced Fourier transform infrared
(FTIR) difference spectra demonstrated that light absorbance by OCP induces struc-
tural changes not only in the carotenoid but also in the protein (Wilson et al. 2008).
Upon illumination of A. maxima and Synechocystis OCP, the apparent conjugation
length of hECN increased by about one conjugated bond, and hECN reached a less
distorted, more planar structure. These changes are in agreement with the observed
redshift of the absorbance spectrum and strongly suggest that a trans–cis isomeriza-
tion of the hECN does not occur upon illumination. It was concluded that hECN is
still all-trans in the red OCP form. Although the specific changes in the carotenoid
of the OCP remain to be elucidated they are clearly different from those occurring
in retinal, a carotenoid derivative, which is the chromophore of rhodopsins (review
about rhodopsins: Spudich et al. 2000). In rhodopsins, the retinal is covalently bound
to the protein via a protonated Schiff-base linkage to a Lys residue and light induces
an isomerization of the retinal initiating the photocycle. The photocycle involves
proton transfer between the Schiff-base and a carboxylate residue. In OCP not only
is no isomerization detected, the hECN is not covalently bound to the protein even
though it is close to the absolutely conserved Arg155.
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Large changes have also observed in the OCP FTIR spectra upon illumination,
suggesting a major rearrangement of the protein backbone. The changes correspond
to a less rigid helical structure in a significant part of the protein and a compaction
of the β-sheet domain upon formation of the red form (Wilson et al. 2008). Further
studies will be necessary to elucidate the specific nature of the changes in the
carotenoid and the protein.

9.7 Conclusions and Perspectives

It is clear that OCP is a sensor of photoinhibitory conditions inducing a greater
energy dissipation and fluorescence quenching (photoprotection) under increasing
irradiance and lowering temperature (see model in Fig. 9.5). However, many ques-
tions about the qEcya mechanism and the role of the OCP await elucidation; these
include the following: Why is the red form the active form? How does it interact
with the phycobilisome? Does OCP receive the energy from the phycobilisome and
is it the energy quencher?

Based on the results already obtained, we can hypothesize that the red form of
OCP is the energy and fluorescence quencher. We postulate that the light-induced
modifications in the carotenoid and the protein are necessary to induce stronger
interactions between OCP and the phycobilisomes and to allow energy transfer
between the phycobilisome chromophores and the OCP. The redshift of the hECN
(or echinenone) spectrum could be necessary to tune the optically forbidden S1
state of hECN to a level allowing energy transfer from the phycobilisomes to OCP.

PSII

OCP

PSII

OCP
Orange

OCP
Red
OCP

Strong blue-green light

Heat
Fluorescence

Photosynthesis

Heat
Fluorescence

Photosynthesis

Fig. 9.5 The qEcya mechanism and the role of OCP. The absorption of blue-green light by hECN
induces conformational changes in the carotenoid and protein converting the orange OCP form
into an active red form capable of inducing an increase of thermal excess energy dissipation as
heat, leading to phycobilisome fluorescence quenching and to a decrease of energy arriving at the
reaction centers. As a working hypothesis, we propose that the red OCP form is also the energy
and fluorescence quencher capable of receiving the energy absorbed by the phycobilisome and of
converting it into heat by interaction with the phycobilisome core
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We propose that zeaxanthin–OCP and W110S OCP, due to the lack of a metastable
“red” form, are unable to absorb the energy coming from the phycobilisome and thus
they do not dissipate this energy. On the other hand, the conformational changes of
the carotenoid and protein induced by blue-green light could alter the strength of
the hydrogen bonds between the carbonyl and Tyr203 and/or Trp290, which could
form a signal propagation pathway from the carotenoid to the surface of the protein,
like in other photoactive proteins (PYP and LOV domains: Rubinstenn et al. 1998;
Harper et al. 2003). These changes could also modify the interaction between the
phycobilisome and the OCP (Kerfeld et al. 2003). We have hypothesized that the
C-terminal domain of the OCP, by interacting with the center of an allophycocyanin
(APC) trimer in the phycobilisome core, may bring the carotenoid into the proxim-
ity of the APC chromophores (Wilson et al. 2008). Maybe these interactions occur
only with red OCP and they do not occur with zeaxanthin–OCP. The construction
of OCP and phycobilisome mutants and the associated characterization of their phe-
notypes by spectroscopic and structural studies will be essential to elucidate which
components of the PBS core are involved in the interaction with the OCP and in
energy dissipation. Likewise, this will provide information about the role of specific
amino acids that are essential for photoactivity and for energy dissipation, and it will
help us to understand which side chains influence the properties of the carotenoid
and the affinity of the carotenoid for the protein.
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Chapter 10
Proteomic Analysis of the Developing
Intracytoplasmic Membrane in Rhodobacter
sphaeroides During Adaptation to Low Light
Intensity

Kamil Woronowicz and Robert A. Niederman

Abstract Although the primary photochemical events in the facultative photo-
heterotrophic purple bacterium Rhodobacter sphaeroides are now well understood,
comparatively little is known about how their photosynthetic apparatus is assem-
bled. Here we present a proteomic analysis of the intracytoplasmic membrane
(ICM) assembly process during adaptation to lowered light intensity, in which
the size of the photosynthetic units is greatly expanded by addition of the light-
harvesting 2 (LH2) peripheral antenna complex. When the isolated ICM-derived
chromatophore vesicles were subjected to clear native gel electrophoresis (CNE),
four pigmented bands appeared; the top and bottom bands contained the reaction
center – light-harvesting 1 (RC–LH1) core complex and LH2 peripheral antenna,
respectively, while the two bands of intermediate migration contained associations
of the LH2 and core complexes. Proteomic analysis revealed a large array of other
proteins associated with the CNE gel bands – in particular, several F1FO-ATP syn-
thase subunits gave unexpectedly high spectral counts, given the inability to detect
this coupling factor, as well as the more abundant cytochrome bc1 complex, by
atomic force microscopy. Significant levels of general membrane assembly factors
were also found, as well as numerous proteins of unknown function including high
counts for RSP6124 that were correlated with LH2 levels. When combined with
further AFM and spectroscopic studies, these proteomic approaches are expected to
provide a much-improved understanding of the overall assembly process.

10.1 Introduction

The facultative photoheterotrophic bacterium Rhodobacter sphaeroides provides
a unique combination of accessible molecular genetics with an intracytoplasmic
photosynthetic membrane (ICM) that is amenable to an unparalleled variety of
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biochemical, spectroscopic, and ultrastructural probes. As a result, R.. sphaeroides
has served as a simple, dynamic, and experimentally accessible model system that
has greatly enhanced the understanding of primary photochemical events and energy
transduction processes, and of how the levels of the participating protein compo-
nents are regulated (Hunter et al. 2008). In contrast, much less is known about the
mechanisms involved in their assembly, how their pattern of localization is estab-
lished within the cell membranes, or how numerous assembly factors cooperate
with the apoprotein components to form functional photosynthetic complexes in
the growing ICM.

When R. sphaeroides is grown photoheterotropically (under anaerobic conditions
in the light), an ICM system is formed that houses photosynthetic units consisting
of rows of dimeric light-harvesting 1 (LH1)–reaction center (RC) core structures,
interspersed with narrow lanes of the peripheral LH2 antenna complex, as demon-
strated by the AFM topographs shown in Fig. 10.1. The radiant energy harvested
by LH2 is transferred to LH1, which funnels these excitations to the RC–BChl spe-
cial pair, where they are transduced into a transmembrane charge separation. This
initiates a cycle of electron transfer reactions between the primary iron–quinone
acceptor (QA) and the ubiquinol–cytochrome c2 oxidoreductase (cytochrome bc1)
complex and cytochrome c2, resulting in the formation of electrochemical proton
gradient coupled to the synthesis of ATP.

During photoheterotrophic growth, cellular ICM levels, together with those of
LH2 relative to the RC–LH1 core complexes, are related inversely to light intensity,
thereby permitting examination of the differential biosynthesis of photosynthetic
complexes during adaptation to lower levels of illumination. Although ICM for-
mation is repressed by high oxygen tensions during chemoheterotrophic growth,
lowering the oxygen partial pressure initiates a gratuitous induction of ICM assem-
bly in the dark by invagination of the CM, together with the synthesis and assembly
of the LH and RC complexes (Koblízek et al. 2005). These sites of CM invagi-
nation can be isolated as an upper-pigmented band (UPB), sedimenting more

�

Fig. 10.1 (a) AFM topograph of R. sphaeroides ICM patch showing LH1–RC core complex arrays
surrounded by LH2 complexes (Bahatyrova et al. 2004). The central protruding feature within the
cores corresponds to RC-H subunit, indicating that the cytoplasmic face of the ICM is uniformly
exposed at the surface. Inset at bottom: Existing structural data were used to model the region
denoted by the central dashed box; a typical LH1–RC dimer is delineated in both images by a
red outline and a representative LH2 complex by a green circle. (b) High-resolution AFM topo-
graph, which shows a 3-D representation of a small ICM region revealing LH1–RC core complexes
with associated LH2. Green arrows indicate contact points for energy transfer between LH2 and
LH1–RC complexes. Asterisks denote nine-unit structure of αβ-heterodimers visible in LH2 rings.
Encircled LH2 complex is sandwiched between two LH1–RC complexes. (c) View of membrane
patches showing two types of arrangements of photosynthetic complexes. The dashed red box
demarcates a membrane patch consisting of LH2 complexes clustered together at different levels,
which form an LH2-only domain lacking the RC–LH1 core complexes; the red arrow denotes the
typical LH2 ring within the LH2-only domain. RC–LH1 core complexes predominate in the other
patches
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Fig. 10.1 (continued)

slowly than the ICM-derived chromatophore vesicle fraction during sucrose density
gradient centrifugation (Niederman et al. 1979). Extensive biochemical, biophys-
ical, and ultrastructural characterization of these membrane fractions (reviewed
by Niederman 2006) has demonstrated that photosynthetic units are assembled
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sequentially, with RC–LH1 core structures inserted initially into the CM in a form
that is largely inactive in forward electron transfer. This is followed by the acti-
vation of functional electron flow, together with the addition of LH2, resulting in
further invagination and vesicularization of the membrane to form the ICM. During
the developmental process, LH2 is thought to pack initially between linear arrays of
dimeric core complexes, as shown in Fig. 10.1, and when these regions become
filled, the LH2 complex ultimately forms a light-responsive peripheral antenna
complement by clustering into LH2-only domains (Fig. 10.1c, Hunter et al. 2005).

In an effort to further characterize the ICM assembly process, we have initiated
a detailed structural and functional proteomic analysis of the developing membrane
fractions. These proteomics approaches are focusing upon the identification of pro-
teins that are temporally expressed during ICM development and spatially localized
in membrane domains isolated in both the UPB and chromatophores. These mem-
brane fractions have been further purified by a two-phase partitioning procedure and
subjected to clear native electrophoresis (CNE) (Wittig et al. 2007). Here we report
the first results, in which the proteome of the CNE gel bands obtained from the
chromatophore fraction has been examined.

10.2 Materials and Methods

10.2.1 Membrane Preparation

For membrane preparation, R. sphaeroides NCIB 8253 cells were grown as previ-
ously described (Holmes et al. 1980) at high light intensity of 1,100 W/m2 until they
reached OD680 nm of 0.2 and then transferred to low-light illumination of 100 W/m2

for 2, 4, 6, or 24 h. Light intensities were monitored with YSI-Kettering radiometer.
Following growth, cells were cooled to 4◦C, washed, and resuspended in 1 mM Tris,
pH 7.5; a few crystals of DNAse I were added and passed twice through a French
press. Debris and unbroken cells were removed by centrifugation at 12,000×g. The
supernatant was layered onto a 5–35% (w/v) sucrose gradient and subjected to rate-
zone ultracentrifugation for 3 h at 28,000 rpm in Beckman SW-28 rotor. Two bands
were collected: the UPB, containing developing photosynthetic membranes, and
main pigmented band, containing mature chromatophores.

10.2.2 Purification of Membranes by Aqueous Partitioning
in a Two-Phase Dextran–Polyethylene Glycol (PEG) System

All steps were performed at 4◦C. Dextran and PEG phases were collected, after
solution containing 5.7% (w/v) dextran T-500 (average 425,000–575,000 mol. wt.,
Sigma), 5.7% (w/v) PEG (20,000 mol. wt., Sigma), 10 mM sodium phosphate,
5 mM Tris buffer, pH 7.5, and 10 mM EDTA was allowed to separate overnight.
To extract UPB, 5 mL of each UPB, dextran, and PEG phases were mixed for
20 min in a 15 mL centrifuge tube, then centrifuged 20 min at 1000×g. At this
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time the upper phase containing UPB was removed and re-extracted with additional
7 mL of dextran phase. Extraction was repeated a third time, and the PEG layer
was removed along with purified UPB. The purity was examined by comparing
absorption peaks at UV (260–280 nm) and near-IR (850–875 nm). Centrifugation
for 90 min at 55,000 rpm in a Beckman 60-Ti rotor further removed PEG, and UPB
was resuspended in 1 mM Tris, pH 7.5. Chromatophores were also subjected to this
procedure for further purification.

10.2.3 Clear Native Electrophoresis

Chromatophore and UPB samples were solubilized in either 15 mM n-octyl β-D-
glucopyranoside, 15 mM deoxycholate detergent, or 2 g/g digitonin/total protein in
sample and applied to a 3–12% gradient clear native gel as described recently by
Wittig et al. (2007). The gel was run in a Vertical Slab Unit Model SE-400 (Hoeffer
Scientific Instruments) at 10 mA, until current was no longer measurable. Up to
four bands were identified without staining, and gels were also scanned using a
visible light scanner (Canon) and Typhoon imager (GE Healthcare) set in a fluo-
rescence mode with blue laser excitation source (488 nm) and emission filter of
670 nm. Each band was excised and absorption spectra were obtained in a DU-640
Spectrophotometer (Beckman), using gel containing no sample as a blank.

10.2.4 Proteomic Analysis

Excised bands from CNE were fixed for 30 min using 40% methanol, 10% acetic
acid solution and were subjected to in-gel digestion with trypsin or chymotrypsin,
followed by LC–MS/MS using Thermo LTQ and Dionex U-3000 systems operated
in the nanoLC mode to obtain sensitivity at the sub-femtomole level.

10.3 Results

10.3.1 Establishing a Protocol for ICM Assembly Studies During
Low-Light Adaptation

Figure 10.2 shows the near-IR absorption spectra of membrane fractions from
cells harvested at various stages over a 24-h period during a shift from high
(1,100 W/m2)- to low-intensity illumination (100 W/m2). Only low levels of LH2
are present (LH2/LH1 molar ratio = 0.14) in the UPB isolated from the initial
exponential-phase high-light cells (time = 0), with the predominance of the RC–
LH1 core complex indicated by the LH1 absorption maximum at 875 nm and the
redshift and broadening on the red side of the 800-nm band, indicating the pres-
ence of the accessory RC–BChl band (maximum at 804 nm). This is supported
further by the presence of a small band near 740 nm in the early fractions (see also
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Fig. 10.2 Near-IR absorption
spectra of the UPB (a) and
chromatophore (b) fractions
isolated by rate-zone
sedimentation on sucrose
density gradients from cells
undergoing adaptation to low
light intensity. Over the 24-h
time course, the LH1/LH2
molar ratio was maintained at
1.5- to 2.3-fold higher levels
in the UPB in comparison to
chromatophores, indicating
that these putative CM
invagination sites act as
hotspots for initial assembly
of LH1–RC cores. (c)
Spectral deconvolution
(Sturgis et al. 1988) revealed
that the molar ratios of
LH2/LH1 gradually
increased, reaching a 4.7-fold
higher level at 24 h in
chromatophores, as compared
to 7.2-fold in the UPB

Fig. 10.3d), attributable to the bacteriopheophytin component of the RC. Overall,
the dramatic increase in LH2 levels demonstrated by these spectral results and their
analysis (Fig. 10.2) indicate that the essential membrane fractions can be isolated
during the light intensity downshift to critically test the proposed mode of expansion
of the LH apparatus during adaptation to lowered light levels.

The isolated membrane fractions have been further purified by polymer two-
phase partitioning to facilitate proteomic and AFM analyses, which require highly
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Fig. 10.3 Absorption spectra of UPB fractions purified by polymer two-phase partitioning. The
UPB fraction was enriched in pigmented membranes after partitioning into the polyethylene
glycol-rich upper phase, while ribosomes are found in the dextran-containing lower phase, along
with some CM and cell wall material. When the purified UPB is subjected to sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), RC and LH bands are found largely
superimposed upon co-migrating CM polypeptide bands, as expected of a site of membrane
invagination. Contaminating material is also removed by partitioning the sucrose gradient puri-
fied chromatophore fraction into the upper phase (not shown). Insets: (a) ratios of the maximum
absorbance of the near-IR/UV peaks of purified vs. unpurified samples; (b) overall LH2/LH1 molar
ratios of purified vs. unpurified samples
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purified material in an unaggregated state (Fig. 10.3). The high level of purifica-
tion of the resulting unaggregated UPB fractions is demonstrated by the marked
reduction in material absorbing in the UV near 260 nm (mainly contaminating
ribosomes), which is replaced by a new band of much lower absorption with the
maximum shifted to ~280 nm. This was reflected by comparison of the ratios of the
maximum absorbance of the near-IR/UV peaks of the purified vs. unpurified sam-
ples (Fig. 10.3a, inset), which reached 2.6- and 5.1-fold increases in the 4 and 24 h
preparations, respectively; however, the LH2 B800 and B850 bands were dimin-
ished upon purification and decreases of nearly 20% were observed in the overall
LH2/LH1 molar ratios in each of the respective samples (Fig. 10.3b, inset). It is also
noteworthy that the coincidence of the paired spectra throughout the visible and
UV regions indicates that no aggregation of the samples has occurred during their
purification.

10.3.2 Establishing a Clear Native Polyacrylamide Gel
Electrophoresis Procedure for Separating
Bacteriochlorophyll–Protein Complexes

In order to critically assess the assembly of the LH2 and RC–LH1 complexes within
the developing ICM, we have established a procedure in which the highly puri-
fied membranes are subjected to CNE (Fig. 10.4). This method has been adapted
from the high-resolution CNE procedure developed recently by Wittig et al. (2007)
for direct in-gel functional and fluorescence assays of well-separated mitochondrial
inner membrane protein complexes. The use of Coomassie blue, which interferes
with catalytic activity and fluorescence determinations in blue-native electrophore-
sis (Schägger and von Jagow 1991), is circumvented with non-colored mixtures of
anionic and neutral detergents in the cathode buffer, which enhance the solubility
of membrane proteins during electrophoresis and, like the Coomassie dye, impose
a charge shift that augments their anodic migration. Protein aggregation and band
broadening are also prevented, which results in superior resolution, while facilitating
the in-gel functional assays.

Panels a–c of Fig. 10.4 show the results of the application of this procedure to the
chromatophores isolated from cells undergoing low-light adaptation, after solubi-
lization with an n-octyl β-D-glucopyranoside/deoxycholate (BOG/DOC) detergent
mixture. The accompanying absorption spectra, obtained directly with gel slices,
show a marked enrichment of the RC–LH1 core and LH2 complexes in the upper
and lower bands (Fig. 10.3d, e, respectively). Moreover, bands of intermediate
migration are also seen; SDS-PAGE (Fig. 10.4f) shows that they contain associ-
ations of these two complexes such that the upper intermediate band is enriched
in LH2, while the lower intermediate band represents an LH1-enriched mixture.
These intermediate complexes may represent detergent–protein micelles arising
from ICM regions seen in AFM where the LH2 and LH1 complexes are associated
(Fig. 10.1a, b). Importantly, this new clear gel procedure has provided the basis for a
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Fig. 10.4 Separation of intact pigment–protein complexes by CNE of BOG–DOC solubilized
chromatophores from cells undergoing low-light adaptation. (a) Scan of unstained gel. (b) Intensity
profile of 670-nm fluorescence emission from unstained gel obtained with a Typhoon imager; exci-
tation at 488 nm. The emission apparently arises largely from the blue tail of the emission from
the LH2 complex (c) quantification of fluorescence emission. (d, e) Absorption spectra obtained
directly on indicated gel slices. Note the high level of spectral purity of the LH1 and RC complexes
in the top band (absorption bands at 876 and 803 nm, respectively) and the LH2 complex in the
bottom band (maxima at 850 and 799 nm). Also noteworthy are the differences in carotenoid con-
tents of the complexes, reflecting the BChl:carotenoid molar ratios near 1.0 reported for LH1 and
~2.0 for LH2, as well as the blueshift in the position of the absorption maximum of the redmost
carotenoid absorption band (Hunter et al. 1988). (f) Silver-stained gel of CNE bands subjected
directly to SDS-PAGE, showing that apoprotein distributions essentially confirm observed absorp-
tion spectra. The last two lanes are from chromatophores solubilized with 30 mM BOG alone. Note
the respective well-separated α- and β-polypeptides, with no significant cross contamination. No
LH bands of intermediate migration appeared. See text for tentative identification of some of the
additional gel bands in the various gel lanes
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critical proteomic analysis of the assembly of the pigment–protein complexes. Some
of the other major bands observed in the SDS gel have been tentatively identified
and are discussed below.

10.3.3 Proteomic Analysis of Developing Photosynthetic
Membranes

A detailed analysis of relevant portions of the R. sphaeroides proteome is essential
for filling in gaps in our understanding of the ICM assembly process. The separation
of intact pigment–protein complexes by CNE has permitted in-gel trypsin digestion
of the various pigmented gel bands shown in Fig. 10.4 which were then subjected
to LC–MS/MS as described in Section 10.2 (Fig. 10.5). It should be emphasized
that the proteomics data at this point are expressed in spectral counts, which only
reflect the ability of trypsin to act at possible cleavage sites and are therefore semi-
quantitative in nature. This means that proteins that are not highly abundant with
a large number of sites give higher counts than more abundant proteins with far
fewer sites; in extreme cases where no sites are available, no counts are found in
the resulting pivot table, viz., PufB (LH1-β-polypeptide) and PucA (LH2-α); how-
ever, the latter polypeptide could be detected after chymotrypsin cleavage. On the
other hand, valid comparisons can be made between the same components in differ-
ent gel bands and the designated clusters of orthologous groups into which they are
classified (Fig. 10.5).

In general, the spectral counts arising from the proteomics analysis of the LH
and RC complexes in the gel bands confirmed their distributions as determined
in near-IR absorption spectra (Fig. 10.4d, e) and are also in line with the levels
of their apoprotein components found in SDS gels (Fig. 10.4f). Some differences
were found for the purified 3-h chromatophore samples, including diminished lev-
els of contaminating outer membrane proteins in several preparations and a marked
enrichment in ATP synthase in the LH2-rich upper intermediate band, account-
ing for a total of 45% of the spectral counts. The highest spectral counts were
detected for PuhA (RC-H subunit), and surprisingly, Puc2A (LH2-α), encoded
by the puc2BAoperon, was second highest in abundance, despite the report by

�

Fig. 10.5 Proteomic analysis of photosynthetic complexes isolated from developing ICM. Spectral
count distributions after in-gel trypsin digestion of the four CNE gel bands obtained from chro-
matophores. These chromatophore preparations are from a different experiment (isolated from
cell samples taken 3 and 24 h after the shift from high to low light intensity, along with the 3-h
preparation after purification by the two-phase partitioning). (a) Top (RC–LH1) bands; (b) upper
intermediate bands (LH2-enriched associations of LH1 and LH2); (c) lower intermediate bands
(LH1-enriched associations of LH1 and LH2); (d) bottom bands (LH2). The distributions shown
are for clusters of orthologous groups (Tatusov et al. 1997) that account for patterns of sequence
similarities, in which orthologs typically have the same function. The usual energy production and
conversion category have been broken down into subgroups to account for the distinct metabolic
capabilities unique to photoheterotrophically grown R. sphaeroides
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Fig. 10.5 (continued)
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Fig. 10.5 (continued)
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Fig. 10.5 (continued)
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Zeng et al. (2003) that this polypeptide is not incorporated into LH2 complexes.
PufA (LH1-α) was third in abundance, followed by the β-subunit of F1-ATP syn-
thase (atpD), while lower counts were found for PucB (LH2-β) and Puc2B (LH2-β).
The unexpectedly high spectral counts for the F1FO-ATPase subunits, as noted ear-
lier, were particularly intriguing, given the reported low abundance of the ATPase
in chromatophores (Feniouk et al. 2001; see, however, Gubellini et al. 2007; Sturgis
et al. 2009), and the inability to detect this coupling factor as well as the more abun-
dant cytochrome bc1 complex in AFM (Bahatyrova et al. 2004). In this connection,
the high levels of these ATPase subunits together with those of the bc1 complex
apparently associated with the LH2-enriched fractions are consistent with the possi-
bility that these components are localized at ICM vesicle edges, thought to contain
LH2-only domains that are outside the flat ICM vesicle regions imaged by AFM
(Fig. 10.1).

Significant levels of a large number of other proteins, including membrane
assembly factors, were also observed, most notably in 3-h upper gel bands. These
included the preprotein translocase YidC homolog, along with lesser amounts of
other general membrane assembly factors such as TatA, a subunit of the twin arg
translocation system, the SecY preprotein translocase subunit, bacterial type 1 signal
peptidase, and the putative preprotein translocase subunit YajC. While the response
regulators RegA and RegB were detected, no complex-specific assembly factors
(Young and Beatty 2003) were found in any of the fractions. Moreover, about 45
proteins of unknown function were found associated with the gel bands. One hypo-
thetical protein, RSP6124, which ranked fifth in abundance in spectral counts is of
particular interest, as it seems to be associated with LH2-rich bands in the clear
gels. This component reached levels of 10% in the 3-h LH2 bottom band (∼1/2 was
removed by the purification procedure) and 12% in the 24-h LH2 band. Zeng et al.
(2007) have also observed RSP6124 recently, along with RSP1760 and RSP3246,
in their proteomic analysis of the ICM. Interestingly, RSP1760 ranked second dur-
ing low-light growth (3 W/m2) in their studies, while RSP6124 ranked fifth under
those conditions. In our study, RSP1760 ranked only 43rd, and RSP3246 was not
observed. Zeng et al. (2007) also found significant levels of RSP6124 in the cyto-
plasm and topological predictions suggested that this protein lacks transmembrane
domains; however, the high levels found in association with LH2-enriched CNE
bands suggest RSP6124 may play at least a transient role in the assembly or function
of the LH2 antenna.

10.4 Discussion

10.4.1 Clear Native Polyacrylamide Gel Electrophoresis

A native PAGE procedure was previously developed in which membranes were
solubilized with lithium dodecyl sulfate at 4◦C and subjected to electrophoresis
in the presence of this detergent (Broglie et al. 1980). Up to 11 pigment–protein
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complexes were resolved, including LH2 which banded near the top of the gel and
a faster migrating band (band 10), containing spectrally homogeneous LH1. Bands
of intermediate migration were also resolved that consisted of LH1/LH2 mixtures
in various proportions, and it was suggested that they represented in vivo associ-
ations existing in the membrane. Subsequent studies with a mutant lacking LH2
(Westerhuis et al. 2002) revealed a very regular banding pattern, indicative of an
oligomeric series of LH1 complexes that banded in positions identical to those of
the wild-type intermediate complexes, thus indicating that the latter may represent
fortuitously co-migrating LH1 and LH2. Thus, in addition to giving rise to LH2
and RC–LH1 preparations, the CNE procedure developed here greatly simplifies
analysis of putative inter-LH complex associations, since only two complexes of
intermediate migration are isolated, an upper one enriched in LH2 and a lower one
enriched in LH1 (Fig. 10.4).

Regarding the tentative identification of the polypeptide bands in the analytical
SDS gel of the pigmented CNE bands that migrated to positions distinct from those
of the BChl-associated apoproteins (Fig. 10.4f), it seems reasonable to point out
that major bands were consistently observed near expected mass positions deduced
from the R. sphaeroides genome sequence (Mackenzie et al. 2001). These compo-
nents consisted of the α-, β-, and γ-polypeptides of the F1-ATPase (55.2, 50.4, and
31.2 kDa, respectively), well resolved in the LH2-enriched CNE bands, cytochrome
b (50.1 kDa), migrating to the same position as in Western blots (Sturgis et al. 2009),
RSP6124 (11.4 kDa), prominent in 3- and 24-h bottom bands. Verification awaits
further mutant studies and Western blotting analyses. It is important to note that each
of these putative polypeptide components gave rise to high to reasonable numbers
of spectral counts in the proteomic analysis.

It is possible that the CNE procedure may provide additional experimental
approaches that could have bearing on the authenticity and physiological relevance
of intercomplex associations observed between LH1 and LH2 and those between the
LH complexes and non-pigmented energy-transducing complexes in the various pig-
mented gel bands. Accordingly, as shown recently by Wittig et al. (2007), the mild
detergent digitonin can be used for inner mitochondrial membrane solubilization
during the isolation of labile protein assemblies or the preservation of supramolecu-
lar associations of multiprotein complexes. This obviates the necessity of chemical
cross-linking for the identification of physiological protein–protein interactions.

Since we were unable to resolve the pigmented bands when the UPB fraction was
solubilized with BOG/DOC mixtures, digitonin was used instead, which gave rise
to the respective top and bottom RC–LH1 and LH2 bands and a lower intermedi-
ate band, as well as all four bands when applied to chromatopores (not shown).
As this mild procedure is expected to preserve authentic physiological associa-
tions, these results would suggest that the LH1–LH2 associations in the intermediate
complexes represent hydrophobic protein–protein interactions that exist within the
membrane, but definitive proof awaits measurements of the energy transfer efficien-
cies between the LH2 and LH1 complexes within these gel bands. In addition, we
are in the process of applying in-gel activity assays to localize NADH: Ubiquinone
oxidoreductase, succinate:ubiquinone oxidoreductase, the cytochrome bc1 complex,
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cytochrome c oxidase, and the ATP synthase, which will ultimately have bearing on
possible associations with specific pigmented gel bands.

10.4.2 Proteome of the Clear Native Electrophoresis Gel Bands

R. sphaeroides is genetically well characterized and the availability of the annotated
genome (http://genome.jgi-psf.org/finished_microbes/rhosp/rhosp.home.html) has
formed the basis for DNA microarray analysis of the effects of oxygen tension
and light intensity on transcriptome expression (Roh et al. 2004). In addition to the
expression of the well-described, traditional pattern of photosynthesis-associated
genes, a further complement of genes responding to oxygen and light regulation
was identified, covering 25–30% of the genome and representing genes involved
in physiological functions with significant regulatory potential. The transcriptional
activities of several key regulatory elements and membrane assembly factors were
also revealed. However, definitive physiological extrapolation of these gene expres-
sion profiles required a detailed proteomic analysis of relevant gene products, given
the probable interplay of posttranscriptional control in the ultimate phenotypic
expression and metabolic outcome of the effects of the initial regulatory events
exerted at the transcriptional level.

Accordingly, Zeng et al. (2007) have recently reported a detailed pro-
teomic characterization of the ICM and other subcellular fractions obtained from
R. sphaeroides. In addition to the protein components of the well-studied complexes
involved in the primary photochemical and energy conservation events, numerous
other ICM-localized proteins were encountered including a number of abundant
newly discovered proteins, as noted above. Altered photosynthetic growth pheno-
types were observed when genes encoding the RSP1760 and RSP1467 components
were mutated, and it was suggested that they may be involved in ICM formation.
Of further significance to the work described here was the demonstration that BChl
and carotenoid biosynthetic enzymes are enriched in the CM and the detection of
additional chaperonin and preprotein translocases including GroEL, a protein trans-
porter of the Tim44 family, and protein-export membrane protein secD in both the
CM and the ICM. Importantly, the application of these highly informative proteomic
methodologies on both whole membrane fractions and their protein complexes, in
conjunction with structural and functional analyses of the membrane assembly, will
ultimately reveal how the biological potential encoded in the R. sphaeroides genome
controls and integrates events at the protein level that drive the formation of the
specialized energy-transducing membrane housing the photosynthetic apparatus.

At present, the work reported here has formed a baseline for future studies
in which the assembly of BChl-protein and other energy-transducing complexes
will be perturbed by blocking the energy currency needed to drive the membrane
translocation of their nascent polypeptide components, or for the examination of
mutant strains in which conversion of the invaginating membrane into mature ICM
structures is arrested. Under both of these circumstances, it is expected that addi-
tional assembly factors will accumulate, such as the group of complex-specific
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assembly factors (Young and Beatty 2003), not yet detected in the R. sphaeroides
CNE band-associated proteome.
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Chapter 11
A Glimpse into the Proteome of Phototrophic
Bacterium Rhodobacter capsulatus

Ozlem Onder, Semra Aygun-Sunar, Nur Selamoglu, and Fevzi Daldal

Abstract A first glimpse into the proteome of Rhodobacter capsulatus revealed
more than 450 (with over 210 cytoplasmic and 185 extracytoplasmic known as
well as 55 unknown) proteins that are identified with high degree of confidence
using nLC–MS/MS analyses. The accumulated data provide a solid platform for
ongoing efforts to establish the proteome of this species and the cellular locations
of its constituents. They also indicate that at least 40 of the identified proteins,
which were annotated in genome databases as unknown hypothetical proteins, cor-
respond to predicted translation products that are indeed present in cells under the
growth conditions used in this work. In addition, matching the identification labels
of the proteins reported between the two available R. capsulatus genome databases
(ERGO-light with RRCxxxxx and NT05 with NT05RCxxxx numbers) indicated that
11 such proteins are listed only in the latter database.

11.1 Introduction

The Gram negative, purple non-sulfur facultative phototrophic bacterium
Rhodobacter capsulatus is a model organism that is intensely studied for vari-
ous aspects of major metabolic pathways such as photosynthesis and respiration
(Zannoni 1995; Hunter et al. 2009). Using this species, which exhibits highly ver-
satile growth modes including anoxygenic light (i.e., photosynthesis), anoxygenic
dark (i.e., anaerobic respiration), and oxygenic (i.e., light-independent aerobic respi-
ration) metabolisms, physiologically relevant cellular responses to the availability of
light or oxygen can be examined at the molecular level (Hunter et al. 2009). Indeed,
a complete definition of the presence, regulation, and biogenesis of various cellular
components in response to the changing environmental conditions greatly benefits
from global analyses approaches, including transcriptomic and proteomic studies
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(Park et al. 2005; Wasinger 2006). Thus, along with the transcriptional studies, avail-
ability of qualitative and quantitative description of R. capsulatus proteomes under
defined growth conditions is extremely invaluable. Toward this end, we have initi-
ated an effort to define the complete proteome of this species (Onder et al. 2008),
and we present here a first glimpse to this developing protein identification dataset.

11.2 Materials and Methods

Wild-type R. capsulatus strain MT1131 was grown under respiratory growth con-
dition in enriched MPYE (mineral–peptone–yeast extracts) medium (Daldal et al.
1986) under standard culture conditions (1 l medium in 2 l flask, shaken at approx-
imately 150 rpm at 35◦C in dark for approximately 36 h) (Myllykallio et al. 1997).
Cells were harvested by centrifugation at 4◦C (5000×g, 20 min), washed with ice-
cold 20 mM Tris–HCl, pH 8.0, and gently resuspended in cold extraction buffer
consisting of 1 mg/ml of polymyxin B sulfate, 20 mM Tris–HCl, 250 mM NaCl
(pH 8.0) (5 ml/g of wet cells) (Ren and Thony-Meyer 2001; Onder et al. 2008). The
suspension was gently stirred for 1 h at 4◦C and centrifuged at 10,000×g for 20 min
at 4◦C. The supernatant was carefully transferred into a clean tube, re-centrifuged at
150,000×g for 2 h at 4◦C, and saved as periplasmic fractions at –20◦C. Polymyxin-
treated cell pellets were then resuspended in 50 mM MOPS, 100 mM KCl (pH
8.0) buffer, and processed using a French pressure cell, as described earlier (Onder
et al. 2008). After centrifugation for 2 h at 45,000 rpm, supernatants (i.e., cytoplas-
mic fractions) and pellets (i.e., membrane fractions) were processed separately for
analyses of their protein contents.

Soluble or periplasmic proteins were precipitated with trichloroacetic
(TCA)/acetone (20% w/v), washed twice with ice-cold acetone to remove residual
TCA, and dried under vacuum. Pellets were resuspended in two-dimensional gel
electrophoresis (2D-GE) sample solubilization buffer (SSB: 8 M urea, 4% CHAPS,
40 mM Tris, 0.2% Bio-Lyte-pH 3–10, 65 mM DTT) at room temperature until com-
plete solubilization. For 2D-GE, samples containing 300 μg of solubilized proteins
were applied to 18 cm, pH 4–7 immobilized pH gradient (IPG) strips (Bio-Rad),
and following a 12 h passive rehydration, isoelectrofocusing (IEF) was carried
out by using PROTEAN IEF Cell (Bio-Rad) at 20◦C at a maximum of 7000 V
for 15–18 h, and the strips thus prepared were kept frozen at –20◦C until use.
For the second dimension sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE), IPG strips were reduced with 1% w/v dithiothreitol (DTT) and
alkylated with 2.5% w/v iodoacetamide at room temperature, both prepared in equi-
libration buffer consisting of 50 mM Tris–HCl, pH 8.8, 6 M urea, 30% v/v glycerol,
2% SDS, and 0.02% bromophenol blue. After equilibration, the IPG strips were
layered on top of the second dimension resolving gel slabs and overlaid with a solu-
tion of molten 0.5% agarose in SDS electrophoresis buffer. The second dimension
Laemmli-type SDS-PAGE was carried out using 11% gels without any stacking
at 40 mA per gel in a Protean II XL cell (Bio-Rad), and gels were stained with
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colloidal coomassie brilliant blue (Neuhoff et al. 1990). Spots or bands were manu-
ally excised from gels and subjected to in-gel trypsin digestions (Onder et al. 2006).
Tryptic peptide extracts were analyzed using a nanoLC–MS/MS setup (LCQ Deca
XP Plus mass spectrometer from Thermo Scientific coupled to an Ultimate Nano
liquid chromatography system from DIONEX). Tryptic peptide mixtures were first
loaded onto a μ-precolumn (C18, 5 μm, 100 Å, 300 μm i.d. × 5 mm) (DIONEX)
and washed for 4 min at a flow rate of 0.25 μl/min with the LC buffer A, then
transferred onto an analytical C18-nanocapillary HPLC column [DIONEX, Acclaim
PepMap100, C18 column (75 μm i.d. by 150 mm)] with a 3 μm particle size
and a 100 Å pore diameter for fractionation. A fused silica tip with 8-μm aper-
ture (New Objective, Woburn, MA) was used for nanospray ionization of peptides
eluting from the column. Mass spectra were analyzed using the DTA generation
and SEQUEST search algorithms within Bioworks 3.3 software (Thermo Scientific)
and R. capsulatus protein databases (ERGO-light from http://www.ergo-light.com
or in-house available NT05 data bases). The following parameters were selected as
proteolytic enzymes, allowing trypsin cleavage only after arginine and lysine and
with the maximal number of internal (missed) cleavage set to 2–4. Mass tolerance
for precursor and fragment ions was 2.0–2.5 and 1.0, respectively. Methionine oxi-
dation and cysteine carbamidomethylation were set as variable modification with
maximum modification set to 2, and default setting was used for all other variables.
Matching peptides were filtered according to correlation scores (XCorr at least 1.5,
2.0, and 2.5 for +1, +2, and +3 charged peptides, respectively, and �CN > 0.1) to
give high confidence of protein identification, and proteins were considered as sig-
nificant only when at least two peptides were identified with the SEQUEST filter
settings mentioned above. The R. capsulatus proteins thus identified were exam-
ined with bioinformatic tools. Prediction software SignalP (version 3.0) (Bendtsen
et al. 2004) (http://www.cbs.dtu.dk/services/SignalP/) and PSORTb (version 2.0)
(Gardy et al. 2005) (http://www.psort.org/psortb/) were used to predict the likely
sub-cellular localization of identified proteins.

11.3 Results and Discussion

A long-term objective of this study is the establishment of a comprehensive
proteomic reference database for R. capsulatus under different growth conditions.
This physiological proteomics will then establish an important step to enable
detailed analyses of major metabolic pathways of this organism extending from
photosynthesis to respiration. To this end, we use modern proteomic approaches
involving 1D- and 2D-GE combined with liquid chromatography and tandem
mass spectrometry techniques. Representative 1D and 2D analyses are shown in
Fig. 11.1. In addition, as comprehensive proteome analyses are often limited by
physiological constraints and technical issues, to maximize the number of proteins
identified, to reduce the sample complexity, and also to detect low abundance
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Fig. 11.1 Representative 1D and 2D gel analyses of R. capsulatus protein samples. (a) Periplasmic
fraction proteins of R. capsulatus were separated by 2D-GE, with pH 4–7 IPG and SDS-PAGE, as
first and second dimensions. (b) Chromatophore membranes of R. capsulatus were separated on
1D-GE using SDS-PAGE. In both cases, protein samples were prepared as described in Section
11.2, gels were stained with colloidal coomassie blue and protein spots or bands were excised and
trypsin digested for identification by nano-LC–MS/MS

proteins, we prepare overlapping subproteomes of periplasmic, cytoplasmic, and
membrane fractions of R. capsulatus cells grown under different conditions and
analyze these samples as described in Section 11.2. These analyses identified so far
more than over 450 R. capsulatus proteins that are grouped into different cellular
function categories listed in Table 11.1. Tentative sub-cellular localizations of these
proteins are also indicated using the PSORTb v 2.0 prediction software trained
on bacterial protein sub-cellular localization prediction (Gardy et al. 2005). Of
these proteins, 218 are predicted to be cytoplasmic and 187 are assigned to be
exported proteins. Among the latter extracytoplasmic proteins, 52 and 94 of them
are considered to be periplasmic and integral membrane proteins, respectively.
Clearly, the predictive analysis is highly successful as for only 53 out of the
450 identified proteins a cellular localization could not be attributed reliably
using PSORTb program. Moreover, global distributions of the identified proteins
into different cellular function categories are also analyzed, and the results are
presented as a pie chart (Fig. 11.2). Even though the available data set is not
yet exhaustive, it appears that “energy metabolism” and “transport and binding
proteins” categories are among the most populated groups of proteins with 82
and 79 members, respectively. Remarkably, while a large fraction of the iden-
tified proteins correspond to proteins of known functions, 49 of them have undefined
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Fig. 11.2 Functional category distribution of identified proteins

roles, and among the latter group 41 of them were initially annotated as hypothetical
proteins in either or both (ERGO-light with RRCxxxxx and NT05 with NT05RCxxxx
numbers) of R. capsulatus genome databases (Table 11.1). Our data establish that
these translation products are indeed real, and searches for defining their functions
can now be initiated on firm grounds. We believe that the data set that is under con-
struction is of great value for rapid progress of current and future studies focused
on Rhodobacter species (Du et al. 2008). This ever-growing data set is providing a
platform onto which we can build future qualitative and quantitative comparisons
for various cellular components under defined physiological conditions. A current
example to the point is illustrated by one of our recent studies where a portion of
our accumulated proteomics data of R. capsulatus, once combined with standard
in-depth biochemical and molecular genetic approaches, yielded exquisite under-
standing in detailed molecular terms of an unusual physiological situation simply
detected by a growth phenotype (Onder et al. 2008). We believe that establishment
of a comprehensive proteomic data for R. capsulatus species, like in many other
cases, will be invaluable to provide much needed impetus for understanding the
global biology of this organism with a “systems” level organization.
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Chapter 12
Phycobiliprotein Biosynthesis in Cyanobacteria:
Structure and Function of Enzymes Involved
in Post-translational Modification

Wendy M. Schluchter, Gaozhong Shen, Richard M. Alvey, Avijit Biswas,
Nicolle A. Saunée, Shervonda R. Williams, Crystal A. Mille,
and Donald A. Bryant

Abstract Cyanobacterial phycobiliproteins are brilliantly colored due to the pres-
ence of covalently attached chromophores called bilins, linear tetrapyrroles derived
from heme. For most phycobiliproteins, these post-translational modifications are
catalyzed by enzymes called bilin lyases; these enzymes ensure that the appropriate
bilins are attached to the correct cysteine residues with the proper stereochemistry
on each phycobiliprotein subunit. Phycobiliproteins also contain a unique, post-
translational modification, the methylation of a conserved asparagine (Asn) present
at β-72, which occurs on the β-subunits of all phycobiliproteins. We have identi-
fied and characterized several new families of bilin lyases, which are responsible
for attaching PCB to phycobiliproteins as well as the Asn methyl transferase for
β-subunits in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. All of
the enzymes responsible for synthesis of holo-phycobiliproteins are now known for
this cyanobacterium, and a brief discussion of each enzyme family and its role in the
biosynthesis of phycobiliproteins is presented here. In addition, the first structure of
a bilin lyase has recently been solved (PDB ID: 3BDR). This structure shows that
the bilin lyases are most similar to the lipocalin protein structural family, which also
includes the bilin-binding protein found in some butterflies.

12.1 Introduction

The brilliantly colored phycobiliproteins (PBPs), major components of the phy-
cobilisome (PBS) light-harvesting complex, are responsible for the characteristic
colors of cyanobacteria, because these proteins can constitute up to 40–50% of the
total proteins in the cell when cyanobacteria are cultured under low-light condi-
tions (Glazer 1989). Their spectroscopic properties are primarily due to covalently
attached chromophores called bilins, and the prosthetic groups allow these proteins
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Fig. 12.1 Structures of free bilins phycocyanobilin and phycoerythrobilin as synthesized in
cyanobacteria (upper) and structures of two stereoisomers of phycocyanobilin as attached to
β-phycocyanin (lower)

to absorb light in the visible region where chlorophyll a has minimal absorption.
Each PBP is made up of two different polypeptides, denoted α and β, which are
similar in sequence and derived from ancient gene duplication events. Each α or
β-subunit carries at least one, and as many as three, bilin(s), which are covalently
attached to the protein via thioether linkages at specific Cys residues (see Fig. 12.1).
The subunit structure for PBPs, the core of which is structurally related to mem-
bers of the globin family, consists primarily of α-helices (Schirmer et al. 1985; Betz
1997).

PBPs are usually isolated as trimers (αβ)3 or as hexamers (αβ)6, and specific
linker proteins mediate the association of one hexameric disc to another and mod-
ulate the spectroscopic properties of PBPs (Glazer 1984) (see Fig. 12.2). There are
three major classes of PBPs: phycoerythrin (PE; λmax ∼ 565 nm), phycocyanin (PC;
λmax ∼620 nm), and allophycocyanin (AP; λ max ∼ 650 nm). AP and related minor
PBPs form the core of the PBS; six to eight rods composed of PC radiate out from

�

Fig. 12.2 Model of the events required for the biosynthesis of phycocyanin and allophycocyanin
subunits and of the rods and cores in Synechococcus sp. PCC 7002. It is unknown whether αβ

monomer assembly occurs before or after these post-translational events, although apo-αβ-subunits
could be recognized by CpcT and CpcSU bilin lyases and the CpcM methyltransferase in in vitro
reactions. The only bilin lyase that can remove bilins is CpcEF as indicated by a double-sided
arrow. Once the proteins are fully modified, oligomers of these proteins form with the aid of
various linker proteins as reviewed elsewhere (Gingrich et al. 1983; Glazer et al. 1983, 1985)
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Fig. 12.2 (continued)
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the core (see Fig. 12.2). Some cyanobacteria additionally contain PE, or phycoery-
throcyanin (PEC; λmax ∼590 nm), at the distal position on the rods, which increases
the efficiency of green light absorption (Glazer 1989).

In order to harvest light, PBPs must be post-translationally modified by the
attachment of at least one of the two different bilins: phycoerythrobilin (PEB) or
phycocyanobilin (PCB; see Fig. 12.1). These linear tetrapyrroles are derived from
heme and are covalently attached via thioether linkages at specific cysteine residues
within the α- and β-subunits (see Fig. 12.1). Phycourobilin (PUB) and phycovio-
lobilin (PVB) are derived from PEB and PCB, respectively, after attachment and
isomerization by a lyase enzyme during the attachment process (Zhao et al. 2000;
Blot et al. 2009). In some strains of cyanobacteria, three different bilins can be
found attached to PBPs (Bryant et al. 1981; Ong and Glazer 1991), whereas in other
strains such as Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 only
PCB is present. Even in those strains that only contain PCB, two different stereoiso-
mers occur on the phycocyanin β-subunit at carbon atom C31 of the bilin (Schirmer
et al. 1986). The R-isomer is the most commonly found isomer (see Fig. 12.1), but
the S-isomer is present at some positions (bilins attached to the Cys-153 on PC
β-subunits).

A second type of post-translational modification, methylation of the γ-nitrogen
of asparagine, occurs for almost all PBP β-subunits of cyanobacteria, red algae,
and cryptomonads (Klotz et al. 1986; Klotz and Glazer 1987; Rümbeli et al. 1987;
Wilbanks et al. 1989; Ducret et al. 1994; Apt et al. 2001). The highly conserved
γ-N-methylasparagine residue occurs at the β-72 position (numbering according to
CpcB in Synechococcus sp. PCC 7002; see Fig. 12.3), and no such modification
occurs on the homologous α-subunit position (Klotz et al. 1986; Klotz and Glazer
1987; Swanson and Glazer 1990).

Fig. 12.3 Reaction showing
the methylation of the
asparagine located on
β-subunits at position 72
catalyzed by the
methyltransferase CpcM
using S-adenosylmethionine
(SAM) as the donor for the
methyl group

Much progress has been made in the last 6 years in identifying and characterizing
the enzymes required for the biosynthesis of PBPs, and this chapter reviews the
studies that characterized the enzymes required for the biosynthesis of all PBPs in
Synechococcus sp. PCC 7002.
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12.2 Post-translational Modifications of Phycobiliproteins

PBPs have two major types of post-translational modifications: addition of bilin
chromophores to specific Cys residues on each subunit and the methylation of an
asparagine residue on β-subunits. The chromophorylation process, in most cases,
requires enzymes called bilin lyases. It seems that these enzymes are likely required
for most PBPs in order to ensure that the appropriate stereochemistry of the bilin
linkage to the proper Cys and, probably most importantly, to ensure that the appro-
priate bilin is attached to the correct Cys of a particular PBP in cases for which
more than one bilin is present within the cyanobacterium (e.g., when both PCB
and PEB occur in a cell). For example, in in vitro reactions between apo-PBPs and
purified bilins, many incorrect products can be produced. Bilins that were more
oxidized than the native bilin could be attached to Cys residues and individual
Cys residues exhibited virtually no selectivity for one bilin over another (Arciero
et al. 1988a, b, c; Fairchild and Glazer 1994a, b). Furthermore, in some cyanobac-
teria bilin lyases are additionally required to attach and then isomerize one bilin
into a different one. For example, PVB is formed by isomerization of PCB, and
PUB is formed by isomerization of PEB by specific bilin lyases (Zhao et al. 2000;
Storf et al. 2001; Blot et al. 2009). The second type of post-translational modi-
fication that occurs on PBPs is N-methylation of an asparagine residue, which is
performed by an S-adenosylmethionine-dependent methyltranferase that is specific
for β-subunits (Swanson and Glazer 1990). This chapter will focus on the enzymes
from Synechococcus sp. PCC 7002, a marine cyanobacterium that contains a sim-
ple PBS comprised of only PC and AP, PBPs that only carry PCB chromophores
(Bryant, 1992).

12.2.1 Bilin Attachment

12.2.1.1 CpcE/F-Type Bilin Lyases

It appears that for most PBPs, bilin lyase enzymes are required for the attachment,
isomerization, and detachment of the bilin chromophores from the Cys residues of
the PBP (Arciero et al. 1988a; Fairchild et al. 1992; Zhou et al. 1992; Fairchild
and Glazer 1994b; Dolganov and Grossman 1999; Zhao et al. 2000, 2007a). The
first bilin lyase to be characterized was CpcE/CpcF (Zhou et al. 1992). The cpcE
and cpcF genes occur downstream of the cpcBA structural genes that encode the
β-and α-subunits of PC, respectively, and from the cpcC and cpcD genes, encoding
PC-associated rod linkers (see Table 12.1). When either the cpcE or the cpcF genes
were inactivated in Synechococcus sp. PCC 7002, the mutants were yellow-green in
color, had increased doubling times, and had low levels of PC (Zhou et al. 1992).
About 90% of the PC synthesized in these mutants lacked a PCB chromophore on
the α-subunit; however, the β-subunit of PC had the correct bilin incorporated at
Cys residues 82 and 153 (Swanson et al. 1992). Recombinant CpcE and CpcF were
shown to comprise a heterodimeric lyase (CpcE/CpcF) that specifically attaches
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Table 12.1 Characteristics of Phycobiliproteins from Synechococcus sp. PCC 7002

PBP Gene
Attachment
sites – bilina

Abs/Fl maxima
(nm)b Bilin lyase

αPC cpcA Cys-84-PCB 625/642 CpcE/CpcF (Zhou et al. 1992;
Fairchild et al. 1992)

βPC cpcB Cys-82-PCB
Cys-153-PCB

622/643
597/623

CpcS-I/CpcU (Shen et al.
2008; Saunée et al. 2008)
CpcT (Shen et al. 2006)

αAP apcA Cys-81-PCB 614/634 CpcS-I/CpcU (Saunée et al.
2008)

βAP apcB Cys-81-PCB 614/634 CpcS-I/CpcU (Saunée et al.
2008)

β18 apcF Cys-81-PCB 616/637 CpcS-I/CpcU (Biswas et al.
unpublished)

αAP-B apcD Cys-81-PCB 672/675 CpcS-I/CpcU (Biswas et al.
unpublished)

LCM
99 apcE Cys-186 662/670 None (Biswas et al.

unpublished)

aTerminal acceptor bilin in PC is underlined (Ong and Glazer 1991)
bAbsorbance (Abs) and fluorescence (Fl) emission maxima of this chromophore when properly
attached to the corresponding monomeric PBP

PCB to Cys-84 of α-PC (CpcA) (Fairchild et al. 1992; Zhou et al. 1992; Fairchild
and Glazer 1994b) (see Table 12.1). CpcE/CpcF was also able to catalyze the reverse
reaction, transferring the bilin from the holo-α-subunit of PC to an apo-α-subunit of
the same or different species (Fairchild et al. 1992) (see Fig. 12.2). This implies that
the heterodimeric bilin lyase is able to gain access to and cleave the thioether bond
between the protein and the bilin. To date, this is the only bilin lyase that can perform
both the bilin addition and removal reactions. CpcE/CpcF can catalyze the addition
of PEB to the α-subunit of apo-PC as well, but it exhibited a strong preference for
PCB over PEB in both affinity and kinetics (Fairchild and Glazer 1994b).

The PecE/PecF and CpeY/CpeZ bilin lyases are similar in sequence to
CpcE/CpcF but are associated with different PBP-encoding operons and are active
on different substrates (Jung et al. 1995; Kahn et al. 1997; Zhao et al. 2000, 2002;
Storf et al. 2001;). This family of lyase genes has collectively been called the E/F
type. These putative PBP lyases contain a short region of high similarity dubbed
the E-Z motif (Wilbanks and Glazer 1993a). Morimoto et al. (2002, 2003) noted
that a CpcE-like protein in Synechocystis sp. PCC 6803 called Slr1098 has HEAT-
repeat motifs that occur multiple times within its sequence, and Dolganov and
Grossman (1999) noted that some of these regions were important for the function
of a CpcE-like protein called NblB. Some of these CpcE-like proteins may function
in PBP degradation during nutrient starvation (Dolganov and Grossman 1999) or in
assembly or disassembly of PBS (Schluchter and Glazer 1999). All E/F type bilin
lyases contain 5–6 HEAT-repeat motifs. HEAT-repeat motifs occur in many proteins
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from diverse eukaryotic organisms in which they are generally believed to facilitate
protein–protein interactions (Andrade et al. 2001; Takano and Gusella 2002).

12.2.1.2 T-Type Bilin Lyases

The cpcT gene from Synechococcus sp. PCC 7002 is a paralog of cpeT, which was
first sequenced as a gene of the cpeCDESTR operon in Fremyella diplosiphon (also
known as Calothrix sp. PCC 7601) (Cobley et al. 2002). CpcT was shown to be
involved in PCB attachment to β-PC (Shen et al. 2004). Compared to wild-type
cells, cells of the cpcT mutant contained reduced levels of PC, and most of the PC
that was produced was missing a PCB chromophore at Cys-153 of β-PC (Shen et al.
2006). Recombinant CpcT could attach PCB specifically to Cys-153 on β-PC, and it
is active as a monomer (see Table 12.1) (Shen et al. 2006). Shen et al. hypothesized
that the CpcT bilin lyase was required to form the S-stereoisomer at this position
(see Fig. 12.1); this further suggests that this lyase can bind PCB in the appropriate
conformation to allow formation of the S-stereoisomer (Shen et al. 2006).

Similar results were obtained with CpcT from Nostoc sp. PCC 7120, and for the
first time, an order for post-translational modifications was proposed (Zhao et al.
2007b). Interestingly, a phage that contains an ortholog of cpeT in its genome
has recently been shown to increase phycoerythrin I and II levels during infec-
tion of marine Synechococcus sp. WH 7803 (Shan et al. 2008). The cryptophyte
Guillardia theta also encodes a functional CpcT protein in its nucleomorph genome,
which can functionally complement a cpcT mutant of Synechocystis sp. PCC 6803
(Bolte et al. 2008). BLAST analyses identified cpeT orthologs and/or paralogs
in the sequenced genomes of all cyanobacteria except Prochlorococcus marinus
MED4, and phylogenetic analyses showed that there are two main groups. One
group only contains organisms that synthesize PE, and these proteins are designated
CpeT (see 7601 CpeT location in phylogeny shown in Fig. 12.4). The distribu-
tion of these sequences strongly suggests that this protein subgroup plays a role
in cyanobacterial-type phycoerythrin (C-PE) biosynthesis, probably by attaching
PEB at the Cys-153 equivalent position of β-PE. The second group contains at least
two sub-groups (upper portion of tree shown in Fig. 12.4) with the CpeT paralog
from Synechococcus sp. PCC 7002 (denoted 7002 CpcT) along with other CpcT-
like proteins from organisms that do not synthesize PE and only synthesize PC
and AP (e.g., Synechocystis sp. PCC 6803, Thermosynechococcus elongatus BP-
1, Synechococcus elongatus PCC 7942). This distribution suggests that this group
of proteins attaches PCB to the Cys-153 equivalent of PCs (Shen et al. 2006).

12.2.1.3 S/U-Type Bilin Lyases

Three genes in Synechococcus sp. PCC 7002 showed highest sequence similarity to
cpeS from F. diplosiphon (Cobley et al. 2002). These paralogs were named cpcS-I,
cpcU, and cpcV (Shen et al. 2004, 2008b; Saunée et al. 2008), and they are mem-
bers of the third family of PBP lyases called the S/U type (Scheer and Zhao 2008).
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Fig. 12.4 Phylogenetic analysis of CpcT and CpeT proteins from different cyanobacteria.
Sequence alignments and comparison were made on CpcT, CpeT, and their homologs from
Synechococcus 7002 (7002), Synechocystis 6803 (6803), T. elongatus strain BP-1 (BP 1),
Gloeobacter violaceus strain PCC 7421 (7421), Nostoc sp. strain PCC 7120 (7120), N. puncti-
forme strain PCC 73102 (73102), Anabaena variabilis strain ATCC 29413 (29413), S. elongatus
strain PCC 7942 (7942), Synechococcus sp. strain PCC 6301 (6301), Microcystis aerugi-
nosa NIES-843 (NIES843), Cyanothece sp. strain CCY 0110 (0110), Cyanothece sp. PCC
7425 (7425), Crocosphaera watsonii strain WH8501 (8501), Trichodesmium erythraeum strain
IMS101 (IMS101), Arthropira maxima CS328 (CS328), Lyngbya sp. strain PCC 8106 (8106),
Synechococcus sp. strain JA-3-3Ab (JA33Ab), Synechococcus sp. strain JA-2-3Ba (JA23Ba),
Synechococcus sp. strain RCC307 (RCC307), Synechococcus sp. strain WH5701 (5701),
Synechococcus sp. strain CC9902 (9902), Cyanothece sp. PCC 8801 (8801), Synechococcus
sp. strain BL107 (BL107), Synechococcus sp. strain WH8102 (8102), Synechococcus sp. strain
CC9605 (9605), Synechococcus sp. strain CC9311 (9311), Synechococcus sp. strain RS9917
(9917), Nodularia spumigena strain CCY9414 (9414), P. marinus MIT9211 (9211), P. marinus
strain MIT9303 (9303), P. marinus strain MIT9313 (9313), Prochlorococcus sp. strain CC9605
(9605), and Prochlorococcus sp. strain CC9902 (9902). The sequence alignment was generated
using the ClustalW module within the MacVector program, version 10.6 (MacVector, Inc., Cary,
NC). The phylogenetic tree was generated using the phylogenetic analysis program PAUP (Sinauer
Associates, Sunderland, MA)
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Fig. 12.5 Phylogenetic analysis for proteins paralogous to CpcS, CpcU, CpcV, CpeS, and CpeU.
For clarity in comparison and phylogenetic tree generation, representative paralogous proteins were
selected from only a few cyanobacteria, including from Synechococcus 7002 (7002), Synechocystis
6803 (6803), T. elongatus strain BP-1 (BP 1), G. violaceus strain PCC 7421 (7421), N. punctiforme
strain PCC 73102 (73102), S. elongatus strain PCC 7942 (7942), Lyngbya sp. strain PCC 8106
(8106), Synechococcus sp. strain RCC307 (RCC307), Synechococcus sp. strain WH7805 (7805),
Synechococcus sp. strain CC9311 (9311), Synechococcus sp. strain RS9916 (9916), and P. mar-
inus MIT9211 (9211). Amino acid sequences were compared using the ClustalW module within
the MacVector program, version 10.6 (MacVector, Inc., Cary, NC). The phylogenetic tree was
generated using the phylogenetic analysis program PAUP (Sinauer Associates, Sunderland, MA)

As shown in Fig. 12.5, homologs of the CpcS and CpeS proteins from cyanobac-
teria can be classified into five groups. Two of these groupings, groups A and C,
only include the strains that can synthesize PE. This observation, and the observa-
tion that these genes are usually clustered with other genes known to play a role in
PE biosynthesis or assembly, suggests that these lyase proteins, denoted CpeS and
CpeU, respectively, probably play roles in PEB attachment to PE subunits. All of
the other groups contain at least some members that only synthesize proteins with
PCB chromophores, and thus at least some of these proteins cannot be involved in
PE synthesis. The largest of these groups, group B, can be further divided into three
subfamilies, which we have denoted CpcS-I, CpcS-II, and CpcS-III. Synechococcus
sp. PCC 7002 has a protein within the CpcS-I clade. With only a single excep-
tion, Nostoc punctiforme, all organisms with a protein in the CpcS-I clade also
have a paralogous protein in group E, which we have designated CpcU (Shen et al.
2008b).

Null mutants for cpcS-I and cpcU from Synechococcus sp. PCC 7002 have
reduced amounts of PC, and most of the PC produced lacks a chromophore at
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Cys-82 of β-PC. In fact, as shown by HPLC/electrospray MS analysis, some of
this PC still contained non-covalently bound PCB in the binding pocket (Shen
et al. 2008b). The characterization of these mutants also suggested that CpcS-I
and CpcU are required for PCB attachment to Cys-81 of the α- and β-subunits of
AP (Shen et al. 2008b). Recombinant CpcS-I and CpcU forms a 1:1 heterodimer,
which attaches PCB to Cys-82 of β-PC and to Cys-81 on α- and β-subunits of
AP (Saunée et al. 2008) (see Table 12.1). Neither CpcS-I nor CpcU alone is able
to perform this addition reaction. Recently, a heterologous, multi-plasmid expres-
sion system in Escherichia coli was used to show that both CpcS-I and CpcU
are also required to attach PCB correctly to Cys-81 on the ApcF (β18) and ApcD
(αAPB) of Synechococcus sp. PCC 7002 (Biswas et al. manuscript in preparation;
see Table 12.1).

The S/U family of lyases does not appear to perform the transfer or removal of
bilins (Zhao et al. 2006; Saunée et al. 2008), and because it can recognize many
different PBPs and attach bilins at their Cys-82 equivalent positions, this family has
a broader substrate specificity than the E/F type lyases (Scheer and Zhao 2008). The
third member of this S/U type lyase family in Synechococcus sp. PCC 7002 was
named CpcV (group D in Fig. 12.5). Reverse genetics and in vitro biochemistry
experiments have not yet uncovered the function of CpcV (Saunée et al. 2008; Shen
et al. 2008b), but Synechocystis sp. PCC 6803 and many other cyanobacteria do not
have orthologs of this gene. Similarly, Nostoc sp. PCC 7120 also apparently encodes
a paralog of CpcS that lacks bilin lyase activity (Zhao et al. 2006).

In Nostoc sp. PCC 7120, the product of open reading frame alr0617, which the
authors called CpeS but which on the basis of phylogenetic analyses we refer to
as CpcS-III (see Fig. 12.5), is another member of this lyase family (Zhao et al.
2006). Zhao et al. (2006, 2007a, b) have shown that CpcS-III alone attaches PCB
to Cys-82 on β-PC and β-PEC as well as to several AP subunits in Nostoc sp. PCC
7120 (). Therefore, some members of the S/U family are active in the absence of
other subunits (CpcS-III), while the other S/U family members are only active as
heterodimers (e.g., CpcS-I/CpcU; groups C and D in Fig. 12.5). The equivalent
CpcS and CpcU orthologs in Synechocystis sp. PCC 6803 are both required for bilin
addition to Cys-82 on CpcB and presumably also form a heterodimer (Miller 2007).

The X-ray crystal structure of CpcS-III from T. elongatus BP1 (tll1699) was very
recently solved and entered into the PDB database (Kuzin et al. 2007). Interestingly,
this protein crystallized as a dimer (see Fig. 12.6), and through a collaborative
effort, we have successfully demonstrated that Tll1699, or CpcS-III, is a functional
bilin lyase specific for Cys-82 on β-PC and α- and β-AP subunits (A. Biswas and
W. M. Schluchter unpublished results). The CpcS-III bilin lyase belongs to the
lipocalin structural family. All of these proteins adopt a eight-stranded anti-parallel,
β-barrel structure with an α-helix; they have various oligomeric states, occurring
as monomers, homodimers, heterodimers, or tetramers, and they bind a diverse set
of ligands including fatty acids, retinols, carotenoids, pheromones, prostaglandins,
and biliverdin (Flower 1996; Bishop 2000; Hieber et al. 2000; Newcomer and Ong
2000; Charron et al. 2005; Grzyb et al. 2006). In fact, the most similar structure to
CpcS-III in the protein structure database is the bilin-binding protein of the insect
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Fig. 12.6 Structure of
Tll1699/CpcS-III from T.
elongatus BP-1 (PDB ID:
3BDR). The structure of the
homodimer that crystallized
is shown here. This protein
has an eight-stranded
anti-parallel β-barrel with an
α-helix. A phosphate ion
co-crystallized with each
subunit in the structure
(Kuzin et al. 2007)

Pieris brassicae (Huber et al. 1987a, b). This insect protein binds biliverdin IXγ and
is responsible for coloration of various stages of some insects, most commonly in
Lepidopterans (Sehringer and Kayser 2006). Co-crystals of CpcS-III with biliverdin
IXα have recently been obtained (Kuzin et al. unpublished results), and perhaps a
structure of the protein with the bound bilin will soon be available. A structure with
the bound bilin should allow a better understanding of the conformation adopted by
the bilin when bound to the lyase. It appears that the role of the bilin lyase is to bind
the appropriate chromophore in a suitable conformation, so that bilin addition to
the appropriate Cys residue of the apo-PBP can occur (Schluchter and Glazer 1999;
Scheer and Zhao 2008).

12.2.1.4 Autocatalytic Bilin Addition

Targeted mutagenesis results in Synechococcus sp. PCC 7002 show that all of the
major, highly abundant PBPs like PC and AP require one of the three bilin lyases
mentioned above. For example, a triple mutant lacking cpcS, cpcU, and cpcT pro-
duces almost no PBP (Shen et al. 2008b); this suggests that, at least in vivo, all
of the major PBPs require bilin lyases for chromophorylation. However, one report
suggested that the core membrane linker protein (LCM

99), also called ApcE, has
autocatalytic bilin addition activity (Zhao et al. 2005). However, the protein had
limited solubility, and the bilin addition reactions had to be performed in 4 M
urea. ApcE (LCM

99) contains an AP-like domain at its amino-terminus and sev-
eral repeated linker domains, which bind together the AP core trimers; ApcE is also
thought to bind the PBS to the membrane (Capuano et al. 1991; Gindt et al. 1994).
The AP-like domain of ApcE from Synechococcus sp. PCC 7002 binds PCB at Cys-
186, has a red-shifted absorbance at 665 nm, and plays a role in accepting the energy
from the chromophores within the core of the PBS and transferring it to the reaction
centers (Gindt et al. 1994). We used a construct that fuses glutathione S-transferase
to amino acids 1–228 of the AP-like domain of ApcE in order to produce soluble
protein. This ApcE domain has intrinsic bilin lyase activity for attaching PCB in the
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appropriate conformation to yield a red-shifted PCB product with an absorbance
maximum at 662 nm and fluorescence emission at 672 nm (Biswas et al. 2010;
Table 12.1).

12.2.2 Methylation of Asparagine on the β-Subunits of PBPs

PBPs contain a unique, post-translational modification of a conserved Asn present
at β-72. This modification has never been observed in other proteins, but it was
recently identified in cytotoxic linear peptides in a marine sponge (Hamada et al.
2005). Interestingly, the homologous Asn residue within the α-subunits is never
modified, which implied that this modification serves an important functional role.
The methylated Asn is located very close to the bilin chromophore present at β-
82, the terminal energy acceptor within the trimer, suggesting that this modification
might play a role in changing the absorption and energy transfer properties of this
particular bilin. Mutants unable to modify their PBPs exhibited less efficient energy
transfer from PC to AP (Swanson and Glazer 1990), lower electron transfer rates
through photosystem II (PS II) under light regimes that are preferentially absorbed
by PBS (Thomas et al. 1993), and changes in bilin ring geometry (Thomas et al.
1994). The conclusion from these studies was that this post-translational modifi-
cation changes the environment of the β-84 chromophore to minimize the rates of
non-radiative energy losses within PBS.

We identified the gene encoding this enzyme and named it cpcM (Miller et al.
2008); Shen et al. 2008a). The cpcM gene is present in all organisms that con-
tain PBPs, and cpcM mutants lacked the modification on their β-subunits and
were extremely sensitive to high light intensities (Shen et al. 2008a). We hypoth-
esized that the PBPs lacking this modification might generate more reactive oxygen
species. We also showed that recombinant CpcM methylated only β-subunits and
not α-subunits, and from these in vitro experiments using various substrates, we
inferred that the enzyme probably methylates β-subunits after chromophorylation
but before trimer assembly (Miller et al. 2008). Given the remarkable primary, sec-
ondary, and tertiary structural similarity between α- and β-subunits, it is unclear
whether this enzyme recognizes a specific conserved motif present in β-subunits
(Clarke 2002) or whether it recognizes a larger region over the entire β-subunits
(Miller et al. 2008).

12.3 Formation of Unnatural PBPS

Previous studies suggested that the co-expression of genes for CpcA, the
CpcE/CpcF PBP lyase, and the enzymes for synthesis of PCB [heme oxygenase
and PCB synthase (PcyA)] in E. coli could produce holo-PC α in reasonable
yield (Tooley et al. 2001). The recent identification of enzymes for the synthesis
of PEB (Frankenberg et al. 2001; Dammeyer et al. 2008) and phytochromobilin
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(P�B) (Kohchi et al. 2001) led us to perform experiments to explore the production
of unnatural recombinant CpcA variants (Alvey et al. manuscript in preparation).
When the cpcA gene was co-expressed with cpcE, cpcF, hox1, and pcyA, holo-PC
α was formed as previously described (Tooley et al. 2001). By substituting pebS
for pcyA, a highly fluorescent variant of recombinant PC α harboring PEB could be
produced with a very high yield. Similarly, substituting pcyA with the HY2 gene
of Arabidopsis thaliana led to the production of PC α-subunits carrying P�B. By
substituting the cpcE and cpcF genes with the pecE and pecF genes from Nostoc sp.
PCC 7120 (or in some cases just pecF alone), it was possible to produce recombi-
nant PC α-subunits harboring PVB (if pcyA was also present), PUB (if pebS was also
present), or �VB (phytoviolobilin), a chromophore that has never been observed
in natural PBPs. Attempts to get the CpcE/CpcF lyase to attach biliverdin to PC
α-subunits by leaving out pcyA in E. coli together, and an attempt to attach 15,16-
dihydrobiliverdin (by substituting pebA for pcyA), are in progress. By using a system
for overexpression of genes in Synechococcus sp. PCC 7002 (Xu et al. 2009), we
have successfully generated strains which overexpress the pebS and HY2 genes.
Both systems led to efficient incorporation of foreign bilins into PBPs, although
CpcA had higher levels of PEB than any other PBP; it is unclear whether this
reflects a greater stability of this protein (CpcA-PEB) or a greater discrimination
by the CpcSU and CpcT lyases. Remarkably, when HY2 is overexpressed in a pcyA
null background, all PBPs can be produced with P�B and still assembled into PBS.
Because of the high fluorescence quantum yields of PBPs, and the efficiency with
which these proteins can be produced recombinantly, it is possible that some of these
unnatural PBPs could have important applications in bioimaging, cell sorting, and
other biotechnological applications.

12.4 Concluding Remarks

The beautifully colored and highly fluorescent PBPs have captured the imagination
of many scientists for over 150 years. They are currently and widely used as fluores-
cent tags when conjugated to other proteins such as antibodies (Glazer and Stryer
1983, 1984, 1990; Glazer 1994; Sekar and Chandramohan 2008). All of the enzymes
required for post-translational modification of all PBPs in a single cyanobacterium,
Synechococcus sp. PCC 7002, have now been identified (Table 12.1). This organism
produces “simple” PBS containing only one type of bilin (PCB), and chromophory-
lation of all of its PBP subunits requires only two heterodimeric bilin lyases,
CpcE/CpcF and CpcS/CpcU, and one monomeric bilin lyase, CpcT (see Fig. 12.2).
In addition, the Asn methyltransferase, CpcM, is the only enzyme required to trans-
fer a methyl group from S-adenosylmethionine to the γ-nitrogen atom of Asn-72 on
all PBP β-subunits (see Figs. 12.2 and 12.3). Although more work is required on this
aspect, it appears that these post-translational modifications occur in a specific order
(Zhao et al. 2007b; Miller et al. 2008). The role(s) of CpcV (Saunée et al. 2008;
Shen et al. 2008b) and several proteins related in sequence to CpcE (Schluchter and
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Glazer 1999) in Synechococcus sp. PCC 7002 remain to be discovered. Finally, in
organisms that produce more than one bilin (e.g., PCB and PEB), the situation is
much more complex. Genomes from marine Synechococcus spp. strains that con-
tain PCB, PEB, and PUB attached to their PBP contain genes for multiple bilin
lyases belonging to these three categories, and most of these genes are clustered in
close proximity to the PBP structural gene operons (Wilbanks and Glazer 1993a,
b; Six et al. 2007). However, much more work needs to be done to characterize the
specificity of the putative bilin lyases in organisms producing “complex PBPs.”
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Chapter 13
The Tetrapyrrole Biosynthetic Pathway and Its
Regulation in Rhodobacter capsulatus

Sébastien Zappa, Keran Li, and Carl E. Bauer

Abstract The purple anoxygenic photosynthetic bacterium Rhodobacter
capsulatus is capable of growing in aerobic or anaerobic conditions, in the
dark or using light, etc. Achieving versatile metabolic adaptations from respiration
to photosynthesis requires the use of tetrapyrroles such as heme and bacteriochloro-
phyll, in order to carry oxygen, to transfer electrons, and to harvest light energy. A
third tetrapyrrole, cobalamin (vitamin B12), is synthesized and used as a cofactor
for many enzymes. Heme, bacteriochlorophyll, and vitamin B12 constitute three
major end products of the tetrapyrrole biosynthetic pathway in purple bacteria.
Their respective synthesis involves a plethora of enzymes, several that have been
characterized and several that are uncharacterized, as described in this review. To
respond to changes in metabolic requirements, the pathway undergoes complex
regulation to direct the flow of tetrapyrrole intermediates into a specific branch(s)
at the expense of other branches of the pathway. Transcriptional regulation of the
tetrapyrrole synthesizing enzymes by redox conditions and pathway intermediates
is reviewed. In addition, we discuss the involvement of several transcription factors
(RegA, CrtJ, FnrL, AerR, HbrL, Irr) as well as the role of riboswitches. Finally, the
interdependence of the tetrapyrrole branches on each other synthesis is discussed.

13.1 Introduction

Cyclic tetrapyrroles encompass porphyrins, such as heme, chlorophyll and bacteri-
ochlorophyll (Bchl), and porphynoids, which are more reduced. The porphynoid
class consists of the corrinoids (cobalamin), siroheme, heme d1, and coenzyme
F430 (Frankenberg et al. 2003). Many species are capable of synthesizing numerous
tetrapyrrole end products. One of the best studied organisms is Rhodobacter cap-
sulatus, an anoxygenic photosynthetic bacterium of the α-proteobacteria subfamily.
It is capable of growing under a variety of different environmental conditions such
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as dark aerobic, dark and light anaerobic. This versatile metabolism requires the
capability of synthesizing the tetrapyrroles heme and Bchl that are needed for res-
piratory or photosynthetic growth. Heme is needed for electron transfer during both
respiration and photosynthesis while Bchl is the major pigment involved in collect-
ing and converting light energy into biochemical energy during photosynthesis. In
addition to synthesizing heme and Bchl, R. capsulatus also synthesizes cobalamin
[vitamin B12 (vitB12)]. VitB12 and its derivatives are the most complex tetrapyrrole
synthesized in nature and are involved in various cellular functions such as DNA
repair and methionine synthesis (Martens et al. 2002). The synthesis of siroheme in
R. capsulatus strain has been reported as well (Olmo-Mira et al. 2006).

The four tetrapyrrole end products synthesized by R. capsulatus are derived from
different branches that split off from a common tetrapyrrole biosynthetic pathway
“core” (Fig. 13.1). A common trunk of the pathway used by all three branches
involves a multistep conversion of δ-aminolevulinic acid (δ-ALA) into uropor-
phyrinogen III (uro’gen III). At uro’gen III, the “corrin branch” splits off leading to
the synthesis of cobalamin. Uro’gen III is also the potential substrate for siroheme
synthesis. The central core of the pathway continues to synthesize intermediates
up to protoporphyrin IX (proto IX) that are common to both the heme and Bchl
branches. At proto IX, the heme and Bchl branches differentiate either through the
insertion of Fe to form heme or the insertion of Mg to form Mg–proto IX which is
the first committed step in the Mg branch that leads to the production of Bchl.

The biosynthesis of heme, vitB12, and Bchl is tightly controlled in order to
achieve an adequate Bchl/heme/vitB12 ratio to meet the metabolic requirements of
the cell. Heme and cobalamin levels appear to be maintained at rather stable levels
while the amount of Bchl swings dramatically depending on the presence or absence
of environmental oxygen. Moreover, a number of the intermediates in each of the
three branches are potentially toxic as they can generate reactive singlet oxygen
as a byproduct of light absorption. Tuning the relative amount of Bchl, heme, and
vitB12 as a function of the metabolic requirements, while coping with the poten-
tial toxicity of intermediate products, requires this pathway to be highly regulated.
Early work on the regulation of pigment synthesis in purple bacteria was initiated
in the 1950s by Cohen-Bazire (Cohen-Bazire et al. 1957). More recently it has been
demonstrated that the tetrapyrrole biosynthetic pathway in purple bacteria is highly
complex and its regulation extremely sophisticated. This review is centered on the
model species R. capsulatus and attempts to identify the actors involved in this
pathway, both synthesizing enzymes and regulators.

13.2 Topology of Genes Involved in Synthesis of Tetrapyrroles

Examination of the complete genome of R. capsulatus has enabled the iden-
tification of the genes involved in each branch of tetrapyrrole synthesis (cf.
annotations available at http://www.ergo-light.com and http://onco.img.cas.cz/
rhodo/results/index.html). While genes involved in the vitB12 and Bchl synthesis
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Fig. 13.1 Overview of the tetrapyrrole biosynthetic pathway with its substrates, major intermedi-
ates, and products. The number of enzyme reactions for each branch is indicated

are found in large operons, genes encoding the enzymes involved in heme synthesis
are scattered over the genome (Young et al. 1989; McGoldrick et al. 2002; Warren
et al. 2002; Smart et al. 2004). This feature is not unusual, though a few organ-
isms show an operon organization for some of their hem genes (Avissar and Moberg
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1995). The one exception in R. capsulatus is the hemC and hemE genes that are
divergently transcribed and separated by 111 bp (Smart et al. 2004).

13.3 The Universal Trunk: From δ-ALA to Urog’en III

13.3.1 Feeding the Universal Trunk: The Synthesis of δ-ALA

The biosynthetic pathway to produce uro’gen III from δ-ALA is highly conserved in
nature and is therefore considered universal. However, there are two different path-
ways to synthesize δ-ALA, which is the precursor of all known tetrapyrroles. One
is the C-5 pathway where two enzymatic reactions transform glutamyl-tRNAGlu

into δ-ALA. The other is the C-4 or Shemin pathway that involves the conden-
sation of glycine and succinyl-CoA to produce δ-ALA, CO2, and CoA (Avissar
and Moberg 1995; Frankenberg et al. 2003). As a typical representative of the
α-proteobacteria subfamily, R. capsulatus synthesizes δ-ALA using the C-4 path-
way. This reaction is performed by δ-ALA synthase (EC 2.3.1.37, ALAS), encoded
by the hemA gene, previously identified and cloned in 1988 (Biel et al. 1988).
R. capsulatus ALAS is a piridoxal-5′-phosphate-dependent homodimer, consist-
ing of two 44 kDa subunits. It shows 49% identity and 70% similarity with the
human erythroid-specific ALAS. The structure, solved in 2005 by Astner et al., pro-
vided insight on mutations that generate dysfunctional forms of the human eALAS
(Astner et al. 2005). Moreover, despite a very low primary sequence identity of
18%, ALAS shows remarkable three-dimensional homology with the glutamate-
1-semialdehyde-2,1-aminomutase (GSAM) of Thermosynechococcus elongatus.
The GSAM is the last enzyme of the C-5 pathway and, as such, synthesizes
δ-ALA. It is likely that the C-4 pathway originated from the evolution of GSAM
into ALAS, followed by the loss of the C-5 pathway in common ancestors of
α-proteobacteria and of early mitochondria (Schulze et al. 2006). ORF encod-
ing a putative GSAM, hemL, was found in the genome of R. capsulatus. In
prokaryotes, the occurrence of two uncoupled δ-ALA biosynthetic pathways was
shown in Streptomyces nodosus subsp. asukaensis, where the C-5 pathway pro-
duces δ-ALA for heme synthesis, while the C-4 pathway generates δ-ALA targeted
to secondary metabolism (Petricek et al. 2006). In R. capsulatus there is no evi-
dence for an alternative δ-ALA synthesis pathway as the first enzyme of the C-5
pathway, glutamyl-tRNA reductase, is not found in the genome. Furthermore, the
annotation of this ORF as a hemL gene has to be confirmed experimentally as
GSAM-encoding genes share a great deal of similarity with genes coding for other
types of aminotranferases (Panek and O’Brian 2002). Interestingly, when a δ-ALA-
requiring mutant containing a single insertion was characterized, it was found that
a low level (10%) of the ALAS activity of the parental strain remained (Wright
et al. 1987). Finally, the synthesis of δ-ALA appears as one of the crucial regula-
tion points of the tetrapyrrole biosynthetic pathway, the transcription of hemA being
up-regulated under low oxygen tension (Wright et al. 1991; Smart et al. 2004) and
down-regulated in the presence of excess of exogenous heme (Smart and Bauer
2006).
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13.3.2 Entering the Universal Trunk: Synthesis of Porphobilinogen

The first common step in tetrapyrrole synthesis is achieved by porphobilinogen
synthase (EC 4.2.1.24, PBGS), or δ-ALA dehydratase, that converts two δ-ALA
molecules into a monopyrrole porphobilinogen. In R. capsulatus, hemB encodes a
35.8 kDa protein which presents unusual characteristics among the PBGS studied so
far. Indeed, most PBGS are known to be homooctameric metalloenzymes presenting
a high variability regarding their cations requirement in terms of catalysis (Zn2+-,
Mg2+-, or K+- binding site at the active site) and activity regulation, most of them
containing an extra allosteric Mg2+-binding site. The biochemical characterization
of R. capsulatus revealed that its enzyme is a homohexamer clearly independent
of cations (Zn2+, Mg2+, K+) or chelators (EDTA, 1,10-phenathroline). R. capsula-
tus PBGS seems to switch between a highly active homohexameric form and a less
active homodimeric form (Nandi and Shemin 1973; Bollivar et al. 2004). Regarding
metal dependence, this feature was partially predicted from the primary sequence.
Indeed, among 130 PBGS sequences representing the entire tree of life, only the
ones from the Rhodobacter genus, namely R. capsulatus and R. sphaeroides, lack
the cysteine-rich motif involved in Zn binding at the active site and the conserved
arginine and glutamate residues that coordinate the allosteric Mg. It is postulated
that PBGS containing Zn at the active site evolved to other configurations (metal
free, Mg- and/or K-containing active site) during the set up of the photosynthetic
process and the early synthesis of Bchl. Indeed, Zn is a competitor of Mg in the
metallation step of proto IX (Jaffe 2003; Frère et al. 2005). If the PBGSs of the
Rhodobacter genus fit well in this model regarding their active site, the evolutionary
pressure(s) that allowed them to totally lose metal content, including the Mg in the
allosteric site, remain(s) unknown. Moreover, despite porphobilinogen accumula-
tion under low oxygen tension in R. capsulatus, the activity of PBGS is unregulated
by oxygen, proto IX, and hemin in R. capsulatus. In addition, no or only a slight
increase in hemB transcription was observed upon decreasing the oxygen tension
(Biel et al. 2002; Smart et al. 2004). However, the conversion of δ-ALA into por-
phobilinogen seems to be a major control point in the tetrapyrrole biosynthesis
pathway (Biel 1992). This may be achieved by controlling the level of porphobilino-
gen through the availability of the substrate of PBGS, i.e., δ-ALA. Indeed, the vast
majority of the δ-ALA synthesized is transformed into aminohydroxyvalerate by
an oxygen-dependent δ-ALA dehydrogenase (Biel et al. 2002). Lastly, although not
occurring in a manner as dramatic as for hemA, hemC, or hemE, it was shown that
the transcription of hemB is repressed in the presence of exogenous heme (Smart
and Bauer 2006).

13.3.3 Reaching the First Crossroad: Synthesis of the Tetrapyrrole
Ring, Uro’gen III

The transformation of monopyrrole porphobilinogen into the cyclic tetrapyrrole
uro’gen III is catalyzed by the enzymes porphobilinogen deaminase (EC 4.2.1.24,
PBGD) and uro’gen III synthase (4.2.1.75, UROS) encoded by hemC and hemD,
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respectively. During the first step, PBGD polymerizes four molecules of porpho-
bilinogen into a linear tetrapyrrole, pre-uro’gen or 1-hydroxymethylbilane, and four
NH3. The main product, pre-uro’gen, is very unstable and, if exposed to solvent,
will be converted chemically into a toxic cyclic porphyrin, uro’gen I. To avoid tox-
icity pre-uro’gen is passed to UROS that presumably interacts with PBGD to limit
exposure of the cell to free pre-uro’gen (Shoolingin-Jordan 1995). UROS catalyzes
the formation of uro’gen III, by circularizing the linear tetrapyrrole while inverting
ring D. An asymmetric ring D is a signature of biologically functional porphyrins.

PBGD was purified from R. capsulatus and the N-terminal sequence was deter-
mined in order to identify the corresponding gene, hemC. The latter was also
expressed heterologously in Escherichia coli, confirming that this ORF is sufficient
to produce an active form of PBGD (Biel et al. 2002). No biochemical charac-
terization of the R. capsulatus enzyme has been performed so far, but analysis
of the sequence indicates that hemC corresponds to a 34.1 kDa protein with 47%
homology with PBGDs from E. coli and Pseudomonas aeruginosa and 43% with
the Bacillus subtilis homolog. In addition, previous characterizations of PBGDs
highlighted the use of a unique cofactor, dipyrromethane which consists of two por-
phobilinogen molecules. This cofactor acts as a primer during the polymerization
of a hexapyrrole, which finally releases the tetrapyrrolic reaction product and the
intact cofactor. R. capsulatus PBGD contains the conserved cysteine residue that
is involved in cofactor binding. More work has been done regarding the genetics.
Indeed, characterization of a hemC mutant confirmed that it was incapable of synthe-
sizing either siroheme or vitB12 and grew only in media supplemented with cysteine
and methionine, in addition to hemin (Biel et al. 2002). As well, hemC expression
was shown to be regulated by oxygen, with a fivefold increase of the transcrip-
tion level when changing from aerobic to anaerobic growth conditions (Smart et al.
2004). Finally, the transcription of hemC was repressed two-thirds upon the addition
of exogenous hemin (Smart and Bauer 2006).

UROS is only very poorly characterized unclear as it has never been purified from
R. capsulatus. A high variability in the primary sequences of UROSs has made it
difficult to identify the hemD gene in the R. capsulatus genome. In addition, the lack
of genetic organization such as a hemCD operon or a hem gene cluster, as in E. coli
or B. subtilis, renders the task even harder (Avissar and Moberg 1995). Recently, an
ORF in the R. capsulatus genome was annotated as encoding a UROS but because
hemD genes have been miss-annotated in many other organisms, experimental work
has to be undertaken to confirm this annotation (Panek and O’Brian 2002).

13.4 The Porphyrin Branch: From Uro’gen III to Heme

13.4.1 The Synthesis of Coproporphyrinogen III and Its Puzzling
Secretion

The first step after the uro’gen III crossroad consists in the synthesis of copropor-
phyrinogen III (copro’gen III). This activity is performed by uro’gen III decarboxy-
lase (EC 4.1.1.37, UROD) which catalyzes the sequential decarboxylation of the
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four acetate side chains into methyl groups. The reaction is ordered, starting with the
ring D and then decarboxylating rings A, B, and finally ring C. Numerous UROD-
encoding genes from various biological sources have been identified showing a
rather high level of conservation and presumably a common mechanism of action
(Frankenberg et al. 2003; Heinemann et al. 2008). The R. capsulatus gene encoding
UROD, hemE, was identified in 1995 (Ineichen and Biel 1995). The deduced pro-
tein sequence shows more than 34% identity with previously characterized UROD
and contains a signature sequence of this class of enzyme (PXWXMRQAGR) at
the amino-terminal. No biochemical work has been performed with R. capsulatus
UROD but a bit is known regarding the genetics and its regulation. An interesting
feature of hemE is its linkage to hemC, while the other hem genes are scattered
on the genome. These two genes are divergently transcribed and separated by an
intergenic region of 111 bp. Furthermore, the transcription of hemE is strongly
dependent on redox conditions, as seen using a hemE::lacZ fusion. Expression of
hemE increases by 112- and 52-fold under semi-aerobic and anaerobic conditions,
respectively (Smart et al. 2004). As with hemC, the transcription level of hemE is
decreased by two-thirds in the presence of exogenous heme (Smart and Bauer 2006).

An interesting phenomenon about this step of the pathway is that the cells
excrete copious amounts of the product of the reaction, copro’gen III under certain
growth conditions. Cooper (1956, 1963) highlighted this feature in R. capsula-
tus, using cells grown under iron starvation or with excess exogenous methionine.
More recently, various R. capsulatus mutants, either unable to synthesize Mg–
protoporphyrin monomethyl ester or lacking c-type cytochromes, were studied and
showed a similar phenotype. Moreover, it was discovered that coproporphyrin is
excreted as a complex with a 66 kDa protein (Biel and Biel 1990; Biel 1991) that
turned out to be the major outer membrane porin (Bollivar and Bauer 1992).

13.4.2 Reaching the Second Crossroad: The Synthesis
of Protoporphyrin IX

The antepenultimate and penultimate steps of heme synthesis are achieved by
copro’gen III oxidase (EC 1.3.99.22, CPO) and proto’gen IX oxidase (EC 1.3.3.4,
PPO), respectively. These steps lead to the formation of protoporphyrin IX which is
a precursor for the synthesis of heme and Bchl. Oxygen-dependent and oxygen-
independent CPOs conventionally named HemF and HemN (or HemZ), respec-
tively, are known to catalyze this reaction. HemF is prevalent in eukaryotes and in
a few bacterial groups (primarily cyanobacteria and proteobacteria) while HemN is
widely distributed among prokaryotes. These two forms of CPOs share no obvious
primary sequence homology indicating that they arose from distinct evolutionary
processes. Both enzymes convert copro’gen III into proto’gen IX by decarboxy-
lating the propionate side chains of rings A and B consecutively to yield vinyl
groups (Panek and O’Brian 2002; Frankenberg et al. 2003; Heinemann et al. 2008).
Careful examination of the genome of R. capsulatus revealed no HemF-encoding
gene but three ORFs that may code for putative HemNs. This is in contrast to the
genome of the phylogenetically related species R. sphaeroides that contains one
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hemF and three hemN genes (locus tags in img.jgi.doe.gov: RSP_0682, RSP_0699,
RSP_1224, RSP_0317).

HemN contains a [4Fe–4S] cluster for catalysis and requires S-adenosyl-L-
methionine (SAM) as a cofactor or co-substrate. As such, this enzyme belongs to a
family of “radical SAM” enzymes that carry the signature sequence CXXXCXXC,
where the cysteine residues are involved in the coordination of the Fe atoms (Layer
et al. 2005). This motif is present in the deduced protein sequences of the three puta-
tive CPOs. Occurrence of multiple hemN genes in one organism has been reported
and several bacterial oxygen-independent CPOs have been shown to be expressed
and active in the presence of oxygen (Rompf et al. 1998; Schobert and Jahn 2002).
The expression of hemN1, designated hemZ in the cited articles, was studied as a
function of aeration, which showed only a moderate influence. Indeed, a roughly
twofold variation was recorded, with a maximum transcription level under semi-
aerobic conditions (Smart et al. 2004). In addition, the presence of exogenous heme
under these growth conditions decreased the expression of the gene by twofold fac-
tor, bringing it back to its basal level of transcription (Smart and Bauer 2006).
Finally, in silico analysis of α-proteobacterial genomes revealed an “iron-rhodo-
box” in the promoter region of the hemN2 gene. Thus, hemN2 is predicted to be part
of the iron regulon (Rodionov et al. 2006).

The next step in the pathway is the aromatization of proto’gen IX by removal of
six electrons to yield proto IX. This is performed by proto’gen IX oxidase (PPO) that
exists as two forms, oxygen-dependent (HemY) and oxygen-independent (HemG).
Most of our knowledge about PPOs comes from studies of eukaryotic enzymes that
are oxygen dependent and inhibited by diphenyl ether herbicides in plants (Dailey
2002; Heinemann et al. 2008). In prokaryotes, the situation is very unclear as the
PPO-encoding gene is unidentifiable in many genomes and, so far, hemG seems
to be limited to six genera within the γ-proteobacteria group (Panek and O’Brian
2002; Frankenberg et al. 2003). As is the case with many other heme-synthesizing
prokaryotes, a PPO-encoding gene has not been identified in the genome of either
R. capsulatus or R. sphaeroides (cf. img.jgi.doe.gov). Even if the oxidation of
proto’gen IX into proto IX can occur chemically, an enzyme-mediated catalysis
is most probably required. Indeed, on the one hand, hemY and hemG mutants have
been shown to be heme deficient in B. subtilis and E. coli, respectively (Panek and
O’Brian 2002). On the other hand, this oxidation has to occur under anaerobic con-
ditions as well, when the need for Bchl peaks. So there must be either an unknown
PPO-encoding gene or an already known gene carrying out such an activity. The
ERGO annotation of the R. capsulatus genome recently indicated an ORF encoding
a “NAD (FAD) utilizing dehydrogenase with a possible PPO activity.” This has yet
to be experimentally confirmed.

13.4.3 Delivering the Final Product: The Synthesis of Heme

The synthesis of heme from proto IX is performed by the enzyme ferrochelatase
(EC 4.99.1.1, FC) that chelates ferrous iron and inserts it into the center of the
tetrapyrrole ring. The core of the enzyme is highly conserved between bacteria,
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plants, and mammals, although bacterial FCs do not contain [2Fe–2S] clusters
(Frankenberg et al. 2003; Heinemann et al. 2008). Interestingly, FC and the anaer-
obic cobalt chelatase CbiK are both class 2 metal ion chelatases that exhibit a
similar three-dimensional structure (Schubert et al. 2002). Recently, Masoumi et al.
confirmed in vivo what Koch et al. predicted in silico that PPO and FC form a
stable PPO–FC complex (Koch et al. 2004; Masoumi et al. 2008). Such a config-
uration may ensure the channeling of the potentially toxic proto IX to FC. Finally,
it has been suggested that this complex might include the CPO to form a tripartite
association CPO–PPO–FC (Dailey 2002; Koch et al. 2004).

In R. capsulatus, the FC-encoding gene, hemH, was described and cloned in the
1990s with the deduced protein sequence exhibiting 41% (59%) and 21% (44%)
identity (similarity) with E. coli and B. subtilis FCs (Kanazireva and Biel 1996).
Moreover, homologous expression of a second copy of hemH causes a dramatic
reduction of the tetrapyrrole pool, with 2.3-fold and 5-fold decreases of the por-
phyrin and the Bchl concentrations, respectively. In addition, the ALAS activity is
also decreased 2.3-fold under these conditions (Kanazireva and Biel 1995). This
phenotype is a signature of negative feedback by heme operating on the entire path-
way, as has been studied more recently (Smart and Bauer 2006). The transcription
of hemH was analyzed as well, highlighting a unique responsive behavior to oxy-
gen among the other R. capsulatus hem genes. Indeed, while the expression level
is rather constant between aerobic and anaerobic conditions, it is threefold lower
under semi-aerobic conditions (Smart et al. 2004). Finally, in semi-aerobic condi-
tions, hemH transcription was found to be independent of the exogenously added
heme (Smart and Bauer 2006).

13.4.4 Regulation of hem Gene Expression

13.4.4.1 RegA

The RegA–RegB system is a global regulator in R. capsulatus that has been shown
to regulate synthesis of numerous cellular processes as a function of redox condi-
tions (reviewed in Elsen et al. 2004; Wu and Bauer 2008). As shown in Fig. 13.2,
studies of the transcription of various hem genes in a regA mutant strain highlighted
that hem genes are part of the RegA–RegB regulon (Smart et al. 2004). Indeed,
the most significant effect was observed on hemE and hemH where transcription
was activated 5- to 10-fold by RegA. A strong activating role of RegA was also
observed with hemA but only in semi-aerobic and anaerobic conditions. Moderate
influences were reported on hemC and hemZ. Finally, the transcription of hemB does
not seem to be regulated by RegA (Smart et al. 2004). Overall, the dramatic tran-
scriptional activation of hemE and hemH highlights the crucial intervention of the
RegA–RegB system at key steps of the tetrapyrrole synthetic pathway. Activating
the transcription of these genes ensures a constant stock of mRNA for a quick
synthesis of UROD and FC when the flow of tetrapyrrole synthesis needs to be
directed toward the porphyrin branch rather than the corrin branch and when heme
needs to be produced at the expense of Bchl. Finally, the RegA-induced increase
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Fig. 13.2 Overview of the transcriptional regulation of the tetrapyrrole biosynthesis pathway.
Transcription factors involved are RegA (©, based on gene expression studies; based on

both gene expression and DNA-binding studies), FnrL (♦, repressor; , activator), AerR ( ),
CrtJ ( ), HbrL ( ). Arrows indicate a feedback control by heme operated through CrtJ or HbrL.
Genes identified from bioinformatics analysis only, with no experimental studies, are specified
with a question mark

in the transcription of hemA under semi-aerobic and anaerobic conditions under-
lines a function of the RegA–RegB system, namely stimulation of the production of
the general tetrapyrrole precursor δ-ALA in coordination with the synthesis of the
pigment-binding proteins of the photosystem.

13.4.4.2 CrtJ

Present in the photosynthesis gene cluster is a redox-responding transcription factor
called CrtJ or PpsR depending upon the species. Studies have demonstrated that
CrtJ/PpsR is an aerobic repressor of heme (hem), Bchl (bch), and carotenoid (crt)
biosynthesis genes in R. capsulatus (Ponnampalam and Bauer 1997; Elsen et al.
1998; Smart et al. 2004). CrtJ also aerobically represses synthesis of light-harvesting
II peptides (puc) that bind Bchl and carotenoids in these species (Ponnampalam
et al. 1995). CrtJ cooperatively binds to two copies of the palindromic sequence
TGT-N12-ACA that is present in many hem promoter regions (Ponnampalam and
Bauer 1997; Elsen et al. 1998; Ponnampalam et al. 1998; Smart et al. 2004).

The characterization of a crtJ mutant strain has revealed its involvement in the
transcriptional control of several hem genes, summarized in Fig. 13.2 (Smart et al.
2004). The strongest regulation is the activation of hemH expression, whatever the
redox condition is. CrtJ is also required to induce the translation of hemZ under
semi-aerobic conditions. In the same redox conditions, CrtJ exhibits a dual role
of repressor of hemC and activator of hemE at the same time. This is puzzling as
these genes share a common promoter region, containing a CrtJ-binding site (Smart
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et al. 2004). Elucidating how, in constant redox conditions, the interaction with this
promoter induces two opposite events will be a challenge.

13.4.4.3 FnrL

The redox regulator FnrL appeared to have only moderate effect on transcription of
hem genes (Fig. 13.2), as either an activator or a repressor, depending on the gene
and/or on redox conditions (Smart et al. 2004). This makes it hard to clearly define
its mode of action and function in the regulation of tetrapyrrole synthesis. On the
one hand, FnrL significantly represses hemA in aerobic conditions and hemB and
hemC in semi-aerobic and anaerobic conditions. On the other hand, it dramatically
activates the transcription of hemE in semi-aerobic conditions. FnrL seems to be
mostly involved in the early steps of the tetrapyrrole synthesis, the universal trunk,
and the first step of the porphyrin branch. It was shown in other photosynthetic
bacteria, such as R. sphaeroides and Rubrivivax gelatinosus, to have a crucial role
in the transcription of hemZ, which did not appear to occur in R. capsulatus (Smart
et al. 2004; Ouchane et al. 2007).

13.4.4.4 AerR

The aerobic repressor AerR (Dong et al. 2002) has a limited although important
role in the transcriptional regulation of the tetrapyrrole synthesis, consisting in the
activation of hemE and hemH whatever the redox conditions and the repression of
hemC in semi-aerobic conditions are (Fig. 13.2). Overall, AerR seems to back up
CrtJ in its target genes, with the exception of hemZ (Smart et al. 2004).

13.4.4.5 HbrL

The heme-binding regulatory LysR-type (HbrL) protein was identified in 2006 from
the screening of a cosmid library for suppressors defective in heme synthesis using
hemB as a reporter (Smart and Bauer 2006). From these experiments, an 804 bp
ORF was isolated and cloned and the deduced amino acid sequence showed a
LysR-type transcriptional regulator type (LTTR) signature: A helix-turn-helix DNA-
binding domain at the N-terminal followed by an LTTR substrate-binding motif or
coinducer-binding motif. In addition to being ubiquitous in prokaryotes, the LTTRs
represent the largest family of DNA-binding protein. They regulate functions as
diverse as metabolism, cell division, quorum sensing, oxidative stress, virulence,
nitrogen fixation, etc. (Maddocks and Oyston 2008). As shown in Fig. 13.2, HbrL
appears to be involved in the heme-mediated control of the expression of hemA,
hemB, and hemN1 (hemZ). Whereas it acts as a strong activator of hemA and
hemN1 in the absence of exogenous heme, it is a moderate repressor of hemB.
Recombinant HbrL was obtained by heterologous expression in E. coli and purifi-
cation. It exhibited heme-binding properties either in vivo by supplementing the
expression medium with δ-ALA or in vitro by adding heme to the crude lysate
containing the apoprotein. Finally, recombinant HbrL was found to interact with
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the promoter region of the genes it regulates and the DNA-binding properties were
affected by the presence or absence of heme (Smart and Bauer 2006). Interestingly,
out of seven strains from the laboratory freezer, only four displayed an intact
HbrL-encoding gene (unpublished observation).

13.4.4.6 Irr

The iron response regulator (Irr) is a transcription factor related to the ferric-
uptake regulator (Fur) family of metalloregulators. It has been extensively studied
in Bradyrhizobium japonicum where it is a global regulator of iron homeostasis
that acts in particular as a repressor of heme synthesis in iron-limited conditions.
It is constitutively expressed and its activity mostly controlled by post-translational
modification. Indeed, its degradation is triggered by binding to both redox states
of heme: The ferric form binds to an N-terminal heme regulatory motif (HRM),
while the ferrous form interacts with a histidine-rich domain (Small et al. 2009).
In the genome of R. capsulatus, an ORF was annotated as a Fur transcription fac-
tor (rcc02670 in http://onco.img.cas.cz/rhodo and RRC01140 in http://www.ergo-
light.com/). Analysis of the sequence revealed that it belongs to the Irr subgroup
rather than to the Fur one stricto sensu, as seen from divergence in key residues
involved in metal coordination in the Fur group (Rudolph et al. 2006). Compared to
the well-characterized B. japonicum Irr, it does not carry any HRM, which indicates
a presumably different mechanism of action. On the other hand, the DNA-binding
helix is very well conserved. It is noteworthy that, among the α-proteobacteria sub-
family, R. capsulatus is the only representative that carries Irr as the sole regulator
involved in the iron-responsive network. The usual master regulators Fur and RirA
are indeed missing (Rodionov et al. 2006). This fact indicates a potential major role
of Irr in R. capsulatus regarding the management of iron metabolism. Preliminary
studies have shown that an irr-deleted strain of R. capsulatus presents abnormal
levels of heme, approximately 25% less and 25% more than the wild-type strain in
aerobic and photosynthetic conditions, respectively (unpublished data).

13.5 The Porphynoid Branch

13.5.1 The Siroheme Sub-branch: The Other Fe Branch

Siroheme, the prosthetic group of various reductases, was reported to occur in
R. capsulatus strain E1F1. A 17 kb region contains genes encoding an assimila-
tory nitrate reduction system, which consists of (i) putative regulatory genes nsrR
and nasTS; (ii) an ABC-type nitrate transporter coded by nasFED; (iii) genes coding
for the apo-nitrate and apo-nitrite reductases, nasA and nasB; (iv) a gene encoding a
siroheme synthase, cysG, responsible for synthesis of the nitrite reductase cofactor
(Pino et al. 2006). Although the siroheme synthase was not biochemically studied,
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the nitrite reductase NasB has been heterologously expressed in E. coli and puri-
fied recombinant protein exhibited a siroheme spectral signature (Olmo-Mira et al.
2006). CysG (EC 2.1.1.107) was characterized in Salmonella enterica and in E. coli
where it was shown to be a bimodular homodimer that catalyzes the four reactions
that converts uro’gen III into siroheme (Stroupe et al. 2003).

13.5.2 The Corrin Sub-branch: From Uro’gen III to VitB12

13.5.2.1 An Unusual Pathway

Cobalamin synthesis requires more than 30 enzymatic steps with genes that encode
these enzymes taking up approximately 1% of a typical bacterial genome (Roth et al.
1993; Martens et al. 2002). There are two distinct cobalamin biosynthesis pathways
that exist in different microorganisms: the well-studied aerobic pathway, represented
by Pseudomonas denitrificans, and the partially resolved anaerobic pathway, repre-
sented by Salmonella typhimurium, Bacillus megaterium, and Propionibacterium
shermanii (Scott and Roessner 2002). The two pathways diverge at precorrin-2, a
compound synthesized by dimethylation of uro’gen III (Raux et al. 1999). These
two pathways primarily differ in their requirement for molecular oxygen and the
timing of cobalt insertion. In the aerobic pathway, molecular oxygen is incorporated
before the ring contraction, where the carbon bridge (C20) between the rings A and
D is excised, and cobalt chelation occurs nine steps after the synthesis of precorrin-
2. In contrast, in the anaerobic pathway, cobalt is inserted directly into precorrin-2.
Ring contraction is likely facilitated by the different oxidation states of the cobalt
ion (Martens et al. 2002; Warren et al. 2002). The existence of distinct cobalamin
synthesis pathways is also reflected at the genetic level with organisms containing
genes unique to one pathway or the other. Interestingly, R. capsulatus carries genetic
hallmarks for an aerobic pathway although cobalamin synthesis occurs under both
aerobic and anaerobic conditions (McGoldrick et al. 2002). A cobG gene, encod-
ing a mono-oxygenase, is missing in R. capsulatus. This mono-oxygenase catalyzes
the contraction of the corrin ring, which is a characteristic reaction in the aero-
bic pathway. Instead, an isofunctional enzyme, CobZ, was identified (McGoldrick
et al. 2005), which may mediate the ring contraction process under both aerobic
and anaerobic conditions. Details of enzymes at additional steps of this pathway are
beyond the scope of this review but can be obtained from a recent review of this
complex branch in the pathway by Warren (Warren and Deery 2009).

13.5.2.2 cob Gene Regulation

Riboswitch: Regulation at the Post-transcriptional Level

The regulation of cobalamin biosynthesis is mostly reported to occur post-
transcriptionally via an RNA structure called a riboswitch. Riboswitches are
metabolite-binding regions located within the 5′-UTR of messenger RNAs that
function as regulatory elements for target genes (Mandal et al. 2003). Riboswitches
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are widespread in prokaryotes and interact with various target metabolites. In B.
subtilis, seven different metabolites, including guanine, adenine, lysine, thiamine
pyrophosphate, FMN, SAM, and adenosylcobalamin, regulate at least 68 genes via
a riboswitch mechanism (Mandal et al. 2003). In cobalamin biosynthesis, adeno-
sylcobalamin is known to be an effector regulating translation of several cobalamin
genes (Nahvi et al. 2002; Rodionov et al. 2003). A B12-binding element exists within
the 5′-UTR of btuB mRNA in E. coli and within the 5′-UTR of cobalamin biosynthe-
sis operon in S. typhimurium that binds adenosylcobalamin (Nahvi et al. 2004). At
elevated adenosylcobalamin concentrations, the translation of cobalamin transport
protein (BtuB) and cob operon is repressed by adenosylcobalamin binding to the
B12 box (Nahvi et al. 2004). Such interactions induce a conformational change in
the mRNA secondary structure at the B12 box that prevents ribosome binding (Nou
and Kadner 2000). Rodionov et al. (2003) employed the combination of a compar-
ative approach of gene regulation, positional clustering, and phylogenetic profiling
for identifying cobalamin-regulated biosynthesis/transport genes. They identified a
conserved RNA structure called the B12 element that is widely distributed in eubac-
teria. For example, 13 B12 elements are present in UTR regions of the R. capsulatus
genome with potential target genes, including cobW, cbiMNQO, btuFCD, btuD, and
btuB, as well as upstream of several non-cobalamin biosynthesis/transport genes
(Rodionov et al. 2003).

Transcriptional Regulation

Examples of cobalamin genes regulated at the transcriptional level are not abundant.
In S. typhimurium, the global regulators Crp/cAMP and ArcA/ArcB are responsible
for indirect redox and carbon controls of cobalamin biosynthesis by controlling syn-
thesis of the positive regulatory protein, PocR. PocR subsequently uses propanediol
as an inducer of cob gene expression (Rondon and Escalante-Semerena 1992, 1996).
Other global regulators directly regulating cob genes are not known at present.

Recently, we observed that the global RegA–RegB signal transduction cascade
not only controls expression of the Bchl and heme branches but also controls expres-
sion of enzymes at two steps in the cobalamin branch, the cobK gene and the
cobWNHIJ operon (Li 2009). Thus, expression of cobalamin enzymes appears to
be regulated by feedback control via a riboswitch mechanism as well as in response
to redox via the RegA–RegB signal transduction cascade.

13.6 The Bchl Branch: From Proto IX to Bchl

13.6.1 The Bchl Biosynthesis Gene Cluster

Analysis of genes involved in the Mg branch of the tetrapyrrole biosynthesis path-
way was primarily advanced by the work of Marrs and coworkers who used a
generalized transducing agent (GTA) from R. capsulatus to map the location of Bchl
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biosynthesis genes (Marrs 1974; Yen and Marrs 1976). These studies established
that carotenoid and Bchl biosynthesis genes were present in the R. capsulatus chro-
mosome in a tight linkage order. The transduction mapping studies were followed
by the isolation of an R′ plasmid that was shown by marker rescue and transposi-
tion mapping analyses to contain all of the essential genetic information needed to
synthesize Bchl (Marrs 1981; Biel and Marrs 1983; Taylor et al. 1983; Zsebo and
Hearst 1984). Structural and functional information regarding these loci was refined
by complete sequence analysis of the R′ by Hearst and coworkers (Alberti et al.
1995) and by construction of defined interposon mutations in each of the sequenced
open reading frames (Giuliano et al. 1988; Young et al. 1989; Yang and Bauer 1990;
Bollivar et al. 1994a, b). Similar clustering of Bchl biosynthesis genes occurs in
other purple bacterial species (Igarashi et al. 2001; Jaubert et al. 2004).

Several of the enzymes encoded by one or more of the Bchl biosynthesis genes
have been expressed in E. coli and shown to exhibit enzymatic activity at specific
steps of the Mg branch. The first committed step of the Mg branch involves insertion
of Mg into proto IX by the enzyme Mg chelatase (EC 6.6.1.1) to form Mg–proto IX.
Gibson et al. (1995) were the first to successfully heterologously express subunits of
Mg chelatase encoded by the bchH, bchI, and bchD genes in E. coli to definitively
establish the subunit composition of this enzyme. Activity is dependent on Mg,
ATP, and proto IX. The multimeric Mg chelatase is a typical class 1 metal chelatase
(Schubert et al. 2002) where BchH binds proto IX (Gibson et al. 1995) while the
structures of BchI and BchD show that they both have ATPase domains of the AA+
class (Fodje et al. 2001).

The next step of the pathway involves SAM-dependent methylation of
the carboxyl group of Mg–proto IX by the enzyme SAM Mg–proto IX-O-
methyltransferase (EC 2.1.1.11) to form Mg–proto IX monomethyl ester (MPE).
Confirmation that the R. capsulatus bchM encodes this enzyme occurred when this
gene was heterologously expressed in E. coli with cell lysate extracts exhibiting
activity (Bollivar et al. 1994a, b).

Oxidative cyclization to form the fifth ring of Bchl is catalyzed by the enzyme
MPE oxidative cyclase (EC 1.14.13.81) that is coded by the bchE gene to form the
product protochlorophyllide (PChlide). This enzyme has not been well character-
ized biochemically owing to the difficulty in observing activity in vitro. However,
analysis of the R. capsulatus BchE peptide sequence indicates that it may be a SAM
enzyme that also uses vitB12 as a cofactor (Gough et al. 2000). Indeed depletion of
vitB12 in vivo leads to accumulation of MPE in this branch of the pathway (Gough
et al. 2000).

Reduction of the D ring of PChlide to form chlorophyllide (Chlide) occurs by
the enzyme NADPH–PChlide oxidoreductase (EC 1.3.1.33). In nature there are two
unrelated enzymes that can catalyze this reduction. One is a light-dependent ver-
sion that is present in cyanobacteria, alga, gymnosperms, and angiosperms, while
the other is light-independent and present in anoxygenic bacteria, cyanobacteria,
alga, and gymnosperms (Fujita and Bauer 2003; Heyes and Hunter 2005). The
dark operative form is present in R. capsulatus, encoded by bchL, bchN, and bchB.
Interestingly, it has a high degree of primary sequence similarity to nitrogenase
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(Fujita and Bauer 2003). Biochemical characterization of the R. capsulatus enzyme
indicates that it contains iron sulfur centers and requires ATP, ferredoxin, and a
reducing agent for catalysis (Fujita and Bauer 2003; Nomata et al. 2005). Reduction
of ring B of Chlide by the enzyme Chlide a reductase (EC 1.3.1.75), encoded by
bchX, bchY, and bchZ, also uses an enzyme that is very similar to dark PChlide
reductase (Nomata et al. 2006).

There are several latter steps of the pathway that have not been biochemically
characterized. The one exception is the esterification of the propionate on ring IV
by the enzyme Bchl a synthase, encoded by bchG. This enzyme is membrane bound
and difficult to isolate. However, it was heterologously expressed in E. coli with
membrane fractions shown to exhibit this activity (Oster et al. 1997).

13.6.2 Regulation of Bchl Biosynthesis Gene Expression

13.6.2.1 CrtJ/PpsR

Studies have demonstrated that CrtJ/PpsR is an aerobic repressor of Bchl genes,
bch, in R. capsulatus (Ponnampalam and Bauer 1997; Elsen et al. 1998). As dis-
cussed below, anaerobic induction of Bchl, carotenoid, and light-harvesting genes
also requires phosphorylated RegA. So together, CrtJ and RegA regulate synthe-
sis of Bchl biosynthesis genes by coordinating aerobic repression and anaerobic
activation, respectively (Fig. 13.2).

CrtJ cooperatively binds to two copies of the palindromic sequence TGT-N12-
ACA that is present in all of the characterized bch promoters (Alberti et al. 1995;
Ponnampalam and Bauer 1997; Elsen et al. 1998; Ponnampalam et al. 1998). The
palindromic sequence is found either 8 bp apart, or at sites that are distantly sepa-
rated. For example, the R. capsulatus bchC promoter region has a CrtJ recognition
palindrome that spans the –35 promoter region and a second CrtJ palindrome located
8 bp away that spans the –10 promoter region (Ponnampalam et al. 1998). Binding
to these two palindromes is cooperative so if the 8 bp space between the two
palindromes in the bchC promoter region is altered by the addition or deletion of
just a few base pairs, then CrtJ is unable to bind to either palindrome effectively
(Ponnampalam et al. 1998).

CrtJ also cooperatively binds to two palindromes at other promoters but these
palindromes are separated by more than 100–150 bp (Elsen et al. 1998). An exam-
ple of this type of binding occurs in the intergenic region between crtA and crtI
that contains two promoters, one that is responsible for driving expression of the
crtA–bchI–bchD operon and a second divergent promoter >100 bp away that is
responsible for expression of the crtI–crtB operon (Elsen et al. 1998). The promoter
for the crtA–bchI—bchD transcript has a single CrtJ-binding site that spans the –10
promoter sequences while the crtI–crtB promoter also has a single CrtJ recogni-
tion sequence that spans the –35 recognition sequence. Cooperative binding of CrtJ
to these two palindromes coordinately represses expression of both the crtA–bchI–
bchD and crtI–crtB operons (Elsen et al. 1998). This affects synthesis of both Bchl
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and carotenoids since BchI and BchD are subunits of Mg chelatase (Bollivar et al.
1994a, b) and crtI and crtB code for phytoene dehydrogenase and phytoene syn-
thase that are enzymes for the first two committed steps of carotenoid biosynthesis,
respectively (Armstrong et al. 1990). Presumably, binding to distant sites involves
looping of the DNA so that tetrameric CrtJ can bind cooperatively to both of the
recognition palindromes (Elsen et al. 1998).

13.6.2.2 RegA–RegB

The Mg branch of the tetrapyrrole biosynthetic pathway is also anaerobically acti-
vated by the global two-component system RegA–RegB (Willett et al. 2007).
Specifically, expression of the large bchEJG-orf428-bchP-idi operon that encodes
numerous enzymes in Bchl biosynthesis, as well as an enzyme involved in
carotenoid biosynthesis, requires phosphorylated RegA for maximal expression
(Bollivar et al. 1994a, b; Alberti et al. 1995; Hahn et al. 1996; Suzuki et al. 1997;
Bollivar 2006; Willett et al. 2007). In addition, phosphorylated RegA is also required
for expression of the crtA–bchIDO operon that codes for early enzymes involved in
the Bchl branch as well as early enzymes in the carotenoid biosynthesis pathway
(Alberti et al. 1995).

13.7 Co-dependent Syntheses of Tetrapyrrole End Products

The trifurcated tetrapyrrole biosynthetic pathways not only share common early
intermediates but also form an intricate network where the end products cobalamin
and heme are involved in each others and Bchl biosyntheses. For example, in the
Bchl branch, Gough et al. (2000) identified a cyclase encoded by bchE that catalyzes
the conversion of MPE to PChlide. The sequence similarity between this MPE-
cyclase and a cobalamin-dependent P-methylase from Streptomyces hygroscopicus
indicates an involvement of cobalamin in MPE-cyclase activity. Although no in vitro
cyclase assays have been reported, MPE-cyclase activity was demonstrated to be
cobalamin dependent in vivo as cobalamin depletion or a bchE knockout results in
an accumulation of MPE.

In addition to the dependence on cobalamin for Bchl biosynthesis, the synthesis
of cobalamin is dependent on the presence of heme. Specifically, one of the most
complicated steps in the R. capsulatus cobalamin branch is the corrin ring contrac-
tion that is catalyzed by the cofactor-rich enzyme, CobZ. CobZ contains heme as
a cofactor as well as flavin and two Fe–S centers (McGoldrick et al. 2005). The
dependence on heme as a cofactor of CobZ thus makes cobalamin synthesis heme
dependent.

Finally, synthesis of heme is also cobalamin dependent as heme synthesis
requires S-adenosylmethionine as a methyl group donor and its synthesis involves a
cobalamin-dependent enzyme (Drennan et al. 1994; Layer et al. 2003; McGoldrick
et al. 2005). The interdependent relationship among all three tetrapyrrole com-
pounds as discussed in McGoldrick et al. (2005) suggests that codependence of
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these different tetrapyrrole branches on different tetrapyrrole end products is a form
of regulation used to coordinate the levels of these different tetrapyrrole derivatives.

13.8 Conclusion

The tetrapyrrole biosynthetic pathway of R. capsulatus is quite complex involving
several branches that are responsible for synthesis of heme, vitB12, and Bchl a. The
flow of tetrapyrroles into each branch in the trifurcated pathway is highly regulated
with an intricate network of transcriptional and post-transcriptional events control-
ling the synthesis of these various end products. This includes the control of enzyme
activity by interaction with tetrapyrrole end products and transcriptional control
either in response to redox poise or in response to an interaction with a tetrapyr-
role. There is also a riboswitch control of translation via interaction of mRNA with
a tetrapyrrole. Many players in this complex regulatory web have been identified,
although it will not be surprising to find that there are additional players involved in
controlling this complex pathway.

Among many challenges going forward will be to determine how multiple tran-
scription factors coordinately regulate the synthesis of individual enzymes in the
pathway. For example, the hemC promoter appears to be controlled by at least four
different activators/repressors. Where these factors bind to the hemC promoter and
how binding of individual transcription factors affects binding of other transcription
factors remain to be determined. The study of this complex pathway has been an
ongoing for over five decades and, owing to its complexity, will likely remain an
area of focus for some time.
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Chapter 14
The Gene Transfer Agent of Rhodobacter
capsulatus

Molly M. Leung, Sarah M. Florizone, Terumi A. Taylor, Andrew S. Lang,
and J. Thomas Beatty

Abstract When Rhodobacter capsulatus cultures enter the stationary phase of
growth, particles of the gene transfer agent (RcGTA) are released from cells. The
morphology of RcGTA resembles that of a small, tailed bacteriophage, with a
protein capsid surrounding a ∼4 kb linear, double-stranded fragment of DNA.
However, the DNA present consists of random segments of the R. capsulatus
genome, which may be transferred to another strain of R. capsulatus. The recipi-
ent in RcGTA-mediated gene transduction may acquire new alleles and thus express
a new phenotype. The genes encoding the structural proteins of the RcGTA are
clustered on the R. capsulatus chromosome, whereas genes that encode proteins
that regulate the production of RcGTA are scattered around the chromosome. These
regulatory proteins include a homoserine lactone synthase (GtaI) that produces a
quorum-sensing signal, a two-component sensor-kinase protein (CckA), and a two-
component response regulator protein (CtrA). We review the proposed evolutionary
origin of RcGTA, as well as environmental and cellular factors involved in the
induction of this unusual process of genetic exchange.

14.1 Horizontal Gene Transfer and Gene Transfer Agents

Horizontal gene transfer is one mechanism that allows bacteria to adapt to a
changing environment and plays an important role in the evolution of prokaryotic
genomes. In a recent study of 116 prokaryotic genomes, it was estimated that about
14% of the DNA was a result of horizontal gene transfer, where the proportion of
horizontally transferred genes per genomes ranged from 0.05 to 25.2% (van Passel
et al. 2005). Currently known mechanisms of horizontal gene transfer in bacteria
include conjugation, transformation, and transduction. Transduction has been found
to be important in the spread of virulence (Cheetham and Katz 1995) and antibi-
otic resistance (Davies 1994). A GTA has been defined as “a virus-like particle
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that only carries random pieces of the genome of the producing cell in a process
similar to generalized transduction” (Lang and Beatty 2007). It is estimated that
there are up to one billion viral particles per milliliter of marine water (Suttle 2005)
and it is possible that a significant portion of these viral particles are gene transfer
agents (GTAs). The first GTA was found in Rhodobacter capsulatus (Marrs 1974),
and to avoid confusion, hereafter gene transfer agents in general will be called
“GTAs,” and the R. capsulatus gene transfer agent will be called “RcGTA.” Other
GTAs have been identified, including Dd1 in Desulfovibrio desulfuricans (Rapp and
Wall 1987), VSH-1 in Brachyspira hyodysenteriae (Humphrey et al. 1997), VTA in
Methanococcus voltae (Eiserling et al. 1999), and an RcGTA-like GTA in Ruegeria
(formerly Silicibacter) pomeroyi (Biers et al. 2008). A summary of the properties of
these GTAs is found in Table 14.1.

Table 14.1 Summary of GTA properties

Species

Gene
transfer
agent

Head
diameter,
tail length
(nm)

DNA
packaged
(kb)

Size of
coding
region
(kb) References

R. capsulatus RcGTA 30, 50 4.5 14.1 Yen et al. (1979)
B. hyodysenteriae VSH-1 45, 64 7.5 16.3 Humphrey et al. (1997)
D. desulfuricans Dd1 43, 7 13.6 n/a Rapp and Wall (1987)
M. voltae VTA 40, 61 4.4 n/a Eiserling et al. (1999)
R. pomeroyi GTA ∼50–70, 0 n/a 14.7 Biers et al. (2008)

n/a, not known

14.2 Properties of RcGTA

Electron microscopy of the RcGTA particle revealed that it looks very similar to a
tailed phage (Fig. 14.1) (Yen et al. 1979), and it was found that RcGTA transfers
DNA in a mechanism similar to transduction. Thus, unlike conjugation RcGTA-
mediated genetic exchange does not require direct contact between the donor cell
and the recipient cell, and unlike transformation the extracellular DNA that is trans-
ferred is protected from DNase degradation (Marrs 1974). However, RcGTA differs
from typically lytic tailed bacteriophages because it causes no observable lysis
in R. capsulatus. Also, RcGTA particles contain ∼4 kb of double-stranded DNA
(Yen et al. 1979), which is insufficient to transfer the ∼14-kb RcGTA gene cluster
(Lang and Beatty 2000). Rather than specifically transferring its own genes, RcGTA
randomly packages genomic DNA (Yen et al. 1979).

14.3 RcGTA Gene Clusters

Figure 14.2 gives a representation of the RcGTA gene cluster and surrounding
genes. The RcGTA gene cluster consists of 15 ORFs. and about half of these ORFs
have sequence similarity to phage elements such as a terminase, a prohead protease,
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Fig. 14.1 Electron
micrograph of RcGTA
particles. Electron
microscopy reveals that the
RcGTA particle resembles a
phage particle with a head of
∼30 nm diameter and a tail of
∼50 nm length (Yen et al.
1979)

Fig. 14.2 Representation of the RcGTA gene cluster. Each ORF in the RcGTA gene cluster
has been numbered and shaded in gray. Genes surrounding the RcGTA gene cluster are in
black. In light gray are ORF-encoding gene products that have been identified by mass spec-
trometry of purified RcGTA particles (Chen et al. 2009). The following ORFs have sequence
similarity to phage components: 2, terminase; 3, portal protein; 4, prohead protease; 5, capsid
protein; 7, head–tail adaptor; 9, major tail protein; 11, tail tape measure; and 15, host specificity
protein

a capsid protein, and a major tail protein (Lang and Beatty 2007). Recently, many
of the proteins predicted to be present in RcGTA particles were found using a
proteomics approach (Chen et al. 2009).

Although only R. capsulatus (Solioz et al. 1975) and R. pomeroyi (Biers et al.
2008) have been found to produce functional RcGTA-like particles, RcGTA-like
gene homologs are widespread in α-proteobacteria (Lang et al. 2002; Lang and
Beatty 2007; Biers et al. 2008; Paul 2008). The occurrence of RcGTA gene
homologs and their organization relative to the RcGTA gene cluster can be separated
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into four major categories: (1) a complete RcGTA-like gene cluster containing genes
1–15 is present in a single location; (2) a partial and/or rearranged RcGTA-like
gene cluster is present in a single location; (3) several RcGTA gene homologs are
scattered in various locations in the genome; and (4) no detectable RcGTA gene
homologs are present (Lang et al. 2002; Lang and Beatty 2007; Biers et al. 2008).
When these categories are superimposed upon a 16S rDNA phylogenetic tree of
selected representatives from the major orders of α-proteobacteria for which com-
plete genome sequences have been determined, a correlation between the pattern of
RcGTA-like gene distribution and the phylogenetic tree can be seen (Fig. 14.3). This
suggests that RcGTA-like gene clusters descended along with the 16S rRNA genes
from a common ancestor, with a high degree of conservation in the Rhodobacterales
order and partial or complete loss in most other groups (Lang and Beatty
2007).

Fig. 14.3 A 16S rDNA phylogenetic tree of selected genome-sequenced α-proteobacteria, with
categories of RcGTA-like gene cluster indicated by the numbers on the right: (1) a complete
RcGTA-like gene cluster containing genes 1–15 is present in a single location; (2) a partial and/or
a rearranged RcGTA-like gene cluster is present in a single location; (3) several RcGTA gene
homologs are scattered in various locations in the genome; and (4) no detectable RcGTA gene
homologs are present. Bootstrap values for the neighbor-joining tree are shown for the major
lineages next to branches (percentages based on 10,000 replicates). The scale bar indicates the
number of base substitutions per site
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14.4 Regulation of the RcGTA Gene Cluster Transcription
by Cellular Systems

14.4.1 CtrA

14.4.1.1 CtrA in C. crescentus

CtrA is a response regulator first discovered in C. crescentus, with homologs
found in many bacteria including Sinorhizobium meliloti (Barnett et al. 2001),
Rhodopseudomonas palustris, Brucella abortus (Bellefontaine et al. 2002), and
R. capsulatus (Lang and Beatty 2000). In C. crescentus, CtrA acts as a master reg-
ulator of the cell cycle and the levels of this protein increase as a cell develops
though its cell cycle (Laub et al. 2000, 2002). CtrA is involved in regulating pro-
cesses such as polar morphogenesis, DNA replication initiation, DNA methylation,
and cell division. Microarray analysis of C. crescentus has shown that CtrA regu-
lates the expression of 144 genes, of which at least 95 are regulated directly (Laub
et al. 2000, 2002). Fourteen of these genes are regulatory genes (including CtrA
itself), 10 of which encode two-component system proteins. Analysis of the regula-
tory region of these 144 genes has revealed two alternative consensus sequences:
one gapped (TTAA-N7-TTAAC) and one ungapped (TTAACCAT) (Laub et al.
2000, 2002). Footprinting experiments on several of these upstream sequences
have shown that CtrA does in fact bind this sequence (Reisenauer et al. 1999).
However, the binding of CtrA to DNA is still not completely understood, because
CtrA can regulate genes that do not have this consensus sequence, and in other
cases CtrA does not regulate genes that have this consensus sequence (Laub et al.
2002).

It is known that the phosphorylated form of CtrA (CtrA∼P) binds DNA and
this phosphorylation is tightly regulated by a phosphorelay system involving ChpT,
CckA, and DivK. CtrA∼P activity is controlled by proteolysis, which is thought
to be triggered by dephosphorylation of CpdR; unphosphorylated CpdR stimulates
CtrA proteolysis (Bowers et al. 2008). The phosphorylation state of DivK is reg-
ulated by DivJ (located at the stalk pole) and PleC (located at the swarmer pole).
DivK is phosphorylated by DivJ and dephosphorylated by PleC, resulting in the
accumulation of CtrA in the swarmer cell and the lack of CtrA in the stalk cells
(Fig. 14.4).

CtrA in C. crescentus regulates its own transcription, and the ctrA gene has two
promoters (P1 and P2), each containing one CtrA-binding site. A footprinting exper-
iment showed that CtrA-binding sites are located in the –10 region of P1 (which
contains an ungapped consensus sequence) and the –35 region of P2 (which con-
tains a gapped consensus sequence) (Domian et al. 1999). The positioning of these
binding sites in conjunction with mutational studies indicates that CtrA acts as a
negative regulator of P1 and positive regulator of P2. P1 is active earlier than P2 in
the cell cycle. When CtrA∼P is at a low concentration in the cell, it will not bind P1,
leaving it active, nor will it bind P2, leaving it inactive. But as CtrA∼P accumulates
in the cell with transcription driven by P1 (the weaker promoter), CtrA∼P binds to
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Fig. 14.4 A phosphorelay system regulates CtrA phosphorylation state and proteolysis that results
in asymmetric cell division in C. crescentus. (a) Curved arrows represent phosphorylation and
dephosphorylation events. Straight arrows represent the regulation of phosphoryl transfer events.
Dotted bars represent inhibition. DivK∼P inhibits phosphorylation of CckA by an unknown mech-
anism and unphosphorylated CpdR inhibits CtrA∼P activity by stimulating CtrA proteolysis.
(b) Prior to cell division (left), PleC is located at the swarmer pole and DivJ is located at the
stalk pole but DivK, DivK∼P, and CtrA are freely diffusible. After cytoplasmic compartmentaliza-
tion (right), DivK∼P accumulates at the stalk cell resulting in the proteolysis of CtrA, and DivK
accumulates in the swarmer cell resulting in the accumulation of CtrA

and inactivates P1 and activates P2 (the stronger promoter), thus causing an increase
in CtrA production (Domian et al. 1999).

14.4.1.2 CtrA in R. capsulatus

CtrA is essential for the viability of C. crescentus (Quon et al. 1996) and S. meliloti
(Barnett et al. 2001) but non-essential for R. capsulatus (Lang and Beatty 2000).
This allows for much more freedom (e.g., disruption of the ctrA gene) in studying
the role of CtrA in R. capsulatus. Like the C. crescentus CtrA, the R. capsulatus
CtrA regulates flagellar genes (Lang and Beatty 2002). Alignment of the C. cres-
centus and R. capsulatus CtrA protein sequence shows that C. crescentus and
R. capsulatus CtrA are 71% identical at the amino acid sequence level, with the
helix-turn-helix motif being 100% identical in sequence (Lang and Beatty 2000).
Although the similarity in CtrA sequences between C. crescentus and R. capsula-
tus suggests that they function in a similar manner, there must also be differences
that make CtrA essential in C. crescentus and non-essential in R. capsulatus. We
speculate that there are two different types of CtrA systems: (1) in bacteria such as
C. crescentus with asymmetrical cell division CtrA is essential; and (2) in bacteria
such as R. capsulatus with symmetrical cell division CtrA is non-essential.

It has been found that CtrA regulates RcGTA expression (Lang and Beatty 2000),
but the C. crescentus CtrA cannot replace the function of R. capsulatus CtrA in
regulating RcGTA production (Lang and Beatty 2001). Recent experiments have
revealed that, like the GTA gene cluster, ctrA expression is also affected by growth
and nutrient limitation (unpublished; see below).
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14.4.1.3 Regulation of RcGTA by CtrA in R. capsulatus

It is thought that the RcGTA gene cluster is transcribed as an operon and that the
primary transcript is degraded into RNA of various sizes encoding RcGTA pro-
teins. Indeed, northern blots using orfg2 and orfg4 probes showed heterogeneity in
the size of complementary RNA molecules. Also, both northern blots and expres-
sion from an orfg2::lacZ plasmid-borne gene fusion indicated that transcription of
the RcGTA gene cluster is ctrA dependent (Lang and Beatty 2000). Rhodobacter
capsulatus ctrA and cckA mutants have decreased RcGTA transduction efficiencies
of less than 0.1% and about 1% respectively (unpublished). Northern blots of the
ctrA mutant showed decreased amounts of RcGTA mRNA, revealing that CtrA is
needed for induction of transcription of the RcGTA gene cluster (Lang and Beatty
2000). Furthermore, unpublished western blots showed that ctrA mutants lacked
detectable RcGTA capsid protein, which is consistent with the northern blot and
RcGTA transduction results. Western blots of the cckA mutant showed an intracel-
lular accumulation of the capsid protein but little or no extracellular capsid protein,
whereas the parental strain had RcGTA capsid protein present both in the intracellu-
lar and the extracellular portion of the culture (unpublished). These results indicate
that CtrA is involved in regulating RcGTA gene cluster transcription, but CckA is
involved in regulating RcGTA release into the extracellular environment.

14.4.2 Quorum Sensing and Regulation of RcGTA

14.4.2.1 Introduction to Quorum-Sensing Systems

Quorum sensing is a mechanism used by bacterial cells to detect surrounding
population densities. A basic quorum-sensing system consists of a signal and a
signal receptor. At low population densities, bacterial cells produce low amounts
of quorum-sensing signal, but as cell population density increases, production of
the signaling molecule also increases. When the signal accumulates to a thresh-
old concentration, it binds to a quorum-sensing receptor. This leads to a change in
transcription of a variety of genes, depending on the species. For example, quo-
rum sensing regulates bioluminescence in Vibrio fischeri (Engebrecht et al. 1983),
antibiotic biosynthesis in Streptomyces spp. (Waters and Bassler 2005), conjuga-
tion in Agrobacterium tumefaciens (Piper et al. 1993), competence and sporulation
in Bacillus subtilis (Waters and Bassler 2005), the production of virulence fac-
tors in Staphylococcus aureus (Waters and Bassler 2005), and biofilm formation
in Pseudomonas aeruginosa (Davies et al. 1998).

There are a variety of quorum-sensing systems and many different types
of quorum-signaling molecules, including oligopeptides, Pseudomonas quinolone
signals (PQS), autoinducer-2 (AI-2), and acyl-homoserine lactones (acyl-HSLs)
(Camilli and Bassler 2006). In gram-positive bacteria, the oligopeptide signal is
detected by a membrane-bound receptor of a two-component system (Waters and
Bassler 2005). Binding of the signal activates a phosphorylation cascade which
leads to a change in transcription of target genes. The highly hydrophobic quinolone
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signals were recently discovered in P. aeruginosa and found to be transported
between cells in endogenously produced membrane vesicles. Also recently discov-
ered was AI-2, which is made by LuxS (the AI-2 synthase) in a wide variety of
bacteria and has been suggested as a means of interspecies communication (Waters
and Bassler 2005; Camilli and Bassler 2006). The focus of this section will be on
the gram-negative type of quorum-sensing system involving an acyl-HSL signal
(Waters and Bassler 2005). In this system LuxI (or a homolog), the homoser-
ine lactone synthase, produces an acyl-HSL signal and LuxR (or a homolog) is
the cognate response regulator that detects this signal (Fig. 14.5). As in the well-
studied V. fischeri system, upon binding acyl-HSL, the LuxR protein binds DNA
to modify transcription of target genes. The LuxI/LuxR quorum-sensing system is
autoregulatory because production of acyl-HSL results in the inhibition of luxR
transcription and the activation of luxI transcription. The major function of the
LuxI/LuxR quorum-sensing system appears to be the activation of transcription of
the genes involved in bioluminescence (luxCDABE), which are in the same operon
as luxI (Fig. 14.5). It is not unusual to find more than one LuxI/LuxR type of
quorum-sensing system in a single species. For example, P. aeruginosa has both the
LasI/LasR and RhlI/RhlR quorum-sensing systems (Waters and Bassler 2005), and
Erwinia carotovora has the CarI/CarR and ExpI/ExpR quorum-sensing systems, all
of which are homologous to the LuxI/LuxR system (Welch et al. 2000; von Bodman
et al. 2003). Interestingly, CarI and ExpI produce the same HSL autoinducer
(N-(3-oxohexanoyl)-HSL), which may provide a mechanism for coordinating the

Fig. 14.5 The LuxI/LuxR quorum-sensing system in V. fischeri. In V. fischeri, the quorum-sensing
system consists of LuxI (square), which is responsible for synthesizing the HSL autoinducer
N-(3-oxohexanoyl)-homoserine lactone (pentagon), and LuxR (circle), which is responsible for
regulating target genes upon binding the HSL autoinducer. As the cell population density increases,
the HSL autoinducer accumulates and when a threshold concentration of HSL autoinducer is
reached, the LuxR protein binds to it. The HSL–LuxR complex then binds the luxCDABE pro-
moter to activate transcription and binds the luxR promoter to inhibit transcription. This results in
an exponential increase in both autoinducer synthesis and light production
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two systems. One variation in the LuxI/LuxR-type quorum-sensing system is found
in the Erwinia chrysanthemi CarI/CarR system. Gel mobility shift experiments
showed that in vitro, CarR bound target DNA in the absence of N-(3-oxohexanoyl)-
HSL and released DNA in the presence of the HSL signal (Welch et al. 2000).

14.4.2.2 The GtaI/GtaR Quorum-Sensing System in R. capsulatus

Although a preliminary genome sequence of R. capsulatus contained a luxI homolog
(now called gtaI), acyl-HSL in R. capsulatus could not be detected by bioassay
(Schaefer et al. 2002). However, Schaefer et al. (2002) developed an assay that
identified two long-chain acyl-HSLs (C16-HSL and C14-HSL) involved in quo-
rum sensing in R. capsulatus. Further study of the R. capsulatus genome revealed
three ORFs encoding signal receptors with significant sequence similarity to known
LuxR homologs (Schaefer et al. 2002). These three ORFs, RCC03806, RCC04617,
and RCC02401, have 37, 31, and 36% similarity (respectively) to CerR, the
Rhodobacter sphaeroides LuxR-type protein (Schaefer et al. 2002). RCC03806, the
ORF with the highest percentage similarity to CerR, is found immediately upstream
of the gtaI gene (the gtaI start codon and the RCC03806 stop codon are separated by
49 bp). With such close proximity, it is likely that the protein encoded by RCC03806
is the cognate signal receptor (which we name GtaR) of the HSL produced by GtaI
and that gtaI and RCC03806 are co-transcribed as an operon.

14.4.2.3 Regulation of RcGTA by the Quorum-Sensing System
in R. capsulatus

The presence of ORFs encoding the GtaI/GtaR homologs of LuxI/LuxR in R. cap-
sulatus, in combination with the knowledge that RcGTA expression is maximal in
the stationary phase (Solioz et al. 1975), led to the discovery of the relationship
between GTA production and quorum sensing in R. capsulatus. Using a fusion plas-
mid in which the GTA promoter was fused to lacZ, Schaefer et al. (2002) found that
a gtaI mutant had a sevenfold reduction in β-galactosidase-specific activity com-
pared to a wild-type strain. Furthermore, the addition of C16-HSL to cultures of
this gtaI mutant strain restored the expression of the fusion gene to wild-type levels
and similar results were obtained in GTA transduction assays (Schaefer et al. 2002).

14.4.3 Effects of Growth Phase and Nutrient Limitation
on GTA Expression

It was discovered in the 1970s that the frequency of GTA-mediated gene trans-
duction is maximal in the stationary phase of cultures (Solioz et al. 1975). Our
cloning of the RcGTA structural genes led to northern blot and lacZ gene fusion
experiments which showed that this stationary phase regulation is due to induc-
tion of RcGTA structural gene transcription (Lang and Beatty 2000). Also, western
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blots have revealed that RcGTA appears to accumulate abruptly in wild-type cells in
the early stationary phase, whereas extracellular RcGTA accumulates at later time
points (unpublished). However, it is not known what aspect of stationary phase ces-
sation of culture growth leads to induction of RcGTA gene transcription. In fact, it
is not known why cultures enter the stationary phase in the standard media used for
growth of R. capsulatus.

Variants of the RCV minimal medium, a defined medium containing phosphate
as the P source, malic acid as the C source, and ammonium as the N source (Beatty
and Gest 1981), have been used to titrate growth-limiting amounts of nutrients. In
this approach, reducing the concentration of one nutrient such that cultures enter the
stationary phase at a lower culture density compared to RCV medium, we can sepa-
rate cell concentration effects (as in quorum sensing) from nutrient depletion effects.
Rhodobacter capsulatus cultures have been grown in P-, C- and N-deficient vari-
ants of the RCV medium and western blots done using the RcGTA capsid protein
antibody. Preliminary results showed that an N-deficient culture lacked detectable
RcGTA capsid protein compared to the replete RCV culture; in a P-limited culture,
intracellular amounts of the capsid protein were elevated, and RcGTA was released
in high quantity from cells; in a C-limited culture, elevated levels of the capsid were
present in cells, but there was no increase in RcGTA released.

These preliminary experiments indicate interesting signal transduction pathways
that regulate RcGTA production and which resemble the phenotypes of ctrA and
cckA mutants: N limitation, like ctrA mutation, results in greatly reduced GTA gene
expression, whereas P limitation results in increased expression; although C limita-
tion resulted in the accumulation of the capsid protein in cells, there was little or no
extracellular RcGTA, similar to the cckA mutant. We speculate that N or P limitation
differentially affects the phosphorylation of CtrA and that C limitation affects CckA
activity.

14.5 Concluding Remarks

It has become clear that a complicated network of systems regulates the production
of extracellular RcGTA. The pathways involving CtrA, CckA, and the GtaI/GtaR
quorum-sensing system are intricate, involving factors such as growth phase, cell
culture density, and nutrient availability. This complexity compounds the difficulty
in elucidating the mechanisms of RcGTA regulation. Many questions remain unan-
swered and will require further study. These questions include the following: How is
the RcGTA particle released from the cell? Is there a non-lytic mechanism or does a
sub-population lyse to release RcGTA? What is the method of coordination between
the CtrA, the CckA, and the GtaI/GtaR system in regulating RcGTA expression? Are
there other systems involved in regulating RcGTA expression? What percentage of
virus-like particles in the environment are GTA-like particles, and can they mediate
interspecies horizontal gene transfer? The R. capsulatus RcGTA provides a model
for the study of GTAs in general and the role of RcGTA-like particles involved in
genetic exchange. It is unknown how many bacterial species are capable of genetic
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exchange mediated by GTA particles, but with an estimation of up to 1030 viral
particles in aquatic environments, the possibility that a portion of these are GTAs
appears likely.
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Chapter 15
Integrative Control of Carbon, Nitrogen,
Hydrogen, and Sulfur Metabolism: The Central
Role of the Calvin–Benson–Bassham Cycle

Rick Laguna, Gauri S. Joshi, Andrew W. Dangel, Amanda K. Luther,
and F. Robert Tabita

Abstract Nonsulfur purple (NSP) photosynthetic bacteria use the Calvin–Benson–
Bassham (CBB) reductive pentose phosphate pathway for the reduction of CO2 via
ribulose 1,5-bisphosphate (RuBP) carboxylase–oxygenase (RubisCO), as a means
to build cell mass during chemoautotrophic or photoautotrophic conditions. In addi-
tion, the CBB pathway plays an important role in maintaining redox balance during
photoheterotrophic growth conditions. In this communication we describe protein–
protein interactions between two transcriptional regulators CbbR and RegA and the
possible role of the CbbX protein in regulating the CBB pathway in Rhodobacter
sphaeroides. In Rhodopseudomonas palustris, the CbbR and the CbbRRS system
(a three-protein, two-component regulatory system) regulate the CBB pathway.
Moreover, derepression of the nitrogenase complex, and the production of hydro-
gen gas, appears to be a common mechanism to balance the redox potential in
RubisCO-compromised strains of NSP photosynthetic bacteria.

15.1 Introduction

Nonsulfur purple (NSP) photosynthetic bacteria are capable of growing in the
presence or the absence of light and oxygen. These organisms build cell mass by
utilizing either organic or inorganic carbon, while obtaining their energy either from
photochemical reactions or via the oxidation of organic compounds (Anderson and
Fuller 1967a, b; Madigan and Gest 1979, Madigan et al. 1979). The great diversity
of metabolic processes that are utilized under different environmental growth con-
ditions obviously requires a vast amount of cellular regulation (Dubbs and Tabita
2004). One major biosynthetic route used by the NSP photosynthetic bacteria is
the Calvin–Benson–Bassham (CBB) reductive pentose phosphate pathway for the
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reduction of carbon dioxide. This pathway is also used as a key means to balance
the redox potential of the cell during photoheterotrophic growth when organic car-
bon is used as the electron donor such that CO2 is used as the preferred electron
acceptor (Tichi and Tabita 2000; Wang et al. 1993). The key enzyme of the CBB
pathway is ribulose 1,5-bisphosphate (RuBP) carboxylase–oxygenase (RubisCO)
(Anderson and Fuller 1969; Benson and Calvin 1947; Calvin and Benson 1948). In
this communication we describe how the CBB pathway is regulated in NSP bac-
teria, using Rhodobacter sphaeroides and Rhodopseudomonas palustris as model
systems. We also describe how these organisms are capable of photoheterotrophic
growth in the absence of a functional CBB pathway, resulting in the production of
copious quantities of hydrogen gas caused by the recruitment of novel regulatory
events.

15.2 CBB Regulation in R. sphaeroides

CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII oper-
ons in R. sphaeroides (Dubbs and Tabita 1998, 2003; Dubbs et al. 2000; Gibson
and Tabita 1993). CbbR is a LysR-type transcriptional regulator (LTTR) and was
shown to positively regulate the expression of both cbb operons (Gibson and Tabita
1993). RegA is part of a two-component signal transduction system that involves the
membrane-bound histidine kinase RegB (PrrB) (Elsen et al. 2004). RegB catalyzes
the phosphorylation of the response regulator RegA to activate its regulatory func-
tion (Comolli et al. 2002; Inoue et al. 1995). The DNA-binding sites for CbbR and
RegA are found in the regulatory regions of the cbbI and cbbII operons (Dubbs et al.
2000; Dubbs and Tabita 2003). Within the regulatory region of the cbbI operon, there
is a CbbR-binding site and a RegA-binding site that overlap each other, which may
be indicative of possible protein–protein interactions. To examine this, gel mobility
shift and chemical cross-linking experiments were conducted and a protein–protein
interaction between CbbR and RegA was established (Dangel and Tabita 2009). It
was further found that RegA does not need to be bound to DNA for this protein–
protein interaction to occur with CbbR (Dangel and Tabita 2009). In contrast, CbbR
must be bound to DNA for interactions with RegA to occur (Dangel and Tabita
2009), possibly ensuring that RegA only binds transcriptional regulators such as
CbbR at the appropriate promoter site. The presence of RegA enhances the ability
of CbbR to bind the cbbI promoter (Dangel and Tabita 2009). It is thus possible that
RegA lowers the activation energy required for CbbR to bind DNA, thereby increas-
ing the DNA-binding affinity of CbbR. Further examination of the RegA-binding
sites revealed that there is communication or cooperation between RegA-binding
site 1/2 and site 3 that allows RegA/DNA complex formation at a lower concen-
tration of RegA (Dangel and Tabita 2009). An intermediate loop structure could
be formed to facilitate the communication between RegA site 1/2 and site 3. It
is possible that complex formation between CbbR and RegA∼P on the cbbI pro-
moter facilitates recruitment of RNA polymerase and expression of the cbbI operon
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Fig. 15.1 Model illustrating protein complex formation between CbbR and RegA∼P (phospho-
rylated RegA) on the cbbI promoter, subsequently allowing recruitment of RNA polymerase and
expression of the cbbI operon. RuBP denotes ribulose 1,5-bisphosphate, a co-inducer of CbbR
from R. sphaeroides. Black boxes represent RegA-binding sites 1, 2, 3, and 4 and the white box
represents the CbbR-binding site

(Fig. 15.1) (Dangel and Tabita 2009). Current experiments are underway to examine
the specific residue interactions between CbbR and RegA.

Previous studies suggest that there may be additional novel components involved
in CBB regulation in R. sphaeroides (Dubbs and Tabita 2003; Gibson and Tabita
1997). The cbbXYZ genes are located immediately downstream of the cbbI operon
in R. sphaeroides. Previous studies demonstrated that these genes form an operon
and are partially subjected to the same regulation as the cbbI operon (Gibson and
Tabita 1997). With the exception of CbbZ (which functions as a phosphoglycolate
phosphatase), the physiological role of proteins encoded by genes of this operon
has yet to be determined in R. sphaeroides. However, upon deletion of each of the
cbbX, cbbY, and cbbZ genes, the cbbX deletion strain alone displayed a long lag
period during photoautotrophic (PA) growth conditions as compared to the wild
type (Gibson and Tabita 1997). Recently it was proposed that the CbbX protein
of the unicellular red alga Cyanidioschyzon merolae functions as a transcriptional
regulator of the cbbLS genes, which encode a form I RubisCO (Fujita et al. 2008).
Current experiments are underway to gain a greater understanding of the function
of CbbX in R. sphaeroides.

15.3 CBB Regulation in R. palustris

Within the NSP photosynthetic bacteria, R. palustris exhibits exemplary metabolic
versatility and unique organization of its cbb operons (VerBerkmoes et al. 2006).
The unique feature of the R. palustris cbbI operon is the presence of genes that
encode a two-component regulatory system (referred to as the CbbRRS system) jux-
taposed between the master transcriptional regulator CbbR and genes encoding form
I RubisCO (cbbLS) (Fig. 15.2). The CbbRRS system is an atypical two-component
system comprising a hybrid sensor kinase (CbbSR) and two response regulator pro-
teins (CbbRR1 and CbbRR2), with no apparent DNA-binding domains on any of
these proteins (Romagnoli and Tabita 2006). It was demonstrated that CbbSR under-
goes autophosphorylation and transfers phosphate to both CbbRR1 and CbbRR2
(Romagnoli and Tabita 2006, 2007). CbbR is absolutely required for the expres-
sion of form I RubisCO in R. palustris (Joshi et al. 2009; Romagnoli and Tabita
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Fig. 15.2 Genetic organization of the cbbI operon in R. palustris

2006). It has been shown that the CbbRRS system modulates the expression of form
I RubisCO during photoautotrophic growth possibly in response to a redox signal.
However, the CbbRRS system does not appear to play a regulatory role under pho-
toheterotrophic (benzoate) growth conditions, suggesting differential utilization of
this system in R. palustris (Joshi et al. 2009). The observations stemming from the
physiological studies with photoautotrophically grown cells led to the hypothesis
that the CbbRRS proteins (especially the response regulators CbbRR1 and CbbRR2)
influence the interactions of CbbR at the cbbI promoter and thereby influence form
I RubisCO expression (Romagnoli and Tabita 2006). Current experiments indicate
that protein–protein interactions between CbbR and CbbRRS do take place and are
quite significant (Joshi and Tabita, manuscripts in preparation).

15.4 Derepression of the Nitrogenase Complex and Hydrogen
Production in RubisCO-Compromised NSP Photosynthetic
Bacteria

During aerobic chemoautotrophic and anaerobic photoautotrophic growth condi-
tions, NSP photosynthetic bacteria use the CBB cycle for the reduction of CO2 into
fixed carbon. In contrast, during photoheterotrophic growth, CO2 is primarily used
as an electron acceptor via the CBB cycle in order to maintain redox poise (Falcone
and Tabita 1991; Hallenbeck et al. 1990; Wang et al. 1993). Over the years we have
shown that NSP photosynthetic bacteria possess an array of metabolic and regula-
tory capabilities that allow for the utilization of alternative redox sinks when the
primary electron sink, CO2, is nullified via the inactivation or the deletion of the
RubisCO genes (Falcone and Tabita 1993; Joshi and Tabita 1996; Tichi and Tabita
2000). For example, in many instances the derepression of the nitrogenase (nifHDK)
complex occurred under normal repressive conditions (the presence of ammonium).
Such gain-of-function adaptive mutant strains have been obtained in our labora-
tory from Rhodobacter capsulatus, R. sphaeroides, Rhodospirillum rubrum, and
R. palustris (Joshi and Tabita 1996; Tichi and Tabita 2000, 2001; Romagnoli and
Tabita 2009). Such strains balance their redox potential via nitrogenase-catalyzed
reduction of protons to hydrogen gas (Fig. 15.3). The nitrogenase-derepressed
mutant strains produce copious quantities of hydrogen gas by virtue of using the
nitrogenase enzyme complex exclusively as a hydrogenase. Current experiments
are underway to examine the molecular mechanisms that allow the cbb and nif sys-
tems to compete for reducing equivalents and to examine a RubisCO-compromised
mutant strain of R. sphaeroides that appears to use the reduction of sulfate as an
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Fig. 15.3 Derepression of the nitrogenase complex (NifHDK) occurs under normal repressive
conditions (presence of NH4

+) due to a nonfunctional CBB cycle. The reduction of protons
to hydrogen gas, by the nitrogenase complex, serves to maintain cellular redox poise during
photoheterotrophic growth conditions

alternative redox sink. Moreover, previous studies involving reconstitution of the
CBB pathway indicate that control of the CBB and other redox balancing pathways
is linked, with the CBB route exerting the prime regulatory signal in NSP bacteria
(Joshi and Tabita 1996; Tichi and Tabita 2000, 2001).

15.5 Conclusion

Examination of the CBB pathway in NSP photosynthetic bacteria reveals that there
are many layers of regulation. In R. sphaeroides and R. Palustris, overall regulation
of the CBB pathway differs, although each organism, along with R. rubrum and
R. capsulatus, appears to emphasize the derepression of the nitrogenase complex in
the absence of a functional CBB pathway.
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Chapter 16
Better Living Through Cyanothece – Unicellular
Diazotrophic Cyanobacteria with Highly
Versatile Metabolic Systems

Louis A. Sherman, Hongtao Min, Jörg Toepel, and Himadri B. Pakrasi

Abstract Cyanothece sp. ATCC 51142 is a unicellular, diazotrophic cyanobac-
terium with a versatile metabolism and very pronounced diurnal rhythms. Since
nitrogen fixation is exquisitely sensitive to oxygen, Cyanotheceutilizes temporal
regulation to accommodate these incompatible processes in a single cell. When
grown under 12 h light–dark (LD) periods, it performs photosynthesis during the
day and N2 fixation and respiration at night. Genome sequences of Cyanothece sp.
ATCC 51142 and that of five other Cyanothece species have been completed and
have produced some surprises. Analysis at both the transcriptomic and the pro-
teomic levels in Cyanothece sp. ATCC 51142 has demonstrated the relationship
of the metabolic synchrony with gene expression and has given us insights into
diurnal and circadian regulation throughout a daily cycle. We are particularly inter-
ested in the regulation of metabolic processes, such as H2 evolution, and the way
in which these organisms respond to environmental cues, such as light, the lack of
combined nitrogen, and changing O2 levels. Cyanothece strains produce copious
amounts of H2 under different types of physiological conditions. Nitrogenase pro-
duces far more H2 than the hydrogenase, in part because the nitrogenase levels are
extremely high under N2-fixing conditions. With Cyanothece 51142 cultures grown
in NO3-free media, either photoautotrophically or mixotrophically with glycerol,
we have obtained H2 production rates over 150 μmol/mg Chl/h.

16.1 Introduction

Unicellular, diazotrophic cyanobacteria are interesting and versatile organisms.
They perform oxygenic photosynthesis, but they can also fix atmospheric N2.
Nitrogenase, the enzyme that is responsible for this N2 fixation into ammonia is
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normally rapidly and irreversibly inactivated upon exposure to molecular oxygen.
Thus, one interesting question about such organisms is how they regulate nitroge-
nase activity in the presence of poisonous oxygen. In addition, what other properties
do they have that might make them valuable for other kinds of experimentation? We
have been interested in studying these organisms and in understanding how they
regulate various metabolic properties. Most recently, we have also been interested
in the ability of these organisms to use light energy to generate alternative biofuels
such as H2.

We have primarily studied the unicellular diazotrophic cyanobacterium
Cyanothece sp. ATCC 51142, hereafter Cyanothece 51142 (Reddy et al. 1993;
Schneegurt et al. 1994), which performs photosynthesis during the light and fixes
nitrogen during the dark (Schneegurt et al. 1997a, b, 1998). Our early studies with
Cyanothece 51142 showed a strong correlation between activity and transcript level
for a subset of genes related to photosynthesis (Meunier et al. 1998) and N2 fix-
ation (Colón-López et al. 1997) during 12 h light–dark (LD) cycles. In addition,
differential gene expression was reported for the main photosynthetic genes and the
nitrogenase genes in the light and dark, respectively (Colón-López et al. 1997, 1999;
Colón-López and Sherman 1998). During a diurnal period, Cyanothece 51142 cells
actively accumulate and degrade different storage inclusion bodies for the products
of photosynthesis and N2 fixation. This ability to utilize metabolic compartmental-
ization and energy storage makes Cyanothece an ideal system for bioenergy research
and for studies on how a unicellular organism balances multiple, often incompati-
ble, processes in the same cell. The genome sequences will help provide a significant
basis for future insights into this metabolic “balancing act”.

Recently, whole genome microarray experiments were carried out to determine
the diurnal gene expression under LD conditions (12 h L/12 h D) (Stöckel et al.
2008) and under continuous light (LL) (Toepel et al. 2008). Both groups found
∼30% of the ∼5000 genes on the microarray exhibited diurnal oscillations under
12 h LD conditions and Toepel et al. (2008) demonstrated that ∼10% of the genes
demonstrated circadian behavior during growth in free-running (LL) conditions.
Toepel et al. (2008) also demonstrated that nitrogenase transcript abundance and
nitrogenase activity were correlated in Cyanothece 51142 under LL and that N2 fix-
ation followed a ∼24 h rhythm under these conditions, albeit with reduced rates.
Such results indicate a LD-independent expression pattern for nitrogenase genes,
consistent with the circadian behavior for nitrogenase-related genes suggested by
Sherman et al. (1998).

Photosynthetic activity depends on incident light, although genes encoding pho-
tosynthetic proteins can display a diurnal or a circadian-dependent expression
pattern (Stöckel et al. 2008; Michael et al. 2008; Toepel et al. 2009). In Cyanothece
51142, maximum photosynthetic rates in a LD cycle occurred after 6–8 h light incu-
bation and photosynthetic capacity decreased strongly during the N2 fixation period
(Meunier et al. 1998; Toepel et al. 2008). Toepel et al. (2008) showed that photo-
synthetic rates were lower during LL growth and demonstrated no circadian-related
pattern for photosynthesis genes. In the case of growth under continuous light, the
glycogen content stayed at high levels and did not decrease until the cells were
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again placed in darkness (Toepel et al. 2008). Furthermore, these results indicated
that nitrogenase transcription and activity was metabolically or energetically regu-
lated via glycogen breakdown and suggested that photosynthesis is light activated,
but probably regulated by the internal carbohydrate level.

The work with Cyanothece 51142 has provided some answers as to the regula-
tion of the disparate metabolic processes, but also has led to some surprises. These
include the discovery of a small linear chromosome that coexists along with the
larger, circular chromosome. In order to better understand the genomic basis of the
genus Cyanothece, an additional six Cyanothece strains have been sequenced by
the Department of Energy Joint Genome Initiative. We have begun to compare and
contrast the different genomes and have found a Cyanothece gene core within this
genus using five of the strains so far sequenced. Interestingly, Cyanothece 7425
demonstrates significant differences in many genomic properties. We will discuss
some of the important attributes of gene regulation that we have determined in
Cyanothece 51142 as well as discuss key features in regard to H2 production in these
strains.

16.2 Results

16.2.1 Genome Sequencing of Cyanothece 51142

The genome of Cyanothece 51142 was sequenced at the Washington University
Genome Sequencing Center (St. Louis, MO), and the finished assembly was
independently confirmed using an optical restriction map generated by OpGen,
Inc. (Welsh et al. 2008). The 5.5 Mb Cyanothece 51142 genome consists of a
4.93 Mb circular chromosome, four plasmids ranging in size from 10 to 40 kb,
and notably a 430 kb linear chromosome. The finding of a linear element in the
Cyanothece genome was unanticipated, but was confirmed by two independent
genome assembly approaches (Welsh et al. 2008). This also represented the first
report of a linear element in the genome of a photosynthetic bacterium, although
linear genomic elements have been identified in other bacterial genera, such as
Borrelia (Ferdows and Barbour 1989), Streptomyces (Kinashi et al. 1992), and
Agrobacterium (Allardet-Servent et al. 1993).

The gene content of the linear chromosome was examined to investigate its
possible origin and importance to the organism. Several genes are found on both
the circular and the linear chromosomes, including a coxABC operon and a clus-
ter containing genes related to glycolysis and fermentation (ppk, pyk, pgi, eno,
ackA, glgP). This cluster on the linear chromosome contains the only gene that
encodes an L-lactate dehydrogenase, required for the terminal step in lactate
fermentation, and suggests that the linear chromosome may play a role in fermen-
tation. Additional genes unique to the linear chromosome are ones encoding the
integrase–recombinase protein XerC, an xseA/xseB operon, and a hicA/hicB operon.
Most of the remaining genes on the linear chromosome are either hypothetical,
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unknown, or of uncertain function. The mechanisms of maintenance and replication
of the linear chromosome remain unknown, and sequence analysis did not indi-
cate the presence of any feature, such as inverted repeats or stem–loop structures,
known to be related to these functions in previously characterized genera (Volff and
Altenbuchner 2000).

The predicted proteome of Cyanothece consists of 5269 open reading
frames: 34% of known function, 29% of uncertain function, and 37% of
unknown/hypothetical (Welsh et al. 2008). The annotation of genes of unknown
function was greatly aided by data from the high-throughput proteomic analysis.
Proteomic data were used, in conjunction with early draft genomic sequence data, to
build an accurate mass and time (AMT) library (Lipton et al. 2002) for use in quan-
titative proteomic experiments. The combined analysis of proteome and genome
data is an important approach that resulted in the inclusion or reclassification of
510 genes and lent an additional level of validation to the genome annotation. The
importance of the proteomic data to metabolic objectives will be discussed in later
sections.

16.2.2 Nitrogenase Genes

In Cyanothece, most of the genes involved in nitrogen fixation are located in a
single contiguous cluster containing 28 genes separated by no more than 3 kb,
with conserved synteny to those found in most other sequenced nitrogen-fixing
cyanobacteria (Fig. 16.1). The cluster is more distantly conserved in Trichodesmium
erythraeum sp. IMS 101, where 20 genes are present in a single large cluster. In
the heterocyst-forming Anabaena and Nostoc strains, one or more inserts ranging
in size from 9 to 24 kb break the cluster into several smaller clusters, with sev-
eral genes duplicated or missing between clusters. The conserved synteny of the
genes within the nif clusters of the Cyanothece and Anabaena families, together
with the proteome-wide phylogenetic tree, supports a single acquisition event of
the nif cluster in a common ancestor. The Synechococcus sp. JA-2-3B′a(2-13) and
Synechococcus sp. JA-3-3Ab strains contain a single contiguous cluster of 20 genes,
but the order and orientation of the genes are extensively reorganized relative to that
seen in the other strains. Cyanothece 51142 contains the largest contiguous cluster
of nitrogen fixation-related genes yet observed in cyanobacteria. If nitrogen fixation

�

Fig. 16.1 Clusters of N2 fixation-related genes. Shown are genes with conserved synteny between
Cyanothece 51142 and other nitrogen-fixing cyanobacteria. Black arrows represent genes assigned
to functional categories and white arrows correspond to hypothetical genes and genes of unknown
function. A possible inversion event in Synechococcussp. JA-3–3Ab is highlighted in brackets.
GenBank accession numbers for the sequences used are as follows: Cyanothecesp. ATCC 51142,
CP000806; spheroid body of Rhopalodia gibba, AY728387; Crocosphaera watsoniiWH 8501,
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was acquired in a single ancient event, this single contiguous cluster may resemble
that seen in the original ancestor. The smaller cluster present in the thermophilic
Synechococcus strains either underwent significant gene loss and rearrangement
from a single common ancestor common to all diazotrophic cyanobacteria or was
acquired in a separate event by lateral gene transfer from a non-cyanobacterial
organism. In either case, based on the phylogenetic evidence, nitrogen fixation
was apparently present early in the evolutionary history of cyanobacteria and was
subsequently lost in the non-diazotrophic β-cyanobacterial strains.

16.2.3 Metabolic Compartmentalization

Intracellular compartmentalization provides a strategy for Cyanothece cells to
tightly regulate storage of metabolic products. The Cyanothece genome data
confirmed the details of the pathways of storage granule accumulation and degrada-
tion by elucidation of the genes involved, provided insights into interconnections
between different pathways, and highlighted the central role of nitrogen fixa-
tion in these organisms (Welsh et al. 2008). Certain filamentous nitrogen-fixing
cyanobacterial strains separate photosynthesis and nitrogen fixation spatially by
the differentiation of a subset of cells into heterocysts, which fix nitrogen and do
not perform oxygenic photosynthesis (Haselkorn 1978; Wolk 1996). However, non-
heterocyst-forming unicellular nitrogen-fixing cyanobacteria, such as Cyanothece,
must separate these processes temporally by performing photosynthesis during the
day and fixing nitrogen during the night (Sherman et al. 1998). Nitrogen fixation is
an energy-intensive process requiring the use of 16 ATP molecules per molecule of
N2 converted to ammonia (Dean, Bolin and Zheng 1993). A respiratory burst at the
beginning of the dark period provides some of the energy required for nitrogen fixa-
tion and serves to further deplete cellular O2 which would otherwise inhibit nitrogen
fixation. Photosynthetic capacity is also at a minimum during this time (Sherman
et al. 1998), which further protects nitrogenase from oxygen damage. Fixed nitro-
gen is stored in cyanophycin granules, which are fully depleted during the next light
period. Carbohydrates produced from photosynthesis are stored during the day in
glycogen granules, which are rapidly consumed early in the dark period as a sub-
strate for respiration (Sherman et al. 1998). Interestingly, two distinctly different
glycogen debranching enzymes are present in the Cyanothece genome, one that is
found only in the β-cyanobacterial clade (glgP) and another (glgX) that is found
mainly in the α-cyanobacteria. The presence of these two enzymes suggests that
granule accumulation and degradation is important and carefully regulated. The cir-
cadian cycle in Cyanothece 51142 cells, once entrained, persists in continuous light
(Colón-López and Sherman 1998) or continuous darkness (Schneegurt et al. 2000).
The temporal regulation of metabolic processes is crucial to Cyanothece 51142, as
each is involved in a different, but interrelated, aspect of cellular metabolism.

The Cyanothece genome contains all of the genes required for fermentation,
including the production of ethanol and hydrogen, both of which require a low or
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anoxic environment. Cyanothece 51142 creates such an intracellular environment
during the early dark period in order to fix nitrogen. Stal and Moezelaar (1997)
have proposed that 6-phosphogluconate dehydrogenase, present in the pentose phos-
phate pathway of Cyanothece, is primarily involved in fermentation in cyanobacteria
and that its presence indicates fermentative capability. Therefore, Cyanothece has
the ability to ferment glucose to ethanol and to produce hydrogen, and may carry
out these processes early in the dark period in order to generate additional ATP
molecules for nitrogen fixation. However, this same intracellular environment is
generated in LL conditions (Toepel et al. 2008) and this may provide additional
opportunities for N2fixation and H2 evolution.

16.2.4 Genomic Sequencing of Six Additional Cyanothece Strains

An additional six Cyanothece strains were sequenced by the Department of Energy
Joint Genome Initiative as a first step toward understanding the nature of the
Cyanothece genus (Table 16.1). The strains were isolated in different environments
around the world and the size and shape of the organisms, as well as other important
properties, can be seen in Table 16.1. All strains are capable of nitrogen fixation
as well as mixotrophic growth on different carbon sources. The genome size of the
strains varies from 4.6 to 6.4 Mb and none of these strains appear to have a linear
chromosome.

The phylogenetic analysis of a broad grouping of cyanobacteria, including all
of the sequenced Cyanothece strains, is shown in Fig. 16.2. It is evident that all

Table 16.1 Genomic information of six species of the genus Cyanothece sequenced by the
Department of Energy Joint Genome Initiative. Reproduced from Welsh et al. (2008) by permission
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of the Cyanothece strains, except for Cyanothece sp. PCC 7425, cluster closely
together along with Crocosphaera watsonii WH8501. Cyanothece sp. PCC 7425
branches somewhat differently and is closer to Acaryochloris marina MBIC11017.
Interestingly, this broad cluster includes a few non-nitrogen-fixing strains, such as
Synechocystis sp. PCC 6803, which has many genes that show sequence similarity to
those in Cyanothece sp. ATCC 51142. Such data again raise the question of whether
or not Synechocystis once had nitrogen fixation genes that were subsequently lost or
if Cyanothece acquired the genes at some later date. All of the Cyanothece strains
so far sequenced have large clusters of nitrogenase genes, although not as complete
as those in Cyanothece 51142. Once again, Cyanothece 7425 is the most divergent
with the nitrogenase genes split into two medium-sized clusters. In addition, all
the strains have clusters of the bidirectional hydrogenase genes (hox) (Fig. 16.3).
Cyanothece 51142 has the most compact operon, whereas Cyanothece 7425 has the
largest number of hypothetical genes within a larger cluster.

Fig. 16.3 Chromosomal organization of hox operons in seven strains of cyanobacteria, including
Synechocystis sp. PCC 6803 and six Cyanothece strains. In all cases, the hox cluster encodes all of
the proteins needed to produce a functional bidirectional hydrogenase

16.2.5 Genomics and Hydrogen Production

One objective for sequencing these genomes was to determine their capabilities for
biofuels production. We were specifically interested in analyzing hydrogen pro-
duction and to determine if all strains contain the genes for the three types of
hydrogenases found in diazotrophic cyanobacteria: nitrogenase, uptake hydroge-
nase, and bidirectional hydrogenase. It has been demonstrated in Anabaena that
mutants that lack the uptake hydrogenase evolve more hydrogen than the wild type
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Table 16.2 Presence or absence of the three genes capable of hydrogen production in select
cyanobacterial strains

Cyanobacterial strain Nitrogenase
Bidirectional
hydrogenase

Uptake
hydrogenase

Cyanothece sp. ATCC 51142 + + +
Cyanothece sp. PCC 7425 + + –
Cyanothece sp. PCC 7822 + + +
Cyanothece sp. PCC 7424 + + +
Cyanothece sp. PCC 8801 + + +
Cyanothece sp. PCC 8802 + + +
Anabaena variabilis ATCC 29413 + + +
Anabaena sp. PCC 7120 + + +
Nostoc punctiforme PCC 73102 + – +
Synechocystis sp. PCC 6803 – + –
Trichodesmium erythraeum

IMS101
+ – +

(Dutta et al. 2005). Thus, we carefully analyzed the genomic sequences to determine
if any of the strains were lacking an uptake hydrogenase system. In fact, all strains
except Cyanothece 7425 had the uptake hydrogenase (Table 16.2). From this data,
we were hopeful that Cyanothece 7425 might be a particularly important strain
for hydrogen production. Of course, Synechocystis 6803 lacks an uptake hydro-
genase, but it also lacks nitrogenase and produces relatively low levels of H2 from
the bidirectional hydrogenase. Thus, the presence or absence of the uptake hydro-
genase is only one factor in determining the ultimate levels of hydrogen that can be
produced.

16.2.6 Transcription and Translation of Hydrogen Production
Genes

Another objective has been to understand transcription and transcriptional regu-
lation of genes in Cyanothece 51142 under a variety of different environmental
conditions. We are particularly interested in transcriptional regulation of N2-fixing
cells when grown under a variety of different light regimes. The most complete
work to date has been on Cyanothece 51142, first using Northern blots for indi-
vidual genes, and then using microarrays for full genome transcriptional analyses
(Colón-López and Sherman 1998; Stöckel et al. 2008; Toepel et al. 2008, 2009). We
have demonstrated that gene transcription is highly synchronized during 12 h LD
conditions and that the large nitrogenase cluster is coordinately transcribed only in
the early part of the dark period. As we varied the light regime to include LL and
6 h LD periods, we were able to discriminate between circadian and diurnal regula-
tion of various genes (Toepel et al. 2009). The nitrogenase and uptake hydrogenase
genes are regulated in a circadian fashion and occur only in the dark under 12 or
6 h LD conditions. However, once the cultures have been adapted to LD growth and
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then transferred to LL, they are capable of transcribing the nitrogenase genes at a
high level (Toepel et al. 2009). On the other hand, the bidirectional hydrogenase
typically follows a more diurnal pattern and is transcribed only in the dark when
grown under 6 h LD periods.

In addition, there are substantial differences in transcript level between the nitro-
genase and uptake hydrogenase on the one hand and the bidirectional hydrogenase
on the other hand (Toepel et al. 2008, 2009). Nitrogenase and the uptake hydroge-
nase genes are usually transcribed in a similar fashion and to very high transcript
levels. On the other hand, the bidirectional hydrogenase is always transcribed at
quite modest levels in all conditions so far tested and with a peak transcript level
that is typically only 1% that of the nitrogenase. On the protein level, we had
previously shown that nitrogenase is very prominent during the first few hours
of nitrogen fixation in the dark and this was verified by careful proteomic anal-
ysis over the 24 h period when grown under 12 h LD cycles. Once again, we
could show that peak levels of nitrogenase were far greater than peak levels of
the Hox proteins. These are critical factors as we consider overall productivity of
hydrogen.

The transcriptomic data for Cyanothece 51142 have been published (Stöckel
et al. 2008; Toepel et al. 2008, 2009), but the proteomic data are available only now
for thorough analysis. The accurate mass and time (AMT) approach has identified
3,616 proteins with high confidence. This includes 70% coverage of gene products
from the circular chromosome, but only 48% from the linear chromosome. This is
consistent with our transcriptomics results that have indicated little or no expression
for many of the genes on the linear chromosome under the conditions so far tested.

This information has been valuable for the overall annotation of the genome, as
well as in conjunction with the transcriptomics results to determine if specific pro-
teins are present or not under different growth conditions. Since one of our main
objectives is to determine if Cyanothece strains are capable of H2 production, we
were particularly interested in protein levels of the three enzymes capable of produc-
ing hydrogen: nitrogenase, the uptake hydrogenase, and bidirectional hydrogenase
(Table 16.2). The proteomic data are only from cells grown under 12 h LD condi-
tions, but along with previous Western blots can provide a substantial amount of
information as to protein levels under different LD regimes. Under nitrogen-fixing
conditions, the nitrogenase proteins were the most cyclic proteins in the cell and
showed peaks and valleys very similar to that of the gene transcription data – the Nif
proteins were present only in the dark. Nonetheless, cells do grow under nitrogen-
fixing conditions in LL, and we have shown that the nitrogenase genes are strongly
induced in a circadian fashion when grown under LL conditions (Toepel et al. 2008).
Additionally, we obtained reasonably high rates of nitrogenase activity in continu-
ous light and we have demonstrated high Nif levels in LL by using Western blots
with Nif antibodies (Colon-Lopez et al. 1998). On the other hand, we have shown
that the hupLS genes are strongly up-regulated in the dark, but are expressed at
much lower levels in continuous light (Toepel et al. 2008). Proteomic analysis of
the HupL protein indicates that it is resent in high levels in the dark, but only at
extremely low levels in the light (Fig. 16.4). This is consistent with our expression
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Fig. 16.4 Analysis of protein levels and transcript levels for the HupL proteins, representative of
the uptake hydrogenase, and the Flv2 and Flv4 proteins

data which indicated that hupLS genes were up-regulated in a circadian fashion in
the dark, coincident with the nitrogenase genes (Toepel et al. 2009). Based on these
results, it would appear that the HupLS proteins are present, if at all, at very low lev-
els during continuous light. This was the first suggestion that incubating cells under
continuous light conditions might be beneficial for hydrogen production. Finally, the
hox genes were expressed at very low levels in the dark under 12 h LD conditions.
When grown under 6 h LD conditions, the hox genes were expressed at peaks in the
dark but without a substantial trough in the intervening 6 h light period (Toepel et al.
2009). Consistent with the low transcript levels, very low levels of the Hox proteins
were identified by proteomics either in the light or in the dark. We are left with
the major conclusion that the nitrogenase enzyme is the only hydrogen-producing
enzyme present in reasonable quantities during LL growth.

Another type of protein that might be important in permitting hydrogen pro-
duction is the flavoprotein. Helman et al. (2003) have shown that flavoproteins are
essential for photoreduction of O2 in cyanobacteria via the Mehler reaction. We had
determined that an operon containing two flavoproteins was induced under low-O2
conditions in Synechocystis 6803 as well as in Cyanothece 51142 (Summerfield,
Toepel and Sherman 2008); the data are summarized in Table 16.3. The flv2 and
flv4 genes are inducible under low-oxygen conditions and we have checked levels
of transcript and protein under different light conditions. As shown in Fig. 16.4, the
transcript and protein levels of flv2 and flv4 were significantly higher in the light than
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Table 16.3 Induction of flavoprpteins flv2 and flv4 under low O2 conditions

Synechocystis
genes

Low O2
induction

Cyanothece
genes

Low O2
induction

t = 1, 2, 6 t = 1, 2, 6
flv1 sll1521 1 1 1 cce-2580 1 1 1
flv3 sll0550 1 1 1 cce-3635 1 2 1

Flv2 sll0217 3 3 3 cce-3835 6 4 2
Flv4 sll0219 2 2 2 cce-3833 4 3 2

in the dark, whereas the other two flavoproteins showed little change in expression
under these conditions (data not shown). We suggest that these flavoproteins are uti-
lized in the Mehler reaction to reduce oxygen under the appropriate conditions (see
Helman et al. 2003). These flavoproteins are in an operon that includes a hypothet-
ical membrane protein with four membrane-spanning regions. Although Flv2 and
Flv4 appear to lack ideal NADP+binding sites, the two proteins are likely tethered
to the membrane by this membrane protein in such a way as to provide the appro-
priate activity. This system may help keep the intracellular concentration of oxygen
low, thus permitting nitrogenase activity even in the presence of continuous light.
These data represented a background as we began our detailed hydrogen production
experiments.

16.2.7 Hydrogen Production in Cyanothece Strains

We have begun a detailed process of determining hydrogen production in the
Cyanothece strains under a variety of conditions. Although the most complete work
has so far been performed for Cyanothece 51142, we have measured hydrogen pro-
duction under both nitrogen-sufficient and nitrogen-fixing conditions in all of the
strains. Importantly, the analysis above led us to incubate N2-fixing cells in LL under
argon to provide a very low-O2environment. All of the strains produced approxi-
mately 2–5 μmol H2/mg Chl/h when grown under nitrogen-sufficient conditions.
We obtained hydrogen production when cells were incubated in the light or dark,
but there was an enhancement caused by light incubation. On the other hand, we
get significantly more hydrogen produced when cultures are grown under nitrogen-
fixing conditions. Strains Cyanothece 7424, 7425, 8801, and 8802 all produced
∼30–40 μmol H2/mg Chl/h, whereas Cyanothece 7822 and 51142 could produce
significantly more. We have not performed as many experiments with Cyanothece
7822, but we have consistently obtained extremely high rates (over 150 μmol H2/mg
Chl/h) of hydrogen production with Cyanothece 51142 when grown either in the
presence or absence of glycerol as a carbon source. The best results are obtained
when cells are grown for 3 days under LL and then incubated under argon in LL.
A critical feature appears to be the need to protect nitrogenase from oxygen inac-
tivation, and incubation in argon provides that environment. From these results, it
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is evident that nitrogenase can produce far more hydrogen than the bidirectional
hydrogenase, even when the hupLS genes are present. Of course, our previous
results suggest that very little HupLS was present under LL incubation. Surprisingly,
Cyanothece 7425 produced hydrogen at levels no higher than that of many of the
other strains that contain an uptake hydrogenase. Thus, the presence or absence of
HupLS may not be the most critical factor for H2 production in all diazotrophic
cyanobacteria.

16.3 Discussion

Strains of the cyanobacterial genus Cyanothece have become among the best studied
of all cyanobacteria. We now have genome sequences for six strains and a detailed
proteome for Cyanothece 51142. In addition, proteomes for the other sequenced
strains are being developed as a way of initiating a process of providing proteomes
for many bacterial genomes (D. Koppenaal, personal communication). Proteomics
and transcriptomics have provided a great deal of high-throughput data that can
be used to analyze metabolic processes in Cyanothece. In the current study, we
have determined the best conditions under which to measure hydrogen production
by Cyanothece 51142. At the current time, we have obtained the highest levels
of hydrogen in Cyanothece 51142 when incubated under argon under LL condi-
tions. This was somewhat surprising, but we believe that it has helped to identify
the major metabolic issues concerned with hydrogen production in this strain. It is
obvious that nitrogenase is the enzyme that produces the hydrogen and we have
also demonstrated that this enzyme is produced continuously under these condi-
tions even though cells do not grow (data not shown). The key energetic features
for hydrogen production include plentiful energy (provided by photosynthesis and
respiration), reducing power, and protection of the nitrogenase from oxygen (pro-
vided by argon and the Mehler reaction mediated by the flavoproteins). We also
know from previous results that PS I is highly expressed at the same time as the
nitrogenase (Colon-Lopez and Sherman 1998). It is highly likely that PS I is being
used both in a cyclic fashion for ATP production and along with the flavoproteins in
the Mehler reaction.

Overall, the amount of hydrogen produced by these Cyanothece species is quite
significant based on previous results with cyanobacteria (Dutta et al. 2005). The
high-throughput data have provided background information to help us try various
physiological conditions for growth and hydrogen production and such experiments
are continuing. These rates have so far been with wild-type strains without any
genetic or molecular manipulations as the development of such resources are still in
progress. Nonetheless, the initial results are promising and demonstrate the benefit
of studying novel photosynthetic microbes as a source of alternative energy sources.
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Chapter 17
A Feasibility Study of Large-Scale
Photobiological Hydrogen Production Utilizing
Mariculture-Raised Cyanobacteria

Hidehiro Sakurai, Hajime Masukawa, Masaharu Kitashima,
and Kazuhito Inoue

Abstract In order to decrease CO2 emissions from the burning of fossil fuels,
the development of new renewable energy sources sufficiently large in quantity is
essential. To meet this need, we propose large-scale H2 production on the sea sur-
face utilizing cyanobacteria. Although many of the relevant technologies are in the
early stage of development, this chapter briefly examines the feasibility of such H2
production, in order to illustrate that under certain conditions large-scale photobio-
logical H2 production can be viable. Assuming that solar energy is converted to H2
at 1.2% efficiency, the future cost of H2 can be estimated to be about 11 (pipelines)
and 26.4 (compression and marine transportation) cents kWh−1, respectively.

17.1 Our Need for Research and Development of Large-Scale
Production of Renewable Energy

By 2005 the global atmospheric concentration of the greenhouse gas CO2 had
increased from a pre-industrial value of about 280 to 379 ppm (IPCC 2007). In order
to mitigate global warming, the development of renewable non-polluting energy
alternatives to fossil fuels on a worldwide scale is urgently needed (see Sakurai and
Masukawa 2007; Sakurai et al. in press).

The amount of solar energy received on the earth’s surface is vast (about
2,700,000 × 1018 J/yr) and exceeds the present use of fossil fuel energy (404 × 1018

J/yr, in 2006) by more than 6,000 times. The technical challenge that must be over-
come for solar energy to be an economically feasible alternative is the low intensity
at which it is received on the earth’s surface (about 1,500 kWh m–2 yr–1, at the mid-
dle latitudes). If we are able to convert solar energy into a usable form of energy
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at 1 and 2% efficiency, about 15 and 30 kWh m–2 yr–1, respectively, of renew-
able energy will be acquired in this region. If photobiological conversion of solar
energy is to substitute for or supplement fossil fuels, economical energy production
is essential. Considering that the amount of energy in foods accounts for only about
5% of the anthropogenic primary energy use (Sakurai and Masukawa 2007), we can-
not expect large amounts of additional energy to be produced from land biomass,
and thus we have proposed large-scale H2 production utilizing mariculture-raised
cyanobacteria. In proposing the system described below, we do not intend to crit-
icize other systems such as the hydrogenase-based H2 production and algal fuels
(biodiesel).

17.2 Nitrogenase-Based Photobiological Hydrogen Production
by Cyanobacteria

17.2.1 Hydrogenase and Nitrogenase as Hydrogen-Producing
Enzymes

If large-scale H2 production by mariculture is to be practical, the candidate pho-
tosynthetic organisms must use H2O as the electron donor, thus narrowing the
possibilities to cyanobacteria and eukaryotic microalgae. Both hydrogenase and
nitrogenase are potential candidates as H2-producing enzyme (review: Rao and
Cammack 2001; for cyanobacteia: Tamagnini et al. 2002). In terms of the theoret-
ical maximum energy conversion efficiency, hydrogenase (32.9% vs. 550 nm light
(single-stage process), 22% (two-stage process)) is superior to nitrogenase (13.9–
16.5%) (cf. C3 photosynthesis: 27.6%, C4 photosynthesis: 20.7–24.5%) (Sakurai
and Masukawa 2007). However, hydrogenase catalyzes a reversible reaction and
absorbs H2 in the presence of O2, when storage metabolites are exhausted, dur-
ing the night or when shady conditions prevail. Hydrogenase-based processes
therefore require frequent harvesting of H2 or some measures to restrict H2
reabsorption.

17.2.2 Hydrogen Production by Nitrogenase

Nitrogenase catalyzes the reduction of nitrogen to ammonia with reduced ferre-
doxin/flavodoxin as electron donors and with H2 as the inevitable by-product. The
reaction is expressed under the optimal conditions for nitrogen fixation, as

N2 + 8e− + 8H+ + 16 ATP → H2 + 2 NH3 + 16(ADP + Pi) (17.1)

and more generally as

(1 − n)N2 + 8e− + 8H+ + 16 ATP → (1 + 3n)H2 + 2(1 − n) NH3 + 16 (ADP + Pi)
(17.2)
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Nitrogenases typically bind a MoFeS cluster (Mo type) as the catalytic center,
but some bind V (V type) or Fe (Fe-only type) instead of Mo. The latter types of
enzymes are less efficient in nitrogen fixation, in other words, more favorable than
the Mo type for H2 production in the presence of N2.

In the absence of N2 (e.g., under Ar), all the electrons are allocated to H2
production:

2e− + 2H+ + 4 ATP → H2 + 4 (ADP + Pi) (17.3)

Although nitrogenase is less efficient in H2 production than hydrogenase in terms
of its theoretical maximum energy conversion efficiency as the reaction consumes
large amounts of ATP, it has the merit of catalyzing a unidirectional production
of H2.

17.2.3 Heterocyst-Forming Cyanobacteria

There are several types of strategies adopted by cyanobacteria in order to protect
O2-sensitive nitrogenase from the potentially dangerous O2-evolving photosyn-
thesis. We are using heterocyst-forming cyanobacteria because they are amenable
to genetic engineering (Elhai and Wolk 1988) and because the whole-genome
sequence of Nostoc/Anabaena sp. PCC 7120 strain was the first to be determined
among the nitrogen-fixing cyanobacteria groups.

17.2.4 Effects of Inactivation of Hydrogenase Activity by Genetic
Engineering

The entire process of photoinduced H2 production is depicted as (1) production of
organic compounds by ordinary C3 photosynthesis accompanied by O2 evolution in
vegetative cells, (2) supply of organic compounds to cells specialized for N2 fixation
(heterocysts) that is devoid of O2-evolving photosynthesis, (3) H2 evolution (and N2
fixation) by nitrogenase using organic compounds as electron donors. The presence
of hydrogenases that reabsorb the H2 is considered to be one of the major obstacles
to achieving efficient solar energy conversion by a nitrogenase-based system, and a
hydrogenase mutant of Anabaena variabilis ATCC 29413 generated by disrupting
the hup gene was shown to have higher hydrogen-producing activity than the wild
type (Happe et al. 2000). We have also created genetically defined hydrogenase-
inactivated mutants of Nostoc/Anabaena sp. PCC 7120 and have shown that the
mutants produced H2 at four to seven times the wild-type rate (Masukawa et al.
2002).

Since our H2 production system is based on photosynthesis and nitrogenase
activities of cyanobacteria, we speculated that the wild-type strain with high nitro-
genase activity under light might be a good candidate as the parent strain for further
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improved photobiological H2 production through genetic engineering. Nostoc sp.
PCC 7422 was chosen from 12 other heterocystous strains because it has the high-
est nitrogenase activity. We sequenced the uptake hydrogenase gene (hup) cluster
from the strain and constructed a mutant (�hupL) by insertional disruption of the
hupL gene (the wild-type cells of this strain showed almost no Hox activity). The
�hupL cells could accumulate H2 to about 29% (Yoshino et al. 2007) in several
days, in the presence of O2 production (Fig. 17.1).

Fig. 17.1 Accumulation of H2 by Nostoc sp. PCC 7422 �hup mutant in the presence of evolved
O2. A total of 15 ml of cells containing 30 μg chlorophyll a grown in BG110 for 2 days were trans-
ferred to 25-ml flasks, and the H2 (�) and O2 (◦) concentrations in the gas phase were determined
daily. Light: 12-hour light–12-hour dark cycle (Kitashima et al. unpublished)

17.3 Outline of the Process Design of Large-Scale Hydrogen
Production in the Future Utilizing Mariculture-Raised
Genetically Improved Cyanobacteria

One of the plausible economical large-scale H2 production systems for the future
may be growth of cyanobacteria in large bioreactor floating on the sea surface, pro-
duction of H2 and its repeated harvesting (followed by H2 gas separation), and
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finally recycling of the waste cells as fish feed (Sakurai and Masukawa 2007).
A plausible future process design is shown in Fig. 17.2.

Fig. 17.2 Outline of photobiological H2 production and transportation. (a) flowchart of process
and (b) required process equipment. See text for (A–E)

17.3.1 H2 Production in Bioreactors Floating on the Surface
of the Sea

Cyanobacteria cells are first grown in a medium containing water and mineral
nutrients under air plus CO2 (e.g., 5%) fixing nitrogen in large plastic bioreactors
consisting of several layers of plastic film, with at least one having low permeability
to H2. Each floating bag may be large (e.g., 25 m wide and 200 m long). Some
areas of calm sea (such as inland seas) and ocean (e.g., the calm belts, the doldrums
near the equator, and the horse latitudes of about 30◦ north or south) seem to be
especially suitable for such large-scale mariculture in inexpensive plastic bags. If
the medium is based on freshwater, the bioreactor would spread over the sea surface
since the medium would have a lower density than the surrounding seawater. After
a period of cell growth, simply decreasing the N2 concentration (e.g., 1% N2 in 5%
CO2 plus Ar) will prevent further growth while at the same time promote continuous
H2 production with concomitant evolution of O2.
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17.3.2 Repeated Harvesting of Crude H2 and Initial Gas
Separation

From the following assumptions, about 0.84 m3 (STP) of H2 m−2 of the bioreactor
is produced in 2 months:

– Average solar energy received on the sea surface: 1,500 kWh m−2 year−1.
– Energy conversion efficiency by cyanobacteria: 1.2% (solar energy into H2).
– H2 produced in 2 months: 3 kWh m−2 = about 0.84 m3 (STP) (with evolution of

0.42 m3 O2) m−2 of the bioreactor surface.
– If the volume of the initial gas phase is 0.5 m3 (STP) m−2 of the bioreactor, then

the final concentration of H2 is about 48% (v/v) (0.84/(0.5 + 0.84 + 0.42)).

The gas mixture is harvested to a factory ship with hoses every 2 months with the
assistance of working boats, and H2 is initially separated from O2 by gas-selective
membranes (e.g., H2 permeates a polychlorovinylidene film about 38 times faster
than O2, and the H2 concentration can be increased to about 97% by a single
operation). (This process of the initial separation is tentative.)

17.3.3 Further Purification of H2

Contaminating O2 (about 1.3%) is removed either by a second cycle of separation
with gas-selective membranes or by using a catalyst (which would consume two
volumes of H2 for each volume of O2). The H2 is finally purified by pressure swing
adsorption (PSA) on the factory ship.

17.3.4 Compression or Transformation to a Form Suitable for
Transportation by Ship and Storage

For long-distance transportation of purified H2 from the sea surface to the port,
its volume should be greatly decreased by some means, possibly by compression
(other possibilities: liquefaction, adsorption to alloy, etc). The H2 is compressed
into storage containers, transported by ships to final destination ports, unloaded,
and stored awaiting final distribution.

17.4 Estimation of the Future Production Cost–Energy Balance

There are considerable uncertainties regarding the production processes and, there-
fore, the cost estimates of H2 production are subject to change. Nevertheless, we
present here an estimate so that the readers may understand the potential for such a
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H2 production system. We have detailed the costs of each item in the process sep-
arately so as to allow for the identification of the parts of the process that may be
improved in order to reduce the total cost. With advances in relevant technologies, it
will also be possible to recalculate the cost based on improved assumptions. In cal-
culating the cost of H2, the currency exchange rates assumed are US $1 = 0.7 C =
95 ¥. As the value of energy of H2, a high heating value (HHV, the oxidation product
is condensed water) of 12.8 MJ m−3 is assumed (the low heating value (LHV, the
product is vapor) is 10.8 MJ m−3, about 84% of HHV).

17.4.1 H2 Production in Bioreactors Floating on the Sea Surface

A number of assumptions need to be made to estimate the net energy yield of the
initial process. These can be divided into four areas.

17.4.1.1 Energy Conversion Efficiency (in the Future)

Cyanobacteria photobiologically convert solar energy (1,500 kWh m–2 yr–1, total
radiation) into H2 at 1.2% efficiency, resulting in 18 kWh or 64.8 MJ of H2 m–2 yr–1.

17.4.1.2 Photobioreactor

The bioreactor is composed of three layers of plastic bags, for a total of six layers
(sunny side and shady side) of transparent plastic film. The innermost bag holds
the cyanobacterial culture, the middle bag has very low permeability to H2, and the
outermost bag serves as mechanical protection for the inner bags. The thickness of
each film is 0.08 mm, and therefore 480 cm3 of plastic per m2 of the bioreactor’s
sunny side surface is required. Assuming an average plastic price of $2–4 kg−1 (or
liter), the material cost is 96–192 cents m−2 of bioreactor. The used plastics can be
recycled many times to regenerate plastic films at about half the price of the new
materials. The above assumptions result in the cost of the bioreactor being about
48–96 cents m−2 of bioreactor surface per year assuming once-a-year renewal.

Note that plastic film of 480 cm3 is assumed to be produced by consuming 360 ml
of crude oil for processing, which is equivalent to 13.9 MJ (3.9 kWh) m−2 year−1.
The plastics can be recycled at an energy cost of 20% of the feedstocks (about 0.78
kWh, 4.3% of H2 produced). The amount of energy in feedstocks derived from fossil
fuels can be decreased further because currently H2 generated from fossil fuels is
used as a part of the feedstocks for plastic film production, and photobiologically
produced H2 can replace some part of it.

17.4.1.3 Culture Medium

Nitrogen-fixing cyanobacterial cells can grow in liquid media without combined
nitrogen. Cyanobacteria are cultured in liquid medium 20 cm in depth (200 l m−2

or 0.2 ton m−2 of the bioreactor) utilizing freshwater. Potentially growth-limiting
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nutritional elements (especially the major ones, 18 mM K2HPO4, 0.03 mM FeCl3)
are added to the medium as “fertilizers” akin to agricultural practices (5–20 cents).
Once grown, cyanobacteria continuously produce H2 allowing repeated harvesting,
and further addition of nutrients and CO2 is not necessary. If the medium is renewed
twice a year, the cost of chemicals is calculated to be about 10–40 cents m−2 of
the bioreactor per year (Sakurai et al. 2009). The cost of water for the medium
(0.2 ton m−2) is calculated to be 1.5–16 cents m−2 of the bioreactor surface from
a reference price of water for industrial use sold by local governments in Japan at
about 7.5–80 cents ton−1. If the medium is renewed twice a year, the cost of water
is 3–32 cents m−2 of the bioreactor per year.

As the water substrate for H2 production, 18 g of H2O can generate 22.4 l (STP)
of H2, which corresponds to 1 kg of H2O being converted to 1.24 m3 of H2, with
an energy content equivalent to about 0.35 l of crude oil (3.3 m3 H2 is equivalent to
about 1 l of crude oil in enthalpy). The cost of water substrate used as the electron
donor is thus negligible. Using eutrophic water could further reduce the cost of
chemicals in the culture media.

17.4.1.4 Cost of Culture Gases

The initial gas phase composition is 5% CO2, 1% N2, and 94% Ar (0.5 m3 m−2 of
bioreactor surface). The price of Ar is assumed to be $56 (a bulk rate), which leads
to about 5 cents (2 cents with recycle, see below 17.4.2) m−2 of bioreactor. The
costs of CO2 and N2 are small compared with Ar.

The sum of the Costs A1-4 is calculated to be 63–170 (cents m−2).
In addition to the Costs A1-4, the following costs will be incurred in the bio-

logical H2 production stage: cyanobacteria growth costs, labor costs, the cost of
ships, interest on capital goods, and the cost of marine transportation of production
materials to the site of H2 production.

17.4.2 Repeated Harvesting of Crude H2 and Initial Separation

The gas mixture is harvested every 2 months (containing about 48% H2) from biore-
actors to a factory ship with the aid of a small group of boats. H2 is partially purified
in the initial separation process by gas-selective membranes, Ar is recycled to biore-
actors, and O2 is removed. We assume that 2% of energy in H2 is lost in the initial
separation process.

17.4.3 Further Purification of H2

Contaminating O2 (about 1.3%) is either removed by the catalyst consuming the two
volumes of H2 (2.6% of the energy). Thereafter, the H2 is finally purified by pressure
swing adsorption (PSA) on the factory ship with an overall energy efficiency of 85%
with losses of 15% of energy. A subtotal of about 20% of energy is lost in 17.4.2
and 17.4.3.
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17.4.4 Compression for Transportation by Ship

The purified H2 is compressed to 35 MPa (about 15 kg/m3, energy content: 2.1
GJ/kg).

In the presentation “Well-to-Wheels Analysis,” Joseck and Wang (2007) esti-
mated that 2,000 and 7,200 Btu (British thermal unit) of energy are required for
compression (to about 35 MPa) and storage, respectively (about 8% in total), for the
H2 (116,000 Btu (100%)) originally generated by electrolysis powered by electric-
ity from wind. By analogy, we assume that 8% of energy in 17.4.3 after PSA (80%
energy yield) is lost in this process, which is equivalent to 6.4% of H2 energy in the
starting gas in 4.1A.

17.4.5 Marine Transportation and Storage

H2 purified and compressed on a factory ship is transported to final destination ports
in storage tanks by container ships. The landed H2 can be transported either by
pipelines or by trucks to end users. The compressed H2 in containers is transported
to ports by a container ship and delivered to final users. If the distance between the
marine area of H2 production and the port is 2,000 km, we assume that the energy
lost is about 4% of H2.

17.5 Estimation of Net Energy Production

We assume that 18 × 106 kWh of H2 (100%) is produced per km2 per year and 6%
of energy is lost in the process A (including bioreactors), resulting in the subtotal
energy losses (A–E) of about 36%: A (6%), B (5%), C (15%), D (6%), and E (4%).
In addition to the above losses, fuels for a factory ship and a group of working
boats will be required (estimated to be 4%). As a total of about 40% of energy in
photobiologically produced H2 is lost, the net energy of H2 at the port is 10.8 ×
106 kWh (270 ton) km−2 year−1 (equivalent to about 930 tons of gasoline (11.6
kWh kg−1) or 980 tons of crude oil (10.8 kWh kg−1)). This amount of energy will
be more than enough to cover the energy cost required for manufacturing PSAs,
compressors, storages, factory ships, cargo ships, etc., and therefore photobiological
H2 production would be able to produce a large quantity of net energy.

17.6 Estimation of Cost

17.6.1 Cost Analysis for Chlamydomonas-Based H2 Production

The cost of hydrogenase-based photobiological H2 production from the green alga
Chlamydomonas reinhardtii was analyzed by Amos (2004). One of his assumed
production systems is depicted roughly as follows: (1) growth of cells by ordinary
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photosynthesis in ponds, (2) transfer of cells to anaerobic bioreactor ($1 m−2, ponds
covered with transparent plastic films) and H2 production (about 39 kWh m–2 yr–1,
in Arizona; estimated solar radiation of about 2,600 kWh m−2 yr−1), (3) harvesting
and purification of H2 (compressor and PSA), and (4) compression of H2 to 20 MPa
(storage compressor and high-pressure storage). Assuming that ongoing improve-
ments in technology are successful, he estimated a H2 sale price of $8.97 kg−1 or
22.8 cents kWh−1. The cost includes a 15% return on investment, and capital-related
charges comprise about 90% of the cost. The largest cost arises from point 4, that
is, compression and high-pressure storage (especially the latter), and is estimated
to be $7.75 kg−1 of H2, about 86% of the sale price. If the reactor is more expen-
sive, the estimated H2 sale price rises to 34.4 and 1,110 cents kWh−1 for a reactor
price of $10 and 100 m−2, respectively, indicating that reduction of reactor cost is
very important in achieving economically viable production. By contrast, we are
proposing a reactor consisting of three layers of plastic bags with a cost of about
$0.48–0.96 m−2.

17.6.2 Estimation of the Cost of H2 Production by Cyanobacteria

17.6.2.1 Comparison with Photobiological H2 Production by Chlamydomonas

Overall, our cyanobacterial H2 production system (System I) is rather similar to that
of Chlamydomonas (System II) (Amos 2004) with some notable differences in H2
production in the bioreactors.

Comparisons:
(1) Cell culture. The initial H2 production costs from the bioreactors in System II

are estimated to be about 1.45 and 9.34 cents kWh−1 of the total capital costs assum-
ing the reactors cost $1 and 10 m−2, respectively. In System I, the reactor cost is
estimated to be $0.48–0.96. In System I, a single type of bioreactor is required, and
combined nitrogen can be omitted from the culture medium, which is renewed twice
a year. In System II, a system with two continuous-flow reactors are used. Therefore,
System II requires much more water and nutrient, notably combined nitrogen, than
System I. In System I, ships and boats are required. The amounts of H2 produced
are 18 and 39 kWh m–2 yr–1 in System I and II, respectively. Overall, we simply
assume here that the cost of the biological H2 production stage is about the same
(1.5 cents kWh−1).

(2) Harvesting of H2and initial separation. In System I, initial separation of H2
from O2 is required, but not in System II. We tentatively assume a higher cost of 1
cent (about 4% of the final sale) kWh−1 of H2 as the final commodity. In System
I, the gas is harvested at any time (typically every 2 months), but in System II, gas
must be frequently harvested almost everyday or at least every week so that a higher
number of backup storage systems and more labor would be required. In System I,
no such backup system is required because the produced H2 just inflates the plastic
bags (see point 4).

(3) PSA and high-pressure storage. They are required in both systems, but the ini-
tial concentration of H2 differs: about 48% in System I and nearly 100% in System
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II. The pressure is higher in System I (35 MPa) than in System II. We assume an
additional cost of 0.8 cent (about 3% of the final sale) kWh−1 of the final commod-
ity H2 for PSA and compression. As 15% more H2 energy is lost in PSA in System
I, about 0.2 cents should be added (the cost of this process in System II is about 1.5
cents kWh−1 of H2).

(4) Marine transportation. In System I, marine transportation of the product H2 is
required, but not in System II. The cost is estimated from the following assumptions:
(4.1) The distance from the site of H2 production to port is 2,000 km. If the speed
of the freighter is 800 km day−1 (4,000 km of a round trip requires 5 days), and if it
takes a half-day each for uploading and unloading the high-pressure storage, a total
of 6 days will be required for one round trip. Therefore, a freighter may carry H2
about 60 times a year. (4.2) The mass percent of compressed H2 is assumed to be
8% (% in weight of H2/(H2 + high-pressure storage)). A 10,000 ton-class freighter
carries 800 ton of H2 (about 31.5 × 106 kWh) to a port at a time or 48 × 103 ton
of H2 (about 1.9 × 109 kWh) (collected from 180 km2 of bioreactors) a year. The
annual sale of 10,000 ton-class freighters is assumed to be $20 million, and the cost
of H2 transportation is calculated to be 1.1 cents kWh−1.

Because of the marine transportation used in System I, a higher capacity storage
system is required than for System II. However, as discussed in Section 17.6.1, point
2, System II requires a greater number of storage backup systems. We assume here
that the total storage capacity is about the same for the two systems.

17.6.2.2 Estimation of the Price of H2 Produced by Mariculture-Raised
Cyanobacteria

Amos (2004) estimated a H2 sale price of 22.8 cents kWh−1 ($8.97 kg−1) assuming
the reactor cost of $1 m−2. From the above-described comparisons, the sale price of
H2 produced by cyanobacteria (System I) is calculated to be 25.9 (22.8 + 1 + 0.8 +
0.2 + 1.1) cents kWh−1 plus costs of the factory ship and working boats and labor
costs thereof. The cost of the factory ship itself is calculated to be very small (about
0.01 cent kWh−1) from the assumptions; the price of a factory ship of 40,000 DWT
(dead weight ton) is $2 million, life: 40 years, annual interest: 5%, the ship produces
1.9 × 109 kWh of H2 a year (see 17.6.2.1). The cost of working boats is also small.
The labor of the crew is assumed to be 0.5 cent kWh−1: 50 persons, annual salary
of $100,000 per person (including the cost of management), divided by 1.9 × 109

kWh of H2. From the above assumptions, the sale price of H2 is calculated to be
26.4 cents kWh−1.

In System II, the greatest cost arises from point 4, that is, compression and high-
pressure storage (estimated to be 19.7 cents kWh−1 of H2 ($7.75 kg−1) of H2). If
this process can be omitted by directly connecting to H2 pipelines, then the final
price of H2 produced by Chlamydomonas drops from 22.8 to 7.2 cents kWh−1 of
H2 (Amos 2004). With the cyanobacteria system, if the bioreactors are floated near
land, and if a pipeline system is available, the final price of H2 will drop to about 11
cents kWh−1 of H2.
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17.7 Improvements Required in Biological Research

By increasing the energy conversion efficiency of photobiological H2 production,
the H2 selling price drops due to reduced bioreactor cost and reduced labor charges
per unit amount of H2. The theoretical maximum energy conversion efficiency of
photobiological H2 production is estimated to be 13.9–16.5% vs. 550-nm visible
light (about 6.3–7.4% vs. total solar radiation assuming that visible light (photosyn-
thetically active radiation, PAR) is 45% of the total solar radiation) (Sakurai and
Masukawa 2007). Under laboratory conditions, the efficiency of around 3.8% (vs.
visible light, which corresponds to about 1.7% vs. total solar radiation) was reported
by several groups (e.g., Yoshino et al. 2007). These values apparently exceed our
tentative target of 1.2%. However, these high efficiencies are only attained over
a relatively short period (several hours) under low light intensities of about one
twenty-fifth of full sunlight at the equator. Under outdoor conditions, a reported
best efficiency over a relatively long period (days) is about 0.1% (Tsygankov et al.
2002). Thus, more research is needed to improve the long-term outdoor efficiency.

17.7.1 Potential Methods for Further Improvement in Efficiency

Potential methods for improvement of outdoor energy conversion include (1) reduc-
tion of antenna size, (2) improvement of nitrogenase (site-directed mutagenesis, use
of V-type nitrogenase, reduced concentration of homocitrate essential for efficient
nitrogen fixation; Masukawa et al. 2007), (3) improvement of culture conditions,
(4) selection of promising wild-type strains followed by genetic engineering (e.g.,
Yoshino et al. 2007).

17.8 Conclusions

The future price of photobiologically produced H2 at 1.2% energy conversion effi-
ciency by mariculture-raised cyanobacteria is calculated to be 26.4 cents kWh−1 of
H2. If H2 pipelines were available the price would drop to 11 cents kWh−1 of H2.
Although this is more expensive than the current price of crude oil, $50–150 per bar-
rel (about 159 l), equivalent to 2.9–8.8 cents kWh−1, and gasoline (the retail price of
$1.5–4 per gallon is equivalent to about 4–11 cents kWh−1), the price of H2 could be
further decreased by improving the light conversion efficiency and by advances in
other relevant technologies. Research and development of photobiological renew-
able energy sources should be more earnestly pursued because photobiologically
produced H2 contributes to the reduction of the greenhouse gas CO2 emission, and
H2 fuel cells are expected to be more energy efficient than internal combustion
engines.
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Chapter 18
Hydrogenases and Hydrogen Metabolism
in Photosynthetic Prokaryotes

Christoph Schwarz, Zach Poss, Doerte Hoffmann, and Jens Appel

Abstract Hydrogen plays important, different roles in a variety of photosynthetic
prokaryotes. The variety of different hydrogenases, their catalytic sites, matu-
ration, and genetic organization are reviewed in the context of what is known
about these enzymes from model non-photosynthetic organisms. Examples from
specific cyanobacteria and various anoxygenic photosynthetic bacteria are dis-
cussed in detail along with what is known about their metabolic role. The latest
findings on transcriptional regulators and the metabolic conditions that regu-
late the expression of hydrogenases in various photosynthetic prokaryotes are
emphasized.

18.1 Biological Impact of Hydrogen Metabolism

Hydrogen (H2), with 0.5–0.6 ppm, is the second most abundant trace gas in the
atmosphere (Novelli et al. 1999). Due to photochemical oxidation of hydrocarbons
in the upper layers of the atmosphere, combustion of fossil fuels and biomass burn-
ing, it is constantly produced. Simultaneously, a large portion of this H2 (75–77%)
is consumed by microbial communities in the soil (Conrad 1996) and serve the
energetic needs of these organisms. In the archaean atmosphere H2 concentrations
were certainly higher than at present and hydrogen likely played an important role
in supporting life on the early earth. This is also valid for the first photosynthetic
prokaryotes. They could have used hydrogen to provide reducing power for CO2
fixation or as a convenient electron donor for their photosystems. Both processes are
found in many of the contemporary anoxygenic photosynthetic bacteria. Hydrogen
metabolism in photosynthetic prokaryotes may generally involve the action of two
different enzymes, nitrogenase and hydrogenase.
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Nitrogenase produces hydrogen as a by-product of the nitrogen fixation pro-
cess according to the following reaction: 16 ATP + 16 H2O + N2 + 10 H+ +
8e– ⇒ 16 ADP + 16 Pi + 2 NH4 + H2 (Rees et al. 2005). Additionally, in the
absence of nitrogen or other substrates, nitrogenase catalysis continues, reducing
protons and thereby releasing especially large amounts of hydrogen (Benemann and
Weare 1974). The second enzyme participating in hydrogen cycling is hydrogenase,
originally discovered and named by Stephenson and Stickland (1931). Generally
hydrogenases are enzymes catalyzing the reversible oxidation or evolution of hydro-
gen according to the following reaction: H2 ⇔ 2H+ + 2e– (Adams and Stiefel
1998). Hydrogenases are widely distributed in biological systems (Vignais et al.
2001; Schwartz and Friedrich 2006; Vignais and Billoud 2007). Hydrogen is used
as a metabolic exchange intermediate in many different microbial consortia. One of
these is a well-known prokaryotic isolate, Methanobacillus omelianskii, which has
later been shown to be a symbiotic association of two organisms that interact mainly
via interspecies hydrogen transfer (Bryant et al. 1967). Likewise, certain anaerobic
protozoa, which contain specialized organelles for fermentative energy generation,
the so-called hydrogenosomes, maintain intracellular methanogens to consume the
produced H2 (van Bruggen et al. 1983; Finlay and Fenchel 1992). Knowledge about
these tight connections, which depend on H2, led to the hypothesis that the first
eukaryotes arose from similar microbial interactions (Martin and Müller 1998).

However, hydrogen cycling is also an important process within a single micro-
bial cell. Many fermentative processes release H2, which serves to dispose of
excess reducing equivalents. In addition nitrogenase constantly produces H2 as a
by-product of N2 fixation. Although a certain amount of this H2 will escape from
the cell, being used by associated microbial H2 oxidizers or ending up in the atmo-
sphere, many prokaryotes, especially diazotrophs, including cyanobacteria and the
majority of the anoxygenic phototrophs, are equipped with several hydrogenases.
Some of these are solely consuming or uptake hydrogenases, which are linked
to the respiratory chains. These enzymes enable the intracellular recycling of H2
for energy generation. Importantly, the simultaneous consumption of H2 keeps H2-
evolving processes feasible, since the accumulation of higher concentrations of H2
would be thermodynamically unfavorable. However, certain ecological niches in
coastal zones, especially microbial mats, have been reported to have very high pho-
tosynthetic activity and significant H2 metabolism. The H2 partial pressure in gas
bubbles on the surface of Lyngbya mats, e.g., varies in the range of four orders of
magnitude following a 24-h diel cycle. Maximum H2 levels during night reach 10%
(Hoehler et al. 2001, 2002). Since H2 concentrations were observed to be highest
in the upper 2 mm of the mat body, the observed H2 evolution was attributed to
the cyanobacteria which dominate these layers. Primary productivity of the mats
is dependent on photosynthetic light harvesting during the day, but most of the H2
evolved is thought to originate from nitrogen fixation and fermentation during the
night phases (Fay 1992; Severin and Stal 2008). This review shall discuss hydro-
gen metabolism and the hydrogenase inventory of selected phototrophic prokaryotes
with particular emphasis on transcriptional regulation.



18 Hydrogenases and Hydrogen Metabolism in Photosynthetic 307

18.2 Classification and Distribution of Hydrogenases

According to the metal content of their active sites hydrogenases are classified into
three major groups, Fe, FeFe, and NiFe (including NiFeSe) hydrogenases.

18.2.1 NiFe Hydrogenases

NiFe hydrogenases can further be subdivided into four phylogenetically distinct
groups: (1) the H2 uptake hydrogenases, (2) cyanobacterial uptake- and sen-
sor hydrogenases, (3) different soluble hydrogenases, and (4) membrane-bound,
energy-converting, H2-evolving hydrogenases. A detailed description of the various
characteristics of hydrogenases within the specific groups has been covered by sev-
eral reviews (Vignais and Colbeau 2004; Vignais and Billoud 2007; Vignais 2008)
and shall therefore only be reviewed in brief.

Group 1 enzymes are membrane-bound, heterodimeric, and unidirectional
hydrogen-consuming (uptake) hydrogenases which enable cells to grow on hydro-
gen as a substrate. Hydrogenase-mediated oxidation of hydrogen is coupled to
a respiratory chain thereby leading to the generation of a proton motive force.
Hydrogenase structural genes are typically associated with two downstream genes,
one encoding a hydrogenase-specific protease, while the other encodes a membrane-
bound b- or c-type cytochrome. The latter cytochromes link hydrogen consumption
to the reduction of the quinone pool and finally respiration which besides oxygen
mostly uses alternative electron acceptors like NO3

–, SO4
2–, or fumarate. The small

subunit of group 1 enzymes contains an N-terminal targeting sequence which medi-
ates membrane translocation via the TAT pathway. Among the group 1 enzymes
there are hydrogenase 2 from Escherichia coli, Hyn from Thiocapsa roseopersicina
(Rakhely et al. 1998), and HupSL enzymes found in Rhodopseudomonas palustris,
Roseovarius sp. HTCC2601 as well as Chlorobi.

Hydrogenases in group 2 are very similar to group 1 enzymes but can be distin-
guished by the lack of an N-terminal signal peptide responsible for the membrane
targeting. Among these cytoplasmic hydrogenases there are the cyanobacterial
uptake hydrogenase (group 2a) and the regulatory hydrogen sensors (group 2b).
Cyanobacterial uptake hydrogenases are exclusively found in nitrogen-fixing
strains. They are membrane associated and thought to recover energy released
in the form of hydrogen during the nitrogen fixation process (Appel and Schulz
1998; Tamagnini et al. 2007). In accordance with their physiological function gene
expression is coregulated with nitrogenase. The second subclass within group 2 is
the sensor hydrogenases. This type of hydrogenase is unable to perform normal
catalytic hydrogen oxidation, rather they function as sensors of hydrogen availabil-
ity and are the sensor component of a two-component signal transduction system.
Examples of regulatory hydrogenases are HoxBC of Ralstonia eutropha or HupUV
of Rhodobacter capsulatus (Friedrich et al. 2005; Vignais et al. 2005), which are
discussed in further detail in Section 18.6.1.
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A characteristic feature of group 3 hydrogenases is that they contain addi-
tional subunits, which allow binding of soluble cofactors like NAD, NADP, or
F420 (8-hydroxy-5-deazaflavin). Examples of group 3 enzymes are the heteropen-
tameric NAD(P)-reducing HoxEFUYH found in cyanobacteria, T. roseopersicina,
Allochromatium vinosum, R. eutropha as well as the Fpo of Methanosarcina mazei
(Tamagnini et al. 2007; Rakhely et al. 2004; Long et al. 2007; Schneider and
Schlegel 1976; Baumer et al. 2000). Finally group 4 is represented by the hydro-
genase 3 and 4 (Hyc and Hyf) of E. coli, the CO dehydrogenase complex of
Rhodospirillum rubrum, Mbh of Pyrococcus furiosus (Sapra et al. 2000) as well
as the Ech (energy-conserving hydrogenase) in Methanosarcina barkeri (Kunkel
et al. 1998; Hedderich and Forzi 2005). Enzymes belonging to this group are
membrane-bound multisubunit hydrogenases which couple H2 evolution to energy
conservation.

18.2.2 FeFe Hydrogenases

FeFe hydrogenases are frequently found in anaerobic prokaryotes like Clostridia,
Desulfovibrio, Shewanella, or Thermotoga (Vignais and Billoud 2007) but
also occur in chloroplasts of eukaryotic algae (Chlamydomonas, Chlorella,
Scenedesmus) as well as in the hydrogenosomes of protozoan parasites
(Trichomonas, Giardia, Entamoeba, Nyctotherus) and anaerobic chytridiomycota
(Neocallimastix, Piromyces) (Happe et al. 2002; Hackstein et al. 1999). Generally
FeFe hydrogenases may be separated into three families: (1) cytoplasmic or soluble,
monomeric enzymes, for example, the FeFe hydrogenases of Clostridium pas-
teurianum; (2) periplasmatic, heterodimeric enzymes; and (3) soluble, monomeric
enzymes, found in algal chloroplasts. Among the photosynthetic bacteria, FeFe
hydrogenases are almost exclusively found only in the gram-positive heliobacte-
ria (Heliobacterium modesticaldum, Heliobacterium mobilis). However, homologs
of HydA are present in R. rubrum and R. palustris strains (Meyer 2007), but nei-
ther of the genomes of these entirely sequenced phototrophic strains harbor FeFe
hydrogenase maturation genes. It still remains to be elucidated if these strains really
synthesize active FeFe hydrogenases.

18.3 Hydrogenase Anatomy and Active Site Biochemistry

18.3.1 NiFe Hydrogenases

Initial progress in the understanding of hydrogenase active site biochemistry was
achieved by a combination of spectroscopic analysis and X-ray crystallography
(Armstrong and Albracht 2005). The elucidation of crystal structures of NiFe hydro-
genases from Desulfovibrio gigas and Desulfovibrio vulgaris (Volbeda et al. 1995;
Higuchi et al. 1997) revealed for the first time detailed insights into the molecular
organization and active site composition (Fig. 18.1). NiFe hydrogenases consist of
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(a) (b)

Fig. 18.1 Active site biochemistry of (a) a standard [NiFe] hydrogenase (based on the crystal
structure of D. gigas) and (b) a [FeFe] hydrogenase (CpI of C. pasteurianum)

two core components which are found in all NiFe hydrogenases, the large (α, around
60 kDa) and the small subunit (β, about 30 kDa). The large subunit of the NiFe
hydrogenases carries a bimetallic active site. The active site nickel atom is coordi-
nated by four highly conserved cysteine thiolates, two of which are also involved in
bridging to the iron ion. The iron ion additionally has three diatomic ligands, one
carbon monoxide (CO) and two cyanide (CN–) as was determined by Fourier trans-
form infrared spectroscopy (Volbeda et al. 1996; Happe et al. 1997; Pierik et al.
1999). While the active site iron is Fe2+, the nickel may be found in two oxida-
tion states Ni2+ or Ni3+ (Armstrong 2004). The two metal atoms in the dimetallic
center are linked by an additional bridging ligand, known as ligand “X,” which
shows varying composition according to the activation state of the enzyme and is
discussed in Section 18.4.3. From the crystal structures it can be concluded that the
active site can only be accessed via a hydrophobic channel (Fontecilla-Camps et al.
1997; Montet et al. 1997). This channel is to be considered the hydrogen as well
as oxygen transport pathway to the deeply buried active site, while protons released
during the oxidation of hydrogen are thought to reach the enzyme surface via four
histidines and a glutamate, involving internal water molecules (Volbeda et al. 1995;
Fontecilla-Camps et al. 1997). Large and small subunits of the hydrogenase assem-
ble as a globular heterodimer, exhibiting a large contact surface (Volbeda et al. 1995;
Higuchi et al. 1997; Garcin et al. 1999). The small subunit of the NiFe hydrogenases
in D. gigas contains three FeS clusters, a [4Fe-4S] cluster in close proximity to the
active site (13 Å), a [3Fe-4S] cluster within a distance of 12 Å, and another [4Fe-4S]
cluster located at the enzyme surface, separated again by about 12 Å from the sec-
ond (Volbeda et al. 1995). This linear arranged FeS cluster wire was proposed to
mediate electron transfer from the active site to the enzyme surface, where they can
be donated to acceptors, e.g., cytochrome c (Vignais et al. 2001).

18.3.2 FeFe Hydrogenases

FeFe hydrogenases are mostly composed of one or two subunits, although het-
erotrimeric and tetrameric forms are known as well. Similar to the NiFe hydro-
genases the essential key information about the organization and the active site
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biochemistry of the H cluster were mainly derived from X-ray crystallographic data.
The crystal structures of the FeFe enzymes from C. pasteurianum and Desulfovibrio
desulfuricans (Peters et al. 1998; Nicolet et al. 1999) led to the discovery of an
FeFe active site coordinated by five diatomic ligands: 1 CO and 1 CN– per Fe plus
another CO bridging the two metal ions (Fig. 18.1). While the bimetallic center was
shown to be additionally bridged by a non-protein dithiolate (propane dithiolate,
dithiomethylamine, or dithiomethylether), it is also bound to a [4Fe-4S] cluster via
a bridging cysteine thiolate (Nicolet et al. 2001; Pandey et al. 2008). FTIR (Fourier
transform infrared spectroscopy) experiments revealed reversible inhibition of FeFe
enzymes by carbon monoxide (Lemon and Peters 1999).

18.4 Hydrogenase Maturation

18.4.1 NiFe Hydrogenases

The assembly of an intricate active site, like that of NiFe hydrogenases, that con-
tains toxic ligands, requires several accessory proteins, which have been designated
Hyp for “hydrogenase pleiotropic,” due to their parallel effect on the activity of all
hydrogenases in E. coli. Most of the current knowledge about the maturation of
NiFe hydrogenases has been derived from early studies of the E. coli hydrogenase
3 (Hyc) by Böck and coworkers. The assembly and maturation of hydrogenase 3
in E. coli involves a minimal set of at least six Hyp proteins, HypA, HypB, HypC,
HypD, HypE, HypF, and an endoprotease, HycI. Hydrogenase maturation consti-
tutes a multistep process which is initiated by (a) the biosynthesis of the diatomic
ligands (CO, CN–) that are coordinated to an iron ion, followed by (b) nickel inser-
tion and (c) endoproteolytic activation of the mature complex (Böck et al. 2006;
Forzi and Sawers 2007).

The present model (derived from E. coli) proposes that initially iron is coor-
dinated to a complex of HypC/HypD through an N-terminal thiolate on HypC
(Blokesch and Böck 2002). Then the cyanide ligands are synthesized by HypF and
HypE. During this process HypF acts as a carbamoyltransferase and transfers the
carboxamido group of carbamoylphosphate to the thiolate of the C-terminal cysteine
of HypE in an ATP-dependent reaction. This HypE thiocarboxamide intermediate
is then dehydrated via another ATP-dependent phosphorylation and a subsequent
dephosphorylation, leading to HypE thiocyanate (Paschos et al. 2002; Reissmann
et al. 2003). The synthesis of HypE thiocyanate is followed by the transfer of the
cyano group to iron which is still bound to the HypC/HypD complex (Reissmann
et al. 2003). The origin of the CO ligand is not yet known. Generally acetate or CO2
might serve as substrates (Roseboom et al. 2005). Finally the HypC/HypD ligand
complex is thought to interact with the precursor of the large hydrogenase subunit
and releases HypD (Blokesch et al. 2004). Besides playing a crucial role in cofac-
tor assembly HypC additionally functions as a chaperone responsible for stabilizing
an open conformation of the large subunit (Drapal and Bock 1998; Magalon and
Böck 2000; Böck et al. 2006). HypC in E. coli specifically acts on hydrogenase 3
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while another paralogue, HybG, is responsible for maturation of hydrogenases
1 and 2. Both are able to interact with HypD (Blokesch et al. 2001). In contrast
both HypC homologs in T. roseopersicina are essential for and contribute equally to
the maturation of all four hydrogenases (Maroti et al. 2003).

Once the hydrogenase large subunit precursor containing Fe(CN)2(CO) is assem-
bled, nickel is to be introduced into the active site. In the presence of very high
concentrations of nickel its incorporation can take place without the help of addi-
tional accessory proteins (Waugh and Boxer 1986; Hube et al. 2002; Hoffmann et al.
2006). Nevertheless, under physiological concentrations the nickel requirement for
the hydrogenase active site is provided by a complex of the maturation factors HypA
and HypB. While HypA is a nickel-binding metallochaperone (Hube et al. 2002;
Atanassova and Zamble 2005), HypB displays GTPase activity and is thought to
provide energy for the switch-dependent incorporation of nickel as well as the sub-
sequent release of the maturation factors from the large subunit (Maier et al. 1993;
Gasper et al. 2006). In E. coli HypA specifically serves hydrogenase 3 while another
homolog, HybF, incorporates nickel into hydrogenases 1 and 2 (Atanassova and
Zamble 2005; Hube et al. 2002; Blokesch et al. 2004). The HypB protein, on the
other hand, carries both low- and high-affinity binding sites for nickel (Leach et al.
2005), which together might act as nickel storage/sequestering sites as suggested for
HypB in Bradyrhizobium japonicum (Olson and Maier 2000). Recently an interac-
tion partner of HybB, SlyD, a peptidylprolyl isomerase, was shown to stimulate the
release of nickel ions from HypB, thereby fulfilling an essential function in hydroge-
nase maturation (Zhang et al. 2005; Leach et al. 2007). The final step in hydrogenase
maturation requires the cleavage of a C-terminal peptide of the large subunit apopro-
tein complex, which is carried out by an endoprotease. In E. coli, which harbors four
different hydrogenases, endoproteolytic cleavage at the C-terminus is performed by
different, specific proteases, HyaD, HybD, HycI, in E. coli (Menon et al. 1991;
Rossmann et al. 1995). Although a number of bioinformatics studies have been
done on the putative cyanobacterial proteases (HoxW, HupW, e.g., Devine et al.
2009) only one study could show that the respective homolog in Synechocystis PCC
6803 is involved in hydrogenase maturation (Hoffmann et al. 2006).

It has been suggested that the presence of the C-terminal peptide keeps the
hydrogenase apoprotein active site in a particular conformation accessible to metal
insertion and may even serve as an interaction site between the large and the small
subunit of the enzyme (Sawers et al. 2004; Magalon and Böck 2000). While puri-
fied hydrogenase endoproteases do not contain a metal cofactor, they were shown to
cleave their substrate only when nickel has been incorporated (Fritsche et al. 1999).
Crystal structures of HybD (Fritsche et al. 1999) and HycI (Kumarevel et al. 2009)
revealed cadmium and calcium ions bound to specific sites within the proteases
which likely constitute potential nickel recognition sites. Theodoratou et al. (2000,
2005) suggested that the protease might recognize the Ni ion on the large subunit
precursor as a binding motif and this determines the cleavage site in a regiospe-
cific manner. Mutational studies, replacing the cysteine residues in the hydroge-
nase large subunit relevant to the coordination of nickel, supported this proposal
(Magalon and Böck 2000). Using NMR Yang et al. (2007) performed metal titration
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experiments and observed significant conformational changes of HycI upon nickel
binding which activate its proteolytic function. During recent years, a large num-
ber of X-ray structures of hydrogenase maturation proteins have been determined
(Dias et al. 2008, Watanabe et al. 2007; Rosano et al. 2002; Shomura et al. 2007;
Rangarajan et al. 2008; Watanabe et al. 2009) which are a promising starting point
to unfold the molecular details of the entire maturation process.

18.4.2 FeFe Hydrogenases

Surprisingly, the maturation of FeFe hydrogenases seems to rely on only three pro-
tein factors, HydE, HydF, and HydG. In eukaryotes HydE and HydF are found
fused in one open reading frame. Initial conclusive results came from deletion and
complementation experiments of the corresponding Chlamydomonas reinhardtii
genes (Posewitz et al. 2004). Subsequent attempts to heterologously coexpress
C. reinhardtii hydrogenase HydA1 along with maturation factor homologs from
Shewanella oneidensis or Clostridium acetobutylicum in E. coli successfully yielded
active enzyme (Posewitz et al. 2005; King et al. 2006). Similarly Boyer et al. (2008)
were able to obtain functional algal as well as bacterial FeFe hydrogenases in E. coli
cell-free lysates by coexpression with the maturation factors.

The accessory factors HydE and HydG belong to the radical SAM (S-adenosyl-L-
methionine) superfamily. Radical SAM enzymes are known to catalyze chemically
difficult reactions such as C–H and C–S bond formation, for example, during biotin
and lipoic acid metabolism (Fontecave et al. 2003). Both proteins, in their reduced
form, show SAM cleavage activity. UV and EPR spectroscopic investigations of the
Thermotoga maritima factors indicate that HydE binds two 4Fe-4S clusters while
HydG binds at least one and possibly another one (Rubach et al. 2005). The crystal
structure of HydE shows similarity to the triose phosphate isomerase barrel struc-
ture of the biotin synthase while having unique characteristics such as a significantly
larger interior cavity (Nicolet et al. 2008). The X-ray data display three anion bind-
ing sites, one of which binds thiocyanate but not cyanate with high affinity. Based
on these results Pilet et al. (2009) postulated that HydE might be responsible for
synthesis of the CO and CN ligands while HydG on the other hand is involved in
synthesis of the dithiolate ligand. The latter hypothesis is supported by the observa-
tion of HydG-dependent cleavage of tyrosine to p-cresol and led to the suggestion
of a reaction mechanism for the synthesis of the dithiomethylamine bridging lig-
and (Pilet et al. 2009). On the other hand HydF from T. maritima was shown to
hydrolyze GTP and bind a 4Fe-4S cluster (Brazzolotto et al. 2006). Attempts to
mature inactive FeFe hydrogenase in vitro using HydF purified from an overex-
pressing E coli strain expression demonstrated that HydF alone was able to activate
the FeFe enzyme (McGlynn et al. 2008). Based on these results the authors sug-
gested HydF might catalyze the terminal step in FeFe hydrogenase maturation by
functioning as a scaffold protein.

The maturation of hydrogenases in photosynthetic prokaryotes has been stud-
ied only to a limited extent using mainly mutational analysis. Complementation of
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deletion mutants of Synechocystis sp. PCC 6803 verified the involvement of hypA1,
B1, C, D, E, F and hoxW in the maturation of the large subunit, HoxH. The func-
tion of HypA1 and HypB1 in the Ni insertion into the active site could be shown
by hydrogenase activity restorage via supplementation of the respective deletion
mutants with nickel (Hoffmann et al. 2006). Additionally, the requirement of hypC1,
C2, D, E, and F for the maturation of the functional enzyme is similarly clarified
(Kovacs et al. 2005).

18.4.3 Oxygen Sensitivity of NiFe Hydrogenases and the Potential
Function of HypX

Hydrogenases are immediately inactivated in the presence of oxygen (George et al.
2004; Kurkin et al. 2004). In general, inactivation is observed via Ni in two dif-
ferent EPR recognizable states known as Niu-A (“unready”) and Nir-B (“ready”).
In the Nir-B state the bridging ligand X has been identified as mono-oxo (hydroxo)
while the Niu-A state probably contains a hydroperoxide (Ogata et al. 2005; Volbeda
et al. 2005). This specific bridging ligand is removed during reductive activation of
hydrogenase leaving the enzyme in one of its active states (Nia-S), now capable of
binding H2 (Fernandez et al. 1985; Ogata et al. 2005). 17O2 labeling has demon-
strated that the bridging oxygen originates from O2 (Van der Zwaan et al. 1990),
which would avoid immediate reaction of hydrogen with oxygen in the form of a
Knallgas reaction, with consequent irreversible destruction of the enzyme.

One of the proposed means of conferring oxygen tolerance to hydrogenases
is based on gas diffusion selectivity caused by variations in the architecture of
the gas channel. Narrowing the gas channel by targeted amino acid replacement
conferred increased oxygen tolerance to the generally oxygen-sensitive enzyme in
Desulfovibrio fructosovorans (Dementin et al. 2009). As well, other studies using
the oxygen-tolerant regulatory hydrogenases HupUV (R. capsulatus) and HoxBC
(R. eutropha), or the membrane-bound hydrogenase of R. eutropha, have shown
that exchanging the existing amino acids to those of more oxygen-sensitive enzymes
increased oxygen sensitivity (Duche et al. 2005; Buhrke et al. 2005; Ludwig et al.
2009). In addition, these investigations also indicate that a more sophisticated selec-
tivity filter is used that seems to rely on the overall architecture of the protein as
well as the electronic structure of the active site.

Some bacteria that metabolize H2 under aerobic conditions harbor an additional
hyp gene, hypX. In R. eutropha, the HypX protein has been proposed to play a
crucial role in recruiting the diatomic ligands CO and/or CN– in a tetrahydrofolate-
coupled reaction (Rey et al. 1996). Primary structure alignments of HypX reveal two
typical domains: an N-terminal tetrahydrofolate binding motif and a C-terminal sig-
nature similar to the enoyl-CoA hydratases/isomerases (Rey et al. 1996). Deletion
of hypX in R. eutropha strains harboring only the soluble hydrogenase abolishes
growth under aerobic conditions with H2 as sole energy source (Bleijlevens et al.
2004). Evidence has been presented that R. eutropha SH contains additional CN
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ligands at the active site bound to the nickel and iron atoms that render the enzyme
oxygen tolerant (Bleijlevens et al. 2004; van der Linden et al. 2004).

18.5 Phototrophic Prokaryotes: Hydrogenase Inventory
in a Physiological Context

18.5.1 Proteobacteria: R. rubrum

The purple non-sulfur bacterium R. rubrum is equipped with a versatile hydrogen
metabolism. It harbors two H2-evolving hydrogenases: a CO-dependent enzyme and
a formate-dependent enzyme which functions in fermentation. As well, R. rubrum
has been shown to contain a H2-consuming uptake hydrogenase (Van Praag et al.
2000; Maness and Weaver 2001). Accordingly, the genome of R. rubrum ATCC
11170 (Copeland et al. unpublished) carries three different genomic loci encoding
hydrogenase structural and accessory genes (Fig.18.2).

Fig. 18.2 Genetic inventory of R. rubrum ATCC 11170 with respect to its hydrogen metabolism.
R. rubrum encodes an uptake hydrogenase (hupSL), a CO dehydrogenase (cooM-H, cooF-A) as
well as the formate hydrogenlyase gene cluster (hyc, hyf). Genes encoding homologs to the formate
dehydrogenase are highlighted in gray (plaid), hydrogenase core components in striped, structural
complex genes in black, associated maturation genes hypFCDE and hupHK-hypAB in dark gray
(shaded), and open reading frames without known function or homology in light gray. The formate
and CO sensor/regulator genes cooA and fhlA, respectively, are indicated by stippled. For com-
parison two additional formate hydrogenlyase operons from non-photosynthetic prokaryotes are
depicted
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18.5.1.1 CO Dehydrogenase

CO-dependent H2 evolution, also known as the biological water gas shift reaction
CO + H2O ⇒ CO2 + H2 �G = −20 kJ/mol, enables R. rubrum to grow on CO
as sole energy source under dark conditions (Kerby et al. 1995). The CO-induced
hydrogenase in R. rubrum, like the formate hydrogenlyase, belongs to the energy-
conserving membrane-bound NiFe hydrogenases (group 4; Ech). The Coo-complex
consists of multiple subunits (Fig.18.3) encoded by two operons, the cooMLXUH
and the cooFSCTJ (Shelver et al. 1997). The cooFSCTJ operon encodes the
CO-oxidizing carbon monoxide dehydrogenase (CooS), an FeS electron transfer
protein (CooF), and accessory proteins required for maturation (Ni insertion) of
CooS (Ensign and Ludden 1991; Kerby et al. 1992). The cooMKLXUH operon, on
the other hand, codes for the hydrogenase structural proteins, two of which, CooL
and CooH, resemble the small and large hydrogenase subunits conserved in all NiFe
hydrogenases, respectively (Fox et al. 1996). Nevertheless, the core subunits CooH
and CooL show much higher overall homology to NADH:quinone:oxidoreductase
(complex I) than to standard NiFe hydrogenases. Since the four additional subunits
CooMKXU also show significant homology to complex I, Fox et al. (1996) pro-
posed that the CODH complex might couple CO-dependent H2 evolution to the
generation of a proton gradient. In the photosynthetic bacterium Rubrivivax gelati-
nosus, which possesses a similar CODH complex, CO-dependent ATP production
has been demonstrated (Maness et al. 2005).

Fig. 18.3 Schematic model of the two group 4 NiFe hydrogenase complexes found in R. rubrum.
The hypothetical subunit structure and subcellular localization of the formate hydrogenlyase and
the CO dehydrogenase complexes have been drawn according to Hedderich and Forzi (2005) and
Andrews et al. (1997), respectively. The figure does not consider a potential function of the FeFe
hydrogenase homolog, encoded upstream of the FHL cluster

CODH has been solubilized from membranes of R. rubrum and purified either
in its monomeric form or as a complex with the ferredoxin-like electron transfer
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protein CooF (Bonam and Ludden 1987; Ensign and Ludden 1991). Subsequently,
its crystal structure was solved and revealed a homodimeric CooS with an
unusual [Ni4Fe-5S] cluster, which constitutes the catalytic center of CO oxidation
(Svetlitchnyi et al. 2001; Drennan et al. 2001). Mutation of amino acids near the
CODH active site, Cys531→Ala or His265→Val, results in the conversion of the
enzyme into either an uptake hydrogenase or a hydroxylamine reductase (Heo et al.
2002). The catalytic activity of CO dehydrogenase is redox dependent, being mostly
in its inactive form at redox potentials above –300 mV in the absence of CO (Heo
et al. 2001). The R. rubrum CO-dependent hydrogenase is exceptional among the
NiFe hydrogenases in being CO tolerant. In an atmosphere of 100% CO, hydroge-
nase activity only decreased about 60%, while 50% inhibition was observed at 35%
CO (Bonam et al. 1989; Fox et al. 1996).

18.5.1.2 Formate Hydrogenlyase

The second enzyme involved in the hydrogen metabolism of R. rubrum is a puta-
tive formate hydrogenlyase (FHL) (Fig. 18.3). The best characterized FHL so far
is hydrogenase 3 of E. coli (HycBCDEFGI), which has been extensively studied
in the group of Böck (Bohm et al. 1990; Sauter et al. 1992; Böck et al. 2006).
However, E. coli also synthesizes a second 10 subunit FHL isoenzyme encoded by
the hyfABCDEFGHIJR operon. In comparison with hydrogenase 3, Hyf, also known
as hydrogenase 4, possesses three additional transmembrane subunits (Hyf D, E, F)
sharing sequence homology to complex I subunits (Andrews et al. 1997). The same
authors suggested that Hyf might perform proton translocation.

Hydrogenase 3, as well as probably hydrogenase 4, forms a complex with
the selenocysteine- and molybdenum-containing formate dehydrogenase FdhH
(encoded by fdhF). This complex is relevant to the mixed acid fermentation path-
way and catalyzes formate hydrogenlyase activity, according to the overall reaction:
HCOO– + H2O → HCO– + H2 (Thauer et al. 1977; Bagramyan and Trchounian
2003). Hydrogenase 3 couples the oxidation of formate to the reduction of protons
to H2, which under low H2 partial pressure and low pH is an exergonic (–20 kJ/mol)
reaction (Böck and Sawers 1996). HycE and HycG, as well as their counterparts
in hydrogenase 4, HyfG and HyfI, are the large and small hydrogenase subunits.
Communication of the hydrogenase with the formate dehydrogenase subunits is
thought to be mediated by HycB, which contains four [4Fe-4S] clusters and, as
CooF of the CO dehydrogenase complex, might function in electron transfer to the
hydrogenase.

Electron donation to the FHL-catalyzed reaction is performed by formate
dehydrogenase. E. coli synthesizes three different membrane-associated formate
dehydrogenase isoenzymes. While FDH-N and FDH-O face the periplasm, FDH-H
is located at the cytoplasmic side of the membrane (Jormakka et al. 2002; Sawers
et al. 1991). FDH-H is characterized by a low substrate affinity and thus is only
active at high formate concentrations (Berks et al. 1995). FHL-dependent H2
evolution in E. coli has been shown to be sensitive to the protonophore CCCP
(carbonylcyanide-m-chlorophenylhydrazone) and the F0F1-ATPase inhibitor DCCD
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(N,N′-dicyclohexylcarbodiimide) indicating its involvement in the formation of
a transmembrane potential. Investigations by Bagramyan and Trchounian (2003)
demonstrated a coupling of formate-dependent proton translocation and H2 evo-
lution to 2H+–K+ exchange via the low-affinity TrkA system. H2 evolution and
2H+/K+ exchange were abolished in deletion mutants of hyf genes (Bagramyan
et al. 2001). Similarly both H2 evolution and 2H+/K+ exchange were lost in ATP
synthase mutants.

Growth on organic carbon sources generally makes use of one of three
different biochemical pathways: the Emden–Meyerhof–Parnas (Glycolysis), the
oxidative pentose phosphate, or the Entner–Doudoroff (KDPG, 2-keto-3-deoxy-6-
phosphogluconate). All of them lead to the formation of the intermediate pyruvate
which may further be metabolized to generate reducing equivalents for oxida-
tive phosphorylation via the TCA (tricarboxylic acid ) cycle or is channeled into
fermentation, depending on the availability of oxygen. Under aerobic conditions
pyruvate is oxidatively decarboxylated to CO2 and acetyl-CoA. This reaction is cat-
alyzed by the pyruvate dehydrogenase (PDH) complex and constitutes the entry
step into the TCA cycle. Under fermentative growth regimes, when oxygen is
absent, pyruvate:ferredoxin/flavodoxin:oxidoreductase (PFOR) or pyruvate formate
lyase (PFL) replaces PDH. While PFOR catalyzes the disposal of reducing equiv-
alents via ferredoxin (pyruvate + CoA + 2 ferredoxinox → acetyl-CoA + CO2 +
2 ferredoxinred + 2 H+) PFL uses radical chemistry to oxidize pyruvate and CoA
to formate and acetyl-CoA. Formate then serves as substrate for the FHL-catalyzed
reaction. Early investigations of anaerobic growth capabilities of R. rubrum revealed
typical products of the mixed acid fermentation pathway: succinate, acetate, propi-
onate, formate, hydrogen, and carbon dioxide (Schultz and Weaver 1982). Based
on the genetic organization of the formate hydrogenlyase operon in R. rubrum
(Fig. 18.3) as well as primary sequence homologies of its subunits we propose
that the formate-dependent hydrogenase in this organism resembles hydrogenase
4 of E. coli. The genetic organization of hydrogenase operons in two other purple
non-sulfur photosynthetic bacteria is shown in Fig. 18.4.

18.5.2 Proteobacteria: T. roseopersicina

T. roseopersicina is a member of the purple sulfur bacteria (Chromatiaceae) which
was originally isolated from the North Sea (Bogorov 1974). It is able to perform
anoxygenic photosynthesis using reduced sulfur compounds such as S2

–, S0, S2O3
–

as electron donors (Laurinavichene et al. 2007). Besides a regulatory hydroge-
nase (HupUV) and the adjacent two-component signal transduction chain HupRT,
T. roseopersicina is equipped with three different hydrogenases: the membrane-
bound HynSL and HupSL and the soluble HoxEFUYH. Both small subunits, HynS
and HupS, appear to have signal sequences for membrane translocation via the
TAT pathway. The heteropentameric Hox is a soluble cytoplasmic protein, whereas
both HupSL and HynSL are localized at the periplasmic side of the CM (cytoplas-
mic membrane). While the soluble heteropentameric Hox and Hyn are known to
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Fig. 18.4 Genetic organization of the uptake hydrogenase encoding operons in the purple non-
sulfur bacteria Roseovarius sp. and R. palustris as well as the green sulfur bacteria Chlorobium
limicola, C. ferrooxidans, Chlorobaculum parvum, and Pelodiction luteolum. Hydrogenase struc-
tural genes (hupSL) and associated primary electron acceptor (hupC homologs) are depicted
as striped arrows, whereas accessory hyp genes are in dark gray, patterned and open reading
frames without known function or homology are shown in light gray. Genes encoding the reg-
ulatory hydrogenase (hoxBC) and the corresponding two-component signaling cascade (hoxJA)
were named according to the nomenclature used in R. eutropha. For simplicity, and based on their
initial discovery and description, accessory genes (hyps, gray patterned) were depicted using the
nomenclature for E. coli hydrogenase 3. The genes cbiMQO in P. luteolum are homologs of an
ABC-type metal transport system, according to its chromosomal localization, likely encoding a
nickel transporter

work bidirectionally, the uptake hydrogenase HupSL encoded by the hupSLCDHIR
operon (Fig. 18.5) is an exclusively H2-consuming hydrogenase believed to recycle
H2 generated during nitrogen fixation (Colbeau et al. 1994, Colbeau et al. 1980).
Since this hydrogenase is anchored to the periplasmic side of the CM, oxidation of
H2 leads to the formation of a proton gradient across the CM (Kovacs et al. 1983;
Kovacs and Bagyinka 1990).

Hyn was shown to be an exceptionally stable enzyme with relatively high O2 tol-
erance (Gogotov et al. 1978). Catalytic activity reaches a maximum around 70◦C,
whereas inactivation occurs above 78◦C. The structural genes hynSL of the sta-
ble hydrogenase are arranged in an operon (hynS-isp1-isp2-hynL) together with
two additional genes which show significant homology to genes encoding sub-
units DsrK and DsrM of the dissimilatory sulfite reductase (Rakhely et al. 1998).
A similar genetic organization of Hyn homologous hydrogenases is only found
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Fig. 18.5 Genetic organization of the uptake hydrogenase encoding operons in T. roseopersicina,
H. modesticaldum, C. aurantiacus J-10-fl, and the cyanobacterium A. variabilis ATCC 29413.
Gene nomenclature has been used as described in Fig. 18.4. Framed area marks additional hyp
genes, present in all uptake hydrogenase expressing cyanobacteria as well as the Chloroflexi and,
although without higher primary sequence homology, the Chlorobi

in Chromatium vinosum, Aquifex aeolicus, or the archaeum Acidianus ambivalens
(Dahl et al. 1999). Investigations to clarify the function and selectivity of electron
mediators in electron transport from and to these hydrogenases confirmed the bioin-
formatics predictions. Isp1 is a transmembrane electron carrier containing a binding
site for a b-type heme and is required for activity of HynSL. Deletion of isp1 and
isp2 in a ΔhoxH/ΔhupSL background results in disappearance of H2 evolution as
well as a decrease in H2 uptake activity despite the retention of the ability to cat-
alyze in vitro activity with artificial electron acceptors. Similarly a dependence of
HupSL activity on the membrane-bound b-type cytochrome HupC (named HyaC
in our figures according to the nomenclature in E. coli) could be demonstrated.
Thiocapsa uses H2S, SO4

2–, or S0 as electron donors for anoxygenic photosynthe-
sis, generating NADH, with NAD being regenerated by the Hox hydrogenase. This
leads to light-dependent H2 evolution in the presence of thiosulfate. However, Hox
is additionally responsible for dark fermentative H2 production under conditions
where nitrogenase expression is repressed. In contrast to the cyanobacteria, light-
dependent H2 evolution is not temporary but may last for several days (Kovács
et al. 2006). This difference might be explained by higher amounts of NADH, con-
tinuously generated via reverse electron transport by complex I, and, especially,
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the absence of PSII-dependent O2 evolution. Reverse electron transport involving
NADH dehydrogenases homologous to complex I seems to be a common theme to
generate reduced pyridine nucleotides (Zannoni 1995).

Light limitation is favorable for H2 evolution in T. roseopersicina (Rakhely
et al. 2007). The directionality of the hydrogenase-catalyzed reaction is, similar
to the CODH in R. rubrum, regulated by the redox state. Activation in cell-free
extracts occurs at approximately –365 mV, favorable for H2 consumption, while
below –420 mV Hox catalyzes H2 evolution. While the pentameric Hox was ini-
tially partially purified using classical techniques, recent investigations used affinity
chromatography to isolate active protein (Rakhely et al. 2004; Palagyi-Meszaros
et al. 2009). In vitro reduced ferredoxins from Synechococcus PCC7942 as well
as the green alga Scenedesmus obliquus were capable of driving hydrogenase-
mediated H2 evolution. Light-dependent H2 uptake by Hox was stimulated by CO2
and high concentrations of thiosulfate. Nevertheless, and unlike Hup, Hox is unable
to catalyze oxygen-dependent H2 uptake (Rakhely et al. 2007). Purple sulfur bac-
teria are known to make use of H2 for photoautotrophic CO2 fixation. In contrast
to the bidirectional hydrogenase of R. eutropha HoxFUYHI2, the Hox hydroge-
nases of cyanobacteria and anoxygenic photosynthetic bacteria contain another,
possibly electron-mediating, subunit, HoxE. Deletion of hoxE in Thiocapsa results
in a phenotype consisting of impaired in vivo hydrogenase activity. Nevertheless,
the truncated hydrogenase complex HoxFUYH still shows unaltered H2-dependent
NAD+ reduction in vitro (Rakhely et al. 2004).

18.5.3 Green Sulfur and Filamentous Anoxygenic Phototrophs

The green sulfur bacteria (GSB or Chlorobi) and the green non-sulfur bacteria now
called filamentous anoxygenic phototrophs (FAPs) both contain chlorosomes for
light harvesting but seem to be quite different in many other aspects. Whereas
the former do have a PSI-type reaction center the latter use a PSII-type reaction
center. Chlorobi fix CO2 via the reverse TCA cycle, are strictly anaerobic, and
are obligately photoautotrophic whereas the FAPs use the hydroxypropionate path-
way. So far, dark respiration or solely fermentative growth has not been reported
for Chlorobi. The latter contain a bifunctional (NADP) hydrogenase formerly also
called sulfhydrogenase. This type of hydrogenase has been described in P. furio-
sus where it is thought to dispose of reducing equivalents during fermentation (Ma
et al. 1993; Chou et al. 2008). The Chlorobi have either obtained the sulfhydroge-
nase, which we name HydBGDA (or βγδα) according to the nomenclature used in
P. furiosus (Pedroni et al. 1995), by lateral gene transfer from the archaea or vice
versa (Ludwig et al. 2006).

This Hyd consists of at least four subunits, encoded in an operon (Fig. 18.6).
HydB and HydG show significant homology to sulfite reductases, for example, to
Salmonella typhimurium AsrAB (Huang and Barret 1991). Like AsrAB, HydG con-
tains NADH- and FAD-binding sites and likely also catalyses the reduction of sulfite
or S0 to H2S. Based on their homology, HydD and HydA constitute the small and
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Fig. 18.6 Structural organization of the sulfhydrogenase operon found in Chlorobi as well as
the FeFe hydrogenase encoding operons in H. modesticaldum and H. mobilis and the non-
photosynthetic bacterium P. thermopropionicum. Genes encoding the catalytic FeFe hydrogenase
(hydA) and the NiFe hydrogenase small and large subunits (hydD and hydA) are shown as
striped arrows, genes encoding NADH dehydrogenase subunit homologous to the cyanobacterial
hoxE and hoxF are in gray (dotted) while the sulfite oxidoreductase homologous genes of the
sulfhydrogenase operon are depicted in black

large hydrogenase subunits. Nevertheless, none of the four subunits has targeting
motifs for membrane translocation via the TAT pathway, which indicates that this
Hyd is a soluble, cytoplasmic enzyme or perhaps membrane associated. In addition
to this group 3 enzyme, the Chlorobi also contain a group 1 uptake hydrogenase.
Although Chlorobaculum tepidum (the former Chlorobium tepidum) contains only
a truncated version of the gene of the large subunit (hupL) and does not harbor a
small subunit gene (hupS), there are several other Chlorobi that contain a full com-
plement of this hydrogenase including the b-type cytochrome (hupC) that connects
it to the membrane. Noticeably, the hupSLC genes (hupC is named hyaC in our
figures) in all sequenced chlorobial genomes are located downstream of an operon
encoding the NADH dehydrogenase (NDH-1) complex (Fig. 18.4). Similar to the
cyanobacteria, the NDH-1 in Chlorobi is composed of only 11 of the typically 14
core subunits of the prokaryotic respiratory complex I. If the genetic proximity of
ndh and hup genes results from a structural or functional relationship remains to be
determined. The presence of NDH-1 in Chlorobi led to the suggestion of a possible
function in reversed electron transport (Eisen et al. 2002). A functional interaction
of both hydrogenases present in Chlorobi with NDH-1 as well as a structural role
for the uptake hydrogenase HupSL in the complex is likely.

The thermophilic FAP Chloroflexus aurantiacus was originally isolated from hot
spring microbial mats (Pierson and Castenholz 1974) (Fig. 18.7). In their natural
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Fig. 18.7 Genetic organization of gene clusters encoding the bidirectional NAD(P)-reducing
hydrogenases in the cyanobacteria Synechococcus WH 5701, Synechococcus PCC 7002,
Acaryochloris marina MBIC 11017, Arthrospira maxima CS 328 as well as the filamentous
green non-sulfur bacterium C. aurantiacus and the purple sulfur bacterium T. roseopersicina.
Hydrogenase structural genes (hoxEFUYH) are depicted in black, nifJ encodes a potential pyruvate
ferredoxin/flavodoxin oxidoreductase. Hyp genes and open reading frames without clear homol-
ogy or assignment are shown as already described in Figs. 18.2 and 18.4. Additional hyp genes
not encoded in the hox clusters, but located elsewhere in the bacterial chromosomes, are not
shown

habitats Chloroflexi mostly grow photo- or chemoheterotrophically, but may also
perform photoautotrophic growth at the expense of S2−

or H2. Chloroflexi may
also respire in the presence of oxygen. C. aurantiacus was reported to express a
membrane-bound hydrogenase, which is repressed by sulfide, but induced by the
presence of nickel and hydrogen (Drutschmann and Klemme 1985). The avail-
ability of the entire genomic sequence of C. aurantiacus revealed the presence
of an uptake hydrogenase (HupSL), likely accounting for the observed activity,
as well as a NAD(P)-dependent bidirectional hydrogenase (HoxE-H) (Fig. 18.8).
The two enzymes found in Chloroflexus belong to the group 2, cyanobacterial-
like uptake hydrogenases and the group 3 bidirectional NADP-linked hydrogenases,
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Fig. 18.8 Hypothetical model of organization of the NAD(P)-reducing, bidirectional hydrogenase
(HoxEFUYH) in cyanobacteria as well as its connection to photosynthesis and fermentation, mod-
ified according to Houchins (1984). The reversible Hox serves as an acceptor for an excess of
reducing equivalents produced during fermentation. An increase in the cellular NAD(P)H, which
is generated during fermentation or photosynthesis (involving the ferredoxin:NAD(P)H oxidore-
ductase), is thought to be the source of the observed photo- and dark H2 evolution. If ferredoxin
can also serve as a direct electron donor has not yet been clarified

respectively. Phylogenetic investigations revealed that both share a common ances-
tor with hydrogenases of cyanobacteria (Ludwig et al. 2006). This suggests a
close evolutionary connection between these two phototrophic groups. Since the
Chloroflexi are also known to use hydrogen as electron donor during photosyn-
thesis (REF) both of them might well function in hydrogen uptake. Although this
hypothesis is still awaiting experimental proof, it is likely that Chloroflexus performs
reversed electron flow to reduce NAD. Assuming some physiological similarity
to T. roseopersicina photosynthesis with S2−

, S0, S2O3
–, Chloroflexus could make

use of the Hox hydrogenase as an acceptor leading to H2 evolution. Surprisingly,
Roseiflexus castenholzii also contains a group 1 uptake hydrogenase and Roseiflexus
sp. RS-1 does not contain the cyanobacterial-like uptake hydrogenase but a group 1
uptake hydrogenase.

18.5.4 Firmicutes: Heliobacteria

Heliobacteria belong to the phylum firmicutes. They are the only gram-positive
members among the anoxygenic phototrophs. Whereas most anoxygenic photo-
synthetic bacteria grow photoautotrophically, heliobacteria can only grow photo-
heterotrophically or by fermentation (Madigan and Ormerod 1995). Heliobacterial
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photosynthesis is based on a type I reaction center using bacteriochlorophyll g
as a major antenna pigment. In contrast to the occurrence of specialized mem-
brane structures like the chlorosomes in Chlorobi or the lamellae in Chromatiales
and Rhodospirillales, the heliobacterial photosynthesis machinery is located in the
cytoplasmic membrane. The recently published genome sequence of H. modesti-
caldum (Sattley et al. 2008) revealed that hydrogen metabolism in this organism
uses three NiFe and one FeFe hydrogenase. According to the genomic information,
the FeFe enzyme in heliobacteria consists of a single subunit hydrogenase HydA,
but, similar to the cyanobacterial reversible hydrogenase, contains the diaphorase
subunits HoxEF (NuoEF homologs). Considering the absence of homologs to
known FeFe hydrogenase accessory genes in Heliobacterium (Fig. 18.6), the ques-
tion arises as to how maturation of this enzyme is performed. In contrast to the
situation in some obligate anaerobic bacteria, such as Pelotomaculum thermopro-
pionicum, or cyanobacteria, hoxE and hoxF in H. mobilis and H. modesticaldum
were found to be fused in one open reading frame (Ludwig et al. 2006, Sattley
et al. 2008). The FeFe hydrogenase in H. modesticaldum is likely to function in
the fermentative removal of reducing equivalents (NADH or Ferredoxinred), thus
mainly catalyzing H2 evolution. In the presence of appropriate terminal electron
acceptors or under light, hydrogen, which accumulates during fermentative growth
or under nitrogen fixation conditions, can be used via two membrane-bound uptake
hydrogenases.

18.5.5 Cyanobacterial Hydrogen Metabolism

18.5.5.1 The Bidirectional Hydrogenase

The reversible or bidirectional hydrogenase HoxEFUYH in Synechocystis PCC6803
constitutes a heteropentamer (Schmitz et al. 2002; Germer et al. 2009) which is able
to use both NADH (Km, pH 6 = 12 μM) and NADPH (Km, pH 6 = 100 μM) as
an electron donor for H2 evolution in vitro (Cournac et al. 2004). Both substrates
were shown to effectively reactivate the catalytic center in the absence of oxygen. In
contrast to many NiFe hydrogenases studied in anaerobes where reactivation of O2-
inactivated enzyme takes place in the range of 1 h (Fernandez et al. 1984; Lissolo
et al. 1984), the cyanobacterial bidirectional hydrogenase is rapidly activated (Appel
et al. 2000; Cournac et al. 2004; Germer et al. 2009). However, attempts to couple
hydrogenase to plant ferredoxin or the major photosynthetic cyanobacterial ferre-
doxin failed to demonstrate physiologically relevant redox reactions (Serebryakova
et al. 1996; Schmitz et al. 2002). It remains to be seen if in catalyzing in vivo
hydrogen production Hox is only accepting NAD(P)H as an electron donor or if
it can react simultaneously with both ferredoxin and NAD(P)H, as described for the
T. maritima FeFe hydrogenase (Schut and Adams 2009). The diaphorase subunits,
HoxE, HoxF, and HoxU, show striking homology to the NADH dehydrogenase
type I (complex I) subunits NuoE, NuoF, and NuoG. Since the cyanobacte-
rial complex I (NDH-1) and the NADH dehydrogenases in chloroplasts lack
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homologs to those subunits Appel and Schulz (1996) suggested that the bidirectional
hydrogenase could function as the NADH dehydrogenase part of complex I
(Fig. 18.9).

Fig. 18.9 Hypothetical model of the putative interaction of the NAD(P)-reducing, bidi-
rectional hydrogenase in Synechocystis PCC6803 with the complex I homologous
donor:quinine:oxidoreductase. Subunits of the NDH-1 (NADH dehydrogenase type I) were
named according to the nomenclature of their homolog, E. coli Nuo. The diaphorase subunits
of the hydrogenase HoxE, HoxF, and HoxU have been suggested to substitute for the missing
homologs of NuoE,F,G under certain environmental growth conditions (Appel and Schulz 1996)

18.5.5.2 Fermentative Hydrogen Evolution

In many cyanobacteria, e.g., Spirulina platensis (Aoyama et al. 1997), Oscillatoria
limnetica, or Anabaena variabilis, nitrogenase-independent hydrogen evolution can
be observed under anaerobic conditions in the dark. This H2 evolution can clearly
be assigned to fermentative metabolism (Troshina et al. 2002; Gutthann et al.
2007). Bacterial fermentation uses hydrogenase to convert reduced NAD(P)H or
ferredoxin into hydrogen, thereby removing an excess of reducing equivalents (Van
der Oost and Cox 1988; Hallenbeck 2005). This process regenerates NAD(P)+ or
oxidized ferredoxin and enables the cell to subsequently recycle hydrogen by
H2-dependent respiration (Fig. 18.8). While many cyanobacteria like
Synechococcus PCC6716 can only ferment endogenous metabolites (polyhy-
droxybutyrate, glycogen), Microcystis PCC7806 is also able to use exogenous
substrates. For a detailed overview of fermentative capabilities and pathways in
cyanobacteria, see Stal and Moezelaar (1997).
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18.5.5.3 Photoreduction of CO2

Since the early work of Frenkel et al. (1950), several reports have appeared that indi-
cate an additional role of the bidirectional hydrogenase in photosynthetic electron
transport under anoxic conditions. Initially Frenkel et al. (1950) measured H2-driven
photoreduction in Synechococcus elongatus as well as in Chroococcus sp. Similar
results were observed in Anacystis nidulans (Synechococcus PCC 6301), which
showed DCMU-insensitive anoxygenic 14CO2 photoreduction using sulfide, sul-
fate, or hydrogen as electron donor (Peschek 1979). Later Belkin and Padan (1978)
confirmed CO2 fixation in O. limnetica and Aphanothece halophytica driven by
anoxygenic photosynthesis with H2 or sulfide as electron source. More recently,
investigations by Ludwig et al. (2006) demonstrated the absence of any other
hydrogenase except the bidirectional in the latter species, thus supporting the con-
clusion that this enzyme is involved in H2 uptake driven by photosynthesis. Since
anoxygenic photoreduction of CO2 involves only photosystem I it is considered
a cyanobacterial variant of anoxygenic photosynthesis (Oren et al. 1977). Despite
many attempts, chemolithotrophic or anoxygenic phototrophic growth on hydrogen
could not be demonstrated (Houchins 1984).

18.5.5.4 Photohydrogen Evolution

Abdel-Basset and Bader (1998) studied hydrogen metabolism in Synechocystis
PCC6803 using membrane inlet mass spectrometry. The authors were able to
demonstrate photohydrogen evolution after a dark to light switch. This photoevo-
lution, which only leads to temporary net accumulation, normally lasts for about
30 s in WT cells (Appel et al. 2000; Cournac et al. 2004). Nevertheless, prolonged
photohydrogen evolution analogous to the effects shown for FeFe hydrogenases in
green algae has only been reported for A. variabilis (Laczko 1986) and O. limnetica
(Belkin and Padan 1978). More recently, Cournac et al. (2004) and Gutthann et al.
(2007) observed increased and prolonged H2 photoevolution in a ΔM55 mutant
which is devoid of type I NADH dehydrogenase activity. The ΔM55 mutant is char-
acterized by reduced respiration and cyclic electron transport. According to Cooley
and Vermaas (2001), the reduction of the NADPH pool in this mutant reaches a
level of 100% while it is normally around 50% in WT cells. Photohydrogen evolu-
tion was found to last for at least 5 min in the mutant and could further be extended
to close to 30 min by addition of glucose (Cournac et al. 2004). Similar effects,
although less pronounced, were found in mutants impaired in respiratory oxidases,
especially the quinol oxidase (Gutthann et al. 2007). The ΔhoxH mutant, in addition
to having altered transcript levels of some photosynthetic genes (psbA, psaA, petB),
showed increased photosystem II fluorescence and was impaired in photosystem
I oxidation (Appel et al. 2000). It was concluded that the bidirectional hydroge-
nase in Synechocystis might function as a redox valve under changing light/dark
regimes, especially when cells shift from fermentation under anaerobic conditions
in the dark to photosynthesis. As already observed in green algae, photohydrogen
evolution competes with nitrite-, nitrate-, and sulfide reduction as well as with CO2
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fixation and respiration (Aparicio et al. 1985). Similarly, Gutthann et al. (2007) were
able to show that NO3

– is a major electron acceptor of the H2 uptake reaction in the
absence of oxygen, as concluded using tungsten inhibition of nitrate reductase in
Synechocystis PCC6803.

18.5.5.5 Cyanobacterial Uptake Hydrogenase

Competition experiments in Anabaena PCC 7120 did not result in the wild-type
cells overgrowing the uptake hydrogenase-free mutant. At low light intensities the
mutant grew as well as the wild type, whereas at higher light intensities its fraction
of the population decreased but never became extinct (Lindblad et al. 2002), thus
demonstrating that this type of hydrogenase does not confer a selective advantage
under low-light conditions. The discovery of diazotrophic cyanobacteria without a
H2-consuming enzyme (Ludwig et al. 2006) further indicates that the cyanobacte-
rial Hup is not essential for protection of the nitrogenase from oxygen inactivation.
Nevertheless, the recycling of H2 would seem to be bioenergetically favorable for
the cell. In all cyanobacteria containing uptake hydrogenases the gene clusters
encoding the maturation functions (Hyp) are extended for five additional genes
(Agervald et al. 2008). All proteobacteria branching from the cyanobacterial clade
also share these putative additional accessory genes (asr0689, asr0690, alr0691,
alr0692, and alr0693 according to the gene nomenclature in Nostoc sp. 7120).
Besides a tricopeptide repeat protein (TPR) and a ferrochelatase homolog (named
Fch in our figures), the five genes encode a NifU-like protein (Alr0692) and two
further proteins without homologies to known functions. Despite lacking experi-
mental evidence the additional “hyp” genes very likely encode functions required
for the insertion of FeS clusters (Johnson et al. 2005) into the small hydrogenase
subunit. As indicated in Fig. 18.5 the hup operon in C. aurantiacus also contains
additional maturation genes. Since the hupSL operons in contrast to many other pro-
teobacterial group 1 uptake hydrogenase operons do not encode any cytochromes,
the primary electron acceptor of the cyanobacterial uptake hydrogenase is still not
known. While hupSL forms an operon structure together with a gene encoding a
putative hydrogenase-specific protease HupW in Trichodesmium erythraeum and
Gloeothece ATCC it is found at a different location in the genomes of A. variabilis
and Anabaena PCC7120.

18.6 Transcriptional Regulation of Hydrogenases

18.6.1 Hydrogen-Sensing Regulatory Systems

The various types of hydrogenases discussed earlier in Section 18.2 fulfill differ-
ent physiological functions in their host organisms. It is therefore not surprising
that diverse control mechanisms for regulation of their expression have arisen dur-
ing evolution. Expression of the membrane-bound uptake hydrogenases in aerobic



328 C. Schwarz et al.

chemolithotrophs, for example, is induced by the presence of their substrate, hydro-
gen. This type of regulatory circuit has been studied in R. capsulatus (Dischert et al.
1999), R. palustris (Rey et al. 2006) as well as the Knallgas bacterium R. eutropha
and Alcaligenes hydrogenophilus (Lenz et al. 1997) and the nitrogen-fixing legume
symbiont B. japonicum (Durmowicz and Maier 1997). The mechanism of this sig-
nal transduction pathway relies on the heterodimeric sensor module HoxBC which
communicates with a specific two-component system, HoxA/HoxJ (HupR/HupT
in R. capsulatus). HoxBC (HupUV in R. capsulatus) which structurally resembles
the catalytic subunits of the hydrogenase initially senses available concentrations
of hydrogen. Despite very low turnover rates, this so-called regulatory hydroge-
nase (RH) has been shown to be capable of true hydrogenase activity as could be
demonstrated by H+/D2 exchange as well as by dye-mediated H2 consumption and
evolution measurements (Lenz and Friedrich 1998; Bernhard et al. 2001).

Among hydrogenases, RHs separate into a distinct group showing unique fea-
tures such as insensitivity toward oxygen, CO, and acetylene (Bernhard et al. 2001);
no requirement for reductive activation of the active site; and no proteolytic cleavage
during the maturation of the large subunit. The RH heterodimer is tightly attached to
a tetrameric histidine kinase, HoxJ. A highly conserved 50–60 amino acid extension
at the C-terminus of HoxB, not present in other NiFe hydrogenases, mediates com-
munication with the N-terminal PAS domain of the cytoplasmic histidine kinase
HoxJ (Buhrke et al. 2004). In the absence of hydrogen, HoxJ autophosphory-
lates followed by a phosphotransfer from His220 of the kinase to Asp55 of the
NtrC-type response regulator HoxA (Lenz et al. 2002). Phosphorylation of HoxA
leads to its inactivation and dissociation from its respective target gene promoters.
Generally, NtrC-type DNA-binding proteins are known to initiate transcription of
σ54 (RpoN)-dependent promoters. Upon receiving a phosphorylation signal most
response regulators in this family activate transcription by interacting with RNA
polymerase at the expense of ATP. Nevertheless, HoxA induces gene expression
solely in its non-phosphorylated form in the presence of hydrogen.

While transcription of hydrogenase structural genes in R. eutrophus, T. roseop-
ersicina (Kovacs et al. 2005) as well as in B. japonicum (Black and Maier 1995)
and Rhizobium leguminosarum (Brito et al. 1997) is σ54 (RpoN) dependent, expres-
sion of the hupSL operon in R. capsulatus has been proven to rely on rpoD (σ70).
Recent transcriptomic studies in R. palustris indicate that the hydrogen-sensing sig-
naling chain in this organism might also be responsible for differential expression
of an additional set of genes unrelated to hydrogen metabolism (Rey et al. 2006).
In a comparison of a hupV mutant to the WT the authors found significant changes
in expression patterns of genes coding for glutamine synthetase (glnA), a formate-
and a putative dicarboxylic acid transporter. Nevertheless, the H2-sensing regula-
tory circuits found in T. roseopersicina as well as in R. palustris do not respond to
the presence of hydrogen since they have been found to be non-functional due to
alterations (frame shift mutation) in hupV (Rey et al. 2006; Kovacs et al. 2005).
On the other hand, an additional histidine kinase (RPA0981), which is encoded
within the R. palustris hup cluster, was found to affect hupSL gene expression under
photoheterotrophic growth in the presence of hydrogen.
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18.6.2 Regulation of Four Hydrogenases in E. coli

E. coli remains one of the best characterized model systems for the transcriptional
regulation of hydrogenases. The E. coli genome harbors four different hydroge-
nases all of which are only induced under micro- or anaerobic growth conditions.
Hydrogenases 1 (HyaA-F) and 2 (HybO-G) were shown to be transcribed as poly-
cistronic messages from σ 70-dependent promoters. Both operons are subject to
control by the two-component system ArcB–ArcA as well as the anaerobic reg-
ulator FNR (Vignais and Toussaint 1994; Richard et al. 1999). FNR (fumarate
nitrate reduction regulator) is a global regulator of the FNR/CRP family. Besides a
HTH DNA-binding domain at the C-terminus, FNR carries four essential cysteines
(Cys20, 23, 29, 122) in its N-terminal sensor domain which coordinate a FeS cluster.
Under anaerobic conditions and with the help of cysteine desulfurylase, FNR forms
a [4Fe-4S]2+ cluster, which promotes dimerization thereby activating high-affinity
DNA-binding activity (Schwartz et al. 2000; Moore and Kiley 2001). In the presence
of oxygen, the [4Fe-4S]2+ cluster is converted to a [2Fe-2S]2+ which subsequently
leads to dissociation of the FNR dimer and to the inactivation of its ability to bind
DNA (Green et al. 1996; Lazazzera et al. 1996). ArcB–ArcA is a homolog of the
ResD–ResE system in Bacillus subtilis, which is known to sense and transmit redox
signals in addition to being subject to metabolic control (Bauer et al. 1999). The hyb
operon, e.g., is upregulated about 13-fold under anaerobic, fermentative conditions.
Additionally, hydrogenases 1 and 2 are subject to additional NO3-dependent repres-
sion mediated by the two-component signal transduction chains of NarL/NarX
and NarP/NarQ (Richard et al. 1999). While hya transcription is enhanced by the
action of the stress sigma factor σ38 as well as ArcA, when the pH in the medium
decreases the opposite effect can be observed for the hyb operon (King and Przybyla
1999; Brondsted and Atlung 1996; Hayes et al. 2006). Hya expression additionally
responds to AppY which belongs to the family of AraC-type transcriptional activa-
tors and is itself the target of another two-component system, DpiAB (Richard et al.
1999; Atlung et al. 1997). Although recent investigations discovered negative reg-
ulation of dpiAB by a new small regulatory RNA, rybC (Mandin and Gottesman
2009), the AppY–DpiAB signaling chain is not sufficiently understood to date.
The regulatory network controlling expression of hydrogenases in bacteria is quite
diverse. This is demonstrated by the action of TyrR (regulator of aromatic amino
acid metabolism) and CRP (catabolite repressor protein) on the expression of the
HyaB homolog in the closely related enterobacterium Salmonella (Park et al. 1999).

On the other hand, the expression of hydrogenase complexes 3 (hyc) and 4
(hyf) in E. coli is induced by their substrate, formate (Sauter et al. 1992; Andrews
et al. 1997). Despite not being able to completely complement each other, two
σ 54-dependent transcriptional regulators, FhlA and HyfR, which share 46% homol-
ogy, sense the substrate formate. In the presence of formate, FhlA and HyfR exhibit
increased DNA-binding activity and activate transcription by directly interacting
with RNA polymerase. While HyfR exclusively regulates the hyf operon, FhlA
binds and activates the hyf operon as well as the hyc operon and the formate dehy-
drogenase gene, fdhH (Skibinski et al. 2002). An additional cysteine-rich segment
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(-C-X6-H-C-X-C-X-P-X-C-X-P) found in the A3 domain of HyfR likely serves as
a docking site for a FeS cluster or metallocofactor, as in FNR, IRP, or SoxR (Kiley
and Beinert 1998; Hidalgo et al. 1995), and might act as redox sensor (Andrews
et al. 1997). Since formate dehydrogenase contains molybdenum it was not surpris-
ing when Self et al. (1999) discovered a molybdate-dependent control of the formate
hydrogenlyase regulon which relies on the metal-sensing repressor ModE.

18.6.3 Regulation of the CO Dehydrogenase in R. rubrum

The CO dehydrogenase complex in R. rubrum, encoded by cooFSCTJ and cooMK-
LXUH operons, is also under control of a substrate-sensing transcriptional factor.
CooA, a member of the CRP/FNR family of DNA-binding proteins, employs a heme
cofactor to fulfill a dual function: redox- and CO sensing (Roberts et al. 2005). The
CooA heme holoprotein is easily oxidized from the reduced ferrous to the ferric
form in the presence of oxygen. Only reduced CooA is able to respond to CO, and
only CO-bound CooA displays DNA binding and thereby activates transcription
(Shelver et al. 1997). The mid-point potential for this reduction is approximately
–300 mV (Nakajima and Aono 1999). This is quite reasonable since CO dehydro-
genase is only functional below that redox potential (Heo et al. 2001). Lanzilotta
et al. (2000) reported the crystal structure of reduced CooA, which provides new
insights into ligand/heme binding. Using a comparative approach, the authors were
able to develop a reasonable model which describes the allosteric switch mechanism
in CooA as well as CAP (catabolite activator protein) and FNR in E. coli.

18.6.4 Redox Regulation in Diazotrophs

In nitrogen-fixing bacteria, uptake hydrogenase is often coregulated with nitroge-
nase gene expression. Nitrogen fixation is an energetically expensive process which
is only required under NO3/NH4+-limited growth conditions. Furthermore, since
nitrogenase is very sensitive to oxygen inactivation, nature has developed control
mechanisms to tightly regulate its gene expression. For example, the R. capsula-
tus uptake hydrogenase is controlled by the two-component RegB–RegA sensor
kinase/response regulator pair (Elsen et al. 2000). RegB–RegA coregulates genes
encoding essential functions in nitrogenase biosynthesis, photosynthesis, CO2 fixa-
tion, and denitrification along with components of energy generation like the uptake
hydrogenase and respiratory oxidases (Elsen et al. 2000; Swem et al. 2001; see
Chapter 15). The isolation of regA–regB deletion mutants, which were unable to
induce photosynthetic gene clusters (puf, puh, puc) under anaerobiosis, initially led
to the assumption that it directly sensed oxygen. However, it was later found that
the transmembrane sensor kinase RegB senses the cellular redox state. In addition
to harboring a redox-responsive cysteine (Cys265) in its cytoplasmic dimerization
domain, a RegB periplasmic loop was shown to bind quinone (Swem et al. 2003,
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2006). Binding of oxidized quinone likely modulates RegB conformation leading to
inhibition of its autophosphorylation function (Wu and Bauer 2008). In contrast to
Rhodobacter species, redox- and oxygen-dependent regulation in T. roseopersicina
and R. leguminosarum biovar viciae UPM791 is under the control of FNR homologs
(Kovacs et al. 2005; Gutierrez et al. 1997).

R. leguminosarum and B. japonicum apply different systems for the control of
hydrogenase expression. hupSL transcription in these strains is under control of the
σ54-dependent NifA–NifL (Brito et al. 1997, 2008) and the heme-based FixL/FixJ-
FixK/FixT regulatory network, respectively (Palacios et al. 1990; Durmowicz and
Maier 1998). All the four mentioned regulatory systems are able to control the aero-
bic/anaerobic adaptation of global gene expression, albeit based on different sensor
chemistries. While FNR uses FeS clusters to respond to oxygen, FixL exploits heme
to sense oxygen. In contrast RegB is thought to bind quinone as well as sense cyto-
plasmic redox levels. NifL, on the other hand, uses FAD as a redox-responsive
cofactor in addition to sensing the nitrogen status, either by direct interaction with
the PII protein, GlnK, or by the antagonistic action of 2-oxoglutarate binding to
NifA (Martinez-Argudo et al. 2005).

Similar to eukaryotic cells where DNA binding by histones and HMG (high
mobility group) proteins is important, bacterial gene regulation can also be influ-
enced by chromosomal DNA-binding proteins (Sandman et al. 1998). Interaction of
IHF (integration host factor) with hupSL promoters has been demonstrated for both
B. japonicum and R. capsulatus, with IHF binding leading to repression of hydro-
genase gene expression (Black and Maier 1995; Toussaint et al. 1991). Moreover,
the promoter of appY, whose gene product is involved in hya expression in E. coli,
shows AT-rich binding sites for the histone-like protein H-NS (Atlung et al. 1996).

18.6.5 Transcriptional Regulation of Cyanobacterial Hydrogenases

The hox operons encoding the cyanobacterial bidirectional hydrogenase are mostly
organized as single gene clusters; as in A. variabilis (Boison et al. 2000), Nodularia
spumigena, Synechococcus sp. PCC 7002, Synechococcus sp. WH 5701, and
Synechocystis PCC 6803 (Appel and Schulz 1996). Exceptions to this rule are
A. nidulans and Anabaena PCC7120 where the chromosomal location for the genes
encoding the NADH dehydrogenase subunits HoxEF is separated by 16 and 9.5 kb
from the remainder of the hydrogenase operon, respectively. While the hox oper-
ons in Synechocystis PCC 6803 (Gutekunst et al. 2005), A. variabilis (Boison et al.
2000), and Lyngbya majuscula CCAP1446/4 (Ferreira et al. 2009) are transcribed
as polycistronic messages, Synechococcus PCC7942 strain R2 forms a dicistronic
hoxEF and a polycistronic hoxUYH, initiated from two separate promoters, as
demonstrated by qualitative RT-PCR and primer extension analysis. Schmitz et al.
(2001) found differing expression levels of hoxEF and hoxUYH in Synechococcus
PCC7942 and also showed for the first time that hydrogenase gene expression is
subject to oscillations that follow circadian rhythmicity, an effect also observed in
global microarray profiling of Synechocystis (Kucho et al. 2005).
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In cyanobacteria, like the heterocystous Anabaena sp. PCC 7120, A. cylindrica,
and A. variabilis, activity of the bidirectional hydrogenase HoxEFUYH is absent
during standard photoautotrophic growth, but is induced under dark anaerobic con-
ditions or in the light when photosynthetic water splitting is inhibited by the PSII
inhibitor DCMU (Houchins and Burris 1981; Laczko 1984; Serebryakova et al.
1992, 1994). In contrast, a number of unicellular strains like Synechocystis sp.
PCC 6803, Gloeocapsa alpicola, and A. halophytica constitutively express this
hydrogenase even under aerobic photoautotrophic growth conditions (Serebryakova
et al. 1998; Appel et al. 2000). However, even in those strains transcription is
subject to further induction when cells are exposed to microaerobic or anoxic con-
ditions (Summerfield and Sherman 2008; Kiss et al. 2009). Appel and coworkers
(unpublished results) have detected an increase in total hydrogenase activity under
nitrogen limitation that was dependent on the light intensity. Transcript levels in
Synechocystis PCC 6803 were reported to correlate well with hydrogenase activities,
a redox-dependent rather than an oxygen-dependent control mechanism (Antal et al.
2006). In order to obtain better understanding of this particular question, Gutthann
et al. (2007) analyzed mutants impaired in photosynthetic or respiratory electron
transport and found upregulation of hydrogenase activity in a quinol oxidase mutant
as well as severe downregulation in a mutant defective in the NADH dehydrogenase
(NDH) complex. These results correspond well with the idea of redox-regulated
expression of the bidirectional hydrogenase.

Although the key players responsible have not yet been identified, recent inves-
tigations by Kiss et al. (2009) have verified the light- and redox-driven regulatory
effects on hox transcript level. While the entire operon hoxEFUYH was found to be
upregulated about 5- to 6-fold after adjusting to a microaerobic environment, hoxEF
(not hoxUYH) transcription was further increased about 10- to 12-fold when cells
were shifted from anoxic growth in the light to anoxic dark conditions (Kiss et al.
2009). These results were further substantiated by examining the effect of inhibitors
of photosynthetic and respiratory electron transport. Glycolaldehyde simulated the
effects during a shift from light to dark in the presence of oxygen. DBMIB, on the
other hand, led to the same results which were observed after a light-to-dark tran-
sition under anoxic conditions. Although only one transcriptional start site, located
at 168 bp upstream of the hoxE translational start, was found in Synechocystis, the
occurrence of additional internal start sites cannot be excluded.

18.6.5.1 Regulation via LexA

So far there are two transcription factors known to be involved in the regulation of
the bidirectional hydrogenase in Synechocystis PCC6803: LexA (Gutekunst et al.
2005, Oliveira and Lindblad 2005) and the AbrB-like regulator Sll0359 (Oliveira
and Lindblad 2008). Since transcription of LexA and the AbrB-like protein does
not correlate with hydrogenase expression (Zhang et al. 2008; Kiss et al. 2009), one
or both factors might be posttranslationally modified or modulated as part of a sig-
nal transduction pathway. Alternatively, another unknown regulator might account
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for the observed redox/O2-dependent effects. While LexA, together with RecA, is
known to be a crucial key regulator of the SOS response in E. coli and B. subtilis,
microarray experiments of a lexA deletion mutant in Synechocystis PCC6803 instead
indicate a role for it under inorganic carbon starvation conditions (Domain et al.
2004). The damage-inducible LexA in E. coli functions as a repressor. Derepression
of the LexA regulon depends on an autoproteolytic intramolecular cleavage reaction.
The Synechocystis LexA lacks the catalytic serine as well as the conserved alanine–
glycine cleavage bond which is known to be essential for LexA degradation (Little
1984; Little 1991; Giese et al. 2008). Patterson-Fortin and coworkers suggested that
LexA might mediate the regulation of the intracellular redox state (Patterson-Fortin
et al. 2006). Synechocystis LexA, which generally binds to a 12 bp direct repeat
motif [CTA-N9-CT(A/T)] on DNA, was found to be a negative regulator of crhR
expression (Patterson-Fortin et al. 2006). However, LexA occupies multiple binding
sites in the hoxE-H promoter (Gutekunst et al. 2005; Oliveira and Lindblad 2005)
where it seems on the contrary to activate hydrogenase transcription as judged by
hoxEFUYH downregulation in a ΔlexA mutant background (Gutekunst et al. 2005).
Subsequently, a number of studies in other cyanobacteria have also shown LexA
binding upstream of hyp and hox genes (Ferreira et al. 2007; Sjöholm et al. 2007).

18.6.5.2 Regulation via AbrB

Similar to the discovery of LexA, AbrB, another transcription factor known to
directly regulate the bidirectional hydrogenase, has been isolated and identified
based on its DNA-binding affinity to the hox promoter (Oliveira and Lindblad 2008).
AbrB of B. subtilis is a prototype of the AbrB family. In B. subtilis it belongs
to the transition state regulators which are known to control gene expression dur-
ing entry into the stationary phase. It directly controls gene expression of more
than 40 genes involved in spore formation, competence, and biofilm development
(Phillips and Strauch 2002). Despite several crystal structures which reveal a unique
swapped hairpin β-barrel (ββαββ) arrangement of the N-terminal DNA-binding
domain (Bobay et al. 2005; Coles et al. 2005, Asen et al. 2009), the detailed mode
of transcriptional activation remains unclear. Furthermore, no consensus recogni-
tion sequences could be determined although more than 80 high-affinity binding
sites were selected in the upstream regions of its target promoters (Xu and Strauch
1996). It was suggested that AbrBs recognize a three-dimensional structure in the
DNA helix (Bobay et al. 2004). Interestingly, it is able to bind to some DNA as a
dimer or tetramer, but only as tetramer to other promoters (Vaughn et al. 2000).

Both AbrB-like proteins in Synechocystis PCC6803 autoregulate their own syn-
thesis but activate transcription of their main target genes. While sll0359 seems to
be essential, as judged by the inability to obtain a fully segregated mutant, sll0822
could be deleted, and its phenotype was studied using microarray analysis (Ishii
and Hihara 2008). The results indicate a role of sll0822 in activation of nitrogen-
regulated genes, including the hox operon. Nevertheless, direct interaction of the
regulator with the hydrogenase promoter remains to be addressed. It should be noted
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that investigations by Kaplan and coworkers discovered posttranslational modifi-
cations (N-acetylation, methylation) of an AbrB-like protein in Aphanizomenon
ovalisporum, which significantly changed its DNA-binding capacity (Shalev-Malul
et al. 2008). During the analysis of the sbtA promoter in Synechocystis the same
group observed changes in the extent of electrophoretic mobility shifts when apply-
ing different combinations of the three transcription factors LexA, Sll0359, and
Sll0822 (Lieman-Hurwitz et al. 2009). Using promoter/reporter measurements,
Gutekunst et al. (2006) found an additional iron dependency of hox transcription in
Synechocystis, which reached maximum expression levels under iron-deplete con-
ditions at concentrations in the range of 0–5 μM Fe3+. Whether or not the observed
regulation is mediated by one of the Fur (Ferric Uptake Regulators) homologs
present in Synechocystis is still under investigation.

18.6.6 Regulation of the Cyanobacterial Uptake Hydrogenase

The cyanobacterial uptake hydrogenase HupSL is not expressed under non-
nitrogen-fixing growth conditions. Maximum induction of this enzyme in Nostoc
muscorum and Anabaena cylindrica could be observed after several days of incuba-
tion under a hydrogen atmosphere (Eisbrenner et al. 1978). Similarly, A. variabilis
and N. muscorum showed a 5- to 20-fold increase in total activity when grown under
an atmosphere of H2:N2:CO2 (20:75:5) (Tel-Or et al. 1977). Much later these results
were confirmed on the transcriptional level (Axelsson et al. 1999; Happe et al. 2000;
Axelsson and Lindblad 2002; Oxelfelt et al. 1995). In non-heterocystous cyanobac-
teria like L. majuscula or the unicellular Gloeothece ATCC27152 and Cyanothece
sp ATCC 51142, hupSL transcription follows light/dark changes with maximum
expression in the dark phases (Oliveira et al. 2004; Leitao et al. 2005; Toepel et al.
2008).

Using electrophoretic mobility shift assays (EMSA) Oliveira et al. (2004) could
demonstrate the interaction of the hupSL promoter in Gleothece with the global
nitrogen regulator NtcA. NtcA, but not hydrogen or anoxic conditions, was found to
be solely responsible for induction of hupSL after a shift to nitrogen-fixing growth
(Weyman et al. 2008), although previous investigations reported H2-dependent
upregulation in N. muscorum and Nostoc punctiforme (Axelsson and Lindblad 2002,
Stensjo et al. 2007). NtcA belongs to the cAMP receptor protein family and is
highly conserved among cyanobacteria. It is known to be an autoregulatory tran-
scriptional activator. In the absence of ammonia, it positively regulates target genes
involved in nitrogen metabolism, such as glnA (glutamate synthase), narB (nitrate
reductase), the nir operon (ferredoxin:nitrite reductase), as well as some genes not
involved in the nitrogen assimilation process, such as icd (isocitrate dehydrogenase),
rbcLS (Rubisco), the histone-like chromosomal DNA-binding protein HU, and the
alternative sigma factor RpoD2-V (Herrero et al. 2001).

NtcA is able to sense two different environmental signals. While it monitors
the C/N ratio via the concentration of intracellular 2-oxoglutarate (Muro-Pastor
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et al. 2001), an additional role in thiol-dependent redox sensing has been suggested
(Herrero et al. 2001; Jiang et al. 1997; Alfonso et al. 2001). In certain cases, DNA
binding by NtcA is modulated by 2-oxoglutarate-dependent interaction with PipX
and involves communication with the signal transducer PII (Espinosa et al. 2006;
Forchhammer 2007). NtcA-dependent promoters contain a DNA recognition site
with the consensus sequence (GTA-N8-TAC). Although most NtcA binding sites
are located at around –40 bp relative to the transcriptional start sites, sequential
deletions of the hupSL promoter in N. punctiforme ATC29133 demonstrated that
multiple binding sites might occur which could be located in the non-translated
mRNA leader region as well (Holmqvist et al. 2009). A summary of the current
knowledge is depicted in Fig. 18.10.

Fig. 18.10 Graphical overview representing the current knowledge about differential expression
and transcriptional regulation of selected hydrogenases in model organisms. (a) hya operon, (b) hyb
operon, and (c) hyc operon in E. coli (Richard et al. 1999, Atlung 1997, King and Przybyla 1999);
(d) hupSLC in R. capsulatus (Dischert et al. 1999, Elsen et al. 2000, Touissant et al. 1997); as well
as (e) hoxEFUYH in Synechocystis PCC6803 (Gutekunst et al. 2005, Oliveira et al. 2005, Gutekunst
et al. 2006) and (f) the cyanobacterial hupSLW (+/–) indicate positive or negative regulation while
∗ indicates indirect effects on hydrogenase gene expression
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