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Preface

The world’s population is growing at an unsustainable rate. From a baseline figure

of one billion in 1800, global population is predicted to exceed nine billion by 2050

and 87.8% of this growth will be localized in less developed countries. Such uneven

population growth will yield a harvest of poverty, malnutrition, disease and envi-

ronmental degradation that will affect us all. Amongst the complex mixture of

political, social, cultural and technological changes needed to address this issue, the

development of improved methods of fertility regulation will be critical. The

inadequacy of current contraceptive technologies is indicated by recent data sug-

gesting that the contraceptive needs of over 120 million couples go unmet every

year. As a direct consequence of this deficit 38% of pregnancies are unplanned and

more than 50% end in an abortion, generating a total of 46 million abortions per

annum particularly among teenagers. If safe, effective contraceptives were avail-

able to every couple experiencing an unmet family planning need, 1.5 million lives

would be saved each year (UNFPA 2003).

Progress in contraceptive technology should not only generate more effective

methods of regulating fertility, but should also provide a range of methods to meet

the changing needs of the world’s population. Contraceptive practice was revolu-

tionized in 1960 in the US and 1961 in Europe by the introduction of the oral

contraceptive pill by Gregory Pincus, MC Chang and colleagues, based on funda-

mental hormone research conducted in Germany. While “the pill” continues to

represent a highly acceptable and effective method of fertility regulation, we should

not lose sight of the fact that this approach has its roots in the endocrinology of the

1920s and was designed to meet the clinical and social needs of the 1960s. During

the past 50 years we have seen no radically new forms of family planning designed

to meet the contraceptive needs of the twenty-first century. For example, fertility

control in the future will have to be linked with the need to prevent the spread of

sexually transmitted diseases (STD). Every year at least 340 million new cases of

curable STD are notified, one third in young people under 25 years of age (World

Health Organization 2001). Recent figures on AIDS indicate that this condition

is continuing to spread at a rate of 2.7 million new cases a year, generating an
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estimated annual death toll of 2 million (UNAIDS and World Health Organization

(2009). Africa has been decimated by the disease and it is now rapidly gaining hold

in SE Asia. Chlamydia is also spreading rapidly and is now one of the most

commonly diagnosed bacterial sexually transmissible infections (Hocking et al.

2008). The spread of STDs is particularly marked in young women aged 15–25, for

whom the risk of infection is approximately six times greater than their male

counterparts. For these women, development of dual-purpose methods that simul-

taneously target pregnancy and STDs are desperately needed. Similarly, the con-

traceptive strategies we develop for the future should also recognize the increasing

desire of men to actively participate in the family planning process. Furthermore, it

should be emphasized that whereas in the past approximately 10 years of con-

traceptive protection was required in a lifetime, nowadays the average couple will

require 30 years of contraception to meet their family planning needs, due to earlier

onset of sexual activity, later time point for first birth and greater intervals between

births. As a consequence we not only have to deal with the differing contraceptive

needs demanded by diverse cultural and social environments, but also with the

changing needs of individual women over their reproductive lifespan.

Given all the major improvements in healthcare that have been delivered by

molecular medicine in the last half-century, it is remarkable that something that

touches all of our lives should be so neglected. The major reasons for this state of

affairs have been three fold. First, the specification for new contraceptive methods

is extremely difficult to achieve. We want the new generation of contraceptive

agents to combine absolute efficacy with the complete absence of adverse side

effects. Because contraceptives are the only medicinal compounds that we give to

perfectly healthy people, the risk-benefit equation is strongly driven the right i.e.,

all benefit, no risk. Developing pharmaceutical agents that meet such exacting

standards will be hard. Secondly, the history of contraceptive development has

been beset with the frustration of trying to project radically new methods of fertility

control from an extremely narrow science base. It is extremely difficult to interfere

with the reproductive system in a controlled, targeted manner, if we do not

understand how the system works. Since the pharmaceutical industry is not primar-

ily designed to make fundamental contributions to the science-base, this role has

been left to public sector research institutions and, as a result, progress has been

painfully slow. This situation has been exacerbated by the third factor, which is the

low priority given to basic reproductive research by public sector funding agencies.

Infertility is not seen as a life-threatening condition in the same way as cancer,

multiple sclerosis or kidney failure, and governmental research priorities tend to

reflect this perception, no matter how short-sighted.

Hopefully contraception will not remain a neglected field for much longer. The

political climate has recently changed to one that is more sympathetic to reproduc-

tive research. In the past decade we have also witnessed the birth of private–public

partnerships in order to improve our fundamental understanding of the reproductive

process through the creation of coordinated international networks. For example

in 1997, the Rockefeller Foundation and Ernst Schering Research Foundation

developed one of the first such networks to intensify research on the posttesticular
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maturation of spermatozoa, utilizing new approaches in molecular pharmacology

[the application of molecular pharmacology for posttesticular activity (AMPPA)

network]. Hopefully this will be the predecessor of further targeted networks in the

future. With the advent of such initiatives, as well as parallel developments in the

fields of pharmacology and drug design, the scene is now set for dramatic improve-

ments in the technologies we shall use to regulate our future fertility.

This volume could not have been produced at a more opportune moment. It

brings together contributions from all corners of the globe on all aspects of

reproductive biology pertinent to contraceptive development. It contains cutting

edge assessments of the molecular mechanisms regulating male and female repro-

duction and the new opportunities for contraceptive development to emerge as a

consequence of this knowledge. It also contains expert evaluations of the potential

for product development in the contraceptive field. This book looks forward to a

future where men and women will be able to choose from a range of novel, safe,

effective, contraceptive methods tailored to their individual needs. Hopefully it will

inspire a new generation of young scientists and clinicians to exploit recent gains in

our understanding of reproductive mechanisms, to engineer such new approaches to

the regulation of human fertility.

Berlin, Germany U.-F. Habenicht

Callaghan, Australia R.J. Aitken
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T. Garrido-Gómez Fundación Instituto Valenciano de Infertilidad (FIVI),

Instituto Universitario (IUIVI), Valencia University, C/ Guadassuar 1 bajo, 46015

Valencia, Spain

Michael J. K. Harper Department of Obstetrics and Gynecology, Eastern

Virginia Medical School, 1911 N. Fort Meyer Drive, Suite 900, Arlington, VA

22209, USA, mjkharper@gmail.com

B. T. Hinton Department of Cell Biology, University of Virginia, School of

Medicine, Charlottesville, VA USA, bth7c@virginia.edu

Geoffry N. De Iuliis ARC Centre of Excellence in Biotechnology and

Development, Hunter Medical Research Institute, Discipline of Biological

Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

Duangporn Jamsai The Department of Anatomy and Developmental Biology,

Monash University, Clayton, Melbourne, VIC, Australia

K. S. Korach Laboratory of Reproductive and Developmental Toxicology,

NIEHS/NIH, 12233, Research Triangle Park, NC 27709, USA, korach@niehs.

nih.gov

S. H. Liew Prince Henry’s Institute of Medical Research, 5152, Clayton, Victoria

3168, Australia

Eileen A. McLaughlin Reproductive Science Group, School of Environmental &

Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; ARC

Centre of Excellence in Biotechnology & Development, University of Newcastle,

Callaghan, NSW 2308, Australia, eileen.mclaughlin@newcastle.edu.au

Lisa A. Mitchell ARC Centre of Excellence in Biotechnology & Development,

University of Newcastle, Callaghan, NSW 2308, Australia; Reproductive Science

Group, School of Environmental & Life Sciences, University of Newcastle,

Callaghan, NSW 2308, Australia

Ludwig Neyses Cardiovascular Medicine, University of Manchester, Room 1.302

Stopford Building, Oxford Road, Manchester, UK, Ludwig.neyses@manchester.

ac.uk

E. Nieschlag Centre of Reproductive Medicine and Andrology of the University,

WHO Collaboration Centre for Research in Male Reproduction, Domagkstr. 11,

48149 Münster, Germany, Eberhard.Nieschlag@ukmuenster.de

xii Contributors



Brett Nixon ARC Centre of Excellence in Biotechnology and Development,

Hunter Medical Research Institute, Discipline of Biological Sciences, University

of Newcastle, Callaghan, NSW 2308, Australia; Reproductive Science Group,

School of Environmental & Life Sciences, University of Newcastle, Callaghan,

NSW 2308, Australia, Brett.Nixon@newcastle.edu.au

Moira K. O’Bryan The Australian Research Council (ARC) Centre of Excellence

in Biotechnology and Development, Monash University, Level 3, Building 76,

Clayton, Melbourne, Victoria 3800, Australia, Moira.Obryan@med.monash.edu.au

Stephanie A. Pangas Departments of Molecular and Cellular Biology and

Pathology, Baylor College of Medicine, BCM130, One Baylor Plaza, Houston,

TX 77030, USA, spangas@bcm.tmc.edu

JoAnne S. Richards Departments of Molecular and Cellular Biology and

Pathology, Baylor College of Medicine, BCM130, One Baylor Plaza, Houston,

TX 77030, USA, joanner@bcm.tmc.edu

Carlos Simon Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto

Universitario (IUIVI), Valencia University, C/ Guadassuar 1 bajo, 46015 Valencia,

Spain, csimon@ivi.es

E. R. Simpson Prince Henry’s Institute of Medical Research, 5152, Clayton,

Victoria 3168, Australia

Alexander P. Sobinoff Reproductive Science Group, School of Environmental &

Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

Contributors xiii



.



Part I
Female Reproduction
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Abstract Infertility adversely affects many couples worldwide. Conversely, the

exponential increase in world population threatens our planet and its resources.

Therefore, a greater understanding of the fundamental cellular and molecular

events that control the size of the primordial follicle pool and follicular develop-

ment is of utmost importance to develop improved in vitro fertilization as well as to

design novel approaches to regulate fertility. In this review we attempt to highlight

some new advances in basic research of the mammalian ovary that have occurred in

recent years focusing primarily on mouse models that have contributed to our

understanding of ovarian follicle formation, development, and ovulation. We

hope that these new insights into ovarian function will trigger more research and

translation to clinically relevant problems.
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1 Introduction

Based on the theme provided by the Editors of this book Fertility Control – Today
and in the Future, the mission of this chapter is to focus on new advances in basic

research of the mammalian ovary that have occurred in recent years. This is a

daunting task because of the vast number of novel studies and mouse models that

have contributed to our understanding of ovarian follicle formation, development,

and ovulation. Therefore, we will highlight those areas that seem to us to have

provided the most impact. We hope that these personal choices are not overly

biased and that any oversights and omissions are minimal.

Much of the reproductive lifespan of most mammals and women is determined

ultimately on the size of the primordial follicle pool and the quality of eggs derived

from them. However, oocytes within the pool of quiescent primordial follicles form

during embryonic and postnatal ages, long before the onset of puberty. For this

period of oogenesis, key questions still remain regarding the input of endogenous

factors that impact the proliferation of oogonia, onset of meiosis, arrest of meiosis

at metaphase I, the breakdown of oocyte nests, and finally, the formation of

primordial follicles. Even more murky is knowledge regarding fundamental

mechanisms that regulate primordial follicle activation, as well as specification

and development of the somatic cells surrounding the oocyte (i.e., the granulosa and

thecal cells), which are essential for subsequent oocyte development, ovulation, and

fertilization. Modern technologies have opened many new and exciting approaches

by which investigators can explore the molecular, cellular, and physiologic

mechanisms controlling follicle formation and growth.

2 Novel Aspects of Gonadal Development, Primordial Follicle

Formation, and Early Follicle Growth

The mammalian gonad first develops adjacent to the urogenital ridges as a

thickening of the coelomic epithelium and is devoid of germ cells. Migrating

primordial germ cells (PGCs) that were specified outside the embryo colonize the

indifferent gonad, then undergo a period of proliferation. In females, the PGCs then

enter meiosis and arrest in the first meiotic prophase. Many of the underlying

signaling events that control ovary specification during this time are still being

analyzed, but several key pathways have been identified. One of these is the WNT

pathway. The WNT family is comprised of secreted glycoproteins that bind to, and

signal through, the FRIZZED (FZD) receptors. Mice null for Wnt4 exhibit

4 J.S. Richards and S.A. Pangas



abnormal ovarian morphology in which structures similar to testicular chords are

observed (Vainio et al. 1999), indicating that WNT4 might be a specific determi-

nant of the female gonad. Mutations in the human RSPO1 gene, a WNT pathway

adapter molecule, indicate that this molecule is also a candidate female sex deter-

mining factor (Parma et al. 2006) and female mice null for Rspo1 demonstrate

partial sex reversal and oocyte loss (Tomizuka et al. 2008). Quite remarkably, mice

null for bothWnt4 and Foxl2, a forkhead box transcription factor, exhibit complete

and functional sex reversal of the ovary to a testis in the XX genotype (Ottolenghi

et al. 2007). These intriguing and novel results document unequivocally that there

are organizers of ovarian vs. testis development. By contrast, XY male mice

expressing stable beta catenin (CTNNB1), a downstream target of WNT signaling,

using Sf1-Cre mice (Maatouk et al. 2008) or Amhr2Cre mice (Chang et al. 2008)

exhibit partial male to female sex reversal with ovarian structures totally lacking

germ cells or that exhibit seminiferous tubule demise and germ cell loss, respec-

tively. Thus, proper WNT signaling, likely involving a critical role for Rspo1 as

well as a FZD receptor, is essential for normal gonad development.

Proper expression of CTNNB1 in the adult ovary is also essential for normal

tissue maintenance because overexpression of a constitutively active form of

Ctnnb1 (Ctnnb1flox(exon3)) can lead to abnormal follicle development and eventually

to granulosa cell tumors (GCTs) (Boerboom et al. 2005). Moreover, the tumor

phenotype can be enhanced when the tumor suppressor Pten is simultaneously

disrupted in the Ctnnb1flox(exon3); Amhr2-Cre mouse strain. In these mice, abnormal

lesions are observed in the embryonic gonad, aggressive tumors form before

puberty, and the mice die within 6 weeks of age (Lague et al. 2008). Because

FSH has been shown to phosphorylate and inactive GSK3b, a downstream compo-

nent of the WNT/FZD signaling pathways that regulates CTNNB1, FSH also has

the potential to enhance the transcriptional activation of CTNNB1 and its target

genes but the physiological relevance of this pathway remains to be determined

(Cross et al. 1995).

After their proliferative period, PGCs eventually divide to form syncytia of

oocytes (termed germ cell nests or cysts) that are connected by intracellular bridges.

These bridges are not essential for fertility in females (Greenbaum et al. 2006).

Germ cells cysts break down during formation of primordial follicles, when indi-

vidual oocytes become surrounded by somatic (“pre-granulosa”) cells, putatively

derived from the coelomic epithelium. The breakdown occurs prenatally in humans

or shortly after birth in mice. Germ cell cyst breakdown is associated with massive

germ cell loss, such that oocyte numbers are reduced from approximately six

million in the fetal human ovary to one million at birth. These numbers further

decline to puberty into adulthood (Faddy et al. 1992; Block 1952; Baker 1963).

Inappropriate germ cell cyst breakdown may result in ovarian follicles with more

than one oocyte, often called polyovular follicles or multiple oocyte follicles. Some

inbred mouse strains are known to have increased incidence of polyovular follicles

(Engle 1927; Jagiello and Ducayen 1973), and many mouse knockouts have been

made that demonstrate this phenotype as well, included several in the TGFb family.

These include mice that overexpress the inhibin a subunit (McMullen et al. 2001),

New Insights into Ovarian Function 5



mice conditionally null for ovarian activins (Pangas et al. 2007) or follistatin

(Jorgez et al. 2004), and mice null for Bmp15 (Yan et al. 2001). Exposure of

neonatal mice to estrogen also increases polyovular follicle formation (Kipp et al.

2007; Iguchi et al. 1986, 1990; Iguchi and Takasugi 1986; Chen et al. 2007). This

occurs in conjunction with loss of the activin b subunits (Kipp et al. 2007). These

data along with the polyovular phenotype displayed in ovaries of activin bA
conditional knockout (cKO) mice (see below) suggest a direct role for activin

signaling in the appropriate organization of primordial follicles (Pangas et al.

2007). The effects of estrogen on primordial follicle formation have important

implications regarding estrogen-like environmental contaminants that act as endo-

crine disruptors and may impact early follicle formation and eventually the ability

to reproduce.

In theory, increasing the size of the primordial follicle pool may be one way to

extend reproductive lifespan and prevent diseases associated with menopause or

reproductive senescence, such as increased cardiovascular disease and osteoporosis.

For example, adult female mice null for the proapoptotic gene Bax have increases
in primordial follicle numbers, an extended period of folliculogenesis, and

decreases in age-related health defects (i.e., Bax knockout mice demonstrate

decreased bone and muscle loss, adiposity, alopecia, and some behavioral changes,

amongst other measured parameters) (Perez et al. 1999, 2007), although some of

these changes may not be directly related to ovarian function. However, recent

studies have suggested that Bax deficient ovaries have an increase in follicular

endowment that is due to increased embryonic oogonia proliferation and not a

rescue of oocytes from apoptosis (Greenfeld et al. 2007). The factor(s) that govern

oogonia proliferation and germ cell survival during germ cell cyst breakdown

during embryogenesis and gonadogenesis are not known, and thus remain a key

research focus.

3 Transcription Factors That Regulate Early Postnatal

Follicle Growth

Recent studies have identified a number of transcription factors whose expression,

at least in adult tissues, appears to be restricted to germ cells or oocytes, and which

are necessary for early folliculogenesis (Pangas and Rajkovic 2006). These tran-

scription factors control, in part, the coordinated expression of genes necessary for

early follicle growth, including growth and differentiation factor 9 (Gdf9) (see

below) and the zona pellucida genes (Zp1-3). Factor in the germline alpha (FIGLA)

was the first of these transcription factors to be identified (Liang et al. 1997), and

mice null for Figla are sterile and primordial follicles do not form in the ovary

(Soyal et al. 2000). Figla encodes a basic helix–loop–helix (bHLH) transcription

factor that regulates expression of the zona pellucida genes, which encode the egg

coat (Liang et al. 1997). Subsequent to the discovery of Figla, several other
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germ-line expressed bHLH transcription factors have been identified, including

spermatogenesis and oogenesis bHLH transcription factors 1 and 2 (Sohlh1 and

Sohlh2). SOHLH1 and SOHLH2 are approximately 47% identical in the bHLH

sequence, have a similar expression pattern in oocytes, and mice null for either gene

have a similar female phenotype: postnatal oocyte loss leading to female sterility

(Choi et al. 2008; Pangas et al. 2006a). Gene expression changes are similar in the

mutant mice, with alterations in expression of genes known to be critical in

folliculogenesis. Both knockout mouse models have deficiencies in ovarian expres-

sion of several homeobox transcription factors, Lhx8, Pou5f1 (Oct4), and Nobox; in
Figla and the zona pellucida genes Zp1 and Zp3, in growth factor Gdf9 and the kit

ligand receptor, Kit. In addition, deletion of Sohlh2 results in a more than 90%

decrease in Sohlh1, while deletion of Sohlh1 causes a 60% reduction in Sohlh2
(Choi et al. 2008), i.e., Sohlh2 mutant ovaries lack both Sohlh1 and Sohlh2 (are in

effect doubly mutant), while Sohlh1 ovaries are hypomorphic for Sohlh2. It is
possible then that SOHLH2 regulates Sohlh1 expression and much of the phenotype

in both mouse models may be a direct consequence of loss of Sohlh1. Additional
gene expression changes can be attributed to loss of Nobox (newborn ovary

homeobox gene) expression. NOBOX has been shown to directly regulate expres-

sion of Gdf9 and Pou5f1 (Choi and Rajkovic 2006), and deletion of Nobox causes
female sterility and postnatal oocyte loss (Rajkovic et al. 2004). Currently, it is

unclear how these transcriptional networks intersect to control oocyte development,

and which genes are direct targets of the various oocyte-expressed homeobox and

bHLH transcription factors.

While deletion of oocyte-expressed genes is a straightforward approach with

little to no embryonic or adult phenotypic consequences beyond those due to

reproductive dysfunction, many genes expressed in oocytes are also expressed in

other adult or embryonic tissues. This makes it necessary to develop conditional

mouse models to study their intraovarian function, most commonly by using the

Cre/lox site-specific recombination system. Generation of oocyte-specific gene

deletion in mice has been facilitated by a number of mouse lines with oocyte-

restricted promoters to express Cre recombinase [reviewed in (Pangas and Matzuk

2008)]. In particular, Cre recombinase expression from the Zp3 promoter has been

widely used (Lewandoski et al. 1997). More recently, theGdf9 promoter, which has

a slightly earlier oocyte expression pattern than the Zp3 promoter, has been used to

express Cre recombinase in oocytes (Lan et al. 2004). Various oocyte conditional

knockouts and knockdowns with female reproductive phenotypes include Pten (see
below) (Reddy et al. 2008), Cpeb (cytoplasmic polyadenylation element binding

protein) (Racki and Richter 2006), Gcnf (Nr6a1; an orphan nuclear receptor)

(Lan et al. 2003), Pig-a (phosphatidyllinositol glycan class-A) (Alfieri et al.

2003), and Pou5f1 (POU-type homeodomain-containing DNA-binding protein,

Oct4) (Kehler et al. 2004). Mouse models to study somatic cell function during

primordial, primary, and secondary follicle formation are lacking, in part due to the

paucity of mouse lines that direct efficient expression of Cre recombinase to the

somatic cell compartments during primordial and primary cell stages (see below).

However, some models mice expressing Sf1-Cre (Maatouk et al. 2008), Amhr2-Cre
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(Chang et al. 2008; Boerboom et al. 2005), and Cyp19-Cre (Fan et al. 2008a,b,

2009) have been useful.

Members of the forkhead family such as Foxl2 and Foxo3 also impact early

follicle growth. Targeted disruption of Foxl2 in mice leads to abnormal follicle

development and premature ovarian failure (Uda et al. 2004a), and in humans is

also associated with the craniofacial disease, blepharophimosis, ptosis, and epi-

canthus inversus syndrome (BPES) (Crisponi et al. 2001). Foxl2 is expressed in

the early stages of gonadal development and has been shown to direct ovarian and

oppose testis development. Specifically, genes that increase in early postnatal

Foxl2 null ovaries include Dax1 (NrOb1) and Wnt4; genes that decrease include

Nr5a2, Cyp19, Fst, and Apoa1. Additional genes regulated in the ovary by FOXL2

at later stages of follicle development include Inhbb, Nr5a2, Srebf1, Pgc1a,
Cyp11a1, and Star (Pisarska et al. 2004; Uda et al. 2004b; Moumne et al.

2008). These results indicate that FOXL2 likely impacts not only embryonic

ovarian formation but also specific basic metabolic aspects required for somatic

cell proliferation and differentiation. Reduced levels of Foxl2 have also been

linked to aggressive progression of ovarian GCTs (Kalfa et al. 2008), indicating

that FOXL2 may regulate multiple effects in granulosa cells that are context and

stage specific. Another striking, recently published, ovarian phenotype occurs in

mice in which the Foxo3 gene has been disrupted (Castrillon et al. 2003). These

mice exhibit premature ovarian failure due to inappropriate oocyte activation and

the premature entry of primordial follicles into the growing pool. Upon exhaustion

of the primordial pool, the ovaries become devoid of growing follicles and the

mice are infertile. In line with these studies, forced overexpression of Foxo3
selectively in oocytes reduces the number of follicles growing (Liu et al. 2007).

Because the activity of FOXO3 is negatively regulated by the PI3kinase (PI3K)

pathway, investigators also generated mice in which the Pten gene was condition-

ally disrupted in oocytes (Reddy et al. 2008). Because PTEN is a negative

regulator of PI3K, its removal enhances PI3K activity leading to increased

phosphorylation of downstream targets including AKT and FOXO3. As a conse-

quence, the activity and levels of FOXO3 are dramatically reduced, leading to

premature oocyte activation and release of primordial follicles into the growing

pool thereby generating an ovarian phenotype identical to that of the FOXO3 null

mice. Although microarray data have been generated from the Foxo3 null ovaries,

the specific targets of FOXO3 in the oocyte that impact the surrounding somatic

cells remain to be defined (Gallardo et al. 2007).

In contrast to FOXO3, which is expressed in and impacts oocyte functions,

FOXO1 is expressed preferentially and at high levels in granulosa cells of growing

follicles. Because Foxo1 null mice are embryonic lethal (Hosaka et al. 2004), an

analysis of the role of this transcription factor in the ovary has been precluded.

However, mice in which Foxo1, Foxo3, and Foxo4 alleles have been engineered to

contain loxP sites (“floxed” alleles) for conditional deletion provide the opportunity

to determine the cell specific disruption of these genes individually or collectively in

the ovary (Paik et al. 2007; Tothova et al. 2007). These studies are now in progress

and suggest that disruption of Foxo1 impairs fertility. Although the mechanisms
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remain to be determined, FOXO1 may impact specific genes controlling prolifera-

tion (Park et al. 2005), differentiation (Park et al. 2005), or metabolic pathways

(Liu et al. 2008a) in granulosa cells based on the expression of FOXO1 mutants in

these cells. Specifically, expression of a constitutively active nuclear form of

FOXO1 (FOXOA3 in which three serines have been substituted for alanines) in

granulosa cells not only suppresses expression ofCcnd2,Cyp19,Fshr, and Lhcgr but
also acts as a potent negative regulator of essentially all genes in the cholesterol

biosynthetic pathway (Park et al. 2005; Liu et al. 2008a). The negative effects of

FOXO1 appear to be mediated in part by the ability of the FOXO1 mutants to

interact with other transcription factors including nuclear receptors, SP1 and

SMADs (van der Vos and Coffer 2008; Rudd et al. 2007), and to reduce expression

and activity of Srebf1 and Srebf2 in granulosa cells (Liu et al. 2008a). Because these
two transcription factors regulate essentially all genes in the cholesterol pathway and

some involved in fatty acid synthesis as well, reduction of these transcription factors

impacts multiple genes that coordinate cholesterol and fatty acid biosynthesis.

Likewise in liver (Zhang et al. 2006; Matsumoto et al. 2006) and pancreatic beta

cells (Buteau et al. 2007), FOXO1 appears to play a major role in cholesterol

and glucose homeostasis. Thus, drugs given to regulate cholesterol levels in humans

or patients with diabetes will likely and potently impact the function of ovarian cells

as well.

4 Oocyte-Derived Growth Factors That Mediate Somatic

Cell Function and Follicle Growth

Early follicle growth (i.e., after primordial follicle activation but before antrum

formation) is considered to be largely driven by ovarian-derived growth regulatory

factors independent of pituitary-derived follicle stimulating hormone (Kumar et al.

1997). The first of these intraovarian factors to be identified was oocyte-derived

GDF9, a member of the transforming growth factor b superfamily (McPherron and

Lee 1993; McGrath et al. 1995). In the mouse, Gdf9 is first expressed in oocyte

cysts and primordial follicles of newborn ovaries (Rajkovic et al. 2004), although

the protein is undetected until follicle stage 3a (a class of primary follicles) and

subsequently increases in level in all other follicles (Elvin et al. 1999a). Consistent

with this, mice with a genetic disruption of Gdf9 are infertile and demonstrate

abnormal follicle development, with an arrest at the primary follicle stage (Dong

et al. 1996). However, the primary follicles that form have abnormal oocytes and

somatic cells. While granulosa cells initially organize around the oocyte, they are

defective in their proliferation. In addition, the thecal cell layer fails to organize.

These defects occur in concert with inappropriate and accelerated oocyte growth,

leading to abnormally large and defective oocytes (Carabatsos et al. 1998). Primary

follicle stage arrest can be partially rescued by removing expression of the inhibin

alpha (Inha) gene, which is inappropriately upregulated in granulosa cells of Gdf9
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knockout (KO) ovaries (Elvin et al. 1999b), suggesting that suppression of Inha
expression in granulosa cells is an important step in early folliculogenesis to allow

normal granulosa cells to grow and differentiate. Follicles from double mutant Inha
Gdf9 homozygous null mice are able to form multilayer follicles, but then arrest

prior to antrum formation and do not develop a functional thecal cell layer (Wu

et al. 2004). These data further highlight the importance of the TGFb family in

multiple stages of follicle development, though many of these functions are still not

understood.

Other members of the TGFb family that influence follicle physiology and

growth include BMP15 and activin. Similar to GDF9, BMP15 is an oocyte-derived

growth factor (Dube et al. 1998) that functions by regulating granulosa cell prolif-

eration and differentiation. Mice with homozygous null mutations in Bmp15 are

subfertile on some genetic backgrounds, while mice deficient for both Gdf9 and

Bmp15 phenocopy the Gdf9 homozygous null mouse model (Yan et al. 2001).

However, removal of one copy of Gdf9 in a Bmp15 null background results in

additional decreases in fertility compared with Bmp15�/� (Yan et al. 2001). It

appears that BMP15 is not critical for early follicle development in mice, or

alternatively, its loss may be compensated for at these early stages by GDF9.

However, BMP15 appears to influence the development of the granulosa cell

layer most closely associated with the oocyte, collectively called the cumulus cell

layer. Studies on double mutant Gdf9+/� Bmp15�/�mice demonstrate that cumulus

cells cannot appropriately respond to signals from wild type oocytes to undergo the

process of cumulus expansion (see below), suggesting that the cumulus cells in

double mutant Gdf9+/� Bmp15�/� follicles are developmentally compromised (Su

et al. 2004). The nature of these molecular defects is currently unknown but may be

related to changes in cumulus cell metabolism (Su et al. 2008). Mouse and human

BMP15 are mitogens for granulosa cells (Otsuka et al. 2000; McNatty et al. 2005),

and transgenic overexpression of mouse BMP15 in oocytes causes normal but

accelerated follicle development and subsequently, an early onset of acyclicity

(McMahon et al. 2008). Even though GDF9 and BMP15 are highly conserved,

there appears to be species-specific differences regarding their function within the

ovary (Juengel and McNatty 2005). Homozygous sheep mutations in BMP15 have

an ovarian phenotype that appears similar to the mouse Gdf9 knockout. The

BMP15 mutations when carried as only a single copy in sheep result in an increased

ovulation rate, while no phenotype has been associated with Bmp15 or Gdf9
heterozygous mutations in mice. In humans, mutations in BMP15 and GDF9

have been infrequently found to be associated with premature ovarian failure

(Di Pasquale et al. 2004, 2006;Simpson 2008), though heterozygous mutations in

BMP15 have not been reported for twinning in humans (Zhao et al. 2008). Because

of their restricted expression pattern and ability to modulate fertility, BMP15 and

GDF9 might be good candidates for contraceptive development. Initial experiments

demonstrate that sheep immunized against BMP15 or GDF9 have abnormal folli-

culogenesis and ovulation rates (McNatty et al. 2007; Juengel et al. 2002). Target-

ing antibodies to N-terminal peptides appear to be the most efficient means to

neutralize their bioactivity (McNatty et al. 2007).
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5 Novel Regulatory Mechanisms That Control Follicle

Growth and Differentiation

Although many early stages of follicle growth can occur independently of pituitary

gonadotropins, ovarian follicles, and more specifically granulosa cells, rely on FSH

for follicular antrum formation and for continued growth and differentiation during

the antral follicle stages. Moreover, recent studies provide new insights into the

multiple signaling pathways that are stimulated in granulosa cells by FSH. This

glycoprotein hormone is known to activate adenylyl cyclase, leading to the produc-

tion of cAMP and the activation of protein kinase A (PKA). There is no doubt that

activation of this classical pathway is essential for many aspects of granulosa cell

differentiation. However, FSH can also activate the PI3K pathway (likely via a SRC

tyrosine kinase) leading to the phosphorylation and activation of AKT, which

phosphorylates and thereby inactivates FOXO1 (Gonzalez-Robayna et al. 2000).

As mentioned above, FOXO1 has the potential to regulate cholesterol metabolism

in granulosa cells, thereby preventing premature increases in precursors for ste-

roidogenesis (Liu et al. 2008a). FOXO1 can also reduce the expression of genes

regulating granulosa cell proliferation and differentiation (Park et al. 2005;

Liu et al. 2008a). As mentioned, because of the embryonic lethality of the Foxo1
null mutation, the effects of disrupting Foxo1 in granulosa cells have not yet

been analyzed in vivo. However, the disruption of Pten in granulosa cells leads to

increased activation of the PI3K pathway, and therefore increased phosphorylation

and degradation of FOXO1, resulting in enhanced proliferation, ovulation, and the

formation of corpora lutea that persist for unusually prolonged periods of time (Fan

et al. 2008a). Surprisingly, although FOXO1 is expressed at elevated levels in

granulosa cells, PTEN protein levels are remarkably low. Therefore, factors other

than, or in addition to, PTEN may serve to control the PI3K pathway in granulosa

cells. These results indicate that the functions of PI3K pathway components in

granulosa cells are complex and likely to be stage- and context-specific (Fan et al.

2008a). Thus, disruption of Pten in the somatic cells of the mouse ovary causes

distinctly different effects from the disruption of this gene in oocytes, as described

above (Castrillon et al. 2003; Liu et al. 2007). Furthermore, although natural

mutations or disruption of Pten in other tissues leads to tumor formation, the

disruption of Pten alone in granulosa cells did not lead to granulose cell tumors

(Fan et al. 2008a), perhaps because other factors impact the PI3K pathway in

these cells.

FSH and LH have recently been shown to activate RAS via a SRC tyrosine

kinase-mediated process (Wayne et al. 2007). Activated RAS then leads to the

phosphorylation and activation of downstream kinases, MEK1 and MAPK3/1 (also

known as ERK1/2) (Wayne et al. 2007). Strikingly, KRAS is expressed at high

levels in granulosa cells of small and antral follicles but the role of KRAS in

granulosa cells remains to be determined (Fan et al. 2008b). Expression in granu-

losa cells of a constitutively active form of KRAS, KRASG12D, which is frequently

associated with various cancers including ovarian cancer and cell transformation,
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does not stimulate proliferation or tumor formation in these cells (Fan et al. 2008b).

Rather, the KRASG12D expressing granulosa cells cease dividing, do not exhibit

apoptosis, and fail to differentiate, i.e., they become senescent. As a consequence,

the abnormal follicle-like structures persist and accumulate in the ovaries of the

KRASG12D mutant mice. Even when Pten is disrupted in the KrasG12D mutant

strain, GCTs do not form (Fan et al. 2009). These results indicate that granulosa

cells are extremely resistant to the oncogenic insults of mutant Kras and the loss of
Pten. By contrast, if the Kras and Pten mutations are made in ovarian surface

epithelial cells, aggressive tumors appear within 6 weeks of age (Fan et al. 2009).

6 The TGFb Family in Regulation of Granulosa Cell Growth

and Differentiation

The TGFb family of growth factors has wide-ranging roles in female reproduction.

Various family members are expressed from the major ovarian cell types (i.e.,

oocytes, granulosa cells, thecal cells), though many of the effects appear to center

on control of granulosa cell growth and differentiation that then impact folliculo-

genesis and oocyte development. Many recent studies have analyzed the role of this

family by cre/loxP-mediated conditional deletion in granulosa cells. Two Cre

recombinase lines are particularly used for granulosa cell deletion: Amhr2cre, a
knockin of Cre recombinase into the anti-Mullerian hormone receptor type II locus

(Jamin et al. 2002), and Cyp19-Cre, a transgenic line that contains a portion of

the aromatase gene that limits Cre expression to granulosa cells and luteal cells

(Fan et al. 2008a). While both Cre lines are expressed in granulosa cells, subtle

differences may exist in their expression pattern, with Cyp19-Cre being expressed

in slightly later stage follicles than Amhr2-Cre (Fan et al. 2008a).

Follistatin, a BMP and activin antagonist, was the first gene to be conditionally

deleted from granulosa cells (Jorgez et al. 2004). Ovaries from follistatin knockout

mice have almost complete loss of germ cells prior to birth (Yao et al. 2004). Fst
conditional knockout female mice (cKOs) demonstrate premature ovarian failure,

with few remaining follicles found by 8 months of age (Jorgez et al. 2004). Fertility

defects are accompanied by changes in the levels of serum hormones, including

increases in follicle stimulating hormone (FSH), luteinizing hormone (LH), and

decreases in serum testosterone. Loss of follistatin within the ovary likely results in

increased activin activity and possibly, BMP activity. The loss of intraovarian

activins results in a different phenotype. Activin is a homo or heterodimer of two

related b subunits: bA and bB. Mice null for bA die shortly after birth (Matzuk et al.

1995), but mice deficient for bB have normal size litters but defects in nursing

(Vassalli et al. 1994). Ovaries from bB deficient females overproduce the bA
subunit (Vassalli et al. 1994), suggesting that any intraovarian reproductive pheno-

type that is caused by loss of bB may be masked by a compensatory gain in activin

A. Thus, the stepwise removal of the activin subunits by conditional deletion in

granulosa cells eventually culminates in female sterility when no activin subunits
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are expressed (Pangas et al. 2007). While there are multiple defects in folliculogen-

esis in the activin deficient ovary (Pangas et al. 2007), one of the most obvious

defects is the progressive and abnormal accumulation of corpora lutea that is

accompanied by increases in serum FSH and progesterone. Other defects include

preantral follicles undergoing early luteinization and an increased number of antral

follicles. There are likely additional defects in granulosa cells during ovulation

because the increase in antral follicle numbers is not reflected in the number of

ovulated oocytes, which is significantly decreased. Even though mutations in the

activin signal transduction pathway have been implicated in cancer development,

and activins have been shown to be critical for growth inhibition in some cell types

(i.e., breast and prostate cancer cells) (Cocolakis et al. 2001; Zhang et al. 1997), no

tumors develop in the activin-deficient mouse model. Thus activin, like TGFb, may

have variable oncogenic or tumor suppressor properties that are cell-type or con-

text-specific. For example, in granulosa cells, activin appears to play a predominant

role as a growth promoter, and its role in the promotion of GCTs has been

established in the inhibin alpha knockout mouse. Deletion of inhibin a results in

sex-cord stromal tumors in male and female mice and premature death due to

development of a cancer cachexia like syndrome (Matzuk et al. 1992, 1994).

Genetic removal of the activin type II receptor, deletion of the activin downstream

transcription factor Smad3, or injection of a chimeric activin binding receptor-

murine Fc protein, slows, though does not prevent, tumor growth in inhibin a-
deficient mice (Matzuk et al. 1992, 1994; Coerver et al. 1996; Li et al. 2007a, b;

Looyenga and Hammer 2007), demonstrating that activin signaling plays a growth

promoting role.

The role of the TGFb family in ovarian follicles has also been investigated by

deletion of the SMAD transcription factors, which are part of the TGFb family

canonical signaling pathway. SMAD2 and SMAD3 signal for activin, GDF9, and

TGFb, while SMAD1, SMAD5, and SMAD8 signal for the BMPs and AMH.

An additional SMAD, SMAD4, is shared by all members of the TGFb family.

Conditional mutations for these SMADs have been generated in granulosa cells

(Li et al. 2008; Pangas et al. 2006b, 2008). Conditional deletion of Smad4 results in
age-dependent infertility, with defects in steroidogenesis, ovulation, cumulus cell

function, and eventually premature ovarian failure (Pangas et al. 2006b). Unlike the

activin-deficient mouse model, Smad4 cKO ovaries show an increase in preantral

follicle death, a decrease in the number of antral follicles, and no accumulation of

CLs. Similar to the activin-deficient ovary, small follicles appeared to luteinize

prematurely, and even though SMAD4 is a known tumor suppressor gene, no tumors

developed in Smad4 cKO mice. Cumulus cells in the Smad4 cKO are defective and

undergo a disorganized or limited cumulus cell expansion. The defects in preantral

follicle growth and cumulus cells may be attributable to the inability of GDF9 to

fully function through the SMAD pathway when Smad4 is deleted.

A similar phenotype to Smad4 cKO female mice is seen in granulosa cell

conditional knockouts of the activin/TGFb signaling SMADs (AR-SMADs),

Smad2 and Smad3 (Li et al. 2008). SMAD2 and SMAD3 have both unique and

redundant roles in various tissues, but appear to have redundant functions in
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granulosa cells because single conditional knockouts of Smad2 or Smad3 in gran-

ulosa cells have no discernable reproductive phenotype (Li et al. 2008). However,

double Smad2 Smad3 cKO mice using Amhr2cre have reduced litter sizes and

become infertile after 5 months of age with disrupted follicle development (i.e.,

fewer antral follicles), luteinized follicles, and reduced ovulation, with severe

defects in cumulus cell function. The phenotypes of conditional knockouts for the

BMP SMADs (BR-SMAD) have phenotypes that differ dramatically from the other

SMAD conditional knockout models. Single conditional mutants Smad1 or Smad5,
or Smad8 KO mice, are viable and fertile. The combinations of double conditional

Smad1 Smad8, or Smad5 Smad8, are also fertile. However, reproductive pheno-

types are seen in double conditional Smad1 and Smad5, or triple conditional Smad1

Smad5 Smad8 mice (Pangas et al. 2008). Both Smad1 Smad5 dKO or Smad1 Smad5
Smad8 tKO have initial fertility defects with decreased litters per month and

increasing infertility with age. These mice also develop GCTs with full penetrance

by 3 months of age. In addition, the majority of Smad1, Smad5 dKO and Smad1,

Smad5, Smad8 tKO mice show peritoneal implants and lymphatic metastases over

time. The Smad1, Smad5 dKO and Smad1, Smad5, Smad8 tKO models were the

first in vivo demonstration that the BMP SMADs may have a critical tumor

suppressor function.

The phenotypes of the various SMAD and activin/inhibin knockouts in the ovary

suggest a potential interaction between the various BMP and TGFb/activin path-

ways in controlling granulosa cell growth and differentiation. Of the knockouts

generated in the TGFb family, only two TGFb family mouse models develop

GCTs: the inhibin a KO and the BR-SMAD cKOs. Part, though not all, of the

phenotype of the inhibin a KO has been attributed to activin’s tumor promoting

activity in part via SMAD3 (Li et al. 2008) (see above). In the BR-SMAD cKO

mouse models, an examination of the phosphorylation status of the AR-SMADs

demonstrated that SMAD2 and SMAD3 are nuclear and phosphorylated, indicating

pathway activation; thus, it has been suggested that part of the phenotype of the

BR-SMAD cKO may be due to dysregulated AR-SMAD (i.e., Smad2 and Smad3)
pathway regulation (Pangas et al. 2008). Thus, one of the roles of the BR-SMADs

may be to antagonize or cross-regulate the AR-SMADs to control cell proliferation.

The role of additional signaling pathways in tumorigenesis in the BR-SMAD cKO

models is still under investigation.

Disrupting the function of TGFb family ligands and their signaling pathways not

only influences somatic cell function, but eventually results in improper oocyte

development. As originally proposed by John Eppig (1991), oocytes secrete factors

now known to include GDF9 and BMP15, which based on mouse knockout studies

are known to control specific somatic cell functions, including optimal expansion of

the cumulus oocyte complex prior to ovulation (Elvin et al. 1999a; Pangas and

Matzuk 2005; Vanderhyden et al. 2003). Most recently, Eppig et al. (2008, 2007)

have published novel results indicating that oocyte-derived factors regulate cumu-

lus cell production of key metabolic substrates presumed essential for oocyte

quality and viability (Eppig et al. 2005; Sugiura et al. 2005a, b). Specifically,

oocytes do not make their own cholesterol, fatty acids, or glucose. Rather the
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oocytes, most probably by release of BMP15 and GDF9, control cumulus cell

expression of specific genes within the cholesterol biosynthetic pathway and the

glycolytic pathway. As noted above, FOXO1 also appears to regulate genes in the

cholesterol biosynthetic pathway, and thus there may be a functional link between

FOXO1 and the oocyte derived growth factors BMP15/GDF9, though this remains

to be determined.

7 New Mediators of Ovulation and Luteinization

Based on recent studies, we know that the LH surge can stimulate PKA, AKT, and

RAS signaling cascades, and that each of these appears critical for ovulation (Fan

et al. 2008b). Most importantly, the seminal studies of Marco Conti and colleagues

have shown that LH rapidly induces in granulosa cells the expression of the

EGF-like factors amphiregulin (AREG), betacellulin (BTC), and epiregulin

(EREG) (Conti et al. 2005). These factors bind the EGF receptors present on

granulosa cells and induce the expression of downstream target genes, Has2,
Ptgs2, and Tnfaip6, which in cultured cells are targets of ERK1/2 (Shimada et al.

2006). Disruption of the EGF ligand-receptor signaling pathway in mice compro-

mises ovulation, indicating that activation of this pathway is essential for LH-

induced ovulation to occur (Hsieh et al. 2007). Moreover, mice in which ERK1

and ERK2 have been disrupted in granulosa cells exhibit normal follicle growth but

fail to ovulate or luteinize (unpublished observations). Thus, the critical importance

of LH induction of the EGF-like factors and activation of the EGF receptor pathway

is mediated, in large part by the activation of ERK1/2 in granulosa cells as well as in

cumulus cells (Shimada et al. 2006). Specifically, the prostaglandins (PGE2) and

the EGF-like factors produced by granulosa cells then activate specific PGE and

EGF receptors present in cumulus cells leading to the expression of specific genes

involved in expansion of the cumulus oocyte complex and oocyte maturation

(Shimada et al. 2006). The genes involved in expansion include factors essential

for making and stabilizing the hyaluronan matrix (Has2, Ptgs2, Tnfaip6, Vcan, and
Ptx3) but also additional genes frequently associated with innate immune

responses, including components of the Toll-like receptor pathway, Cd34, Cd52,
Alcam, many potent cytokines, such as IL6, as well as transcription factors Runx1
and Runx2 (Shimada et al. 2006; Liu et al. 2008b, 2009; Richards et al. 2008).

The impact of cytokines on ovarian function represents a relatively new area of

investigation. Recently, IL6 alone has been shown to stimulate expansion of the

cumulus oocyte complexes and induce the expression of specific genes involved in

this process (Liu et al. 2009). These observations indicate that in clinical situations

where levels of IL6 are elevated, such as chronic infections, endometriosis, and

possibly PCOS, this and other potent cytokines may disrupt the normal functional-

ity of granulosa and cumulus cells. IL6 acts via specific receptors (IL6ST, also

known as gp130) present on cumulus cells as well as the oocyte. Moreover, IL6 can

increase the expression of Stat3 and Il6st in cumulus cells and the oocyte present in
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preovulatory follicles and enhance reproductive outcomes, suggesting that this

pathway significantly influences oocyte quality (Liu et al. 2009). Of note, mice

null for gp130/Il6st exhibit defects in zygotic cell division, suggesting that IL6 and
related cytokines regulate oocyte function (Molyneaux et al. 2003). Because the

induction of IL6 is regulated not only by AREG (Liu et al. 2009) but also by the

progesterone receptor (PGR) (Liu et al. 2009; Kim et al. 2008) and possibly CEBPb
(unpublished observations) that are essential for ovulation, it is tempting to specu-

late that IL6 may mediate some key process downstream of PGR and CEBPb in

granulosa cells. Moreover, the expression of SNAP25, an important component

controlling neuronal-like secretion of cytokines from granulosa cells, is also regu-

lated by PGR (Shimada et al. 2007). Thus, the importance of locally produced and

secreted ovarian cell derived cytokines during ovulation needs to be analyzed

further and may be relevant for several ovulation-related processes including

rupture, COC transport, and fertilization (Richards et al. 2008). In this regard,

it is important to note that cytokines have recently been shown to influence

the fertilization process by enhancing sperm motility and capacitation (Shimada

et al. 2008).

Because mice null for the nuclear receptor interacting protein Nrip1 (also known
as RIP140) also exhibit impaired ovulation and reduced expression of Areg, Ereg,
and many other ovulation related genes, it is possible that NRIP1 regulates

transcription of the Areg gene, a critical early event in the ovulation process (Tullet
et al. 2005; Nautiyal et al. 2010). Because NRIP1 also impacts metabolic pathways

and inflammatory events in other tissues (Nichol et al. 2006), NRIP1 may also

regulate additional events critical for ovulation.

Targeted disruption of the transcription factor Steroidogenic Factor 1 (SF1; now

known as nuclear receptor subfamily 5, group a, member 1, NR5a1) in mice

provided the first major evidence that this nuclear receptor was essential for

pituitary, gonad, and adrenal formation (Luo et al. 1994). Conditional deletion of

this gene in granulosa cells has documented further that there is a critical role for

SF1 in early follicle formation and development (Pelusi et al. 2008). More recently,

a conditional knockout of Lhr1 (Nr5a2; an orphan receptor highly similar to Nr5a1)
in murine granulosa cells has been reported (Duggavathi et al. 2008). Although

Nr5a2 is also expressed in granulosa cells of small and growing follicles, evidence

from the conditional disruption of Nr5a2 in granulosa cells indicates that it plays a

more critical role in events associated with ovulation and luteinization than in the

early stages of follicle growth. Impressively, the Lrh1 null mice exhibit impaired

ovulation and luteinization suggesting that this nuclear factor plays a critical role in
both of these processes. Thus, in this in vivo context, these two nuclear receptors

appear to exhibit distinct, rather than overlapping, functions. One explanation for

this may be related to the impact of specific signaling cascades and phosphorylation

of either SF1 or LRH1 that alters their ability to bind key regulatory elements in

target genes via a switch-type mechanism (Weck and Mayo 2006). Additionally,

LRH1 and SF1 exhibit similar functions when overexpressed in cultured rat gran-

ulosa cells with the notable exception that SF1, but not LRH1, can override the

inhibitor effects of DAX on FSH stimulation of estradiol and progesterone
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biosynthesis (Saxena et al. 2007). However, an essential role for DAX in the ovary

is doubtful based on evidence that targeted disruption of DAX does not alter normal

follicle development, but does prevent normal testis development (Yu et al. 1998).

Thus, DAX is not a potent determinant of ovarian development. The differences in

the functions of SF1 and LRH1 also appear to be related, in part, to genes that are

selectively regulated by SF1 (Amh, Inha) (Pelusi et al. 2008) compared with LRH1

(Cyp19, Cyp11a1, and Ptgs2) (Duggavathi et al. 2008). Recently, mice null for the

estrogen-specific sulfotransferase (Sult1e1) have been generated and exhibit

impaired ovulation and cumulus expansion (Gershon et al. 2007), suggesting that

LRH1 or other transcription factors potently induce expression of this gene in

response to the LH surge. Serum and presumably intraovarian levels of estradiol

are elevated in these mice disrupting normal feedback mechanisms. In addition,

sulfated estradiol is an inactive form unable to bind estradiol receptors thereby

potentially altering ovarian cellular functions. However, the mechanisms by which

Sult1e1 disruption impairs ovulation have not been defined. Based on the genes

regulated by ERK1/2, LRH1, and NRIP1, it is tempting to speculate that NRIP1

may be an important coregulator and/or activator of LRH1 in the ovary and that

ERK1/2 may be required for specific phosphorylation events. Because LRH1 is also

important for liver metabolism (Lee and Moore 2008) and embryonic stem cells

(Mullen et al. 2007), it will be interesting to determine what specific genes this

factor controls in ovarian cells that are distinct from those regulated in liver or

embryonic stem cells. One other mutant mouse model in which both ovulation and
luteinization are impaired is the Cebpb null mouse (Sterneck et al. 1997). Thus, it

will be important to determine how ERK1/2, CEBPb, LRH1, and NRIP1coordi-

nately regulate a select number of genes.

8 New Regulators of Oocyte Maturation and Meiosis

The meiotic arrest of oocytes is controlled by critical levels of cAMP within the

oocyte. For many years somatic cells were thought to be the source of cAMP that

was delivered to the oocyte via gap junction because the disruption of gap junctions

elicited spontaneous resumption of meiosis (Norris et al. 2008; Gittens and Kidder

2005). However, recent molecular studies have identified and highlighted a critical

role for specific G-protein coupled receptors, especially GPR3 and possibly GPR12

in controlling intraoocyte production of cAMP and thereby suppressing meiotic

maturation in oocytes of antral follicles (Mehlmann et al. 2004; Hinckley et al.

2005). Specifically, disruption of Gpr3 in mice led to premature resumption of

meiosis and ovarian “aging” (Mehlmann et al. 2004). Human oocytes also express

functional Grp3 but not Gpr12 (DiLuigi et al. 2008). Collectively, these studies

provide the first evidence that oocytes themselves express a receptor that allows

these cells to generate their own cAMP. These observations indicated that intra-

oocyte cAMP levels were unlikely to be controlled exclusively by transport from

somatic cells to the oocyte as previously thought. Furthermore, phosphodiesterase
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Pde3a and adenylyl cyclase 3 (Adcy3) are selectively expressed in murine and

human oocytes (Vaccari et al. 2008). Disruption of Pde3a, which increases cAMP,

or Adcy3, which reduces cAMP, either prevents or stimulates, respectively, preco-

cious oocyte maturation (Vaccari et al. 2008). Moreover, the phenotype of mice

null for both Gpr3 and Pde3a indicates that Gpr3 is the major source of cAMP that

disrupts meiosis in the Pde3a null mice (Vaccari et al. 2008) because meiosis

is restored in the double mutant mice. These results provide additional evidence

for intra-oocyte control of cAMP production and degradation. Although the

specific ligands for these orphan G-protein coupled receptors remain to be convinc-

ingly characterized, sphingosine 1-phosphate is a likely candidate (Uhlenbrock

et al. 2002).

Thus, factors that regulate ligand production or that modify receptor activity

provide potential targets for designing molecules that specifically target oocytes

and thereby regulate fertility by blocking meiosis or by eliciting premature resump-

tion of meiosis. For example, a molecule that would selectively bind to ZP1, 2, or 3

and deliver a potent signal to the oocyte might be engineered and delivered via

novel nanoparticles. In addition, specific PKA anchor proteins (AKAPs) are present

in oocytes and appear to be key regulators of the cAMP/PKA pathway that controls

meiosis in the mammalian oocyte (Burton and McKnight 2007). Therefore, target-

ing these molecules might also provide novel ways to control fertility.

Perhaps one of the most dramatic and provocative approaches developed to

study the dynamics of follicle and oocyte growth comes from studies of Woodruff

and Shea (Pangas et al. 2003; West-Farrell et al. 2008; Xu et al. 2006). These

investigators and their colleagues have shown in mice that maintaining a 3-D

follicle structure within an inert but supportive extracellular alginate matrix permits

in vitro follicle growth and oocyte maturation in response to hormones. Moreover,

these in vitro matured mouse follicles could ultimately be stimulated to release

oocytes capable of being fertilized in vitro and subsequently give birth to viable,

healthy pups. These approaches open new and exciting possibilities for preserving

ovarian tissues in woman undergoing radiation treatment and who subsequently

wish to conceive. Although tedious and currently untested in nonrodent species,

these approaches may provide a way to mature follicles and thereby reduce the

genetic changes that are observed in oocytes matured in vitro compared with

in vivo. These studies may also provide a method to study differences that may

exist between individual follicles or oocytes, and potentially be able to provide a

“biomarker” (either somatic or germ cell) that may be used to determine the

capacity of individual eggs when fertilized to develop into viable offspring.

9 Summary

New insights into regulators of early oocyte and follicle formation (Nr5a1, Nobox,
Sohlh1, Lx8, Foxo3, Foxl2,Wnt4, Ctnnb1), follicular growth (Gdf9, Bmp15, Foxo1,
Smads, Inha, Inhba, Inhbb) as well as ovulation and luteinization (Cebpb, Nr5a2,
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Areg, Ereg, Btc, Nrip1, Kras,Mapk1/3, Il6) indicate that multiple factors and signal

transduction pathways act in a cell specific and context specific manner. To regulate

fertility, cumulus oocyte complexes remain an attractive target if one could prevent

expansion, alter oocyte/cumulus cell interactions or oocyte maturation by disrupt-

ing the actions of specific cytokines or other factors without altering the functions

of other major organs. These might provide new avenues for contraceptive research

as well as improving fertility in women with endometriosis and PCOS.

Information being derived from new approaches such as the exponential increase

in knowledge of microRNAs should provide additional insights into factors and

combined sets of factors that regulate genes in a cell and context specific manner

(Otsuka et al. 2008; Nagaraja et al. 2008; Hong et al. 2008; Fiedler et al. 2008;

Mishima et al. 2008). Because microRNAs control the levels of more than one

mRNA, local disruption of these molecules may also provide tools for regulating

fertility, cancer, and development. Because the delivery of small molecules by a

variety of nanotechnology approaches is being aggressively pursued by many, these

approaches may enhance the specificity and cell specific delivery of key regulatory

molecules that can impact fertility at critical sites and times.
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Abstract Estrogens influence fertility and infertility in animals. This chapter

reviews the use of estrogen as a contraceptive through the regulation of its produc-

tion and action. It is concluded that the use of specific agonists and antagonists of

estrogen action that avoid the global and unwanted side effects of estrogen offers

new potential methods of contraception.
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1 Introduction

Estrogens have an important role to influence fertility and infertility in mammals.

They are members of the steroid hormone family produced principally by the gonads

and placenta, but in numerous other tissues also such as breast, bone, skin, vascula-

ture, adipose mesenchymal cells, and numerous sites in the brain. They were shown

to have negative and positive feedback effects on the hypothalamic–pituitary axis

(Diczfalusy and Fraser 1998). It was established also that estrogens acted on target

organs such as the uterus, hypothalamus, pituitary, bone, mammary tissue, and

liver, as well as having local actions within the gonads (Hisaw 1947; Hall et al.

2001). These properties of estrogen were exploited by Pincus et al. (1958) in the

development of the contraceptive pill for women. This extensive list of target

tissues is important when considering targeting estrogens as contraceptives as

will be discussed below. Estrogens were shown to act on target cells via nuclear

transcription factors, or estrogen receptors (ER), of which two have been identified,

ERa and ERb (Jensen and DeSombre 1973; Kuiper et al. 1996). More recently,

there is evidence of a membrane form of ER that might transmit the estrogen signal

(Levin 2009).

However, our knowledge of the regulation of the biological actions of estrogens

is incomplete. Extrinsic estrogens were shown to have actions other than infertility

as observed with the contraceptive pill. Compounds with estrogenic activity devel-

oped for the agricultural and plastics industries were shown to cause infertility and

tumors in mammals (Sharara et al. 1998). Children born of pregnant women treated

with diethylstilbestrol had malformation of the reproductive tracts and development

of vaginal cancer (Swan 2000). The known mechanisms of estrogen action could

not explain the benefits of phytoestrogens used for hormone replacement therapy

(Adlercreutz 1995).

The aim of this chapter is to review the use of estrogen as a contraceptive

through the regulation of its production and action. After reviewing the mechanisms

for estrogen production and signaling, we shall examine the actions of estrogen that

allow us to evaluate their novel contraceptive potential.

2 Production of Estrogens

Estrogens are produced from androgens by the enzyme known as aromatase, which

is a member of the cytochrome P450 superfamily and its gene designation is

CYP19A1. The gene encoding the aromatase enzyme is some 120 kb long of

which 91 kb comprise an extensive 50 untranslated region. This contains a number

of 50 untranslated first exons which are spliced into the coding region in a tissue-

specific fashion. The splicing in each case occurs at a common 30 junction upstream
of the start of translation (Simpson et al. 2002). Thus, the coding region is always

the same regardless of the tissue site of expression. This occurs because of the
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presence upstream of each of these 50 untranslated exons of a tissue-specific

promoter. These promoters have different trans- and cis-acting elements regulating

their activity. Hence, the expression of aromatase in each of the tissue-specific sites

of expression is different. The distribution of aromatase activity in the body

includes the gonads, hypothalamus, adipose tissue, bone, and placenta, as well as

in some tumors and endometriotic tissues (Simpson et al. 2002). Thus, expression in

ovarian granulosa cells and Sertoli cells of the testes is driven by a proximal

promoter PII which contains a couple of CREs and hence binds CREB and is

regulated by factors which stimulate adenylyl cyclase, leading to increased cyclic

AMP and PKA activation. In granulosa cells and Sertoli cells, FSH appears to be

the primary trophic hormone responsible for this activation. In the case of adipose

tissue, the primary promoter being utilized is the distal promoter I.4, which is

regulated by Class I cytokines such as interleukin 6 and TNFa in the presence of

glucocorticoids. This response is mediated by a JAK1/STAT3 regulatory pathway.

In the case of the placenta, the most distal promoter, promoter I.1, is employed

which is some 91 kb upstream from the start of translation. Aromatase expression in

adipose tissue is normally quite low; however, in breast adipose tissue in the

presence of a tumor, aromatase expression increases three- or fourfold. This

increase is due to the use of promoter PII, which is driven by inflammatory factors

such as prostaglandin E2 produced by the tumorous epithelium, which also activates

adenylyl cyclase and hence cyclic AMP. Other transcription factors and response

elements are also employed by each of these promoters, for example in the case of

promoter PII, a monomeric orphan member of the nuclear receptor family is also

absolutely required for expression and binds to a nuclear receptor half site down-

stream of the CREs. In the case of the ovary, this nuclear receptor appears to be

SF1, whereas in the tumorous mesenchymal cells of the breast it is LRH1, a closely

related member of the nuclear receptor superfamily (Clyne et al. 2002).

3 Cellular Mechanisms of Action

ER is a protein that functions as a major component in the mechanisms of estrogen

action, where it binds estrogens to initiate the tissue responses. There are two

separate ER proteins, ERa and ERb, which have distinct tissue expression patterns

(Mueller and Korach 2001) in both humans and rodents. ERa and ERb are encoded

from separate genes and chromosomal locations, ESR1 and ESR2, and likely arose

due to gene duplication. Development of the homologous recombination technology

has allowed scientists to develop unique experimental animal models (Hewett et al.

2005). Gene-targeted knock-out mouse models lacking these receptors exhibit

distinct phenotypes (Couse and Korach 1999).

Entry of the hormone into the target cell is thought to be by diffusion where it

becomes bound by the ER, which is located primarily in the nucleus, but can also

be associated with other cellular organelles such as the plasma membrane. The

nuclear ER–estrogen complex can regulate genes, positively or negatively, by
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binding directly to specific unique DNA sequences, referred to as estrogen response

elements (ERE) contained in the promoter region of regulated genes. Once the

hormone receptor complex is formed there is believed to be recruitment of co-

regulatory proteins (coactivators or corepressors) which associate directly with the

receptor protein at the promoter, in addition to the general transcription complex,

producing increased or decreased mRNA levels and associated protein production,

and resulting physiological responses (Couse et al. 2006).

An alternatively described mode of action involves an indirect mechanism

where the ER does not bind directly to the DNA but interacts with existing

transcription factors (e.g., fos/jun), which is referred to as the tethered mechanism

of nuclear receptor gene transcription. To elicit the many actions of the hormone

this “genomic” mechanism typically occurs over the course of hours in most tissues

and has been shown to involve unique gene groups at different times (Hewitt

et al. 2003).

Another mode of action of estrogen is thought to involve a nongenomic mecha-

nism. Such a mechanism has been shown to occur very rapidly within minutes of

hormone exposure. Components of this cellular mechanism are shown to be the ER

protein itself located in or adjacent to the plasma membrane involving interactions

with adaptor proteins such as striatin, caveolin-1 or Shc, or through other, recently

described nonER plasma membrane-associated estrogen-binding proteins, such as

GPR30 (Otto et al. 2009; Levin 2009), resulting in cellular responses such as

activation of MAP kinases which can then act to prime the genomic actions.

Besides the two previously mentioned cellular mechanisms, a third ER activity

can also occur which involves the ligand independent activation of the receptor

protein. Such an action has been shown experimentally in cells and experimental

animal models, involving the activation of kinase cascades (e.g., MAPK or IP3K)

by growth factors or other membrane signaling agents (Curtis et al. 1996). The

extent to which any of these specific mechanisms are involved in mediating the

physiological actions of estrogen is still requiring considerable study to develop

effective biomedical understanding and therapeutic application.

4 Estrogens and Contraception

Estrogens, estradiol-17b in particular, are essential for fertility in mammals. They

are known to act at key points in the reproductive process in females, such as:

l Development of the ovulatory follicle(s)
l Triggering the midcycle preovulatory surge of gonadotropins
l Altering the consistency of cervical mucus to facilitate sperm transport
l Preparing the endometrial lining of the uterus for implantation

Alterations to the production and or actions of estrogen can disrupt these

processes leading to infertility.
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4.1 Regulation of Estrogen Production

Targeting the intrinsic production of estrogen as a means of contraception is

complex and can lead to untoward side effects. This is exemplified by the use of

aromatase inhibitors in breast cancer therapy. In recent years, inhibitors such as

Arimidex, Letrozole, and Exemestane have supplanted Tamoxifen in first and

second line therapy as well as adjuvant and neoadjuvant therapy for breast cancer.

However, use of these compounds results in significant contraindications such

as bone loss, joint arthralgia, and possibly cognitive defects. This is because

these compounds inhibit the catalytic activity of the aromatase enzyme and thus

inhibit its activity globally not only in the breast but in other sites where estrogens

have important roles such as the reproductive tissues, bone, brain, and cardiovas-

cular system. Thus, there is no tissue specificity in their action. The only way to

achieve this would be to take advantage of the specificity presented by the use

of tissue-specific promoters to design inhibitors which block expression of aroma-

tase specifically in a given tissue. This is theoretically feasible. For example, in

the postmenopausal woman LRH1 uniquely regulates aromatase expression in the

breast but not, as far as we understand, in other tissue sites of expression. Thus

LRH1 is a potential target for breast-specific ablation of aromatase expression

(Simpson et al. 2002).

In the case of premenopausal women, the use of aromatase inhibitors appears to

be less effective since they do not reduce circulating estrogen levels to the extent

that they do in the postmenopausal situation and are therefore less likely to be

useful as contraceptives. Furthermore, their use could lead to collateral problems of

estrogen deficiency.

4.2 Regulation of Estrogen Action

Estrogens can be produced and act locally or they can be secreted and act distally.

In both cases, they act on the target cells via specific receptors. The actions of

estrogen will be governed by the rate at which they are secreted and metabolized,

the presence if any of binding proteins, and the concentrations of receptors.

Alterations in metabolism of estrogen or the properties of their binding proteins

have not offered any potential as a contraceptive. However, there are agonists and

antagonists of the receptors that may offer a new approach.

Contraception has been a successful medical treatment for a number of years.

Early studies of Pincus, Greep, Hertz, Greenblatt, and others showed the use of

estrogen or estrogen receptor agonists could effectively inhibit gonadotropin secre-

tion and subsequent stimulation of the ovary and ovulation (Pincus et al. 1958).

From those early years, using estradiol itself, estrogen derivatives or synthetic

estrogens included high doses resulting in concerns over the potential side effects

of increasing cancer susceptibility in endocrine responsive tissues such as the

Estrogen Signaling in the Regulation of Female Reproductive Functions 33



endometrium and breast. Years of investigation have now resulted in a therapeutic

approach involving much lower dosing schemes and development of neuroendo-

crine selective agonists.

Advancement from both clinical cases (e.g., aromatase or ER mutant patients)

and experimental animal models, e.g., aromatase knockout (ArKO) (Fisher et al.

1998, Britt and Findlay 2002, 2003) and ER knockout (ERKO) (Couse and Korach

1999) mice, has provided new insights into both the mode of action and the specific

estrogen receptor (i.e., ERa or ERb) signaling molecule involved. Such knowledge

allows us to know which type of selective estrogen receptor modulator (SERM) or

tissue selective estrogen complex (TSEC) will be effective in contraceptive devel-

opment and regulation of the hypothalamic pituitary gonadal axis. It appears that

the primary mediator of negative feedback is ERa, although studies have imple-

mented ERb as possibly involved in the ovulatory (proestrus) LH surge required for

ovulation. Additionally, ERb has been shown to be required in the ovary for

effective follicle ovulation. Therefore, blocking the LH surge with an ERb selective

antagonist maybe a highly effective approach at both the neuroendocrine and target

tissue (e.g., ovarian) level. Since ERb has minimal, if any mitogenic activity in the

uterus or breast, the most common side effect should not be a concern. Another

option would be a tissue selective delivery of estrogen or a derivative to neuroen-

docrine sites to act as an agonist and contraceptive. Such an approach does not

concern itself with the specificity of the compound and receptor involved, but rather

to the tissue selective delivery and action. Finally, use of an ERa selective agonist

to induce negative feedback has the age-old problem of also stimulating ERa
activities potentially associated with carcinogenesis. So, the side effects may

outweigh the usefulness of that earlier approach, based on our current knowledge

of LH regulation. It is obvious that understanding the precise mechanism for ER

regulation of LH expression will also provide alternative modes of contraceptive

development such as through other signaling pathways or the target tissue selective

action at the ovary.

5 Conclusions

While the contraceptive pill containing very low doses of estrogen remains a very

effective method, the use of receptor-specific agonists and antagonists that avoid

the global and unwanted side effects of estrogen offers new potential methods of

contraception. Receptor agonists and antagonists rather than aromatase inhibitors

would appear to be a preferable option to explore at this stage.
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Abstract The steroid hormone, progesterone, plays a critical role in the regulation

of female ovulation. The physiological effects of progesterone are mediated by two

nuclear receptor transcription factors, PR-A and PR-B, which are produced from a

single gene and upon binding progesterone regulate the expression of specific gene

networks in reproductive tissues. Both null mutation of the PR gene to delete both

receptor proteins and selective disruption of the PR-A isoform lead to a failure of

ovulation due to disabled follicular rupture in response to gonadotrophin stimula-

tion. Recent studies have revealed that the LH stimulus that triggers ovulation is

transduced by PRs residing in mural granulosa cells that induce expression of

paracrine signals that interact with cumulus cells to control cumulus matrix func-

tion and expansion to facilitate follicular rupture.

Keywords Ovulation � Progesterone

O.M. Conneely

Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza,

Houston, TX 77030, USA

e-mail: orlac@bcm.edu

U.-F. Habenicht and R.J. Aitken (eds.), Fertility Control,
Handbook of Experimental Pharmacology 198,

DOI 10.1007/978-3-642-02062-9_3, # Springer-Verlag Berlin Heidelberg 2010

37



1 Introduction

The primary function of the ovary is to orchestrate female reproductive capacity by

supporting the development and release of a fertilizable oocyte (Richards 1994;

Richards et al. 2002; Russell and Robker 2007) and regulating production of

hormones essential for maintenance of estrous cyclicity in the absence of fertiliza-

tion and of pregnancy after successful oocyte fertilization. Oocyte maturation occurs

within the ovarian follicle whose early establishment begins in the embryo. At birth,

a finite pool of primordial follicles is established consisting of an oocyte surrounded

by a single layer of somatic cells, the squamous granulosa cell layer (Eppig 2001).

As primordial follicles begin to grow, the granulosa cells transition into a cuboidal

cell layer marking the emergence of a primary follicle which further develops

through proliferation and deposition of multiple layers of granulosa cells into a

secondary or preantral follicle that becomes surrounded by an additional thecal cell

layer. At puberty, reproductive competence is established and maintained by a

highly coordinated cyclic hormonal control of the hypothalamic–pituitary–ovarian

axis (McGee and Hsueh 2000; Richards 1994). The release of pituitary-derived

follicle stimulating hormone (FSH) during each reproductive cycle stimulates

recruitment and maturation of a subset of preantral follicles. These follicles undergo

expansion of cumulus granulosa cells surrounding the oocyte and form a fluid-filled

antrum that marks the mature preovulatory follicle (Fig. 1). At this stage, granulosa

cells within the follicle are segregated into two functionally distinct sublineages,

mural granulosa cells (MGCs) that line the follicular cell wall in contact with the

basal lamina and cumulus cells that envelop the oocyte and support its development.

The FSH stimulus is followed mid-cycle by a transient surge of pituitary-derived

luteinizing hormone (LH) that serves as the primary trigger for follicular rupture and

release of a fertilizable oocyte as well as differentiation of remaining granulosa cells

into a luteal phenotype to form a functional corpus luteum.

Substantial evidence has accumulated in recent years to indicate that the initial

LH signal is transduced by LH receptors residing predominantly in the mural

granulosa and thecal cell layers of the preovulatory follicle (Eppig 1979a, b; Peng

et al. 1991; Wang and Greenwald 1993). The LH-activated signaling pathways in

these follicular cell layers then lead to production of secreted factors that can act in

Thecal Cell Layer

Basal Lamina

Mural Granulosa Cells

Fluid Filled Antrum

Cumulus Cells

Fig. 1 Mature preovulatory

follicle
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a paracrine manner to transmit the ovulatory signal to cumulus cells leading to

cumulus expansion and ultimate oocyte extrusion (Richards 2007; Russell and

Robker 2007).

The advent of high-density gene array profiling technologies coupled with mouse

models of genetic ablation of specific LH-regulated genes have uncovered a com-

plex myriad of signaling pathways that mediate all aspects of the ovulatory response

to LH. This chapter will focus on the role of progesterone (P) and its LH-regulated

ovarian receptors (PRs) in mediating the LH response leading to ovulation.

2 Progesterone Receptors Control LH-Induced Follicular

Rupture but Not Luteinization

Is it well established that P is a critical regulator of ovulation and that the physiologi-

cal responses to P are mediated primarily at the level of transcription by two PR

protein isoforms arising from a single gene (Conneely et al. 2003). Although classi-

cally viewed as an endocrine hormone, evidence that ovary-derived Pmay participate

in autocrine regulation of ovarian function first emerged with the demonstration that

LH can stimulate transient expression of PR mRNA and protein in granulosa cells

isolated from preovulatory follicles (Natraj andRichards 1993; Park-Sarge andMayo

1994) and that the antiprogestin, RU486, can inhibit ovulation (Loutradis et al. 1991).

Definitive proof that intraovarian PRs are essential mediators of ovulation was

provided by analysis of the ovarian phenotype of mice carrying a null mutation of

the progesterone receptor gene (PRKO). Despite exposure to superovulatory levels of

gonadotrophins, PRKO mice fail to ovulate. Analysis of the histology of these mice

has revealed normal development of intraovarian follicles to the tertiary follicular

stage (Lydon et al. 1995). The follicles contain amature oocyte that is fully functional

when isolated and fertilized in vitro. However, follicular rupture is effectively

eliminated. Despite the ovulatory block, the preovulatory granulosa cells within

these follicles can still differentiate into a luteal phenotype and express the luteal

marker, P450 side chain cleavage enzyme (Robker et al. 2000). Thus, PRs are

required specifically for LH-dependent follicular rupture leading to ovulation but

not for differentiation of granulosa cells to form a corpus luteum (luteinization).

Both PR isoforms of PRs (PR-A and PR-B) are induced in preovulatory follicles

in response to LH stimulation (Natraj and Richards 1993). Examination of the

selective contributions of the individual PR isoforms in mediating the ovulatory

function of P using mice in which expression of either the PR-A (PRAKO) or PR-B

(PRBKO) isoform was selectively ablated has revealed that the PR-A isoform is

both necessary and sufficient to regulate the ovulatory functions of P while the

PR-B isoform is dispensible for ovulation (Mulac-Jericevic et al. 2003, 2000).

Stimulation of immature PRAKO mice with superovulatory doses of gonadotro-

phins indicated that superovulation is severely impaired in these mice relative to

their wild-type counterparts, but unlike PRKO mice is not completely absent. In

contrast, superovulation was unaffected in PRBKO mice. Histological analysis of
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the ovaries of PRAKO animals showed numerous mature anovulatory follicles that

contained an intact oocyte and were arrested at a similar stage to that previously

observed in PRKOmice. The requirement for PR-A in ovulation is likely conserved

between mouse and human species given the relatively higher levels of PR-A vs.

PR-B expression observed in the human ovary.

3 Molecular Signaling Pathways That Mediate PR-Dependent

Follicular Rupture

Induction of ovarian PR expression occurs as early as 4 h and is maximal within 8 h

after receipt of an LH stimulus. The spatial expression pattern of PRs is highly

restricted to MGCs, while cumulus and thecal somatic cells as well as the oocyte are

devoid of PRs (Ismail et al. 2002). These findings indicate that the effects of P on

the cumulus oocyte complex are indirect and secondary to a PR-dependent tran-

scriptional program activated in MGCs that is capable of transmitting paracrine

signals to regulate cumulus cell function.

Because the PRKO mouse has a specific defect in follicular rupture while

LH-induced luteinization of granulosa cells is maintained, high-density differential

array analysis using this model provides an excellent approach to delineate the

signaling pathways regulated by PRs that are specific to follicular rupture. Recent

employment of these approaches has begun to provide important new insights into

the molecular mechanisms of P-induced follicular rupture.

Although a comprehensive list of PR-regulated gene signatures in the ovary is

currently unpublished, we and others have used Affymetrix U74A microarrays to

compare gene array expression profiles in wild type vs. PRKO ovaries. In our study,

total RNA was prepared from mice that were stimulated with PMSG followed 48 h

later by HCG for 12 h. Under these conditions, the LH-dependent expression of PRs

and their previously identified downstream target, ADAMTS-1 is optimal (Espey

et al. 2000). Of 12,500 genes interrogated in this analysis, 462 PR-dependent genes

were identified of which 294 were selectively upregulated and 168 downregulated

more than 1.5-fold in wild type vs. PRKO mice. Thus, PRs mediate the expression

of a complex array of gene signatures in response to LH. The following summary

will focus on progesterone-regulated signaling pathways activated in MGCs that

are critical for follicular rupture and involved in paracrine communication with

cumulus cells to regulate their function during ovulation.

4 Regulation of Cumulus Matrix Components by PRs

In response to the LH surge, cumulus cells adjacent to the oocyte recede away from

the latter and deposit a hyaluronin (HA)-rich protective extracellular matrix (ECM)

as cumulus expansion occurs. ECM deposition occurs in response to the induction of
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hyaluronin synthetases (HAS) and is stabilized by hyaluronin binding proteoglycans

including versican, TNF-stimulated gene-6 (TSG-6), and pentraxin-3 (PTX-3)

(Richards 2007; Russell and Robker 2007). TheHA-binding protein, versican, serves

as a substrate for the ECM protease, ADAMTS-1, whose mRNA expression is

coinduced in MGCs along with versican and is under transcriptional control by

PRs (Robker et al. 2000). While the latent form of this enzyme is produced in

MGCs, it is processed to amature secreted form that accumulates alongwith versican

in the cumulus cell matrix. Loss of PR-dependent expression of ADAMTS-1 in

ADAMTS-1 null mice results in severe impairment of ovulation underscoring the

critical role of this enzyme in mediating the ovulatory functions of progesterone.

Additional PR-induced proteases that may contribute similar functions in remodel-

ing of the cumulus ECM include Cathepsin-L (Robker et al. 2000) and ADAM8

(Sriraman et al. 2008). Finally, consistent with the essential role of the PR-A isoform

of PRs in regulating the ovulatory function of progesterone, PR-dependent expres-

sion of ADAMTS-1 is almost entirely dependent on the PR-A isoform of PRs.

5 Paracrine Growth Factor Signaling by PRs to Cumulus Cells

The epidermal growth factor-like (EGF-L) ligands, amphiregulin, epiregulin, and

betacellulin are rapidly induced in MGCs by LH and play a critical paracrine

function in regulation of cumulus cell expansion (Conti et al. 2006). Upon proteo-

lytic processing of membrane-bound precursor forms of these growth factors, the

active secreted products interact with their cognate receptors on cumulus cells

leading to resumption of oocyte meiosis (Hsieh et al. 2009) and formation of the

ECM during cumulus expansion in part through upregulation of components of the

ECM including HAS-2, TSG-6, PTX-3, and ADAM8 (Conti et al. 2006; Shimada

et al. 2006; Sriraman et al. 2008). Recent studies have shown that the LH-induced

expression of both amphiregulin and epiregulin is under transcriptional control of

PRs and is reduced in PRKO mice (Shimada et al. 2006). Although cumulus

expansion in PRKO mice appears morphologically normal, these findings under-

score an important role for PRs in paracrine growth factor-mediated regulation of

components of the cumulus ECM that are essential for cumulus expansion and

function during ovulation.

6 Transcriptional Programs Downstream of PRs

Recent studies have uncovered a hierarchy of transcription factor-mediated control

of ovulation in response to progesterone in LH stimulated granulosa cells, whereby

P activation of PRs regulates expression of a subset of transcription factors that

in turn activate gene signaling pathways that ultimately control the function of

cumulus cells. Among these are the nuclear transcription factors, RUNX1, PPARg,
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and hypoxia inducible factors (HIFs), all of which are induced by LH in a

PR-dependent manner in MGCs (Jo and Curry 2006; Kim et al. 2009, 2008).

RUNX1 (AML1) is a nuclear transcription factor required for hematopoietic cell

differentiation that is upregulated by PRs in granulosa cells (Jo and Curry 2006) and

plays an important role in the ovary in transcriptional regulation of expression of

prostaglandin-endoperoxidase synthase 2 gene (Ptgs2, cox-2) (Liu et al. 2009a).

PTGS2 is a critical regulatory enzyme required for production of prostaglandins

and activation of the prostaglandin inflammatory axis that is essential for cumulus

expansion and ovulation. The activation of RUNX1 by PRs therefore links proges-

terone to regulation of prostaglandin-mediated control of cumulus cell function.

The nuclear receptor PPARg is a critical mediator of LH-induced ovulation and

targeted deletion of this transcription factor in granulosa cells leads to failure of

follicular rupture (Kim et al. 2008). At a molecular level, the effects of PPARg are

mediated through activation of expression of downstream target genes that include

interleukin-6 (IL-6), endothelin-2 (ET-2), and cyclic GMP-dependent protein

kinase II (cGKII), all three of which have been shown to be dependent on PRs for

their activation (Liu et al. 2009b; Palanisamy et al. 2006; Sriraman et al. 2006).

ET-2 is essential for follicular rupture and functions in part through activation of

cGKII, while IL-6 promotes cumulus expansion through activation of downstream

signaling pathways that induce expression of key components of the ECM includ-

ing HAS2, TSG-6, PTX-3, and PTGS2 (Liu et al. 2009b).

The hypoxia inducible transcription factors, HIFs, are members of the bHLH-

PAS family of transcription factors that function as sensors of cellular oxygen

levels. Recent studies have identified three HIFs, HIF-1a, HIF-2a, and HIF-1b, as

PR-regulated genes in granulosa cells whose expression is reduced in PRKO mice

(Kim et al. 2009). Pharmacological blockade of HIF transcriptional activity is

sufficient to inhibit follicular rupture and interestingly inhibits expression of the

PR-dependent genes ET-2 and ADAMTS-1. Thus, PRs regulate distinct transcrip-

tional programs in MGCs that are capable of secondary transcriptional activation

of partially overlapping signaling pathways that in turn converge on cumulus

cells to regulate structural maintenance and remodeling of the ECM and facilitate

follicular rupture.
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Abstract In the human ovary, early in pre-natal life, oocytes are surrounded by

pre-granulosa follicular cells to form primordial follicles. These primordial oocytes

remain dormant, often for decades, until recruited into the growing pool throughout

a woman’s adult reproductive years. Activation of follicle growth and subsequent

development of growing oocytes in pre-antral follicles are major biological check-

points that determine an individual females reproductive potential. In the past

decade, great strides have been made in the elucidation of the molecular and

cellular mechanisms underpinning maintenance of the quiescent primordial follicle
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pool and initiation and development of follicle growth. Gaining an in-depth knowl-

edge of the intracellular signalling systems that control oocyte preservation and

follicle activation has significant implications for improving female reproductive

productivity and alleviating infertility. It also has application in domestic animal

husbandry, feral animal population control and contraception in women.

Keywords Fertility control � Granulosa cells � Oocyte � Primary follicle �
Primordial follicle

1 Introduction

In the mammalian ovary, early in pre-natal life, oocytes are surrounded by pre-

granulosa follicular cells to form primordial follicles. These primordial oocytes remain

dormant, often for decades, until recruited into the growing pool throughout a woman’s

adult reproductive years (Choi and Rajkovic 2006; Reynaud and Driancourt 2000).

Once in the primordial follicle, there are only two fates awaiting the oocyte; either the

germ cell will be directed to grow and eventually be ovulated ormore likely, the oocyte

will become atretic. In most mammals, greater than 99% of the oocytes are lost – with

only a tiny proportion selected for ovulation. The growing follicles doomed to atresia

are easily recognisable within the ovary as they display several markers of apoptotic

cell death (Krysko et al. 2008). In contrast, the mechanisms that underpin the mainte-

nance, selection and maturation of the very small population of good-quality and

presumably functional oocytes in primordial follicles are only just becoming clear.

Bi-directional signalling between the oocyte and the surrounding somatic cells is

considered fundamental in the delicate balance of positive and negative forces

controlling the maintenance and activation of the primordial follicle pool (Hutt

et al. 2006a; McLaughlin and McIver 2009; Skinner 2005). Both the maintenance

of healthy follicles and the highly regulated and selective release of primordial

oocytes into the growing pool (Jin et al. 2005) involves cross-talk between an every

growing list of cytokines and growth factors (Dissen et al. 2009; Picton et al. 2008;

Trombly et al. 2009). Excitingly in the past few years, great strides have been made

in characterising the intracellular signalling pathways activated during pre-antral

follicle development (John et al. 2007; Reddy et al. 2008) providing fundamental

knowledge and insight into the molecular systems responsible for ensuring produc-

tion of functional oocytes for fertilisation (McLaughlin and McIver 2009).

Throughout the globe, many couples are unable to control their fertility, with an

estimated 200 million plus women in the developing world either not using any

form of contraception or relying on traditional methods only (Rowlands 2009). In

contrast, in the Western world, both access and use of contraception are high;

however, the vast majority of women still rely on the oral contraceptive pill or on

barrier methods, principally the condom (Rowlands 2009). Ostensibly, there have

been many advances in the “pill” over the past 50 years including improved
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formulations and the introduction of a range of local vaginal and intrauterine,

injectable or sub/transdermal hormonal-based contraceptives. Barrier methods with

complementary spermicide/microbicide activity are also under development –

particularly as adjuncts for the control of sexually transmitted diseases, such as

HIV/AIDS (Rowlands 2009). Since no novel methods of contraception have been

introduced since the 1960s, recent insights into the basic cellular mechanisms

underpinning follicle maintenance and oocyte development will inform biotechnol-

ogy strategies for the manipulation of reproduction in humans.

2 Ovarian Folliculogenesis and Exhaustion of the

Primordial Follicle Pool

In mammals, primordial germ cells (PGCs) migrate early in embryonic develop-

ment to colonise the naive gonad where they differentiate to become oogonia.

Folliculogenesis begins with recruitment of somatic pre-granulosa cells to the

oocyte to form the primordial follicle (Fig. 1) (Dickinson et al. 2010). In rodents

and lagomorphs, synchronous primordial follicle formation occurs during the first

b c
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75µm 125µm 75µm

a

Fig. 1 Photomicrographs depicting the architecture and classification of ovarian follicles during

folliculogenesis (a) primordial follicles; quiescent oocytes surrounded by a single layer of squa-

mous granulosa cells, (b) primary follicle; primary oocytes characterised by a single layer of

cuboidal granulosa cells, (c) secondary follicle; enlarged oocytes surrounded by a second layer of

granulosa cells and marked by the acquisition of a thecal cell layer surrounding the follicle,

(d) pre-antral follicle; large oocytes surrounded by multiple layers of granulosa cells, (e) antral

follicle; mature follicle characterised by the presence of a fluid filled cavity within the granulosa

cell layer known as an antrum, (f) atretic follicle; degenerated follicles found at all stages of

follicular development characterised by “detached” granulosa cells and apoptotic oocytes
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few days and weeks of early post natal life (Hutt and Albertini 2006; Pedersen and

Peters 1968). In contrast, in livestock and primates including the human, follicle

formation and activation occur asynchronously during foetal life (Lintern-Moore

et al. 1974; Wandji et al. 1996), resulting in ovaries at birth containing both growing

pre-antral and early antral follicles in the neonatal ovary (Picton et al. 1998).

Endocrine mechanisms are thought to trigger primordial follicle formation and

these are mediated by the maternal hormonal milieu. High levels of maternal

oestrogen in the foetal ovary act to maintain intact germline nests and the subsequent

decrease of oestrogen and progesterone allows follicle formation (Chen et al. 2007,

2009; Nilsson et al. 2006; Nilsson and Skinner 2009; Pepling et al. 2009). Similarly, a

progesterone and oestrogen endocrine-based mechanism of primordial follicle acti-

vation has been postulated as both hormones act in in vitro culture experiments to

decrease primordial follicle recruitment during the first wave of folliculogenesis in

rodents (Kezele and Skinner 2003). Multiple perinatal mechanisms establish the size

of the primordial follicle reserve with follicle loss resulting from apoptotic germ cell

loss, substantial autophagy and ovarian morphogenesis comprising active extrusion

of non-apoptotic germ cells, all resulting in substantial depletion of the follicle

population (Rodrigues et al. 2009). As progesterone and oestrogen levels have

been noted to drop in bovine and primate foetal ovaries during mid to late gestation

coincident with follicle assembly and growth initiation, this further implicates a

steroid-based negative regulatory mechanism (Kezele and Skinner 2003; Nilsson

and Skinner 2009; Yang and Fortune 2008). Interestingly, earlier studies indicate that

there are increased populations of pre-antral and antral follicles in juvenile oestro-

gen-deficient aromatase knockout (ArKO) mice, also supporting the notion that

primordial follicle activation is dependent on a decline in oestrogen levels (Britt

et al. 2004). Furthermore, diethylstilbestrol inhibits follicle formation and develop-

ment in neonatal mouse ovaries in vitro, by acting through oestrogen receptor alpha

(EPa) (Kim et al. 2009a, b). Latterly, the androgen, testosterone, has been demon-

strated to increase follicle activation in vitro (Yang et al. 2010) and extrapolating

from this observation is the hypothesis that excess intra-ovarian androgen is linked to

polycystic ovary syndrome (PCOS) (Yang et al. 2010).

In the primordial follicle, and throughout most of its subsequent growth and

development, the oocyte is arrested in prophase I of the first meiotic division

and only re-enters meiosis or germinal vesicle breakdown upon ovulation (Fig. 1)

(Pedersen 1969, 1970). The resting primordial follicles in the ovarian pool are

sequentially stimulated to activate and grow, at which point a majority become atretic

(Rodrigues et al. 2008; Tingen et al. 2009), with a small minority developing through

pre-antral and antral stages into mature Graffian follicles (McLaughlin and McIver

2009; Skinner 2005) (see Fig. 1). Following activation, the rapidly enlarging oocyte

synthesises an acellular extracellular matrix, the zona pellucida, and this process is

supported by proliferating granulosa cells (Fig. 1). Finally, during antral follicle

development, the oocytes become meiotically competent (Zheng and Dean 2007).

A surge of luteinising hormone initiated just prior to ovulation resulting in nuclear

maturation, completion of the first meiotic division and first polar body extrusion,

then re-arrest in meiosis II at metaphase II (Hutt and Albertini 2007) (Fig. 1).
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In female mammals, the primary determinant of successful reproductive perfor-

mance is the initial size and then the controlled release of primordial follicles from

the resting pool (Maheshwari and Fowler 2008). Studies of total non-growing

ovarian follicle populations have determined that the rate of decline in quiescent

functional follicles in the adult ovary increases with age (Hansen et al. 2008).

So how does the ovary regulate primordial follicle population dynamics? Recently,

quantification of the relative spatial positions and inter-follicular distances between

the quiescent primordial follicles and growing pre-antral follicles in neonatal mouse

ovaries indicated that follicles were significantly less likely to have started growing

if they had one or more primordial follicles closely adjacent (Da Silva-Buttkus et al.

2009). This observation is consistent with the notion that primordial follicles may,

as has been previously hypothesised (McLaughlin and McIver 2009), produce

diffusible factor(s) that inhibit neighbouring primordial follicles from activating

and initiating development (Adhikari and Liu 2009). Thus, the use of positive and

negative paracrine signalling mechanisms (Fig. 2) may allow the ovary to both

maintain an ovarian pool of follicles throughout the reproductive lifespan, while

providing a highly selected supply of functional oocytes for ovulation (Adhikari and

Liu 2009; Edson et al. 2009; McLaughlin and McIver 2009).

3 Early Folliculogenesis: Roles of Cytokines, Chemokines,

Hormones and Growth Factors

Folliculogenesis in the mammalian ovary has been well characterised into

major morphologically distinct entities based on the size of the oocyte and

Factor Effect Reference

SCF Stimulates follicular
recruitment and 
promotes precursor 
theca function 

Jin et al., 2005; Hutt 
et al., 2006

LIF Stimulates follicular 
recruitment

Nilsson et al., 2002

FGF2 Promotes SCF 
expression and cell 
growth

Nilsson et al., 2001; 
Nilsson and skinner,
2004

FGF7 Promotes SCF 
expression

Kezele et al., 2005

GDNF Autocrine signalling 
promotes follicular 
recruitment

Dole et al., 2008

BMP4, BMP7 Stimulates follicular 
recruitment and 
survival

Nilsson and Skinner,
2003; Lee et al., 
2001; Lee et al 2004
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Fig. 2 Ovarian cytokine and growth factor signalling factors involved in primordial follicle

recruitment. Abbreviations: SCF stem cell factor; leukaemia inhibitory factor; FGF fibroblast

growth factor; GDNF glial-derived neurotrophic factor; BMP bone morphogenic factor
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number of granulosa cells (see Fig. 1) surrounding the oocyte (Pedersen and

Peters 1968). More generally these stages are classified as either pre-antral and

gonadotrophin independent, comprising the primordial, primary and secondary

follicles or the antral, gonadotrophin-dependent phase consisting of the antral,

pre-ovulatory, ovulatory follicles and the corpus luteum (see Fig. 1) (Pedersen

and Peters 1968; 1971). Studies of naturally occurring mutant mice, particularly

mice with Kit mutations (Geissler et al. 1981), were able to determine some of

the signalling cascades inherent to normal folliculogenesis (Hutt et al. 2006b).

Subsequently, large scale genomic and more recently proteomic approaches

have identified a number of paracrine and autocrine signalling pathways asso-

ciated with primordial follicle and pre-antral follicle development (Arraztoa

et al. 2005; Holt et al. 2006; Kezele et al. 2005b; Serafica et al. 2005; Wang

et al. 2009).

Key findings from these studies have included the identification of ligands and

their receptors localised in primordial follicles, which are implicated as key

regulators of the primordial to primary and secondary follicle transition as well as

atresia and maintenance of quiescence (see Figs. 2 and 4).

Intracellular signalling pathways initiated, via a wide range growth factors and

pleiotrophic cytokines, are known to activate mammalian primordial follicles in

mammalian ovarian explant culture systems. These include basic fibroblast

growth factor (FGF2) (Garor et al. 2009; Nilsson et al. 2001), vascular endothelial

growth factor A (VEGFA) (Artac et al. 2009; McFee et al. 2009), platelet-derived

growth factor (PDGF) (Nilsson et al. 2006), kit ligand/stem cell factor (KIT-L/

SCF) (Hutt et al. 2006b), leukaemia inhibitory factor (LIF) (Nilsson et al. 2002),

keratinocyte growth factor (KGF) (Kezele et al. 2005a), bone morphogenic

proteins (BMP 4 and 7) (Craig et al. 2007; Lee et al. 2001, 2004; Nilsson and

Skinner 2003), glial-derived neurotrophic factor (GDNF) (Dole et al. 2008) and

the neurotrophins (NGF, NT4, BDNF, NT3) (Dissen et al. 2002; Dole et al. 2008;

Nilsson et al. 2009; Paredes et al. 2004; Romero et al. 2002; Spears et al. 2003)

(see Fig. 2).

Repressors of follicle activation include anti-M€ullerian hormone (AMH)

which, when added to ovarian explant cultures, inhibits the primordial to

primary follicle transition in rodents (Durlinger et al. 2002a). However, no

mouse model exists that supports this claim as over-expression of AMH

in vivo results in germ cell loss and ovarian degeneration (Behringer 1995;

Lyet et al. 1996) probably via activation of an AMHRII-mediated pathway

(Mishina et al. 1999). Interestingly, prolonged exposure to AMH initiates

follicle development in human ovarian explant cultures (Schmidt et al. 2005).

Recently, the chemoattractive chemokine SDF-1 (also known as CXCL-12) was

identified as second inhibitor of primordial follicle activation in vitro (Holt et al.

2006). Manipulating the primordial follicle pool remains an attractive method

of controlling female fertility though as yet no unique and most importantly

reversible contraceptive agent targeting primordial follicle activation has been

identified.
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4 Multiple Activator and Repressor Pathways Converge

to Regulate Activation of the Primordial Follicle

Numerous studies point to multiple stimulatory and negative pathways converging to

regulate the activation of the primordial follicle. In in vitro culture systems, large

numbers of primordial follicles spontaneously enter the growing pool – and treatment

with exogenous cytokines, chemokines, hormones and growth factors increases

(or decreases) the proportion of activated follicles. Notably treatment with antago-

nists or function blocking antibodies will also suppress but not abolish primordial

follicle activation indicating multiple possible redundant endogenous mechanisms

(Holt et al. 2006; Hutt et al. 2006b; Kezele et al. 2002; Nilsson et al. 2007).

Studies of null or mutated mice indicate that many of the ligands or their

receptors implicated in follicle activation are not essential (Dono et al. 1998;

Stewart et al. 1992). A recent example is the knock-in mutation (Kit Y19F) mice,

which despite a complete abrogation of the PI3K pathway have normal folliculo-

genesis, ovarian morphology and are fertile (John et al. 2009).

In conclusion, multiple cytokine and growth factor-activated pathways must

undertake cross talk to produce an intracellular balance of positive and negative

signals, thus ensuring the long-term stability of quiescent primordial follicles, with

the release of selected oocytes from repression into the growing population from

this precious and finite resource. Targeting the intracellular pathways activated by

these pleiotrophic cytokines/growth factors is an attractive prospect as a mechanism

to influence follicle growth. Great strides have been made in the past 5 years in the

characterisation of these pathways and the development of primordial follicle-

specific contraceptive pharmacological agents is now a very real possibility.

5 Intracellular Signalling in Oocytes and Pregranulosa

Cells in Primordial Follicles

A member of the forkhead transcription family FoxO3a is a central player in the

pathway(s) implicated in primordial follicle activation (Fig. 3). FoxO3a is a well-

characterised regulator of embryogenesis, tumorigenesis and the maintenance of

differentiated cell states through direction of key cellular processes such as stress

responses, cell cycle arrest and programmed cell death (Hosaka et al. 2004;

Kaufmann and Knochel 1996).

FoxO3a null mice suffer from a lack of primordial follicles in early neonatal life

coupled with increased numbers of growing follicles and a subsequent increase in

oocyte degeneration of newly growing follicles (Castrillon et al. 2003; Hosaka

et al. 2004). Localised initially to granulosa cells (Richards et al. 2002), FoxO3a

was thought to mediate its suppressive effects on primordial oocyte recruitment

by increasing the expression in the oocyte of a cell cycle inhibitor, p27kip1

(or Cdkn1b), whilst concurrently decreasing cyclin D1 and D2 expression, thereby

arresting the cell cycle (Brenkman and Burgering 2003) (Fig. 3). However,
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characterisation of the p27kip1 deficient mouse revealed accelerated postnatal

follicle assembly and a vast increase in the founding primordial follicle population,

which then underwent premature activation (Rajareddy et al. 2007). Consequently,

it was established that p27kip1 controls oocyte development by suppressing the

functions of Cdk2/Cdc2-Cyclin A/E1 in the diplotene arrested oocytes (Rajareddy

et al. 2007), while simultaneously activating a caspase-mediated apoptotic cascade,

thus also inducing follicle atresia (Rajareddy et al. 2007).

6 Signal Transduction: The Phosphatidylinositol 3-Kinase

(PI3K) and the mTOR Pathways

Akt (Protein Kinase B) signalling was predicted to be activated via extracellular

receptor tyrosine kinase (RTK) signalling pathways that regulate the phosphory-

lation control of FoxO3a inactivation via nuclear exclusion (Junger et al. 2003).
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Fig. 3 The oocyte PTEN-PI3K – FoxO3a and mTORC pathways govern follicle activation

through control of initiation of oocyte growth and maintenance of oocyte quiescence. Abbrevia-

tions: PIP2 Phosphatidyl inositol bisphosphate; PI3K Phosphoinositide 3-kinase; PIP3 Phospha-

tidylinositol (3,4,5)-trisphosphate; PDK1 3-Phosphoinositide-dependent protein kinase, S6K1, p70
S6 kinase; PTEN phosphatase and tensin homolog; Akt Protein Kinase B; rpS6 Ribosomal protein

S6; FoxO3a Forkhead box O3A; GSK3 Glycogen synthase kinase 3; p27kip1 Cyclin-dependent

kinase inhibitor 1B (CDKN1); Cdk2 Cyclin dependent kinase 2; BMP15 Bone Morphogenic

Protein 15; Cx37 Connexin 37; GDF9 Growth Differentiation factor 9; mTORC1 mammalian

Target of Rapamycin Complex 1; eIF4B eukaryotic initiation factor 4B; TSC1/2 tuberous sclerosis
complex 1/2; 4E-BP1 Eukaryotic translation initiation factor 4E binding protein 1
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The use of multiple germ cell-specific knockout mice indicates that extracellular

signals transduced through the PI3K (phosphatidylinositol 3-kinase) pathway

(Reddy et al. 2005) are fundamentally important for the regulation of early follicular

development (Liu et al. 2006) (Fig. 3). The majority of the constituents of one PI3K

pathway, including GSK-3a and GSK-3b, Akt, Foxo3a, (Liu et al. 2007b), FoxO3a
and p27kip1 (Rajareddy et al. 2007) have been demonstrated to be present in

growing mouse oocytes. It was proposed that stimulation of the PIK3 pathway

through an RTK (possibly c-kit though not exclusively) (see John et al. 2009)

results in the phosphorylation and functional suppression of FoxO3a and thus

the release of quiescent oocytes into a state of active growth and development

(Liu et al. 2007a). This hypothesis was supported by evidence that FoxO3a is

capable of both suppressing BMP15, connexin 37 and connexin 43 production in

mouse oocytes (Fig. 3), important factors in oocyte-granulosa and inter-granulosa

cell communications, and also to up-regulate expression of p27 in the oocyte

nucleus, ultimately resulting in the suppression of oocyte growth and follicular

activation (Liu et al. 2006).

Phenotypic analysis of a null mouse with an oocyte-specific conditional knock-

out of Pten (phosphatase and tensin homolog deleted on chromosome 10), a major

negative regulator of PI3K (phosphatidylinositol 3-kinase) revealed the entire

primordial follicle pool becomes activated and all primordial follicles become

depleted in early adulthood, causing premature ovarian failure (Fig. 3). The authors

concluded that the oocyte Pten-PI3K pathway governs follicle activation through

control of the initiation of oocyte growth (Reddy et al. 2008) (see Fig. 3). This was

subsequently confirmed with the development of an oocyte-specific inducible

[Vasa-Cre(ERT2)] conditional knock-out mouse (John et al. 2008). Using this

model, targeted ablation of Pten was shown to activate the PI3K/Akt pathway

leading to hyperphosphorylation of Foxo3 and primordial follicle activation. More-

over, Foxo 3 was shown to control primordial follicle activation via a nucleocyto-

plasmic shuttling mechanism; the phosphorylation of this transcription factor

catalysing its movement from the nucleus to the cytoplasm.

More recent studies of Akt1 null females indicate that they have both reduced

fertility and abnormal oestrous cyclicity (Brown et al. 2009). In early postnatal life,

Akt1 null ovaries display abnormal folliculogenesis and this is followed in early

adulthood by a significant decrease in the primordial follicle population (Brown

et al. 2009), reinforcing the notion that the PI3K/Akt pathway is critical for

primordial follicle development.

Subsequent to their studies of the Pten null mouse, another member of the PI3K

pathway, 3-phosphoinositide-dependent protein kinase-1 (Pdpk1), was implicated

in follicle activation (Fig. 3). In stage-specific Pdpk1 null mice, the majority of

primordial follicles were depleted prematurely, causing ovarian failure by early

adulthood (Jagarlamudi et al. 2009; Reddy et al. 2009). This outcome was linked to

the suppression of Pdpk1– p70 S6 kinase 1 (S6K1)-ribosomal protein S6 (rpS6)

signalling (Jagarlamudi et al. 2009; Reddy et al. 2009), thus continuing to implicate

the PI3K/Pten/Pdpk1 signalling pathway as central to the molecular oocyte network

that controls the primordial follicle population. Thus, reproductive ageing in
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females appears fundamentally linked to the dysregulation of this signalling path-

way in oocytes resulting in subfertility and premature ovarian failure.

A second pathway appears to function synergistically with the PI3K–Pten

network described above. Oocyte-specific deletion of a negative regulator of Target

of Rapamycin Complex 1 (mtorc1), tumour suppressor tuberous sclerosis complex

1 (Tsc1), results in the premature activation of the entire pool of primordial follicles

and follicular depletion in early adulthood, causing premature ovarian failure

(Adhikari et al. 2010). Not surprisingly, oocyte-specific tumour suppressor tuberous

sclerosis complex 2 (Tsc2), which also negatively regulates (mtorc1), also func-

tions to maintain the primordial follicle population in quiescence (Adhikari et al.

2009). As described for Tsc1 null mice, the absence of the Tsc2 gene in oocytes

results in a phenotype in which the primordial follicles are prematurely activated

and depletion of follicles in early adulthood, causing premature ovarian failure

(Fig. 3). These findings’ results suggest that the Tsc1–Tsc2 complex is required to

establish the quiescent state of primordial follicles via suppression of mtorc1

activity and that activation of the primordial follicle is dependent on mtorc1 activity

in oocytes (Adhikari et al. 2009).

Supporting somatic cell lineages also play a major role in controlling and

nurturing primordial follicle activation and development. A key example is the

forkhead transcription factor Foxl2, as mutations in the FOXL2 gene are associated

with ovarian failure in both humans and mice (Duffin et al. 2009; Uda et al. 2004).

Foxl2-deficient mice display major defects in primordial follicle activation with

consequent follicle loss. In addition, roles in gonadal development and sex deter-

mination have also been suggested (Uda et al. 2004). Features of Foxl2 null animals

point towards a new mechanism of premature ovarian failure, with all major

somatic cell lineages failing to develop around growing oocytes from the time of

primordial follicle formation (Uda et al. 2004).

7 Promoting and Regulating Early Follicle Growth

and Development

Many members of the TGFb superfamily act as paracrine growth factors and are

expressed by both ovarian somatic cells and oocytes in a developmental-stage

specific manner. A well characterised marker of ovarian follicular reserve is

AMH – originally identified in Sertoli cells of the foetal testis and known to

promote the regression of the M€ullerian ducts during differentiation of the male

reproductive tract (Munsterberg and Lovell-Badge 1991). AMH is also expressed in

ovarian granulosa cells (Durlinger et al. 1999) and as outlined above both acts as an

inhibitor of the initiation of primordial follicle growth and decreases the sensitivity

of follicles to the FSH-dependent selection for dominance in both mice (Visser and

Themmen 2005) and humans (Dumesic et al. 2009).

During folliculogenesis, AMH expression is initiated in the granulosa cells of

primary follicles, peaks in granulosa cells of pre-antral and small antral follicles and
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gradually diminishes in pre-ovulatory follicles (Dumesic et al. 2009; Durlinger et al.

2002b; Visser and Themmen 2005). This continued expression of AMH until the

antral stage indicates a continual function in folliculogenesis beyond inhibiting the

initiation of primordial follicle growth (Fig. 4). AMH inhibits FSH-stimulated

follicle growth in both the mouse and human, suggesting that AMH is one of the

factors determining the sensitivity of ovarian follicles for FSH (Durlinger et al. 2001)

and is therefore a dominant regulator of early follicle growth (Dumesic et al. 2009).

In mammals, FSH also acts as the predominant survival factor for selected antral

follicles, preventing the spontaneous onset of follicular apoptosis. Within this

subpopulation, the follicles with the highest FSH sensitivity become dominant and

continue to develop into Graffian follicles. On the other hand, AMH inhibition of

FSH follicle sensitivity may play a role in antral follicle selection (McGee and

Hsueh 2000; Durlinger et al. 2001). On binding to AMH receptors located on the

granulosa cells of small pre-antral follicles (Fig. 4), AMH signalling activates

SMAD transcriptional regulators which reduce LH receptor expression, leading to

a decrease in aromatase (Diclemente et al. 1994) and therefore oestradiol levels

(Andersen and Byskov 2006) and reduced FSH sensitivity (Kevenaar et al. 2007a, b).

Recent studies in normo-ovulatory women have indicated that serum AMH

levels decrease with age in pre-menopausal women (de Vet et al. 2002), and that

there is a direct correlation between serum AMH levels and antral follicle number

(van Rooij et al. 2002), thus reflecting the size of the primordial follicle pool

(Fig. 4). Therefore, AMH levels can be used to indicate ovarian follicle reserve

(Visser et al. 2006) and to determine treatment strategies for women undergoing

assisted conception (Macklon et al. 2006; Nelson et al. 2007, 2009).

Given that AMH plays important roles in both primordial follicle activation and

antral follicle selection, it is a tempting target for a contraceptive agent. One

possible avenue involves the use of recombinant AMH, or AMH agonists and/or

antagonists for the long-term control of female fertility. In the case of contracep-

tion, the use of recombinant AMH and/or agonists that mimic the endogenous

GDF9 (+ve)

Preantral Antral

Inhibin A (+ve)

AMH (–ve)
GDF9 (+ve)

BMP15 (+ve)

BMP15 (+ve)

GDF9 (+ve)
BMP15,6 (+ve)

AMH (–ve)

BMP2,6 (+ve)
BMP2,4,7 (+ve)

Activin (+ve)

BMP2,4,7 (+ve)

Activin (+ve)

Activin (+ve)

Primordial Primary

Fig. 4 Potential signalling interactions (+ve, stimulatory; �ve inhibitory) of TGF-b superfamily

members involved in the primary to early antral follicle stages. Abbreviations: AMH anti

M€ullerian hormone; GDF growth differentiation factor; BMP bone morphogenic protein
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growth factor could be used to halt primordial follicle recruitment, augmenting or

providing an alternative form of hormonal contraceptive with the added benefit of

possibly preserving the primordial follicle pool and therefore prolonging the repro-

ductive life cycle. Indeed, advancements in recombinant technology have allowed

the production of bio-activated AMH, which could possibly be used in such a role

(Weenen et al. 2004).

GDF9, an oocyte-specific member (McGrath et al. 1995) of the growth and

differentiation subfamily of TGFb growth factors and it’s receptor, bone morpho-

genic receptor type II, are expressed in rodent and human primary follicle stage

oocytes and granulosa cells (Aaltonen et al. 1999; Hayashi et al. 1999), suggesting a

role in paracrine signalling within the follicular microenvironment (Vitt et al.

2002). GDF9 has been shown to be essential for the development of primary

follicles (Juengel et al. 2004), plays a crucial role in somatic ovarian cell develop-

ment (Hreinsson et al. 2002) and is a key regulator of normal cumulus cell function

(Gilchrist et al. 2008; Su et al. 2004) (Fig. 4).

GDF9 null mice have abnormal primary follicles which fail to develop beyond

the primary stage, are unable to form a theca, and have impaired meiotic compe-

tence (Dong et al. 1996; Yan et al. 2001). In addition, in vitro cultures of ovarian

tissue supplemented by GDF9 in both rats and humans enhance the progression of

early to late stage primary follicles (Hreinsson et al. 2002; Nilsson and Skinner

2002). Interestingly, the abnormal follicles seen in GDF9 null mice consist of

enlarged oocytes surrounded by a single layer of cuboidal granulosa cells. While

these granulosa cells are typical of primary follicles, ultrastructural analysis of

oocytes obtained from GDF9 null mice revealed that these oocytes had progressed

to advanced stages of differentiation and were capable of resuming meiosis after

in vitro maturation (Carabatsos et al. 1998). GDF9 signalling is also required for

pre-antral follicle growth and ovulation (Elvin et al. 1999b) (Fig. 4), and GDF9

expression has been detected in the oocytes of both murine and human antral

follicles (Elvin et al. 1999b; Gilchrist et al. 2004; Hreinsson et al. 2002). Culture

of rat granulosa cells isolated from antral follicles has shown that GDF9 stimulates

proliferation, but also suppresses FSH-induced granulosa cell differentiation, as

indicated by lower progesterone and oestradiol levels with attenuated LH receptor

formation (Vitt et al. 2000; Yamamoto et al. 2002). These results suggest that GDF9

may regulate antral follicle development by ensuring continued granulosa cell

proliferation and preventing premature luteinisation (Fig. 4).

In addition to its proposed role in ensuring antral follicle development, GDF9

has also been implicated in ensuring pre-antral follicular survival by suppressing

granulosa cell apoptosis and inducing thecal cell androgen production. In a recent

study by Orisaka et al. down regulation of GDF9 expression in cultured rat

granulosa cells led to a subsequent increase in caspase-3 activation and granulosa

apoptosis (Orisaka et al. 2006). GDF9 was also capable of preventing ceramide

induced apoptosis in granulosa cells cultured from pre-antral follicles, but had no

affect on pre-ovulatory follicles (Orisaka et al. 2006). Studies involving double

mutant GDF9 and inhibin-a knockouts have also shown GDF9 is required to induce

theca cell differentiation, as indicated by the formation of theca-like cells in
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developing follicles lacking thecal cell-specific markers Cyp17a1 and LH receptor

(Wu et al. 2004). This observation is supported by a number of in vitro studies,

which have demonstrated that GDF9 increases androgen production, Cyp17a1 and

c-kit expression in rat pre-antral follicles (Elvin et al. 1999b; Orisaka et al. 2009;

Solovyeva et al. 2000).

Further studies have shown GDF9 signalling is also essential for cumulus

development and metabolism (Elvin et al. 1999a; Su et al. 2008, 2009). During

ovulation, GDF9 induces cumulus cell expansion, a process associated with the

intricate association of cumulus cells with the oocyte throughout the ovulatory

process and subsequent fertilisation. This process is essential, as it protects the

oocytes during follicular extrusion,and assists fertilisation. Treatment of isolated

granulosa cells in vitro with recombinant GDF9 has been shown to influence the

expression of a suite of genes involved in cumulus cell expansion (HAS2, COX-2,
StAR, uPA and LHR) and induce the same process in oocytectomised cumulus cell-

oocyte complexes in vitro (Elvin et al. 1999b). These results are also supported by

RNAi studies which show that selective knockdown of GDF9 in mature mouse

oocytes reduces cumulus expansion in vitro (Gui and Joyce 2005).

GDF9 is also a viable target for a contraceptive agent due to its essential

requirement for oocyte maturation. Immunocontraceptive studies in sheep have

found that antisera generated against peptides corresponding to the first 1–15 amino

acid residues on the N-terminus of GDF9 cause anovulation in ewes following

primary and single booster vaccinations (McNatty et al. 2007). This raises the

possibility of inhibitory/antisense compounds which target the N-terminus of

GDF9 being used as potential human contraceptives in the near future.

Bone Morphogenic Proteins (BMPs) are the largest group of multifunctional

growth factor cytokines belonging to the TGFb superfamily. BMPs are expressed in

numerous cell types and tissues and are involved in a wide variety of biological

processes including mesoderm patterning, neurogenesis, bone formation and angio-

genesis (David et al. 2009; Furtado et al. 2008; Morikawa et al. 2009; Xiao et al.

2007). First reported in mammalian ovary development in 1999, a whole host of

BMPs have subsequently been identified in the oocyte, granulosa and thecal cells of

the ovarian follicle (Knight and Glister 2006; Shimasaki et al. 2003).

BMP15 expression remains constant throughout folliculogenesis, being detected

initially in oocytes and granulosa cells in the primordial follicle stage in the human

ovary (Aaltonen et al. 1999; Margulis et al. 2008; Teixeira Filho et al. 2002), in

primary follicle stage oocytes in the mouse (Dube et al. 1998) and in primordial

follicle stage oocytes in the sheep (McNatty et al. 2001) suggesting a species-

specific role for BMP15 (Fig. 4).

Knockout studies conducted in the mouse have shown females lacking a func-

tional BMP15 gene are sub-fertile, due to impaired ovulation and fertilisation (Yan

et al. 2001). Sheep with homologous point mutations corresponding to the chromo-

somal location of BMP15 are infertile, with follicular development beyond the

primary stage being impaired (Galloway et al. 2000; Hanrahan et al. 2004). In

humans, studies have led to the discovery of various missense mutations and

polymorphisms in the BMP15 gene, which have all been associated with primary
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and secondary amenorrhea (Di Pasquale et al. 2004, 2006). Interestingly, these

mutations were described as having a similar phenotype to sheep with BMP15

homologous point mutations, with impaired follicular development beyond the

primary stage (Di Pasquale et al. 2004; Galloway et al. 2000). When combined,

these studies suggest that BMP15 may play a “curtailing” role in the transition of

primary to secondary follicles during human folliculogenesis (Fig. 4).

In terms of BMP15’s mechanism of action, follow-up in vitro experiments on

isolated human granulosa cells have shown that treatment with recombinant BMP-

15 in culture stimulates granulosa cell growth, while treatment with recombinant

“mutant” BMP15 had no effect (Di Pasquale et al. 2004). This advocates that BMP-

15 may exert its effect on follicular development by stimulating granulosa cell

proliferation at the primary stage. Interestingly, co-culture with both recombinant

wild type and mutant BMP15 had no effect on granulosa growth, suggesting an

antagonistic effect (Di Pasquale et al. 2004) (Fig. 4).

As well as its role in the transition of primary to secondary follicles, BMP15 has

also been implicated in the suppression of FSH-induced progesterone synthesis in

rat and ruminants, and the stimulation of cumulus cell expansion and metabolism in

the mouse (McNatty et al. 2005; Yoshino et al. 2006; Sugiura et al. 2007). Although

BMP15 has been found to play varying roles beyond primary follicle growth, given

the species-specific nature of BMP15’s function, and the lack of analogous studies,

it is unknown whether human BMP15 mimics any of these reported functions.

A recent study into the expression of BMP15 in human oocyte and cumulus

granulosa cells has mapped BMP15 expression in pre-ovulatory stage oocytes and

pre-ovulatory/ovulatory stage cumulus cells (Chen et al. 2009). BMP15 expression

was found to increase significantly during late stage pre-ovulatory oocytes,

suggesting a role for BMP15 in the final stages of oogenesis (Fig. 4). Additionally,

the level of BMP15 significantly decreased in cumulus cells surrounding ovulatory

oocytes compared with those surrounding pre-ovulatory oocytes. This decreased

level of BMP15 in cumulus cells after oocyte maturation, coupled with the fact that

BMP15 suppresses progesterone synthesis in mammalian models and is involved in

human granulosa cell growth, suggests that this protein has the ability to act as an

inhibitor of the premature luteinisation of cumulus cells (Chen et al. 2009; Di

Pasquale et al. 2004; Gilchrist et al. 2008; McNatty et al. 2005; Otsuka et al. 2001).

BMP15 is an autosomal homologue of GDF9, both of which are expressed from

a very early stage of follicular growth and play key roles in promoting follicular

growth beyond the primary stage (Di Pasquale et al. 2004; Dong et al. 1996;

Galloway et al. 2000) (Fig. 4). BMP15 and GDF9 have also been shown to act

synergistically in mice during development of the oocyte-cumulus cell complex

(Yan et al. 2001). In terms of fertility regulation, BMP15 immunisation studies in

sheep have found that both active and passive immunisations are able to influence

the biological activity of BMP15 in ewes (Juengel et al. 2002). Furthermore, recent

immunocontraceptive studies in sheep have found that antisera generated against

peptides corresponding to the first 1–15 amino acid residues on the N-terminus of

BMP15 cause anovulation in ewes following primary and single booster vaccina-

tions (McNatty et al. 2007). This raises the possibility of inhibitory/antisense

58 E.A. McLaughlin and A.P. Sobinoff



compounds which target the N-terminus of BMP15 being used as potential contra-

ceptives in the near future. Another novel concept for a BMP15-based contracep-

tive agent involves the use of recombinant BMP15 mutants as potential antagonists.

As described above, in vitro experiments using a mutant recombinant protein

(BMP15Y235C) showed that the mutant BMP15 was able to antagonise the stimula-

tory effects wild-type BMP15 on granulosa cell growth (Di Pasquale et al. 2004).

Additionally, in the study through which this mutation was identified, the women

who are heterozygous carriers of the Y235Cmutation are infertile, with an impaired

follicular phenotype. Therefore, the Y235C mutation may antagonise wild-type

BMP15 in vivo (Di Pasquale et al. 2004) and underpin development of a BMP15

antagonist, or recombinant BMP15Y235C, as a possible contraceptive.

In a recent paper by McMahon et al., recombinant human BMP15 and GDF9

were shown to undergo phosphorylation, and that this phosphorylation was required

for normal bioactivity (McMahon et al. 2008). This study is novel, in that it is the

first to report any member of the TGFb superfamily as phosphoproteins. More

interesting though was the fact that dephosphorylated BMP15 and GDF were

capable of antagonising their wild-type counterparts by competitively binding to

BMP receptors and failing to induce the BMP/Smad pathway (McMahon et al.

2008). These results raise the interesting possibility of using phosphorylation as a

method of BMP15 and GDF9 regulation in the context of fertility control. The use

of modified recombinant BMP15 and GDF9 incapable of undergoing phosphoryla-

tion could also be theoretically used as potential antagonists, and therefore as

possible contraceptives.

8 Conclusions

Recent improvements in our understanding of the intracellular signalling systems,

such as the PI3K and Tsc1 pathways, that control maintenance of the primordial

follicle population and transduce the as yet elusive extracellular signals necessary

for primordial follicle activation, have significant implications for the design of

new contraceptive agents for women. As primordial follicle activation requires

close communication between oocyte and somatic cells and many cytokine and

chemokine factors have a clearly demonstrated role in releasing oocytes into the

growing pool, then if the trigger is oocyte generated, an early response must include

suppression of FOXO3A and mTORC activity and ultimately regulation of the

“folliculogenesis clock” (Matzuk et al. 2002). Once activated to grow, the oocyte

orchestrates and coordinates the development of mammalian ovarian follicles, the

rate of follicle development being controlled by the oocyte (Eppig et al. 2002).

Importantly, we are also beginning to elucidate those pathways activated by

members of the TGFb superfamily that regulate and support oocyte development.

Pharmacological inhibition of these signalling pathways may hold the key develop-

ment of non-steroidal ovarian contraceptives for the twenty-first century.
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Abstract Implantation is a complex process involving an intricate cascade of

molecular interactions between the implanting blastocyst and the receptive endo-

metrium. The molecular basis of endometrial receptivity and the mechanisms by

which the blastocyst first adheres to the luminal epithelium and then penetrates into

the stroma are only just beginning to be resolved. Advances in “omics” techno-

logies, particularly proteomics and metabolomics, are set to have a major impact on

the development of this field. In the wake of this information, novel targets for

contraceptive intervention may become apparent.
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1 Introduction

Implantation of the developing blastocyst is an absolute requirement for reproduc-

tion. From the embryo’s viewpoint, its goal is to invade the maternal tissue and gain

access to nutrients that are essential for survival and development. Implantation is a

complex process in which a semiallogeneic embryo needs to be accepted by the

maternal endometrium. For this to occur, a bi-directional communication between

the blastocyst and the endometrium is required. This dialog enables a synchronous

development of the viable embryo and the development of endometrial receptivity

followed by embryo apposition, adhesion, and invasion into the stroma (Dominguez

et al. 2002).

Endometrial receptivity is a self-limited period in which the endometrium

acquires a functional and transient ovarian steroid-dependent status that allows a

blastocyst to be received and which further supports implantation through the

mediation by immune cells, cytokines, growth factors, chemokines, and adhesion

molecules (K€ammerer et al. 2004; Giudice 1999a; Dimitriadis et al. 2005). This

specific period, known as “the window implantation,” opens 4–5 days after endo-

genous or exogenous progesterone stimulation and closes 9–10 days afterwards

(Finn and Martin 1974; Martı́n et al. 2002).

Implantation itself is governed by a collection of endocrine and autocrine signals

of embryonic and maternal origins as well as by the corresponding embryo–

endometrial dialog. Understanding the activity and function of the molecules

involved in this dialog will enable us to use them as predictors of either endometrial

receptivity or embryo quality.

Recently, major advances in the genomics of the endometrium (Horcajadas et al.

2007) and oocytes (Bermúdez et al. 2004) have been achieved with the microarray

and bioinformatics technologies available, to provide a vast amount of information

regarding gene expression in these tissues and cells. However, gene expression is

only one aspect of the complex regulatory network that allows cells to respond to

intracellular and extracellular signals. Unlike the genome, the proteome itself is

dynamic, complex, and variable. Furthermore, it depends upon the developmental

stage of the cells, reflecting the impact of both internal and external environmental

stimuli. Proteomics is often considered the next step in the study of biological

systems (Fig. 1) and is more complicated than genomics, mostly because the

proteome differs from cell to cell, while an organism’s genome is constant, albeit

with exceptions. To date, lack of sensitivity has been a stumbling block for the

global introduction of proteomics into the field of human reproduction. However,

new developments in mass spectrometry using protein profiling and peptide sequ-

encing have been implemented to elucidate the underlying biological processes.

In this chapter, we will review the state-of-the-art of proteomics during embryonic

implantation (Fig. 2).
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Fig. 1 Strategies of proteomic analysis. Proteins are extracted from biological samples, fractio-

nated, separated, and analyzed by differential techniques. In gel-based methods (left), different
protein samples are labeled with different fluorescent dyes and are then mixed together. Next,

proteins are separated into two-dimensional difference gel electrophoresis (2D-DIGE) according

to their isoelectric point and molecular mass. Gels are scanned by lasers and those spots

corresponding to proteins with a differential pattern of expression are identified. Finally, these

proteins are identified by mass spectrometry (MALDI-TOF/TOF). In the chromatographic separa-

tion methods (center), protein extracts, protein fractions (SELDI), or one-dimensional gel bands
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2 Proteomic/Secretomics of the Human Embryo

A crucial aspect in implantation is the concept of “embryo viability,” that is,

acquisition of the ability to recognize, adhere, and invade the endometrial tissue.

The selection of appropriate embryos for their transfer to the uterus is a critical

issue in the field of reproductive medicine. Morphological evaluation remains the

primary method of embryo assessment during IVF cycles, but its limited predictive

power and inherent inter- and intraobserver variability limits its value (Guerif et al.

2007). Consequently, there is a need to objectively identify those embryos with the

highest implantation potential based on specific genomic, proteomic, and/or meta-

bolomic profiles.

Katz-Jaffe et al. (2006a) developed a method to analyze the proteome of individ-

ual human blastocysts and to identify differentially expressed proteins prior to

Fig. 1 (Continued) (SDS-PAGE) are digested enzymatically, and the peptide mixture is separated

by liquid chromatography (HPLC). Usually, peptides are analyzed and typically identified by an

electrospray ionization mass spectrometer coupled with a linear ion trap. Other methods are based

on proteins arrays (right). These arrays are membranes that contain a certain number of pre-

absorbed antibodies that correspond to different proteins
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Fig. 2 Application of proteomic technologies to the study of embryo implantation. This figure

shows the proteomics approaches that can be used to study the embryo implantation process. The

identification of differentially expressed proteins will allow us to understand this complex

biological process and to use them as key interceptive markers, to prevent embryo implantation,

as markers of endometrial receptivity, embryo viability or as causes of disease
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implantation. Cryopreserved individual embryos for research were obtained from

couples undergoing infertility treatment and were donated with consent and analyzed

by time-of-flight mass spectrometry. Differential protein expression profiles were

observed between early and expanded blastocysts, and also by developing blasto-

cysts as opposed to degenerate embryos. Significantly, several up-regulated and

down-regulated proteins were detected in degenerating embryos. A search in the

protein databases highlighted several candidates, including an inhibitor of Tcf-4

(transcription factor mediating Wnt signaling) and an apoptotic protease-activating

factor. Degenerating embryos displayed a significant up-regulation of several poten-

tial biomarkers which may be involved in apoptotic and growth-inhibiting pathways.

Therefore, these data linked the proteomic profiles to embryo morphology.

Given the technical and ethical difficulties implied in handling human embryos,

research is progressing through the application of noninvasive proteomics to study

the molecules both produced by the embryo and secreted into the surrounding

medium to identify novel biomarkers of embryo development and viability. In

this perspective, little is known about the peptide/protein production and consump-

tion of human embryos.

Several groups have focused on the identification of the specific molecules

secreted by the embryo into conditioned media, which are considered critical for

embryo viability, such as IL-1a and IL-6 (Baranao et al. 1997), IL-1a (Sheth et al.

1991), or soluble human leukocyte antigen G (HLA-G) (Desai et al. 2006; Fuzzi

et al. 2002). These later studies revealed higher pregnancy rates when soluble

HLA-G was detected in the conditioned media of day 3 embryos. However, the

results were not consistent as pregnancies were obtained from HLA-G negative

embryos. Since individual mammalian embryos have very different developmental

potentials, even within the same cohort, it will be necessary to evaluate several

parameters for the definitive indication of developmental competence and

embryonic viability.

The proteomics platform has been successfully employed to analyze the secre-

tome of mammalian embryos throughout preimplantation development, and a

database of secretome profiles representing preimplantation development has

been created (Katz-Jaffe et al. 2006b). This work revealed that human embryos

produce distinctive protein profiles every 24 h of their development (P < 0.05)

with proteins that are differentially expressed, while others remain constant across

the different embryonic stages. The correlation of day 5 secretome data with

ongoing blastocyst development revealed an 8.5 kDa protein biomarker that was

significantly up-regulated (P < 0.05). The best candidate for this biomarker was

ubiquitin, which has been implicated in the implantation process in some mamma-

lian species. Ongoing research focuses on the identification of other proteins and

also on the correlation of these unique protein profiles with both viability and

ongoing successful pregnancy.

Recently, our group reported the partial embryonic secretome (proteins secreted/

consumed) by the human blastocyst related to their implantation ability (Domı́nguez

et al. 2008). The aim of this work was to identify changes in the protein profile of

the culture media from human blastocyst cultured for 24 h, which either implanted
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or did not implant, using protein-array technology. Furthermore, a statistical

approach was performed to compare each of these media with a medium that did

not contain blastocysts (control medium). When the protein profile of the blastocyst

culture medium was compared with the controls, soluble TNF receptor 1 and IL-10

increased significantly, whereas MSP-a, SCF, CXCL13, TRAILR3, and MIP-1b

decreased significantly. Specifically, CXCL13 and GM-CSF also decreased signi-

ficantly in the implanted blastocyst media compared with the media from nonim-

planted counterparts with a similar morphology.

We have also investigated the secretome profile of implanted blastocysts which

developed after performing an embryo biopsy for preimplantation genetic diagnosis

and were subsequently grown in a sequential system or cocultured with endometrial

epithelial cells (EEC) (Dominguez et al. 2008a). The results after having applied

protein-array technology showed a different protein pattern in these two culture

systems. Interestingly, IL-6 was the most abundantly secreted protein in the EEC

coculture, which enables us to conclude that the IL-6 present in the media is

consumed/metabolized by the blastocyst and could be necessary for the develop-

mental process. Furthermore, IL-6 could be considered a potential predictor of

blastocyst selection, as an alternative to the usual morphological criteria.

Definitive identification of the key development proteins will provide insights

into the cellular and biochemical processes occurring during human embryonic

development. In addition, these data could contribute to the development of a

noninvasive viability assay to be used in both clinical IVF and animal biotech-

nology. The identified differences in the protein profile of the culture media in the

presence of implanted vs. nonimplanted blastocysts could be used as a potential

marker of embryo viability and, therefore, a useful tool other than morphology to

select the more appropriate blastocysts to be transferred.

3 Proteomics of the Human Endometrium

The dynamics of the endometrial transition from the nonreceptive stage to the

receptive stage at the proteomic level deserves further attention to understand

endometrial receptivity and to identify potential molecules for interception. DeSouza

et al. (2005) employed a quantitative approach to assess the proteomic repertoire

using isotope-coded affinity tags (ICAT), affinity purification and liquid chroma-

tography coupled online to Mass Spectrometry (LC-MS) between proliferative and

secretory endometria. Only five proteins showed a consistent differential expres-

sion, of which the glutamate NMDA receptor subunit zeta 1 precursor and FRAT1

were the most interesting proteins. The utility of these proteins as indicators of

receptivity endometrial is open to further research.

Our group compared the proteomes of prereceptive (day LH+2) vs. receptive

(LH+7) endometrial biopsies obtained from the same fertile woman (n ¼ 6) in the

same menstrual cycle. Biopsies were analyzed using two-dimensional fluorescence
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difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/

ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Seventy-eight

differentially expressed proteins were found in the receptive vs. prereceptive

endometrium, with 44 and 34 up- and down-regulated spots, respectively. It is

interesting to emphasize two of the most consistently and differentially expressed

proteins, Annexin A2 and Stathmin 1, which may prove important in predicting

the receptivity status and could, therefore, be possible targets for interception

(Dominguez et al. 2008b).

Proteomic techniques have been also used to search for proteins which are

differentially expressed in endometriosis. This gynecological condition occurs

when endometrial tissue becomes implanted in ectopic sites outwith the uterus,

usually within the peritoneal cavity (Kitawaki et al. 2002; Donnez et al. 2002).

Tabibzadeh et al. compared the 2D-PAGE of peritoneal fluid (PF) of women with

and without endometriosis. However, the gels exhibited a limited number of protein

spots, and the identity of the majority of the protein spots with an abnormal

expression in endometriosis was neither determined by immunoblotting nor mass

spectrometry (Tabibzadeh et al. 2003). Instead, they showed marked differences in

the amount and type of the PF proteins present in six women with mild endo-

metriosis, in six women with severe endometriosis, in six women with infertility

and no endometriosis, and in six fertile controls using 2-DE. The proteins observed

in women with infertility and without endometriosis did not differ from those of

healthy controls, and mild endometriosis was associated only with a mild reduction

of proteins in the 35–40 kDa and pI 5.7–6.0 ranges when compared with controls.

However, a more marked decrease in the same protein spots was observed in

women with severe endometriosis, which also presented a two- to fourfold increase

in the amount of other numerous proteins seen in severe endometriosis when

compared with controls.

Fowler et al. (2007) investigated the effects of endometriosis on the proteome of

the human eutopic endometrium by using 2D-PAGE and mass spectrometry.

Several deregulated proteins were identified including (1) molecular chaperones

such as heat shock protein 90 and annexin A2, (2) proteins involved in the cellular

redox state, such as peroxiredoxin 2, (3) molecules involved in protein and DNA

formation/breakdown, including ribonucleoside-diphosphate reductase, prohibitin

and prolyl 4-hydroxylase, and (4) secreted proteins, such as apolipoprotein A1.

In a similar work, Zhang et al. (2006) designed a study to search for endometriosis-

specific proteins using 2-DE, and mass spectrometry. The 2-DE protein patterns of

the average gels of the sera samples from women with or without endometriosis

were compared, and different protein spots were detected with a discrepancy that

was at least threefold. After the comparative proteomic study, the authors found 13

protein spots from serum that correlated with 11 known proteins which were

expressed differently between women with and without endometriosis. While

some of the differentially expressed proteins originated from the cytoskeleton,

others were regulatory proteins of the cell cycle, associated with signal transduc-

tion, or with immunological function. Such proteins include the G antigen family
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B1 protein, actin-related protein 6, actin like-7-anhydrase I, Dentin matrix acidic

phosphoprotein I, CD166 antigen, and cyclin A1, among others.

4 Proteomics of Human Endometrial Fluid

The viscous fluid secreted by the endometrial glands provides nutrients for blasto-

cyst formation and constitutes a microenvironment where the embryo–endometrial

dialog occurs prior to implantation. It is also an important compartment for the

assessment of endometrial maturation (Beier-Hellwig et al. 1989; Giudice 1999b;

Lindhard et al. 2002; Herrler et al. 2003; Beier 1974; Maathuis and Aitken 1978;

Beier and Beier-Hellwig 1998). Furthermore, uterine secretions are less complex in

terms of their protein repertoire and may serve as a pool of biomarkers for

functional endometrial operation.

Endometrial secretion has been shown to contain (1) proteins originating from the

transudation of serum, (2) leakage products of apoptotic epithelial cells, and (3) pro-

teins secreted from the glandular epithelium. This secretion undergoes significant

changes in protein content during the transition from the proliferative phase to the

secretory phase (Maathuis and Aitken 1978). Endometrial secretion composition

varies during the menstrual cycle as a result of the changes in the ovarian steroid

serum concentration (Beier and Beier-Hellwig 1998). Estradiol (E2) regulates transu-

dation by blood vessel dilatation and permeability, and progesterone (P) controls the

secretory activity of the endometrial glands. Furthermore, endometrial secretion

contains cytokines such as leukemia inhibitory factor (LIF) (Laird et al. 1997),

glycodelin (PP14) (Li et al. 1993a), macrophage colony-stimulating factor

(M-CSF), epidermal growth factor (EGF), vascular endothelial growth factor

(VEGF) (Classen-Linke et al. 2000), insulin-like growth factor binding protein 1

(IGFBP-1), interleukins (Simon et al. 1996; Makkar et al. 2006), as well as steroid

and nonsteroid hormones (estrogen, progesterone, prolactin, human chorionic gonad-

otrophin, and precursors) (Stone et al. 1986; Licht et al. 1998).

In the past, the protein patterns of uterine secretions throughout the menstrual

cycle have been analyzed by electrophoresis. These analyses revealed three differ-

ent protein patterns that are typical of the equivalent phases of the menstrual cycle:

intermediate phase, proliferative phase, and secretory phase. The results showed

characteristic “families” of proteins bands, corresponding to 63 proteins, and some

of them were identified by their molecular mass (Beier-Hellwig et al. 1989).

In another work (Van der Gaast et al. 2003), endometrial fluid obtained trans-

cervically by aspiration immediately prior to embryo transfer was analyzed and the

protein profile in each sample was determined. Although uterine fluid aspiration is a

safe method, sometimes the material obtained is not enough for analysis or it may

be diluted as a result of uterine washing, making the results difficult to consider.

These studies also demonstrated that endometrial secretion can be obtained for

analysis immediately prior to embryo transfer in IVF cycles without disrupting

implantation (Li et al. 1993b; Olivennes et al. 2003).
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More recently, Van der Gaast et al. (2008) investigated the effect of ovarian

stimulation in IVF on endometrial secretion and markers of receptivity in the

midluteal phase. The endometrial fluids obtained during this period in the stimu-

lated cycle were compared with the spontaneous cycle. Protein composition was

analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), and gels were stained with Coomassie brilliant blue. The protein pattern

was obtained by measuring the relative density of each band by means of scanning

laser densitometer and the GelScan XL software package. In this pilot study,

ovarian stimulation did not alter the investigated markers of endometrial maturation

in the midluteal phase.

Classically, two-dimensional electrophoresis, based on a combination of iso-

electric focusing and SDS-PAGE, was the only method available to analyze the

protein complement in a sample with high resolution. The introduction of protein

chips and mass spectrometry has facilitated protein identification. Presently, our

group is working on the proteomic analysis of endometrial fluid from natural cycles

using liquid chromatography online with electrospray ionization-ion trap mass

spectrometry (ESI-LC-MS) techniques. This approach circumvents one of the

major challenges of endometrial research, that of investigating endometrial perfor-

mance during the window of implantation without disrupting endometrial function

and the subsequent process of implantation.

The current technical limitations of applying proteomics to the study of protein

patterns in endometrial fluid is that the majority of identified proteins correspond

to serum proteins, thus masking the identification of proteins present at low
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Fig. 3 Proteins implicated in the implantation process. Proteins found up- and down-regulated by

different authors in the following compartments:endometrial tissue, endometrial fluid, and embryo

secretion, at the time of implantation
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concentrations which may be of great interest, such as biomarkers for endometrial

receptivity, embryo development, diseases, and/or contraceptive intervention.

5 Conclusions

The significant histological, biological, and physiological events that occur during

implantation are ultimately the result of regulated changes in gene transcription,

together with posttranscriptional, posttranslational, and epigenetic modifications

that ultimately control expression the embryonic and endometrial proteomes

(Fig. 3). In recent years, “omics” techniques have advanced to the point that rapid

identification of genes or proteins of interest can be readily secured. However,

technical limitations still exist which complicate the unification of the results

obtained.

Proteomics together with genomics and metabolomics are complementary

approaches that provide diverse but comparable perspectives, which will improve

our understanding of the complexity of the implantation process, including the

identification of key biomarkers. The next step will be to integrate this information

into a system biology approach to develop models for functions of interest, such as

embryo viability, endometrial receptivity, and the embryo–endometrial dialog.
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Abstract The array of contraceptives currently available is clearly inadequate and

does not meet consumer demands since it is estimated that up to a quarter of all

pregnancies worldwide are unintended. There is, therefore, an overwhelming global

need to develop new effective, safe, ideally non-hormonal contraceptives for both

male and female use.

The contraceptive field, unlike other areas such as cancer, has a dearth of new

targets. We have addressed this issue and propose that isoform 4 of the plasma

membrane calcium ATPase is a potentially exciting novel target for fertility

control.
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The plasma membrane calcium ATPase is a ubiquitously expressed calcium

pump whose primary function in the majority of cells is to extrude calcium to the

extracellular milieu. Two isoforms of this gene family, PMCA1 and PMCA4, are

expressed in spermatozoa, with PMCA4 being the predominant isoform. Although

this gene is ubiquitously expressed, its function is highly tissue-specific.

Genetic deletion of PMCA4, in PMCA4 knockout mice, led to 100% infertility

specifically in the male mutant mice due to a selective defect in sperm motility. It is

important to note that the gene deletion did not affect normal mating characteristics

in these mice. This phenotype was mimicked in wild-type sperm treated with the

non-specific PMCA inhibitor 5-(and 6-) carboxyeosin diacetate succinimidyl ester;

a proof-of-principle that inhibition of PMCA4 has potential importance in the

control of fertility.

This review outlines the potential for PMCA4 to be a novel target for fertility

control by acting to inhibit sperm motility. It will outline the characteristics that

make this target drugable and will describe methodologies to identify and validate

novel inhibitors of this target.

Keywords Drug target � Non-hormonal contraceptive � Plasma membrane calcium

ATPase � Sperm immotility

1 Introduction

1.1 The Need for New Safe, Effective, Non-hormonal
Contraception

With the growing global population there is an ever increasing need for safe,

effective and accessible contraception for both males and females. Although there

are a variety of barrier methods, hormonal steroids, and sterilisation methods in

wide use, the contraceptives currently available clearly do not meet global demands

since it is estimated that more than a quarter of pregnancies worldwide are unin-

tended (Global Health Council 2002). It is also clear that a variety of contraceptive

methods are required as people have changing contraceptive needs throughout their

reproductive years and, on a global scale, different societies have very different

requirements with respect to contraception. So, although the contraceptive market

is truly global it is vital that the method of contraception responds to both individual

and societal needs, e.g. in the Western world males are looking for an easy to use

contraceptive method, in developing countries females take control of contracep-

tion, and in many countries a barrier contraceptive is still a requirement to reduce

the spread of infectious disease.

The use of steroids as contraceptives has been widely accepted for several

decades; however, although steroidal methods are available for both men and
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women it is women that have particularly embraced their use. Both oral and non-

oral forms of steroidal contraceptives are available which may combine oestrogen

and progestin or progestin alone to prevent pregnancy by interfering with ovulation

and the menstrual cycle. These methods can be highly effective when used/taken

correctly; for example, the traditional oral contraceptive taken for 21 days is 99%

effective at preventing pregnancies. However, problems may arise with compli-

ance, which is why many of the recent efforts in the contraceptive field have

focused on developing more “user-friendly” methods of delivering steroidal contra-

ceptives. Steroid-hormone contraceptives are also associated with a number of side

effects, many of which prohibit their use in certain groups e.g. women with

hypertension, or make their use unacceptable to individuals; their effectiveness is

also reduced if, for example, the woman has sickness or diarrhoea.

Steroidal contraceptives designed to suppress gonadotrophins have been the

focus of numerous research projects to develop a widely acceptable method of

male contraception (Handelsman et al. 1996; Anawalt et al. 1999; Wu et al. 1999;

Kamischke et al. 2001; Gu et al. 2003; Hay et al. 2005). These approaches have had

varying levels of success as measured by the ability of the treatment to suppress

spermatogenesis. There are many aspects to consider when developing a male

contraceptive; these include its efficacy, hormonal profiles during treatment and

after termination, time taken to restore fertility following termination of treatment

and drug safety. It is also essential to consider and assess the attitudes and

expectations of the male user, and importantly his female partner, to male contra-

ception in general as well as to the specific regimen under development. A recent

study of 9,342 men from nine countries, across four continents, ranging in educa-

tional background, income levels and religious beliefs, were surveyed about their

attitudes to male fertility control (Heinemann et al. 2005). This study concluded

that there is definitely a market for male contraceptive methods, but that attitudes

are clearly not homogeneous; a fact that will need to be taken into account when

developing a product/products for market.

Thus, there is clearly an ongoing need for the development of new contra-

ceptives and Nass and Strauss (2004) have summarised the strategies that need to

be followed to achieve this objective. These include three important processes:

(1) the identification and validation of novel targets, (2) enhanced contraceptive

drug discovery, development and clinical testing, and (3) to facilitate and co-

ordinate contraceptive research and development in the future (Nass and Strauss

2004). Unfortunately, as summarised by Aitken et al. (2008), there has been a

downturn in the amount of research and development carried out in this area by

the major pharmaceutical companies; in this analysis, it was calculated that to

develop a new contraceptive from validated target to phase III clinical trial would

take 15–20 years and cost in the region of $100 million (Aitken et al. 2008). This

trend must be reversed if we are meet global contraceptive needs in the twenty-

first century.

Our own research has addressed one of the most important steps in the develop-

ment of a new contraceptive; we have identified a potential new target for fertility

control: isoform 4 of the plasma membrane calcium ATPase.
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2 The Role of PMCA4 in Sperm Motility

We have generated a strain of mice which carries a genetic deletion of the calcium

pump PMCA4 (plasma membrane calcium/calmodulin-dependent ATPase, isoform

4) (Schuh et al. 2004). The male mice are 100% infertile due to a selective defect in

sperm motility, but otherwise are completely normal under physiological condi-

tions, as are the females. Our findings were later confirmed by Okunade and

colleagues who generated a similar PMCA4 knockout mouse model (Okunade

et al. 2004).

Mouse spermatozoa express two isoforms of PMCA, PMCA1 and PMCA4.

PMCA4, which is by far the dominant isoform, is localised to the principal piece

of the sperm tail (Okunade et al. 2004). It is interesting to note that CatSper1–4,

which are essential channels controlling Ca2+ influx, are required for sperm motility

and like PMCA4 are localised to this region of the sperm tail (Ren et al. 2001; Quill

et al. 2003; Jin et al. 2007).

By using the now well established technique of gene targeting by homologous

recombination in embryonic stem cells, we generated a mouse model in which

PMCA4 was deleted in all cells (PMCA4 null mutant; PMCA4 knockout) (Schuh

et al. 2004). This has enabled us to evaluate the function of the protein in vivo and to

determine the isoform-specific functions of this gene. Breeding mice heterozygous

for the deletion of PMCA4 (PMCA4+/�) yielded homozygous knockout (PMCA4�/�,
PMCA4 KO), heterozygotes and wild-type (WT) mice in the expected 1:2:1

Mendelian ratio. However, when homozygous knockout males and females were

crossed no pups were born. By analysing the mating behaviour of the PMCA4 KO

mice it was clear that both males and females showed normal mating characteristics

leading to the development of a vaginal plug, a sign in mice of successful mating.

By breeding male or female PMCA4 KO mice with wild-type females and males,

respectively, only the female knockout/male wild-type pairings produced litters. It

was then evident that the male PMCA4 KO mice had a fertility problem, and that

the female null mutant mice had normal fertility. Morphological analysis of the

sperm and testis from PMCA4 KO mice appeared normal; by staining sections of

the testis with haematoxylin/eosin no histological differences between PMCA4 KO

and WT mice were apparent and, in addition, analysis of sperm isolated from

PMCA4 KO mice showed no obvious cytological differences when compared

with sperm from wild-type littermates. These results led us to investigate the

motility of the spermatozoa from the PMCA4 KO mice. Using CASA analysis to

study the main motility parameters in sperm we demonstrated a clear functional

difference between spermatozoa from PMCA4 KO mice and their wild-type litter-

mates. PMCA4 null mutant sperm showed severely reduced average path velocity

(VAP), a virtual lack of progressive velocity (VSL) and impaired track speed

(VCL), as shown in Fig. 1. Okunade and colleagues were also able to demonstrate

that PMCA4 null mutant sperm are unable to achieve hyperactivated motility

(Okunade et al. 2004). We concluded from these data that deletion of PMCA4

leads to a highly specific form of male infertility, characterised by normal mating
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behaviour but severely impaired sperm motility. We therefore hypothesised that we

would be able to mimic the effect of the genetic deletion of PMCA4 by treating

wild-type sperm with an inhibitor of PMCA; it must be noted that the inhibitor used

in these experiments is not specific solely to isoform 4 of PMCA. In the event,

spermatozoa treated with the cell-permeable inhibitor 5-(and 6-) carboxyeosin

diacetate succinimidyl ester (CE) displayed severely reduced sperm motility, see

Fig. 1.

It is likely that the motility phenotype is linked to the elevated concentration of

intracellular Ca2+ that was observed in the mutant sperm (Schuh et al. 2004). Ca2+ is

known to be an important signalling molecule involved in the regulation of sperm

motility (Darszon et al. 2005) and a study has clearly shown that PMCA has an

essential role in the extrusion of Ca2+ and regulation of basal calcium levels in

spermatozoa (Wennemuth et al. 2003).

3 The Plasma Membrane Calcium/Calmodulin-Dependent

Calcium ATPases

The plasma membrane calcium pump is a 134 kDa protein which belongs to a

family of P-type ATPases, comprising a group of ATP-fuelled ion pumps that form

a phosphorylated (aspartyl phosphate) intermediate as part of their reaction cycle

immotile
directed 
motility

no directed 
motility

WT

KO

a b

c

WT

KO

WT 
+

CE

7% 73% 20%

68% 14% 18%

Fig. 1 PMCA4 deficient sperm display highly reduced motility. (a) Examples of recordings of

sperm motility paths from wild type (WT) and PMCA4 knockout mice (KO). Sperm from WT

mice treated with the PMCA inhibitor 5-(-6)-carboxyeosin diacetate succinimidyl ester (CE)

mimic the effect of PMCA4 gene deletion on sperm motility. (b) PMCA4 deficient sperm display

highly reduced motility and low directed motility compared with WT sperm. (c) Main motility

parameters showed that average path velocity (VAP), progressive velocity (VSL) and track speed

(VCL) were severely impaired in PMCA4 deficient and CE-treated sperm. Adapted and repro-

duced from Schuh et al. 2004 with permission from the American Society for Biochemistry and

Molecular Biology (ASBMB)
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(Olesen et al. 2007). All isoforms of PMCA act to extrude Ca2+ from the cytosol

to the extracellular compartment, in exchange for protons, thereby regulating global

intracellular Ca2+ levels, local Ca2+ levels and/or Ca2+ signalling, depending on

the cell type and isoform (Carafoli and Stauffer 1994; Wennemuth et al. 2003;

Okunade et al. 2004; Schuh et al. 2004; Brini et al. 2007; Oceandy et al. 2007;

Strehler et al. 2007; Baggaley et al. 2008; Cartwright et al. 2009).

3.1 Tissue Distribution of PMCA Isoforms and In vivo
Specificity of Function

Mammals possess four isoforms of PMCA (PMCA1–4 – gene names Atp2b1–4)
encoded by four independent genes at distinct chromosomal locations. In humans,

these genes are located on chromosomes 12q21-q23, 3p25-p26, Xq28 and 1q25-

q32, respectively (Olson et al. 1991; Wang et al. 1994). The four isoforms clearly

have distinct functions and expression patterns. PMCA1 has long been viewed as

the housekeeping isoform as it is the isoform which is expressed earliest during

development (Zacharias and Kappen 1999) and has been identified in the vast

majority of tissues/cell types investigated (Strehler and Zacharias 2001). Recent

data from genetically modified mice has upheld the theory that PMCA1 is a

housekeeping gene, at least during embryonic development, since mice carrying a

null mutation in PMCA1 die during a very early stage of embryonic development

(Okunade et al. 2004; our own unpublished data). The expression of PMCA

isoforms 2 and 3 is much more restricted. Both isoforms are expressed in regions

of the brain (Stauffer et al. 1993) with PMCA2 being particularly highly expressed

in the Purkinje cells of the cerebellum and PMCA3 in the choroid plexus (Stahl

et al. 1992); additionally, PMCA2 is highly expressed in lactating mammary tissue

and steriocilia of hair cells associated with the cochlea (Reinhardt et al. 2000;

Dumont et al. 2001). PMCA4 has also been found to be expressed in all tissues/

cell types investigated; it is the dominant isoform in erythrocytes and spermatozoa

and is also expressed in heart, kidney, skeletal muscle, brain, pancreas, small

intestine as well as the lens and corneal epithelium of the eye (Brandt et al. 1992;

Stauffer et al. 1995; Okunade et al. 2004; Marian et al. 2005; Talarico et al. 2005).

Given recent knockout data (Okunade et al. 2004; Schuh et al. 2004) which shows

that deletion of PMCA4, unlike PMCA1, does not lead to embryonic lethality, the

conventional view that both isoforms 1 and 4 are “housekeeping” enzymes

(Stauffer et al. 1995; Garcia and Strehler 1999) is now being replaced by the

view that PMCA4 has highly specialised functions, whereas PMCA1 may fulfil the

“housekeeping” role.

The study of genetically modified mice has greatly informed our knowledge

of the specialised and highly specific functional roles of the PMCA isoforms

in vivo. Gene knockout mice, mice which overexpress isoforms of PMCA and

those carrying spontaneous mutations have all been studied (Prasad et al. 2007;

Cartwright et al. 2009). As has been described above, loss of function of PMCA1
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(PMCA1 knockout) leads to early embryonic death. Ablation of PMCA2 function

in a gene knockout model and in two spontaneous mutants has been extensively

shown to be associated with deafness (Kozel et al. 1998; Street et al. 1998;

Takahashi and Kitamura 1999). Loss of PMCA2 function has also been associated

with human disease; a mutation in the gene having been associated with hearing

loss (Schultz et al. 2005). Little is known about the in vivo function of PMCA3 but

it is anticipated that over the coming years a gene knockout model will be generated

since there are a number of international consortia whose aim is to generate a gene

knockout mouse model of every protein-coding gene in the mouse genome

(EUCOMM: European Conditional Mouse Mutagenesis Programme http://www.

eucomm.org associated with EUMODIC: European Mouse Disease Clinic http://

www.eumodic.org; KOMP: Knockout Mouse Project http://www.nih.gov/science/

models/mouse/knockout; NorCOMM: North American Conditional Mouse Muta-

genesis Programme http://www.norcomm.org). PMCA4 as described in Sect. 2 has

a highly specialised function in regulating sperm motility, it has also been shown

that when this gene is overexpressed in the vascular smooth muscle and myocar-

dium it is involved in the regulation of peripheral vascular tone, and cardiac

contractility and hypertrophic responses, respectively (Schuh et al. 2003; Oceandy

et al. 2007).

4 PMCA4 as a Suitable Drug Target

It is clear that although PMCA4 is ubiquitously expressed its function is highly

tissue-specific, with physiological relevance in the sperm. We believe that this

identifies PMCA4 as a novel target for developing inhibitors for use as a

contraceptive.

4.1 Suitability of the Structure of PMCA4 to Drug Targeting

Hydrophobicity plots and molecular modelling (see Fig. 2) show that PMCA is a

ten transmembrane (TM) domain protein with four major intracellular areas: the

N-terminal stretch whose function is largely unknown; the loop between TM

domains 2 and 3, which is believed to participate in calcium pore formation; the

loop between TM domain 4 and 5 containing the ATP binding site as well as the site

of high-energy phosphate bond formation; and the C-terminus which contains the

calmodulin binding site. Binding of calmodulin is calcium-dependent and leads to

disinhibition of the pump. This region also contains the PDZ binding domain, in

certain splice variants, which leads to interactions with proteins, many of which are

essential to the role of PMCA in Ca2+ signalling (Cartwright et al. 2007; Strehler

et al. 2007). The regulation of the activity of PMCA and its structural domains has

been detailed in a number of reviews to which we refer the reader (Carafoli 1991;
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Strehler and Zacharias 2001; Cartwright et al. 2008; Di Leva et al. 2008). All four of

the intracellular domains as well as the extracellular amino acid stretches between

TM domain 1 and 2, and between TM domains 3 and 4 are suitable candidates for

drug targeting (see Sect. 6). By analogy with most proteins/drug targets, splicing

variants are known; one in the intracellular loop between TM domain 2 and 3 and

one at the C terminal end. However, the roles of the several known splice variants of

the PMCA have not been fully elucidated.

To know the high resolution structure of a transporter and to investigate its

interaction with a hit or lead compound using X-ray diffraction analysis would be

hugely informative. However, as yet the crystal structure for PMCA has not been

identified. The crystal structure of another PII-type ATPase (ten transmembrane

domain calcium transport ATPase), the sarcoplasmic reticulum calcium ATPase

(SERCA), which has recently been published (Olesen et al. 2007), can be used as a

model for PMCA at least until its own crystal structure is identified (Di Leva et al.

2008). Recently, substances have been identified that inhibit SERCA at sub-

picomolar levels, which are being developed as anti-prostate cancer agents (Sohoel

et al. 2005) providing another strong argument that this class of targets, which

includes PMCA4, are potentially ideal targets for drug development.

4.2 Drugability of PMCA4

The type II class of P-type ion-motive ATPases, to which PMCA4 belongs, is a

class of drug with a particularly strong track record of therapeutically relevant

inhibitors. Notably, pumps with a structure similar to PMCA4 such as the Na+/K+

Fig. 2 Illustration of the membrane topology of PMCA4. The ten transmembrane domains (TM)

are numbered 1–10. The largest intracellular loop between TM4 and 5 contains the ATP binding

domain. When the pump is in the inactive state, the autoinhibitory calmodulin-binding domain

(CaM-BD) will interact with regions of the large first and second intracellular loops (between TM2

and 3 and TM4 and 5); binding of Ca2+-calmodulin to the CaM-BD will release this interaction and

render the pump active
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ATPase and the H+/K+ ATPase have well described clinically useful inhibitors,

namely, ouabain and omeprazole, respectively. Ouabain (digitalis) has been used

within the cardiovascular field for two centuries and omeprazole is a blockbuster

antacid.

Although the structural/regulatory/functional similarities between PMCA4 and

these other P-type ATPases suggest that PMCA4 itself may be targetable, it is clear

that the sequences of these enzymes are sufficiently divergent from PMCA4 to

avoid non-specific cross-inhibition. Alignment of the sequences of Na+/K+ ATPase

and the H+/K+ ATPase to that of PMCA4 identifies that the extracellular regions

which bind to ouabain and omeprazole align with the putative extracellular domain

of PMCA4 between transmembrane domains 3 and 4, suggesting the PMCA4 may

be targetable at this region (see Fig. 3). It is interesting to note that the known

PMCA inhibitor caloxin 2A1 (Chaudhary et al. 2001) binds in this region; while

this compound has no potential for drug development because of its low affinity,

this is proof-of-principle that this part of the pump is of strategic importance.

4.3 Target Validation: Modelling Target Action Using
Knockout Mice

As described in Sect. 2, PMCA4 was identified as a potential target for fertility

treatment based on the data generated by the analysis of PMCA4 knockout mice.

Can these mice be considered as an effective genetic model in which to study drug

action in vivo? There is clear evidence to suggest that gene knockout models can

provide extremely valuable information regarding potential drug action; a retro-

spective review of gene knockout information encoding targets for 100 best-selling

drugs demonstrated that there is an excellent (�85%) correlation between the

phenotypes observed in these knockout mice and the efficacy and action of the

drug (Zambrowicz and Sands 2003, 2004). Gene knockout models are not only able

to provide important information about the target but also any off-target effects and

issues that may arise. It must be clear however that gene knockout models are not

Fig. 3 Alignment of the predicted membrane domains of PMCA4, Na+/K+ ATPase and H+/K+

ATPase. Red boxes: predicted transmembrane domains of PMCA4. Blue boxes: predicted trans-

membrane domains of Na+/K+ and H+/K+ ATPases. Yellow boxes: residues required to bind

ouabain. Green boxes: residues implicated in omeprazole or lanzoprazole binding. Asterisks:
amino-acid homology between all three proteins
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drugs and the data obtained from their analysis must be considered as part of a

package of information. Some of the problems associated with the study of gene

knockouts stem from being unable to determine the phenotype due to embryonic

lethality, developmental defects or compensatory effect of other genes. These

factors however are not an issue in the case of PMCA4 knockout mice.

5 Identification of Hit Compounds

There are currently two groups of compounds known to inhibit members of the

PMCA family, caloxins (Szewczyk et al. 2008) and eosin and its derivatives (Gatto

and Milanick 1993). These compounds could be used as potential chemistry start

points in the identification of specific and efficient inhibitors, which possess

characteristics essential to the pharmaceutical industry, as opposed to being suitable

only for use in basic research. It is also possible to consider inhibitors of other

P-type ATPases such as ouabain and omeprazole as potential start points (as high-

lighted in Sect. 4.2 and Fig. 3). It would also be prudent to take steps to identify

novel inhibitors of PMCA4; an issue which we have begun to address.

To improve the probability of identifying a suitable hit substance active against a

target of interest, it is advantageous to develop a high throughput screening

approach (HTS) to enable a large number of compounds to be evaluated for their

biological activity. In order to assess the ability of compounds to inhibit the activity

of PMCA4, we exploited the ATPase activity of PMCA4 to develop a high

throughput screen. As mentioned above, the plasma membrane Ca2+ pump is a

member of the P-type pump family, which is characterised by the formation of a

high-energy phosphorylated intermediate during the reaction cycle. It is a widely

accepted view that two conformational states of the phosphorylated PMCA exist,

E1 and E2 (see Fig. 4) (Di Leva et al. 2008); although it should be noted that there

are some criticisms of this view (Scarborough 2003).

PMCA, like other P-type ATPases such as the SERCA, undergoes a reaction

cycle in which the enzyme exists in two distinct conformational states known as E1

Fig. 4 Illustration of the PMCA reaction cycle. In the E1 conformation, the pump binds calcium

with high affinity at the cytoplasmic side. In the E2 conformation, the pump has a lower affinity for

calcium which promotes its release into the extracellular space
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and E2 (de Meis and Vianna 1979; Krebs et al. 1987; Di Leva et al. 2008). In the E1

state, Ca2+ binds with high affinity at the cytoplasmic side of the membrane. The

reaction with ATP leads to the phosphorylation of aspartate, forming the aspartyl

phosphate intermediate which is characteristic of this family of P-type ATPases,

leading to a conformational change in the enzyme from E1�P to E2-P. In its E2

conformation, the enzyme releases Ca2+ to the extracellular space since in this

conformation Ca2+ is bound at lower affinity. After the Ca2+ has been released, the

E2-P intermediate is cleaved and the enzyme returns to the E1 conformation for the

cycle to begin again.

There are two well established methods for assessing ATPase activity. One is a

colorimetric assay which utilises the inorganic phosphate produced by ATP hydro-

lysis to complex to the triphenylmethane dye – malachite green (see Fig. 5a); this

causes a colour change, which can easily be detected via a colorimeter (Osborn

et al. 2004). This method is highly amenable to HTS. An alternative method for

measuring ATPase activity is based on the coupled enzyme approach. Again, the

assay measures the reaction products from ATP hydrolysis and is based on the

regeneration of PMCA-dependent released ADP by pyruvate kinase which converts

phosphoenolpyruvate to pyruvate. The released pyruvate is converted to lactate by

lactate dehydrogenase using NADH (see Fig. 5b). Detection of the rate of decline of

NADH over 10 min is used to determine the activity of the pump. This assay has

been optimised (Hammes et al. 1998) and adapted for high-throughput screening.

This involved reduction of statistical variation by testing multiple cell lines, various

transfection methods (we eventually opted for an adenoviral-PMCA4 construct),

membrane isolation methods, purity of compounds used in the coupled enzyme

Fig. 5 Assays to detect PMCA ATPase activity. (a) Malachite green assay: in which the

conversion of ATP to ADP leads to the released inorganic phosphate (Pi) forming a complex

with the malachite green dye, leading to a measurable colour change. (b) Coupled enzyme assay:

in which PMCA hydrolysis is coupled to NADH oxidation with pyruvate kinase, lactate dehydro-

genase and phosphoenolpyruvate. PMCA activity is determined by measuring the decreased

absorbance of NADH at 340 nm
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assay, amount and viscosity (and hence precision) of automated pipetting, temper-

ature, duration, etc. Various SERCA and Na+/K+ ATPase inhibitors, calcium/

calmodulin activation, carboxyeosin inhibition, as well as the response to different

amounts of human PMCA4 expressed in the cells, were used to ascertain that the

measured ATPase activity originated from PMCA4.

Since the turn of the century there has been a downward trend in the number of

new products reaching the market (Brown and Superti-Furga 2003), so it appears to

be prudent that we use a combination of new and established tools/technologies

available to enhance the development of small molecules against a known target.

One such method is fragment-based drug design in which X-ray crystallography is

used to screen fragment libraries for specific binding to a target protein (Hajduk and

Greer 2007). This technique has the advantage over HTS in that fewer compounds

need to be screened, it detects fragments that bind with low affinity

(�100 mM–10 mM) and identifies substantially fewer false positives. A major

concern with this technique concerns the ability to express a sufficient quantity

and quality of membrane proteins such as PMCA4. To date these types of proteins

have proved to be extremely difficult to produce and crystallise.

3-D protein structures and high resolution crystal structures have been used in

drug discovery for many years; however, as described above, there is no such high

resolution structure available for PMCA4. In its absence, it is possible to use

structure activity relationship (SAR) studies to develop the inhibitors identified

by HTS. This technology explores structural variants of the hits and attempts to

model the relationship between structure and activity. The model can then be used

to predict new structures designed specifically to enhance activity.

6 Specificity of Action of Potential PMCA4 Inhibitor

Unlike the majority of other drugs, a contraceptive will be used by healthy people as

a preventative method, rather than as a treatment. For this reason, there is little

tolerance of side effects and specificity of action is essential. It is therefore vital that

the specificity of action of any identified PMCA4 inhibitor is determined. This will

include determining that at the dosages used, the resultant inhibitor levels do not act

to inhibit other P-type ATPases, it should be specific to isoform 4 of PMCA, and

since PMCA4 is a ubiquitously expressed enzyme it is essential that the tissue

specificity of the inhibitor is determined.

By analogy with many drug targets, such as kinases, nuclear hormone receptors,

etc., the four PMCA isoforms have significant sequence similarities; however,

significant divergences exist in strategic locations making it highly likely that

drugs can be developed that specifically inhibit isoform 4, but not isoforms 1–3

(see Fig. 6).

Comparison of the amino acid sequences of the four PMCA gene products

enabled the degree of homology in both extracellular and intracellular regions of
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the pump to be determined. It is clear that there are great sequence variations

between isoforms in the extracellular region between TM domains 3 and 4; this

region as well as the first extracellular loop are the binding sites of the peptide

inhibitors caloxin 2A1 and 1A1, respectively. This alignment also shows that

both the N and C termini also differ considerably between isoforms. Clearly,

there are several regions of the protein that are sufficiently divergent from other

isoforms of PMCA to make the identification of a PMCA4-specific inhibitor

entirely likely.

It is a relatively commonly held view that it is necessary to identify genes that

are expressed specifically in the target tissue of interest to provide highly specific

drugs with a low potential risk of side effects. For example, it has been suggested

that identification of genes specifically expressed in the reproductive tissues could

lead to the development of contraceptives with highly selective effects (Nass and

Strauss 2004). This goal, however, may be unrealistic since the majority of genes

and their products are found to be expressed in many tissues, perhaps with distinct

temporal expression, or expression associated with the current condition of the

tissue. Indeed, it is important to note that many of our most successful drugs do not

act in a tissue-specific manner; for example, aspirin, ACE-inhibitors and beta-

blockers are targeted against specific proteins but these proteins are expressed in

more than one tissue. Conversely, drugs may be targeted against a tissue-specific

protein, but have other molecular effects (e.g. HMG inhibitors). Furthermore, it is

well known that side effects frequently occur off-target, e.g. HIV protease inhibi-

tors have an exclusively non-human target, but still display severe side effects

such as allergies and accelerated atherosclerosis. This is not to say that tissue

specificity should not be a goal but a ubiquitous enzyme such as PMCA4, which

has tissue-specific function, should certainly not be disregarded based on this

property alone.

Fig. 6 Homology of the four human PMCA isoforms. Each putative intracellular and extracellular

domain of PMCA has been sequence aligned to determine the percentage homology between all

isoforms. Regions of low homology are highlighted in bold
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7 Conclusions

There are many barriers to the development of new contraceptive drugs, an area

which currently lags behind demand. Key issues in this context are that safe and

effective contraception also needs to be affordable and widely accessible. More-

over, the costs to industry for the development of a drug and its introduction into the

market are enormous and the financial rewards may not warrant such an input.

There also needs to be an increase in the amount of basic research carried out in this

field, leading to the identification and validation of new targets.

We believe we have identified the plasma membrane calcium ATPase isoform 4

(PMCA4) as a credible target for fertility control. It meets the essential criteria for a

potentially successful target; gene knockout studies in the mouse have shown it to

have a highly tissue-specific role in sperm motility, its sequence is suitably diver-

gent from other family members that it will be possible to develop drugs to inhibit

isoform 4 only, and the target (an enzyme) is drugable thus making it a good target

for small molecule inhibitors.

The identification and validation of PMCA4 as a target is the first step in a long

process in the development of a new contraceptive drug. Identification and valida-

tion of a lead compound is currently a work in progress. There must then follow a

series of safety and efficacy tests in humans (Phase I, II and III clinical trials) and

approval of the drug by the appropriate licensing authorities prior to the introduc-

tion of any drug onto the market.

PMCA4 inhibition effectively targets sperm motility and it is anticipated that a

pharmacological inhibitor can be developed to act as a contraceptive. Although the

sperm themselves would be the logical target for a male contraceptive, this does not

preclude the use of such an inhibitor as a female contraceptive. We believe

therefore that PMCA4 is an exceptionally strong target with a great potential to

meet the needs of both industry and society.
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Abstract Infertility is a relatively common condition affecting approximately one

in ten of the population. In half of these cases, a male factor is involved, making

defective sperm function the largest single, defined cause of human infertility.

Among other factors, recent data suggest that oxidative stress plays a major role

in the etiology of this condition. Spermatozoa spontaneously produce a variety of

reactive oxygen species (ROS) including the superoxide anion, hydrogen peroxide

and nitric oxide. Produced in small amounts, ROS are functionally important in

driving the tyrosine phosphorylation cascades associated with sperm capacitation.

However, when ROS production exceeds the spermatozoa’s limited antioxidant

defenses, a state of oxidative stress is induced characterized by peroxidative

damage to the sperm plasma membrane and DNA strand breakage in the sperm

nucleus. Such oxidative stress not only disrupts the fertilizing potential of human

spermatozoa but also the ability of these cells to create a normal healthy embryo.

As a result, DNA damage in human spermatozoa is correlated with an increased

incidence of miscarriage and various kinds of morbidity in the offspring.
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These insights into the pathophysiology of defective sperm function have clear

implications for the diagnosis and treatment of male infertility, particularly with

respect to the potential importance of antioxidant therapy. These concepts may also

be relevant to the design of novel approaches to male contraception that attempt to

replicate the pathological situation.

Keywords Chromatin protamination � Oxidative stress � Reactive oxygen species

DNA damage � Spermatozoa

Abbreviations

8OHdG 8-OH, 20-deoxyguanosine
cAMP Cyclic adenosine monophosphate

CMA3 Chromomycin

DPI Diphenylene iodonium

DUOX Dual oxidase

H2O2 Hydrogen peroxide

NAD(P)H Nicotinamide adenine dinucleotide phosphate

NO Nitric oxide

NOX NAD(P)H oxidase family

ONOO Peroxynitrite

PKA Protein kinase A

ROS Reactive oxygen species

SOD Superoxide dismutase

1 Introduction

Male infertility is a relatively common condition affecting around 1 in 20 of the

male population (McLachlan and de Kretser 2001). Notwithstanding the high

prevalence of this condition, our understanding of the underlying etiology is still

rudimentary and therapies are empirical. With the exception of a small percentage

of severely infertile males possessing significant deletions of their Y chromosome

(Nuti and Krausz 2008), attempts to identify a genetic basis for male infertility have

been largely unsuccessful. What we do know is that a majority of such patients

possess sufficient numbers of spermatozoa to fertilize the egg in vivo. However,

the quality of these gametes is compromised to the point that fertilization and the

initiation of normal embryonic development are not possible. The molecular basis

of the functional defects present in the spermatozoa of male patients is the subject
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of ongoing research. If these mechanistic details could be resolved, the outcomes

might have important implications for the diagnosis, treatment and prevention of

this distressing condition. Furthermore, a detailed understanding of the mechanisms

responsible for defective sperm function might provide valuable information on the

selection of suitable targets for male fertility regulation. After all, such patients

suffer from no systemic morbidity other than a loss of fertility and, in many ways,

might be considered prime examples of the kind of condition that we should like to

replicate for contraceptive purposes, i.e., healthy individuals suffering from a

selective loss of fertility due to functional defects in their spermatozoa. Elucidating

the exact nature of the lesions that are present in the spermatozoa of infertile males

is therefore of equal interest to all those wishing to repair, or suppress, the fertilizing

capacity of human spermatozoa. In the following chapter, I shall summarize some

of the major advances we have made in this area and indicate the possible directions

in which this research might progress in the future.

2 Oxidative Stress and Impaired Sperm Function

One of the major causes of defective sperm function to emerge over the past decade

has been oxidative stress. Spermatozoa are particularly susceptible to this form of

stress because they are richly endowed with substrates for free radical attack in the

form of unsaturated fatty acids and DNA. They are also vulnerable because of a

highly specialized internal structure characterized by a cytoplasmic space that is

extremely limited in terms of both its volume and distribution. As a consequence,

these cells are poorly endowed with the cytosolic antioxidant enzymes (catalase,

superoxide dismutase (SOD) and glutathione peroxidase) that protect most cells

from free radical attack. Furthermore, these cells are active generators of ROS

(Tosic and Walton 1946; Aitken and Clarkson 1987). Indeed, excessive production

or exposure to ROS has been statistically and causally associated with defective

sperm function and DNA damage in a large number of independent studies (Aitken

and Clarkson 1987; Aitken and Krausz 2001; Aitken and Baker 2006; Tremellen

2008). In principle, such exposure to ROS could originate from a variety of sources

including (1) the presence of activated leukocytes as a consequence of infections in

the male reproductive tract (Aitken and Baker 1995), (2) electromagnetic radiation,

including heat (Paul et al. 2008) or radio frequency radiation in the mobile phone

range (Aitken et al. 2005; Deepinder et al. 2007; De Iuliis et al. 2009), (3) redox

cycling metabolites or xenobiotics such as catechol estrogens or quinones (Bennetts

et al. 2008), and (4) ROS generated as a consequence of aberrant sperm metabolism

(Aitken 2004). Since mitochondria have been shown to be a major source of ROS in

human spermatozoa (Koppers et al. 2008), any factor capable of interfering with

electron transport in these organelles is a potential inducer of ROS and DNA

damage. In this context, a superabundance of free unsaturated fatty acids appears

to be particularly significant (Aitken et al. 2006).
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3 Impact of Oxidative Stress on Spermatozoa

3.1 Motility Loss

Exactly 30 years ago Thaddeus Mann’s group at the University of Cambridge

clearly demonstrated the clinical significance of oxidative stress in the etiology of

defective sperm function (Jones et al. 1979). These authors observed a correlation

between the lipid peroxide content of human spermatozoa and severe motility loss.

This relationship between motility loss and oxidative stress is striking and has

been repeatedly demonstrated in independent studies (Alvarez et al. 1987; Aitken

and Clarkson 1987, 1988; Aitken et al. 1989a, b, 1991; Aitken and Fisher 1994;

Tremellen 2008; Agarwal et al. 2008). Thus exposure of human spermatozoa to

extracellularly generated ROS induces a loss of motility that is directly correlated

with the level of lipid peroxidation experienced by the spermatozoa (Gomez et al.

1998). Similarly, the loss of motility observed when spermatozoa are subjected to

an overnight incubation is highly correlated with the lipid peroxidation status of the

spermatozoa at the end of the incubation period (Gomez et al. 1998). The ability of

antioxidants such as a-tocopherol to rescue sperm motility in vivo and in vitro is yet

more evidence that lipid peroxidation is a major cause of motility loss in popula-

tions of human spermatozoa (Aitken et al. 1989a; Suleiman et al. 1996; Verma and

Kanwar 1999).

The mechanisms by which lipid peroxidation leads to motility loss probably

involve changes in the fluidity and integrity of the plasma membrane and a

subsequent failure to maintain membrane functions critical to flagellar movement.

Disruption of membrane Ca2+/Mg2+ ATPase activity as a consequence of decreased

membrane fluidity would, for example, lead to a loss of motility secondary to an

increase in intracellular calcium (Hong et al. 1984). In addition, ROS-induced lipid

peroxidation will disrupt all sperm functions dependent on membrane fluidity

including sperm–oocyte fusion and the ability to undergo a physiological acrosome

reaction (Aitken et al. 1993a, b).

3.2 DNA Damage

Oxidative stress is also a major cause of DNA damage in mammalian spermatozoa.

Using a quantitative PCR approach to calculate lesion frequency, the human

mitochondrial genome has been shown to be much more susceptible to DNA

damage than the nuclear genome (Sawyer et al. 2003). As a consequence, the

integrity of the sperm mitochondrial genome is an excellent marker of oxidative

stress, even though this DNA is of no biological significance in its own right

because sperm mitochondria do not generally replicate after fertilization. When

quantitative PCR was used to compare the lesion frequencies induced in sperma-

tozoa and a variety of other cell types following exposure to H2O2, the nuclear
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genome of the male gamete was shown to be particularly resistant to oxidative

damage (Sawyer et al. 2003). This resistance is thought to mirror the unique manner

in which nuclear chromatin is packaged in spermatozoa, as also reflected in the high

levels of irradiation required to damage sperm DNA compared with somatic cells

(McKelvey-Martin et al. 1997).

During the terminal differentiation of spermatozoa, the chromatin becomes

remodeled as nuclear histones are progressively replaced with small positively

charged molecules known as protamines. As a consequence of their small size

and charge, protamines permit the packaging of sperm chromatin into an extremely

small space. In Eutherian mammals, the protamines possess numerous cysteine

residues that become oxidized during epididymal transit, establishing a series of

inter- and intramolecular disulphide bonds that serve to stabilize the nuclear

chromatin structure. Such stabilization renders the DNA more resistant to oxidative

stress. The spermatozoa of most marsupial species cannot stabilize in this way

because their protamines do not contain cysteines and, as a consequence, their

nuclear DNA is significantly more susceptible to oxidative damage that Eutherian

spermatozoa (Bennetts and Aitken 2005).

The efficiency of sperm protamination also appears to be a major factor in the

etiology of DNA damage in human spermatozoa. Using a fluorescent probe (chro-

momycin; CMA3) that competes with protamines for binding sites in the minor

groove of DNA we, and others, have clearly shown a very tight inverse relationship

between the degree of chromatin protamination and DNA fragmentation (Sakkas

et al. 1998; Fig. 1). In light of these data, we have advanced a two-step hypothesis to

explain the etiology of DNA damage in human spermatozoa.

According to this hypothesis, defective spermiogenesis leads to impaired remo-

deling of sperm chromatin during the final stages of spermiogenesis. As a con-

sequence of this disrupted spermiogenetic process, spermatozoa are liberated from

the germinal epithelium in an imperfect state possessing poorly protaminated

chromatin as well as a variety of other defects including the retention of excess

residual cytoplasm (Gomez et al. 1996; Aitken et al. 1996; Fischer et al. 2003) and

functional impairments that affect the motility of the spermatozoa and their ability

to participate in the cascade of cellular interactions (zona recognition, zona-induced

acrosome reaction, sperm–oocyte fusion, etc.) that culminate in fertilization of the

oocyte (Huszar et al. 2006; Aitken et al. 2009).

The defective chromatin remodeling observed in cases of impaired spermiogenesis

constitutes the first step in the etiology of sperm DNA damage by creating a state of

vulnerability to attack. The origins of the poor chromatin structure seen in the

spermatozoa of male infertility patients are currently unknown. Recent animal data

suggest that steroid-induced suppression of FSH or LH/testosterone is correlated

with poor protamination of spermatozoa (Aleem et al. 2008). However, endocrine

insufficiency is rare in the infertile male population. Another contributory factor

may be age since as men age, the quality of spermatogenesis declines and the

spermatozoa show clear evidence of poorly protaminated chromatin associated

with high levels of DNA fragmentation (Plastira et al. 2007). Impaired chromatin

remodeling may also be associated with exposure to cytotoxic chemotherapeutic
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agents such as cyclophosphamide, etoposide, cisplatin, and bleomycin, which can

attack testicular germ cells in the late stages of spermatogenesis and impair the

carefully orchestrated protamination process (Spermon et al. 2006; Codrington

et al. 2007). In a similar vein, organophosphorus pesticides have also been shown

to impair chromatin remodeling during spermiogenesis generating a susceptibility

to oxidative stress that leads to DNA fragmentation in the germ line (Piña-Guzmán

et al. 2006). In this case, the underlying mechanism is thought to involve aberrant

phosphorylation of sperm protamines during spermiogenesis. Another possibility is

that the alkylation of free thiols on sperm protamines by environmental toxicants

impairs the stabilization of sperm chromatin in the epididymis by impeding the

creation of disulphide bridges (Sega 1991).

Fig. 1 Chromatin protamination and susceptibility to DNA damage in the male germ line.

(a) CMA3 (chromomycin) is a fluorescent probe that competes with protamines for binding

sites in the minor groove of sperm DNA such that the more impaired the protamination process

the more labeling is observed. (b) Significant (P < 0.001) disruption of the protamination process

is evident in the spermatozoa of male infertility patients, who exhibit much higher levels of CMA3

labeling than control donors. (c) Disruption of sperm chromatin protamination is highly correlated

with the incidence of DNA damage in these cells as measured with a TUNEL assay (P < 0.001)
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The second step in this sequence of events leading to DNA damage in sperma-

tozoa is an attack on the poorly protaminated chromatin to induce DNA fragmenta-

tion. According to our two-step hypothesis, this attack is mediated by ROS (Aitken

et al. 2009). The significance of oxidative stress in the origins of DNA damage in

spermatozoa is indicated by the ability of ROS, such as hydrogen peroxide (H2O2),

to directly trigger such lesions in human spermatozoa (Aitken et al. 1998a; Li et al.

2006) and by the extremely tight correlated observed between DNA damage in

human spermatozoa and the presence of the oxidized DNA base adduct, 8-OH,

20-deoxyguanosine (8OHdG; Fig. 2). The major DNA adducts found in human

Fig. 2 Most DNA damage in the male germ line is associated with oxidative stress. (a) 8OH,

20-deoxyguanosine (8OHdG) is a marker for oxidative damage to DNA. (b) DNA damage in

human spermatozoa measured with a TUNEL assay is highly correlated with the formation of

oxidative DNA base adducts (P < 0.001) (De Iuliis et al. 2009)
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sperm DNA are 8OHdG and two ethenonucleosides (1,N6-ethenoadenosine and 1,

N6-ethenoguanosine). While the former is a direct consequence of oxidative attack

on sperm DNA, the latter probably arise from exposure to 4-hydroxy-2-nonenal, a

major product of lipid peroxidation (Badouard et al. 2008). These findings, taken in

conjunction with our own data revealing a high correlation between DNA damage

and 8OHdG expression (Fig. 2), suggest that oxidative stress is the major reason

that vulnerable chromatin becomes attacked by free radicals emanating from such

sources as infiltrating leukocytes, redox-cycling xenobiotics, aberrant sperm meta-

bolisms, or failed antioxidant defense systems.

Thus, in summary, while spermatozoa are vulnerable to oxidative stress and lipid

peroxidation, the unique packaging of these cells during the final stages of sper-

matogenesis normally renders the DNA resistant to such damage, particularly in

Eutherian mammals. When DNA damage does occur, it is thought to be the result of

a combination of factors including poor chromatin remodeling during spermiogenesis

followed by a free radical attack on the exposed DNA (Fig. 3). The DNA damage

that results from these processes is detrimental to reproductive success in terms

of successful fertilization, carriage of pregnancy to term and the health and normal-

ity of the offspring (Aitken 2004; Aitken and Krausz 2001; Aitken and Marshall

Graves 2002; Aitken and Baker 2006).

4 The Physiological Role of ROS

If ROS are so dangerous to spermatozoa, then why have these cells evolved a

capacity to generate these highly reactive molecules? The answer appears to lie in a

poorly understood physiological process that is characteristic of mammalian sper-

matozoa – capacitation. Capacitation is a maturational process that spermatozoa

Fig. 3 A two-step hypothesis

for the origin of DNA damage

in the male germ line

(reprinted with permission

from the International Journal

of Andrology; Aitken et al.

2009)
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must undergo in the female tract if they are to interact successfully with the oocyte

and commence the cascade of intercellular interactions leading to fertilization. As a

biological phenomenon, capacitation has been acknowledged since the pioneering

work of Austin (1951) and Chang (1951) more than 50 years ago. However, as a

biochemical entity, the nature of capacitation has only become apparent in the past

decade. The most significant finding over that period has been the discovery that

sperm capacitation involves a dramatic increase in the level of tyrosine phosphory-

lation exhibited by the sperm tail, particularly in the midpiece (Visconti et al. 1995;

Lin et al. 2006). This signal transduction pathway is driven by cAMP, mediated by

the promiscuous tyrosine kinase, pp60cSrc, and modulated by the redox status of

the cells (de Lamirande and Gagnon 1993, 1995; Aitken et al. 1995, 1998b; Leclerc

et al. 1997, 1998; Baker et al. 2006). ROS generation is thought to exert a positive

influence on tyrosine phosphorylation in spermatozoa through its ability to influ-

ence the intracellular levels of cAMP. The case for ROS involvement in cAMP

generation and tyrosine phosphorylation has now been made for human (Aitken

et al. 1995, 1998b), rat (Lewis and Aitken 2001), mouse (Ecroyd et al. 2003),

bovine (Rivlin et al. 2004), and equine (Baumber et al. 2003) spermatozoa, via

mechanisms that involve the stimulation of adenylyl cyclase activity (Zhang and

Zheng 1996; Aitken et al. 1998b; Lewis and Aitken 2001; Rivlin et al. 2004). It is

also possible that ROS, particularly H2O2 may enhance tyrosine phosphorylation

through the selective suppression of tyrosine phosphatase activity. The latter

enzyme contains a key cysteine residue in the catalytic domain that must be in a

reduced state for phosphatase activity to be expressed. Direct exposure of tyrosine

phosphatase enzymes to H2O2 leads to oxidation of this cysteine and a decline in

enzyme activity (Hecht and Zick 1992).

The precise nature of the ROS triggering this tyrosine phosphorylation cascade

is still uncertain. A pivotal role for H2O2 generation has been suggested by experi-

ments demonstrating that direct exposure to this oxidant leads to the stimulation of

tyrosine phosphorylation and capacitation in suspensions of human, hamster, or

bovine spermatozoa (Bize et al. 1991; Aitken et al. 1998b; Rivlin et al. 2004).

Similarly, the artificial creation of oxidizing conditions by exposing spermatozoa to

extracellularly generated ROS using the glucose oxidase or xanthine oxidase

systems has been shown to stimulate capacitation and tyrosine phosphorylation in

several species (man, hamster, bull, and horse) via mechanisms that can be reversed

by the addition of catalase (Bize et al. 1991; Aitken et al. 1995; Baumber et al.

2003; Rivlin et al. 2004). The biological importance of H2O2 has been further

emphasized by the ability of catalase to inhibit the spontaneous induction of

tyrosine phosphorylation in capacitating mammalian spermatozoa (Aitken et al.

1995). In addition, catalase has been shown to suppress sperm functions such as

hyperactivation, the acrosome reaction, and sperm–oocyte fusion that are all ulti-

mately dependent on the attainment of a capacitated state (Bize et al. 1991; Griveau

et al. 1994; Aitken et al. 1995).

Other studies have suggested key roles for superoxide anion and/or nitric oxide

in the induction of sperm capacitation. The inhibitory action of SOD constitutes

the primary evidence for a role for superoxide anion in the capacitation process
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(de Lamirande and Gagnon 1995; de Lamirande et al. 1997; de Lamirande and

O’Flaherty 2008; O’Flaherty et al. 2006). How the presence of a membrane

impermeant enzyme (SOD) scavenging a membrane impermeant free radical

(superoxide) manages to disrupt the capacitation process is still uncertain. It

would necessitate superoxide being generated on the external surface of the

sperm plasma membrane and then entering the cell through some form of anion

channel to exert its intracellular biological effects. Notwithstanding uncertainties

about superoxide’s mechanism-of-action, evidence for the involvement of this

radical in the capacitation process has been presented for buffalo, equine, and

bovine spermatozoa (O’Flaherty et al. 2003; Burnaugh et al. 2007; Roy and Atreja

2008) as well as for human sperm cells. The intracellular mechanism by which

superoxide anion stimulates capacitation appears to involve similar changes to

those precipitated by H2O2 including cAMP production and the enhancement of

PKA-dependent tyrosine phosphorylation (Leclerc et al. 1997). In reality, the

extremely rapid intracellular dismutation of superoxide to H2O2 under physiologi-

cal conditions probably means that both forms of ROS are involved in the regula-

tion of sperm capacitation in vivo.

If superoxide and H2O2 are involved in the regulation of sperm capacitation,

how are these ROS generated? One possibility that has been raised is the presence

of a plasma membrane NAD(P)H oxidase (NOX) capable of generating ROS

(Lewis and Aitken 2001; Aitken et al. 1997, 2003, 2007). Although evidence for

NADPH oxidases such as DUOX, NOX5, and NOX2 in the male germ line has

been obtained, there is no convincing data that they are involved in regulating the

capacitation process (Banfi et al. 2001; Shukla et al. 2005; Baker et al. 2007; Sabeur

and Ball 2007). Although addition of NADPH to mammalian spermatozoa does

stimulate the cAMP-dependent tyrosine phosphorylation events associated with

sperm capacitation (Aitken et al. 1995; Lewis and Aitken 2001; Urner and Sakkas

2003), no superoxide signal has been recorded in the presence of this cofactor (de

Lamirande et al. 1998). Moreover, the redox signal detected in sperm suspensions

following stimulation with NADPH in the presence of the chemiluminescent probe,

lucigenin (Vernet et al. 2001; Lewis and Aitken 2001), appears to reflect the

secondary generation of ROS following activation of the probe by a one-electron

reduction mediated by reductases, such as cytochrome b5 and cytochrome P450

reductase (Aitken et al. 2004a; Baker et al. 2004, 2005): in the absence of lucigenin,

no superoxide is generated in the presence of NAD(P)H. How exogenous NADPH

generates its biological effects is currently uncertain although one possibility is the

spontaneous oxidation of NADPH to hydrogen peroxide in the extracellular space

(Ford 2004).

Another form of oxygen free radical that is thought to be involved in the

regulation of sperm capacitation is nitric oxide (NO). NO is thought to be generated

by nitric oxide synthases present in the sperm head and/or flagellum (Herrero et al.

1996, 2003). However, an alternative mechanism has also been suggested involving

a nonenzymatic induction of NO generation as a result of an interaction between

mitochondrial H2O2 and arginine (Aitken et al. 2004b). Whatever the origins of this

radical species, its mechanism-of-action appears to be very similar to superoxide
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and hydrogen peroxide in that it stimulates the tyrosine phosphorylation events

associated with sperm capacitation. It is also probable that superoxide and NO

interact to form the peroxynitrite anion (ONOO) (Aitken et al. 2004b) and that this

radical species plays a key role in promoting the phosphorylation events associated

with capacitation (Herrero et al. 2001).

Overall, there can be no doubt that spermatozoa generate ROS. In fact, they were

the first cells in which the cellular generation of reactive oxygen metabolites was

recorded (Tosic and Walton 1946). It is also clear that there is not one site of redox

activity in these cells but several, each with a potential to generate ROS under

certain conditions (Aitken et al. 2003). Clearly, the use of chemiluminescent

reagents such as luminol and, particularly, lucigenin to examine ROS generation

by mammalian spermatozoa has been problematical (Aitken et al. 2004a). Chemi-

luminescence readouts cannot be standardized and may reflect a variety of oxido-

reductase activities not directly related to ROS generation. A new generation of

fluorescent reagents suitable for the cellular assessment of superoxide and H2O2

generation using flow cytometry is now available and should facilitate research in

this field (De Iuliis et al. 2006; Kadirvel et al. 2009). One of the results of using such

reagents is an awareness of just how important the sperm mitochondria are as a

source of ROS (Vernet et al. 2001; Koppers et al. 2008). In many of the papers

(including our own) suggesting that NOXs are important sources of ROS during

capacitation, one of the primary lines of evidence has been the suppressive effects

of diphenylene iodonium (DPI), a flavoprotein inhibitor which is known to suppress

NADPH oxidase activity. However, it is not often appreciated that DPI is also a

potent inhibitor of mitochondrial ROS generation as a result of its ability to inhibit

the respiratory electron transport chain (Li and Trush 1998). Thus at this stage, it

is not possible to rule out the mitochondria as a major source of the redox activity

that drives the capacitation process. Indeed, human sperm mitochondria have

been observed to undergo a morphological transformation during capacitation

(Vorup-Jensen et al. 1999). Furthermore in rodents, attainment of the ability to

capacitate during epididymal transit is associated with the phosphorylation of

several mitochondrial proteins, the development of a mitochondrial membrane

potential, and activation of mitochondrial ROS generation (Aitken et al. 2007).

5 Conclusions: Oxidative Stress in Infertility and Prospects

for Contraception

In summary, it is clear that a fundamental aspect of sperm physiology is their ability

to generate ROS. Physiologically, these metabolites appear to be heavily involved

in the regulation of sperm capacitation, particularly the cAMP-induced increase

in tyrosine phosphorylation that characterizes the capacitated state. Evidence has

been obtained for the involvement of specific ROS such as H2O2, superoxide, NO,

and ONOO in the regulation of this process. However, the reactivity of these
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metabolites is so great that they are all potential activators of the tyrosine phos-

phorylation pathway associated with sperm capacitation. Indeed, in this respect

spermatozoa are not so different from somatic cell types where the redox regulation

of tyrosine phosphorylation is a widely recognized phenomenon (Nakashima et al.

2005). Where spermatozoa differ from most other cell types is in their susceptibility

to oxidative stress. The unique architecture of these cells means that they are largely

devoid of the cytoplasm that would normally accommodate the antioxidant

enzymes that protect most cell types from oxidative stress. Moreover, these cells

possess multiple targets for free radical attack as well as mitochondria that are

prone to electron leakage and the generation of ROS. They may even possess

professional ROS generating enzymes belonging the NOX family. All of these

factors contribute to the important role that oxidative stress plays in etiology of

defective sperm function. Free radical attacks on the unsaturated fatty acids that

dominate the metabolomic profile of these cells result in the induction of lipid

peroxidation accompanied by a loss of motility, while similar attacks on the nuclear

and mitochondrial genomes result in oxidative base adduct formation and DNA

strand breaks.

While it is clear from the foregoing that human spermatozoa are particularly

vulnerable to oxidative stress, can the involvement of free radicals in the etiology of

male infertility be used as the basis for creating a novel approach to male contra-

ception? To be of significance as a viable contraceptive target a given molecule

should be specific to the male germ line, functionally important and susceptible to

pharmacological intervention. A majority of the systems used by spermatozoa to

generate or scavenge free radicals are shared with somatic cells. However, some are

specific. For example, spermatozoa possess specific forms of thioredoxin that,

among other things, support the protective action of thioredoxin-dependent per-

oxidases (peroxiredoxins) that abound in these cells (Miranda-Vizuete et al. 2004).

These molecules are functionally important in protecting cells against oxidative

stress, possess a well-defined biochemical activity and are inhibitable. In principle,

targeting such molecules should recreate the infertility phenotype that we see in

patients characterized by defective sperm function associated with high levels of

oxidative stress. Since oxidative attacks on the male germ line appear to trigger an

apoptosis-like response in these cells (Ball 2008), it may only be necessary to create

sufficient stress to activate this pathway and an infertility phenotype would be

generated. Selective deletion of just one of the thioredoxin-dependent periredoxins

(Prx4) has been shown to induce partial testicular atrophy associated with increased

germ cell apoptosis (Iuchi et al. 2008). Although these animals were fertile, it

should be recognized that there are several periredoxins present in human sper-

matozoa, creating a high level of redundancy (Baker et al. 2007). If we target the

thioredoxins that support these peroxidases a more consistent infertility phenotype

might be observed. Contraceptive efficiency would be absolutely critical for this

approach because there would be significant risks associated with spermatozoa

possessing oxidatively damaged DNA, escaping the suppression of sperm function

and fertilizing the oocyte, with implications for the health and well being of the

offspring.
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Alternative targets for contraception may be identified from the proteomic

databases or from studies targeting the proteomic differences between normal

spermatozoa and cells possessing specific functional lesions such as an inability

to bind to the zona pellucida. The introduction of cutting-edge technologies such

as proteomics and metabolomics into the analysis of human spermatozoa will

undoubtedly generate more potential targets for contraceptive intervention as our

knowledge of the basic biology of these highly specialized cells improves. In this

context, it will be up to public sector research institutes and Universities to identify

and develop these leads to the point that the pharmaceutical industry is once again

motivated to join in the search for a safe effective reversible method for controlling

male fertility (Aitken et al. 2008).
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Abstract The epididymis is an excellent target for the development of a male

contraceptive. This is because the process of sperm maturation occurs in this organ;
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have traversed the epididymal duct. However, a number of attempts to interfere in

sperm maturation and epididymal function or both have not been successful. The

use of transgenic animals has proved useful in identifying a few epididymal targets

but has yet to open the doors for drug development. Continuous focus on identify-

ing additional epididymal targets and sperm-specific and epididymal-specific drugs

is key to bringing a male contraceptive acting on the epididymis to the public.

Keywords Blood–epididymis barrier � Epididymal gene knockout mice �
Epididymal proteins � Epididymal transporters � Epididymis � Sperm maturation �
Spermatozoa

1 Introduction

Contraceptives acting by a post-testicular action in the male partner will be

designed to take advantage of the physiology of the epididymis. Every spermato-

zoon entering the ejaculate has passed through this organ that promotes its transit

from the testis, fosters its maturation and maintains its quiescence before ejacula-

tion. As these processes take place over a period of about a week, there would

appear to be ample time for the fertilising potential of spermatozoa to be compro-

mised. If this could be accomplished, the onset of infertility would be rapid (the

time it takes for the spermatozoa, in whatever region they are damaged, to complete

epididymal transit and enter the ejaculate) and the infertility would be reversible

and almost as fast (the time it takes the unaffected testicular spermatozoa to pass

through the no-longer affected organ and replenish the caudal sperm reserves), i.e.

about a week in both instances.

Various approaches to such epididymal contraception have been mooted. They

are based on (1) promoting peritubular epididymal contractions, which would reduce

sperm transit time so that the time for their interaction with epithelial secretions is

reduced to a suboptimal level; (2) attacking epididymal epithelial secretion tomodify

the composition of luminal fluid so that concentrations of sperm maturation-

dependent factors are reduced to a suboptimal level; and (3) directly targeting the

spermatozoawith inhibitors of sperm function, for example, blocking spermmotility,

metabolism, membrane function, vitality; however, none has been successfully

implemented (Cooper and Yeung 1999). The challenge for investigators is to

uncover potential epididymal targets for contraceptive development.

2 Infertile Males as a Contraceptive Paradigm

The disappointment arising from the difficulties in realising epididymal contracep-

tive leads has been countered by knowledge that several infertile males demonstrate

precisely what is required of the concept of post-testicular contraception, and one
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that occurs naturally or can be mimicked in transgenic animals. Such models

provide hope that the ultimate goal is not illusory.

Several domestic species occasionally produce individual males that are sterile

but are otherwise competent in other male (including copulatory) behaviour. Tes-

ticular function is normal, sperm numbers are not diminished but the ejaculates

contain morphologically abnormal spermatozoa. The phenotype in these so-called

“Dag defect” males is spermatozoa in ejaculates characterised by angulated fla-

gella; they are motile but “swim backwards”, that is, the head of the spermatozoon

points away from the direction of motion. The origin of the flagella bending is the

epididymis, since testicular spermatozoa from these males have straight flagella,

but the site in the epididymis where coiling takes place differs among animals

(Cooper and Barfield 2006). Male contraceptives could mimic this natural infertility

if the causative mechanism were known.

Although tail coiling can be induced in spermatozoa by hypotonic treatments,

the osmolality of cauda epididymidal fluid from the Dag defect bulls and boars was

not consistently low and the osmolality of fluid from more proximal regions, where

the effect may have originated, was not measured. Results of limited analysis of

epididymal fluid composition were also inconsistent. The epididymal phenotype

was not unusual and one pig examined had the initial segment (Cooper and Yeung

2003), a caput region that may be important in this condition in mice (see below).

3 Transgenic Mice: Epididymal Models of Male Infertility

Several murine models of male infertility display a similar angulated sperm defect

to that of the Dag defect of domestic species. Tail angulation is normally present in

a minority of cauda epididymidal spermatozoa when exposed to routine media

(Eyden and Maisin 1978) but occurs to a far larger extent in certain knockout

animals.

3.1 Infertile Male Mice Lacking the Initial Segment
and Exhibiting Sperm Flagellar Angulation

3.1.1 c-Ros-Deficient Mice

The best characterised model of post-testicular infertility is the c-ros knockout

mouse. Loss of this orphan tyrosine kinase receptor leads to male infertility,

although the males are still capable of copulating and can be used instead of vasec-

tomised mice to induce pseudopregnancy in female mice (Sonnenberg-Riethmacher

et al. 1996). Post-copulatory spermatozoa in the uterus display flagellar angulation

that prevents sperm migration beyond the uterotubal junction (Yeung et al. 2000).
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Within the epididymis <20% of spermatozoa are angulated but this increases upon

release from the cauda epididymidis in routine medium (Yeung et al. 1999).

Flagellar angulation is a morphological manifestation of the swollen state (Yeung

et al. 2002a) so that removal of the cell membrane with detergent membrane releases

the membrane restraint and reduces the percentages of angulated and hairpin bend

flagellar forms. Despite the infertility in vivo, c-ros-null spermatozoa are capable of

fertilising zona-intact eggs in vitro (Sonnenberg-Riethmacher et al. 1996) so the null

spermatozoa are capable of undergoing capacitation and the acrosome reaction,

confirming that the in vivo infertility stems from a failure of the spermatozoa to

reach the eggs as a result of their abnormal morphology.

In man, the c-ros gene is widespread along the epididymis, with the exception of

the proximal caput epididymidis (Légaré and Sullivan 2004), rather than the high

expression in the initial segment and lower in more distal caput segments. However,

human male contraception will not involve gene knockouts; rather the mechanisms

of infertility induction in these models – the induction of swelling – will be

mimicked. The cause of the flagellar swelling in these animal models has been

examined by analysing their epididymal pheno- and geno-types. The caput epidi-

dymidis of c-ros-null mice is smaller than that of the WT (Sonnenberg-Riethma-

cher et al. 1996) because it fails to develop the initial segment (IS) (Avram and

Cooper 2004) with its associated rich vascularity (Wagenfeld et al. 2002). As

expected, IS-specific genes are lacking, including CRES and MEP17 (Cooper

et al. 2003), but also EAAC1, a sodium-dependent glutamate transporter, is

down-regulated in the caput, but not corpus or cauda epididymidis (Wagenfeld

et al. 2002). As a consequence, the glutamate content of cauda epididymidal

spermatozoa is decreased (Yeung et al. 2004a). The significance of this lowered

sperm osmolyte content becomes apparent when the epididymal spermatozoa

contact fluids of lower osmolality at the time of ejaculation, and when the osmo-

lytes are needed to remove water that enters osmotically.

3.1.2 GPX5Tag2 Transgenic Mice

Deliberate targeting of the caput epididymidis with the large T-antigen, to interfere

with its function, created two transgenic (TG) lines, one of which, the GPX5Tag2,

At this moment c-ros appears to be a promising epididymal target for male

contraceptive development. Its receptor and kinase domains are amenable to

small molecular weight inhibitors and recently inhibitors of the c-ros kinase
have been prepared (El-Deeb et al. 2009; Park et al. 2009). The challenge will

be to examine the role of this gene in the adult male and determine whether

regulating its expression will result in male infertility. If c-ros is not a

druggable target, then potential downstream genes known to be regulated

by c-ros are potential targets.
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was infertile and displayed similar sperm flagellar angulation to that of the c-ros-
null mouse. Unlike that in the c-ros-null-mutant, sperm angulation occurs, as in the

Dag defect males, within the epididymis (Sipil€a et al. 2002; Yeung et al. 2002b).

Cauda epididymidal fluid osmolality is significantly lower in the TG male than that

in the wild type, although still higher than that of the female tract (Sipil€a et al.

2002). The initial segment is present, despite an apparent hypertrophy, and CRES

and MEP17 are down-regulated (Sipil€a et al. 2002), as found for the c-ros-KO
males (Cooper et al. 2003). Unlike the angulated spermatozoa from the c-ros-KO
males, those from GPX5Tag2 males are unaffected by demembranation and are

unable to fertilise eggs in vitro. These results are explicable by the occurrence of

hypo-osmotically driven flagellar bending within the epididymis, followed by the

normal sulphydryl oxidation that occurs during epididymal transit and stiffens the

flagellum into an angulated shape that cannot straighten out when membrane

restraints are removed.

3.2 Infertile Mice Lacking the Epididymal Initial Segment

Many other models of murine male infertility exist, several of them presenting with

angulated spermatozoa or lack of an initial segment but impaired volume regulation

may not always be the cause of infertility. (1) The “viable motheaten” is an infertile
male mouse with a natural mutation of the SH2 domain of the SHP-1 protein

tyrosine phosphatase enzyme. This gene co-localises with, and dephosphorylates,

c-ros; furthermore, the initial segment, as in the c-ros-KO, is lacking. The infertil-
ity, however, could also stem from testicular defects of spermatogenesis and

testosterone secretion (Keilhack et al. 2001). (2) The epididymis of XXSry, sex-
reversed, pseudohermaphrodite males has no initial segment (LeBarr and Blecher

1986) and no rich capital vascularity (Le Barr and Blecher 1987) but is infertile

because of azoospermia stemming from its abnormal chromosomal complement.

The epididymal tubule is shorter in these males as the initial segment never

develops (LeBarr et al. 1991), despite normal androgen levels (Le Barr et al.

1986). (3) The G protein-coupled receptor LGR4/GPR48 is expressed in the murine

initial segment and the LGR4 knockout mouse is infertile and lacks an initial

segment (Mendive et al. 2006; Hoshii et al. 2007). This is a consequence of

early developmental changes leading to a hypoplastic organ together with down

This animal model provides clues that changing the epididymal luminal

fluid osmotic microenvironment will result in male infertility. The challenge

will be to uncover molecules in the epididymis responsible for maintaining

osmolarity and discovering approaches that interfere in the function of

such molecules. These will include enzymes involved in the synthesis of

myo-inositol and sorbitol and transporters for ions, glutamate, and L-carnitine.
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regulation of the oestrogen receptor-a, aquaporin-1 and the sodium hydrogen

exchanger NHE3 (Slc9a3). As a result, there is retention of spermatozoa and fluid

within the testis, distension of the rete testis, leading to spermatogenic disruption, and

sperm statis in the efferent ducts lumen with an immunological response in the form

of granuloma (Mendive et al. 2006). Depending on the genetic background there

may be angulation of spermatozoa in the cauda epididymidis (Hoshii et al. 2007).

3.3 Infertile Mice with Angulated Spermatozoa

3.3.1 Foxi1-Deficient Mice

The forkhead transcription factor foxi1 regulates gene expression in narrow and

clear cells of the epididymis, especially the vacuolar H+-ATPase proton pump,

carbonic anhydrase II and the chloride/bicarbonate transporter. As these proteins

modulate the acidity of epididymal, luminal fluid pH is significantly higher in the

KO than WT animals (Blomqvist et al. 2006), a feature also found in the c-ros-KO
males (Yeung et al. 2004b). Sperm tail angulation is also a feature of these animals

although the fact that spermatozoa fail to enter the uterus in large numbers suggests

there are additional copulatory semen deposition problems. A change in epididymal

morphology was also noted with a heavier cauda epididymidis present than that in

wild type controls.

It seems unlikely that these models will provide specific epididymal targets

for contraceptive development. The SHP-1 protein is potentially attractive

because it is a druggable target; however, the expression of this protein is

ubiquitous and specificity is an issue. However, all models emphasise the

importance of the proximal region of the epididymis in male fertility.

Although transcription factors are not normally considered to be druggable,

their downstream targets could be possible targets for contraceptive develop-

ment. Since foxi1 regulates the expression of three druggable targets, i.e. two

enzymes and one transporter, a male contraceptive could be designed to

interfere in the function of either one or all three. It is not entirely clear

whether all three or a combination of these targets would need to be com-

promised for male infertility. However, as lowered intraluminal pH is not

invariably associated with male infertility (the ammonia transporter Rhcg KO

mice have reduced intraluminal pH but are fertile: Biver et al. 2008), the other

luminal fluid components could be targeted by contraceptives.
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3.3.2 FKBP52-Deficient Mice

FKBP52 is a member of the family of immunophilins and also acts as a chaperone

for steroid hormone receptors through Hsp90. Although FKBP52-null mice show

partial androgen insensitivity in several reproductive tissues, e.g. external genitalia,

the expression of androgen-dependent genes in the epididymis is normal (Cheung-

Flynn et al. 2005; Hong et al. 2007). The infertile male phenotype observed in these

mice is partially due to the disrupted external genitalia and anterior prostate,

leading to poor mating and lack of vaginal plugs, but an epididymal defect has

also been suggested (Hong et al. 2007). In the KO male, sperm numbers are

decreased and sperm morphology is characterised by flagellar angulation in the

cauda (but not caput or corpus), which would render males infertile were mating to

be normal. FKBP52 has been shown to bind to spermatozoa, and spermatozoa from

the null mice have abnormal morphology and a reduced fertilising ability. Never-

theless, in vitro capacitation and the acrosome reaction occur and fertilisation by

these spermatozoa leads to normal embryo development (Hong et al. 2007).

3.3.3 Herc4-Deficient Mice

E3 ubiquitin ligase (Herc4) is highly expressed in the testis and is involved in the

flagging and removal of proteins during the spermatogenic sculpturing of sperma-

tozoa. The knockout mice are subfertile (litter sizes reduced by half) and sperma-

tozoa are less motile and display angulated spermatozoa (Rodriguez and Stewart

2007).

3.3.4 SLO3-Deficient Mice

SLO3 (KSper) has been identified as a pH-dependent potassium channel involved

in membrane hyperpolarization during capacitation. The KO males are infertile and

their capacitated spermatozoa do not fertilise zona-intact or zona-free eggs in vitro.
Up to 70% of capacitated spermatozoa exhibit flagellar angulation and display

reduced progressive motility and a failure to undergo the acrosome reaction (Santi

et al. 2010).

Determining whether this protein is druggable warrants further study, for

example, a drug could be designed to enter the epididymal lumen and prevent

the interaction between FKBP52 and spermatozoa resulting in male infertility.

This is not a contraceptive model as infertility is not achieved.
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3.4 Infertile Male Mice with Flagellar Angulation Combined
with Testicular Defects

Other murine models that display angulated sperm defects may not purely reflect

epididymal dysfunction; they may also be associated with testicular sperm defects.

For example, mice deficient in (1) ApoER2, a member of the low density lipoprotein

receptor family, which binds epididymal secretions of clusterin (Andersen et al.

2003) and SePP1 (Olson et al. 2007), and is localised in the initial segment

(Andersen et al. 2003). Spermatozoa from the Apolipoprotein E receptor 2 knockout

mouse (ApoER-KO) display flagellar angulation that develops within the epididy-

mis, but, unlike those of the GPX5Tag2 males, a large percentage of the sperma-

tozoa can be straightened by detergent. Mitochondrial defects are also observed and

PHGPX is reduced in the spermatozoa (Andersen et al. 2003). (2) Secreted hepatic

selenoprotein P (SePP1) is central to selenium transport and SePP1-KO mice suffer

neurological disorders. The null males are infertile with sperm flagellar abnormal-

ities such as hairpin bends, which develop during epididymal transit, but extrusion

of axonemes and outer dense fibres and a truncated mitochondrial sheath lacking

several mitochondrial gyres is suggestive of testicular damage. Testicular Se is

reduced in the SePP1-KO males (Renko et al. 2008) and supplementary Se does not

reverse the sperm phenotype or infertility of the null males, as the carrier protein is

absent (Olson et al. 2005). (3) Acid sphingomyelinase (ASM) catabolises sphingo-

myelin (SPM) to ceramide and phosphorylcholine. Human mutations in this gene

(SMPD1) lead to lipid storage diseases (e.g. Niemann-Pick disease, NPD) in which

SPM and associated lipids (e.g. cholesterol) accumulate in tissues. The ASM-KO

mouse presents a pathological condition between NPD Types A and B and males

suffer reproductive impairment (Butler et al. 2002). Flagellar angulation can be

prevented by detergent treatment (indicative of osmotic swelling) and also by

treatment with the lacking ASM (Butler et al. 2007), suggesting that membrane

changes could also cause angulation.

The flagellar and axonemal defects described in these models point to inade-

quate spermatogenesis and spermiogenesis, rather than solely the inadequate

epididymal function required for post-testicular contraception.

This is a promising lead as a contraceptive because it is a sperm-specific

channel involved in a sperm-specific function.
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3.5 Infertile Male Mice Displaying Other Forms of Sperm
Tail Angulation

Several transgenic mouse models are characterised by males producing coiled

sperm tails, but they are not the same sort of angulation as that mentioned above.

(1) Spermatozoa from Retinoid X receptor b-deficient mice display tail angulation,

but their infertility stems from oligoasthenozoospermia, as the testis is the main

organ affected by lack of this receptor (Kastner et al. 1996). (2) Spem1-deficient
mice display sperm tail bending that occurs at the sperm neck and reflects more a

spermatogenetic failure related to failed cytoplasmic extrusion than an epididymal

effect on volume regulation (Zheng et al. 2007). (3) Infertile Gopc-(Golgi-
associated PDZ- and coiled-coil motif-containing protein)-deficient mice display

flagellar coiling within the epididymis, the extent of which is related to migration of

the cytoplasmic droplet (Suzuki-Toyota et al. 2004, 2007).

4 Targeting Other Epididymal Proteins

The importance of the initial segment for fertility may be shown by targeting other

initial segment-specific secreted proteins. The genes of some proteins are appar-

ently restricted to the initial segment, whereas others are also expressed in wild type

animals in adjacent epithelial structures. In situ hybridization and immunohisto-

chemical techniques have shown expression of genes and proteins limited to the IS,

but without complete and serial sectioning of the caput epididymidis, the disposi-

tion of the medial and lateral aspects of the caput epididymidis (Blecher and

Kirkeby 1978) makes boundaries determined in single sections incomplete. Molec-

ular studies require dissection of tissue that cannot be done accurately when rapid

freezing of the tissue is required. Nevertheless, there is some consensus of the

regional expression of some proteins. The effect of the knockout of genes expressed

in different epithelial structures may affect these epithelia directly but also have

down- or up-stream effects on untargeted regions.

4.1 Infertility in Mice Involving Blockage of the Efferent Ducts

4.1.1 HE6-Deficient Mice

HE6, derived initially from the human epididymal caput (that largely contains

efferent ducts: Yeung et al. 1991), encodes a G protein-coupled protein (Gpr64)

Mimicking the infertility of these males with testicular malfunction would not

provide post-testicular contraception.
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that is specific for the efferent ducts and the initial segment in rodents (Obermann

et al. 2003). HE6-KO mice display reduced epididymal weight and sperm numbers,

spermatozoa lacking heads and angulated flagella and reduced motility (Davies et al.

2004). This is a consequence of eventual blockage of the efferent ducts leading to

dilation of the rete testis and spermatogenic arrest (Davies et al. 2004; Gottwald et al.

2006) and sperm stasis within the epididymis. Interestingly (and worthy of further

investigation), and unlike the situation in the LGR4-KOmales (Mendive et al. 2006),

there is no immunological response. Gottwald et al. (2006) showed that water

resorption in the efferent ducts was decreased in HE6-KO mice and spermatozoa

accumulated within them so that a sperm-free epididymis resulted; results

explained by the inability of the epididymis to cope with increased distal transport

or further absorption of larger fluid volumes.

Unlike the LGR4-KO males, the initial segment is still present in these animals

(Davies et al. 2004, 2007) and b-galactosidase is still expressed (Davies et al. 2004):
gene expression is either decreased (cystatins 8 and 12, lipocalins 8 and 9, a novel

b-defensin Defb42 and membrane protein HE9 [mE9], ADAM28, EAAC1) or

increased (clusterin/ApoJ and osteopontin/Spp1) (Kirchhoff et al. 2006; Davies

et al. 2007).

4.1.2 Pax8-Deficient Mice

Pax8 is expressed in the efferent ducts and the initial segment. Thyroid-deficient

Pax8-null mice can survive if given thyroxine, but the males are sterile. The null

males are characterised by inconsistent development of parts of the epididymis and

efferent ducts, whose presumed occlusion leads to dilatation of the rete testis and

eventual spermatogenic shut-down (Wistuba et al. 2007).

4.2 Infertility After Targeting Epididymal Proteins

4.2.1 Immunological Depletion of P34H

Human epididymal protein P34H is secreted in the corpus epididymidis and binds

to the spermatozoon over the acrosome and is involved in zona-binding (Boue et al.

G protein-coupled proteins are excellent druggable targets, and that early

spermatogenic stages persist in the testes of aged males and that there is a lack

of immune response to the accumulated spermatozoa, raise the hopes of

reversibility. Nevertheless, the longer the period of contraception, the more

difficult it will be to clear the tract of the spermatozoa accumulated within the

efferent ducts before resumption of fertility.

The infertility here is related to azoospermia and not a post-testicular action.
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1996); sperm levels are related to IVF success (Sullivan et al. 2006) and its loss can

lead to human infertility (Boué and Sullivan 1996; Moskovtsev et al. 2007). It is the

equivalent of P26h in the hamster in which immunological suppression leads to

complete male infertility (Berubé and Sullivan 1994). P34H and related P31h are

members of the carbonyl reductase family but whether they have this function in the

epididymis remains to be examined.

4.2.2 Immunological Depletion of Eppin

Eppin, an epididymal protease inhibitor (Wang et al. 2007), plays a role in post-

ejaculatory seminal plug dissolution and release of physically arrested motile

spermatozoa. Immunological suppression in monkeys leads to incomplete and

irreversible infertility (O’Rand et al. 2006).

4.3 Persistent Fertility After Targeting Epididymal Proteins

For the proteins below, of initial segment origin or not, infertility has not been

achieved in knockout models.

4.3.1 SED1-Deficient Mice

SED1 (MFG-E8, lactadherin) is a protein that was identified as being involved in

sperm–egg binding. It is secreted by the initial segment and then binds to the

surface of the acrosomal region of sperm by intercalation of the discoidin/C

domains. SED1 binds to the zona pellucida, but not to the egg plasma membrane

(Ensslin and Shur 2003). Male SED1-null mice display a wide range of fertilities,

from normal fertility to infertile with controls producing an average of 9 pups per

litter compared with nulls that produce an average of 3 pups per litter (Ensslin and

Shur 2003; see Shur et al. 2006 for review). Although sperm numbers, motility,

morphology and rates of spontaneous and ionophore-induced acrosome reactions

are normal, the spermatozoa display low sperm–zona binding.

The risks of immunological contraception lie in the difficulty in ensuring

adequate access of antibodies to spermatozoa within the epididymis

(Nieschlag and Henke 2005). However, since Eppin is an enzyme inhibitor

it is a druggable target.

This enzyme is a druggable target and if its activity were specific to the

epididymis, it would be an ideal target for male contraceptive development.
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4.3.2 SPAM1-Deficient Mice

SPAM1 (sperm adhesion protein 1, PH-20), a hyaluronidase, is present in the

efferent ducts, initial segment, proximal epididymis, vas deferens and accessory

organs (Zhang et al. 2004). It is secreted by the epididymis and is taken up on the

sperm head, midpiece and tail during their transit in the epididymis (Martin-DeLeon

2006). SPAM1-KOmale mice are fertile (Baba et al. 2002) possibly because of upre-

gulation of other hyaluronidases (Hyalp1: Miller et al. 2007). The null-spermatozoa

lack the protein but can take it up upon incubation in epididymal fluid. Upon uptake,

these spermatozoa can be capacitated and penetrate oocyte-cumulus complexes as

well as wild-type spermatozoa. Even wild type spermatozoa can take up SPAM1

from epididymal fluid, suggesting an undersaturation (Chen et al. 2006) that may

have a physiological consequence, since SPAM1 is also secreted by the uterus, binds

to spermatozoa and enhances cumulus dispersal (Griffiths et al. 2008a). The uptake

of both the epididymal and uterine forms of SPAM1 ismediated by epididymosomes

and uterosomes (Griffiths et al. 2008b).

4.3.3 CRISP1-Deficient Mice

CRISP1 (the former protein DE, cysteine-rich secretory protein) is secreted beyond
the initial segment binds to spermatozoa and is involved in sperm–egg fusion

(Ellerman et al. 2006; Roberts et al. 2006). However, CRISP1 knockout male

mice are fertile because the number of spermatozoa, the motility of fresh and

capacitated spermatozoa and their morphology are normal (Da Ros et al. 2008).

Although the extent of tyrosine phosphorylation is below that of control spermato-

zoa, their ability to undergo progesterone-induced acrosome reactions is unchanged

from that of WT controls. In vitro fertilisation reveals a lowered propensity to

fertilise both zona-intact and zona-free eggs; furthermore, the fusion ability of

Crisp1-KO spermatozoa is reduced by addition of Crisp1 and Crisp2 during gamete

co-incubation. This raises the possibility that Crisp2 may be upregulated in the

Crisp1-KO mouse, explaining the fertility of these animals.

As an enzyme, SPAM1 is druggable, but has yet to be shown to be targetable.

SED1 could be targeted either in the epididymis or at the site of fertilisation

for both male and female contraception.

The druggable signature of this protein and its interaction with spermatozoa

remains to be determined, but the fertility of the KO males is discouraging.
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4.4 Infertility in Mice Involving Blockage of the Distal Duct

4.4.1 Juvenile Steatosis

Defects in the carnitine transporter OCTN2 (slc22a5) lead to primary carnitine

deficiency in mice. At 8–9 weeks of age the epididymis becomes deformed with a

greater weight than that of the WT as the proximal duct becomes dilated with

accumulated spermatozoa. As these are extravasated into the stroma, immune

responses follow, leaving the distal duct void of spermatozoa and the males infertile

because of azoospermia (Toshimori et al. 1999). In the mutant males, the carnitine

transporter is found on the apical side of the epididymal epithelium distal to the site

of sperm accumulation (Yakushiji et al. 2006).

Interference in the function of L-carnitine in the epididymis has been a challenge

because it has been difficult to deplete completely the normal very high intralumi-

nal concentrations in the epididymis (Hinton et al. 1979). Chemical depletion does

not lead to male infertility in rats (Cooper et al. 1997) or hamsters (Lewin et al.

1997). Further, L-carnitine plays a major role in lipid metabolism in many other

tissues and specificity maybe an issue. However, several L-carnitine transporters

have been identified (Tamai et al. 2000; Eraly et al. 2004; Koepsell et al. 2007) and

although some have overlapping tissue expression, some may be unique to the male

reproductive tract.

4.4.2 RARa-Deficient Mice

The males of retinoic acid receptor-a-KO mice are either infertile or have reduced

fertility, as a consequence of the epithelia lining the ducts of the epididymis and vas

deferens exhibiting squamous metaplasia. Although spermatozoa develop normally

in the testis, they degenerate in the epididymis and vas deferens because inspissated

ductal fluid blocks the normal passage of the spermatozoa (Costa et al. 1997).

Organic transporters such as slc22a5 are druggable targets and are also

excellent vehicles for transporting potential contraceptives into the epididy-

mis (see below).

These models of highly disturbed epithelial function are not useful as con-

traceptive paradigms, since inspissation of spermatozoa and immunological

sequelae make any contraception irreversible.
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5 The Blood–Epididymis Barrier as a Hurdle and an Opening

to the Administration of Putative Male Contraceptives

5.1 A Physical Barrier

The blood–epididymis barrier comprises more than just tight junctions. Cell–cell

contacts such as tight junctions found inmany epithelia are effective in preventing the

passage of molecules from entering into a lumen or other specialised compartments.

Tight junctions between epididymal epithelial cells are no exception and Friend

and Gilula (1972) wrote; “Among the various epithelial cell contacts examined,

the zonula occludens of the epididymis is the most highly developed”. Later studies

by Suzuki and Nagano (1978) and more recently by Cyr and colleagues (Gregory

and Cyr 2006; Dubé et al. 2007; Cyr et al. 2007) have shown the extensive and

complex nature of these junctions. As one might expect, the classic tracer lantha-

num does not pass between the tight junctions if the tracer is injected into animals

(Hoffer and Hinton 1984). Therefore, the tight junctions form a formidable hurdle

for putative male contraceptives entering the epididymal lumen to affect the

maturing spermatozoa.

The permeability of the tight junctions (paracellular pathway) has been exten-

sively studied using micropuncture studies (Hinton and Howards 1981, 1982;

Turner et al. 1981; Yamamoto and Turner 1990) and low molecular weight mole-

cules such as water and urea pass into the lumen readily from blood. Any molecule

larger than 160 kDa fails to enter, or only a very small amount enters, the lumen. At

first glance, these findings would suggest that it would be challenging to identify a

putative low molecular weight male contraceptive compound that would readily

enter the epididymal lumen at high enough concentrations to affect the maturing

spermatozoa. The answer to this dilemma is that the blood–epididymis barrier

comprises more than just tight junctions.

5.2 A Physiological Barrier

The blood–epididymis barrier can also be considered to be a physiological barrier

and clues to this originated from some of the micropuncture studies described

above. If a non-metabolizable form of glucose, L-glucose, is injected into blood,

it does not readily enter the lumen of the epididymis. If a non-metabolizable form of

glucose, 3-O-methyl-D-glucose, the D-isomer, is injected, it is readily transported

into the epididymal lumen (Hinton and Howards 1981). This would suggest that the

blood–epididymis barrier is not an absolute, but a restrictive barrier, in that it only

allows certain molecules to enter into its cells and lumen. The restrictive nature of

the blood–epididymis barrier is a reflection of the permeability properties of the

basolateral and apical membranes, which in turn reflect the transporting properties

of various transporters and channels within them.

130 B.T. Hinton and T.G. Cooper



Therefore, transporters can either be targets themselves for contraceptive devel-

opment or their transporting or permeability properties can be used to move

contraceptive agents into the epididymis. An example of the latter, albeit for the

testis, is when doxorubicin (adriamycin), an entineoplastic drug used for the

treatment of many cancers, is administered to males an infertility phenotype is

observed. This was shown to be due to germ cell decline in phospholipids and

subsequent germ cell loss from the epithelium (Meistrich et al. 1985; Zanetti et al.

2007). Later studies showed that the transporter slc22a16 (CT1; Enomoto et al.

2002), an organic cation transporter that transports L-carnitine, was identified as the

primary candidate regulating the influx of doxorubicin (Okabe et al. 2005). The

transporter slc22a16 is highly expressed in the testis and to a lesser degree in the

human epididymis (Enomoto et al. 2002). Therefore, the transporting properties of

epididymal organic solute transporters could be exploited in a similar manner.

5.3 Epithelial Transporters as Targets or Vehicles for Male
Contraceptive Development

Several transporters have been identified in the epididymis from gene microarray

results (Jervis and Robaire 2001; Cornwall and Hann 1995; Cooper et al. 2004;

Johnston et al. 2005; Jelinsky et al. 2007) but very few have been studied to any

significant degree. The most studied series of transporters in the epididymis are the

ion and water transporters (see reviews by Leung et al. 2004; Pastor-Soler et al.

2005) and a clue to their importance in male fertility came from the Foxi1-null
mutation described earlier. Transporters are excellent targets for male contracep-

tive development because they are amenable to small molecular weight inhibitors

and some, for example, those located on the basolateral membrane, e.g. OCTN2

(Rodrı́guez et al. 2002), are easily accessible to inhibitors present in the blood.

Several inhibitors have already been designed that interfere with organic solute

transporter activity and such inhibitors have proven useful in the clinic (Sweet

et al. 2001; Ohtsuki 2004; Sai and Tsuji 2004; El Elwi et al. 2006; Koepsell et al.

2007).

6 Conclusion

Despite the many transgenic models reviewed above that are associated with male-

selective fertility impairment, not all can serve as paradigms for post-testicular

contraceptive development. Some do not bring consistent infertility whereas others

are associated with spermatogenic damage. The combination of epididymal epithe-

lial defects and sperm angulation inherent in c-ros-KOmales is not echoed in all the

transgenic models: flagellar angulation is more associated with infertility than a

morphological expression of epididymal abnormality, although anatomically
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invisible physiological deficiencies in the epididymal epithelium may well underlie

the susceptibility of the sperm tail towards angulation.

Current knowledge on the role of epididymal osmolytes in sperm volume

regulation suggests targets that could induce angulated spermatozoa: channels or

transporters involved in the transport, uptake and efflux of osmolytes by the

epididymis and spermatozoa. They all need to be characterised and their modes

of regulation determined; in some areas, a start has been made, in others research

needs to be initiated. To cover the possibility that epididymal- and sperm-specific

drugs are not found, research on targeting of drugs to the epididymis needs to be

started. In this regard, some epithelial channels involved in osmolyte provision

could be hijacked for surreptitious entry of inhibitors into the epididymal lumen.

Research into factors affecting the initial segment, regulators of epithelial

channels and transporters and inhibitors of sperm osmolyte influx and efflux should

proceed together so as to be able to target inhibitors of sperm function to the

epididymal lumen.
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Santi CM, Martı́nez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A, Salkoff L

(2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS

Lett 584:1041–1046

Shur BD, Rodeheffer C, Ensslin MA, Lyng R, Raymond A (2006) Identification of novel gamete

receptors that mediate sperm adhesion to the egg coat. Mol Cell Endocrinol 250:137–148

Sipil€a P, Cooper TG, Yeung CH, Mustonen M, Pentinnen J, Drevet J, Huhtaniemi I, Poutanen M

(2002) Epididymal dysfunction initiated by the expression of Simian Virus 40 T- antigen

leads to angulated flagella and infertility in transgenic mice. Mol Cell Endocrinol 16:

2603–2617

Sonnenberg-Riethmacher E, Walter B, Riethmacher D, Gödecke S, Birchmeier C (1996) The c-ros
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Abstract At the moment of insemination, millions of mammalian sperm cells are

released into the female reproductive tract with the single goal of finding the oocyte.

The spermatozoa subsequently ignore the thousands of cells they make contact with

during their journey to the site of fertilization, until they reach the surface of the

oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona

pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interac-

tions that culminate in fertilization. These exquisitely cell- and species- specific

recognition events are among the most strategically important cellular interactions

in biology. Understanding the cellular and molecular mechanisms that underpin
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them has implications for the etiology of human infertility and the development of

novel targets for fertility regulation. Herein we describe our current understanding

of the molecular basis of successful sperm–zona pellucida binding.

Keywords Capacitation � Fertilization � Spermatozoa

1 Introduction

The continuation of all mammalian species relies on the cellular interactions that

occur between gametes during the process of fertilization. These remarkable cell-

and species-specific interactions are initiated by recognition and binding of a

spermatozoon to the zona pellucida (ZP), a thick extracellular matrix that surrounds

and protects the ovulated oocyte. Understanding the basic biology of this interac-

tion has profound implications for the diagnosis of human infertility and the

development of novel targets for fertility regulation. Accordingly, considerable

research effort has been devoted to investigating the molecular mechanisms

that underpin sperm–oocyte interaction. Nonetheless, this fundamental interaction

remains poorly understood and is the subject of considerable controversy.

Studies of sperm–zona pellucida adhesion conducted during the last 60 years

have led to the advancement of a widely accepted paradigm that sperm–ZP inter-

action is mediated by a single sperm receptor that engages with a complementary

ligand within the ZP. While such a model holds obvious appeal, it fails to account

for the fact that targeting of individual sperm proteins through inhibition studies

(e.g., competitive substrates and mono-specific antibodies) and/or genetic deletion

has failed to elicit the anticipated block to sperm–ZP interaction. Against this

background we have introduced a novel hypothesis which states that sperm–ZP

interaction requires the coordinated action of several sperm proteins, each of which

contributes to the high affinity and specificity of this fundamental cellular interac-

tion. Furthermore, we have also suggested that these discrete zona recognition

proteins are assembled into a multimeric receptor complex during sperm capacita-

tion. Throughout this review, we have chosen to focus on the mouse model as it

represents the most widely studied of all laboratory animals with respect to mam-

malian fertilization. However, the authors encourage caution in extrapolating these

data for cross-species comparison.

2 Sperm–Zona Pellucida Interaction

2.1 The Zona Pellucida

The zona pellucida (ZP) is synthesized during oogenesis and is located between

the oocyte and the innermost layer of granulosa cells (Wassarman and Albertini

1994). The mature ZP is a porous matrix whose functions include the mediation of
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species-specificity in gamete interaction (Vieira andMiller 2006), prevention of poly-

spermy, and protection of the developing embryo prior to implantation (McLeskey

et al. 1998). The importance of these functions has been underscored by studies

involving the targeted deletion of the genes encoding ZP proteins (Rankin and Dean

2000). Such studies have shown that the ZP is essential in maintaining the physiolog-

ical status of the oocyte and in regulating successful growth and development of the

embryo. Furthermore, it has been demonstrated that oocytes failing to correctly

translate and assemble a ZP are unable to be fertilized (Liu et al. 1996; Rankin

et al. 1996). Indeed, this structure represents the first barrier that mammalian sperm

must encounter and breach to achieve fertilization.

In the mouse, the ZP is assembled as a trimeric protein matrix composed of long

ZP2 and ZP3 heterodimer filaments that are cross-linked by homodimers of the

third zona protein, ZP1 (Bleil and Wassarman 1980b; Greve and Wassarman 1985;

Wassarman and Mortillo 1991) in a molar ratio of 4:4:1, respectively (Green 1997)

(Fig. 1). The three mouse ZP proteins were initially characterized by Bleil and

Wassarman (1980a, b, c) and have subsequently been shown to be encoded by

single-copy genes located on chromosomes 19, 7, and 5 (Epifano et al. 1995).

Determination of the primary structure of the ZP proteins revealed considerable

divergence between their predicted molecular weight and that determined experi-

mentally via SDS-PAGE (ZP1, �200 kDa; ZP2, �120 kDa; and ZP3, �83 kDa).

Such differences are accounted for by dramatic posttranslational modification of the

mature proteins, primarily in the form of glycosylation (Ringuette et al. 1986;

Kinloch et al. 1988; Liang et al. 1990; Epifano et al. 1995), a feature which appears

critical for their biological activity. The oligosaccharides are in turn modified by

sulfation, sialylation, and the addition/removal of other moieties (Liu et al. 1997).

ZONA PELLUCIDA

OOCYTE

ZP1

ZP2

ZP3

Carbohydrate
residues

Fig. 1 The mouse zona pellucida. The ovulated oocyte is surrounded by the ZP, an acellular

matrix whose functions include the mediation of species-specificity in gamete interaction, preven-

tion of polyspermy, and protection of the developing embryo prior to implantation. The mouse

zona pellucida is a fibrillar structure, the major strands of which are composed of repeating dimers

of ZP2 and ZP3 glycoproteins. These strands are crosslinked by ZP1 to form a mesh-like network
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As well as being essential structural components of the zona pellucida, ZP2 and

ZP3 possess specific functions during the sequence of sperm–oocyte interactions

that culminate in fertilization. The balance of evidence indicates that mouse ZP3

functions as both the primary sperm receptor, preferentially binding the plasma

membrane region overlying the acrosome of acrosome-intact sperm, and as an

inducer of the acrosome reaction following recognition of the zona matrix (Bleil

and Wassarman 1986; Vazquez et al. 1989). For instance, it has been demonstrated

that solubilized ZP3 is able to competitively inhibit sperm–ZP binding, whereas ZP1

and ZP2 do not elicit a similar response (Bleil and Wassarman 1980a). Similarly,

female mice bearing a null mutation for ZP3 are infertile (Liu et al. 1996). It is

noteworthy, however, that ZP3 is not uniquely responsible for facilitating sperm

interaction in all mammalian species. In the pig for instance, sperm-binding

activity resides in a heterodimer formed between the ZP1 and the ZP3 orthologues

(Yurewicz et al. 1998). Similarly, the ZP1 orthologue, ZPB, has been shown to play

a major role in sperm binding to the bovine zona (Yonezawa et al. 2001), while in

humans and the bonnet monkey there is also compelling evidence that a fourth zona

glycoprotein, ZP4, which is thought to be dysfunctional in the mouse (Lefievre et al.

2004), participates in primary sperm adhesion (and the induction of acrosomal

exocytosis) (Gupta et al. 2007). The biological significance of this interspecies

complexity in ZP structure and function is presently unknown. Nonetheless, given

that the mouse remains the most widely studied model for understanding sperm–ZP

interaction, this species will serve as the focus for the following discussion.

The mouse ZP3 glycoprotein comprises a number of domains including an

N-terminal signal sequence, a large ZP domain, a consensus furin cleavage site

(CFCS), and a hydrophobic transmembrane region located near the C-terminus.

The ZP domain is in fact common to all ZP proteins and consists of a 260 amino

acid sequence with eight conserved cysteine residues. This domain is believed to be

responsible for the polymerization of the ZP proteins into the extensive lattice-like

network that enables it to surround the oocyte (Jovine et al. 2002). Mouse ZP3 is

initially synthesized as a 424 amino acid polypeptide, but is subject to dramatic

posttranslation modification resulting in the addition of complex N-(asparagine)

and O-linked (serine/threonine) carbohydrates. The sperm-binding domain of the

ZP3 glycoprotein has been mapped to the C-terminus of the protein and encom-

passes both the ZP and CFCS domains (Litscher et al. 2009). This region of the

polypeptide is commonly referred to as the sperm combining site and contains

O-linked sugar residues that putatively interact with complementary receptors on

the surface of acrosome intact spermatozoa (Wassarman et al. 2004). However, as

discussed below, this model of sperm–ZP interaction is not universally accepted.

2.1.1 The Role of O-linked ZP3 Sugars in Mouse Sperm–ZP Interaction

Prevailing evidence indicates that primary sperm–oocyte interaction is mediated by

binding between ZP3 carbohydrates (Gwatkin et al. 1977; Hoodbhoy and Dean

2004) and complementary lectin-like proteins located on the surface of the sperm
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(see Sect. 2.2 and Table 1). The most widely accepted model of this interaction

emphasizes the importance of O-linked carbohydrate moieties (Florman and

Wassarman 1985; Litscher et al. 1995; Wassarman et al. 1999). For instance, it

has been demonstrated that small glycopeptides derived from mouse ZP3 retain full

sperm receptor activity (Florman et al. 1984). Conversely, the enzymatic and

chemical removal or modification of O-linked oligosaccharides from ZP3 abolishes

its sperm receptor activity whereas the removal of N-linked oligosaccharides

elicits only negligible effects (Florman and Wassarman 1985). The importance of

O-linked glycans has been further advanced by the demonstration that genetically

engineered chimeric mouse oocytes expressing human ZP3 acquire the same

O-linked glycans as mouse ZP3 and bind mouse, rather than human, spermatozoa

(Rankin et al. 1996; Hoodbhoy and Dean 2004). Furthermore, the results of targeted

mutagenesis studies indicate that the key O-linked carbohydrates responsible for

sperm-binding activity most likely reside within the C-terminal portion of the ZP3

polypeptide chain (Kinloch et al. 1995).

However, while it is widely accepted that the principal bioactive component of

ZP3 is associated with its O-linked carbohydrate moieties, the relative importance

of the different oligosaccharide ligand(s) remains to be unequivocally established

(Easton et al. 2000; Diekman 2003). This situation is due in part to the complexity

of O-linked glycans, with recent mass spectrometry analysis of mouse ZP3 glyco-

sylation revealing that the predominant core type 2 sequences are terminated

with sialic acid, lacNAc (Galb1–4GlcNAc), lacdiNAc (Gal–NAcb1–4GlcNAc),
Gala1–3Gal, and NeuAca2–3[GalNAcb1!4]Galb1!4 (Sda antigen) (Dell et al.

2003). Early studies suggested that galactose, located in an a-linkage at the

nonreducing terminus of O-linked oligosaccharides served as a critical determinant

of sperm binding to ZP3 (Florman and Wassarman 1985; Bleil and Wassarman

1988; Litscher et al. 1995). However, such claims have since been refuted (Nagdas

et al. 1994; Thall et al. 1995) in favor of terminal b-linked galactose (Yonezawa

et al. 2005) in addition to N-acetylglucosamine (Miller et al. 1992), mannose

(Tulsiani et al. 1989; Cornwall et al. 1991), N-acetylgalactosamine, and fucose

residues (Johnston et al. 1998; Kerr et al. 2004), each of which have been demon-

strated to inhibit sperm–zona binding (reviewed in Benoff 1997). Arguments

against the involvement of a-linked galactose residues include the demonstration

that sperm–ZP interaction is inhibited by pretreatment of oocytes with b-galactosi-
dase but not a-galactosidase (Mori et al. 1997). Furthermore, female transgenic

mice bearing a null mutation for a1!3 galactosyltransferase (and therefore termi-

nal Gala1!3Gal residues) produce oocytes that display normal sperm-binding

characteristics (Thall et al. 1995). These data are further supported by evidence

from a novel heterologous cell-adhesion assay between mouse spermatozoa

and rabbit erythrocytes. The precocious binding of these two cell types appears

to be attributed to the presence of multiple branches of Gala1!3Galb1!
4GlcNAcb1!6 linked to a linear polylactosamine backbone in the erythrocytes

(Clark et al. 1996; Clark and Dell 2006; Sutton-Smith et al. 2007). However,

pretreatment of the erythrocytes with a-galactosidase fails to elicit the anticipated

reduction in sperm adhesion (Clark and Dell 2006), thereby suggesting sperm
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instead interact with b1!4-linked glycans. These results indicate that sperm can

recognize terminal Galb1!4GlcNAc sugars (Mori et al. 1997), which interest-

ingly, are essentially the same structures in both ZP3 and ZP2 (Noguchi and

Nakano 1993).

2.1.2 The Role of N-Linked ZP3 Sugars in Sperm–ZP Interaction

In addition to the classes of O-linked oligosaccharides described above, murine

ZP3 is also known to be furnished with both high mannose and complex-type

N-glycans (Easton et al. 2000). The predominant high mannose-type glycan is

composed of Man5GlcNAc2, whereas the array of biantennary, triantennary,

and tetraantennary complex-type N-glycans have been shown to be terminated

with the following antennae: Galb1–4GlcNAc, NeuAca2–3Galb1–4GlcNAc,
NeuGca2–3Galb1– 4GlcNAc, the Sda antigen, and terminal GlcNAc (Easton

et al. 2000). Interestingly, with the exception of the latter sugar, these N-glycan

sequences resemble those that terminate the b1–6-linked branches of ZP3

O-glycans. Such findings raise the prospect that N-linked glycans may also

contribute to sperm adhesion. Indeed, in species such as the pig, N-linked and

not the O-linked carbohydrates appear to mediate sperm–ZP interaction (Yonezawa

et al. 1995; Nakano et al. 1996). It may therefore be argued that carbohydrate

moieties of the ZP glycoproteins may be underpinning the species-specificity

associated with sperm–ZP interaction.

2.1.3 Carbohydrate-Independent Models of Sperm–ZP Interaction

Notwithstanding the compelling evidence in favor of carbohydrate residues as the

main determinant in mediating sperm–ZP interaction, the production of transgenic

mice bearing null mutations for key glycosyltransferases has also raised some doubt

regarding the overall necessity of ZP carbohydrates for binding sperm. For instance,

female mice singly deficient in any one of the three known glycosyltransferases that

generate core 2 O-glycans (C2GnT1, C2GnT2, and C2GnT3), and therefore many

of the O-glycans normally found in the zona are fertile (Ellies et al. 1998; Stone

et al. 2009). Remarkably, elimination of all three C2GnTs is also permissive of

fertility (Ellies et al. 1998). Similarly, mice that do not possess MGAT-I, the

enzyme that initiates complex and hybrid-type glycan synthesis, produce oocytes

that retain the ability to be fertilized (Shi et al. 2004).

Among the carbohydrate-independent models that have been proposed, recent

analyses conducted by Tanphaichitr and colleagues have raised the interesting

prospect that the sulfation of ZP glycans may play a key role in sperm adhesion

(Tanphaichitr et al. 2007). Specifically, it has been postulated that sulfated sugar

residues of ZP3 serve as a ligand for a sulfatase enzyme, arylsulfatase-A (ARSA),
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that is added to the sperm surface during post-testicular maturation and becomes

annexed within the apical region of the sperm head following capacitation

(Tanphaichitr et al. 1993; White et al. 2000; Weerachatyanukul et al. 2001, 2003;

Carmona et al. 2002; Tantibhedhyangkul et al. 2002) (see Table 1). Support for this

model rests with the demonstration that the components of the zona pellucida

(Prasad et al. 2000), as well as the sperm surface (Murray et al. 1980), are highly

sulfated in nature. Furthermore, it has been shown that a range of synthetic sulfated

substrates (including arylsulfates, sulfated monosaccharides, and ascorbate 2-sul-

fate) are capable of competitively inhibiting the fertilization of hamster oocytes

in vitro at the level of sperm–zona binding (Ahuja and Gilburt 1985). In addition,

the exposure of spermatozoa to exogenous enzymes capable of desulfating

biological macromolecules (such as cerebrosides, glycosaminoglycans and glyco-

proteins), significantly inhibits their zona binding affinity (Ahuja and Gilburt 1985).

We have recently observed comparable levels of inhibition following treatment of

mouse spermatozoa and oocytes with a similar range of reagents (Nixon et al.,

unpublished).

At present, the nature of sulfated zona binding sites on spermatozoa remains to

be fully elucidated; however, these findings take on added significance in light of

the recent report that male mice bearing a targeted deletion of the gene for protein-

tyrosine sulfotransferase 2 (TPST2) are infertile (Borghei et al. 2006). TPST2 is one

of two closely related isoenzymes that mediate the tyrosine O-sulfation of a myriad

of substrates such as adhesion molecules, G-protein-coupled receptors, coagulation

factors, serpins, extracellular matrix proteins, and hormones, in both mice and

humans (Beisswanger et al. 1998). TPST2 null mice have normal spermatogenesis

and produce normal numbers of epididymal sperm that appear indistinct from their

wild-type counterparts in terms of their morphology, motility, ability to capacitate

in vitro, and undergo acrosome exocytosis in response to an agonist (Borghei et al.

2006). However, they are severely defective in terms of their ability to fertilize

ZP-intact eggs. The substrates for tyrosine O-sulfation in spermatozoa await further

investigation.

Interestingly, in addition to the carbohydrate and sulfate residues that adorn the

mature ZP proteins, a small number of studies have also suggested that sperm–ZP

interaction may be facilitated, at least in part, by the core polypeptide backbone of

ZP3 (Florman et al. 1984; Chapman et al. 1998; Hinsch et al. 2005). Specifically,

the polypeptide backbone has been implicated in the induction of acrosomal

exocytosis (Chapman et al. 1998; Hinsch et al. 2005). This notion is consistent

with the demonstration that although sperm are able to bind to the glycocalyx of

rabbit erythrocytes in a manner that appears analogous to that of ZP binding, this

interaction fails to elicit the signaling cascades required to induce an acrosome

reaction (Clark et al. 1996; Clark and Dell 2006). Notably, phenotypic analysis of a

number of transgenic mouse models have also raised the prospect that the three-

dimensional structure of the zona matrix, rather than a single protein (or carbohy-

drate), may be central to mediation of sperm binding (Dean 2004, 2005; Hoodbhoy

and Dean 2004).
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2.1.4 Models of ZP3 Independent Sperm–ZP Interaction

The debate regarding the nature of the ZP3 ligand(s) responsible for initiating

sperm–egg interaction has been overshadowed by recent evidence that sperm may

be able to resolve gamete recognition into at least two distinct binding events. In

this context, the work of Shur and colleagues has raised the interesting prospect that

prior to engaging in interaction with ZP3 ligands, sperm are able to be tethered to

the oocyte via adhesion to an oviduct-derived glycoprotein (oviduct-specific glyco-

protein, OGP) (Rodeheffer and Shur 2004; Lyng and Shur 2009). OGP is a high

molecular weight glycoprotein synthesized and secreted by oviductal cells within

the fimbriae and infundibulum and apparently coats the periphery of the ZP in

addition to permeating the perivitelline space of ovulated mouse oocytes (Rode-

heffer and Shur 2004; Lyng and Shur 2009). Support for this ZP3 independent

model has been advanced by the demonstration that both immunoprecipitated and

natively purified OGP are able to competitively inhibit sperm–egg binding (Lyng

and Shur 2009). The sperm-binding activity of OGP appears to be carbohydrate-

dependent since denatured OGP retains the ability to inhibit binding, and interest-

ingly is restricted to a relatively minor peanut agglutinin (PNA)-binding glycoform

(Lyng and Shur 2009). While such findings may initially appear to be at odds with

data from competitive inhibition assays indicating that mouse sperm–oocyte inter-

action is potently inhibited by preincubation of the sperm with either solubilized ZP

or purified mouse ZP3 (Bleil and Wassarman 1980a), it must be remembered that

these latter experiments were conducted in vitro and therefore may not be entirely

physiologically relevant. It is also noteworthy, however, that ectopic ovarian

pregnancies, although rare, have been recorded in humans (Cabero et al. 1989).

These pregnancies take place without the oocyte ever reaching the oviduct and

therefore would be unlikely to have been exposed to OGP.

2.1.5 The Role of ZP2 in Sperm–ZP Interactions

The role of ZP2 during gamete interaction has traditionally been viewed as that of a

secondary ligand that possesses the ability to bind to the inner acrosomal membrane

of acrosome-reacted sperm, thus ensuring close contact between the penetrating

spermatozoon and the zona matrix (Bleil et al. 1988). This sperm-binding affinity of

ZP2 is abrogated by the proteolytic modification of the protein that accompanies

cortical granule exocytosis at the moment of fertilization (Moller and Wassarman

1989). The modification of ZP2 facilitates an increase in the interaction between the

ZP filaments, in turn promoting the hardening of the ZP (Moller and Wassarman

1989) and thus producing one of two blocks to polyspermy. An interesting caveat to

this model has recently been advanced by the work of Dean and colleagues using

transgenic mice expressing a chimeric zona pellucida, containing human ZP2

(Dean 2004). The oocytes of these mice bind mouse but not human spermatozoa.

Surprisingly, however, this sperm-binding activity persists even after fertilization

of the oocytes. This phenomenon is not completely understood, since the ZP2
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proteolytic cleavage domain is conserved between species and the human ZP2

would therefore have been expected to be digested following cortical granule

exocytosis (Dean 2004, 2005). Interestingly, similar results were also observed in

mice expressing human ZP3. One possible explanation for these anomalous results

is that sperm binding is modulated by the overall supramolecular structure of the

zona pellucida rather than relying on individual proteins and/or oligosaccharides

(Dean 2004).

2.2 Sperm Receptor Molecules Involved in Zona Pellucida
Interaction

In accordance with the complexity of the various models for sperm–zona interac-

tion, it has proven difficult to identify definitively the corresponding sperm surface

molecules that mediate primary recognition and adhesion to the ZP. A multiplicity

of putative ZP receptors have been postulated on the basis of a range of experimen-

tal techniques including analysis of mutations influencing fertility, development of

inhibitory monoclonal antibodies, analysis of sperm autoantigens, ZP affinity

columns, photoaffinity crosslinking, and binding of radiolabeled ZP to sperm

lysates (reviewed by McLeskey et al. 1998; Table 1). Consistent with the model

of primary sperm–egg interaction being initiated by defined carbohydrate structures

on ZP3 (Sect. 2.1.1), a number of these putative receptors possess lectin-like

affinity for specific sugar residues (Table 1). However, notwithstanding compelling

in vitro data implicating these molecules in zona adhesion, no single candidate has

been identified that is uniquely responsible for directing the interaction between

sperm and the ZP. Such findings fuel speculation that this fundamental cellular

interaction may require the coordinated action of several sperm proteins. Indeed,

emerging evidence supports the concept that sperm–zona interaction is mediated by

a multimeric complex incorporating several discrete molecular entities, each of

which may have a specific role at different stages of the recognition process (see

Sect. 2.2.2). Furthermore, in recognition of the fact that gamete interaction is

predicated on spermatozoa acquiring a state of functional maturation during their

post-testicular development, it has been suggested that the assembly of this com-

plex may be causally linked to membrane remodeling events associated with

epididymal maturation and/or capacitation (Sect. 2.2.1).

2.2.1 Acquisition of the Ability to Engage in Sperm–ZP Interaction

Mammalian spermatozoa are produced by spermatogenesis, a prolonged, inordi-

nately complex process that culminates in the generation of a morphologically

mature, yet functionally incompetent sperm cell (reviewed by Eddy and O’Brien

1994). During this process, spermatids undergo a dramatic metamorphosis from a

rounded shape into an elongated cell consisting of a number of highly specialized
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regions: a head comprising the acrosomal vesicle, nucleus, cytoskeletal structures,

and cytoplasm; a midpiece which houses the mitochondria; and a flagellum that is

used for locomotion. The final phase of cytodifferentiation, spermiogenesis, is also

characterized by the repackaging of the chromosomes in preparation for their

delivery to the oocyte (Eddy and O’Brien 1994). As a consequence of these events,

it is widely held that spermatozoa leave the testes in a transcriptionally silent state

and similarly lack the capacity for de novo protein synthesis (Engel et al. 1973).

The post-testicular functional transformation of these cells that ensues is therefore

reliant upon protein changes (loss, acquisition and post translational modification)

driven by exposure to the external environment, as these cells move through the

male and female reproductive tracts (Fig. 2).

Epididymal Maturation

Notwithstanding the high degree of morphological specialization that is achieved

during spermatogenesis, spermatozoa enter the epididymis without the capacity to

exhibit forward progressive motility nor to recognize and engage in interaction with

the ZP (reviewed by Yanagimachi 1994). Spermatozoa acquire the potential to

express these functional attributes during their transit of the male reproductive tract,

Spermatogenesis

Sperm-oocyte
interaction

Epididymal maturation

Capacitation

Fig. 2 Phases of sperm maturation required for successful sperm–oocyte interaction. Following
their production in the testes (spermatogenesis), mammalian spermatozoa enter the male repro-

ductive tract (epididymis) as functionally incompetent cells. Exposure to the intraluminal milieu of

the epididymis results in acquisition of the potential for forward progressive motility and the

ability to engage in interaction with the ZP. However, these functional attributes are only

expressed after a final phase of maturation (capacitation) as the spermatozoa ascend the female

reproductive tract
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particularly the epididymis (reviewed by Cooper 1986). Elegant ligation and

epididymostomy studies have provided compelling evidence that the accompany-

ing changes are not intrinsic to spermatozoa, but rather appear to be driven by

dynamic changes in the ambient intraluminal milieu as they pass along the length of

the epididymal tubule (Cooper 1986). Indeed, the exposure of spermatozoa to the

microenvironment created by the combined secretory and resorptive functions of

the epididymal epithelial cells has been variously correlated with the addition,

repositioning, removal, and/or modification of specific proteins and lipids within

the sperm membrane (Jones 1998, 1999; Jervis and Robaire 2001; Chaurand et al.

2003; Johnston et al. 2005; Turner et al. 2006).

The ability of epididymal spermatozoa to bind to the ZP is first observed in the

proximal corpus epididymis and achieves maximal levels in the caudal region in

virtually all species studied to date (Cooper 1986). Interestingly, the acquisition of

zona binding competence coincides with the attainment of the potential for move-

ment (Aitken et al. 2007). However, it is considered unlikely that these two events

are causally related since, unlike motility, sperm–zona interaction is dependent on

the ability of the spermatozoa to undergo capacitation, with noncapacitated cells

proving largely refractory to zona adhesion (Asquith et al. 2004). Additionally,

zona binding ability is retained in immobilized caudal epididymal spermatozoa

(Saling 1982). The acquisition of zona binding also appears temporally associated

with the exposure of spermatozoa to two distinct subsets of macromolecular

structures in the epididymal lumen: the first being amorphous, chaperone laden

“dense bodies” (Asquith et al. 2005) and the second being membrane-bound

prostasome-like particles known as epididymosomes (Saez et al. 2003). It has

been hypothesized that together, these epididymal granules facilitate the bulk

transfer of proteins to the sperm surface during their transit of the organ. This

idea is consistent with the demonstration that biotinylated proteins are able to be

transferred between epididymosomes and the acrosomal cap and midpiece of

spermatozoa (Saez et al. 2003). However at present, neither the molecular mechan-

isms that underpin protein transfer nor the identity of the transferred protein(s) has

been fully elucidated. Similarly, the causative nature of this relationship remains

the subject of ongoing investigation.

Sperm Capacitation

Following their passage through the epididymis spermatozoa must complete an

additional phase of maturation, termed capacitation, before realizing their full

potential for fertilization. Capacitation occurs in vivo as spermatozoa ascend the

female reproductive tract and encompasses a series of elaborate cellular modifica-

tions. Indeed, in the 60 years that have elapsed since capacitation was first described

(Austin 1951; Chang 1951), a number of changes have been correlated with this

process, including extensive remodeling of the sperm plasma membrane and the

posttranslational modification of intrinsic sperm proteins (Visconti et al. 1995a, b;

Gadella and Van Gestel 2004; Boerke et al. 2008; Gadella 2008; Gadella et al. 2008).
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Among the posttranslational modifications that have been documented to date, a

global upregulation of phosphotyrosine expression has emerged as a critical factor

in regulating the ability of spermatozoa to hyperactivate, bind to the zona pellucida,

undergo an acrosome reaction, and ultimately fertilize the oocyte (Visconti et al.

1995a, b, 2002; Luconi et al. 1998; Urner et al. 2001; Sakkas et al. 2003; Asquith

et al. 2004; O’Flaherty et al. 2005; Baker et al. 2006; Mitchell et al. 2007).

The induction of tyrosine phosphorylation appears to be modulated predominantly

by a unique soluble adenylyl cyclase/cAMP/PKA axis (Visconti et al. 1995a, b;

Aitken et al. 1998). However, in addition to PKA-dependent phosphorylation of

targets which for the most part appear to reside within the sperm flagellum

(Visconti et al. 1997; O’Flaherty et al. 2005; Baker et al. 2006; Mitchell et al.

2007), an alternative subset of tyrosine phosphorylated proteins have been detected

on the surface of live, capacitated mouse spermatozoa (Asquith et al. 2004; Piehler

et al. 2006). Furthermore, the expression of these proteins appears confined to the

plasma membrane overlying the acrosomal domain of the sperm head – an ideal

position from which to orchestrate the membrane remodeling events associated

with sperm–ZP recognition. In contrast to the aforementioned flagellar proteins, we

have recently secured evidence that the phosphorylation of these sperm surface

proteins is largely insensitive to inhibition with specific antagonists of the canonical

PKA pathway (Nixon et al. 2010). Rather our findings suggest that an alternative

signaling pathway involving the classical MAP kinases may underpin this capaci-

tation-associated surface exposure of phosphotyrosine residues in mouse sperma-

tozoa (Nixon et al. 2010). These findings take on added significance in light of the

demonstration that the inhibition of the MAP kinase pathway, and hence sperm

surface phosphotyrosine expression, induces a concomitant reduction in sperm–

zona pellucida interaction (Nixon et al. 2010).

Although surface phosphotyrosine expression does not appear to be a universal

correlate of capacitation in all species (Liu et al. 2006), it is not unique to mouse

spermatozoa. For instance, recent quantitative studies of surface phosphotyrosine

expression in boar spermatozoa have revealed a significant increase in phosphotyr-

osine-associated fluorescence following capacitation (Piehler et al. 2006). This

increase coincides with the exposure of several tyrosine phosphorylated proteins

on the outer leaflet of the boar sperm plasma membrane, at least two of which

possess high affinity for the ZP (Flesch et al. 1999, 2001). In contrast, plasma

membrane proteins isolated from freshly ejaculated boar spermatozoa did not

exhibit any ZP binding proteins, likely because these proteins were not tyrosine

phosphorylated (Flesch et al. 1999, 2001). Unfortunately however, the identity of

these proteins remains to be elucidated.

Interestingly, our own analysis of the repertoire of phosphoproteins that are

uniquely expressed on the surface of capacitated mouse spermatozoa, identified a

subset of molecular chaperone proteins including heat shock 60 kDa protein 1

(HSPD1) and heat shock protein 90, beta 1 (HSP90B1) (Ecroyd et al. 2003; Asquith

et al. 2004). Both of these proteins have in turn been localized to dense bodies

within the proximal corpus epididymis (see Sect. 2.2.1) and to the sperm surface

overlying the anterior acrosome, the precise location where sperm–zona interaction

is initiated (Asquith et al. 2004, 2005). Although such findings invite speculation
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that these chaperones may directly mediate sperm–egg interaction, our cumulative

evidence argues against such a conclusion (Walsh et al. 2008). Rather, it is

suggested that these proteins are responsible for chaperoning key recognition

molecules to the site of sperm–oocyte interaction and/or orchestrating their assem-

bly into a multimeric zona–receptor complex on the sperm surface (Nixon et al.

2005) (see Sect. 2.3.1; Fig. 3). In agreement with this model, we have recently

employed the novel technique of blue native polyacrylamide gel electrophoresis

(BN-PAGE) to provide the first direct evidence for the expression of chaperone

laden complexes on the surface of capacitated mouse spermatozoa. Interestingly, a

subset of these complexes also harbor putative ZP receptor proteins and possess

strong affinity for solubilized zonae (Dun et al., unpublished).

2.2.2 ZP Receptor Candidates

Considerable research has been devoted to investigating the identity of the individ-

ual proteins in spermatozoa that facilitate the binding of this specialized cell to

the ZP (reviewed by Nixon et al. 2007). On the basis of varying degrees of

Zona pellucida

ZP glycans

Sperm-ZP receptors

Sperm plasma
membrane

Inner acrosomal membrane

Fusion pore

dynamin

vSNAREVesicle mediated
transport

P
P

tSNARE

Molecular chaperone

Membrane raft

Fig. 3 Model for mouse sperm–zona pellucida interaction. We propose that sperm membrane

rafts serve as a platform for the recruitment of key zona adhesion molecules and promote their

delivery to the sperm head. This process coincides with the capacitation-associated phosphoryla-

tion of a subset of molecular chaperones and their exposure on the sperm surface. The chaperones

subsequently provide the molecular machinery to assemble a functional receptor complex, render-

ing the sperm competent to bind to the glycans that furnish the zona pellucida. Based on emerging

evidence, we also propose that capacitation-associated sperm surface remodeling may be under-

pinned by the translocation of a subset of ZP receptors from the acrosomal vesicle to the sperm

membrane. At least two mechanisms, i.e., vesicle-mediated transport and the formation of small

fusion pores, have been postulated to account for the incremental exposure of these proteins
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circumstantial and direct evidence in excess of ten different candidate proteins have

been proposed to participate in different aspects of this interaction in the mouse

model alone (Table 1). Consistent with the notion that primary sperm–zona pellu-

cida binding is a carbohydrate-mediated event, a number of these candidate sperm

proteins are either glycoenzymes or possess the requisite lectin-like affinity for ZP3

sugars.

Perhaps the most widely studied of the putative ZP3 receptor candidates is

mouse b-1,4-galactosyltransferase (GalTase). This enzyme normally resides within

the Golgi apparatus, where it functions in the biosynthesis of complex glycoconju-

gates on secretory and membrane-bound glycoproteins (Nixon et al. 2001). How-

ever a novel, functionally distinct, isoform of GalTase has been shown to be

expressed during spermatogenesis and localized to the dorsal, anterior aspect of

the membrane overlying the intact acrosome (Shur and Neely 1988). From this

position, GalTase is thought to function as a gamete receptor by binding to

complementary terminal N-acetylglucosamine (GlcNAc) residues that furnish the

Sperm Combining Site of the ZP3 protein (Shur and Hall 1982; Shur and Neely

1988; Shur 1989; Miller et al. 1992). Furthermore, aggregation of GalTase by ZP3

oligosaccharides activates a heterotrimeric G-protein coupled signaling cascade

that culminates in the induction of the acrosome reaction (Macek et al. 1991; Miller

et al. 1993). Accordingly, overexpression of GalTase on the sperm surface leads to

increased ZP3 binding, accelerated G-protein activation, and precocious acrosome

reactions (Youakim et al. 1994).

The expression of GalTase isoforms in the anterior portion of the sperm head of

a variety of mammalian species raises the possibility that the zona receptor activity

of the protein may be widely distributed (Humphreys-Beher and Blackwell 1989;

Sullivan et al. 1989; Larson and Miller 1997). Surprisingly, however, targeted

mutations of mouse GalTase do not induce the anticipated infertility phenotype

(Lu and Shur 1997). Rather, spermatozoa from GalTase null males retain their

fertility despite a marked reduction in their ZP3 binding affinity and an inability to

undergo a ZP3 induced acrosome reaction (Lu and Shur 1997). Thus, although the

ZP3–GalTase receptor–ligand complex may confer a physiological advantage on

fertilizing spermatozoa, its expression is dispensable for fertilization. Similarly,

definitive studies examining the effects of null mutations on additional sperm

surface components that have been implicated in ZP adhesion have shown that

the majority are also superfluous (see Table 1). Collectively these findings raise the

intriguing possibility, discussed below, that the zona receptor is in fact a multimeric

complex incorporating several discrete molecular entities.

Molecular Basis for Multiple Sperm–ZP Receptor Candidates

Despite the significant advances in our understanding of the initial interaction

between sperm and the oocyte, it is clear that this fundamental recognition event

remains largely enigmatic. The large number of sperm molecules that possess

affinity for the ZP (Table 1) challenges the concept of a simple lock and key
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mechanism to account for gamete interaction. Indeed, despite the wealth of in vitro

data implicating various ZP receptor candidates, the prevailing evidence now

indicates that none are uniquely responsible for directing the interaction between

sperm and the ZP (Nixon et al. 2007). The fact that spermatozoa are adorned with a

multiplicity of ZP receptor candidates could afford the cells with a level of

functional redundancy commensurate with the overall importance of this funda-

mental cellular interaction. However, it is also possible that the individual receptors

function in a coordinated fashion, each with unique role(s) during the multifaceted

ZP recognition process. The latter model is consistent with biochemical and

biophysical studies of sperm–ZP binding that indicate it comprises both low and

high affinity interactions (Thaler and Cardullo 1996, 2002). Indeed, prior to pene-

tration of the ZP, spermatozoa first adhere loosely to the zona matrix in a manner

that is easily disrupted by repetitive pipetting or density gradient centrifugation

(Bleil and Wassarman 1980a). The promiscuous nature of this initial binding event

contrasts with the high affinity, comparatively species-specific, interaction that

follows. The former adhesion event is therefore likely to employ sperm surface

molecules that are conserved across species, while those involved in the latter binding

event are, instead, expected to be species- and/or order-specific (Tanphaichitr et al.

2007). In addition to those sperm proteins required for zona adhesion, alternative

candidates may be engaged in the activation of ZP-induced sperm signaling events

that culminate in the acrosome reaction. If this model holds true, it inevitably raises

questions regarding how the presentation of such a large number of putative ZP

receptor and signal transduction candidates is coordinated. As discussed below,

recent analyses have led to the proposal of at least two complementary mechanisms

involving molecular chaperones and membrane rafts, the relative contribution of

which may vary depending on the species.

2.3 Toward an Integrated Model of Sperm–Zona Interaction

2.3.1 The Role of Molecular Chaperones in Sperm–Zona Pellucida

Interaction

The term molecular chaperone denotes a large family of highly conserved proteins

that form a ubiquitous defense system within cells. However, in addition to their

archetypal role of protecting cells from the adverse effects of stress, it has become

increasingly apparent that chaperones play additional roles in diverse cellular

phenomena under normal physiological conditions. Of particular note is the recog-

nized ability of molecular chaperones to direct the assembly of oligomeric protein

complexes and mediate their transport across the plasma membrane (Voos and

Rottgers 2002). In addition, emerging evidence indicates that certain members of

the chaperone family exert a necessary, but still poorly understood, role in the

recruitment and clustering of specific receptors on the cell surface and in signal

transduction (Triantafilou et al. 2001; Triantafilou and Triantafilou 2003, 2004).
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Consistent with such roles, chaperones have been identified within a number of

divergent subcellular compartments including the plasma membrane of a wide

variety of cell types (Soltys and Gupta 1996, 1997, 1999; Shin et al. 2003).

Interestingly, the chaperoning activity of the plasma membrane resident chaperones

appears to be regulated by their phosphorylation status (Khan et al. 1998). The

significance of this finding is underscored by the demonstration that at least two key

chaperone proteins are phosphorylated during the capacitation of mouse spermato-

zoa (Asquith et al. 2004) (see Sect. 2.2.1).

Although several molecular chaperones, including calmegin, calnexin, and

members of the HSP60, 70, and 90 families, have been identified in spermatogenic

cells (Tanaka et al. 1997; Zhu et al. 1997; Eddy 1998; Ohsako et al. 1998; Ogi et al.

1999; Yoshinaga et al. 1999), the functional significance of many of these proteins

remains unclear. However, at least one member of this family, calmegin, has been

implicated in sperm–ZP interaction (Ikawa et al. 1997, 2001; Yamagata et al.

2002). Despite the fact that calmegin is not expressed in mature spermatozoa, it

has been identified as a critical determinate in the functioning of these cells on the

basis of its role in ensuring the correct folding of endoplasmic reticulum glycopro-

teins destined for the acrosomal matrix and the plasma membrane. Targeted

disruption of the calmegin gene compromises male fertility due to impaired

sperm transport in the female reproductive tract in vivo (Ikawa et al. 2001) and

the loss of sperm–zona binding ability (Ikawa et al. 1997). An absence of signaling

proteins or antigenic determinants from the surface of sperm has been proposed as

the mechanism to explain these defects in sperm function. Interestingly, in this

regard, sperm from calmegin�/� mice also lack fertilin beta (ADAM2), a protein

implicated in sperm–egg plasma membrane binding and fusion (Ikawa et al. 2001).

Thus, the chaperone function of calmegin may regulate the correct processing of a

variety of sperm molecules. Collectively, such observations invite speculation that

chaperones direct the assembly of key recognition molecules on the sperm surface.

Support for this hypothesis rests with the demonstration that mouse spermatozoa

express a subset of molecular chaperones (including: HSPE1, HSPD1, HSP90, and

HSP90B1) within the periacrosomal region of their head (Ecroyd et al. 2003;

Asquith et al. 2004; Walsh et al. 2008). Interestingly, the surface expression of

these proteins increases dramatically in populations of sperm in which capacitation

has been actively driven. Nonetheless, a direct role for the chaperones in sperm–

oocyte interaction has been discounted on the basis that incubation of sperm with

anti-chaperone antibodies does not significantly compromise their ability to bind to

the ZP (Walsh et al. 2008). Rather it appears that chaperones play an indirect role

possibly in the assembly of multiple zona adhesion molecules into a functional

receptor complex (Fig. 3). An alternative possibility is that molecular chaperone

proteins participate in the active translocation of sperm proteins to their site of

action.

Since spermatozoa lack the molecular machinery for protein synthesis, these

proteins must be either unmasked or held cryptic within the cell prior to their

surface presentation. A growing body of evidence favors the latter interpretation,

indeed many of the putative ZP receptors are proteins one would normally
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associate with the sperm acrosome (Tulsiani and Abou-Haila 2001, 2004). The

zona pellucida 3 receptor (ZP3R; formerly sperm protein 56 or SP56) provides an

interesting example of one such protein. ZP3R was originally identified on the

basis of elegant photoaffinity crosslinking studies as a primary receptor for ZP3

(Bleil and Wassarman 1990; Cheng et al. 1994). This role was subsequently

discounted on the basis of immunoelectron microscopy evidence that revealed

the protein was enclosed within the acrosomal matrix (Foster et al. 1997; Kim

et al. 2001a). Since such a location is incompatible with the mediation of ZP3

binding in acrosome intact spermatozoa, it was postulated that the ZP3R was

likely to participate in secondary sperm–ZP interactions. Resolution of this appar-

ent discrepancy has recently been afforded by the demonstration that ZP3R, in

addition to other acrosomal matrix proteins, are progressively released to the

sperm surface during capacitation through the formation of small fusion pores

(Fig. 3) (Kim et al. 2001b; Kim and Gerton 2003; Buffone et al. 2008b). This

evidence not only challenges the widely held view of acrosomal exocytosis as an

all or none reaction but also raises the intriguing possibility that the acrosome may

fulfill a secondary role as a reservoir for key ZP recognition molecules (Buffone

et al. 2008a). This interpretation may explain why uncapacitated mammalian

sperm are unable to engage in high affinity interaction with the ZP. However,

while it is tempting to speculate that chaperones mediate the relocalization of

these proteins and hence prime the sperm surface for ZP adhesion, direct evidence

in support of this model has yet to be furnished.

Among the main challenges that remain in establishing the definitive role of

molecular chaperones in mature spermatozoa is the characterization of the client

proteins with which they associate in both noncapacitated and capacitated sperma-

tozoa (Nixon et al. 2007). Unfortunately, the use of conventional techniques such as

affinity purification and immunoprecipitation has proven largely unsuccessful in

this regard (Walsh et al. 2008). This lack of success may reflect the fact that

chaperones generally form only weak, transient interactions with their client proteins.

Among the alternative strategies that could prove informative in this regard are the

isolation and detailed proteomic characterization of the repertoire of membrane-

associated proteins that populate the region of the sperm head that interacts with

the oocyte. Such an approach has been published by Myles and colleagues (Stein

et al. 2006). Following vectorial labeling of the mouse sperm surface, the authors

conducted a comparative analysis of the profile of surface exposed proteins with

that of proteins recovered in hybrid membrane vesicles released from the anterior

sperm head following the acrosome reaction (Stein et al. 2006). This approach

has helped define the basic proteomic inventory of the anterior sperm head, the

significance of which is highlighted by the fact that among the 85 proteins identified

were at least three molecular chaperones (including HSP90B1) in addition to nine

proteins that have been implicated in fertilization in vivo on the basis of gene

knockout studies (Stein et al. 2006). One limitation of this approach, however, was

that it did not address the important question of the temporal and spatial organization

of membrane-associated proteins in relation to the dynamic cellular changes that

accompany capacitation.
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A complementary strategy has recently been published by Gadella and collea-

gues (van Gestel et al. 2007). In this study, the authors isolated the apical plasma

membrane from porcine sperm by nitrogen cavitation, achieving an approximate

20-fold enrichment in plasma membrane markers compared with that of contam-

inating membrane markers. These membrane preparations were then coincubated

with isolated zona ghosts and sperm–ZP binding proteins were identified by

tandem mass spectrometry (van Gestel et al. 2007). This study confirmed the

involvement of multiple sperm proteins in ZP binding, with 24 sperm proteins

reproducibly remaining associated with zona ghosts under conditions of low

stringency. As anticipated, a subset of these proteins was identified as previously

characterized ZP-binding receptors including: spermadhesin (AQN-3), P47

(SED1), and fertilin beta (ADAM2). Remarkably, the majority of the zona

ghost-binding proteins were also detected in lipid ordered membrane microdo-

mains (membrane rafts) that are assembled in the apical ridge area of the sperm

head plasma membrane during in vitro capacitation (Boerke et al. 2008). On the

basis of such evidence, it has been postulated that the study of membrane rafts

may provide novel insights into the molecular mechanisms that underpin

sperm–ZP interaction (Tanphaichitr et al. 2007; Gadella 2008; Gadella et al.

2008; Nixon and Aitken 2009).

2.3.2 The Role of Membrane Rafts in Sperm–Zona Pellucida Interaction

Membrane rafts (formerly lipid rafts) are generally defined as small, heterogeneous

domains that serve to compartmentalize cellular processes (Pike 2006). The unique,

ordered properties of these domains reflect the stabilizing influence of hydrogen

bonds and hydrophobic interactions between their resident saturated fatty acids and

the rigid structure of intercalated cholesterol. These properties also result in the

resistance of lipid rafts to solubilization by a number of nonionic detergents

(Schuck et al. 2003) and hence they are often referred to as detergent resistant

membranes (DRMs). Despite their stability, rafts remain highly dynamic and have

been observed to display considerable lateral movement in various cell types in

response to appropriate physiological stimuli or cellular activation events (Simons

and Vaz 2004). The significance of these structures is highlighted by the myriad of

cell adhesion, signaling and trafficking molecules that have been found to prefer-

entially associate with isolated membrane rafts (Foster et al. 2003). Indeed mem-

brane rafts are now considered as platforms for mediating membrane trafficking,

cellular signal transduction, and cellular adhesion events as diverse as viral entry

and fertilization (Nixon and Aitken 2009).

It has been demonstrated that liquid-ordered domains analogous to the membrane

rafts observed in somatic cells are present in the spermatozoa of all mammalian

species studied to date, albeit at a larger scale (Cross 2004; Shadan et al. 2004; Sleight

et al. 2005; Bou Khalil et al. 2006; Selvaraj et al. 2006, 2009; Weerachatyanukul

et al. 2007; Boerke et al. 2008; Asano et al. 2009; Nixon et al. 2009). Indeed, the
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size and stability of sperm membrane rafts appear quite excessive, raising the

possibility that they may represent “super-rafts” consisting of stably segregated

smaller subdomains (Selvaraj et al. 2006, 2009). This is consistent with a recent

demonstration that a number of subtypes of membrane raft domains are likely to

exist in these cells (Asano et al. 2009). With the recognition that mammalian

spermatozoa possess membrane rafts, two lines of enquiry have predominated.

First, whether the physical and biochemical properties of the membrane rafts are

influenced by the capacitation status of spermatozoa, and second, whether the rafts

modulate important aspects of sperm function (Tanphaichitr et al. 2007). Paradoxi-

cally, two conflicting views have emerged from the former studies, with evidence

suggesting that these domains may either be compromised by the capacitation-

associated loss of cholesterol (Sleight et al. 2005), or alternatively may cluster

within the sperm head and coalesce to form larger ordered membrane micro-

domains during capacitation (Shadan et al. 2004; Bou Khalil et al. 2006; Boerke

et al. 2008; Nixon et al. 2009). It is still unclear what functions might underlie such

distinct membrane remodeling; however, the focal enrichment of membrane rafts

within the sperm head encourages speculation that they may serve as platforms for

modulating oocyte interaction (Fig. 3) (Tanphaichitr et al. 2007). This hypothesis is

commensurate with the demonstration that DRMs isolated from both boar and

mouse spermatozoa possess the ability to bind with high affinity and specificity to

the zona pellucidae of homologous oocytes (Bou Khalil et al. 2006; Boerke et al.

2008; Nixon et al. 2009).

Consistent with these findings, comprehensive proteomic profiling of isolated

sperm DRMs has confirmed the anticipated presence of the majority of molecules

that have been implicated in sperm–zona pellucida binding (Table 1) in addition to

many of those involved in downstream interaction with the oolemma (Sleight et al.

2005; Nixon et al. 2009). Although caution is required in equating DRM associa-

tion with a protein’s residence in membrane raft domains in situ (Foster et al. 2003;

Munro 2003), such findings suggest that sperm membrane rafts serve as constitu-

tive platforms for the spatial constraint of key recognition molecules and that the

remodeling events associated with capacitation lead to their assembly and presen-

tation on the outer leaflet of the sperm plasma membrane (Nixon et al. 2005, 2007).

Such a conclusion is supported by the demonstration that the proteomic compo-

sition of membrane rafts undergoes substantial changes in response to the induction

of capacitation (Thaler et al. 2006). Among the various models that could account

for such changes, Tulsiani and colleagues (Abou-Haila and Tulsiani 2003) have

postulated that capacitating spermatozoa undergo a progressive priming that results

in the exposure of intraacrosomal enzymes (see Sect. 2.3.1). Their model is based

on the precept that as capacitation proceeds, the outer acrosomal membrane evagi-

nates, forming a vesicle that enlarges and becomes tethered to the plasma mem-

brane through complementary vesicle-associated (v-) SNARE and target membrane

(t-) SNARE proteins residing within the two membranes (Fig. 3). Although the

movement of vesicles between the sperm acrosome and plasma membrane has not

previously been documented during capacitation, many of the components of the

molecular machinery necessary for coordinating the assembly and trafficking of
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exocytotic vesicles are present in spermatozoa. For instance, dynamin, an enzyme

that forms restriction collars around budding vesicles and promotes their release,

has recently been identified within the acrosome of mouse spermatozoa (Zhao et al.

2007). Furthermore, the complementary SNARE proteins, VAMP, SNAP, and

syntaxin have been localized to the outer acrosomal membrane and apical sperm

head plasma membrane, respectively, of mouse spermatozoa (Brahmaraju et al.

2004; Tsai et al. 2007) in addition to that of other species (Schulz et al. 1998; Tomes

et al. 2002; De Blas et al. 2005). Notably these SNARE proteins share the lateral

redistribution properties of both ZP-binding proteins and raft marker proteins, each

of which are able to be recovered within DRMs prepared from capacitated sperma-

tozoa (Boerke et al. 2008). Collectively, these data invite speculation that key

components of a zona adhesion complex are conveyed from the acrosomal vesicle

into membrane rafts during capacitation. This notion is supported by the demon-

stration that antibodies to VAMP and SNAP inhibited mouse sperm–zona pellucida

interaction (Brahmaraju et al. 2004).

It is also noteworthy that sperm membrane rafts are laden with a subset of

molecular chaperone proteins (Nixon et al. 2009), at least two of which,

HSP90B1 and HSPD1, have previously been implicated in remodeling the sperm

surface and enhancing oocyte interaction (Asquith et al. 2004, 2005; Sect. 2.2.1).

The identification of a number of constitutively expressed molecular chaperones

(HSP90B1, HSPA8, HSPD1, and DNAJB1) as integral components of membrane

rafts in other cell types (Broquet et al. 2003; Chen et al. 2005) suggests that these

proteins may fulfill an important general mechanism operating at the level of the

plasma membrane through which cellular signaling/adhesion complexes are sorted

and assembled. In this regard, previous studies have demonstrated that chaperones

play important roles in maintaining the stability of lipid raft-associated signal

transduction complexes (Chen et al. 2005). Conversely, it has also been demon-

strated that lipid rafts regulate the functions of resident chaperones through the

spatial constraint of their substrates (Elhyany et al. 2004). Taken together these

results suggest that sperm membrane rafts provide a favorable environment for

chaperones to mediate the conformational conversion and assembly of functional

zona receptor complexes. Furthermore, the aggregation of such microdomains

during capacitation may facilitate the recruitment of these complexes to the site

of engagement with the ZP.

3 Potential for Contraceptive Intervention

In addition to fundamental benefits in terms of understanding causes of male

infertility, the molecular dissection of sperm–ZP interaction also promises to

inform the development of novel approaches for contraceptive intervention. Indeed,

it has long been held that the identification of sperm proteins involved in ZP

recognition and binding events could provide a range of candidates that, by virtue

of their specificity, location, and susceptibility to suppression, would exhibit

162 M.D. Dun et al.



potential as contraceptive targets with equal effectiveness for both males and

females. Such contraceptives would be of considerable benefit for the control of

both captive and feral animal species and thus contribute to ameliorating global

problems associated with a lack of habitat, overcrowding, and disease (Hardy and

Braid 2007; Kirkpatrick 2007; Fayrer-Hosken 2008). The realization of such

technology may also contribute to the development of novel, safe, effective mea-

sures to fill the void in the current contraceptive armory for our own species, the

population of which continues to grow at an alarming rate (McLaughlin and Aitken

in press). Contraceptive vaccines, for example, have the potential to provide safe,

effective, prolonged, reversible protection against pregnancy in a form that can be

easily administered in the Third World. However, in order to meet the above

criteria, the target antigen must be an essential component of fertility and must be

inhibitable.

3.1 Target Antigens of the Zona Pellucida

The zona pellucida glycoproteins are among the most widely investigated candidate

targets for immunocontraceptive vaccines. The ZP proteins afford the advantage of

being a female organ-specific antigen and an immune response elicited against

these proteins could in principle block sperm–ZP interaction. In practice, however,

the reduction in fertility achieved following immunization with homologous or

heterologous zona proteins appears to be primarily attributed to either the loss of

endogenous antigen and/or the induction of ovarian-specific autoimmune disease

(Paterson et al. 2000). This is highlighted by fertility trials involving whole native

porcine zona pellucida (pZP), a popular heterologous antigen in current use for feral

and exotic animal fertility control (Hardy and Braid 2007). Such studies have

demonstrated that pZP is a potent heteroimmunogen in most species and is effica-

cious in the control of fertility in horses, white tailed deer, bonnet monkeys,

wallaby, bears, and elephants (Bagavant et al. 1994; Fayrer-Hosken et al. 1999;

Miller et al. 2000; Kitchener et al. 2002, 2009; Turner et al. 2002; Delsink et al.

2007; Lane et al. 2007; Locke et al. 2007). However, the use of this material as an

immunogen is problematical as it has been shown to induce ovarian pathology, the

loss of hormone-dependent behavior, and permanent sterility (Dietl et al. 1982;

Drell et al. 1984; Bhatnagar et al. 1992). The isolation of a consistent native pZP

product, free of viral contamination, for immunization purposes has also proven

technically challenging (Kaul et al. 1996). While the latter problem may be

alleviated by the production of glycosylated porcine ZP recombinant protein in a

defined mammalian cell line, the permanent ovarian pathology that accompanies

the active immunity against ZP antigens represents a significant barrier to their

clinical use (McLaughlin and Aitken in press). Until researchers separate the

immunocontraceptive effect from the unwanted pathology induced by immunodo-

minant epitopes, ZP proteins will remain unlikely target antigens for a human

immunocontraceptive vaccine. Furthermore, the fact that ZP immunogens lack
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species-specificity imposes restraints on their mode of delivery and hence overall

applicability in free-ranging wildlife species. Other antigenic targets are clearly

required.

3.2 Target Antigens of Spermatozoa

The demonstration that spermatozoa are highly immunogenic in both females and

males presents a strong rationale for the development of contraceptive technologies

centered on a defined sperm-specific antigen. This is emphasized by the fact that the

presence of antisperm antibodies in the male or female partner has been identified as

a causative agent in the infertility associated with a relatively large number (9–36%)

of couples seeking recourse to assisted conception (Menge et al. 1982; Collins et al.

1993; Ohl and Naz 1995). Furthermore, the development of antisperm antibodies

that occurs in over 70% of vasectomized men limits the potential for recovery of

fertility even after successful vaso-vasostomy surgery (Hull et al. 1985).

Notwithstanding the award of a US patent for a spermatoxic vaccine based

around the injection of whole semen (Baskin 1932), this approach has limited

utility. Among the obvious problems is the fact that spermatozoa express numerous

antigens that are shared with somatic cells, thus raising the prospect of potentially

severe immunopathological side effects. Attention has instead focused on the

identification of individual sperm proteins capable of eliciting a contraceptive

response. The appropriate sperm antigen should display sperm-specific expression,

surface accessibility and have a pivotal role in fertilization. In principle, sperm

proteins involved in ZP interaction therefore represent ideal candidates. Accord-

ingly, a myriad of these proteins, including: SP17 (O’Rand and Widgren 1994),

SPAM1 and ADAM1/2/3 (Primakoff et al. 1987, 1988; McLaughlin et al. 1997,

2001), LDHC4 (Goldberg 1973; Goldberg et al. 1981; Chen et al. 2008), SP10

(Srinivasan et al. 1995), ZPR3 (Hardy and Mobbs 1999), FA1 (Naz and Wolf 1994;

Naz and Zhu 1998), SOB2 (Lefevre et al. 1997), a novel form of CD52 (Diekman

et al. 1999), human sperm-associated antigen 9 (hSPAG9) (Jagadish et al. 2006),

and nuclear autoantigenic sperm protein (tNASP) (Wang et al. 2009), have been

investigated as the basis for a fertility-regulating vaccine. Nevertheless, while some

of these antigens have shown promise in animal trials with notable inhibition of

sperm–ZP interaction and concomitant subfertility, such studies have failed to

deliver on the objective of identifying a single, suitable target that induces a

100% block to fertility.

Collectively, this lack of success highlights the naivety of the paradigm that

sperm–ZP interaction is regulated by a single molecular entity that is constitutively

expressed on the cell surface. Rather, it is likely that multiple sperm receptors are

required to achieve high affinity binding to the complex multivalent polysaccharide

ligands present within the ZP (see Sect. 2.2.2). The growing acceptance of this

model is demonstrated by the fact that researchers have recently opted for construc-

tion of multiantigen vaccines. Examples include multiantigen recombinant
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polypeptides comprising the mouse reproductive antigens SP56, ZP3, ZP2, and ZP1

administered to female mice (Hardy et al. 2008). This resulted in significantly

reduced fertility without significant ovarian pathology (Hardy et al. 2008). Using

six sperm-specific antigens (mFA-12,19, mFA-1117136, YLP12, P10G, A9D, and

SP56) also resulted in reduced fertility in multipeptide vaccination studies (Naz and

Aleem 2007). A third vaccine formulation comprised of five recombinant human

intraacrosomal sperm proteins (ESP, SLLP1, SAMP32, SP10, and SAMP14) was

used to immunize female cynomolgus monkeys, all of which developed IgG and

IgA serum responses to each immunogen, indicating that a multivalent contracep-

tive vaccine may be a viable alternative in primates (Kurth et al. 2008).

4 Summary

Despite the myriad of putative sperm–zona pellucida adhesion molecules that have

been reported, no single candidate appears uniquely responsible for mediating this

important interaction. Rather than this simple lock and key mechanism, the balance

of evidence favors the novel hypothesis that sperm–egg interaction is mediated by

the coordinated action of several sperm receptors, each of which contribute to the

high affinity and specificity of the recognition process. Furthermore, it appears that

these discrete receptors are either constitutively or inducibly associated with

membrane rafts following the process of sperm capacitation. The fact that these

specialized membrane microdomains also accommodate a family of molecular

chaperones raises the intriguing possibility that spermatozoa express a multimeric

zona receptor complex that is assembled into a functional unit during capacitation.

The examination of this hypothesis will provide informed insights into the molecu-

lar basis of sperm–zona pellucida interaction and may pave the way for the

development of novel contraceptives for feral animals and humans and the diagno-

sis and treatment of infertility.
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Abstract The production of functional spermatozoa is a complex process requir-

ing the coordinated expression of thousands of genes. It is likely that the intricate

nature of these interactions contributes to the large number of idiopathic male

infertility cases seen in humans. Conversely, the complexity of the highly regulated

and interconnected processes of spermatogenesis and posttesticular sperm matura-

tion events offers opportunities for the development of male-based contraceptive

targets.

The recent advances in genetic manipulation technologies and the completion of

the human and mouse genome sequencing programs have provided scientists with

sophisticated ways to generate mouse models for the study of basic biological

mechanisms, in order to understand disease pathology and develop novel therapeu-

tic approaches. The three common types of mouse model used for medical research
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are transgenic, knockout/knockin, and chemical-induced point mutant mice. Each

type has relative strengths and weaknesses with respect to its fidelity to the disease

processes in humans. In this chapter, we focus on the utility of the different types of

mouse model in obtaining a better understanding of the mechanisms that control

spermatogenesis and developing male-based contraceptive regimens.

Keywords ENU � Infertility � Knockout � Sperm � Testis � Transgenic � Whole

genome

1 Mammalian Spermatogenesis

In adult mammals, the production of sperm (spermatogenesis) encompasses the

renewal and differentiation of spermatogonial stem cells into rapidly proliferating

spermatogonia, meiosis of spermatocytes, and, finally, the terminal differentiation of

spermatids into spermatozoa in a process known as spermiogenesis (Clermont 1972;

Fawcett 1975; de Kretser et al. 1998; McLachlan et al. 1998). Spermatogenesis relies

upon coordinated interactions between the somatic, i.e., Sertoli, Leydig, and other

interstitial cells, and the spermatogenic germ cells within the seminiferous tubules

of the testis, as well as upon hormonal stimulation via the hypothalamic–pituitary–

gonadal axis. Sertoli cells provide both physical and paracrine support for the

developing germ cells. They also form the blood–testis barrier through the presence

of intercellular tight junctions, thus providing an immunologically isolated envi-

ronment for developing spermatocytes and spermatids. Leydig cells in the intersti-

tial tissue of the testis provide testosterone, which acts via the Sertoli cells to drive

spermatogenesis. Endocrine factors secreted by the hypothalamus (GnRH, gonado-

trophin-releasing hormone), pituitary gland (LH, luteinizing hormone; FSH, follicle

stimulating hormone), and many autocrine factors are involved in the regulation of

spermatogenesis (Clermont 1972; Fawcett 1975; de Kretser et al. 1998; McLachlan

et al. 1998).

In the process of spermiogenesis, haploid round spermatids differentiate into

highly polarized cells specialized for motility and fertilization. This differentiation

process involves a series of complex morphological alterations, including chroma-

tin reorganization and condensation, sperm tail assembly, and acrosome formation

(Fawcett 1975). Spermatozoa ultimately detach from Sertoli cells and are released

into the seminiferous tubule lumen by a hormonally regulated process termed

spermiation (Jones 1998; Aitken et al. 2007).

Spermatozoa appear morphologically mature following spermiation; however,

they do not gain the capacity for fertilization until they have transited through the

epididymis. As discussed elsewhere in this book, the process of epididymal matu-

ration involves sperm plasma membrane remodeling (Jones 1998), the adsorption

of several epididymal-derived proteins and the progressive acquisition of the

potential for forward motility and oocyte binding (Aitken et al. 2007). Following

the completion of epididymal maturation, sperm remain incapable of fertilization
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until they have undergone an additional maturation process, capacitation, in the

female reproductive tract (de Lamirande et al. 1997). Capacitation is a complex

process that is required for the activation of ejaculated sperm and gives them the

ability to bind to the zona pellucida of the oocyte and undergo the acrosome

reaction. Several changes have been associated with the capacitation process,

including an efflux of cholesterol, an increase in membrane fluidity, an increased

influx of calcium, an increase in the intracellular concentration of cAMP, the

tyrosine phosphorylation of many proteins, and manifestation of oocyte-binding

ability and hyperactivated motility (de Lamirande et al. 1997).

To achieve fertilization, a number of biological changes are required in both

sperm and eggs. Steps in fertilization include (1) sperm penetration of the cumulus

cells surrounding ovulated eggs, (2) sperm binding to the zona pellucida, (3) sperm

acrosome reaction and penetration of the zona pellucida, and (4) sperm–egg plasma

membrane binding and fusion (Primakoff and Myles 2002).

2 Mouse Models for Fertility Research and Male-Based

Contraceptive Development

The production of functional spermatozoa is a complex process that requires the

coordinated expression of a large number of genes. In simple eukaryotes, such as

flies and worms, it has been estimated that spermatogenesis encompasses the

coordinated activation of >1,000 transcripts (Andrews et al. 2000; Reinke et al.

2000), whereas in mammals �4% of all genes are proposed to be specially

expressed within the male germ cells (Schultz et al. 2003). Defects in all aspects

of spermatogenesis can, at least in theory, contribute to human infertility, but few

have been modeled in vitro. The complexity of the tightly regulated and

interconnected spermatogenic process offers opportunities for the development of

male-based contraceptives.

The use of animal models is a powerful tool in the analysis of many aspects of

medicine, from the study of basic biological mechanisms to the understanding of

disease pathology and the development of novel therapeutic regimes. The mouse

has become the major mammalian model of human disease as it offers several

advantages over other species including a short reproduction cycle, relatively cheap

housing conditions and their embryos are amenable to manipulation. Moreover,

over 90% of the mouse genome lies in the conserved syntenic segments in the

human genome (Waterston et al. 2002; Church et al. 2009), thus making them an

ideal human surrogate in the study of most diseases.

Strategies used to identify and evaluate the in vivo function of a defined gene

in biomedical research may be divided into two major categories: reverse genetic

and forward genetic approaches. The reverse genetic approach (also known as a

candidate gene or gene-driven approach) is based on alterations, i.e., ectopic

expression or abolished expression (targeted deletion) of a selected candidate

gene followed by an assessment of the physical manifestation (phenotype) of that
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genetic trait. In contrast, a forward genetic approach (also known as a phenotypic-

driven approach) relies on the observed phenotypic defects then defining the under-

lining genetic defect.

In this chapter, we discuss the utility, strengths, and weaknesses of the different

types of mouse models (summarized in Table 1) with an emphasis on contraceptive

target discovery.

3 Transgenic Mice: Ectopic Expression Models

A transgenic animal is one that carries a foreign piece of DNA (usually a gene) that

has been deliberately inserted into its genome. Two common approaches are used

for the generation of transgenic mice (1) Transformation of a transgene in embry-

onic stem (ES) cells and (2) Pronuclear injection of a transgene into one-cell stage

mouse embryos (Gardiner and Teboul 2009). In the ES cells approach, ES cells are

harvested from the inner cell mass (ICM) of mouse blastocysts after which a

transgene is electroporated or transfected in, i.e., they are “transformed.” ES cells

carrying the desired transgene are selected for, then injected into the ICM of

additional embryos, and implanted into the uterus of pseudo-pregnant recipient

mice. In the pronuclear microinjection method, transgene fragments are directly

injected into one-cell stage mouse embryos followed by embryo transfer into a

pseudo-pregnant recipient.

The transgene is constructed using recombinant DNA techniques. In addition to

a sequence encoding a protein of interest, the transgene usually contains regulatory

sequences, e.g., a promoter and a polyadenylation signal, to enable the transgene to

be expressed appropriately by the cells of the host. In general, mice resulting from

this technique are called “over-expressors.” Transgenes can, however, be con-

structed in more sophisticated ways, e.g., carrying a dominant negative form of

the protein which will interfere with the native protein function, thus resulting in a

lack of function phenotype. In order to visualize transgene expression, transgene

fragments can be engineered to also contain markers e.g., fluorescence markers

[yellow florescence protein (YFP), green fluorescence protein (GFP)] and/or

enzymatic-based marker (b-galactosidase).
The integration of a transgene cassette into the ES cell host genome usually

occurs randomly, and the level of transgene expression is affected by the integration

site and number of the integrated transgene copies (Giraldo and Montoliu 2001;

Chandler et al. 2007). The host genome sequences surrounding the site of transgene

integration can modify transgene expression and may result in ectopic, weak, or

undetectable expression. This effect is known as a chromosomal position effect

(Hogan 1983) and can limit the creation of gain-of-function or dominant-negative

alleles. The use of small DNA fragments is often the cause of positional effects in

transgenic mice (Teboul 2009).

The use of a large transgene, up to 300 kb, carrying regulatory elements (located

distantly from the protein coding of the gene e.g., enhancer and insulator) derived
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Table 1 Strengths and weakness of different mouse models

Mouse model Strengths Weaknesses

Transgenic mice l Markers can be incorporated into the

transgenes to localize in vivo sites of

expression
l Large transgenes that contain essential

regulatory elements are possible

(enabling normal genomic

architecture)

l Mouse lines are produced and

evaluated one at a time
l Large variations in transgene copy

number, and thus expression levels
l Integration site effects
l Levels of transgene expression can

limit the generation of gain-of-

function alleles or dominant-

negative alleles
l Random integration may inactivate

endogenous host genes

Conventional

knockout mice

l Allow the possibility to define a null

allele phenotype
l Some targeted ES cells are available

from the International Mouse

Knockout program repositories

l Mouse lines are produced and

evaluated one at a time
l Homologous recombination efficiency

in ES cells is generally low, thus

necessitating the screening of large

number of ES clones
l Some genes are difficult to target due to

the nature of sequence within or

surrounding the gene
l Null alleles can result in an absence of

a phenotype due to functional

redundancy with related genes

Conditional

knockout mice

l Allow possibility to define function of

gene in specific cell/tissue and/or

a specific time of development
l Some targeted ES cells are available

from the International Mouse

Knockout program repositories

l Targeting construct must be designed

carefully to avoid disruption of the

endogenous allele prior to activation

of the Cre recombinase activity
l Requires an appropriated Cre

transgenic mouse line
l Poorly characterized Cre-expressing

line may result in residual expression

of the gene within some cells or

deletion in additional cell types

Gene-trap mice l High throughput approach
l Publically available through

consortiums

l Can result in the production of

hypomorphic, rather than null alleles
l A large up-front investment to

establish the mouse colony and

mapping/sequencing technologies
l A trapped ES clone may contain an

unidentified trapped gene(s)

ENU mutagenised

mice

l Requires no foreknowledge about gene

function
l Novel genes can be identified
l Novel functional domains within genes

can be identified
l Mutations are already in the germline,

thus avoiding the need to produce

chimeric mice to obtain germ line

transmission
l Can sometimes circumvent functional

redundancy from related genes

during development

l Researchers may have to screen the

entire library to obtain mouse lines

with specific phenotype of interest
l Maintaining the mouse colony can be

challenging, as there is no precise

way to genotype mice prior to the

identification of the causal mutation
l The identification of the causal

mutation is labor and cost intensive
l A large up-front investment to

establish the mouse colony and

mapping/sequencing technologies
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from Yeast Artificial Chromosome (YAC) or Bacterial Artificial Chromosome

(BAC) constructs have been shown to confer endogenous-like transgene expression

patterns and are less susceptible to positional effects (Giraldo and Montoliu 2001;

Chandler et al. 2007). Due to several limitations of YACs, e.g., insert chimaerism,

insert instability, rearrangements, and potential endogenous yeast chromosome

contamination (Monaco and Larin 1994), BACs have become the preferred choice

for the generation of transgenic mice (Heintz 2001; Van Keuren et al. 2009).

In addition, the integration of a transgene into a host genome may disrupt

endogenous genes, which could result in loss or gain of function of the host gene.

In order to minimize these effects, recent studies have made significant progress

on the development of site-specific integration of transgene fragments into the host

genome (Brough et al. 2007; Howden et al. 2008; Wigley et al. 1994). Alterna-

tively, researchers should examine at least two independently generated transgenic

models before concluding a specific effect of a transgene.

Examples of transgenic mouse models that have revealed valuable information

about male fertility and insights relevant to contraceptive design include: the over-

expression of transgenic Nanos2 in spermatogonia has revealed the role of

NANOS2 in stem cell renewal (Sada et al. 2009); the exogenous expression of

FSH in the hypogonadal (Hpg) background has been used to reveal the relative

contribution of testosterone and FSH signaling on particular aspects of male

fertility (Allan et al. 2004; Allan and Handelsman 2005); and FGFR1 dominant-

negative mice have revealed the role of FGF signaling in establishing pathways

involved in sperm capacitation (Cotton et al. 2006).

4 Knockout Mice: Loss of Function Models

Targeted gene ablation is the most common approach used to assess the in vivo
function of a gene. It relies upon abolishing the expression of a gene then observing

the phenotype. These types of mice are referred to as “knockout mice” and are

based on targeted deletion/disruption of an endogenous gene by homologous

recombination in ES cells (Smithies et al. 1985; Thomas and Capecchi 1987)

(Fig. 1). ES cells carrying the desired ablated gene are microinjected into blastocyst

stage embryos of a different mouse strain and transferred into pseudo-pregnant host

females to produce chimeric offspring. Chimeric mice are subsequently bred with

wild-type mice to establish a heterozygous knockout mouse, i.e., carrying one

deleted allele and one wild-type allele. Through the breeding of heterozygous

carriers, mice with two completely inactivated alleles can be generated, i.e.,

homozygous null mice (Capecchi 1989a, b). Targeting constructs can be designed

by replacing the whole protein coding region of small genes (<10 kb) with a drug-

selection marker, to knock out exons containing the ATG start codon (Fig. 1) or

a key functional domain, or to result in the generation of a sequence frame-shift

that leads to the production of truncated nonfunctional protein. Generally, knock-

out constructs contain a bacterial/mammalian selectable marker, e.g., a Kan/Neo
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cassette, to allow manipulation of the construct in bacteria and to preferentially

isolate targeted ES cells in culture. The Kan/Neo cassette can also be modified to

contain markers for expression analysis within the genetically modified mouse.

In additional to the generation of null alleles, specific human alleles carrying

mutations/SNPs of interest can be introduced to replace the orthologous mouse

gene via homologous recombination. Such mice are referred to as “Knockin mice”

and are particularly useful for the recapitulation of known human disease-causing

mutations (Sotillo et al. 2001; Gong et al. 2002; Menalled et al. 2002; Lute et al.

2005; Yu et al. 2009).

There have been several hundred knockout mouse lines that have revealed

valuable information on the role of genes in male fertility (Cooke and Saunders

2002; Matzuk and Lamb 2002; Escalier 2006; O’Bryan and de Kretser 2006;

Matzuk and Lamb 2008; Naz et al. 2009; Yan 2009), but models with particular

relevance to contraceptive design include: the Catsper knockout lines which have

revealed a role for this ion channel in the manifestation of hyperactivated motility

and thus fertility (Ren et al. 2001; Quill et al. 2003; Jin et al. 2007; Qi et al. 2007);

the soluble adenylate cyclase (sAC) knockout mouse line which revealed a role for

this enzyme in the initiation of sperm motility (Esposito et al. 2004); the Calmegin
knockout line which revealed a role for this chaperone in the packing or presenta-

tion of sperm zona receptor molecules related to oocyte binding (Ikawa et al. 1997)

Fig. 1 Conventional knockout strategy for the generation of null alleles. The generation of null

alleles in the genome of ES cells is based on the introduction of a targeting vector that carries

pieces of DNA that contain identical, or highly homologous, sequences to both upstream

(50 homology arm) and downstream regions of the target gene (30 homology arm). For screen-

ing/positive selection purposes, the homology arms are usually designed to flank a drug-selectable

marker (e.g., Kan/Neo). Following the introduction of the targeting construct into the ES cell,

recombination machinery within the cells recognizes the identical stretches of sequence and swaps

out the nonhomologous sequence between the homology arms, thus replacing part of the endoge-

nous gene with an artificial piece of DNA from the targeting vector. This results in a complete or

partial deletion of the target gene that disrupts protein synthesis or creates an unstable protein

product. As shown in this case, the first exon of the target gene is knocked-out resulting in a

complete disruption of mRNA transcription, thus no protein from the knockout allele is produced
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and the Izumo knockout lines in establishing the role for this molecule in sper-

m–oocyte binding (Inoue et al. 2005).

5 Conventional and Conditional Knockout Mice

In the conventional gene knockout approach described above, the null allele will be

present in every cell in the animal throughout its life. Frequently, this results in a

severe and early phenotype, e.g., embryonic or perinatal death of the homozygotes.

While the embryonic or peri-natal lethality phenotype indicates a vital role for the

gene in development, it limits the utility of the mouse model in the analysis of later

stages of life. In the case of male infertility and contraceptive research, this is a

serious limitation. To overcome this limitation, a conditional knockout approach

has been developed (Lewandoski 2001). This approach allows a tissue-specific and/

or time-specific inactivation of the gene of interest. This added feature of revers-

ibility provides greater control over the target cell/tissue, timing, and duration of a

resulting phenotype, and more closely mimics the effect of pharmacological inter-

vention, and is thus of particular relevance in contraceptive research where the

ultimate goal is to give compounds to adults and affect fully established spermato-

genesis.

The ability to switch on or off a particular gene in conditional knockout models

relies upon the use of the bacteriophage P1-derived Cre/loxP system (Sternberg and

Hamilton 1981; Orban et al. 1992). The system is based on site-directed recom-

bination of sequences between a short Cre recombinase recognition site (loxP)
mediated by the enzyme, Cre recombinase, and utilizes the ability of Cre recombi-

nase to excise a DNA segment flanked by a 34 bp loxP site in the same orientation.

Mice carrying a Cre allele (referred to as a “flox” allele) are generated by homolo-

gous recombination in ES cells (Fig. 2) in the same manner as generation of a

conventional knockout allele. The generation of a conditional knockout allele is

achieved by crossing flox allele mice with transgenic mice expressing Cre recom-

binase under the control of a tissue-specific promoter and/or a binary inducible

promoter e.g., tetracyclin-based transcription transactivation (Quwailid et al. 2004).

In contrast to a conventional knockout strategy, in the absence of Cre recombi-

nase activity, the expression of the flox allele should be expressed normally as in the

wild-type allele. However, to avoid the effect of loxP site interference on gene

expression prior to exposing to Cre recombinase, the position of loxP sites must be

chosen carefully to avoid the destruction of regulatory elements or pre-mRNA

splice sites (Betz 1997). Another alternative/supplementary system to the Cre/loxP
system is the Flp (Flippase)/FRT system (Rodriguez et al. 2000). The most impor-

tant factors to be considered prior to choosing a Cre (and Flp) transgenic mouse line

are (1) the cell/tissue target specificity, (2) the efficiency of the system, and (3)

control over the timing of gene activation/inactivation (Papathanasiou et al. 2003).

Examples of common Cre transgenic mice used in male fertility studies are

protamine 1 (Prm1)-Cre, synaptonemal complex protein 1 (Sycp1)-Cre, cAMP
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responsive element modulator (Crem)-Cre, stimulated by retinoic acid gene 8

(Stra8)-Cre, and anti-Mullerian hormone (Amh)-Cre. A list of available Cre trans-
genic mouse lines can be found at http://jaxmice.jax.org/index.html. An example of

the power of such approaches in the field of male fertility and contraceptive

research is seen in the systematic dissection of the role of androgen receptor (AR)

signaling in testicular cells and their effect on male fertility (Wang et al. 2009).

Researchers should be aware of the existence of the International Mouse Knock-

out Program which is a European Union, National Institutes of Health, and Cana-

dian Government funded initiative to systematically produce flox alleles for the

majority of genes in the mouse genome (Austin et al. 2004; Auwerx et al. 2004;

Fig. 2 Conditional knockout strategy. The generation of conditional knockout alleles is based on

the use of intrinsic homologous recombination machinery within the ES cells and an artificial site-

specific recombination system (Cre/loxP or FRT/Flp) introduced during the mice breeding pro-

gram. In the first instance, a targeted flox allele carrying a positive selectable marker (e.g., Kan/

Neo) is generated via homologous recombination in ES cells in a similar manner to that used in the

conventional knockout approach, with the exception that the flox allele is designed to contain loxP
sites flanking the region (e.g., exon) of the gene a researcher wishes to remove. Generally, the

expression of the flox allele should resemble a wild-type allele. The insertion of a selectable

cassette can, however, potentially interfere with the expression of the flox allele prior to excision,

thus creating unwanted null or hypomorphic alleles. To avoid this, the selectable cassette may be

designed to include FRT sites to facilitate removal of the cassette upon successful ES cells

screening (e.g., via the introduction of Flp recombinase into the targeted ES cells). Following

the generation of heterozygous mice carrying the targeted flox allele, the excision of a loxP
flanking exon in a tissue-specific or developmental stage-specific manner can be achieved by

crossing the heterozygous floxmice with transgenic mice carrying a Cre recombinase driven by an

appropriated promoter. The tissue-specific expression of the recombinase allows the inactivation

of the gene of interest only in the tissue where the recombinase is expressed
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Collins et al. 2007). This resource, and the subsequent analysis of several hundreds

of the resultant knockout mouse lines (Mallon et al. 2008; Beckers et al. 2009),

promises to add greatly to the fields knowledge of many biological processes

including male fertility.

6 Knockout Generated by Gene Trapping

Although conventional and conditional knockout mice are extremely powerful tools

for ascertaining gene function, these approaches are limited by the fact that only one

gene can be knocked out at a time. To overcome this limitation, a high throughput

insertional null allele mutagenesis approach referred to as “gene trapping” was

developed. This approach is based on the utility of a gene trapping vector to randomly

integrate into a genomic locus of an ES cell and interrupt transcription of a trapped

gene. Through a high throughput screening approach, ES clones containing thousands

of different trapped genes have been produced by several consortiums. The collection

of ES gene trap cell lines has been made publically available and centralized through

the International Gene Trap Consortium (IGTC), which aims to generate a library of

mouse mutant ES cells covering most of the genes in the mouse genome (Stanford

et al. 2001; Stryke et al. 2003; Nord et al. 2006).

The simplest type of gene trap vector contains a promoterless selectable genetic

marker (e.g., Neo) and/or reporter gene (e.g., b-galactosidase) flanked by an upstream
30 splice site (splice acceptor; SA) and a downstream transcriptional termination

sequence (polyadenylation sequence; polyA) (Fig. 3). When inserted into an intron

of a gene, transcription (under the endogenous promoter) of the trapped gene is

terminated prematurely at the polyadenylation site of the gene trap vector, thus

generating a fusion pre-mRNA carrying part of the endogenous mRNA sequence

fused to the gene trap cassette. This fusion pre-mRNA subsequently undergoes

alternative splicing at the splice acceptor site within the gene trap cassette and in

most cases where the insertions occur within introns downstream of translational start

sites, fusion mRNAs are generally produced that encode a truncated fusion protein

(Fig. 3). Such fusion proteins can be hypomorphic if they retain partial functionality or

if the insertion disrupts the translational start site or a critical functional protein

domain, the fusion mRNA/protein will effectively be a null allele. Several types of

gene trap vectors have been developed (see detail at http://www.genetrap.org) to allow

cellular localisation of fusion trapped proteins with the animals.

7 Chemical-Induced Point Mutant Mice Generated

by Random Whole Genome Mutagenesis

The ability to generate null alleles by gene targeting in ES cells either in germline or

conditional null alleles will no doubt continue to be a powerful tool in defining

in vivo gene function. However, the most common type of mutation in humans is
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not a null allele, but rather a single nucleotide variant that results in aberrant gene

expression and/or compromised (but not ablated) protein function.

Random whole mouse genomemutagenesis has been developed to facilitate high

throughput gene discovery and is a phenotypic-driven or forward genetic approach.

The overall aim of such strategies is to induce a high rate of random point mutations

throughout the entire genome of an animal, to filter out those animals (mice in this

case) that contain a phenotype of interest, then to identify the underlying causal

mutation. Such a strategy, in addition to avoidingmisleading preconceptions of gene

function, also has the advantage that it usually compromises protein function

without eliminating the whole protein. In several instances, this has been shown to

avoid redundancy, and the loss of a phenotype, during development from related

family members (Papathanasiou et al. 2003). As mentioned above, such a strategy

also holds the potential to identify key domains within a protein which may

ultimately be inactivated using pharmaceutical strategies. In the following section,

Fig. 3 Gene tapping strategy. This approach is based on the utility of a viral-based vector to

randomly insert and disrupt genes throughout the ES cell genome. Gene trap vectors are designed

to carry a promoterless selectable/reporter cassette (e.g., Neo/b-galactosidase) flanked by an

upstream 30 splice site (splice acceptor; SA) and a downstream transcriptional termination

sequence (polyadenylation sequence; polyA). Insertion of the cassette occurs randomly; however,

if it occurs within an intron of a gene it will result in the production of a fusion transcript carrying a

portion of the endogenous mRNA and the gene trapping cassette. Depending upon the insertion

site of the cassette; the fusion transcript can produce a hypomorphic allele or null allele mutation
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we shall describe the use of the chemical mutagen N-ethyl-N-nitrosourea (ENU) as
an example of the randommutagenesis approach. However, several other equivalent

strategies have been employed.

ENU is an alkylating agent which can transfer its ethyl group to oxygen or

nitrogen radicals in DNA. The transferred ethyl group forms a bulky lesion in the

DNA strand, which can result in mispairing and base pair substitution during DNA

replication, if not repaired. The treatment of inbred male mice with optimized

dosages of ENU can induce nucleotide substitutions once in approximately 106

basepairs (Nelms and Goodnow 2001; Quwailid et al. 2004).

In order to set up a whole genome mouse ENU mutagenesis project, male mice

are injected with a controlled dose of ENU that introduces point mutations in all

Fig. 4 ENU screens for recessive mutations causing male infertility phenotypes. The mutagenesis

program involves injections of ENU into adult male mice followed by out-breeding to a different

mouse strain, phenotypic screening, and linkage analysis for mutation identification. To screen for

recessive mutations, a controlled three-generation breeding program is used. For example, founder

ENU-treated mice (G0, C57BL/6) that carry many different mutations are crossed with wild-type

female mice of a different strain (e.g., CBA). Generation 1 (G1) progenies are subsequently crossed

with wild-type CBA females to generate G2 progeny. G3 mice, which are homozygous for a number

of undefined point mutations, are generated either by intercrossing G2 siblings or backcrossing G2

females with G1 fathers. In order to identify which of the randomly mutated lines contains mutations

in key fertility genes, G3 siblings are paired. Those pairs which did not produce pups are subse-

quently separated and paired with fertile wild-type mice to determine if the etiology of the infertility

is male and/or female in origin. Lines with male infertility defects are further characterized using

histological analyses and/or sperm function tests. To identify the causal mutations, genomic DNA

from affected and unaffectedmice is used in linkage analysis using whole genomemicroarrays based

on single nucleotide polymorphism (SNP) differences between the mutated mouse strain and the

strain of mouse used for out-breeding. Once a linkage interval has been narrowed to a relatively

small interval, candidate mutated genes can be selected based on expression profile and/or proposed

function, and their gDNA sequence determined; m represents a mutation introduced by ENU
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dividing cells, but of importance, a high rate of mutations in spermatogonial stem

cells (Nelms and Goodnow 2001; Quwailid et al. 2004). Following a transient

period of infertility, the testes of treated mice are repopulated with sperm bearing

the mutations introduced into spermatogonia and are bred with wild-type females to

produce offspring carrying a subset of the mutations. Either these mice, if looking

for dominant mutations, or subsequent inbred generations (Acevedo-Arozena et al.

2008; Georgel et al. 2008), if looking for recessive mutations, can be screened for

phenotypes of interest including male infertility (Ward et al. 2003; Lessard et al.

2004, 2007; Kennedy and O’Bryan 2006) (Fig. 4). Once a line of interest has been

identified, the region of the genome containing the underlying causal mutation can

be identified using gene mapping techniques and ultimately the precise mutation is

identified through candidate gene sequencing.

Through a number of centralized ENU programs around the world, several novel

genes involved in male fertility, and thus potential contraceptive targets, have been

identified including: Capza3, which is involved in cytoplasmic extrusion at the time

of spermiation (Geyer et al. 2009); Brwd1, in spermiogenesis and oocyte matura-

tion (Philipps et al. 2008); and GPX4, a selenium-dependent glutathione peroxidase

that plays a key role in male fertility (Schneider et al. 2009).

8 Conclusions

Despite advances in assisted reproductive technologies, infertility remains a major

health problem worldwide. Conversely, the desire to suppress fertility is of concern

to the vast majority of other men during their life time. These points underscore the

great need for research into the mechanisms of male fertility and the development

of regimes to either enhance or suppress fertility.

The sequencing of the human, and many other species, genomes has focused

attention onto functional genomics and defining the function of all genes. In this

regard, the mouse is an attractive model system. Here we have discussed the utility,

strengths, and weaknesses of mouse models with respect to their fidelity to disease

states in the human. The greatest challenge for researchers will be the translation of

the research findings from the mouse into clinical practice.
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Abstract The principle of hormonal male contraception based on suppression of

gonadotropins and spermatogenesis has been established over the last three dec-

ades. All hormonal male contraceptives use testosterone, but only in East Asian

men can testosterone alone suppress spermatogenesis to a level compatible with

contraceptive protection. In Caucasians, additional agents are required of which

progestins are favored. Current clinical trials concentrate on testosterone combined

with norethisterone, desogestrel, etonogestrel, DMPA, or nestorone. The first ran-

domized, placebo-controlled clinical trial performed by the pharmaceutical indus-

try demonstrated the effectiveness of a combination of testosterone undecanoate

and etonogestrel in suppressing spermatogenesis in volunteers.
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1 Introduction

1.1 The Rationale for Hormonal Male Contraception

In view of the heightened attention politicians and the media are currently paying to

the subject of declining birthrates in industrialized countries and especially in Ger-

many, at first sight it would not seem appropriate to report on the development of new

contraceptive methods. However, the decline in births is not a phenomenon that arose

with the introduction of oral contraceptives at the beginning of the 1960s. In fact,

birthrates declined parallel to the rise of industrialization. InGermany, in 1860women

bore an average of five children, four in 1874, three in 1881, and in 1904 the average

ratewas only two children per woman (Birg 2005). The trend then continued relatively

slowly, marked by several ups and downs, and today it lies at ca. 1.4. Thus, contra-

ceptives per se can hardly be considered the reason for limiting family size; they are

only adjuncts enabling couples to achieve their ideal family size with greater ease and

safety. In this sense, contraceptive methods also contributed to population stability in

industrialized nations. Similarly, in developing countries contraceptives make a

valuable contribution to limiting population growth which continues to remain high.

Female contraception is very effective. Nevertheless, 50% of the 1,000,000 con-

ceptions occurring every day worldwide remain unplanned, of which 150,000 are

terminated by abortion, an intervention that will end fatally for 500 of these women.

Although improved distribution and utilization of female contraceptivemethods might

ameliorate this situation, the contribution of a male contraceptive is well worth

considering. Men enjoy the pleasures of sex, but can do little to contribute to the

tasks of family planning – a pharmacological male contraceptive is surely long

overdue. Moreover, the risks of contraception would also be more fairly shared

between women and men. Representative surveys have shown that a pharmacological

male contraceptive would be acceptable to large segments of the population in indus-

trial nations and would thus contribute to further stabilization of population dynamics.

It might also help developing countries whose exponential population growth endan-

gers economic, social, and medical progress. Last but not least, male contraception can

be considered an outstanding issue in the political field of gender equality.

1.2 Choices for the Male

For the male there are ways to eliminate both procreation and sex at the same time.

Such methods have been used in the past and are still being practiced on a limited
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scale. Castration has been employed since ancient time to destroy enemies by

abolishing their ability to reproduce and transmit their genes. Until the end of the

imperial period in China (1912), men were willing to sacrifice their testicles (and

often with them their lives) in return for high-ranking positions and political

influence at the emperor’s court. Meanwhile, in the West, up until almost the

same time, some promising boys were forced to give up their manhood for the

sake of preserving their prepubertal voice and achieving fame as singers, often

without success (Nieschlag et al. 2009). Abstinence is a less bloody means of

eliminating procreation, but few men are willing to give up both sex and procre-

ation for extended periods of time, let alone their entire lives.

Traditional male methods of contraception such as periodic abstinence or coitus
interruptus are associated with a relatively high rate of unwanted pregnancy and

also cause a disturbance in sexual activity. Condoms are the oldest barrier method

available. However, when using condoms conception rates are relatively high, with

12 out of 100 couples conceiving during the first year of use (Pearl index ¼ 12).

Condom use has increased since the beginning of the AIDS epidemic, but more for

protection from HIV infection and other sexually transmitted diseases than for

contraceptive purposes (April et al. 1993).

Vasectomy is a safe and relatively simple surgical method for male contraception.

The rate of unwanted pregnancies after vasectomy is less than 1%. The drawback to

vasectomy is that it is not easily reversible. Achieving fatherhood after vasectomy

requires either surgical reversal or sperm extraction from a testicular biopsy and

intracytoplasmatic sperm injection into the ovum. Only about 50% of these men will

become fathers in the end (for review see Engelmann and Gralla 2010).

Given the disadvantages of these mechanical male methods, what then are the

prerequisites for an ideal male contraceptive? It should:

l Be applied independently of the sexual act
l Be acceptable for both partners
l Not interfere with libido, potency, or sexual activity
l Have neither short- nor long-term toxic side effects
l Have no impact on eventual offspring
l Be rapidly effective and fully reversible
l Be as effective as comparable female methods

For the past 40 years, hormonal approaches to male contraception have been

tested clinically. In the following, these developments will be reviewed taking the

above prerequisites into account.

2 Principle of Hormonal Male Contraception

Of all the different experimental approaches and pharmacological methods tested

so far for male contraception, hormonal methods come closest to fulfilling the

criteria set out above. The endocrine feedback mechanism operating between
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hypothalamus, pituitary, and testes is the basis on which hormonal approaches to

male contraception rest. Its goal is to suppress spermatogenesis and to reduce sperm

concentration, if possible to azoospermia or at least to a sperm concentration low

enough to provide contraceptive protection (<1 Mio. sperm per ml ejaculate).

Sperm production and secretion of testicular testosterone are so closely inter-

woven that it has remained impossible to interrupt spermatogenesis by hormonal

means without inhibiting androgen production (Fig. 1a). Inhibition of FSH

alone, e.g., by antibodies, leads to reduction of sperm concentration but not to

azoospermia, as monkey studies have shown. Suppression of both FSH and

LH would indeed lead to azoospermia, but would also induce symptoms of

androgen deficiency which affects libido, potency, male role behavior, and

general metabolic processes (erythropoesis, protein, mineral, and bone meta-

bolism). For this reason, inhibition of gonadotropins will always necessitate

androgen administration.

Thus, the principle of hormonal male contraception is based on:

1. Suppression of LH and FSH

2. Depletion of intratesticular testosterone and atrophy of spermatogenesis

3. Substitution of peripheral testosterone to maintain androgenicity

At first sight testosterone itself would be the steroid of choice as it simulta-

neously suppresses the gonadotropins and maintains androgenicity. However, stud-

ies showed that by administration of testosterone alone azoospermia could only be

achieved in two-thirds of Caucasian men, so that another gonadotropin-suppressing

agent must be added to interrupt spermatogenesis as completely as possible. GnRH

analogs and several different steroid combinations and delivery systems such as

oral, transdermal, subcutaneous, and intramuscular have been examined. Each has

its respective merits and drawbacks (Fig. 1b, c).

Table 1 provides an overview of clinical trials for male hormonal contraception

based on steroids. At the outset of this summary it should be noted that in all these

many clinical trials only very few untoward side effects were reported, including

mild acne and moderate weight gain as a more frequent symptom, the latter due to

the anabolic effect of testosterone. Hardly any serious adverse events occurred. A

recently performed placebo-controlled clinical trial for male contraception demon-

strated that several symptoms previously ascribed to the steroid regimen used also

occured in the placebo group (Mommers et al. 2008). Hardly any serious adverse

events were registered in this multitude of trials. In all studies, sperm counts

returned to normal levels as also a review of major studies revealed (Liu et al.

2006) so that one of the prime goals of male hormonal contraception, i.e., revers-

ibility is met. However, long-term studies extending over three or more years have

not yet been performed.

Incidentally, it is worth mentioning that results from animal studies have con-

tributed little to the development of male hormonal contraception, except in the

case of GnRH analogs using nonhuman primates. On the contrary, humans have

provided models for fertility control in wildlife (Barfield et al. 2006).
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Fig. 1 Schematic representation of the endocrine mechanism controlling testicular function (a).

(b) Shows the principle of hormonal male contraception using testosterone. (c) Shows the

principle of hormonal male contraception using testosterone plus a gestagen (from Nieschlag

and Behre 2010)
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3 Clinical Trials to Date

3.1 Androgens Alone

3.1.1 Testosterone Enanthate

Soon after testosterone was synthesized and became available for clinical use in the

late 1930s, its spermatogenesis-suppressing effect was recognized (Heckel 1939),

but not until the 1970s did investigations start to exploit this phenomenon for male

contraception. As in most hormonal male contraceptive studies to date, in the early

studies sperm concentrations and counts were used as surrogate parameters for

efficacy.

The first efficacy study of testosterone-based hormonal male contraception was

sponsored by the WHO (1990) and included ten centers on four continents. Healthy

fertile participants were given 200 mg of the longer-acting testosterone enanthate

weekly by intramuscular injection. One hundred and fifty-seven men (70%) reached

azoospermia after 6 months of treatment and entered the efficacy phase for a further

year, during which no other contraceptive was used by the couple. Only one

pregnancy was reported in this first proof-of-principle study. Although the efficacy

of this study was very high, it cannot be used to determine the overall efficacy of

testosterone alone as a contraceptive because only men who became azoospermic

could enter the efficacy phase while the others were excluded.

In order to clarify the question whether men developing oligozoospermia can be

considered infertile, a second worldwide multicenter efficacy study involving 357

couples followed (WHO 1996). In this study, azoospermia again proved to be a

most effective prerequisite for contraception. If sperm concentration, however,

failed to drop below 3 Mio/ml ejaculate, resulting pregnancy rates were higher

than when using condoms. When sperm concentrations decreased below 3 Mio/ml,

which was the case in 98% of the participants, then protection was not as effective

as for azoospermic men, but was better than that offered by condoms (Fig. 2).

Even if these WHO studies represented a breakthrough by confirming the

principle of action, they did not offer a practicable method because a method

requiring weekly i.m. injections is not acceptable for broad use. Moreover, several

months, often up to 1 year, are required before sperm production reaches significant

suppression. For this reason, current research is concentrating on the development

of long-acting testosterone preparations and on methods to hasten the onset of

effectiveness.

3.1.2 Testosterone Buciclate

As long-acting testosterone preparations appeared more promising in terms of

practicability and acceptability, WHO and the NIH initiated a synthesis program

for such preparations (Waites 2003), through which the long-acting testosterone
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ester testosterone buciclate was identified. This molecule showed a half-life of

29.5 days when tested in hypogonadal men, much longer than the 4.5 days of

testosterone enanthate (Behre et al. 2004). Suppression of spermatogenesis was

comparable to that of weekly testosterone enanthate injections, reaching azoosper-

mia in three out of eight volunteers after a single injection of 1,200 mg of

testosterone buciclate (Behre et al. 1995). Despite its promising pharmacokinetic

profile, no industrial partner could be found to undertake development of this

preparation.

3.1.3 Testosterone Undecanoate

Initially, testosterone undecanoatewas studied as an oral preparation in volunteers
of Caucasian origin (Nieschlag et al. 1978). Subjects were given a daily dose of

240 mg over a period of 12 weeks, but only one out of seven volunteers reduced

sperm output sufficiently for contraception. This low effectiveness is probably due

to the short half-life of testosterone undecanoate when given orally. Even if

administered four times a day, the peaks are not sufficient to suppress gonadotro-

pins consistently and thereby to achieve azoospermia.

While testosterone undecanoate had been developed as an oral preparation in

Europe it was turned into an injection in China, using tea seed oil as a vehicle and is
used as such in China for hypogonadism and in trials for male contraception. Back

in Europe, the half-life of this Chinese preparation could be extended even further

when dissolved in castor oil and is now available for clinical use in 1,000 mg depot

injections (Nieschlag 2006).
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Fig. 2 Contraceptive efficacy of testosterone enanthate (250 mg/weekly) in 364 volunteers:

pregnancy rates per 100 person/years in relation to sperm concentration (WHO 1996)
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In the clinical trials in China, testosterone undecanoate alone administered every

4 weeks resulted in azoospermia in all Chinese men who received a dose of

1,000 mg and in azoospermia or severe oligozoospermia in 95% of Chinese men

who received a dose of 500 mg during a 4–6-month suppression phase (Zhang et al.

1999). In the ensuing Phase III study involving 305 couples an efficacy phase

followed the suppression phase and no pregnancies were initiated by men exhibit-

ing azoospermia or severe oligozoospermia (Gu et al. 2003). However, reappear-

ance of sperm occurred in six men during the efficacy phase; one pregnancy was

attributed to “sperm rebound.” Side effects observed in subjects were all typical of

elevated testosterone serum levels. The largest efficacy study to date was also

performed in China, based on a loading dose of 1,000 mg followed by monthly

injections of 500 mg testosterone undecanoate. 898 men entered the efficacy phase

during which only 9 pregnancies were recorded. This represents a pregnancy rate of

1.1/100 person years (Gu et al. 2009). Thus, in China testosterone undecanoate
provides better protection against pregnancy than condom use. Although injection

intervals of 4 weeks appeared to be an achievement over the weekly injections of

testosterone enanthate, the participants in a Chinese study considered the frequency

of injections the most inconvenient part of this regimen (Zhang et al. 2006). Would

testosterone undecanoate in castor oil also be used in China, this complaint could

certainly be overcome.

In a first contraceptive trial of testosterone undecanoate in castor oil 1,000 mg

were injected into 14 Caucasian volunteers at 6-week intervals. 8/14 men achieved

azoospermia (Kamischke et al. 2000). Although this rate of azoospermia is not

different from that achieved with testosterone enanthate alone, the longer injection

interval represents a significant advantage. A later pharmacokinetic study con-

cluded that 8-week intervals of 1,000 mg injections would be sufficient for con-

traceptive purposes (Qoubaitary et al. 2006).

Considering that 10–14-week intervals of 1,000 mg testosterone undecanoate

are required for substitution of hypogonadal men, about 1/3 more testosterone is

required for contraception in normal volunteers.

3.1.4 Testosterone Pellets

Pellets consisting of pure testosterone are used for substitution in hypogonadism in

some countries. In male contraceptive studies, the sperm-suppressing effect was

comparable to weekly testosterone enanthate injections (McLachlan et al. 2000).

The disadvantage ofminor surgery required for insertion under the abdominal skin is

compensated for by their low price. Spontaneous extrusion may be a disadvantage.

3.1.5 19-Nortestosterone

When searching for preparationswith longer lasting effectiveness 19-nortestosterone-
hexoxyphenylpropionate was tested whose spectrum of effects is very similar to
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that of testosterone and which had been used as an anabolic steroid since the 1960s.

The 19-nortestosterone ester injected every 3 weeks enabled azoospermia to be

reached by as many men as by testosterone enanthate. Thus, the 19-nortestosterone

ester is as effective as testosterone enanthate but allows a longer interval between

injections (Knuth et al. 1985).

Although effective in suppressing spermatogenesis and without any notable side

effects in the studies, it could not be determined whether this synthetic androgen

would have any unwanted effects under long-term use. The lack of negative reports

from widespread use of 19-nortestosterone in athletics cannot be taken as evidence

for its clinical application as systematic evaluations in athletes have not been

published.

3.1.6 7a-Methyl-19-Nortestosterone (MENT)

The synthetic androgen 7a-methyl-19-nortestosterone (MENT) offers an approxi-

mately tenfold higher potency to suppress pituitary gonadotropins than does testos-

terone. In contrast to testosterone there is no 5a-reduction so that effects on the

prostate could be minimal. A first dose-finding study showed that MENT adminis-

tered in subcutaneous implants was as effective as testosterone given alone (von

Eckardstein et al. 2003). The potential of these implants either alone or in combina-

tion with gestagen implants is currently being investigated by the Population Council.

3.2 Androgens Combined with GnRH Analogs

3.2.1 GnRH Agonists

The pituitary-inhibiting effects of GnRH agonists are well known from their use in

females and in the therapy of prostate cancer. After an initial phase of gonadotropin

stimulation, they suppress gonadotropins and, consequentially, intratesticular tes-

tosterone by GnRH receptor down regulation. However, trials for hormonal male

contraception in which mostly testosterone was added showed that sperm numbers

were only insufficiently reduced, thus rendering these agonists unsuitable as male

contraceptives (Behre et al. 1992).

3.2.2 GnRH Antagonists

GnRH antagonists lack the effect of initial gonadotropin release as they competi-

tively inhibit pituitary GnRH receptors, thus leading to a more immediate onset of

azoospermia. This could be demonstrated by small clinical studies using various

GnRH antagonists in addition to a testosterone preparation (summarized in Nieschlag

et al. 2004). Out of 47 volunteers participating in various clinical trials with

different GnRH-antagonists, azoospermia was achieved in 39 subjects and oligo-

zoospermia (<1 Mio sperm per ml ejaculate) occurred in one further volunteer,
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while only three men maintained sperm concentrations above 3 Mio/ml ejaculate.

Of the more recently developed GnRH antagonists, Acycline has been tested in

male contraceptive trials. Although Acycline given alone had a potent gonadotro-

pin-suppressing effect (Page et al. 2008), the addition of Acycline to a combination

of testosterone gel plus DMPA did not increase the suppression of sperm production

achieved by steroids alone (Page et al. 2006).

Despite these encouraging results, the requirement for daily or weekly injections

and the high costs of the available preparations have hindered the further develop-

ment of GnRH antagonists for hormonal male contraception. Promising attempts to

use the GnRH antagonists only to initiate azoospermia and then maintain this by

androgens alone were not pursued further (Swerdloff et al. 1998; Behre et al. 2001).

3.3 Androgens Plus Gestagens

The potency of gestagens to suppress gonadotropins is well known from female

contraceptives where gestagens effectively supplement estrogens. Numerous stud-

ies combining androgens (mainly testosterone) with various gestagens have been

performed over the past four decades to identify a regimen suited for male contra-

ception (Fig. 3). Unfortunately, a systematic comparison of the different gestagens

with regard to their contraceptive potency in males has never been performed. Even

worse, a Cochrane Review analyzing 45 clinical trials came to the conclusion that

the studies comprised too small numbers of volunteers so that significant differ-

ences between the various steroid combinations could not be detected (Grimes et al.

2007). Moreover, not all studies observe strict criteria for randomized controlled

trials. However, it should be kept in mind that many of these trials were performed

as proof of principle and not necessarily as trials for registration with the regulatory

authorities. In addition, single centers are financially and logistically unable to cope

with the numbers of volunteers and criteria demanded by regulatory agencies.

Stimulated by researchers and by public demand, the pharmaceutical industry

finally performed a trial fulfilling the Cochrane criteria – and left the field! (Mom-

mers et al. 2008). In the following, important studies are briefly summarized to

highlight the cumbersome and often frustrating pathway of development (Table 1).

The gestagens used in these studies derive either from 19-nortestosterone or from
17-hydroxyprogesterone and are all being used in female contraceptives (Fig. 3).

3.3.1 Depot Medoxyprogesterone Acetate (DMPA)

From early studies in the 1970s initiated by the WHO and the Population Council,

DMPA emerged as a gestagen with great potential in male contraception (Barfield

et al. 1979). The combination of DMPAwith 19-nortestosterone in 3-week intervals

first tested in Caucasians (Knuth et al. 1989) was especially promising in Indone-

sian men (WHO 1993).
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One of the very few efficacy studies aiming at pregnancy rates also used DMPA,

however, in combination with testosterone pellets (Turner et al. 2003). In this

Australian study, 53/55 volunteers suppressed to azoospermia and during the

1-year efficacy phase no pregnancy occurred. However, the discontinuation rate

in this study was high and onset of and recovery from azoospermia took several

months.

In order to test whether one of the two steroid entities could be self-administered,

the addition of a testosterone transdermal gel to the DMPA injections (300 mg/

3 months) was tested (Page et al. 2006). The results were comparable to those from

trials where DMPA was combined with injectable testosterone.

3.3.2 Levonorgestrel

Oral levonorgestrel, when combined with testosterone enanthate i.m. slightly

enhanced the effect of testosterone enanthate alone (Bebb et al. 1996). Similarly,

when combined with testosterone undecanoate i.m. the additional effect of oral

levonorgestrel remained marginal in Caucasian men (Kamischke et al. 2000), but

seemed to increase effectiveness in Chinese men (Wang et al. 2007).

In a comparative study, when levonorgestrel implants were combined with

testosterone pellets, an additive effect of levonorgestrel was seen in Caucasian

men, but not in Chinese men who responded equally well to testosterone pellets

alone (Wang et al. 2006).

When MENT implants were combined with levonorgestrel implants in different

doses, a clear dose-dependent effect could be observed, but it remains undetermined

whether implants with sufficiently long duration can be manufactured; nonbiode-

gradable implants that have to be removed surgically from the implantation site when

contraceptive protection is no longer required appear impractical for widespread

use unless they can be left in situ for long periods (Wang et al. in preparation).

3.3.3 Norethisterone

The injectable depot preparation norethisterone enanthate (NETE) and the orally

effective norethisterone acetate (NETA) are hydrolysed to release the active com-

pound norethisterone, which can be 5a-reduced to 5a-norethisterone and aroma-

tized to ethinyl estradiol. While norethisterone has strong androgenic activity

(�10% of testosterone), 5a-noresthisterone also shows antiandrogenic properties.

13/14 men who received 200 mg NETE combined with 1,000 mg testosterone

undecanoate every 6 weeks achieved azoospermia (Kamischke et al. 2001). Further

investigations showed that the injection intervals could be extended to 8 weeks

(Meriggiola et al. 2005) or that testosterone undecanoate could be combined with

oral NETA without loss of effectiveness (Kamischke et al. 2002). Based on these

findings, together with CONRAD WHO is planning a Phase II efficacy study

involving 400 couples in eight centers worldwide (WHO 2005).
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3.3.4 Cyproterone Acetate

The orally effective antiandrogen cyproterone acetate (CPA) has strong gestagenic
properties. In early studies combining oral CPA with testosterone enanthate injec-

tions, the sperm-suppressing effects were considerable, but the antiandrogenic

effects (e.g., reflected by decreased hematocrit) were undesirable. However, when

combining 1,000 mg testosterone undecanoate every 6 weeks with 20 mg CPA daily

initially, followed by only 2 mg CPA/day, the initial suppression of spermatogenesis

could be maintained and antiandrogenic effects prevented (Meriggiola et al. 2003).

3.3.5 Desogestrel and Etonogestrel

Desogestrel is an orally effective gestagen which becomes active after conversion to

etonogestrel. Etonogestrel can be administered directly as an implant (Implanon®). In

combination with testosterone enanthate or testosterone pellets desogestrel showed

good suppression of spermatogenesis (Wu et al. 1999; Kinniburgh et al. 2001).

Etonogestrel implants combined with testosterone pellets s.c. resulted in a high

azoospermia rate, although it took up to 28 weeks to reach this goal in individuals

(Brady et al. 2004).

In the first (and so far last) industry-sponsored trial, Organon and Schering

decided to test etonogestrel implants with testosterone undecanoate injections in

various combinations (Mommers et al. 2008). This study involved 354 volunteers in

seven treatment groups receiving either placebo or 750–1,000 mg testosterone

undecanoate every 10–12 weeks with two doses of etonogestrel for 42–44 weeks.

90% of treated men suppressed spermatogenesis to �1 Mio/ml ejaculate (Fig. 4).

Although the combination of an implant with injections may not appear too

attractive for practical use, the study had a high success rate and could have formed

the basis for a Phase III efficacy study. Unfortunately, both companies discontinued

their male contraception programs when they were taken over by other firms who

were at that stage not interested in male contraception.

3.4 Differences Between Responders and Nonresponders

As outlined above, testosterone alone would seem to be the ideal male contracep-

tive as it suppresses pituitary gonadotropin secretion while at the same time it

replaces all extratesticular functions of testosterone to maintain androgenicity.

However, only about two-thirds of Caucasian men and over 90% of Chinese men

react to testosterone with azoospermia. The rest requires an additional agent to

achieve this goal. Not only the degree, but also the dynamics of suppression of

spermatogenesis show great interindividual variations. Investigators are puzzled by

this heterogeneous response, but to date could not find a uniform explanation for

this variability.
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As a result of the Summit Meetings on Hormonal Male Contraception

(1997–2009), the participating investigators provided data from their various clini-

cal trials for a joint analysis. Results from 30 trials on male hormonal contraception

performed between 1990 and 2006 were combined, comprising a total of 1,756

volunteers, 18–51 years old, representing 85% of all published data (Liu et al.

2008). The analysis showed that younger age as well as lower serum testosterone

levels and sperm concentrations lead to faster sperm suppression. Statistically, the

differences only became evident in this large data set and showed little predictive

value for the individual case so that no clear practical consequences for the

identification of good or bad responders resulted.

Earlier, in an analysis of 85 Caucasian volunteers from several single-centre

contraceptive trials von Eckardstein et al. (2002) had found that the rate of

suppression of spermatogenesis correlated positively with the rate of suppression

of gonadotropins. While this confirmed findings from several other clinical trials,

the investigators additionally found that the suppression of spermatogenesis in

those volunteers with incomplete gonadotropin suppression correlated with the

number of CAG repeats in the androgen receptor, i.e., the longer the CAG repeats,

the better the sperm suppression, despite incomplete gonadotropin suppression.

Li and Gu (2008) specified that in Chinese volunteers with incomplete suppression

of FSH, the chances of reaching azoospermia were higher in those volunteers

with more than 22 CAG repeats. The androgen receptor polymorphism requires

further investigation before it can be considered a clear predictor for responders

and nonresponders.
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In early clinical trials for male contraception, analysis of anthropometric char-

acteristics failed to contribute to solving the responder:nonresponder problem.

However, recently the importance of body fat for the suppressibility of gonadotro-

pins has been emphasized (Kornmann et al. 2009). When 40 healthy volunteers

receiving equal doses of testosterone undecanoate intramuscularly were divided

into groups according to their suppression of gonadotropins, those with consistent

suppression had the lowest body fat content (10.3 � 1.5 kg) and those with no

suppression had the highest fat content (23.2 � 6.4 kg). As suppression of gonado-

tropins is a prerequisite for suppression of spermatogenesis, more attention should

be paid to the individual phenotypes; perhaps the dosing of contraceptive steroids

needs to be adjusted to individual requirements. The influence of body fat may

also explain the differences in response to suppression of spermatogenesis between

Chinese and Caucasian men, as the former are lighter and have less fat than

the latter.

4 Acceptability of Male Contraception

One of the reasons why the pharmaceutical industry has not continued to further

develop a male contraceptive at this stage may be doubts about the possible

acceptability of such a pharmacological method. However, recently public interest

in male methods for contraception has notably grown. It is increasingly expected

that men share with their partners not only the advantages but also the risks of

family planning. As risks tend to increase with duration of use, sharing contracep-

tion between men and women would reduce dangers for each partner. Population

conferences and women’s world forums have explicitly called for new male

contraceptive methods.

Worldwide one quarter of all couples practicing contraception rely on male
methods, albeit with varying preferences and the proportion of men practicing

contraception is increasing. Thus, in the Netherlands the percentage of vasecto-

mized men whose wives were of reproductive age rose from 2 to 10.5% from 1975

to 2008 and from 8 to 12.2% in the United States; the highest rates of vasectomized

men are found in the United Kingdom and in New Zealand. Worldwide, however,

only 2.7% of men are vasectomized. Similarly, the use of condoms for contracep-

tion varies from country to country with a worldwide average of 5.7%. It is to be

expected that the percentage of men willing to practice contraception varies

between cultures and with methods available. According to a survey in Hongkong

and Shanghai 10 years ago, half the men interviewed were willing to take a daily

contraceptive pill; in Edinburgh and Capetown two-thirds were willing to do so

(Anderson and Baird 1997; Martin et al. 2000). After almost 50 years of female oral

contraception, the attitude of men toward new methods of male contraception has

changed. Worldwide surveys showed men willing to use pharmacological con-

traceptive methods (Heinemann et al. 2005) (Fig. 5).
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5 Responsibility for the Development of Contraceptives

The world population has tripled in the last 50 years and is approaching seven

billion. Less developed countries bear the onus of this enormous population growth

while the population in industrialized nations is largely stable – due to use of

contraceptive methods. The population explosion creates hardly surmountable

ecologic and economic problems. Medical progress has decisively lowered mortal-

ity, particularly of children, so that life expectancy worldwide is currently 64.2

years for men and 68.6 years for women. Ever more people reach reproductive age.

If medical progress allows an increasing number of people to achieve reproductive

age, causing overpopulation, then medicine must also provide contraceptive meth-

ods to maintain or restore a balance between reproduction and death. It has become

clear that the Millennium Development Goals cannot be achieved with the current

level of population growth (All Party Parliamentary Group 2007). It goes without

saying that a newly developed male contraceptive would not suddenly resolve

population problems, but a male method could contribute to the resolution, espe-

cially as research into female methods for contraception is similarly on the decline

(Strauss and Chaudhuri 2007). In addition, women increasingly demand that men

share the responsibility and risks of family planning and men, on the other hand,

want to regain some of the reproductive power they surrendered to women since the

advent of modern female contraceptives (Darroch 2008; Meriggiola et al. 2006).
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This should be reason enough for the pharmaceutical industry to actively develop

male contraceptives.

While a large proportion of clinical research is driven by the pharmaceutical

industry, in the case of male contraception industry fails. Without the long-range

perspective and endurance of institutions and organizations such as NICHD, CON-

RAD, Population Council, WHO, some medical research councils and few founda-

tions, male contraception would long have been abandoned (Nieschlag 2009). The

principle and effectiveness of hormonal male contraception has been demonstrated

in many studies. The fact that the majority of clinical trials on hormonal male

methods, have been published in high-ranking journals emphasizes the high priority

the scientific community attributes to these endeavors. Investigators are so con-

vinced of the validity of the concept of hormonal male contraception that they

drafted recommendations for regulatory approval for male hormonal contraception

at their annual summit meetings (since 1997) (Nieschlag and 10th Summit Meeting

Group 2007). Little more is required to convince industry to bring this development

to fruition. Comparing the situation with the development of the female pill, the

lack of public advocacy for male contraception is striking. Male contraception lacks

prominent advocates as the development of female contraception benefited from

personalities such as Margaret Sanger (1879–1966) and Katherine McCormick

(1875–1967). Hormonal male contraception requires similar advocacy to finally

result in a marketable product (Nieschlag 2009).
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1 Background

1.1 Why Do We Need Them?

In the 1960s, USAID made substantial efforts to increase international family

planning programs: these efforts were strongly criticized by Davis (1967) and

rebutted by Ravenholt (1969) who felt that if women reproduced only when they

wanted, the family and social problems of unplanned and unwanted children would

be eased and population growth reduced. This disagreement between those advo-

cating increased access and those increased socio-economic development as the

way to achieve reduced population growth has bedeviled the international efforts to

achieve this nirvana. For the last 40 plus years, this sterile debate has raged and

been a major issue at every international conference on Population and Develop-

ment (Bucharest 1974, Mexico City 1984 and Cairo 1994). In a recent discussion of

what has happened to family planning since Cairo, Sinding (2008) has defined

family planning as both “the individual act of avoiding a pregnancy and organized

efforts to make contraception and contraceptive services available” to individuals

who lack information or access. He was also of the opinion that the Cairo confer-

ence was the end of the family planning movement which was replaced by the

reproductive health and rights movement (Sinding 2008). Similarly, Potts and

Campbell (2008) posit that it is now a given that “modern contraception improves

the health of women and their families and is central to the autonomy of women”

and conclude from the available evidence that increased access is the major factor

in increasing the contraceptive prevalence rate, perhaps ending this debate. It is

time to move on and accomplish what all agree is the endpoint, reduction of

population growth where it is needed.

In September 2000, the United Nations General Assembly adopted Resolution

55/2. UN Millennium Declaration. This included eight Millennium Development

Goals (UN MDGs) which ranged “from halving extreme poverty to halting the

spread of HIV/AIDS and providing universal primary education” by the year 2015

(UN Millennium Goals: http://www.un.org/milleniumgoals). Three of these goals

impinge on maternal reproductive health. Number 4 seeks to reduce child mortality,

number 5 to improve maternal health, and number 7 to ensure environmental

sustainability, but “the Cairo goal of universal access to reproductive health ser-

vices is missing” (Sinding 2008).

A report by the United Kingdom All Party Parliamentary Group on Population,

Development and Reproductive Health concluded that some of these objectives

cannot be achieved within the proposed time frame because of the high levels of

population growth in some of the poorest countries (All Party Parliamentary Group

on Population, Development and Reproductive Health Report 2007). The report

sees a solution in ensuring greater accessibility of existing contraceptives and

more widespread use of family planning. The need to address this issue of unsus-

tainable population growth is stressed in a commentary on this report by Campbell

et al. (2007), who indicate that some countries have explosive and unsustainable
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population growth. Earlier, Speidel and Grossman (2007) had argued that provision

of “family planning and access to safe and legal abortion are vital to safeguard the

environment.” Thus, reduction of population growth is still needed. It has been

calculated by Collumbien et al. (2004) that globally, maternal conditions arising

from unwanted births, caused by failure to use contraception or use of ineffective

traditional methods, resulted in a loss of 51,000 lives and 4.4 million disability

adjusted life years. In the two African subregions loss of lives was almost double

that of other regions.

1.2 Who Needs Them?

In a recent report from the Guttmacher Institute on international family planning

efforts, Sedgh et al. (2007) address “the measurement of unmet need, the obstacles

faced by women with unmet need and the potential impact of meeting unmet need.”

Demographic and Health Surveys show unmet need ranges from 10 to 12% in most

regions, but is much higher in Sub-Saharan Africa (Sedgh et al. 2007). Figures

for unmet need in 2008 were 24% in Sub-Saharan Africa and 17% in South Central

and Southeastern Asia (J.E. Darroch and G. Sedgh, personal communication,

Guttmacher Institute 2010). The main reasons for nonuse among married women

are lack of access, health effects, and inconvenience, but most women with unmet

need stated that they intended to use contraceptives in the future (Sedgh et al. 2007).

This 2007 report provided six recommendations to address the unmet need. These

were to focus on Sub-Saharan Africa, concentrate on those populations with the

greatest need in each country, provide a range of services, provide counseling,

improve contraceptive technologies, and educate women about risks of becoming

pregnant (Sedgh et al. 2007).

The need for male contraceptives has been propounded in a recent review by

Darroch (2008). The number of men presently using contraceptives has remained

fairly stable at about 165 million from 1994 to 2005, but since total contraceptive

use has increased, this actually reflects a decreased use by men (United Nations

2005). This may be because of the lack of substantial choice of male methods, i.e.,

condoms, withdrawal, and vasectomy. Variations in method use are due to differ-

ences in age, marital status, birth spacing, and national and cultural characteristics

(United Nations 2005). Nevertheless, Darroch (2008) feels that there is scope for

greater use of contraception by men based on results of recent surveys (Ringheim

1995; Martin et al. 2000; Heinemann et al. 2005). Sixty-six percent of visitors to the

International Male Contraception Web site in 2006 wanted new male contracep-

tives, preferably nonhormonal (Thompson 2006). By 2007, 1,300 individuals had

signed up on the Web site urging funding for new male contraceptives (Thompson

2007). Other studies, the largest of which surveyed 9,000 men in nine countries on

four continents, also showed high acceptance for the development of new male

methods of contraception (Heinemann et al. 2005).

Family Planning: Today and in the Future 227



There seems to be a consensus among the experts in the field that despite the

plethora of hormonal methods for women and lesser nonhormonal options (e.g.,

barriers, implants, copper T IUD, and sterilization), there is still a need for new

methods for women and, given the very limited and poorly acceptable methods for

men, for men also (Harper 2005, 2007).

2 Methods of Contraception in the Clinic

2.1 Female Methods

2.1.1 Steroidal

In 1983, it was concluded that certain new contraceptives would be available by the

year 2000 (Harper 1983). These conclusions were arrived at by taking into account

various factors, such as rate of innovation, base of knowledge in reproductive

physiology, extent of translational research in the area, and expert (soi-disant)

opinion. In the most advanced grouping thought to be “highly likely by 1990”

were safer oral contraceptives, improved IUDs, improved barrier contraceptives for

women, improved long-acting steroid injections, improved ovulation-detection

methods for use with periodic abstinence, steroid implants, steroid vaginal rings,

GnRH analogs for female contraception, and prostaglandin analogs for self-admi-

nistered induction of menses. In fact, none were available by 1990, but were by

2000. Methods possible by 1990 or 2000 were even further delayed or still not

available. This proves that despite the wisdom of experts, development of radically

new methods takes much longer and more funding than anticipated, as compared

with “me-too” variations on a theme.

Contraceptive products recently introduced or in late stage clinical trials are

shown by category in Table 1. Products in all the categories identified in the 1983

review are now available. Oral contraceptives resulted from the original discoveries

by Pincus and associates (Pincus and Chang 1953; Chang et al. 1956; Garcia et al.

1956; Rock et al. 1957) of the utility of progestin/estrogen combinations for

contraception through blockade of ovulation. This is achieved by suppressing

gonadotropin release from the pituitary, thereby preventing follicular growth and

rupture.

There have been many variations on this theme with different progestins (but

usually the same estrogen, ethinyl estradiol except for a recent addition using the

natural estradiol – NOMAC/E2. (See: http://www.medicalnewstoday.com/articles/

71276.php). These variations of new steroids, new formulations and new combina-

tions have been aimed at reducing side effects and having different hormonal

activities, e.g., progestogenic (chlormadinone acetate), androgenic (levonorgestrel

and its esters), antiandrogenic (nomegestrel acetate and cyproterone acetate), and

antimineralocorticoid and antiandrogenic (drospirenone). Certain of these activities
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can be useful for treatment of gynecological conditions, such as PCOS or pelvic

inflammatory disease, as well as for contraception.

The usual dosing regimen for oral contraceptives has been 21 days of active

pills, followed by 7 days of placebo pills. New dosing regimens to reduce the

number of menstrual periods in the year have also been introduced (Seasonale,

Seasonique, and Lybrel). Provider-dependent methods, such as monthly injectables

containing both a progestin and an estrogen, and implants and IUDs releasing

progestational steroids over a long time provide alternate choices for the consumer.

Consumer-controlled methods of delivery that are easily started and stopped are

exemplified by vaginal rings and transdermal patches and creams. More recently,

an existing oral contraceptive has been reformulated as a mint-flavored, iron-contain-

ing chewable tablet (see: http://fdb.rxlist.com/drugs/drug-145900-FemconþFeþ
Oral.aspx?drugid¼145900&drugname¼FemconþFeþOral) to improve patient

compliance, especially among teenagers, and another has an added androgen to

increase sex-drive in women (see: http://www.medicalnewstoday.com/articles/

120878.php). Thus, in the 50 years since the initial studies of Pincus and colleagues,

a whole armamentarium of steroidal methods has been developed, but these meth-

ods are not radically new (Harper 2005, 2007). Much of the recent activity has

focused on the different dosing regimens, especially the nonoral ones. However,

users of patches and rings are thought to be at increased risk for venous thrombo-

embolic events (Cole et al. 2007: Jick and Jick 2007; Jick et al. 2007). Implanon is a

single rod releasing a progestin, etonorgestrel, which is effective for 5 years.

Mirena is an IUD releasing LNG and is effective for more than 5 years, which

not only provides very effective contraception but also other health benefits (Sivin

et al. 1991; Chrisman et al. 2007; Mishell 2007).

Progestin-only pills have a limited following, since missing a pill is more likely

to cause failure of the method than missing a combined pill. Furthermore, con-

traceptive efficacy is not as good as such progestin-only regimens do not inhibit

ovulation, except at high doses, but work by altering cervical mucus consistency or

sperm transport in the female genital tract. In addition, there is increased bleeding

and spotting, which is not acceptable to many women.

In younger women, or those not having regular sexual intercourse, there is a risk

of unprotected intercourse or even if a condom is used, a condom breakage, which

puts them at risk for an unwanted pregnancy. For such situations, there is available a

dedicated emergency contraceptive product (Plan B in the US: Postinor-1 or -2

elsewhere) consisting of two tablets, each containing 0.75 mg LNG to be taken 12 h

apart, which must be taken as soon as possible after intercourse and no later than

72 h (WHO Task Force on Postovulatory Methods of Fertility Regulation 1998).

There is evidence that taking both tablets at once may be just as efficacious. In this

modality, LNG works by inhibiting ovulation, but it must be taken before follicular

size is 18 mm or greater and this may account for the approximately 10–25% failure

rate, even when taken properly (Novikova et al. 2007). Another steroid, CDB-2914

(also known as VA-2914 or ulipristal), a progesterone receptor modulator (PRM)

with many of the same antagonistic activities as mifepristone has also been used for

emergency contraception (Orihuela 2007). A Phase III trial in the United States and
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other countries has just been completed (Creinin et al. 2006; Glasier et al. 2010). It

was concluded that ulipristal can provide an effective alternative to LNG that can be

used for up to 5 days after unprotected intercourse (Glasier et al. 2010). Ulipristal is

thought to work not only by inhibiting ovulation but also by affecting endometrial

function.

2.1.2 Nonsteroidal

Table 1 also lists the much smaller range of nonsteroidal contraceptives. These are

the copper releasing IUD and various barrier contraceptives, such as cervical caps,

diaphragms, and female condoms.

Barrier methods that have been available for many years are the Ortho dia-

phragm and the FC-1 female condom. Recently, there has been renewed interest in

improving user acceptability of such devices. The diaphragm was designed with

feedback from volunteers with the hope that it should be very acceptable to women.

It also has the advantage that one size may fit most women (Schwartz et al. 2008;

PATH 2008). A Phase IIb efficacy trial with BufferGel as the spermicidal active has

just been completed. The final results are in analysis. The female condom FC-1 has

the disadvantage of high cost. This problem has been overcome with development

of FC-2 made of latex. Its performance and acceptability were similar to FC-1 in

South Africa (Beksinska et al. 2006; Smit et al. 2006). Other female condoms are

under development. Nonoxynol-9 has been the most widely used ingredient of

spermicidal vaginal gels used for contraception. It acts by immobilizing and killing

spermatozoa in the vaginal tract. However, its failure to protect women from HIV,

and indeed to increase risk in women with multiple uses per day (Van Damme et al.

2002) led to efforts to develop more benign alternatives. Cellulose sulfate, a

polyanion, proved to be effective as a contraceptive (Anderson et al. 2002;

Mauck et al. 2008), but did not prevent HIV transmission and may even have

increased risk of infection (Van Damme et al. 2008). A different approach was

development of BufferGel, a carbopol-based vaginal gel, which acts by killing

sperm and potentially viruses by its pH lowering effect (Olmsted et al. 2000). It has

already been shown to be as effective as nonoxynol-9 as a contraceptive when used

with a diaphragm (Barnhart et al. 2007). Unfortunately, neither of the spermicidal

vaginal gels – BufferGel and SAVVY – nor the contraceptive or noncontraceptive

polyanion gels – cellulose sulfate, PRO2000, and Carraguard™ – were effective in

preventing HIV infection (Morris and Lacey 2010).

Female sterilization has always been an option for those who have reached their

desired family size, but involves surgery by laparotomy or laparoscopically.

Reversibility is difficult or impossible depending on how much of the Fallopian

tube has been removed. Recently, interest has been rekindled in transcervical

methods of sterilization using either liquid siloxane (Ovabloc) which forms a

plug in the tubal opening (Ligt-Veneman et al. 1999) or alternatively a metal coil

(Essure) is inserted which causes an inflammatory reaction and tissue ingrowth

(Chapman and Magos 2008). Essure is judged to provide significant cost savings
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compared with laparoscopic sterilization (Thiel and Carson 2008). Since, however,

both tubal blocking procedures require hysteroscopy to ensure correct placement,

they would be less suitable for resource-poor settings. A cheap and simple method

of sterilization is provided by insertion of quinacrine tablets into the uterus, but a

single insertion does not achieve 100% tubal closure. A second insertion 1-month

later does achieve 98% efficacy (Zipper and Kessel 2003). Its use fell out of

mainstream favor because of toxicity concerns, especially cancer. However, in a

10-year follow-up of patients sterilized with quinacrine risks to health were felt to

be minimal (Sokal et al. 2008a), but effectiveness was less than for other forms of

sterilization (Sokal et al. 2008b). A further follow-up of Chilean women during

23,894 person-years revealed only 41 invasive cancers (including 16 new cases

since the previous follow-up). It was concluded that rates of cancer among quina-

crine treated women are similar to population-based rates (Sokal et al. 2010).

Nevertheless, there are still concerns about the incidence of cancer in small animal

toxicology studies (Cancel et al. 2006; Family Health International 2007).

It has been known for a long time that in animals, administration of a cyclooxy-

genase-2 (COX-2) inhibitor of prostaglandin biosynthesis prevents follicular rup-

ture. That a similar effect occurs in women was deduced from a study by Killik and

Elstein (1987) who showed using ultrasound that indomethacin could cause 100%

luteinized unruptured follicles (i.e., causing entrapment of the oocyte). Indometha-

cin inhibits both COX-1 and -2 and has unacceptable side effects. With the advent

of specific COX-2 inhibitors, this idea has been revisited, first as an adjunct to LNG

treatment (Massai et al. 2007) and then as a stand-alone treatment (Bata et al. 2006).

The drug chosen was meloxicam, which is available as a generic and over the

counter in many countries, and has a long history of few side effects. A single dose

of 15 mg given with LNG appeared to extend the window of efficacy for emergency

contraception as judged by ultrasound (Massai et al. 2007) and meloxicem given

alone for 5 days commencing at a follicular size of 18 mm, seemed to have a similar

effect (Bata et al. 2006). A dose-finding study showed that 30 mg/day causes a

greater degree of unruptured follicles than 15 mg/day, 91 vs. 50%, respectively

(Jesam et al. 2010). The conclusion that lack of unruptured follicles in women seen

with ultrasound was buttressed by a study in cynomolgus monkeys where a 5-day

course of meloxicam (0.5 mg/kg/day p.o.) given around the time of ovulation

significantly reduced the rate of oocyte release (using histological examination)

without alteration of hormone levels or menstrual cycle length (Hester et al. 2010).

However, the suggested recommended dose of meloxicam for osteoarthritis is

15 mg/day and other COX-2 inhibitors have caused severe cardiovascular adverse

effects. Less selective NSAIDs, e.g., meloxicam, appear to have less risk for

thromboembolic events than more selective ones, e.g., celecoxib and rofecoxib

(Layton et al. 2003a, b). It should be noted that the reported cardiovascular and

thromboembolic side effects of meloxicam are no greater than those seen with

steroidal oral contraceptives (Layton et al. 2003a, b; Helin-Salmivaara et al. 2006;

Lidegaard et al. 2009; van Hylckama Vlieg et al. 2009). There is, however, still a

risk of GI bleeding with meloxicam, although this should be ameliorated by pill-

free days. Five days treatment for emergency contraception may also not be as
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acceptable to women when one or two pills of LNG will suffice. At the very least,

meloxicam could be a useful adjunct to LNG for emergency contraception.

In addition, consideration is now being given to use of meloxicam on a monthly

basis in a study in Chile. Placebo pills will be given on cycle days 1–4, meloxicam

(15 or 30 mg/day p.o.) on days 5–22, and placebo again for the remainder of the

cycle. On onset of bleeding a new pack of pills would be started. Concurrently, a

pregnancy inhibition study in monkeys is proposed using the same dosing protocol

as in the human study.

2.2 Male Methods

Historically, there have been fewer contraceptive options for men – condoms,

vasectomy, and withdrawal. This area did not attract the same degree of research

as that for female contraceptives. This may have been because of a mistaken

perception that since women get pregnant, they are the ones motivated to use

contraceptives. However, as we have seen in Sect. 1.2 above, men are willing to

share the burden of family planning and would use even the inconvenient methods

now under development. The new options are shown in Table 2.

WHO has conducted two major studies using large doses of testosterone

enanthate (200 mg i.m. weekly) as a male contraceptive (WHO 1990, 1996). In

the first trial, only about 65% of men reached azoospermia and in such men there

was only one pregnancy in 1,486 months of use. Recovery of spermatogenesis took

about 4 months (WHO 1990). The second study showed that even men not

azoospermic, but with sperm counts of less than 3 million/ml were effectively

infertile; only four pregnancies occurred in 49.5 person-years of use (WHO 1996).

Although these pioneering studies proved the concept, the frequent injections were

not well accepted.

From the various, generally small trials that have been conducted, it is known that

a regimen combining an androgen and a progestin can provide a reliable way to

inhibit spermatogenesis by suppressing gonadotropin secretion from the pituitary.

New formulations of testosterone undecanoate and norethisterone enanthate permit

longer dosing intervals, although this particular combination has not been tested

heretofore for efficacy, only for degree of azoospermia and blood levels (Meriggiola

et al. 2005; Qoubaitary et al. 2006). Doses of 1,000 mg TU and 200 mg NET-EN

given bi-monthly were selected as the best choice and they are being used in the

present trial, which also differs from the pilot study in that when men reach

azoospermia or less than 1 million sperm/ml in the ejaculate, they will be allowed

to have intercourse without need for a condom. There will be a 6-month suppression

phase, a 1-year efficacy phase and 1-year for recovery. Much hope is pinned on the

trial which is in progress. As of March 2010, about 230 men have been enrolled and

of those 151 had entered the efficacy phase. A small number are in the recovery

phase. Recruitment will end at the end of August 2010 and results should be
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available by 2012. If a hormonal method of male contraception is going to be

available in 5 or do years, this is the only possible candidate.

Two pharmaceutical companies, Schering AG (now Bayer Schering Pharma

AG) and Organon (now part of Merck & Co. Inc.) had joined forces to test the

combination of the etonorgestrel implant (good for a year) and TU given i.m.

bimonthly as a possible method of male contraception. It was concluded that this

was a well-tolerated method for inducing reversible suppression of spermatogene-

sis. Approximately, 90% of men reached and maintained azoospermia from week

16 to the end of the study at 42 or 44 weeks (Mommers et al. 2008). It was also

concluded that having two methods of delivery – implant and injection – was not

ideal. For corporate reasons, it was decided not to pursue this combination further.

The only other male methods near to fruition involve vassal occlusion. Lohiya

et al. (2001) conclude that the vas deferens is an organ that can be manipulated for

male contraception without undue side effects. Vasectomy is the most widely used

approach for sterilization and can be done surgically or with the newer no scalpel

technique. Other ways of blocking the vas have also been explored (see

full discussion: http://www.newmalecontraception.org/vas.htm accessed February

17, 2010).

One intravas device known as the “SHUG” has been in development for many

years (Zaneveld et al. 1998). It is now known as the Intra Vas Device (IVD). This

consists of two hollow silicone plugs joined by a thread. The plugs are placed in the

vas and the thread left outside the vas to facilitate removal. Unfortunately, in the

only clinical trial reported, 3 out of 30 men did not have complete blockade of

sperm passage (Zaneveld et al. 1998). Further modifications have been made to

improve efficacy and the project has been taken over by Shepherd Medical Com-

pany who planned to start a clinical trial in 90 men beginning in 2006. This was to

be funded by NIH Office of Extramural Research starting in 2004 and ending in

2007 (Office of Extramural Research 2004). However, according to the Clinical-

Trials.gov Web site, there is no active recruitment of participants at last reported

update in 2007 (see: http://clinicaltrials.gov/ct/show/NCT00335361?order¼2). No

results from this trial have been published.

A more promising approach is provided by RISUG (an acronym for Reversible

Inhibition of Sperm under Guidance). This method consists of styrene maleic

anhydride powder dissolved in dimethyl sulfoxide (DMSO), which is injected

into the vas in sufficient quantity to coat the inner lining of the vas and to partially

block it. Not only does the SMA block the vas but it also actively kills sperm (Guha

et al. 1997). In a small clinical trial, 12 men whose wives were not using other

methods of contraception had their vas injected with RISUG and followed up for at

least 12 months. Azoospermia was maintained for this period and no pregnancies

were reported (Guha et al. 1997). Experiments conducted in langurs showed that the

blockade can be reversed by a noninvasive, but complicated, procedure which

involves palpation, percutaneous electrical stimulation, forced vibratory move-

ment, suprapubic percussion, and rectal massage of the vas (Lohiya et al. 1998).

Whether all these maneuvers are necessary is unknown since each was not tested

individually. In a follow-up study also in langurs, it was shown that blockade lasting
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150 days could be reversed and then the vas reoccluded and reversed successfully

again (Lohiya et al. 2000). According to Wikipedia, Dr. Guha claims that there has

been only one pregnancy among partners of 250 men treated and that the effect lasts

10 years. The Indian Council of Medical Research has sanctioned a Phase III trial in

India despite some lingering doubts about the toxicity of DMSO. About 60 of a

planned 500 subjects have been enrolled, and an interim analysis was expected a

year from now (Badri Saxena, personal communication October 2008), but has

been further delayed.

2.3 Need for Improved Methods

As has been discussed in Sect. 2.1, although there are a large number of different

modalities of contraception for women, mostly they involve delivery of steroids

(with admittedly somewhat different activities on the progesterone receptor) pack-

aged in various ways – oral, transdermal, implant, vaginal ring, and IUD. If a

woman has unacceptable side effects with one preparation, then by trial and error,

she probably can find one that suits her needs and lifestyle (spacing or limiting).

Nevertheless, it is clear that despite availability, many women do not use contra-

ceptives. Nonuse is responsible for 90% of unwanted births (Collumbien et al.

2004) and this unmet need ranges from 10 to 12% in developing countries (Sedgh

et al. 2007). Even in the United States, women who feel dissatisfied or neutral about

their contraceptive method may not use contraception for at least 1 month every

year (Frost et al. 2007).

For men, the situation is worse, as choice is so limited. The only newmethod that

may appear in the next 5 years is a steroidal one, and delivery of which, although

men claim to find oily injections in the buttocks acceptable in the trials, is less than

optimal. It is plausible that men who are in the ongoing trials are early adopters and

more motivated. Whether a method involving a clinic visit every 2 months will be

acceptable to men as a routine method is uncertain. Different delivery methods such

as transdermal ones could prove more acceptable, but here there is the drawback of

daily application and even potentially spread to the partner.

Clearly, no one method will be suitable for all couples, especially given the

different needs at different times in the reproductive life-cycle – career delay, birth

spacing, desired family size achieved, and degree of sharing responsibility between

a man and his partner. Long-acting methods such as IUDs or implants are more

suitable for those women not desiring further children for at least for 5 years or so

and have the advantage of decreasing unintended pregnancy (Speidel et al. 2008).

Taking into account the pandemic of HIV/AIDS in many sub-Saharan countries,

methods that provide dual protection – contraception and inhibition of HIV and

other sexually transmitted diseases (a.k.a. microbicides) – are urgently needed.

At present, research on HIV prevention and contraception is mostly being

conducted separately and is not well coordinated. Although there is adequate

funding for microbicides, funding for contraception is constrained. The initial
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inventors in academia or biotech cannot fund the translational research themselves.

Absent adequate funding at worst new developments may not reach fruition or at

least will be seriously delayed. (This theme is discussed further in Sect. 5.) As Potts

and Fotso (2007) urge, it is time to once again to place population and family

planning center stage in global efforts to improve reproductive health and fight

poverty. In a recent review, we made the case, which we reiterate here, that knowing

what we know, what is possible, what we need to do, and how the OMIC revolution

permits us to focus our efforts to provide new methods for both men and women

(Aitken et al. 2008), the funding of new initiatives will not go in vain.

3 New Leads in the Preclinical Discovery Phase

When considering developing a new lead, certain considerations need to be taken

into account. First is validation of the target, which can be achieved by interfering

with the biological activity of the target. Inhibition can be accomplished by means

of knocking out or silencing the relevant gene in mice (provided there is a human

homolog), antibodies to the target (preferably in a primate model) or small molec-

ular weight inhibitors (if reasonably specific such be known). The target should

preferably be specific for the reproductive tract with minimal cross-reactivity in

liver and kidney and other organs and not be able to be substituted for by another

member of the gene or protein family. Ideally, the target needs to be druggable.

Good targets are ion channels, receptors, and enzymes which are more readily

susceptible to inhibition by small molecules. Some targets may be readily inhibited

by small peptides, i.e., by mutated ligands that bind to a receptor but do not cause an

active read-out. The problem with peptides is that they are not orally active and

must be delivered by another route. Since the half-life of peptides, even if extended

by conjugation with polyethylene glycol (PEGylated), will be measured in days not

weeks or months, frequent administration will be needed. Injections, more frequent

than once-a-month, are not acceptable for contraception. This is not true for other

modes of delivery. It has been known for a long time that vaginal absorption is an

effective means to deliver systemically a wide range of substances, including

proteins and antigens (reviewed by Benziger and Edelson 1983). In a more recent

review, it is reemphasized that vaginal absorption of peptides and therapeutically

important macromolecules is feasible (Hussain and Ahsan 2005). Antibodies,

including monoclonal IgG and IgM, have been released from a vaginal ring over

a 30-day period, but concentrations were about 100-fold lower in blood and other

tissues than in vaginal secretions (Saltzman et al. 2000). Insulin uptake was

minimal from the rat vagina without use of enhancers like the surfactant polyox-

yethylene-9-lauryl ester (Richardson et al. 1992). More relevant to contraception, it

has been shown that delivery of magainin II amide (23 amino acids) from a vaginal

tampon was absorbed sufficiently to interfere with implantation in the rhesus

monkey (Dhawan et al. 2000). Other dosage forms can be considered, such as
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nasal sprays, but for practicality vaginal gels to test the concept in vivo, followed by

development of a vaginal release device seem to be the easiest path to delivery

of peptides.

3.1 Potential New Female Methods

A selection of new leads has been recently discussed (Aitken et al. 2008). These

included both steroidal and nonsteroidal moieties. Conventional wisdom predicates

that ten targets are needed to get one lead all the way from discovery to clinical

testing. As will become clear from the following vignettes, the number of exciting

leads is low.

Progesterone receptor modulators (PRMs), such as mifepristone and ulipristal,

have been shown to be effective for early abortion (Kovacs et al. 1984; Swahn et al.

1994) and for emergency contraception and as a daily contraceptive (Baird et al.

2003; Chabbert-Buffet et al. 2007; Orihuela 2007). Other PRMs have been tested in

animals, including monkeys (Brenner and Slayden 2005; Slayden et al. 2006), but

there has been reluctance to develop such agents for contraception due to the

possibility of their use for medical abortion, and the fact that mifepristone is widely

used and well tolerated. Other agents further back in the pipeline include inhibitors

of leukemia inhibitory factor (LIF) receptor and its close relative IL-11 receptor a,
inhibitors of leptin receptor and proprotein convertase 6 (PC6). All of these

approaches would work postfertilization by interfering with endometrial receptivity

for blastocyst implantation.

In mice, LIF is obligatory for implantation (Bhatt et al. 1991: Stewart et al. 1992)

and appears also to play a key role in monkeys (Yue et al. 2000; Sengupta et al.

2006) and in women (Kojima et al. 1994; Charnock-Jones et al. 1994). Peptides

derived from mutated human LIF have proved to be good inhibitors of LIFR

activation being 1,000-fold more potent binding to LIFR in vitro than the native

molecule (Fairlie et al. 2004). Despite its short half-life in vivo, multiple i.p.

injections and delivery from an osmotic minipump of the antagonist between

days 2.5 and 4.5 of pregnancy prevented implantation in mice (White et al.

2007). Conjugation of the antagonist with polyethylene glycol (PEGLA) increased

the half-life considerably. In vitro the PEGylated form could still block LIFR

signaling, and in vivo only three i.p. injections between days 2.5 and 3.5 were

needed to inhibit implantation (White et al. 2007).

Application per vaginam in mice, however, proved problematic, as there was

leakage and grooming, and this combined with the small volume of the vagina,

made delivery of adequate amounts unreliable and difficult. This problem was a

factor for all the peptides delivered vaginally in mice – LIFR, IL-11Ra, Leptin, and
PC6 antagonists. Alternative animal models are being sought. A dose-finding

exercise in cynomolgus monkeys is now in progress. Subcutaneous administration

will be tested first to determine what dose should be used to achieve measurable
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uterine levels of PEGLA, and then vaginal application tried to achieve the same

uterine level.

A similar strategy has been pursued with IL-11 receptor a subunit. Mice null for

this receptor are infertile due to defective decidualization (Robb et al. 1998). Both

the mRNA and protein of IL-11R are highly expressed in primate endometrial

luminal and glandular epithelium at the time of uterine receptivity (Dimitriadis

et al. 2003, 2006a). Inhibitory peptides have been made which block IL-11R

signaling via the JAK/STAT pathway in vitro and are therefore likely to be active

in vivo also. The expectation is that the antagonist will act on the epithelium prior to

blastocyst attachment. In contrast in the mouse, IL-11 and its receptor are

completely decidual specific (Robb et al. 1998) and thus the antagonist will work

only after blastocyst attachment. Like the LIFR antagonist, the IL-11R antagonist

had to be PEGylated also. These antagonists have not yet been tested in vivo. Work

has concentrated on the PEGLA. If the initial promise holds up, one can imagine a

dual acting mixture of the LIFR and IL-11R antagonists having a synergistic effect,

they both activate the JAK/STAT pathway (Bao et al. 2006; Dimitriadis et al.

2006b). The IL-11R antagonist development is clearly much further back in the

pipeline than the LIFR one.

Although leptin is a key regulator of food intake and energy balance, it also

regulates implantation in mice. Mice null for the leptin receptor are infertile due to a

failure of implantation (Malik et al. 2001). Leptin signals through the JAK/STAT

pathway, like LIF, and this can be blocked by inhibitory peptides or antibodies to

the leptin receptor (Gonzalez et al. 2004). Leptin inhibits decidualization in vitro

(Tanaka et al. 2003). Peptide antagonists of the leptin receptor inhibit implantation

in mice after intrauterine administration on day 3 of pregnancy, while scrambled

peptides have no effect (Ramos et al. 2005). As with the LIFR and IL-11Ra
antagonists, PEGylation of the leptin receptor antagonist increased its half-life

to 19–68 h. Formulation of this PEGylated antagonist in a gel which was then

administered intravaginally on days 1–6 of pregnancy prevented implantation in

mice (Gonzalez et al. 2007). Unfortunately, a fresh supplier of PEG had to be found.

Replication of the original results with the new material proved difficult. Although

radiolabeled peptide was found in the uterus, ovaries and mammary glands follow-

ing vaginal administration, insignificant amounts were found in the central nervous

system (suggesting no crossing the blood–brain barrier) and there was no effect on

energy balance (Gonzalez 2006; Gonzalez et al. 2007). However, the fact that leptin

has so many other functions encourages caution with its development for contra-

ception.

Both mRNA and protein of a serine protease, proprotein convertase 6 (PC6),

were found to be present in mouse and human endometrium and associated with the

window of endometrial receptivity for implantation (Nie et al. 2005a). Intrauterine

administration of morpholino antisense oligonucleotides blocked PC6 protein pro-

duction and inhibited implantation (Nie et al. 2005b). Although there are other

members of the PC family found in the endometrium, only PC6 was specifically

upregulated during decidualization; all the others were just constitutively expressed

(Freyer et al. 2007). This suggests that it may be a good target. Experiments have
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examined the effect of a known inhibitor of PCs, D-type 9-mer-Polyarginine (Poly-R)

(Fugere et al. 2007) as an antifertility agent in mice. Although positive results

were achieved with vaginal application, replicability is a problem. The rabbit is

being used as an alternative model.

It should be noted that except for LIF no primate studies have been undertaken

with any of these antagonistic peptides. Whether a successful result in a monkey

species is the gatekeeper to going forward with development and into women is

uncertain. A positive result would certainly be encouraging. However, monkey

studies are expensive, difficult to conduct and pregnancy rates in untreated

monkeys are only about 65% depending on the caging available for mating. The

number of centers able to do such studies is also a limiting factor. Other smaller

primates, such as marmosets, might provide a solution.

Other possible leads are genes upregulated at the time of the window of

endometrial receptivity, such as laminin b3, microfibril-associated protein 5, angio-

poietin-like 1, endocrine gland-derived vascular endothelial growth factor, and

nuclear localized factor 2, but these are at a much earlier stage and their ultimate

success or failure is unknown (Haouzi et al. 2009).

3.2 Potential New Female or Male Methods

Here again, a selection of leads which work during different reproductive stages has

been discussed by Aitken et al. (2008). Male germ cells develop an intracellular

bridge during spermatogonial cell differentiation (Greenbaum et al. 2006, 2007).

These bridges link all male germ cells during subsequent meiosis and mitosis,

which results in a syncytium of more than 1,000 cells. An essential protein in the

formation of these bridges appears to be TEX14 which localizes to the intercellular

bridge during spermatogenesis. Mice null for TEX14 show disrupted intercellular

bridges and are infertile (Greenbaum et al. 2006). Recently, it has been found that

intercellular bridges between the gonocytes and oogonia are absent in TEX14 null

female mice, and yet they remain fully fertile (Greenbaum et al. 2009). No

inhibitors of TEX14 have so far been reported.

A small molecule, Adjudin (AF2364) related to Lonidamine, an anticancer drug,

targets protein complexes restricted to the interface between Sertoli cells and

elongating spermatids in the testis. This disrupts the anchoring junction which

causes premature exfoliation of spermatozoa. These immature spermatozoa cannot

fertilize oocytes (Cheng et al. 2005; Mruk et al. 2006). Owing to poor oral

bioavailability large doses had to be administered systemically to achieve the

desired antifertility effect. This resulted in liver toxicity (Cheng et al. 2005). A

pharmacokinetic study in rabbits showed that the AUC for i.v. and oral administra-

tion of Adjudin were 20.1 and 2.2(mg h)/L, respectively, thus confirming the lack of

oral bioavailability (Hu et al. 2009). One way of overcoming this problem was the

conjugation of Adjudin to a mutant FSH molecule that bound the FSH receptor but
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did not activate it. Since FSH receptors are only found on Sertoli cells, this

conjugate targeted Adjudin to the testis where after i.p. administration it was

100,000 times more potent and not toxic than the unconjugated Adjudin (Mruk

et al. 2006). However, to administer the conjugate practically is still difficult.

A different approach was taken by others (Tash et al. 2008a, b). Chemical

modifications of the parent compound, Lonidamine, produced indazole carboxylic

acids that were much more bioavailable and potent. One of which named gamen-

dazole was selected for further study (Tash et al. 2008a). In seven fertile male rats,

it was found that an infertility rate of 100% was achieved 3 weeks after a single oral

dose of 6 mg/kg. Reversibility occurred by 9 weeks in four out of the seven (Tash

et al. 2008a). It appears that gamendazole targets the Sertoli cells in a similar way to

Lonidamine and Adjudin, but is more effective because of the good bioavailability.

Whether this compound is toxic to the liver at these low doses is unknown. This

could be a very attractive method of male contraception because, once infertility is

established, a monthly pill should be effective to maintain it as the next treatment

would occur before mature sperm could again be exfoliated from the seminiferous

epithelium.

In mice, the retinoic acid receptor a (RARa) is essential for transduction

of retinoid-mediated signaling and normal fertility. Its lack in mice homozygous

for a null mutation causes multiple sperm defects, including failure of spermatids

to align properly with the Sertoli cells (Chung and Wolgemuth 2004, Chung et al.

2005, 2009; Wolgemuth and Chung 2007). In a program to develop antagonists of

RARa for therapeutic purposes, it was discovered that an antagonist, BMS-189453

(now known as compound 9), that blocked all three RARs – RARa, b, and g –

caused testicular degeneration and infertility in rats. Toxicity was only seen at

60 mg/kg/day (Schulze et al. 2001). Even a dose as low as 2 mg/kg orally for 1, 3, or

7 days caused testicular degeneration 1 month after dosing. The degree of atrophy

was time and dose-dependent and was at these doses irreversible. A dose of 50 mg/

kg for 1 week produced similar effects in rabbits (Schulze et al. 2001; Wolgemuth

and Chung 2007). More recent testing of lower doses suggests that it is possible to

reverse the testicular damage. Oral administration of 2.5 mg/kg/day for 4 weeks

to mice caused infertility for 4 weeks following treatment: reversal occurred in

14 weeks. Whether lower doses and longer times of treatment will still prove

effective and reversible remain to be determined. No toxicology was noted at this

dose in the mice. Compound 9 has an advantage over new analogs in that a

complete toxicology study was done in rats as part of its initial development during

which the testicular effect was seen.

GAPDHS (known as GAPDH-2 in the human) is a glycolytic enzyme encoded

by genes expressed only during spermatogenesis (Welch et al. 1992; Krisfalusi

et al. 2006). GAPDHS is tightly bound to the fibrous sheath of the principal piece of

the sperm flagellum (Welch et al. 1992), and mice that are homozygous null for this

enzyme have immotile sperm and are infertile (Miki et al. 2004). GAPDHS is also

found in the rat about 29 days postnatally and is localized to round and condensing

spermatids (Welch et al. 2006). This suggests that GAPDHS may be a useful target

for contraception in men and vaginally in women, but this depends on identification
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of inhibitory small molecules. Structure activity relationship analyses are being

done on in silico screening hits and high throughput screening is being done on

various libraries of compounds. Hits to date have a low level of inhibitory activity.

The same investigators have also shown that phosphoglycerate kinase-2 is essential

for sperm function and male fertility in mice. This isoenzyme catalyzes the step

following the action of GAPHS in the sperm glycolytic pathway, but the defect in

fertility is less than that of GAPDHS (Danshina et al. 2010).

Sperm depend on motility to traverse the reproductive tract and hyperactivation

to achieve penetration of the oocyte. Calcium is essential for motility and enters the

sperm by a calcium ion channel which is comprised of four subunits of CatSper

proteins 1–4 (Ren et al. 2001; Jin et al. 2005; Qi et al. 2007). All four subunits

appear necessary for calcium influx. Their absence does not affect normal sperm

motility but does abolish hyperactivated motility (Carlson et al. 2003; Quill et al.

2003; Jin et al. 2007). Patients with subfertility due to lack of sperm motility have a

3.5-fold difference in CatSper gene expression from infertile men with normal

sperm motility (Nikpoor et al. 2004). High throughput screening and secondary

confirmation by CASA have identified some leads but activity is in the high nM

range (Carlson et al. 2009). This appears an attractive target, and inhibitors could be

used by either men or women.

Odorant receptors (OR) have been found on human sperm (Spehr et al. 2003). A

human testicular hOR17-4 has been identified which mediates sperm chemotaxis in

various bioassays (Spehr et al. 2003; Spehr and Hatt 2005). It is thought that

chemical signals may be involved in attraction of sperm to the ovulated oocyte to

improve the chances of fertilization. Activation of the hOR17-4 receptor mediates

distinct flagellar wave patterns and chemotactic behavior (Spehr et al. 2006), which

suggests that this system may be a key player in the process of fertilization, even

though the endogenous ligand released from the oocyte is unknown. Undecanol, an

antagonist that inhibits signaling through the OR17-4, has been described (Spehr

et al. 2003), but in the intervening period little progress seems to have been made in

identifying more active compounds despite the attractiveness of the target. Speci-

ficity may be a problem as the family of olfactory receptors is diverse and is

involved in the activity of enzymes, ligand-gated ion channels, and G protein-

coupled receptors (Spehr and Munger 2009).

Most of the leads discussed so far have been validated by use of mice with the

gene of interest deleted by targeted mutagenesis. However, use of passive adminis-

tration of antibodies can also provide useful information. Eppin is a protein found in

Sertoli cells in the testis and epididymal cells. It binds semenogelin and inhibits the

activity of prostate-specific antigen, which normally causes the hydrolysis of

semenogelin (Wang et al. 2007a, b). Antibodies specific for Eppin caused infertility

in male monkeys, which eventually was reversed in the majority of monkeys

(O’Rand et al. 2004). The antibodies were thought to bind to eppin on the sperm

surface and the complex thus blocking the binding site for semenogelin (O’Rand

et al. 2006). Furthermore, the anti-eppin antibodies from the monkeys reduced

progressive motility of human sperm (O’Rand et al. 2009). It was concluded that

eppin-seminogelin binding site is a key factor in removal of semenogelin during
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semen liquefaction in vivo (O’Rand et al. 2009). Using recombinant semenogelin

and fragments, it was determined Cys is the critical amino acid for biding to Eppin

and inhibiting sperm motility (Mitra et al. 2010). Small molecule inhibitors of this

binding site are being sought, which these investigators feel is an excellent target

for a male contraceptive (O’Rand et al. 2009).

Another interesting approach to male contraception depends upon inhibition of

sperm emission. Drug-induced inhibition of ejaculation, associated with otherwise

normal orgasm, was observed as a side effect of treatment with therapeutic agents

used for other purposes, e.g., guanethidine, thioridazine, and phenoxybenzamine

(Green and Berman 1954; Singh 1963: Bauer et al. 1973). Studies using rat and

human vas deferens defined the a1-adrenoceptor subtypes mediating noradrenaline

contractions (Amobi and Smith 1992; Amobi et al. 1999). Subsequent studies with

a1-adrenoceptor agonists and antagonists on human vas deferens obtained from

vasectomy operations confirmed the rat findings (Amobi et al. 2003). The discovery

of the mode of drug-action underlying the contraceptive side-effect of thioridazine

and phenoxybenzamine led to the identification of a novel subset of drugs related to

a-adrenoreceptor antagonists that replicate this unique mode of action (Amobi et al.

2010a, b). Further studies will use the ram as a suitable animal model for in vitro vas

deferens studies and then for in vivo efficacy experiments. The attraction of this

approach is that treatment would only be on a “as needed” basis and the effect could

be over within 24 h, thus reducing the drug burden that could cause side effects.

The targets discussed briefly above are not an exhaustive list and only some of

those farthest along in the development pathway are mentioned to give a snap shot

of where things stand now.

4 Factors Influencing a Successful Outcome

All the leads for a novel nonhormonal method of contraception are at an early stage

and even where inhibitors with adequate potency and specificity have already been

identified the time that will be required to reach the clinic is at least 5 years, and

probably longer. When one considers the length of time (10+ years) necessary to

progress from Phase I to Phase III trials, it can be seen that if all goes according to

plan it will be 15–20 years to reach fruition and cost upwards of US $100 million.

And this does not take into account the fact that nine out of ten leads will fail for one

reason or another. This is one essential reason why it is necessary to have a pipeline

full of leads.

It is important that efficacy be as close to 100%, as possible because existing

methods, such as oral contraceptive pills, implants, vaginal rings, or IUDs (copper

or LNG releasing), achieve that level. Furthermore, the need for contraception is to

avoid unwanted pregnancy, and if contraception fails that may result in the need to

have an abortion, if that option exists. Better contraceptives should mean less need

for abortion, legal and illegal. Lack of side effects, both specific and nonspecific

ones, is an important element. Contraceptives are used by healthy individuals
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usually for long periods of time, or in contrast very infrequently. Side effects

occurring for a few days following use of an emergency contraception method

may be tolerable, but not if they occur at the same level week after week or month

after month. This, along with efficacy, is one of the factors in determining accept-

ability of a method. The method of delivery – oral, subcutaneous, intramuscular,

transdermal, vaginal ring, film or gel, intrauterine, and sterilization – all play a role

in the decision a person (up to now usually a woman) makes when selecting a

method. In addition, the method must meet cultural norms and life stage needs –

emergency, spacing, or limiting. Cost of a method is also a major factor unless it is

subsidized through government programs.

Finally and outside the scope of this article, there is the whole issue of provider-

dependent vs. provider-independent methods and what methods are available when

a selection is made initially and whether the method will still be available at repeat

visits to the supplier. This latter consideration is much more a problem in less

developed, resource-poor countries where supply lines are often unreliable. How-

ever, such individuals deserve the best and most suitable contraceptives just as their

counterparts in developed countries.

5 Resources to Complete the Translational Process

The time to market and the cost noted above provide a significant disincentive to

potential developers of new contraceptives. I have recently addressed this issue

(Harper 2008). Large pharmaceutical companies by-and-large have reduced their

efforts in this arena and are only willing to commit their resources again after

successful Phase II or more likely Phase III trials have been completed. Smaller

companies generally do not have the funds to support all the activities necessary to

reach these milestones. Part of the needed funds can be provided by organizations

such as the US NICHD and Medical Research Councils of other countries. Philan-

thropic foundations have, in the past, been significant supporters of reproductive

biology, with Ford and Rockefeller Foundations supporting training programs for

foreign scientists from the 1970s, and Andrew W. Mellon Foundation with its sup-

port of selected US reproductive biology centers and a twinning program between

the US centers and scientists in developing countries. From 1995, support for the

field, and contraceptive development in particular, was provided by Rockefeller,

Andrew W. Mellon, William and Flora Hewlett, David and Lucile Packard, Bill &

Melinda Gates foundations, and also one that chooses to remain anonymous. Today

this list has dwindled and only the anonymous Foundation is still active in this area.

The drop out was largely due to donor fatigue over the long time and the large sums

needed for a successful outcome.

Much has been made of the need to harness the knowhow and deep pockets of

big Pharma, and the concept of public/private partnerships has been promoted

vigorously since 1995. In some fields, such as development of treatments for

TB and prevention of malaria and HIV, there has been substantial industry
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involvement. In 2007, there were 23 Global Health Partnerships (Buse and Hammer

2007). With some notable exceptions this has not been the case for contraceptives.

Schering AG (now Bayer Schering Pharma AG) was particularly active jointly

supporting research with the Consortium for Industrial Collaboration in Contracep-

tive Research program of CONRAD into new leads for female and male contracep-

tion. These projects have now ended due to the corporate reorganization, but

provide an excellent model provided willing and able partners can be found.

6 Conclusions

There is some good news and some bad news. The good news is that improvements

in existing contraceptives will be forthcoming. There will likely be a positive

outcome of the male steroidal approach now in Phase IIb trial. Maybe there will

be an improvement in emergency contraception although this is mainly a niche

area. Further development of different modes of delivery will continue and will

provide options for those who do not like daily pill taking. The bad news is that

radically different, nonsteroidal methods, with the potential exception of melox-

icam, will not be available for 15 plus years. Hopefully, we can expect one new

male and one new female lead to make it to the clinic by 2027. Which of the

candidates in the pipeline, or even ones not yet identified, will make it is uncertain?
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implantation depends on maternal expression of maternal leukemia inhibitory factor. Nature

359:76–79

Swahn ML, Bygdeman M, Gemzell K (1994) Anti-conceptive potential of antiprogestin RU486

(mifepristone). In: Puri CP, Van Look PFA (eds) Current concepts in fertility regulation and

reproduction. Wiley Eastern, New York, pp 76–82

Tanaka T, Utsunomiya T, Bai T, Nakajima S, Umesaki N (2003) Leptin inhibits decidualization

and enhances cell viability of normal endometrial stromal cells. Int J Mol Med 12:95–98

256 M.J.K. Harper



Tash JS, Attardi B, Hild SA, Chakrasali R, Jakkaraj SR, Georg GI (2008a) A novel potent indazole

carboxylic acid derivative blocks spermatogenesis and is contraceptive in rats after a single

oral dose. Biol Reprod 78:1127–1138

Tash JS, Chakrasali R, Jakkaraj SR, Hughes J, Smith SK, Hornbaker K, Heckert LL, Ozturk SB,

Hadden MK, Kinzy TG, Blagg BS, Georg GI (2008b) Gamendazole, an orally active indazole

carboxylic acid male contraceptive agent targets HSP90AB1 (HSP90BETA) and EEF1A1

(eEF1A), and stimulates IL1a transcription in rat Sertoli cells. Biol Reprod 78:1139–1152

Thiel JA, Carson GD (2008) Cost-effectiveness analysis comparing the essure tubal sterilization

procedure and laparoscopic tubal sterilization. J Obstet Gynaecol Can 30:581–585

Thompson K (ed) (2006) Do men want new contraceptive options? Initial results from an ongoing

survey. Male Contracept Q 2006:1–14. See http://www.imccoalition.org/facts/Male_Contra-

ception_Quarterly_1.pdf

Thompson K (ed) (2007) Do men want new contraceptive options? Initial results from an ongoing

survey. Male Contracept Q 2007:1–14. See http://www.imccoalition.org/facts/Male_Contra-

ception_Quarterly_2.pdf

United Nations (2005) United Nations department of economics and social affairs, population

division. World Contraceptive Use-2005. United Nations, New York

Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, Rees H, Sirivongrangson P,
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